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ABSTRACT 
 

LIFE HISTORIES OF BACTERIA: GENOMIC FOUNDATIONS AND ECOLOGICAL 
IMPLICATIONS 

 
By 

 
Benjamin R. Roller 

 
 Life history tradeoffs are of great interest to biologists because they are central to 

biodiversity theory and have the power to explain the outcomes of competition. One particular 

tradeoff has been a frequent target of study, the relationship between rapid and efficient 

reproduction. Researchers have pursued evidence for the existence of this tradeoff in many study 

systems and the literature surrounding this topic is extensive. While theoretical studies have 

indicated that a rate-efficiency tradeoff should play an important role in the evolution of bacterial 

populations, experiments have frequently found conflicting evidence for its existence and 

influence on bacterial evolution. In this dissertation I explore the physiological and ecological 

conditions favoring rapid and efficient bacterial growth. 

 Microbial ecologists have long observed that the richness of cultivation medium leads to 

the growth of different types of bacteria. Copiotrophic bacteria have a higher relative fitness 

under conditions of resource abundance, while oligotrophic bacteria are favored when resources 

are scarce. The central topic of my dissertation research is to explore if copiotrophic bacteria 

employ rapid growth life history tactics and if oligotrophic bacteria employ efficient growth life 

history tactics. It has been noted that rapidly growing bacteria tend to possess multiple copies of 

the ribosomal RNA operon (rrn) in their genomes, while oligotrophic bacteria typically encode 

few rrn copies. I examined if rrn copy number was related to rapid and efficient growth tactics 

using physiological experiments and comparative genomics.  



 The major findings from my research suggest that copiotrophs tend to utilize rapid 

growth tactics, while oligotrophs utilize efficient growth tactics. This evidence is consistent with 

a rate-efficiency tradeoff underlying divergence on this life history axis. I also demonstrate that 

rrn copy number is quantitative predictor of life history tactics and that it explains a large 

fraction of variation in the genome content of diverse bacterial species. Finally, I have explored 

particular features of bacterial genomes which play a role in life history adaptation.  

 It is increasingly recognized that bacteria directly influence the health of our planet. 

However, the scale of bacterial diversity is immense and there is much more to learn before we 

can manage bacterial communities to improve wellbeing on Earth. Applying life history theory 

to bacteria holds promise for improving our understanding of the ecological and evolutionary 

forces acting on bacterial populations and communities. 
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CHAPTER 1 

 

Life history theory provides an integrated perspective on bacterial reproduction 

 

Introduction 

 Among all domains of life, Bacteria are conspicuous for their rapid reproduction. They 

possess maximum reproduction rates much faster than Archaea and Eukaryota (Neidhardt, 1999; 

Kempes et al., 2012). For example, a one µm3 bacterium with infinite resources and a doubling 

time of 20 minutes could generate a volume of offspring larger than the Earth in 48 hours 

(Russell & Cook, 1995). However, rapid reproduction rates are not universal among bacteria. A 

wide variety of maximum recorded population growth rates have been observed among diverse 

bacterial species (Vieira-Silva & Rocha, 2010), indicating substantial variation in their 

reproductive habits. A bacterium’s fitness, i.e. lifetime reproductive success, is partly determined 

by its maximal population growth rate, but rapid reproduction is transient and infrequent for 

bacteria in natural environments (Hoehler & Jørgensen, 2013; Schmidt & Konopka, 2009). 

Exponential reproduction can only be supported for short periods of time so fitness is also 

influenced by other traits in combination with the environment (Vasi et al., 1994). A bacterium’s 

overall pattern of survival and reproduction across multiple environments is its life history. My 

thesis explores patterns in reproductive variation across the bacterial tree of life through the lens 

of life history evolution. 

 Environmental microbiologists have frequently classified bacteria into groups based on 

their reproductive phenotypes (Kuznetsov et al., 1979). One commonly used scheme relates 

bacterial reproduction to a spectrum of nutritional preference from copiotrophy to oligotrophy. 
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Copiotrophic bacteria are most competitive when resources are abundant, while oligotrophic 

bacteria are favored when resource availability is chronically low (Koch, 2001). In Chapters 1 

and 2 of my thesis, I argue that copiotrophy and oligotrophy are intrinsically linked to the life 

history tactics of rapid or efficient reproduction, respectively. Bacteria achieve these tactics using 

sets of coadapted traits shaped by natural selection to cope with the contrasting environmental 

pressures imposed by resource availability. The number of rRNA operon (rrn) copies encoded in 

a bacterial genome is a proxy of the organism’s life history and Chapter 3 details a redesign of 

the rrnDB, a database of rrn copy numbers, which was updated and linked to annotated genome 

features of the Kyoto Encyclopedia of Genes and Genomes (KEGG). I provide evidence in 

Chapter 4 that a number of life history traits are consistently correlated with the number of rrn 

copies encoded in a bacterium’s genome. I use this information in Chapters 4 and 5 to 

demonstrate that life history evolution influences genome content across the bacterial tree of life 

and examine the genome features driving this pattern.   

 This introductory chapter is composed of three parts. First, I examine how ideas from 

classical life history evolution apply to bacteria and demonstrate the conceptual link between life 

history, Hutchinson’s definition of an ecological niche, and my central hypothesis. I then 

summarize the evidence demonstrating an intrinsic link between rapid bacterial reproduction, 

protein synthesis, and rrn copy number. Finally, I explore the physiological costs of rapid 

bacterial growth and the evolutionary implications of this expensive life history tactic.  

 

Life history evolution, Hutchinson’s niche, and the Bacteria 

 Classical life history theory views variation in reproduction and survival phenotypes as 

the outcome of natural selection acting to optimize the investment of limited resources. One 
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central claim of this theory is that only two types of information are needed to explain life 

history variation: how fitness determining traits interact with the environment and how they 

interact with each other (Stearns, 2000). However, applying classical life history theory to 

bacteria is not straightforward. Eukaryotic organisms have been the focus of classical life history 

theory but the most important life history traits of these organisms, such as age/size at sexual 

maturity and reproductive lifespan, are not applicable to bacteria which typically reproduce 

asexually and are rarely reproductively immature. In order to apply life history theory to bacteria, 

we first must understand the factors driving bacterial fitness. Two important determinants of 

bacterial fitness are reproductive rate – the number of progeny produced per unit time, and 

reproductive efficiency – the number of progeny produced per unit of resource consumed 

(Maclean, 2008; Bachmann et al., 2013). Rapid and efficient reproduction phenotypes are 

influenced by numerous underlying metabolic and molecular traits (Flamholz et al., 2013; 

Bachmann et al., 2013; Vasi et al., 1994), and are also selected for under the contrasting 

conditions of nutritional richness and scarcity (Pfeiffer et al., 2001). Therefore, rapid and 

efficient reproduction are life history tactics (Stearns, 1976) – sets of coadapted traits shaped by 

natural selection to cope with particular environmental pressures. These life history tactics are 

differentially beneficial to copiotrophs and oligotrophs.  

 The central hypothesis of this thesis is that rrn copy number is a quantitative proxy of a 

bacterium’s place on the life history spectrum from oligotrophy to copiotrophy. If true, metrics 

of rapid reproduction should be positively correlated with rrn copy number, while metrics of 

efficient reproduction should be negatively correlated with rrn copy number. Additionally, traits 

which influence nutritional habits and that are linked to either the rate or efficiency of a 

bacterium’s reproduction should be correlated with rrn copy number among bacteria. 
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Throughout this thesis I will present evidence from comparative studies of many bacteria that 

supports these hypotheses, ultimately describing how traits that influence bacterial fitness 

interact with each other and important environmental variables.   

 A visual summary of my thesis findings on bacterial life history is presented in Figure 

1.1. This figure illustrates how fitness varies for three hypothetical bacterial species within their 

Hutchinsonian niche – the multidimensional environmental conditions which allow for 

persistence. The extent of a species’ niche is depicted by the boundaries of each irregular shape, 

while each species’ life history is the pattern of fitness, indicated by color density, within its 

niche. This visualization of life history, which is certainly a simplification of the true 

multidimensional niche, shows the three axes of environmental variation. Resource availability is 

depicted as a key axis of life history variation because both the rate and efficiency of bacterial 

growth are correlated with this variable within and between species (Roller & Schmidt, 2015). 

While all three hypothetical species in Figure 1.1 have a pattern of fitness that increases with 

higher resource availability, each species possesses a maximum fitness at a different place along 

the resource availability spectrum. I demonstrate in Chapter 4 that rrn copy number is a 

quantitative proxy of an organism’s placement along this axis. This is illustrated in Figure 1.1 by 

the parallel relationship between the rrn copy number plane and the nutrient availability 

dimension of niche space. This idea is based on a collection of physiological, genetic, and 

ecological evidence suggesting that high protein synthesis capacity and rrn copy number are 

inherent features of rapid reproduction. 
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Figure 1.1: Life history mapped onto niche space. Conceptual model of three bacterial 
species’ life histories mapped onto three axes of their multidimensional niches. rrn copy number 
predicts a major axis of fitness variation among species. 
 

Physiology of bacterial reproduction 

 Reproduction requires a coordination of many biosynthetic processes. Bacteria alter their 

biomass composition and size depending on their reproduction rate (Schaechter et al., 1958). 

During unrestricted reproduction a bacterium sees an essentially unchanging environment with 

all nutrients available in excess of biosynthetic demand. The macromolecular composition of a 

bacterium in unrestricted reproduction is constant and all major biomass constituents are 

produced at the same rate. The physiological condition where all macromolecule biosynthesis 

occurs at the same rate is defined as balanced growth, and it can also be achieved when 

continuous cultivation in a chemostat reaches a steady-state. Balanced growth is an essential 
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experimental technique for making repeatable measurements of physiological phenomena in 

conditions of nutrient limitation and nutrient excess (Neidhardt et al., 1990). For the remainder 

of this thesis growth will be used synonymously with reproduction, unless otherwise specified, 

as they are equivalent under balanced growth conditions. 

 Despite the fleeting occurrence of maximal reproduction rates in nature, cultivating 

bacteria under nutrient replete conditions has led to a greater understanding of the physiology of 

reproductive variation. Jacques Monod’s quantitative approach to bacterial growth was seminal 

and demonstrated that reproduction rate depended on the concentration of a limiting nutrient for 

a given medium (Monod, 1949). It was later shown that bacterial reproduction rate can also be 

manipulated by altering the chemical composition of growth media (Schaechter et al., 1958). 

Regardless of which of these two methods is used, bacteria reproducing at the same steady-state 

reproduction rate and temperature have a similar biomass composition and overall physiology 

(Neidhardt et al., 1990). These findings clearly demonstrate that the physiological state of a 

growing bacterium is dictated by the quantity and quality of nutrients in the environment.  

 This baseline knowledge was used to determine the physiological changes necessary for a 

population to transition from slow to rapid growth. When a bacterium in balanced growth is 

shifted to a medium that supports a faster reproduction rate, a repeatable series of events happen 

at the cellular level. RNA synthesis increases immediately upon transfer to the nutrient-rich 

medium, followed a few minutes later by an increase in protein synthesis rate. However, DNA 

synthesis and cell division continued at the pre-shift rates for a considerable amount of time 

before eventually increasing to the same rate as all other major biosynthetic reactions 

(Kjeldgaard et al., 1958). Intriguingly, the rate of protein synthesis per unit RNA was nearly 

constant at all growth rates measured in these studies (Schaechter et al., 1958).  
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 These results were some of the first to indicate that the protein synthesis apparatus was 

not operating at a faster rate in rapidly growing cells. Instead, rapidly growing bacteria made 

more ribosomes to increase the effective protein synthesis rate per cell. Later studies with more 

precise analytical methods detailed how the protein chain elongation rate and the quantity of 

ribosomes changed in rapidly growing cells. When the growth rate of an Escherichia coli strain 

is increased from 0.6 to 2.5 doublings per hour the protein chain elongation rate increases only 

from 13 to 20 amino acid residues per second, while the ribosome content per cell volume 

increases by a factor of three from 10,800 to 32,000 per µm3, assuming a change in cell volume 

from 0.63µm3 to 2.25µm3 (Bremer & Dennis, 1996; Donachie and Robinson, 1987). An 

increased ribosome concentration with higher growth rates has also been observed in 

oligotrophic bacteria. The number of ribosomes per cell volume in the model oligotrophic 

bacterium Sphingopyxis alaskensis RB2256 increased by a factor of ten, from 4,000 to 40,000 

per µm3, when shifting from a starved, non-growing state to a growth rate of 0.2 doublings per 

hour (Fegatella et al., 1998). While the highest measured ribosome concentration appears similar 

between E. coli and S. alaskensis strains, their maximum growth rates are much different, 

suggesting that the ribosomes of S. alaskensis RB2256 may be operating at a slower chain 

elongation rate (Fegatella et al., 1998). A comparative study of these two strains, along with 

eight soil isolates, showed that bacteria which grow more quickly upon nutrient amendment have 

protein synthesis machinery which operates at a faster rate (Dethlefsen & Schmidt, 2007).  

 The combined evidence suggests that when any bacterium shifts from slower to faster 

growth rates it must increase the fraction of its biomass devoted to protein synthesis (Neidhardt 

et al., 1990). However, the absolute ribosome content is very different for the small cells of S. 

alaskensis, which possess 2,000 ribosomes at maximal reproduction rates, while larger E. coli 
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cell must synthesize 72,000 ribosomes at its maximum growth rate. E. coli copes with the 

biosynthetic burden of high rRNA and tRNA demand by increasing transcription of stable RNA. 

Twenty-four percent of all active RNA polymerase is synthesizing stable RNA when E. coli 

grows at 0.6 doublings per hour, but this increases to 79% at 2.5 doublings per hour (Bremer & 

Dennis, 1996). Transcription of the rrn operon is under high demand during rapid growth, and it 

is interesting to note that bacteria with faster maximum recorded growth rates tend to possess a 

greater number of rrn operon copies in their genomes (Vieira-Silva & Rocha, 2010). The rrn 

operons of faster growing bacteria are also more asymmetrically distributed along the 

chromosome and nearer to the origin of replication than in bacteria with slower growth rates 

(Couturier & Rocha, 2006). This benefits rapidly growing cells, which possess multiple 

replication forks, by further boosting the effective number of rrn genes per cell (Bremer & 

Dennis, 1996; Couturier & Rocha, 2006). This suggests that rapid growth selects for increasing 

genomic rrn copy number over evolutionary time.  

 These observations do not demonstrate a causal relationship between rrn copy number 

and rapid growth. However, the following genetic studies show how rapid growth and rrn copy 

number are related to each other. E. coli possesses 7 rrn operons in its genome and the functional 

equivalence among rrn copies is generally assumed (Condon et al., 1992; 1995). Genetic 

inactivation and deletion experiments have shown that if E. coli loses even a single rrn copy it 

has an increased lag time when transitioning from slow to rapid growth (Condon et al., 1995; 

Stevenson & Schmidt, 2004). Inactivating multiple rrn copies in combination showed that E. coli 

can lose 1 or 2 rrn copies with no detectable change in unconstrained growth rates, but losing 3 

or more functional rrn copies led to significantly slower unconstrained growth rates (Condon et 

al., 1995). An rrn deletion experiment showed even more extreme phenotypes when the E. coli 
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strain used had been subject to 10,000 generations of experimental evolution and had evolved a 

faster maximal growth rate and shorter lag time (Vasi et al., 1994). Single rrn copy deletion 

strains had significantly decreased growth rates relative to the parental (evolved) strain, while 

deleting 2 rrn operons further decreased growth rate. Additionally, the magnitude of the growth 

rate defect in the double knockout increased non-additively when compared to each individual 

knockout on rich medium (Stevenson & Schmidt, 2004). These genetic studies provide direct 

evidence that rrn multiplicity is adaptive for rapidly growing bacteria, allowing them to achieve 

fast growth rates and short lag times.  

 Rapid growth is directly linked to high rrn copy number, but can high rrn copy number 

be used to identify rapidly growing bacteria? Experiments using soil bacterial communities have 

tested if bacteria responding rapidly to nutrient amendments also possess high rrn copy number. 

In the first experiment a soil bacterial community was amended with nutrients on solid growth 

medium and monitored over hundreds of hours to obtain colony formation curves. Bacteria 

which formed visible biomass over the first 48 hours of the experiment had a higher mean copy 

number (5.5 rrn) than bacteria which first became visible only after more than 150 hours of 

incubation (1.4 rrn) (Klappenbach et al., 2000). A follow-up experiment tested if a resource 

pulse to the soil – the herbicide 2,4-D which can be used as a carbon and energy resource – 

would shift community structure towards bacteria with high rrn copy number. The 2,4-D 

degrading bacterial community in the control microcosm was dominated by a species with 2 rrn 

copies while the amended microcosms were dominated by species with 5 or more rrn copies 

(Klappenbach et al., 2000). A separate study of soil bacterial community succession after rice-

paddy flooding indicated that the early-successional communities were dominated by high rrn 

bacteria which formed colonies more quickly in the laboratory, suggesting they are capable of 
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outcompeting low rrn bacteria when environmental conditions quickly change (Shrestha et al., 

2007). Finally, a study comparing hundreds of bacterial species identified rrn copy number as a 

strong predictor of maximum recorded growth rates (R2 = 0.41) (Vieira-Silva & Rocha, 2010). 

Taken together, these physiological, genetic, and ecological studies provide evidence linking 

rapid bacterial growth to the possession of many rrn copies in a genome. 

 

Costs and implications of rapid bacterial growth 

  Bacteria capable of rapid growth must invest heavily in their protein synthesis capacity 

but this investment comes with significant costs. The well-studied biochemistry of E. coli allows 

a calculation of the ATP budget of biosynthesis under a variety of nutritional conditions. Protein 

polymerization is by far the single largest biosynthetic expense of a growing cell, accounting for 

more than 50% of all ATP spent during growth on glucose with inorganic salts. This energetic 

cost increases to more than 60% of ATP when amino acids and nucleic acids are provided 

(Stouthamer, 1973). Rapidly growing bacteria have a high cellular ribosome content, and this up-

regulated molecular machine is also expensive to run. In order to fuel rapid growth, bacterial 

cells must produce large amounts of energy.  

 Although many heterotrophic bacteria respire when growing slowly on limiting 

concentrations of sugars, a transition to faster growth at higher sugar concentrations is often 

correlated with detectable fermentation co-occurring with respiration, a process known as 

overflow metabolism (Neijssel & Tempest, 1975; Molenaar et al., 2009). This suggests there are 

constraints on energy production inherent to bacterial catabolism. One such constraint is that 

efficient (high ATP yield) pathways of glucose catabolism require more enzymatic protein than 

less efficient pathways, effectively a higher overhead cost for the cell (Flamholz et al., 2013). 
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More generally, it has been shown that the thermodynamics of heterotrophic metabolism alone 

lead to an inevitable tradeoff in the rate and yield of ATP production (Pfeiffer & Bonhoeffer, 

2002). These studies suggest that rapid growth may be fundamentally incompatible with efficient 

growth. Evolutionary simulations demonstrate that thermodynamic tradeoffs are sufficient to 

select for rapidly growing heterotrophic organisms which use respiro-fermentation in 

homogenous, high resource environments. This study also showed that an efficient, obligately-

respiring organism was more competitive at low resource concentrations and when spatial 

heterogeneity increased (Pfeiffer et al., 2001). A recent study demonstrated that this theoretical 

study is relevant to evolutionary pressures faced by bacteria in the laboratory. Mutants of 

Lactococcus lactis with an improve ATP yield and a growth rate defect could be selected for 

using the spatial structure provided by a water-in-oil emulsion (Bachmann et al., 2013). These 

provocative results beg the question, have these same pressures led to observable rate-efficiency 

tradeoffs in non-mutagenized populations of evolving bacteria?  

 The experimental evolution of 12 E. coli populations in batch culture provides an 

excellent test for a rate-efficiency tradeoff because it has selected for faster unconstrained growth 

rates and decreased lag times (Vasi et al., 1994). While no correlation was observed among the 

average rate and efficiency of the 12 populations, analyses within populations indicated the 

presence of a rate-efficiency tradeoff (Novak et al., 2006). It is unclear from this experiment why 

the tradeoff was seen within populations, but not evident when comparing across all populations. 

Many potential mechanisms were offered to explain this result: multiple selection pressures, 

historical contingency leading to population-specific evolutionary constraints, or the experiment 

not running long enough for the tradeoff to be observed. If this final explanation is correct, it 

suggests a comparative approach may provide complementary evidence for rate-efficiency 
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tradeoffs. My thesis is based upon such a comparative study among bacteria with life histories 

expected to be favored by rapid or efficient growth tactics. Evidence in Chapter 4 is consistent 

with a rate-efficiency tradeoff underlying the spectrum of life histories from copiotrophy to 

oligotrophy. 

 

Summary 

 Bacteria have been evolving for billions of years under a wide-variety of environmental 

conditions. As a result, extant bacteria exhibit a large variety of maximum specific growth rates 

(Vieira-Silva & Rocha, 2010). This suggests many evolutionary pressures constrain bacteria 

from competing in the arena of extremely rapid growth. I propose that an innate growth rate-

efficiency tradeoff may underlie bacterial life histories, with abundant resources leading to 

selection for rapid growth in copiotrophic bacteria. In contrast, chronic poor resource availability 

in heterogeneous environments has led to selection for efficient growth for oligotrophic bacteria. 

Any given bacterium has likely been subject to both of these extreme selective pressures at some 

point over its evolutionary history, but I argue that the number of genomic rrn copies of this 

bacterium is a good proxy for its current adaptations to resource availability. 
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CHAPTER 2 

 

The physiology and ecological implications of efficient growth 

 

This research was first published in the article:  Roller, BRK and TM Schmidt. The physiology 

and ecological implications of efficient growth. The ISME Journal (2015) 9, 1481-1487; 

doi:10.1038/ismej.2014.235; published online 9 January 2015. Copyright © 2015, Roller and 
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Abstract 

 The natural habitats of microbes are typically spatially structured with limited resources, 

so opportunities for unconstrained, balanced growth are rare. In these habitats, selection should 

favor microbes that are able to use resources most efficiently, that is, microbes that produce the 

most progeny per unit of resource consumed. On the basis of this assertion, we propose that 

selection for efficiency is a primary driver of the composition of microbial communities. In this 

article, we review how the quality and quantity of resources influence the efficiency of 

heterotrophic growth. A conceptual model proposing innate differences in growth efficiency 

between oligotrophic and copiotrophic microbes is also provided. We conclude that elucidation 

of the mechanisms underlying efficient growth will enhance our understanding of the selective 

pressures shaping microbes and will improve our capacity to manage microbial communities 

effectively. 

 

Introduction 

 The conceptual foundation of microbial physiology was built on studies of microbes 

during balanced growth in homogenous cultures. Schaechter et al. (1958) first established that 

bacteria adjust their macromolecular composition to match growth rate. The rate of a 

population’s exponential growth is an integrated signal composed of the chemical and physical 

features of an environment. As stated elegantly by Neidhardt (1999), ‘…when growth is the 

ultimate interest, one cannot long delve into single enzymes and genes, or even individual 

pathways and mechanisms, without at some point returning to the whole cell and asking about 

the coordinated operation of processes.’ The growth rate of a microbe—the number of 

progeny produced per unit time—is an important component of fitness in most environments and 
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therefore a pivotal life history trait. Any trait that impacts fitness by altering a microbe’s 

reproduction or survival is termed a life history trait, and these include responses to varying 

resource availability, population density and other extracellular factors (Vasi et al., 1994). The 

collection of life history traits define a microbe’s life history—the overall pattern of 

reproduction and survival. 

 A less obvious, but equally important life history trait is the efficiency of microbial 

growth—the number of progeny produced per unit of resource consumed. Like growth rate, 

growth efficiency integrates a microbe’s physiology, ecology and evolutionary history. The 

efficiency of growth for any given microbe depends on multiple environmental and population-

specific factors, including the free energy available from a resource (Linton and Stephenson, 

1978), pathways for resource utilization (Flamholz et al., 2013), the availability of precursors for 

biomass synthesis (Stouthamer, 1973) and the fraction of available energy devoted to 

maintenance functions instead of growth (Hoehler and Jørgensen, 2013). We do not yet know the 

collection of specific genetic determinants that underlie growth efficiency, but as described 

below, it is obvious that efficiency is a life history trait and is under selection in most 

environments. Although our ultimate goal is to understand all elements of a microbes fitness in 

concert, including both reproduction and survival components, our primary focus in this work is 

on two life history traits that impact reproduction—the rate and efficiency of population growth. 

 Growth efficiency is important from an evolutionary perspective and has repercussions 

for understanding how ecosystems function. Carbon use efficiency (CUE), the amount of carbon 

incorporated into biomass per carbon resource consumed, is one way to measure growth 

efficiency and is a proxy for the number of progeny produced per unit resource. It also provides a 

quantitative measure of the impact that microbes have on nutrient cycling in an ecosystem. In 
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animals’ digestive tracts, microbes impact many essential processes for the holoorganism, 

especially the nutritional value extracted from their diets (McFall-Ngai et al., 2013) where 

microbial CUE is likely a critical variable. Heterotrophic microbes are major contributors to the 

global carbon cycle (Cho and Azam, 1988; Singh et al., 2010)—respiring 60 gigatonnes of 

terrestrial organic matter to carbon dioxide (CO2) each year, roughly six times more than annual 

anthropogenic emissions (Trivedi et al., 2013)—yet we are just beginning to understand the 

efficiency of carbon use by heterotrophic microbes and its impact on ecosystem carbon cycling 

(Manzoni et al., 2012; Lee and Schmidt, 2014). Exploring variations in CUE among diverse 

microbes will improve our knowledge of how microbial communities impact carbon flux, from 

the small scale of host–microbiome interactions to largescale annual CO2 flux from an 

ecosystem. 

 We address two primary questions in this perspective: which environmental 

characteristics favor efficiency and what is the extent of plasticity in growth efficiency of 

individual microbes? Key findings are illustrated using aerobic heterotrophs, but should also 

apply to fermentative microbes and those that respire any of an array of terminal electron 

acceptors other than oxygen (O2). In regards to the terminology used to describe efficiency, 

ecologists often measure growth efficiency in carbon (C) units, that is, moles of C incorporated 

into biomass per mole of C consumed, and use the terms CUE, microbial growth efficiency and 

bacterial growth efficiency interchangeably to describe this measure. Microbial physiologists and 

engineers more often describe efficiency in terms of yield. Yields are expressed in units that are 

not as easily compared across microbial populations or growth conditions, for example, biomass 

per gram of resource, per mole ATP or per mole of electrons. We have elected to use CUE as a 
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measure of efficiency in addition to progeny per resource measurements. CUE varies between 0 

and 1 and provides an intuitive comparison across organisms and resources. 

 

When is efficient growth favored? 

 An intriguing study of how spatial heterogeneity and varying resource availability 

influences selection on growth rate and growth efficiency was conducted using mathematical 

simulations of heterotrophic microbes. In these simulations, two types of ‘organisms’ competed 

across gradients of spatial structure and resource flux. One was a rapidly growing, inefficient, 

respiro-fermentative organism. The other was an efficient, but slow growing, obligately respiring 

organism. Efficient growth was favored over rapid growth when the flux of resources was low 

and spatial heterogeneity was high. As the flux of resources increased and the environment 

became more homogeneous, the rapidly growing organism was favored (Pfeiffer et al., 2001). 

Potential tradeoffs between growth rate and growth efficiency have also been evaluated 

experimentally with genetically modified yeast strains. The competing strains were isogenic 

except for a single mutation that made one strain capable of using only the more efficient process 

of respiration but slowed growth rate. The other strain gained energy primarily through the less 

efficient process of fermentation and grew more rapidly (Maclean and Gudelj, 2006). When 

these strains competed in a homogenous, continuous culture, the rapid growing organism was 

more fit and outcompeted the efficient organism. Altering only the temporal availability of 

resources by using batch culture or in combination with spatial structure by using a 

metapopulation of batch cultures, allowed for the coexistence of rapid and efficient strains. 

Taken together, these studies indicate that a few key factors—low resource concentrations, 
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spatial heterogeneity and temporal resource dynamics—can increase the fitness of efficient 

strains. 

 Typical laboratory cultivation differs from the conditions microorganisms experience in 

their natural environments, where spatial heterogeneity is pervasive (Stocker, 2012). The lack of 

spatial or temporal structure in typical laboratory cultivation causes resources to be a global 

commodity shared by the entire experimental population. Selection therefore favors rapid growth 

in both batch and continuous cultivation evolution experiments (Dykhuizen and Hartl, 1981; 

Vasi et al., 1994). Spatial heterogeneity can be accomplished in a laboratory setting by using an 

oil emulsion that compartmentalizes individual microbes. In one study, a population of randomly 

mutagenized Lactococcus lactis was serially propagated in an oil emulsion. This led to a rate 

efficiency tradeoff between isolated clones. Isolates with increased growth efficiency relative to 

the parental strain of L. lactis were observed, yet they typically grew slower than inefficient 

clones in the population. The clone with the greatest yield and slowest growth rate had a large 

increase in relative abundance throughout the 28 days of propagation, demonstrating selection 

favoring efficient growth (Bachmann et al., 2013). 

 Spatial heterogeneity, low resource concentrations and temporal resource dynamics can 

all favor efficient growth because each of these factors influence the scale of competition, 

effectively privatizing resources to individuals and shifting the cost of inefficient resource use 

from the community to the individual. Populations founded by inefficient organisms will be 

smaller than those founded by efficient organisms, given the same amount of resource for each 

population (Pfeiffer et al., 2001). Competition between organisms capable of achieving varied 

population sizes in spatially structured environments can lead to counterintuitive results. Using 

genetically modified strains of Escherichia coli, Chuang et al. (2009) showed that selection 
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could favor a strain that produced a larger final population size in a spatially structured 

metapopulation, even when it was at a growth rate disadvantage, a phenomenon that has been 

described statistically as the Yule–Simpson effect. This phenomenon demonstrates that 

considering the environmental context in which selection acts on microorganisms is critical. 

 Two key variables, resource availability and the free energy content of these resources, 

have large impacts on the physiology and growth efficiency of microbial populations and 

deserve a more detailed discussion and analysis. The framework presented for how these 

variables impact growth efficiency will then be used to develop a model of growth efficiency 

that distinguishes two distinct life histories. 

 

Growth efficiency varies with resource availability 

 Heterotrophic bacteria utilize organic compounds for two primary purposes: as a source 

of energy (extracted through catabolism) and as a source of carbon molecules to build biomass 

(anabolic reactions). The fractionation of carbon between catabolism and anabolism varies 

within and between organisms. One factor that modulates the fractionation of carbon within an 

organism is growth rate. At submaximal growth rates, bacteria uncouple anabolism from 

catabolism (Tempest and Neijssel, 1984) and a larger fraction of the cell’s energy budget is 

devoted to maintenance functions rather than biomass synthesis (Tempest and Neijssel, 1984; 

Russell and Cook, 1995). The decreased proportion of biosynthesis in the energy budget at 

submaximal growth rates can be measured by tracking the fate of carbon to biomass or CO2. 

 Previously published measures of the fractionation of carbon between catabolism and 

anabolism are often reported as biomass yields using mass units. Because yields are resource 

dependent, comparing yields across different resources requires converting the data to a common 
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currency. We convert growth yields to CUE—moles of carbon incorporated into biomass per 

total moles of carbon consumed (Equation 1a). During non-fermentative growth, the total carbon 

utilized by heterotrophs is equivalent to carbon incorporated into biomass production plus carbon 

respired, and CUE can be expressed as in Equation 1b. Oxygen consumption and dry biomass 

measurements can also be used to calculate growth efficiency, as in Equation 1c, when there is a 

consistent carbon content in the biomass of the organism and the respiratory quotient (RQ, the 

ratio of CO2 produced per O2 consumed) reflects complete oxidation of the substrate. We 

calculated CUE, using Equations 1b and c, and the steady-state concentration of the limiting 

resource in a series of chemostat experiments with strains of Klebsiella aerogenes (Herbert, 

1976; Neijssel and Tempest, 1976). The assumptions that the biomass has a constant carbon 

content and the carbon source is completely oxidized are reasonable for this organism during 

carbon-limited growth (Neijssel and Tempest, 1975; Herbert, 1976), so we are able to quantify 

the impact of resource availability on CUE. 

 

Equation 1 

          (1a)             (1b)        (1c) 

 

 To calculate the concentration of the limiting resource (R) we used Equation 2, where R 

is a function of the dilution rate (D) and physiological properties of the organism: the maximum 

specific growth rate (µmax) and the concentration of the limiting resource that supports the 

organism’s growth at half of the maximal rate (Ks). 
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Equation 2 

 

 

 During glycerol-limited growth of K. aerogenes in a chemostat culture, a larger fraction 

of the total carbon consumed is assimilated into biomass as growth rate increases and a smaller 

proportion is required for respiration (Figure 2.1a). All carbon is accounted for at each steady-

state growth rate of K. aerogenes (biomass C + respired C), indicating that partial oxidation 

products of glycerol are not accumulating in the medium. 

 Converting the carbon metabolism data in Figure 2.1a into CUE (Equation 1) and plotting 

this against the steady-state limiting resource concentration (Equation 2) provides insight into the 

relationship between these parameters (Figure 2.1b). Growth efficiency increases as the limiting 

resource concentration is raised during glycerol-limited growth, until reaching a plateau of 

maximum efficiency at higher resource concentrations. The same relationship between growth 

efficiency and resource concentration is apparent regardless of whether growth is phosphate, 

sulfate or glucose limited, assuming complete carbon source oxidation (Figure 2.1c). Ks values 

for glucose (Neijssel and Tempest, 1975) and sulfate (Owens and Legan, 1987) were taken from 

the literature on K. aerogenes, whereas the values for phosphate (Owens and Legan, 1987) and 

glycerol (Neijssel and Tempest, 1975; Owens and Legan, 1987) are derived from E. coli. 

Although this historical data may not perfectly reflect the Ks values realized during the original 

experiment, the same relationship with CUE is observed even when manually altering Ks values 

within a larger range of values of closely related organisms from the literature (data not shown). 

In addition, in the sulfate- and phosphate-limited cultures, the lowest concentrations of limiting 

!!

€ 
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µmax −D
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Figure 2.1: Efficiency varies with resource concentration. The influence of limiting resources 
on the CUE of K. aerogenes NCTC 418 in chemostat cultures. (a) Allocation of carbon in a 
glycerol-limited chemostat culture as a function of dilution rate (Herbert, 1976). (b) Variation in 
CUE related to the steady-state glycerol concentration (calculated from Herbert, 1976). (c) 
Relationship between CUE and the steady-state limiting resource concentration in glucose-, 
phosphate- or sulfate-limited conditions (calculated from Neijssel and Tempest, 1976). Curve 
fitting in all panels was generated using a locally weighted regression algorithm (LOESS) to help 
visualize trends. 
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resource do not always lead to complete carbon source oxidation (Neijssel and Tempest, 1975). 

This is based on the measurements at a single dilution rate and will not alter our interpretations 

and conclusions because it will lead to a lower CUE than was calculated at the lowest resource 

concentrations. 

 These results imply that carbon metabolism becomes more efficient as growth becomes 

less nutritionally constrained, with an organism’s maximal growth efficiency reached near 

unconstrained, balanced growth. As discussed below, maximal CUE is also specific to the 

organic source being metabolized and likely specific for the entire physical and chemical 

environment.  

 

Growth efficiency varies with resource quality 

 Growth efficiency is also dependent on the amount of energy captured during the 

oxidation of different organic compounds. To demonstrate the magnitude of changes in CUE due 

to the energy content of different carbon sources, we gathered the data from batch cultivation 

experiments in which 10 different species of bacteria were grown in minimal media with 

different organic compounds serving as the sole carbon and energy source (Linton and 

Stephenson, 1978). We calculated CUE assuming biomass had a constant carbon content for all 

organisms (Simon and Azam, 1989) and plotted against the heat of combustion per carbon atom 

in the organic compound supporting growth (Figure 2.2). Bacteria growing on resources with 

small amounts of free energy per carbon atom must use energy to reduce the carbon to the 

oxidation state of their biomass. This increased demand for energy, in the form of reducing 

equivalents, decreases overall CUE on low energy resources. When the energy content of the 

carbon in the resource and biomass (calculated from Cordier et al., 1987) is similar, the 
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efficiency of growth stops increasing. This phenomenon has been reported for microbes in soils, 

as well as in pure culture (Manzoni et al., 2012). 

 Batch culture allows for unconstrained, balanced growth conditions and, we argue, a 

microbe’s maximal efficiency for that environment. Yet, we still see that growth efficiency 

depends on the energy content of the carbon resource, even when the resource is provided in 

quantities that far exceed biosynthetic demand. Despite the increased variability introduced by 

comparing 10 different bacteria in this analysis, a strong relationship between efficiency and 

energy content of the carbon resource is observed. 

Figure 2.2: Efficiency varies with resource quality. CUE of 10 bacterial species related to the 
energy content of the organic compound supporting growth (calculated from Linton and 
Stephenson, 1978). Distinct symbols represent different bacterial species. The heat of 
combustion of representative organic compounds and an average for bacterial biomass (E. coli 
(130.2) and M. methylotrophus (132.5), calculated from Cordier et al., 1987) are presented on the 
x axis. 
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Life history and growth efficiency 

 One of the best-known distinctions of microbial life histories is the copiotroph–

oligotroph dichotomy. Copiotrophic microbes are selected for rapid growth when resources are 

abundant, whereas oligotrophic microbes have adaptations for growth in persistently resource-

poor environments (Koch, 2001). This framework has many similarities to the concepts 

underlying r/K selection theory in macroecology, where the selective pressures on organisms are 

a function of resource availability or population density. Unlike r/K selection, the copiotroph–

oligotroph dichotomy does not require differential patterns of survival or persistence. 

 There is a striking parallel between the conditions where oligotrophs thrive and the 

conditions that select for efficient organisms. Many ecosystems that have considerable 

oligotroph membership, such as the open ocean (Vergin et al., 2013) and bulk soil (Fierer et al., 

2007), contain habitats with low resource availability and spatial structure that should select for 

efficient microbial growth. We propose a conceptual model that outlines how growth efficiency 

varies between an archetypical copiotroph and oligotroph as a function of resource concentration 

and quality (Figure 2.3). 

 The relationship between growth efficiency and resource concentration in our proposed 

model follows the same general pattern for both the oligotroph and copiotroph. The capacity for 

growth is indicated by the extent of the growth efficiency function, which terminates when 

growth is no longer supported. These two life histories have distinguishing features in the 

relationship between efficiency and concentration of the limiting resource in their environment.  
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Figure 2.3: Conceptual model of life history and efficiency. Proposed model of growth 
efficiency for distinct bacterial life histories. The efficiency of copiotrophic (solid lines) and 
oligotrophic (dashed lines) bacteria should be compared on resources with the same energy 
content (indicated by line color) and at the same limiting resource concentration. 
 

The proposed model contains the following elements and hypotheses: 

1. As has been proposed previously (Zhao et al., 2013), oligotrophs are superior competitors 

for resources at low resource concentrations. This is visualized as the oligotroph having 

the capacity to grow at a much lower concentration of a limiting resource than the 

copiotroph. 

2. On the basis of the evidence from Figure 2.1, growth efficiency increases for both 

copiotrophs and oligotrophs as the limiting resource concentration increases up to a 

threshold where maximum efficiency is achieved. As a smaller proportion of carbon 
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metabolism is directed towards maintenance energy, efficiency increases until it reaches a 

maximum near balanced growth. 

3. We hypothesize that maintenance energy is lower for oligotrophs compared with 

copiotrophs. There are two consequences of this in our model: the minimum growth 

efficiency is higher for the oligotroph and the rate of increase in growth efficiency is 

slower. This extends the range of resource concentrations supporting the oligotroph’s 

growth. Eight cellular functions have been described as the components of maintenance 

energy (van Bodegom, 2007) and oligotrophs have been shown to minimize costs 

associated with three of these functions—protection from oxygen stress, cell motility, and 

the synthesis and turnover of macromolecules. A large clade of marine oligotrophs have 

lost the capacity to synthesize oxygen stress protectants when they are freely available in 

their environment (Morris et al., 2012) and many described oligotrophs are also non-

motile (Lauro et al., 2009; Stocker, 2012). Additionally, genome streamlining is common 

in oligotrophs (Giovannoni et al., 2014), which may be an adaptation to decrease the 

amount of resources invested in macromolecule synthesis and turnover. Taken 

individually, any one of these traits is not exclusive to, or universally present in, 

oligotrophs. However, there is a tendency towards minimizing maintenance energy costs 

in oligotrophs and more work must be done to evaluate this hypothesis. 

4. On the basis of the evidence from Figure 2.2, growth efficiency increases for both 

copiotroph and oligotroph as the energy content of the resource is increased. This is 

displayed in our model in Figure 2.3, as gray versus black lines. 

5. We propose that the maximal growth efficiency of oligotrophs is higher than copiotrophs 

and that it is reached at a lower concentration of limiting resource. This is supported by 
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evidence from one of the few comparisons of an oligotroph, Sphingopyxis alaskensis, and 

a copiotroph, Vibrio angustum, under identical conditions (Cavicchioli et al., 2003). The 

oligotroph had a greater population density at all dilution rates, and thus resource 

concentrations, measured in the chemostat. 

6. It has been postulated that oligotrophs grow less well, or not at all, in resource-rich 

environments (Koch, 2001). This is captured by the termination of the oligotroph’s 

growth efficiency functions at a lower resource concentration than the copiotroph’s. 

  

 Although many of our hypotheses are built upon observations from chemostat cultures, 

insufficient physiological data are available for generating hypotheses at extremely low resource 

concentrations—corresponding to very slow or non-growing states. Technical limitations of 

cultivation technology are largely responsible for this lack of data, but the physiology of extreme 

resource starvation, where reproduction and survival processes co-occur, likely has a large role 

in determining microbial fitness in natural environments. It is tempting to speculate that if 

oligotrophs are more efficient in all physiological states, they would have an increased carrying 

capacity, the parameter K in r/K selection, relative to copiotrophs in the same conditions. 

However, there are not enough data to support a universal prediction of oligotrophs possessing 

increased carrying capacity, persistence or other K-selected traits that are not directly linked to 

growth. We believe it is important to make predictions about growth physiology during extreme 

starvation, but more data are needed to understand the interplay between growth and persistence 

in near non-growth conditions for all life histories. 

 We hope these hypotheses will stimulate critical discussion of the many potential 

mechanisms underlying the growth efficiency of microbial populations. The physiology of an 
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individual microbe encompasses thousands of individual reactions and growth efficiency 

integrates these reactions into an emergent phenotype. In addition, growth efficiency directly 

interacts with both ecological and evolutionary processes in microbial communities. All natural 

microbial environments contain spatial structure, resource limitation or temporal resource 

dynamics. Therefore, all natural microbial environments, from relatively stable syntrophically-

associated subsurface communities to dynamic host–microbe systems, must impart some 

selective pressure for efficient growth on their microbial assemblages. Although the 

consequences of these selective pressures for ecosystem functioning are unclear, any attempts to 

manage microbial communities must recognize evolutionary pressures favoring efficient growth 

are most likely present in natural microbial systems. Just as past microbiologists have used 

growth rate to better understand the coordination of cellular processes necessary for 

reproduction, modern microbiologists have the opportunity to use growth efficiency to unify our 

understanding of the physiological, ecological and evolutionary processes shaping microbial 

communities. 
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CHAPTER 3 

 

rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a 

new foundation for future development 

 

This research was first published in the article: Stoddard, SF,  BJ Smith, R Hein, BRK Roller and 

TM Schmidt. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and 

archaea and a new foundation for future development. Nucleic Acids Research (2015) 43, D593-

598; doi:10.1093/nar/gku1201; published online 20 November 2014. © The Author(s) 2014. 

Published by Oxford University Press on behalf of Nucleic Acids Research. 

 

This publication was the collaboration of many people. TM Schmidt, BRK Roller, and SF 

Stoddard envisioned the strategy for automating updates to the database and linking the public 

database to an internal database of annotated genomic information. SF Stoddard and RH Hein 

provided technical expertise to build and maintain database. BRK Roller, SF Stoddard, BJ 

Smith, and TM Schmidt created and implemented quality control tests. All authors wrote and 

revised the paper. 
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Abstract 

 Microbiologists utilize ribosomal RNA genes as molecular markers of taxonomy in 

surveys of microbial communities. rRNA genes are often co-located as part of an rrn operon, 

and multiple copies of this operon are present in genomes across the microbial tree of life. rrn 

copy number variability provides valuable insight into microbial life history, but introduces 

systematic bias when measuring community composition in molecular surveys. Here we present 

an update to the ribosomal RNA operon copy number database (rrnDB), a publicly available, 

curated resource for copy number information for bacteria and archaea. The redesigned rrnDB 

(http://rrndb.umms.med.umich.edu/) brings a substantial increase in the number of genomes 

described, improved curation, mapping of genomes to both NCBI and RDP taxonomies, and 

refined tools for querying and analyzing these data. With these changes, the rrnDB is better 

positioned to remain a comprehensive resource under the torrent of microbial genome 

sequencing. The enhanced rrnDB will contribute to the analysis of molecular surveys and to 

research linking genomic characteristics to life history. 

 

Introduction 

 In bacteria and archaea, the ribosomal RNA operon (rrn) typically codes for the 16S, 

23S and 5S rRNAs. Together with a suite of proteins, these form ribosomes––the molecular 

machines responsible for catalyzing the mRNA-dependent polymerization of amino acids 

into protein. Unlike most bacterial and archaeal genes, the rRNA operon is frequently found 

in multiple copies, from 1–15 in bacteria and 1–4 in archaea (Klappenbach et al., 2001). It has 

been suggested that rrn copy number is an index of microbial life histories, wherein rapid 

growth in response to favorable conditions and high translational power (copiotrophic life 



!

! 40! !

history traits) are positively correlated with rrn copy number (Klappenbach et al., 2000; 

Dethlefsen and Schmidt, 2007), and oligotrophic organisms tend to have low copy number 

(Eichorst et al., 2007; Cavicchioli et al., 2003). Due to the central importance of ribosomal 

RNAs in the formation of peptide bonds (Schuwirth et al., 2005), rRNA genes share regions 

of highly conserved sequence that are interspersed with more variable regions. These 

characteristics make the 16S gene a useful phylogenetic marker, key to our modern 

understanding of the evolutionary relationships among microbes. 

 The abundance of sequence data and knowledge about secondary structure has made 

the 16S gene the most popular target for culture-independent, sequence-based methods in 

microbiology. With the rapidly shrinking cost of sequencing, whole community 16S surveys 

have become a core tool in microbial ecology. Curated databases of aligned 16S sequences, 

including SILVA (Quast et al., 2013), the Ribosomal Database Project (RDP) (Cole et al., 

2014) and Greengenes (DeSantis et al., 2006), have been developed to facilitate analysis of 

sequence data. Analysis pipelines usually produce estimates of per-taxon relative abundances 

based on the number of copies of 16S genes recovered in a sequence library. 

 Unfortunately, given the variable per-genome copy number of the 16S gene, a 

frequently recovered sequence may represent a high copy number taxon of lesser abundance, 

or a low copy number taxon of higher abundance. Inferences based on relative abundance of 

16S genes may therefore not be representative of true community structure (Kembel et al., 

2012). This can be an important source of systematic bias in 16S surveys, along with 

differential DNA extraction and polymerase chain reaction amplification (Pinto and Raskin 

2012; Yuan et al., 2012; Morgan et al., 2010). Given knowledge of 16S gene copy number, 

molecular surveys can be corrected to remove this bias. 
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 By mapping recovered sequences to available microbial genomes based on similarity 

in the 16S gene, the 16S copy number of the organism that contributed the sequence can be 

estimated and survey data adjusted accordingly. This general approach has been implemented 

in several software packages, including CopyRighter (Angly et al., 2014), pplacer and the 

picante R package (Kembel et al., 2012), and incorporated into PICRUSt (Langille et al., 

2013). The accuracy of these methods depends on a reference database of known 16S copy 

numbers mapped to a taxonomy or phylogeny. The rrnDB is a carefully curated, publicly 

available resource for copy number information, which can be easily integrated into existing 

correction methods. 

 Here we introduce an updated version of the rrnDB providing 16S copy number 

information derived from a new data source, a new website with expanded features, and 

mechanisms for maintaining concurrency with new genomes as they are published. At 

manuscript submission the database included 2635 bacterial records representing 1383 

species, and 175 archaeal records representing 148 species. We foresee the new rrnDB 

contributing to improved copy number correction in metagenomic surveys. Further, the 

changes create a more robust platform for continued development as a resource supporting 

functional studies involving rrn copy number and life history strategies of bacteria and 

archaea. The new rrnDB is available on the WWW at the URL 

http://rrndb.umms.med.umich.edu/ 

 

Database description 

 Major improvements to the website and database include: expanded organism 

taxonomies to include both the National Center for Biotechnology Information (NCBI) and 
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the RDP systems, new statistical summaries for 16S copy number in search results, 

downloadable copy number data optimized for use in copy number corrections in 16S 

molecular surveys, a new download area for sharing database contents, improved searching of 

records enabled by the availability of additional metadata, and additional links to related 

external resources. 

 Most records in the database are derived from annotations of published, completed 

genome sequences and these include estimates of both 16S gene and 23S gene copy number. 

About 8% of current records are based on data from experimental methods other than genome 

sequencing and are referred to as organism-based records. Some organism-based records 

may include data for either 16S or 23S gene copy number, but not both, depending on the 

experimental methods used. Counts of tRNA genes are present in most genome-based records, 

but the tRNA data are not quality controlled or curated by the rrnDB team. Data about 5S 

rRNA genes and internally transcribed spacers (ITS) are not present in the rrnDB starting 

with version 4.0.0. 

 Users can retrieve database entries by two different kinds of text searching, or by 

browsing a taxonomic hierarchy. ‘Search Record Annotations’ scans rrnDB record fields such 

as evidence, notes or references for a user-entered search phrase, and also supports retrieval of 

records by their 16S copy number. ‘Search Taxonomy’ is a taxonomic name scan, with 

substring matching, that takes advantage of rich metadata that are available as a result of 

having integrated the NCBI taxonomy database into rrnDB. This mode of searching can 

retrieve records using obsolete taxonomy names, synonyms, misspellings and others that may 

be found in the literature, including culture collection strain accessions. Substring searching of 

RDP taxonomy names is also available. ‘Browse Taxonomy’ is a way to retrieve records using 
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pop-up selection lists that can be populated with taxonomic names from either the NCBI or 

the RDP systems. 

 Having NCBI and RDP taxonomies both in the system serves the different objectives 

and starting information that users may have when approaching the website. NCBI taxonomy 

is ubiquitous in many data sources and is a principal way that different resources are tied 

together. RDP taxonomy, being more rooted in phylogeny, is used to classify 16S sequences in 

molecular surveys. Search results are returned on a separate web page in table format (Figure 

3.1) , one record per row, where each row is identified by a ‘Data source record id’ in the first  

 

 

Figure 3.1: Features of rrnDB. Screen shot of a ‘Browse Taxonomy’ search result for the 
family Acetobacteraceae using NCBI taxonomy.  Statistics for 16S gene counts of all 18 
records are shown in the upper-left table. The distribution of 16S counts among the records is 
shown in the histogram to the right. Summary data for the individual records are shown in the 
larger table below. Record ids that are prefixed with ‘rrnDBv3-’ were sourced from rrnDB 
v3.1.227. The other record ids are KEGG accessions. Data source organism names have been 
given higher visibility than NCBI names because they more often include strain designations. 
Viewing an NCBI name requires a mouse-hover over the table cell as shown for record 
rrnDBv3-1403. RDP taxonomy displayed in this table is limited to genus assignment.  Each 
data source record id is hyperlinked to its corresponding record-detail web page. The records 
can be reordered by clicking on most column headers. 
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column. We have adopted the ‘T number’ accessions of the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) (Kanehisa et al., 2014) as the data source record id for genome-

based records, while for organism-based records a permutation of the ‘strain id’ of the earlier 

rrnDB database is used. Each record is associated with an organism name originating from the 

data source. Another column is populated with the most recent organism name from the 

NCBI taxonomy database, and when assigned, the RDP genus is also shown. The organism 

names from NCBI and the data source are not always identical because data source names 

tend to lag behind changes in NCBI taxonomy. The copy numbers for 16S, 23S and tRNA 

genes of each record are in the table, which can be sorted by clicking on the header of most 

columns. 

 Each search generates a statistical summary of 16S gene counts for the retrieved 

records, and these are presented above the main table (Figure 3.1). Statistics include the record 

count for the result set, the minimum and maximum 16S copy numbers, and the mode, 

median, mean and standard deviation. A histogram with 15 bars (for copy number of 1–15) 

showing the relative distribution of 16S copy numbers in the search result, quickly 

communicates information about the search population.  The histogram can be especially 

illuminating in certain cases, such as the 225 records of the family Enterobacteriaceae (Figure 

3.2). This family shows a broad range of 1 to 9 for the minimum and maximum rrn copy 

numbers. The histogram reveals the distribution to be bimodal with peaks in the lower and 

middle regions of the copy number range. Sorting the result table on the ‘16S copies’ column 

and observation of organism names would reveal the low-copy-number peak to comprise 

insect-symbiotic organisms exclusively. 
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 A detailed web page report about any record in a search result can be accessed by 

clicking on the data source record id of the corresponding table row. The detail reports 

include additional NCBI and RDP taxonomy information, the type of evidence supporting 

the rRNA gene counts, curator notes and hyperlinks to external KEGG, NCBI BioProject and 

NCBI taxonomy web pages. The linked-to external pages provide access to gene and genome 

sequences and annotations for users to wish to dig deeper. For organism-based records, we 

provide reference citations with links to NCBI PubMed entries. 

 

 

Figure 3.2: rrn variation in the Enterobacteriaceae. Screen shot showing the statistics and 
histogram portions of 225 records retrieved by the taxonomy browser for the family 
Enterobacteriaceae. The role of the histogram in clarifying search result statistics is apparent 
in this example. Although this figure does not show the individual records table like in Figure 
3.1, it would be apparent from the organism names that insect-symbiotic bacteria comprise 
the low-16S cluster. 
 

 For the purpose of adjusting organism abundance in molecular surveys, the mean 16S 

copy number for a taxon can be misleading if calculated from all genomes due to over-

representation of some species. One way to correct for this potential source of bias is to 

calculate the mean of a taxon from the means of its sub-taxa. We have calculated these ‘pan-
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taxa statistics’ for all taxa, from genus to domain level, specifically to support copy number 

correction. The statistics are available for both RDP and NCBI taxonomies. The RDP 

development team has extended RDP Classifier to support adjustment of the relative 

abundance of each taxon. The newer version of the Classifier was trained with the rrnDB pan-

taxa statistics and is available from RDP (http://rdp.cme.msu.edu/) and the RDP repository 

on SourceForge (http://sourceforge.net/projects/rdp-classifier/). The ‘Estimate’ feature of the 

rrnDB website is an on-line interface to the RDP Classifier, including 16S copy number 

adjustment of taxon abundance for user-uploaded 16S sequence files. 

 The website includes an ‘About rrnDB’ web page describing the database, a ‘Manual’ 

web page describing how to use the various features, and a contact email address for users to 

ask questions, suggest improvements or alert the curators about problems. A ‘Downloads’ web 

page provides access to tab-delimited tables of versioned rrnDB data as well as the pan-taxa 

tables. All of the software resources used in the project are freely available under open-source 

licenses and have strong community support. 

 

Data sources 

 Genome-based records in the rrnDB are ultimately derived from the NCBI RefSeq 

collection. The specific data files that we process are acquired from KEGG and carry 

additional annotation created by KEGG. In particular the rrnDB makes use of KEGG ‘K 

numbers’, which apply consistent labeling to orthologous genes across multiple genomes to 

compute the 16S and 23S rRNA and tRNA gene counts of genomes. The use of K numbers to 

count rRNA gene copy numbers traverses problems caused by inconsistent labeling and 

annotation errors in sources upstream of KEGG. 
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 KEGG source data are accessed by us through paid academic subscription to the 

KEGG data via their FTP site (http://www.kegg.jp/kegg/download/). We expect to bring new 

and updated genomes into the rrnDB with increased frequency using the KEGG data 

source. The amount of KEGG data that are necessary to share in order to run the rrnDB 

website is negligible and well within the terms of the KEGG academic license; therefore, all 

data made available through the rrnDB are presented without restriction for non-commercial 

use. 

 The NCBI taxonomy for Bacteria and Archaea is fully integrated into the rrnDB so as 

to support the taxonomy browsing and searching functions of the website. The integrated 

taxonomy also supports the computation of statistics from the rrnDB records aggregated at 

any node of the NCBI taxonomic tree. The NCBI taxonomy data will be updated together 

with each update of KEGG genomes. NCBI taxonomy data are freely available at the NCBI 

FTP site (http://www.be-md.ncbi.nlm.nih.gov/taxonomy/). 

 Records of the rrnDB are also mapped to the taxonomy system used by the 

Ribosomal Database Project (Cole et al., 2014). Genomes of the rrnDB are mapped to RDP 

taxonomy using the RDP Classifier tool (Wang et al., 2007), where each 16S rRNA gene 

sequence that is classified at a genus bootstrap score of 0.8 or more contributes to the 

genome’s RDP taxonomy. We have been able to map ∼94% of the genome-based records to 

one or more RDP genera. A genome can map to multiple RDP taxonomies if the genome has 

multiple 16S genes and a degree of sequence dissimilarity among them. The only genome 

having been assigned dual RDP taxonomy in rrnDB v4.2.2 is that for Thermoanaerobacterium 

saccharolyticum DSM 571 (KEGG T01299), which mapped to the genus Thermohydrogenium 
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as well as to itself. Divergence of 16S sequences within Thermoanaerobacterium strains has 

been described before (Vě trovský and Baldrian, 2013). 

 The rrnDB holds 216 organism-based records that use rrn copy number estimates 

from various empirical methods (Lee et al., 2009). Twenty-five of these records have 23S gene 

counts but not 16S counts, and for the purpose of computing 16S copy number statistics we 

presume that their 16S and 23 gene copy numbers are equal. 

 

Data curation 

 Maintaining genome-based resources involves a trade-off between human curation of 

records, which is laborious but leads to improved data quality, and machine processing of 

records, which has higher throughput but can compromise data quality. When updating the 

rrnDB, a series of automated quality control (QC) tests are applied to identify genomes that 

may have problems in annotations that can affect the rrnDB. Problematic genomes are held 

back until the annotations are corrected at their source, or until the genomes can be 

manually curated. At present our QC pipeline probably retains some genomes that should be 

allowed through; however, given the increasing number and phylogenetic breadth of published 

genomes, conservative curation is preferable for most analyses. Our QC pipeline will improve 

over time as we examine held-back genomes and adjust the QC rules. In addition, our QC 

strategy does not eliminate human curation, though it does reduce it dramatically compared 

to earlier versions of the rrnDB. 

 The initial QC tests identify genomes that are missing some annotations, or in some 

cases all annotations, for 16S or 23S rRNA genes. The tests count the number of genes that 

are assigned the K numbers  K01977 (16S rRNA) and K01980 (23S rRNA). It is at this stage 
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that the 16S and 23S counts that enter the rrnDB are also computed for genomes that pass 

QC. For a genome to pass, it must have at least one 16S gene and one 23S gene that is 

annotated, and the count of annotated 16S and 23S genes must be equal. To increase 

confidence in 16S counts at this stage, we perform the tests using two different KEGG data 

source files that should give identical counts. A genome is held back until the next update if 

the redundant data sources do not agree.  

 Nine percent of genomes that have entered our QC pipeline have been held back by 

the above tests; however, more than half of those passed within four months later, during a 

subsequent update from a new KEGG release. The condition that 16S and 23S gene counts 

must be equal is admittedly a blunt tool. Cases of rRNA operons missing the 16S rRNA gene, 

which would cause unequal 16S and 23S counts, have been demonstrated in some bacteria 

(Schwartz et al., 1992). Again, our QC pipeline will become more refined as we examine the 

individual cases of genomes that are held back. 

 Further annotation-based testing is designed to detect genomes containing duplicate 

annotations for what is essentially the same 16S gene. As of this writing the duplication test 

has discovered two genomes where a 16S or 23S gene had been annotated twice, but with a 

1- to 8-base offset between the endpoint coordinates of the duplicates. 

 Sequence-based quality control steps examine the 16S rRNA gene sequences of all 

genomes for evidence suggesting that any of them may not be a valid 16S gene sequence. This 

is done by aligning the putative 16S gene test sequences to the SILVA SSU reference set using 

the SINA Aligner (Pruesse et al., 2012). Any gap in the multiple alignment that is present in 

every test sequence is removed, then an estimated phylogeny is constructed using FastTree 

(Price et al., 2010). The midpoint-rooted tree has revealed DNA sequences showing 
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unexpectedly long, deep branches suggesting potential annotation problems with those 

sequences. BLAST similarity searches of the suspect sequences against the NCBI number 

database are then conducted. Sequences showing low-scoring 16S hits, or only hits to non-16S 

genes, are taken as justification to hold the genome for examination by a curator. Nine 

genomes have been held back by the sequence-based criteria. 

 A final QC test looks for genomes having 16S copy number counts that are outside of 

the usual range displayed by other genomes of its species. Any species group that shows a 

difference of three or more between the lowest and highest 16S copy number, is manually 

examined for genomes that are candidates for having annotation errors affecting 16S gene 

counts. We have used the database to assess 16S copy-number variability in single-species 

aggregates of records (Figure 3.3) . For 301 species that are represented by at least two records, 

77% are invariant within the species for 16S copy number. An additional 16% of species vary 

by only one 16S copy. Only 3% of species vary by more than two 16S copies and the 

maximum variability was five (one species represented by two genomes). Seven genomes have 

been held back by these criteria. 

 

Figure 3.3: rrn variation within bacterial species. Histogram showing 16S copy number 
variability in 301 species aggregates of the rrnDB records.  Only species that are represented by 
at least two records are counted in this display.  Fully 77% of the species show zero variance 
in 16S gene copy number count among the comprising records. Sixteen percent of the species 
vary by only one copy, and only 3% of species show a copy number spread of three or more.
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Future development 

 One goal of research in the Schmidt lab group has been to understand the 

physiological and evolutionary implications of rrn redundancy. That goal has spurred the 

development of internal resources that have found their way into every major revision of the 

rrnDB since its introduction in 2001. Most recently we have begun to integrate the higher-

order functional ontologies of the KEGG database into our research database systems. A 

goal for development of the rrnDB is to extend that access to the integrated functional and 

copy number data to the broader community. To a large extent, the creation of that capacity 

was the reason why we chose KEGG as a data source for the new rrnDB. 
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CHAPTER 4 

 

A spectrum of bacterial life history strategies are predicted by rRNA operon copy number  

 

Abstract 

 The potential for rapid reproduction is a hallmark of microbial life, but microbes in 

nature must also survive and compete when growth is constrained by environmental conditions. 

A microbe’s fitness varies across environments, resulting in a characteristic pattern of survival 

and reproduction – its life history. Attributes which influence this fitness pattern are life history 

traits. Despite the value of understanding factors that determine microbial fitness in nature, a 

systematic framework for classifying and predicting microbial life histories has not been 

available. Here we show that variation in the number of ribosomal RNA (rrn) operons in 

bacterial genomes reflects a spectrum of life histories, effectively collapsing multiple traits onto 

a single axis. Using phylogenetically informed analyses, we establish that maximum growth rate 

doubles when the number of rrn operons doubles, and that the carbon use efficiency of 

heterotrophic bacteria is inversely related to rrn copy number. Among 1,167 sequenced species, 

bacteria with few rrn operons have streamlined genomes while bacteria with many rrn operons 

are more likely to encode chemotaxis and this was not due to shared evolutionary history. 

Although rrn copy number is also correlated with PTS transporter abundance (positively) and 

autotrophy (negatively), these relationships could have arisen due to chance evolutionary events. 

We also demonstrate that orthologous gene composition among these bacteria covaries with rrn 

copy number, revealing a genome-wide signature of bacterial life histories. Linking rrn copy 

number to bacterial life histories enables ecological predictions not only from sequenced 
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genomes (Stoddard et al., 2014), but also from surveys of bacterial 16S rRNA-encoding genes 

via inference of rrn copy number (Angly et al., 2014; Kembel et al., 2012). In particular, the 

correlation between carbon use efficiency and rrn copy number predicts that decomposition by 

oligotroph-dominated communities will leave more carbon in an ecosystem compared to 

copiotroph-dominated communities in a ‘common-garden’ experiment. Relationships between 

rrn copy number and life histories also provide a basis for predicting and monitoring changes in 

microbial community composition in response to perturbations of resource availability. 

 

Introduction 

 Microbes have a tremendous impact on the biology and geochemistry of our planet 

(Singh et al., 2010), yet we have a paltry understanding of the environmental factors that sculpt 

their genomes and shape the composition of complex microbial communities in nature.  Recent 

studies are beginning to provide new ecological and evolutionary insights for enigmatic bacterial 

species by combining genomics with laboratory cultivation (Giovannoni et al., 2014; Sorokin et 

al., 2012; H Koch et al., 2014). While new technologies promise to advance our knowledge of 

the microbial world, conceptual challenges are hindering our understanding of the ecological 

factors influencing microbial fitness (Prosser, 2015). A framework linking the physiology, 

ecology, and evolution of diverse microbes is a necessary step on the path to understanding the 

causes and consequences of microbial fitness variation in nature (Ackermann, 2015). 

 Biologists have developed life history theory to explain how ecological pressures and 

evolutionary forces act in concert to produce reproductive variation among species (Stearns, 

2000). In this study I apply life history theory to bacteria by synthesizing evidence that nutrient 

availability is a key ecological variable leading to adaptations in growth physiology with large 
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fitness consequences. A bacterium’s life history is its pattern of fitness variation across the 

environments in which it can survive, i.e., its niche. One of the primary environmental factors 

that influences the reproductive success of bacteria is resource availability: natural environments 

are spatially structured at the scale of individual microbes (Stocker, 2012) and in this 

heterogeneous milieu abundant resources select for rapidly growing bacteria while low resource 

availability selects for efficient resource utilization (Pfeiffer et al., 2001). Rapid and efficient 

growth are complex adaptations that integrate multiple underlying metabolic pathways, cellular 

characteristics, and physiological processes. Therefore, rapid and efficient growth can be 

considered life history tactics: sets of coadapted traits shaped by natural selection to cope with 

the environmental pressure of resource availability.  

 Microbiologists have long recognized that resource concentration is a key variable when 

cultivating environmental microbes because it can select for distinct types of organisms 

(Kuznetsov et al., 1979; Schut et al., 1993). Bacteria which are favored during resource 

abundance are classified as copiotrophs. They are contrasted by oligotrophs, which have a higher 

relative fitness during chronic resource scarcity. One axis of bacterial life history variation is the 

spectrum between copiotrophy and oligotrophy, which describes how fitness changes along a 

resource gradient. I propose that one can predict any given bacterium’s place on this life history 

spectrum using the number of ribosomal RNA operons (rrn) present in its genome. 

 Multiple lines of evidence suggest bacteria possessing many rrn copies utilize a rapid 

growth life history tactic. Bacteria with many rrn copies grow more quickly upon increased 

resource availability (Klappenbach et al., 2000), synthesize protein at a faster rate (Dethlefsen & 

Schmidt, 2007) and have faster maximal population growth rates (Vieira-Silva & Rocha, 2010) 

than organisms with low rrn copy number. Efficient growth – the number of progeny produced 
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per unit resource consumed – is a trait that is commonly attributed to oligotrophic bacteria 

(Fierer et al., 2007; Giovannoni et al., 2014), but to our knowledge no study has tested this 

assertion among a diverse collection of oligotrophic strains. Two environmental conditions 

which select for efficient bacterial growth—spatial structure and low resource concentrations—

are synonymous with oligotrophic environments (Roller & Schmidt, 2015), supporting the idea 

that efficient growth is adaptive for oligotrophic bacteria. In addition, many oligotrophic 

organisms are known to have a low rrn copy number (Fegatella et al., 1998; Eichorst et al., 

2007; Grote et al., 2012).  

 In this study I explore if efficient growth is related to the rrn copy number of a diverse 

collection of bacteria. The carbon use efficiency (CUE) of heterotrophic bacteria was used as a 

metric of the efficient life history tactic, and CUE is known to vary based on resource 

availability and resource quality (Roller & Schmidt, 2015). Therefore, measurements of CUE 

were performed in a common-garden experimental design to control these potentially 

confounding variables. Additionally, I examined the scale of the relationship between rrn copy 

number and maximal growth rate, because a previous report of this relationship included only a 

non-parametric correlation coefficient (Vieira-Silva & Rocha, 2010). 

 Building upon the results relating rrn copy number to rapid and efficient life history 

tactics, I go on to explore if rrn copy number is a quantitative proxy of the life history spectrum 

from copiotrophy to oligotrophy.  To do so, I examined if postulated life history traits related to 

nutrition are accurately predicted by rrn operon copy number among the genomes of 1,167 

unique bacterial species. These genome inferred traits include chemotactic motility, genome 

streamlining, thiamine biosynthesis, autotrophy, and phosphoenopyruvate:carbohydrate 

phosphotransferase system (PTS) transporter richness. Moving beyond any particular life history 
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trait, I examined if rrn copy number has a pervasive influence on the orthologous gene content of 

bacterial genomes.  

 This study utilizes a comparative biology approach to quantify how life history traits 

have co-evolved with rrn copy number among thousands of bacterial species. A well-known 

issue in quantifying relationships among traits using comparative data is that species are not 

independent data points, as is often assumed in statistical methods. Instead, species have shared 

ancestry and thus we expect some correlated evolution of traits to occur by chance rather than for 

adaptive reasons (Felsenstein, 1985; Blomberg & Garland, 2002; Blomberg et al., 2003; Revell, 

2009). Therefore, I implement phylogenetically informed statistical analyses to control for the 

effect of shared evolutionary history on all comparisons among species throughout this study. 

Applying life history theory to bacteria can provide new insight into the evolutionary forces 

shaping bacterial genome content. Linking bacterial life history to rrn copy number has many 

practical benefits, especially the ability to generate ecological predictions at a variety of scales 

from individual strains with complete genomes (Stoddard et al., 2014) to complex communities 

via inference from molecular survey data (Angly et al., 2014; Kembel et al., 2012). 

 

Materials and Methods 

Bacterial strains, media and growth conditions for efficiency experiments 

 Detailed descriptions of the bacterial strains used are provided in Table 4.1. The medium 

used for all growth experiments was vitamin and salts base (VSB) supplemented with 10mM 

sodium succinate as the sole carbon and energy source. VSB medium contains the following per 

liter: 2.5 g KCl, 0.1 g KH2PO4, 0.125 g NH4Cl, 0.075 g CaCl22H2O, 0.31 g MgCl26H2O, 0.5 g 

NaCl, 10mM morpholinepropanesulfonic acid (MOPS), 1.6ml of 1.25M Na2SO4 stock solution, 
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1ml SL-10 trace element solution, 1ml 1000x Vitamin mix, 50 µg cyanocobalamin (vitamin B12), 

and 100µg Thiamine HCl (vitamin B1). SL-10 trace elements contains per liter: 10ml of 7.7N 

HCl, 1.5 g FeCl24H2O, 0.19 g CoCl26H2O , 0.1 g MnCl24H2O, 0.07g ZnCl2, 0.036 g 

Na2MoO42H2O, 0.024 g NiCl26H2O, 0.006 g H3BO3, 0.002 g CuCl22H2O. 1000x Vitamin 

mix contains per 100ml: 10mM sodium phosphate buffer, pH 7.1, 4 mg 4-aminobenzoic acid, 1 

mg D(+) biotin, 10 mg nicotinic acid, 5 mg D-pantothenic acid hemicalcium salt, 15 mg 

pyridoxine hydrochloride. Vibrio natriegens ATCC 14048 cultures were supplemented with 

NaCl solution resulting in a 0.02g/ml final concentration. 

Strain Taxonomy (phylum; class; family) 
rrn copy 
number 

Strain & isolation 
information 

Vibrio natriegens 
ATCC 14048 

Proteobacteria; γ-proteobacteria; 
Vibrionaceaea 

13 (Eagon, 1962) 

Bacillus subtilis 
Marburg ATCC 6051 

Firmicutes; Bacilli; Bacillaceaea 10 (Conn, 1930) 

Escherichia coli K12 
MG1655 

Proteobacteria; γ-proteobacteria; 
Enterobacteriaceaea 

7 (Datta et al., 2006) 

HF3 Proteobacteria; γ-proteobacteria; 
Pseudomonadaceaeb 

4 (Dethlefsen & 
Schmidt, 2007; 
Gorlach et al., 1994) 

EC5 Actinobacteria; Actinobacteria; 
Micrococcaceaeb 

4 (Dethlefsen & 
Schmidt, 2007; 
Klappenbach et al., 
2000) 

PX3.14 Proteobacteria; α-proteobacteria; 
Rhodospirillaceaeb  

2 (Dethlefsen & 
Schmidt, 2007) 

Sphingopyxis 
alaskensis RB2256 

Proteobacteria; α-proteobacteria; 
Sphingomonadaceaeb 

1 (Dethlefsen & 
Schmidt, 2007; Schut 
et al., 1993; 1997) 

TAA166 Acidobacteria; Acidobaceriia; 
Acidobacteriaceaec 

1 (Stevenson et al., 
2004; Eichorst et al., 
2007) 

Table 4.1: Bacterial strains used in this study. Taxonomy determined by the following 
sources: aNCBI taxonomy, b(Dethlefsen & Schmidt, 2007), c(Eichorst et al., 2007). 
 

 All growth experiments utilized VSB succinate medium in a 25°C incubator shaking at 

either 100 rpm (TAA166) or 200 rpm (all other strains). Optical density was measured over time 

on the Spec20D+ at wavelengths of either 600nm (TAA166) or 420nm (all other strains), which 
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maximizes measurement sensitivity at high and low cell densities, respectively. Cells were 

recovered from freezer stock in batch culture and allowed to reach unconstrained and balanced 

growth by multiple transfers to fresh medium during exponential growth. Unconstrained and 

balanced growth was empirically determined for each strain when the growth rate no longer 

improved upon transfer to fresh medium, typically after a dilution of at least 1,000 fold from 

exponentially growing freezer stock recovery culture.  

 

Maximum recorded growth rate determination 

 The maximum recorded growth rates for a diverse collection of 176 bacteria with known 

rrn copy number (Vieira-Silva & Rocha, 2010), and for the 8 strains measured for efficiency in 

this study, were gathered from the literature (Eagon, 1962; Vieira-Silva & Rocha, 2010; 

Dethlefsen & Schmidt, 2007). The growth of strain TAA166 in this study exceeded the 

maximum recorded growth rate from the literature (Eichorst et al., 2007), so the value from this 

study was utilized. 

 

Protein yield and carbon use efficiency measurements 

 All protein yield and growth efficiency measurements were obtained in cultures with an 

optical density at least two doublings prior to departing from unconstrained and balanced growth. 

These optical density values were determined based on prior experiments.  

 Protein yield was measured using 3H-leucine incorporation along with oxygen (O2) 

consumption. Leucine was used because its is one of the least variable amino acids in protein on 

a mol% basis (Simon & Azam, 1989).  The amount of radiolabeled leucine to add was optimized 

on the most rapidly growing strains and 250nCi 3H-leucine (S.A. 0.5Ci/mol) was added to 30ml 
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growing cultures of all strains. 3H-leucine incorporation was measured at multiple time points to 

ensure leucine was not depleted over the course of the experimental measurement. 3H-leucine 

incorporation was converted into protein production and carbon (C) units with widely used 

conversion factors— mol% leucine in protein (7.3), intracellular isotope dilution (1.71), 

protein:C dry weight ratio (0.86)—from a marine microbial community (Simon & Azam, 1989). 

O2 consumption (nmol O2 min-1) was measured with the Unisense microrespiration system. 

Small volumes from cultures in unconstrained, balanced growth conditions were subcultured for 

at least 3 separate measurements over short time intervals (<10 minutes). Mean specific O2 

consumption (nmol O2 cell-1 min-1) was calculated by normalizing the O2 consumption rate by 

the biomass present in the culture, averaging over at least 3 separate measurements, and 

multiplying this rate by the integral of the growth equation for the culture during 3H-leucine 

incorporation. O2 consumption was converted into carbon dioxide (CO2) production by assuming 

a respiratory quotient of 8/7, which represents complete oxidation of the carbon source and that 

all measurable oxygen consumption can be attributed to respiration. The inferred CO2 respiration 

and biomass C production – from O2 consumption and 3H-leucine measurements – was used as 

one indirect estimate of carbon use efficiency. 

 A direct measurement of carbon use efficiency was performed by tracking the fate of 14C-

succinate into biomass and carbon dioxide (CO2). 14C-succinate was added to 30ml cultures 

growing in 500ml flasks with excess non-labeled succinate during unconstrained, balanced 

growth. Cultures were sealed after radiochemical addition to trap 14CO2 in the culture flask. 

Sealed cultures were incubated for 1 generation or less after 14C addition and terminated by 

addition of trichloroacetic acid (5%), which also released dissolved CO2 into gas phase. Culture 

headspace was flushed with N2 gas for 2 hours into a series of 3 gas traps (1:1, 
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phenethylamine:methanol), which trap gaseous CO2 in their liquid phase. Gas trap contents and  

were transferred in triplicate to scintillation cocktail (Biosafe-II) and radioactivity present in the 

samples was quantified using a scintillation counter (Beckman Coulter). 

 All radiolabeled biomass from protein yield and carbon use efficiency experiments was 

precipitated using trichloroacetic acid (TCA, 5% final volume), centrifuged at 11,000g for 10 

minutes and washed with ethanol (80%), resolubilized using NaOH (1M), suspended in 

scintillation cocktail (Biosafe-II) and the radiolabel was quantified in a scintillation counter 

(Beckman Coulter).  

 

Translational power analysis 

 Previously published results quantifying translational power for ten bacterial strains 

(Dethlefsen & Schmidt, 2007) was re-analyzed in this study. Translational power was calculated 

by normalizing volumetric protein content (fg/fl) by RNA content (fg/fl) and specific growth rate 

(hr-1). 

 

Comparative genomic and phylogenetic analyses 

 The May 2014 version of the Kyoto encyclopedia of genes and genomes (KEGG) 

database was downloaded and used to construct a curated dataset of sequenced bacterial 

genomes. Symbiotic, commensal, and parasitic bacteria with degraded genomes were excluded if 

these genomes were associated with signatures of genetic drift (Giovannoni et al., 2014), e.g., 

high pseudogene counts, elevated rates of non-synonymous substitutions, or expansion of 

noncoding genetic elements. Bacteria were also excluded if their rrn copy number could not be 

accurately estimated from KEGG data (Stoddard et al., 2014). All genomes were then subjected 
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to manual curation where a single representative genome was chosen for each unique bacterial 

species. Representative genomes were selected using the following hierarchical criteria: 1) 

genome of Type strain of species available, 2) the central tendency of rrn operon copy number 

distribution for the species is accurately reflected by the genome, and 3) greatest number of 

annotated orthologous genes in KEGG orthology system are present in the genome. This resulted 

in 1,167 genomes that passed all described criteria. The presence of every asserted ortholog (K0) 

and module (M0) for each of 1,167 genomes in the curated dataset was extracted from the 

KEGG database, as well as the estimated rrn copy number and genome size (Stoddard et al., 

2014; Kanehisa et al., 2013).   

 A bacterial genome was scored as possessing chemotactic motility if the ortholog for the 

genes cheA, cheY, fliM, and fliN were all present. These genes encode orthologs of the 

following proteins: chemotaxis histidine kinase (CheA), chemotaxis response regulator which 

binds the flagellar motor (CheY), and flagellar motor switch proteins that are bound by CheY 

(FliM & FliN). Chemotactic systems are diverse, even in model bacteria, and this definition was 

used to ensure that the genomes of four known and diverse chemotactic organisms, Rhodobacter 

sphaeroides, Escherichia coli, Bacillus subtilis, and Rhizobium leguminosarum bv. viciae, were 

scored as possessing chemotaxis (Miller et al., 2009; Porter et al., 2011). 

 A bacterial genome was scored as being autotrophic by a combination of manual curation 

and genome annotation. The first step used KEGG annotation to identify genomes that possessed 

at least one complete KEGG module for one of four autotrophic pathways: Calvin cycle 

(M00165), the reductive TCA cycle (M00173), 3-Hydroxypropionate cycle (M00376), or Wood-

Ljungdahl pathway (M00377). Organisms possessing the Wood-Ljungdahl pathway were then 

manually curated and genomes that were not explicitly described in the literature as capable of 
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fixing carbon dioxide as their sole source of biosynthetic carbon were removed. Additionally, 

organisms possessing a sub-module of the Calvin cycle (M00166 or M00167) or that were from 

genera that were likely autotrophs were manually curated and those that were explicitly 

described in the literature as capable of fixing carbon dioxide as their sole source of biosynthetic 

carbon were added to the list of autotrophic genomes. 

 The PTS transporter analysis utilized the presence of KEGG modules which were 

described as PTS transporters. A total of 25 distinct PTS transporter types are described as 

separate modules in KEGG. The presence of each PTS transporter type was considered in 

calculations of PTS transporter abundance, so the maximum possible richness of PTS 

transporters encoded in any genome was 25. 

 I analyzed the de novo thiamine biosynthesis pathway  to determine the number of genes 

present for all 1,167 genomes. A total of 12 biosynthetic steps are present in the canonical 

bacterial synthesis pathway (Jurgenson et al., 2009), and 11 orthologous genes corresponding to 

steps in the pathway are annotated and present in the 1,167 genome dataset. Therefore, the 

maximum possible number of de novo thiamine synthesis genes encoded in a genome was 

considered to be 11. These 11 orthologs were split into two categories, those involved in 

thiamine recycling (3 orthologs) or uninvolved in thiamine recycling (8 orthologs) based on 

where in the pathway the gene product functioned relative to salvage of thiamine’s metabolic 

precursors. Gene products catalyzing biosynthesis steps which take place after salvage of a 

metabolic precursor were considered involved in recycling, while gene products catalyzing 

biosynthesis steps which occur prior to salvage of a metabolic precursor were considered 

uninvolved in recycling (Jurgenson et al., 2009).    
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 Aligned 16s rRNA gene sequences for all bacteria in this study were downloaded from 

Silva (http://www.arb-silva.de). Three different sets of phylogenetic trees were built for this 

study. One tree set included the eight strains from growth efficiency experiment and 176 

additional strains which were all included in the maximum growth rate analysis. A second tree 

set was built for the 1,167 strains in the comparative genomics analysis. A third tree set was built 

for the ten strains in a re-analysis of a study on translational power (Dethlefsen & Schmidt, 

2007). For the 1,167 bacterial genomes in the comparative genomic analysis, if an aligned 

sequence from the genome was not available from Silva, an aligned sequence from a separate 

sequencing effort on the same strain or from the type strain of that species was utilized. 

Phylogenetic trees were built using the Arb software package using maximum likelihood 

estimation (RAxML 7.0.4) to generate the ten most likely trees using the GTRMIX substitution 

model with 25 rate categories and the new rapid hill climbing algorithm. I utilized The Living 

Tree Project’s filter to ensure only those base positions which are conserved in 50% of all 

bacterial species were used in building the tree (Munoz et al., 2011). All trees were built with 5 

archael sequences, which were used to root the tree prior to pruning the archaeal tips. For each of 

the ten most likely trees built for the three datasets, a single tree with the most negative 

maximum likelihood was chosen for phylogenetic comparative method analyses.   

 

Statistical analyses 

 The R statistical programming language was used for all statistical analyses (R Core 

Team, 2014). Base R packages were used for linear regression analyses. The R package lmodel2 

was used for Model II major axis regression and standard major axis regression. Major axis 

regression accounts for residual error for both dependent and independent variables, and is also 
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not influenced by the arbitrary choice of dependent variables, so it was used in the 14CUE vs. 3H-

CUE analysis. Major axis regression should not be used when variables are measured on 

different scales, so ranged major axis regression was also used to compare with the standard 

ordinary least squares (OLS) regression in the CUE versus growth rate & 14CUE versus protein 

yield analyses. Corrected Akaike information criterion (AICc) was used to determine whether 

the explanatory variable rrn or log2-transformed rrn was a better model for the rate and 

efficiency data. The R package ggplot2 was used for plotting all figures (Wickham, 2009). 

 The R package MCMCglmm (Hadfield, 2010) was used for phylogenetic Poisson 

regression of thiamine biosynthesis orthologs and PTS transporter abundance. The R package 

phylolm was used for phylogenetic logistic and linear regression (Tung Ho & Ane, 2014) and 

evolutionary models were chosen empirically by choosing the model with the lowest AICc value. 

In MCMCglmm analysis, an inverse Wishart distribution was used for prior distributions of 

phylogenetic regressions (variance limit V=1 and belief parameter nu = 0.002). Guidelines for 

the package (MCMCglmm package course notes; http:// cran.r-

project.org/web/packages/MCMCglmm) recommended these parameters for a flat prior, which 

makes no a priori assumptions of the variance, and it has been used in similar comparative 

bacterial analyses (Kümmerli et al., 2014). AICc model averaging was used to determine the 

relative probability of regression models in the maximal growth rate and efficiency analyses 

which differed only in the transformation of the predictor variable rrn copy number.  

 The R package phytools was used for phylogenetic ranged major axis regression analysis 

of maximum growth rate vs. 14CUE (Revell, 2012). Phytools was also used for phylogenetic 

principal coordinates analysis (pPCA). Covariance-based pPCA were performed utilizing 

Brownian motion as the underlying model of expected trait evolution. pPCA combines variables 
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into new axes which maximally summarize variation in low-dimensional space while accounting 

for non-independence of data points due to shared ancestry. The coordinates for each genome on 

the new pPCA axes were further analyzed using phylogenetic regression. The results of pPCA 

analyses were correlated with the explanatory variable rrn copy number, so orthologs that are 

part of the rrn operon were excluded from genome content pPCA. This included all orthologs for 

the genes encoding 16S rRNA, 23S rRNA, 5S rRNA, and all tRNAs. The R package phylolm 

was used for phylogenetic linear regression of the following dependent variables against log2-

rrn: maximum growth rate, CUE, genome size, protein yield, translational power, and pPCA 

genome content scores. A random root Ornstein-Uhlenbeck evolutionary model used in the 

pPCA and genome size analyses, while Pagel’s lambda was used in the growth rate, CUE, 

protein yield, and translational power analyses (Tung Ho & Ane, 2014). The R package ape was 

used to import NEXUS formatted tree files, store tree objects, and prune tips from the trees 

(Paradis et al., 2004).  

 

Results 

Maximum growth rate is positively correlated with rrn copy number 

 Maximum reported bacterial growth rates are one metric of the rapid growth and are 

known to positively correlate with rrn copy number (Vieira-Silva & Rocha, 2010). I extend this 

observation by using a phylogenetic regression of growth rates which indicates that each 

doubling of rrn copy number leads to an approximate doubling of a bacterium’s maximum 

recorded growth rate (Figure 4.1a and Table 4.2). This conclusion is based on the observation 

that log2-transformed rrn copy number (hereafter referred to as log2-rrn) better explains 

maximum growth rate variation than untransformed rrn counts using the model selection criteria 
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AICc (Table 4.3). The eight bacteria used in the efficiency experiments mirror the trend in the 

larger dataset, with a doubling of rrn copy number associated with an approximate doubling of 

maximum growth rate (Table 4.3). The correlation between maximum growth rate and log2-rrn  

 

Figure 4.1: Metrics of rapid and efficient growth tactics. Maximum recorded growth rate (a, 
n=184) and carbon use efficiency (b, n=8) of bacteria. Non-phylogenetic ordinary least squares 
regression (solid lines) with 95% confidence bands (gray shading) and phylogenetic regression 
(dashed lines) reveal that these traits are inversely correlated with rrn copy number (log2-
transformed). Error bars in panel b represent technical error from triplicate measurements. 
Strains represented in panel b are: Sphingopyxis alaskensis RB2256 (), Acidobacteriaceae sp. 
TAA166 (�), Rhodospirillaceae sp. PX3.14 (), Pseudomonadaceae sp. HF3 (), 
Micrococcaceae sp. EC5 (), Escherichia coli K12 MG1655 (), Bacillus subtilis Marburg 
ATCC 6051 (), Vibrio natriegens ATCC 14048 (♢).  
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could not be explained by shared evolutionary history (Table 4.3) indicating it is not due to 

historical contingency during trait evolution. This relationship is consistent with the suggestion 

that transcription of the rrn operon limits growth rate (Aiyar et al., 2002; Stevenson & Schmidt, 

2004) and that a doubling in the capacity for ribosome synthesis is required for a doubling of 

growth rate. 

 

Growth efficiency is negatively correlated with rrn copy number 

 Efficient growth is a postulated adaptation of oligotrophic bacteria (Giovannoni et al., 

2014), which often possess few rrn operon copies (Eichorst et al., 2011; Lauro et al., 2009), so I 

hypothesized that growth efficiency would be negatively correlated with rrn copy number. I 

measured the carbon use efficiency for eight aerobic, heterotrophic bacteria using two 

independent methods. CUE is a measure of the fraction of carbon consumed that is incorporated 

into biomass and it is equivalent to growth efficiency, progeny per resource, during 

unconstrained balanced growth (Roller & Schmidt, 2015). The two methods for measuring CUE 

were highly correlated (R2 = 0.73) with a slope statistically indistinguishable from 1 (slope=1.44, 

95% conf. int. = 0.80 – 3.07) and an intercept near, but statistically different from, 0 (intercept=-

0.20, 95% conf. int. = -0.71 –  -0.002).  This indicates that to the best of our knowledge both 

estimates give equivalent measures of carbon use efficiency. The highest growth efficiencies in 

this study came from a model ocean oligotroph, Sphingopyxis alaskensis RB2256 (Lauro et al., 

2009), and soil strains PX3.14 and TAA166 which were isolated using strategies which favor 

oligotrophs, such as nutrient-poor media and long incubation times (Stevenson et al., 2004; 

Klappenbach et al., 2000). 
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  The lowest growth efficiencies were observed in the notorious copiotrophic bacteria 

Escherichia coli and Bacillus subtilis (Klappenbach et al., 2000; Dethlefsen & Schmidt, 2007; 

AL Koch, 2001). I found that each doubling of rrn copy number is associated with a 3.6% 

decrease in the amount carbon that is incorporated into biomass (Figure 4.1b, Table 4.2 and 

Table 4.3). Log2-rrn best predicted CUE variation and this relationship could not be explained 

solely by shared ancestry among species (Table 4.2 and Table 4.3). To my knowledge, this is the 

first phylogenetically robust evidence that links efficient growth to rrn copy number. 

 What physiological mechanisms might underlie increased growth efficiency? Protein 

synthesis is an attractive target for explaining differences in growth efficiency because protein is 

an abundant macromolecule (Simon & Azam, 1989), it is expensive to make – 50-60% of ATP is 

used for polymerizing amino acids into protein during balanced growth (Stouthamer, 1973) – and 

a high ribosome content is necessary for rapid growth (Schaechter et al., 1958; Stevenson & 

Schmidt, 2004; Fegatella et al., 1998). One of my CUE methods measured 3H-leucine 

incorporation into protein and O2 consumption, and in interpreting this measurement in terms of 

protein yield—protein produced per oxygen consumed – I find that it is negatively correlated 

with log2-rrn (Table 4.2, Table 4.3, Figure 4.2). The negative relationship between protein yield 

and log2-rrn is not due to shared evolutionary history as the regression parameters did not differ 

when considering the effect of phylogeny in the data set (Table 4.3). I also examined a 

previously published study of translational performance (Dethlefsen & Schmidt, 2007) and found 

that mass-normalized translation rate is positively correlated with log2-rrn (Table 4.3 and Figure 

4.3). 
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Figure 4.2: Protein yield correlates with log2-rrn copy number. OLS regression best fit (solid 
line) with 95% confidence band (gray shading) and phylogenetic regression (dashed line) 
demonstrate a negative relationship. Standard error bars represent technical error from triplicate 
measurements. Strains represented are: Sphingopyxis alaskensis RB2256 (), 
Acidobacteriaceae sp. TAA166 (�), Rhodospirillaceae sp. PX3.14 (), Pseudomonadaceae sp. 
HF3 (), Micrococcaceae sp. EC5 (), Escherichia coli K12 MG1655 (), Bacillus subtilis 
Marburg ATCC 6051 (), Vibrio natriegens ATCC 14048 (♢). 
 

  

 
Figure 4.3: Translational power correlates with log2-rrn copy number. OLS regression best 
fit (solid line) with 95% confidence band (gray shading) and phylogenetic regression (dashed 
line) demonstrate a positive relationship. Distinct symbols in plot represent strains from ten 
different bacterial species measured in a separate study (Dethlefsen & Schmidt, 2007). 
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Trait 
influence Trait Effect size estimate Significance 

µMAX µMAX doubles with rrn doubling p < 0.001# 
Efficiency  
     3H-CUE 
     14C-CUE 

-3.6% CUE with rrn doubling 
-3.2% CUE with rrn doubling 

p < 0.004# 

p = 0.057# 
Translational power 0.61 units with rrn doubling p < 0.014# 
Translational yield -1.14 units with rrn doubling p = 0.016# 
Genome streamlining 
     Genome size 
     Thiamine biosynthesis 

+ 0.66 Mbp from 1-15 rrn 
+ 3 biosynthetic steps from 1-15 rrn 

p < 0.001# 

pMCMC<0.001⌃ 

Nutrient 
metabolism 

Autotrophy -5.1% probability from 1-15 rrn p = 0.131★ 

Nutrient 
uptake PTS transporters < +1 PTS transporter from 1-15 rrn pMCMC<0.015⌃ 

Nutrient 
sensing Chemotactic motility +11% probability from 1-15 rrn p < 0.035★ 

 
Table 4.2: Summary of trait relationships with log2-rrn. Phylogenetic regression summary 
statistics for postulated life history traits as a function of log2-rrn copy number. Phylogenetic 
linear (#), logistic (★), and Poisson (⌃) regression methods depending on the nature of the 
response variable. Effect size calculated in terms of rrn doubling for linear regression models, 
and in terms of trait change over the extant rrn spectrum (1-15 copies) for non-linear regression 
models. Units for translational power are grams protein synthesized per gram RNA per hour 
(gProtein gRNA-1 hr-1) and measurements are derived from the literature (Dethlefsen & Schmidt, 
2007). Units for translation yield are pmol 3H-leucine incorporated in protein per nmol O2 
consumed (pmolLeu nmolO2

-1) 
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Non-phylogenetic regression Phylogenetic regression 
 
 
 
 
 
Data set 

 
 
 
 
Response 
variable 

 
 
 
 
Predictor 
variable 

 
Slope  

(1-tailed 
p-value) 

 
 

Adj. 
R2 

ΔAICc* 
(probability log2-

rrn is better 
model) 

 
Slope  

(1-tailed  
p-value) 

ΔAICc* 
(probability log2-

rrn is better 
model) 

176 
bacteria 
(Vieira-
Silva & 
Rocha, 
2010; this 
study) 

 
Log2 
Maximum 
growth rate 

Log2-rrn 1.27 
(<0.001) 0.46 23.59  

(>0.999) 
0.98  

(<0.001) 
19.9  

(>0.999) 

8 bacteria 
(this study)  

Log2 
Maximum 
growth rate 

Log2-rrn 1.11 
(<0.001) 0.81 -2.24  

(0.25) 
1.03  

(<0.001) 
-3.08  

(0.18) 

8 bacteria 
(this study) 

3H-CUE Log2-rrn -0.035 
(0.007) 0.61 4.22  

(0.89) 
-0.036 

(0.004) 
4.57  

(0.91) 
8 bacteria 
(this study) 

14C-CUE Log2-rrn -0.034 
(0.062) 0.35 1.62  

(0.69) 
-0.032 

(0.057) 
1.62  

(0.69) 
8 bacteria 
(this study) 

3H-Protein 
Yield Log2-rrn -1.19 

(0.005) 0.71 4.76 
(0.92) 

-1.22 
(0.003) 

5.08 
(0.93) 

10 bacteria 
(Dethlefsen 
& Schmidt, 
2007)  

Translational 
power Log2-rrn 0.57 

(0.019) 0.44 1.45 
(0.67) 

0.61 
(0.014) 

1.41 
(0.67) 

 
Table 4.3: Expanded rate and efficiency summary statistics. Regression statistics, with and 
without phylogenetic correction, for maximum growth rate, carbon use efficiency, translational 
yield, and translational power as a function of log2-transformed rrn operon copy number. *AICC 
is expressed in terms of AICC rrn model - AICC log2-rrn model and not the conventional AICC 
worst model - AICC best model. The probability of log2-rrn being a better model than rrn comes 
from AICC model weighting using the AICC values of the two regression models. Phylogenetic 
regression models used Pagel’s lambda to account for the effect of shared evolutionary history 
among traits. 

 

Does rrn copy number correlate with postulated life history traits? 

 The results for the life history tactics of rapid and efficient growth suggest log2-rrn may 

be a proxy for a bacterium’s place along the life history spectrum. To investigate further, I 

assessed if postulated life history traits inferred from the genomes of 1,167 unique bacterial 

species are correlated with log2-rrn . Chemotactic motility and PTS transporters are traits 

hypothesized to be adaptive in copiotrophs to find and exploit high nutrient conditions, but 

maladaptive in oligotrophs, due to their energetic costs (Stocker, 2012; Taylor & Stocker, 2012; 

Lauro et al., 2009). I propose that the presence of chemotaxis and the richness of PTS transporter 

orthologs will be positively correlated with rrn copy number.  
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 The probability that a bacterium encodes chemotactic motility increased as a function of 

rrn copy number (Table 4.2, Table 4.4, and Figure 4.4). On average, a bacterium with 15 rrn 

copies is 11% more likely (95% confidence interval = 0.5%-30%)  to encode chemotactic 

motility than a 1 rrn bacterium when including phylogeny in the regression model. The 

relationship between log2-rrn and chemotaxis was stronger when phylogeny was not included in 

the regression model, but evolutionary history could not account for the relationship between 

these two variables. 

 

 
Figure 4.4: Chemotactic motility correlates with log2-rrn copy number. The proportion of 
genomes possessing chemotactic motility for each rrn copy number is represented by circles 
which are sized proportionally to the number of genomes (for rrn 1-15, respectively, N = 150, 
262, 195, 165, 104, 96, 76, 46, 25, 22, 8, 8, 3, 5, 2). Logistic regression (black solid line) and 
phylogenetic logistic regression (best fit= black dashed line, confidence band=gray dashed lines) 
demonstrate a positive relationship. 
 

The richness of PTS transporters is also positively related to log2-rrn, but this pattern is restricted 

to a subset of Firmicutes and Gammaproteobacteria. When phylogeny is included in the 

regression model the predicted PTS transporter richness for a 1 rrn bacterium is effectively no 

different from the prediction for a 15 rrn bacterium because both are much less than 1 PTS 
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transporter (Figure 4.5). While the presence of PTS transporters may be adaptive for certain 

clades of high-rrn bacteria, we cannot rule out the possibility that these traits are a product of 

historical contingency (Table 4.2 and Table 4.4).  

 

Figure 4.5: PTS transporter richness and log2-rrn copy number. The color density of each 
point represents the total number of genomes in each category (darker = more genomes). While 
Poisson regression model (black solid curve) indicates these traits are correlated, the best fit 
phylogenetic Poisson regression model (best fit=black dashed curve; confidence band=gray 
dashed curves) demonstrates no meaningful relationship between the variables was found after 
accounting for phylogenetic relationships among species. 
 

 On the other end of the life history spectrum, genome streamlining has been put forward 

as an oligotrophic adaptation which minimizes biosynthetic costs and increases nutrient use 

efficiency for oligotrophs (Giovannoni et al., 2014). Streamlining has been implicated in 

thiamine biosynthesis gene loss for the oligotrophic SAR11 clade of Alphaproteobacteria (Carini 

et al., 2014), which recycle a naturally abundant thiamine precursor rather than synthesize the 

molecule de novo. I propose that genome streamlining will cause genome size and the number of 

thiamine biosynthesis orthologs to be positively correlated with rrn copy number. Oxygenic 

photoautotrophy has also been hypothesized as an oligotrophic adaptation (Raven et al., 2005), 
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but as organic resources are depleted from environments, we expect that all autotrophs – 

organisms that use inorganic carbon for biosynthesis – would have a large fitness advantage. I 

asked more generally if the presence of genes that permit autotrophic carbon fixation are 

correlated with rrn copy number. 

 Genome size is positively correlated with log2-rrn (Table 4.2 and Figure 4.6) and the 

phylogenetic regression model predicts an average 15 rrn copy bacterium possesses 0.66 Mbp 

more DNA than an average 1 rrn copy bacterium. Incorporating phylogeny slightly decreases the 

slope of the regression model, but shared ancestry cannot explain this relationship.  

 

Figure 4.6: Log2-transformed genome size correlates with log2-rrn copy number. The color 
density of each point represents the number of genomes at that location in the plot, with darker 
gray indicating more genomes. Linear regression (black line with gray confidence band) and 
phylogenetic linear regression (black dashed line) demonstrate a logarithmic, positive 
relationship between genome size and rrn copy number. 
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I interpret this result to reflect the process of genome streamlining, gene loss due to selection on 

efficient resource use, for two reasons. First, I excluded genomes of symbiotic, parasitic, and 

commensal bacteria which are undergoing genome degradation due to genetic drift. Additionally, 

the composition of the thiamine biosynthesis pathway provides support for selection leading to 

small genomes in bacteria with few rrn operons. Thiamine and its molecular precursors are 

secreted by microbes in many environments (Carini et al., 2014; Strzelczyk & Leniarska, 1985), 

allowing auxotrophs to become dominant community members (Giovannoni et al., 2005). High 

rrn copy number bacteria tend to possess more de novo thiamine biosynthesis genes (Figure 4.7, 

Table 4.2 and Table 4.4), while gene loss in low rrn bacteria is not distributed evenly in the 

pathway.  

 

Figure 4.7: The number of encoded thiamine biosynthesis steps correlates with log2-rrn 
copy number. The color density of each point represents the total number of genomes in each 
category (darker = more genomes). Non-phylogenetic Poisson regression (black solid curve) and 
phylogenetic Poisson regression (best fit = black dashed curve; confidence bands = gray dashed 
curves) models demonstrate a positive relationship (Table 4.1 and Table 4.2). 
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Genes contributing to the recycling of thiamine or its precursors are equally present across the 

rrn spectrum, while genes uninvolved with recycling are less abundant in low rrn bacteria (Table 

4.4). These findings are not consistent with gene loss due to random genetic drift, suggesting 

selection acts in low rrn bacteria to minimize unnecessary biosynthetic reactions when 

exogenous salvage of biosynthesis products is possible. 

 The probability of a bacterium being autotrophic, i.e., encoding any of four autotrophic 

pathways – see Methods, increased with decreasing log2-rrn (Table 4.2, Table 4.4, and Figure 

4.8). However, this trend could plausibly be explained by evolutionary history alone and this is 

likely due to the large number of oxygenic photoautotrophs in the dataset.  

 

Figure 4.8: Autotrophy and rrn copy number. The proportion of genomes possessing 
autotrophy for each rrn copy number is represented by circles which are sized proportionally to 
the number of genomes (for rrn 1-15, respectively, N = 150, 262, 195, 165, 104, 96, 76, 46, 25, 
22, 8, 8, 3, 5, 2). Logistic regression (black solid curve) indicates a negative relationship, but 
phylogenetic logistic regression (best fit = black, dashed curve; confidence band = gray, dashed 
curves) indicates that there is no relationship between these variables after accounting for shared 
ancestry among species. 
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Oxygenic photosynthesis is a complex trait involving many gene products. It has been 

demonstrated that complex traits are more likely to be conserved in deep-branching clades 

(Martiny et al., 2012). The monophyletic Cyanobacteria all tend to have a low rrn copy number 

and make up a large proportion of the total autotrophs in the dataset.  This combination of factors 

likely produces the strong phylogenetic signal seen for autotrophy, and reduces the predictive 

relationship of log2-rrn for this trait. 

Non-phylogenetic regression Phylogenetic regression 
 
 
Trait 

 
 
 
Regression 
Model 

Estimated effect size over full 
rrn spectrum (p-value) 

Estimated effect size over 
full rrn spectrum 
(significance measure) 

Thiamine Biosynthesis 
(full pathway) Poisson +3 biosynthetic steps  

 (p<0.001) 
+3 biosynthetic steps  
(pMCMC < 0.001) 

Thiamine biosynthesis 
(8 non-recycling 
orthologs) 

Poisson +2.5 biosynthetic steps   
(p < 0.001) 

< +2.5 biosynthetic steps  
(pMCMC < 0.001) 

Thiamine biosynthesis 
(all 8 non-recycling 
orthologs) 

Logistic +71.6% probability   
(p < 0.001) 

+7.8% probability  
(p = 0.02) 

Thiamine biosynthesis 
(3 recycling orthologs) Poisson < + 1 biosynthetic steps  

(p = 0.087) 
< + 1 biosynthetic steps  
(p = 0.006) 

Thiamine biosynthesis 
(all 3 recycling 
orthologs) 

Logistic +1.4% probability  
(p = 0.405) 

-1% probability  
(p = 0.420) 

Chemotactic motility Logistic +41.3% probability  
(p<0.001) 

+11% probability 
(p=0.035) 

Number of Encoded 
PTS system 
Transporters 

Poisson +12 PTS transporters  
(p<0.001) 

< +1 PTS transporter 
(pMCMC <0.003) 

Oxygenic 
photoautotrophy Logistic -7.7%  probability  

(p<0.001) 
<+0.1% probability  
(p=0.5) 

Autotrophy Logistic -26.3% probability  
(p<0.001) 

-5.1% probability  
(p=0.131) 

Table 4.4: Expanded genomic trait summary statistics. Life history trait regression results 
from statistical models with and without phylogenetic correction. Effect size calculated in terms 
of rrn doubling for linear regression models, and in terms of trait change over the extant rrn 
spectrum (1-15 copies) for non-linear regression models. 
 
 

Genome content covaries with rrn copy number 

 Building on the previous results, I explored log2-rrn copy number could explain variation 

in the ortholog content of entire bacterial genomes. I evaluated the presence of more than 7,000 
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orthologs and 400 modules – combinations of orthologous genes which functionally interact as 

either a sub-pathway or enzyme complex (Kanehisa, 2013) – among 1,167 bacterial genomes 

using phylogenetic principal components analysis (pPCA) to control for shared evolutionary 

history. pPCA summarizes the variability present in the module and ortholog datasets by creating 

new axes which are combinations of the original variables while incorporating the evolutionary 

relationships among species. Although pPCA considers phylogeny, the position of each species 

on the new pPCA axes (often referred to as species scores) must be regressed against explanatory 

variables, in this case log2-rrn, using phylogenetic regression to sufficiently reduce the false 

positive rate to a commonly accepted level (Revell, 2009). 

 The pPCA analyses effectively reduced the dimensionality of both ortholog and module 

datasets; the first 10 axes of the ortholog analysis explained approximately 39% of the variation 

in the data, while the first 10 axes explained approximately 48% of the variation in the modules 

dataset. Performing phylogenetic linear regression on species scores for the modules pPCA 

analysis reveals eight of the first ten pPCA axes were correlated with log2-rrn (Figure 4.9a and 

c). A similar trend was seen in the ortholog pPCA analysis, where nine of the first ten pPCA axes 

were significantly correlated with log2-rrn (Figure 4.9b and c). This suggests life history 

evolution is a strong force driving genome content toward similar adaptations across the bacterial 

tree of life.  

 

Discussion 

 Microbial ecologists have frequently classified bacteria based on their response to 

nutrient availability (Andrews & Rouse, 1982; Button, 1991; 1998), and the concepts of 

copiotrophy and oligotrophy have become the pervasive framework for describing this idea 
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(Kuznetsov et al., 1979; AL Koch, 2001; Lauro et al., 2009). While many acknowledge a 

spectrum of fitness variation between copiotrophy and oligotrophy, most studies exploring life 

history variation classify bacteria into only these two categories. I provide evidence in this study 

that rrn copy number is a quantitative proxy for life history which can delineate an entire 

spectrum of fitness variation in response to resource availability. Not only are rapid and efficient 

growth differentially beneficial for low and high rrn bacteria, but intermediate values of these 

 

Figure 4.9: Genome content covaries with log2-rrn copy number. Phylogenetic principal 
component analysis (pPCA) of the genomic content of KEGG modules (a) or KEGG orthologs 
(b) in 1,167 unique bacterial species. Summary statistics for pPCA analysis and regressions of 
species scores against log2-rrn are reported below their corresponding analysis (c). The three 
axes displayed in panels a & b correspond to pPCA axes which explain a high proportion of 
variance and have a strong regression slope. 
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growth phenotypes are observed for bacteria with intermediate rrn copy number. Additionally, 

postulated life history traits were correlated with rrn copy number in the expected direction. An 

important result from this study is that many of the life history trait-rrn correlations can not be 

explained by shared evolutionary history. This indicates that rrn copy number is a robust 

predictor of life history throughout the considerable phylogenetic breadth of the bacterial 

domain. 

 These results provide new insight into bacterial life histories and the link with rrn copy 

number provides a means to incorporate life histories into models of community dynamics and 

function. For instance, following perturbations that increase the availability of resources that 

favor rapid growth, there should be an increase in the abundance of bacteria with high rrn copy 

number bacteria. This has been observed in multiple ecosystems, including the response of 

planktonic bacteria to the Deepwater Horizon oil spill in the Gulf of Mexico. Following the spill, 

there was a bloom of hydrocarbon-degrading bacteria classified as members of the genus 

Colwellia (Valentine et al., 2010; Redmond & Valentine, 2012). Well-characterized relatives of 

these bacteria are known hydrocarbon degraders (Baelum et al., 2012) and have 9 rrn copies in 

their genome (Methé et al., 2005). In terrestrial environments, early successional bacteria encode 

for more rrn operons than late successional bacteria (Shrestha et al., 2007) and bacteria that 

responded most quickly to the addition of 2,4-D (an herbicide that is metabolized by bacteria) 

had more rrn copies than those that responded slowly (Klappenbach et al., 2000). In host-

associated microbial communities, a bloom of high rrn copy number Enterobacteriaceae during 

antibiotic-associated diarrhea (Young & Schmidt, 2004) is coincident with the temporary 

increase in carbohydrates entering the colon. As suggested from these studies, the impact of 

altered nutrient flux following an environmental perturbation can be evaluated by inferring rrn 
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copy number from molecular surveys of bacterial 16S rRNA genes (Kembel et al., 2012; Angly 

et al., 2014). Inferring the rrn copy number distribution in soil community surveys should also 

allow for improved predictions of CUE in natural systems. Recent soil carbon modeling efforts 

suggest improvements can come from allowing variable CUE parameters and the inclusion of 

microbial community composition data (Allison et al., 2010; Wieder et al., 2013). Bacterial 

genome sequencing is rapidly outpacing physiological characterization, and it is becoming 

increasingly common that the only thing known about a bacterium is its genome sequence. 

Findings from this study can be applied to help generate hypotheses about the natural history and 

physiology of these bacteria. 

 Theoretical biologists have proposed a tradeoff in the rate and efficiency of heterotrophic 

growth is inevitable based on thermodynamic constraints of ATP production (Pfeiffer et al., 

2001). My results are consistent with a rate-efficiency tradeoff: there is a negative relationship 

between log2-transformed maximum growth rate and growth efficiency (Figure 4.10).  This 

evidence does not demonstrate an evolutionary tradeoff between the rate and efficiency of 

growth, which would require an experimental evolution approach. Understanding the 

mechanisms underlying rapid and efficient bacterial growth is essential if managing 

microbiomes becomes a priority for human and environmental health. I have demonstrated that 

rrn copy number is a quantitative marker of the life history tactics of rapid and efficient growth 

and provide a phylogenetically informed approach which can allow for new insights into the 

genomic features underlying a key dimension of bacterial fitness.  
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Figure 4.10: Growth rate and efficiency are inversely correlated. Maximum recorded growth 
rate and 14CUE of 8 bacteria from the efficiency study. OLS regression (solid black line) with 
95% confidence band (gray shading), phylogenetic regression (dashed line) and phylogenetic 
RMA regression (dotted line) demonstrate a negative relationship.14CUE OLS regression: R2 

=0.44, slope = -13.75 , 1-tailed p = 0.037; 14CUE RMA phylogenetic regression: slope = -25.75, 
1-tailed p = 0.033. 14CUE phylogenetic regression: slope = -13.90, p = 0.037; 14CUE 
phylogenetic RMA slope = -20.94, p < 0.001. 
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CHAPTER 5 

 

Axes of life history variation explain the genome content of bacteria 

 

Abstract 

 Characterizing the niche and life history of a bacterium using traditional methods is a 

slow and challenging process. The diversity of bacteria in nature is immense and the cultivation 

of environmental bacteria is often technically demanding. Given that the scale of unexplored 

bacterial diversity is much greater than our ability to characterize it using traditional laboratory 

methods, new solutions must be sought to improve our understanding of bacteria. I propose that 

the torrent of genome sequences being produced provides an opportunity to understand the 

ecological and evolutionary factors influencing bacteria. In this study I explore how genome 

content correlates with important axes of the environment thought to influence a microbe’s niche 

and life history. I implement phylogenetic comparative methods to control for the influence of 

shared ancestry on genome similarity. This approach highlights that niche and life history factors 

explain patterns in genome content among diverse bacterial species. The number of rRNA 

operons (rrn) present in a bacterium’s genome provides a proxy for its place on the life history 

spectrum from copiotrophy to oligotrophy. rrn copy number is a strong predictor of genome 

content after controlling for evolutionary history, suggesting that resource competition is 

important for bacterial genome evolution. Genome content similarity was only marginally 

explained by oxygen requirements, and not at all by the temperature range of bacteria, after 

controlling for evolutionary history. Examination of the genome features driving the relationship 
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between genome content and life history provides new insight into how bacteria adapt to life at 

different resource concentrations. 

Introduction 

 Genome sequencing has revolutionized microbiology. It has shed light on genome 

differences within species (Tettelin et al., 2005; Medini et al., 2008) and provided a glimpse at 

previously unobserved candidate phyla (Brown et al., 2015). Extensive genome sequencing is 

also beginning to illuminate the ecological and evolutionary forces acting within and between 

bacterial populations (Cordero & Polz, 2014). Small genomes are found in bacteria with either 

extremely small or very large effective population size, but this shared feature is the outcome of 

disparate processes. Small effective population size amplifies the power of genetic drift and can 

lead to genome degradation (Mccutcheon & Moran, 2011), while large effective population size 

increases the influence of selection, which can purge costly genome features via streamlining 

(Giovannoni et al., 2014). The genome content of bacteria can also be influenced by 

environmental factors. Distantly related bacteria residing in mammalian GI tracts are more 

similar to each other in gene content than are genomes of the same phylogenetic relatedness but 

which come from other environments. This similarity suggests that shared selective pressures are 

acting on gut bacteria (Zaneveld et al., 2010). These examples show the great potential for 

genomics to improve our understanding of the evolutionary ecology of bacteria. 

 Genomes have been used to inform the challenging endeavor of characterizing the niche 

and the life history of a bacterium. The range of environmental conditions where a bacterium can 

persist is its ecological niche, while the pattern of fitness within the niche is the bacterium’s life 

history. The distribution of protein domains among bacterial genomes is related to both their 

phylogeny and their environmental preferences (Suen et al., 2007), supporting the idea that 
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ecology and evolution interact to influence bacterial genome content. Resource concentration is a 

key dimension of bacterial life history variation. Oligotrophic bacteria have a higher relative 

fitness under low resource concentrations, while copiotrophic bacteria are favored when 

resources are abundant. Recent studies comparing the genome content of copiotrophs and 

oligotrophs have concluded that there is a genomic basis to this axis of life history variation (Luo 

et al., 2013; Lauro et al., 2009). Exciting as these findings are, these studies were restricted 

primarily to Proteobacteria and the comparisons between life histories were confounded by 

phylogeny. It is possible that shared ancestry alone explains the genomic differences found in 

these comparisons. Life history evolution in other phylogenetic groups might have taken a 

completely separate path. Therefore, understanding if diverse bacterial genomes share 

adaptations to the environmental pressures exerted by extreme resource concentrations remains 

an open question.  

 The goal of this study is to explore more broadly how bacterial genome content relates to 

three axes of a bacterium’s niche: oxygen concentration, temperature, and resource 

concentration. I ask if these three niche variables could explain the ortholog content of 

approximately one thousand bacterial genomes after controlling for the influence of shared 

evolutionary history. All of these variables are likely to have a major influence on competitive 

fitness in natural environments and they have been shown to covary with genome features 

(Vieira-Silva & Rocha, 2010; Sabath et al., 2013; Morris & Schmidt, 2013; Wu & Moore, 2010; 

Lauro et al., 2009). I utilized the number of rRNA operon (rrn) copies encoded in the genome as 

a proxy for resource concentration preference (Chapter 4), while information on bacterial oxygen 

requirements and temperature ranges was collected from other studies. The relative influence of 

these axes of niche and life history variation on genome variation is not well understood, nor is 
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their interaction with shared evolutionary history. With this study I examine the extent to which 

different aspects of niche and life history variation can explain genome content similarity among 

bacterial species. I also explore universal genomic signatures associated with the copiotroph-

oligotroph spectrum across the bacterial tree of life. 

 

Materials and methods 

Genomic data and metadata 

 The genomes of 1,167 bacterial species were analyzed using annotations provided by the 

Kyoto encyclopedia of genes and genomes (KEGG) (Kanehisa et al., 2013) and as described in 

Chapter 4 of this thesis. Briefly, the current version of the database was downloaded in May 

2014 and was used to assert the presence of every ortholog and module – combinations of 

orthologs inferred to function in concert – present in all genomes and their rrn operon copy 

number (Stoddard et al., 2014). Genomes were excluded from further analysis if they displayed 

symptoms of genome degradation due to genetic drift, while attempting to preserve the presence 

of streamlined genomes in the dataset (Mccutcheon & Moran, 2011; Giovannoni et al., 2014). A 

single representative genome for each unique bacterial species in the dataset was chosen to 

reflect the central tendency of rrn copy number for the species, among other criteria, and led to 

the final number of 1,167 genomes included in this study. NCBI taxonomy was also extracted 

from the KEGG database for each genome. 

 The oxygen requirements and temperature ranges associated with these genomes was 

then extracted from the Integrated Microbial Genomes (IMG) database (Markowitz et al., 2013). 

Oxygen requirement was classified into six categories by IMG: obligate anaerobe, anaerobe, 

facultative, microaerophilic, aerobe and obligate aerobe. I merged the obligate categories into 
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their respective aerobe and anaerobe categories, resulting in four categories of oxygen 

requirement. Temperature range was classified into seven categories by IMG: psychrophile, 

psychrotrophic, psychrotolerant, mesophile, thermotolerant, thermophile and hyperthermophile. I 

merged psychrotrophic and psychrophile into one category named psychrophile. I also merged 

psychrotolerant, mesophile and thermotolerant into a single category named mesophile, resulting 

in four categories of temperature range. Ultimately, a subset of 932 genomes was generated that 

contained an estimate of rrn copy number, temperature range and oxygen requirement. 

 

Phylogenetic tree construction 

 A phylogenetic tree for the 1,167 genomes in this study was built using the same methods 

used as in Chapter 4 of this thesis. Briefly, I downloaded aligned 16S rRNA gene sequences 

from Silva (http://www.arb-silva.de) for as many of the 1,167 genomes as possible. If an aligned 

sequence from the genome was not available through Silva, an aligned sequence from a separate 

sequencing effort on the same strain or from the type strain of that species was utilized. 

Phylogenetic trees were built using maximum likelihood estimation (RAxML 7.0.4) to generate 

the ten most likely trees based on the GTRMIX substitution model with 25 rate categories and 

the new rapid hill climbing algorithm in the software program Arb. The only base positions used 

to build the tree were those which are conserved in 50% of all bacterial species (Munoz et al., 

2011). All trees included 5 archael sequences for rooting, which were pruned prior to use of the 

tree in statistical analysis. A single tree with the most negative maximum likelihood was chosen 

for phylogenetically informed comparative analyses. This tree was then pruned to generate 

smaller trees when subsets of the dataset were analyzed.  
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Statistical analyses 

 The R statistical programming language was used for all analyses (R Core Team, 2014). 

The R package vegan was used to perform non-metric multi-dimensional scaling (nMDS) of 

genome content using a the Jaccard coefficient, which excludes joint absence in the dataset from 

further analysis (Oksanen et al., 2014). The R package ape was used to import NEXUS 

formatted tree files, store tree objects, and prune tips from the trees (Paradis et al., 2004). 

 The R package phytools was used for phylogenetic principal coordinates analysis 

(pPCA). Correlation-based pPCA and covariance-based pPCA were performed utilizing 

Brownian motion as the underlying model of expected trait evolution (Revell, 2012). pPCA 

combines variables into new axes which maximally summarize variation in low-dimensional 

space while accounting for non-independence of data points due to shared ancestry. The 

coordinates for each genome on the new pPCA axes were further analyzed using phylogenetic 

comparative methods, and this combination of methods decreases the false positive rate of 

hypothesis tests to their expected level (Revell, 2009). Correlation-based PCA standardizes the 

variance among all variables and is typically done when variables with different measurement 

units are present in the dataset. Covariance-based PCA does not standardize variance among 

variables. The results of pPCA analyses were correlated with the explanatory variable rrn copy 

number, so orthologs that are part of the rrn operon were excluded from genome content pPCA. 

This included all orthologs for the genes encoding 16S rRNA, 23S rRNA, 5S rRNA, and all 

tRNAs. The R package phylolm was used for phylogenetic linear regression of pPCA genome 

scores, with a random root Ornstein-Uhlenbeck evolutionary model used in the analyses (Tung 

Ho & Ane, 2014). Phylogenetic logistic regression of orthologs/modules as a function of log2-

transformed rrn copy number was also performed using the phylolm package for 
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modules/orthologs with the strong pPCA loadings. The R package geiger was used to implement 

phylogenetic multivariate analysis of variance (MANOVA) on the pPCA coordinates of bacterial 

genomes (Harmon et al., 2007). This method first performs a standard MANOVA and the 

generated Pillai-Bartlett F-statistic is then compared to a distribution of F-values simulating no 

relationship between variables on the provided phylogenetic tree. I ran phylogenetic MANOVA 

analyses using 1000 trait simulations.  The R packages scatterplot3d (Ligges & Mächler, 2002) 

and ggplot2 (Wickham, 2009) were used to generate figures. 

 

Results 

Genome content is correlated with shared evolutionary history 

 I performed a preliminary examination of genome content variation among 1,167 unique 

bacterial species. Non-metric multidimensional scaling (nMDS) was implemented to summarize 

variation in two datasets which measured the presence or absence of orthologs or modules 

among genomes. These datasets contained information on the presence of over 7,000 orthologs 

and over 400 modules in all 1,167 genomes. The distance between points in nMDS ordination 

qualitatively illustrate similarity, so genomes close together are more likely to be similar than 

genomes which are further apart. The nMDS analysis indicates that a bacterium’s phylum is a 

strong factor influencing its genome content because the three major phyla in the analysis 

(Firmicutes, Proteobacteria, and Actinobacteria) cluster into distinct groups (Figure 5.1). 

Phylogeny has previously been shown to explain a significant fraction of genome content 

variation (Zaneveld et al., 2010; Snel et al., 1999), and these results support that claim. It is 

interesting to note that genome content appears to correlate with changes in rrn copy number in 

parallel among the three major phyla. For example, genomes with low rrn copy number in the 
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modules ordination tend to co-occur in the bottom and left sections of their phylum. Higher rrn 

copy number is generally observed as a shift in position along the nMDS axis towards the top 

and right sections of each phylum. These parallel patterns suggest that genome content may 

covary with nutritional preference among the three major phyla in this study. However, these 

patterns could still result from phylogenetic signal below the phylum level and phylogenetic 

ordination methods are required to test this idea.  

 

Figure 5.1: Genome content is related to evolutionary history. nMDS analysis of module (A 
and B) and ortholog (C and D) genome content, colored by phylum (A and C) or rrn operon 
copy number (B and D). A total of 10 nMDS dimensions were generated in the analysis 
(ortholog stress=0.038; module stress=0.058) and the first 3 are visualized. 
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Genome content is correlated with life history variation 

 I explored if genome content could be explained by three axes of niche and life history 

variation in bacteria: oxygen requirement, temperature range, and resource concentration. While 

oxygen requirement and temperature range were directly assessed, a proxy was used for a 

bacterium’s resource concentration preference, log2-transformed rrn copy number (hereafter 

referred to as log2-rrn). Metadata describing the oxygen requirement and temperature range was 

available for 932 of the 1,167 genomes with known rrn copy number, so I restricted initial 

analysis of variables influencing genome content to these 932 genomes.   

 Phylogenetic principal components analysis (pPCA) was implemented to summarize the 

variance in ortholog and module content among bacterial genomes. Both correlation-based pPCA 

and covariance-based pPCA gave similar results, so unless otherwise noted correlation-based 

pPCA is reported for simplicity. pPCA was effective at collapsing the variation present in the 

genome content datasets. The first 50 pPCA axes explained a large fraction of the variation in 

each dataset, approximately 53% for modules and approximately 42% for orthologs. I tested if 

three niche variables could predict genome content variation on the first 50 pPCA axes using 

phylogenetic MANOVA.  

 A genome’s position on the first 50 pPCA axes was significantly associated with all three 

niche variables, but only rrn copy number remained as a significant predictor of genome content 

after controlling for phylogeny (Table 5.1). This was true for both orthologs and modules 

datasets and when considering different numbers of pPCA axes in the analysis. Oxygen 

requirement was significantly associated with the first 10 pPCA axes of the ortholog dataset, but 

not the modules dataset. The location of genomes on first three pPCA axes for the ortholog 

dataset (Figure 5.2 and Figure 5.3) and the modules dataset (Figure 5.4) were visualized and 
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support the phylogenetic MANOVA results. There is clear clustering of genomes with similar 

rrn copy values on the first three pPCA axes, while it is much more difficult to observe genomes 

clustering by oxygen requirement and temperature range. rrn copy number has more explanatory 

power than the other two niche variables, suggesting resource concentration has a stronger 

influence on genome content variation than oxygen availability or temperature.  

 

Figure 5.2: Correlation-based pPCA axes 1-3 of ortholog genome content. Clustering of 
genomes with similar rrn copy number is evident (A and B) while clustering is difficult to 
discern for temperature (C and D) and oxygen requirement (E and F). 
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Figure 5.3: Correlation-based pPCA axes 1-3 of ortholog genome content, alternate view. 
Re-plotting of Figure 5.2, with correlation-based pPCA axes 1-3 of ortholog genome content 
trimmed to better observe patterns in the central cluster of genomes. Four data points with 
extreme pPCA axis coordinates are not visible in these plots. Clustering of genomes with similar 
rrn copy number is evident (A and B) while clustering is difficult to discern for temperature (C 
and D) and oxygen requirement (E and F). 
 
 



!

! 103! !

 
 
Figure 5.4: Correlation-based pPCA axes 1-3 of module genome content. Clustering of 
genomes with similar rrn copy number is evident (A and B) while clustering is difficult to 
discern for temperature (C and D) and oxygen requirement (E and F). 
 
 
 
 
 
 
 
 
 
 
 
 
 



!

! 104! !

  Orthologs Modules 
Explanatory 
variable 

pPCA axes 
considered p (std.) p (phy) p (std.) p (phy) 

Temperature 50 3.21E-25 1.000 5.04E-40 1.000 
Temperature 30 8.33E-27 1.000 4.83E-26 1.000 
Temperature 10 3.20E-13 0.965 1.66E-26 0.606 
Temperature 5 1.17E-06 0.910 5.61E-18 0.431 
O2 requirement 50 2.45E-153 0.672 6.31E-133 0.977 
O2 requirement 30 7.65E-126 0.570 2.68E-125 0.563 
O2 requirement 10 1.10E-90 0.041 1.40E-87 0.068 
O2 requirement 5 2.92E-64 0.036 6.17E-55 0.103 
rrn copies 50 4.00E-158 <0.001 1.63E-146 <0.001 
rrn copies 30 2.42E-159 <0.001 3.02E-140 <0.001 
rrn copies 10 4.79E-113 <0.001 5.21E-118 <0.001 
rrn copies 5 8.54E-87 <0.001 1.90E-84 <0.001 

 
Table 5.1: Genome content is associated with a bacterium’s niche. Ortholog and module 
genome scores on correlation-based pPCA axes were consistently related to the rrn copy number 
of the genome based on phylogenetic MANOVA. The first 10 ortholog pPCA axes can also be 
explained by oxygen.  
 

 To get a better understanding of the influence of rrn copy number on genome content, I 

returned to the full 1,167 genome dataset. Including these two hundred additional genomes did 

not alter the relationship previously observed between ortholog or module content and rrn copy 

number. The first 50 pPCA axes explained approximately 40% of variation in the ortholog 

genome content, while the first 50 module pPCA axes explained approximately 53% of variation 

in that dataset. Phylogenetic MANOVA on all 50 ortholog and module pPCA axes demonstrated 

associations between genome content and rrn copy number (p < 0.001 for both orthologs and 

modules). Although phylogenetic MANOVA was useful for comparing the influence of three 

niche/life history dimensions on genome content, this method converts rrn copy number into a 

categorical variable. Previous results (Chapter 4) indicate log2-rrn is a quantitative proxy of life 

history variation, and so a regression analysis offers more statistical power than ANOVA to 

discern relationships between pPCA axes and rrn copy number (Cottingham et al., 2005). I 
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performed phylogenetic linear regression using log2-rrn as a predictor for each of the first fifteen 

pPCA axes of the 1,167 genome dataset using both covariance- and correlation-based pPCA 

(Table 5.2 and Table 5.3). Regardless of the type of pPCA used or the dataset analyzed, at least 

10 of the first 15 pPCA axes had significant regression slopes and these correlations could not be 

explained by shared ancestry.  

 Orthologs Modules 
pPCA 

Axis 
Percent variance 

explained by axis Slope p 
Percent variance 

explained by axis Slope p 
1 2.54 -0.0115 4.75E-09 4.49 -0.0179 <2.2E-16 
2 2.34 0.0363 <2.2E-16 3.53 -0.0028 2.36E-06 
3 2.31 -0.0063 5.93E-05 2.50 -0.0067 <2.2E-16 
4 1.98 0.0034 0.01712 2.25 0.0043 2.30E-10 
5 1.64 -0.0019 0.1559 2.13 0.0018 2.41E-04 
6 1.62 0.0019 0.2402 1.87 0.0014 0.0030 
7 1.39 0.0003 0.8326 1.79 -0.0060 7.27E-15 
8 1.33 0.0141 5.05E-15 1.71 0.0077 <2.2E-16 
9 1.19 -0.0112 9.48E-09 1.59 0.0055 <2.2E-16 

10 1.06 0.0251 <2E-16 1.47 0.0022 2.89E-07 
11 1.03 0.0238 <2.2E-16 1.31 -0.0020 4.00E-06 
12 0.95 0.0042 0.0002 1.23 0.0026 0.0450 
13 0.93 -0.0375 <2.2E-16 1.16 -0.0056 4.89E-16 
14 0.91 -0.0053 7.62E-06 1.06 0.0040 0.0002 
15 0.85 0.0425  <2.2E-16 1.03 0.0010 0.4122 

 
Table 5.2: Genome content is related to a bacterium’s life history, correlation pPCA. 
Phylogenetic linear regression of the first 15 correlation-based pPCA axes of genome content as 
a function of log2-transformed rrn copy number for the 1,167 bacterial dataset.  
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 Orthologs Modules 
pPCA 

Axis 
Percent variance 

explained by axis Slope p 
Percent variance 

explained by axis Slope p 
1 5.78 0.1238 0.0309 8.80 0.4781 <2E-16 
2 5.70 -0.3431 4.48E-08 6.59 -0.1920 <2.2E-16 
3 4.88 -0.2709 2.23E-07 6.06 0.1754 <2.2E-16 
4 4.02 0.5071 <2E-16 5.34 -0.1046 4.32E-09 
5 3.76 0.4124 <2.2E-16 4.48 -0.1113 8.47E-11 
6 3.68 0.5389 <2E-16 3.99 0.0402 0.0101 
7 3.07 -0.1195 0.0035 3.50 -0.0497 0.0086 
8 2.90 0.4040 4.87E-14 3.21 -0.0581 0.0002 
9 2.59 0.2642 7.64E-10 3.01 -0.0253 0.0501 

10 2.55 -0.0001 0.9969 2.72 -0.0274 0.0555 
11 2.42 0.0396 0.3220 2.54 -0.2019 <2.2E-16 
12 2.38 0.1336 0.0006 2.24 0.0142 0.3287 
13 2.32 -0.1231 0.0012 2.09 0.0497 0.0001 
14 2.12 0.0763 0.0509 2.01 -0.0118 0.3293 
15 1.92 0.0219 0.4994 1.68 0.0022 0.8811 

 
Table 5.3: Genome content is related to a bacterium’s life history, covariance pPCA. 
Phylogenetic linear regression of the first 15 covariation-based pPCA axes of genome content as 
a function of log2-transformed rrn copy number. 

 

Genome features underlying life history variation are shared among bacterial phyla 

 Taken together, these results confirm the idea that a bacterium’s place on the life history 

spectrum from copiotrophy is related to its genome content. These results also suggest that life 

history evolution’s influence on genome content can lead distantly related species to possess 

similar genome content. If life history evolution truly drives changes in genome content than we 

expect two things: 1) when bacterial phyla are analyzed separately they should each display log2-

rrn correlations with genome content and 2) the orthologs and modules driving patterns within 

major phyla should be similar among phyla and the all bacteria analysis.  

 Over 75% of the species in this analysis can be attributed to three bacterial phyla, the 

Actinobacteria, Proteobacteria, and Firmicutes. These phyla each contain more than 100 species 

which span a wide range of rrn copy numbers, making them ideal candidates to test if genome 
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content universally varies with rrn copy number. Correlation-based pPCA was performed for 

each of these phylum datasets, and the first ten pPCA axes were regressed against log2-rrn copy  

 
Figure 5.5: Module genome content is correlated with life history. Correlation-based pPCA 
of modules within three bacterial phyla. Axes which significantly correlate with log2-rrn are 
depicted for the Actinobacteria (A, N=156), Proteobacteria (B, N=484) and Firmicutes (C, N 
=253). 
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number. For both ortholog and module datasets, all three phyla had at least three of their first 10 

pPCA axes significantly correlate with log2-rrn (Table 5.4, Table 5.5, Table 5.6, and Figure 5.5). 

 Orthologs Modules 
pPCA 

Axis 
Percent variance 

explained by axis Slope p 
Percent variance 

explained by axis Slope p 
1 3.74 0.0057 0.2906 3.76 -0.0229 4.13E-05 
2 3.22 -0.0779 0.0379 3.35 -0.0211 0.0157 
3 3.06 -0.0349 0.0014 2.90 0.0090 2.41E-06 
4 2.74 0.0395 1.24E-08 2.70 0.0178 0.0073 
5 2.48 -0.0080 0.3582 2.55 -0.0039 0.5726 
6 2.15 -0.0397 0.1212 2.44 -0.0013 0.7379 
7 2.06 -0.0416 0.1428 2.30 -0.0088 0.1218 
8 1.86 0.0289 0.1873 2.23 0.0077 0.0097 
9 1.73 -0.0370 0.0085 2.22 -0.0054 0.4137 

10 1.70 0.0245 0.3132 2.07 0.0082 0.0809 
Table 5.4: Actinobacteria genome content is related to life history. Phylogenetic linear 
regression of the first 10 correlation based pPCA axes of genome content as a function of log2-
transformed rrn copy number for the Actinobacteria dataset (N = 156). 
 

 Orthologs Modules 
pPCA 

Axis 
Percent variance 

explained by axis Slope p 
Percent variance 

explained by axis Slope p 
1 3.53 -0.0070 0.0244 5.47 -0.0067 1.27E-10 
2 3.23 0.0060 0.0218 3.55 -0.0065 2.86E-15 
3 2.81 -0.0008 0.7431 3.23 0.0075 8.23E-14 
4 2.39 -0.0049 0.0700 3.11 -0.0038 1.76E-07 
5 2.34 0.0055 0.0162 2.67 -0.0140 <2.2E-16 
6 1.92 -0.0121 6.89E-06 2.49 -0.0039 1.45E-05 
7 1.61 0.0176 1.09E-11 2.35 -0.0027 3.80E-05 
8 1.51 0.0421 <2.2E-16 1.97 -0.0185 3.17E-09 
9 1.47 0.0257 <2E-16 1.86 0.0018 0.0103 

10 1.33 -0.0353 <2E-16 1.72 0.0053 2.57E-10 
 

Table 5.5: Proteobacteria genome content is related to life history. Phylogenetic linear 
regression of the first 10 correlation based pPCA axes of genome content as a function of log2-
transformed rrn copy number for the Proteobacteria dataset (N=484). 
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 Orthologs Modules 
pPCA 

Axis 
Percent variance 

explained by axis Slope p 
Percent variance 

explained by axis Slope p 
1 5.62 -0.0428 <2.2E-16 10.99 -0.0179 <2.2E-16 
2 3.52 0.0101 0.0027 4.21 0.0018 0.0869 
3 2.17 -0.0008 0.7431 3.33 -0.0349 0.0014 
4 1.97 0.0395 1.24E-08 2.96 -0.0026 0.0190 
5 1.82 -0.0367 7.66E-12 2.83 -0.0104 3.32E-08 
6 1.79 0.0084 0.2018 2.43 0.0045 0.0146 
7 1.70 0.0087 0.1321 2.26 -0.0001 0.9491 
8 1.51 0.0018 0.7484 2.05 0.0010 0.4825 
9 1.49 -0.0086 0.1170 1.92 -0.0064 5.56E-05 

10 1.42 <-0.001 0.9987 1.83 0.0019 0.2169 
 
Table 5.6: Firmicutes genome content is related to life history. Phylogenetic linear regression 
of the first 10 correlation based pPCA axes of genome content as a function of log2-transformed 
rrn copy number for the Firmicutes dataset (N=253). 
 

 To explore this further I examined which orthologs and modules loaded most strongly on 

pPCA axes correlated with log2-rrn in the all bacteria and three major phyla analyses. To 

systematically evaluate all pPCA loadings from all analyses of orthologs and modules I 

performed the following procedure. First, I evaluated which of the first 10 pPCA axes in each 

analysis correlated significantly with log2-rrn. I then extracted all of the loadings on any of the 

correlated axes and extracted the 100 loadings on any of these axes with the largest magnitude. 

Finally, I performed phylogenetic logistic regression on the original presence/absence data for 

each of these 100 modules or orthologs against log2-rrn with all 1,167 genomes. The complete 

list of all orthologs and modules which have significant correlations with log2-rrn among all 

1,167 bacteria is provided (Table 5.7), and I will highlight some of the major findings across all 

of the analyses. 

 Both the modules and the orthologs loadings indicated secretion systems were 

significantly correlated with increased rrn copy number across all bacteria. Most intriguing was 

the type III secretion system, which had eleven orthologs with strong loadings in the all bacteria 
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covariance-based pPCA analysis. Each of these eleven orthologs had positive regression slope 

versus log2-rrn (11 orthologs, all p<0.02). Additionally, the type III secretion system module had 

strong loadings in the all bacteria and Proteobacteria correlation-based pPCA analyses and it was 

positively correlated with log2-rrn in the follow-up logistic regression analysis (p<0.001). The 

type III secretion system mediates host-association for both pathogenic and mutualistic bacteria 

through injecting effector proteins into the cytosol of the host (Silver et al., 2007; Soto et al., 

2009; Sachs et al., 2011). Other secretion systems which had strong pPCA loadings and positive 

regression slopes included the Sec (module, p=0.005), type I (module, p < 0.001),  type VI 

secretion systems (10 orthologs, all p<0.002).   

 The biosynthesis and import of the compatible solute glycine betaine was also related to 

rrn copy number among all bacteria. Glycine betaine is the preferred compatible solute for most 

bacteria when coping with osmotic stress and it can be present in millimolar concentrations 

within bacterial cells (Csonka & Hanson, 1991). The module for the biosynthesis of glycine 

betaine from choline had a strong loading within Actinobacteria pPCA analysis, while the 

module for importing glycine betaine had strong loadings in the Proteobacteria and Firmicutes 

pPCA. Follow-up regression indicated that both modules were significantly correlated with log2-

rrn among all 1,167 bacteria (transport, p=0.003; biosynthesis, p=0.006). It appears that 

copiotrophic bacteria are either better equipped to survive when solute concentrations rapidly 

change, or they may simply be more likely to experience osmotic stress than oligotrophic 

bacteria. The difference in loading patterns for the glycine betaine modules also suggests that 

preferences for producing or taking up glycine betaine may exist at the phylum level. However, 

further research is needed to test this hypothesis.  
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Discussion 

 Bacteria colonize a diverse range of habitats on Earth, where they are exposed to a wide 

range of environmental conditions. Over long evolutionary timescales, bacteria have adapted to a 

huge range of environmental pressures and I explored if three axes of environmental variation 

could explain the genome content of extant bacteria. Taken together, all approaches from this 

study demonstrate that genome content is intimately linked with a bacterium’s niche and life 

history. rrn copy number is by far the strongest predictor of genome content that was analyzed in 

this study, which suggests that resource competition may be a fundamental player in the genome 

evolution of bacteria. Additionally, oxygen concentration may also play a role in determining the 

genome content of diverse bacterial species. My inability to detect any genome variation 

explained by temperature may reflect a poor sampling of the temperature ranges favored by 

bacteria. However, a great deal of imbalance in rrn copy number and oxygen requirement were 

also present in the dataset so I find this an unlikely, but still possible alternative hypothesis.  

 The orthologs and modules driving genome content to covary with rrn copy number 

broadly fit into our understanding of the biology of copiotrophic and oligotrophic bacteria. The 

finding that glycine betaine import and synthesis is more probable in copiotrophic bacteria fits 

well with the idea that oligotrophs are thought to be relatively passive in terms of their response 

to environmental change (Fegatella & Cavicchioli, 2000; Ostrowski et al., 2001). Additionally, 

this finding may explain why many oligotrophic bacteria can not be cultured on rich medium in 

the laboratory (Koch, 2001). The strong relationship between secretion and copiotrophy has been 

previously observed in marine bacteria, and this may be linked to the preference for particle-

association by copiotrophic bacteria or that (Lauro et al., 2009). In chapter 4, I hypothesized that 

encoding a diverse set of phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) 
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transporters was a copiotrophic adaptation. While a correlation was present in the data it did not 

hold up statistically after incorporating phylogeny into the regression model. Many individual 

PTS transporters were more probable in high rrn genomes (Table 5.7), even when accounting for 

phylogeny, so there does appear to be some link between these transporters and copiotrophy.  

 Our understanding of the ecological and evolutionary forces acting on microbes in nature 

is still in its infancy. Genome sequencing is a promising tool which can help microbiologists 

integrate physiological insight with evolutionary perspective to better understand bacteria in their 

natural environments. 

Dataset pPCA analysis 
Genome 
feature Slope p Effect size 

1167 correlation M00018 2.017E-01 1.079E-02 17.1 
1167 correlation M00022 1.529E-01 3.303E-02 13.7 
1167 correlation M00036 1.247E+00 4.290E-02 5.5 
1167 correlation M00049 5.959E-01 1.356E-02 8.8 
1167 correlation M00061 4.644E-01 3.411E-03 15.5 
1167 correlation M00211 2.953E-01 2.690E-02 12.7 
1167 correlation M00213 7.195E-01 1.209E-02 7.8 
1167 correlation M00215 3.431E-01 2.023E-02 12.3 
1167 correlation M00217 9.869E-01 1.198E-02 12.7 
1167 correlation M00226 8.008E-01 1.904E-02 6.9 
1167 correlation M00268 1.263E+00 6.512E-07 23.6 
1167 correlation M00271 5.443E-01 4.019E-04 19.8 
1167 correlation M00279 4.724E-01 9.526E-03 10.7 
1167 correlation M00282 5.068E-01 2.046E-02 9.8 
1167 correlation M00287 9.724E-01 1.712E-02 5.2 
1167 correlation M00303 1.005E+00 1.111E-03 21.3 
1167 correlation M00305 1.413E+00 2.340E-03 27.4 
1167 correlation M00306 2.279E+00 1.653E-06 28.1 
1167 correlation M00332 9.116E-01 8.424E-04 10.0 
1167 correlation M00339 7.401E-01 9.635E-05 16.3 
1167 correlation M00362 3.044E-01 3.917E-02 9.7 
1167 correlation M00435 3.673E-01 2.895E-02 9.2 
1167 correlation M00439 2.945E-01 3.016E-02 11.9 
1167 correlation M00446 8.158E-01 2.687E-02 7.4 
1167 correlation M00450 6.097E-01 2.548E-02 8.2 

Table 5.7: Genome features which load strongly on pPCA axes and correlate with rrn. 
Results of follow-up logistic regression performed on top 100 loadings on any pPCA axis 
correlated with log2-rrn across all analyses. Only modules or orthologs with phylogenetic 
logistic regression slopes significantly different from 0 (p < 0.05) when considered across all 
bacteria. Effect size is percent change in predicted probability from 1-15 rrn. 
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Table 5.7 (cont’d) 

Dataset pPCA analysis 
Genome 
feature Slope p Effect size 

1167 correlation M00454 2.150E-01 4.919E-02 12.8 
1167 correlation M00473 1.680E+00 2.122E-04 16.9 
1167 correlation M00477 1.059E+00 4.895E-03 8.2 
1167 correlation M00486 1.431E+00 3.280E-03 10.2 
1167 correlation M00495 1.201E+00 9.495E-03 8.4 
1167 correlation M00506 5.500E-01 2.493E-02 8.1 
1167 correlation M00549 2.072E-01 1.583E-02 17.9 
1167 correlation M00551 1.077E+00 1.187E-04 15.4 
1167 correlation M00568 1.825E+00 8.664E-04 17.4 
1167 correlation M00569 8.510E-01 2.310E-02 6.0 
1167 correlation M00582 1.887E-01 2.257E-03 17.3 
1167 correlation M00583 2.104E-01 2.497E-02 6.6 
1167 correlation M00632 2.749E-01 1.702E-02 15.4 
1167 covariation M00018 2.017E-01 1.079E-02 17.1 
1167 covariation M00022 1.529E-01 3.303E-02 13.7 
1167 covariation M00036 1.247E+00 4.290E-02 5.5 
1167 covariation M00049 5.959E-01 1.356E-02 8.8 
1167 covariation M00126 3.892E-01 8.169E-04 22.5 
1167 covariation M00178 7.652E-01 2.499E-17 60.8 
1167 covariation M00207 2.158E-01 9.633E-03 20.0 
1167 covariation M00213 7.195E-01 1.209E-02 7.8 
1167 covariation M00221 2.392E-01 1.741E-02 17.0 
1167 covariation M00223 2.520E-01 1.496E-02 16.6 
1167 covariation M00239 5.110E-01 5.598E-09 46.1 
1167 covariation M00268 1.263E+00 6.512E-07 23.6 
1167 covariation M00282 5.068E-01 2.046E-02 9.8 
1167 covariation M00299 2.280E-01 1.391E-02 18.5 
1167 covariation M00303 1.005E+00 1.111E-03 21.3 
1167 covariation M00305 1.413E+00 2.340E-03 27.4 
1167 covariation M00306 2.279E+00 1.653E-06 28.1 
1167 covariation M00332 9.116E-01 8.424E-04 10.0 
1167 covariation M00339 7.401E-01 9.635E-05 16.3 
1167 covariation M00362 3.044E-01 3.917E-02 9.7 
1167 covariation M00435 3.673E-01 2.895E-02 9.2 
1167 covariation M00436 5.229E-01 1.716E-04 22.2 
1167 covariation M00439 2.945E-01 3.016E-02 11.9 
1167 covariation M00446 8.158E-01 2.687E-02 7.4 
1167 covariation M00450 6.097E-01 2.548E-02 8.2 
1167 covariation M00473 1.680E+00 2.122E-04 16.9 
1167 covariation M00486 1.431E+00 3.280E-03 10.2 
1167 covariation M00495 1.201E+00 9.495E-03 8.4 
1167 covariation M00529 -6.667E-01 2.285E-02 -4.3 
1167 covariation M00530 3.256E-01 1.406E-02 13.8 
1167 covariation M00549 2.072E-01 1.583E-02 17.9 
1167 covariation M00568 1.825E+00 8.664E-04 17.4 
1167 covariation M00582 1.887E-01 2.257E-03 17.3 
1167 covariation M00632 2.749E-01 1.702E-02 15.4 
1167 correlation K00791 3.088E-01 1.040E-02 8.1 
1167 correlation K00928 7.722E-01 3.810E-03 8.9 
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Table 5.7 (cont’d) 

Dataset pPCA analysis 
Genome 
feature Slope p Effect size 

1167 correlation K01872 1.386E+00 4.536E-02 2.3 
1167 correlation K01939 7.068E-01 3.186E-02 6.7 
1167 correlation K01951 1.921E+00 2.939E-02 7.6 
1167 correlation K02867 1.127E+00 4.258E-02 1.7 
1167 correlation K02879 1.705E+00 4.270E-02 3.4 
1167 correlation K03046 9.420E-01 3.674E-02 3.8 
1167 correlation K03076 1.651E+00 1.674E-03 5.1 
1167 correlation K03217 9.316E-01 1.591E-02 3.3 
1167 correlation K03501 8.360E-01 1.131E-02 7.9 
1167 correlation K03687 1.699E+00 1.234E-03 7.0 
1167 correlation K03979 1.352E+00 1.027E-02 2.9 
1167 correlation K08227 7.210E-01 3.386E-02 8.7 
1167 covariation K01039 5.530E-01 2.586E-03 14.4 
1167 covariation K01040 5.492E-01 2.508E-03 14.5 
1167 covariation K01581 1.498E-01 1.196E-02 14.5 
1167 covariation K01643 4.084E-01 1.210E-02 12.0 
1167 covariation K01785 3.604E-01 5.457E-05 31.8 
1167 covariation K03168 1.123E+00 2.917E-03 9.5 
1167 covariation K03219 8.893E-01 1.837E-04 14.6 
1167 covariation K03220 7.203E-01 5.667E-04 12.1 
1167 covariation K03222 6.977E-01 1.233E-03 12.8 
1167 covariation K03223 5.571E-01 1.434E-02 8.0 
1167 covariation K03224 6.706E-01 1.480E-03 12.6 
1167 covariation K03225 7.012E-01 1.811E-03 12.0 
1167 covariation K03226 6.977E-01 1.233E-03 12.8 
1167 covariation K03227 6.867E-01 1.385E-03 11.9 
1167 covariation K03228 8.566E-01 1.772E-04 15.6 
1167 covariation K03229 7.715E-01 5.509E-04 14.0 
1167 covariation K03230 6.977E-01 1.233E-03 12.8 
1167 covariation K03838 1.520E+00 1.663E-02 6.2 
1167 covariation K07248 5.703E-01 2.951E-04 14.7 
1167 covariation K08154 1.780E+00 1.167E-03 15.4 
1167 covariation K08227 7.210E-01 3.386E-02 8.7 
1167 covariation K08682 8.934E-01 2.671E-02 7.6 
1167 covariation K09758 5.692E-01 1.011E-03 13.7 
1167 covariation K10117 2.444E-01 3.374E-02 13.3 
1167 covariation K11890 1.125E+00 2.873E-05 21.2 
1167 covariation K11895 9.130E-01 3.586E-03 13.2 
1167 covariation K11896 8.878E-01 4.026E-03 12.8 
1167 covariation K11897 9.555E-01 4.738E-04 16.1 
1167 covariation K11900 8.817E-01 1.953E-03 15.1 
1167 covariation K11901 8.906E-01 2.084E-03 14.9 
1167 covariation K11902 7.356E-01 2.915E-03 12.3 
1167 covariation K11903 9.109E-01 6.394E-04 17.6 
1167 covariation K11904 1.194E+00 1.370E-05 20.6 
1167 covariation K11907 9.388E-01 3.168E-04 18.8 
1167 covariation K12055 9.941E-01 1.832E-04 15.7 
1167 covariation K13069 1.324E+00 9.150E-04 12.9 
1167 covariation K13929 5.862E-01 1.943E-03 13.7 
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Table 5.7 (cont’d) 

Dataset pPCA analysis 
Genome 
feature Slope p Effect size 

1167 covariation K13930 6.371E-01 8.151E-04 14.8 
1167 covariation K13932 6.073E-01 1.603E-03 13.9 
1167 covariation K13933 5.658E-01 9.653E-03 10.0 
1167 covariation K13934 6.104E-01 1.436E-03 14.1 
1167 covariation K13935 1.119E+00 9.919E-06 18.3 
1167 covariation K15551 4.508E-01 8.922E-03 11.5 
1167 covariation K15552 4.217E-01 1.481E-02 10.6 
1167 covariation K15737 6.334E-01 5.789E-03 12.8 
1167 covariation K15790 4.865E-01 2.490E-02 8.9 

Firmicutes correlation M00001 6.716E-01 4.736E-03 39.4 
Firmicutes correlation M00002 1.009E+00 3.828E-03 20.7 
Firmicutes correlation M00004 8.352E-01 3.769E-02 22.3 
Firmicutes correlation M00018 5.160E-01 1.020E-02 38.6 
Firmicutes correlation M00049 1.056E+00 6.044E-03 38.8 
Firmicutes correlation M00050 9.386E-01 7.061E-04 33.8 
Firmicutes correlation M00087 1.617E+00 1.595E-02 20.8 
Firmicutes correlation M00096 6.340E-01 4.462E-02 25.1 
Firmicutes correlation M00119 6.969E-01 1.874E-03 50.3 
Firmicutes correlation M00157 8.212E-01 5.925E-04 41.9 
Firmicutes correlation M00183 1.347E+00 8.912E-07 54.3 
Firmicutes correlation M00188 8.113E-01 2.672E-04 62.4 
Firmicutes correlation M00193 7.002E-01 2.738E-02 24.2 
Firmicutes correlation M00208 5.457E-01 1.357E-02 35.8 
Firmicutes correlation M00211 4.863E-01 9.081E-03 42.5 
Firmicutes correlation M00219 1.034E+00 4.128E-02 20.6 
Firmicutes correlation M00221 5.992E-01 2.108E-02 33.4 
Firmicutes correlation M00222 4.928E-01 3.537E-02 21.9 
Firmicutes correlation M00239 7.885E-01 7.556E-05 60.3 
Firmicutes correlation M00298 -8.012E-01 1.797E-03 -35.6 
Firmicutes correlation M00299 4.129E-01 2.773E-02 37.3 
Firmicutes correlation M00307 5.047E-01 7.554E-03 44.4 
Firmicutes correlation M00335 5.054E-01 4.482E-03 45.6 
Firmicutes correlation M00360 2.255E+00 3.056E-06 70.7 
Firmicutes correlation M00434 5.418E-01 9.319E-03 41.1 
Firmicutes correlation M00439 4.340E-01 2.276E-02 38.7 
Firmicutes correlation M00476 2.699E+00 1.134E-03 63.4 
Firmicutes correlation M00479 2.039E+00 2.073E-02 25.6 
Firmicutes correlation M00484 1.646E+00 7.292E-03 42.3 
Firmicutes correlation M00495 6.254E-01 4.360E-02 25.2 
Firmicutes correlation M00506 1.985E-01 4.540E-02 15.2 
Firmicutes correlation M00549 3.586E-01 3.881E-02 32.8 
Firmicutes correlation K00981 1.079E+00 8.291E-03 18.1 
Firmicutes correlation K01839 6.327E-01 1.323E-02 36.8 
Firmicutes correlation K01921 1.315E+00 1.297E-02 15.5 
Firmicutes correlation K01939 1.291E+00 4.833E-02 34.4 
Firmicutes correlation K01951 1.204E+00 8.211E-04 23.1 
Firmicutes correlation K02528 1.097E+00 2.660E-02 12.7 
Firmicutes correlation K02824 8.162E-01 3.657E-04 52.2 
Firmicutes correlation K02860 9.464E-01 2.473E-02 29.1 
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Table 5.7 (cont’d) 

Dataset pPCA analysis 
Genome 
feature Slope p Effect size 

Firmicutes correlation K02886 1.094E+00 4.702E-02 8.8 
Firmicutes correlation K02899 1.035E+00 1.673E-02 12.6 
Firmicutes correlation K03043 1.049E+00 1.286E-02 13.6 
Firmicutes correlation K03046 1.953E+00 1.994E-04 30.6 
Firmicutes correlation K03217 1.948E+00 4.330E-04 32.0 
Firmicutes correlation K03431 1.120E+00 2.636E-02 10.4 
Firmicutes correlation K03501 1.368E+00 4.425E-03 25.0 
Firmicutes correlation K03589 1.516E+00 7.397E-03 56.8 
Firmicutes correlation K03687 1.989E+00 1.450E-02 50.1 
Firmicutes correlation K04078 8.653E-01 1.840E-02 15.1 
Firmicutes correlation K04096 1.456E+00 3.506E-04 25.3 
Firmicutes correlation K04567 2.181E+00 5.296E-05 43.4 
Firmicutes correlation K06207 6.666E-01 3.337E-02 30.9 
Firmicutes correlation K06309 5.662E-01 2.992E-02 24.3 
Firmicutes correlation K06867 1.484E+00 8.472E-03 24.5 
Firmicutes correlation K06949 1.100E+00 2.140E-03 45.2 
Firmicutes correlation K07030 6.584E-01 7.430E-03 43.6 
Firmicutes correlation K07462 1.165E+00 8.789E-04 27.9 
Firmicutes correlation K09748 1.480E+00 5.632E-05 31.9 
Firmicutes correlation K09787 1.328E+00 9.737E-04 30.6 
Proteobacteria correlation M00027 9.551E-01 1.335E-03 29.3 
Proteobacteria correlation M00053 4.299E-01 2.651E-02 24.8 
Proteobacteria correlation M00136 1.297E+00 1.313E-02 15.1 
Proteobacteria correlation M00150 7.919E-01 8.488E-04 38.5 
Proteobacteria correlation M00176 5.272E-01 8.278E-04 43.2 
Proteobacteria correlation M00208 4.486E-01 2.511E-03 39.5 
Proteobacteria correlation M00213 8.852E-01 7.753E-04 31.6 
Proteobacteria correlation M00217 1.337E+00 8.755E-03 28.4 
Proteobacteria correlation M00226 9.367E-01 8.477E-03 21.6 
Proteobacteria correlation M00238 4.374E-01 3.144E-03 36.5 
Proteobacteria correlation M00266 2.208E+00 1.790E-03 37.1 
Proteobacteria correlation M00268 2.302E+00 1.420E-04 45.8 
Proteobacteria correlation M00270 2.360E+00 5.521E-03 33.3 
Proteobacteria correlation M00271 1.290E+00 3.008E-03 23.5 
Proteobacteria correlation M00275 2.809E+00 2.425E-03 72.6 
Proteobacteria correlation M00277 2.596E+00 5.580E-05 56.4 
Proteobacteria correlation M00282 6.074E-01 4.028E-02 14.4 
Proteobacteria correlation M00303 2.654E+00 6.681E-07 68.7 
Proteobacteria correlation M00305 7.321E-01 2.982E-05 34.5 
Proteobacteria correlation M00324 1.385E+00 5.532E-09 78.3 
Proteobacteria correlation M00332 1.269E+00 1.015E-05 37.7 
Proteobacteria correlation M00339 8.487E-01 2.851E-06 43.7 
Proteobacteria correlation M00446 9.573E-01 5.325E-04 44.3 
Proteobacteria correlation M00450 7.533E-01 1.066E-03 38.1 
Proteobacteria correlation M00471 5.529E-01 1.986E-02 23.8 
Proteobacteria correlation M00473 2.377E+00 2.361E-05 59.2 
Proteobacteria correlation M00477 8.610E-01 1.305E-02 16.7 
Proteobacteria correlation M00486 1.747E+00 1.533E-03 32.0 
Proteobacteria correlation M00491 8.513E-01 1.697E-02 17.2 
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Table 5.7 (cont’d) 

Dataset pPCA analysis 
Genome 
feature Slope p Effect size 

Proteobacteria correlation M00504 5.710E-01 2.055E-02 23.4 
Proteobacteria correlation M00538 -1.459E+00 1.740E-02 -5.4 
Proteobacteria correlation M00545 5.893E-01 1.802E-02 13.8 
Proteobacteria correlation M00551 9.224E-01 4.144E-04 30.3 
Proteobacteria correlation M00568 9.479E-01 4.178E-04 32.0 
Proteobacteria correlation M00569 -8.518E-01 1.688E-02 -9.0 
Proteobacteria correlation M00577 -1.057E+00 3.977E-02 -4.5 
Proteobacteria correlation M00582 7.866E-01 1.029E-02 17.1 
Proteobacteria correlation M00605 5.128E-01 3.106E-02 20.6 
Proteobacteria correlation M00631 1.730E+00 4.243E-04 35.5 
Proteobacteria correlation M00632 1.025E+00 2.905E-04 44.7 
Proteobacteria correlation K02763 6.074E-01 4.028E-02 14.4 
Proteobacteria correlation K02764 6.237E-01 1.824E-02 17.4 
Proteobacteria correlation K02765 6.237E-01 1.824E-02 17.4 
Proteobacteria correlation K02840 1.276E+00 2.498E-02 27.2 
Proteobacteria correlation K03838 1.760E+00 1.340E-02 18.6 
Proteobacteria correlation K07862 7.369E-01 1.266E-04 47.9 
Proteobacteria correlation K08682 2.408E+00 2.502E-03 47.6 
Proteobacteria correlation K11744 1.368E+00 2.856E-02 13.5 
Proteobacteria correlation K12151 1.568E+00 2.654E-02 15.0 
Proteobacteria correlation K12290 1.481E+00 4.240E-02 12.7 
Proteobacteria correlation K14392 1.846E+00 2.697E-03 55.4 
Proteobacteria correlation K15983 1.168E+00 1.911E-02 12.7 
Proteobacteria correlation K16044 9.648E-01 3.620E-02 14.6 
Proteobacteria correlation K16050 1.168E+00 1.911E-02 12.7 
Actinobacteria correlation M00087 -1.076E+00 2.816E-03 -44.8 
Actinobacteria correlation M00135 1.040E+00 1.514E-02 54.7 
Actinobacteria correlation M00157 1.094E+00 9.765E-04 56.7 
Actinobacteria correlation M00196 6.329E-01 1.574E-02 54.1 
Actinobacteria correlation M00233 1.470E+00 9.515E-06 76.3 
Actinobacteria correlation M00238 1.167E+00 9.307E-04 52.7 
Actinobacteria correlation M00239 8.007E-01 4.244E-03 52.1 
Actinobacteria correlation M00258 1.275E+00 4.521E-02 13.3 
Actinobacteria correlation M00302 1.148E+00 1.303E-02 60.7 
Actinobacteria correlation M00436 8.276E-01 2.455E-03 57.4 
Actinobacteria correlation M00546 1.858E+00 1.853E-02 73.1 
Actinobacteria correlation M00555 8.523E-01 5.548E-03 65.0 
Actinobacteria correlation M00603 9.893E-01 5.826E-03 66.0 
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