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ABSTRACT 

AN ANALYSIS OF FITNESS IN LONG-TERM ASEXUAL 
EVOLUTION EXPERIMENTS 

By 

Michael J Wiser 

 Evolution is the central unifying concept of modern biology.  Yet it can be 

hard to study in natural system, as it unfolds across generations.  Experimental 

evolution allows us to ask questions about the process of evolution itself: How 

repeatable is the evolutionary process?  How predictable is it? How general are 

the results?  To address these questions, my collaborators and I carried out 

experiments both within the Long-Term Evolution Experiment (LTEE) in the 

bacteria Escherichia coli, and the digital evolution software platform Avida. 

 In Chapter 1, I focused on methods.  Previous research in the LTEE has 

relied on one particular way of measuring fitness, which we know becomes less 

precise as fitness differentials increase.  I therefore decided to test whether two 

alternate ways of measuring fitness would improve precision, using one focal 

population.  I found that all three methods yielded similar results in both fitness 

and coefficient of variation, and thus we should retain the traditional method. 

 In Chapter 2, I turned to measuring fitness in each of the populations.  

Previous work had considered fitness to change as a hyperbola.  A hyperbolic 

function is bounded, and predicts that fitness will asymptotically approach a 

defined upper bound; however, we knew that fitness in these populations 

routinely exceeded the asymptotic limit calculated from a hyperbola fit to the 

earlier data.  I instead used to a power law, a mathematical function that does not 

 



have an upper bound.  I found that this function substantially better describes 

fitness in this system, both among the whole set of populations, and in most of 

the individual populations.  I also found that the power law models fit on just early 

subsets of the data accurately predict fitness far into the future.  This implies that 

populations, even after 50,000 generations of evolution in consistent 

environment, are so far from the tops of fitness peaks that we cannot detect 

evidence of those peaks. 

 In Chapter 3, I examined to how variance in fitness changes over long 

time scales.  The among-population variance over time provides us information 

about the adaptive landscape on which the populations have been evolving.  I 

found that among-population variance remains significant.  Further, competitions 

between evolved pairs of populations reveal additional details about fitness 

trajectories than can be seen from competitions against the ancestor. These 

results demonstrate that our populations have been evolving on a complex 

adaptive landscape. 

 In Chapter 4, I examined whether the patterns found in Chapter 2 apply to 

a very different evolutionary system, Avida.  This system incorporates many 

similar evolutionary pressures as the LTEE, but without the details of cellular 

biology that underlie nearly all organic life.  I find that in both the most complex 

and simplest environments in Avida, fitness also follows the same power law 

dynamics as seen in the LTEE.  This implies that power law dynamics may be a 

general feature of evolving systems, and not dependent on the specific details of 

the system being studied. 
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CHAPTER 1: A COMPARISON OF METHODS TO MEASURE FITNESS IN 

ESCHERICHIA COLI 

 

Authors: Michael J. Wiser and Richard E. Lenski 

 

Abstract: 

 In order to characterize the dynamics of adaptation, it is important to be able to 

quantify how a population’s mean fitness changes over time.  Such measurements are 

especially important in experimental studies of evolution using microbes.  The Long-

Term Evolution Experiment (LTEE) with Escherichia coli provides one such system in 

which mean fitness has been measured by competing derived and ancestral 

populations.  The traditional method used to measure fitness in the LTEE and many 

similar experiments, though, is subject to a potential limitation.  As the relative fitness of 

the two competitors diverges, the measurement error increases because the less-fit 

population becomes increasingly small and cannot be enumerated as precisely.  Here, 

we present and employ two alternatives to the traditional method.  One is based on 

reducing the fitness differential between the competitors by using a common reference 

competitor from an intermediate generation that has intermediate fitness; the other 

alternative increases the initial population size of the less-fit, ancestral competitor.  We 

performed a total of 480 competitions to compare the statistical properties of estimates 

obtained using these alternative methods with those obtained using the traditional 

method for samples taken over 50,000 generations from one of the LTEE populations.  

1 
 



On balance, neither alternative method yielded measurements that were more precise 

than the traditional method. 

 

Introduction: 

 The concept of fitness is central to evolutionary biology.  Genotypes with higher 

fitness will tend to produce more offspring and thereby increase in frequency over time 

compared to their less-fit competitors.  Fitness, however, is often difficult to measure, 

especially for long-lived organisms.  Unlike traits such as color, fitness cannot be 

observed at a single point in time, but instead it must be measured and integrated 

across the lifespan of the individuals.  Thus, researchers typically measure fitness 

components – such as the number of seeds produced or offspring fledged – and use 

them as proxies for fitness. 

 These limitations can be overcome in experimental evolution studies using 

microorganisms.  Microbes typically have rapid generations and require little space, 

making them attractive for laboratory-based studies.  Replicate populations founded 

from a common ancestor allow researchers to examine the repeatability of evolutionary 

changes.  Environments can be controlled, reducing uninformative variation between 

samples or populations and allowing precise manipulations of conditions of interest.  

Also, one can often freeze microbial populations at multiple points along an evolutionary 

trajectory and revive them later, allowing direct comparisons between ancestral and 

derived populations (1, 2).  Owing to these advantages, evolution experiments with 

microbes are becoming increasingly common (3–5).  Thus, it is important to be able to 
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accurately quantify fitness in these experiments, in order to understand the evolutionary 

dynamics at work. 

 One commonly employed method of quantifying microbial fitness is to calculate 

the maximum growth rate (Vmax) of a culture growing on its own (6–10), usually by 

measuring the optical density of the culture over time.  These measurements have the 

advantages of being simple and fast; a spectrophotometer can measure many samples 

in a multi-well plate in quick succession, and systems can be programmed to take 

measurements over the full growth cycle of a culture. However, maximum growth rate is 

typically only one component of fitness even in the simplest systems (11), and hence it 

provides, at best, only a proxy for fitness.  

 A second type of fitness measurement comes from studies where microbes are 

adapting to stressful compounds, such as antibiotics.  In these situations, researchers 

typically quantify the Minimum Inhibitory Concentration (MIC) of the compound, and 

those organisms with higher MICs are considered to be more fit in environments that 

contain that compound, as it takes more of the substance to inhibit their growth (12, 13). 

 A third approach for quantifying fitness in microbial systems—and the approach 

that most closely corresponds to the meaning of fitness in evolutionary theory—uses a 

competition assay.  The basic approach is to compete one strain or population against 

another and directly measure their relative contributions to future generations.  This 

approach typically produces a measure of relative, rather than absolute, fitness.  

Relative fitness is more important than absolute fitness when considering the 

evolutionary fate of a particular genotype, provided that absolute fitness is high enough 

to prevent extinction of the entire population (14, 15). Competitive fitness assays, by 
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measuring the net growth of two different populations, incorporate and integrate 

differences across the full culture cycle, which may include such fitness components as 

lag times, exponential growth rates, and stationary phase dynamics in batch culture (11, 

16).  

 Despite their relevance to evolutionary theory, competitive fitness assays 

sometimes have practical limitations.  In particular, and the focus of our paper, these 

measurements are more precise when the two competitors have similar fitness than 

when one is substantially more fit than the other.  When one competitor is markedly less 

fit, its abundance will decrease over the course of the competition assay, potentially 

reaching values low enough that measurement error has a large impact.  Thus, as the 

duration of an evolution experiment increases, and the fitness of the evolved organisms 

increases relative to the ancestral competitor, the measurement error also tends to 

increase, as we will show in this study. 

 We used a population from the Long-Term Evolution Experiment (LTEE) with 

Escherichia coli to investigate whether changes in the methods of performing 

competition assays – changes meant to reduce the discrepancy in the final abundances 

of the competitors – would yield more precise fitness measurements.  The LTEE has 

been described in detail elsewhere (1, 17–19), and a brief summary is provided in the 

Materials and Methods section below.  Previous work in this system has established 

that changes in Vmax explained much, but not all, of the improvement in relative fitness 

in this system, at least in the early generations (11). 
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Materials and Methods: 

Experimental conditions:   

 The LTEE is an ongoing experiment that began in 1988, and which has now 

surpassed 50,000 bacterial generations.  The experiment uses a Davis Minimal salts 

medium with 25 µg/mL glucose (DM25), which supports densities of ~3-5 x 107 bacteria 

per mL.  Each population is maintained in 10 mL of DM25 in a 50-mL glass Erlenmeyer 

flask incubated at 37C and shaken at 120 rpm.  Every day, each population is diluted 

1:100 into fresh media.  This dilution sets the number of generations, as the regrowth up 

to the carrying capacity allows log2 100 ≈ 6.64 cell divisions per day. 

 

Bacterial strains:  

 The LTEE has 12 populations of E. coli (1).  Six populations were founded by the 

strain REL606 (20) and six by the strain REL607.  REL606 is unable to grow on the 

sugar arabinose (Ara–); REL607 is an Ara+ mutant derived from REL606.  The DM25 

medium does not contain arabinose, and the arabinose-utilization marker is selectively 

neutral in the LTEE environment [20].  In this study, we use both ancestral strains as 

well as samples taken from one population, called Ara-1, at generations 500, 1000, 

1500, 2000, 5000, 10,000, 15,000, 20,000, 25,000, 30,000, 35,000, 40,000, 45,000, and 

50,000.  We also use another strain REL11351, which is an Ara+ mutant of a clone 

isolated from the 5000-generation sample of population Ara-1. 
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Fitness measurements:   

 We quantify fitness in this system as the ratio of the realized growth rates of two 

populations while they compete for resources in the same flask and under the same 

environmental conditions used in the LTEE.  This calculation is identical to the ratio of 

the number of doublings achieved by the two competitors.  In all cases, we compete 

samples from the Ara-1 population (including the ancestor REL606) against an Ara+ 

competitor (either REL607 or REL11351).  We distinguish the two competitors on the 

basis of their arabinose-utilization phenotypes; Ara– and Ara+ cells produce red and 

white colonies, respectively, on Tetrazolium Arabinose (TA) agar plates (1, 21).  

 We employ three different methods for measuring fitness in this study.  For all 

three methods, we begin by removing aliquots of the competitors from the vials in which 

they are stored at –80C into separate flasks containing Luria-Bertani (LB) broth.  The 

cultures grow overnight at 37C and reach stationary phase.  We then dilute each culture 

100-fold into 0.86% (w/v) saline solution and transfer 100 µL into a flask containing 9.9 

mL of DM25.  These cultures grow for 24 h under the same conditions as the LTEE, so 

that all competitors are acclimated to this environment.  We then jointly inoculate 100 µL 

in total of the Ara-1 population sample and the Ara+ competitor into 9.9 mL of DM25.  

We immediately take an initial 100-µL sample of this mixture, dilute it in saline solution, 

and spread the cells onto a TA plate.  The competition mixture is then incubated in the 

same conditions as the LTEE for 24 h, at which point we take a final 100-µL sample, 

dilute it, and spread the cells onto a TA plate.  We count each competitor on the TA 

plates, and multiply the numbers by the appropriate dilution factor to determine their 

initial and final population sizes.  We calculate fitness as  
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where w is fitness, A and B are the population sizes of the two competitors, subscripts i 

and f indicate the initial and final time points in the assay; here, ln refers to the natural 

logarithm in order to reflect population growth, although the ratio used to express fitness 

is insensitive to the choice of base used. 

 For the Traditional method, we measure the relative fitness of the evolved 

population samples against the Ara+ ancestor, REL607.  We inoculate the competition 

flasks with 50 µL (an equal volumetric ratio) of each competitor.  This method has been 

used extensively in evaluating fitness in the LTEE (1, 2). 

 The Altered Starting Ratio (ASR) method also uses the ancestral Ara+ strain as 

the common competitor.  However, we inoculate the competition flasks with 20 µL of the 

evolved population and 80 µL of the ancestral population, leading to an initial 1:4 

volumetric ratio.  This difference in the starting ratio increases the population size of the 

ancestor at the end of the competition assay, which reduces the problem of small 

numbers when the ancestor is much less fit than the evolved population.  The initial 

ratio is not so extreme, however, that it is difficult to enumerate the evolved population 

at the start of the competition assay.  We attempted to keep total plate counts around a 

few hundred colonies, with at least 20 of the minority competitor, to reliably estimate 

population densities (22), and we chose this initial ratio with that objective in mind. It 

seemed particularly important to increase the final count of the ancestral population in 
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the context of our fitness measurements; smaller numbers are subject to increased 

sampling error, and the realized growth rate of the ancestor is the denominator when 

calculating the relative fitness of the evolved population, which can magnify the 

measurement error.  More extreme ratios have been used in some experiments testing 

invasion when rare (23), but these ratios would result in minority populations of fewer 

than 20 colonies per plate; therefore, they were not tested in this study.  It is also 

important to note that we test different ratios of culture volume, not specifically of 

different numbers of starting cells per se; differences in carrying capacity between the 

ancestral and evolved bacteria (11, 17) and stochastic sampling effects will prevent the 

initial ratio of cell numbers from precisely matching these volumetric ratios. 

 Using the Different Common Competitor (DCC) method, we compete the evolved 

population samples against the marked clone from generation 5,000, rather than 

against the marked ancestor.  We chose a 5,000-generation clone because its fitness 

was near the geometric mean of the expected fitness values spanning generations 0 to 

50,000, and thus it might reduce the overall disparity in population counts across the full 

time series being considered.  We inoculate the competitions with equal volumes (50 µL 

each) of the Ara-1 population sample and reference competitor.  We considered that 

this method might increase the precision of our fitness measurements because the 

ratios used in the fitness calculation tend to be more precise as they approach 1. 

 We selected 15 time points from the focal population Ara-1 to evaluate these 

three methods: generations 0, 500, 1,000, 1,500, 2,000, 5,000, 10,000, 15,000, 20,000, 

25,000, 30,000, 35,000, 40,000, 45,000, and 50,000.  We ran competitions as complete 

blocks; each block included one competition for each time point using each method, 
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plus an additional competition (see below) used as a scaling factor to compare the 

methods.  We performed a total of 10 replicate blocks, and so there were a total of 450 

competition assays to measure fitness (3 methods x 15 time points x 10 blocks) plus an 

additional 30 assays to generate the scaling factors. 

 A scaling factor was necessary for comparing the DCC method with the 

Traditional and ASR methods, because the DCC method measured fitness relative to a 

different competitor than the ancestor used for the other two methods.  To calculate this 

scaling factor, we performed an additional competition between the Ara– ancestor 

(REL606) and the Ara+ reference competitor (either REL607 or REL11351) for each 

method in every block.  We then divided the fitness values from all of the competition 

assays for a given method and block by the fitness value that served as the scaling 

factor. We did not otherwise include the scaling-factor competitions in our data analysis.  

We applied the same procedure to all three methods to ensure consistency, although 

adjusting for the scaling factor was not otherwise required for the Traditional and ASR 

methods. 

 The data and analysis scripts are available at the Dryad Digital Depository (doi: 

http://dx.doi.org/10.5061/dryad.4875k).  The data obtained using the Traditional method 

previously appeared in (19); the data for the ASR and DCC methods, as well as all of 

the analyses in this article, are new . 

 

Statistical methods:  

 We performed statistical analyses in R version 2.14.1.  We fit the fitness 

trajectories using nonlinear least-squares regression, as implemented with the nls() 
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function.  We performed ANOVAs using the aov() function.  For the single-generation 

ANOVAs, Method was a fixed factor and Block was a random factor. For the combined 

ANOVA, Generation was included as a fixed factor. 

 

Bootstrapping:  

 We employed a bootstrap procedure to compare the differences between the 

coefficients of variation in our three methods to a null distribution.  We sampled the total 

dataset with replacement, to produce 3 datasets of equal size, each containing 10 

measurements at each generation.  We then fit a linear regression of the coefficient of 

variation against time (i.e., generation) to each of the 3 datasets.  We then summed the 

squares of the differences between each pairwise combination of the 3 linear 

regressions over all 15 time points when fitness was measured.  We repeated this entire 

procedure 1,000,000 times, and we compared the observed sum of the squared 

differences to this distribution. 

 

Results and Discussion: 

 There are two fundamental ways in which these different methods could produce 

meaningfully different results.  One way is that different methods could produce 

significantly different fitness estimates.  In that case, we would need additional 

information or another criterion to determine which method was superior.  The other 

way is that different methods could have different levels of precision; that is, one 

method may have significantly less variation in measured values across replicate 
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assays than another.  In this case, the method with the greater precision would clearly 

be preferred. 

 Figure 1.1 shows the results of our fitness assays for all three methods, with 

trajectories fit to the data obtained using each method.  These trajectories are in the 

form of an Offset Power Law:  

w = (bT + 1)a,  

where w is fitness, T is time in generations, and a and b are model parameters, as 

derived in [2].  All three methods produce virtually identical fitness trajectories.  S1 

Table shows the results of ANOVAs performed at each generation to test for variation 

among the three methods in the mean fitness values they produce; the effect of Method 

was not significant in any of the 15 tests, even without accounting for multiple tests.  

From these results, we conclude that the three methods do not produce meaningfully 

different estimates of mean fitness. 

 Next, we calculated the coefficient of variation (i.e., the standard deviation 

divided by the mean) for each method at each time point to determine whether they 

differed in their precision.  We then constructed a linear model of the coefficient of 

variation as a response to time (i.e., generation) and method.  Figure 1.2 shows the 

data and linear model fit to the coefficients of variation for all three methods.  Table 1.1 

presents the ANOVA table for this model.  There is a highly significant tendency for the 

coefficient of variation to increase in later generations, as the evolving bacteria become 

progressively more fit, as discussed in the Introduction.  However, the effect of Method 

was not significant as a predictor of the coefficient of variation, although a p-value of 
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Figure 1.1: Fitness trajectories over time.  Fitness trajectories for each method, shown separately, have the form w = 
(bT +1)a, where w is fitness, T is time in generations, and a and b are model parameters.  Black circles and curve show 
the Traditional method; blue squares and curve show the ASR method; red triangles and curve show the DCC method. 
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0.0762 is suggestive.  On inspection of the data (Figure 1.2), it is clear that any 

difference between the methods is driven by the ASR method having a higher 

coefficient of variation – and thus lower precision – in early generations.  Indeed, when 

we removed the ASR method from the analysis and performed an ANOVA on the 

remaining data, there was no suggestion of any difference between the Traditional and 

DCC methods (Table 1.2, p = 0.8802). 

 

 df SS MS F p 
Time 1 0.03672 0.03672 69.664 <0.0001 
Method 2 0.00289 0.00145 2.743 0.0762 
Residuals 41 0.21610 0.00053   
 

Table 1.1: ANOVA on the coefficient of variation across time and comparing the 
three methods used to estimate fitness.   
 

 df SS MS F p 
Time 1 0.03068 0.03068 70.035 <0.0001 
Method 1 0.00001 0.00001 0.023 0.8802 
Residuals 27 0.01183 0.00044   
 
 

Table 1.2: ANOVA on the coefficient of variation across time and comparing the 
Traditional and DCC methods.   
  

We can also express the differences between these methods as follows. The regression 

line for the coefficient of variation based on the ASR method is always higher than at 

least one of the other two methods (Figure 1.2), and therefore it is never the best 
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Figure 1.2: Coefficient of variation over time.  Lines are linear regressions on the relevant data.  Black circles and line 
show the Traditional method; blue squares and line show the ASR method; red triangles and line show the DCC method.  
Figure S1.1 shows the confidence bands associated with each regression line. 
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method, at least for the system and generations analyzed here.  By contrast, the 

Traditional and DCC methods yield coefficients of variation, as inferred from the 

regression lines, that are very similar and always within the 95% confidence interval of 

one another (Figure S1.1).  Which of these two methods gave a lower point estimate of 

the coefficient of variation varied over time, but the difference was not significant (Table 

1.2). 

 An alternative way to assess whether the differences in the coefficient of 

variation between the methods are statistically significant involves bootstrapping the 

data, as detailed in the Methods section. Figure 1.3 shows that the observed differences 

in the coefficient of variation among the three methods are no greater than would be 

expected by chance if there were no differences among the methods. 

 Over the range of fitness changes that we observed in the LTEE (i.e., from 1 to 

~1.8), neither alternative method for assaying fitness (ASR or DCC) outperformed the 

Traditional method.  Given its extensive prior use in this study system [1,2,17], we 

therefore prefer to use the Traditional method for fitness competitions that span this 

range.  It is important to note, however, that the ASR or the DCC method might turn out 

to have higher precision in systems that exhibit larger fitness changes than the system 

studied here, as suggested by the regression lines in Figure 1.2.  The LTEE has, to our 

knowledge, run for many more generations than any other evolution experiment, but the 

extent of fitness improvements has been less than that seen in some other shorter-

duration experiments. The relatively limited fitness gains that have occurred during the 

LTEE reflect the fact that the experimental environment is quite benign; also, the 

ancestor of the LTEE had been studied by microbiologists for many decade (24) and
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Figure 1.3: Histogram of bootstrap analysis.  Histogram showing the distribution for the bootstrapped sums of squared 
differences in the coefficient of variation for 3 arbitrary groupings of the combined data.  The dark arrow indicates the 
difference for the actual grouping of the 3 methods employed.  The light arrow shows the most extreme 5% of the sums of 
the squared differences.   
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was thus probably already well-adapted to general laboratory conditions.  Other 

experiments conducted for fewer generations, but performed under more stressful 

conditions or founded by less-fit ancestors, might reach fitness differences where these 

or other alternative methods would be helpful.  Table 3 summarizes the duration and 

range of fitness improvements reported in a number of other evolution experiments that 

used a variety of microorganisms including bacteria, fungi, and viruses (see also Table 

2.3 in (25)).  We have included values for both relative fitness, Wf / Wi, and the 

difference between final and initial fitness values, Wf – Wi, when the latter was reported 

in the paper cited.  The value of Wf – Wi necessarily depends on the time frame of the 

experiment, whereas Wf / Wi is a dimensionless number and thus readily compared 

across experiments. 

 
Reference Organism Generations Wf / Wi Wf - Wi 
This study E. coli 50,000 1.88 3.5 / day 
(26) E. coli at 32C 2,000 1.10 

  E. coli at 42C 2,000 1.19  
(27)* E. coli 1,100 1.98 0.23 / h 
(28)** Saccharomyces cerevisiae 300 1.80 

 (29) Aspergillus nidulans 800 1.48 
 (30) phage Φ6 with bottleneck = 10 100 1.26 
 

 
phage Φ6 with bottleneck = 1,000 40 2.03 

 (31) phage G4 180 1.18 3.8 / h 

 
phage ID2 600 2.55 13.5 / h 

 

* Mean calculated from four replicate populations 
** Value estimated from figure 
Wf is the fitness at the end of the evolution experiment. 
Wi is the fitness at the start of the evolution experiment. 
 

Table 1.3: Selected evolution experiments 
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Conclusions: 

 We performed 480 assays to compare three different methods for estimating the 

relative fitness of bacterial competitors. The three methods generated results that were 

not meaningfully or significantly different in terms of either their mean values or 

dispersion.  The only suggestion of a meaningful difference was that the ASR method 

appeared worse than the other two methods in the early generations, when the fitness 

gains of the evolved bacteria were still fairly small.  Therefore, we see no compelling 

reason to adopt one of the alternatives to the Traditional method when analyzing 

systems that have achieved fitness gains less than or similar to those measured in the 

LTEE over its first 50,000 generations.  When expected relative fitness values are much 

greater than 1.8, or when fitness differences are compounded for more generations, 

researchers may need to consider using one of these or other alternative methods.   
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Figure S1.1: Temporal trends in coefficient of variation.  Temporal trends in the 
coefficient of variation across replicate assays for the three different methods used to 
measure fitness.  Black circles show the Traditional method; blue squares show the 
ASR method; red triangles show the DCC method.  The solid colored lines show the 
linear regressions based on the corresponding data.  The dashed colored curves show 
the 95% confidence bands for the regressions for the three methods: A) Traditional, B) 
ASR, and C) DCC.  The points and regression lines are the same across all three 
panels, but the confidence bands are shown separately for clarity. 
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Table S1.1: ANOVAs of fitness for three methods, by generation.  Analyses of 
variance of measured fitness values for the three methods, analyzed separately for the 
various generations examined. 
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Table S1.1 (cont’d) 

 

 

This chapter was originally published as:  

Wiser MJ, Lenski RE (2015) A Comparison of Methods to Measure Fitness in 
Escherichia coli. PLoS ONE 10(5): e0126210. doi: 10.1371/journal.pone.0126210  
 
Copyright: © 2015 Wiser, Lenski. This is an open access article distributed under the 

terms of the Creative Commons Attribution License, which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original author and source 

are credited.
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CHAPTER 2: LONG-TERM DYNAMICS OF ADAPTATION IN ASEXUAL 

POPULATIONS 

 

Authors: Michael J. Wiser, Noah Ribeck, and Richard E. Lenski 

 

Abstract: 

 Experimental studies of evolution have increased greatly in number in 

recent years, stimulated by the growing power of genomic tools. However, 

organismal fitness remains the ultimate metric for interpreting these experiments, 

and the dynamics of fitness remain poorly understood over long time scales. 

Here, we examine fitness trajectories for 12 Escherichia coli populations during 

50,000 generations. Mean fitness appears to increase without bound, consistent 

with a power law. We also derive this power-law relation theoretically by 

incorporating clonal interference and diminishing-returns epistasis into a 

dynamical model of changes in mean fitness over time. 

 

Main Text: 

 The dynamics of evolving populations are often discussed in terms of 

movement on an adaptive landscape, where peaks and valleys are states of high 

and low fitness, respectively. There is considerable interest in the structure of 

these landscapes (1–7). Recent decades have seen tremendous growth in 

experiments using microbes to address fundamental questions about evolution 

(8), but most have been short in duration. The Long-Term Evolution Experiment 
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(LTEE) with Escherichia coli provides the opportunity to characterize the 

dynamics of adaptive evolution over long periods under constant conditions (1, 9, 

10). Twelve populations were founded from a common ancestor in 1988 and 

have been evolving for >50,000 generations, with samples frozen every 500 

generations. The frozen bacteria remain viable, and we use this “fossil record” to 

assess whether fitness continues to increase and to characterize mean fitness 

trajectories (see Appendix: Material and Methods). 

 We first performed 108 competitions, in the same conditions as the LTEE, 

between samples from nine populations at 40,000 and 50,000 generations 

against marked 40,000-generation clones (see Appendix: Material and Methods).  

Three populations were excluded for technical reasons (see Appendix: Material 

and Methods).  Fitness was quantified as the dimensionless ratio of the 

competitors’ realized growth rates. Most populations experienced significant 

improvement (Figure 2.1A), and the grand mean fitness increased by 3.0% 

(Figure 2.1B). 

 To examine the shape of the fitness trajectory, we competed samples 

from all 12 populations and up to 41 time points against the ancestor (see 

Appendix: Material and Methods).  We compared the fit of two alternative models 

with the fitness trajectories. The hyperbolic model describes a decelerating 

trajectory with an asymptote. The power law also decelerates (provided the 

exponent is <1), but fitness has no upper limit.  

Hyperbolic model  
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Figure 2.1: Fitness changes in nine E. coli populations between 40,000 and 50,000 generations. (A) Filled symbols: 
six populations whose improvement was significant (P < 0.05); open symbols: three populations without significant 
improvement. (B) Grand-mean fitness at 40,000 and 50,000 generations relative to 40,000-generation competitor and the 
ratio of means showing overall gain. Error bars are 95% confidence limits based on replicate assays (A) or populations 
(B). 
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Power law 

   

Mean fitness is , time in generations is t, and each model has two parameters, 

a and b. Both models are constrained such that the ancestral fitness is 1, hence 

the offset of +1 in the power law. The hyperbolic model was fit to the first 10,000 

generations of the LTEE (9), but others suggested an alternative nonasymptotic 

trajectory (11). The grand mean fitness values and the trajectory for each model 

are shown in Figure 2.2A and the individual populations in Figure S2.1. Both 

models fit the data very well; the correlation coefficients for the grand means and 

model trajectories are 0.969 and 0.986 for the hyperbolic and power-law models, 

respectively. When Bayesian information criterion scores (see Appendix: Material 

and Methods) are used, the power law outperforms the hyperbolic model with a 

posterior odds ratio of ~30 million (Table S2.1). The superior performance of the 

power law also holds when populations are excluded because of incomplete time 

series or evolved hypermutability (Table S2.1). The power law provides a better 

fit to the grand-mean fitness than the hyperbolic model in early, middle, and late 

generations (Figure S2.2).  The power law is supported (odds ratios >10) in six 

individual populations, whereas none supports the hyperbolic model to that 

degree (Table S2.2). The power law also predicts fitness gains more accurately 

than the hyperbolic model. When fit to data for the first 20,000 generations only, 

the hyperbolic model badly underestimates later measurements, whereas the 

power-law trajectory predicts them accurately (Figure 2.2B and Figure S2.3). 
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Figure 2.2: Comparison of hyperbolic and power-law models. (A) Hyperbolic 
(red) and power-law (blue) models fit to the set of mean fitness values (black 
symbols) from all 12 populations. (B) Fit of hyperbolic (solid red) and power-law 
(solid blue) models to data from first 20,000 generations only (filled symbols), 
with model predictions (dashed lines) and later data (open symbols). Error bars 
are 95% confidence limits based on the replicate populations.  
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 The power law describes the fitness trajectories well, but it is not 

explanatory. We have derived a dynamical model of asexual populations with 

clonal interference and diminishing-returns epistasis, which generates mean-

fitness trajectories that agree well with the experimental data. Clonal interference 

refers to competition among organisms with different beneficial mutations, which 

impedes their spread in asexual populations (12–15). Diminishing-returns 

epistasis occurs when the marginal improvement from a beneficial mutation 

declines with increasing fitness (5, 6). We outline key points of the model below 

(see Appendix: Material and Methods). 

 We used a coarse-grained approach that describes the magnitudes and 

time scales of fixation events (12). Beneficial mutations of advantage s are 

exponentially distributed with probability density αe–αs, where 1/α is the mean 

advantage. This distribution is for mathematical convenience; the theory of clonal 

interference is robust to the form of the distribution (12). We assume that 

deleterious mutations do not appreciably affect the dynamics; deleterious 

mutations occur at a higher rate than beneficial mutations, but the resulting load 

is very small relative to the fitness increase measured over the course of the 

LTEE (16).  

 We assume the distribution of available benefits declines after a mutation 

with advantage  fixes, such that α increases by a factor linearly related to : 

where g > 0 is the diminishing-returns parameter,  is beneficial effect of the 

nth fixed mutation, and αn is α after n fixations. Then, the mean fitness of an 

asexual population adapting to a constant environment is approximated by (see 
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Appendix: Material and Methods): where and are the beneficial effect 

and fixation time, respectively, for the first fixed mutation.  

 Comparing this formula with the power law, g = 1/2a. The value of g 

estimated for the six populations that retained the low ancestral mutation rate 

throughout 50,000 generations is 6.0 (95% confidence interval 5.3 to 6.9). In the 

LTEE, the beneficial effect of the first fixation, , is typically ~0.1 (1, 9, 10). It 

follows that the distribution of beneficial effects immediately after the first fixation 

is shifted such that the mean advantage is of its initial value 

(see Appendix: Material and Methods).  This estimate of g also accords well with 

epistasis observed for early mutations in one of the populations (Figure S2.4). In 

principle, g might vary among populations if some fixed mutations lead to regions 

of the fitness landscape with different epistatic tendencies (17). However, an 

analysis of variance shows no significant heterogeneity in g among the six 

populations that maintained the ancestral mutation rate (p = 0.3478) (Table 

S2.3). The g values tend to be lower for several populations that evolved 

hypermutability (Table S2.4). However, these fits are confounded by the change 

in mutation rate; we show below that it is not necessary to invoke a difference in 

diminishing-returns epistasis between the hypermutable populations and those 

that retained the low ancestral mutation rate.  

 Diminishing-returns epistasis generates the power-law dynamics through 

the relation between a and g. Clonal interference affects the dynamics through 

the parameter b, which depends on and , which in turn are functions of 
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Figure 2.3: Theoretical model generating power-law dynamics. (A) Parameter pairs for μ and α0 that match best fit of 
power law to fitness trajectories for populations that retained ancestral mutation rate for 50,000 generations. (B) Expected 
times and beneficial effects of successive fixations for different pairs that match the best fit. The α0 values corresponding 
to each μ are shown in (A). In both panels g = 6.0, and N = 3.3 × 107.  
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the population size N, beneficial mutation rate μ, and initial mean beneficial effect 

1/α0 (see Appendix: Material and Methods).  For the LTEE, N = 3.3 × 107, which 

takes into account the daily dilutions and regrowth (1). However, μ and α0 are 

unknown. Pairs of values that all match the best fit to the populations that 

retained the low mutation rate are shown in Figure 2.3A. The expected values for 

beneficial effects and fixation times across a range of pairs are shown in Figure 

3.3B. The dynamics are similar among pairs with high beneficial mutation rates 

(μ > 10−8), giving and generations for the first fixation, which 

agree well with observations from the LTEE (1, 9, 10).  At lower values of μ, 

adaptation becomes limited by the supply of beneficial mutations, and fixation 

times are inconsistent with the LTEE. This model also predicts that the rate of 

adaptation decelerates more sharply than the rate of genomic evolution (Figure 

S2.5), which is qualitatively consistent with observations (10) (see Appendix: 

Material and Methods).  The model assumes that individual beneficial mutations 

sweep sequentially, although “cohorts” of beneficial mutations may co-occur, 

especially at high μ (14, 15, 18) (see Appendix: Material and Methods). However, 

the inferred role of diminishing returns in generating population mean-fitness 

dynamics is unaffected by this complication, because the power-law exponent is 

independent of μ. Moreover, we have verified by numerical simulations that co-

occurring beneficial mutations have no appreciable affect on long-term fitness 

trajectories over the range of parameters considered here (Figure S2.6).  

 Six populations evolved hypermutator phenotypes that increased their 

point-mutation rates by ~100-fold (see Appendix: Material and Methods).  Three 
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of them became hypermutable early in the LTEE (between ~2500 and ~8500 

generations) and had measurable fitness trajectories through at least 30,000 

generations (Table S2.2). Our model predicts these populations should adapt 

faster than those that retained the ancestral mutation rate. We pooled the data 

from these early hypermutators and confirmed that their composite fitness 

trajectory was substantially higher than that of the populations with the low 

mutation rate (Figure 2.4). If the hypermutators’ beneficial mutation rate also 

increased by ~100-fold, the difference in trajectories is best fit by an ancestral 

rate μ = 1.7 × 10−6 (95% confidence interval 2.5 × 10−7 to 6.1 × 10−5), although 

higher values cannot be ruled out (see Appendix: Material and Methods).  Note 

that this fit was obtained by using the same initial distribution of fitness effects, 

α0, and epistasis parameter, g, for the hypermutators and the populations that 

retained the ancestral mutation rate. 

 Both our empirical and theoretical analyses imply that adaptation can 

continue for a long time for asexual organisms, even in a constant environment. 

The 50,000 generations studied here occurred in one scientist’s laboratory in ~21 

years. Now imagine that the experiment continues for 50,000 generations of 

scientists, each overseeing 50,000 bacterial generations, for 2.5 billion 

generations total. At that time, the predicted fitness relative to the ancestor is 

~4.7 based on the power-law parameters estimated from all 12 populations 

(Table S2.4). The ancestor’s doubling time in the glucose-limited minimal 
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Figure 2.4: Effect of hypermutability on observed and predicted fitness 
trajectories. Black circles: mean fitness of six populations that retained low 
ancestral mutation rate. Green triangles: mean fitness of three populations that 
evolved hypermutability early in the LTEE, including one with measurable values 
through 30,000 generations only. The hypermutators have higher mean fitness at 
28 of 31 time points from 5000 to 50,000 generations. Black curve: Predicted 
trajectory of dynamic model with μ = 1.7 × 10−6, α0 = 85, g = 6.0, and N = 3.3 × 
107. Green curve: Predicted trajectory with μ increased 100-fold starting at 4667 
generations and all other  
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medium of the LTEE was ~55 min, and its growth commenced after a lag phase 

of ~90 min (19). If the bacteria eliminate the lag, a fitness of 4.7 implies a 

doubling time of ~23 min (Figure S2.7). Although that is fast for a minimal 

medium where cells must synthesize most constituents, it is slower than the 10 

min that some species can achieve in nutrient-rich media (20). At some distant 

time, biophysical constraints may come into play, but the power-law fit to the 

LTEE does not predict implausible growth rates even far into the future. Also, 

some equilibrium might eventually be reached between the fitness-increasing 

effects of beneficial mutations and fitness-reducing effects of deleterious 

mutations (21), although it is impossible to predict when for realistic scenarios 

with heterogeneous selection coefficients, compensatory mutations, reversions, 

and changing mutation rates.  

 Fitness may continue to increase because even very small advantages 

become important over very long time scales in large populations. Consider a 

mutation with an advantage s = 10−6. The probability that this mutation escapes 

drift loss is ~4s for asexual binary fission (12), so it would typically have to occur 

2.5 × 105 times before finally taking hold. Given a mutation rate of 10−10 per base 

pair per generation (22) and effective population size of ~3.3 × 107, it would 

require ~108 generations for that mutation to escape drift and millions more to fix. 

Also, pleiotropy and epistasis might allow a sustained supply of advantageous 

mutations, because many net-beneficial mutations have maladaptive side effects 

that create opportunities for compensatory mutations to ameliorate those effects.  
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 The LTEE uses a simple, constant environment to minimize complications 

and thus illuminates the fundamental dynamics of adaptation by natural selection 

in asexual populations. The medium has one limiting resource and supports low 

population densities (for bacteria) to minimize the potential for cross-feeding on, 

or inhibition by, secreted by-products. Frequency-dependent interactions are 

weak in most populations, although stronger in some others (23). Also, such 

interactions should favor organisms that are more fit than their immediate 

predecessor, but they are not expected to amplify gains relative to a distant 

ancestor, as fitness was measured here. In fact, such interactions may cause 

fitness to fall relative to a distant ancestor (24). In any case, small-effect 

beneficial mutations should allow fitness to increase far into the future.  

 At present, the evidence that fitness can increase for tens of thousands of 

generations in a constant environment is limited to the LTEE, but these findings 

have broader implications for understanding evolutionary dynamics and the 

structure of fitness landscapes. It might be worthwhile to examine fitness 

trajectories from other evolution experiments in light of our results, although data 

from short-term experiments may not suffice to discriminate between asymptotic 

and nonasymptotic trajectories. We hope other teams will perform long 

experiments similar to the LTEE and that theoreticians will refine our models as 

appropriate. 
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Materials and Methods: 

Evolution experiment:  

The long- term evolution experiment (LTEE) began in 1988, and it has continued 

(with occasional interruptions) since then (1). Six populations were founded from 

each of two variants of the same ancestral strain of Escherichia coli B (25). One 

ancestral variant, REL607, is able to grow on arabinose (Ara+) while the other, 

REL606, cannot (Ara–). The 12 populations are called Ara-1 to Ara-6 and Ara+1 

to Ara+6. They are maintained by daily serial transfer in 10 mL of Davis minimal 

medium supplemented with limiting glucose at 25 μg/mL (DM25). The cultures 

are held in 50-mL Erlenmeyer flasks and incubated with shaking at 120 rpm and 

37 °C. These conditions support a stationary-phase cell density of ~5 × 107per 

mL for the ancestral strain (1); the evolved populations tend to produce 

somewhat fewer and larger cells (19). The 1:100 dilution and re-growth allow 

log2100 ≈ 6.64 generations per day. The effective population size is ~3.3 × 107, 

which takes into account both the population bottleneck and re-growth (1). Every 

75 days (500 generations), after the populations have been transferred to fresh 

medium, glycerol is added to the remaining culture, the material is split between 

two vials and stored frozen at –80°C. The bacteria remain viable and can be 

revived for later study; the freezer samples thus provide a living fossil record.  

 

Populations with truncated fitness data:  

We obtained complete fitness trajectories for nine of the populations. However, 

the trajectories for three populations were truncated, even though the populations 
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themselves continued to evolve for the full 50,000 generations. Populations 

Ara+6 and Ara-2 no longer produced reliable colonies on the agar plates used to 

enumerate competitors in the fitness assays after 4000 and 30,000 generations, 

respectively. Ara-3 evolved the ability to use the citrate in the DM25 medium, 

which led to a greatly increased cell density (26) and other complications for 

assessing fitness, and therefore its fitness was only measured through 32,000 

generations. The same three populations were also excluded from the assays 

comparing fitness levels at 40,000 and 50,000 generations. 

 

General procedures for fitness assays:  

 Fitness is measured by mixing two bacterial strains or populations and 

assessing their relative growth rates during head-to-head competition. In this 

study, all competitions were performed in the same DM25 medium and other 

culture conditions as used in the LTEE. The competitors were distinguished on 

the basis of an arabinose-utilization marker, which is selectively neutral under 

these conditions (1); Ara– and Ara+ cells form red and white colonies, 

respectively, on tetrazolium-arabinose (TA) agar plates. To begin, samples of the 

population of interest and the reciprocally marked reference competitor were 

taken from the freezer, transferred into 10 mL of Luria Broth (LB), and grown 

overnight at 37 °C. These cultures were then diluted 100-fold in saline solution, 

and 100 μL of the dilutions were inoculated separately into 9.9 mL of DM25. 

These cultures were incubated for 24 h under the same conditions as the LTEE, 

such that each competitor was comparably acclimated to those conditions. To 
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start the actual competition, 50 μL from each acclimation culture were inoculated 

into 9.9 mL of DM25 and mixed together. An initial 100-μL sample was taken 

immediately after mixing, then diluted and spread on a TA plate to enumerate the 

initial density of each competitor. The competition culture was then incubated 

under the same conditions as the LTEE.  For assays used to obtain the fitness 

trajectories, a final 100-μL sample was taken after 24 h, diluted, and plated on TA 

agar. For assays comparing fitness levels between 40,000 and 50,000 

generations, the competitions were propagated through daily 100-fold dilutions 

until, after three days, a sample was taken to enumerate the final density of each 

competitor. In each case, relative fitness was calculated as the ratio of the 

realized Malthusian parameters of the two competitors over the course of the 

competition (1). For the one-day assays, fitness was calculated simply as 

  , 

where A and B are the respective densities of the evolved population and 

reference competitor, and subscripts i and f indicate initial and final densities, 

respectively. For the three-day assays, the final densities were both multiplied by 

10,000 to account for the two additional cycles of dilution and re-growth. In either 

case, this metric encompasses any and all differences between the competitors 

in their lag, growth, and stationary phases over the same serial-transfer cycle as  

used in the LTEE itself (1, 19).  
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Specific procedures for comparing fitness levels between 40,000 and 50,000 

generations: 

 In general, the statistical error associated with competition assays 

becomes larger as the difference in fitness increases, because the losing 

competitor becomes increasingly rare and its abundance less certain in the final 

sample. Given the small fitness changes expected in later generations, we 

decided to compete the 40,000- and 50,000-generation populations against a 

late-generation competitor rather than the ancestor in order to reduce the fitness 

differential and thereby improve statistical power. To that end, we used a clone, 

REL10948, sampled from population Ara-5 at 40,000 generations, and we 

isolated an Ara+ mutant of that clone, REL11638, by plating millions of cells on a 

minimal medium supplemented with arabinose. Competition assays confirmed 

that the marker was selectively neutral on this background under the conditions 

of the LTEE. Samples from the nine populations (excluding the three with 

truncated fitness trajectories) at generations 40,000 and 50,000 were competed 

against the reciprocally marked reference clone for three days. Each pairwise 

competition was replicated six-fold in a complete-block design. 

 

Specific procedures for obtaining fitness trajectories through 50,000 generations: 

 To ensure uniformity of procedures, all of the data used to characterize 

the long-term fitness trajectories were based on one-day competitions against 

the reciprocally marked ancestral clone, either REL606 (Ara–) or REL607 (Ara+). 

All of the generational samples from a given population were simultaneously 
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placed in competitions, and each complete time-series was replicated twice at 

different times (with a few missing values caused by procedural errors). The 

fitness trajectory for each individual population was fit using the replicate values 

at each time point. The trajectory for the grand-mean fitness of the ensemble of 

populations was fit using the average of the replicate values for each population 

at each time point. 

 

Statistical analyses: 

 All of the statistical analyses of experimental data were performed using 

the R software suite (version 2.14.1). The hyperbolic and power law models were 

fit to the fitness trajectories using the nls function in R. Both models have two 

parameters, and they are not nested, so they cannot be compared using 

likelihood-ratio or F tests. Instead, we compare them using Bayesian Information 

Criterion (BIC) scores (27). To calculate the 95% confidence interval for the 

diminishing-returns parameter g for populations that retained the low mutation 

rate throughout, we first calculated the confidence interval for a using the 

estimates from the six corresponding populations. The endpoints of that interval 

were then transformed to g values based on the relationship g = 1 / (2a). As a 

consequence, the interval for g is asymmetric around the point estimate. The 

datasets and analysis scripts have been deposited in the Dryad database. 
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Derivation of theory:  

The derivation of the theory that generates the power-law dynamics was 

checked by obtaining numerical solutions using Wolfram Mathematica (version 

8.0). The script has been deposited in the Dryad database. To examine the 

possible effects of co-occurring beneficial mutations, we used LabVIEW 2010 

(version 10.0.1) to simulate the dynamics of mean fitness and fixed beneficial 

mutations; these dynamics were then compared to predictions from our theory, 

which does not consider multiple co-occurring mutations. In particular, adaptation 

was simulated using a Wright-Fisher model with discrete generations. Distinct 

genotypes were tracked along with their corresponding frequencies, fitnesses, 

and α values. Binary fission was simulated by updating each genotype’s 

population size in the following generation by drawing from a binomial distribution 

with 2x trials and (1/2)(  /  ) success probability in each trial, where x and  

are the genotype’s population size and fitness, respectively, and  is the mean 

fitness of the entire population. Each generation, a number of beneficial 

mutations (drawn from Poisson distribution with mean Nµ, where N is the total 

population size and µ is the beneficial mutation rate) were assigned randomly to 

genotypes (with probability weighted by x), with the mutant designated as a new 

genotype with new fitness , where s is drawn from an exponential 

distribution , and new value   

 The full derivation of dynamical model of long-term fitness trajectory that 

incorporates clonal interference and diminishing-returns epistasis can be found in 

www.sciencemag.org/content/342/6164/1364/suppl/DC1, the Supplementary 
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Materials for this paper.  We have omitted this for the purposes of this 

dissertation, as the model was derived by Noah Ribeck. 

 For trajectories with μ > 10−8 that match the best fit to the populations that 

retained the ancestral mutation rate, the model predicts ~13 fixation events of 

beneficial mutations over the course of 20,000 generations. However, 45-50 

mutations were discovered by sequencing the genomes of clones from two LTEE 

populations that were not hypermutators at that time (10, 28).  Some of the 

discrepancy may reflect neutral mutations that hitchhiked along with beneficial 

ones. However, this explanation is insufficient given the paucity of synonymous 

substitutions (22), the prevalence of parallel changes across replicate 

populations (10), and the results of competitions between isogenic strains (10). 

 Another factor that could contribute to this discrepancy is the sequential, 

one-at-a-time fixations of beneficial mutations assumed by our model of clonal 

interference. That is, a single fixation event may sometimes involve multiple 

beneficial mutations. At high Nµ , “cohorts” of multiple beneficial mutations can 

co-occur in the same lineage before one of them fixes and, in some cases, they 

may alleviate the effect of clonal interference on the rate of adaptation (18, 29). 

Some theoretical work has examined the effect of co-occurring beneficial 

mutations on the rate of adaptation (18, 29–32), but its direct application here is 

prevented by the pervasive epistasis in our model. At intermediate Nµ , selective 

sweeps are sometimes caused by a single large-effect beneficial “driver” 

mutation accompanied by a weakly beneficial passenger that hardly affects the 
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dynamics of adaptation (29, 30). Indeed, such weakly beneficial passenger 

mutations have been observed in the LTEE populations (33, 34). 

 To test whether our theoretical model is accurate, despite ignoring cohorts 

of beneficial mutations, we ran individual-based simulations of asexual 

populations for a range of µ values, each with the corresponding value of  

such that the simulation matches the best fit to the fitness trajectories for the 

populations that retained the low mutation rate throughout the LTEE (Figure 

2.3A). These simulations show that fitness trajectories are consistent across a 

wide range of (µ, ) values, and they closely match the theoretical fitness 

trajectory that assumes one-at-a-time fixations (Figure S2.6). Thus, our 

theoretical model with its simplifying assumptions does well with respect to the 

fitness trajectory. With respect to genomic evolution, the individual-based 

simulations show a number of fixed beneficial mutations that is slightly higher 

than the theoretical values for µ > 10−7, with the discrepancy increasing with 

higher µ (Figure S2.6). Taken together, these observations are consistent with 

the intermediate Nµ regime, where weakly beneficial passengers occasionally fix 

along with highly beneficial drivers but do not appreciably affect the rate of 

adaptation. The pervasive diminishing-returns epistasis inherent to our model 

likely reduces the effect of weakly beneficial passenger mutations relative to 

previous theory that does not include this epistasis. 

 From our analysis of the effect of hypermutators on fitness trajectories 

(Figure 2.4), we estimated the ancestral rate of beneficial mutations to be 1.7 × 

10−6. At this rate, however, the simulations predict only ~14 beneficial mutations 
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to fix by 20,000 generations. Therefore, weakly beneficial passenger mutations—

at least those that occur at typical point-mutation rates—cannot account for the 

discrepancy between the observed number of mutations in the LTEE and that 

predicted by both theory and simulations. Instead, we suspect that certain types 

of insertion and deletion mutations that occur at much higher rates than point 

mutations (33–35)—in particular those that are neutral or nearly neutral—might 

help to explain why the rate of genomic evolution exceeds the number of 

beneficial fixation events to the extent that it does. In that respect, it is noteworthy 

that the two weakly beneficial mutations that fixed early in the most intensively 

studied LTEE population, Ara-1, were non-point mutations of types known to 

occur at unusually high rates (33–35). More generally, 16 of the 45 mutations in a 

20,000-generation clone from that population were non-point mutations (10), 

which potentially reduces by about half the discrepancy between the observed 

number of mutations and the number predicted by theory and simulations. 

 For the number of observed fixed mutations to be in close agreement with 

the simulations would require a higher ancestral beneficial mutation rate than we 

have estimated here (Figure S2.6). In fact, we cannot rule out this possibility. For 

simulations with µ = 10−4, the fitness trajectory is slightly higher than the theory 

predicts, indicating entry into the high Nµ regime, where co-occurring beneficial 

mutations alleviate the inhibitory effect of clonal interference on the rate of 

adaptation. If the hypermutators have entered this regime, then our theory would 

underestimate the fitness trajectory, and our derived estimate of the beneficial 
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mutation rate would be too low.  We therefore interpret our estimate of µ = 1.7 × 

10−6 for the ancestral beneficial mutation rate to be a lower bound on the actual 

value. 

 Reflecting these complications and uncertainties, our dynamical model 

cannot predict the overall rate of genomic evolution. However, we can use the 

model’s predicted rate of fixation events as a proxy for the overall rate. Figure 

S2.5 shows the predicted fixation trajectory and the corresponding mean fitness 

trajectory that fits the LTEE data for the populations that maintained the low 

ancestral mutation rate. Both the rate of fitness improvement and the rate of 

fixation events decline over time; however, the deceleration in the rate of fixation 

events is much less pronounced, giving the appearance of relative constancy. It 

has also been shown elsewhere, using another theoretical framework, that 

evolution on fitness landscapes with antagonistic (e.g., diminishing-returns) 

epistasis can produce nearly linear fixation trajectories (4). In any case, the 

difference in the relative curvature of the trajectories for mean fitness and 

genomic evolution observed in the LTEE (10) is consistent with our model. 

 Parameterization of diminishing-returns epistasis fits well with other data 

from the LTEE. Khan et al. (6) constructed the 32 possible combinations of the 

first five mutations that fixed in the Ara-1 population. The fitness of each 

construct was then measured against the ancestor, providing estimates of the 

marginal effect of each mutation on backgrounds of varying fitness. Three of the 

mutations—those affecting the topA, spoT, and glmUS genes—exhibited 

significant diminishing-returns epistasis, i.e., they had smaller beneficial effects in 
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higher fitness backgrounds. Of the other two, one was nearly neutral and showed 

no significant trend, and one exhibited positive epistasis. Here, we compare the 

data for the three mutations with diminishing-returns epistasis to the best-fit 

parameter g obtained from our theoretical model of long-term adaptation. From 

our model, we expect the effects of beneficial mutations to scale as: 

, or , or equivalently: 

 . 

Figure S2.4 shows fits of this equation to these independently measured data, 

which appear consistent with the general form of diminishing-returns epistasis 

assumed in our theoretical model.  

 Khan et al. (6) concluded there is a tendency toward diminishing-returns 

epistasis among beneficial mutations. However, the magnitude of that epistasis 

seems to vary even among the mutations that clearly show diminishing returns, 

as evidenced by the best-fit g values of 3.1, 2.9, and 7.2 for the mutations 

affecting topA, spoT, and glmUS, respectively. In comparison, the dashed curve 

in Figure S2.4 corresponds to g = 6.0, which derives from 50,000 generations of 

fitness measurements for all six populations that maintained the low ancestral 

mutation rate throughout 50,000 generations. This value is our best estimate of 

the mean strength of diminishing-returns epistasis for the LTEE as a whole. 

 As a technical aside, we note that our model is meant for use in the long-

time limit. However, by evaluating here, it is also reasonably accurate for 
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values of  near 1. For the values of s/s0 shown in Figure S2.4, this 

approximation is accurate to within ~10% at w = 1.3.
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Figure S2.1: Comparison of the fit of the hyperbolic (red) and power-law 
(blue) models to the fitness trajectories for the 12 individual Escherichia 
coli populations. (A) Ara-1. (B) Ara-2. (C) Ara-3. (D) Ara-4. (E) Ara-5. (F) Ara-6. 
(G) Ara+1. (H) Ara+2. (I) Ara+3. (J) Ara+4. (K) Ara+5. (L) Ara+6. Three 
trajectories are truncated because of difficulties in measuring fitness that arose in 
those populations, as explained in the Materials and Methods.
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Figure S2.2: Comparison of hyperbolic and power-law models in terms of 
squared deviations between their fit trajectories and measured grand-mean 
fitness values over time.  (A) Difference in squared deviations between the two 
models; positive values indicate the power law provides a better fit.  The dashed 
line shows the average difference in squared deviations over 50,000 generations.  
(B) Cumulative squared deviations between the hyperbolic (red circles) and 
power-law (blue triangles) models and the measured values over time.
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Figure S2.3: Comparison of hyperbolic and power-law models in their ability 
to predict future fitness values from temporally truncated datasets.  (A) Fit 
of the hyperbolic model to all 12 populations using data from several subsets of 
generations (light red) or from all 50,000 generations (dark red).  The subsets, 
from bottom to top, include data through 5000, 10,000, 20,000, 30,000, and 
40,000 generations.  The underestimation of the later values becomes 
progressively more severe as the data are truncated at earlier time points. (B) Fit 
of the power-law model to all 12 populations using data from several subsets of 
generations (light blue) or from all 50,000 generations (dark blue).  The subsets 
include data through 5000, 10,000, 20,000, 30,000, and 40,000 generations, and 
all are very close to the trajectory fit to the complete 50,000 generations.  Error 
bars are 95% confidence limits based on replicate populations.
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Figure S2.4: Parameterization of diminishing-returns epistasis based on the 
fit of the dynamic model to the fitness trajectories accords well with 
independent data on the form and strength of epistasis from the LTEE.  
Each set of points shows the beneficial effect of adding an individual mutation to 
different progenitor backgrounds of varying fitness, as measured by Khan et al. 
(6) using the first several mutations that fixed in the Ara-1 population.  The solid 
colored curves are fits to the parameterization of diminishing-returns epistasis 
used in our theoretical model, giving g values of 3.1 for the addition of a 
beneficial mutation in topA, 2.9 for spoT, and 7.2 for glmUS.  The black dashed 
curve corresponds to g = 6.0, the value that provides the best fit of the power-law 
model to the fitness trajectories of the populations that retained the low ancestral 
mutation rate throughout the 50,000 generations.
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Figure S2.5: Predicted number of beneficial fixation events in relation to the 
fitness trajectory, based on the theoretical model with clonal interference 
and diminishing-returns epistasis.  The expected fitness trajectory and 
number of fixation events are shown for the follow set of parameters: 

, , , and . 
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Figure S2.6: Numerical simulations of fitness trajectories show good 
agreement with the theory over a wide range of the beneficial mutation rate 

.  Simulations of the theory of clonal interference with diminishing-returns 
epistasis are shown, with different colors representing different pairs of the 
parameters  and (each curve is labeled by its ) that equivalently give the 
best fit to the set of the populations that maintained the ancestral mutation rate 
for 50,000 generations (Figure 2.3A).  The dashed line represents the theoretical 
fitness trajectory for this family of parameters.  Deviations from the theory at early 
times are small for simulations with ; deviations at lower are caused by 
the small approximation.  Deviations from the theory at later times are 
negligible for ; deviations at higher result from co-occurring beneficial 
mutations.  All simulations were run with and .  Curves are 
based on the mean fitness from multiple runs, with 3 runs for , 50 each 
for  and , 200 for , 500 for , and 2000 each 
for and .  The inset panel shows the mean number of beneficial 
mutations fixed in each set of simulations at 20,000 generations, compared to the 
number predicted by the theory, which does not account for co-occurring 
beneficial mutations. 
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Figure S2.7: Hypothetical growth kinetics of evolved (blue) and ancestral 
(black) competitors that would produce a relative fitness of ~4.7.  The LTEE 
ancestral strain grows with a doubling time of 55 minutes, following a lag phase 
of 90 minutes.  The hypothetical evolved population has a doubling time of ~23 
minutes without any lag.
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Table S2.1: Differences in Bayesian Information Criteria (BIC) scores 
between hyperbolic and power-law model trajectories fit to the measured 
fitness values.  Contrasts are based on: (a) the full dataset including all 12 
populations and all time points available for each population; (b) the dataset 
excluding 3 populations with incomplete fitness trajectories; and (c) the dataset 
excluding 6 populations that evolved hypermutability.  A BIC difference >10 is 
considered to provide very strong support for one model over another (27), which 
can also be expressed as a posterior odds ratio. 
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Table S2.2: Differences in BIC scores between the hyperbolic and power-
law trajectories fit to the measured fitness values for 12 individual E. coli 
populations.  The column labeled “Complete?” indicates whether the 
population’s fitness trajectory extended the full 50,000 generations (“Yes”) or was 
terminated at an earlier generation (“No” followed by the last generation with 
fitness data in Figure S2.1).  The column labeled “Hypermutator?” indicates 
whether the population evolved hypermutability (“Yes” followed by the 
approximate generation when the hypermutable genotype become the majority 
(10, 28, 36) ) or retained the low ancestral mutation rate throughout (“No”).  An 
odds ratio >1 or <1 indicates support for the power law or the hyperbolic model, 
respectively. 
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Table S2.3: Analysis of variation to test for heterogenetic ln values among 
the six populations that maintained the low ancestral mutation rate 
throughout the LTEE.  Each fitness trajectory was replicated twice, giving two 
estimates of the power-law exponent  and, using the relationship , two 
estimates of the diminishing-returns parameter .   
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Table S2.4: Parameter estimates for the power-law model fit to each 
individual population’s measured fitness values.  Parameter estimates for the 
exponent a and scaling factor b are also shown for the model fit to the set of all 
12 populations and to the subset of six populations with complete trajectories that 
maintained the low ancestral mutationr ate throughout the 50,000 generations.  
The column labeled “Complete?” indicates whether a population’s fitness 
trajectory extended for the full 50,000 generations “Yes”) or was terminated, 
shown as the last generation with fitness data.  The column labeled 
“Hypermutator?” indicates whether the population evolved hypermutability, 
shown by the approximate generation when the hypermutable genotype became 
the majority, or retained the ancestral mutation rate throughout (“No”).  The 
column labeled  shows the estimate of the diminishing-returns epistasis 
parameter in the dynamical model, calculated using .  However, for 
populations that evolved hypermutability, the change in mutation rate 
complicates the fit of the power law and the estimation of those parameters.  As 
shown in Figure 2.4, the change in mutation rate can explain the difference in 
trajectories between the hypermutator populations and those that retained the 
ancestral mutation rate, without any change in the diminishing-returns parameter 

.  For that reason, the estimates of  are inaccurate for the populations that 
evolved hypermutability before their trajectories were terminated (  values 
shown in brackets). 
 

From M. J. Wiser, N. Ribeck, R. E. Lenski, Long-term dynamics of adaptation in 
asexual populations. Science. 342, 1364–1367 (2013). Reprinted with permission 
from AAAS.
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CHAPTER 3: PERSISTENT AMONG-POPULATION VARIANCE IN FITNESS 

IN A LONG-TERM EVOLUTION EXPERIMENT WITH ESCHERICHIA COLI 

 

Authors: Michael J. Wiser and Richard E. Lenski 

 

Abstract: 

 Adaptive landscapes for real populations are difficult to characterize both 

qualitatively and quantitatively, in part because individual natural populations 

often occupy only one small region of any given landscape.  However, variation 

in fitness across independent experimental populations can provide insight about 

the adaptive landscapes on which they evolve.  Previous research has 

addressed how mean fitness changes in populations over time, but there has 

been much less work on how variation among populations changes over time.  

Here, we investigate populations from a long-term evolution experiment (LTEE) 

in Escherichia coli that evolved for 50,000 generations. We look collectively at 

the populations to measure the trajectory of the among-population variance in 

fitness over that time.  We further measure the relative fitness of pairs of evolving 

populations, and compare these measurements to predictions based on each 

individual population’s fitness relative to the ancestor.  We find persistent among-

population variance in fitness, providing evidence that the populations have not 

converged – and probably are not converging – to the same fitness level in the 

adaptive landscape.  Our data indicate a rich and complex adaptive landscape 

even in a simple and nearly constant physical environment. 
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Introduction: 

 In order to understand how evolution will unfold over long time periods, it 

is critical to understand how variance within the population changes over time.  If 

variance within a population remains substantial, there will be sufficient 

differences among individuals for natural selection to operate.  However, if 

variance diminishes to negligible levels, the rate of adaptation will slow 

dramatically, and perhaps even come to a stop.   

 As a thought experiment, consider a hypothetical population with a finite 

number of possible beneficial mutations.  Without some sort of change to the 

environment causing additional mutations to be beneficial, the population will 

inevitably reach a point of having incorporated the full set of beneficial mutations.  

At this point, adaptation would essentially stop, except for second-order effects 

such as the population moving to regions of the landscape that limit the 

deleterious impact of new mutations (1).  In such a case, the process of evolution 

is limited by the availability of beneficial mutations; once those mutations are 

incorporated, the stock of potentially adaptive mutations has been exhausted, 

and the population stagnates. 

 In real populations, there are at least two ways in which the supply of 

beneficial mutations can be refreshed.  One is epistasis: that is, some mutations 

may not be beneficial at the moment, but would be beneficial on a different 

genetic background (2).  Every step along an adaptive trajectory thus brings an 

individual to a new area of the adaptive landscape.  While the number of 
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mutations that are beneficial at any one point is finite, that does not necessarily 

mean that there are a finite total number of potentially adaptive mutations; in fact, 

because genome length is variable, we cannot a priori list all possible genotypes.  

A second possibility is that the environment could change.  For example, the 

availability of a new resource may favor mutations allowing use of that resource, 

while absence of the resource prevents those mutations from being beneficial (3, 

4).  Changes in the environment can also involve biotic interactions; changes in 

predator, prey, competitor, or mutualist populations can all alter what mutations 

will be favored within a given population (5, 6). 

 Looking beyond any single population, the variance among populations 

provides insight into the topology of the underlying fitness landscape.  While 

each population in nature typically experiences a different environment, and 

hence evolves on a different fitness landscape, theory and experiments allow us 

to consider the case of initially identical populations evolving under identical 

conditions. In the theoretical case described above, in which each individual 

population has exhausted the within-population variance, there are still two 

possible outcomes for the among-population variance.  First, if there is only a 

single accessible fitness peak (a smooth landscape), then the among-population 

variance should eventually drop to zero because all of the populations approach 

the same equilibrium mean fitness.  Second, if multiple peaks exist and are 

accessible (a rugged landscape), then different populations may reach different 

fitness peaks.  Because populations can become stuck at the sub-optimal peaks 

in a rugged landscape, evolutionary outcomes will be more variable in rugged 
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adaptive landscapes than in smooth ones (7), and the among-population 

variance in fitness may remain positive indefinitely. 

 From previous work (8), we already know that 50,000 generations has not 

been enough time for populations to reach fitness peaks in the LTEE.  Instead, 

the grand mean fitness is well described by a power law, of the form 

  

where w is fitness, T is time in generations, and a and b are model parameters.  

Because the power law does not have an asymptotic limit – fitness keeps 

increasing indefinitely in this model – it implies that the evolving populations are 

so far from the top of whatever peaks might exist that it is not useful to think of 

them reaching these peaks over 50,000 generations, or even over much longer 

timescales.  Therefore, we do not expect the among-population variance in 

fitness to decline to zero in this time frame.  However, we might be able to use 

estimates of the among-population variance in fitness, and especially its 

trajectory over time, to infer more information about how the set of population 

fitness trajectories map onto the adaptive landscape.  If the among-population 

variance remained zero (i.e., its initial state given that the populations all started 

from the same ancestor) throughout the evolution experiment, then this would 

imply that either i) the populations are all following the same adaptive path, or ii) 

the populations are on different paths that nonetheless map onto regions of the 

adaptive landscape with parallel slopes.  Conversely, if the among-population 

variance continues to exceed zero indefinitely, then this implies that either i) the 

different populations are following different paths, or ii) the timing of the 
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appearance of equivalent beneficial mutations varies enough to sustain the 

among-population variance in fitness.   

 

Meanings of changes in variance: 

 To better understand evolutionary dynamics in this system, we examine 

how the variance in fitness changes over evolutionary time.  By definition, the 

populations in the LTEE have no variance in fitness at generation 0, as all 

populations have the same fitness.  Previous work showed that among-

population variance in fitness increased over the first 10,000 generations in this 

experiment.  Lenski and Travisano (1994) suggested that this among-population 

variance in fitness may have leveled off, but did not explicitly test whether an 

asymptotic model provided a better fit to the data than did an unbounded model  

(9).  There are three hypothetical possibilities of how variance in fitness changes 

after these first 10,000 generations: continued increase, constancy, or decrease 

after the initial increase. 

 One possibility is that among-population variance in fitness continues to 

increase across the 50,000 generations of data.  This possibility is most 

consistent with populations continuing to explore different areas of the fitness 

landscape, or else exploring the same peak but at very different rates by climbing 

faces with different slopes.  Because our previous work showed no evidence for 

populations reaching fitness peaks (8), we hypothesize that this is the most likely 

scenario. 
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 Another possibility is that among-population variance in fitness could 

increase for some length of time before reaching a plateau.  This possibility is 

most consistent with a scenario in which different populations explore different 

peaks in the adaptive landscape, eventually reaching peaks of different heights.  

Because each population would reach its own fitness maximum, variance in 

fitness would stop increasing once all of the populations reached their fitness 

peaks.  Alternately, different populations could reach regions of the fitness 

landscape where they experience the same slopes as each other, leading to a 

consistent variance in fitness.  Because we saw no evidence of populations 

reaching fitness peaks in previous work (8), and because truly parallel slopes are 

mathematically unlikely, we do not expect this result to occur. 

 A third possibility is that after an initial increase, among-population 

variance in fitness could decrease.  This possibility is most consistent with 

different populations exploring different routes to the same fitness peak – or 

different peaks of the same fitness – and then converging together at the 

peak(s).  Again, because our previous work showed no indication of populations 

reaching fitness peaks, we do not expect this scenario to occur. 

 

Study System: 

 The Long-Term Evolution Experiment (LTEE) is an ongoing evolution 

experiment, using populations of the bacteria E. coli.  This experiment has been 

described in detail in previous chapters, but a brief summary follows.  The 

experiment consists of twelve populations of E. coli, each descended from a 
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common ancestor.  Six of the populations are Ara+, capable of growing on the 

sugar arabinose as their sole carbon source; the other six populations are Ara-, 

unable to grow on arabinose as a sole carbon source.  Each population exists 

within a separate 50 mL Erlenmeyer flask, with the cells growing in a growth 

medium of Davis Minimal salts supplemented with 25 mg/L glucose (DM 25).  

Each day, a member of the research team transfers 0.1 mL of the previous day’s 

culture into 9.9 mL of fresh DM 25, repeating separately for each of the twelve 

populations, and places the new cultures in a shaking incubator at 37 oC and 120 

rpm.  All populations grow rapidly enough to exhaust the available glucose prior 

to the next transfer.  Every 75 days, corresponding to every 500 generations, 

frozen samples are made from each of the LTEE populations, and stored at –80 

oC. 

 

Previous work: 

 Lenski and Travisano (1994) previously showed that in the LTEE, among-

population variance in fitness increased during the first 10,000 generations of the 

experiment (9).  By 10,000 generations, they calculate an among population 

standard deviation in fitness of between 0.04 and 0.05.  Interestingly, though they 

fit a curve to the among-population standard deviation in fitness as a form of a 

hyperbola, they did not test whether the hyperbola is a better fit than a linear 

regression.  This data, Figure 7 within the original paper, is reproduced here as 

Figure 3.1. 
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Figure 3.1: Among-population standard deviation in fitness over the first 10,000 generations across all 
populations in the LTEE.  Data from Lenski and Travisano (1994).
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This figure has been replicated from the summary data available from 

Lenski’s website (10).  Because only summary data is available, not all of the 

analyses we will be performing on our other data are applicable to this data set.  

However, it is clear that there is appreciable among population variance in fitness 

during the first 10,000 generations of this experiment. 

 

Fitness assays: 

 We performed fitness assays much as discussed previously (Chapters 1 

and 2).  Each of these assays has one, but only one, of two differences from the 

Traditional method outlined in Chapter 1.  One, in almost all cases, we performed 

competitions over the course of three days (roughly 20 generations) rather than 

one day (roughly 6.67 generations).  These additional generations allow greater 

precision in fitness, but require that the two competing populations have fitness 

differences no more than approximately 10%.  In five individual measurements of 

592 three day competitions, the plate from day 3 was uncountable due to error; in 

these cases, we used the counts and dilution factor from day 2 instead, making 

these two day (roughly 13.33 generation) competitions.  In three additional 

individual measurements, the plate from day 0 was uncountable; we excluded 

these three measurements. 

 

Statistical methods: 

 To calculate the among-population variance in fitness, we followed the 

procedure outlined in Sokal and Rohlf (1995) (11).  We treated each time point 
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separately.  Within each time point, we performed an ANOVA, with Population as 

a random effect.  From these ANOVAs, we subtracted the mean square error 

term from the mean square population term.  We divided this difference by the 

number of replicate blocks.  This produces an estimate of the among-population 

variance.  To obtain an estimate of the among-population standard deviation, we 

first preserved the sign of the variance estimate, and then calculated the square 

root of the absolute value of the variance estimate.  Because the among-

population standard deviation in fitness is simply the square root of the among-

population variance in fitness, broad-scale patterns (i.e. increases, decreases, or 

consistency) will be consistent across the two calculations. 

 All statistical analyses were performed in R version 3.0.2 (12).  The local 

smoothing function was fit with the loess() command. 

 

Results and Discussion: 

 In Figure 3.1, we have replicated a figure from a previous study that 

examined among-population standard deviation in fitness over the first 10,000 

generations of the experiment.  Before we look at additional data, it is worth 

taking a moment to interpret these findings. 

 One immediate point to notice in Figure 3.1 is that the estimate of the 

among-population standard deviation varies from one measured time point to 

another.  Part of this difference likely reflects real changes in the degree to which 

different populations have achieved different levels of fitness over time.  Part of 

the difference, however, is due to measurement error.  Indeed, this measurement 
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error can clearly be seen in the estimates for generations 8,000 and 9,000, when 

the estimated among-population standard deviation in fitness is negative.  This 

negative result is directly due to measurement error – when the ANOVA mean 

square error term is larger than the mean square population term, the estimate 

will be a negative number.  The magnitude of these negative numbers, though, 

can give us an indication of the size of this measurement error.  The fact that the 

majority of the positive estimates of among-population standard deviation in 

fitness (14 out of 18) are greater than the largest of the negative estimates is a 

strong point in favor of the among population standard deviation being 

appreciably greater than 0.  Therefore, these populations are achieving different 

fitness values. 

 As an initial look at how among-population variance has changed in the 

first 50,000 generations of the LTEE, we calculated the among population 

standard deviation in fitness from the data set (13) that formed the basis of 

Chapter 2.  That data is presented in Figure 3.2.  

 In Figure 3.2, we can see that among-population standard deviation in 

fitness has remained mostly positive across the first 50,000 generations of 

evolution in the LTEE.  However, the relative number of negative estimates has 

also increased later on in the experiment; half of the estimates after 30,000 

generations are negative.  There are several possible causes of this.  
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Figure 3.2: Among-population standard deviation in fitness calculated across all populations in the LTEE.  Data 
from Wiser et al (2013). 
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LTEE became hypermutators during the time period studied here (8, 14, 15), with 

an additional one becoming a hypermutator after it was already excluded (16).  

These hypermutator populations will therefore have more diverse populations, 

and consequently greater measurement error in population fitness.   

 Because our previous results have already shown that increases in the 

mutation rate of a population lead to increases in fitness (8), we would expect 

that including populations that have become hypermutators at different times 

would increase the among-population variance in fitness.  We therefore choose 

to restrict our analysis to just the six populations that maintained the ancestral 

mutation rate in order to make this a more conservative test.  Figure 3.3 shows 

the among-population standard deviation in fitness in the previous data, using 

only the six populations that maintained the ancestral mutation rate through all 

50,000 generations.  In these populations, we find that among-population 

variance in fitness is positive in 28 of the 40 generations after generation 0, a 

significant result (binomial test, one-tailed p = 0.008295).   

 To address lack of precision cause by low degrees of replication, we 

generated new data using a smaller number of time points, but a greater degree 

of replication at each time point – five replicate fitness measurements from each 

population at each time point, rather than two.  For this data set, data from each 

time point was collected separately, and thus there cannot be a Block effect in 

the relevant ANOVA, as all replicates of a given population from a given 

generation were conducted simultaneously.  In Figure 3.4 we present this data 

from just the six populations that did not become hypermutators: 
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Figure 3.3: Among-population standard deviation in fitness calculated across LTEE populations that did not 
become hypermutators.  Data from Wiser et al (2013). 
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Figure 3.4: Among-population standard deviation in fitness, calculated across LTEE populations that did not 
become hypermutators.  Data are new to this study. 
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As we can see from Figure 3.4, increasing the replication level on measurements 

decreases the relative frequency of negative estimates for the among-population 

standard deviation in fitness.  We find that eight of the eleven time points 

produce positive among-population standard deviation estimates.  This is not 

statistically significant (binomial test, one-tailed p=0.1133), although this test is 

very conservative and suffers from a low statistical power.  Although it would be 

tempting to interpret the variance as declining in the latest generations, we 

should be cautious about not over-interpreting the data.  Much of the apparent 

decline is driven by the negative estimate at 50,000 generations.  Overall, there 

is substantial agreement between our data sets on the among-population 

standard deviation in fitness early in the experiment, with decreasing precision in 

these measurements as populations deviate further from the ancestor. 

 

Komologrov-Smirnov tests: 

 Although many of the individual time points considered are not, 

themselves, statistically significant, we can still look for statistical significance in 

the data set as a whole.  Each individual among-population variance in fitness 

has an associated significance value, because the among-population variance is 

calculated from an ANOVA table.  Under a null distribution, we would expect the 

cumulative relative frequency of p-values to be equal to that p-value; in other 

words, 30% of the p-values would be 0.3 or less, 65% of the p-values would be 

0.65 or less, etc.  The Kolmogorov-Smirnov test allows us to compare the 

distribution of p-values from our series of ANOVAs to a null distribution and 
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determine whether we have an excess of small p-values; that is, whether our 

results as a whole are more significant than expected by chance. We have 

chosen to use a Kolmogorov-Smirnov test, rather than calculating a False 

Discovery Rate, as we are interested in whether there is overall evidence of a 

significant among-population variance in fitness within this data, and are not 

particularly interested in determining how many of the significant values are likely 

to only appear significant due to chance. 

 Figure 3.5 shows the cumulative relative frequency of p-values for our 

combined data set, considering only the six populations that maintained the 

ancestral mutation rate.  Many more of our p-values are at the small end of the 

distribution – particularly under 0.2 – than would be expected by chance.  This is 

a highly significant result (Kolmogorov-Smirnov test, 2-tailed, D=0.3024, 

p=0.0001239.  From this, we can see that although individual time points often do 

not show statistically significant among-population variance in fitness, the data 

set as a whole does. 

 The same basic pattern holds for both of the two data sets considered 

separately.  Figure 3.6 shows the cumulative frequency of p-values for just the 

Wiser et al (2013) data set, again considering only the populations that 

maintained the ancestral mutation rate.  These data are highly significant 

(Kolmogorov-Smirnov test, 2-tailed, D=0.2689, p=0.004812).  We see the same 

pattern in Figure 3.7 for the data set of higher replication but fewer time points.  

These data are highly significant (Kolmogorov-Smirnov test, 2-tailed, D=0.514, 

p=0.003187).   
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Figure 3.5: Cumulative frequency of p values among ANOVAs used to 
calculate among-population variance in fitness.  Points represent empirical 
data; the solid line at y = x shows the null expectation.  Data is combined from 
Wiser et al (2013) and new data for this study; populations that became 
hypermutators were excluded.
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Figure 3.6: Cumulative frequency of p values among ANOVAs used to 
calculate among-population variance in fitness.  Points represent empirical 
data; the solid line at y=x shows the null expectation.  Data from Wiser et al 
(2013).
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Figure 3.7: Cumulative frequency of p values among ANOVAs used to 
calculate among-population variance in fitness.  Points represent empirical 
data; the solid line at y=x shows the null expectation.  Data are new for this 
study. 

 87 



 Given that our data is highly significant in both individual data sets 

considered separately, as well as in our combined data considered as a whole, 

we conclude that there is significant evidence of among-population variance in 

fitness within our data.  This further strengthens our conclusion that our  

populations are not converging at the top of a single peak in the adaptive 

landscape. 

 

Using population pairs to examine finer scale differences: 

 The preceding analyses show that there is a substantial among-population 

variance in fitness across the first 50,000 generations of the LTEE.  This variance 

increases rapidly from 0 at the start of the experiment to significant levels within 

the first few thousand generations, and remains positive thereafter.  These 

analyses lack sufficient statistical power to state with confidence whether this 

variance continues to increase or remains at a constant level.  However, 

examining the among-population variance across a range of populations is not 

the only way to look at differences that have evolved across different populations. 

 From our previous work, we have already established fitness trajectories 

for individual populations within the LTEE (8).  We also know that our fitness 

assays are most precise when our two competitors have similar fitnesses (17).  

This poses a potential problem for accurately determining differences in fitness of 

two evolved populations late in the experiment: each one is being compared to a 

common ancestor, and thus each has an increasing measurement error.  

Further, comparing two different populations to a common competitor to 
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determine which one is competitively superior assumes complete transitivity in 

fitness; if A > B, and B > C, it assumes A > C, which may or may not be the case.  

 One obvious way to overcome these limitations is to compete different 

evolved populations against each other.  Competing populations directly against 

each other, instead of competing each against a common competitor, avoid the 

issue of error propagation from non-transitivity.  We would further expect 

populations that have been evolving in the lab for the same number of 

generations to have fitness values closer to each other than they would to their 

common ancestor, inherently reducing the impact of measurement error.  

Additionally, two populations of similar fitness can be competed against each 

over a larger number of generations, which increases the precision of our fitness 

measurements. 

 We therefore chose to compete pairs of evolved populations from each of 

the time points involved in the individual population fitness trajectories.  In order 

to make our pairings as independent as possible, we assigned each population 

to only a single pairing.  By making the population pairings independent, we 

reduce the capacity for one population to have excessive influence on our 

findings – similar patterns would be caused by similar evolutionary patterns, 

rather than the effect of a single population on multiple different pairings.   

 For each of our pairings, we need both an Ara+ and an Ara- population.  

Because our populations are labeled as Ara-1, Ara-2,…Ara-6, Ara+1, 

Ara+2…Ara+6, the simplest approach is to compete each Ara+ population 

against the equivalently numbered Ara- population.  This is not strictly necessary 
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– there is nothing in particular linking Ara+1 to Ara-1 more than to Ara-5.  Three 

of our populations become difficult to work with in later time points: Ara-2 and 

Ara+6 stop growing reliably on the TA medium and Ara-3 has a substantial 

population increase due to its ability to metabolize citrate in the presence of 

oxygen in later generations (3).  We competed Ara-2 against Ara+2 for the first 

30,000 generations, the time period in which Ara-2 grows reliably on TA plates. 

Similarly, we only consider competitions of Ara-3 against Ara+3 for the first 

32,000 generations of the experiment, as this is before the Cit+ population 

expansion.  We conducted competitions over the course of 3 days (roughly 20 

generations), with two replicate measurements at each generation.  We 

structured the replicates such that one measurement for each generation 

collectively formed a block, and we repeated this block a second time. 

 For the pairing of Ara+1 v Ara-1, we chose to expand the number of 

generations under consideration.  In the other pairings we looked at as many of 

the 40 distinct time points as possible that were used to establish individual 

population fitness trajectories (see Chapter 2). For this pairing, we looked at each 

500 generation interval across the first 50,000 generations.  Because 101 unique 

time points were too many to include in a single block, we had to split the time 

points into two separate collections.  We chose to do so in the form of one set of 

every generation evenly divisible by 1,000, and a second set of those 

generations ending in 500.  This interweaving, as opposed to splitting 

populations between early and late generations, reduces the likelihood of a 
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systematic temporal difference between blocks having a significant effect on the 

pattern of fitness change.   

 Figure 3.8 shows the fitness of population Ara-1 relative to population 

Ara+1 for the first 50,000 generations of the LTEE.  All of the graphs in this 

section follow the same basic format.  The light colored, open symbols represent 

each individual measurement of fitness.  The dark, filled symbols represent the 

average at each individual generation.  The line is a local smoothing function, 

finding the average trend through nearby points, without imposing a specific 

mathematical relationship across the data set as a whole.  From this figure, we 

can see that Ara-1 quickly gained a lead over Ara+1 in fitness, rising to about a 

5% advantage by 25,000 generations and maintaining that lead through 50,000 

generations.   

 It is not surprising that Ara+1 is lagging in fitness – previous findings 

(Chapter 2) showed that it has a substantially lower fitness than all other 

populations – but a comparison directly against another population allows us to 

glean additional information.  For one, the precision in these measurements is 

substantially greater than what we were able to obtain by competing the evolved 

populations against their ancestor.  Figure 3.9 places the data from Figure 3.8 in 

context with our expectations.  The light-colored, solid line is the ratio of the 

fitness of Ara-1 to Ara+1 from the curves fit in Chapter 2; the dashed lines to 

either side show the 95% confidence interval of this expectation, obtained 

through bootstrapping the data. 
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Figure 3.8: Ara-1 v Ara+1. Open symbols show each measured value of relative fitness from head-to-head competitions.  
The solid symbols are the mean at each time point.  The dashed gray line at 1.00 is the level at which the competitors 
have equal fitness.  The solid purple curve is a local smoothing function showing the general trend of the data. 
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Figure 3.9: Ara-1 v Ara+1. The solid light blue line shows the mean fitness of Ara-1 relative to Ara+1, based on 10,000 
bootstrap re-samplings of the data from Wiser et al (2013).  Dashed lines show the corresponding, non-parametric 95% 
confidence.  Open symbols show each relative fitness measured in a head-to-head competition.  The solid symbols are 
the mean at each time point.  The dashed gray line at 1.00 is the level at which the competitors have equal fitness.   
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 As we can see, the actual data differ from the expectations in a number of 

ways.  The expectations suggest Ara+1 would have a sizeable advantage at the 

earliest time points, while the empirical data show much less, or possibly no 

advantage for Ara+1 even at the earliest time points.  This is influenced by 

constraints on model fits.  All of the populations start out with the same fitness at 

generation 0, and all are fit to the same mathematical function, though with 

different parameter values.  In order for a population to have a steeper increase 

in fitness later in the experiment, it must by necessity have a shallower increase 

in fitness early in the experiment.  Therefore, the fact that Ara+1 shows a slow 

rate of increase in fitness in later time points requires it to have a relatively rapid 

increase in fitness early, which causes the prediction that it would have a higher 

fitness than anything it competed against at these early time points. The fact that 

our expectations are calculated from a ratio of two smooth power law curves 

means that we can only predict zero, one, or two changes in which population is 

gaining fitness more rapidly in any particular pairing.  Direct measurements of 

pairs of evolved populations could have many more changes in which population 

is gaining fitness more rapidly.   The expectations also suggest that Ara-1 would 

end up with a larger advantage over Ara+1 than it achieved, with a mean 

advantage in the 40,000+ generation range that is more consistent with the 

highest individual measurements than the means at each generation.  Further, 

the expectations show a widening uncertainty as time progresses, while the 

visible spread in measurements of fitness differential between the two 

populations remain roughly constant.   
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 It is also noteworthy that the fitness differential between these populations 

is as low as it is.  Even Ara+1, the population that has seen the least gain in 

fitness by 50,000 generations, is roughly 40% more fit than its generation 0 

ancestor.  That the fitness differential between the populations is only ~5% 

means that there has been a striking degree of parallelism in fitness changes 

across replicate populations.  Figure 3.10 shows this in stark contrast.  The two 

individual population fitness trajectories each increase markedly from the 

ancestor, while staying relatively close to each other.  As a consequence, both 

the expectation for, and the measured values of, their fitness relative to each 

other remains much closer to 1.  If anything, the measured population pair 

relative fitness is closer to 1 than the expectation is, suggesting that these 

populations have more similar fitness trajectories than each would appear from 

the individual trajectories against the ancestor. 

 The pairing of populations Ara-4 and Ara+4, shown in Figure 3.11, 

displays a somewhat different pattern than Ara-1 and Ara+1.  In this pairing, 

Ara+4 has a notable early lead of roughly 5% by 5,000 generation, but it is only 

temporary.  Ara-4 catches up by generation 10,000, and then takes a lead of its 

own of roughly 2-3% for the next several tens of thousands of generations.  From 

Figure 3.12, we can see that this pairing behaves largely as expected, with the 

majority of measured relative fitness points falling within the confidence interval 

of the expectations.  This is notable, because as we can see from Figure 3.13, 

populations Ara-4 and Ara+4 have individual population fitness trajectories that 

are much more similar to each other than Ara-1 and Ara+1 do.  Yet despite these  
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Figure 3.10: Ara-1 v Ara+1. The solid magenta curve shows the mean Power Law fitness trajectory for population Ara-1.  
The solid green curve shows the mean Power Law fitness trajectory for population Ara+1.  The solid light blue curve 
shows the mean fitness of Ara-1 relative to Ara+1.  Each of these lines is the mean across 10,000 bootstrap re-samplings 
of the data from Wiser et al (2013).  Dashed lines show corresponding non-parametric 95% confidence intervals around 
the solid curves.  Open symbols show each relative fitness measured in a head-to-head competition.  The solid symbols 
are the mean at each time point. 
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Figure 3.11: Ara-4 v Ara+4.  Open symbols show each measured value of relative fitness from head-to-head 
competitions.  The solid symbols are the mean at each time point.  The dashed gray line at 1.00 is the level at which the 
competitors have equal fitness.  The solid purple curve is a local smoothing function showing the general trend of the 
data. 
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Figure 3.12: Ara-4 v Ara+4. The solid light blue line shows the mean fitness of Ara-4 relative to Ara+4, based on 10,000 
bootstrap re-samplings of the data from Wiser et al (2013).  Dashed lines show the corresponding, non-parametric 95% 
confidence.  Open symbols show each relative fitness measured in a head-to-head competition.  The solid symbols are 
the mean at each time point.  The dashed gray line at 1.00 is the level at which the competitors have equal fitness.   
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Figure 3.13: Ara-4 v Ara+4. The solid magenta curve shows the mean Power Law fitness trajectory for population Ara-4.  
The solid green curve shows the mean Power Law fitness trajectory for population Ara+4.  The solid light blue curve 
shows the mean fitness of Ara-4 relative to Ara+4.  Each of these lines is the mean across 10,000 bootstrap re-samplings 
of the data from Wiser et al (2013).  Dashed lines show corresponding non-parametric 95% confidence intervals around 
the solid curves.  Open symbols show each relative fitness measured in a head-to-head competition.  The solid symbols 
are the mean at each time point.
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small differences between populations, compared to both of their substantial 

differences from the ancestor, we observe essentially the expected pattern in the 

empirical data. 

 Figure 3.14 shows the pairing of populations Ara-5 and Ara+5.  Much 

more so than the previous pairings, this one shows marked change over time.  

For the first 10- to 15,000 generations, Ara+5 has a substantial and widening 

advantage over Ara-5, reaching roughly a 5% advantage around generation 

15,000.   At this point, however, Ara-5 begins to rise in relative fitness, reaching 

roughly equal fitness to Ara+5 by approximately generation 35,000, and 

subsequently surpassing Ara-5, reaching a roughly 3% advantage over Ara+5 by 

50,000 generations.  From Figure 3.15, we can see that this broad-strokes 

pattern is very similar to what we expect – an initial lead for population Ara+5, 

followed by population Ara-5 catching up – but the measured fitness difference 

between the two populations is typically tilted more in favor of population Ara-5 

than expected.  As we can see in Figure 3.16, in the latest generations the two 

populations are expected to have such similar fitnesses that the confidence 

intervals overlap, though with population Ara+5 having the higher mean estimate.  

However, the direct competition data show population Ara-5 having a slightly 

higher mean estimate for fitness. 

 The pattern for the pairing of Ara-5 and Ara+5 is particularly striking, 

because it demonstrates how different populations can reach very different local 

regions of the adaptive landscape.  In Chapter 2, we saw that most of the 

population in the LTEE have fitness trajectories that follow power laws, including 
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Figure 3.14: Ara-5 v Ara+5. Open symbols show each measured value of relative fitness from head-to-head competitions.  
The solid symbols are the mean at each time point.  The dashed gray line at 1.00 is the level at which the competitors 
have equal fitness.  The solid purple curve is a local smoothing function showing the general trend of the data. 
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Figure 3.15: Ara-5 v Ara+5. The solid light blue line shows the mean fitness of Ara-5 relative to Ara+5, based on 10,000 
bootstrap re-samplings of the data from Wiser et al (2013).  Dashed lines show the corresponding, non-parametric 95% 
confidence.  Open symbols show each relative fitness measured in a head-to-head competition.  The solid symbols are 
the mean at each time point.  The dashed gray line at 1.00 is the level at which the competitors have equal fitness.   
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Figure 3.16: Ara-5 v Ara+5. The solid magenta curve shows the mean Power Law fitness trajectory for population Ara-5.  
The solid green curve shows the mean Power Law fitness trajectory for population Ara+5.  The solid light blue curve 
shows the mean fitness of Ara-5 relative to Ara+5.  Each of these lines is the mean across 10,000 bootstrap re-samplings 
of the data from Wiser et al (2013).  Dashed lines show corresponding non-parametric 95% confidence intervals around 
the solid curves.  Open symbols show each relative fitness measured in a head-to-head competition.  The solid symbols 
are the mean at each time point. 
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both Ara-5 and Ara+5.  Different parameter values within the power law can lead 

to different populations improving at different rates at various points in their 

evolution, but each individual population would be expected to follow a relatively 

simple trajectory in fitness over time.  However, measuring the populations 

directly against each other can show cases like this pairing, where one of the two 

gets an early lead, but that lead is subsequently lost as the initially-trailing 

population catches up and later surpasses the one with the faster start. 

 Figure 3.17 shows the pairing of Ara-2 and Ara+2.  This pairing only 

extends through the first 30,000 generations, before population Ara-2 no longer 

grows reliably on TA plates.  In this pair, Ara-2 takes a rapid early lead, climbing 

to approximately a 7-8% fitness advantage by 5,000 generations.  This trend 

then reverses, with the two populations reaching approximately equal fitness by 

generations 15,000.  Subsequently, population Ara-2 regains a lead, reaching a 

roughly 5% fitness advantage over Ara+2 by generation 30,000.  Interestingly, 

this is not even close to the pattern we expected, as shown in Figure 3.18.  Our 

expectation is for an initial advantage in population Ara+2, gradually shrinking or 

even disappearing by 50,000 generations.  This pairing shows an unusually wide 

confidence interval in its expectation.  This is likely influenced by how much of 

their individual fitness trajectories overlap; as we can see in Figure 3.19, the 

confidence intervals of Ara-2 and Ara+2’s individual fitness trajectories overlap by 

15,000 generations, and the mean values lie within each other’s confidence 

intervals by 25,000 generations. 
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Figure 3.17: Ara-2 v Ara+2. Open symbols show each measured value of relative fitness from head-to-head competitions.  
The solid symbols are the mean at each time point.  The dashed gray line at 1.00 is the level at which the competitors 
have equal fitness.  The solid purple curve is a local smoothing function showing the general trend of the data. 
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Figure 3.18: Ara-2 v Ara+2. The solid light blue line shows the mean fitness of Ara-2 relative to Ara+2, based on 10,000 
bootstrap re-samplings of the data from Wiser et al (2013).  Dashed lines show the corresponding, non-parametric 95% 
confidence.  Open symbols show each relative fitness measured in a head-to-head competition.  The solid symbols are 
the mean at each time point.  The dashed gray line at 1.00 is the level at which the competitors have equal fitness.   
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Figure 3.19: Ara-2 v Ara+2. The solid magenta curve shows the mean Power Law fitness trajectory for population Ara-2.  
The solid green curve shows the mean Power Law fitness trajectory for population Ara+2.  The solid light blue curve 
shows the mean fitness of Ara-2 relative to Ara+2.  Each of these lines is the mean across 10,000 bootstrap re-samplings 
of the data from Wiser et al (2013).  Dashed lines show corresponding non-parametric 95% confidence intervals around 
the solid curves.  Open symbols show each relative fitness measured in a head-to-head competition.  The solid symbols 
are the mean at each time point.
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 Figure 3.20 shows the pairing of populations Ara-3 and Ara+3.  Between 

generations 32,000 and 34,000, population Ara-3 went through a massive 

population expansion, as it developed the ability to metabolize citrate in the 

presence of oxygen.  Citrate is present in our growth medium DM 25 at a high 

enough concentration that this population has a roughly 7-fold larger population 

size than other populations in the LTEE (16).  Therefore, we have restricted our 

analysis to just those time points before the citrate-utilizing population expansion.  

In Figure 3.20, we can see that population Ara+3 has a steadily widening fitness 

advantage over population Ara-3 for the first 25,000 generations, at which point it 

maintains a roughly 10% fitness advantage over population Ara-3 through 32,000 

generations. 

 Figure 3.21 shows how well these measurements match our predictions.  

From the trajectories of populations Ara-3 and Ara+3 competed against the 

ancestor, we would expect population Ara+3 to have a substantial and continual 

fitness advantage over population Ara-3.  Our data reflect this, with many of the 

individual measurements falling within the 95% confidence interval of our 

expectation.  The deviations from expectation are small relative to the two 

population’s individual trajectories, as is shown in Figure 3.22.   

 Looking across the set of these population pairs, we see that fitness 

differences between a chosen pair of populations do not always accumulate 

monotonically – a population may increase its fitness relative to another for a 

while, only to lose that advantage, and then gain it back again.  Nor do the 

changes in relative fitness always perfectly track those we would expect based 
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Figure 3.20: Ara-3 v Ara+3. Open symbols show each measured value of relative fitness from head-to-head competitions.  
The solid symbols are the mean at each time point.  The dashed gray line at 1.00 is the level at which the competitors 
have equal fitness.  The solid purple curve is a local smoothing function showing the general trend of the data. 
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Figure 3.21: Ara-3 v Ara+3. The solid light blue line shows the mean fitness of Ara-3 relative to Ara+3, based on 10,000 
bootstrap re-samplings of the data from Wiser et al (2013).  Dashed lines show the corresponding, non-parametric 95% 
confidence.  Open symbols show each relative fitness measured in a head-to-head competition.  The solid symbols are 
the mean at each time point.  The dashed gray line at 1.00 is the level at which the competitors have equal fitness.   
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Figure 3.22: Ara-3 v Ara+3: The solid magenta curve shows the mean Power Law fitness trajectory for population Ara-3.  
The solid green curve shows the mean Power Law fitness trajectory for population Ara+3.  The solid light blue curve 
shows the mean fitness of Ara-3 relative to Ara+3.  Each of these lines is the mean across 10,000 bootstrap re-samplings 
of the data from Wiser et al (2013).  Dashed lines show corresponding non-parametric 95% confidence intervals around 
the solid curves.  Open symbols show each relative fitness measured in a head-to-head competition.  The solid symbols 
are the mean at each time point. 
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on how each population diverged from a common competitor.  Instead, the population 

pairs show more dynamic changes in relative fitness than our simple expectations 

predict.  This dynamism suggests that it is unlikely that each of our populations is 

climbing a parallel slope in the adaptive landscape, whether on the same peak, or on 

different peaks.  Combined with our data from chapter 2 that the populations in the 

LTEE are so far from reaching fitness peaks that we cannot detect evidence of an 

eventual asymptote to fitness, we are left with two possibilities of how the populations 

are traversing the fitness landscape.  One, they may be climbing different peaks, with 

trajectories that are not parallel in fitness.  In this scenario, they will not necessarily 

converge to similar fitness values at any point in the future, as the different peaks may 

be of different heights.  Two, they may be climbing the same peak, but along very 

different paths.  In this scenario, if the populations eventually get close enough to the 

top of this peak, we would expect population fitness to converge, and among-population 

variance in fitness to decline.  We do not yet see evidence that this second scenario is 

occurring, but recognize that we may be so far from the top of whatever peak(s) the 

populations are climbing that we cannot rule out this possibility either. 

 

Summary: 

 We examined several sources of data to look for patterns in among-population 

variance in fitness within a long-term evolution experiment and, from those patterns, 

learn about the adaptive landscape for populations in this experiment.  We first 

analyzed data from Wiser et al (2013), calculating among-population variance estimate 

at each time point considered.  We also gathered new data from a smaller number of 
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time points, but with greater replication.  These data show an among-population 

standard deviation in fitness consistent with what had been observed through 10,000 

generations in Lenski and Travisano (1994).  Our data lack sufficient statistical power to 

state whether the among-population standard deviation in fitness continues to rise or 

reaches a plateau after this point.   

 In order to estimate the among-population variance in fitness, we perform an 

ANOVA at each time point measured.  Though most of these ANOVAs are not 

individually significant, there is a significant overrepresentation of small p values within 

the set, demonstrating that there is still significant among-population variance in fitness.  

We next competed pairs of evolved populations against each other, and compared 

those results to the expectations derived from each population’s individual fitness 

trajectory compared to the generation 0 ancestor.  We find that the population pair 

estimates largely follow the predicted trends, but that these greater precision 

measurements are often subtly different from the expectations, allowing us to observe 

finer-scale patterns of relative fitness change between populations. 

 From previous work, we already knew that populations within this experiment had 

not reached a fitness peak by 50,000 generations.  Whether peaks even exist in real 

adaptive landscapes is itself a contested point; real populations face selection on far 

more than two dimensions at once, and our intuition about geometry in 3-dimensional 

space may not apply to much higher-dimensional spaces (18, 19).  Nevertheless, it is 

possible to use information about the variance among populations within an evolution 

experiment to infer the likely topology of the adaptive landscape experienced by the 

populations. 
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Conclusions: 

 Among-population variance in fitness remains at appreciable levels even after 

50,000 generations of evolution.  This is further evidence that populations are not 

converging at the top of a single fitness peak in their adaptive landscape.  Although we 

lack sufficient statistical power to define a function of among-population variance over 

evolutionary time, we can state firmly that it is not being driven down to insignificant 

levels over the course of 50,000 generations.  However, even in the absence of clear 

patterns of how variance is changing, looking at the cumulative distribution of 

significance values in the ANOVAs used to calculate among-population variance 

demonstrates that there is significant signal of persistent variance despite the noise. 

 Broad-scale patterns of fitness differences in populations are consistent with 

expectations.  Fitness is largely transitive in this system: if A > B, and B > C, then A > C 

in the majority of cases.  Populations that show generally larger gains in fitness 

compared to their ancestor over long periods of time also show higher relative fitness 

when competed directly against evolved populations with smaller gains relative to the 

ancestor. This is in spite of known cases of frequency-dependent fitness within 

individual populations (20–22), which could easily disrupt transitivity of fitness. 

 Divergence in fitness between different populations is most often quite low 

compared to their divergence in fitness from the ancestor.  This allows for 

measurements comparing evolved population pairs to extend over additional 

generations, and consequently reach higher levels of precision.  It also demonstrates a 

substantial degree of parallelism in fitness – which is, essentially, an integrated 
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measurement of competitive ability within a given environment – despite populations 

being isolated for an extended period of time and having many differences in specific 

mutations.   

 Competitions between evolved populations reveal greater detail than can be 

observed from populations competing against their ancestor.  The empirically-measured 

relative fitness of a pair of evolved populations is most often near what the expected 

value is based on their fitness trajectories relative to the ancestor.  However, this 

measured relative fitness is still often outside the confidence interval of expectations.  

Further, these theoretical expectations are constrained to have relatively simple 

dynamics.  Actual population pair measurements often show more complex dynamics, 

such as having more inflection points, or abrupt changes in slope than the expectations.  

Our power law models explain large-scale changes in fitness both across and within 

populations, but individual populations have time frames in which their actual fitness 

either accelerates or decelerates relative to the power law, and competitions between 

evolved populations can reveal these deviations from expectation. 

 

Future Work: 

 The material in this chapter is almost exclusively empirical and statistical.  A 

collaborator, Noah Ribeck, is working on simulating evolving populations using the 

population genetics framework published in Wiser et al (2013).  We plan to compare our 

empirical measurements of variance over time to models in which the parameter that 

describes diminishing-returns epistasis parameter is either constant or changes over 

time as a population encounters different regions of the genetic space that underlies the 
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fitness landscape.  These models will provide a description of how we should expect the 

among-population variance in fitness to change over time, to which we can then 

compare our empirical measurements. 
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CHAPTER 4: LONG-TERM DYNAMICS OF ADAPTATION IN ASEXUAL 

DIGITAL POPULATIONS. 

 

Authors: Michael J. Wiser, David M. Bryson, Charles Ofria, and Richard E. 

Lenski 

 

Abstract: 

 Previous work has shown that experimental evolution populations of 

bacteria exhibit power law dynamics, implying that improvements will continue 

indefinitely.  Computational systems offer us the chance to study evolving 

populations for more generations than are ever feasible in microbial experimental 

evolution studies.  Here we evolve populations of digital organisms in Avida for 

either 200,000 or 1,000,000 generations, across three different environments.  

We find that in both the most complex and the simplest of these environments, 

fitness obeys power law dynamics.  In the intermediate case, fitness is better 

described by a hyperbolic model, but fitness still increases over long time scales.  

Our work suggests that power law fitness dynamics may be a general feature of 

evolving systems. 

 

Introduction: 

 Wiser et al (2013) previously showed that in populations of Escherichia 

coli evolved for 50,000 generation, fitness over time exhibited power law 

dynamics (1).  The long-term evolution experiment (LTEE) from which those data 
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are derived is the biological experimental evolution study that has the run for the 

largest number of generations (2).  It would therefore appear that we cannot 

investigate whether similar patterns arise in other systems.  However, explicitly 

biological experiments are not the only ones that can provide insight into 

evolutionary dynamics.   

 Artificial systems allow us to study whether certain properties are shared 

across evolving systems, independent of the details of cellular machinery.  This 

has been happening for decades.  John Maynard Smith (1992) stated “So far, we 

have been able to study only one evolving system and cannot wait for interstellar 

flight to provide us with a second.  If we want to discover generalizations about 

evolving systems, we will have to look at artificial ones.” (3).  We therefore turn to 

a computational system of evolving populations, and ask whether this system 

exhibits similar patterns of fitness over evolutionary time as the LTEE.  

 

Study System: 

 We conducted computational evolution experiments with the digital 

evolution software platform Avida.  This platform has been detailed extensively 

elsewhere (4), but a brief summary follows.  Organisms are self-replicating 

asexual computer programs, composed of sequences of instructions.  Users 

define a mutation rate, controlling the per-site probability that a new organism will 

be different from its parent.  As with biological organisms, these mutations may 

be beneficial, neutral, deleterious, or lethal.  Organisms within Avida compete for 

space in their virtual world with other organisms.  Additionally, in most 
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environments, organisms compete with each other for resources by completing 

tasks that are rewarded with additional CPU cycles.  These extra CPU cycles 

allow organisms to copy themselves faster than less fit competitors. 

 Evolution by natural selection is substrate neutral; any system of 

organisms that exhibits variation, inheritance, selection, and time across 

generations will undergo evolution by natural selection (5). This applies to 

artificial life, as well as natural organisms.  Populations in Avida gain variation 

through mutation, organisms inherit parental variations, and the environment 

imposes a selective pressure.  Because experiments in Avida extend across 

many generations, Avida thus meets all of the criteria for evolution by natural 

selection.  Avida is not merely a simulation of evolution, but an instance of it. 

 Fitness in Avida is calculated as Execution Rate1 divided by Generation 

Length2, the amount of time it takes an organism to copy itself.  Organisms thus 

can increase their fitness either by executing instructions more rapidly 

(increasing their Execution Rate) or by requiring fewer executed instructions to 

replicate (reducing their Generation Length).  Fitness therefore measures the 

number of offspring produced in a given amount of time. 

 

Experimental conditions: 

 We performed experiments in three different environmental reward 

regimes: No Task, Logic-9, and Logic-77.  In the No Task environment, there 

were no tasks that organisms could perform to gain additional CPU cycles.  In 

1 Listed as Merit in the Avida data files 
2 Listed as Gestation Time in the Avida data files 
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this environment, competition between organisms was solely for space.  In the 

Logic-9 environment, nine different one- or two-input Boolean logic tasks are 

rewarded. More complex tasks are given greater rewards; the simplest tasks 

reward the organism by doubling the Execution Rate, while the most complex 

task rewards the organism by multiplying Execution Rate by 32.  In the Logic-77 

environment, 77 different one-, two-, or three-input Boolean logic tasks are 

rewarded.  Each task performed doubles the organism’s Execution Rate, 

regardless of complexity of the task. 

 In each of the three environments, we conducted experiments for a 

defined number of generations.  We ran populations for 200,000  1 generations 

in the Logic-77 and Logic-9 environments, and 1,000,000  1 generations in the 

No Task environment. 

 

Statistical methods: 

 We performed all statistical analyses in R version 3.0.2 (6).  We calculated 

relative fitness by dividing population fitness by the fitness of the ancestor.  When 

necessary (in the Logic-77 and Logic-9 environments), we transformed fitness as 

log 2 fitness; means across replicates were calculated after transformation.  We 

fit linear models with the lm() command, and we fit non-linear models with the 

nls() command.  We calculated posterior odds ratios from difference in BIC value, 

according to Raftery (1995) (7). 
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Results and Discussion: 

Logic-77 Environment: 

 Of the environments that we tested, the Logic-77 environment is the most 

complex.  This complexity makes the Logic-77 environment the most like 

biological environments, where complexity is a common.  Even in extremely 

simple laboratory environments, different organisms in a population can 

specialize on different resources (8), and there are many internal cellular 

processes that can be optimized.   

 We first tested whether evolution in this environment reaches an optimum.  

Previous research in Avida has generally run for durations of  150,000 Updates 

(9–12) – an internal measure of time within Avida – which corresponds to less 

than 15,000 generations.  Because the rate of adaptation slows with time, other 

researchers have concluded that populations are approaching a fitness peak (10, 

13). 

 By looking at the same data over a range of time scales, we can examine 

whether the appearance of an early plateau actually signals a halt in the adaptive 

process. Figure 4.1 show the mean fitness across 20 replicate runs in the Logic-

77 environment.  Different panels in the figure show the same data examined 

over different numbers of generations.  The dashed vertical lines show the end 

points of previous panels.  As we can see, the curve has the same basic shape 

in each of the panels.  What appears to be a plateau in one panel is revealed to 

be part of the upward trajectory in a later panel.  In fact, the appearance of a 

plateau is an artifact of sampling.  Were the run to extend over considerably 
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Figure 4.1: Fitness over time in the Logic-77 environment.  The solid (black) 
curve is the mean log 2 relative fitness across 20 replicates.  Different panels 
show different numbers of generations.  Dashed (green) vertical lines show ends 
of previous panels.
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more generations, we would expect the new apparent plateau to be of a higher 

value, and reached later in the run.  This is evidence that the populations have 

not reached an evolutionary optimum, but are still adapting to their environment. 

 We can also look at changes over time within individual replicates.  Figure 

4.2 shows a scatterplot of fitness for the Logic-77 data, with each individual point 

being one replicate run.  From these data, we notice two striking facts.  First, 

points predominantly fall above the y = x line, which shows that they are reaching 

higher fitness at the end of the evolutionary run than they are 2/3 of the way 

through a run.  Indeed, log 2 relative fitness is higher at 200,000 generations 

than at 133,333 generations (one-tailed t test, t = 2.7414, df = 19, p = 0.00649).  

We also find a significant, positive slope to a linear regression in this late time 

period for log 2 relative fitness over time (slope estimate = 4.081 * , t = 

11.95, p < 2 * ).  Note that we are not arguing that this late slope is linear, 

but merely that a significant, positive linear slope indicates that fitness is 

increasing in some fashion (see Figure S4.1).  Second, different replicates reach 

very different levels of fitness.  Because each task performed in the Logic-77 

environment doubles the organism’s fitness, the log 2 relative fitness provides an 

approximation of how many tasks the organism performs.  Many of the replicates 

still have fitness values indicating more than a dozen additional tasks could be 

performed by the average members of their populations.  This means that at 

least 19 of the 20 replicates could reach a higher fitness, indicating clearly that 

they have not reached a global optimum.
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Figure 4.2: Late fitness v final fitness in the Logic-77 environment.  Each 
point is one replicate.  The dashed line is at y = x; points on this line have the 
same fitness at the end of the run as at 2/3 of the run. 
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 The analysis above examines just specific points in the fitness trajectories; 

we gain additional information by looking at the entire trajectories (Figure 4.3).  In 

this figure, each of the individual replicates are shown as gray points, with the 

mean across runs as the black curve.  The mean fitness trajectory appears as a 

smooth curve, while many individual trajectories appear to be made of step-like 

combinations of rapid increases and long-term stability.  From these trajectories, 

we can see not only that different populations reach different final fitness values 

– as we saw in Figure 4.2 – but that even populations which achieve similar final 

fitness do not necessarily do so in similar time frames.  For example, of the three 

populations that achieved the highest final fitness, one of them had gotten to 

roughly this final fitness prior to 50,000 generations, while the other two did not 

until after 150,000 generations.  

 We next examine the functional shape of how fitness changes over 

evolutionary time.  We have previously shown that in a long-term evolution study 

in bacteria, fitness over time is better fit by a power law than a hyperbola, 

indicating that fitness is expected to increase indefinitely (1).  In Figure 4.4, we 

compare the best fit power law to the best fit hyperbola in the Logic-77 

environment in Avida.  When considering all of the data, the power law model 

substantially outperforms the hyperbolic model (difference in BIC = 10341.01, 

posterior odds ratio <  << ).  Like with the LTEE, we also fit models to 

the first 40% of the generations, and project what those models predict for the 

rest of the data.  Here, the power law model somewhat overestimates future 

fitness, while the hyperbolic model somewhat underestimates future fitness 
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Figure 4.3: Fitness over time in the Logic-77 environment.  The gray points show each of the 20 replicates.  The black 
curve shows the mean log 2 relative fitness over time.
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Figure 4.4: Comparison of model fits in the Logic-77 environment.  (A) 
Hyperbolic (red) and power-law (blue) models fit to the set of mean log 2 fitness 
values (black symbols) from all 20 replicates. (B) Fit of hyperbolic (solid red) and 
power-law (solid blue) models to data from first 80,000 generations only (solid 
black), with model predictions (dashed red and blue curves) and later data 
(dashed black curve).
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 The weight of the data in the Logic-77 environment strongly indicates that 

fitness has not reached a final plateau.  At least 19 of the 20 replicates have not 

reached a global optimum, as they have lower fitness than the most fit 

population.  Fitness values at 200,000 generations are significantly higher than at 

133,333 generations.  The time frame from 133,333 generations to 200,000 

generations displays a significant, positive slope in fitness over time.  Log 2 

relative fitness exhibits power law dynamics in this environment.  The power law 

finding is particularly striking, as relative fitness also exhibits power law dynamics 

in the LTEE.  The fact that we get similar dynamics – albeit, in a log 2 

transformation of fitness – in a completely different system lends support to the 

idea that power law fitness dynamics may not be an idiosyncrasy of the LTEE.  

Instead, these dynamics may be a more general feature of evolving systems. 

 

No Task Environment: 

 The No Task environment is at other extreme of complexity from the 

Logic-77 environment.  Here, the only way for organisms to improve their fitness 

is to lower their Generation Length, and thus replicate faster.  For a self-

replicating organism this is one of the simplest environments conceivable.  We 

also extended the evolutionary runs much further, out to 1,000,000 generations.  

If any of our environments would lead to evolutionary stagnation, we would 

expect it to be this one: a simpler environment, fewer ways to improve, and small 

selection coefficients for those mutations which are beneficial than in the logic 

environments. 
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 Despite this extreme simplicity, evolution does not reach a maximum and 

stop in this environment.  From Figure 4.5, we see that apparent plateaus in 

relative fitness are – just as in the Logic-77 environment – artifacts of sampling. If 

we allow the runs more evolutionary time, what previously appeared to be a 

plateau in relative fitness now becomes a steep portion of the curve.  Note that in 

this case, we are analyzing relative fitness, not a log 2 transformation of it, 

because fitness gains are much smaller when there are not tasks to be evolved. 

 We likewise get similar results when we look at changes over time within 

replicates.  Figure 4.6 shows a scatterplot of fitness in the No Task environment.  

Again, the points fall predominantly above the y = x line of equal fitness at the 

end of the evolutionary run as 2/3 of the way through the run.  Fitness is higher at 

1,000,000 generations than at 666,667 generations (one-tailed t test, t = 2.2666, 

df = 19, p = 0.0176). A linear regression of fitness over time between generations 

666,667 and 1,000,000 yields a significant, positive slope to fitness (slope = 

23.81, t = 5.267, p = 1.39 * ), indicating a rise in fitness over the final third of 

this experiment.  In this case, we certainly don’t interpret this positive linear slope 

as indicating a linear increase in fitness – the diagnostic plots for the model 

reveal that the data do not meet the assumptions for a linear model (see Figure 

S4.2) – but merely note that a significant, positive slope for a linear regression of 

fitness indicates an increase in fitness in this time frame. 

 In this case, though, some of the points are actually below the y = x line, 

indicating replicates where the final population fitness is lower than the 

population fitness two thirds of the way through the evolutionary run.  What can 
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Figure 4.5: Fitness over time in the No Task environment.  The solid (black) 
curve is the mean log 2 Relative fitness across 20 replicates.  Different panels 
show different numbers of generations.  Dashed (green) vertical lines show ends 
of previous panels.
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Figure 4.6: Late fitness v final fitness in the No Task environment.  Each 
point is one replicate.  The dashed line is at y = x; points on this line have the 
same fitness at the end of the run as at 2/3 of the run.
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account for this unexpected result?  One possibility is the appearance of 

additional, detrimental mutations.  The population is not homogenous; at any 

given time, there will be at least some genetic variation because some organisms 

will be one or two mutational steps away from their parent.  When a beneficial 

variant begins to spread through a population, the spreading clade will initially be 

close to clonal.  However, as the population size of this beneficial clade 

increases, so does the probability that it will contain individuals both with the 

beneficial mutation and other, not beneficial, mutations.  If the rate of detrimental 

or lethal mutations is high enough, and the rate of new beneficial mutations is low 

enough, population fitness may rise as the beneficial mutation spreads, but then 

decline until reaching a mutation-selection equilibrium later.  Because the fitness 

gains of individual beneficial mutations are so small in this environment, and the 

declines we observe in fitness are so small, this seems like a likely explanation. 

 These changes in population fitness are shown in detail in Figure 4.7.  

Populations exhibit short periods of rapid rise in fitness, followed by long periods 

of little change in fitness.  However, during these periods of relative stability, 

fitness still fluctuates.  Unlike with physical organisms, these are not explained by 

measurement error – for any given population, at any given time point, we can 

measure the exact fitness within Avida.  Instead, they show actual small changes 

in population fitness, due to changes in population composition, either from 

existing genotypes changing in frequency, or new genotypes arising through 

mutation.  These small scale fluctuations exist in all populations with non-zero 
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Figure 4.7: Fitness over time in the No Task environment.  The gray points show each of the 20 replicates.  The black 
curve shows the mean relative fitness over time.
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mutation rates, but are more visible in this case because there are few mutations 

of large enough effect to obscure the dynamics.   

 As before, we then fit two different models to fitness over time in this 

system.  From Figure 4.8, we observe that the two models do a similar job in 

predicting future changes in fitness, with the power law model overestimating 

future fitness to a similar extent that the hyperbolic model underestimates it.  

However, we can again see that even over these long time frames in a simple 

environment, fitness is better fit by a power law than by a hyperbola (difference in 

BIC = 13712.11, posterior odds ratio <  << ).   

 It is particularly striking that fitness continues to increase over long time 

scales in this experiment.  For one, the time scales here are five-fold greater than 

in the logic environments, which themselves are four-fold greater than the 

number of generations we examined in the LTEE in Chapter 2 and Chapter 3.  

Combined with the simplicity of the environment, it would be easy to assume that 

all the populations in this environment would reach a global optimum in fitness, 

and stop improving.  Yet this is not the case.  Instead, populations stuck in 

regions of relatively low fitness for extended periods of time eventually find their 

way to regions of higher fitness.  Populations in regions of relatively high fitness 

themselves experience fluctuations in fitness, sometimes including a rise to an 

even higher fitness region.  That our measurements in even this very simple 

environment support an unbounded fitness function lends credence the 

possibility that such unbounded increases are a general feature of evolving 

populations.
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Figure 4.8: Comparison of model fits in the No Task environment.  (A) 
Hyperbolic (red) and power-law (blue) models fit to the set of mean fitness values 
(black symbols) from all 20 replicates. (B) Fit of hyperbolic (solid red) and power-
law (solid blue) models to data from first 400,000 generations only (solid black), 
with model predictions (dashed red and blue curves) and later data (dashed 
black curve).
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Logic-9 Environment: 

 In the Logic-9 environment in Avida there are a small number of rewarded 

behaviors that organisms can evolve, putting it between the extremes of the 

other environments.  Yet the rewards for these behaviors are very large; all else 

being equal, the lowest-reward behaviors double the organism’s fitness, while the 

most-rewarded behavior multiplies it by a factor of 32.  We therefore expect the 

fitness gains from evolving tasks to mask small changes from improved 

replication efficiency.  Despite this, the Logic-9 environment is the most 

extensively used in previous work in Avida (9, 14, 15), which is why we chose to 

examine fitness dynamics in this environment. 

 Figure 4.9 shows log 2 relative fitness over time in the Logic-9 

environments.  Unlike in the Logic-77 environment (Figure 4.1) or the No Task 

environment (Figure 4.5), here we see that the appearance of a plateau in fitness 

does not disappear simply by looking at longer time frames.  While there is a 

slight upward trajectory from 20,000 to 200,000 generations, the increase is 

small enough that it isn’t immediately obvious.  The value of this plateau is also 

telling.  Holding everything else constant, an organism in the Logic-9 

environment gets a - fold improvement in fitness by performing all nine logic 

tasks.  The plateau in fitness is very close to , as the y-axis is the log 2 of 

relative fitness.  Therefore, what improvements remain in fitness will be 

predominantly those from decreasing Generation Length, and each mutation that 
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Figure 4.9: Fitness over time in the Logic-9 environment.  The solid (black) 
curve is the mean log 2 Relative fitness across 20 replicates.  Different panels 
show different numbers of generations.  Dashed (green) vertical lines show ends 
of previous panels.
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does so will have a smaller individual effect than any of the mutations which 

provided solutions to new tasks. 

 From Figure 4.10, we can see that 16 of the 20 replicates have fitness 

values consistent with most individuals in the population performing all nine logic 

tasks by 200,000 generations.  The improvement in fitness in this environment 

from generation 133,333 to 200,000 is only marginal (one-tailed t test, t = 1.3402, 

df = 19, p = 0.0980).  A linear regression of log 2 relative fitness over time from 

133,333 generations to 200,000 generations yields a significant, positive slope 

(slope = 2.59 * , t = 4.65, p = 3.33 * ).  As in the No Task environment, 

though, diagnostic plots for this model reveal that a linear model is not a good fit 

for these data (see Figure S4.3).  

 The fact that most fitness gains in this environment are driven by task 

acquisition is further underscored by the individual replicate fitness trajectories 

shown in Figure 4.11.  Most populations achieve a log 2 relative fitness of slightly 

more than 25, and then stop visibly improving in fitness from that point onward.  

This saturation is further corroborated by comparing the two model fits in Figure 

4.12.  In this environment, log 2 relative fitness is better explained by a hyperbola 

than a power law (difference in BIC = 14010.79, posterior odds ratio <  << 

).  In Figure 4.12B, we can see that the hyperbolic model does a strikingly 

better job of predicting future fitness than the power law model does. 

 What accounts for this major difference between the Logic-9 environment 

in Avida and the other ones we have examined?  One possibility is that is the 

nature of the rewards for task completion.  In the Logic-77 environment, each 
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Figure 4.10: Late fitness v final fitness in the Logic-9 environment.  Each 
point is one replicate.  The dashed line is at y = x; points on this line have the 
same fitness at the end of the run as at 2/3 of the run.
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Figure 4.11: Fitness over time in the Logic-9 environment.  The gray points show each of the 20 replicates.  The black 
curve shows the mean log 2 relative fitness over time.
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Figure 4.12: Comparison of model fits in the Logic-9 environment.  (A) 
Hyperbolic (red) and power-law (blue) models fit to the set of mean log 2 fitness 
values (black symbols) from all 20 replicates. (B) Fit of hyperbolic (solid red) and 
power-law (solid blue) models to data from first 80,000 generations only (solid 
black), with model predictions (dashed red and blue curves) and later data 
(dashed black curve).
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new task doubles fitness of an organism.  In the No Task environment, fitness 

gains are substantially smaller.  In the LTEE, the largest known beneficial 

mutations were on the order of a 13% fitness boost (16).  In the Logic-9 

environment, though, individual mutations can increase fitness up to multiplying it 

by 32.  These large effect mutations will, by necessity, drive the pattern of fitness 

change over time, and minimize the impact of small mutational steps such as 

those that drive the pattern in the No Task environment.  In fact, given that the 

No Task environment exhibits power law dynamics in fitness over time, we would 

expect the Logic-9 environment to do the same starting from the point where all 

nine logic tasks are being performed.  A related explanation lies in the fact that in 

both of the logic environments in Avida, the ancestor is drastically unfit compared 

to its eventual descendants.  In the LTEE, fitness gains were on the order of 60-

80% over 50,000 generations (1).  In the Logic-77 environment, fitness gains are 

on the order of ~ by 200,000 generations; in the Logic-9 environment, they are 

on the order of ~  by 200,000 generations, and in the No Task environment 

they’re on the order of ~ 320% by 1,000,000 generations.  With a small number 

of large effect mutations, and a large number of drastically-smaller effect 

mutations available, population fitness will tend to rise rapidly when the large 

effect mutations are spreading, and move only small amount otherwise.  This will 

cause the trajectory to look more like a hyperbola.  In future work, we will 

address these explanations by 1) starting runs with evolved ancestors, and 2) 

changing the task rewards so that individual mutations do not have as large of an 

impact as in the Logic-9 environment. 
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Conclusions: 

 In the Logic-77 and No Task environments of Avida, fitness obeys power 

law dynamics, much as it does in the LTEE.  In the Logic-9 environment of Avida, 

fitness is better explained by a hyperbolic model. Even over hundreds of 

thousands of generations, fitness continues to increase in this system across 

these environments.  This suggests that unbounded increases in fitness over 

evolutionary time scales may be general to evolving systems as a whole, and not 

due to the specifics of the LTEE. 

 

Future Work: 

 We will extract the numerically-dominant organism from the end of each of 

ten runs in each of the three environments tested.  We will use these organisms 

as the ancestor for additional (replicated) evolutionary runs, both within the 

environment in which they had evolved, and within simpler environments.  We 

will test if these new bouts of evolution, starting from a more adapted ancestor, 

exhibit unbounded fitness increases over time. 
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APPENDIX 
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Figure S4.1: Diagnostic plots for Logic-77 environment, late fitness as linear 
model. 
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Figure S4.2: Diagnostic plots for No Task environment, late fitness as linear 
model.
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Figure S4.3: Diagnostic plots for Logic-9 environment, late fitness as linear 
model.
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