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ABSTRACT

LYAPUNOV STABILITY BASED NETWORK CONDITIONS

FOR CHARACTERIZING RETENTION AND

LOSS OF POWER SYSTEM TRANSIENT STABILITY

BY

Gholamhossein Sigari

A topological energy function has been derived from the

first principles that retain the network without aggregation

back to generator internal buses and includes a general

description of real and reactive power load models as a

function of voltage. For the special case of a constant

real power, constant current reactive load model and the one

axis generator model a topological Lyapunov energy function

has been derived.

Based on the Popov stability criterion a characteriza-

tion of the region of stability and a definition of loss of

transient stability have been presented. Then three differ-

ent theorems stating necessary and sufficient conditions for

the loss of transient stability have been established. The

conditions stated in these theorems describe an estimate of

the region of instability. Although a precise boundary

between the region of stability and the region of

instability is not established a relationship between the

regions of stability and instability has been established.
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Gholamhossein Sigari

The necessary condition for instability provides a condition

that if satisfied, will ensure that a loss of stability will

occur. Thus the necessary and sufficient conditions provide

easily tested conditions on the entire states of the system

which can be clearly identified with the loss of synchronism

inherent in the loss of transient stability. These

necessary and sufficient conditions for loss of transient

stability permit the proper definition of stability margin

that measures the relative security of the system for a

particular fault cleared at a particular clearing time with

a given fault clearing action.

Stability criteria are proposed based on the Popov

stability criterion and these necessary and sufficient

conditions for loss of stability. These stability criteria

are then related to the PEBS method developed for the single

machine energy function and the PEBS method based on the

outset energy function.

The above theoretical results were tested on the 39 bus

New England system. These tests confirmed the properties of

the energy function and Lyapunov energy functions. The

stability criteria tested clearly and accurately determined

the critical outset and critical clearing time and verified

the accuracy and validity on the stability criteria that

were developed based on the theory developed.
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CHAPTER 1
 

INTRODUCTION

The present method of determining retention or loss of

stability due to transients caused by electrical faults or

loss of generation contingencies is time-step integration of

the- differential equations. The transient stability

programs that perform the time step integration can take as

long as 15 CPU minutes on the largest and fastest computers

to determine retention or loss of stability for a single

fault, cleared at a specific time with a specific line

switching action, on a specific system* with a particular

network configuration; load level, type and distribution;

unit commitment, generation dispatch, and base case load

flow. To determine the transfer capabilities from the

Northwest (Oregon, Washington) and the East (Utah, Nevada,

Arizona) to southern California for each season (summer,

winter, spring, fall) requires solutions of hundreds of

fault cases that keep a VAX 785 running continuously for

three months. Although not all utilities must be as

concerned with limiting power transfers to maintain

 

*The computation time depends on the model and the

complexity and size of the system. The CPU time reported

above is obtained from results on the WSCC system.



R
.
»

5‘4

 



2

transient stability over a wide range of operating

conditions and fault cases; all utilities perform transient

stability simulations and set transfer limits on generating

units and across interfaces that are based on transient

stability simulations for the operating conditions expected

over each season or year.

Transient stability simulations are performed daily on

the Ontario Hydro System in order to adjust the seasonal

transfers based on changes in network configuration, unit

commitment, load level and distribution, voltage profile,

and load flow conditions expected over the next day.

Operators at the control center desire the ability to

perform transient stability simulations to assess the

stability margin of the system for a current operating

condition that was not anticipated by operation planners in

their seasonal or daily assessments. The capability of

performing transient stability simulations on line is

completely impractical at present based on the very large

computation time required even for the fastest computers

usimg the simplest of power system models. Thus, the

operator cannot adjust transfer limits on-line based on

transient stability simulations for faults given the

operation condition presently experienced or anticipated to

occur over the next few hours.

Adaptive protection schemes that would only trip

generators when a loss of transient stability would be immi-

nent for a particular operating condition, given occurrences
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(of a particular fault, would be feasible if transient

stability simulation couLd be performed with computational

requirements equal 1x) load flow (steady state solution of

the network equations). The tripping of large radially

connected generators can cost a utility $20,000 an hour in

increased fuel costs. The generator tripping may require

the generator boiler to be shut down and restarted, which

can take up to a week in some cases. A utility could save

fuel costs by not tripping a particular generator for every

possible contingency but only for those that would cause a

possible loss of transient stability.

The time step integration of the transient stability

model, includes

1) 2N nonlinear algebraic equations that repre-

sent the N bus transmission network;

2) the kM cdifferential equations that. describe

the synchronous generator, exciter, power

system stabilizer, and turbine energy system

for the M generating units in the model. The

order of the model k can be as low as 2 for a

classical machine model and as high ten for a

more sophisticated model that requires tremen-

dous CPU, I/O and memory.

A fast transient stability method has long been desired

that could determine retention or loss of stability with the

computation requirements of a load flow. Two developments

are necessary to make such a development a reality:

1) the determination of a Lyapunov function and a

characterization of the region of stability

for the particular system and fault case;

2) a method for predicting whether the system

fault trajectory will remain within the region

of stability and remain stable or else enter

the region of instability and thus lose

stability.
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Significant research effort has been expended on

developing the energy function and characterizing the region

of stability. Up to now, these efforts have been only

marginally successful at best. The research reported in

this thesis is directed at developing Lyapunov functions or

energy functions for much more detailed transient stability

models than have been previously developed. A charac-

terization of the region of stability and region of

instability is then established that greatly extends

previous results. This characterization of the region of

stability is then used to justify a stability criterion that

is related to the potential energy boundary surface (PEBS)

methods developed for the single machine energy function.

It should be noted that no effort will be made to

develop a method for predicting whether a fault trajectory

will remain within the region of stability or enter the

region of instability given a particular fault, fault

clearing time and clearing action, and a particular system

and its operating condition. Such a method was developed in

a previous thesis for the classical power system model and

could be extended to the more complex models. [21]

The ultimate development of a fast transient stability

assessment method can

1) greatly reduce the computational requirements

for determining transfer limits in seasonal

transmission performance assessments;

2) permit daily transfer limit adjustments based

on hundreds of transient stability simulations

at modest computational requirements and

costs. At present, only a few transient
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stability simulations can be performed to

adjust transfer limits based (n1 the expected

operating condition over the next day;

3) permit on-line transient stability simulation

and transfer limit adjustment by operators.

At present, the capability to simulate faults

on-line is impossible;

4) permit adaptive generator tripping, that would

only trip a generator when the particular

contingency that occurred on a system with a

given operating condition would cause loss of

transient stability.

Power System Stability Models

Consideredgin This Thesis

.A review of the literature on the development of Lya-

punov functions and energy functions is given in Chapter 2

along with discussion of the equal area and PEBS methods for

determining retention or loss of stability. In Chapter 3, a

topological energy function is derived from first principles

which retains the network without aggregation back to

generator internal buses and which includes a description of

real and reactive power load models as a function of

voltage. Similar models have been hypothesized [9, 16] but

never derived from first principles.

A Lyapunov function is derived for a model that

l) retains the network and does not aggregate the

network back to internal buses;

2) models the real power load as constant power

and the reactive power load as constant

current;

3) models the flux linkage decay in the synchro-

nous machine as well as the electromechanical

component of the machine model.
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This Lyapunov function is derived using the Popov

Criterion of the Moore Anderson [10] and the construction

method of Willems [3].

In Chapter 5, a discussion of the region of stability

based on the Popov stability criterion and the definition of

the loss of transient stability is presented. Three

different theorems stating necessary and sufficient condi-

tions for loss of transient stability are established. A

stability criteria; based on the region of stability and the

region of instability is proposed for determining the

critical cutset and critical clearing time. AA second

stability criterion is proposed that based on a performance

measure determines the critical clearing time.

The stability criteria developed in Chapter 5 are

reviewed and then applied to four fault cases. The results

indicate that both stability criteria can determine the

critical clearing time with no detectable error. These

results confirm the theory developed in Chapter 5, upon

which they were proposed. Chapter 7 reviews the research

performed in the thesis and its contribution. A discussion

of extensions of the research is also given.





transient stability model is introduced to indicate the

general form of the multimachine transient stability model

which will be presented and discussed later.

criterion is presented

CHAPTER 2

REVIEW OF LYAPUNOV STABILITY THEORY

APPLIED TO POWER SYSTEMS

The objectives of this chapter are

l)

2)

3)

4)

5)

EgalyArea Criterion for the Single Machine Infinite

to introduce and review the simplified single

machine infinite bus power system transient

stability model;

to discuss the equal area and potential

energy boundary surface methods for deter-

mining retention or loss of stability for

this single machine infinite bus model. This

discussion provides understanding and motiva-

tion for the analysis that derives the region

of stability and the region of instability

for multimachine transient stability models

in Chapter 5;

to review Lyapunov stability theory:

to review the literature in [3, 9, 17] and

developing Lyapunov based and integral based

energy functions for various power system

transient stability models;

to present the form of the energy functions

derived for different power system transient

stability models.

Bus Model

The simple single machine

7

infinite bus power system

The equal area

in order to indicate the energy
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transfers durimg a fault and during the post fault period

after the fault is cleared. The fault is cleared by an

appropriate line switching action that isolates the faulted

branch.

The single» machine infinite bus transient stability

model has the form:

ME: Pm-C SinG (W) (2.1)

where

M: generator inertia constant,(J.s)

6: generator angle, (Radians)

Pm: mechanical input, (W)

8.3:;
C: x where E is generator's internal voltage, Va

is infinite bus voltage and x is the equivalent

transmission line reactance connecting the generator

internal bus and the infinite bus.

The prefault model and the prefault stable equilibrium

point 681 are defined by

$1 (2.2)M6 = o = Pm-Co S1n 6

where Pm' the prefault power angle curve CO Sins , and 631

are shown in Figure l.a.

The faulted system model is defined as:

M6 = Pm - C1 Sin 6 (2.3)

where the faulted power angle curve C1 Sin 6:1 is shown in

Figure l.a. The post fault system is defined as:

where the post fault power angle C2 Sin 61 is shown in

Figure l.a. The post fault stable equilibrium point 652 is

defined as:



9

Fig. (l.a) Poweraangle curves showing the critical clearing

angles 6c and areas Al and A3.
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. $2 _

Pm - C2 S1n 6 - 0 (2.5)

and the unstable equilibrium point 6u is defined as:

. u _

The system is assumed to remain at the prefault stable

31 until the fault occurs at t=0. .Atequilibrium point 6

t=0+ and until the fault is cleared at t-tc, the mechanical

power Pm is larger than the electrical power Cl Sin6 (t)

causing the machine to accelerate. The energy

31) (2.7)
31

Vpe(t) = Pm (5(t)-6 ) + Cl (Cos6(t)-Cos6

increases until the fault is cleared at t=tc. The accelera-

tion energy, which is the kinetic energy increase on the

inertia of machine, is:

c 31 c 31
A1(tc) = Vpe(tc) = Pm(6 -6 ) + 01 (C056 -Cos6 ) (2.8)

where §a=51(tc). At to, the fault is cleared and kinetic

energy A1(tc) must be absorbed by the post fault network for

the accelerated generator to reverse direction and return to

the stable equilibrimm point 532. The acceleration energy

absorbed by the post fault network at time t is:

A3(t,tc) = v em, to) = pm(6(t)-<S°) + C2(Cos<5(t)-Cos<3c)

p (2.9)

This value of A3(t,tc) is negative and its absolute

value reaches a maximum at t=tB(tc) when the system is

stable where:

A1(tc) + A3 (tB(tC),tc) = 0 (2.10)

At t=tB(tc), the angle 6(tB(tc)) reaches its maximum excur-

sion as shown in Figure l.a and the accelerating kinetic
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Fig. (l.b) Equal area criterion net acceleration energy

E(t) versus time.
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energy is totally absorbed by the network and the area

A1(tc) and A3(tB(tc)) in Figure l.a are equal reflecting the

condition given by (2.10). If the fault is cleared at the

critical clearing time tcc condition (2.10) still holds but

5(tB(tc))=5u. If tc>tcc, the area A3(t,tc) is less than

A1(tc) for all t>tc and thus the velocity of the machine

angle 6(t) never reaches zero and 6(t) passes the unstable

equilibrium point 5“. For 5(t)>6u, A3(t,tc) increases and

A1(tc) + A3(t,tc) increases.

The net acceleration energy, defined as:

{A1(t) °£F<tc

E(t,tc) a A1(tc) + A3(t,tc) t>tc (2.11)

increases during the fault Ogtitc and decreases immediately

after tc when the fault is cleared. If the system is

stable, the net acceleration energy satisfies

E(tB(tc).tc) = 0 (2.12)

when the angle 6(t) reaches its peak excursion 6(tB(tc))

where both tB(tc) and 6(tB(tc)) depend on tc. If tc>tcc,

E(t,tc) never reaches zero for t>tc, as shown in Figure l.b.

Thus if E(t,tc) determines the minimum as a function of t

and defines the value as:

E*(tc) 8 min E(t,tc) (2.13)

then E*(tc) should equal zero for all tc<tCC and should be

an 1ncreas1ng function of tC for tc>tcc.



13

2.2 Potential Energy Boundary Surface, (PEBS) Method

The potential energy boundary surface method is now

introduced for single machine infinite bus system model.

The PEBS method assumes that there is a maximum potential

energy absorption capability of the post fault network.

This maximum potential energy absorption capability is never

approaches for tc<tcc but is utilized in an attempt to

decelerate the accelerated machines for tc>tcc. Figure 2.a

shows the change of generator's angle for different clearing

times. The system remains at 681 until t=0 and reaches a

maximum angle 6(tB(tc)) at tB=tB(tc) for a clearing time tc.

A measure of the energy absorbed by the post fault network

is

v*(tc) = Pm(5(tB)-531) + C2[Cos5(tB)-C05531)] (2.14)

as shown by the area in Figure 2.b. The value of V*(tc)

increases for tc<tcc and remains constant for tc>tCC for a

single machine infinite bus model. The energy V*(tc)

actually decreases for tc>tcc in the multimachine model

making the function V*(tc) reach a sharp maximum at tcc’ In

the multimachine system the function V*(tc) is evaluated

based on the potential energy component of the single

machine energy function given in equation (2.24). This

potential energy boundary surface method for multimachine

power systems will be shown to be related to the integral

criterion method developed in Chapter 5 to determine when
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Fig. (2.a) Maximum values of generator angles for

- different clearing times.
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Fig. (2.b) The potential energy stored in the system for

different clearing times.
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loss of transient stability based on the region of stability

defined in that chapter.

2.3 Review of Literature on Energy and Lyapunov Functions

The two methods discussed in Sections 2.1 and 2.2 of

this chapter present a physical understanding of how the

single machine infinite bus system retains or loses

stability. The practical power system model includes

hundreds of generators. In order to apply the stability

assessment methods developed in sections (2.1) and (2.2) to

a multimachine power system, Lyapunov's direct method has

been used. The initial research focused on development of

energy functions that could be used in this method.

The first energy functions for classical transient

stability model were derived by Magnuson and Aylett [1, 2]

via the energy integral method. Later on, the systematic

construction of Lure type Lyapunov energy functions for

power system was proposed by Willems [3]. This Lyapunov

function did not contain transfer conductances and it was

realized that these terms were not small and could not be

neglected since they accounted for the load impedances.

There has been an attempt to prove that the energy

function which includes the transfer conductances is a

Lyapunov energy function [4], and another attempt to

approximate this energy function with a Lyapunov type energy

function [5], but none of these efforts have been

successful. Moreover, this energy function has several
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drawbacks in addition to the fact that it has not been

proven to be a Lyapunov function. The first of these

drawbacks is that this energy function is not topological,

which means that the transmission network has been

aggregated back to internal generator buses. Thus all load

buses have been eliminated and all the elements in the

resulting transmission network do not represent the actual

components. The aggregation masks the effects of operating

conditions (load level and distribution, unit commitment,

generation dispatch, network configuration, and load flow)

on stability because aggregation does not leave the network

and its operating conditions intact and reflects the actual

network operating conditions throughout the aggregated

network. It is thus difficult to access the specific

operating conditions that directly contribute to loss of

stability for a specific fault.

The second drawback is that the load at each bus is

assumed to be constant impedance since this assumption must

be made to eliminate the load buses. It would be desirable

to allow real power and reactive power load models to be

selected separately and independently at each load bus. The

real and reactive load should be either constant impedance,

constant current, constant power or a combination of these

or some polynomial function of voltage and frequency.

The third drawback is that in most cases the generator

model does not include flux decay effects.
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Kakimoto [6], developed a Lure type function for a

nontopological transient stability' model with flux decay

using the generalized Popov criterion developed by Moore and

Anderson and a construction method developed by Willems.

The energy function presented in [6] is global and has all

the drawbacks previously mentioned.

Rastgoufard [17], developed. a :single machine energy

function for the nontopological model of multimachine power

systems. This energy function describes the kinetic and

potential energies for a single critical generator, but

since it is derived for an aggregated model it masks the

effects of operating conditions in the transmission network.

The region of stability determined based on the single

machine energy function is more accurate than can be

obtained based (n: the global energy function since the

single machine energy function contains all the information

required to predict retention or loss of stability if the

critical generator for which the energy function is written

can be properly identified [17].

Bergen and Hill [7], developed a topological Lyapunov

energy function by assuming that the loads were small

generators with small inertias which disappear after the

energy function is constructed. The resulting energy

function when load bus generator inertias are set to zero is

a constant real power load model (with a term that depends

on frequency). vo1tage at both generator and load buses is

assumed to be constant.
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Athay [8], constructed a topological energy function by

attempting to account for kinetic energy in the generators

and the potential and magnetic energies of the transmission

grid and loads. Real load power was permitted to be a

function of voltage and thus the load bus voltage was

allowed to change. The reactive load energy was ignored and

thus the resulting energy function was not complete.

Mussavi [9], developed an energy function by hypo-

thesis. fha did not attempt to derive kinetic energy,

position energy and magnetic energy of the transmission

grid, from the first principles and thus the kinetic energy

term given is with respect to a synchronous reference and

position and magnetic energies are based on an inertial

center reference. A very important insight of this paper is

the inclusion of the reactive energy of the load which has

never before been included. This term is necessary as

indicated by the analysis in [9] that shows the resultant

energy function is conservative. The drawback in this

energy function is that the kinetic energy is based on a

different reference than the other energy terms.

Sastry [16], gives a hypothesized topological energy

function for a model where flux linkage and saliency effects

of generators have been considered. The load modeling in

[11] is very practical. There has again been no effort to

derive a Lyapunov topological energy function for the

recommended modeling.



l
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This thesis extends the energy function of Mussavi by

deriving the energy function from first principles rather

than hypothesizing that form. The kinetic energy term is

thus based on the same inertial center reference as the

potential energy terms. The load model at every bus allows

real power to depend on voltage which was not true in [7].

Finally the real and reactive loads are derived for the case

where both real and reactive loads at each bus can be unique

percentage of constant power, constant current, and constant

impedance load models. The energy function for the special

case where reactive load is constant current and real power

load at every bus is constant, is derived as a Lure type

Lyapunov function using the Popov criterion of Moore-

Anderson [12] and the construction method of Willems [3].

2.4 Lyapunov's Direct Method and Present Energy Functions

Since the function of this chapter is to facilitate the

understanding of the development in the following chapters,

the Lyapunov's direct method is reviewed:

The equilibrium point 0 of a system with model

3 =- yy (2.15)

is asymptotically stable if there exists a continuously

differentiable function V(x) which is locally positive

definite and for some real s>0 satisfies:

v(3_)<o (2.16)

for all

||x||<s (2.17)
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This method could be applied to power systems, but the

problem is to identify the equations of system as (2.15) and

then be able to construct an energy function with properties

(i) and (ii). Based (“1 specific models used, several

Lyapunov energy functions have been derived for power

systems as indicated in the previous section. There are two

kinds of power system stability models for which Lyapunov

functions have been derived:

1) an aggregated network model

2) topological model.

2.4.1. Lyapunov Energy Function for the Aggregated

Network Model

In the classical power system model, all of the network

and load buses are aggregated and only the internal gene-

rator buses are retained as shown in Figure 3. The buses

and branches in the dotted box in this figure are aggregated

based on the assumption of constant impedance load at these

buses. A constant voltage behind transient reactance

generator model is also assumed in the classical model.

Willems [3] derived the Lyapunov energy function for the

classical model. Kakimoto's Lyapunov energy function [6] is

an extension of this work and assumes that the generators

are modeled by a single axis generator model. The network

is aggregated back to internal generator buses as in the

classical model. The power system transient stability model

used in [6] is
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N

and

dEi o m o o
Tdoi'_3t = -(Ei-Ei )-(xdi-x di) jil Bij(E] Cos 6ij

-830 C05 613-) for i=1'oooo’N . (2019)

where for each generator i:

Pmi: mechanical power input

Yij igij: Post fault admittance between the ith and jth

internal generator buses of the aggregated

network

eij: compl1ment of ¢ij

Eilgi: internal voltage

(3”: 6.-6.

1] 1 J

E L§.: voltage magnitude and angle at the internal

q1 1 generator bus, 61 is referenced to

For the modeling given by (2.19), Kakimoto derived the

following Lyapunov energy function using the Moore-Anderson

theorem and the construction method of Willems [3].

2
V = ( ) Z 2 M-M. (w.-m.) +

2 “‘1 i=1 j=l 1 3 1 3

N N o o o o
C O O O Q .- 0 U - 6. 0-6 O I I Ii=1 §=IBIJ[E1E3(C036 1] C0351J ( 13 lJ)E 1E J

. o o o o
S1n 6 ij (Ei E i)(Ej E j) Cos 6 ij] +

O ;
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The superscript "0" denotes the stable equilibrium point of

the post fault system.

In order to obtain his Lyapunov function Kakimoto

assumed that each internal voltage lags behind the q axis of

each generator by a constant angle ¢, and the transfer con-

ductances in the reduced admittance matrix are negligible.

Despite the significant contribution of this research, it

has the following deficiences:

a) assumes that the real power load can be

modeled as constant impedance in order to

aggregate the network and then assumes the

load is constant real power which is incor-

porated in P i' Aggregating the load back to

external buses and assuming it to be a

constant power load model, significantly

modifies the model and the critical clearing

times obtained:

b) aggregates the network and thus loses the

ability to determine or understand the funda-

mental cause of the loss of stability and the

operating condition changes that would improve

the stability margin for that particular

fault;

c) ignores the reactive load and the magnetic

energy stored in the loads that can influence

the stability of the system as voltage changes

occur:

d) neglects the transfer conductances of the

equivalent branches in the network.

2.4.2 Individual Machine Energy Function

Another type of energy function derived based on the

classical model of power system is the single machine energy

function. The single machine energy function has been

derived in Michigan State University by Rastgoufard [17] for

a synchronous reference frame model and by Fouad [18] using
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a center of angle reference transient stability model. The

model used for this single energy function is identical to

that used by Willems [3] and neglects the flux decay in

(2.19). The voltages at generator internal buses are thus

constant and the model has the form

and

61 a mi (2.22)

where:

N

iii

a _ 2

Pi Pmi Bi G11

P = mechanical input power
mi

E. = constant voltage behind transient reactance

0
'
)

ll rotor angle

w. a rotor speed

M. = moment of inertia

The energy function derived in [17] has the form



V=LI§ M(w-w)2-1—-D§]I [PM-PM]
1 MT 3:1 3 i ' MT j=l i j j i

6i=6j+6o

sl

[Sij-Gij] - CijICos6ij-Cos6ij] + DijCos6ij d(5i+5j-5o)

5 Sl+5 $1_ 5 51

i j o

where

1 N N

5 = -— 2 Mo5- and MT = Z M

° "T i=1 1 1 i=1

An equal area method and a potential energy boundary

surface method [21] were derived based on this energy

function. These methods are similar to those described in

Section 2.1 for the single machine infinite bus model.

These methods have no detectable error in determining the

critical clearing time once the proper critical generator is

identified in order to write the energy function and then

apply these methods. The theoretical development of a

region of stability and the region of instability for this

model, based on the research performed in Chapter 5, is

underway, which would hopefully provide a theoretical

justification for the equal area and potential energy

boundary surface methods developed for this individual

machine energy function.

2.4.3 A Topological Lyapunov Energy Function

A Lyapunov energy function for a topological power

system model, where the network is not aggregated back to
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internal generator buses, was derived by Bergen and Hill

[7]. The power system model has the form given below:

.. N
o . - o

M16i + D16i + §=lb13 S1n (6i 6j) - Pmi

jfi for i=1,..., Ng (2.25)

and for each load bus i:

. N o

jfi for i=Ng+1’....’N (2026)

= o 'where PDi PDi + D16i (2.27)

and

Mi: generator inertia constant

61: generator internal angle or angle of voltage of

bus i

Di: damping ratio

bij: Bijvivj

Pmi: mechanical input of generator i

PDi: electrical real power of bus 1

Bergen and Hill [7], obtained the following Lyapunov

function based on their topological model of power system:

N L 0

V = l 29 M w2 + 2 b I k (Sin u-Sin6o) du
2 k k k k

k=l k=1 of

(2.28)

where L is the number of the lines and Ng is the number of

generators.
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Bergen and Hill [7], derived their Lyapunov energy

function using this model. This work is a significant

contribution especially in giving the opportunity to under-

stand the reason of lack of synchronism in the power system

in the case of instability. However, it has some deficien-

cies:

a) Real load power is not a function of voltage.

The real power for the sake of derivation has

been assumed to be a function of frequency but

it doesn‘t have any dependence on voltages.

This assumption significantly affects the

critical clearing time predicted.

b) The flux linkage and field effects of genera-

tor model have been completely ignored. This

will cause an error in kinetic and potential

energy terms.

c) Load bus voltages are kept constant. This

assumption is inconsistent with any transient

stability simulation model and would cause a

conservative critical clearing time since load

would not decrease during the fault.

d) The reactive load power has been ignored in

this model so the magnetic energy due to

generators and reactive power load is missing

in the potential energy term.

2.5 Summary

The literature on the application of Lyapunov's direct

method to power systems has been reviewed. The focus of

this literature review has been on the development of

Lyapunov energy functions in order to make apparent

l) the contribution made in the derivation of

energy functions for a topological network

model that permits a general real and reactive

load model in Chapter 3;
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3)
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the contribution of deriving the Lyapunov

energy function for a topological network

model , constant real power load model ,

constant current reactive load model , and a

single axis generator model in Chapter 4;

the contribution made in Chapter 5 in deriving

the region of stability and region of insta-

bility for a power system based on the Popov

stability criterion assumed to be satisfied in

the derivation of the Lyapunov energy function

for the topological model in Chapter 4.



CHAPTER 3
 

TOPOLOGICAL ENERGY FUNCTION

A topological energy function is derived in this

section that

l) retains the actual network and thus does not

aggregate the network back to internal gene-

rator buses;

2) allows a general real power load model that

can include constant impedance, constant

current and constant power components;

3) allows a general reactive load model that can

include constant current, constant impedance

and constant power components.

The energy function is constructed using the integral

method that associates with each term in the differential

equations that describe the system. A term is added to this

energy function to account for the reactive load at each

bus. The energy function derived based on the integral

method for the special case of constant current reactive

load and constant power real load can be shown to be a

Lyapunov function based on the results of Chapter 4.

Although the form of the energy function has been

hypothesized in both [9] and [16], it has never been

analytically derived from the integral method, Lyapunov

construction methods, or any other procedure. The energy

function hypothesized in [9] thus utilizes a kinetic energy

term based on the synchronous reference frame but utilizes a

30
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potential energy function based on a center of angle

reference frame. This inconsistency could not occur if the

energy function were analytically derived. The energy

function of Mussavi [9] was the first to successfully model

the reactive load energy component and this model is also

used in our derivation. A recent unpublished Ph.D. thesis

[11] has hypothesized an energy function that is very

similar to the one analytically derived in this section.

The energy function derived in this thesis and in Sastry

[16] permits use of a general reactive load model and

specifically itemizes the magnetic energy associated with

the transient reactance of the synchronous generator model.

A constant impedance load model was used in [9] and no

accounting for the magnetic energy associated with the

synchronous generator transient was made. The real power

load is assumed to be a general load model in this thesis

but was restricted to be constant real power in [16].

The energy function is derived in Section 3.2 and then

is proved to be conservative in Section 3.3 for the case of

constant real power load. The results of a simulation of a

39 bus system for two different fault cases each using a

constant current and constant impedance real and reactive

load model are presented in Section 3.4. The kinetic

potential, and total energy is plotted for the critically

stable and unstable simulation runs. The components of the

potential energy are also plotted for both stable and

unstable simulation runs for each fault case with both the
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constant impedance and constant current load models.

3.1 Derivation of the Energy Function

System modeling:

a) Generator model:

It has been assumed that the voltage behind transient

reactance in each generator is constant. The swing equa-

tions are of the form

M161 = Pmi-Pei
(3.1)

where

S

0

31 = Bi (3.2) for 1 = 1,2,..., Ng

EiVi

P . = ——7— Sin (ai-ei) (3.1-a)
e1 xd i

b) Load model:

The loads include both real and reactive power compo-

nents which are nonlinear functions of the applied voltage

and frequency. However, the constant real power case is

considered also. It has been assumed that there are

ficticious generators connected to the load buses which are

governed by

0 ’ Qli-Qi

6 = - .- .
631 1 P11 P1 where i=1,....,N (3.3)

c) Transmission system equations:

For the assumed transmission system the power flowing

through the i-th bus can be written for load bus 1.



33

 

 

N

Pi - Z_ Bijvivj Sln (61-6j)

3-1

(3.4)

N

Qi = - §=1 BijViVj Cos (5.1-5.3) (3.5)

for generator bus 1:

P. = Sin (e.-5.) + V.V.B.. Sin (e.-e )
1 "7Fi;;' 1 1 ggl 1 J 13 1 3 (3.6)

V2. -E.V. Cos (6-‘6-) N

Q. = 1 1 1 1 1 'XB .v. v. Cos (ei-ej )
1 , ij i j (3.7)

x di j=-1

Derivation of the energy function:

The swing equation with respect to a center of inertia

is formulated as

“116 a PcoA

Equations (3.1) and (3.2) could be written in terms of

(3.8)

the center of angle reference 11‘11'10‘35

. M.
2 = _ _ _1_ .=

Mini Pmi PCi PcoA for 1 1,..., Ng (3.9)

"T

1 Egi. ' 3 10

T

Multiplying both sides of (3.9) and (3.10) by (Di and

then summing both equations and then taking the integral of

this sum from ts to t the new energy function will be



NG N Ng

_ l - _ 2 1 2 5
VB — 2 2- 111 (mi mo) + 5 §_ emi(wi-mo) “i Pmi (51-51)

1-1 1- =1

g (6(t) g It

+ Pl. d6. + 5.P.dt

1:1 6(t ) 1 1 i=1 t 1 1
S S

N

29 t w P dt + Q+ . .

1:1 1; 1 1 L (3.11)
S

The term QL is added to include the reactive energy in

the load that must be included to make this energy function

conservative one must utilize the fact that

{1 Em. a3. + 3:19 34.53.30

i=1 1' 1 i=1 1 1

in deriving (3.11).

The first term in (3.11) represents the kinetic energy

of generators and the second term represents the kinetic

energy at the load buses. By setting e‘—- 0 the second term

will vanish. Setting eu—e 0 eliminates the ficticious

generators at load buses that have been included here solely

because they must be included to derive the Lyapunov energy

functions in Chapter 4. The third term in (3.11) represents

the potential energy component associated with linear

displacement of rotor angles and the fourth term is

representing the potential energy associated. with linear

displacement of load bus angles. These two terms are called

the position components of potential energy. The fifth term
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stands for the magnetic energy stored in the network. This

term will be discussed in the next section. The last term

represents the change in magnetic energy stored in the load.

Thus whene:—o 0 the energy function becomes:

 

N

l g 2 g s= - - 6 -6vs 2 {_ Mi(wi mo). 2_ Pmi( 1 i) +

1-1 1—1

E ei(t) g t

Pl.de. + 6.P.dt + Q
131 I 1 1 i=1 I 1 1 L (3.12)

61(ts) ts

N t

The term 2 ‘Lt BiPidt, represents the magnetic energy

i=1 8

stored in the network. The magnetic energy“' of each line

is:

1 2 ...—1 2 a 1 ‘W'ij’k‘vfl"

1 (I I2 I I I I ~

considering (3.13). (3.4) and (3.6)

N t l N N s s
X I mi? dt = -2 E 1 vivjsij Cos 913 + V1 vj

t
1.31 3 i=1 j=1

s “g s s
' ' .. 2 2 _ .. .-

Bij Cos e 13 + gal N1 + Bi 2 EiVi Cos (Si 51)

52 51 _ S s s s L
(81 + V1 ZEivi C05 (61 '51 )1 2x6. (3.14)

l

 

*The energy stored in an inductor is viewed physically as

kinetic energy based on the electron motion, but when

interpreted in this model is viewed as potential energy.
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where B1 = - B.. and Bii does not include generator tran-

11 13

e
r
r
a
z

sient reactances for i=l,2,..., Ng or load impedance for

i=l,2...,N. The first summation in (3.14) represents the

magnetic energy stored in the branches that are connected to

nongenerator buses, and the second summation gives the

magnetic energy stored in the generator transient

reactances.

The last term in (3.12) represents the magnetic energy

of the load buses. Letting the reactive power at load bus 1

to be a nonlinear function of voltage Vi' 11(V11' 0 could
L

be written as:

N V- f.(x.) dx.

0L =2 fs1 _1_1_ 1 (3.15)
i=1 Vi xi

The right side of (3.15) is justified as a measure for load

energy since represents current andeidVi is a

1

measure of energy.

3.2 Proof of Conservativeness of the Energy Function

By substituting the results of (3.14) and (3.15) in

(3.12) the new form of energy function will be:



N N

VE = 1 lg M ((1) -(1) )2 - g P (O '58)
2 1:1 1 i 0 i=1 mi 1 i

N V.

i=1 t 1 dt t 1-1 s x. x
S . Vi .1

-% Y E Bi.(ViV. Cos ei.-v: v? Cos 9:.)

i=1 j_1 3 J J J J

N
g 2 2 2

s 2 s s s
+ i=1 ((131 + vi -2EiVi Cos (6i 91)) - (Ei + vi

-2ESV3 Cos (67-65)) 1
i i 1 i 2x5i

(3.16)

The first term in (3.16) is representing the kinetic

energy and the rest of the terms represent the potential

energy. Thus the potential energy in (2-9) PE, is:

 

N9 5 N t dei

1=l 1=l ts

V - N N

+ 1 I l f1(Xi)dxi - l E Z B..(V.V. Cos e..~

1:1 3 x 2 1=1 '=1 13 1 3 13
v. i 3
1

N9 2
s s s s 2 s

Vivj Cos eij) + i=1 [((Ei +Vi -2EiVi Cos (6i-ei))

s2 s2 s s s s l

- (Ei +vi - 2EiVi Cos (Si—61))1 3;,—

di

(3.17)
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The energy function presented in (3.16) is a conser-

d VE

vative energy i.e., at = 0. This has been shown in the

following discussion:

Differentiating PE in (3.17) with respect to bus

voltage vi:

8

a)“ —v.—' 3?": ' 7— ‘ Bijvj C05 13-
1 1 d1 di j=1 (3.18)

for 1.11000! NC

a - B..V. Cos 6..

av v E 11 u
i 1 3:1 for i=N 'ooo’N (3.19)

+1

Thus

dPE ._ .av;.= (Q1i + Qih/Vi for 1—1,2,....,N (3.20)

since by definition Qli= +fi(vi) is the reactive load of bus

i, and Qisatisfies (3.5, 3.7). It is clear based on (3.3)

that

i i=1,2,...,N (3.21)

Now differentiating (3.17) with aspect to 6i:

d N Eivi Sin (5i-ei)

PE _ . _ —7—

36—; - + §=1 Bijvivj S1n eij xdi

for i=l,....,Nb (3.22)
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N

g3§ Z Bi.ViV. Sin ei.
91 3:1 3 J J

for i=Ng+l'°"°'N (3.23)

Considering (3.4) and (3.6), and applying their results

to (3.22) and (3.23):

do 1 i=1,2,3,....,N (3.24)

It can also be shown that

d8N

dPE = i

“HE i=1 P11 HE‘
i=1,2,3,....,N (3.25)

Combining (3.24) and (3.25), one can show that

E dPE , dei + dPE = § (P +91 ) dei = 0

1:1 dei at dt 1:1 at

i=1,2,....,N (3.26)

since

Pi + pei = o i=1,2,3,....,N

from (3.3).

Now differentiating with respect to 6i:

dgE = -Pm. + Eivi S1n (6i-ei)

a . 1 xi.
1 d1

for i=1'oooo'Ng (3.27)

Recalling that the kinetic energy is:

'g 2N

KE ‘”2 1:1 Mimi-(1)i )
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and then differentiating it with respect to mi produces

BKE o

—&’—i-=Mi((lli-Qli)

for i-l,2,....,Ng (3,23)

Combining equations (3.27) and (3.28), (N) i can show

that

N9 3K ‘1‘1’1 an “1 $19 .
~ ' + ' = (M a - Pm.+P )w = 0

§=1 5&1 at 36i at 1:1 1 1 e1

(3.29)

since

ani a Pmi-Pei

(3.30)

Considering (3.21). (3.26) and (3.30)

(IVE- (3.31)’3? 0

and thus the energy function has been shown to be conserva-

tive.

3.3 Energy Function with Different Load Models

3.3.1 A General Real Power Load Model_

In the case that real load is represented by nonlinear

function of applied voltage, the second term in (3.16) could

be written as:
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N N

Z (6(t) Plidei = % { (6(t)-8(ts))(Pli(Vfts)'

1=Ng+1 6(tS) 1=Ng+1

+ Pli(Vi(t)) (3.32)

using the trapezoidal integration rule. Substituting the

right hand side of (45) the following generalized function

is obtained:

N _

N V(t ) V(t)
_ 1 ~ 2 l _ s

9 ' N V.(t)

- 1 Pm.(6.-6§) + , 1 fi(xi) dxi

- 1 1 1 ______

1=l 1=l V (t ) x

i s 1

1 N N s s s

-.. B i V.Vo C0560 u - V.Vo C ea c

2 i=1 1:1 13( 1 J 13 1 3 OS 13)

N

2 2 29 s

+ z [(Ei-Wi -2EiVi Cos (61-61))-(Ei +Vi

i=1

X .

3 5- 3 . 1 3.33)
-2EiVi C08 (51 Gi)fl i—El (

3.3.2 The Energy Function With Different Reactive Load

Models

 

The reactive power at load buses is assumed to be a

general nonlinear function of voltage. Initially the case

of constant current reactive load is considered.
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a) Constant Current Reactive Load Model

In the case that reactive load is constant current

reactive power of the load will be:

-0:

f11xi) = aixi where ai = V:

 

and Qi8 is defined in (3.5) and (3.7). The energy

associated with the reactive load 0L will thus have the form

V. f.(x.) N V

.._1_l.._ dx. = —1 Q.

X- 1. =1 1

(3.34)

Substituting (3.34) in (3.33) the following energy function

will be obtained:

N V(t ) V(t)N

3 1 9 _ 2 1 2 (e.-e?) (Pl$ s + p1. )

VB 2 E31 “1(“1 ”0’ + 2 i=1 1 1 . 1 1

N

9 N V N

- X Pmi(Gi-6:) _ Z (1-—§) f VEVSBi. Cos 8:.

i=1 i=1 vi j=1 3 3 3

N9 2
i s s s s s l

+ 1:1 (1-53) (visi Cos (ai—ei) - vi ) 131

i

N

g 2

2 2 2 s

+ 1:1 [(Ei +Vi -2EiVi Cos (6i_Bi))- (Ei +Vi

2 N N
s s s l 1

-2E.V. Cos (6.-6.)) -—7 - - 2 Z B..(V.V. Cos (6..)

1 1 1 1 (Zxdi 2 j=l i=1 1] 1 j 1]

- VFVF Cos (8.3)) (3.35)

1 3 13
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b) Constant Impedance Load Model.

In the case of constant impedance reactive load model,

the function 11(V1’ is a quaradic function of voltage:

H
w
n

f - 2 h Qi(xi) - aixi w ere ai - - 2

V

 

r
m
m

and the energy associated with the reactive load QL has the

form

2

N V. f.(x.) N V. N

1 1 1 l s 1 s

Q: ———dx.=- g Q.—-——+ Q.
1 i=1 IVs x1 1 7 i=1 1 vis i=1 1

i

(3.36)

Substituting (3.36) in (3.33) the following energy

function will be obtained:

N

9 N \I(t ) V(t)
_ 1 _ 2 l _ s s S

N 2

9 N V.

- Z Pmi (61-6?) + Z (1- 1 ) Z viv331. Cos 913

V.

1

N 2

9 V1 3 s s s 2 1
+ I (l- _—_2)(ViEi Cos (6i-Bi) - Vi ) -;7-

1=1 Vs d1

1

N

g 2 2 2 32
+ z [(E.+V. - 23.v. Cos (5.-e.)) - (E.+V.

. 1 1 1 1 1 1 1 1
1=l

2 N N
s s s l 1

- 2E.V. Cos (6.-6.)d' - Z Z B..(V.V. Cos 6..

1 1 1 1 2x5i 2 1:1 j=1 13 1 j 13

s s s
- Vivj Cos eij) (3.37)
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c) Constant Reactive Load Model.

When the reactive power of loads are constant then:

s

i

and the energy associated with the reactive load 0L has the

form

N . ) N

- l 1 i _ _ s s

1

(3.38)

Consequently the form of energy function will be:

N

1

VB = 2 1
i=1

9 V V

o 2 l s s

“1‘“1'11’ + 2 (91'61) (P11 + P11)

F
o
n
z

'=l

N
9 N y

_ _ s s s s 3
Z pmiwi 61) + Z Ln(Vi/Vi) . vivjs.. Cos sij

i=1 i=1 . i=1 1]

N
g 2 1

s s s s s s ) ° —-

1 i=1 1n(V1/V1’ (ViEi C°S (51'611'V1 xdi

N9
2

2 2 2 s s s
+ g: B51 +vi zsivi Cos (51'91”“Ei +vi cos (61-61))

.%;,_ - % § § Bi.(ViV. Cos ei.-v§v§ Cos 6:.)

(3.39)
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d) The Generalized Load Model.

In the case that reactive load is a combination of

constant current, constant impedance and constant VAR Model

the function fi1xi) is of the following form:

2

£i1xi) a aixi + bix1 + C1 (3.40)

where

s s

Q Q-

._ i _ _ J. _ _ 5

a1 - a1 2 b1 - 81 s and C1 - 7iQi
8 V.

Vi 1

This model assumes that a percentage of the load is

constant impedance (01), constant current (Bi) and constant

power (Y1) such that:

(11 + Bi +‘yi . 1
(3.41)

The total energy function in this case has the

following form:

N

1 9 o 2 1 " s V V
v: - Z N (m -m ) + (e -e ) (913 + pl

2 1-1 1 1 1 2L1 1 1 1 1’

"9 N

- p (6 -6’) + Ln(v v”) v’vss Cos 63

1.1 “'1 1 1 *1 (.1 i/ 1 .1 1111 1)

N9 2

+ r Ln(V v3) (v32 Cos (53-93) - vs ) ° 1,—
1_1 1/ 1 1 1 1 1 1 xd1

N v N v
1 s a s g i s s 32

+8[2 (1- —) Z VVB Cone +12 (1-——)(VECosé-8 )
1 1.1 v: j_1 1 j 1] ij 1_1 v: 1 1 1 1

2
N v

s l i s s s

-V)‘—r-+u (Z (1- )2 VVB C030)

1 ”d1 1 1-1 vs! j-l 1 5 13 15

1
N

9 vi a a s s 32 l
+ z (1--—I (v 3 Con (5 -e )-v ) - -4—

c (5 -e ))-(z 2+v32-21: v52 c (53-93)
°‘ 1 1 1 1 11 °9 1 1)

.
1
. 9 2 2

I (E +V -ZE V

1_1[ 1 1 11

’1 N N
. l s s s

(3.42)
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3.4 Simulation Results

The components and total energy for the energy func-

tions presented in (3.35) and (3.37) are plotted as a

function of time based on transient stability simulations of

particular fault on a 39 bus New England system shown in

Figure 4. The purpose of computing and plotting the energy

functions for both a constant current and a constant

impedance reactive load model for two different faults is

1) to indicate that the total energy remains

constant after the fault is cleared when the

real power load model is constant power

confirming that the energy function is conser-

vative when the real power load is constant;

2) to show the relative magnitude of the kinetic

and potential energy components and show that

since the total energy is conservative that

an increase in either kinetic or potential

energy results in a decrease in the other

energy component;

3) to display the relative magnitude of the

position, network magnetic, real power load,

and reactive power load components of the

potential energy as a function of time. The

differences in the potential energy components

as well as the swing curves for constant

current compared with constant impedance

reactive load models will also be shown;

4) to show how a loss of stability causes a

sudden sharp drop and oscillations in the

various potential energy components as well as

a sharp increase in the kinetic energy in the

system. The total system energy no longer

remains constant once the loss of synchronism

occurs and may be due to numerical problems

caused by the very large and rapid changes in

the system after the loss of synchronism.

The two fault cases considered are a fault on line

26—27 where line 26-27 is removed and a fault on line 21-22

where line 21-22 is removed. It will be observed that the
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Fig. (4). New England Study System.

 

 

 

 

2
3

 

 
1
4

%

j

1

 
  
 

 

 

 

1
n
[
:
—
_
_
_
l

I

n

N

1
.
-

d
)

 
 

 

  

2
1

1
5

l
l

L

 

  
 

 

 

 

 
  

 

n

_
12

i
u

I

I
!

 

 3%

 3
2

 

  

 

   
  3

3

_
3
4

  
 

 

 

i.

g

3
9

   



48

critical clearing time for the fault on line 21-22 is much

shorter than for the fault on line 26-27. The results for

the simulation of the fault on line 26-27 with that line

removed is discussed first for both the constant current and

constant impedance load model. The results of the second

fault~case for both the constant current and constant

impedance load models are then discussed. It should be

noted that the MVA base used is 10 MVA base due to the fact

that the Detroit Edison transient stability program used

this MVA base.

1) Fault on Line 26-27 and Constant Current Reactive

Load Model.

In this case the fault occurs on line 26-27 and the

critical clearing time by simulation has been determined as

.36 seconds.

Figure (5.a) shows the variations of angles of gene-

rators close to the fault on the stable case. Figure (6.a)

shows the variations of the same generator angles for the

usntable case. In the stable case the angle of generator

No. 9 increases until it reaches 180 degrees and then starts

decreasing and continues oscillating until it remains

constant. For the unstable case the generator No. 9's angle

continues to increase and is the first generator that loses

syncronism. Figure (5.b) shows the total, potential and

kinetic energies for the stable case; the same kind of

energies are shown in Figure (6.b) for the unstable case.

In both cases whenever the potential energy is changing the
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kinetic energy experiences a negative change of the same

magnitude such that the total energy remains constant. The

small variations in total energy are due to the computa-

tional errors and also the assumption that real power

delivered to the load buses is constant. Whenever the

potential energy is at its maximum the kinetic energy has

its minimum value. This observation supports the P888.

method discussed in Chapter 2. In the unstable case when

the system loses synchronism the potential energy

experiences a large drastic sudden drop and the kinetic

energy starts increasing. Furthermore, there is a sudden

drop in total energy which may be due to numerical problems

in attempting to accurately simulate the large rapid changes

after the point in time when the loss of synchronism occurs.

Figure (5.c) shows three components of potential energy

for the stable case. These three components; energy due to

real power load, energy stored in the transmission grid, and

energy due to the generator's angle displacement, are shown

for the unstable case in Figure (6.c). In the stable case

the energy due to the generator's angle displacement

decreases until minimum is reached and then starts

increasing again. In the unstable case, since the

generator's angle continues increasing, the position energy

component is a monotone decreasing function of time. The

other two forms of energy in the stable case increase until

a maximum is reached and then decrease smoothly but in the

unstable case these energies start oscillating. The sum of



50

the real load power energy and the magnetic energy stored in

the transmission grid is larger as a function of time in the

unstable case than in the stable because the system

trajectory's peak angle excursion is larger in the unstable

case.

Figure (5.d) shows the energy stored in the reactive

power loads for the stable case. Figure (5.d) shows the

same energy for the unstable case. The amount of this

energy is much smaller than the other energies components.

Since this energy depends on variation of voltage of the

load buses in the stable case, the energy approaches zero as

time increases and the system trajectory approaches the 88?.

In the unstable case the oscillations of voltages in the

load buses cause this energy to experience large oscil-

lations.

ii) Fault on Line 26-27 and Constant Impedance Reactive

Load Model

For this case the fault occurs on line 26-27 and the

critical clearing time by simulation is determined as .31

seconds. The .05 seconds reduction of critical clearing

time due to the change of reactive load modeling is expected

because there is a greater reduction in the magnetic energy

stored by the reactive load clearing the fault when voltage

drops. This reduction in magnetic energy results in

increased kinetic energy because the energy function is

conservative.
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Figure (7.a) shows the changes of angles of generators

7, 8 and 9 which are closer to the fault for the stable

case. The variations of the angles of the same generators

are shown in Figure (8.a) for the unstable case. In the

stable case the angles oscillations die out, but in the

unstable case the angle of generator 7 as well as generators

8 and 9 continue increasing. It is important to note that

for this kind of load modeling, not only the critical

clearing time changes but also the first generator that

loses syncronism is different from the constant current load

model.

Figure (7.b) shows the changes of total, kinetic and

potential energies for the stable case; the same energies

for the unstable case are shown in Figure (8.b). In both

cases whenever the potential energy has its maximum value

the kinetic energy has its minimum value. This observation

again supports the P388 method. In the stable case the

total energy is almost constant. The small variations in

the total energy over time shown in Figure (7.b) are due to

computational error and the assumption that real load at the

load buses is constant. For the unstable case as shown in

Figure (8.b) the total energy has dropped after the

generators have lost synchronism. The potential energy has

a sudden drop and the kinetic energy has a sudden increase

after the loss of synchronism. This sudden drop occurs

because the simulation program is unable to give accurate
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solution with the large and sudden changes of voltage

magnitudes and the changes in angles.

Figure (7.c) shows the energy due to real loads and

energy stored in the transmission grid and energy due to

generators angle displacement for the stable case. These

three energies are components of potential energy. Figure

(8.c) shows the same potential energy components for the

unstable case. The energy due to generators angle displace-

ments for the stable case reaches a minimum and then starts

increasing but in the unstable case this energy is always

decreasing. This continual decrease is because in the

unstable case the angles continue increasing. The real load

energy and energy stored in the transmission lines for the

stable case are smaller and smoother than in the unstable

case. In the unstable case these energies have oscillations

which are due to large and fast oscillations of voltages and

angles.

Figures (7.d) and (8.d) show the energy stored in

reactive loads for stable and unstable cases. The reactive

power of the load for each bus is a function of the square

of the voltage of the corresponding bus. By recalling the

equation (3.36) it could be seen that the larger is Vi2 ,

the more negative will be the energy due to reactive loads

and this explains why this energy in this case is negative

compared to constant current load model. In the unstable

case, there is an oscillation in this reactive load energy

as can be seen in Figure (8.d).
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From both cases that fault was on line 26-27, it could

be concluded that the total energy stored in the system for

the stable case is less than the unstable case.

iii) and iv) For the case that fault has occurred on

line 21-22 the same tests of the last two sections were

performed, the results have been presented in Figures 9, 10,

11 and 12. ‘These experiments were performed to show that

the cases discussed in the preceeding two sections are not

special cases. The results of these tests support the

conclusions from the tests for the faults on line 26-27.



54

Fig. (5.a) Variations of angles of generators 7, 8 and 9 for

stable case where the fault on line 26-27 is

cleared in 0.35 seconds by removing the faulted

line.
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Fig. (5.b) Variations of potential, kinetic and total energy

for the stable case where the fault IS on line

26-27.

total‘energy

‘\\\tpotential

energy

 

   

   

 

   ¢._kinetic

energy

 

  

E
I
E
I
O
V

P
.
U
.

1
!

 
 1

”
J

VINE IIiOECONOI



Fig.

=2 '1?
I.

E
N
E
R
G
Y

56

(5.c) Variations of real load energy and transmission

115.
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Fig. (5.d) Variation of reactive load energy for the stable

case where fault is on line 21-22.
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Fig. (6.a) Variation of angles of generators 7, 8 and 9 for

unstable case where the fault on line 21-22 is

cleared in 0.36 seconds and line 26-27 is

removed.
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Fig. (6.b) Changes of potential, kinetic and potential

energy for the unstable case when the fault is on

line 26-27.
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Fn1.(6.c) Variation of real load and transmission line

energies and energy due to angle displacement of

generator rotors for the unstable case when the

fault is on line 26-27.
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Fig. (6.d) Changes of reactive load energy for the unstable

case where fault is on line 26-27.
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(7.a) Variation of generators angles for stable case

that fault occurs on line 26-27. The fault is

cleared at 0.30 seconds and line 26-27 is

removed. (Constant impedance load model)
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Fig. (7.b) Changes of kinetic, potential and total energies

for the stable case when the fault is on line

26-27. (Constant impedance load model)

 

 

 

I",

‘ r“‘_‘ total energy

l

.I-( .2.
z I kinetic energy

a I

I

2 u. I

l

y ' potential energy

I I ' . . -
 
 

TIRE IN SECONDS



64

Fig. (7.c) Changes of energy due to generator angle

displacement and loads real power energy and

energy stored in transmission grid for the stable

case where fault on line 26-27 is cleared in 0.3

seconds. (Constant impedance load model)
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Fig. (7.d) Changes of loads reactive power energy for the

stable case when fault is on line 26-27.

(Constant impedance load model) '
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Fig. (8.a) Variation of generators angles for unstable case

when the fault occurs on line 26-27. The fault

is cleared at 0.31 seconds and line 26-27 is

removed. (Constant impedance load model)
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Fig. (8.b) Variations of kinetic, potential and total

energies for the unstable case when the fault is

on line 26-27. (Constant impedance load model)
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(8.c) Variations of real load energy. energy due to

generator angle displacement and energy stored in

transmission line for unstable case when fault is

(Constant impedance load model)on line 26-27.
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Fig. (8.d) Variations of reactive load energies for the

unstable case when the fault is on line 26-27.

(Constant impedance load model)

   
r

TIME IN SECONDS

h
r
- 4
>

    

 



70

Fig. (9.a) Variation of angles and generators 7, 8 and 6 for

the stable case when the fault on line 21-22 is

cleared at 0.15 seconds and line 21-22 is

removed. (Constant current load model)
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Fig. (9.b) Changes of potential, kinetic and total energies

for the stable case where fault was on line

21-22. (Constant current load model)
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Fig. (9.c) Variations of real power load energy, energy

stored in transmission lines and energy due to

generator angle displacement for stable case when

the fault is on line 21-22. (Constant current

load model)
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Fig. (9.d) Changes of reactive power load energy for the

stable case when the fault is on line 21-22.
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Variation of angles of generator 6, 7 and 8 for

unstable case where fault on line 21-22 is

cleared in 0.36 seconds and the faulted line is

cleared.
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Fig. (10.b) Variations of potential, kinetic and total

energy for unstable case when fault is on line

21-22. (Constant current load model)
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Fig. (10.c) Variations of loads real power energy: and

 

energy stored in transmission lines and energy

due to generator angle displacement for unstable

case when fault is on line 21-22. (Constant

current load model)
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Fig. (10.d) Variations of loads reactive power energy for

the unstable case when fault is on line 21-22.

(Constant current load model)
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Fig. (11.a) Variation of angle of generators 6, 7 and 8 for

the stable case when fault occurs on line 21-22.

The fault is cleared at 0.13 seconds and line

21-22 is removed. (Constant impedance load

model)
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Fig. (11.b) Variations of total, kinetic and potential

energies for the stable case when the fault is

on line 21-22. (Constant impedance load model)
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(11.c) Changes of energy stored in transmission line

and energy due to generator angle displacement,

and energy stored in real power loads for the

stable case when the fault is on line 21-22.

(Constant impedance load model)
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Fig. (ll.d) Variations of reactive load power energy for the

stable case where fault is on line 21-22.

(Constant impedance load model)
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(12.a) Variation of angle of generators 6, 7 and 8 for
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unstable case when the fault occurs on line

21-22. The fault is cleared at 0.14 seconds and

line 21-22 is removed. (Constant impedance load

model)
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Fig. (12.b) The variation of total, potential and kinetic

energy for the unstable case when the fault is

on line 21-22. (Constant impedance load model)
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(12.c) Changes of real load energy and energy due to

’n I

 

generator angle displacement and energy stored

in transmission lines for the unstable case when

the fault is on line 21-22. (Constant impedance

load model)
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Fig. (12.d) Changes of reactive load power energy for the

unstable case when the fault is on line 21-22.

(Constant impedance load model)
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APPENDIX 3-A
 

Notation and system modeling:

number of buses

number of generators

real load at load bus i

mechanical power input at generator i

inertia constant at generator i

voltage of generator bus i

voltage of nongenerator bus i

imaginary part of admitance of line i-j

real power leaving bus i, through the transmission

system .

reactive power leaving bus i, through the transmis-

sion system

fictitious inertia for load buses where Mf=emn
1

N9 N

MT 31:1 Mi + sign mk

g+1

where e is pertubation factor

center of inertia angle 5 = l_ g9 M.6 +e:§ 5

0 MT 1 i k=N Mk k

i=1 g+1

angle of generator bus i

angle of nongenerator bus i
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N

1 9 N
mo center of inertia frequency wo=fi_ 2_ M.m.+ 62 Mkmk

T 1—1 =N
g+1

~ ~ N

m1 mi = w1-m where 2_ M1 1 - 0

i—l

Di damping power coefficient

di fictitious damping power coefficient for load buses,

D =6d.

i i

Tdoi d-axis transient open circuit time constant.

xdi’ xéi d-axis synchronous and transient reactances

The symbol ""‘ when appearing above matrices or vectors is

standing for transposed.

The symbol ”3" when appearing above characters stands for

stable equilibrium point.



CHAPTER 4

A LYAPUNOV ENERGY FUNCTION

A topological Lyapunov function is derived in this

chapter for

l) a nonaggregated network model;

2) a constant real power load model;

3) a constant current reactive load model;

4) a single axis generator model that includes

flux decay.

The Lyapunov function is derived based on assuming that

a fictitious single axis machine exists at every load bus

that is eliminated by allowing the inertia to approach zero

and appropriate impedances to become infinite. The resul-

tant Lyapunov function is constructed based on showing that

the power system transient stability model is a Lure type

model and can satisfy the Popov stability criterion, and the

conditions imposed by the Moore-Anderson theorem [9] in some

domain of the state space. The construction method of

. Willems [11] is then applied to determine the resultant

Lyapunov function. The fictitious generators at load buses

are then eliminated and the resultant Lyapunov function is

shown to be identical to the energy function derived in the

previous chapter if the real power load is constant power,

the reactive power load is constant current, and the single

88
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axis generator model is assumed to be a constant voltage

behind transient reactance model.

The resultant Lyapunov function and its region of

stability S provide the basis for determining necessary and

sufficient conditions at some time t* that determine a

region of instability; These region of instability and the

region of stability derived and discussed in Chapter 5 are

both based on the network conditions imposed by the Popov

stability criterion and provide an accuracy in charac-

terizing retention and loss of stability that was previously

impossible.

The energy components of the Lyapunov energy function

associated with different components of the transient

stability model are plotted for different fault cases in

Section 4.

4.1 Theoretical Background

The theoretical background required to derive the

Lyapunov function is now presented.

a) Popov Criteria

For the system:

it'ljgg-g yg) (4.1)

2* 2’; (4.2)

where gig) is a nonlinear function of g satisfying the

following conditions:
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N

i) £(g) is continuous and maps RN into R

ii) for some real constant matrix Q:

_f_’(g) 59 > o for all _e_ ERN (4.3)

and _f_ (2) = .0. for g =‘Q

1 N
iii) there exists a function V1€C mapping R into R

such that

V1(g_) 2. o for all _€_ERN

and V1(g) =‘Q for 0= 0

and for some constant real matrix Q

AV1(9_) = g”; (g) for all 5an (4.4)

b) It can be verified [6] that the transfer function

for the linear part of (4.1) is an NxN matrix:

[(3) -- g’Isyy'lg

and‘W(w) ==0 (4.5)

The Moore-Anderson theorem that establishes sufficient

conditions for a system to be asymptotically stable is now

presented.

Moore-Anderson Theorem 1 [9]

If there exists real matrices g and 9 such that:

‘§(s) = (EIQF) fl(s) (4.6)

is positive real, then the system defined by (4.1) and (4.2)

satisfying the Popov criterion asymptotically stable in the

large providing (§’+ Qs)does not cause any pole zero cancel-

lation with fl(s).
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The conditions for fl(s) to be positive real are:

1) 2(5) has elements which are analytic for Re(s)>0

(4.6.a)

2) 2*(s) = Z(s*) for Re S>0 (4.6.b)

3) ZT(s*) + Z(s) is positive semidefinite for ReS>0

(4.6.c)

The notation (*) stands for conjugate of a complex

variable.

Theorem 2 [6]
 

Given fl and Q satisfying the condition of the Moore-

Anderson theorem, then a Lyapunov energy function of the

form:

V(x) = .ng 35 + vl(g) (4.7)

exists. 3 is obtained as a positive definite matrix

satisfying the following set of nonlinear algebraic

equations:

é’£+£§.='££’ “-3)

£§’£§’+AEQ_"£1VO (4-9)

EOEO*Q.EE+§._C_9. (4.10)

where L and W are auxiliary matrices,the derivative of this

Lyapunov funEEion:

. 1 ’ I ’

WK) 3 -Z[§ C - game] [E g-floggH-gqmg (4.11)

should be negative definite.

After recalling these theorems the next step is to test

and apply the conditions embodied in these theorems to

construct a Lyapunov function for a power system model that
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1) retains the network and does not aggregate the

network back to internal generator model:

2) utilizes a one axis synchronous machine model

that incorporates flux decay for each

generator in the system:

3) a fictitious one axis synchronous machine

model at each load bus that is ultimately

eliminated from the model after the Lyapunov

function is constructed. This one axis

synchronous machine model is eliminated by

letting its inertia approach zero, transient

reactance approach infinity and the diffe-

rences between the synchronous and transient

reactance approach infinity. These three

assumptions eliminate the electromechanical

model of the machine, and eliminate the

armature reaction effects of stator current on

the magnitude of the induced voltage on the

stator:

4) a constant current reactive load model:

5) a constant power real power load model.

4.2 pLyapunov Energy Function Derivation

The notation used in this chapter is identical to that

used in Chapter 3 except that Bi is used to represent the

voltage magnitude at internal generator buses and network

buses. Furthermore, since there is no need to distinguish

the energy associated with generator transient reactance,

x81 from the energy stored in any network branch the

generator internal buses will be numbered l,2,....,Ng the

general terminal buses will be numbered Ng+l,...2Ng, and the

network buses will be numbered as 2Ng+1,...N. The generator

transient reactance will be included as



-— '3- =—_)_‘_

311 ‘ B1+Ng 1 31, i+Ng xd

Ng+N

Bi+N i+N = 7 X Bi+N ' ' x1
9' 9 j=Ng+1 9'3 d

sij = o ifj; ij# j + Ng, j and i, Ng+i

i'j 1'2'eeeepNg

Since the internal generator admittance of the

fictitious generators is zero and ultimately will disappear,

the transient admittance of these machines is omitted and

the internal generator bus of the fictitious generator at

load bus i is assumed to be the load bus i itself. These

assumptions allow derivation of the Lyapunov function.

4.2.1 System Modeling

a) Generators -

The flux linkage is considered in generator modeling

hence the generator i is governed by the following equation

[6]

.. N

. s s 0 s. e

= 0 e s - s e 5s. .M16i + Didi §=13ij(3133 S1n 51] 8183 Sin 1]) (4 12)

° 3 N s s
= - e a- I - e as e 600- e 60. .Ei 01(81 El) 81 §=1 313(8) Cos 1] EJCos 13) (4 13)

is“

Where i=1’eeeepNg

a. = [l-(x .-x’.)B..]/ . and B. = (x .-x’.)/ ,

1 d1 d1 11 Tdoi 1 d1 d1 Tdoi

(4.14)
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b) Load Buses -

Loads are modeled by fictitious generators connected to

the load buses hence:

 

 

S 3 o S .

1 1 1 1 i=1 Bij(EiEj Sin Gij-EiEj Sin aij) (4.15)

and

s = —a (E -Es)- I B (E8 Cos 63 -E Cos 6 )
1 1 1 1 %.j=1 ij j ij j ij

j#i

for 1=Ng+l,...., N (4.16)

where

a = (l-(xdi-Xdi) B11’/Tdo1

1 E

= (l-(xdi-xdi)Bii)/Tdoi (4.17a)

B = (xdi-xéi)/Téo1 = (xdi'xdi)/T'
i 8 doi (4.17b)

It is also assumed that the real power delivered to each

load bus is constant and

N

P1i = i=1 BijEiEj Sln fiij = Constant (4.18)

and that the mechanical input power to each generator is

constant and given by:

_ s . s .=
Pmi — g E.EjB.. Sin Gij for 1 Ng+l'°°"

(4.19)
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All the equations presented in sections a and b are true for

the post fault network.

4.2.2 Satisfaction of Moore-Anderson Theorem Conditions

Having defined the power system model we must

1) express it in Lure form (4.1)(4.2);

2) show that Popov statutory criterion is satisfied

3) establish that £(s) is positive real.

In order to show that it satisfies the conditions in

the Moore-Anderson theorem, having shown that the above

conditions can be satisfied, then Theorem 2 can be applied

to actually construct the Lyapunov function in the next

subsection.

The first task in derivation of the Lyapunov function

is to express (4.12), (4.13), (4.15) and (4.16) has Lure

form given in (4.1) and (4.2). The following definitions

are necessary:

x =(§;_ gfg_f) (4.20)

where

5r =51(1+1)'5171+1) for i=l,2,....,N-l

mi = 61 for i=l,2,....,N

AE = Ei-EE for i=1,2,....,N

and also:

5 (o) = §i(o) §§(0) (4-21)
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where £1(g) is an m-vector defined by:

_ . s _ s s . s
fl(o) — Bij(EiEj Sin (0k+61j) EiEj Sin Gij) (4.22)

for i=l,2,....,N-l and j=i+l,....N

and k=l,2,....m where m = Elglll

and f2(0) is a N-vector defined by:

= s s _
f2i(o) (Ej Cos 6.. Ei Cos 51.)

13 3

for i=l,2,....,N (4.23)

U
-
M
2

isij

The members of vector 0 used in function f1(0) are de-

fined as:

ck a 5..-6.. for k=l,2,....,m (4.24)

The members of vector 0 used in function f2i(0) are:

S -
0k 31.81.. for k-III+1,....,M+N (4025)

Considering the above definitions, the state equation matrices

    

are:

F , 0' F 0 ‘

° §N(N-l) °

-1 _ -l

0 -92 BNN 0 ' 9. " 1.“. ZNN 0

B
5 = o o -3NN o —NN

and

F 1

9(N-1)m °[

3 = 0 0

0 ENNJ
(4.26)
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where:

ENN = diag (Mi) (4.27.a)

QNN a diag (Di) (4.27.b)

ENN = diag (ai) ' (4.27.c)

ENN = diag (Bi) (4.27.d)

and

§N(N-1) = 1 '
-1(N-1) (4.28.a)

-£(N-l)(N-1)J

9(N-1)m = I
[—(N—l)(N-l)

-T(N-l)(m-N+1) ] (4.28.b)

The matrix ENm is of the following form:

INm = [$1 32 33,...., gNm] (4.29)

2i is an Nx(Nfl) matrix of the form:

P 0 -1

-(i-l)(N-i)

1 1 ............... 1

.2 -1 0 ............... 0

-1

0 -1 ............... 0

b o .............. -1 (4,30)
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and:

11(N_1) 01(m-N+1)

INm ’ 'I(N-1)(N-1) 5(N-l)(m-N+1)

‘ (4.31)

and:

INm ‘ 5NIN-1) 9-(N-1)m ”'32)

The system equations are now in the form of equations

(4.1) and (4.2) and hence the conditions (i) and (ii) and

(iii) of Popov criteria could be Checked at this point.

Let:

1m 52

9NN (4.33)

l
o

)
Q
I
H

H:

With this choice of H the inequality of (4.3) is in the

following simpler form:

f1(ok) Gk 3’0 for all k=l,2,....,m (4.44)

defines the region of stability 5.

The above inequality is satisfied for the range of:

Ominkf‘ok: (0 or ask) and(.0 or'os):0 :0!“an

where

omink = -"-(5:j+61j) , ask = agj—aij

and

qmaxk=: - 5§j+éij and aij = Sin -1 (3:3? Sin sij/Eigj)

which will be discussed further in Chapter 5 when the region

of stability is more thoroughly discussed.

Considering the transfer function for the linear part

of the system:
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sees-14‘ 2 >' (.4 '_r_ 0

fl(s) = g’(§1-§) g = o 5(sx+a)’l e

= 31(3) 0

0 fl2(s) (4.34)

The matrices land _Q_should be found satisfying the

conditions Moore-Anderson theorem including the constraint

(4.3) of the Popov criterion. A possible choice of 5 could

have been the zero matrix but this would have caused 3T9? to

have a pole zero cancellation with 3(3) which has a pole at

s-O, this justifies the choice of §_as in (4.33). The next

step is the Choice of V1(O) in (iii) of the Popov criteria,

and consequently matrix Q.

V1(o) is chosen as:

m 0k l N N s
v o — f f 0 do = - B.. 3.8. C 6..-C 6..

1( ) i=1 0 1( ) 2 i=1 §=1 13( 1 3( OS 13 OS 13)

- (6 -GS )ESES Sin 63 )- 1 § ) (E -Es)(E -ES)B Cos 6?.)
ij ij i j ij 2 i=1 i=1 i i j j ij 1]

3541

(4.35)

It is obvious that V1(0) is positive just for a range

of 3 around gfg. This condition is very practical in the

stable case because the angle separation of the lines

remains almost the same and in the stable case there is no

voltage collapse or large increase.
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After the choice of V1(0) matric_Q_could be chosen to

satisfy (4.4), that is:

V1(g_) = Q’_f(_q) for all gen” (4.4)

The components of §V1(O) are:

321—: B (E E Sin (o +53 )-ESESS 53 .) 4dok ij i j k ij 1 J in lj ( .36)

for k=l,2,....,m

and

dvi 1;

8 - B. E. -E. C 5. .+ - .. =33; j=1 ij(J 8) os ij B.lej (C036Slj Cosélj)

#1

If s s
B .(E. Cos 6..-E. Cos 6..) for k=m+l,....,m+N

j=1 1] 3 13 J 13
(4.37)

#1

It could be concluded that [6):

V ..

and the value of‘Q by comparing (4.4) and (4.38) is:

9- ’ E-Im+N)(m+N) . (4-39)

Having found the matrices g and Q for the Moore-Anderson

theorem, the next step is verifying the positive realness of

matrix Z(s), defined in (4.6) as:

5(8) = (flst)fl(s) (4.6)

Substituting for g and Q and fl(s) in (4.6):
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l -1 -1

<<§+s>rtsifm .4 2) 0

0 s[slfg]-l 51(8)

EIIS) 0

0 ‘§2(s) (4.40)

Since 5(3) is block diagonal with diagonal blocks 11(5)

and E2(s), each one of them can be looked at separately.

It is obvious that conditions (4.6.a) and (4.6.b) hold

for 51 and 32. Condition (4.6.c) holds under the condition

q>mi/d and Bi>o for i=1,2,....,N.[6]

i

4.3 Construction of the Lyapunov Function

It could be shown that it is possible to find matrices

H and Q to satisfy the Moore-Anderson theorem condition such

that a Lyapunov function of the form:»

V(X) = -;-x' g x + vl(g) (4.7)

can be constructed, where P is a positive definite symetric

matrix satisfying 4.8 and 4.9 and 4.10 and has the form:

31 0

g a 0 32 (4.41.a)

L and we in 4.8 and 4.9 and 4.10 are auxiliary

matrices.

Considering the fact that Z(s) is positive real and

recalling Lemmas 4-A-3 and 4-A-4 and results of 4-A-1 from

appendix 4-A, 2(3) + Z(-s) can be factorized as:

Z(s)+Z'(-s) = Y'(-s)Y(s) (4.41.b)
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where Y(s) has the minimum realization (A,B,L) i.e.

1
Y(s)-Y(m) = L'(SI-A)' B (4.41.c)

and

W0 = we) (4.41.d)

The matrix fll(s) in (4.34) can also be written as:

_ ’ -1

where:

0 K' o g-

A a o -M‘1D B . M-lT d = o
_1 .. _. I ..1 _ an E.

(4.43)

It is trivial that 912180 and 2412130 and so from (4.8)

and (4.9) and (4.10) the following matrix equations hold for

21:

931.121 + 2151 = -_1_I_._'1 _<_ o (4.44)

9—121 3 9.1931 + 5'1919'1 (4.45)

Expanding (4.44):

   

P11 312 ° 35' ° 0 P11 312
-1 + -1 =

2.21 2.22 0 ‘5. E E. '31 9. P21 322

ro P K'-P M-lD 1 'L ‘
—11— -12— - -11

= - [L' L' ]
_ -1 _ -1 _ -1 —-11 _ 12

K311 5. 2321 £21§'+§£12 322$ P. 5 £22 £112

a _ E11 E'11 £11 9312

£12 11'11 £12 9'12 ”'45)

Considering (4.46), the following equations are found

to hold:



L.

L 11—11

and:

2.11 E."

2123' +

103

0 => 211 = o (4.47)

MID = L' a o
-12- - —11— 12

-1 -1 _ _
E 312’2225 P. " L“. 2 E22 ’ E12E'12 (4-43)

Evaluating the component matrices in equation (4.45)

"-1

E11 E12 .. .T.

P a a P “'1 M1 T (4 49)
—l-l —12 -22 —22 — - '

§_(N-l)m l/q _I_mm 0 a l/q-g

gag} 0 0 0 0 (4.50)

and using the property of E §_= 3

0 0 g_ I 0 0 0

-1 8 3

4321931 5. :4 2 0 0 .I. 5.9 2 WM)

hence the equation (4.45) becomes:

-1

2.125 1 E/q

-1 a

and so:

-1 _ l

P M'1 T = T (4 54)
—22- — — '

While P22 is

expressed as:

-1
(322.!

NxN and symetric and T is Nxm (4.54) can be

)_'r_=o-Nxm (4.55)
-NxN

The solution £22 is obtained by multiplying (4.55) by gpto

obtain
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Z(El‘lxm = 9Nxm (4'56)

and then solving it for Y =

1 - g [3221fl (4.57)
2qu]

Y is an unknown symmetric matrix (NxN). P22 is then

obtained knowing the solution for Y. The procedure for

determining Y is now discussed.

Considering the structure of matrix 3, each column

contains only two nonzero elements, 1 and -1. This shows

that all elements on the same row of Y are equal, and since

Y is symmetric it follows that all elements of Y are equal.

Hence a necessary and sufficient condition for a symmetric

matrix Y to be a solution of (4.56) is that it has the form

YauU, where )1 is'a scalar constant and U is an NxN matrix

with all its elements equal to 1.

Now 5 gezfl-lfg, is symmetric so from the above discus-

sion

3 -1- =X 53225 5 no (4.58)

and:

-1
E2222! §+ 112 (4.59)

-1

£222 11!! 2+1. (4.50)

-1

322 3&3“! Q! (4.61)

Since 312 is not symmetric consider (4.48):

-1 a

£115. ‘ 2.125 E 9. (4.62)

and

-l

5515' 12.13.1214 2=9. (4.63)

Since 5 £11 13' is symmetric, then 5 _P_12 5'12 is symmetric

from (4.63). From (4.53), it is apparent that



-1 _ l _ 1

hence:

-l l -1

Matrix 5 glzg‘lg-égis symmetric since 5 3125-12 is symme-

tric. Multiplying both sides by 251:

-l -1 l -1 , a

and following the same argument as before

_¥_ 2 (I_(_ 2125 Q qD)D 02 (4.67)

and thus:

1

531235-‘+ 9.9.! (4.68)

-l

q

The solution for all could therefore be concluded as:

..1.£125 2 q . 2+ 9232 (4.69)
5 £113.. ' K

In the above equations u and D are nonnegative scalars

and g is an NxN matrix with all elements equal to 1 and

satisfying the following inequality:

2(D-M/q) + (u-p) (D U M + M U D) 3_0 (4.70)

The inequality (4.70) is originally obtained from an assures

satisfaction of the following inequality:

£151 + 5'31 _<_ o (4.71)

Considering the right hand side of (4.46) and recalling that

L - 0, (4.71) would reduce to:
11

-L 0 (4.72)
12L'12 5-

Now by comparing the left hand side of (4.72) and right hand

side of (4.46) it could be concluded that the following

inequality should hold:

-1 -1

321‘“ +5312 "2.22! 9.7" 02225.0 (4.73)
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Since the element 32110 has not been defined yet at this

point it is necessary to find the solution for £215"

From (4.46) recall this equation:

_ -l

52.11 ‘5 9.2.21

multiplying (4.74) from the right by K' and taking the

3 o (4.74)

second term to the right hand side:

-1

52115.. = fl 2.2.213... (4.75)

Substituting the result of (4.69) in (4.75):

l -l

a-2+DQ!Q'E 9.3215. (4°76)

multiplying (4.76) from left by 2‘15:

5.61- + g g Q =- 221 5' (4.77)

now substituting (4.77) and (4.68) and (4.54) in (4.73):

Z(Q-Q/Q) + (Ll—'0) (2214 + g g Q) g 0 (4.70)

The following discussion gives the condition for (4.70)

to hold when it is equal to zero.

Let u* - u-p, and consider:

2(2-§+u* (29§+§92) =0 (4.78)

then

.1... _M -1 =_

2n ‘2 a) (2.2!!1‘EEE) in“, (4.79)

Since 11* is a scalar and the maximum rank of Q g 11 +

91 U Q is 2, consider all the first and second order

equations in terms of 11*. The matrix i— [p_ - %]-1[ ]_.')_ g E +

g g Q] has the form:
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F
201141 D2M1+M2Dl ...... MnDl+Dan

D.- . - -1 El) 2101 M16 ) 2(Dl Ml/ )

1 -1 q
7(0-5) (DUM+MUD)= q

q
M1D2+D1M2 2132M2 ..... . M D2+M2Dn

2(1)2 M2/ ) Z(DZ-Ei) 2(02-53)

f q q : q

M............. 2.4:.Lu
2(Dngg) (ON-EH)

. q q

(4.80)

Since the rank of equation (4.80) is 2 there are only

two sets of equations in terms of 11* that should be con-

sidered in (4.79). The first set are obtained by setting

each diagonal element of the r.h.s. matrix in (4.80) to 1.

These equations are

*

Dl"1" + 1 = 0

ll

0DNMNu* + 1

D -M
N Nél

The other set are the second order equations that are

the determinant of block diagonal 2x2 matrices in the r.h.s.

matrix of (4.80). These N-l equations are of the form:

 



108

 

 

 

2 22
(D M -D M) *.. 2 2 2 2 1 2 2 l )1u - - - =

(4D102M1M2 ZMleDlDZ 02 M1 M2 D1 )_1 4(D -M )(D _M

4(1) -M)(D-M)
l—l 2"21 1 2 2 q q

q q

2 2
-(D M -D M ) u*

2 3 3 2 -1=o

q- . Ei-

(N-l) terms

Adding these equations the following quadralic equation in

i* is obtained

 

 

N‘l N 2 N D.M.

_u*2 Z Z (DiMi DiMi) "’ (N’1)+u* Z ———Df_:l.+N=0

i=1 j=i+l 1(Di-lg.) (Dj-Mj/ ) 1:1 1 _i

E_ q q

(4.83)

N-l N (D.M.-D.Mi)2 * N DiMi

u*2 ITi—l——%T—— -u 5 D.dM -130

_— q

q q (4.34)

If u* lies between two roots of the solution of the

quadratic equation, the above inequality holds.

When the damping torques are uniform u* reduces to

“o where:

q) (4.85)

-1:
0
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Having found 21, the following is a description of

determining g2 of matrix 2.

Recalling the transfer function W2(s) from (4.34)

-1

912(3) 3 Q'2(S_I_"A2) 5.2 (4.86)

where:

A2 a ..QNN’ B2 ’ éNN' Q2 ’ lNN (4°36°a)

Since §2(s) is positive real, using Lemma 4-A-3, 22(8) +

2'2(-s) can be factorized as

22(5) + Z'2(-s) = 1'2(-s),¥_2(5) =

s/IB. s/IB.

 
 s(s£fa)-l §|+ S‘Sl11)-1 §'= diag (s+ail)' diag (s-ail

and so:
'

3/78. (4.87)

Y2(S) a diag (s+ail )

Considering Lemma 4-A-4[14]. Y2(s) has the minimal reali-

zation as following:

-1

solving (4.88) for £2:

L2 = -diag (ff—ai/ ) (4.89)

B.
1

But L2 and P2 are related as:

3252 + £222 = ‘EZE'Z
(4.90)

By solving (4.90) with (4.86.a) and (4.89), P2 is determined

as:

-1
P2 = a8 (4.91)

The Lyapunov energy function can now be found by

substituting £1 and 2 into (4.7):
2



llO

    

311 E12 0 Er

V(X)=%[§'r'9-"AE']' 15’21 P22 0 Q + V1(9_) =

0 0 P A

. ‘Zj _ j

1 . 1 ,

76 (9/ +7 292): +57 (M/q+PBQ_l~_1)_Q

+ 1 '
1 I ‘1

2 9’. (E + u! 2 EM». + 24.5.1 _ ii éfi + V1(o) (4.92)

The term 1/q was introduced initially to avoid pole and

zero cancellation in (§+Q_s)§_(s). Now that the energy

function is obtained, setting q -—-°° will cause all the terms

that are factors of 1/q to vanish. Substituting for V1(0),

from (4.35) and using the results of Appendix 4.8 in (4.92)

will result:

VE=T——l 1% £1 MM (w-w)2+l(p*-u)(§ Mm)2

gmi i=1j=113 13 7 "i=11L1

i=1

N N
l s 2 1 s 2

+ p 2 (D.(5.-6.) + M.w.) + 2 (E.-E.) _
7 [i=1 J. i 1 1. 1:} 71:1 1 1 /(x3 x

N N
l s s s

z z - . -+ 7 i=1 j=l Bi]. EiEj (Cos Sij Cos 613” .2- (sij 51].) EisEj Sin 6.1].

1 ,
-§- (Ei-E.Sj)(E~33.) Cos 65d] . (4.93)
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l

where “o = - XE:

If damping torques are uniform, )1* equals “0 and the

second term in (4.93) vanishes. ()could be chosen zero to

simplify the form of energy function. Also if damping

torques are un1form or zero and with; mo = ZMiad/ the

energy function is: 2 i

N N N

_. 1 2 1v1: — 51) M. (cu. m) + 2 g: 32 Bij((EiEj(Cos<5:j-Coséi.)

1 =1 3

_ _S SS . S_ _s _s

(aij sij) EiEjBij S1n aij (Ei Ei)(Ej Ej) Cos dij)

(Ei“E32)

l//(xdiw
d)i (4.94)

The only task left in this derivation is to show that 3;:

for VB defined in (4.94) is negative.

Considering equations (4.12) and (4.13) and (4.15) and

(4.16):

N N
dVE s .

= Z 2' B. E.ES 6 - .E. s 5.. w.-w.HE— i=1 j=1 ij(l j Sin ij El 3 1n 1]) ( 1 J)

N N SES S

- Z 2 B E. ' 6.. - E.E. S' 5.. w.-w.

1-1 j__1 1j(Ei 3 Sin 13 1 J 1“ lJ)( 1 3)

N dEi 63 5

+ Z Z - E. ..i=1(a——) j=l Bij(EjC°S ij 3 Cos 13)

N dB.
2

- z ( 5/dt) _

1-1 /(Xdi x'di) (4.95)
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Equation (4.95) has been proven to be true in Appendix 4.C.

Hence:

dVE Iq 2
..-.--X T’ ~(dE. ) \-

a—— . d _ .t, 1:1 01 b/dt /(xdi x di) (4.96)

Since the right hand side of (4.96) is always negative, VB

is derived Lyapunov function for the specific power system.

Now that the Lyapunov energy function is derived, it is

time to drop the ficticious generators connected to the load

buses. This could be done by setting €—-- 0. The

differential equations become algebraic equations

N

s s . s .

2 3.3.3.. 5 5.. - 3.3.3.. S1n 5.. = o 4.97)
j=1 1 3 13 in 13 1 3 13 13 (

N s s

B.. E. Cos 6.. - E. Cos 6.. = 0

§=1 13( 3 13 3 13) (4.98)

and

s
31:31

where B? can be a function of time. Since

N s s . s . 4 9

Pmi = €31 EiEjBij Sin 6ij 1-l,....Ng ( .9 )

N 5 S s ' 4 100

N (4 101)I . = 2 B..E. Cos 6.. .

d]. j=l 1] J 1]

These algebraic equations specify a constant power real

power load power from (4.97) and (4.100) and a constant

current reactive load model since from (4.98) and (4.101)

8-

Idi - Idi
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Since the transient reactance of the fictitious generators

was omitted from the model entirely, these terms do not

appear in the energy function, letting E -- 0 the inertias

are

M1 = 0 for 1=Ng+1: Ng+2,....,N

and the susceptances

xdi xdi for i=Ng+1. Ng+2,....,N

N N N

1 9 2 l 3

VB = - Z M.(m.-m ) + — 2 Z B..(E.E.(Cos 6 .-Cos 6..)

2 1:1 1 1 o 2 1:1 j=l 13) 1 3 13 1]

s s s . s _ s _ s s
- (513 Gij)EiE Sln 5ij) (Ei Ei)(Ej Ej)Cos 5ijfl

s 2

1 29 (Bi-Bi)
+ 7 ——+——T—

(4.102)

The energy function matches the energy function

developed in (3.35) if the flux linkage term (last term is

in 4.96) and the real power load term is assumed constant in

(3.35). This energy function can be written as
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8

VB = Z W

i=1 1

where

N

w = 1 1g M (m -m )2 (4 103)
i 7 . i i 0 °

1=l

N

g 2 2 32 s2 s s s 3

W2 - iglkEi +Vi -2EiVi Cos (61-81))-(Ei + Vi -ZEiVi Cos (61-61))

_1_
2x di - (4.104)

N N ‘

1 s s s s

W = - — Z Z B..(V.V. Cos (8.-6.)-V.V. Cos (8.-8.))

3 2 i=N +1 j=N +1 13 1 3 1 3 1 3 1 3
9 9

(4.105)

N5 N9 Riv:

g _ _ s S _ _ _ S —T—" o S_ S .

W4 2. (6 61) Pmi E. (<51 61) xzdi Sin (61 61) (4.106)

1—1 —1

N N N

. s s

w = -z (e -e?) 913 = -z (e.-e?) ((2 v?v?s.. Sin (9 -e.))

5 1=Ng+l 1 1-1 1 1 i=1 1 3 13 1 3

s s
E V.

i 1 . s s
+ i-rd—T- Sln (Bi-61)) (4.107)

1

PB 32 32 s s s 3

N6 = +1_ -((Ei +vi -2EiVi Cos (61-81))

1—1

s s s s s s l

N N V

W7 = + 2 z Viv; Bij Cos (GE-8:) (—§ - 1)

1=Ng+1 3=Ng+1 Vi (4.109)

s 2

N (E.—E )

w _ 1 £9 1 _11 (4.110)

8 - 5 1:1 ’51 xd1
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The terms Wi can be associated with the following

1) W represents the kinetic energy and W repre-

3 nts the magnetic energy stored in the

transient reactances of generators.

2) W3 represents the magnetic energy stored in

transmission lines and transformers.

3) W represents the position energy due to angle

displacement of generators.

4) W represents the position energy stored in

tRe real power of the loads.

5) W is the energy due to the reactive power

pébduced by the generator and the energy

stored in the transient reactance.

6) W is the magnetic energy stored in the

rZactive loads.

7) W is the form of kinetic energy and is due to

consideration of flux linkages.

The terms W2, W3, W4, W5 and W6 and W7 are all the

different components of the potential energy of the

generator. 1

The procedure followed in the development of this

Lyapunov energy function could be utilized to produce a

topological Lyapunov function for the case where

l) the synchronous generator model is more

complex and includes amortisseur effects:

2) excitation system models are included;

3) power system stabilizer models are included:

4) governor turbine energy system models are

included

as long as a constant current reactive and constant power

real power load models are assumed. The development of

Lyapunov functions for the case where general real and

reactive load models with constant impedance, constant
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current, and constant power components would require the

development of a different construction procedure than were

used in this Chapter.

4.4 Simulation Results

The Lyapunov energy function derived as (4.97) is

tested on the 39-bus, 10 generator system of New England.

The schematic of this network is given in Figure 4. The

tests have been performed on two fault cases. The fault

cases considered is a fault on line 28-29 and a fault on

line 14-23 where in each case the line is removed to clear

the fault.

1) Fault on Line 28-29 -

The fault occurs on line 28-29 at t=0 and the critical

clearing time has been determined by iterative simulation

runs to be .21 seconds. Figures (l3.a) and (14.a) show the

variations of angles of generators which are close to

faulted line. As can be observed in (14.a) generator 9 is

the first generator that loses synchronism and thus would be

called the critical generator for this fault.

Figures (13.b) and (14.b) show the total and potential

and kinetic energies for both stable and unstable cases. In

both cases the kinetic energy at the time that fault is

cleared is very large and the potential energy is very

small. The kinetic energy gradually decreases and the

potential energy increases, but in the unstable case when

the generators lose synchronism the kinetic energy has a
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sharp jump and continues increasing due to loss of synchro-

nism. The total energy in both the stable and unstable

cases is nonconstant because of the damping caused by

generator voltage variation.

Figures (13.c) and (14.c) give the three different

components of potential energy. It shows that in the stable

case energy due to generator angle displacement decreases

until a minimum is reached and then it starts increasing

again, but in the unstable case it is always decreasing.

The fact that generator angles continue increasing with

respect to the stable equilibrium point justifies this

behavior. The energies due to real load power and

transmission grid in the stable case have a maximum and then

decrease. This is caused because the load bus angles and

voltages oscillate around stable equilibrium point. In the

unstable case, the continuous increase in angles cause these

energies to increase for a time and later drop when the loss

of synchronism occurs (when bus angle differences across

particular branches exceed 360°). The flux linkage and

reactive load energies are shown in Figures (13.c) and

(l4.c) for both stable and unstable cases. These energies

are relatively small compared to other forms of energies.

ii) Fault on Line 14-23 -

The results of this test are the same as case (i). The

angles of generators and different components of energy for

stable and unstable case are shown in Figures (15) and (16).
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Fig. (13.a) Variation of generator angles for the stable

case where the fault occurs on line 28-29, the

fault is cleared at 0.2 seconds and line 28-29

is removed.
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Fig. (13.b) Variation of potential, kinetic and total
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(13.c) Comparison of different components of potential

_
3

energy for the stable case when fault occurs on

line 28-29, the fault is cleared at 0.2 seconds

and line 28-29 is removed.
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Fig. (13.d) Variation of flux linkage and reactive load

energies for the stable case when the fault

occurs on line 28-29, the fault is cleared at

0.2 seconds and line 28-29 is removed.
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Fig. (14.a) Variations of generators angles for unstable

case when the fault occurs on line 28-29, the

fault is cleared at 0.21 seconds and line 28-29

is removed.
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Fig. (14.b) Variation of potential, kinetic and total energy

for the unstable case when fault occurs on line

28-29, the fault is cleared at 0.21 seconds and

line 28-29 is removed.
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Fig. (14.c) Comparison of different components of potential

energy for the unstable case when fault occurs

on line 28-29, the fault is cleared at 0.21

seconds and line 28-29 is removed.
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Fig. (14.d) Variation of flux linkage and reactive load

energies for the unstable case when the fault

occurs on line 28-29, the fault is cleared at

0.21 seconds and line 28-29 is removed.
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Fig. (15.a) Variation of generator angles for stable case

when the fault occurs on line 14-33, the fault

is cleared at 0.23 seconds and line 14-33 is

removed.
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Fig. (15.b) Variation of potential, kinetic and total

energies for the stable case when the fault

occurs on line 14-33, the fault is cleared at

0.23 seconds and line 14-33 is removed.
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Fig. (15.C) Comparison of different components of potential

energy for the stable case when fault occurs on

line 14-33, the fault is cleared at 0.23 seconds

and line 14-33 is removed.
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Fig. (15.d) Variation of flux linkage and reactive load

energies for the stable case when the fault

occurs on line 14-33, the fault is cleared at

0.23 seconds and line 14-33 is removed.
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Fig. (16.a) Variation of generators angles for the unstable

case when the fault occurs on line 28-29, the

fault is cleared at .24 seconds and line 14-33

is removed.
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(16.b) Variaton of potential, kinetic and total

2‘.)

 

energies for the unstable case when the fault

occurs on Line 14-33, the fault is cleared at

0.24 seconds and line 14-33 is removed.
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Fig. (16.c) Comparison of different components of potential

energy for the unstable case when the fault

occurs on line 14-33, the fault is cleared at

0.24 seconds and line 14-33 is removed.
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(16.d) Variation of flux linkage and reactive load

energies for unstable case when the fault occurs

on line 14-33, the fault is cleared at 0.24

seconds and line 14-33 is removed.

 

TIDE IN SECONDS

 

    
llACTM DAD OHIO?



134

APPENDIX 4‘. A

4.A.l) Minimum realization of matrix Z(s) in (4-6) - expanding

Z(s) with respect to A,B, and C:

Z(S) = (H+Qs)W(S) =

l l
B+QC’((SI-A)+A)(SI-A)- B

= QéB+(Né+QéA)(SI-A)-IB

NcIsI-A)'

if Z+m Z(w) = QcB so:

Z(s)-2(a) = (Nc+QcA)(s1-A)'1B

thus the minimum realization of Z(s)-Z(m) is:

(AIB'CN’+ A’CQ’)

Lemma 4 .A. 2 [14]

Let Z(s) be a matrix of rational transfer functions

such that 26”) is finite and 2(3) has poles which lie

in ReS<0, or are simple on ReS=0. Let (A,B,C) be a

minimal realization of Z(s)-Z(m). Then Z(s) is posi-

tive real if and only if there exists a symetric

positive definite matrix P and matrices W0 and L such

that:

PA + A’P = -LL’

PB = C-LWO

wgwo = 2(a) + z’(w)

Lemma 4.A.3 [14]

Let the nxn matrix Z(s) be positive real and suppose

that 2(3) + Z’(-s) has rank r almost everywhere, then

there exists an rxn matrix Y(s) such that

2(3) + Z’(-s) = Y’(-s) Y(s)

Lemma 4.A.4 [14]

Let Z(s) have a minimal realization (A,B,C) and Z and

Y be related as in Lemma 4,A,4,Then there exists a

matrix I.such that (A,B,L) is a minimum realization

for Y.
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APPENDIX 4 . B

In this Appendix an expansion for each term in (4.92)

is presented:

4.8.1 Term w’P w
22

The solution obtained for P22 in Chapter 4 is:

P22 = M + )JMUM (B-l-l)

Substituting for M and U

r1414101412 uMle ........ leMN -1

P22 8 uN}M2 .. ........... ~........... MMZMN

3 2
“M1MN ...... . ................. MN+uMN (B-l-Z)

  
Substituting for P22 in m’Pzzw the following form will be

obtained:

. _ 2 2
szzw-uml ml +M1M2mlw2+MlM3wlw3+MlM2wlw2

2 22 2

+112 “2 +M2M3“’2‘”3+M1M3‘”1“’3+M2M3‘12“’3+M3 “3 +

+ .......... +MN2wN2)+(Mlm12+M2m22+ ..... +MNwN2)

(B-1-3)

But u=p*+p, substituting this value for u in (B-l-3) and

rearranging it.
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, y 2 2 2 2 .... 2 2

2 2 2
+ 2M1M3”1”3+ ‘ '+2MN-1MN(”N-1”N’+(M1”1 +M2”2 +°"'+MNwN ’

2 2 2 2 2 2
= * o oo o o o o.u (Ml ml +M2 wz + +MN mN +2M1M2wlw2+2MlM3wlm3+

2 2
+2MN_1MNwN)+p(Ml ml + +2M _ M m )

2 2 2

+(M1wl +M2w2 + +MNwN ) (B-1-4)

Now considering the last term in (B-l-4) and calling it

  

 

F:

.. 2 2 ..... 2 _ _
F - Mlml +M2m2 + +MNmN (B 1 5)

N

Multiplying and dividing the r.h.s. of (B-l-S) by 2 Mi

i=1 :

N

Z M.

i=1 1

2 2 2 2 . 2 2 2 2
a) no. 0000‘

F: (“1 1 +M1M2‘”1 +' +M1MN‘”1 ’ + (Mlemz +142 ”2 + “2MN”N )

(M1+M2+ ' ' ' '+MN) (M1+M2+o o o o ‘+MN7

2 2 2
+ ..... +(MNleN + ..... +MN mN )

(M1+M2+----+MN) (B-l-6)

Rearranging (B-l-6) and considering the fact that uo=-N__—

Z M.

1:11

2 2 2 2 2 2 _ 2 2 2

F=‘"o‘M1 ”1 +M2 ”2 +’""" +MN ”N ) (M1M2”1 +M1M2”2 +M1M3”1

2 2 2 w 2

+M1M3w3 +M1M2m1 +M1M2°’2 + """ +MN-1MN N )“o
(B-1-7)
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N N

Now adding and subtracting u 2 2 M.M.w.m. to the r.h.s.

oi=1 j=l 1 3 1 3

of (B-1-7) will result: j¢i

N ZuoN N

F=-uo(2 Mim.)- Z Z M..M(O) -(O.2) (B-1-8)

i= 1 1 71 i=1 j=—1 1 3 1 3

Substituting (B-1-8) in (B-l-4):

N N u N N

l 1 2 l 2_ o 2

—wP w- *(2 M.m.) -—uo (Z M. m. ) —— Z Z M.M.(w.-m.) +F
2 22 -2“ i=1 1 1_1 i.i 4 i;l j=l 1 3 1 3 l

1 N N M M (m -m )2+1( *- )(g M w )2+F
=———4N z z 1313 2“ “o 1:111 1

2 M1 1‘1 3‘1 (3-1-9)

i=1

where F =p(M 26 2+---- +2 w ) (B-l-lO)
1 1 1 MN-1MN N

N

_ z M1”i

now let w = i=1

N

2 ”1

i=1

and consider

)1 N N - 2 2 .....1§_£ 2 MiMj (mi wj )2=7r(2M1M2ml +2M1M2w2 +

i=1 3=-11

+2MN-1MN”N2‘”‘“‘111"12‘*’1 2 4M1M3”1”3 '''' ‘4MN-1MN”N-1”N)

_2 N

l 2 2 2 2w — M.w.))

= (2M m +2M w + °°°°°+2 w + -4w(2 1 1
I 1 1 2 2 MN N N M_ i=1

1

i=1

_ 1 g M.(m.-6)2 (B—l-ll)
--§ 1 1

i=1
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4-B-2) Term S’rpllar

The solution obtained for P11 in Chapter 4 is:

K Pll K’= D U D (B-2-l)

The matrix K is:

11(N-1)

'1(N-1)(N-1) (3-2-2)

The left inverse of matrix K is:

-1- -

KL ‘ [0(N-l)l I(N-1)(N-1)]
(B-2-3)

the right inverse of matrix K is:

-1 °1(N-1)

KR g -I
(N-l)(N-1) (B-2-4)

multiplying the right hand side of (B-Z-l) from the left by

Kgl and from the right by K-l, the first row and column of

matrix D U D will vanish and P11 will be obtained as:

2 .......
92 D203 D2DN

6 D ............ D 2 (3-2-5)

Now multiplying the both sides of P11 by 6’r and Sr:

, _ 2 _ s 2 2 _ s 2 .... 2 _ s 2

5: P115;:‘9‘02 (512 512) +D3 (513 513) + +DN (51N 51N)

+ 29 D (a -55 )(6 -5s )+ -----+29 D (5 -a )-(5 -5S )
2 3 13 13 12 12 N-l N 1(N-l) 1(N-l) 1N 1N

(B-2-6)
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Each term of the r.h.s. of (B-2-6) could be written as:

2 s 2

(512‘512 2

22- _ s 2 _ s 2_ _ s _ 3

But since 61 is the reference angle 51-6: could be assumed

to be zero and so by adding some zero terms to (B-2-6) the

form of 5’rPllér would be

’ _ 2 _ s 2 2 _ s 2 ..... s _ s 2
5rP226r— (D1 (5161) +132 (52 52) + +DN(6N SN)

5 s s s

+2D1D2(51-61) (52-52)+ ..... +ZD(N-1)DN(6N-6N) (6N-l-6N-l)

(B-2-8)

Now combining the F1 from (B-l-lO) and (B-2-8) and term

‘ G’rPlzw the third term of energy function will be:

N

%D(Z (Di(Gi-6:)+Miwi))2

i=1

The other terms of energy function of (4.93) could easily

be related to corresponding terms in (4.92).
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APPENDIX 4 . C

In this appendix it is proved that the derivative of

total energy in (4.94) is negative definite.

If the first term is called Vk for kinetic energy:

aVk = 1 g MiM.(wi'w-) (c-1>
Bwi 2 N M .=1 3 3

z i 3

i=1

dm. N

. 1 _ 1_ s s . s _ . _
EE— - Mi gngij(EiEj Sin Gij EiEj S1n Gij) (C 2)

3V dw. N
k . 1 = l s s . s _ . _

‘5; EE‘ E'N' M §=1Mj31j‘313j 51“ 513 EjEi 51“ 51j)‘wi wj)

i=1 1 (c-3)

thus

N BV (1111. dV N N
k 1 k l s s . s . .

Z ——— - = -—— = z z B..(E.E. S1n 6..-S1n¢..)(w.-m.)

i=1 mi at dt 2 i=1 j=l 13 1 3 13 13 1 3

(C-4)

Now considering the potential energy terms in (4.94) and

calling them Vp:

3v -1 N s s. . s

ij jgl J J 3 3

d6.-

—_£1 = — C‘6

dt “1 “3 ( )
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SO

av d6.. N
. 11 _ l X n(EEs Sin GS -E.E. Sin 6.-)(w.-m.)

53g. dt ‘ '7 j=1Bl j j l 3 13 l J
13

and

N .dv d6. N N

Z 332 ' dtil = -% Z 2 Biji(EHE Sin 65 .-E.E. Sin 61-)(w.

1=l ij i=1 j=11j1j l J 3

(C-7)

3V N

555 = §=lBij(Esi Cos 6.:j-Ei Cos dij) (C-8)

Equation (C-8) is obtained from second and fourth term in

(4.94) thus:

N N

g dEi . av2_ z dEi 2 Bi.(E: Cos 6:.-Ei Cos 51.)

i=1 EE‘ aEi j=-1 ‘E’ j=l 3 3 3

(C-9)

Now differentiating the last term in (4.94) with respect to

time and calling the last term V -F'

s
dVF g g dEi . (Ei Bi)

dt 1:1 dt zxdi-xdi) (C-lO)

Substituting for (E.-E:) from (4.13)

dVF N dEi N dEi N

= _ z T’ ( —) _ , -Z 2 B. (E: Cos 68

at i-l Tdoi at /(xd Xdi) i=1 at j--l ij1j

-Ei Cos éij) (C-ll)

Summing equations (C-4) and (C-7) and (C-9) and (C-11) will

give equation (4.95).

l



CHAPTER 5
 

STABILITY CRITERIA BASED ON

REGION OF STABILITY AND INSTABILITY

5.1 Introduction

The research presented in the previous two chapters has

for the first time provided the theoretical foundation

required to develop and theoretically justify stability

criteria for determining retention or loss of stability

given a particular fault, fault clearing time, and line

switching action required to clear the fault. Several

stability criteria and associated methods have been proposed

[18, 17, 7, 2] but could never truly be justified theore-

tically because Lyapunov and energy integral based energy

functions were never developed that

1) described the energy associated with both the

real and reactive current flows in every

branch, load bus and generator in the system;

2) determined the theoretical conditions imbedded

in the Popov stability criterion that permit

characterizing the region of stability and the

region of instability for a power system.

With this theoretical basis a discussion of the region

of stability based on the Popov stability criterion will be

given in Section 5.2. A definition of the loss of transient

stability will also be given. Theorems stating necessary

and sufficient conditions for the loss of transient

142
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stability are established in Section 5.3. The conditions

stated in these theorems describe an estimate of the region

of instability. Although a precise boundary between the

region of stability and the region of instability is not

established and is a subject for future research, a

relationship is established between the region of stability

and the region of instability that allows a more precise

characterization of exactly what conditions are required for

retention and loss of stability.

In section 5.4, a cutset integral criterion is estab-

lished based on the theoretical description of the region of

stability and the region of instability. A brief discussion

of how this theoretical description of the region of

stability for this transient stability model could be

repeated for the classical transient stability model to

theoretically justify the P888 method based on the indivi-

dual machine energy function is given. .A theoretical

justification of the P838 method based on the outset energy

function developed frqm the topological energy function of

Bergen and Hill [7] is also given. This discussion

indicates that the methods of characterizing the region of

stability and instability either directly in terms of

constraints‘on the state variables or indirectly using the

integral criterion in this research relate to stability

criteria developed previously based on simpler transient

stability models.
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5.2 Regions of Stability and Instability for Transient

Stability Models.

A loss of stability for the transient stability model

(4.12) can be observed by noting that the angles for one set

of internal generator and transmission network buses will

continue to increase with respect to the other buses (both

internal generator and network buses). ‘The angle

differences across the outset of branches that connect these

two mutually exclusive bus subsets will continue to increase

and ultimately exceed 360° indicating a loss of transient

stability has occurred. Although one could associate a pole

slippage and a loss of synchronism with an increase in

angles across all branches belonging to some cutset, one

might not always experience the continued increase in angles

beyond 360° normally associated with a loss of stability.

For the purpose of the theoretical developments in this

chapter a loss of transient stability will be defined as a

continuing increase in angles differences across branches in

a outset that ultimately lead at some point in time t** to

Gij(t**) > 360 + afij

for all branch pairs ij belonging to some cutset. The

cutset for which the angles exceed 360° is called the

critical outset and the bus pairs belonging to this cutset

is denoted ije J. It is assumed that this "loss of

synchronism”, that is called a loss of transient stability,

occurs on only one cutset for a particular fault. This

assumption may or may not be true and in no way effects the

theory to be presented.
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.A more precise definition of loss of transient

stability will be given after defining what is meant by the

critical group and stationary group of buses. The critical

group and stationary group are characterized by

1) maximum bus angle differences of less than1A°

for all bus pairs ij in the stationary group;

2) maximum bus angle differences of less than A0

for all bus pairs in the critical group;

3) minimum bus angle differences for any bus ”i"

in the stationary group and any bgs ”j” in the

critical group must exceed 360°+6 j(t) where
1

"‘1’“ fiijm- 5ij(t)}_>_ 360°

E§E§ Sin 6:.
o _ . -1 1 J

513*“ - Sm [W]
J

A model relating the inertial center of the critical

group 5c(t) and stationary group 63a”) is now derived in

preparation for proving the theorems that are to be stated.

The voltage for each generator or load bus is represented by

Bi and the angle by 5i. There is a fictitious generator

connected to each of the load buses with inertia constant

Mi 3 Em. i=Ng+lpoooopN

1

and N9 generator buses with generator inertias M1 for

i=l,2,....,Ng. The N buses are reordered and then divided

into two different groups. A group of L buses is called the

 

critical group and N-L remaining (generator and load) buses

are called the stationary group.
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Group 1 i=l,....,L critical group

Group 2 i=L+l,....,N stationary group

The following center of angles are defined for groups 1

and 2.

L

6 = Z M 6 L (5.1)

c k=l kk/z Mk

k=1

N

5 = 2 M 6 N (5.2)

53 k=L+1 k t//z Mk

k=L+1

and the following center of inertias are defined as

(5.3)

(5.4)

Since load buses have fictitious generators, a diffe-

rential equation can represent the variation in the bus

angle at every bus in the system.

N

M.6.=P.-Z E1 1 m1 j=1 Sin (Si-Sj) (505)

iEjBij

where i=1,2,....,N

Considering (5.1) and (5.2):

 

N F2 Niki l N .

MsaGSa = i=L+lMi sfi=L+1 ' = Z Mi51

2 Mi i=L+l

i=L+l _  
(5.6)
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Substituting (5.5) in (5.6), one obtains:

"'6' N N N

= Z P '2 X EBOBooSi 6.ea sa i=L+l mi i=L+1 j=l i 3 13 n 13

N L 88

+ z z s B B Sin 53.

i=L+1 5:1 1 j ii 13

N N 33

+ 2 z s B B 31 s

i=L+l j=L+1 1 j ij n Gij

N L

- Z 2 E E 8 Si 6

i=L+1 j=1 1 5 11 n 11

N N

-Z Z EBB Sin6.

1=L+1 ,=L.1 i i ii in <5-7)

N N

The terms that are 2 2 ° are zero because they are

i=L+1 j=L+1

the sum of real power in different directions.

Hence the equation (5.12) can be written as:

N L

s s . s
- 2 X E 8.8.. Sin 6..

sa sa i=L+1 j=1 i 3 13 1

N L

- Z 2 E EoBoo Sin6.. (508)

1=L+l j=1 i J 1] 13

Using the same procedure used to develop (5.8), it can be

shown that:

N

Z E.B.B.. Sin 6.. (5.9)

3
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A formal definition of loss of stability for a

topological transient stability model is now given so that

l) a discussion of the region of stability can be

given, and;

2) the theorems stating necessary and sufficient

conditions for loss of stability can be stated

and proved.

DEF Given angles<5(t) for buses in the critical group

and angles 6}(t) for the stationary group, the

system described by (4.14, 4.15) is called

unstable if for t>t*

' - 65c(t) sa(t) ; 0

until at some time t**

61(t**) - 6j(t**) g 360 + 52j(t**) for all ijeJ

where

0 it = - ‘1 s s - 8 ** **
6ij(t ) Sin EiB' Sin Sij/Ei(t )Ej(t )

J

This definition of instability for a power system is

based on the Popov criterion condition (ii) that states

- - s (t)

s s . s _ s
[EiEjBij Sln aij] [6ij(t) aij] 3,0

Although this condition is assumed to hold for all Oij =

§j(t) - 6gj, it only holds for ranges

_ _ O S

n 6ij(t) g aij(t) g sij (5.10)

O O6ij(t) g 6ij(t) g_n - 6ij(t)
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if either Bi (t)Bj (t) < ESE: and Gij Z 0 or Ei(t)Ej(t) >

Ei“E and 5?. < 0

J 13

-1r -5°j(t) <6jm§6°jm

s3
o. t < - 5.1].613363-() 1r 6°j(t) ( )

if 31 (t)Ej (t) > EsEj and 5?j > 0 or Bi (t)Ej (t) < EiE? and

s
aijli 0

and

- fl - 6°. < j(t) < 1r- 6°. (5.12)

13 -1j

' . = 6.. . 6?. 6?. = 6? - 6?1f El(t)Ej(t) E:Ej and 1J(t) 13 where 13 1 J

Gij the angle difference at buses i and j at

the post fault stable equilibrium point

ES voltage at bus i as the post fault stable

equilibrium point

Thus the system is not asymptotically stable in the large

but is only stable if the state 5TH) = (£T(t)£T(t)§_T(t))

satisfies 6(t)=gl§(t) eS(t) where

6 6 6 6 6
i = (512 613 IN 21 23°°°° 2N""" N-lN)

and S(t) is the angle subspace given by constraints (5.10-

*

5.12) for all tltc.

A more formal definition of the region of stability is

9(t*) = _C__:_c_ (t*) e S(t*) (5.13)

g(t*) = 0 (5.14)

E(t*) £5
(5.15)



150

for some times t*_>_tc where g? is the voltage magnitude at

the post fault equilibrium point. This is a very conser-

vative but mathematically precise manner of specifying the

region of stability because it constrains every element of

the state and places these constraints at a specific time.

The formal definition of the loss of transient

stability is consistent with the formal definition of the

region of stability because

1) the criterion that a loss of stability has

occurred requires that the angle exceed

360+6E t) for all ijeJ at some time t** where

the boundary of the region of stability is

51j(t):18°°'61j(t) at t* for all pairs ijeJ:

2) both are based on the Popov stability

criterion.

5.3 A Necessary and Sufficient Condition for Loss of

Transient Stability

The theorems will now be stated and proved to establish

necessary and sufficient conditions for loss of stability in

the power system. The conditions stated in the theorems can

be applied at any time tZtc+ and if satisfied indicate the

system trajectory for that fault, clearing time, and line

switching action will be unstable or if the system is

unstable indicate that these conditions had to hold at some

* ....
t _>_tC

Theorem 3

Given that

1) the maximum bus angle difference A between bus

pairs in the stationary and bus pairs in the

critical group is A=90°;
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2) the angle differences across branches in the

critical cutset are all positive in the post

fault equilibrium state

6..(t) Z 6§11 o . all ijEJ

(5.16)

3) IE. (t) - E.s|<

then a sufficient condition for loss of transient stability

is

[Ei(t)Ej(t)Bij Sin 6j(t)--e.”aa. Sin 6?.1161j<t)—6§j1 < 0
i j ij 1]

(5.17)

and

6 (t)-6 (t) > e > o i=1,2,....,L

c 3a ‘ 2 j=L+1,L+2,....,N

(5.18)

for some instant t*_>_tc where 5%. and E: are the bus angle

differences and voltage magnitude of the post fault stable

equilibrium point.

12:29.1

The differential equation describing the relative

motion of the equivalent machines representing the critical

and stationary group of buses is

6 6 1 .l 1' 1 6
- t=--+ Z B..E.tE.tS' --tc(t) sa( ) (MC "daa;fl.j=L+1 13[ 1( ) J( ) in 13( )

- E.:83 Sin 6s. ] (5.19)
J 1j

Angle differences satisfy

6i.(t) - 63. 3 o .i=l,2,....,L

3 j j=L+1,L+2,....,N

by the definition of the stationary and critical group.

Thus, from condition (5.17)and (5.16), it is clear that
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. S
B 0 I u '-lJ[81(t)BJ(t) Sln 6. .(t) B.faj Sin 6.:j] < o

i=1,2,....,L

j=L+1,L=2,....,N

. * -.. *

and 5i(t ) %(t ) Z 0.

Since 5 (t*)-5 (t*)>0 and 3 (t*)-5 (t*)>0 from 5u10
c sa - C sa ‘

6c(t)-6sa(t) will increase monotonically and exponentially

until for some t1 and some pair ijeJ

o
61j(t1) Z 360 + 6ij(t1) (5.20)

Although one branch ijEJ crosses the threshold (5.20)

not all branches must necessarily cross threshold (5.20) if

sufficient deceleration is experienced after time t1. A

branch causes accelerathma of the critical group based on

(5.19) over the range

180°-6§j(t) g 6. j(t) < 360° + 5°j(tt)

since

3 s s
B1jEi (t)Ej (t) Sin 6i j(t) < BijBiBj Sin 6.1j

and causes deceleration over

o+60. .. “6?.360 i3(t) g 613(t) g 540 lJ(t)

since

. Es . s
BijEi(t)Ej(t) Sin 6i j(t) > BijagE j Sin 6ij

as can be observed from Figure 17.

This analysis is similar to that performed for the

equal area criterion based on Figure l.a in Chapter 2. Some
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branches may cause deceleration on the critical group with

respect to the stationary group before a time t** when all

generators exceed the instability region threshold 360°+

62j(t). The basic question is whether the acceleration

energy due to each branch ij picked up as angle 6 (t)

. ij

increases from 180°-6Ci>j(t) to 360+6:j(t) will exceed the

deceleration energy caused by excursion of angle 6i (t)

beyond 360°+6:j(t). If the acceleration energy exceedsJ

the deceleration energy on all branches up to t** when all

branch ijEJ exceed y

6ij(t) 3 360° + 6§j(t) (5.21)

then a loss of stability will occur since all angles on all

branches ijEJ exceed (5.21) and (56(t)--3 “(112° for all t

satisfying t*$tgt**.

Since the bus angle differences in the stationary group

and the bus angle differences in the critical group do not

exceed A=90" then

max { 6.(t) }- min { §.(t)} 5’26 180°

ijeJ 13 ijeJ

Moreover, if all angles exceed 360+ 6?j(t) where branch iojo

satisfies

° ** - _ O **
m1n{ 6ij(t ) 360 6ij(t )}

1JeJ

= 6. . (t**) - 360 - 69 . (t**) = 0

030 1030



155

then the maximum bus angle difference satisfies

max 61.(t**) 5 6i . (t**) + 26 + 360°

ijEJ J 030

540° + 6i . (t**)

030

The energy A2ij defined by

540 + 69 . (t**)

1030

= . - S S .

360° + 6:j(t) (5°22)

is always less than

360° + 60j(t)
1

= B.. 3.3. Sin 6.. - E? 5 ' .. ..Alij Jf 1]( 1 J 1] 1E] S1n 61])d613

180° — 6?.(t)
1]

(5.23)

assuming Bi is sufficently close to B? i=1,2,....,N from

observing Figure 17 because 6ij>0 ijeJ.

Thus, the net acceleration energy for each branch ij

will exceed the deceleration energy at t** so (5.21) is

satisfied. Thus, the conditions for the loss of transient

stability are satisfied and the theorem is proved.

The above theorem only concerns the case where

Gij Z 0

for all ijsJ on the critical cutset. Although this

restriction limits the generality of the result, a cutset

where some or all the angles 6:]. ijeJ are negative is
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less vulnerable to a loss of synchronism than if Gij>0 since

the area A3ij defined by

800-st

A3ij = 6j:12:1j(ESE: Sin 6'1j - E.:3: Sin 6ij) d6ij

that represents the deceleration energy from the angle

across the branch at the post fault equilibrium point to the

boundary of the region of stability is larger for 61j<0 than

for'5:j>0. The cutset where loss of transient stability will

occur for a particular clearing time and line switching

action is thus much more likely to be a cutset where

51j>0 for all ijeJ than for a cutset where one or all

as
Gij < 0

for ijeJ. Although the case for 6?.<0 may be somewhat less

1]

important, the following theorem establishes a result for

some 6?.(0.

1]

Theorem 4

Given that

l) the maximum bus angle difference A for bus

pairs in the stationary and bus pairs in the

critical group is A =32 48°

2) some or all of the angle differences across

branches in the critical cutset can be

negative in the post fault equilibrium state

6Sj < 0 for some ijeJ

3) [
*
1

I
I

5
Bi _ (5.24)
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4) The angle difference 61 . (t**)=6: . satisfies

030 o o

5.. > 6. . = -A = -32.48° (5.25)

then a sufficient condition for loss of transient stability

is

. s s . s s
[Ei(t)Ej(t)Bi. S1n 6ij(t)-E.B.B Sin 6. lIGij(t)-Gi'] < 0

J 1 J 13' 13' J

(5.17)

and

6 (t)-6 (t) > o i=1,2,....,L

c 5’“ - j=L+1,L+1,....,N

s s (5.18)

for some instant t*2_tc where 61]. and B]. are the bus

angle differences and voltage magnitude of the post fault

stable equilibrium point.

212101

The proof is similar to that in Theorem 3. The

argument that 6c(t)- 63a(t)_>_0 and :sc(t)-:ssa(t)_>_0 for t"‘_<_.t_<_.t1

is identical to that in Theorem 3 where t1 is the time where

for a single pair ijEJ

o _ s
6ij(t) Z_360° + 6ij(t) — 360 + Gij

since 6?j(t)=6:j because 81(t)=B?.

The argument that the acceleration energy Alij on each

branch ijeJ is less than the deceleration energy is depen-

dent on A. In Theorem 3, A=90 but in this case A=32.48°.

All bus pairs ijEJ will satisfy (5.21) at t** when the bus

pair iojoeJ with the smallest angle difference satisfies.

6. . (t**) = 360 + a:

1.030 030
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and the bus pair with the largest angle difference satisfies

6. . (t**) < 360 + 6? . + 2A

1030 — 1oJo

Given that 69 . (t**) = -A from (5.25)

1 J
o 0

then

360°+ZA-A=360+A

.. S S . _ . s

360°+6§.

1]

and

360°+A

S S . . s

Alij + AZij BijEiEj [Sin 6ij Sin 6ij] d6ij

180-6?

J

Since one de31res that Alij-l-AZiJ

(5.26)

(5.27)

.<0 for all ijeJ to assume

loss of transient stability. Since 6ij is negative and

6? . = -A < 6?.
1030 —’ 13

if

A . + A . . = 0

11030 21030

then

Alij + AZij g 0 for all ijeJ.
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Bvaluat1ng A1i . + A2i j in terms of A,

030 o

360 + A

A . . + A . . s s 5 (Sin 6.. - Sin (-A))
11030 21030 - EiEjBij o 1]

180 + A

_ s s _ .
- EiEjBij ( 2 Cos A+nS1nA)

Ali ' + A
030 2i j is zero for all A=A where

o o o

_ 2 _ o . min _ s _ _ 0
tan AO — F" AO—32.48 . Thus 1f ijeJ -6iojo— 32.48 .

and if the bus angle differences within the stationary group

and within the critical group are within A=02.48° the

deceleration energy on every branch is less than the accele-

ration energy on every branch up to a time t** when

5 ** 53 --
ij(t )1; 360 + ij 13€J

Thus, a loss of transient stability is experienced.

Note that since

. O _ 0

min 51' = ‘A - -32.48

ijeJ 3'

and since the angle differences within the stationary group

and within the critical group is A,

S _
max 6ij —A

Although the minimum angle difference cross branches in

the critical cutset for stable equilibrium point might be

smaller than -32.48° and possibly the angle differences

within the stationary and within the critical group could be

larger than 32.48° and a proof of loss of transient

stability still might be obtained, the present result does
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not appear overly restrictive and suggests that in order to

prove a loss of stability one must place a lower bound on

min 6?.

ijeJ J

and one must place an upper bound on the bus angle

differences within stationary and within the critical

group. A necessary condition for loss of transient

stability is now proved for the case where

1j 3 0 for all ijEJ.

Theorem 5

Given that

1) the maximum bus angle difference A for bus

pairs in the stationary and bus pairs in the

critical group is A=45°

2) that the angle differences across branches in

the critical cutset are all positive in the

post fault equilibrium state

6? 3 0 all ijeJ

S

3) Isi(t) - 81' 5, s

then a necessary condition for loss of transient stability

is that there exists a time t* such that

' S S . S S

[Ei(t)Ej(t)Bij Sln Gij(t)-EiEjBij Sln dij][6ij(t)-6ij] < o

(5.17)

and

6 (t)-6 (t) > o i=1,2,....,L

C 33 ‘ j=L+l,L+2,....,N

(5.13)
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where 5:3. and B: are the bus angle differences and voltage

magnitude of the post fault stable equilibrium point.

Proof of Necessity

Given that for all t satisfying t*£t£t** and all ijeJ

6c(t)-6sa(t) ; o

and at t**

** 0 it --
61.j(t ) _>_ 360° + (Sij(t ) for all IJEJ

then from the definition of instability there is a t* for

which

° 6 -' *
6c(t ) 683“: ) > 0

and since the maximum spread of angle differences is 2A=90°

there is a time t* such that

o_ 3 t t - 0 t
180 61j(t ) S 6ij(t ) g_360 6ij(t )

for all ijeJ since

1) 6?.(t) must not vary by more than 90° over all

ij¥J in order for the load flow conditions to

converge:

2) 6..(t) must not vary by more than 2A=90° over

affl ijeJ by assumption.

Thus conditions (5.17) is satisfied at t* since all the

angles lie within the range where the inequality constraint

holds. Since both (5.17) and (5.18) have been shown to hold

at some t*, the theorem is proved.

It should be noted that the above theorems do not offer

help in identifying the critical group: stationary group: or

the critical cutset ijeJ of branches before one simulates a

particular fault. The theorem just states that if certain
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constraints (5.17, 5.18) are satisfied, at some time t*

during the simulation and on some cutset, then a loss of

stability will occur. Note that the bus angle separation

with the stationary group and critical group can be 90° for

the case where the bus angles 6%(t), ijeJ are positive but

only A832° if 6%(6‘) are negative to ensure that the

acceleration experienced when

6ij(t) 3 180°—6‘i’j(t)

is not overcome before all bus pairs ijeJ satisfy

6ij(t) 3 360° + 6‘1’j(t)

The deceleration energy can be greater than the

acceleration energy only if 6%(t) is negative since when

623.01) is positive, the acceleration energy picked up as

angles pass through the band

180° - 6334);) g 6ij(t) $360 + 6‘i’j(t*)

will always exceed the deceleration energy as angles pass

through the band

360 +6‘i’j(t) g 61341:) <_54o - 6‘i’j(t)

If (595°, and 5%20 for all ijEJ, one can assure that

if a loss of transient stability occurs, then at some time

t* one has satisfied conditions (5.17, 5.18).

The constraints imposed in specifying the region of

instability constrain the entire state i(t),g(t) and §(t)

where the region of stability constrain only 5(t) and

specify both Q(t) and §(t). Thus the region of instability

better indicates conditions that cause instability than does
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the conditions that 'specify the region of stability.

Furthermore, given that the region of stability is specified

by a sufficient condition for stability there is never any

way of assessing how conservative it may be but by exhaus-

tive simulation of many fault cases on a single system and

many such experiments on different systems. However, given

that for A532°, one has necessary and sufficient conditions

for loss of stability for both positive and negative values

on 6%.(t) ijeJ, then one can compare the region of

stability and the region of instability to determine how

conservative the estimate of the region of stability is.

Figure 18 shows the region of stability in branch angle

space and the region of instability for the case where J

contains two branches. Note that the region of stability

and instability touch at a point.

Region of

Instability

180-62 j (t*)

1 1 ‘1‘
 

Region of

Stability

  
 

‘\\.

Fig. 18 Regions of stability and instability

in branch angle space.

180-6. .(t*)

1232
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One can say that if the trajectory enters the region of

instability at some t** a loss of stability will be experi-

enced and that if one experiences a loss of stability the

trajectory will enter the region of instability when A<45°

and 62j(t*)30. One can also state that if the trajectory is

within the region of stability for all time the trajectory

will remain stable. Nothing can be stated about stability

or loss of stability if the trajectory enters the area where

one or more of the angle differences satisfy

6ij(t) > 180 - 6fj(t)

but not all of the angle difference ijeJ satisfy (5.10-

5.12). Since one wishes to maintain a sufficient margin of

stability and one knows if all angles exceed (5.10-5.12) at

some time t* a loss of stability results. A prudent

constraint for assuring retention of stability is that no

branch angles 61 (t) even approach the boundary of the

3'

region of stability

6ij(t) 5 180 - 6§j(t) ijeJ

Thus the need to know whether the system is stable or

unstable in the areas where statements about retention or

loss of stability cannot be made may not be important in a

practical sense.

It should be noted that the results of this chapter

have

1) provided a theoretical basis for a region of

instability and its relationship to the region

of stability established from Popov's

stability criterion:
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2) provided a theoretical indication of the

conservatism of the region of stability.

Although the‘ region of stability and insta-

bility do not cover the entire angle space,

they touch at a single point and this suggests

that the conservatimn of the region of

stability is modest. In a practical sense,

its conservatism may be considered small

compared to stability margins desired for

system security with respect to the particular

fault.

5.4 Stability Criteria Based on the Boundaries of the

Region of Instability and Stability

A performance measure

 

1:

v1 =12jea {o6ij(t)fij(6ij(t)) at /tf-to

tf

= fjea J[;(Ei(t)sj(t) Sin6ij(t)-E:E§ Sin dij)(5ij(t)-5?j)dt

tf_to

could be used to indicate if a loss of transient stability

occurs or does not occur as well as the time tc** when the

trajectory enters the region of instability. As long as the

trajectory remains in the region of stability the function

being integrated is positive and the integral will increase

monotonically with time. When the region of instability is

entered the function being integrated becomes negative and

remains negative.

The value of V1, which integrates components of the

Popov stability criterion on a cutset over the interval

t€[t0,t£], depends on the value of tC and the system
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trajectory for this clearing time. The value of V1 for a

particular value of clearing time is denoted as V1(tc). If

tC increases for the case tc<tcc, the measure V1(tc) should

increase since the integrand will be larger in general over

telto,tf]. If tC exceeds the critical clearing time tcc'

the integrand for some portion of the interval [t°,tf) will

be negative. As tc increases for tc>tcc, the portion of the

interval [to'tf] when the integrand is negative becomes

larger and thus V1(tc) decreases. Computational results in

the next chapter confimm that the maximum value of Vl(tc)

should occur at the critical clearing time tc
c

.A second integral that represents potential energy on

the cutset

(t) fij (oij) dt

could also be used to indicate if a loss of transient

stability occurs or does not occur and the time to(tc) when

the trajectory enters the region of instability. If

Ei(t)=E? for i=1,2,....,N, then V2(t) is the outset energy

function

t

s s . . 52
= . . . .. - .. .. tV2(t) I. 813E115):J (S1n 613(t) S1n 61]) d613( )

1jeJ

= - z ESESB [(Cos 6 (t) - Cos 651)-(6 (t) - 6§i) Sin 6??
i j ij ij ij ij 13 13

ijeJ
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This cutset energy function increases monotonically

with increasing fiij

one clears the fault at tcgtcc the measure V2(t) increases

(t) in the region of stability. Thus if

until the trajectory reaches its maximum angular excursion

at tB(tc) and V2(t) reaches its maximum value at tB(tc). If

tC is increased but is less than tcc the value of the

maximum value of V(t)

v2 (t:B (to ))2---- mix {v2 (t)}

increases. The maximum value of V2(t) denoted V* would be

reached if at some point t if

6. . 180° - 6°. 5.2013(1) j ( )

for all ijeJ. Experience has shown that the trajectory very

close approaches this point at tB(tcc) when tc=tcc. A

criterion for stability developed in [23] was that if

V2(tB(tc)) 5 V2*

where

2
V§=ijJBlJlJ{Cos6§+Cos6][6318111633.}

If Ei(t)=B? and in addition there are no load buses so that

N=Ng, then the model reduces to the classical transient

stability model. The critical cutset would correspond to

the branches connecting the internal generator bus of a

critical generator to the internal generator buses of other

generators. In this case, the criterion for stability is

V2(tB(tc)) 5 V2(tB(t*c))
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where t*c is selected based on

max

V2(tB(t*C)) = to V2(tB(tc))

The results in [21] show that the critical clearing time can

be determined with no detected error, i.e. t*cgtcc' This

method is called the PEBS method in [21] and V2(t) is the

potential energy component of the individual machine energy

function.

It is clear that the boundary of the region of stabi-

lity and the region of instability touch at a point in angle

space satisfying (5.28) where the performance measure V2=V2*

and where the slope of S¥2(t)=0. Thus stability criteria can

be established based on observing measure V2(t) as a

function of time for a cutset J rather than checking the

angles 5ij(t) for all ij EJ and all tto determine loss of

stability» It is also clear tht the performance criterion

V2(t) is related to the cutset energy function stability

criterion if Ei(t)=B? for all i=1,....,N and is related to

the PBBS stability criterion for the individual machine

energy function if 82(t)=8? for i=l,2,....,N and N=Ng. Thus

the stability criteria developed based on simpler models is

justified based on the region of stability and region of

instability derived in this chapter.



CHAPTER 6

VERIFICATION OF

STABIILTY CRITERIA VIA SIMULATION

The objective of this chapter is to verify the accuracy

and validity of the stability criteria proposed in the

previous chapter.

The first stability criterion to be tested is based on

the Popov stability criterion. The theoretical results of

the previous chapter indicate

1) that the system will be stable if the Popov

stability criterion is satisfied for all

branches over the entire simulation interval

2) that the system will lose synchronism if one

can find a cutset of branches for which the

Popov stability criterion is violated at some

time t*.

The second stability criterion is based on measure V1

that will continue to increase if the state is in the region

of stability but will decrease sharply after the trajectory

enters the region of instability. The stability criterion

determines the value of the maximum value of V1 for the

interval [to,tf] for each clearing time for which the

transient stability simulation criterion is run. The value

of V which integrates components of the Popov stability
1'

criterion on a cutset over the interval telto,tf],depends<n1

the value of tc and the system trajectory for this clearing

169
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time. The value of V1 for a particular value of clearing

time is denoted as V1(tc). If to increases for the case

tc<tcc, the measure V1(tc) should increase since the

integrand will be larger in general over te[t0,tf]. If tc

exceeds the critical clearing time, too' the integrand for

some portion of the interval [to,tf] will be negative. As

tC increases for tc>tcc, the portion of the interval [to'tf]

when the integrand is negative becomes larger and thus

V1(tc) decreases. Computational results in this chapter

confirm that the maximum value of V1(tc) should occur at the

critical clearing time tcc.

Although these stability criteria were developed for a

stability model that includes a topological network model, a

single axis generator model, a constant power real load

model, and a constant current reactive load model, the

stability criteria will be tested and verified for

a) a single axis generator model, constant power

load model, constant current reactive model;

b) a constant voltage behind transient reactance

generator model, a constant power real load

model, and a constant current reactive load

model;

c) a constant voltage behind transient reactance

generator model, a constant power real load

model, and a constant impedance reactive load

model.

The simulation of transient stability has been

performed for two fault cases on the 39 bus New England

system model. The two fault cases are a fault on line 26-27

and a fault on line l4-33 where in both cases the fault is

cleared by removing the line.
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The first stability criterion is tested by plotting

°ij(t) fij(oij(t)) (6.1)

as a function of time for branches that are geographically

close to the fault location. It will be seen that this

function will remain positive for branches far from the

fault, will approach zero for branches near the fault when

the clearing time is close to the critical clearing time,

and will go negative for branches close to the fault when

t >tc cc' and will reach very large negative values and

oscillate for branches in the critical cutset when tc>tcc.

Although the critical cutset is unknown before the simula-

tion runs are performed for a particular fault to determine

the critical clearing time, it is easily determined from the

simulation results.

The second stability criterion

 

tr

V(‘t )= E B..] [Eo(t)E-(t) Sin 5--(t)

C ijeJlJ to 1 J 13

S S . S S

is evaluated cn14a transient stability simulation of a

particular fault cleared at tc and the critical outset of

branches ijeJ determined based on the results of the tests

of the first stability criterion. The function V(tc) is

plotted as a function of tC and the value t*C for which
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V(tc) has a maximum value should be too‘ Retention of

stability would be predicted to occur for tc<t*c.

Four different fault cases have been presented in the

results that follow:

Case 1) Fault on line 26-27 (flux linkage of generators

considered and constant current reactive load model): Using

the transient stability program the critical clearing time

for this case is determined to be .37 seconds.

By considering the variations of angles of generator

for the unstable case it was observed that the first

generator that loses stability is generator No. 9. This

conclusion could be anticipated before considering the

transient stability programs results because generator No. 9

is the closest generator to the location that fault

occurred.

The variations of Oij(t) f (‘fij(t) for the stable and

unstable case are plotted as functions of time for lines

28-29 and 9-29 and 26-28 and 26-25 and generator 9's tran-

sient reactance in Figure 19 for the first three seconds.

In the stable case the values of Oij f (oij(t)) are

positive and are often close to zero. This justifies the

claim that %j fij (Oij) should be greater than or equal to

zero in the region of stability and should approach and

remain close to zero when tcatcc.

The values of oij(t)f(Oij(t)) are also plotted for the

unstable case when tc=tcc* in Figure 19. The values

oij(t) fij (Oij(t)) are positive for all branches for the



173

first 1.2 seconds at which time the values on every branch‘

become negative suggesting the loss of stability is

imminent. The value of 0ij(t) f (Oij(t)) on the transient

reactance on generator drops to a large negative number,

remains constant for a short period and then begins

oscillating (the values below a certain value were not

plotted and when the curve returns to the range of the

coordinates, the curve is again plotted.)

The large negative and positive oscillations are not

observed on the plots for the other branches and thus the

transient reactance of generator 9 is the critical cutset.

It should be pointed out that after the first large drop in

generator 9's 0.

13'

transformer has a large increase. This appears to occur

f (oij), line 9-29 which represents a

because the transformer is trying to'absorb the excessive

energy of the generator and prevent it from loss of

synchronism.

The measure of V(tc) given by (6.1) was computed for

various clearing times when tf=3.0 and the transient

reactance of generator 9 is the sole branch belonging to the

critical cutset. The value of V(tc) increases as tc

increases. The maximum value of V(tc) occurred at the

critical clearing time determined from simulation results.

The function V(tc) decreases rapidly for increase in tc

above tcc’ These results confirm the accuracy and validity

of these stability criteria as well as the theoretical

foundations upon which the stability criteria were based.
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Case 2) Fault on line 14-33 (single axis generator

model and constant current reactive load model): Using the

transient stability program the critical clearing time for

this case is determined to be .24 seconds.

In this case using the same procedure of case 1, the

pair of generators 2 and 3 were determined to be the first

generators that lose stability.

The variations of 0.. f-- (Oij) for the lines that are

13 1]

close to critical generators and 0;. f.. (Oij) for transient

1] 1]

reactance of these generators are plotted in Figures (21.a),

(21.b), (21.c), (21.d) and (21.a). With the same analogy as

in case 1, the transient reactances of the group of

generators l and 2 are identified as the critical cutset.

The large negative values and the large oscillations

observed on the branches in the critical cutset are not

observed (”1 the other branches. ‘The integral measure

defined in (6.1) is plotted in Figure 22 and again correctly

predicts the critical clearing time. The results of this

case are similar to the results of case 1 and both cases

support the theory presented in Chapter 5.

The values of Oij ij ij) remain positive and

close to zero for the critically stable case transient

(t) f (a

stability. The values of oij(t) f (oij) on most of the

branches go negative for a short period when the trajectory

enters the region of instability followed by a period of

large positive variation. The cij(t) f (Oij) values for the

two branches in the critical cutset go negative, attain a
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constant value and then start oscillating. The magnitude of

the oscillation are large values.

Case 3) Fault on line 26-27 (constant current reactive

load model and constant voltage behind transient reactance

generator model): Using the transient stability program the

critical clearing time for this case is determined to be

.36 seconds. The results of this case are very similar to

case 1 because the models are identical except that the

single axis generator model is replaced by a constant

voltage behind transient reaCtance generator model. The most

significant difference between the cases is that generator 9

does not oscillate near the boundary of the region of

stability in this case but quickly enters the region of

instability. The values of o. f

13'

generator 9's transient reactance are plotted in Figure 23.

ij (oij) for lines and

The integral measure is plotted in Figure (24). These

results show that despite the fact that the model of the

power system in this case is a little different from the

model used in Chapter 5, the theory introduced in that

chapter could also be used in this case.

Case 4) Fault on line 26-27 (constant impedance

reactive load model and constant voltage behind transient

reactance generator model): By using the transient stability

simulation program the critical clearing time in this case

is determined to be .31 seconds.

Despite the fact that the model used in deriving the

theory in Chapter 5 is different from this case the
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stability criteria based cum f ( ) is successful in0.. 0..

13 1]

determining the critical clearing time and the cutset and

the integral measure can accurately determine the critical

clearing time.

The critical cutset, similar to previous cases, is

generator No. 9's transient reactance and the value of

integral measure for this cutset is positive and increasing

as tc gets close to tcc and drops to negative when tc>tcc.

The results of this case are shown in Figures 25 and 26.
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Fig. (19) Comparison of o..f(oi.) for stable and unstable

case when the Eahlt obcurs on line 26-27. .The

fault has been cleared and line 26-27 has been

removed. (Lyapunov energy function)
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Fig. (20) Values of V (t t ) for the single axis generator

model and he constant current reactive load

model for the fault on line 26-27.
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Fig. (21.a) Comparison of o..f(oi.) for stable and unstable

case when the fghlt otcurs on line 14-33. The

fault has been cleared and line 14-33 has been

removed. (Lyapunov energy function)
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f(0 for different lines on

stable and unstable else when the fault occurs

The fault is cleared and line

(Lyapunov energy function)

on line 14-33.

14-33 is removed.
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Fig. (21.c) Comparison of Oi.f(0..) for different lines on

stable and unstable ddse when the fault occurs

on line 14-33. The fault is cleared and line

14-33 is removed. (Lyapunov energy function)
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Fig. (21.d) Comparison of Oi.f(01.) for different lines on

stable and unstable c33e when the fault occurs

on line 14-33. 14-33 is removed after the fault

is cleared. (Lyapunov energy function)
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Fig. (21. e) Comparison Of 0 ) for stable and unstable

case when the fELmltio’ccurs on line 14-33. The

fault has been cleared and line 14-33 has been

removed. (Lyapunov energy function)
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Fig. (22) Values of V1(t ,t ) for the single axis gene-

rator model and the constant current reactive

load model for the fault on line 14-33.

  

 
 

I N
d
_
‘
-
—
o

-
-
-

o
.
q

-
-

_
c
.

-
-
-

.
.
.

0.1 0.2 ‘.

TIME IN SECONDS I

)
t

-4. \ 



185

Fig. (23) Comparison of o..f(o..) for stable and unstable

case where the faultldccurs on line 26-27. The

fault is cleared and line 26-27 is removed.

(Constant current load model)
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Fig. (24) 'Values of Vl(t ,t ) for the constant voltage

behind tran31en€ rgactance generator model and

the constant current reactive load model.
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Fig. (25) Comparison of Oi.f(oi.) for different lines on

stable and unstable ckse when fault occurs on

line 26-27. The fault is cleared and line 26-27

is removed. (Constant impedance load model)
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Fig. (26) Values of V1(t ,tc) for the constant voltage

behind transi nt reactance and constant

impedance load model.
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CHAPTER 7

OVERVIEW AND FUTURE RESEARCH

7.1 Overview
 

An overview of the research performed in this thesis

and its contributions are now provided. A review of the

literature on the development of Lyapunov functions and

energy functions is given in Chapter 2, along with discus-

sion of the equal area and P888 methods for determining

retention or loss of stability.

In Chapter 3, a topological energy function has been

derived from the first principles that retain the network

without aggregation back to generators internal buses

and includes a description of real and reactive power load

models as a function of voltage. This energy function has

been tested on a 39 bus system and the results are presented

at the end of Chapter 3. This is the first attempt at

deriving a topological energy function using the energy

integral method. This topological energy function also

permits both a general real and reactive load model descrip-

tion for the first time.

In Chapter 4, a Lyapunov energy function is derived for

a model that

l) retains the network and does not aggregate the

network back to internal buses;

189
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2) models the real power load as constant power

and the reactive power load as constant

current;

3) models the flux linkage decay in the synchro-

nous machine as well as the electromechanical

component of the machine model.

This Lyapunov function has been derived using the Popov

criterion, the Moore-Anderson theorem [10] and the construc-

tion method of Willems [3]. The last section of Chapter 4

contains the computational test of this Lyapunov energy

function. Although a topological Lyapunov has been derived

previously, it did include flux decay effects in the

generator model and completely ignores both the reactive

load power energy, and the reactive energy produced by the

generators. The Lyapunov energy function can be shown to be

identical to the energy functions derived in Chapter 3 when'

the real load power model is constant power, the reactive

load model is constant current and the generator model is

the constant voltage behind transient reactance generator

model.

In Chapter 5, a discussion of the region of stability

based on the Popov stability criterion and a definition of

loss of transient stability has been presented. Three

different theorems stating necessary and sufficient condi-

tions for the loss of transient stability have been

established. The conditions stated in those theorems

describe an estimate of the region of instability. Although

a precise boundary between the region of stability and the

region of instability is not established, a relationship
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between the regions of stability and instability has been

established. At the end of Chapter 5, a cutset integral

criterion based on the theoretical description of the

regions of stability and instability has been introduced and

justified. The cutset energy function criterion [7] for the

topological function and the PEBS method [21] for the

individual machine energy function were also justified based

on this theory.

A description of the region of stability and insta-

bility determined has a common boundary point which

establishes for the first time the level of conservatism of

the region of stability developed based on the Popov stabi-

lity criterion. The necessary condition for instability

provides a condition that must have occurred at some

instance before a loss of stability oCcurs. These necessary

and sufficient conditions provide testable conditions on the

entire state of the system that can be clearly identified

with the loss of synchronism inherent in the loss of

transient stability.

Two stability criteria based on the Popov stability

criterion and based on the outset integral measure are

tested in Chapter 6. The criterion that established the

critical outset and the critical clearing time based on

a) the satisfaction of the Popov stability criterion for all

t_>_tc or b) satisfaction of the necessary and sufficient

condition for instability at some t*>tC appears very

accurate and reliable based on the four fault cases studied.
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The stability criterion based on the outset integral measure

V1(tc) is shown to be a very accurate method of determining

the critical clearing time. Since the integrand will be

positive and generally increase for time te[to,tf] as tc

increases for tc<tcc, and since the portion of the interval

[to,tf] where the integrand is negative increases with tc

for tc>tcc, the value of clearing time tc at which V1(tc) is

maximum clearly and accurately determines tcc' The computa-

tional results on all four fault cases verify the accuracy

and validity of this stability criterion. These results for

the first time provide theoretical justification of

stability criteria and establish why these criteria have no

apparent error in determining retention or loss of transient

stability.

7.2 Future Research

The Lyapunov energy function introduced in Chapter 4

has been derived for one axis generator model for the case

that reactive loads are a first order function of voltage

(constant current). An important extension would be the

derivation of a Lyapunov energy function with a) a more

complex generator model including both the exciter and power

system stabilizer and b) a general real and reactive load

model.

Another useful and important investigation would be to

develop a precise boundary between the region of stability

and the region of instability introduced in Chapter 5.
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The sensitivity of the defined regions of instability

or stability could be found for operating conditions such

as:

Network configuration

Energy transfers

Generating dispatch

Unit commitment

Voltage profile and support

HVDC.m
m
b
U
N
H

v
v
v
v
v
v

The sensitivity of the region of stability could be used to

» derive security constraints that assure sufficient stability

margins for retention of stability for these various changes

in operating conditions.

Another investigation could be the development of a

fast computationally efficient program that determines

whether the system trajectory remains within or crossed the

boundary of the stability region. An initial task of such a

fast program would be the identification of the critical

outset and the critical and stationary groups defined in

Chapter 5. This fast computationally efficient method could

be developed based on either a Taylor series or RMS measure

methods introduced by other researchers.
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