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ABSTRACT

ELASTIC BEHAVIOR OF

NONCRYSTALLINE NETWORKS

BY

Henqing Tang

It is shown that the random resistor problem can be

mapped on to a related network of Hooke's springs of natural

length zero stretched on a frame. The conductance of the

network is equivalent to the pressure on the frame. This

new viewpoint leads to a useful visualization of conduc-

tivity in random networks. The mapping can also be used on

tight binding Hamiltonians. Chapter 1 presents the general

formulation of the mapping, as well as the results for the

conductivity and superconductivity of random networks in two

dimension. In chapter 2, the method is applied to the

Penrose Tiling network or two dimensional quasicrystal. The



advantage of the mapping is explored to establish a sys-

tematic way to calculate the diffusion constant. The result

is compared with the diffusion constants given by other

techniques, i.e. the Equation of Motion technique for the

scattering spectrum S(q,E) and density of states and a

direct evaluation of the diffusion constant by examining

Random Walks. Chapter 3 extends the underlying ideas of the

mapping to a deeper level and proposes a "tennis racket"

model which bridges naturally the conductivity and elas-

ticity percolation problems. A continuous phase diagram is

obtained. The results at two extreme cases corresponding to

conductivity percolation and pure central force percolation

respectively agree with the previous research. The tennis

racket model contributes much more enriched information to

the macroscopic elasticity of noncrystalline materials.
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PREAMBLE

Traditionally, solid state physics has meant crystal

physics. Yet, many of the materials we deal with do not

have the simplicity and regularity found in crystals. In

modern technology, noncrystalline solids play a very impor-

tant role, for instance, the amorphous semiconductor in

solar cells, the ultratransparent optical fibres in telecom-

munications, and the ubiquitous everyday uses for various

kinds of glasses. In recent years, research in noncrystal—

line solids has been one of the most active fields in

condensed matter physics.

It is well known that the mathematical amenities of the

solid state theory (Brillouin zones, Bloch states, group-

theoretical selection rules, etc.) are associated with the

long range translational periodicity in the crystalline

solid state. It is an intellectual challenge to achieve

physical insights in noncrystalline materials which have no

translational symmetry. While some of the traditional ap-

proaches remain useful in noncrystalline materials, this

challenge has been met mainly by new approaches. (Zallen

1983; Elliott et al 197“)



Percolation theory is one of the new theoretical tech-

niques applied to strongly disordered system. (Zallen 1983;

Stauffer 1985; Straley 1983) It deals with the effects of

varying a parameter such as the concentration or density in

a random system. When increasing (or decreasing) the con-

centration, a sharp phase transition is found at whikfli long

range connectivity of the system suddenly appears (or

disappears). The basic concepts in percolation theory can

be understood from the following example. Consider the

fluid flow in a porous medium which is modeled as a network

of interconnected channels. Some of the channels are

blocked at random. Those unblocked channels constitute a

path through which the fluid can flow. A typical question

in percolation is: what fraction of the channels must be

blocked in order to prevent the fluid flowing through the

whole medium? 0r equivalently, one can ask, what is the

threshold concentration of the unblocked channels that

guarantees a finite probability of the existence of a perco-

lated cluster of unblocked channels which spans the whole

system. Since the elements in consideration are the chan-

nels (bonds), the problem is called "bond percolation". Its

analogy is "site percolation" where instead of channels

being blocked, the vertices (sites) of the network are

pluged. Whenever a site is pluged, no fluid can flow

through the channels adjacent to this site. Both bond and

site percolation problems described here are determined by

whether or not there exist a geometrically connected path



through the system. Therefore, this kind of percolation

problem is named connectivity percolation. The concentra-
 

tion pc at which the dramatic change in tn“; long range

connectivity occurs is called the percolation threshold.

This kind of percolation transition can be applied to

several varieties of transport phenomena occuring in amor-

phous solids, for instance, the insulator/metal transition

in conductor-insulator composite material; the

disconnected/connected transition in resistor networks; the

normal/superconducting transtion in composite

superconductor-metal materials. (Zallen 1983)

One of the most prominent applications of percolation

theory in condensed matter physics is the glass transition.
 

It is widely believed that the structure of amorphous solids

whose bonding is primarily covalent is well described by

some form of covalent random network (Zallen 1983).

Examples are Se1_ As , Se _xGex and Se
x x 1

Each atom (with coordination n) represents one n-functional

1_x_yAsxGey, etc.

unit. Two neighboring atoms are linked by a covalent bond.

For example, Se (n=2) atom can form covalent bonds with two

other atoms, while Ge has coordination number four. The

desired fractions of x and 1-x are achieved through the cor-

rect compositions and the melt-quench process. ILt is easy

to relate this fraction x to the concentration probability

in an appropriate percolation model. Then a natural quesm-

tion is how do the elastic properties depend on the fraction

x? (Thorpe 1983)



The connection between the elastic properties of a net-

work and percolation was first established in a special type

of glass transition: the sol » gel transition. (de Gennes

1976; Stauffer 1976) It is convenient to use the elastic

properties to describe this transition since it naturally

captures the essential feature of the condensation. In a

gelation process, the elastic shear modulus vanishes for the

sol (a liquid), begins to grow at the sol . gel transition,

and continues to increase in the gel (solid) phase. One can

see that this transition in the macroscopic elasticity is

intimately linked to the percolation process involving the

cross-linking between monomers. As the polymerization reac-

tion goes on and more cross-links form, larger and larger

molecules appear. Eventually, and abruptly, at a critical

stage in the condensation process, an "infinitely extended"

molecule appears, a huge molecule whose extent is limited

only by the size of the vessel in which the reaction is

taking place. Only this gel macromolecule contributes to

the elastic shear moduli. It was pointed out by de Gennes

that if the interaction between nearest neighbors is modeled

by an isotropic elastic force, then the elastic modulus of

the gel is exactly equivalent to the conductivity of the

resistor network. Therefore the sol + gel transition

belongs to the same universality class as connectivity

percolation.



A new universality class of percolation was found in an

elastic network when the interaction between nearest neigh-

bors was modeled by pure central forces. (Feng & Sen 198A)
 

In this model, the bond between interacting sites is re-

placed by an ordinary Hooke's law spring. Both numerical

simulation and analytical results showed that with purely

central forces, the threshold pcen at which the elasticity

of the network vanishes is significantly higher than the

threshold pc of the corresponding isotropic force problem.

(Feng & Sen 198A; Feng, Thorpe & Garboczi 1985) This tran-

 sition is called rigigity_percolation as opposed to

connectivity percolation. In this new class of problem, the

elasticity of the network vanishes even when the whole net-

work remains well connected geometrically. This phenomena

is explained below. In the pure central force network, when

bonds are removed from a pure lattice, some local floppy

regions are created. These geometrically connected struc«-

tures are called floppy since they are not able to transmit

elastic forces. Eventually these local floppy regions

prevent the rigid regions from percolating and the system

loses its elasticity.

Actually, what we have considered as pure isotropic

forces (connectivity percolation) and pure central forces

(rigidity percolation) are two extreme cases of the Born

model:

V = % (0-8) X [(ui-GJ)-rij]2 giJ

iJ



where the first term or 3:0 case is the pure central force

and the second or 8:0 case is the pure isotropic force. A

crossover is found when both central and isotropic forces

are included. (Feng & Sen 198A; Schwartz et al 1985)

However, the Born model has some troubles when one at-

tempts to relate the macroscopic properties of amorphous

materials to the microscopic atomic structures. First, the

Born model is not rotationally invariant when 8 is nonzero.

(Keating 1966) Second, the internal stress is neglected,

which is not justified. It is well known that all real

materials have internal stresses. One expects the stress-

induced scalar elastic energy to be large and even dominant

in many cases. It is unclear how the percolation transition

is modified when the internal stresses of the material are

involved.

This inspired us to propose and study a new model —--

the tennis racket model, which is defined as the central-

force network under tension. In Chapter 1, we establish a

mapping between the resistor network and the central force

network under very large tension (which can be imagined as

the system having springs with natural length zero). The

validity of this mapping is tested on several well under-

stood systems. One result of this mapping is that it

reduces the electrical problem to a geometrical problem and

hence provides a useful visualization of the conductivity

process. This advantage is explored in Chapter 2 in the cal-

culation of the conductivity of the 2 dimensional



quasicrystal or Penrose tiling. (Shechtman et al 198“;

Socolar and Steinhardt 1986) Another result of the mapping

which may be more important, is that connectivity percola-

tion and rigidity percolation, which have been widely

accepted as belonging to two different universality percola-

tion classes, are intimately tied together. In other words,

as soon as the internal stress is considered, these two

classes of percolation problems occur naturally in a pote-

tiongl inyggient central force spring system. Chapter 3

gives a general discussion of the elastic behavior of such a

system. We found that connectivity and rigidity percola-

tions are actually two special cases of the central force

network under extremely large tension or zero tension

respectively. As the tension is varied, the percolation

threshold evolves smoothly between these two limits of pc

and p We believe that the extensive results presented
cen'

here for the elastic behavior of the noncrystalline network

under tension will be useful in understanding many of real

systems like glasses (Thorpe 1983, He & Thorpe 1985) and the

newly discovered high Tc superconductors. (Khurana 1987)



Chapter 1. Mapping between Random Central Force

Networks and Random Resistor Networks

Section 1.1 Introduction
 

The equilibrium voltage configuration of a random

resistor network with an applied external voltage source can

be obtained through the minimization of the electric energy

stored in the network with respect to the voltage at each

node. This leads to the Kirchoff's equations, which can be

solved numerically as accurately asldesired. This problem

is equivalent to many other physical problems.

One example is the spin waves in a Heisenberg ferromag-

net at low temperatures. With magnetic atoms on nodes of

network, the voltage 111 is analogous to a tilt angle for the

magnetic moment i. and the bond conductance maps onto the

ferromagnetic exchange integrals. It was shown that the spin

stiffness of such systems is the electric conductivity of

the corresponding electric network. (Kirkpatrick 1973)

Another example is a gel obtained by polymerization of

z-functional monomers. Modeled by an isotropic force con-

stant, the elastic modulus of a gel is analogous to the



electrical conductivity of an electrical network. The poten-

tial V represents one component (say Xi) of the elastic
i

displacement of the i£fl monomer from its rest position on

the lattice. (de Gennes 1976)

In this chapter we explore yet another mapping. We will

map the random electrical network to a central force

network. This mapping is slightly more subtle and leads to

some new physical insights.

Our purpose in this chapter is primarily to develop and

explore the mapping. The organization of this chapter is as

follows. In section 1.2, we develop the mapping and formula.

We also show the relationship to the low energy density of

states of’a tight binding Hamiltonian. In section 1.3, we

present the results for dilute resistor networks on square

and triangular lattices as an illustration of the centroid

algorithm based on the mapping. In section 1.“, we use the

new algorithm to study the percolation properties of a 2-

dimensional random network. A dual random network is

constructed and it is shown how the superconducting/normal

network on the dual lattice maps on to the dilute resistor

network on the original lattice and vise versa. The

relationship of this work to rigidity percolation is dis-

cussed in section 1.5.
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Section 1.2 General Formulation

1.2.1 The ngping

To illustrate the mapping, let us consider first a

resistor network in which a voltage difference V is applied
0

across the two opposite sides. The current flows in the x

direction across the voltage difference V0. The conduc-

tivity Gxx is defined by E = Gxxvg where E is the electrical

energy stored in the resistor network. Let us label the

sites by i,j etc. so that a current Ii flows in the ij bond

J

which has a conductance oij' Sites that are not connected

V have 01.1 = 0. Current conservation at each site leads to

{111:0 (1.1a)

J

which using Iij - oiJ(Vi- VJ), where V1 is the voltage at

site i, leads to

X 01J(Vi- VJ) = 0 (1.2a)

J

or

E a V
iJJ

v1-1—Z——- (1.3.)
o

iJ J

The total energy stored in the network is

Z °ij(Vi' VJ)2 = c v2 (1.ua)

(i,j) xx 0

r
!
)

u
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where the angular brackets denote that each bond is only

counted once in the sum. The conductivity is given by

_ _ 2 2
cxx - <i§j> °13(V1 VJ) /vO (1.5a)

Now let us imagine a central force (Hooke) spring net-

work in which each spring has natural length 5359. The

whole system is held on a frame to prevent it collapsing to

a point. For a large system the shape of the frame is ira-

relevant, but it is convenient to imagine it to have a

square shape. The equilibrium condition for each site i is

that the total force acting on it vanishes. We have in the

x direction

 

X KIJ(R1x- RJX) = o (1.2b)

J

where R1 is the position of the ith atom and Ktj is the

spring constant. From this we see that

E Kij ij

Rix : (1.3b)

2K1,

J

There are equations similar to (1.2b) and (1.3b) in the y

direction. The total energy stored in the spring system is



1
- 2 [Kxx + yy] L (1.ub)

where L is the length of the sample and

2 2

K = K R - R /L 1.5b)
xx <i§j> ij ( ix jx) (

and a similar expression for Kyy'

We see that the (a) and (b) equations can be made to

coincide through the mapping,

oij . K1J

vi + nix (1.6)

Gxx ‘. Kxx

There is an important subtlety in this mapping as-

sociated with the boundary conditions. In the resistor

problem, the net current flow is in a particular direction;

x in the case considered here. This leads to the conduc-

tivity G In the spring problem, the frame acts equally
xx'

in the x and y directions so that xxx and Kyy cannot be ob-

tained separately. This is not a problem for high symmetry

networks, where the tensors G08 and KaB are proportional to

the unit tensor. We shall refer to such networks as

electrically isotropic. We shall only discuss such networks
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in this chapter. These include square nets, random square

nets, triangular nets, random triangular nets and the random

' networks considered in section 1.“. We are thus led to

_ _ 2 2
- (1%) x” (Ai AJ) /L (1.7)

The conductance can be calculated from the spring network

via eq.(1.7) and the equilibrium condition (1.2b) that may

be written in vector form

{K(§-A)=o (1.8)
J11: j

In ZD, the conductance and conductivity of a square

sample are the same. For a sample of hypercubic shape in d

dimensions (volume Ld), the current flows between parallel

hyperplanes (area Ld'1) so that the conductance o is given

by

d-2

o = G/L (1.9)

where 0 comes from eq.(1.7). Note that eq.(1.9) holds for

electrically isotropic networks. Of course eq.(1.7) must be

modified so that the trace is over all C! dimensions and L2



1“

in eqs. (1.“b), (1.5b) and (1.7) must be replaced by Ld so

that

Tr’c’ . K. (A - A )2/Ld (1.7a)

<i§j> IJ 1 J

and Eq. (1.“b) can be extended to read

E = % Tr 'K’ L2

. % Tr ’c‘ L2 = g c L2 = g o Ld (1.“c)

The pressure P can be obtained from

p = 2E3 . -E%§ = o . (1.10)

3L L

Thus the conductivity is obtained from (1.7a) while the egg-

ductance is equivalent to the the outward pressure needed to

prevent the system collapsing to a point. For 2 dimensional

systems, this pressure is independent of the size of the

system L. For 1 dimensional systems, the pressure increases

with size linearly, whereas for d > 2, the pressure

decreases as the size gets larger. The total 32123 required

to prevent the system collapsing, ilflili increases with

size.
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It may be convenient in some cases to have the spring

network stretched on a circular frame or tennis racket, so

.that the boundary condition is isotropic.

1.2.2 Tight Binding Hamiltonian

A useful alternative viewpoint is given by the tight

binding Hamiltonian

H = l I ‘1} [11><1| — 11><31] (1.11)

1.1

th
where the li> is a localized 3 state on the 1 site (Alben

et a1 1972). The overlap integral K is the same as the

1J

spring constant in Eq. (1.2b). It is convenient to take a

(large) unit supercell containing n atoms. This cell is

repeated periodically. Each atom is designated by a label-

ing (2,n) where 2 designates the cell and n is the atom

within the cell. This label pair is conveniently denoted by

i .. (2,n). We can use Bloch's theorem on the supercell

translations R2 to transform to a new basis

16-h.

lq,n>:—: {e 2+“ l9.+n> (1.12)

2

1

(No

The total number of atoms N = n Nc where Nc is the number of

supercells. The Hamiltonian (1.11) is Block diagonal in

this basis and within a 5 block the matrix elements are

given by
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' ' ' N , 11'
c 22

(1.13)

where atoms 1 and i' are connected by the hopping matrix

element K11,. These two atoms may either be in the same

unit cell or in adjacent unit cells.

The Hamiltonian (1.11) deliberately has related

diagonal and off diagonal terms so that the band edge is at

E = 0. The eigenvector corresponding to zero energy is

denoted by |0>

IO) = -l— i 16 = O,n> (1.1“)

n

Labeling the other n-1 eigenvalues at q = 0 by E we use
e!

the matrix analogue of hop perturbation theory (Harrison

1980). Given

<5.n|H|5.n'> = %; 1Z1,K11'I'15‘(§1' fii')

.31: (5411- 11.112} (1.15)

then to second order

 

1 . 2

£9 = 2N 1X11 K11'[Q.(§1- fii)]

6411-11,.) 2
- I Z x , _ (5:0,nlE > /E (1.16)

e l1,1' 1‘ Nc/n e I e
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There is no term linear in q in (1.16) as this vanishes when

the sum over all sites is done. If we are interested only

in the density of states p(E),then distances are irrelevant.

We imagine forming an auxilau lattice in which the second

term in (1.16) vanishes. This can be achieved if

{x (A-fi)=o (1.17)
31.1 1 J

this is the same condition as (1.8) and defines the same set

of new atomic positions R1. Thus the sites in the auxilary

lattice are coincident with the positions of the sites in

the central force network discussed in subsection 1.2.1

In the auxilary lattice

sq = g3 .{ xiJ [q-(Ri- 1J112 (1.18)

1»J

when i,j go over all sites. The unit supercell is not ex-

plicitly appearing in the summations in Eqs. (1.17) and

(1.18). Note that (1.17) can be obtained by minimizing the

energy in Eq. (1.18) with respect to the R1 if the R1 are

initially regarded as arbitrary.

From (1.17) we may define principal axes where

a :1) q2+D q (1.19)
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The area of the ellipse containing states up to an energy E

is IE/lenyy so that the low energy density of states is

L I

p(E) = [5;] —:::::: (1.20)

nannyy

where L2 is the area of the sample. This can be written as

L 2

9(8) = [5;] ' (1.21)
 

lbet'b’

where .D’ is the diffusion matrix which from (1.18) and

(1.19) has matrix elements

1

Da8 ' 2N izj Kijmia - Rja)(RiB - RjB) (1'22)

’

Note that

0-9 L2 0-9

Tr D =N—TI‘G (1.23)

where Tr‘G‘is defined by Eq. (1.7). For electrically

isotropic 2d systems we also have

Jnet‘n‘ = % Tr D’

L2 0 -0

: a T!‘ G (1.2“)



where o is the conductance. Hence

p(E) = 5%; (1.25)

This density of states is normalized over all energies to

the number of sites N, and the low energy part depends only

on the conductance 0. Note that this result is very general

and applies to any network that behaves as a continuum in

the long wavelength limit. This excludes fractals. The
 

geometry of the network enters only through 0.

These equations are easily generalized to higher

dimensions. For Eqs. (1.11) to (1.18) there are no changes.

We have to modify Eq. (1.19) to

2

sq - X Daaqa (1.19a)

a

where a goes over the d principal«directions. The density'

of states given in Eqs. (1.20) and (1.21) becomes

2 2

p(E) = L (L E] (1.21a)
 

uuT(d/2)/Det’p’

where P(d/2) is the Gamma function. Equations (1.22)-(1.23)

are unchanged but (1.2“)-(1.25) become
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«pet'p‘ = % Tr‘p’

L2 0- .0

=‘d—N TPG (1.21‘3)

- 1:1
' N

and hence

d/2-1

N 1 E

p(E) = n10 r(d/2) [3;] . (1.25a)

Thus as in 2D, the low energy density of states is deter-

mined by the conductance o and the total number of atoms N

in the network and p(E) is an extensive quantity. An atom

is counted as being in the network if it is coupled to the

backbone or conducting path. This includes regions that are

connected to the backbone but carry no current. They

nevertheless contribute to the inertia and so must be

counted. Isolated regions that are not coupled to the back-

bone are ignored.

This method of using the tight binding Hamiltonian

(1.11) to derive the centroid condition (1.17) is less

satisfactory than mapping onto central force springs of

natural length zero. This is because we had to introduce a

"supercell" in order to have a a vector to work with. The

final answer did not explicitly contain reference to this



21

supercell and so we regard the result (1.25) as being quite

general and true for any conducting network that is

homogeneous on distances greater than some correlation

length g. The derivation that lead to (1.25) is only valid

for q<<§'1 and hence for vanishing by small energies as

5 ~ 0. We believe the result is actually much more general

as the relevant length g is probably not the supercell size

but rather the distance that characterizes the structural

correlations in the random network. A similar quantity g is

commonly used in percolation theory. (Kirkpatrick 1973)

There is no easy way around this problem in a dynamic ap-

proach as given here.

In the static approach in 1.2.1 of this section, every-

thing is rigorous. In order to get the dynamic result

(1.25) one has to assume an Einstein relation between the

conductance and the diffusivity. (Kirkpatrick 1973) It is

here that the problem is glossed over. This area needs fur-

ther study.
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Section 1.3 Illustrgtion of the Mapping

and the Centroid Algorithm

1.3.1 Centroid Algorithm

Based on the mapping described in last section, we

developed a new algorithm to calculate the electric conduc-

tivity of’the random resistor networks, which is called as

Centroid Algorithm. This name comes from the fact that the

condition

E KiJ (A1 - AJ) = o for each 1 (1.8)

is just the condition that every site is at the centroid of

its nearest neighbors that are present if K takes only two

1i

values K (with probability p) and 0 (with probability 1—p).

We summarize the centroid algorithm as the following:

(i) From the topology of a given resistor network, es-

tablish the central force elastic network by replacing a

Hooke's spring with natural length gegg at the place of each

resistor with the spring constant K1J~ oij’

(ii) Choose an appropriate boundary condition to

prevent the elastic network from collapsing. Two boundary

conditions usually used are the fixed frame and the periodic

boundary condition.
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(iii) Relax the elastic network until the energy stored

in the springs is minimized. Specifically each site in the

 

 

network is iteratively moved according to: .

(n)

‘11 fi)
R (n+1) = 1" (1.88)

1 )_ 1cU

J

For the isotropic case:

Kij - K with probability p

Kij = 0 with probability 1-p

(1.8a) is simplified to:

a (n)

(n+1)_ j J

A1 - 21 (1.8b)

where 21 is the co-ordination at site 1.

(iv) Finally, the conductivity G is proportional to the

mean square nearest neighbor distance in the relaxed

network:

6 ~ Z 513 / L2 (1.26)

<i,j>

where 61J = I R1 - RJI is a nearest neighbor distance.
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1.3.2 Simulation Results on Square and Triangular Net

Before we apply this method to any new structure, we

use it on two well studied 2-dimensional systems: square net

and triangular net. Let us consider the network shown in

Figure 1.1a, where all the nearest neighbor bonds have

resistance 061 and a fraction 1-p have been randomly

removed. In the percolation problems one really wants to

study the system in the thermodynamic limit (Noon). Periodic

boundary conditions are better than any other kind as every

atom is properly coordinated. He therefore periodically

repeat the "supercell" in Figure 1.1a. Bonds are removed

randomly in the reference supercell and also in all.<3thers.

Rather than put the network on a frame when we go to the

central spring model, we hold the supercell repeat vectors

cgnstgnt. This is equivalent to an external pressure and

more convenient in practice. The network is relaxed itera-

tively, site by site, until the energy stored in the springs

is minimized. Figure 1.1b shows the relaxed network of“

Figure 1.1a. It is observed that isolated islands do not

contribute to the conductivity and so relax to points and

the side groups on the backbone that do not carry current

also relax to points. Thus the conducting backbone is

clearly and simply exposed by this algorithm. Those bonds

that carry most current are stretched the most and so make

the largest contribution to G.
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In Figure 1.2 we show some typical results for various

values of p. Note that many of the long straight connec-

tions in Figure 1.2 are actually made up of many bonds and

collapsed side groups. Below pc, the whole network is

broken and collapsed to many independent points, whikfli cor-

responds to the vanishing of the conductivity. The networks

for p = 0.70 in Figure 1.2 and Figure 1.1a are examples of

different random configurations.

In Figure 1.3 we compared our simulation results for

the conductance for site percolation on the square net with

the result of Waston and Leath (197“). It can be seen that

our results lie close to the effective medium theory which

agrees well with a direct solution of Kirchoff's laws except

very close to pc. The tail that extends slightly below

p0 = 0.59 in our simulations is due to finite size effects.

As our method is quite general, it works equally well

for bond or site depleted networks. The simulation results

on a square net and on a triangular net, for both site and

bond percolation problems, are shown in Figures 1.“ and 1.5

respectively. The thresholds pc agree well with previous

work. Appendix A collects together the known results for

the effect of a single defect into a single compact form

that can be used in any lattice in the static limit. The

result is used to calculate the effect of single defect,

either bond or site, on the conductivity of various lat-

tices, as well as the corresponding pc.
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Before leaving this section, we consider a general two

dimensional network with nearest neighbor conductors of mag-

nitude 00. The relaxed network and tight binding model

[using Eqs. (1.17) and (1.18)) with the nearest neighbor K

iJ

. 00, leads to

q2

2
Eq - “N 00 .Z 61J . (1.27)

1.J

From this the density of states is

p(E) = NLz/(noo X 5.2] (1.28)
1J

i.J

and hence from (1.25), the conductance o is given by

)1 513

0 = 00 l‘J-§—— (1.29)

“L

This is a convenient form. For the square net with N atoms

and nearest neighbor distance a, we have L2 = Na2 so that

0 = 00 (1.30)

Similarly for the triangular net

0 = J3 00 (1.31)
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and for the honeycomb lattice

0 = 0 / J3 . (1.32)
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Section 1.“ Rendom Networks

1.“.1 Conductivity of 3-fold Co-ordinated Random Network and

its Dual Network

We consider a random network where every site is three

fold coordinated as shown in Figure 1.6a. This 800-site

network was constructed by successively disordering a

honeycomb lattice while maintaining the coordination. (He

1985) The lattice was then relaxed to make lengths as equal

as possible. There is a small (~51) variation in the bond

lengths. We give all the bond conductor equal magnitude 00.

We could have made the resistance proportional to the bond

length but this seems unnecessarily complicated.

In order to calculate the conductivity, every atom is

moved to the centroid of its three neighbors. The relaxed

network is shown in Figure 1.7a. The changes are surpr-

isingly large. The large polygons have grown and the small

polygons have shrunk. There is also much more variability

in the bond lengths than in Figure 1.6a.

Because the supercell of the sample shown in Figures

1.6a and 1.7a is not a square some additional care must be

taken. The supercell shown has repeat distances Lx and Ly’

where Lx/Ly = 2/(3 = 1.16. These are held fixed during the

relaxation. Minor changes in the previous formalism can

easily be made for such a network. It can be shown that
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Eq. (1.29) holds for any electrically isotropic network, in-

dependent of the shape, if L2 is replaced by the area A.

U

o = o 14-J— (1.29a)

We use the relaxed network of Figure 1.7a, to compute a =

0.555 00. This should be compared to o = 0.577 00 for the

honeycomb lattice Eq. (1.32).

We also constructed the dual lattice of the random net-

work as shown in Figure 1.6b. The dual transformation is

simply assigning a dual vertex at the center of each

polygon, then connecting those dual vertices that belong to

adjacent polygons. An elementary application of Euler's

theorem shows that the mean size of a polygon in the network

of Figure 1.6a is six. Therefore in the dual lattice, the

mean co-ordination is six, although it is not constant but.

varies from site to site; the minimum co-ordination is 5 and

the maximum is 9 in Figure 1.6b.

The dual lattice shown in Figure 1.6b is relaxed using

the centroid algorithm to obtain the relaxed lattice of

Figure 1.5b. Using Eq. (1.29a) we find that o = 1.81 00.

This should be compared to o = 1.73 00 for the triangular

net in Eq. (1.31).

1.“.2 Duality Relationship for 2D Resistor Networks



36

It was known that there is a relationship between the

conductivity of a 2D lattice with conductances chosen at

random and the conductivity of a related distribution of

conductances on the dual lattice. (Keller 196“)

Figure 1.8 can be used to explain the dual problem,

where solid lines denotes a portion of direct random network

and dashed lines shows the corresponding dual lattice. Let

the potential at the vertex i on direct lattice be V1 and

the conductance of the bond between i and its neighbor j be

011. 11 : V1 -

Vj’ which correspond to the continuum conditions va V = 0

We can write down two conditions involving V

and 7-3 = 0:

Z V11 = 0 summed along any single loop (1.33a)

Z 011 vij = 0 summed over all bonds

involving site i

(1.33b)

Now we wish to introduce a function Wi similar to Vi ,

defined on the dual lattice. We label the dual lattice sites

by i', j' etc. under the convention that bond (i',j')

crosses bond (i,j). Then we define:

w = o v. (1.3“)
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That means the W difference between regions seperated by a.

lattice bond is the current flowing along that bond. It is

easy to see that W around any closed loop on the dual lat-

tice sums to zero, because it is equivalent to the condition

that no net current flows into any vertex of the direct

lattice. Actually condition (1.33b) gives:

2 Hi'j' = O (1.353)

To get an equation on dual lattice equivalent to (1.33b), we

define the conductance of each dual bond n1, as the
1'

reciprocal of the conductance of the direct bond it crosses,

i.e.

o. = 1 (1.36)111.1. 11

Substituting (1.3“), (1.36) into (1.33a) we have:

Z VIJ : l 011J1 "11J1 = 0 (1°35b)

Now it is clear that W is the solution to Kirchoff's equa-

tion for this dual problem.

It was proved (Hendelson 1975) that the conductivity of

direct lattice odirect( q,a; p,b) of a concentration q of

conductances a and concentration p of conductances b are re-

lated to that for dual lattice by:
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odirect(q’a; pvb) : I odual(p’b ; Qta ) l (1.37)

where q=1-p. This relation holds for any planar graph.

1.“.3 Simulation of Insuletor/normal and

Superconductor/normal Percolation

If we substitute

0 (insulator)N 1
1

b = 1 (normal)

into (1.37), we get:

odirect(q’o; p.11 = 1 odu311p.1; q.~) 1“ (1.38)

Note that the distribution of insulator in direct lattice is

related to that of the superconductor in the dual lattice.

This relation tells us that the gonguctiyity in

insulator/normal percolation is equal to the resistivity in
 

superconductor/normal percolation on its dual lattice.

We proceed four sets of computer simulations:

(1) Insulator/normal percolation on random network.

(Figure 1.6a)

(2) Superconductor/normal percolation on dual network.

(Figure 1.6b)

(3) Superconductor/normal percolation on random net.

(Figure 1.6a)
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(“) Insulator/normal percolation on dual network.

(Figure 1.6b)

We expect (1) and (2), (3) and (“) would satisfy the

duality relation (38). Quantities referring to the direct

lattice (Figure 1.6a) are denoted with subscripts 1 and

quantities referring to the dual network (Figure 1.6b) are

denoted by subscript 2.

In the insulator/normal percolation problem (1) and

(“), we randomly remove bonds from these networks with prob-

ability 1-p. The depleted networks are relaxed using

centroid algorithm and the conductances are computed by the

method we have discussed in this chapter. The results for

01, against p1, and 02 against p2 are shown in Figures 1.9

and 1.10. These results have been obtained be averaging

and 0over 15 random depletions and o are set equal to one
1 2

for the undepleted systems for convenience. As expected for

such dual lattices, the critical points are related by

p10 = 1-p2c. Note that for the honeycomb lattice (also

coordination 3) the bond percolation concentration

pc : 0.65. From our simulations this pc 1 p1‘: as might be

expected. In Figures 1.9 and 1.10, the solid lines are the

effective medium theory results (for details see Appensix A)

0 1
|

(392-1)/2 (1.“0)

N

I
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which are there as useful guides to the eye.

In the superconductor/normal percolation problems (2)

and (3), we randomly change a fraction 1-p bonds from normal

to superconducting. The resistance of the normal systems is

normalized to 1. The resistivity for these networks,

averaged over 15 samples, are also shown in Figures 1.9 and

1.10 and are seen to have the behavior expected of dual

networks. In order to facilitate numerical simulations we

have used a ratio of conductivities of 1000:1 between super-

conducting and normal bonds. The error introduced by this

is mainly near pc when there is a small incremental enhance-

ment in the finite size tail. It would not be hard in: take

a larger conductivity ratio. Note that in the relaxed net-

work, the superconducting bonds are fused together to a

point so that consequently the normal bonds are elongated as

the sample must remain fully connected and is not allowed to

collapse. It can be seen that the dilute resistor problem

on a network maps onto the superconducting/normal network on

the dual network as expected.
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Section 1.5 Conclusions

We have introduced a new mapping for the random resis-

tor problem. Its utility is that it reduces the electrical

problem to a geometric problem and hence provides a useful

visualization of the conduction process.

We have applied these results to a few well studied

problems. We have also studied depleted random networks and

their dual networks for the first time. The results for the

depleted three-coordinated random network are very close to

those for the depleted honeycomb lattice and the results for

the dual networks with mean coordination 6 are very similar

to the depleted triangular lattice. This is to be expected

since the co-ordination is the single most important

parameter characterizing a percolating network. Also, the

duality relationship is checked through the simulation of

insulator/normal and superconductor/normal percolation.

The depletion of central force networks has recently

been studied by many authors. These networks are such that

every spring has its natural length in the absence of exter-

nal stresses. This is often referred to as rigigity

percolation. The elasticity vanishes at p > pc because
cen

connected paths are inelastically ineffective. This is not

the case in the work here as all springs in the conducting

backbone are stretched by the frame. Hence the conductivity

and elasticity are intimately tied together as we have

shown.



Chapter 2. Low Energy Behavior of Infinitely Large

2D PENROSE Tiling

Section 2.1 Introduction

Unlike crystalline and glassy structures, which have

one and an infinite number of unit cells respectively, the

quasicrystal structure can be generated from two or more

(but finite) number of unit cells.

One of the advantages of the "Centroid Algorithm"

developed in Chapter 1 is the geometrical visualization of

conductivity problem on random networks. It is noticed that

on crystalline lattice the realization of the centroid con-

dition is trivial since there is only one unit cell. 0n the

other hand, for glessy structure, since there are an in-

finite number of units, we can only realize the centroid

condition by numerical simulation as shown in Chapter 1. As

a phase between these two, a quasicrystal has more than two

(but finite) unit cells. The question then arose as to the

possibility of solving the centroid condition on Penrose

Tiling exactly, i.e. not to depend on the numerical

simulation.

44
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The so called Penrose Tiling is actually a two dimen-

sional quasicrystal with "thin" and "fat" rhombi [ with

angles (1/5, “1/5) and (21/5, 31/5) respectively] as two

unit cells. The tiling invented by British mathematical

physicist Roger Penrose is important here because (1) it

gives us a non-trivial structure with purely Bragg diffrac-

tion and non-crystalline symmetry; (2) decorations of

Penrose tilings are good structural models for the ex-

perimental realization.

In this Chapter, we report our numerical simulation on

Penrose tiling at first in section 2.2. Then in sectixni 2.3

we explore the self-similar properties and establish a sys-

tematic method to analyze the centroid configuration from

which the conductivity is extracted. Section 2.“ presents

the spin stiffness given by the density of states (DOS) and

intensity spectrum S(q,E) by using the Equation of Motion

technique. Section 2.5 presents the diffusion constant ex-

tracted from Random Walk simulation. Section 2.6 gives a

comparison of these three techniques and conclusions.



“6

Section 2.2 Numerical Simulation on Penrose Tiling

There are several methods to generate the Penrose

Tiling: (1) the matching and deflation rules, (2) grid

projection, (3) direct projections, and (“) generalized dual

method. (Levine and Steinhardt 1986) We applied the first

method in our computer modeling. The main idea of our algo-

rithm is illustrated in Figure 2.1 . We start from one of

the two basic unit cells: rhombi with acute angles 36' and

72°, called "fat" and "thin" rhombus respectively. During

the process of deflation, each fat rhombus is deflated into

three fat and two thin rhombi, and each thin rhombus is

deflated into two fat and two thin.‘The arrows are used to

explain the matching rules. Solid arrows are associated with

seed rhombi which give a unique direction of deflation.

Correspondingly, the dashed arrows are added to current

rhombi to denote the direction of next generation of

deflation. The matching rule embedded in these arrows

guarantees that there will be no holes of mismatch appearing

during deflation. Figure 2.2 shows a fragment of Penrose

Tiling generated by this algorithm.

The centroid condition illustrated in Chapter 1 is used

to relax the Penrose Tiling through numerical simulation. We

took the circular piece as shown in Figure 2.3a, which con-

tains 788 interior sites and 100 sites on the boundary.

Recall that the bonds between nearest neighbors are imagi-

nary central force springs with natural length zero,
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the whole sample must be put on a frame to prevent it from

collapsing to a point. This is actually realized by fixing

those boundary sites during the relaxation. Each interior

site is moved to the center of its nearest neighbors

iteratively. Figure 2.3b is the relaxed Penrose tiling.

By using the formula given in Chapter 1, we obtain the

conductivity on the Penrose Tiling,

o = 0,141! 11 = 0.936 0, (2.1)

where a is the unit length in the unrelaxed Penrose Tiling

and z is the average coordination number which is four for

Penrose tiling. It is known that o is equivalent to the

diffusion constant D through Kirkpatrick relation G=PD with

the probability of a site belong to the backbone P=1

(Kirkpatrick 1973), noting that the conductance is equal to

the conductivity 0 in 2-dimension.

An interesting phenomenon is observed that there are

some points kept stationary during the relaxation (in range

of our precision). The significance of this observation is

that if these vertices are really stationary, then we must

be able to find out some basic cells and from which to real-

ize the controid condition analytically. This possibility

is explored in next section.
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Section 2.3 Centroid Configuration Analysis

2.3.1 Fixed Vertices Hypothesis

It is not too surprising to notice that those points

which seem stationary numerically during relaxation happen

to be those vertices with the local five fold symmetry. In

other words, in the unrelaxed Penrose. structure, these

points are automatically located at the centroid of their

nearest neighbors. What inspired us is that if we connect

these points in an appropriate way, we get a pattern with

the Penrose Tiling topology as shown in Figure 2.“, where on

the relaxed Penrose Tiling, we superimposed this pattern by

heavy lines. We know that in the original unrelaxed Penrose

tiling, this pattern is exactly the same as the original one

but scaled by a factor 13 ,where T = (1+/5)/2 is the golden

ratio. However, on the relaxed Penrose Tiling where each

site has been moved to the centroid of its nearest neigh—

bors, we only can say this superlattice has the Penrose

Tiling topology. This is a necessary but not sufficient con-

dition for the existence of basic unit cells. The

sufficient condition is one of the following three arguments

which are equivalent each other:

(1) The vertices with local five fold symmetry are sta-

tionary points in the centroid relaxation.

(2) The superlattice on the unrelaxed Penrose Tiling is

identical with that of the relaxed one.
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Figure 2.“ Most stationary vertices during relaxation connected

appropriately to form a alper Pavose tiling.

   
(b)

Fm 2.5 Basic cells (a) unit-1 and (b) unit-2.
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(3) There are only two basic unit cells in the centroid

configuration as shown in Figure 2.“. Figure 2.5 presents

the topology of these two cells. These cells must match

each other preserving the centroid condition on the boundary

between them.

These equivalent arguments are called as "Fixed

Vertices" hypothesis.

Our purpose was to find out the exact centroid con-

figuration of the infinitely large Penrose Tiling and from

which to extract the average bond length (which is related

to the conductivity or diffusion constant through the map-

ping introduced in Chapter 1). Aiming at this, we took the

third argument as our working hypothesis, i.e., we started

by studying the two unit cells suggested by numerical

simulation. The validity of the hypothesis will be self-

evident from the results.

2.3.2 Method of Centroid Configuration Analysis

We consider the unit cell of the superlattice with

isosceles triangle shapes and internal structures as shown

in Figure 2.5. Notice that unit-1 in Figure 2.5a has the

same topology as part of unit-2 in Figure 2.5b. We assume

the shape of these two units are [72“, 72°, 36°] and [36“,

108', 36°] respectively and the ratio of the sides is 1:1.

We take unit-2 as an example to illustrate the procedure of

centroid configuration analysis.
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(1) Degrees of Freedom and Variables

To analyze the centroid condition at each vertex, we

assign the variables shown in Figure 2.5b. There are four

kinds of vertices:

F's: The three fixed vertices of the triangle, with

zero degree of freedom.

Q's: The vertices on the boundaries. They are only al-

lowed to move along the boundaries of the triangle so that.

with one degree of freedom each.

I's: The interior vertices, with two degrees of freedom

each.

C's: The interior vertices which could be expressed in

terms of the F's, 0'3, 1'3 through the centroid condition.

Now we introduce variables to describe these degrees of

freedom. We use 11's to express the position of 01 relative

to a vertex along the boundary and use x1, y1 as the

horizontal and verticle coorditions of 11' In summary, we

list the functional coordinates of all sites in unit-2 as

the following:

F1=(0,0) F2=(cos36°, sin36°) F3=(T,0) (2.2a)

Qi:(li’o) where i=1,2,o--,5

Qi=[5 + llcos36°, (1-11)sin36°] where i=6,7,8
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Oi:(licos36°, lisin36°) where i:9,10

(2.2b)

I1=(x1, y1) (2.2c)

C1=(QZ+Q3+09)/3

C2:(I1+Q3+09)/3

C3:(I1+F2+09)/3

C“=(Q“+Q6+Q7)/3 (2.2d)

(ii) Symmetry and Centroid Conditions

Let us consider the site interior of the unit cell at

first. Remembering that for C's the centroid conditions

arebuilt in their definition, we only have constraints from

the centroid condition for I's sites, i.e.

) = 0 (2.3)

for each i, where j are nearest neighbors of i.

It is a little bit more complicated for those sites on

the boundary. Let us go back to the global structure shown

in Figure 2.“. We can see that all of the three sides of

(”thz are the reflecting symmetry planes. One comes from
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the interior symmetry of the cell, the other two come from

the tiling. This observation enable us to be able to write'

down the centroid conditions for those sites on the bound-

aries by assigning an appropriatelweight to each bond. The

constraint at site i which is on the boundary is:

A

1k - E ( 01 - AJ) wiJ = o (2.“)

where j's are nearest neighbors of i, Yk is the unit direc-

tion of the side to which i belong to. Particularly for

unit-2, we have:

Y=(1,0)

.
<

u ( cos36°, sin36°)

.
.
<

1
1

(-cos36°, sin36°) (2.5)

and w is the weight of bond between i and j:

11

H 1 if j is on the same boundary side as i,

i.)

w 2 otherwise. (2.6)

1.1

(iii) Equations and Solutions
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We input these variables and conditions into a computer

program by algebra language SCHOONSHIP to derive the set of

linear equations for variables 1 and x in terms of the
1 1'31

golden ration T. We express our results in terms of the

matrix relation:

A X = B (2.7)

where for unit-2:

-3 T

-10 2 1

3 3 3 ‘

2 :ll 1 £1 2

3 3 6 3 3

i 1 1
1 3 1 3 3 2

1 3 T

-_I _, ll -_2.

3 3 3

3% 3% 1% -T 2836

3 -1 2836

1 21 _ g; 11

T T 1 -5

-_1. _, :1 1 1 13
3 2 2 3 3

s36 s36 €336 1%-
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and

ET:

:2; 7.11 “(1-1) _ _-_2 _7__1_ 1
(0 0 O 3 -1 3 3 (1 I) 3 O 6 3536)

where 336 = sin 36° = /(3-1) / 2.

By substituting the solution of this equation back to

eq.(2.2), we can calculate the coordinates and the bond

lengths, which are listed in Table 1(b).

2.3.3 Discussion about the Fixed Vertices Hypothesis

We have been concentrated on unit-2 and deliberately

did not take unit-1 simultaneously. Now we will consider the

inteference between unit-1 and unit-2.

At first, let us study the symmetry associated with

unit-1. In Figure 2.5, we denote the three sides of unit-1

and unit-2 by a, b, c and A, B, C respectively. Careful ex-

amination of Figure 2.5 tells us that the side b of unit-1

is always adjacent with the side 8 of unit-2, while the side

c of unit-1 is adjacent to c of unit-1 25 C of unit-2

alternatively. This implies that unit-1 does not have exact

enviroment as unit-2 so that it is not suitable to apply the

same procedure described as above to solve unit-1, because

not all three sides are reflecting symmetry planes any more.

However, as we mensioned before, the unit-1 has the same

topology as the shaded area of unit-2. Taking this fact into



58

Table 1 Solution of the Centroid Condition on the Unit Cells

(a) Epit;1

i Xi Variable

1 0.30833“5“ l,

2 0.61296709 12

3 0.83629833 1.

0.30351959 1.

5 0.626“9066 l,

6 0.312“6202 l,

(b) Uplt;g

1 X1 Variable

1 0.16“71666 l,

2 0.3899002? 1,

3 0.69890“36 l,

“ 1.0187573“ l.

5 1.25“3825“ l5

6 0.696126“? 1.'

0.3922“76“ l.

0.16665261 1,

9 0.629618“0 1,

10 0.305“01“9 11o

11 0.90719375 X1

12 0.29762““3 Y1



Table 1 (cont'd.)

(c) Unit-3

O
‘
U
’
I

Q

10

11

12

13

1“

15

16

17

d
O
O
O

fl
G
O
O
D

0

0.

xi

.16379“00

.38788255

.6960599“

.01615“60

.25276893

.30525666

.61072082

.83913176

.00978“10

.30786311

.16“03“98

.38771008

.69235305

.3672619“

.50803990

.76697177

56379“5“
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variable



Table 1 (cont‘d.)

(d) Unit—“

10

11

12

13

1“

15

16

17

18

19

20

21

22

23

2“

X.
l

.16331“57

.38681679

.69“““0“5

.01“65665

.25235023

.30988959

.60737915

.7780“903

.00660513

.31239882

.25230592

.01537787

.69“63300

.38“61“50

.15“90521

.982“1525

.62387806

.30280186

.69621370

.2328““15

.836“1“07

.09678353

.O“2171“5

.156“9“22

6O

variable

X1

Y1

X2

Y2

Y3



Table 1 (cont'd.)

i

25

26

27

28

29

30

31

32

x1

1.11907083

0.3692308“

1.21627382

0.658762“2

1.50“9889“

0 .36993531

1.90282232

0 .299“8289

61

variable

X.

Yu

X:

Y:
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account, it will not be meaningless to solve unit-1 inde—

pendently under the assumed constraints that all three sides

are reflecting symmetry planes and see what happen. Table

1(a) lists the results about unit-1.

Now let us come back to the global structure (Figure

2.“) to investigate the tiling of the whole space by these

centroid unit cells. We have the following observations:

(1) Two sides of unit-2 are not only self reflecting

but also should match with two sides of unit-1 respectively.

(2) Two sides of unit-2, B and C, are not self reflect-

ing simultaneously, i.e. if the B or C side is reflecting,

the other one must be adjacent with unit-1.

(3) Only the side 0 of unit-1 is self reflecting. The

other side b is always adjacent to B of unit-2.

We express these observations in terms of the Adjacent

Probability Matrix AP:

 

a b c A B C

al 1 O 0 0 0 0

bl 0 0 0 0 pbB 0

AP: c' 0 0 pcc 0 0 pcc (2.8)

A1 0 0 0 1 O O

3| O pBb ° 0 pBB 0

C1 0 ° pCc ° ° pcc

where p08 is a number less than one denoting the porbability

of corresponding adjacency of cell a and B.
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Figure 2.6 shows all four possible adjacent situation

of unit-1 and unit-2. The double shaded triangles are the

host unit-1 and unit-2. The triangles around the host are

the possible adjacent cells. Considering in combination the

host cell and enviroment we find that the shaded area in

each case forms two configurations as shown in Figure 2.73

which are called unit-3 and unit-“ respectively.

We apply the same procedure used before on these bigger

cells. ,The results are listed in Table 1(c) and Table 1(d)

respectively for unit-3 and unit-“.

Now we are at a point to check the validity of the

"Fixed Vertices" hypothesis. If it is correct, then we would

expect:

(1) In Figure 2.6, those points marked by "A" in middle

of one side should divide the corresponding side into two

parts with length ratio 1:1.

(2) The two independently solved configurations unit-3

and unit-“ should have sides matchness as shown in Figure

2.8.

In Table 2, we showed the degree of incoincidence of

the boundaries of the adjacent unit cells which are supposed

to matched each other, as shown in Figure 2.8.

In Table 3(a), we listed all the bond lengths solved

independently from the four unit cells, with the bond se-

quence number as shown in Figure 2.9a. The higher order unit

cell includes the topology in the lower order one, as unit-“

includes unit-3, etc. We listed the corresponding bonds in
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the same row for reader's convinence. The number between is

the relative deviation of the two bonds adjacent in the

table.

In Figure 2.9b, we can see that the larger unit could

be chopped into smaller parts with the same topology of the

lower order unit cells. we compared these smaller parts in

Table 2(b) and (c).

Unfortunately, none of our proposed checks has been

verified exactly although the deviation is small. We are

forced to admit that these points suggested by numerical

simulation to be "stationary" are not exactly fixed.

2.3.“ Conductivity of Infinite Large Penrose Tiling

Although we showed the "Fixed Vertices" hypothesis not

valid exactly, we are still rewarded by this research. We

calculated the bond lengths in each unit cell. Through the

mapping described in Chapter 1, we know that the average

bond length gives the conductivity.

To calculate this quantity, each bond in the unit cell

is associated with a weight. Depending on where the bond is

located in the cell, there are five weights as listed below:

(also see Figure 2.9a)

P1 = T ( A - inside )

P2 = 1 ( B - inside )

P3 = 1/2 ( B - boundary )

P“ = 1/2 ( A - boundary )
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P5 = 1/2 + 1/2 = 12/2 ( A-B boundary ) (2.9)

where A is the shaded and B is unshaded area in Figure 2.9a.

The formula we used to calculate the average bond

length is:

< 52> ={9(1) Di /{P(1) (2.10)

i i

where i is summed over all the bonds in the cell and P(i)

has the weight listed in (2.9) depends on where i-th bond

is.

We finish this section by listing the results about the

conductivity as the following,:

G (unit-2) = 0.9362

G (unit-3) = 0.9333

0 (unit-“) = 0.9316 (2.11)

Result for unit-1 is not included since unit-1 cannot.

be futher chopped into two parts which is necessary to tile

the whole space. We can see that the results are convergent

in going to bigger and bigger unit cells. This can be un-

derstood through the fact that when tiling the infinite

space by two bigger cells, the error due to the unmatchness

between cells, i.e. the unsatisfactory of the centroid con-

dition on board between cells is reduced progressively. In
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principle, to get a result as precise as required, one can

always build up bigger and bigger unit cell systematically,

and solve the centroid configuration as we have shown in

this section.
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Table 2 Degree of Incoincidence of the Cells Boundary

(a) Comparison of Unit-1 and Unit-2

a

Unit-1

a

Unit-2
 

 

 

 

site [AL (1)

a 0.626“907 0.629618“ 0.3128

b 0.3035196 0.305u015 0.1882

c 0.1637017 0.1666526 0.2951

d 0.3870329 0.3922“76 0.5215

e 0.6916655 0.6961265 0.uu61

(b) Comparison of Unit:3 and Unit-“

site Unit-3. Unit-“. IA! (1)

A 1.3078631 1.3081““5 0.0281

B 1.0097811 1.01065“9 0.0871

C 0.8391318 0.83998“9 0.0853

0 0.6107208 0.611“288 0.0708

E 0.3052567 0.3056351 0.0378

9 1.2527689 1.2523502 0.0u19

0 1.01615“6 1.01u6567 0.1“98

H 0.6969599 0.69“““05 0.1619

I 0.3878826 0.3868168 0.1066

J 0.16379“0 0.16331“6 0.0179
 

* Number in the column is the distance from the site to the corresponding

vertex in the unit cell.
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Table 3 Comparison of Bond Lengths Belgpg to Different Unit Cells
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(a)

Bond No. Unit 1 Unit 2 Unit 3 Unit 1

1 .30833151 3°736 .31985298 '076 .32009166 '203 .32071187

2 .16370167 '620 .16171666 '560 .16379100 '309 .17218996

3 .32297107 '386 .32121691 '38” .32297207 '81” .32560216

1 .21291151 '9‘6 .21513561 '2‘“ .21161007 '052 .21173820

53 .22198558 '302 .22265608 "72 .22303828 '08“ .22322501

6 .20117033 1°367 .20696165 '1‘3 .20672893. .215 .20723138

7 .18730620 '757 .18872109 '300 .18815819 '5"1 .18917661

8 .21611936 '557 .21782309 '089 .21760227 .010 .21710207

9 .22769156 '7"8 .22939720 '385 .22851323. '"32 .22950013

10 .19628166 '620 .19750167 '385 .19671089 '053 .19881272

11 .31216202 "732 .31781701 '555 .31961115 '09' .31993551

12 .21631506 '378 .21552818 '027 .21558575 “170 .21595227

13 .20328655 '7“7 .20180191 '730 .20629913. '060 .20612365

11 .23812550 '272 .23717681 .181 .23632762 "53 .23668902

15 .18361256 '3‘2 .18212236 "62 .18123796 "27 .18117191

16 .23562520 '“20 .23661138 "33 .23692805

17. .30387353 '“55 .30525666 "2" .30563§1§

18 .16665261 °"°° .17065231 '010 .17066988

19 .23562581 '“30 .23663817 "30 .23991615

20 .19566756 '81; .19725803 “1‘9 .19719211

21 .22711872 '503 .22826175 "25 .22851621

22 .18116311 '5‘7 .18511713 '109 .18561917

23 .19976031 '“62 .20068212 “‘22 .20092813
 



Table 3(a) (cont'd.)
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Bond No. Unit 2 Unit 3 Unit 1

21 .21396773 .111 .21191871 "27 .21519078

25 .16103198 "2‘ .16751191

26 .19633892 '998 .20026236

27 .22779152 '82‘ .22592235

28 .18722631 '3“2 .18786608

29 .21576815 '505 .21152781

30 .21268912 '2‘“ .21216976

31 .20381071 '373 .20308063

32 .22091070 '389 .21897710

33 .23792211 '13" .23821238

31 .20136111 .117 .20106871

35 .21580831 “‘68 .21511558

36 . 31017087 '09‘ .30988959

37 .30761695 '323 .30665175

38 .17939189 “03‘ .17911667

39 .32107620

“0 .23769358

11 .32021620

n; .16331u57

13 .19582051

11 .22759118

15 .18721711

u5
.21563965

17 .21382133

18 .23353502
 



Table 3(a) (cont'd.)

 

 

 

 

 

 

 

 

 

 

 

 

Bond No. Unit 1

58. .17516676

50 .20168290

51 .21158133

52 .22092206

53 .20597108

51 .31686367

55 .19313323

56 .23006690

57 .18180567

58 .23763567

59 .20179370

w .mwmfi
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Table 3 (cont'd.)

(b)

Unit 1

.308331511

.163701672

.322971073

.21291151“

.221985585

.201170336

.187306207

.216119368

.227691569

.19628166‘0.

.31216202“.

.21631506‘2.

.20328655‘3.

.23812550‘".

.18361256‘5.

.319852981

.161716662

.321216913

.21513561”

.222656085

.20696165

.18872109

.21782309

.229397209

Unit 2

6

7

8

1975016710.

3178170111.

2155281812.

2018019113.

23717681‘“.

1821223615.

.29961007

.20672803

.18815899

.24760227

Unit 3a

.320091661

.163791002

.322972073

1

.223038285

6

o
n
e

.228513239

196710890

319611151

215585752

206299133

23632762“

181237965

Unit 3b

.3076169537.

.1610319825.

.322972073

.2126891230.

.2209907032.

.2038107131

.1872263128

.2157681529.

.2277915227

.1963389226

.3101708736.

.2158083135.

.201361113”.

.2379221133.

.1793918938.

.20723938 .

Unit “3

320711871.

172189962.

.325602163.

21173820”.

223225015.

6

.189176617.

297702078.

.229500139.

.198812720.

31993551‘.

215952272.

206123653.

23668902”.

181171915.

Unit 9b

32021620“‘

16331157"2

3210762039

21382133“7

2209220652

2059710853

18721711u5.

H6

11

21563965

22759118

19582051“3

316863675“

2115813351

50

8

20168290

23353502"

17516676u9.

.225922352

.30988959

.2151155835

Unit No

3066517537

.1675119125

.325602163

.2121697630

.2189771032

2030806331

1878660828

.2115278129

7

.2002623626

36

.201068713”

.2382123833

1791166738
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Table 3 (cont'd.)

(e)

 

Unit 2 Unit 3 Unit “a Unit 1b

.319852981 .320091661 .320711871 .32021620‘n

.161716662 .163791002 .172189962 .16331157“2

.321216913 .322972073 .325602163 .3210762039

.21513561” .21161007" .21173820" 21382133“7

.222656085 .223038285 .223225015 .2209220652

.206961656 .206728036 .207231386 .2059710853

.188721097 .188158197 .189176617 .18721711“5

.217823098 .217602278 .217702078 .21563965“6

.229397209 .228513239 .229500139 .22759118"“

.1975016710 .1967108910 .1988127210 .19582051"3

.3178170111 .3196111511 .31993551“ .316863675”

.2155281812 .2155857512 .2159522712 .2115813351

.2018019113 .2062991313 .2061236513 .2016829050

.23717681‘“ .23632762‘“ .23668902‘“ “ 23353502“8

.1821223615 .1812379615 .1811719115 .17516676”9

.2356252016 .2366113816 .2369280516 .23769358“0

.3038735317 .30525666‘7 .3056351617 .3066517537

.1666526118 .1706523118 .1706698818 .1675119125

.2356258119 .2366381719 .2369161519 .2376356758

.1956675620 .1972580320 .1971921120 .1931332355

.2271187221 .2282617521 .2285162121 .2300669056

.1811631122 .1851171322 .1856191722 .1818056757

.1997603123 .2006821223 .2009281323 .2017937059

.213967732" .211918712” .21519078”4 .2030806360
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Figur_e 2.9a Illustration of the 355th of weights to bonds in different

region of wit.
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Figure 2.2b Illustration of the similar topology between adjacent

gmeraticns of units.
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Section 2.“ Equation of Motion Approach

In this section, we apply the well established Equation

of Motion method on Penrose Tiling to calculate the DOS and

S(q,E) on purpose to compare with the Centroid method

result.

2.“.1 Equation of Motion Method

Let us consider a spin system on .a Penrose Tiling

lattice. On each lattice point there is a spin and the in-

teraction between spins is of the Heisenberg form:

H:—z J g ‘g (2.12)

where the sum is over pairs of nearest-neighbor sites and

J1] is the exchange constants between site i and J.

We make the linear spin approximation via the lowest-

order Holstein-Primakoff transformation

8+ . (25)1/2 a

1 1

s; . (23)”2 af (2.13)
1

Sz.¢S-a+ a
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where S is the value of the spin (the same for all atoms)

and a1 and a; are Bose destruction and creation operators.

From (2.12) and (2.13) we obtain the quadratic, linear spin-

wave Hamiltonian:

H s J (a; a. - a* a 1 (2.11)=2

(1.1) ‘1 1 1

where pairs occur twice in the summation.

In principle, the quadratic Hamiltonian (2.19) can be

transformed to a set of normal modes q with energies Eq.

What we are interested is to obtain the distribution of the

Eq's (density of states) and also the scattering intensity

S(q,E).

We define a set of quantities gi (t):

15.83)
g1q(t) = < a1(t) X a*(0) e (2.15)

J J

where 83 is the position of site J and < > indicates the

ground state expectation value. Note that the sum is over

all sites. The giq's obey the following Equation-of-Motion:

11 (giq- sjq) (2.16)

with the initial condition



8i (t=0) = eiq' (2.17)

The normalized form for the scattering intensity is defined

as (Alben et al 1977):

S(q,E)

- ——l——— 1*“ eiEt/h < (I a (c) e'15’§1)({ a+(0)eia.fij )> dt
‘ ZINh -w i i J J

= lim lim -—%fi—— Re 13 X 6-15-81 31 (t) em“h e‘”2 dt

i»0* Tow ' i q

(2.18)

where N is the number of spins and E is the energy. The nor-

malization is such that the energy integral of S is unity.

The essential point of the Equation-of-Motion procedure is

that if we are interested only in broadened spectra, we can

do the transform in eq.(2.18) with a nonzero value for the

damping constant I and a finite value for the time interval

T.

Specifically, we proceed the following procedures:

(1) Initially assigning N values of giq(t=0) by

eq.(2.17) for a given a.

(2) Integrating the N simultaneous differential equa-

tion (2.16) forward in time to obtain N giq over a time

interval from 0 to T.
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(3) Choose the damping constant A to give an ap-

proximately Gaussian broadening function and compute S(q,E)

by doing the integral in (2.18).

The Density of States can be obtained by using the ex-

16-81
actly same procedures as above Just replacing e by an

ia.

random phase factor e 1, where the 01's are random angle

specified for each site. The average over many sets of 01's

gives exactly the density-of-states spectrum.

2.1.2 Calculation of Density of States

Our purpose to calculate DOS is to extract the conduc-

tance of the resistor network with the corresponding

topology. He have shown in Chapter 1 that for a tight-

binding Hamiltonian

1
H = - Z J [ li><i| - |i><Jl ] (1.11)

2<i,j> 13

its density of state at long wavelength limit can be ex-

pressed in terms of the conductance

p (8»0) = -——!——— (1 25)
110 ’

In Figure 2.10 we show the result of equation of motion

calculation of density of state for a 888-site circular

Penrose Tiling. We applied the fixed boundary conditdxni. He

found out the initial DOS is:
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0 (8+0) = 0.085;0.002

from which we have

0/0. = 0.9310.02

which is consistent with the result in section 2.3.

2.9.3 Calculation of the Intensity Spectrum S(q,E)

It is known that in an ordered crystal, S(q,E) would

show sharp peaks 'at energies corresponding to selected ex-

citation with the proper momentum. Hhile in the disordered

alloy, all modes usually contribute for any q. However, for

different q's, different modes contribute most strongly. The

spectra are usually best thought of as the density of states

with different regions of energy weighted differently as q

varies.

Because of the total spin rotation symmetry of the

Hamiltonian for the1disordered alloy S(q,E) for qu has a

rather special behavior, even in the absence of the transla-

tional symmetry. It is easy to show that for q=O, S(q,E) is

given by a 8 function of unit weight at E=O. For q slightly

different from zero, there is always a regime of very small

q such that S(q,E) is sharply peaked at an energy S(q) given

by
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S(q) = D q (2.19)

where D is the spin stiffness. The width of the peak varies

as q”.

In Figure 2.11 we show a series of spectrum S(q,E) for

different value of a in x direction. Since we used a sample

of finite size, we observed multiple discrete peaks. To

analysize the contribution of a particular mode at energy E,:

we replotted the spectrum S(q,E) vs. q for a value of E at

which there is a peak in the S(q,E). The result is shown in

Figure 2.12. From which, we find out the position of q cor-

responding to the peak through fitting and established the

relation between this mode E and the q-value which makes

this mode contribute most to the spectra. Figure 2.13 plots

this correspondence, i.e. E vs. (qa)2. Its slope gives the

spin stiffness constant D=O.9H;0.01.
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Section 2.5 Random Halk Approach

It is well known that the differential equation of the

probability distribution in the Random Halk problem is ex-

actly the diffusion equation in an appropriate limit. In

this section we attempted to simulate the random walk on the

Penrose Tiling and try to extract directly the diffusion

constant.

In random walk problem, a particle undergoes a sequence

of displacements F1, 32, ..., Fi’ ..., the magnitude and

direction of each displacement being independent of all the

proceeding ones. More specifically, in the background of the

Penrose tiling, the particle can move to any of its nearest

neighbors in one time step. Because we are working on a

finite size sample, we have to decide what will happen to

the particle at the time it reaches the boundaryu. 'rwo spe-

cial boundary conditions are: absorbing and reflecting

boundary, as illustrated as follows.

Reflecting Boundary

Let us imagine the boundary of the region under con-

sideration is a perfect reflecting wall. In the isotropic

two dimensional case, it is*a reflecting circle at r=r0,

which simply has the effect that whenever the partical ar-

rives at r0, it has a probability unity of coming back to

the interior region when it takes next step. This condition

can be expressed mathematically as:



3 P r t _ (2.20)

where P(r,thkfi is the probability that the partical will

arrive at rSrO after t steps.

Absorbing Boundary

Now we interpose a perfect absorbing wall on the bound-

ary. The presence of this absorbing wall at r=ro means that

whenever the particle arrives at r0, it at once becomes in-

capable of suffering further displacement. This-boundary

condition is written as:

P(r=r - O (2.21).t; r0) -
0

where P(r,t;r0) is defined as the probability of a partical

at r at time t. One interesting question which is charac-

teristic of the present problem concerns the average rate at

which the particle will deposit itself on the absorbing

screen.

In our computer simulation on the Penrose tiling, we

will use the absorbing boundary condition. The statistical

quantity we actually observe is the deposit rate, i.e. the

reciprocal of the average time (t) for a particle to reach

the absorbing boundary. In Appendix B, we derive the rela-

tion between the diffusion constant D, the sample radius ro

and the deposit rate 1/08». In 2-dimension, with circular

sample, and initial distribution of the form
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‘ P (r,0) = 8 (r) (2.22)

we have

r 2

0 = 0 (2 23)
(t) '

He will use this relation to extract D from the simulation

data.

He work on the circular piece of the Penrose tiling of

888 atoms which has been used in the Equation of Motion

calculation. Initially, the particle is confined in the

small region around the center of the sample. He measure the

time (number of steps) t between from the particle starts to

move until it is captured by the detectors on the boundary.

During this period, at each time step, the particle can jump

from its current position to any one of its nearest neigh-

is thebors with equal probability 1/z where z
i’ i

coordination number at site 1. Our result averaged over

“0000 runnings gives D = 0.91:0.01.
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Section 2.6 Conclusion

In this chapter we applied three techniques to study

the low energy behavior of 2D Penrose tiling. Our results

for the diffusion constant D, which is equivalent to the

conductivity, of an infinitely large Penrose tiling are sum-

marized in Table 1. All three techniques give the

consistent results, although with different ranges of error.

Centroid Algorithm takes the advantage of the combina-

tion of self-similarity property of the Penrose tiling and

the geometrical character of the conductivity problem

through the mapping. A systematic routine is established to

obtain the result which can meet any precision requirement.

By solving the centroid configuration of a unit cell with a

figltg number of atoms, one can obtain the centroid con-

figuration of the infinitely large Penrose tiling. In other

words, the conductivity or the diffusion constant of the in-

finitely large Penrose tiling can be obtained from unit cell

with finite number sites. It should be emphasized that it

is the intrinsic self-similar property of the quasicrystal

which makes this possible and necessary. In a crystal there

is a unique basic cell such that one does not need the

series unit-cells, while in glassy structure there is no

unit cell in any order. It provides a method to study

physical properties, especially those depending strongly on

the geometrical structure, by exploring the intrinsic struc-

ture of the quasicrystal.
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Table 1 Summary of the Diffusion Constant on 20 Penrose Tiling

CENTROID METHOD

 

numerical simulation 0.936

centroid unit cell 0.9366(2) 0.9333(3) 0.9316(u)

 

EQUATION OF MOTION

 

 

S(q,E) 0.9“ :_0.02

DOS p(EoO) 0.93 1 0.01

RANDOM WALK
 

 

0.91 i 0.01
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The other two techniques, the Equation of Motion ap-

proach and the direct Random Halk approach, have been used

widely in dealing with the random system. Because of their

numerical simulation characteristics, the results are af-

fected more or less by the sample size. Moreover, since for

quasicrystals it is unsuitable to use the periodic boundary

condition as one usually does for random system, one always

encounters a finite sample and its boundary sites are not

properly co-ordinated.



Chapter 3. Percolation on Stretched Elastic Networks

Section 3.1 Introduction

In Chapter 2, the visualization of the conductivity

problem based on the mapping introduced in Chapter 1 was ex-

plored on a new structure --- quasicrystal, which distinctly

lies in between conventional crystal and glassy structure.

In this chapter, we will explore the implication of the map-

ping on a deeper physical level. He will propose and study

a generalized "tennis racket" model.

It is widely accepted that conductivity percolation and

rigidity percolation belong to two different universality

classes. (Feng & Sen 1981) The percolation threshold

p of a central force network, at which the elasticity
cen

vanishes, is much higher than pc at which a resistor network

loses its conductivity. These two systems also have quite

different scaling exponents in the critical region, near

p and pc respectively. Mean field theory, as well as
cen

numerical simulation results strongly support this

classification. Hhat is interesting is that our mapping

seems to suggest the existence of a bridge between these two

94
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classes. Our working frame, the mapped tennis racket, com-

posed with Hooke's law springs (natural length zero), is

certainly a central force network. The problem it solves is

identical to the conductivity problem. This can be under-

stood by noticing the fact that the percolation in either

resistor network or central force network with natural

length zero is determined by the geometrical connection. As

long as there is a percolating cluster, the current always

can flow from one side to the other. Similarly, there is

always energy stored in the mapped elastic network through

the backbone. This feature is different with the central

force network studied by many other authors. The networks

they used are such that every spring has its natural length

in the absence of external stress.

Based on the above consideration, a new model --- the

tennis racket model is formed naturally, which seems can

fill the gap between conductivity percolation and rigidity

percolation. The model is defined as follows. On a lattice

background with space constant L, we stick at the place of

each bond between nearest neighbors a Hooke's law spring

with natural length LO, which need not to be equal to L.

The shape of the lattice is kept through a frame or periodic

boundary conditions. In the equilibrium state, no net force

exerting on each site, but the springs adjacent to this site

might be stretched, which could be considered as internal

strain. The physical behavior of such a system must be very

interesting since it reflects the nature of a lot of real
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systems. For instance, the percolation threshold p. is one

of the interesting quantities. Hhat we already know through

constraint counting (Thorpe 1983) and the mean field theory'

as well as numerical simulations (Feng, Thorpe & Garboczi

1985) are two special cases: L0 = O, which mapped to the

conductivity percolation and L0 = L, which is the pure

central force network. The effective medium theory gave the

thresholds corresponding to these two cases:

I'

p (LO:0)
1

'
O u

and

 

'
O

A

I
"

O

u l
'
"

V

n

'
0 u

cen

where z is the coordination number and d is the

dimensionality. These are very chose to the numerical

simulation results p0 = 0.317 and pcen = 0.65. The question

is how p. changes when LO takes arbitrary value ?

It was noted that Feng & Sen (1981) observed a cross?

over in their numerical simulation by using the Born model.

They found that when the contribution of the central force

part is dominant, there is a strong crossover from

isotropic-force like behavior near p:pc to central-force

like behavior near p:p Tris crossover was used as
cen'

strong evidence to classify the two universality percolation

classes. As we will see in the next section, this case is
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corresponding to the case of, in our tennis racket model,

that the natural length Lo

tice space L. However, it should be pointed out that Born

approaches from below to the lat-

model and the tennis racket model are different at least in

two respects. First, Born model is actually the contribu-

tion to elastic energy in the second order of the

displacement, where the isotropic term is not rotationaly

invariant. Hhile in the tennis racket model, we are con-

sidering the total central force potential in the system.

It is rotationally invariant since only the distance r1J in-

volved there, of course we have to rotate the frame together

with the lattice in the simulation which is done by keeping

the periodic boundary conditions. Secondly, all the dis-

placements in Born model are relative to the lattice points,

while in tennis racket model, the displacement is defined

relative to the new equilibrium position.

There is also an important conceptual advantage in the

tennis racket model because the pressure enters in a natural

way into the determination of internal stresses and there-

fore into the determination of elastic constants.

He believe that a careful research of the proposed ten-

nis racket model would be very helpful to understand the

macroscopic elastic theory through the microcopic structural

modeling.

This chapter is organized as the following. Section

3.2 presents the elasticity analysis on a pure triangular
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network under tension. Section 3.3 describe a diluted ten-

nis racket with internal stress and details of the

simulation techniques. Numerical simulation results for the

overall behavior of the diluted tennis racket are presented

in section 3.1. Section 3.5 attempts to understand the

results from the symmetry point of view and reduce the num-

ber of independent second order elastic constants. Section

3.6 presents an effective medium theory on the stretched

network. Section 3.7 gives the conclusion for the current

work and suggestion towards further research.
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Section 3.2 Elasticity of Pure Triangular Net Under Stress

He start from an elastic network on a pure lattice

where all bonds are the Hooke's law springs with force con-

stant K. The natural length of the spring is L0 and the

lattice space is L. Except for the case LO=L, the network is

stretched (O S LO/L < 1). The elastic potential for this

model is:

(3.1)

where the sum is over all nearest neighbors and rIJ=IR1-RJI

is the distance in between which is just L. He introduce 51

to express the small displacement of site 1 relative to its

equibrium position. It is noticed that in the pure lattice

case, the equilibrium positions are exactly the correspond-

ing lattice points, while in diluted case, these two might

be far away from each other.) The potential can be expanded

ij=ui'uj' Toabout the equilibrium position in terms of G

the second order of u.

ij’

we get:

1 2
V=-2-x£ (L-LO)



L L .
1 0 2 0

+ 5 K X { (1-E- )u (3.2)

(i,j) ‘1

A

where r is the unit vector between points i and j.

1.1

The first sum in (3.2) is the static energy of the

stretched springs and can be written as

1 2

VO - 1 K N z (L-LO) (3.2a)

where N is the total number of sites in the system and z is

the coordination number.

The second sum in (3.2) is the linear order contribu—

tion, which is written as:

A

v1 = K (I.-.LO) X (611- r ) (3.2b)
1.]

The value of V1 could be positive, negative or zero, depend-

ing on the details of the displacement G or the strain in
ij’

the network. He note that the equilibrium condition for the

full potential is:

Q
)

<

11 O

Q
)

'
1
9

and for the expansion of the potential in terms of displace-

ment, we have:
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Q
)

<

l

O

0
)

C
O

both of them lead to the same equation :

X “11 (rij-LO) '11 :0

The last sum in (3.2), i.e. the quadratic term in uij

is:

1 0

2 2 L (51) 13

+ l K 29 Z (0 0; )2 (3 2c)
2 L <1,J> ij ij '

Comparing V2 with the Born model potential:

v = g (0-8) X 1 (61-0 )-$ 1*
born (1’1) j ij

3 z (a -0 )= (3.3)

He can see the correspondence between the Born model

parameters a, B and the tennis racket parameters LO/L and K:

L0
K(1- E_ ) = B (3.33)
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L0
and K L_ = (a-B) (3.3b)

which implies:

a = K
(3'30)

Generally, the strain-energy is defined as: (Barron &

Klein, 1965)

1

2 ath $03671 60811 (3.1)

where 808 is the stress tensor, 60871 is the second order'

elastic constant and the strain is:

£03 = a (3.5)
 

For isotropic external strain, we have the expression for

$08 and CQBYT as the following:

as =x(1.-1.o){ a r (3.6)
08 <1,J> ij

and

A CaBYt



) X R? r? rY 6 (3.7)

where A is the area of the sample,

bor distance L and r is the unit vectors.

11

For the triangular net, we have:

Rij is the nearest neigh-

A:( /3 L2/2 ) N (3.8)

and

A

r = (1,0), (-1,0)

1J

(1/2, /3 /2). (1/2, -/3 /2),

(-1/2, /3 l2). (-1/2, -/3 l2). (3.9)

A

From which the moments of the r can be worked out:

13

a -

a B - 1
< rij rij > - _2—'8aB (3.10)

a 2 B 2 1 1

< ( ”13 ) ( ’11 ) > = ‘8’ * "1"508

Substituting back to (3.6) and (3.7), we obtained the stress

tensor and the elastic constants. The results1are listed as

the following where we used n to denote L /L:
0

Stress tensor:
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U
)

11 m 11xx yy /3 K ( 1 - n) (3.11)

Sxy = Syx = O (3.12)

where Sxx and Syy are actually the external pressure.

Second order elastic constants:

cxxxx = C11 = 13F! 1 1 - n ) (3.13)

cxxyy = 012 = 1335 n (3.11)

cxyxy = C11 = 1335 ( 1 - 3 n ) (3.15)

nyyx = C11 = $135 n (3.16)

These results are plotted in Figure 3.1. As expected,

these elastic constants include the known results for the

pure scalar case and pure central force case.

For scalar case: (n = 0)

and for central force case: (n = 1)

C11:3/3K/u
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and C11 = /3 K / 1

He checked these results through computer simulation,

they all agree well. Since neither C11 nor C comes out
12

independently, we design other four cases of initial stress

and combine their results to extract C11 and C12. The

transformations corresponding to these four cases, in addi-

tion to those for computing C and C11 , are sketched in
11

Figure 3.2. The corresponding second order elastic constant

are respectively:

Pure shear: (Figure 3.2c)

-J. . - iii

Pure rotation: (Figure 3.2d)

u = g ( c,“ - 0,1 ) = 1335 ( 2 - 2n ) (3.18)
1‘

Bulk compression: (Figure 3.2e)

- 13—5 (3.19)
-.1. '

B'2(C *012)' 211

Compression/expansion: (Figure 3.2f)

)-i3—5(2-n) (3.20)
11 12 7 1
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Figure 3.3 plots these results.

From these combinational elastic moduli, we have:

C12 : B - b (3.213)

and

C11 = u - u (3.21b)

Note that C and C11 are also given by ”s , ur , B and
11
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Section 3.3 Diluted Triangular Net Under Stress

---- Simulation Technique

Special care is needed in studying the diluted network

under stress. For a pure lattice where no bond is missing,

the lattice node serves as the equilibrium position because

the forces exerting on a site through adjacent stretched

springs are balanced each other. However, as soon as ther

diluting process starts, this balance is destroyed and the

network deforms around the missing springs. Related sites

relaxed coherently to reach their new equilibrium position.

It is around these new equilibrium positions, which might be

far away from the corresponding original lattice nodes, that

the sites in network are vibrating. The elastic constant

and the stress tensor should be determined from the struc-

ture of this new equilibrium configuration.

The key point is that before applying any extra exter-

nal stress, we have to obtain the relaxed configuration of'

the diluted network. Only internal stress plays the role in

this relaxation. A certain amount of static energy is

stored in this relaxed network.

The details of the numerical simulation are described

as below.

(1) Generate a diluted triangular lattice by removing

bonds randomly with probability (1-p) on a triangular

lattice. Note that the resulted network is unrelaxed for the

cases L0 = L.
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(2) Relax the network obtained from (1). The movement.

of site i is proportional to the force exerted on it.

Specifically, during the procedure of iteratdtni, the posi-

tion of atom i is determined by the previous configuration

through:

x(n+1) = (n) (n)
{1 x £1 + a ng (3.22)

where F£1 is the force component given by:

- ‘ §
ng - X Kij (r1J - LO ) rij (3.23)

J

and a is a number which could be adjusted to control the

simulation.’ Principally, the iteration process should stop

when the force on any site is zero. Hhile practically, we

choose an appropriate small number which is good enough to

satisfy the requirement of the final result precision. For

example, Fmax = 10'8 was used corresponding to e = 10"2 in

our simulation. The energy of the relaxed network is calcu-

lated and written as Eo(p,LO/L).

(3) Now, depending on whether C11 or C11 or other elas-

tic moduli is being computed, the coordinates of the sites

are transformed corresponding to a certain external strain.

Some uniform transformations are given in Figure 3.2.

(1) After exerting the extra strain, one then proceeds

to relax the network again. To seperate the linear and
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second order contribution, we reverse the sign of external

strain e and repeate the procedures (3) and (1). The energy

of the relaxed configuration is:

m u E (p, LO/L, e>0)

I
"
)

1
1

E (p, LO/L, £<O)

where S and C stand for linear and

respectively, given by:

£0 + S IEI +

E. - S IEI +

second order

(2*- a.) - (E - E.)

S 2 Icl

£2

(2*- E.) + (E' — 8.)

N
l
-
a

N
l
—
o

(3.21)

coefficients

(3.25)

(3.26)
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Section 3.1 Diluted Triangular Net Under Stress

------ Simulation Results

In this section, we present the results of the computer

simulation described in the last section. All simulations

were done on a 20x22 triangular net with periodic boundary

conditions. Each network is specified by two parameters:

LO/L and p. He investigated the elastic behavior of the

network in the plane of L /L -- p in the range of O<L /L<1
0 O

and O<p<1. Previous knowledge was on three lines as

sketched in Figure 3.1. Two of them were along L /L = O and
O

LOIL = 1, representing conductivity percolation and rigidity

percolation respectivity, and the other was along p = 1 with

varing LO/L which was studied in section 3.2.

At first, we present a survey for secondiorder elastic

constants for various p and LO/L. Figure 3.5 shows the

results of C and C11 versus p for different.l../L. Other
11 0

two elastic constants C12 and C11. cannot be calculated from

simulation directly. Hhile, as illustrated in sectitui 3.2,

I
these elementary elastic constant 011, C11’ C12 and C11 can

be determinedcompletely from four combinational elastic

moduli B, us, “r and b, which can be calculated directly

from simulation. Figure 3.6 plots the results for B, ”s’

u b. All the values at p=1 were actually predicted in
r?

section 3.2. For example, the bulk moduli for various Lo/L.

are starting from a single point at p=1 since in the elas-

ticity analysis for pure triangular net, we have shown
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that B is just a constant for any L /L. In the intermediate
0

region, i.e. p less than one but much greater than the

5

threshold p , these elastic constants change linearly in a

similar way, which strongly suggests an effective medium

theory for the stretched network. It is crucial to observe

a

that for the networks with different L /L, the thresholds p
0

at which the elastic constant vanishes are different as

n

revealed by our simulation. The smallest p is pc , cor-

responding to the case of L = O, which is identical to the
O

a

conductivity percolation. With the increasing of L /L, p
O

is increasing very slowly at first. After passing through

6

the point aroung L /L = 0.5, p experiences bigger and big-.
0

a

ger Jumps for the same amount of change in L /L. Finally p
0

reaches p when L = L, which agrees with previous re-
cen 0

search on pure central force network.

This dependence of the threshold p. on LO/L is perhaps

not so surprising. For example, one can envision a perco-

lated cluster on lattice background (before relaxation) in

which there existes a node i with coordination number two.

As sketched in Figure 3.7, the two bonds adjacent to this

particular site are connecting the other two parts of the

cluster in a way that they are not aligned on a straight

line. If the lattice space L is equal to the natural length

of the spring, the current position of i is in equilibrium.

Then because the bonds can pivot freely without costing any

energy, this structure is not able to transmit any elastic

forces. However, if LO/L < 0.5, the equilibrium position
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PM. 3.7 Illustration of radioed "diode effect".
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would be in the middle between two parts, while the spring

is still stretched. Here we Just ignore the relaxation of

other part of the network without loosing the generality of

the discussion. In other words, the elasticity would not

vanish because of the existence of this diode hinge in the

lattice background. Similarly, for other values of LO/L,

one could imagine many other structures, which would have

"killed" the elasticity of the geometrically percolated

cluster for a large value of LO/L, now relaxed to a "good”

effective elastic structure for smaller L /L. This explains
O

I

why p is increasing with L /L.
O

Beside these second order elastic constants, there are

two more quantities describe the property of the tennis

racket. They are the first order coefficient which is the

external pressure P and the zeroth order constant which is

the static energy E. The simulation results of P and E are

plotted in Figure 3.8 and Figure 3.9. Result is obtained by

averaging over ten ramdom configurations. For the con-

venience of investigating the transition thresholds, both E

and P are scaled such that their value are one for all LO/L

at p=1, i.e. in the pure lattice case.

Obviously, for the networks with different LO/L, the

threshold is different.

We end this section with a set of six quantities E, P,

B. u u b to describe the diluted stretched networks.
3’ r’

The next task is to find out the minimal set of independent

quantities by exploring any possible relation between them.
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Section 3.5 Symmetry Analysis

In attempting to reduce the number of independent elas-

tic constants describing the stretched network, we notice

that in unstretched network the elastic constant C is

aBYt

invariant under the index exchange (GB*¢YT) and (arefl),

(Y«¢1). (see e.g. Love 194A) Because of the initial stress

there are now first-order terms in s so that the symmetry
08

relations needed to be changed. In section 3u2, we derived

all of the elastic constants for the pure triangular lattice

in terms of Lo/L. Recalling equations (3.13)-(3.20), we

find three independent relations between the pressure and

the second order elastic constants. These relations are:

P 3 Can - Cu”. i.e. P 3 2 up (3.28)

C11 - C12 = Cuu + Cuu' i.e. us=b (3.29)

Thus the set of six constants E, P, B, u b is8’ "r!

reduced to three constants for pure lattice. He chose E, P

and B as these three independent quantities, corresponding

to the different order of the potential expansion.

For the diluted networks, one can anticipate that no

more than three relations exist between E, P, B, us, up, b,

since the symmetry broken induced by missing springs. In
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this section, we will study one by one the validity of equa-

tions (3.27)-(3.29) and the underlying physics on the

diluted stretched network.

Rotational Invariance of the Strain-Energy

At first, we consider (3.28) which relates the pressure

to the second order elastic constants CHM and CHH.° From

the invariance of the strain-energy density (3.“) under an

infinitesimal rigid rotation, Huang (1950) has shown macro-

scopically that

CQBYT ' CBaYI = SBISaY - SaISBY (3'30)

By substituting QBYT with xyxy and yxyx in (3.30), we get:

c -c :3 .1
xyxy yxxy yy (3 3 3)

These two equations are equivalent to each other since

and

nyxy ‘ nyyx = can
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- - I

nyyx ' nyxy ' CHM '

so that both (3.31a) and (3.31b) lead to eq. (3.28).

We look at this relation from the microscopic [Haint of‘

view. Consider an infinitesimal rigid rotation:

fi.=6x§.+‘$x(5xfi.) (3.32) 

In our system, 6 is taken along the direction perpendicular

to the network plane such that 61 can be written as:

6:;xfi-2-2-§ (3.33)

Replace 6

.
.
a
.

get:

+ % X K ( 1 - L / R ) ”2 R 2 + 0(03)

(3.3”)

The second and third terms are cancelled so that V is in-

variant under a rigid rotation as it should be. We claim
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that these two terms are Just the pressure and second order

elastic constant CAN - CAN" To prove that, we divide the

.9

U 1 corresponding to the rigid rotation as two parts:

. (p) 02
u 1 : - 2—- fii : E El (3.35)

where e = - w2/2, and

61") = a . hi (3.36)

In the computer simulation, we actually investigate the ef-

fect of 51(p) and 51(r) seperately. For 31(p) the

transformation is shown in Figure 3.2e, i.e.

x' = x ( 1 - c )

y ( 1 - e ) (3.37)‘
< I
I

The pressure is obtained from the linear coefficient in

energy:

[3:2 K - LO) a / 2A (3.38)

<i,J>
11 (R13 11

Note that the coefficient of the second order term is the

(r)
bulk modulus. 0n the other hand, 5 is corresponding to

the "pure rotation" transformation defined in Figure 3.2d:
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N 1
1

x + m y

y' = y - w x (3.39)

from which we get the second order elastic constant,

/ R. ) R

‘3 (3.110)

and the corresponding linear order term is always zero.

Figure 3.10 presents a check for eq.(3.28) via the numerical

simulation on the diluted network. We conclude that the

rotational invariance is preserved in the diluted case.

Isotropy for the Sound Velocities

Now let us consider the eq.(3.29). With the given

energy of deformation (3.”), the wave equation is:

2 .

co 9 Z X C a uY (X) (3 ‘41)

p u (x) = ----- .
a > Y 31 aBYt 3 x8 3 x1

For the plane wave solution:

6 exp ( 1 E . § - i w t ) (3.12)

we get
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p “2 u = § ( X caBYT k8 kt ) uY (3.13)

Specifically, for 2-D system, (3.“3) is reduced to:

2 2
O

2 u C11 kx + CAR ky (C12 + can )kxky u

p m =
2 2

v (C12 + Cu“ )kxky Cuu kx + CH ky V

(3.HA)

In the (1,0) direction, we have two eigenvalues:

p m / k = C (3.“5)

MM

Corresponding to the longitudinal and transverse wave

respectively. In the (1,1) direction, i.e. kx = ky : k/l2,

the two eigenvalues are

c + c i ( c + c ')
p “2 / k2 = 11 nu 2 12 nu (3.u6)

Since for isotropic system as the triangular net, the sound

velocities are independent of directions, by equating (3.“5)

and (3.“6), we have

C11 + CH” + ( C12 + Cuu' ) 2 C11 (3.“7)
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C + C11 " ( C + C ' ) = 2 Cu“ (3.u8)
NH 12 MN

both of them leads to equation (3.29). Figure 3.11 presents

a numerical check for (3.29) on the diluted system. He con-

clude that eq.(3.29) based on the isotropy is valid in the

diluted stretched system.

Cauchy's Relation

Finally, we study the validity of the Cauchy's relation

on diluted network. From the numerical simulation results

plotted in Figure 3.12, we can see that there is an obvious

discrepancy between C12 and CAM. except for LO/L = 1. This

result may be not so disappointing since the hypothesis for

the Cauchy's relation to be valid is totally destroyed in

the diluted tennis racket. Assumptions for Cauchy's rela-

tion are (1) central force between pair of atoms, (2)

inversional symmetry at each sites. (Love 1900) Garboczi

(1985) claimed that the second assumption should be modified

since that the numerical simulation suggested the existance

of Cauchy's relation for the diluted central network, 1H1ich

is the case L /L = 1 in this work. As soon as the network
0

is stretched, i.e. for L /L not equal to 1, we lost the
O

Cauchy's relation. One explanation is for L /L = 1, the
0

equilibrium configuration still has the lattice background,

while for LO/L = 1 and p<1, the equilibrium positions are no

longer at the lattice node.
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Through above analysis, we conclude that in the diluted

tennis racket, eqs. (3.28) and (3“29) are still valid, but

not the Cauchy's relation (3.27). This reduces the six

quantities E, P, B, ”s’ ”r’ b to four independent ones.



132

Section 3.6 Effective Medium Theory

Now we have four independent quantities E (static,

energy), P (pressure), B (Bulk modulus) and us(Shear

modulus) to describe the elastic behavior of the tennis

racket. Figure 3.8 and Figure 3.9 plot P and E vs. p for

various n, where n=LO/L. To see the transition effect

clearly, both E and P are scaled by their corresponding

value on pure lattice. Similarly, Figure 3.13 plots B and

“3 vs. p for several values of n, which are averaged over 5

samples. Note that for n=0, B and 118 are exactly equal.

Obviously, p., at which the elasticity vanishes depends on

n. Figure 3.1“ plots this phase boundary of p. vs. n in the

stretched region, i.e. 0 < n < 1, where two extreme cases n

= 0 and n = 1 were known before.

It can be seen from Figure 3.13 that B is almost a

straight line for whole range of p down to p”, while as , as

well as E and P which are shown in Figures 3.9 and 3.8, have

more or less a tail near p.. This tells us that the phase

boundary in Figure 3.1” may be relative to the phase bound-

ary determined by the initial slope of B. We introduce a

single defect in a network, then let it relax. From the

drop of the corresponding elastic quantities due to this'

defect , we extract their intercepts on the p-axis. Figure

3.15 presents the computer simulation results of the single

a u a s a a

defect case for p E’ p P’ p B’ p u , p u and p b' Again,

1" 8
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6 6 d 6

u,’ pus an DD.

6

there are two identical pairs, p P and p

as the results of the rotational invariance and isotropy

which are proved in section 3.5. The differences between

the four independent quantities are consistent with what

shown in Figures 3.13, 3.8 and 3.9.

In the remain part of this section, we will present a

theoretical analysis of the single defect case and predict

the initial slopes via the effective medium theory.

Let us consider a tennis racket with one bond, for ex-

ample, in between sites 1 and 2, removed as sketched in

Figure 3.16. After relaxation, the distance between 1 and 2

changes from L to L The effective spring constant be-
eq‘

a

tween site 1 and 2 are K/a , which includes the effects of

n

both the direct spring and the lattice. We know that 0 < a

< 1, since the effect of the lattice background. Then after

removing the spring between 1 and 2, the effective spring of

the lattice background is

K = —-; - K (3.119)

s

From Thorpe and Garboczi (1985), a can be calculated

exactly from the dynamical matrix of the pure lattice,

¢

a = -'i X Tr { X [ 1 - exp (1LE-3) ] (33) . 2"(k) }

k a

(3.50)
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where g (k) is the Fourier transform of the dynamical

matrix:

Q (E) = x n X [ 1 - exp (1LE-8) ] 33

a

+ K (1-n) Z [ 1 - exp(iLk°8) ] l (3.51)

5

where nzLo/L and I is the dxd unit matrix. The formula to

calculate a. of the tennis racket model on triangular net

are shown in Appendix C.

If the potential about the equilibrium position of this

effective spring is pure parabolic (checked by simulation

for stretched network), we find Leq is given by:

= a (3.52)

Substitute back to the expression of the energy, we find out

the amount of energy that must be added to the one defect

case to recover the no defect lattice energy is:

 

I

L - L a
1 o 2 1 2

111-:=§1<e[1 ,, -L] +§K(L-L0)

-a

1 2 1
:§K(L-LO) (———,—,—) (3.53)



139

which determines the initial slope of the static energy

p E = a (3.5“)

This result is plotted in Figure 3.17, where the solid curve

is a. and the symbols are p.E from computer simulation. The

disagreement near n = 1.2 is due Us the failure of the

parabolic assumption in the strongly conpressed network. In

this work, we will focus on the network with tension, i.e.

0<n<1.

Now, we have the expression for the energy in the net-

work with a few defects (fraction of 1-p):

%_;_KLz(,_n)2[_p_-_§_] (3.55)

For the initial slope for the pressure, we notice that P is

proportional to %% , we have

P=P0[1-(1-p)A,] (3.56)

where

1 3a

1-a 1-a an

 

(3.57)
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a

and p P is given by

i

p P = 1 - 1/1)1 (3.58)

For the Bulk modulus, we know

2 2
3 E

“A 3L

where A is the area. We have

 
 

 

 

B = BO [ 1 - (1-p) A2 ] (3.60)

where

A2 = 1 a [ 1 _ n ( 1 _ 02) 1 . 3a

1-a 1-a 3n

1 * 2

+ [ n (1‘0) g ]

1-a

1 2 2 1 32 "
+5 n (1-n) , a, 1 (3.61)

1-a 3 n

which gives

i

p = 1 - 1/A (3.62)
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I I I

All of these results, p E’ p P and p B’ as well as the

corresponding simulation results are plotted in Figure 3.18.
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Section 3.7 Conclusion and Future Research

He found that two kinds of percolation problem, conduc-

tivity percolation and rigidity percolation can be combined

together in the stretched tennis racket model. Our main

conclusion is that the threshold for the new model is not

discontinuously changing from p to pc, as predicted by
cen

the simulation on the Born model. In the intermediate

a

region, i.e. for 0<Lo/L(1, we observed p between g3 and

Pcen' An effective medium theory is derived for the single

defect case.

Several suggestions can be made for future research.

At first, study about the elastic behavior of compressed

network (LO/L>1) is certainly needed which is an important

part in the complete phase diagram. Secondly, from the ex-

perimental point of view, a measurement of the longitudinal

and transverse sound velocities in tennis racket must.be

very interesting. Of course, in a real system, there would

be additional contributions to the elasticity which are not

due to the network. Finally, determination of the standard

exponents for the tennis racket model would be useful but

also time consuming.
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Appendix A. Isolated defects in the static limit

Submitted to J. Phys. C

September 18, 1986

Isolated defects in the static limit

H. F. Thorpe and H. Tang

Department of Physics and Astronomy

Michigan State University

East Lansing, MI 48824

Abstract

We collect together the known results for the effect of a single

defect, into a single compact form that can be used in any lattice in the

static limit. The result is used to calculate the effect of single defects,

either bonds or sites, on the diffusion constant and conductivity of various

lattices. It is shown that the result of Izyumov for the spin wave

stiffness can be simply generalized to any lattice.

PA Classification: 7155, 6350
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1. Introduction

The effect of a single impurity on some desired response function is

well understood (see e.g. Elliott et al 19714). Practical calculations are

possible if the range over which the interactions are changed by the

impurity, is very short. In general, the detailed symmetry around the

defect site must be taken into account in order to complete the calculation.

An exception is a mass defect, where a simple formula can be written down
 

that is valid for any lattice. The lattice only comes in when the
 

particular on-site Green function needed is calculated. Another similar

situation is provided by a site diagonal impurity in a tight binding model

(see e.g. Economu 1979).

In this paper, we look at two other cases that can also be carried

through without worrying about the particular lattice until the pure lattice

Green fUnction has to be evaluated.

The first of these is the bond defect in a tight binding model; a

result given by Kirkpatrick (1973). A more interesting and complex example

is site defect when a site and all its bonds to its nearest neighbors are

altered.

2. General Formalism

For convenience we consider a system described by a vibrational

potential

0 = X A “B u? u? (1)

iJaB iJ



147

where all the atoms are mass points with mass m; i,j are sites and (1,8 are

Cartesian components. The vector 31 is the displacement of the 1th site.

The Ag? are subject to various symmetry restrictions that we do not need to

consider here. He will switch to tight binding language later. The

dynamical matrix for this system is defined from the equation of motion.

2 a dB 8
mm u = {A u (2)

1 jB ijj

or

11111123 = 1:32 (23)

where u is considered to be a dN dimensional vector. The dimensionality of

the system is d and there are N atoms. The dN by dN matrix 1:) is the usual

dynamical matrix (see e.g. Born and Huang 1966).

If a fOrce £8, also considered as a dN vector, is externally applied to

the system, then

Ee:-£=22. (3)

He will be considering only cases where 2e (and hence _t_‘_ the force produced

by the system to oppose 3e in equilibrium) are non zero at the surface.

Inverting equation (3) we find that

(‘1)

1
1
:

1
1

1
1
C
)

I
r
e

where g is the zero frequency limit of the usual Green function 9((112) given

by
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2) = [mwz- Q]" . (5)

1
1
0

(01)

As we are only concerned with the static limit, the masses are irrelevant

and so we will set them all equal to m. If the system described by (1)

consists of a perfect crystal with a dynamical matrix 130 plus ardefect,

where the defect has a (localized) potential g, then we have the usual Dyson

equation

§:P+P1:I(;.. (5)

where Q = 90 + y. Here P is the perfect crystal Green function and G is the

Green function of the system plus defect. Note that go E = D G = -1. We

may solve (6) fOrmally

“ . (7)

1
1
C
)

1
1

A

.
.
.
o

1

"
"
0

1
1
<

V

"
'
1
3

The static energy E' of the system produced by the application of the

external force 2e is

E' = (8)

6

I
t
:

1
1 1

v
o
l
—
1

I
"
:

n
o

I
"
:

f
—e

N
l
-
a

We see from (6) and (7) that

C
)

1

"
U

1
1

"
"
0

"
<
1

1
1
6
3

1
1

"
"
0

1
1
<

A

-
b

1

1
1
'
0

1
1
<

V

1
1
"
!
)

The change in the energy AB = E' - E due to the presence of the defect is

therefore
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AB

f
o
l
—
-

1
H
1
A

1
1
6
)

1

1
1
"
!
)

v I
"
)

I
r
v
)

1
1
"
!
)

<:(1-gg)§§. (9)

N
i
l
—
-

This form is quite convenient as usually 2 is only nonzero at the surface of

the sample. However a better form for our purposes is obtained by writing

the equation similar to (4) but for the perfect system

L10=E£ (10)

where So are the displacements produced by the force f before the defect was

introduced and using this we can write

AE:-%u°¥(1-E=’\=I)1_io. (9a)

This result can be rewritten using the 1 matrix

1' = z“ - 21>" (H)

as

A8 = -‘l u T u . (12)
2 -o = -O

This is a very convenient form for developing effective medium theories of

many defects as well as the single defect problem we are considering here.

Equation (12) is simple because the range of 1' is the same as y and so is

localized around the defect. In order to calculate AE, it is therefore only
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necessary to know go around the defect. Remember that the_u) are the

displacements produced by the external force fie in the absence of the

defect. When the defect is introduced, the force 3 is held constant and the

strain changes. The situation is particularly simple in a Bravais lattice

if 2e is a uniform external stress (e.g. shear, compression). Then the

lattice distortion is homogeneous and the 1._10 is very easy to write down.

This is the only case we shall be considering here.

3. Isotropic Born Model

We apply the work of the preceding section to the isotropic Born model

(Born 1914), where the perfect lattice is described by the potential

(13)

and the sum is restricted to nearest neighbors. This model decouples in the

d orthogonal Cartesian directions into d separate tight binding Hamiltonians

H = a X (aTa.- afa.) (14)
1’1 1 l j l

where the sums in (13) and (14) go over J which are nearest neighbors of’iq

which is also summed over. We will work in the language of the isotropic

Born model and "translate" into tight binding language later. This is

convenient as stresses and homogeneous strains are easier to visualize than

the equivalent in the tight binding model.

th
Let us consider a uniform strain (go) in which the i atom has a

displacement.



0.: ER. (15)

where 1: is the magnitude of the strain. This homogeneous strain (15) is

appropriate for any Bravais lattice. Because a_l_l_ homogeneous strains (i.e.

shear, compression, etc.) for the potential (13) are trivially related, we

use the simple form (15) where c is a scalar. The methods outlined here

become a little more complex for lattices with a basis where the strain is

not usually homogeneous. Inserting (15) into (13), we find that the strain

energy E is given by

E = %(1£2Nza2 (16)

where the a is the separation of the z nearest neighbors. Note that the

origin used for the external strain (15) is irrelevant as only differences

in displacements contribute toward the strain energy (16).

4. Bond Defect

We now consider a very simple defect. A single 931351 is changed from

Q ~ QO' We will number the atoms 1,2 as in figure 1. In general the strain

(15) will produce displacements u, = - _u_2 = £12312 where 312 = R1— 32 is a

nearest neighbor vector. Because the defect is localized, no other

displacements need be used as basis functions in (9a). It is convenient to

choose the center of the bond 1,2 as the origin for the strain. This

excludes any uniform motion of the defect bond, which may be included, but

does not contribute to (9a). In this basis (Feng, Garboczi and Thorpe

1985), the y matrix may be written



152

y: (010- a) [ ) (17)

- -1 1

.1

and u = ea 1 2 l (18)

‘° -1

'2

u = E-a- [3)

w —

/2

(19)

J.

where Is) = [ l2 ]

-1

/5

so that the state vector Is) is properly normalized. Note that

 

g |8> = 2(co- a) |s> (20)

so that

2(a - 0)

AB = - $.25 ° (21)
1 - 2(ao- a)<slPls>

where we have also used the fact that Is) is an eigenvector of 1;. This

happens because the two states on the atoms 1,2 transform as a symmetric and

an antisymmetric vector under the symmetry group of the bond. Because there

is a single representation of each kind, there is no mixing so that the

antisymmetric vector ls) must be eigenstate of g. The symmetric

representation corresponds to the uniform translation and so is irrelevant.
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This kind of argument becomes much more powerful in the site defect case to

be considered later.

 

Therefore

1

<slgls> - -2-[P11+ 922- P12 - 921]

(22)

= P11- P12 by symmetry,

1 eprk'fiU)

where P ‘- (23)
ij )1 k 2 2

m(m - wk)

and mm2 = az(1 - 1 ) (21)
5. 1‘.

-1 11432
where 75 - z E e (25)

and g are the z nearest neighbor vectors. The excitations (24) are just

those of the pure isotropic Born model. In general the P must be be

1J

evaluated numerically, but in the present case we can make a shortcut that

by using the equation of motion for P11

2
mm P11 - 1 + za(P11- P12) (26)

2 -1

so that as w + 0, (P11- P12) : -(za) and hence

(a -a)

AB = - 22a2 0 (27)
 

N
I
-
b

1 + 2(ao- a)/za ]
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Remembering that when the defect is introduced, the stress is held

constant, it.is the quantity 1/a that is renormalized as the energy ~ fz/a.

Hence we may write

(28)
a E'

a - E — 1 + - 1 +-

e - :

using equations (9) and (11). This can be rewritten in terms of the £0

produced by the f,

 

 

. 2. I u.
(1— : 1 - U D U (29)

e -o = -o

This result is quite general. We find that in the present case

1 2 2 (1°- 0
a E-Noe a 1 + 2(ao- a)/zd

F = 1- ' (30)

e %’Nezza2a

c(ab- a)

 

' a + 2(ao- a)/z

where No: é-ch is the (small) number of noninteracting defects. It is more

usual to invert (30) to give

c(ao- a)

 

a =a+ (3021)
e 1 - 2(00- a)<sl§|s>
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c(oo- a)

 

: a + a + 2(ao- (1)/z

to first order in the concentration of defects c. This has been obtained

previously by Kirkpatrick (1973) but serves to illustrate the method.

A particularly interesting case occurs for a missing bond (00: 0) when

06 = a - ca/(1 - 2/z) (31)

which extrapolates to zero at

or pl: 1 - cI = (32)

This is the intercept in a plot of (1 against p when the initial slope is

extrapolated to where it crosses the horizontal axis. This is discussed in

more detail in the next section. Going back to (21), an alternative

expression for pI is given by

pI = - 20<slgls> (32a)

where Is) is the state vector characterizing the local strain around the

defect, but in the absence of the defect, and g is the perfect crystal Green

function. This form is useful as a similar but different form holds for a

site vacancy. The place where ae actually goes to zero is of course the

percolation concentration pc. Kirkpatrick (1973) has shown that the
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conductance of a network of wires behaves as (ie if we identify the tight

binding parameter (or in our case the spring constant) a with the

conductance of a wire Joining adjacent sites. Kirkpatrick has also shown

that the diffusion constant D can be obtained from G via

G : PSD (33)

where P3 is the probability that a site is connected into the infinite

cluster. Throughout this paper we will use units such that G and D are

normalized to unity at p = 1. This saves having to write G/Go and D/Do

everywhere. It is easy to calculate Ps for small c in the present case. To

isolate a site, it must have all 2 bonds cut, therefore

P8 = 1 - c2 + 0(022—1] (34)

and so makes no contribution to 0(c). Therefore the initial slope of the

diffusion constant D is the same as that of the conductance G and the

extrapolated intercept pi is just given by

pi = pI (35)

In table 1, we show pc,pI and pi for some common Bravais lattices. The

quantities G, D, P8 all go to zero at pc. If G ~ (p - pc)t,

D ~ (p - pc)t. and P3 ~ (p - pc)B, then t' = t - B. In 2D, t =1.3 and

8 = 0.14 whereas in 3D, t = 1.9 and B = 0.4 from Stauffer (1985). These

indices depend only upon dimensionality and are the same for both site and

bond percolation.
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Finally in this section we note that the relation G = PsD is the

analogue of

E = pv (36)

where E is an elastic modulus, p is the mass density and v3 is the sound

velocity. It is clear that such a mapping exists because of the equivalence

of the tight binding model and the isotropic Born model.

4. Site Defect
 

Using the general ideas of the previous section, we can obtain an

expression for a general site defect. It is convenient to use a uniaxial,

rather than a hydrostatic strain as in the previous section, so that the 1th

atom has a displacement

21 = d5,- x>y (37)

A A

where x, y are any directions; these need not be orthogonal and they can be

the same. Also y may be perpendicular to the lattice(e.g. the z direction

for a 2D network in the x,y plane). In that case the isotropic Born

potential (13) must also contain terms in the z direction. All this

arbitrariness is because of the isotropy which leads to a single diffusion

constant or elastic stiffness. This formalism can also be used with

anisotropic interactions, like central forces, in which case careful track

must be kept of directions (Thorpe and Garboczi 1986).

The strain energy of the system, using (13) and (37) is
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E = 11- aezNzaZ/d (38)

The vector go is formed from the homogeneous strain (37). All the 2 bonds

around the defect site have force constants (10, while all the other bonds

have the original force constants a. It is convenient to choose the origin

at the center of the defect (see figure 2). As in the bond case, this does

not affect the result but simplifies the algebra. The nearest neighbors of

the central site have displacements

26 = e(§_-x)y (39)

where g goes over the z nearest neighbor vectors each of length a. The

normalization is given by

X u: = ezz (goal)2 = czaZ/d (no)

8 5

if all d directions are equivalent. This is true for all the cases to be

considered here and listed in table 2. Thus we are restricted to Bravais

lattices in which a second rank tensor is a constant times the unit matrix.

The formalism becomes a little more complex in other situations but can

still be used. We may write the state vector Is) as

_ Z
20' ea/d ls> (‘11)
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which is a little different from (19). The vector ls) varies depending on

the defect and the direction of the strain. For the strain in the

triangular net, shown in figure 2.

N
I
-
a

N
I
-
e

_ 1
(42)

u
fl
-
fl

13) :/

n
n
_
.

N
l
—
e

Fortunately we will not need to write Is) down in detail. A little thought

/

will convince the reader that for any ls> derived from (39),

)_l ls) = (00- a) Is) (43)

which differs from (20) by a factor 2, because each atom in the shell

connects only to the stationary center in this case. Hence

— z_ 2 2 do ' a ]

[1 - (ao- a)<s|§|s> (44)

where we again use the fact that Is) is an eigenstate of P. The argument in

this case is a little more subtle. The state vector Is) transforms as a
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vector on the shell of the defect. As E is a scalar, and there is only

single vector representation on the shell, the result follows.

Combining (38) and (44), we see that

2
2c(ao- a)

 E+AE=h1£Nza2/d[a-
1 - (ao- a)<sl§ls>

(45)

The factor 2 in the numerator occurs because of the counting, and comes

about because a bond is removed if either of the two sites at its end are

removed. From (28) we can define ae as

'2 = 1 - 2c(ao- a)

 

de 1 - (do-a)<s|§|s>

Inverting to first order in c, we have

2c(aO - a)

 

“e = a * 1 - (ao - a) <31 2 13>

(46)

(46a)

Notice how the factors 2 occur differently in (30a) and (46). The problem

is now reduced to evaluating <s|E|s>. The components of Is) are just

proportional to 5110 x as seen for example in (42). If normalized properly

to 1, they become / 1%(51-x)/a.

Therefore



161

. 2. .. 150g . . 'ifi'é (17 )

-d (.8.1 x)e 1 (£1 ’Ue J 5

  

I
K
’
M

I
n

2

Nza k mmk

(47)

where 3 ) (48)
a

3 ‘ [3(kxa)’ 3(kya)""

and it is convenient to include the nearest neighbor distance a in the

definition of the V operator. For the special case of a missing site,

co = 0 and ae extrapolates to zero at

 

p1 = % - g (81:13) (”9)

(111,32

1 1 -
:§+§fi£ 1‘Yk (1193)

These integrals for pI have to be computed numerically in most cases. They

are listed for a number of lattices in table 2. The square net has

 

1

Yk - 2 [coskxa + coskya]

2 - cos2k a - cos2k a
_ l 1

x Y

and 80 D1' 2 * ‘EN E 2 - coskxa - coskya

u

I [2 - cost- cosZy]dxdy

 

1
1

='2 +8 I 1 2 - cosx - cosy

o
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= 1 - 1/u

as previously found by Watson and Leath (1974). The result for the simple

cubic lattice was first obtained by Izyumov (1966) in the slightly more

complex situation involving spins. His result agrees with ours.

Equation (33) still holds for the site vacancy of course where now

P3 : 1 - c + 0(c2) (50)

as removing a single site, reduces the number of sites in the infinite

cluster. Hence G has a different initial slope from D. Using (33)

  13,1) ° 1(1-
1-pi

[1-c111-

and hence pi 2 — 1/pI (51)

These values are also listed in table 2. The results of computer

simulations for G and P3 (and hence D) for site percolation on the

triangular net are shown in figure 3 (Tang, 1986). The dashed lines

corresponding to the intercepts pI and pi from table 2 are shown. The

diffusion constant D was obtained in figure 3 using (33).

5. Comen‘ts

We have shown how a number of known results can be put together.

Although we have concentrated on bond and site vacancies, knowledge of pI

allows (18 to be found for any defect that has strength (10 in a host a. For

a bond, using (30a) and (32a)
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ca(ao~ a)

ae : a ' a(1 - p1) + copI (52)

while using (46a) and (49) for a site defect

2ca(ao- 0)

ae = a ' 2a(1 - p1) + ao(2pI— 1) (53)

where in both cases pI can be looked up in tables 1 or 2. For example these

can be used in the "superconductingylimit" (see Straley 1983) when 00* a, to

give

ae = a + ca/pI (52a)

in the bond case and

ae = a + 2ca/(2pI- 1) (53a)

in the site case. It is more usual to write these results in terms of the

inverses, which to first order in c are:

11

‘5 = ‘E (1 - c/PI) (52b)

e

1 1 1 - 20

and - = - [ -—-] (53b)
ce 0 2pI- 1

From (52b) and (53b), we can determine a new quantity p? for the

superconducting limit where the initial slope crosses the abscissa. This is
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clearly simply related to pI for the dilute resistor network on the same

lattice. It is more usual to introduce of a fraction (P) of superconducting

links so that both problems have a common pc as sketched in figure 4. This

can be imagined as follows. Take a resistor network with a fraction p of

2 with 82)) R1. The

dilute resistor limit is reached as R2. 0, whilst the superconducting limit

is reached when R12 0. A similar situation holds for site percolation.

Therefore using (52b) and (53b) and remembering to put p ~ 1-p for the

bonds having resistence R1 and a fraction 1-p having R

superconducting case we find that for bo_nd_s_

p? = pI (54)

whilst for _sit_es

pi = 91'5 . (55)

Again like equations (35) and (51), relating pi to p1, equations (54) and

(55) do not depend upon the lattice or the dimensionality. Note that p: for

sites is given from (49a) and (55) as

 

s 1

We note that i_f the defects are sufficiently far apart, it is 1/ae (or

the resistance) that is linear in c the concentration of defects and

contains 92 c2 terms. The c'2 terms therefore would represent interactions

between defects. 0n the other hand (1‘3 (or the conductivity) is also linear
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c but contains terms in 02 even if the defects are sufficiently far apart

that they do not interact. These come purely from the expansion of the

denominator i . e .

[1 + c/(1 - pI)]‘1 = 1 - c/(1 - p1) + 0(c2). (55b)

This is rather obvious but we have not been aware of it before.

Finally we comment on the spin wave stiffness. Consider a Heisenberg

ferromagnet with spins S coupled by nearest neighbor exchange J and

introduce a few isolated site impurities S' that are be coupled to their

neighbors with exchange J'. Izyumov (1966) calculated the spin wave

stiffness Ds by looking at long wavelengths when the excitation energies Ek

are given by Bk: Dskz. This is a dynamic calculation which is technically

(miite a bit harder than the static strain calculations done in this paper.

Izyumov's result for Ds (again in units where D3: 1, when p=1) is

- - - - __22__D3 - 1 c[o 1 1 + Ap] (56)

where

0 = S'/S

(57)

- £L§L

p ‘ JS ' 1

and A is a number that is given as a lattice integral over the cubic

Brillouin zone. Using (33) we can identify

c.-.1+—2—°P—— (58)
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and P8 = 1 + c(o - 1) (59)

The quantity (58) reduces to our G or ae in equation (‘16) if we put 8 = S'

(to get to the usual tight binding model) and identify p = J'/J-1 = ao/a - 1

and also use in (H9)

 

(60)

We have checked equation (60) for the simple cubic lattice using our

expression for pI and the expression given by Izyumov for A and shown that

the two lattice integrals are identically the same.

He therefore conclude that the spin wave stiffness (56) of Izyumov can

be used fOr agy_of the lattices in table 2, if A = 2pI- 1 is used. This may

surprise the reader familiar with the intricacies of Izyumov's paper which

seem to be very dependent upon the simple cubic lattice. The work here

shows that is not so and the result (56) only depends on the lattice through

A.

The inertia term (59) reduces to the usual Ps given in (119) if S' = 0,

when the central spin plays no role in the dynamics.‘ For a 9133 defect m’

in a host with masses m

ml

Ps-1+c(m-1] (61)

which is proportional to the total mass of the system. As long as the

impurity mass m is coupled into the lattice (61) is the correct expression.

As soon as do: 0, however m' is irrelevant in the propagation of sound waves

and therefore should be set equal to zero, hence recovering (50). This is
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also the case in the spin wave result (56) where 8' should be set equal to

zero (i.e. o = S'/S = 0) if J' = O, as the central spin is decoupled from

the rest of the lattice and so should not contribute to the inertia term

(59) for the propogation of spin waves.

If we return to the original isotropic Born model, we may combine (53)

and (61) using (36) to give the sound velocity vs for a small concentration

of site defects as from

2 - £§?[ 2ca(ao- a) ]

s ' 2d a * 2a(1 - p1) + 00(2p1 - 1)

 mv / [1 + c(m'/m - 1)] (62)

where the pI are given in table 2.
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Table Captions

Table 1. Showing the percolation concentration pc, the intercept pI of the

extrapolated initial slope fOr the conductance G; the intercept

pi of the extrapolated initial slope for the diffusion constant D

and the intercept p: of the extrapolated initial slope in the

superconducting limit. It will be helpful to glance at figures 3

and u to see what these are. All values are for gang

percolation. The values of po are from Zallen (1983).

Table 2. Same as table 1 except for site percolation.



169

 

 

Table 1

Lattice pc pI pi p?

linear chain 1 1 1 1

square net .5 .5 .5 .5

triangular net .3fl7 .333 .333 .333

s.c. .2“? .333 .333 .333

b.c.c. .179 .25 .25 .25

f.c.c. .119 .167 .167 .167

d = u hypercube .160 .25 .25 .25

d = 0 hypercube O 0 O O
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Table 2

 

 

Lattice pc pI pi p?

linear chain 1 1 1 .5

square net .593 .682 .534 .182

triangular net .5 .691 .990 .191

s.c. .311 .605 .347 .105

b.c.c. .295 .579 .273 .079

f.c.c. .198 .561 .217 .061

d = u hypercube .197 .573 .255 .073

d = a hypercube 0 .5 0 0

 



Figure 1.

Figure 2.

Figure 3.

Figure 4.
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Figure Captions
 

Showing the two displacements u and _u_2 produced by a uniform
1

external stress around a single altered bond. These comprise the

components of the vector ls>.

Showing the displacements produced by a uniform uniaxial external

stress in a triangular lattice around a single altered site.

These comprise the components of the vector ls>.

The symbols show the quantities D,Psand G for site percolation on

the triangular net obtained numerically using methods similar to

those described in Kirkpatrick (1973). Each sample contained

1600 atoms and the results were averaged over 20 samples. The

quantities pI and pi where the initial slopes cross the abscissa

are indicated.

A sketch of the conductance 0 versus p showing the intercept pI

of the initial slope. This network has a fraction p of missing

units (sites or bonds). Also shown is a sketch of the resistance

R versus p superconducting limit showing the intercept of the

initial slope p?. This network has a fraction 1-p of

superconducting bonds. Both G and R are normalized to the same

quantity in the respective pure system.
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1

.
1
1
5

Figure A1.

Snowing the two displacements g1 and 32 produced by a mifonn exterml

stressamniasixglealteredbad. Dmeomwisethecmponentsofthe

vector-ls>.

 

 
FiguLe A2.

Showing dedisplacamtspzmnedbyamifonnmiaxialextemalstrms in

a triargllar lattice around a single altered site; These conprise the

cmpamts of the vector ls>.
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Appendix

The general result for the effective ae, due to the presence of a

defect is

A
“

A
“

(29)

cl
“

3
“

where go is the strain in the system before the defect is added. Although

(29) was derived with a local defect in mind, it is quite generally true for

any change 1:] in the dynamical matrix. He give two simple illustrations of

the use of (29).

In the first we suppose that al_l_ the bonds in a system described by

(13) have their force constants changed from a to do. This is not a

localized defect, but (29) is general fOr any 2. In this case

 

 

 

ab- a

i (.12. “‘1’

no. a -1
and hence I = Y [1 - E 1 a l 20]

a - a

:¥[1+ 0a 1-1

a
=3. 1:] (A2)

0

where we have used = -1. Therefore we haveD
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a

u l- l) u
a '0 C10- “‘0 a Go. a (1

i3- : 1 - u D u = 1 -'E- [ a 1 = '5‘ (83)

e "0 =0 0 O O

which gives the expected result 08: do.

In the second example, we consider a 1D chain described by (13) in

which a single bond is changed from a to 00.

Equation (30) becomes (with c = 1/N and z = 2)

' N 1 + (a0 - a)/a

 
2_=1
(1

 ° ' (All)

which can be rewritten as

(A5)
 +

9
'
:

.1.

a
0

which is the expected result for (N - 1) springs a and one spring do in

series.
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Appendix B. Absorbing rate in continuum media

In this Appendix. we study the eageneiea_eesn£ezi.

problem in continuum media.

We start from the general diffusion equation:

329(F.t)
(31)

at2

D v29(3,t) =

where D is the diffusion constant. Assuming p(r,t) can be

seperated into the form:

P(r,t) = R(r) T(t) (32)

Then we have the differential equation for R and T

respectively:

fl = , [(21, T (133)

t

and

(V2 + k2) R : O (3“)

where (83) has the solution:

T(t)= e"k D‘ (35)
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The complete set of eigenfunction of eq.(B1) has the follow-

ing form:

P(r,t) = X Ak Rk(r) Tk(t) (B6)

k

where the Tk(r) and Rk(t) are the solutions of (83) and

(BA), and k is indicating the discrete eigenvalue for the

corresponding boundary condition.

If we have the initial probability distribution given

by P(r,t=0), by substituting into eq.(B6), we get:

P(r,0) = { AkRk(r) (B7)

k

and assuming the orthoganality of the eigenfunction:

 

I Rk(r) Rk,(r) g; = 3k skk, (38)

Then we have:

1 P(r,0) Rk(r) 95 = AkBk (39)

Substituting (B9) into (B6), we write P(r,t) as:

1 P(r',0) R (r') dr'

P(r,t) = X V1 B k " Rk(r) Tk(t) (B10)

k k

We define the following quantities:
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I,(t) --- Total number of the particles in the media at any

time t:

I,(t) = 1v P(r,t) d_r; (B11)

where V0 is the volume of the media.

I,(t) --- Number of particles leaving at time t:

3 I t
I,(t) - - a t dt

_ 3 P r t)

' Ivo 3 r 9: dt

= - I V2 P(r,t) dr (B12)
vo -—

- I [V P(r,t)] ° d;

where s is the surface of v..

(t) --- Average time for a particla reach the boundary:

1:1: I,(t) dt m

(t) = a = 1. I,(t) dt (B13)

1.1,(t)dt

 

and substituting (B7) and (B8) into (B12) and (B13) we got:
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Iv P(r,0) Rk(r) pp

(t) :2; ° 2 2 1 RK(r) d_r (3111)

D k Iv. Rk (r) g; v,

Actually, the recipracal of (t) is the deposit rate of par-

ticle on the absorbing wall. For any given initial

distribution P(r,0), boundary condition as well as geometri-

cal structure of the system which determines the set of

eigenfunction Rk(r), eq. (81“) gives the deposit rate or ab-

sorbing rate. We summarize several cases corresponding to

the uniform initial distribution as the following:

case 1). Initial distribution is a 5-function at center:

P(r,0) = 5(_:;) (315)

then

Ivn Rk(r) pp

2 2
k k IvoRk(r)g£

 

Rk(0) (B16)

case 2). Uniform initial distribution in the whole region.

P(r,0) 1/vo if r<ro

: 0 otherwise (317)

then
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1 Ivlak1r) 3512
 

( ) (B18)

case 3). Uniform initial distribution in partial region.

1/v' if r<r'P(r,0)

= 0 otherwise (B19)

then

{ Ivan(r)g£ ] { iv, Rk(r)gp 1

D<t>=£ (—-)

k k2!v R: (r) g;

 

Actually, case (2) is included in case (3) for v'=v.. All

of the formula derived above are suitable to any dimension.

Let us consider a circular piece in two dimension , i.e.,

rSr.. The Bessel function gives the complete set of Luu

eigenfunction:

Rk(r) : J.(kr) (321)

where J.(x) is the zero-th order of the Spherical Bessel

Function and eigenvalues are given by:

k=x£0)/ro (322)

where J,(x£0)) = o
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He found out that the diffusion constant is given by:

and

2

_LA
1

D'2 <t>

case (3) is more complicated.

for case (1)

for case (2)

(323)

(B24)
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Appendix C. Formulation of Effective Medium on Triangle Net

1!

The value of a can be calculated exactly through the

formula Thorpe & Garboczi 1985):

I

N K

-1
 a = m z Tr { Z [ 1 - exp(iLk°8) ] (88) 0 2 ( E ) }

k 8

N 2

(C1)

where 2 (k) is the Fourier transform of the dynamical

matrix:

Q (E) = Km n 2 [ 1 - exp(iLEo3) 1 33

a

+ Km (1-n) X 1 1 - exp(iLk°8) 1 (c2)

5

where n = LO/L and I is the dxd unit matrix.

Through some matrix algebra, we get the result:

( n'1 -1 ) S (C3)

:

N

1

N
l
m

a = —— n -

where S is the sum in k space:

K

3 = fig 1 [ X [ 1 - exp(iLE-3) ] Tr [2’

K 8

‘ (E) 1 } (CA)

For the triangular lattice, we have



and

where

and

XX

D

YY

XY

1

N
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n" g— n“ -1 ) s

D + D

X X XX yy

D D -D D
k xx yy xy yx

( 1-n ) ( 6 - 2 cost - 4 cosx cosy )

+ n (3 - 2 cos2x - cosx cosy )

( 1-n ) ( 6 - 2 cos2x - A cosx cosy )

+ n ( 3 - 3 cosx cosy )

D :

yx

- 2 cos2x

where x

Y

J3 n sinx siny

A cosx cosy

N
l
-
a

X

(C5)

(C6)

(C7a)

(C7b)

(C70)

(C7d)
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