NJ»- the c3351 It .etk AI-” H n me 7 ABSTRACT STEREOCHEMICAL STUDIES OF NITROSAMINES, OXIMES AND N-SUBSTITUTED HYDRAZONES BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY by Robert Arthur Taller Nuclear magnetic resonance Spectroscopy was used to study the configurations and conformations of N-nitrosamines, oximes, N-methylhydrazones, N,N—dimethylhydrazones, and phenylhydra- zones. It was observed that whereas ormethyl, ormethylene, and B—methyl protons of the nitrosamines resonate at higher mag- netic fields when gi§_than when trans to the nitroso oxygen, aamethine protons resonate at lower fields. This difference is attributed to the greater stability of I, whereby the methine proton eclipses the nitrogen-nitrogen bond. The nature of the association between benzene and nitrosamine was deduced 6. N/ N/0 b? ‘ H H R H N A / _‘ ' N \ N R + “‘-CH3 Rk/+\R2 R‘ ”’j/+\R CH3 /0 I II III A .. fi Fa . i. ‘ i L.» #t w; my“ WW .7“ .w. «~«~ .‘AA “1L 5 L; .t R v. ML b. D +t 8 WI a L.» e 1 flu a la "V e 1.... S .\a S .hu .1 .n a 5 .NJ .6 L» t st FL «G and sol. . 'h ‘tey ‘ Robert Arthur Taller by observing the proton resonance shifts of groups R; and R2 as a function of benzene concentration. These studies showed that the benzene molecule interacts with the partially posi- tive nitrogen atom in a way that places the ring closer to the trans than to the gig protons (II). Changes in the chemi— cal shifts of the trans isomers are consistent with the assumption that the minimum energy conformations are those in which the nitrogen-nitrogen bond is eclipsed with a substituent on the tetrahedral carbon (III). The spin-Spin coupling interactions between H; and Ha of aldoximes (IV) were studied as functions of temperature and solvent. The data were interpreted in terms of rotamers N///OH Ha J R IV V VI where a single bond eclipses the carbon-nitrogen double bond (IV and V). In all cases IV is stabler than V. The effect of benzene on the chemical shifts was interpreted in terms of VI, whereby the benzene molecule interacts with the sp2 hybridized carbon of the oxime and is situated §p£i_to the hydroxyl group. The stable conformations about the nitrogen-nitrogen single bond of aldehyde and ketone N—methylhydrazones was found "V‘ (12.... . "“flv‘ ‘ nAVM- Robert Arthur Taller /®’CH3 3 X“ ‘N VII VIII IX to be VII. That of aldehyde N N—dimethylhydrazones was the analogous conformation VIII. As a result of nonbonded inter- actions ketone N,N-dimethylhydrazones assume conformation IX. The effect of solvent on the chemical shifts of phenyl- hydrazones led to the conclusion that extensive self-associ- ation and hydrogen bonding between phenylhydrazone and solvent exists. Plausible structures of these hydrogen—bonded com- plexes are suggested. STEREOCHEMICAL STUDIES OF NITROSAMINES, OXIMES AND N-SUBSTITUTED HYDRAZONES BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY BY Robert Arthur Taller A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1966 To Carol Ann ii 3,. r. nL A -. p“ \A‘ Stan g eauca 0'- k ACKNOWLEDGMENTS The author wishes to express his sincere appreciation to Professor G. J. Karabatsos for his guidance, encouragement, and friendship during the course of this investigation. Financial assistance from the United States Atomic Energy Commission is gratefully acknowledged. Appreciation is extended to his parents for their under- standing and financial assistance during the years of his education. iii INTRODCC ; PAR TABLE OF CONTENTS INTRODUCTION . . . . . . . . . PART A--N-NITROSAMINES. . Results. . . . . . . Discussion . . . . . Solvent Effects Conformations . syn/anti Isomers. PART B-~OXIMES. . . . . . Results. . . . . . . Discussion . . . . . Conformations of the syn Isomers. . . Conformations of the anti Isomers . . Chemical Shifts Solvent Effects syn/anti Isomers. PART C--N,N-DIMETHYLHYDRAZONES AND N-METHYL- HYDRAZONES. . . . Results. . . . . . . Discussion . . . . . O O O O Conformations of the syn Isomers. . . The Effect of Conformations about the Nitrogen-Nitrogen Single Bond on Chemical Shifts and Long Range Spin Spin Coupling Constants StereOSpecificity Spin Coupling Chemical Shifts Solvent Effects PART D--PHENYLHYDRAZONES. Results. . . . . . . Discussion . . . . . iv of'Long Range Spin- Page 15 15 20 24 26 27 45 45 52 52 56 59 6O 61 78 78 85 88 89 89 96 97 101 TABLE OF EXPERIME l r I ( LITERAT TABLE OF CONTENTS - Continued Page EXPERIMENTAL . . . . . . . . . . . . . . . . . . . . 110 A. Preparation of N-Nitrosamines. . . . . . . . 111 Preparation of tert-Butylformamide . . . . 111 Preparation of Methyl-tert—butylamine hydrochloride. . . . . . . . . . . . . 115 Preparation of N- -nitrosomethyl- -tert- -butyl- amine. . . . . . . . . . . . . . . . . . 114 Preparation of Benzylacetamide . . . . . . 114 Preparation of N-Ethylbenzylamine. . . . . 115 Preparation N-nitroso-N-ethylbenzylamine . 115 B. Preparation of Aldoximes and Ketoximes . . . 116 Preparation of Cyclohexanecarboxaldehyde oxime. . . . . . . . . . . . . . . . . . 116 Preparation of 5,5-Dimethylbutyraldehyde oxime. . . . . . . . . . . . . . . . . . 119 C. Preparation of N-Methylhydrazones and N,N- Dimethylhydrazones . . . . . . . . . . . . 119 Preparation of 5,5-Dimethylbutyraldehyde- N,N-dimethylhydrazone. . . . . . . . . . 119 Preparation of Cyclohexanecarboxaldehyde- N-methylhydrazone. . . . . . . . . . . . 122 D. Preparation of Phenylhydrazones. . . . . . . 122 E. Solvents . . . . . . . . . . . . . . . . . . 125 F. Spectra. . . . . . . . . . . . . . . . . . . 125 LITERATURE CITED . . . . . . . . . . . . . . . . . . 124 A: TABLE 1. 2. 10. 11. 12. 15. 14. LIST OF TABLES Chemical Shifts (T-Values)of Nitrosamines. . . Ao(5 cis - 6 trans) Values, in p.p.m., of Nitros- amines . . . . . . . . . . . . . . . . . . . . . AWN”V in benzene - W in carbon tetrachloride) Values in c.p.s., of Nitrosamines. . . . . . Solvent Effects on the Chemical Shifts of Methyl Ethyl Nitrosamine. . . . . . . . . . . . . . . . Partial Ultraviolet Spectra of Nitrosamines in Cyclohexane. . . . . . . . . . . . . . . . . . Chemical Shifts (T- Values) of Aldoximes and Ketoximes. . . . . . . . . . . . . . . . . . . Aé(é cis - é trans) Values, in p.p.m., of Aldoximes. . . . . . . . . . . . . . . . . . Aé(é cis - 6 trans) Values, in p.p.m., of Ketoximes. . . . . . . . . . . . . . . . . . . . AW(W in benzene - V neat) Values, in c.p.s., of Aldoximes. . . . . . . . . . . . . . . . . . . . A”"('V in benzene - W in carbon tetrachloride or Neat) Values, in c.p.s., of Ketoximes. . . . . . syn/anti Ratios and AFZOO Values for syn —%-anti of Aldoximes . . . . . . . . . . . . . . . . . syn/anti Ratios and AFZOO Values for syn —+'anti of Ketoximes . . . . ... . . . . . . . . . . . . Spin-S in Coupling Constants of Aldoximes (syn isomer? at Various Temperatures. . . . . . . . The Effect of Solvent Polarity on the Spin-Spin Coupling Constants of Aldoximes (syn isomer) . . vi Page 12 14 18 19 25 52 55 56 57 58 59 4O 41 42 A5 A I Su a J r/_ If: nc :0 «NO nC 3d 9; LIST OF TABLES - Continued TABLE 15. 16. 17. 18. 19. 20. 21. 22. 25. 24. 25. 26. 27. 28. 29. Rotamer Population of Aldoximes (syn isomer). . AHO Values Obtained from Plots of log K y§ 1/T. Spin-Spin Coupling Constants of Aldoximes (anti isomer) at Various Temperatures . . . . . . . The Effect of Solvent Polarity on the Spin-Spin Coupling Constants of Aldoximes (anti isomer) Chemical Shifts (T- Values) of Aldehyde and Ketone N,N-Dimethylhydrazones . . . . . . . . Chemical Shifts (T- Values) of Aldehyde and Ketone N-methylhydrazones . . . . . . . . . . Aé(6 gig - 6 trans) Values, in p.p.m., of Ketone N,N-Dimethylhydrazones . . . . . . . . . A6(6 gi§_- 6 trans) Values, in p.p.m., of alde- hyde and Ketone N-Methylhydrazones. . . . . . . AV(V in benzene - V in carbon tetrachloride) Values, in c.p.s., of Aldehyde and Ketone N,N- Dimethylhydrazones. . . . . . . . . . . . . . . AV('v in benzene - W in carbon tetrachloride) Values, in c.p.s., of Aldehyde and Ketone N- Methylhydrazones. . . . . . . . . . . . . . . . Spin~Spin Coupling Constants and Half Widths of Aldehyde N-Methylhydrazones . . . . . . . . . . syn/anti Ratios of Aldehyde and Ketone N-Methyl- hydrazones. . . . . . . . . . . . . . . . . . . Spin-Spin Coupling Constants of Aldehyde N,N— Dimethylhydrazones (syn isomer) at Various Temperatures. . . . . . . . . . . . . . . . . The Effect of Solvent Polarity on the Spin-Spin Coupling Constants and Half Widths of Aldehyde N,N-Dimethylhydrazones (syn isomer) . . . . . . Spin- Spin Coupling Constants of Aldehyde N- Methylhydrazones (5 fly isomer) at Various Temperatures. . . . . . . . . . . . . vii Page 45 44 48 49 67 69 71 72 75 74 75 75 76 76 77 LIST mi. 25 25 IV 2v LIST OF TABLES — Continued TABLE 50. 51. 52. 55. 54. 55. 56. 57. 58. 59. 40. 41. 42. 45. The Effect of Solvent Polarity on the Spin- Spin Coupling Constants of Aldehyde N-Methylhydra- zones (5 syn isomer). . . . . . . . . . . . . Rotamer Population of N,N-Dimethylhydrazones (syn isomer). . . . . . . . . . . . . . . . . AHO Values Obtained from Plots of Log K.y§ 1/T. Rotamer Populations of N-Methylhydrazones (fiyg isomer) . . . . . . . . . . . . . . . . . . . . AHO Values Obtained from Plots of log K‘yg 1/T. Ultraviolet Spectral Values of Aldehyde and Ketone N,N-Dimethylhydrazones . . . . . . . . . Ultraviolet Spectral Values of Aldehyde and Ketone N-Methylhydrazones . . . . . . . . . . AVVV in benzene - N in carbon tetrachloride) Values, in c.p.s., of Phenylhydrazones. . . . Solvent Effects on the Chemical Shifts of Butanone Phenylhydrazone. . . . . . . . . . . Boiling Points and Melting Points of N-Nitros- amines. . . . . . . . . . . . . . . . . . . . . Boiling Points and Melting Points of Aldoximes. Boiling Points and Melting Points of Ketoximes. Boiling Points of N-Methylhydrazones. . . . . Boiling Points of N,N-Dimethylhydrazones. . . viii Page 77 79 79 8O 8O 86 87 100 106 112 117 118 120 121 H A—l R vv G , U T as F t I _: e t t T t f. me. 3 SE S. f C I f 3 J f C J .2 L f t. E 3 .nee hmm "mm NED ...i ECSI EC( EC( Tb Es N»... T. K «D .u . . a .. . . . ~/. 30 Cu NO ,I ../~ n6 5 1%. :v no Is 1‘ A.‘ LIST OF FIGURES FIGURE Page 1. Neat n.m.r. spectra of dimethyl nitrosamine (A), methyl ethyl nitrosamine (B), methyl isopropyl nitrosamine (C), and methyl tfbutyl nitrosamine (D). . . . . . . . . . . . . . . . . . . . . . . 11 2. The upfield shift of the proton resonances of methyl ethyl nitrosamine on dilution with benzene. . . . . . . . . . . . . . . . . . . . . 16 5. The upfield shift of the proton resonances of methyl ethyl nitrosamine and methyl tfbutyl nitrosamine on dilution with benzene . . . . . . 17 4. N.m.r. spectra of Acetone (A, 10% in carbon tetrachloride) and 2-butanone (B, neat) oxime. . 50 5. N.m.r. spectra of isopropyl methyl ketone (A, neat) and methyl t-butyl ketone (B, 10% in car- bon tetrachloride) oxime . . . . . . . . . . . . 51 6. AOH plot for 2-methylbutyraldehyde oxime (syn_ isomer). . . . . . . . . . . . . . . . . . . . . 50 7. Effect of solvent polarity on the Spin-Spin coupling constant of acetaldehyde oxime (J syn isomer). . . . . . . . . . . . . . . .HEHQ . 55 8. Effect of solvent dilution on the Spin-Spin coupling constant of propionaldehyde oxime (J , syn isomer). . . . . . . . . . . . . . . 54 HlHQ 9. Effect of solvent dilution on the Spin-Spin coupling constant of isobutyraldehyde oxime (JHiHQ/ gyn isomer). . . . . . . . . . . . . . . 55 10. The effect of benzene on the chemical shifts of butanone oxime . . . . . . . . . . . . . . . . . 57 11. Effect of benzene dilution on the Ngfi_chemical shift of ethyl methyl ketoxime . . . . . . . . . 58 12. Neat n.m.r. spectra of acetone (A) and 2—buta- none (B) N,N-dimethylhydrazone . . . . . . . . . 65 ix LIST 2O I». ;. E o 4 . «WV .45 A I :u ;. «J nC CL 9L «.5 2v AC 1.: AC :v n/~ A». A: A: LIST OF FIGURES - Continued FIGURE 15. Neat n.m.r. spectrum of isopropyl methyl ketone N,N-dimethylhydrazone . . . . . . . . . . . . . 14. Neat n.m.r. Spectra of acetone (A) and 2- butanone N—methylhydrazone. . . . . . . . . . . 15. Neat n.m.r. Spectra of isopropyl methyl ketone (A) and methyl tfbutyl N-methylhydrazone. . . . 16. AH0 plot for isobutyraldehyde N,N-dimethylhydra- zone (syn isomer) . .t. . . . . . . . . . . . . 17. AH0 plot for cyclohexanecarboxaldehyde N—methyl- hydrazone (syn isomer). . . . . . . . . . . . . 18. Effect of benzene on the chemical shifts of acetaldehyde N-methylhydrazone. . . . . . . 19. Effect of benzene on NE and Ngfig resonances of acetaldehyde N—methylhydrazone. . . . . . . . 20. Effect of benzene on the chemical shifts of iso- butyraldehyde N-methylhydrazone . . . . . . . . 21. Effect of benzene on NE and Nggg resonances of isobutyraldehyde N-methylhydrazone. . . . . . 22. Effect of benzene on the chemical shifts of 2-butanone N-methylhydrazone. . . . . . . 25. Effect of benzene on NE and Ngflg resonances of 2-butanone N—methylhydrazone. . . . . . . 24. Nuclear magnetic resonance Spectrum of 2- butanone phenylhydrazone: A, neat; B, 5 mole percent in benZene: C, 5 mole percent in carbon tetrachloride . . . . . . . . . . . . . . . . 25. Effect of dilution on the chemical shifts of butanone phenylhydrazone. . . . . . . . . . 26. Effect of dilution on the chemical shifts of butanone phenylhydrazone. . . . . . . . . . . 27. Effect of dilution on the chemical shifts of methyl tfbutyl ketone phenylhydrazone Page 64 65 66 81 82 90 91 92 95 94 95 99 102 105 104 INTRODUCTION Geometrical or configurational isomers arising from restricted rotation about double bonds (1,2,5) and partial double bonds (4,5,6,7) can be effectively studied by nuclear magnetic resonance Spectroscopy (n.m.r.). A proton in group R1 as well as in group R2, for example, may resonate at different magnetic fields when Z is gig (I) or trans (II) to it. AS a result of this magnetic nonequivalence two R1 Sig— nals may be observed, one for each geometrical isomer. Z Z Y//’ ‘\\Y H H X X R2"/ \‘R1 R2/ \R1 I (cis) II (trans) The relative field position of these two Signals will vary with X (carbon, nitrogen), Y (nitrogen, oxygen) or Z (hydrogen, oxygen, substituted nitrogen). For example, whereas in one particular compound R1 may resonate at a higher field (Shielded) when gig (I) than when Egagg (II) to Z, in another the reverse might be true (8). Conformational isomers can be studied by observing dis- crete changes in Spin—Spin coupling constants (9,10) and in chemical Shifts (11). For example, the important conforma- tions of a tetrahedral carbon bonded to a trigonal carbon may be determined by measuring changes in the Spin—Spin coupling constant, J with temperature and solvent. Assuming HlHa’ Jt>Jg I12), where J is the trans coupling (dihedral angle t A’1800) and J9 is the gauche coupling (dihedral angle Av600), Z Z Z Y/ y/ Y/ \/\ , , - \‘\u ’,' H1 " ' H1 ' - 1 HOL"/ ' H R III IV V the averaged coupling Should be temperature independent if III, IV and V are energetically equivalent. If V is more stable than III or IV, the coupling Should increase with increase in temperature, and if it is less stable, the coupling Should decrease (10). In the absence of Spin-Spin coupling between protons in group R1 with protons in group R2 (I) conformational data may be obtained from chemical Shifts. Although this requires knowledge of the anisotropic effects of the carbon-nitrogen and the nitrogen-nitrogen double bonds, intelligent guesses can be made by comparison of these with other isoelectronic groups (11,15). Additional information regarding configurational and conformational isomers may be obtained from the variations of chemical Shifts (8,14,15,16,17) and to a smaller extent coupling constants (18,19) with solvent. These variations are generally attributed to changes in the dielectric con- stant of the solvent (20) or to solvent association with substrate. With respect to association two distinct inter— actions leading to chemical shift changes can occur. One type of interaction leads to the ”hydrogen bond shift,“ whereby the hydroxyl proton signals of alcohols (21) and it H. (1’ ,1 rr C] carboxylic acids (22) appear at lower fields when these com- pounds are associated than when they are unassociated. This is an example of an nfdonor association, that is, hydrogen bonding between the lone pair electrons of the donor species with the protons of the acceptor molecule (VI). The chemical Shift of the unassociated species can be obtained by dilution with an inert solvent. A second type of interaction arises from association of a proton (15) or polar molecule (17 22 25) with an aromatic nucleus. For example, when chloroform is diluted with benzene (VII), the proton signal progressively shifts toward high field as the benzene concentration in- creases. This high field Shift can be attributed to the large C]. O\ C /H Ti) 3 H C c1—-—c-——c1 H/\ \c / \‘CH3 H CH3 \/ CH3 C/q CH/K/ cs.3 VII VIII IX induced diamagnetism resulting from circulation of the _flfielectrons of the aromatic ring. Association between benzene and N,N-dimethylformamide (VIII) and between benzene and Inesityl oxide (IX) lead to similar results (22 25). These . US$215? r. E T. . . - . . . w L. E . . - .. . we MW. 3 3 E q, M.» ca .5 8 TI t. f . 1: WA. ‘1 ‘ . . , .B U S 1.. .1 S I t n r d O r C .4 .F. O S i .l f .. c I S .l 3 .e n. S Q I 3. t r a D A o .I d d n... C .w a .1 Dr 8. G O O. A interactions lead to the fy-donor association shifts,” which in most cases are upfield Shifts. In order to understand the factors that influence: (a) syn—anti isomerism about double bonds and partial double bonds; (b) the relative stability of the conformations of a tetrahedral carbon bonded to a trigonal carbon; (c) the anisotropic effects of hetero-atoms bonded to a carbon- nitrogen or nitrogen-nitrogen double bond; and (d) the effect of solvents on chemical shifts and coupling constants, the following systems were studied. A. Nitrosamines. A preliminary study of three nitros- amines by the author (24) showed that the previously reported assignments (7) were incorrect. To further elucidate nitrosamine-solvent association and to assess the important conformations of these compounds, ten additional nitrosamines were studied. B. Oximes. Phillips (1) assigned structures to the_§ynl and §n£i_forms of several oximes and concluded that the only isolable form of aldoximes is the an£i_form. Lustig (2) re— ported that isomers of ketoximes could only be observed in aromatic solvents. He also postulated that magnetic non— equivalence was due to the oxygen atom. Saita (25). on the other hand, attributed the anisotropy of the hydroxylamino group to the lone pair electrons of the nitrogen atom. .A series of aldoximes and ketoximes were prepared in order t4 . ._J .wx. -4“ - -C". paw-Iv“, 1“.“ SUIT. \rv‘ A. r. ‘— a“ C v I e f v. nu. we? (X) . V r. #C (L to understand the anisotropic contributions of the hydroxyl- amino group and to elucidate the conformations of these compounds. The effect of solvents on the chemical shifts and Spin-spin coupling constants were also studied. C. N-Methylhydrazones and N,N—Dimethylhydrazones. These compounds were prepared in order to understand the factors controlling syn—anti isomerism and to determine conformational preference about the nitrogen-nitrogen single bond. D. Phenylhydrazones. Although syn and anti assignments were previously reported (24), the effect of solvents (aromatic and aliphatic) on the chemical shifts that could possibly reveal the degree and type of association in solution was not examined. The following conventions will be used throughout this thesis: The 222 isomer has Z gi§_to the smaller alkyl group (X). For example, the syn_isomer of butanone oxime has the methyl and hydroxylamino groups gg§_to each other. The nota- tion used to distinguish the various protons is Shown in XI, each proton being referred to as £i§_or traps with reSpect to Z. (Z Z a 5 Y Y H H /X\ /X\ R2 R1 CHB— CHQ HI X X I PART A- -N-NITRO SAMINES Results Figure 1 Shows the n.m.r. Spectra of dimethyl, methyl ethyl, methyl isopropyl and methyl t—butyl nitrosamines. Table 1 summarizes the chemical shifts and syn/Anti ratios of several nitrosamines. The chemical Shifts are accurate to i 0.05 p.p.m. The accuracy in chemical shift differences between gig and EEEEE protons is 4.0.01 p.p.m. The syn/anti ratios were determined by integration of peak areas and are accurate to 1.5%. The syn/gag; assignments are based on the assumption that the ratio Ia/IIa increases as R changes from ethyl to isopropyl to t—butyl. 6 6 Ia IIa Two observations are pertinent to the ensuing discussion on conformations: (a) In R(CH3)NNO the resonance of the trangeB—methyl of the R group shifts to lower fields as R changes from ethyl (T = 8.62) to isopropyl (T = 8.58) to tfbutyl (T = 8.46). In R[CH(CH3)2]NNO the resonance of the trans-armethine Shifts to higher fields by 0.5-0.4 p.p.m. as R changes from methyl (T = 5.15) to benzyl (T = 5.45) to isopropyl (T = 5.74). Table 2 contains the differences in chemical shifts of .gi§_and trans protons. A positive (+) A5 means that gig bk 1'. {58. Y.” \--' 1. .n 6 a ,c. v-" A we ‘1' 1A! AK; «5- G a . a. w A Cu «3 m I a . m. L ,J v; C I l the ,- \ ~ Value .1 C F c @1128} I) .0 t protons resonate at higher fields than Egang; a negative re- verse. The important points are: (a) Whereas oemethyl and ormethylene protons resonate at higher fields when gig than when Egan§_to the nitroso oxygen, osmethine protons resonate at lower fields (negative A6). (b) While positive A6 values are smaller in benzene than in carbon tetrachloride-—with di- isopropyl nitrosamine the notable exception-~negative A6 values are larger in benzene. (c) The A5 values for armethyl, unmethylene and B-methyl vary over small ranges, while those for onmethine vary over larger ranges. Table 5 summarizes AV (v in benzene -N in carbon tetra- chloride) values obtained from the data in Table 1. The important points are: (a) AW values are higher for the Egans than for the gis protons, except for the B—methyl of diiso- propyl nitrosamine which is smaller. Nitrosamines thus behave similarly to amides (16,22,26,27,28), but opposite to compounds having the structure R1R2C==NNHX (see Parts C and D). (b) AS the size of R1 and R2 of dialkylnitrosamines increases the AV values for gishdsmethine are very small and decrease as the R of RCCH(CH3)2]NNO increases in size. Table 4 shows the effect of various solvent on the chemical shifts of methyl ethyl nitrosamine. Figure 2 shows the varia- tion of the chemical Shifts of methyl ethyl nitrosamine with ibenzene as the solvent. Figure 5 compares the effect of dilu~ ‘tion on the chemical Shifts of methyl ethyl and methyl-tfibutyl Ilitrosamine. When carbon tetrachloride or dimethyl sulfoxide are used the chemi spectral 10 are used as solvents, dilution has practically no effect on the chemical shifts. Table 5 contains the ultraviolet spectral values of several nitrosamines in cyclohexane. 11 \ OI N C 2 A .IJLM) - It N,o 5‘” (k k CM3 + (“1043 C_’+ CHZCE; _ B 5‘5 L\ H 1 °‘" m3/§\CWCH3 mien?!» CH5 I ,II 2‘; +\CI|(£I_3)1 I/ A 6‘“ - c 3\ °‘“ ( / H I CH3); +7 (CHICH/h\CH3 A MIA—44» JIM I 6": /N\ c + C(CH3) ‘5 ‘do—a I} D _ It I I l I I I 5.0 6.0 7.0 8.0 9.0 10.0 (TMS) Eugure 1. Neat n. m. r. Spectra of dimethyl nitrosamine (A), ethyl ethyl nitrosamine (B), methyl isopropyl nitrosamine (C), and methyl t—butyl nitrosamine (D)- 449.2%... WIUI le. HIM“.-...-IIH..IH (III 11!- ; -. , tlwmmwwmnm CF31! 3:05: 7:3: :73: 022.41.: m) J , .,.¢. . , C: I:HWOL y ..2 LC “Tao: a q >IIV I wk «2% N 7.345359 . N JNQU~ - Dr ll PL UwSCHucou 12 m 0\004 No.0 4Hoo mmmo mmo 0\004 00.0 .ummz mmmo mmo mm\m5 00.0 00.5 0N.m 40.0 omoo mmoommo mmo fim\m5 mm.m 44.5 05.4 mm.m 4HUU mmmommo mmo 0m\45 44.0 ma.5 m5.4 4m.m ummz mmoommo mmo mm\55 mm.w Hm.5 m4.m mm.m ammo amonfimmov mmo mm\m5 om.w mo.5 am.m mm.o 4Hoo mmOmAmmov mmo 4m\m5 0N.0 No.5 5m.m 44.0 .ummz mmomxmmov mmo 0\004 40.0 44.5 ommo mxmmovo mmo 0\004 04.0 44.5 4Hoo «Ammovo mmu 0\004 04.0 no.5 ummz mxmmovo mmo 04\0m 04.0 44.0 00.0 mm.5 ammo mxmmovmo mmo aa\mm mm.m am.m mm.m md.5 4HUU mxmmovmo mmo aa\mm 00.0 00.0 4m.0 m0.5 ummz mxmmovmo mmo am\m5 0m.m m4.m 40.5 40.5 04.0 40.0 ammo mmommo mmo 5m\m5 No.0 mm.m mm.m 50.5 mm.m m4.w 4HUU mmommu mmo Nm\m5 50.0 00.0 0m.0 00.5 m0.m 44.0 ummz mmommo mmo 40.5 00.5 ammo mmo mmo 4m.0 40.5 4Hoo mmo mmo mm.0 00.0 ummz mmo nmo Hucm\c>m mmmmm. mHo mmMMM mflo mmmmm. mHo ucm>aom mm Hm unmoumm Ammovm Ammoqo Ammuyo ozzmmam meHEmmouuHZ mo Amwsfim>lev muwflnm HMUHEGSO .HH mHQmH o:\or In.o .55.4 imm.n 5102 o\ooa 05.5 Ail (I) . ::;01:0 ~:01:0 :im Z T; .qu‘IEIII; IIII 1.. ““1 a4 LII ._ ECUAJ oII..no ati..no atshv m 4.1.“. MM... mm. .m- m .5 .w. WIS, C H a. NJIM a 20> M 0% I 10(03 1 .1 A1. :3 M? II). .Il-.~.l.._ ,I.n.t...v.~w.la l. I In) ; -III -mfiuzfs: 42 2.0%: 022 .1: dz ~.uv~4..,~ .. .u\.-v.\. .cmmmxo 0&0 .msoum 4%300 050 00 000400002 9 00 040 4m 004>0£ umeomfl 0:0 04 :Nmm 00.0 00.0 00.0 04.0 0000 04000000 04000000 04.0 00.0 45.0 44.0 4400 04000000 04000000 m4\00 00.0 54.0 00.0 00.4 0000 0000 04000000 00\40 00.0 00.0 50.4 00.4 4400 0000 04000000 m4\50 00.0 40.0 00.0 50.4 0002 0000 04000000 0\004>< 04.0 0000 0000 0000000 0\004>\ 40.4 4400 0000 0000000 00.0 00.0 0000 0000 000000 5 0\50\< 00.0 54.0 00.0 4400 0000 000000 .I 4\00\< 05.0 50.0 40.0 00.0 0002 0000 000000 m4\00 40.0 00.0 04.0 40.0 00.0 00.0 0000 04000000 0000000 04\m0 00.0 00.0 05.4 00.0 04.0 04.0 4400 04000000 0000000 04\40 05.0 04.0 05.4 00.0 04.0 04.0 0002 04000000 0000000 0404. .00000400 04\00 00.0 00.0 mm. 0 50.0 0000 0000000 000000 4400. .mvkmm. 0V 54\00 50.0 00.0 0405. 4 4400 0000000 000000 4400. .00000.00 _ 00\00 40.0 04.0 55.4 00.0 0002 0000000 000000 0\004 0000 0000 000 04000\c>m MdMMM 040 Mdflmm. 040 mdeM 040 000>Hom mm 4m ucwuumm Ammovm ANTUYU AmUvd 022N040 00504404000 I H 040.08 $0.0+ 03 0+ 30.0+ \. J ._ 4. fix \ \ .4 \. vAUJ 4302 1:50 $400 0602 12:0 eHUU 0002 2:00 NLL umfl$ . .0 . V 444430.. I 40310: - 4:20 . 4.. ~|H 0.0. 1 .4 a - u .74 4 I. ~ ~ 4. 4 w . > 4 . I 0030 04040 04000005 00:04: 00 .04400 0 04 UCSOQEOUU .msonm 4%0009 mo 0004>£002 Q .0000>00 000 0000000 0:40> 0>400m0c 0 “00000 0003 000000000 @5000 0:2 030 O0 040 000000 000 0000 00005 0540> 0>40Hmom0 mm.o+ 5N.o+ 00.o+ 00.0: 00.0: 4N.OI 0000 04000000 “000+ 44.o+ 046+ 00.0.. 00.0.. 00.0- 000+ 000+ 44.9. 0000000 00000000 00.o+ 50.o+ 0 00.4: 00.0: 0 00000000 00000000 0000.o+0000.o+4&04.o+0 00.o+ 44.o+ 50.o+ 04.o+ 00.o+ 00.o+ 0000000 000000 04.o+ 00.o+ 04.o+ 0000 000000 00.o+ 00.o+ o0.o+ 50.o+ 40.o+ 45.o+ 0000000 000 00.o+ 00.o+ 0N.o+ 04.0: 04.0- 00.0: 00.o+ 05.o+ 45.o+ 00000000 000 44.o+ m0.o+ 50.o+ 00.o+ 05.o+ 45.o+ 000040000 000 04.o+ 00.o+ 40.o+ 04.o+ 00.o+ 00.o+ 00.o+ 05.o+ m5.o+ 000000 000 00.o+ o0.o+ 05.o+ 000 000 0000 4400 0002 0000 4400 0002 0000 4400 0002 0000 4400 0002 00 40 000000 40000 000000 400000 0220040 000480000042 00 0.6.0.0 04 .00040> 4000000 I 0400V000. .N 04008 15 Discussion Solvent Effects--The greater upfield shift of the trans over the gig proton resonances when the solvent is changed from carbon tetrachloride to benzene suggests stereospecific association between benzene and the nitrosamine. Structure IIIa, whereby the benzene is attracted by the positive charge IIIa on the nitrogen and repelled by the negative charge on the oxygen, is the most attractive formulation of this associa- tion. All the data support IIIa. For example: (a) Figure 2 shows that on dilution with benzene the ££3g§_proton shifts upfield more rapidly than the gig, (b) Table 5 shows that the A” values of alkyl methyl nitrosamines decrease as the alkyl group is changed from methyl to tfbutyl. The increase in the size of R should decrease the equilibrium constant for ;, Figure 3 also supports structure IIIa in that the RlCHgNNO + CeHe 7" RICHgNNO'CeHS 1 resonances of ethyl methyl nitrosamine shift upfield more rapidly than those of methyl Efbutyl nitrosamine. Further support for structure IIIa is shown in Table 4. Alkyl 16 p.p.m. I A0 O\ N\ C / 0.2— OWCHZ + CH5 ‘13\. 0.0 I l l 1 10 30 50 7O 9O Mole % EtMeNNO Figure 2. The upfield shift of the proton resonances of methyl ethyl nitrosamine on dilution with benzene. 40000000 .20 < 17 , p.p.m. A0 9 l. 01/5 H /N\ (C H3)3C + CH3 10 30 50 7O 90 Mole % Nitrosamine Figure 5. The upfield shifts of the proton resonances of methyl ethyl nitrosamine and methyl t—butyl nitrosamine on dilution with benzene. I ll' i WUCAEUmQHJ4Z u: n O mun .070 CM 000305) fl03403~£U30000 COQHGD Cw .m000m 40000 000 00 0004000020 18 0.40 0.40 0.04 4.0 0000 00000000 4.00 0.40 0.00 4.N 0A000000 04000000 0.04 0000 0000000 0.00 4.00 4.00 0.0 0.40 4.44 00000000 0000000 0.4m 0.40 0000 000000 ‘ 004.000000.040 0.40 0.00 0.00 4.04 0000000 000000 0.40 0000 000 0.00 0.40 0.00 0.00 0000000 000 o.mm 0.04 0A00000 000 0.4m 0.0m 0.00 0.0 0.0m 4.mm 00000000 0.00 4.0m 0.04 0.00 0.0m 000000000 000 4.00 0.00 4.0m 0.00 N.M4 N.mm 000000 000 0.04 4.0m 000 000 .WHMMM 040 mmmmm 040 mmmmm 040 .mmmmw 040 00 40 000000 A0000 000040 000040 0220040 000450000042 00 ..0.m.0 04 .00040> 40040040000000 009000 04 ? I 000N00£ 04 PVPQ .mw magma 10.1 3.3.x 00.0.0.0; .. -III ‘la \ll‘llill ‘lll‘l . m C 1 L a .n 0 U mm H. Lia --|\.... n. WNHG. “4‘0! mu 0 U. . .ill|\|‘l| lil‘IllllIHl. f. :003 . A.11_\7\\0J13 [ 131:0 3 \Illllll"\.l Ill :00 ~_-— Wyn. . an. x w . . . —vV [~—. 0 .Ln» .6; uydf\.~;\ .umu .a.‘h.i~\r «00.40. 0 . u v \ N .id‘ A1-J .rwx \Alv..\ ’00 0 I 19 40.0 00.0 40.0 04.0 00.0 00.0 400000 00.0 0400 04.0 00.0 00.0 00.0 00404000 00.0 40.0 00.0 00.0 40.0 00.0 000000000042 04.0 00.0 40.0 44.0 004440040000540-2.2 00.0 00.0 00.0 04.0 00.0 0400400 00.0 04.0 00.0 04.0 00.0 00.0 000000000040040L0 40.0 40.0 00.0 00.0 40.0 00.0 0000000o004 00.0 40.0 40.0 00.0 00.0 00.0 000000005000 00.0 00.0 00.0 00.0 04.0 00.0 0000000000400 0440 40.0 40.0 40.0 04.0 40.0 000000-004 44.0 40.0 00.0 40.0 44.0 00.0 0:0400Lm 04.0 00.0 00.0 40.0 44.0 00.0 000400L0 04.0 00.0 40.0 40.0 44.0 00.0 0:0400Lm 04.0 00.0 00.0 00.0 04.0 00.0 0005400 00.0 04.0 40.0 40.0 04.0 40.0 0000000 00.0 00.0 40.0 00.0 40000000 40.0 40.0 40.0 00.0 00.0 44.0 004x00450 40000540 00.0 00.0 00.0 40.0 00.0 04.0 0000000 00.0 44.0 00.0 00.0 00000004000 00.0 00.0 00.0 00.0 00.0 04.0 0040040000000 000000 a 040 a 040 .mlcwMM 040 ucm>400 000000 000000 000000 00420000042 40000 400002 mo 000400 40045000 000 go 0000000 ucm>4om :4 04000 substitu‘ orotons ‘ steric ij Con, couple t R1 and R tion OP t simplify of this groups h From the samines g that the tatiVely that the to the r CUSSiQn 20 substituted benzenesdo not shift the resonances of the trans protons to as high fields as benzene does. On the basis of steric interactions this trend is anticipated. Conformations--Since the protons of R1 and R2 do not couple to a measurable extent, the important conformation of R1 and R2 must be deduced from chemical shift data. Informa- tion on the anisotropic contribution of the NNO group could simplify conformational assignments. However, in the absence of this information, a comparison of the NNO group with other groups having similar anisotropic characteristics is necessary. From the similar behavior of the chemical shifts of the nitro— samines and the R1R2C==NZ compounds it is reasonable to assume that the anisotropic effects of the two groups are quali- tatively similar. Previous work in this laboratory (24) showed that the region in the C==NZ plane is deshielded with respect to the region above and below the plane. The ensuing dis- cussion of conformations will be based on the assumption that the region in the NNO plane is also deshielded with reSpect to the region above and below the plane. Pertinent conformations of the gig groups can be deduced. with some certainty, only from the isopropyl group. Of the two conformations IVa and Va only the eclipsing structure IVa o 6 N/ N/ H H H E CH3 /N /N x R + ~~ ,CH R + 3 H3 CH3 on 0.00 ‘? U1 21 is consistent with the results. Conformation IVa explains the fact that a0methine protons, compared to akmethyl and QPmethylene, resonate at lower fields when gi§_than when trans to the oxygen. Conformation IVa also explains the small A’V values for the gig-armethine, because the methine is farthest away from the associated benzene and should experience a smaller anisotropic effect. To deduce the conformations of the trans group two assump- tions must be made: Firstly, that the group R eclipses the nitrogen-nitrogen double bond VIa and secondly that region A 6 6 N/0 H/ N/ (A) H ll H \/ | N N N \/+\R +\ ./ Rig” " R CH3 VIa VIIa VIIIa in the plane of the NNO group is deshielded with reSpect to region B. The first assumption is based on evidence regarding rotational isomerism about spa-Sp3 carbon-carbon bonds (29)° On the basis of these assumptions it will be shown that when R is methyl VIIa is more stable than VIIIa, and that the ratio VIIa/VIIIa decreases as R changes from methyl to isopropyl. Considering the conformation of methyl tfbutyl nitrosamine, IXa, of methyl isopropyl nitrosamine, Xa, XIa' and XIa", and of methyl ethyl nitrosamine, XIIa', XIIa" and XIIIa, if Xa is energetically comparable to XIa and XIIa to XIIIa then in CH4] CH3 CHO] CH3 Xa XIIa' 22 o N / /"N CH3 ’ +\CH3 CH3 IXa 6' N/ CH3 N ’ +\CH3 H, CH3 XIa' '6 N / 6' N/ 003 H N\ ,4 + CH3 CH1; H XI I I a '6 N/ 00. H XIIIa all three compounds the methyl groups should spend one-third of the time at region A and two-thirds of the time at region B. Therefore, the trans-B-methyls of all these compounds should resonate at approximately the same field. over XIa and XIIa over XIIIa, If Xa is favored then the methyl groups should Spend one-third of the time at region A in the tfbutyl com- pound IXa and progressively less than one-third in the isopropyl and ethyl compounds. In this case the tfibutyl should be at 25 lower field than the isopropyl and the isopropyl at lower field than the ethyl. The data (Figure 1) adequately support the last hypothesis. The important conformers of the diisopropyl nitrosamine are XIVa and XVa. Due to severe methyl interactions in XIVa N/6 N /6 H '1le CH3 ‘N. H CHé’)/+ \“CHa H + \““‘CH3 CH3 CH3 CH3 CH3 XIVa XVa the ratio XVa/XIVa should be larger than the ratio XIa/Xa. Comparison of the chemical shifts of diisopropyl nitrosamine and methyl isopropyl nitrosamine supports this conclusion. (a) The trans-armethine of diisopropyl nitrosamine should be shifted upfield with respect to that of the methyl isopropyl nitrosamine (in carbon tetrachloride the shift is 0.59 p.pom. Table 1). The trgggrB-methyl should be shifted downfield (in carbon tetrachloride the shift is -O.1O p.p.m.). (c) The AV value for trangrohmethine should be larger for diisopropyl than for methyl isopropyl nitrosamine. Table 5 shows that the A” value for gigrarmethine decreased from 9.0 to 2.4 c.p.s. due to a decrease in complex stability, whereas the ,Egggg-armethine increased from 27.0 to 50.6 c.p.s. (d) The AV value of the trans-fi-methyl should decrease more rapidly 24 than that of the corresponding gigffi-methyl in going from methyl isopropyl to diisopropyl nitrosamine. Table 5 shows that the corresponding decreases are 12.8 and 9.0 c.p.s. The change of the transeB-methyl is large enough to result in AV gig (21.0 c.p.s.) > A” trans (20.4 c.p.s.) for diisopropyl nitrosamine. Syn/anti Isomers--The syn/anti isomer ratios of nitros- amines are comparable to those of R1R2C==NZ compounds (3). Table 1 shows that the ethyl, benzyl and nfbutyl groups have the same effective size. The phenyl group, on the other hand, has a large effective size. In isomer XVIIa the loss of over- lap is large enough to shift the equilibrium in favor of XVIa. When R is methyl only the cis-methyl isomer is observed. 5 o NI/ 7? N :9“ N ./+\R ‘ ©/+\R XVIa XVIIa The possibility of rapid isomer interconversion is excluded by the fact that both isomers are observed when R is ethyl or isopropyl. The ultraviolet spectra (Table 5) show a de- crease of Amax from 275 mu (R = CH3, CH2CH3) to 250 mu (R = isopropyl). Apparently when R is isopropyl the interactions between phenyl and isopropyl in XVIa are sufficiently large to cause loss of overlap between phenyl and the NNO group. The 224 mu band (R = isopropyl) could be the absorption of isomer XVIIIa. 25 Table 53. Partial Ultraviolet Spectra of Nitrosamines in Cyclohexanea RlRlRZNNORe hmax(mu) 0 x 103 CH3 CH3 252 5.87 CH3 ‘CHECHg 255 5.79 (CH3)2CH (CH3)2CH 255 6.25 CH3 CSHS 274 7.02 CH3CH2 C6H5 275 6.77 (CH3)2CH CSHS 250 5.55 224 7.69 aIn 95% ethanol a hypsochromic shift occurs of about 5-5 mu. PART B--OXIMES 26 27 Results The n.m.r. spectra of acetone, 2-butanone, methyl iso- propyl ketone and methyl tfbutyl ketone oximes are shown in Figures 4 and 5. Table 6 contains the chemical shifts, which are accurate to.i 0.05 p.p.m., of aldoximes and ketoximes. The differences between the chemical shifts of gi§_and Egagg protons are summarized in Tables 7 and 8. A6 Values were obtained from the chemical shift data in Table 6. A positive (+) A6 value means that protons resonate at higher field when “gig than when trans to the hydroxyl group. A negative (-) value denotes the reverse. The interesting points are: (a) H1 resonates at lower field when gig to the hydroxyl group than when trans. The A6 value is approximately -O.7 p.p.m. (b) In contrast to H1,Igi§eahmethyl protons, in neat liquid or in carbon tetrachloride solution, resonate at slightly lower fields than or at the same field as the traps-QPmethyl protons. The A0 value is approximately 0 to -0.05 p.p.m. The notable exception is acetophenone, which has a A6 of -O.22 p.p.m. (c) thethylene and ormethine protons also have negative A0 values. Generally aamethine A6 values, -O.9O p.p.m., are larger than H1 A6 values, which are -O.7O p.p.m. (d) In every case, Exxcept for acetophenone, A0 values are more negative in benzene tilan in the neat liquid or carbon tetrachloride solution. (63) B-Methyls, with the exception of di-tfbutyl ketone oxime. lurve very small A6 values. OI Ci reve shif (17 NY 28 Tables 9 and 10 summarize AV(V in benzene - V in carbon tetrachloride or neat) values of aldoximes and ketoximes respectively. A positive (+) AV value means that protons resonate at higher field in benzene than in the neat liquid or carbon tetrachloride solution. A negative value means the reverse. The important points are: (a) In most cases benzene shifts both gig and trans—H1 upfield; the trans protons, however, show a greater upfield shift than the corresponding .gig protons. The exceptions are cyclopentanecarboxaldehyde oxime where the gisle shifts downfield (AV = -1.2 c.p.s.), and the Eléin of Efbutylacetaldehyde oxime (AV = 0.0 c.p.s.). (b) The gig and trans dfimethyl protons are shifted upfield. (c) amMethylenes have positive A” values, with tfbutylacetal- dehyde being the notable exception, for both gig and trans protons. trans-ahMethines have positive A'v values, whereas .gig-armethines have negative. The gig-abmethine of isopropyl tfbutyl ketone oxime, whose A” is +22.2 c.p.s., is the notable exception. (e) Both the gi§_and trans B-methyl protons are shifted upfield, except the gig-B-methyl of isopropyl_tfbutyl ketone oxime and the trans-B-methyl of di-tfbutyl ketone oxime. Tables 11 and 12 summarize the syn/anti isomer ratios and the free energy differences between the two isomers-Of aldoximes and ketoximes. There seems to be little correlation between group size and isomer stability. In acetaldehyde oxime the supposedly sterically unfavorable apt; isomer predominates. Table 15 summarizes the effect of temperature on the spin- Spin coupling constants (J ) of oxime isomers in which the HiHa hvdrcxy; r 7 ‘3‘ p.ec.51_ 11 can :1"; r(j with ace pentanec -33° to J increase Of tempeJ Cf the a} 29 hydroxyl is gig to the aldehydic proton (gyn_isomer). The precision from several measurements is about i 0.03 c.p.s. All coupling constants decrease with increase in temperature, with acetaldehyde oxime showing the smallest change. Cyclo— pentanecarboxaldehyde oxime shows the largest decrease from —300 to +900C. Table 14 shows the decrease in coupling with increase of solvent polarity. Figures 7, 8 and 9 show the effect of dilution on the spin-spin coupling constants of the syn isomers of acetaldehyde, propionaldehyde and isobutyr- aldehyde oxime respectively. Table 15 summarizes the effect of temperature on the Spin-spin coupling constants, JHlHa’ of the §n£i_isomers i,§,, those in which the hydroxyl is trans to the aldehydic proton. The notable differences between JHiHa (anti) and JHchz (syn) are: (a) JHin (gag) increases abruptly in changing from a monosubstituted to a disubstituted acetaldehyde oxime. (b) Whereas JfllHa‘EEEE) of the disubsti- tuted derivatives decrease with increase in temperature, those of the monosubstituted derivatives behave erratically. (c) As evidenced from Table 16 JHlHQ (anti) increases with increasing solvent polarity. 50 .mEaxo mQOCMpSQnN paw AmGHHOHnomnumu connmu CH ROd .dv mcoumom mo mnuummm .u.E.z $23 o.oa _ IO\ Aumm: .mu .w musmflm 51 .mEon AmUHHoHnomuumu conumu CH Roa .mv wcoumx ahusnlm axnumE Ucm Aummc .¢v mcoumx HwnumE ammoumomfl mo muuommm .Hofioz .m muzmwm Amzfiv 0.0H Oom O.® 0.5 O.® . _ _ _ _ n e A 4. «III. .|\. finiuv U/n‘niu m 24: \3. c. fl,_ (4% 13335)) J \ . II II. IAN «$1...va ’4‘qu NHUJWAUAAMEV £1qu 5?; 10‘: IO\Z Z/Oi MIU/=\I Uthvlwlv/kllx \n.m me.m nc.m as a -: z 2:: a ‘0 Z III- _ .. o em.o ma.m ma.n oo-m ummz : : nest... nun. .wlnfllmm, n3. -N. 31343-! |llt| I!" [(u- I’nflillll " l I') It‘l‘“ '(I..|l'l(l ‘l...’l'.- mifiud 0H0 TSGHJ 0.0 aunties. mung- :_U«~wn . In mi fit A «.43 OJ. 3. I. N123 Mew- 1 114i-. Kiwi)!!! , u. a C U> a 0m. :92 u U541 4.2 om.m M5.m m5.m ammo Roe mflmmovmo m ma.on mm.m mm.m mm.5 5m.m mm.m m5.m ummz mxmmovmo m m5.m mm.m 5N.m m ammo eoe mmmommo m w 8.0 one 3.... mm.m 38 e3 mmoommo m oa.m $5.5 H¢.m mm.m ammo Roe mxmmovommo m mm.5 m5.5 mm.m mm.m ummz mfimmuvommo m mfi.m om.5 m¢.m m ommo Roe mxmmovmommo m mm.ou O.35 om.m em.m ummz mxmmovmommo m amm.5 mm.m m mmoo Roe mmomxmmov m om.ou nm5.5 mm.m 5o.m ummz mmomxmmov m mm.m 5m.m Ohm.5 om.m m5.m ommo Roe mmommo m ma.ou 5m.m n55.5 mm.m mm.m ummz mmommo m 5m.m m«.m mm.m m5.m ammo Roe mmo m No.0- Hm.m ma.m ma.m om.m ummz mmo m mcmuu mflu mcmuu mHU mama» mflo mcmub mwo ozony mau mm . Hm I. . 1| . uI|i1m14I. (moz Amwo a EU V6 Ammo yd Ammv V6 Illa-mlll 2.85de noznwmfim (ilfifiuunmmvr .mmEHXOuwM Ucm mmEflxopafi wo Ammsam>lev mumanm HMUHE®£0 .m magma .202 I: A 12m. v; : 79 VI g 4| V.I '5 «r. \4 ‘$ urn F ’\ ill». 11w 0.: u 23> N CV. ~,4au~—.- 5 a u Ate. v 1...: . . I: ZOZILW~I~42 ”u pr‘N...\. Umscflucoo 35 mo.m efi.m wo.5 mm.o mm.m mm.m ammo eoa mxmmoomo mmo mm.m 5m.m mw.5 m¢.o mm.m 5a.m ummz mxmmovmo mmo Hfi.m Ha.m em.m am.m mm.5 5m.5 wmmo Roe mmommo mmo am.m em.m ma.m ma.m m5.5 oo.5. ummz mmommo mmo om.m mm.m ammo KOfi mmo mmo ma.m aa.m «Hon eoa mmo mmo mo.m m mmmo Roe AHHV m :5 .2 .2 O m mm.5 om.m om.m mm.m mmoo eoa NHHV m No.0- 5m.5 m5.m mm.m O5.m ummz R‘ V m m5.m a5.m m ammoeoa mmmxmmoomozmo m om.o om.mnoa.5 5m.m mm.m ummz mamxmmoomozmo m no.5 mm.o m5.m m mmooeoa mmomxmmovxmmommovmo m 5o.o- mm.5 5m.m ao.m 5m.m ummz mmomflmmovxmmommovmo m 50.@ no.5 m5.m m ammo Roe mxmmommoomo m oa.ou mm.5 oa.5 om.m om.m ummz mxmmommovmo m .I wanna mmm mcmuu mmw mcmuu WNW mcmuu mmw mcmuu mam mm Hm moz Ammovm, Amoyc «amuse Ammovo .am ucm>aow mozuommam Umdcaucoo I my mHQMB eNUU {o5 717:0c0 r20 DH.mw \N. @fl.® . am WQTWJ Walwu. 021HM «MA. WCDHJ: mlfim .mmeMm maimU) m..E.M..-~u me .2 A12l0|v3l .1 2.7.0.23 I! Aalmlul mi I (i .NWUVU 4.: LCU>~ 0.0 JWMZWUWMAVN fivmV—wnh- -ha,vn.v ) .\ niNRNfl-n‘. .msoum amusnlu mo HmnumZIm .msoum ahmoumomfl mo Hwnumzlmm .umHmeHSE mo umucmu Q omUCmHQMHGHCH HQ$>HOWM 4 Kg 5m.m 5m.m am.m mm.m mmoo e0H mmmommo mmo oo.o om.m om.m m«.m «m.o «Hoo Rom mmmommo mmo ma.5 ma.5 ammo Roe mmmo mmommommo 5a.5 5a.5 «Hoo Rom mmmo mmommommo mm.m mm.m mm.5 mm.5 mmmo Roe ammo mmommo mm.ou oo.o oo.o m¢.5 5a.5 ¢Hoo eon mmmo mmommo oo.o mm.5 mmmo Roe mmmo mmo mfi.ou mm.5 a5.5 waoo eoa mmmo mmo mm.m oo.o ammo Rod mxmmovo omammov 5fi.o 5m.m m5.m eaoo ecu mzmmowo UmAmmoo www.momm.m 55.5 ammo ecu mxmmooo momxmmoo no.0 www.momo.m oe.5 a.30 eofi mxmmovo momxmmov ao.m wo.m mm.5 mm.5 mmoo Roe mmommo mmommo mfi.o am.o Hm.m m5.5 oo.5 ummz mmommo mmommo do.m mfi.m mmmo Rod mxmmovo mmo am.m mfi.m «Hoo Roe mxmmooo mmo mcmu# mHU mcwuu mHU mGMH# mHO mcmufl mHU QOHu mflU mm HM moz 3651 $35 Ammo? 306 4m ucmfiom Jag infiltlla ”D. II . Umscflucou i I” m 3an III .|I.|IIII-lll-l| I'll Ill 'Il..l(l.l. .lllllllll‘l'llll'- I‘l' I ... 1. . ..4.-.. 3 Q . .. 34-..... .CO . 5., .. 9:30 4.552 2:30 4:52 Wwiwdoiwmmyz olili u Lemur-2 4.....-:1..1-t!--.2 m m Flawfifie... PI- Ewe-.1. - , ... 5 4: l. .15 cc .. : sesame. neg I5... I! |.l. I I‘ll] ‘.(II I. In .1. ._...I..n., .H 1:93.. III: 1|...) tul (I 4: I . -luo . I I I‘ll) |.ll| i I :11! i; I i- I II (I ll ”(I I -. I. ‘1'. I 1 ..l. I. .,......._..:._ vac: _ < -u 3 . . _: . L . l C .4 . m...£......l.._ ~ .4> 53.2.7.4 a C .i Tue-f4. . v ./.\ ,\ .cNQ—kb 55 .m:0ausaom Roam o - 00.0: 00.0: 00.0: 00.0: \ / m 0N.H: m5.0: mflmxmmoomozmo m 00.0: «0.0: «5.o: mmomxmmooxmmommovmo m mo.a: 00.0: «5.0: mxnmommoomo m 00.0 eo.o+ No.0: a0.o: 05.0: nmowxmmoommmoomo m 00.0 mo.o+ mo.a: 05.0: 55.0: mmommoxmmovmo m 00.0 mo.o+ no.0: H5.o: 50.0: 05.0: mxnmovmo m 50.0: om.o: 00.0: mmmommo m 0m.o: mm.o: mm.o: 50.0: mammooommo m mm.0: 00.0: mhmmovmommo m 00.0: mmomxmmoo m eo.o+ 50.0: fi5.o: mmommo m mfi.o: no.0: «5.0: 0m.o: mmo m mammo ummz mmmmo ummz mommo ummz uommo ummz cameo 0002 mm 4m Ammovm. 53000 Ammowa : Ammovd Hm mozuommHm .meonpad mo ..E.m.m 2H .mmSHm> mmcmuu a I mflu aged .0 magma (whirk (hfx p» c m”. ‘.: . +.r.l\~¢ 1 .‘u . \. . :Q m 0032 x m 4002 . buzz . ::ill\! :Q2 L a 1:500; 25:0 (11‘ .I Ili‘l .. .\|'. 1.:010 \:::::\I:\:l::uxl: . .l--.‘ 5 I .0. x. . .mUEMXOJEZ Lao ..._:.a.:.~ nu C4,- .mUZHm-J> 50:0.» .,. mu fiymv < 56 coausaom e000 coflusflom e000 coflusflom e000 00.0: 000.0 % mm.o: 00m.0:§ mmmommo mmo 00.0 000.0 % mmmo mmommommo 00.0 000.0 x 00.0: 00m.0:% 0:00 mmommo 0H.OI QNN.OI% mmmo mmo 5m.o+nma.o+% mammovo omfimmoo 00.0 00.0 * mm.0: me.o:* mmommo mmommo mo.o+ mo.o+* mN.HI mm.OI* ma.OI mo.o:* mAmmUVmo mac 00.0 00.0 * oa.o: oo.o * mm.OI ma.OI* mEOmmU 0m0 00.0: 900.0:% 000 mmo 0H00 % «H00 % «H00 % ¢H00 % ammo 00 0m00 “0 0300 no ammo 00 m m m m : ummz * ummz * 0002 * . 0002 * am am Ammovu Am000 Ammoqu Ammoyd mo2u00mdm. .mmEonumx mo ..E.m.m CH .mmzam> Amcmuu m I 0H0 ago 4 .m magma curl A I (10321: Lung a» - '.L). in \l .1 .1 L: (g six-1 I ) 'I'... L! I 0.! 1.j'(CI1.i.1)._—_ LIQQII) I f‘ ' 3 '3: :- I l I H l A. l :j . N '. 5N h A :2 I! II I U .. LI 121R 57 .coHusHom mUHHoHnomuumu conumu Roe Q .mmum>mn ms“ 0:008 05Hm> m>Hummmc m “UHmHm HmSmHL um mH mcmncmn CH moamcommu cououm Gnu umnu mammE mDHm> m>HuHmomm O . 0.. .. S - 02+ 2 - O m o.0m+ 0.0 + mm05000000000 m 0.0 + 0.0 : 0.0 + mmomxmmUVAmmommovmo m 0.0 + 0.0 : 0.00+ mfimmommovmo m 0.00+ 0.0 + 0.5 + 0.0 : 0.0 + 0000A0000A000000 m o.ma+ m.oH+ m.00+ 0.0 I 0.0 + mmommoxmmovmo 0 0.00+ 0.00+ o.00+ 0.0 I 0.00+ 0.0 + mxmmovmo m 0.00+ 0.0 + 0.0 + 90000000 0 N.5 + 0.0 I 0.0 + 0.0 + mfimmovommo m o.00+ 0.0 + mxmmovmomm0 m 0.0 + 0.00+ mmomxmmov m 0.ma+ m.00+ 0.0H+ 0.0 + mmommu m 0.0N+ 0.00+ 0.00+ 0.00+ 000 m wamuu 0H0 mamuu 0H0 0:000 0H0 mamuu 0H0 mcmuu 0H0 mm am 10000 Eu 00 000 .0 A000 00 00 mozuommam .meHXOUH4 mo ..m.m.0 :H .005H0> A000: P I msmncmn :H P00?< .mw mHQme p.470»: ICrx~I , -II. . .mflv:~.~ V0.0vd rJVH :13 . Inna Aw. .J —.H .nunv.-a_.a> A 4.13 a. 40 IV a. ”.3 . U :u U ~ .I v-Iv . I . a. u. u. I I W ~I~ I HM. IN ,pIIV nuflufl N HIM Id Pu H. l ..:v uhnrvxphm-JAIN ~.~ a v /\ . “Iv N aIV ~ A ~ ~.4 N . x» ~10 » - . D \ 58 .05000 kusnIM mo H>Cu0ZIm .mdoum meoum00H mo H>£u02Im . #002 .0UHHOHCU0Hu0u COQM0U 0'00) ,0 .0000>0H 000 0C00E 05H0> 0>Hu0m0C 0 “UH0HM H0CmHC 00 0H 0C0NC0Q CH 00C0C000H Cououm 0Cu u0Cu 0C00E 0CH0> 0>HuH00m0 0.00+ 0.0 + 0.5 + 0.0 + 0000000 000 0.0 + 0.0 + 90000 000000000 0.0 + 0.0 + 0.0 + 0.0 + 00000 000000 0.0 + 0.0 + 00000 000 0.0 : 0.0 + 00A00000 00A0000 00.0 + 00.0 : 0.00+ £0A00000 000A0000 0.5 + 0.5 + 0.00+ 0.0 + 0000000 000000 0.00+ 0.0 + nmAmmovo 000 0.0 + 0.00+ 0.00+ 0.5 : 0.00+ 0.0 + 00A000000 m00 0.00+ 0.00+ 0.oa+ 0.0 + 0.00+ 0.0 + 0000000 000 0.00+ 0.00+ £000 000 .mmmmm 0H0 .mmmmm 0H0 .mmmmm 0H0 .mmmmm 0H0 00 am 0030 0000 100000 0030 0ozu00000 MO .00Eonu0x 0UHHOHCU0uu0u COQH0U CH I0C0NC0Q CH .0.m.0 CH 00SH0> 50000C 00 P >00>0. .00 00909 Q .oomH 00 0HQE00 mCH0000 umum0 mm\H> 0Hu0m HOC0\dwmm 39 Hm.o on On 0002 AHHHV m0 00.0 00 00 0002 0 00.0 00 H0 0002 000A000000000 0 00.0 mm 00 0002 0000A0000A000000000 0 00.0 mm 00 0002 00000000000 0 m¢.o mm no 0002 0000A0000A000000 0 Hm.0 on 00 0002 0000000A000000 0 H0.0 00 mm 0002 0A000000 0 0H.0 00 mm 0000 00H 0000000 0 00.0 00 H0 0002 0000000000 0 00.0 00 mm 0002 0A000v00000 0 0H.0 00 00 0002 000000000 0 0H.0 00 00 0002 000000 0 00.0: 00 mm 0002 000 0 Amaos\wmw00 0000 mNm ucm>Hom 00 H0 000 0000000 0000000 0ozn00000 ”V O .mmEHxOUH< mo H0C0.All CNm How 005H0> 00 m < 0C0 00H00m H0C0\CN0 .HH 0HQ0B 4O 00.0 00 00 «000 000 0000000 000 00.H 0 mm «000 000 0000 000000 00.H 0 00 0000 00H 0000 000 0 00H 300 00H 0 000000 000100. 0 00H +000 000 0000000 000 H0.H . m Hm 0002 00000000 000 00.0 0m 00 0002 000000 000 AmHoE\meMv HuC0 mNm. 0C0>Hom 0% am 004 quoumm quoumm moznommam .mmEHxOumx mo HuC0 A||_CN0 00m 000H0> oo de 0C0 mOHu0m HUC0\C>0 .Nfi 0HQ0B lllllllul lllllllllllllllllllllllll \ ‘l\l|\\l\ll\l\| ‘ h\l{\:ayll\ lHNHIIHHuHi\||\\11.\!f\\' . 4 \ .10. 02.1? 0: 0.1.202 : I'l‘l‘l‘l I . . .. .1 .. 0:300 .00030000QE08 050000> 00 ALOEOmH mev meHXOU~Q MO mg: 0 .0UHHOH300000H COQH00 CH >\3 ROH . Q .huHmoomH> 0C0 00000H ou A>\> Romv 00HHOH£00HH00 COQH00 CuHB U005HH0 0003 00 0C0 00m: 00 00050005 m0EHXOUH0 HH<0 41 o>.m hm.m oo.o mH.m mm.m Om.m A V 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00000000 00000000 00.0 00.0 00.0 00.0 00.0 00.0 000000000 000000 00.0 00.0 00.0 00.0 00.0 00.0 000000 000000 00.0 00.0 00.0 00.0 00.0 00.0 . 000000000 000 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 000000 000 00.0 00.0 00.0 00.0 00.0 00.0 000 000 00.0 00.0 00.0 00.0 00.0 00.0 00000 0 00.0 00.0 00.0 00.0 00.0 0000 0000000 0 00.0 00.0 00.0 00.0 00.0 00.0 00000000 0 00.0 00.0 00.0 00.0 00.0 00.0 000000 0 00.0 00.0 00.0 00.0 00.0 00.0 000 0 00.0 00.0 00.0 00.0 00.0 00.0 0 0 0000 0000 0000 000 000 000 000 000 000 0000- 00 00 . . . 0 2A000040 / ............................. A 0 0 00 0000 .......................... .\ 00x 00 .m0usu0u0mE0B mSOHH0> 00 AH0EOmH Cva m0EHxOUH¢ m0 muC0umCOU mCHHmsoo CHmmICHmm .MH 0HQ0B o 42 Table 14. The Effect of Solvent Polarity on the Spin-Spin Coupling Constants of Aldoximes (£12 isomer). H1 —N/9H /. ---------- JHjHa(C p.s ) '''''''''' ‘\ RlR2CH::>h Neat Cyclohexane Acetonitrile R1 R2 (400) (40°)a (40°)a H H 5.94 5.91 5.91 H CH3 5.85 5.79 5.74 H CH2CH3 6.10 6.11 6.09 H CH(CH3)2 6.42 6.45 6.44 H C(CH3)3 7.10 7.08 6.95 H CeHs 6.49 b 6.41 CH3 CH3 6.55 6.02 6.01 CH3 CH2CH3 7.19 6.96 6.85 CH3 (CH2)2CH3 7.58 7.15 7.05 CH3CH2 CH2CH3 8.08 7.74 7.75 CH3CH2 (CH2)3CH3 8.15 7.92 7.85 (CH3)2CH CH(CH3)2 8.42 8.18 8.08 <::7 7.12 6.86 6.89 Q 6.15 5.71 5.95 a10% solutions. b Sample insoluble in cyclohexane. .— - 1 ; 1.2-. .2. 2.. .- 1- 00.02 I..0.10.--00,.0 » 1111111111111111111 0.0.0.000000020 111111111111111111111 - 11111 . 1/0: K lu'l‘l ‘l-l' I [flay ”map... «mp-.5071» ”:0... ~..,wqaaunv ~000~uJa1.-_.1.~«1wmw. 1.2.5 .J~a1~.~..~. . 410.10.» 3.4 nu ~.Jfiu.r~!u-.H. 00 .Jag m ~.P4> L n AHm.U-.~A10mh. ..H .m .a n.~« V w 01:. VA-rUNU~ q .0000000000000 c09000 CH >\3 Rea Q .%0000000> 030 005000 00 A>\> Romv 0000003000000 509000 £003 0005000 0003 00 050 00m: 00 00050008 0060x0000 H000 mo.» N0.> 00.0 0N.0 mfi.m mm.0 AHHUV mm.m 00.0 NC.» ON.0 mm.> mm.> mflflv mm.w 00.0 No.0 mw.m om.m mm.m NAmmUVmU mumfimmov md.m wfi.m ma.m Hm.m om.m ma.m nflUmammov mmommo wo.m mo.m oa.m NN.m md.m om.m 0m00mo NmUmmU ”w mm.> 00.0 No.0 mm.> m>.> Hm.> mflUmAmmUV mmo mm.> N>.> 00.0 mm.> 00.0 mm.> om.> m0.> 00.0 0mummo 0E0 N0.> ON.» 00.0 mm.> mm.» NN.0 0E0 emu 00.0 00.0 .00.0 00.0 00000 0 om.m am.m mm.m mm.m mm.m 0m.m mAmmUVU m 00.0 00.0 00.0 00.0 00.0 00.0 00000000 0 mm.m mm.m m¢.m >0.m om.m mm.m mmommo m m¢.m >¢.m m0.m m¢.m mm.m mm.m 0E0 m om.m mm.m 0m.m 0m.m m0.m mm.m m m coma oomd 0000 00m 000 000 00m 000 000 000ml mm 00 0o/ 000000 0 uuuuuuuuuuuuuuuuuuuuuuuuuuuuu 0.0.0.0000000 uuuuuuuuuuuuuuuuuuuuuuuuuu .0 zuAM00 .00050000QE0H 050000> 00 A00Eomfi Huc0v 00EHxO0H¢ 00 005000500 mcflam5ou CHQmIGHmm .mfi 0000B 44 Table 16. The Effect of Solvent Polarity on the Spin-Spin Coupling Constants of Aldoximes (anti isomer). H1\ f- ----------- JHlHa(c.p.s.) ------------ 1 R1R2CH//-N\OH Neat Cyclogeiane Acetogitrile (R; R2 (40°) (40°) (40°) H H 5.51 5.55 5.68 H CH3 5.49 5.51 5.52 H CH2CH3 5.47 5.57 5.59 H CH(CH3)2 5.52 5.67 5.61 H C(CH3)3 5.82 5.82 5.95 H C6H5 5.45 b 5.56 CH3 CH3 7.55 7.22 7.24 CH3 CH2CH3 7.80 7.68 7.77 CH3 (CH2)2CH3 7.85 7.78 7.86 CH3CH2 CHgCHg 8.22 8.20 8.54 CH3CH2 (CH2)3CH3 8.51 8.26 8.56 (CH3)2CH CH(CH3)2 8.69 8.55 8.72 <::7 7.20 6.96 7.29 <:::> 7.27 7.21 7.58 a10% solutions. bSample insoluble in cyclohexane. oft tati ten} whe: 45 Discussion Conformations of the gyn Isomers--The relative stability of the rotamers of the syn isomers of aldoximes can be quali- tatively assessed from the dependence of J (Ib) on temperature, provided the following two assumptions are correct. OH N / RZCHa/U\H1 Ib (a) The minimum energy conformations are IIb, IIIb and IVb, Vb, whereby a single bond eclipses the double bond. Several OH N / H1 ‘ “-4 H Hé’ R IIb OH N/ H H; H R2 IVb Ilb' Vb N,//OH R I I"’ H H2 IIIb OH N/ R2 0" H R1 V I studies sp3 to true (9 couplin angle = IIIb a: indeper should stable energe indepe Should Stable the m: eclipg 1 be det of ace 46 studies on rotational isomerism about single bonds joining sp3 to a spa hybridized carbon atoms have shown this to be true (9,10,29,50). (b) Jt > Jg (12), where Jt is the Egagg coupling (dihedral angle = 180°) and J9 the gauche (dihedral angle = 600). On the basis of these assumptions, if IIb and IIIb are energetically equivalent, J should be temperature HlHa independent. If 11b is more stable than IIIb, this coupling should decrease with increase in temperature; and if less stable, it should increase. Similarly, if IVb and Vb are energetically equivalent the coupling should be temperature independent. If IVb is more stable than Vb, the coupling should decrease with increase in temperature; and if less stable, it should increase. For all the gyn isomers examined, the most stable rotamer is the one in which the hydrogen eclipses the double bond. The enthalpy differences between the various rotamers may be determined as follows. Equation_;_expresses the coupling of acetaldehyde oxime (VIb) in terms of Jt and J9. Equation 2_ OH VIb VIIb eXpresses the couplings of the monosubstituted oximes, where X is the fractional population of IIb and (1 - x) that of IIIb. Equatic where ) of Vb. oxime c calcul then b plots Stitut the L3 tion (51,31 Pound Subst which 10g K more 47 Jobs. = 1/5(Jt + 2J9) _1 Jobs. = x(Jt + Jg)/2 + (1 - X)Jg .2 Jobs. = XJt + (1 - x)Jg _5 Equation 5 expresses the couplings of the disubstituted oximes, where X is the fractional population of IVb and (1 - X) that of Vb. If it is assumed that at -5o° tfbutylacetaldehyde t calculated from equations_1_and_43 Rotamer populations can oxime exists solely in conformation VIIb, J and Jg can be then be calculated from equations_g and_§, and AH0 values from J = 1/2(Jt + Jg) 4 obs.(tfbutyl) plots of log K.y§ 1/T. Use of the same Jt and J9 for monosubstituted and disub- stituted acetaldehyde oximes would introduce some error in the AH0 values. To minimize this error a 0.4 c.p.s. correc- tion should be applied for each alkyl or aryl substituent (51,52). Thus the observed coupling of monosubstituted com- pounds should be increased by 0.4 c.p.s. and that of the di- substituted by 0.8 c.p.s. This procedure gives Jt = 13.0 c.p.s. and J9 = 2.4 c.p.s. Table 17 contains the rotamer populations calculated from equations 2 and 3. Table 18 summarizes the ABC values, which are probably reliable to.i 30%, obtained from plots of log K.y§ 1/T (Figure 6). The AHO values in both cyclic and acyclic series become more positive as the alkyl group R increases in size. This 48 mm 00 Nd 00 00 00 AHHUV m0 m0 om mm mm mm m V 00 mm 00 00 mm 00n00000 0000n000 mm mm 00 mm mm mm 000000000 000000 mm mm o0 00 mm 00 n00000 000n00 om am mm 00 mm 00 000000000 000 >0 00 00 00 on 00 mm mm 00 000000 000 00 00 00 00 00 mw 000 000 mm 00 mm mm mm 0000 0 mm mm mm mm 000 0000000 0 mm mm mm mm 00 00n00000 0 00 no no on 00 mm 000000 0 00 00 00 mm 00 mm 000 0 oom0 .6000 6000 hood oO0 com com oow oo oom- 00 H0 0 000000 R m 1--- Z& r uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu \ J. . .. . moxx .0008000 cxmv 0060xo000 0o 0000005000 00E00o0 .00 00009 49 Table 18. AH0 Values Obtained from Plots of log K.y§ l/T. R iRgCHCH= NOH R1 R2 AHO (cal/mole) H CH3 +720 H CH2CH3 +750 H CH(CH3)2 +520 H C(CH3)3 +5900 H ceHs +740 CH3 CH3 +550 CH3 CH2CH3 +510 CH3 (CH2)2CH3 +670 CH3CH2 CH2CH3 +720 CH3CH2 (CH2)3CH3 +710 (CH3)2CH CH(CH3)2 +460 0 +700 <:::> +460 50 .0005000 :N0v 0E0xo 00%:00000w0500mn00EIN 000 0000 000 .0 005000 maoaxa\0 m.m _ 0.0 0.0 0 _ _ 10¢.OI | ¢¢.OI l o0.o- l N N) O I l 0N.OI 10m.o- 51 trend parallels that observed with aldehydes (10a). The more positive AHO value of cyclopentanecarboxaldehyde oxime over cyclohexanecarboxaldehyde oxime may be rationalized as follows. In the cyclopentyl case, because of less puckering of the ring the nitrogen is closer to H2 (VIIIb) than it is in the cyclo- hexyl case (IXb). The difference in interaction energies is H H / ~':N/\ OH VIIIb IXb apparently large enough to lead to the observed result. The decrease of the observed coupling constants on dilu- tion with either polar or nonpolar solvents is probably caused by the decrease in the strong intermolecular hydrogen bonding (55,54) that exists in the neat liquid. Strong hydrogen bond- ing should favor Xb over XIb. As the intermolecular hydrogen _ H H “N\ \o . >fl\ \o\ H- 0/ H\“~ / ‘OXime O/ ‘ x / Xb XIb bonding is decreased by dilution with solvent, the decrease in 52 the ratio Xb/XIb decreases the coupling. The effect of solvent dilution on coupling is shown in Figures 7, 8 and 9. Conformations of the anti Isomers--From the effect of 4.— temperature on the coupling constants of the §g£i_isomers it is evident that no quantitative conclusions regarding rotamer stability can be drawn. A few qualitative trends, however, are worth pointing out. For example, the abrupt increase in coupling in going from monosubstituted to disubstituted oximes suggests that XIIb is the most stable rotamer of the disubsti— tuted oximes. The erratic behavior of the coupling of the HO \ N HO\ N H H\\ H .a’” H ‘ H H R R XIIb XIIIb XIVb monosubstituted oximes indicates that in addition to XIIIb rotamer XIVb might be present in large quantities. Chemical Shifts--The A6 values summarized in Tables 7 and 8 show that protons gig to the hydroxyl group are generally deshielded with reSpect to those that are trans. SaitS and Nukada (25) attributed these differences to the anisotropic effect of the lone electron pair on the nitrogen. In view of the finding (55,56), which is consistent with other work on similar systems (57), that XVb is the conformation of formal- doxime, it is conceivable that the anisotropy of the lone 55 mpwzwoawumom mo usmumcoo mcflamsoo camwlcamm on» so coausHflo ucm>aom mo powmmm .AumEomH st CGSOQEOU R mESHo> om om oh om om oe om om 0a _ a _ _ _ . _ 7 q 40m.m 10¢.m 10m.m noo.m ”Q Aw no .HON m AP\\IIll!\\\\\\l‘ll|l|ll|lll.IIIAYIIIII O 0 . ilMWwom.m I la 16”.“an a I a Loan noo.m uOfiwm mCMSumEOHuH: 4. wUflHoHnomuuwu sonumo I \ldm mgxoflsm assumed. « :/=\:u mcmxmsoHomu nu onz mHHuuflsoumum O ('S'd’D) f 54 amfim .AHmEomH CNm . bv mEflxo mpmchHMQOflmoum wo ucwumcoo mafiamsou GHQmICHmm on» so coauSHHU usw>H0m mo uommmm .m musmflm UQSOQEOU R mEdHo> Om Om Oh Om om 0% on ON OH _ i a A _ a _ _ _ . 10H.m ION.m 10m.m 10¢.m d. \\\ IIIAYANI \4 a \lomfi. 0\ Om.m [AU l\\l\l\\\\l\\lIli|Afl\\\\\\\\\\\l\\\\\MWHH\\\\ 10>.m if!” i I 10m.m 10m.m 0C0£H$EOHHHQ ‘ mpfluoHnomnumu conumo I \\JJ n mgxoflsm 3593a 4 1JW55 mcmstoHomo E Io\2 mafluuflcoumom 0 (’S'd’D) p 55 .amam .AHmEOmH QNm hv mEflxo wpmzmpam numusnomfi mo ucmumcoo mcflamsoo aflmmICHmm mnu so QOHuSHHU usm>HOm mo powmmm .m wusmflm Om Om Oh UCDOQEOU & mEdHo> om om ow Om ON Ofi m a _ msmnumEouuHc opfluoHnomuumu sonumu mpflxOMHSm ahnuweflp mcmxmnoHumo mafluuACOumum x\\\\\\\\\\\\ HHHHHHHHHHHHHHHHHM O D G I 4 fi _ . _ _ 4 _ Q Q Qlflwu O®.m anoim (°S°d°o) p I/a\I UMPmIUV IO\2 56 XVb electron pairs on the oxygen, that are close to the gig group protons, rather than that of the nitrogen lone pair causes these differences. Regardless of the cause of these differ— ences, the observed variations in A6 values, 2,3,, about zero, -O.2 p.p.m. and -1.0 p.p.m. for ormethyl, damethylene and armethine protons respectively, are not surprising. As pointed out in the section on conformations, the average time spent by each proton in various positions greatly depends on the degree of substitution at the arcarbon. Solvent Effects-~Tables 9 and 10, and Figure 10, show that trans protons undergo a larger upfield shift than the corres- ponding gig protons on dilution with benzene. Association between benzene and oxime as in XVIb, whereby the benzene is H H \O \3 H\ o N/ N/ (H) R R (H) H3C CH3 H CH3 XVIb XVIIb XVIIIb 57 .mEflxo mcocmusn mo mamanm HMUHEmQU may :0 mcmuson mo uommmm .OH musmflm NmULoImHU mmoicnmflo mmounumcmuu mmoLcummmmm omULoImsmuu ©800- chomfioo & macs MIU/:\Uf um I U M. IO om ow om ON OH _ oo.o mo.o Ofi.o mH.o ON.O mm.o 'QV °m°d°d 58 .mEonumx ahsumfi Hmnum mo uwflfim HMUHEmLU moz map so COHuDHHU mammcmfl mo pommmm .fia musmflm Om UGSOQEOU R mac: -ow om ow om ON 0a _ A _ _ _ _ 2 ...... #6.. G 'QV °m‘d°d 59 attracted by the positive charge on the Sp2 hybridized carbon and repelled by the hydroxyl lone electron pairs (25), ade- quately rationalizes this fact. The deshielding, Figure 11, rather than the expected shielding of the hydroxyl proton, as well as the deshielding of gigrormethine protons, XVIIb, and gigeormethylene protons of tfbutylacetaldehyde oxime, XVIIIb, are in good agreement with this formulation. syn/anti Isomers-—The greater stability of XIXb over XXb and the almost equal distribution of isomers XXIb and XXIIb H H H J \o o/ \N N / \N ch/U\H ch/U\H C5H5H2C /U\H 61% 39% 45% XIXb XXb XXIb H \N/ C 3H5H2C /1\H 55% XXIIb indicate that the attractive forces of the nonbonded inter- actions are quite important in these, as well as in other (58), cases . PART C--N,N-DIMETHYLHYDRAZONES AND N-METHYLHYDRAZONES 6O 61 Results The chemical shifts of N,N-dimethylhydrazones and N-methyl- hydrazones are found in Tables 19 and 20, respectively. The most apparent difference between the two is the absence of .tgags isomers in the aldehyde N,N-dimethylhydrazone series. The n.m.r. spectra of acetone, 2-butanone and methyl isopropyl ketone N,N-dimethylhydrazones, are shown in Figures 12 and 15; those of acetone, Z-butanone, methyl isopropyl ketone and methyl t—butyl ketone N-methylhydrazones in Figures 14 and 15. Tables 21 and 22 summarize the differences between the chemical shifts of gig and Egagg protons of N,N-dimethylhydrazones and N-methylhydrazones, respectively. A positive A5 value means that protons gig to the N,N-dimethylamino or N-methylamino group resonate at higher field than trans; a negative value denotes the reverse, Whereas the deethyl groups of N-methyl- hydrazones have positive A5 values, those of N,N-dimethylhydra- zones have negative. Tables 25 and 24 summarize the A"(N in benzene u N in carbon tetrachloride) values of N,N-dimethylhydrazones and N—methylhydrazones, respectively. Positive values mean that protons resonate at higher field in benzene; negative values denote the reverse. The important points are: (a) Av Values are larger for N-methylhydrazones than for N,N-dimethylhydra- zones. (b) For N-methylhydrazones the gi§_protons have con- siderably larger AV values than the corresponding trans. The EXB/EflEi ratios of the aldehyde and ketone N-methylhydra- zones are summarized in Table 26. 62 Table 25 contains the spin-spin coupling constants and half-widths of aldehyde N-methylhydrazones. The half-widths of the app; isomers, where the N-methylamino group is trans to the aldehydic proton, are considerably smaller than those of the syg_isomers. The effect of temperature on the spin- spin coupling constants, J of the syn aldehyde N,N-dim HlHa' methylhydrazones and N-methylhydrazones, are summarized in Tables 27 and 29, respectively; and the effect of solvent polarity in Tables 28 and 50. Decrease in temperature, or increase in solvent polarity, increases these couplings. All recorded Spin-Spin coupling values, whose precision is about.i 0.05 c.p.s., are averages of at least three spectral sweeps. Tables 55 and 55 contain the ultraviolet spectral data of N,N-dimethylhydrazones and N-methylhydrazones, respectively. Whereas aldehyde and ketone N-methylhydrazones have similar A and a values, aldehyde and ketone N,N-dimethylhydrazones max do not. 65 ImuU>£H>£umEHUIz.Z Amv mcosmusnlm pom Afiv mcoumum mo muuummm .H.E.c pmmz $25 OMOH o.m 4} hug/Anna zlnfifl& .mson .NH madman 64 .msoumnphnawguwaflplz.z mcoumx Hagume ahmonmomfl mo Esuuoomm .H.E.: ummz Amzav o.oa owm oflm own cum can n P Q N _‘ Ana'uyfi Jig .3 z x z ((1\ «.IMIU J films“. GI UV d NflnlquZ\ Z .ma musmflm 65 $25 0.0fi _ .wcommuphnamsumelz mCOCMUSQIN paw A¢v mcoumom mo muuowmm .MOE.G ummz. .wfi musmflm o.m o.m 0.8 o.m o.m _ _ _ _ _ llIlIl/\\|I\.|||,\(||Illu\'\|l|| ml: Azomxu z/zazu «Illl\\\\\ XNK n n 1o :0 II 1112\\ n:u::fi\\:lu z/vtmru 66 amusnum Amzav o.oa .maommnpwnahnumfilz mcouwx ahnumfi bum Aflv mCOpmx Hmnume ammoumomfl mo muuommm .H.E.s ummz .mH mudmwm O.m J 5L K m u 10 ZIZ\ O.W /' 33 .N | I ll «$10 mid i. /=\ 3U 333; i 67 Umscflucoo mmg. mos” ioo Roe . m mm. H «o. m ummz . .m we.s mm.s ms.m mmmo Rog mxmmommovmo m mm.s mm.s as.m ¢Hoo ROH mxmmommovmo m mm.s sm.s mm.m ummz mimmommuomo m we.» mm.m no.5 em.m mmmo eoa mimmovmo m sm.s sm.m wo.s «m.m vaoo eoa Nxmmovmo m on.» mm.m no.5 sm.m ummz mxmmovmo m m¢.s am.» om.m mmmo eoa mxmmovommo m «m.s mm.s om.m vaoo Rea mxmmovommo m mm.s em.s m¢.m ummz mxmmovommo m o¢.s Ho.m mm.» om.m ammo Rea mmommo m on.» mm.m sm.s mm.m «duo eoa mmommo m sm.~ Ho.m no.5 m¢.m ammz mmommo m m¢.s om.m mm.m ammo ROH mmo m on.» sa.m am.m «Hoo Roe mmo m mm.> om.m >¢.m ummz mmo m . mHo mcmuu mHo mmmmw mwu .mmMMM mflo .mmmmm mHU .mmmmm mHU ucm>aow Nm Hm mmmoz Ammovm Boga Ammo? Ammo? E m Ammovzz Hommam mwconmupmnahnuwaflalz.z msoumx pom mpwnmpad mo AmmSHm>lev mnmflnm HHUHEmno .mfi magma .5 n flusm unmoumm .mm H CNm ucmuummn .Hm Ou mHU msoum mAmmUVz mnu mafi>m£ umEomH mnu ma CNm “ma u Husm ucmuumm .mm H CNm ucmuummm om.> oo.m ma.m No.5 Hm.m mm.m mmoo Rea mammovmu mmo mo.s sm.m Ho.m am.s sm.m ma.m vHoo sea mxmmovmo mmo % mmé $6 «05 mmé N.m.m :6 ummz mm 38:6 36 oo.s No.m ma.m mm.m mm.m em.s ammo Roe mmommo mmo mm.s om.m sa.m aa.m mm.» «How sea mmommo mmo mm.> mm.m om.m wa.m mm.> ummz mmmUNmU mmo am.s mm.m mm.m mmmo Roe mmo «mo 58.5 ma.m ma.m *.30 &OH mmo mmo no.5 ma.m mo.m ummz mmo mmo 3K $6 mmwo Roe . m mHu wanna mHU mummy mHo mcmuu mHU mcmuu mHU mcmub mHo ucw>aom mm Hm 4“me :5on Eu? Ammova Ammo? an m immoqzz Hommdm Umssflucou I ma mHQMH pmscflucoo sa.s mm.» mm.m «Hoo Roe AHHUV m om.¢ om.» mm.s ms.m mm.m ummz AHHUV m ma.s we.» mm.s ow.m ammo Roe mxmmommovmo m ma.s mm.s «o.m s¢.m «duo sea mimmommovmo m Hm.¢ ma.s om.s ao.m mm.m oa.m ummz mxmmommovmo m ma.s He.s mm.m mm.m am.s om.m ammo Roe mxmmovmo m nvsfi.m >a.> mm.m mm.m mo.m mm.> mm.m aaou Koa mfimmuvmo m .bmo.w ma.s mm.s oo.o ao.m mm.> mm.m mm.m ummz mfimmovmo m mfi.> me.s om.s mm.m ommo Rea mammovommo m «a.s mm.s mm.> am.m «H00 eoa mxmmovommo m mm.¢ sa.> om.> mm.> mm.m ma.m ummz mfimmovommo m om.s m¢.s «o.m mm.m mm.s ma.m ammo Roe mmommo m «d.s mm.s mm.m «m.s om.m mm.m «Hoo Roe mmommo m mm.¢ ma.> mm.> «o.m mm.» m>.m ma.m ummz mmommo m mfi.s m¢.s mm.m ms.m mm.m ammo eoa mmo m ma.> mm.> ma.m mm.m mm.m mm.m vHUU Roa mmo m ¢¢.¢ ma.> mm.> mm.w mm.m mm.m mfi.m umoz mmo m mcmnu mHU mcmuu mHo msmuu mcmuu mflo mcmuu mflo mcmuu mflu usm>aom mm Hm lam Ammonzv Ammovm E35 Ammo? Ammo? am dmomzzflommam Ir monommup>HH>Sum2nz ocouox pom opmbopad mo Amosam>upv muwflrm HHUHEmro .om magma 7O sfi.s am.m oo.o ammo sea mimmovo mmo sa.s oo.o a¢.m iJoe Roe mxmmovo mmo “mm.m mm.s mm.m ow.m ummz mammovo mmo sfi.s oo.o ¢N.m mm.» sm.m oh.m ammo Rea mAmmovmo mmo ma.> mm.m mm.> mm.m mw.m aaoo Roa mAmmUVmU mmo am.m am.s Ho.m so.» am.m ow.m ummz mammovmo mmo sfi.s oo.o am.m mm.m o~.m om.s am.m mmmo eoa mmommo mmo om.s mm.m om.m mm.m mm.» waoo Roe mmommo mmo mm.m am.s Ho.m mm.m mm.m mm.s ummz mmommo mmo sa.s mm.m o~.m mmmo Roe mmo mmo am.s oa.m wm.m «goo Roe mmo mmo sa.m mm.> om.m am.m ummz mmo mmo 5.5 2.; ommo Rod . m l. mcmuu mHU mcmuu mHo mcmuu mHU msmuu mHU mcmuu mHU msmuu mHu usm>aom mm am m2 Ammonzv Ammovu Amova Ammoyo Ammovu («Am mmmmzzuuommam_ Umscflucoo I ON magma Table 21. 71 Aé(6~cis - é trans)a Values, in p.p.m., N,N-Dimethylhydrazones of Ketone J R1R2C==NN(CH3)2 cACHg) 48(CH3) N(CH3)2 R1 R2 Neat CeHe Neat CsHe Neat CsHe CH3 CH3 -0.07 0.00 0.00 0.00 CH3 CH2CH3 -0.06 -0.03 0.00 +0.14 0.00 0.00 CH3 CH(CH3)2 -0.10 -0.06 +0.05 +0.16 0.00 0.00 aPositive Value means that the proton cis to the N(CH3)2 group resonates at higher magnetic field than When trans; a negative value denotes the reverse. 72 .0mnm>0u mnu mmuocmp 05Hm> 0>Hummms m “msmuu cm£3 can» pamflm oflumcmmfi umsmfln um woumcommu msoum mmomz may ou mflo cououm wsu umnu mamme 09Hm> m>fiuflmomm mm.o+ mw.o+ mo.o+ mfimmuvmo mmo am.o+ m¢.o+. mfi.o+ am.o+ mmommo mmo s¢.o+ «fi.o+ mmo mmo mm.o+ 3.0+ 2.0: . m mm.o+ mfi.o+ No.0: mimmommovmo m mm.o+ wa.o+ mm.o+ mm.on mammovmo m am.o+ ma.o+ mm.on mfimmoVUmmu m mm.o+ ma.o+ Hm.o+ sm.on mmommo m mm.o+ mfi.o+ m¢.o+ ea.o+ o¢.on mmu m ammo ummz ammo ammo ummz ammo ummz Nm Hm Ammouzv Ammoou Ammozu Ammozu nmomZZHuommam mwconmupmgamsumznz occumx cam mnmnmpad m0 ..E.Q.m CH .mmsam> mAwsmuu o I mHU ovo< .NN manna 75 05Hm> 0>HummmC m “UHmHm umCmHC um mH mCmqun CH GUQMCommH Cououm 05p .0mu0>mu wCu m0u0CmU wasp mCmmE 05Hm> 0>HuHmomm ¢.ml m.H+ 0.0 + 0.0+ ¢.N+ m.¢+ mammovmo mmu «.mn 0.0+ 0.NH+ 0.0+ 0.0+ 0.0+ mmommo mmo 0.0: N.H+ 0.0+ mmo mmo 0.++ N.Hu A-_-v m 0.0+ 0.0: +.m+ mxmmommovmo m +.m+ 0.0: 0.H+ 0.0 mxmmoomo m 0.0+ 0.0: 0.0 mxmmovommo m 0.0+ 0.H+ 0.0+ m.++ mmowmo m m.s+ 0.H+ 0.0+ mmo m mHu mCmnu mHU mmmmw mmmmw mHo .MNMMM mHo mm am 3 Ammovu 4% 386 Hmwwvlo |1fll m Ammovzzflommam pcm 0©>C0©H< m0 ..m.m.0 CH .mmsam> mflmpHCOHnomuuou Conumo CH mmCONmumethumfiHQtz.z 0C0u0M ? wancmn CH 20 20 .mm magma 74 .0mum>mu mnu wouOCmp 05Hm> 0>Humm0C m "UHmHm umCmHC um mH mCmNCwn CH mquCommn Cououm 03p umnu mCmmfi 05Hm> 0>HuHm0m m 0.0 0.0: 0.mH+ mfimmovo mmo m.H u 0.0 0.mH+ 0.0 0.0 I 0.0H+ mammovmo mmo m.H : 0.0 + o.mH+ N.H + 0.0H+ m.H+ 0.HN+ mmommo mmu +.m u m.¢ + +.0m+ mmo mmo 0.0 0.NH+ 0.0 + A-_-v m 0.0 0.NH+ 0.0 u 0.H + mxmmommovmo m 0.0 + 0.0H+ 0.0 + +.HH+ 0.0 u +.0 + mxmmuomo m ¢.N + m.mH+ ¢.m I 0.0 + mmmmovommo m 0.0 + +.HH+ 0.0 + m.0a+ +.m + 0.mH+ mmommo m «.m + 0.mfi+ . +.m + 0.mm+ 0.mfi+ «mu m mCmuu mHU mCmuu mHU mCmup mHU mCmuu mHU mCmuu 0H0 mCmuu mHU mm Hm Ammouzv $465 $30 Ammood Ammo? Hm Hmomzzflommam meONmuphsamzumzlz mCOumx UCM mpmnmpHd mo ..m.m.0 CH .mmsHm> mampHCOHnomuumu COQHMU CH P I mCmNCmn CH PVPQ .wm mHQMB 75 Table 25. Spin-Spin Coupling Constant and Half Widths of Aldehyde N-Methylhydrazones H Nn/NHCHs R132CH R1 R2 J(syn) Half width(syn) J(anti) Half Width(anti) H H 5.58 1.55 5.67 1.05 H CH3 5.12 1.50 5.10 1.15 H C(CH3)3 6.20 1.80 5.50 1.50 CH3 CH3 5.21 1.50 5.00 CH3CH2 CH2CH3 6.50 1.50 5.00 1.45 5.50 O aNeat Samples. Table 26. hydrazones fi — — —_ Syn/anti Ratios of Aldehyde and Ketone N-Methyl- R1R2C==NNHCH3 Percent Percent R1 R2 syn anti H CH3 75 27 H CH2CH3 85 17 H CH2C(CH3)3 85 17 H CH(CH3)2 96 4 H CH(CH2CH3) 2 95 5 CH3 CH2CH3 85 17 CH3 CH(CH3) 2 96 4 CH3 C(CH3)3 100 0 —__ aNeat Samples. 76 Table 27. Spin-Spin Coupling Constants of Aldehyde N,N-Dimethyl- hydrazones (syn isomer) at Various Temperatures N(CH3)2 - H1 a :>:N JH H (c.p.s.) R1R2CH 1 9 R1 R2 -50° 0° +440 +700 H H 5.55 5.51 5.52 5.26 H CH3 5.16 5.12 5.10 5.00 H C(CH3)2 6.24 6.24 6.22 6.11 CH3 CH3 5.55 5.25 5.12 5.08 CH3CH2 CH2CH3 6.82 6.52 6.55 6.10 < > 5.24 5.16 5.00 4.77 aNeat samples. Table 28. The Effect of Solvent Polarity on the Spin-Spin Coupling Constants and Half Widths of Aldehyde N,N-Dimethyl~ hydrazones (syn isomer) H1 /N(CH3) 2 N JHlHa(C°p°S°) R1R2CH R1 R2 Neat- Cyclohexgne Acetonitgile Half Widthb’C (44°) (440) (440) (c.p.s.)(440) H H 5.52 5.50 5.57 1.79 H CH3 5.10 5.00 5.50 1.81 H C(CH3)3 6.22 6.10 6.25 1.76 CH3 CH3 5.12 4.96 5.50 1.89 CH3CH2 CH2CH3 6.55 6.24 6.80 1 .78 < > 5.00 4.80 5.50 1.90 a10% solutions; bNeat; CHalf width of tetramethylsilane = 0.40 c.p s. 77 Table 29. Spin-Spin Coupling Constants of Aldehyde N-Methyl— hydrazones (syn isomer) at Various Temperatures H1 NHCH3 ::>=N/ JH H (c.p.s.)a R1R2CH 1 9 R1 R2 -5o0 00 +450 +600 +600 H H 5.50 5.56 5.58 5.20 H CH3 5.55 5.15 5.12 5.10 5.05 H C(CH3)2b 6 25 6.20 6.20 6.16 6.06 CH3 CH3 5.54 5.25 5.21 5.06 4.98 CH3CH2 CH2CH3b 6.87 6.66 6.50 6.51 6.14 .b 5 20 5 15 5.00 4.95 4.88 aNeat samples. Approximately 50% carbon tetrachloride. Table 50. The Effect of Solvent Polarity on the Spin-Spin Coupling Congtants of Aldehyde N-Methylhydrazones (syn isomer) ' H1 NHCH3 ::>=N’/ JH H (c.p.s.) R1R2CH 1 a . R1 R2 Neat Cyclohexage Acetonitrgle (45°) (45°) (450) H H 5.58 5.55 5.42 H CH3 5.12 5.06 5.24 H C(CH3)3 6.20 6.20 6.25 CH3 CH3 5.21 4.87 5.52 CH3CH2 CH2CH3 6.50 6.51 6.70 5.00 4.77 5.50 a b Spin-Spin coupling constant of acetaldehyde 10% solutions. = 2.90 c.p.s. 78 Discussion Conformations of the syn Isomers-~The relative stability of rotamers Ic and IIc can be determined from the dependence N CH H,CH N CH , H / ( 3)2( 3) / ( 3)2(H C 3) N N Ha \ R ," PI1 ’," H1 R H21 Ic IIc of J on temperature, as discussed in the oxime section HlHa (Part B). The trans, dihedral angle = 1800, and gauche, di- hedral angle = 600, Spin-spin coupling constants were calcu- lated from the acetaldehyde and tfbutylacetaldehyde derivatives. They are J = 10.6 c.p.s. and J9 = 2.7 c.p.s. for the N,N-di- t methylhydrazones, and J = 10.5 c.p.s. and Jg = 2.8 c.p.s. t for the N-methylhydrazones. The rotamer populations of the N,N-dimethylhydrazones and N-methylhydrazones are found in Tables 51 and 55, respectively. The AHO values, which were obtained by plotting log K.y§ 1/T, are listed in Tables 52 and 54. Representative plots are shown in Figures 16 and 17. The trends in AHO values are similar to those of the oximes. For example, aqdrdimethyl derivatives have smaller AHO values and larger percentages of alkyl eclipsed rotamers than the d,drdiethyl derivatives. Similarly the AH0 values of cyclohexanecarboxaldehyde deriva- tives are closer to those of dimethyl rather than diethyl d,dr disubstituted derivatives. 79 Table 51. Rotamer Population of Aldehyde N,N-Dimethyl— hydrazones (syn isomer) H N(CH3)2 /N(CH3)2 >‘-‘N/ H N R1R2CH _;>’,,,JL\T{ R R1 R2 -50° 0° +44° +70° H CH3 75 72 71 69 H C(CH3)3 99.7 99.7 99.5 97 CH3 CH3 44 45 41 40 CH3CH2 CH2CH3 62 59 56 55 42 ' 41 59 56 Table 52. AH0 Values Obtained from Plots of log K y_s_ 1/T RlRZCHCH==NN(CH3)2 R1 R2 AH°(cal/mole) H CH3 + 290 H C(CHg) 3 +4600 CH3 CH3 + 280 CH3CH2 CH2CH3 + 650 80 Table 155. Rotamer Populations of Aldehyde N-Methylhydrazones (syn isomer) H NHCH NHCH3 3 N// N H /H\ 70 RIRZCH -—"" H R R1 R2 -50° 00 +450 +60° +80O H CH3 76 71 71 70 69 H C(CH3)3 100 99 99 98 96 CH3 CH3 45 42 42 40 59 CH3CH2 CH2CH3 65 60 58 56 54 42 41 39 58 37 Table 54” AH0 Values Obtained from Plots of log K.y§ 1/T ///NHCH3 ’/,NHCH3 H R N ____.\......u\ ——>— H ‘ R] H H RlRLCHCH=NNHCIia R1 R2 A H0 (cal/mole) H CH3 +550 H C(CHs) 3 +3900 CH3 CH3 +290 CH3CH2 CH2CH3 +560 +550 81 .Aumaomfl Cva mao~mu©>3~>£umfiflplz.z mphcmbamuxusnomfl mIdeB\H m.m $.m _ now uoflm omq .mfi musmflm JNN.OI Ima.o- 16H.OI IOH.OI X BOI 82 . Aumeomfl GNmV mQONmnpmnahsumEIZ $330.3mxonumomammeOHomo uom uOHm omq .NH musmflm muofixe\a 0.4 0.0 4.0 0.0 0.0 _ _ . _ _ 100.0- 100.0- . m .104 0.6 X o 100.0- 140.0- 83 The effect of solvent polarity on the coupling constants further supports the assumption that the important minimum energy conformations are eclipsed rather than bisecting. The observed increase of these couplings with increase of solvent polarity fits IIIc and IVc, but not Vc and VIc. Had Vc and VIc been the important conformations, increase in solvent N///N(CH3)2(H.CH3) N///N(CH3)2(H,CH3) H 51 ,x” H ’,x H H’ H’ R H IIIc IVc polarity would increase the ratio Vc/VIc and lead to a de- crease in coupling, as J1200 should be smaller than Jcis' N(CH3)2(H,CH3) N(CH3)2(H,CH3) //’ N,// (R)H\ H R (R)H | R H Vc VIc The Effect of Conformations about the Nitrogen-Nitrogen Single Bond on Chemical Shifts and Long Range Spin-Spin Cou- ,pling Constants--As mentioned, whereas of aldehyde N-methyl— hydrazones both the syn, VIIc, and the anti, VIIIc, isomers are present in solution, only the gyn, IXc, isomer of aldehyde N,N-dimethylhydrazones is detectable. Furthermore, the syn 84 NHCH H c H N CH / 3 3 N \ / ( 3)2 N N N R/U\H R H R H VIIc VIIIc IXc /N(CH3)2(H.CH3) (H,CH3) (H3C)2N\ N F R2/U\Rl R2/]\Rl Xc XIc KC, and the anti, XIc, isomers of both ketone N-methyl and N,N-dimethylhydrazones are present in solution.‘ These facts can be explained by steric interactions that result in con- formational preferences about the nitrogen-nitrogen single bond. The explanation and support of it are outlined below. Whereas both syn, XIIc, and the anti, XIIIc, isomers of N-methylhydrazones can exist in the depicted conformations, where the unshared pair of electrons in both isomers are ’CH3 H3» MCI—13 N/®\H H /U\ N CH3 /U\ R R H(R') H(R') R H XIIc XIIIc XIVc XVc 85 parallel to and overlap with the E-orbitals of the double bond, only the syn, XIVc, isomer of N,N-dimethylhydrazones can assume such conformations. In the aggi, XVc, isomer, because of strong nonbonded interactions between R and methyl, rotation about the nitrogen-nitrogen bond might force the compound to a-con- formation where the unshared electrons are orthogonal to the .E-orbitals of the double bond. The ensuing loss of overlap energy would thus explain the greater stability of XIVc over XVc. The above explanation can be tested by ultraviolet spectroscopy, since it implies that aldehyde N,N-dimethylhydra- zones will have conformation XIVc and ketone N,N—dimethyl- hydrazones conformation XVc. The ultraviolet Spectra of aldehyde and ketone N-methyl- hydrazones (Table 36) are similar; eflg., A ax (95% ethanol) = m 229 mu (8 = 5.0 x 103). Aldehyde N,N-dimethylhydrazones have 239 mu (8 = 5.7 x 103). These are the xmax (95% ethanol) fl;-+~flf transitions. The increase from 229 mu to 239 mu is probably due to the inductive effect of the second methyl sub- stituent in N,N-dimethylhydrazone. In the ketone N,N-dimethyl- hydrazone, a lower energy transition appears, which has Kmax (cyclohexane) = 274 mu (8 = 8.2 x 102); Kmax (95% ethanol) 268 mu (8 = 8.2 x 102); and km X (H20) = 255 mu (8 = 7.8 x 102). a From.its solvent dependence (39) it appears to be an §_—9'flf transition. Apparently as the lone pair electrons of the N,N- dimethylhydrazone becomes orthogonal with the fleorbitals of 'the double bond the 1-*'£f transition shifts to lower wave- lengths and is masked by the absorption of the solvent. 86 Table 35. Ultraviolet Spectral Values of Aldehyde and Ketone N,N-Dimethylhydrazones :— R1R2C= NN(CH3) a Solvent xmaxmm 8 R1 R2 H CH3 Cyc lohexane 240 .8 6 .8 x 10° H CH3 95% Ethanol 239.0 5.7x103 H CH3 H20 231.0 1.2 X 103 CH3 CH3 Cyclohexane 266.0 6.0x102 CH3 CH3 95% Ethanol 265.0 7 .6 x 102 CH3 CH3 H20 256.0 3.9 X 102 CH3 CH2CH3 Cyclohexane 274.0 8.2x102 CH3 CH2CH3 95% Ethanol 268 .0 8 .2 x 102 CH3 CH2CH3 H20 253 .0 7 . 8 X 102 Table 36. 87 Ultraviolet Spectral Values of Aldehyde and Ketone N-Methylhydrazones ll :1R2C==NNH§:3 Solvent xmax(mu) e H CH3 Cyclohexane 250.0 4.5x103 H CH3 95% Ethanol 228.0 4.6x103 H CH2CH3 Cyclohexane 228.0 4.1x103 H CH2CH3 95% Ethanol 229.0 5.0x103 CH3 CH3 Cyclohexane 229.0 1.9x103 CH3 CH3 95% Ethanol 226.0 4.6x103 CH3 CH3 Acetonitrile 229.0 5.5x103 CH3 CH2CH3 Cyclohexane 228.0 1.4x103 CH3 CH2CH3 95% Ethanol 228.0 4.9x103 88 Stereospecificity of Long Range Spin-Spin Coupling-— Acetone N,N-dimethylhydrazones, conformation XVIc, shows zero coupling between the N-methyl and the dflmethyl protons, as judged from signal half-widths of 0.50 c.p.s. These half- widths are the same as those of tetramethylsilane under identi- cal instrumental conditions. When the N,N-dimethylamine group is in conformation XIVc, then coupling between such protons is detectable. For example, the half-width of the afimethyl signal of acetaldehyde N,N-dimethylhydrazone, XVIIc, is 1.01 c.p.s. Since in both ketone and aldehyde N-methylhydrazones the N-methylamino group has the same conformations as in alde- hyde N,N-dimethylhydrazones, similar coupling are anticipated. The half-widths recorded in XVIIIc through XXc support this deduction. CH3 CH3 (0.52 c.p.s.) \-;/" <31::I'CH3 N (1.07 c.p.s.) n/6 N/ CH3 Hsc CH3 H3C H (0.50 c.p.s.) (1°01 C-P-So) (1.79 c.p.s.) XVIC XVIIC /}:f“CH3 (1.26 c.p.s.) //X:£::CH3 (1°28 c.p.s.) N \H A H /U\ HBC H HSC CH3 (1.15 c.p.s.) (1.03 c.p.s.) 89 H3Cmfi.94 c.p.s.) H N (0.82 c.p.s.) XXc Chemical Shifts--The above observations concerning differ- ences in nitrogen-nitrogen single bond conformations are further supported by the chemical shift data. For example, whereas the ahmethyl protons of N-methylhydrazones resonate at higher fields when gig than when trans to the N-methylamino group (Table 22), those of N,N-dimethylhydrazones resonate at lower fields (Table 21). Solvent Effects--The larger upfield shift of the gig over the t£§n§_protons of N-methylhydrazones on dilution with benzene (Table 24) can be interpreted in terms of XXIc. Figures 18 through 23 show the effect of solvent dilution on ketone and ’CH3 N \H\ /\ R2 R; (H) XXIc aldehyde derivatives. The inability of N,N-dimethylhydrazones to form such an association complex explains the relatively small effect of benzene on their chemical shifts (Table 23). .mcommupmnawnumEIZ mphnm©HMumom mo mamanm Hm0H60£0 mg“ no ozoncmn mo uummwm 90 Ca om oh UCDOQEOU R 0H02 Ow 0m 0% on _ _ _ _ ON _ .mfi musmflm OH _ OH.OI mmULo Imcmuu a oaohnmCHMmeMHMAW nmolonmao mg vapmchHMImflo mu I J nIU nxorz IOO.O loa.o 'QV (00.0..0 O/Q/QGH 04. 0 10m.o .mcoumupmnahnumfilz wpwnmoamumom mo mmUCMCOmmH nmoz Ucm m2 co mcmnqma mo uomwmm .md wndmflm UGDOQEOU R 0H0: om om ow om om ow . om om 0a 1 1 _ i w a _ . 4 311.1(7)). I , (n/ - 91 / G 0 nmozécmuo. I mmUZImHU flu //// m2 0 I , 30 Jr\ 2 M £012 Ofi.0u oo.o oa.o Om.o Oh.o oo.o OH.H .0:0N0H©>£H>£umfilz mohnmpamuhstOmH mo humasm Hmoflfiono on» so mamncmn m0 uommwm 92 .ON musmflm UGSOQEOU R maoz amoumumcmnu I 10m. 0 .m vapwnmmatlmcmuu . EULoImcmuu AV 1 00.0 anon .Ilnao o 063636-30 O .mconupxzaxzpmfilz mpmzmpamuhusnomfl Mo mmusmcommn mmUZ Ucm m2 :0 mooncmn mo uomwwm .Hm musmflm chomaoo & 0H0: Om om Oh Om on 0d om ON Ofi I 0 fl _ H _ I _ ‘ IOfi.OI )H I I I I) I IIIHI Aha a) (a .80 /Q /Q/ B/Q/D/ 13.0 o Q/Bdm JOM.O moo (Om.O 0482:2000 I G mmUZImHU mg flv 10>.o m2 NV 2 [00.0 w n10:2 G, /, 1oa.a 'QV ‘M’d'd 94 .mCONMHUmnamzumEIz mcocmwsnlm mo mymanm HMUHEwLU mnu co mcmwcmn mo pomwmm ,NN musmwm Om Om Ow chomfiou R wHOE ow om 0¢ om ON OH I mmolmlmcmHuAV NmUIdImcmuu E mmoldlmcmup . 38$ -30 O NmUIdlmflo D mmULCImflo 0V a _ I _ I 9 a \. oo.o IOH.O "9v O/O/ :omé 9/ lom.o °M'd°d gow.o n10 Iunxu /:\ mIUIZ 95 .wcomm»©%LH>£umEIz mQOQMpDQlN mo mmUCMCOmmu mmoz 6cm.mz :0 mcmNch mo uumwmm 0mm madman UQSOQEOU R maoz om om Om om om Gd om om oa I J I _ I _ _ _ J krflflnfi/a 100.0 0 / Ion—moo G L Iom.o mmUZ B [Ohoo m2 9 0&3 33 N m / /:\ 5 5 18.0 m z iu12\ : 'QV °m°d°d PART D - - PHENYLHYDRAZ ONE S 96 97 Results Previous studies showed that both gi§_and t£3g§_hydrogens of phenylhydrazones resonate at higher magnetic fields in benzene than in aliphatic solvents (24). The upfield shift of the gig—hydrogens is, however, three to six times larger than the correSponding trans. A comparison of the Spectra of 2-butanone phenylhydrazone, neat, in benzene and in carbon tetrachloride is shown in Figure 24. Table 57 summarizes AW values (AV = N in benzene - N in carbon tetrachloride) obtained from previous work (24). The effect of various solvents on the chemical shifts of 2-butanone phenylhydrazone is shown in Table 58. Note that methyl benzoate, nitrobenzene, pyridine, and 2,4-dimethylpyridine behave as nonaromatic solvents. Figure 25 shows the effect of dilution on the gig-armethyl and gig-B-methyl hydrogens of 2-butanone phenylhydrazone. The dilution curves indicate that the chemical shift of the armethyl hydrogen is more sensitive to dilution than that of the B-methyl. Also, whereas on dilution with benzene the chemical shifts move upfield, on dilution with carbon tetra- chloride and dimethyl sulfoxide they move downfield. Figure 26 shows the effect of dilution on the resonances of trans-or methyl and trans-B-methyl hydrogens° These resonances are less sensitive to dilution than those of the gis, In contrast to the glgfhydrogens, trans-hydrogens resonate at lower magnetic fields when diluted with benzene. Figure 27 shows the effect of dilution on the chemical shifts of methyl tfbutyl ketone 98 phenylhydrazone. These shifts are less sensitive to dilution than those of 2-butanone phenylhydrazone. ¢HN\~ CHS’LCHlCHS (Jr—m} A u’”"¢ l N’~H¢ aaiflfiflsr ¢HN\N cnfgj’l‘m, C l 2 ' C_H}CH1/H\CH3 M W A -'\ | I T = 8.0 9.0 10JO (TMS) Figure 24. Nuclear magnetic resonance Spectrum of 2%- butanone phenylhydrazone: A, neat; B, 5 mole % in ben- zene; C, 5 mole % in carbon tetrachloride. nmolk Com mmsHm>m 100 m.Hm ammo nmo m.m o.Hm m.m N.mm ammommo mmo mo.m ma.aa o.m m.ma «Ammoomommo. mmo ¢.m o.am mammooo nmo a.m o.mfi m.¢ o.m ¢.om mzmmovmo mmo ¢.m N.mH N.H m.Hm m.¢ N.mm mmommo mmo m.¢ m.«m nmo mmo o.m m.mH m.H «Ammovmo m m.e m.mH m.a mmommo m o.mH m.nm mmo m mmmmm mHo. mmmmm. mmmmm. mHo mmmmm. mHU mm am Ammoou Bozo Ammo? Ammo? ammomzz Hommam mmCONmuUmsaowcm mo ..m.m.o CH .mmsHm> AmUHHoHComuumu COQHMU CH I mCmNCmQ CH ?v ?< .Nm” wHQMB >. 101 Discussion Solvent Effects--The large difference between A” (gig) and A” (trans) (Table 57) and the dependence of the chemical shifts on the concentration of phenylhydrazone in benzene (Figures 25, 26, 27), can be interpreted in terms of a stereo- specific and reversible association between benzene and phenyl- hydrazone. The data suggest a hydrogen bonded species, whereby the benzene molecule associates with the anilino hydrogen (Id). Evans (40), Bottini and Nash (41) and Wepster (42) have inde- pendently shown that the trivalent nitrogen of aniline is Id pyrimidal. Complex Id is consistent with all the data. For example, since R1 is closer than R2 to the aromatic ring center, A” (gig) is greater than A” (trans); because of steric interaction between benzene and R1,.gis-B-methyls will assume conformations which places them farther away than EEEFHQ from the ring. Hence, A'v (ginga) is greater than A” (Eiifflb)- Conformation IId can be excluded for the following reasons: Firstly, it is not favored because of unfavorable interactions between the phenyl group and the protons. p.p.m. A6, 102 I ‘ +0.20 +0.10‘ -O.lO- / G <3 V -o.2o_ ° 0 -o.so— II -o.4o 0 4o 1 so ‘i $0 '* 100 Mole 76 EtMeC= NNHCBHS Figure 25. Effect of dilution on the chemical shifts of butanone phenylhydrazone: I, gig-armethyl in benzene; II, .gig-armethyl in carbon tetrachloride; III, gigeahmethyl in dimethyl sulfoxide; IV, gigrB-methyl in benzene; V, gig-am methyl in dimethyl sulfoxide. 103 -0.0S 1 \ H (D -0.05 -O.10, 1 l J 1 l O 20 4O 60 80 100 Mole % EtMeC= NNHC 5H5 Figure 26. Effect of dilution on the chemical shifts of butanone phenylhydrazone: I, trans-armethyl in benzene; II, trans-or methyl in carbon tetrachloride; III, trans-ormethyl in dimethyl sulfoxide; IV, trans-B-methyl in benzene; V, trans-B-methyl in carbon tetrachloride; VI, trans-B-methyl in dimethyl sulfoxide. 104 +0.20 +0.10 b p.p.m. A6, l 1 l l l l 0 20 40 60 80 100 Mole % Compound Figure 27. Effect of dilution on the chemical shifts of methyl t-butyl ketone phenylhydrazone: I, gig-ormethyl in benzene; II, trans-B-methyl in carbon tetrachloride; III, gig-damethyl in carbon tetrachloride; I',.gi§edrmethyl of butanone phenylhydra- _zone in benzene; II', trans-B-methyl of butanone phenylhydrazone in carbon tetrachloride; III', gighormethyl of butanone phenyl- hydrazone in carbon tetrachloride. 105 R2 c\ J IId Secondly, if it was an important contributor, in all solvents capable of hydrogen bonding with the anilino proton the ElfifHa (methyl) and tran§7H0;(methyl) should be shielded by 0.5 p.p.m. and 0.1 p.p.m., respectively (45,44). The other conformations available by rotation about the nitrogen-nitrogen bond do not accommodate the large A” (gi§)--AW (trans) values and are thus discarded as important contributors. When toluene, xylenes, or isodurene are substituted for benzene the upfield shift of the gisfhydrogens progressively decreases (Table 38). This can be explained as a decrease in the stability of complex Id, i,g., the equilibrium for_1 is greater than that for g. The data support this explanation. R1R2=NNH¢ + CeHe ——->-E R1R2=NNH¢ - C536 1 R1R2==NNH¢ + isodurene -?-—+' R1R2==NNH¢ ; isodurene E_ For example, the resonance of the gigefia in a 1:1 (mole/mole) mixture of benzene-isodurene (T = 8.74) is closer to that in benzene (T = 8.77) than to that in isodurene (T = 8.65). In solvents having two sites available for hydrogen bond- ing with the anilino hydrogen competition is expected between 106 .H CH mum meHm> uuCooumm mHoE m COHumuquoCoum >m.m mN.m ¢>.m A.E\.E .HuHV mCmHCUOmHImcmmcmm «m.m mH.m mo.m Hw.m A.E\.E .Hqu owNConuqulmCmNCmm em.m Ho.m mo.m ¢N.m A.E\.E .Huav mUonwHCm HanumEHQImcmNCmm am.m am.m oa.m m«.m A.E\.e .auac mcfiwflusm-mcmucmm mm.m mm.m A.E\.E.H"HV mCoumofiumCmNCmm mm.m mm.m mH.m mm.m Aea\.E .H"vaCmNCmQOHOHCincmNCmm dm.m ON.m mCoumud mm.m OH.m mm.m mUHXOMHDm HmnumEHQ Hm.m HH.m «o.m >m.m mCHUHumm mm.m mm.m oo.m >H.® mCmNCmQOHUHZ oo.o ¢H.m mo.m om.m mumoucmnamnuwm mm.m mH.m NH.m ¢¢.m mCmNConuoHCUHQIE mm.m ¢H.m ¢H.m mm.m waNCmQOUOH mm.m mH.m mH.m mm.m mCmNConEOHm mm.m 5H.m mH.m mm.m mCmNConuoHCU mm.m ¢H.m dH.m mm.m mCmnchouosHm mm.m ¢N.m mm.m ma.m mcHHHcmHmnmeHouz.z mm.m mH.m mH.m mm.m mHomHCd mm.m mH.m NN.® mm.m mCmHCUOmH mm.m mm.m om.m o>.m mamasxum Hm.m mm.m mm.m NH.m mamasxus >m.m NN.m NN.m N>.m mCmHhxum 5m.m mm.m ON.m m>.m mCmCHOB mm.m om.m om.m n>.m mCmNCmm mCmuu mHo mCmuu mHo ucw>Hom .Illmmoumlll mmoto mcommup>CchmCm mCOCmusm mo muMHCm HMUHEmCU mCu Co mmuowmum qu>Hom .mm mHQma 107 .E-donor and n—donor association. From the parallel behavior of nitrobenzene, methyl benzoate, and pyridine to that of acetone, dimethyl sulfoxide, and methanol (Table 38) it is concluded that association occurs with the lone electron pairs of the heteroatoms rather than with the grelectrons of the rings. IIId and IVd predict no shielding of the gigfhydrogens by the aromatic ring current. CBHS CBHS N/ N) N/ \H\‘ N/ \m- A \“N‘\ \) /U\ \“02NC6HS R2 R1 / R2 R1 IIId IVd Halobenzenes compete more effectively than benzene for the anilino hydrogen, as judged by the fact that in a 1:1 (mole/mole) mixture of benzene-chlorobenzene the resonance of .SléfHa_(T = 8.65) is closer to that in chlorobenzene (T = 8.55) than to that in benzene (T = 8.77)° Thus hydrogen bond forma- tion occurs at the halogen atom site rather than with the .E—electrons of the ring. In contrast to pyridine and nitro- benzene, the halobenzenes strongly shield the gig-hydrogens. This difference is anticipated, as seen by comparing IIId and IVd with Vd. Vd 108 The strong solvent dependence of the gig: oz'resonance in pure as well as in mixed solvents provided a measure of the relative solvent basicity towards the anilino proton. The relative strengths of these hydrogen bonds for the solvents examined are: dimethyl sulfoxide > acetone > pyridine > nitrobenzene > chlorobenzene > benzene > isodurene. From the dilution results (Figures 25,26,27) and the above discussion, VId is suggested as the general structure of liquid phenylhydrazones. Structure VId explains the larger VId upfield shift of gi§_over transfhydrogens and of gig-Hq,over gisfHB with increase in the concentration of phenylhydrazone in aliphatic solvents. It also accommodates the unusual down- field shift of Egaggrhydrogens in benzene, since the two phenyl groups will exert a stronger shielding effect than a single benzene ring (Id). The shapes of the dilution curves indicate that whereas hydrogen bonding between dimethyl sulfoxide and phenylhydra— zone is stronger than phenylhydrazone self-association, hydrogen 109 bonding between carbon tetrachloride or benzene with the phenylhydrazone is weaker. The sharper change in the chemi- cal shift of Z-butanone phenylhydrazone as compared to that of methyl tfbutyl ketone phenylhydrazone (Figure 27) implies that increase in the size of R2 weakens self-association (VId) and favor solvent competition for the anilino hydrogen. Cyclic dimers and trimers that are alternative structures to VId are not consistent with the data. For example, VIId VIId VIIId predicts that in aliphatic solvents increase in the concen- tration of phenylhydrazone should lead to stronger shielding of trans rather than gigehydrogens. Structure VIIId, which has the same severe steric interactions as IId, is excluded by the results from dilution studies. EXPERIMENTAL 110 111 A. Preparation of N-Nitrosamines Most of the nitrosamines were prepared from commercially available amines. N-nitrosodimethylamine and N-nitroso—N- phenylbenzylamine were purchased from Eastman Organic Chemi— cals. Amines were obtained from the following sources: methyl— n—butylamine, diisopropylamine, N—isopropylaniline, N-methyl- benzylamine, methylisopropylamine from K & K Laboratories, Inc.; N-isopropylbenzylamine from Aldrich Chemical Co., Inc.; methylethylamine hydrochloride, benzylamine from Eastman Organic Chemicals; tert—butylamine, N-ethylaniline from Matheson Coleman & Bell. Methyl-tert-butylamine and N-ethylbenzylamine were pre— pared by lithium aluminum hydride reduction of tert-butyl— formamide and benzylacetamide. Since the nitrosamines were prepared by well-known methods (45,46), only a limited number of synthetic procedures are described. Table 39 con- tains the boiling and melting points of the N-nitrosamines. Preparation of tert-Butylformamide. To a 500-ml., three-necked, round-bottomed flask equipped with a Tru—bore stirrer, reflux condenser and pressure equalized dropping funnel was added 50 g. (0.41 mole) of tert-butylamine and 70 ml. of m-xylene. The flask was placed in an ice bath and 18 g. (0.58 mole) of formic acid (98%) was added dropwise over a thirty minute period. When the addition was completed the ice bath was replaced by a heating mantle and the material 112 .md mUCmHmmmu .CHHHmm ..mDO mmHHm>|HmmCHHmm :.mHEmCU CmComHCmmuo Cop CUCQUCmmz .CHmumHHmm .M .mo .mw mUCmemmu EOHM 05Hm> musumnmquQ .w¢ mocmummmu Eoum mCHm> musumumqum 01.52 adv mmfi oma .m.e .mmanama odomumma £1.55 Heav mmfi m1.aa pasv mmfi mmuem .m.s 1.52 m.ov 4m A.ae H.ov m.mm 1.25 5.0HV wmum.mm 1.55 w.av m.~m-m.mm 1.25 m.ov «Hum.mH 1.85 H.ov m.mmumm 54.84 .m.& 1.55 m.ac mmuem “.25 0.6V 56 1.25 o.mv mmum.mm 1.25 n.mv m.ma mCHEmHmqunahCmnmlzIOmonuHClz mCHEmHMNCmQH>QOHm0mHIzlomouuHClz mCHEmHhquQHwaumlzlomouuHClz mCHEmHmquthsumEuzIOmouuHClz mCHHHCMammoumomHIZTOmouuHClz mCHHHCmHmnumIZIOmouuHCuz mCHHHCmHMCumEIzIomouuHClz mCHEmawmonmomHHUOmouuHCIz mCHEmHhuSQquwulahnumEOmouuHCIz mCHEmHhuCQIClamnumEOmouuHClz mCHEmHmmoumomHahsquOmouuHClz wCHEmHhaumahnumEOmOHUHCIZ mCHEmHmnumEHoomouuHCuz o o .uHa mCHEmmOHUHClz mmCHEmmOHUHan mo muCHom mCHuHmE UCm muCHom mCHHHom .mm mHQma 115 was then heated to reflux. After overnight reflux the re- action mixture was allowed to cool to room temperature. A water trap was then inserted between the condenser and the flask to collect the water carried over with the refluxing xylene. When approximately 10 ml. of water was collected, the remaining xylene and unreacted formic acid were removed under vacuum. No attempt was made to purify the tert-butyl- formamide. The yield of crude tert-butylformamide was 50.0 g. (80%); reported (45) b.p. 650 (1 mm.). Preparation of Methyl-tert-butylamine hydrochloride. Into a two liter, three-necked, round-bottomed flask fitted with a reflux condenser, Tru-bore stirrer and pressure equalized dropping funnel was placed 48.0 g. (1.25 mole) of lithium aluminum hydride and 600 ml. of anhydrous ethyl ether. The flask was then placed in an ice bath and a drying tube was attached to the top of the condenser to eliminate moisture. To the rapidly stirred mixture was added during a one hour period, a solution of 50.0 g. (0.50 mole) of tert-butyl- formamide in 100 ml. of anhydrous ethyl ether. After the ad- dition was completed the grey suSpension was stirred overnight at room temperature and then held at reflux for six hours. Work-up consisted of adding 40 ml. of water, followed by 200 ml. of 2N sodium hydroxide to the cooled solution. The ether layer was decanted from the white solid and dried over an- hydrous magnesium sulfate. Anhydrous hydrogen chloride was then bubbled through the dried ethyl ether extract until all 114 the amine hydrochloride precipitated (1 hour). The white solid was filtered and dried under vacuum. The yield of methyl-tert- butylamine hydrochloride was 29.5 g. (80%), m.p. 251°; reported (45), m.p. 252-2540. Preparation of N—nitrosomethyl-tert—butylamine. A solu- tion of 29.5 g. (0.24 mole) of methyl-tert-butylamine hydro- chloride, 25 ml. of glacial acetic acid and 53 ml. of water was added to a 500-ml., three-necked, round—bottomed flask fitted with a reflux condenser, Tru—bore stirrer and pressure equilized dropping funnel. To the stirred reaction mixture 45.5 g. (0.66 mole) of sodium nitrite dissolved in 76 ml. of water was added over a thirty minute period. During the ad- dition the reaction mixture was maintained at 25-500. After stirring at room temperature for thirty minutes, 90 ml. of 10 N sodium hydroxide was added to the cooled solution. The material was extracted with five 10 ml. portions of ethyl ether, dried over anhydrous magnesium sulfate and concen- trated. Fractionation yielded a yellow liquid, b.p. 57—580 (1.5 mm.), 18.56 g. (67%); reported (45), b.p. 660 (5 mm.). Preparation of Benzylacetamide. Freshly distilled benzyl— amine (15.0 g., 0.14 mole) and reagent grade glacial acetic acid were refluxed for four hours in a 100-ml. round—bottomed flask fitted with a four inch air condenser wrapped with asbestos tape. Distillation of the white semi-solid yielded a white solid, b.p. 119-121 (0.6 mm.). m.p. 61—620, 7.42 g. (56%): reported (47), m.p. 60.4—61.40. 115 Preparation of N-Ethylbenzylamine. Into a 500—ml., three-necked, round—bottomed flask fitted with a reflux con— denser, Tru—bore stirrer and pressure equilized dropping funnel was placed 5.79 g. (0.10 mole) of lithium aluminum hydride and 200 ml. of anhydrous ethyl ether. To the stirred mixture, cooled in an ice bath, was added 7.40 g. (0.049 mole) of benzylacetamide dissolved in 100 ml. of anhydrous ethyl ether. After the addition was completed, the mixture was refluxed for 16 hours. The reaction mixture was hydrolized with 10 ml. of water followed by 50 ml. of 2 N sodium hydroxide. The amine was extracted with ethyl ether and dried over ane hydrous magnesium sulfate. Anhydrous hydrogen chloride was bubbled through the anhydrous ether solution yielding a white solid, m.p. 164°, 6.60 g. (88%); reported (48), m.p. 184°. Preparation N-nitroso-N-ethylbenzylamine. A solution of 6.80 g. (0.04 mole) of N-ethylbenzylamine hydrochloride and 15 ml. of glacial acetic acid was added to a 100-ml., three- necked, round-bottomed flask equipped with a Tru-bore stirrer, reflux condenser and a pressure equalized dropping funnel. To the stirred mixture was added 8.50 g. (0.12 mole) of sodium nitrite dissolved in 20 ml. of water. The pot tempera— ture was maintained below 100 during the addition. The mix- ture was then stirred at room temperature for three hours, cooled (ice bath), neutralized with 50 ml. of 10 N sodium hydroxide, extracted with ethyl ether, and dried over an- hydrous potassium carbonate. Fractionation yielded a yellow liquid, b.p. 89.5 (0.7 mm.). 4.0 g. (67%). 116 B. Preparation of Aldoximes and Ketoximes Oximes were prepared by reacting the freshly distilled aldehyde or ketone with hydroxylamine hydrochloride and a suitable base (50). A large number of aldehydes and ketones were commercially available materials. 5-Methyl-2-isopropyl- butyraldehyde, cyclopentane carboxaldehyde and 5,5-dimethyl- butyraldehyde were prepared in this laboratory (51). F' Acetaldehyde oxime and 2-butanone oxime were purchased from g Matheson Coleman & Bell. Acetophenone, and 2-methylpropional- dehyde oximes were purchased from Eastman Organic Chemicals. 2,4,4-Trimethyl-5-pentanone and 2,2,4,4-tetramethyl-5-pentanone oximes were obtained from Merck Sharp & Dohme Research Lab. Two oxime preparations are described below. Tables 40 and 41 summarize the melting and boiling points of the aldoximes and ketoximes. Preparation of Cyclohexanecarboxaldehyde oxime. Into a 500-ml. round-bottomed flask equipped with a reflux con- denser were placed 10.0 g. (0.14 mole) of hydroxylamine hydrochloride, 40.0 g. (0.70 mole) of potassium hydroxide pellets and 200 ml. of 95% ethanol. Cyclohexanecarboxaldehyde (10.0 g., 0.08 mole) was then added dropwise via the con- denser. The reaction mixture was heated and maintained at reflux for 1.5 hours. The solution was then poured onto , 250 ml. of water, extracted with ethyl ether and dried over anhydrous potassium carbonate. Fractionation yielded a 117 .m¢ mUthmmmH Eoum mmsHm> musumumUHQm m A.EE m.mv mulmm A.EE m.HV oblmw A.EE w.HV mm A.EE n.mv Hm A.EE owv omlmw A.EE mHV mmlwm A.EE my monao mownmpHmxonumommemCoHuxo momsmUmeonumomCmeCmmoHuwo Hmcmxmcasrumzm moxrmoflmumam>axrumz-m mourmonHSuonaxrumzum mUNCmUHmumpCQHmmoumomHlmlHmnu®2Im oomrmoaoumuonamrumnm mowH IIIII mUmCmUHMCOHmoumH>£u02|N mm.mm m.mmumm .m.E mpmnmUHmumomHhCmnm ((((( 1.55 mav om oomnmoamumosnamnumsfloum.m m.m¢ .o.e omuoe .o.e MA.EE mmhv HmH A.EE owv Halom mphgmUHmuhusnamnumZIm 0A.EE man mmH A.EE dwv mm mvwnmpHmumusm 0A.EE OOHV on A.EE mwv mmlmm w©>CwUHMC0Hmoum mod 56 .m.e oomrmoflmumoa O o .qu O o.mQO 00>Cm©H< mmEHxO©H< mo muCHom mCHuHmz 0C0 muCHom mCHHHom .o¢ magma 118 .om oUCmummmu Eoum mmSHm> musumumuHHQ .mw monummmu Eonm mmsz> musumnmqum mowlmw Mm.E A.EE mHv wleme mCOCmmoumHhCmCm omume .m.e mom .Q.E A.EE NV OHHImOH 0Cocm£mouwusm em-mm .o.e emumm .d.e MA.EE mmv mmH A.EE m.mv mOHImOH 0C0C0£QOHmoum mom mmumm wCOCmCmoumUC lllll Hmfi:m.mma macamucmmnmnamandamuuweuw.6.m.m meH ¢¢HIm¢H mCOCMUCmmIMIthumEHHBId.N.m mmmH A.EE NHV mmumn mCOCmucmmlm 04> m.moueo .m.e mcocouonumuamnumsfloum.m mmmfi-ema moaufioa oooeooonumanrooz-m mNmH NmHIomH mCOCmusmlm Oimam .Q.E mm .Q.E mCoumU< o o .uflq o o .mno weepmx mmEHxOumK mo muCHom mCHuHmz 0C0 muCHom mCHHHom .Hw oHQMB 119 colorless liquid, b.p. 69-75 (2.6 mm.), 7.47 g. (74%). Preparation of 5,5-Dimethylbutyraldehyde oxime. Into a 50-ml. round-bottomed flask fitted with a reflux condenser were placed 2.5 g. (0.059 mole) of hydroxylamine hydrochloride, 10 ml. of 10% sodium hydroxide and 1.0 9. (0.0096 mole) of 5,5—dimethylbutyraldehyde. The reaction mixture was refluxed for 11 hours, cooled, saturated with sodium chloride, ex- tracted with three 10 ml. portions of ethyl ether, and dried over magnesium sulfate. Fractionation yielded a colorless liquid, b.p. 60 (15 mm.), 0.71 g. (62%). C. Preparation of N-Methylhydrazones and N,N—Dimethylhydrazones A modified procedure of Braddock and Willard (52) was used to prepare the substituted hydrazones. When pure, hydrazone derivatives are colorless pungent smelling liquids. Analysis (n.m.r., u.v.) of the low molecular weight aldehyde N-methylhydrazones must be completed immediately after their preparation, since they turn yellow and then form crystals on standing in the refrigerator. Aldehyde hydrazones are known to dimerize at room temperature (55). Tables 42 and 45 summarize the boiling points of the N-methylhydrazones and N,N—dimethylhydrazones. The two preparations given below illustrate the procedure used. Preparation of 5,5-Dimethylbutyraldehyde—N,N—dimethyl- hydrazone. Into a 25-ml., two-necked, round—bottomed flask 120 Table 42. Boiling Points of N—Methylhydrazones Carbonyl Compound Obs. b.p. ° C Acetaldehyde 104 Propionaldehyde 110-111 5,5—Dimethylbutyraldehyde 70 (25 mm.) 2-Methylpropionaldehyde 150—151 2-Ethy1butyraldehyde 98 (50 mm.) Cyclohexanecarboxaldehyde 70 (4 mm.) Acetone 116 2-Butanone 129 5-Methyl-2-butanone 140 5,5—Dimethyl-2-butanone 50 (20 mm.) 121 Table 45. Boiling Points of N,N-Dimethylhydrazones Carbonyl Compound Obs. b.p. O C Acetaldehyde 91.5 Propionaldehyde 111—112 5,5—Dimethylbutyraldehyde 65 (50 mm.) 2—Methylpropionaldehydr 108 2-Ethylbutyraldehyde 148-152 Cyclohexanecarboxaldehyde 78 (6 mm.) Acetone 79 2—Butanone 115 5—Methyl-2-butanone 65-68 (60 mm.) 122 with a reflux condenser, drying tube and rubber syringe cap was added 5.0 g. (0.05 mole) of barium oxide, and a solution of 1.0 g. (0.01 mole) of 5,5-dimethylbutyraldehyde in 10 ml. of absolute ethanol. To the cooled solution 1.0 g. (0.016 mole) of dimethylhydrazine was added with a hypodermic syringe. After the initial exothermic reaction subsided, the reaction mixture was refluxed for one hour. The material was then cooled, filtered, extracted with additional ethanol and dried over anhydrous magnesium sulfate. Fractionation yielded a colorless liquid, b.p. 65 (50 mm.), 0.80 g. (56%). Preparation of Cyclohexanecarboxaldehyde-N-methylhydra- .5933. Into a 25—ml., two-necked, round-bottomed flask fitted with a reflux condenser, drying tube and a rubber syringe cap was added 7.6 g. (0.05 mole) of barium oxide and a solution of 0.92 g. (0.02 mole) of methylhydrazine in 5 ml. of anhydrous ethyl ether. A solution of 1.96 g. (0.02 mole) of cyclohexane- carboxaldehyde in 5 ml. of ethyl ether was added with a hypo- dermic syringe. The reaction mixture was allowed to stand overnight, filtered, extracted with ethyl ether and dried over anhydrous magnesium sulfate. Distillation yielded a yellow liquid, b.p. 70 (4 mm.), 1.2 g. (47%). D. Preparation of Phenylhydrazones 2-Butanone phenylhydrazone, b.p. 106-107 (2.2 mm.) and 5,5-dimethyl—2-butanone phenylhydrazone, b.p. 96 (0.7 mm.) were prepared according to well-known procedures (54.55). 125 E. Solvents Benzene-d6 was purchased from Merck Sharp & Dohme of Canada Limited. Carbon tetrachloride, benzene and cyclo- hexane were purified by well-known procedures (54,55). Acetonitrile and dimethylsulfoxide were dried over calcium hydride and distilled. All purified solvents were stored over molecular sieves in glass stoppered bottles. F. Spectra Nuclear magnetic resonance spectra were determined at 60 Mc. on a Varian Associates Model A—60 Analytical Spec- trometer. Undegassed samples were run in thin walled glass A-60 tubes using tetramethylsilane as the internal reference. Coupling constants (J values) were recorded at 50 c.p.s. sweep width. Recorded coupling constants are the average of at least three Spectral sweeps taken from low to high field strength and vice versa. Temperature studies were carried out using a Varian Associates V—6040 Variable Temperature Controller. Temperatures are accurate to i.2° C. Ultraviolet Spectra were taken on a Cary 14 Recording Spectrophotometer (Applied Physics Corporation). LITERATURE C ITED 124 (1) (2) (5) (4) (5) (6) (7) (8) (9) (10) 125 W. D. Phillips, Ann. N. Y. Acad. Sci., 70, 817 (1958). E. Lustig, J. Phys. Chem., 65, 491 (1961). G. J. Karabatsos, F. M. Vane, R. A. Taller and N. Hsi, J. Am. Chem. Soc., 86, 5551 (1964). W. D. Phillips, J. Chem. Phys., 25, 1565 (1955). L. H. Piette, J. D. Ray and R. A. Ogg, Jr., J. Chem. Phys., 26, 1541 (1957). W. D. Phillips, C. E. Looney and C. P. Spaeth, J. Mol. Spectry., 1, 55 (1957). C. E. Looney, W. D. Phillips and E. L. Reilly, J. Am. Chem. Soc., 79, 6156 (1957). G. J. Karabatsos, R. A. Taller and F. M. Vane, J. Am. Chem. Soc., 85, 2526 (1965). R. J. Abraham and J. A. Pople, Mol. Phys., 5, 609 (1960). a) G. J. Karabatsos and N. Hsi, J. Am. Chem. Soc., 87. 2864 (1965). b) S. Mizushima, T. Shimanouchi, T. Miyazawa, I. Ichishima, K. Kuranti, I. Nakagawa, and N. Shido, J. Chem. Phys., 21, 815 (1955). . c) I. Nakagawa, I. Ichishima, K. Kuratani, T. Miyazawa, T. Shimanouchi, and S. Mizushima, ibid., 20, 1720 (1952). d) A. Miyake, I. Nakagawai T. Miyazawar I. Ichishima, T. Shimanouchi, and S. Mizushima, Spectrochim. Acta, 15. 161 (1958). e) S. Mizushima, T. Shimanouchi, I. Ichishima, T. Miyazawa, I. Nakagawa, and T. Araki, J. Am. Chem. Soc., 78, 2058 (1956). f) R. W. Kolb, C. C. Lin, and E. B. Wilson, Jr., J. Chem. Phys., 26, 1695 (1957). g) S. S. Butcher'and E. B. Wilson, Jr., ibid., 40, 1671 (1964). h) K. M. Sinnot, ibid., 54, 851 (1961). i) C. Romers and J. E. G. Creutzberg, Rec. trav. chim., 75, 551 (1956). j) L. S. Bartell, B. L. Carroll, and J. P. Guillory, Tetrahedron Letters, 15, 705 (1964). k) E. B. Whipple, J. H. Goldstein, and G. R. McClure, J. Am. Chem. Soc., 82, 5811 (1960). l) E. B. Whipple, J. Chem. Phys., 55, 1059 P1961). m) A. A. Bothner-By and C. Naar-Colin, J. Am. Chem. Soc., 85, 251 (1962). n) D. R. Herschbach and L. C. Krishner, ipig,, 28, 728 (1958). (11) (12) (15) (14) (15) (16) (17) (18) (19) (20) (21) (22) (25) (24) (25) (26) (27) (28) (29) 126 R. M. Hammaker and B. A. Gugler, J. Mol. Spectry., 17. 556 (1965). M. Karplus, J. Chem. Phys., 50, 11 (1959). H. W. Brown and D. P. Hollis, J. Mol. Spectry., 15. 505 (1964). A. A. Bothner-By and R. E. Glick, J. Chem. Phy§,, 26. 1651 (1957). L. W. Reeves and W. G. Schneider, Can. J. Chem., 55, 251 (1957). J. V. Hatton and R. E. Richards, Mol. Phys., 5, 255 (1960). N. S. Bhacca and D. H. Williams, 5127 (1964). Tetrahedron Letters, V. S. Watts, G. S. Reddy and J. H. Goldstein, J. Mol. Spectry., 11. 525 (1965). B. L. Shapiro, S. J. Ebersol and R. M. Kopchik, J. Mol. Spectry., 11, 526 (1965). P. Diehl and R. Freeman, Mol. Phys., 4, 59 (1961). A. D. Cohen and c. Reid, J. Chem. Phys., 25, 790 (1956). L. W. Reeves and W. G. Schneider, Trans. Faraday Soc., 54, 514 (1958). J. V. Hatton and R. E. Richards, Mol. Phys., 5. 159. 155 (1962). R. A. Taller, M. S. Thesis, Michigan State University, 1965. H. Sait6 and K. Nukada, J. Mol. Spectry., 18, 1 (1965). L. A. LaPlanche and M. T. Rogers, J. Am. Chem. Soc., 85. 5728 (1965). L. A. LaPlanche and M. T. Rogers, J. Am. Chem. Soc., 86. 557 (1964). R. M. Moriarty, J. org. Chem., 28, 1296 (1965). A. A. Bothner-By, C. Naar-Colin and H. Gunther, J. Am. Chem. Soc., 84, 2748 (1962). (50) (51) (52) (55) (54) (55) (56) (57) (58) (59) (40) (41) (42) (45) (44) 127 A. A. Bothner-By and H. Gunther, Disc. Faraday Soc., 54. 127 (1962). R. J. Abraham and K. G. R. Pachler, Mol. Phys., 7, 165 (1965-1964). R. Glick and A. A. Bothner-By, J. Chem. Phys., 25, 562 (1956). S. Califano and W. Luttke, Z. physik. Chem. (Frankfurt) (N.F.). 5. 240 (1955). S. Califano and W. Luttke, Z. physik. Chem. (Frankfurt) (N.F.). 6. 85 (1956). I. N. Levine, J. Mol. Spectry., 8, 276 (1965). I. N. Levine, J. Chem. Phys., 58, 2526 (1965). N. L. Owen and N. Sheppard, Proc. Chem. Soc., 264 (1965). a) K. S. Pitzer and J. L. Hollenberg, J. Am. Chem. Soc. 76. 1495 (1964). b) J. M. Dowling, P. G. Puranik, A. G. Meister, and S. Miller, J. Chem. Phys., 26, 255 (1957). c) N. C. Craig and E. A. Entmann, J. Am. Chem. Soc., 85. 5047 (1961). d) R. A. Beaudet, J. Chem. Phys., 40, 2705 (1964). e) P. S. Skell and R. G. Allen, J. Am. Chem. Soc., 80. 5997 (1958). f) J. N. Butler and R. D. McAlpine, Can. J. Chem., 41. 2487 (1965). H. H. Jaffe and M. Orchin, "Theory and Application of Ultraviolet Spectroscopy," John Wiley and Sons, Inc., New York, N. Y., 1962, pp. 187-195. J. C. Evans, Spectrochim. Acta, 16, 428 (1960). A. T. Bottini and C. P. Nash, J. Am. Chem. Soc., 84, 754 (1962). B. M. Wepster, "Progress in Stereochemistry," Vol. II, edited by W. Klyne and P. B. D. de la Mare, Academic Press, Inc., New York, N. Y., 1958, chapter 4. F. M. Vane, Ph. D. Thesis, Michigan State University, 1965. C. E. Johnson and F. A. Bovy, J. Chem. Phys., 29, 1012 (1956). I I. (45) (46) (47) (48) (49) (50) (51) (52) (55) (54) (55) 128 D. F. Heath and A. R. Mattocks, J. Chem. Soc., 4226 (1961). J. Graymore, J. Chem. Soc., 1511 (1958). W. H. Carothers and G. A. Jones, J. Am. Chem. Soc., 47, 5051 (1925). I. Heilbron, et al. (edS.), "Dictionary of Organic Compounds," Vols. I-V, Oxford University Press, New York, N. Y., 1965. F. K. Beilstein, "Handbuch der Organischen Chemie," Spinger-Verlag OHG., Berlin. R. L. Shriner, R. C. Fuson and D. Y. Curtin, "The Sys- tematic Identification of Organic Compounds," 4th ed., John Wiley and Sons, Inc., New York, N. Y., 1956. N. Hsi, Ph. D. Thesis, Michigan State University, 1966. L. I. Braddock and M. L. Willard, J. Org. Chem., 18, 515 (1955). Th. Kauffmann, G. Ruckelshauss and J. Schulz, Angew. Chem. internat. Edit., 5, 65 (1964). A. I. Vogel, "Practical Organic Chemistry," 5rd ed., John Wiley and Sons, Inc., New York, N. Y., 1956. L. F. Fieser, "Experiments in Organic Chemistry," D. C. Heath and Co., 5rd ed., Boston, MaSS., 1957.