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ABSTRACT

A DEVELOPMENT OF THE CHARACTER TABLES FOR

CERTAIN CLASSES OF

UNITARY AND llNEAR GROUPS

. By

William A. Simpson

The classical groups U(n,q2) and GL(n,q) occur as in-

finite families of groups indexed by a dimension n and a prime

power q. It is convenient to develop what might be called

'abstract' character tables whose entities are written as func-

tions of n and q and which describe the characters for the

entire family of such groups. It is too difficult to work.with

both n and q arbitrary, so n is fixed and the character

table which holds for all q is found. In 1955 a method for con-

structing the character table of GL(n,q) for a given n and

arbitrary q was developed by Green [2]. Since then the only

'abstract' character tables constructed have been those for

U(2,q2), U(3,q2) by Ennola [l] and Sp(4,q), q odd, by

Srinivasan [3].

In this paper ten abstract character tables are developed,

representing the group families SL(n,q), PSL(n,q), SU(n,q2),

PSU(n,q2) n 8 2,3 and PSL(4,q) d = 1. Of these, seven have

never been published. The tables for these groups are of

particular value because they often appear as important subgroups

in other larger groups such as many of the Sporadic simple groups,cu'
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are themselves simple, or are used to construct other simple groups.

This paper has several purposes:

1. The character tables are made available in the sense that the

range of all parameters are given explicitly so that the user can

easily generate the desired table for any Specific q without

searching through the paper for the definition of the various

entries in the table. This degree of explicitness is not present

for the three tables now in print and for this reason they have

been included in this paper.

2. A standardized notation is used for all the tables which

should facilitate comparisons and other inter-connecting uses.

3. The procedure discussed in section III, together with the main

theorem developed in section II should enable one to more easily

work out a Specific character table for any of the groups SL, PSL,

SU, PSU not covered by this paper.

4. A very interesting and potentially important conjecture made

by Ennola [1} relating the generalized character tables of GL(n,q)

and U(n,q2) is extended, in section IV, to the special and pro-

jective Special groups. It is demonstrated that a change of q a -q

in the character table for SL(n,q) or PSL(n,q) will yield the

table for SU(n,q2), PSU(n,q2) reSpectively for the case n = 2,3.

The converse, of course, is also valid for these cases.

The main theorems of the paper, proved in Chapter II, are

the following:

IE, If HR is a central product of groups H, K where K

is abelian, then every irreducible character of HR remains

irreducible when restricted to H. From this theorem, we can
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obtain the following Theorem for SL(n,q) which is a striking

improvement on Clifford's Theorem.

Th_ Any irreducible character x of GL(n,q) when re-

stricted to SL(n,q) is either irreducible or Splits into t

conjugate, irreducible characters of SL(n,q) of multiplicity l

where t‘d and d = (n,q-l). X has 133%1 associates in

GL(n,q) relative to SL(n,q) if X is reducible and q-l

associates if irreducible. (An identical theorem holds for

SU(n,q2) with (q-l) replaced by (q+l).) This is the main

working theorem of the paper as it tells us just how characters

of GL will split when restricted to SL. Clifford's theorem

only says that the number of components, t, will be a factor of

(q-l) which is of no help. But the above theorem says that

t = 2 or 3 for n = 2 or 3 respectively.

In section III the technique used to formulate the char-

acter tables is discussed. It is shown that each conjugacy class

of SL can be indexed by a Jordan canonical form.

The characters of GL(n,q) are restricted down to SL

and the inner product (x,x) = Téil- 2 x(g) x(g) is calculated.

gESL

If (x,x) = 1 the restricted character is irreducible. Otherwise,

it is reducible and splits up as indicated by the theorem just

discussed.

Once the character table for SL is determined we can

easily generate the table for PSL, since every character of SL

which is constant on Z(SL) is an irreducible character of

PSL 8 SIJZ(SL), and every irreducible character of PSL can be

so obtained.
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In the sections V through XV, the character tables are

developed. Many of the routine calculations are done once in

detail and merely mentioned or entirely omitted in later sections.

In section XVI the results obtained for PSL(4,q) d = 2

are given and some Space is devoted to discussing the problems

which prevented further progress, problems which were primarily

attributable to the complexity of the table for GL(4,q).
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I. INTRODUCTION

1.1 History
 

Towards the end of the 19th century G. Frobenius develOped

the foundations for the theory of group representation in a series

of papers dating from 1895 to 1911. In 1911 Burnside published

his book.Theory pf Groups g£_Finite Order in which he independently

rediscovered some results of Frobenius. More importantly he applied

this embryonic theory and obtained some surprising results in group

theory regarding the solvability of certain groups which gained

more serious attention for this new concept. After this initial

Success, however, the theory of group representation lay relatively

dormant for nearly 25 years. It appeared that the applications of

this theory as develOped up to that point had been exhausted.

This disinterest was not universal. Physicists quickly

grasped the importance of representation theory and soon began

using it to advantage. Since representation theory reduces the

abstract properties of groups to numbers, they found that this

enabled them to apply group theory to any system possessing

symmetry that was too complex to handle by classical analysis.

Such fields as thermodynamics, crystallography, wave equations,

quantum mechanics, molecular and nuclear structure are but a few

of the many areas where representation has played an important

role. Thus the theory of representations developed steadily in



the area of applications long after the pure mathematics of its

source ceased to offer much promise. Indeed, during the period

of 1905 to 1955 the growth of new developments in group theory

proceeded at a very slow pace. Felix Klein felt this was due to

the abstract nature of group theory which isolated it from physical

phenomenon which motivated SO much mathematics of that time and as

a reSult only a certain type of mathematician was attracted to the

field. He felt this homogeneity of the researchers was largely

responsible for its slow rate of development, unmarked by

imaginative leaps forward. If this was the reason for the decline

in activity in group theory then the successes won by representation

theory in the physical sciences may well have lessened the stigma

of abstractness and helped in restoring vitality to the field of

group theory.

1.2 Recent Interest
 

In the period 1925-55 a major advance was made by R. Brauer

in the study of modular representations. In 1955 when activity

in group theory suddenly increased, Brauer's work provided some

powerful tools with which to study group structure. Thompson and

Feit in their long paper on groups of odd order used modular theory

with telling effect and thus rekindled interest in representation

theory. M. Suzuki has used considerable character theory in his

work on the classification of simple groups by the structure of

involution normalizers.

At the present time significant advances in group theory

are being made in the area of classifying all simple groups and



here representation theory continues to play a large role since

nearly all theorems on groups using characters establish the exis-

tance of normal subgroups. The first step in this classification

problem was to find all simple groups of order less than some large

number. Initially all the simple groups which were found could

be placed in one of several classes of groups, all groups of a

class sharing some common properties. However, this convenient

pattern was broken when, starting in 1964, people began finding

some large simple groups which didn't fit into any of the known

classes. These groups became known as the 'Sporadic' simple groups

and they attracted considerable attention. At this date the char-

acter tables for nearly all these Sporadic groups are known, to-

gether with some of their larger Subgroups.

1.3 The Problem

There are several reasons for wanting to know the char-

acter table for a group. The most obvious reason is to be able

to study better the structure of the group. Sometimes one has

the character table of a group and desires to know some of its

larger subgroups (see p. 66 [2]). Methods are available to find

the character table of such subgroups (see p. 150 [16]). One

may then be able to recognize this subgroup's character table

as being the same as some known table. Thus a good stockpile

of character tables would aid in identifying subgroups. The

classical groups turn up often as subgroups and so their tables

are particularly valuable.



Wales'paper [22] furnishes an excellent example of the

current manner in which characters of groups, in this case

PSL(2,17), can be used to obtain surprising results.

Another use for character tables lies in using them to

test out various conjectures which might arise. For this purpose

one would like to have tables for a wide variety of groups.

Sometimes groups are Constructed by extensions of several

groups. If the tables of these subgroups are known, it is often

possible to obtain the character table of the constructed group.

Very frequently the groups used in this construction are of the

type discussed in this paper.

This paper deals with the character tables for PSL(n,q),

PSU(n,q2), SL(n,q) and SU(n,qZ) for n = 2,3 and some results

for n = 4. The case of n = 2 was originally done by Frobenius

[12], Schur [18] and later independently by Jordan [15]. This case

is redone here for several reasons. The methods used by these

earlier researchers are considerably different and more complex

than those used in this paper. Also the resulting tables are

written in such a manner that in order to use them, one would have

to go back through the paper to find the definitions and range of

values for the many parameters. In addition, the difference in

notation from one table to another would make comparisons very

difficult. The table for PSL(3,q) was done by Brinkmann [3]

but the results were never published. Thus it was considered

advisable to work out all the tables for n = 2,3 whether they

had been done before or not.



The final result is a set of 10 character tables, only 3

of which have been previously published, each of which describes

an infinite class of finite groups and all unified by common nota-

tion with the range of parameters explicitly given to facilitate

using the tables. The procedure used to obtain these tables is

quite likely the most straight forward one possible and yet little

can be done on the cases for n = 4, not because the method breaks

down but because the character tables become so large and complex

that the details are exhausting.

The character tables develOped here are of a somewhat

unusual nature and a word or two should be said about them. Some-

times it is possible to find a character table which can serve as

the table for a whole class of groups by changing some parameters.

Apart from the economy of Such an 'abstract' character table it is

valuable in that it provides a strong linkage among the groups.

There have been few such tables developed and so it seems that a

few more additional tables would be of value.

One of the most valuable classes of groups for which char-

acter tables are available is the class of symmetric groups S

(also An). Although no abstract character table has been developed

for the entire class an equivalent formulation has been obtained,

namely, a comparatively simple construction method for building the

character table for any of the Specified groups.

In 1896 Frobenius determined the generalized character

table for the groups GL(2,q). In 1949 Steinberg [19] worked out

the tables of GL(n,q) for n = 2,3,4 in a particularly straight

forward fashion. These results and some later work done by



Steinberg led to the develOpment by Green [14] in 1955 of a method

to calculate the characters of GL(n,q) for any n. In 1963

Ennola [6] found the characters of U(n,q2) for n = 2,3 and

recently Srinivasan [21] obtained the table for Sp(4,q) q odd.

This sums up all the results on 'abstract' tables as of this date.

1.4 General Theory
 

In the following short section an attempt is made to run

quickly over the key definitions and theorems of character theory

which are employed in this paper or necessary for its understanding.

DEFINITION. A representation of a group G is a homomorphism
 

p: G a GL(n,() where GL(n,[J is the group of all n X n,

nonsingular matrices over the complex numbers; the group

operation is ordinary matrix multiplication.

Every group has at least one representation, the most trivial one

being p1: G d l. The totality of all representations of a given

group can be narrowed down by defining the following equivalence

relation:

DEFINITION. If p and O are n-dimensional representations of

group G and there exists a nonsingular matrix A s.t. C(g) =

A p(g)A-1 for all g E G then we say 9 and o are

equivalent.

The next step is to show that certain representations of G are

the 'building blocks' from which all the non-equivalent representa-

tions can be constructed.

DEFINITION. A representation 9 is reducible if it is equivalent

* *

to a representation with matrices of the form (-6-+-;70



616;) Lug)

0 I 02(8)

 

i.e. p: g a

It follows that 01(g) and 02(g) are also representations

of G. If a representation is not reducible then it is said to be

irreducible.
 

THEOREM 1.1 If the representation 9 (over(£) is equivalent to

a reducible representation a

. 01(8) l F<g>
i.e. o: g .. 0 \02(8)
 

then 9 is equivalent to

the direct sum of the representation 01 and 02.

From this theorem it follows that:

THEOREM 1.2 If p is a representation for G then 9 is equi-

valent to the direct sum of irreducible representations

of G, for p over 0;.

This key theorem says that once we know all the irreducible rep-

resentations of a group G, we have all the possible representa-

tions since they can be constructed by adding together irreducible

representations.

The next surprising theorem tells us that the number of irreducible

representations of a finite group is strictly limited.

THEOREM 1.3 The number of non-equivalent irreducible representa-

tions of G equals the number of conjugacy classes of C.

It would be very cumbersome, and as it turns out, unnecessary to

write down all the irreducible representations of a given group.

To avoid doing this we look for some way to designate each of

these representations. This leads to the next definition.



DEFINITION. If p is a representation of G, then the character

x of p is the mapping from G to a: defined by:

x(8) = trace 9(8)-

If g1,g2 E G are elements of the same conjugacy class and p

is a representation of G, then p(g1) is similar to p(g2) and

since similar matrices have the same trace we can state:

THEOREM 1.4 Any character x of G is constant on conjugacy

classes of G.

Also:

THEOREM 1.5 Characters of equivalent representations are identical.

THEOREM 1.6 If the representation p of G is reducible and

equal to the Sum p1 + 92 +...+ pk of irreducible represen-

ations, then X = x + X +...+-x . In particular,

P 91 92 Pk

every character of G is the sum of irreducible characters

of G.

The above theorems mean that we can identify a representation 9

by specifying its character X which is an r-row column vector

X(81)

X(82) each entry being the trace of a representative matrix

xigr)

9(81) from each conjugacy class of G. We call x(l) the degree

of the character. Theorem 6 says we need only Specify the

irreducible characters of the group since all the others are simply

integral linear combinations of these. Thus we can write down a

square matrix for a group G called the character table for G.
 

The columns of this table are the n irreducible characters of G.



Customarily the identity character 1 is written as the first

1

column (or row) and the first conjugacy Class, i.e. the first row

(or column) is the identity of the group. The ijth entry of the

table is the value XJ(81X gi being an element of the ith con-

3 being the jth irreducible character of G.jugacy class and x

It should be noted in passing that G 25H implies G

and H have the same character table but the converse is go_t true.

The quaternion group and the octic group are the smallest counter

examples.

An amazing number of relationships exist between the rows

and columns of a character table. In fact, these relationships

are so restrictive that in some cases it is possible to construct

the character table for a given simple group knowing no more than

the order of the group. There is no universal procedure to develop

a character table. After one has armed himself with a thorough

knowledge of the various character relationships and some Special

number theory concepts, he can then proceed only on intuition and

experience. No computer program has yet been devised to calculate

character tables for all groups of order s 200 and yet tables for

groups of this size can be done reasonably quickly by hand.

Frame's paper [5)] displays in detail many of the techniques used

to generate a character table of a group from that of a subgroup.

Although individuals have found character tables of groups with

orders as large as ‘G‘ = 47,377,612,800 the most notable success

measured in terms of magnitude has been the generation of the

table for Conway's group of order 221-39-54-7-11-13-23 by computer.
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The method used some of the unique properties of the group and

in no way represented a general procedure which would work for

other groups.

Before the more useful properties of the character table are

stated, the following definition is necessary.

DEFINITION. Let x1,x2 be characters of group G. Let

( ) dgf 2 x1(gi)x2(si)

X1’x2 . ]N(gilT
1

 

where gi is an element from the ith conjugacy class and

\N(gi)‘ is the order of the centralizer N(gi) of gi.

In the following let Xi’xj be irreducible characters of G and

9 be a reducible character.

THEOREM 1.7 (Orthogonality relations on columns)

(i). (Xi’xj) = 6ij iff xi,xj are irreducible char-

acters.

(ii). (xi,9) = a1 where 31 is the number of times the

irreducible character xi is contained in 9.

(iii). (9,9) = 2 a? = sum of squares of the multiplicities

of all the irreddcible characters appearing as components

of 9.

The above relations enable one to determine if a character is

irreducible or not and in the case of a reducible character, to

break it up into its irreducible components. Note the following:

(1) implies that if (Y ,Y ) = 1 then Yi is irreducible. If

(9,9) I 2 or 3 then (iii) implies that 9 is composed of 2 or

3 irreducible characters respectively (this case comes up often

in this paper).
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THEOREM 1.8 (Row Orthogonality)

f’ . .

0 1f g,h are not in the same

conjugacy class

 

M
7
?

. xi(8)xi(h) = <
1 l

‘N(g)‘, if g,h are in the same

Lconjugacy class 
Note: A special case of the above is:

c o 2

E x1(1)x1(l) = 2 (degree of ith character) = ‘G‘ .

i i

The next major topic is the question of how characters of the

group are related to characters of its subgroups.

If x is an irreducible character of G we can easily

 

get a character x‘H of H s G by restricting x to H.

x‘H(g) = x(g) for g being any element in a conjugacy class of

H. X‘H is not necessarily irreducible and often it isn't.

If Y is an irreducible character of H s G we can obtain a

character YG of G by a process called inducing, which is

G H

Y1 x; G th
formulated by: = E where C, is the j con-

\NG\ H G NH 3
j Cf:cj x

jugacy class of G and C: are all conjugacy classes

of H which are contained in the conjugacy class C3.

Again we note that the induced character YG need not be

irreducible in G. The induced and restricted characters of

H and G are bound together by the following theorem:

THEOREM 1.9 (Frobenius' Reciprocity Theorem)

_ G

(lemH — (xd’ )G .

This theorem says that the number of times the restricted
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character “It contains y as a component, equals the number

of times that the induced character YG contains X as a com-

ponent.

Thus if H s G, and one has available the character table

for C(H), it may be possible to find the table for H(G) by

restricting (inducing) all characters of C(H) to H(G) and

using the orthogonality properties and Frobenius' Theorem to

determine how to Split up all the reducible characters into their

irreducible components.

The preceding has been a summary of character theory which

is applicable to all groups. In the following section some

theorems are discussed which apply only to Special groups.



II. A MODIFICATION OF CLIFFORD'S THEOREM

In this section we introduce some results known collec-

tively as Clifford's Theorem, concerning characters of normal sub-

groups. The particular structure of SL(n,q) is analyzed and a

theorem is obtained which enables us to extend Clifford's Theorem

and achieve even more information concerning the characters of

GL(n,q) restricted to SL(n,q).

2.1 Clifford's Theorem
 

Nearly every textbook which contains a section on Clifford's

Theorem, including most of Clifford's paper [4], states the results

in terms of irreducible G-modules and G-submodules. In this section

we restate these theorems in terms of characters. Such a change

in vieWpoint can be found in Feit [8] and Lomont [17].

The following are various definitions, notations and con-

cepts used in the discussion of Clifford's Theorem. Let G be a

group and suppose p is an irreducible representation of G and

x its character.

DEFINITION. If C E Aut(G) then the representation p0 defined

by: po(g) dgf p(g°)‘v g E G is said to be conjugate to

p.

Likewise the character, x°(g) dgf x(g°) V 8 E G is

conjugate to the character x of G.

13
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It can be shown that if x is an irreducible character, then x0

is also. If H'd G and X is an irreducible character of G then

8
xjfl, x are said to be conjugate relative to G. Conjugate char-

in

acters should not be confused with characters x, X' which are

complex conjugate characters defined by x'(g) = x(g) .

DEFINITION. Let H < C. Two irreducible representations of G,

91 and 92 are associates if they have an irreducible
 

component in common when restricted to H.

The following theorems are all modifications of, or an outgrowth

of Clifford's work [4].

THEOREM 2.1 Clifford's Theorem

If H'd G and p is any irreducible representation of G,

then the restriction of p to H denoted by pH is

either irreducible or reducible into irreducible components

of the same degree. If 9H is any such irreducible com-

ponent of pH, then all other components are conjugates

of pfi relative to G and in addition, every such con-

jugate of 9H appears as a component of 9“.

This theorem says that if a character XH Splits in H then it

Splits into characters of equal degree and which are identical

on all classes of H which are complete classes of G. The sets

of values of the characters over the other classes of H are

identical but the values are permuted over these classes. Now we

will take up a theorem which says something about the number of

components and their multiplicities.

Suppose XH is reducible. Then associated with this char-

acter is a subgroup G* s.t. H < G* < C. If G/H is cyclic then

the following theorem provides some interesting information.
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THEOREM 2.2 Clifford's Theorem

Let H be a normal subgroup of G Such that G/H is

cyclic of order k. Then the irreducible components of XH each

have multiplicity 1. The number of components of X is m, and

the number of distinct associates of X relative to H is k/m,

where m = [G:G*] and H S.G* S G.

Since the scalar matrices of GL form a cyclic group,

GL/SL, we know that if a character of CL Splits in SL it will

split into m pieces of multiplicity 1, where m divides

[GL:SL] = (q-l). Also, since the number of associates is (q-1)/m,

this means that if XSL is irreducible (i.e. m = 1) then there

are (q-l) characters of GL that restrict down to the same char-

acter of SL. If XSL is reducible into m components

Y1,...,Ym then there are (q-1)/m characters of GL which, when

restricted to SL, also split into the same components.

2.2 A Theorem Applicable to SL(n,q), SU(n,q)

Let X be an irreducible character of GL(n,q). By

clifford's Theorem 2.2, if X‘SL is reducible then it splits into

m conjugate irreducible components of multiplicity 1 where m

divides [GL:SL] = (q-l). In this section we prove that m

divides d I (n,q-1), and this determines m exactly for all the

groups considered in this paper.

DEFINITION. Let H,K,M be groups with M S Z(H) and suppose

there exists an isomorphism 9 of M into Z(K). Then

if we identify M with its image 9(M), there exists a

group G of the form C = HK with M = H 0 K S Z(G)
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such that H centralizes K. Such a group G is said to

be a centralgproduct of H and K w.r.t M. In diagram

form: T T

Z(H) Z(K)

M a 901)

Lemma 2.3 If H X K is the direct product of a group H with a

group K and Y,9 are irreducible characters of H,K

reSpectively then the character X defined by X(hk) =

Y(h)-9(k) is an irreducible character of H X K. Con-

versely, every irreducible character of H X K is equi-

valent to such a product of characters of H and K.

pf: see Littlewood [16]

Lemma 2.4 If H X K is a direct product of a group H with

an abelian group K and X is an irreducible character

of H X K, then X‘H is an irreducible character of H.

Pf: By lemma 2.3 X(g) = Y(h)-9(k) where g = hk, h E H,

k 6 K and Y,9 are irreducible characters of H,K

respectively. K is abelian so all its characters are of

degree 1. x(h) = X(h-1)= ‘l’(h)~9(1) = ‘i’(h)-1 = ‘i’(h)

for all h E H. Thus X‘H = Y which is an irreducible

character of H.

Lemma 2.5 If HR is a central product, then there exists a

homomorphism f:H X K —+ HK

pf: Gorenstein [13]

Lemma 2.6 Let f be a homomorphism f:G ~ G'. If X is an

irreducible character of G/Ker f then X' defined by

x'(g) = X(f(g)) is an irreducible character of G.
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Pf: Consider (X',X'):

1

(x'.x') = Z x'(g)
|Gl 86G

‘Ker f‘

= -—TET——' 2 X(8)X(8)

gEG/Ker f

x'<g) = Wk 2 X(f(g))x(f(g))

gEG

1 __

= T__T z: X(g)x(g) = (x.x) = 1

G/Ker f gEG/Ker f

since X is an irreducible character of G/Ker f

.2 (X'X') = 1 implies X' is an irreducible character

of G.

Note: Lemma 2.4 and 2.6 seem to be familiar results but

don't appear anywhere in standard references.

THEOREM 2.7 If X is an irreducible character of a central pro-

duct HK, where K is abelian, then X H is an

irreducible character of H.

Pf: By Lemma 2.5 there is a homomorphism f:H X K a HK

such that HK a: H x K/Ker f .

Let X' be defined by: X'(g) = X(f(g)).

Bnyemma 2.6 X' is an irreducible character of H X K.

Since H is a subgroup of both H X K and HK and

x'(g) = X(f(g)) then x'(h) = X(h) for all h E H.

This implies X"H = X\H.

But X"H is irreducible by Lemma 2.4 so X‘H is an

irreducible character of H.

This theorem says that every irreducible character of a central

product HK with K abelian is irreducible upon restriction to

H and so no Splitting of characters can take place.

We now study the structure of SL(n,q) and use Theorem 2.7 to
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obtain our major goal.

dk g-l
DEFINITION. Let M(d) = {A e GL(n,q)\det A = 9 k = 1,..., d } 

where d = (n,q-1) and g is a primitive element of

GF(Q)-

We note that every scalar matrix of GL(n,q) is contained in

M(d) since det pkl = pkn = 9(kn/d)d.

Lemma 2.8 M(d) 4 GL(n,q).

Pf: Let A 6 GL, B E M(d)

det ABA-1 = det A det B det A“1 = det B = pdk

thus ABA“1 E M(d) a M(d) < GL

Lemma 2.9 GL/M(d)ia o(d), a cyclic group of order d.

Pf: Let f:GL(n,q) 03t° 0(a)

where f(A) = (det A)(q-1)/d

Clearly f is a homomorphism and f(GL) 3 c(d). It is

easy to show that the Ker f = M(d) so by the ISt

Isomorphism Theorem GL/Ker fez f(GL) i.e. GlfM(d) a g(d).

Lemma 2.10 M(d) = SL-Z(M(d)) is a central product.

Pf: Z(M(d)) = {scalar matrices A 6 GL}

Izm<d)>1 = Maj-l) = (q-l)

 

s-_1

Z(SL) = 9‘ d )k ‘ ‘

_ k=Luqd> zmm =d

(Sal)k

p J

Consider: Z(M(d)) SL

M a: Z (SL)

(1) M(d) = SL-Z(M(d))

Pf: Let A G SL, B E Z(M(d)), then det (AB) =

k
det Acdet B = l-pd = AB 6 M(d) = SL-Z(M(d)) s M(d).
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16L]
_ ° (q-1>

But \SL-2(M(d))\ = LSL‘ngéfimni = (q 1) d = \M(d)‘

.n SL-Z(M(d)) = M(d).

(ii) SL 0 Z(M(d)) = Z(SL)

Pf: Let A E SL 0 Z(M(d))

then det A 8 l and A is a scalar matrix so A E Z(SL).

(iii) Z(M(d)) centralizes SL

Pf: Every matrix of Z(M(d)) is scalar and so commutes

with every element of SL.

Conditions (i), (ii), (iii) = M(d) is a central product

of SL and Z(M(d)).

We now put this all together to obtain the following results.

THEOREM 2.11 Every irreducible character X of GL(n,q) when

restricted to SL(n,q) is either irreducible or Splits

into t conjugate, irreducible characters of SL of

multiplicity 1 where t divides d. X has Xiill

associates in GL w.r.t. SL.

Pf: GL SL x Z(M(d))

d

M(d) B SL-Z(M(d))

SL'_1

d\
SL

Suppose X is an irreducible character of GL(n,q). Now M(d)‘< GL

by Lemma 2.8 and GL/M(d) is cyclic by Lemma 2.9 so by Clifford's
 

 

Theorem 2.2 X‘M(d) is either irreducible in M(d) or it Splits

into t conjugate irreducible characters X1,...,Xt of multiplicity

1 where t divides [GL:M(d)] = d. Since by Lemma 2.10, M(d) is

a central product of SL and the abelian group Z(M(d)), then by

Theorem 2.7 every irreducible character of M(d) is also an
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irreducible character of SL under restriction.

We see from this theorem that any splitting undergone by

the characters of GL takes place in restricting from GL to

M(d). This means that the characters Split into t conjugates

where t‘d. This is marked improvement over Clifford's Theorem

which requires only that t‘(q-1).

We thus have the immediate Corollary:

Corollary 2.12 The characters of GL(2,q), GL(3,q), GL(4,q),

d = 2 must either be irreducible when restricted to

SL or split into 2,3, or 2 irreducible conjugate char-

acters respectively. Every character X of GL(2,q),

GL(3,q), GL(4,q), d = 2 has 3&1 associates w.r.t. SL

where t = 1 if X‘SL is irreducible or t = 2,3, or 2

reSpectively if X‘SL is reducible.

Theorems 2.11 and 2.12 can be restated for the characters of
 

U(n,q2) restricted down to SU(n,qz). We need only define M(d)

by: M(d) = {A e U(n,q2)\det A = pd'uq‘l) k = 1,...,9§l} where

d = (n,q+l) and p is a primitive element of GF(q2).



III. TECHNIQUE

In this section we describe the procedures by which the

character tables are obtained by restriction from GL(n,q) and

U(n.q2)-

3.1 Determination of Conjugacy Classes for the Linear Groups

Dickson [5] did considerable work on determining the con-

jugacy classes of the general linear groups. The following is a

brief description of how the class structure is found.

The elements of GL(n,q) are matrices, with each of

which there is associated a characteristic equation. A familiar

theorem tells us that if matrix A is similar to matrix B then

the characteristic equation of A equals the characteristic equa-

tion of B. Thus we can find all possfllle characteristic equa-

tions and correSponding to them we can associate a conjugacy class

of GL having that equation. However, since the converse of

the above theorem is not true, then some of the characteristic

equations will correSpond to several different conjugacy classes

having that same equation. We can get a full separation by

writing down the possible Jordan canonical forms for each type of

characteristic equation in an appropriate extension field. Each

canonical form corresponds to exactly one conjugacy class and

every class has such a canonical form.

21





22

In [14] Green shows that if A E GL(n,q) and A has

k

1R2 ‘34
1 f2 fN where f1,...,fN are

distinct irreducible polynomials over GF(q) then for every

characteristic.polynomialf

possible partition v1,...,vN of the exponents k1""’kN

there correSponds a distinct canonical form and thus a distinct

conjugacy class.

This means that the number of conjugacy classes of GL(n,q)

can be determined by counting the number of possible partitions.

The final result is a generating function which for a given n

is a polynomial in q with constant rational coefficients expres-

sing the number of classes for GL(n,q).

For example, if we want to find the conjugacy class

structure of GL(3,q) we first write down the possible factoriza-

tions of the characteristic equation of degree 3 and then for

each factorization we write down the possible Jordan forms.

 

 

Types of characteristic polynomials Jordan Canonical Form

irreducible cubic (T q 2)

T Tq

uadratic factor linear factor k L

q ’ p a QB
O

k k
k

3 equal linear factors pk k (9 pk K)(e p k

9 pk 9 19

k

k

2 equal linear factors pk k p p L

9 L1 9
p

3 different linear factors pk p; m)

P

PGGFW)

2

UEGF(Q)

3

T E GF(q )
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The number of conjugacy classes can now be easily counted by con-

sidering the valid range of the exponents on the primitive field

elements.

Grouping the conjugacy classes in sets according to the

possible Jordan Canonical forms is not only a convenient way to

count the classes, but also serves several other purposes. First

of all, the values which the exponents k,l,m,n assume can be

used to determine the character value for each class, so that

great economy of notation results; each whole set of conjugacy

classes requires only one entry in each character. Thus the char-

acter table of GL(3,q) is composed of only 8 rows, one for each

canonical form. Also, it turns out, as first noted by Steinberg

in [19], that there is a l-l correspondence between the sets of

characters of GL(n,q) having the same degree and the sets of

conjugacy classes of the same canonical form. The order of a

given set of conjugacy classes is equal to the order of the

corresponding set of characters. Thus for the group GL(3,q)

we see that all the characters are of only 8 different degrees and

it is particularly convenient to set up the character table so as

to exhibit this 1-1 correSpondence between classes and characters.

We remark that this l-l correspondence between sets of classes

and characters doesn't hold in SL and SU if d # 1.

Dickson determined the order of the centralizer of an

element for each conjugacy class type of GL(n,q) n = 2,3,4, by

counting the number of matrices commuting with a given canonical

form.
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Finding the conjugacy class structure of SL(n,q) is

accomplished by determining what canonical forms have determinant

1. Since SL‘Q GL, then SL is composed of complete conjugacy

classes of GL. Thus every conjugacy class of SL has the same

order as it did in GL with the exception of the classes of GL

which Split in SL. These splitting classes were determined by

Dickson for n = 2,3.

3.2 Determination of Conjugacy Classes for the Unitary Groups
 

In [23] Wall obtains results on the conjugacy classes of

some classical groups, the unitary group, U(n,qz), included. His

main results for U(n,qz) are:

THEOREM. (1) X E GL(n,qZ) is similar to an element of

*-1

U(n,qz) iff X ~ X ('~' indicates Simi-

larity and '*' indicates the conjugate transpose)

.. 2 2
(11) Two elements of U(n,q ) are conjugate in U(n,q )

iff they are similar in GL(n,qz)

(iii) The number of conjugacy classes in U(n,qz) is

m A

the coefficient of tn in n -l4i-E—i .

x=ll-qt

He also gives a formula by which the order of each conjugacy class

can be calculated.

The above statements say that all the elements of U(n,qz)

which are similar to some A 6 GL(n,qZ) such that A ~ (A*)-1,

form exactly one conjugacy class.

In [7] Ennola refines the formula for calculating the

order of the conjugacy classes. He also Shows that if ARE GL(n,qZ),

q +l _
e —

* -

and A ” (A ) 1 and e is an eigenvalue of A, then 1
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where k is odd. Thus we can use Jordan Canonical forms with

marks of GF(qZR), fitting the above conditions, to represent the

conjugacy classes of U(n,qz). We use the same type Jordan forms

employed as class representatives for GL(n,q) except now we use

elements such as pk, ck, wk: where p = 0(q-1), T = TiqB-l) and

a, T1 are primitive elements of GF(qz), GF(q6) reSpectively.

As in GL(n,q) we assemble the conjugacy classes of

U(n,qz) into sets, each set corresponding to a Jordan Canonical

form. ‘We likewise place the irreducible characters into sets

according to their degrees. As before, there is a 1-1 corre-

spondence between the sets of classes and sets of characters in

U(n,qz).

3.3 Development of the Character Tables

The character tables for GL(n,q) n = 2,3 are given in

Steinberg [l9] and for U(n,qz) n = 2,3 in Ennola [6]. In the

following we shall describe the procedure for finding the char-

acter table for SL(n,q) and PSL(n,q), with the understanding

that the same procedure works for the unitary case; just replace

GL, SL, PSL by U, SU, PSU throughout the discussion.

The conjugacy classes of GL(n,q) are represented by

all the possible Jordan Canonical Forms. We first find the con-

jugacy class representatives for SL(n,q) by selecting only those

representatives of GL with determinant 1. Then the irreducible

characters Xi of GL are restricted down to SL one at a time

by using only the values Xi(g) where g is from a conjugacy

class of SL. The inner product (Xi‘SL’xi‘SL) is calculated.
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If (xi‘SL’xi‘SL) = 1 then Xi‘SL is irreducible and we are done

with this character. Otherwise, we know it Splits into d irre-

ducible components Y1,...,Yd which are all equal on those classes

of SL which are complete classes of GL. The values of the Ti

on the other classes can be later determined, after all the char-

acters of GL have been restricted down to SL, by using the

orthogonality relations Theorems 1.7 and 1.8.and Gaussian Sums.

After the character table for SL is found, we can obtain

the table of PSL I SL/Z(SL) by using the following well known

theorems due to Frobenius.

THEOREM 3.1 If Hid G and X is an irreducible character of

G, then X is a character of G/H if and only if it has

equal values for any two elements of G which are eQUi-

valent modulo H.

THEOREM 3.2 If Hld G then every character of G/H is a char-

acter of C.

To determine the conjugacy classes of PSL we simply fuse into a

single class of PSL all the classes of SL which are equivalent

under multiplications by scalar matrices from Z(SL).

Picking out a set of classes of SL which are all equi-

valent to one class in PSL, we then select the characters of

SL which are constant over this set of classes. These are the

characters of PSL.

If one is working with a Specific group character table

then this procedure for finding the character table of a known sub-

group works rather well. The restricted characters can be tested

for reducibility and the use of the character orthogonality relations
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and Frobenius' reciprocity theorems would enable one to Split

the reducible characters into irreducible components.

It works well because the job of taking inner products

(X,X) is not too arduous a numerical calculation. However, if

one is working with a 'generalized' character table Such as

GL(n,q) or U(n,qz) the entries are not numerical but are poly-

nomials in q and variable roots of unity, so that the task of

calculating inner products becomes extremely tedious. It would

be almost hopeless if many of the restricted characters were re-

ducible with many components. Theorems 2:11 and 2L1; are thus

very important because they show that the Splitting is of a very

Simple nature, and thereby make this process feasible. The pro-

cedure can be best understood by following through one of the

table derivations in detail as done in one of the first sections

of the paper.



IV. ENNOLA 's CONJECTURE

In [20] Steinberg noted that if the conjugacy classes of

GL(n,q) are partitioned into sets according to the type of Jordan

canonical form to which they were similar, and the irreducible

characters were also put into sets according to their degrees,

then there was a l-l correspondence between the conjugacy class

sets and the character sets. Also, the correSponding sets had

the same order. Ennola noticed that if this same partitioning is

done on U(n,qz) then the number of resulting sets is the same

as for GL(n,q).

In a general character table for GL(n,q) and U(n,qz)

we write down only one character for each such set of irreducible

characters and this character has only a single entry for each

set of conjugacy classes. Thus the character tables for U(n,qz)

and GL(n,q) contain the same number of 'generalized' entries.

Ennola conjectured for all n, and proved for n = 2,3, that if

q is everywhere replaced by -q in the character table for

GL(n,q) and the resulting character changed in sign if the degree

function is negative, then the character table U(n,qz) results.

He used Brauer's characterization theorem [1] to prove it for

these two cases but the complexities of GL(n,q) prevent one

from carrying forward his method. If this conjecture is true,

then Green's method for constructing characters for GL(n,q)

28
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would serve for U(n,qz) also. One would only have to use -q

in place of q in all the class functions constructed and change

the sign if the degree becomes negative. Since GL(n,C) is

closely related to Un (GL is a topological product of U and

the Space of positive definite Hermitian matrices) we might expect

some connection between their character tables, but not such a

simple one.

Ennola's conjecture appears so trivial that one would

expect an equally simple proof. However, like many other theorems

involving character relations, such a simple proof is not forth-

coming. It is quite possible that the most direct proof would be

through the use of Lie theory. One interesting observation which

indicates some difficulty is that a permutation character of GL

is 22£_transformed into a permutation character of U. Thus some

reducible characters split up differently than their images under

the q a -q transformation.

In this paper we extend Ennola's conjecture to SL and

PSL and show that it holds for all cases under consideration.

A result which is similar to the above conjecture, but

which is proveable is the following:

Un n GL

THEOREM 4.1 Ci (q) = (-1) C)\ (-q)

U

where an(q) = the polynomial in q which expresses the

order of the Ath conjugacy class of

2

U(n,q )

GL . . .
CA (q) = the polynomial In q which expresses the

order of the xth conjugacy class of

GL(n.q)
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and the xth conjugacy class of GL has the same type

canonical representative as the xth class of U(n,qz).

This says that q a -q will transform the polynomials expressing

the conjugacy class orders of GL into those for U(n,qz). Com-

paring Lemma 2.4 in [14] and Definition 2 in [6] gives the above

theorem. It appears that Ennola used this to obtain his tables

for U(2,q2) and U(3,q2) but he never explicitly mentions it.

We shall use this theorem in Chapter 15.



V. THE CHARACTER TABLE FOR SL(2,q) d = 1

In this section we develop the character for SL(2,q)

d = 1, q = 2K. This is the most trivial case because for d = l

GL(2,q) = SL(2,q) X Z(GL) and every character of GL is irre-

ducible upon restriction to SL. This one table serves for all

the linear and unitary Special and projective special groups

2

since SL(2,q):2 PSL(2,q) a PSU(2,q )2: SU(2,q2) for d = l.

5.1 Character Tables for GL(2,q) and U(2,q3)

All the character tables developed in the next three

chapters are obtained from the table for SL(2,q) which is found

in Steinberg [19]. Although the table for U(2,q), as found in

[6], is not used, we furnish it for completeness. It is con-

venient to combine these two character tables as in Table 1 on

the following page. This also demonstrates Ennola's conjecture

regarding these two character tables.

31
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Table 1. Character Tables for GL(2,q) and U(zeqz)

 

 

      
 

 

 

 

     

conjugacy canonical parameters number of centralizer

class representative classes order

(K) p"
a

C. ( p") k-1,---. (q-S) q- «r q(q-5) (q+5)
m) (9" ‘)

2. 3) 1“ P k-1,"',(q-a’) q-J q(q-b’)

(K. (P 91) k,’-l,"-, (q- 5) .1. z.
3 k < 1 2(q-6)(q-1-6) (ca-6)

(K) H

c. <‘ a“) ;;;.(---3<q23.g 3.. 1.mo 4- - - -Cmec‘flgfl 2 q + )(q 6) (q+5)(q 5)

parameters t-l, , ((1-5) t,u=l, - -- ,(q-S) t-1,-'- ,qt-l (Adi-‘5“)

t<u tiO (mod q+J)

number of 1

characters 9" 9' ‘9‘ I 5(9'5) (9'1’5) Egg-1+5) (9‘5)

char. (t) (f) Ha“) (I)

clas 3 ’X' X ‘ X9‘ vx ‘t-D

{to Eth O J E ((+U)K -55?“

ch") Etflcht) 5£f(K*’) 5(8tk+u3+ EMK+ t1) 0

C:K\ Eff“ ~5€5tK O _5’(4sz+’,7:th)  
 

for GL(2,CI)=

+15

p a primitive element of GF(q)

o - primitive element of GF(qZ)

q+l

'= e

q-l

e ‘13“

q2-1 =

1.71

for U(2,q2)3

5=-1

-l

p = OH

+1sq
=1,'nq-

o = primitive element of GF(qz)

21 q -1
‘n ==1, e
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5.2 Conjugacy Class Structure

For d = l (q = 2K), SL(2,q)sa PSL(2,q), so we know that

no conjugacy classes of GL(2,q) will Split in SL(2,q). The

class structure is determined by observing the canonical repre-

sentatives of GL in Table 1. and selecting only those whose

determinant is 1. These classes are then counted. Since

SL‘Q GL every conjugacy class of SL is of the same order as

th
it was in GL. If \le 8 order of the centralizer for A

conjugacy class and ‘Ck‘ = order of xth conjugacy class, then

 

SL . SL _LcLl/(q-1) =_1__ CL =_;_ GL
‘Nx I +074 lcfl q_1 C). q_1 ‘Nx |. Thus we

divide the order of all the centralizers in GL by (q-l) to

get the centralizer orders for SL.

k¢>am QM
Only the classes C; require any calculation.

 

Cék’L) O 'Ik,L = l,...,q-l is equivalent to

0 pt<k#L

(Ht) ' (Cl-1)

(c‘kd) .. Cask)

(10

C3
(pk 0 ) k=1,...,%(q-2)

ok(q+1) = k E O(mod q-l) we get:

cfik) ok 0 k (q-I).2<q-1>,....<q+1)(q-I) or

[ kq) k a! 0(mod q+1)

C(k) . C(kq)

{k - (q'1)32(Q'1):° 0°:Q(Q'1)

C&)=&M)
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Now let k - k'(q-l) where k' = l,...,q

k'(Cl'l)
0SO 0 '

also ok'(q-1)(q+1) . 1

, ok'q<q-1>ok'<q-1) g 1

-. ok'q(q-1) _ O-k'(q-1)

so akq = Ok'q(q-1) a o-k'(q-1)

(k) ak(q-l) ) 'k = l,...,q

thus an equivalent form for C4 18: ( O'k(Q'1) C(k) = C(-k)

or k = l,...,%q. The resulting list of conjugacy classes appears

in Table 2.

5.3 Calculation of Characters

Each of the characters of GL are now restricted down to

SL.

(1) x‘t)|SL = I, = (e2(q'1)t.e2(q'1)t.et(k'k),ek(q'1’t> = (1.1.1.1)‘V t

(11) x“’ . (q,2<q-1>t O et(k-k),_etk(Q-1)
q ‘SL 8 Yq

)= (qs0313'1)V
t 0

There is no need to test for irreducibility Since SL is a

quotient group of GL for d - 1 and so by Frobenius' Theorem

3.1 we know that all the characters of GL restricted to SL

are irreducible.

(111) xéil‘SL a Y(t)

q+I
)e(t+u)(q-

l),e(t+u)(
q-l),etk-u

k +_€-tk+uk

= ((q+1 .0)

'3 (q+1:133k(t-U) + 6-k(t-u),0)

(t) kt -kt
let t = (t-u) then Yq+1 - (q+19133 + 6 ,0)

so t = 1,...,%(q-2)

-1 1 -1 1 k -1
(iv) Xéfl‘SL . wit: - ((q_1)nt<q )(q+ > -nt(q )(q+ ’.0.-(n (q )c

-k
e+ nktq<q'1’)> = ((q-1>,-1.0.-<ekt +» t>> where
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q+1
e - 1. Thus t runs over the values 1,.. .,’5q.

The resulting character table appears below.

I

Table 2. Character Table for SL(2,q) a: PSL(2,q) a PSU(2,q2) e:

SU(2,q2), d = l, q even.

 

 

 

     
 

 

 

 

 

     
 

conjugacy canonical parameters number of centralizer

class representative classes order

| c

C. (e O) 1 q(q+1)(q-l)

I e

C! (a I) 1 q

(m a

c, (g 3...) k-1.---.s(q-2) é(q-2) (1-1

C20 (can-u $4?» k-1,---,§q h q+1

parameters t.1,...’;(q_2)F t-l,"',§q

(t)-(-t)

number of

characters 1 1 %(q-2) 43

c ar W ‘ (17 (0

class W. ‘ W9.— W14

C: 1 q (1+1 q-l

Ca 1 0 l t -1

- K
C;” 1 1 E!!! j c 0

no
(It ~13

4 1 '1 ° -6 - 9

q-l

p - primitive element of GF (q) s a 1

a - primitive element of GP (<12) eq+l - 1

 



v1. CHARACTER TABLE FOR SL(2,q) d = 2

In this section the character table for SL(2,q).a SU(2,q2)

d = 2 is develOped. In some reSpects this is a difficult table

to handle since there is a Sign fluctuation throughout the table

which depends on whether q = : 1(mod 4).

6.1 Conjugacy Class Structure
 

(1) Consider classes of the form (pk pk) . Since 2\(Q-1)

then k = (q-l) and k = %(q-1) will be the only forms

with determinant 1. In SL the 1-1 correspondence be-

tween sets of classes of the same canonical form and sets

of characters with the same degree does not exist and so

we will separate CEq-l) and 0:7(q-1)) into classes

labeled Simply C', C" .

1 k

(ii) Consider the classes of the form (9 k) . Again the

1 p

only ones in SL are k = q-l, £(q-l). We know from

Schur [18] that this type of class will Split into

k k k

(p k) s (p k) . We Shall label the form (9 k)

1 p p 9 k 1 9

k = $(Q-1):(Q-1) as Cé(k) and the form (9 k)

9 P

k = %(q-1).(q-l) as 03(k).

k

(iii) In order for (p 91,) to have determinant l the following

conditions must hold on the indices:

36



L,k = l,...,q-l

37

 

 

k+L = q-l

k.t # q-l. %(q-1)

C(k) = Ca.)

(k) k
which is equivalent to C3 (p p-k) k = l .,%(q-3).

k

(iv) The indices on (é qu are = (q-l),2(q-1),...,q(q-1)

k 9‘ %(q+1)(q-1)

C(k) = C(kq) .

k(q-1)

This is equivalent to [ O-k(q-l) k = l,...,%(q-l).

The above calculations give us the classes as listed in

Table 3.

Table 3. Conjugacy Class Structure for SL(2,q) d = 2

conjugacy canonical parameters number of centralizer

class represrntative classes order

’(K1 1

C. It's-1 1 0(q --D

“(to P"

. (p :) kném-l) 1 (1011-!)

mo 9" 0

z I 9" k'%(q—1),(q-1) 2 2C4

"m p" 0

C2 9 k=%(q-1),(q-1) 2 2e

k,2.1,.u’q-1

It!) " . ..‘ P M q 1 %(q-3) q-1
3 k,H q-1,%(q-1)

éiKl: cl.)

(K) 6x6 k-(q-l) 2(q-1)..

C q(q-1) %(q-1) q+1
4 1

k¢ g(q+1)(q-1)

Cum, claw     
 

9,0 = primitive elements of GF(q), GF(qZ) respectively
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6.2 Character Table

The characters of GL are again restricted down to SL

as in Section 5.3, except that since some of the characters may

now be reducible, the inner product (Y,Y) must be calculated

on all the characters.

2t(q-l) 2t(1%l) 2kt k=q-1 2kt k=q-1

e ’6 ’6 teem-1):e k=s<q-1>’

t(k-k) tk(q-l)
6 ,6

(i) xiWSL = <

)

(1.1.1.1.1.1.1.1) = ‘1’1

(11) xi” = (q.q.0.0.0.o,1.-1> x xit) in CL.

('1) _ ._
Thus Xq ‘SL " (q,q,0,0,0,0,1,'1) - Yq

2 2

eqmq) 2—-‘1—q(q4) + 2 <q_1)+ 2 W 1

so Yq is irreducible.

_ 3:1

(in) xéilUMSL = xiii”) = ((Q+1)e(t+u)(q 1).(q+1)e(t+u)( 2 ).

e(”“)“ 1<=s<q-1>.<q-1)new")k teem-1), (q-l);

etk-uk +'€uk-tk,0)

((q+1) . (q+1) out“. (-1>““.1,<-1>““.1.

ek(t-u) + €-k(t-u),0)

replace (t-u) by t; since t-u = t+u (mod 2) we can also

replace (t+u) by t and get:

’31 = (q+1.(q+1)(-1>‘,<-1>t.1.(-1)t,1 .6“ + e'tkfi)

t = l,...,q-2

t¥%(Q-1) t=1,...,3;—3

YCC) = Y('t)
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Now we check for reducibility:

 

 

2 (q-3)/2
2(q+l) 4 2kt -2kt

(Y ,Y ) = --§--+ -' + z (e +'e + 2)/(q-1)
+1 +1 2

q q q<q -n q k=1

- 9-_3
= 4 + 1 (q 3é/2( 2tk +_ -2tk) + 2‘ 2 )

= 4 + 9'3 + 1 (CE-U(fl) _ __2_

q-l q-l q-l k=1 2 q-l

1 (q'l) 2tk
- 1 +' _1) Z 3

(q k=1

= = ' = 1:1(Yq+l’Yq+l) l + l 2 If t c( 2 )

9-1

= l + 0 = l for t # C( 2 )

3:1
< 2 >

Thus we see that Yq+l is reducible and Splits into two con-

9:}.
. . ( 2 ) '

jugate, 1rreduc1ble characters for SL. Yq+1 - Y +1 +-Y +1.

2 2

Since (t+u) can equal 3%; for 3%1' different values of t

and u we see that Xq+1 has 3?— associates in CL relative

to SL which we already know by Theorem 2.12.

This means that Vii: is irreducible for the remaining %(q-l)(q-3)

values of t # 5(Q-1).

(iv) In much the same manner we get:

k -k

Xéfi‘SL = viii = (q-1’(q-1)(‘1)ta'12'('1)ta‘1:'(‘1)ts09'9
t'e t

where t = l,...,qZ-Z QQ+1 = l

t ¥ mult. (q+1)

(t) = (tQ)

We check for reducibility:
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2 (q-1)/2
2 -1 4 1 2kt -2kt

(Yq_1.vq_1) - 417L+ 59+ 2 (e + e + 2>/(q+1>
cm -1) k=1

9:1

_ 4 2(2) _1__(‘1+1)/2(92kt+ -2kt ___2_

q+1 (q+1) q+1 R; 9 ) q+1

+1
_ 1 ‘1 2kt

— 1 + q+1 g 9

.. g = ail(vq_1,wq_l) 1 + 1 2 if t c( 2 )

= 1 + o = 1 if t # (SEE) .

Thus Y(t) = Y +-Y' for all t = multiple of 9:13 which

q-1 9:.1 £1.21 2

-1 2 2 2 (t)
occurs 35- times. The remaining %(q-l) characters xq_1

restrict down in sets of q-l to the %(q-1) irreducible char-

acters, Yéfi, of SL. The restrict table for CL to SL is

given below.

Table 4. The Induce-restrict Table for GL(2,q) - SL(2,q) d = 2

 

GL(2gql

%(q—1)(q-2) eds-1)
 

I

end q—l elf-use) ans-1) yea-1) 1(q-1)

    
114°” '11-.

    

 

1 l
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51;}. 9:1
(2) <2) _

At this p01nt we know that xq+1 and xq-l split

. I d I

into 2 characters of SL, Y +1, Y +1 an Y _1, Y _1

2 2 2 2

reSpectively. By Theorem 2.12 Yi(g) = Y;(g) = Xéfil for i = q+1

and q-l on all conjugacy classes of SL which are complete

-1 +4

(L) (L5)

classes of GL. Thus and Xq_1 Split in half on all
2

xq+1

C£(k), C3(k). We now fill in the knownclasses of SL except

portions of the character table and try to determine the missing

values. The Sign alternation on some of the characters depends

on whether 1%; is odd or even. It is convenient to let

iii

6 = q(mod 4) and replace (-1) 2 by ;:6. Initially we will

set up a separate character table for 6 =;: l and later combine

them. At this point the character table is as follows:
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Table 5. preliminary Character Table for SL(2,q) d = 2

6: 1

lasscmr “I we webs) Wei?) WM“) Wail?" iwi‘i" 1- Vi,‘1‘”

/ 1 q q+1 q-l %(q+1) %(q+1) 2(q-1) 2(9-1)

C; 1 q (q+1)(-1)t (q-1)(-11r 93rd) %(q+1) -%(q-1) Jam-1)

I'Hr') 1 o l -1 k,+kz k\-k2 2,412 x.-9e

C243”) 1 o (-l)t -(-l)t t3-k4 k3+k4 2,414 51,4,

(3’ ‘1'” 1 o 1 -l k,-k,_ k,+kz 51,-12 1, +92

(fl—(12") 1 0 (-1)t -(-1)t k3+k4 kB-kq $1344 25-24

2““ l 1 EM+ £5“ 0 (--1)K (--l)K o o

1") 1 -1 o - K: M o o —(-1)K -(-1)'<
C4

6 = *1

‘ cl:::r WI We, WE)! W1: Winn) Li’s-(w; Win-n Win-l)

C, 2km) 3.;(q+1) ‘5;(q-l) =}(q-l)

C; -1r(q+1) -i(q+1) Jim-1) 2(0-1)

c" ‘7'") k. +k1 k."kz Rule 1.412..

I? 13') k3'k 4 k3+k4 Q3411 1344
C7- (same as above)

C'z' ‘7’") k, -k2 k. +k2 SI. 4?, 1, +1,

Z (1;) k3+k4 k3-k4 1,44 23-14

(3" (-1)" (-1)K o 0

C5,” 0 0 +1)" +1)“
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The missing entries in Table 5 can be filled in using the

orthogonality prOperties of the character table; however, the

details are rather laborious. A more elegant approach is the use

of Gaussian sums.

The elements in classes C2'(k), 03(k) are of order q.

. . |

We know that the miSSIng entries for Y +1, Y +1 are all composed

2 2
t

of sums of $(q+l) q h roots of unity and the entries for

Ygzlf Yézl are composed of sums of 5(Q-1) qth roots of unity.

2 2

th ,

We let 6 be a q root of unity .

2 61 (the exponents are quadratic residues

i=k2(mod q) of q)

i

e (the exponents are non-residues of q).

Also let x

and let y 2

i¢k2(mod q)

Thus x and y are sums of %(q-l) roots of unity. In partic-

ular they are Gaussian sums and the following theorem applies.

THEOREM 6.1 With x and y defined as above, then

Xy = %(1 - 6Q)

x = %(-l +q/Eq) y = %(-1 -,/Eq) where 6 = q(mod 4) = i l .

For the entries of the characters Y , Y' we use x,y as

51:1 SL1

2 2

. I = _ _ _ - l =

defined above if Y _1 +'Y _1 l and x, y if Y _1 +-Y _1 +1.

2 2 2 2

If we let x' = x+l and y' = y+1 then x',y' are sums

of %(q+l) roots of unity and we have the following corollary.

Corollary 6.2 With x' and y' defined as above, then
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x' +-y' = l

X'y' = 3&(1 - 5Q)

X' = 5(1 +/VI) y' = 52(1 mffi) -

For the entries of the characters Y +1, Y'+1 we use x',y' if

2 2

' = .. .. ' ' = ..Y +1 +Y +1 1 and x, y if Y +1 +Y +1 1.

2 2 2 2

Using this method the missing table entries can be easily

filled in for the cases 6 = l and 5 = -l and then these two

cases can be merged to complete the block as it appears in Table 6.

Now that we have determined the table for SL, there is

no need to use notation such as C5, C3 etc. to link SL with

GL. The resulting character table is more simply written as

follows.
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Table 6. The character Table for SL(2,q) a: SU(2,q2) d = 2

 

 

     
 

 

 

 

 

        

conjugacy canonical parameters number of centralizer

class representative classes order

C1 (23 f) 1 QUIZ -1)

C, 11) (1) 1 q(q"-1)

(K) (-].)K K

C3 ( 1 (4)) k-1.2 2 2q

(K) (~1)k K

C4 < P H) ) “'1’?- 2 2‘1

K) x

C; ( P p") k'1.'“.%(q-3) MCI-3) q-l

C(GK) (‘Kflrip-mr”) kill," .,%(q-1) %(q_1) Q+1

parameters t-l, - ' ' ,Mq-B) t-l, ' ' ',%(q-1)

number of

characters 1 1 2 2 flq-B) §(q-l)

ha . {I

classc r ‘1’: W1, Yin“) Wilt-S) W‘éfi W21).

C r 1 q %(q+ 6 ) %(q- S ) q+1 q-l

C2. 1 q suns) -%(q-6) (-1)t (q+1) (-1)t(q-1)
K

C‘,“ 1 o harm) give-$2136) Hf" <-1>““'

Cf,“ 1 o 16:56) 9:21)“(4153) (-1)‘K (-1)“""

1 -

Ci,“ 1 1 (nine) (25‘ (1-5) L)?“- T" o
‘2' 2. | tl<

) + K+ 't ..

C2“ 1 -1 (:35 21-8 g1) (1+6) 0 rsz— we
2. ‘Z

6 = q(mod 4) (Ag-1 - l £J§+1 = 1 p,a = primitive elements of

CF (q) , CF (qz) respectively

 



VII. CHARACTER TABIE FOR PSL(2,q), d = 2

In this section the character table for PSL(2,q)sa

PSU(2,q) d = 2 is constructed from the table of SL(2,q) given

in Tab 1e 6.

7.1 Conjugacy Class Structure

As in SL, the fact that q =3: lOmod 4) creates a prob-

lem not only in finding the characters themselves but also in

determining the conjugacy classes. The scalar matrices of SL

-1 Ol 0
are (0 1) and ( 0 _1) so the classes of GL will combine in

pairs to give the classes of PSL except for the self-equivalent

classes (these are classes of SL which map into themselves under

matrix multiplication by one of the above two scalar matrices).

(k) (k)
We note that the number of classes of type C5 (C6 ) in Table

6 is 'even' when 6 = -l (6 = +1) and 'odd' when 6 = +1 (6 = -l),

where 6 - q(mod 4). Any time the number of classes of a certain

type is 'odd' this means that one such class is self-equivalent.

k

Thus there is a self-equivalent class of type p O_ > when

0 p

Ok(Q'1) 0

6 = +1 and one of type k 1 when 6 = -1. We

0 a- (q- )

also note that the order of a self-equivalent class is a half

of its order in SL Since the class collapses. We now calculate

the number of classes of type Cék):

46



47

if 6 = -1 no. classes 1(3539 = 13:12.121
4 = 9-4-5

4

if 5 = +1 no. classes = a9;- - 1) = Elia—1.1

Similarly for Cgk);

' = = 11 = (51-22 + 1
if 6 +1 no. classes %( 2 ) 4 = -2+6

4

if 6 = -1 no. classes = 5(iél - 1) = S3;£%—l—l

The value of the index k for which the class cék) or cék)

is self equivalent is:

C(k) (when 6 = +1): k = %(3-—3 + 1) = g..._1

5 2 4 k = 1:2

Cék) (when 6 = -l): k = $(3%1-+ 1) = 321

We can now determine the form of the conjugacy class of PSL

which consists of the self-equivalent class of SL.

Let C' denote this class.
6 9-1

P 4 -l w 4

+1 then - 92- ~ ( 05-1) Q) 6 GF(q} Q) = 1if 6 p

is self-equivalent

(q-1)(q+11
 

 

4

if 6 = -1 the“ O _ ((1'1)(g+h ~ ¢ '1

o 4 K ¢

2 4

o E GF(q ) o = 1 .

Thus Cé is of the form (CD -1> $4 = 1 and Q) E (GF(q; if 5 = 1

¢ GF(q ) if b = -1

The conjugacy class structure of PSL is given on the following

page. The classes of SL which combine in PSL are indicated.
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Table 7. Conjugacy Class Structure of PSL(2,q) 2

conjugacy conjugacy number of centralizer

class in class in classes order

SL PSL

I o

C' (O 1) C] (I '0)

(Lira) ' (3 l 1 3Q(Q1-1)
C2 0".

(K) f-l)K (3 (u’ (I (D)

C3 I (4)" Z ' ' 1 q

K

4 p (a) 3 p l 1 ‘1

(K) p“ o /(K) 9" 0
-K C ( .K

5 O P 4 0 P

k-l, 3%:(q-3) k-1,'~,i-(q-h-5) 31(q-b-5) ism-1)

(K) («(14) 0 Cl“) («at») 0

C6 (0 ~?(‘Z‘l) 5 (O ':‘K(?"))

k'ls s%(9']) k'197'3%(Q'?+d;) %(Q'2+d;) 2(q+1)

/ ¢ 0

(1; ( C) 954)

9’)" '1 1 (q- 6’)
‘CEGF(q) inf-+1

cptoqu) if Jul

p = primitive element of GF(q)

Q

ll

primitive element of GF(qZ)
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7.2 Calculation of Characters
 

Every character of SL which is constant on the classes

C1 and C2 is a character of PSL and even more, every char-

acter of PSL can be obtained in this way. Thus the characters

X1: Xq, X +6’ ii: for t even, X(E ) for t even, are all

2

characters of PSL.

The only difficulty is in finding the values for these

characters on the class C6 since the canonical form of C6 and

hence the character values, depend on 6.

We will concern ourselves with the character values

Xi(8) where g 6 C6 so K = 3:9 as shown in 7.1.
4

(i) (g) - +1 (if 5 = +1)

xq } x (g) =

-1 (if a = -1) q

9:1 (1:1

.. (t) _ kt -kt _ (t) _1_+g (4” ‘(efl'
(11))tq+1(g)1+(,)1 (o — +1) xq+1(gg) — ( 2 )(ISI +w1 )

= 0 (6 = -1> = (Hm-1)t

1__ +1

(t) _ (t) (z, )( "('1"—_—)l

(1.11) Xq_1(8) =0 (b = +1.) xq_1(s) = (T)(H +li) )

= «(32“ +6.5?) (5 = -1) = (o-1)(-1)

21-1 11

k 1 1 1 4
(iv) xme) = (-1) 45—5— <a = +1>= <-1> “(J-L): (-1) E

2 1 El+_1_1 1 1 L2? = H)

- <-1>k+1 —,9 (a = -1>= H) (j) = <-1>

where [%] = greatest integer S % .

We can now write down the character table for PSL(2,q).
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2
Table 8. Character Table for PSL(2,q)sz PSU(2,q ), d = 2

 

 

       
 

 

 
 

 

conjugacy canonical parameters number of centralizer
class representative classes order

1
2C. ( 1) 1 ‘%q(q -1)

1

(:2 (l l) l q

1

(:3 (F’ 1) l q

C4“, (pk or k=1.-~,i~(q-l.-a) %(q-h-6) ice-1)
dug-n-

C500 ( 6””) 1<=11"'.%(q-2+ c5) Tim-2+5) %(q+1)

Cc (at as" 1 (q-S)

parameters t-l’ - ° - I talf . . .

' ' 3%(9‘14‘3) " 21(Q'2+S)

number of , l J‘( 5)

characters 1 1 l L 4(q-1:’-5 ) 4 ‘27::

Mam!“ ‘1’! W1 w‘tl‘i-HT) Y-sz’) W221 wet-1

C. 1 q inn-6) Janus) q+1 q-l

C: 1 0 1w J53) 1(6 ~53) 1 -1

C: 1 o 115 ~52?» 16 +13?) 1 -1

K -Kt

C51." 1 1 1(-1)K(1+6) 1H; (1+5) of.“ 0

+ +1 ~Kf

C?“ 1 1 1(1) ‘(1-5) 1013‘ (1-6) 0 «If-Ur

6r 2!

C; 1 5 (-1)[ 4] (-l)[ 4] (4; (1+6) (-1)t (5 -1)        
 

2 .
p,a = primitive elements of GF(q), GF(q ) reSpectively

wim'l) = 1 93““) = 1 o4 1 ¢ 6 GF(q) if 5 +1 5 = q(mod 4)

o e GF(qZ) if 5 II I

H



VIII. CHARACTER TABIE FOR SU(3,q2) d = l

2

8.1 Character Table for GL(3,q), U(3,q )

In the next six sections all the character tables will

2

be derived from GL(3,q) and U(3,q ) as given in Steinberg

[l9] and Ennola [6]. For convenience these are listed on the

following pages.

8.2 Conjugacy Class Structure

The determination of the range of the class parameters be-

comes more complicated when we move up to 3 x 3 matrices so it

is best to indicate how these calculations are made.

The fact that d = 1 implies 3 * (q+1) and the condition

that the determinant must be unity for all matrices in SD impose

strict limitations on the values which the class parameters can

take on.

The only classes of type in SD are
,

(k) (k)
C C2

(k)

1’ Ca

those for k = q + l.

The classes have determinant 1 only if
(k.L) (k.L)

Ca ’ C5

2k +-L a 0(mod q+1) i.e. L = -2k(mod q+1). Once k is selected,

L is uniquely determined. We can discard the L parameter and

the value k = q+1 (since k a -2k = L for this value). Thus for

Cik), Cék) in SU the valid range is k = l,...,q.
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(hum)

6

and L. With k,L selected there is a unique value of m such

+l

For classes C there are (q2 ) ways to select k

that k +'L +'m 0(mod q+1). However there are q choices of k

and L which will force m to equal k or L so we must discard

these values. Thus the number of classes equals

q+1

_(._2__)_:_:=l(-1)

3 6qq '

In order for classes of type Cék’L) to have determinant

unity, pko-L(q-1) = pkg-L = 1 which implies L = k(mod q+1). Thus

L is determined once k is chosen. Now L i 0(mod q-l) or else

db = ot(q?1) = pt and we are back into the classes of a type already

considered.

Thus Cék) in SU is indexed by k = l,...,q2-1

k i 0(mod q-l)

(k) {-qk)
C = C

The number of such classes is %[(q2-1) - (q+l)] = %(q-2)(q+l).

In order for classes of type Cék) to have determinant l

we have the following:

3 4 2 6
k -l + -1Tm )(q q+1)___1=,rq

2 2 3

Tk(q + q+1) (q - q+1) = Tq +1
1 which implies k E 0(mod q+1).

Thus k = (q+l),2(q+l),...,(q3+l) and so the number of classes

k 1‘ 0(mod q2 - q+1)

2 4

C00 = C(kq ) = C(kq )

l 2 1
equals §[(q - q+1) - 1] = 3 q(q-l).

The complete class structure has thus been determined and appears

in Table 11.
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8.3 Calculation of Characters

The characters of U(3,q2) are now restricted down to

SU(3,q2) by letting k = (q+1) on classes Cik), Cék), Cék);

L = -2k for Czk’c), Cék’t); and L = k for Cék’L). We keep in

. +1 .
mind that eq = 1. In several cases we can eliminate one of the

character variables t,u,v by a suitable Substitution. In X(C’U)‘SU

(t,u) u . (t1U)
- dand x ‘S we replace (t u) by t an in XS ‘S we

substitute t' - (q-l)t for u and obtain a simplification of the

characters.

(t.U)
The calculation of XSp ISU is done below as an example.

XS(f),u) ‘SU = (Sp e(t-lu) (q+1) ’€(t+u) (q+1) , e:(t-l-u) (q+1) ’Seuk-Zkt

euk-Ztk tk uk -quk

90:6 (n + n )30)

= (Sp’1,1’86(u-2t)k’€(u-2t)k,o,nk[(q-l)t+u] + T‘k[(q-1)t--qu],0)

(replace u by t' - (q-l)t)

t'k t'k kt' -kqt'

= (SP,l,l,Se
,6 ’0’“ + n ,0) = Y(t )

SP

None of the characters can be reducible so inner products are not

2

calculated. The character table for SU(3,q 3 d = 1 appears in

Table 11.
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p=o ,T=T

(q-l)

3

(q -1)

1

Table 11. Character Table for SU(3,q2)_ PSU(3,q2 ),d - 1

'conjugacy canonical parameters number of centralizer

class representative classes order

l
1

C. ( ' A 1 q3rs p

| 3
CZ I I I 1 q 3

l
‘ 1

C3 ( i I) 1 q

(K) p‘ K 2

C4 9 (52k k-l, ,q q qrs

(K) p“ K

[5 I P ém k-1.°°'.q q q s

(mflgn) PK 9 k,2,m-l,°'°,(q+l) 2

C P 1.. Rd‘ m z'q(q-1) s
6 P k+9+m=0 (mod q+1)

m (0" K ) k-16---.(q7'-1) M )( )
~K kf mod q+1 -2 +1 rs

C7 6 6 ‘5 CM) C(-1K) (modif- 0 2. q q

7* . k=(q+1), 2(q+1),"

C“) 7"“ ,3(q+1) qu(q-1) p

8 mg“ kfimult. q“-q++1

wa). C(K1_)- C(Kz)

. . . 2 6 ,

o,T1 = primitive elements of GF(q ), GF(q ) reSpectively
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IX. CHARACTER TABLE FOR SU(3,q2), d = 3

9.1 Conjugacy#Class Structure

(i) For classes Cik),...,C§k) the only values of k for which

the determinant is unity are %(q+l), %(q+l), and (q+1).

k

Dickson [5] shows that classes of type 2 pk in

k

1 P

GL(3,q) will split into three conjugacy classes in SL(3,q). Since

the classes of U(3,q2) are indexed by certain classes of GL(3,q2)

gk) of U(3,q2) willthis means that the corresponding classes, C ,

Split in SU(3,q2) into three classes with 1,3,52 as the off

diagonal entries, where B is any non-cube root of unity in G(q2).

(ii) For the classes Cék’b),C§k’L) we require that 2k +-L a 0

(mod q+1), that is, L = ~2k(mod q+1). Also k 1‘ multiple of

%(q+l), since this value would result in a class of type

C1,C2 or C3.

1) waysCék’L’m) we select k,L in(iii) For the classes (q:

and m is uniquely determined since k +-L +-m E 0(mod q+1).

However, there are (q+1) - 3 values of k and L for

which the determined m value is the same as k or L.

We mmst discard these values. We thus get the class count:

fi-[cq’z’b - (cl-2)] = %<q+1>(q-2) + 1 .

(iv) Since (k-L) E 0(mod q+1) for classes of type Cék’L) we

can let L = k and let k = l,...,(qz-l). However k

60
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cannot be equal to a multiple of (q-l) or else we would

have a canonical form of one of the classes already counted.

Thus we discard the (q+1) possible multiples of (q-l) in

l,...,(qz-l) and get the class count:

fimz-n - (q+1)] = %(q-2>(q+1>.

(k)
(v) As shown in Section VIII, k, for the classes of type C8 ,

must be a multiple of (q+1) and not a multiple of

(q2 - q+1) of which there are 3 in l,...,q3+l. The total

class count is %{(q2 - q+1) - 3] = %(q-2)(q+l).

A complete listing of these results can be found in Table 14.

9.2 Calculation of Characters
 

The process of restricting the characters of U(3,q2) down

to SU(3,q2) is little different from that of the case d = 1. We

let k = l(q+1), %(q+l),(q+1) for classes cik), (320‘), (:00.
3

3 a

L = -2k for Cék’L), Cék’b); L = k for C§k’L) and keep in mind

that eq+1 = 1. Making these substitutions we can obtain the

restricted characters. A further substitution of t' = (t-u) and

I a - (tau) (tau)
t (t+2u) made in both Xp ‘SU and XQp ‘SU

w(t,u) = w<t+2u) if w3 = 1. A

will simplify

these characters. We note that

(
similar simplification of XSS’U)‘SU is made by letting

t. = u + (q'1)ts

All the characters thus obtained are then tested for reduc-

ibility and it is found that only the sets of characters of type

er and X 2 contain any reducible characters. The inner products

5 r

for these characters are calculated below.



62

  or .1 )-§-—P—+3(2q'iz+ 9 +(” +§—)21+1-2-22
2rp rp q3r82p q38 3q

2
= (18 +'2 £1 +-22)/s

where 21 ' 2 \ Z e(t+u-2v)k‘2’ 22 g 2 1 Z etkfiuLivm‘Z

kBl (t,u,v) k,L,m=1 [t,u,v]

160(3/3) k<L<m

k+L+m=0

In this expression the numerator is an integral multiple of sz=(q+l) .

As suggested by Steinberg, this integer is the coefficient of the q2

terms of the numerator. Only 22 will have such a term.

1’ etk-iuL-l'vm -tk-uL-vm

22-6 2 [ 2 ( z: e )3

[t ,U,V] k,L,m=l [11,11,th

kw

k+L+m50(s)

a 1' 8 [ Z (1+E(t-v)k+(u-t)L+(v-u)m +_e(t-u)k.+(u-v)L+~(v-t)m

6 [t,u,v] k,L,mFl

+_e(u-V)(L-:)+t(t-v)(k-m)+e(t-u)(k-L)] + linear function of q

S

=% I: [82+ :33 (t+u-2v)k(sz e(2u-t-v)L)+ 22601-11-11)”;

[t, u,v] k=18 L-l k=l L=l

S S

+% 2 [a g(u41)“,a z: (c -u)k+8 z(t-v)k

[flu-W] L'l k=1 k-l

c(t+u-2v)L)

1+ linear function of q

The second term vanishes since t i u #‘V, so:

2 [ :3 (t+u-2v)kz e(Zu-t-v)L

(t, u,v)kFl L=1e

e(t+u-2v)k2 3(2u-t-v)L=82, which =-v-u=u-t=s/3

a
n
s
:2

22 = 8 +' ] + linear function of q

3 if 2

Thus (er,er) -

'. er splits into 3 components for u=t+s/3, v=t+28/3, t=l,...,s/3.

The maximum value of x<§>lSU a ‘1’“?

s r s r

k # multiple of 3. For such a value of t we get:

4 2 2

B 35 r 35 9 9(2-32 _

s r s r q rs p q 8 3q

1 otherwise

will occur when t = g2

Thus Y(§) Splits into three irreducible components when t =.§

r r



 

63

and a different set of three components when t - éfi .

We can now construct the restrict table.

Table 12. Induce-Restrict Table for U(3,q2) - SU(3,q2) d = 3

 

 

 

    

 

    
 

 

 

   

 

  

 

      
 

«11121

E;Q(q+l)(q-l) ‘;q(q+1)(q-l)

é(q-2) (q+1? sen) sen) %(q-2) (q+1)z (q+1)

0(a- - )(s. x.» is. 1.1-~11 1... m. 1..---7(..

1+1 1+, 1,. v.

3113‘)? s“ WSW, LPS‘I’Is Why, WSW, Wit/3 [11‘s, er Wt? Wm, Wye/3 L111;

=11(q+1)(q-2) 3 3 é(q-2) (q+1) 3

SU(3,q2)

U(3.q2)

q+1 q+1 q+1 q(q+1) q(q+1) 1(q-2) (q+1):L

”Kn/XI ax‘L-I’X‘L Xian-Wt, ‘X‘KP... ’er ’XSP... ’Xsp

1" 1“ 1“ \w w w 1+:

W. W1. W1," LE" ‘11? was” \KP

1 1 1 q q §(q+1)(q-2)

SU(3.q2)

The reducible characters er and Y 2 will Split into thirds

s r

on all classes of SU which are complete classes of U.

leaves only the values on the classes 05(k), 63(k), cg(k)

determined. The missing block is:

This

to be
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Table 13. Partial Character Table for SU(3,q2) d = 3

L ‘ '- 1.

LRP/b Wr- 9/3 git-F73 \PSIH) ”)5 V3 W5‘73 q/St‘ya W5 "/3 W8 ‘73

2K

 

 

 

 

 

  

(K) 1 L K 2 K 2 1 2K 2 2k

J—r L Lq' sraf ark! ark) ark) gru’ ark)

C. 3 p 3113 3 p ‘5 “:5 ‘3 ‘3 3 3

(K)
x x x LK 2K 1k

- - 2 -l - -qu -qu - h) —shJ -qu

C2 (2‘; 1) (2‘1 1) £1: ”5“” ’5 =3 % 3' =3

C’M a b c a’ b ’ c ’ ” b” c”

3

. / / / 0

CW" c a b c/ a/ b c / a / b

3

//

C?“ b c a b/ cl a’ b c” a”

(K) r -;__ V..- ;nw M. m_mmnnn. _ “-mu,_~_-.. __s

4

(K)

5 -1 -1 -1 0

CW") 1 or 1 or 1 or

6 -2 -2 -2

(:lK)

7

o ___.__
C8 1 1 1 1 1 1    
 

The easiest way to fill in this block is to look at the table for

III

PSL(4,q), where only the characters Y' 3, ng/3, er/B appear.

rp/

It can be shown that the values for these characters on C5, 3,

G; must all be rational values. Thus this 3 X 3 block of values

can be quickly found using the orthogonality relations. The values

of er/3 on C5’ Cg, Cg suggest that the reducible characters

Y 2 Split up in a similar manner. The remaining 3 x 6 block

3 r

can then be determined using orthogonality relations.

The only remaining detail which needs to be mentioned is

| u III

rp/3’ er/B

the values which er/B’ V have on the various classes

of type Cék’L).

The reducible character Y:;,u,v), t = l,...,%(q+1), u=t+%(q+l),

- - k,

v=t+§1q+l), equals - 2 e<t v)k+(u V)L on Cé L)

[t,u,v] k # L

k,(, = l,...,(q+l)
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Now if k. E L (mod 3) then €(t-v)k+(u-v); = l V’t,u,v

permutations so Yrp(C6)= otherwise e(t-v)k+(u-V)L = w‘ for

3 of the 6 permutations of t,u,v and the other 3 permutations give

w2 .3 er(C6) = -3(w' + wz) = -3(-1) = +3. From this we finally

get:

‘10:) -2 if RE L (mod 3)

rp/3(C6) =
1 otherwise

The complete character table can now be written down. It appears

below.

Table 14. Character Table for SU(3,q2) d = 3

conjugacy canonical parameters number of centralizer

class representative classes order

(R) U“ K

C; W u.“ k“(3,3 3 q’ra'p

() k”

C: 1 wa“) k-l,2,3 3 gas

’00 't x
1

C, 1 w L; k-1.2.3 3 3g

1 DJ‘

C3“) (9 L9} to") k-l’2’3 3 3g;

woo L{‘ K 2

C3 9 (b-Jz UK k-1,2,3 3 3Q

K

"0 t° . k-1.---.<q+1) _ 2

C4 ( P p" )' we (mod sum) > 9 2 q”

(K) 6" k 1 ( 1)‘ . .U q+

C5 1 9 2K kiO,mod’ §(q+l) 9’2 ‘13

pK k Q m.]_ ((1,1)

Cum) 9’ (Jun, ’ é(q+1)(q-2)+1 32

5 55" k+a+m=o (mod q+1)

9“ k 1.. ‘
' 9 sq ’1

"" ( q“ ) ky‘Omod ‘13 1-(q-9)<q+1> rs

7 6' “(K’ C‘ (mod q-l)

(k) 5K ,_ k-l . . qu

Ca ( 6”” «1.4) kiOmod 3(q-q+1) 5(q‘2)(9*1) P
5 Cut): c(K1‘)=C(x14)

2

a = primitive element of GF(qz), p = 09.1, sq -q+1 = 1 9 E GF(qZ) 93 ¢ 1
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x. CHARACTER TABLE FOR PSU(3,q2) d = 3

The center of SU(3,q2) consists of the scalar matrices

(1 l 1) , C” m w) , (92 w2 w2) w3 = 1. To determine the conjugacy

classes of PSU we identify classes of SU which are equivalent

to each other under multiplication by the above three scalar

matrices since PSU = SU/Z(SU). Thus, except for a single case,

the classes of SU combine in sets of 3 to give the classes of PSU.

The exception lies in the set of classes of type Cék’b’m).

The number of such classes in SL is %(q+l)(q-2) +-1 which is

not divisible by 3 and so we know that one class is self-equivalent

+1 2 +1

(‘13, (3‘ ).q+1)

6

2 .
which has the canonical representative (w w i) . This class 18

under scalar multiplication. This class is C

broken out and relabeled as C9 in PSU.

To find the characters of PSL we take all characters X

of SU Such that x (wk wk wk) is constant for k = 1,2,3. Thus

Y1, qu, and Yq3 are characters of PSU. When t is a multiple

of 3 then Y(t), Y(t) Y(t), Y‘t) are characters of PSU. All

9 qp ’ rp r28

three characters Y and all Y(t,u,v)

Sp/3
when t + u +-v isSp . < >

a multiple of 3, are characters of PSL also. The table for PSL

is thus very easily obtained once we have the characters of SL.

2

We note that the tables for PSU(3,q ) d = 1,3 agree with

Frame's results in[J£fl on the number and order of the conjugacy
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classes and the frequency and degrees of the characters.

The number and order of the conjugacy classes for SU(3,q2)

d = 1,3 given by Dickson [5], page 571, agree with our results

for these groups.

Several character tables for specific values of q were

generated and checked against existing tables for errors.

The character entry Yfit,u,v)<cg) = - E wt+2u+3v _

2 P [tau ,V]

t+

- 2 w u can be simplified by observing that if t E u (mod 3)

_ [t 3“ 3"]

then the condition that t + u +~v E 0 (mod q+1) implies

t E u E v (mod 3). In this case t +12u E 0 (mod 3) so

YEE’U’V)(09) = -6. Otherwise, t + 2u i 0 Cmod 3) and

(t ,u,v) = _ _ 2' ___ (t ,u,v) = _
er (C9) 3w 3w +3. Thus er (C9) 6 or 3.
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Table 15. a 3Character Table for PSU(3 q ) d
9

 

 

     
 

conj. canonical

class representat parameters

C 1 ive number of centrali

‘ ( 1 1) classes order zer

1

1
1 3 2

C. ( I 1) MP
, 1

C3 (1: 1) 1 {388
C" <6 1 1

z

.., 1..) q
“ (

C 911 ] 1 1
3 9‘1

q
Pk

C4 ( P“ ~1K) 1 qzp k-l,“' ‘L(

Cm 9* ’ 3 (1-2) MCI-2) I
5 (1. PK ~2K)

3 ’3ng
p k=1 _:_

s 93(Q'2) lk 3(q-2) J3Qs

kiifm-1,...,q+1

C(K,9,m) F3K k+R+jn1 O

‘ 9’ m kfk’RJ-R’ 29d qd‘)e Sm.” .m (mod‘;(q+1)) -'—(q+1>

ki I 37180118]!
‘8 ((1-2) 1.82-

R 3(q+1) 3
#%(q+l)

mi (q+1)

M px simultaneously

c ( “'K 1" I
7 q:- K1 1‘41, .9 3(q2-1)

?k?0d (Q‘l)
‘i(

00 gr
C =C<-'<?)

6 q-2)(q+1)
Jim

1

Ce ( J“! . k-I - -'-
6“!) C(1:) Eat?) (K 4 ‘1 -C 21 a(q-2)(q+1) -‘~p

Cq ( w to")
3

a
1 32'

= primitive element of GF(qz) p = cq-l

2 3

eecF(q).e +1.6q'Q+l=1
.w =1

 



T
a
b
l
e

1
5

(
c
o
n
t
'
d
.
)

 

t
'
l
s
"
‘

o
5
(
Q
’
2
)

(
t
)
=
{
-
4
1
}

t
-
1
,
°
"
,
'
5
(
q
'
-
l
)

t
i
0

m
o
d
q
-
l

m
a

g
u
t
-
o

t
e
n
a
V
'
l
s
"
'
s
Q
*
1

t
r
u
<
v

”

t
l
t
'
,
m
’
,
m
;
(
m
y
)

s
i
m
u
l
t
a
n
e
o
u
s
l
y

t
i

1
*

,
n
‘
f
+

5
/
3

V
!
“
i
s

s
i
m
u
l
t
a
n
e
o
u
s
l
y

t
+
u
+
v
a
O

(
n
o
d
q
+
1
)

fi
s
h
.
.
.

,
s

t
‘
l
,
"
'
,
i
p
‘
l

(
f
)
:
(
f
f
)
=

(
1
‘
1
4
)

.
(
I
o
d
=
3
9
)

p
e
r
-
a
t
e

t
h
e

v
a
l
u
e
s

o
n

c
l
a
s
s
e
s

(
3
;
,
C
c
h

Arm ...--... .._ 4.2% ..

 

m
-
b
e
r

o
f

1.
5
0
1
-
2
)

{
5
(
q
-
2
)

i
(
c
l
-
2
)
(
9
’
1
)

.4
5
(
q
-
2
)
(
q
+
1
)

a
(
t
i
-
2
)
(
q
+
1
)

 

(
0

(
f
)

w
:

(
r

,
;

w
r
'
fi
l
v

(
t
)

W
s
‘
r

  
 o

1
o

o
1

o

q
r
—
t
-
E
“
;
é
‘
“
1
5
'
3
“
;

o
5
“
*
E
"

—
8
"
"

#
E
&
E

3
0
‘

3
t
K

1
E

E
.

-
1
0

O

-
3

-
3

  n
s
o

a
s
.

s
t
u

a
t
)
s
o
»

-
E
.
.
€

-

8
P

l

«
t
o
:

3
t
h

s
E

E
I
t
k

C
O ’7

+1
1

0 0  3
h
r

-
3
1
f
K

 r
p

M
M
)

-
1

-
1

-
1

‘
S
W

‘
3
1
1
K

'
3
‘
“
)

r
(
£

+
6

+
€

~
3
V
K

-
3
u
.
K

-
3
¢
-
w

-
-
€

-
€

-
6

r
a
n
t
.
)
+
v
m

-
Z

8
[
t
u
m
]

0 0

3
0
r
-
6

1

e
r

-
s

-
1

-
l

-
l

f
“

{
K
g
‘

«
1
‘

-
?
-
K

-
X

 
 -

1

+
1

c
r
-
2

+
1

o
r
-
e

 
 

r
=
q
-
1
.
s
=
q
+
l
.
p
=
q

2
+
1

"
q
+
1
:

S
q

(
1
2
"

=
1
’

'
n

l
P

=
1
’
Y

/
3

3
=
1
,
w

=
1

70

S
l
o
c
u
m
)
m
e
a
n
s

a
s
u
m

o
v
e
r

t
h
e

c
y
c
l
i
c

p
e
r
n
u
t
a
t
i
o
n
s

o
f
x
,
y
,
z
,

:
[
x
’
y
fl
j
m
e
a
n
s

a
s
u
m

o
v
e
r

a
l
l

p
e
r
m
u
t
a
t
i
o
n
s

o
f
x
,
y
,
z



x1. CHARACTER TABLES FOR SL(3,q), PSL(3,q) d = 1,3

The structure of the character tables for the unitary and

linear groups are so Similar in form that the details of obtaining

the characters of SL and PSL from GL differ very little from

those described in Sections VIII-X for the corresponding unitary

groups. Once the general method is established the differences

between the unitary and linear cases can easily be handled. For

this reason no calculations will be given for any of the tables

in this section.

11.1 Character Table for SL(3,q) d = l
 

The calculations to determine the number of conjugacy

classes of each type and the range of the class parameters are of

course quite different from the calculations for SU(3,q2) but

they are of the same nature. Since no restricted characters can

Split, the development of the character table poses no difficulty.

Table 16 is the character table for SL(3,q2) d = l.
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Table 16. Character Table for SL(3,q) 22PSL(3,q) d = 1

conjugacy canonical parameters number of centralizer

class representative classes order

I

C: ( ' , ) l qzrzsp

I

C2 ' | | ) 1 (131‘

I

(:3 (I a ‘) 1 Q:

(K) PK PK 2

C4 9’" 19'1"” ,(q-2) q-2 qr s

(k) f“ K

C.5 " p'ZK k-1.~-.(q-2) q-2 qr

(K,p,m) pK Q k,9,m-1,... ’(q-l) 2.

C. e g" k<9<m g.(q-2)(q-3) r

k+9+m-O (mod q-l)

K . l
C(K) (p 0,-K K) k-lg.”3q '1 1

-cL .-

7 5' Etmo=mgclxg+l §q(q 1) 1‘8

) ‘1'" .C(K 7K1 k 1 k‘(Q"1),2(Q"1), . .

8 .r 1- m ( ;',(q‘tq)(q-1) ijq(q+1) p
(: : qu'= Cfxg)  
 

p,a,T are primitive elements of GF(q), GF(qZ), GF(qa) respectively

+

P ' 09 1

2
_ Tq +q+l

r B q - 1 S = q+1 p=q2+q+l
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11.2 Character Table for SL(3,q) d = 3

The induce-restrict table for GL(3,q) to SL(3,q) given

in Table 17 demonstrates the close similarity between the unitary

and the linear cases.

 

 

Table 17. Induce-Restrict Table for GL(3,q) - SL(3,q) d = 3

. GL(3.Q)

q-1 I q-1 ]q-1 I<q-1)<q-2)l[<q-1><q-2)Lq(q-1)

Y.”-.'X les'thryz’"‘Xfl 7(9 " 1X1?”~7<3W’Xr-p

  

     \L. /V /
[L115 1 W13 lq’p” “Pp I ng” W191 4419”er

  
 

 

1 1 I 1 ‘4'? l q-2 I zq(q-1)

$14qu "

GL(3,q)

é<q~1><qe2)<q-3>
gqquqfl)

 

+(q-u><q-1>’Is<q-n %(q+2>(q-1>‘ Lam-1)

 

 

   Xsp ""Xsy l-X\"’Xse Xk‘s”"X1-‘S Yr's " ' Xr‘s ’Xy-‘x XV‘S

Wu: 44.» IW‘P’J 9,, 5|

   

   

 

 LPL‘s/g lH‘s/3 why, WV‘S/J [pt-{Vs KHIS/3

 

 
3  ’5 (q-h) (q-1)l 3 Ifi<q+2) (ca-1) 3

SL(3.q)

 

It should be noted that the 1-1 correSpondence between sets

of classes of similar canonical form and sets of characters of the

same degree, breaks down in SL and 80. This is because the
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classes that Split do not correspond to the characters which Split.

Thus, the extreme orderliness of the character tables for

and U(n,qz)

GL(n,q)

is lost in the special and projective Special Sub-

 

 

     
 

groups. The complexity becomes more pronounced with an increase

in n and d since more class and character Splitting occur. The

character table for SL(3,q) d = 3 appears in Table 18.

Table 18. Character Table for SL(3,q) d = 3

conjugacy canonical parameters number of centralizer

class representative classes order

(K) to" w“

C\ w" k-1,2,3 3 qsrzsp

m) “J‘ <

C; (1 w Lu) k‘1,2,3 3 qu

I(K) U‘ x

C3 ( Ww) k-1,2,3 3 sq‘

01K) (Léfcg

C3 a} k-1.2.3 3 3q‘

'"<«) L~’:

C3 0 Lb): w“ k-1,2,3 3 3‘]:

CH0 {0 PK ":) k.1,.oo.q-1

4 P kf 0 mod. 5(q-1) q-h qr‘s

PM

CM) 1 PK k'19"':Q‘1 .

5 9 k! 0 mod 3(Q-l) q-b qr

Mm, r0" m ”-1, - . . ,q-l ,
p" k< m ‘g(q-1)(q-h)+l :-

‘9 k+2+ma 0(mod q-l)

K

(K) P 6% 191’... “12-1

C, 5'3“ kiO mod q+1 z iq(q-l) rs

C0" __. CW!) (mod q -l)

C(K) SKJKz a. k-”1 'z,q +q

8 510% HOmod s(q+q+l) 5(q+?)(q-l) :3

c‘“: cm“.— c“?’moap

, 2

p,o = primitive elements of GF(q), GF(q ) respectively

2
3 3 +1 3 +1

eecF<q). e #1. seem L61“ =1,w =1, p-oq

r‘Q'la saq+13 P=q2+q+l
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11.3 Character Table for PSL(3,q) d = 3

The table for PSL(3,q)

The table follows.

is quickly obtained from the table

in the same manner as described previously for the

 

 

 

1‘ Table 19. Character Table for PSL(3,Q) d = 3

conjugacy canonical parameters number of centralizer

class representative classes order

1

C1 1 1 1 J3 Q3 1:: 3p
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1 2

C3 0 1 1 q
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I 1 L

'5 6‘ 1 1 q

(K) Pr k

P . K
| I

C‘ ( 91 ) k'lf”, §(q-h) 3 (Cl-h) 3 gr s

(m 2.9“ )
C, p. k-1,'“,3 (q-h) é(q-h) éqr

k,Y,m-l, sq'l

c”w”) p" 9 k<Q<m

6 (0 pm k+R+m E 0’ (mod q-l) z

kik; lfll, mim {g(q-l)(q-h) é r

simultaneously

ki 3(q-1)

1n- §(o-1)

m- (q-l) simultaneously

(K) or .L 2
p -K k-1,...’ 3(q -1) _I_ - 1

C7 ( q ugk ka (mod q+1) 6 q(q 1) 3 r8

6 C“): C(Kz)(rnod%(g’—IU

6“ W1 (lg-'1)
“t J. - 1

CB 6 5“: CM: (“1): C (“‘1‘) 9 (‘3‘?) (q 1) 3 p

C“ (1' C3 ;) l r1

q A)  

 

   
 

p,a - primitive elements of GF(q), GF(th reSpectively
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e e GF(q). e3 i 1. 6 E GF(q3). sq '1 = 1. w
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x11. CHARACTER TABLE FOR PSL(4,q) d - 1

In his thesis, [20], Steinberg calculated the character

table for GL(4,q). This table has 22 types of classes and char-

acters and many of the entries are quite complicated. Due to its

size the table will not be reproduced here.

Since SL(4,q) a PSL(4,q) for d = 1 there are no class

or character splittings and no need to calculate inner products.

In Section 12.1 the parameters on the canonical representatives

are determined. In Section 12.2 a single example is given to

show how these parameters are used to restrict the characters of

GL down to PSL. In many cases an unnecessary parameter on the

character entries can be eliminated by a suitable substitution;

however, such a substitution is in some cases not readily apparent.

12.1 Conjugacy Class Structure

Considering only the diagonal elements of the canonical

representatives of GL(4,q), we have eleven types with which to

work.

k k

(i) det (f 9 pk k) = 1 implies 4k = 0(mod q-l). But 2,4

p

do not divide (q-l) so k = (q-l) is the only possible

(k) (k)

1
value. Thus for C ,...,CS k = (q-l).

k

(ii) det (p pk pk I.) = 1 implies (3k + L) E 0(mod q-l)

9

thus L = -3k. Since k = l,...,(q-l) - 1 there are

79



(iii)

(1V)

(V)

(vi)

(vii)

(viii)

80

(q-2) classes of each of the class types C(k) C(k) C(k).

k 6 ’ 7 ’ 8

det (9 pk pL L) = 1 implies (2k + 2L) E 0(mod q-l)

D

so L = -k. Since C(k) = C(-k) we see that k = l,...,aéz'

and so there are %(q-2) classes of each type Cék), Gig),

eff).
k

det (p pk 9L m) = 1 implies (2k +~L +-m) E 0(mod q-l).

p .

We thus get m = -(2k + L). There are (q-l)(o-2) ways

to select k,L. But -(2k + L) = k (which gives a class of

type C6) for (q-2) choices of k,L so these values must

be discarded. Thus the number of classes equals

1 1 1

-2-[(q-1>(q-2> - (q-m - 5(q-2) = §<q-2)(q-3>

det (0 9L pm a) = 1 implies (k + L +-m + n) E 0(mod q-l).

9

Since k < L < m < n k,L,m,n = l,...,q-1 we get

%Z(q-2)(q-3)(q-4) classes of type C(k,L,m,n).
14

det (p pk 0L qt) = 1 implies (2k + L) = 0(mod q-l).

0

Thus L = -2k and there are %-q(q-l) classes of type

(R) 00

C15 ’ C16 °

k

det (9 pL om HR) = 1 implies (k +-L +~m) a 0(mod q-l).

0’

Thus m = -(k +.L) and k,L = l,...,qZ-l, k # L and

k +-L # multiple (q+1). This gives %~q(q-l)(q-2) classes

of type ny’L).

k

det (G okq ck kq) = 1 implies (2k) 0(mod q-l). But

2.* (q-l) so k E 0 mod(q-1). Since k = l,...,qZ-l and

k i 0 mod(q+l) there are q values which are multiples of

(q-l). Since C(k) = C(RQ) we get %-q classes of type



81

(k) 00

C18 ’ C19 '

k

(ix) det (0 qu CL LQ) = 1 implies (k +.L) E 0(mod q-l) so

0'

1 (k)
L = -k. We get g-q(q-2)(q+l) classes of type C20 .

k

(x) det (9 TL TLq 2) = 1 implies (k + t) =—.-. 0(mod q-l)

TLq

1 (k)
so L = -k, We get :3’q(q-l)(q+l) classes of type 021 .

k
2

(Xi) det (u) wkq qu 3) = 1 implies (q3 + q + q + l)k a

w kq

w

0(mod q-l) which means k = 0 mod(q-1). There are

%-q2(q+l) classes of type C§:)'

These results are tabulated in Table 20.

12.2 Calculation of Characters

There are 22 types of Jordan canonical forms for PSL(4,q)

and if we look only at the diagonal of these types, as above, there

are only 11 types to consider. In the same manner we can consider

the characters of PSL to fall into 22 sets consisting of char-

acters of the same degree. However some of these sets are related

in the sense that the character parameters t,u,v,w run over the

(t) X(t) ’ X(g)
same range, e.g. sf’ all contain (q-2) characters.

qs f q sf

There is a rather close resemblance among these sets of characters

and they behave in much the same way upon restriction to SL. Thus,

in a sense, there are only eleven different type characters to handle.

The details of restricting GL to SL are not of Sufficient interest

to warrent writing out more than one example calculation.

(t a“ 9")
We consider the character Xsfp of GL(4,q). Each entry

xsfr(gi) is understood to be the value associated with the corresponding



class Ci’

82

_ 2
i = l,...,22. As before, 8 = q+1, r = q-l, i = q +1,

2

p = q + q+1.

(t.u.v> =

sfp
sfp €(v+u+2t)k where t,u,v = l,...,(a-l)

()R
(q3 + 3q2 + 2q+1)€ t < u < v

32€( )k x(t,u,v) = X(t,v.u)

(2C1+1)e( ”

( >k
6

 

(t+u+v)k+tL (v+2t)k-+uL

e + p e2

(U,V)

3P

(2q+1)€( )k+tt+s 2 €( )R'HJL

(UN)

( )k+tL ( )k+uL

e + Eons/)6
 

82 Z e(v+t)k+(u+t)L + s E

(uni) (let)

(v+t)k+(u+t)L 2tk+(v+u)L

a + e

e(v+u)k+2tL

s[ E + e(v+u)k+2tL

(U,V)

( )k+( )L ( )k+q+{.

Z(u,v)e
+tz(k:L)€

]

 

( [(v+t)k+uL+tm] + e[(v+t)k+tL-l-um])

S Z(uav)€

+ S e(v+u)k+tL+tm + Z e2t+k+vL+um

(UN)

2:(u,v)( )+ J 1+ '2: 8‘: ]

 

2 evk.+uL+tm+tn

[ksLsmsn]

 

(v+u)k+tL

3 €

( )k+tL

e

 

vk+uL+tm uk+vL+tm

a +6

 

10
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We now use the relations between the various class parameters

(k)
to restrict Xsfp to SL. For classes Cik)"°°’CS k = q-l; for

Cék’L)...Cék’L) L = -3k; for Cék’L)...C{:’L) L = -k; for

0105””), cg’L’m) m = -(2k + t); for cfz’é’m’“) n = -(k + z, + m);

for Cig’L), Ci:’£) L = ‘Zk; and for ka,L,m) m = -(k +-L). Since

xsfp(g) = O for C18,...,C22 we need not be concerned Wlth the

parameters for these classes. Using the above relations and keeping

 

 

in mind that eq-l = 1 we obtain the following restricted character.

(t U.V) _

Xsfp ‘SL - Sfp

(q3 + 3q2 + 2q + l)

2

s

(2q+l)

1

(u+v-2t)k (v-3u+2t)k
s +

P e P 2(u’v)€

(2C1+1)e[ hng 1

J 1+2; 1

2 (v-u)k (v+u-2t)k -(v+u-2t)k

s Emma + S[e + e 3

+u-2t k -

s(2.~[ 3+5" ))+e()

2 e[ 1 + e[ ] +‘e-E ]

 

(v-t)k+(u-t)L + €(v+t-2u)k+(t-u)L) + S €(v-lu-2t)k
S 2 (e

(U.V)

2(t -u)k+(v-u)L

+ 2mm“

2:( )+eE 3+ze[ 3

(v-t)k+(u-t)L +6(v-t)k+(u-t)m +_e(v-t)L+(u-t)m

 

2(uav)

+

Became

(v+u-2t)k

S e

(u-vn-(v-t) (1am),r Z €(v-un-(v-t) (lam)

(k’L 3m)
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( )k
e

(v-t)k+(u-t)L (u-t)k+(v-t)L

e + e

 

 

0

We now observe that the substitution t' = (u-t), u' = (v-t)

will eliminate one of the character parameters and simplify the char-

acter e

' '

(t ’u )‘SL 3 VS?) = Sfp

3 2

(q + 3q +-2q+l)

52 where u,t = l,...,(q-Z)

(2q+l)

l

 

Sp e(u+t)k + p 2(u.t)‘(u-3t)k

(2q+1)e(u+t)k + e(u-3t)k

e(u+t)k

8 2

+823( )k

32 z c(u-t)k + 8[e(u+t)k + e-(u+t)k

2 e(ml-Dk + 8 8(u+t)k + €-(u+t)k

(u-t)k + e(1am: + e-(u-i-t)k

 

1

S

Z(uat)€
 

uk-l-tL + cal-2mm; €(u+t)k
) + s

(u-t)L-2tk

+ ~’3<u.t)"’
uk+tL +. (u-Zt)k-tL

€

3 Z(tm)“

) +6(u+t)k

(u-t)L-2tk

+ 201.06

Z(t’u)(e
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ukfitL

2301.106

(“UM-“(Hm (U't)t'-U(k‘|m)

+ >3(1<.t.m)‘g + 2(k,L,m)€

s e(u+-t)k

+Ieuk+tm +’€uL+tm

 

(u+t)k

6

 

ukfitL

Z(uat)e

 

0
0
0
0
0

The remaining characters of PSL(4,q) d = 1 are developed in a

similar manner. The complete character table appears in Table 20.
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Table 20. Character Table for PSL(4,q) d = l

conj. canonical parameters

class representative ggmzlzsses 2:22:811‘61‘

Cl ( 11 j
C (1 1 1 1 q‘r’s‘fp

a 1 )

C (l 1 1) 1 q‘rzsp
3

1 l 1 1 q'rs

C (1 1 )

c (1 )
‘ g l 1 l q,

(x) P“

C < P" . _ ) k--3k

‘ P P "‘ k'l.” ' .q-2 q-2 q‘r'sp

on F" a

C7 (1 P P" 6):)

u q,rt

C2" ('3’ f9" ).13 I

p q r

C30 (9' P: p" ) C“). CH0

o“ g a.p k 1, $(q-2) k--k §(q_2) q‘r’s"

C(K) (git PI ) Cf”: COR)

p" .. . ..to P k l, - ,q-2 k'-k q-2 qtrls

(10 (q' p“ can: Cc-n)

" 2 P") ”If" :Mq-Z) 10'“ liq-2) (1‘!-

(K.” (9.9" P, ) l,W ' ,q-1

. dun!) k ..

'- 9 Ca}! SWELQKBJ MCI-2H?” qr’s

(11,3) 9"

c ( I P" ' >13 9 -(a~o!)

9 qr1

“39:" '0 (pip! Pm ) :1<’§7:an'11 ' ' 39‘].

man J- - ..

" f’a k+2+m+nlo (mod q-l) 24“; ”(Q ”(q-h) r,

C‘m (9 9'0”“ , ) 316? 'q-1
w W W cm) 3023;“ h(q-l) ("‘81

P"

on I

<1 w >U; n qrs

ml.) 9' ’ k 9 aC". ( 9 o.--mu) ) kgalo"':q '1

um) ' - -
6 ‘ k+9i0 (mod Q+1) IQ“ 1‘)(q 2) r‘s      

PaOaT,w - primitive elements of GF(q). GF(qz), GF(qB), GF(qa)

. u,(c1+1)(c12+1)
2

‘rq «1+1

r - (1'1:

reap.

a - q+1, f-02+1, p=q2+q+l
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Table 20 (cont'd.)

A

 

 

 

 

 

     
 

conj. canonical Parameters number of centralizer

class representative classes order

(U0 6“ '1‘ k-1,-",qz-1

C's ( d 6" Sn) kvo (mod q+1) in qzrazf
k-O (mod q-l)

Co” («'63‘ a
qzs

m c“ K k-1,---,q"-1

C20 ( 6' 1‘-“ «q “‘0 (mod qgl) gq(q-2)(q+1) rs"

‘ 14-1: (mod q-l)

P“ 'K k-l .o- 3-1

(m 'T - 9 sq

Cz. ( T “ET-«6) kfo (mod g‘+q+1) §q(q-1)(q+1) :1)
can: Cm‘ = c‘K“)

m ‘4" n . k-<q-1),2<<.;-1).~-,q‘-1
C21 < co “U." a") kIO (mod (y+1) , %q7'(q+l) sf

(4) can' C(K‘ 2 Cut“)? C(K‘)

2 3 2

Q‘1 -1 +1 - +16 an _1,eq =1,Tq 1=l,¢(<1)(<1+1).__1

q + +1 +1 -1

T q = q _ 3: “q = 6
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Table 20 (cont'd.)

v..._-_L

 

 

 

 

 

 

 

 

 

 

 

    

t_1,...’(q_2)

21-11:: off 1 1 1 1 1 q-2 q_2 q_2

1! *1. We. 11:; We 1': «1;; 1:;

C. 1 1? 2'9 1‘6 1‘ g; 15:; 235;

C; 1 1’5 ‘3 it 0 P ‘is‘
13

C; 1 1 0 ‘v' 0 S q; 0

C1 1 $ 0 O 0 S 1 0

+4 1 o o o o 1 o 0

C2" 1 P 1? 15 1‘ 9655"" 596515?" 19531363“

c‘,” 1 s 1 o 5612'“ $3355.“ (“a

C;m 1 1 0 O E" ., 311: E" 0

cf“ 1 (211114142) 1 1‘ 5(5‘32‘") 51(6'12‘“) 15(6“+£“")

c2," 1 s 1 1 0 €35?" 5(6‘5 e‘“) 35‘“

(3" 1 1 o 1 0 2‘52"" 5‘12"" 0

(1:9) 1 (112) (22*!) 6 g * 5:515:13.) 1355134112...” f§;:*11é“""’}

Ci?” 1 Z 1 1 0 $4121..) f(igrémmn) €21:

1 3 3 2 1 521:5?» 33225»? 22:59

(2‘: 1 1 '1 —* “3 52‘“ o _5£tx

CT 1 o -1 1 o e“ o {a

d?” 1 1 1 o -1 {"12" 0 46.1%")

C1?) 1 *1 '2‘ F a o o 0

c3," 1 -1 0 1 O 0 0 0

CS) 1 -1 -1 z 1 O 0

cf," , I 0 o -1 1 a“ -5“ int

c1": 1 '1 1 0 -1 o o o
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Table 20 (cont'd.)

 

 

 

 

 

 

 

 

1 Pt) t-l’. ,(q-2) 1 t) 1:)Wu ' W Wm" gr 4"": Y

%(Q-2) q-2 §(q-2)

(f) (8"

w}? “’11:? W1“!

F P cm 2‘49

(2‘161fl) 2P its

P 1 it

5 ‘1. o

1 0 0

- 1 - -

P(£""+£ L" ) 1P "1 95‘" (”(61:11 a 1")

5(cuf*éth)
€£:“t+S€th

%( )

Kt 4.x! -
E1 +£ 8 1K? 0

z - -

$3- ( 6"" o- e“"‘) s'+1(€""+ 2"") 53+ 1‘ (8“? e 1“‘E)

5+(etwn e-tkt) 5+1E-1Kf 5

1+(Etkt+£‘lkf) 1 1

fwd), €‘t(K+1)) 5(£t¢~+lI,C-tcn+fi) 5(EumlfiE-lmu)

*(Etk**£:‘k¢) +£€uttr€zxt ‘%(szt+€-2kt)

( )+( ) ( )+ £1“ t ewwn+ E-tmrfl)

€t¢K+R)* tfkom) f(KOH) awkm.etut+m)+£flkon) €t(K+J|+E¢(k+mT*Et(Kn-)

* c'ttl'hl" E't(K§IM) ‘- e-t(n.n} - - («on+£“""”, at )' E'thflu) ‘t I) -’t(KH-n -t )€11" ‘e *E (bun

 

 

 

  
g «at - _ecu + Q. 1£1Kt_ a"? -z(e‘"+ E wt)

£1K*+ €139 - -l.x(' 0

g“'“”«- E-ums) Erna!) E-uml) _ Etna“- E. um!)

€ -F ¥

1 1 1

~tK ~ .
[“142 ‘5“:- E *K Etw+€ {K

0 o o

O o o
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Table 20 (cont'd.)

t,u-1,--c,(q-2)

 

 

 

 

t<u

§(q-2)(q-3) ‘r(q-2)(q-3)

(nu) (tau)

fih “Raw

5109 «,st

13317-12141 1(26’021“)

1

S 15

21” 1.

1 O

(n W (f'SuN‘ a) - 3K

592 “ +925." spew 'i-plmnfi“ "

(flow ”4“ n‘ u- u1K t-s 1

(21“)6 +3 ($1.11 (21103 . “37.05:: «A K

(innK C (1' 3“ “‘ (tn-3K

E *Elun) £-

 

51. €(u-t11~+£-m-FW)

+5 (C(h+f)K‘€-cu+flk)

s‘cflI-tflt * e-(u-HK)

+ S G'.-nut”: * €(u+t)k

(H1)

51‘ Ema“: ,, Ewan-TY?)

+138 ( Emu»: f €‘(Hff’kJ
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+ %E(M+f)K
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52w."(Ermunfl,e(e-tu)k—u)
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Em." ( ~2ukott-u19
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stunt) (€ " a“ 1“ 12:13::- (t u)

4. se‘"“"‘ *- 1 Zane ) E

flan) «4.100(- H4 (143)"

Z(Hpt‘(E +€ ) + E
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LEI-Lb) ek-ufl-«(w
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-fl’ 'M(K+m
) ___’
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-321u411x

EN”)K

-Euuflx
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_E(K.net

xvu1

o

O

o

O

O

O

a

O

0
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Table 20 (cont'd.)

 

 

 

 

 

 

 

 

 

 

 

  

t,u,v,w-l,° --,(q-1) t-1,---,q‘-1

t<u<v<w th (mod q+1)

t+u+v~HII 0 (mod q-l) W“): WW“ (mod (14)

&.(q-2)(q-3)(q-h) Mq-I) §q(q-1)

(t,u,v,w) CU (t)

Kg“? WPPP Wt???

51" HP 114p

31341511431” 1111’ ‘ '%

(2:105 ..; gr

3‘+l -1 -2

1 -1 0

(touovowfl:

591mm“,, Has" we“

< 11:

(21‘ "i (Saar. w) " 21K ' E“

c m

2 (egunhv) -EtK -E‘K

(fou-v-w’K
- K K -

5"ZIttzmmw] V(C"+E 1 ) QFE‘ *‘E a)

1 )K -
sztgu‘ww’ yaifctn _?Etk

1 )K
-tk

szflflqw) -6": E O

(Iffl-‘lW’K o (v—wu

57!1Lu.mu) *5" *8“

< )Ko-t )1 « tK

[widow] ' E: - E

rm «Jun» +wn

(K,',M,hj O 0

- K _ ~ -

0 1637': 11“”) +£"‘—z("z “112 1f"‘)

0 _£'¢K~ ) EtK

0 Jim”: «mint ’7.mm_ Tim'JHt

0 -+‘(e’+ a“) He“ 6“)

0 -(e‘ *9“) (19"+ 0")

tr 11" -flr «K :1: tr -1 ~tk

0 -”I-"( nz A: ‘ 7 +7 ‘11 “+7 *

O 0 O

O 0 O 
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Table 20 (cont'd.)

 

 

 

 

 

 

 

 

 

 

 

t'ln' ' ‘ ’q1_1 t-19 ' ' ' :91 '1

u-1."-.q-2 +10 (mod q+1)
ti 0 (mod q+1) Wm: WH$I

w‘f,“" v(‘tfll)

ig(q-1)(q-2) éq h

(Fin (0 ‘0

"H-sh WP? “Pf"?

r-SFp s-‘p z‘v‘P

1115-24 “‘ ~11?

-5 9.2-1“ 2‘

'5 ‘i‘ O

-1 1 0

FP(€(WO: f:H-300K) O O

_(€(LNHK*£(t-- juiK) o O

_(E(u+£)k+£(f~3uh(
O o

“flaunt”: E-(u-tw) *1 y-7-

Fem-“'2 584th 4. 4.

_(£(u-t)k + E-(u-tik) 1 1

renauuD)‘ t- EH-Zu‘m- u) 0 O

_E(£k+ul)_ Eli-Udk-ua' O O

O O O

_5€ul( (7‘11K+ 1?" K1) -\-(9fl‘* etki) _+(etk+ tug)

_Eux(41-1tw+ 17-'tt"l\'t) (9"; end.) (9mk 92kg)

- ”Ht _

-(€‘“‘;e“‘)(°7 W + 47 Wm) 0 0

hi Emmet“) £+i[£(e“+e“*)

—»—s (em-MM e““'*"}]

pm H )J

I ‘ .
”S (6N1 m , emu" )n

MU )+( )1
  

O

O

O

O

O  9“!" ‘ étlrg

O

t f '- 3
iz-(e‘e“0t1‘9tt)

e-IK.‘ 9.th

O
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Table 20 (cont'd.)

 

t,u-l, ' . . ,q¢-1

tin-I 0 (mod q+1)

WW”: Lp‘tfm): qflfitujz W‘tmu)

t-l’ ' ' "q3-1

tJO mod qz+q+1

w(t: w‘t‘ )3 wfitl’

t'(9'1)a2(9'1) a ' ' 'aq4‘1

#0 (mod q1+1 )

Wm: Won). Wtq‘), we!”

 

 

 

 

 

 

 

 

 

 

  

t q(q-Z) (q+1) i q(q-l) (<31) i q'(q+1)

mu) «T m

4134' Wy‘s‘! LPF’SP

L"? Psi-F F359

44 +5 +‘s

26-1“ +5 r

.4. 1 k

‘1 1 1

o 958" 0

o _4_£tlt 0

0 e" O

F1(E(t.um+ {ht-um) O O

44 ) o O

( ) O 0

O o 0

o o 0

O 0 0

t“ . mt - u x

+2.”, w n: * * J o 0
In

2.5, ( I o 0

o O 0

Manama e") o vsw‘w")

( X ) 0 49%“)

(It, tn an: -uu¢

ZS}, ”‘7 ”(‘1 *"l 1) o o

O ftx+ftq+7:“1! O

o O _¢t_ ¢t‘_ ¢t‘: ¢tg3   
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Checking the character table for PSL(4,q) posed a problem.

It checked with PSL(4,2), the only existing table for the case d = 1.

However, when q = 2 only 11 of the 22 character types are present

so this verifies only half the table. It is difficult to complete

the check by generating the next larger character table and seeing

if the various orthogonality properties hold, because PSL(4,4) has

82 irreducible characters. The problem is surmounted in the follow-

ing way. Suppose Ennola's conjecture holds. Using the conjugacy

class table for PSU(4,q2) d = 1 given on page 98 and changing q

to -q in the table for PSL(4,q) we should obtain the table for

PSU(4,q2) d = 1. Having done this, we let q = 2 and compare the

resulting table with PSU(4,22) given in Frame [11]. The two tables

checked. It very conveniently happens that PSU(4,22) contains 8

additional character types not checked by PSL(4,2). Thus we have

verified 19 of the possible 22 character types. In the process we

have demonstrated that Ennola's conjecture still holds. Considering

the complicated nature of the characters for PSL(4,q), it is nearly

inconceivable that we could get the correct table for PSU(4,22) if

there was either an error in the table for PSL(4,q) or if Ennola's

conjecture is not valid for arbitrary q.



2 2
x111. CONJUGACY CLASS STRUCTURE FOR U(4,q ), PSU(4,q ) d = 1

2
13.1 U(4,g l
 

As before, we use the results of Ennola's paper [7] to obtain

a set of Jordan Canonical forms in Gl‘é,q2) which bear a one-to-

one correspondence with the conjugacy classes of U(4,q2). We need

only use simple combinatorial methods to count the number of possible

canonical forms of each type. The order of the centralizers are

obtained by the application of Theorem 4.1 which says that we need

only change q to -q in the expression for the order of the

centralizer of each class in GL to obtain the centralizer order

of the same type class in U(n,qz).

To ensure that the resulting conjugacy class table for

U(4,q2) is correct, it was checked for U(4,22) having order 77,760

with 60 conjugacy classes and for U(4,32) of order 52,254,720 with

188 classes, respectively.

The details of the above work will be omitted since they are

similar to ones already described.
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2

Table 21. Conjugacy Class Structure of U(4,q )

 

canonical

 

 

 

 

 

 

     

conjugecy parameters umber of centralizer

clese representative classes order

(I) "

C. ( P“ 0" 9..) k'lr" .qfl q+1 q‘rza4fp

(x)

C" (\) H u (1‘ 1'83 P

(K) 1

C3 (\1) H " 95 1":

(K) 1 ,

c. (\) u ..
00

C5 (11\1) H H 933

Cm” (9 WP" 2) :3’32'1- "-.q+1 q(q+1) qzra‘p

‘ 9

(n3) 1 "

C7 (\) Q383

at,” u

C; (i\\I\\\\\) “ Qfs‘

(K!) 9‘ K k,9-1,-o-,q+1

C. ( p 9' 9') w com c”"" squad) q'r‘s*

m,” 1 (km (2.x)
Cw (\

C i C
q(q+1)

qzrs?’

mu 1 («,n (1.x)

C“ (\1) C : §Q(q+1) q‘s‘l

0‘ x k 1 m-l --- q+1
C(K,l,m) ( p 9’ m k; (n O ’ h(q+1)(q-1) qreq

"- Q C(K,1.m) : C(k'm'”

('flLM) L
n

Ca (\) " qua

K

6"“ (p P’ .. :2’1’1’311;‘” "“1 (“I *\4 9 69‘ .4 3

n 9" K k 1 q+1
5‘. . D O . . 9 2

C ( 9 «‘ ~11) -1 q*-1 . -‘(~+1) ( -2> ‘ 3
n - ) 2 a q qr 3

’ 6 9¢0'(mod'q-1).C"’= c‘ ‘

(«,I) 1
C.. (\

)
H

II
qmz

(m...) exp: Eg'l'm'qd 2
M

C” v 6“" Ill-1”” ’91-]. (m) (flu-0‘ *9(9'2)(9*1) 1'33

m‘O (mod q-l) C =
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Table 21 (cont'd.)

 

 

conjugacy canonical parameters number of centralizer

class representative
classes order

m ‘K “<1. k-l, ,q-1 «m 2 2 z

m ( q qkq'“) ”‘0 (”0‘1 ‘14) Cm;-'C ‘ Mqfl) (ta-2) q r s f

(.0 «K W-K‘
u '

u 2

C... (1 1 6‘64“.)
q rs

  
‘ - k,R-l q-1

Cw") 6 ° “1 k3” 3993 0 (mod q-I) fi<q+1)(q-2)(<f-q-h) r231

3" CMflCum) d-rg,1)_dx-g1)

 

IiO (modqz-q+l)

pK k-l q+1 2

(«.13 7’ 1. 3.1:(135q(q-l) (q+1) 829

C11 ‘4

m . (‘16:)(11“)
 

 
to“ - k-l q“-1

(K) K‘ ’ ’ 2 2._ f

c,, ( “ were)«2«a an «a v ~     
a,Tl,w - primitive elements of GF(q2 ), GF(q 6), GF(q4 ) respectively

-1 -l 2 2

930(q ),T= T(q3 ),r=q-1,s=q+l,p=q 'q+19f=q+1

13.2 PSU(4,q2) d = 1

By requiring that the determinants of the canonical repre-

sentatives of U(4,q2) be unity, we can obtain the classes of

PSU(4,q2) a:SU(4,q2) d = 1. The details of 'counting' the number

of conjugacy classes are similar to those written out in detail

for PSL(4,q) and are not of sufficient interest to give here.

The resulting table was checked against PSU(4,22)

having order 25,920 with 20 classes and PSU(4,42) of order

1,018,368,000 with 92 classes.

As mentioned in the preceding section, this table for the

conjugacy classes of PSU(4,q2) together with the character table

of PSL(4,q) with q replaced by -q convincingly appears to give

the character table for PSU(4,q2) d = 1. At least it checks for

q = 2.
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Table 22. Conjugacy Class Structure for PSU(4,q2) d = l

conjugacy canonical parameters number of centralizer

class representative classes order

‘1

‘1

C. ( 1 1) 1 q‘rzsafp

1

C2 (1 1 1 1) 1 gen:

1
1 1

5

C3 <1 11 1) 1 q rs

1 1
C4 ( 1. 1 1) l q‘s

C t .
5 1 11 1 1 93

c‘” (P p" “ )
‘ p P-sx k-1,--.,q q oars}?

FR

(M 1 “ .

C, < P pKP-jK) ' q qssz

K

cm) 61) P“ x

s 1 P Pan (1 C123

p" 1r 1
m p" -K ,2. ,.-'-,q 1 2 z 3

Cq ( P ‘5“) dc}, Ensign) sq q r 8

PK

m x
_ - )

Cw (1 p P'p‘w) Cm" C” q qzm2

p“

U” 1 'l (K) {-00

Cu < P ‘2.” par) C t C in gas

P“ K k’2-1,. ° q+1

m,” ’

Cu ( p (38 -2R-1) k”? 1§Q(G-1) qrs3

pk

(KI!) 1 K 9 1'

Cr; < P P 63"“) i'flq-l) <18?"

V“ 1“]! m < n -'- q(q-1)(q-2) s

'4 P P" k+1+m+n=0 (mod q+1) 2‘

(0" k-l 2-1(x) V 3 sq

C2,, ( P 6" avg) H0 (mod q-l) %(q+1)(q-2) qrzs?’

p“

(x) V

C“ (1 p ‘1'“ -1“! H 3(Q*1)(Q'2) qrs

W” pk? 2: tég'l’qu-l 1 ( >< ) 1. m v-q q+1 q-2 rs
C” 6 «Rune; kiddo (mod q-l) 4

C092), C(‘flO
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Table 22 (cont'd.)

 

 

 

 

 

 

conjugacy canonical parameters number of centralizer

class representative classes order

(K) «K 41‘ k 1 ... 1'

' a sq ‘1

C'5 ( “K "‘t) k¢0 (mod q-l) }(q-2) sirzsf

«I k-O (mod q+1)

Cr) (1 (“‘W‘ -K‘) II
§( -2)

2r

1 o q q

2.

(R) 0'“ - b1." " ,q -1

a, ( °' fl -.. ) ks‘O (mod q-l) 601-2) (qz-q-h) r28
‘3' 3H. Cw, CH‘L Com: CM"

9‘ q: k'l "' q3+l
( j 0 D

C; ( 7' qut‘ ,> k*0 (mod q‘-9+1) §q(q-1)(q+1) op
.Kt

q.

no wk «'1 k'(q+1)s2(q*1)s ‘ " sq‘ ‘1 2

C21 W th‘l 3 k'fiO (mod q“+l) iq (q-l) rt

“1     
O’Tl’w a primitive elements of GF(qz), GF(q6), GF(qa) respectively

P

, 0(q-1)
,T='r

(QB-1)

1
3 r = Q‘l,

2

s = q+1. p = q - q+1, f = q2+l

 



XIV. CHARACTER DEGREES AND FREQUENCIES FOR PSL(4,q) d = 2

The existing character tables for PSL(4,q) and PSU(4,q2)

d = 2 are those having q = 2 or q = 3. These tables are of a

reasonable size and most of the entries are integers. The non-

a ifi/b

integer entries, if irrational, are of the form -_:T—_' and if

complex, are simple linear combinations of cube roots of unity.

Thus one is easily misled into thinking that a generalized char-

acter table for these groups would involve entries on the same order

of complexity as was the case for n = 2,3, that is, most of the

entries would be constants or polynomials in q. These hopes are

soon forgotten when we consider the table for PSL(4,q) d = 1

which we have just developed. We see for example that the entry

Y35(015) = 2 for PSL(4:2) COrreSponds to the entry retk _

(“-Ztk + n-Ztkq

) in the generalized table and realize that the

simple nature of the existing tables is due entirely to the fact

that the various combinations of roots of unity, which are dependent

on q, are relatively elementary when q = 2 or 3. We also note

that the number of classes and characters can be expressed as poly-

nomials in q. At the level n = 4 these polynomials are in gen-

eral of a higher degree than those for n = 2 or 3. As a result,

the number of classes and characters increases at a much faster rate

with an increase in q. Thus we find that PSL(4,2) has 8 char-

acters, PSL(4,3) has 29, but PSL(4,4) has 82 characters and

100
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PSL(4,7) has 407.

The smallest projective special groups PSL(4,q) for which

no character tables have been developed are PSL(4,7) and PSL(4,5)

for d - 2,4 reSpectively. These are very large groups, having

over 100 conjugacy classes, and so their character tables would be

rather difficult,to work with even if they were available. If it

were necessary to have the table or a partial table for one of these

groups it would be much easier to develop it from. GL(4,q) with q

equal to the appropriate value rather than trying to get the abstract

table for arbitrary q because the calculation of inner products

involving numerical values is far easier than performing the same

calculation with polynomials in q and sums of (q-l)St roots of

unity.

Aside from these practical considerations there are some

theoretical difficulties which would impede progress. For the cases

d 8 2,4 both classes and characters undergo some splitting. Pre-

liminary checks reveal‘this splitting is much more extensive than

on the n = 2,3 levels. There is no correlation between the

classes which Split and the splitting characters. We have already

seen in the case of SL(3,q) d = 3 that classes of type C Split

3

while the characters which Split correspond to the classes C6 and

C Thus, determining the splitting of the classes and characters8.

are two separate problems. For the cases n = 2,3 we had Dickson's

results to give us the class splits, but he did not work out the

case for n = 4. In the case for d = 2, if a class of GL Splits

in SL we do not know if it splits into 2 or 4 classes.
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Taking inner products to determine which characters are

reducible is very difficult with the abstract characters of

GL(4,q) because they are so much more complicated than the previous

cases considered. Also, for the case d = 4, characters can split

into 2 or 4 components and so the inner products must be calculated

with more care than previously. We finally note that after we

determine which characters split, we cannot immediately fill in

their values on the classes which are not complete classes of GL.

Since there are many splitting classes and characters this means

we are left with numerous large holes in the table to be filled in

by the tedious process of using the orthogonality properties of the

table.

In this section an attempt is made to at least determine the

degrees and frequencies of the characters for PSL(4,q) d = 2.

We now use a different route and proceed from GL to PCl.a:GlJZ(GL)

to PSL.

GL.
q-l q-l

PGL a- GL/Z (GL)

\7‘
PSL 9: SL/Z(SL)

The work is based entirely on Clifford's theorem which tells us how

many associates the irreducible and reducible restricted characters

have. Since PSLIQ PGL and [PGL : PSL] = 2 we can apply Clifford's

theorem. If a character of PGL is irreducible upon restriction to

PSL then it has 2 associates. If the character is reducible then
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it has only 1 associate and splits in half.

We now assume tentatively that if 2 divides the number of

characters of PGL of the same degree, then they all restrict down

in sets of 2 to irreducible characters of PSL. If 2 does not

divide the number of characters of the same degree we will pull off

one character and assume this character Splits in PSL. We do this

for q - 3,7,ll,... and hOpe that a clear pattern emerges. In

Steinberg's thesis [20] the frequency table for the characters of

PGL(4,q) is given.

The only characters which require any Special consideration

('2) (t)
are X 2 and X . We consider then separately.

3 fp r fp

The number of characters of degree szfp alternates from

even to odd. This means that either the number of Splitting char-

acters alternates from O to l with every q, or the number increases

by one for every q value. This situation did not occur in the

tables for n = 2,3 so we have no precedent by which to go; however,

the second alternative seems most likely.
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number of characters

 

 

 
  

 

  

 

  

 

 

   

 

 

 

  

 

 

q of degree 8 fp in PGL number of characters number of

%Z(q-3)(q2-6q+11) 1n PSL reducible chars.

3 o o 01

7 3 2 l

1~_\i 1

? n-LB

ll 22 20 10 4

1
1 ___1 2

1
l

———1

19 172 168 84

———l
l ————____~_.______________1

1
1.=:;

1

It 1

1

1 1 

From this we conclude that of the %Z(q-3)(q2 - 6q + 11) characters

of degree Szfp in PGI(4,q) d = 2, 3i2- of them are reducible,

when restricted to PSL and the remaining %Z(q3 - 9q2 + 23q - 15)

will restrict down in sets of 2 to irreducible characters of PSL.

The same situation occurs for the characters of degree

2

r fp except that the number of characters alternates from odd to

even out of phase with the number of x

s fp
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number of characters

q of degree r fp in PGL number of characters number of

l 2 in PSL red cible chars.

§(Q+1)(q -2q-1) “
 

3 l-===:::::::::::::::i 11

7 34 32 16

11 147 144 72

 

From this it appears that of the %(q+l)(q2 — 2q - 1) characters

of degree rzfp in PGL, SE1. of them are reducible when restricted

to PSL.

The frequency table for PSL(4,q2) d = 2 is correct for

PSL(4,3), however we could only be sure it is correct if the table

for PSL(4,7) was available. The calculation 1; 011(1))2 = ‘c‘

proves correct for q = 4,7. however this still d::s not indicate

whether the number of Splitting characters is correct because if

Y, a character of FGL, does not Split in PSL then the k asso-

ciates of Y restrict down to g-Y characters in PSL. If

Y‘PSL is reducible then the k associates of Y restrict down to

2k characters of half the degree of Y. However

%(Y(l))2 a 2k(1éll)2 so the sum of squares of char-

irreducible case reducible case

ter degrees is unchanged by a Splitting.
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The total number of characters for

2 +'7q + 23)

PSL(3,q) d = 3 is

l 2
3-(q + q + 10) and we get for

l 3

Z(Zq + 20 PSL(4,q)

which appears to be of the same form.

 
 

 

 

          

Table 23. Character Degrees and Frequencies for PSL(4,q) d = 2

mm...) 0-2 PSL(h,3) 251.61,?) PSL(hA) 0:2—

umber 01' character no. degree no. of degree umber of character

characters degree char. char. characters degree

9'0 9'7

2 2 1 1 1 1 1 1 1

2 qp 1 39 1 399 l qp

2 2 0‘: 1 90 1 21.50 1 «fr

2 2 q’p 1 351 1 19551 1 0'.)

2 2 q‘ 1 729 1 11761.9 1 q‘

0 1. st 0 2 1.00 1(0-3) sf

0 I. qs‘r 0 2 221.00 2(0-3) 08‘!

0 1. q‘ar 0 2 137200 Mq-B) anr

0 a up 0 1. 22000 Meg-3): up

0 a 00:0 0 1. 159600 2(0-3)’ gm

0 3 {2 a‘rp 0 1 1821.00 4L,(q3-9q‘+23q-15) s‘rp

1 0 2 91200 1(0-3) gen.

1

2 5h rsfp 1 101.0 27 136000 Ski-3) mp

112 s‘ r' r 1. 61.0 56 115200 * q(q‘ -1) 35%

1 5 1. £0 2 65 2 2850 2(0-3) no

1 2 11.25 2 52p

1 5 t. 0% 2 585 2 139650 1(0-3) ‘rp

1 2 69825 2 gq‘fp

2 10 qu l 390 5 19950 (q-Z) qu

2 18 rfp 1 260 9 17100 §(q-l)2 rfp

2 18 qrfp 1 780 9 119700 2(q-1)‘ qrfp

1 3h 32 r‘fp 2 260 16 4.02600 f§(q3-d5-5Q‘3) r'fp

1 {2 51300 Had) ir‘rp

1 2 ,

3 2 7 6 r’p l 52 3 2052 §(q-1) r‘p

1 1 2 26 2 1026 2 h'p

3 2 7 6 q‘r‘p 1 1.60 3 10051.0 2(0-1) if?

1 1 2 23h 2 50271. 2 r p

8 96 r sp 1; h16 M 981196 é(q-1)(q+l)z szp

29 1.07 2(2q‘+2q’+7q+23)
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Sumary o f Resu It s
 

The primary purpose of this paper was to determine the

abstract character tables for the groups SL(n,q), PSL(n,q), SU(n,qz),

PSU(n,q2) n = 2,3, PSL(4,q) d = l and display the tables in such

a manner as to facilitate their use. The procedure developed could

also be used to find additional tables for Specific n and 0 values.

The secondary goal was to investigate the possibility of

Ennola's conjecture holding for the Special and projective special

subgroups. The fact that the conjecture did hold for all the groups

under discussion was very surprising. For example consider the groups

PSL(3,S) and PSU(3,5). Their character tables are of completely

different form because d = 1 for PSL(3,5) whereas d = 3 for

PSU(3,5). Thus the transformation q a -q clearly does not apply

to literal values since in the above case 5 a -S does not change

the table for PSL(3,5) into the table for PSU(3,5). The con-

jectured transformation could better be written as q a -q' where

q is not necessarily q'. Even if the conjecture is true, however,

the relationship between the tables of the unitary and linear groups

is not completely determined because the conjugacy class structures,

are not related in any known way; i.e. the polynomials giving the

number of classes and irreducible characters of the linear groups

cannot be transformed into the correSponding polynomials for the

unitary groups. Also, the conjecture does not appear to be of any

value if the tables in question are for specific values of q be-

cause the transformation only operates on the abstract symbol q

and not numerical values.
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The modified version of Clifford's theorem, although by no

means essential to the problem of developing the character tables,

was nevertheless a considerable aid. The task of determining the

number of components in a reducible character becomes more laborious

without the theorem because the inner products, (x,x), must be

calculated considerably more exactly in some cases.

The theorem'was also used to arrive at a conjectured table

of character degress and their frequencies for PSL(4,q) d = 2

which checked for the case PSL(4,3). It would be interesting to

determine if the table is also correct for PSL(4,7). This is

such a large group that a check here would be very convincing.
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