‘bV1£Sl_J RETURNING MATERIALS: PIace in book drop to uaaAmgs remove this checkout from “ your record. FINES will be charged if‘book is returned after the date stamped below. RETROVIRAL INDUCED LYMPHOMA: PROMOTOR-INSERTIONAL ACTIVATION OF THE CELLULAR MYC GENE BY RETICULOENDOTHELIOSIS VIRUS BY Robert Alan Swift A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Biochemistry 1985 k.‘ x' ' o- r... ABSTRACT RETROVIRAL INDUCED LYMPHOMA: PROMOTOR-INSERTIONAL ACTIVATION OF THE CELLULAR NYC GENE BY RETICULOENDOTHELIOSIS VIRUS BY Robert Alan Swift The avian non-acute Reticuloendotheliosis viruses(REVs) induce B-cell lymphoma in the bursa of birds 4-10 months post-infection. Recent evidence suggests that neoplasia could be caused by the activation of a cellular gene by the infecting virus. We show, by restriction enzyme analysis of tumor DNA, that REV can activate the cellular oncogene, c-myc, by insertion of the provirus proximal to the oncogene and oriented in the same transcriptional direction. We have supported our conclusion by cloning a c-myc gene activated by proviral insertion and analyzing its structure by restriction enzyme fine mapping. The structural analysis confirms our conclusion and reveals that the provirus carries a major deletion of the coding region, but has maintained both LTRs, which are identical based on DNA sequence analysis. RNA blots of poly(A) selected tumor RNA reveal novel c—myc transcripts which are consistent with initiation q from w transc indica nechan relate: sequent oncogei from within the LTR proximate to c—myc. However, no transcripts are seen that initiate from the other LTR indicating transcriptional surppresion by an unknown mechanism. Comparison of the DNA sequence of the LTR to a related REV strain shows major sequence divergence in the region where retroviral enhancers are commonly located. This sequence variation may account for the differences in oncogenic potential observed between strains of REVS. TO MY MOTHER AND FATHER WHO ALWAYS BELIEVED IN ME, EVEN WHEN THEY DIDN'T 11 A guide: Commi1 Lee Ve moral Taddy Philo ACKNOWLEDGEMENTS I thank Dr. Hsing-Jien Kung for financial support and guidance. I also wish to thank members of my guidance committee, Drs. John L. Wang, Jerry Dodgson, Alan Morris and Lee Velcier. A special thanks to Carol J. Fiol-Lay for all of her moral support during my trying times. I also must thank Teddy Fung for all that he taught me about science and philosophy. iii —- .. I.» I‘.. ~ \. \ .‘f‘ L.\o r ‘44 4 9‘. . - a a t... v '. o .4 ' Q . LIST C ABBREV CHAPTE I. 1}- II. III LIST OF TABLE OF CONTENTS FIGURES. . . . . . . . . . . . . ABBREVIATIONS. . . . . . . . . . . . . . . CHAPTER I. II. III. IV. LITERATURE REVIEW. . . . . . . . . . . . . Taxonomy . . . . . . . . . . . . . . . . . . . . The Viral Genome . . . . . . . . . . . . . . . . Enhancers. . . . . . . . . . . . . . . . . . . Virus Replication. . . . . . . . . . . . . . . Viral Integration. . . . . . . . . . . . . . . Acute—Transforming Viruses . . . . . . . . . . . Acute-Transforming Virus Formation: Transduction Reticuloendotheliosis Viruses. . . . . . . . . Cellular Oncogenes . . . . . . . . . . . . . The c—myc Gene . . . . . . . . . . . . . . . Proviral Insertional Activation. . . . . Translocation. . . . . . . . . . . . . . . . . . Amplification. . . . . . . . . . . . . . . . . . LINKAGE OF CHICKEN C-MYC GENE TO CSV . . . . . . Materials and Methods. . . . . . . . . . . . . . Results. . . . . . . . . . . . . . . . . . . . Discu881°n O O O O O O O O O I O O O O I O O DETERMINATION OF TRANSCRIPTIONAL ORIENTATION AND SITE OF INTEGRATION OF CSV RELATIVE TO C-MYC Materials and Methods. . . . . . . . . . . . . . Results. . . . . . . . . . . . . . . . . . . . . Discussion . . . . . . . . . . . . . . . TRANSCRIPTIONAL AND STRUCTURAL ANALYSIS OF AN ACTIVATED C-MYC GENE. . . . . . . . . . . . . Materials and Methods. . . . . . . . . . . . . Results 0 O O O O O O O O O O O O O O I O O O 0 Discussion . . . . . . . . . . . . . . . . . . . LITERATURE CITED . . . . . . . . . . . . . . iv Page vii 55 57 60 75 79 81 82 90 94 95 98 114 118 Figure '.- r. ' I 10 11 «.1— \’ CC 14 F- \ 1E Figure 10 11 12 13 14 15 16 LIST OF FIGURES Characteristics of some commonly studied retroviruses . . . . . Structure of a viral RNA genome from a replication competent retrovirus . . . The general structure of a C-type retrovirus A comparison between the viral RNA genome and the viral DNA intermediate . . . General structure of a retroviral LTR. Synthesis of the minus-strand of viral DNA Transduction of a cellular oncogene. . . . Characteristics of some oncogenes not associated with acute transforming viruses. . . . . . . Two configurations of proviral DNA that result in enhanced expression of a cellular oncogene. Restriction enzyme map of CSV. . Restriction enzyme map of the chicken c-myc locus. . . . . . . . . . . . . . . Hybridization of Eco RI digested tumor DNA . Quantification of the CSV sequences in tumor no. 15 . . . . . . . . . . . . . . . . . Quantification of c-myc RNA from tumors. Position and orientation of CSV proviruses inserted in the c-myc locus. . . . . . . . The nonrandom distribution of proviral insertion sites in the c-myc locus of avian bursal tumors. Page 16 19 21 23 29 36 49 63 65 68 71 74 84 89 igur F 17 18 19 20 r J Vi . I. , - . ,L, , CA. .a- 1:11.51. . i J .\. I3 I“ p g \‘ 3 - .0 1 . \‘ -. «,".J. i'e‘o-Iie' .‘ [‘4— 'I 1‘1 u TiIIBIfL9 . L) if \ ..$‘—/l V'” ; £-4 ) \ 4 . 1- . A vs Jul f‘ Figure 17 18 19 20 Structure of the chicken c-myc gene in B-cell lymphoma as analyzed by Eco RI digestion . . Restriction endonuclease cleavage map of phage clone 713 . . . . . . . . . Comparison of the nucleotide sequences in the LTRs of CSV and SNV. . . . . . . . . . Northern blot of poly(A) selected RNA from tumor 713 . . . . . . . . . . . . vi Page 100 103 107 111 \e ' O \J a! \. 11,3 '11)?! ( 4; NA 1 (A 9 J (I T CSV DIAV DNA FSV GTP kb kd LTR MuLV MSV PDGF REV RNA mRNA RSV SNV TS ABBREVIATIONS avian leukosis virus chicken syncytial virus duck infectious anemia virus deoxyribonucleic acid feline sarcoma virus guanosine triphosphate kilobase kilodalton long terminal repeat murine leukemia virus murine sarcoma virus platlet—derived growth factor reticuloendotheliosis virus ribonucleic acid messenger RNA rous sarcoma virus spleen necrosis virus tumor specific vii g,” o\(')l-{' C .3 -.- .. . -~-‘ ' .13... e ‘3 d A _ .‘r '7 "1 O b 1910 ( filter 0f the Other induce {Elle} lite 1951, disco induc elect bioch othe: Rat: LITERATURE REVIEW The RNA tumor virus and oncogene story dates back to 1910 (Rous 1910, 1911) when Francis Peyton Rous discovered a filterable agent(virus) that could cause sarcomas, a tumor of the connective tissue, in domestic chickens. There were other filterable agents isolated that had the capacity to induce a variety of neoplasia; leukosis in chickens (Ellerman and Bang 1908), mammary carcinomas in laboratory mice (Bitter 1936), and leukemia in newborn mice (Gross 1951, Gross 1970). In the decades that followed Rous's discovery the physical and biochemical nature of the sarcoma inducing agent was elucidated. With the invention of electron microscopy (Knoll and Ruska 1932) and sophisticated biochemical techniques the structure (Gaylord 1955) and chemical content (Crawford and Crawford 1961) of the sarcoma virus was shown to be single-stranded RNA surrounded by a protein coat. M The cancer inducing viruses discovered by Rous and others are now taxonomically grouped as part of the family Retroviridae (Fenner 1975). The primary criterion for .lll, (f w ‘1 ti . _ P‘LL: :1; Z..- T "w L ’ ‘4 ~ 1. 4 I ~ ( 1 4* — r “ A I . , .7 ‘ ‘ If.- J. '31". ,5 . . ‘. 4’13! 3 -.‘.: ,- a .‘f? '_\l L: Jr» av :- . I, 8 w " l 1 WI— ;v‘- k . a .'t-‘ A v .. u" A - A .. ,I ,- 1 ,* .‘ l O o vmcmoxsT RNA or Retrox vertel mama. EXper L beEn Comm: poly EEth 2 admission to the retroviral family is the replication of an RNA genome that procedes through a double-stranded DNA intermediate. Some other taxonomic characteristics associated with this family are: a diploid genome of positive-sense single-stranded RNA(the subunits are believed to be joined together by hydrogen bonds involving sequences located close to the 5' end of each subunit, Kung et a1. 1975), and a DNA polymerase enzyme activity capable of using RNA or DNA templates(reverse transcriptase) (Fenner 1975). Retroviruses have been discovered in a wide variety of vertebrates, including snakes, fish, birds and many mammalian orders(Figure 1). However, the most experimentally useful and well studied retroviruses have been isolated from chickens, mice, cats and lower primates. The Viral Genome The viral RNA genome exhibits the structural features common to eucaryotic mRNA; a 5'-m7Gppme cap structure, a poly adenylic acid(poly A) tail and a low level of internal methylation (Teich 1982). The general structure of a replication competent retrovirus is divided into the three coding regions shown in Figure 2. The gag region encodes a polyprotein which is cleaved to form the four or five proteins which make up the major structural components of the virus partic1e(for review Eisenman and Vogt 1978; Dickson et al., 1982). The pol region encodes a reverse transcriptase, a RNA:DNA specific RNase H exonuclease activity (for review see, Verma 1977) and an enzyme activity necessary for integration of the viral DNA intermediate into pr '*'(\r- CUODHHDOAPUZ DDHDDHW >HCOEEOU O i l I i V ‘- n‘. v _ l « O . it . L . r . a I I v ‘ ‘1 _ . v a . . .x f. ., v . \ . n. V p a u. < .l. ‘ I.» ‘ .C . . \r C . .‘I .\ u . J . . J; \ - . r .., Q, .o a! i 1. .'.. ‘1 . L p. . 50% NO DUHUQfiHGuUQHQSU . .1 v ..A .1 I on.’ a (u 4— V. !\ - ... .c. o.. . » . I 4 . .. e 1 .\,\» Os v s.. .O. a 0L .. t. v I . 2' ~-: \I.‘ to 2m 8m.o a 22 :2 2m Gawuwooq occl> .0. Aguasxm Ausuvsm Iguassu Aususum Ansu.zm Aususxm assayed Aunu.uoooum ucflocsn 42o s lawyeum >ua>nuo< Ofl0l> Any « onnuum hum may won one: and: UQOC 030C axe non ooh one may OGOOOOGO venomouco «o moaoomm Amy Q Q WWO) can a +-+-+ mn.N.H.+ G~l you you you you mayo: :00 COOQMD aoxofino dugouno doxouno sexuano coxonno doxowno coxoanu :oxoano :oxouno aoxouno assuage coxowno dwuwuo A>mmmumovooonmmmaumconme A>momuzmcgmsocoouz a>momnameeosaonsuume>cm “bushvoama> maoonou magnum A>thvuuun> wueoxsofl ocfinom manq> museum osoHVUOuca weapon A>qmvmonw> oweoxaoa odfi>om A>umvmsua> usedouooco doonmm on~>um «mo menusoqsamams A>mmvosom .>mmsm5a:finnm A>m¢vmaunb uncommo ddn>4 mana> poumwoommm endowmmnnoHo>z Aal> oeuenoomoo uaom .on> unwanoomma mflom A>Q4Vm5nfi> oumoxaom dma>< Aumzvaans Haas Ammozvmsun> maneumaouboonwz A>S muoOquHDOHo>z A>utvosmu> uaooummHnounu>um .>qo¢.u5uu> maloxaom ousoo cwn>¢ dumuum naunb momana>ouuom unavaum >Hdoaaoo 080m «0 monumnnouomnmno annihn>0hucm UUGDSUW >HCOEEOO 050% HO @Uwumnhfiubwhmco ..v- . .7“, .1 h c .. .1.m3......w.. pr m. M1,.Ls .. 4 ... x e i x“. If» p ( I c . .. 9.- .. a r e L I tr I. o to r. s . W. \ f . e 4’ i n . (K 14. ’II ‘ - _ .. O I! ‘\l \ 1 b J MW.» t, fit. I» I “a . . . ,\ . .7... n..- n , .. i no.) Ae.u:oos H onsofim wq.qm.n.l 3050 A>vam5ua> maoouoo: dooamm Hon ua.o.+ >wxuau Aan>mmvalmanAHoauoocooHaoflumu qm.~.a >mxusu Aau>ue.eaasmofiaonuoecmoasuaaou mq.qm.a.l x050 munw> Maegan mnofiuooudfi xoao mq.am.a.u coxoaso A>movmsua> Hmnu>oesm :ososno A>mmcmsufi> mamoaamnuoecooflsoflpmm w Aunu.uuovum «mm mm.o.o.+ omsoa >mzlflamm z Camachmonmmonm mam mo.o.+ ounce >mzlhmh man mm.u.+ ounce >mzlmqmzlozv>ocoHoz 2m mommao.fim.myu men m.m.m.+ you A>wzlwxvcouuuax 2m mommaw.amvmaw may m.m.m.+ awn A>mz|mxv>o>udm A>mzvm9ua> maooumu coups: <.n.l omsoa A>azzvoduu> mossy >hmasma ocean: m.m.| ounce manu> assau0u macaw doonmm qa.n.l omsoa AMOZVQ5AA> newsman mono“ xcuz ~.| ounce A>Qanmvnonumnmm as.H.s omsoa A>azuoz.>mcofioz m.n.l unsoe A>a2|umvucowum 2m Aguasmm Ham am.u.+ canoe A>ozunazvmsua> aweoxdoa ocausx 0:0: Qa.~.o amass AHI>ABme§ha> mdaoxfiofl masons cmafim ucoc me.u.~.u cognac A>q aaaoxaoa can connso :oflumooq >ua>auo< cauauo ocoa> ocon> odouooco vasomooco no monoomm damaum onuu> A3 3. A: momauu>ouuom pononum wncoaaoo oaom no mofiumwmouomnmno t , .. u: IJ ‘ x Ac.ucou. H masses xanume mmoaosclxz .osoHoocnz .ocmmnaoa manuanlzm .oocmunaoa UHEmmHQOu>ouxo .lud~@0u>ono on honor“ nuzono UO>nh001u0ndudamum0Qm .oumnamonmnuu ocfimocmau Cu moGADNAQVmBo .mommnpconmm an do>wu on cauumH>nonmnonm cu younnao Unoo adder osu .ouodnx :«ouounuxm any .maonda>fl Haoonauqa .maoommonm .oaooummoovuoumo .ouamxfioa cauowanoHo>auqz.maou>ooHo>Euz .meooummonde>qumq .meooummo«ucmsonumm .nlooummounaulmm .oaaoxnoHom£u>molm .oaocaonmouo .msonma>n HHooImuam .maocaoumooamomnd "dammfimoo: no omha .ouoadu on madman: .>o:ouon Anyone“ no .ovuuono mauve mounds ouoadu ucmcunamz anMwN.mm ounoo disagrees» =+= Amy a.) moose manfi> mcmfi> a nuna> A>m>vosuabouuon moaw> >oxcoe o unacoum boom mam mh.o.+ >0H003 A>mmvm9un> vacuums dwaaum :ofiumooq >us>fluoa cauauo ocon> Odou> odouoodo oddouoo:o no unwoodm :«muum monu> .0. Any any momnhw>onpom Ooaoaum >HGOEEOU meow mo mofiumfinouommmno ,I‘I $ t I -9 ’1 I . I ' I'_ . . o“ . , . .\ I. ‘ A” l H I _. v ’ . -‘ .. I ‘ fl - x4 - f‘ V ': t if. g ‘. '9 . _ A “I ‘ r ’ ~- '3 u‘ ~ . I. O ‘ .5 l ' ‘. " - ' . . N‘, " ., \ f .3 C v - I "f .‘ . .. . . ' k. a". .. ‘ - ~¢ ') 54 . | . .. 'I ‘9 ,, \' w ' ‘ I . ) I v 0 n A. I J . _ . '.., . k . . .4: ' ' ‘ L- \ I .“ _,g ‘ . I‘ ’ I». ,. fl . P . .. .L a J .~ I . I ' ' . ‘ . A- ‘ .- I » - . .J .t ‘ I . .w _ . VI. . . m . - . . ~ -.. .. .. I... . .- . r a . .o J u. . . . t... - . . . u . .r .mr . . is ..Tiwcf:;fieefiurecah.}Tou a 1:3"- $333?“ .LLs eTnha\.. .O d.r£ z... '4 K .- :gsoe::;mumo.hnou m we mounqmow eruqumuu was . .... .. q- 43 “d ”wowqoondrn are .m .Jrc .Uesmaqmchnw 14m mu .u sewn sarcasm lama..z ”m:nn3umu .w on muons: moamcvmm ”m1 . mqn bnmnwu 33C A: \J {I .monwu .-a ”1,HUWJ M.“ .. .; ”yrs H mm? wedfi:m smug mxm ”ma.ms do :nanuucawm sound sod monowu n:h50n Homo mun» .Cnob momma. .nnes “H.1wnw.1.h .us. -.1 u .... sawh.qiq m.u..m.hm.wn.u ...w..wic -.n r.. M H.“ ".12. ”ewes...edu “ was.“ t a . . , . s..: no- 440”» .. ”tam no . “1U wewwdnsr-wm-: up m...- . .n 0!: .uhah v.wm4vht._us.u . "tram. .n [WM . r .-.v new ...» .nhxs (u bhuaxunwww "HUM“ ...u - u .i .’ . .9 a. . e ‘ a u n (I .m. to”. ,WLUHL puhwx. xv} . Aw (n. I. . .I. ’ I M 9'!“ I "I . \l c .. .3. .1. o n J .I‘ I “I. I a .. :ru Eort Ou sunspot he "wrumamm on r--.n. <:.roa mm 0 . .. . . . .. .4... . . . . .. . . . Iv. . J 0\ a f ..\ .n J I. LECQLJ . ..._L. mo ”2.3453? menu» . . ....... -. . . p V 5:9 w”). ....T.uh.)..:..n 0.3....»uUimHPQ c) ., . 1 .... .. .. _ 5.- ... 1. . . .., 1-, . ). r « I . ..uoc-.ouuou undead >um> uncanny Ghana «0 unuucoH 0:9 .Uounamnocou one occuuou and no onuucofl one .wdfiauou .m one .0 on» an uncuoon mcflooolcoc onu 30am on pounced Rm ouccmmxo ma acumen ucfiooo use .oscanuOu .m we woman A¢v>aom "c4 “ovocodvom >uoumHauou Hoseauaunondmuu Hmufi> mdnwucoo .mscuanou .m o» magmas oodosvoo "m: “possum 429 A+V no mowsaum uOu uomuu moausahmoa "m A+v “odaououdoo>am omoHo>co MOM cenuom mcfiooo u>co “amounwuomcmuu ommo>ou HOH conon unaooo ”Hon umcfimuoud Hopsuoanuo Hmuw> now acauou mcfiooo "one noun» nocoo onuadm "am “acumen noommfl "a “possum vacuum 429 A). no: mo>uon umnu czmu no ouwm Dauvcun “mmmanv “madaluou .0 on saved: cocoavuo “no numomou Hmcfienmu uuonm "m nonfiuoo~oaa mac .a "duo .ooumnuoummw our maua>ouumu acouodeooI:Oaueo«Hmou o no oouduoou Hmuduoduuu scounOQEA oaom .mspfl>omuon ucouomeoo acuumownmou a son“ oaocou 42m Hmufi> m «o onsuonmum .u mhdmfim om .n >60 .om 0x a —I—,— mmaTmmni. L d duo and 8 the host cellular DNA (Schwartzberg et al., 1984;Donehower et al., 1984). The env region encodes a polyprotein that is glycosylated, cleaved and transported to the plasma membrane (Hayman et al. 1978) to form a component of the viral membrane that surrounds the core of the virus. The envelope glycoproteins are targets for neutralizing antibodies and are a major determinant of the host range of the virus (Payne and Biggs 1964,1966;Weiss 1982). Treatment of intact virions with protease results in the removal of envelope proteins and the concommitant loss of infectivity (Rifkin and Compans 1971;Dickson 1982). In addition to the viral replication genes other portions of the genome serve important functions in the life cycle of the virus. The R region, repeated at both ends of the viral RNA genome, is presumed to be used during replication of the viral RNA genome to provide a means for transferring the nascent DNA chain from the 5' end to the 3' end of the viral genome(see section on viral replication). The primer binding site(PBS), located at the 3' boundary of 05, is a stretch of 18 nucleotides that binds a specific tRNA molecule that is used to prime the synthesis of the first(minus) strand of viral DNA during reverse transcription. The leader region(L), an untranslated sequence preceeding the coding region of the viral proteins, has recently been shown to contain recognition sequences necessary for the proper encapsidation of the RNA genome into virons (Shanks and Linial 1980;Watanabe and Temin 1982) and a splice donor site used for the generation of :1" \I . 1:)1.(‘."1’J“. .l subg regt init trans been gene orien that prom: inde; Enhar throw DNA 1981 earl. feat. of b. 9 subgenomic viral mRNAs. The U3 region contains eucaryotic regulatory sequences important for transcriptional initiation, capping and polyadenylation of the viral RNA transcript (Varmus 1983). In addition, the 03 region has been shown to contain "enhancer" sequences that can elevate gene transcription irrespective of the position or the orientation of this sequence to the affected gene. Enhancer Sgggences Enhancers are short cis-acting regulatory sequences that appear to increase transcription from eukaryotic promotors irrespective of their orientation and relatively independent of the location of the affected promotor. Enhancer sequences were first discovered and have been most throughly characterized in Simian Virus 40(SV 40), a small DNA tumor virus, (Benoist and Chambon 1981;Gruss et al., 1981). The transcriptional regulatory sequences of the early region of SV 40 contains several important structural features, including two 72 base—pair repeats. The deletion of both 72 bp repeats results in a drastic reduction in the transcriptional activity of the SV 40 early region genes. Interestingly, the transcriptional activity can be restored by reinserting the 72 hp repeats at a variety of positions and in either transcriptional orientation relative to the SV 40 early region RNA cap site (Moreau et al., 1981;Fromm and Berg 1982). These experiments with SV 40 laid the foundation for the operational definition of enhancers as a sequence that can increase the transcription of a gene independent of orientation and that their influence is not . . 1‘ -.vv .- . _ ’ t; .',, !“;‘,' '“‘o—!“" ( ~'-.(, 1‘. ‘ 'r, s r» 9:. . 1v. " .91, r .. , , '_ knee ifilfRJ5%LL» ;-~' ‘r .t :- “.2 a. ' '-“ ‘r' =~V' .j. : .1: ’ ".T; .:' that '\ ’h d‘ D : if»;*u_ ‘- 1.”? a: GfI-; F-3e aj.., ‘ .- m 1':- hYPOt '.,9fi,1{»;;'p98_ fair; 1&3 indep ~ A 5 ,r' 7 .) .-.‘c, a AJ‘.‘ L I ‘-) ‘5 r3 .e).L' b» . 1-? I;:33 Obser , ' ‘ ‘ f V ’ . v, ’ a 4 n r. r l . . .— - - ~04? O -0 I ~ ~ - - 1' I a‘ ' L1. ' If, a ; F‘ 9.“; \ _ \ . _ s "- 1981- ‘ '1.“ ~HTb ;~: ~=t,~‘ , ' ~ ‘ I” ‘ th t - - .‘ I .._ - ~.‘. - - . . v - . - I I . .' - .L . i I k' - ‘. a“ 423.1 ' i - 'I‘t . x . . .,.. f ‘ . , , V , 3 ‘ J 7.1; :1 5 I . IV‘IIII:I;[1I} . ”i ; ' '_' . . I . nUC1| - T - . A - ’ 4 ,1 A ' - w» .v‘i: ~ ~ \'30.*-. ~ ' .. - ‘ . .,, r“ x e th - - ‘ I A 0’ ' I ‘ ,, ‘ ‘ p. r. I’. A. . 5-; . , __ - f‘: '. I“: - ‘1'“, . ' ' - A .. - '- - - r A}, 4'} I- . 31 A x: . 1". t- L? .Q 5 "'5 A g. 5+ t t 3V 5. W 5 rs .. I \d ‘1 . I . J ‘r V- ‘4 w ("77" r-v 2. ovf— Fer w o- -. ,.,." f - V . Lo- - '&\ .‘A 'Q "' ‘A ’ C‘ ‘ k)‘ A} .4] — '- heli I. p _- a .. , 'p. a b ‘, a f In(' . . t.‘ I I. ‘L“"l‘ ')| v - . , . _ . e .. - - . re ". J -.- V ' .. i P ""c’ ' Ai‘ . u)’ A ' .' .. ‘ f. l q -f ’O\ r I" ’1 \ t A . ‘I-E’Jl J.) \ ‘1 (G . ‘7.‘:‘)‘ A. ( . r 'c ‘ '3" “i 4 r0 1 .. 1 - ' a . S t |' .‘c '1 1 - 10 strongly affected by the distance from the promoter. The molecular mechanism of enhancer activity is not known, although several models have been proposed. Perhaps the most popular model, suggested by Moreau et al.(1981), is that enhancer sequences provide a bi-directional entry site for either RNA polymerase II or one of its subunits. This hypothesis is consistent with the position and orientation independence of enhancer activity and is supported by the observation that enhancement decreases when functional promotors are inserted between the enhancer and the initation site of the gene being assayed (Moreau et al., 1981;Wasylyk et al., 1983). Another hypothesis suggests that enhancers may alter chromatin structure and/or superhelicity to create an 'open window' within the nucleosome structure, thereby increasing the accessiblity of the DNA within the enhancer for binding of macromolecules involved in transcription. This might be accomplished indirectly if the enhancer sequence contains a topoisomerase binding site or directly if the enhancer sequence contains, for example, alternating purine and pyrimidine tracts which favor a left-handed form of the double-stranded helix(Z-DNA). It has been proposed that Z-DNA assumes a more "open" conformation then the normal right-handed B-form of the helix and that it can not form around nucleosomes (Groudine 1983). Perhaps in support of all these hypotheses is the observation that the enhancer sequences are generally hypersensitive to DNase digestion, a result that is 05' _‘_,. "!\.1 I. f. D r . 1h TX“ :". "D \ - hypot (Lafe (Non . .. It": 411:} .‘ fo'flLt J1) . _ {A 0‘ hypo gene Is’f l '5.( ”J " t-) I] 2—,; IE' seqx traj sJ ' f. d} I I ~ITI’) .1 r. v .\. 'J Hill ' the , ... .H'. . .'..«. LI. .1 I reg .‘t P u... imp Gen u? . ifa‘l‘fi ' I -.'A, ("' 3.. act in: ‘aff I Lid. 0 [J )U 0 “I q ..,. I De ' -: til I W I l 2'? Qt act Hi! I 7 a \ .{' 0'! Lav: an; .4 s .J) . .r Oncc 11 interpreted to mean that the DNA sequences of enhancers are in regions of the chromatin that are "open". For example, hypersensitive regions reside close to the SV 40, polyma, MMTV and immunoglobulin enhancers within cell types in which promotors under their control are active, but not when promotors are inactive. Consistent with the Z—DNA hypothesis is the recent finding that anti-Z-DNA antibodies (Lafer et al., 1981) bind to some viral enhancer regions (Nordheim et al., 1982;Nordheim and Rich 1983). These hypotheses are not necessarily mutually exclusive. The generation of an open chromatin structure and sequence-specific interaction between enhancers and the transcriptional machinery could act in concert to facilitate the activation of promoter elements. More recently, enhancers have been found within the 03 region of a number of retroviral LTRs. The biological implications of enhancer function in this family of virus is consistent with the observation that LTRs have been shown to activate adjacent cellular oncogenes following the integration of viral DNA upstream or downstream of the affected gene (Hayward et al.;1981;Fung et al., 1981;Payne et al., 1982;Nusse et al., 1984;5wift et al., 1985). This activation, referred to as enhancer insertion, has been implicated in the formation of tumors in hosts infected with certain retroviruses. Viral enhancers may determine the host range and/or the oncogenic potential of the virus. Studies show that the l', 1', ..' 3' Mt. . .-Zi;\l ‘ ., f A r4 - 1 . r ‘ t , e e - "Y 0 )JJ‘ \ l A 1 s. T f e ‘. v. lg:‘.’" l '. v v .o' ,-. A l L . ' 4 l .5 -. $4 . ‘V O Obl ‘ 1 I k? r" it t >~ - '. -_'a-1 b I I i l w ‘ . . .— - ‘ “J .. ,. . b . a r r v . ~.){ .‘. -- I ”1.! w can i al.. straj M0~Hz reSp. (Cha‘ whos enha thEn OUCQ a1,( “On- leuk l2 SV 40 enhancer is 5 times more effective in elevating gene transcription in monkey cells(CV—1) then in mouse L cells. Conversely, the enhancer of Mo-MSV is more effective in mouse cells then in monkey cells (Laimins et al., 1982). The RAV-O and RAV-i strains of avian leukosis virus are very similar in DNA sequence, except for the U3 region of the LTR which is highly divergent (Robinson et al., 1982). However, RAV-O is non-oncogenic in an avian host. In contrast, RAV-l can induce B-cell lymphoma and erythroblastosis (Fung et al., 1982,1984). Experiments with a recombinant of two strains of murine leukemia virus(MuLV), Fr-Mulv and Mo-Mulv, that induce erythroleukemia and T—cell lymphoma, respectively, were examined for their oncogenic properties (Chatis et al., 1983). It was found that a recombinant whose genome is derived primarily from Fr-MuLV, but has the enhancer region of Mo-MuLV induced T-cell lymphomas rather then erythroleukemias. Another example of the enhancer region affecting the oncogenicity of the retrovirus was shown by Lenz et al.(1984), who observed that a recombinant of the non-oncogenic endogenous retrovirus Akv and the highly leukemogenic murine virus SL3-3 that was primarly derived from the Akv genome, was leukemogenic. Nucleotide sequencing showed that the recombinant differed from Akv only in the region thought to contain the enhancer sequence of SL3-3. It appears that the observed difference in oncogenicity is due to sequences present in the LTR of SL3-3 .‘A tha‘ in T LTR stra mous orga: enha repl et i den aIN C01 61 th: re C}L 13 that exhibit significantly enhanced transcriptional activity in T-cells compared with the corresponding region of the Akv LTR (Celander and Haseltine 1984). Experiments with recombinants of two strains of MuLV, a strain that replicates efficiently in the thymus of mouse(T+) and a strain unable to replicate in this organ(T-), show that the region associated with the + strain is sufficient to allow the enhancer of the T replication of the T- strain in the thymus (DesGroseillers et al., 1983). Several groups have recently reported experiments which demonstrate that sequences which lie adjacent to the immunoglobulin heavy chain locus are functionally analogous and structurally homologous to viral enhancers. As well as conforming to the operational definition of an enhancer Gilles et al.(1983) and Banerji et al.(1983) have shown that the immunoglobulin heavy chain enhancer has a somewhat more restricted tissue specificity and functions most efficiently in cells of the B lineage. There is evidence based on in vivo dimethyl sulfate protection experiments and genomic sequencing (Ephrussz et al., 1984) that alterations in the octamer CAGGTGGC found in the mouse immunoglobulin heavy chain enhancer correlates with the B verus non—B lineage specificity observed by Gilles et al.(1983) and Banerji et al.(1983). These results are consistent with the binding of a tissue-specific molecule to the enhancer region. ‘4: 7‘ w‘ . 'o 1. . ... .n .. J V _.. .J ~l .. 'h '. 7 '. . J“! '. 4 {71" a I - S. , A I I I . . - I . ¢ ~l . '1 3'. ‘ .\ __. L o ‘4 . ., - 4".- c x, v . . I , l . - -- r a I L 1 A . b . .t , .‘ ‘.l " .1 ‘ I l u I I , ‘ A ‘ . ‘, . . e u ’ 1 \4 ' i t i .. , . v“ _. ' \ I _ . . VV:H!’ s - - s - v ‘ ‘4 .I . ‘ ‘ "vbur‘d' k .1 J .-.‘. ll') ,3 I... 14 Virus replication The first step in the life cycle of the virus is the adsorption and penetration of the host cell by the virus particle. The architecture of a type C retrovirus is shown in Figure 3 with protruding spikes covering the surface of the viron that represent the envelope glycoproteins. The adsorption of the virus to the cell surface involves some form of env glycoprotein-cellular receptor interaction. This interaction, between the viron envelope glycoproteins and specific receptor sites on the host cell surface is the major determinant of host susceptibility to infection (Weiss 1982). Susceptible cells can be rendered resistant to a specific retrovirus infection by pre-infection with a virus bearing the same viral glycoprotein specificity, apparently by blocking the cell receptor (Rubin 1960). This interference based on subgroup specificity for cell receptors can be used to divide a group of related viruses into different classes. It has been suggested that virons enter the cell by first becoming attached to cell surface receptors located primarily in regions of coated pits (Marsh and Helenius 1980). In some cases, the internalized virons appear first in intracellular coated vesicles, then in large uncoated collection vacuoles and finally in secondary lysosomes. In the lysosomes(pH<5), the glycoproteins of the viral envelope can become strongly fusogenic. They may fuse rapidly with the lysosomal membrane(<1 min) thereby permitting transfer of the viral genome to the cytoplasm in such a way that the . . . .(. . . .. : r . P‘ . a. . . . n . . .. n . . .) f , .. . n .; . I o a .. u D , fi 0 . .4 1 h . a w r. .3 — t ~ , s A. y. . s e . . . . . . . . . I fix . .v 3.. . ~ . .- . .p .. ... s . . . . . .... . . . . _ _ . .e.‘ . . . . \ . . 1 , O _ ‘ .5 - I ~ . ‘ U ‘ a“ . . 1.; .. . . . . s ,. .... . . u . k .3 e . .. It _ . . . . a I . . . . ‘ n v _ r L A V e g '4 . I. l I n. I , I , . . . . . . . e 1. . ‘ f. p v . I . I . 4 V . _ . . 3 , s . a. A . at a I” . . r h . a . n . a 9" in e I I .A N , ~ A s II . . . .. . . a , . . . . I ..1 . I. . ‘l . 1 ‘ ‘h « -n I .' v‘ v'. . . t r s . . , A It I ' ~ . l I A . u . _ . . . a .1 . . . . n . . , s O .l . . . . .. '.. . . . . . I 4 o h 3 1 a . C , . r. 7. m.» u e. A . e v y 0 — u . w. x . . . L. . . . b . . c.” . . ... . . I . . v C I ll: '4 c; I . . . 4 L .r e .\I R l . . . . .. . . .. i . o . u , . . I . . v I I x O ... . . 1.. . V .~ .. . V: f . ., - . .v z , . . _. . .ul . . . .1 a . . . .. l .5 . w. . . e I . . o. . . . . V . .l, . v.) . . . . . . . r i .. . . .s , . . p . . . u , r. r . .. . .v. , . . . _. I .. . . v .. . . . . r . . . a I a. . ‘ . . .0 n.\ . . . . . .. .. fl . F . . I r C . 3 II I. .l . . \r . . I s I . .. .| O . a . . .I I . . . 4 . , I I . . . . .1 A .. a! V 1 .. | . . . t v. .I. I\ . n _ I . . I v o. . . . I . ' 4 l 1 u ' ¥ . . . . . 4 . -1. . . . a p ‘1 . - V y 'L .. l r.. «A . II . e . x. . _ . L a u I eh I l. ‘ 'I‘ . t .. v. . a .l . .n . x '0 \ . b .‘ e O I a p '. — i , I . _ I . o . .5 . .3 l . . . . . . e . \ . . . x fl 7 I . _ . . . . - . t , . a. t . C . .Il . 4 V . . n. . I .. ... ). .u. .. . I e < I l I . . . . . a. . p .N - . . . . s g , . v . .L t . a .1 .a . . .. x . t I . 1 ~ 0- r e ‘l: . . x r _ Jr qx~ .n, . . . a 9 . ._ . r. n. . . . . . , p'Q . ~ .- \n -4 . . .I I. . I. I. e‘ I g 1. . u r. . . . s y . . , . . . . A e .w. - I \ a J o v! I. § . u . .. . ... . . A I . .1 . . . I e V n V . . e Iv. .e. >< I a ..l I . O A ' - v .1. x I .I, f. . . A A x » VI 0 v n ‘ u , .\ I . ..\ u . .. . . . a . . I 4 p I e ..0 l .. . u . _ I _ I I I I . . . . p .. . u . . 09 . . ... . .. . . . . . I . y u .. . . . ». . . . W I [11‘ 41‘. I p . . . r . c.WV. ~2Q-u‘ mu! . savour ..w...........“.. I .I a V a .u‘ I \ ,4. ~ er0 0:. DI .. F .t bl ' F t . .. .‘ 11 .1. \l a... 22‘ \. .I \rwbl.OL N IL out. 2. Hybl “5 {fl n . . ...a.. .4 .r s.h.q . '4‘. . pv- _ “I . «119.3 v ....m ‘..Qn.o . . r.> ibif. 5.... . .4 h. I. .2... . _- .2 5;...“ Tm M .2 “min” _.( Cu 2. unrumk. m .353... L.” 3.. M3. .-..F.32Uf:\u an .mu Li; 15 .a:0uanUoH«x «a .00 «0 .mmxaam 0:» >9 Guacamonawu .cwouonaoo>au unamwam 0 >9 manna a“ couozocw nu canyonmoo>au mans .QGOHHMGOHfix mu .mo no Gaououmoo>nu a ucomoumou mnocx any macho mfimOwHonuooaonsoavmm Gnu pom .mcmunama Hmufi> no unauuam onu :0 UCaOu unnouonmoowau macao>cu 03H ozu ucuooumuu mnocx can moxfiam mna .mcamuonn omoao>co Hwnw> van manhnfima umon .mpoo nammmoooaofic 0 >9 vuvcfiounsm mum masouHoa «zap union nuuz Duncansu 42m Hmuu> 039 .mfiu«>ouumu oamulo a no mhfiuosuum amnmcmm 039 .m unamnh 16 2888632 0588 «it 425 k a. vir. pm. the 8V8; for the < RNA : RNA‘ 610 With Figv Sing COm; Vira this cop: tar: This one Bit} Cell 17 viral genome is constantly protected from the hydrolases present in the lysosomal environment (Lenard 1982). After the viron is uncoated, the single stranded RNA genome is available in the cytoplasmic compartment in a form suitable for conversion to double-stranded DNA. The synthesized linear double-stranded viral DNA intermediate is co-linear with the viral RNA with respect to the coding region(Figure 4). However, the ends of the viral RNA are different from the ends of the viral DNA. The viral RNA has a short terminal repeat(R), while the viral DNA has a long terminal repeat(LTR). The general structure of a LTR with some important regulatory features is depicted in Figure 5. The current model for the conversion of the single-stranded viral RNA to a linear DNA duplex is complex. A model for the synthesis of the minus strand of viral DNA is presented in Figure 6. The final product of this complex process is a blunt—end linear duplex with two copies of the 03-3-05 region which constitutes the long terminal repeat(LTR), as was seen previously(Figure 4). This molecule is transported to the nucleus and converted to one of two monomeric closed circular forms; containing either one copy of the LTR or two copies of the LTR linked in tandem. Viral Intgggation The process of retroviral integration into the host cellular DNA has two direct consequences for the structure l— . .r .l .l .5 . . A . V l . \l. \ '~ .‘h \I... I... PI . X. . A . s . . . . . . . A ... I A 2 2 u. . I’I r . H . l (I C . ,I ,L w... o I. _. a w .1- 1.1 r . I. o. . . .. . rd I’L pro v . I . 7. .. L; _ . y ‘ ., n» (W 7'). l: as W a 211’5 \. ....2. 2 .19 .. a... v . . . u 3’ .zonmm 73w ,nu~< min p33£emo Dcwh .3» quewsnn,c - -.n gnu an “mvuwmnm. whose mh¢ f .. b“ + .. .. .2. - lo.... ruby.” Wm rah”... .... \. .0 | .H,‘ .2 . c ‘ L...J \. . 4.....(‘9 mm; . . . .u . A. V II b N on.“ 2.1:... can 2;. . shunts... ...... a . M.+m._.._..,..m ....mzn... ...“... U5..- ...p. H: .IU. I . ... 2 d .18 .....l‘ H ‘J ‘ \41l. . ‘. «w \ d 3‘ \I 5 “ .0 0 I1‘\ , 9 4 u .l .o J V n all. 2‘. . I.- .. A. T». t “n. y‘alb.‘ y Lb», {MC Lhwrb’ktu lflltlD n»|.hlkhr hovp$ll¢ [...—i uzp< one o-muz .Jfiahfir. me can a; Tun .0 ”emu no 4&63 m;. . .. gwh .. .. - .. ~.. r fl. - ..l .-. . J.. l, 11 2. .. .2... .r rmwrnmnmw zxe loo -. w r: :HOQ uU newts“ n.mw do sat. a .m.m .. . pk.“ .bH... . U:«.. a o . m- 4 .o m on . . . n ‘ . \..I Q ._ .I .1. . ‘.u.. é ‘a. a .v;e.::.c mpw uum no COwuowm mmmvnza nannwpualmnnaoc Cu oaonmm nou on ”on: auunwnuoa Gavan: onu no oocosvmonou uomnfiu a ma dza> one an n: can as any no canumoananv mane .nOumn...H a any en vouwummuu 42a on» no nvno nuon um acquou noun «0 >900 a «flauumo Gnu oflwnz .mno«mmu m: can a: Gnu no nowm no >moo mno wane mmn one .mammnunem no nonunoo new 420 mannaaoo anon oucw 4zo> onu no nofiuwnmmunfi mnu you Umuasvou ma Ameqvuwmmmp HMGHEumu mnoH one .¢ZQ> mnu no mwmonunem unu new unauuomsa ma <2m> mnp n“ Amvuuonvn uuonu one .oumHUmanmunfl ¢zo Hmuw> any van oaonom dzm Hmuu> mnu nmmZHmn nomnnmmsoo .v mhdmfim 19 323632. 25:25 22:5 80:3 fling mPJ W: m EMT men >co _oa ooo 323823... 3.25m 2.2.8 .2; 42m 2.25 29.6 m nqd >co _ _oa _ ooo ma. m .. \I . u 0 I u ‘ t .4 I. . . . $ 5 I M . a i .. Q t I .0 n... .J I ..\ ....s LL... Q '51. b \ ._ .(L h . r r Out. I: ‘. ..... . I'- l’. v . . ..t. r a. C t 20 .mnoH m« m who: momma cu daemon m onu an coumooH moeauoeom we Hmnmwo ceaumHenoom>Hoa one .momsufi>ouuou voumHoh noozuon unaumnoo eflo>numHon nu as no nuanon onu .nobo3o: .momfinw>ouuon noozuon >um> m: flaw m .ma no nuucou one .Hocuam canuom>novm>nom onuo>uooso a on voumoaflmau noon own oonoavom ¢<nw unonm nuaz oumnnauou omen one .edawoauwaonom axon» ohm no can .m .m: onu uo mouuumou unauuonan one .meq Hmnn>onuou a no annuoauuo ammonou .n opaque 21 .eh40... a E 3 833. 3:96. 2? c4 .0909. v.00. %&b§u ~99 .99c0. 9990. .9990. A?) 445.44... 333 m 3 << onu unaos euovnaon m: on» an 420 no owoonun>m ouofiuanw cu >uoomouo: m« u« unouuo Houfi> one no owmonuneo onu ouommsoo Cu noouo nH .azn Houa> no onouuo ouoaasoo umoaflo no go onoonucem onu new hoe«um m on now: we nza mo nnohuo oznfifi unoumoc onu no nonou m onu no flexouven .m one .muansndo 42m Houfi> onu uo one no ono .m onu no cofiuou m onu nu“: munoa ommn nofiuou m onu no nemoo czo one vemoo euounoaoamsoo us» away on ozm Hmua> may no cam .m may op =mmssn= nuafium «zmu omgumuum my“ no“: ocofim nocmuum:von no >uw>auoo oomzm one .onflooaoa onu mo uno .m onu um mouonaapou ofioonunem .cofiuou on any 0» .m eaouuflomeaq copmooa Ammmvoufi annunfin uoauum onu voaaoo nofimou a Cu cnaon ma uonu oHSUoHoa ozmu o «0 oco .n on» 0u oovfiuooaodnexoov no canpfivoo onu nu“: ouuouo 42a aoufi> onu mo owoonuneo onu a“ noun yoga“ one .onfimon nofiuooflamou opOuon oaonou «2m Houfi> w ounooouaou mow onu um ousmau one .m: can .m .m: no moauoonzon onu ouonuwoov monua Hooauuo> uuonm .ouao uoaaua unmuuo A+v o>wuousa onu on A+v .ouao acavcan poefinm «ZMu onu o“ mmmalv .mfimonynem mo acauoouwo onu anuuonov mZOuum nufiz oozed vnmnopuo on 420 can mocaa >>o3 mo nzono o« 42% .«zn Honw> no cnouuonmsnwa onu no onmonunem <21 ‘ am no no .0 Am Ac .0 ohdmwm 23 Eed 82.3... .2553 28.. . . p . o o .L Q11 q a q q q .3 .m .3 .3; 42m. TV a m: .2... no... 3 m P ...-:1 » LIL! o o .114 FIE-01.0.4? .— F "444 .141111441N14141 N H. 1H 1144— d d I ”Id Q: .3 ... .3 .8; .3 .m 3 \ 3 ~ .¢ u I -c ‘4 ”l a ‘ - a l . .- . _‘. :L . 1 c I J , a .. 'I , . -/ {w ,5" .. . wit em: frc dea iso sig: REV res; sup pos 197 0f Tem 1n 31 tur the 34 with nerve lesions, can induce syncytia in cultured chicken embyro fibroblasts(CEF). Both SNV and DIAV were isolated from a duck infected with Plasmodium lophurae. SNV induces a rapid enlargment and necrosis of the spleen resulting in death, and DIAV induces an acute anemia. It is interesting that a new REV isolate (Li et al., 1983), RU—i, was also isolated from a duck infected with Plasmodium lophurae. The significance of this observation is unclear. All of these REV strains have the capacity to suppress the immune system response, but the suppression appears to be non-specific. In contrast, REV-A induces an immunodepressive runting disease (Hoeltzer et al., 1979), by activation of a suppressor cell population in the spleen, within 3 days post-infection (Carpenter et al., 1981;Rubin et al., 1978;Carpenter;Kempf et al., 1982). The nucleotide sequence of these four REVs show greater than 90% homology (Kang and Temin 1973). Natural occurrence of REVs have been reported in chickens (Cook 1969;Ratnamohan et al., 1980;Witter et al., 1981,1982), ducks (Grimes and Purchase 1973;Paul 1978), turkeys (Robinson and Twiehaus 1974;Paul et al., 1976;Sarma et al., 1975;McDougall et al., 1978) and Japanese quail (Carlson et al., 1974;8hat et al., 1976). In addition, new natural isolates of REV have been described (Ratnamohn et al., 1980;Mcdougall et al., 1978;Li et al., 1984;6rimes et al., 1979;Witter and Crittenden 1979). The non—acute REVs can induce B-cell lymphomas or lymphosarcomas, depending on the genetic background of the chicken, characterized by a u y ‘ . - -4- . 1 A e l“ ‘, r o - q A, : s I a ‘J of )- 3".“ ‘ _ I \4 .1 l .. ) \2 , O a" «_‘ J .. L 1 .'\. , 4 ' o . ' u ’ 'I - - I '- a a L ' v " ‘ f ' ' f p ‘ _ ~ - J- - ~ \ 'o n .1 J 3 (A) A 9 a r a r \ ‘ e x . ‘ 4 fl 1 D . :5 '1 . ~.(.. .6 - \ I x L‘ "' ' ‘ I) .; i 1 _, ‘.3 'L. t ' JQ - ’. ’- ' ’ . ’4 c I- J IL 1.1)-, -4». ' I .. . . -.-. . r - r 1 _. ‘- 5 I A - i 1 LI ' u j I i ’ 2' a ,1 - - 5' I ‘ v -. a .o n. . f \ . ‘ s ‘ 1 ‘. ‘ ‘ "I 1‘ ' :1 (. I r " I ‘0 ' v o r . .. .. . s '-' 1.. . ) . = I, ‘ 4 .- ' ' .r. 7 r ’1 n . . , i . '. r - - .3 I; _ n y . 0 I 1 -4 u - a | , r J \- .- \ .I " '. I ‘ 1 . i . _ __ ,. .. .. \- I k L. l - ' .:n "I I . - ,' .a 1“ ‘ I l. t) . F- ‘ .. ‘ e ,. . ~ . J _., , .. ‘t .g‘— ’ Fl. '/ ~ . C. .. . - a l J . .., ., . '1 I ‘t :4- -‘, - ..4... .. ~.. " Jo: . . .. .‘ . ) ‘ Q . A .~_. I... g .. , 2'. _ . er . t 1- - . ‘ ; J " -‘ 0's ' -. t. - -1 ..a.s A. 0’. O . .... .. 4 I n .... .,l - C O A - '._r,- .A d n F!" O ‘ I '« ~ ,u , l 2 ‘J \' ~.(1 . l: . f. r. _ , ..lI , .- . 4~ _ ‘ J : 4- . A -. ' t- J r _ ; 4“ a. "i a .. o a - . Q o .0 . . ’. . ‘ . d r' '. A . v . . , . 1' V, - ._,. ~v ,. I a e . k .‘- ,3.- . .o 4 cellu Critt 1981; 1982) distr biolc. activ :‘h 35 long latent period of 4 to 12 months post-infection (Fadly et al., 1982, Nazerian et al., 1982). The B-cell lymphomas resemble those induced by avian leukosis virus(ALV) on the basis of organ distribution, pathology, latency, surface immunoglobin(IgM) production and activation of the same cellular oncogene, c-myc (Grimes et al., 1979;Witter and Crittenden 1979;Fadley et al., 1982;Hayward et al., 1981;Norri et al., 1981;Fung et al., 1981;Payne et al., 1982). However, the lymphosarcomas have a different organ distribution and pathology. Consistent with these biological observations is the recent finding that the activated oncogene is not c-myc (Swift unpublished data). gellglar Oncogenes Oncogenes were first identified as the genetic component of acute transforming viruses responsible for the capacity of these viruses to induce neoplasia rapidly in the infected host and to transform cells in_vitro. Additional oncogenes have been identified by experimental designs involving the transfection of tumor DNA into NIH 3T3 cells or by the examination of common proviral integration sites in neoplasms induced by non-acute transforming viruses (Figure 8). The prototype viral oncogene is v-src, the viral oncogene of an avian acute transforming virus(RSV). Stehelin et al.(1976) and Spector et al.(1978) showed that both avian and other vertebrate DNAs contain nucleotide sequences homologous to the v-src gene. This has become a common theme as additional retroviral oncogenes have been 36 m onsmam mmeonaasa HHuoue yam Asoszozsmua>sz awaozaaes «amuse yam A>qnzozsaua>az onlocuouooonouo oouo: A>exxvucunH mascaaouooonoum omsoz A>ezzvnlunn «meanness ”Hooue «as A>qsxoxso~-oxa masonaaefl Haooua omaox Amazes can Amoun>oun unaosuna. acauo>uuoo Hosanupoone o>alo Ou poumnom ooeouoo~nouuoc amen: o>EIz eawaou ocom own no whom mmeoonmo.monaoxson.meaouomnnonao: noes: omen: ecumooon mom 0» mononom unfloumoanouvo: vooapcnllouuooouvacaenum so: moaonuonmo endgame poonpnnt>ezx lo- oocou onexmo ou oouonom mononnlhn HHOOIe onset Beale mnaouonm nwnuoumnonu cu poumnom mmaonnaem nHoolm noospnnl>q< Henna 42a «0 acuuoouenmue >ua>nuo< nuunuo ocomoono momflun> uanHOMonmne oufio4 nu“: noHMnooomd won monomooco oaom uo oofiumauOuoonono ‘ lJ . ‘ Y ' l 7‘ 3, I F: > ,A" " . . e ‘ K ‘J L ‘ . . I . . . ~. v t n. r . o» 'e r a I 3' i 5 0’; " . ., . . - i e. . u. ..\ ~ ‘1 I l . 2‘ 9‘ 1. I p. -_ - I . r ‘- - . 1 N. . x l . \‘n v- .- ." I" ‘.. - .. -‘ y . I .. . b . .. . ’2 E . ... A. ,_ _ . A. . l 'x . '5 1 ' I 1“ 1d CI”. m 37 identified. In fact, the homologous sequence to a number of oncogenes have been observed in many vertebrate DNAs (Bishop and Varmus 1982), Drosophila DNA (Shilo and Weinberg 1981;Shilo et al. 1984), Dictyostelium DNA (Reymond et al., 1984) and yeast DNA (Papageorge et al., 1984;Defeo-Jones et al., 1983). The conservation of the cellular oncogenes in such evolutionary diverse species coupled with the observation that viral oncogenes and several of their "activated" cellular counterparts can induce uncontrolled cellular proliferation and interfere with or arrest cell differentiation processes (Graf et al., 1978) has led to the proposal that these cellular homologs of viral oncogenes function in normal pathways of cellular proliferation and differentiation. This proposal is very attractive in light of recent findings that link the oncogene products of c-fos, c-myc, c-ras, and c-sis with cellular growth control and differentiation (Waterfield et al., 1983;Doolittle et al., 1983;Downward et al., 1983;Kelly et al. 1983;Campsi et al. 1983;Weston et al. 1984;Muller and Muller 1984). An early suggestion for the mechanism of oncogenesis by viral oncogene products proposed that oncogenes might be analogs of the small polypeptide growth factors that stimulate cell division after binding to receptors on the the cell surface (Todaro et al. 1976;for review see Heldin and Westermark 1984). Specificially, it was proposed that v-onc products from MuSV and Fesv, acting as agonists, .-." .‘. . o - . “ o . . .I-a ' ' A) . f ... .. . .\ 4 ' f (34n— ...‘ - ..~4 . "7 1‘ - J' U : Cb“ :_ . MLS’. ., .. ‘ -l. w t0 prc tre Doo ide SSV fac fun cor. li) rec ac1 8t he he 38 blocked the EGF receptors resulting in a relentless stimulation of cell division. Though this does not appear to be the mechanism in the case of the MuSV and FeSV gene products, it may very well explain the mechanism of transformation by the simian sarcoma virus gene product, v-sis. Recent experiments by Waterfield et al.(1983) and Doolittle et al.(1983) show that there is a striking near identity of the amino acid sequence of v-sis(the oncogene of SSV) and the B polypeptide chain of platelet-derived growth factor(PDGF). In addition, the v-sis gene product may be functionally equivalent to PDGF in many respects since conditioned media from SSV—transformed cells contain a PDGF like growth factor that will interact with specific PDGF receptors on responsive cells (Huang et al. 1984) and whose activity is neutralized by PDGF specific antibodies (Deuel et al., 1983). The structural homology between v—sis and PDGF, taken together with the functional similarity, lends support to the proposal that v-sis protein functions as an agonist of the PDGF receptor resulting in the continued stimulation of cell division. The observation that addition of antibodies to the culture media of SSV-transformed cells does not slow down their proliferation may imply that v-sis activates the PDGF receptor from the cytoplasmic side of the plasma membrane or that continued expression of v—sis is not necessary for maintenance of a transformed phenotype. '.V (e K J .' {F 61‘.) L a. '0 92) ca: in 19 39 The ras oncogenes are a multigene family which encode highly related proteins of 21-24 kd that have the capacity to transform cells in vitro and i vivo. They have been localized at the cytoplasmic side of the plasma membrane (Willingham et al. 1980) and ras-related proteins can be detected in normal mammalian cells (Furth et al. 1982), Drosophila and Yeast (DeFeo-Jones et al. 1983;Papageorge et al. 1984). Furthermore, the level of conservation of the gene between species is such that the human ras gene is capable of substituting for some functions of the inactivated endogenous yeast ras genes (Kataoka et al., 1985). Studies of temperature sensitive mutants of the viral ras protein from the murine acute—transforming virus Ha-MSV have shown that ras proteins have the biochemical property of binding GTP and autophosphorylation of threonine (Scolnick et al. 1979). Epidermal growth factor or insulin stimulates the GTP-dependent phosphorylation of the viral ras protein and the guanine nucleotide binding activity in ras-transformed cells (Kamata and Feramisco 1984). While the function of the ras proteins is not yet clear, several observations concerning their role in cell proliferation have been described. The transformation of some mammalian cells can occur if the ras gene is expressed at an abnormally high level (DeFeo et al. 1981:0hang et al., 1982;8pandidos et al., 1984) or if mutations alter the protein primary structure (Furth et al., 1982;Tabin et al., 1982;Yuasa et al., 1982;Santos et al., p» -9 ‘ 4 “,- 'TL’JI ..l "‘ and Mn pro dra‘ pro. of the d8( Dr. (G 19 he ac a; 40 1983). A particularly potent mutation is one that changes a glycine at residue 12 to a valine. This mutated or activated ras gene was first isolated from an urinary bladder carcinoma cell line, T24 (Tabin et al., 1982). Consistent with these observations from human tumors and cell lines are the results of Feramisco et al.(1984) which show that microinjection of purified T24 mutant ras protein into a variety of quiescent somatic cells induces dramatic morphological changes followed by transient proliferation of the cells. In contrast, the microinjection of the normal ras protein has little effect on the cells. In BPA31 cells, a chemically transformed Balb/c 3T3 cell line, the c-rasK1 is expressed in a cell cycle-dependent K1 mRNA begins to manner. The relative abundance of c-ras increase in mid- to late GO/Gl' Recently, a number of laboratories have reported that the purified ras protein possess GTPase activity that is decreased by the same mutations that activate the ras protein, a valine at residue 12 or threonine at residue 59 (Gibbs et al., 1984;3weet et al., 1984;McGrath et al., 1984). This is intriguing since there is some structural homology between ras proteins and the G protein, which is known to regulate the hormone sensitive adenylate cyclase activity (Gilman et al. 1984). Activation of the G protein requires GTP binding and appears to utilize the hydrolysis of GTP to end a cycle of activation of the adenylate cyclase activity. If the ras ‘1 , '< \ b . l ' v a. at - 5 i. ' ‘ a J" "4 . b... aqt) _)r T w - . t . ’ .‘J. . _- \ 'fi'. 1 '6' v . ,' ‘ ' " .- - ., fi I ’ l ')I. 5 pr- 3C- St; in:- tr mec and ret can 196 frc 10. c- me Th Ct tk t1 41 protein has an analogous regulatory function in some proliferation control pathway, then the deficiency in GTPase activity of the T24 mutant could result in prolonged stimulation of a normally regulatable activity. These observations suggest that the ras proteins may be involved in growth factor receptor activity or in the signal transduction that may follow receptor activation with a mechanism similar to that employed by the G protein (Kamata and Feramisco 1984). FBJ murine osteosarcoma virus(FBJ-MuSV) is an acute retrovirus that transforms fibroblasts cells in vitro and causes osteosarcomas in new born mice (Finkel and Biskis 1966). FBJ—Musv harbors the oncogene v-fos, that is derived from the cellular gene c-fos by an out of frame deletion of 104 bp (Curran and Miller 1984). The c-fos gene product is a nuclear phosphoprotein that may be involved in cell differentiation and cell proliferation. The level of the c-fos transcripts is loo-fold greater in human term fetal membranes than in other normal human tissues and cells. These levels of c-fos expression in human amniotic and chorionic cells are close to the level of v—fos expression that results in the induction of osteosarcomas in mice and transformation of fibroblasts inevitro. Transcription of c-fos is detected at very high levels in murine extra-embryonic tissues, especially amnion, viseral yolk sac and mid-gestation fetal liver. The level of c-fos expression in fetal membranes increases markedly at late sta .k. NOT. .p_ v-v . uC-‘fl 1.. A J-) ‘I' onl ..\l 196 ... .15.! ' .- do a» :5 ‘4.‘.‘ 'c. EL- 4.. A- 1 0-9 (L. est )1.) .‘o 1’: mac , . i ..a.. 1 cel fol m JJJ '- (a. (Gr u kl I‘EC 511C (111 -.4 .4 o 4 L .‘E ’19)“ -9 111 P9 d all :1 I v \- 0n no . . 4. 3 ‘J 1 . ‘— 1. as ,4. ' . f . ()')'. v t 'u‘.‘n o A... -....~ ..1.La(‘;-lv ' .ij ‘ 1;, _. ~¢ {L 42 stages of gestation (Muller et al., 1983) and in cells of monomyelocytic lineage, high levels of c-fos are detected only at late stages of differentiation (Muller et al., 1984b). Also, a rapid induction of the expression of the c-fos gene is observed when the promyelocytic cell line HL-60 (Collins et al., 1977,1978) or monocytic cell line 0-937 (Sundstrom and Nilsson, 1976) is induced with phorbol esters to differentiate into nondividing, adherent macrophages (Mitchell et al., 1985). Recent experiments show that stimulation of a murine cell line with PDGF or whole serum results in a transient 15 fold increase of c-fos mRNA within minutes of stimulation (Greenberg and Ziff 1984). Perhaps most intriguing are the recent experiments of Muller and Wagner(1984) that strongly suggest that c-fos plays a pivotal role in cell differentiation. Using F9 cells, a teratocarcinoma cell line, they showed that transfection of the c-fos gene into F9 cells results in two phenotypically distinct cell types. One consists of proliferating cells with normal F9 morphology and the other comprises enlarged, flat cells that assume an epithelial morphology and cease to proliferate. The morphologically altered F9 cells develop an ordered array of intermediate filaments that carry several antigens characteristic of endoderm tissue. Therefore, high levels of c-fos expression in F9 cells can result in phenotypic properties characteristic of differentiated cells. 5. s! ‘9 .t'. ’1 *1193 Y la‘ _.~. 7 c ‘ v 4. t. \ y. 1 ‘ ca.‘ .‘| '4 4‘- \a .. 'd)( s L - 1:. u o. \ 4. n J. man” orig 1982 1982 POir Chrc al., 1983 al ‘ I revi V~ny Viru. tune. hepa: and 5 the c alwa. Cell. 43 The c- c Gene The structure and function of the c—myc gene has been the subject of intense investigation and is implicated in a number of vertebrate neoplasms through a plethora of mechanisms. C-myc is a normal cellular gene that has been conserved during evolution and is expressed in all tissue types examined (Bishop and Varmus 1982;Persson et al., 1984). Alterations at the c-myc locus have been observed in many B-cell malignancies of chicken, human and mouse origin. These alterations include the proximate integration of a retrovirus (Hayward et al., 1981;Fung et al., 1982,1984;Noori-Daloii et al., 1981;Payne et al., 1982;Corcoran et al., 1984:Li et al., 1984;8teffen 1984), point mutations (Rabbits et al., 1983;Westway et al., 1984), chromosomal translocations (Shen—Ong et al., 1982,Adams et al., 1982;Taub et al., 1982, for review see Klein 1983;Perry 1983;Leder et al., 1983) and amplification (Noori-Daloii et al., 1981;Collins and Groudine 1982;Little et al., 1983;for review see Klein 1981;8chimke 1984). The c-myc gene is the cellular homolog of the oncogene v-myc, carried by the acute transforming virus, MC-29. This virus has a very wide oncogenic spectrum, inducing solid tumors composed of malignant myelocytes (Beard 1980), hepatomas, endotheliomas, carcinomas (Mladenov et al, 1967), and sarcomas (Graf and Bueg 1978). This is in contrast to the observation that the activated c-myc gene is almost always associated with the induction of tumors of B-lymphoid cells. The cause of this variance in target cell 3 m a R: .J 95198 ~’ ...) 4. ‘I w} " a '.;.‘|r;- ...) 1: :S‘W, mat 'fit3:)v£.s\‘ o ul ‘N' -L. ....” Don 198 111 C 2 198 3.1) ‘f I.“‘!’ .. 't 12-...“ ;‘ V‘l! ... I la -« (Dc SUC ‘x';'1C-..~‘r:.’.-4: 1"“ ".1 18 1 Q- (a 01'?! 'il" ..a- c_. UN .IV A. ‘ tt DE . \ .. ‘3‘“.th 4 4:! 'J v.7: ‘ ‘1"): “‘1 \ c] m ~l .‘J J . ... (N '9 A. 44 susceptability is unknown, however, a M029 mutant that induces mainly B and T cell lymphoid tumors and some myelocytomas has recently been isolated (Enrietto et al., 1983) that may address this question. The c-myc protein has been localized to the nuclear matrix of normal and transformed cells (Hann et al., 1983; Donner et al., 1982;Alitio et al., 1982;Persson et al., 1984;Eisenman et al., 1985) and appears to display DNA binding properties (Donner et al., 1982;Persson et al., 1984). This is consistent with earlier reports that the v-myc gene product is predominatly located in the nucleus (Donner et al., 1982;Abrams et al., 1982). The data to suggest that the c—myc gene product is a DNA binding protein is supported by affinity chromatography assays that show c-myc protein binds to single stranded and double stranded DNA (Persson et al., 1984) and the structural similarity of the carboxy terminal region of the c-myc protein to other DNA binding proteins (Pabo and Sauer 1984). A comparison of the DNA sequence of v-myc to the chicken c-myc gene reveal seven amino acid changes and 10 nucleotides at the 5' end of v-myc not shared with c-myc (Watson et al., 1983). The 10 extra nucleotides are apparently derived from the first intron by differential splicing during transduction of the c-myc gene (Shih et al., 1984). In addition, the v-myc gene lacks the first exon of the c-myc gene (Shih et al., 1984). Though the first exon is non-coding, it could serve an important function in c—myc TE .. .. - - U! .16}. . . .... i .4 . ‘ .51“ L0. . .7' i. A "L .\I - \ M. re‘ .' PI‘E p- 2.: '.-. - a . ., .. .:." 1M '7. 1 “; Y ..-I ' l‘ -1: 'D “ L . . ,,\\.::.> Ear V pr‘ l I ‘1 a) I u ). - .. .. - _ 1‘ ' - .1 d. l v I 1 ‘ L DO _, - - - w 7 (- 1 --» V ‘9 «J I 4 qt 1' l , A . w (k \.- - 1 e: ~ " r :: 1 g! . f' . ‘ ' ’ ;~;:':—‘v 1. 't . k l . ." t. v - a — i. S.\_—: -111 .‘ ' : a ._ f _ ‘ v . ' I ... . I! 7 v p ‘ ..- .4 - . a 45 regulation at the transcriptional, post-transcriptional or translational level. It has been suggested that a stem—loop structure of the c-myc mRNA, between the first and second exon, hinders translation of the gene, thereby causing translational suppression that could be important in the regulation of the levels of c-myc protein (Saito et al., 1983). However, Nilsen and Maroney (1984) showed that the presence or absence of the first exon did not affect initation or elongation of the c-myc gene product. Also, Hann and Eisenman (1984) could detect equal levels of c-myc protein in cells having an intact and unmutated first exon compared with cells lacking exon 1, suggesting that the predicted stem-loop structure does not affect translation. The expression of c—myc mRNA has been examined in many different cell types. The level of c-myc mRNA in non-neoplastically transformed cells is low during quienscence and increases 10-30 fold prior to cell division (Kelly et al., 1983;0ampisi et al., 1984). An interesting experiment by Kelly et al. (1983) indicated that the c-myc gene may be involved in the normal response of quiescent lymphocytes and fibroblasts to a growth signal appropriate to those cells. They have been able to show that platelet—derived growth factor(PDGF), a fibroblast mitogen, and concanavalin A and lipopolysaccharide, two lymphocyte mitogens, stimulate the expression of c-myc in those cells that normally respond to them. All three mitogens are believed to act early in the cell cycle to induce ,' .L 1.; - if. 1‘ '.I.-;-.;‘".‘(:. ‘.- ...-fin 'L "2:;7 71 ':‘111 ..’ {I 1 1' J ‘5‘} 7’ J .J - . [1,. 1 .1 1‘31"... . . ' ‘3 . H: ',..1 J. .jvv't.“ ., (-rfJ o I ; _ [5. . . .J‘D’EL} :‘ ‘1' :‘N‘ : ‘ .';.';‘. ‘. ,y . $6." ..- .1 ‘ "4' . .“J '> : II.‘.. 1:11 .a‘.f.- U}. 71. :.' .1251: 1' 1.7 ..'. :3 .52} . r, ’.‘.: “ ~»_. :3". I ". Vi: “LH' 3 : HA S I ' 1"- ‘ 'fl, . .1; 1.. .’:' ; J';“.-.- :14. "'1, .3. . ‘33. ‘r‘rrjzi'u, ' ' a i. '1‘; "9‘ - l'I. ."t‘Y‘I. ‘JIZ. .‘.::;L.‘..--':t.‘ . 2..“) .f'.. T "'i ; 0 .~- . i X .. I i I ' .J ('fm..|',-\l .4 ‘ I . . e} (I I) >..’:":" f- I J L , ~ I V . ._. -. m t L . 3 11‘! 3." 1-7." I. 1" 5.; _ , l. . [... ... ‘ JI-J-H ’ I-‘— ' . - -, . . 1., . 1) :L)‘ r a - 2 . , e ~ . b ‘ .8 . ' t. I. 5 at. I *u ’f- I V «o. A. f \ .. II ' ‘ y . \ . . \ l . _ . ‘~ '0 f: I: -4 .~ ' .s t ‘ Y ,- e ' "1- v _ l’ .4'.'o .‘ ' A, ” 2 1 I I‘ll C! a v . O ‘ . m )I a Y — o . . ,. ' 4 , v .1 v ‘1 ‘ -.'" ‘ z 4-.<' 4 'l. - 9 I h I). n O . ¢:.' ', .' ' r. " ‘ >‘0 5J1»- JL ' 'II ' .7 w ‘ ' I'.) . . .. .' 1. -‘ , Q . . - 'f 1:- ’ V . :1. A * ,."s' r -..1'? L. . 7’. . .‘p 1 ;‘-~. '.1 ...-"n 7-1. 4 {y .3. ’ul 1 )9' . .‘,;,: fek SY] re Sh W1 h 46 competence; and all stimulate transient expression of c—myc within 1-2 hours, with a return to baseline well before the onset of DNA synthesis. The activation of c-myc by PDGF is particularly interesting because the sequence of the B-chain of P06? and the gene product of the c—sis oncogene show a high degree of homology (Doolittle et al., 1983;Waterfield et al., 1983). In a related experiment, Makino et al.(1984) examined the expression of c-myc in liver tissue induced to regenerate by partial hepatectomy. This system allows the observation of how cells 1 vivo, that are reasonably synchronized, respond when they move from a differentiated resting state(Go) to a proliferative state. The results show that the expression of c-myc is increased 10-15 fold within 1-3 hours after partial hepatectomy. This expression begins to decrease rapidly after 4 hours, to a level of less than two fold the normal level after 8 hours, at which time DNA replication has still not begun. A still larger increase in c—myc transcription( 600 fold) is observed when protein synthesis is inhibited by an injection of cycloheximide. These results are consistent with previous findings ig_vitro with fibroblast or lymphocyte cells pre-treated with cycloheximde and stimulated by PDGF. The large increase in c-myc expression after pre-treatment with cycloheximide is believed to imply that c-myc transcription is under negative regulatory control by a protein with a high turnover rate. DC t1". ce th dif dec dif. 47 During differentiation of F9 teratocarcinoma cells to nonproliferating endoderm cells, expression of c-myc mRNA decreases upon terminal differentiation (Muller et al., 1983). The c—myc gene product has also been implicated in the terminal differentiation of mouse erythroleukemia(MEL) cells (Lachman and Skoultchi 1984). It has been observed that c-myc mRNA expression shows a rapid bi-phasic change in MEL cells induced to differentiate by dimethyl sulphoxide or hypoxanthine that may be important in the irreversible commitment of MEL cells to terminally differentiate. In addition, Reitsma et al.(1983) have shown that treatment of HL-60 cells with a vitamin D metabolite results in the rapid differentiation to monocyte-like cells that is preceded by a decrease in the expression of c-myc. These observations suggest that c-myc may be involved in some aspect of cell differentiation. Proviral Insertional Activation. It has been demonstrated that avian leukosis viruses(ALVs), a group of non-acute transforming viruses, frequently induce B-cell lymphomas after a latency of 4-10 months post-infection (for review see Purchase and Burmeister 1978;0rittenden 1980). Since ALVs do not harbor transforming genes, the mechanism by which this retrovirus induced neoplasia was unclear. It was shown by Hayward et al.(1981) that ALV, RAV-l strain, induce B-cell lymphomas by activation of the c—myc gene. Their results showed that the majority of bursal )4 J. ‘1 \4_ .. e .. . v. .0. I. V\ . I. r; ( T. l r 3 - ' . P. t o y 1; 0 I A v - Elink' at) e 3- - .-~. - J .a- 1.4' “1‘ A. .. I .0 r I! o \u . ‘ \ ..y I. : .b 3 A , :0. 0‘! al.,...“ tahdfrcvuukut .... .. .. ...... . ... .-1 Mn. ....L » mun. H a .wuhvwwcnupu .Hrg . ... . “sun“ .... .... . .L ..w- .u. .. . .. .. . ,. The» . ... 0V 8 _: + r '2. ') i) (D . l ‘3 rot "9 F z ;( I. 3} ‘ l .- ,w ’0' M U Ll 0 1" 5 up “J :3 H 5‘ ’3‘ I] h 0.. n {i N ”4..“ or‘h“ .LQ Ix. ”LAM .. ”I. m U #43 ”.... s . It. a a . t o. a... ...-.nw..o~ . ..~\u~ §;H .r 48 .mcmm 0:010 may «0 Emmwumnzou n0 Amzouum usamommo may no cofiuomufiu may >9 nwumonncfi mm s scauompao H000«ua«u00:0uu ouamommo on» a“ Unusuauo on fiasco mag Hmuaboum may umnu muoaoonm Aeouuonvnmooa acquuomculwmocmaco one .Azouud may >0 coumofiocfi v 0:010 any 0v Hm0aucmou cauumucofino H000wumfiw0mcwuu may sue: Auconovocououco unasanuo 0:» 80pm savanna: 0:00p on Hafiz mag Homebona may umnu muonvopa .00uvnovoa GOnvameHIMOHOEOHQ any .ocuuooco mansnnou a mo scammmumxm pmocwncm a“ uaammu umnu 0wm m0 mCOwumusmaucoo 038 .m madmwm 49 “‘{“{““““‘ ioooooooouoooooooooeouooo coo”... 00. D O 0 90005000. O... .0000 O nouonououononooooouo» u»: Q 52.3.... - =23ch “ o? 0 g ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ .«usssmmnw... 00000000000. @ L 15.4 60:50»... I ..O—OEOhQ 50 tumors contained proviral sequences inserted near the c-myc gene. Subsequently, they showed that most proviral insertions occur upstream of c—myc and oriented in the same transcriptional direction. Consistent with this configuration, in most tumors, an elevated expression of a novel c-myc mRNA is detected that contains the R and 05 regions of the viral LTR. Therefore, the insertion of proviral regulatory sequences upstream of c—myc results in initiation of transcription from within the viral LTR and continues into the adjacent c-myc gene. This model of cellular oncogene activation is referred to as promotor-insertion activation(Figure 9A). Similar results have been reported by Fung et al.(1982). In addition, Swift et al.(1985) have reported that promotor—insertion is the predominant mode of c-myc activation by chicken syncytial virus, an avian non-acute transforming virus unrelated to ALVs(see section on Reticuloendotheliosis virus). In contrast to these results, Payne et al.(1982) have reported, using a RAV-z strain of ALV, two configurations of proviral insertion adjacent to c-myc that are inconsistent with the promotor-insertion model. In one configuration the provirus is inserted upstream of c—myc, but the viral LTR is in the opposite transcriptional orientation relative to the c-myc gene. In this orientation, transcription of c-myc can not initiate from the viral promotor. In the second configuration, the provirus is found downstream of the c—myc gene and in the same transcriptional orientation(Figure QB). In both cases, the elevated expression of c—myc mRNA 51 is observed. These exceptions prompted the hypothesis, later found to be correct, that the LTR contains 'enhancer' sequences that can elevate the level of gene expression independent of the position or orientation of the 'enhancer' relative to the affected gene(see section on Enhancers). This mechanism of gene activation is referred to as enhancer-insertion. Though the promotor-insertion configuration predominates in B-cell lymphomas induced by avian retroviruses, it appears that this system my not represent the most common configuration of proviral oncogene activation. In the small percentage of T—cell lymphomas, induced by murine non-acute transforming viruses, that show c-myc alterations, enhancer—insertion is the predominant mode of activation. The murine provirus is located upstream of the c-myc gene and in the opposite transcriptional orientation (Corcoran et al., 1984;Li et al., 1984;8teffen 1984). In addition the majority of reported activations of other putative oncogenes by proviral insertion(Figure 8) show a preference for the enhancer-insertion mode of transcriptional elevation. Translocation. A substantial body of evidence indicates that chromosomal translocations involving the c-myc locus and one of the immunoglobulin loci are common in certain types of B-cell lymphomas found in mice and men (Klein 1983;Perry 1983). Most of the translocations that are observed in the human disease, Burkitt's lymphoma, involve the movement of .i f. (. 1 A .a‘s. "O n- .a ' y - I ~v h. ‘-V 1 L. .... ... . ,~_. " JJallt‘h L) ‘4 ' I 01 A.§ -' .1 I: :1 E" T. .‘e ‘5‘ _. ,u- ra-q-Ina 3.; .. J Lin: * 2 Q2. . .(m ‘-l .. I. ’3 ‘ss‘ . L .7... .- .. p? .w«0 r .\\v A. anstT a a, ‘31'!’ '3 .J_ "' " A. of?! . _1.~. '.! 1' .4) 52 part of chromosome 8, containing the c-myc gene, to the heavy-chain locus of chromosome 14 and in rare cases to the light-chain locus of chromosome 22 and 2 (Hollis et al., 1984). As a result of the translocation, alterations in c-myc expression have been observed in either the amount of c-myc mRNA or the size of the c-myc transcript. An early hypothesis for the elevated levels of c-myc mRNA was the influence of the cellular enhancer located in the heavy-chainswitching region. However, subsequent reports (Battey et al., 1983;Rabbitts et al., 1983;6elmann et al., 1983) indicate that the translocation of c-myc often results in the movement of the cellular enhancer to chromosome 8 where it can no longer influence the transcription of c-myc on chromosome 14. Another hypothesis is that the c-myc regulatory sequences are altered due to the translocation. There is strong, but circumstantial, evidence for the suggestion that the first exon serves a regulatory function, since the c-myc gene has 3 exons, but only the second and third exons code for the c-myc protein. The first exon of c-myc is highly conserved between mice and man, but is absent from v-myc (Shih et al., 1984). Therefore, exon 1 may serve a vital function in the normal cellular context that is either unnecessary or even deleterious to the transforming activity of v—myc. The translocations that are typical of mouse plasmacytomas result in the separation of some or all of exon 1 from exon 2 and exon 3. In contrast to the mouse plasmacytomas, in some .3 c. 53 Burkitt‘s lymphoma, all three exons are translocated intact. However, DNA sequencing and S1 mapping reveal mutations in the intact exon 1 in five Burkitt's lymphoma cell lines. A Burkitt's lymphoma cell line carring an 8:14 translocation has been identified that has all three c-myc exons and the nucleotide sequence of the first exon is identical to the normal c-myc sequence with the exception of two single-base substitutions (Wiman et al., 1984). As suggested by the authors, it is possible that one or both of these subsitutions are in the region involved with c-myc regulation. It is also possible that sequences proximal to the first exon are also important in regulating c-myc expression. Interestingly, a similar situation has been reported in a mouse plasmacytoma, but in this case only one base substitution is observed (Stanton et al., 1984). Perhaps, only by coincidence, the next four nucleotides at this site are identical to those found in the Burkitt's lymphoma just mentioned. ggplification. The concept of gene amplification as a model for the generation and/or progression of cancer has been considered (Pall 1981:Klein 1981) and is supported by a number of results. Perhaps the first report of amplification of the c-myc oncogene was observed in CSV-induced bursal lymphomas (Noori—Dalloii et al., 1981). There are now a number of examples of oncogene amplification in both fresh tumors and established cell lines (Noori-Daloii et al., 1981;Collins and Groudine 1982;Little et al., 1983;Lee et al., 1984;Kohl et al., 1983;Schwab et al., 1983a;Schwab et al., L V 1w.\7 ..l. .LAdL t 5'1 (if (r -} A '3 v I"- .- ', .‘i; t" A f. ..I. v « i'1 in ' v . ,)‘ .3 r v \r. ,- \Io ‘ r ...J. 7A 0 A . E -.’ Lu 5"," i 54 1983b;Alitalo et al., 1983). In the vast majority of the amplifications the oncogene c—myc or a closely related gene, N-myc, is involved. The c—myc gene has been shown to be amplified in the human promyelocytic leukemia cell line, HL—60 (Collins and Groudine 1982). This is interesting in view of the complementation experiments of Land et al.(1983) and Ruley(1983), since coexisiting with the amplified c-myc gene is an activated N—ras gene (Murray et al., 1984). Other examples of c-myc amplification have been reported in two neuroendocrine tumor cell lines derived from a colon carcinoma (Alitalo et al., 1983) and in 8 out of 18 human lung cancer cell lines (Little et al., 1983). However, most intriguing is the consistent amplification of the N-myc gene in tumors of neural origin. The N-myc gene is amplified in 14 out of 18 neuroblastoma cell lines and 5 out of 8 fresh neuroblastomas (Yunis et al., 1984;5chwab et al., 1985). In contrast, only 4 out of 36 nonneuroblastoma human tumors and tumor cell lines tested showed N-myc amplification, of which three were of neuroectodermal origin (Kohl et al., 1984). In addition, Brodeur et al.(1984) find N-myc amplified in 24 of 48 tumors from late stage retinoblastoma tumors, but find no amplification in 15 tumors from early stages of retinoblastoma tumors. The authors conclude that N-myc amplification may be involved in the progression of these tumors to later, and more deadly, stages of retinoblastoma. .b v. , a 1 . . o A . .. c .0 .l g a . . . a . .4 . . . . .a A .a . . .¢ » . l' e. I; I; I l uh I; . c o I. u .L. . o . . . . . . a q o V . .t .1 an r!- u .a . 9. r . Or CHAPTER II LINKAGE OF CHICKEN C-MYC GENE T0 CSV The family of RNA tumor viruses is generally separated into two classes that appear to cause neoplasia by different molecular mechanisms. The class of acute transforming virus, with the exception of some Rous strains, are replication defective, harbor oncogene(s) for cell transformation and induce neoplasia in the host with a very short latency (2 weeks) between infection and neoplasia. In contrast, the class of non-acute transforming virus are replication competent, do not harbor an oncogene and can induce neoplasia, albeit, with a long latency of 4-10 months post-infection. Chicken syncytial virus(CSV) is an avian non-acute transforming virus genetically unrelated to avian leukosis virus(ALV). However, similar to ALV, if affects the primary lymphoid organ for B-cell maturation, the bursa of Fabricus, inducing a malignant B-cell lymphoma in chickens 4-6 months post-infection. 55 )‘f. 3 .~ I .5 o. - C R-'- 0. 56 It has been demonstrated by Hayward et al.(1981) that in the majority of tumors the ALV(RAV-1 strain) provirus integrates near c-myc, the cellular homolog of the oncogene of the acute-transforming virus MC-29. Analysis of the RNA from these tumors shows that c-myc transcription was elevated (Neel et al., 1981). These observations have led Hayward and co-workers to propose that increased production of c-myc protein triggers the transformation process. In the present study we have characterized the structure of the CSV provirus in the induced tumors and report here that the proviral DNA is integrated adjacent to c-myc in over 90% of the tumors examined. In addition, similar to the results seen in the ALV system deletions of proviral DNA occurs frequently in these tumors. o ,. a ‘... I 4' ’1‘ z ;! 'L t 9‘ _& -.n . . '3'? ' 3. A ‘ .. . {... . .’ .943 Jr ;. _. ': 'I ‘t » ’,‘ 5 3') . _ _'.. ,- .‘l ' ,‘ . I 4‘ h‘ ,. .. f 5 , . . , s as I . , » a | Q 3 s I i . . . ' l n . 6 ., I } ¢..'. - . . ‘;-.‘ . b '5.3 .‘y I O ... , . Q10 A- l .. V .': m'. I - .. . If. ' " ‘ I .1 . -' - ‘ . ‘ K . i‘ o B ‘ . t. - H . r». i m..- ,l. 1 . . v. 'I . 2 ¢ I I - 1 ‘ . ‘ J ‘.. ‘ 3! . ... ' I“ ‘ ' _. .21. .: "NT ". u’. t , A b-- MATERIALS AND METHODS Induction 0 old Leukosis. Day-01d chicks from line 1515x71(Regional Poultry Research Laboratory) were inoculated intra-abdominally with 105 infectious units of end-point purified CSV. The chickens were free of common avian pathogens and reared in plastic canopy isolators. Both the virus stock and the tumor samples were shown serologically and biochemically to be free of common avian pathogens and reared in plastic canopy isolators. Both the virus stock and the tumor samples were shown serologically and by hybridization analysis to be free of avian leukosis virus. Approximately 20 weeks post-infection birds that developed lymphoma were sacrificed and both tumor and non—tumor tissue were collected for analysis. All tissue samples were immediately transferred to liquid nitrogen and then stored at - 70° C until use. DNA Extracting and Eggygg Digestigp. Approximately 0.59 of frozen tissue was pulverized in a stainless steel tissue smasher in the presence of liquid 57 '13. '11; A} 4'- \J. i L3 (l t l-O .0. "-H. , I... ‘f ‘ 'i .. J‘ (m ... .A .:A Jéit‘ ’5 not? 'o ‘4 5&3. b '5'" ... 9 Ja( a. r 58 nitrogen. The powdered tissue was transferred to a sterile tube containing 20ml SET buffer/0.5x SDS,10mM EDTA,20mM Tris pH 7.5 and 200ug per m1 proteinase K/ preheated to 60°C. After incubation for 1hr at 60°C, 500ug/ml of pronase was added and the mixture incubated overnight at 37°C with constant shaking. The mixture was extracted with phenol/chloroform and the DNA concentrated by precipitation with 2.5 volumes of ethanol. DNA was digested with a two fold excess of restriction endonuclease for 3 hours. The digested DNAs were fractionated on 0.7% agarose gels, immobilized on nitrocellulose and hybridized with the appr0priate nick-translated probe. RNA Isolation. Tissue was pulverized similar to DNA, but the powdered tissue was transferred to 10 mls of a 4 M guanidinium thiocyanate mixture (Chirgwin et al., 1979) pre-heated to 60°C. The mixture was disrupted by homogenization in a polytron mixer. An equal volume of phenol preheated to 60°C was added and the mixture passed through a syringe fitted with a 25-gauge needle until the viscosity of the suspension was reduced. The mixture was extracted twice with chloroform and the aqueous phase transferred to a sterile tube. One gram of CsCl/2.5 mls of mixture was added and then the contents was transferred to a sterile polyallomer centrifuge tube with 1.5 mls of 5.7 M CsCl in 0.1 M EDTA(pH 7.5). The tube was spun at 35k rpm in a SW50.1 rotor for 12 hrs. The supernatant was removed and the pelleted RNA was suspended in a small volume of 4 M a u e _ . a r 54 a .- \ . . n: q . . . I . . . a a i . ( . ,1! rs. ' t I A . e . . I .V o! . . v .. g . rl . e. .i . t m a . o I . xr"! 59 guanidinum thiocynate. A 1/40th volume of glacial acetic was added and the contents transferred to a 1500u1 eppendorf. The mixture was precipitated in 0.5 volumes of ethanol over night at —20°C. The tube was spun 5 minutes in a microfuge. The precipitation step was repeated and RNA was suspended in, DEPC treated, sterile water. gybridization and lick-Translation. Filter hybridizations were carried out in 50% formamide, 5xSSPE/20x=3.6M NaCl, 0.2M NaH2P04 pH 7.4, 0.02M EDTA/, 1xDenhardts/100x-10g polyvinyl pyrolidone, 10g Picoll and log BSA in 500ml DDHZO/ and 100ug per m1 single-strand salmon sperm DNA at 42°C. The filters were washed at room temperature for 10 minutes in 2xSSPE and then washed twice in 0.1xSSPE, 0.1x 30$ for 45' at 50°C with shaking. The SNVt probe, a gift from Dr. H. Temin, consisted of permuted copy of the SNV genome cloned into the Sal I site of pBR322. The c-myc probe, gift from Dr. T. Robbins, consisted of a subclone of the second exon of c-myc. The probe was cloned into the Sac I and Sal I sites of pDH24. All probes contained in recombinant plasmids were digested with the appropriate restriction endonuclease(s) and gel purified. The gel purified fragments were generally 8 nick-translated to a specific activity >10 cpm/ug of DNA (Rigby et al., 1977). Re-hygridization of filters. To remove the hybridized radioactive probe from nitrocellulose filters for subsequent re-hybridizations, the filters were placed in a baking dish with 20 mM Tris and 20 fi 10“ a (. «3V?! ‘ ‘0’ 4'. -. ‘V" ‘.. .L' A J\.q L . . \I . t. . . . H. l. ‘ .1. .. V .. u t .I. n C. . ... » .l\ 9 . l . l. \ . i ,' . v. . .. .; \ I. I. . Ya . pa. . ‘1 » . . . .. I- oK I ..1 as. .... .... .i 3,) . :0 .Il -.. ..a» . a!;.a‘ \ 1.4 ' .1 .s 4-,- 60 mM EDTA, pH 7.5 and heated in a Tappan(Model 120) microwave oven, set on high, for 25 minutes. After cooling the filters were placed on 3MM paper to air dry. RNA Dot Blot. The RNA samples were denatured for 25' at 60°C in 15xSSPE and 2.2M formaldehyde. Dilutions of RNA were made in wells of a microtiter plate. Nitrocellulose was equilibrated with 15xSSPE and placed on a Minifold apparatus(S&S). A 100 ul of each dilution was placed in the Minifold wells. After suction was removed from the Minifold, the nitrocellulose was air dried and baked for 2 hours in a vacuum oven at 80°C. Hybridization and washing conditions were similar to DNA, except the hybridization temperature was 45°C. «,, .- .. - \ . V ' ‘l " Q . - L: I ‘ " . ‘ .m... r l n ‘ _ ‘ ‘ ’r\‘- . I _ v I I , )«J ’4 . . .. ‘ J " r- ' ’ n : . . _ I. -, ‘ a. "“C t o\ v '- - o A o 1 . a . . 3 ‘ 4 ,' ~..x :\ s ,. . a . ‘ . . a l \ t ' . ‘ f "- . . 4 . . 'i ,,. . J.) t . a a a d t v I ... .- a RESULTS Li e of c- to CSV. A map of the CSV genome is presented in Figure 10 and a map of the chicken c-myc locus is presented in Figure 11. As indicated by the restriction enzyme maps of CSV and c—myc, neither have Eco RI sites in their coding regions. To examine the linkage of CSV proviral sequence to nearby cellular sequence the restriction endonuclease Eco RI was used. Since this endonuclease does not cleave within the CSV genome the whole proviral sequence and adjacent cellular sequences are obtained on a single Eco RI fragment. The tumor DNA was digested with Eco RI, fractionated on a 0.7x agarose gels and transferred to nitrocellulose. Hybridization of these filters to the SNV probe is shown t in Figure 11A. With most tumor samples, a single band of variable size is observed. Each band represents a tumor-specific(TS) fragment that corresponds to CSV proviral sequence. Only one proviral band is seen in most tumors, indicating that the CSV induced bursal tumors are derived from the outgrowth of a single transformed cell. 61 I .c» (H1? ,w. . J :5, l .1 j, . . a! .- r. . o. 0 p ct. ._ 4 1 C. _ . . . , . 1 .1 v1 ’- A e 5.. l e ‘C y _ . c n .I' ‘ '. I. r .« ..\., .5 . 1 «A ...q o ’ a _ § . . L. . Al (Id an "1 e. I O W» ..m.. nun0CW0H; ‘ \j \.. ‘ x... . Fir... M. a..u.>»“b l .....o 3.. .w _. mica." “HHH unnecessuam .cn wannum . . . .... .1-0. \ .- y. u A. S}: I - I f: O . 5‘ ..I . ...: .l. t... .5»... ....» n. 62 .H Homnnmm "H 0mmI0m “HHH ocamnmm "Hmammum “H m>¢u€ .>mo nu“: >m0~080£ mucmdvmm mom cmnu umumoum mommnm umcu >mm mo cfimuum m .moua> mwmonooc condom aonm mocoHonzn spas c0«umN«0nun>c vOHn anocunom >0 0030~H0u .ocum Hamo unnosoonm >m0 m ..Nmmfi ..am we :mfiumwmz. manmm Bonn 429 Usaocom no mumemao vansoo 0cm camcflm song 00>«u00 no: nos mfipfi> Hmfiu>ocum cmxofino och .>mo no nos ofi>wce co«u0nmumom .os mucosa 63 "-. v 64 .H mamumam “H Hmmnamm “H ommuom “Hm oomuam “HHH commune “H maoumflo .Avoma ..Hu no nacmunmms ..Ha .uo compass «newsman 42o eonmqanso may some 00>Huoo mas awe 038 .m900H 0%810 coxoaco ecu no nos owsmco oofiuofinwmmm .sfi mpsmem 65 _om on N :96 66m 66m _% _coxw 66 To demonstrate the linkage between the CSV provirus and the c-myc gene, the Eco RI cleaved tumor DNAs were re-hybridized with a myc specific probe. As shown in Figure 123, each tumor contains both the unaltered c-myc allele of 13.5 kb and an altered c-myc allele that comigrates with at least one of the TS bands detected with the SNV probe. t This data strongly implies that a CSV provirus is located adjacent to one of the c—myc alleles. These results implicate the c-myc gene in lymphomagenesis and CSV integration as the activator of this gene. The variation in relative intensity of the bands representing the unaltered and altered c-myc alleles implies that the unaltered c-myc allele is less abundant than the altered allele in some tumors. Presumably, this is due to aneuploidy for the chromosome bearing the unaltered c-myc gene. Similar results have been observed in bursal tumors induced by ALV (Payne et al., 1982). The size of the Eco RI linkage fragments vary from 8-22 kb. We assumed that the size variations are due to deletions or structural alterations of the viral or surrounding cellular sequence. In order to examine the possibility that the alteration are in the viral sequences the tumor DNA was digested with Bam HI and hybridized to the SNVt probe(data not shown). In an unaltered provirus there are 5 internal CSV fragments produced ranging in size from 2.2 - 0.75 kb. The Bam HI digestion pattern of the tumor DNA shown in figure 12A indicated the loss of some of \l bl. {15.1 i II. I L A. y 7.2 7 . a . ~’ I . .5. . 1 - . 1 . e. V. . . ..Da 1 - . . r— . rL .... .ls r fie c, 67 ..umma ..Hm um ea>mmv neaosnahatm coxoaco nocuo ca monanueoo >Hu00u>ema cocoeococm m .maamo mossy an enemas 0%810 ”memos any ucfimnMMO oaomoeonno ecu «0 nQOH Hmnucououonn may no unseen ecu mum omecu .>anmfl§nomm .mnnu on omuo>0n ecu .An now «In muoadu .u.o. mommu 050m cu “meaoooc uoaau ecu cw oedema» amauoc 080m no oomumoum ecu 0a 000 momma unuqouam mossy ecu coca ascends once one moans 0%630 Amanoc ecu .>Hamao= .cofiuouucd >mm «0 menu coxoano m Bonn 429 on .ovecmH nouwcoo one .onoua 0>E|0 coxoaco ecu 0v :0«umuwo«mn>n Am mocmm .onoun >zm env 0a cenumwaonnnmc A4 Hmcmm .cOHHnmmuo Hm 00M Dawn: commamcm mm msonnfl>u Haooum ca econ 0>5I0 sexuano ecu 00m mononn>0un >mo no ouauosnun one .mza hoauu nonsense Hm 00m «0 :0«umwn0awn>u .NH magmas .coum zw Illa .< ' I o .. .--. . .e 3 . ...aeE 335 E 8“ 69 the viral specific fragments, thereby confirming that the size variations seen in the bands in Figure 12A are due to deletion or structural alteration of the integrated viral genome. The TS bands that are smaller than the unaltered c-myc allele(lane 9 and 10) are probably due to the presence of a new Eco RI site in the structurally altered viral genome. Amplification. An interesting result, presented in Figure 12A, is the unusual intensity of the hybridization signal of the TS band in lane 9. We believe this to be caused by the amplification of the provirus and c-myc sequences. In order to obtain a better estimate of the amount of CSV sequences present in a tumor with an intense TS band a titration experiment using SNVt as quantization standards, was carried out( Figure 13). Thirty micrograms of DNA from tumor number 15 that showed amplification of CSV sequences (data not shown) and 30 ug of DNA from a tumor with a proviral band of similar size, but with a "normal" band intensity ( tumor number 18), were digested with Eco RI and loaded on an agarose gel together with varying amounts of the purified insert of SNVt(Figure 13, lanes c-f). The quantities of the cloned DNA in lanes c-f were such that they represent, respectively, 2, 4, 10, 20 copies per cell equivalent of CSV sequence in 30 ug of chicken DNA. When the TS bands in lanes a and b were traced densitometrically and their intensity compared with that of the standards in lanes c-f, it was found that while tumor no. 18 in lane b I“! ’t re :1. I . n . I..Ha r . I. . . r..- . ‘ . all: C... . V4 1 ..S . .- o a . . . ,p H : r .. .0". ..:;.s _n .soomruthkn I ; mf.u Ho .... I... 1..r . r . . . .....o. . no am .w,< arm mews me .05 was cm .03 nuance H mm bsm uwfivn.w .n-»cmw0awm . . . ..e. .. ..c ...?3... ..., ...me a")... :.....r... moonwazmwfimwa 2&2... . “.00 .....CBUDUG ...U.C m 05H .Hnumm nwxqv:. arfn- Thwahh «mammm madamcwawucoo any mucoaoumou mac mmamfl :« onmn uwZOH mcfinfiofiun>n waxmmz 0:9 .¢za ufisocom :mxofinu no a: on ad muocmdvom wmo mo pco~w>aavo ammo awn mmHmou on new .0” .v .u o>flm vase: cza >2m no mucaoaw mmmnu .cmxonno WOM mmmmn 0a x N no mNfim maocmm ufionwo a no woman .zm vmwuwmsa no comm u: m.~ 6cm 0H.H .wv.o .m~.o cumvcoo u can .0 .v ~o mwcmq .0umocmum cofiumufiucmzw m mm vmma mm: Aulo mwcmHv dzn u>2m omnoao ”£9 .Anmma unaudmv >mwmm OCHSMH>CO£QHQ >9 umCHEumumo mm: :OHuauucmocoo zm on» my“; omnfiunnn>n :mnu .Hom mmonmmw am.o a :« 00N>amcm 0&0: ma .0: can on .0: uneasy Bonn <20 owaocmm ooumomavlum com no nomm on on .na .0: uoaau :« nmoaosumm >mo any «0 GOwumoHufiucmao .mfi musmfim 71 72 acquired only one copy of a CSV provirus, tumor number 15 appears to carry approximately eight copies of the proviral sequences. Enhanced ggpression og c-myc. The structural analysis of the tumor DNA showing the CSV-myc linkage implies that c-myc gene expression is elevated based on the results of Hayward et al.(1981) and Payne et al.(1982). To confirm the transcriptional activation of the c-myc gene by the CSV provirus, the RNA from tumors 1, 2, and 3 were examined by RNA dot blot. The results in Figure 14 show that c-myc expression is elevated in all 3 tumors when compared with controls. Densitometric tracing indicated that the amount of elevation is 100, 80, and 50 fold, respectively. ‘ ‘ 1 I . . ‘ ‘ 1 I _ , ‘ ! . ‘ . , 3.27 '1 . . . o‘ - —. a. "a d . ' - - . _.' J 1‘. ' .4 ... .‘ . r 0‘1 A .A‘ -- \v- ._. ‘ .x . 9‘] f' . - .I. ‘ --- . A - L31 . v - .n . _ . a / l,‘ .. ‘. ‘0'. ’ “J 3H t.. D. QK 73 .UCHccmon oauumaofimcoo >9 donucoo 09» on Hmcmfim acauMNacHu9>9 any no mmfiwfimcoucw m9u maaummsoo cam aflfim >mntx ou mcumomxu .umuafiw $99 unanmmz .o9onm o>alo 099 99a; unwanouh9>9 .wmoHsHHooonua: 09 no 42% no mo ov no .ON .OH .0 .N mafiuuomm >9 penaaumuoo mmz muosfiu m9u 9H dzm o>slo no H0>ma mnu uo Oumauumo c< .89 com pm :oHu9uomUm >D >9 pmuMauwucmsv ems 42m ..Nfi musmum moo .m can a .H 9069» cam 05mmwu Honucoo aouu ovumHomn mm: aoa Hauoa .osmmav Hmmna9 caummHaomclcoc cam muoadu Hmmud9 aouu dzm no mum>amam uoH9 won .mnoeau Eon“ alo no GOwumofiufiucmao .vfl madman 74 r co. m sea ,. .9 N .853 . . ..l-xqo . x!— lll'lClcl .- D ' TEES A ...P .228 a: N m 6-. ON O1 DISCUSSION Recent studies by Hayward et al.(1981) strongly implicate the activation of the c-myc gene in the bursal lymphomas induced by ALV infection. In this study we wished to determine whether CSV, which induces a lymphoid leukosis similar to ALV, was also integrated near the c-myc gene. Our data shows that in over 90% of the tumors examined, 28 of 30 tumors, c-myc is linked to CSV proviral sequence. These results are consistent with results from Hayward et al.(1981) and support the authors suggestion that the insertion of a provirus near c-myc is instrumental in altering the expression of the cellular gene, thereby triggering the oncogenic transformation. The fact that CSV and RAV-i share very little sequence homology, including their LTRs, and yet they are both found integrated near the c-myc gene in lymphoid leukosis strongly implicates this gene in the transformation of lymphocytes. In addition, our RNA dot hybridizations indicate that CSV is able to increase the transcriptional activity of c-myc as much as 100 fold, supporting the proposal that elevated 75 “v at. '7‘» I. ..l C x. s ..b. ‘— n I . s I , - l A 6 3’1 1’3"; l ..- at O- ‘t A p. b I ’01, 76 levels of c-myc gene product may trigger the progression to neoplasia. It is very interesting that the deletions of proviral sequence observed in the CSV induced lymphomas is strikingly similar to those observed in RAV-i induced lymphoid leukosis. These results imply that deletion is important for some aspect of the transformation process. It is possible that deletions of the viral genome that disrupt the transcriptional program of viral RNA facilitate the transcription of the downstream cellular sequences. Perhaps the transcription of viral RNA from the left LTR extending into the right LTR may affect the initiation at the right LTR. A disruption of the transcriptional program caused by a deletion in the proviral DNA may expose the right LTR and allow efficient transcription of the downstream cellular oncogene. Alternatively, the deletion of viral sequences may play a role in the selective growth of the tumor clones. Those cells in which the expression of viral antigens is eliminated by deletion may therefore be rendered less immunogenic and able to escape the host immune response. Histopathological examination shows that at onset of the disease, there are many microscopically observed enlarged bursal follicles(considered to be transformed cells) (Cooper et al., 1968;Neiman et al., 1980). Immune selection may account for the finding that only a limited number develop into tumors. YA; (r... o- 9 . l - A \l . if, q .1 .... Cc . r‘r ' 'f t: n .J ...: ’7'. 77 The possiblity that gene amplification may relate to the generation and/or progression of neoplasia is supported by a variety of findings (Pall et al., 1982;Varshavsky et al., 1982). Chromosomal aberrations, including double minute chromosomes, 'homogeneously staining regions' and trisomy have been found in a number of tumors and tumor cell lines (Klein 1981). In some cases the cell lines have been shown to contain amplified oncogenes, including c—myc, c-abl and c-Ki—ras (Schwab et al., 1983). In most virally and non-virally induced murine T-cell leukemias trisomy of chromosome 15 is often the only chromosomal abnormality detected (Dofuku et al., 1975). Our results indicating that c-myc is amplified in tumor no. 15 may point to another mechanism whereby a non-acute transforming virus can induce neoplasia. However, we have examined 30 tumors for CSV-myc linkage, in only two tumors have we observed amplification of the c-myc gene. These results indicate that if amplification is involved in a mechanism for c-myc activation for certain bursal lyphomas, it is relatively rare. We have shown that c-myc is linked to proviral CSV sequence in over 90% of the bursal tumors examined and the majority of CSV provirus have undergone some structural alteration. In addition, the RNA dot blots indicate the enhanced expression of c-myc in these CSV induced tumors. Presently, we do not know the exact insertion site nor the orientation of the provirus. Further analysis by 4. 78 restriction enzyme digestion and northern blot analysis should tell us whether the elevated expression of c-myc is consistent with promotor-insertion, enhancer insertion or perhaps some other molecular mechanism of oncogene activation. Also, it is not clear how the structural alterations in the provirus contribute to the transformation process nor what the exact nature of the alterations are, but detailed structural analysis of the molecularly cloned TS bands should provide insight into the molecular mechanism of the alteration and its possible function in the transformation process. ... ll ... . r i l c . Q ‘. Id .Aa .0 . .5 a x v . s u CHAPTER III DETERMINATION OF TRANSCRIPTIONAL ORIENTATION AND SITE 0? INTEGRATION OF CSV RELATIVE TO C-MYC The mechanisms by which ALV activates the c-myc gene in B-lymphomas have been extensively characterized (Hayward et al., 1981;Payne et al., 1982;Fung et al., 1982;Westway et al., 1984). Although important exceptions have been noted (Payne et al., 1982;Pachl et al., 1983), ALV proviruses usually integrate upstream of the c-myc coding exons and are arranged in the same transcriptional direction, enabling the provirus to utilize its 3' LTR promoter to transcribe and deregulate the downstream c-myc gene (Hayward et al., 1981;Payne et al., 1982;Fung et al., 1982). We have previously shown that in CSV induced B-lymphomas, CSV proviruses and the c-myc gene are physically linked (Noori—Daloii et al., 1981). The arrangement and insertion sites of CSV proviruses however were not analyzed in detail. 79 a .‘ n J \‘I .t 50 ~~- ~- . (I o . . . m 0 av V. I. ... . . 1 0/ Iv . a V. I n v! , I: .\p at) . . r A f e .1, ' . . . a. .. . s . . u o . I. I . .. _ b ‘ . ‘7! x. o. r n a v . . Us - r . I. . . r I- v I, h) ‘E .- TI .1 ... s .ofl’“ 2.7.2' No 80 Here we describe our analyses of the provirus—c-myc linkage structure in twenty—two CSV induced lymphomas. Our results indicate that the integration pattern of CSV proviruses show a striking similarity to those observed for ALV proviruses involved in c-myc activations. MATERIALS AND METHODS Inductign o; Lygphoid Leukosis. Day-old chicks from line 15I5x71(Regional Poultry Research Laboratory) were inoculated and housed as described in Chapter II. DNA gxtragtign andggnzyme Digestipn. The isolation of DNA from tissue and digestion with restriction endonuleases was as described in Chapter II. gzgridiggtion and lick-Translation. Conditions for hybridization and nick-translation were as described in Chapter II. The SNV-LTR probe, derived from the SNV proviral clone, was subcloned into the Sac I-Bam HI sites of pDH24. The mycs and myc3 probes were derived from gel purified Sma I-Sac I and Cla I-Eco RI fragments from a chicken c-myc clone, gift from Dr. T. Robbins. Re-ggbridization of Filters. The conditions for washing off hybridized probe were the same as described in Chapter II. 81 ’ . 1 ,r“ L" .' Q . d I" '.1 r1 .1 .le x: ,9 C r" . ,v“ "\ I" . .ist‘. l w..,( . .'-‘ RESULTS The chicken c-myc gene, like its mammalian counterpart, has three exons; only the second and the third exons contain protein-coding sequences. As indicated before, the majority of the ALV proviruses in B—lymphomas are situated upstream from the second c-myc exon and are in the same transcriptional direction as the c-myc gene. Figure 15A shows what would be predicted if the CSV provirus also inserts in a similar manner. To facilitate the mapping of the proviral integration sites in a large number of samples we adopted the following strategy, relying principally on Sac I and 8am HI digestions. We took advantage of the fact that a Sac I site cleaves near the 5' end the second c-myc exon, thereby dividing the c-myc locus into a 5' and a 3' region (Watson et al., 1983), and we prepared probes (myc5 and myc3, Figure 14) specific for each region. The CSV LTR contains a Sac I and a Bam HI site near its 5' and 3' boundaries, respectively. If the diagram in Figure 15A 82 3 ,q',. l K i O . t i I - . . ..tl ,. .- \ . I a l... 04 .JL .v fl I. Y - ‘le . .A II, .- .(J '1 {0.3 1 H'H' i -ae .fif.\" ..- ‘. L [3&2 ll“ ,- vs A311 I 31;" 4-. ‘.11. J t ,. ,J’ -3 p . aw...» .u 'H ....- H O . .. .... . u ... p I use I . r..— m. I. h. n. . .H h . .. . - . o . r he. s s n " n I. r“. r. .u . a .7. .I P.L 5.. h ...l A k a - .. V» vs a I. . ‘I u. . a o . r. ~ ... mus . . . .u s o. \ ....fiph .... . ... I . . .. ”IV H h... r U ' w . I I ..J , ’t . ..J» (a I. 1 3* II. . Aw is: minder... a” s .u Q..- .. - ‘5 O N O O ' ‘ I J \. F | . . . ...... ... - a}... («10 m. c. ... H H. .g .1 / . I 1 n. . a; .I. anemia-1., .U )M u - . . rt ..rIHU.;p-\.rk LCMU H .. 3.1:... U...“ ”.mu .....-4”. .v . . . I o I-.. r e .. .r . .. .. Iv p t ,u . . u e . u ‘ W“ “\lhn‘. . I a . I .D. I. .l n. V ‘ H . rLtt ubh mrtahm wt (anhaam.m . s. . . . .- .. . . ..v 3:..- ., he; .. ..2.;........: a» . Hm um. «7.....- . . x‘ . o y - - .I, . l .I . 4 t - - m .-..an A. (Jahxrnth ... .....r. .r.. Ff. . 1 . .. . u 2.4 a .. a. . - . .\ u;mrafi aw. .knu =Hiazwzm .. .er-.c. . .ao, ....p..- ..n..... ... . ...; w . .H ..\..... . . 0. . . . "a a . ... H «.... .3: . 3.. u . :4.” w .9.» n» . . ....... -0 2 q a as wt. . 4. . . p .. .. ... \ . v. I. u u‘ t . Maul. V. ....r... . . . ... a: m 3H. xiv...» ‘. .. .. I . . . I a ... 7:.“ 1.. x v}.- h/Uueauuu 0. -u. . .s . I . . h . I .- fl ' ' . I- C O I ‘ ' I '. exJoa- ~hm.y’unm . . . . .r.u . tuna. r ~u 3TH - ......) km N J; t .u '1 Lt H I I “OFQOIa’MmtaMJH ”as now I 0 PH I a. “I “- . . . . . . . t . . . NF*"~.L ’ ...... 19")" “H 4. V o a Q ” ’ I e v - FQWHV.‘ L.“ . . . i x . : I. O. I... n \ . .. 1 . 0 “L .h I\o - .anes F a cu.d ‘91 Ln“ ...\. .1. L . .. m. L . .. ”.....3. 1. o.... 6...)! 3...:3 .c.... i \u . u.\ 1t » .O I. .7 .f n .l m r .0.- U I b LOF— 'M v I I} t (. \v. '1 w a.m.5 o 1.... 4 H . “ ... . s 4 .. ... .. P rrd . c: .nPoN. .. .r v u. s .. .».~ .« $3,933.33qu 3....» A... r. In. ‘& .9 math 3.... “mums mafia...“ ma noun». I... .\ .nwc mamm .. . .i 73cm ,<»hvr ,u.w~u v "we..amwrb emu 2H mmrmmhu um 3a” us DH ..OBQUSJU. .../...... -.U .-.?Ur ..EFCC wear.» ..hm 43 mnflmna @730 L3Un0 Umm ufi..kfi3u L; 7mm .; ..F a.» .m....m. HUMIMU»). ......mJn... I .a. m..._......+a... -.. -... WCHWHHJPIH “G L.......l.......:._-q m4LU Ouif J ..»g\“ M-M;i a .r 5. wt. m ...... I ‘ .. ... s .I . rrppv Mr.) -1 . ..~ . It} ‘n man neuw4wmrinn H. p wxrmqi .xi UWCCh NM LL. I .l.... C mm ..H O .. 4 . . .J A... r r... meuamqmqua was w WWW... H 30 a»... M I m .v ...J. .n. F.’ \ \\~ n\ l I: ‘ N a I’l_rL If I WA. _ . - ‘1 I A. . <0!» ”‘5'. III. \Lo .n o u I 1 9, .IA . ).|.J .Gr ..p» - \IT.‘~1.:Qu\ “I 0...? \I “Mink?!- ar lh" I! ~.’ ...w .9.....\H..... w .awcgha.:u _ I.- . tr ...... O . . (I. N..* bthiae .m@ m thywm do . on t. w r” .1M9 H w um.mhouu uumw duomu 1m- .. Ii lobar. .1.. . . .....t . .. U” 0 uhumwu was uaI> cos: couuouov who: uvcmn scan on oocfin .onoum any no cofiuuom coups" any an muocoavou a>aunumaou no accommhn any 09 050 >Hoxfid mum >vnu pan .umuHo #0: ohm mvcmn umonu no ohaumc uomxo one .mnoum ou>s may Ou umNHoaun>s .cza noummufin 0mm cu cmmm mn cmo mvcmn ucwuaufipn>n >~xmm3 muuxo .>H~mco«umuoo .Aummn ..Hu uo oc>wmv umaonna>alm coxoano posuo an omnfiuommo >Hwnofi>mpm convaocmnm a .oaaoo heady CH oHuHHa o>alo nuance onu ocahuuno oaomoaouno onu no mmoH quucououonn on» no uaauou any man >Hnmsdmoua amaze .mnnu ma mmpo>uu any .Am can m muoeau .m.mv mamdo mean a« “aoHon: uoafiu on» an moaanau Hanna: anon no oncomuun any Cu 050 ..muoo no >n umxuma. mucmn cauuoonm uoaau any away mmcmucn whoa ohm «vamp o>alo dunno: any .>«~M§ua .nou 03mm us» ca vouSHUGN 429 mnfl Eda ovummUao H Hum\H: awm\HHH we“: new museum umumoufin HHH on“: no vmnmn mum: Anx cfiv mamxnma mafia plasooaoa may .wwz menu can >Huonxo wavoumouu can than HhonnH mafia unaccucfics am no mmpan may eouu voumHoun mm: «2a Houucou awake: was .Ammmn ..Hw uu mczmv vunfiuommo >Hmaofi>mnn mm .coHvMvaaun>£ acanlnuonuaom vcm mammuonmouuomao «um omoumum >n UmN>Hmca new mmaaoo: uoa:u muwuomnv scum nuuomuuxu mm: tza may .Hm sun can H 0mm nuon nuaz onumomfio opus ADV van on no a mocmH ca moamsmm .H 0mm nvnz woummmfin who: any can A0. no a aw umcmfi new .Am. an meaaawm .Hmcwm none «0 may any so axonm mmnoum any ow vuuavaun>n 6cm .oofi>uco cofiuofiuummu nua3 omvmmmnn mums <20 Hakucoo szamfiuoc no noafih .Anvlamv .kumoflvca mm ouw oo>aumv who: museum may scan: Eouu mucmemmuu ceauoauummn one .H damnamm.HHH ccfimumm .Hm ammumm .H ommuom .Aomma ..Hm uo canouoafinmv mag usua> camououc covamm vouwamn >HmmoHo any uo mumo GO£Mwanfia any on nmflfiafiw >pm> m« can A GOwVMHmmwha an .H0 «0 uufizm. mflhu>0pm >mo cmcoHu u no acavmwmav wandou 0cm manna» >9 quHEMUuOU mm: mad >mo any no Qua mch Ammmav.am .um nompm3 0cm AvmmHV.Hm um swam ou uawuuooom mum o>a|o may no awe UE>Ncm coHuoauvmmn mnu van acoxo o>ano ocu no macauamom msa .mcmm owalo any mm seapomufin Humanuafiuomcmnu man» may :« coucmfiuo cam coups“ umunm mnu ca Umupomcu mana>ona >mo a no awnumav oaumemnum 4 .Afiv .msOOa 055:0 mnu CH mmmapw>oum >mo any no GenuMucmfiuo new newufimom .mn mhsmfim 84 , : ... .? fi ... ..m... .....l.........._ H _ . .... ...... ',,L -, . _ ..r .11 o _ ‘ ”no IA ...I ..r . A .l all... I .1 ”ANNE I _m.o ...l - -A ' ' II _. IF; . .. I. I. . ‘ um.N N _ I; _, II . . ..- Im.¢ u. . .l 4.8 ... lbw nonononononoaonoao nonyoaoauarnrannono —m h w n ¢ n N 20“ rm 5 m z _ E... more , O -MNd . -nnflo ..an .000 no»... no»... E... 8395 35.0 .L... -mN ---.lll---’ -m.¢ -m.m m h w n v m N "2 All [3le m_ < 85 represents the CSV/c-myc junction structure, then Sac I digestion should yield the following results. One, the 5' Sac fragment of c-myc should be shortened when compared to the normal control, due to the presence of the Sac I site in the viral LTR, but the 3' Sec fragment of c-myc should not be affected. Two, the LTR probe and the myc5 probe should cohybridize to the shortened 5' Sac I fragment. As shown in Figure 15C to 150. the predicted results are exactly what we observed. In these experiments, Sac I digested tumor and control DNA were fractionated by electrophoresis in 0.85% agarose gels. immobilized on nitrocellulose paper and hybridized with the myc5 probe (lanes a of Figure 150). The normal control (C) DNA displays a 6.8 kb band, corresponding to the normal c-myc locus. Each tumor sample carries an additional shortened c-myc band (indicated by ). In contrast, none of the tumors showed any evidence of alteration when hybridized to the myca probe (Figure 15). This indicates that the proviral insertions occur 5' to the Sac I site in the second c-myc exon. Hybridization to the LTR probe(lanes a in Figure 15D) reveals the linkage between LTR and c-myc. In each tumor sample, at least one of the bands (marked by ) detectable with the LTR probe comigrates with the altered c-myc band shown in lanes a of Figure 150. The other LTR-containing bands presumbly represent the junction fragments from the other end of the individual proviruses or from other proviruses present in the same tumor DNA. This analysis also defines the transcriptional orientation of the ~: I r’ L .4 u I A? A... i - ‘. t s 1 1 Ju ai "r ... .I 2‘ J. ., (H ‘4. a h I": a, .,; - M“‘) T" . ' 2 J.“ C IL -\ n . ‘.‘§ ‘ ‘ ' f - V A ’ L.‘ J Ll I.“'V \ l'. .- I. II . a , ».« I , ,~-. ' .2 A- .. .3. ..im‘..- 1 .2 1‘: J ' ‘ P l m V - I '0 ‘ . .‘ '- (Vt. : :' 5.114‘1‘. " ' - "a.“ .-' -‘ . ~ .- - A -~ ; ' ~ O'v‘ r‘ I e .7! ., ‘_ '2‘: _ V ‘. A. 1) ,1 L1 ‘f‘l'lh. .‘ ~ - 1 4‘ ' ' ‘ 2 , . ' ~~ T a - v ' .' ‘. , l. . w w J .1-u ’J.. .- . N f -, ' vv -' - w ' ~ ‘ I .-< .5 _v-. ‘9': A. 7 -~ 'vLJ.|.- :.:1 a 31.5321... 1.‘..T L ‘4. n K. {...-’1?!) 1014' ~ . . c » . . ,. ... ..-5 y . . t «: -IJ ..1. .- ' -' ; .1 J... -\4 S; $4 I 'Jd "r 3" "f 1 ~ ‘ >~ - J“ "' :0 v)“. ’ ’ 3' . twirl " 4‘ "r" ,L..;- . .. . 3.): L'-’ L ., «J .~ 1".‘3' L .1- “ 8....I) p) vr' \; '-’\(' “- \ f Y ‘3 '3'" I,‘ O h .- zjf jf’ILI erqw A“C . - .... .-. - .-. - )i. .t J L v. . 1.1'0 J.) .1... . .‘a ., - ‘e r r- . ~.~. > - ~ . v . ye 32120- . J .1 - L7 V5! 0.; a. ... .- - 2 v 7 ». -J‘ln... . <3 9 70.. h‘ ~ i «A -r"- - - .- _ 5+ ' L.’ L ‘J ‘N I r - f. m \ J 1‘ -§ ~ ~ «7 3L jL$J .V , y ' . .A . 7 'Y ... .2 ‘ ‘ » .7 .fi‘, - y - - p. . -. . . .. - . .1!" ‘14 C" u ‘ v." ..V J ‘. -1... -1 k. . : _,_ . _ . ’ ~ - " - r n - "4 ' . .: m.. . 'U H. '1) 1.»- (“.1 1):-) . “*rrarfiv ~ 3””1 cum—W be n1~~d* "rr?* . j 3’" VA...1;I [11" v\. vJ -‘... (J c Jb.‘t_.L-' ‘-'- In. .' “u 1H.) ’; Mm '33:} -‘ 1) mt")! . . _" l’ '7‘ ' ‘ . ,- r~ - . .fi, _-. — — -. 7 ~ -- r ... — 7 g e 99‘ ~ ‘3 »H(‘JJ. d ) C. .11; is c- ~-' ‘0» ”n.- - ' :— —-— fo’t- is 1:- “ "-1?“ ""Hfl‘t' >2 :L'v” '. 1911.? 2’ ». .9 q R v I“ r 'u _. . n a; . .‘aqfut ~.~"-1.‘t .,, - .‘ - -‘ 3 . -. ‘, _' . . y ._ , .4 . .“— is .. L‘- ‘ .. K . L‘ ’ ’3 .i "2.2 .'.' ‘1()’ '- 1’ I v ’v? ‘ - _ ' ~ I.- ,. ' m w.- g—u ~ »‘ - . x .':.~.‘ n. .- \rfi -1; ..-~t-A. -:-r :3 pajama 1 '. f 1.. .. ‘ ‘. . \ .1.“ iv" 91:70 " . . . - ,. ,-~ » > .r -o A - - 4--v . r,- 23 J 3'7. ‘ Ct. "‘31:. .53:- f“:.: A1_T L ‘-' .3‘. .2 1‘ '3; 33-h.“ 'f1:.".’ I". (L: ‘ 1 C‘ ‘7}. . \o" . " 13.‘[).;. '1 -_ j 5 ....“ 5 , ‘ . ;- ,7... ¥ :‘V . ¢ -2 _.‘ -.‘r. ... ‘7 ..,. "’3. -. .~ ~ ~. I71... .1 L35-.5542JF)I.L .C'...» -‘.:..-. ..$.. ..' .C.'.‘_7J..‘.. A .- -v. p a .- , ~. v'. n o , l‘jil-‘ ') it's).!.1 ’1‘) 1‘"). (1’3 L‘,"..' 1‘ :.-‘.;.‘J' ,‘t a A.’."1\L . I. ‘ , 7‘] , _ ' .‘ .J , V, . . .‘ _ ‘ -i.ifi:‘ '. $11.. .L‘-V:U 11.3.1 '- .1. It. 1 i. ,’J& 3.1.- ‘7 , . . , ° ‘ .‘iJ .‘ . "9.1-” if , 1' ’ -.'.{r~ _: ‘ ff Stiff r' ' J .. . . ‘ . - (fl. — . ' I U | ,‘.- i ‘-. .... ~‘ '\ ~. A. "0' _ - .- ... ‘ -Al-- - . . . ‘- D'\’ . o u- v . - - - 5 .e V ‘ ' - ‘ . , - i '3 'v’o ‘ 86 proviruses as the same as that of c—myc. If the provirus and c-myc were oriented in opposite transcriptional directions. then regions to which the LTR and myc5 probes hybridize would be unlinked by Sac I digestion and no cohybridization would have been detected. To further substantiate the conclusion that the LTR-c-myc linkage structure shown in Figure 15A is correct, tumor DNA was doubled-digested with Sac I and Dam HI, and hybridized to the myc5 probe (lanes b in Figure 150), the resulting altered c~myo band(indicated by ) was found to be approximately 500 bp shorter than the band in Figure 150 (lanes a) in all cases. In addition, the fragments in lanes b of Figure 150, in general, did not comigrate with those in lanes b of Figure 15D, when the LTR probe was used as the hybridization probe. The LTR probe uniformly detects a ca. 500 bp fragment(indicated by ). We anticipated this result since Sac I and Ben HI double digestion of the DNA should liberate the 500 bp fragment from which the LTR probe was originally derived. Based on all the criteria discussed above, we conclude that the proviruses have the structure depicted in Figure 15A. This type of analysis was extended to a total of 22 tumor DNA samples. With no exception, all tumor samples displayed digestion patterns similar to the eight representative samples illustrated, suggesting that the diagram in Figure 15A indeed represents the predominant configuration of the CSV proviruses involved in c-myc activation. This conclusion has received additional support Z"). ‘4 (z “- A f" A. V77” u. a"! [.1 T)‘ v I ‘4‘ '3'} .7 nut: . \ C 'Q [‘1 J. ,JL i .\ (L “‘1‘: .... 5 1. ’J ... - b .1 .3313.) e' ’\ I 0. V . ', , ..‘L- .- 1 l f" l 7 3. f3 — a used svm~o " r“ I}??? ‘31;:$' I . '1 l. 3 ‘ ‘0 BIBLE; U0: now - 5 3‘ \. (.‘k. .4 1.3:? .a "("3 ‘4 Elf: % .2' 7" ’ .- «do. J .C C . k 9 W M. "\ .0“ ‘3‘-) 3 I .... L . )0; -' J ‘ .13 4 1'. J’itf ~11 l. i ‘.-. l - J- LGVLiJaIL a 3.. ,a ... I. ~ {a .LA ... 87 from detailed mapping and sequencing of a genomic clone (from tumor 4) carrying the entire activated c-myc gene and the inserted provirus ( Swift et al., in preparation). Knowing that all the proviruses are oriented in the same way as the c—myc gene, we could then use the sizes of the Junction fragments to accurately locate the individual proviral insertion sites. The Sac I-Bam HI Junction fragments (lanes b Figure 150) are especially useful for this purpose, since they are usually smaller than 700 bp and readily resolved in the gel. The data summarized in Figure 16 shows that most of the insertion sites are located within 500 bp immediately 5' to the second exon of c-myc. five of the proviruses reside within the first exon and two are located further upstream. However, none are located in the 5' one third of the first intron. I" - "g .s »‘ , ‘ . -; . -- ‘ -.. ~.- - f - l r . ' -. . _ l - - I.’.\.l Le. 5“~I‘!:‘-”.‘n}p :‘ LV .'-‘\- -. fl _ ...” ‘ .\ It I J ~ A“... ., l." ,’ -.L a .. ~v: ‘51"!2 ‘ - \ )2 z 1: " ' v1 ... 131:1“ ‘ it 1 (3‘ 1:-.‘:.. i. , . ~+ .fi : r‘n’, l.' ‘9 D , -f f‘ . ‘ . --n f. ,— A; f r -1 a . K A e u' A I a. - 4 ‘4! n L I. . V. I 4 I . 0 I .J ' J .- - 4 . \ ’- n g . ~ ' A I 4 ' l I n e a 3' r 1 . .. ‘ 2 J ’ 3 . nil I L‘ I) ‘... k r k I . § II 2 I... e‘ . '.- T ‘ Q ‘- C- (" &:.-"“+ ’ I "v'\"‘ 4,_ f, r ”A, ‘ A‘.‘_. 1:... 5' s . .A. . ..-- ....- tl ...-«a. J - .a‘ILJgJ g- ~ - . .-'J ’ 1 ‘.J I.n.A.¢. \ ' \ c ' ' "'!7\ _~ I '0- o.}'(' . "I‘f ‘ 'f' *u -..»f- ~ I. ..J.» u . (JI v L) '.1 LL) z-‘J'J ~ .1 37.5: -H1Yl~ .T ‘iul )Jll.“ ‘JfIJ - ‘0‘ a o., ‘ 1 a . .__ . " ~fl . - C. - . ry- I:LLJ~ .x. 1.1 ¢.r.. J .)$:t. PHI 9‘3: c. ..- ._ 1.151190 ”7 L-‘DIQt‘: .1: 21"‘:Z'.'f"f.t;.'1.'.'.-'._ _: rim: 21:1,: .107; 9:17 {:1 nevioas'i ”(1:353:31 zirjjw Ls?soc, 915 393;: zerjueanx 95? ?; Saom 75d? ewoae oi «.2 .‘mxu {yawn-9': ed: at 'd awaisinsmmz no '9.er 91: v13 as: none 727:: an: HLnixw sprees dQLUIIVOLT sq. .1; ...i... ‘.;-L Li'ifi' finals. ,'L".a'.-'~.w.<.)st .iYL‘:D'£.!'{;(‘ISI T‘MIJVL-‘J 5.193530; .,( pg 'rv r ‘ '7‘. !._. -e «~f .. . gtu-‘v ,- “T". Q I .j-u’J-tpé- ; ' -. .. 1-1-.1. al.- w.“ w. a... 5.... c r Hfiwuwrflr m.....n vmanumuwo mm mmuwm nofipnmmCa Hmufi>oua >mo onu axonm ampuMav nmmna was .muoadu Amanda anu>o no maven 0>EIO may :« mmuam cofiuummca Hmna>oua >mo no newusnfinumnv loncwufio: ugh .mfl musmfim exon 1 89 0.2 Kb DISCUSSION It is Interesting that the pattern of integration observed for the CSV proviruses is identical to that observed for the ALV proviruses found in the B-lymphomas induced by ALV (Shih et al., 1984). Specifically, most of the ALV proviruses are concentrated in a region 500 bp preceding the second c-myc exon and a few are scattered within the first exon. The 5' one third region of the first intron of c—myc which is devoid of CSV proviruses is also silent for ALV proviral integration. Intuitively, the insertion of a viral promoter between the natural promoter and the coding sequence of the resident gene should render the resident gene under viral control. One would anticipate. in the c-myc case, that the viral insertion sites would be distributed along the entire region between the start of the first and second exon. This is apparently not the case in both CSV and ALV induced B-lymphomas. One possibility is that the nonrandom 90 '1%TAII at 3; :_.;J v- .2 p.11 '0 4' .3“ -" I. ,‘ ... b.1711 ()7 o ..,.x _‘ t1 "5 '1" Cd) "2'::::‘ t h fivt. m I V y i- . ‘ .15. .l ‘—s .... '3‘“: y 4 0 .'-"ij :3 <- I 0. 2? I" ‘i ..A -!' , ‘j 'r "." o¢ .o l- u J ran :‘I—l Y.— . r.. a. e -l ' ~ ‘ .‘v "Jt‘v‘ a J u on .... A... ,f. a- ...... i ‘ 2. V’ C .J “(:79 O @r‘ 'osn 1‘ 1.1. J. ii) is C a- 4 9:1- and 1 1 (tr!- - o‘tl‘I 91 distribution of the proviruses may be a consequence of integration specificity of the viruses. However, given the dissimilarity of ALV and CSV, it is unlikely that such a specifity is based on the primary sequences of the target sites. (The terminal nucleotides, implicated in integration of CSV and ALV are very different and the viral enzymes involved in the cleavage of Junction also have different recognition specificities (Shimotohno et al., 1980;8wanstrom et al., 1981)). Furthermore, the fact that CSV and ALV both have multiple insertion sites in the clustered region also argues against a strict sequence requirement for integration. Though, the local DNA structure and chromatin conformation may have a profound effect on the proviral insertion frequency. As pointed out by Shih et al.(1984), the intron region contains many complementry sequences that may form dyad symmetries. However, computer sequence analysis (Staden 1984;8wift et al., 1985) of the intron does not reveal a correlation between dyad symmetries (Staden 1984;Tinoco et al., 1973) and proviral integration sites. There are two possiblites for the lack of integration in the 5' portion of the first exon. First, it may be that the chromatin in this region is inaccessable to the provirus during integration. Second. perhaps integration in this region may not result in cellular transformation and the formation of a tumor. The first possiblity could be mediated by a lack of specific viral integration recognition sequences in this region of the DNA. However, as mentioned above, sequence specificity during integration is not likely .‘ a ..‘0 "Y ."I I ...- ..«4 bu \J ..I. o 'i -I Al‘)\):u‘, JxJfl. 2.. 4J :J ' \ 4 I ~ O "r ‘+ ‘5 ‘\.' ‘1' l. ... A I)?“ a .m L. I \p p.,’-/': .‘t‘.. . ) .31.:1‘1’.‘ ‘ . I ‘ I Hi. .f. 9‘ - v l f(( .1» 4.4 I'L . c 3 .1 .... .,("_. 92 to be the answer. It is also possible that the chromatin in this region adopts a structural organization, such that the proteins necessary for viral integration are unable to gain access to the host DNA. It may be that there is some DNA sequence at the 3' end of the silent region that affects post-transcriptional processing, mRNA stablity. translation or perhaps all of the above. An example of what might cause translational inhibition is translation initiation codons in the 5' untranslated region of the mRNA. Fewer then 10* of over 200 eukaryotic mRNAs examined have ATGs in the 5' untranslated region (Kozak 1983). Recent reports demonstrate that the presence of ATGs 5'-proximal to the authentic initiation codon results in a dramatic decrease in the amount of protein synthesized (Kozak 1984;Lui et al., 1984). We find four ATGs positioned from 575 to 515 bp 5'-proximal to the second exon of c-myc, that may interfere with the translation of the c-myc gene. This location demarcates the the approximate 3' boundary of the silent region. In this regard, it is interesting that the 5' end of the silent region is bounded by a consensus splice donor site (Mount 1982), presumably used to join the first and second exon of c-myc during post-transciptional processing (Shih et al., 1984). Proviral integrations 5' to this splice donor site would allow the removal of the initiation codons during post-transcriptional processing. ,"I'ff 1” " ‘Y‘J".'.-il.'" (3.1.35. CC‘iI’E 4125 511. L.C’.::"~; 1.?! V3538 1 >.fi i \_ ,y r ‘ r . ' -. a ' - ‘ ‘1‘, ‘ A . "‘1 "2 ‘ a ~ ~. . .' . ‘ - 2 . fume 5". D .a .- - .. w .- \— '5 :l‘ d - n 3' ‘ k-l ’\ 2 C) ‘3': C: F It ;_I a) 7L ‘4‘ pl LD ( «3 {D "‘) ,1 i» (0’0 V ~I 9 \ *‘n . - ' - ~¢ ' . ‘ . ’41't“ f‘lfl 1 ’(.I' ‘ t‘ L) .C..['i ‘."7r‘;l I)",'.".!"‘-l‘rka ‘ e§ ’- p+ . v :fi,fi~’ ._ .A .’~ "a o.A-—« .- —4- ‘ -. ‘L J 1€‘z. ' _ 1‘ .. * -.4....m€h t 1 ..l.‘{ :‘l. t. - ( luv I . v -. ' .J’JLLjLaIi .«i ‘13.“ '. a h.’ 1.):- i‘, ‘ .D"" ‘3 ;-r :w ..~-'; .;3 :3 Ivd;pagi Xfixeh) net; v . V “" _ .‘1 f ' h" v... ‘ ‘1 t c ' T. . ' ' ~ H ‘ .- - fi -‘ 5:!” 3‘.‘. JL‘ v' ‘ i .. _ I :- .ilk.) J 1 ‘.. . , — . . - . 'A . «p, .. ‘J‘ ' fl '| ‘ I a o - o" .' Did. .I ‘ \4 V :.X . .- ..- 4 ,A .. .- -.' —+-.‘-v ._ ----» 113’ -t' 9‘! If ‘U f -‘ 1"..- '. . ‘:"y W . it. 3 L f“. ’“4 'f .3 :2' . . (.1 ‘J‘ (D U :1 tn ‘4 t} ..2. J 1 H (3: H *0 ‘1 L. i v 3 ‘1 L. t o l (n \-s g ‘ I r a a e v .4 ‘ .- 1 - . I ..l ‘ .~ 11'. ' wv" ‘- ' .i.’i "‘ ‘ -3”.;1 - 1 I 1" ‘ r .- Mr‘ [00?" 3' .A r . ,-—. ' .- r f; v :- m ' -.. .- - 3‘ — - b ‘1 (L v e;— - J a» . , ) ‘1 ..J -l .L. .— so a LAJ .4 .o l 0.- (:5: 5 w - 9. - l 1.. II; n W "a (\'N a“ r") ' ‘ ' ‘ .. - ‘11 um; t}... -3 t.‘ as '\. .A‘a L ..' t l 1 .)4( I v‘ " ' ' 0‘ .' \. w < I _._~r{f‘,:jk";l4‘{_) .. .1-.‘ 93 The several possibilities discussed above are not mutually exclusive and more than one factor is likely to be involved in defining the activation scheme. In this regard, it is interesting to note that the situation for c-myc activation in mouse or rat lymphomas induced by murine non-acute retroviruses are rather different. In these instances, the proviruses are exclusively found to be upstream from the first c-myc exon and are arranged in the opposite orientation (Tsichlis et al., 1983;Nusse et al., 1984). Thus, enhancement, rather than promoter insertion appears to be involved in c-myc activation non-acute murine retroviruses. In summary, the data presented in this communication show that despite its completely different origin, CSV uses a mechanism very similar to that of ALV to activate c-myc gene causing B-lymphomagenesis. The majority of CSV proviruses are arranged in a configuration that allows the use of the viral promoter for c-myc transcription, resulting in enhanced expression of a truncated c—myc message with little or no sequences derived from the first exon. V «“1 '- J 0-5 ’Il‘\ JL .5323 no i '- ‘v 1‘ JVfl .I. ‘1')? 1.. .- '5 5 '- {II ”‘- .J .31- 11' J .1 .l. at. ' 2’. ’5‘ V ‘( to .v! .x. ... .1. 'J l 1‘- '4' CHAPTER IV TRANSCRIPTIONAL AND STRUCTURAL ANALYSIS OF AN ACTIVATED C-MYC GENE We reported previously that the CSV provirus integrates near the c-myc locus in CSV-induced chicken B—cell lymphomas (Noori-Daloii et al., 1981). Based on Southern analysis, the majority of the proviruses have large deletions, are located in the first intron of the c-myc locus and oriented in the same transcriptional direction as the c-myc gene (Swift et al., 1985). In order to confirm and extend these findings, we wished to isolate from tumor DNA clones containing the CSV provirus and the perturbed c-myc allele to analyze its structural features by restriction enzyme mapping and DNA sequencing. 94 “ J .Ihfizt '3?)(f MATERIALS AND METHODS induction of Lygphoid Leukosis. Day-old chicks from line 15I5x71(Regional Poultry Research Laboratory) were inoculated and housed as described in Chapter II. DNA Extraction and gggyge Digesiion. The isolation of DNA from tissue and digestion with restriction endonuleases was as described in Chapter II. gypridization and lick-Translation. Conditions for hybridization and nick-translation were as described in Chapter II. The SNV-LTR probe, derived from the SNV proviral clone, was subcloned into the Sac I-Bam HI sites of ponzc. The myc5 and myc3 probes were derived from gel purified Sma I-Sac I and Ole I-Eco RI fragments from a chicken c-myc clone, gift from Dr. T. Robbins. Rs-hzgridiggtion of Filters. The conditions for washing off hybridized probe were the same as described in Chapter II. 95 ei~nemel biodqmyJ_3c noijuubnl klfo”: ‘rnu ’; >1. - -‘ ‘ . .¢_ 1 «.*h 1:) L zanc,1 ha... 3”. ‘u 1.1 ..n PJYCf‘;t;; é- Episwaat‘l 3- 4" -9.” . - ' ‘ A" .' Shorteap-a_smysn3_pns 50:1ee7323 AAQ , . ~ , o- . ‘ -l’ ..' -J -“v i. ,. '-‘ ...2 - , - . - 1i '-Jbi.32£ 5dr ' " ’ .' o no; - pm ' ".71 1.": I ”:1? .E‘CC"." 7 . .41 '1JJU:L..) Ci. 4.231.192??? V v 2 , or ,' I ~ I .- ,..- U ‘ -' "/3 L "i- " 3‘ 3. ..1- '1 *.. l. 14.: L ‘ .ti-‘Jl.J A- 'II.‘.".';(.:‘ 491C} 51.1? m :. . - . .mLLifitfi .f . ifi : Slit .BMLIC :vm~: $93513; -.efietii? 30-noiissibiidyd-sfi - . . '- 3.: an; 31: a... «a elf wisrjniuuyu uAT 96 Construction of a Genomiciiibragy og_1gmgg Tia. A library of tumor 713 genomic DNA was contructed according to methods described by Maniatis et al.(1982). High molecular weight DNA from tumor 713 was prepared (see Chapter II) and partially digested with Mbo I. The DNA was fractionated on a 10-40% sucrose gradient (Maniatis et al., 1982), fragments of 16-22 kb were pooled and ligated into the Dam HI site of phage vector BFlOl. Recombinant molecules were packaged igrvitro and screened for inserts homologous to both myc3 and LTR probes by inrgigg_hybridization (Benton and Davis 1977). DNA Sggggncigg. DNA sequencing was carried out according to the method of Maxam and Gilbert (1980). A subclone of the 5' LTR and the INT region were derived from the 2.0 kb viral Sac-Sac fragment of clone 713 after digestion with Sam BI and ligation to Bam—Sac digested pDH24. A subclone of the 3' LTR and the 3' viral Junction region were derived from the 2.2 kb Sac-Sac viral—myc Junction fragment of clone 713 after digestion with Ham HI and ligation to Ban-Sac digested pDHZt. The subcloned DNAs were digested with either Eco RI, this site is in pDH24 adJacent to the Sac I site, or Bam HI, treated with calf intestinal phosphatase, end labeled by T4 polynucleotide kinase and digested with either Bam HI or Sac I. The fragments were gel isolated and sequenced. Southern blag. As described in Chapter II. :DUIIaJOO o i 1 is “big ‘3’: (.I trJ-' gr? :7.) I .. . 7 v«A\-t .:‘| V,‘ f" - “\L ah r: l .‘ ’ ,. .... silk s J \A uniismii V ’3 I" _.| . 1": '9’. E‘\; 'r Y9).- .3" fl t n...- 4.5 :3 5" ‘1... y?‘- I \ {m a .’A adi‘i‘. J. ”‘0 g I - u.-; | m J:- t 93810 (:4 a ;\n. ‘)£?i$ nus D -Z~v -ra-‘ I ;_. 97 EA Igglgion - As described in Chapter II. Northern biot. RNA blot analysis was performed on poly(A) selected RNA (Aviv and Leder 1972). Samples and DNA markers were denatured for 25' at 60°C in 25mM mops pH 7.0/lmm BDTA/2.2M formaldehyde/50$ formamide. The RNA samples and markers were fractionated by electrophoresis in a 1.5% agarose gel with 2.2 M formaldehyde (Maniatis et al., 1982). Conditions for transfer and hybridization were similar to those used for DNA, except hybridization was carried out at 45°C and washing was at 55°C. ”(it '. ‘ — "! '.- i *1 .. V- A I A 14+»- ‘. J ...» v C r . ..,e l s a :- v , C . v ‘ ' u r _ .. 4 v o . _ 4.... r C I {I .. y m. 7', rl. A I ,:,, - ... 14.. . . . b. r _ I a s I ....f f .../s ‘.O C .. ..J q RESULTS We have previously used Eco RI, a restriction enzyme which cleaves neither the CSV provirus nor the c—myc exons, to screen for CSV DNA insertion near the c-myc locus (Noori-Daloii et al., 1981). Figure 17 shows the Eco RI digestion analysis of three representive tumor DNA samples and one non-neoplastic control(C) hybridized with v-myc probe. In all lanes, including the control lane, a 13.5 kb fragment corresponding to the normal allele is seen. However, in the tumor lanes is an additional band, of varying size, but larger than the normal c-myc band. Since Eco RI does not cleave in the CSV provirus it is unlikely that the altered c-myc bands of varying mobilities can be attributed to differences in proviral insertion sites; rather, they are likely consequences of proviral or cellular DNA deletions. The c-myc band in tumor 713(Figure 17, lane 1) is only 16 kb, implying there is a deletion of ca. 6 kb of viral or cellular sequences. 98 ._.\. \. Cl: >5 ’\ .. V.‘ v.’ v " - u¥ gilfl a .,..' O I .. \ r .(4 J 1“ v n.- I o I \'F . .L 033 b - ‘ )g‘ s . I ‘P‘ ..J . . s .o. :3 (i . Irw o .l h _ v at I L e rl ' . ,Q.* r . . ...U .7. .. r... ...... at... $1.... .....dc .n. ....H J. rwfi. $3”... .. <.nccncmmn 408.”... H m3 ..4 .. Effiw ..r .... ... my. 1.x: .....Quimgnfi m . ...... 4 . .... ., w o u \r . rl¢ v I. . n. u I - L . .. h a OM \ ... .J. m - n . . . K I, I. v Ox 0 ’ a' I» .r \k p. m C ...) rm .... ...,. h.. ..... mun. 0...... an. upmruu0fl {udu “is C. 1". u) .. 99 .Awmma ..Hm um mcwmmv mmfionma>alm nexufinu nonuo ca conunomup handcu>mmm cocoaoconn m .maaoo scams cu oHoHHM chain Hmfiuo: wsu mcw>unmo oaomoaomno onu mo mmoH flawuconwmmna any no Hannah any a" menu .>Hnmadmumm .onnu ma umnu>ou any .Au mommy .u.o. momma maom cw "swamped mossy Gnu an mammmwu amanoc meow mo mocmmmun any Ou «no means Uduaomdm noes» env cmnu mucous“ omoa ohm momma u>alu Hammad may .>adm5ma .co«uommca >mm no menu cmxoano m sown ma onmcmfi Howucoo one .onoum o>el> cmxoano may Ou canumwfipwnn>m .co«umm0au HM oou >9 pwwwdwcm mm maonmE>H HHwUIm a“ mama o>alo coxofino may no mnswonuvm .nw unseen - U I map 0 Fl: 2. 8“. IIL or?) 2 8225?--- motes: £883 ..8 8m: ¢u¢ .poumofipca mum pawns“ env ou ucuomnpm mama unnamH unufim cam puma one .>mo uo m.maq any ucowonmmn mmxon ammo use .nmeHnu no mcoxm U>Elu manna any vammonmom moxon venoumntmmomu one .mmnoum >mm can o>alo no moccaunmm spat mam>amcm uofln awmnuflom >9 Omfiufiucmpw 0mm: >mo no o>alo ow muouoHoaon mocmsvwm u:«c«m»:oo mucoaumum .m«~o« cuxuunu no manna any Scan 420 uOBSu nu“: pmuoasumcou mm: umnu unmunfifl madam ucmchEOUmn m scum somewano one: munoun man can no>a span cu downpwmn>n was» mocoHo unaaooaoz .mfip ocean manna mo awe mam>moao ommmaosQOpco cofiuoHnummm .mH magmas 103 2.96 o»... .0 32.265 3.2.5 32266 >mo 3.5 >8 [HIE £3.56 ALT. Ema: a: 330.0 om Em 5—4 1111“4‘4 1“ 104 thereby defining the 5' Junction fragment. The 2 kb band represents the internal portion of the provirus and is only detected by LTR probe. The 6.3 kb fragment is only detected by myc2 probe, defining the 3' Junction fragment. Sac I digestion yields two fragments detectable by LTR; the 2 kb internal fragment and the 1.65 kb 3' Junction fragment which can be detected by both the myc2 and the LTR probe. This and other data are consistent with the physical map shown in Figure 18. Sequencing analysis of 713 clone. The mapping data described above suggests that the provirus has a large internal deletion, but retains two intact LTR's. The latter finding is in contrast to the structures of several ALV provirus clones isolated from chicken B-lymphomas, where the deletion usually extends to or beyond the 5' LTR (Payne et al., 1982;Pachl et al., 1963). To ascertain the intactness of both LTR's and the nature of the large internal deletion, we have determined the DNA sequence of the relevant portions of the proviral clone. We have divided our sequencing results into four regions: 5' LTR, 5V (5' viral sequence), 3V (3' viral sequence), and 3' LTR. Using the appropriate subclones derived from the 5' and 3' LTR's. we have determined the entire sequence of the 3' LTR and all but the first seven nucleotides of the 5' LTR. The data shows that the two LTR's are identical to each other. The 3' LTR is also (\ -3 o . :4 . ... .- .t . .h u. I . 9.75793? .1 o. I I .‘l L-( f1 .. .. .u . J. ..- . _ r I. V .f* f. . _ . 6 . . VI A a . a r . 5-4 act -" Tr‘x ‘ 7.. use ~‘JAJ - C [3.15 CI 105 identical to a CSV provirus LTR isolated from the DNA of a producer cell line(data not shown). This strongly suggests that the 713 provirus indeed contains two intact and potentially transcriptionally active LTRs. The CSV LTR sequence (Figure 19) is 510 bp long. The 03 region is ca. 334 bp long, the terminal repeat region(R) is 76 bp and the U5 region is ca. 100 bp, based on a comparison of the 03, R and U5 regions to the SNV LTR (Shimotohno et al., 1980). The CSV LTR has the same regulatory features that are characteristic of most retrovirus LTR's (Varmus 1983). A CCAT box is present at a position 75 bp upstream of the RNA cap site and 23 bp upstream of the cap site is a TATA box. The signal sequence usually associated with eukaryotic polyadenylation, AATAAA, is located 24 bp upstream of the R-U5 Junction. A comparison of the published sequence of the SNV LTR (Shimotohno et al., 1980) to the sequence of the CSV LTR reveals several interesting features. A variability in the size of the U3 region of the viral LTRs of different recombinant clones of SNV provirus has been reported (Shimotohno and Temin 1962). In each case a deletion of one of two duplication elements consisting of a 46 bp and 26 bp unit, each is bounded by smaller penta or hexa-nucleotide repeats is observed to account for the variation. In the CSV clones analyzed here, only one copy of each repeat is present. While the 46 bp repeat in CSV is almost identical to that of SNV, the sequences of the 26 bp repeat diverge a r. .o . “l... a. . a __ x .4. 1 . '0 "’11". l. 1 V ."c: t: (J '5 35.; ‘ litlj. 2r. [-U-‘C; _. .. r I . t. ..a -\ m r“ I- '4 -\ - k: ... {... A A O o v (T ,4 f a n" "r“. . $3.- . -| ... . . .. .n-.....r-. ... 5.4 ...... .. .‘u \f - ...: 4 i .I_- ~ ' \l\ .I 9‘ cl ‘r. ... I u n \l. 1‘. I J U D I. ‘ .U .1 |\ v 1; ...Nu .wh~fl\wfiu ‘40-!mele It. - KPmbU¥1 lb bllr ..fu. II. 1 h! .0 .k‘ .r I. . q .I.. .L... ...” . o s Q. I .A . ¢ 4 I: .u k... ... .usJ. Uhlhw ‘.s ...; a C. ' U-r a u. -nr’ 6 . u .a .o . ~. J u 0“ bmuhuhuncmo a ..ibcsumn m (mm A Q.‘ .4 . . a A. . u . O A .5. r I at! fi\.4,... on .04.. I . .. 7.9....“1. A...) skin». ('I' '11.} (i 106 ..Ivmcmna>n >3 amumonoan mum acoHuuHua .uoyuua nmaoum may paw unufiuavmnsm ma A..00uuom a >zm 0cm >mo cmmzumn amenucooaw cum moocwnvmm «za esp when: ..uxou mmo . mumvuwfl Hwaummu ca Ohm noocoavou >uoua~amun acmufiuficmnm ucm mumumun Hawam .>2m cam >mo no mmaq may CH mmocmavmm wvfiuooflosc may no nomanwmsoo .mH mpsmfim 107 ma madman 0.00.0...I....0...‘..............C...’0.0mOICCOIO....0 uumumwouuuoovuuavuuumooyummyunannouwumualuuuuuummmuum» H: awn nonooooooooooooooooooooooocoo-coo...coco-oooooooooofluoococo-ooooloooooooooooooo commuommuumu muumouumuuuummmmmwmmmuumouuuuwumouoouwumuouuouuuuuou04<¢94¢umuuumm malm HHH ccfim ...OO...OOOI...OODOvouIOOOOOOOOOODOOIOOOOOOOOOOOOOOOOOOOIOO.“IOIDOOOOOOOOOOI0.0 mopuwuwooomuouuuoaullluuuanyuncannyouuuoomouuuumUHOUuuouunwouummmooo<molmD H 0mm ‘$ L» t . - ‘...\ (v .1 ov . . . n \l v~ I ' { . .y o o x) fl.)I \ ...m m a)”; II ~-I.I(\!. 'I’ § . . . . o . o I a c “J- .L .. . 5"! f..» - Ivy 5 .Il . .1- - .. .Kr . U. ,(vr.v.»..:u C . . l O . I o I I I I 7 -..»: I. r. ‘5 5. l‘ . OJ ,\"\, . 1qu . .431. u I n I I a . u a o \AIV‘AIr 3 D .II! 1 .u.L»..H..L x\ £..r. 0.! J Q J a . . H f ,Apl- ..« . .. ._ . . w . . . . .l I -: l t all i I .‘ \ (.l‘ll‘ fr ‘IF \I )0}. .. ‘ . . ......Uk .5; m.fr.\c...\l.Vt\. ./ v .7 3 . ...: Tax . \| .‘a .44.‘ ...V ... ..w )1 ‘ l o 5 fickglv ‘ .cm.’ - ~ . . x .w . I ‘ O r . ‘ , . 1' .w ‘ v y . l . . . o o . u 0 n o I O O I u o “J p .Ib Li IO \I l u II.\ I. . :\Y. . ~ Uklx .‘.( .J v.21...» I , o .- u . a o O o o . . . . ‘. . o . A» . .u L... Q 9 4 . § I ‘ s to . ‘ x z» . _ . . 0.! 0 .\..ol o p u . . r on x. 37. ‘yw ... t(..v.! ....l). - -.o ...: .1 .4 w. .\ 1!.” .1. .al \ rt ...vl... C . A I J I I I U I ' U . I . r . s 3 , , O'»Il\ I o C .. I! i z .....m D I I . V . ‘ -. H. ._ 4. In. K . O b . . . O O O .. ‘. .3. h w) . . U . I ' .. ... . 1-; ¢\ . Lv D & ~ I I 108 significantly. In fact, it accounts for 40% of the divergent sequences between the CSV and SNV LTRs, not counting deletions. Although the functions of the 46 and 26 bp repeats are not clear, they map in to the general area where retroviral enhancer sequences usually reside (Dhar et al., 1980;8chwartz et al.. 1983;Hampe et al., 1983). The 72 bp repeat of Mo-MSV is in a similar location to the SNV and CSV repeats. Since the two repeats, 46 and 26 bp, add up to 72 and they are in a region where viral enhancers have been localized, a possible analogy might be made to the Moloney murine sarcoma virus (Dhar et al., 1980) which contains two 72 bp repeats that can act as a transcriptional enhancer. The restriction map of the 713 provirus already suggests that the deletion break point probably lies very close to the 5' end, since the 5' Sac I and Sal I sites are both missing in the clone. Sequence analysis reveals that the breakpoint is only 18 nucleotides away from the 5' LTR(data not shown). The 18 nucleotides correspond to the tRNApro primer binding site(PBS), but the sequences after that are completely different from the published leader and gag sequences of SNV (O'Rear and Temin 1982). We presume this stretch of sequences belongs to the pol or env genes, however, there is no available sequencing data from either CSV or related REV-A and SNV to confirm this. Nevertheless, it is clear that deletion occurs rather early, since the leader sequence, the packaging signal and the splice donor site for env gene are all lost, making this defective an} n: .;w\«;n¢ ;:‘u; . I! run fIffL LC tr: ’/}3 Vv. , '. «t‘ Ledw J” 83 ;uu;~3 ILBQQJJLL 1r? f 057 -C HQOITENK? ~ a)” -A .zng-‘sier ExiffunC a . . nix? ' ‘ 1 ting"? ‘ 1 :L', (..e‘: ‘4'f?~ 1: 71';'-aq-3‘I CC; : ‘hflflg :tigsu VilflUB. escnabpsz fiscatnnw }:T:v01.‘" - 1 oil." (H.561 . .ls 7:3 31.554311." BEL . .15 rs :: 'Is-i_z£;')«;:t.IH-3E . .155 1r an? 53: a3 mcltbgvi fimiimxv 5 at at Kém-rfl 10 '+ g'i qu ? « . (3');; -gr{ -3 ; flfiléé rfia: .'1 fr; it::: i at. ‘ %:f.: ‘31.;1 .1: .:; e:,...,..¢§ -{ 1L1 "£1: :VFFB '~ 2' ..5.‘ » ‘. ' .'- -' HUI “-1" I}. ‘- 1,: "‘5- .-‘ ' I? ‘ '9 “cf «I 4, m f1.,‘;! '12. ' 5'). 7.1-, 2313i 3 2 w ,- - i‘L . h;"s -..p .u?t L: *9 zrr' .J ' H. - .uia ~ Wm . :¢.f% 44J- , s ‘ *.; . Tnfif J a; 1 . QT ‘4 r': r): . ~ 1"? lo TWJL 4017:.JZT“GT ¢wii .,1¢ 31:: vzdsdozc Ixch A”: . u«"s.~n 9r“ ion} a:~~;3-a tus :3332 I i£¢ £5: 1 1.; . ed? n:r:: .mns a 517 07 s:c;: f1.32;: 1*: :55)V"i“9 :2 :.?:g: +.£:£a ‘11)il‘iilg“v ‘4 ‘.e I > (3.7:! {I t $311; .2". at .1 ,(1*3 ’8 emf maxi VhWI erf‘ : . bi vino n1 5n:oq:n;id sjj . M1, :' . .... _- . ‘ . . ,» ‘ .-~‘ , J. 5 .' - t‘ 1’ "(l1 .3; HHJ va‘fl 1(‘J £1t’é‘JA 1132*; . v1.1 " ' t . (llNUut'Z JEJII {:ojf)D}H.u . . .- , . -, :39; ‘1 1-11'1‘3':;‘-.1'-: xx?" '.'3.--. {..z'lrj-‘a: a ;;-£1LIJ.'I'C '19:..."30' -.,« “H8 venbsf "Mdeiionq 95? mod! fnéflaizib §i5“9:_'u at» YER} w 22*? . (333's. "1 (ins?! huh : 2'13"" ii'i‘ii-i is: 1.?»‘33114'17 ~33 3.6.1 .ssnep "n; 25 log an? of infiniec esonsrfur in fir*w .- ' .. ; ‘ Marti :5'!f...‘-".) ;;;;:..3:’I-af.'§)€a whiz-1i ;_:~'~'v‘;:5 on "a: “"3011"? . "ii:\.'-.'.—.S~\,n-.7 cue;W{319V5H .aiat mtiinoo 5: 9%: has A-Van h97s ~f 7: £= 2&7 a 1% .1ifise Tqufibi Brunt» an ‘1fao 1”“. .qio c: f: TUJCE ““lL w.f ti: 5 ' ‘ a'zuq 9d? . ojshssa warps: 2"; I Tat-4;: .- '7‘.‘ {:r" ; €1.32 ‘ 130:. L ‘Q -- ‘3'»: ”HETI'CY " . . ‘ 109 geneome incapable of synthesizing properly processed and packagable transcripts. Interestingly, a deletion that begins in approximately the same place was observed in an ALV provirus integrated upstream from c-myc (Westway et al., 1984). The 3'V sequences match closely with those in the corresponding region of the SNV DNA. It represents the carboxyl terminus of the env gene and the region between env and the 3' LTR. The overall homology in this region between CSV and SNV is ca. 95%. However, only 180 bp is available for comparison from the literature. The 5' viral sequencing data suggests that the 113 provirus carries a large deletion and is likely to contain only a portion of the env sequences. Hybridization to cloned SNV DNA with a radio-labelled DNA fragment corresponding to the internal 2 kb sequence of the 713 provirus confirms that only the env sequences are present. Expression ofgproviral and c-myc sequences in tumor 713. Having obtained the structural information about the perturbed c-myc gene, we wished to examine the mode of its activation. The RNA expression of c—myc and viral related sequence were examined by northern blot hybridization using myc3, LTR, and INT( the internal viral region of 713, Figure 20). If the CSV provirus activates c-myc in a manner similar to ALV provirus, then we would predict the presence of a 2.3 kb transcript which initiates in the 3' LTR and contains the two c-myc exons (Hayward et al.. 1981). We observe two myc transcripts in lane 1 (2.3 and 2.0 kb). I... I h 1“] v..- '- . LIZ-'5 ‘3! 9;.) ' I) '3' ”I 1’1 c1. - 4 "w 3 ..J “H. t‘v"",-.-~ )J.‘Jn’ \ A“ & C. -.H- F .4 :\7."" "."N \4 PI 11 T '5‘! 3L: '1". ‘i‘ ....k (L. r \J 'J: 'c J... \ .‘a and. r." J l RX. '1vs I 3.1 J. . 0" L I C. :1 E".- V '\r'H 'LV .rh v1 2.2 .0 ‘+ ereg on '3 *creu.‘.c+ 'Li A NI 1") O P - \- }.. T .3 . o" l .2 LI JJOLTEO I a w LOLu yeast 1 LI 6;: If: i'} 0% {Vt-:7? V. 9 (at: .f 69 (-L‘ 40; 5 110 .azH Augean new man “masses umoss Auuwfi umwnonm cu ouwficwun>3109 no ovwfipaun>n 660 showman onOHaHHooouua: ou vaguenecwuu mm: «zm .mo>£monmau0u 2 N.N Sufi: snowman um.” a“ camouonmouuomao Heuacowauon >9 oeumco«uomhu no: szm oouomaom AHoa no u: a .mHs noes» noun 42m souooaom AHod no uofln cumnuuoz .ow shaman r.- E. x: 8?. m: SEE so: II ' .y. . . . . 1 L. L (A I. y r. .. .. 7“ .. .. .. 7... .. 7. . . — . r...‘ . «.4 7; V- OJ .... .s .. u a L _ ..Oa . w; VJ r # u~.h .. ... .I‘ f. . , . a. . .L V. ..t \ ... .... A. .v. 3. C . . T. ..L v .1 .... c ) . L .. . .. .-. .HI I: . _ ‘1 v. ..., . . .. .l- A .II 7 a I « v\. . OJ ,.. I. I. . r J . etc . ..m |. . ..rL . ... a _ Q a.‘ a . ... y 1 .. a .. r . ) 1 ./ ... . p F. n . . e a . ... , "A "TC’CfiO .L‘Ti:'11' I 25:.V I 8 Co . . p‘ 7 a. v ‘ . ..c .' .L‘.‘ 9 3 '1) 8' ~ '0 .1 \fi(' A l -' v—. 5'-‘—‘ .' I‘- .‘u‘L‘C r . A L- . n.’ .. o '1’}? f1 ‘ 1 ~ .3 ‘ a . . p... .f. u n . . u . .. A . . u _ v . VI; r. 5: '- -c -o .94» . Duh. (_.(“ 1' K, ..L ‘8' r'-;.qna- _ fluid} -2: 9 .:‘. 1 6.2"" .g- I. \n .'.‘ 3-- 4b (L; J'Tri :0 .... _, ”J ..p' BEE ’J."I)I;OL¢I' 113 Payne et al.(1982) for the case of ALV integration downstream of the c-myc gene and very common in the MMTV integration near the int-1 region (Nusse et al., 1983,1984). Since the 5' LTR is identical to the 3' LTR and the 3' LTR is transcriptionally active, we would expect an abberrant viral transcript or transcripts initiated at the 5' LTR. However, when the northern blot was hybridized to probe INT, a probe which spans the internal region of the 713 provirus, there is no detectable viral transcript carrying the internal sequences, indicating either the transcripts are not stable, abberrant termination, possibly as a result of the deletion, or some mechanism of surppression of the transcriptional potential of the 5' LTR. Due to the scarcity of the intact RNA samples, more detailed characterization to explore the nature of these two messages could not be accomplished. Nevertheless, it is evident that the viral genes are not present in the final transcripts and there is one c-myc message generated that is consistent with the promotor-insertion mode of oncogene activation. I L i ii 0 A t. . is Z i'.0 . “-4 or» I. e. ' ? T: if Or. .v ‘7 i . 0‘. A {...}. p L i .. $1- .1; .’I 5!. r \ ... \ .,' '9 0.; . A... . l ‘4 s r ‘h I V . ( ‘C 1 ..4 ‘. x . l '. so: ‘ I ,. . . I a lJ cl: . ,.. \ - o A t . n l . . 1' ( . "..‘N .-A.e L L - ~-.- .- I)! DISCUSSION It has been observed that c-myc activation, by the insertion of avian leukosis virus, is often accompanied by deletion of one of the two LTRs (Neel et al., 1982;Payne et al., 1982:Fung et al., 1982,1984). One suggestion for the observed high frequency of LTR deletion is that transcription from the 5' LTR would interfere with the amount of transcription from the 3' LTR. Cullen et al.(1984) have demonstrated that early after transfection of quail cells(QCi-a) with DNA containing a provirus-like structure and a preproinsulin II gene linked to the 3' LTR, i.e., 5' LTR-env-a' LTR-preproinsulin II, the transcriptionally active 5' LTR surppressed the transcription of the downstream preproinsulin II gene. They also observed that deletion of the 5' LTR or insertion of a transcriptional terminator from SV 40 Just downstream of the 5' LTR increased transcription of the preproinsulin II gene 5—fold. 114 {JEE'E‘Q' C; I | ". 9?”. 7id1 Dav ‘\ \ mu "N v; -4+ 5. .r; Hi) .. .1 m D '5 “H“; 3 5 A ”€35 ?‘\ 1‘..: F- IL I .3 .1. It} ERLOZU7ZJ“n v .1 noziuiif y“ s kl so A . .. o I ‘ ’4‘ .rl‘ I f’f"a7l" ca-v-\.‘ a) I ..I; T v. a 115 It might be expected that the presence of the 5' LTR in the 713 provirus would suppress transcription from the 3' LTR. One possiblity that could explain both the unsuppressed trancriptional activity of the 3' LTR and the unobserved viral transcript(s) is the presence of a eukaryotic transcriptional termination signal near the 5' LTR/5' viral Junction. In this case, the situation would be analogous to the results observed by Cullen et al.(1984) when the SV 40 early termination region was placed near the 5' LTR Junction. We have examined the 5' viral junction region for sequence homologies to termination signals found in Ad2 virus, SV 40, drosophila, yeast and phage (Hay et a1, 1982;Maderious and Chen-Xiang 1984;Henikoff et al., 1983;Hatfield et al., 1983). Though we do not find any sequence similarities, there could still be sequences present in this region that attenuate or terminate transcription. It is possible that the promotor in the 5' LTR is active in initiating transcription of the internal viral region, but during post-transcriptional processing the internal region is spliced out of the transcript using the concensus splice donor site (Mount 1982) located 195 bp downstream from the 5' LTR—PBS junction. However, this would still leave 231 bp of homologous sequence in the spliced transcript, a sufficient length to be able to detect the viral transcript with the INT probe. kl - ‘h' 'Jd-i'l l 4 t. tfi'. 1'. '4 ‘0 |\ .‘a. 7.1" ’9 ~‘.cl.~.b f D 333.". ' ‘Q .t. v-‘. -s 4- .1.- 1'» .-.i. 1' nth ‘ga-I ’5. Jill. ‘ -. ...". “s- “at 116 An alternate possiblity is suggested by the results of Emerman and Temin(1984). They have shown that suppression of transcription of two proximal promotors does not depend on the relative position of the two promotors, but on which promotor is transcriptionally active. Using a retrovirus vector with two dominant selectable markers, i.e., 5' LTR-tk-promotor-neo-S' LTR, they have shown that suppression of expression is dependent on which gene is under selective pressure. They find suppression of the 3' promotor when selection is for the tk gene, consistent with promotor interference. However, selection for the neo gene results in suppression of tk expression by the 5' promotor. In this case. inhibition of expression cannot be attributed to promotor interference. The authors hypothesize a model in which transcription from one promotor causes a change in the chromatin structure of the surrounding DNA so that transcription from a nearby promotor will be inhibited. The activated c-myc gene could be considered a gene under selective pressure, since its consitutive expression may be required to maintain a transformed phenotype. Analogous to the results of Emerman and Temin, the transcriptional activity of the 3' LTR and the c-myc gene would result in the suppression of the viral transcript(s) from the 5' LTR. It might be possible to test this proposition by transfecting the 713 clone into an appropriate cell where the expression of c—myc is no longer required. “Riff. ‘4'.. v i 5.. a .. I») '...’ u: f ‘t‘. ";'-“ 4‘. ». «)3 -- v .1) e I 5 .- ‘J'f :‘Tfi J‘s- .u .4 5. 1 . o .. ...! .w o O .... 0 ~ L a '1 C2 w .1 .1. r... . . ...... u... ..L a. "f 1) C u s . (V . II C.» It ..o . n . ) rC ...l. t’ \04 ... .r. ...) I!“ . fl (a ..L ‘ (I. G I a. a. 9. V: L, ..I. u. .IL : ... . \J a IL , I. u v. \1 . . a I. f .0. 'L a t .. ’- IJ . p \a J. . ..\ . r... J I . 3.. L. r e . t . ... l5 C i - 1" L919 “J (1'35. (TO 7 "L‘.. passxq 5v: .1 6.." .1. A “.:| 4 ‘."3ek -1 {:1 VA. .' I r); I '.'1 £1 '0 .«R‘. i 1 -. L1 ,‘ I . 78"?"- ".‘L‘ i.. . ’.“."T' ‘ .... P. .3 . l . o 8 n .8 w... 9 4’ I (.1 1‘ D-r . 9s- ‘ .- hf - 4 F. n01? noitsxznr i :5 .. Calf-.2) 1.; I‘ -1 “- -1' 0:51.31. If a. - =33; n n- Inna: DST C37 '1 3.1.7 :1 .. 38 me: In H I; ._, x—. 31 Dim l’ 1". Gd 3 as ‘9 T‘IIC“ a.; 0.75}: {lb -o~qa5 ‘ . \9 e -. ..., l-q.‘ :Ui '7 . "J‘A ... ‘ A ..c. 117 Several recent observations suggest that the 03 region of viral LTRs may determine the oncogenic potential of a retrovirus by conferring the capacitiy to replicate in the appropriate target cell. Murine viruses capable of inducing T-cell lymphomas replicate in the thymus, but non-leukemogenic viruses do not (Cloyd 1983;0'Donnell et al., 1983;Celander and Haseltine 1984). In addition, the capacity of Friend leukemia virus and Moloney leukemia virus to induce erythroid or lymphoid neoplasia, repectively, is probably determined by 03 sequences in the viral LTR (Chatis et al., 1984). It has also been demonstrated by Robinson et al.(1982) that the RAV-O and RAV-i strains of avian leukosis virus are almost indentical in DNA sequence, except for the 03 region which is highly divergent, however RAV-O appears to be non-oncogenic in an avian host. In contrast, RAV-l can induce B-cell lymphoma and erythroblastosis.(Fung et al., 1982,1984). The divergence observed between the 03 region of CSV and SNV LTRs is intriguing in light of the fact that CSV and SNV have different oncogenic capacities (R.L. Witter. personal communication). SNV is approximately 3 times more potent in inducing bursal lymphoma in chicken line 1515x71 than CSV and has greater than 3 times the capacity to induce non-bural lymphomas(thymic lymphosarcomas) in chicken line 6 Therefore, it is 3' possible that the differences observed in the oncogenic capacity of SNV and CSV is related to the variation observed in the U3 region. .gyr‘ J .L rt .-. i. x; .‘I ~ . c0 1 4 3 ":i 340:: I ‘ I p C. ‘a 6 _ 9 V . io . ... . _ .7. o . .I‘. —.I 1 1.. ru- 4! v)». .w. o.‘ . f. ‘ ... .A. h . It . ...‘ Ix ol- ‘ . i, _ .. .1. n .. . .l . ,.._ (Q i \ u . . r .‘u . .I. I '— I! . v . L , _',§ .. i} 4: r. — _ ‘ .i x . am .1 . y . .\ o‘ u A -, ‘ .¢ A .. .A . v i .. — . ... .4 t _ J n. I . . a ), , I 6. 13:75 ‘3 if 2‘ ‘TJ T1 w " I. 5" a, ',.J ,-_ ‘5 L hr "4 , ‘t 8‘ A L 4 o.‘ ’I“ , -..3tl' "J: -_ ‘d 1. 1. (A ... :J. {F I; L ..- ’4 -“ C. V. ‘ n LITERATURE CITED Abrams, H.D., Rohrschneider, C.R., and Eisenman, R.N. (1982). Nuclear location of the punative transforming protein of avian myelocytomatosis virus. Cell 29, 427—439. Adams, J.M., Gerondakis, 8., Webb, F., Mitchell, 3., Bernard, 0., and Cory, S. (1982). Transcriptionally active DNA region that rearranges frequently in murine lymphoid tumors. Proc. Natl. Acad. Sci. 70, 6966-6970. Alitalo, K., Ramsey, 6., Bishop, J.M., Ohlsson-Pfeifer, S., Colby, W.W., and Levinson, A.D. (1983a). Identification of nuclear proteins encoded by viral and cellular myc oncogenes. Nature 306, 274-277. Alitalo, K., Schwab, M., Lin, C.C., Varmus, H.F., and Bishop, J.M. (1983b). Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells of a human colon carcinoma. Proc. Natl. Acad. Sci. 80, 1707-1711. Andersen, P.R., Devare, 3.6., Tronick, S.R., Ellis, R.W., Aaronson, S.A., and Scolnick, E.M. (1981). Generation of BALB-MuSV and Ha-MuSV by type C virus transduction of homologous transforming genes from different species. Cell 26, 129-134. Augereau, P., and B. Wasylyk. (1984). The MLV and SV40 enhancers have a similar pattern of transcriptional activation. Nucl. Acids Res. 12, 8801-8818. Aviv, H., and Leder, P. (1972). Purification of biologically active globin messenger RNA by chromotography on oligothymidylic acid-cellulose. Proc. Natl. Acad. Sci. 69, 1408-1412. Bagust, T.J., T.M. Grimes and N. Ratnamohan. (1981). 118 «.... O "I :3 t.) [V is 7..) 9:,‘4. a.“ _ -. -55: I f. .- J'” 0“ 'r ”a; 9-110 t-' "S 5159 t1 f.’ o S— ‘ . r. T. ,2. -' '\ .4 \JJ.“JA"~ -4 ‘.J v . c" J..<. LC: ’-'I‘{ -‘f. "I; III :3 a CH: ‘1 l .7571) .2 A "If. ' J": . 30".:1 'Iilr. ..‘. . 1 ‘. an :1; 'I ' .44 ’ \a' «'7’. I 8 IeJ" \ a ‘p .. I GNU“ o L T :3?! IT: A '1) 'f .‘V L'. . \ - vvr rr .-- ‘ ~...-~/ ...‘oh .353 I. C» .VC .1 1 L1 am ”(V t‘ ‘- . “ Hui-’33“. . J J Iii" ..L. 1 2 ”HF t . vl ) . AL 1 “1'- 193.751. ’0 0. V. .. . 3:! 1' .5. .— p ) U3 or .."I‘ A ‘7 \v a. i. a " 3;‘._'x‘i .7 c ~"~ .2 EELS; 3: '3‘} 119 Experimental infection of chickens with an australian strain of reticuloendotheliosis virus 3. persistent infection and transmission by the adult hen. Avian Pathol. 10, 375-385. Banerji, 3., Olson, L., and Schaffner, W. (1983). A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33, 729-740. Bauer, 6., and Temin, H.M. (1980). Radioimmunological comparison of the DNA polymerases of avian retroviruses. J. Virol. 33, 1046-1057. Beard, J.W. (1980). In Viral Oncology. G. Klein, ed. (New York: Raven Press),pp. 55-87. Benoist, 0., and Chambon, P. (1981). In vivo sequence requirements of the SV40 early promoter region. Nature 290, 304. Benton, W.D., and Davis, R.W. (1977). Screening gt recombinant clones by hybridization to single plaques in situ. Science 196, 180-182. Bergmann, 0.8., Souza, L.M., and Baluda, M.A. (1981). Vertebrate DNAs contain nucleotide sequences related to the transforming gene of avian myeloblastosis virus. J.V. 40, 450-455. Betsholtz, C., Westermark, B., Bk, 8., and Heldin, C.H. (1986). Coexpression of a PDGF-like growth factor and PDGF receptors in a human osteosarcoma cell line: implications for autocrine receptor activation. Cell 39, 447-457. Bishop, J.M., and Varmus, H. (1982). In RNA Tumor Viruses, eds. Weiss, R.A., Teich, N.M., Varmus, H.E., and Coffin, J.M., (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) pp. 999-1108. Bishop, J.M. (1983). Cellular oncogenes and retroviruses. Ann. Rev. Biochem. 52, 301-354. Bittner, 3.3. (1936). Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 84, 162. Blair, D.G., McClements, W.L., Oskarsson, M.K., Fischinger, P.J., and Vande Woude, G.F. (1980). Biological activity of cloned moloney sarcoma virus DNA: Terminally redundant sequences may enhance transformation efficiency. Proc. Natl. Acad. Sci. 77, 3504-3508. Blair, D.G., Okarsson, M., Wood, T.G., McClements, W.L., Fischinger, P.J., and Vande Woude, G.F. (1981). Activation vu. 4“ 'o IK’ ' \ . \ . .. .... . l- f u v r k l ..c. .l J“ . I . .. . . a . . L c 4 .1 . u . . l . . . 94A | c. . - .o .5 . . P A x: vr \ I . ,I 120 of the transforming potential of a normal cell sequence: A molecular model for oncogenesis. Science 212, 941-943. Campisi, J., Gray, H.B., Pardee, A.B., Dean, M., and Sonenshein, 6.3. (1984). Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell 36, 241-247. Celander, D., and Haseltine, W.A. (1984). Tissue-specific transcription preference as a determinant of cell tropism and leukaemogenic potential of murine retroviruses. Nature 312, 159-162. Charman, H.P., Gilden, R.V., and Oroszlan, S. (1979). Reticuloendotheliosis virus: detection of immunoglogical relationship to mammalian type C retroviruses. J. Virol. 29, 1221-1225. Chang, B.H., M.B. Furth, E.M. Scolnick, and E.R. Lowy. (1982). Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature 297, 479-483. Chatis, P.A., Holland, C.A., Hartley, J.W., Rowe, W.P., and Hopkins, N. (1983). Role for the 3' end of the genome in determining disease specificity of Friend and Moloney murine leukemia viruses. Proc. Natl. Acad. Sci. USA 80, 4408-4411. Chen, J.H. (1980). Expression of endogenous avian myeloblastosis virus information in different chicken C8118. J. Viralm 36' 162-1700 Chen, I.S.Y., and Temin, H.M. (1982). Substitution of 5' helper virus sequences into non-rel portion of reticuloendotheliosis virus strain T suppresses transformation of chicken spleen cells. Cell 31, 111-120. Chirgwin, J.M., Prxybyla, A.E., MacDonald, R.J., and Rutter, W.J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294-5299. Chung, S., Folsom, V., and Wooley, J. (1983). DNase I-hypersensitive sites in the chromatin of immunoglobin k light chain genes. PNAS USA 80, 2427-2431. Cloyd, M.W. (1983). Characterization of target cells for MC? viruses in AKR mice. Cell 32, 217-225. Cochran, B.H., J. Zullo, I.M. Verma, and 0.0. Stiles. (1984). Expression of the c-fos gene and of an fos-related gene is stimulated by platelet-derived growth factor. Science 2, 1080-1082. 7‘ . 1...... 4 v “.a. ‘ . :wl A "’ILVO .4.- .64 ,u. 7 . “Vu'. 7 ll '! ' l v i ; 9.. 1-. 4.. . . .1 J4 .0 .. n a UK .. a .. . .(n A v. . x p I. . ..a .r l . er.‘ ’§ {v 1 .11. . ."J J sent. 121 Coffin, J. (1982). In RNA Tumor Viruses, eds. Weiss, R.A., Teich, N.M., Varmus, H.E., and Coffin, J.M., (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) pp. 261-368. Collins, S.J., Gallo, R.C., and Gallager, R.E. (1977). Continuous growth and differentiation of human myeloid leukemic cells in suspension culture. Nature 270, 347-349. Collins, S.J., Ruscetti, 3..., Gallager, R.E., and Gallo, R.C. (1978). Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc. Natl. Acad. Sci. USA 75, 2458-2462. Collins, 8., and Groudine, M. (1982). Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature 298, 679-681. Cook, M. (1969). Cultivation of a filtrable agent associated with Marek's disease. J. Nat. Cancer Inst. 43, 203-212. Cooper, G.M., and Neiman, P.B. (1980). Transforming genes of neoplasms induced by avian lymphoid leukosis viruses. Nature 287, 656-659. Corcoran, L., Adams, J., Dunn, A., and Cory, S. (1984). Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion. Cell 37, 113-122. Crawford, L.V., and Crawford, E.M. (1981). The properties of Rous sarcoma virus purified by density gradient centrifugation. Virology 13, 227-232. Cremisi, C. (1981). The appearance of DNase I - hypersensitive sites at the 5' end of the late SV40 genes is correlated with the transcriptional switch. Nucl. Acids Res. 9. 5949-5964. Cullen,, B.R., Lomedico, T., and Ju, G. (1984). Transcriptional interference in avian retroviruses: implications for the promotor insertion model of leukaemogenisis. Nature 307, 241-245. Curran, T., Miller, A.D., Zokus, D., and Verma, I.M. (1984). Viral and cellular fos proteins: A comparative analysis. Cell 36, 259-268. Cuypers, H.T., Stelten, G., Quint, W., Zijlstra, M., Maandag, B.R., Boelens, W., van Wezenbeek, P., Melief, C., and Berns, A. (1984). Murine leukemia virus-induced T-cell lymphomagenesis: Integration of proviruses in a distinct chromosomal region. Cell 37, 141-150. ‘I4\*‘ (\1.\.4 .3 . .. '\ t f. f . . . . , i . u x . . a . . . . . . . . u . a. . . . ‘\. .\ . x! i I. v . Iv ,1 4 .ri . c . ... P. ‘9 a! v c . 2 r. , I .r i . . ~. . n .. , nu . I. m { . , ff- 4 K \ . . . I .\ 1. . \ ( . .l ‘v .I. - 4 II. ... . .I. . ,I . '4‘ . 4:; . . .l. o . \ . . 9:. a l I. I ~ - . m .. p «a a. .v . . 4| .4. J . . .. J . V... . u \ . . 1 . 4 ., . ... \ .. ... . c h . e . I t .- s v .r I ' 2 . y . .e 1?. ..- . ..A .. \ L- .. 4 - 1:. a .. .44 . s .-. . etc. 4 n: . .x T \1 .. . . .. Q . . ...: ... . .. vl - . . . _ _ . 1. . .3 . u. . . ' .. . . e , . . . ~ v e . y. , ... _ f t . 4 x .x t. . x . . . _ . a 9 ,l .m . . .... . . . 5 Hm \ 5 ...; . , .. Hi - D. .. . . t I. _ .. __ x .- 1 4 . I .. .u . ,.A . .e n \ .. o 7 A. . — o u. t. . n ‘I I- . . . r . i . . s . ‘ V .t— .P. . . o g . . . ».\. v . -’e » ,a «v .. . . r at 3 . .r . . . «. . 0. .,. . .. i .. l. (I v 4 . . . x . ._ k: ' V I c _. ., .01. '1’; '0 Do 122 DeFeo, D., Gonda, M.A., Young, H.A., Chang, B.H., Lowy, D.R., Scolnick, E.M., and Ellis, R.W. (1981). Analysis of two divergent rat genomic clones homologous to the transforming gene of Harvey murine sarcoma virus. Proc. Natl. Acad. Sci. USA 78, 3328-3332. DeLorbe, W.J., Luciw, P.A., Varmus, H.E., Bishop, J.M., and Goodman, H.M. (1980). Molecular cloning and characterization of avian sarcoma virus circular DNA molecules. J. Virol. 36, 50-61. DeVare, S.G., Raddy, E.P., Law, J.D., Robbins, K>C., and Aaronson, S.A. (1983). Nucleotide sequence of the simian sarcoma virus genome: demonstration that its acquired cellular sequences encode the transforming gene product pZBsis. Proc. Nat. Acad. Sci. USA 80, 731-735. Defeo-Jones, D., E.M. Scolnick, R. Koller, and R. Dhar. (1983). ras-Related gene sequences identified and isolated from Saccharomyces cerevisiae. Nature 306, 707-709. DesGroseillers, L., Rassart, E., and Jolicoeur, P. (1983). Thymotropism of murine leukemia virus is conferred by its long terminal repeat. Proc. Natl. Acad. Sci. 80, 4203-4207. Deuel, T.P., Huang, J.S., Huang, S.S., Stroobant, P., and Waterfield, M. (1983). Expression of a platelet-derived growth factor-like protein in simian sarcoma virus transformed cells. Science 221, 1348-1350. Dhar, R., McClements, W.L., Enquist, L.W., and Vanda Woude, G.F. (1980). Terminal repeat sequence of integrated Moloney sarcoma provirus: nucleotide sequences of terminally repeated sequence and of its hosts and viral junctions. Proc. Nat. Acad. Sci. USA 77, 3937-3941. Dickson, C., Eiesenman, Hung, E., Hunter, E., and Teich, N. (1982). In RNA Tumor Viruses, eds. Weiss, R.A., Teich, N.M., Varmus, H.E., and Coffin, J.M., (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) pp. 513-648. Dickson, C., Smith, R., Brookes, S., and Peters, G. (1984). Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region int-2. Cell 37, 529-536. Dofuku, R., Biedler, J. L., Sprengler, B. A., and 01d, L. J. (1975). Trisomy of chromosome 15 in spontaneous leukemia of AKR mice. Proc. Natl. Acad. Sci. U.S.A. 72, 1515-1517. Donner, P., Greiser-Wilke, 1., and Moelling, K. (1982). Nuclear localization and DNA binding of the transforming gene product of avian myelocytomatosis virus. Nature 296, 262-266. Donehower, L.A., and Varmus, H.E. (1984). A .... ...» (A .1." .0) NA 7). ...~ . gs .. a 4e. r . A .. r.|. ... 1‘ r . .L n. _ .1 .— ll. 4. .N. t . .4. .1 ... ts .. v. a v.4 t. \ . v I r 4 .~.- ‘r 11.4! 1.. D’O T‘EI'I' - {€9.11 58 .1, .... vfi I -H‘ISQ .“3 C. 'c. '— 1', .4 TH..- M h ..- -.'~«. C. . 1. n1 .am 1).-,rf._. if; it ,,-‘ - .4 L .... .-. 7 P. Jr“: A... .... .’\ 4| _ w“. - .v 1‘. ~—./~£ . rim ;m\—-~ !. (I u 9 Ce to. ‘ "L" l i.) 7:." .1331} "7 N . r1 - l‘r . 'Etl.1C/~_: J. 123 mutant murine leukemia virus with a single missense codon in pol is defective in a function affecting integration. Proc. Natl. Acad. Sci. USA 81, 6461-6465. Doolittle, R.F., Hunkapiller, M.W., Hood, L.E., Devare, S.G., Robbins, K.C., Aaronson, S.A., and Antoniades, H.N. (1983). Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding platelet-derived growth factor. Science 221, 275-277. Dren, Cs.N., E. Saghy, R. Glavits, F. Ratz, J. Ping and V. Sztojkov. (1983). Lymphoreticular tumour in pen-raised pheasants associated with a reticuloendotheliosis like virus infection. Avian Pathol. 12, 55-71. Eisenman, R.N., and Vogt, V.M. (1978). The biosynthesis of oncovirus proteins. Biochim. Biophys. Acta 473, 187-239. Ellermann, V., and Bang, 0. (1908). Experimentslle Leukmie bei thern. Zentralbl. Bakteriol. 46, 595-609. Ellis, R.W., D. DeFeo, T.Y. Shih, H.A. Gonda, H.A. Young, N. Tsuchida, D.R. Lowy, and H.N. Scolnick. (1981). The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature 292, 506-511. Emerman, M., and Temin, H.N. (1984). Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39, 459-467. Enrietto, P.J., Payne, L.N., and Hayman, M.J. (1983). A recovered avian myelocytomatosis virus that induces lymphomas in chickens: Pathogenic properties and their molecular basis. Cell 35, 369-379. Ephrussi, A., Church, G.M., Tonegawa, 8., and Gilbert, W. (1985). B. lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227, 134-140. Padly, A.M., and Witter, R.L. (1982). Studies of reticuloendotheliosis virus-induced lymphomagenesis in chickens. Avian Dis. 27, 271-282. Fenner, F. (1975). The classification and nomenclature of viruses. Intervirology 6, 1-12. Feramisco, J.R., Gross, M., Kamata, T., Rosenberg, M., and Sweet, R.W. (1984). Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 38, 109-117. Finkel, M.P., and Biskis, B.0. (1966). Virus induction of 4.. . . in. 7 (4 .fl s x .- 1 .- vl 2. P. . . . . a. ..- .Z . . .. 1 a . . . . . r t‘ ' . I 4 A J . 4 I; ... I V... . . .m. 4 . . s— . .. . A 4 . 4 u u so . . c. . eh. ‘3 u . ta . (J 1 I A Jr; .1 . ka . a .' (.2! - . . . . o ... . .n‘ a \Q .0. I41 u . .. . s I _ 7 ( . .s .1 s e . A .4 (I4 In. . I .... n ,4! . l - .. a x u .4. . c . . 1.: “ ..\ . . . e A .4 v I. . . v . I . ¢ .. . . . . ..e . .. xv ._ .y . d. r I 4. . ... _ . . . . . .. u 3'51" \4 124 osteosarcomas in mice. Science 151, 698-701. Franklin, J.P., Bose, B.R., and Kang, C-Y. (1982). Reticuloendotheliosis virus-transformed cells contain infectious and noninfectious proviral sequences in different chromosomes. Can. J. Microbiol. 29, 354-363. Franklin, R.B., R.L. Maldonado, and H.R. Bose. (1974). Isolation and characterization of reticuloendotheliosis virus transformed bone marrow cells. Intervirology 3, 342-352. Franklin, R.B., C. Kang, K.M. Wan, and Jr. H.R. (1977). Transformation of chick embryo fibroblasts by reticuloendotheliosis virus. Virology 83, 313-321. Fromm, M., and Berg, P. (1982). Deletion mapping of DNA regions required for SV 40 early region promoter function in vivo. J. Mol. Appl. Gen. 1, 457. Fung, Y—K., Fadly, A.M., Crittenden, L.B., and Kung, H.J. (1981). On the mechanism of retrovirus-induced avian lymphoid leukosis: Deletion and integration of the proviruses. Proc. Natl. Acad. Sci. USA 78, 3‘18-3422. Fung, Y.K.T., Crittenden, L.B., and Kung, H.-J. (1982). Orientation and position of avian leukosis virus DNA relative to the cellular oncogene c—myc in B-lymphoma tumors of highly susceptible 1515x72 chickens. J. Virol. 44, 742-746. Fung, Y.K.T., Lewis, W.G., Kung, H.-J., and Crittenden, L.B. (1983). Activation of the cellular oncogene c-erbB by LTR insertion: Molecular basis for induction of erythroblastosis by avian leukosis virus. Cell 33, 357-368. Gallwitz, D., Donath, C., and Sander C. (1983). A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature 306, 704-707. Garrett, J.S., 8.8. Coughlin, H.L. Niman, P.M. Tremble, G.M. Giels, and L.T. Williams. (1984). Blockade of autocrine stimulation in simian sarcoma virus-transformed cells reverses down—regulation of platelet—derived growth factor receptors. Proc. Natl. Acad. Sci. USA 81, 7466—7470. Gaylord, W.H., Jr. (1955). Virus-like particles associated with Rous sarcoma as seen in sections of the tumor. Cancer Res. 15, 80-83. Gazit, A. H. Igarashi, I-M. Chiu, A. Srinivasan, A. Yaniv, S.R. Trnoick, R.C. Robbins, and S.A. Aaronson. (1984). Expression of the normal human sis/PDGF-Z coding sequence induces cellular transformation. Cell 39, 83—97. c 125 Gibbs, J.B., Sigal, I.S., Poe, N., and Scolnick, E.M. (1984). Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc. Natl. Acad. Sci. USA 81, 5704—5708. Gillies, S.D., Morrison, S.D., Oi, V.T., and Tonegawa, S. (1983). A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33, 717-728. Gonda, T.J., Sheiness, D.R., Fanshier, L., Bishop, J.M., Moscovici, C., and Moscovici, M.G. (1981). The genome and the intracellular RNAs of avian myeloblastosis virus. Cell 23, 279-290. Gonda, T.J., and Bishop, J.M. (1983). Structure and transcription of the cellular homologue (c-myb) of the avian myeloblastosis virus transforming gene (v-myb). J. Virol. 416, 212-220. Gonda, T.J., and Metcalf, D. (1984). Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukaemia. Nature 310, 249-251. Gottesman, H.N., Roth, C., Vlahakis, G., Pastan, I. (1984). Cholera toxin treatment stimulates tumorigenicity of Rous Sarcoma virus-transformed cells. Mol. Cell. Biol. 4, 2639-2642. Goubin, G., Goldman, D.S., Luce, J., Neiman, P.B., and Cooper, G.M. (1983). Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA. Nature 302, 114-119. Graf, T., and Beug, H. (1978a). Avian leikemia viruses. Interaction with their target cells in vivo and in vitro. Biochim. Biophys. Acta 516, 269-299. Graf, T. Ade, N., and Bueg, H. (1978b). Temperatrue—sensitive mutant of avian erythroblastosis virus suggests a block of differentiation as mechanism of leukeamogenesis. Nature 257, 496-501. Graf, T., Bueg, N., and Hayman, M.J. (1980). Target cell specificity of defective avian leukemia viruses: hematopoietic target.cells for a given virus type can be infected but not transformed by strains of a different type. Proc. Natl. Acad. Sci. 77, 389-393. Grandgenett, D.P., Vora, A.C., and Schiff, R.D. (1978). A 32,000-dalton nucleic acid-binding protein from avian retrovirus cores possesses DNA endonuclease activity. Virology 89, 119-132. II'lO ~|~ .\. '18 It! I j .t . u . .1. A . n | 1‘. . fl 7 v- )1 . , 1 w . . . w . t .r ,1. I; a; .f . . J\ n f I u a . .v. I. t . __ I .3 . , L. . e \. _. n o.‘ . n I a 3‘ a . d.. « ,C . . . .s ..C ...a . I. . . A. . ... . .a .. o .. ‘r a. . . l. .. . .4. . . J .\ . I .. l . 1. 1. .. . . o... x o 2 (A .~ . 7w. 4. .. s 4. w. l s A _ .. ..l. ( . \ - . . . .. ... . s ‘ J do I ‘1] W. 4 s .u' oVI ....»I '. s l I a ‘1! a o. . E}. L . ff . . .' . l f. i. I 1’: 1 r‘ r ’m A 4h ’0. ... \ at. a C; v1 . . . .34 .v‘. (My Ex. .HJJ .4. . .L . v. .... .. A 7 L . 126 Greenberg, M.E., and Ziff, E.B. (1984). Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311, 433-438. Grimes, T.M., and Purchase, H.G. (1973). Reticuloendotheliosis in a duck. Aust. Vet. J. 49, 466-471. Gross, L. (1951). "Spontaneous" leukemia developing in C33 mice following inoculation, in infancy, with Ak-leukemic extracts, or Ak-embryos. Proc. Soc. Exp. Biol. Med. 76, 27-32. Gross, L. (1970). Oncogenic viruses, 2nd edition. Pergamon Press, New York. Gruss, P., Dhar, R., and Khoury, G. (1981). Simian virus 40 tandem repeat sequences an element of the early promotor. Proc. Natl. Acad. Sci. 78, 943-947. Hanafusa, N., Halpern, C.C., Buchhagen, D.L., and Kawai, S. (1977). Recovery of avian sarcoma virus from tumors induced by transformation-defective mutants. J. Exp. Med. 146, 1735-1747. Hann, S., Abrams, H.D., Rohrschneider, L., and Eisenman, R.N. (1983). Proteins encoded by v-myc and c-myc oncogenes: identification and localization in acute leukemia virus transformants and bursal lymphoma cell lines. Cell 34, 789—798. Hann, S.R., and Eisenman, R.N. (1984). Proteins encoded by the human c-myc oncogene: Differential expression in neoplastic cells. Mol. a Cell. Biol. 4, 2486-2497. Harvey, J.J. (1964). An unidentified virus which causes the rapid production of tumors in mice. Nature 204, 1104-1105. Hatfield, G.W., Sharp, J.A., and Rosenberg, M. (1983). Pausing and termination of human RNA polymerase II transcription at a procaryotic terminator. Mol. Cell. Biol. 3, 1687-1693. Hay, N., Skolnik-David, N., and Aloni, Y. (1982). Attenuation in the control of SV40 gene expression. Cell 29, 183-193. Hayman, N.J. (1978). Synthesis and processing of avian sarcoma virus glycoproteins. Virology 85, 475-486. Hayward, W.S., Neel, 8.0., and Astrin, S.M. (1981). Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290, 475-480. Henikoff, 8., Kelly, J.B., and Cohen, E.H. (1983). '4. '- ~- 1. z., 5:. 1 .1“ S. L p; (4‘ : ~.\. r.‘ " 1 .Il\- I :~ {:4 C..- Y,‘ " .4 . .\-- 4.4.x. .- an 5’ .‘a £4 .A 7. CO .4 K“! !’ .4 . I. 1 4 _ .... ,l. . .. a . . r. o L. .01. . L... 4 m o e v n “£4.41 2. V A ..b A a t O b 4 £5 1": (i .2. 4 fr: ' f —. .h z A. .. LC 1 l - >I A 4.: " fo- r» r a.-. b ,—. 4 4 110 «- ‘31:.f. .3 f‘ ()l‘ 127 Transcription terminates in yeast distal to a control sequence. Cell 33, 607-614. Herbomel, P., Saragosti, 8., Blangy, D., and Yaniv, M. (1981). Fine structure of the origin proximal DNase I-hypersensitive region in wild-type and EC mutant polyoma. Cell 25, 651-658. Hoelzer, J.D., Franklin, R.B., and Bose, H.R. (1979). Transformation by reticuloendotheliosis virus: development of a focus assay and isolation of a nontransforming virus. Virology 93, 20-30. Hoelzer, J.D., R.B. Lewis, C.R. Wasmuth, and H.R. Bose, Jr. (1980). Hematopoietic cell transformation by reticuloendotheliosis virus: characterization of the genetic defect. Virology 100, 462-474. Hollis,.G.F.p—Mitchell, R.B., Battey, J., Potter, H., Taub, R., Lenoir, G.M., and Leder, P. (1984). A variant translocation places the immunoglobulin genes 3' to the c-myc oncogene in Burkitt's lymphoma. Nature 307, 752-755. Huang; J.S., 8.8. Huang, and T.F. Deuel. (1984). Transforming protein of simian sarcoma virus stimulates autocrine growth of SSV-transformed cells through PDGF cell-surface receptors. Cell 39, 79-87. Hunter, E. (1978). The mechanism for genetic recombination in the avian retroviruses. Curr. Top. Microbiol. Immunol. 79, 295—309. Hurley, J.B., Simon, M.I., Teplow, D.B., Robishaw, and Gilman, A.G. (1984). Homologies between signal transducing G proteins and ras gene products. Science 226, 860-862. James, R., and Bradshaw, R.A. (1984). Polypeptide growth factors. Ann. Rev. Biochem. 53, 259-292. Jeltsch, J.-M., Mathis, D.J., and Chambon, P. (1984). Induction of altered chromatin structures by simian virus 40 enhancer and promotor elements. Nature 307, 708-714. Johnsson, A., Heldin, C.—H., Wasteson, A., Westermark, B., Deuel, T.F., Huang, J.S., Seeburg, P.H., Gray, A., Ullrich, A., Scrace, G., Stroobant, P., and Waterfield, M.D. (1984). The c-sis gene encodes a precursor of the B-chain of platelet-derived growth factor. EMBO J., in press. Ju, G., and Skalka, A.M. (1980). Nucleotide sequence analysis of the long terminal repeat (LTR) of avian retroviruses: structural similarities with transposable elements. Cell 22, 379-386. r») r. z... r .l . T. \ 3 r P., ‘0 u ,. . ' u . v . . ... ..l . -4: L r . . . . c . .. x 1 . . . 4’s 1 . ..l .I. t . $ I ~ (I , o u . .. A u. 0.... c“ .v s ..- . . . .. . . I. 4 .. .. o. o r u .l u v 1. .L 1. .A ; ‘ _ i v . \ .. o . \ n . a _ 4 a s \' ...: v I: t . 1’ (1 ”K (A i llIIlIl‘I-III 128 Kamata, T., and Feramisco, J.R. (1984). Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins. Nature 310, 147-150. Kan, N.C., C.8. Plordellis, G.E. Mark, P.H. Duesberg, and T.8. Papas. (1984). A common one gene sequence transduced by avian carcinoma virus MH2 and by murine sarcoma virus 3611. Science 223, 813-816. Hang, C.Y., and Temin, H.M. (1973). Lack of sequence homology among RNAs of avian leukosis-sarcoma viruses, reticuloendotheliosis viruses, and chicken RNA-directed DNA polymerase activity. J. Virol. 12, 1314-1324. Hang, C-Y., and Temin, H.M. (1974). Reticuloendothelium virus nucleic acid sequences in cellular DNA. J. Virol. 14, 1179-1188. Kang (1975). Reverse trascriptase and RNase H: Present in a murine virus and in both subunits of an avian virus. Cold Spring Harbor Symp. Quant. Biol. 39, 969-973. Kataoka, T., Powers, 8., Cameron, 8., Fasano, 0., Goldfarb, M., Broach, J., and Wigler, M. (1985). Functional homology of mammalian and yeast RAS genes. Cell 40, 19-26. Heath, E.J., Kelekar, A., and Cole, M.D. (1984). Transcriptional activation of the translocated c-myc oncogene in mouse plasmacytomas: similar RNA levels in tumor and proliferating cells. Cell 37, 521-528. Heath, E.J., Caimi, P.G., and Cole, M.D. (1984). Fibroblast lines expressing activated c-myc oncogenes are tumorigenic in nude mice and syngeneic animals. Cell 39, 339-348. Kelly, R., Cochran, B., Stiles, C., and Leder, P. (1983). Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35, 603-610. Kieras, H.M., and Paras, A.J. (1975). DNA polymerase of reticuloendotheliosis virus: Inability to detect endogenous RNA-directed DNA synthesis. Virology 65, 514-523. Klein, 0. (1981). The role of gene dosage and genetic transpositions in carcinogenesis. Nature 294, 313—318. Klein, 0. (1983). Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. Cell 32, 311-315. Knoll, M., and Ruska, E. (1932). Das Elecktronenmikroskop. Z. Physik 78, 318-335. r: v ‘l V: ‘ 129 Kohl, N.E., Kanda, N., Schreck, R.R., Bruns, G., Latt, S.A., Gilbert, P., and Alt, F.W. (1983). Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35, 359-367. Kohl. N.E., Gee, C.E., and Alt, P.W. (1984). Activated expression of the N-myc gene in human neuroblastomas and related tumors. Science. Kopchick, J.J., Harless, J., Geisser, B.8., Killam, R., Hewitt, R.R., and Arlinghaus, R.B. (1981). J. Virol. 37, 274-283. Kozak, M. (1983). Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47, 1-45. Kozak, M. (1984). Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucl. Acids Res. 12, 3873-3892. Kung, H.-J., Bailey,, J.M., Davidson, N., Nicolson, M.D., and McAllister, H.M. (1975). Electron microscope studies of tumor virus RNA. Cold Spring Harbor Symp. Quant. Biol. 39, 827-834. Lachman, H.M. and Skoultchi, A.I. (1984). Expression of c-myc changes during differentiation of mouse erythroleukaemia cells. Nature 310, 592-594. Lafer, H.M., Moller, A., Nordheim, A., Stollar, B.D., and Rich, A. (1981). Antibodies specific for left-handed z-DNA. Proc. Natl. Acad. Sci. 78, 3546-3550. Laimins, L.A., Khoury, G., Gorman, C., Howard, B., and Gruss, P. (1982). Host-specific activation of transcription by tandem repeats from simian virus 40 and Moloney murine sarcoma virus. Proc. Natl. Acad. Sci. USA 79, 6453-6457. Laimins, L.A., Tsichlis, P., and Khoury, G. (1984). Multiple enhancer domains in the 3' terminus of the Prague strain of Rous sarcoma virus. Nucleic Acids Res. 12, 6427-6442. Land, H., Parada, L.P., and Weinberg, R.A. (1983a). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596-602. Land, H., Parada, L.P., and Weinberg, R.A. (1983b). Cellular oncogenes and multistep carcinogenesis. Science 222, 771-777. . s we at. .u A; ,v 4 . . '1 T 1‘ . n c . . . . r 4 w. . . \ 4. . - . . . . _ . 4. ! i . _ .t I . av . . . I 4 y e x .. . _ .I. a . Y . V 4 a . - a 5* . .. . . .. '4 1 4. r r 4 . - , i, \ 4 . .. . . 1 . . A. . . . o .. . a ‘ va 9. .. . . . . 3 . ;. .V . J . . . . , . v A... l. A .I‘ . 0 ..ul 1 . l . , s v . . . V . . . . {k .. . . ‘ . . r .4 I x , . n . _ . _ . . . . a 4. . . . .I.. 4 _ .‘ ‘I v . w . l v ‘ 4 . r , 1. . ... i . . . .. ... . . J '5 I f: ’ u , t t :. .. . 4 . r c ‘ _ ... . x. . - p I. I I. . .. U u . . A _ I .. ._ . . . . A ~ L .... . 31» . t: ..i v v . O r . ' g I . - .. . . . . 1- .. . . . . r. . I A . . A _ ,b I .. . I v . i . v... 130 Lane, M.A., Sainten, A., and Cooper, G.M. (1982). Stage-specific transforming genes of human'and mouse B— and T-lymphocyte neoplasms. Cell 28, 873-880. Lane, M.A., Sainten, A., Doherty, H.M., and Cooper, G.M. (1984). Isolation and characterization of a stage-specific transforming gene, lem-I, from T-cell lymphomas. Proc. Natl. Acad. Sci. USA 81, 2227-2231. Larose, R.N., and Sevoian, M. (1965). Avian lymphomatosis Ix. Mortality and serological response of chickens of various agents graded doses of T strain. Avian Dis. 9, 604-610. Leder, P., Battey, J., Lenoir, G., Moulding, G., Murphy, W., Potter, H., Stewart, T., and Taub, R. (1984). Translocation amoung antibody genes in human cancer. Science 222, 765-771. Lee, W—H., Murphree, A.L., and Benedict, W.F. (1984). Expression and amplification of the N-myc gene in primary retinoblastoma. Nature 309, 458-460. Lemay, G., and Jolicoeur, P. (1984). Rearrangement of a DNA sequence homologous to a cell-virus junction fragment in several Moloney murine leukemia virus—induced rat thymomas. Proc. Natl. Acad. Sci. USA 81, 38-42. Lenz, J., Celander, D., Crowther, R.L., Patarca, R., Perkins, D.W., and Haseltine, W.A. (1984). Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature 308, 467-470. Lenard, J., and Miller, D.K. (1982). Uncoating of enveloped viruses. Cell 28, 5—6. Lenz, J., Celander, D., Crowther, R.L., Patarca, R., Perkins, and Haseltine, W.A. (1984). Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature 308, 467—469. Levy, J.A., Hartley, J.W., Rowe, W.P., and Heubner, R.J. (1973). Studies of FBJ osteosarcoma virus in tissue culture. 1. Biological characteristics of the (C)-type viruses. J. Nat. Cancer Inst. 51, 525-549. Levy, L.8., Gardner, M.B., and Casey, J.W. (1984). Isolation of a feline leukaemia provirus containing the oncogene myc from a feline lymphosarcoma. Nature 308, 853-856. Lewis, R.B., J. McClure, B. Rup, D.W. Niesel, R.F. Garry, J.D. Hoelzer, K. Nazerian, and H.R. Bose, Jr. (1981). Avian "1 o , 10! x ... w . A x»: ,,\. 'S- r. s.’ 9 ‘—a . A u—A :- 2 r31fU-‘fl I . u . . l 9 | .— ... I .. . .. I .... .. .4: .914 '14. -- ‘ VI ..\ l- . )oo ‘54. .. r . i 4‘ "if .Jv .r’l; 131' an .1 o . a... c z. u. x ‘ . .... \ .. . u. .. . 4. .... ‘. 131 reticuloendotheliosis virus: identification of the hematopoietic target cell for transformation. Cell 25, 421-431. Li, J., Calnek, B.W., Schat, H.A., and Graham, D.L.(1984). Pathogenesis of reticuloendotheliosis virus infection in ducks. Avain Dis. 27, 1090-1105. Li, Y., Holland, C.A., Hartley, J.W., and Hopkins, N. (1984). Viral integration near c-myc in 10—20% of MCF 247-induced AKR lymphomas. Proc. Natl. Acad. Sci. USA 81, 6808-6811. Linial, M., and Blair, D. (1982). in RNA Tumor Viruses, eds. Weiss, R.A., Teich, N.M., Varmus, H.E., and Coffin, J.M., (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) pp. 649-783. Linney, W., Davis, B., Overhauser, J., Chao, E., and Fan H. (1984). Non-function of a Moloney murine leukaemia virus regulatory sequence in F9 embryonal carcinoma cells. Nature 308, 470-472. Little, C.D., Nau, M.M., Carney, D.N., Gazdar, A.F., and Minna, J.D. (1983). Amplification and expression of the c-myc oncogene in human lung caneer cell lines. Nature 306, 194-196. Luciw, P.A., Bishop, J.M., Varmus, H.E., and Capecchi, M.R. (1983). Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA. Cell 33, 705-716. Ludford, C.G., Purchase, H.G., and Cos, H.W. (1972). Duck infectious anemia virus associated with Plasmodium lophurae. Exp. Parasitol. 31, 29-38. Lui, C.-C., Simonsen, C.C., and Levinson, A.D. (1984). Initiation of translation at internal AUG codons in mammalian cells. Nature 309, 82-85. Maderious, A., and Chen-Kaing, S. (1984). Pausing and premature termination of human RNA polymerase II during transcription of adenovirus in vivo and in vitro. Proc. Natl. Acad. Sci. USA 81. 5931-5935. Majors, J.E., and Varmus, H.R. (1981). Proviruses of mouse mammary tumor virus resemble transposable elements and generate short duplications of host cell DNA at their integration sites. Nature 289, 253—258. Makino, R., Hayashi, K., and Sugimura, T. (1984). c-myc transcript is induced in rat liver at a very early stage of regeneration or by cycloheximide treatment. Nature 310, 677—698. I a . NV 1 . n- v‘ . .7b \4 ,a \l. ..\ -Lt) , . . o u 1 ~ . J \ V .1 . J — . . .. r 2 1, . . O .4 _ \ .v . . 3 Q _ x A n - ‘ .. . . . , . v. If V) .. t \v . ... . x. .. OI \. (L . . . ,. . o. . : v1 . . (v .v. r _ u .. . ~. . . . . i . V .\a .. . . I . .., a. I . H u . .. 6 rt. 0 . . a vcl ‘ . . .. I» ..A . . . .. . . . p o o ...... 4 ‘4 132 Maldonado, R.L., and Bose, H.R. (1971). Separation of reticuloendotheliosis virus from avian tumor viruses. J. Virol. 8, 813-815. Maldonado, R.L., and Bose, H.R. (1976). Group-specific antigen shared by the members of the reticuloendotheliosis virus complex. J. Virol 17, 983-990. Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982). Molecular cloning: A laboratory manual. (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory). Marsh and Helenius (1980). Adsorptive endocytosis of Semliki Forest virus. J. Mol. Biol. 142, 439-454. McCormick, J.E., Pepe, V.H., Kent, R.B., Dean, M., Marshak-Rothstein, A., and Sonenshen, G.E. (1984). Specific regulation of c-myc oncogene expression in a murine B-cell lymphoma. Proc. Natl. Acad. Sci. 81, 5546-5550. Maxam, A., and Gilbert, W. (1980). Sequencing end-labled DNA with base-specific chemical cleavages. Meth. Enzymol. 65, 499-580. McDougall, J.S., P.M. Biggs, and R.W. Shilleto. (1978). A leukosis in turkeys associated with infection with reticuloendotheliosis virus. Avian Pathol. 7, 557-568. McDougall, J.S., Shilleto. R.W., and Biggs, P.M. (1980). Experimental infection and vertical transmission of reticuloendotheliosis virus in the turkey. Avian Path. 9, 445-454. McDougall, J.S., Shilleto, R.W., and Biggs, P.M. (1981). Futher studies on vertical transmission of reticuloendotheliosis virus in turkeys. Avian Path. 10, 163-169. McGrath, J.P., Capon, D.J., Goeddel, D.V., and Levinson, A.D. (1984). Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310, 644-649. Michitsch, R.W., Montgomery, K.T., and Melera, P.W. (1984). Expression of the amplified domain in human neuroblastoma cells. Mol. Cell. Biol. 4, 2370-2380. Miller, A.D., Curran, T., and Verma, I.M. (1984). c-fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36, 51-60. Mills, F.C., Fisher, L.M., Kuroda, R., Ford, A.M. , and Gould, H.J. (1983). DNaseI hypersensitive sites in the (1'. r'. v ..A v ,. . A .. ... t .r. c .. e ., q a .... . ...N .3. . . .-.. L 9 r I t . . “4.” ll . g ”.8. ant; ‘ he at '4 . a“ v . n .1.” 71. a, l ....s . and _ . U1... '1‘ .a . .. .‘L I” “a...“ I. u ”D \01. .7. ..v. . . \l. .I. . \U. .m. h 4 ~ . . e n. m:— .0). J . ... ... . n . .n. w A. .4. o a. . .. u .. .s . ... ; ... 2 ”A . ..." .H .D . . i r .. .... .24 ..L .I.“ .r p .. .4 .. .. w‘ ”(1 ....u .. ‘1' ..r ,1. .4. . .... . .... i ... .. ..u. I ..... ,. r. .L . r. . Q . I .. . .. .. . U ...... .... 1 - .. . O ”a. . 1.x 3 . ...n. L h. .. n i. \J .. .5“ ,1. . . .1 in“ ....1: ...... ... ~ a . ... H 4‘ .... . ..-“ .... a. . ..u ”.1 ~ 1 o z . .. . - 7. .L .L . . .. .. M... x; v . o. ... . .. H O. . . 4 v: v o r...” ... ... .\;\. .0” . .... 1. n1 4.. .e ..a . Pu 1” ._ .. . 2,. A... . Tu .. 3 .... .. l. a. , . ... .. i. . . . ... .. .. {L .H. . ..L J . .... . .r. .4“ .... i . .... . . C. .- m... - u . . ..x.. U l ....A. ..m. “an .I. r... r . ..H .r. N” . -. 3.. ...». . c . .... N. t .. . .L ... H: .. 8 .... .... 3. .-. is. .3... ...... u. . f .14 I ..u ,. ..-“ I E ...... V .... ... ~. .. ... a...“ \n \ i ..... 4.. J“ 7.. ..... .7. .. .... ... ... L 5 .... .... ....» f. .r. L ... . .. . . . 1 r. . a. ..... C .2 -.. I .... .. 7 ... . 3 IA .. . \ t, .-. .... .L. flu l *a (4 :1 .. L .I.. \ I.“ s ......A 1.“ .... 04 v N r“ L. --. "v ...“ .ru . ....n V F) L Hr .h . 4 . 4 .. r.- .. i .9) r». i J : .\.. I H.“ r . a . .. u .V . . .I..” .. _ ”.u r. 3.. .. ... as .. vi .... .... .. I. Q . ... .... .1. 4 . .MI. in. ...! I)“ o c _ 7 .( ”a. . is. U . ....A . . . «.I. \d . 9 . .... .i H.“ . .. . .... s. 5 a F. , . L H... ...]. .. r . o 2 . . : . a.” v .... 3 s .. .3 .... ... .... E 1 .- .- . a ... . M. .. .... T 1 .3 c. u . ...... n .. S L 3 .. u ...“ .I. ,. ... . é -. .. ...x _. X n .... ”tun a u 9 ... ..V l - .. . I a .... .. . 7. ...... c.” ... E H., H .. . ..u. N .... . . T, . .. I n ......H m; .... l mu 3 ... r on i. O .1 ... s N... T“ a... .1 .... . ;. ...v .. d. . O \ N. . .4 .... ..J .0 .r. ..a z c; . n. u... .... n H L L a. _ . . l .3 . .,... .. ....“ .... i g .. I . ..n n . d 5 .... o. D 7 a .. . .. . b .L O .o . ‘ a. V, L .... 3 .-.. L , Q. .. . 1 7.. ... d . .... H I. I c.“ T. .7 . S .... .r... mu b . ... 9 .... . n). . J .. . I . C .. .... ...u . . .. E .....A ....u c. O... . . _. 5 ... fl... ). F. .. a. .V ... ... .I.... .u . U r3 . “d , _ _ i i . .4 l. -.. “Y C .u . N... .a .1. H ... t . . . . _ J. . - 3 . -... . . . .3 . . 9. w. 5. ...,” . ”. ..- B, ”a 4 . L f .4 n . s n... no r: .vh . . M A: .. - I ..L .41» In I”... .. (.1 i .I.. D . w . 3 , .. ... ... ... e .3 c. . ... . . v .. . .. .... ... .. . ... ~ \ .I.... “4 Mk 4.. ... . .\.. . ... . . a .C i. - L. ..d _. H . ..5 L . .m. .C v... . S . . . T. .11.. .Il . ... xi“ \u .1 NJ .1” . .. v.3,» . X1 4. . r!” .. . «A . 1: . . \ ..-. n a... l 1 ... . L . t. 3 . n . - ...... - ..., .. .. ,. ...x. .... 0. .I. ..(m . 1 . _ “I . . . h. ... r... .... I .n A 3 .. 1 .... u. . .. ...». . d 3 ,1... . , . _ . h. I am)“ . u L i ”u r I\. . .. .. .aw i. n .... v.1 v.2 L ., ,1 . ... . . .... - ... m o... . , l : \ .t. 3 “1;. .. u-.T . .. 1., f ; C , ‘Yt‘ A...’ .v-"— A--. 133 chromatin of human immunoglobulin heavy-chain genes. Nature 306. 809—812. Misra, T.K., Grandgenett, D.P., and Parsons, J.T. (1982). Avian retrovirus pp32 DNA-binding protein. I. Recognition of specific sequences on retrovirus DNA terminal repeats. J. Virol. 44, 330-343. Mitchell, R.L., Zokas, L., Schreiber, R.B., and Verma, I.M. (1985). Rapid induction of the expression of proto-oncogene fos during human monocytic differentiation. Cell 40, 209-217. Mitzutani, 8., Kang, C.Y., and Temin, H.M. (1975). Endogenous RNA-directed DNA polymerase activity in virions of RNA tumor viruses and in a fraction from normal chicken cells. p. 119-124. In S.P. Colowick and N.0. Xaplan (ed.), Methods in enzymology, vol. XXIX. Academic Press Inc., New York. Mizutani, 8., and Temin, H.M. (1973). Lack of serological relationship among DNA polymerases of avian leukosis sarcoma viruses, reticuloendotheliosis viruses, and chicken cells. J. Virol. 12, 440-448. Mizutani, 8., and Temin, H.M. (1974). Specific serological relationships among partially purified DNA polymerases of avian leukosis—sarcoma viruses, reticuloendotheliosis viruses, and avian cells. J. Virol. 13, 1020-1029. Mladenov, 2., Heine, 0., Beard, D., and Beard, J.R. (1967). Strain M029 avian leukosis, myelocytona, endothelioma and renal growths. Pathomorphological and ultrastructural aspects. J. Nat. Cancer Inst. 38, 251-286. Moelling, R., B. Heimann, P. Beinling, D.R. Rapp, and T. Sander. (1984). Serine- and threonine-specific protein kinase activities of purified gag-mil and gag-raf proteins. Nature 312, 658—561. Moelling, R., Gelderblom, H., Pauli, G., Frits, R., and Bauer, H. (1975). A comparative study of the avian reticuloendotholiosis virus: Relationship to murine leukemia virus and viruses of the avian sarcomaleucosis complex. Virology 65, 646-557. Moreau, P., Hen, R., Wasylyk, B., Everett, R., Gaub, M.P., and Chambon, P. (1981). The SV 40 72 base pair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucl. Acids Res. 9, 6047-6068. Moscovici, C. (1975). Leukemic transformation with avian myeloblastosis virus: Present status. Curr. Top. Microbiol. Immunol. 71, 79-101. .I.. 1.5 .‘I ~‘ 1 .‘I ~'. (a Hi ..-i I -p' 9 *h, a 11.01.: 'l‘p‘ I .L" s .4. f.’ o ‘ ft 'rA L. ,1. \"f'f‘ '.' ‘-"¢—,T "if; 1 ‘Lgn. r W, .. -.TM 1 -. ‘I. . . ~ 7 \-4 _ -. r“ a.) .1‘1 {<21 A I .t'tc 1 53'...) —. c £"y‘ C‘ _C .. .. ’| ..h . p-L a)". I 1‘! A so‘ I“ u V0.14.» . . .4 . , fax . .fll ' ‘— a \ o; v 7:3 - 22' -. ' £1 ,. \4 ~ O ' L‘IL . .. :5.- Lu}. '7! c A 9“ I. ‘k ' I... ry— 134 Motha, M.R.J. (1983). Distrubution of virus and tumor formation in ducks experimentally infected with reticuloendotheliosis virus. Avian Path. 13, 303-320. Motha, M.X.J., and Egerton, J.R. (1984). Influence of reticuloendotheliosis on the severity of Eimeria tenella infection in broiler chickens. Vet. Microbiol. 9, 121-130. Mount, S.M. (1982). A catalogue of splice Junction sequences. Nucl. Acids Res. 10, 459-472. Muller, R., Slamon. D.J., Tremblay. J.M., Cline, N.J., and Verma, I.M. (1982). Differential expression of cellular oncogenes during pre- and postnatal development of the mouse. Nature 299, 640-644. Muller, R., Verma. I.M., and Adamson. E.D. (1983a). Expression of c-onc genes: c-fos transcripts accumulate to high levels during development of mouse placenta, yolk sac and aminion. EMBO J. 2, 674-684. Muller, R., Tremblay. J.M., Adanson. B.D., and Verma, I.M. (1983b). Tissue and cell type-specific expression of two—human c-onc genes. Nature 304. 454-456. Muller, R., D.J. Slamon, B.D. Adamson, J.R. Tremblay, D. Muller. N.J. Cline and I.M. Verma. (1983c). Transcription of c-onc genes c-rasKi and c-fms during mouse development. Mol. Cell. Biol. 3, 1062-1069. Muller, R., Muller, D., and Gullbert, L. (1984a). Differential expression of c-fos in hematopoietic cells. EMBO J. 3, 1887-1890. Muller, R., and Wagner, E.F. (1984b). Differentiation of F9 teratocarcinoma stem cells after transfer of c-fos proto-oncogenes. Nature 311, 438-442. Mullins, J.I.. Brody, D.S., Binari, R.C., and Cotter, S.M. (1984). Viral transduction of c-myc gene in naturally occurring feline leukaemias. Nature 308, 856-858. Neel, D.G., Hayward, W.S., Robinson, H.L., Fang. J., and Astrin. S.M. (1981). Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: Oncogenesis by promoter insertion. Cell 23, 323-334. Neiman, P., Payne. L.M., and Weiss, R.A. (1980). Viral DNA in bursal lymphomas induced by avian leukosis viruses. J. Neuman—Silberberg. B.8., Schejter, E., Hoffmann, P.M., and VI .... a! o ,. o.‘ _. - «k I .4 (.3. n (s I ',;_Z I'- .:r‘-".. L ._ J. .... r- f A ’1'. 4 '3 r" 7"/ ... .I.. t, in“. r.'. " '1 . ¢ . -ah ;.¢1L.- . ... - ..t". 8.3 : " 0'5"}? 7 a {Li 1'” -.D . .tfb' s‘i ‘ \ . J '2. J\ L]. ..., .... . " :. .e.'\E-' y‘- I... . n! . . . } .. ...v .I. I”. .0. fl. .. u r. I! _ r “J .. .5. l ...u .. . . .. .. . ,. .... . H .. p! .. Q: L z“ . I . . , . I .. Q a ‘ x .. u . . ‘A « . c. . ... o v“ J fr. 0 _ 1. n I . L v ..-. 1.x : x 4. u u . . Va. . . . ...” rm] (, fir r ..— I \la 1. O . . o. r ...h I.“ I n .1 .I . L. I . . . . ‘L a .... . \ 3!. I . ,4. . ’.e .1 S \.. s I. an. v .. .. “U n v“ e 0‘ .... v u I J o. .. v i.‘ vol. L < 9... . . . .. . :\ . ... ._ b ...-l 1 r.“ I fill I a ~ I u... ‘1 . II 3 . I ‘3). . . . I .\ u: ... or. . . _ ad .. .. . k .In . nle I .. . I .. z t . . . L P. - ”1N !L I. v. . . a .4 \ .. .... L S ....e . . o 0 .a .L . . .. . fi 0 . .... (... .. .. ._ 4.. u . . I I. I . . .a . . e v. .. f ; . o \ . .. .i .1 o“ .5 .. . . (A .. es . n . U .. x . . H . . .... 1 AL .’- . .. .. \ . . a... to r... . L fl ... .2 .. d . n. . . . p 1. H. 0U 'm .. . . t . .\. .r 1... .... ,.. .3 a, ,, .. \I .I. . . w .. (L . a. a m... a. ... . 1 u e r). L \n: v v u m u. . 4 .u o. .. . I . . v . ... .€.- ...i I u . O r- . .. _ .. 4. .. ... . . Vac . .. .4. o r. . .v.\ TL w: c (5* .u.‘ I f\ «IA p... r. . p; n '9 I. .n J .. .I.“; .. . . r . .. ...: .7. ) ...... . 2.... .. . .... ... u .,\ av... . .rs ...- ..4. ... ... . .L I. ). . , .PL . . ~ .. . 1 . if. I; .) L .... . . . . n s t». .\ c_ . We 3 .VA . .. ..1. . hiw . .o . If; 70“ ... -. ... 7.4 . . )1 m. . ... C . ,c .. . .... p. i . . .& v v!- . i _ ... l .. . h .. . ...t. ... . .. ..l l . _, . a M ... r . .\. ..J .\ . r‘ L” I a v . . ...L . v ... 135 Shiloo B.-Z. (1984). The drosophila ras oncogenes: structure and nucleotide sequence. Cell 37, 1027-1033. Newbold, R.B., and R.W. Overell. (1983). Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature 304, 648-651. Nickol, J., Behe, M., and Felsenfeld, G. (1982). Effect of the 8-2 transition in poly(dG-m5 dc) x poly(dG-m5dc) on nucleosome formation. Proc. Natl. Acad. Sci. 79, 1771-1775. Nilsen, T.W., and Maroney, P.A. (1984). Translational efficiency of cmyc mRNA in burkitt lymphoma cells. Mol. Cell. Biol. 4, 2235-2238. Nissen-Myer, J., and Nes, I.F. (1980). Purificaton and properties of DNA endonuclease associated with Friend leukemia virus. Nucl. Acids Res. 8, 5043-5055. Noori-Daloii, M.R. Swift, R.A., Kung, H.-J., Crittenden, L.8., and Witter, R.L. (1981). Specific integration of REV proviruses in avian bursal lymphomas. Nature 294, 574-576. Nordheim, A., Lafer, R.N., Peck, L.J., Wang, J.C., Stollar, B.D., and Rich, A. (1982). Negatively supercoiled plasmids contain left-handed Z—DNA segments as determined by specific antibody binding. Cell 31, 309-318. Nordheim, A., and Rich, A. (1983). Negatively supercoiled simian virus DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303, 674-679. Nusse, R. Van Ooyen, A. Cox, D., Fung, Y.-K.T., and Varmus, H.R. (1984). Mode of proviral activation of a putative mammary oncogene(int-i) on mouse chromosome 15. Nature 307, 131-136. O'Donnell, P.V., Stockert, E., Obata, Y., and Old, L.J. (1981). Virology 112, 548-563. Okazaki, W., Purchase, H.G., and Crittenden, L.B. (1982). Pathogenicity of avian leukosis virus. Avian Dis. 26, 553. Olson, L.D. (1967). Histopathologic and hematologic changes in moribund stages of chicks infected with T-virus. Amer. J. Vet. Res. 28, 1501-1507. Onions, D.B., Lees. G., and Jarrett, 0. (1984). Transduction and rearrangement of the myc gene by feline leukaemia virus in naturally occurring T-cell leukaemias. Nature 308, 814-820. Oroszlan, 5., and Gilden, R.V. (1980). Primary structure analysis of retrovirus proteins. In Molecular biology of T _/ 0.8 f ‘1 - - ,. ‘— -.r " C x. [‘1 "'.' .- .1 .1 rn ...i . >§q F. . tL-L- (5' r . -("~.-‘A au"\ 5. “ AL'w'- ‘ Y A .‘ ’d l'r Q r» _ F 21 ‘ K. 1 .- :'.\ >JJJI :IF‘ .- 1 . - ] £5913? ~\ -... 17* 3?; I .. I .r! S ‘1 AJ'. L I. II. M b -4) (,3 gu‘; . ’ .. .Lt. 1'21 f . L. p. .... .7. ... -. ...... ..: . ... .r.. w . I . u r X .... .0 m V _ .. ......” L ....N .... .... -.. a i .... ... .... c e. . : .... 4.; Y... .J -. f. . .. 5‘ 1.” ... . N3 w. e f. L ”i L .. v. v . L K... I. . . H... m 3 . u.» .i n. v“ . . . . fl .... .. L . ... G. .. . -. ..V ... ..u. C., 4 Q J 1 ~1- <5». -- v0 - r ..Q1-A. 1- .{L L)": ‘ o 1 . .4 L -'1 I My ... a u I.’ A U ‘c h J =DC I") i.- g. f) I l... l i . ....” - . . n. . ... . . a .. “.1 1.. . . a u; ... fl... 3L 3 U : .... ....... i f .4 .. f 2 I n... «u .u r” .U I .u 41. .L r . a «an 4 \ss. .. E ... + C . . ...,” h n... H. .. .. fl . .3 .. .. ”n .. L U .... .o A“ . a... , 7 ..H . .. u . ..i 3 .L i n. u. : ...; .... , .L . E .u. ... «u .- ... ”L ... ... I” 4. -.. x. t. :. ...... . -, o J , . .... i n... F. .u r . . a -.12x . . %..1 ”u.i L ... . T r 2 . .L ...u ..l J .... " .... . ... m d . . 7.. a. ..H V. a ... n... U . C . .. .n. .... ... .d‘ . . .. ..., . ...a a . . m J .I E 91. “4 .-.. n... . .... .. L n T i. . ) . b s, I . I 4 . r O l"\ b I ‘> 2‘! T? .. .3 9 .l a, -& (J O C... .I.. U i 5 C 3 l ” 1.1 i. ., N A 1 i. .. .3 .3 -... 1. 3 n n.h~. .1 n 9 .u.: ..L ... . an I. ... f. . I .r 5 b S U .... ... r. . L m... ...... u .... Q .... . J .r... C v. n... .. ...... . m . f 5 U V. ...... .... . .....u . . ..L ... T C... ... T . O - ... .... f. i .. _ ... .1... w. ...: .. ..... m... a . .. F. ... 3 H. .... ..... .. 5 f .-. .. ... ...... 0. ..H; 7 . . i - . a \ No. xii-J T .. (A . 6 . ‘9 I. IA ' A ... I . ..FL .1 1 .. A“. "v 1" ‘J .3. .. | o .J _ .IL . ‘ i 1* . . I . L \l. . In .I. l.‘ r p a l. V4 Fla "3 . o . . . ,. \. I: I I I. n... b 5 f.” . . . .( In .\. rm .1 .. . . -. a ... . \o "b V BL I re. .... . . a . l .1 x \a 4. a .. r A» ..b A. . . I 4 .A ... . l I . ‘7 .p .5 . , . . la M 0.. i a t v . . \I I} (u 3 v .4 . . \ . . 1.4 P4 ... .. T. ..J. r. .. .... .. 9 .- ... .. .; . II. >\‘ . ... . .1 .hp :2 .. vi . y . .2 .11 kw - . 1 .. e r \! s. . h} .u Ia . . c . J. ..g .. . A \ -'A]L . Y 136 RNA tumor viruses (ed. J.R. Stphenson), pp. 299-344. Academis Press, New York, NY. Pabo, C.C., and Sauer, R.T. (1984). Protein-DNA recognition. Ann. Rev. Biochem. 53, 293-321. Pachl, C., Schubach, W., Eisenman, R., and Linial, M. (1983). Expression of c-myc RNA in bursal lymphoma cell lines: Identification of c-myo-encoded proteins by hybrid-selection translation. Cell 33, 335-344. Padgett, E., K.L. Baxter-Gabbard, A. Raitano-Fenton, and A.S. Levine. (1971). Avian reticuloendotheliosis virus (Strain T). (III). Ultrastrastructure studies. Avian Dis. 15, 863-873. Panganiban, A.T., and Temin, H.N. (1984a). Circles with two tandem LTRs are precursors to integrated retrovirus DNA. Cell 36, 673-679. Panganiban, A.T., and Temin, H.M. (1984b). The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature 306, 155-160. Panganiban, A.T., and Temin, H.M. (1984c). The retrovirus pol gene encodes a product required for DNA integration: Identification of a retrovirus int locus. Proc. Natl. Acad. Sci. 81, 7885-7889. Papageorge, A.G., Defeo-Jones, D., Robinson, P., Temeles, G., and Scolnick, R.N. (1984). Saccharomyces cerevisiae synthesizes proteins related to the p21 gene product of ras genes found in mammals. Mol. Cell. Biol. 4, 23-29. Parslow, T.G., and Granner, D.R. (1982). Chromatin changes accompany immunoglobulin k gene activation: a potential control region within the gene. Nature 299,449-451. Parada, L.8., C.J. Tabin, C. Shih and R.A. Weinberg. (1982). Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297, 474-478. Paul, P.S., Pomeroy, R.A., Sarma, P.S., Johnson, R.N. Barnes, D.N., Kumar, N.C., and Pomeray, B.S. (1976). Naturally occurring reticuloendotheliosis in turkeys. Transmission. J. Nat., Cancer Inst., 56, 419-422. Payne, B.S., Courtneidge, Crittenden, L.8., Fadly, A.M., Bishop, J.M., and Varmus, H.E. (1981). Analysis of avian leukosis virus DNA and RNA in bursal tumors: Viral gene expression is not required for maintenance of the tumor state. Cell 23. 311-322. Payne, L.N., and Biggs, P.M. (1964). Differences between i 4 ... f. I . l o- . . .l u . no a. . \ r0 . pa . It .0 . ‘4 . 4 r. .. . n‘ .. . ... .I.. ... ...4 [.1 «a I ‘ ee- 43- h ‘I f. “to — rl~ l. K. I n n. -¢ a I Jiw 9‘ 'il ... 3 2) O A L IV 1.. m-‘LI a w . A : mm iv a... a"’ P.L 137 highly inbred lines of chickens in the response to Rous sarcoma virus of the chorioallantoic membrane and of embryonic cells in tissue culture. Virology 24, 610-616. Payne, L.N., and Biggs, P.M. (1966). Genetic basis of cellular susceptibility to the Schmidt-Ruppin and Harris strains of Rous sarcoma virus. Virology 29, 190-198. Payne, 6.8., Bishop, J.M., and Varmus, H.R. (1982). Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295, 209-214. Persson, H., Henninghausen, D., Taub, R., DeGrado, W., and Leder, P. (1984a). Antibodies to human c-myc oncogene product: Evidence of an evolutionarily conserved protein induced during cell proliferation. Science 225, 687-693. Perrson, N., and Leder, P. (1984b). Nuclear localization and DNA binding properties of a protein expressed by human c—myc oncogene. Science 225, 718-721. Perry, R.P. (1983). Consequences of myc invasion of immunoglobulin Loci: Facts and speculation. Cell 33. 647-649. Peters, G., Brookes, S., Smith, R., and Dickson, C. (1983). Tumorigenesis by mouse mammary tumor virus: Evidence for a common region for provirus integration in mammary tumors. Cell 33, 369-377. Pfeifer-Ohlsson, 8., Goustin, A.G., Rydnert, J., Wahlstrom, T., Bjersing, D., Stehelin, D., and 0hlsson, R. (1984). Spatial and temporal pattern of cellular myc oncogene expression in developing human placenta: Implications for embryonic cell proliferation. Cell 38, 585-596. Purchase, H.G., Ludford, C., Nazerian, K., and Cox, H.W. (1973). A new group of oncogenic viruses. Reticuloendotheliosis, chick syncytial, duck infectious anaemia and spleen necrosis viruses. J. Nat. Cancer Inst. 51, 489-499. Purchase, H.G., and Witter, R.L. (1975). The reticuloendotheliosis viruses. Current topics in microbiology and immunologu 71, 104-124. Rabbits, T., Namlyn, P., and Baer, R. (1983). Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature 306, 760-765. RaPP. H.R., and Rodaro, G.J. (1980). Generation of oncogenic mouse type C viruses: In vitro selection of carcinoma-inducing variants. Proc. Natl. Acad. Sci. USA 77, 624-628. ‘ 1 . :*11 f ..c 15101 1.3 1|. \ . J-. .- --.1- I | 'l- . I}; --.J. -~. rs ' '7 K - .7 t ’. "-,|‘l - - o it) ‘|. m ‘ f u. L N {I l’ ICE } x J 311.1113“; I .\ a); r L. a . 1".) '1 .:£8- . :f .1 1': m D 1);; J ' . ._.. .--.-.-l I v9 7 as 9' A- 251.11 .. ‘1} )V'zdfizu .'_‘.it L L113.) 3 ;;"usiiiv1* ,\ ~19. . 1 2 II. on [LI .3 ‘1‘ P a D . ’b’.‘ - 1 - ,.- r. I -.(I - - - luv '4... ., . . ' A. A 4 c\ (:- wJJJMV‘ "i V .5 .r a. ii.- HUG Cf' . . - _. ::4 1:: "'f; ..l .... V ~¢ i . .(L-fi" f) i 1 138 Ratnamohan, N.E., Bagust, T.J., Grimes, T.M., and Spradbrow, P.B. (1980). A transmissible chicken tumour associated with reticuloendotheliosis virus infection. Aust. Vet. J. 56, 34-38. Ratnamohan, N., and P.B. Spradbrow. (i982a). The reticuloendotheliosis viruses - A review. Pakistan Vet. J. 2, 101-107. Ratnamohan, N., Bagust, R.J., and Spradbrow, P.B. (1982b). Establishment of a chicken lymphoblastoid cell line infected with reticuloendotheliosis virus. J. Comp. Path. 92, 527-532. Reddy, V.B., Thimmappaya, B., Dhar, R., Subrumanian, R.N., Zain, 8., Pan, J., Ghosh, P.K., Celma, M.D., and Weissman, S.M. (1978). The genome of simian virus 40. Science 200, 494-500. Reitsma, P.B., Rothberg, P.G., Astrin, S.M., Trial, J., Bar-Shavit, 2., Hale, A., Teitelbaum, S.D., and Kahn, A.J. (1983). Regulation of myc gene expression in HL—60 leukaemia cells by a vitamin D metabolite. Nature 306, 492-494. Reymond, C.D., Gomer, R.B., Mehdy, M.C., and Firtel, R.A. (1984). Developmental regulation of a dictyostelium gene encoding a protein homologous to mammalian ras protein. Cell 39, 141-148. Rice, N.R., R.R. Niebsch, M.A. Gonda, H.R. Bose, Jr., and R.V. Gidlen. (1982). Genome of reticuloendotheliosis virus: Characterization by use of cloned proviral DNA. J. Virol. 42. 237-252. Rifkin, D.B., and Compans, R.W. (1971). Identification of the spike proteins of Rous sarcoma virus. Virology 46, 485-489. Rigby, P.W.J., Dieckmann, M., Rhodes, C., and Berg,P. (1977). Labeling deoxyribonucleic acid to high specfic activity in-vitro by nick translation with DNA polymerase I. J. Mol. Biol. 113, 237-251. Robinson, B.R., and Twiehaus, H.J. (1974). Isolation of the avian reticuloendothelial virus (strain T). Avian Dis. 18, 278-288. Robinson, R.L., Blais B.H., Tsichlis, R.N., and Coffin, J.M. (1982). At least two regions of the viral genome determine the oncogenic potential of avian leukosis viruses. Proc. Natl. Acad. Sci. USA 79, 1225-1229. f7 . , . .1) 1.9 . ... . .n. n I! {.1 :2 ....J 9]" .I. «k .I V‘ ..45 :. via 4 "‘1'.‘~ JHLI ‘0 .‘ ..l P.- \’.. ,1 r‘r Ii' (_4 w»\.- ¢ ‘ . 2 . I. \J I... ‘1 v .\ .J - I... e. . . A N. . . .. . J v. x... . u. .. o. . I .1. 1:4 ”I 1 U a . .P .‘k 139 Rodriguez, G.A. (1971). Biological and physical properties of T virus and the pathogenesis of the disease in young Japanese quail. Diss. Abstr. 31B (11), 6782. Rodriguez, G.A., and Field, M.R. (1969). Quantative studies on reticuloendotheliosis virus strain T. Bact. Proc. (Abstract) 221-283. Rous, P. (1910). A transmissible avian neoplasm: Sarcoma of the common fowl. J. Exp. Med. 12, 696-705. Rous, P. (1911). A sarcoma of the fowl transmissable by an agent separable from the tumor cells. J. Exp. Med. 13, 397-411. Roussel, M., Saule, 8., Lagrou, C., Rommens, C., Beug, H., Graf, T., and Stehelin, D. (1979). Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature 281, 452-455. Rubin, H. (1960). A virus in chick embryos which induces resistance in vitro to infection with Rous sarcoma virus. Proc. Natl. Acad. Sci. 46, 1105-1119. Ruly, N.E. (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transfrom primary cells in culture. Nature 304, 602-606. Saito, H., Hayday, A.C., Wiman, N., Hayward, W.S., and Tonegawa, S. (1983). Activation of the c-myc gene by translocation: A model for translational control. Proc. Natl. Acad. Sci. 80, 7476-7480. Santos, E., S.R. Tronick, S.A. Aaronson, S. Pulciani and M. Barbacid. (1982). T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Narvey-MSV transforming genes. Nature 298, 343-347. Saragosti, S., Cereghini,S., and Yaniv, M. (1982). Fine structure of the regulatory region of simian virus 40 minichromosomes revealed by DNaseI digestion J. Mol. Biol. 160, 133-146. Sarma, P.S., Jain, D.R., Mishra. N.R., Vernon, M.D., Paul, P.S., and Pomeroy, B.S. (1975). Isolation and characterization of viruses from natural outbreaks of reticulocendotheliosis in turkeys. J. Nat. Cancer Inst. 54, 1355-1359. Schwartzberg, P., Colicelli, J., and Goff, S.P. (1984). Construction and analysis of deletion mutations in the pol gene of moloney murine leukemia virus: A new viral function required for productive infection. Cell 37, 1043-1052. or i a O I .. up ’ , L. I I.) .151 R 'i I It} -a 3;. Oil) 1 e r‘. \J 5 o. f A a 5 .' ...). "~Ja.m',.; .e a- - .-}I' ‘In v.5 dot ... ‘( r; I 9 9C." -4- A .. 5 I. ’1 “\1 ‘1 E. ” .31 v.1 .F‘ N; r-.. 07 ‘.-(.‘ 5;.) "$fo 0 HQ ‘1 . ( .\- {J1}. 1. Y'Y-‘C if“? A \ I ."'"-‘~i;tf.".f!iIL 5:, .'~ ..fa 3.1“. '7) p. L i “I ‘19:; --5 Li 3: i . x: - ;. - - t)? . t . I- . 9)- ‘J.‘.I“". I- .U .0135193 .4 O '21tfl } x vie i -i uw a 3‘9 l L‘ ll; .4 IJ 3;" t 140 Schat, R.A., Gonzalez, J., Solorzano, A., Avila, E., and Witter, R.L. (1976). Alymphoproliferative diesease in Japanese quail. Avian Dis. 20, 153-161. Schechter, A.D. Stern, D.P., Viadyanathan, D., Decker, S.J., Drebin, J.A., Greene, M.I., and Weinberg, R.A. (1984). The men oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312, 513-616. Schimke, R.T. (1984). Gene amplification in cultured animal cells. Cell 37, 705-713. Schubach, W., and Groudine, M. (1984). Alteration of c—myc chromatin structure by avian leukosis virus integration. Nature 307, 702-708. Schwab, M., Alitalo, R., Varmus, N.E., Bishop, J.M., and George, D. (1983a). A cellular oncogene (c-Ki-ras) is amplified, overexpressed, and located within karyotypic abnormalities in mouse adrenocortical tumor cells. Nature 303, 497-501. Schwab, M., Alitalo, R., Klempnauer, K-H., Varmus, 8.3., Bishop, J.M., Gilbert, P., Brodeur, G., Goldstein, N., and Trent, J. (1983b). Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245-248. Schwab, M., Varmus, N.E., Bishop, J.M., Grzeschik, K-H., Naylor, S.L., Sakaguchi, A.Y., Brodeur, G., and Trent, J. (1984a). Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature 308, 288-290. Schwab, M., Ellison, J., Busch, M., Rosenau, W., Varmus, N.E., and Bishop, J.N. (1984b). Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc. Natl. Acad. Sci. USA 81, 4940-4944. Schwab, N., Alitalo, K., Varmus, N.E., and Bishop, J.M. (1985). Cold Spring Harbor Conf. on Cell Proliferation and Cancer 11,(in press). Scott, R.W., T.F. Vogt, M.R. Croke, and S.M. Tilghman. (1984). Tissue-specific activation of a cloned alpha—fetoprotein gene during differentiation of a transfected embryonal carcinoma cell line. Nature 310, 562-567. Sevoian, M., Larose, R.N., and Chamberlain, D.R. (1964a) Avian lymphamatosis. VI. A virus of unusual potency and pathogenicity. Avian Dis. 20, 336—347. 7. 40A 1?- 3 (L cos I ...-J 9‘ v ' ’. -‘ r a, v. F , v 1') -. v .- v“ “ \ ‘.c? ..a:,.. 1}” J v.‘ O n A #99 '2! 'LL Nrr .6: ~r 4 q 1| r- I“, t" .A r t v“- .5... (A .i. ‘. I11 141 Shank, P.R., Hughes, S.R., Kung, H.-J., Majors, J.E., Quintrell, N., Guntaka, R.V., Bishop, J.M., and Varmus, 8.2. (1978). Mapping unintegrated avian sarcoma virus DNA: termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Cell 15, 1383-1395. Sheiness, D.R., Hughes, S.R., Stubblefield, E., and Bishop, J.M. (1980). The vertebrate homologue of the putative transforming gene of avian myelocytomatosis virus: characteristics of the DNA locus and its RNA transcript. Virology 105, 415-424. Shen-Ong, G., Keath, B., Piccoli, S., and Cole, M. (1982). Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas. Cell 31, 443-452. Shen-Ong, G.L.C., Potter, M., Mushinski, J.E., Lavu, S., and Reddy, S.P. (1984). Activation of the c-myb locus by viral insertional mutagenesis in plasmacytoid lymphosarcomas. Science 226, 1077-1080. Shibuya, T., Chen, 1., Howatson, A., and Mak, I.M. (1982). Morphological, immunological, and biochemical analyses of chicken spleen cells transformed in vitro by reticuloendotheliosis virus strain T1. Cancer Research 42, 2722-2728. Shilo, B.-Z., and Weinberg, R.A. (1981). DNA sequence homologous to vertebrate oncogenes are conserved in Drosophila melangaster. Proc. Natl. Acad. Sci. 78, 6789-6792. Shih, C.-K., Linial, M., Goodenow, M.M., and Hayward, W.S. (1984). Nucleotide of a noncoding exon that is absent from myc transcripts in most avian leukosis virus-induced lymphomas. Proc. Natl. Acad. Sci. USA 81, 4697-4701. Shimotohno, K., and Temin, H.M. (1980a). No apparent nucleotide sequence specificity in cellular DNA juxtaposed to retrovirus proviruses. Proc. Natl. Acad. Sci. USA 77, 7357-7361. Shimotohno, R., Mizutani, S., and Temin, H.M. (1980b). Sequence of retrovirus provirus resembles that of bacterial transposable elements. Nature 285, 550-554. Shimotohno, N., and Temin, H.M. (1982). Spontaneous variation and synthesis in the 03 region of the long terminal repeat of an avian retrovirus. J. Virol. 41, 163-171. Slamon, D.J., deKernion, J.B., Verma, I.M., and Cline, M. (1984). Expression of cellular oncogenes in human malignancies. Science 224, 256-262. . . . . \_ _ ‘ , . _ ‘ . I], . A .l . “ "' ' ' ‘ i r - \— M \ " 9 ‘1" ‘ ~ J .‘l' V l ‘ ' I ‘ A) o ‘ ' .‘ - A - A " A ‘1 ' A x 7 .: .a 1a! a 14: o I ~J l \ J a .3 m , . , . , , ' g A \ l f-‘w . ', . '- . .. .g . ‘1... " {xv} :‘HL- 3v.. .. : . . 3 - - I u 3 .. a“ - ' h ‘- ' i' .- - - . Nye" N1 (L'N . 4t 1. \ L .. .L (.41 .5‘1" . J 1"; o J a d - - ' 1(. k- .' ‘4‘. o ‘ - - e w. y . . r g 'I - - 4~f>v I ”J r ..I --{, .r I v: a 1‘ ‘ ‘13,) | 0 I.) n :J* 9 L .4 _".f 5 ’ d e e E" e .-‘ ‘ '5‘ ....' ’}‘o~i t . -1. u e L- .‘ : gfifii and aji Pflfi €;::L Lnu :33 to aelieluejosi— . g I -‘ ,. . . ; I1 . ~I .' . _ >' ~ .‘ / ~‘« . . . ; - ' ) g 1 ‘ e .4 C. I ' "l e I '- 4 ¢ 5 {1 .— . . V _ .- ' . x: _. . l. . {4‘ .7 , -. . . .. . . " .- : IILdols-nLfi 3.: Jitiutz-dusii a“- snag. _ .H3 -2 '- ’ .* i- a If. i 1 ‘5“ j . "IE-mi) T'.");'3..".'? 31'? ‘. I." 7.": {I I 2.531 3:315? i . 3"”: f . ' ' " ._ ' . . _ ' r" ‘ a ' o ' - x“ ‘1 4 ‘ . 1 u a \o: I J I ..-, ‘ kln‘x 'o ,, ‘ A ' VJ , ' _ . - ‘ . —o . . ‘ ~‘.' \ ‘1'. L, )( .mnTh)‘ ‘L. ..‘Tf' \ ‘7 '- s' ' .m - w. -, - - _- : I - ,4“ 'r or 'f‘. .7 I s I. . l ‘ J‘J‘lvz L'fli‘ . n .‘x - tl~ ‘ ’ - - — .. \ a u 11:...) \ e A D F'VL'JL , .. .. . . ' . , r ~ . .- s . ,.: x '.‘ ; ... - u- . ‘fI/o‘ . -.. - s~ 94 f '1‘.’1.:"¢ L L’lf}.‘ .- 1‘.) L l-l ’ .- J 5 l1 . lv' . i Va J - ‘) 1 e .' I’1:L Q 5!! d o '5) ':-’3§$‘\—4 . e ’ ,~ - a p , r — ’ . - - a— ' \' ' ' . ‘ I 7 : J 1.9“ - .' :- ~ n‘ni: ,. . . , ~ '+ :._ . . ‘— .. (Bu—«.14- - ‘ ',l ’ - 4 ‘ . “L . . ' -A ' J 4.: ' - . . "l. . L ‘. .."o "'1 . ' . .133». :t-‘|)'r.52.‘5fil l L. 1 (1(WJz. .3_ ‘3 1' £37ELLAI‘.'-_.: , ;.’ ' ~ . .5” _ " .~ .. - . .' .1: ‘ncvfi ..z : ~ -: 4 a Of : .‘- .~- - ~.- ~»- ‘ ;.. — {U ( ,C‘ as. ‘. A . a, - ' . R.J.] ’ . . -. .-.'_ . .4 -- ..'.. '_ “-4 cl 0 1..x‘3":.'.'xfizi r "(3.7- “ . '1' .3: rf'jéiff'JI (‘1..2 \o'f» ..3'71372 .f I. 33 t3. "f'h’flf‘i’l. vr AA. .zJYb-¥£d§ .In LCD .106 .DCDQ .lJEn .3014 .?-w v u - ,- rt H) J .4 U‘ D- ‘ r I-I \T‘ P" L1. :1 '7') .J D A (‘J ' Q g I'fi N 0 O»: x g ‘4 l" .4 ' 4 C :2. I'I . l U x.) (“.1 O: ‘ (I. b t" ..Z ~ 0 .q 9 O ., ...; U) r4 {i , - 1.. .‘ \ f .I." I Os :purnm*fio;c .igdei) k.k .nznsi run ..A .on.u -' , ‘ . ‘ .. ' ., .:v ,1 .' ~' ,_.' ... ' , . . PU»; Wu: To “cram: e- ;47 .1 azzvuinxe has us.’.: LE- ..‘C',..“.’ .t ..LL'TIVO'YJ’ST 71:717.". Ii; IQ 3:25:59”! 3.8: U I‘A P" *fl» . W l '-: I a ...4 C h‘. H MI «1‘ I O (‘4 ,. |“‘I all . I w I‘ ~, LI 0 I .04 s .4 ’1 i m l ‘1 'g; J A .‘I r" p". P'{ 1') (‘0 r-w J 142 Slebenlist, U., Henninghausen, D., Baltey, J., and Leder, P. (1984). Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in burkitt lymphoma. Cell 37, 381—391. Souza, L.M., Strommer, J.N., Hilyard, R.L., Komaromy, M.C., and Baluda, M.A. (1980). Cellular sequences are present in the presumptive avian myeloblastosis virus genome. Proc. Natl. Acad. Sci. 77, 5177-5188. Southern, I. (1975). Detection of specific sequences amoung DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-517. Southern, 8. (1980). Gel electrophoresis of restriction fragments. Methods of Enzymol. 69, 152. Spandidos, D.A., and Wilkie, N.M. (1984). Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature 310, 469-475. Staden, R. (1984). Graphic methods to determine the function of nucleic acid sequences. Nucl. Acids Res. 12, 521-538. Stacey, D.W., and Kung, H.-F. (1984). Transformation of NIH 373 cells by microinjection of Ha-ras p21 protein. Nature 310, 508-511. Stanton, D.W., Fahrlander, P.D., Tesser, P.M., and Marcu, K.B. (1984). Nucleotide sequence comparison of normal and translocated murine c-myc genes. Nature 310, 423-425. Steffen, D. (1984). Proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas. Proc. Natl. Acad. Sci. USA 81, 2097-2101. Stehelin, D., Varmus, H.R., Bishop, J.M., and Vogt, P.K. (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170-173. Stewart, T.A., Pattengale, P.K., and Leder, P. (1984). Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38, 627-637. Stiles, C.D. (1983). The molecular biology of platelet-derived growth factor. Cell 33, 653-655. Sundstrom, C., and Nilsson, K. (1976). Establishment and characterization of a human histiocytc lymphoma cell .I‘ 4" )1. 91-. ~ u 5" h ..u .n .c .. ‘1 [a 3 10 aft '1’): .I\ ‘4 '3 E 'I a. .T-‘u: “iii 9" .‘ ("T ¢“€f I! o. ~l.‘ t.‘ i.- 143 Swanstrom. R.. DeLorbe. N.J.. BishOp. J.M.. and Varmus. M.D. (1981). Nucleotide sequence of cloned unintegrated avian sarcoma virus DNsziral DNA contains direct and inverted repeats similar to those in transposable elements. Proc. Natl. Acad. Sci. USA 78. 124-128. Sweet. R.W.. Yokoyama. 5.. Kamata. T.. Feramisco. J.R.. Rosenberg. M.. and Gross. M. (1984). The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature 311. 273-275. Swift. R.A.. Schaller. D.. and Kung. H.-J. (1984). Insertional activation of c-myc by reticuloendotheliosis virus in chicken B-lymphoma: nonrandom distribution and orientation of the proviruses. J. Virology (Submitted). Swift. R.A.. Handorf. P.. and Davis. R.L (1985). A modified version of ANALYSEQ can be run on an IBM-XT personal computer. (In preparation). Tabin. C. J..S.M. Bradley. C.I. Bargmann. R.A. Weinberg. A.G. Papageorge. S.M. Scolnick. R. Dhar. D.R. Lowy. and S.M. Chang. (1982). Mechanism of activation of a human oncogene. Nature 300. 143-148. Taub. R.. Kirsch. 1.. Norton. C.. Lenoir. 0.. Swan. D.. Trunick. S.. Aaronson. 8.. and Leder. P. (1982). Translocation of the c—myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl. Acad. Sci. 79. 7837—7841. Taylor. H.W.. and Olson. L.D. (1972). Spectrum of infectivity and transmission of the T—virus. Avian Dis. 16. Teich. N. (1982). In RNA Tumor Viruses. eds. Weiss. R.A.. Teich. N.M.. Varmus. N.E.. and Coffin. J.M.. (Cold Spring Harbor Laboratory. Cold Spring Harbor. NY) pp. 25-207. Temin. H.M.. and Kassner. v.K. (1974). Replication of reticuloendotheliosis viruses in cell culture: acute infection. J. Virol. 13. 291-297. Temin. H.M. (1980). Origin of retroviruses from cellular moveable genetic elements. Cell 21. 599-600. Temeles. G.L.. DePeo-Jones. D.. Tatchell. K.. Ellinger. M.S.. and Scolnick. S.M. (1984). EXpression and characterization of ras mRNAs from Saccharomyces cerevisiae. Mol. Cell. Biol. 4. 2298-2305. Theilen. G.M.. Zeigel. R.F.. and Twiehaus. N.J. (1966). Biological studies with RE virus (strain T) that induces reticuloendotheliosis in turkeys. chickens and Japanese quail. J. Nat. Cancer Inst. 37. 731-743. “Y . . _ 4 n n . -1 -- l t l s , c . 0.. ‘ , I . , , . ‘ , . , a '4 0 e, I! . ,~ -, . . . . DC.» a. ' ' 4 \ ,. ..' . 1 ‘ ,, * ‘ e . v .. . ‘ . ,. . v 1.1 ' v ' m. ‘1 ‘, - 1| . -- v v ... em \ 1 u ‘ . ., ‘ ‘. . - A v-l l ‘ ' 14 'm _, . . - -f _ ‘. i ‘5. 1 -~_ ' . a .73 ' .. -, u- ,n/ ..‘.Y‘. .m.~,-. .. 1 ' l ‘e':_; ti '~ - . , .0 : . . . . - . Y I .1‘ " - 1' ‘ ’ , .. \ 1- 1.‘ . 1; 1' 1 .i . t c ‘ 1 '- I‘ l ‘7'. ' h e . g l . ~ . - \ . . U . n - .I -. o . {“4" ”4. \ ’ -.. -. a. - ..7'V“' - I . . , I t t. . . - T ' ' . I a c .- , - . a! ‘ ‘;I I ' v O r. , .1. 4| > .. n' _ . . ’~ 'i'- _ . ~ "' O . A . ~ .... . . d . I. I ‘ . . .3 .. . . . . .;; .' I . . ,.a . x ..T I. .2 .I I d. " v .. .rl < . x ". . . ‘ I '," ’ 17'. - . . . . L i . . 2 ‘ . - 1 n. . a . e u -, 1 ‘u . . . F. I . 0 > ‘ ‘ I ' . . f . . A , I ~ . 144 Tinoco. 1.. Borer. R.N.. Dengler. 8.. Levine M.D.. Uhlenbeck. O.C.. Crothers. D.M.. and Gralla. J. (1973). Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246. 40—41. Todaro. C.J.. DeLarco. J.R.. and Cohen. S. (1976). Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature 264. 26-31. Trager. w. (1959). A new virus of ducks interfering with develOpment of malaria parasite (Plasmodium lOphurae). Proc. Soc. EXP. Biol. Med. 101. 578—582. Tsichlis. R.N.. Strauss. P.G.. Hu. L.F. (1983). A common region for proviral DNA integration in MoMuLV—induced rat thymic lymphomas. Nature 302. 445—449. Tsichlis. R.N.. Strauss. 9.6.. and Kozak. C.A. (1984). Cellular DNA Region Involved in Induction of Thymic Lymphomas (Mlvi-Z) maps to mouse chromosome 15. Mol. Cell. Biol. 4. 997-1000. Varmus. H.R.. Quintrell. N.. and Ortiz. S. (1981). Retroviruses as mutagens insertion and excision of a nontransforming provirus alter eXpression of a resident transforming provirus. Cell 25. 23-36. Varmus. N.. and Swanstrom. R. (1982). in RNA Tumor Viruses. .dSe “0188: R.A.! T.i¢hl N.M.: Varmus. H.R.. 611d Coffin. J.M.. (Cold Spring Harbor Laboratory. Cold Spring Harbor. NY) pp. 369-512. Varmus. B.S. (1983). in Mobile Genetic Elements. ed. Shapiro. J.A. (Academic. New York) pp. 411-503. Verma. I.M. (1977). The reverse transcriptase. Biochim. BiOphys. Acta 473. 1-38. Villiers. J.. and Schaffner. w. (1981). A small segment of polyma virus DNA enhances the eXpression of a cloned B-globin gene over a distance of 1400 base pairs. Nucl. Acids Res. 9. 6251-6264. Vogt. P.K. (1977). Genetics of RNA tumor viruses . In Comprehensive virology(ed. H. Fraenkel-Conrat and R.R. Wagner). vol. 9. pp. 341-455. Plenum Press. New York. Waite. M.R.F.. and Allen. P.T. (1975). RNA-directed DNA polymerase activity of reticuloendotheliosis virus: Characterization of the endogenous and exogenous reactions. J. Virol. 16. 872-879. Wang. J.Y.J.. Ledley. F.. Goff. 8.. Lee. R.. Groner. Y.. and Baltimore. D. (1984). The mouse c-abl locus: Molecular .1. A \ C' '1 EC"- ‘ v T. v: ‘. r. F (51".: C.) ”(I (a, . .. ,- b ‘4 11111.1’l' 7 e é‘ L4 41‘ 1.1 I. '- ‘11.. ill 7. r. a a C r: I ' .- I \ e I 1.. c C . I... . 1. ... .. n \ I I‘ll I‘ll] .Ill-IIIIJ: 145 cloning and characterization. Cell 36, 349-356. Wasylyk, B., Wasylyk, C., Augereau, P., and Chambon, P. (1983). The SV40 72 base pair repeat preferentially potentiates transcription starting from the proximal natural or substitute promoter elements. Cell 32, 503-514. Watson, D.R., Reddy, E.P., Duesberg, P.H., and Papas, T.S. (1983). Nucleotide sequence analysis of the chicken c-myc gene reveals homologous and unique coding regions by comparison with the transforming gene of avian myelocytomatosis virus MC29, gag-myc. Proc Natl. Acad. Sci. USA 80, 2146-2150. Watanabe, S., and Temin, H.M. (1982). Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5' long terminal repeat and the start of the gag gene. Proc. Natl. Acad. Sci. USA 79, 5986-5990. Waterfield, M.D., Scrace, G.T., Whittle, N., Stroobant, P., Johnsson, A., Wasteson. A., Westermark, B., Heldin, C.-H., Huang, J.S., and Deuel, T.F. (1983). Plateletaderived growth factor is structurally related to the putative transforming protein p2Bsis of simian sarcoma virus. Nature 304, 35-39. Weischet, W.0., Glotov, 8.0., Schnell, H., and Zachau, H.G. (1982). Differences in the nuclease sensitivity between the two alleles of the immunoglobin kappa light chain genes in mouse liver and myeloma nuclei. Nucl. Acids Res. 10, 3627-3645. Westin, B.H., Gallo, R.C., Arya, S.K., Eva, A., Souza, L.M., Baluda, M.A., Aaronson, S.A., and Wong-Steal, F. (1982). Differential expression of the amv gene in human hematopoietic cells. Proc. Natl. Acad. Sci. 79, 2194-2198. Westway, D., Payne, G., and Varmus, H.E. (1984). Deletions and base substitutions in provirally mutated c-myc alleles may contribute to the progression of B-cell tumors. Proc. Natl. Acad. Sci. USA 81, 843-847. Wiman, H.G., Clarkson, B., Hayday, A.C., Saito, H., Tonegawa, S., and Hayward, W.S. (1984). Activation of a translocated c-myc gene: Role of structural alterations in the upstram region. Proc. Natl. Acad. Sci. USA 81, 6798-6802. Witter, R.L., Purchase, H.G., and Burgoyne, G.H. (1970). Peripheral nerve lesions similar to those of Marek‘s disease in chickens inoculated with reiculoendotheliosis virus. J. Nat. Cancer Inst. 45, 567-577. Witter, R.L. (1978). Reticuloendotheliosis. in Diseases of *1 . . 'J't ‘- A. .4 '13“? I. ~ IV L'. .‘C clam-1 i ." 4‘4 33 \-.r 4 t . 4.0 ‘- lo. . . ‘-.' p '1‘"(" my to. ...1’3 x“: J. m vb r ' 1 Q 1 7, -I \ ~ .- no 1;: .7 aU’I 1 VC‘ '3 f . a o MTC 4 L" '1 a YLIEI f. ”131'? 'u.‘ a: II. n " In. r 74.1.: _v 1‘1 r1 ~J 2:1 a; ‘. ‘1 v}? ( .../~— . -‘ G ‘71 a .....r. \ta «v: A. c." .\.. 1, iv .-. .4: 3:5) 'B'J J '7 A1 880’ will. 1 I' . :ti. )1. 146 Poultry, 7the edition, eds. Hofstad, M.S., Calnek, B.W., Helmboldt, C.F., Reid, W.M., and Yoder, Jr., H.W. (Ames: The Iowa State University Press) pp 480-489. Wyke, J. (1983). From c-src to v-src. Nature 304, 491-492. Yuasa, Y. Srivastava, S., Dunn, C., Rhim, J., Reddy, E., and Aaronson, S. (1983). Acquisition of transforming properties by alternative point mutations with C-bas/has human proto—oncogene. Nature 303, 775-779. Zaret, K.S., and Yamamoto, R.R. (1984). Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell 38, 29-38.