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ABSTRACT

CONSTITUTIVE EQUATIONS AND THE SOLUTION

OF SOME PROBLEMS OF INTERACTING

CONTINUOUS MEDIA

By Farhad Tabaddor

A mathematical statement, describing the incompressi-
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bility condition for a mixture of n incompressible Newtonian

fluids and a linear elastic solid was obtained.

Using a thermodynamic theory of interacting media

proposed by Green and Naghdi, the constitutive equations were

derived for a binary mixture of an incompressible Newtonian

fluid and a linear elastic solid. The similarities between

these governing equations and those for a binary mixture of

a compressible fluid and a linear elastic solid were discussed.

A system of field equations are formulated and the

general solution for the displacements are presented for the

steady-state case. A stress function solution for partial

stresses of the solid was developed for steady—state plain—

strain problems. These methods were applied to solve a two-

dimensional problem. The reduction of the present theory

to Biot's consolidation theory and Darcy's law of fluid

flow through porous media is discussed.

A diffusion law is given for a mixture of two ideal

fluids flowing through a rigid porous material.
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Finally, following the main theory and employing the

notion of hidden coordinates of irreversible thermodynamics,

the constitutive equation for a binary mixture of a Newtonian

fluid and a viscoelastic solid is derived.
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CHAPTER I

INTRODUCTION

:
—

The theory of mixtures, or heterogeneous media, has

received a great deal of interest and attention in recent

years.

This branch of continuum physics is concerned with J

that kind of medium which consist of two or more constitu-

ents, where each constituent is a simple medium with its

own physical and chemical properties in the absence of the

others. When the components mix together, some changes

will appear in both the physical and chemical properties

of each constituent. The field of interacting media deals

with the necessary modifications to these properties, and

formulates the preper field and constitutive equations for

the media under consideration.

The problem is of great importance both from a the-

oretical and practical viewpoint. The wide application of

this branch is rather evident from the nature of the problem.

As examples, consider the diffusion problem, seepage of

water and other fluids through deformable or undeformable

porous media, absorption of oils by plastics, water by fibers,

and many others. In what follows the basic works in this

area are briefly reviewed.



1.1 Fick's Law of Diffusion
 

In analogy to heat conduction, and on no other

grounds, Fick assumed that in a binary mixture, the rate of

transfer of the diffusing substance through a unit area of

the section is proportional to the concentration gradient

measured normal to the section

_ _ 3C ..
F - 13-3-5; (1.1 l)

where

F = rate of transfer per unit area,

0

II concentration of diffusing substance,

D diffusion coefficient-

The fundamental diffusion equation is derived by

substituting the above constitutive law into the continuity

equation of diffusing substance.

ac _ 2 _

Although the above relation was proposed for a

binary mixture, Onsager (Ann. N.Y. Acd. Sci. 46,251, 1946)

suggested * - the direct generalization of Fick's law.

The above concept is not supported by principles of conti-

nuum mechanics in general, and the many limitations and

conceptual difficulties arising from Fick's hypothesis sug-

gests an entirely different approach to the problem.

A full account of linear theories of diffusion has

been given by Truesdell [42,43] and the various theories of

diffusion are analyzed.



The assumption under which Fick's law is usually

applied is that there is no mass exchange, that the pressure

and total density are constant, and that there is no mean

motion.

The derivation of Fick's law of diffusion has also

been considered by Adkins [1], Green and Adkins [24], and

Mills [30] from different approaches, and the basic assump—

tions of the classical theory are justified under special

conditions.

1.2 Truesdell's Hydrodynamics Approach
 

A general theory of mixtures, or alternatively het-

erogeneous media was constructed by Truesdell [42]. The

basic assumptions of the theory are as follows:

A. Each space point x may be occupied simultaneously

by several different particles. This assumption was first

suggested by Fick and Stefan. The validity of this assump-1

tion is as good as the assumption of continuity of the matter.

B. We can assign distinct kinematic quantities such

as velocity and acceleration and mechanical quantities such

as forces and stresses to each substance at a space point x.

C. Since the diffusion involves relative motion of'

different particles, a transfer of momentum between the com-

ponents is involved, while the total momentum of media is

conserved as a whole.

D. To account for diffusion phenomena, the body

force acting on each constituent can be subdivided into an



extraneous body force, which is the same as for a single com-

ponent, and a diffusive force. The theory calls for a consti-

tutive equation for the diffusive force which satisfies all

the necessary invariance requirements.

E. "Each component is considered as being subject to

a partial stress whose action upon any closed diaphragm is

equipollent to the action of all constituents exterior to the

diaphragm upon the material of the constituent under consid-

eration within the diaphragm" [42]. Consequently the total

stress is the sum of the partial stresses.

Truesdell developed a general framework for hetero-

geneous media,and,based on his general theory, he gave a

comprehensive analysis of four different approaches to the

diffusion problem. Some aspects of the linear theory were

examined. Using Truesdell's approach, Adkins [1,2,3,4] has

developed a non linear theory.

In the following, the general framework of the problem

is outlined. We refer the motion to a fixed system of Carte-

sian coordinates Xi, and denote the initial position of each

(r)
substance as Xi where r denotes the rth substance.

(r)
The position of a particle Xi at time t is denoted

(r)
by xi where

(r)x. = (r)x. ((r)X.'

1 1 3

We can express (1.2-1) in alternative form

(r)

t) r = 1,2....n (1.2-l)

xi = (r)xi(‘r)xj, t) r = 1,2....n (1.2-2)

For the above deformations to be possible in real materials

we must have



(r) (r)

T3xi 71—13X. (1 2 2 )> O > 0 . — a

The summation convention does not apply to r.

(r) (r)
The substance Xi has a velocity vi at time t

where

r

(r)V — E:_::i (1 2-3)

1 ‘ Dt '

(r)

where —DE- denotes differentiation with respect to time hold-

ing (r)Xi fixed.

If the density of substance Sr is or at (r)xi then

the density of the mixture is p where

(1.2—4)

and the mean velocity 5h of the mixture is defined to be

n

055 _ z pr (r)vfi (1.2 5)

r=l

If w = w( xi,t) is any scalar or tensor function

we observe that

_ aw (r) am

5'1? + Vmfi;U
I
U

(
+
6

I

where B/Bt denotes partial differentiation with respect to

time holding the spatial coordinates constant. If we define

the operator D/Dt by

D -3
_ 3 -

Dt — t + vmggg (1.2 6)

then



n (r) n n n

DW _ 3W (r) aw _ 32 (r) aw

rél pr 5— _r£lpr(3t + Vmfiig) - rzlprat +r£lpr m3x;

(r)
8w — 3w DU n

= p + pv = p—— Dw _ Dy (1.2-7)

‘5? m5}; D r210]: '51? - th

(r)—
The diffusive velocity um of the substance Sr is

defined to be:

(r)- _ (r) _ - _
um _ Vm Vm (1.2 8)

thus

n n

p(r)--m _ p(r)Vm _ 035 = zlps(r)vm _ les(S)vm

s= s=

= § 0 ((r)v _ (s)v ) (1 2-9)

5:1 5 m m °

so

n n n n

(r)— _ (r) _ _ (r) _ -

rglpr m r£1(pr Vm prvm) _ rglpr Vm rElprvm

= 95m - 03m = 0 (1.2-10)

If we exclude the possibility of mass generation or

mass dissipation by chemical reactions, adsorption or similar

processes, the continuity equations can be written for each

component of the mixture in the form,

apr 8 (r) _ Dpr 3(r)vi

.3_E_ + 53?;(01' Vi) : b-E— + (Dr—3i:— - 0 (1.2-11)

Do 1 = -

(If there exists a mass supply, equations (1.2-11) should be

modified; see [42].)



(r)
We define Hi, the supply of momentum of rth sub-

stance, to be

( ) < > 3 (r)r r

Fi is the body force per unit density of rth com-

(r) _ Oik
0 1T. - pr(1 (1.2—13)

(r)
where

ponent and

(r)D<r)V.

(r) _ 1 _
ai — ——_BE—-—_ (1.2 14)

If the momentum was conserved for each component, we would

have had

(r)ni = 0 for r = 1,2....n

Since we assume that total momentum of the mixture is con-

served, it follows that

n

X (r)n. = 0 (1.2—15)
1

r=l

From the sum of n equations (1.2-13), and considering

(1.2-15) we obtain

301k
—axk + pFi = pai (1.2-16)

where

n n n

(r) (r) (r)
F. = 2 p F. and pa. = 2 p a. o. = X o.
1 r=l r 1 1 r=1 r 1 1k r=1 1k

To complete the theory, the constitutive equations

for stresses and the supply of momentum should be postulated.

The equations (1.2—11-13-15) plus the constitutive equations

are 13n partial differential equations for 13n unknowns,

namely the densities, stresses, displacement, and diffusive



forces (together with appropriate boundary and initial con-

ditions).

Based on the above development Adkins [1-4] discussed

the invariance requirements and the restrictions imposed

upon the constitutive equations. In the first paper he

assumed the stresses to be a function only of quantities

specifying the motion of the substance under consideration

and its concentration, and that there is no contribution

from the presence of the other components. He has also

applied the theory to a number of steady—state problems of

non-Newtonian fluids and flow of fluids through rigid

plates and some wave propagations. Later he discussed the

case where the stresses might depend upon the velocity grad-

ients of other components. He also has applied the theory

to the problems of fluid flow through elastic solids, where

attention is confined to steady-state problems. Adkins has

also [4] discussed the diffusion through Aeolotropic highly

elastic solids. Essentially the same approach was employed

by Kelly [45] for chemically reacting media. Hayday [28]

came up with essentially the same results with a somewhat

different degree of generality. His development can be con-

sidered as an alternative approach to Truesdell's formalism.

The main axioms were presented in integral form.



1.3 Thermodynamic Theories
 

In the works cited so far, equations of mass, momentum

and energy balance are postulated for each component of the

mixture. No account was taken of possible thermodynamic re—

strictions which might be imposed upon these equations.

In order to improve the theory and to remove some of

conceptual difficulties, Green and Naghdi [25] developed a

rather new approach to the problem. Instead of postulating

equations of mass, momentum, and energy balance for each con-

stituent, they proposed a single energy equation and an en-

tropy production inequality for the whole continuum, allowing

for chemical and thermal reactions. By systematic applica-

tion of invariance requirements, they derived the equations

of mass and momentum, which are basically the same as those

proposed by Truesdell. However differences occur in the

other parts of the theory.

As will be seen, the diffusive force comes into the

picture in a natural manner. The partial stresses, although

defined essentially the same as those of Truesdell, are not

necessarily symmetric, in spite of the absence of couple or

multipolar stresses. This immediately suggests that the in-

teraction between components of the mixture occurs not only

through the body forces but also through the body couples.

Truesdell did not consider the case of non symmetric partial

stresses, which in effect implies that the moment of momentum

is not a conserved quantity for each constituent. The full
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use of energy and entrOpy production inequality equation im-

poses restrictions on constitutive equations. The theory

was derived for the case of a binary mixture and was first

applied to the mixture of two Newtonian fluids. The theory

postulates a temperature T and an internal energy U for the

mixture, but not for the components. For many cases, this

does not introduce a serious restriction.

Green and Steel [26] applied this theory to derive

the constitutive equations for a mixture of a Newtonian fluid

and an elastic solid, and also the mixture of two elastic

solids. Crochet and Naghdi [22] discussed the problem of a

mixture of an elastic solid and a fluid. In a paper by

Mills [30] the problem of the mixture of two incompressible

Newtonian fluids was discussed and the incompressibility con-

dition and the resulting modifications presented. A law

similar to Fick's law of diffusion was derived for a binary

mixture of incompressible fluids.

The problems of wave prOpagation in a mixture of an

elastic solid and a Newtonian fluid and also in two elastic

solids have been considered by Steel [41]. In another paper

[40] Steel considered the plain strain problems of two elas-

tic solids and presented the solutions in the complex plane.

As an example, an infinite body initially containing a cir-

cular hole with a special loading condition, is solved by

use of complex potentials. Some uniqueness theorems were

presented by Atkin, et_al. [5] for the linear case, and a

set of sufficient subsidiary conditions are stated.
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Recently [31] the above theory has been generalized

for a multicomponent mixture by Mills. The case of n fluids

and an elastic solid has been worked out in detail. As an

illustration, the steady-state problem of a binary mixture

of ideal gases in an isotrOpic rigid solid is discussed.

The formalism of Green and Naghdi [25] will be briefly

reviewed for future use and the expressions and definitions

identical to section 2 will be omitted. If the motion of a

mixture of two components, S and S is referred to fixed
1 2’

Cartesian coordinates and the material coordinate of S1 is

denoted by X and S by Y, the position of a typical particle
2

at time t is

xi = xi(Xj,t) yi = yi(Yj't) (1.3-1)

where the condition (1.2—2a) is satisfied.

We consider those particles which occupy the same

position at time t so that

yi = xi (1.3-2)

The velocity vectors at point xi yi at time t are

(1)Dx. (2)Dy.

1 1

“i = T Vi = T ‘1-3'3’

where D/Dt has the same meaning as before. The acceleration

vectors are denoted by ai and gi where

(l) (2)
Dui Dyi

a1 = T Vi = T ”-3-“

The densities at time t are p1 and p2 and the rate of defor-

mation tensors are defined to be
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1 l
.. = —1u. . + . . f.. = — -. . + v. . 1.3-5

d1) 2( 1.] u3.1) 1: 2(V1.3 3.1) ( >

The vort1c1ty tensors are defined to be

1 . . 1
.. = . . - . .. = '. . - . . 1.3-6
1] ‘2(u1,j uj,1) A1] 2(V1,j Vj,l) ( )

= + V’ — + E— = i3-—- + 6' a
p D1 D2 p i plu1 p2V1 Dt 3t m5xm

(1)D (2)

th - pl Dt + p2 Dt as before.

If A is an arbitrary fixed closed surface enclosing

a volume V and nk is the outward unit normal, the following

energy equation is postulated.

§_.J[ [(p + p )U + ip u.u. + lp v.v.]dv +Jrln (p u + p v )U
at V 1 2 2 l 1 1 2 2 1 1 H k 1 k 2 k

+ fplnkukuiui + :pp2Hkvkvvl]dA = jr(pr + plFiui + sziV.l)dV

+ j;(tiui + pivi)dA - j;h dA (1.3-7)

where U is the internal energy of the mixture per unit mass.

Fi’Gi are externally applied body forces per unit masses of

S1 and 82.

ti,pi are surface force vectors per unit area of A, such that

tiui and pivi arethe ratesof work per unit area of A.

r is the heat supply function per unit mass of the mixture

due to external sources.

h is the flux of heat across A per unit area and unit time.

If we define m1 and m2 to be

1( )Dpl (2)Dp2

m1 ‘ "BE" + pluk,k m2 = “BE" + pZVk,k (1.3-8)

and apply a uniform rigid body translation to (1.3-7), assum-

ing that pl, p2, U, (Fi - ai), (Gi - gi), ti, pi, h, r, not
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being altered by this, we obtain:

jv[91(Fi ' a1) + p2(G1 ‘ 91) ' mlui ‘ mzvildv

+f<ti + pi)dA = o (1.3-9)

A

ml + m2 = 0 (1.3-10)

If G . and T . are defined to be the values of t. and

k1 k1 1

pi when the surface at a point xi is perpendicular to xk

axis, then the application of (1.3-9) to a tetrahedron yields,

ti + pi = nk(oki + Tki) (1.3-11)

We refer to Oki and Tki as partial stresses. If we

use (1.3-11) in (1.3-9) we obtain

(Oki + Tki)'k + plFi + szi = plai + p291 + mlui + mzvi

Equation (1.3-12) is equivalent to the sum of the

equations of linear momentum supply for a binary mixture

as was proposed by Truesdell. With the help of equations

(1.3-8, 10, 11, 12) equation (1.3—1) can be reduced to

DU 1 1
[or - DEE + 2(91Fi - ozGiHui — Vi) — 5(olai — ozgiHui - Vi)

+ 7(0ki + Tki)(ui + vi),k]dv + %’j;(ti - pi)(ui - vi)dA

-fh dA = 0 (1.3-13)

A

If qk is the flux of heat across the xk planes, then

the application of (1.3-13) to a tetrahedron bounded by co-

ordinate planes, and a plane with outward unit normal nk

yields

Fimi — vi) - (h - nqu) = 0 (1.3-14)



l4

— 1

Where "1 = 2[(t1 ' Pi) ‘ nk(°k1 ' Tk1”

Using (1.3—14) and applying (1.3-13) to an arbitrary

volume yields

D U

pr qk,k th + Tri‘ui i) + 0kiui,k + ki i,k 0

(1.3-16)

where

_ 1 _ 1 _ _ l. _

"1 ’ 2(Oki Tki)'k + 291‘F1 a1) 2 2‘31 91)

We refer to Hi as a diffusive force. It is further deduced

that

Oki + "ki = Oik + Tik (1.3-18)

and h - n = 0 (1.3-19)

qu

Equation (1.3-16) can be written as

or ’ qk,k ‘ p%% + "1‘”1 ' V1) + é‘Oki + Oik)dik

+ %(Tki + T1k’f1k + %(Oki ‘ Oik)(rik ' Aik) = 0 (1°3'20)

Also postulated was an entropy production inequality

in the form

a .[

-- (p + p )S dV’+ jrn (p u + p v )S dA - jf E
at V l 2 A k 1 k 2 k V T dV

+j’ EdA 3 O or

A T

p9§dv - pEdv + EdA z 0 (1.3-21)
v Dt v T AT

where S is the entr0py per unit mas of the mixture and T is

the temperature. (S,T are not decomposed into components and

in effect they are considered to be the average for the mixture.)
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The theory would be completed if we supplement the

O O I — T T

const1tut1ve equat1ons for Hi, "i' (oki + oik), ( ki + ik),

- 01k) and m and m with thermodynamical restrictions
(Oki 1 2

furnished by (1.3-21).

1.4 Flow of Fluids Through Porous Media
 

The special case of heterogeneous media which has re-

ceived the most attention and work in the past, is the flow

of fluids through porous media.

The basic hypothesis and references to classical work

in this area can be found in the books written by Muskat [32]

and Scheidgger [37]. A review article [38] also covers a

good number of references. The basic equation in this area

of work is Darcy's law. On experimental grounds only, Darcy

postulated a linear relationship between velocity and pres-

sure gradient of the fluid, while the porous medimtis assumed

to be rigid.

Later (1941) Biot and co-workers, adopting the Darcy

law, discussed the flow of fluids through deformable elastic

solids in an extensive series of papers [6-17]. A review

article by Paria [36] covers the essential part of the litera-

ture. This will be discussed in detail in Chapter IV.

1.5 Further Theories
 

the

In order to remove some of the restrictions of/former

theory resulting from the assumption of a single temperature

and internal energy for the mixture, Green and Naghdi [27]
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proposed a theory of mixtures in which all dependent vari-

ables were admitted for each constituent. Thus an energy

equation and an entropy production inequality were postulated

for each component of the mixture. In formulating these

equations care was taken so that the suitable sums of these

equations were compatible to that of the mixture. Again by

full use of the invariance requirements they deduced similar

equations to those shown before.

The results of the theory are in complete agreement

with the former case of a binary mixture, but, in addition,

the thermodynamic variables could be obtained for each

componentr They pointed out that in general the thermody-

namic properties of the mixture are not merely related to

those of its components by algebraic sums. However, if the

temperatures of the components are the same as that of the

mixture, the entrOpy and internal energy of the mixture are

related to those of its components by some suitable algebraic

sums .

1.6 Scope and Objectives

The main objective of this work is to establish a

theoretical foundation for a binary mixture of an incompress-

ible Newtonian fluid and a linear elastic solid based on the

theory of Green and Naghdi [25]. The scope of the work is

outlined below.

a) Mathematical statement of the incompressibility

condition.
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b) Derivation of constitutive equations, using in-

compressibility condition and formulating the complete field

equations.

0) General displacement solution of the problem in

terms of potential functions for steady—state case.

d) General solution of the problem in terms of/gtress

function for two-dimensional steady-state case.

e) Reduction to Darcy's law for flow of fluidsthrough

a rigid porous media and Biottsequation of fluid flow

through a linear elastic solid.

f) Application of the general solution to one and two

dimensional problems.

9) Derivation of constitutive equation for a mixture

of a Newtonian fluid and a viscoelastic solid.

h) Derivation of constitutive equations for a mixture

of two ideal incompressible fluids and a linear elastic

solid:derivation of a diffusion law and comparison with the

existing diffusion expressions.



CHAPTER II

BINARY MIXTURE OF A NEWTONIAN FLUID AND

AN ELASTIC SOLID

2.1 General Remarks
 

In this chapter the mathematical statement of incom-

pressibility for a mixture of n incompressible fluids and a

linear elastic solid will be derived. The special case of

this condition for a binary mixture of an incompressible

fluid and a linear elastic solid will be obtained from the

general expression.

The constitutive equations for such a binary mixture

will be obtained by use of/gfierPy production inequality

and the incompressibility condition and compared with those

of the compressible case. The complete field equations will

also be stated.

Our interest in incompressibility is twofold; firstly

it is of theoretical interest and secondly the fact that such

a condition offers a great deal of simplifications in dif-

ferent theories of single media such as classical hydrodyna-

mic and finite elasticity.

l8
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2.2 Basic Assumptions
 

The assumptions used in this chapter are listed below:

a) Both elastic solid and fluid are initially at rest

under zero initial stresses.

b) The continuum is initially homogeneous and isotrOpic.

c) The displacement of the solid, as well as its space

and time derivatives, remain small during the motion, such

that we can neglect any term higher than the first in all of

our fundamental equations.

d) The change in density and the velocity, as well as

their space and time derivatives, of each component during

the motion are small of the same order, in the sense that we

can neglect any term higher than the first in all fundamental

equations. The temperature remains constant throughout the

deformation.

It is perhaps worth noting that one cannot speak of

small quantities which are not dimensionless, since the nu-

merical values of such quantities depend on the scale used in

the problem. In such cases, the equations should be made di-

mensionless before any smallness argument can be applied.

2.3 Incompressibility Condition
 

We consider the mixture of n incompressible fluids

and a linear elastic solid under the above assumptions. We

suppose that the initial porosity of solid is Po and the

initial volume concentrations of fluids within the pores of
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(a)
solid is C a = 1,2,3...n it is readily seen that

n

2 (“)c = 1 (2.3-1)

d=l

Let V1 be the initial volume of an element of solid

and V1 the volume of the same element at t = t, we then have,

Vl = Vl(l + emm) (2.3-2)

1 Bwi 8w.

Where eij = '2- ‘gx—j- 4‘ mi) (2.3-'3)

and w. = x. - X. (2.3-4)

1 1 1

where xi is the position of a particle of solid, whose ini-

tial position is Xi, both referred to the same fixed Carte-

sian coordinates. From the basic assumptions, it follows

that there is a linear relation between the compressibility

and volume change of the pores. With that in mind, it is

easily seen that:

(2.3-5)

I

w <

I

<
|

+ w <V—

or

v = V

where v is the actual volume of the pores in an element Vi

at time t (we only consider the interconnected pores, and

treat the closed pores as a part of solid). R is a constant

expressing the ratio of pore' compressibility to the total

compressibility.

If (a)?’ (a)3’ (“)0, (a)v are the initial density of

the fluid a: the initial density of fluid a in the mixture,

the density of fluid a in the mixture at t = t and the actual
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volume of fluid within the volume V respectively, we would
1

have

(a);(d)v = (a)pvl for a = 1.2....n (2.3-5)

and

n < )2 a V = V (2.3-7)

a=1

also

(a)fi'= (a)cpo(a): for d = 1,2....n (2.3-8)

By use of (2.3-2,5,6,8) in (2.3-7) we obtain

n (0L)C(0L)p

Poaél—(EF- = (R - PC) 6m + PO (2.3‘9)

The continuity equations for fluids can be written as:

(a)
3 n (on—(0L) _ _ ..
'—3t— + p fkk — 0 for - 1,20000n (203 10)

where (a)fik is the rate of deformation tensor for ath fluid

and

(“)n = (a)p _ (“’5 for a = 1,2....n (2.3-11>

so

(a) (a)
3 n_ 8 p _ _
—8t——Tt’for O. "' 1,20000n (203 12)

If we substitute (2.3-12) and (2.3-10) into the.partial

time derivative of (2.3-9) we obtain

P § (“)c(“)f + (R - P )aemm = o (2 3-13)
0 d=1 kk 0 5t °

In the case of a binary mixture of a fluid and an

elastic solid “'= l and (1)C = 1, therefore the equation

(2.3—13) reduces to

P — R 8e
= 0 mm (2.3-14)

fkk pO at

—
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0 < R g 1 0 < Po s l

where fij is the rate of deformation tensor of fluid. Biot

[9] stated the incompressibility condition for a mixture of

a solid modeled by rigid spheres connected by helical springs,

and an incompressible fluid. Such a relation can be obtained

from relation (2.3-14) by setting R = l and integrating the

equation.

The incompressibility condition (2.3-14) reduces to

fkk = 0 (2.3-15)

in the following cases:

aemm

a) steady-state case where _FE— = 0

b) the sol1d is rigid so emm = 0

2.4 Constitutive Equations

For a binary mixture of a linear Newtonian fluid and

a non-linear elastic solid, Green and Steel [26] postulated

the following constitutive equations.

m1 = 0 m2 = O (2.4-1)

Bxi

A = A W,p2,T (2.4-2)

3

8x.

1

3

where

A = U - TS (2.4-4)

is Helmholtz free energy

1 _ _ _

2(Oki + Oik) _ Aik + Aikrsfrs + Aikj(uj Vj) (2'4 5)

1

The + Tik) Bik + Bikrsfrs + Bikjhfi ‘ Vj) (2'4’6)



23

  

l
— — = -— T - =

2(Cki 01k) 2‘ ki T1k) Dki + Dkirsfrs

+ D .. u. - V. (2.4-7)

k13( J J)

n = a . + a..(u. - v.) (2.4-8)

1 1 1rs rs 13 j 3

8x 3x

_ 8T r 8T r _

qk Bk T,§§;:02:§§—' + Bkj(Tp§§:102§§; (uj Vj)

'F. =‘3. + EL f + Efl.(u. - v.) (2.4-10)
1 1 1rs rs 13 j 3

8x

. . r — _
where all the coeff1c1ents depend on gig, p2, T and pr“ The

dependence of the constitutive equations on the acceleration

is excluded simply because we then would have to include non

linear terms in f , A and (u. - v.) to satisfy the invari-
rs rs 1 1

ance conditions. The above coefficients should also satisfy

suitable symmetry conditions such as

B = - Biksrikrs Bkirs (2°4-11)

By a usual invariance argument, they deduced that the

3x
r .

dependency on FY— should appear as a funct1on of qu where

Bxi axi

P q

If the coefficients Aik are assumed to depend on dis-

placement gradients only through pl, then they become iso-

tropic functions of pl, and T thus:
02

Bikrs = A6ikars + “(siréks + Gisékr) (2°4-13)

where Gij is the KroneCkerdelta and A, U are scalar functions

of 01, 02 and T. By use of (2.4-10 and (1.3-l9) into (1.3-14)

they obtained



24

 

 

ai(ui " Vi) + airsfrs (ui - Vi) + aij (ui - Vi) (uj " Vj) = 0

(2.4-14)

It is easily deduced that

where a(ij) 15 the symmetric part of aij'

Thermodynamic Consideration.--Using (1.3-19) in

(1.3-21) and then applying to an arbitrary volume it was

obtained that

DS qkT'k 2 4 1
pTEE-pr+qk'k- T 20 (0-6)

With the help of (1.3-8,20) and(2.4-lr9), this equation

 

 

 

 

  

becomes 3 3

X. X

— pts 131- {Aik - m; 31: (airs—22:101.
+ (Bik + pp2 %%;51k)fik + [a1 ' p1 3%3’;;§'+ % 92(aiis

+ §%§;';;f§] (ui - Vi) + (Brsi + airs)frs(ui - Vi)

+ Aikrsdikfrs + Aikjdik(uj ’ Vj) + aij(“i ' ViHuj ' Vj)

+ Bikrsfikfrs + Dki(I‘ik - Aik) + DkijU‘ik - Aik)(uj - vj)

+ Dkirsfrs(rik ’ Aik) ' E3: k ' Bk T kiuj - Vj) 3 0 (2'4‘17)

The inequality (2.4-17) should hold for arbitrary

values of dik' fik' ui - vi and Pik - Aik'

incompressibility condition (2.3-l4) is satisfied. We re-

provided that the

write the incompressibility condition in the following form:

f + f + f + al(dll + d + d = 0 (2.4-18)

ll 22 33 22 33)
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R-P

where a1_= 0

Po

and (2.4-l7) as

Nikfik + Ndkdik + rest of the terms 2 0 (2.4-17a)

where

N = B + pp 3A 6. (2.4-19)
ik ik 2 5oz 1k

3x. 3x

_ _ l 1 k 3A 3A _

Mik ‘ Aik §“’§§"§§' 3e + 3e (2'4 20)
r 3 rs sr

  

Eliminating f from (2.4-l7) by use of (2.4-18) gives
11

 

_ .. M .—

fzz‘sz N11) + f33(N33 N11) + f12N12 + 511‘ 11 a1N11)

(2.4-21)

To satisfy the inequality we should have

8A
s — ~35 (2.4-22)

Nik = p Gik (2.4-23)

M = " -ik alp Oik (2.4 24)

a = 3A 302 _ 1 3A + 3A

i 01 53; 3;? ‘792 36“ 55" (2.4-25)
1 IS sr

Dkl = o Dklj = o Dkirs = 0 (2.4-26)

Aikj = o Aikrs = 0 (2.4-27)

where 5': N11 is a scalar function. Now using (2.4-22-27) in

(2.4-17) yields

a(ij)(ui ' Vi) + (Brsi + airs)frs(ui ' Vi) + Bikrsfikfrs 3 0

(2.4-28)

The above equation imposes some inequality conditions on

+ a. ) and Ba(ij)' (Brsi 1rs ikrs’ Substituting the last results



26

  

 

 

into constitutive equgiions and assuming that Bikrs’ Bikj’

aij are functions of gii-through pl only, we obtain the

3'

following:

B. . = a. = 0 a.. = a 6.. (2.4-29)

1k] 1rs 13 13

3x. 3x
1 1 k 8A 3A —

o. = o . = —-p + + a p 6. (2.4-30)
1k k1 2 BXr 3XS(3ers Besr 1 1k

T = T = -pp 8A 6 + - 6 + lf 6 + 2p f.
ki ik 2 53; ik P ik rr ik 1k

3p 3e
_ 8A 2 1 3A 3A rs _

"i ' p1 §B;'§§T' 592‘FE;; + aesr’ Bxi + a‘ui Vi)

1 (2.4~32)

where we have

u 2 o A + §u a o a 2 0 (2.4-33)

Further Reduction for Linear Small Theory.--In order
 

'bo obtain the main constitutive equations subject to the

laasic assumptions of this chapter, we adopt an expression

siJnilar to the one used by Green and Steel [26] for the

Ikelmholtz free energy, in the form

— {_ 1

DA ’ A0 + OLlemm + 0‘2“ + 204emmenn + OLSemnemn

l 2
+ 2&6” + a8emmn (2.4-34)

Where 3 = 31 + 32' the constants A0 , 0. .... depend on initial

1

dennsities of each substance. If we substitute (2.4-34) into

(22.4—30-31) and retain the linear terms only we obtain:



 

    

O‘131
01k - aléik + a4 - 5' emmaik + 2(al + 0L5)eik

a1 _

+ a8 + 7- n 6 k + alp 6ik (2.4-35)

and
_

a p a
_ _. - —. — 2 — .1 2

T1k ‘ ' p2°‘2 ' P + [pzas + (92 + p) 3‘]” + p2(0‘8 '5 )emm

5ik + Afrréik + 2n fik (2.4-36)

From (2.3-9) it is easily seen that:

_ R - P0

Substituting for n in constitutive equations and applying

the assumption of zero initial stresses, yields:

A - PO

Gik = “4 + 02 "§3“ “8 emmaik + 20‘seik + a1p 51k

(2.4-38)

T. =-b-OL+—2aae +—+Af 6 +2uf (24-39)

1k 2 8 fi .1 6 mm P rr ik ik '

“i = a(ui - Vi) (2.4-40)

Now if we define p to be

2

-1 — — -
p - a: [alp a1(pza8 + p2 ala6)emm] (2.4-41)

the constitutive equations can be written in the form:

. = - (2.4-42)
01k a1p 6ik + 2azeik + aBemm 51k

rik = -p 51k + *frréik + 2p fik (2.4-43)

where a2 = a5

a = a + 3 a a + a 23 2 a + a E a (2 4-44)
3 4 2 l 8 l 2 6 l 2 8 °
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and where p is equivalent to thermodynamic pressure defined

for simple media.

2.5 Field Equations
 

In this section we summarize the results obtained so

far and state the field equations. Combining (1.3-12) and

(1.3-17) and considering (2.4—1,40), we obtain the equations

of motion:

 

aoki _ _

§§;‘ + plFi ' a(ui ‘ Vi) = plai

3T .

k1 — _ —

Bxk + p261 + a(ui ‘ V ’ ‘ 0291

where 2

3 w 3v. 3w

a = l g = g—i u = ‘—£
1 at: ' 1 t ’ 1 at

The constitutive equations are

Gik = Oki = ‘a19 51k + 2a2eik + a3emm 51k

Tik = Tki = ‘P 51k + Afrr 51k + zufik

Hi = a(ui - Vi)

and the strain and rate of deformation tensors are

  

f..

13

1 Bwi 8w.

e..=—-—+—l
13 2 8x. 3x.

3 1

f mm

kk = a1 "FE"

(2.5-l)

(2.5—2)

(2.5-3)

(2.5-4)

(2.5—5)

(2.5-6)

(2.5-7)

(2.5-8)

(2.5—9)

Equations (2.5-1-9) are 43 equations for 43 unknowns,

namely Oki’ Tki, Ni, ai, gi, p, u., w., f.. and e. .. The

1 1 13 1]
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system is mathematically complete provided that the appro-

priate boundary conditions are given.

2.6 The Case of Compressible Fluid
 

The constitutive equations for a binary mixture of a

compressible Newtonian fluid and a linear elastic solid were

obtained by Green and Steel [26]. Under the assumptions of

this chapter those constitutive equations become:

a. = 6. + 2a e. + den 6i (2.6-l)

1k OL4emm 1k 5 1k k

T. = {- E a
2 6n - p2a8emm rr ik

If we define p to be

p = 32a6n + E2a8emm (2.6-3)

then the constitutive equations can be written as

 

Tik = -p6ik + Afrr éik + 2n fik (2.6-4)

Oik - alp 61k + 2a2eik + a3emm 1k (2.6-5)

where 2

a a
— 8 —' — 8
a = _ a = a a = a - -——- (2.6-6)
1 p206 2 5 3 4 a6

Here again p is equivalent to a thermodynamic pressure.

In analogy to the theory of simple Newtonian fluids, it is

seen that in the case of a compressible fluid the hydrostatic

pressure p has an equation of state of the form (2.6-3),

while in the case of incompressibility,p introduces a new un-

known to the system of equations together with an additional

equation namely the incompressibility condition.

It is seen that the constitutive equation of the solid

is coupled with that of the fluid through the thermodynamic
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pressure, while the partial stresses of the fluid are coupled

with those of the solid by the solid dilatation through equa-

tion of state or through the incompressibility condition. We

keep in mind that the coefficients in these equations are not

numerically the same as those of the corresponding single

media, however we notice that all the equations must reduce

to those for a single elastic solid or fluid when 92 or pl

vanishes respectively.

It is perhaps worth noting that the velocity gradients

of the solidwere not included in the constitutive equations;

however, if the partial stresses are assumed to depend on

those variables as in [5] and [22] then the suitable modifi-

cations should be made.

2.7 The Physical Interpretation oflthe Coefficients

of Constitutive Equations for Partial Stresses

 

 

The equations (2.4-38,39) show that the seven coef-

ficients a4, a5, a6, a8. al, A and u are to be determined.

However in the incompressible case, the knowledge of five

coefficients a1, a2, a3, A and p is sufficient. This reduc-

tion of number of independent constants is due to the fact

that n is related to emm through the equation (2.4-37) and

hence the constants a and a in the equation (2.4-34) can
6 8

4 and as.

In order to relate these coefficients to those of the

be absorbed by a

solid and fluid components, let us first consider a medium

under some external forces exerted by a highly permeable
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agent such that the fluid pressure remains zero on the

boundary at all times. After the transient part of the

motion, the system arrives at an equilibrium state where

the fluid pressure as well as the fluid velocity are zero.

The constitutive equations (2.5-4) or (2.6-5) hold during

the motion as well as in equilibrium state. We conclude

that

a = a2 = Ge

a3 = 33 = Ae

where Ge and Ae are the shear modulus and Lame's constant

of the saturated porous elastic material.

As it is pointed out in [13] a dry porous medium

might not exhibit the same elastic properties as that of

the saturated one. As an example they cited the case where

elastic prOperties result from surface forces of a capillary

nature at the interfaces of the fluid and solid. Whenever

such differences are negligible the above coefficients are

the ordinary prOperties of porous elastic solid and indepen-

dent of the fluid components. The constant al is also a

property of solid where a knowledge of initial porosity P0

and compressibility coefficients R of non-porous part is re-

quired. Again it is conceivable to assume that these two

constants may also depend on the fluid properties and the

porosity may depend on the penetrability of the fluid.

The physical interpretation of A and u is the same as

of the single fluid; however, the numerical values of A and
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u might differ because of the presence of the solid.

Finally, in the compressible case the constant 31

remains to be determined which in turn requires the know—

ledge of a and a8. In order to determine these two con-
6

stants use should be made of the equation of state (2.6-3).

We may apply a constant fluid pressure p to a medium con— F1

fined in a rigid boundary such that emm = O and a6 would

be found directly. Then a pressure p may be applied to the

medium keeping the solid boundary tractions zero. The above

 
two tests will supply the values of a6 and a8. L



CHAPTER III

METHODS OF SOLUTION

I
V

The purpose of this chapter is to furnish the gen-

eral solution of the system of equations for the steady-state

case by means of displacement and stress functions. First

the equations of Chapter II will be reduced to a system of

.
‘
"
.
m
”
Q
u
m
r
a
n
-
n
u
n
—

‘
1
.

differential equations in terms of displacements of the solid

and the velocity vector of the fluid and the hydrostatic

pressure only.

A general method of solution is presented by means of

scalar and vector functions satisfying harmonic, biharmonic

and Helmholtz's equations. A stress function is presented to

determine the partial stresses of the solid for steady-state

plain—strain problems. The choice between Ege two different

methods of finding the partial stresses of/soiid depends very

much on problem at hand and especially on the prescribed

boundary conditions.

For the sake of illustration, the theory is applied

to one and two dimensional steady-state problems. Atkin gt4al. [5]

has presented a uniqueness theorem under a set of boundary

conditions. Although the present theoryn together with the

sets of boundary conditions used in the problems of this

chapter is different from that used by Atkin, a similar

33
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uniqueness theorem may be constructed; however we do not

attempt to do so.

3.1 Displacement Equations
 

If we substitute the rate of deformation and strain

tensors in terms of displacements and velocities into the

constitutive equations for partial stresses and then write

the results in tensorial form, we obtain

3 = ~alp 3 + a2($$ + $6) + a3($:$)3 (3.1-l)

: = -p 3 + u($$ + $6) + 1(v.v)3 (3.1-2)

where symbols with z overhead denote second order tensors and

those with arrows on the top denote vectors. Substitution of

the eqUations (3.1-1,2) into the equations of motions (2.5-1,2)

and using'Q.5-6) for diffusive force yields:

2+

+ + + — 3 w

-al$p + a2§°(§w + w$) + a3§($°w) - a(fi - V) = 1 SE7

and (3.1-3a)

+

-$p + WW-VI) + 1&ch + x7?) + ad? - V) = 32 g—‘EI- (3.1-3b)

where the body forces are neglected. Observing the fact that:

if?) vz‘fl

<74 )‘v‘ = KW?)

The equations (3.1-3,4) together with the incompressibility

and

condition can be written as the following:

$ ( + 6 $~+ v23 (5 v — ‘al p + a2 a3) ( w) + a2 - a - ) — pl Ft—

2
-$p + (A + u)$($-V) + uv v + a(U - V) = 62 33 (3.1-5)
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+ a ' O + -V v — al 5? 6 w (3.1 6)

In steady-state case the time derivatives of dependent

variables as well as the velocity of the solid vanish, hence

we have:

-al$p + (a2 + a3)$($-$) + aZVZE + a6 = 0 (3.1-7)

-6....v2$ - .6 = o (3.1—8)

6-6 = o (3.1-9)

where use has been made of the equation (3.1-9) in (3.1-8).

The equations (3.1-7-9) constitute seven differential equa-

tions for seven unknowns, 6, 5 and p. By application of 3

operator to the equation (3.1-8) and making use of (3.1—9)

we obtain

Vzp = 0 (3.1-10)

It is seen that the hydrostatic pressure satisfies the

Laplace equation, therefore any harmonic scalar function which

satisfies the required boundary conditions would be a prOper

expression for p.

The general solution of 6 consists of the general solu-

tion of the reduced equation

uvzg - a? = 0 (3.1-11)

plus any particular integral of the equation (3.1-8). If we

(r)
denote the general solution of (3.1-ll) by 5 and notice

that a particular solution for the equation (3.1-8) is:

§ particular = -%§p (3.1-12)

then the complete solution for (3.1-8) is obtained to be:

17 = ‘7‘“
+

l
.. aVP

(3.1-l3)
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(r) of the re-We observe that the general solution 6

duced equation must satisfy the condition (3.1-9); this im-

poses some restrictions on the solution. In two dimensional

case equation (3.1-9) reduces to

(r)

3:§——— + 321....- O (3 1 14)
3x 3y - ' -

It then follows that the velocity vector $(r) can be

derived from a scalar function w SUCh that:

Vx(r) = %% vy(r) = _ g¥ (3.1-15)

Substituting for vx(r) and vy(r) into the equation

(3.1-ll) yields:

%_[uv2¢ - aw] = 0 (3.1-16)
Y

(3.1-l7)II ogituvzw - aw]

The above pair of equations simply imply that the expression

inside the bracket is a constant. This constant can be as-

sumed to be zero without any loss of generality in the velocity

solution. Therefore the problem reduces to finding a function

w satisfying the Helmholtz equation.

quw - aw = 0 (3.1-18)

It is seen that the general solution of the velocity

field consists of the linear combination of two scalar func-

tions which satisfy the Laplace and Helmholtz equations. In

order to obtain a general solution for the displacements of

solid, we add equation (3.1—7) and (3.1-8)
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2? = 0

(3.1-19)

-(a + l)$p + (a2 + a3)§($-w) + a v23 + uV
l 2

Equation(3.l-l9) shows that the vector function

a2V2$ + uVZV is irrotational(referring to Helmholtz's rep-

resentation) and hence can be expressed as the divergence

of a scalar function $,

a V25 + uV

2+

2 V = $$ (3.1-20)

where without loss of generality and under sufficient smooth-

ness and integrability conditions we can find another scalar

function ¢ such that

2

$ = V ¢ (3.1-21)

Observing that

$v2( ) = v2$( ) (3.1-22)

we obtain,

v2[a2$ + “a - $¢1 = 0 (3.1-23)

Let

aZE + .6 - $¢ = I (3.1-24)

where w is a vector function which satisfies

2-

V w = 0 (3.1-25)

The general solution of E is

a = L (fl; + $¢) .. Li; (3.1-26)

a2 a2

Now if we apply the operator 6 to the equation (3.1-7) and

make‘v use of (3.1—9) and (3.1-10) we obtain

v2($-J) = 0 (3.1-27)

(Rxmbining (3.1-l9), (3.1-20) and (3.1-21) yields:

-(a + l)$p + (a2 + a3)$($-$) + 6V2¢ = 0 (3.1-28)

l
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By applying 6 operator to the equation (3.1-28) and

using the relations (3.1-10) and (3.1-27) we obtain

v4¢ = 0 (3.1-29)

Hence ¢ is a biharmonic scalar function, and we again

observe that the general solution of the system of equations

(3.1-7-9) reduces to a linear combinations of the general

solutions of some classical equations whose properties are

rather well established. The solution to a particular prob-

lem would be obtained by choice of these functions such that

they satisfy the prescribed boundary conditions. Note that

¢ and W are not independent and they must satisfy

2 (a1 + l)’a2 a2

v ¢ = 2a2 + a p - ———————— v-T' (3.1-30) 

3

3.2 Solution of the Steady-State_Plain

Strain Problems by Means of Stress

Function

 

 

In the steady-state plain strain case the equations

of motion (2.5-l), in the absence of external body force,

reduce to the following:

{aoxx 80X

—§§—~+ .5?! + avx = O (3.2-1)

< 30 30x

i——XXI + ———X + av = O (3.2-2)
3y 3x y 

Substituting for vx and vy from (3.1-15) and rearranging the

terms, we obtain

3

3x

 

3

(OXX - p) + 3§'(%Ky + aW) = O (3.2-3)



3 8 _ _
.37 (oyy - p) + -3—x- (Oxy - axp) — 0 (3.2 4)

In analogy to the theory of linear elasticity [23] it

is readily seen that there exist. two different scalar func-

tions ¢ and x such that

_ a¢ _ _3¢ _
OXX "' p - W O‘Xy + at! - '3—5'6 (3.2 5)

8x 3
- =-—— o - a = -—K 3.2-6

0yy 9 3x xy w 3y ( )

where ¢ and x are functions of X and y only. By adding the

equations (3.2-5)2 and (3.2-6)2 and taking into account that

o = 0 we obtain

XY YX

a _ 3¢ ' _
5%.- §§.+ 2am (3.2 7)

The condition (3.2-7) imposes a restriction on functions ¢

and x. We observe that this condition would be fulfilled if

a function 6 is defined such that

Y X

x=§+afwdy <I> gg-afwdx (3.2-8)

J

We now observe that if 6 is any arbitrary function of

x and y, the ¢ and x functions derived from (3.2-8), would

satiSfy (3.2-7) and hence the equations of motion. Similar

to the case of two dimensional elasticity, we call 9 a stress

function. Substituting for ¢ and X in relations (3.2—5) and

(3.2-6) we obtain:

2 ‘X

3 6 3w

OXX " P + g-y-i- - a '5? dx (3.2-9)



2 y
_ a e aw

Oyy ' P + ‘flx + a] 'a'x dy (3.2-10)

2
_ _a e _

Oxy — W (3.2 1].)

Again, as in the theory of elasticity, the stress

function 6 is the only unknown function, but it is necessary

to use the compatibility condition which puts a condition on

the otherwise arbitrary stress function. We observe that

the compatibility conditions of the present theory are identi-

cal to those of linear elasticity. For the compatibility

conditions are nothing more than the mathematical conditions

which insure the integrability of the strain-displacement

equations. Since the strain-displacement relations for the

solid are identical in form to those of classical elasticity,

the compatibility conditions must be of the same mathemati-

cal form. We, therefore, have

aze 32a 32e

__’2‘£ + __)51 -_- 2 15.3% (3.2-12)

3y 8X

The non-vanishing stresses in this case are

{Oxx =-a1p + 2a2 e + a3(exx + eyy) (3.2-13)

< ny = -a1p + 2a2 eyy + a3(exx + eyy) (3.2-l4)

\ny = 2a2 exy (3.2-15) 

Finding strains in terms of stresses yields:

 

 

_ 1

eyy _ 4a2<32 + a3) [(2.12 + a3) (Oyy + alp) 513(0)“ + alp)]

1

exx = 4a2(a2 + a3? Bzaz + a3HPXX + alp) ' a3(Oyy + alp)]
(3.2-l7)



exy = 75; UXY (3.2-'18)

Substituting for exx’ eyy and exy into compatibility equation

and making use of relation (3.1-10) yields:

2 2 2 2 2
a Oxx 3 c a Gxx 3 o 3 Ox

(2a2+a3)—T+——§1-a3——2—+—%Y—=4(a2+a3)xy
3y 3x 3x 3y

(3.2-l9)

. . o o o . .

Substituting for xx’ yy and xy in terms of stress function

in the above equation and simplifying the resulted equation,

yields

X y
3 3

1 4 f a [a 11)
— v e = —3- dx - —3. dy (3.2-20)

a ay ax

The general solution for 6 is obtained by addition of the

particular solution of (3.2-20) to a biharmonic scalar func-

tion. Again the arbitrary constants should be chosen to

satisfy the prescribed boundary conditions.

3.3 Qne Dimensional Problem of

Infinite Plate

 

 

As an illustration, we will solve the following simple

problem. Let us consider an infinite plate resting on a rigid

highly permeable medflnnand bounded in Cartesian system by the

faces x1 = 0 and x1 = h. A constant fluid pressure pO is

applied to the face x1 = 0. We assume that the lateral dis—

placements can be neglected. Under the above conditions, the

only non-vanishing components of the velocity and displacement

vectors are

wl = w1(xl) v1 = vl(xl) (3.3-l)

I
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and the boundary conditions are:

at x1 = 0 o (3.3-2)

at x1 = h ml = 0 p = 0 (3.3-3)

The equation (3.1-10)reduces to:

a - .—3;; — o (3.3 4)

Integrating the above equation and using the boundary condi-

tion (3.4-3)2 yields to

p = c0(x — h) (3.3-5)

where C0 is an arbitrary constant. From the relations (3.1-9)

and (3.1-8) we conclude that

(3.3-6)

Using the results (3.3-5) and (3.3-6) into (3.1-7) and inte-

grating, gives

(a1 + l)C (a1 + l)C

u’1 = 2(2a2 + a 'l 2(2a2 + a

O 2
X + C X 0 2

3) 1

3) h - Clh (3.3-7) 

l

where use has been made of the boundary condition (3.3-3)l

and C1 is a new arbitrary constant.

The fluid stresses are obtained from (3.1-2) as

follows:

The solid stresses are

awl

o _ -
11 (a3 + 2a2)§gI alp (3.3 9)

Bwl

022 = 033 = -a1p + a3 3x; (3.3-10)
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Oij = 0 if 1 # 3 (3.3-11)

Substituting for ml and p yields to

all = C0 (x + alh) + C1(2a2 + a3) (3.3-12)

(a1 + 1)a3C0

022 = 033 = -alC0(x - h) + (2a2 + a3) + Cla3 (3.3-l3)

The only remaining boundary condition (3.3-2) gives the con-

stant C in term of C

l 0

-p0 + C0h(l + al)

C = C
l (2a2 + a3)

 

0 (3.3-14)

It may be seen that the solution is indeterminate

within a constant C0. However, this indeterminacy may be re-

moved by specifying the surface porosity at the face x = 0,

and therefore prescribing the separate values of all and p

at that face.

4.3 Semi-Infinite Strip Problem
 

As another illustration, we consider an infinitely

deep and long strip of an elastic solid with width n. We

take the Cartesian system (x, y, 2) as shown in the figure

below. 2

 

\
f X

 

 
  s

e
e
—
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A fluid pressure p is applied to the surface y = 0. Under

the above conditions it is conceivable to assume all vari-

ables to be functions of x and y only.

We assume the following boundary condition.

at y = 0 p = A1 cos x vx = 0 Uyy = -A2 cos x

ny = 0 (3.4-l)

at x = i;- p = o vy = f(y) on = 0 0xy = o (3.4-2)

at y = w p = 0 vx = vy = O (3.4-3)

Let us observe that the solution for a general fluid

pressure is similar to the present problem, because any applied

fluid pressure f(x) for + n/2 2 x 2-w/2 can be expanded in

Fourier series

_ m nnx m . nnx _
f(x) — a0 + 2 an cos "c— + 2 bn 811’] _c (3.4 4)

n=1 n=l

N
|
l
-
'

where 2C is the interval of Fourier expansion and not neces-

sarily 2n, provided that f(x) satisfies the necessary re-

quirements of Fourier expansion. We also notice that the

problem of a strip with width K can be converted to the above

problem by a simple change of variable. Let us further com-

ment that the constants Al and A2 depend on fluid pressure

and porosity factor P0. The equation (3.1-10) reduces to

2 2

L§+,§—§= o (3.4-5)

3x By

The general solution for p can be written as:
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p = §ay(Aa cos ax + Ba sin ax) + eay(Ca cos ax + Da sin ax)

+ ng(EB cos By + F8 sin By) + eBx(GB cos BY + H8 sin BY)

For all values of a and B, A......H are constants. Due

to the linearity of the equation, the above solutions can be

summed or integrated over the values of a and 3.

Considering that p should be even in x and decaying

in y, it is readily seen that the solution has the following

form

p = Ae-By cos Bx

Applying the boundary conditions (3.4-l)l and (3.4-2)1

gives the particular solution for p to be:

p = Ale.y cos x (3.4-8)

The equation (3.1-18) reduces to

2 2

u i—‘é’fifl + 23—2351)— - aw(x,y) = o (3.4-9)

where the general solution of the above equation may be

written as follows:

1

a

w(x,y) = e-(a + U) Y(Aa cos ax + Ba sin ax)

l l
2 a - _ 2 a '

+ e(a + fi)2Y(Ca cos ax + Dd sin ax) + e (B + u)§y(EB cos By

(82 + 3);"
+ F8 sin By) + e u y(GB cos By + H8 sin By) (3.4—10)

Observing that the velocity components vx and vy are decaying

in.y and are odd and even in x respectively, we assume the

following form for w:



46

2 '1' °° %a

w = B e-(a + fig y sin ax +I/r C cos yy sh (y2 + 3) X dy

a 0 Y H

where the second term is just a different form obtained from

the combination of some of the terms in the above general

solution. This term is retained in anticipation of its neces-

sity to satisfy the boundary condition (3.4-2)2.

The velocity components of the fluid are obtained

from (3.1-13), where use has been made of (3.4-11) and (3.4-9L

and are as follows

1

1 2 a 7

v = £.A e y sin x - B (a2 + E)2 e-(a + U) y sin ax
x a l a n

-J/- CY Y sin yy shy/Y2 + g-x dy (3.4-12)

0

.1.

A 2 a 2
_ l -y _ -(a + -) y

vy — ar-e cos x Bade n cos ax

w l

-J/- CY(Y2 + %)2 cos Yy chVY2 + % x dY (3.4-13)

0

The application of boundary condition (3.4-l)2 implies that

l
A

_ a§'__l _a — l and Ba(1 + E) — a (3.4 14)

The only condition on the fluid velocity remaining to be satis-

fied is (3.4-2)2. The constant CY should be chosen such that

w l

f(y) = -Jr CY(Y2 + %)7 ch/y2 + %.g dy (3.4—15)

O

In order to avoid mathematical complications, we take the case

where f(y) = 0 and therefore CY = O. The velocity components

become



.1
2

A a

v = —l[e-Y - e-(1 + Hay] Sin x (3.4-l6)

x a

3
A l a

_ l -y _ a -— -(1 + —) Y] cos x (3.4-l7)
Vy '- a—[e (l + F) 2 e U

The fluid stresses are

avx

Txx = -p + 2n §§— (3.4-18)

8v

T = - + 2 3.4-19W p u—lay < )

avx 3v

TXY = 1.1 -3—y—- + 43X (3.4“20)

Substituting for vx and vy and p from (3.4-8), (3.4-16) and

(3.4-17), yields

1

a E '

— EH _ -y _ 2n -(l + -) y _
TXX - A1 ‘a l)e 3— e u 1 cos x (3.4 21)

2n 2 (1 + aFY= - __ “Y _ _E ' " _Tyy A1 (a + l,e a e U cos x (3.4 22)

3
)JA _ l _'1 _ 3

Txy = —al - 2e y + (+ %)2 + (1 + %) 2 e (l + u) y sin x

Since the boundary conditions of the solid part are

such that the surface tractions are all known, then the prob-

lem can be solved with the help of a stress function. The

displacement solution may be ignored unless it is required.

Obtaining w from (3.5-11)

N
I
H

A 1 a
_ l a -— -(l + -9 Y -

the equation (3.2-20)becomes



48

1
a 2

V46 = Alhe_'(l + E) y cos x (3.4-25)

where

h= (1+3) - (1+??-l
u

The solution of the above equation is

1

2 a *

_ u -(l + —) y (3.4-26)
6—6h+Alh;2-e Ll COSX

where 6h is a biharmonic scalar function of x and y and the

second term is the particular solution of (3.4-25). We see

that the above problem is equivalent to the similar strip

problem of classical elasticity under identical loading ex-

cept for the extra term coming from the interaction in the

form of a body force. We conclude that the whole machinery

of classical elasticity is applicable to the solution of

the steady-state problems of the present theory for solid

part, provided that the effect of interaction is treated as

a prescribed body force.

Since the elasticity solution of the semi-infinite

strip, under the most general loading on the finite face and

stress free elsewhere, has been solved, [29] we convert the

present problem into two parts.

1. The original problem except for an additional

stress distribution f(x) at face y = 0, such that we have

oyy =--A2 cos x + f(x) at face y = 0, where f(x) is totally

arbitrary at this stage.

2. A semi-infinite elastic solid with no body force

and under the traction Oyy = -f(x) at face y = O and stress



free elsewhere.
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To solve the first part let us assume a to be

1

2 a 2

9 = Alhigf e-(1 + U) y cos x.+ Cle y cos x + Czye y cos x

a

” gish Y ;

+ E cos yy x sh yx - ——————?— ch yx dy (3.4-

where C1 and C2 are constants and EY is the coefficient of

Fourier integral.

0 = A h E— (1

+ Czyemy cos x -

0

fl ch YX dY (3.4-

Cth

1
2 -l a 2

—1+—)yo = —A h E— + l + 3 ( ' C ‘ 1yy 1 a2 ( u) n cos x ( )e

- Czye-y cos x + Jr E cos yy 2y ch yx + y x sh yx

0

n ' n

25‘th 2
- Y ch YX dY (3.4-

Cth

l

u2 a i a'7

xy = -Alh _2 (l + —)2 e-(1 + Ho y sin x - C e-y sin x
a l

- Czye-y sin x + Cze-y sin x + me EY Y sin Yy sh yx

O

+ yx ch yx - sh Yx dY (3.4-

The stresses are found to be

e-(l + EJEPa _ 'Y
+ H) Al n cos x + (Cl+l)e

2C2e-Y cos x -J[“ YZEY cos yy [x shyx -

 

ch

27)

COS X

28)

29)

30)
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The boundary condition (3.5-2Ly is identically satisfied.

We now choose f(x) to be

00 TT TT

2 ESPY? 2
f(x) = E 2Y ch Yx + Y x sh Yx - ——————?— Y ch Yx dY

The application of the remaining boundary conditions yields

the following relations

 

u2 a l

- Alh —7 (1 + E)2 - C1 + c2 = 0

a

U2 a
_ .__ _. _ - + =A2 A1 h 2 (1 + u) 1 cl 1 0

a

.2 .1 .3-
A1h ‘2 (l + “)7 e' (l + £9 Y + [c1 - c2 + c2y1e'Y

” n n n
— sh Y 7 ch Y 7 + Y 7) .

- E Y Sin Yy dY (3.4-35)
Y n

0 (3th

The values of EY' Cl and C2 are obtained from the above

equation.

The complete solution of the problem is obtained by

superposition of the two parts, while the solution to the

second part, under the prescribed traction, f(X), can be ob-

tained by method of [29]. We do not present it here. The

present problem could also have been solved by use of dis-

placement function presented in the early part of this chap-

ter. The later method is particularly useful when either the

displacements are desired or the prescribed boundary condi-

tions are partially or totally in terms of displacement.



CHAPTER IV

DISCUSSIONS AND EVALUATION OF SOME THEORIES

In this chapter we will briefly review the equations

of fluid. flow through undeformable porous media based on

Darcy's law. We will further review the Biot theory for

flow of fluids through deformable media, a generalization

of the former theory, where a modified Darcy's law is adopted.

The purpose of this chapter is to examine the above theories

from the standpoint of the theory of the present work. Of

interest is also Brinkman's drag theory [37], which happens

to be a useful modified Darcy's law.

4.1 Darcy's Law
 

The first assumption throughout the classical field

of fluid' flow through porous media is that the solid is un-

deformable. Hence the pores of the media are fixed and their

boundary surfaces are geometrically describable. Formally

speaking, the problem is but a special case of the general

problem of viscous flow of fluids between impermeable bound-

aries. It is quite apparent that a flow problem through such

a tortuousiiregular channel. is mathematically so compli-

cated that the pure hydrodynamic approach is out of the

question.
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Because of the above mentioned difficulties, an em-

pirical dynamic equation, the Darcy's law, was established.

This law asserts that, macroscopically the velocity is pro—

portional to the pressure gradient acting on the fluid

+

<

__E __ U Up (4.1 l)

where u is the viscosity of the fluid and k is the permeabil-

ity of the solid. The permeability k in the above equation

has dimension of square length and expresses the ease of the

fluid flow through porous media. The monographs and the

literature on the field give detailed discussions of the

permeability and the various formulas expressing it in terms

of porosity and other variables.

In the presence of the body force F we have

6 = -§.($p + f) (4.1-2)

and in the case that the body force is derivable from a

potential function G, we have

F = - VG (4.1-3)

and hence +

v = - $¢ (4.1—4)

where k

¢ ='F(p - G) (4.1-5)

The expression (4.1-4) is the generalized form of

Darcy's law. This law together with the equation of state

and continuity equation constitute a complete system of

equations. These equations supplemented by initial and

boundary conditions provide all the necessary information
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for the solution of any particular problem. For incom-

pressible fluids, the equations of state and continuity

reduce to

p = constant V‘V = 0 (4.1-6)

and hence

Vzp = v2¢ = o (4.1-7)

According to the above equations, we observe that

there is no distinction between steady—state and nonsteady-

state problems for incompressible fluids.

In order to compare the above fundamental equation

to those of the present theory, we assume the solid to be

undeformable and hence 3 = E E 0. The equations (3.1—5) and

(3.1-6) reduce to

_ 1 2+ + _ L1 -aVV+V‘ 51% (4.18)

6-6 = o Vzp = o (4.1-9)

In order to reduce (4.1-8) to (4.1-4), we see that the dif-

fusive coefficient a should be assumed as

_ u (4.1-10)

a ' E

This immediately implies that the diffusive force vanishes

for ideal fluids. Substituting (4.1-10) into (4.1-8) we

obtain

- kV v + v = -— VP (4.1-11)

We see that the above equation can be reduced to (4.1-l) if

the term kVZV would be negligible compared to V. Since we

have assumed that the velocity as well as its space deriva-

tives are small of the same order, it is concluded that k
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has to be small. In the following table, the values of per-

meability are given for some materials.

Table 4.l--Typical values of permeability and porosity for

various materials. [37]

 

 

 

Porous Solid Permeability (Darcy) Porosity Fraction

Sand 2 - 180 0.31 - 50

Sandstone 10"7 - 11 0.08 - 0.40

Brick 0.0048 - 0.22 0.12 - 0.34

Soil 0.29 - 14 0.43 - 0.54

 

The permeability coefficient, for the above typical

materials, is small enough that the first term can be ne-

glected. However on the other extreme if k tends to infinity

the equation (4.1-ll) becomes

+

_. 1.1V V = Vp (4.1-12)

which is the equation for slow viscous flow of bluids. It is

seen that the reduced equation (4.1-8) with the special

choice of a from (4.1-10) includes two different extremes,

namely a pure slow viscous flow of fluids, and flow of fluid

through highly impermeable materials. The limitations of the

resulting formulas for either case can be stated rigorously

from the construction of the theory. We see that, under cer-

tain limitations and conditions, the present theory gives

almost identical formulas for flow of fluids through porous

media as the classical theory. These limitations can be
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removed without any essential difficulties from continuum

approach, whereas the classical field is based strictly on

empirical viewpoints for a certain range and does not provide

a basis for all possible generalization. Let us recall that

the theory on which this work is built covers a very wide

range of heterogeneous media under quite general conditions. }

Atkin 21121: [S] has given one possible set of

boundary conditions for which the problem has unique solu-

 tion. He remarked on the necessity of specifying at each

point of the boundary two vector boundary conditions and a

scalar functionfor thermal consideration. It is easily seen

from equations (4.1-8) and (4.1-9) and the remarks in [5],

that in steady-state case, a vector boundary condition should

be prescribed at each point of the boundary for the fluid

part only in order to have a complete solution. That this

is true is also apparent from purely physical considerations.

Contrary to the above remarks the classical equations

do not allow to us to specify a vector boundary condition but

only a scalar function. From our analysis, it is seen that

this occurred because of neglect of the term kVZV. We con-

clude that, in the case of low permeability, the error arising

from the above simplification is insignificant far from the

boundary while the error might be quite serious near and at

the boundaries.

The two dimensional problem of the former chapter

illustrates this effect, for instance, vx vanishes at boundary
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y = 0 according to (3.4-l6) however the classical approach

gives vX = sin x. However for y==0 the dominating term is

A

—§ e y sin x, the term obtained by classical theory.

4.2 Brinkman's Theory
 

It may be of interest that the same equation (4.1-ll)

has been proposed in a series of papers by Brinkman [37].

His theory is based on the assumption that the solid parti-

cles are spheres of radius R and that they are kept in posi-

tion by external forces as in a bed of closely packed parti-

cles supporting each other by contact. In the absence of

the particles the stresses give rise to a force F dV which

is given by Navier-Stokes equation

2
F = - Vp + uV V (4.2-1)
1

The presence of the solid spheres causes a damping force

deV on the fluid elements. It was assumed that the damping

force is proportional to the mean velocity and viscosity of

the fluid and to the reciprocal of permeability so

‘* — 1‘. '* _

Since

Therefore

—§7*p+pv§7-%\7=0 (4.2-4)

For high particle densities the term uVZV is negligible com-

pared to E'V. This implies that Darcy's law is the limiting

form of equation above for low permeability. The boundary

conditions are that the tangential and normal velocity at the

surface of the spheres to be zero.
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Although he obtained the same equation as (4.1-ll),

the derivation and assumptions are drastically restricted,

and the proof is not rigorous.

4.3 Biot's Theory
 

The next major extension of the classical theory of

flow through porous media has been done by Biot [6,17] who

considered the solid to be elastically deformable. In the

following we briefly review his equations. The constitutive

equations for the stresses are

Oij = 2Neij + Mekkdij + 05 (4.3-1)

1.. = Qekk + Leéi. = 06.. (4.3-2)

where e: is the dilata‘ticndf the fluid defined by

e = 6-5

where Up is the fluid displacement vector and o = - Bp, where

B is the fraction of fluid element per unit section and p is

the fluid pressure. The equation of motion in the absence

of body forces for the quasi-static theory is

(Oij + osij),j = 0 (4.3—4)

and the modified Darcy's law is

V0 = a(V - U) (4.3—5)

While for the dynamic theory [12], the equations become:

Q

I

0
3
1
0
)

r
1
-

(pllui + plzvi) - a(vi - ui) (4.3-6)

Vi) + a(vi - ui) (4.3-7)Q

ll

Q
J
I
o
;

d
.

(912“1 + 022
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where 011 + 012 = pl, 022 + 012 = 02, 012 is a mass coupling

parameter. Here again it is seen that our theory can be

reduced to Biot's theory if terms with viscosity coeffi-

cients A and u are eliminated from the constitutive equation

for fluid. This can be justified if the viscosity is low

enough such that the only dominating term in the expression

for fluid stress would be the hydrostatic pressure.

In the dynamic theory,equations (4.3-6,7) can be

written in the following form

301. Sui 8

Sigl = p1 FE‘ + 012 3? (Vi ‘ Pi) ' a(vi ‘ “1) (4°3'8)

39— — 111.- 3 ( - u ) + (v - u ) (4 3-9)
Bxi ‘ p2 as 012 3E V1 1 a i 1 °

From the standpoint of Green and Naghdi's theory, it

is deduced that the diffusive force according to Biot's for-

mula above, is

3 (v - ui) - a(vi - ui) (4.3-10)

"i = p12 3? i

This tells us that in the dynamic theory the diffusive

force is the same as of quasi-static case plus the term

.8— (v

012 at i

of frame indifference, but the second term does not, and hence

- ui). The first term satisfies the requirement

are ‘ not allowed to appear in constitutive equations. As it

is remarked in [26] the effect of acceleration cannot be in-

troduced in linear constitutive equations. The above analysis

shows that Biot's dynamic theory is incorrect to this extent.

Biot [9] has extended his theory for the most general
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anisotrOpic solid and also viscoelastic case. He and co-

workers have worked out some problems based on his theory;

however because of mathematical complexity, very little

progress has been made.

It is seen that the above theories can be explained

in the light of the continuum mechanics approach while this

approach enables us to rigorously analyze the existing

theories and find out the pitfalls as well as their range

of validity.   

u
)
.
.
.
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CHAPTER V

MIXTURE OF TWO IDEAL FLUIDS AND AN

ELASTIC SOLID

As it is pointed out in Chapter I, the theory of

Green and Naghdi [25] for a binary mixture has been general—

ized for n components mixture by Mills [31]. The former

authors have also proposed a theory for n components mixture

[27], removing some of the restriction of the former one.

We, however, use Mills' result in formulating the problem of

the mixture of two incompressible fluids and an elastic

solid.

5.1 Formulas and Notations
 

We first consider a mixture of n substances which are

in relative motion to each other. The equations (1.2-1-10)

are all valid and we will use them in this section. The rate

of deformation and vorticity tensors are respectively defined

to be

1,2..1'1 (501—1)

(0) _ l (a) (a)
fij - 2—( Vi'j + Vj,i) for 04

(a)?
ij for G = 1,2..n (5.1-2)

%._((0()V_ _ (01)

1,j j,i

 

where a comma denotes partial differentiation with respect to

space coordinates.

60
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In view of the energy balance relation proposed by

Green and Naghdi [25], the following relation is postulated

by Mills as a generalization of the former one

35.];(0U + 1 % pa (“1(GM)dV + j;{UM2 Pa W)Vk

n

+% .1: Po.O”(0.)Vk(m)vi(on)vi)nk M = L‘or + 2 Po. (a)Fi(a)vi)dV

+f(a:11( ti(a)v. _ h

1

A

where the symbols have the same meaning as those of Chapter L

.
-
H

dA (5.1-3)

 

 

II. By essentially the same method as that used by Green and

Naghdi, namely the invariance requirement under different

rigid body motions, the following relations were obtained:

(a) _ (a) _ _
Gki,k + pa Fi ai - Ni (5.1 4)

(a)

n

2 (“)ni = 0 (5.1-5)

a=l

If we denote the symmetric part of stress tensor by

O'

(ik) and antisymmetric part bycfiik], we have

n

(0')

The energy equation becomes

n-l

DU (8) B (n) (a)O (a)

“BB ‘ Pr + qk,k ‘ Bil "1 (Vi ‘ Vi) ‘ all O(k1) dik

(B) (n) _ _Zolki] rik - rik)_ 0 (5.1 7)
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The entropy production inequality was postulated to

be

DS r h
fvpfi-dV-fva-dv -f;i,-dA>O (5.1-8)

5.2 Mixture of Two Ideal Compressible

FIuids and an Elastic Solid Under

Isothermal Condition

 

 

 

In view of the constitutive equations for a mixture

of a Newtonian fluid and an elastic solid, the following con-

stitutive equations were postulated as the generalization of

the former ones.

A = A (ers’ pl' 92) (5.2-1)

5 = s (ers, pl. 02) (5.2-2)

(a)o(ki) = (“’Aik a = 1,2,3 (5.2-3)

(a)o[ki] = (a)Dik “ = 1'2’3 (5-2-4>

(a)Tri = (a)ai + (e)aij((1)vj _ (3)Vj) +«nbij((2)vj _ (3)Vj,

B = 1,2
(5.2-5)

where a = 1,2 is referred to fluids one and two and a = 3

corresponds to the elastic solid.

Substitution of the above constitutive equations into

the entropy production inequality and using the same argument

as before yields the following

(a)
o[ik]= 0 for a = 1,2,3 (5.2-6)

(1) _ _ 3A _

Oik ’ pp1 53; 51k (5'2 7)

 

m
-

-
’
-
'
I
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——— 6. (5.2-8)

 

(3) i k 3A _

Oik P axr ax aers (5'2 9)

(B)a. = g 0 3A BOY _ 0 3A BOB + 0 3A Berg (5 2-10)
1 Y=l B 80Y 5xi 508 5xi B Sers 5xi

For isotrOpic case, the Helmholtz free energy, A,

can be expanded in Taylor series to be

6A _ l a 2

-'2 a4emmenn+ aSemnemn + a6emmnl + a7"mmn2 + a8 n1

2
+ a9 n2 + alonln2 (5.2-ll)

where terms less than the second are not included because of

the zero initial stresses.

Substituting for A in constitutive equations and re-

taining the linear terms only, results in the following

equations:

(1)0 _ _ _ — _ _

ik — {pla6emm + 2a8010l + plalon2>61k (5.2 12)

(2) _ _ - -‘ 5 _
Cik — <92a7emm + Zagfiznz + 02a100%} ik (5.2 13)

(3) —- 0 0 a -
Oik"a4emm ik + 2aseik + asni ik + a7”2 ik (5'2 14)

(l) _ (l) _ (3) (2) _ (3) _
ti - Kll( vi vi) + K12( vi Vi) (5.2 15a)

(2) _ (l) _ (3) (2) _ (3) _
"i - K21( vi vi) + K22( vi vi) (5.2 16b)

The equations of motion are

(l)O = (1)fl_ (5.2—l6)
ki,k 1
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(2) _ (2) _
Oki,k — Ni (5.2 17)

(3)0 + (1)w. + (2)n. - 0 (5.2-18)
ki,k i i

In the case of rigid solid e. 0, therefore

13'

(1)0 =-E'(2a n + a n ) 6 (5 2-19)

ik l 8 l 10 2 ik '

(2) (5.2-20)

Gik ="’2(2“'9"2 + a1on1) 51k

Substituting for partial stresses into equations of

motion and making use of continuity equations, yields

 

an
1 — .(l) _ (5.2-21)

E— + pr V "' 0

3r)

2 - .(2) _ _

This will give us

K 3n K 3n
2 2 _ ll 1 12 2

2a8V 01 + alOV 02 — gr: FE‘ + 3152 SE— (5.2-23)

l

K 8n K an
2 2 _ 21 l 22 2

310V T11 + 239V [)1 — $1.6; T + E:- SE— (5.2 24)

In steady-state case the variables are independent of time,

SO

= 0 (5.2-25)

5.3 Case of Incompressible Fluids
 

If the fluids are incompressible, the incompressi-

bility condition (2.3-13) reduces to

(1)C(1)d + (2)C(2)d + R ' Po 8emm _ 0 (5.3-1,
kk kk R at _
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where

(1)C +
c = 1 TIT; = C (5.3-2)

Similar to the argument made in Chapter II, the use

of (5.3-1) and the entropy production inequality introduces

a new unknown parameter p into constitutive equation for par-

tial stresses. The results are

(1)
Oik - {pla6emm + Zaapln1 + plalon2 + p} 6ik (5.3-3)

(2)
0 = - 3 a e + 2a 3 n + 3 a n l (l)C
ik 2 7 mm 9 2 2 2 10 1 ‘TIT““ P

(503-4)

(3) _ e. _'01k — {afinl + a7n2 + a4em¥>5ik + 2a5 1k (5.3 b)

In the case of undeformable solid eij = 0 and (5.3-3,4)

becomes

(1) _ _ - — -
Oik — {2a801nl + alopl + p} Sik (5.3 6)

1(l)C

Substituting equations (5.3—6,7) into equations of motion

and making use of continuity equations yields

 

 

K 3n K 8n
2 2 2 _ 11 1 12 2 _

V p + 238V T11 + alOV T12 - 3576—- + 6. 6. at (5.3 8)

01 l 2

1 - (l)C V2 + a v2 + 2a v2 = K21 an1 + K22 an2

“TITE" P 10 n1 9 n2 EIEZ‘FE' ‘2'? t

 

T
c
“
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The incompressibility relation (5.3-l) reduces to

(1)C n 1 _ (1)C n

pl 1 "‘33“" 2
 

Eliminating p between (5.3-8) and (5.3-9) and using relation

(5.3-10), we obtain:

2 and

BV na = St- for a = 1,2 (5.3-ll)

where

_ ElC(2a8C - alo) + 32(alOC - 2a9)

B = F’1 2 cb'z(K11c + K12) Tfi'lmxu + K
 

22)

The equation (5.3-ll) is the diffusion equation for

a mixture of two incompressible fluids and a rigid solid.

Green and Adkins [24] derived the diffusion equations for a

binary mixture of compressible fluids. Later Mills [30] gave

the derivation of diffusion law for a mixture of two incom—

pressible fluids.

Equation (5.2-23) and (5.2-24), manipulated from

Mills' results, are the diffusion law for a mixture of two

compressible fluids flowing through a rigid body. Finally

equation (5.3-ll) represents the diffusion of two incom-

pressible ideal fluids through a solid. The equations

(5.2-23) and (5.2-24) or (5.3-ll) may be considered as the

modified Darcy's law of flow of two miscible fluids through

porous rigid media.



CHAPTER VI

CONSTITUTIVE EQUATIONS FOR BINARY MIXTURE

OF A NEWTONIAN FLUID AND A VISCOELASTIC

o
.
-
T
-
‘

SOLID

6.1 General Remarks
 

In order to derive the desired constitutive equa-

 “."

tions we follow the same approach as for binary mixture of

an elastic solid and a Newtonian fluid. These equations

will be derived under the assumptions of Chapter II.

Before proceeding any further, it would be pertinent

to consider the different approaches to the theory of visco-

' elasticity. The problem has been considered by many research

workers where two main lines of work are of interest from

thermodynamical viewpoints. The first line of activity is

more or less based on Biot's linear thermodynamic theory

[16-17] and the non-linear counterpart of it, where the idea

of hidden coordinates has: been introduced to take care of

dissipation phenomena. The other line is due to Coleman-

[19-20], who has introduced the idea of materials with fading

memory asserting that "deformation that occurred in the dis-

tant past should have less influence in determining the

present stress than those occurred in the recent past." The

thermodynamic aspects of the problem are discussed [19]. The

67
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viscoelastic materials are a special class of materials with

fading memory.

In the present work the idea of hidden coordinates is

employed, However the alternative of using the idea of fading

memory is possible, but has not been attempted.

6.2 Hidden Coordinates
 

The thermodynamic system is assumed to have n degrees

of freedom defined by n state variables 51....gn. These in-

dependent state variables are alternatively called generalized

coordinates. These coordinates are divided into two groups

of hidden and observed ones. The system is assumed to be

under the action of n generalized forces Qj in such a manner

that Qidgi represents an incremental amount of work done on

the system. The hidden variables are those whose correspond-

ing conjugate forces are zero and are of interest only to the

extent of their influence upon our observed variables. As an

example, in a body under external loading, strain components

are considered as observed variables and stress components

as their conjugate external force, while the effect of "molec-

ular configuration," interstitial atoms, dislocation, grain

boundaries, etc., on stress-strain law can be accounted by

hidden variables. The plan is to introduce the hidden co-

ordinates in the equations of state and eliminate them from

our ultimate stress-strain relationships. At this stage we

are not concerned about the explicit form of 51. However,
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they are assumed to be functionals of observed variables

history.

6.3 Development of the Constitutive

Equations

 

 

We postulate the following constitutive equations in

 

accordance with the equipresence principle. p

A = A(eijl p2! Efll fijl dijl ui - Vi) (6.3-1)

5 = S(eijl 02: €£I fijr dijl ui - Vi) (6'3-2) f

l _ _ -' L

2(Oki + Oik) ‘ Aik + Aikj (“j Vj) + Aikrsfrs + Aikrsdrs E,

1(T + T ) = B + B (u - v ) + B f + E d
2 k ik ik ikj j j ikrs rs ikrs rs

_ l _ _

2(Oki ' Gik) ‘ 2(Tki Tkl) ‘ Dki + Dkij(uj Vj) + Dkirsfrs

Dikrsdrs (6°3-5)

Hi = ai + aij(uj - vj) + airsfrs + airsdrs (6.3-6)

' I
where Aik-oudepend on eij' 02, €£° The dependence on fi3

dij' ui - vi can be omitted from (6.3-l) and (6.3-2) by

thermodynamic consideration as shown by Crochet and Naghdi [22].

A A(ei.J. 02. 4,) (6.3-7)

S = S(e (6.3—8)
ij' p2, EZ)

Using (1.3-20) and the entr0py production inequality (2.4-16)

yields
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21 = - 21. _ 1 1

Pvt + "i‘ui Vi) + f(oki + Oik)dik + 2(Tki + Tik'fikU

l

Differentiating (6.2-7) gives,

DA = 3A D02 + 3A Ders + 3A D52

BE “66“6E' Pae Dt Pa: Dt
2 rs 2

(6.3-10) 

D

In view of (1.3—8) and (2.4-l), equation (6.3-10) becomes

  

   

3x. 8x.

962': ‘992 3%— fkk + 2 'ii ”21 (32A + 32A dij
2 r 3 rs sr

30

+ (u _ v ) 9 3A 2 _ l 0 3A + 8A 8ers

k k l 502 5yk 2 2 Sers §esr 5xk

D5

+ 9%A_.__1 (6.3-11)
K D

With the help of (6.3-11) and (6.3-3-6), equation (6.3-9)

  

 

becomes

DY 1 3x1 axk 3A 3A 8A

EE“ Aik ' 2“ 3x 8x 3e + as dik + Bik+ PPz 53’51k fik
r 5 rs sr 2

80 3e
3A 2 1 8A 3A rs

+ a. - p ——— ——— + — D ———— + (U- - V-)
1 l 802 ayi 2 2 aers Sesr axi i 1

+ (Brsi + arsi) frs(ui - Vi) + (Arsi + arsi.) drs (ui - Vi)

+ Aikrsdikfrs + aij(ui ‘ Vi)(uj ' Vj’ + Bikrsfikfrs

+ Dki(rik ‘ Aik) + Dkij(rik ‘ Aik)(ui ‘ Vi) + Dkirsfrs(rik

- A ) - 25—'EE-£-.+ A d d + E d f + E (P -A )
ik Pagz Dt ikrs rs ik ikrs rs ik kirs ik ik

> 0 (6.3-12)
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For a given state of deformation this inequality has

  

  

 

 

to be satisfied for all arbitrary values of d. , f. , (u. - v.)
1k 1k 1 1

rik - Aik' Applying the above argument, we obtain:

3x. 3x

1 1 k 3A 3A

A. = + (6.3-l3)
1k 7 er 3X5 Bers aesr

_ _ 3A _

fl?

3p 3e i

3A 2 1 8A 3A rs

a. = p ——— ——— + p + (6.3-15)
l 1 3oz ayi 7 2(5ers Besr Bxi

Dki = 0 Dkij = 0 Dkirs = 0 Dkirs = 0 (6'3'16) L}

axr '

In the case where the coefficients are functions of 5?—

s

only through pl we will have

Bikj = o Aikj = o aikj = 0 aikj = 0 (6.3-17)

and the following relations

= 6 6 6 6

Aikrs Aldik rs + u1( ir ks + is kr)

’ = A 6 6 6 6 6 6

Aikrs 2 ik rs + “2( ir ks + is kr)

(6.3-18a)

= l 6 6 6 6

Bikrs 3 ik rs + u3( ir ks + is kr)

’ = A 6 6 6 6 6 6

Bikrs 4 ik rs + “4‘ ir ks + is kr)

. . . . _ l , .
Con31der1ng the identity frsfrs - j frrfss + f rsf rs where

f'rs is the deviatoric component of the tensor, we obtain

the following inequalities

2
u 2 o u4 2 0 x3 + 3 u3 > o

A + 3 2 o 4 2 ( +' )2
4 3 “4 lJ3“4 “1 “2

4M3 + § u3)(?\4 + § 114) > ml + *2) + §<ul + u2)]2
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In view of the constitutive equations proposed and

worked out for the rate of entropy production by Biot [l7],

Schapery [39], Valanis [44] and the others, we postulate the

following constitutive equations for 3%.

I
D

Dt = f(E£I dijl fijl ui _ Vi, eij' p, gz) 3 0 (6.3-19)

where ii is the material time derivative of ith hidden co-

ordinate. If ££ is expressed in terms of material coordi-

nates, the above derivative reduces to partial derivative

with respect to time.

The rate of entrOpy production is required to be

zero in equilibrium state.

f(OIO’OIOIeij’ 0, EL) = 0 (603-20)

Therefore the appearance of eij' p, €£ in the above constitu-

tive equation is implicit and consequently (6.2-19) can be

written as

D

E: f(gz, d. f.., u. - vi) 2 0 (6.3-21)
1j’ 13 1

where the implicit dependence on eij' p, €£ is understood.

Assuming required smoothness of the function f, it can be

expanded in Taylor series. Neglecting terms higher than the

second and eliminating terms less than two on account of the

assumption of zero initial stresses, yields,

D _ o o

—I- Z (bagigfi + ba=1 d..§ + 5' .g + bia(u.i' .. f. - v.)é )
3a 13 a 13a 13 a 1 1 aU

(6.3-22)

Comparing (6.3-22) with (6.3-12), we obtain:

- 8A_ _
baga + bijadij + Sijafij + bia(ui — Vi) + QEEZ’— O (6.3 23)
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Expanding A in Taylor series under the same conditions as

Dy/Dt

— _ l l l 2

9A ‘ §Cijk£eijek£ + Cijaeijga X 5 Cagaga + E’b” Cijeij”

+ Cagan (6.3-24)

where n = p2 - p2.

In view of (6.3-24), (6.3-23) becomes

a- - ° -.
6 (Cijaeij + Gaga + can) + bagd + bijddij + bijafij

+ bia(ui — ni) = 0 (6.3-25)

We write the above equation in the following form

0 Ca

Ea + g— Ea = - Q(t) (6.3-26)

a

where

_ 1 — — _
Q(t) ‘ ba Cijaeij + Ca” + bijadij + bijafij + bia(ui Vi)

p/H is considered to be unity in view of the second order

effect of neglected terms. The solution of equation (6.3-26)

is

t C

Ea = - Q(T)e ba d1 (6.3-27)

or

b J[t Ca

_ _ a _ - -(t - T) 30(T)

Ea - 55' Q(t) _m e bu —§E_— dT

Substituting (6.3-13-16) into constitutive equations (6.3-3-6),

we obtain

3x. 3x

 k 3A ‘ d (6.3-28)
0 ° = Oik = 0 3X 3X 3e + Aikrsfrs + Aikrs rs

r 5 rs

k1

 

1
-
r

F
.
v
~
.
.
-
_
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Tki — Tik ‘ 992 5oz 61k + Bikrsfrs + Bikrsdrs (6'3 29)

3p 8e

8A 2 1 3A rs
fl. = p ___.___ _ p + a(u. - v.) (6.3-30)

1 1 3oz Byi 2 2 aers Bxi 1 1

Substituting for A from (6.3-24) into (6.3-28-30) and retain-

ing linear terms we obtain:

 

_
1p

Oik = Cikimefim + z aikaga + aikn + Aikrsfrs + Akirsdrs (6.3-31) i

Tik = — p2(bn + Cfime£m + 2 Caqa) 5ik + Bikrsfrs + Bikrsdrs

(6.3-32)

Ni = a(ui - vi) (6.3-33) i

Substituting for qa from (6.3-27) into constitutive equations

for partial stresses yields:

 

 

 

J{t (1) Be£m(1) J{t (2) 3f£m(T)

Oik = -0. 61km“: ‘ T) T d” + -0. Gik£m(t ' T) T. d”

t t

ad ('1’) (4) _ 2mm A

+ L. Gik£m(t - T) —§—T——dr + f... Gik (t T) 3T M

t

8 u (T) - v (T)
(5) K K )

+ j:w Gik£(t - T) 31 d1 (6.3-33)

t

t 3e

T. _ ,[ Féi)(t - T) Bfm dT + Jr F(4)(t - T) igéll dT

1k _m -m

t

3(u — v )

(5) 1i K

““f F: (t T) 31’ d 61k

t 3f *- 3d
- (2) £m f (3) £m

+f_.. Fik/Zm‘t " T) ‘s—r 5“ + _.. Fikzm‘t " T) T d” (63‘3“
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where

Ca
. C — ——(t - T)

(l) _ a1k limo: _ b

Gikzm “ Cikzm ‘ 2 ca (1 e a

. b — -—(t - T)

(2) _ aika zma _ b

Gikzm - Aikzm " ZT (1 e 0‘

. b - ——(t - T)

(3) _ — a1ka £ma b

GikZm - Aikim - z Ca 1 _ e a

_ Ca )
. C - ——(t — T)

(4) _ _ alka a _ b

Gik - aik X —c—' (1 e a
a

ca )

. b - ——(t - T)
(5 a k [a b

Gik) = ‘ Z ‘£EE“’ (1 ‘ e a
a

and Ca )

E'c - (t - r)
(l) _ — — a [ma 5—

F£m ‘ 'pzczm + 02 c (l ‘ e a

_ Ca )
C b - ——(t - T)

(2) — a flma b

Fikzm Bikzm + D2 2 Ca (1 ’ e a 51k

_ Ca )
C b — ——(t - T)

(3) — —> a £ma b

Fik£m Bik£m + D2 2 Ca (1 - e a éik

C
_ 2 a
C - (t - T)

- - F )
F — -pb + p2 Z 6%- (l - e a

— Cu K

C b - (t - T)

(5 - a Za 5—
F2, ) = -p2 X ————C (l - e a )

a

Where G‘l)

1k£m....are relaxation functions. The above consti-

tutive equations hold 1 for the most general anisotropic

case. The interaction was assumed to render the constitute
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equations for partial stresses a function of all state vari-

ables. However some of the relaxation functions might be

either a constant or zero at all times. This remains to be

determined through experiments and we do not discuss it any

further.
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