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ABSTRACT

PERSONAL INCOME TAXES AND THE

CAPITAL ASSET PRICING MODEL: SOME

THEORETICAL RESULTS

By

Ronald Frederick Singer

The incentive effects of the taxation of capital income has

long been a source of controversy. However, with few exceptions,

the lines of inquiry have centered around only two aspects of the

problem; substitution of a riskless asset for the "risky portfolio"

and the effects of differential tax rates on dividend versus capital

gains income. This study is an investigation into a third avenue

of inquiry; the effect of personal income taxes on the substitution

of risky assets within the investor's risky portfolio and the

resultant equilibrium structure of security returns.

The study broadens the assumptions underlying the Capital

Asset Pricing Model to permit investors to make decisions on the

basis of after tax rather than before tax parameters, when the

investor's tax liability is a strick function of total income. The

resultant first order conditions are derived and a representative

investor's required risk premium for a specific security is con-

sidered in a general model and in some specific cases.

It is concluded that personal income taxes do not affect

investor behavior as long as marginal tax rates are non-stochastic.
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That is, the investor faces a tax function which is linear in in-

come. Taxes are also irrelevant to investor behavior if all

security rates of return possess normal probability density func-

tions, regardless of the form of the tax function. However, if the

investor faces stochastic marginal tax rates and security returns

are non-normal then the required risk premium will depend on the

parameters of the tax function, the degree of skewness and kurtosis

of the rate of return of the investor's portfolio, as well as higher

joint moments of the bivariate density function of the security and

portfolio returns.

Similarly, the equilibrium structure of security returns

remain unaffected by the tax function if all investors face non-

stochastic marginal tax rates and/or security returns are normally

distributed. However, if some investors face stochastic marginal

tax rates, then the equilibrium structure of security returns will

depend not only on the traditional market parameters, but also on

higher moments of the investors' portfolio rates of return and

higher joint moments of the security and portfolio returns.
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CHAPTER 1

INTRODUCTION

The incentive effects of the taxation of capital income has

long been a source of controversy. However, with few exceptions,

the lines of inquiry have centered around only two aspects of the

problem; substitution of a riskless asset for the "risky portfolio"

and the effects of differential tax rates on dividend versus capital

gains income.1 This study is an investigation into a third avenue of

inquiry; the effect of personal income taxes on the substitution of

risky assets within the investor's risky portfolio and the resultant

equilibrium structure of security returns.

It is natural that this aspect of the incentive effects of

taxation has been ignored up to now. Until recently, a theoretical

model of the structure of security returns had not been developed.

Only in the last decade has research by Sharpe, Lintner and Mossin

provided investigators with the Capital Asset Pricing Model, a model

of the equilibrium structure of security returns in the context of

perfectly competitive markets.2 This model serves as a benchmark

against which the implications of~various modifications of its under-

lying assumptions may be judged. The present study considers one

possible modification of the Capital Asset Pricing Model. The

traditional model is modified to accommodate personal income taxes

as a relevant variable. That is, the investor is assumed to consider

the distribution of after tax returns as a decision stimulant rather

than before tax returns.
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In this context, specification of the tax function defines the

breadth of the issue under consideration. It is assumed throughout

that tax liability is a continuous function of income, and its functional

form is known by the investor with certainty. All income, except capital

income, is non—stochastic and known at the beginning of the period. This

serves to remove any uncertainty from the investor's anticipated tax

liability except that resulting from the stochastically determined

return on the risky securities in his portfolio. Thus, the study

concentrates on the stochastic nature of security returns and its

implication on the investor's tax liability, rather than on uncertainty

involved in the tax function per se.3 Furthermore, all sources of

income are assumed to be realized and taxed at the end of the period.

This permits a single period analysis, avoiding the difficult multi-

period decision problem. Finally, it is assumed that capital gains

and dividends are treated identically for tax purposes. Hence the study

abstracts from the issue of the effect of differential tax rates on

investor behavior.

Since the general methodology of the present investigation is

deeply rooted in the traditional Capital Asset Pricing Model, chapter 2

presents a brief review of the traditional theory. This is followed

by relevant empirical tests of the traditional model and some of its

modifications.

Chapter 3 contains a mathematical formulation of investor

behavior in the context of a general income tax structure. The

formulation extends the traditional Capital Asset Pricing Model to

incorporate personal income taxes as a relevant variable. The investor

is assumed to act in response to after tax rather than before tax
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variables. First order conditions in terms of the joint moments of

the tax function, marginal tax rate and security returns are derived.

Then key parameters are identified which describe the implications

of various forms of the tax function on investor behavior.

Chapter 4 considers some special cases of the more general

results. Specifically, four cases are presented assuming that the

tax function may be approximated by a two degree Taylor Expansion.

In these cases it is further assumed that investors possess two

parameter utility functions. Different results are derived under

different assumptions about the nature of the probability distribution

of security returns. Finally, an L degree Taylor Expansion is assumed,

when the investor possesses a three parameter utility function and

security returns are normally distributed.

Chapter 5 derives market equilibrium in the context of a tax

function which can be approximated by a two degree Taylor Expansion,

two parameter utility functions for all investors and non-normal

security returns.

The last chapter summarizes the results and provides some

conclusions about the effect of income taxes on security returns.

3
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CHAPTER 2

THE FOUNDATIONS AND EMPIRICAL FINDINGS

OF THE CAPITAL ASSET PRICING MODEL

2.1. Methodology of the Capital Asset Pricing Model
 

The traditional Capital Asset Pricing Model (CAPM) is an

attempt to explain the structure of returns on risky securities in

the context of expectee utility maximization under conditions of

uncertainty;1 The model is derived from the following assumptions:

Market Assumptions

A.l. Each individual investor is free to borrow or lend an

unlimited amount at an exogenously determined "riskless" rate of

interest.

A.2. Each investor can invest any fraction of his capital

in any or all of a given finite set of risky securities.

A.3. The market supply, in terms of number of shares, of

each risky asset is exogenously determined.

A.4. All investors make all purchases and sales at dis—

crete points in time, the time period being identical for all in-

vestors.

A.S. All assets are traded in a single competitive market.

That is, each investor's demand for any asset is sufficiently small,

relative to total market demand, so that his transactions have an

insignificant effect on the market price of that asset. In addition,

5
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there are no transaction or information costs and all assets are

perfectly divisible.

Assumptions Regarding Investors

B.l. Investors have already determined the fraction of

their capital they intend to use for liquidity and transactions

purposes.

B.2. Each investor's decisions are made on the basis of the

mean and variance of his portfolio return.

B.3. Investors are able to assess the relevant expectations,

variances and covariances of each risky asset's rate of return.

B.4. All investors are "risk averse" in the sense that each

prefers more expected return for a given amount of "risk" and less

"risk" for a given amount of return.

3.5. All investors have identical assessments of each

asset's "risk" and return. This has been called the "homogeneous

expectations" assumption.2

In general, if the investor acts in accordance with the

Von—Neumann-Morgenstern3 axioms of expected utility maximization and

either all investors possess quadratic utility functions, or all

risky securities possess two parameter probability density functions,

then it can be shown that assumption B.2 will hold. That is, the

mean and variance (or standard deviation) of portfolio returns are

the relevant arguments in the investor's utility function.4 Thus,

in this context, "risk" refers to the variance (standard deviation)

of portfolio return.
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Under the assumptions enumerated above, conditions for an

investor's expected utility maximization are derived. Then,market

equilibrium conditions are imposed,and the structure of equilibrium

security returns is obtained. Specifically, the methodology and

conclusions of the traditional Capital Asset Pricing Model are as

follows. There exists K investors-indexed by k(1,...,k,...,k)—

trading,in N different risky-assets indexed by i and j

(1,...,i,...,j,...,N)_ in accordance with the assumptions set out

above. Let,

Pi be the random end of period price per

share of asset i, i = 1,...,N

P be the non-random beginning period price

of asset i

D. be the non-random dividend payment,

in dollars,of asset i over the period

P.-P.+D.

Ri =-—£1§%-4£ be the single period before tax rate

1 of return of risky asset i

RN+l be the single period before tax rate

of return on the riskless asset

xik be the proportion of total speculative

capital inveSted in asset i by

investor k

xN+l,k be the proportion of total speculative

capital invested in the riskless asset

by investor k
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E[ ] be the expectations operator

0. = 0(Ri’Rj) = EI(Ri-Ri)(Rj-Rj)]

be the covariance of single period rate

of return between risky asset i and

j, and

~ N

o( R ) - Z X. 0,, be the covariance of sin le eriod
Rk’ j j=l jk 13 ' g p

rate of return between investor k's

entire portfolio and asset j

N N

0 ~ ~ = Z Z X, X, o . be the variance of single period rate

(Rk,Rk) i=1 j=1 1k k i]

of return of investor k's entire portfolio

N

RR = X XikRi + xN+l,kRN+1 be the Single period rate of return of

i=1

investor k's entire portfolio

In accordance with assumptions B.2 and B.4 above, investor

k's utility function may be written as

  

Uk =Uk(E[Rk], 0(fik,fik))

all 311 321]
_______.._~ > 0, 30 ~ ~ < 0’ ~ < O 2.1

3E[Rk] (Rk,Rk) aEng130(fik’Rk)

The investor desires to maximize 2.1 subject to the constraint

N+1

z x. =1 2.2

j=1 J.k

That is, the sum of the proportional holdings of all assets in the

investor's portfolio must be one. Forming the Lagrangean function

and maximizing:
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~ N+1

Max ii= U (E[R ], 0 ~ ~ — A ( Z X, - 1))

X. k k (Rk’Rk) k j=1 jk

1k

8U 3E[R] 3U 80(R R)
Edi 3 k k + k k’ k _ A

3X. ~ 3X, 80 ~ ~— X, k

1k 3E[Rk] 1k (Rk’Rk) 1,k

i = 1, .,N+l

N+1

%% :3 Z X. k - l = O o

k j=l 3’

Clearly,

3E[R ]
k e

= E[R.],

BXik 1

~ ~ 2 X

3“(R ,R ) 3' . . Xikxjkoij]

3X k k = 3X - 2 Z X.ko,

ik ik j J 13

= 20.~ ~

(kai)

Specifically, for the riskless asset,

axNH’k hm

80 ~ ~

(Rk’Rk) = 0

axN+l,k

Thus,

2.3

2.4

2.5
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~ 3U

~ E[R ] + 2 ~ ~ 0 ~ - A = 0 1 = 1,. ,N

3E[Rk] i 30(Rk’Rk) (Rk,R1) k

3U
——————- - x = o
3E[Rk] RN+1 k

N+1

Z X. - l = O 2.6

i=1 3

The Lagrange multiplier may be eliminated by subtracting the

N+1th equation from the remaining N equations, yielding after some

  

rearranging,

an 3 ~ ~ ~

’ “mew E[Ril - s...
-2 ~ =O~ ~ i=1,...,N

3U/3E[Rk] (Rk,Ri)

N+1

)3 x. - 1 = 0. 2.7

j=1 3“

The Capital Asset Pricing Model is concerned with the choice

of the portfolio of risky securities. In order to convert equation

2.7 into parameters involving the risky security, the following new

symbols are defined.

Let,

ik

h. = -———-——-' be the proportion of asset i in

IR 1'XN+1,k

investor k's portfolio of risky

securities only. i = 1,...,N.

X h, R. = Rk be the stochastically determined

return of investor k's risky portfolio
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I

— Z 2 h h’kgij be the variance of investor k's

1 J

ik J

risky portfolio
-2

(l'xN+1,k) O (Rka)

~ 2 h. 0., be the covariance of the return of

k’Ri) .j jk 13

asset i with investor k's risky portfolio.

1

(1'XN+1,R) O(Rk,Ri)

Then equations 2.7 may be written as,

aU/ao ~ ~

(Rk’Rk) = E'Ri] ’ RN+1

au/aalfik] (l’xn+1,k)°

  

- 2

r

N

: xjk = (l‘xN+1,k) 2'8
j 1

Now, equation 2.8 holds for all assets in the investor's portfolio.

Thus, multiplying the numerator and denominator by hi and summing

k

the numerator and denominator separately over all i (l,...,N) yields:

  
 

aU/Bo ~ ~ 2h (E[R ] - ) ~r

_ 2 (R‘k’Rk) ___ j jk 1 Rn+13 = El ]- RN+1 2.9

au/aerfik] I? hjk0(§: fi )](1'XN+1,R) “(~r ~r)(l-XN+1 k)
,j ’ 9

Setting 2.8 and 2.9 equal to each other,

I

E[Ri] ’ RN+1 _ E[RR] ' RN+1

O 0

~ ~r ~r
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or

21“] -

E[R.] - RN = [ RR RN+1IO , i = 1,...,N . 2.10
1 +1 0 ~r ~r (fir R )

(Rk,Rk) k’ i

Equations 2.10 describe the relationship between the required

risk premium, defined as the expected return of a risky asset above

the return obtainable from the riskless asset, in terms of the

portfolio's expected excess return, the portfolio variance and the

covariance between the portfolio return and the asset in question.

Note that equations 2.9 are consistent with the familiar results

that the marginal rate of substitution must be equal to the marginal

rate of transformation for utility maximization to obtain.

Specifically, the marginal rate of substitution between risk and

return, conditional on the investor's utility function may be

derived as,

auk ~

dUk = —————— dE[Rk]__

aEIRk]

8U

do ~ ~ =

a”(Rk,fik) (Rk’Rk)

 

0.

so that the marginal rate of substitution between risk and return

I

is simply,

aUk/Bo

  

dE[Rk] (Rk,Rk)

do ~ ~ = ~ '
(Rk’Rk) 3Uk/3EIRkl

2.11

Similarly, the marginal rate of transformation between risk and

return for asset i, when the proportion of asset i in the

investor's portfolio is increased by reducing the preportion of
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funds in the riskless asset is,

aEIiik]

dEIRk] = a(Xik‘xn+1,k)

~ 30 ~ ~

(kak) “*ka)

a

(Xik-XN+1,k)

E[fii] " RN+1

2 Cov(Ri,Rk)

 

 

 

 

Similarly, the marginal rate of substitution between risk and return

is equal to the marginal rate of transformation between risk and return

for the risky portfolio as a whole, when funds are drawn from the

riskless asset, since the expected return of the investor's portfolio

may be written as,

~ ~r

E[Rk] = (1"hi+1,k)E[Rk] + XN+l,kRN+l

 

and its variance may be written as,

_ 2

O(Rk,Rk) - (l-XN+l,k) O ~r ~r
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So that,

dEIfik] E'fiil ' RN+1
 

do = 2(1- )0
(Rk’Rk) xN+l,k (R:,R:)

That is, equation 2.9 insures that the marginal rate of transforma-

tion between risk and return for the portfolio as a whole, be equal

to the investor's marginal rate of substitution between risk and

return.

Equation 2.10 reveals that the relevant measure of risk for

an individual security is not the own variance of the security, but

the covariance of that security with the investor's portfolio even

though risk for the portfolio as a whole is measured by its own

variance. This is because diversification can eliminate most

of the effects of the asset's own variance on the total variance

of the portfolio. Only the effects of the covariance of the asset's

return with the other assets in the investor's portfolio cannot be

eliminated through diversification.5

James Tobin has shown that the existence of a riskless asset

insures that the proportionate compoSition of the assets in the risky

portfolio is invariant to the specific shape of the utility function.-

as long as investors' decisions are made on the basis of the mean

and variance of the portfolio returns, all investors are risk averse,

and investors have homogeneous expectations of security returns

(Assumptions B.2, B.4 and B.5 respectively). Thus, barring perfect

positive correlation between any two or more subsets of securities,
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all investors will hold the identical risky portfolio, adjusting

their individual degrees of risk aversion by leveraging or lending

at the risk free rate of return.6

Since all investors hold the same risky portfolio, in

equilibrium, they all hold the "market portfolio", defined as that

portfolio in which every asset outstanding is held in proportion

to its total value. Thus, if the market portfolio is represented

by RM, equation 3.10 may be written as,

E'RM] ' RN+1

“(gimp

 

E[Ri] ’ RN+1 = C(RWRi), i = l,...,N. 2.12

Now, the equilibrium risk premium for any asset may be expressed

in terms of market parameters rather than individual investor

parameters.

2.2 Empirical Findings in the Absence of Taxes

The Capital Asset Pricing Model, defined in 2.12 appears

to lend itself to empirical verification by simple linear regression

methods. That is, a cross section linear regression model can be

\

hypothesized such that

Y. = a +8X. + E,
-1 -1

where the errors satisfy classical normal linear regression assump-

tions and

.
4 II

1 E[Ri] ' RN+1

Z Xjaij

j

N

N
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Then the least-squares estimates 8 and d can be used to test

the hypothesis,

___ MR“) " RN+1

2

“(‘RM)

 

B , a = 0 .

However, two immediate problems arise in practical application:

(1) calculation of X1

(2) Y1 and B consist of expectations which are not

directly observable.

Only realizations are observable. Thus it is necessary to trans-

form the expectations into realizations or posit an expectations

generating scheme from realized values.

Both of these problems are greatly facilitated by assuming

all risky assets are related only through a simple relationship

with an underlying market factor. Specifically, Professor Sharpe's

"Diagonal Model" or Professor Fama's "Market Model"7 assumes that

all risky securities are linearly related to an index representing

market movements as a whole.8 Thus, the Market Model is specified as:

R = a + b.I + E 1 — 1,...,N

1 1 1 1

E[Ei] = 0

2 ~ _ 2.13

Elel j] - 0 1 ¥ J

2 .
- Cg i — j

E[eiJ] = 0

a b are constants, Ri’ I, e are normally distributed

1’ 1

random variables.
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~ = Z x.R. = 2 X.a

RM J J .[ J J

+Xoboi + X.E.]’

. J J

J J

J J

where Xj is the proportion of asset j in the market portfolio.

It is possible to scale I so that Z X,b, = 1, Z X,a. = 0, i.e.

. J J - J J

2 J J

E[I]. Then:scale I so that E[RM]
Q

II E{[I + t xjej - E[IIIZI

= o? + 2 X?02

1 . J c.

J J

= ”- ” +~ - +~oij Eilbill E(I)] eillbjli E[IJJ ejl}

2 O O

- bibjOI 1 # j

= bTOE + o? i = j 2.14

1 I e

i

2 2 .

Z X,o,. = b.o + X.o Since 2 X,b, = 1 .

. J 13 1 I 1 - , j

J Ci J

Substituting 2.13 into the Capital Asset Pricing Model, equation

2.12 yields:

2

-+.bioI X10 1

E[fii] ' RN+1 = [E(RM) ’ RN+l][ 2 I 2‘15

“(RMJ

Empirical evidence suggests that o: is approximately equal

2

E.

 

to OER ) and for N sufficiently large, Xi will be small (on

m

average %9 relative to b1 (on average 1). Similarly 2 Kid?

J J'

will be small relative to 0% in 2.14. Thus, 02 ” oz, and sub—
1 RM ” I

stituting these approximations into 2.15 yields:
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E'Ri] - RN+1 = E[RM - RN+1]bi ‘ 2'16

Professor Jensen10 has succeeded in expressing 2.15 in

ex-post realizations rather than ex-ante expectations. The following

derivation differs slightly from Jensen's for the sake of con-

tinuity of the presentation. Taking the expectation of 2.13:

E[Ri] = a1 + biE[I], solve for 31 and substitute back into 2.13.

This yields:

R1 = E[Ri] + bi[I - E(I)] + 51, 2.17

and

z x,R, = E[Z X.R.] + ZX,b,[I - E[I]] + 2 X.e. .

. J J . J J . J J . J J
J J J J

01'

” = E ” + 1 - E i + z x,e,, 2.18RM [RM] I ( )l j J J

since 2 X.b. 1. Substituting 2.17 and 2.18 into 2.16:

J

~

Ri - bill — Eti)] - ti - Rn+1.= [RM - (i - E[il)

- g Xjej - RN+llbi .

Thus,

R1 - RN+1 = (fiM I RN+1)b1 ’ bi g Xjéj + £1 . 2.19

Now, 2 Xjéj Z 0 since E(€j) = 0 and independent of each other

5
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' 2

and 0(2 X 62) is infinitesimal for a well diversified portfolio.1

- J J
J

Thus, Ri- RN+1 2 (RM - RN+l)bi + 51 or, taking conditional expecta-
 

tions of Ri:

E[(Ri ' RN+1)IRM = RM’bi] = (RM ' RN+l)bi ’

Thus, the model contains only ex—post realizations. All variables

are observable and the hypothesis is at least potentially testable.

Note that least squares estimates from time series regression

of the "Market Model", 2.13, yields

i<Rit - Ri)(It — I)

B.=B = — = 02

t (I)

Cov(Ri, I)

  

and if the index is taken as a proxy for the movement of the market

in general,

= Cov(Ri,RM)

2~

°(RM)

 

Substituting Bi for bi into 2.16,’the equation becomes,

~ ~ Cov(R1,RM)

E'Ri' ' RN+1 = E[RM - RN+1] 2~

C’(RM)

 

identical to the CAPM for sufficiently large number of securities.

Douglas12 published the earliest direct test of the CAPM.

He regresses the mean quarterly rates of return of a cross section
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sample of 616 common stocks on both their variance of return and on

heir covariance of return with the average return on all stocks in

the sample for the given quarter (repeated for seven non—overlapping

five year periods from 1926 to 1960). The CAPM predicts that

Douglas' regression equation:

2
=* + ~ ~ + * ~

R1 Yo I1°<Ri,1) Y20R. + e

should have coefficients consistent with:

 

Y0 = RN+1

. + (RI - RN+1)

RM

R ' RN* _ I +1 ~

Y2 ‘ Xi 02 ~ 0

RM

for a well diversified portfolio and sufficiently large N. However,

Douglas finds that §2 is positive and significant and I1 is

not significantly different from zerol

He also cites an unpublished study by John Lintner con—

firming the Douglas results. Lintner utilizes a two pass regression.

The first, a time series regression of the annual rates of return of

301 common stocks over the ten-year period 1954-63, on the yearly

average rate of return for all the stocks in the sample. The slope

coefficient éi in the regression equation:
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is the estimate of bi in the market model. He then uses these

. . . -2
estimates and the estimate of the re31dua1 variance, SE of the

it

time series regression as independent variables in a second pass,

cross-sectional regression with the mean annual return of each

security as the dependent variable.

(
m
m

+ E .m
)

+

-
<

>

N

U
'
J
l
>

The results again seem to contradict the CAPM. Although §l is

significnat its value is much less than RM - RN+1’ its predicted

value. Also, §2 is positive and significant and §O is much

greater than its predicted value, RN+1°

Miller and Scholes13 have examined possible bias in the

model as presented by Lintner. Replicating Lintner's study on a

different set of data, but over the identical time periods, they test

for the following source of bias:

(1) Misspecification due to failure to include the risk

free rate of interest inlthe basic estimating equation.

(2) Nonlinearity in the risk-return relationship.

(3) Possible heteroscedasticity.

(4) Errors in measurement of risk and return.

The study concludes that (l), (2) and (3) could not have caused the

Lintner results. Although heteroscedasticity per se does not imply

bias.in the coefficients, they investigate the possibility that

excessive weight given observations at the high end of the risk
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scale, due to the greater dispersion at this end of the scale, distorts

the true relationship between risk and return in the specific data

utilized. They find, however, that heteroscedasticity does not

seem to explain the Lintner estimates. In addition, the authors

indicate that the regression is nonlinear. Although a quadratic

seems to fit the data well, its curvature was "in the wrong direc—

tion".14

However (4) seems to be a possible explanation of the Lintner-

Douglas results. Bias due to the inclusion of a random variable,

8 as an explanatory variable may have reduced its coefficient, I1

by as much as 64 per cent of its true value. The estimate of

residual risk Se. is found to be correlated with the estimates of

Bi. Thus, the esEimate may have been acting as a proxy for the non-

diversifiable risk coefficient, bi'

However, these two sources of potential bias are not found

to be of sufficient magnitude to have caused the Lintner-Douglas

results alone. Further tests on the index as a proxy for the "true

index" and skewness in the errors of the first-pass regression are

performed. The index measure is found to be satisfactory. Although

skewness is not directly observable according to the investigators,

a simulation indicates that this could have caused the Lintner

results. It should be observed that no attempt is made to "correct

for" these biases and verify the CAPM. They are merely suggested

as potential explanations for the disturbing Lintner-Douglas results.

Jacob15 replicates Lintner's two-step procedure, but

explicitly includes the risk free rate (yield on 90-day Treasury
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bills). Using a sample of 593 NYSE stocks, she regresses annual

and monthly return data on an unweighted index of the price relatives

of her sample, to find estimates of bi' The cross section regression

on 61 found the regression constant to be greater than predicted

and the slope to be less than predicted. The average R2 was only

.089, leading her to conclude that the CAPM and/or the market model

are not satisfactory predictors of security behavior.

Black, Jensen and Scholesl6 (B-J-S), provide tests of the

CAPM designed to eliminate the bias associated with the Lintner-

Douglas results. Using a large sample of NYSE securities, they

divide them into ten portfolios grouped to maximize the dispersion

of individual security S's. Using the average 8 in each group

(as Opposed to the individual security S) they are able to

significantly reduce bias resulting from including 8, a random

variable, as an explanatory variables. By estimating a series

A

regression on the average B's using data from periods subsequent
 

to the period in which the S's were estimated, they are able to

eliminate the correlation between E and 8:. These two problems

associated with the Lintner result corrected, the CAPM is tested

using both time series and cross—section regression techniques.

Results of the time series regression over the entire period

A

B + E i = 1,...,10,R . .
1 itit = Y0c + Y1:

suggests that the regression constant is inversely related to the

B coefficient, with high 8 securities having negative constants

and low 8 securities having positive constants. Similarly, the
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slope coefficient is related to the B coefficient. Dividing the

period 1931-1965 into 17 non-overlapping two year periods and

estimating cross-sectional regressions on the same data they find

the coefficients to be unstable over—time, the intercept increasing

over time and the slope decreasing. However, each period's re—

gression results seemed to be significant. This led them to con-

sider a "two factor" model of form:

R
it = Y0t ji

where and Ylt are random variables fluctuating over time,

IOt

IOt is called the "8 factor", since its coefficient is a function

of 8, while the predicted value of tit is the market rate of

return. Although no direct tests of the ”Beta factor" are performed,

they conclude that its existence has been established by their

explicit estimation procedure. However, their estimate of the Beta

factor required assuming both independence of the residuals and

homoscedasticity. The latter has been shown to be violated at least

in the Miller-Scholes data, (and there is no justification for

assuming the former), making the B-JJS results suspect. In addition,

although some theoretical explanations for the existence of the

"8 factor" have been offered, none of them explains its secular

trend.17’ l8

Fama and Macbeth19 also attempt to test the CAPM. Using all

common stocks listed on the NYSE (and not delisted over the test

period), they group all securities into 20 portfolios by their
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individual éi using monthly data over an initial 7 year period.

They then recompute the portfolio average é's (ép) using the sub-

sequent five year data and test using subsequent four year data.

The full test equation is:

R =Y +Y B +Y 82 +T- (éi)+§

pt 0t 1t p,t-l 2t p,t—l 3tsp,t-l pt’

p = l,...,20

Sp is the average of the squared 3's in each portfolio,

t-l

Sp (e.) is the standard deviation of the least square errors of

t=1

the market model used to compute éi' Using a sequence of cross—

sectional regressions and analysing the sequence of coefficients

they were unable to reject the hypothesis that:

E[th] = E'T3t] = 0

E[ilt] = E[RMt] — E[thl

E[101:] = RN+1,t’

where th is the stochastic return of a portfolio which has a

zero covariance with the market portfolio. The Fama and Macbeth

results seem to verify the CAPM. However, distinguishing between

a random variable ;jt, with eXpected value, E[Ijt] = k and a

parameter, St = k for all t, they conclude that,

... there are variables in addition to é that

systematically affect period-by-period reEurns.

Some of these omitted variables are apparently

related to E: and [5p(ei)]. But the latter
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are almost surely proxies, since there is no economic

rationale for their presence in our stochastic risk-

return model.20

21

Blume and Friend, also present tests of the CAPM in the

light of the B-J-S results. They point out that the most generally

accepted theoretical explanation of the "Beta factor" has been the

absence of a true riskless asset.22 However, replicating the B-J-S

grouping and time series testing procedure, they show that the return

on the Beta factor is inconsistent with its theoretical value (which

would have to be close to the rate on 90-day treasury bills). They

offer an alternative theoretical explanation for the existence of

the Beta factor, that is, segmentation of markets between stocks

and bonds. Nevertheless, no explicit test of their hypothesis was

performed.

2.3. Empirical Findings of the Effects of Taxes on the Structure

of Security Returns and the Capital Asset Pricing Model
 

Brennan23 has made the only explicit attempt to assess the

impact of investor taxes on the CAPM. Deriving market equilibrium

from individual utility maximization, Brennan finds that the

theoretical relationship of risk and return, given a specific tax

structure is:

E[Ri] = TZRN+1 I T161 I E[RM ‘ T15M ' T2 RN+1'81

where

61, 6M are dividend yields on asset i and the market portfolio

respectively (assumed to be known ex-ante with certainty).
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Ta - r

T1 = 1 - rg ’ T2 = 1 ’ T1

where Td and Tg are weighted average marginal tax rates on

dividend and capital gains income respectively. It is noted that if

dividend and capital gains income are taxed at the same rate, then

T1 = 0, and T2 = 1 and the traditional CAPM applies. However,

where Td > Tg the slope is less than predicted by the CAPM and

the intercept is larger. In addition, the investor is not indif-

ferent between capital gains versus dividend income, preferring a

security with high capital gains to a security with high dividend

yield, even though the total, before tax return is the same for the

two securities.

Empirical tests of the model on data from all New York Stock

Exchange securities over the period 1946 to 1965 were performed.

The tests consisted of constructing a set of 99 portfolios, accord-

ing to dividend yields of each security. Using the data from these

portfolios Brennan attempts to fit the data to the regression:

=‘+“ +‘ + .
R1 Yo YlBi Y251 éi

”b

He concludes that the results obtained are not entonsistent with

the hypothesis, that tax effects on security returns are important

and that his model fits the data better than the traditional CAPM.

However, Brennan's main concern is with the effects of

differential tax rates on the trade-off between dividend and capital
 

gains income. He assumes a specific tax structure such that the

marginal tax rate on capital gains income is exogenous, and inde-

pendent of the level of realized capital gains, asserting this is
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necessary in order to derive "manageable expressions... for the

variance of after—tax terminal wealth."24 This assumption is equi—

valent to removing all uncertainty from the tax function since it

is further assumed that the marginal tax rate on ordinary income de-

pends upon labor and dividend income, know for certain at the begin

ning of the period.

Furthermore, Black and Scholes25 argue that if differential

tax rates do significantly affect the equilibrium value of securities,

then corporations will tend to adjust their dividend policy to

eliminate any differential effect. Noting that Brennan's cross—

section regression techniques do not identify a causal relationship

or the direction of causality, they point out that low risk securities

are likely to have high dividend yields and vice versa. Thus,

Brennan's regression results could have resulted from the phenomenon

identified by B—J-S. That is, that low risk securities tend to have

higher expected returns than the CAPM predicts because of the "Beta

Factor." If low risk tends to be associated with high dividend

yields, then a regression containing dividend yield as an explanatory

variable would result in a spurious significant coefficient on

dividend yields, whereas actually the "Beta Factor" is the significant

explanatory variable.

In order to allow for an independent test of the dividend

policy effect, they derive the equation,

6. - 6

HQ] = v0 + may) - YOJBi + “(J—6:31) ,

by combining the B—J-S hypothesis with Brennan's hypothesis. 61 is
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the dividend yield of asset (portfolio) 1, 6m is the dividend yield

of the market portfolio. It is now possible to test the hypothses,

Y0 = RN+1 Implies no Beta Factor

Y1 = 0 Implies no dividend effect,

Using data from 1936 to 1966, they find §l not significantly dif-

ferent from zero for the entire time period and for five separate

subperiods. §O was significantly different from RN+1 for the

entire period and for all subperiods except 1936-1946. Thus, they

conclude that the results reported by Brennan seems to have been

caused by the proxying effect of the dividend yield variable for the

Beta Factor variable confirming the B—J-S results.
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CHAPTER 3

THE EFFECTS OF PERSONAL INCOME TAXES ON INVESTOR BEHAVIOR

This chapter contains a mathematical formulation of the effects

of personal income taxes on investor behavior in the context of a

general personal income tax structure. The formulation extends the

traditional "Capital Asset Pricing Model" to permit the investor to

maximize expected utility with respect to after tax rather than before

tax variables.l First order conditions are derived assuming investor

income is subject to a relatively general tax structure. Key param—

eters are identified which describe the functional form of the tax

structure and the joint probability density function of the relevant

securities. Finally, a linear and quadratic tax function is assumed

and specific results are derived.

3.1. The Assumptions
 

Market Assumptions )

A.1. Each individual investor is free to borrow or lend an

unlimited amount at an exogenously determined, before tax "riskless"

rate of interest.

A.2. Each investor can invest any fraction of his capital

in any or all of a given finite set of risky securities.

A.3. The market supply, in terms of number of shares, of

each risky asset is exogenously determined.

32
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A.4. All investors make all purchases and sales at discrete

points in time, the time period being identical for all investors.

A.5. A11 assets are traded in a single competitive market.

That is, each investor's demand for any asset is sufficiently small

relative to total market demand, so that his transactions have an

insignificant effect on the market price of that asset. In addition,

there is no transaction or information costs and all assets are per-

fectly divisible..

Assumptions Regarding Investors

B.l. Investors have already determined the fraction of their

capital they intend to use for liquidity and transactions purposes.

This fraction, as well as the total amount of capital held for

speculative purposes is independent of the tax structure.

B.2. Each investor acts in accordance with the Von—Neumann-

Morgenstern axioms of expected utility maximization and possesses a

quadratic utility function with respect to terminal after tax wealth.

This implies, that investor's decisions are made on the basis of the

mean and variance of after tax portfolio returns.

B.3. Investors are able to.assess the relevant expectations,

variances and covariances of each risky asset's before tax rate of

return.

B.4. All investors are "risk averse" in the sense that each

prefers more after tax expected return for a given amount of after

tax risk and less after tax risk for a given amount of after tax re-

turn.
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B.5. All investors have identical assessments of each asset's

before tax risk and return.

B.6. Each investor knows the functional form and relevant

parameters of the tax function facing him.

Assumptions Regarding the Tax Function

C.l. The total tax liability for any investor is a monotonically

increasing, differentiable, function of the investor's income over

the relevant time period.

C.2. Income is defined as the sum of income from labor and

capital sources. Labor income is known with certainty over the

relevant period and is exogenously determined. Capital income is the

sum of capital gains, dividends and interest, in dollars, generated

over the period from capital investment. At least a part of capital

income is stochastically determined for a significantly large number

of investors. Capital gains and dividend income is assumed, for in—

come tax purposes, to be realized at the end of the period.

The assumptions enumerated above are designed to retain the

essential features of the Capital Asset Pricing Model, modified only

to permit investors to take cognizance of the tax function and behave

in relation to after tax rather than before tax variables. All

departures from the traditional assumptions are made for obvious reasons

with the possible exception of assumption B.2. Recall that the tradi-

tional assumptions underlying the no-tax model requires only that in-

vestors' decisions be made on the basis of the mean and variance of

portfolio returns.5 It is well known that this assumption is con-

sistent with Von-Neumann—Morgenstern axioms of eXpected utility
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maximization when either (i) the individual has a quadratic utility

function with respect to terminal wealth, or (ii) the joint distribu-

tion of security returns belongs to a two parameter family of distribu-

tions.6 Since the solution to the traditional model is identical

regardless of the choice of the underlying justification for the mean—

variance approach, further specification is not necessary.

However, if investors behave in relation to after tax portfolio

distributions, it would be difficult to justify the mean-variance

approach on the basis of a two parameter probability distribution of

after tax security returns. Clearly, if before tax returns are

normally distributed, then a severely limited family of tax functions

is necessary if after tax returns are to be a member of a two param—

eter family of distributions. Similarly, if justification for the

mean-variance approach is based on the prOposition that after tax

returns are normally distributed, severe restrictions on the before

tax asset distributions are necessary, and it is likely that little

intuitive justification could be found for adopting such an assumption.

Thus, unless otherwise specified, justification for the mean-variance

approach will be based on the assumption of quadratic utility func—

tions from here on. The reader is advised that this specific

specification of each investor's utility function is not without its

drawbacks. Caution must be utilized in applying the specific results

derived here to more general models.7

By retaining the essential features of the traditional model it

is possible to undertake a direct comparison of results derived from

the after tax model with the traditional no tax model. This
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facilitates comparison of the behavior of investors in the absence of

taxes with investors subject to a personal income tax. In this way,

behavior resulting from the imposition of the tax can be isolated from

investor behavior in the absence of the tax. In addition, considera-

tion of market equilibrium permits assessment of the effects of

investor taxes on the equilibrium structure of security returns, com-

pared to the structure that would exist in the absence of taxes.

3.2. Model of Investor Behavior
 

This section presents a model describing the behavior of K

investors, indexed by k(1,...,k,...,K) trading in N different risk

assets indexed by i and j (l,...,i,...,j,...,N) in accordance with

the assumptions set out in Section 3.1.8 The following variables and

parameters are defined:

Pi is the random end of period price per share

of asset i.

P is the non-random beginning period price

of asset i.

D is the non-random dividend payment, in

‘5

dollars of asset i over the period.

Pi-Pi+D'

R1 = ———E———£ is the single period before tax rate of

i

return of risky asset i.

RN+1 is the single period before tax rate of

return on the riskless asset.

is the total dollars investor k places in

speculative capital.
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Xik‘ is the proportion of total speculative

capital invested in asset i by investor k.

xN+l,k is the proportion of total speculative capital

invested in the riskless asset by investor k.

Y is the certain dollar amount investor k

receives over the period.

= V (.2 xikfii + XN+1RN+1) is the capital income received by

individual k over the period.

Yk = Y: + Y: is total income received by investor k over

the period.

Ei ] is the expectations Operator.

~ ~ = ~ — - ~ - - O O O C d

0(R1’Rj) E[(Ri Ri)(Rj Rj)] is the covariance of Single perio

rate of return between risky asset i and j.

0(Rk,Rj) is the covariance of single period rate of

return between investor k's entire port-

folio and asset j.

O(Ri,Rk) is the variance of single period rate of

return of investor k's entire portfolio.

and in general, '

0(E,M) is the covariance between random variables

I and M for I # M or the variance of

random variable i for E = M.

Rk = 1E1 Xikfii + XN+l,kRN+l is the single period rate of return of

investor k's entire portfolio.

Tk é g(Yk) is investor k's total tax liability at the

end of the period, g(Yk) is a monotonically

increasing, differentiable function of Yk.
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l > gL > 0 is investor k's marginal tax rate at the

end of the period. Note that

g-1=éa_=3_s_=is_

k ~ ~c h
dYk aYk BYk

2

En _ d 8

k dYZ

k

~t ~ 1 ~ . . .
Rk = Rk -.V— Tk is the after tax Single period rate of

k

return of investor k's portfolio.

Throughout, ” represents random variables. Where convenient super-

bars over a variable replaces the expectations operator and “ is

suppressed when the meaning is clear. The term "return" replaces the

phrase "single period rate of return." In Addition, since this section

deals with the individual investor, the subscript k, identifying in—

vestors will be omitted when convenient. It is understood that the

relevant variables should be identified for each investor.

In accordance with assumptions B.2 and B.4 above, investor

k's utility frunction may be written as:

  

_ ~t 1

Uk ‘ Uk(E[Rk], 0(fi: fi:)) -

3.1

8U 3U BZU

3““>0’§;‘—“‘<°’a~e ‘0
~t ~t ~t E 80 ~t ~t

E[Rk] (R'k’Rk) [he] we

The investor desires to maximize 3.1 subject to the constraint

N

= 3.>3 xj,k + XN+1,k 1 2

i=1
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That is the sum of the proportional holdings of all assets in

the portfolio must be one. Forming the Lagrangian function and

maximizing:

  

~t N+1

Mix L = U(E[Rk], 0(kt Rt)) - Ak(':1 xj 1),

i k’ k 3

Bo

~t ~t~t

3L aU 3E[Rk' aU (Rk’Rk) _ _
-——— 3 + - A — O, i — 1,. ,N+l

ax. ~t ax. ax,

1 3E[ ] 1 80(Rt it) 1

k’ k

N+1

§£-= Z X, — 1 = 0,

3A , 1

i=1

~t
8E[Rk] a N+1 __ 1 N+1

-—————- = ~——-{ 2 X,R, - E[—— + g(V r X.R.)]}
axi 3Xi j=1 j j Vk k j=1 J j

_-—__1__ 331%..

' R1 vk E'ax.]’

a?
-— 1 k

= R. - -—-E[g' - -—-J
i Vk 1c 3Xi

= E’ - l—-E[g' - v R ].
i vk k k 1

Add and subtract E[gL]E[Ri],

8E[R:] _ 1 ~'~ ~' R ”I R
S§;___.= Ri _IV; .VkElgkRi] - E[ngEi i] + EigkiEi il’

ii.(1 — E[é'l) - 3 ~. ~ -

1 k (gk’ i

In addition,

3.

3.

3

4
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~ 1 ~ 2 ~ 1 ~ 2
o = E[(R --—— T ) ] - {E[R "“ T ]}

~c ~c k v k k v k

Thus,

ao(~t fit)

’ k 3 ~ 1 ~ 2 ~ 1 ~ 3 ~ 1 ~

ax ' E[ax. (Rk ' v Tk) ] ' 2E[(Rk ’ v Tk]E[8X.(Rk ' v Tk)]
i 1 k k i k

= E[2(R lF—T )(R - 1—-v Q' R )1
k V k i V k k i

k k

“' l “' "' 1 ~'

2E[Rk VETRNHRi ~5; ngRi)]

~ ~ .~ .1. .~ .1. ~2{E[R Ri v T R, gkR R, + v Tk gkRi J - E[RkJEiRi ]

1
+ V—-E[Tk]E[R. ] + E[Rk]E[gkRi]—

k
E[Tk]E[gLRi]}

1

VR

2{E[RkRi] - E[Rk]E[Ri] - %—(E[TkRi] - E[Tk]E[Ri])

k

- (E[RkgkR. - E[RklEngR. 1) + thatikRiéL]

- EtrklEtR,§§1)}

=2{E[(R -—1——:‘r )R 1 -R[R ——1—‘F]E[R1
k V k i k V k i

k k

t 1 s ~'~

- E[ Rk TTk)(gkRi)]

k

k

= 2{o - o } = 20 ~ ~ 3-5

~ ~ )
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Equation 3.5 represents the marginal contribution of asset i to the

total after tax portfolio risk and is proportion to the covariance of

after tax portfolio return with the after tax marginal~contribution of

aRt

asset i to the total portfolio return. (That is, ex k = Ri(1 - gL).)

ik

For the N + lth riskless asset, 3.4 and 3.5 reduce to:

 

Mimi]

= (l - E[R'D 3.41
3XN+1 RN+1 k

30

~t ~t

3%..)— = _2RN+10 ~t 3.51

XN+1 ~(RVRL)

Clearly, the riskless asset is no longer "riskless" in the

sense that its marginal contribution to the portfolio return is no

longer non-stochastic. The marginal after tax return depends upon the

aRt

___k__ = RN
_ ~I

3XN+1 +l(1 gk).

a stochastic variable. In addition, if the investor increases the

variability of the marginal tax rate. That is

proportion of the riskless asset in his total portfolio he reduces

variability of that portfolio in two ways.

(i) He reduces before tax portfolio variance by reducing

leverage. That is the investor increases the non—

stochastic element in his portfolio.

(ii) The investor reduces the variabilityof his tax base.

This in turn affects the variability of his tax bill,

thereby affecting the volatility of after tax portfolio

returns .
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Substituting (3.4), (3.5), (3.4i), (3.5i) into (3.3) yields:

 

 

3U —

{R (1 - E[g'I) - o . ~ }

3E[R:] 1 k (3 ’R1)

+33 {2“} ~t~ ]-Ak=0 i=l9°oo9N
3.6

(R:,"t) (Rk’Ri(l - gk))

3U y. 3U
—

‘t‘::—-{RN+1(1 - E[gkl) + 80 ~t ~t {-2RN+lo(Rt ~')} — Ak — 0

3E[Rk] ( .Rk) k’gk

The Lagrange multiplier (Ak) may be eliminated by subtracting equation

N + 1 from the remaining N equations, so that,

EU

{<R. - >(1 - E[g'1> - o -, ~ 1

8E[R:] 1 RN+1 k (gk’R’)1

 
+ 2 {o

80 ~t ~ ~, + 0

~ c (Rk,Ri(l gk)) RN+1

W
¢(R:,é

i = l,...,N 3.7

Solving for the marginal rate of substitution between after tax risk

and return yields,

  

R: (R1 - RN+1)(1 - E[ELI) - 0(ék’fii)

]
O

~t ~ _ , + 0 ~ ~

(Rk’Ri(l g k)) RN+1 (RR’BR)
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Since, on the margin, an increase in the proportion of funds

held in one asset requires a decrease in the pr0portion of funds held

in at least one other asset, assumed here to be the (N + l)th

security, the marginal rate of transformation between risk and return

for risky security i is:

 

 

 

_ d°(R;,R;)’d<Xi-XN.1> _ .E[R;1

dE[R:]/d(xi_xN+l) a(xi—XN+1) ’ 3.9

aou‘zfififi)

3(Xi-XNH)

dx, = O, ' # iJ J

which is the right hand side of 3.8. Thus the familiar results

hold. Utility maximization requires the marginal rate of substitution

(between after tax risk and return) be equal to the marginal rates of

transformation (between after tax risk and return) for each security

in the investor's portfolio.

In addition, since 3.8 holds for all securities held by

investor k,

(Ri - RN+1)(1—E[g£])-o(gé,fii) (Rj-RN+1)(l-E[é&])-o(é&’fij)

27‘ + o - o + o~ ~

R:.Ri<1-ép RN“ Rial; Rimju-gp RN“ R:.g,;

 3.10

for all i,j = l,...,N
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That is, the marginal rates of transformation between after tax risk

and return will be equal for each risky asset in the investor's

portfolio. However, solving for the marginal rate of transformation

of before tax risk and return10 of asset i yields:ll

~tn'

 
 

  

 

 

 

 

  

- °(' R ) °( .3 R ) °(R .g ')

' ! a..- lF-(l/Vrh, Rki RkRk)i++~~H+1ak.k—

Ri-RMI _ Rj-RN+1 (312,33) : °(Rk.111-) “(R. (Rk.R)

a- ~ ' o~ - ’ - !
(.R) (.R) o~ ~<1~Rrg'1) °<R,R.) °<R‘.éiR.) < .2]RR 1 Rk j (Rk,RJ) R i W1-<1/V _ R R + RN+10 RR-R

~ - °<Rk,R:) °<Rk.RJ) R(k.RJ)-‘

0 ~.
(gk.R1)

(JEIgl)
(fl‘Ri) k

That is,

MRTi ~ = MRTj , ~ [A] + C,
(o, ‘E[I{]) (o, .b[I{])

where,

0 ~ ~ 0 ~t ~'~ O “t ”g

1 - l. (Tk,R1) - (Rk.gle) + RN (Rk’gk)

V (I ~ ~ 0 - ~ -+1 (I ~ ~

A = R (Rk.R1) (Ri’Ri) (Rk.R1)

o o

O " " ”t ”v ~t ~'

Vk. 0(fi R ) 0(R ~ ) RN+1'O(~ “' )

k, j k, j k, J

°<é£,R.) 0(@1131)
J

C = ' 0 ~ ~ ~ [A] + o (1- m1 1)
_ I

(Rk.Rj)(1 E[gkl) (Rk,RR)

Thus, equality of after tax marginal rates of transformation between

risk and return, requires that before tax marginal rates of transforma~

tion be unequal and not proportional to one another.
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Since expression 3.10 holds for all assets in the investor's

portfolio, the numerator and denominator of the right hand side can be

summed separately without destroying the equality. Multiplying the

numerator and denominator by h,3k and sum over all j (j = l,...,N)

yields:

(Ri - RN+1)(1 - E[§£]) - 0(é, R )

 

 

 

k’ i

o + o
~c~ _.., RN+l ~t~,

((Rk’Ri(l 8k)) (Rk,gk)

3.12

N -

X [h. (R. - )(1 - E[é'l) - h. 0 ~. ~ ]
=t1 Jk J RN+1 k 3k (gk.Rj)

N

2 [h o + h, RN 0
__ 3k ~t _ ~, k +1 ~t~w

If hjk is defined as the proportion of asset j in investor k's

X.

risky portfolio, that is, h'k =1JE , then clearly,

J XN+1,R

N

2 h. “ l

i=1 31‘

N -r

2 h. (R. - ) R — ‘
J.___1 Jk J RN+1 R RN+1 3.13

N

2 h. O~' “' O”, “'1‘

N

2 h o = o ,
,= jk ~t~ _~. ~t ~r _~.
J 1 (Rk,Rj<1 8k)) (Rk,Rk(l gk))



where
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where

h‘kRj = RE, the return on investor k's risky portfolio.

N

Z

:1 J
j

Carrying out the summation in 3.12 yields:

(Ri — RN+1)(1 - E[RLJ) - 0(é.

o + o

(R:.Ri(1-R;)) RN+1 (R:.é§)

3.14

...r ~'

(Rk - N+1)” - E[gkl) - 0 ~. ~r

(gk.Rk)

=
i: l,...,N .

o + RN 0

~t~r _:, +1 ~t ~,

The N equations in 3.14 together with the last equation in

3.3, gives N + 1 equations in N + l unknowns (xl,k""’xN+l,k)'

Thus, it is possible, at least in principle, to solve for the propor-

tion of each asset in the investor's optimal portfolio.

In order to consider the effects of different tax functions

on the investor's behavior, it is convenient to modify the notation.

T 3
Since the random variables §;,-—E,‘Rk and g' can be considered as

Vk k

four jointly distributed random variables, having a joint probability

density function, it is possible to define the notation in terms of

the joint moments,

u = E[(“‘ - Rr)Pc35 - EE)Q(R - R )m<é' - é >“1
pqmn Rk R vk vk 1 i R R

P,Q.m.n = 0.1.... 3.15

Then 3.14 can be written as:12
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1 _ 1 ,“0110 _ 1 ,“1011'1'XR+1,R)'“0111)_ 1 ,"1oo1"oo11(1""R+1,R)'“01o1"0011)l

(HgN )‘u -1 ‘ u -1 2‘
+1,R 1010 (1-gk ) 1010 (1-gk )

2

1 1 u1100 1 ,“20001‘1‘XR+1,R)‘“1101) 1 ,“1001'1'XN+1,R)’“0101u1oo1)I
' _ ‘ _ \ ‘ __ \

(1 xu+1,R uzooo (l-gkl) u2000 (l-gk1)2 “2000

t c
B .3.

( )
“1001(“0111’(l'xu+1,R)“1o11)‘“0011 “1101‘("XR+1,R)“2001 +

—1 -1 2

(1'3R )[“1101_(1-XN+1.k)u2001+(1-8k )(I‘XR+1,R)“2ooo‘“11oo)1"(l'xu+1.R)“1oo1'“01o1“1oo1'

-1

(l'gR )”1001'(1"‘R+1,R)"1o1o'“0110"“0011'(H'Ru1,1."‘2000“’1100)l

-1 -1 2

(1'3R )[“1101’(1'XR+1,R)"2001+(1'3R )((l‘xn+1,R)“2ooo'“11oo)1"(l'xu+1,R)“1001'“01o1“1oo1'

Solving for the required risk premium of asset i, (ii - RN+1) yields:13

3.17

s
u
n
»

I

U
U
I
O- -r

(R1 ' RN+l) = [RR ' RN+l]

A: _' __ _' - .—

(1 gR)[”0111 (1 XN+1,k)u101l+(l 8R)“l XN+l,k)ulOlO “0110)]

' [(I'XN+1,R)”1001”0011 ' “0101”0011' '

B: 1" __ _' __ _

( gR)[“1101 '1 XN+1,k)u2001 + (1 gk)((l xN+1,R)“2000 “1100)'

[(1 2 - '
’ 'XN+1,R)“1001 ‘ u0101U1001"

\

C: __ _ ....

u1001(“0111 (1 XN+1,k)u1011) u0011(“1101 (1 XN+1,R)“2001)

) l.+

(1‘E[gR])[“1001((l'XN+1,R)“1010‘“0110)‘“0011((l‘xN+1,R)“2000’“1100

Equation 3.17 can be put into a form analogous to the tradi-

tional Capital Asset Pricing Model, by dividing the numerator and
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' . §_ , 2 - ,
denominator of B by (l gk) (1 XN+1,k)u2000 and rearranging

slightly.14 This yields:

 

u

— _ - 1010 * R

R1 ' RN+1 ‘ [(Rk ’ RN+l)u ][A 1 ’ B ’ 3'18
r 2000

where,

 

_ 2 i
- ' -

* = A “2000(1 gk) (1 XN+1,k) =
A

- 2
- ' -

B "1010'1 3R) (1 xN+l,k)

(R1’RN+1)(1'E'§R' ' "0011

 

(“0111""xn+1,k)“1011) + (l’gR)[(l‘xn+1,R'“101o‘“o1101 ' (R1- Rn+1)((1'xu+1,R)“1oo1’ “0101)

-r ...

(RR' “N+1)(1'E'3R') ' “1001

'0 _ . _ _ ‘t _ _

(“unf'u’xRH,R)”2001+'1‘3R)H1 xN+1,k)u2000 “1100' (Rk' “N+1)((1 XN+1,k)01001 “0101)

(each firm is assumed to have a body of stockholders who find that

6 However, unlike thesecurity more desirable than other securities.)1

clientele effect assumed by Miller and Modigliani, the clientele

effect identified here does not merely depend on the firm's dividend

policy, but is determined by all the risk characteristics of the firm

including, but not limited to the firm's dividend policy.17

In addition, Miller and Modigliani hypothesize that if in-

vestors are rational, there will be no clientele effect unless there

are differential tax rates on dividende versus capital gains income

(or some other imperfection such as transaction costs). The model

presented here treats dividend and capital gains identically for tax
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purposes. Thus, under the general conditions specified, differential

tax rates are not necessary to produce a clientele effect.

One additional major concludion of the traditional Capital

Asset Pricing Model does not hold under the more general model. By

virtue of Tobin's separation theorem, under the no-tax model, the

choice of an investor's risky portfolio is independent of the specific

parameters of his utility function.18 This conclusion results from

the fact that, the first order conditions for utility maximization are

proportional to the investor's risk aversion parameter.19 Thus, the

investor's proportional holdings of any risky asset is independent of

his utility function. As a result, all investors hold the identical

risky portfolio, adjusting the degree of risk each takes on by holding

more or less of the riskless asset, or borrowing at the risk free rate.

Put another way, an investor's required risk premium for any

. 20
risky asset, can be written as:

_ ~ “(131,111)

R1 ' RN+1 = (BUM ’ RN+1) BIT—T" ;
(RM.RM)

where, RM is the return on the market portfolio. Clearly this is

independent of the individual's utility function, and specifically

is independent of the prOportion of the investor's total capital

devoted to risky assets, (1 - XN ). 0n the other hand, equation

+l,k

3.18 is not necessarily independent of the proportion of investor

k's total capital placed at risk. The right hand side of 3.18

contains (1 — xN+l,k) explicitly. In addition, for a general tax

function, the investor's total tax liability and marginal tax rates
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will, in part, depend on the proportionate holdings of the riskless

asset. Therefore, the moments on the right hand side of 3.18 will

not be independent of the investor's pr0portional holdings of the risk-

less asset. That is, all investors will not necessarily hold the

same risky portfolio, even though all investors have identical

assessments of the joint probability distribution of all assets and

identical tax parameters. This should agree with ad hoc intuitive

reasoning since Tobin's separation theorem requires the existence of

a riskless asset.21 It has been shown above that an asset which has

a before tax riskless rate of return, will not be riskless after

taxes and thus, a necessary condition for the separation theorem does

. 2

not ex1st in the after tax model. 2

3.3. The Analytical Theory of Regression and Correlation and its

Implications on the Present Model

Equation 3.18 describes the investor's equilibrium equation.

It involves parameters contained in the conventional, before-tax model,

but also includes higher and mixed moments of the joint density func-

tion of R; and R

T

liability (GE) and marginal tax rate (gL). Clearly, these expressions

k )

i as well as moments involving the investor's tax

will depend not only on the joint distribution of'the securities them—

selves, but also on the specific form of the tax function. In order

to consider the implication of various forms of the tax function it is

convenient to review the analytical theory of regression and correlation.

It will be shown below that regression and correlation theory provide

a means by which the salient features of the tax function may be

described. Use of this methodology along with the investor's maximizing
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equation permits consideration of alternative tax functions and their

effects on the required risk premium of a risky asset.

The "regression curve" is defined as the relationship between

the conditional expectation of one jointly distributed random variable

and the value of the other random variable.23 For example, if X and

Y are two jointly distributed random variables, then

E[YlX] = M(x) 3°19

is defined as the regression curve of Y on X. Specifically, re—

T

gression curves for the pairs of random variables, it, k., —E, g' can

k 1 Vk k

be written as,

, k ~r = r = r .

RLV;| Rk] M21(Rk) 3.20(1)

Ef—EIR = R I = M (R ) 3.20(ii)
Vk 1 i 23 i

~l~r= r = r ...

E[gkl Rk] M41(Rk) 3.20(111)

E[gklRi - R1] M43(Ri) _ . 3.20(iv)

ik
‘__~v= I = I

h[Vklgk gk] M24(gk) 3.20(v)

lhacall that the present model assumes that an investor's tax liability

is; a.strictly monotonic, known function of income, and all the com-

POnents of income except the stochastically determined return on the

Ifilésley asset are known with certainty.24 Thus, the relationship

l’<EVt:vveen and R: and the relationship between gi and

1'

Vk
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~

R are deterministic (as opposed to stochastic)

1‘ T

relationships. That is, for any value of R:;-—E and g'

. Vk k g

respectively can assume one and only one value. Similarly, .65 and

k

g; are solely determined by the same stochastic variable, RE. On the

T

other hand, the relationships between R1; and 'VE and gi

k

respectively are stochastic. That is, knowledge of the specific value

of R1 does not result in certain knowledge of 'VE and gi,

k

although the variables are not necessarily independent. Mathematically,

the whole mass of the distribution of Tk and gfi is situated on

the regre331on curves M21(Rk)’ M41(Rk) and M24(gk) respectively,

25

but this is not true for M ) and M (Ri)'

23(R1 43

The difference between the former set of regression curves

and the latter can be considered in the light of the source of varia-

tion of the dependent variable. That is, consider two jointly dis-

tributed random variables X, Y possessing a continuous regression

curve E[YIX] = M(x). Then the variance of Y can be represented

as the sum of two components, the variance of Y around the regression

curve and the variance of the means of Y, conditional on the value

of X. That is,

Var[Y] E[(Y - E[Y])2]

E[({Y — E[YIX]} + {E[YIX] - E[Y]})2] 3.21

EHY-mnmfi1+mwm-Ewnh

E[{Y — E[YIX]}2] + Var{E[Y|X]}
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since the cross product, 2E[(Y - E[YIX])]E[{(Y|X) - E[Y]}] = 0.26 Then,

if Y is strictly a function of X, the variance around the regression

curve (E[{Y - E[YIX]}2]) is zero. That is,

Var[Y] Var{E[Y|X]}

3.22

Var{(YIX)},

or the variation in Y is due solely to the variation in the random

variable X.

On the other hand, if the regression of Y on X is not exact,

that is, a stochastic relationship exists between Y and X, then the

total variance of Y will be the sum of the two terms on the right

hand side of 3.21. The total variance of Y will be greater than the

variance in Y due to X alone to the extent that Y varies around

the regression curve (E[{Y — E[YIX]}2]).

The correlation ratio, deve10ped by Karl Pearson,27 and defined

as

E[{Y - E[YlX]}2] 3

Var[Y]

2 _ Var{E[Y1x]} =
- .2

”Y,x Var [Y] 3

1-  

)

is an indication of the extent of the dependence of Y on X. If

Y is functionally dependent on X then E[{Y - E[YlX]}2] = O, and

n: X = 1. On the other hand, if Y and X are independent, then

2 , 2
E[{Y - E[YIXJ} ] = h[{Y - E[Y]} ] = Var [Y] 3.24

2

and nY,X — 0. If 0 < "Y,X < 1, then Y and X are stochastically

28

related.
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A second statistic, the correlation coefficient (p), describes

the extent to which one variable is linearly related to another. It

is well known that for any jointly distributed random variables Y

and X, the straight line of "closest fit" to the mass in the (X,Y)

distribution is Y = a + BX where a and 3 are chosen such that

E[(Y - a - éx)2] = 02(1 2 'Y _ p(mo) 3.24

is a minimum. That is, the correlation coefficient indicates the

extent to which Y varies about the "best fitting" regression line.

Then,

o§1-£J)=mw-a-Rmh E(Y - E[YIX] + E[YIX] - a - BX)2]

mu-Enmnz+mum-&-émh.

since the cross product term is zero. Thus,

  

2 . . 2

2 _E[(Y-E[Y1x])] E[(yx-a -BX)]

Y Y

Comparing 3.25 with 3.23: ,

 

 

. . 2
2 _ _ 2 E[(YLX - a - Rx) ]

(l ' pY,X) ' 1 ”Y,x + 2

0Y

2 = 2 _ E[(gjx.- & - éx>21

p(Y,X) n(Y,x) 2

CY

Clearly, if the regression curve of Y on X is linear, then the

second term on the right hand side of 3.26 is zero and the correlation
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coefficient is equal to the correlation ratio. Specifically, if Y is

2 = 1 2 < z =

(Y.X) ' p(Y.x) n(Y.X)

if the variables are functionally related but the regression curve of

O < = 2

0mm n(Y.x

stochastic relationship between Y and X and the regression curve is

0 < 2 < 2

p(Y.x) "(Y.X)

and the regression curve of Y on X is non-linear. In summary,

a linear function of X, then pEY X) = n 1

3

) < 1 if there is aY on X is non-linear.

linear. < 1 if there is a stochastic relationship

 

pr X) indicates the extent to which there is a linear relationship

9

and nEY X) a relationship, not necessarily linear.3O

3

Returning to the present model, since Tk and R: are

functionally related, then n2~ ~r = l, and thus,

(Tk’Rk)

E[{R | r - a - R ( r)121
0 < 2 _ 2 _ 1 _ R Rk 21 21 RR < 1 31 3 26

—-p(2.1) ‘ p(1.2) ‘ - ' ‘
02"

(1k)

Clearly, Oil 2) = 1 if, and only if, the tax bill is a linear function

’

of the risky portfolio's return. Since total investor income is a

linear function of portfolio return,32

...
”1'= _ - 3. 7

YR YL + Vk((1 xN+l,k)Rk + XN+l,kRN+1) ’ 2

then pi 2 = 1 if the tax function is linear in income. In addition,

’

since the investor's tax bill is assumed to be a monotonically in—

creasing function of income the covariance of taxes with portfolio

return will depend upon the sign of (l - xN+l,k)' That is, the

covariance will be positive if the investor holds a predominantly
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long portfolio (0 < X,“1 k < 1), negative if the investor holds a

l ’

predominantly short portfolio (XN+1 k > 1).33 Therefore, from the

’

definition of the correlation coefficient,34

u1100
 

Ip12I = 1/2 2 3'28

(“zoo“ozoo)

p12 > O for a long portfolio

p12 < 0 for a short portfolio.

That is, the sign of p12 is equal to the sign of (l - XN+l,k)'

The relationship between the marginal tax rate and the

portfolio return is only slightly more complicated. Since the total

tax bill is a strict function of portfolio return, then the marginal

tax rate will also be functionally related to portfolio return,

except when the tax function is linear. In the latter case,the

marginal tax rate will be a constant and independent of portfolio

returns. Thus,

= o 3.29

Alternatively, if taxes are a strict quadratic function of income

(or equivalently portfolio returns), then the marginal tax rate will

be a strict linear function of portfolio returns and

2 2

n = p = l . 3.30

(51.11;) (1“)

When the marginal tax rate is increasing with income, then it will

move in the same (opposite) direction as the portfolio return if the
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investor holds a long (short) portfolio. When the marginal tax rate

is a decreasing function of income, then it will move in the Opposite

(same) direction as the portfolio return if the investor holds a long

35. = u _

(short) portfolio. That is, p(14) (sgn gk(l xN+l,k))° If the

tax function is of a more complicated form, then

r . r 2 1/2

E[{gk Rk - 041 - 841(Rk)} ]

 

—1<p14=+ 1- <1 3.
_ 02

(gfi)

the sign again depending on the sign of 8k(1 - XN+1k)

It has already been pointed out that T and gi are
k

functionally related.36 However, if the tax function is linear, the

marginal tax rate is non-stochastic. Clearly, in this case p24 = 0.

However, if the tax function is non-linear, then the correlation

coefficient will be such that,

21/2

{E[Tklgl', - a 112
24 8248R
 —1<pl4=+l— 2 <1 30

_ “(1‘13

The sign will be positive if the marginal tax rate increases with

income, negative if it decreases with3income. Thus, the sign of 914

is determined by the sign of gk. 3

The relationship between the tax parameters and the security

return, R1 is stochastic rather than functional. That is,

02" “'

equal to

< l, n(% V) l. The correlation coefficients will be

31

32
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. 2 1’2
-1 < _ + n2~ ~ _ E{(Tk|Ri) - a23 823Rk} < 1 3 33

p23 —- (T ,R.) 2 '
k 1 0(T )

k

| . . 2 1/2

{g' R. - a — B R.)
_ 2~ ~ _ k 1 43 43 i

..1 < p43 — i- n(g;{,Ri) E 2 < l. 3.34

0 (gp

That is, the correlation coefficients will diverge from [ll to the

extent that the true regression curve departs from zero, as well as

the extent to which there is variation around the true regression

curve. If the tax function is linear with respect to income, then the

~

regression curve of Tk on Ri will also be linear since income is

a linear function of portfolio return and the portfolio return is a

linear function of the security return. That is,

 

N

Rk = jil Xijj + XN+l,kRN+1 '

2 2 . .
Thus, p23 = n23 < 1. Specifically, from the definition of the correla-

u0110
tion coefficient 023 = 1/2. If the tax function is

(“0200“0020)

written as, say,

T = a + b Tr b > O
k k) ,

. “r

a + b(YL + Vk(l - xN+1,1<)Rk + xN+l,kRN+l)

then





S9

 

 

i r
k k ~

E[(——-- ——9(R R )1
p = Vk Vk i i

23 ~ - 2

{E[(T - T ) l
k 2 k E[(fi. - fi.)211/2

V 1 1

k

r -r ~ -

= b(l-XN+l,k)E[(Rk ‘ Rk)(Ri ' R1)]

Ibo-xN+1 k)lE[<§; - §;)2E[<Ri - fii>2}1/2

 

u1010
 

1/2 X (the sign of (1-xN+l,k)) 3.35

(“2000“0020)

=.: 913 the sign depending on the sign of (l-XN+l,k)°

If the tax function is non-linear with respect to income,

then the regression curve of taxes on the security return will also

be non-linear. The correlation coefficient will be given by equation

3.33. If the investor holds a long (short) portfolio and the security

is positively (negatively) correlated with the portfolio return, then

the tax bill will tend to increase (decrease) as the security return

increases (decreases). Therefore the correlation coefficient will

be positive. If the investor holds a long (short) portfolio and the

security is negatively (positively) correlated with the portfolio

return, than the tax bill will tend to move in the opposite direction

with the security return and the correlation coefficient will be

negative. That is, the sign of will be equal to the sign of

(1 " xN+1,k) 13'

The correlation coefficient between the security and the

p23

marginal tax rate is given by equation 3.34. Clearly, if the tax
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function is linear, then p34 = 0 since the marginal tax rate will

be constant. If the tax function is non—linear, then for increasing

(decreasing) marginal tax rates, the marginal tax rate will move in

the same (opposite) direction as the security return, if the investor

holds a long (short) portfolio and the security is positively

(negatively) correlated with the portfolio return. The marginal tax

rate will also move in the same (opposite) direction as the security

return. Extending the above analysis, it can be easily shown that the

sign of the correlation coefficient is equal to the sign

gk(1 ' XN+l,k)ol3'

In addition, 0 and14 012 are the Simple correlation co-

efficients between the marginal tax rate and the total tax bill

respectively. However, since the total portfolio is simply a linear

combination of each security held, they can be considered the multiple

correlation coefficient between all the securities held in the portfolio

and the marginal and total tax bill respectively. That 13,37

014 = 0441) 3.36

912 = p2,(;1)

where 1_ represents the return on each security held by investor

k (j = l,...,N). On the other band, 034 and p23

correlation coefficient between security i, (a subset of 1) and the

are the simple

marginal and total tax bill respectively.

1,...,xp are jointly

is the multiple

In general, it is well known that if x

distributed random varialbes, and if p

1(2.---.P)

correlation coefficient between x1, and x through xp (that is

2
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01 )2 p) is the correlation between x1 and the "best-fitting"
,oo‘o,

linear combination of x2,...,xp), then [pl (2’...,p)l Z-lpljl ,

where j represents xj, an element in x2,...,xp.38 Thus,

lplal Z ID34|

That is, the correlation coefficient cannot be reduced by increasing

the number of explanatory variables.

The following table summarizes the results of this section.
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Table 1

Impact on the Ranges of

 

 

 

 

(l-xN-i-Lk) 81'. g; p13 p12 p14 p23 934 024

1 + + + +— (0,1) (0,11 (0,012] (0,914) (0,1)

2 _ + + + (-1,0) [-1,0) [912,0) (014,0) (0,1)

3 + + - + (0,1) [-l,0) (0,012] (014,0) (-1,0)

4 + + + — (0.1) (0.1] {-012.0) (-014.0)(0,1)

5 - + - + (-l.O) (0.1] [012,0) (0,p14) (—1,0)

6 - + + - (-1.0) {-1.0) (0,-012] (0,-p14)(0,1)

7 + + - - (0,1) {-1.0) (012,0) (0"p14)(’1,0)

8 - + - - (-1,0) (0.1] (0.-012] (‘pl4-0)(-1,0)

9 + + 0 + 1 0 p13 0 o

10 + + 0 - 1 0 913 0 0

11 - + 0 + -l 0 -pl3 0 0

12 - + 0 - f1 0 '913 0. 0

a

inclusive of the extreme value.

range respectively as inclusive of the extreme value.

"("or")" represents the lower or upper range respectively, as not

"["or"]" represents the lower or upper

3.4 Alternative Tax Functions and Their Effects on Investor

Behavior

It would be highly desirable to attempt to distinguish

different forms of the tax function by a single summary statistic.

For example, a natural statistic might be tax elasticity with

respect to income since it is the generally accepted measure of

the degree of progression (regression) of a tax function.39 How—

ever, it is concluded below, that under the given assumption, the

degree or progression (regression) per se is not a relevant

statistic in determining the required risk premium associated with
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a given security. Unfortunately, the effect of personal taxes

on the investor's behavior depends, in a complicated way, on the

curvature of the tax function throughout its relevant range. Thus,

a number of statistics are necessary to sufficiently describe the

effects personal taxes have on investor behavior.

For reasons which will soon become obvious, it is con-

venient to describe, to the extent possible, the nature of the

tax function, and its relationship with the security and portfolio

return by the following seven statistics;

(i) g': the marginal tax rate at the point where the rate of

return of the investor's portfolio is the expected rate of return.

(ii) g": the rate of change of the marginal tax rate at that point.

(iii) p12: The correlation coefficient between the return of the

investor's portfolio and total tax liability.

(iV) 014: The correlation coefficient between the return of the

investor's portfolio and the marginal tax rate.

(v) 923: The correlation coefficient between the total tax

liability and the return of the asset in question.

(vi) p34: The correlation coefficient between the marginal tax

rate and the return of the asset in question.

(vii) p24: The correlation coefficient between the total tax

liability and the marginal tax rate.

The first two describe the curvature of the tax function at a specific

point. The remaining statistics describe the curvature of the tax

function throughout the range of possible returns, as well as the

marginal density functions of the portfolio and the asset in

question.



where

into

(M,

Yield, 



64

The major interest of this section is to describe the

implications of these seven parameters on the required risk

premium for a specific security. That is, the effect of these

parameters on the investor's required risk premium as represented

by equation 3.18. By direct substitution of the definition of

the correlation coefficient:

Cov(m n)
 

O = ’ 1, m,n = 1,2,3,4, 3.38
mn (02 O2 )6

(m) CJ(n)

where

1 represents the random variable k:

2 represents the random variable Tk/Vk

3 represents the random variable R

4 represents the random variable

into 3.18, and by use of the first order approximation:

~ 0 q n q+n

“(p’Q:m9n) ~ (g(§r)) (g(—r)vkk) n-(l )S‘H'l, k) u(p+q+n) ,0,m,0) ’

k Rk
3.39

where the subscript (fii) represents the derivative evaluated

~r _ -r 40 ' .
at Rk — Rk’ and substituting the above expreSSions into equation

3.18, the required rate of return of asset i for an individual

investor may be expressed in terms of the seven parameters enumerated

above.

Carrying out these substitutions and rearranging slightly

yields the following expressions for the analogous terms in 3.18.41
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r r 2 ,

p23 . (1‘3')3"V u2010 ”34 (guv ) (914‘3 ”24)“2000,
- - — J

)L5 p13 (1-Elé'l)2

 
 

(1-ztg'])(u
p13 2000“0020

 

r ":2 _v

8. _ (l'g')3"V u3000 _ 914(3 V ) (”14 3 °24'“2ooo]

'2 (l'Elg 1)“2000 (1 - E[g'])2

3.40

n2 I r2 '5

’{(3 ) (1‘3 )(v ) [934(“2ooo“0020) u3000‘914“2000“20101

[(8")2(Vr)2014(014-0248')u§000+(1-E[é'])(8"(1-3')Vru3000-(1-E[é'l)(1-0128')u2000]

)3/
[014(013—8'923)-p34(1-8'p12)]g"Vr(u2000 2(u0020)'5(1-E[§'])

 }

[(3")2(Vr)914'014’°243')“gooo+(l'E[é'1)(3"(1'3')Vr“3000'(1"E[é")(1‘9128')“2000]

By considering the implications of the form of the tax function

on the seven relevant parameters, and the implications of the

relevant parameters on the investor's maximizing equation 3.40,

conclusions may be drawn concerning the implication of the tax

function on the investor's required risk premium.

First consider a tax function such that gfi = 0. Clearly,

this is consistent with rows 9 through 12 in Table 3.1. With re—

gard to the form of the tax function, g"k = 0 throughout, if,

and only if, the tax function is a linear function of income.

That is,

T = a + b T b > 0

k k 3.41

a'+b'§:(1- xN-i-Lk) b'> o
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Substituting the values of the correlation coefficients into equa-

tion 3.40 yields:

* l—g' 1 + g'
= = =A l-g'l 1 + g | 1 3.42

l(1_XN+1 k)>0

Thus, the after tax model is identical to the before tax model

and the investor may ignore the tax function. Since the investor's

behavior after taxes is identical to his behavior before taxes,

all the conclusions of the before tax model hold,

It is important to note that a linear tax function implies

nothing, in and of itself, about the degree of progression or re-

gression of the tax function. The linear tax function presented here

will be regressive, proportional or progressive depending on whether

a E-O.42 Thus, the degree of progression per se does not affect

investor behavior.43

' However, if the tax function is non—linear with respect

to income, taxes may play an important role in determining the

required risk premuium for a specifi; security.. The ranges of the

relevant parameters are given by rows 1, 2, 3 and 5, in Table

1 , depending on the signs of g" and (l-XN+ng)° Specifically,

k

assume a quadratic tax function, such that

.
.
3

ll

~ ~ 2

k a + b Yk + 0(Yk)

' .

gk b + 2c Yk’
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IV

or the regression curve of T and g; on Rrk k’ respectively,is:

r 2~ r r

E[Tkle] — Tk — 321 + 132111k + c21(Rk) , 3.43

~, r = , = r

Elgkle] gk a41 + bAle . 3,44

Note that the marginal tax rate is a strict linear function of the

portfolio return, so that

p14 =‘: l, 3.45

e o o n - .

th Sign equal to the Sign of gk(l XN+l,k)

The regression curve of the marginal tax rate on the

security return is also linear, since the portfolio return is a

linear function of each security return. Thus, the regression

curve of gfi on B can be written as E[g'kIRi] = a34 + b R

i 34 i

and the regression coefficient of g& and fii is

p = u0011

34 1/2

(“0020“0002)

 

_ E[(gl', - gpmi - 111)] . 3.46

{E[(g; - éfi)2]E[(§i - 1392])”2

Substituting 3.44 into 3.46 yields
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3.40 yie
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~r —r ..., —

b41E[(Rk - Rk)(Ri - Ri)]

034 =

 

|b411EI(R; - §;)2121(Ri - ii)21}1/2

b u
_ 41 1010

, |b41|(“2000“0020)

="13(Sgn gkl31‘ XN+l,k))

Assuming that gk(i-XN+1 k) >.O, and substituting 3.45 and 3.46 into

3.40 yields

 
 

1 [923 . (l'g')gnvr“2010 (gnvr)2(1'g'924)“2000]
—————g— «—

1 2 ~ 2
* p13 (1—E[g'])ol3(u2000u0020) / (1—E[g'])
 

_IlIr llr2_'
1_[ '_ (l g )g V “3000 _ (g V ) (1 g 024m2000

p12g (l-E[g'])u

  

2 l

2000 (1-E[g'])

3.47

n r 2 0 1/2

* (8 V ) (1-8 )[pl3(u2000u0020)

3 . u3000 ' u2000“20101
-(

(8"Vr)2(1'9248')U§000+(1-E[8'l)(8"(1‘8')Vr“3000'(1’E[g'l)(l-plzg')u2000

3/2 1/2 . .
(“0020) (l-hIgol)

n 2 v v I n I I v

(8 Vr) (1-0248 )U§OOO+(l-Elg l)(g (l-g )Vru30004(1—Elg ])(1-0123 )"2000

v v n r

H .-

0 < 013 < 1’ 0 < D23 < D12 < 1’ O < 024 < 1’ f°r gk(1 xN+l,k) > 0'

*

A E-l depending on whether
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_ I n r

023 g, _ (1 g )3 V u2010‘_<_
_ “'1

r 3.48
_ I n

(1 g )g V 03000
 

p 8" _ “v
12 (l E[g ]u2000

The direction of this inequality depends not only on the specific

parameters of the tax function, but also, in a complicated way,

on the higher moments of the joint probability distribution be-

tween i: and Bi. Similarly, the determination of the Sign of

*

B depends on the direction of the inequality,

1/2 >

u3000 ' “2000“2010] <

3.49

"7:2 0

(g V ) (l‘g )[913(“2000“0020)

3/2 )1/"r v 2 ~v

(g V )g (023 - ) ( (l-Elg ]) .
p12"“2000 u0020

Thus, even for this relatively simple non-linear tax

function, the specific effects of personal income taxes on the

security's required risk premium is quite complicated. Knowledge

of the higher moments of the security and portfolio probability

distribution is necessary to arrive'at unambiguous results.

3.5. Conclusions
 

In conclusion, personal income taxes seem to be relevant

in determining investor behavior. A rational investor, acting in

response to after tax variables, may modify his portfolio in the

light of perceived changes in his tax function. The investor,

subject to a non-linear tax function,will react to various tax
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parameters. Specifically, he will react to the marginal tax rate

and changes in the marginal tax rate. In addition, moments of the

joint probability density function involving total and marginal tax

variables as well as security and portfolio variables may be important.

)Subject to the specific approximation utilized, skewness (u3000

of the density function of the investor's portfolio returns and

mixed moments of higher order than the covariance (u ), of

2010

the security's joint density function may be relevant parameters.

These parameters are ignored by the "mean—variance" utility

maximizer in the absence of taxes.

Finally, it has been found that.in general, because of

the complexity of the relationship between the tax function and

the assets' density function, specific conclusions must incorporate

both the functional form of the tax function as well as the relevant

joint density functions. However, in the special case where tax

liability can be represented by a strict linear function of in-

vestor's income, taxes are irrelevant. That is, the investor's

behavior is identical, in terms of the required risk premium of

each risky asset, to what.it would he if there were no personal

income taxes.

The following chapter considers the extent to which the

form of the security and portfolio joint density function determines

the effects of non-linear taxes on the investor's behavior.



f
\
.
)

‘
5

See

Ca;

Mal

clc

Ass

fol

Sta

SEE

U161



7l

NOTES TO CHAPTER 3

See Chapter 2, pp. 5-15, for a description of the conventional

Capital Asset Pricing Model.

Market and investor's behavioral assumptions enumerated, follow

closely those specified by John Lintner, "The Valuation of Risk

Assets and the Selection of risky Investments in Stock Port-

folios and Capital Budgets," The Review of Economics and

Statistics, 47 (February, 1965), 15-16.

 

See page 6.

"Risk" means variance (or its equivalent, standard deviation)

of protfolio return.

This assumption is generally referred to as "the mean-variance

approach". See e.g. William F. Sharpe, Portfolio Theory and

Capital Markets (New York: McGraw Hill, 1970), pp. 196-201.

 

 

James Tobi, "Liquidity Preference as Behavior Towards Risk",

Review of Economic Studies, 26 (February, 1958), 75-76.
 

Specifically, objections to the use of quadratic utility func-

tions arise since they imply that marginal utility of wealth

becomes negative over a relatively narrow range, and the in-

vestor is subject to increasing absolute risk aversion as

initial wealth increases. That is, risky securities are in-

ferior goods. See eg. Lintner, op. cit. n.20; Kenneth Arrow,

Aspects of the Theory of Risk Bearing, (Helsinki: Yijo

 

 

Jahnssonin Saatio, 1965); John W. Pratt, "Risk Aversion in

the Small and in the Large," Econometrica, 32 (January-April,

1964), 132.

 

Throughout, it is assumed that all expectations exist and are

finite.

To evaluate the derivatives, note that, subject only to

existence conditions, it can be shown that if:

u(t) = f g(x,t)dF(x), _t is a parameter

S g_ is a random variable

F(x) is a distribution function

defined over the probability

space S,

then,

SIM—t)._§_

dt 3t
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That is, the derivative of an eXpectation is the eXpectation

of the derivative. Cramér, Harald, Mathematical Methods of

Statistics, (Princeton, Princeton University Press: 1945), 67.

 

 

The before tax marginal rate of transformation between risk

and return of asset i is:

dE[Rk] aEtfik1/a(xi-XN+1) fii - RN+1

"EE"‘_77_— = =
~ 30 Zo~ ~

(Rk’ k) dxj=0,i#j RkRk/a(xi—XN+1) Rk’Ri

 

D
U

Equation 3.11 is derived by substituting

l

0 = O - -—-0 ~ ~ - 0
~ t _~, ~ v (T ,R ) ~ t ~ ~
(Rk .R1(l gk) (Rk,Ri) k k 1 RR ’(giRi)

fi _

into 3.8 and solving for 1 RN+1

°(fi ii)
k’ 1

See Appendix A for a derivation of the terms in 3.12 in terms

of the newly introduced notation. Also note that,

Z X. o = (l-XN+1 k)0 ~r ~r , or in general,

) ’ (Rk’Rk)

- . [Xjk(Rj’z)] = (l-XN+l,k)O ~r ~ , where z is

3:1 (Rk9z)

any random variable not indexed by j.

See Appendix B for derivation of equation 3.17.

Chapter 2, equation 2.10.

Since it has been shown that all investors hold identical risky

portfolios under the assumptions of the traditional model, Tobin,

op, cit., 82, this expression

(fir - )(u )

k RN+1 1010 ] has the same value for all investors and

(“2000)

represents the required risk premium of asset i on the market

as a whole.

 

M. Miller and F. Modigliani, "Dividend Policy, Growth and the

Valuation of Shares," Journal of Business, 34 (October, 1961),

411-33.

Ibid.; See also Michael J. Brennan, "Investor Taxes, Market

Equilibrium and Corporate Finance" (unpublished Doctor's

dissertation, Massachusetts Institute of Technology, 1970),
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p. 34 and Brennan, "Taxes, Market Valuation and Corporate

Financial Policy," National Tax Journal 23 (December, 1970),

419.

 

Tobin, loc. cit.

Chapter 2, p. 14.

Ibid.

Tobin, op.cit., p. 67.

Chapter 3, equation 3.41.

Maurice G. Kendall and Alan Stuart, The Advanced Theory of

Statistics, II (2d. ed., New York: Hafner Publishing Co.,

1963), 232.

 

 

Page 33.

Harald Cramér, Mathematical Methods of Statistics, (Princeton:

Princeton University Press, 1945), 281.

 

Kendall and Stuart, op.cit., II, 297.

Karl Pearson, "Mathematical Contributions to the Theory of

Evolution. XIV. On the General Theory of Skew Correlation

and Non-linear Regression", Karl Pearson's EarlygStatistical

Papers, (Cambridge: Cambridge University Press, 1948), 484.

 

Kendall and Stuart, op.cit., II, 296—99.

Cramér op.cit., p. 278.

Kendall and Stuart, 0p.cit., II, 297.

 

From the definition of p = COV(X’Y) , it is clear

2 2 - (X) (Y).
that p(X,Y) E p(Y,X) for all X,Y. In addition if X and

Y are two jointly distributed random variables, with correlation

coefficient p<x Y)’ then if

3

X' = a + bX b # 0

y!

c + dY d # 0,

the correlation coefficient between X' and Y' is

p = 0(X',Y') (X’Y)X(sgn bd), where sgn(bd) stands for :11:

according as (bd) is positive or negative. Cramér, op.cit.,

= ' >p. 279. Thus, p(T /Vk,X) p(T X)’ Since VR 0. Hereafter

& and 3 will be the coefficients of the relevant "best

fitting" linear regression.
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Page 36.

A short sale is defined as a security which has been borrowed

and sold at the market price in the beginning of the period.

A predominantly short portfolio is one in which the value of

short sales exceed the value of stock holdings at the beginning

of the period. See John Lintner, op.cit., 19—21 for a

justification for defining short sales as a negative pr0portion

of the total portfolio.

Appendix C, equation C.3.

From here on, it shall be assumed that the Sign of g; remains

the same throughout its entire range.

See page 49.

The notation here follows closely that adOpted by Kendall and

Stuart, op.cit., II, 317—42.

Kendall and Stuart, op.cit., II, 232.

Richard A. Musgrave, The Theory of Public Finance, (New York:

McGraw-Hill Book Co., 1959), 100, n.2.

 

Kendall and Stuart, The Advanced Theory of Statistics, I

(2d ed.; New York: Hafner Publishing Co., 1945), 232.

 

See Appendix C for the complete derivation of equation 3.40

from equation 3.18.

In general, if the tax function is constrained so that the

investor's tax bill is zero when his net income is zero,

then the tax function will be progressive, proportional or

regressive depending on whether the Sign of gfi 2-0.

It should be noted that Brennan (December, 1970), loc cit.

reaches identical conclusions.‘ However, his assumption that

the marginal tax rate on capital gains income is exogenous is

equivalent to assuming a linear tax function. That is, the

conclusion arrived at here is consistent with Brennan's con-

clusion. However, this analysis makes the linearity of the tax

function explicit.
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CHAPTER 4

THE EFFECTS OF PERSONAL INCOME TAXES ON

INVESTOR BEHAVIOR: SOME SPECIFIC CASES

It has been shown in the previous chapter that a'priori

conclusions with respect to investor behavior can be made only

when Specific tax functions and probability density functions are

specified. This chapter considers specific approximations to

hypothetical tax functions. After direct substitution, into the

investor's behavioral equations, results are obtained, conditional

on the assumptions regarding the probability law obeyed by the

investor's portfolio and the security in question.

4.1 The Case of a Tax Function which can be Approximated by a

Second Degree Taylor Expansion and Quadratic Utiliry Functions

 

 

In this section it is assumed that the investor's behavioral

assumptions and the market assumptions are identical to those

enumerated in the beginning of chapter 3.1 Assumptions regarding

the tax function are made more specific in that'it is assumed that

the tax function may be approximated by a second degree Taylor

Expansion around expected income. That is, the tax function can

be written as,

~ 2
T = _

k g(y

) 4.1k) + 8L(Yk - Yk) + (1/2)g"k(Yk - Yk

75



where g
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where g - , g', g" are the respective functions evaluated at

(yk) k k

Yk = Yk. Since

N

= Yk + Vk(j:1 Xijj + XN+l,kRN+l)

_ _ ~r

‘ Yk + Vk(l XN+1,k)Rk + VkXN+l,kRN+l

r~r

‘ Yk + VkXN+l,kRN+l + VkRk 4'2

by definition, equations 4.1 can be eXpressed in terms of the risky

security return. That is:

~ ~ - l r 2 ~r -r 2= _ + , r r _ r __ n _ .

This specific form of the tax function may be directly

substituted into the investor's optimizing equations 3.3 and 3.4

above,2 yielding:

   

~t N+1

Max £=U[E[R],o ]->\(Z X. -1)

k ~t ~t k k

x. ( .R ) i=1 3
i k

~t 30 ~11 ~11

axik 3E[Rt] axlk 3° ~t ~t axik k

1 = l, .,N+l

. N+1
Bil
_ =9 .. =

o31 Z Xjk l 0, 4 4



+ (1/2)(g‘

+ (1/2) (1*

S

M

EX. :3 [

l

+ [SC/33

(i



(11/38

 

‘ ~t

aE[Rk] - 2 r

axi = R1(1 ’ g ‘ (1/2)(V') gu'uzooo) ' V gnu1010

80

(Rt t)k,

5i;___§31.= 2(l-XN+1){[(l-g')2u1010 - (3/2)g"(1-g')Vru2010

"2 r2 - u v r

+ (1/2)(g ) (V ) [“3010'U2000”1010]] ' Ri[g (1'8 )V'UZOOO

2

+ (1/2)(Vr)2[g"'(l—s'>—(g">21“3000"(1/4)8"g"'(Vr)3[“4000““2000]]

3E[R:]
__ = (1

axN+1 Rn+1
- g' - (1/2)(Vr)2g"'u )

2000

n v r

(3° /3XN+1) = 72(1'XN+1)RI\I+1[g (l-g )V u2000

+ (1/2)(vr)211g"'(l-g')-(g")2]u3000 — (1/4)g"g"'(Vr)3[u4000-U§000]]o

4.4

Substituting equations 4.4 into 4.3 yields:

N+1 ‘

Max £=U[E[R:], o ~t ~t ] -A(.)3 Xj ‘1)

X1 (Rk’Rk) j=l

3i ”t "" v r 2 H: r n
5§—’= [3U/8E[Rk]][R1(l—g -(l/2)(V ) g “2000) - V g ulOlO]

i

k’Rk)



+ (1/2)(E

+ (l/2)(V

[EU/sea:

‘2(l-x\

N+1

+ (1/2)(u

N+1
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' "er _ _" n_1r

+ (1/2)(8 ) (V ) [“3010 “2000“1010] Rilg '1 g )V u2000

2u n: r 3

-(1/4)g g (V ) [”4000’u2000'}"+ (1/2)(Vr)2[g"'(1-8')‘(8")2]“3000

§§:—— =°[BU/8E[R:]][RN+1(1-g'-(1/2)(Vr)2g"'u2000)]
+1

+ [BU/30 t ][-2(l-XN+1)RN+l{g"(l-g')Vruzooo + (1/2)(v‘)2

(Rk’Rk)

[g"'(1-—-g')-(g")2]u _ (l/4)g"g"'(Vr)3[u _u2 1}] __ A = 0

3000 4000 2000

N+1

-§£,= X X. - 1 = 0 . 4.5

a) j=l 3

The Lagrange Multiplier (A) can be eliminated by subtracting

the N+1th equation from the remaining N equations, yielding:

r

[aU/aE[R:]][(Ri - )(l-g'-(l/2)(Vr)2g"'u ) - v g' 1
V

RN+1 2000 u1010

'2' ".1
~t ~t ][(l-g ) ulOIO-(3/2)g (1_g )Vru-2(1-XN+1)[8U/30

2010
(Rk.Rk)

+ (1/2)(3")2<Vr)2[“3010’uzooouloio]"(ii-RN+1)[3"(1‘8')Vr“2000

+ (1/2)(Vr)2[g"'(l-g')-(g")2]u3OOO-(l/4)g"g"'(Vr)3[u4000-U§000]]]= o

N+1

2 X, - 1 = O 4.6

i=1 3



Equation:
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2(l-XN+1)

{(§1-RN+]
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Equations 4.6 may be solved for the investor's after tax marginal

rate of substitution between risk and return. Hence,

 

aU/ao ”t 1

( )

2(1-x 1)[ RRRR]

N+ 8U/3E[Rk]

- , r2"! r{(Ri—RN+1)(l-g -(1/2)(v ) g “2000) - Vg"1010}{[(1-s ')2u1010

-(3/2)g"(1-g')v‘u + (1/2)(g")2(vr)2[u
2010 3010’“2000“1010]

- (ii-RN+1)[g"(1-g')vr02000 + (1/2)(v‘)2[g"'(1-g')-(g")21u3000

2 -1 _

4000-u2000]] } . i - l,...,N 4.7- (1/4)g"g"'(v‘)3[u

Assuming the second order conditions hold, equation set

4.7 is the investor's optimizing conditions for an investor subject

to a tax function consistent with equation 4.1. To be a true

optimum, this condition must hold for each risky security in the

investor's portfolio, as well as the entire risky portfolio. If

the equation did not hold for the risky portfolio as a whole. the

investor would increase or decreaSe'his holdings of the riskless

asset by selling or buying additional risky securities until a

new equilibrium was reached in which 4.7 held for each security

in the investor's portfolio, as well as the risky security itself.

That is, the after tax marginal rate of substitution between risk

and return must be equal to the marginal rate of transformation



be tween

portfol:

mixed mc

“n+1,00c
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- (fir- K

‘ (1/4)g'

setting t
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between risk and return for each security in the investor's risky

portfolio, as well as the risky portfolio itself.5

~

That is, equation 4.7 must hold for R1 E ii. Then the

, _ ~r _ -r n ~r _ -r =

mixed moments in 4.7 reduces to ur1010 - E[(Rk Rk) (Rk Ek)]

un+1,000, and substituting into 4.7:

BU/Bo ~ ~

wimp]

3U/3E[R:] '

 

2(1"XN+1)'

-r . 1'2"! 1:H '2

{(R ’ RN+1)(1’g ’(1/2)(V ) g "2000)"V g “2000"[(1‘g ) u2000

2
+ (1/2)(g")2(Vr)2[“4000 ' u2000

- (3/2)g"(1—g')Vru 1
3000

- (fir- RN+1)[g"(1-g')Vr“2000 + (1/2)(Vr)2[g"'(1’3')7(g")2]u3000

2 -l

4000 ’ “200011 } ° 4'8
- (1/4)g"g"'(Vr)3[u

Setting the 1th equation in 4.7 equal to 4.8,

_ i -r R

(R1 ' RN+1)M1 ’ N1 8 (Rk T RN+l)Ml ’ N1
  

i - k -r ' 4'9

P1 ' (R1 ' RN+1)Q1 P1 ' Rk " RN+1)Q1

i = 1, .,N

where,

M = 1 - ' - (l/2)(Vr)2g"'u
1 g 2000

i _ r "

N1 V g u1010



"
U I
I

i
1...

1(2

u,

W = H 1

k1 g (

k r
\ = ' a

1 (\ 2

1K

Hence,7

(R1 . RN+

and 8*

and Nk

Operations
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'i_ '2
n ' 1'

"2 r2
P1 ‘ (l-g ) u1010 - (3/2)g (1'8 )V “2010 + (1/2)(g ) (V ) [“3010 ‘

“2000“1010]

Q1 = g"(1-g')vruzooo + (1/2)(vr)2[g"'(1-8') ‘ (3")zlu3000

"'1” r3
2- (1/4)g g (V ) [“4000 ‘ ”2000'

_ r"

N1 ’ (V g “2000)

  

  

k _ _ , 2 _ n _ , r H 2 r 2

P1 - (l g ) u2000 (3/2)g (1 g )V u3000 + (1/2)(g ) (V ) +

[u —u2 1
4000 2000

Hence,7

M P1 - Q N1 NkPi - NiPk
(fi _ ) = (fir _ )[ 1 1 1 1] + [ 1 1 1 1] .

1 RN+1 k RN+1 M Pk _ Q Nk M Pk _ Q Nk

1 1 1 1 ‘1 1 1 1

1 = l,...,N 4.10

=("- )A B
Rk RN+1 1 1

1 i i i k

A* g M1P1 ' Q1N1 3* = Nipl ‘ N1P1

1 k k ’ 1 k k '

M1P1 Q1N1 M1P1 ' Q1N1

Clearly, the required risk premium for a risky asset will diverge

 

. * '11010
from the traditional no tax model, to the extent that Al # u ,

2000
*

i k i
and B1 # 0. Substituting the expressions for M1’ P1, P1, Ql N1

and N: directly into equation 4.10, carrying out the algebraic

Operations indicated, and collecting terms, yields the following

* *8 9

expressions for A and B ’ :
l l



3.11
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u!

3* 11

l - .___

l _

31 = (3/2

i1 = (1/2

“'1 = (1/2

'1 = (3/4

;1 = (l/2

21 = (1/4
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A1 =

“511 1_ u: 1 i:- __ I _ n c

3111WI°11“20'Tu11 +[B1z1u201::— [71*381'“20 +[51 (2’3)51'“30 + ‘1“401

u20 1 -[y1+3e1]u10 -[a1-((1/ )51 +g1)uéolfl%g + 31 “1

20 u20

u'0 u;

[381:21+£1:3—.—1-+ 38111. - 51379-1

3* ¢ 11 11 20 20

1 ’ U' U'
- - . - _ v _29. _39

1 [Y1 3811u20 [al ((1/3)61 + €1)u201 + 81 u.

20 20

= .&:__ r
o1 (3/2) l-g' V

= 1g:__ 2 r 2

Y1 = <1/2)(%g.)(v)2 4.11

 

O
n I

_ g" r 3

1 <3/4>11_g.)<1_g.)(v >

= r 3 H 3

e1 (1/2)(v > (§:gv)

E"! E" 2 r [1 3

21 = (1/4)(l_gi)(l_gv) (V )

The required risk premium is now expressed in terms of the

parameters (around '§1) of the tax function and the higher moments

of the securities' joint probability density function. Thus, for

a given tax function, the required risk premium will depend, not

“'1

4 only on the traditional risk measure (—11), but also on higher

u20

moments of the security and portfolio joint density function. At
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this point, it is convenient to transform the moments about the

mean into their respective cumulants, and consider the effects of

these cumulants on the required risk premium.

the cumulants,

Substituting into equations 4.11 yields:

u21

11 , so that

K3o

21

10

“20’ K3o —

u; - 3ué2

“11’ K21 =

“31 ’ 3“2o“

“20’ “50 =

K40 + 3K§O

K11' “21 = K

K31 + 3K20K

11

(R1 ' RN+1) = (Rk ’ RN+1)A1 ’ Bl

To this end, define

4.12

4.13





K

21

K_—{l [“151K2017K11 +[8121‘20]

+ [Cl’(2/3)61]K30 + 21[K40 + 3K

85

K + 3K

31 20‘11
 - [y +38 ]K

K11 l l 20

2
20]}{Il—[Yl-3811K20

+ BK2

 

 

 

 

 

 

 

(K )
K30 -

- [a1-<(1/3><s1 + e1)K201—K—— + 8140K 2° 1 1}
20 20

K K

21 31

K11 1 [“1517201 + [B121K2017K11 Y1‘20 + [€1"(2/3)61]‘30+21K40

= K
K

20 l ..YlKZO-[al-((l/3)51 +£1)K20] 30 + BlKéO

K

20

K K + 3K K + 3K2

21 31 K30 20

Kll[-3Bl + €1( K 20 11) + 38l K - E;1(KM)K H

* 11 11 20 20
B :=

1

1 '[ -((1/3)5 + ) 1:29'+ B
‘ Y1‘20 “1 1 g1 K20 K20 1‘40

so that,

=
1

(R1 - RN+1)

K2 K31 J

K11'1’[0161+201H+[811T20]1‘Y1‘20+[51'(2’3)511‘30+21‘4

[(Rk-RN+1)’K: 1 K30

2:H-“Yl20-[al-((1/3)61+€W)K20]K20
+ 81K 40

K40‘11 K30‘11 ‘

381‘21 ' E1[“31 ’ K 1 ' 381 K20

+ ' K 4.14

30

1 ‘ Y1‘20 ' [“1 “ ((1’3)51 + g9‘201'2‘3 + 81‘40
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Equation 4.14 is the risk premium investor k requires of

asset i, where the investor is subject to the specified tax func-

tion. Clearly, the mixed cumulants (moments) of each security

in the investor's portfolio will affect the cumulants (moments) of

the investor's entire portfolio, as well as the parameters of the

tax function at Y . However, if it is assumed the value of any

k

security is a relatively small proportion of the value of the

-.

investor's entire portfolio, then the moments will have a negligible

effect on the portfolio moments and the tax parameters. Thus, in

order to consider the effect of the individual security's mixed

cumulants on its required risk premium, it is possible to take the

total derivative of equation 4.14, permitting only the mixed

cumulants to vary. That is,

 
 

 

 

 

d(R1 _ RN+1) =

3A* 33* 3A* 33*
- 1 1 -r 1 1
[Rr - ] - dK + [ - R ]————-- dK
k RN+1 3K11 3K11 11 RR N+1 3K21 3K21 21

aA* 33*
'1' l 1 .

+ [R - ] - -———- dK . '

k RN+1 3K31 3K31 31

K K K K

1 30 40 —r 40 30

K "Y1+[§1’(2/3)51]K + 21 K }(Rk-RN+1)+€l K "381 K
20 20 20 20 20

=[ ]d(Kll)

K

30

[a1 — ((1/3)a1 + a1)K201---— + 81K“)1 r y K -

l 20 K20
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_r 1

(RR ' RN+1){‘[°‘1 ' 51‘20'233} ’ 381

“ [ ]d(K ) 4.15
K30 21

l -‘Y1K20 — [a1 - ((l/3)6l + €1)K20};;6‘+ 81K4O

(fir - )[8 1i— -
k RN+1 1 ’ z1‘20 K20 E31

+ [ K ]d(K31) .

_ 30

1 Y1‘20 ' [a1 ' ((1/3)51 + g1)K2012'2‘;'+ B1‘40

The cumulants in equation 4.15 have significance in that

they describe the shape of the joint probability density function

of the portfolio and security return, as well as the probability

density function of the portfolio return alone. Specifically,

K measures the variance of portfolio returns. For a given
20

portfolio variance, measures the degree and direction of

K30

skewness of the portfolio's probability density function. Positive

skewness implies that the distribution is skewed to the right and

the portfolio mean is greater than its median. Negative skewness

implies that the distribution is skewed to the left and the mean

is less than the median.11 Similarly, K4O measures the kurtosis

of the portfolio distribution. For1 K40 positive, the distribu—

tion of portfolio returns are leptokurtic, for 'KAO negative, the

distribution is platykurtic, and for K40 equal to zero, the

distribution is mesokurtic.12 The following sections consider

\Harious probability distributions and their implications for the

affects on the required risk premium of specific tax functions.
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4.2 The Case of a Tax Function which can be Approximated by a

Second Degree Taylor Expansionj Quadratic Utility Functions,

and Security_Returns Having a Multivariate Normal Distribution

If the portfolio and security returns have a multivariate

normal probability distribution, then the portfolio probability

distribution will be symmetric and mesokurtic. That is,

K30 = K4O = O. In addition, the JOlnt cumulants K 1, and K

2

l3 . .

vanish. Since the two mixed cumulants are constrained

31

to zero by the nature of the probability density function, the

total derivative, given the portfolio return, the tax parameters

and the cumulants of the portfolio probability distribution, reduces

to:

l —r

(2;; "Y1)(Rk - RN+1)

d(Ri ' RN+1) ‘ 1 -‘Y1K20 d("11)

 

1

K20

 
—r
(Rk - RN+l)dKll . 4.16

Thus, the increase in the required risk premium of a security per

unit of increased covariance is simply,

l

d(Ri — RN+1) l —r

d =-——- (Rk — RN+1) . 4.17

K11 K20

 

Note that this relationship is identical to the results obtained

in the conventional no-tax model. For, in the conventional model,

K
- _ 11 -r _

Ri - RN+1 --;;6 (Rk RN+1)' Thus,
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d(R1 ' RN+1) = 1

dK11 K20

 

—r

(Rk ’ RN+1) '

Alternatively, the cumulants specific to a bivariate normal dis-

tribution may be substituted directly into equation 4.14. Then,

equation 4.14 reduced directly to:

K 1 ‘ Y K K

' _ -r _ 111 l 20 = -r _ 11

R1 - [Sufi ' (Rk RN+1)K20 1 — Yleo} (Rk RN+1)_K20 : 4-18

identical to the traditional no-tax model.

This result may be explained through reconsideration of

the original investor's maximizing equations, 4.6. It is clear

that the investor alters his behavior when subject to a tax func-

tion because the expectation of the tax function and its derivative

with the portfolio and security returns involve higher moments of

the joint portfolio and security probability distribution. How-

ever, in the case of multivariate normal distributions, the higher

mixed moments are simply functions of the lower moments uéo, uil

or vanish.l4 That is, if a probability distribution is normal,

the variance and covariances completely describe the distribution.

Thus, the covariance between the portfolio return and the security

return, the variance of the portfolio return, and the expected port-

folio return are the only relevant parameters to be considered by the

investor. Alternatively, in terms of cumulants, in the bivariate

1
normal case, all cumulants Krs vanish, where r + s > 2. 5

Thus, all cumulants other than K and K vanish, leaving only

11 20

those relevant to the traditional no tax model.
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4.3 The Case of a Tax Function which can be Approximated by a

Second Degree Taylor Expansion, Quadratic Utility Functions,

and Portfolio Returns are Mesokurtic, but Skewed

In this section it is assumed that equation 4.15 holds,

 

 

 

but that K40 = 0. Thus, equation 4.15 becomes:

d(Ri — RN+1) =
.

K K

- l 30 30

(R'— )[_-Y +15 -(2/3)61———3e ——
k RN+1 K20 1 1 1 K20 1 K20 d

K

K30 ll

1 - YlKZO - [a1 - ((1/3)<Sl + €1)K20};;6

(fir - ){-[a - a K 114—1 + 38
k RN+l 1 1 20 K20 1

+
dK

K30 21

l — YlKZO - [al - ((l/3)6l + £1)K20}E;3

(Rr- )[8 — 1-1——-t:
k RN+1 1 z1‘20 K20 1

+ dK 4.19

K30 31

K

1 - YlKZO - [G1 ' ((1/3)51 + €1)K20] 20

By constraining two of the three derivatives to zero it is possible

)

to consider the effect of increasing each mixed cumulant on the

investors required risk premium, subject to given portfolio prob-

ability density functions, and given tax parameters. That is,

3(R1 ’ RN+1) = d(R1 ' RN+1)

3K dK _ _

ll 11 dKZl-dK3l-O

  

Rk'KZO’K3O’al’B’61’El
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K K

'r 1 - ._§Q. _ .29
(RR - RN+1)[K20 Y1 + [£1 - (2/3)51]K20] 381 K20

=
4.201

K3o

-r l

a(§. - RN ) (Rk ’ RN+1){'[°‘1 ‘ 51“20"E“" + 381
1 +1 _ 20 ..

3K21 —
K30 4.2011

1 "51“2o ' [a1 ‘ ((1/3)51 + 51)“20'E_‘
20

- (fir - RN )[8 - z K ll——'- 5
3(R1 - RN11) k +1 1 1 20 K20 1 1..

8 = 4.20111

K31 K30

First consider equation 4.20i. This equation has particular

significance in that, conditional on the expected portfolio return

a(R1 ' RN+1)

3K11

for an additional unit of risk when the security's risk is measured

 

and variance, is the additional risk premium required

by the traditional no—tax model. Recall that the no tax model

requires that,16

3(Ri - RN+1) 1
a =-———.(fi

K11 K20

 ; - RN11) .1 4.21

Comparing 4.201 with equation 4.21, indicates the influence

SFHecific tax parameters and the moments of the portfolio probability

dennsity function have on the investor's willingness to increase

hiss expected return by increasing risk. To facilitate this com-

parison, 4.20i may be rearranged so that,
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3(Ri ’ RN+1) =

aKll

1 -r K30

K 'Rk ‘ R141“l ’ Y1K20 + g1K 3o (2/3)51K 3o] “ 3311F"
20 20

K30

(1 ' Y1K20 + g1K 30 (2/3)51K 30) + (51K 30 “1 236'

—r 1

=_[ ‘ ][ + ]

K20 Rk RN+1 l 61K30 - a13(KH/KO)

1 ' Y1K20321K 30 (2/3)51K 3o

_ 381K30 4.22

1 ' Y1K20 + K1K3o ' (2/3)51K3o + 51K30 ’ “1(K3o/K20)

. l -r . .
Clearly, the coefficient of K (Rk - RN+1) in 4.22 is

greater, equal to or less than unity depending on whether

 

 

61K3o ‘ “1(K3o/K20) _: 0 4 23

l " Y1K20 + K1K30 (2/3)51K30 >

That is, from equation 4.11,

, g:“_ r él

Mol(3/4)<_A.)(£¥——o(v)3 -(3/2)1_g. v (K20) l 5_0

>

- s___ r'3.s1__3 ___. 3"
1 (3/4)(1_g.)(v)2K20 + <1/2)(v ) (1_g.) r30 -(1/2)<{g.1)(T')'V)3K3

4.24

Dividing both numerator and denominator by K30(1;,)(Vr)3 4.24

reduces to:
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r 3 E" g"! 2

' 20 §_0

>

- "l r 2 r 3 I. 3 OH H r 3

1 (3/4)cfii:§.)<v ) K20 + (1/2)<v ) (€3379 x30-(1/2)§:§T~§:§T(v ) :30

4.25

The equality holds in 4.25 if K30 = 0, g" = 0, or

fing = 2[(Vr)2K20]-l. This specific value for l g' does not seem

to have any economic significance except that it is clearly positive,

so that given the assumptions specified in this section the coef-

ficient of (E: - RN+1)-%—— is unity when the tax function is linear

20

(g: = O), or it may be unity if taxes are increasing (or decreasing)

"I _

at an increasing rate 6%:g7 = 2[(V')2KZO] 1 > 0).

Note that,

r 2 _ r 2

(V ) K20 ‘ (V ) u20

(Vr)2E[§: - §;)2]

h r h -r 2

E[(Yk + VkKI'XN+1,k)Kk ' Yk ' Vk(1-xN+1,k)Rk) 1'

That is (Vr)2K20 is the variance of investor k's income.

Similarly, (Vr)3u<3O is the degree of skewness of investor k's

income. It is likely, that the variance will be much greater than

"I H

its skewness, and since '%:ET' and -%:g7 are likely to be much

less than one, it can safely be assumed that the denominator in

4.25 is positive. Thus, the sign of equation 4.25 will be equal

to the Sign of its numerator.
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Now, consider the case when the investor is subject to an

increasing marginal tax rate (g" > O), a positively skewed portfolio

return (K30 > 0) and a predominantly long portfolio (Vr > 0).

 

II!

Then, the coefficient of [§_ , - 2 r 2 ] is positive. Thus,

8 (V ) K20

the coefficient of (fit - RN )—l— is -: 1 depending on whether

k +1 K20 >

EH7 > 2

_ . ?' By considering all possible values of K
1 g (Vr)2K

2

30’

0

II III

l-g" Vr and -%:g7, it is possible to determine the effects on

_1__

K20

4.20i—iii. That is, it is possible to determine the extent to

both the coefficients of (R: - RN+1) and the second terms in

which K11, K21 and K31 affect the investor's required risk

premium for various values of the specified parameters. Tables 2

through 4 summarize these results

Inspection of Table 2 indicates that it is difficult to

derive sweeping generalities about the effects of taxes on the re-

quired risk premium. However, careful consideration of the results

leads to some intuitively appealing conclusions. The following

possible explanations for some of the results of Table 2 are not

meant to be definitive. It is possible that others will arrive at

entirely different conclusions. ‘However, they do provide a possible

intuitive explanation for some of the specific conclusions in-

ferred from Table 2. The additional required risk premium per

unit of additional covariance is unambiguously less than the

traditional model only if the portfolio return is positively

skewed (lines 2, 7, 9, 14, 18 of Table 2). Since positive skewness

implies that the portfolio probability density function is such
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Table 2

Values of the Slope and Intercept, A and B in the Equation

3 _

(Ri-RN+1)
 

3K

11

= (fl: _

20

1

RN+1)K [A] + B, for Selected Values of

Important Parameter§,fwhen Portfolio Distributions are Mesokurtic

 

r

 

(l-g') gn/l_gv g"'/l-g' V K30 B

1 + o 11.5.3 # o N.S. 1 0

2 + + >-3——————— + + 1 < o

(Vr)2K
20

3 + + < 3———————- + + 1 < O

(vr)2K
20

4 + + > 3L—-————— + - 1 > 0

(VK)2K
20

5 + + < 2 + - 1 > 0

(VK)2K
20

6 + + > 2 - + 1 < O

(VK)2K
20

7 + + < 2 - + 1 < 0

(Vr)2K
20

8 + - > 2 + + 1 < 0

(vhzn
20

9 + — < 2 + + 1 < 0

(Vr 2K

320

10 + + > 2 - - 1 > 0

(Vr)2K
20

11 + + < 2 - — 1 > o

(Vr)2K
20

12 + - > 2 + - l > O

(vr)2»<
20

13 + - < 2 + - 1 > 0

‘ <v“>2.<
20
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Table 2 (continued)

 

 

 

l- v H l- v H! __ t

( g ) g / g g /1 g 30

1" + ’ > in“ - +

(V ) K20

15 + - < ET? - +

(V ) K20

16 + — > LT — .—

17 + - < ET — _

(V ) K20

18 + # 0 3———-———- # o +

(vr)2»<
20

19 + ¢ 0 _g_______ ¢ 0 —

(vr)2
K20

 

a

N.S. means the value is not specified.
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Table 3

Values of the SIOpe and Intercept, A and B in the Equation

 

 

 

 

3..

3::: RN+1> = (B: - RN+1)%——[A] + B, for Selected Values of Important

Parameters, when Portfolio Distributions are Mesokurtic

(l—g') g"/1-g' g"'/1-g' Vr K30 A B

1 + O N.S.a # 0 N.S. O O

2 + + 2r2 + + >0 +

(V ) K20

3 + + 21:2 + + <0 +

(V ) K20

4 + + 2r2 + - >0 4-

(V ) K20

5 + + 2 r 2 + - < 0 +

(V ) K20

6 + + Z—;r§——— - + < 0 +

(v ) K20

7 + + 2 r 2 - + > 0 +

(V ) K20

8 + - 2 r 2 + + < O +

(V ) K20

9 + - 2r2 + + >0 +

(V 1 K20

10 + + :Vr)2K - - < o +

20

11 + + :Vr)2K - - > 0 +

20

12 + — -g—;—§——— + - < 0 +

(V ) K20

13 + - -ngTE- 4- - > 0 -+

(V ) K

20



Table 3 (continued)
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(l-g') g"'ll—g' Vr K30

2

1" + “Tr-‘4‘

(V ) K20

2

15 + “TE—'1'

(V > K20

2

16 + ‘77—'-

(V ) K20

2

17 + ‘72—“

(V ) K20

2

18 + “TY—*01‘
(V ) K20

2
19 + Iggy—“7‘0-

K20
 

aN.S. Means the value is not specified.
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Table 4

Values of the Slope and Intercept, A and B in the Equation

3 _

(R1 ' RN+1)
 

= (fl; - RN+1)%——[A] + B, for Selected Values of

31 20

Important Parameters when Portfolio Distributions are Mesokurtic

3K

 

 

 

(l-g') g"/1—g' g"'ll-g' Vr K30 A B

1 + o N.S? ¢ 0 N.S. o

2 + + >-%;;;Z:—— + N.S. > 0 <

20

3 + + > 2 r 2 — N.S > 0 >

(V ) K20

4 + - > 2 r 2 + N.S > 0 >

(V ) K20

5 + — > 2 r 2 — N.S > 0 <

(V ) K20

6 + + < 2 r 2 + N S < 0 <

(V ) K20

7 + + < 2 r 2 - N.S < o >

(V ) K20

8 + - <22 r 2 + N.S < 0 >

(V ) K20

9 + - < 2 r 2 3 - N.S < 0 <

(V ) K20

10 + + .3—;—§——— + N.S. o <

(V ) K20

11 + + 2L7?7f——- - N.S. O >

(V ) K20

12 + - 2L177f——— + N.S. O >

(V ) K20

13 + - .Z_;_§___ - N.S. 0 <

(V ) K20

 

aN.S. Means the value is not specified.
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that there is a relatively large probability of a return below the

expected return, but very small probability of a large loss. In

addition, the chances of a very large gain is quite good. Thus,

it might be argued that the investor would be relatively anxious

to hold securities which are highly correlated with the portfolio,

in the h0pes that the very high gain will be realized, and with

very little chance of a very large loss. Note, that the only

exception to this result (barring predominantly short portfolios)

is when the marginal tax rate is declining at an increasing rate

(line 8, Table 2). Clearly, since the portfolio return is skewed,

the possibility of the investor actually suffering a loss is quite

small. Thus, the ability to receive a loss offset at the high

rates specified is minimized. On the other hand, the large proba—

bility of an abnormally small return taxed at the higher marginal

rate may be sufficient inducement for the investor to avoid a

security which is highly correlated with the portfolio return.

The additional required risk premium per unit of risk will

be unambiguously greater than predicted by the traditional model

only if portfolio returns are negatively skewed (lines 4, 11, 13,

16, and 19 of Table 2). In this case, there is a high probability

that the portfolio return will be slightly greater than expected

with very small probability of a very large gain. In addition,

the possibility of a large loss is relatively high. Therefore the

investor may be expected to avoid securities with a high co—

variance with his portfolio, since the possibility of a large loss

is so great. Again, barring short portfolios, the exceptions are
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if marginal tax rates are decreasing at an increasing rate, or in-

creasing at a decreasing rate, or at least not at a very highly

increasing rate (lines 12 and 5 of Table 2 respectively). These

specifications of the tax function implies that returns above the

expected return will be taxed at a lower marginal rate, or at

least not very much higher marginal rate than that rate which

would have been levied if the portfolio return had achieved its

expected return. Since there is a high probability of a return

slightly in excess of that expected, an investor may be induced to

hold additional securities possessing a high covariance with his

portfolio, even at low eXpected return, because of this relatively

small addition to his tax bill if his portfolio returns more than

is expected.

Unfortunately, the results of Tables 3 and 4 do not seem

to lend themselves to a similar intuitively appealing explanation.

Although the higher moments at least theoretically, affect the

investor's risk premium, there seems to be no systematic explanation

for the direction of these effects. Perhaps the difficulty lies

in the fact that the economic meaning of the higher mixed moments

is not obvious.

4.4 The Case of a Tax Function which can be Approximated by a

Second Degree Taylor Expansion, Investors Possess a Quadratic

Utility Function, and Portfolio Returns Possess Non-Normal,

Symmetric Probabilitygpensity Functions

 

 

This section modifies the more general case in section 4.1

by assuming that the portfolio return is distributed symmetrically

about its mean, but is either leptokurtic or platykurtic. This
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specific case may be considered more interesting than the previous

cases in the light of past empirical findings. With few

exceptionsl7, empirical findings indicate that security returns seem

to possess symmetric but leptokurtic probability density functions.18

That is, compared to the normal probability density, the probability

of a return near its expected value is generally greater than that

predicted by the normal distribution. In addition, the probability

of a large gain or loss is also greater than would be expected if

the probability distribution were normal?‘

Reproducing equation 4.15 under the assumption of this

section that the distribution is symmetric but non—normal

 

 

 

 

(K30 = 0, K40 # 0) yields the following equations:

d(Ri - RN+l) =

_ 1 K40 K40
(r-R >(————y.w+z———)+a
Rk N+1 K20 l 1 K20 1 K20 dK

1 ' Y1"20 + 81‘40 11

-r 1

(Rk ’ RN+1)['(0‘1 ’ 61Kzo)].<20 + 381

+ . ' dK

1 _ + 8 21

Y1‘20 1‘40

-r 1

(Rk ' RN+1)[81 ‘ 21‘20] K20 " g1

+ dK3l 4.26

1 ’ Y1‘20 + 81‘40

Again, by constraining two of the three derivatives to zero it is

possible to consider the effect of increasing each mixed cumulant
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on the investor's required risk premium, subject to given portfolio

probability density functions and given tax parameters. Namely,

K K

 

 

  

  

  

 

 

-r l 40 40

- (R ‘ )(“——'— Y + z ) + E

RN+1) k RN+1 K20 l 1 K20 1 K20 .

3K = 1 _ K + B K
4.271

11 Y1 20 1 40

3(R _ RN ) (Rk- RN+1)( —a1 + 6 12KO)-—— + 381

1 +1 K20 ..

8 = l K + 8 K 4.2711

K21 ’ Y1 20 1 40

(fir- )(s-zK )—1—-a
- RN ) k RN+1 1 1 20 K 1

+1 20 ...

a = 1 + 8
4.27111

K31 ‘ Y1K 20 1K40

Rearranging 4.27 slightly and using the expressions in equations

4.11 yields:

' RN+1)

dKll

2011 - (unfit—(v>2x +<1/4)31'—'—<&1'——>2(vr)“.< 1
WRN+1 20 l—g' l-g' 40

= ' 2

1 - (1/2>5———<v>21<+ (1/2)(§:—.—)2(vr) K40
g 4.281

I! 3

am <v")3(5———.>
+ 1'3 

- III r 2 H 2 r 2

1 <1/2)5———1_g.(v > K20 + (1/2)<3——l_g.) (v ) K40
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- RN+1)
 

3K21

_r- l;__ En! E" r 0-

(RR RN+1)K20[(3/4)l—g'(l-g')(v )3K2 (3/2)1_g1(vr)]

all! r 2 H 2 r 2

1 - <1/21§:g7<v ) K20 +<1/2><§:gv> (v > K40

<3/2)<%§—T)2<vr)2
+ 8'” r2 .. 2 r2 4.2811

1 - (1/2)%:ET(V ) K20 + <1/2)<§:gr> (v ) K40

 

3 1
' RN+1)
 

8K3l

 .1____-r_ g" _ g" g" 2 r4

K20(Rk RN+l)(1/2><1g.)“<v)2 (1/4)< g.l)( g) (v ) K

_ .311_ r _g__ r

l (1/2)l-g'(v ) 2K20+(1/2)(l_g.) 2(V )2K40

20]

 

(1/2)(vr>3<%§—r)3

- n1 gr 2 n 2 r 2 4.28111

1 - (1/21§:§r<v ) K20 + (1/2)c§:gr> (v ) K40

 

First, consider the case of the investor holding a portfolio with

returns which possess a leptokurtic probability density function.

. . -r )1 :_ .

Then the coeff1c1ent of (Rk - RN+1)K will be > 1 depend1ng

H. H 2 r 4 < 120" 2 r 2

on whether (l/4)%:g7(%:§7) (V ) fi(%:§7) (V ) . That is, if

III < 2

1— ' § 2
g (VI) 1,

values for g", g"', V and K

20

 
Results for all relevant expressions with various

40 are presented in the following

tables.
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Table 5

Values of the SlOpe and Intercept, A and B in the Equation

a(Rf—RNH)
 

—r l
11 - (Rk - RN+1)K20[A] + B, for Selected Values of

Parameters when Portfolio Distributions are Symmetric

8K

Important

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(l-g') g"/l-g' g"'ll-g' V K40 A B

1 + o N.S? # 0 N.S. 1 o

2 + + > 2 r 2 + + > 1 +

(V )

3 + + < 2 r 2 + + < 1 +

(V )

4 + + > 2 - + > 1 —

(vr)2

5 + - > 2 r 2 + + > 1 -

(V )

6 + + < 2 — + < 1 -

(V‘)2

7 + - > 2 r 2 — + > 1 +

(V )

8 + — < 2 r 2 — + < l +

(V )

9 + — < 2 r 2 + + < 1 -

(V )

10 + + > 2 r 2 + — < 1 +

(V )

11 + + < 2 + — > 1 +

(vr)2'

12 + + > 2 - - < 1 _

(vr)2

13 + - > 2 + - < l -

(vr)2

14 + + < 2 - — > 1 -

(vr)2

15 + — > 2 - - < L +

(vr)2

16 + - < 2 — — > 1 + 



Table 5 (continued)
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(l-g') gull_gv g"'ll-g' K40 A

17 + - 2 r 2 — >

(V )

18 + + 2 r 2 94 0

(V )

19 + - 2 f 0

(VI)2

20 + + 2 r 2 7‘ 0

(V )

21 + - 2 r 2 # 0

(V )

     

 

a

N.S. means the value is not specified.



Table 5 (continued)
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.' "__v nv_v

(1 g ) g /l g g /1 3 K40 A

2
17 + - r 2 - >

(V)

18 + + 2r2 #0

(V)

2
19 + - r2 #0

(V)

20 + + 2r2 #0

(V)

21 + - 2r2 #0

(V)

  

 

 

 

 

a

N.S. means the value is not specified.
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Table 6

Values of the Slope and Intercept, A and B in the Equation

-r
3(R - RN )

k +1 _ l —r

3K21 ' K20 (Rk RN+1)[A] + B, for Selected Values of

Important Parameters when Portfolio Distributions are Symmetric

 

 

 

 

(l—g') gII/1_gl gin/1_gv Vr K40 A

1 + 0 N.Sa # 0 N.S. 0

2 + + > 2_r—§-'— + N.S. +

(V ) K20

3 + + > Ln—— - N S '-

(V ) K20

4 + + < 2L——————- + N s —

(Vr)2K
20

S + — > 2 r 2 + N S —

(V ) K20

6 + + < 2 _ N S +

(vr)2~<
20

7 + - > 2 r 2 - N.S +

(V ) K20

8 + - < 2 r 2 + N S +

(V ) K20

9 + - < 2 r 2 — N S -

(V ) K.20

10 + + 3—;7§———- + # 0 0

(V ) K20

11 + + _£_______ — ¥ 0 0

(Vr)2K
20

1.2 + - 2";7— + # O O

(V ) K20

13 + — 2—~—————- - # 0 0

(vr)2K
20

 

a

N.S. means that value is not specified.



108

Table 7

Values of the Slope and Intercept, A and B in the Equation

—r

8(R - )

k RN+1 = l—— (Rr - RN )[A] + B, for Selected Values of
3K K k +1

31 20

Important Parameters when Portfolio Distributions are Symmetric

 

 

 

1’

 

 

(l'g') gn/l'g' gnl/l_gt V K40 A

1 + o "31.5.8 aé 0 N.S. 0

2 + + > *2—-—————- + N.S. +

(vr)2n<
20

3 + + > 2 r 2 — N S -

(V ) K20

4 + + <~g——~———— + N S. +

(vr)2n<
20

5 + - > —2———-————— + N s .—

(vr)2»<
20

6 + + < L—-—-— — N s +
(Vr)2K

20

7 + - > g“??— - N.S '-

(V ) K20

8 + - < -2-—---———— + N.S +

(vr)2»<
20

9 + - < LET—2— - N.S +

(V ) $20

10 + + —2———+——— + 7‘ 0 0

(Vr)2K
20

11 + . -2-—-2—— - .4 0 0
(Vt) K

20

+ O

12 + - —2——;—2——— ’4 O

(V ) K

13 + - 2____3;‘3
(Vr)2K — ¥ 0 O

20

 

a

N.S. means that values are not specified.
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Tables 5, 6 and 7 reveal that even if security returns

are symmetrically distributed, as long as the portfolio probability

density function is not mesokurtic, a non-linear tax function may

affect the required risk premium of the securities in the portfolio.

If the possibility of predominantly short portfolios are excluded

from consideration,then the required risk premium per unit of co-

variance is unambiguously greater than that predicted by the

traditional no-tax model, only if marginal tax rates are increasing

(Table 5, rows 2, 11 and 18). It could be argued that since the

marginal tax rate is increasing, the investor would be hesitant to

hold securities possessing a high covariance with his portfolio

since the loss offset obtained for a given loss will be less than

that obtained for an equal gain. This hypothesis is strengthened by

the observation that the required risk premium per unit of co-

variance is less than predicted by the conventional model if

marginal tax rates are declining (Table 5, rows 9, 13 and 19). The

sign and degree of kurtosis as well as the magnitude of the third

derivative of the tax function also are relevant parameters in

determining the relative desirability of increased risk in the

sense of increased covariance. However, these parameters do not

seem to lend themselves to a reasonably simple intuitive explana-

tion. As in the previous section, the implications of the effect

  

—r —r

3(R - ) 3(R - )

of taxes on a k RN+1 and m k RN+1 do not seem to lend

K21 ”K31

themselves to intuitively appealing explanations.
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4.5. The Case of a Tax Function which can be Approximated by an L

Degree Taylor Expansion, Investors Possess Three Parameter

Utility Functions,and Security Returns Possess Multivariate

Normal Probability Density Functions

In Section 4.2 it was concluded that if securities are

normally distributed, then even if taxes are non-linear, the investor

will behave as if capital gains and dividend income were not taxable.

However, the conclusions may have depended upon the specific utility

function (quadratic) or the specific approximation to the tax

function (second degree Taylor Expansion) assumed in the analysis.

It may be reasonable to assume that merely increasing the degree of

the Taylor Expansion would not effect the general conclusions of

section 4.2. It has already been pointed out that cumulants higher

than the second order vanish when the distribution is joing normal.21

However, if the tax function is non—linear the portfolio return is

distributed in accordance with a normal probability density function,

then the probability distribution of after tax return may be skewed.

Thus, if the investor considers skewness of after tax return as a

relevant parameter in his utility function, it is possible that taxes

will be considered, even when security distributions are normal. To

consider this possibility, the assumptions in Section 4.2 are

broadened to permit skewness of after tax return to be a relevant

parameter in the investor's utility function and to assume a more

general L degree Taylor Expansion to approximate the tax function.

Other assumptions in Section 4.2 are retained. Specifically,

security returns are assumed to possess a multivariate normal dis—

tribution and all expectations exist and are finite. Also, it is
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convenient to utilize the notation defined in section 3.2, so that

the moments,

= ~r_—r P ~ _‘ q ” _ ' m ~c _ ‘c n =
upqmn E[(Rk Rk) (Tk/Vk Tk/Vk) (R1 R1) (8k 8k) ] P,q,m.n 0,1,2,...

If the degree of skewness, as well as the mean and variance

of after tax return, are relevant arguments in the investor's

Utility function, the utility function may be symbolically repre-

 

sented by,

~t ~t -t 3

U = UlElR 19 O 9 E(R - R ) ] a

k (fit it) k k

k’ k

where the arguments are defined above,

3U t = U1 > O,

6E[Rk]

3” = u2 > o, 4.29

30 ~t ~t

8U __ 3
U3 #,0 ,

8[E(B£ - §:)3]

and the tax function may be approximated by an L degree Taylor

Expansion,

L g“<v“)“(fii - iii)“
2
 

 

T - g - + '

k (Yk) 2:1 2.

2+1 r 2 r -r 2 4'30

L g (v ) (Rk — Rk)

' = '— + z
gk g(Y ) a! ’
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1 2
v_ __ . = .

g(Yk), g(Yk) are the functions evaluated at Yk Yk’ g 18 the

t l O O I

l-h-derivative of the tax function With respect to income evaluated

at Y = Y 2 = 1,2,...,L.

 

 

k k’

The investor desires to maximize 4.29 subject to the constraint

N+1

that Z X. - l = 0. Forming the Lagrangean and maximizing,

j=1 J

~t N+1

M:X‘£ " U{E[Rk]’ 0(it fit), E(R: - fi:)3} — A( z x. - 1),

i k’ k j=l 3

~t 30 ”t “t ”t -t 3

aEmk] “He“ aEmk- >
M U ——————-+U k +U ->. =0
8X 1 3X. 2 3X. 3 3X ’

1 1

N+1

95—42: Z X.-l=0, i=1,...,N+l. 4.31

81 j=l J

From equations 3.4 and 3.5 above,

~t

8E[Rk]

3X.
1

~ 4.32I

QRi(l - E[ELI)

4.33

and from Appendix A,

~t

aE[Rk]

8Xi

4.34
_ ' _ 21'

' R1(l E[Bkl) u0011
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30(Rt,R:)

___.—___= .... ~' _ .—

axi 2{(1 E[g ])[(1 XN+1)“1010 “0110]

+ R1(“0101 ' (1"XN+1)”1001) + u0111 ‘ (l‘XN+1)“1011}

In addition, from Appendix F,

~t -t 3

35(Rk - Rk) 2

axi = 3{(kg?(”0210-2(l'xml)“1110+(1"x1\1+1) ”2010)

 

- 2

’ R1(“0201'2(1'XN+1)“1101+(l'XN+1) “2001)

2

+ ”0011((1‘XN+1) u2000'2(1’XN+1)“1100 + “0200)

2

‘ (”0211 " 2(l-XN+1)ullll + (l’XN+1) “2011)}

Specifically for i = N + l,

 

BEIEEI ~

- RN+1(1 - E[g'l)

aXN+1

~t ~t

80(R .Rk)

-————————— = 2{R (u - (1- )u )
3XN+1 N+1 0101 XN+1 1001

~t ~t
313(Rk - Rk

 
2

axN+1 ‘ '3RN+1(“0201’2(I'XN+1)“1101 + (1‘XN+1) “2001)'

4.35

4.36

4.37

4.38

4.39
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Substituting equations 4.34 through 4.39 into equations 4.31 yields,

.Qi; ’ _‘v _ -—! _ _

axi 3 U1[Ri(l g ) ”0011] + ”2“1 g )((1 XN+1)“1010 “0110)

+ Ri(”0101‘(1‘XN+1)“1001) + ”0111‘(1'XN+1)“1011]

_ 2
c— ' — - —

+ 3%“l g )(”0210 2(1 X1~1+1)“1110+(l XN+1) u2010

2 2

' Ri“0201‘2(1’XN+1)“1101+(1'XN+1) “2001)+”0011((1‘XN+1) u2000

2

’ 2(I‘XNH)”1100+”0200)““0211'“1’x1~1+1)“1111+(l'xmi) “2011)]

3:; 3 U1[RN+1(1'3')1+2U2[RN+1(“0101'(l’XN+1)“1001)l
+1

 

2 _

‘ 3U3[RN+1(“0201'2(l'XN+1)“1101+(1’XN+1) ”2001)] ’A “ 0’

fl 2: x—1=0. ‘ 4.40

ax

The Lagrange multiplier may be eliminated by subtracting

th . .
the N+1 equation from the remaining N equations, so that:

U1[(§1’RN+1)(l‘g')‘“0011] + 2U2[(l‘§')((l‘XN+1)“1010’”0110)

+ (fii-RN+1)(uOlOl-(l-XN+1)UIOOI) + (”0111’(1‘XN+1)”1011)]

_' 2 —
' 3U3[(1-g )(2(1'XN+1)”1110'(1'XN+1) u2010‘“0201)+(R1'RN+1)("0201
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‘ 2 2
-er + - - - - -( xN+1)“1101 (1 XN+1) “2001) “0011“1 XN+1) u2000 2(1 XN+1)“1100+“0200)

2

+ (“0211‘2(1‘XN+1)“1111 + (l‘XN+1) “2011)] ’ 0° 4'41

Equation 4.40 may be solved for the investor's marginal rate

of substitution between risk and return. That is,

(R1 ' RN+1)(1 ’ g.) ' u0011
 

(1‘3')((I'XN+1)“1010'“0110)'(Ri’RN+1)((l‘xN+1)“1001'"0101)'((l'xN+1)“1011““0111)

U

3 -, 2

3'6; {[(l’g )((1_XN+1) u2010 + u0210 ‘ 2(1”(1~1+1)“1110)

- 2

(Ri'RN+1)((1‘XN+1) u2001 + u0201 ‘ 2(l‘x1\1+1)”1110)

+

2 2

) u2000'2(1"XN+1)“1100 + “0200)'(”0211+(1’XN+1) u2011
((l-XN+

u0011 1

‘ 2(1"XN+1)”1111)]“1"g')((l‘xlwi)”1010"”‘0110)

—l

) )1},- (Ri’RN+1)((1'X 01001“”0101)'((l‘XN+1)“1011'“0111N+1

i = l,...,N 4.42

Equation 4.42 must hold for all securities in the investor's

portfolio. Therefore,the numerator and denominator on the right

hand side may be summed separately over all securities without

affecting its value.
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First mutliplying the numerator and denominator by hik’ the value

of asset i in the investor's portfolio as a proportion of the

total value of the risky portfolio. Then, if the numerator and

denominator are summed separately, recognizing that:

N

X h, = l

j=1 3k

N ’
r

z - = _

1:1 (R1 RN+1)hjk Rk RN+1

N

jil hjkun,m,l,q = un+l,m,0,q’ for all m,q and n, 4.43

equation 4.42 reduces to:

C
d

c
:

P
‘

n
o

..r ...,

(Rx ' Run”1 ' g ) ' u1001
 

‘0 71' .

(1'8 )((l-XN+1)UZOOO-u1100)—(hk-RN+1)((l-KN+l)u1001-u0101)-((l-XN+1)U2001-u1101)

U3 — 2
+ 3 6:1[(1-g )((1‘XN+1)

”3000+”1200’25l'XN+1)“2100)'

-r 2 2

(Rk’RN+1)((1‘XN+1) “2001+”0201‘2(l‘xN+1)“1101)+“0011((l‘XN+1) u2000

2

“2(l‘XN+1)“1100+“0200)’(”1201+(1’XN+1) u3001

“2(1‘XN+1)“2101)][(1-g')((l‘XN+1)”2000’“1100)

...r
‘1

—(Rk_RN+l)((l-XN+l)u1001_u01Ol)-((l-XN+1)U2001—u1101)] } ' 4’44
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Since the security and portfolio returns possess a joint

. . . 23
normal distribution, the moments can be written as,

_ (2r)!
u ————( >r
2r,000 r u2000

2 r!

u2r+l,000 = 0 for all r > O

_ (2r+1)! r

u2r+1,0,1,0 ‘ r (
r!2

)
u1010 u2000

u2r,0,1,0 = O for all r :_0 . 4.45

By substituting equations 4.30, the specific approximations for the

total and marginal tax functions, directly into the moments involving

these parameters, and using expressions 4.45, all moments contained

in equation 4.44 can be derived in terms of the joint moments of

24

the portfolio and security return. Specifically,

u2010 = 0 u0111 = (1_XN+1)A5“11 u3001 = A10112

u1010 = “11 u1101 = (l’XN+1)A5“2 u1111 = (1_XN+1)A11“11

u3000 = 0 u0011 = Aeuli u2101 = (l’XN+1)A11H2

2 _

u0210 " (l—XN+1) A1“11 u1001 " A6112 u0101 ' (l'XN+1)A12“20

- (1 x )2A - (1- )2A
u1200 " ’ N+1 1“2 u0200 ' XN+1 7“2

= — = - 4.46
u1110 (l XN+1>A2“11 u0110 (1 XN+1)A8“11

u2100 = (l'XN+1)A2“2 u1100 = (l’XN+1)A8“2

2

u1011 ’ A3“11 u0211 ‘ (l’XN+1) A91111

. _ _ 2

u2001 ‘ A3“2 u1201 ' (l‘XN+1) A9112

2

u0201 ‘ (l’XN+1) A4“2 u2011 ‘ A101111
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A1, ...,A12 are constants, independent of the individual

asset i, and for economy of notation, p11 is the covariance of

asset i with the risky portfolio, and uz the variance of the

risky portfolio. That is, all of the higher moments in equations

4.42 and 4.44 may be written as functions of the variance of the

return of the risky portfolio, or the covariance between the return

of the asset in question and the return of the risky portfolio.

Since investor equilibrium requires that the right hand sides of

4.42 and 4.44 be equal to each other, after substitution of 14.46

into 4.42 and 4.44, investor equilibrium may be represented by:

' RN+1)(l_é') ’ A6”11

(l—XN+1){(l-g')(l-A8)ull_(§i_RN+l)(A6A12)“2(A3’A5)“11}

 

+ 3 U3(l—XN+1) {(l’g')(A1’2A2)“11‘(R1’RN+1)(A3+A4'2A5)“2

U "q —
..1 (l—g )(1‘A8’“11‘(R1‘RN+1>‘A6’A12)u2-(A3 A5)u11

  

+ A6“11“2(1‘2A8+A7)‘(A9+A10‘2A11)“11 }

-_' .u — — - —

(l g )(l A8)ull (Ri RN+1)(A6-A12)u2-(A3 A5)u11

 

_r _' ,

(R “154+leg )‘A6U2 ‘
 

_' —r

+ 3 ”3(1‘XN+1) {(l'g )(A1’2’5‘2)‘(R ’RN+1)(A3+A4 2A5)

U —, -r

1 <1—g ><1—A8)-<R ‘RN+1)(A6'A12>- (A3-A5)

  

2‘12A+w)(A9+A -2A )
8+ 10 11 } . 4.47

(1-g')(10A8)—<R'RN+1)(A6’A12)‘(A3’A5)
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Solving for the required risk premium for security i,25

do NkPl-NlPk
fi _ = (§r_ ) MP22 2 2 _ 2 2 2 2

i RN+1 RN+1 M Pk_Q Nk M Pk_ Nk ’

2 2 2 2 2 2 Q2 2

where

U3

M2 = (l—g' ) + 3UU13(1-—XN+1){(A3+A4- 2A5)1J2

1 U3

N2 = [A6 + 3—013(1——XN+1){(1—g )(Al—2A26)+A (1— 2A8+w)p2 (A9+A10-2All)]u11

1: —-' _ — .—P2 (1 g )(1 A8) (A3 A5)“ll

Q2 = (A6 ’ A12)“2

k U3 _
= —— — -' — -N2 [A6 + 3 U1 (1 XN+1){(1 g )(Al 2A2)+A6(l 2A8+A7)u

‘ (A9+A10‘2A11)}]“2

Pk = (l—é')(l-A ) — (A —A ) 4~48
2 8“2 3 5”2 ‘

1 112 k k k i i k
Clearly, M2P2- Q2N2 — SEE-[MZPZ -‘Q2N2], and >N2P2 - NZPZ— 0, so

that equation 4.52 reduces to the traditional no tax model,

R _ = (-r _ )Elll. 4.49

1 RNA R. RNA”

That is, it is safe to conclude that as long as securities

are normally distributed, a differentiable non-linear tax function

will not effect investor behavior. Section 4.2 arrives at this

conclusion assuming that the investor possesses a two parameter



120

utility function. The present section arrives at the same conclusion,

even though an assumption regarding investor behavior has been

broadened. That is, the investor is assumed to consider the degree

t -t3
R ) , as an argument in hisof skewness of after tax return, E(I~lk k

utility function. In fact, examination of equation 4.48 reveals that

this analysis may easily be extended to admit any number of moments

of the probability density function of after tax returns as arguments

in the investor's utility function. If the higher moments exist

and are finite, then the conclusions will not differ from those

derived in the present section. In addition, the section specifies

a more general approximation to the tax function compared to previous

sections in this chapter. Again, as long as security and portfolio

returns are joint normally distributed, taxes are found to be

irrelevant to the investor's decision.

This result obtains because the higher moments of a

bivariate normal probability density function are simple functions

of the covariances and variances of the relevant random variables,

or vanish. Specifically, when the portfolio and security returns

possess a bivariate normal density function, then the relevant higher

mixed moments either vanish or are simple functions of the covariance.

Similarly the higher moments of the marginal probability density

function of the portfolio return are functions of the variance of

the portfolio return or vanish. That is, knowledge of the variance

and covariance of portfolio and security returns provides complete

knowledge of all other joint and marginal moments.
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The tax function affects investor behavior because it causes

the investor to consider higher moments of the before tax distribu-

tions. However, since the variance and covariance completely de-

termine the higher moments, the investor may ignore these higher

moments and consider only the mean, variance and covariance of

before tax returns. That is, the investor need only consider the

portfolio variance, the covariance of security and portfolio returns,

and the relevant means to choose an optimal portfolio. This is

precisely the conclusion reached under the traditional no tax

model. Thus, the investor's behavior is found to be consistent

with the traditional Capital Asset Pricing Model, regardless of the

tax function, as long as security returns possess a multivariate

normal probability density function.
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NOTES TO CHAPTER 4

Pages 32, 33.

Pages 37, 38.

See Appendix D for the derivation of the following expressions.

Hereafter, the subscript k, denoting individual investors, and

denoting stochastic variables are deleted when convenient.

Alternatively, if the security probability density functions are

stable under addition, since equation 4.7 must hold for each

security in the investor's portfolio, the numerator and

denominator of 4.7 can be multipled by the weight of each security

in the investor's risky portfolio and summed over all securities

giving the same results. However, the assumption of stability

under summation is unnecessary to achieve the same results.

See Appendix E for the derivation of equations 4.9.

See Appendix B for an analogous derivation.

See Appendix E.

For economy of notation, nap means unopo'

Kendall and Stuart, op. cit., I, 70, 84.
 

lbid., p. 85.

Although leptokuritc curves are generally regarded as being

more peaked than the normal curve, and ptatykurtic more flat

topped than the normal, this is not necessarily true. See

Kendall and Stuart, op. cit., I, pp. 92, 93.

Kendall and Stuart, op. cit., I., p. 83

Ibid.

Ibid., p, 51,

See equation 2.10.

The notable exceptions are B. Mandelbrot, "The Variation of

Some Other Speculative Prices", Journal of Business, 40 (1967),

393-413 and S.J. Press, "A Compound Event Model for Security

Prices", Journal of Business, 40 (1967), 317—35. These papers

indicate that security distributions are occasionally skewed.

 

 

M.G. Kendall, "The Analysis of Economic Time-Series - Part I:

Prices", in P.H. Cootner, The Random Character of Stock Market



19.

20.

21.

22.

23.

24.

25.
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Prices, (Cambridge: The MIT Press, 1964), 87—99. Re-

printed from Journal of the Royal Statistics Society, 96 (1953),

ll-25; P.H. Cootner, "Stock Prices: Random vs. Systematic

Changes", in P.H. Cootner (ed.), The Random Character of Stock

Market Prices (Cambridge: The MIT Press, 1964), 231—52,

 

 

reprinted from Industrial Management Review, 3 (1964), 26-45,

A.B. Moore, "Some Characteristics of Changes in Common Stock

Prices", in P.H. Cootner (ed.), The Random Character of Stock

Market Prices (Cambridge: The MIT Press, 1964), 139-61,

 

 

 

E.F. Fama, "The Behavior ofStock—Market Prices", Journal of
 

Business, 38 (June, 1965), 34-105.

See n.12 above for a modification of this statement.

The denominator of equations 4.28 are again assumed always to

be positive.

See page 85°§EB£§°

Page 36,

Kendall and Stuart, op. cit., I, 91,

See Appendix G for the derivative of these moments.

See Appendix B, equation B.2 for an analogous derivation.



Chapter 5

THE EFFECTS OF PERSONAL INCOME TAXES

ON MARKET EQUILIBRIUM

Chapters 3 and 4 have been concerned with the affects of

personal income taxes on individual investor behavior. It has been

shown that under certain conditions, personal income taxes will

affect the investor's demand for a specific risky asset. Presumably,

this will affect the equilibrium value and therefore the expected

risk premium for a specific asset on the market as a whole. This

chapter considers the conditions for market equilibrium of a risky

asset and determines the specific effect of personal income taxes

on the risk premium for a security in terms of market equilibrium.

The following variables are defined:

n is the number of shares of asset i willingly held

1k by investor k.

n. is the exogenously determined number of shares

10
of asset i outstanding.

Pi is the current price of 1, equivalent to the non—

random beginning period price of asset i by virtue

of assumption A.3 in Chapter 3.,

Vi is the total current market value of asset i.

v,k is the total current dollar value of investor k's

1 holdings of asset 1.

VM is the total current market value of all assets

outstanding.

124
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v.

hi E-Vi, is the value of asset i as a proportion of the total

M value of all assets.

Vik . .
hik E-—;-, is the value of asset i in investor k S portfolio as

Vk a proportion of the total value of investor k'S risky

portfolio.

Vr

fk E-VE—, is the value of investor k'S risky portfolio as a

M proportion of the total value of all risky assets

outstanding.

Zh.R 3 RM’ is the return on the "value weighted market portfolio"

j J J or the "market portfolio," defined as a portfolio with

each risky asset held in proportion to its total market

value.

k-1:;[(~r-_r)"‘]k-1 —1234
pm- Rk Rk 9 " 9 9Kam" a a y

I

H

U

7
S

U

E

II

H N

U

L
O

bu: 1 = EH13; — qr“ (Iii - Tip]. k —

i=l,...,j,...,N.

5.1 Conditions for Market Equilibrium
 

In order to achieve market equilibrium, each investor must be in

personal equilibrium. In addition, the total supply of each asset must

equal the total demand for that asset at the current market price.1

The former condition is satisfied, depending on the specific case and

notation assumed, if equation 3.17 (or its equivalent 3.18, 3.40, 3.47)

or equation 4.10 (or its equivalent 4.11, 4.14) holds for each asset i

(i 1, . . ., i, j, . . ., N) and each investor k, (k = 1, . . ., k,

. . ., K). The latter condition is formally satisfied if,

n

l

ik = nio’ for each i = l, . . ., N,

"
M
W

M'or P n = P, nio’ for each i = l, . . ., N,

i ik 1
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P :1? '=
Z i nik i nio’ for each 1 l, . . ., N.

k

Pi nio 3 Vi’ the total current market value of asset i.

P. n. E V. ,the total current dollar value of asset i held by

1 1k 1k

investor k.

That is, market equilibrium requires that

n, E

1k k

II
M

7
:

II
M

7
s

<

II < m "
U

:
3

H

II

|
'
-
"

p.

k 1}

In terms of proportions, divide both sides of the equilibrium condition,

5.1 by the total market value of all shares outstanding, Vfi:

 

If 11. vi
V =‘v- E hi for all i = l, . . ., N. 5.

M M

5.2 Market Equilibrium in the Context of a Non-Linear Tax Function
 

To consider market equilibrium as a whole, equation 4.11 is

used as the individual investor equilibrium. Recall that equation 4.11

represents investor equilibrium, assuming the tax function can be

approximated by a second degree Taylor Expansion, and investors possess

quadratic utility functions.2 Thus, this specific analysis incorporates

those same assumptions. Clearly,an analagous analysis would result

from one of the other equations representing another set of underlying

assumptions.

Market equilibrium requires simultaneous personal equilibrium

for all investors, thus the index k(k E l, . . ., k, . . ., K) is

reinstated to identify each investor. Reproducing equation 4.11

with the newly introduced notation,

._ —r * *

R1 ' RN + 1 = (Rk ’ RN + 1) [Ak] ' Bk

., N s. l

2
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A: _

u k u k

r k 21 k 1

k 1 ' [Gk -6ku2] k + [8k ' zk“2] k

“11 ' 1111 ”11

pk , uk Uk

2 3 k k 3 4
_ — ... _ _+ .—

.1 [Yk 38k] “2 [ak ((1/3)5k + 5k) “2 ] Bk k

U2 112

k k - k
[_Yk - 38k] 112 + [5k - (2/3)<5k] 113 + 2k 114 ’

 

+ k k

l;

 

1 [Y - 3B ] uk - [a - ((1/3) 6 + E ) uk] E§-+ B ‘3-
‘ k k 2 k k k 2 k k k

u2 “2

7%

= 5.3
Bk

k u k uk Uk

k “21 31 __g _ ‘_3

“ 1 [ 33k_“k + 5h k + 38k k 5k k ]

“11“11 “2 “2

uk uk

k 4

1+ Hk- 38k1u13- [c:1<-((1/3)<51(+ak2)u]—§+ekk

U2 “2

gk' Vt 812': i;

( = = \1k (3/2>———- vk 51. (3/41__g. (l_g.) (V1.3)
gk k

g" 3 g"

a = (1/2)(_1‘ )2 (Vt)2 s: = (1/2) (V133) (—_——-1‘———,-)3

k

g" H'

Y=(l/2)"‘_—k—.(Vk)2 z=(1/4)-——k—.—(——‘—‘——g.1f>“>2(v

k 8k k 18k 1--gk

 

Since 5.3 holds for all assets, it may be summed over allj . First,

multiply 5.3 by h,, the value of asset j as a proportion of the value of

J

all risky assets and sum over j:
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'N _ _r N * N *

2 h. (R. - ) = ( - ) ( 2 h ) - ( X h B ). 5.4+ . .
j = 1 J J RN 1 RR RN + l j = 1 JAR j = 1 J k

But,

N _ _ N

X h, R, = RM’ is the "market portfolio" and X h, = 1, so that

5.4 reduces to

_ _ _r- * - *

(RM ' RN + 1) ' (Rk RN + 1) (ithk) (ithk)’

... *

(RM ' RN + 1) + (Ethk)
 

 

 

  

or Rk ' RN + 1 (Zh,A:) 5'5

. J

J

Equation 5.5 may be substituted into equation 5.3, so that

I" — *

_ (RM-KN+1)+(§thk) . * *

R1 ’ RN + 1 = * ; Ak ' Bk
Zh'Ak :

. J ?

J 1

* (Zh 3*) * 3* (Eh A*)
= (RM - RN + l) Ak +_j J k Ak R ij k 5 6

Eh *) (2h *) '
(. jAk , jAk
J J > .

A:
Zh * =
jAk

j

k k k k k k k k k

[”11 + [“k Gkuzl u21 + [8k - zku21u31 + ullflY1 - BBlluz + [Ck - (2/3)6k]u3+zku4}

 

k k k k k k k E5 k
ih1{u11 + [Gk 6ku21u21 + [8k - zku21u31 + ulllel - 38]"2+[€k'(2/3)5k]"3+zk“4]}

5.7
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k k

u11“11Hk + ¢k

k kH j
2
.hj“11 23%“11H+k +Zhj¢k

J J 3

Similarly,

Ak (Zhj BZ) — B: (ZhAR):

7‘:

¥thk
J

 

k k i * k i
[“11 +ullnk + ok] (gthk) - 3*k[§hj (p11+ ullHk + ¢k1

 

[§hj (“11 + “link + ¢i)]

where Hk’ 1: represent their obvious equivalents in equation 5.7.

Now, it is assumed that all investors have identical assessments of the

expectations of all risky assets,3 so that the left hand side of 5.6

is identical for all investors. Then, the numerator and denominator

of the right hand side may be summed separately over all investors.

First, multiply the numerator and denominator by fk’ the value of

investor k's risky portfolio as a proportion of the total value of

'1

all risky assets outstanding. Then, carrying Ont the summation yields,

R1 - RN + 1 =

_ * * * * *

(RM ' RN + 1)i[kak] sz[(;§jBk) Ak ' Bk(2§jAk)]
 

it *

ka [thj Ak] :fk [jzhj Ak]

5. 8

+ k J j . 5.9
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From 5.9, the coefficient of (RM - RN + 1) is,

 

 

* k k 1
2 f

[ kAk] _ Z[fkull] + E[fk“11Hk] + Zlfk¢kl
k - k k k

* k f [ h k ] f [ h ] 5.10

22 [2h ] 2f [£h.u ] + 2 2 .u n + 2 2 .¢
k k 1 iAk k k . J 11 k k j J 11 k k k j J k

The first term in the numerator and denominator may easily be evaluated.

E[fkul:] ‘ 2.3; E[(fir - -r) (k - R )]
k kM Rk 1

=—1—2[er[(Zh a} 4%) (£2 -R>HvM k k j jk J j i i

=._1 2[vr 2h E[(R - i ) (i - R >11
VMkkjjk j j i i

=.—l 2[2 vrh E[(R - R ) (R - R )1]
VMjkkjk J' J' i i

1
~ _ ~ _

=.—— 2 2 v E R - R R - R
5'11

VM j[k jk [( j j) ( i i)]]

1

By virtue of the market equilibrium conditions 5.2,

2vjk v,

k _ _1__ h

v ' v ' j’
M M

so that 5.11 can be written as,

k " _ ‘” _

= h _ -kaull E[(2 j (Rj Rj> (Ri Ri)]

R J

= E[(RM - EM) (k1 - fii)]

‘ “(fiM, R1). 5‘12
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the covariance between asset i and the market portfolio.

Similarly,

[ k

2f EH~r - “) (2h (i - i >)
kjjlllkk[RkRkjjj j]

_ ‘r_-r~_-
- 12([fk E[(Rk Rk)(RM RM)]

vr 2 2

= >345— EHRi-RE) (RM—RMH

k M

Vr

_ __1_<_ ‘ _- ‘ _-
—:[§ Vthk E[(Rj R3.) (RM RM)]

V. 2 2

=2[2—115 E[(R.-R.)( —’)1
k j VM J J RM RM

V 2 2

2 .2125 _ - _ -
§[:[ VM E[(Rj Rj) (RM RM)]

= E[E[(hj (Rj - Rj> (RM - RM>11

= “(‘31 ‘ W21" “(11W RM)’ 5'13

the variance of the market portfolio.

Thus, the coefficient of (RM — RN + l)’ given by equation

5.10 is,

2 2 k 1
0(RM’ R.) + E[fkullflk] + Z [fk¢k]

1 k k 5.14 

o ‘ ‘ k j
+

(RM’ RM) + :fk[?5j“11“k] ifk[é:j¢k]
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That is, equation 5.9, representing market equilibrium can be written

{'0 ~ 1 z

_ °(RM, R) + E[fk(”11IIk + ¢k)] E

.. = ( -
:

RN + 1 RM RN + 1) ~ ~ + 2 2lfkh (u kn + Q3k)1 ?
k(RM RM) 11 k

 

*

2 fk[(ZhJBk) Ak - B: (2hjAk)]

+ k j 1 = 1, , , ,, N ‘5.15

~ + 2 2 [f h (ulhm + @j)]

0(RM’ RM) k J k j = l,...,N

 

The traditional no—tax Capital Asset Pricing Model requires

that the equilibrium expected return of any risky asset i be such

that,

(‘ — R ) 0 ~ ~
_ RM N + 1 (RM, R1)

R1 ' RN + 1 ‘ - 2 i = 1, . . ., N. 5.16

0(RM. RM)

 

Comparing equation 5.15 with the traditional results, the

after tax model will diverge from the traditional model to the

extent that the terms within the first bracket on the right hand

side of 5.15 diverges from

“(Rpr

and o

(RM’RM

K v i: * * h * 5 17

k E lfk [(fhisk) Ak ’ Bk (3 jAk)] * 0' '
2 1 J
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Unfortunately, the terms in 5.17 are very complicated,

involving weighted sums of the investors tax parameters, the market

parameters, the investors' invested wealth relative to market

wealth, and investor portfolio parameters. Comparing these terms

with the results in the previous chapter, the final result bears

a close resemblance to the results obtained for the individual

investor, differing only by the use of market parameters derived

from the market equilibrium conditions and the summations over all

investors, rather than individual investor portfolio parameters.
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NOTES TO CHAPTER 5

Michael J. Brennen, "Taxes, Market Valuation and Corporate

Financial Policy" National Tax Journal (December, 1970), p.
 

Page 79.

Page 33.

Page 15.



CHAPTER 6

CONCLUSION

The purpose of this study is to derive a model of investor

behavior when the investor's income is subject to personal income

taxation. The methodology is based on the traditional Capital

Asset Pricing Model, modified to permit the investor to consider

after tax, rather than before tax parameters in his decision process.

It seems clear that a rational investor, subject to income tax

levied on all sources of income, will consider after tax return as

the relevant argument in his utility function. This study is an

attempt to determine under what conditions, the inclusion of after

tax rather than before tax parameters, modify the investor's

desire for one risky asset relative to another.

One may argue, on a priori ground that a tax function may

affect investor behavior if the tax serves to distort the marginal

rate of transformation between risk and return for a specific

security, and/or modifies the expected wealth position of the in—

vestor. This is akin to the tax exerting a "substitution" and/or

"income" effect on the investor. However it has long been recognized

that, given the traditional assumptions underlying the Capital

Asset Pricing Model, Tobin's separation theorem holds. That is,

the composition of the investor's risky portfolio is independent

‘ . . . l
of the investor's risk aver51on parameter. As a result, the demand
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for anyone risky asset relative to other assets in the investor's

risky portfolio will be unaffected by a pure "income effect” unless

the tax serves to break down the separation theorem. The model in

Chapter 3 shows that, under certain conditions, the tax function

may in fact cause the conditions for a separation theorem to be

violated.

Specifically, the marginal contribution of the riskless

asset to the investor's portfolio return may be represented by,

RN+l(l — g') (equation 3.5i). Thus, the riskless asset is no

longer ”riskless'in the sense that its marginal contribution to

after tax portfolio return is no longer non—stochastic as long as

the marginal tax rate is stochastically determined. Lintner has

shown that the existence of a riskless asset is necessary for the

separation theorem to hold.2 Thus, the investor's choice of his

risky portfolio will not necessarily be independent of the parameters

of his utility function, and the tax may have an impact on the

investor's relative demand for a risky asset as a result of an

"income effect" exerted on the investor.

In addition, the model in chapter 3 derives the investor's

conditions for utility maximization when the investor is subject to

a generalized tax function and unspecified probability distribution

of the security returns. In this context, it is established that

the necessary conditions for investor utility maximization require

that the investor equate after tax marginal rates of transformation

between risk and return for each security in the investor's portfolio.

This implies that before tax marginal rates of transformation, in
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general, will differ, at least for a generalized tax function and

unspecified security probability distributions. That is, it is

established that, at least in this general model, the tax function

may exert a "substitution effect" on the investor's choice of the

risky portfolio.

The analysis in chapter 3 then derives the required risk

premium for a representative security in the investor's portfolio.

It is concluded that the required risk premium is of the form,

p

- —r 11

R1 - RN+1 = [(Rk — RN+1)(;;6)][A] + B, 3.1

where fii - RN+1 is the required risk premium for risky asset i

in the investor's portfolio,

“11 is the covariance of asset i with the investor's risky

portfolio,

“20 is the variance of the investor's risky asset

k; — RN+1 is the expected risk premium of the investor's risky

portfolio

A and B are complicated functions of the moments of the joint proba—

bility density function of the investor's tax liability, marginal

tax rate, and security and portfolio returns.

The first bracketed term on the right hand side of equation

3.1 is the investor's required risk premium predicted by the tradi—

tional model. Thus, the investor's required risk premium relative

to the expected portfolio return and the traditional risk measure

u

C—ll), will depend on the magnitude of A and B, functions of the

20
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relevant moments of the joint probability distribution of tax

liability, the marginal tax rate, the portfolio returns and the

security return.

The mixed moments in A and B may be converted into terms con-

taining parameters of the tax function, the correlation coefficients

between the tax variables and the security and portfolio returns,

and the bivariate moments of the security and portfolio returns

respectively. It is then concluded that as long as the tax function

is linear in income, taxes have no effect on investor behavior.

This conclusion results because the marginal rate of substitution

between risk and return is unaffected by the imposition of a linear

tax function and the conditions for the separation theorem hold

since the marginal tax rate is non-stochastic. However, for a simple

non—linear tax function (taxes as a quadratic function of income),

the required risk premium depends, in a complicated way, on the

relevant correlation coefficients, the higher moments of the bi-

variate probability dnesity function of portfolio and security re-

turns, and the parameters of the tax function; as well as the param-

eters in the traditional, no tax model (equations 3.48 and 3.49).

It is clear that in this general case, investor taxes may have an

effect on the investor's required risk premium. However, the

relationship depends in a complicated way, on the joint probability

distribution of the security and portfolio return, as well as

parameters of the tax function.

In order to derive more meaningful results, chapter 4

considers some specific cases. Sections 4.2 through 4.4 consider the

case of a tax function which may be approximated by a second degree
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Taylor EXpansion. The additional risk premium per unit of additional

covariance is then calculated. It is concluded that if security

returns possess Multivariate Normal distributions, taxes still have

no effect on investor behavior. However, if security returns are

not Normally distributed, then investor behavior will be affected

by the tax parameters.

The specific effects assuming specific tax parameters and

moments of the portfolio probability distribution are summarized in

tables 2 through 7. It is concluded that it is difficult to derive

generalizations concerning the specific effects of the tax function

on security returns. However, if the portfolio return is positively

(negatively) skewed, then it is likely that the additional required

risk premium per unit of additional risk will be less (greater)

than predicted by the traditional no tax model. Some intuitive

justification for this result is presented in section 4.3.

Similarly, if the portfolio return is symmetrically dis—

tributed, then the additional required risk premium per unit of

covariance will, in general, differ from the traditional no-tax

model if portfolio returns are not mesokurtic. Again, generalizations

are not obvious, however, the required risk premium tend to be

greater (less) than predicted by the traditional model, if marginal

tax rates are increasing (decreasing). Some intuitive justifica—

tion for this result is also offered in section 4.4.

Finally, a more general, L degree Taylor Expansion, with

a more general three parameter utility function is assumed in

section 4.5. It is concluded that as long as portfolio and security

returns possess Multivariate Normal probability distributions, the
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tax function is irrelevant to investor behavior, even under these

broader assumptions.

Thus, in general, if the tax function is linear, or if

the distribution of security returns is Multivariate Normal, then

taxes are irrelevant to the investor's behavior. However, if

taxes are non—linear and security deistributions are not Normal,

then the tax function is relevant to the investor's portfolio

decision.

Chapter 5 derives the market equilibrium conditions, assuming

all tax functions may be represented by a two degree Taylor Expansion,

and all investors possess quadratic utility functions, with the

distribution of security returns unspecified. The resultant equation,

_ _ “(121,134)

Ri'RN+1=[(RM’ RN+1)o HA1] +B1 ’ 3'2
(RM’RM)

where

fiM — RN+1 is the expected risk premium of the "market protfolio"

0(R ) is the covariance between i the return of asset i and

i’RM

the market portfolio

0(RM’RM) is the variance of the market portfolio.

Analogous, to equation 3.1, terms in the first bracket on the right

hand side is equivalent to the risk premium predicted by the con-

ventional model. However, A and B are complicated weighted sums

of individual investor portfolio and security parameters as well

as parameters of individual investor tax functions. It would seem
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difficult to derive further generalization from these complicated

expressions.

This theoretical analysis is, of course, subject to empirical

verification. Even if it is assumed that investors act in accordance

with the assumptions of the model, the results do not indicate

whether the tax parameters and the divergence from normality of the

portfolio distributions are sufficiently important to have a signif-

icant effect on investor behavior.

Unfortunately, attempts at actual verification would likely

entail insurmountable data problems. One of the convenient feature

of the traditional model is that, by virtue of Tobin's separation

theorem, all investors hold the market portfolio. Thus, all moments

are in terms of readily observable market parameters. It has

already been established, Tobin's separation theorem does not

hold when the tax function is a relevant parameter. Thus,

investors will choose different portfolios, and the parameters of

the joint protfolio and security moments as well as the tax function

will in general be specific to each investor. Thus, empirical

verification requires not only the knowledge of the tax parameters

for each investor, it also requires knowledge of each investor's

Specific portfolio.

However review of the empirical literature indicates that

the traditional Capital Asset Pricing Model seems to be inconsistent

with empirical findings.3 Although some theoretical and econometric

justification for these results have been offered, the consensus of

most investigators is that, "the currently available empirical
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evidence seems to indicate that the simple version of the asset

pricing model,... does not provide an adequate description of the

4 .
structure of security returns." This analysis offers one poss1ble

theoretical explanation for these disturbing results.
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“ _ T ”v _ -l =

E[(Ri Ri)(gk gk)] 110011 Aol

O(Rkt’Riu-gp) = °<Rk.Ri> ‘ G(TR/3.13.1) ’ “(Rk.(fiié;> + °<ik/vk,(fiié;>)

~r —r ~ - %k Tk ~ -

= (l-XN+1,k)E[(Rk-Rk)(Ri-Ri)] + E[(v;'-'V;)(Ri - Ri)]

”r ”r ~ *1 , ~ ~v

- (1—xN+1.k)E[(Rk - Rk)(Rigk - E[Rigk])]

Tk Tk

+ ____ ~I _ ~ ~!

E[(V v )(Rigk E[Rigk])]

k k

But,

= ‘ ~r_-r ~ — ”y _ y

”1011 h[( Rk)(R1 R )(gk 8k)]

= E[<Rr - 'r><R ”' - R é' - R i' + fi §'>1
k igk 1 k i k i k

~r _ —r ~ ~, _- ~r_—r ~f _—, ~r_-r ~ _-

E[(Rk Rk)Rigk] RiE[(Rk Rk)gk] ng[(Rk Rk)(Ri Ri)]

= ”r _ _r ”v _ ~ ”1 _ — ”r _ ”r "v _ ’v

E[(Rk -Rk)(Rigk E[Rigk])] RiEHRk Rk)(gk gkll

- -, ~r _ -r ~ ’ —

ngHRk R k)(Ri Ri)] .

- E[(Rr — fir)(fi g' — E[R g'])] = u + g'u + R u .
" k k i k i k 1011 k 1010 i 1001

Similarly,
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U0111 E[(V V )(Ri R1)(gk gk)]

k k

T T T T
k k ~ ~ ~ ~ k k -

E[(- - -—)(R.g' - E[R g'])] - R.E[(—- ---)(g' - g')]
Vk VR 1 k 1 k 1 Vk Vk k k

T T
k k ~

- g' E[(—- --—-)(R - R.)].
k Vk Vk 1

so that

Tk Tk

___fi (1" '1 _ .

E[(vkvk v:)(%qk E[R§“1)1 u0111 + gkuo110 + R1°0101

Thus,

~ ... = _ _ _ _ +

O(Rkt’Riu—gp) (1 XN+1,k'“1010 u0110 (l XN+1,k)["1011

“v v

gk“1010 + Riulool] + u0111 + gkuouo + R£10101

= (1."

gk)[(l‘xN+1,k’“1010‘“0110 )1+R1(uo1o1 (1XN+1 k) U1001

+ (”0111 ’ (l'XN+1 '“1011'

~ ' _

-' Tk Tk

0 ~ t.~. = E[(E -- )(é'-8')]-E[C—-- V)(S' 8')]
(RR gk) k Rk k k Vk Vk k 8k

1 ’ XN+l,k>ulOOl ’ u0101

0

ll

~r _ —r 1, _ -, =

E[(Rk Rk)(gk gk)] u1001
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O - O - O

r

(Rt Rk<1-g'>) (Rk,Rk> (RR/vk,R;> (Rk.<R;é;))

+ O r

'” " “0

~

Tk

(lxN+1mI<Ri-R@21+RH:-—?m. -§H

F
F
”

(l-XN+1,k)E[(§: - Rk><ngk - E[RER;1)1

Rk Tk

+E[(——-—-—)(R;g'- E[R 1)] .

Vk Vk kgk
kgk

But,

”r ' “v 'v

UZOOl = E[(Rk ' Rk) (gk - gk)]

~r _ -r r~, _ _ -r-, - —,

E[(Rk Rk)(ngk ngk ngk + ngk)]

_ ~r ~r , r ~r -r ~, -, r —r 2

- E[(Rk — Rk)ngkl - Rk E[(Rk - Rk)gk] - ng[(Rk Rk) 1

+r Rr~g, _ 3 "v

E[(Rk ‘ Rk)(Rkgk ' E[ngk])] u2001 + gkuzooo + RkuIOOl '

Similarly

T Ffk T -k ~r~

“1101 = E[(_; --——><Rk - Rk><gk - 8k)1 = E[(_;f V*°‘ngk
k

Tk Tk Tk Tk ~r -r

‘- E[ngklfl - R:E[(—- - -—)(gk-gk)] - ng[(—-—- THRk - Rk)],

Vk Vk Vk k



147

so that

T T

_k.___.12 “12., __ ~r~v ... 'v ”r

E[(vk Vk)(ngk E[ngk])] ' u1101 + gkUIOlO + Rk“0101 '

Thus,

0 ...

(Rt, R:(1-g‘k)>

_ _ _ _ ’v

(1 XN+1,k)”2000 u1100 (1 XN+l,k)[u2001 + gk“2000 + Rk“1001]

-' ..r = _—' _' ...

+ u1101 + 8131100 + Rk”0101 (l gk)[(1 XN+1J§)UZOOO “1100]

r

+ Rkak)101’(1’XN+1J;)”1001) + (u1101_(1-XN+LJ()U2001)' A‘“

°(~, ~r ’ E[(Rk “ Rk)(gk ‘ 8k)] ’ u1001
gk9R-k)
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Let

M = (l - E[éil)

i

N " u0011

1
~' ‘P = (”0111 ‘ (1 ' XN+l,k)u1011) + (l‘Elgkl)((l’xN+1,k’°1010'“0110)

Q=((l- )
XN+1,k)u1001 ’ u0101

k

N ’ u1001

k
I

P = (”1101 ' (1'XN+1,k)”2001) + (l-E[gk])((l-XN+ng)u2000—u1100)

, 3.16 can be written as,

i
_ -r R

(R1 ' RN+1)M ' N = ERR ’ RN+1)M - N

i

P ' (fii ' RN+1)Q - (i; ' RN+1)Q

B.l
  

Cross multiply:

- i k -r

[(Ri - RN+1)M- N ][P - (Rk - RN+1)Q]

—r k i -
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-'- k ik - _r _r i_

(R1 - RN+1)MP - N P - (Ri - RN+1)(Rk - RN+1)MQ + (Rk - RN+1)QN -

-r i k k -r — - k

(Rk ' RNH)MP " N P ' (R1 ' RN+1)(Ri _ RN+1)MQ + (R1 - IH\I+1)QN '

Solve for fi. - R :

1 N+1

  

- k k —r i i k 11

(R1 - RN+1)D4P - QN ] = (Rk — RN+1)D4P - QN ] - [N Pi - h Pk]

. . . . k

- - [MPl - QNl] [NkPl - NlP ]
x R. - = (Rr - R ) - . B.2

1 RN+1 k N+1 pqpk _ QNk] [Mpk _ QNk]

Define:

_ i i _ ~,

A ’ P1P ' QN ] ‘ [l ' E[gk]“(”0111 ' (l -){N+Lk;)u1011)

+ (1 - E[gé])((l — XN+Lkz)Ulolo‘“0110)]'[(1’XN+Lk1)ulool-u01011u0011

= [1 ’ E[gL]][(”0111‘(1‘XN+Lk;)uloll) + (1’E[gi])((1'xu+1,kyulolo'“0110)]

' [(I‘XN+1,k?“1001“0011 ’ u0110“0011]'

[PPk - QNk]U
) II

= [1‘E[gil][(U1101‘(1‘XN+1,k)”2001) + (1'E[§fi])((l‘xN+1,k)"2000

=(1—E[g )
u1100)1*(l‘XNH,k)“1001'“0101)”1001 £1)[(U1101'(1‘XN+1,k)“2001

, 2

+ (l’Engl)((1‘XN+1,k)”2000'“1100)]'[(l’XN+1,k)“1001‘“0101“1001]°
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[NkP1 - NlPk]

[( )+(1-E[é
— — ' — .-

u1001 u0111 (1 xN+l,k)ulOll k])((l XN+1,k)“1010 “0110)]

’ “0011[(”1101’(1‘XN+1,k)”2001)+(1’E[gfi])((1’XN+1,k)“2000'“1100)]

— — — ~' — -
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1
1 - . + . + .

A = , where 0,1

1
1 - [Y + 6 + z ]

u0110

Y1 = u

1010

_ -1 “1011(1‘XN+1J<)'“0111

51 ‘ (l-E[~'])( u > c.2

gk 1010

2 = '1 (u1001u9311(l-XNrL3<)_30101”0011y

l <1-E[g;1>‘ ”1010

111100

Yk = u

2000

6 _ -l (”2001(l-XN+L1<)'L’1101)3

" _w ~v

k 1 E[g k] u2000 '

2

z _ -1 ,u1001(1'XN+1J&)‘“0101“1001)_ \ .

k (l—Elgfcl)2 u2000

Define the correlation coefficient between any two variables as

 

_ Cov(m,n)

pm,n ‘ 2 2 1/2 C°3
(o o )
m n
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where

m,n = 1,2,3,4 and

1 represents RR

2 represents 1 /V

3 represents fii

4 represents gk .

In addition since the random variables Tk and éi are functionally

related to fir the following moments can be approximated by:

 

k,

u ~ 3(Tk/Vk) u

palam,0 ~ 8R: p+1’09m,0 ’

8(ik/Vk) ~r —r

where -———-———— represents the derivative evaluated at R = Rk.
-r

R
ER

k

Thus,

~ Y

u ~ (EFTk/Vk)z:_k) u

p,l,m,0 ~ 8 —r (p+l,0,m,0)

& 3R

k

= ' —

g -r ” XN+1,k)u(p+l,O,m,0) °
(Rk)

Similarly,

up,0,m,1 “ g(§r)vk(l-XN+1J£)up+l,0,m,0’

k

and in general,

.. t q n n _ q+n

u(p.q,m.n) “ (g -r ) (g -r)vk) (l XN+1,k) up+q+n,o,m,o
(Rk) (Rk

where the subscript fi: represents the derivative evaluated at
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Specifically,

_ 1/2 s ,

u1100 012(U2000”0200) ~ plZg(fir)(l-XN+l,k)u2000

k

u = o (u u )l/2
1010 13 2000 0020

u = o (u u )1/2 ” D g' V (l- )u
1001 14 2000 0002 ~ 14 (fir) k XN+1,k 2000

k

1/2
u = p (u u ) I p g'_ _ l/
0110 23 0200 0020 23 (R:)(1 XN+l,k)(u2000u0020)

u = p (u u )l/2 ” p g' g" V (l— )2u

0101 24 0200 0002 ~ 24 -r —r k XN+l,k 2000
(Rk) (Rk)

u = p (u u )l/2 ” p g" V (1- )(u u )

0011 34 0020 0002 ~ 34 (fir) k XN+1,k 2000 0020

k
I» ' -

u1110 * g —r (1 XN+1,k)u2010
(Rk)

u ” g' g" V (1- )2u
1101 ~ -r -r k XN+l,k 3000

(R ) (R )
k k

u1011 ~ g —r Vk(l-XN+l,k)2010
(Rk)

u ” ' " V (l-X )2

0111 ~ g -r g —r k N+l,k u2010
(R ) (R )

k k

2 2~ ' _-

u0200 ~ (g-r) (1 XN+1,k) u2000
R
k

2 n 2 2 2

u0002 ~ (g—r) Vk(l‘XN+1,k) u2000

Rk

~ ' -

u2010 ~ g —r (l XN+l,k)u3OOO
(R18

~ n _

u2001 ~ g —r (l XN+l,k)Vku3000
(Rk)

Substituting 0.3 and C.4 into C.2 yields:

2

1/2
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Substituting C.5 into C.l, omitting the subscripts i:, k, and

(N+l,k) for convenience, yields:

*

A := 1 - c 6

_ v n r H r 2 _ 1

p23 . (1 g )g V u2010 034 (g V ) u2000(914 g “24]
 
 

 

1/2 ‘
0 v Q ~' 2
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Iur ,,r2 _1
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' r

where V = Vk(1-X ), the total dollar amount of capital in—
N+1,k

vactor k holds in risky assets.

Similarly,

( )- < <1-xN+1‘ )u )
. _ u1001 “0111'(1'XN:131)“1011 u0011 “1101' k, 2001
 a

' ~ I 2 -
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-' - - __ .—

(l-Elgkl)[u1001((1-XN+11k)u1010 uOIJO) “0011((1 “N+1-k?“2ooo u1100>1
+
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2 -

(l'Elgk’)[“1101‘(1'xu+1,k)“2001 + (1'slgkl)((1“xu+1,k’“2000’"1100)]'[(1'xu+l,k)"1001 u0101“1001l

Again making the proper substitutions, the numerator of the first

term in C.7 can be written as:

Hr vnr __nr _

p14g V ”‘2000(g g V ”2010(1 X) g V ”2010(1 X))

_ n r 1/2 1 H r n r _
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014 g g 2000“2010 °

_. n 2 . r' 2 1412 ‘_ ._
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The numerator of the second term reduces to

1/2 1/2_4 «.1 Hr _ _ ' _

(l h[gk])[914g V “2000“1 X)"13(“2000”‘0020) 023g (1 X)(“2000“0020)

IL/Mr 2 _ _ ' _

p34g V (“2000”0020) ((1 X)“2000 012g (1 X”2000”
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/2(u )1/2(ol3-g'023)
3

(1-E[2L])[olag"vr(“2000) 0020

3’ )1/2(l—olzg')](l-X)
" r 2

V (u (“0020
)

’ p34g 2000

3’ )1/21<1-E[g'1)(1-X).n r 2

= [‘314("13”“‘5'923)"):34u‘g'942)1[g V (“2000) (“0020

0.9

The denominator becomes:

~' I it r " r

(l—E[g ])[(g g V ”3000(1'X) - g V u3000(l-X)) +

2

2000
<1-E1g'1)(u2000(1-X)-olzg'u2000(1-X)>1-[(1—x>(014g"vr>zu

__ tHr _ ..r

024g 8 V “2000(1 X>p14g V “2000]

= —(1—E[g'])[g"(l-g')Vru3OOO—(l-E[§'])(l-012g')u20001(1-X)

-[(g")2(Vr)2014(014-024g')u:000](l-x) . 0.10

Thus,

2 r 2 1/2

(3") (1’3')(V ) [934(“2000“0020) “3000—914°2000“2010]

I(8")2(Vr)2014(014-0248')U§000+(1-E[g'l)(g"(l-g')vru3OOO-(1
-E[§'])(l-nlzg'luzoool

3/
0 ' v n r 2 1/2 _ c

 

 

(g")2<v‘)2p14<p14-ozag')u§000+(1-E[g'1)(g"(l-g')v‘u3OOO-<1—EI§'1)<1—p
lzg'>u2000



 

APPENDIX D

 

 

~t
BEle]

3 — l r

= --Ui --—-g - -(l/2)(l- )g"V u ]
axik axik k vk (yk) XN+1,k k k 2000

- fi _ l.3§£22__(1/2)(1_ )Vr §§:.u -(l/2)(l- )Vr "_iflgggg

“ i v axi xN+1 axi 2000 xN+1 g axi

8g "' "' n -

= ‘ _ l -11). .31. _ _ 1‘ EL 2};

R1 v a? axi (1/2)(l XN+1)V ay axi u2000

r 3E[§: - §:)2]

- (1/2)(l-XN+1)V g" 3X

1

_ — v- r H! -

’ R1 ’ 3 R1 ' (1/2)(1“XN+1)V g VR1U2000

- (1/2)(1-xN+l>vrg"-2E[(R§ - §§)(Ri _ 11)]

— - ' r 2 "I r n

- Ri(1-g - (1/2)(V ) g UZOOO) - V g u1010 D.l

~r zjxjkfij

Since Rk — (l'XN+1 k) _ 1

80

~t ~t

£535)- = -8-——E{[( -- )- '(l- )(~r-§r)-(l/2)(l- N1. +
axik axik Rk Rk gk xN+1,k Rk k XN+1,k k

H ~r -r 2 2

gk[(Rk — Rk) _ U2000]] }
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=2E{[(R-R)-g'(l-XN+1)(Rr-Rr)-(1/2)(l-XN+1)Vrg"[(Rr—Rr)2—u2000]] +

[(Ri-fii)-g"vfii(1-XN+1)(Rt-fib-g'(Ki-fig-(i/z)<1—xN+l)vrg"'vfii +

[<Rr-fir>2-u20001-Vrg"1(Rt-fir)(Ri-fii)-E[(Rr-fir>(Ki-ii)11}

= 2m[(1-xN+l)(RI-firm-g'ru/z)(1—xN+l)vrg"<Rr-fir)2

+ (1/2)(1-XN+1)Vrg"u2000]x[(Ri-Ri)(1—g')—Rig"Vr(Rr-Rr)

_ rzn'r—rz " r2"!

-(1/2)R1(V ) g (R -R ) +(1/2)Ri(V ) g u2000

_ r " r_—r _— r n
V g (R R )(R1 Ri) + V g u1010]} D.2

Carrying out the multiplication in D.2 yields the sum of the

following terms with their equivalents on the right hand side:

Ei[<1-xN+1)<Rr-fir><1-g'>1[<Ri-fii><1—g'>1} = <1—xN+l>(l-g'>2uloio

at[<1—xN+l><Rr-ir>(1-g'>1{-fiig"vr<Rr-fir)1}= -§ig"(1-g')vr<1-xN+l>u2000

Bi[<1-xN+l><Rr—fir)<1-g'>1[-(1/2)fii(vr)2g"'(Rt—fir)21}

= -(1/2)fiig"'(1—g‘)<vr)2(1-x§+l>u3000

E{[<1-xN+1)<Rr-fir)<1-g')1[<1/2>§i<vr>zg"'u20001}

= -(1/2>§ig"'<1-g')(v‘)2(1-XN+1)u1000u2000 = o

E1[(1-xN+l><Rr-fir><1-g'>1{-v‘g"<Rr-fir>(Ri-fii>1}

__n__vr_

’ g (1 g )V (1 XN+1)”2010
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£1[<1—xN+l><Rr-fir)<1—g'>1[vrg"u10101}

n r =

= g (l‘g')V (1"XN+1)“1000“1010 O

E{[-<1/2><1-xN+1)vrg"<Rr-Rr)21[(Ri-fii>(1-g'>1}

= —(1/2)g"(1-g'>Vr(1‘XN+1)”2010

Bi{-(l/z)<1-xN+l)vrg"<Rr—fir>21{—fiig"vr<Rr—fir)1}

_ H 2 r 2= (1/2)Ri(g ) (V ) (l’XN+1)“3000

E{[-<1/2><1—xN+l>vrg"(Rr-§r>21[-<1/2)fii(v‘)2g"'(Rr-fir)21}

= (1/4>§ig"g"'(vr>3<1-x >
N+1 u4000

4 r H r -r 2 - r 2 ".

L{[-<1/2><1—XN+1)V g (R -R ) ][(1/2)R1(V ) g uzoool}

_
- "HI

r32_ _(1/4)Rig g (1-XN+1)(V ) u2000

E{[-(l/2)(1-XN+1)Vrg"(Rr-Rr)2][-Vrg"(Rr—Rr)(Ri-Ri)]}

= (1/2)(g")2(Vr)2(1‘XN+1)“3010

\

E{[-<1/2>(1—xN+1>vrg"<Rr-fir>21[vrg"u10101}

= _(1/2)(g")2(Vr)2(1-XN+1)“2000u1010

E{[<1/2)<1-xN+1>vrg“u 1[<Ri-fii)<1-g')1}
2000

= <1/2)<1-g'>g"vr<1-XN+1) 0
u2000“0010 =

E{[(1/2)(l-XN+1)Vrg"u2000]{-Rig"Vr(Rr-Rr)]}

_ H 2 r 2
—= ‘(1/2)Ri(g ) (v ) (l-XN+1)“2000“1000 ’ O
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E{[(1/2)(l-XN+1)Vrg"u20001{—(1/2)Ri(Vr)2g"'(Rr-Rr)2]}

-
- 'I "V r 3

2
_ -(1/4)Rig g (V > (1'XN+1)“2000

E{[(1/2><1-xN+1)vrg"u 11(1/2>ii(v‘>2g"'u 1
2000 2000]

2_ " n H! r 3

- (1/4)R18 8 (V ) (l‘XN+1)“2000

E{[(1/2)(l-XN+1)Vrg"u20001[-Vrg"(Rr-Rr)(Ri-Ri)]}

= -(1/2)(g")2(Vr)2(1‘XN+1)“2000”1010

E{[(1/2)(1"XN+1)Vrguuzoool[Vrgnuiomn

" 2 r 2

= (1/2)(8 ) (V ) (l'XN+1)“2000“1010

Substituting these expressions into D.2

30

(Vk’ik) 2 - r
__ = _ _ v _ n _ c

axi 2(1 XN+1) {(1 g ) u1010 Rig (1 g )V u2000

-(l/2)R g"'(l-g')(Vr)2u -g"(l-g')Vru -(l/2)g"(1-g')Vru
i 3000 . » 2010 2010

r 3 2

+(1/2>§i<g">2(vr)2u3000+(1/4>§ig"g"'(vr>3u4000-<1/4>§18"8"'(V ) “2000

+(l/2)(g")2(Vr)2u3010-(1/2)(g")2(Vr)2u2000u1010-(1/4)fiig"g"'(Vr)3u§000

2
- n H! I" 3

+(1/4)Rig g (V ) 112000

N 2 r 2 H 2 r 2

-(1/2)(8 ) (V ) “2000u1010 + (l/2)(g ) (V ) u2000u1010} .

Collecting terms and rearranging slightly:
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. 2 - n v r " ' r2(1—XN+1){(1-g ) ulOlO-Rig (l—g )v uZOOO-(3/2)g (l-g )V u2010

-<1/2>§i(vr)2[g"'<1—g')—<g")21u +(1/4>§ig"g"'(v¥>3[u _u2 ]

3000 4000 2000

+ <1/2)<g")2<vr>2[u 1}
3010 ‘ u2000“1010

= 2(1-xN+1>{<1—g‘)ZulOlO-(3/2)g"<1-g'>vru +(1/2><g")2<vr)2{u
2010 3010'

”2000U1010} - 2(l-XN+1)Ri{g"(l-s')(Vr)u2000+(1/2)(Vr)2[g"'(l-g')

2

4000‘“2000]} D'3

H 2 n "I r 3

-<g > 1u3000 (1/4)g g (v > [u

0 0 th 0

and, spec1f1cally, for the N+1 equation,

~t
3E[Rk]

axN+1

 = RN+l(l-g'-(l/2)(Vr)2g"'u ) - 0.4
2000

ao(~t fit)

Rk’ k

axN+1

 
u ' r r 2 u: v _

= 2(1-XN+1){-RN+1g <1-e 1v "zooo‘(1/2)RN+1(V > [g (l-g )

H 2 n H! r 3 2

(g ) ]“3000 + (1/4)RN+lg g (V ) [“4000'“2000]}

= ”2(1’XN+1)RN+1{g"(1-8')Vr“2000+(1/2)(Vr)2[g"(1-8')‘(8")2]“3000

2

4000'“2000]} 0.5
-(1/4>g"g"'<vr)3[u



APPENDIX E

 

i i

* _ M1P1 ‘ Q1N1
A — E.1
1 M Pk _ Nk

1 1 Q1 1

= _Ov_ 1'2"!
M l o (1/2)(V ) g UZOOO

i _ r n

N ' V g u1010

’
0 ll1 <1—g'>2u1010 — (3/2>g"<1-g'>vru2010 + (1/2>(g")2(vr>2[u3010 -

“2000“10101

- g"(l-g')Vru + (1/2)(Vr)2[g"'(l-g')-(g")2]uO

H

I

2000 3000

2n m r 3

- (1/4>g g (v ) [u4000 - “2000],

so that

MlPi = [l - g' - (1/2)(Vr)2g"'u ][(1-g')2u —(3/2)g"(l-g') *
2000 1010

r H 2 r 2 _

V u2010 + (1/2)(g ) (V ) [93610 “2000“101011

3
ulOlO-(3/2)g"(l-g')2Vru= (1—g') + <1/2)(g")2(1-g')<v‘)2[u3010 -

2010

1 - (1/2>g"'(1—g')2<v‘)2u
u2000“1010 1010“2000

"' n ' r 3 H! n 2 r 4 _
+ (3/4)g g (l-g )(V ) u2000u2010 - (1/4)8 (8 ) (V ) [“3010u2000

2

”zooou1o101’ and
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oiN} = [g“(l—g'>vru2000 + <1/2)<vr>2[g"'<1—g'>-<g">21u3000

2 1 r n

- v
4000 “2000] I 1

- (1/4)g"g"'<vr>3[u g um10

= (g")2(l-g')(Vr)2u + (1/2)(Vr)3[g"'g"(1-g')-(g")3) *
1010“2000

H 2 H ' r 4 _ 2

u3000“1010 ‘ (1/4)(g ) (g )(V ) [“400091010 “2000“1010]’

so that,

M Pi — Q Ni = (l-g')3u - (3/2)g"(1-g')2Vru
1 1 1 1 1010 2010

+ <1/2)(g">2<1-g')<vr)21u -<1/2>g"'(1-g')2<vr>2 *
3010'“2000“1010]

+ (3/4)g"'g"(1-g')(Vr)3u
u1010U2000 2000“2010

H. H 2 r 4 _ 2

' (1’4)g (g ) (V ) [“3010“2000 “2000“1010]

II 2 C r 2 r 3 "I H ' H 3

- (g ) (l-g )(V ) “1010”2000 — (1/2)(V ) [g g (l-g )-(g ) ] *

2
H 2 H. r 4 _

u3000“1010 + (1/4)(g ) (g )(V ) [“4000“1010 “2000“1010]

 

 

  

 

_ , 3 gg____ r u2010 gg___2 r 2 33910 _
- (l-g ) 01010{1—(3/2)(1_g.) V “1010 + (1/2)(l—g') (V ) [01010 “2000]

I ' u U_ n. r 2 s"' g" r 3 2000 2010

(1/2)(1-g')(V ) u2000 + (3’4)(1-g') (l-g')(v ) u1010

g"' g" 2 r 4 u3010“2000 _ 2 _ g" 2 r 2
- (1/4)(1_g.)(l_g.) (v ) I “1010 “2000] ((l-g')) (V ) u2000

— r 3 fin. g" - " 3

(1/2)(v ) [(1-g') (1_g.) (§:§T) lu3000 +

n 2 g"! r A - 2

+ (1/4)(l_gI) (l-g')(v ) [U4000 U2000]} o B.2
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Collecting terms,

I. u

= (1—gt>3u1010{1—(3/2)(§:—79v’-;39l9
1010

r 2 u3010 '

+ (1/2)(;%) 2(V ) [r u —2u2000]

u1010 2000

- _sIL__. r 2 g_____hg:_____ r 3 H20002010
(1/2)(l-g')(v ) u2000+<3/4)(1__g .) (1__g..)(v > [ 1010 -<2/3)u 

3000]

g') 3“3000}

  -(1/a><§:;.)(5; .) 2n<v‘>“[301°2ODD-1140001 + (1/2>(v) H<
u1010

3
= __ v

(1 g ) u1010 x

u u U u

{l’a1 2010 + 8 [ 3010 3U ] + a 2000 2010

u 1010

  

 

- “Y u I -(2/3)u ]
1010 1 “1010 2000 1 2000 1 3000

u3010“2000
[ - u

l “1010 4000

 

1 + E1“3000 ’

r

<3/21§§—r vwhere 0

I
D ll

" 2 r 2

<1/2)<§:§T> (v >

"I r 2

<1/2>c§:gr)<v )

" r 3

(V )0
‘
) I

 

8

1 ‘ (3’4’<1-g') <1--g '>

1 (1/4)<5fl.)<g.) 2(v‘)4 

m

ll (1/2)<vr)3c§§gr)3 3.3

*

Similarly, the denominator of Al is,
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k k _ , 3

M1P1 ’ Q1N1 ' (1 g ) u2000 x

u u

3000 4000
{l - a +8 [-———-- 3n I- ‘y u + 6 [(l/3)u ]

l u2000 l “2000 2000 l 2000 l 3000

z1[“4000 ' “4000] + g1“3000

3 u3000 u4000
= (l-g‘) u {l—a —————-+ B [-——---3u ]"Y u +((l/3)6

2000 l u2000 l u2000 2000 1 2000 l

+ gl)u3000} B.4

(for economy of notation, u' is substituted for u ),
np n0po

Thus

1 i

A* = M1P1 ' Q1N1

l k k

M1P1 ' Q1N1

u2 U311

5

u' 1 [a“11°20}ET_+[B1z1“20}57‘+fY1381]“20+[51(2/3)1]“30+21“40
_ 11 11 11

- ”'0 { u3o “30
2 1 +l-y -3B lu' -[a1-<(1/3)a1+g1)u 1— + s -r-

l l 20 20u l u

u20 20
B.4

NkPi- NiPk

* l 1M1l

B E.5

1= Pk _ Q1Nk

MP1 1 l ’

the term Nk P1 N1 Pk M Q ive b e uation 4 9
S l! 19 1’ 19 1’ l g n y q ° '

=[Vrg"u'O][(1--g ') 2u11—(3/2)g"(1-g')vru21+

2 ' ' u'

<21/2><g")2<vr) [u31—2u20u111

=Vr(g")(1-g') 2(u20u11)-(3/2)(g") 2(l-g')(Vr)2u20u21

n . 2 . 1

+ (1/2)(g ) 3r(V)3[“20u'31'(u20) u11] E 6
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nip? = 1vrg"u111[<1-g >2u20-(3/2>g"<1--g>vu3O+ (1/2><g")2<v‘>2

. v 2

[“40 ' (“20) 1

= (l-g' ) 2rg"VU11u20 -(3/2)(g") 2(1--g ')(Vr)2u11u30

+ (1/2>(g")3(vr>3[u;0 - <u§0>21u11 B.

so that,

Nk i i k

3* = N1P1 N1P1 =

1 Pk _ Nk

MP1 1 Q1 1

_ _ , 3 , r213él " 3 r

- (1 g ) u11u201v1(L'W) <3/2)<-5——-)2 (v> U11 + (1/2)c§:g7) v

“31 . " r " 2 r 2 U30
[U11 uZOJ-(§:ET)V + <3/2)c§:§7> (v > “20

_ E:__ 3 r 3._39 _ _ '
(1/2)(1-g.) (V ) [L120 U'0]}{[1 + [Y1 3811u20

“Z0 3 -1
- [a -((1/3)61+ £1)U2#]u10'_T_](1-8') U' 1 }

l 1120+ 8l u20 20

u3o ué1u31 “'
(3B1[—. - ‘7—J+ £1[_. ‘7—J)U'

é u20 u11 u11 u20 11

u' u'

[1 +1-y1-3s11u50-[a1—(<1/3>61+a1>u§0 539-+ 81-;$91
20 20

U' u. u! u.

U11["381 3%1'+ F’13:?i+ 381'E%Q" g1.5$9
= 11 11 20 20

1 +{-y1-3B11u§0 - [aM<<1/3>5 + 51m20 3°++31-;$9
u20 20





APPENDIX F

 

k k k

W

= gig-E[(Rk—Rk)3-(Tk/v -T /v )3

 

 

 

 

  

~ - 2 ~ — ~ - 2
+ 3(Tk/Vk-Tk/Vk) (Rk—Rk)-3(Rk-Rk) (Tk/Vk-Tk/Vk)]

~ _ 2 ~ _ (TR—Tk)2 a<ik_ik)

= E[3(Rk’Rk) (Ri-Ri)—3 3 ax
v i
k

T -Tk T— 8(T -Tk)
kv kTk k

+3< “>ULR)+6mR-gxz)ax
Vk Vk 1

3(RR-RR)2 3(Tk-Tk) ~ _ ~ _ (TR-Tk)

' ax. ’ 6(RR’RR)(R —Ri) v ]
Vk 1 k

3(T -T ) 3T T

k k .__E_§x_. k 21;. ~. v

ax ay ax [a 3x1] ngkRi E[gkRin]

= kagLRl - “Rm ..

Therefore,

WRERi =3{<1 )2 -E[(Tk-Tk >2<“'R —E[“'R 1) + u
axi ’XN+1 u2010 k 8k 1 gk 1 0210

TH—T

+ 2E[(Rk-Rk)(—f)(gkR.-E[gkRi])1-E[(Rk-Rk) 2(gkR1-ElgkRi 1)]

Vk

’2(1'XN+1)”1110}' F.l
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But,

T —E

k k 2 *1” ~v~ _

E[( k ) (gkRi - E(gkRi))] -

T -T

k k 2 ”v“ _ ”v“ _-I— -I- -

E[( Vk ) (gkRi E(gkRi) gkRi + gkRi)] —

T -T T -Tk
kV k 2 ~ kv

E[( ) (g'R -g 'R .)l -E[( k) 2]E [gkR.-g'R1]
k 1 k1 k1

Vk Vk

T —T
= k k 2 , _-,- _

E[( vk ) (gkRi gkRi)] uozoouoon ' F'2

Also,

Tk-k-T Tk—Tkz
~_-

' =
0.."

0211 E[(Ri Ri)( Vk k) 2(gk-gk)1 E[( k ) 2(Rigk-gkRi Ri gk+Ri gk)]

T -T

- k k\2 ~l~ _‘v- _ ,—W_'I~ _‘ ."I

_ E[( Vk , ((gkRi gkRi)+2Ri 3k gkRi R1 gk)l

therefore

Tk—T i‘k—T2_~_
= _ ' .—

“0211 E[(——-—Vk) %( igkRi)]--E[( k) (gk(Ri Ri)]

Vk Vk

T —T

_ k 2‘ ”v _ "v

E[( ) Ri(gk gk) . . .

k

So that,

TkvT _ _
__ '

E[(k ) (g3igkRi)]= u0211 + g1610210 + RiUOZOl '

Substituting into F.2,
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F.3

Tk-Tk _

+Ri“0201’“0200“0011

 

 

2".” _ ”g” _ -'

E[(kvkk) (gkRi E<gkRk)] ‘ u0211+gku0210

Similarly,

T —T

E[(R -R >( k k)(g'R -E[g' R. 1)1=
k k vk kR1k1

Rk-Tk

 

(1XN+1)E[(RkRk)(kvkRIRRRT'E(RRRT)'gRRT+gRRi)1

k-kT

 

“TH-'1'"

(l-XN+1){E[(RL-RH)(VkW)(R.-gLR.R)]-—HKRL-RL)(2

 

 

 

T -T

_ ~r —r k ~L~ -.-

' (l’xN+1){E[(Rk’Rk)( )(gkRi'gkRi)] u1100u0011} F'4

Also,

T —T

u1111 = E[(RL—RL)( L k)(Ri-R.1)(gL-gL)]

k

= E[(RL-'RL)<————;fk?)(R1gL-§LRi-RléL + RiéL)1

(’1': i

= E[(RL—L—R> k k)<(RiéL-R1§L>+2RigL-TLRi-RigL>1

therefore

"TLk-T

”1111-E[(RL--RrLTk)(Vk-——)(RigL-RigLH

~kTk ~M'T

- gL E[(RL-RL)(————————>(R.-R.)1—R.EI<RL—RL)<El‘V——Vkk><gL-ELM.

So that,
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~

 

H—T

E“RRRRHERLWLIC)(R1gR'R1gR)l = u1111 R1u1101 + gRu1110

Substituting F.5 into F.4,

T _-

R1<R R )c k Tk)(é'RflE[g'R 111
R vk R R 1

= — - -' —

(l xN+1){“1111 + R1°1101 + gR”1110 “1100“0011} F‘6

Finally,

E[(RL-RL)2(gLR.-E1gLR.1)1

- _‘v- “v-

E[(RL-R) 2(gLRi-E[gLR1] RL 1 + gLRl)]

= <1—x >251<Rr-‘r)2<é'R -R1é'R l-é'R + é'R )1
N11 R RR R 1 R 1 R 1 R 1

= <1- )2{R<R‘-R‘>2<R'R -E1é'R 1>-R1<RL-Q) 21R1gR -g' .1
XN+1 ’k R R 1 R 1 R 1 RR1

= <1— >2{R<Rr-Rr)2(é'R —§'R )1 - u. u 1 F.7
XN+1 R R R 1 R 1 » 2000 0011 '.

But,

~r —r 2 ~ — ~, -, _ ~r -r 2 ~ -,

“2011 = E[(RL—RL) (Ri-Ri)(gL-gL)]—E[(RL-RL) (RigL-gLRi-R18L+RigL)l

_ ~r_—r 2 ”v” _‘c‘ - -c_‘v” _' ”v

' E[(Rk Rk) ((gkRi gkRi)+2Rigk gRR1 Rigk)]

F.5
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therefore

2
= ~r_‘r ~v~ _ “v-

u2011 E[(Rk Rk) (gkRi gkRi)]

-, ~r -r 2 ~ — — ~r -r 2 ~, -,

- ng[(Rk‘Rk) (Ri-Ri)]-RiE[(Rk-Rk) (gk-gk)]

So that,

Eu¥_§8%gfi_gm)1=u +§u +gu Ffi
k k k k 1 2011 i 2001 R 2010

Substituting F.8 into F.7 yields;

E[(fi -‘ >2<é'fi - E[é'R 1)] =
k Rk k i k i

(l- )2{u + fi u + g'u - u u } F.9

XN+1 2011 i 2001 R 2010 2000 0011 '

Substituting F.3, F.6 and F.9 into equation F.l yields:

~t - 3

8E(Rk - RE)

ax, =
l

 

+2(l-X
2 -, — '

3{(l-XN+1) u2010 (“0211+gkuoz10+Ri“0201'“0200“0011)+“0210 N+1)(“1111

2 - _
' _ _ _ '

+ R1°1101+gku1110 “1100“0011) (1 XN+l) (“2011+R1“2001+gk“2010

- _ _ , .1
”2000”0011) 2(1 XN+1)“1110} F 0

Equation F.10 may be rearranged slightly to
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3E[(§: - fii>31

3X.
1

 

3{(kill)(“0210’2(1‘XN+1”11110 + (l'XN+1)2“2010)

— 2

’Ri(”0201'2(1‘XN+1)“1101 + (l‘XN+1) “2001)
U

2

+ “0011((1‘XN+1) ”2000-2(1-XN+1)u1100 + “0200)

2

"(“0211'2(1‘XN+1)“1111+(1'XN+1) “2011)}
.11

 



APPENDIX G

Since security and portfolio returns possess joint normal

probability density functions,

 

u = (2r)!(u )r

2r,OOO r 2000

2 r!

22r+l,000 = O for all r > O

6.1

u = 2r+l)! u ( )r

2r+l,0,l,0 r,2r 1010 u2000

qu,0,l,O = O for all r_: O .

In addition it is assumed that

L R r 2
~ g(V) ~r -r2
T g - + z , (R - )
k (Yk) 2:1 2. k

L 2+1 r R

*v = v_ g (V ) ”f _ -r.2

gk 8(Yk) + 2:1 22 (RR Rk) ’ 6'2

l
'- _ . = .g<Yk), g(Yk) are the functions evaluated at Yk Yk’ g 18 the

REE-derivative of the tax function with respect to income evaluated

at Yk = Yk’ l = 1,2,...,L. For economy of notation,

~r '1: ~ -
0

“nm — E[(Rk — Rk)(Ri - Ri)]’ so that the mixed moments can

be derived by direct substitution of 6.2 and the use of 6.1 as follows:
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u2010 = “21 = 0

u3000 = “30 = 0

1k-T
_ ~ k 2

u0210 — E[(Ri - R.1)(k ) 1

Vk

~ - L r 2- 1 r r 2 2

= E[(R -R.)(g - -g - + Z g2(V ) ((R —R ) — u )) ]
1 1 (Yk) (Yk) £=1g10

L L 2 2' ‘
~ .. _l '_ +'

= E[(Ri—R.) z 2 1,2,, (vr)Q (vr)21r((R—Rr)2 2

2=1 2'=l ' '

~r —r 2 2

+ u£0u2.0-2(R -R ) u2.0)](l-XN+1)

L L 2 2'
+ '-2E +

= z 2 17%7—(Vr)2 i E[(R.—R)(Rr—R)2 Q

2=1 2'=1

+ (Ri—R1)-2(Rr-R )£(R -R ) I
“20“2 '0 r i i u2'0

2+ 2
L L g ”(v‘) “2(1'XN+1)

= Z 2 [u -2u u ]
2:1 2'=1 2!2'! 2+2',1 2,1 2'0

' = G.3
s1nce p01 0.

From 6.1, for 2 and 2' both even or both odd, p , = 0 and

2+2 ,1

pg 1“2'0 = 0. When 2p = 2, 2p' + l = 2', the right hand side of G.3

may be written as

2 (2 '+1r2( + 1g pg p ) p p ')-
Q Q'

2 z [

p=1 p'=0

(Vr ) (l—XN+1)2,2(p+p' )+1

(2p)!(2p' +1)! (p+p )!2p+p

 

P+P

1)U]U11

6.4

where Q is the largest integer such that 2Q §_L, and Q is the

largest integer such that 2Q' + 1‘: L. For 2p+l = 2, 2p' = 2',
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Q' Q [gngzp +1(v)2(P+P )1
= Z Z

(lXN+1) 2((2(p+p' )+1)!
 

P=O p'=1 (2P+1)!(2P')!

_2(29+1)!(2p')!

Thus,

2

u0210 ’ (l'XN+1) A1“11

+9

(2p+l)!(2p' )! U20 ]ull °

(P+p' )!2p+p

u0210 is equivalent to the sum of G.4 and 6.5, or

G.5

G.6

where A1 is the sum of the coefficients of “11 in 6.4 and 6.5.

N N

u1200 = .2 hjkuOZIO = (l’xN+1) ,2

N

= (1_XN+1)2 '-lhjkkAlO( ~r ~

J_1(RkRJ

Al is independent of the specific security, j, so that

2

(l‘XN+1) A1 j: hjko ~r

2

(l'XN+1) A1“20

Similarly,

hjkA1”11

 

“1110 = E[(Rr-Rr)<Ri—Ri)c3§3)l

L 2 r 2—1

_ ”r -r ~ - g (V ) ~r -r 2

- (l—XN+1)E[(R —R )(Ri—Rix E g! ((R -R ) - u

2 1

£0
))]

C.7
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Q .—

L g (vr)R 1(1-xN+1 ) _r 2+1 _

- (l-XN+1)2:1{ 2! E[(R-R ) (Ri-Ri)-

..r -r ~ _

R —R —( )(Ri R1)URO]}

L «(Vr)£—1

= (l'xmflgil Riff—’0’2+1,1 ’ “11“20)](1’XN+1) G'8

From G.1, for 2 even,

= (2 +1)! p

“2+1,1 , p “11“20 8'9
p.2

u = $321; p

p = 22.

For 2 odd

“2+1,1 = “20 = 0 6'10

Thus,

82p er4
0

_ Q (V ) (1XN+1) (2p+1)!-(2p)! p0

p=0 p pgzp

= (l-XN+1)A211ll . 6.11

N N

u2100 = (1_XN+1)j:1hjk“1110 = (lXN+1)A2j:lhjku11

= ~r_'r ” _‘ ~t_-l

”1011 E[(R R )(R1 Ri)(g g )]

E[(Rr--Rr )(Ri-R.1)( z

L gfl+l(v”> ((R-R)—

2!

)
p20 )1
 

2:1

 



178

 _ g (V )£ -r 1+1 - ~r —r ~ _

it i! E[(R-R > (Ri‘Ri)'(R -R )(Ri-Ri)ugoll

2+1<Vr )

= Z[ 22 (“2+1,1 ‘ “11“20)]

 

g [g2p+l(Vr)2p/(2P+1)!_(25)!)UP

 

 

 

 

= ' \ ]U = A U . 6.13

p 1 (2p). pr! zpp, 20 11 3 11

u2001 = i hjkA3”11=A3“20 ° G'14

_ f—T 2 ~,_-,
u0201 - E[(*V—) (8 8 )1

Q 2—1g£+l

= g V _ ~r_-r _ 21(Vr)

[(:'*—ET—”(1 XN+1)((R R ) U20)) (2g ((Rr-Rr)- 20))]

r 2-1g2' r £'-l £"+1(Vr)£"

g£(V ) (v ) g (1JXN+1 r -r +

= z z z [ 2 2.,2", E[((R -R )
2 2, 2" . . .

~r -r £' ~r —r l"

+ HROHR'O-ZHRO(R ”R ) )((R “R ) “U2n0)]]

2 2' g2"+l £+£'+2"- 2 2

= g g (v)( )<(l-xN+1)

i i, i"[ 2' 2'!1"! (“£+2'+2",0

-2uR,OU£'+Q",O—UQ",Ou£+2',0 + 2u2,0u£',0u2",0)] 6'15

+ '+ "+2
gg2p2p' +1 2p"+2 r2(p+p' +p") 2(p+p' +p"+1)!u2(p p p )

= (l—XN+1)2{Z Z 2 [(2g):(2+1):(2(X+1)' [ 2(p+p +p"+2)
p p' p" p p p ' (p+p' +p"+2)

2p=£

2p'+1=£'

2p"+l=2"
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I n p'+p"+l

_2 (22)! p0 2(p +p +1)!(u20) ]]

pr ! 2(p +p +1)(p'+p"+l)!

(p+p'+p"+2)
u n u '

2p+lg2p'g2p +2(Vr)2(p+p' +p ) 2(p' +p+p +1). 50

 

 

 

 

 

 

 

+ z z 2 [g " " ]

p P' p" (2p+l)!(2p )!(2p +1)! 2<p+p +p +2)(P+p'+p"+2)

2p+l=£

2p'=2'

2p"+1=2"

g2p+1 2P. +1 2p"+l 2(p+pt +pn) (2(P' +p+pn+1))!u
zép+p'+pn+2)

+ z X 2 [g 2 1g!(2 i1 2(2(Xr 2 l ( n+2)
p p. p" ( p+ ) p' ) p ) 2 p+p' +p (p+p +p"+2)

2p+l=2

2p'+l=£'

2p0l=2H

_ £32321__(U )P" (2(P+p '+l)! (p+p'+1)]]

2? (pm)! 20 2(p+p' +l)(p+p '+1)! u20

gngzp'g2p"+l(vr )2(p+
p' +p") (2(p+p +pu)!u§g+p +p )

+ Z Z Z [
n [ H

p p' p" (2p)!(2p )!(2p )! 2(p+p +p )(P+p'+pn)!

l=2p

£'=2p'

Q,”=2p"

- 2 (2p)!$2p;+2p")’ (P+p' +p")_

2(p+p +p )p!(pv+pn)' p20

n (p+p'+p")

_ (2P")!(2(p"p'))! u(p+p'+p") + 2(2p)'(:p)'(ZP )'“ 1]}

u = (1‘ )ZA
6 16

0201 XN+1 4“2o
.

u0111 = E[(§1'§1)(I§29(é'-§')1

L £(Vr)l l L H£+1(V)

1’XN+1)E[(R"R(REIIEL-zj-—-<<R
—R> ~u£0))(£§lL-ET---((R

_r 2'

-R ) -u£.0)])]
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z 2'+1 r £+2'-1

 

 

 

 

 

 

= _ g g (V ) Q ~ _- ~r -r 2+2'

(1 XN+1){E i'[ £!2.! “[(Ri Ri)((R -R )

~r -r 2'

_ 2p£O(R - R ) + u£0u2.011}

g£g2'+1(vr)2+z'-1

= (l_xN+1){i i,[ ilz'! (“2+2',1 - 2“£0“2',1)]}

2 2 '+2 2 + '

= (l-XN ){Z 2 [g p p Vr (p p ) (2(p+p')+l)! u<p+p')
+1 2 2 2 '+1 ! + ' ! 2

P p! (P) ( P ) 2(1) P) (p+p')!

2p=£

2p'+l=i'

_ (2p)!(2p+1)! p+p' _

22p!p'2p'(p,)' “2 )“11]} ' (l‘XN+1)A5“11 6'17

u1101 = g hjk(1'XN+1)A5 E1

= (l-XN+1)A5u20
6.18

L 2+1 r R

= ~ _- g (V ) ~r_-r g

u0011 E[(Ri Ri)(£:1 2! (R R ) )1

L 2+1 2

= 2 g (Vt) u

2:1 2! 21

' + 2 +
= g g2<p 1)<v‘:> p 1 (2p+1>! p

“11“20 ’
p=0 (2p+l)!(p)!2p

where 2 = 2p+1

= c.19
u0011 A6“11
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u1001 i hJkA6“11

 

 

 

 

 

 

=A6u20
6.20

T—T 2

u0200 ‘ E[°"_’) 1

R r 2-2

_ _ 2 g (V ) ~r —r l 2

- (1 XN+1) (: 2! E[(R -R ) - “201)

2 2' r 2+R'-2

_ 83 (V) _

"(1'XN+R)2{E :.[ zzz'! [“”2+z'4)”£o“2'0]]

2 2' 2 +'-1

= (l-x )2 z 2 [g pg p (Vr) fp p ) (2(p+p' ))! (p+p )

! ! 0N+1 p p' (2p) (2p ) 2p+p' (p+p )!2

2=2p

2=2p'

(2p)!(2p' )gpP+P [i2p+182p' +1(vr)2(p+p' )+1 2( +1)! wp+ +1

1+2): “15.2 1. 9+1" P 11}

ZP+p (P)!p'! E=EL+1 ( p ( p + ) [2p+p' +1(p+p ,+1)!20

2'=2p'+1

U = (1- )2A u
G.21

0200 XN+1 7 20

G.22

u2000 = “20

~ - T—T

E[(Ri-Ri)(—§79]

 

 

u0110 =

«(Vr)2-1 ~r —r

= <1—'XN+1) E[(R.-R)<:18 2, ((R —R.)£-u£O])]

N r 1-1 ~ _ ~ _

= (1XN+1):1g(V22 E[(Ri-fii)(Rt-Kr)£_u£O(Ri-Ri)]
2

2p+l
 

3 [ggr22p+l(V2p

=0 (2p+l).

2p+l=2

~ - ~r -r

(1‘XN+1’ E[(Ri'Ri)(R -R ) 1



182

B2 +1 2

P (v > P<2p+1>zup
20 }

= (1- ){zlg lu
XN+1 p(2p+1)!2pp! u11

 

u0110 ‘ (l‘xN+1)A8“11 6'23

u1100 = E[hjk(l-XN+1)A8ull]

(1-x) 6.24
N+1 A8“ 20

E[(I:292(§.—R.)(g' -g ')l
110211

g2<vr)2—2((Rr_§r)2

2!

"“20
 

2 ~ _

(l'XR+1’ E[(Ri-Ri)(z [ 1)
2

g2+l<vr)2—2((fir_§r)2_u20)

2! 1)] 

v u .' v n_
2 2 2 +1 r ,2+2 +2 1) _r £+2 +2"

)2{R :' §"[g g g 2:2SY231 E[(R-R ) (Ri-Ri)
(I'XN+1

+ u u (R—Rr)l"(R-R)-2(Rr—Rr)£+l"(Ri-Ri)u
20 2'0 2'0

~r -r 2 ~ — .(Rr_Rr)2+2'(Ri-R1)u

2",0 11}

I u v Q’n_

g2 g2 2 +1<Vr)(2+2 + 4)

(1XN+1) 2{i iv in[” 212'22"! , (“£+1'+2".1

+ u u u - 2n
20 2'0 2",1 + 21£+2",1u£'0

-u2+£',lu£"
0 £1u£vou2|vo)

]}
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EZPEZP'E2(p'+1) vr(2(p+p'+p''>-3) (2(p+p u+pn)+1)'

' (1-xN+1)2{2 z 2 [ (2p)!(2p')!(2p$+lg! u (p+p' +p")

v p' t>"
(p+p"H>)!2

132p

2 I =2p '

1"=2p"+1

 

 

 

 

 

 

 

 

u U(p+p'+p") 20 11

11 20 2(p+p +p )(p)!(pt)!(pn)!

(2(p+p..)+l)!(2p.)!u(p+p'+p")u

_ 2 v n 20 11)]

2P+P +P (p+p")!p ,

2 2 +1 2 " 1 2 -3 n

+ z z z [%2p§ :2 +1:!:2(X)z( (p+p+p ) ,(2(2+p' +p )+1)g+

P p! P" P P P \W+pu)!2p+P P"

Q=2p

2'=2p'+l

QIH=2pH

n (p+p' +p”)

“(p+p.+pn) (2(p+p' )+l)!(2p )!u2 u11)]

ll 20 2p+p' +p" ( p+p )!p"!

g2p+1 2p 2p"+1 r (2(P+P +PH)’’3) u

+ Z Z Z "[(2 l')%(2 g)!(2 5.1))! ((2(p+p' +P 1+1)!+ I!)

p p p p p p (p+p +p")!2 p p p

Z=2p+l

’lezzp'

$1,"=2p"

n v (P+P'+P")

(P+P'+P") — (2(P+P )+1)!(2p )!U20 U11

“11“20 2p+p +p (p+p")!p'!

(2(p+p' )+l)!(2p")!u (p+p +p")u11

2(p+p' +p'')(p+p )!p"!

2(2p+1>2<2p' >:<2p">:u§g+P +p")u11

+ )1} 

2(p+p' +p'') n.

p!p'!p
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_ 2

u0211 ‘ (l’xN+1) A9“11 6'25

_ _ 2

u1201 ‘ E hjkA9“11 ’ (1’XN+1) A9“20 6'26

_ ~r -r 2 ~ - ~, -.

“2011 - E[(R - R > (R1 - Ri><g - g )1

2+1

= EI<Ri_Ri)(z L-—$——l£<RRr)”+2- (Rt-Rr)2u20))1

R

g2+1

_ (vr) rR+2 - ~ - ~r -r 2
— E[g 2' (E[(R—R > (Ri-Ri)-<Ri-Ri)(R -R > u£01)1

2+1 r 2

_ (V )

‘ :I g! (“2+2,1 “ “21“Ro)]

2+1 1' 9.

_ (V )

' i[ R! “R+2,1]

82p 1' 2p— 1

= 218 (V ) 1,2 = 2p—1 

(2p- 1)! “2p+1, 1

g29(v)2p1 (2p+l)!
 

p
= 21[ (u ) 111

2 —1 z 20 11p ( p ) (p)!zp

u2011 = A10“11 6'27

113001 = i hjkA10U11

= A 6.28

u3001 10“20

T-T

= E[(Rr-Rr)( k ullll k)(Ri—Ri)(é'-§')]

ILSL—l

_ —r gv _
- <1-xN+l){R1(R-R)(R.-R.)(2 ((R RR, -u£0)))
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'£+1V ~r -r 2

<2 £37—*-<<R -R ) - u20))]
Q .

2 g£'+1 r 2+2'— 1

_ g (V ) D ~r -r l+£'+1 ~ —

(1--XN+1){Z £'[g!£.! u((R -R ) (Ri-Ri)

2 2

-r 2+11J2 A -r 1' +1

(Rr-R ) 0(Ri-R1). (RI-R ) (Ri-Ri)u£,0

+ (R-R)(R.-R)uflou 2,.O)]}

g2g2'+1(vr)2+2 -1

= (1XN+1){E i,[ 212'! i12+R'+1,1 ’ 2“RO”2‘+1,1 +“11“20“2'0]}

V ' i
= (1-xN ){z X [ 2p82p +1Vr?(p+p )-1(2(p+p. )+1 ' up+P u

+1 2 1 2 z 20 11
p p! ( P) ( P ) (P+P )!2P+P

Q=2p

£'=2p'

+ 0

2(2p). <2!'+1)! p(p+p')u (zp). (2p')! up P u..)]

22pp Ezp' p ! 2o 11 2p+p' (p),p 20 II

+ Z Z [g2p+182p +2(vr)2(p+p )+l((2(p+p'+1+1)! up+p' +1u )1}

2 +1 2 '+1 2 '+1“ 11

2=2p+1

2=—2p' +1

u1111 = (1"XN+1)A11“11 ' . 6‘29

u2101 = (1XN+1) 23h”A11“11 (l'XN+1)A11“20 6‘30

_ E ”!_"v

”0101 - E[( V )(8 8 )1

L 2(vr)£1W2+1<v) ((R-R)—50)

- (l‘xu+1){5[( 2 £L~———-———((RRrz)- w))( 2 1' )1}

R.=1 i=1
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R R'+1 r R+R'-1

 

 

  

 

= _ 8 8 (V ) U ~r_-r £+£' ~r_—r Q'

(1 XN+1){EQ§[ £!£.! u((R R ) -2(R R ) u£0+u20u£,0)]

gRgR'+1(Vr)R+R'—1

= _ l -

(l XN+1){E i,[ 2:2'! ‘“R+R',0 “2'0“20)]}

2 ' . _

g i \ t I

p:

2p"1'

'

2p+1 2p'+2 r 2(p+p')+1 2(p+p'+l)!u P+P +1

p p' P ' P ' 2 P P (p+p'+1)!

2=2p+1

2'=2p'+l

= (I‘XN+1)A12“20 ‘ 6'31

A take on the obvious values in the above equations.l,...,A12
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