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ABSTRACT

STUDIES ON THE NONLINEAR VIBRATIONS OF

SYSTEMS WITH ONE AND TWO DEGREE-OF-FREEDOM

BY

David Owen Swint

This study presents an ultraspherical polynomial (U.P.) approximate

method for representing natural vibrations for one and two degree-of-

freedom spring—mass systems possessing nonlinear restoring forces. The

nonlinear equations of motion are approximated by a set of linear

equations over appropriate intervals of amplitude.

General multilinear U.P. relations are develOped for approximating

nonlinear restoring forces. The special cases of odd restoring forces,

f(x) - ax + 8x3, sin x, and sinh x, are examined in detail, and used in

the one degree-of-freedom system to obtain approximate expressions for

period-amplitude relations. In general, for these odd functions

considered, the bilinear U.P. approximate method gave improved period-

amplitude relations as compared to previously published approximate

period-amplitude relations obtained from linear U.P. approximations.

In examining the two degree-of-freedom system a special case is

treated whidh shows that where the linear U.P. method predicts a certain

solution, the bilinear U.P. method does not. This special case is solved

exactly by a finite difference technique and is shown to support the

bilinear prediction.

Finally, the finite difference method, which was developed for

solving the two degree-of-freedom system exactly, is applied to other



cases where the linear U.P. method predicts more than the usual two

modes of vibration (superabundant modes). The finite difference method

not only reveals the region over which these superabundant modes are

present but also shows how these modes approach, for large amplitudes,

limiting values predicted previously by other authors.
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I. INTRODUCTION

1.1 Bagkground Survey.

Nonlinear vibration problems occuring in engineering are

usually difficult to solve exactly and only a relatively few have

been so solved. Approximate methods used to obtain solutions

of nonlinear systems vary widely. Broadly speaking, such nonlinear

vibration problems are grouped as those which are nearly linear

(slightly nonlinear) and those which are strongly nonlinear. The

bulk of work to date has been carried out on the former group

primarily for two reasons. First,it is reasonable to suppose that

certain phenomena known to exist in the related linear system are

only slightly changed in the slightly nonlinear case; and second,

the majority of physical systems falls into this group.

Some approximate methods for obtaining solutions of slightly

nonlinear vibration problems are the iteration method, the classical

perturbation method, and the method of variation of parameters.

The iteration method [2] usually consists in adopting the linear solution

as a first approximation. Upon substituting this first approximation

into the system of equations, a second approximation is obtained. This

process can be repeated to obtain greater refinements provided that

it is convergent.

The classical perturbation method is based on generating solutions

to nonlinear vibration problems from known linear solutions
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which lie close to the nonlinear ones. This is accomplished by expanding

the desired quantity in a power series with respect to some small

parameter and converting the nonlinear problem into a set of linear

problems.

The method of the variation of parameters [2] consists in adopting

solutions which appear to be simple harmonic solutions, but the amplitude

and phase of which are assumed to be slowly varying functions of time.

The amplitude and phase are the solutions of a new set of nonlinear

(auxiliary) equations. These auxiliary equations are integrated

approximately by utilizing the pr0perty that the quantities of interest

vary only slowly with time.

This research is concerned with yet another approximate technique

of analysis-that of expanding the nonlinear terms of the problem in

terms of ultraspherical polynomials. This expansion is made over an

appropriate interval which best corresponds to the actual motion of the

nonlinear system and linearization achieved by truncating the expanded

series after the linear term. Denman introduced this approach first in

1959 and since then, with his co-workers, has intensively examined

and extensively used this method in a number of studies [3,4,5,6,7].

The problems proposed in this dissertation are described below in Section

1.5 and are primarily motivated by the work of Denman and his co-workers.

It is thus prOper at this point to review in.Sections 1.2 and 1.3 first

the properties of the ultraspherical polynomials and the use made of

these polynomials primarily by Denman and his co-workers. After this

a two-line approximate method used by Ergin is presented in Section 1.4.

In view of the work to date section 1.5 gives a brief overview of the

organization of this dissertation.
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1.2 Properties of the Ultraspherical Polynomials.

The ultraspherical polynomials (U.P.) [20] are sets of polynomials

orthogonal on the interval (-1,1) with respect to the weight function

l-l/Z

(l-xz) , each set corresponding to a value of A>-l/2. They

may be obtained from

 

 

(A) (A) -A+1/2 d ‘1 Hn-l/Z

Pn (x) I An (l-xz) (—) (l-xz)

dx

where n

(X) (-1) 1(A+1/2) I‘(n+2k)

An - A 4 o

21:1 n! 1121) I‘(n+A+l/2)

(A) {-1)n 2n n!

I A a: 0

An (2“) !

(A)

Here A3 is a normalizing factor, n is the degree of the U.P., and

A is an index, i.e., a parameter identifying a particular subset

of polynomials.

A function, f(x), defined on the interval [-A,A] may be expanded

in terms of these polynomials as

Z (A) (1)

f(x) - n-o an Pn (t)

(A)

where x I At and -A:x§A, ~15tgl, with coefficients an given as



 

1 (A) A-l/Z

f f(At) Pn (t) (l-tz) dt

(1) "1

an 1 (1) 1-1/2

I [Pn (t)]2 (1-t2) dt

-1

Some frequently used subsets of the ultraspherical polynomials are:

1'0, Chebyshev polynomials of the first kind; XII/2, Legendre poly-

nomials; AI1,Chebyshev polynomials of the second kind; and A+w,

the powers of x. Appendix A contains additional properties of the

ultraspherical polynomials.

1.3 Applications of U.P. to Nonlinear Vibration Problems.

The following is a brief summary of some of the problems in

which the U.P. method has been applied.

1.3.1 Problems of Single Degree-of-Freedom.
 

The governing equation of motion for the free oscillation of

the single degree-of-freedom system in Figure 1.1 is

§+E(x)-o

where f(x) I w: sin x and mo = Vmg/i

Exact solution. The solution for the period can be expressed
 

exactly in terms of elliptic integrals [4] as

4 n/2 d¢ 4

'r I— f = —- K(k,Tr/2)

° 1/2

w (l-k2 sinzd) w

 

0

where K(k,fl/2) denotes the complete elliptic integral of the first

kind and k I sin (A/2), with A being the amplitude of motion.



 
 

Figure 1.1 A Single Degree-of—Freedom System
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The above can be rewritten nondimensionally as

2

III I- K(k,1T/2)

0 n

where

2n

1' B ..—

o

w

One-line apppoximation. Denman and his co-workers [3,4,5,6,7]

introduced U.P. in solving single degree-of—freedom, free and forced,

vibrating systems. The nonlinear function was expanded in terms of U.P.

and truncated after the linear term. The vibration period was amplitude

dependent, a fact not present when the same function is expanded by the

Taylor series and truncated after the linear term. This is illustrated

by the examples that follow.

1) pgaylor approximation. Replace sin x by the linear term of the

Taylor series expansion as sin x 2 x and the equation of motion becomes

x + mg x I 0. The approximate frequency relation is given by w* = m
0

or r*/to I (Zn/wo)/ (Zn/mo) = 1, where * indicates an approximation.

11) U.P. approximation. Replace sin x by the linear term of the

ultraspherical polynomial expansion as

(1+1)

(A) (A) x 2

sin x = a1 P1 (-;)= (T) I‘()\+2) JA+1 (A) X

where F is the Gamma function and Jn is an ordinary Bessel function

of order n. The equation of motion becomes



.. 1+1

x + mg (13‘) MHZ) Jxfl (A) x - o

The approximate frequency-amplitude relation is given by

1 1+1 “2

i (E) T

 

 

 

Thus

T*(A9A) zit/(0* mo 2 A+l
"1/2

a = "_ 3 (—) I‘(A+2) JA-l-l (A)

1:0 2U/wo (0* A

or,

r*(0.A) (2 -1/2

f” A = 0’ —— = —) J (A)
To A 1

-1/2

T* (1/2.A) 3/n/2 J3/2 (A)

for A a 1/2, __ =

To (A)3/2

iii) Graphical approximation. A simplified graphical approximation

as suggested by Denman and Liu [6] is now summarized here. This

graphical approximation has been shown to be related to the one-line

U.P. method. This procedure is illustrated below for the function

f(x) I sin x as:

1. Plot the nonlinear function f(x) of the system as f(x) vs x.

2. Select an amplitude x = A and draw a straight line from the

origin to an ordinate at A, such that the maximum error due to

this straight-line approximation to f(x) in (O,A) is minimized

as shown in Figure 1.2 for A = O and A = 3fl/4.



 

f
(
A
)

=
s
i
n
A

  
 

  (Radians)

Amplitude, A

Figure 1.2 Graphical Approximation to the Non—linear Function Sin x

 

#
4
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O
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~
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:
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e
r
i
o
d

R
a
t
i
o
,

T
/
T

H N

  

.
.
.
:

O    

O 0 (
D p D b D p

Amplitude, A

Figure 1.3 Period-Amplitude Curves for the Free Vibration of a

Single Degree-of~Freedom System With Sin x being

the Nonlinear Restoring Force
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3. The slope of this straight line is an approximate equivalent

"spring constant" corresponding to this value of A. From

this the approximate period ratio T*/To can be obtained as:

..
“’0 g ,4: a: ff (slope @ A = 0)

x + kx I 0 where w = VE- o

w* = JE'a 70.467 (slope @ A 3fl/4)

  

Therefore,

2n/ {0.467 1

T*/T = I = 1.46

2n/1 0.689

This value is then plotted as a point on the T/To versus A graph in

Figure 1.3.

4. The process is repeated for various values of the amplitude

A, and the graph of T*/To versus A is obtained.

The graph T/To versus A in Figure 1.3 contains, in addition to the

graphical approximation C, the exact result E, the linear Chebyshev

approximation C, the linear Legendre approximation L, and linear

Taylor approximation T; to the function sin x representing a "soft"

restoring force. The graphical method is quite simple and can be used

whether f(x) is expressed in terms of simple functions or numerically

as a load-displacement plot.

1.3.2 Problems of Multiple Degree-of-Freedom.

In addition to the use of U.P. in the study of single degree-of-

freedom prOblems, Liu [7] examined a two degree-of—freedom, free and forced

(with damping), vibrating systems represented in Figure 1.4. The

coupling spring between the two masses was of the cubic type. This

nonlinear spring was then linearized (one-line approximation) in
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FT" x1 x2

linear cubic

spring spring

-1 —/vv\q .2

rYIIIV III/l III/IT

Figure 1.4 An Unsymmetric Coupled Spring-Mass System

 

 

 

    
 

 

x1 x2

cubic 6 cubic cubic

spring spring spring

m1 V V m2

O _
/7//77 777/7 //////

Figure 1-5 .A Symmetric Coupled Spring-Mass System
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terms of ultraspherical polynomials. Frequency-amplitude expressions

were obtained, tabulated, and compared with numerical results.

More recently, Anand [18] examined a symmetric two-mass system using

a method which will be shown in this research to be essentially a

one-line U.P. approximate method (Figure 1.5). Aside from the

efforts of Liu and Anand, however, very little has been done in the

application of the U.P. approximate method to multiple degree-

of-freedom systems.

1.3.3 Problems Involving Continuous Systems.

Blotter [8] has applied the ultraspherical polynomial (one-line)

method to systems governed by nonlinear partial differential equations

in one space variable and one time variable. He assumed an autonomous

system with the nonlinear term being the nonlinear forcing functions.

A linear mode of deflection was assumed and this allowed him to

linearize the nonlinear forces. This method was then applied to

typical systems of strings, bars, circular membranes and plates

on nonlinear foundations and with immovable end supports vibrating

at large amplitudes. He found that if the Chebyshev polynomials

(AIO) are used, the frequency-amplitude relationship agrees exactly

with the first order perturbation solutions.

1.4 Two-Line Approximation to Nonlinear Vibration Problems.

Ergin [9] introduced a two-line segment (bilinear) approximation for

the nonlinear restoring force to obtain solutions to a number of single

degree-of-freedom, transient—load problems. Ergin approximated the

nonlinear function by two straight-line segments, each of which

was determined by its slape and a point through which it passes.

The problem reduced then to solving the same number of linear equations
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f(x) = ax + x3

f(x) I 
82(X)

 

 

   
Amplitude, x

Figure 1.6 Ergin's Bilinear Approximation to the Nonlinear Function

f(x) I ax + x3



13

as there were line segments with the prOper matching of displacements

and velocities at the transition points. For simplicity Ergin chose

the slope k1 of the first line segment as the slope of the function

at the origin, i.e., linear Taylor approximation, (Figure 1.6).

The remaining task was then to establish the location of the transition

point xt between the two line segments and the slope k of the second

2

line segment by minimizing the mean square error. Ergin's two-

line approach has provided the motivation in this dissertation to

construct, as a natural extension, a two-line ultraspherical polynomial

approximate method.

1.5 Iggganization of Dissertation.

In Chapter II a general development of the U.P. approximation

to a nonlinear restoring force is presented, giving two bilinear

approximations over some apprOpriate interval containing the equilibrium

point. The bilinear U.P. approximation is then shown to degenerate

into a one-line (linear) U.P. approximation as the transition amplitude

point xt connecting the two lines either approaches zero or the maximum

amplitude xm. Next, a mean square error minimizing method is used

to generate a similar bilinear approximation. This is shown to agree

with the bilinear U.P. approximation when certain conditions are

satisfied. Three examples of odd, nonlinear restoring forces f(x) =

ax + 3x3, sin x, and sinh x are then approximated by this bilinear

U.P. approximation.

In Chapter III one degree-of—freedom free, undamped, nonlinear

vibration problems are solved for the three nonlinear restoring forces

whose bilinear approximations were derived in Chapter II. Also included
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in Chapter III is the one degree-of—freedom forced, undamped, nonlinear

vibration problem involving a step function excitation with the restoring

force being f(x) I x + x3.

Chapter IV treats a two degree-of-freedom free, undamped, symmetric

nonlinear vibration problem with cubic nonlinear restoring forces.

An approximate technique which was developed by Anand and which yielded

more than two modes of vibration (superabundant modes) is shown to

be essentially the one-line U.P. approximation. A special case in

which Anand's development [18] predicts these superabundant modes is

then solved analytically using a bilinear U.P. analysis. The bilinear

U.P. method shows no evidence that such a superabundant mode exists.

An exact solution by.a finite difference method of this special case

is then shown to agree with the bilinear U.P. prediction. Also

included in Chapter IV are additional exact solutions of the two

degree-of-freedom problem considered. The results then enable us to

argue that the superabundant modes for Anand's problem do approach,

for large amplitudes, Rosenberg's [15] straight-line superabundant

modes.

A brief summary of results as well as conclusions are contained in

Chapter V.



II. BILINEAR ULTRASPHERICAL POLYNOMIAL APPROXIMATIONS

In this chapter we consider nonlinear functions of one space

variable represented by two bilinear approximations over some

appropriate interval which includes the equilibrium point. Next,

the simplified case of the U.P. bilinear approximation of an odd

function is considered and is compared against another bilinear

approximation obtained by a mean square error minimizing method.

Finally, three odd functions ax + 8x3, sin x, and sinh x serve to

illustrate the procedure leading to their U.P. bilinear approximation.

2.1 Ultraspherical Polynomial Approximation to a Nonlinear Function.

In this section we consider the nonlinear function G(x)

shown in Figure 2.1. One may think of G(x) as representing some

restoring force in the study of vibrations of physical systems.

By equating G(x) to zero and solving for the real roots, one equilibrium

point, xo say, can be found. On either side of the equilibrium point

a particle will in general experience a different spring force.

For the case above, the spring force is approximated bilinearly

on each side of the equilibrium point over the total interval from

a to B as follows.

In the interest of simplifying the algebra, the origin is shifted

horizontally to x0. Next, the two slope parameters k1 and k3

are computed for the intervals [0, Izmlll and [-Izm3l, 0] respectively,

where Izmll I Ixtl-xol, Izm3| = [XO-xtzl and xt1 and xtz are

suitably chosen transition points. To obtain the line k2,

15
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Figure 2.1 NOnlinear Function of One Space Variable Approximated

by Multiple Linear Approximations
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the origin is shifted horizontally and vertically to xtl. The line

k2 is then computed for the interval [0,ym] where Iyml I IB-xtll.

This is followed by yet another shift in the origin horizontally and

vertically to xtz, where the line k4 is computed for the interval

[- lsml, 0], Ian] I Ixtz-al. In this way four linear functions are

constructed, each computed by the one-line method. In each case, the

shifted nonlinear restoring function is expanded in the ultraspherical

polynomials {Pn(l)(t) , where each Pix) (t) is of degree n in t, and

the polynomials are orthogonal on the appropriate symmetric interval.

This is motivated by an approach by Howard [10] which concerns the

construction of an odd function over the appropriate half interval.

As an illustration, the shifted function on [0, Izmll] is

60(2) I G(z + :0) where x I z + x0 (Figure 2.2). In order to expand

Go(z) on [0,Izm1] in polynomials orthogonal on the symmetric interval

[-Izmll, Izmlll, we construct an odd function which coincides with

Go(z) on [0, Izmlll.

A function G(x) continuous on {-5, E] has the ultraspherical poly-

nomial expansion

m (A) (A) x m (A) (A) (A) (A)

G(x) I 2 an Pu (...). 2 an Pn (t) = a0 Po (t)

nIO n=0

(A) (A) (A) (A) (A) (A) . . .
+ a1 P1 (t) + a2 P2 (t) + 33 P3 (t) +

where -1§_t :_1 and (-€§_le§) with the coefficients an(A)

written as



18

 

G(x)

 

 
 

 
       

 T T  

 

  

  
 

Figure 2.2 A Nonlinear Function G(x) Represented Between x0 and xt

by an Odd Function About z=0 (x=xo) 1
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_(A)

[1 G(Ec) P (t) m(A,t) dt

(A) -1 n
a =

n (A)

f1 [P (t)]2 w(A,t) dt

-1 n

1-1/2

and where the weight function w(A,t) is defined as w(A,t) = (l—tz)

and A>-1/20

Parameter k1(l,zml): On the interval [-|zm1|, Izmll]

-[G(-z + x )] -|z I < z<0
G (2) - O ’ m1 _

O G(z + x ) O < z ('2 I

o ’ -' m1

Expanding Go(z) over this symmetric interval in terms of these

polynomials and truncating after the linear term, we obtain

 

 

  

 

(A) 2

G (2) - 81 "' [k 0‘92 )1 z

o Izml 1 m1

where,

a(A) [10 ('2 lt) P(A)(t) ( ) d 7

k1()\,zm ) a -— . -— -1 () e

z z A
l mll l mll {1 [P1 (t)]2 w(A,t) dt

.. -1 J

o (A)
1 I -[G(-]zm1It + x0)] P1 (t) w(k,t) dt

Izmll
(A)

l 22! [P1 (t)] w(A,t) dt

0

(A)
+ g 1 G(Izmllt + x0) P1 (t) w(A,t) dt (2,1)
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.(A) (A)

By recognizing that P1 (-t) I —P1 (t) and w(A,t) is the positive

definite weight function, equation (2.1) is rewritten as,

 

(A)

f1G(|zm It + x0) P1 (t) m(A,t) dt

1 o 1

k (A z ) I (2.2)
1 9

m1 . Izmll f1 [p (A) 2

1 t)] w(A,t) dt

0

where Izmll= Ixt1 —xo|

In a similar manner the parameters k3, k2 and k4 become

  

 
 

(A)

1 _ _1 g [G( lzm3|t + x0)] P1 (t) m(A,t) dt

k (1,2 ) I

3 "'3 ‘zml (A) (2.3)

3 f1[P1 (t)]2 w(A,t) dt

0

where

Izm3| = lxo ’ xtzl ,

k2(}‘9kls xtl’ym)

" (A) '7

fl [G(Iym]t + xtl) - k1(xt1 -xo)] P1 (t) m(A,t) dt

:= 1 o

lyml
(2.1.)

1 (A) 2
h, f [P1 (t)] w(A,t) dt .1  

0

where Ile I IB-xtll, and
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k4(}u k3, xtz’ 8m)

(A)
1 £1-[G(-Ism]t + xtz) -k3(xt2-xo)] P1 (t) w(A,t) dt

lsml (A)
f1 [Pl (t)]2 m(A,t) dt

0

 

(2.5)

where lsml I Ixtz-ol

2.1.1 Limiting Cases.

If we allow the transition points, xt1 and xtz, to simultaneously

approach the extremes in amplitude, B and a , the four slope parameters

k1, k2, k3 and k4 will degenerate into two slope parameters identical

(for AIO) to that obtained by Howard [10]. Applying these limiting

processes to each of the four slope parameters (2.2), (2.3), (2.4)

and (2.5) respectively we obtain

(A)

Ilc(|zm1|t + x0) p1 (t) m(A,t) dt

1 o

 Lim [k1(1,zm1)] I Lim I I

xtA+8 x +8 2 (A)

1 ‘1 “1 f1 [pl (0]2 m(A.t) at

AIO i=0 0

£1G(IB-x°|t+xo) T1(t) w(0,t) dt

. (2.6)

lB-xol

 

f1[T1(t)]2 w(0,t) dt

0
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and

Lim “‘30“... )] I Lim 1 .

art-2* a 3 xt; a Izm3|

A- o A= o -

1 (A) "

i -[G(-Izm3I t + x0)] p1 (c) w(1,t) dt

(A)

f1 [p1 (t)]2 w(1,t) dt

0 ..J

F n

[1 -[G(-|x6-o| t + x0)] T1(t) w«3.t) dt

3 1 O

Ira-0| (2.7)

f1 [T1(t)]2 w(0,t) dt

5 O ...J

and

Lim [k2,(A,k1,xt1,ym)] . Lim _1__

"t‘f 5 851* B lyml

A ' 0 A 3 0 (2.8)

(A) ‘
£1 [9(Iyml t + xt1)-k1(xt1-xo)] P1 (t) w(1,t) (it

(A)

f1 [P1 (t)]2 w(A,c) dt

0  
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and

Lin [k (1,1: ,x ,s )] =Lim 1 .
4 3 t m

act-go 2 xt-2>o. Ian]

A - o A = 0 j_’ (2.9)

1 (A) 7
g '[G('l8ml t + xt2)-k3(xt2-xo)] P1 (t) w(A,t) dt

1 (A) 2
+00

1' [P1 02)] (00¢) dt J

O  

Upon examining equation (2.6), we find

 

  

P _1/2 a

f1 G (IBI t) t (1-t2) dt

Lim [k1(1,zm)] _ 1 o °

‘6’ B 1 _l—B|- -1/2

1 f1 t2 (1-t2) dt J

A - o " o

(2.10)

a ...—L. .ll f1 '1/2

|B| n o GO(IBI t) t (l-tz) dt

where

Go(lBlt) . G(IBIt + x0), T1(t)-:/;,

IBI = IB-xol. I: [T1(t)]2 (1-t2) dt = n/2

Similarly, equation (2.7) yields,

-1/2

Lim. [k3(A,zm )1 - _;;,__5_ [1 ~Go(—|Alt) c (1-t2) dt (2 11)

xt+ a 3 |A| 1T 0 .

2

AIO
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where

Go(-IAIt) I G(-IA|t + x0) and [AI = Ixo-al

The limiting cases of k1 (2.10) and of k3 (2.11) represent the

two slope parameters (Chebyshev polynomials, i=0) that approximate

G(x) over the interval [o,8]. These agree exactly with Howard's

result. The limiting cases of kg (2.8) and of k4 (2.9) are meaning-

less since the respective amplitudes ym and 8m approach zero.

2.1.2 Slope Parameters for the Case of a Nonlinear Odd Function Over

a Symmetric Interval.

Restricting our consideration to nonlinear odd functions over a

symmetric interval I-xm, xm], we take the origin as the equilibrium

point and equate the absolute values of the transition points about

the equilibrium point. In Figure 2.1 we take G(x) as an odd function

with onO to establish the equilibrium.point as the origin and then

observe that Izmll I xt and Izm3| I -xt specify equal transition

amplitude points. Substituting these relations into (2.2) and (2.3)

we find that k1 and k3 yield the equivalent slopes

 

f1 wit dt

1 o

k =1, .._ (2.12)

1 3 xt flw t2 dt

0

where

A-l/Z

. w = w(A,t) = (l-tz)x a xtl ' xtz

'E.I G(xtt) 9 x I x t
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Similarly, from (2.4) and (2.5) we find that k2 and k4 yield

the equivalent slopes

f1 mugI t dt-klxt [1 u) t dt

 

l o

k -k a—
(2013)

2 4 y f1 w t2 dt
m.

o

where

ym - xmfxt

g I G(ymt + xt)

x I ymt + xt

2.1.3 Slope Parameters Derived by MinimizingTMethods.

In this section we shall first discuss a number of techniques

for minimizing the error between the approximating function and the

nonlinear function. We then apply a technique modeled after an

approach by Ergin [9] to derive slope parameters for the linear and

bilinear approximations which correspond to equations (2.12) and (2.13).

A variety of methods has been proposed to minimize the error

between an approximating function and the actual nonlinear function [21].

Ergin investigated three methods: 1) That the work done per cycle

by the bilinear and the nonlinear spring forces is the same; 2) that

the mean square error between the bilinear and the nonlinear spring

forces is minimized; and 3) that the spring forces are equal at the

maximum displacement point. Ergin's development centers around the

second approach. In this research we will investigate a fourth method

which can be regarded as a generalization of Ergin's approach.
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Linear Approximation. The approximation of a nonlinear

function fo) over a symmetric interval by a polynomial g(x) of any

degree can be achieved by minimizing the integrated square of the error,

subject to some appropriate weight function. We impose at this

point one condition on these polynomials:

pn(t) is a polynomial of nth degree in t. (2.14)

Thus, we express the square of the error as,

 

x

EZI lf-g n I f m w(x) [f(x) - g(x)]2 dx *

”x

m

or,

xm

E2 = f w(x) [f(X) - aOPOOt) “319109 ----- -«=1kpk(2t)]2 dx

"X

“I

By a change of variable, x I xmt, m(x) and pn(x) are represented

as w(t) and p(t) respectively since they are arbitrary at this

point. Now, E2 becomes

k

E2 - 1'1 x1, Mt) [f(xmt) - 2 anpm(t)]2 dt

-1 n=0

and by squaring the integrand, we have

k

122 -- f1 xm ...(c) [f(zqnt)]2 dt + 2 0 an2 I: xm (0(t) [pn(t)] 2 dt
n: —

* Snyder [11] defines this relation as the least square norm of the

difference of two functions over an interval.
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k

-2 )2 an flights“) f (xmt) ph(t) dt

nI0 -l

k k

+2 2 z anal I1 Xmm(t) pn(t) p,(t) dt (2-15)

nIO 2-0 -1

nit

At this point we impose the orthonormal relation

f: w(t) pn(t) p,(c) - an, (2.16)

where 6“, is the Kronecker delta. Now equation (2415) can be simplified

by using (2.16),

k

22 - x1 1m w(t) [f(xmt)]2 dt + A: an2 x r1 o.)(t) [pn(t)]2 dt

-1 n=0 m -1

k

-2 2 anxm [1 p(t) f(xmt) pn(t) dt

n=0 -1

The partial derivative of E2 with respect to each an must vanish in order

to make E2 minimum. Thus
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-;—- - o - zanxIn i: w(t) [pn(t)]2 dt-me i: w(t) f(xmt) pn(t) dt

an

Hence,

1
{1 Mt) f(xmt) pn(t) dc

an . (2.17)

I1 w(t) [pnm]2 dt

-1
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The set of polynomials corresponding to a particular weight

function that satisfy the conditions (2.14) and (2.16) may be determined

step by step.* Since po(t) is of zero order, we write po(t) = a

and determine this constant from the normalizing condition

[1 w(t) azdt - 1 (2.18)

—1

Since Schelkunoff [12] has shown that a weight function of one,

th) I 1, yields the Legendre polynomials, a natural extension would

1-1/2

then be to use the weight function, w(l,t) I (l-tz) , associated

with the ultraspherical polynomials. The Legendre polynomial is a

special case of the ultraspherical polynomial when A- 1/2. Thus,

1-1/2

with.m(1,t) I (1-t2) equation (2.17) reduces to

-1/2 1/2 (t)

a - [[1 w(A,E) dt] . r(A+1)/[/?'T(A+1/2)] po

-1

Next, we determine p1(t) I b +»ct from the orthonormal conditions,

I1 w(A,t) po(t) p1(t) dt = f1 w(A,t) [a] [b + ct] dt

-1 -l

0

and,

f1 m(A.t) [p (t)]2 dt = 1

-1 1

* The process is known as the Gram-Schmidt process [22].
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Solving for b and c, we find

1/2

p1(t) - [2r(a+2)/[/h r(x+1/2)]] t

Proceeding to the next polynomial and next, and next, we find a definite

pattern which reduces to the form,

-1/2

212 J? r(A+1/2) P(2l+n) (A) (A)

pnCI) . '
Pn (t) = cnpn (t)

(n+x) r(n+1) P(l+1) r(2x+1) (2,19)

After some algebraic manipulations Cn can be reduced to the form

(see Appendix B for details),

1-21 -1/2

2 n F(2l+n) (x)

pn(t) - Pn (t)

(n+1) (r(x))2 P(n+l)

 

(A)

where the P11 (t) polynomials are called the ultraspherical polynomials.

These ultraspherical polynomials are orthogonal but not normalized.

The constant multiplier, C is the normalizing factor.
n,

Upon substituting equation (2.19) into equation (2.16) we obtain,

(1) (A)

f1 w(A,t) CnPn (t) c, P£ (t) dt = 6n

-1 2

or,

(A) (A) -1

11 m(l,t) Pn (t) P2 (t) dt = 5n2 [cncg]

-1
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roan*£

I
I

A

l—ZA

-2 2 n PCZXHn) n=£

K (Cu) .5

(n+1) Ir(x)12 r(n+1) A¢o

  

Having shown that the ultraspherical polynomials can be generated

from minimizing the integral of the squared error relationship, we now

show the connection between the al coefficient of the approximating

polynomial and the slope parameter k.

Now, consider approximating a nonlinear odd function f(x) over

a symmetric interval by a linear approximation--that is, we truncate the

approximating polynomial, g(x), after the linear term.

k

f(X) = g(x) = 2 an pn (x)

nIO

letting k I l,

g(X) . aopo(x) + 8191(X)

or, by change of variable, x = xmt

(A) (A)

g(xmt) I aop°(t) + a1p1(t) I aoCoPo (t) + alclPl (t)
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Since f(x) is an odd function, only the linear term survives, there-

fore

BCth) I aICIIZAt] I nalt

01‘

g(X) = [nallxh] x - kx (2.20)

where n I 2ACl and k = naI/xm

From equation (2.20)

 

 

 

 

(A)

Ilmcx,t) f(xmt) C1P1 (t) dt 11 w(l,t) f(xmt) t dt

a1 -1 =31_ 0

== (A) n

f1 w(l,t) [0121 (c)]2 dt f1 w(l,t) t2 dt

-1 0

Thus,

f1 w(l,t) f(xmt) t dt

1 0

8(3) ‘3 JJ- "’ x

‘h n f1

0 w(A,t) t2 dt

f1 w(l,t) f(xmt) t dt

g(x) I 'i;' o x = [k] x

f1 w(l,t) t2 dt

0

(2.21)
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Denman [5] obtained this general relationship for k by another

method, namely, by expanding the nonlinear odd function in terms of

ultraspherical polynomials and truncating after the linear term.

Based on these observations, the mean square error method was applied

in generating polynomial approximations to smaller segments of a

larger interval. Qualitatively, this provides a means of obtaining

a multilinear polynomial approximation over the total interval and in

particular, a bilinear ultraspherical polynomial approximation.

Bilinear Approximation. If we consider a general nonlinear

function f(x) derivable from the potential function V(x) I ff(x) dx

and assume that the origin has been shifted to the local minimum

potential point (dVCx)/dx I O), we can create two odd functions about

this minimum potential point (one function that coincides with the non-

linear function for negative arguments and one that coincides for

positive arguments). Having done this, we can compute the slope

parameters RI and k3. Similarly, by two more shifts of the origin

the slope parameters, k2 and k4 can be found.

Now, we proceed to show under what conditions the mean square

error method generates the ultraspherical polynomial approximating

function. With no loss of generality we can simplify the algebra by

choosing a nonlinear odd function with local minimum point at the

origin.

The integral expression to be minimized is

2 h 2 XI“ 2

z - "f-g" - f w(x) [f(x)-g(x)] dx ... 2r w(x) [f(x)-g(x)] dx
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X

. 2 fxt tub!) [Hid-300]?- dx + f mob!) [f(X)-s(X)]2 dx

0
Kt

The first integral can be simplified by a change of variable, x = xmt.

The function in the second interval is shifted so that its origin is

the transition point xt. As shown in the Figure 2.3 below an odd

function is created, followed by a change of variable to represent

the interval as [-1,l].

Thus,

k

32 = xt i: th) [f(xtt) - i=0 anpn(t)]2 dt

k

+ ym f1 w(t) [fo(t)- z bnpn(t)]2 dt

‘1 n=0

where fo(t) is the odd function defined as

fo(t) I -[f(-ymt + xt) - a1n], -l §_t < 0 N

2.22

[f(Ymt + It) '3101» 0 < t j.1 ( )

and
.J

 

Cl I normalizing factor

n I 2101

ym ' xm-xt

Squaring the integrands, we have
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f(x) f (y)

   'xm
  

  

 

Amplitude, x

   
Figure 2L3 Nonlinear Function of One Space Variable

Approximated by Multiple Linear Approximations
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k

22 - 11 x w(t)[f(xtt)]2 dt + 2 a3 xt rlwcc>lpn(t)]2 dt

-1 t nIO -l

k ‘ 1 ( ) ( ) ( ) d-2 2 It I t f xtt pn t t

nIO an -1

k k
1 2

+2 2 Z anazxt f1 w(t) Pn(t) P£(t)dt + Ym {1 ”(t)[fo(t)] dt

nIO 2-0 -1

nfz

k 2 1 2 k 1

+-2 b y f w(t)[p (t)] dt —2 z b y f w(t)f (t)p (t) dt
n” n m-l n n-onm-l O n

k k 1
( 23)

+ 2 ’3 73 b b y f w(t)p (t) p (t) dt 2.

nIO EIO n z m -1 n 2

nil

At this point we impose the orthonormal relation

I1 w(t) pn(t) p£(t) dt - an, (2.24)

-1

The error relation can now be simplified by substituting equations

(2.22) and (2.24) into (2.23) to obtain

k

22 - x, f1m(t) [f(xtfiflz a: + z anzxt 11 w(t) [pn(t)]2 dt

-1 nIO -1

k

-2 z anxt 11 w(t) f(xtt) pn(t) dt + ym 11 w(t)[f0(t)]2 dt

nIO -l -1

k k

+ 2 b3 ym I1 w<t>tpn<t>12 dt -2 z bnym r1w(t)[fo(c>1pn(c) dc

nIO -1 nIO -l

(2.25)
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The partial derivatives with respect to an’bn and xt must vanish

in order to minimize E2. Taking first 3(E2)/3an I 0 for n i l

and recognizing that afo(t)/3an I 0 for n # l we obtain,
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-;:- - 2 anxt {1 m(t)[pn(t)]2 dt - 2xt f: w(t) f(xtt) pn(t) d, . o

n

Thus,

fl w(t) f(xtt) pn(t) dt

-1

an 8 . 11 w(t) f(xtt) pn(t) dt

x1 w<t> [pn<t)12 dc '1
-1

A-1/2

By specifying the weight function as w(t) I w(A,t) I (l-tz)

 

 

. (A)

we have pn(t) I cnPn (t) and

(A) ‘

[1 w(l,t) f(xtt) Pn (t) dt
-l -1

._1
anICn (X) ICn

11 w(A.t) (P, (c)]2 at *
—1

‘- a 

or,

(A)

an -cn [1 w(l,t) f(xtt) Pn (t) dt where n i 1

P

(A)

f1 w(l,t) f(xtt) Pn (t) dt

1

 

 
C

-2

11

(2.26)

 



37

Next, taking 3(E2)/Ba1 I 0 and recognizing that 3fo(t)/aa1#0

we obtain

alxt f1w(t)[p1(t)]2 dt - blym f1w(t) 8f°(t) p1(t) dt

0 o 3a1

- xt £1w(t) f(xtt) p1(t) dt —ym £1w(t) fo(t) ggigt) dt (2.27)

Substituting 3fo(t)/Bal I -q_from (2.22) into (2.27) we find

all!t £1w(t) [P1(t)]2 dt + blymn £1w(t) 91(t) dt

(2.28)

I xt f1w(t) f(xtt) p1(t) dt‘+ ymn f1w(t) [f(ymt + xt)-a1n] dt

0O

(A)

Rewriting and using p1(t) I ClP1 (t) I 2AC1t I nt we obtain

a1[xt nflw(t) t2 dt + ymn f1w(t) dt] + b1[ymn f1m(t) t dt]

0 O O

- xt f1w(t) f(xtt) t dt + ym f1w(t) f(ymt + xt) dt (2.29)

O 0

Taking 3(E2)/3an0 and recognizing that BfOCt)/3b I 0 we obtain

n

11 m(t) fo(t) pn(t) dt

b _ -1 (2.30)

n

[1 w(t) [pn(t)]2 dt

-1

A-1/2 (A)

or, for w(t) - w(x,c) a (1-t2) . pn(t) = curn (c) and
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-1' 1 » (1)
cu f w(l,t) fo(t) Pn (t) dt

b - ‘1
n

f1 m(1,c) [P110009]? dt (2.31)

-1

-1 (A)

= Cn [1 m(A,t) f°(t) Pn (t) dt

where fo(t) is given by (2.22).

Finally taking 8(E2)/3xt I 0 we find an expression which is not

linear in xt. For this reason we allow it to assume the role of a

variable parameter. It is worth noting at this point that all the bn's are

t

established the origin about which the bn coefficients are determined.

dependent upon the coefficient a1, as is expected since a and x

The a1 and b1 coefficients are uniquely determined by simultan-

eously solving equations (2.28) and (2.30). To accomplish this we

rewrite (2.28) as

allxt n £1w(t) t2 dt + ym n £1w(t) dt] + bllymn £1m(t) t dt]

I x f1w(t) f(x t) t dt + y f1w(t) f(y t + x ) dt (2.32)

t o t m o m t

and, substituting p1(t) I nt and fo(t) from (2.22) into (2.30)

for nIl we obtain

a1[n [1 w(t) t dt] + b1[n [1 w(t) t2 dt] = f1w(t) f(ymt+xt) t dt

0 O O

(2.33)
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From these equations we solve for a1 and b1. We are now in a position

to find expressions for the two slope parameters kland k2. Recall

that kInalfixm by (2.20) for the linear approximation. In a similar

manner for the bilinear approximation that klInallxt and k Inb /y .

2 1 111

Thus we find for k1

x flu it dt +ry flmg‘dt- y fldEt dt [[1 mt dt/f1 wtz dt]

to m 0 m 0 0 0

k1 I (2.34)

2 1 t2 dt + 1 _ 1 2 1 2 ]xt g m ymxt é wdt ymxt [[ é wt dt] I: wt dt

 

and from (2.33) b1 is expressed in terms of a and k becomes

 

2

[1 wit dt - klx [1 wt dt

0 t 0

k2 - (2.35)

y f1 wtz dc

m o

where

g I f(xtt)

E I f(ymt + xt)

w - w(t) - (1--::2)A'1/2

we have shown in equation (2.21) that the slope parameter k

for a nonlinear function can be obtained either by an orthogonal polynomial

expansion or by the mean square error minimization method, both yielding

equivalent relations. In like manner, we observe that the slope para-

meters k1 and k2 for the bilinear approximation can be obtained

either by an orthogonal polynomial expansion (equations (2.12) and

(2.13), respectively) or by a mean square error minimization method
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(equations (2.34) and (2.35), respectively). Equations (2.13) and

(2.35) for k2 agree exactly and equations (2.12) and (2.34) for k1

also agree provided two conditions are satisfied. These conditions,

obtained by comparing terms in equations (2.12) and (2.34), are

given as

f1 w'g' dt - f1 a); t dt [flout dt/flmt2 dt] .. 0 (2.36)

O O O O

and

I1 wdt — [[fl wt chZ/rl wtz dt] = o (2.37)

O O 0

Condition (2.37) is satisfied only when A.-.5 as can be readily

verified using Appendix D. Again from Appendix D equation (2.36) simplifies

to

I1 w§ dt - [1 mz't dt [[2r(1+2)]/[/E’r(1+3/2)]] (2.38)

o O

and substituting A I -.5 into (2.38) we obtain

[1 m'g' dt I 1'1 mg: dt (2.39)

O 0

Therefore, we see that the conditions (2.36) and (2.37) can be

replaced by the two simplified conditions--equation (2.39) and l--.5,

the lower limit for the A parameter. To be presented later in this

research, equations (2.44) and (2.45), the limiting cases
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Lim hi and Lim k2

2+“.5 .3+—.5

reveal that the A I -.5 case is equivalent to a linear interpolation

of the nonlinear function. Hence, when these simplified conditions

are satisfied the orthogonal polynomial expansion technique presented

in this research agrees exactly with the mean square error method;

otherwise, it only approximates the mean square error method.

To illustrate when both conditions (2.39) and A I —.5 are

satisfied, the case of the nonlinear function f(x) I x +'x3 with

xm I 2 and xt I 1 is presented in Appendix C.

The flexibility of using ultraspherical polynomials in the

bilinear approximation development is removed by the condition..A I -.5.

we can arrive at the RI (2.12) and k2 (2.13) relations by expressing

the error relationship separately for each subinterval rather than

collectively. For example, setting

132-1=:2+E2

1 2

where

xt

E: I f w(x) [f(x) - g1(x)]2 dx

0

Eg I f Km w(x) (f(x) - g2(x)]2 dx

xt

and k

81(X) ' i-o anPnCX)

k

32(x) I Z

n

b p (X)
.0 nn
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we can obtain the slope parameter k1 from

ac32)/aa1 - a(ni)/aa1 as 3(E§)/3a1 - o

and obtain the slope parameter k2 from

3(E2)/8b1 - 8(22?)/ab1 as 3(Elz)/8b1 - o

2.2 Slope Parameters for Some Special Nonlinear Odd Function.

we now apply equations (2.12) and (2.13), which contain expressions

for the two ultraspherical polynomial slape parameters, RI and k2,

to three specific odd functions namely, ax + 8x3 , sin x and sinh x.

Some limiting cases will also be examined.

2.2.1 f(x) - ox + 8x3.

Using the k1 relations (2.12) we substitute into these equations

f(x) I ox + 8x3

E'I f(xtt) I oxtt + 8(xtt)3

1-1/2

w I (l-tz)

x‘xtt

to obtain

A-l/Z

111-c2) [oxtt + 8(xtt)3] t dt

k (A x ) I o

1 ’ t 1-1/2

xt £1 (1-t2) t2 dt
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The numerator and the denominator are evaluated in Appendix D, with

this final result

_ 2
kICA,xt) a + 3th/I2(A+2)]

(2.40)

Similarly, using the k2 relation (2.13) we substitute

f(x) I 0x + 8x3

:g-f((xmrxgt + xt) I a[(xméxt)t + xt] + B[(xmrxt)t + xt]3

1-1/2

w I (l-tz)

Ym " xm":

to obtain

2r(x + 2) xt (a-k1 + thz)

k2(kym) " + a + :38th

J1? (xm-xt) m + 3/2)

 

68 (xh-xt) xt F(A +2) -+ 38 (xm-xt)2

Mk r(1 + 5/2) 2(1 + 2) (2.41)

 1.

Limiting Cases. In the limit as xt+x the bilinear ultraspherical

m.

polynomial approximation degenerates into the linear ultraspherical

polynomial approximation. To see this, we take the limit of (2.40)

888tIx and obtain,
m.
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Lim Ik1(),xt)] - Lim. [a + 3th2/12()+2)] . a + 38x 2/[2(1+2)]

xt+xm xt+x m

(2.42)

Hence,

Lim. Ik1(1,xt)] I k

x +x

t m

So in the limit k1 is equivalent to the one-line ultraspherical

polynomial approximation.* Similarly, taking the limit of (2.41)

we obtain

2r(1+2) xt (o—kl + thz)

Lim. [k2(l,y ) I Lim

x? xm m x315“ v71? (xm—xt) I'(l+3/2)

 

6B (xmfxt) x P(l+2)
t

+ a + 3th2 +

l? r(x+5/2)

38 (xm-xt)2

+ +00

2(A+2)

 

This limiting case for k2 is meaningless because the interval is

so small. These limiting cases for RI and k2 are shown in Figure 2.4.

we consider the second limiting case as xf+0. The bilinear

ultraspherical polynomial again degenerates into the linear ultraspherical

* For the one-line ultraspherical polynomial solution one has

k(l,xm) I o+Bme2/[2(1+Z)]
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for) KAI/kl

f(x)

    
 

0 xt xm

Amplitude, x

Figure 2.4 Nonlinear Function Approximated by a Bilinear Approximation

as xt+xm, k1+k, k2+m

 

   
  

Amplitude, x

Figure 2.5 Nonlinear Function Approximated by a Bilinear Approximation

as x90, k1+3flaxlx=o, k2+k
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f(x) I ax + 833

f(x)

 

 

       
0 xt xm

Amplitude, x

Figure 2.6 Nonlinear Function Approximated by Line Segments

Joining Points Along the Curve f(x) I ax + 8x3
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polynomial approximation. To see this we take the limit of

(2.40) and (2.41) as xtIO and obtain

Lim Iklca,xt)] - Lim Ia¢+ 3ext2/12(2+2)]]

x +0 x +0 ,

t t

the Taylor series linear approximation (i.e., slape of the function

at the origin). This limiting case for k1 is meaningless because the

interval is so small.

And,

Lim [k2(1,y )1 = a + 38x 2/12(1+2)] (2.43)

xtIO m m

These limiting cases for k1 and k2 are shown in Figure 2.5.

In the limiting case ofA = -0-5, k1 and k2 degenerate into the

slopes of straight-line segments joining points along the plot

of the nonlinear function. Recall that the ultraspherical polynomials

are orthogonal with respect to the weight function, 00-I=(1-t2)>‘_1/2

for A) -.5. So technically, the A I -.5 case cannot be considered

in an ultraspherical polynomial expansion. Taking the limit of

(2.40) and (2.41) as A + -.5 however, we obtain

Lim [k (1,x )1 = Lim. [a + 38x 2/[2(x+2)]]= a + SK 2 (2.44)

1+’-.5 1 t 1+—.5 t t

and

Li k A = + B 2 + + 2 2.45

A+E.5 [ 2( ’ym)] a (Km xm¥t xt ) ( )
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Taking values from Figure 2.6 we have

H

-—l- I slope of first line segment I f(x)/xt

x XIx
t t

a 3
(l/xt) [axt + th) (2.46)

I o + 2

Ext

H2

xm'xt

 I slope of the second line segment

Ill/(xm-xtn {£00 I -f (x) I }

X'Jfin x-xt

I [l/(xm-xt)] [axm + me3—axt-th3]

:- 2 2
a + 8(xm + xmxt + x ) (2.47)

t

Comparing equation (2.44) with (2.46) and (2.45) with (2.47) we see

that the A I -.5 bilinear limiting case is equivalent to a linear

interpolation of the nonlinear function.

Dependence of RI and k on Amplitude. For the nonlinear function
2

f(x) I ax + 8x3 with a I l and B I 1, the dependence of RI and k2 upon

 
 

the transition amplitude xt and the maximum amplitude xmis shown

in Figure 2.7, 2.8 and 2.9. By comparing these figures we observe

that the k2 curves approach k, the one-line U.P. approximation, for small

xt (Figure 2.7) as previously predicted by (2.43). Similarly, we

observe that the k curves approach k for large xt (Figure 2.9), as

1

previously predicted by (2.42).
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slope parameter
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1’ / ’

. l/za/‘O’
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Amplitude, xm

Figure 2.7 Bilinear U.P. Slape Parameters, k1 and k2, versus

Amplitude, , for the Nonlinear Function

f(x) I x + x , (xt/xm I 0.2)
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k2 (A=-05)

’ k2 (AIO)

k2 (AI6)

II

‘ ’/ k (AIO), linear

    

/ U.P . slope

/ parameter

 
   
Amplitude, xm

Figure 2.8 Bilinear U.P. Slope Parameters, RI and k2 versus

Amplitude, xm, for the Nonlinear Function

f(x) I x + x3, (xt/xm I 0.5)
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w r j ’r 1

. , /
I / I

I

k2 (4:0) .

‘7» k2 (AI-.5)

I I

' I

(b I, I q

l

I

I

l I

‘ k (AIO), linear

. 5 U.P. slope .

l' I, parameter

I

I, ’ k1 (A=-.5) *

. // k1 (AIO) .

I 1 I

I

Io

I I //H5

I /

. / .

/ ’/ ’ /’, K ’ ///A
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/

_ / // /A k1 (1=6) .

’ I A”
ff / ,g"" --av”::;:>”1r
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0 l 2 3 4 5

Amplitude, xm

Figure 2.9 Bilinear U.P. Slope Parameters, RI and k2, versus

Amplitude, , for the Nonlinear Function

f(x) I x + x , (xt/xIn I 0.8)
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we again substitute the nonlinear function f(x) I sin x

into equation (2.12) and (2.13) to obtain

k1(A,xt) ' .1;

xt

 

 

substituted back in (2.48) to yield

1‘10“.) - [rennet/2)

Also

k2(A,xm-Xt) '
 

 

 

" 1-1/2 )

f(l-tz) [sin (xtt)] t dt

0

A_1/2 (2.48)

f1(l-t2) t2 dt

0 J
\-

The integrals in (2&43) are evaluated in Appendix E and are

X+l

" 1-1/2 1-1/2

1 f1 (1-t2) [sin(xtt)] t dt - klxt f1(1-t2) t dt

0 o

XII/2

xm—xt 11 (1-c2) :2 dt

 O

(2.50)

The integrals in (2.50) are evaluated easily following similar

steps to those in Appendix B so that

k2(A,mext) _:3E1;EE_P(A+2)

l1? (xm-Ixt) pom/2)

.f
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1‘ 0+2)

+ cos xt JA+1 C IX )

1+1 x“ t

< )

2

2n

xm-x

21203.2) co (--1)n (—-%

+ —— 2: 2sin x

mext nIO P(n+l/2) F(n+A+3/2)

 

(2.51)

For comparison we note that the one-line ultraspherical polynomial

approximation is [P(A+2)/(xm/2)A+1] JA+1 (xm) (2.52)

_Limiting Cases: In the limit as xt-+xm we take the limit of (2.49)

and obtain

Lim [k1(A,xt)] - Lim [r(1+2)/(xt/2)“1]

xt+xm xt-rxm

A+1

F(A+2)/[xm/2] JHl (xm) a k (2.53)

Similarly, taking the limit of (2.51) we obtain

 

-2k1 xt F(A+2)

Lim [k2(A,x -xt)] I Lim

xt+xm m xt+xm I;(xm-xt) F(A+3/2)

A l
+ 1‘(A+2)/[(xm"xt)/2]

+ [ °°S xt JA+l (Km—x9 J

x -xt 2n

°° n (-—“5)+ .ZESliEL sin x E (-1)
m

’51:”: [ t nIO I‘(n+ 172) 1"(n+A+ 3/27] '* (2.54)
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we consider the second limiting case x£+0. The bilinear U.P.

approximation again degenerates into the linear U.P. approximation.

To see this we take the limit of (2.49) and (2.51) as x£+0 and obtain

A

Lim [k1(A,xt)] -‘an [r(1+2)/(xt/2) +11 [51+1 (xt)] = o (2.55)
xt+0 xt+0

and

‘A+l

21:0 Ik2(A.mext)J I (F(A+2)/(xm/2) ] Jx+l (XE) I k (2.56)

t

As shown previously for the cubic nonlinear case, the bilinear

ultraspherical polynomial approximations degenerate into the linear

ultraspherical polynomial approximation as seen upon comparing

(2.53) and (2.56) with (2.52).

Dependence of k1 and k2 on Amplitude. For the nonlinear function

f(x) I sin x the dependence of RI and k2 on both the transition

amplitude xt and maximum amplitude xm is shown in Figures 2.10,

2.11, and 2.12. Again, comparing these figures we observe that the k

2

curves approach k, the one-line U.P. approximation, for small xt

(Figure 2.10) as predicted by (2.56). Similarly, the k curves approach

1

k for large xt (Figure 2.12) as predicted by (2.53).

2.2.3 f(x) : sinh x.

Into the equations (2.12) and (2.13) we substitute the nonlinear

function f(x) I sinh x to obtain

 

  

' 1 A-l/Z ‘

f (1-c2) [sinh (xtt)] t dt

k1(A,xt) -.1_ o
(2.57)

A-1/2

f1 (l-t2) t2 dt

L o J
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Figure 2.10 Bilinear U.P. Slope Parameters, R1 and k2,

Amplitude, xm, for the Nonlinear Function

f(x) I sin x, (xt/xIn I 0.2)
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Figure 2.11 Bilinear U.P. Slope Parameters, RI and k2, versus

Amplitude, xm, for the Nonlinear Function

f(x) I sin x, (xt/xm I 0.5)
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Figure 2.12 Bilinear U.P. Slope Parameters, k1 and k2, versus

Amplitude xm, for the Nonlinear Function f(x)
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The integrals in (2.57) can be evaluated easily following similar

steps to those in Appendix E, and it follows that

0 ) 0+2)
ix --—————___

k1 t 2+1

Cxt/Z)

”2+1 (xt)] (2.58)

where Ian) I (Ii)n J (ix) is a modified Bessel function.

n

Also

I2k1xt F(A+2)

+ Ir(x+2)/(xm~x,/2)A+11-
IF'me-xt)P(A+3/2)

k2(laxmfxt) -

coshxt IA+1 (xm-xt)

 

 

2r(>.+2) .. [(xm-xt) /2]211

+ sinh xt Z (2.59)

xm-xt nIO I(n+1/2)P(n+A+3/2)

we note also that the one-line ultraspherical polynomial linear approximation

is

k - [maven/29“] 1,11 (xm) (2.60)

Limiting Cases. In the limit as xtIxm we take the limit of

(2.58) and obtain

Lim [1.10.59] uLim [r(1+2)/(xt/2)‘+1] IA+1(xt)

x *1 Xt+xm

t m

11- Uneven/2)“ 1m (25.) = k (2.61)
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Similarly, taking the limit of (2.59) we obtain

Lim IKZQ aim-9%)] I °°

Xt‘VXm

we consider the second limiting case xtIO. The bilinear U.P.

approximation again degenerates into the linear U.P. approximation.

To see this we take the limit of (2.58) and (2.59) as xt+0 and obtain

Lim [k (71.2%)] = Lim [I‘(A+2)/(xt/2)>‘+l = o

xt+0 l xt+0

and

Lim Ik2(A,xm-xt)] = [r(x+2)/(xm/2)“1] I,“ (xm) = k (2.62)

xt+0

Dependence of k1 and k on Amplitude. For the nonlinear function

2

f(x) I sinh x the dependence of k and k2 on both the transition amplitude

1

xt and maximum amplitude xm is shown on Figures 2.13, 2.14, and

2.15. Again, comparing these figures we observe that the k2 curves

approach k, the one-line U.P. approximation, for small xt(Figure 2.13)

as predicted by (2.62). Similarly, the RI curves approach k for large

xt (Figure 2.15) as predicted by (2.61).
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Figure 2.13 Bilinear U.P. Slope Parameters k1 and k2, versus

Amplitude, , for the Nonlinear Function

f(x) I sinh x) (xt/xm I 0.2)
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III. SINGLE DEGREE-OF—FREEDOM SYSTEMS

In this chapter, both free and forced vibrations of nonlinear

undamped, single degree-of-freedom systems are examined. The non-

linearity occurs in the restoring forces. The objective here is

to show how improved period-amplitude relations are possible with

bilinear U.P. approximation method.

3.1 Free Vibrations.
 

The governing equation is of the form

'3 + f(x) - 0,

complete with initial conditions

x(0) = xm and i (O)= 0

When the nonlinear force f(x) is approximated bilinearly, the equation

of motion reduces to the two linear differential equations

‘31 + klxl = 0, leixt (3.1)

and

382 + kzxz + xt(k1-k2) = 0, xtilxl (3.2)

where xt is the transition point as discussed in Chapter II. The

conditions, at time t - O, are then

x2(0) = xm and x2(0) = O (3.3)

and x1 and x2 are matched at xt, say at t = tt.

x1(tt) = XZ(tt) and x1(tt) = xZ(tt) (3.4)

Equation (3.2) is multiplied by x2 and integrated once to yield

63



64

an expression for £2

. 2 1/2

x2 ' [ Cz-lxzxt(k1'k2) - k2 x2 ] (3.5)

where

C2 8 (k1‘k2) Ithxm] + kzxg‘

and the initial conditions (3.3) have been used. Similarily, when

equation (3.1) is multiplied by i1 and is integrated. and the

conditions (3.4) are used, one finds

‘ 2 1/2

x1 - [Cl-klxl] (3.6)

where

a .. _ 2 2
Cl (k1 k2) [thxm xt ] + kzxm

The period of motion, T, may be computed by using equations

(3.5) and (3.6) as

  

xt 2 -l/2 Km 2 -1/2

4 [ g [Cl-klx1 ] dxl + £ [CZ—2x2xt(kl-k2)—k2x2] dxz]

t

(3.7)

The right hand side above can be integrated out explicitly and the

results expressed in closed form. Assuming k1>0, then for k2<0,

k2 - O and k2>0 respectively, we have, after some manipulations,
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For k2 > 03

b 1/2
_

xt + _.

J— = 1 1+2 —tan [k— (xm+b)1_ k21 7E]- 1r 1 X: k2o
b

x + —-

m k2

1 x -+ b 1
" t

+%ms< a)
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b

Km + {2 J (3.10)
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For purposes of comparison other period-amplitude relations are

for the same system also given in Table 3.1. The one-line U.P.

approximate period, T, is calculated using values for k previously

given in Chapter II.

Comparison of Results. The dimensionless, one-line U.P. and

exact period- amplitude relations given Table 3.1 are now compared

against the bilinear U.P. approximate method in Figures 3.1, 3.2,

and 3.3 for the nonlinear functions x + x3, sin x, and sinh x,

respectively. Relations derived previously in Chapter II for k and k2

1

are substituted into the appropriate T/To relation derived by the

bilinear U.P. method- equation (3.8), (3.9) or (3.10)—- to yield

the corresponding period-amplitude relationship. An amplitude ratio

xt/xm = 0.5 was assumed. The symbols UPl and UP2 refer to the linear

and the bilinear U.P. approximate methods, respectively. The

parameter is varied between. A=-.5 and A = 6 to show qualitatively

how the results are effected. These figures show how insensitive

the bilinear U.P. results are to changes in A , while for the linear

U.P. results the contrary is true.

A closer look at Figures 3.1, 3.2,and 3.3 reveals further insight

into the magnitude of the error by the linear and the bilinear U.P.

methods. By looking at one maximum amplitude value xm from any of

these figures the error between the exact and linear U.P. is fixed.

However the bilinear U.P. method is also dependent upon the amplitude

ratio xt/xm. Quantitatively, Figures 3.4 through 3.10 give for a

particular maximum amplitude xm a measure of the error between the
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Nonlinear Dimensionless Period-Amplitude Relations

Restoring

Force To Exact Linear One Line U.P.

f(x) Te/To Tg/To TlTo

===

x + x3 2n 2K(k1) 1 3 2 1/2

—-— 1/2 1 + $72A.
n(l+x2m)

where

2 1/2

klgsj-nell In

2(1+xm2)

A+1 1/2

1s n x 211 '12?K(k) l [(L31‘0-1-2) JA+1(xm)]

xm

where

k = 81 :nm)

2

A+1

sinh x 2n 1

  
% sech(_xl_n. KW)

2

where

y=tanh(};¥)  
[(i.) P<A+2)Il+l(xm

m

 
-1/2

’]

 
 

Table 3.1 Dimensionless Period-Amplitude Relations for Various

Nonlinear Single Degree, Free Vibration Problems.
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Plot Period Ratio T/To versus Amplitude Ratio xt/xm

for f(x) = x + x3 (xm=1.0)
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Figure 3.6 One Degree-of-Freedom, Free Vibration System Error

Plot Period Ratio T/To versus Amplitude Ratio xt/xm

for f(x) = x + x3 (xm=2.0)
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Plot Period Ratio T/To versus Amplitude Ratio xt/xm

for f(x) - sin x (xm=2. O)
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exact, linear U.P. and bilinear U.P. methods for a range of A

parameters and of‘xt/xm values (ijt/xmfl) which includes xt/xIn = .5.

Figures 3.4, 3.5, 3.6 and 3.7 ShOW'thiS dependence for function

xI+ x 3; Figures 3.8 and 3.9 for sin x; and Figure 3.10 for sinh x.

The A = O and xt/xm = .5 values over the maximum amplitudes considered,

in general, give the better bilinear U.P. approximate results for

the three nonlinear functions investigated.

3.2 Forced Vibrations.

In this section an undamped, forced vibrating system is examined.

This system is solved first as a forced vibrating problem by approximating

the restoring force bilinearly about its own equilibrium point

(which differs from the point about which oscillation occurs).

Next, this same system is solved as a free vibrating problem by

approximating the equivalent nonlinear restoring force by four lines

about a point called the minimum potential point where oscillation

occurs. Only the case of a step function excitation and of a cubic

restoring force is investigated to illustrate the procedure. One

illustrative problem is solved by the former approach, yielding results

comparable to the one line U.P. solution.

The governing equation is of the form

K + f(x) = F(t) = Fou(t)

complete with the initial conditions

x(0) - O and 11(0) = 0

where u(t) is the unit step-function (u=0 for t<O, u = 1 for t>O)

and F; is the amplitude of the applied excitation.
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Solution as a Fbrcgdeibration Problem. Like for the free vibration

system the equation of motion can be approximated bilinearly by two

linear differential equations

1 1 1 F(t) Fou(t), lxl :_xt, (3.11)

and

3% + k _ _2 2X2 + XtCRI k2) - 1701103), lxl : xt
(3.12)

where x is the transition point as discussed in Chapter IT.
I:

The initial conditions are then

x1(0) - o and i1(0) a o, (3.13)

and x1 and x2 are matched at xt, say at t = tt

x1(tt) - x2(tt) and i1(ct) = i2(ct) (3.14)

Following a procedure similar to that of the free vibrating

problem in Section 3.1 we obtain the period of motion, T, as

X Xm 2A dx

T s 2 [ f t -——- -+ f 2 J

0 i1 Xt i2

 

Nondimensionally, the period of motion becomes

' T 1 xt -l/2 -1/2 2A -1/2

__' a "‘ f (#1) [ZQX-XZ] dx + f [e + fx + gxz] dx

TO N O xt

(3.15)

where

Q = Fo/kl 8 = “k2

-1/2

e = (kl-k2) xt2 To = 21r(k1)
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The right hand side above can be integrated out explicitly and the results

expressed in closed form. Assuming k1>O, then for k <0, k = O and

 

  

   

2 2

k2>O respectively, we have, after some manipulations,

For kzi):

T l -l/2 —l xt—d 11 1 1/2

— 3 — (k1) sin " + — J + — log[ (e+f2A+g4A2)

To 11’ Idl 2 [g—

/_ f J 1 [ l/2

+2Ag+-—— -—log (e+fx +gx 2)

z/E fg‘ " t

f

+ X if; +.__. I
(3.16)

t 2];

For k2 = O

‘1' 1 -1/2 -1 xt—d 11 4A xt

-— --- [ (kl) [ sin ( ) +—] + (1--—) (3.17)

1’ 1r Idl 2 5 x 2A

0 1

For k2>__0_:

T 1 ‘1/2 -1 x -d 11 1 1 4
- - A —f

_ -*[(k1) [ Sin ( t ~)+—] 4‘ sin < g

To 1r I‘ll 2 I“; V’fr-4eg



81

The dimensionless, bilinear U.P. period-amplitude relations derived

above are now used in solving the special case f(x) - x + x3.

The slope parameters RI and k2 derived in Subsection 2.2.1 for

f(x) - x + xzaare now substituted into one of the above equations

and the results are compared in Figure 3.11 against the linear U.P. and

the exact solution, obtained by a quadrature method. As Figure 3.11

shows both the bilinear U.P. and the linear U.P. method closely

approximate the exact solution. For this function f(x) = x + x3,

the bilinear U.P. method does show improved results over the linear

U.P. method for the larger amplitudes. However, this slight improve—

ment does not warrant the additional effort required compared to the

linear U.P. method except for highly nonlinear functions.

Solution as a Free Vibration Problem. By a change of variable

the governing equation is reformulated as a free vibration problem as

5; + f(x)-Fou(t) = 0

or

where

60;) = f (x)-Fou(t)

Introducting the change of variable x = z + x0 we obtain a

formulation where z = 0 becomes the local minimum potential point as

previously defined in Chapter II. Thus we have that

'7: + E(z+xo) = o (3.19)
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with the initial conditions

2(0) - --x0 and 2(0) = 0

where x0 is the local minimum potential point obtained by setting

6(x) - O and solving for x, (see Figure 3.12).

Derivation of the Period vs Amplitude Relationship. The

equation of motion (3.19) is approximated by the four linear differential

equations

24 4- kaz4 + (xtz-xo) (k3-k4) = O -xo§a§f|zm3|

and

Z3 '0' R323 = O
-|Zm3|.:?:p

and

21 + klzl 3 0
0:2: Izmll

and

I

C
)

22 -+ kzz2 +(xtl-xo)(k1-k2) ‘ IzmlI£?£.A

The initial conditions are then

24(0) - -XO and 54(0) ' 0

and 23 and 24 are matched at, say t = t2

23(t2) - 24(t2) and 53(t2) ‘ é4(t2)

and 21 and 23 are matched at, say t - to

21(to) - 23(to) - O and él(to) = é3(to)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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and 21 and 22 are matched at, say t = t1

22(t1) = zl(t1) and é2(c1) = él(tl) (3.26)

Obtaining the first integral of each of the four linear differential

equations and solving for the constant of integration, we find the

period-amplitude relation as

  

A dz -lzm I dz 0 dz3

T = 2 f .T_-=2 f 3 '———§ + f . +

—xo 2 -x0 24 -lzm3| 23

(3.27)

2 dz A dz

+ | “11' -—! f 2

O 21 Izml 22

where

1/2

24 :[C4-V4]

with

2

C4 - kéxo - 2(xt2-xo) (k3-k4) x0

and,

<

II k2+2 - ..4 424 (xt2 x0) (k3 k4) 24

1/2

23 = [C3—V3]



with

and,

with

with

Cz

and

86

2
C4 - (xtz-xo) (k3—k4)

2

k323

1/2

[Cl-V1]

l 1

1/2

[CZ-V2]

_ 2 _C1 + (xt1 x0) (k1 k2)

2
kzz2 + 2(xt-xo) (kl-k2) 22
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The slope parameter k1, k2, k3, and R4 are given by equations

(2.2), (2.4), (2.3) and (2.5) respectively, with G(x) replaced

by ECx), that is,

 
 

 

 

 

(A)

1 {315 ([2!n | t + x0) P1 (t) w(>\,t) dt .(3 23)

k1(_A,zm1) ' | 70 '

zml [1 [P1 (t)1.2 w(x9t) dt

0

where

Izmll = Ixt1_xol

1 __ (A)

1 (f) [G(Iyml t + xtl>-k1<xt;xo>1 P1 (t) mom) dc

k20nklaxt9Ym) = —-"|' (A)

lym f1 [P1 (t)]2 m(A,t) dt
0 u

(3.29)

where

lyml = IB-xtll = szo-xtll

1 _ (A)

1 g -[G(-Izm3|t + x0)] P1 (t) w(A,t) dt

k (492 ) = (A)

3 “’3 I2 I 11 [P1 (017—1110.: dc
m3 0

where
(3-30)u

I2, I = Ixo-xtzl
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(X)

 

1- — -
- _1 f0 [G( lsm't + xtz) k3(xt2 xo)] p1 (t) w(A,t) dt

k4(A.k3,xt
2,8m) a

rw— (x)

lsml ‘ ’1 [P1 (12)]2 w(A,t) dt

0

(3.31)

where

lsml a lth- “I: lxtzl

While the special case of f(x) = x + x3 was not solved by the

four-line U.P. method, (3.27) should give a good approximation for

those cases where the restoring force is highly nonlinear.
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IV. A SYMMETRIC TWO DEGREE—OF-FREEDOM NONLINEAR SYSTEM

The symmetric two degree-of-freedom problem shown in Figure 4.1

has been investigated by a number of authors [13, 14, 15, 16, 18].

Only two of these authors, however, have investigated the questions

of existence of more than two "normal modes". Here the term "normal

modes" in nonlinear systems is understood in the sense of Rosenberg

[17] (see Appendix F). In [15] Rosenberg commented on the existence

of four distinct normal modes for the two degree-of-freedom symmetric

system in which the nonlinear springs are of homogeneous degree.

The details are given in Appendix F. More recently, Anand [18}

uncovered this multiplicity of normal modes for the symmetric two

degree-of-freedom system.with cubic nonlinearities.

In Section 4.1 Anand's approximation will be shown to be

equivalent to a linear (one-line) ultraspherical polynomial approximation.

A discussion of the six regions of the different modal patterns

predicted by Anand which depend on the values of two parameters

of nonlinearity is then reviewed in Section 4.2. In Section 4.3

a special case of the symmetric problem is examined which, according

to Anand's approach, indicated the presence of an additional normal

mode but which, according to the bilinear (two-line) ultraspherical

polynomial approach as well as the exact solution, denies the

existence of this additional mode. Section 4.4 contains additional

calculations and discussions on this multiplicity of normal modes

(superabundant modes).
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4.1 Equivalence ovapproximation Techniques.

Anand considered the symmetric'problem shown in Figure 4.1

where

3 3
f(x) klxl + m a1 x1 W

f(x ) = k x + m a x 3
2 l 2 1 2 (4.1)

 

The equations of motion are

mail + f(xl) + f(xl-Xz) = 0

mx2 + f(xz) - f(xl-xz) = 0

Anand defines two new parameters, w 2 = (k + k1)/m and m12 = k/m.
2

In these parameters the equations of motion become

  

    
 

 

-- 2 3_ 2 _ 3= ’
x1 + m2 x1 + 01x1 ml x2 + a(x1 x2) 0 (4.2)

£2 + mzzxz + a1x23 -w12x1-a(x1-x2)3 = 0 (4.3)

x1 X2

f(x ) f(x -x ) f(x )
l 2

“‘ AKA: “‘

///// iii/7 //7//

Figure 4.1 Conservative Spring-Mass Two Degree-of-Freedom System.
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into which.solutions of the form x1 = A cos wt and x2 = B cos (mt + B)

are substituted. Since the system is conservative there is no

need for assuming the phase angle 8. Without loss of generality

we may let 8 = O at this point. After some algebraic manipulation,

terms involving cos wt, sin wt, cos 3wt, and sin 3wt are obtained.

Upon disregarding the superharmonic terms and equating the coefficients

of the harmonic terms to zero one obtains

3 9 9 3

— (ad-<11) A3 -- QAZB +—01AB2 -—a B3 + (wzz-wzfll -w123 = 0 (4.4)

4 4 4 4

3 9 9 3

--aA3 +-—-aAZB ----aAB2 +~—-(a +o1)B3 -w12A + (wzz-w2)B = 0 (4.5)

4 4 4 4

Equations (4.4) and (4.5) can be obtained by yet another approximate

method. If the nonlinear terms in the equations of motion, (4.2)

and (4.3), are linearized in terms of ultraspherical polynomials

(one-line approximations) with respect to appropriate amplitudes:

and if a normal mode solution is assumed (as was assumed by Anand),

then equations (4.4) and (4.5) result provided the Chebyshev polynomial

(i=0) is used. The details are presented below.

In terms of ultraspherical polynomials, the nonlinear terms of

equations (4.2) and (4.3) are linearized as follows:
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(i) linearize x1, with respect to A;

(ii) linearize x2, with respect to B; and

(iii) linearize xl-xz, with respect to C, where C = A—B

The resulting equations of motion are

 

'° 3A2 3C2 (x -x ) = 02 .______ _ 2 a 1

"1 + “’2 x1 + “1 [2(1+2)]x1 “’1 x2 + [2(A+2)] 2

332.. 2 [ ] 2 3c2

x2 + w x + a1 x2 -ml x -a (x -x ) = O

2 2 2(x+2) 1 2(A+2) 1 2

  

x A
1

Substituting a solution of the form{ }-{ }cos wt into these

x B

2

equations yields

3A2

-Aw2 + w22A + a _—

2(A+2)

 

3c2

] A «.1123 + a[ ] (A-B) = o (4.6)

2(A+2)

332

 
 

3c2

] B -w12A - a[ ](A-B) = O (4.7)-Bw2 + m22A + 011 [

2(A+2)2(A+2)

Substituting A-B for C in (4.6) and (4.7) yields respectively
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(a+a1) A3 - --2- aAZB + 9 aA32 - u 3 a 83

2(A+2) 204-2) 2(A+2) 2(A+2)

+ ((1122-1112) A -w123 = o (4.8)

and

- 3 (1A3 + -—--9——0LAZB - —2—— CLAB2 + —-—-3-———- (OH-011) B3

2(A+2) 2(A+2) 2(A+2) 2(l+2)

-w12A + (mzz-wz) B = 0 (4-9)

Finally when A is set equal to zero (the Chebyshev polynomial),

equations (4.8) and (4.9) reduce to (4.4) and (4.5) as mentioned

before, Thus we have shown that Anand's solution method is equivalent

to the ultraspherical polynomial approximation with A = 0.

Now, subtracting (4.9) from (4.8), or equivalently, (4.5)

from (4.4) with A = O, we obtain

(3/4 011 + 3/2 a) (A3-B3) - (9/2 aAB + 1.12 -m22 -w12) (A-B)= o (4.10)

and, adding (4.9) and (4.8) we Obtain

3/40.1 (A3 + B3) — (1.2-(.22 + (1112) (A + B) = o (4.11)
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As Anand pointed out in his study, equations (4.10) and (4.11) yield

three pairs of solutions for A and B which constitute the possible modes of

vibration. The possible modes are summarized below.

Symmetric Case (A -B): The relation A = B represents the in—

phase or symmetric mode. Dividing equation (4.11) by A + B and sub-

stituting A = B into this resulting relation yields

3/4a1 A2 - (m2 -w22 + ml?) = o (4.12)

This is the frequency-amplitude relation for the symmetric mode.

Antisymmetric Case (A = -B): The relation A = -B represents

the out-of-phase or antisymmetric mode. Dividing equation (4.10)

by A—B and substituting A = -B into this resulting relation yields

(3/4a1 + 6a)A2 - (wZ-wzz-wlz) = 0 (4.13)

This is the frequency amplitudeerelation for the antisymmetric mode.

Asymmetric Caseg(A # B and A # -B): The relations A # B

and A {-B represent Anand's third mode which he terms the asymmetric

mode. Dividing equations (4.10) and (4.11) by A-B and A+B, respectively,

we obtain

(3/401 + 3/2a) (A2 + AB + B2) — (9/2a AB + mz-wzz-wlz) = O (4.14)

3/4a1 (A2 -AB +32) - (412-0122 + ml?) = 0 (4.15)

Solutions of equations (4-14) and (4.15) will be discussed below.
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4.2 Discussion of the Regions for the Asymmetric Mode.

Anand discusses the effect the nonlinear parameters on the

existence of this third mode.

Eliminating w2 from equations (4.14) and (4.15) we obtain

A2 + 132 - Us (20; -a1)AB + 4/3a w12= 0 (4.16)

Solving this equation for B, we get

a]. a1 a 4 2

B =[1-— ]A + [—[—-l -l A2 - -— (1)12 1/

2a a 4a 3a (4.17)

where A has been arbitrarily assumed to be larger than B.

For a real, physical solution we require that al > 4a (4.18)

which places the following restriction on A

160 wlz

A2 > (4.19)

3a1 (a1 - 4a)

 

By considering three cases in the (cal) plane we can identify the regions

where this asymmetric mode is present.

Case I. For a > O and

(i) 0 < al This subcase represents a system with all springs hard?

Equations (4.18) and (4.19) place a restriction on

amplitude A; A cannot be too small.

* A nonlinear spring force is considered hard if its first derivative

increases with increasing displacement, and soft if its first de-

rivative decreases with increasing displacement.
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(11) 0 _<_ 61

(iii) 0 > a

§_4a Asymmetric solution does’not exist.

This subcase represents a system with the coupling

spring being hard and the outboard spring being

soft. Equations (4.18) and (4.19) restrict the

amplitude in that A cannot be too small.

1

Case II. For a = O and

(1) a1 > 0 or a1< 0.

Taking the limit of (4.17) as a + O we obtain

-al A a a 4

B= + -—1 -—1A2-—wi ”2

2a a 4a 3a

Expanding the second term of (4.17) by the binomial expansion we find

 

 

..a a A 8 m 2 a
I

B 2 - A+ 1 1--J-—_+ .0...

2a 2a 3 1120112

As a tends to zero,

.01A 01A 4 (D21

Lim B 2 Lim
+ _, + o o o
 

  

a + O a + 0

1
2
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(ii) For a = 0 and 01 = O, Asymmetric solution does not exist.

Case III. For a < O and

(1) a1 < 0. If .21 <1, a1 > 4a and the amplitude, A, in re-

(11) 01 = 0

(iii)

40

stricted in that A cannot be too large, i.e.

16a w z

A2 < 1 

3n1 (a1 -4a)

If 31": 1, al.3’4a; asymmetric solution exists

4a regardless of the amplitude A.

Asymmetric solution exists with no restriction on

amplitude, A.

a1 > O Asymmetric solution exists with no restriction on

amplitude, A.

In addition to the conditions given by equations (4.18) and (4.19),

which place restrictions on the parameters a and a1, and the amplitude

A, the frequency w must also be real in order to guarantee real

asymmetric solutions. This additional requirement w2 > 0 must there-

fore also be satisfied.

Cases I, II, and III are displayed below in Figure 4.2,
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Amplitude, A, restricted

(cannot be too small)

No asymmetric mode

\ \ \\

‘ \ A restricted

, \ (can't be too small!

test" \/ / “I
not

Amplitude, A,

/
not
may

Figure 4-2n a1 Graph Showing the Six Regions for the Asymmetric

Mode for a Two Degree,Symmetric, Free Vibration System
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4.3 A Special Case of Anandjs Problem.

A8 a test of Anand‘s approximate approach, a special case is

examined so that the bilinear U.P. approximation method as well as

the exact solution can be compared against it. To avoid undue algebraic

difficulties inherent in solving the symmetric problem by the

bilinear method, the coupling spring is the only nonlinear term

allowed and is of the soft cubic type. In particular, we can illustrate

this case in Figure 4.1 with the coefficients m = 1, k1 = 1, k = 1,

a1 - O and a - -l substituted into (4.1). The restoring forces

given by (4.1) then reduce to

f(xl) - x1

f€xz) - x2 (4.20)

f(xl-xz) = (xl-xz) - (xl-xz)3

4.3.1 Anand's Solution.

This special case falls within Case III mentioned previously,

which indicated that for the asymmetric mode no restriction is

placed on the amplitude of XI, A. However, a check still is required

on the frequency, w. Substituting the above coefficients into

equation (4.15) and simplifying we find that the frequency is real,
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In addition, substituting the parameters from this special case give

for the in-phase mode the frequency relation which simplifies to the same

expression as for the asymmetric mode.

For the out-of-phase mode the frequency relation simplifies to

k1 + 2k

w2 = wzz + wlz + 60 A2 = ---- + 6a A2 = 3(1-2A2)

'm

These values are plotted in (Figure 4.5) for comparison with bilinear

and exact frequency relations, yet to be determined. Thus, we may conclude

that for this special case, Anand's approximate method does predict an

asymmetric mode. We will now apply the bilinear ultraspherical polynomial

approximation to this same special case and show that the bilinear

solution can be expressed in analytic form.

4.3.2 Bilinear U.P. Solution.

This special case of the symmetric two degree-of—freedom (free

vibration) problem is formulated in this subsection by the two-line

ultraspherical polynomial approximation. This problem is shown

schematically by Figure 4.1 and the coupled equations of motion are

3x1

111352 - an (4.22)

31:2

x 2 x 2 (xl-x )2 (x —x )1+

with -u -= -U(xl,x2) =—1- +—-2-+——L - —1——2— (4.23)

2 2 2 4

These equations are approximated bilinearly by equations (4.21) and (4.22)

but with U(x1,x2) approximated by
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2 2

X1 X2

2 2

and

 
 

V(x1-x2) =

k3(x1-x2)2

 

+ 1/2 (k4-k3) (xl-xz-yt)2

2

= ‘3. Y2 + “NM-R3) (y-yt)2. y _>, yt (4.26)

2

Simplified, the bilinear set of approximating equations becomes

\

I

C
)

mil + klxl + k3(xl-x2) -

) y g y, (4.27)

|

C
>

m§2 + klxz - k3(x1-x2) -  

.. \

mx1 + klxl + k3(x1-x2) + (k4-k3) (xl-xZ—yt) = O

)y 3 yt (4.28)

figz + klxz -k3(X1-X2) -(k4-k3) (xl-xz-yt) = 0  
J

The slope parameters R3 and R4 are the linear approximations to the

nonlinear function over the appropriate intervals.
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The term V(x1-x2) is obtained by summing the areas under the

force-displacement plot for the approximating slope parameters. For

example, Figures 4.3 and 4.4 represent a function approximated

bilinearly for the y §.Yt and y :_yt intervals, respectively,

 

f(y)

 

  

 

 

0 y Yt Ym

Amplitude, y

Figure 4.3 ‘V a [f(y) dy Relation for a Nonlinear Restoring

Force Approximated Bilinearly (y §_vt)

 

   
 

f(y)
V(y) = A1 + A3 - A2

2 - 2 _ 2

A2 A = kay + k4(y yt) _ k3(y yt)

«“x 3
2 2 2

$

Al ’: ‘J:>"‘§i"‘ -__. (where k4<0 in this case)

\\\ y :,vt

0 y, y ym

Amplitude, y

Figure 4-4 V =.ff(y) dy Relation for a Nonlinear Restoring

Force Approximated Bilinearly (y Z.Yt)
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mil + klxl +'k3 (xl-xz) - 0 (4.29)

y §.Yt

m§2 + klxz - k3(x1-x2) = 0 (4.30)

mil + k1x1+ k3(x1-x2) + (k4 - k3) (xl-xz—yt) = O (4.31)

yzyt

miz + klxz - k3(xl-x2) - (RA-k3) (xl-XZ'YC) = 0 (4.32)

These equations can be rewritten in a simplified form by substituting

y . xl-xz and, for the y.: yt region subtracting equation (4.30)

from equation (4.29) to yield the following equations

 

\

ms: + (k1 + 2k3)y = 0 (4.33)

> y i y.

mil + klxl + k3y -- 0 J (4.34)

Similarly, for the Y.Z.Yt region we can simplify these equations by

subtracting equation (4.32) from equation (4.31) and by the change of

variables 2 = y-2F and u = xl-F, where F = yt(k4—k3)/(k1 + 2k4)

to obtain

m2 + (2k4 + k1) z = 0 (4.35)

Y Z_Yt

mfi + klu + k42 = 0 (4.36)

This simplification uncouples equations (4.33) and (4.35) above.
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The solutions to these four simplified equations have eight constants

of integrations which are evaluated in terms of four initial conditions

and four matching conditions at y = y The initial conditions aret.

x1(0) a A., i1(0) = 0

x2(0) = B . i2(0) = O

or, equivalently ,

x1(0) = A, 21(0) = O

y(0) = xl(0)~x2(0) = AeB a c, and §<o> = i1(0)-i2(0) = o

The matching conditions involve equating displacements and velocities

between the y §_yt and y3__yt regions at the transition amplitude

point. Recall that yt, the transition amplitude, is already known since

the slope parameters, k3 amd R4, are functions of yt' In this special

C

case yt "" has been assumed.

2

y _3 yt Region:
 

Using these initial conditions, oscillatory motion is started

in the y_>__yt region and governed by the equations of motion

(4.35) and (4.36). By substituting a solution of the form

{3 - {3 a»:
into (4.35) and (4.36), the resulting roots of the frequency equation

become

1/2 1/2

w3 = (kl/m) and w4 = [(k1 + 2R4)/m]
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The corresponding amplitude ratios are

T k1 -w32 m

81 n— 2.- 8 0

3 R4

8 -1 a - kl-w42 m = 2

2

The above solutions are uniquely determined by normalizing the eigen-

vectora. The general solution is then represented as

u x1 - F v11 v21- - a1 cos w3t + a2 C08 w4t (4.37)

z y - 2F v12 V22

where

1/2 1/2

w3 = (kl/m) and w4 = [(k1 + 2R4)/m]

and

2 -1/2 -l/2 -1/2

v11 = (81 + 1) = 1 v21 = (822 + 1) = (5)

2 -l/2 -1/2 —1/2

v12 = 81 (81 + 1) = o v22 = 82 (822+ 1) = 2(5)

Using the initial conditions

x1(o> = A. 340) = c
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the constants a1 and a2 are obtained from (4.37) and (4.38)

X1(0) -F } A-F V11 V21

{ '{ }”1{ } { }y(0) -2F C-2F V22
v12

Since V12 = 0, 1/2

a2 = (C-2F)/V22 = (5) (C-2F)/2

and

A—F- 82V21

a1 =-——~ a .A - c/2

V11

 

At t = tt = t1 and from equation (4.37)

Yt 'ZF = alvlz cos w3t1 + a2V22 cos w4 t1

but V12 8 0, thus

 

yt -2F 1 _1 yt -zp

cos w4t1 = or, t1 =-—— cos ——————- (4.38)

C “'ZF (1)4 C -2F

Having completely determined the solution for the y 3.Yt region,

we are in a position to evaluate 31: 31, Y: and 2 at the

transition amplitude, yt. Thus, at t = t = t1

t

X1(tt) It V1 V21 F

= a1 COS (1)3111 + 82 C08 m4t1 +

Y (tr) Yt V12 V 2F

22 (4.39)
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. ‘ . ‘ —w3 a1 sin w3tl - w4a2 sin w4t1

tht) yt V12 V22

(4.40)

These values for xt, yt, it and yt will now serve as the initial

conditions for the solution in the y §_yt region.

x G
1 :

Y _<_ yt Region: By substituting a solution of the form{ } = )eimt

y H

into equation (4.33) and (4.34), the resulting roots of the frequency

equation become

_ 1 2 _ 1/2
ms — (kl/m) / and w6 - [(k1 + 2k3)/m]

The corresponding amplitude ratios are

 

 

2

‘H kldm w52 H k1 dm w6 - 2

3 G k1'+ k3 -mm5 C k1 + k3 ~mw6

The above solutions are uniquely determined by normalizing the

eigenvectors. The general solution for this region is then represented

X “11

{ 1}_{ } (bI cos wst + b3 sin ms t)

Y w12

w21
+{ } (b2 cos w6t + b4 sin 0161:)

W22

by

(4.41)
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where 1/2
1/2

ms = (kl/m) and “6 - [(k1 + 2k3)/m]

and

-1/2 -1/2 -1/2

w11 3 (Y32 +1) 8 1 2 W21 = (Y42 + 1) = (5)

' -1/2
-1/2 -1/2

W12 ' v3 (732 + 1) = 0. wzz = v4 (v42 + 1) = 2(5)

Using as initial conditions the xt,)q:, it, and §t previously obtained,

the constants of integration b1, b2, and b3 and b4 can be evaluated.

At t = 0, we have

yt w12 "22

it w 1421

{ . } 3 11 (1)5133 + (1)6134

yt w12 w22

Solving for the constants we obtain

1/2

b2 I (5) yt/Z (4.42)

131 xt - yt/Z (4.43)
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1/2 .

b4 ' (5) Yt/(Zwe> (4.44)

1. [ , §t ] '

b3 -—- xt -—— (4.45)

ms 2‘

Having completely determined the solution for the y‘iyt region,

we can now establish the relationship between the initial

amplitudes A and B, or equivalently, A and C. To do this we make

use of the fact that for normal mode solutions the masses must

simultaneously pass through the equilibrium position.

Thus, at t - t2,

x1(t2) - 0 and x2(t2) = 0

or equivalently,

x1(t2) = 0 and y1(t2) = x1(t2) - x2(t2) = 0

Upon substituting these conditions into (4.41) we obtain

(t ) 0 w

{XI 2 }-{ }-{ 11} (b1 cos w5t2+ b3 sin 035 132)

Y (t2) 0 w12

WZI (b 03 t + b sin w t )

W 2 ° “6 2 4 6 2 (4.46)
22

Since W12 = 0, we have

b2 cos w6t2 + b4 sin ”6 t2 = 0

or,

 

 

tan (06:2 "— = " 6 and t2 =— tan [ J
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and,

0 . W11 (b1 cos wstz + b3 sin ms t2) + “21 (b2 cos w6t2 + b4 sin w6t2)

(4.49)

However, the coefficient of W21 is zero by equation (4.47).

Substituting xt, it, and yt from equations(4.39) and (4.40) respectively

into equations (4.43) and (4.44) yields

b a x --—— a --— cos w

1 t 2 2 3 1

and

l y m C C

133 - __ it ._ ...—E ] I: .- _.l [A — —]Sin w3t1 = “[A- "" ]Sin L03t1

ms 2 (D3 2 2

Thus equation (4.49) becomes

C

0 s [A-- ][cos m3t1 cos w3t¢ — sin w3t1 sin w3t2]

2

or,

C

0 = (A-g) [cos (.3 (t1 + 122)] (4.50)

Thus, either A - C/2 = 0 or, cos w3 (t1 + t2) = 0

If A _ C/Z n 0, then A = -B and represents the out-of—phase mode.

The frequency-amplitude relation is then m = Zn/T = 21r/[4(t1 + t2)]
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where t1 and t2 are given by (4.38) and (4.48), respectively. If

cos (113(t1 + t2) - 0, then w3(t1 + t2) - w/Z and the period is

T a 4(t1 + t2) - 4[n/(2w3)] = 2n/w3

1/2

where w3 = (kl/m) , so this represents the in—phase mode.

These frequency-amplitude relationships are plotted in Figure 4.5

along with Anand's solution obtained previously. This analytic

solution shows that only the in-phase and out—of-phase modes are

possible. The exact solution to this special case is next presented to

resolve this dilemma between the conflicting predictions by Anand's

equivalent one-line U.P. approach and the bilinear U.P. approach.

4.3.3 Exact Solution.
 

To set up this special case so that it can be solved exactly,

the method suggested by Rosenberg is applied. The definition of

normal modes as applied to nonlinear free vibration conservative

systems may be found in Appendix F. Because the system of governing

equations are conservative, the sum of the kinetic and potential energy

is equal to the total energy for the system and is a constant, no.

At the equilibrium position, all of the energy is transferred into

kinetic energy. At the maximum amplitudes where the velocity of each

mass reverses, all of the energy is transferred into potential energy.

Rosenberg has shown that if we start the motion by initially displacing

the masses, the trajectory of the masses in the (x1, x2) plane traces

out a path toward the equilibrium position. If, for a particular set

of initial maximum amplitudes for the masses, the path traced out

passes through the equilibrium position with all the displacements
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simultaneously equal to zero, then this curved path represents a

modal relation and is one solution curve for the system considered.

Equivalently, this same problem can be formulated in reverse by starting

the motion with initial velocities specified at the equilibrium position

and moving toward the maximum amplitude position. If, by assuming some

initial velocity ratio between the masses, the path traced out by a finite

difference method using small time steps intersects the U0 = -U curve

orthogonally, then the relation defining this path is called a modal

relation. As already mentioned this modal relation is, in general, a

curved (not straight) path. A finite difference method is formulated

after this latter approach to arrive at the exact solution. This

method is applied to the special case problem solved previously

by the two approximating methods in Sections 4.3.1 and 4.3.2.

The finite difference method is programmed on the digital computer

using small time steps, At - .01. Taking advantage of the symmetry

of the potential function, the entire xlsz- space can be represented

by considering just the region between 9 - ~450and 45°. The first

step toward finding all possible normal modes for the xlsz- space

is to sweep through angles between -450 and 450 in the (x1,x2) plane

for preset total energy valves. Specifying the total energy is equivalent

to specifying the maximum amplitudes A and B for x1 and x2 respectively.

This sweeping procedure isolates where possible modal relations exist.

This is done by comparing two slope terms. One slope term is the local

ratio, Ax2/Ax1, which when parallel to the gradient of the energy curve

yields a modal relation. The other slope term is the slope at the

corresponding point tangent to the total energy ellipse and is used

as a check on the orthogonality between sz/Axl and the tangent to
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energy curve. When these slope parameters are orthogonal, the

corresponding x1 and x2 values represent one point on the modal curve.

The procedure leading to a normal mode solution is to select

initial velocities (V10 and V20) at the equilibrium position (origin

in Figure 4.6) in the x1 and x2 directions where x10 = 0 and x20 = 0.

Then Axl and sz are calculated using these initial velocities and

the time step as

X1 = V10(At) and X2 = V20 (At)

At point 1, a new x1 and a new x2 are calculated as

x1 = x10 + Axl and x2 = x20 + sz

The corresponding velocity changes are

l 3U(x1,x2)

AVl = 5"]. (At) =— __ } (At)

m 3x1

and

H l aU(xl,x2)

sz = x2(At) = —[____ ](At)

m 3x2

Thus, the new velocities at point 1 become

V1 3 V10 +‘AV1

V2 = V20 + AVZ
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At this point a check is made to determine whether V1 has changed

sign. If not, use the values at point 1 and repeat the above steps

and proceed point by point until the velocities of the masses change

sign. When the velocities do change sign another check is made to

see whether the two slope terms are orthogonal. This procedure is

repeated for the entire xlxzu- space, identifying all possible modes

that satisfy the orthogonality requirement between the two slope

terms mentioned previously. The exact frequency-amplitude results for

this special case are given in Figure 4.5.

4.4 Superabundant Modes

Rosenberg shows in 115] that more than two normal modes exist

for a two degree-of—freedom conservative, symmetric, homogeneous

system. As explained in Appendix F a homogeneous system here is

defined as one in which all of the nonlinear restoring forces have the

same degree of nonlinearity. For example, such a system shown in

Figure F.l (Appendix F) with degree three, where

81 = 83x13

S2 = A3(x1-x2 3

S3 = a3x23

Anand [18] has similarly shown with his approximate method the existence

of the asymmetric mode. However, while Anand's problem is symmetric

he allows the linear terms in the restoring forces.

Figure F.l thus also represents Anand's system, except that

the restoring forces now include linear terms in addition to cubic

terms. Therefore, for Anand's system,
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3

S = x + ma x
1 k1. 1 l l

32 a kCXl-sxz) + MCxl'X2)3

= 3
S3 klx2 + malxz

In this section exact modal relations of the frequency—amplitude

dependence are formulated for various coefficients using Rosenberg's

approach as outlined in Section 4.3.3. In addition, a discussion of

the limiting case of Anand's problem for large values of U0 is

presented. To recreate the asymmetric modes predicted by Anand,

coefficients of the restoring forces used by him are also used in

the exact formulation. It will be shown that these exact modal relations

will start from values predicted by Anand for small amplitudes where

the linear term is predominant and approach limiting values predicted

by Rosenberg as the amplitudes increase, where the cubic term is

predominant.

Anand'scoefficients of the restoring forces will also serve

as a point of departure to obtain frequency-amplitude curves by the

exact method. Figure 4.7 below represents one case where Anand

discovered the asymmetric mode (Figure 4.7 appears as Figure 2 in

[18]). Also, from the 091 graph (Figure 4.2) this case falls within

the regions where the asymmetric mode is predicted. Thus, the values

a =0.32, a1=1.6, k1=.896, k=.1536, and m=l are used in the exact

formulation of Case I below. Besides Case I three additional cases are

considered. For these cases only the a term is varied and the other

terms a k k, and m are held fixed.

1’ 1’



118

 

Asymmetric mode

H O U
!

 

F
r
e
q
u
e
n
c
y
,

w

.
.
.
:

  
 

.5 D (1 = .32

a1 = .6

0 . L

0 S l. 1.5

Amplitude, x1

 

2°5' Out-of-

phase mode

.
.
.
:

0 U
I

 

In-phase mode

F
r
e
q
u
e
n
c
y
,

w

t
"

  
 

.5 a = .32

01 = .64

0 1 j J

0 .5 l. 1.5

Amplitude, x1

Figure 447 Variation of Frequency with Amplitude.



119

Case Ig(g§,32). This case represents a springemass system with

the outboard and the inboard springs being the hard cubic type.

Figure 4.8 represents the exact frequency—amplitude curves for these

coefficients. In addition, the corresponding nonlinear relation

between the amplitudes of vibration of the masses is given in Figure 4.9.

As shown in Figure 4.9, the in-phase mode occurs along the 6 = 450

line and the out—of-phase mode occurs along the e = -450 line.

It is of interest to note in this case that for absolute values of

the amplitudes less than 0.8, only two normal modes are possible.

However, for absolute values of the amplitudes greater than 0.8,

the asymmetric mode branches off the out—of-phase mode. As Figure 4.2

shows, Anand does predict correctly that the amplitude could not be

too small for the asymmetric mode to occur. Also, as the amplitude

increases the cubic term of the restoring force is predominant and

the asymmetric mode approaches a limiting value, 6 = —20.9°, which

is found by substituting the ms for a3 and m for A in equation (F.8).
1 3

Case II(a=0x This case represents a spring-mass system with the
 

outboard springs being the hard cubic type and the inboard spring being

linear. The exact frequency-amplitude curves are given in Figure 4.10

and the relationship between amplitudes in Figure 4.11. For absolute

values of the amplitudes less than 0.36 only two normal modes exist,

namely, the in—phase mode and the out-of—phase mode. However, for

absolute values of the amplitudes greater than 0.36 the asymmetric

mode branches off the out-of—phase mode. As Figure 4.2 Shows, Anand

does not correctly predict the exact result. As the absolute values of

the amplitudes increase the asymmetric mode approaches the limiting

value, e=0°, again found by substituting the above coefficients into

equation (F.8).
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Case III (9=-.2). This case represents a springdmass system with

hard, cubic outboard springs and soft, cubic inboard spring. The

exact frequency amplitude curves are represented in Figure 4,12

and the relation between amplitudes in Figure 4.13. For absolute

values of the amplitudes less than 0.29 only two normal modes are

present-—again, the in-phase and out—of-phase modes. For absolute

values of the amplitudes greater than 0.29 the asymmetric mode branches

again off the out-of-phase. Again, as Figure 4.2 shows, Anand predicts

that the amplitude is not restricted, which, of course, does not

agree with the exact result. As the absolute values of the amplitudes

increase the asymmetric mode approaches limiting value, 6 = 5.770.

before the amplitude becomes unbounded.

Case IV (a=-L3). This case represents a springdmass system

with hard, cubic outboard springs and soft, cubic inboard spring. The

exact frequency-amplitude curves are represented in Figure (4.14)

and the relationship between amplitudes in Figure (4.15) For absolute

values of the amplitudes less than 0.27 only two normal modes are present--

again, the in-phase and out—of-phase modes. For absolute values of

the amplitudes greater than 0.27 the asymmetric mode branches off

the limiting value, 6 = 7.90, before the amplitude becomes unbounded.

Again, as Figure 4.2 shows, Anand's prediction does not agree with

the exact result.

Limiting Cases. In this subsection we confine our discussion to

Anand's system shown in Figure 4.1, with the restoring forces defined by

[4.1]. we show that Rosenberg's homogeneous system with degree three

does serve as a limiting case of Anand's system for large amplitudes.



F
r
e
q
u
e
n
c
v
,

w
125

 

 

   

 
 

r I I I

a --.2

a1 = 1.6

k k = .1536

k1 = .896

m - l.

‘ In-phase mode

’25

- /’~\ Asvmmetric mode

/

/

/

/

/

/

x

/

J’////”,,. Out-of—phase mode

. ° ‘ ‘° J: :@ 4% _:_~

’7

 L, 1 l .4
 

Figure 4.12

1 2 3

b

Amplitude, 31

Frequency versus Amplitude Relationship (0 =—.2)

 



H

A
m
p
l
i
t
u
d
e
,

x
2

126

 

   
 

   

 

 

  
 

I I l

In-phase mode

b m

a =-.2

(11:1.6

k = .1536

_ 4

k1 = .896

6 = 5.770, limiting value line m = l.

(calc. from Rosenberg's app::::hz——fl________-_.—————"”'

-TM
1

L4

2 3 4 5

Amplitude, x1

Asymmetric mode

Out-of-phase mode

r d

1 1 1

Figure 4.13 Relation Between Amplitudes of Vibration of the Masses,(,=-.2



F
r
e
q
u
e
n
c
y
,

w
127

 

 
 

In-phase mode

 

   

 

Asymmetric a =-.3

k = .1536

. . m = l.

’ : ' O .

' Out-of—phase mode

j l l

0 2 3 4

Figure 4.14

Amplitude, x1

Frequency versus Amplitude Relationship (a =-.3)

 



128

 

 

  
 

 

3 T I T

a =-o3

In-phase mode

2*-
al-lo6 ‘1

k = .1536

k1 = .896

m = l.
KN

. 1L 1

'§ 6 = 7.90, limiting value line

‘: (calc. from Rosenberg's approach) id”’¢#,,.—~—

F1 ..«vrr‘g‘ ",,,~#*"””’.-—

__4/

o ”54’ .L = 1‘

. N 2 3 4 5

-.27 ---

r Asymmetric mode Amplitude, x1

-1_. _

-2.. 4

Out-of—phase mode

-3 .1 l J  
 

Figure 4.15 Relation Between Amplitudes of Vibration of the Masses, a=-.3



129

To show this Rosenberg's polar coordinate formulation of the homogeneous

system is summarized in Appendix F. Likewise, Anand's system is re-

formulated in terms of polar coordinates, is analyzed for large

amplitudes, and is compared with Rosenberg's homogeneous system.

Polar Coordinates-eAnand's System. The equations of motion

for this system are given by (4.2) and (4.3) or, equivalently by

(F.l) and (F.2) where

l 2

and

al 2 a3 4 4 A1 2.— 3 .. I = — 2 —— __ ..U U(xl,x2) (xl +x2 ) + (x1 +x2 ) + (x1 x2)

2 4 2

A3
+-—- (x -x )1+ (4.51)

4 l 2

with

81 = k1, a3 = ma

By introducing the polar coordinates

x1 = r cos 6 and x = r sin 6

2

into (4.51) the potential function -U becomes

 
 

 

alr2 a3r4

-U = 'U(r:6) = + (cos”6 + sinue)

2 4

A r2 A r'+

+-—l—— (cos 6-sin 6)2 + 3 (COS O-sin 0)“ (4.52)

2 4
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Since the total energy Uo for this conservative system is constant,

the potential energy —U equals Uo at the maximum amplitude position;

and the kinetic energy equals Uo at the equilibrium position. Thus,

the derivative of (4.52) at the maximum amplitude yields

3U 8U

dU --—dr+— de=0
0

Br 36

or,

dr 3U 3U

._ .-_ /_

d6 86 Sr

In this case the modal relations are, in general, not straight

but rather curved. However, as Rosenberg shows (Appendix F)

the vanishing of the derivative of (4.52) at the maximum amplitude

still defines a normal mode provided r = r(6) intersects -U = U

o

orthogonally. Hence, dr/de = 0 implies that au/ae = 0. Thus

taking the derivative (4.52) with respect to 6 yields

aU/BB = [ a3[cos36 sin 6-sin36 cos 6]

+ A3[(sin 6 + cos 6)(cos 0 -sin 6 )3]

+ Allr2 [(cos a -sin 6)(sin 6 + cos 6)] 1 r“ (4.53)

After some algebraic and trigonometric manipulations (4.52)

reduces to

EU A1

-—- = 0 = A3rl+ cos 26[(a3/(2A3) —1] sin 26 + l + ]

39 431:2 (4.54)
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Equation (4.54) reduces to (F.7) when either A1 = 0 (the linear

coefficient of the coupling spring) or, the Al/(A3r2) term is small

in comparison to the [[a3/(2A3) -1] sin 26 + 1] term. In this latter

case, taking the limit of the bracketed term in (4.53) we obtain

a A a
3

lim [(-1 -) sin 26 + l +-1- ]=[(-— -1) sin 26 + 1 J

r+ w 2 A r2 2

3

Hence, for a positive definite potential function (a3/A3 >0 or,

a3/A.3 - 0 and A3 >0) and for large amplitudes we observe that Anand's

result (4.54) reduces to Rosenberg's result (F.8).

While the above discussion does not constitute a rigorous

proof, we will now arrive at the same conclusion by another method

that is suggested by Rosenberg.

Rosenberg shows in [14] that the solution x2 = x2(x1) of

the system defined by (F.l), (F.2) and (4.51) is completely equivalent

to finding the geodesics in the potential energy surface. The

potential energy surface is a surface in the xlsz—space defined by

the function U. The geodesics are solutions to the differential

equation

2("0 + U)n" + [1 +(n')2][n' Ug 41”] = o (4.55)

where

1/2 1/2

n = (m) x2 F; = (m) x1

Un = 8U/3n U; = 311/35

and, where U0 is the total energy and U given by (4.51).
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dzn

When n" =-——-= 0, (4.55) reduces to

(1&2

n " Un/UE - constant

Thus, as Rosenberg says, every straight line which intersects

all lines of constant potential energy orthogonally is a modal

relation since it satisfies (4.55) as well as the definition of

normal mode by Rosenberg (Appendix F).

Rosenberg shows in [14] that homogeneous systems of degree one

(U quadratic) and of degree three (U quartic) yield straight-line

modal relations. Now, we intend to show how the potential [4.51]

approaches a straight modal relation for large U0. Thus, we split U into

the quadratic and the quartic terms to obtain

U = Ul + U2 (4.56)

where

U1 a quadratic terms

  

 

and

U2 = quartic terms

Dividing (4.55) by U0 and collecting terms using (4.56) we

obtain

2.91 -391 8U2 _ 3U2

U1 DZ 1 2 n' 5 3“ n' 3; 5n—

2(1+— +—— n"+[1+(n)] + =0

U0 U0 U0 no

(4.57)

For large U0, U155U2 irregardless of the n' value. Then,

(4.57) can be approximated by

0' 9.92 _ .2322

U2 85 8n

2(1 +— )n" + [1 + (n.')2] = 0 (4.58)

U U

0
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But (4.58) is just (4.55) with U = U2. Thus, for large Uo we see

that this case is homogeneous and of degree three. Similar arguments

hold for small U U >>U .
0’ 1 2



V. SUMMARY AND CONCLUSIONS

Vibrations of discrete systems outside of the classical linear

domain are no longer independent of amplitude. Since exact solutions

to such nonlinear systems are, in general, difficult to obtain,

approximate methods gain favor. An approximate method using ultra-

spherical polynomials (U.P.) was developed in this research and used

to obtain approximate solutions to certain one and two degree-

of-freedom vibration problems. The nonlinearity was assumed in the

form of a restoring force. The nonlinear restoring force

was approximated by expanding it in terms of ultraspherical polynomials

orthogonal over the interval (-l,l) with respect to the appropriate

weight function, and truncating it after the linear term. The general

development of the U.P. approximation presented in this research

involved calculating two bilinear approximations over some appropriate

interval containing the equilibrium point.

The mean square error minimization method was also used to generate

bilinear approximations. Relations were obtained which showed that

A I -.5 was one of two conditions necessary for the two methods to

agree. However, this condition was shown to be merely a linear

interpolation between points along the nonlinear function. In the

remainder of the research the polynomial expansion method was used

because of its greater flexibility in specifying the A parameter.

This method was then applied to three odd functions to illustrate

the procedure leading to their U.P. bilinear approximation.

134
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The bilinear U.P. method was used to approximate the motion of the

one degree—of-freedom, undamped, free and forced, nonlinear vibrating

systems. For the free vibration problem the previously obtained

bilinear approximations to certain nonlinear restoring forces were used.

Period-amplitude relations were graphed and revealed,in general, improved

accuracy over the linear U.P. approximation. A A parameter of 130

(Chebyshev polynomial) and an amplitude ratio of xt/xm-.5 were found to

consistently yield the better results.

For the forced vibration problem only one case was investigated.

This problem included the function f(x) = x + x3 as the restoring force

and the unit step-function as the exciting force. Little

improvement over the linear U.P. method was obtained by

using the bilinear U.P. method.

The bilinear U.P. method was then applied to the two degree-

of-freedom free, undamped, symmetric nonlinear vibrating system.

Anand [18] recently investigated this system using cubic restoring

forces and found more than the usual two normal modes of vibration

present. Normal modes for nonlinear systems were defined in the

sense of Rosenberg [17]. In this research Anand's approach has been

shown to be essentially the linear U.P. approximate approach.

Having found this, a special case was solved by the bilinear U.P.

method and its frequency-amplitude results were compared with Anand's

result. Where Anand's formulation predicted the existence

of this additional mode (asymmetric mode) the bilinear U.P. method

denied its existence. To resolve this dilemma an exact solution

was devised using a finite difference method modeled after an approach

by Rosenberg [14]. The exact solution showed the bilinear U.P.

prediction to be correct.
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The finite difference method was applied to other cases so that the

exact result could be compared to Anand's predictions. In some cases

Anand's criterion did correctly predict the existence of the asymmetric

mode. However, in other cases the predictions were incorrect. For the

above system Rosenberg [14] has provided a more predictable method for

determining these asymmetric modes.

The finite difference method developed in this research has

provided a means of linking together the works of Anand and of Rosenberg,

as applied to the existence of asymmetric modes.

Several avenues of research suggested by this study are as follows.

The bilinear ultraspherical polynomial method could be applied to other

forced vibrating systems possibly with damping present. For the symmetric

two degree-of-freedom system considered here, an extension would be to

generate analog computer solution solutions to compare with the digital

computer results. Uhsymmetric systems could also be investigated and

might yield very fruitful results in understanding other unusual

nonlinear phenomenon.
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APPENDIX B

NORMALIZING COEFFICIENT,Cn

The coefficient Cn can be cast into a form generally accepted by

performing the following algebraic manipulations,

-1/2 -1/2
2A2 Jh r(x+1/2) r(2x+n) (3.1)

 

- m(n+1) P(n+1) P(A+l) F(21+1)

2A2 «H r(x+1/2) r(2x+n)

D 3
(B02)

(n+1) F(n+1) F(A+1) F(21+1)

 

using,

r(x+1) = A F(A) (8.3)

F(21+1) = 2A F(21) (B.4)

and from Gray and Mathews [ 19 ],

22n I'(n+1/2) I‘(n+1)

/%

(2n)!
 (B.5)

(2n)! (2n) (Zn-1)! = 2n P(2n) = F(2n+1) (8.6)

and altering equations (3.5) and (3.6) by letting 2n = 21-1, we obtain

equation (3.5) in the form
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22"1r(x) r(x+1/2)

/1r

(2n)! = (21-1)! = F(21) = 

or,

21‘2*/h r(2x) = r(x) r(x+1/2)

Upon substituting (8.3), (B.4), and (B.7) into (B.2),

21‘2A NIK21+n)

D:

n (n+1) [P(1)]2P(n+1)
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APPENDIX C

SPECIAL CASE SHOWING COMPARISON OF BILINEAR U.P. APPROXIMATION AND MEAN

SQUARE ERROR METHODS

The relationships between the conditions (equations (2,36)

and (2,37 )) under which the bilinear ultraspherical polynomial approximation

and the mean square error methods differ are compared. This is

accomplished for the special case of the nonlinear function

g(x) = x + x3, subject to xm = 2, x = 1.

The general conditions (2.36) and (2.37), are repeated here for continuity.

 
 

 

 

11 wE dt f1 wt dt

0 O

= (2.36)

flet dt f1 wtz dt

0 O

f1 wdt [1 wt dt

0 O

= (2.37)

f1 wt dt [1 wt2 dt

0 O

A—l/Z

where w = (1-t2)

0
0
!

I

- g(xtt)

0
0

II

II

g(ymt + xt)

y1n = xm-xt
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fl wt dt

Let R = (C.1)

f1 wt2 dt

 

1'le dt

0

R = ‘ (C.2)

2 f1 wg't dt

0

 

f1 w dt

0

3

f1 w t dt

0

 

(C.1) and (C.3) can be readily evaluated using Appendix D. The

integrals in the numerator and denominator of (C.2) can be expanded

and then evaluated using Appendix D. Figure C.l represents the values

of R1, R2, and R3 for various values of A. Note that at the lower limit

of the A parameter; A = -.5, all three R's coincide and gives the

conditions when exact agreement exists between the bilinear U.P.

approximation method and the mean square error method.
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Figure C.l Conditions comparing the bilinear U.P. method with the mean

square error method plotted against the A parameter for

the function, g(x) = x + x3, xIn = 2, xt = 1.
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APPENDIX D

RECURRING INTEGRALS EVALUATED

The beta function B(m,n) cast into a form that recurs often in

applying ultraspherical polynomial expansions.

P(m) P(n)

3011.11) = ___- = II V

P(m + n) o

m-l (l-y)n'-l dy for m,n > 0

let y = x2,

_ -l

B(m,n) = Zfl x2111 1 (1-x2)n dx

0

+

let 8 = 2m-1:-9m-§-§l

 

t = n-l

=> n=t+1=A+1/2

t = A-l/z

therefore,

3+1

1* (““2) run/2) -
3 2 A 1’2

= £1 x (1-x ) dx

2 F(s+2x+2)

2
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A-l/Z

f1 xs(1-x2)

o

I‘[S_-2i] I‘(A+1/2)

2 11%]

 dx =

 

 

/h P(A+l/2)

 

2 F(A+1)

 

P(A+1/2)

 

2 r(A+3/2)

 

2A+1

 

Vh P(A+1/2)

 

4 F(A+2)

 

P(A+1/2)

 

2 P(A+5/2)

2

 

(21+1) (ZA+3)

 

3vh r(A+1/2)

 

8 P(A+3)

 

P(A+1/2)

r(A+7/2)

8

 

(21+1) (2A+3) (2A+5)

   15¢h r(A+1/2)

 

l6 P(A+4)
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APPENDIX E

EVALUATING k1 FOR THE NONLINEAR FUNCTION,

f(x) = sin x

[1 (l-t2)>\_1/2[sin(xtt)] t dt 7 (3.1)

O

 

-1/2

fl (1-t2)A t2 dt

0 .J  b

By changing the variable, t = c036) and by using Appendix D to evaluate

the denominator, k1 becomes

 

  

ffllz sin2A (6) [sin(xt cos 6)] cos 6 d 6

0

k1 = L
(E.2)

xt

_gi_ rgx+ 1/2)

_ 4 P(A+2)
J

Substituting the power series expansion for sin(xt cos 6) using

2 +1

x n {-1)n

sin x =2 , and using the beta function relation

n=0 (2n+1) !
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am 2 __1 _

B [—,-J = ZINI 81% (x) cosm 1(x) dx

2 2 0

we obtain after simplifying,

 

P 2A+1 2n+3‘
+ —— _—

m (-1)n xi“ 1 B[ 2 , 2 ]

k1 " _]_.__ Z 4 P()\+2)

xt J‘n’ r(x+1/2) (13.3)

n=0 (2n+l)! 2

~— J  

Evaluating the beta function using Appendix D and representing the

gamma functions in terms of factorials we find,

m (-1)n xt2n+1 P(A+2) (2n+l) (n-1/2)!

k1 =.l_ Z (E.4)

xt n=0 (2n+l)! VF?' (n+1+l)!

 

The term (2n+l)! can be simplified using a relation in Gray and Mathews [ 19],

(2n+1)! = (2n+1) (2n)! = 22n(n-1/2)! n! (E.5)

f‘n‘

Substituting (E.5) into (E.4) yields

 

k1 =-—--x;i Z 2 = F(A+2) Jl+l(xt)

xt n=0 (n+A+1) ! n! H1

(_ (XII/2)

2
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APPENDIX F

NORMAL MODE VIBRATIONS FOR NONLINEAR SYSTEMS

Rosenberg [17] defined normal mode vibrations for the nonlinear

system in terms of a vibrations-in-unison of the physical system.

A system is said to vibrate in unison if the motion satisfies all of

the following conditions:

(i) all masses execute equi-periodic motion, or

xi(t) = x10: + T), (1 = 1, "‘n)

where T is a constant;

(ii) there exists a time t = to when all masses pass through the

equilibrium position, or xi(to) = 0, (i = l, ----n)

(iii) there exists a time t = t1, # to when all velocities vanish,or

i1(t1) = 0, (i = l,""n)

(iv) the position of every mass at any instant of time t is uniquely

determined by that of anyone of them at the same instant, or

H=xflqun. u=2,~~m

are all single-valued functions of XI.

The governing equations of motion for the nonlinear system shown in

figure F.l are

ml 1 = 9}; (F.1)

3x1

1112322 " fl
3X2 (F.2)
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X1(t) x2(t)

J;  

     

In1 W m2

8 d O O

'771/ 7/// //7/
 

Figure F.1 Coupled Spring-Mass System

where U = U(x1,x2) is a positive definite potential function. Consistent

with above conditions a normal mode of the system in figure F.1 is defined

as a function x2 = x2(x1) called the modal relation, which is satisfied

for all time by periodic solutions x1 = x1(t) = x1(t + T) and

x2 - x2(t) = x2(t + T) and where x2(x1) is a single-valued function of

x1, in the closed domain -U(x1,x2) = Uo of the(x1,x2)-p1ane subject

to the boundary condition x2(0) = 0 and which intersects the line

-U(x1,x2) = Uo orthogonally.

Rosenberg has shown that modal relations, x2 = x2(x1), for these

nonlinear systems are, in general, not constant. However, he has shown

that two classes of systems exist for which the ratios of the displacements

of the two masses are identically equal to constants (i.e., x2 = c x1)

for all time when the system vibrates in normal modes. One class is

the homogenous case of degree "k" which may be entirely unsymmetric

with respect to the masses as well as the anchor springs (outboard
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springs). The homogeneous case refers to those systems having all springs

with terms of the same degree k. For example, if k=3, then all springs

would have only the cubic term present. The other class is the symmetric

case in which the two masses are equal and the outboard springs are equal.

Rosenberg discusses one feature of the nonlinear system having two

degrees-of-freedom which is not found in the linear system. This

feature is that there may exist more than two normal modes. This he

illustrates by choosing a symmetric homogeneous system with the

potential function

U(x1,x2) =—«E§ (xl”+ x3)--fig (x]_--x2)l+

4 4 (F.3)

By introducing the polar coordinates

x1 = r cos 9 and x2 = r sin 6 (F.4)

the potential function becomes

U(r,9) = £:.[-a3(cos”6 + sinue) -A3(cos 9 -sin 9)q] (F.5)

4

The necessary and sufficient condition for the existence of

straight modal relations for the positive definite potential function

U(r,6) is

311 = 91 (9)02 (r,8) (F.6)

89

Equating, (F.6) to zero implies that 01 (6) is zero and its roots are

the modal relations. For this illustrated case the modal relations are
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([a3/2A3-1] sin 29 + 1) cos 26 - 0 (F.7)

Setting cos 26 = 0, yields 6 = :n/4 and

setting [a3/2A3 -1] sin 26 + 1 = 0, yields the additional roots

-1

e a -1/2 sin {2/[(a3/A3) —2]] ' for a3/A3 3_4 (F.8)
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