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ABSTRACT

TDMP: A DATA FLOW PROCESSOR

By

George Henry Simmons

This research investigates a multiple processor computer structure that has a higher

bandwidth than comparable single-processor machines yet is more flexible than existing

fixed-array multiprocessors. The basic approach taken here was to develop, model, simulate,

and then analyze a computer structure called TDMP - an acronym for Time Division Multiple

Processing. TDMP‘s interprocessor communication network is based on time-division

multiplexing and time-division switching techniques and has the following general properties:

greater bandwidth than comparable single-processor structures; less complex switching network

than a crossbar switch interconnection network; more flexible than fixed-array networks;

full-access and non-blocking interconnection capabilities among the processors; simply extended

to pipeline operation; and, finally, amenable to VLSI circuit implementation.

The justification for this research investigation is five-fold: First, single-processor systems

have intrinsic bandwidth limitations known as the 'von Neumann bottleneck.“ This bottleneck

is due to the word-at-a-time style of processing through a single communication channel. As a

result, computer structures based on this machine design can not exploit the inherent

parallelism in specific tasks. Second, while fixed-array-processor structures can exploit this

parallelism. their range of usefulness is limited by their fixed interconnection structure. This

results in performance degradation when the task structure doesn’t match the physical

structure. Third, Dennis, et al., have designed computer structures based on data-flow

principles, but they have not explored in detail alternative interconnection networks suitable for
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data-driven computation. Fourth, time-division communication techniques have been

successfully applied in the telecommunications industry but have not been investigated for use

in multiprocessor structures. Yet this technique appears at first glance to hold good promise

under certain overall computer system constraints. This fourth justification leads directly to the

fifth. Namely, with multiprocessor structures implemented on VLSI circuit chips, the

interprocessor and inter-memory communication paths require a disproportionate amount of

chip area when compared with that required by the processors and their memory. So the

communication channels determine a significant portion of both the cost in chip area and chip

speed.

With all of these considerations in mind, the TDMP structure was defined, and APL

computer simulation model was developed. This model formally defines the hardware

structure, as well as the timing, switching delays, and communication protocols. The model

also serves as the basis for analyzing the characteristics of the computer structure and for

testing its usefulness in handling various multiprocessor tasks. We limited the model to a

sixteen-processor structure.

Results of this investigation show that TDMP indeed has a higher bandwidth than

comparable single-processor machines. Sample computations show that the specific. TDMP

architecture considered has fifteen and ten times the bandwidths of a single-processor system

when computing eight-point FFI‘ and second-order digital filter results, respectively. However,

in order to achieve these bandwidth improvements over single-processor systems, the

granularity of the tasks performed in each of the processors must be large. Results of this

research also show that TDMP has greater flexibility than fixed-array multiprocessor structures.

This is due to the non-blocking, full-access interconnection capabilities in the TDMP structure,

which allows the data paths to be reconfigured for new application programs. Simulations also

reveal that time—division techniques can be exploited to route information packets in a data-flow
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structure with simple operating system constructs. Moreover, these time-division

communication techniques do significantly reduce the V151 circuit chip area devoted to data

paths in data-flow structures.
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CHAPTER 1

INTRODUCTION

In many scientific and engineering computer application areas, the computer's computational

speed limits its range of usefulness. Examples of such areas include energy and power model-

ing, weather modeling and forecasting, fluid dynamics studies, computer-assisted tomography,

and artificial intelligence.1 Several parallel approaches are being taken to extend the useful

range of computers. The first approach involves reducing the switching delay times of elemen-

tary gates, which embraces both the areas of device physics and integrated circuit (IC) technol-

ogy.2 With the second approach, the switching delays are assumed to be fixed but improved

methods are sought for performing primitive single-operand and double-operand arithmetic

operations, such as transcendental functions, integer arithmetic, and floating-point arithmetic.3

The third approach assumes that the primitive arithmetic operations are given; instead, the

focus is on the design of computer architectures that overcome the intrinsic speed limitations of

the von Neumann machine.4 The first approach is inherently limited in that the effects of

reduced IC dimensions and the introduction of new logic families is expected to reduce gate

delays and, consequently, improve overall computer system performance by only a couple of

orders of magnitude.1’5 While this represents an important improvement, it does not in itself

achieve the long-range improvements needed. Gains with the second approach will result

largely due to decreased cost per bit and increased density per bit of semiconductor memories

and logic arrays. Older algorithms for primitive arithmetic Operations will be modified to fully

exploit speed improvements possible with ROM look-up tables or the advantages of performing

concurrent conditional computations, such as conditional sum addition.3’6 While the third

approach is ultimately limited by gate delays and the speed of primitive arithmetic algorithms, it

provides the potential for making the largest increase in computational speed. Here, multipro-

cessors are employed; and these multiprocessor architectures exploit the inherent parallelism in

specific tasks, thereby eliminating the single processor bottleneck--'von Neumann bottleneck."4



We will restrict ourselves to this third approach. Moreover, we will restrict our attention to a

class of multiprocessor architectures that can be implemented on a single very large scale

integration (VLSI) chip or a small number of such interconnected chips.

Historically, high-performance multiprocessor computer systems have been very expensive,

special purpose, and generally research-oriented tools. V1.81 technology is changing this so as

to make it feasible to build high-performance multiprocessor structures as low-cost, single-chip

system components. VLSI technology is a statement about system complexity, not about

transistor size or circuit performance. VLSI defines a technology capable of creating systems so

2 From thiscomplicated that coping with the raw complexity overwhelms all other difliculties.

definition, we can see that the way in which the computer industry designs multiprocessor com-

puters in VLSI technology must, in fact, be different from the way it has traditionally designed

computers in other technologies. For example, in VLSI technology the transistors will be

almost 'free' and the interconnection data paths - communication - will determine the cost in

2 This is true because the interconnection paths in VLSI tech-both area and speed of the chip.

nology are the same width as a transistor, which means that these paths reduce the available

active chip area. So, for VLSI implementation of multiprocessor structures simple and regular

underlying communication geometry is required to reduce the total amount of interconnection

path lengths on the chip. In addition, the processors should be identical to reduce the layout

time and effort of the architecture, the design should be partitionable into segments of manage-

able size and these designs should have a wide range of use to justify the costs for a component

manufacturer. As a result, this work is based on the following premise: Continued advances in

integrated circuit fabrication technology will permit chip complexities to increase more than

three orders of magnitude over what they were at the end of 1979.7 This research investigates

an alternative single-chip microprocessor architecture that exploits this technology to improve

significantly the computational capabilities and general usefulness of small computer-based sys-

tems suited for signal processing computations such as waveform generation, modulation and



filtering. Specifically, an alternative multiprocessor structure, called time Division Multiple Pro-

cessing (TDMP), is investigated and has the following general properities:

— greater bandwidth than comparable single-processor architectures;

— less complex switching network than a crossbar switch interconnection network;

— more flexible than fixed-array network;

— fall-access and nonoblocking interconnection capabilities;

— simply extended to pipeline operation;

— highly compatible with data flow algorithms;

— amenable to VLSI implementation.

The TDMP structure is evaluated by comparing its performance to a single-processor archi-

tecture as one boundary of performance and to a fixed-array-processor architecture as the other

boundary of performance. Bandwidth, hardware complexity, flexibility, and regularity are the

four principal figures of merit.

Chapter 2 of this thesis contains a brief review of several key existing multiprocessor struc-

tures, including their performance and range of usefulness. In Chapter 3, the organization and

operation of TDMP is presented, along with an analysis of hardware complexity. Chapter 4

presents timing diagrams, closed-form expressions for the maximum multiplexing and demulti-

plexing rates and the maximum switching delays. Chapter 5 describes the TDMP simulation

model. In Chapter 6, the simulation results of two applications are given. The first is a

fast-Fourier-transform and the second involves a digital filtering computation. We also com-

pare the computational bandwidth among the TDMP system, single-processor system and

fixed-array-processor system for these two applications. Finally, Chapter 7 gives a summary of

this research as well as some suggestions for future research.



CHAPTER 11

BACKGROUND

2.! von Neumann Bottleneck

Single-processor computer systems have intrinsic speed limitations that have been

ascribed to the 'von Neumann bottleneck." The term 'von Neumann bottleneck" was coined by

Backus-I to represent the word-at-a-time style of processing that is characteristic of von Neu-

mann machines--the model computer conceived by von Neumann and others about 35 years

ago.7’8 The von Neumann computer is composed ideally of a central processing unit (CPU), a

memory that contains data and instructions, and a connecting channel that can transmit a single

word at a time between the CPU and the memory (and send an address to memory). The con-

necting channel is where the von Neumann bottleneck occurs. The reason for its name is that

all computational tasks in the von Neumann machine must be accomplished entirely by pump-

ing single words back and forth through this connecting channel. A large part of the traflic in

the bottleneck is not useful data but merely names of data, as well as operations and data used

only to compute such names. As a result, single-processor bandwidth, defined as the maximum

throughput measured in terms of the maximum number of results that can be generated per

unit time, is always limited by the von Neumann bottleneck as the computational operations get

sufliciently larger or complex.

An example will serve to illustrate the issue. In digital filtering, a group of operations is

performed once for each sample (in time) of the signal being processed. For purposes of this

calculation, assume that the processor is a 16-bit microprocessor with a 200 nsec cycle time and

the floating-point multiplication, division, addition and subtraction operations are performed in

a hardware coprocessor.9’lo Single-precision, floating-point addition and subtraction are per-

formed in 14 nsec and 18 nsec respectively, and double-precision extended multiply and divide



operations are performed in 27 nsec and 39 nsec, respectively. If the second order recursive

filter

Y(2) _ A0+A.z"'

”(2) - Km 1 —a.:" — 15:22“2

  

(1)

is implemented with this processor as a difl'erence equation of order 2 with constant coefficients

Y(n)=AoX(n)+A,X(n—1)+B,Y(n-1)+BzY(n-2), (2)

then the maximum filter bandwidth is limited to approximately 3.3 kHz. This bandwidth is

fixed by the minimum time it takes the processor to perform the group of operations for each

sample of the signal.

The group of operations consists of one-at-a-time execution of four multiplication and three

addition operations. For simplicity, we assume it takes zero time to move data and to fetch

instructions from memory. In this case, the minimum execution time is,

Tm,“ = 41” + 3:,4 - 4(27 nsec) + 3(14 nsec) = 150 nsec

where t” and 1,, are the floating-point multiplication and addition times, respectively. There-

fore, for every Tum, units of time a group of operations is completed, this corresponds to a pro-

cessor bandwidth of (Twin)"' - 6.6 kHz and a maximum filter bandwidth of

(213m)" - 3.3 kHz. If the order of the filter gets higher, the number of group operations

incrcascs; consequently, the processor and maximum filter bandwidth decreases. The shrinking

maximum filter bandwidth is caused by the von Neumann bottleneck and limits the processor’s

usefulness in many filtering applications, such as those found in telecommunication systems,

where the maximum filter bandwidth requirement is 4 kHz and the filter order is 5.11



The von Neumann bottleneck can be eliminated by exploiting the inherent parallelism in a

group of operations. For example, if the group! of operations for the second order difference

equation in our previous example is implemented as shown in Figure 2.1, the processor

bandwidth is significantly improved. Three successive independent stages of computations are

executed in parallel and the output of one stage feeds the next, analogous to an industrial

assembly line. If we assume a continuous input stream of values, zero time to move data

between stages and ignore any start-up times, the minimum execution time,

TL“, - maxlt,,r2,13} - speed of the slowest stage in the system, where

r. = r”, I; - IA and, t3 = (,4. Processor bandwidth is -tl- - 37 kHz because every Tim = r”,

u

a result can leave the system. This determines a maximum filter bandwidth of

BW- 1. - l -18.5kHz.

2Tmin 2’”

 

A direct comparison shows that 5.67:“,n - Tum; hence, the non-von Neumann style processor

has a five-fold processor and maximum filter bandwidth improvement over the von Neumann

style processor. This improvement was achieved by eliminating the one-operation-at-a-time

style of processing through a single channel--the 'von Neumann bottleneck.”

Recognizing that the von Neumann bottleneck limits processor bandwidth, we must develop

processor systems that compute larger units of the task at hand. To accomplish this, multipro-

cessing concepts are employed in new processor architectures to improve bandwidth.

Two widely used forms of multiprocessing are parallel processing and pipeline processing.

Parallel processing improves processor bandwidth by using many processors operating in paral-

lel, either on difl'erent data sets or on difl'erent portions of the same data set.12’l3 Since, in

fact, the processors are not always independent, they may require access to the same data or

interchange of results between processorsm’15 Flexible interconnection networks are needed
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here to efficiently handle the communication problems. By flexible interconnection networks,

we mean networks that can change their data flow pattern under program control. It turns out

that most applications are sped up by transforming their traditional sequential algorithms to use

the multiprocessor structure, not by executing on a processor with ever shorter memory access

times. ‘6

Pipeline processing, on the other hand, improves processor bandwidth by subdividing the

processing to be done into sequential functions and then assigning a processor to each function.

These functions are then arranged in a 'pipeline" so that the output of one stage feeds the

next.13’17’18 The processor bandwidth of this approach is limited by the speed of the slowest

processor in the pipeline if fixed interconnection networks are used to feed the pipeline stages.

By a fixed interconnection network, we mean a network whose data flow pattern cannot be

altered. Jump presents quantitative techniques for the evaluation and comparison of digital sys-

tem pipelines.l7

2.2 Multiprocessing Survey

In this section, we briefly review several key multiprocessor structures in order to

ideptify their multiprocessing attributes. We also suggest how well suited these attributes are

for VLSI implementation for enhanced computation. Unless dictated by the need for under-

standability, we have avoided material not directly related to the multiprocessing aspects of

these systems.

2.2.1 llliac IV. llliac IV is a single-instruction stream multiple-data stream (SIMD) experi-

mental computer designed at the University of Illinois in the late 1960‘s.19 The general struc-

ture of llliac IV is shown in Figure 2.2. It contains 64 identical processing units (PU) with a

common external control unit (CU), a four nearest-neighbor interconnection structure, an

interface to a supervisory host computer and a switching network for interchanging data and

instructions between the CU, host computer and memory. A PU comprises a processing
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element (PE) and a processing memory (PM). A PE is a general-purpose arithmetic logic unit

(ALU) capable of executing a conventional instruction set that includes 64-bit floating-point

operations. Each PM has a capacity of 2 k, 64-bit words.”’19 The control unit fetches instruc-

tions from a processing element’s memory, decodes them, and issues control pulses to the pro-

cessing elements 'for execution. It broadcasts memory addresses and data words when they are

common to all processors. An instruction can be either a control or a processing unit instruc-

tion. The former directs operations local to the control unit, whereas the latter controls the

execution of the processing units. The control is designed to overlap the executions of the two

different instruction types.4

In addition to the common data and control buses that link the PUs to the CU, there are

direct data paths connecting each PU to four neighboring PUs. Specifically, PU,- is connected to

PU} if j -= i +1 (modulo 64), j - i- l (modulo 64), j - i + 8 (modulo 64) or j = i - 8

(modulo 64). The PUs form a two-dimensional array, Figure 2.3. For this reason, Illiac IV is

often referred to as an array processor.4’l3'20

The array organization is very eflective in exploiting parallelism when the characteristics of

the problem to be solved match the physical structure of the array."12 Matrix operations pro-

vide an example of this kind of problem.12 The uniform processors and simple, regular com-

munication paths satisfy VLSI implementation requirement.21 A disadvantage of the array

organization is the inflexibility in the interconnection structure. This results in performance

degradation when the problem structure does not match the physical structure of the array and

reduces the universal appeal which brings about some high pressure constraints for VLSI imple-

mentation.4’12’22 The failure of a single processing element can hamper the operation of the

entire system; however, by adding alternate data paths in each processor, similar to a Chordal

Ring interconnection network, the system would have a graceful degradation.23

2.2.2 Cramp. Cmmp is a multiple-instruction stream multiple-data stream (MIMD)
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multiprocessor computer designed and built at Carnegie-Mellon University for computer archi-

tecture and artificial intelligence research work.14 The hardware and software were designed

with the goals of symmetry and general purpose in mind. By symmetry, we mean that repli-

cated components, such as processors, are treated as an anonymous pool; no one of them is

special in any sense. By general purpose, we mean the multiprocessor character of the machine

is used to improve throughput across a set of independent jobs as well as to multiprocess single

jobs.16 The system consists of 16 PDP—ll minicomputers connected to each other through an

interprocessor bus and individually connected to 16 memory modules through a full-access,

non-blocking, crossbar switching network. Each minicomputer operates like an independent

processing system with its own primary memory and controllers. The interprocessor bus allows

any processor to generate an interrupt to any subset of the processor configuration at any of

several priority levels. No data is carried by this bus. The crossbar switch allows any processor

to establish a path to any memory module--full access and all permutations of individual pro-

cessors connected to individual memory modules are possible-~non-blocking. The switch is

under both processor and manual control. Collectively, the 16 processors execute six-million

instructions per second; the total memory bandwidth is about 500 million bits per second.

Despite the fact that Cmmp is built from minicomputers, it is a large-scale machine. Figure 2.4

shows'the basic structure of Cmmp along with other system components. The other system

components include another crossbar switching network to allow any processor to communicate

with any of the various controllers which manage secondary memories, and input/output dev-

ices.

The basic design goals of Cmmp were achieved, and the research revealed some important

observations about multiprocessor systems. Specifically, that the raw speed in the design of the

switching network and the processor is not very important but reliability of the system is very

important.16 The crossbar switching network provides full-access and non-blocking interconnec-

tion capabilities for processor communication. Some criticisms of the system are: the hardware
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is less reliable than desired, they were unable to partition Cmmp into disjointed systems, and

there is not enough human engineering into the software interface to the user.16 The N2

growth of the crossbar networks make this architecture a poor candidate for VLSI implementa-

tion. The crossbar connecting paths and switches use substantial amounts of the chip area,

thereby reducing the size of a network that can be implemented on a given chip.24

2.2.3 PM4. PM4 is a reconfigurable multiprocessor system for pattern recognition and

image processing research work and is currently under development at the Advanced Automa-

tion Research Laboratory of Purdue University.15 The system envisioned consists of hundreds

of Large Scale Integration (L81) bit-slice microprocessors and a three-level hierarchical memory

connected by a set of interconnection networks.15’25

Figure 2.5 shows a basic block diagram of PM4. The system consists of N identical proces-

sors with local memory (PMU), K identical vector control units with local memory (VCU),

shared memory connected to the processors through a delta interconnection network (PMIN),

file memory connected to processors by a shared bus and a yet undesigned interprocessor con-

nection network which permutes data among processors (IPCN).

The system can reconfigure its resources under system control to assume four different

operation modes:

1. SIMD MODE - Single-Instruction Steam and Multiple-Data Stream (SIMD), Illiac IV.19 In

this mode, the same instruction is executed by a subset of the processors operating on

difl'erent data streams. This mode is used for vector operations with the vector control

unit.

2. Multiple SIMD Mode - In this mode, a multiple number of SIMD operations are executed

in parallel.

3. MIMD Mode - Multiple-Instruction Stream and Multiple-Data Stream (MIMD), Cmmp.M
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The processors perform independent tasks on separate data streams concurrently.

4. Distributive Mixed Mode - In this mode, SIMD vector instructions and parallel MIMD

processes are simultaneously executed.

The Vector Control Units (VCU) are used in the SIMD mode of operation. The VCU

broadcasts instructions on the vector control bus to all processors that are assigned to the SIMD

process. The VCU may also send control signals to a time-shared Interprocessor Communica-

tions Network (IPCN) to switch the data in a group of processors. The IPCN is time-shared

among VCUs during multiple SIMD processes. The VCU has the ability to mask or disable

processors so that only the active or unmasked processors execute the broadcasted instructions.

During, execution, a multiplexor is used to route broadcasted instructions from a VCU to a pro-

cessor. A delta interconnection network is used to connect the processors to shared memory

26,27
for block transfer of information.

PM4 architectural features are based on existing machines such as Cmmp and llliac IV.”’19

The architectural advantages of the above systems have been incorporated into PM4. The flexi-

bility in the PM4 architecture allows it to overcome some of the architectural disadvantages in

existing MIMD and SIMD machines. However, because of the processor speed requirements

for swift reconfiguration and communication geometry (three different interconnection net-

works), a single or couple chip V151 implementation of PM4 may not be applicable. Micropro-

cessors such as Motorola 6800, 15111, Intel 8086, and 28000 do not meet PM4’s speed

requirements and neither will V151 processors, since they are likely to be of only moderate

speedw’28 V151 performance measures indicate that chip area requirements for delta networks

are the same as those for crossbar networks.24 The difliculties of V151 implementation of

crossbar networks were discussed in Section 2.2.2.

2.2.4 Indirect binary real». The indirect binary n-cube microprocessor array is a multipro-

cessor architecture in which processors are interconnected by a switching network whose set of
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connections can be described by the set of edges of the binary n-cube.28 It is called indirect

because the array is not actually interconnected according to the topology of the binary n-cube.

The basic form of the array is illustrated in Figure 2.6 for n - 4, N '- 2‘ = 16. The circles in

Figure 2.6 represent the microprocessors, indexed from 0 to 15 as indicated by the numbers in

the circles. The lines on the right from the switching network connect back to the microproces-

sors with the indices given in parentheses. Each switch node, indicated by the squares in Fig-

ure 2.6, has two input lines, two output lines and can be put into either of the two states shown

in Figure 2.7, providing a “direct“ or a "crossed” connection. Each level of switching represents

a dimension in the n-cube; in this case, n - 4.

The network is used to permute data among microprocessors. In some cases, it may be

necessary to make multiple passes through the network to obtain permutations of the data that

are otherwise unrealimble. Multiple passes will, of course, entail a sacrifice of speed, but give

added flexibility. In addition, as the n-cube dimensions get larger, the number of switching lev-

els in the array increase, which also sacrifices speed in the system.

The system has a two-level control system for the microprocessors, based on variable

microprogramming stored within the microprocessors. This means that global commands sent

by the main control unit to the microprocessors may be interpreted difl‘erently by each

microprocessor. For the switch nodes a set of switch controllers are used to control a set of

switch nodes. These switch controllers receive global commands from the main control unit.

The control system is shown in block diagram form in Figure 2.8.

This processing array can be used effectively for a broad range of SIMD applications. The

regularity and modularity of its structure makes it an attractive candidate for V151 implementa-

tion. However, the range of application of the array is limited by the structure of the binary

n-cube. The binary n-cube does not have full-access and non-blocking capabilities.28 In addi-

tion, the complexity of implementing indirect binary n-cube networks in V151 technology is the
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same as that for crossbar networks.24

2.2.5 STAR-100. The Control Data STAR-100 computer is a high-performance pipeline

processor structured around a four-million byte, high-bandwidth memory.20’29 Instructions

specify operations on variable length data streams. A block diagram of the STAR-100

memory-pipeline data paths is shown in Figure 2.9. The core memory and the data bus

configuration have been designed to support a pipeline rate of 100 million 32-bit floating-point

operations per second. The core memory has 32 interleaved banks, with each bank containing

2 k 512-bit words. This memory system can support 512 bits of data per minor cycle and there

are 32 minor cycles.

The width of the memory data bus for each group of four banks is 128 bits. The data bus

transfer rate is 128 bits per minor cycle. Four buses are active with each bus transferring data

at a rate of 128 bits per minor cycle. Two of the buses are used for transferring operand

streams to the pipeline processor. The third bus is used for storing the resulting stream ele-

ments and the fourth bus is shared between input/output storage segments and control vector

references. The read and write buffers are used to synchronize the four active buses. The

memory segments are bufl’ered to space them eight banks apart, eliminating memory conflict

situations.

The floating-point arithmetic section of the STAR-100 consists of two independent pipeline

processors. Processor] consists of a pipeline floating-point addition unit and a pipelined

floating-point multiplication unit. Processor 2 consists of a pipelined floating-point addition

unit, a non-pipelined floating-point divide unit and a pipelined multipurpose unit which is capa-

ble of performing a floating-point multiplication, divide, or square root Operation.

The memory interleaving and pipeline processing makes STAR-100 very efficient for pro-

cessing vectors. Furthermore, its overall system design allows scalar processing as well. How-

ever, with respect to flexibility, the architecture is non-flexible and applications must be
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structured around a vector for most eflicient performance. The long start-up times are seen as

a disadvantage and the communication network between the processors and memory

banks--wires--is seen as a disadvantage of V151 implementationz‘20

2.2.6 Cray-I. Cray-1 is a very high-speed function-oriented general purpose computer built

by Cray Research Incorporated and is capable of processing 80 million instructions per

second.20’30 Both scalar and vector processing capabilities are incorporated into its design. A

block diagram of the Cray-1 is shown in Figure 2.10. The main memory can be up to one mil-

lion 64-bit words of 50 nsec cycle-time bipolar memory. The memory is 16-way interleaved so

the CPU can easily achieve a data transfer bandwidth of one word per clock cycle. The 1/0 sys-

tem consists exclusively of channel connections to other computers and channel connections to

high-speed permanently mounted disks.

Cray-1 is designed to extend the independent functional unit concepts developed in early

CDC 6000 and 7000 series equipment.20 While the system avoids some setup problems found

in the STAR-100, its architecture suffers from the fixed vector length. Vector chaining is used

to circumvent the fixed vector length problem.30 However, the machine will not run efliciently

if full task switching is done very frequently and special designs for each functional unit are not

conducive to a single chip V151 implementation.2’3’o

2.2.7 Systolic arrays. Systolic arrays are special-purpose, high-performance multiprocessor

devices. A systolic system is described by a network of processors which rhythmically compute

and pass data through the system. Every processor regularly pumps data in and out, each time

step performing some short computation, so that a regular flow of data is kept up in the net-

work.2 1

Many basic matrix computations can be pipelined on systolic arrays composed of many inter-

connected inner product step processors. Frgure 2.11 shows a hex connected systolic array for

matrix multiplication. An inner product step processor is a processor that performs the
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Fig. 2.11 The hex connected systolic array for matrix multiplication.



26

computation, RC - RC + R4 1: R. and makes the input values for RA and R, together with

the new value of RC available as outputs. Kung gives detailed examples of matrix computa-

tions on systolic arrays.2|

The systolic computations are characterized by the strong emphasis upon data movement,

pipelining in particular. The arrays have simple and regular communication paths and almost all

processors are identical. This makes systolic arrays attractive for V151 implementation. How-

ever, the regular communication paths are obtained by sacrificing flexibility in the network.

The rigid data flow paths are not reprogrammable and their structure depends on the computa-

tion problem. As a result, a unique array must be provided for each difl’erent computation

problem and, if the array does not have universal appeal, then the use of such a V151 part in a

new architecture brings about some high pressure constraints.22

2.2.8 Other commercial multiprocessors. There are other multiprocessor systems besides

the ones we have reviewed: IBM 370/168, CDC Cyber I70, Honeywell Series 60 level 66,

Univac 1100 Model 80 and Burroughs B7700, to name a few. Each of these multiprocessing

systems has distinct advantages and unique constraints with implications for performance.

Some of these systems have architectural organizations similar to the previously reviewed sys-

tems. The Cyber 170, for example, embodies the principle of functional partitioning similar to

the Cray-l system. A survey which highlights some of the architectural strategies of the above

commercial multiprocessor systems is found in reference 31.

2.3 Observations

Our brief review of several key multiprocessing architectures provides us with a

basis for making some general comments about multiprocessing systems. One central issue in

their design relates to the networks over which the multiple processors communicate to other

processors or memory modules. Clearly, as the number of processors increases, the charac-

teristics of this communication network become critical to overall system performance, cost,
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and reliability. For example, Cmmp uses crossbar switching networks for communication pur-

poses. An N-by-N crossbar switch has full-access and non-blocking interconnection capabilities.

However, the difficulty with crossbar is that network costs grow with N2. Given V151 perfor-

mance bounds, crossbar networks are infeasible for single-chip multiprocessor systems.

Pease’s indirect binary n-cube microprocessor array uses the binary n-cube switching net-

work and Purdue’s PM4 uses a delta switching network. Both of these networks have similar

complexity and cost. The number Of switch nodes in these systems grows with Mag; N; and, if

implemented in small scale integration ($81) or medium-scale-integration (MSI) technologies,

their network costs are cheaper than crossbar. But, if these networks are implemented in V151,

their network costs are comparable to crossbar.24 Binary n-cube and delta networks are block-

ing, which means under certain conditions messages going to difl'erent output ports will require

use Of the same path between two switches. Since, under the assumed protocol, only one mes-

sage can hold a given path during message transmission, blocking will occur. This blocking

reduces the bandwidth and application range Of the networks and introduces added delays in the

system Operation. Other multiprocessor systems such as Illiac IV and systolic arrays have even

more restricted communications networks. Illiac IV uses a four-nearest-neighbor interconnec-

tion and systolic arrays have fixed data path interconnections. This results in performance

degradation when the problem structure does not match the physical system structure and the

utility of such systems is limited by their specificity.

The question thus arises, what type of interconnection network can be placed on a V151

multiprocessor chip that will enhance cOmputation and prove the multiprocessor chip useful in

a large number Of applications? In Chapter 3, Time Division Multiple Processing (TDMP), we

suggest time division switching networks as an alternative solution to this problem.32

Time-division switching networks have full-access and non-blocking interconnection capabilities

like crossbar networks, use very few data paths, and the network costs are dominated by the
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cost-per-bit of semiconductor memory. However, no single network is generally considered

'best' since the cost effectiveness of a particular design varies with such factors as the computa-

tional tasks for which it will be used, the desired speed of interprocessor data transfers, the

actual hardware implementation of the network, the number of processors in the system, and

the cost constraints on the construction.33

The processors used in a multiprocessor system may or may not be identical. The Cmmp,

Illiac IV and systolic arrays are examples of systems with identical processors. The Cray-1 (in

which the independent functional unit concepts are employed) is a system with difl'erent proces-

sors. It is essential that the processors used in a V151 multiprocessing system be identical

modules organized in a simple, regular fashion with a minimum number of connecting paths

between modules because such geometry leads to high density and, more importantly, to modu-

lar design. The TDMP system adapts to these V151 requirements by using identical

processor-memory modules connected to time-division multiplexed buses.

Another issue in the design of multiprocessor systems is their performance. lnvariably, the

scaling in performance of a multiprocessing system is sublinear. That is, using an N-processor

multiprocessing system always yields less than N times the performance of the corresponding

single-processor based systems. This is true for both N-unit parallel and N-unit pipeline archi-

tectural organization of multiprocessor systems.

One the one hand, we have multiprocessor architectures, like Cmmp, that are very flexible

and have a wide range of application. However, this flexibility is at the expense of additional

software and hardware operating system overhead needed for communication and control. On

the other hand, we have multiprocessor architectures, like systolic arrays, that have very high

performance but limited range of application. The very high performance architectures have

low operating system overhead, but this low overhead is at the expense of fixed interconnected

data paths between processing elements to enhance the computation for a specific problem. SO,
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in our investigation we seek a balance between these two extremes with a multiprocessor archi-

tecture that has performance and flexibility bounded by a general purpose architecture like

Cmmp, on one hand, and a non-flexible special purpose architecture, like systolic array, on the

other. We also seek an architecture that allows a simple software interface to the user. Con-

ventional architectures speed up most applications by executing algorithms that have been

transformed to use the multiprocessor structure or by fixing the transformed algorithm into the

interconnection wiring of the multiple processors. Both approaches have proved successful in

many ways; however, in every case permitting large amounts of parallel activity, it has proven

far more difficult to obtain parallelism in software than to provide it in hardware. In view of

the nature of parallel hardware systems and the practical difficulties of keeping them running at

full speed, we investigate an architecture that executes data flow programs. Data flow programs

are seen as a natural reinterpretation of conventional programs with parallel execution in mind.

This approach abandons the classical instruction driven computing. The underlying problem

with most current attempts to use parallel hardware is that they are based on traditional con-

cepts of programming.36 These concepts in turn are based wholly on the serial von Neumann

computer design, with instructions executed one at a time. In particular, use of a program

counter remains obligatory. In instruction pipelines, no attempt is made to alter the basic von

Neumann model. In vector and array processors, one instruction may operate on many pieces

of data, but only one instruction executes at a time. In multiprocessors. many program

counters step thrOugh subprograms simultaneously presenting complex problems of communi-

cations such as memory conflict. The use of a program counter is inappropriate when programs

are intended for parallel execution. Efforts to develop a model of computation which can

efl'ectively express parallelism have yielded a form of program representation known as data

flow. Execution of a data flow program is data-driven; that is, each instruction is enabled for

execution just when each required operand has been supplied by the execution of a predecessor

instruction. Dennis and Misunas, Gurd and Watson have done work on the design of
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computers based on the data flow concepts.“’39 The system we investigate is a new, simpler

implementation based on some of their work.



CHAPTER III

TIME-DIVISION MULTIPLE PROCESSING

In this chapter, we present the Time-Division Multiple Processing (TDMP) architecture and

examine its hardware complexity. It is called 'time-division' because the transmission and

switching of information among the multiple processors is done with time-division techniques;

i.e., time-division multiplexing and time-division switching. These techniques are useful in

meeting the interconnection wiring and pin constraints imposed by V151 design while enhanc-

ing overall arithmetic computation. The key to TDMP is the integrated transmission and

switching system that provides the communication channels among the processors. After

describing TDMP, we very briefly discuss implementing it using V151 technology. The intent

here is to show that TDMP is very compatible with V151 implementation. Then we consider

TDMP as a data flow processor and investigate how it executes programs expressed in data flow

notation.

3.1 TDMP Architecture

The basic TDMP organization is illustrated in Figure 3.1. The components consist

of an N x M array of processing elements (PE), time-division switching networks (TDS), and a

control unit (CU). We will give a brief description of each component and its interrelationship

with the others.

3.1.] PE array. The basic structure of the N x M PE array is shown in Figure 3.2 for

N - 12, M - l. N represents the number of PEs that share a unique pair of two-way incom-

ing and outgoing time-division multiplexed (TDM) buses. The number in each PE box gives

the PE time slot position on these buses. M represents the number of unique pairs of incom-

ing and outgoing TDM buses in the array. The incoming buses are shown as two-way com-

munication lines to the left of individual PEs and the outgoing buses are shown as two-way

communication lines to the right of individual PEs. The remaining lines are control lines that
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Fig. 3.1. Block diagram of the TDMP architecture.
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convert the PEs into time-division multiplexed circuits for transmitting and receiving informa-

tion packets consisting of flag bits, switching addresses, destination addresses, operand tags,

operands and PE signaling information. All PEs operate independently, are identical (see Fig-

ure 3.3) and consist of a central processing unit (CPU), memory and a communications inter-

face logic unit (CILU). The CPU has arithmetic and logic facilities to execute instructions

stored in memory. However, these instructions are not enabled for execution until all data

operands have been received from predecessor PE operations.

The communications interface logic unit (CILU) interfaces the CPU to the incoming and

outgoing transmit and receive TDM buses, Figure 3.3. The incoming transmit and receive

TDM buses are used for communication purposes in receiving packets from other PEs. The

outgoing transmit and receive TDM buses are used for communication purposes in transmitting

packets to other PEs. Both communication arrangements are illustrated in Figure 3.4. Incom-

ing packets contain data needed for the next computation and outgoing packets contain results

of a previous computation. Each CPU independently coordinates its use of these buses through

its CILU. The CILU consists of an addressable information packet buffer connected to each

TDM bus and control logic with control inputs from the CPU and timing signal inputs from the

control unit. The CPU can read from bufl'ers connected to receive TDM buses and can write

into buffers connected to transmit TDM buses. The timing signals from the control unit are

used to convert these bufl'ers into time-division multiplexed circuits. As a time-division multi-

plexed circuit, each bufl'er is assigned a time slot in a frame that is regularly repeated. The con-

tents of the transmit buffers are multiplexed onto its respective transmit TDM bus during its

time slot and the contents on the receive TDM bus are demultiplexed into its respective receive

buffer during its time slot. The time slots given to all buffers for a particular PE are the same.

Since we have separate outgoing and incoming communication paths, PEs can simultaneously

transmit and receive information packets during the same time slot.
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3.1.2 Tine-division switching network. The time-division switching (TDS) networks are

used to permute the information packets among the PEs, Figure 3.1. There are two switching

networks in TDMP, an outgoing TDS and an incoming TDS. The outgoing TDS has inputs

from outgoing transmit TDM buses and has outputs connected to incoming receive TDM

buses. The incoming TDS has inputs from the incoming transmit TDM buses and has outputs

connected to outgoing receive TDM buses. Both TDS networks are identical and operate in

exactly the same manner. To switch packets between PBS, the packets from individual time

slots on one bus are placed in the same or difl‘erent time slots on other buses. The interchang-

ing of time slots is essential to time-division switching.32 The operation of time slot interchang-

ing is illustrated in Figure 3.5 for a single time-division multiplexed bus with four time slots.

In this example, the input time slots 0 and 2 are interchanged; i.e., the contents on the input

TDM bus during time slot 0 are placed on the output TDM bus during time slot 2 and vice

versa. To switch information packets between buses, space-division switches are used to inter-

connect (permute) TDM buses for each time slot period. This is known as “time multiplex

switching."32 Figure 3.6 shows a TDS result in which both space and time switching occurs.

Time slot 0 of TDM bus 0 is interchanged with time slot 2 of TDM bus 1 and vice versa.

Figure 3.7 shows a block diagram of a single input/output TDS network. The architecture

of the switch is extremely simple, but surprisingly powerful and flexible. The switch consists of

addressable input and output registers, dual central processing units (CPUA and CPU,). Each

of these CPUs has its own program memory (PM, and PMs), read/write modules, and

multiplexors/demultiplexors. The processors (called network processors) operate concurrently

and perform all the switching functions according to a stored program in each PM. All data in

read/write memory (RAM) and I/O registers except the input address register are words in a

common data memory (DM) and the only operation of each processor is to move a word from

34
some location in DM to another location in DM. A separate DM is associated with each pro-

cessor. A move operation takes exactly two memory cycles, the FROM address is read from
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PM and is used to read at that address from DM, then a T0 address is read from the next loca-

tion in PM or from the input destination address register, A, which is the address where the

word is written in DM. In the TDS network, this move operation corresponds to putting the

input information packet data register contents into the CPU hold register and performing time

slot interchanging on this data by storing the data packet in a memory location in DM that

represents the same or diflerent time slot position. When the input destination address register

is used in the TO cycle of the move operation, the switching is called dynamic and the proces-

sor move instruction executed is called 'indirect move.“ When the PM address data is used in

the TO cycle of the move operation, the switching is called static and the processor move

instruction executed is called 'direct move.“ The operations and capabilities of the individual

network processors of this type architecture are developed by Lipovski and called the C-move

processor.34 However, the network processor differs slightly from the C-move processor in that

it allows an addressing mode for which the address in TO cycle of the move operation is taken

directly from a special address register and not PM. This change enhances the switching speed

of the TDS network. Each input packet is serviced sequentially according to its time slot posi-

tion. The processor completes its service cycle for each packet during one time slot. After one

frame, all data packets have been stored into DM. During the next frame, all of the stored

data packets are moved out sequentially from RAM locations in DM to the output register loca-

tion in DM. Since each processor must first store all packets during one frame then read out all

packets in the next frame, two CPUs are needed so that when one CPU is inputting packets the

other CPU is outputting packets. CPUA uses DM,. for its input move operations; however. the

input registers are only associated with DM,. when CPU,. is inputting packets, otherwise these

registers are associated with DM, which is used by CPU, in its input move operations. Simi-

larly, the output registers are only associated with CPU,. and DM,. when CPUA is outputting

packets, otherwise they are associated with CPU, and DM, when CPU, is outputting packets.

A multiplexor and a demultiplexor are used to connect the input and output registers to a DM
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by using framing information to make the correct association. We have two frames called A

and B. During frame A the input registers appear as memory locations for CPU, in DM, and

the output registers appear as memory locations for CPU, in DM,. During frame B the output

registers appear as memory locations for CPU, in DM, and the input registers appear as

memory locations for CPU, in DM,.

The execution of the processor program in both CPUs is in synchronization with the input

and output TDM information packet buses. The input is synchronized by using the input flag

bit as a predicate for program execution, using the input switching address as the program

counter for PM, and using time slot sizes greater than or equal to the time it takes the network

processor to execute the instructions pointed to by this switching address. The output is syn-

chronized by using the time slot counter value as the program counter where the instructions

pointed to in PM sequentially output stored packets and flag bits.

3.1.3 Control unit. The control unit (CU) interfaces with 1/0 or a host processor, initializes

the time-division switching networks, initializes the PEs, generates and sends timing pulses to

PEs. The initialization steps are done prior to the beginning of program execution. Initializa-

tion of the time-division switching network consists of storing in program memory the program

switching instructions associated with control and time slot interchanging and resetting the net-

work processor to begin execution. The initialization of PEs consists of resetting the CPU and

storing instructions, data constants, and initial values into each PE memory. The control unit

has direct access to the network processor’s program memories for program loading and pro-

gram modification purposes. However, CU access to the PE memories is through the switching

network. The CU has outgoing transmit and receive TDM buses and incoming transmit and

receive TDM buses. These buses are connected to the TDS networks in the same fashion as

the PEs, Figure 3.1. However, the CU has a multiple number of time slots per frame for com-

munication purposes as compared to the PEs which have one time slot per frame. The CU can
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use these time slots to send and receive information packets to and from individual PEs and to

send control packets to the TDS network processor. The control packets modify the network

processor program counter, which causes a jump to a subroutine that services that input control

message.

3.2 TDMP Implementation

There are several important attributes of TDMP that make it well-suited for VLSI

implementation. The first attribute is that the majority of the processors are identical. This

produces a major benefit in decreasing the layout time and effort of the architecture. The

decrease comes about because the use of identical structures reduces the total number of dev-

ices which must be individually drawn. In addition, the more structured layouts are easier to

validate. A second attribute is that the processors and memory are in close proximity and can

be implemented in the same technology. The locality of processing reduces the hardware and

software communication overhead. A third attribute is that the underlying communication

geometry, time-division multiplexed buses, is simple and regular which leads to high density

and, more importantly, to modular design. In this way large TDMP systems can be developed

as a collection of many simpler TDMP systems. A fourth attribute is that the switching net-

work is regular and has full-access and non-blocking capabilities with simple and efficient con-

trol. The regularity in the switch comes about through the use of semiconductor memory for

switching the data. This use is compatible with V151 and future technologies, since these tech-

nologies will decrease both cost per bit and memory access time. The flexibility in the architec-

ture brings about a universal appeal. As a result, V151 cost advantages can be obtained by the

wide variety of applications in which it can be used efl'ectively. However, this is not to say that

TDMP is suitable for all applications. The last attribute is that overall architecture of TDMP is

highly compatible with algorithms that use a packet form of data movement such as data

flow.35 In data flow algorithms, there is no need to maintain long and continuous connections
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between source and destination such as in block transfers of information. So in TDMP, pro-

cessing elements send information packets to other processing elements only during designated

time slot periods.

3.3 TDMP: A Data Flow Processor

TDMP executes programs expressed in data flow notation. These programs are nor-

mally described as program graphs which represent the data dependencies between operations.

The attractiveness of such a system lies in the fact that it is data-driven; that is, each instruc-

tion is enabled for execution just when the required operand(s) has been supplied by the execu-

tion of a predecessor instruction(s). Since data flow instructions have no side efl'ects, unrelated

instructions can be executed concurrently without interference if each has its required operands.

In this sense, the progress of a computation is determined by the passage of data through the

system. Principal advantages of the TDMP data flow over conventional designs are reduced

complexity of the processor interconnection network, greater use of pipelining, and a simpler

representation and implementation of concurrent activity. To illustrate the basic concepts of

TDMP data flow operation, consider the data flow program shown in Figure 3.8. This program

represents the computation required for a second order recursive digital filter

I’(n) -= AX(n) + BX(n-1) + CY(n-1) + DY(n—2)

where X(n) and Y(n) denote input and output samples for time nT, where T - 1. In this

diagram, PE operators 2, 3, 4 and 5 are single-input operators that multiply by the fixed param-

eters A, B, C and D; PE operators 6, 7 and 8 are two-input operators that perform addition;

and PE operator 9 is an identity operator that transmits its input values unchanged. Each small

solid dot is a link that receives results from an operator and distributes them to other operators

for use as Operands. Input operator 1 represents the outgoing transmit control unit port

through which an external stream of values that represent the input signal X(n) is presented to
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Fig. 3.8 Data flow program graph for a 2nd order difference

equation.
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the program. Similarly, output operator 10 represents the incoming receive control unit port at

which the sequence of values representing Y(n) is delivered during program execution.

The large solid dots (tokens) show the presence of values at certain input arcs of operators

and define the initial configuration for program execution. An operator with tokens on each of

its input arcs and no tokens on its output arcs is enabled, and may fire by removing the tokens

from its input arcs, computing a result using the values associated with the tokens, and associ-

ating the result with a token placed on the output arc of the operator. A link is enabled when a

token is present on its input are and no token is present on any of its output arcs. It fires by

placing tokens on each of its output arcs and removing the tokens from its input are. The new

tokens distribute cOpies of the value associated with the input token over each output are of the

link. TDMP can perform conditional execution by using PEs to perform the primitive branch

operation. The branch operator selects one or two output arcs (destination addresses) on which

to place (send) its first input data, according to the state of a secOnd Boolean input value. The

two possible firing states lead to the execution sequences shown in Figure 3.9. The operator

can be used to achieve conditional expression evaluation at a higher level. Figure 3.10 shows a

natural translation of the high level conditional assignments:

ABS: =IfA20THENAE15E-A.

Conditional flow graphs should be constructed with caution, since the absence of tokens flowing

down some arcs might leave other tokens stranded at inputs to nodes. Conditional expressions,

such as the one in Figure 3.10, are 'safe" provided that both THEN and E15E expressions are

stated and are of the appropriate type. Conditional evaluation combined with cyclic or reentrant

flow graphs proves TDMP extremely powerful. For example, an iterative or loop construct can

be implemented by conditionally deciding whether to send tokens to the next block in a pro-

gram, or to recycle them through the current block. However, problems can arise in using
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Fig. 3.9 Example of a data flow branch operation.
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some reentry flow graphs because of blocking and token identification. Gurd and Watson dis-

cuss these problems and sight several examples to illustrate the issue.36 Dennis first proposed a

very basic version of a data flow language in which instruction execution was limited only by

the data dependencies of the program.” Dennis and Misunas did preliminary work into the

design of a computer based on this language.35 Raumbaugh has expanded and improved the

earlier version of the data flow language proposed by Dennis and has developed a multiproces-

sor architecture consisting of N identical activation processors.38 Each processor is capable of

executing in a pipeline manner several data flow instructions at a time.

The TDMP data flow processor is conceived as using each processing element as a combined

operator and link, or just a link. The time-division switching networks in TDMP are then used

as a means by which the link operations can be carried out. If a particular data item is to be

used concurrently in more than one place or time in the system, then that data item must be

explicitly sent to the multiple processing elements where it will be used. By using submulti-

plexing in both the PEs and switch, A frame and B frame, two items can be sent to diflerent

destinations. Submultiplexing is an important part of TDMP when transmitting to multiple

locations in order to prevent two PEs from simultaneously transmitting to the same PE during

the same frame.

Data items are transmitted in the form of an information packet. A PE information packet

contains five fields; flag, switching address, destination address, tag, operand and signalling.

The switching address and destination address are used by the switching network to direct the

tag, operand, and signaling fields of each packet to the correct destination. The tag field is used

by the PE to identify what operator in PE memory the data operand is associated with. By stor-

ing multiple operators in memory, task or program switching is performed more quickly. The

number of multiple operators is limited by the PE memory size. The signaling field is used by

the PE to transmit and receive request and acknowledge signals when exchanging information
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packets between PEs. Once placed on a data path, packets remain there until destroyed as a

consequence of being acknowledged by the destination PE. The packet is placed into a firing

set of the PE using the tag field. Any PE can execute any machine language program providing

that it has sufficient amount of storage. The machine language program defines the operation

performed by the PE; e.g., arithmetic or logical type operations. If the incoming packet data

does not make the receiving PE firable, then the packet data is stored in the appropriate place

in the PE memory. This situation occurs when the received packet does not completely satisfy

the needed operand requirements of the PE. For example, if the PE needs two Operands to be

firable and has previously received none, then the incoming packet will be stored until the

second operand has been received. If the incoming packet data makes the PE firable then the

PE fires immediately, using the packet data as needed. When the PE produces a result, it for-

mats an outgoing information packet for each copy of the result that is needed.



CHAPTER 1V

TIMING CONSIDERATIONS

In Chapter 3 the PEs and control unit were described as time-division multiplexed

circuits when transmitting and receiving information packets. The timing relationships of the

control signals necessary to convert the PEs and control unit into time-division multiplexed cir-

cuits were not discussed in Chapter 3. In Section 4.1 of this Chapter, we describe these timing

relationships in detail with a timing diagram. In Section 4.2, we develop an expression that

bounds the maximum multiplexing and demultiplexing rates achievable in TDMP. The max-

imum multiplexing and demultiplexing rates fix the minimum time slot size on the

time-division multiplexed buses. The minimum time slot size in turn determines the logic one

and logic zero time duration requirements of the timing control signals discussed in Section 4.1.

The TDMP switching network has an inherent delay to aflect switching of the information

packets. In Section 4.3, we present an expression that bounds the maximum switching delay

through the time-division switching (TDS) network in TDMP.

4.] Timing Diagrams

The timing diagram of the control signals that convert the control unit and each PE

into a time-division multiplexed circuit is shown in Figure 4.1. These control signals consist of

P, Q, TWD, RWD, A and B frame. In this diagram 16 time slots are created (0-15) by using

four Q signals (Q0, Q4, Q, and Q”) and four P signals (Po, P,, P, and P3). Each PE has one

Q signal and one P signal connection. The control unit has one P signal and four Q signal con-

nections. The simultaneous occurrence of a logic one on both the Q and P signals with logic

one on TWD for transmitting and logic one on RWD for receiving select the control unit or a

PE for multiplexing and demultiplexing information packets. TWD and RWD are clock signals

used to multiplex and demultiplex the information packets to and from the time-division
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multiplexed buses. The 4x4 matrix shown in Figure 4.2 is an alternative representation of the

P and Q signals used for creating each time slot position. The numbers in each box represent

the time slot position created. In addition the time slot positionfs) for the control unit and

each PE can easily be determined by simply adding together the subscripts on the P and Q sig-

nals for that PE or control unit. For example, P3 and Q4 generate time slot 7, 3 + 4 -= 7. In

TDMP time slots 0, 4, 8 and 12 are given to the control unit and the remaining time slots are

used by the PEs. The length of time for which both Q and P are simultaneously logic one sets

the time slot size. This time slot size is a function of the maximum multiplexing and demulti-

plexing rates and will be discussed Section 4.2. The A and B frame control signals are used for

submultiplexing purposes. Separate registers are used to hold A and B frame information pack-

ets. When A frame is logic one only A frame information packets are multiplexed and demulti-

plexed and when B frame is logic one only B frame information packets are multiplexed and

demultiplexed. However, A and B frame cannot simultaneously be logic one. More levels of

submultiplexing can be employed in TDMP, however increasing the amount of submultiplexing

also increases the transmission delay of individual packets within the system.

4. 2 Maximum Multiplexing and Demultt'plexr’ng Rates

To determine the maximum TDMP multiplexing and demultiplexing rates we must

start at the Time Division Switching (TDS) network. The TDS network works on a sampling

basis. The transmitted information packets on the input of the TDS are sampled then stored in

random access memory (RAM). The time between information packet samples is called the

"sampling period” of the switch, T,. The minimum sampling period is bounded below by the

read/write cycle time, t,,, of the RAM plus the control overhead, 1,, for processing the infor-

mation packet, T, 2 t... + t,. The control overhead consists of the time for scanning the input

for new samples, testing the frame condition, determining the type of service requested and

reading the destination address. A flow chart for the TDS control algorithm is shown in
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Fig. 4.2 Matrix representation of the P and Q control

signals.

Note: The numbers in each box represent the time slot position

created from the P and Q control signals.
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Figure 4.3. The minimum read/write cycle time, t,,, is fixed by the current state of the art of

semiconductor memories and as the technology improves I," will decrease. The control over-

head, tc, will also decrease as technology improves, however further improvements can be

obtained by maintaining precise synchronization of the TDS with the input multiplexed buses

thereby eliminating the scanning of flag and frame bits used for synchronization. In addition, if

we provide for only one type of switching service, then we can eliminate the control time

needed to determine the type of switching service requested. In this investigation we will take

the conservative path of keeping the extra control overhead since our primary purpose is to

determine the feasibility of using time-division techniques to enhance computation and further

enhancements can be made by the elimination of the extra contrOl overhead. As a result, the

switch sampling period puts a lower bound on the minimum PE time slot size T: Z T, where

T, is the time slot size and T, is the switch sampling period. The minimum time slot size fixes

the maximum multiplexing and demultiplexing rates in the system,

1 l
< -

me— T, (min ) t," +tc

 

In our control algorithm for the time-division switching network used in TDMP I, = 8t“, Fig-

ure 4.3. Therefore in TDMP the maximum multiplexing rate is,

I
< .—

me — 9‘,"

4.3 TDS” Maximum Switching Delay

The maximum switching delay of the TDS in TDMP is a function of the time slot

size, the number of time slots per frame, and the process of time slot interchanging. In TDMP

16 time slots make up one frame. Each PE is assigned one time slot and the control unit is

assigned four time slots. These frames are regularly repeated and alternated via
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Fig. 4.3 Flowchart for TDS control algorithm.
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submultiplexing between A and B frames. As described earlier, in Chapter 3, the TDS network

switches information packets by providing for the association of input time slots with output

time slots. All input information packets are processed sequentially and stored into RAM, then

read out sequentially from RAM. This process of reordering the sequential input information

packets by storing them into RAM locations specified by destination addresses and then reading

out the RAM contents sequentially is called time slot interchanging. This technique implies a

time delay to afl'ect a change in time slot position. The delay is the amount of time it takes the

TDS to store all the input information packets for one frame into RAM locations representing

time slots positions plus the time it takes the TDS to sequentially output all these stored infor-

mation packets. As a result, the maximum switching delay can be predicted by the following

expression,

T, - 21vrJr

where N is the number of time slots per frame, TX is the time slot size, and the 2 is a result of

the time slot interchanging process. In TDMP N - 16 and if we assume that the read/write

cycle time of RAM is 30ns then T, - 270ns and the maximum switching delay in the TDS

equals

To = (2)(16)(270ns)

TD - 8.64 #8

The TDS switching delays results in a maximum packet switching delay of 17.28 us. The

packet switching delay is twice the TDS switching delay because of the A and B frame submul-

tiplexing in which packets are transmitted every other frame. However, if the same informa-

tion packets are sent during both A and B frames then, the maximum packet switching delay

equals 8.64 us. If the switching control overhead is reduced to zero the time slot size
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decreases, TX - 30ns, and the maximum switching delay becomes 7‘, - .96 us.

The maximum switching delay in the TDS network increases linearly with N.

TD " A IN

where N is the number of time slots on the TDS input and output time-division multiplexed

buses and A . is a weighting coeflicient of the TDS network. The coeflicient A. is determined

from the switching implementation, control algorithm, and any other factors that might

influence the switching speed of the TDS network. The other factors might include fault detec-

tion built with the hardware and diagnostic programs in software to improve reliability of the

network. Many of the popular multistage interconnection networks such as binary n-cubc,

banyan and shuffle exchange have a switching delay which increases logarithmically with N,

TB " 421082 N

where N in these networks represent the number of input and output ports of the network and

A2 is its weighting coefficient.40 The coefficient A; is determined from the same factors that

are used to determine A, in the TDS network. In comparing the switching delay of intercon-

nection networks the rate of increase, N or logzN, is often used as a measure of performance.

This is a useful measure when N is very large. However, for practical systems built with tech-

nology we can use in the immediate future, we must not only consider the rate of increase but

also the weighting coeflicients that multiply the rate of increase. If the weighting coefficients

are not used in determining the maximum switching delay, then the conclusions drawn from

such as analysis might be wrong. As an example, if we compare the maximum switching delay

of TDS and the popular interconnection networks based only on the rate of increase, then we

would conclude that the popular networks have a maximum switching delay less than that of

the TDS network for all N .>. 1 since logzN < N for all N 2 1. However, in Figure 4.4 we



scrap Intonatns

t
i
n
e

r
o
m
a
n

A
1
"
1

1
0
0
A

1
0
A

 
at—

d

F
i
g
.

4
.
4

A
n

e
x
a
m
p
l
e

t
o

i
l
l
u
s
t
r
a
t
e

t
h
e
A
1

I

1
0
0
0

N
v
e
r
s
u
s

A

2

 

-P

N
(
s
w
i
t
c
h
i
n
g

c
a
p
a
c
i
t
y
)

l
o
g
Z
N

s
w
i
t
c
h
i
n
g

d
e
l
a
y

i
s
s
u
e
.

59



60

show that the maximum switching delay of TDS is less than that of the popular networks for

some values of N 2 I, if A. < A1. This example points out that the issue in comparing max-

imum switching delay is not just the rate of increase, N versus logzN, but is A,N versus

AzlogzN. It has not been shown but is conceivable that A, << .4, since the pOpular type inter-

connection networks, referred to as logzN, may have to make multiple passes through the net-

work to reach the final destination and messages may have to wait as a result of blocking in the

network. These factors influence the A; coeflicient but not A1,. However, the applicability or

superiority of one interconnection network over another should not be based only on switching

delay. For example, unless efficient algorithms which use these networks and simple operating

systems that manage their resources and supervise their processes are found, the discussion of

switching delay is moot because the system as a whole will not be cost-effective and will experi-

ence considerable amounts of down-time due to software and hardware failures thus reducing

the system throughput.

We feel that the TDS network offers some significant advantages over the logzN intercon-

nection networks in algorithm mapping and operating system implementation. The mapping

advantages results from the non-blocking and full-access interconnection capabilities of the net-

work. Since all permutations are possible in TDS the programmer can construct or restructure

algorithms without concern about interconnection capabilities of the network. And because the

network is a C-move processor, many of the operating system functions can be directly imple-

mented into the network, eliminating much of the time and hardware needed in supervising the

switching process and in communicating and acting on exceptional conditions arising during

switching.

The TDS switching delay is tolerable in TDMP system if we consider that while some PEs

are transmitting and receiving information packets through the TDS network other PEs are per-

forming computations. As a result throughput i.e., the quantity of useful information pro-
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cessed by the system per unit time, is a better measure of performance for TDMP than is the

switching delay of the TDS network in TDMP. And since TDMP is based on data flow princi-

ples and the TDS network has full-access and non-blocking interconnection capabilities the

decomposition of programs is an easier task to perform in programming sufficient parallel

activity into software to keep the parallel hardware fully occupied.

It was shown in this chapter that each PE only needs two signals, P and Q, to convert it into

a time-division multiplexed circuit and that the minimum time slot size generated by these sig-

nals is determined by the maximum TDMP multiplexing and demultiplexing rates. The multi-

plexing and demultiplexing rates were found to be dependent upon the sampling period of the

TDS network. We also showed that the TDS network has an inherent switching delay that

increases linearly with the number of time slots, N. We presented arguments as to why the

rate of increase of switching delay in TDS and the popular logzN interconnection networks was

not sufficient to determine the superority of the logzN networks over the TDS network. In the

next chapter, we describe a simulation model of the TDMP architecture.



CHAPTER V

TDMP SIMULATION MODEL

A simulation approach was chosen to analyze TDMP because it provides a timely

and economical means of evaluating preliminary designs. Moreover, the versatility of this

approach means that a wide range of alternative designs can be realistically analyzed. The use

of a simulation model in our investigation has a two-fold purpose. The first is to analyze

TDMP’s system performance, e.g., the switching capabilities and switching delay, the communi-

cation protocols between processing elements, and the ability to execute a single data flow pro-

gram at a time. The second purpose is to provide a detailed language description of the TDMP

hardware that complements the less detailed block diagrams describing this hardware. As a

result, the simulation language in our investigation has the following characteristics:

— capability to simulate concurrent activity;

— capability to simulate timing:

— flexibility to simulate hardware at both the gate-level and functional-level;

— easily translates hardware representation into a computer program.

Several simulation languages were available to us to choose from for our simulation model.

These languages were SPICE, ECAP, GPSS, and APL. SPICE and ECAP are circuit level

simulation languages and are extremely useful in modeling the dc, ac and transient eflects in

circuits.41 However, these languages are too low-level for our current simulation purposes

because they model hardware at the transistor-level. These languages would be more useful to

us when we have verified the correct operation of the system at the logic gate-level and are

ready to test the design performance at the transistor-level for integrated circuit implementa-

tion.

62
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GPSS is a simulation programming language used to build computer models for discrete-

event simulations.42’43 GPSS is a process-oriented language and is particularly suited to the

translation from a flow-chart representation of a system into a computer program. This is a

disadvantage for our simulation purposes because the computer program representation that

results is too high-level. We have a hardware representation of our system and would like the

computer program model to complement the less detailed block diagrams describing the

hardware as well as to simulate the processes in the system. GPSS would be more useful in

simulating the protocols in TDMP and not the hardware design.

APL, however, meets most of our desired simulation language needs.44‘45’46 APL has the

ability to perform both functional and gate-level simulation and the model implemented in this

language neatly complements the less detailed block diagrams describing the hardware. The

ability to perform both functional and gate-level simulations gives us the diversity to synthesize

some parts of the model at a high-level using functional modules and some parts at a low-level

using gates. Functional modules in the TDMP model tend to be those parts of the architecture

that are not germain to the TDMP operation, e.g., arithmetic logic units, registers, memory

storage units, etc. The gate-level models tend to be those parts of the TDMP architecture that

are unique to its operation, e.g, control units, interface logic units, multiplexors, demultiplex-

OI’S, etc.

All of these simulation languages have short coming when they must simulate concurrent

processing. These languages are based on sequential computation with a single processor, as a

result they cannot at all or with limited success model asynchronous events or concurrent

operations. In addition all of these languages are very costly and require fast, high capacity

computers. Given the advantages and disadvantages of each simulation language we chose APL

as the language in which to build our simulation model.

This chapter begins with a description of the APL model of the time-division switching net-
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work, Section 5.1. Then in Section 5.2, the APL simulation model of the processing element is

described. And, finally, in Section 5.3, the operation of the complete APL simulation model of

TDMP is discussed.

5.1 TD? Simulation Model

The block diagram of the data paths for the time-division switching (TDS) network

simulation model is shown in Figure 5.1. There are two identical sets of data paths in the TDS

network, one for switching A frame information packets and one for switching B frame infor-

mation packets. As a result, only one set of these data paths are described in presenting the

TDS network simulation model. The bused data paths in the model consist of DBUS, OBUS,

IBUS, INBUS and OUTBUS. DBUS is the network processor data bus. All data moved to or

from memory, registers and hardware operational units is placed on DBUS. OBUS and IBUS

are internal use buses of the network processor. These buses connect the inputs and outputs of

the network processor internal use registers to DBUS. INBUS and OUTBUS respectively con-

nect the switch input and output port registers to DBUS. Many of the remaining data paths

consist of gated input and output connections to these buses from registers, memories, and

hardware operational units such as an adder, decrementer and incrementer. By gated connec-

tion we mean that a component must be selected in order to put data on a bus or take data ofl‘ a

bus. The gates are represented by the small circles on the data paths shown in Figure 5.1.

Specifically, INBUS has gated connections to the input and output of the input flag (INF)

register, the outputs of the switching address (SWAD) register and input data (DIN) register.

The INF register signals a request for service to the switch during an input packet operation.

While the SWAD and DIN registers respectively contain the address of the type of service

requested and the input packet data to be switched. The OUTBUS has gated connections to the

input and output of the output flag (OUTF) register, the input of the data out (DOUT) register

and the output of the time slot counter (TSC) register. The OUTF register signals the switch



 
 

 

 

  
 

g
1

-

 
 

U

 

 
 

I
L
I
I
'
H
'

F
i
g
.

5
.
1
a

B
l
o
c
k

d
i
a
g
r
a
m

o
f

t
h
e

T
D
S

A
P
L

s
i
m
u
l
a
t
i
o
n

m
o
d
e
l
.



  

 

   

  

 
 

 

 

 

   

  



67

for service during an output packet operation. While DOUT register contains the switched out-

put data packet and TSC provides addressing used by TDS for demultiplexing the appropriate

output data packet to DOUT. It is important to note that INBUS and OUTBUS are bidirection-

ally gate connected to the processor data bus (DBUS).

The DBUS is bidirectionally gate connected to a non-addressable HOLD register, data

memory (DM) module, and addressable internal use registers (IR). The HOLD register tem-

porarily stores data during processor move operations. While DM is used primarily for writing

in and reading out data packets via the HOLD register during the time slot interchanging pro-

cess. However, some parts of DM are also used as a scratch pad in conjunction with condi-

tional move operations. The IR registers are the program counter (PC), the jump to subroutine

(JSR) and index (X). The PC register contains the address of the next move instruction in the

processor program memory. The JSR register stores the return address in jump to subroutine

operations and the X register is used for index addressing, and up-down counting. The remain-

ing IR registers, S and C, are additional index registers. However, it was found that they were

not needed in this simulation so they are not fully implemented for index addressing.

Other gated DBUS connections consist of outputs from the decrementer and incrementer

Operators and the inputs of the N flag bit register, decrementer and adder operators. The N flag

bit is used by the TDS control unit to test for conditional moves. The N flag bit in conjunction

with conditional moves is described in the TDS control unit simulation model in Section 5.1.1.

Some of the remaining data paths consist of connections from the memory address register

(MAR) to the memory address decoders of the input, output, data memory and internal-use

registers. These decoders are not explicitly shown in Figure 5.1. However, these decoders

enable gates if the MAR value is in the address space defined for that decoder. In this simula-

tion the internal registers are given memory address locations 0-7, data memory has locations

8-63, the input registers have 64-71 and the output registers have 72-79, Figure 5.2. Gate
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Figure 5.2 TDS simulation model memory map.
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signals GIR, GDM, GIN, and GOUT respectively gate the internal registers, data memory,

input registers, and output registers data onto and from the DBUS. The remaining decoder sig-

nals select specific registers within these groups.

The MAR has gated input data path connections from the destination address register (A),

program memory bufl‘er register (AR) and the output of the adder (ADD). Gating A into the

MAR is a result of an indirect move, gating AR into MAR is a result of a direct move and gat-

ing ADD into MAR is a result of an indexed move.

The few remaining data paths consist of gated connections from the HOLD register to the

incrementer input and program counter register connections to the incrementer input and out-

put for incrementing the PC. And finally, we have the data path gated connections from the

program counter to the program memory address register (PMAR) and bidirectional program

memory data bus (PMDATA) with gated connections from the program memory (PM) to the

program memory bufl'er registers (AM and AR). The program memory contains the TDS

switching program consisting of only move instructions. A move instruction consists of an

addressing mode and address. The AM register holds the addressing mode value in the From

and TO cycles of a move instruction. In the FROM cycle these addressing modes are immedi-

ate, direct and indexed. In the TO cycle, these modes are direct, indexed, conditional and

indirect. The AR register holds the address value in the FROM and TO cycles or in the case of

immediate move the value of the data to be moved. As a result, the AR register has a gated

connection to the DBUS for sending data to the HOLD register. Both AM and AR are inputs

to the TDS control unit which performs the address evaluation and generates the timing and

control signals necessary for all move operations.

5.1.1 TDS Control Unit

Figure 5.3 shows a block diagram of the TDS control unit. The control unit consists

of a combinational logic network and memory. The inputs to the control unit are: the least



70

 

 

 

 

 

 

   
   

 

.HMRCD

n —#

.___... Bartram. y..___.
so CODINA‘I'IGIAI.

s :D were

AR___. crooner 81 a nerve».

:D-

o

1 cu

sun:

aacrsrra

Figure 5.3 Block diagram of the TDS control unit.



71

significant bit of the program memory address register (PMAR(5)), the addressing mode bits

(AM), the N flag bit, the decoder outputs (8,, S ,, SS) and the control unit state register out-

put, (2,, 2,, 22). The control unit outputs consist of control signals (Y), and the control sig-

nals Do, 0., 0,. The Y control signals gate in both space and time data paths in the TDS net-

work. The D control signals generate the next state of the control unit. The least significant

bit of the program memory address register, PMAR(5), determines the cycle in the move

Operation. If this bit is logic 1 the move cycle is identified as FROM and if this bit is logic 0

the move cycle is identified as T0. The AM bits are interpreted by the control unit so that the

appropriate gate signals are generated for the type of addressing that is required. For example,

in an indexed move the control unif must also generate the control signals that gate inputs to

the adder from DBUS and the output from the adder to the MAR as well as the normal

read/write memory control signals. In Figure 5.4, Tablel shows the addressing modes as a

function of the AM bits and move cycle. The N bit is used as a test signal in conditional move

operations and is the most significant bit of each word moved. This bit is gated into the N bit

register off the DBUS during the TO cycle of every move operation. In a conditional move, if

the N bit is logic 1 the moved data is written into a memory location and if the N bit is logic 0

the moved data is not written into memory. In both cases the FROM cycle of the move opera-

tion is performed, however in the TO cycle the N bit condition is tested. The S0, S I and S5

inputs to the control unit identify internal use registers that are involved with move operations

such as increment, decrement and jump to subroutine.

The network specification table shown in Figure 5.5 gives a detailed logic description of the

properties of the control network. It shows for all the inputs to the control unit all the space

and time outputs the control unit produces. For example, if the control unit is in state 0,

Z, -Z 1-21-0, the contents of the program counter, PC, is gated into the program memory

address register, PMAR. The clock advances the control unit to state 1, 2,-21-0, Z;-=l.

During state 1 the mode and address contents of the program memory are placed in the AM
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and AR registers and based on the cycle and addressing mode the move operation is executed.

If we assume that the addressing mode is direct (AMo-AM,-0, AMz-l) for both cycles and

we are in the FROM cycle, PMAR(5)-l. The next clock pulse advances the control unit to

state 2 (20-0, 21-1, 22-0) where it gates the FROM address in the AR register into the

MAR register. The next clock pulse advances the control unit to state 3 (lo-0.21-Zz=l)

where it gates the contents from the address memory location specified by the MAR to the

HOLD register and also gates the data paths necessary to increment the program counter. The

next clock pulse advances the control unit back to state 0, where the next three clock pulses

cause the next program memory word to be fetched and the MAR to be loaded. However,

when the clock advances the control unit to state 3 the cycle will be T0, PMAR(5)-0, so the

control unit gates the contents from the HOLD register to the memory address location

specified by the MAR and increments the program counter. Figure 5.6 gives examples of all

move operations possible with the simulated TDS network C-move processor. In these exam-

ples assume initially that memory address location 15 has the value 20 and memory address

location 17 has the value 30.

5.2 PE Simulation Model

The block diagram of the data paths for the PE simulation model is shown in Fig-

ure 5.7. The data paths consist of DBUS, registers. communication interface logic unit (CILU),

arithmetic logic unit (ALU), program memory. data memory and a C-move processor. DBUS

is the RE data bus. All data moved to or from data memory, registers, CILU and ALU is

placed on DBUS. The registers are partitioned into groups called an outgoing communication

port and an incoming communication port. These ports are identical but are used for difl‘erent

purposes. The outgoing port transmits request signals and data and receives acknowledge sig-

nals. The incoming communication port receives request signals and data and transmits ack-

nowledge signals. Since both ports have the same hardware for communication, only the
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outgoing port will be described.

The registers that make up the transmitting section of the outgoing communication port are

TINFA, TINFB, TSWADA, TSWADB. DINA, DINB, TAA, and TAB. All of these registers

are gate connected to DBUS on their input side and gate connected by multiplexor gates to

their respective time division multiplex bus on their output side, Figure 5.7. TINFA and

TINFB are respectively the A and B frame transmit flag bit registers. These registers signal

requests for service to the switch during the A and B frame PE time slots. The request for ser-

vice is basically an enable signal that informs the switch if it should perform or not perform a

switching operation on its current input data. Since each PE has its own unique time-slot to

seize the switch there is no chance of collision between PEs requesting for switching service.

This helps to improve the throughput of the system. TSWADA and TSWADB are the A and B

frame switch address registers. These registers are initialized by the PE with an address value

of a location in the switch program memory. This location in the program memory contains

move instructions that perform the switching operations on the switch input data. In our inves-

tigation the switch operations will be limited to moving the input data directly and indirectly to

the switch data memory module. Direct and indirect move operations were described earlier in

Chapter 3. DINA and DINB are respectively the A and B frame input data registers. The input

data registers contain the data that is to be switched. Each of these registers is composed of

three registers with separate gated inputs and a common gated output. The registers are labeled

TRES, TAG, and TSlG with A and B subscripts added to each name to signify their association

with either A or B frame. The TRES register contains the result of a previous PE computation.

The TAG register contains a value used to identify which operation this result is to be used

with in the next step of computation. The use of a TAG is required when the [’55 are pro-

grammed to perform multiple operations or operations in which data values are reentered into

the data flow program. In this simulation each PE is programmed for a single operation and

data flow programs that use feedback are not simulated. As a result, the TAG bit is shown but
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is not actually used in this simulation. TSIG is the signalling bit register used to transmit the

idle and request PE signalling states. Transmit registers TAA and TAB are respectively the A

and B frame data packet destination address registers. These registers contain an address

representing the same or different time slot position of the PB. The switch uses this address to

carry out the time slot interchanging operation on the input packet data.

The receiving section of the outgoing port consist of OUTFA, OUTFB, DOUTA and

DOUTB. OUTFA and OUTFB are respectively the A and B frame receive flag bit registers.

These registers are sensed by the PE to determine if new receive data is available. For the out-

going port the receive data consists of tag and PE signalling. For the incoming port the receive

data consists of operands, tag and PE signalling. The receive data is contained in the DOUTA

and DOUTB registers, respectively, for A and B frame data. The receive data registers have a

single gated input, whereas the output has a separate gated connection to DBUS for each field

in the register, Figure 5.7.

The CILU data paths generate the outgoing and incoming PE transmit signalling hits as well

as the PE execution enabled signal. The inputs to the CILU consist of the outgoing and incom-

ing receive signalling bits, the ALU status bit and the current state of the PB. The receive sig-

nalling bits were discussed earlier in this section, the ALU status bit, PST, is either in the idle

or busy condition, the PE state information is stored in a register and new state values are gen-

erated based on the ALU status, the receive signalling conditions and the previous PE state

value. However, no state changes can occur until the CILU has received a clock pulse gen-

erated by the PE control program. One clock pulse is generated each time the PE cycles

through its control program. The various PE states and explanation of these states is given in

Figure 5.8.

The CILU is modeled at the logic gate-level. Figures 5.9 and 5.10 show the truth table

representation of the CILU design. The CILU was decomposed into an outgoing and incoming
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P! State

Outgoing Incoming Explanation

P050 P051 P152 P153 P! State

0 0 0 0 idle

0 0 1 received operand A

0 0 0 1 received operand B

0 0 l 1 enabled

1 l 0 0 results available

1 l l 0 results available and received operand A

l l 0 1 results available and received operand I

l l l 1 results available and received operands A L I

0 l 0 0 A frame results available

1 0 0 0 8 frame results available

0 l l 0 A frame results available and received operand A

0 l 0 l A frame results available and received operand l

0 l l l A ire-e results available and received operands

A and I

l 0 l 0 I frame results available and received operand A

l 0 0 l I frame results available and received operand I

l 0 l l I frxee :e;ults available and received operands

an    
 

Fig. 5.8 PE states for data flow computing.
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mu'rs OUTPUTS

Outgoing Outgoing Outgoing

Garrent Iseeive ALV Transmit

5tste Signalling Status "lent State Signalling

P050 P051 POIA P0“ P51 P1520 P153 P050 P051 POTA POT! ENABLE
__..__1

o o X 8 X 0 O 0 0 0 O

0 O X 3 O l l l O O l

O O X S l l O O O O O

l l O O O X l l l l O

l l l O O I O l O l O

O l 5 l X 3 O O O O O

1 1 X X 1 X 1 1 o o o

l l O l O F l O l O O

1 o 1 X X X o o o o o

l l l O X 0 O O O O

o 1 x o X X o 1‘ o 1 o

l O O x X x l O l O O            
 

Fig. 5.9 Logic truth table for the outgoing part of

the CILU.
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OUTPUTS

Incoming Incoming Incoming

mrrsnt Isceive ALU Transmit

State gignslling Status Ilext State Signalling

1 2 P 3 RA PIRB PST P050 v P051 P152 P153 PITA PITB
liq—La !-—-r—.

0 0 0 0 X X 0 0 0 0

0 0 l 0 X X 0 l 0

0 0 0 l X X 0 l 0 l

l 0 X 0 X X l 0 0 0

l 0 X 1 X X l l 0 l

0 l 0 X X X 0 l 0 0

0 l l .X X X l l l 0

l l X X 0 0 0 0 0 0

l l X X l X l l 0 O

0 0 l l X X l l l l

l l X X 0 l l l 0 0

0 0 l l X 0 l l l l           
Fig. 5.10 Logic truth table for the incoming

part of the CILU.
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combinational logic designs to reduce the size of the network, since many of the inputs that

affect the incoming network have no effect an the outgoing network and vice-versa. The ALU

performs the arithmetic operations in the PE. High-level functional modules were used to

simulate the ALU. High-level modules were used because the specific operation of the ALU

was not important in analyzing the operation of the TDMP architecture. However, the capabil-

ity to move input operands to and results and status information from the ALU is important to

the operation. As a result in this model the ALU has two input operand registers called A and

B that are gate connected to DBUS. Outputs from the ALU consist of a gated connection from

the results (R) register and the status (ST) register to DBUS. The remaining data paths for the

PE are the C-move processor, program memory and data memory. These data paths are exactly

the same as those described in Section 5.1 for the TDS network. The purpose of the processor

is to move under stored program control data and signalling to and from the data paths in the

PE. In this simulation the data memory is used as a scratch pad by the processor during condi-

tional move operations and the program memory contains the PE control program.

5.3 TDMP Simulation Model Operation

In describing the TDMP simulation model operation, we will assume that the PE

and TDS program memories have been initialized prior to program execution. We will begin by

discussing the PE simulation model operations followed by a discussion of the TDS simulation

model operations. We end this chapter with a summary discussion of the overall TDMP simu-

lation model.

5.3.1 PE Operation The flowchart shown in Figure 5.11 and the program code

shown in Figure 5.12 describes the programmed control operations of the PE. These instruc-

tions are stored and fetched from the processor program memory. The PE begins by moving

the ALU status, the incoming port A and B, and outgoing port A and B receive signalling bits

to the incoming and outgoing communication logic networks, respectively. The processor
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Fig. 5.11 Flowchart of the PE control algorithm.
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moves the generated incoming port A transmit signalling bit (ITA) from the CILU to the

incoming port A transmit signalling register, ITSIGA. If this bit is logic 1, the processor moves

the incoming A operand from IDOUTA to the ALU A input. If this bit is logic zero the

incoming A operand is not moved to the ALU. The ITA bit represents acknowledgment of

receiving the incoming A operand. Similarly, ITB is moved from the CILU to the incoming

port B transmit signalling register, ITSIGB. If this bit is logic 1, the processor moves the

incoming B operand from [DOUTB to the ALU B input. If this bit is logic 0 the incoming B

operand is not moved to the ALU. Next the processor moves the outgoing port A transmit sig-

nalling bit, OTA, from the CILU to the outgoing port A transmit signalling register, TSIGA.

OTA represents a request to send results as determined by the communications logic network.

If this bit is logic 1 the processor moves the results from the ALU output, R, to the outgoing

port A transmit results register, TRESA. If this bit is logic zero, the results are not moved.

Similarly, the processor moves the outgoing port B transmit signalling bit, OTB, to the outgoing

port transmit B signalling register, TSIGB. If this bit is logic 1 the processor also moves the

results from the ALU output, R, to the outgoing port B transmit results register, TRESB. The

processor now tests the communication logic network enable execution, EXEC. If this signal is

logic I the processor moves an arithmetic instruction and start execution signal to the ALU

input, INST. If EXEC is a logic 0 the arithmetic instruction and start execution signal are not

moved to the ALU. The processor now clocks the communication logic network so that it can

generate its next state based on its current input and outputs. The processor jumps to the

beginning of its control program to repeat this cycle of move instructions.

5.3.2 TDS Operation The flowchart shown in Figure 5.13 and the program code

shown in Figure 5.14 describe the TDS network processor operations. The SYNC bit is a syn-

chronization pulse that occurs at the beginning of each time slot. This bit is used to
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Fig. 5.13 Flowchart for the TDS control algorithm.
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synchronize the TDS with the input and output time-division multiplexed buses. The TDS pro-

cessor moves this bit to a scratch pad location in data memory. If SYNC is a logic one, each of

the TDS processors move the FRAME bit to a scratch pad location in their respective data

memories. If SYNC is logic 0 the TDS processors continuously moves the SYNC bit to the

same scratch pad location in their data memories until SYNC is logic 1. If the FRAME bit is

logic one, TDS processor A performs the operations in the input processing branch of the TDS

flow chart and TDS processor B performs the operations in the output processing branch of the

TDS flowchart. If FRAME is logic zero processor A performs the output processing operations

and processor B performs the input processing operations.

The input processing operations begin with a test of the INF bit. The INF bit is moved to a

scratch pad location in memory. If INF is logic one the processor moves the contents of the

SWAD register to the program counter register. The instruction pointed to at this address is a

direct move or an indirect move of the DIN register contents or some other type of requested

switching service function. For this example, assume the instruction pointed to by the PC is an

indirect move, then the processor moves the contents of the DIN register to a data memory

location specified by the contents of the A register. The program now jumps back to the test

SYNC instruction. If the INF bit was logic zero the program does not perform any switching

service and immediately jumps back to the test SYNC instruction.

The output processing operations begin by testing the OUTF register. If OUTF is logic zero

the contents of TSC are moved to the processor program counter. The instruction pointed to at

this address causes a jump to a program memory location that directly move the contents from

a location in data memory to the DOUT register and returns to the test SYNC instruction. If

OUTF is logic one the processor immediately jumps back to the test SYNC instruction without

moving any data to the DOUT register.
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5.4 TDMP Simulation Model Summary

Because of APL space limitations, all of the PE variables needed to simulate a

twelve PE TDMP architecture could not be created and stored in one file. However, by using a

set-up and end-up program, we were able to achieve the same efi'ect. The set up program takes

shared variables such as program memory, incoming and outgoing port registers, etc., and

makes them specific variables for a particular PE by adding a suffix to these variables. When

done computing the end-up program stores the contents of these specific variables and removes

the subscripts to make them shared variables again. Each time a PE is used it must use the set

up and end-up program.

The APL simulation model provides us a means of simulating the TDMP system operation;

however, timing problems can occur since APL simulation does not include timing simulation

methods which could predict timing problems. A timing simulator allows verification of proper

circuit behavior in the presence of variation in gate delays. The worst case circuit behavior is

obtained based on the minimum and maximum transition delays assigned to the gates is the

model. By allowing observation of the circuit whenever simulation time is incremented rather

than waiting or assuming the circuit has stabilized, a better understanding of circuit operation

may be obtained to aid in circuit design or diagnosing problems. Detail logic gates and timing

simulation can be implemented in the APL model by writing programs that perform these func-

tions. However, because these functions are not built into the APL simulation the cost for

implementing them in our model is expensive.

APL is a sequential simulation language, which means it cannot simulate concurrent activity.

However, we can achieve the effect of performing concurrent activity by stopping the simula-

tion timing clock and sequentially performing computations then restarting the clock again.

This is an awkward and expensive way to simulate concurrent activity; still, it is the best alter-

native available. But even given these short comings of the simulation language, it does allow
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us to obtain some useful and significant information in predicting TDMP‘s system performance.

This performance will be discussed with the aid of sample computations in the next chapter.



CHAPTER VI

TDMP PERFORMANCE EVALUATION

Chapter 5 described the TDMP APL simulation model and its operation. In this chapter we

evaluate the performance of the TDMP design based on this model. In our investigation we

did not design many evaluation tools to measure system performance. For example, we didn’t

design any hardware monitors for measurements of hardware activity, software monitors for

event recording during program execution nor did we develop workloads that represent work

expected of the system. We feel that a rigorous performance evaluation of multiprocessor sys-

tems employing these techniques is a research project unto itself. In addition there is a ques-

tion of whether new performance tools are needed or how do the currently used performance

tools need to be extended to be applicable to multiprocessor systems. As a result, we relied pri-

marily on monitoring signals and registers in simulated clock time for recording the activity of

small portions of the system and monitoring computational results in simulated clock time for

measuring total system performance. Section 6.1 discusses the qualitative and quantitative per-

formance results obtained from this simulation model.

On the one hand, we have the conventional single-processor systems which have many uses

but the range of use is limited by the von Neumann bottleneck. On the other hand, we have

fixed-array-processor systems which overcome the von Neumann bottleneck but at the expense

of limiting its range of use by the fixed interconnection structure. TDMP eliminates or

improves upon the range of use limiting factors in both single-processor and

fixed-array-processor systems. In Section 6.2 we use data bandwidth as a measure of computa-

tional performance and compare the data bandwidths of a single-processor, TDMP, and

fixed-array-processor systems in computing a fast-Fourier-transform (PET) and a digital filtering

algorithm. This comparison is done to show how much TDMP improves arithmetic computa-

tion over single-processor systems and how much data bandwidth we must sacrifice to obtain

92
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flexibility over fixed array processor systems. The two algorithms chosen for the comparison

represent the important class of recursive algorithms used in digital signal processing. In Sec-

tion 6.3, we discuss what has and has not been learned from the simulation. And, finally, Sec-

tion 6.4 describes the differences in TDMP data flow processor and Dennis’s data flow proces-

501137

6. I Performance Data

The performance data obtained from the simulation model is based on a communi-

cation saturated TDMP system with one processing element. By communication saturated we

mean that the system bandwidth is dominated by the interprocessor communication and the

processor arithmetic execution time is negligible compared to this communication time. With

this approach the bottlenecks, delays and throughput we examine are a result of the TDMP

architecture only. The PE computes results and transmit these results back to itself through the

TDS network. Figure 6.1 shows a block diagram of the simulation model with the PE shown in

two parts for clarity purposes. In the model, time slot zero, T80, identifies the outgoing port of

the PE and time slot one, ‘I‘Sl, identifies the incoming port of the PE. With this model we

were able to test the communication protocols between PE outgoing and incoming communica-

tion ports, the A and B frame submultiplexing, the time-division switching network and the

data flow control.

The simulation model is synchronized to a master clock. Four simulation clock pulses

correspond to one read/write memory cycle, t,,,. From the simulation we found that the max-

imum rate a PE can generate result packets, Tm , is once every three cycles through its control

program. The first cycle loads the operands into the ALU, the second cycle initiates computa-

tion and the third cycle transmits the results. In the PE control program shown in Section 5.3,

this corresponds to 120 t... assuming that the needed operands have been received and the

ALU execution time is zero. However, if the operands are not immediately available the time
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delay in receiving these operands reduces the rate at which the PE generates result packets.

This time delay in receiving operands is attributed to the transmission, switching, and packet

flow control. The worst case transmission delay, 1; , is caused by the time-division multiplexing

and submultiplexing of the information packets. In the model T, - 2NTX, where N is the

number of time slots, TX is the time slot size, and 2 is the number of submultiplexed frames.

The worst case switching delay, TD, also equals 2N7}, since in the model the switch sampling

period equals the time slot size. The transmission and switching delays are fixed and each

packet transmitted must sequentially experience these delays. This results in a pipeline realiza-

tion of packets with the sections of the pipe consisting of the packet generation, transmission

and switching. Without including the packet flow control and assuming worst case, we found

that the model computing with two input operands produces the first result packet in TN +

T, + TD units of time and the following result packets every T units of time where T is the

maximum of (TN, 7}, To). The timing diagram shown in Figure 6.2 is the one used for tim-

ing and control of the two time slot model. From this diagram we find that the time slot size is

98 simulation clock pulses which correspond to 24.5 t,,,. If we assume t,,, - 30 nsec, then

TD - T, - (2)(2)(24.5)(30 nsec)

- 2.94 nsec

and TN - (120)(30 nsec)

= 3.6 nsec.

As a result T - Tm since TD - T, < Tm. For a large number of operations this

corresponds to a data bandwidth of 277 kHz where data bandwidth is defined as the maximum

number of results that can be generated per unit time, b0 - iT' However, if N > 2 time slots

then To = T, > TN and T = To - 1.47N 11sec, resulting in bl, -= l/l.47N nsec.

If the packet flow control is added to the model, the previously computed 0,, decreases
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significantly. The decrease in bandwidth is due to the interruption of the pipeline operation and

added delay both caused by the packet flow control protocol. The packet flow control protocol

is responsible for preventing new result packets from being generated before previously

transmitted result packets have been acknowledged. Since the acknowledge signal is returned

after the request signal and data have been received, the time between generating new result

packets increases by the amount of time it takes the receiver PE to generate an acknowledge

signal plus the time it takes the transmitter PE to receive it. The worst case time for generating

an acknowledge signal, T, , is 1 cycle through the PE control program or 40 t,,. This time

plus the transmission and switching delay time experienced by the acknowledge signal is added

in the packet generation, transmission and switching time of the result packet sent. As a conse-

quence

T-Tm+27‘,+2TD+T.,,,

= (4.8 + 2.94N) nsec

and from the model where N = 2

b - J- -- 93 6 kHzD T . .

If sufficient size receiver first-in-first-out (FIFO) queues or receive bufl'ers with arbitration

circuitry are used to store and control incoming packets to the PE, then the packet flow protocol

 

MHz if N > 2 timecan be omitted and the b0 is increased to 277 kHz for N = 2 or 1 417N

slots. These are the data bandwidths we obtained for the model when we didn’t consider the

packet flow control. The cost of the bandwidth improvement is a decrease in system reliability

because the acknowledge signal used for packet flow control was our only verification that the

transmitted packet was received successfully.
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6. 2 Comparison of Computational Performance

We decided to use the performance data obtained from the simple one PE model of

TDMP to determine and calculate the (data) bandwidth of a large TDMP system suitable for

implementing FFT and digital filtering algorithms. This decision was based on the high cost of

the TDMP APL simulation and the small amount of new information that would be gained in

simulating a large system. This single PE model is justified because TDMP is a synchronous

system and there is no contention for communication. Each PE is given a designated time slot

to transmit and receive data. As a result all PEs are equal and we can determine on a worst

case basis the time required for each PE to compute, transmit and receive results. This is

different from an asynchronous system where the time for each PE to transmit and receive

results varies and depending on the type of interconnection network there may be some conten-

tion for communication. The (data) bandwidth was chosen as the performance index in com-

paring the computational performance of TDMP, single-processor and fixed-array-processor sys-

tems. This choice is more appropriate than the memory cycle time or instruction execution

time since it allows for the fact that instructions may be executed concurrently. The evaluation

of the bD’s is based on each system performing the same FFT and digital filtering algorithms

with comparable processors. We begin this analysis with a comparison of the bD’s resulting

from the processing systems performing an FFT algorithm.

The FFT algorithm implemented on each processing system is based on the decimation in

time principle and is illustrated for an 8-point sequence in the signal flow graph shown in Fig-

ure 6.3. In the signal flow graph, there are four columns and each column contains eight

entries. For the sake of clarity, the two-dimensional variable y(k,i) is used to denote the value

of a given node in the array, where k is the number of the column and i is the number of the

component within the column. At the node corresponding to column k and row i, the variable

y(k,i) is found from an equation of the form:
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Fig. 6.3 Signal flow graph of a 3-pt. FFT.
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Y(k.i)"J’(k-l.ir)+W'Y(k"1.i2) (l)

where i ,, i2 and r are functions of the location within the array and W - (”2"”). In each

case, the dashed line connecting the variable in column k-l with column k refers to the first

term on the right-hand side of Equation (1), i.e. the nonweighted term. The solid line refers to

the second term on the right hand side of (1), i.e., the weighted term. The number in the cir-

cle is the degree of W as indicated by term r in (l). The important parameters needed to deter-

mine and compare the (data) bandwidth among the three systems implementing this FFT algo-

rithm are defined:

N -= the number of data points in the FFT

1‘; - execution time of the processor in performing the butterfly computation,

ya - y. + W'yz

M - the average number of FFT operations to be performed

Tx - time slot size

T - worst case TDMP system delay

t, - register delay

t,, - read/write memory cycle time

b0 (M ) - data bandwidth for a finite number of FFT operations

by -= data bandwidth when the number of FFT operations is large (M -> oo)

The 0,, analysis assumes that all initialization of the processors has occurred prior to the

beginning of the FFT program execution and that each individual processor performs the same

computation, y3- y2+ w'yz, in the same amount of time. To compute y, each processor

must perform 4 real multiplications and 2 additions. We also assume that the input and output

interfaces for each system is manageable and not a limiting factor in the b0 performance. With
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these assumptions given, the (1,, of a single-processor system, can be determined from the fol-

lowing equation,

Um I

l- ”"00 bD'(M) - T5(N logzN) + 6t,,, (N logzN) (2)
b0

In equation (2) T5(N logzN) is the arithmetic execution time needed to compute one FFT

operation with a single-processor, 6t," (Nlog,N ) is the accessing and storage time of the real and

imaginary parts of the two input operands and the results during one FFT operation.

The TDMP by is based on a TDMP system with NlogzN PEs. Each PE is assigned a loca-

tion in the N x logzN pipeline array of processors as represented in the signal flow graph shown

in Figure 6.3 for N - 8. Each PE is programmed to execute the butterfly computation as a sin.

gle data flow operation and to transmit the results of this computation to the next column of

PEs based on its location assignment within the array. This arrangement of PBS form an asyn-

chronous pipeline flow of result packets with the synchronization of the computations con-

trolled by the data flow principles at the architecture level. The worst case b0 for TDMP is

characterized by the following equations;

M

1’02”“ (T,E + T) logzN + (1‘,E + T) (M-l) (3)

 

and

lb Lim __

D (T. + T)
, - Mm bp,(M) - (4)

where T is the worst case TDMP system delay. T is (4.8 + 2.94N) nsec if packet flow control

protocol is used and 1.47N nsec if it is not used. These two cases correspond to not using and

using input queues as buffers in the PEs. The term (TE + T)log2N is the system delay, i.e.,
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the time before the first results appear at the output of the system. After the system delay, a

FFT operation result appears every 7‘; + 7‘ units of time for an unbounded number of opera-

fions

The fixed-array-processor directly implements the signal flow graph of Figure 6.3 with

hardwired interconnections between the processors. Each interconnection path contains a regis-

ter to synchronize the data flow between processors. The execution time, TE, and the register

delay time, t,, determine the processor b0 ,

M

(T; + t,)log2N + (T; + t,)M-l

 

50,01) '

Lint 1

b0: '- M—ooo b010,) -m

Figure 6.4 shows a graph of the FFT data bandwidths for the single-processor, TDMP, and

fix-array-processor as a function of the number of operations, M. The curves were generated

assuming that N-8, t,,, - 30 nsec, t, - 10 nsec and

T5 - (4TH + 2T4)

where Tu and T.1 are respectively the hardware processor floating-point multiplication time

(27 us) and addition time (14 as).

The curves in Figure 6.4 show that for a large number of FFT operations, TDMP 00 is

more than lS-times larger than the bp of a single-processor system and 1.5-times smaller than

that ' of a fixed-array-processor in computing an 8-point FFT. The bp of the

fixed-array-processor can be viewed as an upper-bound and the maximum 00 improvement we

can obtain over the single-processor with TDMP. In order to achieve this maximum improve-

ment we must reduce the interprocessor communication overhead either with hardware or
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reducing the communication protocols that are in software. For example the dash curve shows

the improvement in TDMP b0 if input queues are used. In this case TDMP ho is more than

19-times larger than the bp of a single-processor and 1.2-times smaller than that of a

fixed-array-processor. This comparison shows that for a small reduction in [in of

fixed-array-processor, TDMP enhances both single-processor and fixed-array-processor range of

usefulness, e.g., increases b0 over single processors and adds flexibility over

fixed-array-processor.

Figure 6.5 shows the (10’: as a function of the processor execution time for large M. From

these curves we can see that the single-processor system has a larger b0 than TDMP if the exe-

cution time is less than 2.8 as and as the execution time increases above 2.8 as this situation

flip-flops. From the same curves we see that if T; is greater than a 1000 as, the 00 of TDMP

and fixed-array-processor is about the same. These results are very important and can be easily

explained. In the first case where TDMP 11,, is less than that of a single-processor, the PBS in

the TDMP are spending most of their time communicating and waiting for new operands

because the computation time to communication time ratio is small (<.04). 1n the second

case, where the TDMP b0 is comparable to the fixed-array-processor, the computation time to

communication time ratio is large (>13) so that PEs spend the majority of their time comput-

ing instead of idling. This points out the importance of granularity in TDMP. Granularity is

the size task a PE must perform before it is required to communicate with other PBS in the sys-

tem. For TDMP the granularity must be large such that the computation time to communicate

time ratio is large for a given problem.

To illustrate the advantage that TDMP has over fixed-array-processors for this class of prob-

lems, we simply change the application problem. Changing the application problem in TDMP

requires no hardware changes. We simply reprogram the data paths and input new information

packets with new tag values, assuming of course that the program for the new task has been
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previously stored in the PE. However, changing the application in a fixed-array-processor

requires changing the hardwired interconnection paths between processors or possibly

experiencing a significant degradation in the 00. In addition if the problem size changes

unneeded PEs in TDMP architecture can be utilized for multiprogramming purposes. Since

TDMP is based on data flow principles and sufl'ers no side efl’ects of concurrent processing, we

can execute two or more diflerent application problems simultaneously. There is no way in

which fixed array-processors can do this. Because in fixed-array-processors the correctness of

the results requires all processors to be synchronized together. As a result, unneeded proces-

sors must remain idle, thus reducing the utilization of the fixed-array-processing system.

As a second example of TDMP performance, we will compare the bD’s of the three process-

ing systems implementing the digital filtering algorithm given in Chapter 3 and shown in Fig-

ure 3.8. In the single-processor system 4 multiplications, 3 additions, and 8 memory accesses

and stores must be accomplished to compute one filter result. Thus

b - l
”I 41,, +3t,,+8t,,,

 

For the TDMP system, we assume N - 8 to make the architecture fit the problem size and

directly implement the signal flow graph shown in Figure 3.8. This results in

bng lu+T

 

This by assumes that many filter computations are performed and the multiplication time is

larger than the addition time. Similarly for the fixed-array-processor system we assume an

architecture size to fit the problem size and directly implement the signal flow graph which

results in
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03 I” "1' I,

Figure 6.6 shows the bD’s for each processing system as a function of the processor multipli-

cation time. In this example we see that the 0,, of TDMP is larger than that of the

single-processor for all values of processor multiplication time greater than 15 nsec and less

than that of the fixed-array-processor until the multiplication time exceeds 500 nsec. The start-

ing point of 15 nsec was used so that our equations for b0; and b0, will be valid, since tA < t”

is required for these equations to be correct. The results from this analysis again shows us the

efl‘ect that communication overhead has on the TDMP b0 and the amount TDMP enhances bD

over single processor systems.

6.3 Discussion ofthe Simulation

The simulation model was the driving force behind designing the specific com-

ponents and the interrelationship of these components to make a TDMP system work. By

using a simulation model of the design, we did not have to purchase, build and test printed cir-

cuit boards and the LS] components on these boards to observe the performance and operation

of the TDMP system. With simulation we were able to test new ideas quickly and to make

changes easily. We also were able to develop the precise timing relationships for the system

operation and determine what influences these relationships. We did not find out how TDMP

performs when the system hardware components are not ideal but vary with temperature and

age. We were not able to truly simulate concurrent PE activity because the simulation proces-

sor was sequential. The capacitance of the bus data paths that influence signal propagation

could not be simulated inexpensively. To simulate this capacitance we need a stix layout of the

intergrated circuit design of the TDMP architecture in order to determine, at best, a good guess

of the bus lengths necessary to calculate a capacitance value that could be simulated for each

bus data path in this model. This approach is very expensive, time consuming and not



b
D
(
H
z
)

1
0
0
,
0
0
0
j

b
-

s
i
n
g
l
e
-
p
r
o
c
e
s
s
o
r

2
o

1
0
,
O
O
Q
J

b
-

f
i
x
e
d
-
a
r
r
a
y
-
p
r
o
c
e
s
s
o
r

1
,
0
0
0
_
,

1
0
0
‘

1
0

  
1

1
+

1
5

1
0
0

1
0
0
0

1
0
,
0
0
0

1
0
0
,
0
0
0

-L

db

t
i
m
e

(
u
s
)

F
i
g
.

6
.
6

B
a
n
d
w
i
d
t
h

a
s

a
f
u
n
c
t
i
o
n

o
f
m
u
l
t
i
p
l
i
c
a
t
i
o
n

t
i
m
e

f
o
r

t
h
e

d
i
g
i
t
a
l

f
i
l
t
e
r
i
n
g

c
o
m
p
u
t
a
t
i
o
n
s
.

108



109

necessary for this initial simulation model, so it was not done. However this should be done

when simulating the architecture for actual VLSI implementation to study its effect on perfor-

mance.

6.4 TDMP and Dennis Data Flow Models

There are two primary differences in the TDMP data flow architecture and the data

flow architecture developed by Dennis at MIT.37 The first difference is that in TDMP the data

flow operators and memory cells are in the same PE module with an interprocessor communica-

tion network used to interchange result information packets between PEs. In Dennis’s model

the operators and memory cells are separated. All information packets are transmitted through

an arbitration network from the memory section to the operators. And all result information

packets are transmitted from operators through a distribution network to the memory cells.

The TDMP approach does not increase the amount of concurrent activity over Dennis’s model

but rather allows for locality of information flow. This approach reduces the amount of parallel-

ism in a problem required for high PE utilization. The argument about locality of information

flow is true for any multiple processor machine in which each processor holds a part of an

overall program. However, two factors increase the likelihood that such good decomposition

can be achieved for TDMP. First, since TDMP is based on data flow principles, operations are

constrained only by the availability of data. Tolerance of asynchronous behavior at the architec-

ture level allows greater flexibility in mapping programs. Second, since data flow languages are

free of side effects decomposition is an easier task to perform. The second difference is that

TDMP uses time-division communication techniques for the transmission and switching of

information packets and Dennis's model is designed for space-division techniques. The

time-division techniques are better in conserving valuable chip area over the space-division

techniques for single-chip V1.81 implementation. And the use of an intelligent switching net-

work in TDMP allows for the possibility of performing operations other than “plain old switch-
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ing'. For example, the switch could modify the data as it is being transmitted to the destination

PE or implement some of the system operating functions to improve reliability and diagnosabil-

ity in the system.



CHAPTER VII

CONCLUSIONS

7.! Summary

Advances in improving the computer’s computational speed result from reducing the

switching delay times of elementary logic gates, improving methods for performing primitive

arithmetic operations and designing computer architectures that overcome the intrinsic speed

limitations of the von Neumann machine. While the first two approaches improve the compu-

tational speed, the third approach provides the potential for making the largest increase in com-

putational speed. Here, multiprocessors are employed; and these multiprocessor architectures

exploit the inherent parallelism in specific tasks, thereby eliminating the single-processor

bottleneck -- 'von Neumann bottleneck“. In addition, VLSI is making it feasible to build these

high-performance multiprocessor structures as low-cost, flexible, single-chip system com-

ponents. So, the purpose of the research reported here was to investigate a multiple processor

computer structure that exploits this technology to improve the bandwidth of comparable

single-processor machines and increase the flexibility of existing fixed-array-multiprocessors.

Within the research reported here, the investigation attained several objectives. First, it sur-

veyed the previous work on multiprocessor architectures to identify their principal attributes,

and it suggested how well suited these attributes are for VLSI implementation for enhanced

computation. Desirable multiprocessors VISI attributes include:

— majority of the processors are identical;

— processors and memory all in close proximity;

— simple underlying communication geometry;

Ill
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— regular and modular structure;

— few interconnection data paths between processors;

— flexible datapaths.

Next, it presented an architecture called TDMP (Time Division Multiple Processing) and

described how it achieves the following general properties:

— greater bandwidth than comparable single-processor architectures;

— less complex switching network than a crossbar switch interconnection network;

— more flexible than fixed-array network;

— full-access and non-blocking interconnection capabilities;

— simply extends to pipeline operation;

— highly compatible with data flow algorithms;

— amenable to VLSI implementation.

A computer based simulation model of TDMP was developed to investigate the computa-

tional capabilities, hardware components and the interrelationship of these components with the

others. Finally, through two algorithms that represent the important class of recursive algo-

rithms used in digital signal processing, it compared the computational data bandwidth of

TDMP to comparable single-processor and fixed-array-processor systems to show how much

TDMP improves arithmetic computation bandwidth over single-processor systems and how

much bandwidth we must give up to obtain flexibility over fixed-array-processor systems. By

satisfying these objectives, the investigation achieved the overall purpose of the research pro-

ject.

During this investigation the research project achieved several key results. First it

described, from a hardware point of view a basic TDMP architecture with twelve processing
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elements, two time-division switching networks and a control unit. The processing elements

perform the arithmetic operations and synchronize computation for correct execution at the

architecture-level using data flow principles. The time-division switching networks were shown

to have full-access and non-blocking interconnection capabilities for switching the information

packets and flow control signals among the multiple processors. The switch was also shown to

possess several important attributes that make it well-suited for VLSI implementation. These

attributes include simple underlying communication geometry (time-division multiplexed

buses), modularity regularity and logical simplicity. The logical simplicity implies that incre-

mental changes in the switch architecture (e.g., increasing the number of processing elements

connected to the switch) the degree to which the changes affects the software in the switch is

small. Next, we explained how TDMP executes programs based on data flow principles in

which computations are allowed to proceed as soon as it operands became available. The idea

of organizing a computer to operate on data as soon as its operands became available has been

discussed by Dennis, Gurd and Watson, Arvind, Miller and Cocke.36’37 However, none of

these authors has suggested a detailed and efficient scheme for communicating information

packets to processors for computation. This investigation has shown through simulations that

an integrated interprocessor communication system using time-division multiplexing and

time-division switching offers an attractive solution to this problem. Also it was shown that

TDMP is unique because time-division communication techniques have not been previously

investigated in data flow or conventional multiprocessor architectures.

To develop TDMP, we built and tested an APL simulation model of the architecture. The

investigation found that the use of such a model was helpful in the design and analysis of the

architecture. Using the performance data of a single PE TDMP model, it was shown that

TDMP can improve the data bandwidth (computational speed) over single-processor systems by

factors of 15 and 10. when computing FFT‘s and digital filtering results, respectively. The

analysis also indicated that in order to achieve this improvement the granularity of tasks for
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each PE must be chosen such that the computation time to communication time ratio for each

PE is large. The investigation also revealed some negative attributes and deficiencies of the

simulation languages available for our simulation purposes. The negative attributes. common

to all of the simulation languages considered in this investigation, result from these languages

not being able to truly simulate concurrent processing or asynchronous events. The reason for

this is these languages are based on a single-processor executing instructions sequentially. The

deficiencies of each simulation language varies with the language type. For example, APL does

not have a built in timing simulator but GPSS does. However, GPSS is not particularly suited

to the translation from a hardware representation to a computer program but APL is. The

negative attributes and deficiencies of each simulation language considered in this investigation

is discussed in more detail in Chapter 5 of this thesis.

Using the results of this study, designers of multiprocessor systems will be able to create

advance systems with increased computational performance over single-processor systems, a

wider range of use over fixed-array-processor systems and a hardware design that copes with

interconnection data path complexity imposed by VLSI implementation. Second, since TDMP

is based on data flow principals, i.e. operations are constrained only by the availability of data.

the architecture allows greater flexibility in mapping programs and since, data flow languages are

free of side effects decomposition of programs is an easier task to perform. The second results

will aid programmers in developing parallel software to keep the parallel hardware fully occu-

pied. The third result is an APL computer model of the TDMP system which provides a model

for developers of multiprocessor systems to use in investigating the computation bandwidth of

TDMP if some of the parameters of the structure are varied. For example the bandwidth for a

specific problem can be investigated as the number of time slots, the time slot size and the

number of multiplexed buses is varied. Currently, the model has the flexibility to vary the

number of time slots, the time slot size and the control software for both the PBS and

time-division switch. However, it can not vary the number of time-division multiplexed
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(TDM) buses. This feature can be implemented by duplicating existing parts of the model and

adding a new time multiplex switch part. This change results in a new time-division switch with

multiple input and output lines. The new switch can switch data between processors on the

same or different time-division multiplex bus. The changing of the number of time slots on a

TDM bus or the number of TDM buses correspond to varying the N and M parameters of the

model, respectively. And finally, the use of an integrated communication system based on

time-division techniques has not been previously investigated in multiprocessor structures for

enhanced computation. So the results of this investigation provide designers with a new trajec-

tory for multiprocessor design and implications of using these techniques in those designs.

7.2 Further Research

As with any research project, the investigation reported here points toward several

areas of additional study. Further investigation can be made into showing new options possible

in multiprocessor architectures as a result of using time-division communication techniques.

For example, since the switching network is a C-move processor, we can now think of ways to

enhance computation by modifying the data as it is being switched. We may also be able to

modify the switch to improve reliability and diagnosability in the system. The research can be

extended into analyzing the data bandwidth, hardware and software requirements of TDMP if

input queues or buffers with arbiters are added to the processing elements. This corresponds to

making the processing elements into multiple input data flow operators. Research into dynami-

cally allocating multiple time slots to PEs can be investigated. This improves the time division

multiplex bus bandwidth utilization because unused time slots caused by idle or non-

communicating PEs can be allocated to PEs that need to transmit or receive data more fre-

quently. Research into the modularity of TDMP can be further investigated. By employing the

concepts of time multiplex switching and pipelining larger TDMP systems can be developed

from simpler TDMP systems to solve larger problems. And. finally, further research into the
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development of higher level programming languages are needed. The underlying trouble with

most current attempts to use parallel hardware is that they are based on traditional concepts of

programming. These concepts in turn are based wholly on the serial von Neumann computer

design, with instructions executed one at a time. In view of the nature of parallel hardware sys-

tems and the practical difficulties of keeping them running at full speed, we suggest further

investigation of data flow programs based on the TDMP computer model.
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