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ABSTRACT
A DEVELOPMENT OF THE CHARACTER TABLES FOR

CERTAIN CLASSES OF
UNITARY AND LINEAR GROUPS

. By

William A. Simpson

The classical groups U(n,qz) and GL(n,q) occur as in-
finite families of groups indexed by a dimension n and a prime
power q. It is convenient to develop what might be called
'abstract' character tables whose entities are written as func-
tions of n and q and which describe the characters for the
entire family of such groups. It is too difficult to work with
both n and q arbitrary, so n is fixed and the character
table which holds for all q is found. 1In 1955 a method for con-
structing the character table of GL(n,q) for a given n and
arbitrary q was developed by Green [2]. Since then the only
'abstract' character tables constructed have been those for
U(2,q2), U(3,q2) by Ennola [1] and Sp(4,q), q odd, by
Srinivasan [3].

In this paper ten abstract character tables are developed,
representing the group families SL(n,q), PSL(n,q), SU(n,qz),
PSU(n,qz) n=2,3 and PSL(4,q) d = 1. Of these, seven have
never been published. The tables for these groups are of
particular value because they often appear as important subgroups

in other larger groups such as many of the sporadic simple groups, or
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are themselves simple, or are used to construct other simple groups.

This paper has several purposes:
1. The character tables are made available in the sense that the
range of all parameters are given explicitly so that the user can
easily generate the desired table for any specific q without
searching through the paper for the definition of the various
entries in the table. This degree of explicitness is not present
for the three tables now in print and for this reason they have
been included in this paper.
2. A standardized notation is used for all the tables which
should facilitate comparisons and other inter-connecting uses.
3. The procedure discussed in section III, together with the main
theorem developed in section II should enable one to more easily
work out a specific character table for any of the groups SL, PSL,
SU, PSU not covered by this paper.
4., A very interesting and potentially important conjecture made
by Ennola [1] relating the generalized character tables of GL(n,q)
and U(n,qz) is extended, in section IV, to the special and pro-
jective special groups. It is demonstrated that a change of q - -q
in the character table for SL(n,q) or PSL(n,q) will yield the
table for SU(n,qz), PSU(n,qz) respectively for the case n = 2,3.
The converse, of course, is also valid for these cases.

The main theorems of the paper, proved in Chapter II, are
the following:

TH If HK is a central product of groups H, K where K
is abelian, then every irreducible character of HK remains

irreducible when restricted to H. From this theorem, we can
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obtain the following Theorem for SL(n,q) which is a striking
improvement on Clifford's Theorem.

Th Any irreducible character x of GL(n,q) when re-
stricted to SL(n,q) 1is either irreducible or splits into t
conjugate, irreducible characters of SL(n,q) of multiplicity 1
where t‘d and d = (n,q-1). ¥ has 13:%1 associates in
GL(n,q) relative to SL(n,q) if ¥ 1is reducible and q-1
associates if irreducible. (An identical theorem holds for
SU(n,qz) with (q-1) replaced by (q+l1).) This is the main
working theorem of the paper as it tells us just how characters
of GL will split when restricted to SL. Clifford's theorem
only says that the number of components, t, will be a factor of
(g-1) which is of no help. But the above theorem says that
t=2o0or3 for n=2or 3 respectively.

In section III the technique used to formulate the char-
acter tables is discussed. It is shown that each conjugacy class
of SL can be indexed by a Jordan canonical form.

The characters of GL(n,q) are restricted down to SL

and the inner product (x,x) = T%ET Lz x(g) x(g) 1is calculated.
geSL

If (x,x) =1 the restricted character is irreducible. Otherwise,
it is reducible and splits up as indicated by the theorem just
discussed.

Once the character table for SL is determined we can
easily generate the table for PSL, since every character of SL
which is constant on Z(SL) 1is an irreducible character of
PSL = SL/Z(SL), and every irreducible character of PSL can be

so obtained.
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In the sections V through XV, the character tables are
developed. Many of the routine calculations are done once in
detail and merely mentioned or entirely omitted in later sections.

In section XVI the results obtained for PSL(4,q) d = 2
are given and some space is devoted to discussing the problems
which prevented further progress, problems which were primarily

attributable to the complexity of the table for GL(4,q).
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I. INTRODUCTION

1.1 History

Towards the end of the 19th century G. Frobenius developed
the foundations for the theory of group representation in a series
of papers dating from 1895 to 1911, 1In 1911 Burnside published

his book Theory of Groups of Finite Order in which he independently

rediscovered some results of Frobenius. More importantly he applied
this embryonic theory and obtained some surprising results in group
theory regarding the solvability of certain groups which gained

more serious attention for this new concept. After this initial
success, however, the theory of group representation lay relatively
dormant for nearly 25 years. It appeared that the applications of
this theory as developed up to that point had been exhausted.

This disinterest was not universal. Physicists quickly
grasped the importance of representation theory and soon began
using it to advantage. Since representation theory reduces the
abgtract properties of groups to numbers, they found that this
enabled them to apply group theory to any system possessing
symmetry that was too complex to handle by classical analysis.

Such fields as thermodynamics, crystallography, wave equations,
quantum mechanics, molecular and nuclear structure are but a few
of the many areas where representation has played an important

role. Thus the theory of representations developed steadily in



the area of applications long after the pure mathematics of its
source ceased to offer much promise. Indeed, during the period

of 1905 to 1955 the growth of new developments in group theory
proceeded at a very slow pace. Felix Klein felt this was due to
the abstract nature of group theory which isolated it from physical
phenomenon which motivated so much mathematics of that time and as
a result only a certain type of mathematician was attracted to the
field. He felt this homogeneity of the researchers was largely
responsible for its slow rate of development, unmarked by
imaginative leaps forward. If this was the reason for the decline
in activity in group theory then the successes won by representation
theory in the physical sciences may well have lessened the stigma
of abstractness and helped in restoring vitality to the field of

group theory.

1.2 Recent Interest

In the period 1925-55 a major advance was made by R. Brauer
in the study of modular representations. In 1955 when activity
in group theory suddenly increased, Brauer's work provided some
powerful tools with which to study group structure. Thompson and
Feit in their long paper on groups of odd order used modular theory
with telling effect and thus rekindled interest in representation
theory. M. Suzuki has used considerable character theory in his
work on the classification of simple groups by the structure of
involution normalizers.

At the present time significant advances in group theory

are being made in the area of classifying all simple groups and



here representation theory continues to play a large role since
nearly all theorems on groups using characters establish the exis-
tance of normal subgroups. The first step in this classification
problem was to find all simple groups of order less than some large
number. Initially all the simple groups which were found could

be placed in one of several classes of groups, all groups of a
class sharing some common properties. However, this convenient
pattern was broken when, starting in 1964, people began finding
some large simple groups which didn't fit into any of the known
classes. These groups became known as the 'sporadic' simple groups
and they attracted considerable attention. At this date the char-
acter tables for nearly all these sporadic groups are known, to-

gether with some of their larger subgroups.

1.3 The Problem

There are several reasons for wanting to know the char-
acter table for a group. The most obvious reason is to be able
to study better the structure of the group. Sometimes one has
the character table of a group and desires to know some of its
larger subgroups (see p. 66 [2]). Methods are available to find
the character table of such subgroups (see p. 150 [16]). One
may then be able to recognize this subgroup's character table
as being the same as some known table. Thus a good stockpile
of character tables would aid in identifying subgroups. The
classical groups turn up often as subgroups and so their tables

are particularly valuable.



Wales' paper [22] furnishes an excellent example of the
current manner in which characters of groups, in this case
PSL(2,17), can be used to obtain surprising results.

Another use for character tables lies in using them to
test out various conjectures which might arise. For this purpose
one would like to have tables for a wide variety of groups.

Sometimes groups are constructed by extensions of several
groups. If the tables of these subgroups are known, it is often
possible to obtain the character table of the constructed group.
Very frequently the groups used in this construction are of the
type discussed in this paper.

This paper deals with the character tables for PSL(n,q),
PSU(n,qz), SL(n,q) and SU(n,qZ) for n=2,3 and some results
for n = 4. The case of n = 2 was originally done by Frobenius
[12], Schur [18] and later independently by Jordan [15]. This case
is redone here for several reasons. The methods used by these
earlier researchers are considerably different and more complex
than those used in this paper. Also the resulting tables are
written in such a manner that in order to use them, one would have
to go back through the paper to find the definitions and range of
values for the many parameters. 1In addition, the difference in
notation from one table to another would make comparisons very
difficult. The table for PSL(3,q) was done by Brinkmann [3]
but the results were never published. Thus it was considered
advisable to work out all the tables for n = 2,3 whether they

had been done before or not.



The final result is a set of 10 character tables, only 3
of which have been previously published, each of which describes
an infinite class of finite groups and all unified by common nota-
tion with the range of parameters explicitly given to facilitate
using the tables. The procedure used to obtain these tables is
quite likely the most straight forward one possible and yet little
can be done on the cases for n = 4, not because the method breaks
down but because the character tables become so large and complex
that the details are exhausting.

The character tables developed here are of a somewhat
unusual nature and a word or two should be said about them. Some-
times it is possible to find a character table which can serve as
the table for a whole class of groups by changing some parameters.
Apart from the economy of such an 'abstract' character table it is
valuable in that it provides a stvong linkage among the groups.
There have been few such tables developed and so it seems that a
few more additional tables would be of value.

One of the most valuable classes of groups for which char-
acter tables are available is the class of symmetric groups S
(also An). Although no abstract character table has been developed
for the entire class an equivalent formulation has been obtained,
namely, a comparatively simple construction method for building the
character table for any of the specified groups.

In 1896 Frobenius determined the generalized character
table for the groups GL(2,q9). In 1949 Steinberg [19] worked out
the tables of GL(n,q) for n = 2,3,4 1in a particularly straight

forward fashion. These results and some later work done by



Steinberg led to the development by Green [14] in 1955 of a method
to calculate the characters of GL(n,q) for any n. 1In 1963
Ennola [6] found the characters of U(n,qz) for n=2,3 and
recently Srinivasan [21] obtained the table for Sp(4,q) q odd.

This sums up all the results on 'abstract' tables as of this date.

1.4 General Theory

In the following short section an attempt is made to run
quickly over the key definitions and theorems of character theory
which are employed in this paper or necessary for its understanding.

DEFINITION. A representation of a group G is a homomorphism

p: G - GL(n,{) where GL(n,L) 1is the group of all n X n,
nonsingular matrices over the complex numbers; the group
operation is ordinary matrix multiplication.

Every group has at least one representation, the most trivial one

being Py G~ 1. The totality of all representations of a given

group can be narrowed down by defining the following equivalence

relation:

DEFINITION. If p and ¢ are n-dimensional representations of
group G and there exists a nonsingular matrix A s.t. o(g) =
A p(g)A-l for all g € G then we say p and O are
equivalent.

The next step is to show that certain representations of G are

the 'building blocks' from which all the non-equivalent representa-

tions can be constructed.

DEFINITION. A representation p is reducible if it is equivalent

*  *
to a representation with matrices of the form (—a—ff;—)



o, (8)

It follows that ol(g) and gz(g) are also representations
of G. If a representation is not reducible then it is said to be
irreducible.

THEOREM 1.1 1f the representation p (over ) is equivalent to

a reducible representation ¢

then p 1is equivalent to

the direct sum of the representation o1 and oy
From this theorem it follows that:
THEOREM 1.2 If p 1is a representation for G then p is equi-
valent to the direct sum of irreducible representations
of G, for p over G:.
This key theorem says that once we know all the irreducible rep-
resentations of a group G, we have all the possible representa-
tions since they can be constructed by adding together irreducible
representations.
The next surprising theorem tells us that the number of irreducible
representations of a finite group is strictly limited.
THEOREM 1.3 The number of non-equivalent irreducible representa-
tions of G equals the number of conjugacy classes of G.
It would be very cumbersome, and as it turns out, unnecessary to
write down all the irreducible representations of a given group.
To avoid doing this we look for some way to designate each of

these representations. This leads to the next definition.



DEFINITION. If p 1is a representation of G, then the character
x of p is the mapping from G to C defined by:
x(g8) = trace p(g).

1f 81287 € G are elements of the same conjugacy class and g

is a representation of G, then p(gl) is similar to p(gz) and

since similar matrices have the same trace we can state:

THEOREM 1.4 Any character x of G 1is constant on conjugacy
classes of G.

Also:

THEOREM 1.5 Characters of equivalent representations are identical.

THEOREM 1.6 If the representation p of G is reducible and

equal to the sum P1 + 9y +...+p of irreducible represen-

k
ations, then Xy =x +x +...+x . In particular,

1 P2 Pi
every character of G 1is the sum of irreducible characters
of G.
The above theorems mean that we can identify a representation p
by specifying its character Xp which is an r-row column vector
x(g;)

x(32) each entry being the trace of a representative matrix

Aigr)

9(81) from each conjugacy class of G. We call x(l) the degree
of the character. Theorem 6 says we need only specify the
irreducible characters of the group since all the others are simply
integral linear combinations of these. Thus we can write down a

square matrix for a group G called the character table for G.

The columns of this table are the n irreducible characters of G.



- =

Customarily the identity character is written as the first

1
column (or row) and the first conjugacy class, i.e. the first row

(or column) is the identity of the group. The ijth entry of the
table is the value xj(gi) g being an element of the ith con-
jugacy class and xj being the jth irreducible character of G.

It should be noted in passing that G =~ H implies G
and H have the same character table but the converse is not true.
The quaternion group and the octic group are the smallest counter
examples.

An amazing number of relationships exist between the rows
and columns of a character table. 1In fact, these relationships
are so restrictive that in some cases it is possible to construct
the character table for a given simple group knowing no more than
the order of the group. There is no universal procedure to develop
a character table. After one has armed himself with a thorough
knowledge of the various character relationships and some special
number theory concepts, he can then proceed only on intuition and
experience. No computer program has yet been devised to calculate
character tables for all groups of order < 200 and yet tables for
groups of this size can be done reasonably quickly by hand.
Frame's paper [ 9] displays in detail many of the techniques used
to generate a character table of a group from that of a subgroup.
Although individuals have found character tables of groups with
orders as large as |G| = 47,377,612,800 the most notable success
measured in terms of magnitude has been the generation of the

table for Conway's group of order 221~39-54-7°11-13-23 by computer.
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The method used some of the unique properties of the group and
in no way represented a general procedure which would work for
other groups.

Before the more useful properties of the character table are
stated, the following definition is necessary.

DEFINITION. Let X12%X9 be characters of group G. Let
) def %1%, (8))
XpaXp) = E—m—
where 9 is an element from the ith conjugacy class and
\N(gi)| is the order of the centralizer N(gi) of g,
In the following let Xi’xj be irreducible characters of G and
90 be a reducible character.
THEOREM 1.7 (Orthogonality relations on columns)
(1). (xi,xj) = 6ij iff X% are irreducible char-
acters.
(ii). (xi,e) = ai where ai is the number of times the
irreducible character X4 is contained in §.
(iii). (8,08) =% ai = sum of squares of the multiplicities

i
of all the irreducible characters appearing as components

of o.
The above relations enable one to determine if a character is
irreducible or not and in the case of a reducible character, to
break it up into its irreducible components. Note the following:
(i) implies that if (Y ,¥ ) = 1 then Yi is irreducible. 1If
(0,0) = 2 or 3 then (iii) implies that @ is composed of 2 or

3 irreducible characters respectively (this case comes up often

in this paper).
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THEOREM 1.8 (Row Orthogonality)

-~
0 if g,h are not in the same

conjugacy class
k

Tal@em - ¢

i=1

\N(g)\, if g,h are in the same
Lconjugacy class

Note: A special case of the above is:

T xi(l)xi(l) = ¢ (degree of ith character)2 = lG‘ .

i i
The next major topic is the question of how characters of the
group are related to characters of its subgroups.

If x 1is an irreducible character of G we can easily
get a character X\H of H<G by restricting x to H.
le(g) = x(g) for g being any element in a conjugacy class of
H. X‘H is not necessarily irreducible and often it isn't.
If Y 1is an irreducible character of H < G we can obtain a

character YG of G by a process called inducing, which is
G H

Y X G

formulated by: S T —A where Cj

I m_c |nY e S con-
j c)\c:cj A
jugacy class of G and Ci are all conjugacy classes
of H which are contained in the conjugacy class C?.
Again we note that the induced character YG need not be
irreducible in G. The induced and restricted characters of

H and G are bound together by the following theorem:

THEOREM 1.9 (Frobenius' Reciprocity Theorem)

ooty = 0¥,

This theorem says that the number of times the restricted
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character X‘H contains Y as a component, equals the number
of times that the induced character YG contains ¥ as a com-
ponent.

Thus if H < G, and one has available the character table
for G(H), it may be possible to find the table for H(G) by
restricting (inducing) all characters of G(H) to H(G) and
using the orthogonality properties and Frobenius' Theorem to
determine how to split up all the reducible characters into their
irreducible components.

The preceding has been a summary of character theory which
is applicable to all groups. 1In the following section some

theorems are discussed which apply only to special groups.



II. A MODIFICATION OF CLIFFORD'S THEOREM

In this section we introduce some results known collec-
tively as Clifford's Theorem, concerning characters of normal sub-
groups. The particular structure of SL(n,q) is analyzed and a
theorem is obtained which enables us to extend Clifford's Theorem
and achieve even more information concerning the characters of

GL(n,q) restricted to SL(n,q).

2.1 Clifford's Theorem

Nearly every textbook which contains a section on Clifford's
Theorem, including most of Clifford's paper [4], states the results
in terms of irreducible G-modules and G-submodules. 1In this section
we restate these theorems in terms of characters. Such a change
in viewpoint can be found in Feit [8) and Lomont [17].

The following are various definitions, notations and con-
cepts used in the discussion of Clifford's Theorem. let G be a
group and suppose p 1is an irreducible representation of G and
X its character.

DEFINITION. If o € Aut(G) then the representation po defined
by: po(g) dgf p(g°§ V g € G is said to be conjugate to

p-.

Likewise the character, xo(g) def x(go) V 8 €G is

conjugate to the character x of G.

13
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It can be shown that if x 1is an irreducible character, then xc
is also. If Ha G and ¥ is an irreducible character of G then

le, xg|H are said to be conjugate relative to G. Conjugate char-

acters should not be confused with characters ¥, x' which are

complex conjugate characters defined by x'(g) = x(g) -
DEFINITION. Let H < G. Two irreducible representations of G,
P1 and p, are associates if they have an irreducible
component in common when restricted to H.
The following theorems are all modifications of, or an outgrowth
of Clifford's work [4].
THEOREM 2.1 cClifford's Theorem
If Ha G and p is any irreducible representation of G,
then the restriction of p to H denoted by Py is
either irreducible or reducible into irreducible components
of the same degree. If pé is any such irreducible com-
ponent of Py? then all other components are conjugates
of pé relative to G and in addition, every such con-
jugate of pé appears as a component of Py
This theorem says that if a character Xy splits in H then it
splits into characters of equal degree and which are identical
on all classes of H which are complete classes of G. The sets
of values of the characters over the other classes of H are
identical but the values are permuted over these classes. Now we
will take up a theorem which says something about the number of
components and their multiplicities.
Suppose Xy is reducible. Then associated with this char-
acter is a subgroup G* s.t. H < G*¥ < G. If G/H 1is cyclic then

the following theorem provides some interesting information.
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THEOREM 2.2 Clifford's Theorem

Let H be a normal subgroup of G such that G/H is
cyclic of order k. Then the irreducible components of Xy each
have multiplicity 1. The number of components of ¥ is m, and
the number of distinct associates of x relative to H is k/m,
where m = [G:G*] and H < G* < G.

Since the scalar matrices of GL form a cyclic group,
GL/SL, we know that if a character of GL splits in SL it will
split into m pieces of multiplicity 1, where m divides
[GL:SL] = (q-1). Also, since the number of associates is (q-1)/m,
this means that if Xg, is irreducible (i.e. m = 1) then there
are (q-1) characters of GL that restrict down to the same char-
acter of SL. 1If xSt is reducible into m components
Yl,...,Ym then there are (q-1)/m characters of GL which, when

restricted to SL, also split into the same components.

2.2 A Theorem Applicable to SL(n,q), SU(n,q)

Let x be an irreducible character of GL(n,q). By

Clifford's Theorem 2.2, if xlSL is reducible then it splits into

m conjugate irreducible components of multiplicity 1 where m

divides ([GL:SL] = (g-1). 1In this section we prove that m

divides d = (n,q-1), and this determines m exactly for all the

groups considered in this paper.

DEFINITION. Let H,K,M be groups with M < Z(H) and suppose
there exists an isomorphism @ of M into Z(K). Then
if we identify M with its image 6(M), there exists a

group G of the form G = HK with M =H N K < Z(G)
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such that H centralizes K. Such a group G 1is said to

be a central product of H and K w.r.t M. 1In diagram

form: T ?

Z (H) Z (K)

M = oM)

Lemma 2.3 If H X K is the direct product of a group H with a
group K and Y,p are irreducible characters of H,K
respectively then the character x defined by x(hk) =
Y(h)-6(k) 1is an irreducible character of H X K. Con-
versely, every irreducible character of H X K 1is equi-
valent to such a product of characters of H and K.
pf: see Littlewood [16]

lemma 2.4 If H X K is a direct product of a group H with
an abelian group K and ¥ is an irreducible character
of H X K, then X\H is an irreducible character of H.
Pf: By lemma 2.3 x(g) = Y(h)-9(k) where g =hk, h € H,
k € K and Y,p are irreducible characters of H,K
respectively. K 1is abelian so all its characters are of
degree 1. .. x(h) = x(h-1) =¥(h)-6(1) = ¥(h)-1 = ¥(h)
for all h € H. Thus X‘H =Y which is an irreducible
character of H.

lemma 2.5 If HK is a central product, then there exists a
homomorphism f:H X K — HK
pf: Gorenstein [13]

Lemma 2.6 Let f be a homomorphism f:G - G'. If x is an
irreducible character of G/Ker f then x' defined by

x'(g) = x(f(g)) 1is an irreducible character of G.
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Pf: Comnsider (x',x'):
1
x'sx") = Tel L x'(g)
G g€G

lKer f\
= —m— T x(8)x(g)
geG/Ker f

@ = \—éf T x(£(2))X (@)

geG

1 com——
= ) x@)x(@) = (x,x) =1
[G/Ker f] ocG/Ker £

since ¥ is an irreducible character of G/Ker f

<o (X'x") =1 implies x' is an irreducible character
of G.

Note: Lemma 2.4 and 2.6 seem to be familiar results but
don't appear anywhere in standard references.

THEOREM 2.7 If X 1is an irreducible character of a central pro-
duct HK, where K 1is abelian, then X\H is an
irreducible character of H.

Pf: By Lemma 2.5 there is a homomorphism f:H X K - HK
such that HK = H X K/Ker f .

Let x' be defined by: x'(g) = x(f(®)).

By~vlemma 2.6 ¥x' 1is an irreducible character of H X K.
Since H 1is a subgroup of both H X K and HK and
x'(g) = x(f(g)) then x'(h) = x(h) for all h € H.
This implies x'\H = x\H.
But X"H is irreducible by Lemma 2.4 so X\H is an
irreducible character of H.

This theorem says that every irreducible character of a central

product HK with K abelian is irreducible upon restriction to

H and so no splitting of characters can take place.

We now study the structure of SL(n,q) and use Theorem 2.7 to
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obtain our major goal.
dk

~
]
=
i
-
[

DEFINITION. Let M(d) = {A € GL(n,q)|det A = ¢
where d = (n,q-1) and g 1is a primitive element of

GF(q) .

We note that every scalar matrix of GL(n,q) 1is contained in
M(d) since det ka = pkn = p(kn/d)d.
Lemma 2.8 M(d) < GL(n,q).

Pf: let A € GL, B € M(d)

det ABA™! = det A det B det A"} = det B = pdk
thus ABA™' ¢ M(d) = M(d) < GL

Lemma 2.9 GL/M(d) == g(d), a cyclic group of order d.

Pf: Let f£f:GL(n,q) onto o(d)
(q-1)/d

where f(A) = (det A)
Clearly f is a homomorphism and f(GL) = g(d). 1It is

easy to show that the Ker f = M(d) so by the lst

Isomorphism Theorem GL/Ker f = f(GL) i.e. GL/M(d) = g(d).

Lemma 2.10 M(d) = SL-Z(M(d)) is a central product.

Pf: Z(M(d)) = {scalar matrices A € GL}

lza@n| = 4@ = @-1

q-1
ziswy = | [(Ca 0k ‘ ‘
) k=1,...,d z@6L)| =d
Gh
p
Consider: ZM@d)) SL
M >~ Z2(SL)

(i) M(d) = SL.Z(M(d))
Pf: let A€ SL, B € Z(M(d)), then det (AB) =

dk
det A.det B = l.p = AB € M(d) = SL-Z(M(d)) s M(d).
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IGLl

o SL-Z(M(@d)) = M@).

(ii) SLNzZMd)) =Z(SL)
Pf: Let A € SLNZM())
then det A=1 and A 1is a scalar matrix so A € Z(SL).
(1ii) ZM()) centralizes SL
Pf: Every matrix of Z(M(d)) 1is scalar and so commutes
with every element of SL.
Conditions (i), (ii), (iii) = M(d) 1is a central product
of SL and Z(M(d)).
We now put this all together to obtain the following results.
THEOREM 2.11 Every irreducible character ¥ of GL(n,q) when
restricted to SL(n,q) 1is either irreducible or splits
into t conjugate, irreducible characters of SL of
multiplicity 1 where t divides d. x has Q-

t

associates in GL w.r.t. SL.

Pf: GL SL X Z(M(d))
d f
M(d) = SL-Z(M(d))
-1
d
\SL

Suppose ¥ 1is an irreducible character of GL(n,q). Now M(d) q GL
by Lemma 2.8 and GL/M(d) is cyclic by Lemma 2.9 so by Clifford's
Theorem 2.2 X‘M(d) is either irreducible in M(d) or it splits

into t conjugate irreducible characters LSEREERY of multiplicity

t
1 where t divides [GL:M(d)] = d. Since by Lemma 2.10, M(d) is
a central product of SL and the abelian group Z(M(d)), then by

Theorem 2.7 every irreducible character of M(d) 1is also an



20

irreducible character of SL under restriction.
We see from this theorem that any splitting undergone by
the characters of GL takes place in restricting from GL to

M(d). This means that the characters split into t conjugates

where t\d. This is marked improvement over Clifford's Theorem
which requires only that t|(q-1).
We thus have the immediate Corollary:

Corollary 2.12 The characters of GL(2,q9), GL(3,q), GL(4,q),

d = 2 must either be irreducible when restricted to

SL or split into 2,3, or 2 irreducible conjugate char-
acters respectively. Every character x of GL(2,q),
GL(3,q9), GL(4,q), d = 2 has ﬂil associates w.r.t. SL
where t =1 if X\SL is irreducible or t = 2,3, or 2
respectively if X‘SL is reducible.

Theorems 2.11 and 2.12 can be restated for the characters of

U(n,qz) restricted down to SU(n,qz). We need only define M(d)

by: M(d) = {A € U(n,q?)|det A = p@¥E@-D o 1., where

d = (n,q+1l) and p 1is a primitive element of GF(qz).



ITII. TECHNIQUE

In this section we describe the procedures by which the
character tables are obtained by restriction from GL(n,q) and

U(n,qz)-

3.1 Determination of Conjugacy Classes for the Linear Groups

Dickson [5] did considerable work on determining the con-
jugacy classes of the general linear groups. The following is a
brief description of how the class structure is found.

The elements of GL(n,q) are matrices, with each of
which there is associated a characteristic equation. A familiar
theorem tells us that if matrix A is similar to matrix B then
the characteristic equation of A equals the characteristic equa-
tion of B. Thus we can find all poss#le characteristic equa-
tions and corresponding to them we can associate a conjugacy class
of GL having that equation. However, since the converse of
the above theorem is not true, then some of the characteristic
equations will correspond to several different conjugacy classes
having that same equation. We can get a full separation by
writing down the possible Jordan canonical forms for each type of
characteristic equation in an appropriate extension field. Each
canonical form corresponds to exactly one conjugacy class and

every class has such a canonical form.

21
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In [14] Green shows that if A € GL(n,q) and A has
haracteristic pol nomialfklfk2 ka where f f_are

characteristic poly 1 £y ooy 1oy
distinct irreducible polynomials over GF(q) then for every
possible partition VyseeesVy of the exponents kl""’kN
there corresponds a distinct canonical form and thus a distinct
conjugacy class.

This means that the number of conjugacy classes of GL(n,q)
can be determined by counting the number of possible partitions.
The final result is a generating function which for a given n
is a polynomial in q with constant rational coefficients expres-
sing the number of classes for GL(n,q).

For example, if we want to find the conjugacy class
structure of GL(3,q) we first write down the possible factoriza-

tions of the characteristic equation of degree 3 and then for

each factorization we write down the possible Jordan forms.

Types of characteristic polynomials Jordan Canonical Form
irreducible cubic (T Tq q2
T
adratic factor, linear factor k {4
a c ’ P o at
k k
k
3 equal linear factors pk k (? pk k)(q pk
P pk P 1 P
k
2 equal linear factors pk k ? pk L
Pt P
P
. . k
3 different linear factors p pL m>
p
p € GF(q)
2
o €GF(q")

T € GF(q3)
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The number of conjugacy classes can now be easily counted by con-
sidering the valid range of the exponents on the primitive field
elements.

Grouping the conjugacy classes in sets according to the
possible Jordan Canonical forms is not only a convenient way to
count the classes, but also serves several other purposes. First
of all, the values which the exponents k,l,m,n assume can be
used to determine the character value for each class, so that
great economy of notation results; each whole set of conjugacy
classes requires only one entry in each character. Thus the char-
acter table of GL(3,q) 1is composed of only 8 rows, one for each
canonical form. Also, it turns out, as first noted by Steinberg
in [19], that there is a 1-1 correspondence between the sets of
characters of GL(n,q) having the same degree and the sets of
conjugacy classes of the same canonical form. The order of a
given set of conjugacy classes is equal to the order of the
corresponding set of characters. Thus for the group GL(3,q)
we see that all the characters are of only 8 different degrees and
it is particularly convenient to set up the character table so as
to exhibit this 1-1 correspondence between classes and characters.
We remark that this 1-1 correspondence between sets of classes
and characters doesn't hold in SL and SU if d # 1.

Dickson determined the order of the centralizer of an
element for each conjugacy class type of GL(n,q) n = 2,3,4, by
counting the number of matrices commuting with a given canonical

form.
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Finding the conjugacy class structure of SL(n,q) is
accomplished by determining what canonical forms have determinant
1. Since SL 9 GL, then SL is composed of complete conjugacy
classes of GL. Thus every conjugacy class of SL has the same
order as it did in GL with the exception of the classes of GL
which split in SL. These splitting classes were determined by

Dickson for n = 2,3.

3.2 Determination of Conjugacy Classes for the Unitary Groups

In [23] wall obtains results on the conjugacy classes of
some classical groups, the unitary group, U(n,qz), included. His
main results for U(n,qz) are:

THEOREM. (i) X € GL(n,qz) is similar to an element of

*-1

U(nsqz) iff X ~ X ('~' indicates simi-

larity and '*' indicates the conjugate transpose)
2
(ii) Two elements of U(n,q ) are conjugate in U(n,qz)
iff they are similar in GL(n,qz)

(iii) The number of conjugacy classes in U(n,qz) is

® A
the coefficient of t" in I 1+t x
»=11-qgt

He also gives a formula by which the order of each conjugacy class
can be calculated.

The above statements say that all the elements of U(n,qz)
which are similar to some A ¢ GL(n,qz) such that A ~ (A*)-l,
form exactly one conjugacy class.

In [7]) Ennola refines the formula for calculating the
order of the conjugacy classes. He also shows that if Ake GL(n,qz),

q +1 _
e =

* -
and A~ (A) 1 and ¢ 1is an eigenvalue of A, then 1



25

where k is odd. Thus we can use Jordan Canonical forms with
marks of GF(qZk), fitting the above conditions, to represent the
conjugacy classes of U(n,qz). We use the same type Jordan forms
employed as class representatives for GL(n,q) except now we use
elements such as pk, ok, Tk where p = o(q—l)’ T = ¢§q3-1) and
o, Ty are primitive elements of GF(qz), GF(q6) respectively.
As in GL(n,q) we assemble the conjugacy classes of

U(n,qz) into sets, each set corresponding to a Jordan Canonical
form. We likewise place the irreducible characters into sets
according to their degrees. As before, there is a 1l-1 corre-
spondence between the sets of classes and sets of characters in

U(n,q?).

3.3 Development of the Character Tables

The character tables for GL(n,q) n = 2,3 are given in
Steinberg [19] and for U(n,qz) n = 2,3 in Ennola [6]. 1In the
following we shall describe the procedure for finding the char-
acter table for SL(n,q) and PSL(n,q), with the understanding
that the same procedure works for the unitary case; just replace
GL, SL, PSL by U, SU, PSU throughout the discussion.

The conjugacy classes of GL(n,q) are represented by
all the possible Jordan Canonical Forms. We first find the con-
jugacy class representatives for SL(n,q) by selecting only those
representatives of GL with determinant 1. Then the irreducible
characters X4 of GL are restricted down to SL one at a time
by using only the values xi(g) where g 1is from a conjugacy

class of SL. The inner product (Xi|SL’xi|SL) is calculated.
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1f (xi‘SL’xi‘SL) =1 then xi‘SL is irreducible and we are done
with this character. Otherwise, we know it splits into d irre-
ducible components Yl""’yd which are all equal on those classes
of SL which are complete classes of GL. The values of the Yi
on the other classes can be later determined, after all the char-
acters of GL have been restricted down to SL, by using the
orthogonality relations Theorems 1.7 and 1.8 and Gaussian sums.
After the character table for SL is found, we can obtain
the table of PSL = SL/Z(SL) by using the following well known
theorems due to Frobenius.
THEOREM 3.1 If H<a G and X is an irreducible character of
G, then X is a character of G/H if and only if it has
equal values for any two elements of G which are equi-
valent modulo H.
THEOREM 3.2 If H 4G then every character of G/H 1is a char-
acter of G.
To determine the conjugacy classes of PSL we simply fuse into a
single class of PSL all the classes of SL which are equivalent
under multiplications by scalar matrices from Z(SL).
Picking out a set of classes of SL which are all equi-
valent to one class in PSL, we then select the characters of
SL which are constant over this set of classes. These are the
characters of PSL.
If one is working with a specific group character table
then this procedure for finding the character table of a known sub-
group works rather well. The restricted characters can be tested

for reducibility and the use of the character orthogonality relations
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and Frobenius' reciprocity theorems would enable one to split
the reducible characters into irreducible components.

It works well because the job of taking inner products
(X,X) 1is not too arduous a numerical calculation. However, if
one is working with a 'generalized' character table such as
GL(n,q) or U(n,qz) the entries are not numerical but are poly-
nomials in q and variable roots of unity, so that the task of
calculating inner products becomes extremely tedious. It would
be almost hopeless if many of the restricted characters were re-

ducible with many components. Theorems 2.1l and 2.12 are thus

very important because they show that the splitting is of a very
simple nature, and thereby make this process feasible. The pro-
cedure can be best understood by following through one of the

table derivations in detail as done in one of the first sections

of the paper.



IV. ENNOLA'S CONJECTURE

In [20] Steinberg noted that if the conjugacy classes of
GL(n,q) are partitioned into sets according to the type of Jordan
canonical form to which they were similar, and the irreducible
characters were also put into sets according to their degrees,
then there was a 1-1 correspondence between the conjugacy class
sets and the character sets. Also, the corresponding sets had
the same order. Ennola noticed that if this same partitioning is
done on U(n,qz) then the number of resulting sets is the same
as for GL(n,q).

In a general character table for GL(n,q) and U(n,qz)
we write down only one character for each such set of irreducible
characters and this character has only a single entry for each
set of conjugacy classes. Thus the character tables for U(n,qz)
and GL(n,q) contain the same number of 'generalized' entries.
Ennola conjectured for all n, and proved for n = 2,3, that if
q 1is everywhere replaced by -q in the character table for
GL(n,q) and the resulting character changed in sign if the degree
function is negative, then the character table U(n,qz) results,
He used Brauer's characterization theorem [1] to prove it for
these two cases but the complexities of GL(n,q) prevent one
from carrying forward his method. 1If this conjecture is true,
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