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ABSTRACT

STRUCTURE OF MULTIDIMENSIONAL PATTERNS

By

Stephen Phillip Smith

The problem of describing the structure of multidimensional data is

important in exploratory data analysis, statistical pattern recognition,

and image processing. We view a data set as a collection of points

embedded in a high dimensional space. The primary goal of this research

is to determine if the data have any clustering structure; such a

structure implies the presence of class information (categories) in the

data.

We wish to use a statistical hypothesis test in our decision

making. To this end, we define data with no structure as data following

the uniform distribution over some compact convex set in K-dimensional

space, called the sampling window.

This thesis defines two new tests for uniformity along with various

sampling window estimators. The first test is a volume-based test which

captures density changes in the data. The second test compares a

uniformly distributed sample to the data by using the minimal spanning

tree (HST) of the pooled samples. We provide sampling window estimators

for simple sampling windows and use the convex hull of the data as a

general sampling window estimator.



For both of the tests for uniformity, we provide theoretical

results on their size, and study their size and power by Monte-Carlo

simulations. Both tests show good power against clustered alternatives.

We also use simulation to study the efficacy of the sampling window

estimators. These estimates perform well, but the convex hull estimator

is too computationally burdensome to apply in high dimensions. Since

the MST-based test can be performed without explicitly computing the

convex hull of the data, we conclude that it is more reasonable to apply

to real data. Experiments with some real data sets also demonstrate the

power of the MST-based test.
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CHAPTER 1

INTRODUCTION

1.1 The Problem Statement

This thesis addresses the problem of describing the structure of

multidimensional data. We are interested in data that are represented

as points in a K-dimensional (K>2) space. We assume that little prior

information about the data is available and we wish to make as few

assumptions about the data as possible. This restricts us to a

preliminary assessment of the structure and interrelationship among the

points.

Figure 1 shows a number of data sets in two dimensions. Obviously,

a complete description of some of these data sets would take

considerable effort. However, the descriptors used would depend on the

end goal. For some applications, it might be enough to know that the

data in Figure 1(a) are 'uniform' and the data in Figures 1(b) and l(c)

are 'clustered', while other applications may be interested in knowing

that the data in Figure l(e) form an "S".

We are interested in a gross description of the data. We will try

to decide if a data set has some 'unusual internal structure'. To do

so. we will define data with no 'structure'. There would probably be

1
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little interest in further analyzing data sets classified as

unstructured.

There are three main questions which every Pattern Recognition

researcher should be interested in asking about data. These are

(1) Do the data suggest, by their own internal structure. any

'classes' in the data?,

(2) Do these classes correspond to a priori pattern classes or to

other extraneous factors in the application environment?,

(3) What measurements best extract the a priori pattern classes?

What type of classifier best embodies these class distinctions and

how can one best learn about the parameters of these classes?

Classical Pattern Recognition theory deals mostly with the questions

posed in (3). Some techniques are available in Exploratory Data

Analysis and Pattern Recognition to gain answers to questions (I) and

(2). This thesis deals with a way of providing information to answer

question (1). We ask if there is any 'structure' in the data.

To make a decision of 'structure' versus 'no structure' for a

particular data set, we would like to phrase this problem as a standard

statistical hypothesis test. This compels us to define a stochastic

model for unstructured data and one for structured data. Our stochastic

model for unstructured data will be the continuous uniform distribution

over some compact convex set in K-dimensional Space, called the sampling

vvindow. Using this definition, the only data set in Figure l which is
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unstructured is Figure 1(a). This is reasonable since it is the only

data set in Figure l which has no meaningful higher level description

than 'randomly dispersed data inside a circle'.

There are many possible alternatives to unstructured data. Since a

primary motivation for this work is in assessing the 'clustering

tendency' [Dub80, CroBO, Cro82] of a data set, an important stochastic

model for structured data is one of clustering or aggregation. Clusters

in the data would represent the 'classes' of interest to a Pattern

Recognition researcher. The antithesis of clustered data is lattice

regularity, shown in Figure l(d). Under our definition, this regular

data should also be categorized as structured, although this structure

is not of significant interest in Pattern Recognition.

To decide if a data set is structured or unstructured using a

statistical hypothesis testing paradigm, we need to define some test

statistic which will capture this difference. The primary goal of this

thesis is to find a test statistic whose distribution is known under the

null hypothesis of uniformity and all possible alternative hypotheses

for all dimensions and for all sampling windows. We will see that this

goal is overly ambitious. We at least demand that the null distribution

of the statistic be available with known sampling window. This allows

one to set the size of the test based on the statistic. We also require

that the statistic be applicable to high dimensional data. Little study

has been done to evaluate test statistics when the sampling window is

unknown, and we merely begin such a study here. Our basic method of

study will be to perform a Monte-Carlo simulation of a statistic to
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check its size and determine its power. We will use data over both

known and unknown sampling windows.

In the remainder of this chapter, we will briefly present

background on Pattern Recognition. the field from which this thesis

originates. Since clustering techniques in Exploratory Data Analysis

are aimed at providing information on the 'class' structure of data, we

review some of these techniques. Our notion of structure is driven by,

and closely related to, the concept of clustering tendency, and we

define this concept. Finally, we give the organization of this thesis.

1.2 Pattern Recognition

Pattern Recognition techniques form the backbone of important

methods used in the fields of machine intelligence and machine

perception. Pattern Recognition can be defined as "the categorization

of input data into indentifiable classes via the extraction of

significant features or attributes of the data from a background of

irrelevant detail" [Gon78]. The categorization of input data is treated

extensively in the book by Duda and Hart [Dud73]. We are primarily

interested in testing if the data have any 'significant features' to

recommend it for further study. In terms of the applications, research

methods, and research techniques, this thesis is under the broad

umbrella of Pattern Recognition. Thus we emphasize multi-dimensional

data sets and are sensitive to computational considerations. We do not

explicitly treat any application areas. We are concerned with, but

hopefully not dominated by, theoretical issues in statistical analysis
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[Bar75] and probability theory [Har7A]. To facilitate further

discussion, we now define some standard terms used in Pattern

Recognition studies.

Pattern Recognition can be broken into two broad subfields: the

geometric approach and the structural approach. The structural approach

essentially views ‘patterns' as complex parts formed from idealized

simpler parts in the presence of distortion [Gre76, Gre78]. It can be

further subdivided into grammatical techniques [Fu7A] and heuristic

techniques [Pav77], depending on how the parts and their relationships

are described. The geometric approach, with which this thesis deals,

views objects as being represented as points between which proximities

are given or can be computed. Geometric Pattern Recognition can be

further subdivided into statistical versus non-statistical approaches.

We work in statistical Pattern Recognition. There are two forms of data

presentation in statistical Pattern Recognition algorithms: the pattern

matrix or the proximity matrix. In a proximity matrix, N patterns are

represented by an N by N matrix, whose (i,j)th entry specifies the

proximity (similarity or dissimilarity) between pattern i and pattern j.

This type of data occurs most frequently in applications from the social

and behavioral sciences. We deal with the pattern matrix, which is an '

N by K matrix, where each row is a pattern and each column denotes a

feature. The K features are viewed as a set of orthogonal axes and each

pattern is then seen to be a point or vector in a K-dimensional space

called the pattern space.



Another dichotomy in Pattern Recognition is that of labeled

patterns (supervised learning) versus unlabeled patterns (unsupervised

learning). One may assign a priori labels to each pattern representing

the 'class' to which that pattern belongs. This set of labeled patterns

constitutes the training samples which can be used to learn the

structure of each pattern class or determine the decision boundaries

between the classes. If it is assumed that the patterns from a class

follow some parametric statistical distribution, then we have a

parametric statistical decision problem. Otherwise, we must either

estimate the density function or use some non-parametric decision rule.

We assume little information is available about the patterns in our data

sets and, therefore, we work in the unsupervised learning mode.

Further, we assume that we have no knowledge about the number of

possible classes present in the data. Work in this mode can be

categorized under the general heading of Exploratory Data Analysis,

which is detailed in the next section.

1.3 Exploratory Data Analysis

Exploratory Data Analysis [Gna77, Tuk77] is a "generic term for a

body of mathematical, statistical and heuristic operations whose goals

are to help an investigator get acquainted with data taken at a

preliminary stage of scientific inquiry" [Pan81]. As the word

'exploratory' lmplies, we are interested in a preliminary assessment of

the gross structure of a data set, rather than confirming~ some
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application-derived model of the data. The difficulty in an intuitive

interpretation of data embedded in high dimensional space is obvious.

Even in two and three dimensions the use of these techniques may result

in a better and more systematic categorization of the data set than can

be done by the naked eye. Also, the large volumes of such data that

occur in numerous scientific fields necessitate computer processing.

The technique of Exploratory Data Analysis in which we are most

interested is called clustering. Clustering attempts to find natural

groupings of patterns in a data set such that patterns within groups are

more 'similar' than patterns across groups. There are many clustering

algorithms [And73, Eve7A, Har75] and each essentially represents its own

definition of what is meant by a 'natural' grouping. Techniques range

from graph-theoretic clustering methods [Zah7l] to minimum square-error

clustering methods [And73]. One major problem with clustering

algorithms is that they impose a clustering structure on the data set

even if such structure is not inherent in the data. For instance,

clustering algorithms will almost always find clusters in uniformly

distributed data. Thus, quite often, clusters found in data are

artifacts of the clustering method. We wish to avoid elaborate

interpertation of uniform data. and so we will refuse to apply

clustering algorithms to any 'unstructured' data. This is essentially

the methodological paradigm involving assessing the 'clustering

tendency' of the data, set forth by Dubes and Jain [DubBO]. For other

problems in Cluster Analysis see Everitt [Eve79] and Dubes and Jain

[Dub76, Dub79, Dub80].



l.A Clustering Tendency

The term 'clustering tendency' refers to the problem of deciding

whether the data exhibit a predisposition to cluster, in other words to

form natural groups. We are interested in assessing if the structural

arrangement of the points is unusual, either on the side of aggregation

of the data, or on the other extreme when the data is aligned in a near

lattice arrangement. Basically, clustering tendency assessment implies

categorizing a given data set into one of the following three broad

descriptions:

(1) data are arranged randomly

(2) data are aggregated

(3) data are regularly spaced.

l.A.l Proximity Matrix

Most of the work in clustering tendency assessment reported in the

literature deals with proximity matrix data. The entries in the

proximity matrix are rank ordered, that is only the ranks of the

similarities are meaningful. The null hypothesis of randomness is

stated to mean that all proximity matrices are equally likely. This is

called the Random Graph null hypothesis by Dubes and Jain [Dub80], since

there is a one to one correspondence between an N by N rank order matrix
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and an undirected, weighted, labeled graph on N nodes.

Statistics used to assess clustering tendency under the Random

Graph null hypothesis include the number of edges needed to connect the

graph [Fil71, Lin75], the distribution of node degrees in a threshold

graph [Fil7l], the number of cycles in such a graph [Fil7l], and the

number of nodes with incident edges in a threshold graph [Lin73].

However, Bailey [Bai78] points out that the Random Graph null hypothesis

is inappropriate for points distributed randomly is space. This is

because the metric space in which the points lie impose some additional

constraints on data configurations.

l.A.2 Pattern Matrix

The null hypothesis of no structure here is the continuous uniform

distribution over some compact convex set S C.RK. This null hypothesis

can also be viewed as a spatial Poisson process over RK’ restricted to

set S. The set S is called the sampling window. Thus a sampling window

can be defined as the compact convex support set for the underlying

distribution.

The crucial role of the sampling window in assessing the structure

of a set of patterns can be seen from Figure 2. Figure 2(a) shows a

small square inside the unit square over which 100 points have been

generated uniformly. If the sampling window is taken to be the small

square, then the data should be viewed as uniform, and hence the data

has no structure. However, if for some a priori reason the unit square
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is taken as the sampling window, then the data would have to be

considered as structured in this sampling window. Perhaps one would

wish to call it a single cluster in the middle of the unit square. The

need for a convex sampling window is shown in Figure 2(b). This data

set should intuitively be considered as consisting of two clusters.

However, the 100 data points are uniformly distributed over two small

circles. Hence the data could be considered uniform over a region which

is the union of these two circles. To exclude such a situation, we make

the restriction that sampling windows be convex sets.

The statistical test of hypothesis can thus be stated as:

Ho: The data are uniform over the sampling window

versus

H1: The data are not uniform over the sampling window.

The difficulty of testing uniformity of a pattern matrix is

twofold. First, the sampling window is unknown and must be estimated

from the data. Second, the test for uniformity must be performed in the

K-dimensional space. The distribution of uniformly distributed points

which are projected into a lower dimensional space by any of the popular

projection algorithms [81581] is unknown in the projected space.

Further, checking only for marginal uniformity may not be sufficient.

As an example, consider the following non-uniform density function over

the unit square whose marginal densties are uniform.

2
f(x.y) = ls(x2 - x - y + y) (2y - 1) (2x - 1) +1 for Osx,ysl

= 0 otherwise.
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l.A.3 Spatial Point Processes

We now provide a mathematical framework to introduce spatial point

processes and, in particular, the Poisson process [RiP77. Cox80, Ish8l].

We imagine a probabilistic mechanism scattering points throughout

K-dimensional Euclidean space. Each realization of the process is a

countable number of points over the space. The important random

K
variables are N(B), where B is a Borel subset of R , and N, which is a

measurable mapping from the Borel sets into the natural numbers and

counts the number of points in B. A model of a point process determines

the distribution of N(B) for all Borel subsets of RKZ The intensity, L,

of a homogeneous process is the expected number of points per unit

volume and summarizes the first moment structure of the family {N(B)}.

Let u(.) denote K-dimensional Lebesgue measure. For a Poisson

process, we demand (1) N(B) has a Poisson distribution with parameter

L'u(B) for all bounded Borel sets 8 and (ii) {N(Bi)} is a set of

independent random variables whenever {Bi} is a class of disjoint sets.

In this case, the model is completely determined by the parameter L. A

Poisson process restricted to a bounded set, such as the sampling window

S, generates the continuous uniform distribution over S, conditioned on

"(5) .
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For an alternative hypothesis we have a number of choices. An

example of a clustered process is the classic Neyman-Scott process

[Ney72]1 Details of this process are given in Appendix A. For a

regular alternative, we use a hardcore or inhibitory model [Mat60,

Rip77] which is also described in detail in Appendix A. Strauss [Str75,

Kel76] shows a theoretical relationship between many of these point

process models.

When a Poisson process is used as a null hypothesis and the

distribution of a statistic is derived under this assumption, one must

decide how to approach data in some sampling window S CLR‘. This is

because 'edge effects' which arise from having a bounded sampling window

can invalidate the distribution of the statistic [Rip81]. These edge

effects become increasingly dominant as dimensionality increases. Some

statistics (such as Ripley's D(t), mentioned later) contain their own

edge correction factors. There are two general approaches to this

problem:

(1) Analyze points only inside W C.S but allow measurements

between the points in W and those that remain in S-W. In general,

one does not know the relative size of W as compared to S needed

to eliminate edge effects. This has been called the border, or

guard area, method of edge correction for obvious reason.

(2) A hyper-rectangular sampling window can be regarded as a

torus, so that opposite faces are considered to be close. Thus

lnterpoint distances can 'wrap around' the boundaries of the
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hyper-rectangle. This is the so called wrap around method of edge

effect correction.

Most of the studies which deal with the null hypothesis of a Poisson

process (described in Chapter 2) have used the wrap around method of

edge correction.

1.5 Organization of the Thesis

Chapter 2 contains a literature review of tests for assessing

structure in a data set. Chapter 3 introduces a new test, called the

volume-based test. The theory underlying the test is also given. The

volume-based test requires precise knowledge of the sampling window so

Chapter A studies estimators for various types of windows. Chapter 5

presents experimental results when using the volume-based test over both

known and unknown sampling windows. Since the conclusion of Chapter 5

is that the volume-based test is not computationally feasible in high

dimensions with unknown sampling window, Chapter 6 presents a new test,

called the MST-based test, which handles this case. Finally, Chapter 7

presents the contributions of this thesis. our conclusions, and

suggestions for future research.



CHAPTER 2

TESTS FOR STRUCTURE IN DATA

2.1 Introduction

The problem of deciding if data have structure has been addressed,

in a slightly different format, in both the ecological literature

[Pie77] and the geographical literature [Rog7A]. The recent book by

Ripley [Rip81] provides a good overview of the statistical methods used.

Basically, both fields are interested in testing if there is some

non-random mechanism at work in the spatial distribution of the

populations under study. Unfortunately, both fields deal with points in

two dimensions and normally assume that the sampling window is known.

These two assumptions are rarely valid in Pattern Recognition studies.

One problem with many of the tests for spatial arrangement is that the

distribution of the test statistic even under the null hypothesis of

uniformity is not known [Rip77]. In some instances, when the

distribution is known, it is applicable only under the assumption of an

infinite Poisson process. In applying these tests to a finite sampling

window, edge effects dominate, especially in high dimensions. Here we

give a brief overview of tests used in clustering tendency, keeping in

mind the need to extend the tests to higher dimensions.

16
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2.2 The Scan Test

Tests for structure based on 'the number of points in the most

populous region of the sampling window are intuitively appealing. An

abnormally large count would indicate the presence of clustering. The

size of the region must, for statistical reasons, be fixed a priori and

either a continuous scan (overlapping windows) or a disjoint partition

of regions is used. The choice of region size is not obvious. The

model of randomness is a uniform distribution over the sampling window.

Attempts have been made, mostly for the one-dimensional case, to derive

the null distribution of such statistics [Nau66, Wal7A]. Unfortunately,

even in one dimension, determining the size of the scan test is

computationally infeasible. Conover et. a1. [Con79] and Naus [Nau65]

have attempted to apply this test to two dimensions. It does not appear

possible to extend this test to high dimensions.

2.3 Quadrat Analysis

The basic idea of the quadrat method [Rog7A] is simple. We divide

the sampling window into squares of equal size (hypercubes in K

dimensions), called quadrats, and record the number of points which fall

in each quadrat. A data set containing a regular arrangement of points

would be expected to generate relatively equal quadrat counts, an

aggregated data set would generate a few quadrats with most of the

points and a uniform data set would lead to a situation somewhere
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between these two extremes.

As quadrats are disjoint and of equal volume, the set of counts

should follow a Poisson distribution under the null hypothesis of no

structure. Typically a Chi-squared test is performed to determine if

this hypothesis holds. A significant drawback of the quadrat test is

its inability to detect and test spatial arrangement at more than one

scale, set by the quadrat mesh. The Grieg-Smith approach [Gri6A] and

Mead's approach [Mea7A] are attempts to correct this deficiency.

Another problem with quadrat tests is that the number of quadrats

becomes enormous in high dimensions, most of them being empty.

One possible solution to this problem is the use of transect

sampling. Transects are narrow tubes inserted at random through the

data. Counts are taken only on data that fall within these tubes, thus

providing a linear strip of counts. Cross [CroBO] discussed this

possibility. Unfortunately, because of the sparseness of data in

practical situations, transect sampling rarely provides adequate

information for assessing the structure of the data.

2.A Second Moment Estimators

Another class of tests for structure rests on computing an estimate

of the variance of a point process. As shown by Ripley [Rip77]. the

second moment structure of a process may be reduced to a function D(t)

defined on (0,9O) such that, for a process with intensity L, the

following properties hold.
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(1) UL-D(t) is the expected number of ordered pairs of distinct

points less than distance t apart when the first point is in a given set

of unit area, and

(2) L°D(t) is the expected number of additional points within a

distance t of an arbitrary point in the process.

Ripley provides an unbiased estimator of D(t) for a sample containing N

points, given by

-2
’n‘m = (N) 2 kIX.y).

where the sum is over ordered pairs of points (x,y) closer than a

distance t. Here k(x,y) is an edge correction factor such that l/k(x,y)

is the proportion of the boundary of the hypersphere centered at x and

passing through y which is within the sampling window S. Unfortunately,

very little is known about the sampling fluctuations of D(t) even in two

dimensions. Ripley [Rip77] resorts to Monte-Carlo simulations of ‘D(t)

for fitting models to data, while in [Rip79] he uses the maximum

.~

deviation of a normalized version of D(t) from its expected value.

In two dimensions, Liebetrau and Rothman [Lie77. Lie77b, Lie78] use

estimates of Var[ N(C) ]/E[ N(C) ] for a rectangle C aligned within a

rectangular sampling window S, where N(C) is the number of data points

in rectangle C. Their test statistics are

EQIXJ) and 2Q2(x.y).

where the sums are over all pairs of points (x,y) and

Q((xl.x2).(Y1,y2)) - [ cl - |xl-y1| J * [ c2 - |x2-y2| ].
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The function [c] denotes the maximum of c and zero. The values of cl

and c2 determine the size of the rectangle. Again the choice of c1 and

c2 is critical, though the authors are able to show asymptotic joint

normality of the test statistic using various values of Cl and (c2

simultaneously. It is unclear how to extend this test to other types of '

sampling windows.

2.5 Distance-Based Tests

The existence of a 'structure' in a given set of points could be

defined based on some interrelationship among the points that has

unexpected characteristics [Moo7A, A1a81]. One gross measure of such a

structural relationship is simply the interpoint distances. While the

use of interpoint distances, without additional information such as

which point pair generated which distance, may not capture important

details, the use of interpoint distances has much appeal. First,

distances are invariant under the group of Euclidean motions which is

consistent with our intuitive notion of a 'structure' as being invariant

under rotation and translation. Second, interpoint distances are easy

to compute in K dimensions.

2.5.1 Using All lnterpoint Distances

The naive way to use these distances is to compute all N(N-l)/2

interpoint distances, find the resulting histogram or the empirical

distribution function, and compare this function with the distribution
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function under the null hypothesis of uniformity (or any other

hypothesis). This procedure runs into two main problems. First, the

theoretical distribution, which depends on the size and shape of the

sampling window, is unknown even for simple shaped sampling windows like

a hypersphere. Another problem is that we have no means of testing the

equality of the empirical distribution and the theoretical distribution.

This is because the known non-parametric tests (K-S or Chi-squared)

assume that the sample points are independent. This is certainly not

the case for all the interpoint distances. Therefore, we do not know

the level of a test based on, say, the K-5 test statistic. One solution

to these problems is suggested by Bartlett [Bar6A] who adjusts the

critical values of the Chi-squared test statistic based on the

correlation among the distances. Another solution to these problems

would be to use Monte-Carlo techniques to compute the exact significance

level of the test [Dig79].

2.5.2 Using Subsets of Distances

The joint distribution of all the interpoint distances for N points

is unknown in an arbitrary sampling window. However, we know the

distribution of the distance between two points placed at random in a

hypersphere [Ham50, Lor5A, Ala76]. This distribution can also be worked

out when two points are placed randomly in a hypercube, though the

derivation is tedious. For a general sampling window the results appear

out of reach. An obvious simplification over using the actual

distribution of interpoint distances among N points is to use the

theoretical distribution of distance between two random points and
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ignore the dependencies. Cross [Cro80] has shown that this method leads

to spurious rejections of the null hypothesis of uniformity. Another

possible procedure [Cro80] is to select independent distances from all

N(N-1)/2 interpoint distances. Cross shows that the key factor in using

such a test is the sampling window. Since the known theoretical

distribution is between two points in a hypersphere, the data set in

question must somehow be scaled to fit into a hypersphere. How such a

scaling should be done is an open question.

Another approach when using distance-based methods is to observe

only the small interpoint distances. This has intuitive appeal since

the interpoint distance distribution should be flat near zero when the

points are regularly spaced, should have a mode near zero when the

points are clustered and should have a shape between these two when the

points are uniform. Also, as Ripley [Rip78] mentions, the minimum

interpoint distance can be shown to be the Uniformly Most Powerful test

of uniformity against a hard-core alternative. Using small distances

allows us to derive asymptotic distributions for some test statistics

[Sau77, $1178]. The only extension of these tests to K dimensions (K>2)

is by Smith and Dubes [Smi8l]. Unfortunately, the reliance on

asymptotic theory makes the applicability of these tests to real data

doubtful.

Other subsets of the total N(N-1)/2 interpoint distances can be

used in summarizing the structure of the data and defining tests for

uniformity. Generally speaking, such subsets are chosen on the basis of

their being part of some structural relationship between the points.
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For instance, the most popular subsets are some form of near neighbor

distances. Given points from a Poisson field, we know the joint

distribution of the distances from an arbitrary point in the space to

its first M nearest neighbors among these points [CroBO]. For a finite

number of points over a bounded region, one needs to modify the

distribution to take into account the edge effects and the effects of

near neighbors common between points. In the literature, generally,

only the nearest neighbor information has been used. Clark and Evans

[Cla5A] suggest a statistic based on the average nearest neighbor

distance among the sample points. With corrections to reduce

interdependence and edge effects given by Ripley [Rip79] for

two-dimensions, this statistic approximately follows a standard normal

distribution.

Brown [Bro75] and Brown and Rothery [Bro78] suggest the coefficient

of variation of the squared nearest neighbor distances and the ratio of

the geometric mean to the arithmetic mean of these distances as possible

test statistics. This could be extended to K dimensions by taking the

Kth power of these distances. No adequate approximation to the sampling

distribution of these statistics is known, though the asymptotic results

of Silverman and Brown [$1179] could be used on the small near neighbor

distances. Also, simulation studies [R1979] indicate that these

statistics are not powerful against clustered alternatives.

Near neighbor distances have the unfortunate characteristic of

capturing only the local structure. This occasionally makes deriving

theoretical results possible but has the disadvantage that much of the
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structural information about the data set is ignored. Perhaps distances

from the minimal spanning tree [Har72] of the data set or from other

structural graphs such as the Delaunay tesselation [Ahu81] or the

Relative Neighborhood graph [Tou80] may be of interest in capturing more

global information. However, even in the two-dimensional case, no firm

results are available on the use of such structural graphs.

2.5.3 Sampling Origins

One technique that overcomes some of the inadequacies of using the

nearest neighbors between the sample points is the use of sampling

origins. Sampling origins are distinguished points fixed by the

researcher in the sampling window, usually at random. The need to know

the sampling window to make this technique meaningful is obvious.

Several statistics using nearest neighbor distances between sampling

origins and data points and nearest neighbor distances between data

points are available. Diggle et. al. [01976] and Hines and Hines

[Hin79] give extensive simulation studies on the performance of these

statistics in the two-dimensional case. Cross [CroBO] extended this to

higher dimensions.

In these studies, one statistic that showed high power against

clustered alternatives is the Hopkins statistic [H0p5A]. Cross and Jain

[Cr082] study the performance of the Hopkins statistic in high

dimensions. Let {Yi} be M sampling origins placed at random in the

sampling window and let {Xi} be the N data points. Let Uj be the

minimum distance from Yj to points in {Xi}, j=1,2,...M. Let Wj,
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j=l,2,..,M be a random sample of size M from the N nearest neighbor

distances among the data points. Under the null hypothesis of a Poisson

process {Uj} and {Wj} have identical distributions. The Hopkins

statistic is given by

(Ui)"+(wi')K

.151

which has a Beta distribution with parameters (M,M) under the null

hypothesis.

Panayirci and Dubes [Pan8l] present a detailed study of the

extension of another statistic, called the Cox-Lewis statistic [Cox76],

to K dimensions. The Cox-Lewis statistic measures second-order

information from the data in the following manner. First, it computes

the distance between a sampling origin and the origin's nearest

neighbor, say Xi, among the data points. It then computes the distance

from Xi to its nearest neighbor among the remaining data points. By

properly normalizing the ratio of these two distances Panayirci and

Dubes obtain a statistic that follows the uniform distribution on the

interval [0,1] for the null hypothesis of a Poisson process. To obtain

information from more than one local area, several sampling origins are

used. The Cox-Lewis statistic is then the average of the normalized

distance ratios for a number of sampling origins. It appears to be as

powerful in detecting clustering as the Hopkins statistic [Pan8l].
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The null distribution of both Hopkins and the Cox-Lewis statistics

relies on a Poisson process null hypothesis. This effects their usage

in the following ways. First, all the distances measured for a sampling

origin are assumed to be independent from those for other sampling

origins. In finite data sets this implies that the number of sampling

origins be small. Cross and Jain [CroBZ] suggest choosing M to be equal

to 5% of N for the Hopkins statistic. Panayirci and Dubes [Pan81] use

this choice in their simulation study of the Cox-Lewis statistic.

Second, to reduce edge effects, both studies have used data over a

hyper-rectangular sampling window with wrap around. The near neighbor

distances were also computed using the wrap around method of edge

correction.

2.6 Summary

We have reviewed tests for spatial randomness and clustering

tendency. We wish to use such tests to determine the structure of high

dimensional data. Many of the proposed tests are inadequate for our

application. First, they may not be extendable to high dimensions or to

situations when the sampling window is unknown. In fact, no study has

been made on the effect of unknown sampling window for any test except

the brief study by Cross [CroBO] for tests based on interpoint distance

distributions. Many statistics have an unknown null distribution. Few

deal. with the null hypothesis of uniformity and rather choose to use a

Poisson process null hypothesis which invariably leads to problems
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involving edge effects and sample size. The next chapter introduces the

volume-based test which is able to deal with both edge effects and

sample size.



CHAPTER 3

THE VOLUME PARADIGM AND TEST

3.1 Introduction

We have seen in the previous chapter that most of the tests for

spatial randomness have some limitations and restrictions. Much of the

distributional theory available for the test statistics is either

asymptotic or it deals with data from a planar Poisson point process.

Reliance on asymptotic distributional theory forces one to include

heuristic 'edge effect' correction factors when computing a statistic.

This may limit one to rectangular sampling windows where torus wrapping

can be accomplished. In Pattern Recognition applications, this wrap

around is not appropriate. Also, extension of these tests to high

dimensions is not straightforward.

In this chapter we propose a test that

(a) is applicable in all dimensions and to all sampling windows,

(b) has an exact null distribution known for all sample sizes, and

(c) eliminates the need for edge effect correction.

The above properties require that our null hypotheis of randomness be

the continuous uniform distribution over the sampling window. This is

28
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of course equivalent to having a Poisson process restricted to the

sampling window, conditioned on N, the number of data points.

Testing for uniformity rather than a Poisson process insures two

things. First, it allows us to deal directly with N and second, the

null hypothesis of uniformity involves the sampling window (the set over

which the uniform density is nonzero). This eliminates the need to

apply an edge correction factor.

This chapter first presents the theorem from which various tests

for uniformity can be defined. It then gives some examples of tests,

and describes a test, called the volume-based test, that will be used in

following experiments. The chapter concludes with a discussion of the

factors that must be considered when using the volume-based test.

3.2 Volume Paradigm

The defining property of a uniform sample of points is the

equidensity of points throughout the sampling window. To test

uniformity, we wish to measure the change in this density over the

sampling window. The main question one must answer in trying to use

density to test the uniformity of a given sample of points is how the

density is expected to change under uniformity.

Since density changes are volume related, we choose to use a

certain sequence of volumes in our test. The volume-based test is

derived from the following theorem which creates a paradigm for various
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tests of K-dimensional uniformity. The theorem tells us the

distribution of the volumes of certain sets for random data.

u

Theorem 1: Let {Xih='be i.i.d. random vectors with the uniform

distribution over sampling window S CLRK. Let u be K-dimensional

Lebesgue measure. Let < W2 | zt(0,') > be an ordered class of

subsets of RK such that,

(1) for all zt(o,°o), Wz g s,

(2) for z, ,zt, 2,91 if and only if Wz‘ g W22 and

(3) there exists a function F: (O,u(S)) --> (050) such that if

F(y) = 2 then u(Wz) - y. Thus, given a particular value for

volume, we can pull out the set in the sequence with that

volume.

Let V(Xi) = W2 where z = inf{ z | XieWz I, i=1,2,..,N. In other

words, V(Xi) is the first subset in the sequence <Wz> which

contains Xi.

Then { u(V(Xi)) } is a set of random variables which are i.i.d.

uniform over (O,u(S)).

Proof:

Since the {Xi} are i.i.d., we need only prove that u(V(X1)) has

the uniform distribution over (O,u(S)).. That is we need to prove

P[u(V(x1)) s y] = y / u(S) for ye(o,u(5)).

For all yQIO.u(S)), the existence of F guarantees the existence of
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a W2 in <Wz> such that u(Wz)=y. In fact, this index 2 is F(y).

Also, from the definition of V(X1) and property (2), for ZGUDfiQ,

X1€WZ if and only if V(X1) _C_._Wz. Thus X$€Wz if and only if

u(V(Xt)) S u(Wz). Finally, since X1 is uniformly distributed over

S and for all 2, W2 ES then,

P[ X££Wz ] = u(Wz) / u(S).

So, for all y€(0,u(S)),

P[u(V(x1)) s y] = P[u(V(X1)) “may; 21

F01]

”(Mfiqz / u(S) = Y / u(S)-

= P[ xtew

QED.

In other words, the theorem states the following. We have a

sequence of monotone increasing subsets in the sampling window S. The

sequence is further constrained by the fact that for each volume from

zero to u(S) we can choose the element in the sequence with that volume.

If we then associate with each data point the first subset in the

sequence that contains the point and measure the volume of this subset,

this volume is then a uniform random variable on the interval (O,u(S)).

Further, the volumes associated with the data points are independent.

Thus we have taken uniform random vectors in K dimensions and

transformed them into uniform random variables in one dimension. Of

course, the theorem does not tell us the key point in making this

transformation: how to define the sequence of subsets <Wz>. We deal

with that next.
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3.3 Examples of the Volume Paradigm

We now give some applications of Theorem 1, showing how the sequence

of subsets may be defined. As before, let {Xi} be i.i.d. uniform random

vectors over sampling window S.

3.3.1 Marginal Uniformity in a Hypercube

Let S = [0,1]¥3 the unit hypercube in K dimensions. Define

W2 = { X=(xt,xz,...,xK)£S | x1 5 z } for each zé(0,l).

Note that the conditions of the theorem hold since we can define F to be

the identity function. With <Wz> defined in this way we get V(Xi)-tht,

where x,-t is the first coordinate of Xi. Thus u(V(Xi)) is just the

value of the first coordinate of X1. Then the theorem states that given

random vectors i.i.d. uniform over the unit hypercube, the first

coordinate of each of the vectors is a uniform random variable between

zero and one. This is a trivial and unexciting result, but it shows the

generality of the theorem.

3.3.2 Uniform Volumes about a Point

Let S be an arbitrary sampling window and let P be a point in S.

Define

Wz = { XGS | ||X~P||z S 2} for each 2 in (0,”),
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where ||.||2 is the Euclidean distance metric. Then F can be taken as

the inverse of the function that relates a radius about P to the portion

of the volume of the hypersphere with that radius that is inside the

sampling window.

Note that for small radii the hypersphere about P may be wholely

contained in S and this function is analytically derivable. However, as

the radii increase, the relation between distance and volume may not be

amenable to analysis for arbitrary S.

When <W2> is defined in this manner, V(Xi) is then

{ XES | ||X-P||z s ||Xi-P||2 }, i=l,..,N. See Figure 3 for an example.

Then by Theorem 1, { u(V(Xi)) } is a set of i.i.d. uniform random

variables on (O,u(S)). Note that any distance metric could have been

used in defining <Wz> without altering the result.

This approach is similar to the use of the joint distribution of

the first M near neighbors distances of a given point P in a Poisson

process [Cro80]. The advantages of using volumes rather than distances

is twofold. First, the results are exact for N points following a

uniform distribution over any sampling window, rather than for an

infinite Poisson process. Second, unlike distances, the sequence of

volumes are independent random variables, which simplifies their joint

distribution.
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FIGURE 3: Definition of V(XiL

The shaded area is V(Xi) for point Xi in sampling window S

using the Euclidean metric.
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3.3.3 Uniformity from the Border of the Sampling Window

Let S be a arbitrary sampling window. Define

W2 = { X(S | inf ||X-Y|| S 2 I for all z€(0.°°)

where the infimum is taken over all Y in the complement of S. Thus W2

is the set of all points in 5 within a distance 2 of the boundary of S.

The conditions of the theorem are satisfied if F is taken to be the

inverse of the function which relates this distance 2 to the volume of

W2. Then

V(Xi) = { xts I inf ||x-Y|| s inf ||Xi-Y|| } for all Xi,

where the infimums are over the complement of S. So, by Theorem 1,

{u(V(Xi))} is a set of i.i.d. uniform random variables over (O,u(S)).

3.A The Volume-Based Test

In the preceding examples we used a distance as the index parameter

to the sequence of subsets. This provides a meaningful interpretation

of the sets V(Xi). In Section 3.3.1, the distances were from a line to

Xi, in the next example (Section 3.3.2), from a point to Xi and finally

in Section 3.3.3 from a (possibly) complicated K-l manifold to Xi.

For practical reasons. we limit ourselves to a test for uniformity

against a general alternative based on the example of Section 3.3.2.

That is, given some point P in the sampling window, we take a ball of
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radius ||Xi-P|| centered at P and measure the volume of the intersection

of this ball with the sampling window. According to Theorem 1 the set

of volumes for all the X1 is a set of i.i.d. random variables uniformly

distributed between zero and the volume of the sampling window. The

Kolmogorov-Smirnov test is used to determine if this set of volumes is

uniformly distributed.

This application of the theorem yields a test that is simpler than,

say, that in Section 3.3.3, where computing the infimums is quite

complicated. Further, it can be generalized to various sampling

windows, unlike the application in Section 3.3.1. This test is still

computationally expensive because of the need to compute the volumes of

the intersections of sets.

The proposed volume-based test is intuitively appealing since it

effectively measures the density of the data points near the point P and

the density of the points far from P. Figure A shows 200 points

generated uniformly inside the unit square. Also shown is the graph of

ordered volumes about P (where distance from point P is measured by the

supremum metric) versus the total number of points captured in this

volume. Note the linear nature of this graph. For clustered data there

are two possibilites. If P is placed at the center of a cluster then

the points in the cluster will be abnormally close to P, thus generating

smaller volumes, as shown in Figure 5. If P is placed outside a

cluster, in a region of low density, we expect to see a few small

volumes followed by an aggregation of volumes generated by points in the

cluster. Figure 6 shows 200 points with one cluster in the center of
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the square. Also shown is the graph of the volume versus total number

of points contained in this volume when P is placed slightly outside the

cluster.

One problem with using a single point P in computing. the sequence

of volumes is obvious. Different placements of P will yield a different

view of the data under consideration. However, uniform data has the

property that all placements of P should yield uniform volumes. Using a

single point P also has the following undesirable property. Data points

with approximately the same distance from P (and hence approximately the

same volume) need not be spatially adjacent, especially if the distance

is large. Thus, while data points which generate small volumes about P

measure the density of the points near P, those that generate large

volumes contribute to an estimation of the density over a much more

spatially varied portion of the sampling window. The meaning of this

comment is clear when one considers that the volume of a hypersphere

about a point P in K-dimensional space is proportional to the Kth power

of the radius of the hypersphere.

3.5 The Computation of the Volume-Based Test

The implementation of the volume-based test to test the null

hypothesis of uniformity against a general alternative requires the

following steps.

(1) Place a point P in the sampling window,

(2) Compute ||Xi-P||=zi, for each Xi, by specifying some distance
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metric,

(3) Determine the sets

V(Xi)={ YeRKI ||P-Y|| 3 2i }I\s, i=1,2,...,N

(A) measure the volume u(V(Xi)) for each X1,

(5) test the uniformity of the set of volumes, {u(V(Xi))}.

These steps involve the following nontrivial operations:

intersecting two sets and determining the volume of that intersection.

All of these steps are treated in more detail below.

3.5.1 Intersections and Volume Measurement

Given two sets A and B in K-dimensional space, the degree of

difficulty in computing the intersection of A and B and the volume of

the intersection depends on both the shape of A and B and their

representations. In fact, for arbitrary sets A and B finding their

intersection and the corresponding volume is computationally

unmanageable. If we limit ourselves to the case where A and B have

simple parametric representations or where A and B are both convex

polytopes, some results are available.

For instance, if A and B are convex polyhedra in 2 or 3 dimensions,

Muller and Preparata [Mu178] have shown that it is possible to find

their intersection in time proportional to mlogm, where m is the sum of

the number of vertices of the two polyhedra. Using the method given in
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[Coh79], it is theoretically possible to find the intersection of convex

polyhedra in arbitrary dimensions (K), though the time required is

proportional to the Kth power of the sum of the number of faces of the

two polyhedra. Cohen and Hickey [Coh79] also give a procedure to

compute volumes of arbitrary convex polytopes whose time requirement

again grows exponentially with dimension.

There are two simple parametric representations of A and B in which

we will be interested. The first is when A and B are hyperspheres and

the second is when A and B are hyper-rectangles aligned with the

coordinate axes of the space. In the latter case, finding the volume of

the intersection of A and B is trivial. Appendix 8 gives an algorithm

to compute the volume of the intersection of two hyperspheres.

3.5.2 The Choice of a Distance Metric

The volume-based test also needs a distance metric for calculating

the distance from point P to the sample points. We will confine

ourselves to the commonly used Euclidean and supremum metrics. The main

reason for this is that the two metrics result in hyperspherical and

hyper-rectangular volumes. In addition, if the same type of sampling

window is used as is generated by the distance metric, then the

computation of the volume of intersection is simplified. In the

Euclidean case. if we confine ourselves to a spherical sampling window

5, then the algorithm given in Appendix B can be used to compute the

volume of the set

i m“ I ||P-Y||Zszi in s.
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When using the supremum metric, if only hyper-rectangular sampling

windows aligned with the coordinate axes are considered, then volume

computation is again trivial.

It should also be mentioned that it is advantageous to choose the

supremum metric in the case when the sampling window is a convex

polytope, since this is one of the few Minkowski metrics whose ball is a

convex polytope. Algorithms to find the intersection of two convex

polytopes [Coh79, Mul78] can then be applied. Finding the intersection

of a hypersphere, generated by the Euclidean metric and a simple convex

polytope such as a hypercube is extremely difficult.

3.5.3 Testing Univariate Uniformity

To apply the volume test, we must specify how we will test the

uniformity of the set of volumes. There are many such tests against

specified and general alternatives [Knu8l, Cox65]. We choose to use one

of the most widely used tests against unspecified alternatives, the

Kolmogorov-Smirnov goodness-of-fit (KS) test [Con7l]. This test was

chosen both for its ubiquity and simplicity, as opposed to tests such as

the scan test [Nau66] or tests based on Greenwood's statistic [Ste81],

which might have been more powerful for departures from randomness

expected in clustered data.
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3.5.A Placement of Point P

Finally, we need to discuss how best to place point P in the

sampling window to apply the test. As we have said before, uniform data

has the property that any placement of P generates a uniformly

distributed set of volumes. However, in practice, we have the following

considerations.

First, some placements of P may make the volumes easy to compute.

For instance, if the sampling window is a hypersphere and Euclidean

distance is used, placing P at the center of the sampling window allows

us to avoid the computation of the spherical cap volumes. Placing P

near the centroid of a convex polytope sampling window also yields

computational advantages.

Second, since volumes expand around P, placing P in a region of

high (or low) sample point density should yield higher power for

clustered data. Thus one would expect higher power if P is placed near

a cluster center. However, the proof of Theorem 1 implicitly assumes

that P is independent of the set of sample points. This condition is

not always satisfied, especially if the sampling window must be

estimated from the data. While it is possible that placing P in the

region of highest point density in a uniform sample may not greatly

effect the distribution of the K-S statistic, we prefer to avoid this

problem, perhaps by sacrificing power in' clustered data. We have
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experimented with placing P randomly in the sampling window, at the

center of the sampling window, and at the mean of the data to be

analyzed.

3.6 Summary

In this chapter, we have presented a theorem that generates a

paradigm for various tests of K-dimensional randomness. This theorem is

based on measuring volumes and thus directly captures information about

the deviation of the sample density in a uniform sample. We have

defined a test based on this volume paradigm that measures the density

of the sample points about a single point P. We discussed the

advantages and disadvantages of the volume-based test as well as

computational details needed to perform the test. The performance of

the volume-based test is given in Chapter 5.



CHAPTER A

ESTIMATING THE SAMPLING WINDOW

A.l Introduction

In exploratory pattern analysis one usually does not have any

knowledge about the sampling window of the given data. Rather, we are

simply given N points in K dimensions and told to analyze the structure

of the points. If we want to assess the uniformity of the points, then

we must either make some assumptions about the sampling window or

estimate it.

Previous studies in assessing structure have overcome this crucial

problem by assuming that the sampling window is known. We wish to relax

this restriction as much as possible so that we can analyze real data

sets, where the sampling window is usually not known. In this chapter,

we will look at several ways to estimate the sampling window. One can

argue that data used to estimate the sampling window should not then be

tested for uniformity in the estimated window, for this may bias the

test. However, due to the small size of the data sets common in Pattern

Recognition, we are forced into using this methodology.

A6
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It is quite apparent that to use the volume-based test one must

have precise knowledge of the sampling window since the sets whose

volumes are to be measured are constrained to lie in the true sampling

window. An error in estimating the sampling window may make uniform

data appear as a single cluster in the center of the window. Previous

studies [Smi81, Pan8l, Cro80] have concluded that knowledge of the

sampling window is required in virtually all tests of clustering

. tendency which have been proposed in the literature. Some of these

studies have shown that, asymptotically, the only knowledge needed about

the sampling window is its size and not its shape or location. The

volume-based test's greater reliance on precise knowledge of the

sampling window makes it a perfect vehicle for experimental studies of

sampling window estimation procedures. The size and power of the test

can be greatly effected by the estimation procedure used. We believe

that any estimation procedure which works well for the volume-based test

would necessarily be a good estimation procedure to use with other

tests.

The need to have some knowledge of the sampling window is

illustrated in Figure 2. However, the knowledge of the sampling window

in Figures 2(a) and 2(b) comes to the forefront in different ways. The

data in Figure 2(a) appears uniform, while in Figure 2(b), the data

consists of two clusters. Therefore, to test the uniformity of the data

in Figure 2(a) we need to know the set over which the density is

non-zero. For the second data set, we need to distinguish regions of

low density between the clusters from those regions outside the range of
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the data. Intuitively, clustered data is composed of points of high

density separated by less dense regions. When a region of low density

is identified, the sampling window information is needed to distinguish

when this region is outside the domain of interest versus the case when

the region is between the clusters. A region between clusters could

also lie outside the sampling window if this window was not convex.

Thus we have placed the restriction that sampling windows be convex.

A.2 Estimation Procedures

II

The basic estimation problem is stated as follows. Given {Xihh

K, with u(S)>O, estimate S. Wei.i.d. uniform over a convex set S CR

also require that S be compact. In other words, it is closed and

bounded. Our approach will be to first simplify the problem by

considering simple forms of the set S: we will then increase the

difficulty of the problem until S is any compact convex set.

We will restrict ourselves to the following types of sampling

windows. First, we consider the case when S is a hyper-rectangle

aligned with the coordinate axes. This is the case that has been used

for other studies when the sampling window was assumed known [Cr082,

Pan81]. We give a procedure to estimate the hyper-rectangular sampling

window from the given data. If the hyper-rectangle is not aligned with

the coordinate axes, the estimation problem is very difficult and we are

not able to treat that case. Another possible shape of the sampling

window is a hypersphere. We give two methods of estimating a

hypersphere from the given data. We next _consider linear
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transformations of the hyperspherical sampling window. That is we

consider the case when S is a hyperellipse. We use the principal

component transformation and the whitening transformation to estimate

the parameters needed to map the true sampling window into a

hypersphere. The transformed data is then tested in this simpler

sampling window. Though a linear transformation exists which would

transform any hyper-rectangle into an aligned hyper-rectangle, the

principal component method would estimate it poorly. Finally, we

consider the most general estimate of the sampling window based on the

convex hull of the data.

A.3 Aligned Hyper-Rectangle

This type of sampling window has been used frequently in studies

which assume that the sampling window is known. Its simplicity gives us

an excellent estimation procedure.

An aligned hyper-rectangle S can be described by its range along

each coordinate axes. That is, each coordinate has a minimum and

maximum threshold which specifies the (K-l)-dimensional boundary flats

defining two sides of the hyper-rectangle. We write S=[ai,bi]:,to

Specify the aligned ‘hyper-rectangle with range [ai,bi] along each

coordinate. Thus the vector Y-(yl,y2,..,yK) is in S if and only if

yi£[ai,bi] for each i-l,2,...,K. We derive an estimator of S under the

hypothesis that the given data is uniformly distributed over S. The

density function of Y can be written as
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where l(A) is the indicator function of the set A.

The independence of the coordinates allows us to treat the

estimation problem along each axis in isolation. Thus we need to find

an estimate for the endpoints of a one-dimensional uniform distribution.

Let {U}; be a sample from a UniformL'a,b] density. Then the minimum

variance unbiased (MVU) estimators for a and b are given below [Rao73].

A

a = (N 10) - Z(N)) / (N - l)

’E= (N Z(N) - zm) / (N -1)

where Z(l) and Z(N) are, respectively, the minimum and maximum order

statistics of the {21}. Thus the MVU estimator of S is given by

?= [$1, 313;:

where ai and bi are the estimates of the end points along the ith

coordinate.

The time taken to compute this estimator is O( KN ), since, for

each of the K coordinates, we must find the minimum and maximum values

of the N sample points.
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A.A Hypersphere

The problem of estimating a hypersphere can be stated as follows.

We have a set of i.i.d. random vectors {Xi} over a hyperspherical

sampling window 5, with radius r centered at vector c. We will denote

this hypersphere as S(c,r). We wish to estimate the (K+1) scalar

parameters in (c,r). We would like to find a MVU estimator as we did

for the aligned hyper-rectangle. This does not appear possible and so

we offer the following two estimates.

A.A.l Unbiased Center

We assume that the density function of the sample is radially

symmetric about the center of the hypersphere. This is true for the

uniform density. In this case the center of the hypersphere is also the

expected value of random vectors following this density. We know that

an unbiased estimator for the expected value is the mean of the data and

so this estimator is also unbiased for the K-dimensional parameter c.

We choose to estimate the radius of the hypersphere, given our estimate

for c, by the distance between c and the sample vector with the maximum

distance from c. This is the minimum possible value of the radius for

this choice of center. Thus the estimators of c and r are

€11 '3 (N)| {Xi and



52

A.A.2 Smallest Hypersphere

Experimental evidence has shown that using the above estimator

produces a window whose volume exceeds the true volume. We decided to

obtain the smallest hypersphere which encloses the given set of points.

Appendix C gives details of the algorithm [E1272] used for computing the

smallest hypersphere, S(c*,r*). Since the true sampling window is a

hypersphere, r* is no larger than the true sampling window's radius.

Experimentally we have found that r* is closer to the true radius than

A . . .

r.t found in the prevuous section.

A.5 Hyperellipses

One method of estimating more complicated sampling windows is to

transform the data into the simple cases of a hypersphere or aligned

hyper-rectangle treated above. It is well-known that a linear

transformation of uniform data preserves the uniformity of the data.

That is, if the uniform density is defined over a set S and if T is a

linear transformation, then the density induced on the image T(S) is

also the uniform density. For any hyperellipse there exists a linear

transformation which maps the hyperellipse into a hypersphere. Given

these facts we choose to estimate a hyperelliptical sampling window in

the following manner. First, we estimate the transformation T which

carries the hyperellipse into a hypersphere and then we find the
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smallest hypersphere enclosing the transformed data.

An estimate of the linear transformation T is based on the

principal component (Karhunen-Loeve) transformation [Fuk72]. It

operates as follows. The sample is first normalized to have a zero mean

vector. The principal component transformation, based on the

eigenvectors of the sample's covariance matrix, decorrelates the

features. We then apply the whitening transformation so that each

coordinate has unit variance. Since we use the sample mean vector and

covariance matrix this transformation need not necessarily map the

hyperellipsoidal sampling window into a hypersphere. This

transformation has been used in a clustering tendency study with limited

success by Cross [CroBO].

A.6 Compact Convex Sets

The most general sampling window is a compact convex set. We follow

the exposition of Ripley and Rasson [Rip77b] for estimating this type of

sampling window without presenting the details.

First we need some notation. Let H(A) denote the convex hull of a

set A. Let X={Xi} be N i.i.d. uniform vectors over the compact convex

sampling window S. We wish to find an estimate of S from the class of

all compact convex sets of positive measure in K-dimensional space.
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The joint density of the N points over a compact convex set S can

be written as

fS(X) = I[S] (X)

(u(S) )N

where I[S] is the indicator function of S and u(S) is its volume. Since

 

the convexity of set 5 implies that X is in S if and only if H(X) is in

S, we have

fs(X) = is] (H(X))

(u(sll"

Thus H(X) is both a sufficient statistic and the maximum likelihood

 

estimate of 5. Note, however, that the volume of H(X) is strictly less

than the volume of S. We will use the convex hull of the data as the

estimate of the sampling window and use the volume-based test to test

those points strictly inside the hull for uniformity. We delete those

points lying on the hull from consideration since they are obviously not

random in H(X). However, conditioned on the fact that the remaining

points lie in the convex hull, these interior points are uniformly

distributed in H(X).

For the two-dimensional case, Ripley and Rasson show that

l\l[,'1'(\I\(HO<)))

is an approximately unbiased estimator of the volume of S, where M is
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the number of points strictly inside H(X). Appendix D gives details on

computing the convex hull of a set of points. We also verify whether

the above volume estimate remains unbiased in dimensions greater than

two .

A.7 Summary

In this chapter we have looked at several ways of estimating the

sampling window. In the case when the sampling window is restricted to

be an aligned hyper-rectangle, we find a MVU estimator of the window for

uniform data. When the sampling window is an arbitrary compact convex

set, we find that the convex hull of the uniform data is the maximum

likelihood estimate of the window. These two estimators have desirable

properties for uniform data but they are reasonable estimates of

sampling window for any data. For hyperspherical sampling windows, no

best estimator emerges. We propose the heuristic of choosing the mean

of the data, which is unbiased for uniform data, as the center of the

hypersphere. We also 'provide the smallest hypersphere containing the

data as an estimate of the sampling window.

We also propose a method of estimating a hyperellipsoidal sampling

window. This estimator operates in two steps. First, it estimates the

transformation needed to carry the hyperellipse into a hypersphere and

second, it estimates the hypersphere using one of the estimators

discussed above.



CHAPTER 5

PERFORMANCE OF THE VOLUME-BASED TEST

5.1 Introduction

In this chapter, we look at the performance of the volume-based

test. This performance will be measured by Monte-Carlo simulation using

various sampling window types. First, with known sampling windows, we

wish to check both the size and the power of the test. Although the

size of the test is guaranteed by Theorem 1, we wish to check if our

implementation truely reflects the theoretical result. To check the

power of the test, we study a number of clustered alternatives. For

unknown sampling window, we investigate the estimation procedures given

in Chapter A.

The simulations reported here involve the following three

parameters.

(1) N, the number of sample points,

(2) M, the number of Monte-Carlo trials, and

(3) K, the dimensionality of the space.

In addition, we vary the sampling window used, the distribution of the

points, and the placement of P. The level of the Kolmogorov-Smirnov

56
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test is set at 0.05, so that we expect a 52 rejection rate for uniform

data. The results of the simulations are reported as the percent

rejection of the null hypothesis of randomness at the .05 level of

significance. To determine if the true size of the volume-based test is

less than .05, we perform a binomial test [Con7l] on the observed number

of rejections for the null hypothesis (size<.05) against the alternative

(size>.05). Likewise, to determine if there is a significant difference

in the size or power of the volume-based test between two different data

sets, we perform the Chi-squared test based on 2X2 contingency tables

[Con7l].

5.2 Known Sampling Windows

The sampling windows considered are hyperspheres and aligned

hyper-rectangles. As we have said before, if a hypersphere is used as a

sampling window then we compute distances from point P to the sample

points using the Euclidean metric: for aligned hyper-rectangular

sampling windows, we use the supremum metric.

5.2.1 Uniform Data

Here we determine the actual size of the volume-based test when the

level of the K-S test is preset to 0.05. Table 1 shows the percent

rejections of the null hypothesis for the volume-based test when uniform

data is generated in the unit hypercube. Point P is placed randomly in

the hypercube. These results show that the size of the test is 0.05 and
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TABLE 1: Size of the Volume-Based Test for Uniform

Data in Unit Hypercube. M-500, P-random

N

50 100 200

2 A.3 5.3 A.7

5 A.3 6.7 A.7

K 10 A.3 6.0 A.7

15 3.0 3.7 A.3

the size does not depend on dimensionality or sample size at the 0.02

level.

Tables 2 and 3 show similar results when the sampling window is

changed to a hypersphere. A hypersphere of volume one is used for the

results of Table 2 while Table 3 presents the results for a hypersphere

of radius one. In both cases the number of patterns, N, is 200. Here

we also study the effect of random placement of P in the sampling window

versus choosing P as the center of the hypersphere. No significant

differences (at the 0.02 level) are encountered between the entries in

the two tables and between different placements of point P. In

addition, no entry in these tables shows significant deviation (at the

TABLE 2: Size of the Volume-Based Test for Uniform

Data in Unit Volume Hypersphere. M=500, N=200

Psrandom P-center

2 A.2 5.A

3.8

K 10 A.8

3 8

A.6

5.2

A A
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TABLE 3: Size of the Volume-Based Test for Uniform

Data in Unit Radius Hypersphere. M-500, N-ZOO

P-random Pacenter

2 A.6 5.2

5 A.0 3.6

K 10 3.6 A.6

15 A.0 3.A

0.05 level) from its expected value of 5.

The similarity between Tables 2 and 3 is expected. The only

difference between them is in the volume of the sampling window, which

is normalized by the volume-based test. We present both tables to

confirm that the volume-based test does not lead to anomalies between

these two windows, as has been observed with a distance-based test

[Smi8l].

We conclude from these tables that the volume-based test works as

expected on uniform data. We now look at the power of the test.

5.2.2 Bilevel Density

The bilevel density [Sm181] generates a single cluster of high

density in the middle of the unit hypercube. Formally, the N points are

generated i.i.d. with density
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11,, 1‘ X 13 in (Unit Hypercube-W)

O either-wise

f(X) =

where W is a hypercube of volume 1/9 centered inside the unit hypercube.

Here hl is a parameter which may vary from 0 to 9, while ho depends on

hl. Figure 7 shows a realization of the bilevel alternative in two

dimensions with hl equal to 5. If hl is 9 all the points are in W. In

the simulations, the parameter hl is varied from 1 (the null case) to 5

in steps of I for various values of N and K. Table A gives the results

of the volume-based test when P is placed randomly in the unit

hypercube.

TABLE A: Power of the Volume-Based Test Against

the Bilevel Density. M=100

hl

l 2 3 A 5

2 A 8 35 A8 80

5 A A 17 A1 71

K 10 A 6 13 27 A5 N850

15 3 9 15 15 A2

2 5 1A 51 81 96

5 7 10 A0 70 80

K 10 6 11 39 57 78 N=IOO

15 A 7 23 38 62

2 5 29 79 96 100

5 5 21 68 92 100

K 10 5 15 58 82 9A N'ZOO

15 A 8 39 68 88
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FIGURE 7: Realization of Points Following the Bilevel Density,

Shown are 100 points with h1=5
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We note the ubiquitous trends of increase in the power of the test

as N and hl increase. These trends are expected. The decrease in power

with increasing dimensionality is explained by the increasing side

length of the hypercube W needed to maintain constant volume as

dimensionality increases. Any sampling origin P which falls outside W

encounters points in W 'sooner' (in terms of distance from P) in high

dimensions than in low dimensions. If P is chosen as the center of the

unit hypercube, then experiments show that this effect does not occur.

Using the bilevel density as a clustering alternative allows us to

compare the volume-based test's performance to the theoretical power of

a distance-based test described by Smith and Dubes [SmiBl]. This test

is based on a count of the number of interpoint distances which are

below a given threshold. This threshold is defined by a parameter r.

The theoretical power of this test can be computed by referring to

asymptotic results, which are probably not valid for large r or small N.

Figure 8 shows a graph of the power of the small distance test in

various dimensionalities with r set to 1. Figure 9 is a graph of the

data in Table A when N8200. Comparing the two figures, we note the

higher power of the volume-based test against the bilevel alternative.

5.2.3 Neyman-Scott Clustering

This clustering alternative is the Neyman-Scott cluster process

[Ney72] modified to generate N points over a sampling window. This
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TABLE 5: Power of the Volume-Based Test Against a Neyman-Scott

Process (wrapped) in Unit Hypercube. M8500, NBZOO

50 100.0 98.1 90.6 17.A 5.h

,. 8 92.2 78.1 55.A 8.A A.8 K=2

1 35.A 25.8 17.6 6.0 5.2

50 100.0 97.8 85.6 1A.0 5.A

x4 8 92.A 69.2 h6.6 8.A 6.2 K=5

1 29.8 l9.A l6.A A.8 A.A

.01 .05 .1 .3 5

0’

process is characterized by two parameters: ,2, the expected number of

points per cluster and 0', the spread of each cluster. See Appendix A

for a detailed description of the Neyman-Scott process and its

generation.

TABLE 6: Power of the Volume-Based Test Against a Neyman-Scott

Process (not wrapped) in Unit Hypercube. M=500, N-ZOO

50 100.0 99.

8 91.2 73.

’8 1 23.0 17.

92.8 68.6 3A.6

58.6 35.2 18.A K=2

13.2 23.0 15.6c
o
s
-
o

50 100.0 98.6 92.0 65.8 39.0

,0 8 88.8 69.1. 53.6 1.7.0 23.8 «=5

1 22.0 20.2 17.6 37.0 22.0

50 100.0 98.2 87.0 61.A A0.6

”A 8 90.2 68.A 57.0 A5.8 30.0 K=10

I 33.6 25.8 18.A 2 . .

.01 .05 .I .2 .3



66

In Table 5 we report the power of the volume-based test for various

values of ,4 and <r when the sampling window is the unit hypercube. In

these tables, wrap around was used to generate the points while in Table

6 the same parameter values are studied, but without wrap around. Both

Tables were generated with P chosen randomly in the unit cube. There is

some effect of dimensionality on the power. For instance, Table 5 shows

a significant (at the .001 level) change with dimensionality for {8-8

and O’=.05. Table 6 shows a significant (at the .001 level) increase in

power between the K=2 and K=10 cases for fl=8 with 0’8.2,.3, and {L31

with 0'=.01. As expected, high power is achieved with a few tight

clusters (”large and 0' small). The power falls off as ’4 is

decreased and cr is increased. The only significant differences (at the

.001 level) between data sets with wrap around and no wrap around occurs

when (r' is large; this is when most points get wrapped around. We see

higher power in the no wrap around case since here cluster centers near

the boundary of the sampling window generate clusters of higher density

than those in the wrapped case.

It should be noted that, unlike most of the distance-based tests,

the distances used in defining the volume-based test are not based on

wrap around. The reason for using wrap around in data generation as

well as in computing the test statistic has been to avoid edge effects

which arise due to the assumption of a Poisson process as the null

hypothesis. There are no edge effects in the volume-based test since

the null hypothesis is that the data are uniformly distributed over the

sampling window. Note also that no wrap around is possible for sampling
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windows other than the hyper-rectangle. It is not reasonable to compare

the powers of a test against the Neyman-Scott process with wrap around

and without wrap around since they are 'different' data sets.

In the Neyman-Scott process with wrap around, we can compare the

power results of the volume-based test to that of the Hopkins test

reported by Cross and Jain [Cr082]. Table 7 gives these comparisons.

We note consistently higher power of the volume-based test in two

dimensions, while in 5 dimensions, with large A4 and d’, the Hopkins

test fairs better. Note the increasing power with dimensionality for

the Hopkins test, while the volume-based test is fairly stable with

respect to dimensionality. Table 8 shows the power comparison of the

volume-based test to the power of a test based on the Cox-Lewis

statistic. The powers for the Cox-Lewis statistic are taken from the

(corrected) tables of Panayirci and Dubes [Pan81]. We note higher power

for the volume-based test, except for the entries for K85 with CT-.05

and .1.

Table 9 reports the power against the Neyman-Scott process when the

sampling window is the unit volume hypersphere. All the parameters are

the same as in Table 6 except that we have decreased the range of (T for

large dimensionalities. There is no change between the hyperspherical

and hypercubic sampling windows at the 0.001 significance level. We

have also a study of the effect of varying the placement of P on the

power. We note slightly higher power when P is placed randomly in the

sphere except when a’is large.



68

TABLE 7: Comparison of the Power of the Hopkins and

Volume Based Tests

Entries are Hopkins/Volume

N=200

M=500 for Volume-Based Test

M=100 for Hopkins test

K32

8 37/ 92-2 59/ 78-h 23/ 55.A

f‘ 1 15/ 35.5 7/ 25.8 5/ 17.6

K=5

8 87/ 92.A 96/ 69.2 77/ A6.6

ll 1 22/ 29.8 20/ 19.5 A/ 16.h

.01 .05 .1

CT

TABLE 8: Comparison of the Power of the Cox-Lewis and

Volume-Based Tests

Entries are Cox-Lewis/Volume

N8200

M=500 for Volume-Based Test

M=100 for Cox-Lewis Test

The Neyman-Scott parameter rx=50

K=2 100/100 92/ 98 32/ 91 3/ 17

K=5 100/100 100/ 98 99/ 86 1/ 1A

.01 .05 .1 .3

0r
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TABLE 9: Power of the Volume-Based Test Against a Neyman-Scott

Process in Unit Volume Hypersphere for Different Placements of P

Entries are P-random/Pccenter, M8100

50 100/100 99/ 97 95/ 85 67/ 62 52/ 35

‘4 3 9A/ 91 79/ 6A 69/ 52 37/ 55 19/ 31 K=2

1 35/ 35 29/ 25 21/ 19 16/ 23 7/ 13

50 100/100 100/ 92 96/ 75 63/ 82

7, 8 95/ 85 78/ 58 66/ 51 35/ 77 «=5

1 35/ 3A 28/ 19 21/ 20 20/ 3A

50 100/100 98/ 87 9A/ 65

74 8 95/ 85 80/ 55 62/ 66 «=10

1 32/ 28 29/ 22 2A/ 32

.01 .05 .1 .3 .5

0'

5.2.A Other Types of Data

Two other types of alternatives need to be mentioned. The first

arises from points following the multivariate normal density with

identity covariance matrix. To perform the volume-based test on this

data, we scale the data to fit into the unit hypersphere centered at the

zero vector by dividing each data point by the maximum norm among the N

samples. Performing the test with N8200 leads to 1002 rejection of

uniformity for normal data in all dimensions, both when P is placed

randomly in the unit hypersphere and when P is placed at the origin. If

we reduce the sample size to 50 then, with P placed at the origin,

rejection rates of 92, 100 and 100 percent in 2, 5 and 10 dimensions,
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respectively are obtained. However, under these conditions, if P is

placed randomly, the rejection rates are onlY 33. 67 and 81 percent.

This shows the increased power of the volume-based test when P is placed

at the center of a cluster.

The other data ensemble is hardcore data. The generation procedure

used to produce hardcore data is given in Appendix A. In these

simulations, we do not use wrap around. The volume-based test shows no

power against hardcore data if P is chosen randomly in the sampling

window. This is expected, since the only difference between random data

and hardcore data occurs for small volumes around P. We expect fewer

points close to P in the hardcore case than in the random case due to

the spacing imposed by the hard spheres. However, this effect is masked

by the large volumes, where points generating these volumes do not have

to be spatially adjacent. If P is chosen as the center of the sampling

window, we do see power (62 and 100 percent rejections for ,0-.l in A

and 5 dimensions, respectively) against the hard core alternative.

There is no power in two dimensions. This power in high dimensions

against the hardcore process is due to the fact that many points are

near the surface of the sampling window in high dimensions; the hard

spheres around points near the surface take up less of the volume of the

sampling window. This allows a greater density of hardcore points near

the surface of the sampling window, a fact that is captured by the

volume-based test. We can not compare the power of the volume-based

test against the hardcore alternative to Other studies since we did not

use wrap around in generating the hardcore data.
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5.3 Unknown Sampling Windows

In this section, we perform Monte-Carlo studies of the sampling

window estimation procedures given in Chapter A. We determine if the

true size of the volume-based test performed over the estimated window

is within the preset level of 0.05.

5.3.1 Estimator of an Aligned Hyper-Rectangle

Here we study the MVU estimate of an aligned hyper-rectangular

sampling window given in Section A.3. Table 10 gives the results of

this study. We generate 200 points uniformly distributed in the unit

hypercube and use the MVU estimate as the true sampling window in the

volume-based test. None of the entries in the table are larger than 5.

Thus we conclude that the MVU estimate is a good estimator of an aligned

hyper-rectangular sampling window.

TABLE 10: Size of the Volume-Based Test with the

MVU Estimator. M-AOO, N=200

K

2 3 5 5 10 15

50 3 1 3 2 5 5

N 100 5 2 3 2 A 5

200 5 5 3 5 5 2
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5.3.2 Estimator of a Hypersphere

In Section A.A, we gave two estimation procedures for a

hyperspherical sampling window. The first uses the sample mean as an

estimate of the center of the hypersphere. The radius estimate is the

distance from the farthest sample to the mean. We checked the

performance of this estimator in recognizing uniformity with 200 points

generated uniformly in the unit radius hypersphere. When P is chosen as

the center of the estimated window we get A6 and 86 percent rejections

of the null hypothesis in 2 and 5 dimensions, respectively. Analysis of

these simulations showed that the estimated radius was too large and

this made points in the center of the sampling window appear too dense.

The smallest hypersphere algorithm produced better results. Table

11 shows these results when P is chosen as the smallest hypersphere's

center. To produce this table, the K+l data points defining the

smallest hypersphere are deleted from analysis by the volume-based test.

TABLE: 11: Size of the Volume-Based Test with the

Smallest Hypersphere Estimate. M=500, N=200

K

2 3 A 5 10 15

so 5 5 5 5 3 5

N 100 3 5 3 A 6 5

zoo 5 3 5 6 5 5
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If these points are not deleted, the density of the points near the

surface of the hypersphere becomes too large. The percent rejections

increases to 11.3 in 10 dimensions if the surface points are not

deleted. From Table 11, we conclude that the smallest hypersphere is a

good estimator of a hyperspherical sampling window.

5.3.3 Estimator of a Hyperellipse

In Section A.5, we gave a two-step procedure to estimate a

hyperelliptical sampling window. This involved appyling both the

principal component and the whitening transformation to the data and

then testing the transformed data for uniformity in the smallest

hypersphere enclosing it. The point P is chosen as the center of the

smallest hypersphere. The details on the generation of uniform data

over an ellipse are given in Appendix A, along with the parameters of

the ellipses used.

Even in 2 dimensions, this estimation procedure is inaccurate. For

200 points uniformly distributed in an ellipse, we obtain 22% rejections

of uniformity, while for 300 points we get 312 rejections. Table 12

TABLE 12: Effect of Transforming Uniform Data in a Circle

M8300

N Original Transformed

200 A.3 21.0

500 A.3 23.6

1000 2.8 33.3
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studies the case of uniform data in a circle rather than in an ellipse.

The principal component and whitening transformations appear to perturb

the data enough to affect the volume-based test. Even though increasing

N increases the accuracy of the estimated mean and covariance matrix and

thus lessens the perturbation, it is not enough to counteract the

decreasing range of acceptable values for the K-5 test statistic. We

conclude that the principal component transformation does not appear to

be a viable way to change the shape of the sampling window, at least for

the volume-based test.

5.3.A Estimator of a Compact Convex Set

In Section A.6 we described a procedure for estimating a compact

convex sampling window by using the convex hull of the data. This is

the most general form of the sampling window in situations where no

prior information is available about the shape of the sampling window.

Unfortunately, computing the convex hull of points in high dimensions is

computationally difficult. More significantly, computing the volume of

the intersection of the hull with hypercubes (about P) is burdensome,

even in three dimensions. Finding the volume of the intersection set

requires the computation of all the vertices of that set; the

computation time grows exponentially with K. In two and three

dimensions it is possible to find the intersection set in time

proportional to m and mlogm, respectively, where m is the sum of the

number of vertices in the two sets to be intersected [Mu178]. We,

therefore, confine ourselves to two-dimensional data. Also, for

computational efficiency, it is desirable to have P near the center of
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the convex hull, and so we choose P as the mean of the data.

Using the Convex hull as a sampling window we can now successfully

treat the elliptical data used in the previous section. For 200 points

generated uniformly in an ellipse in 2 dimensions, we have A rejections

out of 100. Table 13 lists the results of using the convex hull

estimator on various types of data. The points on the hull are removed

from consideration in producing this table. We also compare the results

of the various sampling window estimation procedures discussed in this

chapter. We study both uniform data and Neyman-Scott clustered data

with fil=50 and d“=.l in a unit square and unit circle. The Neyman-Scott

data is generated without wrap around.

From Table 13 we see that the convex hull estimator performs well.

The size of the test using the convex hull data is well within the

expected value of 5. For the clustered data over a unit square, there

is a slight loss of power when the window must be estimated from the

data versus when it is known. This loss of power does not seem to occur

TABLE 13: Comparison of Sampling Window Estimators

K=2, N=200, M-500,.except convex hull where M350

Random Data Neyman-Scott Data

Estimator Circle Square Circle Square

Convex Hull A.0 A.0 98.0 80.0

MVU Rectangle --- A.0 ---- 81.2

Smallest Circle A.A --- 95.8 ----

Known Circle 5.2 -- 9A.8 ----

Known Square --- A.7 ---- 92.8
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for the circular sampling window. The convex hull estimator performs as

well as the two estimators geared to the special situations of circular

and rectangular sampling windows.

5.A Summary

This chapter has presented the size and power of the volume-based

test. We have seen that the volume-based test can be set at a desired

size. Our power studies have shown that the volume-based test is at

least as powerful as other tests provided in the literature in most

cases. We have studied the effect of different placements of P, and

concluded that this can have an effect on the test. Our choice for P

when analyzing real data would be the center of the sampling window.

We have found excellent estimators of hyperspherical and aligned

hyper-rectangular sampling windows. However, if no prior information is

available about the shape of the window, then the convex hull of the

data is a good choice. Unfortunately, it is not computationally

feasible to determine the convex hull and its volume in high dimensions

(K>3). For this reason, the next chapter looks at a new test of

uniformity of data.



CHAPTER 6

A MINIMAL SPANNING TREE BASED TEST

6.1 Introduction

We have seen that the volume-based test requires an accurate

estimate of the true sampling window. If the true sampling window is a

hypersphere or an aligned hyper-rectangle then efficient estimators are

available to estimate the window. In situations where no prior

knowledge is available about the shape of the sampling window, the

convex hull of the data appears to be a reasonable estimate of the

window. Unfortunately, computing the convex hull and its volume in high

dimensions is not computationally feasible. Therefore, the

applicability of the volume-based test is limited to data in low

dimensions.

In this chapter we propose a test which does not explicitly require

any knowledge of the true sampling window. We still assume that the

convex hull of the data is a reasonable estimate of the sampling window,

but we do not need to compute the convex hull or its volume. The idea

of this test comes from a multivariate extension of the Wald-Wolfowitz

runs test [WalAO] proposed by Friedman and Rafsky [Fri79]. The

Friedman-Rafsky test determines if two sets of high dimensional sample

points belong to the same distribution. The test statistic is

77
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determined from the minimal spanning tree (MST) of the pooled sample

points. We adopt this test for our purposes as follows. The given data

which are to be tested for uniformity constitute one sample. We would

like the other sample needed for the Friedman-Rafsky test to be obtained

by generating points uniformly distributed over the convex hull of the

given data. If the null hypothesis that the two samples belong to the

same population is accepted, then we say that the given data is

uniformly distributed over the convex hull. One of the problems, of

course, is in generating uniform data over the convex hull, since it is

not computationally feasible to form the convex hull of high dimensional

data. In Section 6.2 we present a heuristic that approximates the

convex hull for the purpose of generating uniform points over it.

Section 6.3 describes the Friedman-Rafsky test and the proposed

MST-based test. Section 6.A determines the size and power of the

MST-based test for various sampling windows and data sets.

6.2 Generating Uniform Points over the Convex Hull

We describe a heuristic which produces uniform points over a set

which is approximately equivalent to the convex hull of the data. Our

overall procedure will be as follows. We determine a (relatively

simple) convex set containing the data. We generate uniformly

distributed points over this set and retain those that fall in the

convex hull of the data. This rejection technique would then result in

a set of uniform points over the convex hull.
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It is easy to reject points if the convex hull is known. However,

we wish to find a rejection method that is less costly than explicitly

determining the convex hull. Our rejection procedure will use the

following property of the convex hull, H(X), of the given data X={Xi}.

A point Y is not in H(X) if and only if Y can be separated from the set

{Xi} by a hyperplane. This follows from the definition of H(X) as the

intersection of all convex subsets containing {Xi}. We can restate this

property as follows. A point Y is not in H(X) if and only if there

exists a hyperplane, with normal vector n, passing through Y, such that

((Xi-Y).n) > 0 for all i=1,2,..,N, where (v.w) is the inner product of

vectors v and w. It should be clear that, for a point Y not in H(X),

one normal vector that will always satisfy the above positivity

constraint is the vector n* = Z-Y, where Z is the unique point in H(X)

closest to Y.

We would like to estimate n* from the given data. This, however,

does not appear to be an easy problem to analyze and we resort to a

heuristic. If the data are uniform over H(X), we expect to see points

in the data set which are near the point 2. These points could be used

to estimate n*. We choose to use the following estimator which takes a

weighted average over all points in the data set.

A -l

n* = N

5|

(xi-v) / (||Xi-YIIZIK

This estimator is the sum over all i of the unit vectors from Y to Xi

weighted by an amount inversely proportional to the Kth power of the
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distance from Y to Xi. The Kth power of the distance penalizes points

far from Y. This penalty is proportional to the volume of a hypersphere

centered at Y and passing through Xi. The use of volume, rather than

distance, is suggested by the volume-based test.

The procedure to compute a second sample of points uniformly

distributed over (approximately) the convex hull of the data is as

follows. We place a simple compact convex set around the data. This

set is chosen as the MVU estimator of an aligned hyper-rectangle. The

smallest hypersphere enclosing the data could also have been used here.

We then consecutively generate points uniformly distributed over this

set. We reject any point, Y, if all the data lie in one half space of

the hyperplane passing through Y with normal vector '8*, i.e.,'8*

satisfies the positivity constraint mentioned above. This procedure

continues until the desired number of points has been generated. If a

point Y is in the convex hull of the data, we are guaranteed that this

procedure will not reject Y. However, it is possible for a point Y

outside the hull to be accepted. This procedure is less costly than

computing the convex hull explicitly if the initial convex set used to

enclose the data is not too large. With this method, the time taken to

reject one point is proportional to N.

This procedure is demonstrated in Figure 10. One hundred uniform

points are given inside a triangle contained in the unit square. An

additional 100 uniform points were generated using the rejection

procedure by first generating points over the unit square. We note that

the points generated by the rejection procedure (denoted +) appear to be
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FIGURE 10: Points Generated by the Rejection Technique.

100 points "o" are generated uniformly in the triangle.

Another 100 points are shown as "+" after passing the

rejection procedure. A total of A06 points were generated

randomly over the unit square to obtain this second sample.
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uniformly scattered like the original data in the triangle (denoted o).

It should be noted that this rejection procedure can be posed as a

classical Pattern Recognition problem. We wish to find a linear

discriminant function seperating the 'class' of points {Xi} from the

'class' containing one point Y. A number of algorithms are available to

solve this problem [Dud73]. However, all of these algorithms are

iterative in nature and most suffer from convergence problems. In

addition, they do not offer any computational advantage over the

rejection technique which we have presented.

6.3 Definition of the Test

We wish to test whether the original data and points uniformly

distributed over a set which is approximately the convex hull of the

data belong to the same population. That is, we wish to determine if

the two samples have the same distribution function. Such a test would

determine if the given data are uniformly distributed. Of course, one

must keep in mind that the second sample is not independent of the

first. This problem always exists whenever the sampling window is not

known. We will see, however, that this only serves to make the proposed

EQSE more conservative .

Testing the equality of two univariate samples is a well-studied

problem [Con7l]. Classical univariate tests for general alternatives

include the Wald-Wolfowitz runs test and the Kolmogorov-Smirnov

two-sample test. Extension of the two-sample K-S test to a multivariate
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situation is possible but is not practical [Hal73]. We explore the use

of the multivariate extension of the Wald-Wolfowitz test recently

proposed by Friedman and Rafsky [Fri79].

The Friedman-Rafsky test is based on the minimal spanning tree

(MST) of the pooled sample points. The MST has been used extensively in

unsupervised pattern recognition, chiefly as a basis for clustering data

[And73, Zah7l, Dub80]. The definition of an MST for points in an

Euclidean space involves computation of a complete weighted graph whose

nodes represent the points. The edges in the graph are weighted by the

Euclidean distance between the points. The MST is that subgraph which

is a spanning tree (a spanning tree is a connected graph with no cycles)

and which has minimal sum of edge weights [Har72]. For given data, if

the set of distances between points has no ties then its MST is unique.

Variants of Prim's algorithm [Pri57] are most widely used for forming an

MST.

The MST extends to higher dimensions the concept of the

one-dimensional sorted list needed to perform the Wald-Wolfowitz test.

The Friedman-Rafsky test makes use of this fact in the following manner.

The MST of the pooled samples is computed. Let the N data points in one

sample be labeled X and the M points in the second sample be labeled Y.

The number of edges in the MST linking a point labeled X to a point

labeled Y is found. Denote this X-Y join count as T. We assume that

the underlying distribution function of the samples is continuous so

that T is unique with probability one. Note that l s Ts,(M+N-1). Under

the null hypothesis that the two samples are from the same population,
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Friedman and Rafsky show that

E[ T ]' = 2 M N / L

and

VAR[T|C] . 2.831. 231.025.. , 9.22.. [LLL-|)-‘-IMN52]

1- (I-"1 L (1:2) (55)

where C is the number of edge pairs in the MST sharing a common node and

L=M+N. Further, the permutation distribution of T, conditioned on the

realized graph, is asymptotically normal. That is,

T - E[T]

-------- -==> Z as M,N-->OO with M/N bounded away from 0 and 00,

VAR[T|C]

where Z is a random variable following the standard normal distribution.

Friedman and Rafsky discuss the details of computing T and C. The most

expensive part of using this test is in determining the MST which has

computation time proportional to (M+N)z. Bentley and Friedman [Ben78]

present a MST algorithm whose expected run time is roughly proportional

to (M+N)log(M+N).

In the context of our situation, the points labeled X are the given

data points and the points labeled Y are uniformly generated over a set

which approximates H(X). If the given data are uniform, we expect the

null hypothesis of the Friedman-Rafsky test to be true. In the case of

clustered data, we expect many of the points labeled Y to be generated

between clusters. This would produce an unusually high number of X-X

and Y-Y joins, thus reducing the value of the statistic T. We can thus
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perform a test for uniformity against a clustered alternative as

follows. Reject the data as uniform when

VAR[T|C]

where Z(al) is the 0A quantile of the standard normal distribution. We

could, of course, perform the analogous upper tail test for uniformity

against a hardcore alternative.

The MST-based test to analyze a data set containing N points over

unknown sampling window can be summarized as follows. The number of

points to include in the uniformly distributed sample is open. For

simplicity, we choose to have the two samples of equal size.

(1) Determine the MVU hyper-rectangle containing the data.

(2) Generate uniformly distributed points over this

hyper-rectangle. Using the rejection technique, retain N of these

points which lie in a set which approximates the convex hull of

the data.

(3) Pool the N data points and the N uniform points generated in

Step 2 and compute their MST.

(A) Determine the test statistic T. Reject the data as uniform in

favor of a clustered alternative if T is too small. Reject the

data as uniform in favor of a regular alternative if T is too

large.

If the sampling window is known, we can replace steps 1 and 2 by
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generating N points uniformly distributed over this window.

6.A Performance of the MST-Based Test

In this section we analyze the performance of the MST-based test by

simulation. We report only the rejection rates for a one-sided test

against a ciustering alternative. Since the distributional theory of

the test statistic T is asymptotic, our results report the rejection

rates of the test at both the .05 and .02 levels. The entries in the

tables are ( R(.05) , R(.OZ) ), where R(OA) is the percent rejections of

the null hypothesis at the a( level. The parameters K, N, and M in

these simulations are the same as in experiments with the volume-based

test reported in Chapter 5.

6.A.l Uniform Gata Over 3 Known Hypercube

Table 1A reports the results when a sample of uniform data in the

unit hypercube is subjected to the MST-based test. The second uniform

sample is also generated over this known sampling window. The results

TABLE 1A: Size of the MST-Based Test for Uniform

Data in Unit Hypercube. M-lOO

«

2 5 10

50 (1.1) (5.0) (3.2)

N 100 (5.3) (6.11) (7.3)

200 (5. 2) (5.5) (5. 2)
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in the table provide a study of the effect of varying N and K. Since

all the entries in the Table 1A are within their expected values (at the

.05 level), we conclude that one can set the size of the MST-based test

size ofat a given level. These simulations have also shown that the

the one-sided test against a regular alternative may also be set using

the asymptotic distribution of T.

6.A.2 Neyman-Scott Process with Known Sampling Window

Table 15 gives estimates of the power of the MST-based test for

Neyman-Scott clustering alternatives. To generate this table, we assume

that the hypercubic sampling window over which the data is generated is

known. Further, to compare our results with previous studies, we use

the wrap around paradigm, both for generating the data and computing the

interpoint distances. The MST defined with wrap around is then a tree

on a torus. The MST-based test shows the expected increase in power

with increasing ,2 and decreasing 0’. It also shows an increasing power

TABLE 15: Power of the MST-Based Test Against a Neyman-Scott

Process (wrapped) in Unit Hypercube. N=200, M=100

0'

.05 .1 .2

16 (100,100) ( 86, 75) ( 12, 7)

A4 8 (100.100) ( 56. 37) ( 5. 1) «=2

1 ( 56. 28) ( 11. 2) ( 5. 1)

16 (100,100) (100,100) ( 56. 32)

11 8 (100,100) (100,100) ( 29, 18) «=5

1 (100.100) ( 99. 9A) ( 15. 6)
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TABLE 16: Comparison of the Powers of the Hopkins, Cox-Lewis

and MST-Based Tests.

Entries are percent rejections for Hopkins,Cox-Lewis,MST (H,C,M)

M=100, N'200, It '16

”9 co H H, C, M H, C, M

K82 80, 53,100 32, 7, 7A *, 2, 7

K85 91,100,100 9A, 90,100 *, 8, 2

.05 .1 .2

0"

*entries not provided by Cross and Jain [Cro82]

with dimensionality. Comparing these results with Table 7, which

compared the powers of the volume-based and Hopkins tests for various

parameters of Neyman-Scott clustering, we see that the MST-based test is

the most powerful of these tests for these parameters. We can also

compare the Hopkins test [Cro82] and the Cox-Lewis test [Pan81] to the

MST-based when ftcl6. Table 16 gives these comparisons. Again we see

higher power for the MST-based test. The MST-based test gives

significantly higher power (at the .001 level) against all other tests

for K-2 with G'=.OS and .1 and for K-S with 0'=.2.

6.A.3 Other Data Types with Known Sampling Window

As with the volume-based test we can estimate the power of the

MST-based test for a hardcore alternative. To use this alternative we

must change the test's critical region to the l-ai upper tail of the

normal distribution since we expect too few X-Y joins under a regular

alternative. We see considerable power of the MST-based test against

this alternative. With 100 Monte-Carlo trials, we have rejections of
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(6A,A6), (100,100), and (100,100) in 2, A and 5 dimensions,

respectively. The alternative studied is hardcore over the unit

hypercube with out wrap around, with 7°1=0.1, and with N=200. These

results are much better than the volume-based test, especially for

two-dimensional data. We will see, however, that for an unknown

sampling window, our point generation procedure will not allow the

MST-based test to be performed with hardcore data.

We also look at the power of the MST-based test for detecting a

normal swarm of points. As in the volume-based test, the normally

distributed points are forced into the unit radius hypersphere by

dividing all the points by the maximum norm of the data. The second

sample required for the MST-based test is then generated uniformly over

this hypersphere. As in the volume-based test when N=200, we obtain

rejection rates of 100% for K=2, 5, and 10. However, when N is

decreased to 50; our rejection rates (at the .05 level) become 50, 8A,‘

and 76 for 2, 5, and 10 dimensions, respectively. These are higher than

the corresponding rates for the volume-based test with P placed randomly

but lower than the rates with P placed at the center of the hypersphere.

6.A.A Uniform Data in Unknown Sampling Windows

Here we determine the size of the MST-based test for unknown

sampling windows. Table 17 reports the size estimates for uniform data

in a unit hypercube, while Table 18 reports similar results for. data

uniform in a unit volume hypersphere. We note that all entries are

within or below their expected values. It appear that as dimensionality
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TABLE 17: Size of the MST-Based Test for Uniform Data

in an Unknown Unit Hypercube. M=100

K

2 3 5 10

50 (11.1) (2.0) (0.0) (0.0)

N 100 (A.2) (5.2) (6.0) (0.0)

200 (6.1) (3.2) (0.0) (0.0)

increases, the test becomes more conservative, i.e. the observed number

of rejections of the null hypothesis is less than expected. This can be

verified by noting that the mean of the MST statistic T increases as

dimensionality increases. This arises from the fact that the volume of

the convex hull of the data underestimates the volume of the true

sampling window. Thus we are packing uniformly distributed points

inside the convex hull which decreases the data point to data point

(X-X) joins more than would be expected under the null hypothesis of the

Friedman-Rafsky test. This makes a test against clustering possible,

though a loss of power may result. However, this excludes using the

MST-based test as a test of uniformity versus a hardcore alternative,

since the proper size of the test can not be set with an unknown

sampling window. The disadvantage in having no prior knowledge of the

TABLE 18: Size of the MST-Based Test for Uniform Data

in an Unknown Unit Volume Hypersphere. M-lOO

«

2 3 5 10

50 (0.0) (1.0) (0.0) (0.0)

N 100 (5,2) (2,0) (0,0) (0,0)

200 (1.0) (0.0) (0.0) (0.0)
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sampling window can be seen by the time taken to perform the MST-based

test in high dimensions for a hyperspherical sampling window. The major

component of the computation time is in generating the second sample.

For 100 uniform points in a hypersphere the times taken to perform the

test are 25, 70, 189, and lOAO CPU seconds in 2, 3, 5, and 10

dimensions, respectively, for 100 Monte-Carlo simulations.

Another type of uniform data is that generated over a hyperellipse.

Appendix A gives details on the parameters of the hyperellipses used.

For 100 uniform points over hyperellipses in 2, 3, A, and 5 dimensions

we obtain rejection rates of (3,1), (5,1), (1,0), and (1,1),

respectively. The number of Monte-Carlo simulations performed is 100.

Also, for uniform data over a triangle in two dimensions, the rejection

rate of the MST-based test is (6,3) with 100 Monte-Carlo trials. This

triangle is formed by partitioning the unit square along one of the

diagonals. These results lead us to believe that the rejection

procedure used in generating the second uniform sample allows us to

determine the level of significance of the MST-based test.

6.A.5 Neyman-Scott Process over Unknown Sampling Windows

We new study the power of the MST-based test against Neyman-Scott

clustered data over an unknown sampling window. In Table 19, we use the

Neyman-Scott cluster alternative over a hyper-rectangular sampling

window with wrap around. Of course, since the sampling window is

unknown, distances are not computed using wrap around. These results
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TABLE 19: Power of the MST-Based Test Against the Neyman-Scott

Process (wrapped)

show that

is remarkably similar to the case when the

though a slight

sampling window on the power of the MST-based test, we repeat the above

simulations, but

hypersphere. Here, however, wrap around can not be used.

reports these

dimensionality increases, even though the test

power

(100.100)

(100. 99)

( 57. 37)

(100.100)

(100.100)

(100. 97)

.05

loss in

for the

power

estimates. We

( 78. 72)

( 5o, 30)

( 12, 8)

(100.100)

(100.100)

( 68. 51)

.1

0'

Neyman-Scott

in an Unknown Unit Hypercube.

( 1A.

( 11.

( 3.

2 1

6.

3

.2

sampling window is

can be seen.

process

is

M=100, N=200

6)

5) K=2

0)

15)

5) «=5

1)

the power of the MST-based test with unknown sampling window

To check the effect of

over the unit volume

note an increase in the power as

also becoming more

TABLE 20: Power of the MST-Based Test Against the Neyman-Scott

Process in an Unknown Hypersphere.

(100.100)

(100.100)

( 90. 86)

(100,100)

(100,100)

( 96. 92)

.05

(100,100)

(100. 96)

( 38. 28)

(100,100)

(100,100)

( 96. 92)

.1

0'

M=100, N=200

60)

32) K=2

A)

92)

5o) «=5

6)

known,

Table 20



93

conservative. There is an increase in power from the unknown hypercube

results, though this is probably due to the difference between the

realizations of a no wrapped and a wrapped Neyman-Scott cluster process.

6.A.6 Experiments with Some Real Data

To demonstrate the applicability of the MST-based test in practical

situations, we use this test to test for the presense of structure in

some data from actual studies in Pattern Recognition. We assume that no

information about the sampling window is available. In addition, we do

not utilize any category information (pattern labels). The data sets

used in this study are:

(l) IRIS....This is a well-known data set [F1536] containing

measurements on three species of iris (setosa, versicolor, and

virginica). It consists of 50 patterns from each species on each of A

features (sepal length, sepal width, petal length, and petal width).

See Figure 11 for a projection of the IRIS data to two dimensions by the

principal component method [Fuk72]. The axes are the eigenvectors

corresponding to the two largest eigenvalues of the covariance matrix of

the data.

(2) IRISZ3....This is a subset of the IRIS data containing measurements

for only two of the species (versicolor and virginica). These 100

patterns are known to be well separated from the patterns corresponding

to the setosa specie. Figure 12 shows this data projected to two

dimensions by the principal component method.



9A

0)

Q)

8) o
C)

C) C) 0 (3 CAD

.809 86100 000% Q, ab

0 0010 6’ o
G) Q£’(g cégéya

0 0000888816}? 0 00
00 0° @790 0500”“)

o 00080 110

C)
CD

a) 0)

FIGURE 11: IRIS Data Projected by the Principal Component Method

0) Q)
at) Q)

0 o 0

a) 0 0 08 00

%0 0 og© 0 D 0 O

00 o 0 000 %1‘30©00 o

0 Q10 0 o oo o0 0 Q) ~ 0 0

o 0 0 0 029 o 000 o 0 o
C) C)

o “600" 0
0)

FIGURE 12: IRISZ3 Data Projected by the Principal Component Method



95

(3) 80X....The 80X data set is derived from the Munson hand printed

FORTRAN character set. Included are 15 patterns from each of the

characters ”8”, "O". and ”X”. Each pattern consists of 8 feature

measurements [Dub80]. Figure 13(a) shows the 80X data projected to two

dimensions by principal component analysis while Figure 13(b) shows the

80X data projected to two dimensions by discriminant analysis [Fuk72].

(A) BCLUS....This data set, used by Bartlett [Bar6A], consists of 100

patterns generated according to a Neyman-Scott cluster process over the

unit square. Bartlett was able to show that this data was nonuniform

with a spectral analysis technique. In our analysis of this data we

assume that the sampling window is unknown. Figure lA(a) shows the

original BCLUS data, while Figure lA(b) shows the BCLUS data after it

has been subjected to the whitening transformation [Fuk72].

(5) SPEECH....This data set consists of patterns measured on 72

utterances from 8 Chinese speakers [He82]. Each pattern consists of 5

features measured from the pitch waveform. The principal component

projection of this data to two dimensions is shown in Figure 15.

The data sets are tested in each of the following configurations.

(l) The original feature space.

(2) The patterns are transformed so that the data has zero mean and

identity covariance matrix. This is done by whitening the data, i.e.

applying the principal component transformation followed by the

whitening transformation [Fuk72].

(3) The patterns are projected to two dimensions by the principal
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FIGURE 13 (cont'd)
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FIGURE lA (cont'd)
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FIGURE 15: SPEECH Data Projected by the Principal Component Method
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TABLE 21: The Performance of the MST-Based Test on Some Real Data Sets

Entries are the value of the normalized Friedman-Rafsky statistic.

The top number is the value using the rejection technique.

The bottom number is the value using either the MVU or smallest

hypersphere sampling window.

Data Sets

Configuration IRIS IRISZS 80X BCLUS SPEECH

Original ~11.08 -3.59 -1.90' —5.25 -5.50

“12.91 “8.77 “A.6A “2.97 “6.33

Transformed -5.A2 -2.83 -.90 -A.9A -3.50

“6.A6 “5.A5 “3.79 “6.13 “6.00

Projected “7.27 “1.55 “1.68 “ “2.50

“6.00 “2.12 “1.08 “ “1.83

component transformation.

Each configuration is tested by the MST-based test in two ways.

First, the rejection technique is used to generate the second sample of

uniform points needed for the MST-based test. Second, the MVU

hyper-rectangle and the smallest hypersphere enclosing the data are

found and the estimate with the smaller volume is used as the true

sampling window. The second sample of uniform points is then generated

inside this sampling window.

The results of these experiments are shown in Table 21. Except in

a few instances, the entries in the table are significant for rejecting

the null hypothesis of uniformity at the .05 level (the .05 quantile of

the normal distribution is -l.65). These exceptions are the transformed

80X data tested by using the rejection technique, the 80X data projected

to two dimensions and tested in the smallest circle, and the IRISZ3 data



102

set projected to two dimensions and tested by using the rejection

technique. Even in these cases, the value of the test statistic

indicates the presence of a slight clustering in the data. This can be

confirmed by Figures 12 and 13(a) for the two projected data sets.

There is a general trend in Table 21 which shows that the test statistic

using the rejection technique is larger than when the best fitting

sampling window is used, especially in high dimensions. This is

expected since the high dimensional data does not usually fit very well

inside the MVU or smallest hypersphere sampling windows, and the data

may look like a single cluster in the center of the window. This effect

also arises due to the conservative nature of the MST-based test when

using the rejection technique.

The original 80X data appears clustered at approximately the .03

level. Of course, A5 patterns in 8 dimensions constitute a rather

sparse data set and it is difficult to make a meaningful decision about

the structure of such data. These data, after applying the whitening

transformation, are accepted as uniform at the .05 level, which suggests

that the whitening transformation can distort the structure present in

the data. The representation of the 80X data in two dimensions produced

by the principal component transformation has critical level

approximately equal to .05 when using the rejection method. Even if the

80X data is projected to two dimensions using discriminant analysis, the

critical level drops to only .03. This suggests that the clusters in

the data are not compact or well-separated. This can be verified from

Figure 13(b). Of course, if category information (class labels) is

used, it may still be possible to determine simple decision boundaries
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to seperate the three classes present in this data.

In contrast to the 80X data, there is evidence for strong

clustering in the IRIS data. The values of the test statistic for all

representations of the IRIS data have critical levels less than .001.

This strong clustering can be seen in the two-dimensional representation

of the IRIS data (Figure 11). By deleting the compact and

well-separated class (setosa) from the IRIS data in the IRISZ3 data, we

can see an increase in the value of the test statistic.

The BCLUS and SPEECH data sets both show strong clustering

tendency. The BCLUS data seems to appear slightly more clustered after

the transformation.

One problem with the MST-based test is that repeating the test with

a different uniform sample can yield a different value of the test

statistic. For instance, if the transformed 80X data is retested by

both the rejection and the best fitting window methods, the test

statistic values are .21 and -l.90, respectively. These new values

suggest that this data are even less clustered than suggested

previously. If the original IRIS data are retested we get about the

same value of the test statistic for the rejection method, but the value

using the MVU hyper-rectangle decreases to -l7.20. This suggests that

the test will view well-clustered data as well clustered no matter what

uniform sample is used. However; if the value of the test statistic is

close to the critical value (for the level .05 say) then the

interpretation requires caution. One solution is to perform the test
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with various uniform samples and average the resulting statistic values.

Under the null hypothesis, this average should again have an approximate

normal distribution.

We conclude that the MST-based test is able to provide reliable

information about the structure of real data.

6.5 Summary

In this chapter we have presented a new test for uniformity, called

the MST-based test. The given data are tested against a second uniform

sample which needs to be generated. The test statistic is derived from

the MST of the pooled samples. If the sampling window is known, this

second sample can be taken as uniform data over that sampling window.

In this case, a Monte-Carlo study of the size and power of the MST-based

test shows that the test performs very well. The power of the MSTrbased

test is significantly higher (at the .001 level) compared to other tests

against clustered data. If the sampling window is unknown, we present a

point rejection procedure which places samples uniformly in a set which

approximates the convex hull of the data. The size and power of the

MST-based test using this rejection procedure are shown by a Monte-Carlo

study. We conclude that the size of the MST-based test can be preset to

a specified level of significance when testing against a clustered

alternative. Due to the conservative nature of the MST-based test on

the clustered alternative, we can not apply the test on a hardcore

alternative in unknown sampling window. To demonstrate the

applicability of the MST-based test we have applied it to some real data
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sets.



CHAPTER 7

SUMMARY, DISCUSSION, AND FUTURE RESEARCH

7.1 Summary

Our goal is to differentiate data sets with structure from those

with no structure. The structure we are most interested in is one of

clustering or aggregation of points. We wish to use a statistical

hypothesis test to make the decision. To do so, we define data with no

structure as a set of independent points following the uniform

distribution over a compact convex set in K-dimensional space, called

the sampling window.

A careful review of the currently available tests for structure

reveals three major deficiencies with these tests.

(1) Inapplicability to high dimensional data,

(2) The sampling window needs to be known, and

(3) Reliance on a Poisson process null hypothesis.

We feel that these limitations make the available tests inapplicable for

most data in a Pattern Recognition environment.

106
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The focus of this research has been on finding tests that would

address some of the above problems. We presented a volume-based test

which has the ability to compare density changes in the data to the

changes expected for uniformly distributed points over a known sampling

window in K-dimensional space.

To apply the volume-based test on data over an unknown sampling

window, an accurate estimate of the true sampling window is needed. We

presented a number of estimators when the shape of the window was known

to be a hyper-rectangle, a hypersphere or a hyperellipse. For an

arbitrary sampling window, the convex hull of the data appears to be an

adequate estimator. The volume of the convex hull is not an unbiased

estimator of the volume of the true sampling window.

We performed Monte-Carlo simulation to evaluate the volume-based

test. For known sampling windows, we found that the size of the

volume-based test could be fixed and that the power of the volume-based

test against clustered data is comparable to that of other tests in the

literature. We studied the proposed sampling window estimators by using

the estimates as the true sampling window in the volume-based test. We

found that we were able to set the size of the volume-based test using

the MVU estimator for an aligned hyper-rectangular sampling window and

the smallest hypersphere estimator for a hyperspherical sampling window.

The attempt to transform points in a hyperelliptical sampling window

into a hypersphere failed: the transformation did not produce uniform

data in a hypersphere according to the volume-based test. In two
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dimensions, the convex hull estimator yielded a test with determinable

size and with power comparable to the test performed over a known

sampling window. However, we found this estimator computationally

infeasible to apply to high dimensional data.

The requirement that the volume and shape of the sampling window be

precisely known limits the applicability of the volume-based test. To

overcome this limitation, we developed a MST-based test which assumes

only that the convex hull is a reasonable estimate of the sampling

window. This MST-based test. uses the Friedman-Rafsky multivariate

extension of the Wald-Wolfowitz test to determine if two samples come

from the same population. In our application, one of the samples is the

given data. The other sample is generated uniformly over the sampling

window of the given data. The generation of this second sample is

straightforward when the sampling window is known. For unknown sampling

windows we present a heuristic that generates uniformly distributed

points over a set that approximates the convex hull of the given data.

This, however, violates an assumption of the Friedman-Rafsky test that

the two samples be independent.

We found that if the sampling window is known then the size of the

MST-based test could be determined, even for small sample size. The

power against the clustered alternative is significantly higher (at the

.001 level) than other tests. For unknown sampling windows, we found

that the MST-based test was conservative against a clustered alternative

but still showed good power. However, the MST-based test could not be

used as a test against a regular alternative in this environment.
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We conclude that the MST-based test is better than any other test

given in the literature to determine if data have any clustering

structure.

7.2 Discussion

The major contributions of this thesis have been in two areas.

First, we have defined two new tests for uniformity of given data. For

each of these tests, we have performed Monte-Carlo studies on the size

and power against various alternatives. These tests appear powerful

against clustered alternatives.

Second, this thesis provides the first study of tests for structure

in data when the sampling window is unknown. We provide a number of

sampling window estimators when the shape of the sampling window is

known a priori to be an aligned hyper-rectangle or hypersphere. For a

general sampling window, we have found that the convex hull of the data

should be used as its estimator. Unfortunately, computing the convex

hull of high dimensional data is computationally very demanding. To

alleviate this problem, we developed a test that does not explicitly

compute the convex hull of the data. This is the first study which has

provided a test that can be used to detect clustering in data over an

unknown sampling window.
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We new list some advantages and disadvantages of each of the tests

proposed in this thesis.

The volume-based test has the following advantages:

(1) The null hypothesis in the volume-based test is that the data are

uniform over some compact convex set. This contrasts with other tests

which use the null hypothesis of a Poisson process and eliminates the

need for an 'edge correction' factor.

(2) There appears to be little effect of dimensionality on the size and

power of the volume-based test.

(3) The volume-based test directly measures the density of the sample

points as opposed to some distance-based tests which utilize only local

information in the data.

The volume-based test has the following disadvantages:

(1) Using a single point P allows only one view of the data. Different

placements of P may yield different views of the data. It is not clear

how to utilize this information.

(2) The volume-based test is very sensitive to the size and shape of the

sampling window. This limits its applicability to low dimensional data

(K<A) when the convex hull is used as an estimate of the true sampling

window.

(3) It is necessary to compute the volumes and the intersection of sets
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in high dimensions, which is feasible only if the sets are simple.

The advantages of the MST-based test are:

(1) For known sampling window, the power of the MST-based test against

clustered alternatives is significantly better than some well-known

distance-based tests.

(2) The test does not require the exact shape and volume of the sampling

window. Therefore, it can be easily applied to high dimensional data

(KzA) in an unknown sampling window.

The MST-based test has the following disadvantages:

(l) Generating the uniformly distributed sample over an unknown sampling

window may require large amounts of computation time.

(2) The test against regularity can not be performed with unknown

sampling window.

(3) The MST-based test could yield different results on the same data

depending on the second sample which needs to be generated uniformly

over the sampling window.

7.3 Future Research

Listed below are areas of investigation that extend the work in this

thesis.
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(1) It is unlikely that a single test will provide all the

information needed to determine the structure of real data. We envision

a number of tests being applied to the data and the results of these

tests combined in some manner. There is a definite need to explore the

strategies for doing this. As an example, one would like to combine the

results from different placements of point P in the volume-based test.

(2) For the MST-based test, a study of other methods of rejecting

points outside the convex hull of the data should be undertaken. Our

estimate of n* was based on a heuristic which appears to give reasonable

results. However, one may be able to derive a different estimator that

does not lead to the conservative trend against clustered alternatives

in high dimensions. This would also allow us to define a test against

regularity in unknown sampling windows.

(3) The idea of using points generated over the convex hull of the

data may now allow tests based on sampling origins (such as the

Cox-Lewis test) to be used with data in unknown sampling windows. One

would need to check if the null distribution of the statistic would

still hold. Using these tests may have an advantage over the MST-based

test since fewer sampling origins need to be generated. Also, the

assumption that the sampling origins are uniformly distributed is

usually unnecessary to apply these tests. This may allow the origins to

be placed inside the convex hull by taking linear combinations of random

pairs of data points.
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(A) Our brief study of Ripley and Rasson's unbiased estimator of

the volume of the sampling window for planar data indicated that it

appears to be applicable to higher dimensional data. A proof of this

extension would be satisfying.

(5) Even if a data set is rejected as uniform it may still not be

very interesting from the point of view of clustering. For example, the

data may be unimodal Gaussian or may have a regular structure.

Therefore, it is necessary to look more closely at this non-uniform

data. It would be exteremely useful to know the number of clusters

present in the data. Perhaps the sequence of ordered volumes generated

from the volume-based test would be helpful here. It is possible that

knowing the number and location of significant 'holes' in the data would

also be useful. A significant 'hole' could be defined as an unusually

large subtree of Y points using the MST-based test.

(6) Our analysis of the computational complexity of various

algorithms has assumed a serial model of computation. It may be

possible to develope parallel algorithms to generate the convex hull and

MST of the data, perform volume and set intersection computations,

generate random samples, etc. An analysis of the computational

requirements of the tests should be undertaken with this in mind.
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APPENDIX A

GENERATION OF RANDOM VARIABLES

This appendix describes the methods used to generate the random

variables and data set ensembles used in this study.

A.l Uniform Random Variates

All uniform random variables used in this study were generated by

the 'Randomization by Shuffling' method (Algorithm M) described by Knuth

[Knu81, p. 32]. The auxillary table size was set to 6A elements. The

random number generator used to fill the table was the RANF generator

provided in FORTRAN IV on the CYBER 170/750. The generator used to

determine which element in the table to return at each call was a linear

congruential generator with multiplier 16807 and modulus 21A7A836A7. It

is hoped that the use of this generator will avoid a problem of

sequentially generated random samples used as K-dimensional point

coordinates. Knuth [Knu8l] has pointed out that such K-dimensional

points tend to fall 'mainly in the planes' [p. 90 Knu81].

A.2 Normal Random Variables

The standard normal random variables used in this study were

generated by the algorithm given in Kinderman and Ramage [Kin76]. This

method uses a modest number of uniform deviates to produce a single

11A
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normal deviate by a rejection technique. It proceeds by decomposing the

normal density into a number of regions where simpler density functions

can be defined. Uniform deviates are then used to produce deviates

following the appropriate component density. Samples from a

multivariate normal distribution with diagonal covariance matrix' were

produced by using this method to generate each coordinate value

independently.

A.3 Poisson Random Variables

Poisson random variables were generated from uniform deviates by

using the algorithm given by Knuth [Knu81]. Essentially, we simulate a

Poisson process on the line. We can produce a Poisson deviate, X, with

mean r by generating independent exponential samples with mean l/r,

denoted Yl,Y2,...., stoppping as soon as Yl+Y2+...+Ym>1; then

X <--(m-l). Simplifying this, we see. that X can be obtained by

generating one or more uniform deviates Ul,U2,... until the product

(Ul)(U2)...(Um) < exp(-r), finally setting X <--(m-l). On the average,

this procedure requires r+1 uniform deviates.

A.A Uniform Random Vectors in a Hypersphere

Generating a sample from a uniform distribution in a K-dimensional

aligned hyper-rectangle is a trivial combination of K one-dimensional

uniform random variables, due to the independence among the coordinates.

However, generating random vectors uniform in a hypersphere can be
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computationally burdensome if a rejection technique is employed. To

perform this generation efficiently, we use the method described by

Pettis et. a1. [Pet79], which uses K normal deviates and a uniform

deviate to place a vector uniform in a hypersphere. A random vector

following the normal distribution with zero mean and identity covariance

matrix is generated. This vector is normalized to have unit length.

Due to the lack of directionality in the normal density, this vector is

uniformly distributed on the surface of the unit hypersphere. Finally,

the length of the vector is made proportional to the Kth root of a

uniform deviate, thus placing the vector uniformly inside the unit

hypersphere.

Data uniformly distributed over a hyperellipse is derived from

uniform hyperspherical data by applying a linear transformation. This

transformation, T, is defined as follows. Transform each of the

standard coordinate basis vectors, dj, j-l,...,K (the jth component of

dj is 1, all other components are 0) into the orthogonal direction

vectors as follows:

T(d1)=(1,1,...,1)

T(dj) = (yj(1).YJ(2)....,yj(K)) j=2....,K where

71(1) = 0. for i=1,...,j-2 (when j+2)

yj(i) - -(K-j+l) for i=j-1

Yj(i)= 1 for i=j,...,K

Further, these direction vectors are normalized so that
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IIT(dJ)II ’ modulo(j,5) if j is not a multiple of 5

5 if j is a multiple of 5

In two dimensions, this transformation takes the unit circle into an

ellipse with major axis of length two on the y--x line and minor axis of

length one on the ysx line.

A.5 Neyman-Scott Ensembles

A Neyman-Scott cluster process [Ney72] is a stochastic point

process representing a clustered alternative. It uses a Poisson field

of points as cluster centers and generates daughter points around each

cluster center with some specified distribution. To simulate this

process over a bounded sampling window, S, we use the following steps.

First, three parameters of the process are specified:

(1) N, the number of points desired,

(2) ’4. , the average cluster size, and

(3) a“, the spread of each cluster.

Next, the following algorithm is applied.

(1) Select a point Y at random from S as a sample point. Y will also

serve as a cluster center.

(2) Find the number of daughter points, L, to be placed about Y. Let M
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be the number of points generated so far. Set L=min(N-M,X), where X is

a Poisson random variate with mean ,4.

(3) L points are then generated using the radially symmetric normal

density with mean Y and covariance matrix 0’1, where I is the identity

matrix. If wrap around is to occur, the point positions are taken

modulo the sampling window: otherwise, if a point falls outside the

window, it is rejected and new points are generated until one falls in

the window.

(A) Steps (1) through (3) are repeated until N points have been

generated.

To avoid edge effects under the null hypothesis of a Poisson

process, previous studies have generated data from a Neyman-Scott

process (as well as under other alternatives) using wrap around. The

concept of wrap around may only be defined in the case of a

hyper-rectangular sampling window. In the case of an aligned

hyper-rectangle, each of the two faces of the hyper-rectangle associated

with every coordinate axis are identified as being adjacent. To place

an arbitrary point Y-(yl,y2,...,yK) in the aligned hyper-rectangular

sampling window S=[ai,bi]:, we change each of the coordinate values to

yj<--modulo(yj,bj-aj)+aj, j-l,..,K. Distances can also be computed with

wrap around as follows. Let X and Y be two points in S-[ai,bi]:w with

components xi and yi, respectively. Let 2 be defined as the vector with

components zj=min( |xj-yj|, (bj-aj)-|xj-yj| ). The distance between X

and Y is then ||Z||, using whatever norm is appropriate.
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A.6 Hardcore Ensembles

Hardcore data sets used were generated under the 551 (Simple

Sequential Inhibition) model of Diggle, Besag and Gleaves [Dig76]. This

method places N points in the sampling window S consecutively according

to the rule that the ith point is distributed uniformly over the set of

all points in S at Euclidean distance of at least d from all previously

located points. The parameter of the SSI process is its packing

density,

K.

,1: N-AK(d/2)

where A is the volume of a unit hypersphere in K dimensions. The value

of lo , barring edge effects, is the proportion of 5 covered by N

non-intersecting spheres of diameter d.

To implement the SSI process, we use a rejection technique that

consecutively generates uniform points over S and checks if they satisfy

the minimum distance criterion. This procedure uses an inordinate

amount of computation if /) is large.
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APPENDIX B

THE VOLUME OF THE INTERSECTION OF TWO HYPERSPHERES

Let the two hyperspheres be denoted as S(cl,rl) and S(c2,r2), where

S(c,r) stands for a sphere of radius r with center c. The following

prodedure returns the volume of their intersection.

INTVOL( S(c1,rl) , S(c2,r2) )

o 11 ...-.2 11.
IF (0 >= rl+r2) THEN : spheres don't intersect

INTVOL <““ 0

RETURN

IF (D+r2 < r1) THEN ; sphere 2 is inside sphere l

INTVOL <““ Ak * (r2)**K

RETURN

IF (D+rl < r2) THEN : sphere l is inside sphere 2

INTVOL <““ Ak * (r1)**K

RETURN ,

; need to find both spherical caps

r1+dz-r’

81 <-- cos" [ L z/Qfld]

‘5 1.
Q +01 - rf‘

82 <-— cos.‘ 2'24

INTVOL <-- CAP( r1 , Bl ) + CAP( r2 , 82 )

RETURN

END

Here Ak is the volume of a unit hypersphere in K dimensions,

Ak= WVZ/P(§+I) ’

The function CAP( r,B ) returns the volume of a spherical cap of a
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FIGURE 16: Definition of B to Compute Spherical Caps.

The spherical cap for S(c,r) is the shaded area
/
-
/
fl
-
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hypersphere of radius r, where B is the angle between the line generator

of the cap and the symmetric axis of the cap. Figure 16 shows the

definition of B in two dimensions. In our case, 81 is the angle between

the line segment (cl,c2) and the line segment beginning at cl and ending

at any point on the surface of both spheres. B2 is similarly defined.

The formula for a cap's volume is given by Panayirci and Dubes [Pan81]

and can be rewritten as

CAP(r,B)=~AK:[S J’BUiWH) 1‘]

B

A,“ r“ ['swxygy

CD

0.18816 IXLQJb] [5 “HQ incomple'I’e BETA-£10310“

and

s
) .1
1;
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APPENDIX C

COMPUTING THE SMALLEST HYPERSPHERE

The smallest hypersphere problem can be stated as follows. Given N

points, {Xi}, in K dimensions, find the smallest hypersphere which

contains all N points. That is, find a vector c such that max||Xi-c||

is minimized over all e in RKL Historically, the smallest hypersphere

problem was first proposed for the planar case (K=2) in 1857 by J.J.

Sylvester [Sy157]. Later, he gave a geometric solution attributed to

Pierce [Syl60] which was rediscovered by Chrystal [Chr85]. A modern

account of their technique is given by Rademacher and Toeplitz [Rad57].

For K>2, Lawson [Law65] gives an iterative algorithm that converges to

the smallest hypersphere while Elzinga and Hearn [E1272] were the first

to exactly solve the problem. Their technique uses quadratic

programming. Supowit [Sup81] gives an algorithm based on a grid

heuristic.

We use Elzinga and Hearn's exact solution for the smallest

hypersphere. We wish to solve the following primal problem:

Minimize r over all positive reR and ceRK’such that

r1 2 (Xi-c).t (Xi-c), i=l,2,...,N.

After rewriting this in terms of its Wolf dual [E1272], we have the
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following concave quadratic programming problem,

MS“ 2 \I; (x3316) “ Vt (X110 V Suck ‘I’I'a‘l’

I

8:1’2’000’ N

I

ZV;=1. and VI‘ZO

where Vi, i=l,2,...,N are Lagrange multipliers, V is the vector of Vi‘s

and X is the matrix whose columns are the Xi. The smallest hypersphere

is then specified as

C = 2 Vixi and Y}: 2 V; (X;’C)t(xi "(2)

Solving this problem by a simplex algorithm involves the

introduction of an additional N nonnegative multipliers and an

unconstrained multiplier. This means that the simplex algorithm will

have basis size proportional to N. To reduce the complexity of the

problem, we decompose the problem as follows. For any subset of K+2

points of {X1}, we can find the smallest hypersphere containing these

points by the simplex algorithm. If this hypersphere contains all N

points, we have found the optimal hypersphere for {Xi}. If not, we use

the fact that the smallest hypersphere is defined by only K+l points.

Thus the unused point can be eliminated from the set of K+2 points and

another inserted from the points in {Xi} which lie outside the current

hypersphere. Elzinga and Hearn prove that this procedure halts in a

finite number of steps. The algorithm is as follows:

(1) Given {Xi}, select K+2 points from this set.

(2) Solve the quadratic programming dual subproblem for the K+2
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points by the simplex method. One point, say Xj, will not be in

the optimal basis.

(3) If the hypersphere defined by the solution contains all N

points then stop. Otherwise, choose a point from {Xi} outside

this hypersphere and replace Xj by this point. Go to (2).

Specification of methods to select the K+2 points in step (1) and to

select the next point to be added in step (3) complete the algorithm.

These two choices can greatly affect the computational requirements of

the procedure. Our implementation chooses the K+2 points farthest from

the mean of the data. The point in {Xi} farthest from the current

hypersphere's center is added to the current basis in step (3).

The run times of our implementation of the smallest hypersphere

problem are presented in Figure 17. Ten sets of both 100 and 200 pdints

were generated at random in the unit hypersphere in 2.3.5.10 and 15

dimensions. The times plotted are the averages over the ten runs. We

note the fairly linear behavior in computation time for small

dimensions. Other experiments by us have also shown a linear behdvior

with respect to N.
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FIGURE 17
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APPENDIX D

THE CONVEX HULL OF A FINITE SET OF POINTS

Computing the convex hull of a set of N points is a well-studied

problem. See Toussaint [Tou80] for a review. A number of algorithms

have been proposed for the two-dimensional case, the best of which runs

at minimum worst case time of 0(NlogN). Some of these have expected

time proportional to N. However, only a few algorithms are available

for computing the convex hull in high dimensional spaces. For K83,

Preparata and Hong [Pre77] give an 0(NlogN) algorithm. Chand and Kapur

[Cha70] designed an algorithm based on the 'gift-wrapping' principle

which can be used for any value of K. Toussaint [Tou80] mentions the

time complexity of this algorithm is bounded below by

01 NfglhlI.

Devroye [Dev80], by using results on maximal vectors [Ben78b], showed

that there exists a convex hull algorithm for general K that runs in

O(N) expected time for certain classes of point distributions.

Since the Chand and Kapur algorithm is the only complete algorithm

that has been published for high dimensional data, we choose to use it

in our convex hull implementation. Their algorithm proceeds by

'gift-wrapping' the points; that is it works by finding one face of the

hull, then finding its edges, and then pivoting this face about each

edge until it forms a new face of the hull.
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Due to inaccuracies in the published version of this algorithm, we

give a corrected version of it here. Let x-{x1} be the set of N points

in K dimesions. Its convex hull is found by calling the procedure

CONVEX(X,K,N). This returns the faces of the convex hull in the form of

a normal vector to each face and the set of data points on each face.

The following is the terminology used in defining the procedure CONVEX.

Let nj, j-l,....K be global variables holding the surface normals at

each recursion level of the algorithm. Let DIM(E) represent the

dimension of set E, i.e. one minus the number of linearly independent

points in E, and let |E| represent the number of points in set E. Let

( e.v ) represent the inner product of vectors e and v. The algorithm

requires that N>K.
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CONVEX(Y.M.L)

(1) Find a face (an M-l dimensional flat)

NFACE <-- O, NFACE is the current number of faces found.

(a) Let E be the set of point(s) of Y with the smallest first

coordinate.

The hyperplane H passing through E with normal

n = (l,O,...,O)

is a support hyperplane of Y.

(b) Let {vi} be the DIM(E) unit vectors spanned by flat E.

Solve the K-1 equations with K variables (some of which may

be zero) for unit vector e

( e.vi ) s O i=l,2,..,DlM(E)

( e.ni ) - O i=K,K-l,..,M

(c) Find the next point(s) to be added to E by finding those

points in Y which maximize

‘- e.v-

( J3/(“15-V5)

where v; is the unit vector from a point in E to the jth point

of Y. Let Np. be this maximum value such that X’+F’=l.

Update the normal to the hyperplane passing through E as

rh‘Ifln +fne.

(d) If DIM(E) < M-l go to (b)

(2) Store the faces and compute the edges

NFACE <-- NFACE + l

FACE(NFACE) <-- E

IF 1:] =11

We can compute the M edges of E. Each edge is defined by a

subset of M-l points. Store these edges in EDGES. If an edge

is already stored, delete it.

ELSE (|E|>M)

CALL CONVEX(E,M-l,|E|)

Store the returned faces in EDGES. If an edge is already there,

then delete it.

(3) Replace E by an edge from EDGES.

If there are none, then return FACES and end.

Let n be the normal to the face containing the edge in E.

Let Yo be a point in this face not in E.

(A) Go to step l(b) with the additional constraint in step l(b) on the

solution vector e that (e.v)>0, where v is the unit vector from

a point in E to Yo.

END
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Table 22 gives some results from our implementation of the Chand

and Kapur algorithm. We have used Cohen and Hickey's simplex

decomposition algorithm [Coh77] to compute the volume of the hull. The

table shows information about the convex hull for 100 points generated

uniformly in the unit hypercube. We note the rapid increase in computer

time. number of faces, and decrease in the volume of the convex hull as

dimensionality increases. However, Ripley's unbiased volume estimator

[Rip78] for planar data appears to operate quite well for higher

dimensions, indicating that his results are probably valid in higher

dimensions.

TABLE 22: Run Times to Compute the Convex Hull and its Volume

100 points at random in the unit hypercube

times are CPU seconds on a CYBER 170/750

 

K Number Time/ Avg. number Avg. number Avg. Avg. unbiased

of runs run of faces points inside Volume Volume

2 10 .09 12 88 .87 .99

3 10 .86 56. 68 .68 1.00

A 5 33.19 251 A3 .A6 1.10

5 l >A50 lOA6 27 * *

*could not be run due to excessive computation time.
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