(3) 313 !

A COMPUTER SIMULATION EXPERIMENT
WITH SELECTED COMMUNICATION AND
INDIVIDUAL BEHAVIORAL VARIABLES
IN THE BUSINESS FIRM

By

Henry Paul Sims, Jr.

This research is a computer simulation experiment involving a limited number of factors that affect the productivity of a business organization. The focus is on the psychological motivation of the individual in a business organization, and how that motivation influences the productivity of the organization. The primary objective of the research is to demonstrate how computer simulation can be useful as an experimental vehicle to develop additional insight into the behavior of individuals in organizations.

The specific setting is a hypothetical business firm that manufactures and markets a multi-product line. The primary decision considered in the model is the allocation of sales effort among different products in the product line, and the effect of that allocation on the firm's profitability.

For behavioral theoretical background, the research relies primarily on the work of Vroom regarding participation in decision-making. The specific mechanisms through which participation may influence productivity are examined, particularly the classification of participation effects into "decision quality" and "ego-involvement."

The model also draws upon the work of Likert regarding the effects of communication links in an organization. Selected communication links are incorporated for study. In particular, the link between production and sales concerning knowledge of inventory position is considered. Also included for investigation is an intercommunication link between territorial salesmen regarding characteristics of the market.

The primary response variable that is selected for analysis is the profitability of the firm. A complete 2⁶ factoral experimental design is utilized, concentrating on the following experimental variables:

- · Stability of demand: stable vs. volatile.
- Market response to sales effort: uniform response vs. non-uniform response.
- Knowledge of inventory by sales department: no knowledge vs. knowledge.
- Salesmen intercommunication: no information exchange vs. information exchange.
- Sales manager style: authoritarian vs. equalitarian.

• Salesmen personality: low vs. high need for independence.

Two factors, stability of demand and the inventory communication link, were found to have little effect on profitability, primarily because of counterbalancing mechanisms that tended to result in opposing effects.

The intercommunication of salesmen was found to be insignificant because of the lack of substantive information transfer. The strongest effect on profitability was caused by participation in the sales-effort allocation decision, especially when considered in conjunction with valid market information and salesmen characterized by a high need for independence.

The model demonstrated a structure which explicated the partialling of the effects of participation into an information transfer component and an ego involvement component, each acting independently of the other.

The experiment has provided an initial step toward the integration of "macro" and "micro" type simulations, as well as demonstrated the viability of simulation as a means of explicating the structural mechanism underlying behavioral theory. The major contribution of the experiment is the demonstration of the usefulness of computer simulation as a vehicle for the exploration of behavioral theory.

A COMPUTER SIMULATION EXPERIMENT WITH SELECTED COMMUNICATION AND INDIVIDUAL BEHAVIORAL VARIABLES IN THE BUSINESS FIRM

Ву

Henry Paul Sims, Jr.

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Management

1971

DEDICATION

To My Parents

ACKNOWLEDGMENTS

I wish to extend my sincere appreciation to several people who have contributed to this thesis:

To Dr. Richard F. Gonzalez, for his continuous understanding and support throughout this course of study.

To Dr. John Gullahorn, for his stimulating ideas, eternal optimism, boundless encouragement, and sincere friendship.

To Dr. Jeanne Gullahorn, for her penetrating insight and advice.

Above all, my special gratitude is extended to my wife Laurie--who faithfully believed in this project and accepted my frequent 5:00 a.m. returns from the Computer Center.

This research was supported by PHS Research Grant
No. MH-16935, National Institute of Mental Health, and by
the Computer Institute for Social Science Research,
Michigan State University.

TABLE OF CONTENTS

Chapter		Page
1	INTRODUCTION	1
	Theoretical Background Methodology Background Macro and Micro Models The Nature and Purpose of this Experiment	2 8 15 23
2	STRUCTURE OF THE MODEL	25
	The Organization Program PAJAMA Subroutine FCAST Subroutine INVENT Subroutine GENPRO Subroutine PRREC Subroutine SLSMEN Subroutine SLSGEN Subroutine BOOK Subroutine NEWPRO Subroutine EXEC Utility Subroutines Summary	26 27 35 36 38 39 41 47 56 60 62 66 67
3	EXPERIMENTAL DESIGN	68
4	DESCRIPTION OF RESULTS	78
	Factor A: Stability of Demand Factor B: Market Response Interaction Effect: B-E Factor C: Inventory Link Factor D: Salesmen Intercommunication Factor E: Participation Interaction Effect: B-E Factor F: Need for Independence Interaction Effect: E-F Summary of Results The Problem of Realism in Simulation	82 84 85 86 87 87 88 88

Chapter			Page	
5	SUMMARY AND CONC	CLUSIONS	95	
	Effect of Demand Stability			
	Effect of Inventory Communication Link Effect of Salesmen Intercommunication			
	Effect of Partic	101 104		
	Future Research Summary			
	BIBLIOGRAPHY		110	
	APPENDIX I: De	tailed Flow Chart	117	
	APPENDIX II: Gl	ossary of Variable Names	140	
		ogram PAJAMA	145	
	APPENDIX IV: In	itial Conditions Program	168	
		itput	169	

LIST OF TABLES

Table		Page
3-1	Experimental Variables	75
4-1	Summary of Analysis of Variance	78
4-2	Summary of Results	89
5-1	Variation of Promotion Expenditures with Factor A	97
5-2	Effects of Standard and Alternate Levels of Factor C	102
5-3	Profit Under Different Conditions of Factor D	103

LIST OF FIGURES

Figure		Page
1-1	Vroom's Concept of the Relationship Between Motivation and Performance	6
2-1	Organization Chart	28
2-2	Organizational Activities	29
2-3	Information and Decision Flow	30
2-4	Overall Flow Chart	34
2-5	Subroutines FCAST and INVENT	36
2-6	Flow Chart: Subroutine GENPRO	39
2-7	Flow Chart: Subroutine PRREC	40
2-8	Sales Effort Allocation Process	43
2-9	Stages in the Product Life Cycle	48
2-10	Hypothetical Wiebull Distribution	50
2-11	Flow Chart: Subroutine SLSGEN	56
2-12	Flow Chart: Subroutine EXEC	64
5-1	Effect of Inventory Communication Link	100
5-2	The Effects of Participation	107

CHAPTER 1

INTRODUCTION

What causes people to willingly contribute to the productivity of an organization? The quest for the answer to this question is a continuing challenge to both managers and behavioral scientists. Occasionally relatively simple answers are proposed, e.r., a "Theory Y" versus a "Theory X." But simplified theories cannot adequately explain the exceedingly complex interactions of the myriad of factors that influence an organization's performance. Indeed, even the concept of "productivity" has become rather blurred in recent In the past, profitability was normally a sufficient measure of productivity. Today, however, a business organization is accountable not only to stockholders or owners, but also to employees, customers, and ultimately to society as a In addition to the responsibility of achieving profit objectives, management must also face the problem of fulfilling a multitude of objectives which are frequently illdefined and difficult to measure. In an overall sense, a business firm continually attempts to optimize an ill-defined multiple criterion function, with constantly changing operating constraints.

This research is an experiment involving a limited

number of factors that affect the productivity of a business organization. The focus is on the psychological motivation of the individual in a business organization, and how that motivation influences the productivity (as measured by profitability) of the organization. A secondary focus is concerned with the effect of selected communication links on productivity. The level of technology as well as the technical competence of individuals is assumed to be constant and is not directly considered. The primary objective of the research is to demonstrate how a relatively new methodology--computer simulation--can be useful as an experimental vehicle to develop additional insight into the behavior of individuals in organizations. It is an exploration aimed at elucidating behavioral theory by subjecting that theory to a simulation process and observing whether or not the simulation approach leads to an understanding of gaps, or inconsistencies, that may exist within the formulation.

Theoretical Background

In discussing the interrelationship of work and motivation, Vroom (1964, p. 6) specified three phenomena which have attracted the attention of behavioral scientists:

- 1. The choices made by persons among work roles.
- 2. The extent of their satisfaction with their chosen work roles.
- 3. The level of their performance or effectiveness in their chosen work roles.

This research concentrates on the third phenomenon. In

particular, it focuses on the effect participation in decision-making has on productivity. The specific setting is a hypothetical business firm that manufactures and markets a multi-product line. The primary decision considered in the model is the allocation of sales effort among different products in the product line, and the effect of that allocation on the firm's profitability.

For behavioral theoretical background, the research relies primarily on the work of Vroom (1960, 1964) regarding participation in decision-making. In a study of supervisors, he found that individual personality differences constitute important moderators in the relationship between participation in decision-making and performance. The amount of psychological participation was found to be highly related to performance in those subjects who were high in need for independence; however, such participation was unrelated to the level of performance in those scoring low in measured need for independence. Vroom's findings regarding the moderating effects of subordinates' need for independence are incorporated into this model.

In this experiment, two types of individual salesmen are specified. The first type has high need for independence and derives intrinsic satisfaction from the opportunity to exert perceived influence on the decision-making of his superiors. The second type has low need for independence and places no personal value on the opportunity to influence decision-making. It is recognized that in a given population of actual

individuals, the attribute of need-independence will be distributed along a continuum. For purposes of experimental control, however, the model assumes dichotomous polar levels of need-for-independence.

The specific mechanisms through which participation may influence productivity are also examined by this research—particularly the classification of participation effects into "decision quality" and "ego-involvement." In discussing decision quality, Vroom (1964, p. 7) observed that:

Differences in the quality of decisions reached democratically and autocratically are probably dependent on a large number of factors, including the extent to which supervisors and subordinates have information relevant to judging the organizational consequences of different courses of action and the extent to which the interests of each are in harmony with organizational objectives. It is extremely unlikely that democratic decisions are always higher in quality than autocratic ones or vice versa.

In addition to the information quality aspects of decision-making, this experiment also attempts to demonstrate the relationship between participation and ego-involvement in decisions, and how this relationship can influence the productivity of the organization.

It is also possible that people become "ego involved" in decisions in which they have had influence. If they have helped to make a decision it is "their decision," and the success or failure of the decision is their success or failure. Intuitively it would appear that the amount of personal involvement of people in decisions is dependent on the amount of influence they have had in the decision and on the extent to which they pride themselves on their ability to make that kind of decision. If, for example, a person who conceives himself to be a brilliant scientist shares in the making of a decision which he believes requires scientific judgement, the outcome of that decision is a test of the adequacy of his self-conception. A

successful decision confirms his self-concept; an unsuccessful decision threatens it. On the other hand, when he helps to make a decision on an administrative matter he has less "at stake." Neither a successful nor an unsuccessful decision would be greatly inconsistent with his self-concept (Vroom, 1964, p. 7).

The model also relates individual motivation and performance to the overall performance of the organization, incorporating an elementary theory of individual motivation, the Vroom concept of "Expectancy Theory" (1964). The structure of the model thus is dependent on the theoretical and empirical framework used to portray individual behavior in organizations.

Vroom's conceptualization of Expectancy Theory may be referred to as the instrumentality-valence model, which is stated in two propositions:

Proposition 1. The valence of an outcome to a person is a monotonically increasing function of the algebraic sum of the products of the valences of all other outcomes and his conceptions of its instrumentality for the attainment of these outcomes.

Valence is defined as "anticipated satisfaction from an outcome."

Proposition 2. The force on a person to perform an act is a monotonically increasing function of the algebraic sum of the products of the valences of all outcomes and the strength of his expectancies that the act will be followed by the attainment of these outcomes.

It is also assumed that people choose from among alternative acts the one corresponding to the strongest positive (or weakest negative) forces (Vroom, 1964, p. 17).

Thus, in Vroom's model, each individual has internal attributes such as expectancies, instrumentalities, valences

of particular states, forces to perform particular acts, and skill levels.

An individual's performance may be regarded as a function of his ability and motivation. In this model, all salesmen are assumed to have equal and constant ability and technical competence. Variations in performance, then, depend only on changing levels of motivation.

Wroom specified three possible relationships between motivation and performance: linear, negatively accelerated approaching an upper limit, and an inverted U function. Vroom generally favors the inverted U function, quoting evidence, and offering two possible explanations. One reason for the decline of performance under very high levels of motivation may be a narrowing of the cognitive field. Another reason may be an association between anxiety and a high level of motivation. In this model, it is assumed that the levels of motivation in organizations are generally not the very high levels that are associated with a reduced cognitive field or high anxiety. Therefore, the declining portion of the inverted U function is ignored, resulting in a negatively accelerated relationship between motivation and performance that reaches an upper limit.

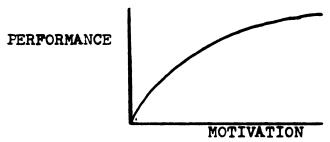


Figure 1-1. Vroom's Concept of the Relationship Between Motivation and Performance

In the model, individual performance of a salesman is defined in terms of the total amount of personal effort that a salesman expends in selling his products to customers. The individual level of motivation (effort) is regarded as a choice made by the individual. In terms of the instrumentality-valence model, he selects a level of effort that is consistent with the highest possible force. For salesmen with high need-independence, the opportunity of influencing his superior's decision-making is regarded as possessing high instrumentality because the outcome of perceived influence with the superior is intrinsically rewarding. Opportunity to participate therefore becomes a motivating factor for the salesman. For salesmen with low need-independence, the opportunity to exert influence in decision-making is regarded as possessing low instrumentality because the outcome of perceived influence with the superior is not regarded as rewarding in itself and is therefore not a motivating factor.

The model provides a mechanism by which the effect of the salesman's motivation-effort reaction is related to the determination of the overall performance of the firm.

This experiment also draws upon the work of Likert rerarding the effects of communication links in an organization. In particular, the model incorporates selected crosscommunication links that are included as determinants in decision processes.

Likert defined the "linking-pin" communication link concept as a key causal variable that differentiates a

"System 2" from a "System 4" type of managerial style.

System 4 management...uses an overlapping group form of structure with each work group linked to the rest of the organization by means of persons who are members of more than one group. These individuals who hold overlapping group membership are called "linking pins" (Likert, 1967, p. 50).

He concluded that the information transfer and motivational effects of group decision-making are key behavioral elements that lead to high performance by an organization.

Likert defined his System 2 as "benevolent-authoritative" while System 4 was described as "participative-group."

System 2 is characterized by a traditional "chain-of-command"
authority structure while System 4 is characterized by
supportive relationships, group decision-making, and high
performance goals.

In this experiment, selected communication links are incorporated for study. In particular, the link between production and sales concerning knowledge of inventory position was considered. Also included for investigation is an intercommunication link between territorial salesmen regarding characteristics of the market.

In summary, this research attempts to incorporate selected theoretical and empirical conclusions of Vroom and Likert as the primary theoretical framework for the experiment.

Methodology Background

The influence of human behavior on the performance of an organization is a complex, interactive process. Various

investigative techniques have traditionally been useful in the quest for knowledge about behavioral processes. One methodology that has been in the forefront in the development of social science theories is field research, or "survey" research (as typified by the work of the Institute for Social Research at the University of Michigan, or the Ohio State Leadership Studies). A second technique, laboratory experimentation, has been useful in isolating specific behavioral variables from random variations and confounding factors, thus facilitating the observation of outcomes that are strictly controlled by the experimental treatment.

A third methodology that has received significant and increasing attention is computer simulation. Simulation, as a technique, has been primarily utilized as a tool for the prediction, understanding, and explanation of existing systems (system analysis) or systems undergoing design (system design). In the field of business, computer simulation has been most frequently applied to the analysis of production, transportation, or marketing systems by focusing on the dynamic flow of materials or products. It has served as a substitute for more precise analytical optimization methods when such methods were inapplicable to complex systems. experiment, however, is concerned with the use of simulation as a means of exploring social science theory in the context of the business firm. Since the focus is on behavior, rather than on the flow of materials, the experiment is classified as a "behavioral" simulation.

Simulation, of course, is far from new: "...man has been simulating things ever since he first scratched a pictorial representation of some real object on the wall of a cave" (Conway, et al., 1959, p. 92). Simulation is new, however, if one considers the subtle changes in the definition of the word. Webster's (1967, p. 811) rather broad definition of "simulate" ("to give the appearance of") can be applied to a wide variety of pictures, schematics, physical models, mathematical models, etc. In management and behavioral science literature, however, the word simulation has taken on a variety of new connotations: "One fact is certain. There is a computer simulation semantic jungle.....no consensus exists among writers on a definition of computer simulation" (Tarter, 1970, p. 2).

The following definition, however, best characterizes the intent of the present research:

Computer simulation is an experimental method which utilizes a digital computer to operate a dynamic model for the purpose of theory development.

The subtle distinctions between the terms theory, model, and simulation are not always apparent. Theories are purposely broad. They attempt to provide a generalization to explain many specific cases. In the physical sciences, theories are generally formulated in mathematical terms, but, in the social sciences, real-world phenomena are not so amenable to mathematical expression. Social science theories are typically depicted verbally, although attempts are frequently made to reduce verbal expression to the more precise

and rigorous mode of mathematics.

...some social scientists have sought refuge in the domain of mathematics. The introduction of strict, emotionally neutral definitions and rigorously logical reasoning has considerable appeal... (Gullahorns [monograph, forthcoming]).

A theory, in entirety, may be too general to be tested in any meaningful way. A more specific expression may be required if a theory is to be tested; ergo, the need for a model. A model may thus be regarded as a specific manifestation of a theory. It is the unique mechanism by which theory is translated into a specific set of conditions and circumstances for the purposes of explanation and experimentation. Theory provides the basic framework for specification of a model and is the starting point for building the model. Barton (1970, p. 25) has discussed the relationship between theory and models:

Theories are purposely broad; they try to generalize over many specific cases. This is really an economy of communication so that man does not need to pass hundreds and hundreds of detailed instances from one generation to the next. . . To use theory, one must make the generalizations of theory specific enough to guide the making of observations and the taking of actions. Models serve this purpose.

Theory, therefore, is frequently expressed as a mathematical matical model. For complex systems, however, a mathematical description may be intractable to a closed analytical solution. Also, the restrictions imposed by the number of variables that can be interrelated by a mathematical model are limited. Other alternatives are needed. Because of its speed and symbol-manipulating capabilities, the digital

computer provides a tool for the implementation of such an alternative. Not only mathematical, but logical models as well, can be specifically formulated for operation on a computer. The result is a computer simulation.

A computer simulation is a unique kind of model. Τt serves not only as an explication of a theory. but also provides the opportunity to set the model to work; to observe the behavior of the model over time and under varied sets of conditions. Since it typically incorporates the interrelationships of the system variables over time, a computer simulation is generally dynamic. A simulation is an abstraction of not only the static structural relationships, but the dynamic. process relationships as well. "It is the exhibition of process that distinguishes simulation from such static models as blueprints, dolls, etc." (Crow. 1967. pp. 11, 12). A behavioral simulation may thus be thought of as a special kind of dynamic model, i.e., an abstraction of reality that attempts to describe the socio-psychological components of the reality and to specify the dynamic nature of the relationships among those components.

Computer simulation provides a unique vehicle for the study, development, and explication of theory. Verba (1964, p. 499) discussed the role of simulation in the development of theory:

One of the major contributions of simulation research [is] to the development of theory...
... The process of designing a simulation forces the designer to explicate his model.... One is forced to make explicit what may have been

the implicit assumptions about the subject matter —in order that these assumptions may be placed in the operating model . . . a simulation differs [in] that it goes on from there. The explicated model is set to work and, over time, generates data on subsequent states of the simulation.

A computer simulation can be regarded somewhat analogous to a laboratory experiment in that it provides the advantage of being able to attain a high degree of experimental control. Like a laboratory experiment, the results may thus lead to further confidence in the theory, disprove the theory, or possibly lead to further investigation that may modify the theory. Frijda (1967) also supports the concept of computer simulation as a useful tool for the development of theory:

. . . computer programs can serve as unambiguous formulations of a theory. The program language is precise; the meaning of a given process is fully defined by what it does. . . . [It] is a means to demonstrate and test the consistency and sufficiency of a theory. If the behavioral data which the theory wants to explain are in fact reproduced by running the program, the theory has been proved capable of explaining these facts. Moreover, running the program under a variety of conditions may generate consequences of the theory which can be tested against new evidence. These consequences may be unforeseen and they may be quite important. . . . Extensive experimentation is possible by running different versions of the program . . .

One of the byproducts of simulation is the necessity of guaranteeing sufficiency and completeness. "The computer simulation model will not operate if you forget anything. If you fail to take into account some necessary mechanism that, in the verbal description of a theory you might readily pass over, the computer simulation will not run" (Feigenbaum, 1963, P. 5). The Gullahorns found the same in their simulation of

George Homans' theory of social exchange:

theory to computer program I forces one to be precise about variables and their relationships and thus helps one to recognize ambiguities in expression and implicit assumption in the verbal model. For example, if the verbal formulation contains qualifying phrases such as "other things being equal," in programming one must define precisely what these "other things" are and what it means for them to be "equal"; otherwise the computer simply will not operate—the programmed theory will not generate the expected consequences (Gullahorns, 1962, p. 5).

In the past, the primary development of theory has resulted from the collection of empirical data. The social scientists' objective was to devise a theory that would explain the data. The more data explained by the theory, the more confidence in the validity of the theory.

Computer simulation does not alter this objective, nor will simulation replace empirical data as the primary source of theory development. Rather, simulation becomes an additional tool, one that can lead to further insight regarding the theory. Through the computer, it becomes possible to perform analyses that would otherwise be impossible; to make further deductions regarding the dynamic implications of complex systems.

The use of computer simulation as a tool for theory development has been recently established in all the behavioral sciences, ranging from political science (which focuses on the nation as a behavioral entity) to psychology (which focuses on the individual as a behavioral entity). Selected examples may be found in Ableson and Bernstein (1963). Amstutz

(1967), Carroll (1969), Guetzkow (1962), Guetzkow, et. al. (1963), McPhee (1961), Schelling (1961), and Tomkins and Messick (1963). Some attention has also been directed toward the use of computer simulation as a methodological technique in doctoral dissertation research. A number of dissertations that employ computer simulation as a research methodology can be found in Tuason (1965), Bellman (1969), Uhr (1969), Chervany (1968), Siemens (1967), Cleveland (1967), Miller (1962), Summit (1965), Desjardins (1964), Hutchinson (1964), Wallace (1961), Green (1960), Benson (1963), Hershaur (1969), Stallings (1970), Farker (1970), Hunt (1970), Fondren (1963), Kaczka (1966), Gensch, (1967), Norek (1970), Brightman (1970), Srinivas (1970), Bettman (1969), and Weber (1970).

Macro and Micro Models

In this investigation of human behavior in organizations, computer simulation is employed to generate an artificial history of a hypothetical firm for purposes of analysis. The research attempted to integrate two major trends which have characterized behavioral simulation: the "macro" versus the "micro" approach. The Gullahorns (1969, p. 3) take note of these trends in their review of social system simulations:

In endeavoring to organize the varied types of simulations that were retrieved in our bibliographic search, we have distinguished between models that emphasize universal processes affecting a social system as opposed to those that focus on micro-behavioral processes within sociocultural contexts. The distinction is by no means clear-cut. However, while not all of the models

simulating total system process exhibit a "black box" approach to individual decision making, they nevertheless tend to trivialize autonomous information processing. The simulations we have termed micro-behavioral, on the other hand, incorporate social psychological considerations and tend to deemphasize total system processes.

In business-related simulations, the "macro" approach typically involves modeling the marketing, production, and financial functions as well as the flow of materials, products, information, and profits along with associated decision processes. The decisions in such a large-scale simulation generally are not associated with an individual nor specified in detail. Examples of the large-scale approach include the Cyert and March model of price and output behavior in the firm, the Bonini simulation of information and decision processes, and the Kaczka model of the behavior of work groups.

The Cyert and March (1963) simulation dealt with the output and price decisions of a business firm operating in an oligopoly market. The basic decision processes of the firm reflected the March and Simon (1958) concepts of "satisficing."

The firm in the model makes three basic decisions during each time period. First, the price to be charged for the product is determined. Second, the number of units to be produced in the next time period is decided. Finally, the firm decides on the amount of sales effort and the amount allocated to sales promotion.

The decisions are made subsequent to a comparison of

past performance with goals. In effect, decisions are made on the basis of past results. Goals are adjusted according to a lagged relationship with performance. If problems exist, the firm may implement a search for alternatives to solve the problem. The firm operates under a type of management by exception since search is avoided if all appears to be going well.

The experiment on the Cyert and March model is implemented through the use of a number of runs, each with random variations in the values of the model parameters. The results are analyzed by regression techniques to determine which parameters exert the strongest influence over the performance of the firm. In summary, the Cyert and March model presents empirically based behavioral processes that are relevant to the determination of the price and output decisions of the business firm.

Bonini's work incorporated the simulation of the information and decision process in a hypothetical business firm. His model was an attempt to synthesize some of the relevant theory from several disciplines—economics, accounting, marketing, organization theory, and behavioral science. His model of the business firm included the traditional functions of production and marketing along with an executive group to oversee the operations. The objective of the simulation was to study the effects of certain environmental, informational, and organizational factors upon the performance of the firm.

The decision processes in the Bonini model were heavily influenced by the work of March and Simon (1958), and Cyert and March (1963), concerning the concepts of "satisficing" rather than "maximizing." The model was distinctive because of its emphasis on the behavioral aspects of the organization. In particular, Bonini incorporated the concept of an "index of pressure," which is a function of performance relative to goals.

When an organization is failing to perform up to expectations, there is a tendency for pressure to build up within an organization, and this pressure generally results in attempts to achieve better performance. (Bonini, 1963, p. 19)

The study was basically an experimental simulation that investigated the effects of changes in the external environment, the information system, and the decision system.

Among other findings, one major conclusion was that firms with relatively stable environments were slow to take advantage of profit opportunities, while firms faced with highly variable environments generally, after considerable search, ended up with higher sales and/or lower costs.

An important conclusion generated by the study was the point contrasting a priori versus a posteriori theorizing. He emphasized how it was often easy, after the fact, to explain how a mechanism would work, but emphasized that such explanations should not mean that the results were necessarily trivial or obvious beforehand.

Although the Bonini simulation was not intended to be applicable to any particular company's problems, it was

important because of the demonstration of the capability to abstract selected behavioral aspects of the information system and decision processes in the firm.

Eugene Kaczka has constructed a computer simulation model that concentrates on the behavioral aspects of the production sector of the business firm. His experiment addressed the question of whether a managerial climate which is employee oriented results in higher levels of performance than a task oriented climate. His research employed a factorial experiment on a complex model of a hypothetical industrial organization that was composed of four structural components: the market, the executive level, middle and lower management levels, and work groups.

As measured by both economic and socio-psychological criteria, he found performance to be significantly affected by managerial climate. His model demonstrated general support of the hypotheses of likert (1967):

Several of the dimensions of managerial climate, and interactions of these dimensions yielded higher levels of organizational performance under employee-orientation than were realized under task-orientation. The notable exception was low cost emphasis which yielded poorer performance.

In summary, the findings indicate that the most efficient levels of performance result when concern for cost performance is wed with a concern for the employees of the organization. (Kaczka, 1966, p. 230-231)

The "micro" approach, on the other hand, has typically been concerned with the simulation of individual decision processes, but generally ignores the process by which the outcome of these decisions affects the total operation of the

organization. Examples of the micro approach include the Smith simulation of the personnel selection decision process, the Clarkson simulation of the stock selection decision process, and the Gullahorn and Gullahorn simulation of George Homans' theory of exchange in interpersonal behavior.

Smith's (1968; Smith and Greenlaw, 1967) simulation dealt with a decision process in personnel selection. In particular, the simulation attempted to emulate the decision process of a personnel psychologist who utilized test scores and other data about individuals for selection and placement into various types of clerical-administrative positions. The simulation was designed to produce not only a specific employment recommentation, but also various interpretive comments about each applicant.

His model was proven capable of producing a strong correspondence between the human psychologist and the output of the computer simulation. In his experiment, he found a 94% level of agreement between the human decisions and the simulated psychological inferences.

His research suggested the possibility of utilizing computerized interpretive programs as prescriptive models for personnel selection. Also mentioned was the possibility of utilizing a similar model for computer-assisted instruction of industrial psychology students. In the long run, however, his major contribution lies in the fact that . . .

Research of this type gives deeper insight into the manner in which people resolve problems. The methodology allows the researcher to map an equivalent thought process at a particular point in time and could permit the study of the effects of aging and experience on decision-making capabilities of individuals and groups. (Smith. 1968. p. 329)

Another research effort that involved the simulation of individual decision-making was the Clarkson model of the trust investment process. The principal objective of the study was to develop a behavioral, as opposed to normative, theory of trust investment. A trust investment office is charged with the responsibility of allocating a given investment amount among various stock investment alternatives. Clarkson's model was constructed by observing the decision logic of an investment officer and by incorporating that logic into a heuristic program for computer simulation. Clarkson's basic findings indicated that his model provided a reasonable prediction of both the actual portfolios as well as the decision processes by which selection was made.

One of the better known micro-models is HOMUNCULUS, the Gullahorns' simulation of interaction between two (or more) individuals (1964, 1969). HOMUNCULUS is not only a model of a social system but is also a micro-process because of the elaborate decision system of each individual in the model. Each individual is defined by a list structure representing personal attributes such as identity, values, attitudes, and a memory structure that may change with each interaction event. The decision that each individual makes is contingent upon his values, attitudes, and memory structure.

The model is based on George Homans' theory of social

exchange, where two individuals act in face-to-face interaction and provide rewards and punishments to each other. The construction of the model requires the translation of five verbal propositions advanced by Homans (1961, pp. 53-111) into operational computer statements. The particular situation described by the model is a dyad, where one person requests help from another in a job related task. In the interaction event, both may benefit and both may pay a price in a sort of psychoeconomic exchange. The decision process that guides each individual's actions depends on the payoffs that his past interactions have elicited.

The input is composed of the personalities and past histories, defined by attributes assigned to the two individuals. The output data consists of the verbal responses of the two individuals as they proceed through a sequence of interaction events.

HOMUNCULUS has also been used to investigate triads (1964) and has found that, for individuals who were initially strangers, an isolate and a dyad results. For triads who are initially friends, the results are similar to the dyadic interaction.

The primary value of the Gullahorns' work is the fact that a social science theory, formerly expressed only verbally, was proven tractable to expression by a computer program which demonstrated the internal consistency of the theory.

The Nature And Furpose Of This Experiment

Currently, the Gullahorns are undertaking a project whose long-term objective is to integrate a "microprocess" individual decision-making model (similar to their HOMUNCU-LUS model) into a "macroprocess" that models the functions of a large-scale firm. The interfaces between the microprocesses and macroprocesses of the system will occur at the decision nodes. When the need for a decision is specified by the macrosystem, the inputs to the decision node will become the inputs (or stimuli) to the microsystem. The microsystem will emulate the decision process of an individual and will emit a decision (to the macrosystem) after being operated on by the socio-psychological attributes of that individual.

The current simulation endeavor provides the challenging opportunity to advance. . .by building a model of an organization in which individual values, decisions, and behavior produce system results; and in turn, organization values, adaption, and integration feed back to influence individual's values and behavior (Gullahorns, 1970, p. 1).

As an intermediate step in this endeavor, this experiment involves a simplistic firm with a relatively simplified decision process in order to concentrate on the feasibility of integrating a macro and micro process into the same model.

In essence, the model is designed to be complex enough to produce realism in terms of output, but simple enough to be manageable. Considering time constraints and considering the state of the art, the experiment, therefore, is designed to meet three limited objectives:

- 1. To provide a means of incorporating and analyzing complex organizational relationships and selected communication and individual behavior factors that may, in combination, impinge on the performance of the organization.
- 2. To provide experimental control in order to isolate specific causal relationships.
- 3. To provide a means of evaluating the integration of micro- and macro-processes into a single model.

In summary, the research is a planned experiment on a hypothetical business firm, performed by computer simulation, to investigate the conditions under which selected personality variables and communication links can affect the productivity of the firm. The experiment is intended to be an exploration into the use of computer simulation for explication of behavioral theory.

CHAPTER 2

STRUCTURE OF THE MODEL

The model developed for this research is a simplified representation of the operations of a hypothetical business firm that manufactures and markets a line of products. The model utilizes a "fixed-time" interval (of one month) of timekeeping and transcends a total time of 100 months for each run. The model was written in FORTRAN IV and computations were performed on a Control Data Corporation Model 6500 computer.

Nominal demand for each of the firm's products is exogenously defined and may be described by a unique product life cycle (see Subroutine SLSGEN). Demand, of course, is influenced by pricing and promotion policies, sales effort, and random factors.

Since the model assumes that the firm is a well established existing organization with a history, initial conditions (primarily attributes of the existing product line) must be assigned to simulate the history of the firm. A program which was used for random generation of initial conditions is shown in Appendix IV (PROGRAM IC).

The model also assumes a given and constant production capacity function over the length of the run. Therefore, capital investment decisions are not considered. The

manpower system is also assumed to be constant (both in a qualitative and quantitative sense), and the flow of manpower is not considered.¹

The Organization

The firm in the model is composed of a chief executive officer, an accounting department, a production function, and a marketing function. Figure 2-1 shows a breakdown of these functions. This chart is a representation of the formal structure of the firm. The elements in the chart are restricted to only those elements of the firm which are actually incorporated into the model. It is recognized that a firm, which exists in the real world, even a small business, will be considerably more complex than the organization reflected by the chart.

A general summary of the organization activities is shown in figure 2-2. This chart specifies the primary responsibilities, decisions, and actions that are assigned to each position and department in the firm.

Each of the individuals and/or departments in the model receives specific types of information and makes an explicit set of decisions or performs a specific set of actions.

Figure 2-3 is a summary of the information-decision flow processes in the model, listed according to position.

¹For a Capital Investment simulation, see Cleveland, (1967). For a Manpower Planning simulation, see Weber, (1970).

Program PAJAMA

Program PAJAMA is the executive program that implements and controls each replication. After the values for the block initial conditions are read in, a loop is then established for each run with the values for the experimental variables defined by a zero-one generating algorithm. For each subsequent run, initial conditions are then reset.

The program also calls each of the subroutines that perform the dynamics of the simulation. An overall flow chart showing the executive program and subroutines is shown in Figure 2-4.

²See Chapter 3 for definition of replication and run.

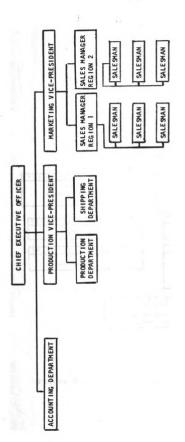


Figure 2-1 ORGANIZATION CHART

ORGANIZATIONAL ACTIVITIES

CHIEF EXECUTIVE OFFICER

- . ESTABLISHES PROFIT GOALS
- . MAKES PRICE DECISION
- . MAKES PROMOTION DECISION
- INTRODUCES NEW PRODUCT
- . WITHDRAWS OBSOLETE PRODUCT

PRODUCTION VICE-PRESIDENT

- . SETS INVENTORY LIMITS
- SCHEDULES INVENTORY LEVEL
- . SCHEDULES PRODUCTION

PRODUCTION DEPARTMENT

. MANUFACTURES PRODUCTS

SHIPPING DEPARTMENT

. SHIPS PRODUCTS

MARKETING VICE-PRESIDENT

- . AGGREGATES SALES FORECASTS
- . MAKES PRICE RECOMMENDATION
- . MAKES PROMOTION RECOMMENDATION
- SETS OVERALL SALES PRIORITIES

SALES MANAGER

. ADJUSTS SALES PRIORITIES

SALESHAN

- FORECASTS SALES
- . SETS PERSONAL SALES
 PRIORITIES AND EFFORT
- . SELLS PRODUCTS

ACCOUNTING DEPARTMENT

- CALCULATES PROFITS
- . CALCULATES INVENTORY-ON-HAND

Figure 2-2. Organizational Activities

POSITION	INFORMATION RECEIVED AND USED	DECISIONS AND ACTIONS	INF ORMATION TRANSMITTED
Chief Executive 1 Officer	. Past profit goel Actual profits, last period (from Accoun- ting Department)		l. Profit goals
	Relative success of recent price and promotion decisions Projected profit Recommendations from Marketing Manager	2. Make price decision 2. Price; Promotion Make promotion decision (EXECUTIVE)	2. Price; Promotion
	Aggregate sales in re- 3. Introduce new lation to plant capa- product city Aggregate sales trend	3. Introduce new product (NEWPRO)	3. New product Introduction
3	Aggregate sales in relation to plant capacity Sales trend Product profitability Product share	4. Withdraw obsolete product (NEWPRO)	4. Obsolete product withdrawa.l

Figure 2-3

Information and Decision Flow

Production vice-President	l. Previous period's sales Past limits	1. Set inventory limits (INVENT)	1. Upper inventory limit Lower inventory limit
	2. Inventory limits Present inventory level (from Accounting Dept.)	2. Schedule inventory level (INVENT)	2. Inventory schedule Pressure on Sales Dept.
	3. Sales forecast (from) Marketing Vice-President Present inventory Scheduled inventory	3. Schedule production (GENPRO)	3. Production schedule
Marketing Vice-President	l. Product sales fore- cast (from each salesman)	l. Aggregate sales forecast (FCAST)	l. Aggregate sales forecast
	2. Previous and current forecasts Sales in relation to previous forecast	2. Make price and promotion recommendation (PRREC)	2. Price and promotion recommendation Pressure on Sales Dept.
	3. Relative pressures	 Set overall sales priorities (SLSMEN) 	3. Ranking of sales priorities

Figure 2-3 (continued)

Selesman 1. Previous sales and (FCAST) 2. Ranking on basis of 2. Set personal sales 2. Ranking on basis of 2. Set personal sales 2. Ranking on basis of 3. Set personal sales 3. Priority ranking (From Sales Hanser) Ranking on basis of gross volume 3. Pressure on each 3. Set personal effort 3. Sales effort Opportunity to participate 4. Age of product 6. Sells products 4. Sells products 4. Actual sales Front (From Production schedule 1. Manufacture products 1. Production output President) Random Variation Random deviation Random deviation Random deviation Random deviation Random deviation	Sales Nanager	-	Sales priorities (from Marketing V. P.) Influence of salesmen	Sales priorities (from 1. Adjust sales prior- Marketing V. P.) ities Influence of salesmen	1. Adjusted priority ranking
2. Ranking on basis of response to marginal effort Priority ranking (From Sales Manager) Ranking on basis of gross volume 3. Pressure on each product Opportunity to participate Licipate Price Price Pranction Effort Random Variation Fresident) Random deviation	Se lesman	-	Previous sales and trend	ł	l. Sales forecast
3. Pressure on each product Opportunity to participate 4. Age of product Price Price Promotion Effort Random Variation 1. Production schedule (from Production Vice-President) Random deviation		I Å	Ranking on basis of response to marginal effort Priority ranking (From Sales Manager) Ranking on basis of gross volume	2. Set personal sales Priorities (SLSMEN)	2. Sales priority
4. Age of product Price Promotion Effort Random Variation 1. Production schedule (from Production Vice- President) Random deviation		' m	Pressure on each product Opportunity to par- ticipate	3. Set personal effort (SLSMEN)	3. Sales effort
1. Production schedule (from Production Vice- President) Random deviation		। उ	Age of product Price Promotion Effort Random Variation	4. Sells products (SLSGEN)	4. Actual sales
	Production Department		Production schedule (from Production Vice- President) Random deviation	1. Manufacture products (GENPRO)	1. Production output

Figure 2-3 (continued)

1. Product shipment	l. Profit	Inventory level
-	-	. 2
l. Shipping activity (SLSGEN)	1. Calculate profits (BOOK)	2. Calculate inventory- 2. Inventory level on-hand (800K)
l. Orders (from sales- men) inventory	l. Cost of production inventory holding costs Promotion costs Fixed cost allocation Revenues	2. Sales Previous inventory Actual production
Shipping Department	Accounting Department	

Figure 2-3 (continued)

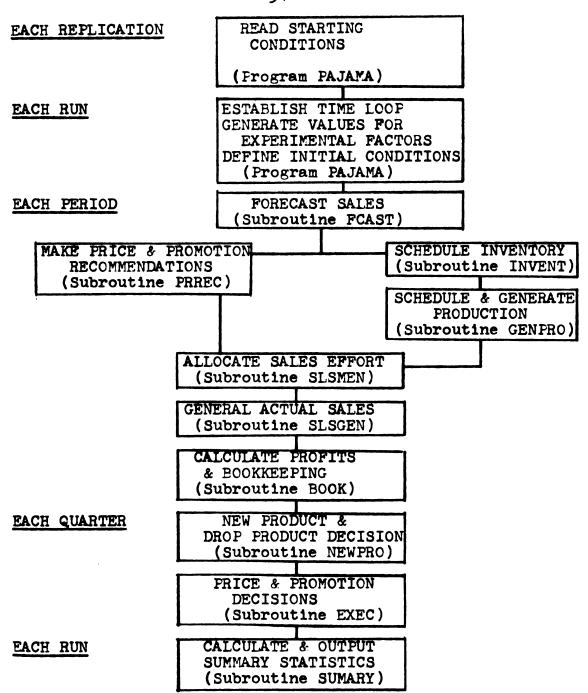


Figure 2-4. Overall Flow Chart

Subroutine FCAST

The objective of this subroutine is to provide a mechanism by which each salesman is able to forecast the next-period sales for each product in his territory. The forecast is based on the sales of the last period, adjusted for a trend factor.

The forecasting algorithm is based on the double exponential smoothing method (Clark and Schkade, 1969, pp. 705-6; Brown, 1963, pp. 128-132). The double exponential method is used because of the capability to correct for trend.

The steps in computing a double-smoothed forecast are:

. Calculate new smoothed average

where: SAVE = New smoothed average

ALP1 = Smoothing constant

ORDERS = Current orders

PSAVE = Previous smoothed average

. Calculate change in smoothed averages

CHANGE = SAVE(K,L) - FSAVE(K,L)

. Forecast change in orders

where: DEICR = Smoothed change in orders

. Compute forecast of orders for next period

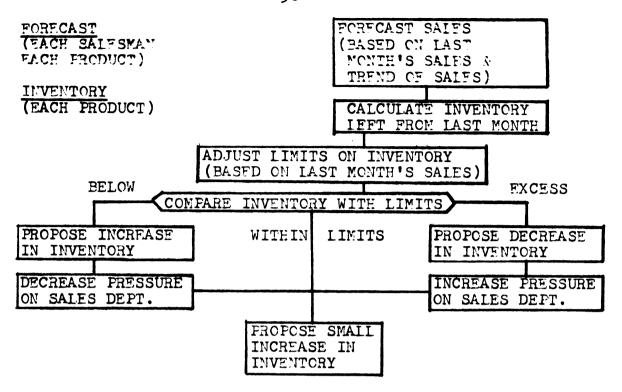


Figure 2-5. Subroutines FCAST and INVENT

Subroutine INVENT

The level of inventory to be scheduled for the end of the next period is determined by the Production Vice-President. The objective of this subroutine is to provide a mechanism for establishing the scheduled inventory level. The logic used in this subroutine is adapted from the Cyert and March (1963, pp. 149-236) general model of price and output determination.

Two limits are pertinent in the scheduling of inventory; UINL, the upper inventory level limit, and RINI, the lower (or "runout") inventory level limit. The upper limit is a level that, when exceeded, leads to excessive cost of

maintaining unneeded inventory. The lower limit, when breeched, leads to excessive opportunity costs because of lost sales. The limits are a lagged function of sales--rising as sales rise, falling as sales fall.

UINL(K) = ALP7 * UINL(K) + (1-ALF7) * 0.3 * TSAL(K)

RINL(K) = ALP7 * RINL(K) + (1-ALF7) * 0.1 * TSAL(K)

where: UINL = Upper inventory limit.

ALP? = Smoothing constant.

TSAL = Monthly sales.

RINL = Runout inventory limit.

Subsequent to adjusting the limits to reflect the most recent sales information, the current inventory level is compared with the limits. If current inventory level is in excess of the upper limit, a decreased level of inventory (for next month) is scheduled, pressure on the Sales Department is increased to sell the excess inventory, and the inventory limits are decreased.

If current inventory is below the lower limit, an increased level of inventory (for next month) is scheduled, pressure on the Sales Department is decreased, and inventory limits are raised.

If current inventory is within limits, a small increase in the level of inventory is scheduled.

This logic, defined by Cyert and March, (1963, p. 151) is a form of adaptive behavior in the face of incomplete information:

Each firm makes decisions on the basis of feedback

from past results. The firms adjust goals... on the basis of such feedback.

In investigating the production planning procedures of a number of real firms, Wilson (1969, p. 152) found strong support for the Cyert and March model:

We have been using. . .a technique, which is heuristic rather than a mathematical model, working with upper and lower bounds. . .on inventory. . . The problem is based on trying to keep inventory between a maximum level and a minimum level. . .

Subroutine GENPRO

The objective of subroutine GENFHO is to provide a mechanism for scheduling and generating the actual production of each product.

The amount of production to be scheduled depends on the forecast, inventory-on-hand, and scheduled inventory:

SCHED = TFORC(K) - INV(K) + SCINL(K)

where: SCHED = Production schedule, in units

TFORC = Sales forecast

INV = Current inventory

SCINI = Scheduled inventory level

Actual production for each product is randomly generated in the model from a normal distribution with mean equal to the scheduled production, and a standard deviation equal to $2\frac{1}{2}\%$ of the scheduled production.

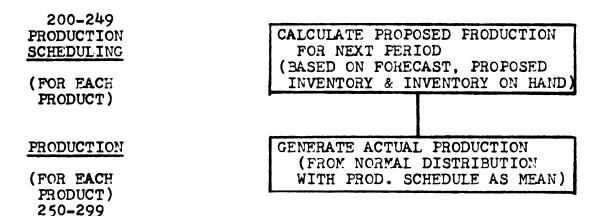


Figure 2-6. Flow Chart: Subroutine GENFRO

Subroutine PRREC

In subroutine PRREC, the marketing vice president makes recommendations to the executive committee regarding price and promotion decisions. The logic underlying this section of the model is based on the work of Cyert and March (1963) and Kaczka (1966).

From the marketing vice-president's viewpoint, his goal is to accomplish the sales forecasts that have previously been made, (subroutine FCAST). His decisions depend on a comparison of current forecast with previous forecast, and the actual performance of sales in relation to the previous forecast.

The behavior he exhibits is, thus, dependent upon whether or not the sales goal of the previous forecast was met. If this forecast is higher than the previous one and the previous forecast was realized, then the situation is viewed as favorable. The pressure for sales effectiveness is decreased.... and he recommends that the promotion percentage be maintained. If the previous forecast was not met, he increases sales effectiveness pressure and may recommend either a price cut or an increase in promotion percentage. Under the condition where the current forecast is lower than the previous and the

previous forecast was met, he is inclined to feel that the new goal can be met with little difficulty. As a result, he maintains the pressure on his salesmen and maintains the promotion percentage. However, if the previous forecast was not met, he reacts with a request for increase in sales promotion and (increases) the current pressure on salesmen.

In brief, the marketing vice-president's main functions are the development of sales forecasts which serve as sales goals, the direction of sales goals, the direction of salesmen to realize these goals and the recommendation of the price and promotion strategies which he feels are needed to achieve the sales goal. (Kaczka, 1966, pp. 153-54).

The actual decisions regarding changes in price and promotion are made quarterly by the chief executive officer (see subroutine EXEC). The recommendation of the marketing vice-president is a primary factor that is considered in the decision process.

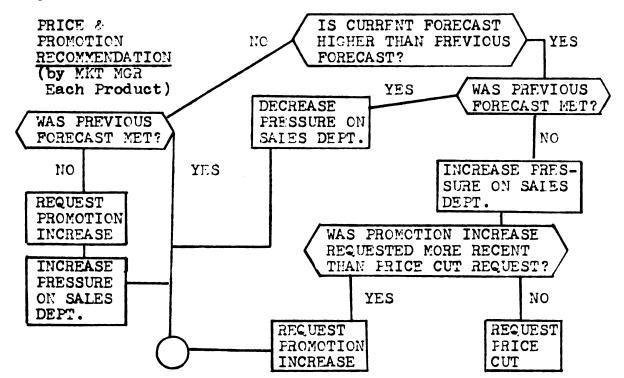


Figure 2-7. Flow Chart: Subroutine PRREC

Subroutine SLSMEN

Subroutine SLSMEN is the primary representation of the individual salesmen in the organization and their work performance. The behavior of the salesmen, as structured in this model, is primarily based on the theoretical framework established in Chapter 1.

The particular decision that is considered is the problem of allocating of sales effort among the different products.

. . . the objective of many sales force management activities is really to achieve a desired allocation of effort, . . . (Simon and Freimer, 1970, p. 173).

The implementation of the sales effort allocation process is summarized by the flow diagram shown in Figure 2-8.

A more detailed flow diagram is contained in Appendix I. The subroutine involves the following sequence of events:³

1. The marketing vice-president, on a monthly basis, evaluates each product in the company line in order to determine the relative priority of each product. The relative priority, in turn, is used as an input in allocating sales effort among the different products.

The basic information utilized by the marketing vice-president is the "index of pressure" that is an attribute of each product. Each product begins its

³The paragraph numbers in this section correspond to the box numbers in the flow diagram in Figure 2-8.

life cycle with a nominal pressure index of 1.0, but pressure may be adjusted due to the inventory position (subroutine INVENT), sales in relation to forecast (subroutine FRREC), or profitability in relation to profit goals (subroutine EXEC). Pressure varies between a maximum value of 1.2 and a minimum value of 0.8.

The output of the marketing vice president's decision process is a priority ranking of the firm's products. In effect, products are ranked according to relative pressure, with the product under highest pressure assigned the first rank. The information (priority ranking) is then transmitted to the sales force through the regional sales manager.

2. Meanwhile, each salesman is undergoing a similar evaluation process regarding the relative behavior of the product line in his sales territory. The basis for the salesman's evaluation is his perception of the marginal response of the market to the marginal effort that he expends on each product. In effect, he attempts to evaluate how much sales have increased as a result of additional effort expended on "pushing" each product.

The output of the salesman's evaluation process is a priority ranking, based on marginal response to marginal effort. He attempts to rank the products on the basis of those products which he expects to

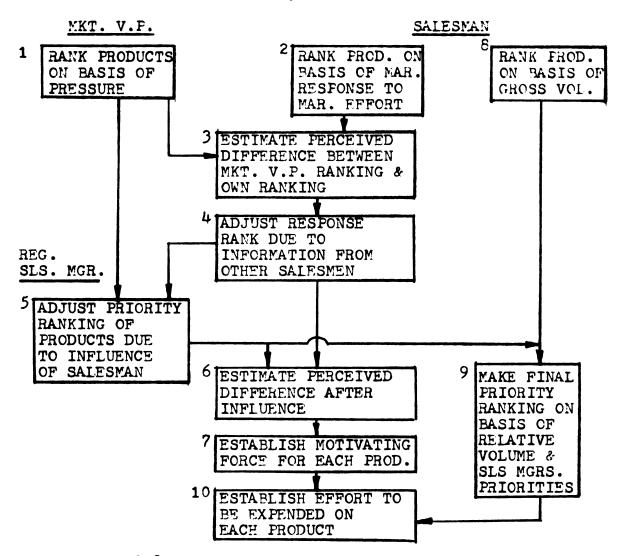


Figure 2-8. Sales Effort Allocation Process

respond best to any additional effort. This evaluation and ranking process is the mechanism by which each salesman "learns" about the unique peculiarities of his sales territory, and how his territory will uniquely respond to sales effort.

3. After receiving the priority ranking from the marketing vice president, each salesman compares this ranking to his own ranking regarding the marginal response of the market. The disparity in priority

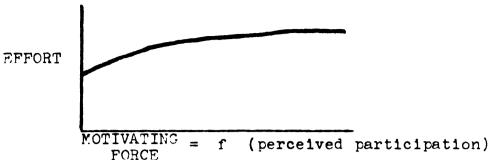
rankings then becomes a base upon which the salesman can evaluate his ability to influence his supervisor, the regional sales manager.

4. The salesman may be provided with the opportunity to communicate with other salesmen in his sales territory. In doing so, the salesmen exchange information regarding the estimated response of the different products. Each salesman then modifies his response ranking because of the new information. He considers the evaluations of the other salesmen and adjusts his ranking accordingly.

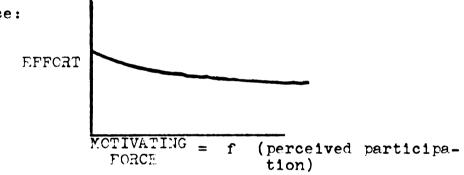
The information regarding the estimate of potential market response is then transmitted to the regional sales manager in an attempt to influence his final priority ranking.

in decision-making, he then considers the information from the salesmen in establishing final priorities.

The sales manager combines three sources of information in the decision process: the ranking from the marketing vice president, the unit contribution to margin of each product (". . .an approach to allocation of effort based on contribution margin would seem fruitful" [Simon and Freimer, 1970, p. 173]) and the information furnished by each salesman. His final priority ranking is then transmitted back to each salesman.


- 6. When the priority ranking is received from the sales manager, each salesman then compares the ranking with the suggested ranking (response rank) that he had initially transmitted to the sales manager. He is thus able to estimate the difference between his ranking and the sales manager's ranking after his attempt to influence.
- 7. The salesman is then able to perceive if there has been any change in priorities received from management due to his (the salesman's) attempt to influence the decision-making. If a change in priorities has occurred, the salesman concludes that he has, in fact, exerted influence in the decision process.

If the salesman has a high need for independence, he derives intrinsic satisfaction from the opportunity to participate in the priority setting process:


The amount of influence of subordinates in decision making. . .affect(s) the speed and efficiency with which the decision is carried out . . .it is clear that the effects of participation in decision-making are not confined to the nature of the decision, but also extend to the probability that the decision will be effectively implemented (Vroom, p. 227-228).

In effect, a salesman's motivating force to carry out an assignment tends to be enhanced by the opportunity to exert influence in the decision process.

In the model, the salesman is motivated by perceived participation with a negatively accelerating relationship between effort and motivation.4

It is also assumed that, for a salesman with a high need for independence, a lack of perceived participation will result in a negatively motivating force:

The motivating force to sell each product is also dependent on the index of the pressure exerted on each individual product.

- 8. Since the salesman is paid by commission, he tends to emphasize those products that are high volume "movers." He ranks the products with the product of highest gross volume given the first ranking.
- 9. The salesman's final priority ranking that governs his allocation of effort among the different products

⁴See previous discussion Chapter 1 regarding relationship between motivation and performance.

is a combination of his own "volume" ranking and the priority that is received from the sales manager.

In the model, the allocation process assumes that a given amount of total effort is to be distributed among the different products. The product given the highest priority is assigned an allocation index number of 1.2, with lower ranking products assigned progressively lower index numbers, until the lowest ranking product is assigned the number 0.8. The mean allocation index number of all the products is 1.0. The salesman thus decides the relative allocation of his time among the full range of products.

10. Finally, the effort that each salesman expends on each product is a combination of his final priority ranking (the allocation index number) and his motivating force:

EFFORT = MOTIVATING FORCE X ALLOCATION RANK

Subroutine SAIESGEN

During each time period, the demand for each product is defined by an exogenous function that calculates the orders as a function of the age of the product, price, promotion, effort by the salesman, and a random component.

The Product Life Cycle.

The demand for a particular product can be expected to change over time. For many products the variation in

lifetime sales may reveal a typical pattern of development known in marketing literature as the product life-cycle."

According to Kotler (1967, p. 291), five stages in the growth and decline of sales of this kind of product can be distinguished (Figure 1):

- Stage 1. (Introduction.) The product is put on the market: awareness and acceptance are minimal.
- Stage 2. (Growth.) The product begins to make rapid sales gains because of the cumulative effect of introductory promotion, distribution, and word-of-mouth influence.
- Stage 3. (Maturity.) Sales growth continues but at a declining rate because of the diminishing number of potential customers who remain unaware of the product or who have taken no action.
- Stage 4. (Saturation.) Sales reach and remain on a plateau marked by the level of replacement demand.
- Stage 5. (Decline.) Sales begin to diminish absolutely as the product is gradually edged out by better products or substitutes.

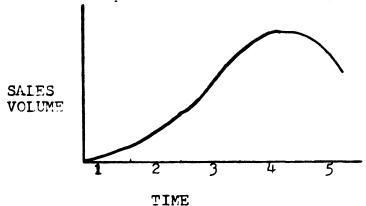


Figure 2-9. Stages in the Product Life Cycle

The validity of the product life-cycle concept is well established in marketing literature. Cox (1967), sampled 754 ethical drug products introduced in the United States in the

years 1955 to 1960 and concluded the following: "Product life cycles not only can be determined; they are particularly useful as marketing models." Folli and Cook, (1969) attempted to empirically verify the product life cycle as a descriptive model of sales behavior for 140 categories of non-durable consumer products. These product categories included health and personal care, food, and tobacco products. They found strong theoretical support for the concept in Rogers' (1962) theory of the diffusion and adoption of innovations:

"Essentially, the concept implies that a product finds initial resistance of some new ways of behaving, and is purchased by only a limited segment of the buying population. Later, as the product's performance and value are known and communicated. a larger segment of buyers adopts and sales begin to increase at a faster pace. Eventually, the rate of growth decreases as the proportion of adopters get closer and closer to a maximum, with most sales representing repeat purchases. The rate of adoption remains constant throughout the maturity phase and diminishes in the declining phase. The link between Rogers' theory and the life cycle concept becomes obvious if one considers that the logistic curve usually employed to represent the life cycle is the cumulative equivalent of the normal density function, which is precisely the shape of Rogers' adoption function." (Polli and Cook, 1969, p. 386)

Based on empirical evidence, they further concluded:

"It is clearly a good model of sales behavior in certain market situations - especially so in the case of different product forms competing for essentially the same market segment within a general class of products." (Folli and Cook, 1969, p. 400)

In the model, a hypothetical sequence of demand that approximates the life-cycle, is generated through the use of a Weibull (1951) distribution:

DEM = $KON*AA*ITIME*(exp(-AA*ITIME^2))$

where: DEM Nominal Demand during time period t.

KON, AA Constants

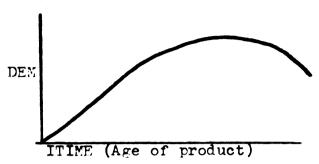


Figure 2-10. Hypothetical Weibull Distribution

For each time period, ITIME, a nominal demand, DEM, can be generated from the Weibull equation. Random fluctuations in sales (for each time period), can be simulated by sampling from a normal distribution with mean DEM, in order to obtain an adjusted value for sales. The nominal demand (DEM) thus reflects the age and the current life-cycle stage of the product. For each product, unique values of the constants of KON and AA are randomly generated by the initial condition program IC. Since the values of these parameters define the shape of the life-cycle curve, the underlying nominal demand is uniquely and exogenously defined over the life of the product. Nominal demand for each product is thus generated during each time period from a Weibull equation (with unique values of KON and AA) that includes the age of the product (ITIME(K)) as a parameter.

Price and Promotion

The effect of pricing on the demand for each product is represented by the equation:

Mprice = (PRICE) PREL/(20) PREL

where: Mprice = Index for the level of sales due to the price elasticity factor

PRICE = Price of the product

PREL = Price elasticity

(20) PREL = Normalizing factor, of representing initial condition of PRICE = 20.

Price elasticity is randomly generated for each product by the subroutine GENFR. Thus, the response of the market to changes in price is assumed to be exogenously defined.

Promotion is assumed to be an aggregate marketing expenditure that includes advertising, publicity, field promotion, etc., but excludes personal selling effort. The response of the market to promotion expenditures is determined exogenously for each product, in a manner similar to the price response:

 $M_{PROM} = (PROM)^{PMEL}/(1000)^{PMEL}$

where: MPROM = Index for the level of sales due to the promotion elasticity factor.

PROM = Promotion expenditure

PMEL = Promotion elasticity

(1000) PMEL = Normalizing factor, representing initial conditions of PROM = 1000.

Promotion elasticity is also randomly generated for each product (by subroutine GENFM). Thus, the response of the market to changes in promotion expenditure is also exogenously

defined. Price and promotion policies, therefore, influence nominal demand according to the following relationship:

(Adjusted Demand) = (Nominal Demand) * Mprice * M promething the use of elasticities to define an aggregate marketing response function is discussed by Urban (1969, p. 41)

It can be expected that the consumer's willingness to buy a product at a given price will depend on his attitude toward the product's characteristics and appeals. This implies a marketing mix effect between price and advertising. . .an aggregate sales response function will be postulated. The function should include three basic marketing variables: advertising, price, and distribution. . . In unlogged form the formulation would be:

$$X_{j1} = aP_{j1}^{EPI} A^{-EAI} D_{j1}^{ED1}$$
.

X 11 is industry sales of Product j.

a is scale constant,

Pjl is average price level of all brands in product group j.

Ajl is total advertising of all brands in product group j,

Djl is total distribution level for all brands in product group j

EPl is industry price elasticity for Froduct j.

EAl is industry advertising elasticity for Product j.

ED1 is industry distribution elasticity for Product j.

This function captures marketing mix effects and allows nonlinearity in response to marketing variables. The nonlinearity is reflected in the parameters EPl. EAl. AND EDl. For example, if 0 < EAl < 1, the marginal sales response to advertising would be constantly decreasing as advertising increases. . . In general, EAl and EDl should be expected to fall between zero and plus one. The price parameter EPl should be negative because as price increases, sales should decrease. The parameters EAl, EDl, and EPl are elasticities and reflect the proportionate changes in the product group's sales

resulting from a proportionate change in one variable. Equation 1 reflects marketing mix effects since the sales response of one variable depends on other variables as established, for example, by differentiating Equation 1 with respect to price. The marginal response to price changes (dX_{j1}/dP_{j1}) depends on the level of advertising and distribution.

In this model, for purposes of simplification, advertising and distribution have been aggregated into the promotion expenditure. Also, interdependencies, (complementarity and substitutability) with competitors' products and other products of the firm are assumed to be zero.

Similar uses of elasticities as a means of defining market response have been employed in simulations by Bonini (1963), Kaczka (1966), and Kotler (1965).

Random Deviation from Nominal Demand

Any other factors which may have an effect on demand are assumed to occur randomly and are therefore not explicitly defined in the model. The aggregate effect of these factors is assumed to be contained in a random error adjustment to demand. A percentage deviation from nominal demand is generated from subroutine RNDUM. This random adjustment to nominal demand is calculated by the equation:

NOISE = SIG1 * ERR * DEM

where: NOISE = Random deviation (in units) from nominal demand.

ERR = Percentage deviation (returned from subroutine RNDUM) from nominal demand.

DEM = Nominal demand.

SIG1 = Scaling factor.

The scaling factor, SIG1, controls the stability of the demand function. For increasing values of SIG1, the effect of random deviation from nominal demand is increased, and the market becomes more volatile. The value of NOISE is additive to nominal demand.

Effort of the Salesman.

In the model, the response of the market to the effort of the salesman is approached in much the same way as promotion elasticity. Effort is represented by an index number which is utilized to characterize the relative personal selling emphasis that a salesman places on a particular product. An effort index larger than one means that a salesman spends a larger proportional amount of time "pushing" that particular product. Conversely, an effort index of less than one means that a salesman spends a less than proportional amount of time on that product.

The effect of a salesman's effort on the demand for each product is represented by the equation:

 $M_{EFF} = (EFF)^{EFEL}/(1.0)^{EFEL}$

where: MEFF = Index for the level of sales due to the effort elasticity factor.

EFF = Index of relative effort expended by a particular salesman.

EFEL = Effort elasticity.

(1.0)^{EFEL} = Normalizing factor representing normal conditions of EFF = 1.0.

An "elasticity of effort" concept is not new. Lambert and Kniffin (1970, p. 3,4, & 8) used this idea to model a market response to personal selling effort:

The response of the market to alternative levels of selling effort can be measured and expressed . . . Sales volume is probably the most easily utilized measure of market reaction . . . it may be very illuminating to examine the magnitude by which sales volume changes in relation to varying increases and decreases in the level of selling effort . . .

Conceptually any measure of market reaction can be coupled with each measure of selling effort for purposes of constructing response functions. . an exponential expression was found to provide the best fit. . . . The equation that approximated the behavior of medical x-ray film sales in relation to number of salesmen became:

$$SV_1 = a \cdot PM_1^{b1} \cdot P_1^{-b2} \cdot S_1^{b3}$$

where: SV₁ = Sales volume of medical x-ray film in District₁.

a = Constant.

 PM_1 = Product mix being sold in District₁.

P₁ = Frevailing selling price in District₁.

 S_1 = Number of salesmen in District₁.

b1, b2, b3 = Exponents.

Final Sales

The adjusted demand (orders) is compared with the amount available from inventory and production. If orders exceed the amount available, then sales equal the amount available (no backorders allowed). If orders are equal to or less than the amount available, then sales equal orders.

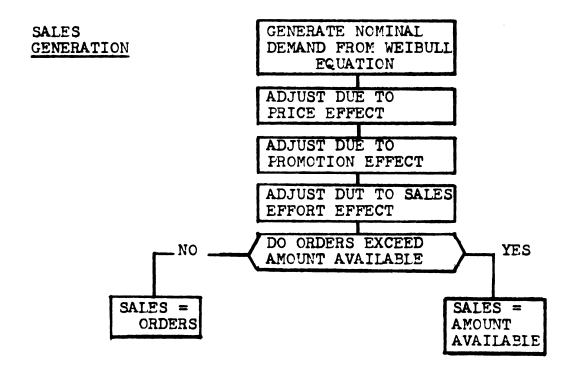


Figure 2-11. Flow Chart: Subroutine SLSGEN

Subroutine BOOK

The purpose of subroutine BOOK is to calculate profits, collect summary statistics, and adjust model parameters if a product is dropped.

Profit Calculation

The basic profit calculation for each product is:

PROF(K) = REV(K) - COSTS(K)

where: PROF = Profit

REV = Revenue

CCSTS = Total Costs

K = Product Number K.

Revenue is calculated thus:

REV(K) = PRICE(K) * TSAL(K)

where: PRICE = Unit Price

TSAL = Sales in units

Costs for each product are composed of inventory holding costs, production cost, promotion expenditure, and fixed cost allocation. For simplification, all costs in the firm are assumed to be aggregated into one of these catagories.

Inventory holding cost is calculated thus:

INHCOS(K) = STDIC * (Average Inventory)

INHCOS(K) = STDIC * (INV(K) + PREINV(K))/2

where: INHCOS = Inventory holding cost

STDIC = Standard cost of holding one unit of

inventory

INV = Current inventory level

PREINV = Inventory level in previous period

The production cost for each product, in each period, is a function of the age of the product. It is assumed that a "learning curve" effect occurs, and, because of learning, the unit cost of producing one additional unit is less than the unit cost of producing the previous unit:

The...learning curve (concept)...has evolved from experience in airframe manufacture, which found that the number of manhours spent in building a plane declined at a rate over a wide range of production (Hirschmann, 1964).

The functional form of the learning curve is assumed to be exponential (Andress, 1954):

U(1) = U(1) * 1^b

where: U(1) = Cost to produce the ith unit

U(1) = Cost to produce the first unit

b = Learning parameter

For each product, the total cumulative cost (of all units produced to date) can be calculated from the approximation (Teichroew, 1964, p. 30).

 $T(n) = U(k)n^{b+1}/(b+1)$

where: T(n) = Total cost of all units produced to date

U(1) = Cost to produce the first unit

n = Number of units produced to date

b = Learning parameter

This formula is used in the model to calculate direct production costs for each time period. The cumulative production cost is computed and then the cumulative production cost for the previous period is subtracted. Setup cost is then included in cost of production:

 $COSTPR(K) = (CUMCST(K)_{t-1}) + SETUP$

where: COSTPR = Total cost of production

CUMCST = Cumulative direct product cost

SETUP = Setup costs

The average unit cost for each product in inventory is then computed:⁵

AVCOIN(K) = (COSTPR(K) + AVCOIN(K) * PREINV(K))/
(ACTPRO(K) + PREINV(K))

⁵The method of inventory valuation is average cost (Anthony, 1964). The value of each unit in inventory is equal to the value of the previous inventory, plus the value of production added to inventory, divided by the total number of units in inventory.

where: AVCOIN = Average unit cost of inventory

COSTPR = Total cost of production

PREINV = Previous inventory level

ACTPRO = Actual production

Fixed cost allocation is calculated on a percentage of total production basis:

(Fixed cost allocation) = FCOS * (ACTPRO(K)/TPROD)

where: FCOS = Total fixed costs

ACTPRO = Actual production of product K (units)

TPROD = Total production (in units) of all products

Total cost of sales are then computed:

COSTS(K) = (TSAL(K) * AVCOIN (K) + PROM(K) + INHCOS(K) + FCOS(ACTFRO(K)/TPROD)

where: COSTS = Total cost of sales

TSAL = Sales (units)

AVCOIN = Average unit cost on inventory

PROM = Promotion expenditure

INHCOS = Inventory holding costs

Adjust Parameters and Summary Statistics

If a product is scheduled to be withdrawn from the market, and all inventory of that product has been disposed, a housekeeping operation to adjust the parameters of each product is performed. Summary statistics are then accumulated for analysis at the end of the run.

Subroutine NEWPRO

The purpose of subroutine NEWPRO is to provide a mechanism in the model by which new products may be introduced into the market and obsolete products withdrawn from the market. Since the major focus of this experiment is not directed towards the product planning process, the decision processes involved in this routine are simplified and merely fulfill the objective of defining a means of moving products into and out of the market.

Just as new products should be introduced to infuse new blood into a product line, so should obsolete products (because of fashion or technology) be withdrawn. The need for selective elimination of products is well recognized in the literature (Alexander, 1964; Kotler, 1965; Levitt, 1965).

Profits can be enhanced by eliminating certain costs associated with products in the later stages of their life. . . the proper performance of the (withdrawal) program should result in increased profitability. . . since resources will be assigned to more productive uses . . . (Rothe, 1970, p. 45).

Profits typically are reduced or disappear in the declining stages of a product's life cycle. At some point, it becomes marginally profitable to transfer resources from dying products to newer endeavors. After studying over 2000 companies, Booz, Allen, and Hamilton (1960) concluded:

"Sooner or later every product is preempted by another or else degenerates into profitless price competition."

Rothe (1970), in surveying 174 companies found a number of factors to be important in the product elimination decision. Among them were:

- 1. A minimum sales volume
- 2. A minimum market share percentage
- 3. Comparison of market share with previous years
- 4. Profitability

These factors are not explicitly considered in the model because of the potential of confounding with the primary experimental variables. In the model, the product deletion decision occurs when a product's nominal demand has declined to a point of less than 50% of the past maximum nominal demand. "A possible policy with respect to timing may be to let one product almost complete its life cycle before taking on another." (Simon and Freimer, 1970, p. 93)

Subsequent to the decision to drop a product, further production scheduled for that product is canceled, but sales continue until remaining inventory is depleted.

In the model, when a new product is withdrawn from the market, a new product is introduced to replace the obsolete product. It is assumed that the full research and development process has transpired, less attractive potential products have been discarded, and a steady supply of approved new products is readily available. Each new product has successfully completed the stages of screening, economic analysis, product development, market testing, commercialization, risk analysis, etc. Each new product and the market to receive that product is therefore assumed to be developed and ready for introduction. The degree of acceptance of the product by the market is defined exogenously (and specified

by the generation of values for the variables KON and AA). Cross elasticity effects with existing products are assumed to be zero.

Although not explicitly handled in this model, the subject of new product decision process has been examined elsewhere (Freimer and Simon, 1970; Kotler, 1968; Pessemier, 1969) and would appear to be a fertile field for exploration with computer simulation. An experimental model designed to study the factors controlling the product deletion process would also appear to be a potentially fruitful line of investigation.

Subroutine EXEC

At quarterly intervals, the chief executive officer makes strategic decisions regarding pricing and promotion for each product. In general, pricing and promotion decisions are a response to a comparison of profits with profit goals. The logic in subroutine EXEC is adapted from the Cyert and March (1963), and Kaczka (1966) models.

The profit goal is established as a lagged function of past profit. As profits rise or fall, the profit goal follows a similar trend. Thus, profit goals are continually changing, reflecting the past history of actual profits.

The firm learns, over time, which strategies are most successful in achieving profit goals. When a profit goal is achieved, greater emphasis is given to the strategy employed. Conversely, when a profit goal is not achieved, less

emphasis is given to the strategy employed and a search for a new strategy may be initiated.

If the price for a product changed at the beginning of the previous quarter, the chief executive officer reviews the effect of the price change on profit. If profits have improved as a result of the change, the price change rule is altered to further emphasize the direction of the previous price change. Conversely, if profits have not improved as a result of the price change, then the price change rule is revised in order to decrease (or possibly) reverse the direction of the previous price change.

Future prospects are then revised. If the projected profit exceeds the profit goal, then the requests for a price cut or promotion increase are evaluated and acted upon. If there are no requests for price or promotion changes, and price has not recently been changed, the price is revised in the best past direction.

If projected profits do not meet the profit goal, then price and promotion requests are denied, and a search routine is entered. There are four possible actions which may be taken:

- 1. Increase sales pressure.
- 2. Increase sales promotion.
- 3. Decrease sales promotion.
- 4. Decrease profit goal.

These strategies are employed, each in turn, until a successful strategy is found. (As a last resort, the profit goal

is decreased.) If projected profits still do not meet the profit goal, and price was recently successfully raised (or unsuccessfully lowered) then price is increased.

In summary, subroutine EXEC determines strategy for the future marketing of each product, based on the performance of that product in the past. At the end of each quarter, the performance history of each product is reviewed, and marketing strategy is revised based on the degree of success of past strategies.

Subroutine EXEC also computes a number of quarterly "housekeeping" statistics which are necessary for the operation of the model.

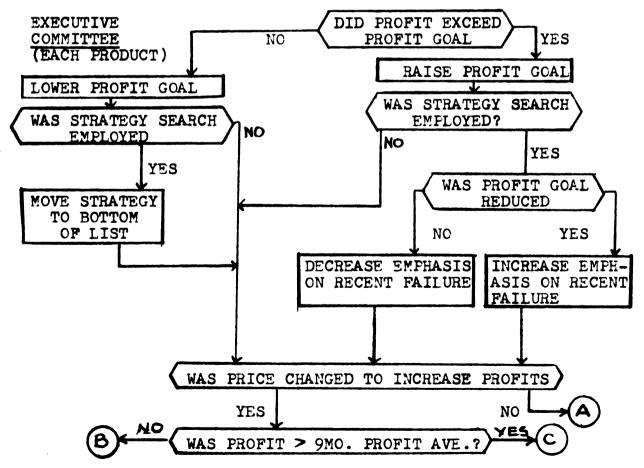
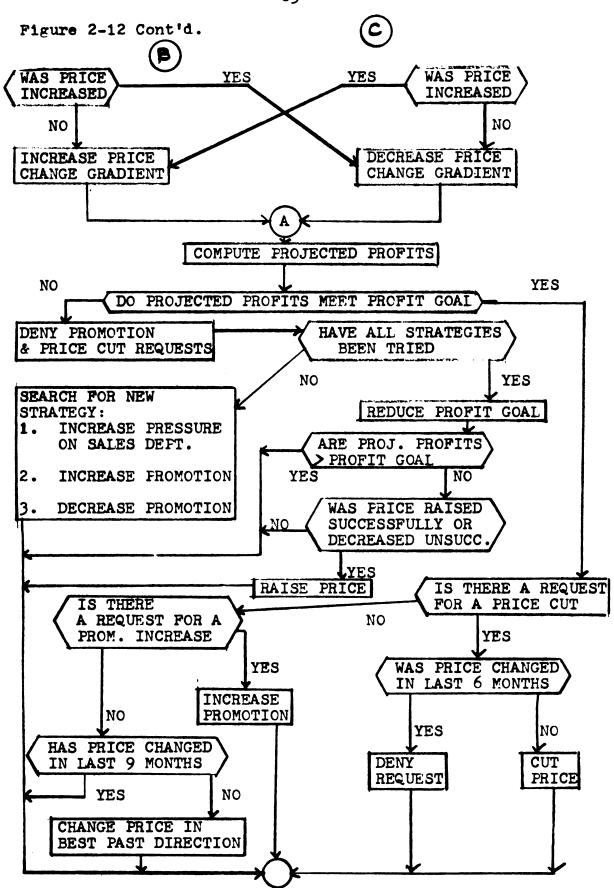



Figure 2-12. Flow Chart: Subroutine EXEC

Utility Subroutines

FUNCTION RNDUM is a service routine for generating a random variate from a normal distribution with a mean of 0.0 and a standard deviation of 1.0

Let r_1 and r_2 be two uniformly distributed independent random variates defined on the (0,1) interval, then

$$X = (-2 \log_e r_1)^{1/2} \cos 2 \gamma r_2$$

[is a] random variate from a standard normal distribution. This method produces exact results (Mc Millan and Gonzalez, 1968, p. 260; Naylor et al, 1966, p. 260)

The pseudo-random numbers are generated by the standard multiplicative method (Rotenberg, 1960) which has been tested by Clark (unpublished).

FUNCTION PRJPRO is a service routine that calculates the projected unit profit for a product. The routine is called from subroutine EXEC as a part of the pricing and promotion decision process.

The projected profit is estimated on the basis of price less estimated unit inventory costs, estimated unit production, cost, estimated fixed cost allocation, and estimation promotion expense.

SUBROUTINE RANK is a service routine that provides a mechanism for assigning a rank to any entity based on the value of some designated attribute. The routine assigns the first rank to the entity with the smallest attribute value, and then assigns progressively higher ranks to entities with progressively larger attribute values.

The routine ranks on the basis of smallest attribute value assigned rank number one. If it is necessary to rank on the basis of largest attribute value first, then the attribute values must be multiplied by minus one before the ranking routine is called.

Summary

This chapter has described, in a general way, the content of the model. A more detailed description is provided in Appendix I, the detailed flow chart, and Appendix II, the computer program.

CHAPTER 3

EXPERIMENTAL DESIGN

A simulation is basically used to compare the consequences of alternate types and levels of independent variables. While it would be interesting to examine the sensitivity of the model to each parameter value and decision process, the fulfillment of that objective is obviously impossible.

While, in principle, simulation can be used to investigate the effects of any factors, conditions, procedures, and interactions of which the investigator can conceive, in practice this results in factorial experiments whose dimensions dwarf the most powerful computer and the most lavish budget, so that the experimental designs actually used are rather modest (Conway, et al., 1959, p. 104).

The current experiment, therefore is limited to an investigation of the impact of a selected set of environmental, communication, and personality variables on selected dependent variables.

The experiment was conducted by making changes in the model and analyzing the effects of the changes on the performance of the firm. As in any experiment, it is useful to focus on the terms <u>factor</u> and <u>response</u>. The changes to be made to the model, the independent variables, are classified as <u>factors</u>, or as experimental variables. The performance criteria, the dependent variables, or the output to be generated by the model, are classified as the response

variable.

The primary response variable that was selected for analysis is the profitability of the firm (see subroutine BOOK for details of profit calculation). As noted in the introduction, it is recognized that profit is not the single determinant of a firm's performance and effectiveness; nevertheless, in a free enterprise society, profit remains the primary factor upon which the performance of most business firms is judged. The particular statistic generated by the model is the mean profit per period for each run.

Another response variable generated by the model is the mean index of pressure exerted on each product, for each time period, over the length of the run. Also generated is the standard deviation in profit for each run and the standard deviation in the mean index of pressure. These secondary criterion variables are useful in drawing conclusions regarding the effect of the experimental factors on the primary response variable, profit.

Several techniques of analyzing the experimental data were considered. Cyert and March (1963), for example, used regression analysis to test the sensitivity of parameters in their general model of price and output behavior. Regression analysis is well suited to experiments where the factors are quantitative, rather than qualitative. In this experiment, most factors are qualitative, in that the "levels" represent alternative decision processes rather than different values of the same variable.

A factor is quantitative if its levels are numbers which are expected to have a meaningful relationship with the responses. Otherwise, a factor is qualitative . . . machines, operators, and days of the week are all considered qualitative factors. . weather conditions in the form of temperature and/or humidity would be a quantitative factor (Naylor, et al., 1966, p. 324).

Another analysis technique receiving recent attention has been spectral analysis. This technique measures the behavior of the variance of a variable within a time series.

. . .as one becomes more sophisticated in the analysis of computer simulation data, he may be interested in analyzing more than expected values and variances. "When one studies a stochastic process, he is interested in the average level of activity, deviations from this level, and how long these deviations last, once they occur." Spectral analysis provides us with this kind of information. "Spectral analysis studies the salient time properties of a process and presents them in an easily interpretable fashion for descriptive and comparative purposes" (Naylor, et al., 1966, p. 331; quoting Fishman and Kiviat, 1965).

In this experiment, the time series of the response variables is summarized by a single measure. Thus, since the focus of the present research is on a summary variable rather than on a detailed study of the time-dependent behavior patterns, spectral analysis does not appear to be necessary.

If the purpose of the current experiment had been to make a quantitative, rather than qualitative, evaluation of the effects of the experimental variables, then further analysis using a multiple ranking (Beckhofer, et al., 1954) or multiple comparison (Tukey, 1959, or Dunette, 1955) technique would have been useful. In this experiment, however, the information provided by the analysis of variance appears sufficient to make qualitative judgments regarding the effects

of the factors.

Through analysis of variance, it is possible to determine whether differences between means arose due to chance or if they constitute real effects generated by factor variations. The objective of analysis of variance is to explain the relationship between the response variable and the controlled experimental variables. In this technique, the variations in the observations around their grand mean are segregated into those attributable to the main effects, the interaction effects, and unexplained variations. This technique is employed to segregate the total variations in the data into components representing the experimental error, the controlled experimental variables and their combined actions. For test of significance, an F-ratio test relating the mean squared residual deviation to the mean squared deviations for each effect is used.

In this investigation, a complete 2⁶ factorial experimental design was selected in order to explore both main effects and interactions among six factors that were represented at two levels, a "standard" level and an "alternate" level.

The first category of factors selected for study involves two environmental characteristics (so-called because
they are specified exogenously to the firm and thus beyond
the firm's control). Factor A, stability of demand, controls
the random fluctuations of demand in the model (see subroutine SLSGEN for details regarding the structuring of

random fluctuations). At the standard level, demand is considered to be stable (i.e., the standard deviation of the NOISE generating distribution is 2.5% of nominal demand; SIGI = 0.025). At the alternate level, demand is considered to be volatile (i.e., the standard deviation of the NOISE generating distribution is 10% of nominal demand; SIGI = 0.10).

The selection of the degree of random variability in demand as an experimental variable provides an indirect test of stability in the model. This factor is a test to ascertain whether the model behaves reasonably under different conditions in the external environment of the firm. In effect, the model should not be expected to "blow up" and proceed to infinity due to relatively minor changes in the firm sexternal environment.

The other environmental characteristic, factor B, market response to salesmen effort, controls the marginal response of demand to marginal changes in effort by the salesman (see Subroutine SLSGEN). At the standard level, the response of all products to marginal effort is uniform, (i.e., the value of effort elasticity is a uniform 1.0). At the alternate level the response of the market is different for each product, and the returns to marginal units of effort will be different for each product, (i.e., the value of effort elasticity is randomly generated and is not equal to 1.0). This factor provides a mechanism for contrasting the effect of a "false" information input to the decision process

verses a "true" information input. At the standard level, when elasticity of effort is uniform between products, there is no potential differential response to marginal sales effort. At the alternate level however, elasticity of effort is different for each product and each product displays a unique response characteristic to marginal sales effort.

The second category of experimental variables involves the presence or absence of selected communication links. Factor C specifies the presence or absence of knowledge of the current inventory position by the marketing vice president. At the standard level, knowledge of current inventory is absent. At the alternate level, knowledge of the current inventory level is present and is used by the marketing vice president in setting priorities among different products.

Factor D specifies the communication link between salesmen within a given sales territory. At the standard level, no communication between salesmen exists and each salesman must rely only upon his own perceptions regarding the potential response of different products. At the alternate level, each salesman communicates with other salesmen in the same sales region and perceptions about market response are "pooled."

The third category of experimental variables is concerned with personality characteristics of individuals in the firm. Factor E specifies the personality attribute of the regional sales manager. At the standard level, the sales manager is defined as authoritarian. He neither encourages

nor allows participation in the decision process regarding the setting of priorities among different products. At the alternative level, however, the sales manager is defined as equalitarian. He encourages participation in decision making and considers information received from salesmen in setting priorities among products (see Chapter 1 for development of the theoretical framework underlying the selection of this factor).

Factor F specifies the personality type of the individual salesman. At the standard level, the salesman is defined as having low need for independence. He derives no satisfaction from an opportunity to influence superior decision making. At the alternate level, however, the salesman is defined as having a high need for independence. He derives intrinsic satisfaction from the opportunity to influence decision making and is highly motivated by the opportunity to participate (also see subroutine SISMEN description for development of theoretical framework underlying classification of salesmen personality types).

It is recognized that personality types in a real firm will be distributed along a continuum. In the model, however, personality types are classified as "polar" for purposes of controlled experimental variation.

The selected experimental variables and concomitant specification of levels are summarized in Table 3-1.

Table 3-1. Experimental Variables

	Alternative States	
Factor	Standard	Alternative
A. Environmental Characteristics		
1. Stability of Demand	Stable	Volatile
2. Mkt. Response To Sales Effort	Uniform Elasticity	Non-Uniform Elasticity
B. Communication Links		
1. Inventory Position	No Knowledge By Sales	Knowledge By Sales
2. Regional Salesmen Intercommunication	No Info. Exchange	Information Exchange
C. Personality		
1. Sales Mgr.	Authoritarian	Equalitarian
2. Salesmen	Low Need For Independence	High Need For Independence

Factorial experiments involve the simultaneous investigation of the effects of a number of different independent variables. Since, in this experiment, six factors (each varied at two levels) were selected for study, the experiment is described as a 2⁶ factorial experiment. The total number of design points in the full factorial design is the product of the number of levels for each factor. Sixty-four runs were therefore required, each with a unique combination of the six factors, in order to make up one complete replicate of the study. The total experiment consisted of six replications, each of which contained sixty-four runs.

Within a replication, the initial conditions for each run were idential, while between replications, a different set of starting conditions was employed. (See appendix IV for Program IC; random generation of initial conditions.)

The starting conditions are controlled within each replication in order to increase precision and therefore may be regarded as "blocks." In experimental design, blocks are used to reduce the unexplained variation in the observations.

[This practice] sharpens the contrast between [computer runs] by reducing residual variation. Differences can be detected, their statistical significance tested, and their economic significance assessed with much smaller sample sizes than would otherwise be required (Conway, 1963, p. 53).

In order to reduce the effect of any bias that may have been attributable to initial conditions, the first ten periods in each run were allowed to elapse before any response variables were measured.

Within each replication, the values of the experimental variables for each run were assigned by a zero-one generating algorithm (Gonzalez and McMillan, 1971, p. 161).

CHAPTER 4

DESCRIPTION OF RESULTS

This chapter describes the results of the experiment with the model of the firm. Results are reported in terms of the effects of the changes in the experimental variables on the response variables. The complete output of the analysis of variance program is shown in Appendix X. Table 4-1 summarizes results of special interest.

The results of changes to each factor will be presented separately, starting with the main effects and proceeding through the interaction effects. The description of results will focus on the primary response variable, profit.

Table 4-1. Summary of Analysis of Variance

	RAGE		MEAN PROFIT PER PERIOD = 63.025	
		EFFECTS OF	EXPERIMENTAL VARIABLES	
Fac	tor		Mean Increment In Profit (From Std. to Alt. Leve	
A:	Demand	Stability	-1.204	
B:	Market	Response	+3.321 ***	
C:	Inv. C	omm. Link	-0.099	

Table 4-1 (cont'd.)

Factor	Mean Increment in Profit (From Std. to Alt. Ievels)
D. Salesmen Comm. Link	-0.152
E. Farticipation	+5.246***
F. N. Independence	+1.734**
B-E: Mkt. Response- Participation	+2.053**
E-F: Part N. Ind.	+3.260***

^{**}Significant at .05 Level
*** Significant at .01 Level

The behavior of the "average" firm is also summarized in Table 4-1. The values listed in this table are the overall means of the response variables for all runs and all replications.

The values of the response variables for the "average" firm are the standard of comparison upon which the effects of the various changes in the model are evaluated. Conclusions regarding the effect of each experimental variable are derived from examination of the value of the "mean invrement" (from the average firm) and the approximate level of significant of the F statistic. The F-ratio tests for statistical significance were conducted to determine which of the null hypotheses could be accepted or rejected.

Results of the firms under different conditions varied considerably from the "average" firm. The object of the analysis was to determine which changes resulted in behavior that was significantly different from the average. The null hypotheses are that none of the changes to the experimental variables produces a change in the response variables. Rejection of any or all of these null hypotheses implies that the specific factor (or combination of factors) exerts a significant effect to alter the response of the model. 1

In terms of the notation, the null hypotheses were:

Factor A: A(2)=A(1)

Factor B: B(2)=B(1)

etc.

Interaction AB: AE(22) + AB(11) = AB(21) + AB(12)etc.

where: A(2) = Mean of the response variable where factor A is at the alternative level.

A (1) = Mean of the response variable where factor A is at the standard level.

and: AB(22) = Mean of the response variable where both factors A and B are at the alternate level.

AB(11) = Mean of the response variable where both factors A and B are at the standard level,

AB(21) = Mean of the response variable where factor A is at the alternate level and factor B is at the standard level.

AB(12) = Mean of the response variable where

¹This conclusion is subject, of course, to the probability of making an incorrect inference, i.e. Type I and Type II errors (see Clarke and Schade, 1969).

factor A is at the standard level and factor B is at the alternate level.

A numerical measure for each main effect was calculated by the analysis of variance program (A. O. V., 1966). An effect is measured as the average difference between the observations at the standard level and the observations at the alternate level. In mathematical terms, the main effect of factor A is defined as:

$$A = A(2) - A(1)$$

where: A = Main effect of factor A.

In the analysis of variance output, the main effect is expressed as a "mean increment", or, the difference between the mean of the runs with the factor at one level and the overall means of all runs.

Interaction effects are defined mathematically as:

AB (ab) = 1/2 (AB (22) - AB (21) - AB(12) + AB(11)) where: AB(ab) = Interaction effect of factors A and B.

In the analysis of variance output, the interaction effect is also expressed as a "mean increment", or, the difference between the means with the factors at the same level and the overall mean of all runs.

Following are the findings resulting from the analysis of variance. The limitations on the findings of this study, which are a caveat for this research, are explicitly underlined in a later section of this chapter.

Factor A: Stability of Demand

Factor A controls the stability of nominal demand. At the standard level, demand is regarded as relatively stable, i.e. random fluctuations in the demand function are relatively minor. At the alternate level, however, demand is regarded as relatively volatile, i.e. random fluctuations in the demand function are substantially higher.

The results indicate that profit was slightly reduced at the alternate level; the mean increment in profit when fluctuations in demand increased from the standard to the alternate level was -1.204. Revenue was also slightly decreased at the alternate level, with a mean increment of 528.

The results therefore indicate that profits and revenue fell slightly in the more volatile market.

Main Effect -- Factor B: Market Response

Factor B controls the market response to personal sales effort. At the standard level, the market elasticity of effort is set at 1.0 for each product. At the alternate level, the market elasticity of effort is randomly generated and assumes a value between 0.0 and 2.0. This factor is a useful approach to specifying whether information is actually present or absent in the market.

If a product has a large elasticity of effort attribute, it responds well to marginal increments of effort by the

²Approximate significance probability of F statistic = 0.136.

salesman. On the other hand, a product with a low elasticity of effort will have a sluggish response to marginal effort. In general, it is much to the salesman's benefit to direct his marginal effort toward those products with a high elasticity of effort, and away from those products with low elasticity of effort. The salesman, however, has no way of knowing precise elasticity values. He is able to achieve a rough estimate, however, by continually "testing" the market on a trial and error basis. In effect, he is continually undertaking a process of "search" to determine which products respond best to marginal sales effort. He is continually attempting to rank the products in his line on the basis of marginal response to marginal effort. He seeks to find which products will produce the best "payoff" as a result of his sales efforts. The validity of his estimate is of course disturbed by any other elements that may perturb the demand function.

In this model, factor B is a means of specifying whether such information is present or not. In the standard case, where the value of elasticity is always 1.0, all of the products respond identically to marginal effort. There is no true basis for differentiating between the products on the basis of response even though the salesman may attempt to do so. Any evaluation of response by the salesman in such a case results in a false signal, attributable to random factors alone, since no true differential response characteristic exists. When factor B is at the alternate level, however,

and elasticity is not equal to 1.0, then true information is considered to be present and a relatively correct signal results.

Factor B, therefore, is a mechanism for specifying market response such that "false" information and a false signal result when factor B is at the standard level, and "true" information is present when factor B is at the alternate level.

This factor is included for the purpose of evaluating the effect of valid vs. invalid information in the performance of the firm. The results show that when factor B was at the alternate level, a significant improvement in profits was produced. The mean increment in profit of factor B at the alternate level was an increase of 3.188.

The results clearly demonstrate that when unique information about the market actually did exist, the firm was able to make use of the information for an improvement in profit performance. The particular mechanism by which the firm took advantage of the information is best shown through examination of the interaction effects.

Interaction Effect -- BE: Market Response and Participation

The interaction of factors B and E at the alternate level produced a significant improvement in profits. Recall that factor E controls participation in decision making. At the standard level, the regional sales manager is defined as authoritarian and no participation is allowed. At the alternate level, the regional sales manager is defined as

equalitarian and the participation of salesmen in the decision making process is encouraged.

When factors B and E interact, the feedback of "true" information from the salesmen to the regional sales manager is accomplished. When valid information is considered by the sales manager in the allocation of effort decision, higher profits resulted. Conversely, if the information is "false", or when participation is not allowed, a lower level of profits resulted.

Main Effect -- Factor C: Inventory Link

Factor C controls a communication link between the production function and the marketing function. At the standard level, no communication exists and the marketing vice-president has no knowledge of the inventory position. At the alternate level, the communication link is present, and the marketing vice-president has knowledge of the inventory position.

At the alternate level, if the remaining inventory at the end of a period is not within acceptable limits, the marketing vice-president makes the appropriate change in the index of pressure, which may result in a change in a product's relative priority. The objective of the communication link, therefore, is to provide information regarding the inventory position to the marketing function so that marketing can hopefully make improved priority decisions, resulting in higher profit.

The results, however, showed an effect of factor C on

profitability that was somewhat unexpected: when the communication link was "open", profit was unchanged rather than being improved. The mean index of pressure was significantly increased at the alternate level. A tenative deduction regarding the cause of this somewhat surprising result is deferred until the discussion in Chapter 5.

Main Effect -- Factor D: Salesmen Intercommunication

Factor D controls the presence or absence of a communication link between salesmen within a region regarding response characteristics of the market. At the standard level, salesmen do not communicate. At the alternate level, salesmen exchange information regarding marginal response of the market to marginal sales effort. The results indicate that factor D had no significant effect on the firm's profitability.

Main Effect -- Factor E: Participation in Decision Making

Factor E controls whether salesmen participate in the decision process of allocating sales effort among the product line. At the standard level, the regional sales manager is defined as authoritarian and he refuses to accept participation in decision making. At the alternate level, the regional sales manager is defined as equalitarian and he provides the opportunity for salesmen to participate. The salesmen participate by transmitting their perceptions regarding the response characteristics of the market.

The results clearly demonstrate that factor E, at the alternate level, had a definite positive effect on profits. The mean increment in profit with factor E at the alternate level was 5.30146.

Interaction Effect--Factors BE: Market Response and Participation

The interaction effect of factors B (response function) and E (participation) was significant. When "true" information was available, and the firm used that information in the effort allocation decision process, the mean increment of profits was an improvement of 2.13949.

Main Effect--Factor F: Need for Independence

Factor F controls the definition of the salesmen personality types. At the standard level, the salesman is defined as having low need for independence and deriving no intrinsic satisfaction from the opportunity to participate. He possesses low instrumentality for the outcome of perceived influence in decision making. At the alternate level, the salesman is defined as having high need for independence and deriving satisfaction and motivation from perceived influence in decision making.

Profit was significantly improved with salesmen with a high need for independence. The mean increment in profit with factor B at the alternate level was a positive 1.74. For purposes of drawing conclusions, however, the most relevant aspect of factor E was its interaction effect.

Interaction Effect--Factors EF: Farticipation and Need for Independence

The interaction of factor F, need for independence, with factor E, participation, resulted in significant profit improvement. When both factors were at the alternate level, the mean increment in profit was 3.182.

This interaction effect clearly shows that participation was strongly moderated by the need for independence factor.

Summary of Results

The factor exerting the strongest effect on the firms profitability was Factor E, participation, especially in interaction with factor B, market response, and factor F, need for independence. The encouragement of participation in the sales effort allocation decision, in conjunction with valid market information or need for independence on the part of the salesman, had significant positive effects on profitability.

Factor A, market stability, caused a slight decrease in profitability and revenue under conditions of a more volatile market. Factors C and D, the inventory link and salesmen communication link, respectively, caused no significant changes in profitability. These results are summarized in Table 4-2.

Table 4-2 Summary of Results

	Factor	Result	
A:	(Demand Stability) Stable ⇒ Volatile	 Profit slightly decreased Revenue decreased Promotion decreased 	
C:	(Inventory Communication Link)	No change in profitRevenue decreased	
	No-Knowledge ⇒ Knowledge		
D:	(Salesmen Communication	· No change in profit	
	Link)		
	No-Link => Link		
E:	(Participation)		
B-E:	(Participation-	· Profit increased	
	Market Response)		
	Non-Participation: Non-Valid Info ⇒		
	Participation: Valid	Info	
E-F:	(Participation-	· Profit increased	
	Need For Independence)		
	Low NInd.: No Particip	ation ⇒	
	High N-Ind.: Participa	tion	

The Problem of Realism in Simulation

In discussions regarding the relative value of simulation, one dominant advantage is clearly evident: the capability to attain a high degree of experimental control at relatively low cost. For theory testing purposes, this advantage is manifested by the potential ability to systematically vary and control conditions which, in the real world, may be unwittingly confounded with other factors.

The unique advantage of simulation is that not just closely identical but absolutely identical conditions can be maintained through repeated experimental runs. (McMillan and Gonzalez, 1968, p. 492)

However, the advantage of control is not attained without cost. Concomitant with control is the persistent problem of insuring that the simulation model is an acceptable representation of reality. Although a simulation is able to control potential confounding variables, it is impossible for the simulation to exactly replicate real life. Thus the problem that typically confronts any model builder is the question of validity: Is the model a realistic representation of the real world?

Cohen and Cyert (1961) have differentiated between models for synthesis and models for analysis. Models for analysis assume knowledge of the overall performance of the system. The objective of this type of model is to discover the manner in which the separate system elements function in

³Nor in most cases really desirable because of the need for parsimony.

order to generate the known overall performance. In contrast, models for synthesis assume knowledge of how the basic elements operate. The objective of this type of simulation is to determine the effect of the elements on the performance of the whole system.

The methods for validating these two types of models are different. Validation of models for synthesis takes place principally at the level of the model's basic elements. If essential characteristics of the elements are judged to be true representations of real life and if the results of simulations are plausible, then one tends to consider the model valid. This, in turn, generates greater confidence that the results of simulations can be used as reasonable predictions of what might happen in the analogous real life situation. . . .

Models for analysis, on the other hand, are validated in reverse direction. Given information on how the total system performs. . . a model is constructed which hypothesizes how the elements of the system operate. If the model is plausible and able to predict, within acceptable limits, the performance of the whole system. . . then the model is accepted as a reasonable explanation of how the elements of the system operate. (Saltzman, 1965, pp. 4-5.)

One basic test for validity would therefore be to compare the output of the model with that of a real world organization. This approach is patently impossible, however, in the present research, because the model simulates a hypothetical organization. No validity testing procedure has been suggested for surmounting this problem.

Since this experiment would be classified as a model for synthesis, however, rather than a model for analysis, a different validation approach is necessary. The focus here is on validation of the model elements, not on empirical validation. Rather than comparing a simulated time series of

output behavior against an actual time series of behavior, validation must rely instead on the judicious selection of the internal components of the model.

The validation approach in this experiment will be similar to the technique employed by Bonini (1963, p. 22):

The first question to be asked about our model would properly be, "Does the model correspond to the real world?" In other words, "Do the information and decision systems reasonably represent real-world situations?"

We would not expect, of course, the model to be an exact replication of the real world--all models are simplifications to some degree. . . . We do believe, however, that the model is a reasonable representation of real-world behavior. We cannot, of course, completely validate this belief, but what we can and will do is set forth the major ingredients of our decision rules for separate examination. We will attempt to justify these rules by relating them to existing theory in the scientific literature of economics, accounting, or the behavioral sciences, or to the literature on business practice.

In many cases, we have recourse to "rule-of-thumb" decision rules. . . . validity here essentially depends upon the correspondence of these rules to some aspects of business behavior. . . .

Other decision rules rest upon accumulated knowledge of economics or the behavioral sciences. We shall not attempt to justify these concepts but will merely relate our constructs to the appropriate literature.

Validation therefore depends on the care that is exercised to clearly indicate the structural variables and relationships in the model, and most importantly, their theoretical and empirical foundations.

It should be clearly recognized that this approach to validation does not categorically insure that the model is isomorphic with reality. This test, in fact, may be interpreted as a null test. If a model failed, it would be suspect; on the other hand, one that has valid elements and

produces reasonable output cannot be categorically guaranteed as representing reality. In view of the limited objective of this experiment, and because the organization is hypothetical, an effort to justify the elements of the model appears to be the only reasonable method of attempting to incorporate realism. The value of this experiment, therefore, will lie in its ability to contribute to the understanding of the structure and internal consistency of behavioral theory, rather than its ability to reproduce and predict the actual behavior of a real firm.

In this approach to validation the relation between simulation methods and survey methods becomes extremely important:

. . . the computer model compliments field research and experimental techniques, it does not replace them. The working hypotheses contained in the model must still be developed and verified empirically and deductively, and the more familiar research techniques will continue to be important here. (Meinhart, 1966, p. 304.)

The limitations of this experiment should be considered when the findings, implications, and conclusions are examined. While the model is complex, certainly not all aspects of a business firm are considered. The emphasis has been on the marketing sector, and only on selected decisions within the marketing function. Behavioral characteristics of individuals have been defined to only a limited extent. The sensitivity of the model to many parameters has not been tested and interaction effects with variables that have not been included in the experiment could possibly be significant.

It is believed, however, that despite the limitation cited above, computer simulation can lead to further insight regarding behavioral theory and may also provide additional insight into the world of reality.

CHAPTER 5

SUMMARY AND CONCLUSIONS

This chapter attempts to derive conclusions and implications regarding the effects of the experimental variables on the profitability of the firm. Recall from Chapter 3 that the experimental variables were separated into three categories: environmental factors, communication factors, and personality factors. The following discussion will analyze the reasons why changes in the experimental variables produced the results described in Chapter 4, and will attempt to relate the findings to the empirical and theoretical concepts upon which the model was founded.

Effects of Demand Stability

When factor A was at the alternate level, indicating a volatile demand function, overall revenue and profits were slightly reduced. This result was somewhat in conflict with Bonini, who found that a volatile demand function led to an increased level of profits. He explained his result as follows:

. . .in a highly variable environment an occasional crisis is caused within the firm by chance alone (that is, by factors outside the control of the firm). Such crises cause the firm to initiate search for better alternatives, generally ending in finding higher sales or lower costs. (Bonini, 1963, p. 136)

In this model, however, an effect was present which tended to counteract the mechanism deduced by Bonini.

Profits in this model were sensitive to the capability of the salesmen to estimate the marginal response of the market to marginal changes in selling effort. Any factor which tended to diminish the validity of the salesmen's estimate of marginal response therefore also tended to reduce the firm's profitability. If the salesman's perception of marginal response was impaired, then the company's ability to make a better sales allocation decision was also impaired, and decreased profits resulted.

Factor A, at the alternate level, represents a stronger influence of demand factors exogenous to the firm's sphere of control. The stronger influence of such extraneous factors tended to interfere with each salesman's capability of estimating marginal response, and profits were accordingly reduced. The strength of this effect completely overshadows the contrary effect found by Bonini.

No direct evidence is present that the effect found by Bonini was also found in this model. One result, however, leads indirectly to the conclusion that the "Bonini effect" was indeed present. In a limited post experimental run, the average level of promotion was found to be higher when factor A was at the alternate level (see Table 5-1), indirectly indicating that "search" was more frequently implemented. Although promotion was higher at the alternate level, revenue and profits were lower, indicating that the interference to the process of estimating marginal response was the predominate effect.

Table 5-1. Variation of Promotion Expenditures with Factor A

Mean Promotion Expenditure
6345
6361*
•

^{*}significant at 0.15 level

In summary, the results present indirect, albeit inconclusive, evidence that the effect found by Bonini may be present, but strong evidence of the effect of the interference of a volatile market with the process of predicting marginal response to marginal sales effort.

Effect of Inventory Communication Link

Since the results of factor C, the inventory communication link, were counter to prior expectations, a post-experiment investigation was conducted in an attempt to discover the structural mechanism that would explain why profits were not improved when the inventory communication link was open. Recall from Chapter 2 (Subroutine INVENT), that upper and lower limits on inventory levels are established as a lagged function of total sales. In the event these limits are "breeched" by unexpected demand for a particular product, an adaptive mechanism is initiated. First, the pressure on

¹In effect, a "breech" means the end-of-month inventory is outside the previously established upper or lower limit.

that product is adjusted (if factor C is at the alternate level). Second, the limits on inventory levels are also adjusted as a self-correcting mechanism. The scheduled level of inventory is also adjusted.

A subsequent trial run was made for the purpose of discovering if subroutine INVENT behaved differently at the different levels of factor C. One of the first observations was concerned with the timing of the "breeches" of the inventory limits.

Preliminary indications in the trial investigation demonstrated that the breeches of the lower limit typically occurred at the beginning and the growth stages of the product's life cycle, while breeches of the upper limit typically occurred at the maturity and declining phases of the life cycle. It was also noted that the number of breeches of the lower limit were typically more numerous when factor C was at the standard level than when factor C was at the alternate level. This behavior led to the tentative explanation for higher profits at the standard level as shown in Figure 5-1.

With factor C at the standard level, pressure is <u>not</u>
lowered in the event of a lower limit breech, thus, sales
tend to be higher, which, in turn causes more lower limit
breeches. Conversely, when Factor C is at the alternate
level, pressure is lowered in the event of a lower limit
breech, which tends to limit sales because of a lower index
of pressure. In general, a higher level of sales of a product

tends to increase profits because of a decreasing ratio of fixed cost to total sales and also because of a slight "learning effect", which tends to slightly decrease unit variable costs as cumulative sales volume rises.

The question should be considered: If lower limit breeches cause increased sales at the growing stages of the product life cycle, should not the upper limit breeches at the declining stage of the life cycle cause a counter and offsetting effect? In the maturity and declining stages, the pattern is for upper limit breeches to occur, which would cause an increase in sales when C was at the alternate level.

This phenomenon does, in fact, occur. With C at the standard level, sales tend to be lower in the declining stages. The loss in sales, however, is not sufficient to overcome the prior increase in sales that was experienced in the growth stage. The net effect is that, over the total life of the product, sales are higher when C is at the standard level, causing a concomitant increase in profits.

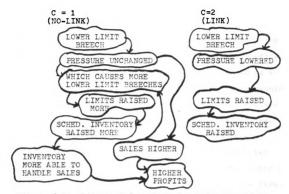


Figure 5-1. Effect of Inventory Communication Link

As shown in Table 5-2, REV-1 is the mean revenue for the <u>first 10 periods</u> of a product's life. Note that revenue is higher when C=1. Higher revenue (at C=1) continues through the growth stages of the product's life. REV-2 is the mean revenue for a product's declining stage only. Note that in the declining stage, when C=1, the mean revenue is lower. TOTAL REVENUE, the mean revenue over the total product life, is higher at the standard level.

These statistics can be interpreted as follows: When C=1, revenues tend to be higher in the growth stage, but lower in the declining stage. When C=2, revenues tend to be lower in the growth stage, but higher in the declining stage. The net total difference in revenues between the standard and

alternate levels, however, is such that total revenues are higher at the standard level. The conclusion, therefore, is that the differences in revenues at the growth stage is the predominant effect, and has sufficient influence on profits.

In summary, two counter-balancing effects² occur as a result of factor C. On the one hand, the inventory communication link does cause lower inventory costs. On the other hand, the communication link has an inhibiting effect (because of decreased pressure) on sales during the crucial growth stages of the product's life cycle. The unexpected net result of these counter-current effects is that factor C has no significant effects on the profitability of the firm.

Effect of Salesmen Intercommunication

Somewhat surprisingly, factor D, the communication link between salesmen within a region, failed to have a significant effect on profits. It was expected that the presence of the communication link would significantly improve the quality of information. A reexamination of the communication link mechanism as conceptualized in the model is necessary in order to explain this result.

²It is worth noting that Bonini also found counterbalancing effects: With a "loose" Industrial Engineering Dept., profits were expected to be higher because of higher costs. Costs were, in fact, found to be higher, but sales rose to counterbalance the increase in costs.

Table 5-2. Effects of Standard and Alternate Levels of Factor C

		REV-1	REV-2	TOTAL REV.	INV. HOLDING COST
	1 (Standard)	14069	71975	116417	4431
C =	2 (Alternate)	13688	73118	115955	4406
complete the fall of the fall	Mean Increment	-1 90	571	-230	-12

Each salesman undertakes a "search" process for the purpose of evaluating how each product will respond to marginal effort. The result of his "search" is a ranking of the products on the basis of high marginal response to marginal effort. His search and ranking, of course, are subject to error from other extraneous factors that might affect demand. It was expected that communication with other salesmen would tend to reduce this error, but the results generally did not support this expectation.

It is proposed that the reason the communication link did not reduce error is that the difference between the salesmen's rankings was negligible in the first place. Therefore, communication regarding the relative rankings generally served no useful purpose. In general, the communication was an attempt to "pool" information when, in fact, there really was no substantive difference between the information possessed

by each salesman.

There was, however, an exception. In the cases where factors A and B were at the alternate level, profit was slightly improved when the communication link was present (see Table 5-3).

Table 5-3. Profit Under Different Conditions of Factor D

	FACT)R	· · · · · · · · · · · · · · · · · · ·	
A	В	D	PROFIT	
2	2	1	59.086	
2	2	2	59.351	

This result, although not statistically significant, was in keeping with expectation. With factor A at the alternate level, the market was subject to a higher degree of random changes in demand. With factor B at the alternate level, the information to be transmitted was truly valid. Therefore, the pooling of information between the salesmen appeared to result in a reduction of random error, improving the quality of information. The differences between the salesmen's error, however, were not sufficiently large to produce a statistically significant improvement in profits.

It should be noted that, for reasons of simplicity, the motivational effects of group intercommunication are not

³see previous discussion under factor B.

explicitly modeled in this experiment. Likert (1967) proposes that face-to-face group communication, aside from the informational transfer effects, also results in favorable attitudes and higher motivation to produce. It would seem reasonable to assume that the effects of group intercommunication, like participation in decision-making, can be segregated into an information transfer component and a sociopsychological (ego-involvement) component, but not the sociopsychological component, was explicitly considered.

The failure of the factor to produce a significant improvement in performance, therefore, may be explained by the absence of motivational effects in this model, and also by the fact that an improvement in the transfer of information is not possible under the particular conditions of information structure proscribed by this model.

Effects of Participation

The effect of participation, factor F, cannot be adequately discussed except in conjunction with factor B, market response, and factor F, need for independence. The interaction effects of these variables provide an excellent means of demonstrating the partialling of the effects of participation into a result due to "decision quality" and a result due to "ego-involvement."

When acting in conjunction with factor B, factor F produces an improvement in profits due to "decision quality," because of the improvement in the quality of information that

is utilized as an input to the effort allocation decision. When factor B is at the alternate level, the elasticity of effort varies between products. The potential exists for an improvement in performance if more effort is directed toward those products with a high elasticity of effort, and it is the responsibility of the salesman to "search" for those products which will give a high marginal response to marginal effort. The results clearly show that when valid information actually does exist, and when the regional sales manager does consider the information in making the allocation decision, profits significantly improve because the sales manager is in possession of information needed to make a higher "quality" decision. With the interaction of factors B and E, the improvement in decision-making is due entirely to an improvement in the quality of information that is required for the decision.

The interaction of factors E and F, however, deals with the motivational aspects of the process of participation. In the model, a salesman with low need for independence attaches no instrumentality to the opportunity to participate. A salesman with high need for independence, however, attaches high instrumentality to the opportunity to influence decision making. In the model the results clearly demonstrate that salesmen with high need for independence, when allowed to participate in decision making, are motivated to higher levels of effort which significantly improve the profit performance of the firm. The salesman becomes "ego

involved" in the decision, and exerts significant supportive effort to assure that the decision is correct. The results also show that this effect may occur even though no concomitant improvement in information and decision quality is present.

The value of the conclusions derived from these results lies in the fact that the model clearly demonstrates that, from a structural standpoint, participation in decision making can be partialled into a decision quality effect and an ego involvement effect. (Fig. 5-2) With the decision quality effect, the improvement in performance occurs because the decision-maker has improved information upon which he can base his decision. With the ero-involvement effect. the improvement comes about because the participant becomes involved in the decision making process, and strives to insure desired results from his recommendation. This simulation has modeled structural mechanism which segregates the two effects into independent components: the decision quality effect can exist independently of the eso-involvement effect, and vice versa. In other words, the two effects can act concurrently to improve performance.

In summary, the experiment has demonstrated structural mechanisms by which participation in decision making can act independently to improve performance. The conclusions derived from the experiment serve to demonstrate the consistency and sufficiency of Vroom's conceptualization of the effects of participation and lead to further confidence in his theory.

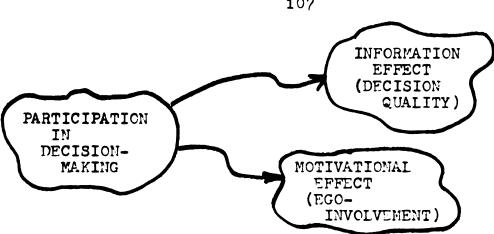


Figure 5-2. The Effects of Participation

Future Research

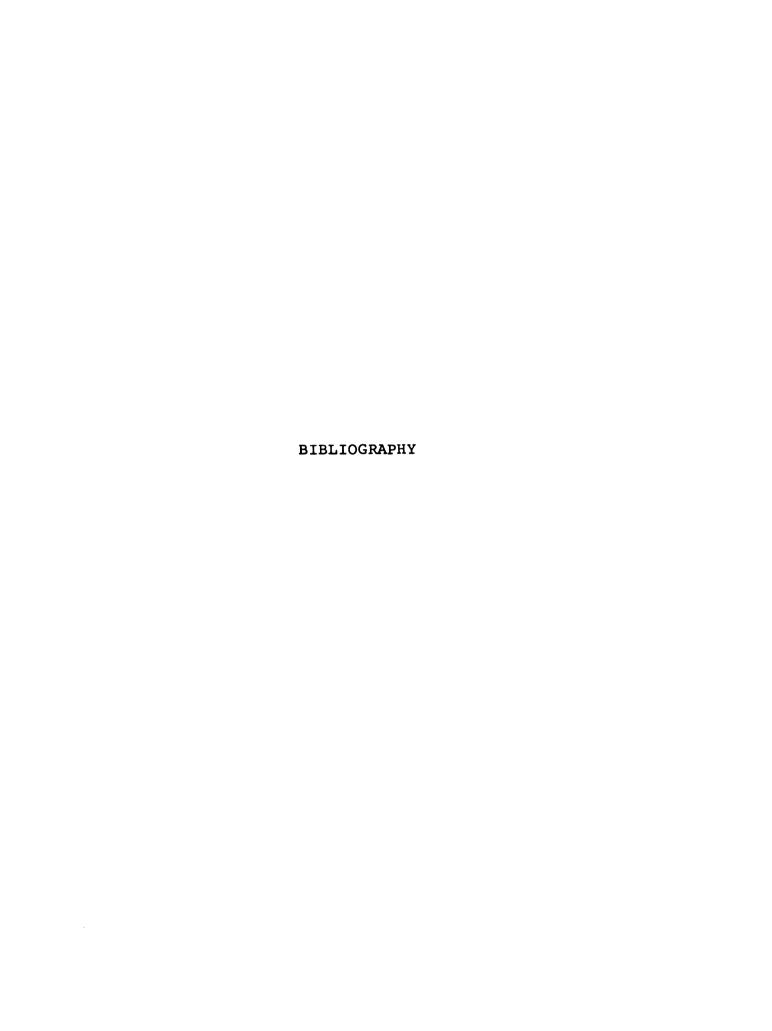
The model suggests a number of directions in which future research projects could be developed. In the marketing area, the model could serve as a framework upon which experiments might be constructed that focus on the product introduction process, the product deletion process, or the behavioral process of allocation of sales effort. An experiment that developed the application of smoothing-type forecasting techniques (especially adaptive smoothing) to life-cycle type products might also be appropriate.

Another area of future interest might deal with a more formal examination and delineation of the counterbalancing effects found in this experiment.

Without a doubt, this experiment has been distinctly limited in scope--dealing with only a few of the myriad of variables that might form the basis of interest for such an experimental approach. The work of Joan Woodward (1965), for example, regarding the juxtaposition of technical and

behavioral aspects of the work environment might provide useful focus for a computer simulation experiment. Alternate ways of developing attributes of individuals might be considered, especially various aspects of need-achievement, need-affiliation, and need-power.

Finally, the original objective of the research was to provide a step toward the melding of the "macro" and "micro" simulation approaches into one model. This model has served to provide a framework (i.e., the "macro" portion) for such an integration, but requires considerable in-depth development of the micro decision processes if such an objective is to be completely accomplished. The challenge of the microprocess development—perhaps the integration of a HOMUNCULUS type of decision system—will hopefully provide stimulation for fruitful future research.


Summary

This chapter has described the major mechanism which produced the experimental results. Two factors, stability of demand and the inventory communication link, were found to have little effect on profitability, primarily because of counterbalancing mechanisms that tended to result in opposing effects. The intercommunication of salesmen was also found to be insignificant because of the lack of substantive information transfer. The strongest effect on profitability was caused by participation in the sales-effort allocation decision, especially when considered in conjunction with valid market information and salesmen characterized

by a high need for independence.

The model has demonstrated a structure which explicated the partialling of the effects of participation into an information transfer component and an ego involvement component, each independent of the other.

The experiment has provided an initial step toward the integration of "macro" and "micro" type simulations, as well as demonstrated the viability of simulation as a means of explicating the structural mechanism under lying behavioral theory. Above all, the experiment has provided a demonstration of the usefulness of computer simulation as a vehicle for the exploration of behavioral theory. It is believed that the conclusions drawn from the experiment, when tempered by the limitations cited in Chapter 4, are useful in demonstrating the tractability of the dynamic modeling of behavior in organizations.

BIBLIOGRAPHY

- Ableson, Robert P. and Bernstein. "A Computer Simulation Model of Community Referendum Controversies," <u>Public Opinion Quarterly</u>, Vol. 27, No. 1, (1963), 93-122.
- Alexander, R.S. "The Death and Burial of Sick Products," <u>Journal of Marketing</u>, (April, 1964), 1-7.
- Amstutz, A.F. Computer Simulation of Competitive Market Response. Cambridge, Mass.: M.I.T. Press, 1967.
- Andress, Frank J. "The Learning Curve as a Production Tool," <u>Harvard Business Review</u>, (January-February, 1954).
- Anthony, R.N. <u>Management Accounting</u>. Homewood, Ill.: Richard D. Irwin, Inc., 1964.
- ----, AOV: Stat Description No. 14. East Lansing, Mich.: Michigan State University, Agricultural Experiment Station, 1966.
- Barton, Richard E. A Primer on Simulation and Gaming. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1970.
- Bechhofer, R.E., Dunnett, C.W., and Sobel, M. "A Two-Sample Multiple Decision Procedure for Ranking Means of Normal Populations with Common Unknown Variance," Biometrika, (1954), 170-176.
- Bellman, James Ross. "Behavioral Simulation Models in Marketing Systems," Unpublished Ph.D. dissertation, Yale University, 1969.
- Benson, Verel Willard. "Interregional Competition in the Broiler Industry," Unpublished Ph.D. dissertation, University of Maryland, 1969.
- Bettman, J.R. "Behavioral Simulation Models in Marketing Systems," Unpublished Ph.D. dissertation, Yale University, 1969.
- Bonini, Charles. <u>Simulation of Information and Decision Systems in the Firm</u>. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1963.
- Booze, Allen, Hamilton, Management Consultants. Management of New Products. 3rd. Ed., New York: John Wiley and Sons, Inc., 1960.

- Brightman, H.J. "Individual Behavior and the Small Work Group; A Simulation Study," Unpublished Ph.D. dissertation, University of Massachusetts, 1970.
- Brockhoff, Klaus. "A Test for the Product Life Cycle," <u>Econometrica</u>, 35, (July-October, 1967), 472-484.
- Brown, Robert Goodell. Smoothing, Forecasting, and Prediction of Discrete Time Series. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1963.
- Campbell, Donald T. and Stanley, Julian C. <u>Experimental and Quasi-Experimental Designs for Research</u>. Chicago: Rand McNally and Co., 1963.
- Carroll, Tom W. SINDI 2: Simulation of Innovation Diffusion in a Rural Community of Brazil. East Lansing, Mich.: Computer Institute for Social Science Research, 1969.
- Chervany, N.L. "A Simulation of Analysis of Cash Flow Patterns Within A Manufacturing Organization," Unpublished D.B.A. dissertation, Indiana University, 1968.
- Clark, Charles T. and Schkade, Lawrence L. <u>Statistical Methods for Business Decisions</u>. Cincinnati, Ohio: South-Western Publishing, 1969.
- Clark, N., "Testing of Pseudo Random Number Generators," AMD Tech. Memo No. 89, Applied Mathematics Division, Argonne National Laboratory, Argonne, Illinois. (unpublished).
- Clarkson, G.P.E. <u>Portfolio Selection: A Simulation of Investment</u>
 <u>Trust</u>. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1962.
- Cleveland, Fredrick Willis, Jr. "Resource Allocation in the Firm: The Study of Tangible and Intangible Investments by Computer Simulation of Management Heuristics," Unpublished Ph.D. dissertation, Columbia University, 1967.
- Cohen, K.J. and Cyert, R.M. "Computer Models in Dynamic Economics,"

 The Quarterly Journal of Economics, Vol. 75, (February, 1961),
- Conway, R.W. "Some Tactical Problems in Digital Simulation," Management Science, (October, 1963), 47-61.
- Conway, R.W., Johnson, B.M., and Maxwell, W.L. "Some Problems of Digital Systems Simulation," <u>Management Science</u>, (October, 1959), 92-110.
- Cox, William E., Jr. "Product Life Cycles as Marketing Models," <u>The</u> <u>Journal of Business</u>, (October, 1967), 375-384.

- Crow, Wayman J. The Role of Simulation-Model Construction in Social Research on Post-Nuclear Attack Events, La Jolla, California: Western Behavioral Sciences Institute, 1967.
- Cyert, Richard M. and March, James G. <u>A Behavioral Theory of the Firm</u>. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1963.
- Desjardins, Robert B. "An Investigation of Decision Systems in a Complex Management Simulation," Unpublished Ph.D. dissertation, University of North Carolina, 1964.
- Dunnett, C.W. "A Multiple Comparison Procedure for Comparing Several Treatments with a Control," <u>Journal of the American Statistical Association</u>, (1955), 1096-1121.
- Feigenbaum, Edward A. "Computer Simulation of Human Behavior," Midwest Human Factors Society Symposium, Milwaukee, Wisconsin, (August, 1963).
- Fishman, George S. and Kiviat, Philip J. "Spectral Analysis of Time Series Generated by Simulation Models," The RAND Corporation, RM-4393-PR, (February, 1965).
- Fondren, William M., Jr. "An Industrial Dynamics Study of the Effect of Market and Cash Flow Forecasting on the Growth of a Small Technical Enterprise," Unpublished M.S. thesis, Massachusetts Institute of Technology, 1963.
- Freimer, Marshall and Simon, Lonard S. "The Evaluation of New Product Alternatives," in <u>Applications of Management Science in Marketing</u>. David Montgomery and Glen Urban (eds.), Englewood Cliffs, N.J.: Prentice-Hall, 1970.
- Frijda, Nico H. "Problems of Computer Simulation," <u>Behavioral Science</u>, (January, 1967), 59-67.
- Gensch, D. "A Computer Simulation Model for Media Selection," Unpublished Ph.D. dissertation, Northwestern University, 1967.
- Gonzalez, Richard, R. and McMillan, Claude. <u>Machine Computation: An Algorithmic Approach</u>. Homewood, Ill.: Richard D. Irwin, Inc., 1971.
- Green, Jay R. "A Computer Simulation of a Marketing Organization," Unpublished Ph.D. dissertation, Ohio State University, 1960.
- Guetzkow, Harold (Ed.) <u>Simulation in the Social Sciences</u>. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1962.
- Guetzkow, Alger, Brody, Noel, and Snyder. <u>Simulation in International</u>
 Relations. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1963.

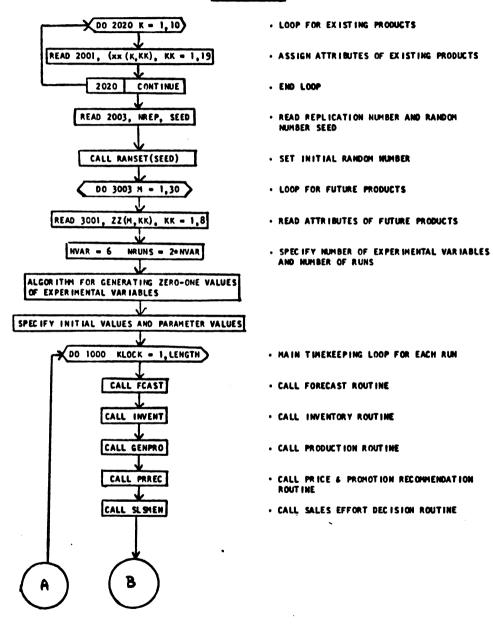
- Gullahorn, John and Jeanne. "The Computer as a Tool for Theory Development," Santa Monica, California: System Development Corp., SP-817, (June 5, 1962).
- Gullahorn, John and Jeanne. "Computer Simulation of Interaction in Small Groups," American Fed. Information Processing Societies Conference Proceedings, (1964), 103-173.
- Gullahorn, John and Jeanne. Social and Cultural System Simulations.

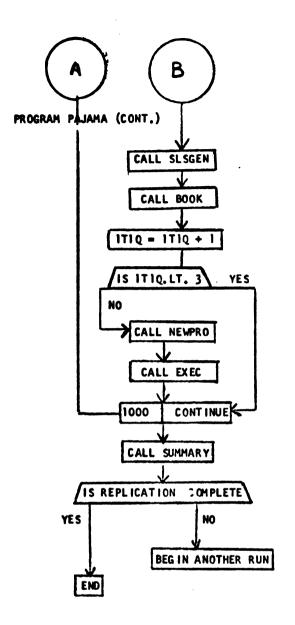
 East Lansing, Mich.: Computer Institute for Social Science
 Research, 1969.
- Gullahorn, John. "Testing Organization Theories by Computer Simulation," East Lansing, Mich.: Unpublished application for research grant, 1970.
- Hershauer, James Cliff. "An Empirically-Derived Simulation to Explore Sequencing Decisions," Unpublished D.B.A. dissertation, Indiana University, 1969.
- Hirschmann, Winfred H. "Profit From the Learning Curve," <u>Harvard Business Review</u>, (January-February, 1964).
- Homans, George Casper. Social Behavior: Its Elementary Forms. New York: Harcourt, Brace, and World, Inc., 1961.
- Hunt, Arch William. "Statistical Analysis and Verification of Digital Simulation Models Through Spectral Analysis," Unpublished Ph.D. dissertation, University of Texas at Austin, 1970.
- Hutchinson, George K. "The Design and Simulation of a Management Information and Control System," Unpublished Ph.D. dissertation, Stanford University, 1964.
- Kaczka, Eugene Edwin. "The Impact of Some Dimensions of Management Climate on the Performance of Industrial Organizations," Unpublished Ph.D. dissertation, Rensselaer Polytechnic Institute, 1966.
- Kotler, Philip. "Phasing Out Weak Products," <u>Harvard Business Review</u>, (March-April, 1965), 107-118.
- Kotler, Philip. "Competitive Strategies for New Product Marketing Over the Life Cycle," <u>Management Science</u>, XII, No. 4 (December, 1965), B-104-119.
- Kotler, Philip. <u>Marketing Management</u>. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1967.
- Kotler, Philip. "Computer Simulation in the Analysis of New-Product Decisions," in <u>Applications of the Sciences in Marketing Management</u>. Frank Bass, et. al. (eds.), New York: John Wiley and Sons, Inc., 1968.

- Lambert, Farrel V. and Kniffin, Fred W. "Response Functions and Their Application in Sales Force Management," <u>Southern Journal of Business</u>, (January, 1970), 1-11.
- Levitt, Theodore. "Exploit the Product Life Cycle," <u>Harvard Business</u> Review, (November-December, 1965), 81-94.
- Likert, Rensis. The Human Organization: Its Management and Value.

 New York: McGraw-Hill Book Co., 1967.
- March, James G. and Simon, Herbert A. <u>Organizations</u>. New York: John Wiley and Sons, Inc., 1958.
- McMillan, Claude and Gonzalez, Richard F. Systems Analysis: A Computer Approach to Decision Models. (revised edition) Homewood, Ill.: Richard D. Irwin, Inc., 1968.
- McPhee, W.N. "Note on a Campaign Simulator," <u>Public Opinion Quarterly</u>, Vol. 25, (July, 1961), 184-193.
- Meinhart, Wayne A. "Artificial Intelligence, Computer Simulation of Human Cognitive and Social Processes, and Management Thought."

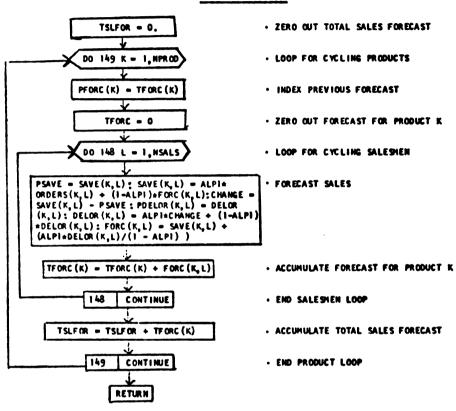
 <u>Academy of Management Journal</u>, (December, 1966), 294-307.
- Miller, Richard F. "Product Growth in Competitive Markets," Unpublished SM Thesis, School of Industrial Management, Massachusetts Institute of Technology, 1962.
- Naylor, T.H., Balintfy, J.L., Burdick, D.S., and Chu, K. <u>Computer</u>
 <u>Simulation Techniques</u>. New York: John Wiley and Sons, Inc.,
 1966.
- Norek, Bernard Jean-Marie, "Simulation Models of New Product Introduction and Market Evolution," Unpublished Ph.D. dissertation, University of Pennsylvania, 1970.
- Parker, Alan J. "Optimizing a Complex System: A Simulation Study of a Commodity Distribution System," Unpublished Ph.D. dissertation, Columbia University, 1969.
- Pessemier, Edgar A. "Models for New-Product Decisions," Paper No. 247, Institute for Research in the Behavioral, Economic, and Management Sciences, Lafayette, Indiana: Krannert Graduate School of Industrial Administration, Purdue University, 1968.
- Polli, Rolando and Cook, Victor. "Validity of the Product Life Cycle," The Journal of Business, (October, 1969), 385-400.
- Raser, John R. <u>Simulation and Society</u>. Boston, Mass.: Allyn and Bacon, Inc., 1969.
- Rogers, Everett. The Diffusion of Innovations. Glenco, Ill.: Free Press, 1962.

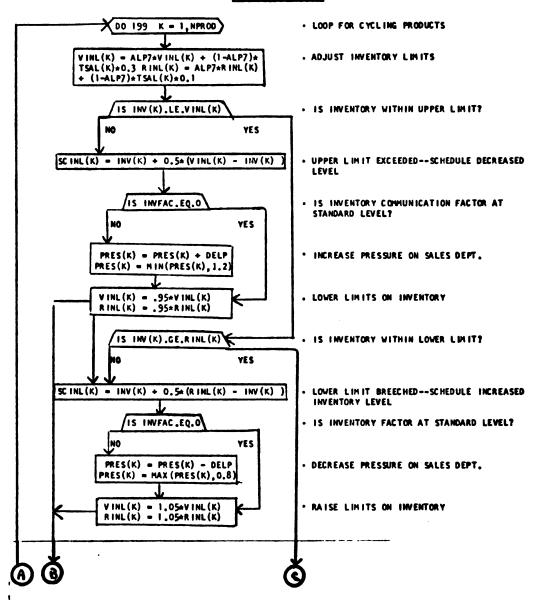

- Rotenberg, A. "A New Pseudo-Random Number Generator," American Association of Computing Machines, Vol. 7, (1960), 75-77.
- Rothe, James T. "The Product Elimination Decision," MSU Business Topics, (Autumn, 1970), 45-52.
- Saltzman, S. "Survey of Principle Types of Simulation Models of the Firm," unpublished paper, Cornell University, Computing Center and Department of Industrial Engineering, (June, 1965).
- Schelling, Thomas C. "Experimental Games and Bargaining Theory," World Politics, Vol. 14, No. 1, (1961), 57.
- Siemens, Nicolai. "Analysis of Selected Industrial Decision Rules In a Dynamic Environment by Means of Computer Simulation," Unpublished Ph.D. dissertation, University of Oregon, 1967.
- Simon, Leonard S., and Freimer, Marshall. <u>Analytical Marketing</u>. New York: Harcourt, Brace and World, Inc., 1970.
- Smith, Robert D. "The Heuristic Simulation of Psychological Decision Processes," <u>Journal of Applied Psychology</u>, Vol. 52, No. 4, (August, 1968), 325-330.
- Srinivas, K.M. "A Computer Simulation Model of Newcomb's Consistency Theory: A Case in Theory Development," Unpublished Ph.D. dissertation, University of California, Los Angeles, 1970.
- Stallings, Billy Gene. "A Simulation Model for Budgeting and Cost Control of a Medium-size Hospital Intensive Care Unit," Unpublished Ph.D. dissertation, Mississippi State University, 1970.
 - Summit, Roger K. "Simulation of a Psychological Decision Process Utilizing a Computer Model of the Aerospace Industry," Unpublished Ph.D. dissertation, Stanford University, 1965.
 - Tarter, Jim 1. "A Study of Computer Simulation," unpublished paper, Sociology Dept., Michigan State University, 1971.
- Teichroew, Daniel. An Introduction To Management Science: Deterministic Models. New York: John Wiley and Sons, Inc., 1964.
- Tomkins, Silvan S. and Messick, Samuel (Eds.). Computer Simulation of Personality. New York: John Wiley and Sons, Inc., 1963.
- Tuason, R.V. "Experimental Simulation on a Pre-Determined Market Mix Strategy," Unpublished Ph.D. dissertation, Northwestern University, 1965.
- Tukey, J.W. "The Problem of Multiple Comparisons," unpublished manuscript, Princeton University, 1953. Also in Scheffe', H. The Analysis of Variance. New York: John Wiley and Sons, Inc., 1959.

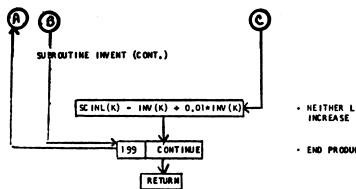

- Uhr, Ernest Bernhard. "Management of the Marketing Mix for a Retail Food Chain: A Simulation Study," Unpublished Ph.D. dissertation, Rensselaer Polytechnic Institute, 1969.
- Urban, Glen L. "A Mathematical Modeling Approach to Product Line Decisions," Journal of Marketing Research, (February, 1969), 40-47.
- Verba, Sidney. "Simulation, Reality, and Theory in International Relations," World Politics, XVI, No. 3, (1964).
- Vroom, Victor H. Work and Motivation. New York: John Wiley and Sons, Inc., 1964.
- Wallace, Fraser G. "A Computer Simulation of Selected Hypotheses Describing Behavior of a Firm within a Given Economic Environment," Unpublished Ph.D. dissertation, University of California at Los Angeles, 1961.
- Weber, W.L. "Toward an Integrated Model For Manpower Planning," Unpublished Ph.D. dissertation, Carnegie-Mellon University, 1970.
- ----, Webster's Seventh New Collegiate Dictionary. Springfield, Mass.: G. & C. Merriam Co., 1967.
- Weibull, W. "A Statistical Distribution Function of Wide Applicability,"

 <u>Journal of Applied Mechanics</u>, (September, 1951), 293-297.
- Wilson, G.T. "Behavioral Theory of Production Planning in the Firm."
 Unpublished Ph.D. dissertation, Graduate School of Industrial
 Administration, Carnegie-Mellon University, 1969.
- Woodward, Joan. <u>Industrial Organization: Theory and Practice</u>. London: Oxford University Press, 1965.

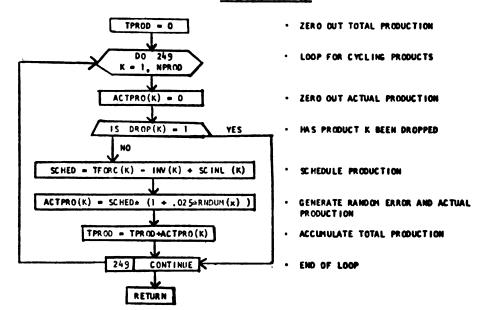
APPENDIX I Detailed Flow Chart

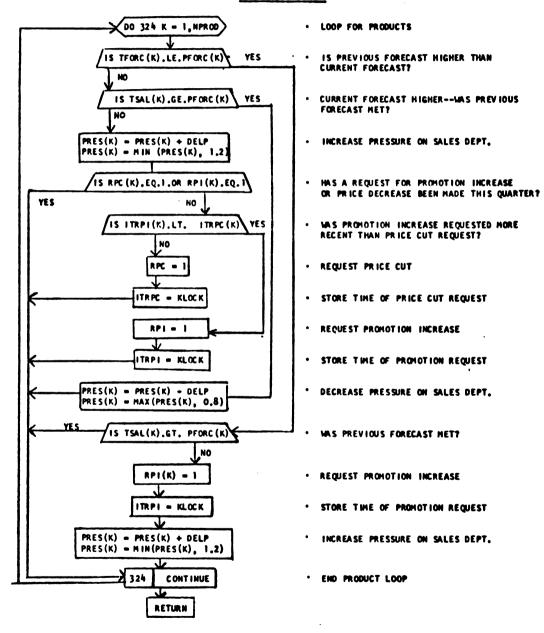

PROGRAM PAJAMA



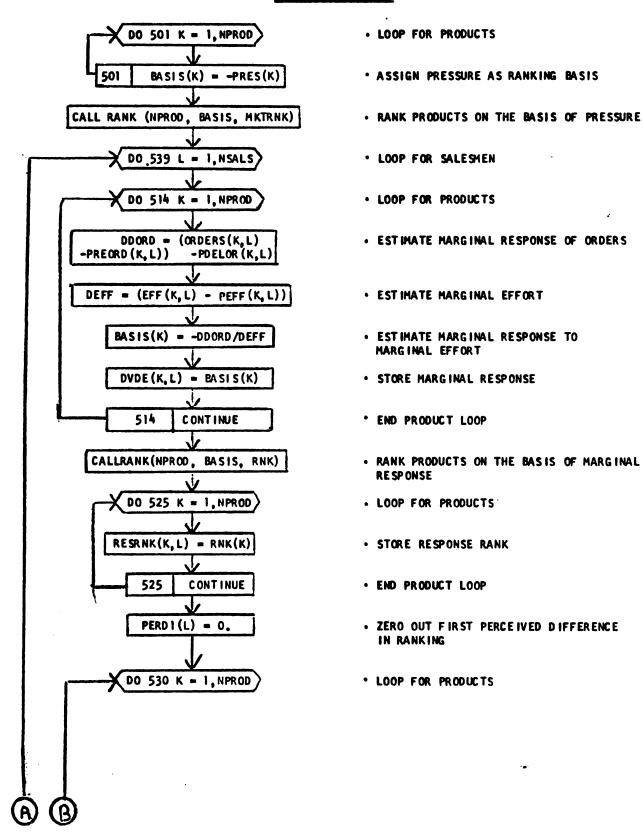

- CALL SALES GENERATING ROUTINE
- . CALL BOOKKEEPING ROUTINE
- . ADVANCE TIME-IN-QUARTER COUNTER
- . DOES QUARTER HAVE TIME LEFT
- . CALL NEW-PRODUCT ROUTINE
- . CALL EXECUTIVE DECISION ROUTINE
- . END MAIN TIMEKEEPING LOOP
- . CALL OUTPUT ROUTINE

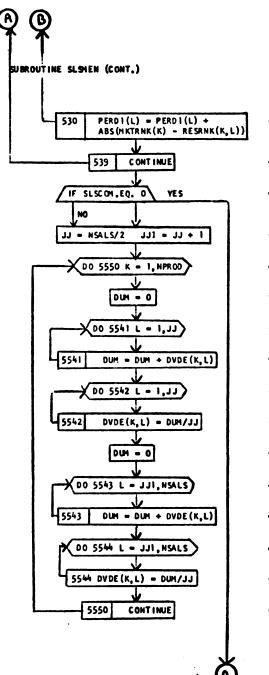
SUBROUTINE FCAST


SUBROUTINE INVENT

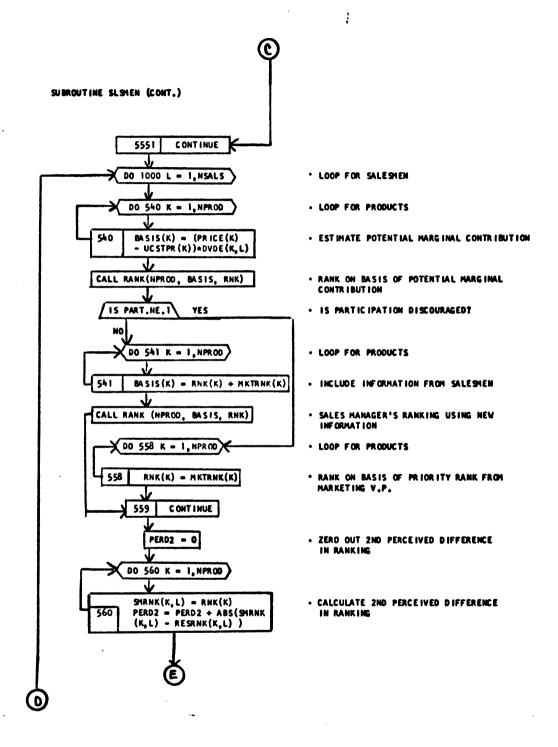


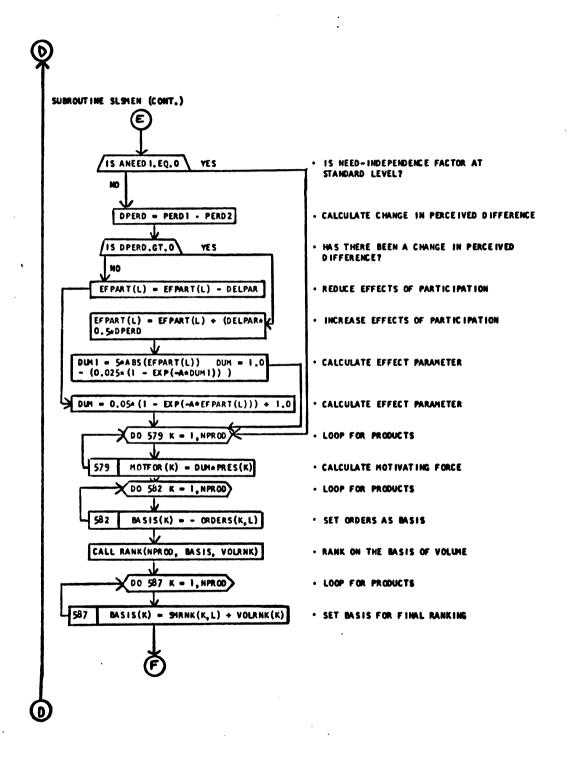
- . NEITHER LIMIT BREECHED -- SCHEDULE SLIGHT INCREASE IN INVENTORY
- . END PRODUCT LOOP

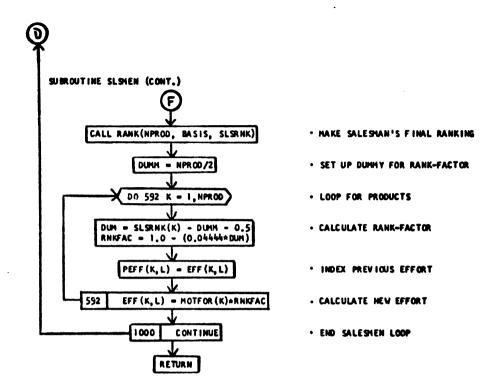

SUBROUTINE GENPRO

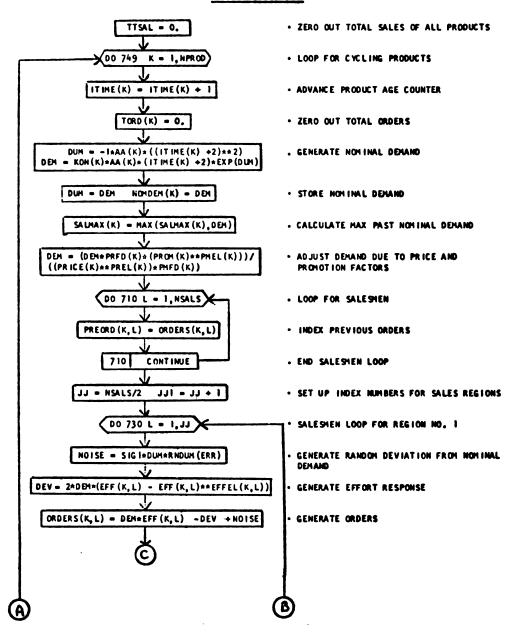


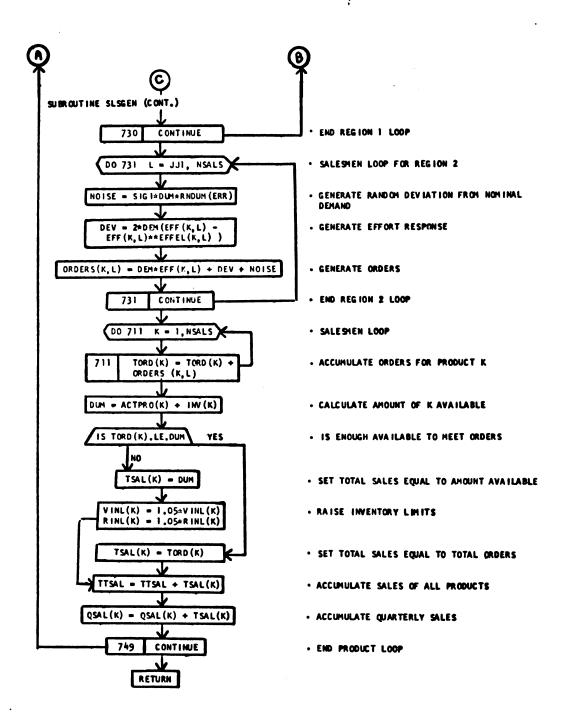
SUBROUTINE PRREC

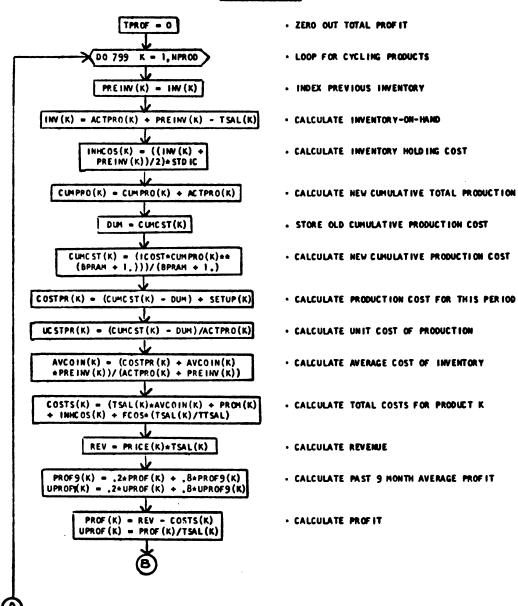


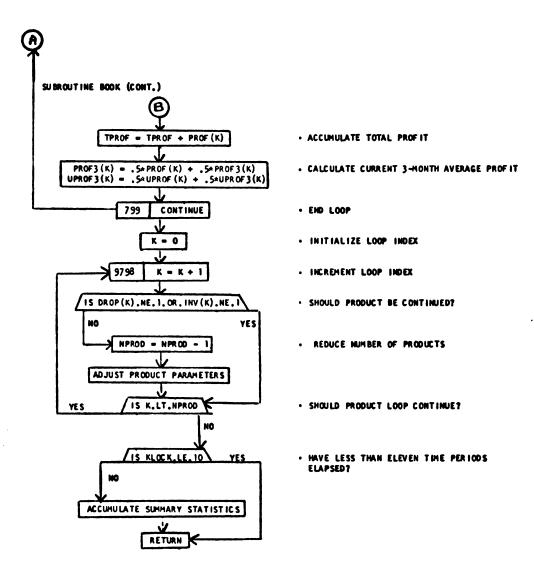

SUBROUTINE SLIMEN

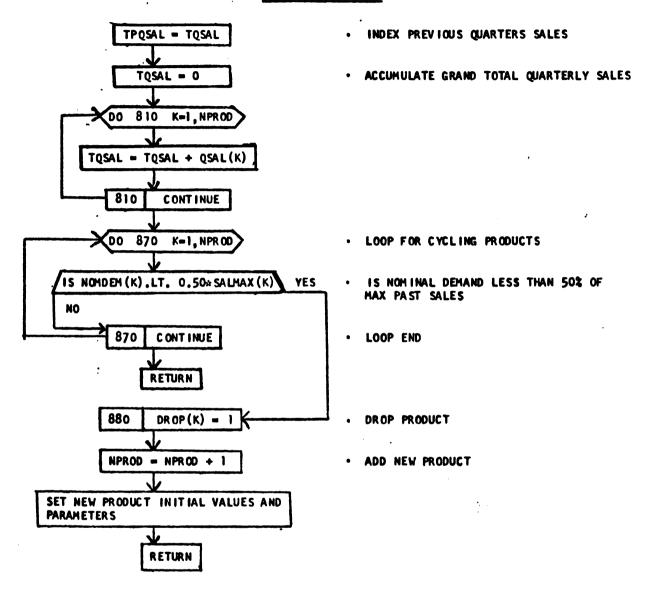



- CALCULATE FIRST PERCEIVED DIFFERENCE IN RANKINGS
- . END SALESHEN LOOP
- IS THE SALESMEN COMMUNICATION FACTOR AT THE STANDARD LEVEL?
- . SET UP SALES REGION INDEX NUMBERS
- . LOOP FOR PRODUCTS
- . ZERO OUT DUMMY VARIABLE
- . LOOP FOR REGION 1 SALESIEN
- . ACCUMULATE MARGINAL RESPONSE VALUES
- . LOOP FOR REGION 1 SALESIEN
- . ESTIMATE HEAN MARGINAL RESPONSE
- . ZERO OUT DUMMY VARIABLE
- . LOOP FOR REGION 2 SALESIEN
- . ACCUMULATE MARGINAL RESPONSE VALUES
- . LOOP FOR REGION 2 SALESMEN
- . ESTIMATE HEAN MARGINAL RESPONSE
- . END PRODUCT LOOP

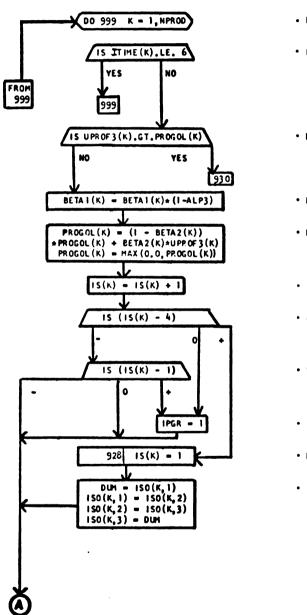




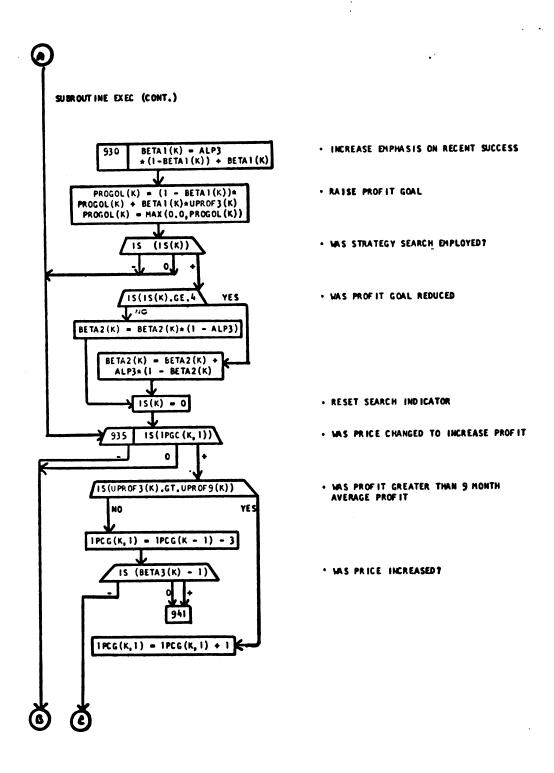

SUBROUTINE SLSGEN

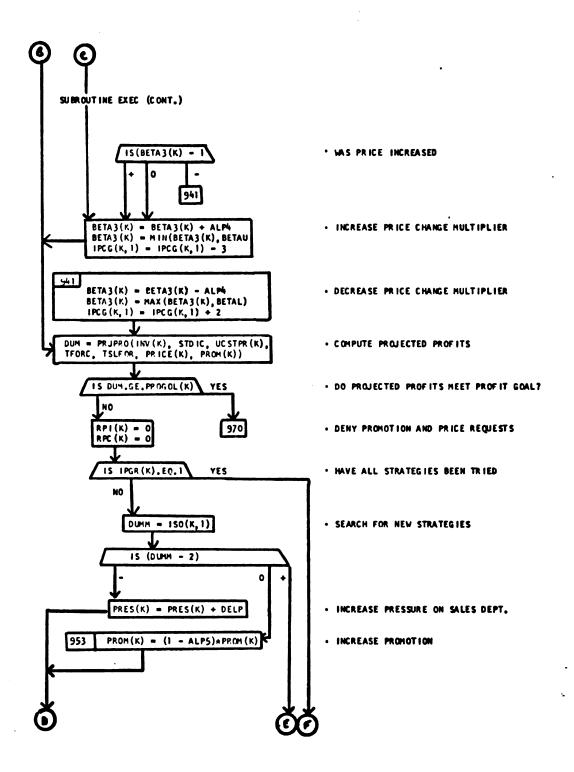


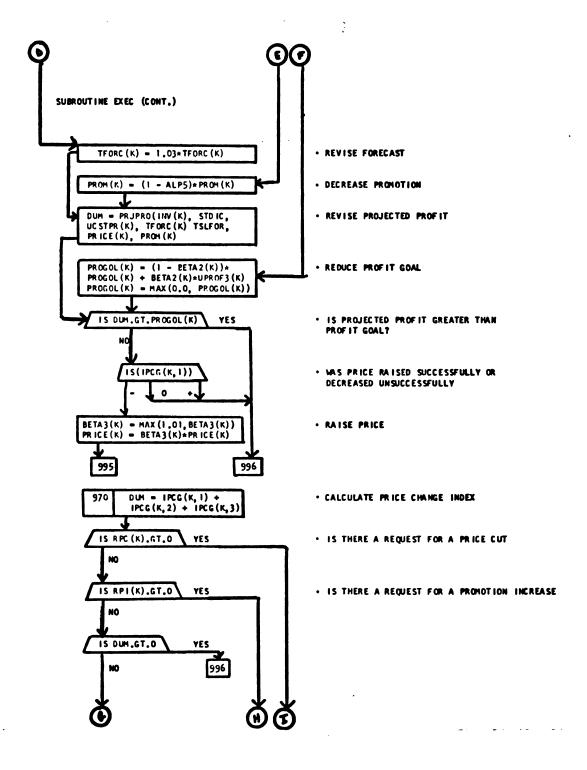
SUBROUTINE BOOK

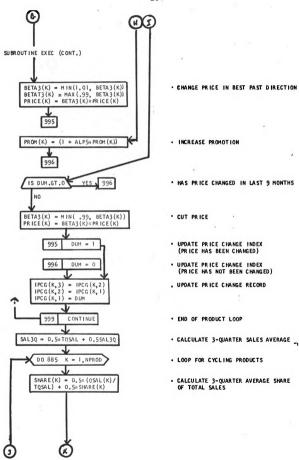


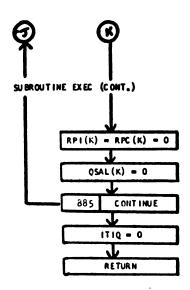
SUBROUTINE NEWPRO

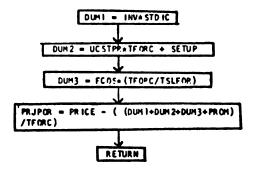

SUBROUTINE EXEC

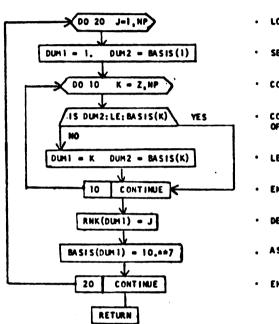



- . LOOP FOR PRODUCTS
- BYPASS PRICE & PROMOTION DECISIONS IF PRODUCT IS NEW

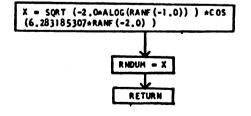

. . 1


- . DID PROFIT EXCEED PROFIT GOAL
- . REDUCE EMPHASIS ON RECENT SUCCESS
- . REDUCE PROFIT GOAL
- . INDEX SEARCH COUNTER
- . HAVE ALL ALTERNATIVES BEEN TRIED?
- . WAS SEARCH EMPLOYED?
- SET INDEX OF POSSIBLE PROFIT GOAL REDUCTION
- · RESET SEARCH COUNTER
- . ALTER ORDER OF SEARCH




- . ZERO OUT PRICE AND PROMOTION REQUESTS
- . ZERO OUT QUARTER SALES
- . END PRODUCT LOOP
- . ZERO OUT TIME-IN-QUARTER

FUNCTION PRJPRO


- . EST IMATE TOTAL INVENTORY HOLDING COST
- . ESTIMATE PRODUCTION COST
- . ESTIMATE FIXED COST ALLOCATION
- . ESTIMATE UNIT PROFIT

SUBROUTINE RANK

- · C-RANK SHALLEST VALUE OF BASIS FIRST--LARGEST VALUE OF BASIS LAST
- . LOOP FOR CYCLING PRODUCTS
- . SET INITIAL VALUES OF DUMMY VARIABLES
- . COMPARISON LOOP CONTROL
- COMPARE LOWEST NUMBER WITH NEXT VALUE OF BASIS
- . LET DUM2 EQUAL NEW LOWEST VALUE
- . END OF LOOP
- . DEFINE RANK OF NEW LOWEST VALUE
- . ASSIGN ARBITRARILY HIGH VALUE TO BASIS
- . END OF LOOP

FUNCTION RINDUM

 GENERATE A RANDOM VARIABLE FROM A NORMAL DISTRIBUTION WITH MEAN OF ZERO AND STANDARD DEVIATION OF 1.0

APPENDIX II Glossary of Variable Names

		DELOR(K, L)	Forecasted change in orders from current month to next month.
010	GLOSSARY OF VARIABLE NAMES	FORC(K, L)	Forecast of sales.
Subscripts		Subroutine INVENT	
In general, the subs	In general, the subscript K refers to a particular product, with K 1, NPROD, (NPROD Number of products)	UINL(K)	Upper limit on inventory level.
The subscript L red	to a particular	ALP7	Smoothing constant in setting inventory limits.
L 1, NSALS.	ALS. (NSALS Number of salesmen)	RINL(K)	Runout (lower) limit on inventory level.
Program PAJAMA	J	TSAL(K)	Monthly sales.
KLOCK	The timekeeping variable. The value of	INV(K)	Inventory level at end of month.
	KLOCK is the particular month of the current run.	SCINL(K)	Scheduled level of inventory.
LENGTH	The length of the run. The number of time periods to be covered in the run.	INVFAC	Experimental variable control (inventory communication link).
ITIQ	Current time in quarter.	Pres(K)	Index of pressure on sales department.
		DELP	Change constant for index of pressure.
Subroutine FCAST			
TSLFOR	Total sales forecast.	Subroutine GENPRO	ol
PFORC(K)	Previous month's forecast.	TPROD	Total monthly production.
TFORC(K)	Forecast for product K.	ACT PRO(K)	Actual amount produced in current month.
PSAVE	Previous smoothed average.	DROP(K)	Index number indicating if a product is to be discontinued. If DROP(K) 1, the product
SAVE(K, L)	Smoothed average.		will be deleted.
ALPI	Smoothing constant used in forecasting.	SCHED	Production scheduled for next month.
ORDERS(K, L)	Orders received (units).	TFORC(K)	Forecasted sales.
CHANGE	Change in smoothed average.	INV(K)	Current level of inventory.
PDELOR(K, L)	Previous forecasted change in orders.	SCINV(K)	Scheduled level of inventory.

RNDUM(X)	Function for generating standardised normal random variate.	EFF(K, L)	Salesman's effort index.
		Peff(K, L)	Previous month's effort index.
Subroutine PRREC	gl	DVDE(K, L)	Marginal response variable.
TFORC(K)	Forecasted sales.	RNK(K)	Dummy variable used to carry result of
PFORC(K)	Forecast of sales in previous month.		ranking subroutine back to calling program.
TSAL(K)	Monthly sales.	RESRNK(K, L)	Rank of marginal response of a product to marginal effort.
PRES(K)	Index of pressure on sales department.	PERDI(L)	First perceived difference between salesman's
DELP	Change constant for index of pressure.		ranking and sales manager's ranking.
R PC(K)	Request for price cut index.	SLSCOM	Experimental variable control (salesmen communication).
PPI(K)	Request for promotion increase index.	13, 331	Index numbers for separating sales regions.
ITRPI(K)	Month in which promotion increase was last requested.	PRICE(K)	Price.
ITRPC(K)	Month in which price cut was last requested.	UCSTPR(K)	Unit cost.
KLOCK	'Clock time". Current month.	MKTRNK(K)	Priority ranking from marketing vice- president.
Subroutine SLSMEN	EN	SMRNK(K, L)	Salesmanager's priority ranking of products.
BASIS(K)	Dummy variable, used for listing values of	PERD2	Second perceived difference.
DBFC/K)		DPERD	Change in perceived difference in rankings due to participation.
(W)	midex of pressure on sales department.		
MKTRNK(K)	Indicates a priority rank of each product.	EFPART(L)	Index indicating a cumulative effect from participation.
DDORD	The marginal change in orders.	DELPAR	Participation change constant.
Orders(K, L)	Monthly orders.	DUM	Dummy variable.
PREORD(K, L)	Previous month's orders.	MOT FOR(K)	Motivating force.
PDELOR(K, L)	Previous month's change in orders.	VOLRNK(K)	Ranking on basis of volume.
DEFF	The change in a salesman's effort.	SLSRNK(K)	Final priority ranking of salesman.

Selling effort.	. L.) Elasticity of effort.	Adjustment due to effort response.	K) Actual production.	Current inventory level.	Upper inventory 11mit.	Runout (lower) inventory limit.	Total monthly sales.	Quarterly sales.	e BOOK	Monthly profit.	K) Previous month's inventory level.	Current inventory level.	(K) Actual production.	Monthly sales.	() Inventory holding costs.	Standard cost for holding one unit of inventory.		the life of the product.	(F) Cumulative total production costs over the life of the product.	Learning curve parameter.	Initial cost of first unit produced.	K) Monthly production cost.
EFF(K, L)	EFFEUK L)	DEV	ACT PRO(K)	INV(K)	UINL(K)	RINL(K)	TSAL(K)	QSAL(K)	Subroutine BOOK	TPROF	PREINV(K)	INV(K)	ACTPRO(K)	TSAL(K)	INHCOS(K)	STDIC	CUMPRO(K)		CUMCST(F)	BPRAM	ICOST	COST PR(K)
Index due to final salesman's ranking.	KGEN	Total monthly sales of all products.	The age of product K.	Monthly orders	Dummy variable.	Wiebull equation parameter.	Nominal demand for product.	Nominal demand.	Maximum past nominal demand.	Wiebull equation parameter.	Price factor divisor.	Promotion expenditure.	Promotion elasticity	Promotion factor division.	Previous month's orders.	Current month's orders.	Index numbers for sales regions.	Drop index.	Random variation in demand.	Constant used in calculating random variation.	Function for generating standardized normal variable.	
RNKFAC	Subroutine SLSGEN	TTSAL	TIME(K)	TORDAKI	Mnd	AA(K)	DEM	NOMDEM(K)	SALMAX(K)	KON(K)	PFRD(K)	PROM(K)	PMEL(K)	PMFD(K)	PREORD(K, L)	ORDERS(K, L)	13, 331	DROP(K)	NOISE	SIGI	RNDUM(ERR)	

UCST PR(K)	Unit monthly production cost.	SUMXPR	Product of KLOCK and average pressure value.
SETUP(K)	Setup cost.	SUM PR2	(SUMPR) ² · ·
AVCOIN(K)	Average cost of inventory.	SUMY	Sum of total profit.
COSTS(K)	Monthly total costs.	SUMXY	Product of KLOCK and total profit.
PROM(K)	Promotion expenditures.	SUM Y2	(SUM Y) ²
FCOS	Monthly fixed costs.		C
TTSAL	Total monthly sales.	Subroutine NEWFRO	
TPROD	Total monthly production.	o Ti	Clock indicating current month in current quarter.
REV	Revenue	TPQSAL	Total previous quarter's sales.
PRICE(K)	Price.	TOSAL	Total current quarter's sales.
PROF9(K)	Nine month average profit.	QSAL(K)	Quarterly sales.
PROF(K)	Monthly profit.	SALMAX(K)	Maximum past nominal demand.
UPROF9(K)	Nine month average unit profit.	DEM(K)	Nominal demand.
UPROF(K)	Unit profit.	DROP(K)	Index for dropping product.
TPROF	Total profit.		
PROF3(K)	Three month average profit.	Santourine Santourine	
UPROF3(K)	Three month average unit profit.	IIIME(K)	Age of product.
DROP(K)	Index indicating if a product is to be dropped.	UPROF 3(K)	Inree month average unit profit.
KLOCK	Current month.	PROGOL(K)	Unit profit goal.
XIIIX	Sum of merinam months	BETAI(K)	Smoothing constant used in profit goal equation.
SIIMX	(SIIVX) ²	ALP3	BETAl change constant.
SUBP	Summation of pressure index values.	BETA2(K)	Smoothing constant used in profit goal equation.
SUMPR	Average pressure value.	1S(K)	Search counter.

IPGR(K)	Index of possible profit goal reduction.
ISO(K)	Order of search precedence.
IPCG(K, 1)	Index indicating if price has been changed at beginning of last quarter.
UPROF9(K)	Nine month average unit profit.
BETA3(K)	Price change multiplier.
ALP4	Change constant for price change multiplier.
BETALL	Upper limit on price change multiplier.
BETAL	Lower limit on price change multiplier.
PRJPRO()	Function used to calculate projected profit.
R PI(K)	Request for a promotion increase.
R PC(K)	Request for a price cut.
PRES(K)	Pressure on sales department.
DELP	Change constant for pressure index.
PROM(K)	Promotion expenditure.
ALPS	Change constant for changing promotion.
TFORC(K)	Monthly sales forecast.
IPCG(K, KK)	Index of past price change. KK 1, 3
PRICE(K)	Unit sales price.
SAL3Q	Three-quarter sales average.
TOSAL	Total quarterly sales.
SHARE(K)	Share of total quarterly sales.

APPENDIX III
Program PAJAMA

v.			

```
MAIN .....
                                           COC 6400 FTN V3.0-L260 OPT=1 07
               PAJAMA
      PROGRAM HAIN (INPUT, OUTPUT, PUNCH)
      COMMON -ACTPRO(15), DELP, DROP(15), EFF(15,6), INV(15), ---
      1ITIME(15), KLOCK, NPROD, NSALS, ORDERS(15,6), PDELOR(15,6),
      2PFORC(15), PREORD(15,6), PRES(15), PRICE(15), PROF3(15), PROF9(15),
     3PROM(15),QSAL(15),RINL(15),SALMAX(15),SCINL(15),TFORG(15),-
     4TPROD, TSAL (15), UINL (15)
      COMMON/FCASTB/DELOR(15,6), ALP1, FORC(15,6)
       COMMON/FCASTC/SAVE (15,6) ----
      COMMON/FCASTD/TSLFOR
       COMMON/INVNTB/ALP7
   - -- COMMON/INVNTC/INVFAC --
      COMMON/GENPRB/SCHED, ERR
       COMMON/PRRECB/RPC(15), RPI(15), ITRPI(15), ITRPC(15)
      - Common/SLSMnB/BASIS(15), MKTRNK(15), DDORD, DEFF, PEFF(15,6),
      1 RESRNK(15,6), RNK(15), PERD1(15), PART, SMRNK(15,6), PERD2, DPERD,
      2 EFPART(15), DELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAC
     .... COMMON/SLSMNC/DVDE(15,6)... ..
       COMMON/SLS1/ANEEDI
       COMMON/SLS2/SLSCOM
      -COMMON/SLSGNB/TORD(15),AA(15),DEM,KON(15),PRFD(15),PMEL(15),-----
      1 PREL(15), PMFD(15), NOISE, SIG1, LOSTSL(15)
       COMMON/SLSGNC/TTSAL
     COMMON/SLSGNX/NOMDEM(15)
       COMMON/800KB/TPROF, PREINV(15), INHCOS(15), CUMPRO(15),
      1 CUNCST(15),ICOST,BPRAM,COSTPR(15),SETUP(15),AVCOIN(15),COSTS(15),
      2 FCOS, REV, PROF (15), UPROF (15), SUMX, SUMX2, SUMY, SUMY2, SUMXY
      3,UCSTPR(15)
     ...COMMON/BOOKC/STDIC _
       COMMON/NEWPRB/ITIQ, TPQSAL, TQSAL, NOMCAP, SAL3Q, MXPROD, SHARE (15)
       COMMON/NEWPRC/EFELFAC
      COMMON/NEWPROX/BPRAMM(15)
       COMMON/NEWPRXX/NAME(15)
       COMMON/NEWPRZ/ZZ (30,8)
     ___COMMON/EXECUB/UPROF3(15),PROGOL(15),BETA1(15),ALP3,BETA2(15),....
      1 IS(15), IPGR(15), ISO(15,3), UPROF9(15), BETA3(15), ALP4, BETAU,
      2 BETAL, ALP5, IPCG(15,3)
     _ COMMON/SUM1/I(6) _
       COMMON/SUM2/SUMPR, SUMXPR, SUMPR2
       COMMON/SUM3/NREP
      DIMENSION XX(10,19)....
2001 FORMAT(3X, 2F5.0, 2F4.0, F2.0, F6.5, F6.0, F4.3, F4.2, F5.0, F6.0,
      +F7.0,F4.0,F5.2,/,3X,2(F9.2,F6.2),F5.3)
-2002---FORMAT(I3,2F6.0,2F5.2,F3.0,F7.5,F7.0,--
      +F5.3,F5.2,F6.0,F7.0,F8.0,F4.0,F6.2,F9.2,
      +F6.2,F9.2,F6.2,F6.3)
2003 FORMAT (1x, 12, F15.5)
2010
     FORMAT(///,1x,+ K+,8x,+PREO+,5x,+EFEL2+,
      +8x, *AA*, 8x, *PHEL*, 5x, *SALHAX*,
      +9x, *CUMCST*,4x, *AVCOIN*,9x, *UPROF9*,9x, *UPROF3*,/,-
      +6x, +ORD+,6x, +EFEL1+,3x, +ITIME+,11x, +KON+,6x, +PREL+,7x, +CUMPRO+,
      +7X, *SETUP*, 10X, *PROF9*, 10X, *PROF3*, 7X, *BPRAMM*, //)
2011 ... FORMAT (1H1)
      FORMAT(10x, *REPLICATION NO.*, 14, 10x, *SEED =*, F15.5,/)
2012
3001
       FORMAT(13x,2F4.2,2%,F6.5,F6.0,
```

7883	+F4.3,F4.2,18X,F4.0,/,33X,F5.3)
3002	FORMAT(15X,2F5.2,3X,F7.5,
	+F7.0,F5.3,F5.2,21x,F4.0,36x,F6.3) TYPE REAL INV,ICOST
c	INITIAL CONDITIONS
C	READ ATTRIBUTES OF EXISTING PRODUCTS
•	DO 2020 K=1.10
	_READ_2001, (XX(K, KK), KK=1,19)
2020	CONTINUE
C	READ REPLICATION NO. AND RANDOM NO.SEED
	READ 2003. NREP. SEED
C	SET SEED FOR RANDOM NUMBER GENERATOR
_	CALL RANSET (SEED)
	DUM=RANF(-1)
	DUH=RANF(-1)
C	READ ATTRIBUTES OF FUTURE PRODUCTS
	_DO_3003_H=1,30
	READ 3001, (ZZ(H,KK),KK=1,8)
3003	
c	PRINT_OUT_PRODUCT_ATTRIBUTE_VALUES
	PRINT 2010
	DO 2005 K=1,10
2005	_PRINT_2002,K, (XX(K,KK),KK=1,19)
	DO 2006 M=1,30
2006	PRINT 3002,(ZZ(M,KK),KK=1,8)
C	PRINT HEADINGS FOR OUTPUT
	PRINT 2011
	PRINT 2012, NREP, SEED
	_NVAR=6
	NRUNS=2++NVAR
C	ALGORITHM FOR GENERATING ZERO-ONE VALUES OF EXPERIMENTAL VARIABL
	_DO_9000_JJJ=1, NRUNS
	AAA=JJJ-1.
	KKK=1
9003	-889=INT(AAA/2.)
	I(NVAR-KKK+1)=INT(AAA-2.*BBB)
	AAA=BBB
9001	KKK=KKK+1
	GO TO 9003
	CONTINUE
9002	SIG1=0.025
9002.	7 <i>7 7 4 </i>
9002	IF(I(1).EQ.1) SIG1=0.10
9002	-EFELFAC=1(2)
9002	-EFELFAC=I(2)
9002	EFELFAC=I(2) INVFAC=I(3) SLSCOM=I(4)
9002	EFELFAC=I(2) INVFAC=I(3) SLSCOM=I(4) PART=I(5)
9002	EFELFAC=I(2) INVFAC=I(3) SLSGOM=I(4)
9002	EFELFAC=I(2) INVFAC=I(3) SLSGOM=I(4) PART=I(5) ANEEDI=I(6) SUMPR=SUMPR2=0
9002	-EFELFAC=I(2) INVFAC=I(3) SLSGOM=I(4) -PART=I(5) ANEEDI=I(6) SUMPR=SUMPR=SUMPR2=0 -NPROD=10
9002	EFELFAC=I(2) INVFAC=I(3) SLSCOM=I(4) PART=I(5) ANEEDI=I(6) SUMPR=SUMPR=SUMPR2=0 NPROD=10 NSALS=6
9002	EFELFAC=I(2) INVFAC=I(3) SLSGOM=I(4) PART=I(5) ANEEDI=I(6) SUMPR=SUMYPR=SUMPR2=0 NPROD=10 NSALS=6 LENGTH=100
9002	EFELFAC=I(2) INVFAC=I(3) SLSCOM=I(4) PART=I(5) ANEEDI=I(6) SUMPR=SUMYPR=SUMPR2=0 NPROD=18 NSALS=6 LENGTH=100 MXPROD=15
9002	EFELFAC=1(2) INVFAC=1(3) SLSCOM=1(4)
9002	EFELFAC=I(2) INVFAC=I(3) SLSCOM=I(4) PART=I(5) ANEEDI=I(6) SUMPR=SUMYPR=SUMPR2=0 NPROD=18 NSALS=6 LENGTH=100 MXPROD=15
9002	EFELFAC=1(2) INVFAC=1(3) SLSCOM=1(4)
9002	EFELFAC=1(2) INVFAC=1(3) SLSCOM=1(4)

LAH_	<u> </u>	CDC 6400 FTN V3.0-L260 OPT=1
	ADDEDGIN I NAVIN AN	•
	ORDERS(K,L)=XX(K,1) EFFEL(K,L)=1.0	
	IF(EFELFAC.EQ.O.) GO TO 30	
12	EFFEL(K,L) = XX(K,3)	
_	CONTINUE	
102	PREORD(K,L)=XX(K,2)	
	ITIHE(K)=XX(K,5)	
	-AA(K)=XX(K,6)	
	KON(K) = XX(K, 7)	•
	PHEL (K) = XX (K, 8)	
	SALMAX(K) = XX(K, 10) CUMPRO(K) = NSALS+XX(K, 11)	
	-CUMCST (K) = NSALS*XX(K,12)	
	SETUP(K)=NSALS*XX(K,13)	
	AVCOIN(K) = XX(K, 14)	•
	PROF9(K)=NSALS*XX(K,15)	
	UPROF9(K) = XX(K, 16)	·
	PROF3(K)=NSALS*XX(K,17)	
	UPROF3(K) = XX (K, 18)	
	BPRAMM(K) = XX(K, 19)	
	CONTINUE	
	-DO 10L=1,NSALS	
	00 10 K=1.NPROD	
	-DELOR(K,L) =ORDERS(K,L) -PREORD(K,L	1
	FORC(K,L)=ORDERS(K,L)	
	SAVE (K,L)=PREORD(K,L)	
	EFF(K,L)=1.0	
_	PEFF(K,L)=0.99	
r 0	CONTINUE	•
		•
	DELP=0.01	•
	DELPAR=0.05 STDIC=3.00	
	ICOST=19.	
	FCOS=2000*NPROD*NSALS	
	SUMX=SUMX2=SUMY=SUMY2=SUMXY=0	
	TQSAL=0	
	NOMCAP=1000*NPROD*NSALS	
	SAL3Q=3*NOMCAP	
	BETAU=1.2	
	BETAL=0.8	
	ALP1=0.5	
	ALP4=0.02	
	ALP5=0.05	
	ALP7=0.5	
	DUH=0.999	
	_00_20K=1,NPROD	
	DUM=DUM+.001	
	PRES(K)=DUH	
	NAME (K)=K	
	PROF(K)=PROF3(K) UPROF(K)=UPROF3(K)	
	UPRUFINI-UPRUFJINI	
		•

	N	CDC-6400 FTN-V3+0+L250_OPT=1
	TSAL(K)=NSALS+ORDERS(K,1)	
	-INV(K)=0.2*ISAL(K)	
	UINL(K)=0.3*TSAL(K)	
	RINL(K)=0.1*TSAL(K)	•
	_OROP(K)=0	
	RPC(K)=RPI(K)=0	
	ITRPI(K)=0	
	ITRPC(K)=1	
	PROH(K)=1000+NSALS	
	PRICE(K)=20	
	LOSTSL(K)=0	
	SHARE(K)=TSAL(K)/NOMCAP	
	PROGOL(K)=UPROF3(K)	
	IPGR(K)=0	
	ISO(K,1)=1	
	_ISO(K,2)=2	
	ISO(K, 3) = 3	
	IPCG(K,1) = IPCG(K,2) = IPCG(K,3) = 0	
	BETAL(K)=0.2	
	BETA2(K)=0.2 BETA3(K)=1.0	
	OSAL(K)=0	
	PRFD(K)=PRICE(K) **PREL(K)	
	PHFD(K)=PRON(K)**PHEL(K)	•
	TFORC(K)=0	
20	CONTINUE	
	DO 1000 KLOCK = 1, LENGTH	
C	-	CALL MONTHLY SUBROUTINES
	CALL FCAST	• ••
	CALL INVENT	
	CALL GENPRO	
	CALL PRREC	
	CALL SLSHEN	
	CALL SLSGEN	
_	CALL BOOK	
C		ADVANCE TIME-IN-QUARTER COUNTER
	_IIIQ = IIIQ + 1	
		HAS QUARTER ENDED
C		
-	IF (ITIQ.LT.3) GO TO 1000	
C		CALL QUARTERLY SUBROUTINES
-	CALL NEMPRO	
C	CALL NEWPRO CALL EXEC	
C	CALL NEHPRO CALL EXEC CONTINUE	
C 1000- 5999	CALL NEHPRO CALL EXEC —CONTINUE ————————————————————————————————————	
C	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE	
1000 5999 C	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH)	
1000 5999	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE	
1000 5999	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH) CONTINUE	
1000 5999	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH) CONTINUE	
1000 5999	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH) CONTINUE	
1000 5999 C	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH) CONTINUE	
1000 5999 C	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH) CONTINUE	
C 1000- 5999	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH) CONTINUE	
1000 5999 C	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH) CONTINUE	
1000 5999 C	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH) CONTINUE	
1000 5999 C	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH) CONTINUE	
1000 5999	CALL NEHPRO CALL EXEC CONTINUE CONTINUE CALL OUTPUT ROUTINE CALL SUMARY(LENGTH) CONTINUE	

```
HE FCAST
                                             COC 6400 FTN V3.0-L260 OPT=1
                                                                              07/29/7
        SUBROUTINE FCAST
        COMMON_ACTPRO(15),DELP,DROP(15),EFF(15,6),INV(15),
       1ITIME(15), KLOCK, NPROD, NSALS, ORDERS(15,6), PDELOR(15,6),
       2PFORC(15), PREORD(15,6), PRES(15), PRIGE(15), PROF3(15), PROF9(15),
       3PROH(15),QSAL(15),RINL(15),SALHAX(15),SCINL(15),TFORC(15),
       4TPROD, TSAL (15), UINL (15)
        COMMON/FCASTB/DELOR(15,6), ALP1, FORC(15,6)
        COMMON/FCASTC/SAVE (15,6)-
        COMMON/FCASTD/TSLFOR
                                            FORECAST SALES
                                            ZERO OJT TOTAL SALES FORECAST ....
        TSLFOR = 0.
        DO 149 K = 1, NPROD
                                          -- INDEX-PREVIOUS FORECAST
        PFORC(K) = TFORC(K)
 C
                                            ZERO OUT FORECAST FOR PRODUCT K
        TEORC(K) = 0 ....
        DO 148 L = 1, NSALS
 C
                                           FORECAST CHANGE IN SALES
        PSAVE=SAVE (K.L)...
        SAVE (K, L) = ALP1 * ORDERS (K, L) + (1-ALP1) * FORG (K, L)
        CHANGE=SAVE(K,L)-PSAVE
        PDELOR(K,L) = DELOR(K,L)
        DELOR(K,L) =ALP1+CHANGE+(1-ALP1)+DELOR(K,L)
        FORC (K,L) = SAVE (K,L) + (ALP1 + DELOR (K,L) / (1-ALP1))
        IF (FORC(K,L).LT.O.) FORC(K,L) = 0.
 C
                                            ACCUMULATE FORECAST FOR PRODUCT K
        TFORC(K) = TFORC(K) + FORC(K,L)
        CONTINUE.
 C
                                            ACCUMULATE TOTAL SALES FORECAST
        TSLFOR = TSLFOR + TFORC(K)
 149
        CONTINUE
        RETURN
        END
         SUBROUTINE GENPRO
         .COMMON_ACTPRO(15), DELP, DROP(15), EFF(15,6), INV(15),
        1ITIME(15), KLOCK, NPROD, NSALS, ORDERS(15,6), PDELOR(15,6),
        2PFORC(15), PREORD(15,6), PRES(15), PRICE(15), PROF3(15), PROF9(15),
        3PROM(15),QSAL(15),RINL(15),SALMAX(15),S3INL(15),TFORG(15),---
        4TPROD, TSAL (15), UINL (15)
         COMMON/GENPRB/SCHED, ERR
         TYPE REAL INV...
                                             ZERO OUT TOTAL PRODUCTION
   C
         TPROD=0.
        _ DO . 249 . K=1,NPROD.....
         ACTPRO(K)=8.
                                             IS PRODUCT K TO BE DROPPED
   C
         <u>if_1Drop(k)-eq-1)_go_to_249</u>_
                                             SCHEDULE PRODUCTION
   C
         SCHED = TFORC(K) - INV(K) + SCINL(K)
                                             GENERATE PRODUCTION-
   C
                                             GENERATE ERROR
          ACTPRO(K) = SCHED*(1+.025*RNDUM(X))
                                           - ACCUMULATE TOTAL PRODUCTION ...
          TPROD=TPROD+ACTPRO(K)
          CONTINUE
   249
         RETURN...
         END
```

INV		COC 6400 FIN V3.0-L260_OPT=107/29
	SUBROUTINE INVENT	
	COMMON-ACTPRO(15),DELP,DROP(15),E	EFF(15,6),INV(15),
	1ITIME(15), KLOCK, NPROD, NSALS, ORDER	RS(15,6),PUELOR(15,6),
	2PFORC(15), PREORD(15,6), PRES(15),	
	3PROH(15),QSAL(15),RINL(15),SALHA)	((15),SCINL(15),TFORC(1 5),
	4TPROD, TSAL (15), UINL (15)	
	COMMON/INVNTB/ALP7	
	COMMON/INVNTC/INVFAC	
	TYPE REAL INV	
}	•	SCHEDULING OF INVENTORY
		INVENTORY ON HAND IS AVAILABLE
;		FROM SUBROUTINE BOOK
	DO 199 K = 1, NPROD	
		ADJUST LIMITS ON INVENTORY
	UINL(K) = ALP7 + UINL(K) + (1-ALP7))*TSAL(K)*0.3
	RINL(K) = ALP7*RINL(K) + (1ALP7)	
<u> </u>		COMPARE INVENTORY WITH LIMITS
;		IS PRESENT INVENTORY WITHIN UPPER LIN
	IF (INV(K).LE.UINL(K)) GO TO 151	
		UPPER LINIT EXCEEDED
3		SCHEDULE DECREASED LEVEL
	SCINL(K)=INV(K)+0.5*(UINL(K)-INV	- · · · ·
	_IELINVEAC.EQ.O.1_GO_TO_161	
;		INCREASE PRESSURE ON SALES DEPT
	PRES(K) = PRES(K) + DELP	•
	-LVC31VI-V-WIITHIT (LVC31VI-1+C1	
61	CONTINUE	
;		LOWER LIMITS ON INVENTORY
	UINL(K)_=95*UINL(K)	
	RINL(K) = .95*RINL(K)	•
	GO TO 199	
		<u>-ISPresentInventoryHithin-Loher-Lim</u>
51	IF (INV(K).GE.RINL(K)) GO TO 152	
}		BELOW LOWER LEVEL
		SCHEDULE INCREASED LEVEL
	SCINL(K) = INV(K) + 0.5* (RINL(K) - INV	(K))
	IF(INVFAC.EQ.O.) GO TO 162	05005105 00500405 04 64 50 0505
		DECREASE PRESSURE ON SALES DEPI
	PRES(K) = PRES(K) - DELP	
	PRES(K) = AMAX1(PRES(K), 0.8)	
-	CONTINUE	DATCE LIMITE AN INVENTAGE
;	HTML (V) - 4 ACRUTUL (V)	RAISE LIHITS ON INVENTORY
	UINL(K) = 1.05*UINL(K)	
	RINL(K) = 1.05*RINL(K)	
	GO TO 199	NETTUCO I THEE DOCCOURS
En.	COTHERN - THURSE . A ALEXANDER	NEITHER LIMIT BREECHED
.52	_SCINL(K) = INV(K) + 0.01*(INV(K))	
.99	CONTINUE	
	RETURN	
	ENO	
	•	

PRI	REC	CDC 6400 FTN V3.0-L250 OPT=1 07/29/2
	SUBROUTINE PRREC	•
),EFF(15,6),INV(15),
	1ITIHE (15), KLOCK, NPROD, NSALS, OR	
),PRICE(15),PROF3(15),PROF9(15),
	2PFURG(13); PREURU(13; 0); PRE3(13	MAX(15), SCINL(15), TFORC(15),
		.MAX(15), 301ME(15), 1FURG(15),
	4TPROD, TSAL (15), UINL(15)	77007/4C\ 77000/4C\
_	COMMON/PRRECB/RPC(15), RPI(15),	
-C	DO 324 K = 1,NPROD	
_	UU 324 K = 1,NPRUU	TO OURSENT FASTOLOGY WITHOUT THE PROPERTY
C		IS CURRENT FORECAST HIGHER THAN PREVIOUS
	IF(TFORC(K).LE.PFORC(K)) GO T	
C		CURRENT FORECAST HIGHER
C		HAS PREVIOUS FORECAST MET
310	IF_(TSAL(K).GE.PFORC(K))_GO_TO	
C		PREVIOUS FORECAST NOT MET
C		INCREASE PRESSURE ON SALES DEPT.
.312	PRES(K)=PRES(K)+DELP	
_	PRES(K)=AHIN1(PRES(K),1.2)	
C		HAS PROMOTION INCREASE REQUESTED
<u>c</u>		MORE RECENT THAN PRICE CUI REQUEST
	IF(RPC(K).EQ.1.OR.RPI(K).EQ.1)	
	IF(ITRPI(K).LT.ITRPC(K)) GO TO	316
_C		REQUEST PRICE SUI
314	RPC(K)=1	
	ITRPC(K) = KLOCK	
	_GO_TO_324	
C		REQUEST PROMOTION INCREASE
316	RPI(K)=1	
	ITRPI(K)=KLOCK	
	GO TO 324	
C		PREVIOUS FORECAST MET
Ċ.		DECREASE PRESSURE ON SALES DEPT.
318	PRES(K)=PRES(K)-DELP	
	PRES(K)=AMAX1(PRES(K),0.8)	
	GO_TO_324	
C		CURRENT FORECAST NOT HIGHER
Č		HAS PREVIOUS FORECAST HET
320	IF(ISAL(K).GI.PFORC(K)) GO TO	
C		PREVIOUS FORECAST NOT HET
Č		
•	RPI(K)=1	WEGGEST I WOULD TOWN SHOWENSE
	ITRPI(K)=KLOCK	
С	SIM SIM -MEANN	INCREASE PRESSURE ON SALES DEPT
•	PRES(K)=PRES(K)+DELP	AND THE THE SOUR ON SALES DEFT
	PRES(K) = AMIN1(PRES(K) . 1. 2)	
324		
J	CONTINUE Return.	
	END	
		The second secon
•		
	r . amazon n	

```
IE. SLSHEN ....
                                                                           CDC 6400 FTN V3.0-L260 OPT=1 07/29/7
             SUBROUTINE SLSMEN
            1ITIME (15), KLOCK, NPROD, NSALS, ORDERS (15,6), PDELOR (15,6),
           1ITIME(15), KLOCK, NPRUU, NSALS, UNDERSALS, 
           3PROM(15),QSAL(15),RINL(15),SALMAX(15),SGINL(15),TFORG(15),-
           4TPROD, TSAL (15), UINL (15)
             COMMON/SLSMNB/BASIS(15), MKTRNK(15), DDORD, DEFF, PEFF(15,6),
           -1-RESRNK(15,6),RNK(15),PERD1(15),PART,SMRNK(15,6),PERD2,DPERD---
           2 EFPART(15), DELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAG
             COMMON/SLSHNC/DVDE (15,6)
    ----- COMMON/SLS1/ANEEDI ---
             COMMON/SLS2/SLSCOM
             COMMON/BOOKB/TPROF, PREINV(15), INHCOS(15), CUMPRO(15),
           1_CUMCST(15), ICOST, BPRAM, COSTPR(15), SETUP(15), AVCOIN(15), COSTS(15),
           2 FCOS, REV, PROF (15), UPROF (15), SUHX, SUHX2, SUHY, SUHY2, SUHXY
           3.UCSTPR(15)
            1 IS(15), IPGR(15), ISO(15, 3), UPROF9(15), BETA3(15), ALP4, BETAU,
           2 BETAL, ALP5, IPCG (15,3)
            _TYPE_REAL_HOTFOR, MKIRNK
              A=0.075
             RANK PRODUCTS ON THE BASIS OF PRESSURE FROM THE MARKET MANAGER
       ____DO 501 K=1,NPROD ______
      501 BASIS(K) =-PRES(K)
              CALL RANK (NPROD, BASIS, MKTRNK)
             CALCULATE HARGINAL RESPONSE TO HARGINAL EFFORT
              DO 539 L=1,NSALS
              DO 514 K=1,NPROD
             CALCULATE MARGINAL RESPONSE OF ORDERS
              DDORD=(ORDERS(K,L)-PREORD(K,L))-PDELOR(K,L)
  C
              CALCULATE MARGINAL EFFORT
             DEFF=(EFF(K,L)-PEFF(K,L)141000....
              IT=DEFF
              DEFF=IT/10.
    _____ IF(DEFF) 512,510,512......
      510 BASIS(K)=0.
             GO TO 513
__C ____CALCULATE MARGINAL RESPONSE___
     512 BASIS(K) =- (DDORD/DEFF)
  513
             CONTINUE
           514 CONTINUE
              RANK PRODUCTS ON BASIS OF MARGINAL RESPONSE
              CALL RANK (NPROD, BASIS, RNK)....
              DO 525 K=1,NPROD
              RESRNK(K, L)=RNK(K)
- 525 -- CONTINUE - ....
              CALCULATE FIRST PERCEIVED DIFFERENCE IN RANKINGS
              PERD1(L)=0
              DO-530 K=1-NPROO---
      530 PERD1(L)=PERD1(L)+ABS(MKTRNK(K)-RESRNK(K,L))
      539 CONTINUE
            IF(SLSCOM.EQ.O) GO TO 5551 .....
              CALCULATE AVERAGE RESPONSE FOR SALES REGION 1
              JJ=NSALS/2
```

	DO 5550 K=1, NPROD
	DUM = Q.
	D0 5541 L=1,JJ
	DUM=UUM+DVDE(K,L)
	00_5542_L=1,JJ
9942 C	DVDE(K,L)=DUM/JJ CALCULATE AVERAGE RESPONSE FOR SALES REGION 2
U	JUI=JUAT
	DUH=0.
	DO 5543 LE.LII.NSALS
5543	DUM=DUM+DVDE(K,L)
	DO 5544 L=JJ1.NSALS
5544	DVDE(K,L)=DUM/JJ
5550	CONTINUE
5551	CONTINUE
C	ADJUSTMENT IN SALES MANAGERS RANKING DUE TO PARTICIPATION OF SALESMEN
	DO 1000 L=1,NSALS
C	CALCULATE MARGINAL CONTRIBUTION PER MARGINAL UNIT OF EFFORT
	DO 540 K=1,NPROD
540	BASIS(K) = (PRICE(K)=UCSTPR(K)) + DVDE(K, L)
C	RANK ON BASIS OF MARGINAL CONTRIBUTION
_	CALL RANK(NPROD, BASIS, RNK)
c	IS PARTICIPATION PERMITTED
_	IF(PART.NE.1.) GO TO 550
C	RANK ON BASIS OF MARGINAL CONTRIBUTION RANK AND PRIORITY
<u>c</u>	RANKING FROM MARKETING V.P.
	DO 541 K=1,NPROD
541	BASIS(K)=RNK(K)+MKTRNK(K)
c	CALCULATE - SALES HGRS RANKING
	CALL RANK(NPROD, BASIS, RNK)
	GO TO 559
550 C	CONTINUE RANK FROM MARKETING V.P.
U	DO 558 K=1.NPROD
55.8	RNK(K)=MKTRNK(K)
	CONTINUE
C 233	CALCULATE 2ND PERCEIVED DIFFERENCE IN RANKINGS
-	PERD2=1
	00 560 K=1,NPROD
	SHRNK(K,L)=RNK(K)
560	PERO2=PERO2+ABS(SHRNK(K,L)-RESRNK(K,L))
	DUH=1.0
	IF(ANEEDI.EQ.O.) GO TO 576
c	CALCULATE CHANGE IN PERCEIVED DIFFERENCE
	DPERD=PERD1(L)-PERD2
C	ADJUST EFFECTS OF PARTICIPATION
C	HAS_THERE_BEEN_A_CHANGE_IN PERCEIVED_DIFFERENCE
	IF(DPERD.GT.0.) GO TO 573
C	REDUCE EFFECTS OF PARTICIPATION
	EFPART (L) = EFPART (L) = DELPAR
	GO TO 575
С	INGREASE EFFECTS OF PARTICIPATION
	EFPART(L) = EFPART(L) + (DELPAR+0.5+OPERD)
C	CALCULATE EFFECT PARAMETER

,

SLS	1ENCDC 6400 FTN V3.0-L250 OPT=1 07/29/
	DUN1=5.+ABS(EFPART(L))
	DUH=1.0-(0.025*(1EXP(-A*DUH1)))
	GO TO, 576
575	CONTINUE
	DUH=0.05*(1EXP (-A*EFPART (L)))+1.0
576	CONTINUE
276	
•	CALCULATE MOTIVATING FORCE
	-D0.579.K=1,NPR00
5/9	HOTFOR(K) = DUH*PRES(K)
	DO 582 K=1,NPROD
582	BASIS(K) =-ORDERS(K,L)
	CALL RANK(NPROD, BASIS, VOLRNK)
;	MAKE SALESMANS FINAL RANKING
	DO-587.K=1,NPROD
	BASIS(K)=SMRNK(K,L)+VOLRNK(K)
587	CONTINUE
	CALL RANK(NPROD, BASIS, SLSRNK)
3	CALCULATE RANK-FACTOR
-	DUHH=NPROD/2.
	-00 592 K=1,NPROD
	IT=SLSRNK(K)
	DUM=IT-DUMH-0.5
	RNKFAC=1.0-(0.04444+0UM)
•	INCREMENT PREVIOUS EFFORT
	PEFF(K,L)=EFF(K,L)
}	CALCULATE NEW EFFORT
592	EFF(K,L)=HOTFOR(K)+RNKFAC
L000	CONTINUE
	RETURN
	END
	•
	·
	·
	•
	•
	•
	•
	•

		,
		!
	·	
		(

_SLS	GENCDC_6400.FTN.V3.0=L250_OP
	SUBROUTINE SLSGEN
	COMMON_ACTPRO(15),DELP,DROP(15),EFF(15,6),INV(15),
	1ITIME(15), KLOCK, MPROD, MSALS, ORDERS(15, 6), PDELOR(15, 6).
	2PFORC(15), PREORD(15,6), PRES(15), PRICE(15), PROF3(15), PROF9(15)
	3PROM(15), QSAL(15), RINL(15), SALMAX(15), SCINL(15), TEORC(15),
	4TPROD, TSAL (15) .UINL(15)
	COMMON/SLSGNB/TORO(15), AA(15), DEM, KON(15), PRFD(15), PHEL(15),
	1 PREL(15), PMFO(15), NOISE, SIG1, LOSTSL(15)
	COMMON/SLSGNC/TTSAL
	COMMON/SLSGND/EFFEL(15,6)
	COMMON/SLSGNX/NOMDEH{15}
	COMMON/NEHPROX/BPRAMM(15)
	TYPE REAL NOISE, INV
	ZERO OUT TOTAL SALES OF ALL PRODUCTS
	TTSAL=0.
3	SALES GENERATION
	_DO_749_K=1.NPROD
;	ADVANCE DEMAND GENERATING TIME PARAMETER
	ITIME(K)=ITIME(K)+1
	ZERO OUT TOTAL ORDERS OF K
	TORD (K) = 0.
3	CALCULATE NOMINAL DEMAND FROM WIEBULL EQUATION
	DUM=-1*AA(K)*((ITIME(K)+2)**2)
	DEM=KON(K)*AA(K)*(ITIME(K)+2)*EXP(DUM)
	DUH=DEH
	SAVE NOMINAL DEMANO
	NONDEH(K)=DEM
	CALCULATE MÁX PAST NOMINAL DEMAND
	SALMAX(K) = AMAX1(SALMAX(K), DEM)
C	ADJUST DEMAND DUE TO PRICE AND PROMOTION FACTORS
	DEH=(DEH*PRFD(K)*(PROH(K)**PHEL(K)))/
	*(!PRICE(K) **PREL(K)) *PHFD(K))
	DO 710 L=1,NSALS
C	RESET PREVIOUS PERIODS ORDERS
	_PREORD(K,L)=ORDERS(K,L)
710	CONTINUE
	SCALE=2000.
	JJ=NSALS/2
	JJ1=JJ+1
	00 730 L=1.JJ
·	
C	GENERATE RANDOM DEVIATION FROM NOMINAL DEMAND
	NOISE=SIG1*DUM*RNDUM(ERR)
	GO TO 721
720	NOISE=0.
721	CONTINUE
<u> </u>	GENERATE EFFORT DEVIATION
	DEV=DEN*(EFF(K,L)-EFF(K,L)**EFFEL(K,L))
	DEV=2. *DEV
<u> </u>	GENERATE ORDERS
	ORDERS(K,L)=DEM*EFF(K,L)-DEV+NOISE
730	CONTINUE
	- DO -731 L=JJ1, NSALS
	IF(DROP(K).EQ.1.) GO TO 722
C	GENERATE RANDOM DEVIATION FROM NOMINAL DEMAND

	EN CDC 6400 FTN V3.0-L260 OPT=
	NOISE=SIG1+DUH+RNDUH(ERR)
	-GO TO-723
722	NOISE=0.
723	CONTINUE
C	GENERATE EFFORT DEVIATION
	DEV=DEM+(EFF(K,L)-EFF(K,L)++EFFEL(K,L))
	DEV=2. *DEV
C	GENERATE ORDERS
_	ORDERS(K,L)=DEM*EFF(K,L)+DEV+NOISE
731	CONTINUE
	DO 711 L=1,NSALS
711	TABB / V \ TABB / V \ . ABBCBC / V \ I \
Ċ	CALCULATE AMOUNT OF K AVAILABLE
	DUH=ACTPRO(K)+INV(K)
	DO ADDOOR SYSTEM AND ANALYSIS
C	DO ORDERS EXCEED AMOUNT AVAILABLE
_	IF(TORD(K).LE.DUM) GO TO 715
C	SET TOTAL SALES EQUAL TO AMOUNT AVAILABLE
	TSAL(K)=DUM
C	RAISE INVENTORY LIMITS
	-UINL(K)=1。05+UINL(K)
	RINL(K)=1.05*RINL(K)
	GO TO 716
C	SET TOTAL SALES EQUAL TO TOTAL ORDERS
	TSAL(K)=TORD(K)
C	ACCUMULATE SALES OF ALL PRODUCTS
_	TTSAL=TTSAL+TSAL(K)
C	ACCUMULATE QUARTERLY SALES
•	QSAL (K)=QSAL (K)+TSAL (K)
740	CONTINUE
	RETURN
	ENO

C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INV(K) C CALCULATE INVENTORY ON HAND INV(K) = AGTPRO(K) + PREINV(K) - TSAL(K) INV(K) = AMAX1 (INV(K), 0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K) = ((INV(K) + PREINV(K))/2) * STDIC C CALCULATE COST OF PRODUCTION COSTPR(K) = UCSTPR(K) = 0. IF (ACTPRO(K) . E Q. 0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K) = CUMPRO(K) + ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM = CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K) = (ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (CUMCST(K) - DUM) + SETUP(K)	В(OK CDC-6400 FTN-V3.0= L260-OPT=
COMMON_ACTPRO(15)_DELP_DROP(15)_FF(15,6)_TNV(15)_ 1TITHE(15)_KLOCK,NPROD_NSALS,ORDERS(15,6)_PDELOR(15,6)_ 2PFORC(15)_PREORD(15,6)_PRES(15)_PRIDE(15)_PROF3(1		SURPOUTINE ROOK
ITITHE(15), KLOCK, NPROD, NSALS, ORDERS(15,6), PDELOR(15), PPOROS(15), PROPOS(15), PROPOS(15), PROPOS(15), PROPOS(15), PROPOS(15), PROPOS(15), PROPOS(15), PROPOS(15), PROPOS(15), ATPROD, TSAL (15), UNIL (15), SALMAX (15), SZINL (15), TFORC (15), 4 TPROD, TSAL (15), UNIL (15), ODMA/SLSGNO/TTSAL COMMON/SLSGNO/TORD(15), AA (15), DEN, KON (15), PRFO (15), PHEL(16), 1 PREL(15), PHFO (15), NOISE, SIG, LOSTSL (15) COMMON/SLSGNO/EFFEL (15,6) COMMON/SLSGNX/NONDEM (15) COMMON/SLSGNX/NONDEM (15) COMMON/SORSYNONDEM (15) COMMON/SORSYNONDEM (15) COMMON/SORSYNONDEM (15), DATE, SUMX, SUMY, SUMY2, SUMY3, SU		
ZPFORC(15), PREDRO(15,6), PRES(15), PRICE(15), PROF3(15), PROF9(15) JPROM(15), QSAL(15), RINL(15); SALMAX(15), SCINL(15), TFORC(15), 4TPROD, TSAL (15), UINL(15); COMMON/SLSGNO/ITSAL COMMON/SLSGNO/ITSAL COMMON/SLSGNO/ITSAL COMMON/SLSGNO/EFFEL(15,6); COMMON/SLSGNO/EFFEL(15), BOISE, SIG1, LOSTSL (15); COMMON/SLSGNO/EFFEL(15), BOISE, SIG1, LOSTSL (15); COMMON/SLSGNO/HOPER(15); COMMON/SLSGNO/HOPER(15); COMMON/BOKB/TPROF, PREINV(15), INHCOS(15), CUMPRO(15), 1 GUMCST(15), LOOST, BBRAN, COSTPR(15), SETUP(15), AVJOIN(15), COST 2-FCOS, REV, PROF(15), LUPROF(15), SUMX, SUMX2, SUMY, SUMY2, SUMXY 3, UCSTPR(15); COMMON/FCASTB/OELOR(15,6), ALP1, FORC(15,6); COMMON/FCASTB/OELOR(15,6), ALP1, FORC(15,6); COMMON/FCASTB/OELOR(15), RPI(15), ITRPI(15), ITRPI(15), ITRPI(15); COMMON/SEMBASAIS(15), MRINK(15), DOORD, DEFF, PEFF(15,6), 1 RESRNK(15,6), RNK(15), PEROI(15), PART, SHRNK(15), 6), PERO2, OPERC ZEPPART(15), DELPAR, MOTFOR(15), VOLINK(15), SLSRNK(15), RNKFAG COMMON/NEMPROX/DPRAMM(15); COMMON/NEMPROX/DPRAMM(15); COMMON/NEMPROX/DPRAMM(15); COMMON/NEMPROX/DPRAMM(15); COMMON/SECUB/UPROF3(15), PROGGL(15), BETA1(15), ALP3, BETA2(15), 1 IS(15), 1PGR(15), 1SO (15,3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG(15,3); COMMON/SUMZ/SUMPR, SUMXPR, SUMPR2 TYPE REAL INNCOS C GALCULATE PROFITS AND OTHER BOOKKEEPING C ERO OUT TOTAL PROFIT TPROF=0. C OALCULATE INVENTORY VALUE PREINV(K) = INV(K) C CALCULATE INVENTORY VALUE INV(K) = AMAX1(INV(K), 0.0) C GALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST INCOS(K) = ((INVEX) + PREINV(K) / 2) * STDIC C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM= BPRAM K() C MICREMENT OLD CUMULATIVE TOTAL PRODUCTION COST BPRAM= BPRAM K() C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (COMEST(K) - OUM) * SETUP(K) C GALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (COMEST(K) - OUM) * SETUP(K) C GALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (
JPROM(15), QSAL(15), RINL(15), SALMAX(15), SZINL(15), TFORC(15), 4PPROD, TSAL(15), UNIL(15) COMMON/SLSGNC/TTSAL COMMON/SLSGNC/TTSAL COMMON/SLSGNC/TORD(15), AA(15), DEM, KON(15), PRFO(15), PMEL(16), 1 PREL(15), PMFD(15), NOISE, SIGI, LOSTSL(15) COMMON/SLSGNC/EFFEL(15,6) COMMON/SLSGNC/MORDEM(15) COMMON/SLSGNC/MORDEM(15) COMMON/SOKB/TPROF, PREINV(15), INHCOS(15), CUMPRO(15), 1 CUMCST(15), ICOST, BPRAN, COSTPR(15), SETUP(15), AVJOIN(15), COST 2-FCOS, REV, PROFE(15), LUPROF(15), SUMX, SUMX2, SUMY, SUMY2, SUMYY, SUMYY2, SUMYY, 3, UCSTPR(15) COMMON/BOKC/STDIC COMMON/FCASTB/DELOR(15,6), ALP1, FORC(15,6) COMMON/FCASTB/DELOR(15,6), ALP1, FORC(15,6) COMMON/FCASTB/DELOR(15,6), RPI(15), ITRPI(15), ITRPC(15) COMMON/FCASTB/DELOR(15), RPI(15), ITRPI(15), ITRPC(15) COMMON/FCASTB/DELOR(15), PROFI(15), PROFI(15), SARNK(15), RNKK16) COMMON/PRECE/RPC(15), PROFI(15), PROFI(15), SLSRNK(15,6), PROF2, DPERC 2 EFPART(15), DELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAG COMMON/NEMPROX/PRAMM(15) COMMON/MEMPROX/PRAMM(15) COMMON/SUMPRXX/MAME(15) COMMON/SUMPXX/MAME(15) COMMON/SUMPXX/MAME(15) COMMON/SUMPXX/MAME(15) COMMON/SUMPXX/MAME(15) COMMON/SUMPX/SUMPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INVOCOS COLULATE INVENTORY ON HAND INV(K) = ALPROFITS AND OTHER BOOKKEEPING CERCOUNT TOTAL PROFIT TPROF=0. DO 799 K=1, NPROD COLULATE INVENTORY ON HAND INV(K) = ALPROFIC ON HAND INV(K) = CULLATE INVENTORY ON HAND INV(K) = CULLATE INVENTORY ON HAND INV(K) = CULLATE ON TO PRODUCTION TOTAL CUMPRO(K) = CUMPRO(K) + ACTPRO(K) COSTPR(K) = UCSTPR(K) = CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) CHARCH OLD CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM (K) CUMCST(K) = CUMCST(K) - DUM) > SETUP(K) CUMCST(K) = CUMCST(K) - DUM) > SETUP(K		
4TPROD, TSAL (15), JINL (15) COMMON/SLSGNC/ITSAL COMMON/SLSGNC/ITSAL COMMON/SLSGNB/TORD(15), AA(15), DEM, KON(151, PRFD(15), PRHEL(16), 1 PREL(15), PHFD(15), NOISE, SIG1, LOSTSL (15) COMMON/SLSGND/EFFEL (15,6) COMMON/SLSGND/EFFEL (15,6) COMMON/SLSGNZ/MOMDEH(15) COMMON/SLSGNZ/MOMDEH(15) COMMON/SLSGNZ/MOMDEH(15), INHGOS(15), CUMPRO(15), 1 CUMCST(15), ICOST, BPRAM, COSTPR(15), SETUP(15), AVGOIN(15), COST 2-FCOS, REV, PROF(151, UPROF(151), SUMX, SUMX2, SUMY, SUMY2, SUMXY 3, UCSTPR(15) COMMON/SOGKC/STDIC COMMON/FOASTB/DELOR(15,6), ALP1, FORC(15,6) COMMON/FCASTB/DELOR(15,6), RIT(15), ITRPC(15), ITRPC(15) COMMON/SLSNNB/SASIS(15), MITRNK(15), JUDROR, DEFF, PEFF (15,6), 1 RESRNK(15,6), RNK(15), PERD(15), PART, SMRK(15,6), PERD2, DPER COMMON/NEWPRS/SINJA, POTOFOR(15), VOLTANK(15), SLSRNK(15), SRNKFAGE COMMON/NEWPRS/SINJA, POTOFOR(15), VOLTANK(15), SLSRNK(15), SRNKFAGE COMMON/NEWPRS/SINJA, POSSAL, TQSAL, NOMCAP, SAL 3Q, MXPROD, SHARE (15) COMMON/MEWPRS/SINJA, PROGOL(15), BETAJ(15), ALP4, BETAL(15) COMMON/SUMS/SUMYRA, SUMXPR, SUMPR2 COMMON/SUMS/SUMYRA, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INHGOS COLOLATE FROFITS AND OTHER BOOKKEEPING CERO OUT TOTAL PROFIT TPROF=0. ON 799 K=1, NPROD CONDAN		
COMMON/SLSGNG/TISAL COMMON/SLSGNB/TORD(15),AA(15),DEM,KON(15),PRFD(15),PMEL(16), PREL(15),PMFD(15),NOISE,SIG1,LOSTSL(15) COMMON/SLSGND/EFFEL(15,6) COMMON/SLSGNY/MOHDEM(15) COMMON/SLSGNY/MOHDEM(15) COMMON/BOOKB/TPROF,PREINV(15),INHGOS(15),CUMPRO(15), 1 CUMCST(15),ICOST,BPRAM,COSTPR(15),SETUP(15),AVCOIN(15),COST 2_FCOS,REV,PROF(151,UPROF(15),SUMX,SUMX2,SUMY,SUMY2,SUMXY 3,UCSTPR(15) COMMON/FCASTB/DELOR(15,6),ALP1,FORG(15,6) COMMON/FCASTB/DELOR(15,6),ALP1,FORG(15,6) COMMON/FCASTB/DELOR(15,6),FR(15),ITRPI(15),ITRPC(15) COMMON/FCASTB/DELOR(15),PROIL(15),ITRPI(15),ITRPC(15) COMMON/FCASTB/DELOR(15),PROIL(15),FRT,SHRMK(15,6),PERO2,DPERI 2 EFPART(15),DEPAR,HOIFOR(15),VOLRNK(15),SLSRNK(15),RNKFAG COMMON/NEMPRB/ITIQ,TPQSAL,TQSAL,NOMCAP,SAL3Q,HXPROD,SHARE(15) COMMON/NEMPROX/BPRAMH(15) COMMON/NEMPRXX/NAME(15) COMMON/NEMPRXX/NAME(15) COMMON/SUCRX/NAME(15) COMMON/SUCRX/NAME(15) 1 IS(15),IPCR(15),ISO(15,3),UPROF9(15),BETA3(15),ALP4,BETAU, 2 BETAL,ALP5,IPCG(15,3) COMMON/SUMPZSUMPR,SUMXPR,SUMPR2 TYPE REAL INVENCOST		
COMMON/SLSGMB/TORD(15),AA(15),DEM,KON(15),PRED(15),PREL(16), 1 PREL(15),PHFD(15),NOISE,SIG1,LOSTSL(15) COMMON/SLSGMX/MONDEH(15) COMMON/SLSGMX/MONDEH(15) COMMON/SLSGMX/MONDEH(15), COMMON/SLSGMX/MONDEH(15),INHGOS(15),CUMPRO(15), 1 CUMCST(15),ICOST,BPRAM,COSTPR(15),SETUP(15),AVCOIN(15),COST 2-FCOS,REV,PROF(15),UPROF(15),SUMX,SUMX2,SUMY,SUMY2,SUMXY 3,UCSTPR(15) COMMON/BOOKC/STDIG COMMON/FCASTB/DELDR(15,6),ALP1,FORG(15,6) COMMON/FCASTC/SAVE(15,6) COMMON/PRECB/RPC(15),RPI(15),ITRPI(15),ITRPC(15) COMMON/PRECB/RPC(15),RPI(15),ITRPI(15),ITRPC(15) COMMON/SUMB/BASIS(15),MIXTRNK(15),DORD,DEFF,PEFF(15,6), 1 RESRNK(15,6),RNK(15),PERD1(15),PART,SHRNK(15,6),PERD2,DPERG 2 EFPART(15),DELPAR,MOTFOR(15),VOLRNK(15),SLSRNK(15),RNKFAG COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/EXECUB/UPROF3(15),PROGOL(15),BETA3(15),ALP4,BETAU, 2 BETAL,ALP5,IPCG(15,3) COMMON/SUM2/SUMPR,SUMPR,SUMPR2 TYPE REAL INN,ICOST TYPE REAL INN,ICOST TYPE REAL INN,ICOST TYPE REAL INNFOOD C ZERC OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=TNV(K) C CALCULATE INVENTORY ON HAND INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INHCOS(K)=(INV(K)+PREINV(K))/2)*STDIC CALCULATE INVENTORY ON HAND INV(K)=ACTPRO(K)+PREINV(K)/2)*STDIC CALCULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC CALCULATE INVENTORY (N) C CALCULATE PRODUCTION COST DUM-CUNCST(K) C CALCULATE PRODUCTION COST FOR THIS PERIDD COSTPR(K)=(CUMCST(K)-OUM)+SETUP(K) C CALCULATE PRODUCTION COST FOR THIS PERIDD COSTPR(K)=(CUMCST(K)-OUM)+SETUP(K) C CALCULATE PRODUCTION COST FOR THIS PERIDD COSTPR(K)=(CUMCST(K)-OUM)+SETUP(K) C CALCULATE PRODUCTION COST FOR THIS PERIDD		
1 PREL(15), PPEO(15), NOISE, SIG1, LOSTSL (15) COMMON/SLSGND/EFFEL (15,6) COMMON/SUSGNX/MOMBEM (15) COMMON/SUSGNX/MOMBEM (15), INHGOS(15), CUMPRO(15), 1 CUMCST(15), ICOST, BPRAM, COSTPR(15), SETUP(15), AV. DIN(15), COST 2-FCOS, REV, PROF-(151, UPROF-(15), SUMX, SUMX2, SUMY, SUMY2, SUMXY 3, UCSTPR(15) COMMON/FCASTB/DELOR(15,6), ALP1, FORC(15,6) COMMON/FCASTB/DELOR(15,6), ALP1, FORC(15,6) COMMON/FCASTB/DELOR(15,6), ALP1, FORC(15,6) COMMON/FCASTB/DELOR(15,6), PPI(15), ITRPI(15), ITRPC(15) COMMON/PRECB/RPC(15), RPI(15), ITRPI(15), ITRPC(15) COMMON/PRECB/RPC(15), PPI(15), TRPI(15), SURKK(15,6), PERO2, DPERO 2 EFFART(15), 50ELPAR, MOTFOR(15), VOLRNK(15), SUSRNK(15), RNKFAG COMMON/NEMPRB/STID; TYPOSAL, TQSAL, NOMCAP, SAL3Q, MXPROD, SHARE (15) COMMON/NEMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) 1 IS(15), IPGR(15), ISO(15, 3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPGG(15, 3) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INV, ICOST TYPE REAL INMGOS C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1, NPROD C ZALCULATE -PROFITS- AND OTHER BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1, NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV (K) = INVENTORY HOLDING COST INHCOS (K) = (INVENTORY HOLDING COST INHCOS (K) = (UMLATIVE PRODUCTION TOTAL CUMPRO (K) = CUMPRO (K) + ACTPRO (K) C CALCULATE REH CUMULATIVE PRODUCTION COST DUM-CUMCST (K) C CALCULATE REH CUMULATIVE TOTAL PRODUCTION COST DUM-CUMCST (K) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (UMCST (K) - OUM) + SETUP (K) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (UMCST (K) - OUM) + SETUP (K) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (UMCST (K) - OUM) + SETUP (K)		
COMMON/SLSGND/EFFEL (15,6) COMMON/SLSGNX/MOMDEM (15) COMMON/SLSGNX/MOMDEM (15) COMMON/SOOKB/TPROF, PRE INV(15), INHCOS(15), CUMPRO(15), 1 CUMCST (15), ICOST, BPRAM, COSTPR(15), SETUP(15), AV30IN(15), COST 2-FCOS, REV, PROF (15), UPROF (15), SUMX, SUMX2, SUMY, SUMY2, SUMXY 3, UCSTPR(15) COMMON/FORSTOIC COMMON/FCASTB/DELOR(15,6) COMMON/FCASTB/DELOR(15,6) COMMON/FCASTC/SAVE(15,6) COMMON/PRECB/RPC(15), PPI(15), ITRPI(15), ITRPC(15) COMMON/SLSMNB/BASIS(15), MKTRNK(15), DODORD, DEFF, PEFF (15,6), 1 RESRNK(15,6), RNK(15), PERDI(15), PART, SMRNK(15), PERD2, DPERC 2 EFPART(15), OELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), PRRD2, DPERC 2 EFPART(15), OELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), PRRD2, DPERC COMMON/NEMPROX/BPRAMH(15) COMMON/NEMPROX/BPRAMH(15) COMMON/NEMPROX/BPRAMH(15) COMMON/EMPROX/BPRAMH(15) COMMON/EMPROX/BPRAMH(15) COMMON/EMPROX/BPRAMH(15) COMMON/EMPROX/BPRAMH(15) COMMON/EMPROX/BPRAMH(15) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, INVOX TYPE REAL INV, INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMYPR COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INVOX COMMON/SUM2/SUMPR, SUMXPR, SUMPR9 COMMON/SUM2/SUMPR, SUMXPR, SUMYPR COMMON/SUM2/SUMPR, SUMXPR, SUMYPR COMMON/SUM2/SUMAMH COMMON/SUM2/SUMAMH COMMON/SUM2/SUMAMH COMMON/SUM2/SUMAMH COMMON/SUM2/SUMAMH COMMON/		
COMMON/SLSGNX/MOMDEM(15) COMMON/BOOKB/TPROF, PREINV(15), INHCOS(15), CUMPRO(15), 1 CUMCST(15), TCOST, BPRAM, COSTPR(15), SETUP(15), AUGOIN(15), COST 2.FCOS, REW, PROF(151), UPROF(15), SUMX, SUMX2, SUMY, SUMY2, SUMXY 3, UCSTPR(15) COMMON/BOOKG/STOIC COMMON/FCASTB/DELOR(15,6), ALP1, FORC(15,6) COMMON/FCASTB/DELOR(15,6) COMMON/FCASTB/DELOR(15), RPI(15), ITRPI(15), ITRPC(15) COMMON/SLSMNB/BASIS(15), MKTRNK(15), DODORD, DEFF, PEFF(15,6), 1 RESRNK(15,6), RNI(15), PROF(15), DODORD, DEFF, PEFF(15,6), 2 EFPART(15), DELPAR, HOTFOR(15), VOLRNK(15), SLSRNK(15), PRROZ, DPERC COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/NEWPRXX/NAME(15) COMMON/NEWPRXX/NAME(15) COMMON/SUCCUB/UPROF(3(15), PROGOL(15), BETA3(15), ALP3, BETA2(15) 1 IS(15), IPGR(15), ISO(15, 3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG(15, 3) COMMON/SUMZ/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INVCOST TYPE REAL INVCOST TYPE REAL INVCOST CALGULATE -PROFITS -AND_OTHER_BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1, NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INVK) C CALGULATE INVENTORY ON_HAND INV(K) = ANTAX(INV(K), 0, 0, 0) C CALGULATE INVENTORY HOLDING COST INHCOS (K) = (CINV(K) + PREINV(K) / 2) * STDIC C CALGULATE INVENTORY HOLDING COST INHCOS (K) = (CINV(K) + PREINV(K) / 2) * STDIC C CALGULATE NEW CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALGULATE NEW CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) = CUMCST(CUMPRO(K) * (BPRAM+1,)) / (BPRAM+1,) C CALGULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = CUMCST(K) - OUM) + SETUP(K) C CALGULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (CUMCST(K) - OUM) + SETUP(K) C COSTPR(K) = (CUMCST(K) - OUM) + SETUP(K)		
COMMON/BOOKB/TPROF, PREINV(15), INHCOS(15), CUMPRO(15), 1 CUMCST(15), ICOST, BPRAM, COSTPR(15), SETUP(15), AVJOIN(15), COST 2-FCOS, REV, PROF(15), UPROF(15), SUMX, SUMX2, SUMY, SUMY2, SUMXY 3, UCSTPR(15) COMMON/BOOKC/STOIC COMMON/FCASTB/DELDR(15,6), ALP1, FORC(15,6) COMMON/FCASTB/DELDR(15,6) COMMON/FCASTC/SAVE(15,6) COMMON/FCASTC/SAVE(15,6) COMMON/FCASTC/SAVE(15), PI(15), ITRPI(15), ITRPC(15) COMMON/SLSMMB/BASIS(15), MKTRNK(15), DODORD, DEFF, PEFF(15,6),— 1 RESRNK(15,6), RNK(15), PERDI(15), PART, SMRNK(15), PFRDO2, DPERD 2 EFFART(15), DELPAR, MOTFOR(15), VOLENK(15), SLSRNK(15), RNKFAG COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/SUMPROS/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMM(15) COMMON/EMPROX/BPRAMMAMAMAMAMAMAMAMAMAMAMAMAMAMA		
1 CUMCST(15), ICOST, BPRAH, COSTPR(15), SETUP(15), AV2OIN(15), COSTPR(15) 2_FCOS, REV, PROF(15), UPROF(15), SUMX, SUMX2, SUMY, SUMY2, SUMXY 3_UCSTPR(15) COMMON/BOOKC/STOIC COMMON/FCASTB/DELOR(15,6), ALP1, FORC(15,6) COMMON/FCASTC/SAVE(15,6) COMMON/PRRCCB/RPC(15), RPI(15), ITRPI(15), ITRPC(15) COMMON/PRRCCB/RPC(15), RPI(15), ITRPI(15), ITRPC(15) COMMON/PRRCCB/RPC(15), RMIRNK(15), DODRO, DEFF, PEFF(15,6), 1 RESRNK(15,6), RNK(15), PERD1(15), PART, SHRNK(15,6), PERD2, DPERC 2 EFPART(15), DELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAG COMMON/EMPRE/SITIP(15, FERDICE) COMMON/EMPRE/SITIP(15, FERDICE) COMMON/NEMPRE/SITIP(15, FERDICE) COMMON/NEMPRE/SITIP(15), FERDICE) 1 IS(15), IPCR(15), ISO(15, 3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG(15, 3) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INM(0S TYPE REAL INM(15) COMMON/SUM2/SUMPR, SUMYPR, SUMPR2 TYPE REAL INMCOS C_CALCULATE PROFITS—AND—OTHER—BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALCULATE INVENTORY HOLDING COST INM(K)=AHAX1(INV(K), 0.0) C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K)=CQ,0) GO TO 785 C CALCULATE NEH CUMULATIVE PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEH CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEH CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMH(K) C CALCULATE NEH CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMH(K) C CALCULATE NEH CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMH(K) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM1+SETUP(K)		
2_FCOS,REV,PROF(151,UPROF(15),SUHX,SUHX2,SUHY2,SUHXY 3,UCSTPR(15) COMMON/BOOKC/STOIC COMMON/FCASTB/DELOR(15,6),ALP1,FORG(15,6) COMMON/FCASTB/DELOR(15,6) COMMON/FCRSTC/SAVE(15,6) COMMON/FCRSTC/SAVE(15),RPI(15),ITRPI(15),ITRPC(15) COMMON/PRECB/RPC(15),RPI(15),ITRPI(15),ITRPG(15) COMMON/SLSNNB/BASIS(15),MKIRNK(15),DOORO,DEFF,PEFF(15,6), 1 RESRNK(15,6),RNK(15),PERD1(15),PART,SHRNK(15,6),PERD2,DPERC 2 EFPART(15),DELPAR,MOTFOR(15),VOLRNK(15),SLSRNK(15),RNKFAG COMMON/NEWPRB/ITIQ,TPQSAL,TQSAL,NOMCAP,SAL3Q,MXPROD,SHARE(15) COMMON/NEWPRXX/NAME(15) COMMON/NEWPRXX/NAME(15) COMMON/EWPRXX/NAME(15) COMMON/EWPRXX/NAME(15) 2 BETAL,ALP5,1PGG(15,3) COMMON/EWPRXX/NAME(15) COMMON/SUMZ/SUMPR,SUMXPR,SUMPR2 TYPE REAL INN,ICOST TYPE REAL INN,ICOST TYPE REAL INN,ICOST TYPE REAL INN,ICOST TYPE REAL INNOST C CALCULATE PROFITS—AND OTHER BOOKKEEPING C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALCULATE INVENTORY ON HAND INV(K)=ACIPRO(K)+PREINV(K)-TSAL(K) INV(K)=ACIPRO(K)+PREINV(K)-TSAL(K) INV(K)=ACIPRO(K)+PREINV(K)-TSAL(K) INV(K)=ACIPRO(K)+PREINV(K)-TSAL(K) INV(K)=CUMPRO(K)-PREINV(K)-TSAL(K) C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0 IF(ACTPRO(K)-EQ.0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMH(K) C CALCULATE PRODUCTION COST FOR THIS PERDOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K) C CALCULATE PRODUCTION COST FOR THIS PERDOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
3,UCSTPR(15) COMMON/BOOKC/STDIC COMMON/FCASTB/DELOR(15,6), ALP1,FORC(15,6) COMMON/FCASTC/SAVE(15,6) COMMON/FCASTC/SAVE(15,6) COMMON/PCRCB/RPC(15),RPI(15),ITRPI(15),ITRPC(15) COMMON/SKNNB/BASIS(15),MXTRNK(15),DDORD,DEFF,PEFF(15,6), 1 RESRNK(15,6),RNK(15),PERD1(15),PART,SMRNK(15,6),PERD2,DPERC 2 EFPART(15),DELPAR,MOTFOR(15),VOLRNK(15),SLSRNK(15),RNKFAG COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/NEMPROX/BPRAMM(15) COMMON/NEWPROX/BPRAMM(15) 1 IS(15),IPGR(15),ISO(15,3),UPROF9(15),BETA3(15),ALP4,BETAU, 2 BETAL,ALP5,IPCG(15,3) COMMON/SURZ/SUMPR,SUMYPR,SUMPR2 TYPE REAL INV,ICOST TYPE REAL INV,ICOST TYPE REAL INV,ICOST TYPE REAL INVOICST C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALCULATE INVENTORY ON HAND INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INV(K)=AMAXI(INV(K),0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM-BPRAMM(K) C CALCULATE PRODUCTION COST FOR THIS PERDO COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
COMMON/FOASTB/DELOR(15,6), ALP1, FORG(15,6) COMMON/FCASTB/DELOR(15,6) COMMON/FCASTC/SAVE(15,6) COMMON/FRECB/RPC(15), RPI(15), ITRPI(15), ITRPC(15) COMMON/SLSMMB/BASIS(15), MKTRNK(15), DODRD, DEFF, PEFF (15,6), 1 RESRNK(15,6), RNK(15), PERDI(15), PART, SMRNK(15,6), PERD2, DPERD 2 EFPART(15), DELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAG COMMON/NEWPRB/ITIQ, TPQSAL, TQSAL, NOMCAP, SAL3Q, MXPROD, SHARE(15) COMMON/NEWPROX/BPRAHM(15) COMMON/EMPRXX/NAME(15) COMMON/EMPRXX/NAME(15) COMMON/EMPRXX/NAME(15) COMMON/EMPRXX/NAME(15) 1 IS(15), JPGR(15), ISO(15,3), UPROF9(15), BETA3(15), ALP3, BETA2(15) 1 IS(15), JPGR(15), ISO(15,3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPGG(15,3) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE		
COMMON/FCASTB/OELOR(15,6), ALP1,FORC(15,6) COMMON/FCASTC/SAVE(15,6) COMMON/FREGB/RPC(15), RPI(15), ITRPI(15), ITRPC(15) COMMON/SLSMNB/BASIS(15), RRI(15), DOORD, DEFF, PEFF (15,6), 1 RESRNK(15,6), RNK(15), PERDI(15), PART, SMRNK(15,6), PERD2, DPERC 2 EFPART(15), DELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAG COMMON/NEWPRB/ITIQ, TPQSAL, TQSAL, NOMCAP, SAL3Q, MXPROD, SHARE (15) COMMON/NEWPROX/BPRAMM(15) COMMON/NEWPROX/BPRAMM(15) COMMON/NEWPROX/BPRAMM(15) COMMON/NEWPROX/WAME(15) COMMON/NEXECUB/UPROF3(15), PROGOL(15), BETA1(15), ALP3, BETA2(15) 1 IS(15), TPGR(15), ISO(15, 3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG(15, 3) COMMON/SUH2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INV, ICOST TYPE REAL INHOSS C CALCULATE -PROFITS AND OTHER BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALCULATE INVENTORY—ON HAND INV(K)=AMAX1(INV(K), 0.0) C CALCULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALCULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALCULATE INVENTORY HOLDING COST INCOSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPSO(K)=CUMPSO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		·
COMMON/FCASTC/SAVE(15,6) COMMON/PRREGB/PC(15), RPI(15), ITRPI(15), ITRPC(15) COMMON/SLSMNB/BASIS(15), MXTRNK(15), DOORD, DEFF, PEFF (15,6), 1 RESRNK(15,6), RNK(15), PERD1(15), PART, SMRNK(15,6), PERD2, DPERD2 CEFPART(15), DELPAR, NOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAG2 COMMON/NEMPRB/ITIQ, TPQSAL, TQSAL, NONCAP, SAL3Q, MXPROD, SMARE(15) COMMON/NEMPROX/BPRAMM(15) COMMON/SEMPRX/NAME(15) COMMON/SECUB/UPROF3(15), PROGOL(15), BETA1(15), ALP3, BETA2(15) 1 IS(15), IPGR(15), ISO(15,3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG(15,3) COMMON/SUMZ/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INV, ICOST TYPE REAL INVERSOR C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1, NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) INV(K)=AMAX1(INV(K), 0.0) C CALCULATE INVENTORY. ON HAND INV(K)=AMAX1(INV(K), 0.0) C CALCULATE TOOST OF PRODUCTION COSTPR(K)=CCOST OF PRODUCTION COSTPR(K)=CCOST OF PRODUCTION COSTPR(K)=CCOST OF PRODUCTION COSTPR(K)=CCOST OF PRODUCTION TOTAL CUMPRO(K)=CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEM CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(CUMCST(K)-DUM)+SETUP(K) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
COMMON/PRRECB/RPC(15), RPI(15), ITRPI(15), ITRPC(15) COMMON/SLSNMB/BASIS(15), HKTRNK(15), DODOD, DEFF, PEFF (15,6), 1 RESRNK(15,6), RNK(15), PERD1(15), PART, SMRNK(15), PERD2, DPERD 2 EFPART(15), DELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAG COMMON/NEWPROX/BPRAHM(15) COMMON/NEWPROX/DPRAHM(15) COMMON/NEWPRXX/NAME(15) COMMON/SECUB/UPROF3(15), PROGOL(15), BETA1(15), ALP3, BETA2(15) 1 IS(15), IPGR(15), ISO(15,3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG(15,3) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INW, ICOST TYPE REAL INW, ICOST TYPE REAL INHGOS C CALGULATE -PROFITS_AND_OTHER_BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INV(K) C CALGULATE INVENTORY ON HAND INV(K)=AMAX1(INV(K), 0.0) C CALGULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K)-TSAL(K) INV(K)=AMAX1(INV(K), 0.0) C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K)=CUMPLATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) C UMCST(K)=(CUMPRO(K)+*(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		the state of the s
COMMON/SLSMNB/BASIS(15), MKTRNK(15), DDORD, DEFF, PEFF(15,6), 1 RESRNK(15,6), RNK(15), PERD1(15), PART, SMRKK(15,6), PERD2, DPERC 2 EFPART(15), DELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAG COMMON/NEMPRB/ITIQ, TPQSAL, TQSAL, NOMCAP, SAL3Q, MXPROD, SHARE (15) COMMON/NEMPRXX/NAME(15) COMMON/EMPRXX/NAME(15) COMMON/EXECUB/UPROF3(15), PROGOL(15), BETA1(15), ALP3, BETA2(15) 1 IS(15), IPGR(15), ISO(15,3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG(15,3) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INV, ICOST TYPE REAL INCOS C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALCULATE INVENTORY ON HAND INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INHCOS(K)=((INV(K),0.0) C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K)=CUMPRO(K)+RCIPNO(K) C INCREMENT OLD CUMULATIVE PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(COMPCO(K)+CUMPRO(K)+*(BPRAM+1.))//(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
1 RESRNK(15,6),RNK(15),PÉRD1(15),PAŘT,SMRŇK(15,6),PERD2,DPÉRC 2 EFFART(15),DELPAR,MOTFOR(15),VOLRNK(15),SLSRNK(15),RNKFAG COMHON/MEMPRBYITIQ,TPQSAL,TQSAL,NOMCAP,SAL3Q,HXPROD,SHARE(15) COMHON/NEMPRXX/NAME(15) COMHON/EXECUB/UPROF3(15),PROGOL(15),BETA1(15),ALP3,BETA2(15) 1 IS(15),IPGR(15),ISO(15,3),UPROF9(15),BETA3(15),ALP4,BETAU, 2 BETAL,ALP5,IPCG(15,3) COMHON/SUM2/SUMPR,SUMXPR,SUMPR2 TYPE REAL INW,ICOST TYPE REAL INW,ICOST TYPE REAL INHGOS C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALGULATE INVENTORY ON HAND INV(K)=AMAX1(INV(K),0.8) C CALGULATE INVENTORY HOLDING COST INHGOS(K)=((INV(K)+PREINV(K)-TSAL(K)) INV(K)=AMAX1(INV(K),0.8) C CALGULATE GOST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K)=CUMPLATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALGULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(CUMPRO(K)+ACTPRO(K) C CALGULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(CUMPRO(K)+ACTPRO(K) C CALGULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(CUMPRO(K)+ACTPRO(K) C CALGULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
2 EFPART(15), DELPAR, HOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAG COMMON/NEWPROX/BRAHH(15) COMMON/NEWPROX/BRAHH(15) COMMON/NEWPRXX/NAME(15) COMMON/EXECUB/UPROF3(15), PROGOL(15), BETA1(15), ALP3, BETA2(15) 1 IS(15), IPGR(15), ISO(15, 3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG(15, 3) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INV, ICOST TYPE REAL INV, ICOST TYPE REAL INVENTORY C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INV(K) C CALCULATE INVENTORY ON HAND INV(K) = ACTPRO(K) + PREINV(K) - TSAL(K) INV(K) = AMAX1(INV(K), 0.0) C CALCULATE INVENTORY HOLDING COST INHCOS(X) = ((INV(X) + PREINV(K))/2)*STDIC C CALCULATE COST OF PRODUCTION COSTPR(K) = USTPR(K) = 0. IF(ACTPRO(K) = EQ.0.) GO TO 785 C CALCULATE NEW COMULATIVE PRODUCTION TOTAL CUMPRO(K) = CUMPRO(K) + ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMH(K) CUMCST(K) = ((ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (CUMCST(K) - DUM) + SETUP(K)		
COMMON/NEMPRB/ITIQ, TPQSAL, TQSAL, NOMCAP, SAL3Q, MXPROD, SHARE (15) COMMON/NEMPRXX/BPRAHM(15) COMMON/EMPRXX/NAME(15) COMMON/EXECUB/UPROF3(15), PROGOL(15), BETA1(15), ALP3, BETA2(15) 1 IS(15), IPGR(15), ISO(15, 3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG(15, 3) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INHCOS C. CALGULATE PROFITS—AND OTHER BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1, NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INV(K) C CALGULATE INVENTORY—ON HAND INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INV(K)=AMAX1(INV(K), 0.0) C CALGULATE INVENTORY HOLDING COST— INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALGULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALGULATE NEW COMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
COMMON/NEMPROX/BPRAHM(15) COMMON/NEMPRXX/NAME(15) COMMON/EXECUB/UPROF3(15),PROGOL(15),BETA1(15),ALP3,BETA2(15) 1 IS(15),IPGR(15),ISO(15,3),UPROF9(15),BETA3(15),ALP4,BETAU, 2 BETAL,ALP5,IPCG(15,3) COMMON/SUM2/SUMPR,SUMPR2 TYPE REAL INV,ICOST TYPE REAL INV,ICOST TYPE REAL INHCOS C CALCULATE PROFITS AND OTHER BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALCULATE INVENTORY ON HAND INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INV(K)=AMAX1(INV(K),0.0) C CALCULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C GALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
COMMON/NEMPRXX/NAME(15) COMMON/EXECUB/UPROF3(15), PROGOL(15), BETA1(15), ALP3, BETA2(15) 1 IS(15), IPGR(15), ISO(15, 3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPGG(15, 3) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INV, ICOST TYPE REAL INHGOS C CALCULATE PROFITS AND OTHER BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALCULATE INVENTORY_ON_HAND INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INV(K)=AMAX1(INV(K), 0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALCULATE NEM CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEM CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K)=(ICOST*(CUMPRO(K)+*(BPRAM+1.)))/(BPRAM+1.) C GALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
COMMON/EXECUB/UPROF3(15), PROGOL(15), BETA1(15), ALP3, BETA2(15) 1 IS(15), IPGR (15), ISO(15,3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG (15,3) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INV, ICOST TYPE REAL INHOOS C CALCULATE PROFITS AND OTHER BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1, NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV (K) = INV (K) INV (K) = ACT PRO(K) + PREINV (K) - TSAL (K) INV (K) = AMAX1 (INV (K), 0.0) C CALCULATE INVENTORY HOLDING COST INHCOS (K) = ((INV (K) + PREINV (K)) / 2) * STDIC C CALCULATE COST OF PRODUCTION COSTPR (K) = UCSTPR (K) = 0. IF (ACTPRO (K) & EQ. 0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO (K) & EQ. 0.) GO TO 785 C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST (K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM (K) C UMCST (K) = (ICOST* (CUMPRO (K) +* (BPRAM+1.))) / (BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR (K) = (CUMCST (K) - DUM) + SETUP (K)		
1 IS(15), IPGR(15), ISO(15,3), UPROF9(15), BETA3(15), ALP4, BETAU, 2 BETAL, ALP5, IPCG(15,3) COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INV, ICOST TYPE REAL INHCOS C CALCULATE -PROFITS AND OTHER BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INV(K) C CALCULATE INVENTORY ON HAND INV(K) = ACTPRO(K) + PREINV(K) - TSAL(K) INV(K) = AACTPRO(K) + PREINV(K) - TSAL(K) INV(K) = AMAX1 (INV(K), 0.0) C CALCULATE INVENTORY HOLDING COST INHCOS(K) = ((INV(K) + PREINV(K))/2) * STOIC C CALCULATE COST OF PRODUCTION COSTPR(K) = UCSTPR(K) = 0. IF(ACTPRO(K) . E Q. 0.) GO TO 785 C CALCULATE NEH CUMULATIVE PRODUCTION TOTAL CUMPRO(K) = CUMPRO(K) + ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEH CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) C UCHCST(K) = (ICOST*(CUMPRO(K) **(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (CUMCST(K) - DUM) + SETUP(K)		
2 BETAL,ALPS,IPCG(15,3) COMMON/SUM2/SUMPR,SUMXPR,SUMPR2 TYPE REAL INV,ICOST TYPE REAL INHGOS C CALGULATE PROFITS AND OTHER BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALGULATE INVENTORY ON HAND INV(K)=AMAX1(INV(K),0.8) C CALGULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C GALGULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALGULATE NEH CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALGULATE NEM CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM (K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALGULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
COMMON/SUM2/SUMPR, SUMXPR, SUMPR2 TYPE REAL INV, ICOST TYPE REAL INV, ICOST TYPE REAL INV, ICOST C CALCULATE -PROFITS AND OTHER BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INV(K) C CALCULATE INVENTORY ON HAND INV(K) = ACTPRO(K) + PREINV(K) - TSAL(K) INV(K) = AMAX1 (INV(K), 0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K) = ((INV(K) + PREINV(K))/2) * STDIC C CALCULATE COST OF PRODUCTION COSTPR(K) = UCSTPR(K) = 0. IF (ACTPRO(K) . E Q. 0.) GO TO 785 C CALCULATE NEH CUMULATIVE PRODUCTION TOTAL CUMPRO(K) = CUMPRO(K) + ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEH CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM (K) CUMCST(K) = (ICOST*(CUMPRO(K) **(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (CUMCST(K) - DUM) + SETUP(K)		
TYPE REAL INV,ICOST TYPE REAL INHCOS C CALCULATE PROFITS AND OTHER BOOKKEEPING ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALCULATE INVENTORY ON HAND INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INV(K)=AMAX1(INV(K),0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
TYPE REAL INHCOS C CALCULATE -PROFITS AND OTHER BOOKKEEPING C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INV(K) C CALCULATE INVENTORY ON HAND INV(K) = ACTPRO(K) + PREINV(K) - TSAL(K) INV(K) = AMAX1 (INV(K) , 0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K) = ((INV(K) + PREINV(K)) / 2) * STDIC C CALCULATE COST OF PRODUCTION COSTPR(K) = UCSTPR(K) = 0. IF (ACTPRO(K) . E Q. 0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K) = CUMPRO(K) + ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM = CUHCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM = BPRAMM(K) CUMCST(K) = (ICOST*(CUMPRO(K) **(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (CUMCST(K) - DUM) + SETUP(K)		
C CALCULATE PROFITS AND OTHER BOOKKEEPING ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INV(K) C CALCULATE INVENTORY ON HAND INV(K) = ACTPRO(K) + PREINV(K) - TSAL(K) INV(K) = AMAX1(INV(K), 0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K) = ((INV(K) + PREINV(K))/2) * STDIC C CALCULATE COST OF PRODUCTION COSTPR(K) = UCSTPR(K) = 0. IF(ACTPRO(K) . = Q. 0.) GO TO 785 C CALCULATE NEH CUMULATIVE PRODUCTION TOTAL CUMPRO(K) = CUMPRO(K) + ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM = CUMCST(K) C CALCULATE NEH CUMULATIVE TOTAL PRODUCTION COST BPRAM = BPRAMM(K) CUMCST(K) = (ICOST*(CUMPRO(K) **(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (CUMCST(K) - DUM) + SETUP(K)		
C ZERO OUT TOTAL PROFIT TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INV(K) C CALCULATE INVENTORY ON HAND INV(K) = ACTPRO(K) + PREINV(K) - TSAL(K) INV(K) = AMAX1(INV(K), 0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K) = ((INV(K) + PREINV(K))/2) * STDIC C CALCULATE COST OF PRODUCTION COSTPR(K) = UCSTPR(K) = 0. IF (ACTPRO(K) . EQ. 0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K) = CUMPRO(K) + ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM = CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM = BPRAMM(K) CUMCST(K) = (ICOST*(CUMPRO(K) **(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (CUMCST(K) - DUM) + SETUP(K)		
TPROF=0. DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALCULATE INVENTORY_ON_HAND INV(K)=AMAX1(INV(K),0.0) C CALCULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALCULATE NEH CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEH CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)	Ç	
DO 799 K=1,NPROD C INDEX PREVIOUS INVENTORY VALUE PREINV(K)=INV(K) C CALCULATE INVENTORY ON HAND INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INV(K)=AMAX1(INV(K),0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALCULATE NEH CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEH CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)	C	ZERO OUT TOTAL PROFIT
C INDEX PREVIOUS INVENTORY VALUE PREINV(K) = INV(K) C CALCULATE INVENTORY ON HAND INV(K) = ACTPRO(K) + PREINV(K) - TSAL(K) INV(K) = AMAX1 (INV(K), 0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K) = ((INV(K) + PREINV(K))/2) * STDIC C CALCULATE COST OF PRODUCTION COSTPR(K) = UCSTPR(K) = 0. IF (ACTPRO(K) . E Q. 0.) GO TO 785 C CALCULATE NEH CUMULATIVE PRODUCTION TOTAL CUMPRO(K) = CUMPRO(K) + ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM = CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM = BPRAMM(K) CUMCST(K) = (ICOST*(CUMPRO(K) + * (BPRAM + 1.))) / (BPRAM + 1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (CUMCST(K) - DUM) + SETUP(K)		TPROF=0.
PREINV(K)=INV(K) C		DO 799 K=1,NPROD
C CALCULATE INVENTORY ON HAND INV(K) = ACTPRO(K) + PREINV(K) - TSAL(K) INV(K) = AMAX1(INV(K), 0.8) C CALCULATE INVENTORY HOLDING COST INHCOS(K) = ((INV(K) + PREINV(K))/2) * STDIC C CALCULATE COST OF PRODUCTION COSTPR(K) = UCSTPR(K) = 0 IF (ACTPRO(K) = EQ. 0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K) = CUMPRO(K) + ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM = CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM = BPRAMM(K) CUMCST(K) = (ICOST*(CUMPRO(K) **(BPRAM + 1.)))/(BPRAM + 1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K) = (CUMCST(K) - DUM) + SETUP(K)	C	INDEX PREVIOUS INVENTORY VALUE
INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K) INV(K)=AMAX1(INV(K),0.0) C		PREINV(K) = INV(K)
INV(K)=AMAX1(INV(K),0.0) C	C	CALCULATE INVENTORY ON HAND
C CALCULATE INVENTORY HOLDING COST INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.O.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		INV(K)=ACTPRO(K)+PREINV(K)-TSAL(K)
INHCOS(K)=((INV(K)+PREINV(K))/2)*STDIC C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALCULATE NEH CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEH CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		INV(K)=AMAX1(INV(K),0.8)
C CALCULATE COST OF PRODUCTION COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)	Ç	CALCULATE INVENTORY HOLDING COST
COSTPR(K)=UCSTPR(K)=0. IF(ACTPRO(K).EQ.0.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		INHCOS(K) = ((INV(K)+PREINV(K))/2)
IF(ACTPRO(K).EQ.O.) GO TO 785 C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)	C	CALCULATE COST OF PRODUCTION
C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
C CALCULATE NEW CUMULATIVE PRODUCTION TOTAL CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		IF(ACTPRO(K).EQ.O.) GO TO 785
CUMPRO(K)=CUMPRO(K)+ACTPRO(K) C INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)	C	
DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)		
DUM=CUMCST(K) C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.)) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)	C	INCREMENT OLD CUMULATIVE TOTAL PRODUCTION COST
C CALCULATE NEW CUMULATIVE TOTAL PRODUCTION COST BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)	•	
BPRAM=BPRAMM(K) CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) C——CALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)	C	
CUMCST(K)=(ICOST*(CUMPRO(K)**(BPRAM+1.)))/(BPRAM+1.) CCALCULATE PRODUCTION COST FOR THIS PERIOD COSTPR(K)=(CUMCST(K)-DUM)+SETUP(K)	-	
COSTPR(K) = (CUMCST(K) - DUM) + SETUP(K)		
COSTPR(K) = (CUMCST(K) -DUM) + SETUP(K)	C	
***·····		
	C	THE CONTRACT OF THE CONTRACT O
	•	01505515 0111 0031 01 1 10000110H

E 800) K		CDC	6400	FTN	V3.0-L260	OPT=
	PMFD(I)=PMFD(I+1)						
	BPRAMM(I) = BPRAMM(IA1)						
	PRICE(I)=PRICE(I+1)						
	PREL(I)=PREL(I+1)						
	PRF0(I)=PRFD(I+1)						
	LOSTSL (I) = LOSTSL (I+1)						
	QSAL(I)=QSAL(I+1)						
	SALMAX(I)=SALMAX(I+1)						
	PREINV(I) = PREINV(I+1)						
	CUMPRO(I)=CUMPRO(I+1)		•			•	
	CUMCST(I)=CUMCST(I+1)						
	DO 9 L=1,NSALS						
	PDELOR(I,L)=PDELOR(I+1,L)						
	DELOR(I,L) =DELOR(I+1,L)						
	ORDERS(I,L)=ORDERS(I+1,L)						
	PREORD(I,L)=PREORD(I+1,L)						
	SAVE(I,L)=SAVE(I+1,L)						
	FORC(I,L)=FORC(I+1,L)						
	EFF(I,L)=EFF(I+1,L)						
	_ PEFF(I,L)=PEFF(I+1,L)						
	EFFEL(I,L)=EFFEL(I+1,L)						
9	CONTINUE						
	UCSTPR(I)=UCSTPR(I+1)						
	SETUP(I) = SETUP(I+1)						
	PROF(I)=PROF(I+1)						
	PROF3(I) = PROF3(I+1)						
	PROF9(I) = PROF9(I+1)						
	UPROF(I) = UPROF(I+1)						
·	UPROF3(I) = UPROF3(I+1)						
	UPROF9(I)=UPROF9(I+1)						
	SHARE (I) = SHARE (I+1)						
	PROGOL(I)=PROGOL(I+1)						
	BETA1(I) = BETA1(I+1)						
	BETA2(I)=BETA2(I+1)						
	- IS(I)=IS(I+1)						
	ISO(I,1)=ISO(I+1,1)						
	ISO(I, 2) = ISO(I+1,2)						
	ISO(I,3)=ISO(I+1,3)						
	IPCG(I,1) = IPCG(I+1,1)	•					
	IPCG(I,2)=IPCG(I+1,2)						
	IPCG(I,3) = IPCG(I+1,3)						
	BETA3(I)=BETA3(I+1)						
_10	CONTINUE						
-	K=K-1						
9799	CONTINUE						
	IF(K.LT.NPROD) GO TO 9798						
	IF(KLOCK.LE.10) GO TO 791						
C	ACCUMULATE SUMMARY STATISTICS	3					
	SUNX=SUNX+KLOCK						
	SUNX2=SUNX2+(KLOCK++2)						
C	ZERO-OUT PRESSURE SUMMATION 1	ERM					
	SUBP=0						
C	SUN UP PRESSURE VALUES						
	DO 793 K=1,NPROD						
		· · · · · · - · ·					
- ·							

B001	CDC_5400 FIN.V3.0-L260_ORI=
	UCSTPR(K) = (CUMCST(K)-DUM)/ACTPRO(K)
C	CALCULATE AVE COST OF INVENTORY
785	IF(ACTPRO(K).EQ.0.0.AND.PREINV(K).EQ.0.0) GO TO 786
	AVCOIN(K) = (COSTPR(K) +AVCOIN(K) *PREINV(K))/(ACTPRO(K) +PREINV(K))
	GO-TO 787
786	AVCOIN(K) = 0.
787	CONT INUE
C	CALCULATE COSTS FOR PRODUCT K
	COSTS(K) = (TSAL(K) *AVCOIN(K)) +PROH(K) +INHCOS(K) +
•	FCOS+(TSAL(K)/TTSAL)
C	CALCULATE_REVENUE
	REV=PRICE(K) *TSAL(K)
C	CALCULATE PAST 9 MONTH AVERAGE PROFIT
	PROF9(K) = .2*PROF(K) + .8*PROF9(K)
	UPROF9(K)=.2*UPROF(K)+.8*UPROF9(K)
C	CALCULATE PROFIT
	PROF(K)=REV-COSTS(K)
С	CALCULATE UNIT PROFIT
-	UPROF(K)=0.
	IF(TSAL(K).EQ.0.) GO TO 789
	UPROF(K)=PROF(K)/TSAL(K)
C	ACCUMULATE TOTAL PROFIT
_	IPROF=TPROF+PROF(K)
C	CALCULATE CURRENT 3 MONTH AVERAGE PROFIT
•	PROF3(K)=.5*PROF(K)+.5*PROF3(K)
	UPROF3(K) = .5*UPROF(K) + .5*UPROF3(K)
799	CONTINUE
C	BEGIN LOOP FOR INDEXING OF PARAMETERS WHEN A PRODUCT IS DROPPE
•	Kal
9798	K=K+1
C	IS PRODUCT K TO BE DROPPED
	IF(DROP(K).NE.1.OR.INV(K).NE.0.0) GO TO 9799
C	ADJUST PARAMETERS
Č	ADJUST PARAMETERS .
•	NPROD=NPROD-1
	DO 10 I=K,NPROD
	NAME (I) = NAME (I+1)
	PFORC(I) = PFORC(I+1)
	TFORC(I)=TFORC(I+1)
	UINL(I)=UINL(I+1)
	RINL(I)=RINL(I+1)
	TSAL (I) = TSAL (I+1)
	INV(I)=INV(I+1)
	PRES (I)=PRES (I+1)
	DROP(I)=DROP(I+1)
	NOMDEH (I) = NOMDEH (I+1)
	RPC(I)=RPC(I+1)
	RPI(I)=RPI(I+1)
	ITRPI(I)=ITRPI(I+1)
	ITRPG(I)=ITRPG(I+1)
	ITIHE(I)=ITIME(I+1)
	ITIHE(I)=ITIHE(I+1) AA(I)=AA(I+1)
	AA(I)=AA(I+1) '
	AA(I)=AA(I+1) ' KON(I)=KON(I+1)

:800K		CDC_6400.FIN_V3+0=L260_OPI		
793 C	SUBP=SUBP+PRES(K) CALCULATE AVERAGE PRESSURE VALUE SUMPR=SUMPR+(SUBP/NPROD) SUMXPR=SUMXPR+(KLOCK*SUBP/NPROD) SUMPR2=SUMPR2+(SUBP/NPROD)***2			
	TPROF=TPROF/1000. SUNY=SUMY+TPROF SUNXY=SUMXY+(KLOCK*TPROF) IF(TPROF.EQ.O.) RETURN SUNY2=SUMY2+(TPROF**2)			
791	CONTINUE RETURN END			
		,		
				
-		_		

ì	

NEHPRO	
SUBROUTINE	NENPRO
	RO(15),DELP,DROP(15),EFF(15,6),INV(15),
	LOCK, NPROD, NSALS, ORDERS (15,6), PDELOR(15,6).
	REORD (15,6), PRES (15), PRICE (15), PROF3 (15), PROF9 (15),
	AL(15), RINL(15), SALHAX(15), SCINL(15), TFORC(15),
4TPROD, TSAL (
	RB/ITIQ, TPQSAL, TQSAL, NOMCAP, SAL3Q, MXPROD, SHARE (15)
COMMON/NEWP	
	ROX/BPRANN(15)
-	RXX/NAME(15)
COMMON/NEHP	
	TB/DELOR(15,6), ALP1, FORC(15,6)
	TC/SAVE (15,6)
COMMON/PRRE	CB/RPC(15), RPI(15), ITRPI(15), ITRPC(15)
	NB/BASIS(15), MKTRNK(15), DDORD, DEFF, PEFF(15,6),
1 RESRNK(15,	6),RNK(15),PERO1(15),PART,SMRNK(15,6),PERO2,DPERD,
	, DELPAR, MOTFOR(15), VOLRNK(15), SLSRNK(15), RNKFAC.
COMMON/SLSG	NB/TORD(15), AA(15), DEM, KON(15), PRFD(15), PHEL(15),
	MFD(15),NOISE,SIG1,LOSTSL(15)
COMMON/SLSG	ND/EFFEL(15,6)
	NX/NOMDEM(15)
	B/TPROF,PREINV(15),INHCOS(15),CUMPRO(15),
1CUMCST(15)	,ICOST, BPRAM, COSTPR (15), SETUP (15), AVCOIN (15), COSTS (15
2 FCOS,REV,P	ROF (15), UPROF (15), SUMX, SUMX2, SUMY, SUMY2, SUMXY
3,UCSTPR(15)	
COMMON/EXEC	UB/UPROF3(15),PROGOL(15),BETA1(15),ALP3,BETA2(15),
1 IS(15), IPG	R(15),ISO(15,3),UPROF9(15),BETA3(15),ALP4,BETAU,
2 BETAL,ALP5	, IPCG (15,3)
TYPE REAL I	NV
	DECISION SECTOR
INDEX PREVI	OUS QUARTER SALES
TPQSAL=TQSA	
	GRAND TOTAL QUARTERLY SALES
TQSAL=0.	
DO 810 K=1,	
TQSAL=TQSAL	+ QSAL (K)
810 CONTINUE	MINATION DESCRIPTION
	MINATION DECISION
00 870 K=1,	
DUHX=0.50*S	
O CONTINUE).LT.DUHX) GO TO 880
RETURN	
-880_CONTINUE	
DROP PRODUC	7 4
	I N
DROP(K)=1.	DUCT
NPROD=NPROD	
	ERS FOR NEW PRODUCT
	VALUES FOR NEW PRODUCT
K=NPROD	- 1 - 2 - 2 - 1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
NAME (K)=NAM	F (K-1)+1
M=NAHE (K)-1	
AA(K)=ZZ(H,	
KON (K) = ZZ (M	
END	• • •

		1

	IPRO	
	PHEL (K)=ZZ (N,5)	
	PREL(K)=ZZ(H,6)	
	SETUP(K) =ZZ(N,7)	
	BPRAHM(K)=ZZ(M,8)	• •
	DO 821_L=1,NSALS	
	ORDERS(K,L)=200	
	PREORD(K,L)=100	
	DELOR(K,L)=100	
	FORC(K,L)=ORDERS(K,L)	•
	SAVE(K,L)=PREORD(K,L)	
	_EFF(K,L)=1.0,	•
	PEFF(K,L)=0.99	·
141	EFFEL(K,L)=1.0	
	IF(EFELFAC.EQ.Q.) GO TO 840	
142	EFFEL(K,L) =ZZ(M,1)	
40	CONTINUE	
121	CONTINUE	
	ITINE(K)=0	
	SALHAX(K)=0.	
	CUMPRO(K)=CUMCST(K)=0	
	PRES(K)=1.0	
	TSAL(K)=NSALS*ORDERS(K,1)	
	UINL(K)=0.3*TSAL(K)	
	RINL(K)=0.1*TSAL(K)	
	INV (K) =0	
	DROP (K) =0	
	RPC(K)=RPI(K)=0	
	ITRPI(K)=0	
	ITRPC(K)=1	
	PROM(K)=1000*NSALS	
	PRICE(K) = 20.	
	LOSTSL(K)=0.	
	SHARE(K)=0.	
	PROGOL(K)=0.	
	IS(K)=0	
	IPGR(K)=0	
	ISO(K,1)=1	
	_ISO(K,2)=2	
	ISO(K, 3) = 3	
	IPCG(K,1) = IPCG(K,2) = IPCG(K,3) = 0	
	BETA1(K)=0.2	
	BETA2(K)=0.2	
	BETA3(K)=1.0	
	QSAL(K)=0	
	PRFD(K)=20++PREL(K)	
	PHFD(K)=PROM(K)++PHEL(K)	
	TFORC(K)=0	
	AVCOIN(K)=0	
	PR0F9(K)=0	/
	PROF3(K)=0	
	PROF(K)=0.	
	UPROF9(K)=0 *	
	UPROF3(K)=0	
	UPROF(K)=0.	
	RETURN	

```
EXEC
                                    ____CDC_6400_FTN.V3.0-L260_OPT=1__07
      SUBROUTINE EXEC
      COMMON_ACTPRO(15), DELP, DROP(15), EFF415, 3), INV(15),
     1ITIME(15), KLOCK, NPROD, NSALS, ORDERS(15,6), PDELOR(15,6),
     2PFORC(15), PREORD(15,6), PRES(15), PRICE(15), PROF3(15), PROF9(15),
     -, 3PROH(15),QSAL(15),RINL(15),SALHAX(15),SCINL(15),TFORC(15)
     4TPROD, TSAL (15), UINL (15)
      COMMON/FCASTD/TSLFOR
      COMMON/NEWPRB/ITIQ-TPQSAL-TQSAL.NOMCAP-SAL3Q-MXPROD.SHARE(15)
      COHMON/EXECUB/UPROF3(15), PROGOL(15), BETA1(15), ALP3, BETA2(15),
     1 IS(15), IPGR(15), ISO(15,3), UPROF9(15), BETA3(15), ALP4, BETAU,
    2 BETAL, ALPS, IPCG (15, 3) ....
      COMMON/PRRECB/RPC(15), RPI(15), ITRPI(15), ITRPC(15)
      COMMON/BOOK3/TPROF, PREINV(15), INHCOS(15), CUMPRO(15),
     1_CUMCST(15), ICOST, BPRAM, COSTPR(15), SETUP(15), AVCOIN(15), COSTS(15),
     2 FCOS, REV, PROF (15), UPROF (15), SUMX, SUMX2, SUMY, SUMY2, SUMXY
     3,UCSTPR(15)
      COMMON/BOOKC/STDIC.....
C
      PRICE AND PROMOTION DECISIONS
C
      DECREASE EMPHASIS ON RECENT FAILURE
      DO 999 K=1,NPROD
C
      BYPASS PRICE AND PROMOTION DECISIONS IF PRODUCT IS NEW
      IF(ITIME(K).LE.6) GO TO 999
ı
      DID_PROFIT EXCEED PROFIT GOAL
      IF(UPROF3(K).GT.PROGOL(K)) GO TO 930
C
      REDUCE EMPHASIS ON RECENT SUCCESS
      BETAL(K) =BETAL(K) +(1-ALP3)
C
      REDUCE PROFIT GOAL
      PROGOL(K) = (1.-BETA2(K)) *PROGOL(K)+BETA2(K) *UPROF3(K)
      PROGOL (K) = AMAX1(0.0, PROGOL(K))
C
      INDEX SEARCH COUNTER
      IS(K) = IS(K) + 1
      HAVE ALL ALTERNATIVES BEEN TRIED
      IF(IS(K)-4) 926,927,928
C
      WAS SEARCH EMPLOYED
  926_IF(IS(K)-1) 935,935,929_
      SET INDEX FOR POSSIBLE PROFIT GOAL REDUCTION
  927 IPGR(K)=1
      GO_TO_935
C
      RESET SEARCH COUNTER
  928 IS(K)=1
      ALTER ORDER OF SEARCH. ...
  929 DUM=ISO(K,1)
      ISO(K,1) = ISO(K,2)
      ISO(K,2)=ISO(K,3)
      ISO(K, 3) = DUM
      GO TO 935
    ---INCREASE EMPHASIS ON RECENT SUCCESS--
  930 BETA1(K)=ALP3*(1-BETA1(K))+BETA1(K)
C
      RAISE PROFIT GOAL
      PROGOL(K) = AMAX1(0.0, PROGOL(K))
C
      WAS STRATEGY SEARCH EMPLOYED
      IF(IS(K)) 935,935,932
      HAS PROFIT GOAL REDUCED
C
  932 IF(IS(K).GE.4) GO TO 933
```

	BETAZ(K)=BETAZ(K)+(1-ALP3)
	GO TO 934
922	BETA2(K)=BETA2(K)+ALP3*(1-BETA2(K))
,,,,	RESET- SEARCH INDICATOR (SEARCH WAS SUCCESSFUL)
	IS(K)=0
757	WAS PRICE CHANGED TO INCREASE PROFIT
935	IF(IPGG(K, 1))950,950,936
-,0,-	WAS PROFIT GREATER THAN 9 MONTH AVERAGE PROFIT
936	TETUPPOETTY) CT HPPOEQTY)) CO TO 078
	IPCG(K,1)=IPCG(K,1)-3
	WAS PRICE INCREASED
	IF(BETA3(K)-1) 940,941,941
.93A	IPCG(K,1)=IPCG(K,1)+1
	WAS PRICE INCREASED
	IF(BETA3(K)-1) 941,940,940
· · · · ·	INCREASE PRICE CHANGE HULTIPLIER
	BETA3(K)=BETA3(K)+ALP4
	BETA3(K)=AMIN1(BETA3(K).BETAU)
	IPCG(K,1)=IPCG(K,1)-3
	GO TO 950
	DECREASE PRICE CHANGE HULTIPLIER
.941.	BETA3(K)=BETA3(K)-ALP4
	BETA3(K) = AMAX1 (BETA3(K), BETAL)
	IPGG(K,1)=IPCG(K,1)+2
	GO_TO_950
	COMPUTE PROJECTED PROFITS
950	DUM=PRJPRO(INV(K),STDIC,UCSTPR(K),TFORC(K),SETUP(K),FCOS,
	TSLFOR, PRICE (K), PROM(K))
	DO PROJECT PROFITS MEET PROFIT GOAL
	IF(DUM.GE.PROGOL(K)) GO TO 970
	DENY_PROHOTION_INCREASE_AND_PRICE_CUT_REQUESTS
	RPI(K)=0
	RPC (K) = 0
	HAVE ALL STRATEGIES BEEN TRIED
	IF(IPGR(K).EQ.1) GO TO 960
	SEARCH FOR NEW STRATEGY
	DUMM=ISO(K,1)
	IF(DUMM-2) 952,953,954
	INCREASE PRESSURE ON SALES DEPARTMENT
952	PRES(K)+DELP
,,,	GO TO 955
	INCREASE PROMOTION
957	PROM(K)=(1+ALP5) *PROM(K)
.723	REVISE FORECAST
055	TFORC(K)=1.03*TFORC(K)
777	
	GO TO 956
Q E 1-	DECREASE PROMOTION BROW(K) = (4 - A) BE) #BROW(K)
	PROM(K)=(1-ALP5)*PROM(K)
	REVISE-PROJECTED-PROFIT
956	OUM=PRJPRO(INV(K), STDIC, UCSTPR(K), TFORC(K), SETUP(K), FCOS,
	TSLFOR, PRICE (K), PROM(K))
	GO TO 961
	REDUCE PROFIT GOAL
960	PROGOL(K) = (1-BETA2(K))*PROGOL(K)+BETA2(K)*UPROF3(K)

SUM	RYCDC 6400 FTN.V3.0-L260.OPF=1(
	SUBROUTINE SUMARY (LENGTH)
	COMMON/BOOKB/TPROF, PREINV(15), INHCOS(15), CUMPRO(15),
	CUMCST(15), ICOST, BPRAM, COSTPR(15), SETUP(15), AVCOIN(15), COSTS(15)
	FCOS, REV, PROF (15), UPROF (15), SUHX, SUHX2, SUHY, SUHY2, SUHXY
	•UCSTPR(15)
	COMMON/SUM1/I(6)
	COMMON/SUM2/SUMPR, SUMXPR, SUMPR2
	COMMON/SUM3/NREP
	DIMENSION IX(6)
	TYPE REAL HEAN
203	FORMAT(1X,I2,5X,6I2,F10.4,F10.5,F20.4,F10.4)
;	CALCULATE HEAN
	MEAN=SUMY/(LENGTH-10)
	PMEAN=SUMPR/(LENGTH=10)
	DO 333 KL=1,6
33	IX(KL)=I(KL)+1 •
) }	
•	CALCULATE VARIANCE
	VAR=((LENGTH-10) *SUMY2-SUMY**2)/(LENGTH-10)**2
	VARPR=((LENGTH-10)*SUMPR2-SUMPR**2)/((LENGTH-10)**2)
	SQVAR=SQRT (VAR)
	SQVPR=SQRT (VARPR)
	PRINT 203, NREP, (IX(KL), KL=1,6), PHEAN, SQVPR, HEAN, SQVAR
	PUNCH 203, NREP, (IX(KL), KL=1,6), PHEAN, SQVPR, HEAN, SQVAR
	RETURN
	END
9 C C C	+ISLFOR, PRICE, PROH) TYPE REAL INV FORMAT(20x, *TFORC IS 0.0*) CALCULATION OF PROJECTED PROFIT— ESTIMATE TOTAL INVENTORY HOLDING COSTS DUM1=INV*STOIC ESTIMATE PRODUCTION—COSTS— DUM2=UCSTPR*TFORC+SETUP ESTIMATE FIXED COST ALLOCATION DUM3=0.0 IT=TSLFOR IF(IT.EQ.0) GO TO 8 DUM3=FCOS*(IFORC/ISLFOR)— ESTIMATE UNIT PROFIT IT=TFORC IF(IT.EQ.0) GO TO 10 PRJPRO=PRICE—((DUM1+DUM2+DUM3+PROM)/IFORC) RETURN
1	
	PRINT 9
	RETURN
	END
	•

RNOUH-	CDC 6400 FTN V3.0-L260 OPT=1 07/2
ТН	NCTION RNDUM(X) IS SUBROUTINE GENERATES A RANDOM VARIABLE FROM A NORMAL DISTRIBUTION OF THE PROPERTY OF THE PR
X=	TH MEAN=0 AND STANDARD DEVEATION=1.0 SQRT(-2.0*Alog(RANF(-1.0)))*COS(6.283185307*RANF(-2.0)) DUM=X
	TURN
	•
RANK	
	SUBROUTINE RANK(NP,BASIS,RNK) COMMON-ACTPRO415),DELP,DROP(15),EFF-(15,5),INV(15),
1	ITIME(15), KLOCK, NPROD, NSALS, ORDERS(15,6), PDELOR(15,6).
2	PFORC(15), PREORD(15,6), PRES(15), PRICE(15), PROF3(15), PROF9(15),
	PROM (15), QSAL (15), RINL (15), SAL MAX (15), SCINL (15), IFORC (15),
	TPROD, TSAL (15), UINL (15)
	TYPE INTEGER DUM1 DIMENSION_BASIS(15),RNK(15)
	DUMH=10.**7
C	RANK LOWEST VALUE OF BASIS FIRST, HIGHEST VALUE OF BASIS LAST
	SET INITIAL VALUES OF DUMMY VARIABLES
	DUM2=BASIS(1)
	00 10 K=2,NP
	COMPARE LOHEST NUMBER WITH NEXT VALUE OF BASIS
	IF(DUM2.LE.BASIS(K1)_GO_TO_10
_	DUM1=K Let Dum2 equal new lowest value
	DUM2=BASIS(K)
	CONTINUE
	DEFINE RANK OF NEW LOWEST VALUE RNK(DUM1)=J
C	ASSIGN ARBITRARILY HIGH VALUE TO BASIS —
	BASIS(DUH1)=DUHM
	CONTINUERETURN
	END
,	<u></u>
	indiana arangan ang na na na na nang ang ana ana na na na ana a
	•

APPENDIX IV

Initial Conditions Program

```
PROGRAM IC (INPUT.CLTPLT.PUNCH)
FCRMAT(414:12.215.0.274.4.12.16.5.16.14.3.14.2.15.0.16.0.17.0.
 101
       +F4.0.F5.21
 -102
       N=20C
        N=3
    CC 1COC JJKv=1+7
CC 1COC APACD=1+N
         CLMCST=CLMFFC=0.
        CRDERS=0.
        SALMAX-0.
        PRCF3*PRCF9*LPRCF3*LPRCF9*0.
        FCCS=204C
        PRCM=1000 ....
 ACCST#17.
STDIC#3.GO
C GENERATE LEARNING CURVE PARAMETER
 EPPAME_C.G175=(U.CC>#RANF(=1))
C GENERATE AGE OF PRODUCT
 C RANGE CF AGE 1 1 TC 34

ITIME=1.0+(1:CO=PANF(-1))/3

C GENFRATE ELASTICITY CF EFFORT
        EFFEL=2-4RAI.F (-1)
        EFFELL*EFFE
 C GENERATE PRUMOTION ELASTICITY
 C HANGE OF PHEL 14 0.07 TO G.40
        PYEL= (RANF (-1)/3) +0.07
 C GENERALE PRICE (LASTICITY
C RANGE OF PREL 14 1.25 TC 3.50
PRELE(RANF(-1) #2.25) +1.251
 C GENERATE WEIGHTE K PARAMETER FORM A NORMAT DISTRIBUTION WITH MEAN C OF 1000C AND STD DEV CF 250CO CUMSCRITT-2.8ALCGIRANES-1.11) CCS16-2831853078RANES-2.)
        KCN=CLN+25CrC+10CGCC
 C GENERATE RETOUL! A PARAMETER

DUMESCRT (-2. *ALCG (RANF !-1..)) *COS (6.243185307*RANF (-2..))
        AA=C.OC1+0.~CC5+CLM+0.OCC1+(DLM++2)
     GENERATE SETUP COSTS
SETUPE (RANF (-1) +5CG.) +25C
        CO 9CO IT=1.ITIME
        PRECED=CRRES
        CLM==18AA#((IT+2)##2)
CRDEH5=KCN#4A#(IT+2)#EXP(CUM)
        CALCULATE MAX SALES
SALMAX=AMAX1 (SALMAX+CRDERS)
 C
       CALCULATE CC"LLATIVE PRODUCTION
        CUMPRC=CLMPDC+CHCERS
         INCREMENT PREVIOUS CUMULATIVE COST . .... --
        DUM=CUMCST
       CALCULATE CUMULATIVE CCST CUMCST=ACGST+# (CUMPHC## (BPRAM+1.)) / (BPRAM+1.)
 C
        CALCULATE COST OF PRODUCTION
 C
        COSTPR= (CUMCST-DLM) +SETUP
       AVCCIN#CCSTFR/CHCERS
       CALCULATE 1-VENTORY HOLDING COSTS INHOCS#C.280RDEHS#SIDIC
       CALCLLATE PROFIT
PROFIT=(20**RDEYS) = (CCSTPR*INHCOS*FCCS*PROM)
C
       UPRCF=PPCFIT/CADERS
       CALCULATE PECFIT MOVING AVERAGES
C
       PRCF3=C.5#P=CFIT.C.5#PRCF3
       PRCF9=C.2*F=CFIT.0.8*FRCF9
       LPACESEL.SH PRCF+C.SHLPRCF3
       UPRCF9±C.2#LPRCF.G.##LPRCF9
       CONTINUE
      PRINT 101.NCRCC.CRCERS.PREGRO.EFFEL.EFFELL.ITIME.AA.KCN.

**PMEL.PRFL.SALMAX.CUMPRC.CUMCST.SETUP.AVCOIN

PRINT 102.NLRCC.PRCF9.UPRCF9.PROF3.UPRCF3.BPRAM
1000 CONTINUE
END ... ... ... ...
```

APPENDIX V
Analysis of Variance Output

	,	· · · · · · · · · · · · · · · · · · ·	0	-1 W	2 0 1 0 0 2	0	O O	0 o o		40	2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		~ ~ ~	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	0 0 0 0 0 0 0 0 0	00	2 2	-
619970,6848 0	80/1	418541,7490 1 418541,7490 1 392087,6415 2	4233	2731	50326,6 49540,1	640	556 355	934	212501,8762 2 212501,8762 2 215449,8392 2	637,5447	401546,0887 0	14632,4687	13220,7747 046U7,1664 97005,0750	194118,5010 2 195042,5655 2 196918,9223 2	1.1340	183024,1391 0 183024,1391 0 178841,1006 0	5,1446	9881	95980.2486
0,08119	1 1	-0,12366	-	1978	0,197	.0677	.0677 .0677	0.0677	-C, 067/2 -C, 06775 0, 06775	0190	0,01909	2794	252	0.27947	.0975	0.09758	2975	5740,	0.11640
65.02451		63,95392 64,84979	. 6	0.0	66,33139	934	3.077	1,785	58,58557 64,52550 64,99935	3,25A7	63, 19492	5.54	3.32	61,79414 61,72329 62,18678	~	59,42238	200	22	A1.14058

			ı			İ											1		I									١				I					'	,	1
			-																																				
			i																																				
e e	-	•		-	•	0	•	-	60		•	0	•	•	-	0	0	•		•	0	0 6		•	0	•	•	•	•	•	-	0	D (- C	-	•		•	!
. .		•	; •	> <		0	•	0	00		•		0	•	0	•		0	-	•		•		.	0	•		0	•	-		0	D (>		•		•	
			1																							1			•										
9 0	•	•	•	> <	•	0	0	•			-	~	-	~	-	~		~	-	J	-	- ۲	2	0	-	~	-	2	- 4 (~		2	c	v	~	 (~	1	
~	~	-	~ .	٠.		2	-	2	-2		•	•	9			•	0			•		•		•					0	.		0		•		•		0	
																														ļ									
~	-	~	N .	-	• ~	2		-	~ ~		0	0	0	•	-	0	0	0	 	•	0	o c		0 0		•	-	4	~	~	-	-	N (N =	-	~ (**	1
~	2	~	, N•	٠.			~	2	~~		0	•	0	•		0			,				~	- 1 -	~	~			•	: 	•	0	> (•		0		7	
																						•				'	!												-
								-	~ ~		0	0	-		~	~	0	0		•				~ ~			!		•	i	i			- C				0	
.2199	0448	,5156	42486	40.0	8800	1829	1908	8660	00100,6855 08620,7395		581991,6513	4026	3446	6419	3068	,7580	,7838	,5290	8760	<u>;</u>	7649	1986	4493	156929,0190	2878	4276	.0065	,6218	6449	. / 0 4 0	,2176	9338	1469	7686	,7881	15180	, , ,	164203,3870	•
118652	120106	119142	486611	A7310	68915				106165		661991	947608	353382	493092	328609,	454515		403584,52	,, ,		169160	205429	287663	156929	171651	256360	342192,0065	477548	339749	4 4 7 0 0 3 4	177164,2176	251452	1/0/1	165027	226095	163541		164203	
00		9	2 9	• •		0	9	9	640 540		9	9	5	5	135	<u>π</u>	5	315		<u>.</u>	13	583	2	583	2	2	•	2	<u> </u>	· •	9		9.0			9,		55	1
0.11640	0,116	0,116	0,116	7770	0.116	0,116	Ξ	Ξ	0,116		-5,24536	5,246		-	0.140	÷	9	2,0533		•	14	4 4	4	4 4	4	4			0.09939		~	7	٦.	0.19010		ᅻ.	~	0,04955	
•			•					•			•					•		•				•		•		•				•									1
~ ~	99	2217	0049	400	382	£328	5426	5 A O	50835		,77915	2718	84318	.61661	,71512	,92713	.51090	.89733	6473		.63067	42614	80708	39114	03910	48575	.77973	47123	.77857	,07251	.88754	23995	79383	67192	70251	75831	c/1c1.	.60802	•
8,5	3	8	9 0		100	58	5	•	6.5		57	6.9	58	69	28	99	56	~	7	•	~	n c	5	2	, er,	7	57,	69	5	Š				9				56	•
7,7	2	2	7.	ζ;	. ~	24	54	5	5 5		192	2	96	96	96	96	96	96	0 0	2	87	4 4	•	= =	9			96	9	9	4	2		9	‡	.		8	
	~~		``		•	٠.	٦.	٠.,	9760	,	11093,5967	1,1998	945	195	6515	400.		1433						07749					,7425		. 6019	5179	02420	. 2522	7207	3090	14:20	,1848	'
1433	1647	1637	1507	7	414	1411	1549	1540	1572		11093	13108	5648	6683	5444	6425	5425	6038	7000		2766	3044	3638	2658	27.85	3431	5546	6573	5546	6534	2826	3371	202	2720.	3201	2724	3663	2717	

-(

																																							•		(,	
•	.		•	•	• 6		•		•	• •	0	•	-	٥,	.		•	0	•	B	•	- C		0	0	•			•	.		•	•	0	.	•		, 0	•		0 (0 (_
•	• •		0	•	• •	0	•		• •	• •	0	•	0	•	• •		•	0	•		•	•	•	0	0	-			0	•	•	• •	•	0	•	a		. 0	•	0	01	.	•
2	N		1	~ ~	• ~		ν.	•		۰~	-	~		۰.	- ~		-	2	(,	.j •	1	,	2		N -	. ~		~1 (N •	•	, 4	~		~	4	. ~	,	~	1	~ .	~ °	~
•	•		•	•	• •	0	•	> 6	.		•	0	0	0 (.			-	~ 1	7	•	-	• ~	2	-	0	~			-4 (,	1	7	N	1	ı -	~	~	-	(~ c	~
-			1	→ (· ~	-	 (,		• ••	2	~		 (· ~		•	0	•		•	>		0	0	D C			0	-	-		0	0	•	•		, 0	•	0	01	.	-
2	~ ~		1	-1 •	•	2	~ (,		4	1	-4 (2	~ (v ~		0	•	٥,	-	•	> <	••	0	0	-			 -	- 1 -	•	• ~	2	2	~ , ,	-	,		· 	2	~ •	N 0	•
0	••			- 1 •	•	-	. .		• 0	. ~	2	~	~	~ (v		0	0	0	-	. •		•		2	~ ~	2		•	0 6		• •	0	0	- :	1	. ب	•	•		 0 .	 -	
73963,9358	77864,2480		85069,7313	04769,0553	00640,1433	92094,4863	46665,7784	40900 4700	791.43, 6557	98795,6307	77824,3633	9669 6566	85R94,1332	127	29060.270	•	996,	616	685	•	346 44	777	7,479	34,270	99,100	706.00	17,217		9779	200	96799	76603	7375	7927)))	83992,5713	06075,9366	6516A,1935	99353,2620	91832,2942	45962,4413	41701.0680	1012 TIVIT
				 o o			•				6	•		~			•		~ ′					i													_						•
			001	500.00	0.0	001	5			200.0	.001	.061	0.00	100.0	200	:	*	. 35	5	-	•	9 6	2	=	9.19				.052	555		0.052	240.0	6.052	20	٥			٠.	-		00	
6483	1433		2	9	900	8	5	V 0		2,0	2	5	82	8 6	0.0		7.574	8,78¢	7,983	7,02		7 4		9,79	6.57	7.12	75.0		4514	5271	1175	6469	0048	3968	3680	7.4059	4.4629	7,6553	2,3803	9,7479	6.4066	0.3634 3075	2/0/2
				••	. 4		.		, ,	. •	-	•		.		1	•		٠.	0				į				;					•		ь				•				
723	000		7.	131	322	47	9 9	2 2	, ,	. 50	234	5	₹. \$.	¥ .	? .	•	149	02,974	66,427	627,66		8,0	252	324	475	255	12.									77,743	47,111	56,529	97,343	33,949	33,759	723	
	7239 48 73,84835 0,04955 273963,9358 0 2 1 8 2 8	720.9 4P 73,848.5 0,04955 273903,9398 0 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44,7239 48 73,84835 0,04955 273953,9358 0 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		219 44 73,84835 0,04955 273953,9358 0 2 1 0 2 0 0 50,044 59,14335 0,04955 177844,2480 0 2 2 0 1 0 5135 46 73,44449 -0,04955 270059,941, 0 2 0 2 0 5143 24 57,6926 0,00189 65069,7313 1 1 1 0 1 0 515 24 57,6926 0,00189 104749,0553 1 1 1 1 0 2 0 515 24 57,6928 -0,00189 104749,0553 1 1 1 1 0 2 0 515 24 57,6928 -0,00189 204749,0553 1 1 1 1 1 1 1 1 1	223 46 73 24635 0,04955 273953,9398 0 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	223 46 73,24435 0,04955 27395393999 0 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	223 46 73,24435 0,04955 273953,9398 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	223 46 73,8445 0,04955 273963 9398 0 2 2 0 1 2 0 1 1 0 1 0 0 0 0 0 0 0 0 0	223 46 73,8443 0,04955 2739539398 0 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.2.9 46 73 22435 0,04955 223953 9398 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	223 46 53,4435 0,04955 273903,9398 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	143 24 53, 24435 0,04955 27395393999 0 2 2 0 0 0 0 0 0 0	223 46 73,8435 0,04955 273953 9398 0 2 2 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	223 46 73,8435 0,04955 273963 9388 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	143 24 59,44335 0,04955 273963,9398 0 2 2 0 2 2 0 2 2 0 2 2 0 0 0 0 0 0 0	23.5 46 73.8445 0.04955 2.3903.9398 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	143 24 59,4449	1143 24 59,14435 0,04955 177844,998 0 2 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	143 24 59,1435 0,04955 177845,2480 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	135 4	1313 46 573, 4445	135 46 73 44449 0 0,0955 27029,9410 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	145 46 73 44449 0 0,0955 270079 9410 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	143 24 27,44449 27,0049 24,04	14 24 97 1445 97 1445 97 94 94 94 94 94 94 94	13 14 14 14 14 14 14 14	14		14.5 24 24.44	14.5 24 24.443 0 0 0 0 0 0 0 0 0	11.4 24 25 24 24 25 24 24 2	14.3 24 29 14435 0 14955 271054, 938 0 2 2 0 0 0 0 0 0 0	1141 24 97 14445 97 14495 27 24 94 94 94 94 94 94 94	1959 46 1959 19	13 14 15 15 15 15 15 15 15	10 10 10 10 10 10 10 10	13.5 2.5	17.5 17.5	13.5 4.6 5.5 4.6 5.5	13.5 4. 13.64435 13.6455 1	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

	,			,			1					,					1											ı																	(,	,
																		l																													
80	0.0	.				.	>	> <	,				•		_	•	•	•	•	0	ь.	.	>0	. 0	0	D G	•			0	•	D .	.			•			•		•		•		•	•	0
							!																																								
	0.	.	-		-	•	> <	> <	• •	-	•	1	•	•	•	0	-	•	•	0	-	> <	>0	. •	•	- a	•	-	•	0	0		-	-		•	-	•	•	>	•		•	-	۰,	o (0
																																				•											
10	6	N -	~	Ì	(N •	1		• ~		~	İ	-	~	-	~	-	~	~ (2	r	• -	7	•	2	- ~	,	-	~		~ .	-	٠.	• ~	-	N	-	~	~ • (١.	* 6		-	~	(N •	-
. N	 ,	- - 0			-	 (,		•		~	1		-	2	~	-		~	~	┙.	- C				N 0				2	α.		0				~	~	.		. a.		_		~ (.	
		,										;	••			••			••														~ •	• ••					•••			İ					
- 0	0 0	-			- 1 ·			- c	. ~	~	~	1	-	-	-	-4	~	~ (~ (~	→ .		4	· ~	~	~ ~	,	-	•		 (N 6	· •	۰ ،	-	-		-	~ (,	~ ~		-	4	 .	⊶ €	2
							!					!																									į										
41	~ ~	v ~	~		-	D (> <	•	•	-	•	:	•	0	-	0	0	0	0	D	-	> <		•	ا	- 0	•	-	-		- 4 .	٠,	-	•	~	~	~	~	~ (•	~ ~	ı		-4	 .	-d -	-
· ~	25	~ ~	~			.		> e						-	-		-	- 4	- 4 .	 (~ (. 0	- 2	۰~	2	~ ~				0	0 (> c	. c				•	•						.	- 4 1	
			:				i													1			!				į					Ì			İ					1							
9.5088	9,156	2.130	7,708		9000				7.3604	3,665	2,403		3	7,8898	9,638	4,9440	0,286	10,488	7,840	9,3261	77.60	14.361	4,130	5,673	6,892	3.0775	•	9.678	0.455	3,708	4,230	0000	7 5 5 6	5.50	18,327	9,082	0,291	4,852	3,123		3,8634		925	9,323	8,8061	9,731	9 0 0 7
9741	84769,1	8686	1592		100	727	21516	004	238347,36	16986	23166		8725	12737	0668	12407	885/	1246	0/8	1104	120	628	1117	9130	1137	114703.07		8205	1045	821	000	7.00	20204	9765	8736	13765	906	1363	6921		133963		42210	5376	4 6	9161	17.
					٠.	~ "				1	•			-	1	-	! -	٠.	 .		٠.								•		-					_	_	.					•		•		
03567	03567	0000	03567		200	2000			06635	0653	0,0063		06651	10665	,0665	9990	06651	6665	0645	990	0000	0665	0065	990	5490	0000		0651		0651	о.	9 6	, c	, ,	0651	0	•	0	О,	, ,	06515		,03429	0342	0342	2750	. 2450
0	•	D C	•		•	0	•	,	7	-	0		0	٠	•	•	٠	0	0	5	•) C	, 0	0	•	•		-	•	•	0	•	> C	•		•	•	?	0		90	-	0	•	? '	P (•
570	101	. 6	951		n.	•			333	•	~	*	894	347	3	4	ç	71	~	140	> 0	0 0	25	0	5	900	•				057								~		•	i	9	₽.	588		~
61.88	7.64	- K			•				5.540	٠,	٠,		8,32	9,75	4.	2,72	A, F.2	11.0	7, 8	7,87	000	9	6.11	48	9, 9	67,43	•	63	3.92	6.58	2,5	``	ני המת	:	5	4,11	9.54	3,58	2	ָ 	73,194		7.48	4.81	57,89	1.5	7,32
														į			;			!							į															,		İ			!
~ ~	2	~ ~	~	.,	•	• •	•	•	4	•	•		~	~	~	~	~	~	~	~ •	~ (~ ~	~ ~	~	~	~ ~	• .			•											**		-	٦,	~	~ .	~
5.2567	552	377	7		2	2	9	23	9359	3	~		8945	-	:1	34	36		7	٠ . د . د	0 4	5 6 5	5.5	69	6.4	1359		1,1644	2	2	2:	9 !	٠.	:3	2	2	2	Ξ.	2	٠.			•	2	,7506	9 4	5
1320	13		171		2/2	331	3968	376	3289	2775	324		1399	1698	1426	167	141	1682	141	1626		3.50	15861	135	1697	1516.	•	1359	1534	135	7 6 7 7	1370	1261	1.3	1400	1778	1429	1765	111		1756		69	77	6	23	Ď

		•				,	1																								ı											1				,	()
D (•	•		•	0	0	•	•	•	•	•					•	> <		> «	•		•	Þ		•			•	•			-		Đ			> c		•	•		•		•		-	•
> •	-	-	• •	-	•	0	0	0	•	0	0	•	•	•	•		• •	•		> <	• <		> <	>		•	2	-	۰,	•	2	-•	~ •	-4	N	}	۰۰	u	2	-	~	-4	~			٠.	- N	
٠,	-	~ -	. ~	-	~	•	2	~ 1	~		~	-	2	-	~	-	• •			۷ -	• ^	v -	- C	,		> 1	-	-		. 0	0	P .	D (B	D	F	•	• •		•	0	0	•		•		- -	>
.	-4	~	. ~		-4	2	~	-		2	~	-		~		-	• •	10	•	u -	• •	100	v (N		•	0							D	•	-	•	> «	0	•	0	0	•			5	9 0	•
			•																																													
•		rt •	•		~	2	~	•	•	-	•	~	2	~	~		• •	•		- ^			~ 6	~		•				•			01		•		•	-		•	0	0	•		⊶ •		~ ~	•
~ (~	~ ~	~	~	~	2	~	-	-	-	-	-	-	-	-		• •	۰ ۵		40			• (•	•	•	5	-		•		.	~ (7	N	-	• •	• ~	2	-1	-	2	~		•	3	- -	•
, t	-	- 4 -	•		•	1	-4	~	~	~	~	~	2	~	~			۰ ۵		, ,	۰ ۵	2	۰ ،	v		>	0	-	•	۰ ۵	~	0	۰ د	B	0	- 1					~				•	5	>	>
00000	3,6538	7000	5,2122	8,6405	3,8751	8,4529	5,7957	8,7534	1,1318	4,9023	4.4989	1,1903	4.6897	3,1730	5.0099	4.6741	5167	9.4501	4644	4 4 2 0	42.26.4	2 6246	01/01/2	9/90*0	20.0	9	1 1488	53A	3	7.6700	394	95	0	500	200	7		? =	-		5,7500	•	₹.	!	8,3109	100	99.5314	?
200	4204	12007	7305	4678	7235	4533	6864	3984	5070	3928	4603	3894	1667	3888	4938	4234	•	٠,	•	, 4	63742	, ,	2 4	2	1 4		865391	6	-	369187	7	347544	28613	0001	46123			21939			185195,7				90	,,,	43004	3
***	3429	3429	3429	3429	3429	3429	3429	3429	3429	3429	3429	3429	3429	3429	3429	3429	1420	3429	14.50	1420	1420	1000	777	2.54	7077	,	3404			90.0	ě	2895	C 6 2 2	1000	2493	4288		80.0	٠.	4288	4286	\sim	4288		6416	41.4	0416	, T
•	밉	9			٠.	٠.	٩.	٠.	٠.	٩.			٥.				2 -		-	•	•	-	• •	2		٠,	`.	1	: -		.~.	2,3	٦,	?'	ຼ	- 1	•	•	•	•	0.0	ċ	•			216		2
5	692	09643	357	265	9	305	703	750	148	724	040	8	578	983	673	4		9				1 6	2	0	, .	1	15955	5	,	9593	44632	8	200	3	0	07 . X D	2 2	400	603	264	13319	653	504		50.00	2 6	3.5	2
-	ď,	2.5	•	0.09	•	0	•	-	m	5	•	1	~	-	•			4 6) e	2		- 0	r c	•		-	64.			900	2	38.2			. 68		٠.	v 10		-	60.1	C:	·c	İ	19	٠.	7.7	•
~	7	~ :	-	• -	-	4	~	-	-	•	-	-	-	•	• -	• •	٠.	٠.	•	٠,	→ •	٠,	٠,	-			192	Yo	. 6	9	96	96	9 7	\$	96		•	•		4	4	•	•	!	9 6	2	9) -
2	2.	1220		: =	5	\$	5	9	2	9	=	2	2	•	5	٠,	:		: :	7.3			• •	~	9	٠.	0	*		8.39	947	,7067			220	8389		7.5	: 6	2	3031	Ξ.	5	,	~ *		2.5	
739	710	920	910	723	913	710	969	699	756	663	730	662	751	663	748	400		¥ 6 7	940	0 4	, t	900		6		10/1	12433	A0A0	3	5779	000	\$596	2300	7	9 2 9 /	9840		31.58	3362	2760	2846,	3012	3294		600	v	6213	٧

•				-							ļ		į											1										1							•)	
.		⊳ €	•		•	•	•		•	•	0	•	•	•		.		0	0	5 C		0	.		•		•	•	•	0	•	0	•	P 6	•		0	0	-		•	• •	> 0
W	•	u	• 0	-	~	-	• 0		• ~		2	 ^		-4	2	⊶ ∩	-	~	ه د	٧	• ~•	c	~ -	~	-	7	-1	2	→ (,		~	 - (N -	• 00	· ~	~	-	· ~		~	→ 0	y
		>			•		• •			• •	0	0 C		•	0	6 C		•	0	-			-			9	•	•	0 0		•	0	•				•		•	•	•	.	0
		> c			•		•		•	• •		•		•		0 <		•	0	> c			.		•	0			~ .	,		-	~ (•	~	2	-	-	~	~		-~
n 0	•	٠.	•		~	-	٠.	16	. ~		-	~ ~			-	~ ~		- (2	· -		~	~ -	-	~	~	0	0	0 6	 	•		0			•	•	0			0 (5 6	
	> <	> c	•			-		-		• ~	2	~ ~					2	~ .	2 <	.		.	a	.~	~	N	•	0	•		•		0	> c	•			-			- (~ ~	· ·
ri eri e		- 0	40		~						0			-4			1			-		2.	~. ~	2	•					ĺ	_			^			~		_				
1 0 F				:	_	140		900	302	960	593	679	1	~							017	146	183	723	524	92/	102	747	981	7		0957						96	15	29	9 .		. 2
226687,6						176334.4			705	113	838	208549,6	-	20.	2	7 7 7 2	529,6	28.5	500	85934.6	44.	982,9	 •	14610,0	00685,8		84369,	35562,	381819,3	• • • • • • • • • • • • • • • • • • • •	00418,	227465.0	96602	83970	08116	85217	02820	75341,0	94273,2	72203,5	87.485		0.51960
0,07878 0,07878	36	2 -	•			9	9040	4	0.0478	0498	.0498	0.0400U		1354	1354		1364	7	4451,0	4400		1344	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	• ~	1344	1 204	9950	,0566	0,05460		89290,3	-0,06268	929310	0/00	9290	000	9000	٠.	٠,	٠:	•	50	66670.0-
6,26373	8 . 4 . 6	474	3269	3444	5656	5599		1380	747	3512	4485	4.21660 8.37:24		.327	. 29	515	39	198	200	7,5	955	460	210	6,69817	. 22 A	. 20	38.	š.	1,19575		0699	5,34267	1049	2020	5942	2865	.2983	553	555	0.45	662	221 381	4,34650
0 4 0 4 0					•		•	• •			9	.	:			* 4	:					.	• •	-	•		9	9	•		•	•	•			•	•	in e	•	ري د د	•	•	
1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1994	2778	200	5314	151	878		B 0 8 0	6.50	853	530	4 8065	•	3414	9:47	752	1666	7145	183	1172	365	529	900	7501 2	1785	9 / 6	1706	9735	7024 9	•	115	4483	10.0	2562	5253	7543	,3217	191	6650 4	1506 4	4 184	3585	6319
0010 0100 0070	٠.	-) c	•	•	910		2 A S	120	880	282	3082		1423	1495	440	1593	1684	1264	1397	1438	1379	144/	1600	1517	2001	893	236	5874	2	3008	3184	186	170	052	993	038	910	354	786	25) E O	300

•															,									•																		1			•			(1	
•	0	•	•	0 (> c		> <	.		• •	.		• •	•		•	•		.			•			•	0	0	0	5 6	.		. 6	•	6	0	•	0	0	0		0	0	•	•	0	6 (8	.	0 (Þ
		~		N •	• 0	•	• •	• -	~	-	• ~		· ~		~	-	• 0	, .	• ^	•	2	-	~			2	 (2	• 0	4	2	·	~	-7	~	-	2	-	2		7	~	~* (2	- → (N -		м.	- 4 €	•
	-	•	•	•	•		•	• •		•	• •		•	•		•	•				0	•	•		0	0	•	0	> c		0	•	0	0	0	•	0	•	•		0	•	•		D (•		> c	D (0
	-	.	2	~ •		•	• 0	•		•	۰ ۵	-	۰	~	~	•	٠.	-	. ~	•		~	~		-		~ (2	٠.	• ~	2	. 	-4	~	~	-		~	2		1		~	2	ert s	,	2	.	 1 •	,
	•	0		D (.	•	•	•		•			•			-	• •	•	• -	• ~	2	~	~				~	16		۰ ~	2	~	-		-	~	~	~	2		1		~ 1 ·		N (N C	2	Ν.	r •	_
		-1		~ (v 0	-		•		•		2	~	~	~	•	• •	-	• •	• •		•	•		0	0	0	>	> c	• •		•	0	0	•	•	0	0	0		1		rd (,	rt s	ri •	,, , 	→ 0	N 6	
			-								•	1	۰	•	1			1	٠ -	. 0-		•	0		7 1		, ,	-		•		. ~	~	2	5	60	1	n	-				Δ.		Δ.	•				•
	90132,6158	99955,892	87474,409	045, \ 00/V	127509.201	109107.084	124917	85208.432	94317,332	84709,166	0878,41	6762.22	13747,64	0507,84	14941,99	103678.788	1707 A 75	92769.52	15333.55	190713.624	17623,31	89049,87	12476,21		01272,63	3359,83	77,96900	1336/10	4105.25	95945,61	8661.55	92406,15	4598,92	92112,75	2005,75	91564,50	18,05	3104,25	3814,66		<u> </u>	7337,4	7081,7	4116,2	S 8000	7,000	0,1216	7,40764	104460,080	2007
	0,04651	٠.	0	٠,	2 9	-	•	2 -			: =			٠.		. •			0.034	-0.03436	5	.03			50.	50	ç	70000		1589		.0	.05	.05	9	S	.05A9.	ç	50		1047	047	60.	70.	9	,00	•	, ,	0.04/32	
	3907	4782	58,55248	269	,,,,	45.7	3	715	6327	537	6335	4957	5557	9356	9631		90.00	7445	8089		4.9860	1.0469	4614		2,9406	6,1418	2,7869	75701 64	6 5445	1.4230	5.2201	3,1926	3,7509	9,0322	2,8940	0.0179	3,4286	9,6708	3,7027		9,9741	1,5853	8,1457	0669	d,1319	1,5257	7442	1924.0	64,15907	
	24	7.	7.	~ ?	, ,				2	2	2.	7	. 7.	2	72	44	;				-	9	•		54	24	. :		, 7	5.	24	. ~	5	7.	24	24	24	5	24			27							. .	
•	6	499.47	1465,2595	460,01	A 8 4 9 7	575 77	437 00	185.14	455.18	30.00	31.20	409 8	597,33	512,05	07,11				102	3	=	930	3094,1472		510,5	587.4	5000	407 544	507	474.1	565.2	444.0	530,2	437.0	509.4	₹.	522,2	ユ	528,4	1	9	478,047	395,498	450,776	395,165	470,017	541,042	477,042	1557,0175	470.496

	0.0	-	• •		•				9 6	•	0	-		•	0			0	D (0	•	0		•		6	•					•	-		. •		0	•	•	
-2	(~ 0	-	~ •	.~	-	~	- ~ ~	-	~	~ ~		~			~		Ν.	2		2	•~	10		2	-1	. ~	cu		-	~	-4 (-	~		~	-	~	- -
• •	•		•		•		•	0	- •	0		. c		0	9	• •			D (•	0		9		8			~ ~							2	~	1		2
																																					_			
त न		•															2			78	•				.~	7	•				•								•	
~ ~	~ •	>	• •		₩.	~	~	~	P11	-	(~ ~	7	~		•	-	~ (~ (2	-		• 🕶	~ (~	~	•				•	•	-		•		Đ	0	•	0
~ ~	~ (•			·		-		~ ~	~	~ 0	~ ~	2	~		•	1			-	~	~ ~	~	2	~	8	•				0	•	-	0	•		•	-		-
90		į				!			, io	 	7	 			į					i			. ~	ر ح	. ~		-		2 •					47 2		į		2	0	•
120687,524	03928,01	10,101,1	46073,102		ي ۾	``	3167,7	٠,	3422,6	6339,1	œ_•	4006.5	2717,8	Ţ.	$^{\prime\prime}$. 0		œ. (Ď.		S.	•	4	9535,67	-	95 0067	58818,30	323173,350	40218,49	•	4878,71	68903,62	12141,82 809m0 82	173939,584	54669,72	5248,08	59267,67	71312,61	54806	232.01
0,04732	-0,04732	76.40.0			2:	917	0,16	2	91.0	9:16	=	01.0	100	9,10	2	2	2	3,16	= :		9110	===	10	5	0110	2	~	-3,26029	2 12		020	,023	0.020	0.02033	020	0,023	.020	,431	0,43161	431
64,28362	4.14	9,2,0	59,06602	0.689.0	2,3239	2,6233	9,4158	1,0604	9.9504	6.8847	0.4473	4647	4,4301	9.3797	7,9823 1,8375	7.6624	9,0740	7,4483	0.4280	0.1930	2,4029	6.6823	6,7140	2,5875	3,8690	7,2123	9,3054	56.25290	3,2662	•	9,2402	7,4461	4,5337	58,37054	5,0597	2,0213	1,8329	7.9	55,08731	F 64
24	*	ζ.	25	27	25	27	15	12	12	12	21	~ ~	12	12	12	15	12	15	25	21	15	15	:21	12	15	15	96	96	9 9		40	.	? ?	9	7	= :	•		•	•
542,8069	569	• • • • • • • • • • • • • • • • • • • •	719,5923	4,269	7,697	1.48	990	2,725	. 4 . 6	2,617	5,368	5.54	3,161	2,557	0.050	1.223	6 . 6 . 9	0 3 90	11.0	2,0,7	6,635	6,1,0 6,4,6	568	0.0.4	426	0,247	93,318	00.2702	555		1,532	7,412	7,021	01,7459	865	7,023	166.7	80,655	544,1918	15.65

M per tere is 15pe - 0 terms

l'
į
1
: •
•
; ;
!
;
1

•					्रं
	0000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	
•~ ~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- A 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0-0-0-0-0-0-0-0	4 -
~				0000000000	
•	0000	000000000			
	0000	8888888888	4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		N N N
~~~		000000000	0000000	00000000000	1 <del>-</del> 1 <del>- 1</del> - 1
			0000000 ###		
168367,1769 231157,8932 312865,9837	88366,4120 80744,3529 89260,6131 116168,8834	2000 40 00 00 00 00 00 00 00 00 00 00 00		4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	89465 8401 11414 8 8401 8414 8 850 7501 8057 7501 950
0,43161	00000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	जिन्नान्त्रान्त्रान्त्रान्त्रान्त्राः हि । चित्रक्षप्रव्यवक्ष्य । १८० चित्रक्षप्रवेषक्षक्षः । १८० चित्रन्त्रान्त्रान्त्रा	0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
57,41848 67,89153 79,40131	G- P. G-80 W	54,503.0 61.005.63.0 61.005.63.0 60.005.54 60.005.54 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.55 60.005.5	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	### ### ##############################	50, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1
	2222		20202020		
2756.0872 3256.7936 3811.2629	414,378 410,257 410,257 628,196	24444444444444444444444444444444444444	## ## ## ## ## ## ## ## ## ## ## ## ##	84 WWW A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY A WAY	1001,000 1613,200 1613,2992 1385,2057 1382,6563

																																				•								(	)	
00	•	9 6			•		•	<b>.</b>	0	•	0	•	<b>D</b> 6		> €	<b>,</b> c		•	•	0	<b>E</b>		> <b>c</b>	•	0	•		•	•	•	<b>•</b>		•		•	•	0	•	•			•	<b>D</b> '	<b>•</b>	<b>⊳</b> €	^
~	~ .	<b>→</b> ~	<b>→</b> α		-4	~	(	N	~	<b></b>	~	~ .	<b>u</b> -	•	• ~	• ~	<b>-</b>	~		~	<b></b> • (	, 	٠.	•	2	<b>~•</b> €	-	~		~ .	<b>→</b> °	1	-	~	-	~	<b>-1</b> (	Ν.	~~		-	~	-	~ -	<b>→</b> 0	•
- 2	~ .	<b></b> -	~~		<b>-</b> 1		~ (	~ -		~	2	<b></b> •	<b>~</b> °	26	•	•	~	~	-	(	~ •	<b>,</b>		• ~	2	⊷.		~		<b></b> (	~ ~		•	-	~	~	<b>w</b> 4 ·	•	~				~ [	N -	<b>~</b> ~	4
	-	<b>&gt;</b>			•		•	<b>-</b>		•	•	0 (	<b>.</b>	>	<b>&gt;</b>	<b>,</b>		•	•	•	0 (		<b>.</b>	• •	-	•	-		0	0			-	-	••		~	~ (	2	ı	-	<b>-</b> 4		⊶ 0	<b>~</b> ~	•
-	⊶ €	· ~	~ ~			-	<b>-</b>	<b>~</b> ~	~	~	~	⊶.	<b>-</b> 1 •		• •	. ~	2	~		<b>-</b>	<b>-</b> 4 ,	16		. ~	2	<b>-</b>	-	-	~	~ •	~ ~		•			•	•	-	-			•	<b>D</b> .	<b>.</b>	<b>-</b> •	
~ ~	~ ~	• ~	200		<b></b>	-4.	-d ·				-	N (	<b>,</b>			. ~	~	~	-	<b>-</b>		-	4			~ ~	2	~	2	~ (	<b>~</b> ~		a	0		0	•	<b>&gt;</b> (		•		0	0	<b>.</b>	<b>&gt; c</b>	-
																											-					:				1					-					
8 8	0	<b>-</b>			-	-1	₩,		-	-	-1	-1 •	<b>~</b> •	1	•	•	-	-1	2	~ (	~ (	N 6	۰ ۸		2	~ 6		~	~	~ 0	~ ~	;	•		•	•	0	•	9			•	-	<del>-</del> 1 +	,d +	4
1028	9330	cm	~ ~	•	8035	9278	1926	6084	•	,6865	4268	~ (	V ◀	, ,	, 0	.0115		•	•	<b>a</b> c. (	717	` •	, 0	•	$\sim$	r. v	6477	S	812	<b>m</b> •	1000		3455	6207	464	121	2	62/	0446		0994	,7661	0 F	6170	c Œ	
25	58015	45.00	5209		42	6;	46107	44014	40016	3152	2/46/	2004	286	B.S. S. S.	7823	4304	00000	095ª	42606	9259				3543			3107	4192	5516	0243			2	23.50	1139	6421	8564	7101			320	82620	7214	44844	5882	200
2272	2272	2272	2272		2464	2464	5464	2464	2464	2464	2464	2464	1010	7777	•	9 0	~	~	•		•		4	2:64	•	2464	2464	2464	•	4 4	2464	•	5	5	2	2	9	2	2005		2195	5617	2417	5617	5617	. 700
0.0	•			•	-0.1			-	.00	-0.	10		-	1.			0	-0.1	- - -	0	0	-						-0	1,0	-	-	;	•		•	•	•	•		•	٠.	3	٠,			•
25627	6408	/ 00 U 5 A A 7	7272		7880	5964	8670	06059	0613	1544	6224	8370	C	200	2500	70.40	1507	0454	5161	5314	9690	3611	7000	5641	4611	1561	488	2123	1529	3633	9 5	•	9	. 2	3	18	21	2;	34964		3871	7667	9510	91859	1000	160
68	•		-	i	98	•		Š	. •	•	•			<b>ء د</b>	٧ -	4 63	9	-	~	n :	•		-		•	•	2 15	~	0	•			•		2	•	•	•	72		•	•	•	,23	<b>○</b> <	C
22	2		. 7. 7.		15	25	75	~ ~	12	2	2	2	21		. C	12	2	7	7.5	27	25	~ :	20	15	21	2:	1 6	~	12	21	~ :	;	9	•	4	÷	<b>Q</b>	9 :			*	27	2	2,7	, d	,
3407	9	7	452		3	157	÷.	5.9222	735	853	60	200	2.4	,	100	576	839	545	138	.377	523	256		759	533	473	7 6	546	635	360		}	946	200	25.	.772	40	7.0.	2,7825	•	291	405	20.	2,0461	1	֡
22	2		1625		0	•	•	706	~	•	••	* (	> v		) P	9 0	~	•	•	•	•	<b>,</b>	. 4		•		. 60	~	~	~ 0			5	6	•	3	5	2	36		Ţ	3	22	2 4		'n

•			1				ı							1				,		•					1		1	1		1			ı					ı					- 1	¢;	)
	0	<b>.</b>	0	o <b>c</b>	•	•	0.		•	•	5		• •	0	•	<b>D</b>	> 0	• •		•	0 (	<b>-</b> •		•	5 6	9 6	0	•	<b>D</b> (	> 0		. 0		•		<b>-</b>		0	•	0	•	Þ¢	•		•
140		~ -	-7	<b>→</b> 0	•	-1	~ .	H (N		~ •	10	٠ -	~		α,	46	4	. ~			~ •	C		N -	, ,		8		<b>.</b>		• •	~		Ņ,		<b>.</b> .	• ~		~		~			~	-4
1 <del>o</del> d <del>od</del>	2	~ -	-	~ ~			6	v ~	-	₩.	,		·	2	~ .	4	• ~	2			<b>→</b> (	v ~		⊶ ^	,		1	2	<b>~</b> -	•	• ~	~	-	<del>-</del>	2	<b>.</b> -	•	2	~	-	(	N 6		-	2
1 <del>- 1</del>		<b>~</b> 0	~	~ ~	•		٠.	rd vr	~	∾ (	,	•	· ~	-	<del>-1</del> (		٧ ٨	. 2			• <b>•</b> •••	~ ·	2	~ ‹	) 		1	⊶,	н с	-	۰ ۸	~	-	<b>~1</b> ·	-	<b>→</b> 0	w C	2	~	4	<b>~</b>	rt v	~	~	2
	0	<b>~</b> <	•	•		•	0.0	<b>-</b>	3	0 (	-		•		<b>6</b>		<b>&gt; c</b>	. 0		0	0	<b>.</b>	0	<b>o</b> c			0	<b>-</b> (	<b>-</b>		•	•	0	•	5	<b>-</b>	• •	0	•	0	•	<b>D</b> C	-	•	0
•••	0	<b>.</b>		•		-		4 +4	1	<del>, ,</del>	-	• ~	~	2	~ 0		~	. ~			-1 ·	4	-	-1 -	 	• ~	2	~ (	<b>~</b> ~		. ~	~		<b>-</b> 4 (	-	-d	•		-1	2	N (	<b>~</b> ~	2	~	8
- <b>~</b> ~	2	<b>~</b> ~	~	~ ~	•	0	0		0	0	> =	• •		0	6	> 6	<b>.</b>			-	<del>-</del> 1 •		-	<b>-</b> 1 -	4	•	-	⊶,	<b></b> .	-	•	. 🕶	2	~ (	~	٠ ،	۰ ~	2	~	~	~ •	~ ~	~	~	~
87049,2461 76509,8548	7696	9 2	2	98326,6688		926,31	4	7447.02	5326,2	77979,9772	4.5066	94297.0	2304,4	. 00	59004,4	20000	16407.1	801		9171	0.000		174,7		10	015	2817	2.7	7007	48B	9	2				3	969	35.27	5	200		74315,0358	3	17	29.
0.05617	0	0.0		0,0	2	.072	6,07259	270	972	5,00	200	072	37	072	573	200		2	,	٦.			0,13050	٠.				٦,		-	-			-	_	•	•		٠.	-	~`		-		٠.
98,40323 54,74,61	, C	25	::	22		8,0571	54,84571	8.7653	7,8118	5,3289	10/200	9.7332	6.6626	7.7004	0,1002	7776	8.0736	9,7024		7157	8962	2090	58,94917	7615	6228	A5A5	6372	6363	7077	4803	6772	3378	1984	7951	2322	.0/.	8967	4005	3708	6009	6830	424	0100	8595	0760
						•							-		•					2	~ ~	۰ ۸	12	~ 0		۰ ~	~	~ (	~ ~		. ~	. ~	~	~	2	~ ~	. ~	~							
401,6776	463,377	738,726	329,066	93,646		393,370	33.6	638.368	397,485	327,894	540,075 583,424	457,597	359,963	625,026	922.464	104 401	633.757	969,68	,	9 6 6 6	70,754	78,723	707,3900	81,138 07,840	99.473	42,352	91,647	40.446	20°0'0'	13.672	40.926	64,053	16.391	45,542	76,47		46.755	00,836	84,450	15,295	60,256	29.090	20,013	82,311	92,840

1		ı			ł			1			ı		1			1			ł			ı			1		ı			i		1			l		1			ı		1		ı			1	( )	<b>)</b>	ı
1		;																																																
	<b>.</b>		•	•		0	<b>D</b> (	0	•		D		1		<b>-</b>	0	-	•		ь (	•		•	•		C		•	•		•		<b>-</b>	•		•		•	<b>.</b>	-	> <		•		0	<b>-</b>		•	0	
~	- ~	-	~	<del>-</del> 4	2	<b>-</b> 4 6	<b>.</b>		~	<b></b> - (	,	- ~		•	<b>→</b> (	7	<b>→</b> (	٠.	+6	٠.	• •	-	• ~		~		~	٠ د	•	  ~ 		~  ~	<b>→</b> ~		~	-	~	-e (	N •	+0	• -	.~		-4	∾•	<b>→</b> 0		~		
	· ~	-4	-	~	2	⊶ .	<b>,</b>	2	~ .	<b>.</b> ,	-	~ ~			<b>.</b>		~ (	٠.		<b>~</b> (			• •	. ~	2			, ,			~ (	2		. ~	2		-	~ (	~ •	-	• ~				<b>-</b> 4 6	· ~	-		2	
		1											1																																					
-	ત ત	~	8	~	~		<b>.</b>	-		<b>N</b> (	7	~ ~	:	•	<b>,</b>	-	-4 ₹	(	9.	• (	• •		•	•		~	~	• •	•		<b></b> 4 ·		۰ ۵	. ~	~	-		<b></b>	⊶ (	-	• ~	~	•			-4 -	~	~	~	
-		-	-1			~ 0	~ €	N (	~ •	N 6	N (	~ ~		•	, ·	-4	<b>,</b>	<b>.</b>	- -	٠,	<b></b>		۰ م	~	~	~	~		<b>.</b>	   	<b>-</b> 4 ·		<b>-</b> 4	۱ 🛶		~	~	~ 0	~ •		. ~	2	•	<b>-</b>	<b>-</b> 1 •		 	-	<b>-</b>	1
9		•	0	•		<b>&gt;</b> •	-	<b>D</b>	0	<b>-</b>	>			•	<b>&gt;</b> •		> 0	>	· •	> 0	<b>&gt;</b> <	> 0	• •		0	0		<b>&gt;</b>			•		• •	. 0		•		0 (	<b>5</b>		• •			-	<b>-</b> 4 •	<b>.</b> -				
		1																																						:										
	o 10	•						1				091			٧,			•				İ					922						629				1	2:	<b>.</b>						<b>.</b>	. ^	i	6		1
واد	677,8	897,2	846,7	972,2	000	7000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	?		0 ¢	780,2		A5 700A	067790 0047 94	20,700	07 6046	64UC,0U	3275.0	( ) ( ) ( ) ( )	) <del>-</del>	6906.7	1663.5		441,7	6 066	•	6.004.6	3869.7	6323,6	8556,4	0///0	8640.7	7899.1	3384,9	31/9,5	8186,1	8385	7331,0	95.59	0427.5	4275,5		9,212,9	8545 ₆ 7	8791.6	3384,6	729,0	٩	
	3 P)	•	•	-		~ •	`;		7	<b>.</b>				•	•			` •		, ,	` ~		•	~	_	•		` •	•		•		. 63	•	•	•		•	•	, <b>M</b>			•	•	<b>7</b>			<b>P</b>		
	ï	117	117	117	11	֡֝֟֝֓֓֓֓֓֓֟֝֟֝֟֝֓֓֓֟֝֟֝֓֓֓֟֟֝֓֓֓֟֝֟֝֟֝֟֝	ì	11	1	ì		ii.		3			100	400		9		9	90	061	.001	100	5	9	9	100	190	2		061	1961	961	96.	.00195	700	9	901	1001	,	19000	19070	19000	40000	,00061	.00061	
5		0	ĭ	-		-	•	•	، د	•					•	-	ء د ا	•			? ~			•	0	•		•		-	•		?	•	٠	•	0	ه د	•	•	•		•	-		•		•	•	
•	2362 2362	4725	6547	2166	6249	4041	247	2513	1293	9587		13711		9	0000	5//5	9000	700/		0 0 0	42.0	60.47	9561	1314	1308	6422	9041	5170	5718	7536	A1.14	1997	9617	4040	8263	2345	7295	80131	12//	7018	1664	115		3212	424	2281	6286	18542	3045	
25	3 4	23	26	9	25	ב ה	ς;	29	Χ;	, T	2	7 6		•	8	2	6	Č S	2	0 4	5	1	9	9	76	8	25	2 6	4 40 4 40	7	5	2/		619	2	28	<b>*</b>	3	2	n in		71	;		7	, «	'n	55	2	
22		2	24	~	2			~	~	2.		~ ~		Ç	2	-	2 .	2:	4 -	· ·	•			15	15	75	2		2 -	2	27	~	15	15	2	2	75	2 ?	~ :	· ·	: :	21	9	~	25		75	15	15	)
S -	. •	્ર-	`	2.	·		, a	•	7.		ים יים	•••			014,07	924.01	700,00	6/4/900		7 4 6 7 6 8		28.324	83.474	59,217	13,570	15,706	94,648	70.444	02,652	57,044	41,751	****	59.54	36,849	49,916	98,815	. 2	41,6157	35.	5 4 5	797	338		98,054	P. C. P. P. P. P. P. P. P. P. P. P. P. P. P.	19.7.8	95,735	62,22	99,7:2	
٠,	781.6	427,3	359,7	517,2	742.9	70/24	7.0.5	910,0	7.67	417.0		729.7			014,07	924.01	700,00	6/4/900		7 4 6 7 6 8		28.324	83.474	59,217	13,570	15,706	94,648	70.444	02,652	57,044	41,751	****		36,849	49,916	98,815	56,754	51.5	566,60	5 4 5	56.797	59,338		99,05		18.74	95,73		62,29	699,72

te de sant a desta telesco

•		,																					•																								•	្ក់	)
<b>.</b>						<b>.</b>																			<b>.</b>			0	•	D <b>(</b>				•	D 6		_	•		_									_
																																								_								_	
~ ~	~	⊶ ‹		~		Ν.	٠ ،		~		~	<b>→</b> (		• ~		~	-	~		-	~		~	<b></b> (	N -	~	-	~	<b>-</b> 4 (	<b>v</b> -	~		7	→ (	<b>v</b> -	.~		~		~		٧.	• ^	-	• ~		2	-4	~
N	~	<b></b> 1	7 2	~		<b></b> (	~ ~	-	-	~	~	⊶ .	i			-	~	~		*	-	~	2	<b></b>	<b></b> (	. ~	-1	-	~ •	۰ -	ŀ	~	2	⊶ ,	- 0		-	-	~	~	-	(		•	• -	۰ ~	~		-
<b>-</b>	-	~ .	2	~	-	⊶.	- ·	2	~	2	~	<b></b> .	•	• •	. ~	2	. ~	. ~			-	-	-4	~	~ ~	2	-	-4	<b>.</b>	~ c	2	~	2	<b></b> ,	- ·		~	2	2	~		┛.	٠.	-		. ~	2		-
		•																																															
~ ~	~	~ ~	~	~	-4	⊶.	<b>-</b>	-		-		N C	,	. ~	۰ ~	2	~	~		-		-	-	<b>-</b> 4 ,	-ı -	-	~	~	~ (	۰ ،	. ~	~	2	<b>-</b> 4 .		• •••		7			~	~ 6	۰ د	1	۰ م	۰ م	2		-
<del>-1</del> -1		<b>-1</b> •			7	~ 0	~ ~	7	~	7	~ (	N (		. ~	· ~	2	~	~		4	-		-4				-		<b></b>	<b>→</b>		-	-	~ (	<b>,</b> ,	7	~	7	8	~	2	<b>v</b> c	. ~		. ~	. ~	2	-	~
<b>.</b>	0	0		•	9	<b>-</b>	<b>.</b> .	0	0	0	0	<b>.</b>		<b>,</b>		-		. 0		-		-		<b></b> .	<b></b> .		-		<b></b> .	<b></b> -	-			⊶ .		4		-4	-	<b>-</b>		⊶,	• •	-		•	-	8	~
. 9480	247	350	259	143	723	727	109	508	708	897	632	200	200	558	432	916	685	948		929	929	394	842	0 0	925		563	669	272	000	352	1,5290	014	9 7 9	4 6 4	2201	391	945	060	032	20		697	859	670	, K	7	5	977
645	655,3	11971,6	150.2	548,3			9886.1								. 6	6/6	231	25		33.1	7,7	<u>.</u>	5		2 5	: =	₹.	7	7 :		- 57	2	Ξ	2		Ē	č	2	5	Š	5	5.	3	7	3.6	53,0	12.7	700	497.0
80 4 60 65	3	7 6	1	40	2	4 6	2	47	₩,	28	2 .	<b>:</b> :	9	5	. <del>.</del> <del>.</del>	42	58	75	İ	22	20	23	2	25	2 0	12	25	2 i	2 -	200		21	2	2.0	2 2	45	~	22	31	7	2	7 5	4	75	22	5	2	21	B
0 <b>6 1</b>	19	79	19	19	10	10	191	101	191	190	19		•	1 5	1 70	19	19	193		251	51	51	151	2	12	15	51	51	7.		15.	51	.51	27	1 5	151	51	51	121	21	2	7.	1 5	25		51	15.	121	51
000	6	5		3	3	9	9	3	8	3	3	0000	2			0		2		.91		10.	3,012	5	3	0.012	.01	015	2		6	10	C, 012	216 2	71.7	510.0-		.0,317	13	20.	5	2	10	-			0.	5	. 21
																												1																					
74894	30249	64080	24775	78111	33119	38853	24430	96204	12401	12478	63737	13550	40.04	95610	57669	22461	02247	36747	,	92837	0489	0036	6173	6477	7440	5038	9031	7435	7276	 25.65	3790	5811	7418	2377	101	79523	4414	513	280	404	843	989	586	8	273	2 4	322	140	360
4.6	9	57.	500	65	9	200		9	58	8	2	9	1		9	5.	6.8	78	!	60		٦.			٠.			ς.	<b>.</b> .	٠,	٠.	۲.	5	i,	٠.	8	ζ.		Ξ.	÷.	~.	Ė	•	; -	•		٠,٠		'n
22	15	25	12	15	27	25	20	. ~	2	12	25	215			. ~	12	12	15	!	•	•	•	•	۰ م	۰ •	0	•	•	۰.	o •c	•	•	•	٠.	<b>₽</b> •	•	•	•	•	•	6	٠.	•		•	•	•	•	•
194	2	0.0	73	2	7	?;	? =	7	9	97	4	ς;	~~		2	5	6	6		7.3	5	22	Ç.,	Ø :	4 6	2.5	18	<b>.</b>	9	,		9	53	9;	. a	714	4	9.	9.8	ç	3	21	2 -	4 1	3 6	Š	5	4	9
656.9	916	691.6	6.969	749.	723	0.0	962.5	731.5	697,	817,4	946	3		660	723.3	698.0	816.2	940.4	•	353.5	336.2	366,6	411	351,6	346.0	405.0	353,	424	356.	355.5	338.2	345,4	394.4	367	423	496.7	374.6	357,3	427,5	900	374.5	7.44.	96	160.2	200	2.5	. 32.	346,2	323,6

en went tipe of tende

							İ		ļ							ĺ							
								•												<b>.</b>			
		ĺ					į	_	_		_	_											
				İ																			
<b>~</b> → ~	~~	<b>→</b> 6	•	~	• ~	. ~	7	-	~	-	~	~1	~	4	• ^	-	• ~	•		٠.	• ~		~
				-																			
N	~~		10	~	• -	۰ ~	~	-1	-	~	~	-1	-4	~	^	-	• •	4 (		٠.	• -	•	~
																ĺ							
-a	~~					۰ ~				-		~	~	~	۰,	-	٠.	٠.	•:•	۰,	۰ ،		~
							İ																
<del>-</del>	<b></b>	~ .	. ~	~ c	. ~	. ~	2		-	-	-	-	-	•				, ,		<b>u</b> c	. ~	. 2	~
		İ					i																
							į		•		•	٠.	!	_					!				
		-	•		•			(4	~											• (	• ~		N
		1					!									ĺ							
~ ~ ~	~~	~	~ ~	~ (		~	~	~	~	~	~	~	~	~	•	-				v (	. ~	~	~
2895 0156 8866	279	. 443	000	992	901	696	130	877	864	671	406	828	763	806	909	1	4			100	146	202	474
28932 21256 18028	265	200	216	283	189	220	273	225	194	267	373	229	202	264	368	227		267	0 4	000	202	283	369
i I																							
222	21		27	2	7.5	: 5	25	51	51	51	51	51	21	51	51	!		•		<b>.</b>		25	27
210	10,0	510	121	510	210	015	.012	.912	015	20,	.012	012	012	.012	213					7 6	֚֚֚֓֞֝֜֜֝֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֓֡֓֡֓֜֓֡֓֡֓֡֓֡֓֜֡֡֓֡֓֡֓֡֡֡֓֜֡֡֡֡֓֜֡֡֡֡֡֡	212	015
•••	•			ا	,	•	•	0	•	•	0	ì	•	0	•	-	,	· c	1	,	•		•
		1					•												-				
18900 1815 2682	366	329	38	138	7 2	3	40	900	713	762	333	326	946	215		3	7 7	, 6		0 0	0	185	157
57.00 57.00 57.00 57.00		9.					. g.	ું.	Ž.		ζ.	₹.	ૻૢ	Ĵ					`.	•	,,		
		i														Ì						ĺ	
•••	• •	•	•	•	D «	•	•	•	•	•	•	•	•	•	•		•	•	•	۰.	•		•
100 100 000	000	7 6	33	60	1 4	; 5	. 52	69	79	76	20	5.0	00	6		-	. 4			0 1		; ;	۶.
467,08 348,90 319,45		~ .	•	_	-		•	•	•	~	_	•	_		. •	•	. ^					•	-
444	N.S.	₩.	3 00	7.	; <u>;</u>		Ď	3.5	33	8	4	3.5	'n	2	4	: <b>:</b>	` <del>-</del>	7 6	,	•	7	; <del>-</del>	*
																			1			-	
	1			- 1						•						1			1				

	ANALYSIS FORFACTORIAL	F 14	VARIANCE TAB	e e		•
	DEP	VAHI	E 15 X( 10) PROFIT	<b>L</b>		
SOURCE OF	SUM OF SOUARES	DEGS, OF FREEDOM	HEAN SOUARE	F STATISTIC	APPROX, SIGNIFICANCE PROBABILITY OF F STAT.	
	957,01018944		557,01018944	2,18699	0,136	
	4236,16338074		4236,16338074	16,67243	40,000	
	55,47779959	1	55,47779959	0,21762	0.646	
	3,83774034	1	3,83774034	0,01507	0,870	
	21,00436053	-	21,00436053	0,06247	9,766	
	0,84740752	1	0,84760752	0.00333	606.0	
ABC	2,53137755		2,53137755	0,01994	400.0	
	8,90964159		8,90964159	0.03498	0,831	
	5,87146865	4	5,87166865	0.02305	0,852	
	15,03070407		15,03070407	0.05002	0 795	
	1,76243495	<b></b>	1,76243495	0.00692	769.0	
	0,13942696	-4	0,13942696	0.00055	0,930	
	29,49096533	of	29,99096533	0,11775	0,729	
	3,05627186		3,65627186	0.01436	0,872	
ABCD	5,20301016	4	5,20301016	0.02043	0,656	
	10569,33763218	*	10569, 33763218	41,49836	<0,0005	
	7,56450010		7,56450010	0.02970	. 04 80 . 0	
	1618,72522342	-	1618,72522342	6,35560	0,012	
A9E	72,94080515	1	72,94080515	0.28639	0,609	
	3,79328296	-1	3,79328296	0.01489	0.870	
ACE	13,67718592	1	15,67718592	0.05449	0,601	
9¢E	0,94278785	1	0,94278785	0.00370	0,907	
ABCE	0,00137524		0,00137524	0.00001	0,947	· $\Leftrightarrow$
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s						

0.005	9,904	0,917	668.0	0,895	569.0	0,918	,032	0,663	0,688	0,912	969.0	0,686	0,907	0,843	0,902	0,897	0,914	606.0	0,918	00.00	<b>606.0</b>	0,822	¥0.0009	0,929	0,603	900.0	0,922	0,637	0,927
0,05184	0.00421	0.00102	0.00549	0,01667	0.00640	0.00177	4,53340	0,01786	0,16315	0.00277	0.00621	0,01935	0,00374	0.02805	0.00483	0,01592	0.01236	0.01326	0.00178	0.00524	0.00330	0.04019	16,02606	0.00062	0.24087	0.00381	•	E 110 0 0 133	0.000
13,20318713	1,07333079	0,48861194	1,39865953	1,69863613	1,63006603	0,45150466	1154,64459023	4,54890685	41,55210870	0,70614270	1,58077151	2,38021889	0,95340117	7,14395001	1,23029156	1,50887559	0,60061421	0,83057372	0,45333072	1,53386172	0,85994258	10,23652613	4081,72280455	0,15866915	71,53450621	0,96921199	0,32762987	7,97965389	0,19823018
<b>-</b>	-	-	=	-	-1	-		-	-	•	<b>#</b>	7	-	<b></b>	-4	-	-	-4	7	-1	#	-	<b>~</b>	**	4	••		1	¥
13,20318713	1,07333079	0,48861194	1,49865953	1,09863613	1,03006603	0,45150466	1154,04459023	4,54890685	41,55210879	0,70614273	1,58077151	2,38021889	0,95346117	7,14395001	1,23029156	1,50887559	0.00061421	0,83057372	0,45333072	1,3336172	0,85994258	10,23652613	4081,72280455	0,15866915	71,53450621	0.46921199	0,32762987	7,97965389	0.19823018
406	906	ABDE	COE	ACDE	9006	ABCDE		AF		76V	b	ACF	acr	ABCF .	•	ADF	805	ABDF	COF	ACOF	8C0F	A9CDF	Ę	466	966	A967	CEF	ACEF	acer

٠	1		ı	ł		1	ı		1
0,670	0,902	0.890	0,840	16010	0,898	0.949	0,936		
0.18559	9,00476	0.09794	0,02934	0.02095	0.00579	0.0000	0,00024		
0.1	9.0	0.0	0.0	0.0	0.0	0.0	0.0		
47,26882768	1,21150377	2,02320235	7,47326610	5,33561187	1,47362943	0,00014467	0,06007752	254,69292112	
47,2	112	2,0	7.4	5,3	4	0,0	0 0	254,6	
-	-			-				320	383
47,26882768	1150377	2,02320235	7,47326610	5,33561187	1,47362943	0.00014467	0,06007752	3475838	4799605
47.2	1,2115	2.0	7,1	513	1.4	0.0	9,0	81501,73475838	104269,4479
								~	1
								EARDR	
DEF	ADEF	BDEF	ABDEF	CDEF	ACDEF	BCDEF	ABCDEF	REMAINING	TOTAL