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ABSTRACT

THE THEORY OF PHYSIOLOGICAL AGE

DISTRIBUTIONS IN BIOLOGICAL POPULATIONS

By

John Van Sickle

For many species of plants and animals, chronological age is

neither convenient nor useful to the population biologist as a measure

of individual maturity. A physiological feature of an organism, such

as its body size or chemical composition, provides an attractive alter-

native to chronological age as a frame of reference for discussing life

history phenomena. Unfortunately, most demographic population models

have been structured on the basis of chronological age.

This thesis is a study of a dynamic population model in which

individuals are classified by physiological age. The physiological

age profile of the population is represented by a number density

function which obeys a first-order partial differential equation.

Solutions of the differential equation are presented. The

asymptotic behavior of the model is discussed and well-known stability

results for chronological age distributions are generalized to physio-

logical age distributions. The shape of the stable physiological age

distribution is shown to be a function of individual growth as well as

mortality and fecundity.

With body size as a specific measure of physiological maturity,
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the model is applied to some problems in fish population dynamics.

Equations for estimating biomass production are derived from the dynamical

equations for the size distribution. A steady-state pOpulation size

distribution is defined and applied to an exploited fish population

previously modeled on the basis of chronological age. A third applica-

tion shows how the stable size distribution predicted by the model can

be used to compute mortality rates from empirical population size-

frequency curves and a knowledge of individual growth rates.

Finally, time-varying growth rates are discussed, still in the

context of fish populations. Fish are known to respond to changes in

available resources by altering their growth rates. A stability

analysis and simulations demonstrate how individual growth in fish can

regulate pOpulation growth in a limited environment.
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CHAPTERl

INTRODUCTION

Quantitative models with a single dynamic variable are inadequate

fbr a realistic description of most populations. If functional or time

lag terms are included, ordinary differential or difference equations for

total numbers can reproduce many observed population trajectories.

However, such complex equations usually can not be interpreted in a

biologically useful manner.

Much of the problem lies in the assumption of these models that

all members of the population are identical. Numerous field and labora-

tory populations have demonstrated how the heterogeneous composition of

a population.profbundly affects its dynamics. Population models must

begin to account for this hetereogeneity.

Oster and Takahashi [1974, p. 483] express this in a different

way by stating that ". . .populations are intrinsically distributed

parameter systems.“ For populations whose members are differentiated

by chronological age, a highly developed set of distributed parameter

models is available which includes integral equation, partial differ-

ential equation, and discrete matrix forms. Using this set of models

as a theoretical base, demographers have developed a comprehensive

methodology for age-specific parameter estimation and prediction of

future age distributions [Keyfitz, 1968] .

There are many ways to classify individuals other than age. Such

1



features as individual body size, dietary requirements, or chemical

composition might strongly influence how individual birth and death

phenomena "sun up" to give population birth and death rates.

Alternate methods of differentiating among individuals become

especially important when describing non-human populations. Chrono-

logical age is difficult to assess for a great many species of plants

and animals, and it is usually more convenient to keep track of other

physiological characteristics of individuals.

Even if chronological age can be determined, it is often an

unreliable indicator of an organism's sexual maturity, fertility, or its

chances for future survival. For most species of invertebrates, plants,

and fish, these vital parameters of population growth are strongly

dependent on environmental factors such as available food or ambient

temperature. For such populations, a physiological, rather than

chronological, measure of age or maturity may lead to more realistic

and useful models of population dynamics.

This thesis is a study of a distributed parameter model in which

individuals are classified by physiological age. It is assumed that

these individuals live in a spatially homogeneous population and that

imigration and emigration are negligible. Sex differences among

individuals are also ignored, since sex ratios tend to remain fairly

constant in most populations.

The study has two principal Objectives. The first objective is

to define and analyze a continuous-time dynamical system for the

physiological age distribution of a population. Various forms of the

system equations which will be used have already been applied to specific

physiological characteristics of specific populations, but the system



will be analyzed in the more general context of an arbitrary measure of

physiological age. Chapter 2 of the thesis defines the model and gives

a brief review of its previous applications to biological populations.

Solutions of the system equations in their autonomous form are presented

and interpreted.

Chapter 3 examines the asymptotic (in time) behavior of the

autonomous model. A. J. Lotka's familiar stability theory of chrono-

logical age distributions is generalized to apply to physiological age

structures.

The second main objective is to thoroughly understand the crucial

role played by growth in population dynamics. In this thesis, "growth"

refers to the dynamic relationship between an individual's physiological

age and its chronological age. Individual growth rates become vital

parameters along with mortality and fecundity rates. In addition,

individual growth is the mechanism through which many population systems

are coupled to their environment.

In Chapters 2 and 3, we see how time-invariant growth rates

affect the rate of increase of a population and the shape of its

physiological age distribution.

Chapter 4 is an application of the theory of Chapters 2 and 3 to

fish populations. Individual growth in length or weight has been long

recognized as a key factor in fish population dynamics, and body size

is employed as a particular measure of physiological age in applying

the model to fish. The chapter briefly discusses growth in fish and

then goes on to attack three quite different problems of observing and

modeling fish populations which are assumed to have time-invariant

individual growth rates.



Chapter 5 retains the general context of fish populations classi-

fied by body size, but the emphasis shifts to time-varying growth rates.

Specifically, we study the population in relation to environment by

assuming individual growth is a function of population density. This

growth response to limited food or space is felt by many fishery

biologists to be a powerful regulator of fish population densities. A

perturbation analysis and computer simulations of the model show the

regulatory properties of a flexible growth response.

The arguments of this thesis will show that physiological age

models provide the added dimension of individual growth to population

dynamics at little or no cost in mathematical tractability or ease of

interpretation.



CHAPTER 2

THE MODEL: DEFINITION AND BACKGROUND

2.1 Physiological Age

Suppose 2 represents some measure of maturity or physiological

development of individuals in a population. The variable 2 could be

chronological age, body size, chemical composition, or any other physio-

logical feature having a bearing on individual reproduction or mortality.

The physiological age, z, of an individual is dynamically described

by a differential equation:

A
3—3.: g‘z’t).

(2.1-1)

Here, g(z,t) is the growth rate of the physiological age variable, 2.

The term "physiological age" will be abbreviated by ”p-age", and here-

afterz will be referred to as a p-age variable.

Entomologists, notably Hughes [1962] and Lefkovitch [1965], were

among the first to use stages of maturation, rather than chronological

age, in structuring their models. This approach was partly motivated,

no doubt, by the discrete, easily recognizable, life stages seen in

many insect species.

Other researchers have been attracted to the concept of p—age by

the relative ease with which p-age, as opposed to chronological age,

can be determined in many organisms. Examples are the early fish

pOpulation model of Baranov [1918] and the model of Usher [1966] for

forest management.



More recently, the need for generalized age-structured models,

together with the rise of computer simulation as a tool of the population

biologist, has fostered the theoretical development and implementation

of continuous [Striefer and Istock, 1973; Streifer, 1974; Weiss, 1968]

and discrete [Boling, 1973; Coulman, Reice, and Tummala, 1972] models

employing "critical" state variables based on p—age.

2.2 The ngulation Balance Model
 

We now introduce a number density function, N(z,t) with the meaning

2
1 ~ ~ I

that g N(z,t)dz is the total number of individuals in a population

2

between the p-ages of 21 and 22 at time ta N(z,t) is thus a dynamic,

p-age number distribution.

Its equation of motion obeys the conservation law:

8N ,t a
5141—)- + 3; [g(z,t)N(z,t) ]= -u(z.t)N(z,t) . (2.2-l)

Here, g(z,t) is defined by (2.1-1), and u(z,t) is the instantaneous

loss rate of individuals from the population due to predation and

natural mortality.

Equation (2.2-1) is a "balance" equation. It says that the rate

of growth of individuals through p-age 2, given by ‘%;'[§(z,t)N(z,ti],

and the loss rate of individuals of p-age 2, given by [u(z,t)N(z,t)],

are balancedfiby the net rate of change of numbers at p-age 2, expressed

3N(z,t)

3t '

To describe the dynamics of a reproducing population, Equation

by

(2.2-l) must be accompanied by a reproductive feedback which will appear

as a boundary condition. Let the birth rate of individuals of p—age z



at time t be denoted by B(z,t). Then, the birth rate can be defined

as the functional:

zb+a

B(z,t) = f b(z,2,t) N(z,t) d2. (2.2-2)

In this equation, b(z,z,t) is the rate at which individuals of p—age 5

give birth to neonates of p-age 2. 2b is the p—age at which individuals

first reproduce, and a is the width of the breeding interval.

Equation (2.2-2) is the most general form for a reproductive

feedback, but when it is coupled with (2.2-l) it appears as a distributed

boundary condition, and the resulting system equations yield little to

analysis. For most biological populations, with the notable exception

of cell populations, a restricted form of (2.2-2) will entail only a

minor loss of realism. We will hereafter assume that all neonates have

the same p-age, denoted by z . Then (2.2-2) becomes

0

zb+a

é b(E,t) N(E,t) dE. (2.2-3)

b

H
D
'

B(t)

Now B(t) is defined as the total instantaneous birth rate, and b(z,t) is

the p-age-specific individual fecundity.

The connection between the reproductive functional, B(t), and a

boundary condition for (2.2-l) is found by integrating (2.2-1) over all

p-ages to get

a Q ~ ~ m cm -
'5: £0 N(z,t)dz] + [9‘ ot)N( pt) - 9(zo,t)N(zo,t):l _

- f” u(E,t)n(§,t)di. (2.2—4)

20



8

. A ‘w ~ ~
Define Nt(t) = g N(z,t)dz as the total nunber in the population. Also,

0

assume that no organisms survive past some upper limit in p—age so that

9(°°,t) N(°°,t) = 0. Then (2.2-4) becomes

dNt(t)
m

_...._dt = g(zo,t)N(zo,t) - £0 u(z,t)N(z,t)dz. (2.2-5)

Since 6"t
dt = B(t) - D(t), where B(t) and B(t) are population birth and

death rates, respectively, we must have

g(zo,t) N(zo,t) = B(t). (2.2-6)

Using (2.2-3) the boundary condition is also written as

+0

g(zo,t) N(zo,t) = éb b(2,t) N(E,t)d2. (2.2-7)

With reasonable restrictions on g(z,t), to be discussed shortly, and an

initial condition, N(z,0) = NI(z), the system (2.2-l), (2.2-7) prescribes

a unique solution surface above the (p-age)x(time) plane for the number

density N(z,t)-

Figure 2.1 is a sketch of a p-age distribution, N(z,t1), at an

instant in time, t1, showing the relationships implied by (2.2-1) and

(2.2-7). Similar sketches are drawn by Oster and Takahashi [1974].

Derivations of various forms of the balance Equation (2.2-1) in the

context of pOpulations can be found in several papers [Von Foerster,

1957; Sinko and Streifer, 1967: Weiss, 1968: Levin and Paine, 1975;

Lee, et al., 1975].

For the sake of tractability, an important restriction must be

made on the growth rate in (2.2-1). It is necessary that g(z,t) be
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everywhere positive, so that an individual's p-age is continually

increasing. This restriction, together with the restricted description

of reproduction seen in (2.2-3), results in a one-to-one correspondence

between any individual‘s p-age and its chronological age. This cor-

respondence is necessary for the validity of the analytical solutions

to (2.2-1) which are discussed later in this chapter. The restriction

that individual growth must be positive results in a less realistic

model, especially if 2 represents body weight. Fortunately, the

restriction is necessary only for analytical solutions. Most detailed

applications of the model for predicting population trajectories would

require simulation, in which case negative growth could be easily

handled.

The vital statistics 9, b, and u are in general dependent upon

both the internal p-age structure of the population and external environ-

mental factors. The effects of intraspecific competition can be expressed

by allowing 9, b, and p to vary with the state function, N(z,t). The

inclusion of density-dependence in (2.2-l) and (2.2-7) is discussed

in Chapter 5.

It is also possible, in special cases, to factor out the explicit

time dependence of g, b, and D. For example, developmental rates in

insects and other poikilotherms are closely tied to temperature, and

this has prompted entomologists to discuss growth relative to a physio-

logical time scale based on degree days or "accumulated heat units."

Hughes [1962] used this concept to model the instar or life—stage

structure of an aphid population. Lee,et a1. [1975] model the cereal

leaf beatle and its parasites using an equation of the same form as



11

(2.2-l). They base their growth, mortality, and reproductive parameters

on a physiological time scale, so that, for example, the equation for

growth,(2.1—1L appears in their model as 9§-= g(z), where E represents

degree-days. dt

2.3 Relations to Other Models

The balance model is easily generalized to handle characterization

of individuals by more than one feature. In this case, 2 becomes a

vector, 2, with

z =Ezl,age; 22,1ength; Z3,weight;. . .zmj .

Equation (2.2-l) is expanded to the form

3N(E,t) m _a_ - - _ - _ _

3t 4' 1:1 321 Eli‘mfimmtfl - -u(z,t)N(z,t). (2.3 1)

Here, gi(z,t) is the growth rate of characteristic 21 [Oster and

Takahashi, 1974].

Sinko and Streifer [1967; 1969; 1971] discuss the model (2.3-1)

with z = chronological age and z

1 2

tions of Daphnia and the planarian worm Dugesia tigrina. In a model of

= body mass, and apply it to popula-

 

shrimp in an estuary, Billups, Wilson, and Pike [1971] apply (2.3-1)

to shrimp classified by body length and three spatial coordinates,

resulting in a four-dimensional state vector, N.

An interesting application of (2.3-1) to a quite different ecolog-

ical system is proposed by Levin and Paine [1974; 1975]. They use the

density function N(;,t) to represent component islands, or "patches"
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within a heterogeneous natural community. Each patch is assumed to be

homogeneous with respect to biological properties, e.g., species com-

position, and the growth rate of patches is a function of intra- and

inter-patch interactions and localized environmental disturbances.

In this fashion, Levin and Paine hope to examine the long-ignored role

of spatial heterogeneity in structuring communities.

If, in (2.1-l), we let p—age, 2, be equivalent to chronological

age, a, then g%-= 1 = g. Hereafter, the abbreviation "c-age" will be

used for chronological age, a. Now (2.2-l) reduces to a simpler

equation:

3N(a,t) + 3N(a,t)

3t 3a = -u(a,t)N(a,t). (2.3-2)

This form of (2.2-1) is known as von Foerster's equation, after H.

von Foerster [1959] who used it to model cell populations. Since von

Foerster's work, balance models have been studied extensively in the

context of cell population dynamics. Trucco [1965] and Nooney [1967]

investigate (2.2-l) in some detail. Weiss [1968] and Bell and Anderson

[1967] present more generalized models of the form (2.3-l) for cell

populations. Bell and Anderson, for example, classify cells according

to the c-age and volume. For mitotic cell populations with individuals

classified by size, distributed boundary conditions must be used with

balance models since daughter cells at birth are assumed to be one-half

the size of their progenitors. This fact, together with the common

assumption by cell modelers that cells experience no natural mortality

before division, results in partial differential equation models whose

dynamics are quite different from those of the system (2.2-1), (2.2-7).
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An excellent application of von Foerster's equation to host-parasite

systems has been presented by Oster and his coworkers [Oster and Takahashi,

1974; Auslander, Oster and Huffaker, 1974]. A variety of system dynamics

are discussed in relation to such parametric pr0perties as synchronous

maturation delays in host and parasite populations and periodic time

functions for mortality and fecundity.

A more complete review of applications of distributed parameter

models to various populations is found in Streifer [1974]. Because

of the complexity of the generalized model (2.3—l), a detailed analysis

of its dynamics will not be attempted here.

If the c-age/time continuum is discretized, then the well-known

matrix methods developed by Lewis [1942] and Leslie [1945] are appli-

cable. Sinko [1969] Shows the equivalence, in the limit as At + 0, of

the matrix methods and the von Foerster equation.

Discrete models based on p-age are a more recent development.

Lefkovitch [1965] subdivided an insect population into life stages and

defined a vector fi(t) whose component fii(t) gives the number of individ-

uals in the ith stage at time t. He then described a projection matrix

M; the (i,j) element of M is the proportional contribution of the numbers

in the ith stage at time t to the numbers in the jth stage at time

(t + At). Thus, n(t + At) = M 0 B(t). Lefkovitch recognized that the

numbers in the matrix M represented the effects on n of mortality during

the time interval [t, t + At], confounded with the effects of growth

during the same period. Because of this complication, he was unable

to give a clear biological interpretation of the matrix entries.

A more complex discrete p-age model was develOped by Coulman,
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Reice and Tummala [1972]. In this model, stage-specific growth and

mortality rates are considered separately, as is done continuously in

(2.2-l). The equivalence in the limit as At +'O is shown in Kharkar,

Cbulman and Barr [1974].

A stochastic version of (2.2-1) permits individual differences in

growth rate due to genetic variability or to microenvironmental variations

arising from the spatial distribution of organisms. A term is added

to (2.2-l) to reflect the dispersion in p-age of individuals, so that

the model takes the form

3N( z,t) + 3[g(z,t)N(z, t)]

3t 32

 

2

%”%;z [v(z,t)N(z,t)] =

-u(zlt)N(zlt)o (2.3-3)

In (2.3-3) the individual growth rate is a random variable with mean

g(z,t) and variance v(z,t). Higher moments of the probability distri-

bution associated with growth are assumed negligible in their effects

on population dynamics. The diffusion equation (2.3-3) and its applica-

tion to populations is discussed by Bailey [1964]. A derivation can be

found in Kharkar [1973] or Lee, et a1. [1975].

2.4 Solutions for Time-Invariant Parameters

As a first step, assume that (2.2-l) and (2.2-7) describe a popu-

lation whose growth, mortality and fecundity rates are independent of

time. The system (2.2-l), (2.2-7) is then autonomous and, for specific

functions 9, u, and b, its solution depends only on an initial p-age

distribution, NI(z).

Equation (2.2-l), upon application of the product rule for
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differentiation, becomes

3N(z,t)

at
+ g(z) 2E§§LEL = - [g'(z) + u(z)] N(z,t), (2.4-l)

where:

, A dg(z)
g (2) dz .

By the method of characteristics [Courant and Hilbert, 1966],

(2.4-l) is equivalent to the set of differential equations

dt = 9(2) -[g'(z)+u(z)]

 

‘ (2.4-2)

To facilitate writing solutions to (2.4—2), define

A Z2 d2
= ——~—-° 2.4-3

Then T(zz,zl) is the time required to grow from p—age 21 to p-age 22.

Since we assumed that all neonates are of p-age z the quantity T(z,z )
0'

is simply the chronological age, a, of individuals of p-age z.

0

It was required that g(z) > 0 for all values of 2, so T(zz,zl)

is a monotonically decreasing function in 21 for any fixed 22, and it

thus has an inverse function in 21, defined as

A A '1

z(zz,T) — T (22,21). (2.4 4)

This definition means that 2(22,T) is the p-age at which an organism

must be at time (t - T) in order to grow to p-age 22 at time t.

Now, using the functions T,§, and the initial condition N(z,O) =

NI(z), we have the solution to (2.4-2):
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f

= A , z 9'(E)+u(2) ~ _
N(z,t) NI(z(z,t)) expl: g(z,t)l 9(2) ]dz (2.4 4a) 

for all p-ages, 2, such that T(z,zo) 2.t' and

 

2 ~ ~

= _ _ 9' (z)+}1(z) ~ _
N(z,t) N(zo,t T(z,zo)) exp]: £0 [ g(z) ] dz](2.4 4b)

for all p-ages, 2, such that T(z,zo) < t.

The solution thus has two parts. The first part, (2.4-4a),

describes that portion of the p-age distribution, N(z,t), whose members

are survivors of the initial population, NI(z). The second equation,

(2.4-4b), characterizes the portion of the distribution whose members

were born after time t = O, and entered the distribution via the

boundary,N(zO,-).

The exponential terms in Equations (2.4-4) can be simplified as

follows:

2 , ~ 2 ~

exp — f 2 SFigl-dfi - 2 Elél-di =

z1

9(2 ) 2 ~ ‘
l xp -f 2 11(2) d2 (2.4-5)

g(zz) 21 9(2) °

Now, the exponential factor on the right-hand side of (2.4—5) will be

redefined as the p:age-specific survivorship. That is,
 

2 ~

_ 2 v(z) ~ A _

where 2(22,zl) is the proportion of organisms alive at p-age 21 which

survive to reach p—age 22 after being exposed to the mortality rate ”(2).

Using this simpler notation, the solution (2.4-4) becomes



= ,. g(fi) A _
N(z,t) NI(z(z,t)) g(z) £(z,z), (2.4 7a)

for T(z,zo)‘z_t, and

0)

N(z,t) = N(zo,t - T(z,zo)) 37:7-
£(z,zo) (2.4-7b)

for T(z,zo) < t.

To illustrate the solution equations, take the simple case of

constant growth rate, i.e., g(z) = G. Then

 

2 1 ~

T(22,zl) —£ '6' dz "" A t

and g(z,t) = z - gt, since fit is the increment in p-age during the time

interval (0,t).

The solution (2.4-7) then becomes

 

 

N(z,t) = NI(z—§t) £(z,z-§t), (2.4-8a)

2-2

for ‘3 t, and

= - l -
N(z,t) N(zo,t [29 :l) (2,20), (2.4 8b)

z-z

for < t. 

If 20 a 0, this case of constant growth rate is equivalent to a c-age

model which uses time units of fit instead of t, and the Equations (2.4-8)

become identical to those given for the von Foerster equations by Trucco

[1965]. If u a O, the Equations (2.4-8) are identical to the results

in Lee, et a1. [1975].
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2.5 Interpretation of Solutions

To better understand the nature of the solutions (2.4-4) we will

sketch the characteristic curves, defined by (2.4-2), for two cases.

Figure 2.2, reproduced from Skellam [1967], shows a typical family of

trajectories for the von Foerster equation where z a = c-age. In

1 and 20 = 0.this case, the solution is given by (2.4-8) with g

The Equation (2.4-2) reduces to

 

dt = da = dN (2.5-1)

-u(a)

In Figure 2.2, the family of oblique lines in the age-time plane

of slope-g%-= l are life-history trajectories, and they are also the

characteristic curves of the partial differential Equation (2.3-2).

This family of 45° lines in the age-time plane is known to demographers

as a Lexis diagram [Keyfitz, 1968]. Along a life history trajectory,

the number density N decreases in accordance with the equation

 = da. A pulseéwave type initial condition is shown along the

(t = O)-age axis, and a sinusoidal birth rate, B(t), provides the

boundary condition along the (a = O)-time axis.

Let us contrast the curves in Figure 2.2 with a common, but more

complex, function for 9. Suppose the p-age variable 2 represents body

weight. Growth in body weight is described, for many organisms, by a

sigmoidal or logistic weight-for-age function, where body weight 2 tends

toward an upper limit, 2m, as t +-m [Thompson, 1942]. Figure 2.3a shows

a family of sigmoidal growth curves. The growth function g(z) = 3%-

gives the slope of any curve at a particular body weight, 2. It can be

seen that g(a) must have the Shape shown in Figure 2.3b. It is generally
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3(9)

 

 
 

 
Figure 2.2. Trajectories for the von Foerster equation. From

Skellam [1967].
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Figure 2.3. a) Characteristic curves for sigmoidal growth.

b) Growth rate curve for sigmoidal growth.
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a concave function of 2, first increasing, then decreasing to zero

as 2 + z”.

The family of curves in Figure 2.3a is analogous to the set of

Oblique straight lines in the age—time plane of Figure 2.2. The curves

in Figure 2.3a are the characteristic curves defined by Equation (2.4-2)

employing a concave growth function g(z).

In order to solve (2.4-l) when it contains a growth function g(z)

which approaches zero for a finite value 2w, it is necessary that

[g'(z) + 11(2)] > 0 as 2 + zoo so that the exponential terms in the solu-

tion (2.4-4) do not become unbounded as 2 + a”.

Figure 2.2 illustrates the dynamics of N(z,t) for the simple case

_g = 1 and z = a. What dynamics might be seen for N(z,t) if a concave

function like that in Figure 2.3b is used for g(z)? Let us examine the

progress of a simple idealized population density, N(z,t), through

a p-age distribution. Assume that 2 represents body weight, g(z) is

described by Figure 2.3b, and N(z) = fl a constant.

Imagine starting with a single cohort of individuals in the

weight range 2 to (20 + s) at time t (Figure 2.4a). The total number

0

of individuals in the population is equivalent to the area under the

O

rectangular number density curve. Assume that s is small enough so that

the number density of the cohort can be approximated by an average value

over the width of the cohort. Two cases for the fate of the cohort

will be described.

CASE 1 - High mortality, u, over the full weight range (Figure 2.4a).

As individuals increase in weight, up to 21, the larger individuals

in the cohort grow at a faster rate than the smaller ones. The result
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Figure 2.4. Trajectories of idealized cohort: a) Case 1 - Concave growth

function and high mortality at all p-ages. b) Case 2 - Con-

cave growth function and high mortality up to 21, low

mortality beyond 21.
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is that the cohort spreads out, or "expands", to encompass a broader

weight range. At a later time, t , when the cohort has reached a mean

1

weight for individuals of z , the weight range of the cohort is broader

1

than 3, its initial width. See N(z,tl) in Figure 2.4a. The total area

under the number density curve however, has been reduced by a factor

e-“(tl-t )
of 0 due to mortality losses.

Once individuals reach the mean weight 2 the expansion process
1'

in the cohort changes to a compression process. From 21 onward, the

growth rate is continually decreasing (Figure 2.3b), and larger organ-

isms in the cohort are growing more slowly than smaller ones. The

result is that the cohort becomes compressed into a smaller weight range

as smaller individuals catch up to larger ones in size. At a time t2 > t1

and a mean weight of 2 near 2 the cohort looks like N(z,tz) in
ml

2

Figure 2.4a. Its width has been reduced from the width seen at time t1,

and the area under the number density is again decreased, this time by

a factor of e-U(t2-t1).

From this qualitative picture, it is clear that the magnitude, N,

of a number density at any point (z,t) is the result of the force of

mortality combined with "compression" or "expansion" of the distribution

in individual weight differences.

CASE 2 - High mortality up to weight Z low mortality for larger1,

individuals (Figure 2.4b).

Suppose now that the dynamics of the cohort are identical to those

of Case 1, up to mean weight 21. After this point the growth rate

again decreases, as in Figure 2.3b, but this time assume individuals

are subject to little or no mortality in the weight range (21,22).

 



24

If this is the case, individuals growing beyond 2 will begin to

l

"stack up", i.e., the cohort will be compressed into an increasingly

narrow weight range, as before, but very few individuals will be lost

due to mortality. The result is that, at time t and mean weight 2

2 2’

the cohort will look like N(z,tz) in Figure 2.4b. The area under the

number density curve at t2 has decreased only slightly from the area at

t1, due to the small mortality loss during the interval [t1,t2], but

the cohort is now squeezed into a much narrower weight range that the

range seen at t Thus, the number density at time t2 has a greater1.

magnitude than it did at t1.

These cohort growth dynamics provide a mechanistic basis for

describing the phenomenon of "stunting" in populations, which will be

discussed again in Section 5.2.

The quantitative tradeoff between mortality and growth rates in

changing the magnitude of the number density can be determined by

examining the solution (2.4-4b). Suppose in some small time increment

At, an organism of p-age z grows to p-age (z + 62).

Then, according to (2.4-4b),

2+62 '(2)+ (2) ~

N(z+62,t+At) = N(z,t)exp f - 3-§7§%-—- dz .(2.5-2)

2

It is clear that the relative magnitudes of N(z + 52, t + At) and

N(z,t) depend on the sign of the integral exponent in (2.5-2) which in

('~+~

turn depends on the sign of the integrand, - l (z;(§;z)] , over the

range [2, z + 62]. Since 9(2) > 0 over this interval, we can focus on

the numerator of this fraction, - [912) + u(2)] .
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In both Case 1 and Case 2, up until p—age 21, the growth rate was

increasing, so over each small p-age interval, [2, 2 +<52], the inequality

-[g'(2) + IK2)] < 0 was true. Thus, N(z f 62,t + At) < N(z,t). The

number density of the cohort decreased in magnitude over each small

increment (52,At).

When p-age/thme increments for p-ages greater than 21 are considered,

a difference appears between Cases 1 and 2. In both cases, the growth

rate is decreasing so that g'(2) < 0. Case 1, with a high mortality

rate, evidentally has Ig'(2)l < u(2) so that -[g'(2) + u(2)] < 0. Hence,

each small p-age/time increment results in a decrease in the number

density, according to (2.5-2). The sum of these decreases is seen in

the magnitude difference between N(z,tl) and N(z,tz) in Figure 2.4a.

< 2 < 2 ,
1 2

must have Ig'(2)| > u for 21‘< 2 < 22. In this case, -[g'(2) +p(2)] > 0,

and each p-age/time increment increases the nunber density. The sum of

On the other hand, Case 2, with very low mortality for 2

these increases is seen in the difference in height between the number

density N(z,tl) and the number density N(z,tz) in Figure 2.4b.

In summary, as a cohort grows through the p—age profile, the

magnitude of the nunber density, N, will rise or fall in accordance

‘with the sign of the quantity, -[g'(2) + u(2)].

From this analysis we begin to see the relationship between an

observed p-age distribution of a population and the growth-mortality

interaction which gives rise to the p-age profile. Chapter 3 will

examine this relationship for a steady-state population in which

individuals of every p-age are represented.





CHAPTER 3

ASYMPTOTIC PROPERTIES--THE STABLE P-AGE DISTRIBUTION

3.1 Asymptotic Properties of C-Age Models

What is the fate of the p-age distribution and the total population

numbers as t gets "large", that is, on the order of very many generations?

This question can be answered for the system (2.2-1), (2.2-7) restricted

to time-invariant fecundity, mortality and growth rates. To provide

the answers, essentially the same methods employed by A. J. Lotka in

his pioneering work on the dynamics of c—age distributions will be used.

Lotka's well-known results will be compared with the p—age model's

behavior as t + ”.

Let us briefly review Lotka's three central conclusions about the

limiting (in time) dynamics of populations whose members have time-

invariant, c-age-specific fecundity and mortality rates.

A. As t gets large, the population c-age structure approaches a

fixed c—age distribution. That is, if da is a small c-age increment, .

N(z,t)da

Nt(t)

only on individual mortality and fecundity rates [Sharpe and Lotka, 1911].

then the ratio ‘+ c(a)da, where c(a) is a function depending

The quantity c(a)da is the prOportion of individuals in the population

aged a to (a+da).

B. For large t, the total population birth rate, B(t), defined

by Equation (2.2-3), grows or decays exponentially in time, as does the

total number, Nt(t). Both B(t) and Nt(t) grow or decay at a constant

rate, r, called the ”intrinsic rate of natural increase" [Lotka, 1925].

26
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C. If the stable c-age distribution of an exponentially-growing

population is perturbed, it will eventually return to a stable config-

uration and the population will again grow exponentially. Lotka showed

this using an ingenious graphical method [Lotka, 1922], but the stability

of the c-age distribution is more easily seen by considering a pertur-

bation at some time 2 as defining a new initial condition, N(a,%), for l

the c-age distribution. Then, as the population and its c-age structure

develop from time 2 onward, according to results A and B, a stable c-age

distribution and exponential growth will again emerge for t >> I.

Lotka's methods and the results A - C form the basis for modern

population theory in the age-time continuum, and his work has been

refined and expanded by many researchers. The derivation of these

results can be found in a number of books and papers, e.g., Keyfitz

[1968], Langhaar [1972], Lotka [1925], and will not be repeated here.

In this chapter, results A - C will be derived for populations

characterized by physiological age. The methods used are similar to

Lotka's and the usual terminology and notational conventions of con-

tinuous c-age theory will be used wherever possible.

In anticipation of the stability results, consider the relationship

Ibetween p-age and c-age which was discussed in Section 2.2. There it

was pointed out that there is a one-to-one correspondence in the

:restricted p-age model between an individual's p-age and its c-age.

Thus, as a population acquires a stable c-age distribution, one would

expect it to also show a stable p-age distribution.

The advantage of pursuing a proof of A - C for p-age which is

sinfilar to Lotka's proof for c-age is twofold. First, the method helps
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to illustrate how the p-age model generalizes the classical c-age theory.

Secondly, the exact shape of the stable p-age distribution will emerge

as a function of growth, mortality, and fecundity rates.

3.2 A Renewal Equation for B(t), the Birth Rate
 

Define G(t) as the instantaneous birth rate due to survivors of

the initial population, NI(2). As t increases, G(t) + 0, since all

members of the initial population eventually die or grow past the p-age

breeding interval, [2b, 2b + a]. The birth rate now obeys the following

integral equation:

zb+a

B(t) = G(t) + f b(2)N(2,t)d2. (3.2-1)

Since G(t) accounts for births from.members of the initial population,

the density function N(2,t) in the integrand must refer to those

individuals in the population born after time t = O. N(2,t) in (3.2-l)

is therefore given by the solution (2.4-5b), and substitution into

(3.2-l) yields

zb+0' ~ ~ g(zo) ~ ~

B(t) = G(t) + g b(2) N(20,t-T(2,2O)) 3737—, 2(2,20)d2. (3.2-2)

b

Using (2.2—6), this becomes

I+a £(2,zo)

= “' - “‘, —-—-..— d“. .2-B(t) G(t) + £1) b(2) B(t T(2 20)) gm 2 (3 3)

This renewal equation is the equivalent, for p-age, of the well-known

Lotka equation for c-age. In fact, (3.2—3) can be transformed to the

Lotka equation by a simple change of variables in the integral term

 

to permit integration over the time domain. Since d2 = dt, it follows that

g(z)



 =_l

 

 

'
1
‘
:
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T(2 +a,2 )

B(t) = G(t) + {(zbb O b(2(E)) B(t-E) £(z(E),2 )dE. (3.2-4)
,20) 0

Also, since b(2(t)) E O for t > T(zb + a, 20) andt:< T(zb,20), equation

(3.2-4) can be written as

t

B(t) = G(t) + £ B(t—t)b(z(2)) £(z(2),zo)d2. (3.2-5)

Equation (3.2-5) is the familiar Lotka renewal equation. Theorems for

the existence and uniqueness of solutions to this equation are given

in Keyfitz [1968] and Bellman and Cooke [1963]. The solutions to

(3.2-5) are presented by Lotka [1925] and are also found in Keyfitz

[1968] and Langhaar [1972].

The unique solution to (3.2-5) can be written as

B(t) = Qle + E le . (3.2-6)

The constants Qk' k = 1, 2,. . .,mq depend upon G(t) [Keyfit2, 1968].

Keyfitz also shows that there is a unique, real root, r1, for (3.2-6)

and that the complex roots, rk, k = 2,. . .ém: all have moduli which are

strictly less than Irll. Hence, B(t) 2 Qle 1 for large t--that is, the

birth rate becomes a simple exponential, growing at the rate r The1.

root 1:1 is equal to r, the intrinsic rate of increase, and r will replace

r1 in subsequent equations.

Since (3.2-5) and (3.2-3) are equivalent, the solution (3.2-6)

*with.its asymptotic properties must also be the unique solution of (3.2-3).

That.is, the birth rate associated with the model (2.2—1) using time—

invariant parameters becomes exponential as t +-w.

rt

Let us assume that t is large enough so that B(t) = 916 ,



30

and G(t) = 0. Then by Equation (3.2-3),

Zb+a 242,20)

= ~ — ~' —--—~—— d~. . ..B(t) f b(2) B(t 1(2 20)) 9(2) 2 (3 2 7)

That is,

 zb+a 'rT(z’zO) ~ d2. (3.2-8)
1 = f e g(z)

2b

Equation (3.2-8) is the characteristic equation for the root, r,

and it can be solved numerically by a variety of methods to give r.

[Keyfit2, 1968]. It was claimed above that r is the intrinsic rate of

increase for the total population numbers. To see this, use the solution

(2.4-7b), which is appropriate for large t:

9(20)

N(2,t) = N(zo,t-T(2,20)) g(z) 2(z,20). (3.2-9)

 

Stated in terms of a birth rate, this becomes

2(2,20)

N(z,t) = B(t-T(z,zo)) (3.2-10)

g(z) '

If B(t) is exponential, then

r[t"T(Z:Z )] 2(2,2 ) 3_2-11

“‘2'“ “he 0 [fl ( )

Now, the total numbers are given by Nt(t):

m m r[t-I(2,z )] (2,2 ) ~ _

N (t) = f N(2,t)d2 = f Q e 0 l 0 dé]. (3.2 12)

t Z0 Z0 1 9(2)

Differentiation of (3.2-12) confirms that

dt ’ rNt°
(3.2-13)
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Hence, both the birth rate, B(t), and the total numbers, Nt(t) are

exponential in time for large t.

3.3 Relations in an Exponential Population

The exact shape of the stable p-age distribution can now be easily

derived. As before, let

N(z,t)dz

c(2,t)dz =

Nt(t)
(3.3-1) ‘-

be the proportion of individuals in the population whose p-age is between

2 and (2 + d2) at time t.

Using (3.2-10) and the definition of Nt(t), we have

B(t-T(z,zo)) 2(z,zo)

 

-——7;T—-d2

c(z,t)dz = ~ git; z ) . (3.3-2)

[m B(t-T(szo)) ' 0 ~

20 9(2)

Assuming t is large, we use (3.2-ll) to write this as

 

-r‘l'(2,2o)mz'z )

e 0 d

_ 9(2) 2
c(2)d2 - -rT(2}2 ) ~ . (3.3-3)

m e 0 2(2,2o)

f -——-=—-d2

20 9(2)

In (3.3-3) c(2,t) has been replaced by c(z) since it becomes independent

of time. The function c(z) in (3.3-3) gives the shape of the stable

,p-age distribution.

We will return to examine the shape function, c, in more detail,

but first let us generalize the definitions of some vital population

statistics which are widely used in c-age theory. Define the function

V by
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2 +01 -rT(2.z )lb(2)2(2,z )

‘I‘(r) 9 lb e O 0

Z. L

 

g(2) d2. (3.3-4)

Then W(r) = l is the characteristic equation, (3.2-8). The quantity

W(0) is known as the net reproductive rate, R0, of the population

[Keyfit2, 1968]. That is, R0 9 W(O) is the average number of offspring

which will be produced by an arbitrary newborn individual during its

lifetime. To see this, note that b(2) is an instantaneous rate, and

b(2)dz

9(2)

of p-age 2(t) during the time interval [t,t+dt]. Since £(2,2 ) is the

= b(2(t))dt is the number of offspring produced by an individual

 

b(2)£(2,20)

proportion of individuals which survive to p-age 2, 9(2) d2

is the number of offspring expected from each newborn as it grows

through the p-age interval [2, 2 + d2]. Therefore,

L+a b(2)£(2,2 )

91(0) =21” [— °]d2
zb 1: 9(2)

is the average offspring production during an individual's lifespan.

In a stable population, r, the intrinsic rate of increase, can

be written

r = S - d (3.3-5)

where S and d are the per capita birth and death rates, respectively.

The birth rate 5 is also defined as

— _B(t)
b(t) — N (t)

t

(3.3-6)
 

That is,
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- _ B(t)

b(t) — 2(2, 20)

zfm8(t-T(2,20)) Wdz
ZO (

r

But B(t) = Qle t, so b(t) becomes a constant:

 

b = m-rT(2, z00)[?(2,:0I] (3.3-7)

f:e d2

g() n

Once b has been determined from r, 2, and 9 via (3.3-7), the death rate,

d, can be obtained from (3.3-5).

 If r = 0, i.e., the population birth and death rates balance, the kfi

dN

population is said to be stationary, and EE£-= 0.
 

Examination of (3.3-4) and the definition of R0 confirms the

following intuitive relationships between R0 and r: If R.0 < 1, then

r < 0, and the population numbers are decreasing. If RO > 1, then r > O

and Nt(t) is increasing. If R.0 = 1, then r = O and the population

is stationary.

We have shown that Lotka's asymptotic results A - C and many of

the vital statistics useful to demographers can be rigorously obtained in

the more general context of physiological age structures.

The asymptotic results A - C were recognized for discrete p—age

:models by Lefkovitch [1965]. In his discrete matrix model, described

Ibriefly in Section 2.3, the shape of the p-age distribution is given

by the eigenvector associated with the real eigenvalue of the projection

.matrix, M, which has the largest absolute value. The Equation (3.3-3)

has the advantage of expressing the stable p-age distribution directly

in terms of r and individual growth and survivorship functions.
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3.4 The Shape of the Stable P-Age Distribution

Let us take a closer look at the shape of the stable p-age dis-

tribution, c(2), as specified in (3.3-3). How does it compare with

the stable c-age distribution derived by Lotka?

The stable c-age distribution is given [Keyfit2, 1968] by:

e’ra2(§,0) . (3.4—1)

5” e'ra2(§,0)da

c(a) =

As would be expected, this is a special case of (3.3-3) with g(z) = l

and z = a, chronological age.

For the sake of simplicity, assume that we are discussing the

p—age and c-age structures, cs(z) and cs(a), of stationary populations.

Then r = 0, and

£(2,20)

_.1(Z) I (3.4-2)

2(2,20)
c (2)

S 00
~

———w—dz

20 9(2)

while

2(a,O) ¥__.

fm2(§,0)d§

O

 (3.4-3)c (a)

Incidentally, the Equations (3.4-2) and (3.4-3) may also be

«obtained by setting %%-= O in partial differential Equations (2.2-l)

auni (2.3-2), respectively, and solving the resulting ordinary differé

ential equations for the stationary number density, N.

In (3.4-3), the shape function cs(a) must be a nonincreasing

:function of c-age, since it is a normalized, c-age—specific survivorship

curve .
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The function cs(2) is more complex, however. Its most interesting

feature is that it need not be a nonincreasing function of p-age, 2.

This is more clearly seen by using the definition of survivorship,

(2.4-6), along with Equation (2.4-5), to rewrite c (2) as

s

_ z b'(£)+u<‘é)]~:l

expl: £0 5 9“?) dz ( )' n. 3.4-4
_ Fg‘(£)+n(£) ~

zexPEé‘o [ g(i‘) )d’2:ld2

 

 

 C(z)=
S

 

The nature of this shape function becomes apparent if it is

 
differentiated to get

 

dc (2)

s a __ g'(z)+n(2) _
-—-——-—dz 1: g(2) cs(2). (3.4 5)

dc (2)

Since 9(2) and cs(2) are both positive functions, the sign of d2

depends on the quantity -[g' (2)-111(2)]. If, over some p-age range

[21,22], the quantity -[g' (2)-111(2)] is greater than zero, then the shape

function cs(2). will actually increase in 2 over the interval [21,22] .

One would see a stationary p-age distribution which looked like

Figure 3.1.

The curve in Figure 3.1 illustrates the steady-state culmination

of the "compression" and "expansion" phenomena described for a cohort

density function in Section 2.5. The positive slope of the shape curve

do (2) .

{—32—- >01 seen between 21 and 22 is the steady-state version of Case

2 in Section 2.5. A rapidly decreasing growth rate and low mortality,

i.e., - [g'(z)+u(2)] > 0, force a "compression" in the number density,

N, and result in a ”stacking up" of individuals over the interval
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cs(z)

  

 

-[g'(z)+u(2)] < 0

I

I

-[g'(z)+u(z)]>0:

i-[g'(z)+u(z)l < O

 

_
—
—
—
—
—

  
 

20 21 Z

P-AGE ' Z

N

Figure 3.1. Hypothetical p-age frequency distribution for stationary

pOpulation.
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[21,22]. For the population.with a full spectrum of p-aged individuals

represented, the number density increases in 2 over the interval [21,22],

as it did for the cohort in Section 2.5.

A third factor, besides individual growth and mortality, shapes

the stable p-age distribution if the population is not stationary. In

this case, the total population numbers are increasing or decreasing

at a rate r, and the shape function c(2) is given by (3.3-3). 'To put

(3.3-3) in forms similar to (3.4-4) and (3.4-5), it is first necessary

to recall the definition of T(2,2o), Equation (2.4-3). The exponential

term in (3.3-3) can then be written as

-rT(z,2

e 0) = eprEEéz -—£—-d2].

O
92)

As in the derivation of(3.4-4),Equations (2.4-5) and (2.4-6) are used

£(2,20)

9(2)

terms of (3.3-3) are reassembled, they appear as

exp [£2 [ti-2' (EH um] d5]

O

to express the term of (3.3-3) in exponential form. When the

 

9(2) (

C(Z) . ’ ~ ‘— . A A _ 3.4-6)

{0 exp [- 4‘2 [r 9(2); (2)-J d2] d2

0 0

Upon differentiation, this becomes

____d°(z’ .. .. L—E—r"z” ‘2’] c(2). (3.4-7)
d2 9(2)

Taxis equation shows that c(2) increases or decreases depending upon the

sign of the quantity [r + g"(z) 4» 11(2)].

 



38

3.5 The Stable P-Age Distribution--Discussion

Equation (3.4-6) describing the stable p-age distribution lays

bare some prdblems encountered by an experimenter observing a p-age

distribution in a laboratory or wild population which is assumed to have

a stable p-age structure. Individual growth rate, 9, mortality,I1,

and the intrinsic rate of increase, r, interact in a complex manner to ’3

determine the shape of the observed p-age frequency distribution. I

Determination of any one of these vital statistics from an observed

p-age distribution requires knowledge of the other two.

 
This problem has been appreciated by many modelers. This section hi

will briefly discuss three different models from the literature, and

will concentrate on the efforts of each modeler to use experimental

p-age frequencies to determine growth and mortality rates.

Bell and Anderson [1967] seem to be the only other authors to

recognize the relationships between growth and.mortality expressed by

(3.4-6). They employ a partial differential equation like (2.3-l) to

describe cell populations whose members are classified by cell volume

and.c-age. The c-age variable is eliminated through simplifying assump-

‘tions, and a model of the form (2.2-l) results, with the p-age variable

(3f cell volume. Bell and Anderson assume a population is growing

exponentially, so that a stable cell volume distribution is achieved.

'Their equation (17) for the stable volume distribution is equivalent,

except for a normalizing factor, to Equation (3.4-6) with 11(2) = 0.

They discuss the problems of determining the intrinsic rate of

increase and the volume-specific rates of cell growth and division when

the only available data are volume frequency distributions of experimental
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cultures. Due to the nature of cell life histories, Bell and Anderson's

discussion can not be easily generalized to other populations. For

example, although one can safely assume that few cells die before

division, the very process of cell division removes parent cells from

the population. The mortality rate can be assumed = 0 in cell popula-

tions, but a loss rate term due to cell division must be added. The .

shape of the stable volume distribution expressed by their equation F}

(24) is a function of cell division and growth rates and the intrinsic

rate of increase. Bell and Anderson conclude that it is impossible to

 uniquely determine cell division and growth rates from volume frequency L}

data, but they suggest methods of estimating "reasonable" rates in

an interative fashion.

This provides an example of the possible value of (3.4-6).

Because Bell and Anderson could derive the exact dependence of the cell

volume distribution on growth and cell division rates, expressed in

equations analogous to (3.4-6), they were able to devise procedures

for estimating these vital statistics from experimental volume distribu-

tions.

The prOblem of estimating vital statistics from experimental p—age

distributions also arises with discrete p-age models. As we have

already mentioned, Lefkovitch [1965] originally could not quantitatively

interpret the elements of his projection matrix, M, in terms of growth

and mortality. More recently [1971], he has clarified the relationship

lmetween growth and mortality by writing the matrix M as:

M = w'lAw (3.5-1)
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Here, A is the classical Leslie matrix containing c-age-specific

survivorships and fecundities as entries. W is a diagonal matrix with

each entry wii = mean p-age of individuals in the ith c-age class.

Lefkovitch shows that the matrix Equation (3.5-l) transforms a c-age

matrix, A, into a p-age matrix, M, via the (p-age):(c-age) growth data

contained in W. F1

In the context of Lefkovitch's model, the procedure for estimating

vital statistics can be summarized as follows: a sequence of observa-

tions from p—age distributions which are assuned to be stable are used

 
to estimate the entries in M for a specific population [Lefkovitch,

1965]. Given M, Equation (3.5-l) indicates that A and W are not uniquely

determined. Independent estimates of growth can be used to estimate W.

Then A, with its fecundity and mortality statistics, is computed from

A = WMW-l. This method is a discretized alternative to the use of

(3.4-6). The most obvious disadvantage of the discrete method is that

it is not suitable for analytical purposes. The quantitative tradeoffs

among mortality, growth, and fecundity in determining the stable p-age

distribution cannot be traced through the discretization process and

its attendant matrix manipulations.

It remains to be seen whether Lefkovitch's methods for parameter

estimation in the discrete model will satisfy Equation (3.4-6) as time

intervals and p-age classes become infinitesimal in length.

A discrete approach similar to that of Lefkovitch is taken by

Usher [1966] in his model of selection forests. A vector of size

classes for trees based on trunk girth is determined and a transition

matrix like that of Lefkovitch is used to update the size-distribution
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vector. In Usher's model, the projection matrix takes a particularly

simple form. The update interval is chosen so that trees can advance

at most one size class during the interval. This assumption results in

a projection matrix, M, with non-zero entries only on the diagonal. In

addition, mortality is assumed to be zero during the update interval,

so the entries in M are a function solely of growth rate. These assump-

tions make it possible to compute size-specific growth rates directly

from two sequential size-frequency observations.

The three examples given above have a common theme. In each case,

the authors attempt to compute a vital population rate-—growth,fecundity,

or mortality rate, or the intrinsic rate of increase. The values of

other vital statistics are assumed to be known. The authors then use

empirical p-age distributions, which are assumed stable, to determine

the unknown vital rate, which may be a function of p-age.

The methods of Bell and Anderson and of Usher seem to produce

valuable results. However, each method is applicable only to that

small class of populations with life-history phenomena similar to that

of the population for which it was designed.

Although the method of Lefkovitch has a greater generality than

those of Bell and Anderson or Usher, it must be applied to data on a

case-by-case basis and cannot make predictions based on vital rates

which are functions, not data values.

We claim that the equations in Sections 3.3 and 3.4 for stable

or stationary p-age distributions are a basis for procedures to compute

'vital rates of any stable population classified by p-age which has

Observable p-age distributions.
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R0 and r can be determined from (3.3-4) with a knowledge of b(2),

£(2,20), and 9(2). The crude birth rate, b, is given by (3.3-7),

which uses growth and survivorship functions, and r. Equations (3.4-4)

and (3.4-6) give the relationships among cs(2) , c(2) , g(z) , 11(2), and r.

Chapter 4 will give an example of the use of (3.4-4) in determining

mortality rates for fish populations.

As a caution, it should be noted that application of these formulae

will not be as simple as it may appear. The equations of Chapter 3 are

expressed in terms of continuously varying functions of physiological

age. There will be a considerable amount of work involved in developing

a sampling theory for estimation of these vital parameters. Even the

use of discrete-age and discrete-time data in the parameterization of the

continuous (c-age)x(time) models of Lotka and von Foerster still presents

statistical problems, as a reading of Keyfitz [1968] shows. Nonetheless,

it is clear that the equations for vital statistics in this chapter

can increase the utility of observing and modeling populations on a

demographic basis other than chronological age. Future work on this

model will proceed toward this goal.

 



CHAPTER 4

APPLICATIONS TO FISH POPULATION DYNAMICS

 

4.1 Introduction

Partly because of their importance as a food source for man, fish r1

populations have received a great deal of attention by ecologists.

I

Fishery biologists have long understood that a detailed knowledge of j

 fish population dynamics is essential for the efficient management of bJ

exploited fisheries.

For these reasons, there is a large amount of data available on the

vital statistics of fish populations, and a good deal of work has been

done in the develOpment and practical use of age-structured models of

fisheries. A good sumary of such models can be found in Gulland [1962] .

A key factor in fish population models is individual growth in

body size. Fish are exploited by man on a size-specific basis, and the

total biomass yield of a fishery cannot be determined without knowledge

of population size distributions.

' However, the dynamics of size distributions in fish populations

have been difficult to examine, for several reasons. In the first place,

individual fish typically show very labile growth. Individuals which

survive the very high probability of death in the egg and larval stages

'will respond to changes in ambient temperature or available resources

by changing their growth rates [Weatherley, 1972] . This indeterminate

growth is generally felt to be the principal form of self-regulation

43
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fbr many populations of marine and freshwater fish [Weatherly, 1972;

Backiel and LeCren, 1967].

The ages of fish in wild populations are often difficult to

determine. A great deal of effort has been expended in trying to age

individuals from various species, and the methods which are currently

used, such as finding aging marks on scales or various bones, are quite

tedious [deBont, 1967]. These aging methods decrease in accuracy “1‘

for older fish due to generally decreased growth rates and individual

differences in growth for fish of the same age [deBont, 1967;

 Weatherley, 1972]. EJ

A further compligation in the attempt to study dynamics of fish

populations is that individual growth, fecundity, and mortality are

largely size-dependent rather than age-dependent. It has already been

‘mentioned that losses due to human harvesting are size-specific, and

there is evidence that natural predators also select fish on the basis

of size [Earl Werner, pers. comm.]. Several authors discuss the

correspondence of fecundity [Weatherley, 1972; Bagenal, 1967] and

growth rate [Weatherley, 1972; Parker and Larkin, 1959] with Size as

opposed to age.

For these reasons it seems clear that dynamic population models

based on size distributions might be easier to work with than those

based on population age structure. However, most of the theoretical

models which have been developed to estimate yields, recruitment, and

survivorship in commercial fisheries are age-structured. This is due

in part, no doubt, to the marked seasonal reproduction of most

temperate zone fish. Females in most populations spawn during only a



 II
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few weeks in the spring. Thus, a fish population is most often visualized

as comprised of a set of "year classes", which form the peaks of

traveling waves moving through an age distribution. Figure 4.1 shows

a snapshot in time of an idealized age distribution arising from seasonal

reproduction. The peaks in the waves are separated by approximately

one year . kl

The most widely-used models [Beverton and Holt, 1957; Ricker,

1958] employ this concept of year classes with simplified assumptions

concerning mortality and recruitment to describe population age structure.

 The age distributions are then combined with size-at-age data or fitted u]

growth curves to give a picture of the population size distribution.

The remainder of this chapter will try to show how the p-age

model developed in Chapters 2 and 3 can be a useful alternative to

models based on year classes in studying fish populations. Rather than

discuss a single application of the p-age model in detail, the chapter

aim is to illustrate how a variety of new perspectives on population

dynamics emerge when individuals are classified by p-age instead of

c-age.

Section 4.2 shows the relationships of the p-age model to comonly-

used methods of computing production in fish populations. Sections

4.3 and 4.4 examine fish growth and recruitment, respectively, in the

context of the p-age model of Chapters 2 and 3. The two sections discuss

growth and recruitment models used by Beverton and Holt [1957] in their

comprehensive commercial fishery model, and Section 4.5 examines the

p-age distributions associated with their model populations. In Section

4.6 we turn to a different tOpic. This section examines the problem
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Figure 4.1. Idealized age distribution at fixed point in time, showing

year classes arising from seasonal reproduction.
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of estimating fish mortality rates from sampled size or age frequency

distributions.

In this chapter, the p-age variable, 2, will represent body size,

either length or weight, of individual fish. The state variable of the

model is the function N(2,t), the number density of fish of size 2 at

time t. The dynamics of a fish population are then described by the

 

system (2.2-l), (2.2-7). From a modeling standpoint, one advantage

of using this system to describe a fish population is immediately

apparent. All three vital rates of fish population dynamics--growth,

 fecundity, and mortality--are explicitly contained in the dynamical bJ
 

equations.

4.2 Biomass and Production

Computation of biomass production for a population is of primary

interest to fishery biologists as well as other resource managers.

Production over a time interval [tl'tZ] is defined as the total biomass

elaborated by the fish population, regardless of the ultimate fate of

the biomass [Chapman, 1967]. Thus, production during [t1,t2] is

equivalent to the total net change in pOpulation biomass, plus the sum

of the weights of all fish that die during [t1,t2] with weight being

assessed at the moment of death [Chapman, 1967].

From the model (2.2-l), (2.2-7), a differential equation can be

derived for population biomass. If the size variable, 2, is chosen to

be body weight, then

gm 2 N(2,t)d2 Q NB(t)é population biomass. (4.2-1)

0
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When differentiated, this takes the form

dt 2 3t '
0

by Liebniz rule. Using (2.2-l), this can be written

dNB(t)

dt

 = {m 2 _ g(z,t)N(Zp
t)] d2 _ fa) Eu(2't)N(§'

t)dE.
Ht

0
32

20

If the first term is integrated by parts, the equation becomes

 I

dN (t) a, m
E”'?fi?"= zog(zo,t)N(zo,t) + £0 g(z,t)N(2,t)d2 - £0 2u(2,t)N(2,t)d2,

assuming no individuals survive to size 2 = m, so that N(m,t) = 0.

This can be also written

dNB(t)
00 ~ ~ ~ oo~ ~ ~ -.

dt 2 203(t) + { g(zvtIN‘zvtIGZ - g zu(z.t)N(z,t)dz.

O O

(4.2-2)

Equation n.2-2) is an equation for net population biomass change

which shows clearly the three possible sources of biomass gain or loss

in any closed population. The first term in (4.2-2) is the rate of

addition of new biomass due to reproduction, the second term is the

addition of new biomass due to growth, and the third term is the total

loss rate due to mortality.

Assume now that we wish to compute production in a fish pOpulation

between time t and t . Also assume that no reproduction occurs between

1 2

t1 and t2 so that B(t) = O in that time interval. This is a common
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assumption, since production is often computed over the summer months

beginning just after the spring spawning.

Then, production = [net biomass change] + [total biomass lost to

mortality]. That is,

t an (E) t

p = £ 2 i.— dt + £ 2 I” 211(2,2)N(2,2)d2 at.

1 at 1 2O H

Using (4.2-2) this equation can be rewritten as:

 

t
.

p = £ 2 [F 9(2,E)N(2,'t)d2] at. (4.2-3) J
1 25O

p

The use of (4.2-3) requires full knowledge of the number density

N(z,t) over the interval [t1,t2]. This is rarely practical for wild

populations, so (4.2-3) must be simplified. Suppose the production of

a year class, or cohort, is being computed as it grows during [tl,t21.

Then N(2,t) at any fixed time t, is non-zero over only a

restricted size range centered roughly on the mean size of the similarly-

aged individuals in the cohort. Thus, the inner integral in (4.2-3)

can be approximated by

g” g(2,t)N(2,t)d2 = g(2(t))Nc(t). (4.2-4)

0

In this approximation, 2(t) is the mean size of individuals in the

cohort at time t, and Nc(t) is defined as the number of indiviudals in

the cohort. Since g(2(t)) - £15-, production can be written as
dt

p a»;t2 93—95-1- u (eat (4 2-5)
t dt c ° °
1
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Equation (4.2-5), with slightly different notation, is equivalent

to the basic production formula (9.19) of Beverton and Holt [1957].

Equation (4.2-5) is also the mathematical equivalent of the well-known

”Allen curve" graphical method for computing production [Chapman, 1967;

Weatherley, 1972], as is noted by Beverton and Holt [1957].

A slightly different approach is taken by Ricker [1958]. He

uses a simple equation for net biomass gain in a pOpulation, and then

integrates over [t1,t2], as above, to get a formula for production.

Ricker's formula can also be derived as follows: once again,

assume that biomass input from reproduction is negligible during

[tl,t2]. Then Equation (4.2-2) becomes

dNB = [0° A. ~ d~ foo ~ ~ ~ d~

at Z g(ZOt)N(Z,t)
Z - Z zu(z't)N(z't)

Z

0 0

If G(z,t) = ELELEL> is defined as the instantaneous growth rate per

unit of body weight, then

dN

—-§ = f" [G(2,t) - u(2,t)]§ N(2,t)d2. (4-2-6)
dt 0

run», suppose that growth per unit body weight and mortality are

constants across all sizes during [t1,t2] . Let G(z,t) = G and

(z,t) = 8. Then (4.2-6) becomes

dNB A

dz— = (G - fi)NB.

mexn this simplified equation for biomass, Ricker derives the production

formula P = GB where B is the mean biomass during [t1,t2]. Details can

be found in Ricker [1958] or Chapman [1967] .
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The preceding derivations are valuable for several reasons. They

show that both of these commonly used production estimates are derived

via approximations to the same detailed expression for population

biomass (4.2-2). It appears that,this demonstration has not been

made before. The derivations also clearly show the mathematical

nature of the approximations inherent in the simplified production l‘

estimates. The formulae of Beverton and Holt and Allen are accurate ; a.

to the extent that Equation (4.2-4) is a good approximation. This

approximation, in turn, depends on the extent to which individuals in I

 the same age cohort have similar body weights. L]

The accuracy of Ricker's formula, on the other hand, depends on

the constancy, in time and size, of growth and mortality rates for the

population size distribution being considered. Thus, Ricker's model

is most suitable for single year classes with the added restriction

that production be computed over short time intervals, as has been

noted by Chapman [1967]. Both production estimates assume that

reproduction does not contribute immediately to biomass change rates.

The apprOximations outlined above should be kept in mind by those workers

‘who attempt to modify fishery production equations for use in other

populations whose size distributions may show quite different dynamics

from those of fish.

In turn, the derivations provide a partial validation of the

Ibiomass Equation (4.2-2) and thus of the physiological age model

(2.2-1) 1 (2. 2-7) .
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4.3 The Growth Function, g(z), for Fish Populations

Chapters 2 and 3 showed how both individual growth, g(z), and

its derivative, g'(2) = 33" influence the dynamics of size distribu-

tions. Growth in fish has been extensively studied, and there is a

wide variety of models, both theoretical and empirical, from.which

to choose.

Most of the models of fish growth have one thing in common. They

present growth in body weight as being a sigmoidal function of c-age.

That is, fish grow at an accelerating rate up to some weight, after

which growth rate decreases monotonically so that older fish appear

to approach an asymptotic upper weight limit. This "logistic" type

growth is shown by Figure 2.3. A single curve from the family shown

in Figure 2.3a is a sigmoidal growth curve, and Figure 2.3b shows a

typical growth rate curve which generates sigmoidal growth.

Curves of the type shown in Figure 2.3 are felt by D'Arcy

Thompson to describe the general course of growth in many organisms, and

in his treatise, "On Growth and Form" [1942], he gives numerous

empirical examples of this curve, e.g., growth in humans, bamboo,

whales, tortoises, and beanstalks.

There are a number of functions which describe sigmoidal growth

curves, and the particular function used depends on whether one wishes

to assume an upper size asymptote, and on the steepness and symmetry

properties of the sigmoid curve. Comparisons of various growth

functions are found in Weatherley [1972], Holt [1962], and in

Beverton and Holt [1957].

In passing, it should be noted that this chapter assumes that
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9(2) does not depend on time. Growth of fish in temperate-zone waters

certainly has a seasonal component, with growth rates being reduced

in the winter months due to lower water temperatures [Weatherley,

1972], but we will follow the lead of other fish population modelers

and temporarily ignore this environmental component of growth.

The most striking effect of the sigmoidal growth pattern on the F1

dynamics of a size distribution is due to the decrease in growth rate

for larger sized fish. This effect is illustrated by Figure 4.2,

which is a size-frequency distribution shown at one point in time. As

 a result of decreasing growth rates, the modes in the size-frequency

M
1
"
.
.
.
)

distribution due to year classes begin to overlap for older and larger

fish [deBont, 1967; Holt, 1962].

The overlapping is further aggravated in many cases by differ-

ences in growth among individuals of the same age [Weatherley, 1972].

For many populations it becomes impossible to identify age-size

relationships for more than the first or second year-class by examining

size-frequency distributions.

This blurred modality in size-frequency curves is the major

obstacle encountered in using such curves to determine ages of larger-

sized fish, and the difficult aging methods mentioned in Section 4.1

must be attempted. In the language of Section 2.5, the overlapping

is caused by the "stacking up" or "compression", along the body

size dimension, of different-aged individuals due to decreasing.

growth rates.

A well known, sigmoidal growth formula, the von Bertalanffy

growth equation, will be used to illustrate how a specific function,
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Figure 4.2. Idealized size distribution of fish showing overlapped

year classes due to decreasing growth rate.
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g(z), can be used in the population model. The von Bertalanffy growth

equation describes growth rate in body weight as a concave function

of weight [von Bertalanffy, 1957, 1968].

The equation for growth can be written

d2 1 3 2 3

mm = 5‘; = 3K [200/ 2 / - 2]. (4.3-1)

Integration of this curve gives:

-k(t-t0) 3

2(t) = 20 + (20° - 20) [l - e ] . (4.3-2)

In these equations, 20° is the asymptotic weight limit for the

particular species and ecosystem being considered, and K is a parameter

expressing the rate of approach to the upper size limit. The functions

are plotted in Figure 4.3. Notice that the growth curve is slightly

asymmetrical, with the maximum growth rate seen about 1/3 of 2”. The

family of characteristic curves in Figure 2.3 is composed of von

Bertalanffy growth curves. Since the equation has only been applied

in fish to post-larval growth, we let 20 be the size of young fry at

time to.

This growth function has been widely used and discussed in fish

population models. It is advocated by Beverton and Holt.who use it

as a basis for their theoretical age-structured.models [Beverton,

1954; Beverton and Holt, 1957; Holt, 1960]. Beverton and Holt [1957)

show methods of estimating 2m} and K from growth data, and they also

discuss the dependence of the parameters on population density.

Criticism of the von Bertalanffy equation as applied to fish growth

can be found in Parker and Larkin [1959].
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4.4 Recruitment and Seasonal Periodicipy

The reproductive feedback in fish populations is poorly under-

stood. Since mortality in the egg and larval stages is very high

(>99.9+ % loss), it has been very difficult to relate the number of

surviving fry of a given size to the size of the breeding population

which produced them [Bagenal, 1967]. Thus, the basic models of

Ricker [1958] and Beverton and Holt [1957] simply assume that a

constant number, R, of recruits of a certain size, are added to the

"
I
1
1

k
.
.
-

3

population each year. For the moment, let 2R = the size of recruits. ,

 We will also assume, along with the modelers mentioned above, E}

that recruitment, R, is constant from year to year and that yearly

deaths balance yearly births. The hypothetical fish population is in

a steady-state condition, since the net increase in population numbers

'is zero from year to year, but such a population is still dynamic in

that a train of wavelike modes due to year classes moves through the

age and size distributions.

This produces a population which is in a periodic type of

steady-state condition. Weatherley [1972, p. 155] defines the broadened

steady-state concept as follows:

To say that a population is in 'steady state' means that

such changes in growth, biomass, recruitment and mortality

as occur, do so with a regular pattern and magnitude so

that at a particular point in each phase of a population

'cycle', age and size structures will tend to be similar.

Total numbers, Nt(t), in this steady-state population would show a

"limit cycle" behavior, as described by May [1973]. POpulation numbers

oscillate up and down in a stable, periodic fashion between fixed maxima

and minima.
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In the p-age model, Equation(3.4-2)gives the shape of the size

distribution for a stationary population, but it can be adapted to this

fish population which has yearly, pulsed reproduction.

Define a time-averaged size distribution,

i {HT N(z,t)dt. (4.4-1)N(z,t) = T

Here, t is arbitrary and T is the period of the reproduction cycle,

about 1 year in this case.

Assume that the population has been in steady-state for several

generations so that N(z,t) can be replaced by the expression for the

solution (2.4-7b):

g(zR)

g(z)

N(z,t) =
 

H
I
F
‘

ft+T N(z ,t-T(z,z )) 2(z,z )dE. (4.4-2)

t R R R

Notice that z replaces z in this usage of Equation‘2-4-7b), because

R 0

2R is the size at which recruits are assumed to enter the population.

Now assume that a total of R recruits enter the population at a

constant rate over a time interval TR. The interval TR would be on

the order of a few weeks to a few months for most temperate zone fish.

z

Then,

§}-, for E in [t,t+T] and in TR

N(zR.E~-T(2.2R))g(zR) = R .

, for E in [t,t+T] but not in TR

Here, the interval TR occurs sometime within the yearly period [t,t+T].

Equation (4.4-2) can now be written

l(z,z )
- R R

= — *- . 4.4-3

N(z) T g(z) ( )

 



59

In (4.4—3) we have replaced N(z,t) by N(z) since N becomes time inde-

pendent. Notice that N(z) is equivalent, except for a normalization

factor, to the shape function cs(z) defined in Equation (3.4-2) for

stationary pOpulations.

This time-averaging procedure smooths out any periodic "square

wave" reproductive input. Beverton and Holt [1957] use an instantaneous

yearly pulse for recruitment in their models, and this is handled in E}

(4.4-2) simply by making N(zR,t-T(z,zR)) a Kronecker-delta impulse

function in the variable t. Ricker [1958], on the other hand, assumes

 that recruitment occurs at a constant rate over the whole year in his J

model. In this case TR = T and the time average in (4.4-3) still 9

applies. The remainder of this chapter will discuss the time—averaged

size distribution, N(z), of steady-state fish populations with pulsed

reproduction.

We ask the reader to look again at the idealized size-frequency

distribution for fish in Figure 4.2 and imagine its fluctuations during

the course of a year. The train of year-class modes will move to the

right in the distribution, and sometime during the year, a new wave of

recruits will appear at the left side of the distribution. However,

because of the small growth rate in larger-sized fish the position of the

blurred year-class modes comprising the right-hand section of the curve

should change little, and the relative fluctuations of numbers of larger-

sized fish should be comparatively small during the year.

This observation is illustrated by Figure 4.4, a year-long series

of monthly length-frequency curves drawn by Fairbridge for the tiger

flathead, an important species of the east Australian trawl fishery.
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Figure 4.4. Monthly series of length frequencies for the New South

Wales Tiger Flathead population in the east Australian

trawl fishery. Taken from Fairbridge [1951].
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Since spawning in this species is protracted over a six-month period, the

year-class modes are not distinctly seen. However, one can see that the

changes in the length-frequency curve for sizes larger than about 45 cm.

are small compared with fluctuations in the curve for smaller fish.

Therefore, the number of different time points chosen for sampling

such a population should not be crucial in building an estimate of the

seasonal average, N(z). This observation may give some comfort to .1

experimenters who would like to sample trawl catches as infrequently

as possible.

To recapitulate: it has been shown that, for a steady—state J 
population (annual births = annual deaths) with constant annual recruit-

ment, the periodically-varying size distribution can be replaced by a

time-averaged size distribution which is stationary in time. Furthermore,

for larger fish, the average distribution, N(z), gives a good approxi-

mation to the distribution N(z,t) at any instant t.

The average distribution N(z), or its normalized equivalent,

cs(z), can now be used to examine the relationships between the growth

and survivorship functions, g and 2, since these parameters are unaf-

fected by the time-averaging procedure.

The problems associated with time-varying parameters such as

reproduction in age-structured models merit a short digression. Recently,

several authors have begun to examine population models with time-varying

parameters and have obtained satisfying results. Lopez [1967] defines

ergodic prOperties of a population. The tendency for a closed population

to approach a stable c-age distribution when subjected to time-invariant,

age-specific vital rates is called strong ergodicity. The tendency for
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a closed population to have a c-age distribution which is independent

of its shape in the distant past and is determined exclusively by the

history of fertility and mortality is referred to as weak ergodicity.

Lotka proved the theorem for strong ergodicity of c-age distributions,

and Chapters 2 and 3 of this thesis prove the strong ergodicity property

of p-age distributions.

Lapez [1967] proves a weak ergodic theorem for the continuous

c-age model with some restrictions. Special cases of weak ergodicity

dealing with periodically varying vital rates have recently received

deserved attention. As a result, a good deal of biological realism

can be added to analytically tractable population models. Oster and

Takahashi [1973], using the von Foerster model (2.3—2), discuss the

results of synchrony or asynchrony between an environmentally-cued

reproductive pulse and the individual maturation delay.

In an excellent paper on seasonal periodicity, Skellam [1967]

shows the weak ergodic property for a Leslie matrix model whose parameters

vary periodically. The normalized age-frequency vector is shown to

depend asymptotically only on the season of the yearly cycle at which

it is computed.

Cull and ngt [1974] also prove a weak ergodic theorem for the

Leslie mode1--name1y, that a projection matrix with periodic entries

results in a stable c-age distribution for the average value of the

asymptotic population vectors over one period.

We conjecture that weak ergodic properties shown for the discrete

age—time models will also be seen in continuous age-time models with

periodic vital rates. Further, it is felt that these same ergodic
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properties will be seen in p—age distributions. The time-averaging

results of this chapter for the steady-state size distribution with

periodic reproduction are a special case of the weak ergodic property

for the continuous p-age model.

4.5 ‘Application to a Specific Model

A well-known theoretical fishery model can now be examined from

the p-age point of view. In their basic model for a fishery, Beverton

and Holt [1957] assume a steady-state population of the type described

in Section 4.4.

The model of Beverton and Holt was specifically derived for

computing yields of exploited populations, and its many results will

not be reviewed here. However, the fundamental components of the model

will be outlined.

In addition to the steady-state assumption, Beverton and Holt

assume that the number of fish surviving to age a, out of R fish

-(F+u)(a-aR)

recruited into the population at age a , is given by Re .
R

The total instantaneous mortality rate is the sum of a natural mortality

rate, U, and a fishing mortality rate, F, both constants. The expression

is assumed to be valid for fish up to an age ax, the maximum age of

individuals sampled for the fishery.

The weight of an individual fish aged a is given by the von

ZBertalanffy formula (4.3-2). Using these expressions for survivorship

and growth, Beverton and Holt derive equations for biomass yield, ‘.

;production, and other statistics of interest for a given pOpulation.

Let us discuss the size distribution, N(z), associated with the
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growth and survivorship functions described above. Combining (4.4-3)

and (2. 4-5) yields

 " ____R____ _ Z g'(EHME) ~ _
N(z) T9(ZR) exp]: £1; 9(2) :ldz. (4.5 1)

For von Bertalanffy growth, 9' (z) is obtained by differentiating (4.3-1)

to get . F1

 

  

2 1/3

g'(2) = K 2 [:03] - 3 . (4.5-2)

Thus, letting T = 1 year, N(z) becomes 1

1/3 :3}

x [:2 [if] 4:] + (my)

N(z) = (R) exp - fz 2 1/3 2/3 dz . (4.5-3)

ZR zR 3K [20° 2 ~23

This equation gives the size distribution for the fish populations

described by Beverton and Holt's basic model. Figure 4.5 shows N(z) for

two different unexploited populations of North Sea plaice, using parameter

values estimated by Beverton and Holt [1957]. For these populations,

Beverton and Holt are interested in fish between the ages of aR = 3.7

years and aA = 18 years. For X = 0.1, 2R1 and le are the corresponding

upper and lower size limits, while 2 and z)‘ are upper and lower size
R2

limits, respectively, for K = 0.2. The curve for K = 0.1 describes a

2

”canonical" pOpulation whose statistics are felt to accurately reflect

pre-WWII conditions in the pOpulation. Beverton and Holt use this set

of parameters as a baseline for parameter perturbation analyses. This

particular size distribution could be compared with the original weight

frequency data to validate the derived values of 11, K, and zoo.
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NUMBERS x (R/65)

aR = 3.7 years

ax = 18 years

200 = 2867 grams

1.0 .1 u = 0.1 year-1

F = 0.0 year-1

.75.

.50.

 
. 25-1

 

 
  

1655 26721.
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.

N N 0
‘

O U
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SIZE (in grams)

Figure 4.5. Steady-state size distributions associated with a theoretical

fishery_mode1. Parameters from Beverton and Holt [1957].

(See text for explanation.)
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As was pointed out in Section 3.4, a size-frequency curve can

actually increase in 2, if the condition [g'(z)+u(z)] < 0 holds over

some interval [21,22]. For the size distribution N(z) described by

(4.5-3), g'(z) decreases monotonically to (—K) as 2 increases to zm.

(See Figure 4.3b and Equation 4.5-2.)

Thus, if (-K + (U+ F)) < 0, the size distribution N(z)*'“>, as

z-+ z”. Since this can not be the case in an actual size distribution,

caution must be exercised in choosing values for K, H, and F for the

Beverton-Holt model.

Even if the maximum size of fish seen in the population is a

value 2A < zm, one may still get size distributions increasing in z.

This is illustrated by the graph in Figure 4.5 with K = 0.2.

The fish in this hypothetical pOpulation grow much faster than

those in the plaice population with K = 0.1. Notice that, with K = 0.2,

the number density of fish increases for fish larger than about 1300

grams.

The effects of altering K on the yield of a population are discussed

in Section 17.5 of Beverton and Holt's monograph. They conclude that a

population of faster-growing fish (K = 0.2) would produce a greater

biomass yield to fishing at low values of F than one with slower

growing fish.

This is corroborated by comparing the two curves in Figure 4.5.

The steady-state population with K = 0.2 shows a greater number of

larger-sized fish available in the exploitable size range, and one

'would expect greater yield from such a population if it were not fished

intensively enough to radically change its size structure. Figure 4.5
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is also a striking illustration of the problems encountered in assuming,

along with Beverton and Holt, that fish growing at widely different

rates (K = 0.1 or K = 0.2) become liable to capture at a fixed age,

rather than a fixed size. Fishing gear must select fish largely on the

basis of size, and fish at the assumed age of recruitment, a , in the

R

two populations in Figure 4.5 differ in weight by a factor of 5.

4.6 Catch Curves and Mortality Estimation

In the preceding section, N(z) was used to predict the size

distribution associated with a given set of growth and mortality para-

meters for a steady-state population. This procedure can be reversed.

Empirical size distributions can be used to estimate growth and

mortality statistics for populations.

A catch curve is the size-frequency distribution of a sample of
 

the population at one point in time. The population is usually presumed

to be in steady-state for analysis of such distributions. The sample

is often taken from the catch of a commercial fishing vessel. Catch

curves are used primarily for assessing survivorship in fish populations,

whether mortality is due to natural causes or fishing. Chapter 2 of

Ricker's Handbook [1958] is a detailed account of the analysis of catch

curves for mortality estimation, and most of this section is based on

his work.

A typical catch curve is shown in Figure 4.6. Such curves are

Characteristically dome-shaped. The ascending left-hand limb reflects

increasing selectivity of fishing gear for larger fish and is not

representative of the actual size distribution. The descending right-

hand limb, however, is taken to be a true sample of the actual population
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Figure 4.6. Catch curve for the Pacific Halibut pOpulation, 1925-1926.

Abscissa--mean length of successive 5 centimeter length

groups, in millimeters. 0rdinate--logarithm of the number

of fish taken at each length interval. From Ricker [1958].

size distribution. In our notation, the right-hand limb of a catch

curve is an estimate of a segment of N(z), the steady-state size

distribution.

Fishery biologists, like the modelers mentioned in Section 3.5,

recognize that a size-frequency distribution of a steady-state population

shows the compounded effects of growth and mortality. To estimate

mortality in a population, growth must be "factored out" of the size-

frequency curve. For this reason, most recent authors use catch curves

showing chronological age, rather than body length or weight, along the

abscissa [Ricker, 1958]. Mortality is easily determined from catch

curves which are c-age-frequency distributions. A catch curve based on

c-age is equivalent to an empirical estimate of c-age—specific
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survivorship, 2(a,0), except for a scale factor (see Equation (3.4-l)

with r = 0). The definition of survivorship, Equation (2.4-6), can

then be used to estimate mortality.

However, catch curves based on age are often difficult to obtain.

First, a large sample must be obtained and a size-frequency catch curve

drawn. Then, subsamples of the original sample are taken for age

determination. From the resulting size-at-age data, the size—frequency

curve is transformed to an age-frequency distribution [Seber, 1973:

Ricker, 1958].

There are situations when the direct use of a size-frequency

curve is more attractive. To quote Ricker [1958 , p. 72],

For example, when it is a question of assembling a repre-

sentative sample of the catch from a widely scattered fishery,

it may be necessary to sample so many fish that determina-

tion of the age of all of them becomes very tedious. . . .

In such a situation there would be two curves available:

(a) a curve of mean length against age, based on a relatively

limited body of data, and (b) a representative curve of the

logarithm of frequency against length, based on all the

samples available.

To correspond to Ricker's treatment, the logarithm of N(z) will

1x3 used as a description of catch curves. From Equation (4.5-l) we

get

R2 g' (any (‘2')

T9(zR)

~ d; + 1n 0 (406-1)

R g(z)

lnN(z) = - f

2

Tina slope of the logarithmic size distribution takes the simple form

 

g_[_1m'uzn a _l:g'(z)+11(z)]. (4.6-2)

dz 9(2)

‘
"
-
=
'
"
j

 w
1
1
5
-
.
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An estimate of mortality is then given by

d[1nN(z)]
u(2) = -g(z) dz -g'(z). (4.6-3)

Ricker is able to handle a size-frequency curve directly only if

he assumes growth, mortality, and the slope of the curve are all constant.

Letting growth and.mortality rates be 9 and u, respectively, and

d lnN . . - . ‘—L_dz££)—]— =..1' , Ricker derives the estimate for mortality, ‘ .q

u = i'g. (4.6-4)

 

See Sections 28 and 2G of Ricker's Handbook. This is clearly a special

 

case of Equation (4.6-3) with g and u constant, and g'(z) = 0.

Ricker then states that Formula (4.6-4) is useful only for

segments of size frequency curves where growth is constant. To illustrate

this prOblem, he uses a model to generate size distributions (Ricker's

Figure 2.11) showing the "stacking up” phenomenon described in Chapters

2 and 3. “

Ricker states that ". . .when the mortality rate is small and

fairly steady, and rate of increase in size is decreasing at a moderate

rate. . .,” the size distribution increases in z[£bid,, p. 72]. This

is a qualitative description of our criterion that [g'(z)+u(z)] < 0.

for the distribution to be increasing in 2 (see Figure 3.1).

An example of "stacking up" in an actual fish population is

shown in Figure 4.7 which is a smoothed catch curve drawn by Hart [1932]

for whitefish in an Ontario lake. Since a fine-meshed net was used,

the curve is representative of the actual length distribution for fish

longer than about 6 inches. The slight mode in the distribution at
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Figure 4.7. Length-frequency curve for whitefish in Shakespeare Island

Lake, Ontario, showing mode at 17-18 inches due to decreasing

growth rate and low mortality in that length range.

Hart [1932].
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17-18 inches is the result of fish "piling up", in Hart's words, due to

low mortality and decreasing growth rates in this length range. This

length-frequency curve is also a nice example of the coalescence of

year classes in a size distribution due to decreased growth, as

described in Section 4.3 and Figure 4.2.

Ricker points out that Formula (4.6-4) clearly will not work for

a catch curve such as the one in Figure 4.7. For such a distribution,

dlnN(z)

dz

conclude that there is a negative mortality rate over that size interval.

is positive over a size interval. Using (4.6-4) one would

Equation (4.6-3) enables one to deal with changing rates of growth

and sinuous catch curves to estimate size-specific mortalities.

Ricker also notes that mortality rates estimated using (4.6-4)

". . .always tend to be too small, if absolute rate of increase in length

is decreasing with age." [Ibid,, p. 73] Equation (4.6-3) explains why

this is the case. If growth rate is decreasing with age/size, then

g'(z) is negative, and the term [-g'(z)] is a positive quantity not

accounted for in the approximation (4.6-4). Thus, mortality rates are

underestimated by an amount roughly equal to [-g'(z)], the absolute rate

of decrease in the individual growth rate. This observation can refine

mortality estimates based on size-frequency curves.

The various forms of N(z) given in this chapter provide a general

mathematical description of size distributions in terms of growth and

mortality. They should help in increasing the utility of size distri-

butions, which are more easily obtained than age distributions, in

esthmating vital statistics of fish populations.
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CHAPTER 5

THE REGULATION OF POPULATION GROWTH BY INDIVIDUAL GROWTH

5.1 Density-Dependence in Fish Populations
 

In earlier chapters, pOpulations were modeled for which individual

growth was time-independent, fixed presumably by the physiology of each

organism as expressed by its physiological age. Many organisms, however,

have a highly plastic growth response to changes in their environment.

In particular, individual growth rates for some species are strongly

affected by intraspecific competition fOr resources such as food or

space. This phenomenon is perhaps most striking in plant populations.

Harper [1971] points out that individual plant growth responds to

competition so flexibly that biomass production per unit area remains

virtually constant for many species over a wide range of number densities.

In this chapter, the p-age model (2.2-l), (2.2-7) will be used

to study the dynamics of pOpulations whose members respond to their

limited environment by altering their growth rates. Both analysis and

stmulation.will be used to uncover the behavior of the model when growth

rate, 9, is assumed to depend on some measure of pOpulation density.

As in Chapter 4, the discussion will use fish pOpulations for

a paradigm. A central theme of Weatherley's [1972] book is that

individual growth response to competitive pressure plays a key role in

regulating fish populations, and we will draw heavily on his observations.

A number of empirically based relationships between individual

73
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growth and population density in fish have been suggested, all of which

state a negative correlation between growth rate and total numbers or

. . ' gg_ 1

biomass. For example, Backiel and LeCren [1967] propose that dD d 6-

describes the effect of density, D, on growth rate, 9. This implies

that variations in density at a low population level result in much

greater changes in growth than do variations at a high density level.

In contrast, from experiments in warm-water fish ponds, Hepher [1967] h]

found a log-log relationship between 9 and D. Hepher's model states

that a relative decrease in individual growth rate is a constant

 
multiple of the relative increase in density. j

Another more detailed connection between growth and density is ;

proposed by Beverton and Holt [1957], who also give an excellent general

discussion with numerous examples of density-dependent growth. Using

the von Bertalanffy growth equation (see Section 4.3), they conclude,

on both theoretical and empirical grounds, that the asymptotic weight

limdt, zm, decreases with increasing D, while the parameter K remains

unaffected by density.

All of these models implicitly evaluate density relative to the

carrying capacity of the environment, which will be denoted by C. Another

advantage of discussing density-dependence in the context of fish

populations is that managers of hatcheries and farm ponds have, for some

time worked with a practical, quantitative definition of carrying

capacity. Hepher [1967], for example, defines the carrying capacity

as the maximum weight of fish which can be sustained by a pond. A

‘population would be considered to be at the carrying capacity if it

were composed of individuals having zero growth, and if it showed no

net biomass production over some time interval.



75

To construct a more realistic model of density-dependent growth,

a detailed picture of the dietary habits of a particular species would

be necessary. One might divide the observed size range, [zo,zm], of

fish into subintervals to account for the switching of preferred

_diets shown by individuals of many species as they increase in size.

Associated with each subinterval, j, would be a carrying capacity, Cj'

based on the availability of prey items for fish in that size range.

Growth of individuals in the subinterval, j, is then a function of the

total numbers, Dj' relative to Cj’ For example, the size range of

bluegills in the experimental ponds of Hall, et al. [1970] could be

divided into two intervals. Individuals less than about 35mm. in

length fed largely on zooplankton, while individuals greater than 35mm.

in length preyed predominantly on benthic insect larvae. Unfortunately,

we can not, as yet, deal analytically with growth models of this

complexity.

The relationships between density and the other vital rates, v(z)

and b(z), must also be considered. Mortality in adult fish is generally

felt to be density-independent for most species [Beverton and Holt,

1957: Weatherley, 1972]. However, some researchers see density-dependent

mortality during larval stages as a prime component of natural population

regulation [Backiel and LeCren, 1967]. The model used.bere deals with

postrlarval fish, so it.will be assumed that density does not influence

:mortality.

The influence of density upon reproduction is still an open

‘problem for fish. Most fish modelers do not attempt to follow the

dynamics of hatching and larval mortality. Instead, stock-recruitment
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models are used to relate the current density of fish to future expected

recruitment of juveniles into the population at a given size or age

[Ricker, 1958; Beverton and Holt, 1957]. These models show recruitment

increasing with increasing population density, up to a certain point.

At higher densities, recruitment begins to decrease, due to increasingly

density-dependent egg and larval mortality.

In this chapter, it is assumed that recruitment of fish sized

20 does not depend on density. That is, b(z) will be the instantaneous

rate of production of fish sized 20, per breeding individual of size 2.

The size 20 will be the size ofithe smallest post-larval fish in the

population, since it is assumed that mortality in post-larval fish is

density-independent.

With this definition of 20, the rate b(z) is no longer a true

representation of fecundity, since fecundity is usually defined as the

number of eggs laid by an individual [Pielou, 1969]. Since b(z) stands

for the rate of production of live offspring sized 2 per individual
OI

of size 2, it is more accurately a fertility rate, and it will be

referred to as such for the remainder of the chapter. Keep in mind

that, with these definitions of z and b(z), the time lag between the

0

egg stage and the attainment of size 20 is being ignored.

The seasonal component of reproduction will also be temporarily

ignored in order to apply the model (2.2-l), (2.2-7) with time-

invariant mortality and fertility rates.

In stmmary, then, we are studying a hypothetical fish population

with the following characteristics:

i. The population is growing in a limited, but continuously

 l
l

'
'
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renewable, environment with carrying capacity C.

ii. Individual mortality rates, u, and fertility rates, b, are

time invariant, i.e., density-independent, but they may be

functions of body size, 2.

iii. Individual growth, g, is negatively correlated with pOpulation

density.

5.2 Stability_Theory

Tb understand growth as a regulatory mechanism, we will outline

weatherley's [1972] description of the growth of a fish population in a

virgin environment, beginning with only a few colonizers. Figure 5.1,

reproduced from Weatherley [1972], illustrates this process.

Initially, with abundant food and space, growth rates will be

high. Fish mature early, and large numbers reproduce before being lost

to mortality. As numbers and biomass increase, individual growth rate

decreases in response to increasing competition. With decreasing growth

rates, fewer individuals survive to reach a size at which they can

reproduce, and the total population growth slows down. Eventually,

total numbers and biomass approach an upper limit. At this population

level, growth has become adjusted to permit a balance between replace-

ment and loss of individuals.

The fate of the population size structure is not quite so clear.

It would be expected that due to the integrative nature of the breeding

interval, any initial size distribution in this population would evolve

to a stable size distribution in the same fashion as the populations of

Chapter 3 with fixed growth rates. Weatherley [1972] claims that a

more complex size-structure will be seen as the pOpulation grows.
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Figure 5.1. Growth of a fish population in a limited environment.

The population initially has only a few individuals.

From Weatherley [1972].
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However, it is not immediately clear that the density-dependent growth

rate could not resonate with an unstable size structure in such a

manner as to produce persistent oscillations in population numbers

about the upper asymptote of Figure 5.1.

If the size distribution did stabilize after several generations,

the population would become stationary, with balanced birth and death

rates, fixed total numbers and biomass, and unchanging individual

life histories.

To model the population described above, a simple and realistic

relationship between growth and density is assumed--namely that, at any

size ’2‘, the growth rate g(§,D,C) is monotonically decreasing function of

density, 0. That is, growth rates are greatest when the individual has

no competition for space or food, and they decrease with increasing D,

approaching zero as D + C. All three of the growth-density relationships

proposed in Section 5.1 follow this general pattern.

To model the dynamics of a population using (2.2-1), (2.2-7)

with a growth function such as the one described above, it is necessary

to consider density as a state variable of the model. If, for example:

D is equated to total population biomass, then Equation (4.2-2) for

biomass must be solved along with (2.2-l). If D is measured by total

population numbers, Nt(t), then equations (2.2-5) and (2.2-7) can be

combined to give the differential equation:

-—-—— = f b(§)N(E,t)dE - f u(z)N(z.t)d2- (5-2-1)
dt 2b 20

A useful tool for analyzing the effect of density-dependent growth

on population dynamics is the net reproductive rate, R0, defined by
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Eguation (3.3-4) with r = 0. Since the mortality and fertility para-

meters are assumed to be time-invariant, the net reproductive rate can

be expressed as a function of D, which varies with time.

Using the definition of survivorship, (2.4—6), in Equation (3.4-3)

the net reproductive rate can be written as

213”“ b(2) ‘ E 11(2) A ~ .,
R0(D,C) - £1) W exp [- fzoWdz] dz. (5.2-2)

Recall that R.() > 1 implies an increasing (in total numbers) pOpulation,

while RO < 1 implies a decreasing population.

An important feature of the net reproductive rate is that its

definition and implications for population growth over the long term

are completely independent of the status of the c-age or size distribur

tion. Equation (3.3-4) merely expresses the relationship between R0

and the characteristic equation of a stable population. Thus, Equation

(5.2-2) can be used to predict population growth or decay as a function

of growth, density, mortality and fertility, without regard to the form

Of the number density N(z,t).

Suppose for the moment that a population is stationary-~individual

growth and density have mutually adjusted so that RO(D,C) = 1. What

will be the result of a perturbation in D, either through the removal or

addition of individuals? Will the population return to an equilibrium

State? One would intuitively expect it to do so, since increased

density results in decreased growth, which in turn should depress the

birth rate, thus lowering the density. Likewise, a decrease in D

Should speed up growth--the resulting increase in reproduction should

force density to increase once again.
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Upon differentiating (5.2-2) with respect to 0, however, it can

be seen that it is possible for R0 to actually increase with increasing

density. A closer examination of (5.2-2) and the definition of the

.fertility rate, b(z), reveals the problem. In addition to the negative

feedback 100p between R.o and density described in the previous paragraph,

there is a positive feedback loop Operating through the instantaneous

birth rate.

To see this, consider the definition of RO on page 32 , and set

£(z,zo) = l. The quantity

2 +0. ~

_ b b(2) ~ _
R6 - f g(E,D,C) (5.2 3)

must be the total number of offspring produced by each individual which

survives to grow all the way through the breeding interval. This

quantity is clearly a function of growth, g. Although the £32§_of

fertility, b(z), remains constant, a low growth rate means that individuals

remain in the breeding interval for a longer time, and the total

fertility, R3 , is increased. An increase in growth rate similarly

implies a decrease in total fertility, since individuals now reproduce

at a constant rate for a shorter period of time.

Apparently, reproduction, in the sense of total fertility, has

not really been uncoupled from density. This result also suggests that

the integral Equation (2.243) for total birth rate B(t) is, in most

cases, a poor model for reproduction when it is used for a population

*with time-varying growth rates but time-invariant fertility rates. Such

a.model implies that slower-growing individuals produce more offspring
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than faster-growing ones. Species of fish are not likely to be seen

with this type of reproductive feedback.

This reproductive model provides a positive feedback on population

density. As density increases, growth decreases and total fertility

increases, thus increasing density still further. The opposite occurs

if density decreases. The pOpulation.will have a stable equilibrium

only if the negative feedback effects of altered survivorship up to the

breeding interval can more than compensate fer the positive feedback

effect of density on total fertility.

A.much more realistic model is obtained if we allow the fertility

rate, b(z), to vary with density, but assume that total fertility, R6,

is constant. This can be done by using a fertility function of the form

b(z.D.C) = 6(2) g(z.D.C). (5.2-4)

This model says that slower-growing individuals produce offspring

at a reduced rate compared to faster-growing ones. The net result is

that the total number of offspring expected from any individual which

survives through the breeding interval is constant, regardless of growth

rates. Now the total fertility is given by

+0

11* = fzb Saws,

0 2b

which does not depend on growth. This reproductive model, with constant

total fertility, will be called model g, The original model, with time-

invariant fertility rates, will be referred to as model A?

The net reproductive rate for model §_takes the form
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+0 4 x

RO(D,C) = 12:13 8(2) exp [— £2 ll—(-3"c2———-c1’2r::[d'§.. (5.2-5)

0 g(zoDIC)

The derivative of (5.2-5) is

dR +c E A A

__g= 2b A.» 11(2) ag<z.D.C) A .
dD fzb b(2) é m'c) 30 dz

0 .

_ a (2) A ~ -
exp [2 W) dz d2. (5 . 2 6)

0

Since growth is assumed to be a decreasing function of density,

the quantity £2, is negative for all 2 and D. All other terms in

BD

dR

(5.2-6) are always positive, so the derivative ESQ-is strictly less

than zero for all D.

Thus, the function RO has the properties shown in Figure 5.2. The

value D* satisfying RO(D*,C) = l is a stable equilibrium point for

population density. If D is perturbed away from D*, the net reproductive

rate will automatically adjust via the growth rate to oppose the

perturbation. Since RO is a monotonic function of D, the equilibrium

density is unique.

The above analysis is independent of the pOpulation size structure,

so there is still no mathematical guarantee that some combinations of the

vital rate functions 5, u, and g can not produce persistent oscillations

in the size distribution. However, the negative feedback loop described

above will act to oppose any changes in D which occur as the size

structure fluctuates. It is difficult to imagine a set of vital rates

in (2.2-l), (2.2-7) which would allow a continuously changing size
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Figure 5.2. Net reproductive rate versus density for reproductive

model B.
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distribution while keeping total population numbers or biomass constant

at D*. This is a further indication that the size structure in this

feedback model will ultimately stabilize.

Two other features of this density-limited form of the model are

worth noting. Figure 5.2 and Equation (5.2-5) suggest that the model

population density may stabilize well below the carrying capacity, C.

The actual value of D* at which the pOpulation stabilizes is determined

by the vital parameters of the particular species being considered, as

expressed by the equation RO(D*,C) = 1. In contrast, the familiar

logistic equation,

5N— _H

dt mu K)'

predicts that a population will saturate its environment and will only

stabilize when density, N, is equal to carrying capacity, K.

A second feature of the density-dependent p-age model is its

high degree of structural stability. This means that the system is

stable with respect to perturbations of its parameters [Rosen, 1970].

The requirement for any initial population to eventually stabilize at a

'unique, non-zero density D*‘f_C is simply that the population can grow

successfully in an unlimited environment. In other words, a necessary

and.sufficient condition for the population density to be stable is that

the following inequality be satisfied:

zbmo ~ " z (’2‘) ,7 ~
R (0.0 = f b(z) exp - f L———o-A dz dz > 1 (5.2-7)

0 2b 20 g(z,0,C) --

A11 sets of vital functions 8, g, and p which satisfy (5.2-7)
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as a strict equality comprise the region of parameter space for which

the model is structurally unstable. This is a relatively small region.

For most vital rate functions, a small perturbation will not result in

a change of the inequality sign in (5.2-7). Unlike a density perturba-

tion, however, a perturbation of a vital rate in a stable population

will result in a new equilibrium value, D*, toward which population density

will tend.

According to this theory, a stable population with very labile

individual growth can respond successfully to enormous increases in

total fertility and/or decreases in mortality rate. An example of this

is seen in Weatherley's [1972] discussion of H. S. Swingle's experi-

ments with bluegill sunfish populations in farm ponds. Weatherley

describes these pOpulations, which are subject to very low mortality,

as being comprised of individuals which have virtually stopped growing.

There are a large number of juveniles and very few breeding adults.

These "stunted" pOpulations remained stationary for several years.

The theoretical arguments of this section show how a labile

individual growth rate is a powerful regulator of population growth in a

model in which total individual fertility remains constant (model 2).

The remainder of this chapter will use simulations to examine the manner

in which a growth-regulated population approaches its equilibrium

density.

5.3 Simulation—~Goals and Methods

The stability analysis of the last section reveals the asymptotic

behavior of the system (2.2-l), (2.2-7) when growth is density-dependent.
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There are a number of questions, however, which can be asked about the

model dynamics for smaller values of t.

The first question which comes to mind is whether the model

population has similar trajectories for density and growth to those

described at the beginning of Section 5.2 for fish populations. We

also would like to settle the question of the fate of the size structure.

Does it stabilize, and, if so, how rapidly? How doesjixsstabilization

depend on initial conditions and on vital parameters?

Another interesting problem has to do with the measure of density

to which growth responds in controlling the population. Will the pOpu-

lation respond differently if D is measured in units of biomass rather

than numbers? These are questions which can best be answered by simula-

tion based on the model.

Simulation experimentsiku:the system (2.2-l), (2.2-7) are difficult

to design. The system has several parameters, some of which are functions

of body size. As a first step in reducing the parameter space to a

manageable size, this functional dependence was removed. Growth,

fertility, and mortality were made constant with reSpect to z.

The growth-density relationship was assumed to be as simple as

possible. Growth was defined by

(D C) - (1— 9-) (5 3-1)9 I "’ gmax C - -

With this growth function, individuals grow at the rate gmax when no

competitors are present, and growth decreases linearly to zero as the

carrying capacity is approached. This is also the relationship between

density and growth implied by Figure 5.1.
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These simplifying assunptions result in a seven-dimensional

parameter space, not including the initial condition, NI(z). The

A

parameters are gmax' u, b, C, zb, a, and zo. Once the simulation

nbdelwas operating correctly, the parameters could be checked one at

a time for their influence on system dynamics.

To further restrict the parameter set, an effort was made to

select values in the same range as those generally used for fish popula-

tions. The variable 2 represented body weight, and 2 was set equal to

0

l in arbitrary weight units, while the upper limit for weight was taken

to be 21 units. The simulation time scale and gmax were mutually set

so that an individual growing in an unlimited environment would reach

the maximum size in about 4 years. The size of first breeding, zb,

was taken to be 1/2 to 3/4 of the maximum size reached, and breeding

was, for most runs, allowed to continue up to the maximum size.

The mortality rate, u, and fertility rate, 6, were the parameters

most frequently altered to produce different trajectories. Mortality

ranged between 50 percent and 90 percent loss per year, while total

fertilities spanned a range of 10 to 2,000 offspring per individual.

These values are all similar to the ones employed by Weatherley in his

models of fish population growth and maintenance [Weatherly, 1972,

Ch. 6].

Some runs of the simulation were made with the reproduction model

ALof Section 5.2, but this model proved to be stable only within a

narrow range of parameter values. This was due to the positive feed-

back effect of density on total fertility which was described in Section

5.2. All of the runs reported in Section 5.4 employ the reproduction
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model 2 with its more realistic assumption of constant total fertility.

This model showed stable behavior for virtually any combination of

fertility and mortality rates satisfying the inequality (5.2-7).

There was one set of conditions, however, under which the simula-

tion could "blow up." As developed here, the system cannot deal with

the growth function (5.3-l) if the pOpulation density overshoots the

carrying capacity. If this happens, then D > C, and growth, according

to (5.3-l) is negative. To handle this problem, it was necessary to

artificially set both growth and reproduction equal to zero whenever

D > C. The simulation continued to run until mortality reduced the

density below the carrying capacity, at which time reproduction and

growth began again.

The numerical techniques used for solution of the system (2.2-l),

(2.2-7) are discussed in Appendix A.

5.4 Simulation Results

Figure 5.3 shows the results of a typical simulation run. Both

numbers and.biomass follow a generally sigmoidal path to steady-state

values. This model population initially had 10 individuals, all

weighing between one and two units.

Oscillations about the sigmoidal curves are due to the size

structure of the model population. The peaks in the oscillations are

separated by one "generation”, where a generation is defined as the

time required to reach the size, zb, of first reproduction. Thus, as

the initial cohort.moves through the breeding interval, it generates a

pulse of young, producing a peak in total numbers. A corresponding
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Figure 5.3. Sample trajectories of model population growth.
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peak in biomass occurs in few time units later, as individual size

increases while nunbers decrease due to mortality. Numbers and biomass

begin to decrease rapidly, as mortality depletes both the new cohort

and the remnant of the reproducing initial population, and they reach

a minimum just before the new cohort reaches size 2b. When the new

ochort grows to size zb, a new reproductive pulse is produced, a genera-

tion later than the previous pulse, and the cycle begins again;

Two other dynamics of the population can be observed. As time

increases, the integrative nature of the breeding interval broadens

successive cohorts, so that the size structure eventually stabilizes.

This action accounts for the damping of the oscillations in Figure 5.3.

At the same time, the total density increases and growth rate simul-

taneously decreases. By the time density, which is equivalent to total

biomass for the population in Figure 5.3, has stabilized at D*, the

individual growth rate is only half as great as in the small initial

population.

This general pattern of population growth was followed by nearly

all the simulation runs made. Two variations on this theme are sketched

in Figure 5.4. Figure 5.4a shows total population numbers for a run

‘with a low value for 3 relative to u and a long breeding interval.

The population size structure loses the traveling wave of the repro-

duced initial condition within two generations. Since the difference

Ibetween fertility and.mortality rates is small, the population takes

longer to reach its equilibriun density.

Figure 5.4b is a very different case. In this model population,

individuals have very high total fertility and high mortality rates
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compared with the populations of Figures 5.3 and 5.4a. Oscillations in

total numbers and biomass showed no sign of abatement when the simulation

was run for 14 generations. Note, however, that population density is

not out of control, in the sense that D does not approach either zero

or C.

As Figure 5.4a illustrates most clearly, the pattern of pOpulation

growth shown in the simulations is identical to the dynamics described

at the beginning of Section 5.2 and in Figure 5.1. The model also

corroborates other qualitative descriptions by Weatherley of fish

population dynamics.

For example, Weatherley [1972] states that, as the pOpulation

density increases towards its asymptotic value, the size structure of

the population should contain an increasingly larger proportion of smaller

individuals due to declining growth rates. This feature is clearly

seen in the model populations such as the one in Figure 5.4a where the

‘population comes to contain a full spectrum of individual sizes early

in its growth. As the population nunbers and biomass climb the sigmoid

curve in Figure 5.4a, the mean size of individuals in the population

decreases.

The theory of Section 5.2, along with supporting evidence from

simulation runs, also provides an answer to one of’Weatherley's

questions about carrying capacity. In describing the expected effects

of a sudden improvement in food or living space for a steady-state

[population, Weatherley [1972, p. 160] wonders whether the population,

after increasing to a new higher density, would regain the same c-age

structure it possessed at the old, lower density.

 I
L
:
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According to Section 5.2, the answer to this question is "yes",

provided that density does not affect mortality or total fertility, and

that growth depends on relative density, i.e.,

D

g(zIDIC) = g(zra) (5.4-1)

To see this, recall that the density of a stationary population

satisfies the equation RO(D*,C) = l, for the net reproductive rate.

When relative density is considered, this equation reads RO[(D/C)*] a 1.

For reproduction model 2, this solution is unique. By the stability

analysis of Section.5. 2, any increase in C for a stationary population

wound force D to adjust to maintain the ratio (D/C)*. The pOpulation

would again become stationary at the higher absolute density, and growth

rates would return to their previous steady-state values, g(z,(D/C)*).

According to Equation (3.4-4), the shape of the stationary

size distribution depends solely on the vital rates, so it too would

return to its original configuration, as would the c-age distribution.

In Equation (5.3-l), growth depends on relative density. Using

this growth function, the simulation runs showed the behavior described

above, regardless of whether reproduction.model A;or E was used. The

carrying capacity, C, could be set at any value, and, if the other

‘parameters remained unchanged, the population would always stabilize

‘with the same size structure and at the same relative density.

Weatherley observes these dynamics in fish. He writes:

It is difficult to avoid the impression that growth flexibility

is an adaptive mechanism.by means of which fish populations

tend always towards the same population age/size structure

and the same individual growth rate, no matter what the nutri-

tional status of their environment. [Weatherley, 1972, p. 172]

 



95

The theory of Section 5.2 and the simulations are evidence that

any perturbations in the stationary density and/or size structure of

these model populations will be damped out. The return of the popula-

tion to its original stationary state will be characterized by damped

oscillations in total density. If a perturbation of a vital parameter

occurs, the same stabilizing behavior will be seen, although the new

stationary state of the population may be quite different from the

old one.

These damped oscillations in density suggest a measure of the

"resilience" [May, 1973] of the population in response to perturbations.

Borrowing from the vocabulary of control systems theory, we will define

the settling time of a population as the number of generations required

for D to settle within 10 percent of its steady-state value, D*,

following a perturbation. Since the oscillations in D are due primarily

to a fluctuating size structure, the settling time is really a measure

of how long it takes the size structure to stabilize.

In the simulations, D was measured either by total numbers or

biomass. Using Equation (5.2-5) for net reproductive rate and the steady-

state versions of Equations (5.2-1) and (4.2-2) for numbers and biomass,

one can easily predict what the steady-state values of numbers, biomass,

birth rate, and growth rate must be for any given set of parameters,

zo, 2b, a, 11, 8, gm, and C. Each simulation run canputed settling

times by continuously comparing current system states with their pre-

dicted steady-state values.

Table 5.1 sunlnarizes three features of the model populations

with respect to changes in life history parameters. The table shows
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how a perturbation of a single parameter in a stationary population alters

the ultimate relative density, (D/C)*, mean size of individuals, 2, and

settling time of the new stationary population.

TABLE 5.1

Model Population Features as a

Function of Life History Parameters

 

 

b a zb u

 

 

 

(D/C)* + + - -

E - - + +

Settling

Time + - + +     

Plus signs indicate that the parameterwamdthe population feature

both increase or both decrease, while a minus sign means that the para-

meter and the feature have an inverse relationship.

Many of the entries in Table 5.1 can be predicted from the theory,

and all were corroborated by simulation runs. The relationships shown

in the table generally conform to our intuitions about the life-histories

of individuals in limited environments. It is to be expected, for example,

that an increase in the width of the breeding interval, a, would result

in an increased birth rate and thus an increased stationary density, (D/C)*.

From the point of view of growth, the entries for; may seem somewhat

redundant in that they each have an opposite sign with respect to cor-

responding entries for (D/C)*. Any increase in (D/C)* means a reduced

growth rate, and thus, a smaller mean individual size.

0f greater interest, perhaps, are the relationships between
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various parameters and settling time. The table implies, for example,

that a stationary population with very high fertility and mortality

rates would be rarely seen in the real world. Any slight perturbation

in the size structure of such a population, due perhaps to its environ-

ment, would result in traveling waves in the size structure and oscile

lations in total density which would take a long time to damp out. This

is the situation seen in the model population of Figure 5.4b, which has

a settling time greater than 14 generations.

A representative sample of settling times for various model

populations is shown in Table 5.2. The runs are listed in the table

in pairs. The model populations of each pair are identical in their

parameter sets and initial conditions. They differ only in the measure

of density which was used in (5.3-l) to control growth rate. One

population of each pair has a growth response to biomass while growth

in the other population responds to total numbers.

Two characteristics of this table are of special interest. The

first is that, for the runs reported, the settling time for total

population biomass was less than that for total numbers. This was, in

fact, a feature of all the runs, and, as the table shows, settling

times for biomass were shorter regardless of whether individual growth

was controlled by numbers or biomass.

Secondly, a comparison of settling times within each pair reveals

that, with the exception of pair B, the settling times for both numbers

and biomass were shorter when D was measured by numbers as opposed to

biomass. This relationship was true in six out of the seven paired

runs which were made.
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Settling Times for Representative Model Populations.

Mortality Rate of .116 Results in 50% Loss/Yr., While u = .231

Results in 75% Loss/Yr. Settling Times are Measured in Generations.

 

 

 

 

 

  
 

 

 

Model Population Measure Settling Time Settling Time

Parameters of D for Numbers for Biomass

5| b a 45, zb = 11, Numbers 3.8 '2.2 I 7"

zb+a = 20, u = .231 Biomass 4.2 3.0 J

§_| b = 10, 2b = 11, Numbers 1.3 1.2

zb+a = 20, u = .116 Biomass 1.8 1.1 ‘

_gl b -- 10, zb = 14 Numbers 7.3 3.4 a"

zb+a = 20, u = .116 Biomass 10.0 4.9

3| b = 5, .zb = 14 Numbers 7.0 4.0

zb+a = 20, u a .116 Biomass 10.4 4.2    
Taken together, these results suggest some differences between

model populations in which individual growth, and thus population growth,

are controlled by biomass rather than numbers. Tbtal biomass responds

more sluggishly than numbers to fluctuations in the size structure which

are induced by reproductive pulses. A reproductive pulse causes an

immediate sharp change in numbers, but its effect on biomass is delayed,

and thus reduced by mortality. Consequently, biomass fluctuations damp

out more quickly than fluctuations in numbers as the size structure

stabilizes.

This relative insensitivity of biomass to fluctuating size distri-

butions also explains why it is a "slappier" controlling variable than

numbers, in the sense that populations controlled by biomass usually

have longer settling times.
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These conclusions suggest a broader generalization: populations

regulated by biomass, as opposed to numbers, will allow greater fluctua-

tions in numbers, especially of young individuals, before responding

with altered individual growth rates.

5.5 Discussion

The model populations of the last section follow the same trajec-

tories for growth, total numbers, and size structure as are seen in real

fiSh populations. They may also be compared with studies of other

populations having density-dependent vital parameters.

Previous simulation studies of age-structured populations have

considered mortality and/or fertility to be functions of population

'density. The p-age model discussed here allows for the third vital

parameter, growth rate, to be influenced by population size. In addition,

it compares density with a carrying capacity to regulate population

growth, a feature not found in other distributed parameter models.

A brief review of these models and comparisons with the trajec-

tories shown here reveal a common pattern of growth in total numbers,

regardless of which vital rates are made density-dependent. Leslie

[1948] and Pennycuick, et a1. [1968] show how total numbers in matrix

model populations grow sigmoidally, settling down to a steady-state

through damped oscillations.

Motivated by laboratory populations such as Nicholson's blowflies

[Nicholson, 1957] and Frank's Daphnia cultures [Frank, 1960], several

modelers have been especially interested in the oscillatory nature of

the nunbers of biomass trajectory. We will briefly outline their

efforts and discuss the origins of oscillations seen in p—age and c-age
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simulations. The most important feature of density-dependent simulations,

however, is that oscillations have a bounded amplitude.

Several investigators have induced persistent oscillations in

age structured models by explicitly employing time lags in the negative

feedback loops between density and the regulated vital parameters

[Leslie, 1959: Frank, 1960; Pennycuick, et al., 1968].

Fluctuations can also be produced by assuming that density affects

mortality or fertility on a c-age-specific basis. If this assumption

is coupled with c-age-specific rates which are very sensitive to small

changes over a short range of densities, stable oscillations in total

density will result [Usher, 1972]. Williamson [1974] carries this

sensitivity to an extreme by using one of two different sets of vital

parameters depending on the relation of density to some threshold, and

he too obtains limit cycle behavior.

In these systems as well, time lags give rise to the oscillations.

These lags are not explicit, however. Because of their age structures,

the models have inherent time delays. For example, an increase in

mortality rates for juveniles in the pOpulation will affect the total

birth rate only after a maturation delay.

A third method of producing persistent oscillations is to use

extreme values for mortality and fertility in model populations. This

effect is seen in Figure 5.4b and is also found in a simulation from

Pennycuick, et a1. [1968] in which a very high fecundity rate was used.

There is probably a time lag operating here, as well, although its

exact nature is unclear. The density-regulating factors apparently

cannot respond quickly enough to large fluctuations in population
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numbers to allow c-age or size structures to stabilize. More work on

this is needed.

As a first step, we intend in future work to define settling times

fbr pOpulations with time-invariant values of g, b, and p. In such

pOpulations, the numbers or biomass trajectory would "settle" down to

trace an exponential curve of increase or decrease, as predicted by J

the theory of Chapters 2 and 3. These model populations will be compared r1

with density-regulated populations. If there is a time delay hidden

in the density feedback mechanism, then settling times for the

 regulated populations should be longer than those for unregulated

*
f
i

populations.

Fluctuations in size structure, density, and vital rates in real

populations are the result of environmental perturbations, as well as

time lags. Whatever their nature, these fluctuations are kept under

control in our model populations, as in many fish populations, by a

highly flexible individual growth response. Those fluctuations which

are not damped completely, as in Figure 5.4b, tend to be centered about

a density 0* which is considerably less than C. Hence, minor perturba-

tions of the population are not likely to result in an overshooting of

the carrying capacity. This is an attractive alternative to the steady-

state "saturation" of the environment implied by the density-carrying

capacity relationship of the logistic equation.

A good deal of territory remains to be explored with the simulation

model. For example, it would be useful to quantify the relationships

in Table 5.1. Lefkovitch [1971] began a study of this sort when he

ranked various forms of age-specific fecundity and mortality with respect
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to settling times for c-age distributions in unregulated populations.

His simulations indicate the large number of runs which would be necessary

to quantify Table 5.1. Perhaps a formal sensitivity analysis using the

equation for net reproductive rate would be more fruitful. The results

would be well worth the effort. As May [1973] points out, parameters

such as mortality rates and carrying capacities are much more likely to

be perturbed in natural populations than are size distributions or F1

number densities.

The most interesting and realistic simulation dynamics, however,

 are likely to be seen when growth is made a function of p-age as well L}

as population density. The logical starting point at this next level

of model complexity is Beverton and Holt's density-dependent form of

the von Bertalanffy growth equation for fish populations (cf. Section

5.1). This avenue of research would provide a natural culmination to

the work of Chapters 3, 4, and 5.

In the future, most of our work with the distributed parameter

system will continue to focus on the phenomenon of individual growth

and its influence on populations. This is where the strength and

novelty of the physiological age model lies. For many populations,

notably fish, growth is a life-history parameter of equal importance

to fertility and mortality in determining population trajectories. We

feel that this model will be a useful tool for exploring the dynamics

of these populations.
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APPENDIX

NUMERICAL SOLUTION TECHNIQUES

A variety of numerical techniques are available for simulation of

the dynamics of system (2.2-l), (2.2-7). For the simulations reported

in Chapter 5, an explicit finite differencing scheme was employed.

Because of its desirable stability and convergence properties, a

 

centered difference equation was chosen to approximate the continuous

system.

Let Az and At be discretization increments of p-age and time,

respectively. As in Figure A.1, a grid is constructed on the (p-age)

x (time) plane, with p_p-age values along any time line. Let the

subscript (i,j) refer to the grid point (zi,t ). Then the centered

1

difference scheme is derived by approximating the partial derivatives

of Equation (2.2-l) at the center of a grid rectangle by first-order,

centered differences. That is,

3
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A four-point average is also taken for the mortality term.

~

—

i+1/2,j+1/2 _ 4

“
-

(HN) [u . . N. . + . . . . + . . . .

i+l,j+l i+l,j+l ui+1,jNi+l,j ui,j+1Ni,j+1

+ u (A.3)..N..]

l] 13

The terms in (2.2-1) are replaced by their approximation A.1-A.3,

and the resulting difference equation is solved for N. This

i+l,j+1°

provides an explicit, or recursive, method of computing Ni+1 j+1 from

I

values N. ., N.., and N.1+1.) 1) i,j+l' The boundary condition prOVides the

values NO j' at any time tj, and the initial condition NI(z) is dis-

I

cretized to give initial values {Ni }, i = 1,. . .n.

,0

The centered difference method requires values of g at time (j+1)

to compute the discretized p-age distribution {Ni } , i = 1,- - 00n-

I
j+1

Since gj+1 depends on the total population numbers, or biomass (if z =

body weight), at t.+ , a predictor-corrector algorithm is used. At

3 l

the beginning of a time step, g is set equal to gj. Then a distribution

j+1

{Ni,j+l} , i = 1,. . .n, is predicted, and the value of gj+1 is reVised.

Using the new value of gj+1, the distribution {Ni } , i = 1,. . .n,

I
j+1

is corrected. This process only required one iteration to give successive

estimates of gj+1 which were identical to three decimal places.

The integral expressions for reproduction, total numbers, and total

biomass were approximated using the trapezoid rule. More elaborate

methods, such as Simpson's rule, were tried, but there was no significant

effect on the solution curves.

A finite differencing technique is said to be stable if truncation

and roundoff errors do not grow as the numerical solution trajectory is
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traversed, and it is said to be convergent if the difference equation
 

converges to the differential equation as At, Az +'0 [Ames, 1969].

Ames states that a generally applicable condition for stability of a

finite difference scheme is that 9 ° At :_Az, where g is the slope of

the characteristic curves in the (p-age) x (time) plane. In this simula-

tion of population growth, this restriction means that an individual

does not grow through more than one increment in p-age, A2, in a single

time step of length At. If the coefficients of the hyperbolic equation

(2.2-1) are constants then the centered difference method is stable and

convergent for almost any ratio of A2 and At [von Rosenberg, 1969].

With a time-varying growth rate, 9, it was found that unstable

behavior resulted whenever the ratio At/AZ was considerably smaller

than l/g. Incorporating Ames’ stability condition, we obtained the best

results using a time increment At which could be adjusted at each

iteration, j, to satisfy the condition:

Az
—— <

It was also found that the p-age increment, Az, could independently

affect the numerical solution. If A2 is too large relative to the width

of the breeding interval, a, then spurious oscillations of total numbers

of biomass are seen. These oscillations disappear, for a given value of

a, as A2 is decreased.

As an independent check on the accuracy of the numerical solution,

the net reproductive rate, R0, was computed at the conclusion of every

simulation run. The net reproductive rate is a function of growth,

fecundity, and mortality rates, as specified by Equation (5.2-5), and
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if a pOpulation is stationary, it must satisfy the equation R0 = 1.

In all simulations which were allowed to run long enough so that the

numerical solution became stationary, the equation R0 = l was satisfied

to within il%.

A centered difference technique was applied by Billups, et a1.

[1971] to a simulation of an equation of the form (2.3-l) describing a

shrimp population. These authors also discuss an implicit differencing

scheme which involves solution of a large set of simultaneous linear

equations.

Another investigation of numerical schemes for first order,

hyperbolic models was carried out by Sinko [1969]. He tried a variety

of methods, including a combined centered difference-forward difference

equation. He also examined a hybrid method in which the p-age derivative

was approximated by finite differences, while the resulting set of

ordinary differential equations were solved in the time domain using

Runge-Kutta methods. Sinko finally settled on the technique of integrat-

ing along the characteristic curves of the partial differential equation

[Ames, 1969]. In this method, the characteristic curves themselves are

used to construct the discretization mesh. The solution is found by

integrating between nodes along characteristics in the mesh. First-order

differences are used to approximate the differential equations describing

the characteristics.

Sinko decided against using differencing techniques, largely

because of their tendency to generate occasional negative values for

the discretized density function Ni j' This phenomenon is also seen

I

in our simulations, and it appears to be due to the manner in which the
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numerical techniques distort the wave-front of a pulse-wave type of

initial condition as it moves through the p-age domain. As a square

wave moves along the p-age axis in the numerical solutions, waves of

small amplitude and high frequency are propagated ahead of the original

numerical pOpulation wave. When the population numbers are near zero,

the troughs of these waves have negative number densities of small

magnitudes. These negative number densities become insignificant as

A2 is decreased.

As long as they are recognized as numerical artifacts, the negative

 

number densities do not imply that we are modeling a population with

"negative" individuals. Unlike Sinko's computer runs, the simulations

reported in Chapter 5 are not intended to accurately reproduce the

trajectory of a particular population. Since we have been more interested

in the general behavior of the system with a density-dependent feedback

on the growth rate, the centered-differencing method was more than

adequate.

Sinko's comparison tests between differencing techniques and the

method of characteristics were conducted using a time-invariant growth

function. In future work, we intend to compare the performance of the

method of characteristics and the centered—difference method when both

use time-varying growth and mortality functions.




