
:
0

«
I

.
\
I
i
.
3
‘

[
I
]
:
i
,

I
t
.
”

i
n
.
-
.

t
x

.
4

1
.



SIMULATED PRODUCT SALES FORECASTING: AN ANALYSIS

OF FORECASTING AND OPERATING DISCREPANCIES

IN THE PHYSICAL DISTRIBUTION SYSTEM

By

Jeffrey Robert Sims

A DISSERTATION

Submitted to

Michigan State University

in partial fuifiilment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Marketing and Transportation Administration

1978



ABSTRACT

SIMULATED PRODUCT SALES FORECASTING: AN ANALYSIS

OF FORECASTING AND OPERATING DISCREPANCIES

IN THE PHYSICAL DISTRIBUTION SYSTEM

By

Jeffrey Robert Sims

In the management of distribution operations, two types of

uncertainty must be recognized and their impacts evaluated. The first,

demand uncertainty, deals with the rate at which a product is demanded.

The second, operating uncertainty, deals with the channel's ability to

replenish inventories as they are depleted. The combination of these

factors affects system performance. The objective of this research was

to measure the combined impacts of variations in demand and operating

uncertainty on the performance of a channel system.

Measures to reduce the effects of demand and operating uncer-

tainty are generally considered independently. However, when management

seeks to implement an improved forecasting technique, two factors must

be considered: (l) the accuracy of the preposed technique in comparison

to that presently in use; and (2) whether the distribution system can

effectively support the sales as forecasted by the improved technique.

Using the Simulated Product Sales Forecasting (SPSF) Testing Environment,

the performance of a distribution system was analyzed under four time

series forecasting techniques in combination with varying levels of

(Emand and operating uncertainty. Twenty-four combinations were tested
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for a simulated period of 240 days. Channel performance was tested in

terms of sales, service and cost, to identify the effects of changes in

forecast accuracy, and demand and operating uncertainty. The total

discrepancy between sales and demand was separated into forecasting

and operating error.

Three general hypotheses were tested using analysis of variance.

l. Different levels of each uncertainty have different impacts on

channel performance.

2. Variations in forecast accuracy have significant impacts on

channel performance.

3. Different combinations of demand uncertainty, operating

uncertainty and forecast accuracy have different impacts

on channel performance.

The major conclusions of this research are:

l. Increases in the variation of demand result in increased

stockouts and reduced profit regardless of the level of operating

uncertainty or the forecasting technique employed. The more complex

the forecasting technique, the smaller the decreases in performance

resulting from increased demand uncertainty.

2. Increases in operating uncertainty result in increased

stockouts and reduced profit. This result was consistent for all

combinations of forecasting techniques and demand patterns except one.

However, changes in system performance varied across the forecasting

techniques. The less complex the technique, the smaller the decrease

in channel performance.
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3. Variations in forecast accuracy lead to variations in

channel performance. This result was consistent across demand patterns

and levels of operating uncertainty. The complexity of the forecasting

techniques was inversely related to accuracy when considered across all

demand patterns and levels of operating uncertainty. Considered only

across demand patterns, the more complex techniques were better able

to adapt to increased demand variation.

4. There is an interaction between demand and operating

uncertainty in their effects on channel performance. Any discrepancy

between demand and sales is the result of the combined effects of these

factors and may be separated into Forecasting and Operating Discrepancy.

The effects of increases in demand and operating uncertainty tend to

cancel each other. The Total Discrepancy between demand and sales

is less than the sum of Forecasting and Operating Discrepancy.

A number of implications for distribution management follow

from the results of this research. First, defining forecast error

as the difference between sales and forecast is incorrect. Such a

procedure generates future forecasts based upon past levels of oper-

ating as well as forecast discrepancy. Second, more consistent system

performance is achieved using more simple forecasting techniques.

Complex techniques, although more able to track highly variable demand

patterns, are also more affected by variations in operating uncertainty.

Finally, the performance of the channel must be monitored and analyzed

from a system's perspective to separate forecasting and operating

discrepancies.
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CHAPTER I

INTRODUCTION

General Problem Statement
 

The distribution processes of the business firm in the United

States economy are characterized by the anticipatory commitment of

significant levels of productive resources to meet expected sales

demand. From the identification of the market opportunity to the

strategic movement of finished product, the distribution channel should

ideally function in both an efficient and effective manner to create

the time and place utilities necessary for profitable transactions.

The decision variables inherent in this process are such that the

capital commitments made in the design of the channel establish the

flexibility limits to adapt to changes during the operating period.

It is within this environment of fixed facilities and significant

resource commitments that the distribution manager seeks to achieve

stated service and cost objectives during day to day operations of the

firm.

The short run decisions of the distribution manager are made

within an environment of risk. To the extent that decisions are com-

petitively correct, the extensive operations which have culminated in

the market availability of a product or service are rewarded. In



contrast, an incorrect physical distribution decision may effectively

negate all previous marketing efforts. The critical nature of the

inherent risk in this distribution process is evidenced by the fact

that it represents the final step in the value added process of mar-

keting. Thus, only by the placement of the right amount of inventory

at the right place at the right time may the marketing process succeed.

In the placement of inventory throughout a distribution channel,

two types of uncertainty are experienced. The first is the rate at

which the product is demanded over a specified time period at each

inventory stocking location. The second is the variation in the

channel's ability to replenish inventory at each location as needed.

To the extent that these factors may be reduced by application of

management science techniques, the expected result is greater physical

distribution performance. Unfortunately the relative impact of these

two uncertainties has not been amenable to direct analysis.

With noted exceptions, the prevailing approaches to reducing

each type of uncertainty has been independent. In the short run,

however, more attention is given to sales uncertainty than to channel

variation, due to the comparatively fixed nature of channel facilities

and relationships. The typical procedure for reducing variation in

replenishment performance has been to audit order cycle operations

over time to identify problem areas. The solution is typically to

invest in new facilities or relationships which increase either the

speed or dependability of various order cycle components. Such

decisions, by their very nature, cannot be implemented on a day-to—day



basis. Thus, in the operational period, the distribution manager is

typically constrained to the employment of safety stocks to deal with

operating uncertainty.

The most common procedure to reduce the impact of sales

uncertainty is to use formal forecasting procedures. Given a forecast,

business activity is planned to meet the expected level and pattern of

sales activity. At the conclusion of an operating period, considerable

attention is then given to comparing forecasted results to actual

operating experience. In general, the results of this comparison

range from disappointing to disastrous. Beyond the defect of unsat-

isfactory results, typical forecasting procedures have two noteworthy

deficiencies.

First, typical procedures provide no mechanism wherein the

causal factors resulting in forecast error can be isolated for analysis.

At the conclusion of the forecast period, it is difficult if not impos-

sible to isolate why actual sales did not match expected sales. The

question remains unanswered: Did the forecast error result from

inaccurate sales prediction or from the inability of the enterprise

operational system to provide timely inventory for customer sales

service? If the cause was excessive prediction or alternatively

inadequate demand, then the error experienced was in fact a forecast

error. However, it is also possible that the forecast was accurate

but the expected sales were not realized due to a wide variety of

possible operating deficiencies such as stockouts, misallocation of

inventories, production deficiencies, and so forth.



The second type of forecast deficiency is more subtle.

This type of forecast error is difficult to detect since expected

sales are in fact achieved. The problem is that the forecasted sales

figure falls short of anticipating what ggulg_have been sold during the

forecast period. Thus, the forecast, which falls short of estimating

potential, may appear in retrospect to have been highly accurate since

expected and actual sales are closely matched. In fact, the forecast

was in error and at best represented little more than a self-fulfilling

prophecy. This second type of forecast error can represent a signif-

icant source of lost profits during periods of generally rising sales.

Detailed Problem Statement
 

When management seeks to implement an improved forecasting

technique, two factors must be taken into consideration: (1) the

relative accuracy of the proposed technique in comparison to that

technique presently in use; and (2) whether the distribution system

can effectively support the forecasted sales levels as generated by

the improved technique. The general thrust of this research is an

investigation into each of these factors.

The first of these factors deals specifically with the

statistical accuracy of the techniques in question. The performance

of each in estimating future sales can be analyzed and compared

statistically. Such an evaluation of four time series analysis

forecasting techniques represents the first area addressed in this

research. However, such an analysis is not an adequate base for the



determination of whether to adopt the proposed technique. This is

due to the fact that improved forecasting accuracy may prove useless

if the distribution system itself is inadequate.

To deal with the second factor noted above, the performance of

the distribution system under each of the forecasting techniques under

consideration must be analyzed, the critical response variables being

the service levels achieved by the system and the total costs incurred.

These variables are dependent upon the operation of the total system

as directed by the level of expected sales activity as forecasted. As

such, any discrepancy between the ideal performance of the total system

and the actual performance achieved may be the result of either the

inaccuracy of the forecasting technique in estimating what could have

been sold (Forecast Discrepancy) or the inability of the distribution

system to efficiently support the level of sales activity which could

have been achieved (Operating Discrepancy), or both. These factors

provide a measure of the Total Discrepancy (the difference between

the level of sales which could have been realized and that actually

achieved) within any operating period. The identification of Forecast

and Operating Discrepancy and the analysis of their separate and com-

bined impacts on system performance constitute the second portion of

this research.

In time series analysis forecasting, the incorporation of

forecast error into the generation of future forecasts is a critical

element. However, failure to recognize the composition of Total

Discrepancy has resulted in the practice of defining forecast error



as the difference between the forecasted level of sales and the level

of sales actually achieved. As such, future forecasts are affected

by Operating Discrepancy of the distribution system which should have

been ignored. Only the Forecast Discrepancy should be used.

In addition to the adjustment of future forecasts according

to past Forecast Discrepancy, the potential exists for the evaluation

of a similar procedure relating Operating Discrepancy and the set of

managerial parameters defining the structure and policies of the

distribution system. Although it is unlikely that any automatic

process could be developed to adjust the operating system, the

ability to trace errors to a specific node or link should provide

valuable insight leading to improved performance.

Definitions
 

The concepts discussed in the previous section are employed

repeatedly throughout the remainder of this document. The purpose of

this section is to provide definition to terms critial to this research.

Demangf-the total quantity of units ordered by the retail facility from

the distribution center over a specified time period. The time

periods employed in this research are twenty days each.

Forecast--the total quantity of units expected to be ordered by the

retail facility from the distribution center over a specified

time period.



Forecast Discrepancy (FD)--the forecast error; any difference
 

between the quantity of units expected to be ordered from

the distribution center and the actual quantity ordered

(i.e., demanded) over a specified period of time; the

portion of the Total Discrepancy which is due to

inaccurate forecasting.

Operation Discrepancy (OD)--the operating error; any difference
 

between the quantity of units ordered from the distribution

center and the quantity of units sold as a result of defi-

ciencies in operations such as unexpectedly long lead times;

the portion of the Total Discrepancy which is due to variations

in the order cycle time.

Ordersf-demand; the total quantity of units ordered by the retail

facility from the distribution center over a specified

period of time.

Order_Cycle Time--the total elapsed time from the issuance of an
 

order by a facility to the receipt of the units ordered;

the combination of communication time, order processing

time and transit time.

Sglggr-the total quantity of units ordered which were filled by

the distribution center over a specified period of time;

gross dispersements from the distribution center.

Total Discrepancy (TD)--any difference between the quantity of

units ordered from the distribution center and the

quantity of sales over a specified period of time.



Research Procedure
 

Based on the Detailed Problem Statement, three specific

objectives in this research may be outlined as follows:

1. to determine the relative accuracy of selected time

series analysis forecasting techniques under selected

demand conditions;

2. to evaluate the performance of a specific physical

distribution system in response to expected sales

levels as estimated by forecasting techniques of

varying levels of sophistication; and

3. to quantify the level of Total Discrepancy and to

determine the relative levels of Forecasting and

Operating Discrepancy under varying conditions of

demand uncertainty and order cycle time variability.

Ideally, each of these objectives would be achieved by

performing a series of experiments on an existing channel of dis-

tribution. In this manner, the researcher could observe how the

system reacted to changes in the level of forecast accuracy and order

cycle time variability. It is, however, impossible to control all of

the relevant variables in the system and to manipulate the level and

variability of demand or order cycle time performance. Therefore,

the solution to this research problem lies not in direct experimen-

tation, but with experimentation on a replication or model of a

channel system.

A model is generally regarded as an abstraction or simpli-

fication of a system. A mathematical model describes the system,

its components and their interactions in quantitative terms. The

model thus allows the researcher to abstract the essential charac-

teristics of a system and thereby observe and eventually predict how



that system will function. Models cannot replace actual experience;

at best they reduce a complex system to manageable proportions or

serve to crystalize our perceptions.‘ Once the analyst has achieved

a parallelism between the actual situation and the model, the model

may be manipulated to examine characteristics of the problem situation

under analysis.2

Simulation is one form of modeling which has been successfully

employed to replicate physical channel systems.3 Simulation models

mathematically represent a system, but when applied to problem solving

do not necessarily lead to an optimum solution. Computer simulation

models may be characterized as static or dynamic. Static models

analyze the state of the variables and relationships at a given point

in time. Dynamic models, on the other hand, depict the performance

of a system over time permitting an investigation into the time

dependent relationships between both the parameters and variables

of the modeled system. In addition, computer simulation has been

 

1Claude McMillan and Richard Gonzalez, Systems Analysis: A

Computer Approach to Decision Models (Homewood, 111.: Richard D.

Irwin, Inc., T968)—, p. 9.

 

2Ellwood S. Buffa, Models for Prediction and Operations

Management (New York: John Wiley & Sons, Inc., 1963), p. 9.
 

3Jay W. Forrester, Industrial Dynamics (Cambridge, Mass.: The

MIT Press, 1961), pp. 47-59; Harvey’N. Shycon and Richard B. Maffei,

"Simulation: Tool for Better Distribution," in Readings in Physical

Distribution Management, eds. Donald J. Bowersox, Edward W. Smykay

and Bernard J. LaLonde (New York: The Macmillan Company, 1969),

pp. 243-344; and Donald J. Bowersox, Logistical Management, 2nd ed.

(New York: The Macmillan Company, 1978):'pp.'354-363.
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characterized as a viable technique for modeling systems which exhibit

great complexity, probablistic or stochastic processes, and whose

variables are difficult to analyze in precise mathematical terms.“

Simulation is also quite amenable to experimentation in that once

a computer model of a system has been developed, the model's output

may be statistically analyzed under different input conditions.5

Therefore, a computer simulation model of a physical channel system

was selected to investigate the relationships between forecast

accuracy, operating uncertainty and system performance.

The specific simulation model employed in this research is

the Simulated Product Sales Forecasting (SPSF) model.6 Undertaken

as a joint industry--university effort in 1975, SPSF was specifically

designed to provide a managerial testing environment for the evaluation

of the nature and causes of forecast inaccuracy. This research provides

an application of the model to such an investigation.

 

l'Daniel Teichroew and John Lubin, "Computer Simulation--

Discussion of the Technique and Comparison of Languages,"

Communications of the ACM, October 1966, p. 724.
 

SRonald H. Ballou, Business Logistics Management (Englewood

Cliffs, N.J.: Prentice-Hall, Inc., 1973), p. 81.

6Donald J. Bowersox et al., "Simulated Product Sales Fore-

casting: Present Status and Future Potential," Proceedings of the

Seventh Annual Transportation and Logistics Educators Conference

(Columbus, Ohio: Transportation and Logistics Research Fufid} The

Ohio State University, 1976), pp. 27-30; Bowersox et al., "Short

Range Product Sales Forecasting," Proceedings of the Fourteenth Annual

National Council of Physical Distribution Managers (1976), pp. 193:216;

and Bowersox et 31:, Simulated Product Sales FOrecasting: Managerial

Documentation (Bureau of Business Research, Michigan State Univer51ty,

forthcoming).
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The SPSF model has the following important characteristics:

1. It provides a comprehensive model of a physical

distribution system capable of measuring both

cost and service performance;

2. The model incorporates a multiecheloned structure;

3. The model is dynamic allowing distribution planning

and analysis over time;

4. The model replicates both the spatial and temporal

dimensions of actual operations; and

5. The model combines a dynamic computer simulation

of physical distribution operations with demand

replication and time series analysis forecasting

capabilities.

The specific characteristics of the SPSF model are reviewed in detail

in Chapter II.

The SPSF model provides the framework for the investigation

into the effects of variations in forecast accuracy and lead time

variability upon the performance of a simulated physical distribution

channel. Specifically, this research investigates the following

factors:

1. The relative accuracy with which selected time series

analysis forecasting techniques project selected

patterns of demand;

2. The effects of variation in the level of forecast.

accuracy upon the performance of a simulated phy51cal

distribution channel; and

3. The combined and relative effects of sales and lead

time uncertainty on the performance of the phy51cal

distribution system.

To investigate these factors a series of computer simulations

were completed combining all possible combinations between four fore-

casting techniques, two demand patterns exhibiting different levels
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of variation and seasonality, and two levels of order cycle time

variability. In other words, the forecasting techniques, demand

patterns and levels of order cycle time variability were employed

as experimental (manipulated) conditions.

The results of each experimental run analyzed included

measures of system service, forecast accuracy, operating discrepancy,

total discrepancy and average inventory. These response variables were

analyzed using standard analysis of variance techniques. The specific

hypotheses tested are developed in Chapter V. In addition, post-hoc

analysis was also performed on those hypotheses which showed

significant experimental effects.

Thesis Outline
 

This dissertation consists of seven chapters. After the

introductory chapter, Chapter II describes the conceptualization of

the SPSF concept. In addition, the model itself is described in detail.

Chapter III provides a review of general forecasting procedures

and the underlying components of time series analysis. Specific fore-

casting techniques based on time series analysis are reviewed in the

order of increasing complexity.

Chapter IV develops the environmental conditions employed in

this research. Specifically, modifications to the SPSF model for this

research are discussed as well as the method of demand and forecast

generation.
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Chapter V develops the research design and specific

hypotheses tested with the design.

The results of the analysis are reported in Chapter VI.

Each general hypothesis is reviewed and the post-hoc analysis

(when appropriate) is presented.

Chapter VII summarizes the findings and suggests general-

izations to be drawn from the research. Areas of future research

and the limitations of the present research are also outlined.

The Appendix provides synopses of the literature on various

aspects of time series analysis forecasting which were not described

in the main body.



CHAPTER II

THE SPSF TESTING ENVIRONMENT

Introduction
 

The primary focus of the SPSF research was to develop a

computerized analysis tool to assist management in improving forecast

accuracy. The overall model developed is identified as the SPSF

Testing Environment. This research details one type of applied

investigation employing the SPSF Testing Environment. The purpose

of this chapter is to provide an overview of the SPSF model and its

analysis capabilities. The initial section of the chapter provides

a brief background statement regarding the nature of the SPSF concept

and basic SPSF approach. Next, the general SPSF system is reviewed

and the four modules that make up the testing environment are

introduced. The final sections of the chapter discuss the modules

in depth.

The SPSF Concept
 

The SPSF concept is relatively simple. To provide a forecast

test environment, the attributes of market area demand simulation,

dynamic operational simulation, and statistical sales forecasting

are combined into a single computer model. The SPSF model is capable

of rendering a sales forecast while simultaneously creating customer

14
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orders and replicating the physical distribution process of providing

timely inventory to satisfy customer order requirements. Thus, through

the combined capabilities of two types of simulation and statistical

forecasting, a time-sequenced record of events leading to forecasting

deficiency is captured and documented. Such documentation provides

the basis for post-mortem evaluation of the reason for the forecast

error and formulates the basis for subsequent sensitivity analysis.

Perhaps the most beneficial feature of the SPSF model is that it

provides a testing environment for controlled experimentation.

Three assumptions are critical to a generalized testing

environment capable of controlled experimentation. First is the

fundamental belief that if appropriate variables are identified and

incorporated into forecasting, available statistical techniques can

produce accurate demand estimates. Second, operational performance

can be recorded for effectiveness analysis and the potential exists

to quantify and incorporate such data as a forecast variable.

Finally, the results of experimentation in a testing environment

can be accurately generalized to a broad range of markets without

extensive duplicate analysis.

General SPSF Design,

The SPSF testing environment contains the following modules:

1. Operations Module;

Demand Module;

Forecast Module; and

#
0
)
“
)

Analysis Module.
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Each module is briefly reviewed in terms of its function within the

overall SPSF testing environment.

The function of the Operations module is to simulate the

physical distribution system supplying the test market with products

being forecasted. This module is capable of replicating inventory

availability and movements based upon a variety of different replen-

ishment policies. Utilizing input from both the forecast and demand

modules, the operations module replicates the performance of the test

operating system across the time horizon of the forecast period. The

operations simulator is designed as a generalized stochastic model

capable of replicating the performance of a distribution system with

multiple echelons. To obtain maximum realism it is designed on a

dynamic basis wherein the state of the model at any given point in

time is dependent upon the performance of the system in preceding

periods and, in addition, forms the basis for operating performance

in future periods. Dynamic simulation possesses the capability to

replicate the time dependent nature of actual operations in determining

the values of both state and flow variables within the system. For

example, the operations module adjusts inventory levels on a time

dependent basis to replicate both receipts and shipments over time.1

 

1Initial inventory levels at each stocking location are input

by the user. For each day of the simulation, these levels are adjusted

automatically to reflect units shipped and/or received. As such, the

level of inventory replenishment and order filling activity in period

t will directly affect inventory levels in period t + 1. For a more

detailed discussion of the nature of dynamic simulation, see Donald J.

Bowersox, ngistical Management (New York: Macmillan Publishing Co.,

Inc., 1974), p. 394.
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This time-dependent design permits a simulation of the

capability of a physical distribution system to satisfy market

requirements. Operational deficiency caused by uncertainty of demand

and lead time are capable of measurement for analysis purposes. To

obtain the maximum measurement of the SPSF operations simulator,

generalized cost equations are included in the analysis module to

facilitate cost/revenue analysis.

The Demand module provides a methodology for creating potential

sales. The purpose of this module is to produce synthetic orders from

a geographical market area for which the forecast module is to render

a product sales forecast. Thus, the demand module is employed to

quantify pattern, level, and dispersion of product orders over the

forecast period. The design approach of this module is important to

the SPSF testing environment as it provides the primary data for

evaluation of forecast accuracy. Four alternative demand generating

procedures are included in the market area demand module.

The Forecast module provides software procedures for rendering

statistical forecasts. Sales forecasts establish inventory levels for

the operations module. Considerable difference exists between the

degree of technical sophistication in the techniques contained in the

forecast module. The SPSF testing environment provides an application

of four short range product forecasting procedures widely used in

industry.

The Analysis module is the fourth module of the overall testing

environment and is primarily concerned with the diagnostic reporting of



18

overall SPSF testing. The primary information flow for analysis is

the time sequenced relationship between forecasted sales, simulated

demand and simulated sales. Based on these linkages, the module

provides management status, activity and cost computation reports.

The analysis module also quantifies Forecast and Operating Discrepancy,

providing the opportunity to evaluate and modify future forecasts

and/or operating policies.

Figure 2.1 provides an overview of the SPSF Testing Environment

general design and the foundation for a more detailed discussion of the

four modules. As a matter of terminology, the term "simulator" is used

to refer to the combined use of the operations forecast and demand

modules. The term "SPSF Testing Environment" is used to refer to the

above defined simulator plus the analysis module.

Operations Module
 

The operations module is a dynamic simulator that integrates

input from the forecasting module and the demand module in a manner

that permits both the time- and function-dependent observations to

be replicated and observed. The operations simulator is designed to

model individual events involved in the performance of the physical

distribution process. Typical events include order processing, order

shipping, inventory management, production and transportation. Each

event is modeled to occur on an independent basis, the dynamic charac-

teristic of actual operations being achieved through event interaction.

For example, the output of the inventory management event is the input
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to the inventory replenishment event which in turn creates a requirement

for the transportation event.

In the linkage of events, the manner in whcih elapsed per-

formance time is replicated is critical for the model to capture the

dynamic realism of distribution operations. Such realism is achieved

through the inclusion of probabilistic time variables. Typical compo-

nents requiring probability variables are transportation, communication

and order processing time.

Selected events, such as inventory management and error

management, require the accumulation of status across time. For this

reason, events in the operations module may be scheduled to occur on

a one-time or-a recursive basis in any analysis situation. Examples

of events typically scheduled only once for each computer run are data

read and the network configuration events. Events typically scheduled

to occur on a repetitive basis are replenishment, forecasting and

report events.

In addition to the incorporation of modular interaction and

temporal uncertainty, the design of the operations module provides

a flexible model permitting multiple plants, distribution centers,

echelons and products, as well as alternative Operating policies.

The operations module may simulate up to 15 locations and handle

up to 10 individual or groupings of products.2 Locations may be

 

2These limits, 15 locations and 10 individual or groupings

of products, correspond to the current program limits available to

the SPSF research project at Michigan State University. These limits

were set to minimize core and time requirements for current research,

however, minimal effort is required to alter them.
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arranged in any number of echelons from manufacturing plants to final

customers.3 Customer locations can represent specific accounts or

areas of aggregated demand.“ These capabilities permit the operations

module to replicate the typical physical distribution configuration

used to replenish inventory to a specific geographic area.

Figures 2.2 and 2.3 illustrate the structural flexibility

inherent in the operations module. The Simplified distribution

structure in Figure 2.2 illustrates inventory stocking at three

locations with product shipment from a manufacturing plant to a

distribution center and then to the customer. Although such a

simplified distribution structure would be rare in actual market

situations, it provides a useful basis for analysis. Typical policies

capable of alternative testing are illustrated on the right side of

Figure 2.2. Figure 2.3 provides a more complex example of a distri-

bution structure which consists of 12 locations in four echelons. This

network has multiple source destinations and direct or by-pass shipment

capabilities from the manufacturer to the distribution center location.

It is important to note that these examples illustrate only

two potential system configurations which can be structured within the

operations module. The specific network employed in this research is

developed in Chapter IV. The illustrations in Figures 2.2 and 2.3 do

 

3The number of echelons in a specified structure is limited

only by the maximum number of locations as input by the user.

l'Up to 10 individual accounts and/or areas of aggregate demand

may be employed in any network.
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ALTERNATIVE POLICIES
 

PRODUCTION POLICIES

INVENTORY POLICIES

ORDER PROCESSING TIMES

AVAILABLE TRANSIT MODES

SPEED AND CONSISTENCY OF

COMMUNICATION AND TRANSIT TIMES

FORECASTING METHODOLOGY

INVENTORY AND STOCKING POLICIES

ORDER PROCESSING TIMES

REVIEW PERIODS

DEMAND DRAW-OFF FUNCTIONS

REPLENISHMENT ORDER FACTORING METHODS

AVAILABLE TRANSIT MODES
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COMMUNICATION AND TRANSIT TIMES

INVENTORY AND STOCKING POLICIES
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Figure 2.2 Example of Simplified Distribution Structure.
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Figure 2.3 Example of Complex Distribution Structure.
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not include the total simulator of SPSF Testing Environment in that

the forecast, demand and analysis modules are not displayed.

Demand Module
 

In the SPSF Testing Environment the applicability and validity

of results is in part dependent upon the quality of demand generation.

Once a physical distribution operating system is defined, the analysis

of potential system efficiency rests on the capability to support a

specified demand pattern. If the representation of demand is unreal-

istic or provides an inadequate approximation of the actual demand,

modeling results will have limited operational validity. Similar

relationships exist in all forms of simulation experimentation. The

applicability of experimental results is directly proportional to the

validity of the demand replication.

Three alternatives are included for demand generation in the

SPSF Testing Environment: (1) the direct input of actual orders from

sales history; (2) the use of Monte Carlo processes or probability

distributions to create individual orders;5 and (3) determination of

an aggregate sales figure, such as the industry sales for a market

area which is reduced to arrive at individual product orders.

The first method of demand generation, directly inputing

product orders is termed Procedure 1 in the demand module. The use

of orders as sales history is the most realistic and simple method of

 

5Given a mean and variance of daily sales, these techniques

generate demand levels through a random process.
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demand replication. However, this procedure has the shortcomings

of requiring more data than alternative methods of demand generation

and an inability to create experimental test conditions. Because of

the assumed accuracy, the direct use of historical sales was one method

of demand generation used to validate the basic SPSF operations module.

Procedure 2 employs statistical procedures such as normal,

log-normal, erlang and poisson distributions to generate total daily

sales. Although easy to implement, this approach offers the researcher

no assured approximation to market reality. Even if the probability

distribution used is statistically fitted according to historical

sales, the parameters of the model are static. Also, this method

is based upon the assumption that information gained in experimen-

tation against such static parameters is applicable to the actual

market situation.

Once the sales level is identified, it is reduced into daily

orders for use by the operations module. The general procedure is

to randomly select orders from a predetermined order file until the

daily demand is equaled. Several order files may be predetermined,

each containing a sample of 100 orders from a different seasonality

period, the file to be used being determined according to the season

in question. Pseudo orders can be structured to permit experimental

conditions or to replicate events such as new product introduction or

the marketing of deals. The addition of the dollar value of the last

order from the predetermined file will seldom equal daily sales.

Therefore, as a standard procedure, half of the time the last order
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is dropped from the day's sales and half of the time accepted. Over

the course of the simulation horizon this procedure will average out

to the daily sales figure.

The third technique for demand generation involves the

adjustment of historical sales levels based upon correlation to

economic variables. Procedures 3 and 4 of the demand module utilize

different correlation procedures. In a typical test situation, it is

not difficult to identify several economic indices that can be corre-

lated to sales. Such factors can be determined through statistical

analysis of past data available from market sources in combination

with company history. Typical factors which may be considered are

population, net income, Gross National Product, the number of housing

starts and other selected indicators, depending upon the product in

question.

The correlation approach Offers a more realistic approximation

of an actual market condition than either Procedure 1 or 2. By using

economic indices as independent variables it is conceptually possible

to simulate numerous market conditions. In addition to simulation of

the current market condition indices may be projected to estimate

future conditions in an effort to set up experimental situations.

By repeatedly altering projections and analyzing corresponding per-

formance, critical variables can be isolated and related operating

structures offering the greatest productivity identified. The more

accurate the representation of the actual market economies, the greater

the validity of the analysis. The major deficiency of using correlation
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analysis is in the validation of the basic level of demand. While

the correlation can be statistically validated, the relevancy cannot.6

Two procedures in the demand module use correlation analysis.

In Procedure 3, firm sales is determined using multiple linear regres-

sion. The effect of various factors upon firm sales is measured using

the method of least squares. Given a number of factors as independent

variables, a linear regression equation is used to arrive at firm sales

for a particular month. Daily sales are generated by multiplying this

monthly sales level by a daily sales factor based on an expected mean

and variance for the month in question.

In Procedure 4, industry demand is generated within the market

area by inputing independent variables into a correlation equation of

the general form:

IS = a + b1X + b X + b3X3 + ... + b X
l 2 2 n n

where:

IS = industry sales for the period in question;

a = the vertical axis intercept;

Xl-n = the independent variable influencing industry sales; and

bl-n = the respective factors of the independent variables.

 

6The degree of relationship between the values of selected

independent variables and the level of sales can be statistically

validated. This does not mean, however, that the relationship is

meaningful or reasonable to the user.
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This form of generalized equation permits inclusion of any

independent variables deemed relevant to the determination of market

area industry sales. It also allows selection of different variables

for different forecast Situations. For instance, a finn selling

household appliances may find housing starts, wholesale price index,

and per capita income useful for rendering aggregate forecasts.

After industry sales are determined, they are reduced to

monthly estimates by historical monthly sales rankings as a percentage

of annual sales. Next, specific market share is determined using the

approach proposed by Kotler.7 This method uses a ratio of the firm's

"market effort" to the industry "marketing effort" to arrive at

specific market share.

The result Of the regression analysis for Procedures 3 and 4

is a monthly or weekly sales estimate. Given this figure, daily sales

are determined from a normal distribution using the expected mean and

variance of daily sales for the month under analysis. Given the level

of daily sales, the approach outlined for Procedure 2 is used to arrive

at product orders.

Regardless of which demand module procedure is in use, the

series of orders comprising daily sales are submitted to the Order

Processing routine in the operations simulator.

 

7Philip Kotler, Marketing Decision Making: A Model Building

Approach (New York: Holt, Rinehart and Winston, 1971).
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Forecast Module
 

Four procedures for time series analysis forecasting are

available in the SPSF Testing Environment.8 They are:

l. Brown's Basic Exponential Smoothing;

Trigg and Leach's Adaptive Smoothing;

P. R. Winters' Exponentially Weighted Moving Averages; and

#
0
0
“
)

Roberts' and Reed's Self-Adaptive Forecasting Technique.

Each was selected as representative of a level of forecasting sophis-

tication. Each level and the corresponding procedure is discussed

breifly. More detailed explanations are contained in Chapter III.

Before discussing the properties of the procedures, however, the

method through which the forecast is incorporated into the simulation

is reviewed.

Given a product, the first forecasting option is to generate

independent forecasts for each location in the operations simulator

structure. Such locations may be on the same echelon level or at

various levels within the system. The applicable forecast is gen-

erated from an analysis of historical patterns of sales (throughput)

at each location. As such, each forecast is developed independent

of all others.

 

8A fifth forecasting procedure, the Box-Jenkins Forecast

Methodology was originally scheduled to be included in the SPSF

Forecast module. However, because of the extent of the manual

interface required in the development of a forecast model for each

different environmental situation, and because of the need to employ

numerous such environments, this procedure was eliminated.
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The second option generates forecasts at the echelon level

serving the final destination customer. A forecast is made for a

number of periods in advance. This forecast is then lagged back to

the source locations which replenish the customer service location.

At the upper echelons of the operating structure the period to be

forecasted depends on the estimated lead time from the location in

question to the market. The estimate is computed for each product

in an event subroutine.

The first forecast procedure contained in the forecast module

is the basic exponential smoothing model developed by R. G. Brown.9

Brown's model applies a static smoothing constant (a) to the previous

period's sales and forecast by the formula:

Forecast1 = a (Saleso) + (l-o) (Forecasto).

As this model requires little input, andEUIunchanging smoothing

factor, it is easy to use. Since it contains no forecast error

adaptability or specific trend or cyclical elements it offers a

limited capability. However, exponential smoothing provides a control

measure by which the benefit of added sophistication and complexity

can be evaluated.10

 

9R. G. Brown and Richard F. Meyer, "The Fundamental Theorem

of Exponential Smoothing,“ _perations Research 9 (No. 5; September-

October 1961): 673-685.

10By comparing the performance of a simulated system when using

Brown's procedure to the performance of the same system when using a

more complex procedure, the determination of whether or not to imple-

ment the advanced procedure may be made on the basis of quantified

levels of improved performance. Such a comparative analysis could be

.made between any combination of the four available forecast procedures.



31

A formulation developed by P. R. Winters11 constitutes the

second forecast procedure. Winters' approach is technically similar

to Brown and Meyer's exponential smoothing. The major difference

is that Winters incorporates seasonality and trend variation. The

same smoothing constant (a) is used in this technique as in Brown

and Meyer's. Additional constants are also included for smoothed

estimates of seasonality (8) and of trend (y). When these three

factors are combined, a sales forecast is obtained for a period

which considers seasonal and trend projections. The estimates for

seasonality and trend are derived by weighting past estimates by

their smoothing constants. That is:

Seasonality estimate1 = B(Seasonality0) + (l-B) (Seasonality estimateo)

Trend estimate1 = y(Trend0) + (l-y) (Trend estimateo).

Since the Winters' technique incorporates trend and seasonal

variations, it represents a more sophisticated approach which should

improve forecast accuracy. Winters' technique has the deficiency of

not adapting smoothing constants to changes in the level of forecast

error.

Procedure 3 in the forecasting module was selected from

among several techniques designed to increase the adaptability of

 

11P. R. Winters, "Forecasting Sales by Exponentially Weighted

Moving Averages," Management Science 6 (No. 3; April 1960): 324-342.
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exponential smoothing. The procedure employed was designed by Trigg

and Leach12 and is representative of the techniques of adaptive

smoothing.

Trigg and Leach's technique operates with a smoothing constant

(a) set equal to the absolute value of a tracking signal. The track-

ing Signal is a measure relating the degree of forecast error during

the most recent period to that in the preceding periods. When error

becomes large, the tracking signal approaches a value of one. As the

value of the tracking signal increases so does the corresponding value

of a, allowing the forecast to adapt more quickly to changes in demand.

As this adaptation leads to decreases in the error, the tracking signal

and the value of a will decline.

Although the Trigg and Leach technique offers adaptability,

consideration of trend and/or seasonality is omitted. The next step

in sophistication is Procedure 4 which includes adaptability plus

trend and seasonal components. This is the Self-Adaptive Forecasting

Technique (SAFT) developed by Roberts and Reed13 and based upon the

work of P. R. Winters‘“ and G. E. P. Box.ls SAFT is similar in concept

 

12D. W. Trigg and A. G. Leach, "Exponential Smoothing With

an Adaptive Response Rate," _perations Research Quarterly 18 (No. 1;

March 1967): 53-59.

13Stephen D. Roberts and Ruddell Reed, Jr., "The Development

of a Self-Adaptive Forecasting Technique," AIIE Transactions 1

(No. 4; December 1969): 314-322.

1"Winters, pp. 324-342.

'50. E. P. Box, "Evolutionary OperationS--A Method for

Increasing Industrial Productivity," Applied Statistics 6 (No. 2;

June 1957).
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to the Trigg and Leach approach but employs three smoothing constants

instead of one.

SAFT employs the Evolutionary Operations (EVOP) technique of

response surface analysis to determine optimal combinations of the

values of the three smoothing constants. Using historical data, the

EVOP systematically varies the values of each of the smoothing con-

stants, obtaining a measure of the forecast error for each combination.

Each of the error terms so determined is squared, and together they

form the response surface. This surface is then searched to determine

the minimum squared error, with the set of smoothing constants corre-

sponding to this error being automatically fed into Winters' smoothing

model.

Roberts and Reed have developed what may be termed a closed

loop dynamic forecasting technique. Any radical change in the pat-

terns of basic sales, trend, or seasonality which causes an increase

in the forecast error is automatically accounted for by the adjustment

of smoothing constant values.

The purpose of the Forecast package is to provide a range of

techniques for use in the SPSF Testing Environment. One benefit is

that the accuracy of the four techniques can be subjected to cost/

benefit analysis under controlled conditions. For any specified

market area it is possible to experimentally evaluate the accuracy

of each technique, the value of increased accuracy between techniques,

and the cost of obtaining such improvement. Each technique may be

used in combination with demand Procedure 1 as a basis for a comparison
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against the actual operating results achieved using the firm's own

forecast procedure. By using SPSF capabilities such as these, the

decision of whether to implement a more sophisticated forecast tech-

nique can be made on the basis of expected costs and benefits. As

noted in Chapter I, one of the Objectives in this research was to

detail such an analysis, the results of which are presented in

Chapter V.

Analysis Module
 

The analysis module of the SPSF testing environment calculates

the levels of cost and service variables for each simulation run. It

consists of two distinct routines, the Cost Generator and the Report

Generator, each of which is discussed.

Cost Generator
 

The SPSF cost generator is an independent routine which

computes the various costs incurred by simulated distribution Opera-

tions. The independent operation of this routine fulfills two func-

tions. First, the absence of cost components in the main body of the

simulation model provides more efficient utilization of computer core.

Second, the use of an independent cost generator permits sensitivity

analysis of different cost assumptions without incurring the additional

expense and time of duplicate runs.

The cost generator computes the expense of various distribution

activities on the basis of accumulated flow and activity from the
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operations module. Cost elements include transportation, warehousing,

storage, inventory, ordering and backorder costs. Each element

includes a fixed and/or variable component depending on the function.

The computation of costs is linear and dependent on a unit of through-

put or mean activity levels, depending upon the function. Since the

operations simulator is a dynamic model, an accurate measurement and

costing of both status and flow variables is possible. A summary of

the elements with methods of computation is presented in Table 2.1.

The cost generator obtains inputs for calculations from two

sources. Data related to activity and average level of distribution

functions are obtained directly from the operations module. Cost

parameters applied to these operations employed in this research

are Specified in Chapter IV. Given these sources of input, the cost

generator creates a new data file which contains the simulator output

and calculated costs. This new file provides input to the management

report generator.

Cost Components

As a final element in the overview of the cost generator,

this part reviews the general characteristics of each cost element.

Transportation cost is computed for all replenishment orders

on the basis of the weight shipped. In addition to being dependent

on the source and destination of the shipment, the rate is also based

on the transit mode. For each source-destination pair, up to six

different weight breaks may be used to represent any combination of

modes. There is a fixed cost available to transportation at each



Table 2.1 Cost Function Summary

 

 

Can Be Uniquely

 

Cost Element Defined By Is A Function Of Components

Transportation Shipping source Weight shipped Variable

Shipment destination

.................................... p-—-—--——-—----—----d-----------—

Warehousing Location Weight, unit, Fixed

(throughput) or cube

Product Throughput Variable

(in, out, or

in+-out/2)

——————————————— +—------—-————----———-—_—---—-—--——-—------—+———--——-——_—

Warehousing Location Average inventory Variable

(storage) level

1 Product Elapsed time

......................................4_———-----—--—--—-—--fi---—----—--—

Inventory cost Location Average inventory Variable

(includes level

storage)

Elapsed time

................r----------------_---_-1--------_----_------ L------_--_-

Order cost Location Number of orders Fixed

(shipping)

Number of lines

——————————————— #—------------------- —-------—---—-----—- b-------——--

Backorder cost Product Number of orders Variable

(Shipping) backordered  
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origin location to permit simulation of private fleet Operations.

To complete total costing of private transport, a variable cost per

hundred weight is included between each origin and destination.

Warehousing cost is divided into handling and storage.

Handling cost is unique by product and facility location and based

on facility throughput. Handling costs include fixed expense related

to labor, supplies and material handling equipment. The variable

portion of handling is based on weight, cube, or units, and can be

calculated on inbound volume, outbound volume, or an average of the

two. Storage cost is variable based on inventory level and unique

to each facility location. The components of storage include building

depreciation, utilities, and any other facility specific charges.

Inventory cost is calculated as a function of the average

inventory level. The assessment percentage may be varied by product

and location if management desires.

The cost for order placement and processing is assessed at

the shipping location on both a fixed and variable basis. The variable

cost can be calculated as a function of the number of orders and/or the

number of lines shipped. The variable cost covers such expenditures

as labor and supplies. The fixed cost element is assessed on a per

order basis and covers such items as hardware and supervisory expenses.

The final cost relates to backorders. The variable charge is

assessed against all out-of-stock replenishment orders. The charge

is assigned on a location basis which can be varied.
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The calculation Of cost elements based upon the level of

activity in the operations simulator provides the basis for validation

of simulated operations by management. Given a specific distribution

configuration, these costs should generate expense levels approximating

those actually experienced by the firm over the period corresponding to

that of the order history in use. The reports to be printed based upon

these expense levels are discussed in the next part.

Report Generator
 

This subsystem of the analysis module produces management

reports on system performance. Independent of the remainder of the

SPSF Testing Environment, an intermediate file is used to pass output

variables from the simulation to the report generator.

The input to the report generator includes simulator output

and a small number of parameter cards. Parameter input includes

descriptive names of facility locations, customers and products,

run identification information, and report selection parameters.

The descriptions make the model output more intelligible to man-

agement users while the report selection parameters define the level

of reporting detail that is desired.

There are 24 potential reports which may be divided into four

categories. Each category is divided into records which may be indi-

vidually selected. The categories and their records are listed in

Table 2.2. These reports provide the means whereby such operations

may be analyzed to determine critical events or variables.
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Table 2.2 Report Categories and Records

 

 

Category Records

 

Sales and physical levels System customer sales

System shipments

System receipts

System inventory report

Replenishment sales

Replenishment sales and in-transit

inventory

Replenishment volume: Weight shipped

Product inventory report

Product sales report (units)

System bleeding report

Product bleeding report

Costs System cost

Replenishment volume: Cost of shipping

Service System service measure

System percentage of orders by quantity

met

System backorder recovery and thousands

of dollars filled within days

System backorder recovery: Tens of units

filled within days

Replenishment order cycle time summary

Error Operating error report

Forecast error report

Managerial summary Run summary: Sales

Run summary: Service

Run summary: Inventory and backorders

Run summary: Costs
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Conclusion
 

This chapter has provided an overview of the SPSF Testing

Environment. The primary purpose of the chapter was a detailed

discussion of each module that forms an integral part of SPSF.16

Chapter III provides a technique and literature review of time

series analysis forecasting techniques. Chapter IV details the

structure of the SPSF Testing Environment as employed in this

research.

 

16For the complete documentation of the SPSF Testing Environment

see Donald J. Bowersox et al., Simulated Product Sales Forecasting:

Managerial Documentation (East Lansing: Bureau of Business Research,

Michigan State University, forthcoming).



CHAPTER III

LITERATURE REVIEW

Introduction
 

To reach the stated objectives of this research, four time

series analysis forecasting techniques of varying levels of sophis-

tication were employed in the experimental design. The selected

techniques represent only a sample of a broad range of currently

available models. The purpose of this chapter is to provide an

overview of the more commonly employed Short-term forecasting tech-

niques, including those employed in this research. Before dealing

with specific techniques, however, the three basic approaches for

estimating future sales will be reviewed followed by a general

discussion of time series analysis.

The Nature of Future Sales Estimation

Concern over the importance of improving forecasting

techniques has varied with the state of the business environment.

In times of continually climbing demand, business concerns have tended

to de-emphasize improvement. This is due to the phenomenon of the

"Self-fulfilling prophecy," i.e., no matter what forecast is made,

demand is always greater. Since production is geared to meet the

41
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forecast and, in most cases, all available units are sold, the forecast

is self-fulfilling and the unfilled demand or full potential of the

market goes unnoticed.

In periods where demand is oscillating greatly around either

a stationary or decreasing average demand pattern, the inadequacies

of forecasting procedures become more obvious. The alternately rising

and falling sales patterns characteristic of the past several years have

generated particular concern for improved Short-range forecasting of

sales for the purpose of inventory and production level control. A

short-range forecasting period is defined as any time span up to one

year, encompassing forecast periods as short as one day. This lit-

erature review is concerned with such short-range forecasting.

Three major approaches for estimating future sales can be

identified from the practice of business. The first, qualitative

analysis, is a "what do you think" or "seat of the pants" approach

that formulates predictions based upon experience and intuition of

key personnel. This approach, due to its opinionated base, is inade-

quate to handle periods of oscillating sales and does not lend itself

well to routinization. For purposes of this review, qualitative

techniques will not be referred to as forecasts. The term "forecast"

is reserved for procedures which utilize a formalized statistical or

mathematical model to arrive at the estimate of future events. All

less formal procedures are referred to as "predictions."

The second approach is a formal forecast procedure identified

as correlation analysis. Correlation analysis utilizes the method of
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least squares to relate selected measurable factors to future sales.

Although easily computerized, it takes a considerable amount of data

to render an accurate forecast. For this reason, correlation analysis

is more applicable to long-range trend analysis and is not the most

efficient procedure for rendering short-range forecasts.

A third procedure is time series analysis. Similar to

correlation analysis, time series analysis represents a formalized

approach and includes the publicized procedures of exponential smoothing

and spectral analysis. This technique review and this research are

limited to the broad range of time series techniques because of their

applicability to short-term forecasting. This group of techniques is

deemed particularly applicable to the development of routinized pro-

cedures for the purposes of short-range forecasting of individual

product sales.

The next section provides a synthesis of the two categories

of time series forecasting procedures which directly relate to short-

range product sales forecasting. The second section details individual

forecasting techniques germane to the purposes of this research.

Synthesis of Time Series Approaches

Time series analysis encompasses numerous forecasting techniques

in which the patterns and movements of historical data are analyzed for

recursive characteristics. Based upon the specific attributes exhibited

by the data, techniques of varying sophistication may be employed to

project future levels of variables under forecast. This section of the
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review discusses each of the general time series techniques in the

order of increasing complexity. The section begins with a review of

basic components which comprise time series analysis. These components

consist of trend, cyclical variation, seasonality, and irregular factors.

Trend is a long-range pattern of change in the level of

expected sales which may alternately reflect a prolonged increase or

decrease in expected sales. This change can take place at a constant

or accelerating rate. Trend components are normally produced by a

multitude of macro factors that may range from changes in market share

to growth in the number of customers or fundamental shifts in buying

habits.

Cyclical variations reflect a recurring pattern of sales above

and below the trend line occurring over an extended period. These

patterns may stem from swings in the economy as well as from changes

in established industry operating practices.

Seasonality is similar to cyclical variations, but is of a

short-term nature. Factors causing seasonality may consist of weather

conditions, holidays, or seasons of the year, as the name implies.

The last component of basic time series consists of irregular

factors or "noise." Noise is defined as random variation of actual

sales around that sales figure predicted by the combined trend,

cyclical, and seasonal estimates. Noise is by definition unexplainable

and it is desirable to minimize its impact.

The basic approach of time series forecasting is to isolate

the three predictable components and to estimate the value of each
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during a selected future period. The forecast results from

reaggregation of these projected components into a future sales

figure. This procedure is common to all forms of time series analysis.

Techniques which utilize more sophisticated quantitative methods are

reviewed in this section. However, each represents an attempt to

estimate future sales using historical patterns of basic time series

components. The general approaches, reviewed by order of increasing

complexity, consist of moving average, exponential smoothing, adaptive

smoothing, and spectral analysis.

Moving Average

Moving average may be described as a two-step process. First,

the arithmetic mean of the data points for a selected number of past

periods is computed. Second, this mean value is used in conjunction

with a trend estimate for forecasting future sales. Each period, when

a new forecast is made, the oldest data in the series is discarded and

replaced by the current period actual data.

The method is extremely Simple and assigns equal weight to

each period regardless of age. This makes the technique unresponsive

to changes in the demand pattern with the result that forecasts lag

behind such changes considerably. The technique is applicable in

situations where demand is relatively stable with little or no random

variation. The number of periods used in calculating the mean, i.e.,

the length of the interval, is subjectively determined in normal

practice. AS such, all the disadvantages inherent in a judgmental

decision are present. However, subjective analysis may be advantageous
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if based on an understanding of the market. Caution should be

exercised in the selection of a time interval to ensure that it will

reflect the effects of seasonal, irregular, and cyclical factors.

For example, if the data exhibit seasonality, it is common to use

an interval which corresponds to one complete seasonal cycle.

Exponential Smoothing
 

Exponential smoothing represents an extension of the moving

average method and is more sophisticated in that it assigns more

importance to the recent data. It is based upon the definition of

a smoothing constant which assigns weights to each period's data

according to age. Increased importance (weight) can be assigned

to more current data by using a smoothing constant, a, with a value

that approaches one. This capability is strengthened exponentially

by the adjustment factor (l-alpha)", where n is the number of periods

under consideration. The advantage of this operation is that the

"average" will respond more quickly to changes in the level of demand.

Smoothing constants may also be employed to forecast values

of trend (y) and seasonality (B) for the future period. When either

trend or seasonality is considered separately in the forecast, it is

termed double exponential smoothing. When both trend and seasonality

are included, it is triple exponential smoothing.

Exponential smoothing does not eliminate the need for judg-

mental decisions. The forecaster is required to set the values of

the smoothing constants. Herein lies the basic disadvantage of this

technique. If a large value of alpha is used, the system will respond
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quickly to any change in the mean level of demand. However, such

a large value tends to increase any random fluctuations about the

mean, giving the forecast series a more sporadic appearance. On the

other hand, if the value of alpha is decreased during periods of

stationary demand, the model's ability to adjust to a sudden increase

in the mean level of demand is reduced. The user is thus faced with

a tradeoff between limiting the noise exhibited in the series and the

quickness with which the system responds to changes in demand.

Adaptive Smoothing
 

One of the major disadvantages of techniques employing

exponential smoothing is that they are Slow to recognize turning

points. When a shock occurs in the series, the process takes several

time periods to adjust to the change, depending upon the value of 0.

Where large values of 6 enable the system to adapt more quickly, they

are usually found unfavorable for general use because they fail to

filter out noise and actually accentuate such sporadic deviations.

When small values of alpha are used, the system takes a long time to

adjust, with biased forecasts occurring until the model homes in again.

In an effort to allevaite this paradox, adaptive techniques employ

tracking signals to monitor the error in the system. When a certain

level of error is exceeded, these techniques issue messages inviting

manual intervention. More sophisticated techniques automatically

increase the value of the smoothing constant to reduce the error.

Once the error is reduced, they gradually return the smoothing
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constant to its original value. It is this approach for automatic

adjustment which is known as adaptive smoothing.

Spectral Analysis
 

Spectral analysis1 is a statistical technique which employs

sinusoidal functions to analyze time series data. By combining various

sine and cosine functions, it is possible to approximate the cyclical

components of a time series enabling the forecaster to obtain a power

spectrum. The power spectrum, or spectral density, converts the

variance of the time series data into a set of components which may

then be attributed to various characteristics displayed by the series.

Spectral analysis is based upon Fourier Analysis Theory which says that

any series of data or mathematical function may be approximated by

combining different sine and cosine functions with different periods

and different amplitudes.

Basically, the process requires fitting an equation such as:

Y(t) a1 Cosine (W1t) + a2 Cosine (Wzt) t ...

an Cosine (Wnt) + E(t)

to a set of time series data, Y(t). In Figure 3.1 the a's are

represented by the amplitude of the wave, while the periods of the

cyclical components are the w's. The error turn E(t), performs the

same function it does in regression analysis, providing a measure of

the variance which is unexplained by the sinusoidal function.

 

‘Discussion based upon Steven C. Wheelwright and Spyros

Makridakis, Forecasting Methods for Management (New York: John

Wiley & Sons, 1973), pp. 126-129.
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Figure 3.1 Wave Periodicity and Amplitude.

When the periods in the time series are unknown, spectral

analysis provides an ideal tool for determining the cyclical components

which the series exhibits. When the periods are known beforehand, the

sinusoidal functions are treated as independent variables with the

result that the process is similar to regression analysis.

Spectral analysis also aids in the study of time series data

by enabling the forecaster to remove the trend component through the

process of "filtering." The correct filter (the determination of which

is based on the statistical goals of the analysis) will remove unwanted

characteristics of the series, such as trend and seasonal variation,

without causing a disturbance to the desired components. The major

advantage of this process is its ability to illustrate whether or not

the series is actually a random process, and to enable the forecaster

to study trend and seasonal factors.
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The major disadvantage of spectral analysis is the amount of

data needed to obtain accuracy. Although the number of observations

may be increased by Shortening the period (Wlt) under analysis, this

in no way increases accuracy. Furthermore, spectral analysis must be

combined with other statistical techniques as it does not in itself

adjust series data.

Technigue Review
 

This section reviews specific forecasting techniques contained

within the general approaches discussed above. As such a review of

every available technique in these approaches is beyond the purpose

of this research, the techniques reviewed below are intended as a

sample of the levels of complexity and sophistication currently

available.

R. G. Brown's Technique
 

In his initial development of exponential smoothing, Brown2

described the basic rule of the method as follows:

New average = o(new demand) + (l—o) (Old average).

Thus, the new forecast would be equal to last month's forecast plus

some fraction of the forecast error.

2R. G. Brown, Statistical Forecasting for Inventory Control

(New York: McGraw-Hill, 1959).
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In an effort to monitor the accuracy of this system, Brown

developed a tracking signal given as:

Sum of errors

MAD

 Tracking Signal =

where:

Sum of errors = previous sum of errors + latest error; and

Mean absolute deviation = (l-a) previous MAD + (a) latest MAD.

If the sum of the forecast errors exceeded four mean absolute

deviations, the tracking signal was "trippled'I and a notice inviting

manual intervention was issued.

This technique was criticized and subsequently improved upon

by D. W. Trigg in 1964.3 Trigg pointed out two disadvantages inherent

in Brown's tracking signal: (1) because it is based on cumulative

forecast errors, when the limits are exceeded the tracking signal may

not return within the limits even if the forecast model regains control;

and (2) if the model gives extremely accurate forecasts, the tracking

Signal will go out of control as the MAD decreases.

To overcome these disadvantages, Trigg recommended the

following updating equations:

Smoothed error = (l-o) previous smoothed error + (a)

latest error MAD = (l-a) previous MAD + (a) least absolute error

. . _ Smoothed error

Tracking Signal - MAD

 

3D. W. Trigg, "Monitoring a Forecasting System," Operations

. Research Quarterly 18 (NO. 1; March 1964): 271-274.
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This simple modification limits the tracking signal to values between

plus and minus unity and overcomes the limitations of Brown's method.

Brown recognized the advantages of Trigg's technique and

proceeded to develop an adaptive smoothing model.“ Given an initial

value of the smoothing constant, a, Brown employed Trigg's tracking

signal to automatically increase a to a predetermined level for nine

consecutive periods when the forecast error exceeded a set limit. At

the end of the nine periods, the value of a was automatically reduced

to its initial value. If the tracking signal was "tripped" during

the nine periods when a was at an increased level, a signal was issued

requiring intervention to re-estimate the initial coefficients.

The basic advantage of this technique over Brown's earlier

model is that the smoothed error will return to zero if the increased

value of a does correct the bias. The cumulative sum of the errors

had to be reset by manual intervention in Brown's original method.

Trigg and Leach's Adaptive Smoothing

M2931

To overcome the need for manual intervention, Trigg and Leach5

developed a procedure to automatically adjust the value of a in response

to the magnitude of the forecast error. This is achieved by setting:

a = modulus of the tracking signal.

 

“R. G. Brown, Decision Rules for Inventory Management (New York:

Holt, Rinehart & Winston, 1967).

5D. W. Trigg and A. G. Leach, "Exponential Smoothing With An

Adaptive Response Rate,“ Operations Research Quarterly 18 (No. 1;

March 1967): 381-383.
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This simple, yet effective, mechanism allows the system to

adjust quickly to changes in the data by automatically increasing the

value of 6. Once the adjustment has been made and the forecasting

system is again in control, the value of o is automatically reduced

to filter out randomness.

The tracking signal is actually a measure of how large the

recent forecast error is in comparison to past smoothed errors. The

smoothed error will vary about zero as long as the forecasts are close

to the actual values, producing a tracking signal which also varies

about zero, between plus and minus unity.

More SOphisticated models are available. One adaptation of

Brown's method (described previously) is to set the absolute value of

the tracking signal equal to the first element in the smoothing vector.

Such a model filters out noise as accurately as the more common tech-

niques employing a fixed response rate and yet has a much more rapid

response to shocks in the series. This method also eliminates the

need to determine a proper value of a. However, the forecaster must

still set the value of a used in computing the tracking signal. The

lower the value of a, the more cautiously the system will respond to

shocks.

Smith's Adaptive Model Corrector

Following the work of Trigg and Leach, Smith6 developed an

adaptive model corrector which seeks to adjust the coefficients of

 

6David E. Smith, "Adaptive Response for Exponential Smoothing:

_ Comparative System Analysis," pperations Research Quarterly 25 (No. 3;

September 1974): 421-433.



54

the forecasting model to the best estimates of the "ideal" coefficients.

Implicit in the concept of "ideal" is the notion of a set of coeffi-

cients capable of leading to the lowest level of forecast errors

possible.

Coefficient adjustments are made at two levels: Changes in

the origin of time and correction for forecast errors. The level of

adjustment is expressed as:

h - e(t) = model correction for forecast error,

where:

3
" 1
|

smoothing vector; and

e(t) current error.

The smoothing vector (h) is made responsive to random variations in

demand through the use of smoothed error (SME) and smoothed mean

absolute deviation (SMAD):

h: |SME|

SMAD

The smoothing vector, being a function of the rate of response 8 of

the forecasting system is taken as "an exact statement of the proper

B," or:
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The steps for implementation of the method are as follows:

a. based on the forecast errors observed, the smoothed error

and the smoothed mean absolute deviation are calculated,

determining the level of error bias;

b. error bias is used in a "beta function" to determine the

level of response 8;

c. B is smoothed and used to adjust the coefficients in the

forecasting model.

Smith tested this method under stationary demand with random

variations, and non-stationary demand where the pattern of the series

varied over time. Smith felt that a good adaptive technique should

be responsive only to changes in the pattern and not just by random

variations around it. As such, 8 Should Show stability under random

demand, and adaptivity under conditions of non-stationarity. The

results of his testing under this criteria showed that the adaptive

model corrector performed well in comparison with Trigg's constant

coefficient adjustment. However, Smith's model does utilize the

concept of a tracking signal (smoothed error divided by the mean

absolute deviation) earlier devised by Trigg and later expanded by

Trigg and Leach.

P. R. Winters' Exponentially Weighted

Moving Averages

 

Although the adaptive techniques discussed above represented

a significant improvement over basic exponential smoothing, their

applicability is logically limited due to their failure to consider

the individual elements of a time series. The fact that adaptive

forms of simple exponential smoothing do not specifically monitor
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trend and seasonal elements limits their usefulness in the business

environment. Added realism and potentially greater accuracy could be

achieved through consideration of such elements. A technique employing

this methodology is that developed by P. R. Winters.7

Winters' model is exemplary of techniques which have sought

to make more efficient use of time series data while decreasing

calculation time and storage requirements. The ultimate method,

as seen below, represents the final step in a process which started

out as a simple application of weighted average and was improved and

made more realistic through the incorporation of seasonal and trend

factors.

In its Simplest form, Winters' technique may be mathematically

expressed as:

S = a - 2 (1-OI)n - S + (1-OI)MH - S ,
t _ t-n b

n-O

where:

St = forecast for period t;

St-n = actual sales in period t-n;

Sb = beginning value of S;

number of observations under analysis; and

smoothing constant.Q

1
1

)M+1
In the case of a large N value, (l-a becomes very small and may

be discarded altogether.

 

7P. R. Winters, "Forecasting Sales by Exponentially Weighted

Moving Averages," Management Science 6 (NO. 3; April 1960): 324-342.
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The Simplicity of the above equation permits easy computation

of the sales forecast but does not consider seasonality. Contending

that more often than not, "the amplitude of the seasonal is proportional

to the level of sales," Winters incorporated a seasonal factor (Ft)

into the equation in a multiplicative fashion. Thus,

 

M S

~ t-n M+1
s=a- z (I-a)"-—————+(I+a) -s

t n=O Ft-L-n b

and

J S

t-n-L J+l

F =B- z (l-B)"-(~ )+(l-B) -F.

t n=O St-n-L bt

where:

B = smoothing constant for seasonals; O s B s l;

Fbt = initial value of F for the period in question;

L
a

I
I

the largest integer less than or equal to M/L; and

r

I
I

periodicity of the seasonal effect.

Thus, the forecast is a function of past sales, the weights

a and B, the initial value of Sb, and the set of values of Fbt’ which

are L in number. In implementing the above model, St is revised each

period, while F is revised only once per cycle. Thus, for forecasting

one period ahead, the equations with seasonality would be:

St

t-L

 + (l-a) - S 0 s a s 1,M
I I

t T a F t-l’

and

 

0 I
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t
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I
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0

o

t-1’
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Generalizing for any one period into the future, one would have:

U
N

St,T = t ' Ft-L+l’

or

St,T = St . Ft-L+T’ where: T s L,

and is the number of periods into the future.

Going a step further and incorporating trend effects into the

analysis, the model becomes:

St ~

+ (1-a) (S

t-L t‘1

 

where:

Rt-l = most recent estimate of the additive trend factor.

The trend effect is incorporated in an additive fashion because it

represents the units per period that the expected sales rate, St’

is increasing or decreasing.

In forecasting for one period ahead, the revised form of the

seasonal remains the same; that is:

St

Ft = 8 ° gt + (1'8) ° Ft-L (2)
 

whereas the revised estimate of the trend is made equal to:

Rt = Y ° (St- St-I) + (I'Y) ° Rt-I; (3)

where:

y = smoothing constant for the trend value.
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Generalizing, the forecast of sales T periods into the future

would be equal to:

St’T = [St + T0 Rt] ' Ft-L+T, T =1, 2, 3, ... L. (4)

The implementation of this model may be summarized in the following

steps:

a. actual sales at period t is recorded;

b. using equation (1), evaluate St, utilizing St_1 and Rt-l from

the last period, and Ft-l as computed during the previous cycle;

c. using equation (2), calculate Ft’ which now replaces Ft-L;

d. using equation (3), calculate Rt’ which now replaces Rt-l;

e. forecasts are then made using equation (4); and

f. St_] is then replaced by St, and the data is ready for use

in the coming period.

Winters tested his method by first defining the initial values

of S, R, and F at t= 1, based upon an analysis of past sales from t-n

to t-%n. Various combinations of a, B, and y, ranging in value from

0.0 to 1.0, were then fed into the system and analyzed over the period

t-%n to t, the best combination being that which generated the smallest

standard deviation in the forecast error.

He also compared his method with two other techniques: The

first, a simple arithmetic average model; and the second, a model using

seasonally adjusted exponential smoothing. Forecasts were generated

and analyzed with each of the methods for sales of three different

types of goods. In each case, Winters' exponentially weighted moving
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average (seasonally and trend adjusted) produced better results

expressed in lower levels of standard deviation.

Theil and Wage's Simplified Exponential

Smoothing Model

As seen above, smoothing as a forecasting method has evolved

into a technique accounting not only for a past time series of data

but also for seasonality and trend effects. The way these variables

have been incorporated into the models has varied extensively, but only

on a few occasions has it simplified the technique. Such a simplifi-

cation is found in Theil and Wage,8 in which they propose a linear

approach to the incorporation of seasonals. That is, they view

seasonality in an additive rather than multiplicative manner, as

Winters did. They adopt a Simultaneous approach to the computation

of the forecast rather than the more common recursive one.

In defining the problem in linear form, the time series is

broken down in the following components:

Xt ='§ + St + residual

Tt = Xt-l + et’

where:

Xt = time series;

ii = trend value;

et = trend change; and

St = seasonal coefficient.

 

8H. Theil and S. Wage, "Some Observations on Adaptive Fore-

casting," Management Science 10 (No. 2; January 1964): 198-206.
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Based on these components and by making the residual equal to zero,

the simplified forecasting model can then be summarized as a weighted

averaging of two sources of evidence, the latest observation and the

value computed one period before. Thus,

xt = a ' (xt - St-L) + (l-a) ' (Xt-l + et_]); (1)

new evidence old value

on trend level

where:

8t = B . (Xt - Xt'1) + (1'8) . et'] (2)

which is the trend smoothing equation, and,

St = Y(Xt - Xt) + (l-Y) St-L (3)

is the seasonal smoothing equation. L is defined as the length of the

seasonal cycle, whereas a, B and y are the weights or smoothing factors,

such that O < a, B, y < l.

The steps for implementation of this technique are as follows:

a. equations (1), (2) and (3) provide the values of §£, et, St

and St-l;

b. extrapolate the most recent trend change, using the most recent

seasonal coefficient and neglecting the residual;

c. use the predictor P and obtain the forecast for r periods
t

ahead using the equation:

Pt(xt+r) = Xt + r ' et + St-L+r
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where:

ii = trend;

r-et = adjusted trend change;

St-L+r = seasonal adjusted for r periods ahead; and

r = number of periods ahead for which one may be making the

prediction.

Since the model seeks to minimize the forecast error, this

factor must be related to the trend value, trend change, and seasonal

components. Theil and Wage accomplished this through the use of

"adaptation equations" given as follows:

Yt ' (it-T + et-l) = 0' ' (Xt ‘ Pt-l ' Xt) = '0‘ ' ft-1,t (4)
“-

adjusted old value

where:

ft-1,t = forecast error.

Notice that the only element adapted ends up being inversely propor-

tional to the most recent forecast error. Thus, when the observation

Xt TS below the prediction P - Xt’ the old trend value Xt-l + e,c_1
t-l

is lowered.

Using the same approach as above, the trend change and seasonal

are also adjusted out of equations (2) and (3):

_e =-aoBof

t-1 t-1,t

= -(1-0) ° Y ° ft-I,t (6)
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It is important to note that given 8 and y, seasonal adjustments are

normally larger than the trend adjustments when a is small. This is

due to the fact that ii is more dependent on the trend corrected §£_1,

than on the seasonally corrected Xt’ when a is small. This is evidenced

in equation (1). Since the trend changes are considered more stable,

the seasonal factor will be subject to more adaptation.

Finally, equations (1), (2) and (3) are performed recursively,

with past data on seasonality and trend to determine ii, which is then

used to compute the new trend and seasonal. However, Theil and Wage

contend that it is not sufficient to use only past data in the compu-

tation of ii; the current values should be used as well. These values

(both past and current) may be used simultaneously, modifying equation

(1), which becomes:

R, = a - Ixt - St) + (l-a) - (TH + et) <7)

Substituting equations (2) and (3) into equation (7), one obtains:

xt = a - Ixt - SH) + (l -a') - (TM + em) (8)

which is the same as equation (1), with only a different a. When

current data are used (simultaneous approach), a = a' only when 8 = y.

In conclusion, Theil and Wage's version of exponential smoothing

has added realism over that of Winters, due to the incorporation of

current data in a simultaneous fashion. The technique is also

somewhat more simplified than Winters' method, due to the additive

consideration Of the seasonal component.
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Roberts and Reed Self-Adaptive Forecasting

Technigue

According to these authors,

 

9 most exponential smoothing

techniques suffer from the fact that they must make certain critical

assumptions about a time series in order to mathematically derive the

"optimal" smoothing constant. To overcome the need for such assump-

tions, Roberts and Reed have developed a self-adaptive forecast

technique (SAFT) based on the work of P. R. Wintersl° and G. E. P.

Box.11 SAFT is similar to the Trigg and Leach model in philosophy

but employs three smoothing constants instead of one.

SAFT provides a means by which optimal smoothing constants

may be evolved and then monitored to form an automatic, closed loop

system. To accomplish this, the exponential forecasting model of

Winters is combined with a response surface analysis technique to

determine optimal values for the smoothing constants.

Winters' technique breaks a time series into four components:

Level, seasonal, trend, and random. As Winters' model has been

discussed previously, only the basic formulas involved are repeated.

Leveling factor:

X

 ' ) + (l-a) [St_](x) + Moo] (1)5(=(

t x) a Ft-L

 

9Stephen D. Roberts and R. Reed, Jr., "The Development of a

Self-Adaptive Forecasting Technique," AIIE Transactions 1 (No. 4;

December 1969): 314-322.

1°Winters. PP. 324-342.

11G. E. P. Box, "Evolutionary 0perations--A Method for Increasing

Industrial Productivity," _pplied Statistics 6 (No. 2; June 1957).
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where:

St(x) = estimate of the level component of time t;

x = actual observation of the time series at time t; and

o = smoothing constant such that 0 < a < 1.

Seasonal factor:

 Ft = 8(F:EL) + (1-8) Ft_1 (2)

where:

Ft = seasonality factor at time t;

= periodicity of the season; and

B = smoothing constant such that O < 8 < 1.

Trend factor:

Rt(x) = y[st(x) - sMIxfl + (I-Y) Rt_1(x) (3)

where:

Rt(x) = the trend at time t; and

y smoothing constant such that O < y < l.

The forecast error for Winters' model is defined as:

E(t+ T) = SF(t+ T) - x(t+ T) (4)

where:

E(tI-T) = error of the forecast SF and observation x. (5)
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The square of the forecast error is thus:

RS(t+T) = Emu) - x(t+T)]2

where:

RS = response surface for time (t+-T).

The response surface analysis is perfonmed by the Evolutionary

Operation (EVOP) technique developed by Box. The response surface

itself is based upon the square of the forecast error for various

combinations of the smoothing constants. A series of forecasts for

past sales is made allowing a, B and y to vary, systematically, over

a predefined range. A three-level factorial is employed to allow each

constant to be set at a high, medium, and low value. Each forecast is

then compared to the most recent period's sales to obtain a set of

forecast errors, one for each different combination of smoothing

constants. Each of the forecast errors is squared, and the set of

these squared values form the response surface. The response surface

may be one-, two- or three-dimensional, depending on whether all three

smoothing constants are employed in the model.

Once the response surface has been formed, the EVOP technique

searches the surface for that combination of smoothing constants with

the lowest squared error. By using the squared error, more attention

is given to larger values, and all of the response surface values will

be greater than or equal to zero.

It is important to note that each of the smoothing constants

may be set at three separate levels within a predetermined range.
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By having a middle value in addition to the high and low values, the

convexity (or concavity) of the surface may be studied. Roberts and

Reed have called the effect resulting from such an analysis the change

in mean effect, CIM. If the CIM exceeds the predetermined positive

limit, the surface is convex, while exceeding the negative limit is

an illustration of concavity.

Once a complete cycle of the EVOP has been completed, a measure

of the variance of the response surface may be obtained. The magnitude

of this variance determines the need for adjustment of the smoothing

constants. Given the variance, the smoothing constants are analyzed

to determine whether the change in the forecast error is statistically

significant. If so, the values which the smoothing constant(s) is

(are) allowed to assume are changed in the direction of the signif-

icance. For example, in a one-parameter model using only one smoothing

constant, a, forecasts are initially made using three values of a. For

purposes of illustration, let these values be .20, .25, and .30.

Roberts and Reed determine the "effect A" according to:

E=T-‘Y' (6)

where:

Y} = the average square of the forecast error for point i.

If Ea exceeds a 99% confidence limit the "model design,‘I or the values

which a is allowed to assume, are changed. If Ea exceeded the positive

confidence limit, the new values might be .25, .30, and .35. Similar

adjustments would be made if Ea exceeded the negative limit. In a
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Similar manner, the parameters for a two- or three-dimensional model

may also be adjusted.

When the smoothing constant has been changed, the new values

are automatically fed into the forecasting model. When a new forecast

is made and the error of that forecast determined, the cycle is

repeated.

Roberts and Reed have combined the works of several past

researchers to produce a dynamic forecasting technique. Through the

use of response surface analysis, the accuracy of the forecasting model

is constantly monitored, the values of the constants being changed

automatically in order to minimize the squared error.

During their initial research, Roberts and Reed compared the

SAFT technique to the methods of Winters, Brown, and Chow. According

to the authors, both Winters' model and SAFT compared favorably to the

techniques of Brown and Chow in accuracy and rate of response. SAFT

performed as well as the Winters technique, except that it required

more computational time.

D. C. Whypark's Technique
 

Another continuous evaluation technique similar to those

described above is that developed by Whybark.12 Whybark generated

forecasts using Winters' model and sought to adjust the a level

automatically in response to the error of the system. Instead of

allowing the a level to vary according to some function, however,

Whybark changes the smoothing value to a predetermined value if the

 

12D. Clay Whybark, "Testing an Adaptive Inventory Control Model,"

Working Paper No. 289 (Lafayette, Ind.: Purdue University, 1970).
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forecast error exceeds established limits. Two separate criteria,

or control limits, are used in monitoring the error of the system.

First, the tracking signal calls for a change when a single data point

is found to be outside a range of :20 from the current demand; and,

second, a change is initiated when, for two consecutive periods, the

data points were found to be :1.20 away from the mean level, and both

were in the same direction.

The new levels of a to be applied are predetermined. In the

first period after either of the control limits have been exceeded,

the value of a is automatically set at .8; for the second period the

value is automatically reduced to .4; and in the third period, a

returns to its initial value as set by the forecaster. This process

is repeated each time either of the control limits is exceeded.

In a recent study13 the Whybark model was found to react

slightly faster to shifts in the mean level of demand than the Trigg

and Leach method. The Trigg and Leach model, on the other hand, was

found to be more sensitive to small fluctuations during a stable

period. The cost of operation, computer time, and the standard

deviation of the forecast error showed extremely little difference

between the two techniques.

Chen and Winters' Hybrid Exponential

M

This model was developed as a tool to forecast the peak load

demand for an electric utility company on a daily basis. Because of

 

130. Clay Whybark, "A Comparison of Adaptive Forecasting

Techniques," Logistical Transportation Review 8 (No. 3; July 1973):

13-26.
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the direct influence which numerous causal variables exert on

demand, and because of the inability of exponential and adaptive

smoothing models to consider such factors, Chen and Winters combined

subjective analysis based on experience with exponential smoothing

to form a hybrid model.'“ The model considers four components, two

of which are based on policy decisions with the remaining two being

exponentially adjusted factors.

The exponentially adjusted components include:

B = Base demand for day t, updated daily according to business

conditTOns, season of the year, and hours of daylight,

growth in population, per capita use of electricity,

steel production, etc.

 

W. = Day of the week effect that is added to the base demand

where j = l, 2, ... 7.

 

The subjective components are:

T = Temperature effect which is expressed through a rule which

deteraneS whether or not Bt should be augmented according

to the temperature on day t; the rule being as follows for

 

Tt+l:

(Tt+1 - 65°F), TH1 > 65°F;

a - 0, 50°F 5 TM 65°F;

(50 - Tt+,), Tt+1 ; 50°F;

 

1"Gordon K. C. Chen and P. R. Winters, "Forecasting Peak Demand

for an Electric Utility With a Hybrid Exponential Model," Management

Science 12 (No. 12; August 1966): 531-537.
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where:

1(000) kilowatts; andQ

II

CL Cloud cover effect expressed through a rule that indicates

how many kilowatts to add to the base demand as a function

of the forecasted cloud condition for one day ahead; the

rule for this model was defined as equal to:

CLt+1 = 0, clear;

CLt+1 = l, partly cloudy;

CL“1 = 2, cloudy; and

CLt+1
3, precipitation;

where company value of 8 = 1(OOO) kilowatts.

Having the forecasts ft+l and CL the forecasting equation
t+1’

for a (t+ 1) period ahead is equal to:

Dt+1 = Bt + Wj+1 + a - O + B °(CLt+l) (1)

(50 - Tt+])

Given the actual demand (At)’ and before having the forecast for the

day ahead developed, both the base demand effect and the day-of-the

week effect are then updated with the equations below:

Tt-65

Bt = a - At-(Wj+-a- o + B- CLt) + (l-a)- Bt_1 (2)

ISO-Ti;
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Tt - 65

Wj=b- At-(Bt+a- o +B-CLt) +(I-b1-wj (3)

50 - Tt

where:

(l-b)Wj = smoothing of last week Wj; and

a,b = smoothing factors.

Thus, the steps required for implementation are as follows:

a. observe actual peak demand today as well as actual temperature

and cloud cover;

b. update B1 and NJ with equations (2) and (3); and

c. forecast temperature and cloud cover for the one-day-ahead

and use equation (1) to update peak demand for the next day.

The method was tested by simulating different values for a, b,

a, and B and by computing the square forecasting error:

tn ( )2

¢ = 2 D -A .

t=t1 t t

The optimal combination of a, b, a, and B was the one that minimized o.

The values of B and W were arbitrarily initialized. In order

to eliminate the effects of this specification from the system, the

authors used the same device here as the one Winters used when testing

his model. That is, computer runs were performed for a determined

number of periods during which the transient effects of the initial

values were supposedly eliminated. After this warm-up period, B and
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W were updated and forecasts made with different values of a, b,

a and B.

Chen and Winters judged the performance of the model as

excellent, based upon the fact that for 65% of the time under

consideration the errors were less than 3%. Although this technique

was designed for a specific industry, it appears to justify the use

of exogenous variables in certain situations. Basically, all that

is required is the definition of practical rules responsive to the

varying characteristics of demand.

Wheelwright and Makridakis' Adaptive

Filtering

According to these forecasters15 the general class of tech-

 

niques which forecast using a weighted sum of past observations may

be presented as follows:

N

SW = 3 W1. x1 , (l)

i—l

where:

St+l = forecast for period t + 1;

W1 = weight assigned to each observation i;

X. = value of the ith observation; and

2
.
.

I
I

number of periods and weights.

Wheelwright and Makridakis contend that such models do not

guarantee that optimum forecasts will be made when using minimum error

 

15Steven C. Wheelwright and Spyros Makridakis, "An Examination

of the Use of Adaptive Filtering in Forecasting," Operations Research

Quarterly 24 (No. 1; March 1973): 55-65.
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as the judgment criterion. They base their criticism of such

techniques as moving average and exponential smoothing on the fact

that the forecaster arbitrarily specifies either the number of obser-

vations or the value(s) of the smoothing constant(s). These values

are not determined through the application of any type of optimization

principle. Accordingly, Wheelright and Makridakis propose the use of

adaptive filtering, which they contend "will always do as well if not

better than either moving averages, exponential smoothing, or any other

technique which uses a relationship between the weights that are

independent of the time series in question."16

Adaptive filtering has as its major attribute the ability to

define a signal pattern in a series of data rather than just smoothing

the noise of the data. The process seeks to minimize the mean squared

error and may be described as follows:

a. a series of past observations of the variable to be

forecasted is obtained;

b. an initial value is specified for each of the weights,

W.-
1’

c. a forecast is made using equation (1);

d. the forecast is compared with the actual data, the

mean squared error is determined; and

e. steps (b) through (d) are repeated using different

weights until a minimum error value is reached.

The adjustment of the weights is made using the following rule:

=.+ ., 2w W] 2KeJX ()
3+1

 

16Ib'id.



75

where:

Wj+1 = reVTsed weight vector;

W. = old weight vector;

= learning constant which determines how fast the

weights are adjusted;

e. = forecast error using Wj; and

= vector of past observations.

According to Wheelwright and Makridakis, the use of this

rule "guarantees that the error will always decrease and will never

increase."17 However, the effective use of the rule requires that the

forecaster have a thorough understanding of the relationships existing

between (K), the number of "training" iterations necessary to reach

the minimum value, and the number of periods and weights. This is

necessary because if the forecaster sets K at a high number, such as

101, the rule may determine the optimal at iteration number 95, and

from that point the values will oscillate above and below the optimum.

Also, even if a large value of K is used, the process will fail

throughout to determine the optimal weights. The forecaster must

also consider both the type of demand and the degree of randomness

it exhibits.

Wheelwright and Makridakis explain the above factors by

discussing the application of the method to constant, linear, and

cyclical series. In the case of a constant, linear, non-random series,

the series may be visualized as a bowl-shaped function with the minimum

error value being at the bottom of the bowl. The bowl shape is due to

 

17Ib‘id.
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the fact that the mean squared error is a quadratic function of the

weights. The larger the value of K the faster one gets to the bottom

of the bowl. Also, increasing the number of weights substantially

increases the number of iterations to determine the optimal weights.

Because of these facts, both the rate of change in the mean squared

error and the magnitude of the error for each iteration must be con-

sidered in determining the proper value for K. In the case of a

linear series with randomness, it was found that "as the randomness

Of the series increases, the loss of accuracy from having too large

a K value also increases."18 Again, an increased number of weights

or more extensive use of historical data helped to reduce the error,

and this smoothing advantage compensated for the larger number of

iterations required.

In terms of a cyclical series, the technique also showed

good results, with the number Of weights employed being the most

significant factor: increasing the number of weights for the same

number of training sessions or iterations resulted in smaller mean

squared errors.

A comparative analysis of performance between adaptive filter-

ing and regression analysis using data on champagne sales in France

(May 1962 to December 1965) showed the former to be slightly better

than the latter. In addition, adaptive filtering was found to be

more effective (lower error) than seasonal time series analysis.

 

18Ibid.
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Although this display of performance was not broad enough to

allow any generalizations, it is clear that adaptive filtering requires

less technical expertise to train a set of weights to describe a series

than does regression analysis. In comparison to weighted averages and

exponential smoothing, these authors feel that adaptive filtering is

more accurate because both techniques are methods of forecasting through

adaptive filtering. However, Wheelwright and Makridakis do point out

that adaptive filtering cannot be used for long-range forecasts, as

regression analysis may, and that adaptive filtering requires more

computer time than either moving average or exponential smoothing.

The Box-Jenkins Methodology

The statistical forecasting methodology developed by G. E. P.

Box and G. M. Jenkins19 is the most sophisticated time series analysis/

projection technique presently available. Other techniques based on

exponential smoothing may actually be considered as Specific cases

of the Box-Jenkins method. Probably the most statistically accurate

technique, Box-Jenkins is also one of the most expensive and time-

consuming methods available.

All forecasting techniques based upon time series analysis

assume that there exists some basic underlying pattern to the data,

combined with a certain amount of random variation. Most techniques

such as regression analysis and the various forms of exponential

smoothing are used in an effort to identify and project such a pattern.

 

' 19G. E. P. Box and G. M. Jenkins, Time Series Analysis,

Forecasting and Control (San Francisco: Holden-Day, 1970).
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Each varies in its accuracy depending upon the skill of the forecaster

and the extent to which the model's assumptions about the data are in

fact true. For example, in regression analysis the user must Specify

what he feels to be the basic pattern, while exponential smoothing

assumes a horizontal pattern within the data.

When using the Box-Jenkins methodology, there is no need to

Specify or assume an initial pattern in the series. The technique

aids the forecaster in fitting a mathematical model to the time series,

and is especially adept at handling situations in which the series

itself is extremely complex and/or the pattern is not readily apparent.

Once a tentative model has been developed, the technique provides the

forecaster with explicit information to aid him in determining whether

or not the initial model is an adequate representation of the pattern.

If it is not, the Box-Jenkins technique provides general directions as

to the steps which should be taken to improve the fit. Once an ade-

quate representation has been achieved, forecasts may be made directly,

the user being supplied with statistical analysis on the accuracy of

the forecasts.

These features, as well as the fact that the technique

determines the lengths of the moving averages and the weights to

be assigned to the historical data, gives the forecaster improved

versatility over methods which require the periods to be specified

and/or do not consider causal relationships. The Box-Jenkins meth-

odology does not, however, generate fully automatic forecasts in the

sense that manual intervention is required in their development.
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This feature, in contrast to those models which automatically generate

forecasts, offers greater adaptability and requires a greater amount

of expertise in the exercise of personal judgment. The Box-Jenkins

approach does not provide the user with a "canned" forecasting model

but a strategy by which the user is aided in developing and testing a

model to meet the specific characteristics of the data. To develop

such a model, Box and Jenkins have described the necessary steps as:

(l) identification, (2) estimation, and (3) diagnostic checking.

Each of these steps and the basic models of the method will be

discussed below. First, however, it should be helpful to review

the principles of autocorrelation, the key tool in analyzing the

pattern of the series.

Autocorrelation2° is similar to the concept of correlation

which measures the degree of association between two variables.

Autocorrelation, however, is a measure of the degree of association

between two values of the same variable at different time periods.

This concept may best be understood by means of the following

example.

Suppose the variable A is monthly sales from January through

A AA A dummy variable, B, may be createdApril, or A
t’ t+1’ t+2’ t+3°

by letting

Bt+n = At+n+1°

In other words, the second value of A becomes the first value of B,

the third value of A becomes the second value of B, and so on. Now

 

2°Ibid.
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the degree of correlation between these variables can be measured.

However, because both variables measure sales, their degree of

association is called autocorrelation. If Wt represents the series

of sales, the degree of autocorrelation between the variables Wt and

wt-k may be determined as:

E[(wt-U)(wt'k-U)]

autocorrelation of order k = Pk = , and Pk = P-k'

E[(wt'U)2]

 

In this example, K= l and the degree of autocorrelation between

Wt and Wt”1 would be of the order 1. In the same manner, one could

find the autocorrelation of order 2, 3, or n, simply by constructing

dummy variables C, D, or N. Such a procedure may be illustrated as

follows:

Table 3.1 Autocorrelation Example

 

 

 

 

Variable

Time A B C D

1 10/20/15 25

2 20/15 25 3O

3 15 25 30 ”””A' 27

4 25 30 /27

5 30"””’J,.27

6 27

 

When variable B was constructed using a time lag of K: 1, variables C

and D are created simply by using time lags of 2 and 3, respectively.
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The general class of models in the Box-Jenkins methodology is

described in the next subsection, followed by a review of the steps

used to implement the technique.

General Class of Models

The general class of models in the Box-Jenkins methodology may

be written as:

¢p(B)Yt = so + eqmet . (I)

where:

Yt = some stationary trend;

60 = a deterministic trend;

¢p(B) and eq(B) = polynomials of order p and q;

B = a backshift operator such that B(Yt) = Yt—1;

and

et = uncorrelated deviates or "white noise"

distributed as N(O,oa2).

This general class of models may be adjusted to describe any

type or pattern of data. However, as it is too broad for specific

application, Box and Jenkins have developed submodels described as:

(1) Auto-Regressive (AR), (2) Moving Average (MA), (3) mixed Auto-

Regressive Moving Average (ARMA). When each of these submodels has

been reviewed they will be combined to produce the general class of

models given in (1).

The basic form of the model for regression analysis may be

written as:
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Y = a + blxl + b2X2 + b3X3 + . bpxp + e (2)

where:

Y = the dependent variable;

Xi-p = independent variables;

b. = relative weight assigned to each of the independent

1'p variables;

some constant; andD
! I
I

the random variation unexplained by the model.0

I
I

In using this technique, the attempt is to analyze the effect which Xp

independent variables have on the dependent variable Y. If, however,

one were to construct Xp dummy variables from the dependent variable Y

(as in the example on autocorrelation), the relationship between

different values of the same variable could be represented as:

Yt = ¢1Yt-l + ¢2Yt-2 + ¢3Yt-3 + ... + ¢th-p + et (3)

where:

Yt = some stationary trend;

et = random variation unexplained by the model; and

DP = gheYrelative weights assigned to each of the past values

t

The only difference between equation (3) and the model of

regression analysis given in (2) is that the Xp in (2) were different

independent variables, p in number, while the Yt-n in (3) are dummy

variables created from the dependent variable Yt, with time lags of

l, 2, 3, ... p periods. Thus, equation (3) relates different past
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values of the dependent variable to its value of time t. In other

words, equation (3) states that there exists a specific relationship,

or pattern, between future values of sales and past values of sales.

Because of the similarities of equation (3) to regression

analysis, and because equation (3) relates different time values of

the same dependent variable Y, it is called an Auto-Regressive model.

If, in fact, equation (3) adequately represents the pattern of the

data, and if the values of ¢]. 62, O3, ... Op, are estimated, one

may easily forecast the future value of Yt'

In some cases it may not be possible to adequately represent

the data with the Auto-Regressive model given in equation (3). In

anticipation of this, Box and Jenkins have provided a second subclass

of models which may replace or be combined with the Auto-Regressive

model. This second subclass of models are the Moving Average models,

written as:

Yt = et - 61et_1 - 62et_2 - 63et_3 - ... - eqet-p (4)

where:

Oq = relative weights assigned to past values of the error.

Just as equation (3) sought to relate future sales with past sales,

equation (4) seeks to relate future sales to the error term for several

past periods. In other words, the errors e , are viewed as the
t-l,t-q

independent variables.

If equation (4) is an adequate representation of the data, one

can generate forecasts by supplying the past errors and estimating their
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relative weights, the oq. If the data cannot be represented by

equation (4), there is one final alternative: to combine the models

given by equations (3) and (4).

The combination of the Auto-Regressive model (3) and the

Moving Average model (4), the ARMA, may be written as:

Yt = ¢1Yt-l + ¢2Yt-2+ ‘I’3Yt-3’r "°+ ¢th-p + et+ et

- e-le - 62et_2- coo ' eqet-q

which states that the future value of sales is dependent upon past

sales and past forecast errors.

Recall from equation (1) that B was called a "backshift

Operator" such that:

= Y (6)

and that ¢p(B) and eq(B) were defined as polynomials of order p and q,

respectively. It is now possible to elaborate upon these terms in order

to simplify equation (5). ¢p(B), defined as:

__ l 2 3 _ P
¢p(B) - 1 - 61B - 628 - 63B - ... ¢pB (7)

is called the autoregressive operator, and may be applied to Yt such

that:

1 2 3 p _

¢2Yt-2‘ ¢3Yt-3‘ ‘bth-p
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(Note the similarity between equation (8) and equation (3).)

eq(B) defined as:

1 2 3
- O B - ... - e Bq (9)- O B 3 q

q

is called the moving average operator, and may be applied to et such

that:

l 2 3 q _
(1- 01B - 02B - 63B - ...- qu ) Yt - e - O1e

- 02et_2- O3 t_3- ... eqet_q

(Note the similarity between equation (10) and equation (4).)

Now, substituting equations (7) and (9) into (5):

Yt = ¢p(B)Yt - eq(B)et (11)

which becomes:

¢p(B)Yt = Yt + eq(B)et (12)

which is, in effect, the general class of models given in equation (1).

In each of the models described above, it was assumed that Yt

was some stationary series. To achieve stationarity, the original

series Z may be differenced through application of:
t

_ d d1
Yt - (l-B) (l-BS) 2t (13)
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where:

d = number of regular differences;

s = the period or length of the season; and

d1 = the number of seasonal differences.

Thus, the general class of models given in equation (1) may be written

as:

ep(i-B)d(i-BS)‘”Zt = 60 + eq(B)et (i4)

which is described as an autoregressive moving average model of the

order (p,d,dl,q).

This model may be further expanded to estimate seasonal series

through the application of seasonal autoregressive and moving average

operators given as ¢p1(BS) and eq1(BS), respectively. Thus, equation

(13) would become:

IIMIMPMLMRLPH'=%+9p p (8)6q1(Bs)et (i5)
9

Given this basic model, the forecaster must now proceed through

three basic steps to derive his own model.

Step 1: Model identification. The general model given in
 

equation (8) represents too broad a class to be used for estimation.

It is necessary to study the sample autocorrelation functions and

various differencing patterns of the original series to identify a

subclass of models. A tentative (p,d,dl,q) model is criticized by

matching the pattern of the sample autocorrelations with a particular
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theoretical pattern. It is here that the characteristic of

stationarity becomes important, as stationary series exhibit specific

patterns in their sample autocorrelations. Non-stationary series, in

contrast, exhibit sample autocorrelations which fail to dampen out

with increasing lags. When this characteristic is illustrated by

the data, further differencing is needed.

Step 2: Estimation. Having identified a tentative model,
 

the parameters (¢], 62, ... ¢ ; 60, e], 62 ... eq) are estimated by

P

minimizing the sum of the square residuals according to:

A

AA=A2= - 2

S(¢,0) 2et 2(2t Zt)

Step 3: Diagnostic checking, Having estimated the parameters
 

for the fitted model, the user must now examine the sample autocorre-

lations of the residual series, at, to ensure that the model is an

adequate representation of the actual series, Yt' If the model is

an adequate representation, the fit will be independently distributed

about a mean of zero, or N(O,8a2). If the fit are not independently

distributed, the significant lags in the pattern of the sample auto-

correlation will indicate the direction for improvement. For example,

a significant autocorrelation in the data at lag n may indicate the

need for a seasonal moving average parameter such as (1-enP"). With

this new information, the user will again perform the three basic

steps, repeating the process until an adequate representation is

achieved.
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Advantages and Disadvantages

The Box-Jenkins methodology offers the forecaster improved

versatility over more automatic methods. By his examination of the

autocorrelation patterns within the data, the user may actually design

his own model and evaluate the adequacy of its estimation once he has

differenced his data to obtain stationarity. With the gradual accu—

mulation of data and repetition of the three-step process, the model

may be modified according to the characteristics of the developing

series.

Because of the personal judgment involved, more expertise and

statistical knowledge is required to properly use the Box-Jenkins

methodology than is necessary in the more automatic techniques. The

method is also more statistically complex, requiring more time and

data to achieve an adequate approximation.

Conclusion

This chapter has provided a review of the basic elements of

time series analysis forecasting and a detailed discussion of selected

time series analysis forecasting techniques. The objective of this

chapter was to provide the reader with an overview of the types of

techniques available and an illustration of their varying complexities.

The Appendix provides further support for this review in the form of

synopses of selected texts and articles dealing with various theoretical

and applied aspects of time series analysis forecasting.

Chapter IV details the environmental conditions employed in

this research.



CHAPTER IV

ENVIRONMENT SPECIFICATION

Introduction
 

This chapter presents the environmental conditions employed

throughout this research. The first section details the structure

and parameters of the physical distribution network simulated by the

Operations Module of the SPSF Testing Environment. The physical char-

acteristics of the products being Simulated are also presented. The

second section provides a review of lead time probability distributions

and the criteria established for selecting a theoretical probability

distribution to represent lead times. The selection is made and the

specific distributions employed are provided. The third section

presents the four time series forecasting techniques employed. The

final section details the demand patterns employed, and the method

of their generation.

OPTS System 1
 

The physical distribution system employed in this research was

that replicated by OPTS l of the SPSF Operations Module. Specifically,

this system has the following characteristics:

a. a multiple echelon structure with inventory capability at

each echelon; and

b. a Single facility location at each echelon.

89
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The structure of the network is illustrated in Figure 4.1. In

addition to the nodes or storage points of the system, the figure

also illustrates the links for communication and inventory flow which

provide the interaction between the nodes. The lead time probability

distributions used to Simulate communication and transportation times

are discussed below.

Costs and throughput results for the simulated network are

recorded only at the DC. Only variable cost factors are recorded and

analyzed. The factors, and their levels to be employed are detailed

in Table 4.1. Other cost elements at the DC (such as ordering cost)

were not monitored due to their independence of the forecast technique

being employed.

Table 4.1 Cost and Throughput Factors--DC

 

 

 

Factor Measurement

Handling costs $0.10/unit of goods Shipped

Inventory costs 25% of sales (S)

 

Between each pair of nodes, products are shipped by three

separate modes, differing only in their cost and volume characteristics.

These modes, their volumes and costs per hundred weight are provided in

Table 4.2.
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Figure 4.1 Representative Physical Distribution Network.
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Table 4.2 Mode Characteristics

 

 

 

Mode Weight (lbs.) Rate/th. ($)

One O-3,000 10.00

Two 3,001-5,000 9.00

Three 5,001-9,999 8.00

 

The modeled network handled 10 similar products in an identical

manner. Not only did each simulated product have the same physical

and economic characteristics, each was subject to the same cost and

operating functions at the DC, as well as to and from the DC. The

purpose was not to simulate a wide array of products, but to gain 10

observations from each Simulation run. The physical and economic

characteristics of the products are provided in Table 4.3.

Table 4.3 Product Characteristics

 

 

 

Weight Cube Price Cost

Product (lbs.) (ft.3) ($) ($)

l-lO lO 2 10 5

 

In addition to having the same physical and economic charac-

teristics, each product had the same basic demand pattern. Each

product's demand pattern had the same parameters. They were not

identical, however, each being generated on a random basis. The

procedure used in generating the demand patterns is discussed below.
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Demand for the products was placed against the DC in the form

of daily orders from the retailer. These orders were filled from

inventory held at the DC. In the event that the order could not be

filled in total, a partial shipment was sent exhausting the supply at

the DC. The remainder of the order was recorded as a stockout.

The DC issued replenishment orders to the Plant. The reorder-

point (ROP) for the DC was 10 days of inventory for each product, the

total number of units per product being dependent on the current fore-

casted daily sales level for that product. The order quantity was also

set at 10 days of forecasted sales per product. Orders placed against

the Plant were filled from an infinite inventory.

The next section provides a general discussion of the nature

of lead times. In addition, specific theoretical probability distri-

butions are reviewed and those employed in this research are specified.

Lead Time Probability Distributions

One purpose of this research was to analyze the effect of

increased lead time variability upon OD and TD. Lead time is one of

the sources of uncertainty in the research model. It is defined as the

elapsed time from placement of an order to receipt of the order. Lead

time is composed of several activities and is generally viewed as having

three elements: order communication, order processing and order

Shipment.

The common characteristic of all lead time activities is that

each requires some time to be performed. Thus, in a realistic sense,
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there exists some minimum amount of time required for ordered goods

to be received by the facility initiating the order. In addition,

individual activity time and total lead time varies from one order

to the next. The possible reasons for time differences between suc-

cessive lead times are many. This results in a practical inability

to forecast lead time variability.

Given the nature and characteristics of lead time, it can be

viewed probabilistically. "Probability enters into the process by

playing the role of a substitute for complete knowledge."1 The greater

the degree of variability inherent in the probability distribution, the

greater the uncertainty under which the distribution system must oper-

ate. The impact of such uncertainty is evident in both 00 and TD,

as well as in the operating costs of the distribution system.

Numerous probability distributions have been employed to

represent lead times. However, for the purposes of this research,

the distribution employed had to meet several criteria. These are

reviewed below. Those distributions meeting each of the criteria

are then presented and the one selected for use specified.

Criteria for Selection
 

The first criterion was that the distribution selected for

use should contribute to the generality of the results of the research

as much as possible. This criterion was based upon research conducted

 

1Charles T. Clark and Lawrence T. Schkade, Statistical Methods

fOr Business Decisions (Cincinnati, Ohio: Southwestern Publishing Co.,

1969), P. 181. -
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by Dr. George Wagenheim to determine the relative impact of various

types of lead time probability distributions upon the performance of

a simulated physical distribution system.2 Dr. Wagenheim analyzed the

relative levels of demand stocked out and various operating costs when

lead times were characterized by the following types of probability

distributions: poisson, normal, log normal, gamma, erlang and expo-

nential. For the level of demand stocked out and the total costs, all

distributions, with the exception of the exponential, were found to

have statistically similar effects on the system. For transportation

costs, all situations showed similar results except for the t-test

comparing the normal and the erlang. For facility costs, throughput

costs and inventory costs, seven comparisons, each involving the

exponential distribution against one other distribution, showed

significantly different results. All other comparisons between all

other distributions were found to have no statistically different

impacts.3

In view of Dr. Wagenheim's results, the generality of this

research may be increased by employing either the normal, log normal,

poisson, erlang or the gamma distribution to represent lead times.

Each of these distributions is evaluated below.

The second criterion for the selection of a probability

distribution was that it had to be logically characteristic of lead

 

2George D. Wagenheim, "The Performance of a Physical Dis-

tribution Channel System Under Various Conditions of Lead Time

Uncertainty: A Simulation Experiment" (Ph.D. dissertation, Michigan

State University, 1974), pp. 168-171.

3Ibid.
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times. Here, two requirements were to be satisfied: first, the

distribution had to be limited to non-negative values greater than

some arbitrary minimum; and second, the distribution had to be skewed

to the right, exhibiting a greater range of possible values above the

mean than below it. The first of these requirements resulted from the

fact that there is some minimum amount of time which must elapse

between the placement and the receipt of an order. The second

requirement was due to the fact that while there is some required

minimum amount of time which must elapse before the completion of the

order cycle, there is not a maximum amount before which the cycle must

be completed. Thus, while it is possible that the order cycle may be

completed in less than the expected mean elapsed time, it is more

logical to expect variation to occur in excess of the mean.

Of the five probability distributions considered, only the

normal distribution failed to meet the second criterion. Although

Dr. Wagenheim found no statistically significant differences between

the normal and the other four distributions (in terms of their impact

upon response variables) its symmetrical nature rendered it unaccept-

able. The log-normal, poisson, erlang and gamma distributions,

however, may each assume a skewed form.

The final criterion for selection was that the distribution

be able to exhibit different coefficients of variation about a single

mean value. This was due to the fact that the same distribution was

employed throughout this research to replicate different degrees of

uncertainty. Only by holding the expected value of the selected
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distribution constant and altering the variation about this expected

value could changes in the response variables be linked to the degree

of lead time uncertainty.

Only the poisson distribution failed to satisfy the third

criterion. The poisson is completely defined by a single parameter,

A, which represents the mean number of occurrences of an event per unit

time over a given number of trials. A random variable X is said to have

a poisson distribution if its probability mass function given by:

F(X;>\) = A < 0

O, elsewhere.

The random variable X may thus be described as the number of

occurrences of an event over some time or space. The expected value

of the poisson random variable is:

E(X) = X.

The variance and standard deviation respectively are:

V(X) = X

/v(x) = yOT'

The expected value of the random variable equals its variance, making

the poisson distribution unacceptable given the third criterion.
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The log-normal, erlang and gamma distributions each satisfy

the above criteria. Before detailing the one selected for use in this

research, each is reviewed.

The LpggNormal Distribution

A random variable X is said to have a log-normal distribution

if its probability density function is given by:

If X is a random variable and y = log x, and y is a

normal random variable, then X is said to have a log

normal distribution.“

1 1

F (X; H 902) = ‘-——-——-— e ““ (ln X-U )2 }

y y { X oy {SET 20; y

The parameters of the log normal include “y and q. "ere

  
Thus, the log normal is the probability distribution of a random

variable whose logarithm obeys the normal probability density function.

The log normal is encountered in a variety of applications such

as income studies and classroom sizes.S Additionally, it has been

employed successfully to represent demand. Some typical log normal

distributions are illustrated in Figure 4.2.

 

.'George P. Wadsworth and Joseph P. Bryan, Introduction to

Probability and Random Variables (New York: McGraw-Hill, 1960),

p. 67.
.

 

5Peter A. Zehna, Probability Distributions and Statistics

(Boston: Allyn and Bacon, Inc., 1970), p. 160.
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Figure 4.2 Log Normal Distributions.
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The Gamma Probability Family
 

A random variable x is said to have a gamma probability

distribution if its probability density function is given by:

xa’Ae'(X/B)

B°‘I‘(a)

 

f(x; Q,B) for x > O;

O, elsewhere.

The parameters of the gamma distribution are (a) and (B),

where (a) refers to the number of successes per interval or unit space

and (B) represents the reciprocal of the average number of successes

per interval (%). The gamma is thus related to both the poisson and

the exponential distributions. The exponential is a special case of

the gamma for which a = l.

The gamma probability function describes a family of dis-

tributions of the gamma random variable (x), one for each possible

combination of the values (a) and (B). The random variable x may be

considered as the number of units of length (intervals) between one

success and the oth succeeding success.

The parameters a and 8 determine the shape of the density

function, which is skewed to the right for all values of a and B.

The skewness will decrease as a increases. As previously noted,

however, when a = l the gamma is an exponential distribution and

assumes the shape of a decay function as seen in Figure 4.3. If

a is a positive integer, then the gamma becomes an Erlang distribution.

Figure 4.4 illustrates some typical gamma density functions.

The expected value of the gamma random variable is:
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Figure 4.3 Gamma Distributions With Unit 8 But Different

Values of a.
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Figure 4.4 Typical Gama Distributions.



E(X) = 6B=%

The variance and standard deviation respectively are:

V(X) = a82

I V(X) = {OS2

The gamma exists in situations where the underlying process is

a poisson. Thus the assumptions relevant to the poisson are applicable.

Additionally, the gamma applies only to non-negative random variables.

The tie between the gamma, poisson and exponential is close. The

poisson resulted from an effort to determine the probability of (n)

successes per unit length, given a mean of (X) successes per unit of

length. The exponential results from an effort to determine the

probability of (x) units of length from one success to the next in

a poisson process. The gamma distribution results from an effort to

determine the probability of (x) units of length between one success

and the (ath) succeeding success.6

There is no direct answer to when the gamma is applicable,

one must construct a histogram of the actual data.7 The family is

so extensive in shapes of densities available that it is a fairly safe

assumption to make as a model for an experiment described by almost any

 

6Claude McMillan and Richard F. Gouzalez, Systems Analysis: A

Computer Approach to Decision Models (Homewood, 111.: Richard D. Irwin,

1965), p. 159.

 

7Chris P. Tsokos, Probability Distributions: An Introduction

to Probability Theory With ApplicationsTTBelmont, Calif.: Duxbury

Press, 1972), p. 128.
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non-negative random variable.8 E. M. Basic found the gamma to provide

an excellent description of the probability distribution of demands

for a product.9 Additionally, Bryan describes the gamma as applicable

"when conditions of the problem exclude values of x smaller than some

arbitrary minimum."1°

The Erlang Distribution
 

The erlang distribution is a special case of the gamma

probability family. When a = l, the gamma is an exponential distri-

bution which is a decay type function. When 6 becomes a positive

integer above 1 the distribution is an erlang. As 6 goes from 1 to

n, the shape of the distribution changes from a decay type function

through a series of shapes and eventually approximates the normal.

The primary application of the erlang is as a series of

service times. A Single service time can be viewed exponentially.

AS a second service time is added in series (i.e., a manufacturing

process where two service type operations are performed consecutively)

the process can be viewed as two independent exponentials. A series

of service type operations can be represented with an erlang distri-

bution with the value of a equal to the number of stages. Thus, if

there is a process which contains three exponential type service times,

the entire operation be represented by an erlang distribution with a

 

aZehna, p. 148.

9E. Martin Basic, "Development and Application of a Gamma Based

Inventory Management Theory" (Ph.D. dissertation, Michigan State Univer-

sity, East Lansing, Michigan, 1965), p. 8.

10Wadsworth and Bryan, p. 91.
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equal to three. The forms of the density function, expected value,

variance and standard deviation of the erlang are the same as for

the gamma.

Selection and Generation
 

Any one of the three probability distributions presented

above might have been employed in this research. However, the erlang

distribution was selected based upon its direct applicability when

considering several combined service times. In this research, the

combination of communication, order processing and transportation

times represents a similar situation.

Two specific erlang distributions were employed throughout

the research. Each had an expected value of 10 days. They differed

in their levels of standard deviation. The first distribution had a

standard deviation of 2.0 days while that for the second was 3.0 days.

Each distribution, along with its mean and standard deviation is

provided in Table 4.4. These two distributions were employed as

separate test conditions characterizing a medium and high level of

order cycle time uncertainty, respectively. A third distribution

with a mean of 10 days and a standard deviation of zero was employed

as a control condition.

Each distribution in Table 4.4 was generated using GASP II.11

To assure that the proper mean and standard deviation were generated,

 

11A. Alan B. Pritsker and Philip J. Kiviat, Simulation With

GASP II (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1969),

pp. 99-102.
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Table 4.4 Order Cycle Time Probability Distributions

 

 

 

Medium Uncertainty High Uncertainty

11 3.0910 231 P00' 5 X)

6 0.0366 6 0.0866

7 0.0766 7 0.1966

8 0.2100 8 0.3200

9 0.4500 9 0.4633

10 0.6400 10 0.6000

11 0.8033 11 0.7266

12 0.8866 12 0.8133

13 0.9466 13 0.8800

14 0.9733 14 0.9200

15 0.9933 15 0.9500

16 0.9966 16 0.9800

17 1.0000 17 0.9900

18 1.0000

i = 10 i = 10

2.02 0 2.99530

I
I
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a t-test was employed to test the generated mean against the desired

mean. In each case the hypothesis of no difference was accepted at

the .05 level.

The next section specifies the four time series forecasting

techniques employed throughout this research. The procedure employed

to determine the smoothing constants for each is also reviewed.

 

Forecastin Technigues and Selection

of Smoothing Constants
 

The four time series analysis forecasting techniques employed

in this research were:

1. R. G. Brown's Basic Exponential Smoothing;12

2 Trigg and Leach's Adaptive Smoothing Model;13

3. P. R. Winters' Exponentially Weighted Moving Averages;1“ and

4 Roberts and Reed's Self-Adaptive Forecast Technique.15

Each is contained in the SPSF Testing Environment and, each was

presented in detail in Chapter III.

 

12R. G. Brown, Statistical Forecasting for Inventory Control

(New York: McGraw-Hill Book Co., 1959).

13D. W. Trigg and A. G. Leach, "Exponential Smoothing With An

Adaptive Response Rate," Operations Research Quarterly 18 (No. 1;

March 1967): 53-59.

 

1"P. R. Winters, "Forecasting Sales by Exponentially Weighted

Moving Averages," Management Science 6 (No. 3; April 1960): 324-342.

15Stephen D. Roberts and Ruddell Reed, Jr., "The Development of

a Self-Adaptive Forecasting Technique," AIIE Transportation 1 (No. 4;

December 1969): 314-322.
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AS each of the forecasting techniques employed is characterized

by some form of exponential smoothing, the values of the smoothing

constants employed in each influenced the accuracy with which a given

demand pattern was projected. Through an iterative process, it would

have been possible to determine the optimal smoothing constant values

for each technique given a specific pattern of demand. However, due

to the fact that the Trigg and Leach technique is basically an adap-

tation of the R. G. Brown technique, and that the Roberts and Reed

technique is based upon that of P. R. Winters, a different set of

smoothing constant values for each technique could have inherently

biased the results. In an effort to overcome this difficulty, one

set of smoothing constants was applied in the R. G. Brown and Trigg

and Leach approaches, and a separate set was applied in the P. R.

Winters and Roberts and Reed approaches.

To determine the smoothing constant values to be applied in

each set of techniques, a series of initial test forecasts were gen-

erated using the R. G. Brown and the P. R. Winters' techniques. The

demand pattern to be employed in the test runs were those used through-

out the research. The experimental conditions employed in each of

these runs and the statistical analysis employed to select the values

of the smoothing constants are detailed in Chapter V.

Demand Generation

Ideally, the accuracy of each forecasting technique would have

been analyzed over a broad range of demand patterns characteristic of
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actual sales histories. However, as each of the demand patterns

employed had to be tested for each possible combination of experimental

variables, the inclusion of a large number of such patterns was prohib-

itive due to the simulation runs required and the associated costs.

In addition, the primary focus of this research was not to determine

the relative accuracy of each forecasting technique under numerous

demand conditions but to quantify the levels of F0 and 00 in a rep-

resentative physical distribution network under selected patterns of

demand. The demand patterns employed had to be representative and

unbiased in terms of the adaptability of each of the forecasting

techniques.

Two demand patterns were employed in this research. Each was

characterized by an increasing trend changing to a decreasing trend

combined with a high or low seasonality. Each represented 12 periods

of demand, each period being 20 days in length. These patterns were

generated stochastically through a program termed ORDGEN.16 ORDGEN

uses a series of uniformly distributed random numbers to create a

normal distribution around a specified mean and standard deviation.

For the purposes of this research, ORDGEN was used to generate an

order containing some or all of the 10 Simulated products for each

simulation day. This process was completed for each of the two demand

patterns, the orders in each case being stored on tape and employed as

the time series of daily demand placed against the DC.

 

16ORDGEN was validated as part of the SPSF validation procedure

for demand generation alternatives.
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The input to ORDGEN specified a single mean and standard

deviation of expected daily sales for each period of each demand

pattern. Table 4.5 presents the mean expected daily sales levels

for each period for each demand pattern. The standard deviation of

daily sales was 10 units throughout each demand pattern. Given this

standard deviation, orders for each day were generated stochastically

about each mean for the respect demand patterns and periods.

Table 4.5 Demand Patterns: Mean Expected Daily Sales

by Period

 

 

Mean Expected Daily Sales (Units/Day)

 

 

Period Demand Pattern I Demand Pattern II

1 53 57

2 58 69

3 59 75

4 59 78

5 58 88

6 53 72

7 47 58

8 42 46

9 41 40

10 41 37

ll 42 37

47 43_
a

N
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Conclusion

This chapter has detailed the environmental specifications

employed throughout this research. Included in the discussion was

a description of the specific SPSF structure employed and a review

of the experimental variables. These variables were the order cycle

time probability distributions, forecast techniques, smoothing constants

and demand patterns to be employed. Chapter V will present the research

methodology and hypotheses employed to investigate the effects of these

variables.



CHAPTER V

HYPOTHESES AND RESEARCH METHODOLOGY

Introduction
 

The objectives of this research were four in number:

To determine the relative effectiveness of the selected time

series analysis forecasting techniques in projecting the

following demand patterns:

a. demand pattern 1: increasing trend changing to decreasing

trend with low seasonality; and

b. demand pattern 2: increasing trend changing to decreasing

trend with high seasonality;

To determine the relative impact which each forecasting

technique has upon each of the following response variables

for each pattern of demand:

a. inventory levels; and

b. stockouts.

To determine the impact of selected levels of lead time

variability upon the following response variables for each

pattern of demand:

a. inventory levels; and

b. stockouts.

112



113

4. To determine the combined effects of both the forecasting

techniques and lead time variability upon the following

response variables for each pattern of demand:

a. stockouts; and

b. inventory levels.

The method of experimentation employed to meet these objectives

was to make changes in the external and internal variables (demand,

forecast and lead time) of the simulation model and then analyze the

effects of these changes on the performance of the simulated physical

distribution channel. To study the results in some meaningful manner,

a proper method of analysis, i.e., experimental design had to be

selected. The purpose of this chapter is to Specify the two types

of experimental design employed. The first is a relatively simple

procedure used in determining the relative accuracy of the forecasting

techniques. The second is a factorial design. The Objectives of each

design, the runs and output required, as well as hypotheses and the

statistical analysis employed to test the hypotheses are discussed.

Relative Forecast Accuraqy
 

One of the primary objectives of this research was to determine

the relative accuracy of four time series forecasting techniques in

projecting two specified patterns of demand. The experimental design

to be employed to satisfy this Objective will be a determination of the

Mean Absolute Percent Error (MAPE) with which each technique forecasts
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each pattern. The runs and statistical analysis required are presented

below.

Run Specification for Forecast Accuracy
 

The accuracy of each of the four forecast techniques depends

to a large extent upon the value(s) of the smoothing constant(s)

specified for each. An attempt was made not to introduce bias into

the results through an arbitrary specification of the values of the

smoothing constants required.

Two sets of smoothing constants were specified for use

throughout the research. The first set was a value for the alpha

constant to be employed in both the R. G. Brown Basic Exponential

Smoothing technique and the Trigg and Leach adaptation of Brown's

technique. The second set specified values for the alpha, beta, and

gamma constants employed in the Winters' technique and the Roberts

and Reed modification of the Winters' technique.

To determine the values of the smoothing constants, 14 initial

runs were made. Each run was 240 days in length, with forecasts being

made and reports being generated every 20 days. Of the 12 periods,

only the results of the last 10 were analyzed, allowing the first two

periods for the simulation model to “warm up." Although this was not

particularly necessary in determining forecast accuracy, it was required

if the output from these 14 initial runs was to be employed in the

analysis to be described in the next section.

The forecasting techniques used in these initial runs were

the Brown and Winters' techniques. For each of these techniques, a
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series of runs was made for each of the two demand patterns, each run

under a single demand pattern employing a different set of smoothing

constant values. For Brown's technique, three runs were made for each

pattern--the first run employing an alpha value of .2, the second an

alpha value of .25, the third an alpha value of .3. At the completion

of the runs, that alpha value producing the lowest combined Mean

Absolute Percent Error (MAPE) for the two demand patterns was selected

for use in the remainder of the research. The value selected for

Brown's technique was also employed throughout for Trigg and Leach.

The process for Winters' technique was the same. Instead of

using three different values of alpha, however, four combinations having

different values of alpha, beta, and gamma were employed. These were:

(1) a = .2, B = .2, A = .2; (2) a = .25, B = .25, A = .25; (3) a = .3,

8 = .25, X = .25; and (4) a = .25, B = .35, X = .35. The combination

selected for Winters was also employed in Roberts and Reed.

The only output required to make a decision on smoothing

constants was the period demand and forecasts. However, in order

to use each run corresponding to the lowest MAPE for each technique

and demand pattern in later analysis, all of the appropriate

response variables were recorded. The output required for these

runs, and each remaining run was recorded on file as illustrated

in Table 5.1. The response variables recorded for each of these

first 14 runs and all subsequent runs are given in Table 5.2.
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Table 5.1 File Specification

 

 

 

Variable

Number Name Levels

1 Run number 1-30

2 Time (Period no.) 1-12

3 Product 1-10

4 Response variable 1-8

 

Table 5.2 Response Variables Recorded

 

 

 

Number Description

1 Sales

2 Forecast

3 Inventory level (average)

4 Stockouts

5 Total discrepancy

6 Forecast discrepancy

7 Operating discrepancy

8 Demand
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Statistical Analysis
 

When the data from each of the 14 runs had been recorded,

the set of smoothing constants to be employed for each forecasting

technique was selected according to the following process:

SLep_l. For each demand pattern, determine the MAPE value

for each run corresponding to a different set of smoothing constant

values as:

12 O - F.

MAPEi=l,3 - ( 3:3 0. ) ////10

J

where:

i = the set of smoothing contants defining each run;

j = the periods over which the calculation is to be made;

Dj = demand for period j; and

Ej = forecast for period j.

Step 2. Sum the MAPE values for each set of smoothing constants

over the two demand patterns.

Step 3. Select that set of smoothing constant values having

the lowest combined MAPE value for use in the research.

This procedure did not test the statistical significance of the

differences in accuracy of the forecasts. It merely ranked the con-

stants according to accuracy. The relative accuracy of all four

forecasting techniques (using the smoothing constants selected through

this procedure) was analyzed in the second experimental design described

in the next section.



118

The output of the initial 14 runs was saved for use in

subsequent analysis. However, the only output required was that

corresponding to the two runs which resulted in the lowest combined

MAPE value for each forecasting technique. Thus, only the output of

four of these initial runs was saved on file, the remainder being

eliminated.

The next section details the general hypotheses investigated

in this research and the method of analysis.

Factorial Design for Analysis of Variance

The general hypotheses investigated in this research are

outlined as follows:

1. The four forecasting techniques project each pattern

of demand with equal accuracy;

2. The average inventory held at the DC is the same

under each forecasting technique for each pattern

of demand;

3. The average number of stockouts at the DC is the same

under each forecasting technique for each pattern of

demand;

4. The average level of inventory held at the DC is the

same for each level of lead time variability;

5. The average number of stockouts at the DC is the same

for each level of lead time variability;

6. The average level of inventory held at the DC is the

same across all forecasting techniques across all

levels of lead time variability for each pattern

of demand; and

7. The average number of stockouts at the DC is the same

across all forecasting techniques across all levels

of lead time variability for each pattern on demand.
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The experimental design employed in investigating these

hypotheses was a factorial design. A factorial experiment is one

in which the effects of all the factors and factor combinations in

the design are investigated simultaneously. In this case, three

factors were analyzed: the levels of demand uncertainty, the levels

of forecast accuracy, and the levels of operating uncertainty. The

factorial design is advantageous in that the effects of a particular

factor are evaluated by averaging over a range of other experimental

variables. The factorial design will permit statements to be made as

to the effect of a particular forecasting technique, where that tech-

nique is considered over a range of demand patterns and levels of

operating uncertainty. The runs and statistical analysis required

for this design are presented below.

Run Specifications for Analysis of

VarTance

 

To employ the factorial design, one simulation run must be

made for each combination of the levels of each independent factor.

These factors, and their respective levels are presented in Table 5.3.

A total of 30 runs are required. The combinations defining these runs

are detailed in Figure 5.1. Within each cell, the number of the run

is entered in parentheses. The levels of the experimental factors A,

B, and C, are entered in order in the bottom of each cell. Note,

however, that runs 4 and 19, corresponding to the R. G. Brown technique,

and runs 7 and 22, corresponding to the P. R. Winters technique, have

already been completed in the initial series of runs. Thus, only 26

additional runs remained to be made.
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Table 5.3 Experimental Factors and Levels

 

 

Experimental Factor A: Demand Uncertainty

Levels: Demand Patterns

DMDl: Increasing Trend Changing to Decreasing Trend With Low

Seasonality

DMDZ: Increasing Trend Changing to Decreasing Trend With High

Seasonality

Experimental Factor 8: Forecast Accuracy

Levels: Forecasting Techniques

FORTECHl:

FORTECHZ:

FORTECH3:

FORTECH4:

FORTECHS:

Perfect Forecast (control)

R. G. Brown's Basic Exponential Smoothing

Trigg & Leach's Adaptive Exponential Smoothing

P. R. Winters' Exponentially Weighted Moving Averages

Roberts and Reed's Self Adaptive Forecasting

Technique

Experimental Factor C: Operating Uncertainty

Levels: Lead Time Variability

0CTV1:

OCTV2:

Zero

OCTV3: High

 



F
O
R
E
C
A
S
T
I
N
G

T
E
C
H
N
I
Q
U
E
S
 

1
.

P
e
r
f
e
c
t

2
.

R
.
G
.

3
.

T
r
i
g
g

&
4
.

P
.
R
.

S
.

R
o
b
e
r
t
s

&

F
o
r
e
c
a
s
t
i
n
g

B
r
o
w
n

L
e
a
c
h

W
i
n
t
e
r
s

R
e
e
d
 

L
E
A
D

L
E
A
D

L
E
A
D

L
E
A
D

P
L
E
A
D

  

T
i
m
e

V
a
r
i
a
n
c
e

T
i
m
e

V
a
r
i
a
n
c
e

T
i
m
e

V
a
r
i
a
n
c
e

T
i
m
e

V
a
r
i
a
n
c
e

T
i
m
e

V
a
r
i
a
n
c
e

 
D
E
M
A
N
D

P
A
T
T
E
R
N

1
.

2
.

3
.

1
.

2
.

3
.

1
.

2
.

3
.

1
.

2
.

3
.

1
.

2
.

3
.

I
n
c
r
e
a
s
i
n
g

T
r
e
n
d

C
h
a
n
g
i
n
g

T
o

Z
e
r
o

L
o
w

H
i
g
h

Z
e
r
o

L
o
w

H
i
g

Z
e
r
o

L
o
w

H
i
g

Z
e
r
o

L
o
w

H
i
g
h

V
e
r
a

L
o
w

H
i
g
h

D
e
c
r
e
a
s
i
n
g

T
r
e
n
d

W
i
t
h
:

 

(
1
)

(
2
)

(
3
)

(
4
)

(
5
)

(
6
)

(
7
)

(
8
)

(
9
)

(
1
0
)

(
1
1
)

(
1
2
)

(
1
3
)

(
1
4
)

(
1
5
)

1
.

L
o
w

S
e
a
s
o
n
a
l
i
t
y

4
,
1
,
1

,
1
,
g

1
,
1
,
3

0
,
2
,
1

1
,
2
,
2

1
,
2
,
3

1
,
3
,
1

1
,
3
,
2

1
,
3
,
3

1
,
4
,
1

1
,
4
,
2

1
,
4
,
3

1
,
5
,
1

1
,
§
,
2

,
5
,
3

121

 

(
1
6
)

(
1
7
)

(
1
3
)

(
1
9
)

(
2
0
)

(
2
1
)

(
2
2
)

(
2
3
)

(
2
4
)

(
2
5
)

(
2
6
)

(
2
7
)

(
2
8
)

(
2
9
)

(
3
0
)

2
.

H
i
g
h

S
e
a
s
o
n
a
l
i
t
y

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
2
,
1
,
1

2
,
1
,
2

2
,
1
,
3

2
,
2
,
1

2
,
2
,
2

2
,
2
,
3

2
,
3
,
1

2
,
3
,
2

2
,
3
,
3

2
,
4
,
1

2
,
4
,
2

2
,
4
,
3

2
,
5
,
1

2
,
5
,
2

2
,
5
,
3

 
 

F
i
g
u
r
e

5
.
1

R
u
n

S
p
e
c
i
f
i
c
a
t
i
o
n
s
.



122

For each remaining run, the length of the simulation, the

forecast and reporting periods, and the response variables to be

recorded were identical to those described for the 14 initial runs.

The data recorded from each was analyzed by standard analysis of

variance techniques. The procedures for the analysis are reviewed

below.

Statistical Analysis
 

The full factorial design was employed in this research.

However, three levels of analysis of variance (ANOVA) were amenable

to the record file of data. As these levels exhibit a considerable

difference in complexity, and as it was possible to employ each in a

given situation, all three are discussed. Multiple comparison tech-

niques employed for post-hoc analysis are also reviewed.

One-Factor ANOVA

One particular area of interest in this research concerned

differences in the performance of the OPTS system when functioning

under the impetus of each forecasting technique. For each response

variable, it was expected that significant differences would occur

across the forecasting techniques. For example, given a demand

pattern and a level of lead time variability, inventory level was

expected to vary across forecasting techniques. This hypothesis

was tested using the F-test in a simple analysis of variance design.

The matrix for such an analysis is depicted in Table 5.4.
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Table 5.4 Analysis of Inventory Levels Across Forecasting TeChniques

(Constant Experimental Conditions: Demand Pattern l and

Lead Time Variance 1)

 

 

Forecasting Technique

 

 

 

Perfect Roberts

Product Forecast Brown Trigg & Leach Winters & Reed

1 Inv],] Inv2,] Inv3,] Inv4,] Inv5,]

2 Inv],2

3 Inv],3

4 Inv1’4

5 Inv.”5

6 I"V1,6

7 Inv],7

8 Inv1’8

9 Inv],g

10 Inv],10

10

C211?" zi,i Z2,j z3,;i Z4.j £5.i

i=1

Cglgmn 71,j 72,j i3,j Y4sj issj
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The column entries in Table 5.4 represent the average inventory

held over a simulation run for each of ten products. Four simulations

were required to generate the necessary data. The only variable intro-

duced across these four runs was the forecasting technique employed.

Thus, any significant differences between average inventory values

may be the result of variations between column means (the sum of square

between columns) or variations within the columns (the sum of squares

within). The within group deviation scores can be thought to reflect

the influence of error alone and not the influence of the treatments,

which in this case are the forecasting techniques.1 The null hypothesis

that the treatment effects cause no significant differences could be

tested as:

 

F = between group variances

within group variances

= treatment effect + error

error ’

 

The results of this and similar analyses are presented in Chapter VI

in summary form, as detailed in Table 5.5.

The major limitation of this type of analysis is that the

effect of only one treatment variable may be analyzed at one time.

For the three treatment variables employed in this research (demand

pattern, lead time variance, and forecasting technique) two must be

held constant while the third is allowed to vary. As there are two

 

lGeoffrey Keppel, Design and Analysis: A Researcher's Handbook

(Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1973), p. 52.
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Table 5.5 Summary Table for One-Factor ANOVA

 

 

 

Sum of

Source Squares df Mean Square F Ratio

Treatment SSBetween c-l SSB/ MSBetween

effects deS fi§———————

B Within

Error SSWithin c(r-l) SSW/df

SSw

DeCiSTon rule: Reject Ho = u1 = “2 = U3 = U4 where Fobserved s Fo(m,n)’

where:

; anda

II degrees of freedom of numerator, MSBetween

degrees of freedom of denominator, MS3

I
I

Within'
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demand patterns, five levels of forecast accuracy and three levels

of lead time variation, a total of 30 such analyses would have been

required for each of the response variables to be tested. In addition,

for any single analysis, interpretations of the data would have been

limited to the effects of the varied treatment factor allowing no

investigations of the combined effects of two or even all three

treatment factors.

Two-Factor ANOVA

The simultaneous analysis of the effects of any two of the

three treatment variables was accomplished through the data matrix

provided in Table 5.6. The same demand pattern is employed for each

possible combination of forecasting techniques and lead time variations.

Ten entries were recorded in each cell, representing the levels of

a specified response variable for each of the 10 products. As in

Table 5.4, the entries in this example represent average inventory

values over the entire simulation. Fifteen separate Simulations

were required to provide the necessary data, the experimental condition

for each being defined by a particular row and column heading.

With this design, the following effects were subject to

analysis for their statistical significance:

1. the main effects of the different forecasting techniques;

2. the main effects of the different levels of lead time

variation; and

3. the interaction effect between the forecast techniques

and the different levels of lead time variation.



127

 

 

 

 

 

 

 

 

Table 5.6 Two-Factor ANOVA (Constant Experimental Condition: Demand

Pattern l)

Forecasting Technique

Lead ,1 2 3 4 5

Time Perfect R. G. Trigg and P. R. Roberts Row ROW

Variance Forecast Brown Leach Winters and Reed Sums Means

1- ZerO I"V1,1,i Inv2,i,i I"v3.1.1 I"v4.1.1 I"V5.1.l

I"Vi,i,2

Invhh3

I“1.1.10 Inv2,I,io I"V3.1.in I"V4.1.io I"V5.1.10

2. Low I"V1,2,1

Invi,2,io

3. High Inv],3,1

Invi,3,iO

Column

sums

Column

means         
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The main effects of the forecasting techniques were subject to analysis

in the one-factor case reviewed above. The two-factor design in

Table 5.6 provided the same information, but for both forecasting

techniques and levels of lead time variation. More important, the

two-factor design allowed analysis of the interactive effects of the

treatment variables on the dependent variable. The results of this and

similar analyses are presented in summary form as detailed in Table 5.7.

The decision rules for this design are the same as those indicated in

 

 

 

Table 5.5.

Table 5.7 Summary Table for Two-Factor ANOVA

Sum of

Source Squares df Mean Square F Ratio

Treatment

effects:

Factor A SSA a-l SSA/df MSA/MS

A S/AB

Factor B SSB b-l SSB/df MSB/MS

B S/AB

Interaction:

A x B SSAXB (a-1)(b-l) SSAxB/df MSAxB

AxB MSS/AB

Error SSS/AB ab(s-l) SSS/AB

dfS/AB
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The two-factor design, despite its advantages over the

one-factor design, was still inadequate to answer certain questions

of interest. This is due to the fact that it cannot consider the

simultaneous impact of all three treatment variables. This can be

done using the three-factor ANOVA design used throughout the research

and described below.

Three-Factor ANOVA Design

The three-factor ANOVA design required for this research is

illustrated in Figure 5.2. It may best be visualized by considering

it in two "slices," from front to back, defined by the two demand pat-

terns. The first slice, containing all cubes having demand pattern 1

in common, would be identical to Table 5.6. The second slice would

differ only by virtue of the fact that demand pattern 2 would be

common to each cube.

The total number of cubes in the three-dimensional matrix of

Figure 5.2 is 30, each defined by a particular combination of the three

individual variables, corresponding to those detailed in Figure 5.1.

Within each cube, there were 10 values of a single response variable,

one for each of the 10 products being simulated. The entire matrix

contained 3,000 entries. Given these entries, the analysis summarized

in Table 5.8 was performed. Individual and/or multiple comparison

techniques were employed when one or more significant F test were

found. These techniques are reviewed below.
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Lead Time

Variance 
Zero

 

Medium

 

High

      
Perfect RGB T & L PRW R & R

Forecasting Technique

Figure 5.2 Three-Factor ANOVA Design.
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Table 5.8 Summary Table for Three-Factor ANOVA

 

 

 

 

 

 

Source Sum of Squares df MS F

A SSA a-l ifé. MsA

de MSS/ABC

B ssB b-l EEO MSB

de MSS/ABC

C ssC c-l 529. MsC

dfc MSS/ABC

A x B SSAxB (a-l)(b-l) ssAxB MsAxB

df "““‘”‘
AxB MSS/ABC

A x c ssAxc (a-l)(c-l) SSAxC "SAxc

dexC MSS/ABC

B x c SSBxC (b-l)(c-l) SSBxc MsBxc

df"'

A x B x C ssAxBxC (a-l)(b-l)(c-l) ssAxBxC MsAxBxC

dexBxC MSS/ABC

S/ABC SSS/ABC=SSerror abc(s-l) SSS/ABC

dfS/ABC

Total SST abcs-l    
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Post Hoc Analysis

Each of the ANOVA procedures discussed above actually

representseui"omnibus" F test. For example, when testing the effects

of a particular treatment variable, all possible comparisons between

the different means under that variable are actually being tested. If

the F test is significant, the researcher knows that the means differ

but not hgy_they differ. Multiple comparison techniques are tools

relevant to meeting this query. They have been designed specifically

to attack questions of how the means of many populations differ.2

Multiple comparison procedures employ confidence intervals

rather than strict hypothesis tests. Confidence intervals are con-

structed for the difference (Ui - Uj) and the actual difference in

the sample means (X, - X5) are compared with the confidence interval

so constructed. If the difference (X, - X3) falls within the interval,

it is concluded that the population means do not differ.

It would be tempting to employ the t-statistic to calculate

the confidence intervals necessary for such multiple comparisons.

However, if a number of confidence intervals are calculated for a

given experiment with a given value (a), all the intervals will not

be simultaneously true at the a level selected.3 If an experimenter

conducts K independent t-tests, each with the same (a), the probability

of falsely rejecting at least one of the K hypotheses, assuming all are

 

2Henry Scheffé, The Analysis of Variance (New York: John Wiley

& Sons, 1959), p. 203.

3William Mendenhall, The Design and Analysis of Experiments

(Belmont, Calif.: Wadsworth Publisthg Co., 1968), p. 209.
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true, is l-Ip (not rejecting all K tests) or {1- (l-a)K}.“ For a

very large K, the value for all tests becomes quite small. Thus,

the risk of a type 1 error is considerable using repeated t-tests.

To overcome the problems above, two methods of multiple com-

parisons were selected for use. The methods employed were Tukey's

method and Scheffé's method. Each requires that treatment means be

uncorrelated and have equal variances.

The Tukey method is based on the Studentized Range Statistic

(q), while the Scheffé procedure uses the F distribution. Each method

may be used to perform comparisons between pairs of means or multiple

means. The Tukey method produces a more conservative (smaller) critical

range for comparisons between pairs of means. The Scheffé method is

more conservative for the comparison of multiple group means. The

Tukey method was used for pairwise comparisons and the Scheffé for

multiples.

Tukey's method produces simultaneous confidence intervals for

the comparison of any or all pairs of treatment means. Tukey's

confidence intervals are calculated as:

where p equals the number of treatments, and v equals the degrees of

freedom associated with MSe; q(p,v) is tabulated as "Percentage Points

of the Studentized Range." To test the difference between treatment

 

''Ibid., p. 175.
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means, the difference (Xi

Més.n .

- X5) is calculated and compared to

q(P.V)

Scheffé's method also produces confidence intervals for all

possible comparisons between two or more means. The critical range

for these is calculated as:

 

CRS = f(p-i) F(dfp, dfe) /2S(MSe)

where p equals the number of treatment groups, F(dfp,dfe) is the

critical value from the F table, dfp = p-l, dfe is the number of df

corresponding to the MSe, and S is the sample Size of each group. To

test the difference between multiple treatment means, the largest

difference (X, - X3) between the multiple means is calculated and

compared to the value for CRS.

Each analysis of variance procedure was employed on the results

of the simulation runs. The next section specifies the conditions and

underlying logic which defined the order of their application.

Analysis Procedure
 

The levels of the analyses employed throughout this research

were described above in order of their complexity. Just as the stepwise

inclusion of independent variables resulted in a more complicated

analysis, so also does it restrict the nature of the inferences which

may be drawn, depending on the levels of significance indicated. As

such, the analysis of the experimental results proceeds in a specific

step-by-step fashion which may be described as "data shifting."
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The procedure employed to extract the maximum possible

information from the data is described as follows. First, the results

of the three-way analysis of variance ANOVA were reviewed in order to

present the simultaneous impact of the three main effects on the

response (dependent) variable. When a significant three-way inter-

action was indicated, inferences from the results of the three-way

ANOVA were limited to interpretations of the three-way interaction.

This was required due to the fact that the calculations and corre-

sponding F-tests made for all lower order interactions and main effects

were made by collapsing the data over the one or two remaining inde-

pendent variables, respectively. This caused no difficulty in inter-

pretation if the three-way interaction was insignificant, signifying

that the effects of the three independent variables are additive.

However, when the three-way interaction was significant, this means

that the effects of the two-way interactions are different across the

levels of the third variable (over which the data are being collapsed).

Thus, each of the two-way interactions may only be interpreted by

specifying a particular level of the third variable.

When a significant three-way interaction was found the results

of a second three-way ANOVA are reviewed. Here, the data analyzed do

not include the results of those simulations which incorporated either

perfect forecasts or constant order cycle times. In other words, the

second three-way ANOVA does not include control levels of these two

variables. The reason for this is that the inclusion of constant

order cycles and perfect forecast were expected to result in a
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Significant value in the first three-way ANOVA. Thus, for subsequent

analyses and the conclusions to be drawn in Chapter VII, it was of

interest to determine the nature of the three-way interaction when

no controlled levels were present.

When a significant three-way interaction was indicated in

either of the three-way ANOVA's, an examination was made of two

two-way ANOVA's, each having been performed by holding one of the

three independent variables constant. As this third variable was

effectively held constant, no three way interactions existed. In

evaluating each of the two-way ANOVA's (one for each level of the

third variable), interpretations were limited to inferences about

the two-way interaction when it was indicated to be significant.

This was due to the fact that just as the significance of a three-way

interaction confounded the interpretation of all lower order inter-

actions, so also does the significance of a two-way interaction

confound any interpretation of the main effects of each of the

two independent variables.

When a significant two-way interaction was found, a series

of one-way ANOVA's were performed by holding two of the three inde-

pendent variables constant at specified levels. Here, there were no

confounding effects to inhibit an interpretation of the main effects

of the independent factor being varied. AS such, specific interpre-

tations were made across all levels of the independent variable. In

addition, when the effect of this variable was significant, post-hoc

analyses were reported which detail the exact nature of the differences.



137

The next section details the specific hypotheses amenable to

analysis from the above procedure.

Specific Research Hypotheses
 

The procedure discussed above was necessary for the evaluation

of each of the general hypotheses developed earlier. The general

hypotheses deal with systems performance as measured by average

inventory and stockouts, and the accuracy of the various forecasting

techniques. However, the analysis described above was completed for

each of five response variables: average inventory, stockouts, sales,

forecast discrepancy and operating discrepancy.

As the analysis of each variable progressed from the general

three-way ANOVA ix) post-hoc tests, numerous hypotheses were in fact

being tested. These hypotheses are outlined below and constitute the

specific research hypotheses investigated for each of the five response

variables.

I. The levels of the response variable will be statistically

different when analyzed over all levels of DMD, OCTV and

FORTECH.

II. The levels of the response variable will be statistically

different when analyzed over the non-control levels of all

DMD, OCTV, and FORTECH.

A. Given DMDl: The levels of the response variable will

be statistically different when analyzed over the

non-control levels Of OCTV and FORTECH.

1. Given DMDl-OCTVl: The levels of the response variable

will be statistically different when analyzed across

all levels of FORTECH.
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Given DMDl-OCTV2: The levels of the response variable

will be statistically different when analyzed across

all levels of FORTECH.

Given DMDl-OCTV3: The levels of the response variable

will be significantly different when analyzed across

all levels of FORTECH.

Given DMDl-FORTECHl: The levels of the response

variable will be significantly different when analyzed

across all levels of OCTV.

Given DMDl-FORTECHZ: The levels of the response

variable will be significantly different when analyzed

across all levels of OCTV.

Given DMDl-FORTECH3: The levels of the response

variable will be significantly different when analyzed

across all levels of OCTV.

Given DMDl-FORTECH4: The levels of the response

variable will be significantly different when analyzed

across all levels of OCTV.

Given DMDl-FORTECHS: The levels of the response

variable will be significantly different when analyzed

across all levels of OCTV.

Given DMDZ: The levels of the response variable will be

significantly different when analyzed over the non-control

levels of OCTV and FORTECH.

1. Given DMDZ-OCTVl: The levels of the response variable

will be statistically different when analyzed across

all levels of FORTECH.

Given DMDZ-OCTVZ: The levels of the response variable

will be statistically different when analyzed across

all levels of FORTECH.

Given DMDZ-OCTV3: The levels of the response variable

will be Significantly different when analyzed across

all levels of FORTECH.

Given DMDZ-FORTECHl: The levels of the response

variable will be significantly different when analyzed

across all levels of OCTV.

Given DMDZ-FORTECHZ: The levels of the response

variable will be significantly different when analyzed

across all levels of OCTV.
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6. Given DMDZ-FORTECH3: The levels of the response

variable will be significantly different when analyzed

across all levels of OCTV.

7. Given DMDZ-FORTECH4: The levels of the response

variable will be Significantly different when analyzed

across all levels of OCTV.

8. Given DMDZ-FORTECHS: The levels of the response

variable will be significantly different when analyzed

across all levels of OCTV.

The next chapter presents the results from the analysis made

to investigate each of these hypotheses for each response variable.

Summary

This chapter has detailed the hypotheses of this research and

the methodology employed to investigate each. First, the procedure

for selecting combinations of smoothing constants to be used throughout

the research was reviewed. The second section discussed analysis of

variance and post-hoc tests. The final section presented the specific

hypotheses.

The results of the analyses are presented in Chapter VI.

Chapter VII integrates the results with the specific hypotheses

and presents conclusions.



CHAPTER VI

EXPERIMENTAL RESULTS

Introduction
 

The previous chapter presented the general hypotheses of this

research and the methodology employed to investigate each. This chapter

presents the results of the statistical analysis in four sections. The

first section details the results of the simulation runs made to

select those combinations of smoothing constants which were employed

throughout the remainder of the research.

The second section reviews a modification to the research

designed based upon an investigation of the results from early

simulation runs.

The third section provides the results of the analyses of

variance performed to investigate the effects of experimental factors

on response variables. These response variables in order of their

presentation are average inventory, stockouts, sales, forecast dis-

crepancy and operating discrepancy. The final section presents two

summary tables included to aid in comparison of the results found

across the response variables.

140



141

Selection of Smoothing_Constants

A series of 16 simulation runs were made initially to select

those combinations of smoothing constants to be employed in the

remaining runs. Eight runs were completed employing the Brown tech-

nique and eight additional runs were made using the Winters technique.

For each technique, two runs were completed for each of four sets of

smoothing constants, the two runs for each set being defined by the

demand pattern employed. Thus, for each demand pattern one run was

made for each set of smoothing constants detailed in Table 6.1.

For each of these runs, the Mean Absolute Percent Error (MAPE)

was calculated for periods three through twelve by averaging across all

products. The resulting values for the Brown technique are detailed in

Tables 6.2 and 6.3. Those for Winters technique are presented in

Tables 6.4 and 6.5.

Based upon the results detailed in Tables 6.2 through 6.5, the

smoothing constants selected for each technique may be detailed as:

R. G. Brown a = .25

P. R. Winters a .25 B = .25 y = .25.

The same values selected for the Brown and Winters techniques

were also employed in the Trigg and Leach and Roberts and Reed

techniques, respectively.

The next section discusses a modification in the analysis of

this research based upon the investigation of early simulation results.
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Constants, Given a Demand Pattern

Experimental Conditions for Selection of Smoothing

 

 

 

Forecast Techniques Smoothing Constant Values

R. G. Brown Set 1 a = .10

Set 2. a = .15

Set 3: o = .20

Set 4 a = .25

P. R. Winters Set 1: O = .15 B = .15 y .15

Set 2: a = .20 B = .20 y .20

Set 3: a = .25 B = .25 y .25

Set 4: a = .24 B = .20 y .30

 

Table 6.2 MAPE Values for Brown's Technique Under Demand Pattern

 

 

 

 

Average

Period Demand Set 1 Set 2 Set 3 Set 4

3 1,108 11.7 10.8 9.9 8.8

4 1,123 12.0 10.7 9.4 8.2

5 1,108 9.1 7.4 5.8 4.4

6 1,025 4.2 5.3 6.7 7.9

7 930 11.8 13.8 15.2 16.2

8 824 25.8 27.0 27.3 27.4

9 774 30.0 29.7 28.7 27.3

10 770 25.1 23.5 21.1 18.6

11 769 18.1 15.4 12.4 9.5

12 810 6.4 3.8 3.5 4.4

X' 924.10 15.42 14.74 14.00 13.27

0 153.04 8.86 9.11 7.71 7.59
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Table 6.3 MAPE Values for Brown's Technique Under Demand Pattern 2

Average

Period Demand Set 1 Set 2 Set 3 Set 4

3 1,471 28.6 27.0 25.3 23.6

4 1,459 29.5 26.8 24.3 22.0

5 1,748 34.9 31.6 28.7 25.5

6 1,428 16.2 10.6 5.7 2.6

7 1,165 4.7 11.5 16.9 21.0

8 911 33.3 40.3 45.1 48.2

9 769 53.8 59.0 61.0 61.0

10 723 51.3 59.6 52.5 55.0

11 739 48.8 47.6 43.7 38.3

12 832 27.8 24.7 19.8 14.3

" 1,133.50 32.89 33.87 32.30 31.15

0 390.44 15.50 17.49 20.18 18.79

 

Table 6.4 MAPE Values for Winter's Technique Under Demand Pattern 1

 

 

 

 

Average

Period Demand Set 1 Set 2 Set 3 Set 4

3 1,108 17.4 13.7 9.8 9.9

4 1,123 17.1 11.9 7.8 8.2

5 1,108 19.4 14.1 8.2 9.4

6 1,025 22.5 16.6 12.2 13.2

7 930 22.7 16.4 12.0 13.8

8 824 26.7 19.8 15.4 16.9

9 774 27.6 19.5 14.3 15.5

10 770 23.3 14.5 10.0 11.0

11 769 19.7 9.0 5.5 7.0

12 810 19.4 5.8 6.0 5.2

-' 924.10 21.58 14.13 10.12 11.01

0 153.04 3.60 4.39 3.36 3.79
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Table 6.5 MAPE Values for Winter's Technique Under Demand Pattern 2

 

 

 

 

Average

Period Demand Set 1 Set 2 Set 3 Set 4

3 1,471 5.3 3.3 3.8 3.6

4 1,549 3.6 2.5 6.0 5.2

5 1,748 8.9 14.1 18.4 17.4

6 1,428 5.2 3.9 5.8 4.2

7 1,165 5.2 2.9 2.7 2.5

8 911 14.1 13.3 13.8 15.4

9 769 24.0 22.9 22.6 23.0

10 723 29.8 26.6 24.9 24.0

11 739 34.8 28.8 24.3 23.2

12 832 42.5 31.6 22.6 22.0

Y' 1,133.50 17.34 14.99 14.49 14.05

0 390.44 14.33 11.69 9.15 9.17
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Initial Investigations: The Roberts

and Reed‘Techniqug

 

 

Once the set of smoothing constants had been selected, the first

series of runs made employed the Trigg and Leach and the Roberts and

Reed techniques. For each technique, one simulation was made for each

demand pattern, employing the selected smoothing constant values. The

results of these four runs were reviewed and compared to the previously

completed runs employing Brown and Winters techniques.

As expected, this comparison revealed that the results of the

simulations made under each demand pattern for the Brown, Trigg and

Leach, and P. R. Winters techniques were both different and valid on

a subjective basis. However, the results of the Roberts and Reed

simulation run made for each demand pattern was identical to the

corresponding P. R. Winters run.

To further investigate this unexpected result, another

simulation run was made using the Roberts and Reed technique. In

this run, the set of smoothing constants employed was identical to

Set 1 detailed in Table 6.1 for the P. R. Winters technique. The basis

for this was twofold. First, Set 1 provided the least accuracy for the

Winters technique in projecting demand pattern 1. Thus, as the Roberts

and Reed technique was specifically designed to modify the smoothing

constants used in Winters method when large errors were encountered,

the use of Set 1 would be the most likely of the four to result in such

an adaptation. The second basis for the selection of Set 1 was the

availability of the previously completed Winters run employing this

same set. This run was used for comparison.
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At the completion of the Roberts and Reed simulation employing

Set 1 to project demand pattern 1, the reports provided were compared

with those of the corresponding Winters run. Again the results were

identical.

Based upon the comparison, two possible reasons were identified

which might have been responsible for the failure of the Roberts and

Reed model to adapt the values of the smoothing constants: (1) the

existence of one or more programming errors in the Roberts and Reed

software; and/or (2) a lack of sensitivity in the statistical base of

the technique itself when projecting the generated demand patterns.

The first of these possibilities was felt to be unlikely due to the

fact that the Roberts and Reed technique had been previously found to

adapt to selected demand patterns as a part of the validation of the

SPSF model. Despite this fact, the program was reviewed in depth and

found to be without error.

To investigate the second possibility, a program was designed

to monitor and print each calculation made by the Roberts and Reed

software during the course of any simulation. Output of this program

included the following: (1) the level, trend and seasonal components

of the forecast; (2) the forecast generated for each possible combi-

nation of the specified smoothing constants; (3) the values of the

response surface corresponding to the forecasts generated in (2);

the variance of the response surface; (4) the 99% confidence interval

of the mean value of the response surface; and (5) the "Effect" of

changes in the smoothing constant values on the magnitude of the
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response surface. As noted in the discussion of the Roberts and Reed

technique in Chapter III, the Effect of the changes in the smoothing

constant values must be outside the 99% confidence interval of the mean

value of the response surface for the values of the smoothing constants

to be adapted. From a review of the output of this program it was

possible to evaluate the sensitivity of the calculations and tests

made in each step of the Roberts and Reed technique.

An additional simulation run was then completed employing the

above program and Set 1 of the smoothing constant values. The eval-

uation of the results of this run revealed that the technique was not

sufficiently sensitive in the statistical test employed in order to

adapt any of the three smoothing constants. In other words, at no

time was the effect of changes in the smoothing constant values great

enough to exceed the 99% confidence interval of the mean value of the

response surface.

As a final check, one further investigation was completed.

Here, the decision rule incorporating a 99% confidence interval was

changed to reflect a 95% confidence interval, increasing the probability

that the boundaries of confidence interval would in fact be exceeded.

Again, however, the effect of changes in the smoothing constant values

failed to fall outside of the confidence interval.

As a result of this investigation it was concluded that the

Roberts and Reed technique was not sufficiently sensitive to result

in an adaptation of the smoothing constant values when projecting the

demand patterns employed in this research. As such, no further
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simulations were completed employing this technique and the results

presented below apply only to the Brown, Trigg and Leach, and Winters

techniques.

System Performance: Analyses of Variance

The general hypothesis of research was that variations in the

levels of operating uncertainty, demand uncertainty and forecast

accuracy would significantly effect the performance of a simulated

physical distribution system. This section presents the results of

the analyses on the variations in selected performance variables due

to these independent factors. The results are presented in six parts.

The first two parts deal with the investigation of the hypotheses con-

cerning levels of average inventory and stockouts which were developed

in Chapter V. The next three parts deal with related performance

variables significant to an understanding of the levels of average

inventory and stockouts. These variables, in order of their presen-

tation are sales, forecast discrepancy (F0) and operating discrepancy

(00). The final part illustrates the interrelationships among the

five response variables.

Analysis of Average Inventory Variance
 

The independent variables and their respective levels employed

in the three-way ANOVA for average inventory are illustrated in Table

6.6. The results of the ANOVA are summarized in Table 6.7.
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Table 6.6 Experimental Factors and Levels: Three-Way ANOVA

 

 

Experimental Factor A: Forecast Accuracy

Levels: Forecasting Techniques

FORTECHl: Perfect Forecast

FORTECHZ: R. G. Brown's Basic Exponential Smoothing

FORTECH3: Trigg and Leach's Adaptive Exponential Smoothing

FORTECH4: P. R. Winters' Exponentially Weighted Moving Averages

Experimental Factor 8: Operating Uncertainty

Levels: Order Cycle Time Variability

OCTV1: Zero

OCTV2: Low

0CTV3: High

Experimental Factor C: Demand Uncertainty

Levels: Demand Patterns

DMDl: Increasing Trend Changing to Decreasing Trend With Low

Seasonality

DMDZ: Increasing Trend Changing to Decreasing Trend With High

Seasonality
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Table 6.7 Summary of Three-Way ANOVA on Average Inventory

 

 

 

Degrees of Mean a Significance

Source of Variation Freedom Square F of F

Main effects 6 557,212 86.603 .001

FORTECH 3 1,060,968 164.898 .001

OCTV 2 12,190 1.895 .151

DMD 1 135,992 21.136 .001

2-Way interactions 11 79,202 12.310 .001

FORTECH OCTV 6 31,438 4.886 .001

FORTECH DMD 3 224,679 34.920 .001

OCTV DMD 2 4,276 .665 .515

3-Way interactions 6 44,546 6.923 .001

FORTECH OCTV DMD 6 44,546 6.923 .001

Explained 23 194,859 30.286 .001

Residual 2,376 6,434

Total 2,399 8,241

 

aRounded off to the nearest whole number.
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A review of the fifth column of Table 6.7 indicates that

each of the main effects was highly significant in its impact upon

the level of average inventory. However, the significance of the

three—way interaction bars any direct interpretation of these factors

as well as inferences about the significant two-way interactions. The

nature of the three-way interaction is evident from a review of

Figure 6.1.

Panel A illustrates that given demand pattern 1, the relation-

ship of the level of average inventory held at the DC between each of

the forecasting techniques was consistent when averaged over the three

levels of operating uncertainty. In other words, none of the lines

intersect and the ordinal ranking of the forecast techniques by average

inventory level is constant across the levels of order cycle time

variability. The fact that the same relationship is not evidenced

in Panel B is a clear indication of the three-way interaction. Here,

the ordinal ranking is not consistent across the levels of operating

uncertainty. Thus, no generalizations concerning the level of average

inventory may be made without qualifying the demand pattern in question.

Before making any further inferences concerning average

inventory, it will be helpful to review the results of a second

three-way ANOVA. In the results summarized in Table 6.7, the inclusion

of the constant order cycle time and the perfect forecast represented

controlled conditions which are unrealistic in terms of actual opera-

tions. Table 6.8 summarizes the results of a three-way ANOVA on average

inventory in which these effects were not included.
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Table 6.8 Summary of Three-Way ANOVA on Average Inventory--No Perfect

Forecasts or Constant Order Cycle Times

 

 

 

Degrees of Mean a Significance

Source of Variation Freedom Square F of F

Main effects 4 95,705 17.065 .001

FORTECH 2 181,022 32.278 .001

OCTV 1 10,764 1.919 .166

DMD 1 10,011 1.785 .182

2-Way interactions 5 26,886 4.794 .001

FORTECH OCTV 2 48,015 8.562 .001

FORTECH DMD 2 13,322 2.375 .093

OCTV DMD 1 11,756 2.096 .148

3-Way interaction 122,845 21.905 .001

FORTECH OCTV DMD 122,845 21.905 .001

Explained 11 69,358 12.367 .001

Residual 1,188 5,608

Total 1,199 6,193

 

aRounded off to the nearest whole number.
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Table 6.8 shows that the three-way interaction is still

significant. This result was expected as a review of Figure 6.1

indicates. In Figure 6.1, if each line corresponding to the perfect

forecast and the points corresponding to OCTVl were eliminated, the

resulting figure would depict the three-way interaction found

significant in Table 6.8.

A comparison of Tables 6.7 and 6.8 reveal several differences.

First, while only the main effect of OCTV was not significant at a==.lO

in Table 6.7, neither the main effect of OCTV nor that of DMD was

significant in Table 6.8. To further investigate this result and

in order to be able to interpret the significant two—way interactions,

two two-way ANOVA's were completed.

The first two-way ANOVA analyzed the effects of variations

in operating uncertainty and forecast accuracy given demand pattern 1.

No perfect forecasts or constant order cycle times were included.

The results of this ANOVA are summarized in Table 6.9. Table 6.10

summarizes the second two-way ANOVA which differed only by the fact

that demand pattern 2 was given.

A comparison of the significance values in Tables 6.9 and

6.10 points out that the interaction between FORTECH and OCTV was

significant at a< .05 for each demand pattern. In addition, a com-

parison of the levels of significance of the main effect of OCTV

provides a further illustration of the significant three-way inter-

action which was indicated in Table 6.8. Before interpreting this

difference, however, another of the variables was controlled (held

constant), and fourteen one-way ANOVA's were completed.
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Table 6.9 Two-Way ANOVA on Average Inventory Given Demand Pattern 1:

No Perfect Forecasts or Constant Order Cycle Times

 

 

 

Degrees of Mean a Significance

Source of Variation Freedom Square F of F

Main effects 3 85,770 15.862 .001

FORTECH 2 117,400 21.711 .001

OCTV 1 22,509 4.163 .042

2-Way interaction 16,595 3.069 .047

FORTECH OCTV 16,595 3.069 .047

Explained 5 58,100 10.745 .001

Residual 594

Total 599

 

aRounded off to the nearest whole number.
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Table 6.10 Two-Way ANOVA on Average Inventory Given Demand Pattern 2:

No Perfect Forecasts or Constant Order Cycle Times

 

 

 

Degrees of Mean a Significance

Source of Variation Freedom Square F of F

Main effects 3 51,300 8.831 .001

FORTECH 2 76,945 13.246 .001

OCTV 1 10 .002 .965

2-Way interaction 154.266 26.556 .001

FORTECH OCTV 154.266 26.556 .001

Explained 5 92,486 15.921 .001

Residual 594 5,809

Total 599 6,533

 

aRounded off to the nearest whole number.
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The first six of these ANOVA's analyzed the main effects of

variations in the levels of FORTECH on the average inventory under

specific combinations of DMD and OCTV. These combinations are

identified in the left-hand column of Table 6.11 as experimental

conditions one through six. The next four columns provide the mean

levels of average inventory for each of the four levels of FORTECH.

Thus, for experimental condition (1) defined by DMDl-OCTVl, a perfect

forecast resulted in an average inventory of 283 units while the Brown,

Trigg and Leach, and P. R. Winters techniques each resulted in average

inventories of 269, 262 and 229, respectively. The final column of

Table 6.11 provides the significance of the F value resulting from

the one-way ANOVA's by FORTECH for each experimental condition.

As a review of the significance values in Table 6.11 indicates,

variations in the level of FORTECH did have a significant impact upon

the levels of average inventory for each experimental condition. The

mean values of average inventory in each row provide some indication

of the nature of the significant differences. For example, given

experimental condition (6) it is logical that the level of average

inventory under the Trigg and Leach technique (240 units) is sig-

nificantly lower than that under the perfect forecast (382 units).

However, this may not be the only significant difference. All that

may be said given the significance of the F value is that there is

at least one significant difference between the four values of average

inventory. There may in fact be more than one.
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Table 6.11 Mean Values and Levels of Significance-~One-Way ANOVA's on

Average Inventory by FORTECH

 

 

 

 

FORTECH

Experimental Significance

Conditions Perfect R.G.B. 'T.&l” P.R.W. of F

1. DMDl-OCTVl 283 269 262 229 .0000

2. DMDl-OCTV2 298 275 267 246 .0000

3. DMDl-OCTV3 308 279 258 221 .0000

4. DMDZ-OCTVl 347 258 257 249 .0000

5. DMDZ-OCTVZ 374 263 290 200 .0000

6. DMDZ-OCTV3 382 253 240 258 .0000

 

To determine the exact nature of each of the significant

differences in Table 6.11, a Scheffé test (a = .05) was performed for

each of the six experimental conditions. The results of these tests

are outlined below for each experimental condition.

1. DMDl-OCTVl:

a. the level of average inventory held uner the Winters

technique was significantly lower than that held under

each of the other techniques;

b. the level of average inventory held under the Trigg and

Leach technique was significantly lower than that held

under a perfect forecast; and

c. there was no significant difference between the levels of

average inventory in a comparison of perfect versus Brown

technique or Brown versus Trigg and Leach technique.
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DMDl-OCTVZ:

a. the level of average inventory held under the Winters

technique was significantly lower than that under the

perfect or Brown techniques;

the level of average inventory held under the Trigg and

Leach technique was significantly lower than that held

under a perfect forecast; and

there was no significant difference between the levels

of average inventory in a comparison of the perfect versus

Brown technique, the Brown versus Trigg and Leach technique,

or the Trigg and Leach versus Winters technique.

DMDl-OCTV3: (Same results as those presented for DMDl-OCTVZ.)

DMD2-0CTV1:

a. the level of average inventory held under the perfect

forecast was significantly higher than that held under

each of the remaining techniques; and

there was no significant difference in any comparison

between the average inventories held under the Brown,

Trigg and Leach or Winters techniques.

DMD2-0CTV2:

a. the level of average inventory held under the perfect

forecast was significantly higher than that held under

the remaining techniques;

the level of average inventory held under the Winters

technique was significantly lower than that held under

the remaining techniques; and
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c. there was no significance found in a comparison of the

average inventories held between the Brown versus Trigg

and Leach techniques.

6. DMDZ-OCTVB: (Same results as those presented for DMDZ-OCTVl.)

The remaining eight one-way ANOVA's analyzed the main effects

of variations in the levels of OCTV on average inventory under specific

combinations of DMD and FORTECH. The conditions and results of these

analyses are presented in Table 6.12 in a format identical to that

employed in Table 6.11.

Table 6.12 Mean Values and Levels of Significance--One-Way ANOVA's on

Average Inventory by OCTV

 

 

 

 

OCTV

Experimental Significance

Conditions OCTVl OCTV2 0CTV3 of F

7. DMDl-FORTECHl 283 298 308 .0551

8. DMDl-FORTECHZ 269 275 279 .4936

9. DMDl-FORTECH3 262 267 258 .5619

10. DMDl-FORTECH4 229 246 221 .0065

11. DMDZ-FORTECHl 347 374 382 .1969

12. DMDZ-FORTECHZ 258 263 254 .6626

13. DMDZ—FORTECH3 257 290 240 .0000

14. DMD2-FORTECH4 249 200 258 .0000
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As a review of the final column of Table 6.12 indicates, only

three of the eight tests were significant at a< .05. The results of

the Scheffé tests (a = .05) performed to analyze these differences are

outlined below.

10. DMDl-FORTECH4:

a. The level of average inventory under OCTV3 was significantly

lower than that held under OCTV2; and

b. there was no significant difference in comparisons of

the level of average inventory held under OCTVl versus

OCTV2 and 0CTV1 versus 0CTV3.

l3. DMDZ-FORTECH3:

a. the level of average inventory held under 0CTV2 was

significantly higher than that held under OCTVl and

0CTV3; and

b. there was no significant difference in a comparison

of the average inventory between 0CTV1 versus OCTV3.

14. DMDZ-FORTECH4: (Same results as those given for DMDZ-FORTECH3.)

The next part reports the results of the analysis of variance

on stockouts.

Analysis of Stockout Variance
 

The independent variables and their levels employed for the

first three-way ANOVA on stockouts were identical to those illustrated

in Table 6.6, page 149. The results of this ANOVA are summarized in

Table 6.13.
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Table 6.13 Summary of Three-Way ANOVA on Stockouts

 

 

 

Degrees of Mean a Significance

Source of Variation Freedom Square F of F

Main effects 6 2,108,993 72.314 .001

FORTECH 3 1,941,860 66.583 .001

OCTV 2 539,209 18.489 .001

DMD 1 5,749,961 197.157 .001

2-Way interactions 11 221,516 7.595 .001

FORTECH OCTV 6 63,252 2.169 .044

FORTECH DMD 3 665,823 22.830 .001

OCTV DMD 2 29,849 1.023 .360

3-Way interaction 6 145,945 5.004 .001

FORTECH OCTV DMD 6 145,945 5.004 .001

Explained 23 694,187 23.803 .001

Residual 2,376 29,164

Total 2,399 35,540

 

aRounded off to the nearest whole number.
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The significance values in Table 6.13 indicate that (similar

to the results found for average inventory) the three-way interaction

is significant at a = .001. The effects of the three-way interaction

stockouts are illustrated in Figure 6.2. Panel A details the mean level

of stockouts which occurred under each forecasting technique across the

levels of order cycle time variability, given demand pattern 1. Panel

8 depicts the same relationships for demand pattern 2.

A review of panel A indicates two rather surprising results.

First, given a perfect forecast (1) and a constant order cycle (OCTV1),

the DC still experienced stockouts. Secondly, the remaining forecasting

techniques show an inverse relationship between the complexity of each

technique and mean stockouts, consistent across the levels of OCTV.

In panel B, stockouts are again indicated given the perfect

forecast and constant order cycle time. Other than for the perfect

forecast, there is a considerable variation in the ordinal ranking of

the forecast techniques across the levels of OCTV. The importance of

both the three-way and the significant two-way interactions is clear:

no inferences may be drawn concerning the levels of stockouts without

specifying the nature of the demand pattern and of the order cycle time

in question. In addition, it should be noted that Figure 6.2 does not

represent an illustration of the relative accuracy of the forecasting

techniques. All that may be said in general is that there is a sig-

nificant three-way interaction between the levels of forecast tech-

niques, demand patterns, and levels of order cycle time variability

in their impact on stockouts.
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Figure 6.2 Three-Way Interaction of Main Effects on Stockouts.
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The results of the second three-way ANOVA on stockouts (not

considering either perfect forecasts or constant order cycles) are

summarized in Table 6.14. As indicated in the column of significance

values, the three-way interaction is still significant. In contrast

with Table 6.13, however, the remaining levels of significance

illustrate considerable differences.

Given the above results, two two-way ANOVA's were completed

on stockouts, one under each demand pattern. The purpose of this was

to remove the significant three-way interaction to gain further infor-

mation concerning the two-way interactions. The results of these

two-way ANOVA's are summarized in Tables 6.15 and 6.16 for demand

patterns 1 and 2, respectively.

A comparison of Tables 6.15 and 6.16 provides further infor-

mation on the significant three-way interaction indicated in Table 6.14.

The impacts of variations in the FORTECH and OCTV levels on stockouts

are significantly affected by the nature of the demand pattern given

in the environment. Furthermore, while each of the main effects in

Table 6.15 were significant, none of the main effects in Table 6.16

indicated a similar result. However, the significance of the main

effects may not be interpreted directly due to the confounding nature

of the significant two—way interaction in each case. To gain further

insights, l4 one-way ANOVA's were completed.

The results of the first six one-way ANOVA's are presented

in Table 6.17. As in the analysis of average inventory levels, each

of the one-way ANOVA's of stockouts by FORTECH showed significant
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Table 6.14 Summary of Three-Way ANOVA on Stockouts--No Perfect

FOrecasts or Constant Order Cycle Times

 

 

 

Degrees of Mean Significance

Source of Variation Freedom Square F of F

Main effects 4 1,313,549 34.434 .001

FORTECH 2 94,572 2.479 .084

OCTV 1 219,673 5.758 .017

DMD 1 4,845,560 127.018 .001

2-Way interactions 5 109,185 2.862 .014

FORTECH OCTV 2 128,997 3.381 .034

FORTECH DMD 2 100,734 2.641 .072

OCTV DMD 1 86,462 2.266 .133

3-Way interaction 2 403,796 10.585 .001

FORTECH OCTV DMD 2 403,796 10.585 .001

Explained 11 600,718 15.747 .001

Residual 1,188‘ 38,148

Total 1,199 43,310

 

aRounded off to the nearest whole number.
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Table 6.15 Summary of Two-Way ANOVA on Stockouts Given Demand Pattern

1: No Perfect Forecasts or Constant Order Cycle Times

 

 

 

Degrees of Mean a Significance

Source of Variation Freedom Square F of F

Main effects 223,204 13.645 .001

FORTECH 189,363 11.576 .001

OCTV 290,884 17.783 .001

2-Way interaction 43,694 2.671 .070

FORTECH OCTV 43,694 2.671 .070

Explained 5 151,400 9.256 .001

Residual 594 16,358

Total 599 17,485

 

aRounded off to the nearest whole number.
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Table 6.16 Two-Way ANOVA on Stockouts Given Demand Pattern 2: No

Perfect Forecasts or Constant Order Cycle Times

 

 

 

Degrees of Mean Significance

Source of Variation Freedom Square F of F

Main effects 9,045 .151 .923

FORTECH 5,943 .099 .906

OCTV 1 15,251 .254 .614

2-Way interaction 489,099 8.160 .001

FORTECH OCTV 489,099 8.160 .001

Explained 5 201,067 3.355 .005

Residual 594

Total 599

 

aRounded off to the nearest whole number.
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Table 6.17 Mean Values and Levels of Significance--0ne-Way ANOVA's on

Stockouts by FORTECH

 

 

 

 

FORTECH

Experimental Significance

Conditions Perfect R.G.B. 'T.&l“ P.R.W of F

l. DMDl-OCTVl 48 89 91 130 .0000

2. DMDl-OCTV2 90 106 119 138 .0034

3. DMDl-OCTV3 92 128 151 216 .0000

4. DMDZ-OCTVl 52 250 244 201 .0000

5. DMDZ-OCTVZ 99 251 222 322 .0000

6. DMDZ-OCTV3 106 299 307 220 .0000

 

effects. The perfect forecast consistently resulted in the lowest

stockouts as was indicated previously in Figure 6.2, page 164.

Table 6.17 indicates that in each case this difference was significant.

The nature of these significant differences was determined through

Scheffé tests 01= .05). The results of these tests are outlined

below for each experimental condition.

1. DMDl-OCTVl:

a. stockouts under the perfect forecast were significantly

lower than that under each remaining forecast;

b. stockouts under the Winters forecast were significantly

higher than that under each remaining forecast; and

c. there was no significant difference in a comparison of

the stockouts between the Brown and Trigg and Leach

techniques.
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DMDl-OCTVZ:

a. stockouts under the Winters technique were significantly

higher than that under each remaining forecast; and

there was no significant difference between the levels

of stockouts under the perfect, Brown or Trigg and Leach

techniques.

DMDl-OCTV3: (Same results as those detailed for DMDl-OCTVl.)

DMD2-0CTV1:

a. stockouts under the perfect forecast were significantly

lower than that under each remaining forecast; and

there was no significant difference in the levels of

stockouts under the Brown, Trigg and Leach, or Winters

techniques.

DMDZ-OCTVZ: (Same results as those detailed for DMDl-OCTVl.)

DMDZ—OCTVB:

a. the level of stockouts under the perfect forecast was

significantly lower than that under each remaining

technique;

the level of stockouts under the Winters technique was

significantly lower than that under the Brown and Trigg

and Leach techniques; and

there was no significant difference between the levels

of stockouts under the Brown and Trigg and Leach techniques.
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Considering these results together, three points are concluded.

First, the perfect forecast consistently resulted in the lowest level

of stockouts. Second, there was never a significant difference in a

comparison of stockouts between the Brown and Trigg and Leach tech-

niques. Finally, only under DMDZ-OCTV3 did the Winters technique

result in significantly lower stockouts than the Brown and Trigg and

Leach techniques.

The second set of one-way ANOVA's analyzed stockouts across

the levels of OCTV. Table 6.18 details the results of these analyses.

A significant (a<:.05) F value was found for all experimental conditions

except (12) DMDZ-FORTECHZ and (13) DMDZ-FORTECH3. The results of the

Scheffé tests (a= .05) performed to investigate those which were

significant are outlined below:

7. DMDl-FORTECHl:

a. the level of stockouts under 0CTV1 were significantly lower

than those under OCTV2 and OCTV3; and

b. there was no significant difference in a comparison of the

level of stockouts between OCTV2 and OCTV3.

8. DMDl-FORTECHZ:

a. the level of stockouts under OCTVl was significantly lower

than that under 0CTV3; and

b. there was no significant difference in a comparison of the

level of stockouts under OCTVl with that under OCTVl or

0CTV3.
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Table 6.18. Mean Values and Levels of Significance-~0ne-Way ANOVA's on

Stockouts by OCTV

 

 

 

 

OCTV

Experimental Significance

Conditions 0CTV1 0CTV2 0CTV3 of F

7. DMDl-FORTECHl 48 90 92 .00001

8. DMDl-FORTECH2 89 106 119 .0468

9. DMDl-FORTECH3 91 119 151 .0007

10. DMDl-FORTECH4 130 138 216 .0000

11. DMDZ-FORTECHl 52 99 106 .0002

12. DMDZ-FORTECHZ 250 251 299 .3361

13. DMDZ—FORTECH3 244 222 306 .0699

14. DMDZ—FORTECH4 201 322 221 .0000

 

10.

11.

DMDl-FORTECH3: (Same results as those indicated for DMDl-

FORTECH2.)

DMDl-FORTECH4:

a. the level of stockouts under OCTV3 was significantly higher

than that under 0CTV1 and 0CTV2; and,

b. there was no significant difference in the level of

stockouts between OCTVl and 0CTV2.

DMDZ-FORTECHl: (Same results as those detailed for DMDl-

FORTECHl.)
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14. DMDZ-FORTECH4:

a. the level of stockouts under OCTV2 was significantly

higher than those under OCTVl and 0CTV3; and

b. there was no significant difference in a comparison

of the levels of stockouts between 0CTV1 and 0CTV3.

The next part presents the results of the analysis of

sales levels.

Analysis of Sales Variance
 

The results of the first three-way ANOVA on sales experienced

by the DC are summarized in Table 6.19. As in each previous three-way

ANOVA, a significant three-way interaction was found. Figure 6.3

illustrates the form of the interaction.

In panel A thetrelationship between the levels of sales achieved

under the impetus of each of the forecasting techniques is consistent

when averaged over the three levels of order cycle time variability.

In other words, the lines do not intersect and the ordinal ranking of

the forecasting techniques by sales levels is constant over the levels

of OCTV. There is some interaction present between FORTECH and OCTV

in that the lines are not parallel. The significance of this inter-

action was analyzed in a two-way ANOVA reported below.

Panel B of Figure 6.3 indicates that the relationship between

the mean sales achieved under each forecasting technique was not con-

sistent across the levels of order cycle time variability under demand

pattern 2. Considered by itself, this panel is a direct indication of
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Table 6.19 Summary of Three-Way ANOVA on Sales

 

 

 

Degrees of Mean Significance

Source of Variation Freedom Square F of F

Main effects 6 1,670,591 39.628 .001

FORTECH 3 1,941,860 46.063 .001

OCTV 2 539,209 12.791 .001

DMD 1 3,119,551 73.999 .001

2-Way interactions 11 221,516 5.255 .001

FORTECH OCTV 6 63,253 1.500 .175

FORTECH DMD 3 665,823 15.794 .001

OCTV DMD 2 29,849 .708 .493

3-Way interaction 6 145,945 3.462 .002

FORTECH OCTV DMD 6 145,945 3.462 .002

Explained 23 579,822 13.754 .001

Residual 2,376 42,157

Total 2,399 47,312

 

aRounded off to the nearest whole number.
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a two-way interaction between forecasting techniques and levels of

order cycle time variability. The ordinal ranking of the sales

achieved under each forecasting technique is not consistent across

the three levels of order cycle time variability. Also the same

restrictions on the interpretations must be observed until the

interaction is reviewed.

The second three-way ANOVA on sales is summarized in Table 6.20.

As for each of the previous response variables, this second ANOVA does

not consider either perfect forecasts or constant order cycle times.

As a review of the table indicates, the three-way interaction is still

significant, barring any direct interpretation of either the signif-

icant two-way interactions or the main effects.

The results of the two-way ANOVA's completed on sales are

summarized in Tables 6.21 and 6.22. Table 6.21 illustrates the

significance of the two-way interaction between FORTECH and OCTV

given DMDl. Table 6.22 details the same relationships given DMDZ.

A comparison of Tables 6.21 and 6.22 indicates two important

points. First, while each of the main effects was highly significant

given DMDl, they did not appear to be significant given demand pattern

2. This interpretation is purposefully conservative due to the second

important difference between the two analyses. That is, while the

two-way interaction between the forecasting techniques and the levels

of order cycle time variation was not significant 03= .10) given DMDl,

it was highly significant when DMDZ was given.
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Table 6.20 Summary of Three-Way ANOVA on Sales--No Perfect Forecasts or

Constant Order Cycle Times

 

 

 

Degrees of Mean Significance

Source of Variation Freedom Square F of F

Main effects 4 240,299 6.491 .001

FORTECH 2 94,572 2.555 .078

OCTV 1 219,673 5.934 .015

DMD 1 552,380 14.992 .001

2-Way interactions 5 109,185 2.950 .012

FORTECH OCTV 2 128,997 3.485 .031

FORTECH DMD 2 100,734 2.721 .066

OCTV DMD 1 86,462 2.336 .127

3-Way interaction 2 403.796 10.908 .001

FORTECH OCTV DMD 2 403.697 10.908 .001

Explained 11 210,429 5.685 .001

Residual 1,188 37,018

Total 1,199 38,609

 

aRounded off to the nearest whole number.
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Table 6.21 Summary of Two-Way ANOVA on Sales Given Demand Pattern 1:

No Perfect Forecasts or Constant Order Cycle Times

 

 

 

Degrees of Mean Significance

Source of Variation Freedom Square F of F

Main effects 3 223,204 8.429 .001

FORTECH 2 189,364 7.151 .001

OCTV 1 290,884 10.985 .001

2-Way interaction 43,964 1.650 .193

FORTECH OCTV 43,964 1.650 .193

Explained 5 151,400 5.718 .001

Residual 594 26,479

Total 599 27,522

 

aRounded off to the nearest whole number.
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Table 6.22 Summary of Two-Way ANOVA on Sales Given Demand Pattern 2:

No Perfect Forecasts or Constant Order Cycle Times

 

 

 

Degrees of Mean Significance

Source of Variation Freedom Square F of F

Main effects 3 9,045 .190 .903

FORTECH 5,943 .125 .883

OCTV 15,251 .321 .571

2-Way interaction 489,099 10.285 .001

FORTECH OCTV 489,099 10.285 .001

Explained 5 201,067 4.228 .001

Residual 594 47,556

Total 599 48,838

 

aRounded off to the nearest whole number.
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The one-way ANOVA's completed to further investigate the above

differences are reported in Tables 6.23 and 6.24.

Table 6.23 indicates that there was a significant difference

01< .05) in sales across the forecasting techniques in every case

except that defined by DMDl-0CTV2. The nature of the significant

differences as indicated by Scheffé tests 03= .05) are outlined below.

1. DMDl-OCTV1:

a. sales under the perfect forecast were significantly higher

than that under the remaining forecasts;

b. sales under the Winters forecast were significantly lower

than that under all other forecasts; and

c. there was no significant difference in a comparison of

the levels of sales between the Brown and Trigg and Leach

forecasts.

3. DMDl-OCTV3:

a. the sales under the Winters forecast were significantly

lower than under the perfect and Brown forecasts; and

b. there was no significant difference between the sales

under the perfect, Brown, and Trigg and Leach techniques,

or between the Trigg and Leacn and Winters techniques.

4. DMDZ-OCTVl:

a. the sales under the perfect forecast were significantly

higher than under each of the other techniques; and

b. there was no significant difference found between the

levels of sales under the Brown, Trigg and Leach, and

Winters techniques.
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Table 6.23 Mean Values and Significant Differences--One-Way ANOVA's on

Sales by FORTECH

 

 

 

 

FORTECH

Experimental Significance

Conditions Perfect R.G.B. T. 81 L. P.R.W. of F

l. DMDl-OCTVl 915 875 872 833 .0000

2. DMDl-OCTV2 874 857 844 825 .1346

3. DMDl-OCTV3 871 835 812 748 .0000

4. DMDZ-OCTVl 1,082 883 889 932 .0000

5. DMDZ—OCTVZ 1,133 970 993 884 .0000

6. DMDZ-OCTV3 1,027 834 826 913 .0000

 

Table 6.24 Mean Values and Significant Differences--One-Way ANOVA's on

Sales by OCTV

 

 

 

 

OCTV

Experimental Significance

Conditions OCTVl 0CTV2 OCTV3 of F

7. DMDl-FORTECHl 915 874 871 .1102

8. DMDl-FORTECHZ 875 858 835 .0970

9. DMDl-FORTECH3 872 844 812 .0042

10. DMDl-FORTECH4 833 825 748 .0008

ll. DMDZ-FORTECHl 1,082 1,034 1,028 .4951

12. DMDZ-FORTECHZ 883 882 835 .0625

13. DMDZ-FORTECH3 889 912 827 .0023

14. DMDZ-FORTECH4 932 810 913 .0015
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5. DMDZ-OCTVZ: (Same results as those detailed for DMDZ-OCTVl.)

6. DMDZ-OCTV3: (Same results as those detailed for DMDZ-OCTVl.)

Taking these results together, the Winters technique resulted

in a significantly lower level of sales than both the Brown and Trigg

and Leach techniques only when DMDl and OCTVl were given conditions.

For DMDl-OCTV2 there was no significant difference between any of the

techniques. Considering DMDl-OCTV3, however, the sales corresponding

to the Winters technique were significantly lower than the corresponding

level under the R. G. Brown technique. Thus, the data indicate that

under demand pattern 1, the Winters technique produced relatively

lower sales levels when considered across the levels of order cycle

time variability.

The same statement may not be made for those cases defined by

DMDZ. Here, the Winters technique resulted in a higher (though not

significantly so) level of sales than either the Brown or Trigg and

Leach techniques when OCTVl and OCTV3 were given. For OCTV2, sales

were again lower under the Winters technique, the only significant

difference being in comparison to the level under the perfect

forecast.

Table 6.24 indicates that the difference in sales when analyzed

across the levels of OCTV was significant at a<:.05 only for the Trigg

and Leach and the Winters techniques. The results of the Scheffé tests

01= .05) performed to investigate these differences are outlined below.
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of sales under OCTV1 was significantly higher

under OCTV2 or OCTV3; and

no significant difference in a comparison of

of sales between OCTV2 and OCTV3.

(Same results as those given for DMDl-FORTECH3.)

of sales under OCTV3 was significantly lower

under OCTV1 or OCTV2;

no significant difference in a comparison of

of sales between OCTV1 and OCTV2.

of sales under OCTV2 was significantly lower

under OCTV1 or OCTV3; and

no significant difference in a comparison of

of sales between OCTV1 and OCTV3.

Thus, summarizing the results of Table 6.24, the level of OCTV

showed a consistently inverse relationship to sales across all fore-

casting techniques under DMDl. The same is not true under DMDZ. A

comparison of the mean levels of sales in the rows defined by the Trigg

and Leach and the Winters techniques is particularly interesting. Here,

while sales under OCTV3 were significantly (a<:.05) lower than under

0CTV2 for the Trigg and Leach technique, exactly the Opposite is true

for the P. R. Winters technique.
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The performance of each of the forecasting techniques are

reviewed in the next section.

Analysis of Forecast Discrepancy (FD)
 

The results of the first three-way ANOVA on the levels of F0

are summarized in Table 6.25. As in the previous case, the significance

of the three-way interaction requires illustration and the performance

of a second three-way ANOVA in which the control levels of FORTECH and

OCTV are not considered. Figure 6.4 depicts the nature of the three-

way interaction while the results of the second three-way ANOVA are

summarized in Table 6.26. Each is discussed.

A comparison of panels A and B in Figure 6.4 indicate that no

inferences may be drawn concerning the relative accuracy of the Brown,

Trigg and Leach, and Winters techniques without qualification as to the

demand pattern in question. This is due to the three-way interaction

which is clearly indicated. Considering each of the panels indepen-

dently, no generalizations may be made concerning the relative accuracy

of these forecasting techniques without a further qualification concern-

ing the level of order cycle time variability. For each demand pattern,

this is an indication of a two-way interaction between F0 and OCTV.

Before investigating each two-way interaction, the second three-way

ANOVA on F0 is reviewed.

The results of the three-way ANOVA performed on F0 without

consideration of perfect forecasts or constant order cycle times are

summarized in Table 6.26. As the significance values indicate, the



185

Table 6.25 Summary of Three-Way ANOVA on F0

 

 

 

Degrees of Mean a Significance

Source of Variation Freedom Square F of F

Main effects 6 4,083,396 213.950 .001

FORTECH 3 5,401,121 282.993 .001

OCTV 2 83,238 4.361 .013

DMD 1 8,130,540 426,001 .001

2-Way interactions 11 327,740 17.172 .001

FORTECH OCTV 43,617 2.285 .034

FORTECH DMD 1,095,790 57.414 .001

OCTV DMD 28,034 1.469 .231

3-Way interaction 6 83,962 4.399 .001

FORTECH OCTV DMD 6 83,962 4.399 .001

Explained 23 1,243,882 65.173 .001

Residual 2,376 19,086

Total 2,399 30,828

 

aRounded off to the nearest whole number.
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Table 6.26 Summary of Three-Way ANOVA on F0: No Perfect Forecast or

Constant Order Cycle Times

 

 

 

Degrees of Mean Significance

Source of Variation Freedom Squarea F of F

Main effects 4 1,852,865 68.501 .001

FORTECH 2 4,647 .172 .842

OCTV 1 28,646 1.059 .304

DMD 1 7,373,520 272.600 .001

2-Way interactions 5 72,928 2.696 .020

FORTECH OCTV 2 7,783 .288 .750

FORTECH DMD 2 138,260 5.111 .006

OCTV DMD 1 72,556 2.682 .102

3-Way interaction 2 227,939 8.427 .001

FORTECH OCTV DMD 2 227,939 8.427 .001

Explained 11 748,362 27.667 .001

Residual 1,188 27,049

Total 1,199 33,666

 

aRounded off to the nearest whole number.
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three-way interaction still prohibits inferences concerning the

significant two-way interactions or the main effects.

As for each of the previous variables analyzed, two two-way

ANOVA's were completed to further investigate the nature of the variance

in F0. The results of the two-way ANOVA given DMDl are summarized in

Table 6.27. The results for the analysis given DMDZ are provided in

Table 6.28.

A comparison between the significance values detailed in

Tables 6.27 and 6.28 indicates two points. First, each of the main

effects was highly significant given DMDl while none is significant

given DMDZ. Second, and the more critical to interpretation, is the

fact that each of the two—way interactions was significant at a< .05.

As such, a series of one-way ANOVA's was again required before any

inferences could be drawn from the data.

The one-way ANOVA's completed on the levels of FD along with

their associated levels of significance are presented in Tables 6.29

and 6.30. Table 6.29 indicates the one-way ANOVA's on FD by FORTECH,

while those completed on F0 by OCTV are presented in Table 6.30. A

review of each illustrates that while all of the tests on the main

effects of FORTECH identified significant differences in F0, only

two of the tests on the main effects of OCTV did likewise. The

nature of the differences indicated in each table were subsequently

analyzed through Scheffé tests (0= .05). The results from this

analysis are outlined below.
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Table 6.27 Summary of Two-Way ANOVA on F0 Given Demand Pattern 1: No

Perfect Forecast or Constant Order Cycle Times

 

 

 

Degrees of Mean Significance

Source of Variation Freedom Square F of F

Main effects 3 84,153 11.612 .001

FORTECH 2 96,190 13.272 .001

OCTV 1 78,134 10.781 .001

2-Way interaction 78,034 10.767 .001

FORTECH OCTV 78,034 10.767 .001

Explained 5 81,705 11.274 .001

Residual 594 7,247

Total 599 7,869

 

aRounded off to the nearest whole number.
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Table 6.28 Summary of Two-Way ANOVA on F0 Given Demand Pattern 2: No

Perfect Forecast or Constant Order Cycle Times

 

 

 

Degrees of Mean a Significance

Source of Variation Freedom Square F of F

Main effects 3 44,852 .957 .413

FORTECH 2 64,772 1.383 .252

OCTV 1 5,011 .107 .744

2-Way interaction 2 157,687 3.366 .035

FORTECH OCTV 2 157,687 3.366 .035

Explained 5 89,986 1,921 .089

Residual 594 46,850

Total 599 47,210

 

aRounded off to the nearest whole number.



191

Table 6.29 Mean Values and Levels of Significance-~0ne-Way ANOVA's on

F0 By FORTECH

 

 

 

 

FORTECH

Experimental Significance

Conditions Perfect R.G.B. T. 81 L. P.R.W. of F

l. DMDl-OCTV1 O 100 92 102 .0000

2. DMDl-OCTV2 O 105 105 106 .0000

3. DMDl-OCTV3 O 108 107 176 .0000

4. DMDZ-OCTVl 0 288 275 188 .0000

5. DMDZ—OCTVZ 0 280 262 290 .0000

6. DMDZ-OCTV3 O 300 295 220 .0000

 

Table 6.30 Mean Values and Levels of Significance--One-Way ANOVA's on

 

 

 

 

FD By OCTV

OCTV

Experimental Significance

Conditions OCTV1 0CTV2 OCTV3 of F

7. DMDl-FORTECHl O O 0 1.0000

8. DMDl-FORTECHZ 100 105 108 .7062

9. DMDl-FORTECH3 92 105 107 .2579

10. DMDl-FORTECH4 102 106 176 .0000

ll. DMDZ-FORTECHl O O 0 1.0000

12. DMDZ-FORTECHZ 288 280 300 .8271

13. DMDZ-FORTECH3 275 262 295 .5793

14. DMDZ-FORTECH4 188 290 220 .0002
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DMDl-OCTV1:

a. the level of F0 under the perfect forecast was significantly

lower than that under each remaining technique; and

there was no significant difference in the level of F0

under the Brown, Trigg and Leach and Winters techniques.

DMDl-OCTV2: (Same results as those presented for DMDl-OCTV1.)

DMDl-OCTV3:

a. the level of F0 under the perfect forecast was significantly

lower than that under each other technique;

the level of F0 under the Winters technique was

significantly higher than that under each other

technique; and

there was no significant difference between the levels

of F0 under the Brown and Trigg and Leach techniques.

DMDZ-OCTVl: (Same results as those detailed for DMDl-OCTV3.)

DMDZ-OCTVZ: (Same results as those detailed for DMDl-OCTV1.)

DMDZ-OCTV3:

a. the level of F0 under the perfect forecast was significantly

lower than that under each other technique;

the level of F0 under the Winters technique was

significantly lower than that under the Brown and

Trigg and Leach techniques; and

there was no significant difference between the levels

of F0 under the Brown and Trigg and Leach techniques.
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In review of the results, the level of FD for each of the

perfect forecasts is zero and logically significant in difference

from the remaining values. Over the remaining forecast techniques,

the only significant differences which occurred were between the Brown

and the Trigg and Leach techniques on one hand, and the Winters tech-

nique on the other. In these comparisons, the Winters technique was

significantly more accurate given DMDZ-OCTVl and DMDZ-OCTV3. Given

DMDl-OCTV3, however, the Winters technique was significantly less

accurate.

The results of the Scheffé tests performed on the significant

values in Table 6-30 are outlined below.

10. DMDl-FORTECH4:

a. the level of F0 under OCTV3 was significantly higher than

that under OCTV1 or OCTV2; and

b. there was no significant difference between the levels

of F0 under OCTV1 and OCTV2.

14. DMDZ-DMD4:

a. the level of F0 under OCTV2 was significantly higher

than that under OCTV1 or OCTV3; and

b. there was no significant difference between the levels

of F0 under 0CTV1 and OCTV3.

Here, the only significant differences found by analyzing FD

across the levels of OCTV occurred for the Winters technique. Given

DMDl, the Winters technique was significantly less accurate under

OCTV3; when given DMDZ the same was found under OCTV2.
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The final analyses of variance were completed to investigate

relationships between each of the independent variables and the levels

of Operating Discrepancy (OD). The results of this investigation are

presented in the next part.

Analysis of Operating Discrepancy

Variance—(OD)

 

 

The results of the three-way ANOVA on the levels of 00 are

summarized in Table 6.31. A review of the levels of significance

found for the three-way interaction and each of the two-way inter—

actions indicates that the step-by-step procedure employed above to

investigate each such interaction is not required in this case. In

other words, as none of the interactions was significant at a==.lO

a direct interpretation may be made of each of the main effect without

a serious risk of error. However, due to the fact that the procedure

employed to this point systematically extracts the maximum possible

information from the data, and because the penalty of an error in

interpretation would be most serious at this point, the same procedure

of analysis is again presented before direct interpretation is made.

Figure 6.5 indicates the extent of the three-way interaction.

Though not significant (a<:.10), some interaction is evident.

However, the ordinal ranking of the forecasting techniques by levels

of 00 is consistent over the three levels of OCTV for each demand

pattern.
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Table 6.31 Summary of Three-Way ANOVA on 00

Degrees of Mean Significance

Source of Variance Freedom Square F of F

Main effects 6 351,437 49.774 .001

FORTECH 3 149,269 21.128 .001

OCTV 2 710,615 100 583 .001

DMD 1 239,580 33.911 .001

2-Way interactions 11 8,238 l 166 .306

FORTECH OCTV 6 7,067 1.000 .424

FORTECH DMD 3 13,733 1.944 .121

OCTV DMD 2 3,505 .496 .609

3-Way interaction 6 5,538 .784 .583

FORTECH OCTV DMD 6 5,538 .784 .583

Explained 23 97,063 13.739 .001

Residual 2,376 7,065

Total 2,399 7,928

 

aRounded off to the nearest whole number.
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) P. R. Winters Forecast

Figure 6.5 Effects of Three-Way Interaction of Main Effects on OD.
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The second three-way ANOVA completed to analyze 00 is summarized

in Table 6.32. As for each of the previous response variables, this

second ANOVA reflects results obtained when those runs with either

perfect forecasts or constant order cycle times were eliminated from

the analysis. Despite this fact, a comparison of the levels of sig-

nificance in Table 6.32 with those found previously in Table 6.31

shows only minor changes.

The two-way ANOVA's completed on the levels of 00 are summarized

in Tables 6.33 and 6.34. Under demand pattern 1 the interaction between

FORTECH and OCTV was relatively insignificant in its impact. Under

demand pattern 2, however, the interaction is significant (a<<.10).

In addition, the main effects of OCTV are significant at a<:.Ol, given

demand pattern 1. This is in contrast to the result for the main

effects of OCTV when demand pattern 2 was given. Here, the effects

of OCTV were not significant at a==.10.

To further investigate these results, a series of one-way

ANOVA's was completed. Six analyses were completed on the levels

of 00 by levels of FORTECH. The levels of significance as well as

the conditions defining each run are detailed in Table 6.35. The

results of the Scheffé tests (a = .05) completed to analyze those

F values which were significant are outlined below.

1. DMDl-OCTV1:

a. the level of OD under the Brown and Trigg and Leach

techniques was significantly higher than that under

the perfect or Winters forecast;
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Table 6.32 Summary of Three-Way ANOVA on 00: No Perfect Forecasts or

Constant Order Cycle Times

 
 

 

Degrees of Mean a Significance

Source of Variation Freedom Square F of F

Main effects 4 94,630 10.804 .001

FORTECH 2 51,837 5.918 .003

OCTV 1 82,287 9.394 .002

DMD 1 192,559 21.984 .001

2-Way interactions 5 7,938 .906 .476

FORTECH OCTV 2 12,138 1.386 .251

FORTECH DMD 2 5,348 .611 .543

OCTV DMD 1 4,716 .538 .463

3-Way interaction 14,269 1.629 .197

FORTECH OCTV DMD 2 14,269 1.629 .197

Explained 11 40,613 4.637 .001

Residual 1,188 8,759

Total 1,199 9,051

 

aRounded off to the nearest whole number.
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Table 6.33 Summary of Two-Way ANOVA on 00 Given Demand Pattern 1: No

Perfect Forecasts or Constant Order Cycle Times

 

 

 

Degrees of Mean a Significance

Source of Variation Freedom Square F of F

Main effects 36,848 4.767 .003

FORTECH 23,672 3.062 .048

OCTV 63,202 8.176 .004

2-Way interaction 448 .058 .944

FORTECH OCTV 448 .058 .944

Explained 5 22,288 2.883 .014

Residual 594 7,730

Total 599 7,851

 

aRounded off to the nearest whole number.
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Table 6.34 Summary of Two-Way ANOVA on 00 Given Demand Pattern 2: No

Perfect Forecasts or Constant Order Cycle Times

 

 

 

Degrees of Mean Significance

Source of Variation Freedom Square F of F

Main effects 3 30,276 3.093 .027

FORTECH 2 33,513 3.424 .033

OCTV 1 23,801 2.432 .119

2-Way interaction 2 25,958 2.652 .071

FORTECH OCTV 2 25,958 2.652 .071

Explained 5 28,549 2.917

Residual 594 9,789

Total 599 9,945

 

aRounded off to the nearest whole number.
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Table 6.35 Mean Values and Levels of Significance--One-Way ANOVA's on

00 By FORTECH

 

 

 

 

FORTECH

Experimental Significance

Conditions Perfect R.G.B T. 81L. P.R.W. of F

1. DMDl-OCTV1 48 69 63 50 .0003

2. DMDl-OCTV2 89 110 98 91 .1704

3. DMDl-OCTV3 91 134 117 110 .0383

4. DMDZ-OCTVl 51 92 91 60 .0000

5. DMDZ-OCTVZ 99 144 142 101 .0001

6. DMD2-0CTV3 105 145 141 140 .0554

 

b. there was no significant difference found in a comparison

of 00 between the perfect and Winters forecasts or between

the Brown and Trigg and Leach techniques.

3. DMDl-OCTV3:

a. the level of 00 under the Brown forecast was significantly

higher than that under each of the other techniques;

0. there was no significant difference in a comparison of

levels of 00 under the perfect, Trigg and Leach and

Winters techniques.

4. DMDZ-OCTVl: (Same results as those detailed for DMDl-OCTV1.)

5. DMDZ-OCTVZ: (Same results as those detailed for DMDl-OCTV1.)
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Table 6.36 provides the experimental conditions defining the

eight one-way ANOVA's on 00 by OCTV as well as the levels of signif-

icance determined for each. The results of the Scheffé tests (a==.05)

on each of those F values which were significant are outlined below.

7. DMDl-FORTECHl:

a. the level of DO under 0CTV1 was significantly lower than

that under OCTV2 or OCTV3;

b. there was no significant difference in the level of 00

under 0CTV2 and OCTV3.

8. DMDl-FORTECH2: (Same results as those detailed for DMDl-

FORTECHl.)

9. DMDl-FORTECH3: (Same results as those detailed for DMDl-

FORTECHl.)

10. DMDl-FORTECH4: (Same results as those detailed for DMDl-

FORTECHl.)

ll. DMDZ-FORTECHl: (Same results as those detailed for DMDl-

FORTECHl.)

12. DMD2-FORTECH2: (Same results as those detailed for DMDl-

FORTECHl.)

l3. DMDZ-FORTECHB: (Same results as those detailed for DMDl-

FORTECHl.)

l4. DMDZ—FORTECH4:

a. the level of 00 under OCTV1 was significantly less than

that under OCTV2 or OCTV3; and

b. the level of 00 under OCTV2 was significantly less than

that under OCTV3.
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Table 6.36 Mean Values and Levels of Significance--One-Way ANOVA's on

 

 

 

 

00 By OCTV

OCTV

Experimental Significance

Conditions OCTV1 OCTV2 OCTV3 of F

7. DMDl-FORTECHl 48 89 91 .0001

8. DMDl-FORTECHZ 69 110 134 .0000

9. DMDl-FORTECH3 63 98 117 .0000

10. DMDl-FORTECH4 50 91 110 .0000

ll. DMDZ-FORTECHl 51 99 105 .0002

12. DMDZ—FORTECHZ 92 144 145 .0000

13. DMDZ-FORTECH3 91 142 141 .0001

14. DMD2-FORTECH4 60 101 140 .0000

 

The next part provides a summary comparison of the results of

the analyses performed for each response variable and a review of

economic variables.

System Performance--Economic Variables
 

The previous sections of this chapter have reviewed the results

of the statistical analysis required to evaluate the hypotheses pre-

sented in Chapter V. The purpose of this section is to provide a

comparison of these results and their impacts on the economic per-

formance of the simulated distribution network. Two tables are

included to serve this purpose. Each is reviewed in detail.
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Table 6.37 provides a summary of system performance under

demand pattern 1. The first two columns provide the experimental

conditions employed throughout this research. The next four columns

summarize the mean levels of previously analyzed response variables.

As each of these variables has been discussed in detail, further

elaboration is not included except to relate them to the economic

response variables provided in the last three columns.

The first three rows of Table 6.37 illustrate variations in

system performance across the levels of OCTV when given a perfect fore- .

cast. As expected, the system was most profitable under the perfect

forecast and a constant order cycle time (OCTV1). However, a comparison

of the first three rows indicate several additional results. First,

while it is logical that both the OD and stockouts increased directly

with OCTV, so also did the level of average inventory. Second, total

sales, cost, and profit each decreased as average inventory increased.

These results are more clearly evident in Table 6.38 which

shows the level of each response variable as a percentage of its corre-

sponding level under OCTV1. This format will be employed repeatedly

and in each case it is critical to note that the entries in the first

four columns represent percentages of mean values while the final four

are percentages of total values.

A review of Table 6.38 indicates that increases in the level

of 00 were directly related to increases in the level of stockouts

and decreases in the sales less distribution cost. Recall, however,

that the cost of a stockout in this analysis was limited to sales
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which were lost as a direct result of the stockout and in no way

influenced future demand. Thus, while an 88% increase in the mean

level of stockouts from OCTV1 to OCTV2 was partially responsible for

a 4% decrease in both total sales and total profits, this result would

certainly be much greater in an actual market situation.

Table 6.39 provides percentage values of each response variable

under the R. G. Brown technique. Here, the same relationships noted

above under a perfect forecast were again evident. Specifically,

while F0 was relatively constant across OCTV, changes in the mean

level of 00 had a direct impact on system performance. In addition,

average inventory again increased as the level of stockouts did. This

result indicates that variation in the level of average inventory is

directly related to increased variation in order cycle times. Finally,

the increase in the level of stockouts is considerably less than the

combined increases in F0 and 00. In comparison with Table 6.38 this

is a direct indication of the canceling effect between F0 and 00.

Tables 6.40 and 6.41 dealing with the Trigg and Leach and the

Winters techniques, respectively, provide additional support to the

relationships noted above. The percentage increases in F0 detailed

in Table 6.41 for the Winters technique are greater than the corre-

sponding increases for any other forecast. Reference to Table 6.37

indicates that for the Winters technique the mean level of F0 actually

increased from 102 to 176 between OCTV1 and OCTV3.

The impact of this level of F0 is clear in a comparison of

the Winters-OCTV3 values to those of Brown-OCTV2. Here, the level of
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00 is identical at 110 in each case. The Brown technique, however,

had an F0 of 105 compared to the 176 for Winters. Thus, the differ-

ences in the sales less distribution cost quantities of the system

under these two conditions may be partially attributed to the higher

FD under the Winters technique. The word "partially" is used due to

the fact that this comparison does not consider variations about mean

levels of the response variables.

Table 6.42 presents a summary of system performance under

demand pattern 2. In comparison to the summary for demand pattern 1

(Table 6.37) several important points are evident. First, while the

levels of OD under DMDZ are higher than those under DMDl, the increases

are much smaller than those for FD. These significant increases in F0

led to a higher level of stockouts in each case. Second, the average

inventory values under each demand pattern show little difference when

considered across all conditions. These factors lead directly to the

higher level of stockouts under DMDZ.

Comparisons of the response variables across the levels of OCTV

are presented in Tables 6.43 through 6.46 for each of the forecasting

techniques. Table 6.43 presents changes in response variables when

given a perfect forecast of DMDZ. A review of this table shows the

same relationships which were noted under a perfect forecast of DMDl

(Table 6.38). Specifically, increases in the levels of 00 were directly

related to increases in the level of stockouts and decreases in the

sales less distribution cost quantity.
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Table 6.44 shows performance given and R. G. Brown forecast

of DMD2. Here, the system was most profitable under OCTV2. In com-

parison with the values for OCTV1 it is apparent that despite a

significant increase in the average level of 00, total sales remained

relatively constant while cost dropped seven percentage points.

Table 6.45 shows results under a Trigg and Leach forecast of

DMDZ. Similar to Table 6.44, the system was most profitable under

OCTV2. However, it is surprising that the level of stockouts under

0CTV2 was only 91% of the level under OCTV1. This increase in service

level was achieved despite a 56% increase in the mean level of 00.

Despite the 5% reduction in FD, it is more likely that the increased

service level resulted from variations below the mean expected lead

times during the peak seasonal demand.

Table 6.46 details similar results under the P. R. Winters

technique. Here, a 17% increase in FD and 133% increase in 00 were

accompanied only by a 1% decrease in total profit. The increases in

F0 and 00, however, reflect changes in mean levels per period. Total

sales decreased only 3% accompanied by a 13% decrease in cost. These

factors account for the 1% difference in sales less cost between

OCTV1 and OCTV3.

Conclusion
 

This chapter has presented the results of the analysis performed

to investigate the general hypotheses developed in Chapter V. The first

section detailed the results of the analysis employed to determine the
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sets of smoothing constants used through the remainder of the research.

The second section reviewed the results of the analysis of variance

procedure employed to investigate the levels of selected response

variables. The final section presented a summary comparison of system

performance including a review of system sales, costs and profits.

The next and final chapter details the conclusions amenable

from the data reviewed in this chapter. In addition, the limitations

of this research are reviewed and significant areas for future research

are noted.



CHAPTER VII

CONCLUSIONS

Introduction
 

The purpose of this research has been to determine the impacts

of variations in the levels of forecast accuracy, demand uncertainty,

and lead time variability on the performance of a simulated physical

distribution system. The specific results of the analysis were

reported in Chapter VI. The purpose of this chapter is to discuss

the conclusions drawn from the hypotheses and findings and to suggest

implications for the planning and management of physical distribution

operations.

In the first section, the hypotheses and findings are inte-

grated and specific conclusions are reported regarding acceptance or

rejection. For each general hypothesis, several subhypotheses were

generated and tested as a result of the step-by-step analysis of

variance procedure. These are also reviewed and conclusions drawn.

In the second section, generalized conclusions are reported

based upon the analysis of the first section.

Next, the implications of the research for physical distribution

management are reviewed. Particular emphasis is given to the length of

the operational planning period and accepted practices for reducing

system uncertainty.
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The last section looks into the limitations of this research

and suggests areas which should be particularly fruitful for future

research.

Integration of Findings and Hypotheses
 

This section integrates the specific hypotheses for each

response variable with the results detailed in Chapter VI. The section

is divided into five parts, each dealing with a specific response vari-

able. These variables, in order of their presentation are average

inventory, stockouts, sales, Forecast Discrepancy and Operating

Discrepancy.

Average Inventory
 

The first hypothesis states that variations across all levels

of the three independent variables will have a significant impact upon

the level of average inventory held at the DC. This hypothesis was

accepted. However, the data indicated a highly significant interaction

between the pattern of demand placed against the DC, the variance in

expected lead times and the accuracy of the forecasting technique

employed. Given such an interaction, only one inference can be drawn

across all three of the independent variables. That is, a perfect

forecast consistently results in the highest level of average inventory

(when safety stocks are not employed) across all demand patterns and

levels of order cycle time variation analyzed in this research. For

each of the non-perfect (i.e., operational) forecasts, specific

qualifications are required to draw conclusions.
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Hypothesis 2 stated that there would be a significant

difference in the level of average inventory held across all non-

perfect forecasts. This hypothesis is confirmed. Thus, in addition

to the conclusion drawn for the first hypothesis, it may also be said

that the level of average inventory is significantly different across

variations in forecast accuracy, order cycle times and demand patterns.

In addition, the combined effects of the levels of these variables on

average inventory are not additive. That is, the levels of these

variables indicate a high degree of interaction and the effects of

any single variable may not be said to result in a consistently higher

or lower level of average inventory.

For hypothesis 2-a, generalizations may be rendered. Here,

the hypothesis that given demand pattern 1 (DMDl), there will be

significant differences in the level of average inventory when

considered across the non-control levels of forecast accuracy and

order cycle time variation, was confirmed. In addition, although

the interaction between the non-control levels of the two variables

was significant, the ranking of forecasting techniques by levels of

average inventory was consistent across each level of order cycle time

variance. Specifically, the Brown technique consistently resulted in

the highest level of average inventory while the Trigg and Leach and

Winters techniques ranked second and third, respectively. The dif-

ferences, though consistent, were not significant in each case.

Hypothesis 2-a-1, which considered the significance of the

differences between all levels of forecast accuracy given DMDl and
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a constant order cycle time (OCTV1), was confirmed. Here, the post-hoc

analysis illustrated two specific significant differences. First, the

level of average inventory under the Winters technique was significantly

lower than that under each of the other techniques. Second, the level

of average inventory under the Trigg and Leach technique was signifi-

cantly lower than that under the perfect forecast. There was no

significant difference found in the comparisons between the Brown

and either the perfect forecast or Trigg and Leach.

Hypotheses 2-a-2 and 2-a-3 which considered the same rela-

tionship under OCTV2 and OCTV3, respectively, were also confirmed.

In addition, the results of the Scheffé tests for each of these

hypotheses detailed exactly the same differences noted above for

0CTV1. Thus, given DMDl, it was concluded that for each level of

OCTV the Winters technique resulted in an average inventory which

was significantly lower than the remaining forecast techniques. The

Trigg and Leach technique resulted in a significantly lower level

than that achieved under a perfect forecast.

Hypotheses 2-a-4 through 2-a-7 considered the differences in

the levels of average inventory across the levels of OCTV for each

forecasting technique given DMDl. Here, only hypothesis 2-a-8,

concerning average inventory across the levels of OCTV when given

the P. R. Winters forecast of DMDl, was confirmed. The corresponding

Scheffé test illustrated that the significant difference occurred

between the level of average inventory under OCTV2 in comparison to

OCTV3. Specifically, the level of average inventory under OCTV3 (the
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highest level of operating uncertainty) was significantly lower than

that held under OCTV2.

Hypothesis 2-b stated that given DMDZ, the levels of average

inventory would be significantly different when considered across the

non-control levels of OCTV and FORTECH. This hypothesis was confirmed.

However, the significance of the interaction between the levels of OCTV

and FORTECH indicated that specific levels of each of these variables

must be considered in reaching any conclusion. No generalizations may

be made concerning the level of average inventory across the non-control

levels of OCTV and FORTECH when given DMDZ.

Hypotheses 2-b~l, 2-b-2, and 2-b-3 considered the nature of

the differences in level of average inventory held across all four

forecasting techniques for OCTV1, OCTV2 and OCTV3, respectively.

Each was confirmed. The Scheffé test performed indicated that the

nature of the significant differences was not consistent across the

levels of OCTV. For OCTV1 and OCTV3, the level of average inventory

was significantly higher under the control (perfect) forecast than

under the non—control (Brown, Trigg and Leach, and Winters) forecasts.

There was no significant difference between the levels of average

inventory under the non-control forecasts.

For OCTV2, the results were more complicated. Here the

Scheffé test indicated two significant differences. First, the level

of average inventory under the perfect forecast was significantly

higher than that under each of the non-control forecasts. Second,

the level of average inventory under the Winters technique was
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significantly lower than that under the Brown and Trigg and Leach

techniques. Thus, similar to the results under DMDl, no significance

was found between the average inventory levels held under the Brown

versus the Trigg and Leach technique for any level of OCTV.

Hypotheses 2-b-4 through 2-b-7 tested the levels of average

inventory across the levels of OCTV for each of the forecasting tech-

niques, given DMDZ. Here, hypotheses 2-b-4 and 2-b-5 were rejected.

No significant difference was found in the levels of average inventory

across the levels of OCTV for either the perfect or the Brown forecasts.

Hypotheses 2-b-6 and2-b-7 were confirmed. For hypothesis 2-b-6, the

Scheffé test indicated that given a Trigg and Leach forecast of DMDZ,

the level of average inventory held under OCTV2 was significantly higher

than that held under OCTV1 or OCTV3. The Scheffé test on hypothesis

2-b-7 produced an opposite result. Here, given the Winters' forecast

of DMDZ, the level of average inventory under OCTV2 was significantly

lower than that held under OCTV1 or 0CTV3.

Stockouts

Hypothesis 1 states that variations across all levels of the

independent variables would have a significant impact on the level of

stockouts. This hypothesis was confirmed. Not only was each of the

independent variables significant, the three-way interaction was also

highly significant. Thus, the levels of stockouts experienced across

the levels of any single independent variable showed significant

variations when analyzed over all combinations of the two remaining
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independent variables. As such, the level of each independent variable

must be specified when making any statement concerning stockouts.

Hypothesis 2 stated that there would be significant differences

in the levels of stockouts when considered across all non-control levels

of the three independent variables. This hypothesis was also confirmed.

Thus, even when the effects of perfect forecasts and constant order

cycle times were not considered, significant variations in the levels

of stockouts still occurred. In addition, while each of the main

effects was significant, they were not additive as indicated by the

significance of both the two-way and three-way interactions.

Hypotheses 2-a and 2-b examined stockout levels over all

combinations of the non-controlled order cycle time variance and

forecasting techniques given demand patterns 1 and 2. Each was

confirmed. Thus, it may be concluded that variations in the non-

control levels of OCTV and FORTECH do result in significant variations

in the levels of stockouts over both demand patterns. In addition,

the interaction between OCTV and FORTECH was significant under each

demand pattern. As such, even when a specific demand pattern is given,

the effects of variations in OCTV and FORTECH upon the resulting level

of stockouts are not additive.

Hypotheses 2-a-1, 2-a-2, and 2-a-3 considered differences in

the levels of stockouts occurring across the four levels of FORTECH

given DMDl and either OCTV1, OCTV2, or OCTV3, respectively. While each

was confirmed, the results of the Scheffé tests illustrated that the

nature of the difference was not the same for each level of OCTV. For
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DMDl and either OCTV1 or OCTV3, the same significant differences

were noted. First, the level of stockouts under the perfect forecast

were significantly lower than the level experienced under each of the

remaining forecast techniques. Second, the level of stockouts under

the Winters technique was significantly higher than that under the

Brown or Trigg and Leach techniques.

Given DMDl and 0CTV2, only one significant difference was found

through the Scheffé test. Here, the level of stockouts under the

Winters technique was significantly higher than the level under each

of the other techniques. No significant difference was found between

the perfect, the Brown, and the Trigg and Leach forecasts.

Hypotheses 2-a-4 through 2-a-7 evaluated differences in the

levels of stockouts across the three levels of OCTV for each forecast

technique under DMDl. First, hypothesis 2-a—4, which stated that there

would be significant differences in the levels of stockouts across the

levels of OCTV given a perfect forecast of DMDl, was confirmed. The

Scheffé test subsequently performed illustrated that the level of

stockouts under OCTV1 was significantly lower than the levels under

OCTV2 and OCTV3.

Given the Brown forecast of DMDl, hypothesis 2-a-5 was con-

firmed. Here, the level of stockouts under OCTV1 was significantly

lower than the level experienced under OCTV3. Exactly the same

results were noted for hypothesis 2-a-6 which dealt with the Trigg

and Leach technique.
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Hypothesis 2-a-7 considering stockouts across OCTV given

a perfect forecast of DMDl was also confirmed. The Scheffé test

illustrated that the level of stockouts under OCTV3 was significantly

higher than the corresponding levels under OCTV1 and OCTV2.

Hypotheses 2-b-1, 2-b-2 and 2-b-3 considered the nature of

the differences in stockout levels across all forecasting techniques

for DMDZ and either OCTV1, OCTV2, or OCTV3, respectively. Each

hypothesis was confirmed. For each hypothesis, the Scheffé test

indicated that the stockout level under the perfect forecast was

significantly less than all other forecasts. This was the only

difference which was significant for OCTV1. For 0CTV2 and OCTV3,

however, a second significant difference resulted. For 0CTV2, stock-

outs under the Winters forecast were significantly higher than under

the other forecasts. A contrasting result was found under 0CTV3, the

stockouts under the Winters technique being significantly lower than

those under the Brown and Trigg and Leach forecasts.

Hypotheses 2-b-4 through 2-b-7 tested the levels of stockouts

across the levels of OCTV for each of the forecasting techniques under

0M02. Here, hypotheses 2-b-5 and 2-b-6 were rejected, indicating no

significant differences between stockout levels across the OCTV's for

either a Brown or Trigg and Leach forecast of DMDZ. For hypothesis

2-b-4, the level of stockouts under 0CTV1 was significantly lower than

the corresponding level under OCTV2 and OCTV3 given a perfect forecast,

2-b-7, was also accepted. Here, the Scheffé test indicated that the

level of stockouts under OCTV2 was significantly higher than for the

corresponding levels of OCTV1 and OCTV3.
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_s_a_1_e_s_

Hypothesis l stated that there would be significant differences

in sales levels when considered across all levels of the independent

variables. This hypothesis was confirmed. The specific nature of the

difference(s), however, cannot be statistically interpreted due to the

highly significant interaction between independent variables. The only

generalization across all levels of OCTV and both demand patterns is

that the perfect forecast consistently resulted in the highest level

of sales.

Hypothesis 2 stated that significant differences would be found

in the levels of sales when considered across all non-control levels of

the independent variables. This hypothesis was confirmed. As with each

of the previous response variables, this indicates a significant vari-

ation in sales even when perfect forecasts and constant order cycle

times are not considered. In addition, the effects of the non-control

levels of the independent variables on sales was not additive. In

other words, a significant interaction was again indicated.

Hypothesis Z-a considered the main effects of the non-control

levels of OCTV and FORTECH given DMDl. This hypothesis was confirmed

and the two-way interaction was not significant. Thus, it may be

concluded that given DMDl, the Brown forecast consistently resulted

in a higher level of sales than the Trigg and Leach technique. The

Trigg and Leach technique consistently resulted in a higher level of

sales then the Winters technique. In each of the comparisons, however,

not all of the differences were significant.
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Hypothesis 2-a-l considered the significance of the differences

between the level of sales when analyzed across the four forecasting

techniques given OCTVl and DMDl. This hypothesis was confirmed. The

Scheffé test indicated two significant differences. First, the level

of sales under the perfect forecast was significantly higher than that

under each other forecasting technique. Second, the sales level under

the Winters technique was significantly lower than that under each of

the other techniques.

Hypothesis 2-a-2 was rejected. There was no significant

difference in sales level across forecasting techniques given 0CTV2

and DMDl.

Given OCTV3 and DMDl, hypothesis 2-a-3 was confirmed. The

Scheffé test indicated the sales achieved under Winters was signifi-

cantly lower than the perfect or the Brown forecast. There was no

significant difference in sales between the Trigg and Leach and each

remaining technique.

Hypotheses 2-a-4 through 2-a-7 considered the differences in

sales levels across the levels of OCTV for each forecasting technique,

given DMDl. Here, hypotheses 2-a-4 and 2-a-5 which examined the

perfect and Brown forecasts, respectively, were rejected. Hypotheses

2-a-6 and 2-a-7, which considered the Trigg and Leach and Winters

forecasts, respectively, were each confirmed. In addition, the Scheffé

tests indicated that the nature of the difference was identical for

each. Specifically, for the Trigg and Leach and Winters forecasts,

the sales achieved under OCTVl were significantly higher than under

OCTV2 and 0CTV3.
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Hypothesis 2-b stated that there would be a significant

difference in the level of sales when examined across all non-control

levels of the independent variables given DMDZ. This hypothesis was

accepted. However, while each of the main effects of the non-control

independent variables as well as their interaction was significant in

hypothesis 2-a (DMDl) only the interaction was significant under DMDZ.

When considered across both demand patterns, two conclusions may be

made: (l) in each case, the interaction between the levels of OCTV

and FORTECH is highly significant, and (2) in each case the perfect

forecast consistently resulted in the highest level of sales.

Hypotheses 2-b-l through 2-b-7 considered sales levels given

DMDZ. Hypotheses 2-b-l, 2-b-2, and 2-b-3 examined sales differences

across all forecasting techniques given DMDZ and either 0CTVl, 0CTV2,

or 0CTV3, respectively. Each was confirmed. The results of the Scheffé

tests revealed that for each level of OCTV the only significant differ-

ence occurred between the level of sale under perfect forecast in

comparison to that under each of the other forecasts. Thus, while

the Winters technique resulted in a higher level of sales than either

the Brown or Trigg and Leach techniques under both 0CTVl and 0CTV3,

the differences were not significant.

Hypotheses 2-b-4 through 2-b-7 tested the levels of sales

across each level of OCTV for each of the forecasting techniques.

Here, hypotheses 2-b-4 and 2-b-5, which considered the sales across

OCTV given a perfect and a Brown forecast, respectively, were rejected.

Thus, given DMDZ the level of OCTV did not have a significant impact

on the sales achieved under either technique.
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Hypotheses 2-b-6 and 2-b-7 were accepted. The Scheffé test

indicated that for the Trigg and Leach (hypothesis 2-b-6) sales levels

achieved under 0CTV3 was significantly lower than under 0CTVl and

OCTV2. For the Winters technique (hypothesis 2-b-7), however, the

level of sales under OCTV3 was significantly higher than the level

under 0CTV2.

The results of the hypotheses relating to DMDZ permit only one

generalization. That is, given a highly variable demand pattern, no

specific results concerning the level of sales may be predicted without

first qualifying the level of variation in the order cycle times and

the forecasting technique in use.

Forecast Discrepancy (FD)
 

Hypothesis l stated that there would be significant differences

in the levels of FD when considered across all levels of the independent

variables. Hypothesis 2 stated that such differences would be found

when considering FD across all non-control levels of the independent

variables. Each was confirmed. This result, for hypothesis l, was

expected in that FD under the perfect forecast was zero in all cases.

The confirmation of hypothesis 2, however, indicated a significant

difference in the accuracy of the three non-control forecasts. In

addition, the three-way interaction was also found to be significant

in each case indicating that FD varies across the level of OCTV as well

as that of DMD and FORTECH. Conclusions as to the nature of this

evidenced relationship are reached in the hypotheses below.
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Hypothesis 2-a tested the significance of the differences

in the level of FD given DMDl and the non-control level of OCTV and

FORTECH. This hypothesis was confirmed. Not only did each of the

main effects have a significant impact on accuracy, but the interaction

of these effects was significant as well. Thus, even when DMDl was

specified as a constant, there was a significant variation in forecast

accuracy when considered across the non-control levels of OCTV and

FORTECH.

Hypotheses 2-a-l and 2-a-2 tested the significant difference

in FD across all forecasting techniques given 0CTVl and 0CTV2. Each

was confirmed. However, the subsequent Scheffé test indicated that

for each hypothesis the only significant difference was between the

perfect forecast and the remaining three. There was no significant

difference found between the FD levels across the non-control forecast

for either 0CTVl or 0CTV2.

A significant difference was found in the Scheffé test for

hypothesis 2-a-3 considering 0CTV3. Here, the Winters technique was

significantly less accurate than the other three. Thus, given a highly

variable order cycle time (OCTV3) the Brown and the Trigg and Leach

techniques were significantly more accurate than the Winters technique.

Additional information regarding relative accuracy resulted

from the analysis of hypotheses 2-a-4 through 2-a-7 which considered

variations in the levels of FD under each forecasting technique across

OCTV levels. Here, hypothesis 2-a-4, considering the perfect forecast

was rejected. Hypotheses 2-a-5 and 2-a-6, considering Brown and Trigg
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and Leach were also rejected. The only significant difference in

technique accuracy across levels of OCTV was found in hypothesis 2-a-7.

Here, the level of FD for the Winters technique was significantly higher

under 0CTV3 than either 0CTVl or 0CTV2. Thus, depending on the type of

forecasting technique which is being employed, consideration of the

variation of order cycles must be made when reviewing forecast accuracy.

The necessity of this constraint is even more clear upon a review of

the hypotheses below.

Hypothesis Z-b tested the significance of the differences in

FD, given DMDZ, across the non-control level of FORTECH and OCTV.

Similar to the conclusion reached for hypothesis Z-a (considering

the same relationships under DMDl) this hypothesis was confirmed.

However, while each of the main effects as well as their interaction

was significant under DMDl, only the interaction was significant under

DMDZ. However, the next hypotheses examined indicate that the lack of

significance for the main effects under DMDZ was due to the confounding

effects of the interaction.

Hypotheses 2-b-l through 2-b-3 tested the significance of

differences in FD for each OCTV level across the four forecasting

techniques, given DMD2. Each was confirmed because of the inclusion

of the perfect forecast. However, the Scheffé tests indicated addi-

tional significant differences under 0CTVl and 0CTV3. In each case,

Winters' technique was significantly more accurate than either the

Brown or Trigg and Leach. Only under 0CTV2 was there no significant

difference between the non-control forecasting techniques.
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Hypotheses 2-b-4 through 2-b-7 provided further support for

the consideration of OCTV in statements regarding forecast accuracy.

Hypotheses 2-b-4, 2-b-5 and 2-b-6 testing variations in the accuracy

of the perfect, Brown, and Trigg and Leach forecasts, respectively,

across OCTV level were rejected. The level of order cycle time

variance did not significantly impact forecast accuracy. However,

a significant impact was indicated for the accuracy of the Winters

technique in the confinnation of hypothesis 2-b-7.

Earlier similar results were reported for hypotheses 2-a-4

through 2-a-7, when the only significant difference resulted for the

Winters technique. In that instance, DMDl was given and the Scheffé

test indicated the accuracy of Winters' technique to be significantly

less under 0CTV3 than either OCTVl or 0CTV2. Given DMDZ, the Scheffé

test subsequent to hypothesis 2-b-7 found an opposite result. Here,

the accuracy of the Winters technique was significantly higher under

0CTV3 than it was under 0CTV2. Thus, the level of OCTV had a signif-

icant impact on the accuracy of the Winters technique and the nature

of this impact depends upon both the demand pattern and the level of

OCTV.

Operating Discrepancy (OD)
 

Hypothesis l stated that there would be significant differences

in the levels of OD when considered across all levels of the independent

variables. Hypothesis 2 stated that such differences would be found

when considering the variations in OD across the non-control levels of



235

independent variables. Each was confirmed. However, while the main

effects were significant in each case, none of the three- or two-way

interactions were. The reasons for this are evidenced in the

hypotheses reviewed below.

Hypothesis 2-a tested the significance of the differences in

the level of OD across the non-control levels of OCTV and FORTECH,

given DMDl. This hypothesis was confirmed. In addition, the level

of interaction between the main effects was relatively non-existent,

indicating that the levels of OD are relatively consistent across

each of the forecasting techniques.

Hypotheses 2-a-l, 2-a-2, and 2-a-3 tested the differences in

the levels of DD across each of the forecasting techniques given 0CTVl,

0CTV2 and 0CTV3, respectively, given DMDl.

Hypotheses 2-a-l and 2-a-3 were confirmed. For hypothesis

2-a-l, the results of the Scheffé tests indicated that the 0D level

under the Brown and Trigg and Leach techniques was significantly higher

than the perfect forecast or the Winters technique. Hypothesis 2-a-2,

however, was rejected.

Hypotheses 2-a-4 through 2-a-7 provided further information

on the nature of these differences. These hypotheses tested the

differences in DD across the levels of OCTV under each forecasting

technique. Each was confirmed as expected due to the inclusion of

0CTVl, the constant order cycle time. While the perfect forecast

consistently resulted in a value of zero for FD, such was never the

case in the analysis of the constant order cycle time and OD. In
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each case regardless of the forecasting technique in question, a

significant operating discrepancy was found with a constant order

cycle time. Thus, even given a perfect forecast and a constant order

cycle time, a distribution system may experience discrepancies between

the levels of demand and sales. Further support for this statement is

illustrated below.

Hypothesis 2-b stated that a significant difference would be

found in the level of OD when considered across the non-control levels

of OCTV and FORTECH, given DMD2. This hypothesis was confirmed. In

addition, there was a significant interaction between the main effects

on the level of DO. The nature of this interaction is evidenced in

the conclusion reached regarding hypotheses 2-b-l through 2-b-7.

Hypotheses 2-b-l, 2-b-2, and 2-b-3 tested the levels of DO

across the four forecasting techniques for each level of OCTV, given

DMDZ. Only hypotheses 2-b-l and 2-b-2 were accepted. For each, the

level of DO occurring under Brown and Trigg and Leach was significantly

higher than that under the perfect forecast and Winters' forecast. As

under DMDl, however, the final hypotheses detail the most critical

information.

Hypotheses 2-b-4 through 2-b-7 tested the difference in OD

levels across the levels of OCTV for each forecasting technique,

given DMDZ. Each was confirmed adding additional support to the

corresponding conclusions reached under DMDl. Here again, even when

given a perfect forecast and a constant order cycle time, the test

distribution system experienced a significant level of DO. The
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subsequent Scheffé test illustrated that the OD level under OCTVl

was significantly less than that under OCTV2 or OCTV3, as logically

expected. However, the fact that significant levels of DO are

experienced even under a constant order cycle time bears important

implications for operational decision making.

Generalized Research Conclusions
 

Based on the analysis of simulation results several generalized

research conclusions can be stated. Two tables are presented to aid

development of the inferences drawn below. Each table is based upon

the results presented in Chapter V. Specifically, Table 7.l presents

the mean values of each response variable as a percentage of the aver-

age period demand under DMDl. Table 7.2 provides corresponding data

under DMDZ. Each is employed in the following discussion.

Average Inventory
 

Throughout this research, the order quantity at the DC remained

constant at l0 days of forecasted sales. Any variation in the forecast

thus resulted in a change in inventory levels. The conclusions devel-

oped for average inventory indicate only one constant pattern. For

each demand pattern and each level of order cycle time variation

tested, the perfect forecast consistently resulted in the highest

level of average inventory. This result is evident from an evaluation

of the average inventory percentages in Tables 7.l and 7.2. The

reasons for this result are two.
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Table 7.1 Mean Levels of Response Variables as a Percentage of Average

Period Demand Under DMDl

 

 

 

Average

Inventory Stockouts Sales FD 00

0CTVl:

FORTECHl 29.4 4.9 95.0 0 5.0

FORTECH2 27.9 9.2 9l.O l0.4 7.2

FORTECH3 27.2 9.4 90.6 9.6 6.5

FORTECH4 23.8 l3.5 86.5 l0.6 5.2

0CTV2:

FORTECHl 30.9 9.3 90.7 0 9.2

FORTECH2 28.5 ll.0 89.0 ll.2 ll.4

FORTECH3 27.7 l2.4 87.6 ll.2 l0.2

FORTECH4 25.5 l4.3 85.7 ll.3 9.4

OCTV3:

FORTECHl 32.0 9.5 90.5 0 9.4

FORTECHZ 29.0 l3.3 86.8 ll.3 l3.9

FORTECH3 26.8 l5.7 84.2 ll.4 l2.6

FORTECH4 22.9 22.4 87.7 l8.3 ll.8
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Table 7.2 Means Levels of Response Variables as a Percentage of Average

Period Demand Under DMDZ

 

 

 

Average

Inventory Stockouts Sales FD OD

0CTVl:

FORTECHl 30.6 4.6 95.4 0 4.6

FORTECHZ 22.8 22.0 77.9 25.4 8.1

FORTECH3 22.7 21.5 78.5 24.3 8.0

FORTECH4 22.0 17.7 82.2 16.6 5.3

OCTV2:

FORTECHl 33.0 8.7 91.3 0 8.7

FORTECHZ 23.2 12.1 87.8 24. 12.7

FORTECH3 25.6 19.6 80.4 23.1 12.5

FORTECH4 17.7 28.4 71.6 25. 9.0

OCTV3:

FORTECHl 33.7 9.3 90.7 0 9.3

FORTECHZ 22.3 26.4 73.6 26. 12.8

FORTECH3 21.2 27.0 73.0 26.0 12.4

FORTECH4 22.8 19.4 80.6 19. 12.3
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First, each of the demand patterns employed exhibited

pronounced variations in the level of monthly sales. As specified,

this variation was significantly higher for DM02 than for DMDl. The

perfect forecast was obviously attuned to these changes in each case,

consistently providing an exact identification of the turning points.

This is evidenced by the zero levels of F0 in the tables. Each of the

other forecasts lagged behind changes throughout each demand pattern.

The effect of this lag was indicated by the Scheffé test to be sig-

nificant for each forecast technique.

The second reason is more complicated. In Chapter I the

contention that current operational forecasting techniques are deficient

in the sense that future forecasts (being projections of sales levels)

are biased to the extent that they project the effects of Operating

as well as Forecast Discrepancy was developed. To the extent that

Operation Discrepancy is negative (i.e., shipments arrive later than

expected) the ability of the system to achieve the forecasted level of

sales is reduced. By projecting past sales to estimate future levels

and to set inventory to meet those levels, the forecast and inventory

levels are effectively lowered. The result is that the forecast is

inherently biased and the future performance of the system is adversely

affected.

Each of the confounding factors noted above vary in the impacts

on system inventory depending upon the forecasting technique in use.

This is especially true when the forecast employed is adaptive, altering

the smoothing constant in response to "forecast error" in addition to
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sales. Any inclusion of Operating Discrepancy in the measure of

forecast error will result in unjustified changes in the smoothing

constant. As the "error" of the forecast increases, additional weight

is given to more recent period's sales in generating new forecasts.

As noted above, however, recent sales potential is reduced by the

existence of Operating Discrepancy causing the forecast error to

appear larger than it really is. Thus, the impacts of Operating

Discrepancy on inventory, forecast accuracy and sporadic fluctuations

of the forecast itself are increased when adaptive techniques are

employed. In addition, it should be noted that these effects are

circular and dynamic within the system, biased forecasts resulting

in biased performance over time and vice versa.

The effects of these confounding factors are illustrated in

a review of Table 7.1. The level of F0 under each forecasting technique

increased as the level of OCTV increased. For example, the FD of Trigg

and Leach as a percentage of demand was 9.6 under OCTV1, 11.2 under

OCTV2 and 11.4 under OCTV3. In Table 7.2 the relationship is more

complicated. The Brown and Trigg and Leach techniques were slightly

more accurate under OCTV2 while the opposite is true of the Winters

technique. This contrast is an indication that the relationship

between FD and OCTV varies according to the demand pattern in question.

In other words, this reflects the three-way interaction between OCTV,

DMD and FORTECH on the level of FD which was found to be significant

in Chapter VI.
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Operationally, this impact may be difficult to identify when

safety stocks are employed. To the extent that such safety stocks

eliminate stockouts, the bias in the forecast, and thus inventory,

will be reduced. However, serious implications still remain.

A comparison of the average inventory percentage of the perfect

forecast (FORTECHl) indicates a second important result. For each

demand pattern, the level of average inventory as a percentage of

average demand increased as the level of order cycle time variability

increased. As indicated by the Scheffé tests (see Figure 6.6, page

175), however, none of these differences was significant and may be

assumed to have occurred by chance at a==.05. In addition, in comparing

the levels of average inventory of each forecasting technique across the

levels of OCTV, a similar result was not found.

In addition to the above factors, it is also evident that the

relatively more simple forecasting techniques generally resulted in

the higher levels of average inventory. As a review of Figure 6.1

(page 152) indicates this was true in all cases under demand pattern 1.

More significant, however, is that the average inventory levels under

the more simple forecasting techniques were less affected by increases

in order cycle time variability. Thus, the inventory levels under

Brown were relatively constant across the levels of OCTV whereas

those under the Winters technique varied significantly.

For any of the forecasting techniques, the impact of changes

in the level of OCTV upon average inventory is related to the variabil-

ity of the demand pattern. Thus, under the more stable pattern of DMDl,
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system performance (in terms of average inventory) under each

forecasting technique was relatively stable across OCTV levels.

Given the greater variation of DM02, however, the impact of OCTV

upon average inventory levels was more pronounced. Again, however,

the simpler forecasting techniques were the most consistent. Thus,

the more complex the forecasting technique the greater the confounding

effects of OCTV upon average inventory levels, regardless of the demand

pattern.

The affects of increased variability in the demand pattern were

also significant.. Consider the average inventory levels under DMDl

(Table 6-37, page 205) as compared to those under DM02 (Table 6.42,

page 212). Here, despite the increased level of demand, the average

inventory levels were relatively consistent between DMDl and DM02.

Stockouts, however, increased by more than 100% for both Brown and

Trigg and Leach. The increase under the Winters technique was less,

although still significant. The same relationship is evident in a

comparison of system sales as a percentage of demand in Tables 7.1

(page 238) and 7.2 (page 239). Here, sales as a percentage of demand

were significantly lower under DM02 for each forecasting technique

regardless of the level of OCTV. This decrease is primarily due to

the fact that the smoothing constants for each technique remained

constant across the demand patterns. Had the constants been increased

when forecasting DM02, it is logical that each would have been able to

adapt more quickly to changes in the level of demand from period to

period. Recall, however, that the Trigg and Leach technique is by
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design adaptive. Regardless of this fact, this technique did not

result in consistently higher levels of average inventory. On the

contrary, as noted above, this technique was more adversely affected

by a combination of increased demand and order cycle time variability

than the more simplistic Brown technique.

Based on the above factors, general conclusions as to the

levels of average inventory are outlined as follows:

1. Increases in the level of demand variability result in

increased variation in the level of average inventory;

Increases in the level of order cycle time variability

result in increased variation in the level of average

inventory;

Increased complexity in the forecasting technique employed

did not nullify the adverse impacts of increased demand

variability;

Average inventory levels are less affected by increases in

the level of order cycle time variability when a more simple

forecasting technique is employed; and

The greater the variability in the level of demand the

greater the impact on average inventory levels caused by

increases in the level of order cycle time variability.

The next section reviews conclusions to system performance

in terms of sales and stockouts.
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Sales and Stockouts
 

Inferences regarding sales and stockouts are presented together

because when combined they represent total demand. As such, the level

of stockouts also represents Total Discrepancy, or the difference

between demand and sales.

First, the perfect forecast consistently resulted in a lower

level of stockouts. However, it is important to note that even when

given a constant order cycle time, stockouts still existed. As the FD

in each of these cases was zero, the resulting stockouts are attributed

to distribution system performance. However, as the order cycle times

were constant, it is difficult to conceive of any Operating Discrepancy.

The stockouts experienced resulted from the fact that the "perfect fore-

cast" replicated the total level of demand over the forecast period and

not the rate at which demand impacted against the system. The forecast

period employed was 20 days in length. The ROP and E00 were set at

10 days each. However, if less than 50% of the period's demand was

experienced by the system before the tenth day, the system could not

reorder until after that date. Consequently, it was impossible for

the replenishment shipment to arrive in time to service demand

experienced on the twenty-first day.

When considering the sales (or stockouts) under each of the

operational forecasts, a logical relationship to average inventory

was found. In each possible comparison at a given level of OCTV,

an increase in average inventory resulted in an increase in the level

of sales. In addition, a comparison of the sales and corresponding
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average inventory levels between OCTV2 and OCTV3 reflected the impact

of increased order cycle time variance. Take FORTECH2 for example.

Under OCTV2, this technique resulted in a sales level of 87.8% with

an average inventory of 23.2%. Under OCTV3, the slight reduction in

average inventory to 22.3% was accompanied by a relatively large drop

in sales to 73.6%. That this result was in fact caused by the change

in OCTV is seen in the increase in OD while FD remained relatively

constant.

Several important points result from an analysis of demand

patterns. First, for DMDl, Figure 6.3 (page 175) shows the level of

sales was inversely related to the level of forecast complexity across

all levels of OCTV. That is, for the forecast techniques the simulated

system consistently achieved the highest level of sales under the Brown

approach. In addition, the less complex the forecasting technique the

smaller the adverse impact of increases in order cycle time variability.

Figure 6.2 (page 164) provides corresponding information by stockouts.

Here again, the performance of the system was consistently better under

Brown than under Winters or Trigg and Leach.

The impact of increases in order cycle time variability are

also consistent. Regardless of the forecast technique employed,

increases in order cycle time variability lead directly to increased

stockouts and reduced sales.

Under the highly seasonal pattern of DM02 the forecasting

techniques resulted in sales and stockout levels which varied sig-

nificantly across the levels of OCTV. Under OCTV1, the constant
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order cycle, the Winters technique resulted in the highest level of

sales due to its specific consideration of the seasonal factor of the

time series. This same result was evident under OCTV3, the highest

level of order cycle time variability. However, under OCTV2, the Brown

and the Trigg and Leach techniques resulted in superior performance.

In the above comparison it is important to stress that each

forecasting technique was projecting exactly the same demand pattern

under each level of OCTV. As such, the inconsistency in the rankings

of the forecasting techniques by sales levels across the levels of

OCTV results from the inclusion of Operating Discrepancy in estimating

future sales. Finally, it is concluded that adaptive forecasting

techniques are more adversely affected by levels of Operating

Discrepancy than those that are non-adaptive.

In comparing the results under the two demand patterns, one

further point resulted. As the combined levels of demand and order

cycle time uncertainty increase, the probability that system per-

formance will meet expected levels decreases significantly. This

is especially evident for the more complex forecasting techniques.

When the levels of FD and OD tend to cancel each other, the total

discrepancy between period demand and sales understates the inef-

ficiencies of the system. This understatement is subsequently

incorporated into the generation of future forecasts.

The forecasting techniques employed in this research varied

significantly in response to this relationship. In general, however.

the basic Brown technique resulted in the most consistent system

performance.
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Based on the above factors, general conclusions as to the

effects of the independent variables on sales and stockouts may be

outlined as follows:

1. Increases in the level of demand variability result in

decreased sales as a percentage of total demand;

Increases in the level of order cycle time variability result

in decreased sales as a percentage of total demand;

The greater the variability in demand and order cycle times,

the greater the possibility of a cancellation effect between

Forecast Discrepancy and Operating Discrepancy;

As the level of OCTV increases, system sales as a percentage

of demand are more consistent under a simple forecasting

technique (i.e., Brown's exponential smoothing) than under

more complex techniques (i.e., Trigg and Leach or Winters);

The greater the variability in the level of demand, the

greater the impact of increases in the level of OCTV upon

system sales and stockouts.

The next section presents conclusions as to the levels of F0.

Forecast Discrepancy (FD)

The relative accuracy of the forecasting techniques examined

in this research was significantly affected by changes in the levels

of order cycle and the demand pattern. Specifically, given DMDl, the

only significant difference occurred under OCTV3. Here, as presented

in Table 1 (page 238), Winters was significantly less accurate than
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Brown or Trigg and Leach. For the same comparison in Table 7.2

(page 239), an opposite relationship was determined. Thus, it is

not enough merely to specify a change in the type of forecasting

technique and expect to safely predict changes in systems performance.

Tables 7.1 and 7.2 heavily underscore this fact in that under one

condition or another, each of the three forecasting techniques

achieved in the lowest level of FD at a level of OCTV.

A second indication of the importance of the interactions is

presented by a review of the levels of F0 and sales under OCTV2 in

Table 7.1. Here, while FORTECH3 was less accurate than FORTECH2,

the level of sales was higher under FORTECH2.

Several of the factors noted in the above discussions on

systems performance were expected. Each forecasting was most accurate

under DMDl. The surprise conclusion, however, was that the simpler the

technique, the more consistent were the mean levels of FD across the

levels of OCTV. A review of Figure 6.4 (page 186) underscores this

fact. Although the rankings of the forecasting techniques do vary

across OCTV under each demand pattern, the Brown technique was clearly

the most consistent. The Winters technique was in contrast the most

sporadic.

Tables 6.37 (page 205) and 6.42 (page 212) present additional

evidence of the impact of order cycle time variation on the accuracy

of each forecasting technique. A review indicates the level of FD

varied according to the level of OCTV regardless of the demand pattern.

This variation was significantly higher for the Winters technique.
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Finally, while the FD under the Brown technique increased with each

increase in OCTV, the same was not true of the other two techniques.

Thus, given an increase in the level of OCTV, it is concluded that

the impact of Brown's technique on FD may be projected with more

confidence than the other two techniques.

In comparing the levels of FD between forecasting techniques

for DMDl and DM02, another relationship developed. There was consid-

erable variability in the impact of increased demand uncertainty on

technique accuracy. In general, the more simple technique showed the

greatest increase in F0. The increase was almost double in each case.

The Winters technique was the least affected except under OCTV2, where

the Trigg and Leach model resulted in the smallest increase in FD.

Thus, overall, the more complex the forecasting technique, the greater

its ability to adapt to increases in the uncertainty of the demand

pattern.

Based on the above factors, general conclusions as to the

effects of the independent variables on the level of FD are outlined

as follows:

1. Increases in the variability of the demand pattern result in

considerable increases in the level of Forecast Discrepancy

regardless of the forecasting technique employed;

2. Given no change in the level of OCTV, the more complex the

forecasting technique the greater its ability to adapt to

increases in the variability of demand;
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3. The more complex the forecasting technique, the greater the

change in Forecasting Discrepancy as a result of increases

in the level of OCTV;

4. Increases in the level of OCTV effect forecast accuracy

regardless of the technique employed or the demand pattern

being projected;

5. The more complex the forecasting technique the less consistent

is its performance over variations in both demand and order

cycle time variability.

The next section presents conclusions as to the levels of

Operating Discrepancy.

Operating Discrepancy (OD)
 

The levels of DO allow more specific conclusions than have

been drawn to this point due to the fact that there are not significant

interactions confounding the results. Regardless of the demand pattern

or the forecasting technique in question, the level of 00 increases

consistently as the level of OCTV increases. In addition, the net

change in the levels of 00 from OCTV1 and OCTV2 are consistently

greater than the changes between OCTV2 and OCTV3. Finally, changes

in the type of forecasting technique being employed or the demand

pattern in question have little, if any, significant impact on the

levels of 00.

Returning to Tables 6.37 (page 205) and 6.42 (page 212), a

review of the 00 columns clearly indicates the first point. That is,



252

regardless of the demand pattern or the forecasting technique, increases

in the level of OCTV result in increased levels of DO. This relation-

ship was consistent in every combination of forecasting techniques and

demand patterns employed in this research. More important is the fact

that this result did not vary in its magnitude according to the forecast

technique in question. Thus, the direction of the change in system

performance resulting from an increase or decrease in order cycle time

consistency may be predicted with a relatively high degree of

confidence.

The FD, 00 and Stockout entries in either Table 6.37 or 6.42

illustrate the cancellation effect between ED and 00. At no time was

the level of stockouts greater than the summation of FD and 00. In

fact, only for a perfect forecast was there a direct relationship

between this summation and stockouts.

Tables 7.1 (page 238) and 7.2 (page 239) provide a further

illustration of the effects of OCTV on system performance. A review

of the sales figures for a perfect forecast (FORTECHl) and a constant

OCTV (OCTV1) indicated that as little as 90.7% of demand was satisfied

under such a "perfect" environment. As discussed in Chapter VI, this

discrepancy between sales and demand may or may not be defined as 00.

The important point is that failure to recognize this relationship

introduces the possibility of incorrect modifications of future

forecasts.

Based on the above discussion, general conclusions as to the

effects of the environmental variables on 00 are as follows:
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l. Increases in the level of OCTV lead directly to increases

in the level of Operating Discrepancy regardless of the

demand pattern being experienced or the forecasting

technique being employed;

2. Even under a perfect forecast and a constant OCTV there

will be a discrepancy between the level of demand and

sales; and

3. The level of Operating Discrepancy does have an adverse

effect on forecast accuracy when forecasts are based on

past sales levels.

Research Implications

The conclusions illustrate that variations in the levels of

demand uncertainty, operating uncertainty, and forecast accuracy do

have a significant impact upon distribution system performance. In

addition, it was determined that a significant interaction exists

between each of these factors as they combine to influence performance.

The conclusions thus reached have implications for the planning, man—

agement and control of the distribution system. This section delineates

these implications.

1. As variations occur in the levels of demand uncertainty,

operating uncertainty and forecast accuracy, the performance of the

distribution system varies significantly. When considered indepen-

dently, a change in the level of each of these factors results in a

direct though non-proportional change in system performance. For
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example, an increase in the variation of order cycle times, all other

factors being held constant, results in an increased level of Operating

Discrepancy. When the combined impacts of any two or all three of the

factors is considered, however, the change in system performance is

directly dependent upon the levels of each factor being considered.

Thus, the combined impacts of these factors may in fact be offsetting.

As such, a decrease (increase) in forms of uncertainty combined with

an increase (decrease) in forecast accuracy does not always result in

positive (negative) changes in system performance. This supports the

contention made in Chapter I that any improvement in forecast accuracy

must be made with due consideration given to the ability of the

distribution system to effectively support the forecasted level

of sales.

2. It is reasonable to assume that the levels of uncertainty

and forecast accuracy will change over time. Management must constantly

monitor the levels of each of these factors and relate them to per-

formance variables. This is necessary because of the interactions

between the factors. For example, assume that the manager recognizes

a significant increase in the number of stockouts and is certain there

have been no significant change in the order cycle time variance.

Based upon the conditions employed in this research, it would be

incorrect for him to make the assumption that forecast accuracy has

significantly fallen. Although such may be the case, it is also

possible that the forecast has in fact become more accurate.
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3. The above point leads directly to a second implication

introduced in Chapter I. That is, existing forecasting techniques

provide no mechanism whereby the cause of the Forecast Discrepancy

may be identified and measured. Thus, despite the fact that the true

level of demand is not known, the prevailing practice of employing

previous periods' sales levels in the generation of new forecasts

is incorrect. Such a procedure adapts the level of the forecast

incorporating existing Operating Discrepancy as well as the Forecast

Discrepancy.

The impacts of this practice are two. First, the automatic

identification of forecast error as the difference between sales and

the forecast reduces the likelihood that repetitive inefficiencies

within the distribution system will be identified. Second, to the

extent that the actual level of Operating Discrepancy occurring in

the system varies, incorporation will tend to magnify future forecast

fluctuations.

4. The addition of safety stocks to the base level of

inventory to protect against demand and operating uncertainty may

serve to obscure each of the effects noted immediately above. The

typical procedure for setting safety stocks is to statistically

combine some estimate of the variance in order cycle times with

that of daily sales in order to estimate the standard deviation

of expected sales during order cycle. When this is accomplished,

safety stocks are specified based on the combined standard deviations.

The results of this research indicate that these variances are not
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necessarily additive. In fact, it was illustrated that they are

often off-setting. No safety stocks were included in this research,

permitting this relationship to be examined. To the extent that safety

stocks achieve their goal of eliminating stockouts, such relationships

(whether additive or off-setting) become more difficult to identify.

5. Each of the above implications provide direct support

for the use of the systems concept on two levels in distribution.

First, the importance of the interrelationships between forecast

accuracy, demand uncertainty and operating uncertainty must be

recognized. Any attempt to reduce the adverse effects of any of

these factors requires consideration of those remaining. Thus, it

is the total or combined impact of these factors which is of critical

importance.

Second, the importance of viewing the entire channel in

distribution planning is underscored. The nature of the links between

channel members directly determines the speed and consistency of order

cycle times. Any variance in the consistency of order cycles has been

shown to directly effect not only stockouts but also future demand

forecasts.

6. It is the rate of flow in expected demand which is critical

to operational planning and not the mean expected daily demand. The

portion of this research which examined the performance of a distri—

bution system given a perfect forecast and a constant order cycle time

support this implication. Regardless of the demand pattern employed,

a significant level of stockouts occurred in each simulation.
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7. In tenms of total system performance, the greatest

consistency in this research was achieved using the most simple

forecasting technique. The more complex the forecasting technique,

the greater the likelihood of significant interactions between forecast

accuracy and operating efficiency. Thus, while Brown's simple expo-

nential smoothing may be less accurate in projecting a highly variable

demand pattern, it is also less likely to be adversely effected by

order cycle time variability.

8. In summary, two points repeatedly resulted from the

research. First, current forecasting techniques have the potential

to inherently bias the accuracy of future forecasts and the subsequent

perfonnance of the distribution system if no attempt is made to dis-

tinguish between and accommodate Forecast and Operating Discrepancy.

Second, the nature of the interaction between demand uncertainty,

operating uncertainty and forecast accuracy requires recognition

of the systems concept in seeking to reduce the impacts of any or

all of these factors. When these two points are recognized, the

importance of continually monitoring system performance is underscored.

Even though the manager will never be so fortunate as to have a perfect

forecast or constant order cycle time, increased understanding should

lead to a more accurate modification of future forecasts and the

opportunity to similarly adjust operating parameters.
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Limitations of the Research
 

Typical of all simulation studies, the generalizability of

this research is constrained to the extent that the model employed

replicates actual distribution systems. The SPSF Testing Environment

used in this research has been subjected to extensive validation.‘

An additional limitation is the number of levels employed for

each of the independent factors. Ideally, numerous demand patterns,

forecasting techniques and order cycle time distributions would have

been employed. However, a simultaneous dissertation was completed

analyzing the accuracy of various demand generation procedures,

including the method employed in this research.2 The forecasting

techniques employed may be considered as representative of varying

levels of sophistication currently available based on the literature

review. Finally, previous research has shown the generalizability

between the order cycle time probability distributions employed in

this research and selected other probability distributions.3 Not-

withstanding these factors, the levels of the independent variables

employed in this research are not intended to constitute random samples.

 

1Donald J. Bowersox, David J. Closs, John T. Mentzer, Jr., and

Jeffrey R. Sims, Simulated Product Sales Forecastingf-Documentation

(East Lansing, Mich.: Graduate School of Business Administration

Research Bureau, Michigan State University, Forthcoming).

2John T. Mentzer, Jr., "Simulated Product Sales Forecasting:

Analysis of Market Area Demand Simulation Alternatives" (Ph.D.

dissertation, Michigan State University, 1978).

3George D. Wagenheim, "The Performance of a Physical

Distribution Channel System Under Various Conditions of Lead Time

Uncertainty: A Simulation Experiment" (Ph.D. dissertation, Michigan

State University, 1974).
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Future Research
 

This research has generated a wide range of areas which offer

potential for additional analysis. The major areas may be delineated

as follows:

1. Safety Stock Policy: This research did not employ safety stocks
 

and, as noted, the levels of variance in demand and operating

uncertainty are not necessarily additive. As such, similar

research utilizing accepted methods for calculating and safety

stocks could offer important results to the distribution manager.

Further, it might be determined whether or not setting a safety

stock at a specific number of standard deviations does in fact

result in the expected level of protection in a multi-echeloned

system.

2. Forecast Generation: Despite the fact that FD and 00 were
 

isolated in this research, additional research in these factors

appears justified. Specifically, what are the differences in

the perfonmance of a system when future forecasts are generated

using sales and forecast error rather than demand potential

and Forecast Discrepancy?

3. Complex Channel Structures: This research employed only one

facility at each of three echelons and illustrated significant

interactions in the independent variables. Significant impli-

cations might be achieved through an investigation of the

effects of such interactions on a more complex system encom-

passing multiple locations at each echelon.
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ngistical Management: This research dealt with the
 

uncertainties in physical distribution, assuming supply

continuity. A logical extension would be to expand the model

to consider the effects of uncertainty in materials management

and internal inventory transfer, especially in light of the

potential energy and materials shortages.

Economic Sensitivity Analysis: This research has defined
 

variations in system performance as a result of forecasting

and operating uncertainties. Based on these results, research

analyzing improvements in system performance for a given dollar

expenditure would be most valuable. Specifically, given a

fixed amount of capital to invest in improving the operating

system what relative returns would result from making this

investment in increased levels of safety stock versus improved

forecasting or more consistent order cycle times.

Effects of Stockouts: One of the most difficult problems
 

facing the distribution manager is caused by the inability to

measure the impacts of stockouts on future demand. Although

the assumptions and limitations of any research in this area

would have to be rather broad, additional information would

be of immense value.

Strategic Inventory Placement: Given that both operating and
 

forecast efficiency have a direct impact on system performance,

the question arises as to the impact of centralizing channel
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inventories. Specifically, from a total channel perspective,

what effects does inventory centralization have on the

relationships between FD, OD and overall system performance?
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Adelson, R. M. "The Dynamic Behavior of Linear Forecasting and

Scheduling Rules." Operations Research Quarterly 17

(No. 4; December 1966): 447-462.

 

In the first portion of this article, Adelson presents a

discussion of some of the basic conclusions made by D. H. Ward (Ihg_

Statistician, Vol. 13, 1973, p. 173) in his article concerning trend-
 

corrected exponential smoothing models. Some of the shortcomings of

the exponential smoothing technique are discussed, most notably, the

method's inability to cope with a steadily changing level of demand.

The basic model underlying trend-correcting methods (i.e., those of

R. G. Brown, P. R. Winters, and Box and Jenkins) is then presented

with attention given to transient response and conditions of stability.

In the final portion of the article, the author presents a

linear production and stock control scheme using exponential smoothing.

The tradeoff between variance of stock levels and production is

analyzed.

The article concludes with the algebraic derivations of the

author's model.
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Bates, J. M., and W. J. Grauger. "The Combination of Forecasts,"

Operations Research Quarterly 20 (No. 4; December 1969):

451-468.

 

By experimenting with airline passenger data, the authors show

that combinations of forecasts may be able to provide the analyst with

better forecasts although many of the individual techniques normally

provide important independent information that cannot be obtained

from the aggregate figure given by a combined result.

In combining techniques, the major obstacle lies with the

definition of the weights to be attributed to each one of them.

There are many ways to do this, and the aim of the authors was to

zero in on the one likely to yield the lowest forecast errors for

the combined forecasts. After setting up five different methods of

attributing weights to forecasts, they went on to combine Brown's

exponential smoothing, Box-Jenkins' adaptive forecasting, and other

techniques, and came to the conclusion that the combined efforts

resulted in lower variance of errors. Such a conclusion, however,

ought not to be taken as a general rule because of the limited scope

of the sample chosen, and because of the possibility of improving on

forecasting through the combination of more than just two techniques.
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Batty, M. "Monitoring an Exponential Smoothing Forecasting System."

Operations Research Quarter1y_20 (No. 3; September 1969):

319-325.

 

This paper is primarily concerned with the problem of defining

a monitoring system capable of making exponential smoothing an automatic

technique where the adjustments in the value of a are automatically

deployed by the forecasting system. In this vein, it briefly reviews

Brown's and Trigg's contributions to this area (tracking signal), and

it builds upon them by defining the variance of the sum of errors

(variance of the smoothed error for one less degree of freedom divided

by the square of the smoothing constant), as well as new values for

the tracking signal limits (obtained through simulation) which could

be employed in the monitoring of a forecasting system.
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Box, G. E. P., G. M. Jenkins and D. W. Bacon. "Models for Forecasting

Seasonal and Non-Seasonal Time Series." Advanced Siminar on

Spectral Analysis of Time Series. Edited by B. Harris.

New York: John Wiley & Sons, 1967, pp. 271-310.

 

 

Box, G. E. P., and G. M. Jenkins. "Some Recent Advances in Forecasting

and Control." Applied Statistics 17 (No. 2; 1968): 91-108.
 

In each of two articles, Box and Jenkins develop, mathematically

and logically, the procedure for use of the Box-Jenkins approach to

time series forecasting. Initial effort is devoted to a description

of the development of the multitude of possible time series models

used in this approach.

Further effort is devoted to the steps in the approach, i.e.,

identification of possible models for use with a particular time

series in question, fitting of the time series to the models, and

diagnostic checking. Illustrations and formulations of trend and

seasonal models are given with explanation of applying this spectral

analysis to forecasting the time series.

The latter parts of the articles are devoted to the explanation

of what the authors term seasonal and linear dynamic models, i.e.,

models in which the value of Y is determined by X, not time.
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Brown, Robert G. "Forecasting in Physical Distribution-~Inventory

Management." Transportation and Distribution Management

11 (No. 3; March 1971): 43-46.

 

In this article, Brown presents a very basic method of

forecasting for inventory levels. From the forecast discrepancy

over a number of periods, he finds the "mean absolute deviation,"

or mean difference between forecasted and actual sales. Then, using

standard deviations, he illustrates that the chance of an out-of-stock

situation may be mathematically calculable, based on the given forecast.

Brown also deals with the uses of "product family forecasting,"

which is actually a breakdown of the sales of a product family according

to major characteristics. Performed for consecutive periods, Brown

suggests "weighting" the most recent period for use in forecasting.

Finally, the author suggests determining a value which

relates sales to product availability for use in setting inventories.

This value is to be determined through market research studies.
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Brown, R. G., and R. F. Meyer. "Fundamental Theorem of Exponential

Smoothing." Operations Research 9 (September-October 1961):

673-685.

 

The authors begin with a discussion of the justification for

the development of the exponential smoothing technique, i.e., the

decrease in forecaster subjectivism and the historical data require-

ments. Brown and Meyer use this point to develop a five-step process

for calculating forecasts and forecast errors through the use of

exponential smoothing. This process consists of data type analysis

(continuous, discrete, or difference between time series), model

definition, smoothing (the purpose of which is to estimate values

for the coefficients in the model), forecasting, and error measurement.

This discussion is followed by the mathematical derivation of

the basic exponential smoothing fOrmula:

Forecast1 = a (Saleso) + (l-o)(Forecast0)

from its fundamental theorem. This leads to a discussion of the

determination of the appropriate value of a. The authors conclude

with a reiteration of the fact that the major advantage of expo-

nential smoothing lies in the ability to account for the effect of

past data with a minimum of historical data requirements.
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Cantor, Jerry. Pragmatic Forecasting. Chicago: American Marketing

Associatibn, 197T.

 

The book covers forecasting both for new products, where

subjectivity plays a determinant role, and for products which have

already established a historical data base, where statistical tech-

niques are more likely to be found.

Specifically, in the area of statistical forecasting, Cantor

concentrates on simple and weighted averaging (exponential smoothing)

and presents a straightforward explanation of single, double, and

triple smoothing. Although he deals with trends and trend shifts,

there is nothing in his book in the area of adaptive smoothing where

the adjustment of a over time is automatically made as a function of

a predefined criterion.

The author also elaborates briefly on the mathematical

procedure which calculates the forecasting through the evaluation

of its major factors such as trend, seasonality, and irregularity.
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Chambers, John C., Satinder K. Mullick, and Donald D. Smith. An_

Executive's Guide to Forecasting. New York: John Wiley

& Sons, 1974.

 

This guide divides the forecasting techniques into qualitative,

time series projection, and causal models. Its advantage, however,

when compared with similar texts, lies in up-to-date information and

the thoroughness of presentation. Among the qualitative techniques,

the Delphi method, market research, panel consensus, visionary fore-

casts, historical analogy, and cross-impact analysis are explained.

In terms of time-series methods, the authors discuss moving average,

exponential smoothing with a brief account of the adaptive methods,

Box-Jenkins, Census Bureau X-ll, trend projections, and learning

curves. The causal models discussed include regression, econometric

and input-output models, diffusion indices and the leading indicators

approach.

All of these methods, within their own category, are then

compared to one another in terms of their accuracy (short-, medium-,

and long-run), their ability to identify turning points, amount of

data required, and times required to develop an application and make

a forecast. The comparison also takes into consideration the cost

of forecasting as well as the possibility, if any, of implementing

the technique without the use of a computer. The computer is most

likely to be found in the application of the quantitative methods (time

series and causal model), but its use with qualitative models ought not

to be regarded as impractical.
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Chisholm, Roger K., and Gilbert R. Whitaker, Jr. Forecasting_Methods.

Homewood, 111.: Richard D. Irwin, Inc., 1971, pp. 8-27.

 

Chisholm and Whitaker give a very rudimentary introduction to

time series forecasting. Chapter Two is initiated with a numerical

description of very basic time series forecasting, i.e., taking the

previous period's sales and adding to this the trend, cyclical, and

seasonal components. Each of these components is described in turn.

This is followed by a numerical description of three-period

moving average forecast, and the chapter concludes with a mathematical

development of the basic exponential smoothing forecast with

multiplicative trend and seasonal factors.

Copulski, William. Practical Sales Forecasting. New York: American

Management Association, 1970.

 

This book adopts quite a simplistic approach to forecasting in

that it does not give detailed explanations of the more recent

developments in the area.

Despite this incompleteness, it does provide the reader with an

extensive coverage of the non-numerical techniques. Copulski briefly

covers most of the numerical methods, but at the time series level, he

goes no further than trend and cycle analysis. In addition, he tends

to give his presentation a markedly macro orientation in which company

sales are seen in the light of economic indicators, with correlation

being used as the major matchmaker between the two.
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Dancer, Robert, and Clifford Gray. "An Empirical Evaluation of Constant

and Adaptive Computer Forecasting Models for Inventory Control."

Decision Sciences 18 (No. 1; January 1977): 228-238.
 

These authors evaluated the performance of one constant and two

adaptive forecasting models. Each model was employed to project three

separate patterns: one each characterized by horizontal, trend, and

seasonal. In each case, Mean Absolute Deviation was employed as the

criteria to compare the models.

Hypotheses tested were of the general form that different

forecasting techniques would vary significantly in their accurate

projection of different known demand patterns. Surprisingly, the

authors point out that the constant and adaptive models yield

statistically similar results (employing the t-test between means)

under each time series pattern. In spite of this, however, the

adaptive models are recommended for their automatic adjustment

capability.
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Eilon, S., and J. Elmaleh. "Adaptive Limits in Inventory Control."

Management Science 16 (No. 8; April 1970): 533-548.

The main thrust of this article is on inventory control under

conditions of demand non-stationarity. However, in defining adaptive

limits and in proposing a more flexible system of dealing with inventory

policies, the authors discuss demand forecasting, and propose a modifi-

cation of Winters' rule for handling seasonals and trend changes and

adjusting smoothing constants.

The modifications include the definition of a monitoring

subroutine for periodic testing and for a reassessment, as well as

a special treatment for those cases where negative demand values are

forecasted. This special treatment involves the equating of the fore-

cast to zero, while the maintenance of the negative value in the equa-

tion is dependent upon the prospective forecasting error and its effect

on production levels.
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Farley, John U., and Melvin J. Hinich. "Spectral Analysis." Journal

of Advertising Research 9 (No. 4; December 1969): 47-50.

Farley and Hinich present a basic illustration of the possible

uses of spectral analysis, a statistical technique designed to analyze

cycles inherent in time series. An explanation of the method, its

applications, and its basic mathematical basis are given.

Spectral analysis approximates the cyclical components in a

time series by use of a set of sinusoidal functions and involves an

attempt to fit such a set of function to an observed time series.

When the periods are known, the method is similar to regression

analysis and employs the sinusoidal functions as independent variables.

The method suited for: (l) determining cyclical components or

combinations of components in a time series; (2) testing the ran-

domness of time series data; and (3) eliminating trends from the data.

The authors conclude the article with a short discussion of

the difficulties in applying the technique, the most apparent of which

is the length of the data series required to obtain precision.
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Ferratt, Thomas W., and Vincent A. Mabert. "A Description and

Application of the Box-Jenkins Methodology." Decision

Sciences 3 (No. 4; October 1972): 83-107. -——_—____

Ferratt and Mabert present an excellent mathematical

description of the rather complicated Box-Jenkins technique for

analysis and forecasting of time series. The authors give a lengthy

application of the technique to the analysis and forecasting of Ohio

Electrical monthly power consumption for 1954 through 1970.

Each of the three stages of the Box-Jenkins methodology are

described and clearly illustrated. These include model identification;

the matching of sample autocorrelation functions against theoretical

autocorrelation functions; parameter estimation by minimizing the sum

of the squared residuals; and diagnostic checking, deciding if the

theoretical model is an adequate representation of the observed series.

This is all presented in by far the most clear-cut explanation

encountered of this difficult technique, least squares and exponential

smoothing techniques.
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Gross, Donald, and Jack L. Ray. "A General Purpose Forecast

Simulator." Management Science 11 (No. 6; April 1965):

119-135.

 

Gross and Ray describe their computer package which will

generate time series from a pseudo-normal random number generator.

Any of nine forecasting models can be specified to forecast values

which are compared to the generator's value to calculate error.

Although rather naive in its time series generation, the authors'

GPFS system does provide a theoretical test environment for

forecasting models.

The article contains an appendix which mathematically develops

the nine moving average and exponential smoothing forecasts available

in the GPFS package. This appendix is an excellent summary of various

exponential formulas.
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Harrison, P. J., and C. F. Stevens. "A Bayesian Approach to Short-Term

Forecasting." Operations Research Quarterly 22 (No. 4; December

1971): 341-355.

This is a new approach in that it incorporates the computations

of posterior probabilities to the definition of the forecasting device

to be used. The model resembles the growth models of Holt, Brown, and

Box-Jenkins (ARIMA models), and it encompasses demand, trend value,

slope value, and seasonal factors. It depends upon a generating

process where the above variables are related with observational noise,

trend and slope perturbation. The above process is in turn defined by

four states: no change, step change, sloper change, and transient.

The system, despite its apparent complexity, has the

advantages of rapidly responding to changes in trend and slope,

increasing its sensitivity when changes occur, and defining not only

a single figure forecast but a joint parameter distribution, which is

an expression of the level of uncertainty inherent in the estimates

of slope and trend changes.
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Holt, C.PC., F. Modigliani, J. F. Muth, and H. A. Simon. Plannin

roduction, Inventories, and Work Force. Englewood Cliffs,

N.J.: Prentice-Hall,_Inc., 1960.

In Chapter VII, Holt et a1. begin their discussion of

forecasting by describing the components of time series. Brief

discussion is devoted to simple moving average followed by a numerical

example of moving average with trend and seasonal adjustment. This is

followed by a description of the irregular seasonal pattern situation

and a concluding section on regression analysis.

Chapter VIII describes examples of utilization of the author's

production and inventory control models in response to forecasts under

conditions of different sinusoidal periodicities and impulses.

Chapter IX develops the computation of costs due to forecasting

errors and a description of the analysis of these costs.
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Keay, Frederick. Marketing and Sales Forecasting. Oxford, U.K.:

Pergamon Press, 1972.

The task of sales forecasting can be approached by a variety

of methods, and Keay breaks them down into four categories: consensus

techniques, statistical projection, deterministic situations with no

random elements, and stochastic situations. Each category is covered

extensively enough to provide the reader with a good understanding of

the methods.

Under consensus techniques, the author groups those methods

of a qualitative nature. Under statistical projection; curve fitting,

smoothing techniques, and trend analysis are discussed. Included in

deterministic situations are the methods which comprise mathematical

equations and their interrelationships. Finally, under stochastic

models that imply in definition the probabilities to be allocated

to the situations under analysis.

In terms of the smoothing techniques, the book does not go

beyond simple and weighted moving average, nor does it account for

exponential smoothing and adaptive forecasting with adjustable a.
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Kirby, Robert M. "A Comparison of Short and Medium Range Statistical

Forecasting Methods." Management Science 13 (No. 4; December

1966): 202-210.

Kirby used 23 time series, each consisting of 78 years of

actual monthly data, and 23 artificial time series of equal length

to compare the accuracy of moving average exponential smoothing with

trend and seasonal adjustment, and least squares.

Both the moving average and the least squares forecasts for

each period were adjusted by the cyclical factor calculated in the

exponential smoothing technique. The moving average forecast was also

adjusted by the exponential smoothing trend factor. Forecasts were

made with varying exponential smoothing constants and different base

months for the average calculations for one month into the future

(short range) and six months into the future (medium range).

The author concluded that both exponential smoothing and moving

average forecasts were better in the short and medium range than least

squares. It was further stated that throughout the medium range and in

the trend time series both exponential smoothing and moving average

were equally accurate. In the short range and in cyclical time series,

exponential smoothing was found to be more accurate.
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Lippitt, Vernon G. Statistical Sales Forecasting, New York:

Financial Executives Researcthoundation, 1969.

 

Lippitt attempts to provide comprehensive coverage of the

state of the art of forecasting. He achieves this, but frequently

sacrifices depth for breadth. After a forecasting introduction, he

divides techniques into two basic categories: causal and non-causal

(extrapolation) models. Among causal models, he includes the general

additive model (impact of parts on the forecast is individually defined

and subsequently aggregated), regression, and the simulation models.

His extrapolation techniques encompass moving averages, both arithmetic

and weighted (exponential smoothing); decomposition of time series

(trend, cycle, seasonal); and curve fitting. He goes beyond these

two categories and briefly elaborates on early turning indicators of

a macro-economic nature and lead decision series, which give information

on the prospective magnitudes of future changes in company sales. The

connection between the leads and the company sales is generally

developed through regression models, which normally present lagged

explanatory variables as linking elements between two temporally

separated data sets.
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Mabert, Vincent A. "Statistical Versus Sales Force-Executive Opinion

Short Range Forecasts: A Time Series Analysis Case Study,“

Decision Sciences 7 (No. 2; April 1976): 310-318.

Mabert presents the results of his comparison of executive

generated forecasts with those from three statistical techniques:

Winters' three parameter exponential smoothing model, Brown's harmonic

model, and the Box-Jenkins methodology. Each technique was used to

forecast levels of sales for an industrial product with a relatively

stationary demand pattern and some seasonality.

Company forecasts were generated by management for general

planning purposes and were compared against the three statistical

techniques for the five-year period from 1968-1972. The criteria for

the analysis was: (1) mean absolute percent error; (2) total man-hours

required to generate a forecast; (3) the elapsed time in generating a

forecast; and (4) the computer time required.

As expected, the statistical provided the greatest accuracy

with Box-Jenkins registering the lowest mean absolute percent deviation

of 14 percent. Brown's harmonic model had 14.1 percent, Winters' expo-

nential model had 15.1 percent, and the subjective company forecast had

15.9 percent. In man hours required for forecasting, the company fore-

cast required more than six times the hours needed for Box-Jenkins, the

second most time consuming technique. In addition, the company required

27 days to generate the subjective forecast while the longest time

required with any of the statistical techniques was 2.5 days for Box-

Jenkins. Box-Jenkins also required the most computer time for data

analysis and forecast generation.
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Mabert's conclusions to the case study were rather common:

statistical techniques used to track sales patterns should be combined

with judgmental analysis of causal factors in the generation of

forecasts.

Makridakis, Spyros, and Steven C. Wheelwright. "Adaptive Filtering:

An Integrated Autoregressive/Moving Average Filter for Time

Series Forecasting." Operations Research Quarterly 28

(No. 2; 1977): 425-438.

This paper provides an example of several practical consider-

ations in time series analysis forecasting by adaptive filtering. The

basic adaptive filter model is first developed. This model is then

compared with ARMA models of the Box-Jenkins methodology. Advantages

and disadvantages of each approach are noted.

The major portion of the article details practical guidelines

for the development of adaptive filtering models and concludes with a

step-by-step application to airline passenger data. At the end of

the example, the forecast accuracy achieved with the adaptive filter

is compared for several different future time periods.
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Makridakis, Spyros, and Steven C. Wheelwright. "Forecasting: Issues

and Challenges for Marketing Management." Journal of Marketing,

October 1977, pp. 24-38.

 

This article provides an excellent review of current forecasting

methodologies and their applications. Techniques are categorized as

quantitative (time series, causal or regression) or as qualitative

(technological or subjective assessment). In addition to providing a

concise overview of frequently used quantitative approaches, specific

examples of research employing each approach are provided.

The major portion of this article deals with comparisons of

methodologies. The authors conclude, however, with a call for further

research in specific marketing applications. Finally, the bibliography

included is excellent as a reference guide for the reader seeking

further information.

Magee, John F., and David M. Boodman. Production Planning and Inventory

Control. New York: McGraw-Hill, 1967, pp. 84-115.

In a chapter on decision uncertainty, the authors briefly

analyze sales forecasting, focusing at first on the qualitative tech—

niques (collective opinion) and subsequently expounding on the statis-

tical and mathematical methods. In this second category, correlation

analysis is touched upon; extrapolation (trend analysis) is briefly

mentioned, and the projection techniques (simple moving average and

exponential smoothing) are more extensively analyzed. It is noteworthy

that Magee and Boodman do not mention adaptive smoothing, although they

were among the first to systematically present some form of exponential

smoothing in their 1958 edition of the same text.
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Mapstone, George E. "Forecasting for Sales and Production." Chemical

Engineering 80 (No. 11; 14 May 1973): 126-132.
 

In his article, Mapstone presents a clear discussion of several

methods used in time series forecasting. He begins with a description

of the major factors to be considered in forecasting, and includes a

discussion of the steps to be taken in selecting the proper curve to

provide the best fit, based on the characteristics of the data.

Specifically, he deals with moving averages, both arithmetic

and exponentially weighted, and common trend curves (i.e.,

polynomials, exponentials. and modified exponentials).

In addition to presenting the basic formulas for the different

methods, the author provides a summary of procedures for the use of

slope characteristics, the method of least squares, and the procedures

used in fitting linear, simple, and modified trends, as well as the

Gompertz curve.

The article concludes with a discussion of confidence intervals

and methods for detecting changes in the trend.
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Montgomery, Douglas C. "An Introduction to Short-Term Forecasting."

Journal of Industrial Engineering 19 (No. 10; October 1968):

500-514.

 

Montgomery gives a general description of the formulation for

exponential smoothing models for constant, linear trend, and seasonal

time series. The model for trend is an additive function while the

seasonal adjustment is multiplicative. Further, non-quantitative

discussion is devoted to the importance of selecting a proper smoothing

constant value, the necessity of a tracking signal for monitoring

control, and the desirability of a self—adapting model.

The article concludes with a brief discussion of short-term

forecasting applicability to inventory and production control and a

very simplistic numerical example of forecasting with linear trend and

seasonality. In spite of its basic approach, this is an excellent,

concise introductory article.

Montgomery, Douglas C., and L. E. Contreras. "A Note on Forecasting

With Adaptive Filtering." Operations Research Quarterly 28

(No. l; 1977): 87-91.

 

These authors begin with a review of recent articles developing

examples of the use of adaptive filtering for forecasting. Specifi-

cally, they review the basic elements of the method, pointing out its

inherent similarities to autoregressive models. The remainder of the

article details a criticism of the Wheelwright and Makridakis article

reporting on the use of adaptive filtering to forecast champagne sales

(Operations Research Quarterly, Vol. 24). Montgomery and Contreras
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point out the disadvantages of adaptive filtering in their critique.

Finally, the same time series of champagne sales is forecasts using

exponential smoothing, and the results compared to those of

Wheelwright and Makridakis.

Nerlove, M., and S. Wage. "On the Optimality of Adaptive Forecasting."

Management Science 10 (No. 2; January 1964): 207-223.
 

The article expounds on Theil and Wage's contribution to

adaptive forecasting by showing that the optimality characteristic

of this type of forecasting is of a much broader spectrum than first

devised. Nerlove and Wage demonstrate that adaptive forecasting not

only allows for the minimization of the mean square error of forecast

of a non-stationary time series but also can be used to optimize the

second difference of the above mentioned time series, which is of a

stationary nature. Going one step further from Theil and Wage's

original formulation, the authors show that the minimum square error

depends only on the first two weights of the linear prediction scheme.

By giving a formulation that allows the reader to calculate these

weights based on past data, the authors are providing a device capable

of eliminating the arbitrariness of defining the values of such weights,

as in Theil and Wage. ,
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Newbold, Paul. "The Principles of the Box-Jenkins Approach."

Research Quarterly 26 (No. 2; 1975): 397-412.
 

Newbold begins his description of the Box-Jenkins methodology

by elaborating on the advantages and disadvantages of the approach with

comments on ways to overcome many of these disadvantages. The next

sections of the article are devoted to the description of the appli-

cation of the methodology to a non-seasonal time series based solely

on past data. An example of this situation follows in forecasting for

a consumer durable on a monthly basis.

The latter sections are devoted to an application where leading

indicators rather than past data are used in forecasting and to discus-

sion of the author's practical experience in using the Box-Jenkins

approach.

Packer, A. H. "Simulation and Adaptive Forecasting as Applied to

Inventory Control." Operations Research 15 (No. 4; July-

August 1967): 660-679.

Exponential smoothing is used with simulation, the latter pro-

viding the methodology for defining the total inventory cost. This cost

in turn serves as the criterion for identifying the "best smoothing rate

value," after several runs in which the system is simulated to work with

different values of a. The determination of the optimal a in the light

of existing data is strongly influenced by the defined lead times and

the magnitude of the order quantity agreed upon.

The usefulness of the overall results was determined by comparing

the data obtained to historical records, and in one second stage the new

inventory decision rules were compared to the existing procedures.
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Pearce, Colin. Predictive Techniques for Marketing Planners. New York:

John Wiley & Sons,7197l, pp. 65-85.

 

Pearce presented a clear introduction to time series forecasting

in his text. Included was a general description of the time series

forecasting approach and numerical examples of both arithmetic moving

average and exponential smoothing.

The exponential smoothing description consists of a numerical

example of single exponential smoothing and is followed by non-

quantitative descriptions of trend and curvilnear models and adaptive

smoothing. Mathematical development is given in the appendix.

Peterson, Rein. "A Note on the Determination of Optimal Forecasting

Strategy." Management Science 16 (No. 4; December 1969).

The definition of an optimal forecasting procedure is theoret-

ically easy to develop but difficult to carry out. The difficulty

stems from the fact that the choice among different forecasting

alternative requires well defined loss functions which depend on

a comparative cost study of forecast errors not found in any practical

situation. The other problem concerns the fact that, since all fore-

casting techniques are operating with the same set of data, the char-

acteristics of the error distribution of each procedure may be dependent

and even correlated. This makes the application of any test for the

sake of defining individual performance highly questionable.

Finally, if we are comparing a large number of procedures, it

is difficult for us to know the form of their joint probability, which

is normally of a multivariate nature.
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Radhakrishnan, S. R., and William G. Sullivan. ”A Dynamic Method for

Forecasting." Journal of Systems Management 23 (No. 7; July

1972): 11-16.

In their article, Radhakrishnan and Sullivan report the results

of an attempt to forecast the demand for x-rays at the Eugene Talmadge

Medical Hospital by triple exponential smoothing. Data collected during

each of 20 months was subdivided to create 36 demand patterns according

to type of patient and x-ray examination. These patterns constituted

independent time series.

The accuracy of the exponential smoothing technique was

evaluated according to three criteria: (1) standard deviation of

the forecast error, (2) average cumulative error, and (3) forecast-

ability error. The alpha level was set at 0.3 after testing values

ranging from 0.1 to 0.4.

The results of the experiment were judged successful according

to the three criteria and illustrated that the forecast followed

closely the actual demand pattern.
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Raine, Jesse. "Self Adaptive Forecasting Reconsidered." Decision

Sciences 2 (No. 2; April 1971): 181-191. '_____—_—

Raine devoted considerable effort to the use and development

of SAFT and compared its performance to three other simpler smoothing

techniques. The first was single exponential smoothing with a smoothing

constant value of 0.154. The second was single exponential smoothing,

which set the forecast equal to the most recent month's demand when the

automatic tracking signal was activated. The third was again single

exponential smoothing with automatic tracking signal which, when

activated, set the smoothing constant equal to 0.50 for three periods

and then returned to 0.154.

These three were compared to the SAFT for accuracy (determined

by the sum of the squared errors) on time series with trend and with

impulse. The best technique for both the series was the third technique

described above. SAFT was found in this article only to be better than

the first single exponential technique described. However, more of the

differences were found to be statistically significant.
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Reinmuth, James E., and Michael D. Geurts. "A Bayesian Approach to

Forecasting the Effects of Atypical Situations." Journal

of Marketing Research 9 (August 1972): 292-297.
 

Reinmuth and Geurts present a forecasting model whereby the

forecast obtained by any standard forecasting technique for a partic-

ular period is multiplied by one plus the expected proportionate change

created by an atypical occurrence in that period. The authors feel

that probability distributions can be developed for the occurrence

of these atypical situations in a period and, thereby, effectively

utilized in forecasting. However, they do concede that the data

gathering and calculation burden necessary for the determination

of this probability distribution would be great.

The majority of the article is devoted to a numerical example

of illustrating the technique.
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Richard, Robert S. Practical TechnigOes of Sales Forecasting.

New York: McGraw-Hill, 1966.

 

The book addresses itself to the many facets of practical

sales forecasting, focusing both on those situations in which

reliable past information exists and on those in which it does not

(new product forecasting). It begins with the subjective methods

(sales-force composite, jury of executive opinion, panel approach)

where judgment is the rule, and goes on to time series extrapolation,

emphasizing both the decomposition techniques (trends, cycles, sea-

sonals) and the exponential smoothing procedure. From time series

on, the author directs his attention to correlation analysis (simple

and multiple regression as well as step regression where the model

accepts those factors which strongly influence sales and disregards

those influences which are not important), and mathematical modeling.

Finally, the book elaborates on the combination of forecasts in which

subjective inputs are used as corrective measure to adjust variations

considered unacceptable in the light of the objective techniques. It

must be pointed out that Richard did not attempt to reproduce each

technique in its original mathematical complexity but decided on a

more qualitative approach.
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Roberts, Stephen D., and Ruddell Reed, Jr. "The Development of a

Self-Adaptive Forecasting Technique." AIIE Transactions

1 (No. 4; December 1969): 314-322.

 

In their article, Roberts and Reed develOped an adaptive

exponential smoothing forecast called SAFT (Self-Adaptive Forecasting

Technique). The technique combines the basic exponential forecasting

models of P. R. Winters with the response surface analysis of G. E. P.

Box to arrive at an appropriate smoothing constant value.

Discussion is given to both the Winters formulas for level,

trend, and seasonal time series, and the development of response surface

analysis. Formulation of the SAFT models for level, trend, and seasonal

time series follow.

SAFT was compared to Winters' model for accuracy and rate

of response on various computer generated time series. For non-

autocorrelated time series both models were found to be of equal

accuracy, but for autocorrelated series, especially germane to

industrial application, SAFT was found significantly more accurate

at the .01 level. SAFT similarly demonstrated a better rate of

response for impulse, step, and ramp changes.
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Schussel, George. "Sales Forecasting With the Aid of a Human Behavior

Simulator." Management Science 13 (No. 10; June 1967): 593-611.

This paper presents a forecasting scheme aimed at helping a

manufacturer predict his sales of photographic materials to dealers.

The scheme consists of a demand simulator, the parameters of which were

first defined by the dealers themselves via interviews. The simulator

then takes a macro forecast of retail sales as input and transforms it

into orders that are placed against the warehouse of the manufacturer.

The innovation in this method lies in the fact that simulation

is used as a "transfer" mechanism between a forecast of retail sales

on one side (estimates produced by company executives), and a forecast

of wholesaler (dealer) orders on the other side. It is noteworthy that

the combined results of forecasting and simulation proved to produce

better forecasts than the simple straight forecasting of dealer orders.

The results were based on a relatively small sample of dealers (32) in

one specific industry, and despite their apparent usefulness, caution

is advised since in demand forecasting rarely, if ever, are two cases

the same.
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Smith, David Eugene. "Adaptive Response for Exponential Smoothing

Comparative System Analysis." Operations Research Quarterly

25 (No. 3; September 1974): 421-423.

 

The definition of the proper smoothing rate (a) for different

types of demand over time is a major problem in using exponential

smoothing for forecasting. Smith analyzes this problem by comparing

how adaptive smoothing models (Brown's fixed and bimodal response,

Chow's evolutionary design, Trigg's constant coefficient adjustment,

and Smith's adaptive model corrector) perform in light of both random

and non-stationary demand. The performance measurements are primarily

variances of the forecast errors along with respective values of the

smoothing rates. Both random and non-stationary demands are more

specifically identified through temporal behavioral models, constant,

linear growth, and sinusoidal models.

Finally, the paper shows that each adaptive model has its

forecasting capabilities impaired or strengthened as a result of the

definition of the adjusting criterion for the smoothing rate.
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Theil, H., and S. Wage. "Some Observations on Ada tive Forecasting."

Management Science 10 (No. 2; January 1964): 198-205.
 

This article initially mentions the two sources of evidence

normally used in adaptive or exponential forecasting, that is, latest

evidence and the value computed one period before. From then on, it

attempts to simplify the forecasting procedure through the decomposi-

tion of the time series into elements such as trend value, seasonal

coefficient and residual. The trend value, from one period to the

next suffers the impact brought upon it by the trend changes. Finally,

an attempt is made to minimize mean score error by selecting smoothing

rates. Minimization is developed through vector form, along with the

definition of a probabilistic model underlying the forecasting

technique.

Thompson, Howard E., and William Beranek. "The Efficient Use of an

Imperfect Forecast." Management Science 13 (No. 3; November

1966): 233-243.

Thompson and Beranek present a rudimentary discussion of the

application of Bayesian statistics and payoff matrices for determining

optimal actions under given states of nature. Expected values are

computed for each cell of the matrix and then, for a given state of

nature, the optimal decision is found. The cost of perfect information

is also treated in the common format.

Expected values are determined on a subjective basis throughout,

as the forecaster is to assume, through a knowledge of the market, that
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his forecast has a certain probability of being correct. When the

forecaster is uncertain of his probability of having made a correct

forecast, he may assume several probabilities and calculate his

expected value under each.

Trigg, D. W.. "Monitoring a Forecasting System." Operations Research

Quarterly 15 (1964): 271-274.

 

Trigg begins his article with a brief description of the

formulation for the Brown tracking signal and an elaboration of the

disadvantages inherent in this approach.

This is followed by the author's own tracking signal formulation

and a description of the calculation for setting control limits around

this signal, which are determined by the magnitude of the smoothing

constant.

An illustration is given of the tracking signal in use as

compared to the Brown tracking signal. The Trigg signal performs

appreciably better in measuring the degree to which the forecast is

out of control. However, no attempt is made in this article to

utilize the tracking signal as feedback into an adaptive smoothing

technique.
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Trigg, D. W., and A. G. Leach. "Exponential Smoothing With an Adaptive

ggsggnse Rate." Operations Research Quarterly 18 (No. 1; 1967):

Trigg and Leach begin their article by describing the simple

exponential smoothing formula, followed by a description of the tracking

signal developed by Trigg. The adaptive smoothing technique developed

in the article is to simply set the smoothing constant for each forecast

equal to the absolute value of the tracking signal.

This technique is compared to a non-adaptive model for time

series with step, trend, sinusoidal, and impulse functions. In each

of these series the technique was found considerably more accurate

and responsive. It is further felt by the authors that the technique

eliminates the dilemma of determining initial values of the smoothing

constant, i.e., grossly wrong initial values will create immediate

adjustment in the smoothing constant value.

Tydeman, J. "A Note on Short-Term Forecasting Using an Irregular Time

Interval." Operations Research Quarterly 23 (No. 3; September

1972): 381-383.

 

Normally, the exponential smoothing forecast computations are

made with fixed-time interval between successive observations. Tydeman

shows in his paper that there are situations in which a fixed-time

interval does not make sense; thus, he proposes an exponential model

that handles an irregular time base situation.
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Wheelright, Steven C., and Spyros Makridakis. "An Examination of the

Use of Adaptive Filtering in Forecasting." Operations Research
 

Quarterly 24 (No. 1; March 1973): 55-65.

The authors attempt to devise a technique which, rather than

simply smoothing the noise of past data, identifies a signal pattern

which is then used to adjust the values of a over time. The optimum

set of weights is reached at the minimum mean square error (optimiza-

tion criterion). This minimum is materialized through the computer

manipulation of a formula which encompasses the old weight vector,

a learning constant (k) which determines how fast the weights are

adjusted, the forecast error using the old weights and the vector

of past observations. Thus, by understanding the relationships

between (k), the number of iterations being used and the number of

weights in test, the forecaster can focus in on a final weight value

(a) which minimizes the mean square error, therefore adjusting at the

best level possible the estimates to the actual figures.

Finally, Wheelwright and Makridakis show applications of the

filtering technique to linear and constant series as well as to

random and cyclical ones. They further acknowledge the advantages

of the method over moving average and simple exponential smoothing

in the short run, and its inability to compete with regression

analysis in the long run.
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Whybark, D. Clay. Testing an Adaptive Inventory Control Model.

Working Paper No. 289. Lafayette, Ind.: Purdue unTVersity,

October 1970.

Whybark developed an inventory policy game to test his adaptive

forecasting technique. The technique is essentially an exponential

smoothing formula in which the smoothing constant was given a value

near one when the forecast error exceeded prescribed limits. The

forecast was used to automatically set safety stock levels and

3
9
m
m

order quantities in the game.

The model competed with a group of students who had extensive

background in inventory and game theory and a group with little or no

such experience. The model not only performed well with respect to

the two groups of students, it also kept pace with the Wagner-Whitin

model which is based on perfect prior information. However, the

author felt that more work was needed on the setting of the adaptive

parameters.



301

Whybark, D. Clay. "A Comparison of Adaptive Forecasting Techniques."

The Logistics and Transportation Review 8 (No. 3): 13-26.
 

Whybark compared the results of four adaptive forecasting

techniques on the basis of total inventory cost, forecast error, a

qualitative evaluation of performance, and computer execution time

and storage. The techniques compared were those developed by (l)

Whybark, (2) Trigg and Leach, (3) Eilon and Elmaleh, (4) Roberts and

Reed. All of the time series tested over 200 periods in length with

two-step shifts in an otherwise constant mean demand.

The Trigg-Leach method was found to have the lowest inventory

cost and to be sensitive to small fluctuations in a stable period.

The Whybark model, on the other hand, reacts more quickly to demand

shifts, had the smallest forecast error, and required the least

computer execution time and storage.
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Winters, P. R. "Forecasting Sales by Exponentially Weighted Moving

Average." Management Science 6 (No. 3; April 1960): 324-342.
 

This paper presents a complete analysis of exponential

smoothing, from the simplest form to the inclusion of seasonals and

trend changes into the forecasting technique. It also depicts how

the initial values of the smoothing seasonal, and trend factors can

be calculated and fed into the basic formulation. The utility of the

proposed model is brought about by comparing the accuracy of the expo-

nential smoothing model with the results obtained through the use of

a simple moving average technique and of a seasonality adjusted fore-

casting device. The exponential smoothing technique out-performs the

two others in terms of the standard deviation of forecast errors, and

offers the advantage of giving better forecasts than traditional models,

requiring less information and storage capacity, and responding more

rapidly to fluctuations in the time series (highly responsive to

current data).
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