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ABSTRACT
FEATURES OF THE (p,e) REACTION
By

Paul Alexander Smith

Theoretical and experimental features of the (p,a) reaction are
presented.

A microscopic reaction theory of the 3-nucleon direct pick-up
reaction using shell model wavefunctions is developed. This theory
involves the calculation of microscopic form factors and spectroscopic
amplitudes. Two form factor models are given—the first using harmonic
oscillator single-particle wavefunctions, and the second using single-
particle wavefunctions of a Woods-Saxon potential. The motion of the
nuclear center of mass in a fixed center potential is considered and
the microscopic form factors are corrected for this motion. Three
nucleon spectroscopic amplitudes are related to two nucleon reduced
matrix elements and single nucleon reduced matrix elements which can
be calculated using existing shell model codes. Calculations for pure
configurations are presented and the features of these calculations are

discussed.
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The Distorted Wave Born Approximation for the (p,a) reaction is
investigated. Angular momentum mismatch, finite range effects, and
j-dependence are discussed.

The 52Cr(p,ar)‘mv and the 44Ca(p,a)41K areactions are pre-
sented as the experimental side. These reactions have been studied
with a beam energy of 35 MeV.

The 52Cr(p,ar)49V spectra show that the 7/2- ground state, the
3/2+, 0.748 MeV proton hole state, and the 1.646 MeV 1/2+ proton
hole state are strongly excited. Many seniority three transfers are
also observed. A comparison of the (p,a) results to (p,t) and (t,a) work
is presented. This comparison shows that coherence in the (p,a) reac-
tion is important, since some states found in the (p,t) or (t,a) results
are not observed in the (p,a) spectra. Candidates for high spin states
are found at 3.612 MeV, 3.745 MeV, and 4.797 MeV. T=5/2 proton
hole states (analog states) are observed in the region from 6 to
9.5 MeV. Cluster model DWBA calculations are shown to fit the data
successfully. The normalization of the cluster model calculation to the
T=5/2, 7/2 angular distribution relative to the corresponding T =3/2
state is about ten times larger than is expected from simple isospin
considerations. Microscopic model DWBA calculations are also given.
The microscopic calculations are shown to fit the angular distributions
reasonably well. The relative normalizations of the DWBA curves to
the proton hole state angular distributions are seen to be in good agree-

ment with simple shell model predictions. The general trend of
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experimental cross sections for the negative parity states is shown to
follow the features of the microscopic model calculations assuming
pure (0f7/2)3 transfer.

The 44Ca (p,a)41K spectra show that those states which contain
portions of the sd-shell proton holes are strongly populated. The 0d5/2
proton hole is mostly concentrated in a new level at 3.520 MeV. The
7/2 state at 1.294 MeV is also excited. T=5/2 proton hole states
(analog states) are observed in the excitation region from 8 to 10 MeV.
These states have j’r values of 7/2 , 3/2+, and 1/2+. Clear £=2 j-
dependence is observed for this target. Cluster model DWBA calcula-
tions are shown to fit the data well. The normalization of the cluster
model curve to the 7/2-, T=5/2 angular distribution is ten times larger
than would be expected from isospin arguments. Microscopic model
DWBA calculations are shown. These do not fit the angular distribu-
tions nearly as well as the cluster model calculations. The relative
normalizations of the sd-shell hole fragments is seen to disagree with
(d,3He) results. However, the sums of the fragments are in good
agreement with simple shell model considerations. Microscopic cal-
culations for the 7/2-, 1.294 MeV state are found to be in good agree-
ment with the (d,3He) result. The possibility of (0f7/2 0d43/2)0d3/2

pick-up is considered and found to be unnecessary for this transition.
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CHAPTER 1

INTRODUCTION

The field of physics may be divided into the study of bound state
problems, such as the solar system, crystals, or atomic structure, and
unbound problems, such as the scattering of light or neutron diffraction.
The same division applies to nuclear studies. The bound state problem
is the study of nuclear structure. The problem to be solved in this
instance is the prediction of the energies of the nuclear states and
their properties, such as angular momentum and electromagnetic decay
rates. The scattering problem is the study of elastic scattering,
inelastic scattering, or transfer reactions. Here the problem is to pre-
dict the angular distributions and the strengths of the transitions.

The division of the field to which I have alluded is easily made
for macroscopic systems, such as the solar system, where the indi-
vidual components of the system can be examined. The division of
nuclear physics in this way cannot be total since we cannot observe
the bound system microscopically. Nearly all the information about
the details of nuclear structure must come from the observation of free
radiation resulting from radioactive decay or artificially induced reac-

tions. Thus bound state models and scattering models must be
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connected in a way that allows the deduction of nuclear structure infor-
mation from the results of scattering experiments.

The shell model is commonly used for nuclear structure calcula-
tions. This model is based on the idea that a nucleon orbit may be
described as that of a particle moving in a central potential created by
the average interactions with the other nucleons in the nucleus. In
addition, the residual interactions between pairs of nucleons are
included in the Hamiltonian. This has the effect of removing degen-
eracies in the original orbits of the central potential. Nuclear states
can be described as distributions of the nucleons in these perturbed
orbits.

During the last twenty years many direct reaction studies have
concentrated on the deduction of nuclear structure information. As
might have been expected, these studies began with the single nucleon
transfer reactions and progressed sequentially to more complex reac-
tions. The purpose of this dissertation is to present work aimed toward
testing shell model wavefunctions with the direct transfer of three
nucleons. Prerequisite goals are to develop a microscopic model for
calculations of three nucleon transfer reactions, and to detail the
qualitative features of the (p,a) reaction which is the specific three
nucleon transfer reaction to be considered in this work.

The simplest nuclear states are those which are described by a

single particle or hole outside a closed shell. Such states give the
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energies of the single particle orbits in the shell model central poten-
tial. Consider 410a as an example. A "zero order" shell model would
describe 410a as a 40Ca inert core plus a neutron in the 0f7/2, 1p3/2,
0£f5/2, or 1pl/2 orbit. Given this simple model, 4103 should have a
7/2 ground state and 3/2 , 5/2 , and 1/2 excited states, all of
which look like a neutron bound to a 4OCa core. Therefore, if a neu-
tron is added to 4OCa in a nuclear reaction such as 4OCa (d,p)“Ca , the
spectrum is expected to contain strong transitions to the 7/2 , 3/2 ,
5/2-, and 1/2- states of 410a on the basis of the zero order shell
model assumption.

In general, the zero order shell model is not sufficient to explain
all the transitions observed experimentally. For the 40Ca(d,p)41
example, the zero order shell model not only predicts that 7/2-, 5/2- '
3/2 , and 1/2 transitions will be observed, but also that they will be
the only transitions. The zero order shell model may be improved if the
40Ca core is allowed to contain components with two neutrons in the
0f7/2 shell. In other words, some of the time 40Ca may have vacan-
cies in the 0d3/2 shell. Observation of 3/2+ states in the
40Ca (d,p)410a reaction gives a measure of the amplitude of this com-

ponent of the 40Ca ground state. A complete description of a final

state observed in the (d,p) reaction is
Z”‘n““ ¥n,

where \p.i.T is the target wavefunction, q»ni is the neutron wavefunction
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(ni represents the fact that there is no restriction on the major shell,
although contributions from anything other than the lowest shell are

usually negligible for low-lying states), and Ai is the amplitude for

J

this component. The Ai j's can be deduced from experimental cross
sections. In Appendix II and Chapter II the details of the reaction
theory called the DWBA (Distorted Wave Born Approximation) are dis-
cussed. For the moment, a short summary is all that is necessary to
see the role of the Aij's in the cross section prediction. The idea
behind the DWBA is that the operator which causes transitions is a
small part of the total Hamiltonian that describes the scattering prob-
lem. The transition operator is treated as a perturbation causing tran-
sitions between elastic scattering states (distorted waves) which are
the eigenstates of the rest of the Hamiltonian. The cross section is
proportional to the square of the transition matrix element. The transi-
tion matrix element can be "factored" (see Chapter II) so that the over-
lap of the target wavefunction and the final wavefunction is isolated.
In other words, the cross section is proportional to | (¢p|¢r) I 2 which

is proportional to IA1 Iz. A nice example of how the values of the Aﬁ's

J

are determined is given by Barry Preedom in his notes on nuclear reac-
tions (I.1, page 72). The simplicity of single nucleon transfer lies in
the fact that only one term in the final wavefunction contributes to a

given transition if the target wavefunction has IT =0. In other words,

only one of the A1 j's is deduced for each transition. However, the

signs of the amplitudes are not determined.
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Two-nucleon structures are the next in order of complexity.
There are not many simple two-nucleon structures observed experimen-
tally. As an example, let us use 40Ca as a core again and consider
the 40Ca(p,t)380a reaction. Final states with j7r= 0+ are relatively
simple because the only way two neutrons can have zero angular
momentum is if they both come from the same orbit. For our example,
the two neutrons picked up can come from the 0f7/2, 0d3/2, 1s1/2, or
0d5/2 orbits. Because of the residual interaction, a given 0+ final
state will look like “°Ca+a_ (0£7/2) " 2+a, (043/2) %+a (151/2) 2+
A 4 (ods/ 2)-2. Other transitions may have more components since the
neutrons can come from different orbits for final states that do not have

+
j"=0 . This discussion can be written more precisely as

IJ; L Jr L
Yoo = LA G (nbn,)
f JkL jkT ‘ThyThg

where the ‘Pnj (q»nk) indicate that a neutron is removed from the jth (kth)
orbit and ( )L indicates vector coupling of the neutron angular momenta
to the value L. If we consider the overlap of the target and the final
state wavefunction as was done before, it is seen that, in general,
many shell model configurations contribute coherently to the cross sec-
tion for a given transition in the (p,t) reaction. Therefore, it is not

possible to extract the values of the A, 's directly from the data.

jk
Instead, we must work in the other direction by calculating the Ajk's
as overlaps of shell model wavefunctions and using the results in a

reaction model. Because many configurations contribute coherently to
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the cross section, the phases of the Aj 's are important. Whereas

k
single nucleon transfer cannot measure these phases, multi-nucleon
transfer has the advantage of being sensitive to them. The ability to
predict the data tests both the shell model and the reaction model
simultaneously.

The progression from single nucleon transfer to two-nucleon
transfer results in an enormous increase in complexity, hence one
might ask, "Why study three-nucleon transfer?" The answer lies in
the hope that there might be simple features of reactions such as (p,a)
which are less complex than two-nucleon transfer, as well as other
specific reasons discussed below. Because of the problems previously
encountered in the analysis of two-nucleon transfer reactions, detailed
agreement between a microscopic (p,a) reaction model and the data is
not expected. Hence, this thesis is primarily concerned with predic-
tion of the qualitative features of this reaction and their identification
in the data.

One of the simple properties of the (p,a) reaction is the popula-
tion of the same single proton hole states that are seen in single proton
pick-up. The target 52Cr can be used as a good example. Much of the
time the neutron pairs in the closed shell will have an internal angular
momentum of zero. If one of these pairs and a proton are removed, we
will see the single proton hole states that would be observed in the

50Cr(d,:‘)He)IwV reaction. This was one of the first observations made

by the pioneers in this area (I.2, I.3, 1.4, 1.5). Sherr (I.2) used the
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58Fe(p,oz)sslvin reaction to demonstrate this feature. The 55Mn ground
state has j’r=5/2_. In a zero order shell model the neutrons would be
coupled to zero angular momentum since there are an even number of
them. Therefore, the 55Mn ground state must be primarily a seniority
three-proton state. The term "seniority" means the number of particles
that are not part of nucleon pairs that have zero angular momentum.
The 55Mn ground state has a pair of protons that have nonzero angular
momentum and an odd 0f7/2 proton, making it a seniority three-state.
The 581='e ground state looks like four 1p3/2 neutrons and three pairs of
zero coupled protons. Removal of a pair of neutrons and a proton will
lead to a 7/2_ state which is not the ground state. The data showed
that the ground state was weakly excited and that the 7/2- first excited
state was very strong. The inverse reaction ssMn(ar,p)ssPe, presented
at the same conference, showed excellent agreement in that the ground
state of 58Fe was not observed (I.6).

Although the strongest states will be those that can be made via
seniority one transfers (@ seniority zero neutron pair and a seniority
one proton), there will be seniority three pick-ups where the pair of
neutrons does not have zero angular momentum. Some of the time a
neutron from two different pairs will be picked up leading to a trans-
ferred pair with nonzero angular momentum. If a pair of neutrons is
removed with nonzero angular momentum along with a 0£f7/2 proton,

final states with spins different from 7/2- can be populated. Since the

0£7/2 neutron pair may have angular momentum as high as six, it is
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possible to populate states in 49V with spins up to 19/2. In recent
years high spin states have been studied intensively with (o,xnv) and
(HI,xnvy) reactions. The (p,a) reaction and other multi-particle trans-
fer reactions may be useful for differentiating between high spin states
due to simple shell model configurations and those which are collective
rotations of a deformed nucleus. Four recent experiments have
observed j"= 13/2+ transfers which is the maximum (0('15/2)3 coupling.
13/2" levels have been observed in ~2C(a,p) '°N, *®0(e.p)!°F, and

24,26 21,23

Mg(p,a) Na, while an 8+ state was observed in

23Na(p,a)2ONe (1.7, 1.8, 1.9, 1.10).

In principle, the (p,a) reaction may also be used to locate states
with isospin greater than the ground state (T, states) that are not
allowed in the (d,3He) reaction because of isospin selection rules.
Thus single nucleon spectroscopic factors and Coulomb energies can
be deduced for levels that cannot be made by single nucleon pick-up.

This feature of the (p,a) reaction has not been confirmed in previously

published experiments.

The determination of both the total angular momentum and parity
of a nuclear state can be a difficult problem. In many cases more than
one experiment is necessary. Gamma-ray decay studies often deter-
mine the total angular momentum but not the parity. When the state

of interest can be made by single nucleon transfer, the orbital angular
momentum but not the total angular momentum is usually determined.

The parity in this case is given by (-l)z. One of the observations
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made during the first (p,a) reaction studies was the marked dependence
of the angular distributions on the value of j for £=1 transitions (I.11,
1.12, 1.4, 1.5). The angular distribution for the 1/2  transfer is
characterized by deep minima, while the 3/2- distribution is feature-
less. There is promise that the (p,a) reaction may be used to deter-
mine both j and n. Lee et al. (I.13) have shown that this effect is a
consequence of spin orbit coupling in the proton channel. The j-
dependence for £ =2 and higher is currently not well documented and,
in fact, different experiments have reached different conclusions (I.13,
I.14, I.15, I.16). This point is pursued in Chapters IV and V of this
thesis.

The (p,a) reaction has the potential for reaching states that
cannot be reached by single proton pick-up in nuclei where proton
pick-up can be done. It also can be used to reach single proton hole
states in nuclei that cannot be reached by single proton pick-up
because the targets do not exist or are hard to obtain, thereby per-
mitting the measurement of single nucleon spectroscopic information in
these otherwise inaccessible cases. If simple models explain the
properties of the spectra observed in nuclei that can be studied with
proton pick-up, then these models may be extended to new nuclei to
further study the systematics of hole states, Coulomb energies, high

spin states, etc.
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Even though there are simple features that make three-nucleon
transfer attractive for spectroscopic studies, detailed study of the
reaction for all states is even more difficult than for two-nucleon trans-
fer. The additional complication may be illustrated if the final wave-

function for the (p,a) reaction is expanded as before

Ig j It L1z J
le Z Arst‘pT (¢nr¢ns) ¢pt
rst
£z
£123

where \p.:IrT is the target wavefunction, xpnr (\pns) is the wavefunction for
a neutron hole in the rth (sm) orbit, 1&12 is the angular momentum cou-
pling of the two neutrons, and nppt is the wavefunction for a proton
hole in the tth orbit. There is a sum over shell model configurations
as in two-nucleon transfer, but in addition there is a sum over all the
allowed values of the neutron pair angular momentum. A discussion of
the internal degrees of freedom associated with the (p,a) reaction and
some of the consequences within the 0£7/2 shell has been given by
Bayman (I.17).

A microscopic model for the (p,a) and (a,p) reactions is pre-
sented in Chapter II, including the details of the connection between
the shell model and the DWBA. The remaining chapters are devoted to
testing this theory and documenting the qualitative features of the
reaction. The experimental considerations are described in ChapterIII,
with the fourth and fifth chapters being devoted to the SZCr(p,a)49V

and 44Ca(p,ar)“K reactions. The general features are discussed and
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DWBA calculations using both phenomonological cluster form factors
and microscopic form factors based on simple pure configuration wave-
functions are compared to the data. Microscopic calculations using
sd-shell wavefunctions are currently in progress and will be presented
at a later date. These calculations are being done for the

26,24 23'21Na data (I.9).

Mg(p,a)
Two appendices are included to help less experienced readers
to understand the body of the text. The first appendix is for the
general public which has supported this project. The second is a dis-

cussion of the basic reaction theory for the purpose of helping students

who may wish to learn about nuclear reactions.
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CHAPTER II

THEORETICAL CONSIDERATIONS

A. Introduction

The (p,a) and (a,p) reactions have been shown to proceed pri-
marily by direct three-nucleon transfer for incident energies greater
than about 17 MeV (II.1, II.2, II.3, II.4). These reactions have the
attractive features of reaching nuclei and nuclear states that cannot be
reached by simpler reactions. An important class of states that may
be populated via these reactions are high spin states that are
described by relatively simple shell model wavefunctions.

Much of the Distorted Wave Born Approximation (DWBA) analysis
that has been done in previous work has employed mass three-cluster
form factors (1I.5, II.6, II.7). Calculations of this type can give good
fits to the shapes of many angular distributions. Unfortunately, this
simple model cannot produce different shapes for angular distributions
for final states which have the same j’r value. Differences of this type
have been observed in the sd-shell (II.8). Furthermore, the "spectro-
scopic factors" which are derived from this model are not easily related

to nuclear structure models.

14



15

The first microscopic form factor model was due to Bayman and
Rost (II.9). Although this model was never published, it may be found
in Nolen's thesis (II.2) and Ginaven's thesis (II.10). This model used
harmonic oscillator single-particle wavefunctions and a technique
developed by Mang (II.11) to project out the "triton" internal and
center of mass coordinates. Nolen (II.2) used this model to study the
(p.a) reaction on Cu and Zn isotopes while Ginaven applied the model
to the (o,p) reaction on the Ca isotopes (II.10, II.12).

Nolen's analysis assumed that the two neutrons were coupled to
zero angular momentum. The j-transfer was then the total angular
momentum of the proton. This simplification was necessary because
complete wavefunctions were not available for these targets. Since
Nolen studied the same states that were strongly populated by the
(d,3He) reaction, the assumption of simple seniority wavefunctions
was probably reasonable.

The study of proton hole states by the (p,a) reaction has resulted
in models based on the seniority one assumption (II.13, II.14). It is
assumed that the three nucleon wavefunction is the product of a
di-neutron wavefunction and a proton wavefunction. The models differ
in the way that the di-neutron wavefunction is calculated.

Ginaven's calculations (II.10, II.12) went a step beyond those of

Nolen's to include the coherence in the di-neutron angular momentum
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coupling. (0f7/2)3 MBZ (II.15) wavefunctions were used to describe
the Sc isotopes with the exception of 51Sc.

A semi-microscopic model which includes coherence over inter-
mediate couplings and configurations has been devised by Smits et al.
(I1.16, II.17) recently. Their method is a weak coupling model. Good
agreement has been obtained with Sn(p,a) data. This model has the
drawback of using mass three-cluster form factors. Thus, shape dif-
ferences in the angular distributions of states with the same j"r value
cannot be reproduced. Such effects are apparently weak in heavier
nuclei, but may be important in lighter nuclei. In addition, the model
is limited to those cases where the weak coupling assumption is appro-
priate.

Falk et al. (II.18, II.19) have developed a microscopic model
which uses the principle of expanding single particle wavefunctions
that are generated in a Woods-Saxon potential in terms of harmonic
oscillator wavefunctions. The resulting oscillator wavefunctions are
coupled together with a generalized Talmi transformation (II.20) to
make a "triton" wavefunction. The results for the 120 (a,p)lsN reac-
tion are quite good when the coherent sums over all allowed couplings
are performed.

In this work we present a theory for the (p,a) and (a,p) reac-
tions which is derived from a generalization of the Bayman and Kallio

method of calculating two nucleon form factors (II.21). In the first
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section the problem is formulated in terms of the single nucleon trans-
fer theory as presented by Tamura (II.22). In the second section the
spin part is separated from the spatial part of the wavefunction and the
spin coupling factors that enter multi-nucleon transfer calculations are
determined. In the third section harmonic oscillator single particle
wavefunctions are used to rederive the theory of Bayman and Rost in a
slightly different way. The fourth section shows how single particle
wavefunctions generated in a Woods-Saxon well may be used. Sec-
tion five is devoted to correcting for the center of mass motion in a
fixed center harmonic oscillator potential. A method of deriving cluster
model spectroscopic factors from microscopic considerations is given
for the harmonic oscillator model in the sixth section. In section
seven we show how to calculate spectroscopic amplitudes as sums of
products of two nucleon spectroscopic amplitudes and single particle
spectroscopic amplitudes. Sample calculations using form factors cal-
culated with the models presented in sections three, four and five are
presented in section eight. The last section is devoted to studying the
features of DWBA calculations for the (p,a) reaction. Finite range cal-
culations and zero range calculations are compared, angular momentum
matching effects are investigated, and the j-dependence in the DWBA

calculations is discussed.
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B. Distorted Waves Formalism

Since certain factors appear in the DWBA formalism for all trans-
fer reactions, it will be useful to look at structureless cluster transfer
to display the elements of the analysis that are present for all reac-
tions. Then it will be possible to concentrate on those features which
are unique to three-nucleon transfer. To develop the cluster transfer
formalism, we borrow the elegant treatment of Tamura (II.22).

The transition matrix element from a particular initial state to a

particular final state is

TMpmpMam, = & L 5 ity Aty ¥ i, %o L

(IBMBsbmbIVII MAs m ) (+) k_,r) II.1

a my ~a'~a

if spin-orbit coupling is present in both the entrance and exit channels.
Table II.1 contains a list of the notation used in this work.

The coordinates for a pick-up reaction are shown in Figure II.1.
The internal matrix in Equation II.1 is an integral over the coordinates
§B, §x, and §a which can be factored if the interaction is assumed to

act between the center of masses of a and x.

(1 M sbmbIV!I M,s_m: ) = §<13MB|1 M, )

(sbml'alv(rz) Isamé)dgx. 11.2

The first matrix element under the integral in Equation II.2 is an inte-

gral over §B and the second is an integral over §a, so that both are
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Figure II.1

Coordinates for cluster pick-up.
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Figure II.1
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TABLE II.1

A LIST OF SYMBOLS

Symbol Explanation
a,b,x,A,B Projectile, ejectile, transferred
cluster, target, final nucleus
g Jacobian for transforming to
relative coordinates
A R Relative coordinates for the aA and
Bb systems (See Figure II.1)
,l_ga P Eb Incoming and outgoing wave
vectors
+
xx(n ')m (k.,r) Optical wavefunction including
spin-orbit coupling
IB' IA Spins of the residual and target
nuclei
MB' MA Magnetic substates for IB and IA
sb, s Spins of the ejectile and projectile
mb, ma Magnetic substates for sb, sa
£'s Internal coordinates for the target
nucleons relative to an origin
located at the center of the core
(See Figure II.2)
Cr(f\).(: s o Expansion coefficient for the decom-
1717x "x position of the target wavefunction
in terms of a core and a cluster
with quantum numbers (n,,L., s,
171 X
a_,j)
X
¢ Wavefunctions—superscripts

denote angular momentum—sub-
scripts are for magnetic substates
or principle quantum number
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TABLE II.1—Continued

Symbol

Explanation

[eTepe ™|

(ymydpm,ylizmy)

Ll 'Lz

a,B
c®

) [
nLes, o, s

djl,s

i
m

.

]

Angular momentum vector coupling
L Sy
1
[cp ()0 (gxq

= E (£1mlsx|jmj)
m,m_

j
m;

L Sx
. "’mll (;;l)cpmx(ﬁ )

Vector coupling (Clebsch-
Gordon) coefficients

Orbital angular momentum transfer,
spin transfer, total angular
momentum transfer l:i& +s

Principle quantum number (oscil-
lator convention)

Separation of the cluster from the
residual nucleus and projectile
(See Figure II. 1)

Oscillator size parameters for
target and a-particle

Expansion coefficient for decompo-
sition of the ejectile in terms of
the projectile plus cluster

Spin and other quantum numbers of
the cluster when part of the ejec-
tile (not necessarily the same as
sx,ax)
~ indicates time reversal conjuga-
tion rs
L L -m L
@ 2=(-1)2% 2% 2
m; ~m;

=\ = (-1))3"™Ms
JpmpHgmg) = (17

HUymydgmyligmmy)

and (j m

Spectroscopic amplitude for a
j4s-transfer
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TABLE II.1—Continued

Symbol Explanation
£Him &;n
1 2
f fmy (g_l ,52) Finite range form factor
W(EL. L, js;fs ) Racah coefficient related to 6-j
12 X
symbol by
. o L+8,+)+s
(£1£st,£sx) = (-1)
{£1 £z J }
j s s,

{ni L, ji} Set of quantum numbers which
describe the single particle
orbits

212, S1g¢ 112 Di-neutron angular momentum
couplings

_z 2. 4 ] Transformation coefficients for

PR PR PP
(A)
©lngty)e,,
axj
S

changing j-s to £-s coupling—
related to -j symbols by

£y £z £y
53 S2 S| =

1 32 e
= N(2£),+1) (25,,+1) (2§,+1) (2j,+1)

£y £, Ly
Sy Sz Sy
h 2 he

Expansion coefficient for decom-
posing the target wavefunction into
a core and three nucleons with
quantum numbers {niﬂiji}ﬂlzaxj

Spin functions
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TABLE II.1—Continued

Symbol

Explanation

(nlllnzﬂz:ﬂlz I(n"Vz)zle20:g12> 1

((n"v2)£12n3£3:£ ' V131V30 :£ )21

e
XlzlA

T's

N's

(1)

(I ID

Transformation coefficient for
changing from nuclear coordinates
to internal and center of mass
coordinates (See Figure II.2)

v's and \'s are the principle quan-
tum numbers and angular momenta
in the transformed coordinates

Transformation coefficient to rela-
tive and center of mass coordi-
nates for the di-neutron

Transformation coefficient from the
di-neutron C.M. and proton to tri-
ton C.M. and internal coordinates.

Transformation coefficient for
transforming two nucleon coordi-
nates to relative and C.M. coordi-
nates in a Woods-Saxon well

Internal coordinates in a fixed
center potential

Isospin quantum numbers

z projection of T's (N=+3 for a
proton)

Antisymmeterizer

Reduced matrix element—reduced
in spin only

Reduced matrix element—reduced
in spin and isospin
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functions of §x. The core may be integrated away if the target is
expanded in terms of a core plus the transferred nucleon cluster. This

procedure yields:

(IgMo I, M, ) = Z.nx £y5,a j(IBMBjmj MA>[ep (r)w (& )} I1.3
L, j

Sx%x
where a represents other quantum numbers that may be used to
describe the cluster. It is in Equation II. 3 that the structureless clus-
ter assumption has been realized by separating the center of mass
coordinate from the intermal "triton" coordinates. We will return to
this point later.

The ejectile can also be expanded as a projectile core plus the

transferred group.

ml':)lv(x;z)lsamé) = ) Cg:ﬁzs o g(sympsm_Is m! )[ iz(r )tp (§ )]
n,L;s X
Sx%x I1.4
where
= ~
520)) = Vieg)e, @) 1.5

and ~ denotes time reversal conjugation (see Table II.1). Qﬁz(_gz)
contains the separation of the projectile from the cluster center of mass.
If this function is not taken to be a delta function (zero range approxi-
mation), then the six-dimensional finite range integral must be per-
formed (Equation II.1).

If the results of Equations II.3 and II.4 are used in Equation II. 2
and, at the same time, we change to 1-s coupling, the transition

matrix element for pick-up is seen to be
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s n £,n
(IMs, m! V() IL,M,s m!) = { 4 11“(;~)}
B Bbb A"Aa a ils &nlsn £1n1£2n2 /m 1'~2
Ipt+s.+j+2s+m.-m{,-M
'(-l)B a s™b A(Zs-i-l)(ZI +1) (I MI M Ijm)
B A'B
(s m' 25p™™ lsms)(jmjsmslz—mz). II.6
The quantities d}f n,L,n; and t‘; ;:;lenz(il ' 52) are defined to be
jzs (b) s+£,-s .
£lnlfenz Z Cn,£1s a j LS way S (-1) XW(£1£2jS,ESX) 1.7
and
y/
fgn,f,znz( (c,.r, ) = [ Mr )«I> Z(r )] . 1.8
zmz ~2
Because expression II.6 is exact, these are complicated looking
equations. The meaning of d}:le £o0; and fi::;lznz(sl '52) becomes

clearer if we look briefly at their zero range cousins for, say, the (p,d)

reaction. Under these conditions

= 0- = 0 = 4. c® - 1.
Ny =00 L =0 &)=k G rsays b
W(.(:l.tzjs; zsx) =1
and dj is seen to reduce to a single spectroscopic amplitude.
&HnyLen;
£ ‘n‘£znz(§_1 «I,) reduces to the usual form factor

£my
2™ 1) = oL@ IVe)e €)= D 5ol ()
gm, 1'~2 n~1"""2""a~2 o ~2'"n~1""
Since our particular interest is the (p,a) reaction, we will now
write Equations II.6, II.7, and II.8 again in the specific form that

applies to "triton" transfer.
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For (p,a) we must have
£. =0 & =14; s=3 C
W(£1£2js:£sx) = 1.

These conditions imply

L3 A
(IBMBsbmbIVII M,s_m? ') = {Zdj 2f n, ( )}

Ig+(3/2)+j+mg-Mp

1 -
«(-1) 2(21 +1) (I MAIB Bljmj)(jmjzmalﬂ mz)
II.6a
s _
d” =2 chlﬂzaj II.7a
£ r)=¢z(r)<l>o(g) 1. 8a
zmz~’~2 n, ~1"o*2"" ’

The quantity on which we need to concentrate in the future is the
quantity in brackets { } in Equation II.6. We will not specify whether
the zero range approximation is being made or not. Instead, the func-

tion Q:Q'Z) will be carried along through all steps.

C. Decomposition of the Orbital and Spin Parts

In the last section we saw that all the reaction information is

contained in the quantities dj“as

and f (rl,rz) The function
£, my (gl y 52) contains only the spatial parts of the wavefunctions. In
order to isolate f Im zkl ,52) for the (p,a) reaction we must, therefore,

separate the spin and orbital angular momenta of the wavefunctions that

are involved. If k nucleons are involved, there will be (k-1) 9-j
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symbols which come from the transformation from j-j coupling to 1-s
coupling.
We show this for the (p,a) reaction by making the expansion of

the target wavefunction (Equation II.3) again

@) {G,397125,Y

(1Mo 1L,M,) :{nizgiji}c{“iziji}w(glgzgs) (IBMBjmJIIAMA). II. 3a
Jr2ay haayd  (nifidi}

The difference between Equations II.3 and II. 3a is that some of the
quantum numbers that were previously part of a have been written
explicitly and (§x,£1) have been replaced by (§1 ,§2,§3) .

The change to 1l-s coupling is accomplished by

le j 212 23 £ zl £Z ‘le
«pge(iléj:é,) Wb . , Z Si2 z 2 Z z sy
{niﬂlji}ax lzjlz le 13 j jl jZ le

e

| {wlzz)zlzzs}z {(z 3°124)° :
P(EiLaEy) X I1.9
| {nil’,iji}

Choose particles 1 and 2 to be the two neutrons. Since they
must go into the 0Os orbit in the a-particle, the Pauli principle requires

=0 and 112=£ Using these conditions and Equation II.9 in the

512 12°

expression for (IBMBIIAMA> gives



" Ly By ][0 2 442
_ 1 1 1 1
(IBMBIIAMA) = Z C{n-ﬁ-jo} 0 =z 2|z =z O
gdygsd v s il s
szaxjﬂ 120 120 ! 2 12
Lyy A o |1
{002 PY (458
-(IBMBjijIAMA) w(g‘gzgs) X . I1.10
{ni2;ji} _

Comparing Equations II.10 and II.3, we see that they have the
same form except for the recoupling terms. Therefore, the term in

brackets in Equation II.6a can be written as

itz {n;2,j;}
) d{:z,j_} p ik (£, .£,)- .11
{njg;5;} LT ATy
212 zlz

The spectroscopic amplitude is given by

£ £y L||E, £, £
djz% = ZC(A) o12 Coully oy olz 1I.12
{niziji} - @ {niﬂijj} | 2 ) )
£z X fpaj bz s Il 2t
{ni£y;}

In order to write an expression for flmg (£;.Lp) . it is neces-
sary to choose a wavefunction for the a-particle. We make the fol-

lowing Gaussian choice

0 = ne-B/ 2(py+p 35+ars)

where p,, and p,,; are related to r,; and r,;;, which are the "triton"
internal coordinates that are shown in Figure II.2. This choice allows

some of the overlap integrals to be done analytically in the oscillator

model.
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Figure II.2

Nucleon coordinates in the target nucleus.
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Figure II.2
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Using this choice gives

L1z, 4
{n03;} 612 o {61827 43}" _g/2(p2,4p2
- 12*Piz3)
fmg k) 7%k § Tttty 12%128°
{n;£,3;} II.13

r. is not explicitly shown on the right hand side of EquationII.13

~1
because (&1 ,§2,§3) must still be transformed to (g12,3123,£1) . This
is the subject of the next three sections.

D. The (p,a) Form Factor; Harmonic
Oscillator Model

In order to reduce the right hand side of Equation II.13 to a func-
tion of (51,52) , the nuclear coordinates (&1,§2,§3) must be transformed

to center of mass and internal coordinates (p12 ,rl) (see

P123
Figure II.2).

{(8,29) 0120,
The function ¢ may be written in the anti-symmetric
(glngIgS)ax
form
’ '2 ['zljlg l’lzjz'g Eljlg *ezl'z‘cp ]312 £33 £
('t lom €on, €70, €e 6] e 69}
(p =
(€,€285) N2(1+ anlnzbﬂxzzbhjz)
{njj;}ay

11.14
where the convention that particles 1 and 2 are the neutrons is used.
In this section the single particle wavefunctions are taken to be
harmonic oscillator wavefunctions.
We need to determine the expansion coefficients defined by

Equation I1I1.15
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£11y L2z L3y £232 Lz £3)s 4
{Lom € e € -0 g0, "] o )
42(1+6n1n26£1£23j‘jz;

x A2\ £
vi Mqlmo4y [cp l({ )(P( : 3)A(ﬁ712,g123)]

vz, X2 | n; Ez Vi 1 VaVs ~
P T NN BTl a7 oo oy e B
)\IVIXsz v X n, ) n;n, lez jljz
AviA >0 3
where

3 3
5(@n+2) = ), (2v,+\) = N I1.16
i=1 i=1

is required to conserve oscillator quanta.
The transferred "triton" should have zero intermal angular momen-
tum if it is to fit into the a-particle. This condition implies that only

the terms with )\1 =0, x2=0, and A =0 should be saved. Terms with

nonzero v2 and v3 need not be zero, however. If the size parameter

of the a-particle (B) is different from the size parameter of the target
wavefunctions (a), there will be nonzero overlaps for the Vo v3;4 0

terms. Equation II.15 may be written again including these conditions.

I £ k L2, Liz g43, L
e {fon, € pen € - op e er e ] o €3}

Vi E nl ﬂl

= V2 0 nz ﬂz (OO)
VZV 0 L1z (51)“’v vy R12°8123
V1VvaVs Vi 0 n3 ,83

II.15a

where P is a projection operator that picks out the portion of the wave-

-B/2 (Piz"’Pizg) ]

function that has nonzero overlap with e
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It is our goal to relate these expansion coefficients to Talmi-
Moshinsky coefficients. Proceed by examining the two-nucleon part of

the wavefunction

j2 L4131 L,3, 2y,

6,) - op € op €] = 2]
ARVR
N12V2

£4j, L,
[apnl (3 1)“’nz

- toin gm0 ) | o Rme e ) |1 w7
RNRV12M 212 M Mttt | | % RI%, (R, N

where
(£-L£4-2,7)
N'=(N-n)+———%—L-
1I.18
vR = N'- v2 .
The (nlﬂlnzzz:ﬂlzl VR)‘RVIZ)‘IZ:EIZ)II are the normal Talmi-

Moshinsky transformation coefficients for equal mass particles. The
subscripts 11 denote that the masses involved are both single nucleon
masses.

The vector R runs from the center of the core (B) to the center of
mass of the di-neutron. The condition that there be no internal angular

momentum implies that )‘1 =0 and )‘R=212'

2
This result may be inserted into the left hand side of

Equation II. 15a to get
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£y2
vz

o
_ V2 0 n, zz £ (00)
- Z 0 2‘2 ‘pv,(rl)(pvzv:, (212,3123). II.lg

The function in brackets on the left hand side of Equation II.19
can be expanded in a similar way
© £y2
I [ e ) )
M
N\3V3

o Mo .

I1. 20
The subscripts 21 denote that the mass on the left hand side of the
bracket is two nucleon masses while the right hand side is for a single
nucleon. Again the requirement of zero internal angular momentum can
be applied so that x3=0 and N =4.
Using Equation I1.20 in Equation II. 19 yields the relation
vi £] n, £

V2 0 n, £; _ "
0 Ly = 2{(N'=v )0 ,v,0:4 510 8 0o bzl 0)

V3 0 ng £3

(v zv ozl(N'v)z nz z) II.21

The (| )21 coefficient is the Talmi-Moshinsky transformation for a

mass two particle and a mass one particle (II.20).
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We may use Equation II.21 in Equation II. 15a and then insert the

result in Equation II.13 to yield

{n;2;3;} 21
£, my £y .Ly) = N2(1+6n1n,00,4,%5,5,) &

VivVaV,

. ((N'~v2)212v20 L Inlzlnzzz 212)11

) o
° (vlﬂ V30:;e I (N ‘Vz)z 12n3£3 z) ‘pvl(zl)‘bo@:z)

-B/2(p,+p323)
Gw (p12)<p (p123)e 12 ‘23dglzdg_123>. II. 22

The integral in parentheses in Equation II.22 can be factored into

two integrals of the form
o -
I = Scpv(p)e Br2e® 2y, 11.23

This integral can be done analytically if we use the oscillator function

2-v 3/2 2
°o. |2 (2v+1)!!a (-2a) /v 2« -a/2p
¢ p) —j NP— {(ZK_H)”()p }e . II.24

The result is

[ = ¢ |2l o (@> 1. 25
vl 2 (B+a)3/2
Equation II.22 may now be written
{n;£;3;}
Emigi i (r, '52) = N2+ 6n1§l}ﬂlﬂzbhh) VIVZZV3
. ((N--vz)zlzvzo L In I,lnzi,z Elz)n
(v 2y 0l N'=v )by pnat o)y A @ 200G

I1.22a
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where

II. 26

Va2V3

"%j (2v2+1)!!(2v3:1) 3 (B vatvs |

Vz! Vgl 2v2 V3 (B+Q) B+a
The last result is very similar to one obtained by Bayman and

Rost (II.9). It is purely a result of allowing the oscillator size

parameters for the a-particle and the target to be different. If a=p,

v, and Va must be zero and the problem is easily simplified.

A recipe for the harmonic oscillator model calculation is as fol-

2,v3) , calculate the Av2V3

and the two Talmi-Moshinsky coefficients. The form factor can be

lows. For allowed combinations of (vl 'V

calculated via equation II.22a. The spectroscopic amplitudes are
given by Equation II.12. The transition matrix element is then found
by substituting these values into expression II.11.

E. The (p,a) Form Factor:
Woods-Saxon Model

Once again we wish to reduce the right hand side of Equation
II.13 so that it is explicitly a function of I and X, only. Again, the
triton wavefunction is taken to be as given in Equation II.14. We will
work in the same general pattern as the last section.

As before, begin by expanding the two-nucleon part of Equa-
tion II. 14, but this time follow the Bayman and Kallio (II.21) two-

nucleon expansion
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£13y £L232 £, £232 £z Lyz
[wnl (El)wnz (€,) - %n, (€,) °n, ‘& )] Z qu(p”'R)
N2(1+ 6“1“2%132 jljz) A P1R
Moy n LAY
: [Y 12(p,z)sr"(R)] : 11.27

Since the internal angular momentum is required to be zero, only terms
with x12=0 and A=/ need to be saved.

This result may be used in Equation II. 13 to yield

{n £yl } ) 2
m

12M3
(P1z:R)
. “’ﬁzh €5 ( g doy,e P2 P2 —LPZIZR—— Yf(‘;lz)Yrﬁz(ﬁ))
II.28
The inner integral in Equation II. 28 is the normal two-nucleon
form factor that Bayman and Kallio calculate. Call this integral
P(Z) (R)Yﬁlllzz(f{) where R is the coordinate of the center of mass of the

di-neutron as defined in the last section. Using this notation in Equa-

tion II. 28 and recoupling the angular momenta yields

{n £} 2 Lrz ~ 4 £
e ) =ne (_Z)S‘dp L4 2"‘23[}'(2)01)\( “®R)e ’(53)] . I.29

The quantity in brackets can be expanded as

)
£ (ry ,Py23)
Ly . L ) . Ry
[P(Z)(R)Y “®e 3‘(§3)] -y Dt [Y)‘”’(plz)YT(rl)] . I.30

e
123 171z
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As before, take only terms with \ =0, and hence t=£, so that

123
fz (r1,P123)
f;;ijiji}(fl L) = ":@2)5‘191233-3/2 oio %;}i [Yg(5123)Y£(;1)]£'
II.31
The integral in Equation II. 31 has the same form as the two-
nucleon form factor. However, one of the particles is a di-neutron. It
is possible to redefine the coordinates in the Bayman and Kallio paper
to handle the unequal mass problem. Roger Markham has written a
code to perform this calculation for three-nucleon or four-nucleon
transfer (II.23).

If single particle wavefunctions generated in a Woods-Saxon
potential are used, the prescription is to first calculate the two-
nucleon wavefunction P(Z) (R)Yzlz(R) then use this to calculate the
three-nucleon form factor, which is given by Equation II.31. The tran-

sition matrix element can then be found by using the spectroscopic

amplitudes given by Equation II1.12.

F. Correction for the Center of Mass Motion

The steps leading to Equation II. 22a involved integrating over
the coordinates of (IBMBI in Equation II.3a. We implicitly assumed
that all the coordinates were internal, which they are in the coordinate
system whose origin is the center of the core (see Figure I1.2). How-
ever, this is really incorrect since the core (B) is moving about the

center of mass of nucleus (A) which is fixed in our reference frame.
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Hence the coordinate system shown in Figure II. 3 is the correct one.

In this system the appropriate coordinates for (I MBI are E.B and BB

and we are interested in determining the effect of motion about % on

the form factor. We begin by expanding |1 MA) again

M) = Y c®
AR gy} (ngggp)

haa, 11205

J J J ! ! J
{v B(éB,BB)d:w e () -0 (L )e z(gz)J 2o >>}

VZ']. + bﬁlnzblxﬂzbhjz)

II. 32

At this point we can change to LS coupling and apply the two Moshinsky

transformations outlined in Equations II.15 through II. 21 to get

LM, ) = ), y cW
ATA {nj£3;} wvivaws “ln ifid; }\f2(1+6n “2 89,2,%3,37)
‘ellaxj jlzaxj

Ly L; Ly2||£y2 45 £

1 1 1 1 -

2 2 0 0 2 2 ((N Vz)zlz 2 Inlﬂlnzﬂz 312>11
vz Lty b S

. o o
(v1£v30:£|(N v2)£12n3£3 2)21 cpvz(gl;)q’v’(glzg)

11,0124 ] ]

We assume that there is no spurious center of mass motion which
means that the center of mass motion does not have any oscillator

quanta associated with it. In other words,
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Figure II.3

Nucleon coordinates in a fixed potential.
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Figure II.3
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4»IB(€ ) = ¢IB(§ ) °(R.) 1I.34
p'Rp = B’%o 2p’ - y

We may now perform another generalized Moshinsky transforma-
tion on the term in brackets in Equation II.33, where the masses

involved are B and 3.

)/ o o L
@, (e, By) = (00v £:£100v,0:0) 5, 0o Rye) ®)

A v+ 4/2

_A o £
KA—s 9o (Ry)¥

1

R . I1. 35

If Equation II. 35 is used to replace the term in { } in Equation II. 33
and the result is compared with II.22a, it is evident that the effect of

the center of mass motion is to make the replacement

L/2
) A\t
o) (A-S) .5

Similar analysis for cluster transfer has been presented by Ichimura

et al. (II.24). Our result reduces to the cluster result if we require
equal size parameters, which is the equivalent of the cluster transfer
form factor. It is intriguing to note that the correction is different for
Os, 1s, 2s, . . . internal motions for realistic size parameters,
thereby changing the shape as well as the magnitude of the form factor.

G. The Microscopic Basis for Cluster Model

Spectroscopic Factors

In the harmonic oscillator model the importance of 1s, 2s, 3s,
. . . terms in the "triton" wavefunction is a function of the difference

of oscillator parameters (a-8). In principle, this difference is fixed by
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the a-particle radius and the nuclear radius. However, it is instruc-
tive to consider the case where a=g.

If (o-B) is zero, there is no contribution from the 1ls, 2s, 3s...
terms. In this instance, Vo=V, =0 and the triton is structureless.
Therefore, (a-f) =0 implies mass three cluster transfer. Furthermore,
the center of mass correction reduces to the cluster center of mass cor-
rection given in Reference 1II. 24.

It was pointed out in the introduction that "spectroscopic fac-
tors" deduced from a cluster model calculation are not easily related to
nuclear shell structure. In the sense that a harmonic oscillator cluster
model is given by (a-8) =0, we can derive a spectroscopic amplitude by
investigating the expression II.11 and Equation II.22a.

For single nucleon transfer, or cluster transfer, II.11 becomes

103

1
S 105D = N NITRE 1.36)

1
The spectroscopic amplitude, d”’z, is called the "spectroscopic fac-
tor" and is usually denoted by sj Z.

If, on the other hand, we require o= in Equation II.22a and use

the result in expression II.11, we obtain

Elz £3 ‘e zl EZ 212
{ L C?xzu}zajo | L I o m e )
i 12 z Z
{niziji} P x L2 43 N Iz t2 MR hiba ]
E,zax

(OON'£ In.£.n_£,:£.,). . (OON£:£IN'£ .n

o £
12'212 1717272°712°11 12 3£3'£)21 <150‘52)(‘,N(£1)
1I. 37
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where

2N'+1’,1 = 2(n1+n2)+£ +4,..

2 1 72
Comparing the right hand side of Equation II. 36 to II.37 shows that the

spectroscopic factor is given by

oy Yo )

represents the term in brackets in I1.37. A number of (p,a) and (a,p)
studies have deduced cluster model "spectroscopic factors" (see II.S
and II.25 for example). None of these experimental spectroscopic fac-

iz

tors have been compared with theoretical S’ values calculated in the

manner presented here.

H. The Use of Shell Model Wavefunctions

The nuclear structure information is contained in the expansion
coefficients C(A) . In order to test shell model wavefunctions, a pre-
scription for calculating these coefficients must be devised. We will
do this by introducing an intermediate state expansion so that reduced
matrix elements for two nucleon configurations and single nucleon con-
figurations may be used. This method has the advantages of using the
output of existing shell model codes (codes for calculating three
nucleon overlaps have not been written as yet) and of allowing us to
separate the two neutrons for easy anti-symmeterization as we have

done. In addition, this method is intuitively pleasing since it divides

the problem into two nucleon transfer and single nucleon transfer.
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The expansion coefficients defined in Equation II.3 are given by

(R) _ IB( 4 4, Jzhz 323 1A| 1A
C{niliji}hzaxj = <‘:‘P {’4 ¢ lp’%) 12 3} } lcp > II. 38

A p-n formalism has been used and we have anti-symmeterized accord-
ingly. However, the shell model wavefunctions which we wish to use

@)

for the calculation of C are derived in the isospin formalism. It is
necessary, therefore, to begin by converting the right hand side of
Equation II. 38 to the appropriate form for the isospin formalism. We do

this by expanding the three nucleon wavefunction

i .1 1 1 1.1 1.1
{A@jlf(pjzf>hil(p‘l3z} _ _m%q@,hzwjzz) sz 2}12
-2 "2/-2 2
V73 LA B N st %2
+ 1/3{74Qpltpzz>cp3 } . 11.39

Even though neither term on the right hand side is anti-symmetric, the
total must be since it is an expansion of an anti-symmetric wavefunc-
tion with a complete basis set. The right hand side also has the dis-
pleasing feature of having a term that has an isospin coupling of 3/2.
This is because our p-n formalism triton wavefunction does not have
good isospin.
It is desirable to work with reduced matrix elements so as to

simplify the algebra. The following definition is useful in this regard.

2k
k, kpk, k i
(@ Y ) lo ) =

Ky, ks, k
= Gt b Hie 2lle). II.40
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Inserting Equations II.39 and II.40 into II.38 gives

(A) [m IgTg { i3 Jz%)szl js}j% IAT2>
|| A !

InT L 5iN\J1] an i 3/2 LT
+ \/1/3<cp BNBIIA{QPjIZtPjn)hZ wi;z} IlcpANA>:| ) II1.41
B A

Here the reduced matrix elements are reduced in spin only. The Wigner

Eckhart theorem can be applied to reduce them in isospin as well.

1
@A) [ Tg- B H T> IgTg
C N2 1
{n2yd; Haeyd ZIA [veE ey -2 ( I[
c 1 1401 1y L7 IanT Ta-Ng T, 3/2 T
[y s
“Np -z N,

I.T Lol L I\T
((p B'B ]I{A((phz‘pjzaylzl(pjsz}j 3/2]1(,, A A)] , II. 42

These reduced matrix elements can be expanded using the rela-

tion

' : Kk kK
Q"I”[Tkl X Tk’lkllwl> = (" {1-l z }
7]’"

. ]' kl ]'u ]n kZ ]’l
Qo T II¢Y>(¢7 T ||¢> 1I.43

where ¥ represents other quantum numbers which may be needed to

LV

describe the intermediate states. The resulting expression for C

I +j+1B 2T
@) (1A 2141 2 [ A 1,
C = J— -1) P(@.N_i-31T,N)
{nlziji}hzaxj "IZIA"‘I 2Tp+1 75 I'Z';I" B B2 2'"aA""A
7 .

1 1 3

{1 % E} (I)ZTAH(T N){ : z}]

. + (- _ X
' 2 '

Ty Tg T BB AA Tg T
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I1.44
This is the result we desire since it is really these reduced

matrix elements that the shell model overlap codes provide. Notice
that only even values are allowed for the two nucleon coupling if the
target has a ground state spin of zero. This is so because the two

nucleons are in an isospin one state and a relative s state. Thus the

sum over J' is only over the values 0, 2, 4, . . . .

I. Sample Calculations

Figure II.4 shows a comparison of three methods of calculating
three nucleon form factors. The microscopic Woods-Saxon form factor
was calculated assuming each was bound by 8 MeV. The oscillator
form factor was calculated assuming a size parameter of .226 fm-2 (see
below). A hankel tail was matched to the oscillator form factor to give
the correct asymptotic behavior. The mass three cluster form factor
was calculated using a Woods-Saxon well and the triton separation
energy from 52Cr. The two form factors have similar shapes, although
they differ a bit near the nuclear surface. The mass three cluster form
factor has its nodes pushed out further than the other two form factors
and does not display an accentuated last maximum. In addition, the
cluster form factor does not have the same tail as the microscopic

Woods-Saxon form factor.
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Figure II.4

Form factors for 53Cr(p,a)4gv going to the 7/2 ground state of 49V.
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Zero range DWBA calculations for the form factors in Figure II.4
are shown in Figure II.5. Even though the cluster form factor is dif-
ferent, the predicted angular distribution is similar to both microscopic
calculations. The optical parameters for all the DWBA calculations

which we present are given in Table II.2.

TABLE II.2

OPTICAL PARAMETERS

Particle Ve rr ar Vso rso aso VI rI oI WS

-43.2211.22|.72|-25.0{1.01| .75] -5.011.32] .52 (12.6
a 196.0 | 1.22].72 -16.011.82| .38

s input for DWUCK72 (I1.27)—e.g., includes factor of 4.0.

The effect of different neutron orbitals is shown in Figures II.6
and II.7. The (1p3/2)20f7/2 and (0f7/2)3 form factors differ in much
the same way that the cluster form factor and the (0f7/ 2)3 form factor
differ. The angular distributions are similar again, but the
(1p3/2)20f7/2 transfer is predicted to have ten times more cross sec-
tion. This feature can be tested by examining the 7/2- states in

54,56 51'53Mn reactions.

Fe(p,a)
The form factors which are shown in Figures II.4 and II.6 are for
a particular choice of the a-particle size. We have used 1.63 fm for

the root mean square radius of the a-particle. This value was meas-

ured by electron scattering (II.26).
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Figure II.S

Zero range DWBA calculations for the 7/2- form factors shown

in Figure I1I.4. Ep = 35 MeV.
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Figure II.6

Microscogic form factors for a seniority one 7/2- transfer in the
S Cr(p,a)49V reaction—Woods-Saxon potential.
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Figure II.7

DWBA calculations for the form factors shown in Figure II.6.
Ep = 35 MeV.
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To perform the Woods-Saxon form factor calculation, it is neces-
sary to determine the n-n separation and the proton—di-neutron sepa-
ration from the o-particle radius. The appropriate r.m.s. separations

turn out to be

A 1.537 fm

n-n

Ap-(nn) = 1.331 fm.
For the harmonic oscillator calculation, it is necessary to find
the relation between B and the o-particle radius. The a-particle

wavefunction is

4
“B/2Z (i-Rom)’
e =1 .

w 3
The sum may be transformed to internal coordinates only by
3 2 1.2 2 2 3.2
1=21(51'50M) =2f12%3N123 v 4 %2
Earlier we used the variables 9'12 and p123. These variables are now
seen to be
N3
2 £

]
P12 = Wz i127 Prog = N2/3Xy,50 Pyg3q =3 Ly

The definition of the r.m.s. radius is

0 2 2 2
-B(Py2+Py23+P123) 2, 2 | 2
2 foe 1B B (0 74P 123+ P1234) P12P 123P12348P 1 20P 1230 1234
A =

1
o 4 L”e-ﬁ(piﬁpizﬁp%z 34) 2

2 2
P12P123P12344P 1240 123dP 234

If the integrals are carried out, the expression for B is

L
2
A,

2

B = = .42 fm “.

o [
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The nuclear wavefunction also requires a size parameter. For the
Woods-Saxon well the usual A% prescription was used with o= 1.22 fm
and a diffuseness of .72 fm. The size parameter for the harmonic
oscillator can be determined from the electron scattering r.m.s. radius
measurements with the relation
2)

1
(RY) = = rg,ﬂNn}z(zn+2/a+3/?_)

which follows from the virial theorem. The sum is over protons only

and Nn is the proton occupation number for the nf-orbit. The center

)
of mass motion is neglected in deriving this relation. Therefore, it
cannot be expected to give accurate results for light nuclei. For
example, the size parameter for the ao-particle that was calculated
exactly is 33 percent smaller than that which is arrived at if the above

relation is used. Typical size parameters for the periodic table are

given in Table II. 3.

TABLE II.3

TYPICAL OSCILLATOR SIZE PARAMETERS

Nucleus Radius (fm) a) a(fm”?)
169 2.718 .3046
10¢ca 3.482 .2474
S8n1 3.764 .2420
905, 4.265 .2062

2085y, 5.498 .1900

aRadius parameters are electron scattering results from Refer-
ence II.26.
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The difference between the size parameters, o« and B, is a meas-
ure of the importance of the 1s, 2s, 3s, . . . internal triton states. A
table of structure factors which show the effect for two nucleon trans-
fer has been published by Glendenning (II.28). Similarly, a three

nucleon structure factor may be defined by

Elz '23 ‘z zl EZ zlz 2
j‘g 1 1 1 1 = Z
s =lo L 4L L o
V1 D \f2(1+6n1n26£l£26j1h) VaVs
Lz 33 1 iz Ly
CNT=v)) 2y vp0idyyIny Bino byl o),y
. . " 3/2,8\9/4
(v by 0:0] (N'=v )8 0 L,00) (z (ﬂ) A 2v3>

where Av v is given by Equation 1I1.26. The form factor is given by
2V

IRV
fz(gl) = ésvlwv;(m'fl)'

Table II.4 is a set of structure factors for all (0f7/2)3 configura-
tions. In general the structure factors increase as the number of nodes
in the radial wavefunction increases. They decrease as the intermedi-
ate coupling value increases if j=/4+ %, but have the opposite behavior
if j=14 - % An alternation in the magnitude of the structure factors is
also apparent. For example, the 19/2- transition has a larger structure
factor than the 17/2- transition. Similarly the 15/2- structure factors
are larger than the 13/2 values.

The actual strength of a pure configuration is dependent on the

reaction kinematics. Examination of the structure factors is not
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sufficient to investigate cross section ratios of transfers that have dif-

ferent angular momentum characteristics.

Peak cross sections for the

(0f7/2)3 configurations are tabulated in Table II.5.

TABLE II.S

MAXIMUM CROSS SECTIONS FOR (0f7/2)3 CONFIGURATIONS™

m

oLy, = 0 2 4 6
1/2" (.283)1.132

3/2° (.398).796 (.107).214

5/2° (.057).076 (.114).152 (2.18).291
7/2 (1.0) 1.0 (.283).283 (.122).122 (.044).044
9/2 (.059).047 (.109).087 (.142).114
11/2° (.602).401 (.206).137 (.083).055
13/2 (.052).030 (.071).041
15/2 (.092).346 (.203).102
17/2" (.005).029
19/2 (.698).279

()= opwuck:
No () = epwuyck/@2]+1)*

*All values relative to the J"=7/2"; £,,=0 maximum cross sec-

tion.

These values are the results of zero range calculations using

(0f7/2)3 Woods-Saxon form factors. The 7/2- seniority one transfer

has been normalized to one and all other values are relative to it. The

peak cross sections were taken to be the largest value irrespective of

the angle at which it occurred. The exact values may not have much
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meaning when comparing calculations with different angular momentum
values because of the large angular momentum mismatch. However,
the fact that the Is member always has more cross section than the Je
member of a spin-orbit pair is general. In addition, the same inter-
mediate coupling dependence that was noted for the structure factors is
again evident.

The effect of the orbital spins on the cross section is demon-
strated in Figure II.7 where the (1p3/2)20f7/2 seniority transfer was
seen to have ten times the predicted cross section of that of the
(0f7/2)3 seniority transfer. This effect can be understood as being
the result of a larger "S" component in the relative wavefunction for
two nucleons in low spin orbitals than for two nucleons in high spin

orbitals. The 2%%pb(p,a) 2?11 and 20

8Pb(a' ,P) 21 lBi reactions should
be ideal reactions with which to test this feature. Since the (p,a)
reaction picks particles out of low spin orbitals, the cross sections to
2OSTI should be large. The states in 21131 will be mostly three parti-
cles in orbits with spins of 9/2 and should not be easily excited.

The center of mass motion becomes important when comparing
cross sections of states in different final nuclei. This is especially
important for light nuclei. The center of mass correction is displayed
for a (0d5/2)3 seniority one transfer from 2';Mg in Figure II.8. Pri-

marily the center of mass correction is a multiplicative factor, even

though it could change the shape slightly. Slight shape changes are



66

Figure II.8

Center of mass correction for a 5/2+ seniority one transfer in the
24Mg(p,a)21Na reaction. The top two curves show the absolute
magnitudes, while the bottom two curves have been shifted to
emphasize the shape differences introduced by the correction.
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evident on the first two maxima. For this case the cluster multiplica-

N+1/2 is sufficient cormrection. Since the shape

tive factor (A/(A-3))
change is small, it seems reasonable to apply this correction to all
form factor models.

If the size parameter for the a-particle is equal to the size
parameter of the target potential well in the oscillator model, then
the triton internal state must be a 0s state. In this instance, the
structure factors are all zero except the one with the largest number
of radial nodes. The radial shape becomes the same as that of a mass
three particle in a harmonic oscillator well with a size parameter given
by 3a. A (0£f7/ 2)3 calculation where both o and 8 were taken to be
.226 fm is compared with the Woods-Saxon mass three cluster form
factor in Figure II.9. These two form factors are rather similar. Since
the differences are small, it seems reasonable to calculate mass three

cluster spectroscopic factors microscopically by the prescription given

in Section G.

]._The DWBA and the (p,o) Reaction

Multi-particle transfer reactions are difficult to handle with the
DWBA because of the large mass transfer and, hence, the large momen-
tum transfer. Such circumstances give rise to finite range effects
which often cannot be accounted for using the zero range approxima-
tion. Most important of these effects is the recoil which is left out of

the zero range approximation because the projectile, picked up cluster,
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Figure 1I.9

Cluster form factors for a 7/2- transfer in the
52Cr(p,oz)‘lgv reaction.
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and ejectile all move on the same line in the zero range theory. In
addition, a large angular momentum mismatch can cause great diffi-
culty since both the shapes and magnitudes of the angular distribu-
tions are sensitive to the optical parameters, which are poorly deter-
minted for composite particles, when the mismatch is severe.

The finite range effects for the (p,a) reaction have been studied
previously by Drisko and Satchler (II.29). They found very little
shape dependence for the one case that they reported. We have per-
formed exact finite range calculations using the code LOLA (II. 30) for
a number of transitions. No spin-orbit potential is allowed in this
code so the comparison to zero range calculations done with DWUCK72
(II.27) must be done without spin-orbit coupling in the proton optical
parameters. The results of an £ =3 calculation using the microscopic
Woods-Saxon ((Jf7/2)3 form factor from Figure II.4 is shown in
Figure I1.10. There do not appear to be strong shape changes that
can be attributed to finite range effects. This is very fortunate since
the spin-orbit coupling is necessary to reproduce the j-dependence
that has been observed. The lack of finite range dependence may be
attributed to the choice of optical parameters. To first order the
largest finite range effect is to reduce the contribution of the nuclear
interior to the transition matrix element. To some extent this may also
be accomplished by a judicious choice of the optical parameters. It

has been noted previously for the (d,a) reaction that finite range
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Figure II. 10

A comparison of an exact finite range DWBA calculation and a zero

range DWBA calculation. The microscopic Woods-Saxon model form

factor shown in Figure II.4 was used in both calculations. The cal-

culations were done without spin-orbit coupling in the proton channel.
Ep = 35 MeV.
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effects are minimized if the "well matched" optical potentials are
chosen (II.31). The optical parameters which we have used have the
same geometry and have real well depths of about 50 MeV for the proton
channel and about 200 MeV for the a-particle potential. These are the
well matching conditions.

The angular momentum mismatch may be illustrated in a number of
ways. A classical approximation which is frequently used is to assume
that the reaction takes place at the nuclear surface and that the ejec-
tile is emitted at 0°. Under this assumption the classical change in

angular momentum is

r (p,-P,)
a1 = |2

For the 52Cr case which we have been considering, A/ is about 6.
For the (p,a) reaction on Te, where the Q-value is more positive and
the radius is larger, AZ may go as high as 9 or 10. Since most
£-transfers are between 0 and 5, they do not meet the angular momen-
tum requirements and are suppressed. Classically they would not
occur at all.

A quantum mechanical way of looking at this effect is to examine
the elastic scattering reflection coefficients. Most of the reaction
cross section comes from a few partial waves near the one which has
ITLLI = ,5. A plot of the reflection coefficients vs. L is displayed in

Figure II.11. The gap at |T’LL| ~ .5 between the two curves is about
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Figure II.11

Reflection coefficients for proton and o-particle elastic scattering.
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8t. In other words, this picture predicts an even larger angular
momentum transfer is favored.

Another point is apparent in Figure II.11. The partial waves
with L less than 11 for the a-particle are completely absorbed. Hence,
they do not contribute to the elastic scattering. A study of 40 MeV
a-scattering from Ni has shown that the lowest 14 partial waves can
be ignored without changing the elastic scattering calculations by more
than a few percent (II.32). If these partial waves turn out to dominate
the (p,a) cross section, the DWBA may be sensitive to changes in the
optical parameters and the nuclear interior.

The magnitude of the contribution of the individual a-particle
partial waves to the cross section can be determined by examining the
radial integrals. This has been done by Stock et al. (II. 33) for the

(3He,a) reaction. It is better to go one step further and look at the

quantity
Lo-Lp-4 o 1
ALa = \IZI‘. i (LpOspa|]pz)(La(z-m)jm|]p2)(2La+1)
°F L 0L
(L 0£01L_O)N2(2j+1) (2L +1)(2L_+1 za T
(LQO p (25+1)( o )( p+) f I]prLaLa
Ip 2 Jp

The radial integrals are

Esj S .
I oLololy =) XL, (ra)f (r )xI L (c )dr dr .

The quantity A includes all the radial matrix elements that go with the

La partial wave. Previous workers have chosen to examine only one
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term of this sum. For the sake of calculation, m can be taken to be
1/2. Figure II.12 is a graph of A vs. La for a few angular momentum
transfers. The two different curves in each box are for the two differ-
ent j values that are associated with the /-transfer.

The first thing to notice is that essentially all the important La
values are the ones that are poorly determined by elastic scattering.
The only exception is the £=9 transfer.

Perhaps the most striking feature of these plots is the difference
between the 1/2- and 3/2- curves. It is not surprising that the DWBA
predicts these transfers to have very different angular distributions.
The 1/2- transfer is dominated by the sixth and seventh partial waves,
while the 3/2- transition is spread over a much larger group of partial
waves. The radial matrix elements are the same for these two trans-
fers since they do not know about the j-value unless the form factor
depends on j. However, some of these radial matrix elements do not
contribute to the sum for the 1/2- transfer because they do not satisfy
the selection rule implied by

(L 0zz172).
The possible values for Lp are La+1 and La-l. The possible values
of J, are Lp+% and Lp-%. If ] is Lp-%, then all the radial integrals
with Lp=La-1 will not be allowed since this implies that Ip=Lp- 3/2.
Similarly for Ip=Lp+%, the set of radial matrix elements with Lp=La+1

cannot contribute. For the 3/2- transfer all the radial integrals will

contribute to the sum.
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Figure II.12

A plot of |AL | vs. L. |Ap | is proportional to the contribution of

the L, partial wave to the cross section. The calculations are for
the 52Cr(p 0)4 V reaction at E =35 MeV.
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The j-dependence which is so apparent in the £=1 graph is much
more subtle for the other three cases in Figure II.12. This is because
many partial waves contribute to each term. Even though one less pro-
ton partial wave is involved in the j < Sum, there are still enough par-
tial waves involved to give a broad distribution of strength.

This would seem to indicate that the j-dependence may be the
result of simple angular momentum selection rules. To test this
hypothesis the sign of the spin-orbit potential in the proton channel
can be changed. Since the sharply peaked distribution for the 1/2_
transfer is basically the result of angular momentum selection rules
changing the sign of the potential should not change this distribution
much. Therefore, the angular distribution should not change.

Figure II. 13 shows the angular distributions for the 1/2  and 3/2"
transfers when the spin-orbit sign is reversed. The angular distribu-
tions are nearly reversed. The oscillations are nearly gone in the 1/2-
curve where the 3/ 2 curve now has peaks and valleys which were not
previously apparent. Therefore, the j-dependence is not caused by the
number of radial matrix elements that are allowed.

The only other effect that the spin-orbit potential has is to change
the shape of the proton optical potential. The effect is something like
increasing the radius of the real volume term for the J, member and
decreasing the radius for the j < member. The j-dependence can be

investigated by turning off the spin-orbit force and changing the radius
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Figure II.13

DWBA calculations for the SZCr(p,a)49V reaction with the wrong sign
for the spin-orbit potential in the proton channel. Ep =35 MeV.
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of the real well in the proton channel. The results of this procedure
are shown for an £=1 transition in Figure II.14. The 1/2- structure
is apparent for small radii, while the washed out 3/2- shape appears
for larger radius parameters. This appears to be the source of the
j-dependence.

j-dependence still remains a puzzle, even though we seem to
have isolated the source. The above discussion seems to imply that
there should be a larger j-dependence for the (p,d) reaction than is
observed. It seems clear that the o-particle must play an important
role in the j-dependence in the (p,a) reaction while the deuteron is
less important to j-dependence in the (p,d) reaction. Qualitatively
this may be understood, if the a-particles come from the nuclear sur-
face, since changing the proton optical potentials in the way that we
have causes the region of high proton flux on the back surface of the

nucleus to change rapidly across the surface.

K. Conclusions

Two methods of calculating microscopic form factors for the (p,a)
and (a,p) reactions have been found to produce consistent results.
When hankel tails are matched to form factors calculated using har-
monic oscillator wavefunctions, the form factors have been shown to be
nearly equivalent.

The correction for the center of mass motion has been carried out

on the harmonic oscillator model. This correction is mainly a
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Figure II. 14

DWBA calculations for the 52Cr(p,o:)“gv reaction without the spin-orbit
potential in the proton channel. The real well radius of the proton
optical potential is varied to mock-up the effect of VSO' Ep= 35 MeV.



do/da(Arbitrary Units)

86

No Spin-Orbit Coupling

r,=150fm

i1 1 11

L)
20

J v L ¥

40 60 80 100
CM. Angle (degrees)

Figure II. 14

T
120



87

multiplicative factor. Hence, we conclude that a reasonable form fac-

N+1/2 where N is the

tor can be corrected by multiplying by (A/(A-3))
number of nodes in the form factor.

It has also been shown that a mass three cluster spectroscopic
factors can be calculated microscopically using the harmonic oscillator
model. The form factor for a mass three particle in an oscillator poten-
tial has been found to be similar to that of a mass three particle in a
Woods-Saxon well if a hankel tail is matched to the oscillator form
factor. We conclude that spectroscopic factors calculated by using
either cluster form factor model can be calculated microscopically by
the method given in section six.

The cross section of pure configurations on the angular momentum
coupling has been investigated. It has been found that the j> member
of a spin-orbit pair is always predicted to have more yield, if coher-
ence is neglected.

The use of zero range DWBA has been tested and found to be
adequate. Finite range calculations indicated that angular distribution
shapes are not affected by finite range effects.

Angular momentum matching has been studied. The (p,a) and
(a,p) reactions have been found to be severely mismatched so that
detailed fits are not expected to be good and sensitivity to optical

parameters is expected.
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Finally the cause of j-dependence has been investigated. It
appears that j-dependence is not a result of differences in the number
of partial waves that contribute to the Ic and j, transitions. The
j-dependence seems to come from the change in shape of the real well

in the proton optical potential which is caused by the spin-orbit force.
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CHAPTER III

EXPERIMENTAL CONSIDERATIONS

The (p,a) reaction presents a number of experimental problems.
The bombarding energy must be sufficient to insure that the reaction
proceeds by direct pick-up. In addition, it is desirable to be looking
at a-particles that are much more energetic than the boil-off and decay
a-particles so as to not be hindered by background from these
processes. Sherr et al. (III. 1) have found that proton energies above
17 MeV are sufficient to observe direct reaction a-particles for nuclei
in the nickel region.

The density of final states is frequently very high. An energy
resolution of 20 keV FWHM, or better, is desirable to resolve a
reasonable number of states.

Typical cross sections are of the order of 10ub/sr. The strongest
peaks may be as large as 200ub/sr., while many weak transitions may
be observed at the 1pb/sr. level. In order to observe such small cross
sections, a system to cleanly identify the o-particles in the midst of a
sea of other reaction products is required.

The 35 MeV proton beam was chosen because it satisfies the

experimental requirements and because it is a reliable beam for the
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M.S.U. cyclotron to produce. 35 MeV is sufficiently above the
Coulomb barrier, even for lead, to insure that boil-off o-particles are
not a problem. Many high resolution (p,p') experiments have been
performed in the last couple of years using this beam. Energy resolu-
tion as good as 1.5 keV FWHM has been obtained with this beam in
test situations. The cyclotron and beam line settings for this high
quality beam are highly reproducible. Furthermore, beam currents of 2
to 3 pA on target are obtained with relative ease at this energy.

An Enge split pole magnetic spectrograph is an ideal instrument
for studying low cross section reactions with good energy resolution.
The spectrograph aperture may be as large as 1.2 msr. without
degrading the resolution to worse than about 5 keV FWHM at 30 MeV
particle energy. The small cross sections require the largest possible
solid angles and the highest possible beam currents.

The (p,a) reaction is a bit more difficult to study with a spectro-
graph than most reactions because protons and a-particles have the
same magnetic rigidity (m/qz) causing protons and a-particles of the
same energy to be focused at the same place in the focal plane of the
spectrograph. Most (p,a) reactions have Q-values near zero, some
slightly negative and others a bit positive. Thus the region of the
focal plane which contains the a-particle spectrum is riddled with
strong proton groups. In addition, there is a continuum of lower

energy deuterons and tritons in the same region. The focal plane
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detector must be able to cleanly identify a-particles while rejecting
protons at a high rate.

Photographic emulsions may be used in the focal plane. These
emulsions may be purchased with various sensitivities. Since o-
particles are highly-ionizing, while protons leave a minimum ioniza-
tion, insensitive emulsions are called for. Ilford K,l emulsions (III. 2)
were used for this purpose. These emulsions have a low enough sensi-
tivity that protons and deuterons pass through without leaving a track.
Unfortunately, it was found that tritons did leave tracks that could not
be distinguished from the a-particle tracks. It may be that Ilford K, 0
emulsions are better for this purpose.

Photographic emulsions have the advantage of being the highest
resolution detectors available. In addition, they do not require expen-
sive electronics to operate. However, they must be scanned with
off-line microscopes. This process usually takes a number of months
for a complete angular distribution. In addition, the triton background
can obscure very weak peaks. Therefore, a livetime counting system
is desirable.

Most of the spectra taken for this work were recorded with the
focal plane counter developed by Markham and Robertson (III.3).
Figure III.1 shows a cross sectional view of this counter, while
Figure III.2 shows a top view of the front chamber. The ionization

track left by the particle is multiplied at the anode wires. Charge is
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Figure III.1

Cross sectional view of the focal plane counter.
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Figure III.2

Top view of the focal plane counter.
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induced on the cathode pick-up stripes below. The induced charge is
collected by a delay line. The signal from one end of the delay line is
used to start a time to amplitude converter, while the signal from the
other end of the delay line is delayed for a period which is longer than
the total delay of the delay line and then used to stop the TAC. The
resulting pulseheight is the position of the track. The second chamber
contains a conventional single wire proportional counter. The signal
from this wire is proportional to the energy loss of the particles that
pass through the chamber. The ao-particles may be identified because
they have a larger energy loss than protons, deuterons, tritons, or
3He ions. Further restrictions are necessary to eliminate all the pro-
tons. Because of the tremendous number of protons, there are an
intolerable number that have the same energy loss as an a-particle
even though the probability of such events is very low. The added
restriction is obtained by using a plastic scintillator as a third counter
mounted behind the exit window of the proportional counter. The anode
signal from the photomultiplier can be used to start a TAC which is sub-
sequently stopped by the cyclotron r.f. The resulting signal is a
measure of the flight time of the particle through the spectrograph. The
time-of-flight requirement easily distinguishes protons from a-particles.
Very clean spectra can be obtained if the energy loss and the time-of-
flight requirements are used simultaneously. The system count rate is

limited by the proton rejection rate if the elastics are on the counter.
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The targets need to be £100 pg/crn2 thick in order to keep the
energy loss of the a-particles from degrading the energy resolution.
The targets were made by reducing metal oxides and evaporating the
liberated metal. The vapor was condensed on 20 pg/cm2 carbon foils.
The details of each experiment are presented in the fourth and

fifth chapters.
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CHAPTER IV

FEATURES OF THE 52Cr(p,ar)lmv REACTION

A. Introduction

The (p,a) and (a,p) reactions may prove to be very useful spectro-
scopic tools. The qualitative features of these reactions are not well
documented, with the exception of j-dependence for £ =1 transfers
(Iv.1, Iv.2, IV.3, IV.4). In this chapter the qualitative features of the
(p,a) reaction as seen in the 52Cr(p,cr)“'lgv reaction are investigated.
Since three nucleons are transferred, it is possible to study final nuclei
that are not accessible by other pick-up reactions either because the
targets for these reactions are unstable or difficult to make. Final
nuclei in this class are 47V (Iv.5, 1Iv.6), 51Mn (Iv.6, 1v.7, 1v.8),

55Co (Iv.6, Iv.9), and 119

Te (IV.10). To understand the spectra of
these unknown nuclei, it is necessary to document the properties of the
(p,a) reaction on nuclei that have been previously studied with simpler
reactions. The 52Cr(p,af)‘lgv reaction is a good choice for such a study
in the 0f7/2 shell because 49V has been studied by a number of others
(Iv.11, 1Iv.12, IV.13, IV. 14, IV.15, IV.16, IV.17, V.18, IV.19, IV.5).

Previous work in this mass region at beam energies above 17 MeV

has shown that the simple proton hole states that are populated in

102
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single proton pick-up reactions dominate the (p,a) spectra (see Refer-
ence IV.2, for example). These states seem to be described reasonably
well with seniority-one wavefunctions (IV.2). Therefore, we should
expect the 49V spectrum to display strong peaks for the 7/2_ ground
state and the 3/2+ and 1/2+ sd-shell proton hole states.

In addition to the T=3/2 proton hole states, the T=5/2 analogs
of the neutron hole states in 491‘1 should also be populated. These
states are not isospin allowed in the SOCr(d,aHe)le or SOCr(t,a)4gV
reactions. Experimental observation of analog states with the (p,a)
reaction has not been previously demonstrated except for some tenta-
tive assignments by Bardin and Rickey (IV.20) using Ti isotope targets.

Multi-particle transfer reactions offer the chance to study high
spin states. For some time now the (a,xnv) reactions have been used
to populate such states. Recently heavy ion induced reactions such as

(lgF,pZn‘Y) have been used to find high spin states such as the 12+ in

44'1‘1 (Iv.21). If two 0f7/2 neutrons and a 0f7/2 proton are picked up

via the (p,a) reaction, it is possible to reach final states via I’r trans-

fers of up to 19/2-. The (p,a) reaction on 51V could, in principle,

then, directly populate the 12+ in 4B'Ii. If the proton comes from the

0d3/2 orbit, 15/2+ is the maximum ]" transfer. A study of the

90'92’94'9621'(p,ar) reactions has concentrated on this aspect of the

reaction. Spins up to 15/2 were observed in that work (IV.22). The
maximum coupling of (0d5/2)3, which is 13/2+, has been observed in

23Na(p,a) 2%Ne, 2C(a,p)!°N, and %0, p) 1%F (v.23, Iv.24, Iv.25).
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Lee et al. (IV.1) have shown that the j-dependence is a result of
spin-orbit coupling in the proton optical potential. The j-dependence
for the I"= 1/2-, 3/2— spin-orbit pair is reproduced by DWBA calcula-
tions using mass three cluster form factors (for example, see Refer-
ence IV.22). The reliability of j-dependence for higher /-values is
still an open question. Studies of the £=2 and 3 transfers are con-
fusing (IV.4, IV.26). Much of this confusion is apparently the result
of important structure effects in the sd-shell. A study of the

24,26 21, 23Na reactions shows that the angular distributions

Mg (p,a)
for states with the same ]" values sometimes have very different
shapes (IV.27). It would seem that j-dependence will only be a useful
tool if the shapes of the angular distributions are insensitive to the
detailed structures of the states. This may be the case for targets that
are heavier than those in the sd-shell.

The most common method of using the DWBA to predict the shapes
of angular distributions for (p,a) and (a,p) studies has been to do zero-
range calculations which employ mass three cluster form factors. These
calculations can fit the data reasonably well in many cases. In regions
where nuclear structure does not affect the shapes of the angular dis-
tributions, it may be possible to use these calculations to make ]"
assignments (IV.22, IV.28).

Recently a few microscopic reaction models have been developed

(see Chapter II and IV.24, IvV.29, IV.30, IV.31l). Such models may
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make it possible to predict both shapes and magnitudes of the angular
distributions even when nuclear structure effects are important, pro-
vided detailed wavefunctions are available.

In the sections to follow we will look into the general features
of the data, try to evaluate the reliability of the £=2 and 3
j-dependence for this case, check the use of the DWBA using cluster
form factors, and test DWBA calculations based on the microscopic

form factors described in Chapter II.

B. Experimental Method and Data

The 35 MeV proton beam from the Michigan State University
isochronous cyclotron was used to bombard an isotopically enriched
52Cr target. The reaction products were momentum analyzed in an
Enge split pole spectrograph and detected with the delay line counter
developed by Markham and Robertson (IV.32). Position and energy loss
information were taken from this counter, while a plastic scintillator
placed behind the counter was used to obtain particle time-of-flight
information relative to the cyclotronr.f. structure. The a-particles
were cleanly identified by their energy loss in the counter and their
time-of-flight. An over-all energy resolution of 20 KeV FWHM was
obtained with this system.

The target thicknesses were typically 20 to 40 pg/cmz. The

thicknesses were measured by comparing proton elastic scattering on

the second maximum of the elastic scattering angular distribution to
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the results of optical model predictions. Targets <100 }xg/cm2 were
necessary to keep the energy loss of the a-particles to a minimum.
However, the thermal coefficient of expansion of Cr presented a further
constraint on the target thickness. The targets were made by reducing
5201‘203 with tantalum and simultaneously evaporating the liberated Cr.
The Cr was deposited on 20 pg/cm2 carbon foils. When the target
reached a thickness of ~50 pxg/cm2 , the backing would break thereby
imposing an upper limit on the target thickness obtainable by this
technique.

Because of the thin targets, large solid angles and high beam
currents were necessary. For the most part, a solid angle of 2.0 msr.
and a beam current of 2.5 pA were used.

A few spectra were also recorded on photographic emulsions in
order to obtain more precise values for the excitation energies and
better resolution. One of these spectra is shown in Figure IV.1. The
resolution is about 10 keV FWHM. The three strong peaks are the 7/2-
ground state, the 3/2+ proton hole state at 0.748 MeV, and the
1.646 MeV, 1/2+ proton hole state. In addition, there is a tall peak

due to the 1.95 MeV 5/2+ hole state in 29P which is the result of 328

impurity in the target. The wide peak near channel 1650 is the 1?’N
ground state, which is kinematically out of focus.

A log plot of the same spectrum is shown in Figure IV.2. It is

immediately evident that there are a great number of weaker states in
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Figure IV.1

The 52Cr(p,oz)"wv spectrum at 16° plotted on a linear scale. The spec-
trum was recorded on a photographic emulsion.
Bp=35 MeV; FWHM ~ 10 keV.
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Figure IV. 2

The same spectrum as Figure IV.1 but plotted on a log scale.
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addition to the proton hole states. The background counts are probably
triton tracks on the plate that could not be distinguished from the
a-particle tracks. Ilford K,1 emulsions (IV.37) were used for this work.
These emulsions are insensitive to the inelastic proton groups which
struck the plate, but discrimination against tritons was not possible.

A spectrum taken at the same angle with the counter system is
shown in Figure IV.3. This spectrum is much cleaner because the tri-
tons cannot satisfy the time-of-flight requirement. In this case the
resolution is about 20 keV FWHM.

In order to look for the T=5/2 proton hole states, the spectro-
graph field was adjusted so that the high rho end of the counter was
located at approximately 4 MeV excitation energy. This allowed for
about one and a half MeV of overlap with the lower excitation spectra.
Typical spectra for the high excitation region are displayed in
Figure IV.4. At forward angles the break-up of 9B, made by the
12C(p,oz) 9B reaction, causes a large background as can be seen in the
top half of Figure IV.4. The bottom half of Figure IV.4 contains the
55-degree spectrum where the 9B has kinematically shifted out of the
way. The three sharp peaks are the 7/2 , 1/2+, and 3/2+ T=5/2

49

analogs of states in ""Ti. The excitation energies of these levels are

compared with the corresponding levels in 49'1'1 in Table IV.1.
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Figure IV. 3

The 52Cr(p,cr)‘lgv spectrum at 16° recorded with the counter system.
Ep = 35 MeV; FWHM ~ 20 keV.
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Figure IV.4

High excitation spectra showing the T=5/2 proton hole states in 49V.
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TABLE IV.1

T=5/2 ENERGIES

49V Excitation Bc Differential 49Ti

(MeV)
7/2 6.446+ .020 7.848+ .03 _— 0.000
1/2" 8.947 + .025 7.848+ .03 2.50 +.010 2.50
3/2" 9.088+.025 7.830+.03 2.642+.010 2.66

NOTE: E/Z, = .357 for7/2 .

Candidates for high spin states can be identified by looking for
large peaks in the back angle spectra. Figure IV.5 is the 60-degree
spectrum. Peaks due to levels which have lower spins become weak as
the angle increases, while the higher spin states have relatively flat
angular distributions. The peak at 4.797 MeV is a good candidate for a
high spin state. In the spectrum at 12 degrees (Figure IV.1), it is
comparable in yield to many other states, while at 60 degrees it is the
strongest peak.

The angular distributions that have been obtained are displayed
in Figures IV.6, IV.7, IV.8. The high spin type of angular distribution
is evident for the 4.797 MeV level. This angular distribution is even

seen to rise in the low angles as the angle increases.

C. Comparison with Other Experiments

A summary of the energy levels observed in this experiment is

presented in Table IV.2. The table also contains a summary of the data
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Figure IV.5

The 52Cr(p,af)‘mV spectrum at 60° showing candidates for high spin
states at 3.612, 3.745, and 4.797 MeV.
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Figure IV.6

52Cr(p ,a)49V angular distributions.
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Figure IV.7

52Cr(p ' a)49V angular distributions.
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Figure IV.8

52Cr(p,oz)‘igv angular distributions.
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TABLE IV.2
LEVELS OF %
——————————— — m
®.0? | ©.92 | .0 |[cEe.?| 0.1 | @.m® "
0.000 | 0.000 | 0.000 0.000 7/2_
0.091 | 0.091 | 0.090 0.092 0.091 |0.091 5/2_
0.153 | 0.153 | 0.153 0.155 0.153 |0.153 3/2,
0.748 0.752 0.750 0.747 |0.748 3/2.
1.021 | 1.020 | 1.025 1.025 1.021 |1.022 11/2,
1.141 [1.148] 1.140 |1.141 5/2”
1.154 ’ 1.155 |1.155 9/2_
1.513 | 1.516 | 1.531(?) 1.514 |1.515 5/2,
1.602 1.603 7/2"
1.644 |1.643 (1/2)
1.646 1.646 1.2
1.662 1.672 1.661 |1.661 3/2
1.770(?)
1.796(?) .
1.995 1.999 1.996 |1.995 32,
2.179 9/2
[2.181] 2.183 [2.189] | [2.193] 2.183 7/2"
2.204 _
2.235 | 2.235 | 2.241 2.235 |2.235 5/2_
2.263 15/2
[2.265]) | [2.263) | [2.266] 2. 265 3/2”
2.279 _
2.308 | 2.306 | 2.314 2.317 2.309 |2.310 9/2_
2.354 | 2.350 | 2.358 2.353 92,
[2.394] 2.388 |2.388 5/2"
2.406 | 2.404 : 2.408 7/2
2.673 | 2.666 | 2.681 2.671 _
2.728 | 2.727 | 2.736 2.728 |(15/2)
2.741 _
2.786 2.786 |(9/2,11/2)
2.811 | 2.812 2.808 |2.811
2.861 2.861
3.020 3.017
3.1334
(3.133] | [3.136] |[3.132] | [3.137] 3.1337
3.152 _
3.241 | 3.241 | 3.248 3.248 3.237 7/2
3.259
3.305
3.330 | 3.332
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TABLE IV.2—Continued

—
. [0.0? | t.a)9| CHe, 9| (0. M | (e, pm® 7
3.346 | 3.347 | 3.345 3.342
3.391 | 3.398 | 3.388 | 3.401 3.390
3.479
3.499
3.525 | 3.534 )
3.612 | 3.609 2(11/27)2
3.624
3.639 | 3.649
3.673
3694 [3.685]
3.720 +a)
3.745 3.748 3.744 2(9/2™)
3.757 | 3.763 3.757
3.795
3.825 3.816
3.838 3.840
3.882 | 3.886
3.910 3.914
3.934 3.929 | 3.922
3.965 | 3.975 | 3.976
4.004 4.005 | 4.012 4.006
4.048 | 4.042
4.064
4.098 | 4.090
4.135 4.127
4.149 4.152
4.165
4.209
4.224
4,253 4.250
4.268% | 4.277 | 4.280
4.305
4.326
4.375 4.375 4.373
4.400 4.402
4.436 4.448(?)
4.470
4.501 4.511 | 4.502 4.498
4.538
4.588 4.588 | 4.587 4.590
4.599
4.628* 4.639
4.646 | 4.645




TABLE IV.2—Continued
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0.0?] 5.07] o] cre.a® | 002 @m?] 1
4.662
4.680
4.755 4.743
4.797 > 11/2)%
4.830 4.848
4.863 4.852
4.885
4.949 4.959 | 4.945
4.988
5.101 5.018 | 5.017
5.134 5.130
5.204 5.216 | 5.212
5.282 5.285
5.347 5.355
5.375 | 5.370
5.387
5.411
6.446 7/2,T=5/2%
8.945 1/2+, T=5/22
9.087 3/2+, T=5/22)

NOTE: Errors are +.003 MeV for states below 3 MeV, £.006 MeV
for states above 3 MeV, and +£.025 MeV for the T=5/2 states

aThis experiment.

bReference v.1l1.

cReference v.12.

dReference IvV.19.

eReference IV.16.

*
The peak is an unresolved doublet. Its width is too large to be
a single peak.

[ ] Energy corresponds to a known multiplet that cannot be
resolved.

(?) Placement is unsure.
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in the literature. The column of ] values is a consensus of the litera-
ture. Although most I’r assignments are from the previous work, our
results are consistent with those assignments. The assignments
explicitly made in this work are the tentative "high spin" assignments
and the I”,T assignments for the three analog states.

To begin the discussion of Table IV.2, consider the columns
labeled (p,a) and (p,t). Beginning at the top of the (p,t) column and
working down, it is seen that the 0.748 MeV state is the first one not
seen in the (p,t) reaction. This is the 3/2+ state due to a proton hole
in the 0d3/2 orbit. The next level not observed in the (p,t) reaction is
the 1.141 MeV, 5/2" state. Furthermore the 1.602 MeV, 7/2" and
1.646 MeV, 1/2+ levels are not observed in the (p,t) data. All these
levels are seen in the (p,a) experiment. A summary of the levels seen
in the (p,a) data that are not in the (p,t) data is given in Table IV.3.
Table IV.3 contains every known positive parity state in 49V except the
2.179 MeV, 9/2" which cannot be resolved from the 2.183 MeV, 7/2"
state. Furthermore there are no known negative parity levels in this
list. This comparison indicates that parity assignments can be made
with reasonable certainty by such a comparison.

Reversing the comparison shows that there are levels seen in the
(p,t) experiment that are not seen in the (p,a) spectra. The first of
these is the 1.661 MeV, 3/2 state. In addition, all the 5/2 levels
are so weak in the (p,o) reaction as to be virtually absent. If the (t,a)

results are included in the comparison, it is found that there are levels
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TABLE IV. 3

LEVELS SEEN IN °2Cr(p,o)*%v THAT ARE NoT IN °!v(p, 1)

4 9Va)

Excitation Energy 17r
1.748 3/2"
1.141 5/2"
1.602 7/2"
1.646 1/2%
1.995 3/2"
2.388 5/2"

aReference v.11.

excited by the (t,a) reaction that are not in the (p,o) column. Some of
these levels are in both the (p,t) and (t,a) data, but not in the (p,a)
column. Behavior of this nature can only be explained by a microscopic
model which contains the coherent sum over all the di-neutron cou-
plings and all the three nucleon configurations. Table IV.4 is a sum-
mary of the missing levels in the (p,a) data.

(a.py) research has resulted in a 15/2 assignment for the levels
at 2.263 MeV and 2.728 MeV. Unfortunately, 17/2_ and 19/2- levels
have not been found by gamma-ray spectroscopy. In the case of posi-
tive parity, the highest definite I’r assignment is 9/2+. The two 15/2-
levels are observed very weakly. The angular distributions are found
in Figure IV.6.

Although the high spin levels which are observed here have not

been previously reported in o-induced gamma-ray coincidence
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TABLE IV.4

LEVELS SEEN IN EITHER 5v(p,)4%® oR 50cr(t,) 4%y
NOT OBSERVED IN °2Cr(p,a)4%

Excitation Energy ]1r

1.154% 1/2_

1.662* 3/2 _

2.786: (9/2, 11/2)

g L=
) 13/2

3.020* (3/2, 7/2)

3.305

3.479* 7/2"

3.624*

3.720%

3.825%

3.910%

4,048**

4,098**

4.165%

4.209*

4.305%*

3Reference IV.11.
bReference v.12,
*Seen in (p,t) data.

MSeen in (p,t) and (t,a) data.
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experiments, we can be reasonably sure that the 3.612 MeV level has
(-) parity and the 3.745 MeV state is a positive parity state. Neither
of these assignments is unambiguous since the 3.612 MeV peak is too
broad at forward angles to be a single state and the 3.745 MeV level
has been reported in the (t,a) and (p,¥) data, indicating a low spin
state at this energy. The parity of the 4.797 MeV level cannot be dis-
cussed since the (p,t) data does not extend to this excitation. Neither
the 3.612 MeV state nor the 4.797 MeV state are particularly close to
the MBZ (IV.33) predictions for high spin negative parity states. The
predicted energies for 15/2 levels are 2.575 MeV, 3.544 MeV, 4.083
MeV, and 4.964 MeV. The predicted excitation for the first 15/2 is
nearly 300 keV too high, while the second one is over-predicted by
about 800 keV. It is not surprising that our high spin candidates are
not near the MBZ predictions given the poor results for the known 15/2-
levels. The MBZ predictions for the two 19/2- levels with the largest

"triton" components are 4.331 MeV and 5.143 MeV.

D. j-Dependence

The striking j-dependence for £ =1 transitions was not observed
in this experiment because the only known 1/2- level is obscured by
the 1/2+ proton hole state. The 3/2 level at 0.153 MeV excitation
does exhibit the usual featureless exponential fall-off.

Two 3/2+ and two 5/2+ states have been observed. The 5/2+

state at 2. 386 MeV cannot be resolved sufficiently well to obtain its
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angular distribution. The three £ =2 angular distributions are shown in
Figure IV.9. The 3/2+ distributions have similar shapes. The 5/2+ is
rather featureless. There is no strong j-dependence in this case,
though the angular distributions are different. There is not enough
data to determine if the difference is due to j-dependence or is the
result of structure effects. Additional data in this mass region is
necessary to document the stability of the £=2 j-dependence.

The spin-orbit pair with /=3 is observed. Three 5/2- levels
are populated weakly. The cross section is less than 1pb/sr at many
points. The 0.091 MeV and 1.513 MeV levels were strong enough to
obtain angular distributions. The angular distributions for these two
levels appear to be different. The lowest 5/2- level in many nuclei in
this mass region is known to be primarily a seniority three proton state
(Iv.33, IV.34) and, hence, should not be populated in this experiment.
Its weak population may indicate a more complicated reaction mecha-
nism. The angular distribution for the 0.091 MeV state is flat. The
angular distribution of the 1.513 MeV level is probably more repre-
sentative of a 5/2 angular distribution. 7/2 states are observed at
0.000 MeV, 3.241 MeV and y.446 MeV excitation. Figure IV.10 shows
all the £=3 angular distributions. The angular distribution for the
3.241 MeV level is very different from the other 7/2 levels. The 7/2°
assignment for this state is unambiguous since it is based on the £=0

angular distribution observed in the 51v(p,t)49v reaction (IV.11). Either
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Figure IV.9

52Cr(p,ar)“V L =2 angular distributions.
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Figure IV. 10

52Cr(p,ar)‘wV L =3 angular distributions.
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this is an unresolved doublet or this is a case where structure effects
can be as strong as j-dependence. If the abnormal angular distribution
is neglected, the j-dependence appears to be manifested in the for-
ward angles. The 5/2_ tends to go down as the angle decreases, while
the 7/2 rises. Two other 7/2 states are also populated. Unfortu-
nately, they are members of close doublets.

Only one £ =4 transfer is resolved. This leads to the 7/2+ state
at 1.602 MeV. The 9/2+ level at 2.179 MeV may be populated, but
cannot be resolved from the 7/2- state at 2.183 MeV.

There are known 9/2 and 11/2  levels in the first two MeV of
excitation. The 11/2- is observed, but there is no evidence for the
9/2 . Another 9/2  state located at 2.354 MeV is barely visible in
some spectra.

Both j-values that go with £ =7 have been previously identified.
The two known 15/2 states are weakly populated. The 13/2  level at
2.861 MeV is not seen in this experiment.

There have not been any previous spin assignments for states to
be reached by £=6, 8, or 9 transfers.

An alternation of strength is clearly evident for negative parity
states. For a given f-transfer, the j> member is the strongest. This
is in qualitative agreement with the structure factors presented in

Table II.4 and the calculated peak cross sections found in Table II.S.
In conclusion there appears to be some evidence for subtle

j-dependence in the £=2, 3 transfers. This j-dependence may not
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be a very reliable tool in this mass region, since structure differences

may cause similar changes in the angular distributions.

E. DWBA Calculations—Cluster Form Factors

It has been shown that zero-range DWBA calculations can be
used to obtain reasonable fits to (p,a) angular distributions (see, for
example, References IV.22, IV.28, IV.36). In addition, finite range
effects have been found to produce only minor changes in the shapes of
the DWBA calculations (see Figure II.10). Mass-3 cluster form factors
have been used frequently for these calculations because they are easy
to generate. In addition, most researchers have found the radius and
diffuseness parameters of the bound state well to be useful variables.
These are usually varied to obtain the best overall fit to all the known
levels. A wide variety of these parameters have been used (see Refer-
ences IV.28, IV.36). Many different sets of o-particle optical poten-
tials have been tried also. These vary from shallow real wells of about
50 MeV depth to deep wells of 200 MeV depth. For the most part, the
choice of a-optical potential determines the values of the bound state
well parameters that will best fit the data.

A simple, consistent, method of generating reasonable calcula-
tions is needed. We have, therefore, set out to find a general proce-
dure that can be used to get first-order fits reliably.

Since angular momentum matching is a problem for the (p,a) reac-

tion, it seems reasonable to try the "well matching" procedure for
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choosing the optical potentials and the bound state parameters. This
procedure has been suggested by Dodd and Greider (IV.37) and by Stock
et al. (IV.38) for reactions that are poorly matched. The method has
been successfully applied to the (d,a) reaction (IV.39).

The proton optical potenﬂals were taken from Bechetti and
Greenlees second best set (IV.40). This is the set with a 1.22 fm.
radius parameter. The a-particle optical potential was taken to be a
set with roughly 200 MeV real well depth. The well matching proce-
dure requires that the radius and diffuseness of all the real potentials
be the same. a-scattering data of Fernandez and Blair (IV.41) were
refit to find an optical potential that met the well matching requirement.
Since the a-elastic scattering could not be reproduced as well with a
radius parameter of 1.17 fm. as with the 1.22 fm. choice, the second
preferred proton set was taken. By this prescription the bound state
wavefunction should be calculated in a well with o= 1.22 fm. and a
diffuseness of .72 fm. to agree with the other potentials. The well
depth should ideally be about 150 MeV. However, the depth was
allowed to vary to reproduce the triton separation energy. For the most
part the appropriate depth was between 120 MeV and 140 MeV. The
optical potentials are given in Table IV.S5.

The fits that are obtained to the known energy levels using this
procedure are shown in Figure IV.11. In general they are satisfactory.

The forward angle behavior of the 7/2- calculation does not increase
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TABLE IV.S

OPTICAL POTENTIALSY

Wm=m

v s a Vso rso aso w roi ai wsf

Proton | 43.22|1.22(.72|-25.0{1.01] .75 | -5.0 |1.32].52[12.60
a |196.3411.22].72 -15.72|1.76| .42

avso and W include the factor of 4 necessary for using the code

DWUCK4S.

as the angle decreases, but the data does. The dip in the 11/2- cal-
culation comes at too small an angle. The "well matching" procedure
has also been used in studies of Te(p,a) and 44Ca(p,a)411( with similar
results (see Reference IV.10 and Chapter V).

Most of the searching on the bound state that has been done by
other researchers has resulted in smaller diffuseness parameters than
were used above. If the diffuseness is decreased to .65 fm., the 7/2-
calculation has the correct forward angle behavior. In other words, the
forward angles are sensitive to the diffuseness. The fits obtained with
this choice are shown in Figure IV.12. Smaller diffuseness values
were also investigated. In general smaller values were found to pro-
duce more pronounced oscillations.

Sensitivity of this kind is a characteristic of reactions that suf-
fer from a severe angular momentum mismatch. The semi-classical

matching value for the ground state Q-value is about six. The angular
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Figure IV.11

Cluster model DWBA calculations. The real well geometrical parame-
ters were ro=1.22 fm. and a=.72 fm.
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Figure IV.12

Cluster model DWBA calculations. The real well geometrical parame-
ters were r0=1.22 fm. and a=.65 fm.
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momentum characteristics of the DWBA have been discussed previously
in Chapter II.

Angular momentum mismatch also implies that predicted strengths
can vary strongly with excitation energy. The higher the excitation
energy the lower the angular momentum matching value. In general,
the better the match the larger the cross section. Even though cluster
model calculations are not particularly useful when comparing the
strengths of individual transitions, their energy dependence is mean-
ingful. Figure IV.13 shows a comparison of DWBA calculations
assuming no excitation to a set calculated with 5 MeV excitation.
When calculating the excited levels it is important to make both the
Q-value and the binding energy more negative. No strong dependence
on excitation energy is observed, though there are some small changes
in predicted shapes. It is interesting to note that the change in shape
for the 7/2- forward angle behavior is similar to what is actually
observed for the 6.446 MeV state.

In general the normalization of cluster model calculations to the
data does not yield a number which is easily related to nuclear wave-
functions. In certain cases, however, two states may be described by
the same p-n formalism wavefunction. These states differ in their iso-
spin quantum number. This is illustrated in Figure IV. 14 for the 7/2"
ground state of 49V and the T=5/2, 7/2 state in 49V. Since the

wavefunctions are the same, the spectroscopic factors are identical

and the ratio of the TS normalization to the T¢ normalization becomes
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Figure IV. 13

Q-value dependence of cluster model DWBA calculations.
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Figure IV. 14

Wavefunctions for analogs of 4QV hole states.
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1/(2T+1) which is the ratio of the isospin Clebsch-Gordon coefficients
squared, where T is the isospin of the target. This ratio is independ-
ent of the form factor model since the microscopic wavefunctions are
the same. Since the Q-value dependence of the form factor is most
easily handled with the cluster model, we will use this model for the
comparison. For the 52Cr target, the expected ratio is .2, while the
ratio deduced from the fit to the 7/2 state at 6.446 MeV shown in
Figure IV.15 is 2.41. This kind of analysis cannot be applied to the
3/2+ and 1/2+ states, since the assumption of equal spectroscopic
factors is not valid as is illustrated in Figure IV.14.

A similar enhancement of analog states in the (p,d) reactions has
been observed (IV.43). The effect has been explained via coupled
channels calculations which may be approximated by using the same
well depth for the analog calculation as for the T < calculation and
allowing the bound state radius to vary to reproduce the correct binding
energy (IV.44). It remains to be seen if this approach will work for the

(p,a) reaction.

F. DWBA Calculations—Microscopic Form Factors

The cluster model is useful for studying the effects of optical
potentials and the bound state well shape. However, the relative
strengths of states are difficult to predict with such a model.

A microscopic model is necessary to predict the relative strengths

of states from shell model wavefunctions. Any microscopic form factor
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Figure IV. 15

Cluster model DWBA calculations for the T=5/2 states.
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will not have the shape flexibility that the cluster form factor has.
Therefore, it is necessary to choose the "well matched" optical param-
eters, since they are the least sensitive to form factor shapes.

A microscopic model which uses single particle wavefunctions
generated in a Woods-Saxon well has been developed previously
(Chapter II). The two neutrons are coupled together to make a di-
neutron using the two nucleon form factor method of Bayman and Kallio
(IV.35). The di-neutron is then treated as a mass two particle and
coupled to the proton to make a triton in a Os internal state by a modi-
fication of the two nucleon technique.

DWBA calculations using these form factors are shown in
Figure IV.16. The fits are comparable to the cluster fits shown in
Figure IV.12.

The calculation of strengths requires detailed spectroscopic
amplitudes from shell model wavefunctions. However, the hole states
may be described by simple seniority one transfers. We assume that
the two neutrons are coupled to zero angular momentum. The j-transfer
for the hole states is the proton total angular momentum. This assump-

+, and 1/2+ proton

tion makes the relative strengths for the 7/2- , 3/2
hole states the same as would be expected for the SOCr(d,3He)49V
reaction. The hole state relative spectroscopic factors are given in
Table IV.6. The agreement with the expected values is very good, thus

the simple seniority one assumption seems to be reasonable for these

states.
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Figure IV.16

Microscopic model DWBA calculations. The form factors were calcu-
lated for (0£7/2)3, (0£7/2)20d3/2, and (0£7/2)21s1/2 configurations.
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TABLE IV. 6

RELATIVE SPECTROSCOPIC FACTORS

em— e ———————————————————————————
———— e ———— —

Excitation

Energy I” Theory Measured
0.000 7/2" 1.0 1.0*
0.748 3/2% 1.0 .84
1.646 172" .5 .54

*Normalized to one. All other values relative to this.

The same ratios should be expected for the T=5/2 proton hole
states. Analysis similar to that given in the last paragraph shows that
the model does not work for these levels. The seniority one assump-
tion apparently is not a good one for these levels.

Although the angular distributions of the high spin states may
not be reliably predicted, the microscopic model can be used to predict
the likelihood of observing a 19/2- level. Comparing the calculations
shows that the ground state prediction is 48 times stronger than the
19/2- at 12°. At 70° the 19/2- is expected to be 6 times stronger than
the 7/2- seniority one transfer. Although these numbers may be off by
a factor of 2 or so, qualitatively this is what is observed for the level
at 4.797 MeV.

The peak cross sections from microscopic model calculations for
(0£7/2) 3 configurations have been given in Table II.5. A qualitative

feature of this table is that the j> member of a given f-transfer is
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always larger than the j< member. This is exactly the trend that was

notice for the negative parity states in the j-dependence discussion.

G. Conclusions

The proton hole states have been found to dominate the
52Cr(p,ar)‘mv spectra at forward angles. This observation agrees with
others that have studied the (p,a) reaction in the fp-shell.

Many weak transitions are observed with average differential
~10ub/sr.

The (p,a) reaction has been shown to have some degree of selec-
tivity. A number of levels that are observed in 51V(p,t)lmv were not
observed in the (p,a) spectra. Turning this comparison around has
proven to be a useful tool for finding positive parity states, none of
which appear in the (p,t) spectra.

Large peaks in the back angle spectra have been observed.
These states are candidates for high spin states. The likely spins
are 19/2, 15/2", or 15/2+ for these levels.

Little evidence for j-dependence for £ =2 and £ =3 transfers has
been found. If j-dependence exists, it is subtle and at a level that
structure effects can be equally important.

DWBA calculations using cluster form factors have been shown to

reproduce the shapes of the angular distributions of the known levels

reasonably well.
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DWBA calculations for the T=5/2 proton hole states are unable
to reproduce the ratio of T=5/2 strength to T=3/2 strength expected
by analogy to single nucleon transfer. All the T=5/2 strengths are
too large.

Microscopic form factors have been tested. DWBA calculations
using these form factors have been shown to reproduce the shapes of
the angular distributions with quality slightly inferior to the cluster
model fits. Relative spectroscopic factors for the T=3/2 proton hole
states have been derived from the microscopic calculations and are
found to be in agreement with assuming seniority one wavefunctions.
However, similar calculations for the T=5/2 proton hole states do not
work.

Finally a qualitative feature of j-dependent strength is observed
in the data. The is member of the £=1, 3,5 transfers is always
observed to be stronger than the j < member. The microscopic model
based on (0f7/2)3 pure configurations also reproduces this qualitative

effect.
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CHAPTER V

tHE **Ca(p, ) 'k REACTION

A. Introduction
The (p,a) reaction has been used to locate proton hole states in
nuclei that cannot be reached by proton pick-up (V.1, V.2). For many
targets it is possible to extract meaningful proton hole spectroscopic
factors by assuming that these states are populated primarily by the
pick-up of a zero coupled neutron pair and a proton. Relative spectro-
scopic factors calculated by this method have been shown to agree

with the values obtained from the (d,3He) or (t,a) reactions for the

52 49\/ and the 92Zr(p,af)ng reactions (Chapter IV and Refer-

Cr(p,a)
ence V.3). Smits et al. (V.4, V.5) have found that this "spectator
model, " which neglects coherent sums over three nucleon configura-
tions and the di-neutron angular momentum, does not adequately
describe the cross sections that are observed in Sn(p,a) reactions.
Previous (p,a) hole state analysis has been done on nuclei where
the hole strength is concentrated in one state. A logical extension of
"spectator model"” analysis is to study a nucleus where proton pick-up

has shown that the hole strength is divided among a number of states.

If the zero coupled pair assumption is reasonable, the relative cross
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sections of the fractions and the relative total spectroscopic factors
observed in the (p,a) reaction will agree with the results of the
(d,3He) and (t,o) reactions.

A recent survey of the (d, 3He) reaction on the Ca isotopes (V. 6)
has shown that the 1s1/2 proton hole strength is divided into three
states in 411(. The 0d5/2 strength was found to be split among many
levels. Thus the 4“lca (p,a)4lK reaction is a good reaction to test the
"spectator model." Work on the 4ZCa(p,a)39K reaction by Falk (V.7)
produced good agreement for the ratio of the 1s1/2 spectroscopic fac-
tor to the 0d3/2 spectroscopic factor, deduced assuming a (0f7/2)02
neutron configuration, with 40Ca (d,3He)39K results (V.8). Although
this is an encouraging result, Falk also found that the 0d5/2 proton
hole strength was four to five times too large.

The beauty of the spectator model is its simplicity. However,
because of this simplicity, it can be successful only for those few
states which have large proton hole amplitudes in their wavefunction.
In general, most states observed in the (p,a) reaction are not of this
type. Microscopic models have been developed recently to describe
these more complicated transitions (Chapter II, References V.5 and
V.9). For sd-shell targets where complete shell model wavefunctions
exist, it is possible to perform the completely coherent calculations

(Chapter VI, Reference V.9). For most of the rest of the chart of the

nucleides, it is necessary to settle for qualitative agreement with pure
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configuration calculations as has been done with the SZCr(p,a)49V
reaction in Chapter IV. To date only neutrons from the same shell
have been considered. The low lying 7/2- state in 411( provides a
testing ground for mixed neutron configurations, since it can be popu-
lated directly by (0d3/2 0f7/2)0d3/2 pick-up. 2p-2h excitations in
the 4‘lCa ground state protons provide another process for making
7/2 final states. The strength of the 7/2 state in the
44Ca (d, 3He)43l( reaction indicates that the 0f7/2 proton spectro-
scopic factor is approximately .85 (V.6). If the (p,a) spectroscopic
factor relative to the total (0d3/2+ 1s1/2) spectroscopic factor, cal-
culated assuming a spectator model, differs from (.85/5.15) =. 165,
the discrepancy will be a measure of the mixed shell pick-up.

Finally, it is worth noting that very few j’r assignments have
been made for 411(. A number of 3/2+ and 5/2+ final states should be
populated, thereby testing the 1=2 j-dependence. The j-dependence
of the (p,a) reaction may turn out to be useful for making low-spin

assignments.

B. Experimental Method and Data

A beam of 35 MeV protons was accelerated in the MSU cyclotron
and directed to a target of isotopically enriched 44C':-l. The reaction
products were momentum analyzed in an Enge split-pole spectrograph.
The particles were detected with the delay line counter developed by

Markham and Robertson (V.10). Position and energy loss information
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were taken from this counter. Particle time-of-flight relative to the
cyclotron r.f. structure was obtained from a plastic scintillator placed
behind the delay line counter. The a-particles were cleanly identified
by their energy loss and time-of-flight. On the average, the energy
resolution obtained from this system was 20 keV FWHM.

The target was made by reducing 44CaCO3 with Zr and simul-
taneously evaporating the liberated metal. The evaporant was caught
ona 20 pLg/cm2 carbon foil. The target thickness was found to be
85 ;.\g/cm2 by comparison of 35 MeV proton elastic scattering to opti-
cal model calculations using the Bechetti and Greenlees global proton
parameters (V.11).

Because of the thin target and small cross sections, a large
solid angle and high beam current were necessary. The solid angle
was 1.2 msr. and the typical beam current was 2.5 pA.

The spectrum taken at 12 degrees is shown in Figure V.1. The
three large peaks are the 3/2+ ground state, the 1/2+ state at
0.980 MeV, and a state at 3.520 MeV which is probably a 5/2+ state.

The angular distributions are given in Figures V.2, V.3, and
V.4. The angular distribution for the .980 MeV level displays the
deep minima which are typical of a 1/2+ transfer. The angular di<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>