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ABSTRACT

A Partially Observable Markov System (POMS) is a discrete state,
discrete time system whose state activity is described by a Markov
chain. The states of the system cannot be observed directly, but
"noisy™ observations are available.

The main problem considered is that of determining rules for
making decisions about system states when the conditional densities
of observed random variables given the state of the system are char-
acterized by a set of unknown parameters. Furthermore, it is desired
that, as more observations are taken, these rules converge to the rule
that would be used if the parameters were known.

An iterative, optimal (minimum Bayes risk), decision rule is
derived for making decisions concerning the state of the system at a
given time on the basis of available observations. This rule has the
capability of using future observations as well as past observations.
An optimal rule is also established for determining to which class
the state of the system belongs among a set of non-communicating
classes of states and an optimal, adaptive estimator is constructed
for the parameters associated with the active class. Conditions are
established under which these rules perform effectively.

A variety of consistent estimators are constructed for the un-
known parameters, yielding a class of suboptimum rules. The basic
estimation problem is a nonsupervisory one involving the resolution
of mixtures. However, unlike previous work, the observation process

is dependent and nonstationary. A general strategy is established
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for extending estimation techniques developed for the case of independent
identically distributed observations to this problem. The results apply
also to the non-parametric case and the case with unknown transition
matrix.

The model under study here corresponds directly to that of a
Pattern Recognition System with Markov dependent pattern activity. How-
ever, several communication systems of interest can be shown to be
POMS. These include systems with a Markov encoder, intersymbol inter-
ference, unknown synchronization, signals with random arrival times,
and combinations of the foregoing. 1In all of these systems, the
observations are dependent and the design of adaptive detectors is
generally difficult. However, by formulating the problem as one of
decision making for a POMS, optimal and suboptimal detectors as well
as conditions for effective operation follow easily and in a unified

manner.
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CHAPTER 1

Introduction

A fundamental requirement of classical engineering techniques
for the design of control and information processing systems is the
existence of a fully specified model of the system under study in-
cluding all the factors that influence system performance. However,
factors such as unpredictable changes in environment, drift in system
parameter values due to component aging, or difficulties in measuring
relevant quantities often make the development of an accurate model
impractical. This problem has motivated the study of adaptive decision
making devices such as controllers and detectors which can achieve a
desired goal despite some degree of ignorance concerning the under-
lying model. Such devices are characterized by the fact that they
improve their performance on the basis of past experience. 1In effect
they '""learn'" the additional information needed to complete the model
in terms of which their task is defined.

Workable adaptive schemes have been proposed for several types
of communication and control systems [A-1](H-4][M-2][s-4]. 1In partic-
ular, a large class of problems that arise from qnalyzing such systems
can be posed as problems in Mathematical Statistics. 1In such problems
Decision Theory provides the mathematical form of the adaptive device
and a mathematical criterion for evaluating its performance. The learn-
ing process is related to the well-defined problem of estimating the
unknowns in a partially specified statistical structure. The only pre-

requisite for using the powerful tools of Mathematical Statistics is



the existence of a meaningful statistical model.

The basic model under study in this Thesis is that of a discrete
state, discrete time system whose state activity is described by a
Markov chain. The system states cannot be observed directly because
of an imperfect observation mechanism that can be accounted for

statistically. This system will be referred to as a Partially Observ-

able Markov System (POMS). Such systems arise frequently in Pattern

Recognition, Signal Detection, and Operations Research [D-3][kK-1][R-3].
The model for a POMS is precisely defined in Sec. 1.1.

The main decision problem associated with a POMS is one of estab-
lishing rules for taking effective action concerning the states of the
system on the basis of avai lable observations. In Sec. 1.2 optimal
decision making is defined for a POMS when all quantities in its model
are assumed known. The structure of the resulting rule is discussed
along with its computational feasibility, a basic consideration through-
out this study.

This Thesis deals with various aspects of decision making for a
POMS when the model is not completely specified (not all the quantities
in the model are known). Of primary interest is the problem of extract-
ing from the observations information concerning the model unknowns.
Hopefully, such information can be used to construct adaptive decision
rules or rules which perform almost as well (in some well defined
manner) as the optimal rules of Sec. 1.2 where the model is completely
known. The problem of learning the unknowns in a POMS is discussed in
Sec. 1.3. Previous work related to this problem is listed in Sec. 1.4

and in Sec. 1.5 the Thesis objectives are explicitly stated.



1.1 PARTIALLY OBSERVABLE MARKOV SYSTEMS

The basic model considered in the Thesis is established in this
section. The model is composed of two random processes. The first is
a discrete-time, finite-dimensional Markov chain which cannot be observed.
The second is an observable process with the property that the random
variable describing the observations at a given time has a distribution
which depends on the state of the chain at that time. The model corre-
sponds to that of a system whose states cannot be observed but must be
monitored indirectly through a '""'moisy' observation mechanism, which
suggests the name Partially Observable Markov System (POMS).1

More specifically, the state activity of the system is described
by a first order homogeneous Markov chain; that is, a sequence of ran-
dom variables {XN; N =1,2,...} taking values in a finite state space
A= {1,2,...,M}; M < ® and satisfying the Markov Property. Namely,
if P(:) 1is a probability measure defined on the same sample space as

the sequence {A then

(-}
w1
P(A = J|xN_1 =i,... A =k =P = JlxN_l = i) = p,

VYN >1 and i,j = 1...M (1.1.1)

where pij is the probability the system is in state j at time N
given it was in state i at time N-1. Hence, knowledge of the last
state summarizes the past history of the system. The probability state

vector of the system is defined by

By = [p(xN=1),...,P(xN=M)] (1.1.2)

1This is a generalization to a continuous nbservation space of
what has been previously referred to as a POMS [D-3],[K-1].



where P(XN=i) is the probability that the system is in state i at

time N. Then

- N-1 _
By = Rlp = 'EN-lp (1.1.3)

where P = [pij] is a stationary transition matrix and p, 1is an
initial probability state vector at time 1. Then 2 and P are
sufficient to summarize the prior knowledge (knowledge before any
observations are taken) of the state activity of the system.

When the past history of the system is summarized by knowledge
of the last k states, the describing random process is termed a kth
order Markov chain. Since any kth order chain can be reduced to a 18t
order chain, the above chain implies higher order chains [D-2].

The observation process is defined by a sequence of random vari-
ables {XN}T; XN, the random variable observed at time N, takes values
in a finite-dimensional Euclidean space and has a density function
fi(°) when it is known the system is in state i at time N. That
is, fi(-) is the conditional density of the observations given the
system is in state 1i. Since the states of the system are unknown,

xN has the global density

=X

pN(X) = iElfi(x) P(XN=i) (1.1.4)

which is referred to as a finite mixture with component densities
[fi(-)}? and mixing parameters Py [T-1]. The sequence {XN}: is

assumed state conditionally independent. This implies, for example,
. _. 2
PRy Xy g [Mg=tohg =) = £ RO £, Xy)) (1.1.5)

2p( ) will denote probability density with X indicating both
the random variables and the value it takes on.



and hence the joint density of any number of random variables in the
observation process can be constructed from the component densities

and the system probabilities Py and P.

FIG. 1.1.1 A Schematic of a Partially
Observable Markov System

The entire model is illustrated by the sampling scheme in Fig.
1.1.1. At time N a sample is taken according to a density determined

by the state of the system at time N.

1.2 OPTIMAL DECISION MAKING FOR A POMS

When the model is completely specified, Decision Theory provides
a means of generating optimal strategies for action relative to the
states of the system. 1In this section the type of decision rules of
interest in the Thesis are illustrated along with important properties
of this class of rules.

In order to define the decision problem, the following elements
of Decision Theory are introduced. The action space or set of allowable
actions that can be taken at a given time is denoted by A = {al,...,ar},
r < ® with generic element a; L(*,*) 1is a non-negative loss function

defined on A X A with L(a,i) denoting the loss incurred when action



a is taken and the system is in state 1i; X" = [Xl,...,XmJ represents
the set of observations obtained up to time m. The problem, then, is
to find a nonrandomized decision function 6N mapping X" to A such

that the risk

RGN = E L(aN(x“B,xN) (1.2.1)

is a minimum. The expectation is taken with respect to x® and XN.
If, for example, r = M and the action a, is '"say kN=i" and

3
L{(i,j) =1 - Aij (the 0-1 loss function) the optimal decision rule,

52, is given by the Bayes decision rule

L(X™ =1 if POG=L/XT) 2 POG=I/XT) Wik (1.2.2)

where P(XN=i/Xm) is the conditional probability that the system is
in state i at time N given observation X" [R-3]. Using the
assumption of state conditional independence the above rule can be
written iteratively. For example, if m =N it follows from Bayes

rule and the Markov property that

. -1
£LRYPAG=/X

N
PAA=i/X) = . (1.2.3)
N PR /X )
where
N-1, M N-1
P(xN=i/ ) =% pkiP(xN_1=k/x ) (1.2.4)
1
and
. SN (X )P =i/x" (1.2.5)
Xy ) = f s K P A=i ) - e
3A denotes the Kronecker delta.

ij



The iterative scheme operates in two basic steps. The state posterior
probability P(XN_1=1/XN-1) computed at step N-1 1is projected from
the transition probabilities in (1.2.4) to P(XN=1/XN-1) which serves
as a prior probability for the state activity at time N before the
Nth observ;tion is available. This in turn is converted in (1.2.3) to
a posterior probability using XN and the Bayes Rule.

It is worth noting that, because of the Markov dependencies be-
tween the states of the system at different times, observations are in
general dependent. Consequently, observations at one time may contain
information about the states at other times. This point is reflected
in the above decision rule by the fact that both past and present
observations are used to make decisions about the state of the system
at a given time. By the same token the sequence of decision made by
{6i}§ can usually be improved if X" is used to classify all past
states simultaneously. However, rules of this type lead to memory re-
quirements which grow linearly and exponentially with the length of the
observed sequence and decisions are not available for immediate use
[c-1].

The type of decision rules established in this section can be
thought of as a class of on-line rules with fixed memory but changing
structure. The case where m > N, termed a look ahead mode, is an

attempt to improve performance by increasing memory by a fixed amount.
1.3 UNSUPERVISED LEARNING

I1f the model for a POMS is only partially specified the pre-

viously established decision rules can be considered functions of the



unknowns in the model. For example, the transition matrix and/or the
component densities may be unknown or may contain unknown parameters.
To make effective decisions under such circumstances information about
these unknowns must be extracted from the observations. Since the
gtates of the system are unobservable the unknowns appear in a mixture.
The process of estimating or approximating these unknowns is commonly
referred to as unsupervised learning. This is in contrast to the case
in which, by some external means, the states of the system are known
for a fixed period of time and each of the component densities and the
transition matrix can be determined separately or with supervision [B-1]
(M-1](H-4].

As an example of the above class of estimation problems a POMS
i8 considered with a transition matrix which has identical row vectors,

That is

pij = qj j=1’2)"')M (17311)

1f 21 is given by a row of P, the probability state vector BN is
independent of time and xN, the random variable observed at time N,
has density

M

- .3.2
p(X) %quj(X) vy 1 )

Then the state conditional independence assumption implies {X. ). 1is

i1
a sequence of independent identically distributed (i.i.d.) random vari-
ables. This is a well-studied case and the tools of classical estima-

tion theory have been used to develop several mixture resolving tech-

niques for various degrees of uncertainty about (1.3.2) [s-6](H-2].



Some of these methods are discussed in Chapters II and III.
However, for a general transition matrix and initial probability
vector the observations are neither independent nor identically dis-

tributed and the above techniques do not apply directly.
1.4 REVIEW OF THE LITERATURE

Research related to adaptive decision making for a POMS has
been motivated by the need to handle decision problems in which the
usual independence and stationarity assumptions mentioned in Sec. 1.3
do not hold. The results outlined in this section can be categorized
according to what is assumed to be unknown in the model.

For the case in which the only unknowns are parameters in the
component densities, most of the work consists of attempts to design
optimal (Minimum Bayes Risk) and suboptimal adaptive detectors for
communication systems wherein the signal is unknown but, for various
reasons, the observations are dependent even when the signal is known.4
Some examples of conditions which result in dependent observations are
intersymbol interference or signal overlap due to channel memory
(Chang [H-l]), unknown symbol synchronization between the transmitter
and receiver (Stewart [H-3]) and random signal arrival times (Stewart
(H-3] and Nolte [N-1]).

The main problem associated with these examples is to establish
conditions under which the unknown parameters can be learned. 1In the
first two examples Chang and Stewart were able to establish such con-
ditions because they assumed signal activity at the transmitter was

. 5 .
independent from one time interval to the next. Their results do not

4Optimal and suboptimal adaptive decision rules are defined at
the beginning of Chapters II & III respectively. The correspondence
between a POMS and a communication system is made in Chapter IV.

5 . . A
This corresponds to assuming a special form for the transition
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apply when such dependencies exist. 1In the example of signals with
random arrival times Stewart was unable to prove convergence of his
estimates and Nolte does not treat the problem. These examples are
discussed in more detail in Chapter IV.

For the case in which the component densities are assumed known
but the transition matrix P is unknown Raviv [R-2] constructed a
class of adaptive decision rules using an estimate of P and only
part of the past observations. He established conditions under which
P can be estimated and developed some properties of the observation
process for a large class of POMS. These properties are stated in
Chapter III.

Recently, Patrick [P-2] and Hilborn and Lainiotus [H-5] have
made some general observations concerning non-supervisory problems
with non-stationary, dependent observations. The work in this Thesis
related to their results was done independently and deals with a

particular model which yields more specific results.
1.5 THESIS OBJECTIVES

For most of the work in this Thesis it is assumed that the tran-
sition matrix P is known and that the component densities are known
to within a parameter.6 For this case, the Thesis objectives can be
stated generally as follows:

1. To find a class of optimal adaptive decision rules with

properties similar to those of the rules of Sec. 1.2.
2. To show that, under appropriate assumptions, virtually all

the mixture resolving techniques developed for the i.i.d.

6The estimation of P and f,(X) for the nonparametric case is
discussed briefly in Chapter III.
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case defined in Sec. 1.3 can be extended to the dependent,
non-stationary case considered here.

3. To show that a variety of decision problems arising in
communication systems, including those of Sec. 1.4, can be
easily solved by considering them as decision making pro-
blems for a POMS.

Fulfillment of Objective 1 provides a reference for evaluation
of any related adaptive scheme. Objective 2 implies conditions under
which the unknown parameters can be learned and leads to a class of
suboptimum decision rules. Objective 3 suggests that the model of a
POMS is a very versatile one, providing a unifying approach to a class
of communications problems.

Objectives 1, 2, and 3 are pursued in Chapters II, III, and IV
respectively. In Chapter V the main results of the Thesis are outlined

and problems that need further study are discussed.



CHAPTER II
OPTIMAL ADAPTIVE DECISION MAKING

When the component densities of a Partially Observable Markov
System (POMS) are specified to within a parameter set and a prior dis-
tribution7 summarizing initial knowledge about the unknown parameters
is available then Bayes decision-theoretic techniques can generally be
used to establish decision rules which are optimal against prior in-
formation and a given cost function. Furthermore, under appropriate
conditions, the fixed but unknown value of the parameter is learned
from the observations and the decision rule adapts or converges to
what the optimal rule would be if the true parameter value were known.
Patrick [H-2] derived the optimal decision rule for the i.i.d. case.

In Sec. 2.1, the decision problem is defined and in Sec. 2.2
the corresponding optimal decision rule is derived. 1In Sec. 2.3, the
basic components of the optimal rule are generated recursively and in
Sec. 2.4 the structure and computational feasibility of the iterative
scheme are discussed. 1In Sec. 2.5, the learning properties of the
rule are discussed and in Sec. 2.6 some inference problems related to
that defined in Sec. 2.1 are treated. Finally, in Sec. 2.7, the main

results of the chapter are summarized.
2.1 THE DECISION PROBLEM

In this section, the decision problem under consideration in
this chapter is defined. The basic elements of the problem are a POMS

with an unknown parameter set and a prior density for the parameters,

7The standard Bayesian technique of treating the unknown parameter
as a random variable will be employed.
12
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a class of decision functions and a criterion for evaluating the per-
formance of these functions.

As in Sec. 1.1, the state activity of the POMS is described by
a Markov chain {XN}? with transition matrix P and initial probability
state vector R;- The component densities are characterized by a para-
meter vector in the following manner. When the system is known to be
in state i and the parameter Bi is given, XN, the random variable
observed at time N, has density f('/Bi).8 The random vector

B = [Bl...BM] takes on an unknown value B_ according to the prior

0
density pO(B) and maintains this value throughout system operation.
The basic assumptions are as follows.

1. The observations X' = [xl"'xm: are state-parameter-con-

ditional independent. This implies

n

PX_...X /xm =i,... A\, = j,B)

1 1 p(xm/xm = i,Bi)...p(Xl/kl = j,Bj)

f(Xm/Bi)..uf(Xl/B ) (2.1.1)

3

or

p(xm/km=i,xm'1,B) = p(xm/km=i,3i) = f(Xm/Bi) (2.1.2)

2. For each N, the random variables B and XN are independent.
That is, the parameter values do not affect system state activity.

If, as in Sec. 1.2, A is the action space, the class of allow-
able decision rule, D, is the set of all non-randomized functions map-
ping the space of observations X" to A. If 6N € D denotes a

decision rule for taking action relative to the state of the system at

8 ..
The random variables xi and B, take values in a finite-
dimensional Euclidean vector Space.
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time N and L(°,*) 1is a nonnegative loss function, the corresponding

risk is given by

RGN = E LY x™ A (2.1.3)

. . . m
where the expectation is taken with respect to X , XN’ and B.

The problem is to find the optimal rule, 6N which is defined

*’

by
RS < R w6 €D (2.1.4)

That is, the minimum risk decision rule for taking action concerning
the state of the system at time N on the basis of m observations

is to be found.
2.2 DERIVATION OF THE DECISION RULE

In this section, the optimum decision rule is derived for the
problem defined in Sec. 2.1. The development involves the use of con-
ditional risks which emphasize the role of prior information in con-
structing the total risk.

With the decision rule § € D, given observation Xm, and given
parameter B the average loss is

R[SX™/x",B] = T L[s(x“‘),i]P(xN=i/x“‘,B) 2.2.1)°
=1

1
Equation (2.2.1) is referred to as the sample-parameter-conditional

risk. The parameter-conditional risk is given by

R(6/B) = [R[6 ™ /x",B]p(X"/B)&x™ (2.2.2)

N
9The superscript in & has been dropped for convenience.
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and the total risk, (2.1.3), is

R() = [ R(8/B)p (B)dB (2.2.

Substituting (2.2.1) and (2.2.2) into (2.2.3) and interchanging the

order of integration yields

R() = [ RI6™ /K™ px™)dx"™ (2.2.

where
R[S (x™ /x™) = ;;lL[é(xm),i]P(kN=i/X"5 (2.2.

i=
and

PO=i/X") = [ P\ =i/x",B)p(B/X") dB (2.2.
P(B/X") = p(X"/B)p,(B)/p(X™) (2.2.
p(x") = [ p(X"/B)p,(B)dB (2.2.

Since 6(Xm) = a for some a € A, and L(-, ) and p(xm) are non-

negative it follows that

R(8,) = inf R(8) = E R[6 (X")/X"] (2.2.
€D
where
8,(X) =a  if R(a /x") s R@,/XY) VY #i (2.2.

In particular, when r =M, a, is the action ''say XN=1" and

the loss function is given by L(ai,j) =1 - Ai (0-1 loss function)

3

then the decision rule becomes a minimum probability of error rule 5e

defined by

6e(xm) =i if P(xN=i/x“5 2 p(xN=j/xm) Vi#j (2.2.

Minimum sample conditional risk implies minimum total risk.

3)

4)

3)

6)

7)

8)

9)10

10)

11)
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The basic elements of the above decision rules are the state
posterior probabilities given by (2.2.6). These probabilities are
obtained by averaging the parameter-conditional posterior probabilities
P(kN=i/Xm,B) (This is the probability that would be used for decision
making with B = B, if B, were known) over the posterior density

0 0

p(B/Xm). This posterior density summarizes knowledge about B0 in
the first m observations. Both terms are generated iteratively in

the next section.
2.3 ITERATIVE GENERATION OF THE POSTERIOR DENSITIES

In this section, the key posterior densities in the decision
rule derived in Sec. 2.2 are generated iteratively. First, P(XNci/Xm,B)
is generated for m =N, m >N and m < N. Then p(B/x“5 is treated.

Case 1. m =N

From the Bayes rule,

_ m-1 =i /ym-1
p(xm/xm-i,B,x )P(xm i/X" 7,B)

pa;ﬁmmm)= (2.3.1)

-1
m B

p(X_/X )

where the three terms on the right hand side can be accounted for in
the following three steps.
1. p(xm/xm=i,3,xm'1) is given by (2.1.2)

2. By the total probability law

=j,xm'l,B)P(xm_1=j/xm'1,B) (2.3.2)

MR

P(xm=i/xm‘1,s) -

POA_=i/A__
]

1 1

where (2.1.2) and Assumption 1 of Sec. 2.1 imply

™ Lay = (2.3.3)

PO =i/ =3, ji



17

and P(km_1=j/xm-1,B) is available from the previous step
of the iteration scheme.

3. Again by the total probability law and (2.1.2)

M
m-1 _.em-1
p(Xm/X ,B) = _): f(xm/Bi)P(xm-l/x ,B) (2.3.4)

i=1
Case 2. m >N
Using arguments similar to those used in the previous development, it

follows that

p(XN+1. . .Xm/XN=i,XN,B)P(XN=i/XN,B)
p(XN+1. . .Xm/XN,B)

P(xN=i/x“‘,B) = (2.3.5)

where p(kN=i/XN,B) is known from the previous iteration using steps
1, 2, 3 above and with m replaced by N
N M xN N
P()Sqﬂ...xm/x ,B) = i_zlp()%wl...xm/an, ,B)P(kN=1/x ,B) (2.3.6)
. . . P
The iteration procedure would be complete if p(XN+1...Xm/XN i, X ,B)
could be determined. This factor should be recognized as the heart of
the look-ahead procedure that results from using future observations.
To generate this last factor it is convenient to define ZN = [XN+1...Xm].

Then, by (2.1.2),

N N . _ N, _.
p(Z /kN i,X',B) = p(2 /XN i,B) (2.3.7)
But
N M N
p(2 /XN=1,B) = jflp(z /kN=1,kN+1=j,B)P(xN+1=J/xN=1,B)
M N
= jflp(z /XN=1,XN+1=J,B)pij (2.3.8)
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Similarly,
P2 A=t A, =3B = £ b, p (@ A=A, =i A ,,=k,B) (2.3.9)
PN+1 K jk XN ’XN+1 ’KN+2 ? e
Hence this procedure can be repeated until

N =1 = = N =1 =3 =
p(Z /XN—l...Xm_l t,B) E ptqp(z /XN 1,1N+1 J,...,Xm q,B) (2.3.10)

where

N, _. . _ _
p(Z /kN-l,kN+1-J,...,xm—q,B) = f(XN+1/Bj)...f(Xm/Bq) (2.3.11)

Although the above procedure shows the decision rule to be a fixed-
memory rule (the number of observations stored is fixed) the memory in-
creased linearly with m-N and the number of computations in (2.3.8)
to (2.3.11) increases exponentially with m-N. Hence, the look-ahead
is expensive.

Case 3. m< N
Past samples are being used to make decision about future states. For
m< N

- m —
P(xN—l/x ,B) = j

M

1P(xN=i/xm=j,xm,B)p(xm=j/xm,B) (2.3.12)

But, by (2.1.2),
p(xN=i/xm=j,xm,B) = p(xN=i/xm=j) (2.3.13)

which is the (j,i)th element of PN-m and P(km=j/xm,B) can be
obtained iteratively using steps 1, 2, 3 above. 1In this case, the
number of computations involved in making decisions on future states

increases linearly with m-N.
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Finally, an iterative form for p(B/X") is established.

p(xm/Xm-l,B)p(B/Xm-l)

p(B/X™) = (2.3.14)

p(xm/xm‘l)

where p(xm/Xm-l,B) is given by (2.3.4), p(B/Xm-l) is available from

the previous step and

px /X" = [ p™x™ By p@/x" ) aB (2.3.15)

2.4 ANALYSIS OF THE ITERATIVE PROCEDURE

In this section, a special but important case of the previous
decision rule is studied. The iterative structure of the rule is in-
vestigated and interpreted. The start of the iterative procedure is
illustrated and the problems encountered in machine implementation of
the rule are discussed.

If m=N and a 0-1 loss function is used then the result is the
minimum probability of error rule, 6e’ given by (2.2.11), for determin-
ing the present state of the POMS, described in Sec. 2.1, on the basis

of past and present observations. This rule is summarized below.

ée(XN) =i if P(xN=1/xN) 2 P(xN=j/xN) vi#j (2.4.1)
where, from (2.2.6),
P(xN=i/xN) - [ p(xN=i/xN,B)p(B/xN>dB (2.4.2)
with, from (2.3.1) and (2.3.2),

f(xN/Bi)p(xN=i/xN‘1,B)
p(XN/XN'l,B)

POG=L/X,B) = (2.4.3)

and
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M
po=i/xLp) = 'zlpjiP(kN_;j/xN'l,B) (2.4.4)
i=
and, from (2.3.14),
-1 N-1
px /% L Byp/aN Y
/Y = X (2.4.5)

p(XN/XN-l)
All the terms in (2.4.2)-(2.4.5) are either known, available from the
previous step or can be calculated from those given above.

The rule 6e is a fixed memory, iterative, optimal decision
rule. The parameter-conditional state posterior probability,
P(XN=i/XN,B), is the state posterior probability given by (1.2.3)

(where B, was assumed known) as a function of the unknown parameter.

0
Equations (2.4.3) and (2.4.4) generate this term iteratively in a manner
similar to that of Sec. 1.2 but conditioned on knowledge of the unknown
parameter. That is, this probability at time N-1 1is projected with
the transition matrix in (2.4.4) to P(XN=i/XN-1,B) which is used in
the Bayes rule in (2.4.3) in incorporate the information provided by
XN and to generate P(XN=i/XN,B). Everything in the procedure is con-
ditioned on knowledge of B, and information about Bo is summarized
by P(B/XN) which is generated iteratively in (2.4.5) and is intro-
duced into the decision rule by the averaging procedure given in
(2.4.2).
The starting procedure for the iterative scheme is given below.

At step 1
£(X,/B)P(M =)

p(X,/B)

1

P(A =i/X ,B) = (2.4.6)

where
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M
p(Xl/B) = iflf(xl/Bi)P(X1=i) (2.4.7)
then
/%) p(Xl/B)po(B)
p(B/X =
1 p(Xl)
where
p(X)) = [ p(X /B)p, (B)dB
At step 2
f.(X,/B.)P(\,=i/X,,B)
=i o172 i 2 1
P(A,=1/X,,X,,B) P(X,/X ,B)
where
m
p(XZ/Xl,B) = T fi(xz/Bi)P(x2=i/x1,B)
i=1
and
P(x2=i/x1,B) = ? pjip(xl=j/x1,3)
then
X./X.,B)p(B/X
B/% X = p( 2/ 1 )p(B/ 1)
1°72 p(lexl)
where

P(X,/X)) = [ p(Xz/Xl,B)p(B/Xl)dB

this procedure can be repeated up to time N.

Despite the desirable features of the above rule it has one major
drawback. At each step, m+l functions of B must be stored. 1If this
rule is to be machine implemented it can only be done under one of the

following conditions which are characteristic of general Bayesian learning.
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1. The parameter vector B is a discrete random variable taking on a
finite number of values. That is, B0 is known to be one of a
finite number of values. This allows storage of the required
densities but is a highly restrictive assumption.

2. The parameter vector B 1is a continuous random variable but a
finite dimensional sufficient statistic is available for the un-
known parameter. Under these conditions, only a function of the
observations need to be stored [S-S]. However, such statistics do
not usually arise in unsupervised learning problems because the
class of densities involved are mixtures.

3. 1In general, the only way to make use of the rule is by quantization
of the parameter space, thus reducing the problem to case 1 above.
By quantizing fine enough it is possible to get arbitrarily close
to the optimum solution at the expense of increased memory [F-l].
However, the memory grows exponentially with the dimension of the
parameter vector B, making the method feasible only for problems
with a small number of parameters. An example is given in Sec.

3.6 which indicates the extent of the storage limitationms.
2.5 THE LEARNING FEATURE OF THE OPTIMUM DECISION RULE

In this section, some limiting properties of the posterior
densities that comprise the optimum decision rule (2.2.10) are dis-
cussed in a manner that exhibits the learning capability of the rule.
First it is shown that the state posterior probability P(XN=1/Xm)
given by (2.2.6) with N fixed converges with probability one as the

number of observations is increased. Then, the conditions under which
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p(B/Xx™ &~ 8 (B-By) wp 1 (2.5.1)

where G(B-BO) is the Dirac delta function are stated. Equation (2.5.1)
can be restated as saying that the posterior distribution of B, which
summarizes all the information about B0 contained in Xm, approaches

wpl a distribution whose mass is grouped about BO so that B0 is

learned. Then, for all practical purposes,

P =1/XD B p(xN=i/x°,BO) (2.5.2)

and the rule adapts, or converges, to the optimal rule that would be
obtained if B0 were known.11
The statistical stability of P(XN=i/Xm) = Ym can be demonstrated
by showing {Ym} to be a bounded martingale. Then, convergence follows
immediately from a theorem of Doob which says that every bounded martin-

gale converges with probability one [D-2]. To show Ym to be a martin-

gale it is sufficient to prove that
m
E[Ym+1/x l=v
But

By, /X" = [ RO=iA™ Hpa™ N ax

m+l,, . o
=wa AR bl
p™h) p &™)
PER"/NG=1P (1)
= =Y
p(X") "

Since for each m Ym is a probability,

lt <1 Vo

11‘I‘he implied interchange of the limit and integration process

has been carried out formally and (2.5.2) has not been proven for any
mode of convergence.
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and Ym is bounded. Therefore 1lim Y exists a.e. in the space of
m-'°°m
(-}
sequences {X }.

The conditions under which the parameter posterior density
approaches a delta function are well known. Spragins [S-S] and Braver-
man [B-3] have given sufficient conditions for (2.5.1) to hold through
an interpretation of the 0-1 law of probability [L-1]. These conditions
are presented below.

1. p(B/XN) is computed using the Bayes rule.

2, po(B) is positive in some sphere about Bo

3. There exist functions {fm(xm)}? of the observations such

that

fm(Xm) B wpl

0
That these conditions are satisfied for decision rule (2.2.10) is now
demonstrated. Condition 1 follows from (2.3.7). Condition 2 is assumed.
Condition 3 is the major requirement and can be restated as saying

that a strongly consistent estimator for B0 must be exhibited. 1In
Chapter I1I, a variety of such estimators are established by placing

constraints ‘on the transition matrix and the family of component

densities.
2.6 RELATED INFERENCE PROBLEMS

Some of the properties of the previously-derived decision rule
can be used to solve additional decision problems of interest. For
example, in the adaption process, B0 is learned but estimates of B

are never actually generated. Since the parameter posterior density

converges wpl to a dirac delta at BO’ any property of this density,
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such as the mean, maximum or median, converges wpl to B0 also.
Furthermore, it is well known that the mean of the posterior density

is the minimum mean-square estimate of B_ and hence can be interpreted

0
as an optimal estimate for BO'
Another decision problem of interest is that of determining
which class or subset of the states the system is in. 1In particular,
if the transition matrix P 1is block diagonal with q blocks, the
states of the system are divided into q classes with the property
that the system stays in the class in which it starts.12 Then, if
P(wi/xu5 is the conditional probability that the system is in class i,

P /XY = T PA=i/XY) i=1,2,...,q (2.6.1)
' jey, X

i
where Yg is that subset of the state space corresponding to class 1i.
The probability P(XN=j/X“5 can be generated iteratively in the manner
of Sec. 2.3 and an optimal decision rule for choosing the system class

on the basis of XN is to pick the class for which the class posterior

probability P(wi/Xm) is largest. In order to exhibit some of the

properties of the above decision rule, (2.6.1) is rewritten as

N-1 N-1
P(X, /w, ., X PW., /X )
p(wi/xN) i | - (2.6.2)
P /X )
where
- q - -
p(XN/XN L. iflp(xN/wi’XN 1)p(wi/xN L (2.6.3)
and

2 . C . .
The corresponding Markov chain is said to have q noncommunicat-
ing classes.
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N-1 i oN-l . 1
p()(N/wi’x ) = jes'r p()(N/XN=J ’wi,Bl’XN )P()\NgJ‘/wi’xN l’Bl)
i
p(Bi/wi,xN'l)dBi (2.6.4)

. i o . .th
with B the parameter vector for the component densities in the i

class and {Po(wi)}q, the prior class probabilities, assumed known.

Then (2.6.2) indicates that the class posterior probabilities can be
generated using the Bayes rules with normalizing factor given by (2.6.3).
All the terms in the mixture (2.6.4) are conditioned on knowledge of

the class and thus can be generated iteratively using only the block

of the transition matrix and component densities corresponding to the
given class. By an appropriate interpretation of Spragins' conditions

for convergence, it follows that if Po(wi ) > 0 and there exists a

0
strongly consistent estimator for io then
pw . /x™ T, wpl (2.6.5)
] Jig

where 10 is the true class. Conditions for such an estimator to
exist are discussed in Sec. 3.8.

Finally, the above two decision problems can be combined into
that of estimating the unknown parameters defining the class in which

the system is. If the parameter vectors are the same dimension for

each class, the optimal estimate is given by the mean of

q
p(B/XYy = T p(B/wi,XN)P(wi/XN) (2.6.6)
i=1

This procedure is referred to as adaptive estimation and conditions

for convergence are given in Sec. 3.8.
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2.7 CONCLUSIONS

Optimal decision making for a POMS with unknown parameters in
the component densities has been the topic of this chapter. Assuming
a prior distribution over the parameter space, an optimal decision rule
was defined in Sec. 2.1 to be that rule in a given class of rules which
minimizes the Bayes risk (2.1.3). This class of rules, similar to
that of Sec. 1.2 where the component densities were assumed known, in-
cludes rules with the capability of using some future observations
(look-ahead mode) as well as past observations to make decision about
the state of the system at a given time.

The optimal decision rule (2.2.10) was derived in Sec. 2.2 and
its basic components (2.2.6)-(2.2.8) were generated iteratively in
Sec. 2.3. 1t was shown that for the look-ahead mode the memory grows
linearly and the number of computations exponentially with the number
of future samples used. However, the extent to which future observa-
tions affect the risk needs investigation. It is clear from the
derivation that these results can be extended to include time-varying
transition probabilities.

As emphasized in Sec. 1.4, the optimal decision rule is a fixed-
memory, iterative rule with a structure similar to that of the rules
in Sec. 1.2. 1In general, only a high storage quatization procedure can
be used to implement the rule. This suggests that the main use of the
optimal rule may be to evaluate related suboptimal, low storage rules
in the hope that conclusions can be extrapolated to the more complicated

cases.
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In Sec. 2.5, it was shown that, under the stated conditions,
the parameter posterior density (2.2.7), which summarizes the knowledge
about BO’ converges to a dirac delta function. Thus, B is learned

0
and the rule adapts.

Finally, in Sec. 2.6, various results established in the pre-
vious sections were used to solve related inference problems. 1In
particular, a class of estimators for B0 was established including
an optimal (minimum mean square) estimator. An optimal decision rule
was constructed for determining to which class the state of the system
belongs among a set of noncommunicating classes of states. An optimal
adaptive estimator was constructed for the parameters in the component

densities associated with the active class of states. These examples

indicate the versatility of the decision problem of Sec. 2.1.



CHAPTER III
CONSISTENT ESTIMATORS

When the component densities in a Partially Observable Markov
System (POMS) are specified to within a parameter vector, but no prior
distribution for the parameter is available, optimal decision making
as defined in Sec. 2.1 is no longer possible. However, the observations

still contain information about B the true but unknown value of the

0’
parameter. If a strongly-consistent estimator for BO ( a function of
the observations that converges with probability one to BO) can be
found, decision rules can be constructed by treating the estimate at a
given time as if it were the true value. The decision rule of Sec. 1.2,
where the component densities were assumed known, can then be used.
Hobefully, as more observations are taken, decision rules constructed
in this manner adapt or converge to the optimal rule, which uses the
true component densities,13 Such rules, unlike those of Chapter I1I,
may not extract information about B0 in an optimal manner but do
approach the optimum as more observations are taken.

There are several other reasons for investigating consistent
estimators, some of which are listed below.

1. Even when a prior distribution on the parameters is avail-
able suboptimal rules may be easier to implement than the high-storage
quantization procedure of Sec. 2.4 implicit in the optimal rule.14

2. In Sec. 2.5, it was shown that a strongly-consistent

estimator for B0 must be exhibited to ensure that this parameter

3This convergence problem is discussed in Chapter V.

14Optimal and suboptimal rules are compared with regard to implemen-
tation in Chapter V.
29
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will be learned during the cperation of the optimal rule. Hence con-
ditions for the existence of such estimators are important.

3. In some applications the true parameter values may be of
interest in themselves. The estimators suggested in Sec. 2.6 not only
require parameter prior distributicns but suffer from the implementation
difficulties mentioned in 1 above.

This chapter deals mainly with the problem of finding strongly-
consistent estimators for the parameters defining the component densities
of a POMS. 1In Sec. 3.1 the estimation problem is defined and some im-
portant assumptions are discussed. The properties of the observation
process are listed in Sec. 3.2 while estimation tools are developed in
Sec. 3.3. 1In Sec. 3.4 and 3.5, estimation techniques developed for the
case of independent identically distributed (i.i.d.) observations dis-
cussed in Sec. 1.3 are extended to the more general, dependent, non-
stationary case under study in this chapter. Section 3.6 provides
computer-simulated results for an example illustrating some of these
estimation techniques. Generalizations of the problem defined in Sec.
3.1 are discussed in Sec. 3.7 and 3.8. Finally, Sec. 3.9 summarizes

the main results of the chapter.
3.1 THE ESTIMATION PROBLEM

The problem of finding a strongly-consistent estimator for Bo,
the unknown parameter in a set of component distributions, is precisely

stated and some of the assumptions necessary to ensure the existence

of such estimators are discussed in this secticn.
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A POMS similar to that of Sec. 2.1 is considered.15 The state
activity is described by a transition matrix P and initial probability
state vector Py The distribution of the observed process {XN}: is
defined by a set of distinct univariate component CDF's {Fi(‘)}? corre-
sponding to the component densities of Sec. 1.1; Fi(-) is assumed to
be an unknown element of the family § = {F(X;a)}GEA indexed by a
point &« in a subset A of the real line.16 As indicated in Sec.
1.1, XN, the random variable observed at time N, has CDF KN(X) which

is an element of the set of mixtures HN = {KN(X;B)}BGB' where

=

KN(X;B) = z F(X;Bi)P(KN=i) (3.1.1)
i=1

In (3.1.1) B = [BI’B2’°"’BMJ and B' is the set of all such vectors
with distinct components Bi € A. That is B' is a subset of M-
dimensional Euclidean space. Then there exists at least one point

Bo € B such that

K, (X) = K (X;B) v N (3.1.2)

The problem is to find Bm(Xm), a function of the observations

m

x =[x »--»X ], such that

1

. m, m _
PgBm(x”5 2By =1 (3.1.3)

The major assumptions necessary for the construction of such
estimators are listed below. They are assumed to hold throughout the
chapter and will be referred to when needed.

A-1. The observed process {Xi}: is state-conditionally in-

17
dependent.

5 .
Here B 1is no longer being treated as a random variable.

6Scalar observations and parameters are assumed for simplicity
but all ideas extend to the vectcr case.

17This corresponds to the assumption of state-parameter conditional
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A-2. For each X, F(X;-) 1is a continuous function on A and

for each o, F(';o) 1is continuous in X; i = 1,2,...,m.
A-3. B, is an interior point of B and B is a compact sub-
set of B'.

A-4. {XN}: is a regular Markov chain. &

Assumption A-1 was intrcduced in Sec. 1.1 and is repeated here
for convenience. It is a key assumption in developing the estimation
tools of Sec. 3.3, Assumptions A-2 and A-3 are standard requirements
for developing the existence and convergence properties of estimators.

Assumption A-4 characterizes the class of POMS to which the
techniques of this chapter apply. It ensures that the observations

contain information about all the components of B More explicitly,

0
a regular Markov chain has the property that it is possible to be in
any state after some finite number of steps nc matter what the starting
state [K-4]. Hence, among a large number of observations there will
be a large number cf representatives frcm each of the component dis-
tributions. As shown in Sec. 3.2, this assumption also implies the
asymptotic ergodicity of the observed process, which is the basis of
the estimation strategy to come.

In addition to assumptions A-1 through A-4 listed above, a

uniqueness conditicn on R is required. This is a standard assump-

0
tion in estimation problems and takes different forms depending on the
method used. For the estimation problem defined above a special unique-

ness condition arises since, in general, mixtures do not have a unique

decomposition intc allowable component distributicns. So (3.1.2) may

18A regualr Markov chain is one that has no transient states and
only one ergodic class with no cyclically mcving sub-classes.
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not define B0 uniquely. To avoid this type of ambiguity the mapping
defined by (3.1.1) from & ontc a subset of HN’ (for a fixed family
of component distributicns) must be one-to-one. This subset of HN
is then an example of an identifiable class of parameter-indexed mix-
tures [H-2). The concept of identifiability is discussed in the
Appendix where it is shown that this property, which is necessary for

all the methods of this chapter, can be ensured by placing constraints

on the family of component distributions § and the parameter spaceAB{
3.2 PROPERTIES OF THE OBSERVATIONS

In order to establish estimation strategies it is necessary to
study some properties cf the observation process {Xi}?. In this
section, properties cf the system state activity and the resulting
observations are developed by making use of assumptions @A-1) and (A-4).

When {ki]T is a regular Markcv chain with transition matrix
P and initial probatility state wvector P> it has the following three
properties [K-4].

1. There exists a unique vector m = [m .,,nM] such that

1’

m=mP (3.2.1)

is

Ly

v

statiocnary process.

2. 1f p =1 (A)]
= = N-
> By T Byt TR

The vector T 1is called the stationary probability state vector.

Ll v P (3.2.2)

Given P, (3.2.1) can usually be sclved directly for m. Otherwise
(3.2.2) suggests a convenient algorithm for approximating TI.
Properties 2 and 3 indicate that a regular Markov chain is

asymptotically staticnary. Such activity in a POMS suggests that the
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observations might exhibit some form of asymptotic stability. 1In fact,
By is the set of mixing parameters for the mixture KN(X) which

governs the observations at time N. Hence properties 1 and 3 imply

M
there exists a unique mixture cdf Kh(x) =z Fi(X)ﬂi such that
1
M N
- < - =i -
sup |[K (®) - K ®| s $|m -pa=0] =0 (3.2.3)

00K <o i=1
Hence the cdf of XN, the random variable observed at time N, uniformly
approaches a unique limit mixture; Kh(X) is the 1°¢ order distribution
of the stationary process which results when P, =T
To gain further insight into the statistical structure of the
observation process, two results proved by Raviv [R-Z] are presented
below in slightly modified form.

Lemma 3.2.1 Under assumption (A-1) each random variable in the

-}
process {xi}l can be represented as

Xy = o (M)
where ¢@(:-) 1is a Baire function and {Mi}j is a Markov process satisfy-
ing Doeblins Hypothesis,19

Lemma 3.2.2 Under assumptions (A-1) and (A-2), if P =T then
{Mi}: and {Xi}: are stationary and ergodic (metrically transitive)
processes.

The above lemmas and property 3 imply that the observation pro-
cess is asymptotically ergodic for a class of POMS defined by assump-
tions A-1 and A-4. Furthermore, for this class of systems the limiting
behavior of the observations is independent of the initial system
activity.

19 poob [D-2], pg. 192 .
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3.3 THE BASIC TOOLS OF ESTIMATION

When the observation process in an estimation problem is a
sequence of independent, identically-distributed (i.i.d.) random vari-
ables, the key tools for constructing estimators are the Law of Large
Numbers (LLN) and the Glivenko-Cantelli Theorem (GCT). If the obser-
vation process of Sec. 3.1 is ergodic, the ergodic theorem establishes
appropriate extensions of these tools. The fact that the observation
process for the class of estimation problems considered in this chapter
is asymptotically ergodic suggests that these important tools might
be extended to this case. In this section the needed generalization
of the LLN and the GCT are established and a basic estimation strategy
is stated for the problem of Sec. 3.1.

Using lemma 3.2.1 and assumption A-4, Raviv [R-2] has essentially
proved the following theorem for the observation process {Xi}: of a
POMS with arbitrary initial probability state vector 21.20

THEOREM 3.3.1 If g(°) 1is a Baire function integrable with

respect to KH(X) then

1 M N
S ZglX,)=E gX) wpl (3.3.1)
N i i
1 0
where
R (3.3.2%
TTOx_z,( ) = . m.J8 { .3.

Theorem 3.3.1 is the required extension of the LLN. It provides a
means for establishing strongly-consistent estimators for any expec-

tation of xh(x).

20The proof which consists of a direct application of Theorem 6.2
of Doob appears as part of the proof of Raviv's Lemma 2.5.

ZlEﬂ will be used to denote expectation with respect to the true
limit mixgure of the POMS; i.e. the distribution with cdf xn(x) = K"(X;BO).
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-]
The problem of estimating Kn(X) from the observations {xi}l
is now considered and an extension of the GCT is presented.

The function

N N
KN(x) = 1/N §1[r:er](xk) (3.3.3)
k=1
where IA(-) is the indicator function on the set A 1is called the

empirical distribution function; RN(X) is the proportion of samples

from the set XN = [Xl,...,xN] that are less than or equal to x.
Since
= <
Eﬂ I[r:er ](X) Kh(xo) 1
0 0
and22

Enol[r:rsxoj(x) - Kn(xo-o) =1

the following lemma is an immediate consequence of Theorem 3.3.1.

Lemma 3.3.1 For every real x

iz

—

P{Ky (%)

R0} =

12

n
[

P{K (x-0) K (x-0)]}

Lemma 3.3.1 is the key step in extending the GCT.
THEOREM 3.3.2

P{ sup |K.(x) - K. 0| Yo} =1
oo Iy .

With Lemma 3.3.1 the proof is exactly the same as that of the classical
theorem [T-2] and will be omitted.
Theorems 3.3.1 and 3.3.2 lead to a general estimation strategy

for determining B As indicated by the discussion of Sec. 3.1 and

0

226 (x-03 = lim £(x-€); € > 0.
€0
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3.2 the unknown limit mixture Kn(X;Bo) is an element of the class of

mixtures H_ = {Kﬂ(X;B)}BGG where
M
K_(X;B) = }IZF(X;Bi)Tri

-]
The main idea is to treat the process {Xi}l as if it were a sequence

of independent random variables with common CDF Kn(X;BO)° The schemes

developed for the i.i.d. case are then used with the classical conver-
gence tools replaced by Theorems 3.3.1 and 3.3.2. This procedure is
illustrated in Sec. 3.4 and 3.5. The general format is to establish
an estimator, present a convergence theorem and evaluate the results.

Assumptions A-1 and A-4 will be assumed through the rest of the chapter.
3.4 CLASSICAL ESTIMATION METHODS

In this section, the principle behind the classical method of
moments and the maximum likelihood method are used to solve the
estimation problem defined in Sec. 3.1. Both methods involve the use
of sample averages whose convergence is guaranteed by Theorem 3.3.1.

The method of moments has been used frequently for mixture re-
solving [B-2]{c-5](P-3][R-1][R-4] and is treated in the most general
form by Chien and Fu [C-2]. The procedure requires equating M sample
moments to the corresponding population moments of Kn(X;B). A solution,
if one exists, of the resulting equation in B can then be taken as an

estimate for B More specifically, if F(B) is a vector of popula-

0
tion moments of Kn(X;B), which are assumed to exist, and Tm is the

corresponding set of sample moment constructed from the observation

Xm, then by Theorem 3.3.1
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T wpl (3.4.1)

where T0 is a vector of moments of the true limit mixture Kh(X;BO)'

The set of existing solutions of
T = F(B) (3.4.2)

may contain candidates for strongly-consistent estimates of B In

0"
order to obtain a more explicit result the following uniqueness con-
dition is assumed. The function F(-) 1is a one-to-one mapping from
B onto T, a subset of M-dimensional Euclidean space. Under this con-
dition, a consistent estimator can be constructed as indicated by the
following theorem.

THEOREM 3.4.1 If the above uniqueness condition is satisfied
then, with probability one, there exists a sequence of solutions of
0

Proof. Assumption A-2 implies that F(+) 1is a continuous

(3.4.2), say {B }Q , which converges to B
m m,

function on /. Hence by the uniqueness condition F-1(~) is defined

and continuous [R-5]. Equation (3.4.1) and the fact that B0 is an

interior point of & imply that for every sequence of observations,

except possibly those in a set of measure zero, there exists an m,
-1
such that T € ¢ for m>m,. Thus for m>m , B =F (T ) and
m 0 0’ m m
converges to BO.
In general (3.4.2) can have more than one solution and prior
information concerning the particular application must be used to se-
lect a convergent sequence of solutions. This corresponds to restrict-

ing B' to B as given in the uniqueness condition.
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Equation (3.4.2) can pose some difficult computation problems
since, in general, (3.4.2) is a set of complicated nonlinear equations
and an iterative algorithm for finding a zero of a function must be
used at each step. Since the sample moments can be generated iteratively,
the storage requirement is fixed. When B can be found as an explicit
function of Tm the resulting estimator is very desirable with respect
to implementation.

The maximum likelihood method has been used by Patrick [H-2]
for mixture-resolving. He treated a mixture of Gaussian distributions
in detail. The version of maximum likelihood estimation given here is
essentially a modification of that given by Wilks [W-1].

The following notation is introduced.

d Log dKn(X;B)

Sj(X;B) = 53, j=1,2,...,M (3.4.3)
S(X;B) = [sl(x;B),...,sM(x;B)] (3.4.4)
A;(B;B") = j‘sj (X;B)dK_(X;B') (3.4.5)
A(B;B') = [Al(x;B),...,AM(x;B)] (3.4.6)

Now, Kn(X;B) is said to be regular in & with respect to its first

derivative if

(X;B) = A (B;B) = &— [dk_(;B) SOV B €S, j=1,2,...,M (3.4.7)

En®y 3 28,

Under this condition Theorem 3.3.1 implies
m

S(X™;B) = 1/m T S(X,;B) = A(B;By) (3.4.8)
1
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Since A(BO,BO) = 0 a reasonable strategy for generating a con-

sistent estimator is to choose among the roots of
m
S(X;B) =0 (3.4.9

This idea is made more explicit in the following theorem.
THEOREM 3.4.2 1If Kn(X;B) is regular in A with respect to
its first derivative, then there exists a sequence of solutions of

(3.4.9) which converges with probability one to B In particular,

0

if (3.4.9) has a unique solution Bm for m > m, then the sequence

0

0

The proof, which is in the same spirit as that given for the

(-}
{B } converges with probability one to B_.
m m g
0

method of moments and which follows from (3.4.8), is analogous to that
given by Wilks and will be omitted. The same comments can be made about
the uniqueness condition and the computational problem of finding roots
of (3.4.9) as were mentioned for the method of moments. However in
this case, all the samples must be stored and the form of (3.4.9)
changes at each step. The same problem was faced in the i.i.d. case
[k-2].

The interpretation of the above method as a maximum likelihood
method is obvious if the likelihood function is taken to be the product
Kn(Xl;B),...,Kn(Xm;B). Then, under suitable restrictions, the value

of B which maximizes the likelihood function satisfies (3.4.9).
3.5 MINIMUM DISTANCE ESTIMATION METHODS

In this section, the minimum distance principle is used to con-

struct estimators for BO' Given an appropriate distance measure

p(*,*) and the empirical distribution function for Kn(X;Bo)’ RN(X)
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defined in (3.3.3), and estimator Bm can be defined as an element in
B which minimizes p(%m(x),K%(X;B)). Theorem 3.3.2 is the main tool
for establishing convergence. This method has been used for mixture
resolving by Patrick [H-2], Stewart [H-3], Choi [C-3], and Deely and
Kruse [D-1] and their ideas apply to the problem.

Patrick, Stewart, and Deely used the sup norm for a distance
measure.23 Analogously, the estimate Bm is defined by
min Ik, -k @Bl =k @ -k &8 (3.5.1)
The existence of Bm is ensured by A-2 and A-3; i.e. Bm is obtained
by minimizing a continuous function over a compact set. The following
theorem establishes the consistency of such estimates.

THEOREM 3.5.1 If H_ = {Kﬂ(X;B)}BGB is an identifiable class
of mixtures, then Bm’ defined by (3.5.1), converges with probability
one to B..

0
Proof. 1If Qm(B) = Him(x) - KH(X;B)H then (3.5.1) and Theorem

3.3.2 imply
Q (B) <Q_(B) 20 wpl (3.5.2)
Since
Ik, x:By) - K x:BIl < (B) + q,(By) (3.5.3)
it follows that
K (X;B ) ¥ K_(X;By) wpl (3.5.4)
Plewll = sup sl

—eCy<o
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Assumption A-2 and A-3 and the fact that Hn is identifiable imply
that the mapping defined by Kn(x;B) from B to H  is a one-to-ome,
continuous mapping from a compact set to a Hausdorf space. Hence the
inverse exists and is continuous [R-5]. Thus (3.5.4) implies Bm L BO
wpl.

Another estimator analogous to that given by Choi can be con-

structed using the distance function

s, (® = [(® (B) - k_@0))%ak_(x)
Then Bm is defined as the element of A which minimize Sm(B). Under
the same conditions as those in Theorem 3.5.1, the existence and strong
consistency of B~ can be demonstrated from Theorem 3.3.2 and arguments
analogous to those given by Choi.

The conditions needed to establish the existence of the above
estimators are weakest considered in this thesis under which a strongly
consistent estimator for BO can be established. Hence they are key
assumptions which guarantee the learning property of the optimal rule
given in Chapter II. Identifiability is a necessary condition for the
uniqueness conditions required by the method of moments and the maximum
likelihood method but, in general, is not sufficient.

The minimum-distance methods require storage of all samples and
the use of a computational algorithm at each step. Such procedures

have been developed for the i.i.d. case and can be applied here [C-3]

[(p-1].
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3.6 AN EXAMPLE

In this section, a simple example of a POMS is used to illustrate
some of the estimation techniques developed previously. Estimators are
established from the method of moments, the maximum likelihood method
and the optimal Bayes method of Sec. 2.6. To illustrate some basic
properties of these estimators, results of computer simulation are pre-
sented.

The example consists of a POMS defined by the following.

.25 .75

24 A
regular = transition

Matrix .40 .60

initial probabilit
n P ility Py = [.7 .3]

state vector

1o 2y’
/oMo

component densities, fl(X;B) =
Gaussian in form )
-2
-0 (X-B
fz(X;B) -1 e w0 &-B)
Jan ¢

The true mean B0 is assumed to be in the interval (0,4). The sta-

tionary probability vector is easily calculated as
m = [15/23 8/23]

and hence the limit mixture has the form

2,2 22, .2
£ (X3B) = —L— [15/23 730  (X¥B)" | g/53 o740 T(X-B) ', (3.6.1)
m Jom o

It is well-known that all moments of a Gaussian distribution exist and
Patrick [H;2] has shown that a mixture of Gaussian distributions with

2AAs indicated in Chapter IV, if all the elements of a tramsition

matrix are positive the corresponding Markov chain is regular.
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unknown means is regular with respect to its first derivatives. Hence,
the method of moments and the maximum likelihood method can be applied
here.
A moment estimator is easily obtained using the second moment
2 2

equation Enxz =B + 0 . Then, Theorem 3.4.1 implies that the follow-

ing estimator is strongly consistent.

B:;,=/S s 20

m m
=0 s <0 (3.6.2)
= 2 S >4
m
m
where S = 1/m I X% - 02.
m =1 1
1=

As indicated in Sec. 3.4, the maximum likelihood estimate B;

is defined as a solution to the following equation in the interval [0,4]
-2 Loy 2 -2 2

- X.+B X.-B)

m -15(Xi+B)e o ( i ) 50 ° ( i

+ 8(xi-3)e‘
T

=0 (3.6.3)

i=1 3072 (x,+B) 2 302 (x;-B)2

02(15 e + 8e )
Theorem 3.4.2 guarantees a sequence of roots that converges. Moreover,
the computer solution25 of (3.6.3) indicated only one root in [0,4]
for most values of m.

The Bayes estimator is obtained by quantizing the interval [1,3]

2
into 50 levels, .04 apart.6 The estimate is defined by
1ot 50 m
B = T B, p(B /X)) (3.6.4)
m k" Yk
k=1
. th . . .

where B is the k= quantization level and p(Bk/Xm) is generated

k

iteratively using equations (2.4.3)-(2.4.5) with B replaced by Bk'

25Under the conditions stated below.

2§Additiona1 prior information is assumed for Bayes estimator to
emphasize its effect.
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A uniform prior density is assumed. As pointed out in Sec. 2.6, if B0
is in [1,3] convergence is guaranteed by the existence of the previous
two estimators.

The above estimators were implemented on a digital computer with

a random number generator supplying the samples; B, was chosen equal

0
to 2. For a given value of O, E(Bm) and Var(Bm) were approximated
for different values of m by averaging the results of twenty runs.
On each run the same samples were used to generate estimates by all
three methods. The results are presented in Table (3.6.1) for
o=1,1.5,2 and m = 25,50,100.

For this example, Table (3.6.1) indicates some general trends.
Not only do all the estimates converge on the average,but as more
observations are taken the variances of the estimates decrease. Also,
as the variance of the observations (controlled by 0O) increases, the
estimates become less accurate; i.e., Var(Bm) and lE(BHR - BOI in-
creases. All three estimators seem to perform about the same with
perhaps the Bayes estimator slightly better for small m and large O,
On the whole, the estimators behave much as they do for the i.i.d. case.

The above estimators can also be rated with regard to implementa-
tion. Since 02 + Sm = (1+1/m)(02 + Sm-l) + (l/m)Xi, the moment
estimator is a simple iterative one. The Bayes estimate is also
iterative but, for this example, requires fifty times more storage and
computation than the moment estimator. The maximum likelihood estimate
is, by far, the worst requiring storage of all samples and use of a

computational algorithm to find the zeros of (3.6.2) whenever an

estimate is desired.



46

sodkeqg :g
POOYTT3TT WNWIXERW TR

SJUSWOK JO POYIdW KWW

L9y
m
L790° 8090° €€80° 6560° €z GoYT " 8641 " 99G%" €6YE " ( 9)aep
7 =0
€C16°T Hw/%'T €876°T 6€I6°T 1206°T  [9/8°'T LL16°1T 6.78°'1  [7S8°'1 Aamvm
w
6160° 66%0" 626" %660° 8660° 6801 " 9921 €691 1622 ( 9 aep
S'T =0
m
%266°T 69€6°T GZL6°T 6600°C 8€70°C 9€S0°C 8€66°'T 1966°T 07S0°C (DI
w
€c10° €210° 1210° %0€0" G0E0" 8620° 7€50° %s0° %9%0° ( 9)aep
- 1=0
w
€866°'T C000°'C %¥866°T 7866°T L666°1T GZ66°'T  HIH'T  LI%6'CT  4w6%6°1 (D3
q ™ W g ™™ W, g ™ L
—~ 7 —
OOH“E Oﬂua mN"E
0

¢ = 9 HLIM SNMI 0Z KOYJd SLINSHY NOILVINWIS ¥YALAJWOD T1°9°¢ FTAVL



47
3.7 ALTERNATE STRATEGIES FOR THE ESTIMATION PROBLEM

In this section, three modifications of the basic estimation
strategy outlined in Sec. 3.3 and illustrated in Sec. 3.4 and 3.5 are
discussed briefly. Also, methods for handling extensions of the
original estimation problem are indicated.

The first modification is one that can be used when m is un-
known, as when P 1is unknown or T 1is too difficult to calculate. 1In
such a case, ™ can be included in the set of unknowns of K“(X;B)
and the methods of Sec. 3.4 and 3.5 can be used with an enlarged para-
meter vector.

The second modification is one that requires knowledge of P
but computes T during the procedure. The main idea ié to treat the
random variables X as if they had common distribution Km(x), an
element of Hm = {Km(X;B)}BGG' Then Bm, the mth estimate, can be
calculated using one of the principles of Sec. 3.4 and 3.5 with Kn(X;B)
replaced by Km(X;B). Since for each B € 3, Km(X;B) - Kh(X;B)
uniformly in X, the estimate Bm should be consistent. As an example,
a minimum distance estimator is considered; Bm is defined as the element

in B which minimizes I_(8) = ||k (X) - K (X;B)||. Then
I_(B) s I (By < |k X - KBl + |k (X;By) - K &8l (3.7.1)
and
llKn(X;BO) - Km(X;Bm)H < HKﬁ(X;BO) - Km(X)H +1_(B). (3.7.2)

Assuming identifiability of the class of mixtures generated by the

family of component distribution with B and ™ as parameters, the
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strong consistency of Bm follows from Theorem 3.3.2 and the fact that
Km(X;BO) L Kh(x) uniformly. Analogous estimators can be established
using the method of moments and the maximum likelihood method.

The final modification takes advantage of the fact that, in gen-
eral, the random variables observed at adjacent points in time are not
independent and, hence, information can be obtained about the unknown
parameter by cross correlating successive observations. Raviv [R-2]
used this technique to estimate the transition matrix P. His basic
tool was a modification of Theorem 3.3.1. Namely, if g(-,:) 1is an
integrable function then

1 N .
{3 iflg(xi’xi“) - Eﬂg(xk,xk+1)} =1 (3.7.3)
where E denotes the expectation when P, =T The approach here is

based on the fact that

= F =1
lgq()&q,xml) i‘z:jFi(KN) J.(XNH)piJ.P(xN i)
and
-y N
P(XN i) m
[--]
That is, the sequence of random variables {[xi,xi+1]}1 is described
by a sequence of mixtures of joint distributions which converges to a
fixed mixture
KX X ) = iZjFi(xk) Fj ()(k+1)1>ijffi

Hence a second order estimation strategy analogous to the first order

m
strategy of this chapter can be developed using observations {[xi,xi+1]}1

and all past techinques with (3.7.3) in place of theorem 3.3.1. 1In



this case, the elements of the transition matrix P appear as para-
meters in the mixture and hence can be included in the list of unknowns

to be estimated.27

3.8 ADAPTIVE ESTIMATION AND CLASS ESTIMATION

Estimation problems related to the POMS defined in Sec. 2.6 are
considered in this section. The transition matrix is assumed to be
block-diagonal; hence the system is in one of L noncommunicating
classes of states and each class is assumed to satisfy the assumptions
of the POMS defined in Sec. 3.1. The component distributions associated
with each class are assumed to be unknown to within a parameter as in
Sec. 3.1 and the active class of states is unknown also. The problems
are to determine which class is active and estimate the unknown para-
meters of that class.

To formulate the problems more clearly some notation is defined;
Ei is the stationary probability vector corresponding to the ith class;28
Hni = {Khi(X;B)}B6Gi is the set of limit mixtures induced by the family
of component cdf's for the ith class with ABi the corresponding para-
meter space;29 io is the value of the index for the active class; Bo
is the true value of the parameter defining the component densities of
class io. Both B0 and io are unknown and are to be estimated.

The first problem considered will be that of finding a strongly-
consistent estimator for BO" One strategy is to assume the system is
in a particular class and construct an estimate accordingly using the
methods of Sec. 3.4 and 3.5. If this is done for all L classes the

27 .
If P is to be estimated 1T must be known or a consistent

estimator for ™ must be available. Such an estimator can be obtained
from the first order strategy discussed in modification one above.

2 .
8Each class is being treated as a separate Markov chain.

29For simplicity the parameter space is assumed to be the same
dimension for all classes. But all arguments apply directly to the
more general case.
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result in a set of L estimators containing at least one consistent
estimator. This procedure is illustrated below using the minimum dis-
tance principle.
i a i
f B) = ||K - R i a i
I Qm( ) H m(X) Kﬂi(X,B)H then Bm’ the estimate assuming
class i 1is active, is defined as the element in 5 yhich minimizes

i . . . 2
Qm(B). Since there exists at least one value of i, say i, such that

~

K X 2 Knl(X;B ) wpl, then, as in Theorem (3.5.1), if H » is
m ml

8 =20

identifiable B 3 B wpl. Therefore a sufficient condition for the

0
adaptive estimator given by (2.6.6) to converge to B0 is that H i
L
be an identifiable set of mixtures for i =1,2,...,L.

It is important to realize that i as defined by

Y

i
m

QB 2o wpl (3.8.1)

may not be unique. Hence B0 can be estimated even when it is not

possible to determine which class is active. The question of sufficient

conditions for determining iO will now be considered and a more

explicit estimate for B0 will be constructed.

Definition 3.8.1. The set of mixtures H is said to

L
=UH
: 1 T
be class identifiable if, for any B, € B and B, € Bl

Kni(X;Bl) = Knj(X;Bz) ¥X (3.8.2)
implies 1 = j.
The above definition can be interpreted as saying that the
space of mixtures H_ is class identifiable if and only if {Hﬂi}i
is a collection of disjoint sets. Sufficient conditions for class

identifiability are given in the Appendix. As indicated by Theorem

3.8.1, class identifiability is the key condition for determining io.
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THEOREM 3.8.1. If Hﬂ =

Hi is class identifiable then im
i

[ I o

1
defined by

in - i i
QB ) = m;n Qm(Bm) (3.8.3)

is a strongly-consistent estimator for i Furthermore, if, for each

~ 0°
i
i, Hni is identifiable then Bmm defined by (3.8.3) is a strongly-
consistent estimator for BO.

Proof. By definition and Theorem 3.3.2
in i0 m
Q@B ) = Q, (BO) -0 wpl (3.8.4)

Then the subadditivity of the supnorm implies

K . K. €H . wpl 3.8.5
i i Mg P ( )

i
where K, =K , (X;B m) and K, =K , (X;B.). Since for each i
e LLE, LR ﬂlo 0

the mapping from B" onto H i defined by K i(X;Bl), is continuous
m ™

and B is compact, H { is compact also [R-5]. By the class identi-
m

fiability of H_ , {H i}i is a collection of disjoint sets. Hence,
m

for almost every sequence of observations, there exists an @, such

that for m > my, K, €H i Otherwise there would exist a sub-
n m
m 0
®
sequence of {K . } contained in H for some i, # i, and con-
‘n‘l 1 -n'll 1 0
verging to K ; 8 point not in H i This contradicts the compact-
i ﬂ
0

ness of H, . Thus for m>m., i =1i.. If in addition H , is
iy 0 m 0 mi,

[

wpl, as in Theorem (3.5.1).

i e
identifiable then {B }m converges to B,
0

i
It follows from both identifiability conditions that for m < m, B "

is well defined.

As indicated in the Appendix identifiability of H i is not a
ul

necessary condition for class identifiability of Hn hence io can
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be estimated even when B0 cannot.

3.9 CONCLUSIONS

This chapter has dealt mainly with the problem of finding strongly-
consistent estimators for the unknowns in the component distributions
of a POMS. The problem was defined in Sec. 3.1 as one of estimating
the parameter set B0 that defines a sequence of mixtures using de-
pendent samples from successive elements in this sequence. The study
was restricted to a class of systems with state activity described by
a regular Markov chain. As shown in Sec. 3.2, the corresponding se-
quence of mixtures approaches a limit mixture Kh(X;BO) and the
observation process is asymptotically ergodic. These properties were
used in Sec. 3.3 to establish tools (extensions of the Law of Large
Numbers and the Glivenko-Cantelli Theorem) for estimating Kn(X;BO)
and any of its expectations from available observations, thus re-
ducing the estimation problem to the resolution of the limit mixture.
This estimation strategy was illustrated with the method of moments
and the maximum likelihood method in Sec. 3.4 and the minimum distance
principle in Sec. 3.5. The result was a variety of conditions under
which the parameters could be estimated and, hence, under which the
optimal rule of Chapter 1I adapts. A specific example illustrating
some of these methods and the optimal Bayes estimator of Chapter II
was presented in Sec. 3.6. Computer simulations indicated the behavior
of the estimators to be typical.

Alternate strategies were proposed in Sec. 3.7. It was shown

that these strategies would also handle the case in which the transition

matrix P is unknown.
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In Sec. 3.8, the adaptive estimation problem and class estimation
problems of Sec. 2.6 were solved suboptimally. 1In the process of
establishing conditions under which such estimators could be constructed,
the concept of class identifiability was introduced with sufficient con-
ditions for this type of identifiability being given in the Appendix.

Finally, the basic aim of the Chapter has been to put forth a
general estimation strategy and illustrate it with examples. It should
be clear that many methods not mentioned here [C-4][H-2][s-2](s-3], in-

cluding nonparametric ones, apply equally well to this problem.



CHAPTER IV
EXAMPLES OF PARTIALLY OBSERVABLE MARKOV SYSTEMS

Examples of Partially Observable Markov Systems (POMS) can be
found in the fields of Pattern Recognition and Communication Theory.
When the model defined in Sec. 1.1 can be associated with systems in
these fields, the decision rules of Chapter II and the estimation
schemes of Chapter III lead to a class of decision devices with a
learning capability.

This chapter deals mainly with the design of optimum, adaptive
signal detectors for a variety of communication systems with unknown
signals. The basic approach is to propose a communication system,
make the correspondence between it and a POMS with unknown parameter
in the component densities, identify the optimal detector, and check
critical assumptions that ensure adaption.

The main assumptions that guarantee the existence of an iterative
optimal rule which adapts are listed below from Sec. 2.1, 2.5, 3.1 and
3.5.

1. The observation process is state-parameter-conditionally

independent.

2. The underlying Markov chain is regular.

3. The Corresponding set of mixtures is identifiable.

Through most of the chapter the transition matrix P will be
given and the component densities will be Gaussian with unknown mean.
Consequently, in verifying the above assumptions, the following in-
formation will be useful.

54
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A regular Markov chain can be characterized by its transition
matrix in either of the following two ways [K-3][K-4].

1. There exists a finite integer N, such that PN has all

positive entries, denoted by PN > 0.
2. All but one eigenvalue of P lies inside the unit circle.30

As indicated in the Appendix, all the sets of finite mixtures of
Gaussian distributions with distinct means are identifiable if constraints
are imposed to rule out any ambiguities which may arise in the parameter
space. In this chapter it is assumed that, for each example, a parameter
prior density which reflects such constraints is available.

The purpose of this chapter is to display the versatility of the
model for a POMS and not to investigate each application in detail. 1In
order to display the main ideas clearly, special cases are treated which
can be easily generalized. Additional background concerning each problem
can be found in the references cited in the corresponding sections.

In Sec. 4.1, a Pattern Recognition System with Markov-dependent
pattern activity is introduced and discussed briefly. 1In Sec. 4.2, a
basic communication system with a Markov encoder, memoryless channel, and
known synchronization is considered. The assumptions of the basic system
are weakened in Sec. 4.3 and 4.4; systems with unknown synchronization and
channels with memory are considered. Sections 4.5 and 4.6 deal with vari-
ations of the basic system in which synchronization is undefined; namely,
systems in which signals arrive at random times. The results of the chapter
are discussed generally in Sec. 4.7 and 4.8.

4.1 PATTERN RECOGNITION WITH MARKOV-DEPENDENT PATTERN ACTIVITY

Before attacking any communication systems it is convenient to

investigate a more general class of systems and illustrate the format

30Since the elements in each row of P sum to one, 1 is an eigenvalue.
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for utilizing the results of Chapters II and III. 1In this section, a
pattern recognition problem in which pattern activity at one time de-
pends on pattern activity at other times in a Markov manner is shown
to be a problem in decision making with a POMS.

The system under study is depicted in Fig. 4.1.1.

PC1
\‘, /~ 1 Switch

Feature — Pattet:n. >
Extractor Classifier

Fig. 4.1.1 A Pattern Recognition System

There are M pattern classes {Pci}?. At time N, a sample pattern

is randomly chosen according to the probability vector

N
By = [P(Wl),.-.,P(W;)] (4.1.1)

where P(W?) is the probability that PCi is active at time N and
P(W§|W§-l,...,wi) = P(W?|W§-1) = Pji ¥ N. The sample pattern is mapped
to a point xN in a finite-dimensional, Euclidean vector space via the
feature extractor. Associated with each pattern class is a density
f(xlwi) for XN when PCi is active. The pattern classifier makes

a decision as to which pattern class generated XN. Raviv [R-B] applied
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such a model to the recognition of characters in text. He assumed all
quantities were known or obtainable through supervised learning.

The problem here is to design an adaptive classifier which makes
decisions on the basis of observations XN = [Xl,...,xN] when P
and P = [pij] are given but the densities {f(Xlwi)}T are unknown.
The relation between this problem and that of decision making for a
POMS is established by introducing the random variable XN which maps
the event w? to the interger i. Then {XN}: is a first-order,
homogeneous Markov chain. The events {w?}? have been put into a one-
to-one correspondence with the states of a POMS whose state activity
is summarized by P, and P = [pij] and whose observations are governed by
the component densities {f(x|wi)}T. The problem of classifying
feature vectors is that of making decision about the states of a POMS.
A variety of adaptive classifiers follow from the decision rules of
Chapters II and III.

For example, when the component densities are specified to
within a parameter vector B, the minimum probability of error rule

as given in Sec. 2.2 is:
decide PCi is active at time N if
P(WI;IlXN) > P(w‘;IXN) v i#i (4.1.2)
where
P(w’f|xN) - [ P(WI:|XN,B)p(B|XN)dB (4.1.3)

As in Sec. 2.3, the posterior probabilities {P(W?lXN)}? can be gen-
erated iteratively under Assumption 1 of this chapter. Furthermore,

if Assumption 2 and 3 hold
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p|x) ¥ 5 (8-B,) wpl (4.1.4)

where B0 is the true parameter value. Hence BO is learned and the
rule adapts.

It is clear that the estimation schemes and suboptimum rules de-
fined in Chapter III apply as well.

In the remainder of the chapter more explicit examples are given

in which the assumptions guaranteeing existence and adaption of optimal

rules can be checked.
4.2 ADAPTIVE SIGNAL DETECTION WITH A MARKOV ENCODER

This section considers a particular example of the system treated
in Sec. 4.1. A communication system, wherein the signal sent in one
time interval depends on that sent during another time interval in a
Markov manner, is investigated. Figure 4.2.1 illustrates the system

under study.

Sl(t) \, /— ] Encoder /" Sampler
/

A /
Sz(t) Y 6(t) ~X(t
. Channel Detector }|=»
. +
. A xN
SM(t) n(t)

Fig. 4.2.1 A Communication System
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Every T seconds a signal is randomly chosen from the set

{Si(t); 0sts T}? and sent through a channel which changes it in

some fixed but unknown manner. The channel output 6(t) is corrupted

by additive noise and the result is sampled. The observable coordinates

are a sequence of time samples {x(ti)}T where x(ti) = e(ti) + n(ti).

The detector uses these observations to determine which signal was

sent in a given time interval.

The Basic assumptions are the following

1.

The operation of the encoder is described by a matrix of
positive probabilities P = [pij] = [P(W?/WT-I)] for all

N, where w? is the event that the ith signal was sent over
the interval [(N-1)T, NT].

A set of prior probabilities P = [P(Wi),...,P(W;)] govern-
ing transmission in the first interval is given.

The channel is memoryless. Hence, there is no intersymbol
interference and the channel output during the Nth interval
is caused only by the input during that interval. The re-
sponse to Si(t) is Gi(t).

The Noise process is white and Gaussian with zero mean and
finite variance.

The encoder and detector are synchronized so the time re-
ference is the same for both.

Every T seconds a block of {4 samples is taken at the
receiver in accordance with standard sampling theorems;

KN is the block taken during the Nth interval and Oi(t)

is characterized by an {-dimensional vector of samples

8 =08,,.....0,1.
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The correspondence between this system and that of Sec. 4.1 is
immediate. The encoder acts as the switching device and the sampler
as the feature extractor. When the event wﬁ occurs, the resulting
observation is KN =8 + o where oy is a vector of noise samples.
Hence, the component densities are Gaussian with means {31}?' The
problem is to establish a detector which makes decisions on the basis
of the observations XN = [Xl,...,XN] while learning the signal
vector 6 = [gl,gz,...,gM].

As in Sec. 4.1 the optimum decision rule is:

decide the ith signal was sent in the Nth interval if
N
P(Wl:/X ) 2 P(WI;/XN) Vij#i (4.2.1)

This rule has the learning property indicated by (4.1.4) with B re-
placed by 6. Only the assumptions remain to be checked. The state-
parameter-conditional independence follows from the white Gaussian

Noise assumption. This will be the case through the remainder of the
Chapter. Hence only Assumptions 2 and 3 will be discussed forthwith.
Since pij > 0, the underlying Markov chain is regular. The family

of component densities are Gaussian. Hence if the vectors in the set
{gi}T are distinct, the identifiability assumption is satisfied and

the rule adapts.
4.3 ADAPTIVE DETECTION WITH INTERSYMBOL INTERFERENCE

When the channel of the system considered in Sec. 4.2 has memory,
the signal transmitted in one time interval spills over into other
time intervals. Consequently, the received signal at any time is

affected by what was sent before. This dependence, under suitable
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assumptions, can be shown to be Markovian. Chang [H-1] considered
adaptive detection for the binary case in which one of two antipodal
signals were sent independently from one time interval to the next.
In this section, a more general class of signals transmitted with
Markov dependencies is considered.

The system under study is the basic communication system of
Fig. 4.2.1 with the channel described by a causal linear filter with
impulse response h(:*). For simplicity, interference is assumed to
be limited to the immediately succeeding time interval, which is ex-

pressed as

h(t-T) =0 [t > T+r
(4.3.1)

t<T

The channel input-output relation is given by

T 1
Ioh(t-w)si(t)df 8.(t) 0sts=T

(4.3.2)

ef(c) T<t< 2T

Let P(wﬁj) be the probability that the ith signal was sent during
the Nth interval and the jth signal, during the preceeding interval.
From the superposition property of linear filters the output of the

channel when the event w?j occurs is

eij(t) = ei(NT-t) + 9;((N+1)T-t) (N-1)T < t < NT

and KN = 213 + oy where glJ is the vector representation of
eiJ(t), 0 <tsT. Then, using the transition probabilities of Sec.
4.2, the event {ng} can be put into one-to-one correspondence with

i
the states of a POMS with Gaussian component densities with means {g j}.
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For example if M = 2

PO <RGN WTH = PanTh

-1 -2 -1 -2
=l H n W7 el n W)
-1 -1
=P P(wa ) Py P<w§2 )

where as defined in Sec. 4.2 w? is the event that the ith signal was
sent in the Nth interval. This procedure can be repeated for the re-
maining events in the set {wfj}. Then the probability vector defined

by
By = [P(w§1)P(w§2)P(w§1)P(w22)]

satisfies the iterative relation By = By 1P where

~ ﬁ
0
P11 Pip O
P;; 0 Py O
P =
1 |0 p; O Py
0 P 0 P
8 21 2gj

The initial probability vector p, can be calculated from that of Sec.
4.2; e.g. P(wil) =P, P(Wi). When the underlying chain is in the
state corresponding to wﬁj the density of the observations is Gaussian
with mean gij.

The optimum decision rule is given by:
. . th .
decide Si was sent during the N interval if

P(wi/xN) 2 PW /X)) YV k#i (4.3.4)
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where

P(wi/xN) =5 P(wij/xN) .3.5)
h|

N
/X)) can be generated iteratively as in Sec. 2.3.

and P(W§j

The assumptions ensuring adaption are now investigated. Since

pij >0 i,j =1,2, Pi > 0 and, thus P1 is regular. It is clear

that, for general M, P1 retains a structure such that Pi > 0. Again,
because the component densities are Gaussian, identifiability is in-
sured if the vectors in the set {glj} are distinct.

When P1; =Py =9y and Py = p12 =q, (this corresponds to
the case Chang treated) P’ is uniform in the columns. Hence {XZk}T

and {\ are independent subsequence of the underlying chains and

}eo
2k+1°1
the corresponding observations are independent. Chang used this fact,
which can be arrived at by direct consideration of the model, to con-
struct estimators for the unknown signals. He used the method of
moments and his techniques are a special case of those discussed in

Sec. 2.4 and 2.7,31 where if M = 2, the unnormalized stationary prob-

ability vector is

m = LP11Pars ProPayy PraPare PagProl- (4.3.6)

4.4 ADAPTIVE DETECTION WITH UNKNOWN SYNCHRONIZATION

When synchronization is unknown in the basic communication
system of Sec. 4.2, each block of samples may contain the effects of
two signals. Hence there are dependencies between the signal received
in one time interval and that in adjacent intervals. Under appropriate
assumptions , ‘these dependencies can be shown to be Markovian. Stewart

31The Third Modification.
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[H-3] found the optimum decision rule for determining the true synchro-
nization time when the signals were transmitted independently from one
time interval to the next. In this section transmitted signals are
Markov-dependent and the optimum decision. rule for determining synchro-
nization is shown to follow easily from the results of Sec. 2.6 and 3.8.

The system under study is the basic communication system of Sec.

4.2 without the synchronization assumption. That is, in each block of
samples the time sample at which the effect of one signal ends and that
of the following signal begins is unknown. Additional assumptions are
needed and these will be considered in force for the remainder of the
chapter.

1. Time zero is the time the receiver is turned on.

2. The initial probability state vector of Sec. 4.2 governing
the transmission of the first signal is the stationary
probability vector .

Assumption 2 implies the time the transmitter is turned on is ir-
relevant provided it occurs before the receiver is turned on.

h
If each block is assumed to consist of {4 samples and the rt

. th
sample from the start is the true synchronization time, the N

r
.+ some i where
{5 oy s ]

observation has the form: KN = 0

r
9y = (e ] (4.4.1)

i,&-r+2""’eLL’ejl"°"ej,L-r+1
is the vector representation of the signal at the output of the channel
between (N-1)T and NT. That is, g;j contains the last r-1 com-

ponents of Ei and the first 4-r+l components of Qj where Qi and

8, are the vector representations of the channel responses to signals

3
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si and Sj respectively.

Let P(w:j € XN) be the probability that ezj is the channel
output in the Nth interval and let P(wr) be the prior probability
that r is the true synchronization time. Then, using the transition
probabilities of Sec. 4.2 the events {w;j}; i,j=1,2,...,M; r = 1,2,...,4
can be put into a one-to-one correspondence with the states of a POMS.

For example if M= 2 and 4 = 2

2 2 k k-
P(w11 € xN) =PMW N Wy n W, 1)

k t
where, as in Sec. 4.2 Wi is the event that the i h signal is sent in

th . . .
the k interval after the transmitter is turned on; k is unknown. Then

P(wi1 €x) = p(w?/wﬁ'l,wz)p(wz n wﬁ'l)

1 k-2

1. k-2 2 . k-
AW, D) +PE NW NW, )]

2 k-
pll[P(w nw,

2 2
Pyp Py €X ) +pyy PM,, € X0 g)

This procedure can be repeated for all the events {Wij}. Then the

probability state vector
2 1 1 2 2 2 2

is related to its predecessor by Bé = E§-1p2 where

Ppn Pp 000 0 ]
Ppp Py 0 0 00
P, = |0 0 py; 0 0ppp O
0 0 Py 0 Py O
0 0 0 ppy 0 Py
L? 0 0 Py, O P22
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The initial probability vector B, can be obtained from ™ and
{P(Wr)}g. The corresponding component densities are Gaussian with
means {e:j}.

The transition matrix is block diagonal with one block asso-
ciated with each synchronization time. The problem of determining the
true synchronization time corresponds to that of class estimation given
in Sec. 2.6. The optimum decision rule follows from (2.6.1) and has

the form:

decide the true synchronization time is r if
r, N k N
PW /X)) 2PW /X)) Vk#r
where
N
P /XYY = zp(wzj/xN)
i,

Conditions under which

Pt/ N b wpl
150

where is the true synchronization time, are now considered. In

o
general, P2 will have 4-1 blocks exactly the same (those correspond-
ing to synchronization time r = 2,...,4). These have the same form
as P1 considered in Sec. 4.3 and hence are regular. The remaining
block (for r = 1) has all positive elements and is regular also.
Since for 4 > 2 the blocks are not distinct and the component den-
sities belong to the same family, then as indicated in Sec. 3.8 and

the Appendix r, cannot be determined unless prior information is

0

available concerning the parameters of each class. However, this POMS

has some special properties that can be exploited. The observations
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from one class are related to those in others(when they are active)
through a shifting procedure. Hence, an empirical cdf for the limit
mixture of each class can be constructed for minimum distance estimation.
This observation was used by Stewart in the i.i.d. case to establish
that r, could be uniquely determined if {gzj} contained at least

mtl distinct vectors for each r. Since the identifiability problem

is the same for the Markov case, his result can be extended via Theorem

3.3.2.
4.5 M- ary ADAPTIVE DETECTION OF SIGNALS WITH RANDOM ARRIVAL TIMES

In Sec. 4.2-4.4, the periodic behavior of the encoder allowed
observations to be processed in blocks of known size, whether or not
synchronization was known. In this section and the next, the un-
certainty concerning the signal arrival time is greatly increased and
the samples must be processed one at a time. The detection of signals
of known duration but with random arrival times is considered. For
random lengths of time no signal is transmitted and only noise is re-
ceived.

Stewart [H-3] found the optimum receiver for a case in which
signals were transmitted independently in time but was unable to find
a suboptimﬁm solution and, therefore, could not prove adaption. In
this section, the optimum receiver for the Markov-dependent case is
established and convergence follows immediately from previous results.

The system under consideration is essentially the basic commu-
nication system of Sec. 4.2 with an additional '"no signal®™ input which

can be active for a random length of time. Signals are transmitted
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for a duration T and no transitions of the encoder are allowed during
this time. A typical signal of the output of the channel is depicted

in Fig. 4.5.1.

6(t)

!

T
!
|

Fig. 4.5.1 Channel Output for an M-ary
Signal set with Random Arrival Times

Then xk = e(tk) + M(tk) is the sample at time tyt The sampler is
assumed synchronized; i.e., signals can arrive only at sampling in-

stants. Thus, e(tk) is either 0 or 6,.,, the jth component of the

ij
signal vector characterizing ei(t); 0<t<T.

Let P(W:j) be the probability that eij is active in Xk
and let P(Wg) be the probability that noise alone is present. Then,
as in previous sections, the events {wfj}, Wg can be associated with
the state of a POMS with Gaussian component densities with means {eij}

and O.

When 4 = M = 2 the probability state vector
k k k k k
B = [PWQRE P )P, VPG, )]

can be generated by P, = Py _1P3 where



Poo Po1 O Py O
0 0 1 0 0
Py= Py P11 0 Py, O
0 0 0 0 1
(P20 P21 O Py O

The probabilities , and pi are those governing transitions (when

Poi 0
they can occur) between the signal and noise states of the encoder,
from one sampling time to the next.

The following posterior probabilities can be used to make optimal

decisions as to which signal, if any, is active at time k.

p(wf) =T P(w:j/xk) i=0,1,...,M
h|

For ease in verifying assumptions, let pij = qj j=0,1,...,M
(This is the case considered by Stewart). For this case with M =4 = 2
3 is regular. With

general M and L, the characteristic polynomial of P3 can be shown

P3 has eigenvalues 0, 0, 0, 1, qo-l and P

to be
-1)4+1 -1
By, () = (-1 ™ (DL (-sL + qosL + q)
M
where q= 1 - q, = z q;- Since qu(s) = 0 has only one root on the

1
unit circ1e32, s =1, P3 is regular. In the most general case P3

has the same structure, with respect to non zero entries, as in the
previous case. Hence the type of state activity is the same and P3
is regular.33

Identifiability conditions follow as before. If {eij} is a

set of distinct elements, all unknown parameters can be determined.

32The only value of a which satisfies qu(eJa) =0 is a = 0.

33See Sec. 4.7.
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4.6 ADAPTIVE DETECTION OF SIGNALS WITH RANDOM ARRIVAL TIMES

This section treats a variation of the problem defined in Sec.
4.5. Instead of employing a randomly-chosen sequence of signals with
random spacing, one signal is randomly chosen and transmitted repeatedly
at random times. The problem is to design detectors to determine when
the signal is present and which signal is being sent. Nolte [N-1]
found a detector for the case in which all the signals are known. How-
ever, he did not discuss the conditions for adaption; i.e., for con-
vergence to the detector that would be used if the identity of the
signal being sent were known. Here, the signals are unknown but other
prior information is assumed available to make the problem meaningful.

The system under study is basically the same as that in Sec. 4.5
except that here the encoder switches between a fixed signal and noise.

A typical signal at the channel output is shown in Fig. 4.6.1.
e(t)

!

=
= =
=
T
=
atha

Fig. 4.6.1 Channel QOutput for a Signal
with Random Arrival Times
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When the ith signal is being sent x(tk) = Xk = O(tk) + n(tk) where

e(tk) is either 0 or eij for some j; eij is the jth component of

the signal vector corresponding to the ith signal ei(t). Let P(wi)

be the prior probability that signal i 1is the one being sent repeatedly.
As in Sec. 4.5, P(ng) is the probability that Xk = eij + n(tk)

and P(wro) is the probability that xk = n(tk) and signal i is the

one being sent. Then, the event {w:j} can be associated with states

of a POMS with a block diagonal transition matrix, each block correspond-

ing to the event that a particular signal is being sent repeatedly.

For example, when M =4 = 2 the probability state vector is

k k k k k k

and the transition matrix is

-
Vl l-vl 0
0 0 1
P4 = Vl l-vl 0 (4.6.2)
v2 l-vz 0
0 0 1
) 1-v 0
L 2 z

k -1 k k .
where vy P(WIO/W?O ) P(wio/wiz) are assumed given. Again, the

component densities are Gaussian with means {eij} and 0.
Then, as indicated in Sec. 2.6, under appropriate assumptions

to be discussed presently

k k
P(Wi/x ) =% P(Wij/X ) = Ai wpl (4.6.3)

3 Jo



72

where jo is the index of the true signal being sent and P(wi) is
the probability that ith signal is being sent. The probabilities
{P(wi/xk)}T can be used to make decisions as to which signal is being
sent.

Now if the ith signal is assumed the one being sent the decision
rule is

decide si present if

L e, /x5
L(Xk/wi) I et .6.4)

Consequently an adaptive detector is given by

decide a signal present if L(Xk) >1

where
K Mook K
LX) = ZTLEX /wi)P(wi/x ) (4.6.5)
z2=1
and
k. ®
LX) - LX /wi ,ei ) (4.6.6)

0 0
The rule (4.6.4) is analogous to that given by Nolte but it is
not the optimal rule for detecting a signal. The optimal rule uses

the likelihood ratio

M 4 K M K
T ZPW,./X)/ ZPW, /X7)
i=1 j=1 ] i=1 0

which has adaption properties similar to (4.6.6).

The conditions for convergence will now be investigated. The

ith block of P corresponds to a special case (M = 1) of P3 con-

4

sidered in Sec. 4.5. Hence, P4 is regular.
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In checking identifiability it is important to realize that
there are two estimation problems involved. The first is concerned
with determining which signal is being sent and involves class iden-
tifiability. The second involves the estimation of the signal being
sent and regular identifiability. As indicated in Sec. 3.8, (4.6.3)
can hold without (4.6.6) being true and vice versa.

For example, let M =4 = 2. Then the stationary probability
vector for the class corresponding to the ith signal is proportional

to [vi 1-v l-vi]. Hence, according to the discussion in the Appendix,

i
(4.6.3) will be true if v, # v, and, for each i, {eij} is a set of
distinct elements. If Vi =V, additional prior information is needed

on the parameters. It must be known that 91 and 92 lie in disjoint
regions of the parameter space; e.g., the signal set might be anti-
podal. If such information is not available, the signals cannot be
distinguished, in general.

On the other hand, if, for each i, {eij} is a set of distinct

elements, 6 can be learned and (4.6.6) will obtain even if the class

1y

of the signal is indeterminable. If no special prior information is
available concerning the signal from each class, then one might as
well design a detector for one unknown signal. The rule of Sec. 4.5
could be used with M = 1. The important point is that the rules con-
sidered in this section provide a means of using this prior information
when it is available.

When 6 1is known (the case treated by Nolte) it is clear from
the Appendix that the existence of the set {gi} of distinct vectors

is sufficient for adaption.
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4.7 REMARKS

This section considers briefly some points that apply generally
to the contents of this chapter.

In attempting to treat a variety of situations in & uniform
manner, simplifying assumptions were made and the models were slightly
contrived. Consequently, the results generalize in many respects and
are intended to include other situations that give rise to similar
decision problems. The emphasis in these applications should be on the
received signals with the encoder and channel serving as a convenient
way of accounting for the generation of unknown signals in a Markov
manner. From this point of view, the results of Sec. 4.3 indicate
that the Markov dependencies between the received signals of other
sections could be due to intersymbol interferrence; the randomly
arriving signals of Sec. 4.5 or 4.6 could, for example, be seismic
waves; any signal space representation of the received signal in Sec.
4.2 will serve as well as time samples to make decisions. It is also
clear that the Gaussian noise assumptions can be weakened and the
number of unknowns can be increased.

With regard to the identifiability conditions, the following
observations are important. The conditions stated in each section are
sufficient to ensure that all parameters can be learned and effective
decisions can be made on all the states of the corresponding POMS.
However, in many cases, (Sec. 3.3-3.6) the events of interest consist
of a union of other events. To make effective decisions, it is not
necessary that all the component densities corresponding to the events

in this union be distinguishable. Thus, depending on the inferrence
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problem of interest and the available prior information, conditions for
adaption can be considerably weakened, with Sec. 3.8 and the Appendix
providing the guidelines.

Verifying the regularity of the underlying Markov chains may
have appeared to be a formidable task. However, it is well known that
the regularity of a Markov chain can generally be determined from the
structure of the corresponding transition matrix. While the eigenvalues
give useful information concerning the system activity, they do not have
to be computed to verify this assumption. Furthermore, the behavior of
a general class of systems can usually be summarized by a simple example.
This point of view was not developed in this chapter but was implicit
in Sec. 4.5.

Finally, while the optimum solutions given in this chapter pro-
vide a reference for comparison, they are generally undesirable from
the view point of practical engineering. Among the suboptimum
solutions suggested by the estimation techniques of Chapter III it
appears the method of moments would yield the most fruitful results.
The success that Chang and Stewart have had with this method in de-
veloping low-memory estimators for cases of practical interest in-

dicate that similar results could be obtained here.
4.8 CONCLUSIONS

The aim of this chapter has been to display the versatility of
the model for a POMS and to exhibit how the results of Chapters II and
I1I can be applied. Several communication systems were shown to be

POMS. These include systems with
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1. A Markov information source

2. A channel with memory

3. unknown synchronization

4. signals with random arrival time

5. combinations of the above
For all these cases the form of the optimal detector for unknown re-
ceived signal was shown to follow directly from the results of Chapter
II and the conditions for adaptions from Chapter III. Although optimal
decision making was emphasized in the above examples, it is implied
that the estimation schemes and suboptimal decision rules apply as well.

In addition to providing quick solution, the technique of formu-
lating these inference problems as those of decision making for a POMS
has other advantages. First, it provides a common model for a variety
of seemingly different systems. This facilitates comparison and helps
focus analysis efforts in one direction. Results developed for gen-
eral POMS apply to all of the above systems. Next, it illustrates
clearly the nature of the estimation problem involved. Whereas, the
properties of the observations are not always clear, in an ad hoc
formulation, the mixture approach used in this thesis clearly defines
conditions for the existence of estimators and suggests a wealth of
techniques. Finally, it brings into play the powerful tools of Markov
chain theory. Once a state space and transition matrix have been

established, a great deal can be inferred about system state activity.



CHAPTER V
GENERAL CONCLUSIONS

In this chapter, the main contributions of the Thesis are re-

viewed and suggestions are made for future research.
5.1 REVIEW

This Thesis has been concerned with several inference problems
related to a class of Partially Observable Markov Systems. Generally,
the results represent an extension of previous work on unsupervised
learning and adaption from the i.i.d. case to a particular case with
dependent, non-stationary observations. However, additional inference
problems not well established for the i.i.d. case were generalized and
solved here also; namely those of class estimation and adaptive estima-
tion treated in Sec. 2.6 and 3.8. The basic goal has been to construct
estimators and decision rules and to state conditions under which they
perform effectively.

In Chapter II, Bayes Decision-Theoretic concepts were used to
develop optimal solutions when the component densities are defined by
an unknown parameter set. Large sample theory was used in Chapter III
to establish suboptimum solutions. The basic estimation problem was
one of mixture resolving and a general strategy was developed for ex-
tending estimation techniques developed for the i.i.d. case to the
more general case studied here. In general the results display many

similarities with the i.i.d. case. The dominant role of mixtures and
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identifiability, the implementation difficulties of the optimum rule
and the need for prior information are al} general characteristics of
nonsupervisory problems.

Chapter IV showed several communication systems of current in-
terest to be POMS. Consequently adaptive detectors and estimators were
easily established along with conditions for effective operation. This
unifying approach to solving a previously troublesome class of problems

represents a major contribution of the Thesis.
5.2 EXTENSIONS

The similarities between the results obtained here and previous
work in both estimation and Markov chain theory suggest certain natural
extensions that used to be investigated.

First is a class of inference problems with time varying para-
meters. For example, as an extension of the optimal i.i.d. case
Braverman [B-3] and Fralich [F-1] considered parameter changes summarized

by the difference equation of the form

Bye1 = By * Oy

where {AM} is a sequence of independent random variables. Their
ideas are applicable to the problem treated here [H-5].

Next is the problem of developing estimators that are easier
to implement than those given here. Sakrison [S-1] has used stochastic
approximation techniques to solve the likelihood equation. The result
is a simple iterative low memory estimator. This method applies to
ergodic observation processes which suggests that it could be extended

to the asymptotically ergodic case treated in this thesis.
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Finally, most of the results in this Thesis apply to POMS whose
state activity is described by a regular Markov chain. Although as
demonstrated in Chapter IV this represents a useful class of systems
it would be desirable to extend the results to include ergodic chains.
In so far as those properties which effect the proof of Theorem 3.3.1
are concerned, regular and ergodic chains are similar and it appears the

general estimation strategy can be extended.
5.3 SOME INTERESTING PROBLEMS

In an attempt to exploit the similarities between the i.i.d.
case and that of a general POMS, several interesting problems have
been ignored. Most of these problems arise from the fact that, unlike
the i.i.d. case, the optimum decision rule for a POMS has a changing
structure (as a function of the observations) even when all quantities
in the model are known. This causes three main difficulties.

The first problem is concerned with implementation of suboptimum
rules. Unless P(XN=i/XN,B) is stored as a function of B (This
would lead to the same storage problems as the optimum rule) using
P(AN=1/XN,BN(XN)) to make decisions at the Nth step requires storage
of XN and an iteration over N steps using the schemes of Sec. 1.2.
This is the case regardless of what is available from the (N-l)th
step. Hence the memory and number of computations grow with N. 1In
an attempt to overcome this problem Raviv [R-Z] has shown, for P un-
known and B, =T, that a fixed number of past samples can be used to
construct decision rules with an asymptotic risk arbitrarily close to

the corresponding risk for known P. The question of how many past
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observations are needed in a practical situation remains open.
The second problem is that of proving adaption of both optimal

and suboptimal rules. For example one would like to show
N N i N .
|1?()~N i/X",B (X)) - PO\ =i/X B Y| =0 wpl

This is a nontrivial statement and again the problem can be traced to
the varying structure of the rule. Raviv by using only a fixed number
of past observations had a fixed form rule (given P) and adaption
followed.

The third problem is that of computing probability of error.
Even when allquantities are known and a very simple example is used
error calculations are prohibitive [D-3]. This suggests that computer
simulation must be used to evaluate adaptive decision making devices.

The above problems indicates that a profitable result would be
some practical measure of dependency between the samples. If such a
tool were available effective suboptimum rules could be constructed
with desirable implementation properties; the look-ahead mode of de-
cision making could be better evaluated; and the effect of initial
system behavior on asymptotic decision modes could be determined. At

present computer simulation and intuition are the only guides.
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APPENDIX

Identifiability and Prior Information
for Unsupervised Learning

In Sec. 3.5 and 3.8, it was shown that when the set of mixtures
which arise in the estimation problem of Sec. 3.1 is identifiable, the
unknown parameter vector BO can be uniquely determined from the
observations. To ensure this condition constraints must be imposed on
the family of component densities and the parameter space. Thus in a
particular decision making problem a certain amount of prior information
is needed to guarantee solution. This Appendix deals with sufficient
conditions for identifiability. Most of the results are taken from
the literature but are presented from a slightly different point of
view, more suitable for the problems of interest in this Thesis.
Sufficient conditions are also established for class identifiability

introduced in Sec. 3.8.

The Uniqueness of Representation Property
for Finite Mixtures

Let J = {F(x;a)}aeA be a family of joint densities indexed by
a point o taking values in a subset of a finite dimensional Euclidean

vector space A. Let

k k
g - {(HX) = £ C,FX;a,), C, >0, £¢C, =1, FX;a,) € &}
. i i i i i
i=1 1
ko - >k
where the {ai}l is a distinct set of elements. Then ¥ =UH is
1

the set of all finite mixtures of the family {. The set ¥ 1is said

85



86

to have the uniqueness of representation property (urp) if

k k
'2 CZF(X;ai) = _2 CiF(X;ai) (A-1)
i=1 i=1

implies k = k and for each i, 1 < i < k there is some j, 1S j <k

such that Ci = &j and o, = &j' The URP can be restated as saying
there is a one-to-one correspondence between each set of allowable
points {Ci,ai}ﬁ and the mixture they generate. As indicated by the
following theorem this property can be characterized by {.

Theorem A-1. A necessary and sufficient condition that & have
the URP is that § be a linearly independent set over the field of
real numbers.

This theorem can be used to establish the URP for the set of
finite mixtures generated by the following families.

1. The family of n-dimensional Gaussian cdf's indexed by the

mean and/or the covariance matrix.

2. The family of n-dimensional exponential cdf's indexed by

the exponent constant.

3. The translation parameter family induces by any cdf with

a bilateral Laplace transform.

That is any finite set of distinct elements in each of the above

families is a linearly independent set.
Identifiability and the Estimation Problem

For the estimation problem Sec. 3.1 the class of mixtures of

interest is H_ = [KH(X;B)}BGB where

M
Kn(X;B) = iEl'rrif(X;Bi) (A-2)
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In (A-2) B = [Bl,...,BM], £(X;B,) € 3, and B is a subset of M-
dimensional Euclidean space containing only vectors with distinct
components. Then Hﬂ is said to be an identifiable class of para-
meter indexed mixtures if the mapping defined by (A-2) say Q" is a
one-to-one mapping from £ onto H_. Then if R%(X) € Eﬂ there

exists a unique vector B, such that Kh(X;BO) = Kh(x).

0
Since Hln CH, if H has the URP so does Hﬂ. However the

URP guarantees the uniqueness of B, only to within an equivalence

0

class. That is permutations of the components of B, might result

0
in another solution vector. This would be the case if all the com-
ponents of ™ were not distinct. Thus in order to guarantee iden-
tifiability as defined here a constraint on the parameter space is
needed as well as URP. In a practical situation this constraint will
be a reflection of prior information on a particular problem. For
example, if M = 2, o= m, = % and it is known B

is the parameter associated with state i of the system, then with

> BZ’ where B

1 i

the URP BO can be uniquely determined by minimum distance estimation.

It is important to realize also that in order for the Bayes algorithm
to learn B0 these constraints must be reflected in the prior dis-
tribution PO(B). If one is not interested in using the estimates

for decision making then constraints can be arbitrarily imposed to get
a unique solution vector. The definition of identifiability and all
the above remarks can be extended to the case in which T 1is unknown

and the parameter space is 2M-dimensiona1.34

34Identifiability is usually defined for this larger class of
mixtures [H-2] and the above definition is a consistent modification.
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Class Identifiability
1f 8i is the family of component CDF's associated with the
ith class then as in Sec. 3.8 Hni = {Xhi(X;Bi)}Bieei is the corre-
sponding set of mixtures with parameter space 46i and probability

L
state vector ﬂi. According to definition 3.3.1 H_= UH is

i
j=1 T
said to be class identifiable if {H i}i are disjoint subsets of H_.
m
Then from Theorem A-1 and a simple contradiction argument any of the
following conditions are sufficient for class identifiability of Hn'

L .
1. &= UJZ" is a linearly independent set, {ﬁi}L is a set

1
i=1
of vectors distinct to within permutations on the components.
2. § 1is a linearly independent set by B'n s = o 1i#]

L
3. 8 is a linearly independent set and N 81 = ¢
i=1

Assuming § is a linearly independent set, conditions 1 and 3
above indicate that classes of states can be distinguished when the
stationary probability vector associated with different classes are
distinct or the component densities associated with different classes
have distinct forms. However condition 2 indicates that if sufficient
prior information is available concerning the parameters associated
with each class the classes can be distinguished even when the class
transition matrices are equal and the component densities for each
class have the same form.

The above conditions are sufficient and it is clear that they
can be weakened. For example if Si is not a linearly independent
set, its mixtures do not necessarily equal those corresponding to
other classes. Also the components of Bé need not be distinct to

distinguish classes. In fact when T is known the distinctness of
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the components of B. 1is needed only to ensure the system states can

0

be distinguished in some sense and is not necessary to estimate Bo.
Finally when the class transition matrices are distinct but the corre-
sponding stationary probability vectors are not, a second order esti-

mation strategy (Sec. 3.7) may still lead to an estimator for io.
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