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ABSTRACT

STRUCTURE OF MULTIDIMENSIONAL PATTERNS

By

Stephen Phillip Smith

The problem of describing the structure of multidimensional data is
important in exploratory data analysis, statistical pattern recognition,
and image processing. We view a data set as a collection of points
embedded in a high dimensional space. The primary goal of this research
is to determine if the data have any clustering structure; such a
structure implies the presence of class information (categories) in the

data.

We wish to use a statistical hypothesis test in our decision
making. To this end, we define data with no structure as data following
the uniform distribution over some compact convex set in K-dimensional

space, called the sampling window.

This thesis defines two new tests for uniformity along with various
sampling window estimators. The first test is a volume-based test which
captures density changes in the data. The second test compares a
uniformly distributed sample to the data by using the minimal spanning
tree (MST) of the pooled samples. We provide sampling window estimators
for simple sampling windows and use the convex hull of the data as a

general sampling window estimator.



For both of the tests for uniformity, we provide theoretical
results on their s%ze, and study their size and power by Monte-Carlo
simulations. Both tests show good power against clustered alternatives.
We also use simulation to study the efficacy of the sampling window
estimators. These estimates perform well, but the convex hull estimator
is too computationally burdensome to applyrin high dimensions. Since
the MST-based test can be performed without explicitly computing the
convex hull of the data, we conclude that it is more reasonable to apply
to real data. Experiments with some real data sets also demonstrate the

power of the MST-based test.
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CHAPTER 1

INTRODUCTION

1.1 The Problem Statement

This thesis addresses the problem of describing the structure of
multidimensional data. We are interested in data that are represented
as points in a K-dimensional (K>2) space. We assume that little prior
information about the data is available and we wish to make as few
assumptions about the data as possible. This restricts us to a

preliminary assessment of the structure and interrelationship among the

points.

Figure 1 shows a number of data sets in two dimensions. Obviously,
a complete description of some of these data sets would take
considerable effort. However, the descriptors used would depend on the
end goal. For some applications, it might be enough to know that the
data in Figure 1(a) are 'uniform' and the data in Figures 1(b) and 1(c)
are ‘'clustered', while other applications may be interested in knowing

that the data in Figure 1(e) form an "S".

We are interested in a gross description of the data. We will try
to decide if a data set has some 'unusual internal structure'. To do
so, we will define data with no 'structure'. There would probably be

1



2

little interest in further analyzing data sets classified as

unstructured.

There are three main questions which every Pattern Recognition

researcher should be interested in asking about data. These are

(1) Do the data suggest, by their own internal structure, any

'classes' in the data?,

(2) Do these classes correspond to a priori pattern classes or to

other extraneous factors in the application environment?,

(3) What measurements best extract the a priori pattern classes?
What type of classifier best embodies these class distinctions and

how can one best learn about the parameters of these classes?

Classical Pattern Recognition theory deals mostly with the questions
posed in (3). Some techniques are available in Exploratory Data
Analysis and Pattern Recognition to gain answers to questions (1) and
(2) . This thesis deals with a way of providing information to answer

question (1). We ask if there is any 'structure' in the data.

To make a decision of ‘structure' versus 'no structure' for a
particular data set, we would like to phrase this problem as a standard
statistical hypothesis test. This compels us to define a stochastic
model for unstructured data and one for structured data. Our stochastic
model for unstructured data will be the continuous uniform distribution
over some compact convex sei in K-dimensional space, called the sampling

window. Using this definitfon, the only data set in Figure 1 which s
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L
unstructured is Figure 1(a). This is reasonable since it is the only
data set in Figure 1 which has no meaningful higher level description

than 'randomly dispersed data inside a circle'.

There are many possible alternatives to unstructured data. Since a
primary motivation for this work is in assessing the 'clustering
tendency' [Dub80, Cro80, Cro82] of a data set, an important stochastic
model for structured data is one of clustering or aggregation. Clusters
in the data would represent the ‘'classes' of interest to a Pattern
Recognition researcher. The antithesis of clustered data is lattice
regularity, shown in Figure 1(d). Under our definition, this regular
data should also be categorized as structured, although this structure

is not of significant interest in Pattern Recognition.

To decide if a data set is structured or unstructured using a
statistical hypothesis testing paradigm, we need to define some test
statistic which will capture this difference. The primary goal of this
thesis is to find a test statistic whose distribution is known under the
null hypothesis of uniformity and all possible alternative hypotheses
for all dimensions and for all sampling windows. We will see that this
goal is overly ambitious. We at least demand that the null distribution
of the statistic be available with known sampling window. This allows
one to set the size of the test based on the statistic. We also require
that the statistic be applicable to high dimensional data. Little study
has been done to evaluate test statistics when the sampling window is
unknown, and we merely begin such a study here. Our basic method of

study will be to perform a Monte-Carlo simulation of a statistic to
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check its size and determine its power. We will use data over both

known and unknown sampling windows.

In the remainder of this chapter, we will briefly presenf
background on Pattern Recognition, the field from which this thesis
originates. Since clustering techniques in Exploratory Data Analysis
are aimed at providing information on the 'class' structure of data, we
review some of these techniques. Our notion of structure is driven by,
and closely related to, the concept of clustering tendency, and we

define this concept. Finally, we give the organization of this thesis.

1.2 Pattern Recognition

Pattern Recognition techniques form the backbone of important
methods wused in the fields of machine intelligence and machine
perception. Pattern Recognition can be defined as ''the categorization
of input data into indentifiable classes via the extraction of
significant features or attributes of the data from a background of
irrelevant detail" [Gon78]. The categorization of input data is treated
extensively in the book by Duda and Hart [Dud73]. We are primarily
interested in testing if the data have any 'significant features' to
recommend it for further study. In terms of the applications, research
methods, and research techniques, this thesis is under the broad
umbrella of Pattern Recognition. Thus we emphasize multi-dimensional
data sets and are sensitive to computational considerations. We do not
explicitly treat any application areas. We are concerned with, but

hopefully not dominated by, theoretical issues in statistical analysis
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[Bar75] and probability theory [Har74]. To facilitate further
discussion, we now define some standard terms used in Pattern

Recognition studies.

Pattern Recognition can be broken into two broad subfields: the
geometric approach and the structural approach. The structural approach
essentially views 'patterns' as complex parts formed from idealized
simpler parts in the presence of distortion [Gre76, Gre78]. It can be
further subdivided into grammatical techniques [Fu74] and heuristic
techniques [Pav77], depending on how the parts and their relationships
are described. The geometric approach, with which this thesis deals,
views objects as being represented as points between which proximities
are given or can be computed. Geometric Pattern Recognition can be
further subdivided into statistical versus non-statistical approaches.
We work in statistical Pattern Recognition. There are two forms of data
presentation in statistical Pattern Recognition algorithms: the pattern
matrix or the proximity matrix. In a proximity matrix, N patterns are
represented by an N by N matrix, whose (i,j)th entry specifies the
proximity (similarity or dissimilarity) between pattern i and pattern j.
This type of data occurs most frequently in applications from the social
and behavioral sciences. We deal with the pattern matrix, which is an
N by K matrix, where each row is a pattern and each column denotes a
feature. The K features are viewed as a set of orthogonal axes and each
pattern is then seen to be a point or vector in a K-dimensional space

called the pattern space.



Another dichotomy in Pattern Recognition is that of labeled
patterns (supervised learning) versus unlabeled patterns (unsupervised
learning) . One may assign a priori labels to each pattern representing
the 'class' to which that pattern belongs. This set of labeled patterns
constitutes the training samples which can be used to learn the
structure of each pattern class or determine the decision boundaries
between the classes. |If it is assumed that the patterns from a class
follow some parametric statistical distribution, then we have a
parametric statistical decision problem. Otherwise, we must either
estimate the density function or use some non-parametric decision rule.
We assume little information is available about the patterns in our data
sets and, therefore, we work in the unsupervised learning mode.
Further, we assume that we have no knowledge about the number of
possible classes present in the data. Work in this mode can be
categorized under the general heading of Exploratory Data Analysis,

which is detailed in the next section.

1.3 Exploratory Data Analysis

Exploratory Data Analysis [Gna77, Tuk77] is a 'generic term for a
body of mathematical, statistical and heuristic operations whose goals
are to help an investigator get acquainted with data taken at a
preliminary stage of scientific inquiry" [Pan81]. As the word
'exploratory' implies, we are interested in a preliminary assessment of

the gross structure of a data set, rather than confirming some
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application-derived model of the data. The difficulty in an intuitive
interpretation of data embedded in high dimensional space is obvious.
Even in two and three dimensions the use of these techniques may result
in a better and more systematic categorization of the data set than can
be done by the naked eye. Also, the large volumes of such data that

occur in numerous scientific fields necessitate computer processing.

The technique of Exploratory Data Analysis in which we are most
interested is called clustering. Clustering attempts to find natural
groupings of patterns in a data set such that patterns within groups are
more ‘'similar' than patterns across groups. There are many clustering
algorithms [And73, Eve7k, Har75] and each essentially represents its own
definition of what is meant by a 'natural' grouping. Techniques range
from graph-theoretic clustering methods [Zah71] to minimum square-error
clustering methods [And73]. One major problem with clustering
algorithms is that they impose a clustering structure on the data set
even if such structure is not inherent in the data. For instance,
clustering algorithms will almost always find clusters in uniformly
distributed data. Thus, quite often, clusters found in data are
artifacts of the clustering method. We wish to avoid elaborate
interpertation of uniform data, and so we will refuse to apply
clustering algorithms to any 'unstructured' data. This is essentially
the methodological paradigm involving assessing the 'clustering
tendency' of the data, set forth by Dubes and Jain [Dub80]. For other
problems in Cluster Analysis see Everitt [Eve79] and Dubes and Jain

[Dub76, Dub79, Dub80].



1.4 Clustering Tendency

The term 'clustering tendency' refers to the problem of deciding
whether the data exhibit a predisposition to cluster, in other words to
form natural groups. We are interested in assessing if the structural
arrangement of the points is unusual, either on the side of aggregation
of the data, or on the other extreme when the data is aligned in a near
lattice arrangement. Basically, clustering tendency assessment implies
categorizing a given data set into one of the following three broad

descriptions:

(1) data are arranged randomly

(2) data are aggregated

(3) data are regularly spaced.

1.4.1 Proximity Matrix

Most of the work in clustering tendency assessment reported in the
literature deals with proximity matrix data. The entries in the
proximity matrix are rank ordered, that is only the ranks of the
similarities are meaningful. The null hypothesis of randomness is
stated to mean that all proximity matrices are equally likely. This is
called the Random Graph null hypothesis by Dubes and Jain [Dub80], since

there is a one to one correspondence between an N by N rank order matrix
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and an undirected, weighted, labeled graph on N nodes.

Statistics used to assess clustering tendency under the Random
Graph null hypothesis include the number of edges needed to connect the
graph [Fi171, Lin75], the distribution of node degrees in a threshold
graph [Fil171], the number of cycles in such a graph [Fil71], and the
number of nodes with incident edges in a threshold graph [Lin73].
However, Bailey [Bai78] points out that the Random Graph null hypothesis
is inappropriate for points distributed randomly is space. This is
because the metric space in which the points lie impose some additional

constraints on data configurations.

1.4.2 Pattern Matrix

The null hypothesis of no structure here is the continuous uniform

distribution over some compact convex set S C.RK. This null hypothesis

K

can also be viewed as a spatial Poisson process over R restricted to

set S. The set S is called the sampling window. Thus a sampling window

can be defined as the compact convex support set for the underlying

distribution.

The crucial role of the sampling window in assessing the structure
of a set of patterns can be seen from Figure 2. Figure 2(a) shows a
small square inside the unit square over which 100 points have been
generated uniformly. If the sampling window is taken to be the small
square, then the data should be viewed as uniform, and hence the data

has no structure. However, if for some a priori reason the unit square
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is taken as the sampling window, then the data would bhave to be
considered as structured in this sampling window. Perhaps one would
wish to call it a single cluster in the middle of the unit square. The
need for a convex sampling window is shown in Figure 2(b). This data
set should intuitively be considered as consisting of two clusters.
However, the 100 data points are uniformly distributed over two small
circles. Hence the data could be considered uniform over a region which
is the union of these two circles. To exclude such a situation, we make

the restriction that sampling windows be convex sets.

The statistical test of hypothesis can thus be stated as:

Ho: The data are uniform over the sampling window
versus
Hl: The data are not uniform over the sampling window.

The difficulty of testing uniformity of a pattern matrix is
twofold. First, the sampling window is unknown and must be estimated
from the data. Second, the test for uniformity must be performed in the
K-dimensional space. The distribution of uniformly distributed points
which are projected into a lower dimensional space by any of the popular
projection algorithms [Bis81] 1is unknown in the projected space.
Further, checking only for marginal uniformity may not be sufficient.
As an example, consider the following non-uniform density function over

the unit square whose marginal densties are uniform.

f(x,y) = ‘0(x2 -x - y2 +y) (2y - 1) (2x - 1) + for 0<x,ysl

=0 otherwise.
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1.4.3 Spatial Point Processes

We now provide a mathematical framework to introduce spatial point
processes and, in particular, the Poisson process [Rip77, Cox80, Ish81].
We imagine a probabilistic mechanism scattering points throughout
K-dimensional Euclidean space. Each realization of the process is a
countable number of points over the space. The important random

variables are N(B), where B is a Borel subset of RK

, and N, which is a
measurable mapping from the Borel sets into the natural numbers and
counts the number of points in B. A model of a point process determines
the distribution of N(B) for all Borel subsets of R“i The intensity, L,

of a homogeneous process is the expected number of points per unit

volume and summarizes the first moment structure of the family {N(B)}.

Let u(.) denote K-dimensional Lebesgue measure. For a Poisson
process, we demand (i) N(B) has a Poisson distribution with parameter
Leu(B) for all bounded Borel sets B and (ii) {N(Bi)} is a set of
independent random variables whenever {Bi} is a class of disjoint sets.
In this case, the model is completely determined by the parameter L. A
Poisson process restricted to a bounded set, such as the sampling window

S, generates the continuous uniform distribution over S, conditioned on

N(S).
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For an alternative hypothesis we have a number of choices. An
example of a clustered process is the classic Neyman-Scott process
[Ney72]: Details of this process are given in Appendix A. For a
regular alternative, we use a hardcore or inhibitory model [Mat60,
Rip77] which is also described in detail in Appendix A. Strauss [Str75,
Kel76] shows a theoretical relationship between many of these point

process models.

When a Poisson process is used as a null hypothesis and the
distribution of a statistic is derived under this assumption, one must
decide how to approach data in some sampling window S C RK. This is
because ‘'edge effects' which arise from having a bounded sampling window
can invalidate the distribution of the statistic [Rip81]. These edge
effects become increasingly dominant as dimensionality increases. Some
statistics (such as Ripley's D(t), mentioned later) contain their own
edge correction factors. There are two general approaches to this

problem:

(1) Analyze points only inside WCS but allow measurements
between the points in W and those that remain in S-W. In general,
one does not know the relative size of W as compared to S needed
to eliminate edge effects. This has been called the border, or

guard area, method of edge correction for obvious reason.

(2) A hyper-rectangular sampling window can be regarded as a
torus, so that opposite faces are considered to be close. Thus

interpoint distances can ‘wrap around' the boundaries of the
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hyper-rectangle. This is the so called wrap around method of edge

effect correction.

Most of the studies which deal with the null hypothesis of a Poisson
process (described in Chapter 2) have used the wrap around method of

edge correction.

1.5 Organization of the Thesis

Chapter 2 contains a literature review of tests for assessing
structure in a data set. Chapter 3 introduces a new test, called the
volume-based test. The theory underlying the test is also given. The
volume-based test requires precise knowledge of the sampling window so
Chapter L4 studies estimators for various types of windows. Chapter 5
presents experimental results when using the volume-based test over both
known and unknown sampling windows. Since the conclusion of Chapter 5
is that the volume-based test is not computationally feasible in high
dimensions with unknown sampling window, Chapter 6 presents a new test,
called the MST-based test, which handles this case. Finally, Chapter 7
presents the contributions of this thesis, our conclusions, and

suggestions for future research.



CHAPTER 2

TESTS FOR STRUCTURE IN DATA

2.1 Introduction

The problem of deciding if data have structure has been addressed,
in a slightly different format, in both the ecological literature
[Pie77] and the geographical literature [Rog74]. The recent book by
Ripley [Rip81] provides a good overview of the statistical methods used.
Basically, both fields are interested in testing if there is some
non-random mechanism at work in the spatial distribution of the
populations under study. Unfortunately, both fields deal with points in
two dimensions and normally assume that the sampling window is known.
These two assumptions are rarely valid in Pattern Recognition studies.
One problem with many of the tests for spatial arrangement is that the
distribution of the test statistic even under the null hypothesis of
uniformity is not known [Rip77]. In some instances, when the
distribution is known, it is applicable only under the assumption of an
infinite Poisson process. In applying these tests to a finite sampling
window, edge effects dominate, especially in high dimensions. Here we
give a brief overview of tests used in clustering tendency, keeping in

mind the need to extend the tests to higher dimensions.

16
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2.2 The Scan Test

Tests for structure based on "the number of points in the most
populous region of the sampling window are intuitively appealing. An
abnormally large count would indicate the presence of clustering. The
size of the region must, for statistical reasons, be fixed a priori and
either a continuous scan (overlapping windows) or a disjoint partition
of regions is used. The choice of region size is not obvious. The
model of randomness is a uniform distribution over the sampling window.
Attempts have been made, mostly for the one-dimensional case, to derive
the null distribution of such statistics [Nau66, Wal74]. Unfortunately,
even in one dimension, determining the size of the scan test is
computationally infeasible. Conover et. al. [Con79] and Naus [Nau65]
have attempted to apply this test to two dimensions. |t does not appear

possible to extend this test to high dimensions.

2.3 Quadrat Analysis

The basic idea of the quadrat method [Rog7L4] is simple. We divide
the sampling window into squares of equal size (hypercubes in K
dimensions), called quadrats, and record the number of points which fall
in each quadrat. A data set containing a regular arrangement of points
would be expected to generate relatively equal quadrat counts, an
aggregated data set would generate a few quadrats with most of the

points and a uniform data set would lead to a situation somewhere
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between these two extremes.

As quadrats are disjoint and of equal volume, the set of counts
should follow a Poisson distribution under the null hypothesis of no
structure. Typically a Chi-squared test is performed to determine if
this hypothesis holds. A significant drawback of the quadrat test is
its inability to detect and test spatial arrangement at more than one
scale, set by the quadrat mesh. The Grieg-Smith approach [Gri6éL4] and
Mead's approach [Mea7l] are attempts to correct this deficiency.
Another problem with quadrat tests is that the number of quadrats

becomes enormous in high dimensions, most of them being empty.

One possible solution to this problem is the use of transect
sampling. Transects are narrow tubes inserted at random through the
data. Counts are taken only on data that fall within these tubes, thus
providing a linear strip of counts. Cross [Cro80] discussed this
possibility. Unfortunately, because of the sparseness of data in
practical situations, transect sampling rarely provides adequate

information for assessing the structure of the data.

2.4 Second Moment Estimators

Another class of tests for structure rests on computing an estimate
of the variance of a point process. As shown by Ripley [Rip77], the
second moment structure of a process may be reduced to a function D(t)
defined on (0,) such that, for a process with intensity L, the

following properties hold.
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(1) fZ-D(t) is the expected number of ordered pairs of distinct
points less than distance t apart when the first point is in a given set

of unit area, and

(2) L-D(t) is the expected number of additional points within a

distance t of an arbitrary point in the process.

Ripley provides an unbiased estimator of D(t) for a sample containing N

points, given by

B - W2 2 K(x,y),

where the sum is over ordered pairs of points (x,y) closer than a
distance t. Here k(x,y) is an edge correction factor such that 1/k(x,y)
is the proportion of the boundary of the hypersphere centered at x and
passing through y which is within the sampling window S. Unfortunately,
very little is known about the sampling fluctuations of 8Xt) even in two
dimensions. Ripley [Rip77] resorts to Monte-Carlo simulations of ‘3(t)
for fitting models to data, while in [Rip79] he uses the maximum

A
deviation of a normalized version of D(t) from its expected value.

In two dimensions, Liebetrau and Rothman [Lie77, Lie77b, Lie78] use
estimates of Var[ N(C) J/E[ N(C) ] for a rectangle C aligned within a
rectangular sampling window S, where N(C) is the number of data points

in rectangle C. Their test statistics are

Sy ama S,

where the sums are over all pairs of points (x,y) and

Q((x1,x2), (y1,y2)) = [ el - |x1-y1| J * [ c2 - |x2-y2]| ].
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The function [c] denotes the maximum of ¢ and zero. The values of cl
and c2 determine the size of the rectangle. Again the choice of ¢l and
c2 is critical, though the authors are able to show asymptotic joint
normality of the test statistic wusing various values of ¢l and .c2
simultaneously. It is unclear how to extend this test to other types of °

sampling windows.

2.5 Distance-Based Tests

The existence of a 'structure' in a given set of points could be
defined based on some interrelationship among the points that has
unexpected characteristics [Moo74, Al1a81]. One gross measure of such a
structural relationship is simply the interpoint distances. While the
use of interpoint distances, without additional information such as
which point pair generated which distance, may not capture important
details, the use of interpoint distances has much appeal. First,
distances are invariant under the group of Euclidean motions which is
consistent with our intuitive notion of a 'structure' as being invariant
under rotation and translation. Second, interpoint distances are easy

to compute in K dimensions.

2.5.1 Using All Interpoint Distances

The naive way to use these distances is to compute all N(N-1)/2
interpoint distances, find the resulting histogram or the empirical

distribution function, and compare this function with the distribution
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function under the null hypothesis of uniformity (or any other
hypothesis) . This procedure runs into two main problems. First, the
theoretical distribution, which depends on the size and shape of the
sampling window, is unknown even for simple shaped sampling windows like
a hypersphere. Another problem is that we have no means of testing the
equality of the empirical distribution and the theoretical distribution.
This is because the known non-parametric tests (K-S or Chi-squared)
assume that the sample points are independent. This is certainly not
the case for all the interpoint distances. Therefore, we do not know
the level of a test based on, say, the K-S test statistic. One solution
to these problems is suggested by Bartlett [Barbk] who adjusts the
critical values of the Chi-squared test statistic based on the
correlation among the distances. Another solution to these problems
would be to use Monte-Carlo techniques to compute the exact significance

level of the test [Dig79].

2.5.2 Using Subsets of Distances

The joint distribution of all the interpoint distances for N points
is unknown in an arbitrary sampling window. However, we know the
distribution of the distance between two points placed at random in a
hypersphere [Ham50, Lor5k4, Ala76]. This distribution can also be worked
out when two points are placed randomly in a hypercube, though the
derivation is tedious. For a general sampling window the results appear
out of reach. An obvious simplification over using the actual
distribution of interpoint distances among N points is to use the

theoretical distribution of distance between two random points and



22
ignore the dependencies. Cross [Cro80] has shown that this method leads
to spurious rejections of the null hypothesis of uniformity. Another
possible procedure [Cro80] is to select independent distances from all
N(N-1)/2 interpoint distances. Cross shows that the key factor in using
such a test is the sampling window. Since the known theoretical
distribution is between two points in a hypersphere, the data set in
question must somehow be scaled to fit into a hypersphere. How such a

scaling should be done is an open question.

Another approach when using distance-based methods is to observe
only the small interpoint distances. This has intuitive appeal since
the interpoint distance distribution should be flat near zero when the
points are regularly spaced, should have a mode near zero when the
points are clustered and should have a shape between these two when the
points are uniform. Also, as Ripley [Rip78] mentions, the minimum
interpoint distance can be shown to be the Uniformly Most Powerful test
of wuniformity against a hard-core alternative. Using small distances
allows us to derive asymptotic distributions for some test statistics
[Sau77, Si178]. The only extension of these tests to K dimensions (K>2)
is by Smith and Dubes [Smi81]. Unfortunately, the reliance on
asymptotic theory makes the applicability of these tests to real data

doubtful.

Other subsets of the total N(N-1)/2 interpoint distances can be
used in summarizing the structure of the data and defining tests for
uniformity. Generally speaking, such subsets are chosen on the basis of

their being part of some structural relationship between the points.
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For instance, the most popular subsets are some form of near neighbor
distances. Given points from a Poisson field, we know the joint
distribution of the distances from an arbitrary point in the space to
its first M nearest neighbors among these points [Cro80]. For a finite
number of points over a bounded region, one needs to modify the
distribution to take into account the edge effects and the effects of
near neighbors common between points. in the literature, generally,
only the nearest neighbor information has been used. Clark and Evans
[Cla5L4] suggest a statistic based on the average nearest neighbor
distance among the sample points. With corrections to reduce
interdependence and edge effects given by Ripley [Rip79] for
two-dimensions, this statistic approximately follows a standard normal

distribution.

Brown [Bro75] and Brown and Rothery [Bro78] suggest the coefficient
of wvariation of the squared nearest neighbor distances and the ratio of
the geometric mean to the arithmetic mean of these distances as possible
test statistics. This could be extended to K dimensions by taking the
Kth power of these distances. No adequate approximation to the sampling
distribution of these statistics is known, though the asymptotic results
of Silverman and Brown [Si179] could be used on the small near neighbor
distances. Also, simulation studies [Rip79] indicate that these

statistics are not powerful against clustered alternatives.

Near neighbor distances have the unfortunate characteristic of
capturing only the local structure. This occasionally makes deriving

theoretical results possible but has the disadvantage that much of the
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structural information about the data set is ignored. Perhaps distances
from the minimal spanning tree [Har72] of the data set or from other
structural graphs such as the Delaunay tesselation [AhuB1] or the
Relative Neighborhood graph [Tou80] may be of interest in capturing more
global information. However, even in the two-dimensional case, no firm

results are available on the use of such structural graphs.

2.5.3 Sampling Origins

One technique that overcomes some of the inadequacies of wusing the
nearest neighbors between the sample points is the use of sampling
origins. Sampling origins are distinguished points fixed by the
researcher in the sampling window, usually at random. The need to know
the sampling window to make this technique meaningful is obvious.
Several statistics using nearest neighbor distances between sampling
origins and data points and nearest neighbor distances between data
points are available. Diggle et. al. [Dig76] and Hines and Hines
[Hin79] give extensive simulation studies on the performance of these
statistics in the two-dimensional case. Cross [Cro80] extended this to

higher dimensions.

In these studies, one statistic that showed high power against
clustered alternatives is the Hopkins statistic [Hop5k]l. Cross and Jain
[Cro82] study the performance of the Hopkins statistic in high
dimensions. Let {Yi} be M sampling origins placed at random in the
sampling window and let {Xi} be the N data points. Let Uj be the

minimum distance from Yj to points in {Xi}, j=1,2,...M. Let Wj,
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j=1,2,..,M be a random sample of size M from the N nearest neighbor
distances among the data points. Under the null hypothesis of a Poisson
process {Uj} and {Wj} have identical distributions. The Hopkins

statistic is given by

wi®+wy*
=

which has a Beta distribution with parameters (M,M) under the null

hypothesis.

Panayirci and Dubes [Pan81] present a detailed study of the
extension of another statistic, called the Cox-Lewis statistic [Cox76],
to K dimensions. The Cox-Lewis statistic measures second-order
information from the data in the following manner. First, it computes
the distance between a sampling origin and the origin's nearest
neighbor, say Xi, among the data points. |t then computes the distance
from Xi to its nearest neighbor among the remaining data points. By
properly normalizing the ratio of these two distances Panayirci and
Dubes obtain a statistic that follows the uniform distribution on the
interval [0,1] for the null hypothesis of a Poisson process. To obtain
information from more than one local area, several sampling origins are
used. The Cox-Lewis statistic is then the average of the normalized
distance ratios for a number of sampling origins. |t appears to be as

powerful in detecting clustering as the Hopkins statistic [Pan81].
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The null distribution of both Hopkins and the Cox-Lewis statistics
relies on a Poisson process null hypothesis. This effects their usage
in the following ways. First, all the distances measured for a sampling
origin are assumed to be independent from those for other sampling
origins. In finite data sets this implies that the number of sampling
origins be small. Cross and Jain [Cro82] suggest choosing M to be equal
to 5% of N for the Hopkins statistic. Panayirci and Dubes [Pan81] use
this choice in their simulation study of the Cox-Lewis statistic.
Second, to reduce edge effects, both studies have used data over a
hyper-rectangular sampling window with wrap around. The near neighbor
distances were also computed using the wrap around method of edge

correction.

2.6 Summary

We have reviewed tests for spatial randomness and clustering
tendency. We wish to use such tests to determine the structure of high
dimensional data. Many of the proposed tests are inadequate for our
application. First, they may not be extendable to high dimensions or to
situations when the sampling window is unknown. In fact, no study has
been made on the effect of unknown sampling window for any test except
the brief study by Cross [CroB80] for tests based on interpoint distance
distributions. Many statistics have an unknown null distribution. Few
deal with the null hypothesis of uniformity and rather choose to use a

Poisson process null hypothesis which invariably leads to problems
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involving edge effects and sample size. The next chapter introduces the
volume-based test which is able to deal with both edge effects and

sample size.



CHAPTER 3

THE VOLUME PARADIGM AND TEST

3.1 Introduction

We have seen in the previous chapter that most of the tests for
spatial randomness have some limitations and restrictions. Much of the
distributional theory available for the test statistics is either
asymptotic or it deals with data from a planar Poisson point process.
Reliance on asymptotic distributional theory forces one to include
heuristic 'edge effect' correction factors when computing a statistic.
This may limit one to rectangular sampling windows where torus wrapping
can be accomplished. In Pattern Recognitibn applications, this wrap
around is not appropriate. Also, extension of these tests to high

dimensions is not straightforward.
In this chapter we propose a test that
(a) is applicable in all dimensions and to all sampling windows,
(b) has an exact null distribution known for all sample sizes, and

(c) eliminates the need for edge effect correction.

The above properties require that our null hypotheis of randomness be
the continuous uniform distribution over the sampling window. This is

28
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of course equivalent to having a Poisson process restricted to the

sampling window, conditioned on N, the number of data points.

Testing for uniformity rather than a Poisson process insures two
things. First, it allows us to deal directly with N and second, the
null hypothesis of uniformity involves the sampling window (the set over
which the uniform density is nonzero). This eliminates the need to

apply an edge correction factor.

This chapter first presents the theorem from which various tests
for wuniformity can be defined. |t then gives some examples of tests,
and describes a test, called the volume-based test, that will be used in
following experiments. The chapter concludes with a discussion of the

factors that must be considered when using the volume-based test.

3.2 Volume Paradigm

The defining property of a uniform sample of points is the
equidensity of points throughout the sampling window. To test
uniformity, we wish to measure the change in this density over the
sampling window. The main question one must answer in trying to use
density to test the uniformity of a given sample of points is how the

density is expected to change under uniformity.

Since density changes are volume related, we choose to use a
certain sequence of volumes in our test. The volume-based test is

derived from the following theorem which creates a paradigm for various
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of K-dimensional uniformity. The theorem tells us the

distribution of the volumes of certain sets for random data.

Proof:

N
Theorem 1: Let ({Xi};_,be i.i.d. random vectors with the uniform
distribution over sampling window S C.ﬁ‘. Let u be K-dimensional
Lebesgue measure. Let < Wz | 2¢(0,®) > be an ordered class of

subsets of RK such that,

(1) for all z€(0®0), W2 ¢ S,
(2) for z,,2y, 2,52, if and only if Wz € Wz, and

(3) there exists a function F: (0,u(S)) --> (0,9) such that if
F(y) = 2z then u(Wz) = y. Thus, given a particular value for
volume, we can pull out the set in the sequence with that

volume.

Let V(Xi) = Wz where 2 = inf{ 2 | Xiewz }, i=1,2,..,N. In other
words, V(Xi) is the first subset in the sequence <Wz> which

contains Xi.

Then { u(V(Xi)) } is a set of random variables which are i.i.d.

uniform over (0,u(S)).

Since the {Xi} are i.i.d., we need only prove that u(V(X;)) has

the uniform distribution over (0,u(S)). That is we need to prove

PLu(v(x)) syl = y /u(s) for ye(o,u(s)).

For all ye(O,u(S)), the existence of F guarantees the existence of
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a Wz in <Wz> such that u(Wz)=y. In fact, this index z is F(y).
Also, from the definition of V(xl) and property (2), for 2z&(0,0),
Xliwz if and only if V(Xi) EWz. Thus X,€Wz if and only if
u(V(X‘)) < u(Wz). Finally, since Xy is uniformly distributed over
S and for all z, Wz €S then,

P[ X €Wz ] = u(Wz) / u(s).

So, for all yé€(0,u(S)),

PLuv(xy)) sy 1 PLu(vixg)) < U(N%qz ]

F (Y‘]
u(%Hy} /u(S) = y / u(S).

PL X €W

QED.

In other words, the theorem states the following. We have a
sequence of monotone increasing subsets in the sampling window S. The
sequence is further constrained by the fact that for each volume from
2zero to u(S) we can choose the element in the sequence with that volume.
If we then associate with each data point the first subset in the
sequence that contains the point and measure the volume of this subset,
this volume is then a uniform random variable on the interval (0,u(S)).
Further, the volumes associated with the data points are independent.
Thus we have taken uniform random vectors in K dimensions and
transformed them into uniform random variables in one dimension. Of
course, the theorem does not tell us the key point in making this
transformation: how to define the sequence of subsets <Wz>. We deal

with that next.
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3.3 Examples of the Volume Paradigm

We now give some applications of Theorem 1, showing how the sequence
of subsets may be defined. As before, let {Xi} be i.i.d. uniform random

vectors over sampling window S.

3.3.1 Marginal Uniformity in a Hypercube

Let S = [0.1]‘, the unit hypercube in K dimensions. Define

Wz = { Xs(xt,xz,...,xK)QS | Xy S 2 } for each z€(0,1).

Note that the conditions of the theorem hold since we can define F to be
the identity function. With <Wz> defined in this way we get V(Xi)=Wx;q,
where x;4 is the first coordinate of Xi. Thus u(V(Xi)) is just the
value of the first coordinate of Xi. Then the theorem states that given
random vectors i.i.d. uniform over the unit hypercube, the first
coordinate of each of the vectors is a uniform random variable between
zero and one. This is a trivial and unexciting result, but it shows the

generality of the theorem.

3.3.2 Uniform Volumes about a Point

Let S be an arbitrary sampling window and let P be a point in S.

Define

Wz = { XeS | ||X-P||1 s 2} for each z in (0,%),
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where ||.]|2 is the Euclidean distance metric. Then F can be taken as
the inverse of the function that relates a radius about P to the portion
of the volume of the hypersphere with that radius that is inside the

sampling window.

Note that for small radii the hypersphere about P may be wholely
contained in S and this function is analytically derivable. However, as
the radii increase, the relation between distance and volume may not be

amenable to analysis for arbitrary S.

When <wz> is defined in this manner, V(Xi) is then
{ xes | ||X-P||z P ||Xi-P||z }, i=1,..,N. See Figure 3 for an example.
Then by Theorem 1, { u(v(Xi)) } is a set of i.i.d. uniform random
variables on (0,u(S)). Note that any distance metric could have been

used in defining <W2> without altering the result.

This approach is similar to the use of the joint distribution of
the first M near neighbors distances of a given point P in a Poisson
process [Cro80]. The advantages of using volumes rather than distances
is twofold. First, the results are exact for N points following a
uniform distribution over any sampling window, rather than for an
infinite Poisson process. Second, unlike distances, the sequence of
volumes are independent random variables, which simplifies their joint

distribution.



34

FIGURE 3: Definition of V(Xi),
The shaded area is V(Xi) for point Xi in sampling window S
using the Euclidean metric.
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3.3.3 Uniformity from the Border of the Sampling Window

Let S be a arbitrary sampling window. Define

Wz = { X€S | inf ||X-Y|| sz } for all z€(0,®)

where the infimum is taken over all Y in the complement of S. Thus Wz
is the set of all points in S within a distance 2z of the boundary of S.
The conditions of the theorem are satisfied if F is taken to be the
inverse of the function which relates this distance z to the volume of
Wz. Then

V(xi) = { xeS | inf ||X-Y|| < inf ||Xi-Y|] } for all Xi,

where the infimums are over the complement of S. So, by Theorem 1,

fu(v(Xi))} is a set of i.i.d. uniform random variables over (0,u(S)).

3.4 The Volume-Based Test

In the preceding examples we used a distance as the index parameter
to the sequence of subsets. This provides a meaningful interpretation
of the sets V(Xi). In Section 3.3.1, the distances were from a line to
Xi, in the next example (Section 3.3.2), from a point to Xi and finally

in Section 3.3.3 from a (possibly) complicated K-1 manifold to Xi.

For practical reasons, we limit ourselves to a test for uniformity
against a general alternative based on the example of Section 3.3.2.

That is, given some point P in the sampling window, we take a ball of
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radius ||Xi-P|| centered at P and ﬁeasure the volume of the intersection
of this ball with the sampling window. According to Theorem 1 the set
of volumes for all the Xi is a set of i.i.d. random variables uniformly
distributed between 2zero and the volume of the sampling window. The
Kolmogorov-Smirnov test is used to determine if this set of volumes is

uniformly distributed.

This application of the theorem yields a test that is simpler than,
say, that in Section 3.3.3, where computing the infimums is quite
complicated. Further, it can be generalized to various sampling
windows, unlike the application in Section 3.3.1. This test is still
computationally expensive because of the need to compute the volumes of

the intersections of sets.

The proposed volume-based test is intuitively appealing since it
effectively measures the density of the data points near the point P and
the density of the points far from P. Figure L4 shows 200 points
generated uniformly inside the unit square. Also shown is the graph of
ordered volumes about P (where distance from point P is measured by the
supremum metric) versus the total number of points captured in this
volume. Note the linear nature of this graph. For clustered data there
are two possibilites. If P is placed at the center of a cluster then
the points in the cluster will be abnormally close to P, thus generating
smaller volumes, as shown in Figure 5. If P is placed outside a
cluster, in a region of low density, we exPect to see a few small
volumes followed by an aggregation of volumes generated by points in the

cluster. Figure 6 shows 200 points with one cluster in the center of
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the square. Also shown is the graph of the volume versus total number
of points contained in this volume when P is placed slightly outside the

cluster.

One problem with using a single point P in computing the sequence
of volumes is obvious. Different placements of P will yield a different
view of the data under consideration. However, uniform data has the
property that all placements of P should yield uniform volumes. Using a
single point P also has the following undesirable property. Data points
with approximately the same distance from P (and hence approximately the
same volume) need not be spatially adjacent, especially if the distance
is large. Thus, while data points which generate small volumes about P
measure the density of the points near P, those that generate large
volumes contribute to an estimation of the density over a much more
spatially varied portion of the sampling window. The meaning of this
comment is clear when one considers that the volume of a hypersphere
about a point P in K-dimensional space is proportional to the Kth power

of the radius of the hypersphere.

3.5 The Computation of the Volume-Based Test

The implementation of the volume-based test to test the null
hypothesis of uniformity against a general alternative requires the

folloﬁing steps.
(1) Place a point P in the sampling window,

(2) Compute ||Xi-P||=2i, for each Xi, by specifying some distance
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metric,

(3) Determine the sets

vixi)={ YeR® | ||P-Y|] s zi 3/\S, i=1,2,...,N
(4) measure the volume u(V(Xi)) for each Xi,
(5) test the uniformity of the set of volumes, {u(V(Xi))}.
These steps involve the following nontrivial operations:

intersecting two sets and determining the volume of that intersection.

All of these steps are treated in more detail below.

3.5.1 Intersections and Volume Measurement

Given two sets A and B in K-dimensional space, the degree of
difficulty in computing the intersection of A and B and the volume of

the intersection depends on both the shape of A and B and their

representations. In fact, for arbitrary sets A and B finding their
intersection and the corresponding volume is computationally
unmanageable. If we 1limit ourselves to the case where A and B have

simple parametric representations or where A and B are both convex

polytopes, some results are available.

For instance, if A and B are convex polyhedra in 2 or 3 dimensions,
Muller and Preparata [Mul78] have shown that it is possible to find
their intersection in time proportional to mlogm, where m is the sum of

the number of vertices of the two polyhedra. Using the method given in



L2
[Coh79], it is theoretically possible to find the intersection of convex
polyhedra in arbitrary dimensions (K), though the time required is
proportional to the Kth power of the sum of the number of faces of the
two polyhedra. Cohen and Hickey [Coh79] also give a procedure to
compute volumes of arbitrary convex polytopes whose time requirement

again grows exponentially with dimension.

There are two simple parametric representations of A and B in which
we will be interested. The first is when A and B are hyperspheres and
the second is when A and B are hyper-rectangles aligned with the
coordinate axes of the space. In the latter case, finding the volume of
the intersection of A and B is trivial. Appendix B gives an algorithm

to compute the volume of the intersection of two hyperspheres.

3.5.2 The Choice of a Distance Metric

The wvolume-based test also needs a distance metric for calculating
the distance from point P to the sample points. We will confine
ourselves to the commonly used Euclidean and supremum metrics. The main
reason for this is that the two metrics result in hyperspherical and
hyper-rectangular volumes. In addition, if the same type of sampling
window is used as is generated by the distance metric, then the
computation of the volume of intersection is simplified. In the
Euclidean case, if we confine ourselves to a spherical sampling window
S, then the algorithm given in Appendix B can be used to compute the
volume of the set

{ Yer® | |1P-Y]],szi N s.
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When using the supremum metric, if only hyper-rectangular sampling
windows aligned with the coordinate axes are considered, then volume

computation is again trivial.

It should also be mentioned that it is advantageous to choose the
supremum metric in the case when the sampling window is a convex
polytope, since this is one of the few Minkowski metrics whose ball is a
convex polytope. Algorithms to find the intersection of two convex
polytopes [Coh79, Mul78] can then be applied. Finding the intersection
of a hypersphere, generated by the Euclidean metric and a simple convex

polytope such as a hypercube is extremely difficult.

3.5.3 Testing Univariate Uniformity

To apply the volume test, we must specify how we will test the
uniformity of the set of volumes. There are many such tests against
specified and general alternatives [Knu81, Cox65]. We choose to use one
of the most widely used tests against unspecified alternatives, the
Kolmogorov-Smirnov goodness-of-fit (KS) test [Con71]. This test was
chosen both for its ubiquity and simplicity, as opposed to tests such as
the scan test [Naubbé] or tests based on Greenwood's statistic [Ste81],
which might have been more powerful for departures from randomness

expected in clustered data.
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3.5.4 Placement of Point P

Finally, we need to discuss how best to place point P in the
sampling window to apply the test. As we have said before, uniform data
has the property that any placement of P generates a uniformly
distributed set of volumes. However, in practice, we have the following

considerations.

First, some placements of P may make the volumes easy to compute.
For instance, if the sampling window is a hypersphere and Euclidean
distance is used, placing P at the center of the sampling window allows
us to avoid the computation of the spherical cap volumes. Placing P
near the centroid of a convex polytope sampling window also yields

computational advantages.

Second, since volumes expand around P, placing P in a region of
high (or 1low) sample point density should yield higher power for
clustered data. Thus one would expect higher power if P is placed near
a cluster center. However, the proof of Theorem 1 implicitly assume;
that P is independent of the set of sample points. This condition is
not always satisfied, especially if the sampling window must be
estimated from the data. While it is possible that placing P in the
region of highest point density in a uniform sample may not greatly
effect the distribution of the K-S statistic, we prefer to avoid this

problem, perhaps by sacrificing power in clustered data. We have
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experimented with placing P randomly in the sampling window, at the
center of the sampling window, and at the mean of the data to be

analyzed.

3.6 Summary

In this chapter, we have presented a theorem that generates a
paradigm for various tests of K-dimensional randomness. This theorem is
based on measuring volumes and thus directly captures information about
the deviation of the sample density in a uniform sample. We have
defined a test based on this volume paradigm that measures the density
of the sample points about a single point P. We discussed the
advantages and disadvantages of the volume-based test as well as
computational details needed to perform the test. The performance of

the volume-based test is given in Chapter 5.



CHAPTER 4

ESTIMATING THE SAMPLING WINDOW

L.1 Introduction

In exploratory pattern analysis one usually does not have any
knowledge about the sampling window of the given data. Rather, we are
simply given N points in K dimensions and told to analyze the structure
of the points. |f we want to assess the uniformity of the points, then
we must either make some assumptions about the sampling window or

estimate it.

Previous studies in assessing structure have overcome this crucial
problem by assuming that the sampling window is known. We wish to relax
this restriction as much as possible so that we can analyze real data
sets, where the sampling window is usually not known. In this chapter,
we will look at several ways to estimate the sampling window. One can
argue that data used to estimate the sampling window should not then be
tested for uniformity in the estimated window, for this may bias the
test. However, due to the small size of the data sets common in Pattern

Recognition, we are forced into using this methodology.

L6
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It is quite apparent that to use the volume-based test one must
have precise knowledge of the sampling window since the sets whose
volumes are to be measured are constrained to lie in t@e true sampling
window. An error in estimating the sampling window may make uniform
data appear as a single cluster in the center of the window. Previous
studies [Smi81, Pan81, Cro80] have concluded that knowledge of the
sampling window is required in virtually all tests of clustering
tendency which have been proposed in the literature. Some of these
studies have shown that, asymptotically, the only knowledge needed about
the sampling window is its size and not its shape or location. The
volume-based test's greater reliance on precise knowledge of the
sampling window makes it a perfect vehicle for experimental studies of
sampling window estimation procedures. The size and power of the test
can be greatly effected by the estimation procedure used. We believe
that any estimation procedure which works well for the volume-based test
would necessarily be a good estimation procedure to use with-other

tests.

The need to have some knowledge of the sampling window is
illustrated in Figure 2. However, the knowledge of the sampling window
in Figures 2(a) and 2(b) comes to the forefront in different ways. The
data in Figure 2(a) appears uniform, while in Figure 2(b), the data
consists of two clusters. Therefore, to test the uniformity of the data
in Figure 2(a) we need to know the set over which the density is
non-zero. For the second data set, we need to distinguish regions of

low density between the clusters from those regions outside the range of
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the data. Intuitively, clustered data is composed of points of high
density separated by less dense regions. When a region of low density
is identified, the sampling window information is needed to distinguish
when this region is outside the domain of interest versus the case when
the region is between the clusters. A region between clusters could
also lie outside the sampling window if this window was not convex.

Thus we have placed the restriction that sampling windows be convex.

L,2 Estimation Procedures

The basic estimation problem is stated as follows. Given {XiL;
i.i.d. uniform over a convex set S C.RK, with u(S)>0, estimate S. We
also require that S be compact. In other words, it is closed and
bounded. Our approach will be to first simplify the problem by
considering simple forms of the set S; we will then increase the

difficulty of the problem until S is any compact convex set.

We will restrict ourselves to the foilowing types of sampling
windows. First, we consider the case when S is a hyper-rectangle
aligned with the coordinate axes. This is the case that has been used
for other studies when the sampling window was assumed known [Cro82,
Pan81]. We give a procedure to estimate the hyper-rectangular sampling
window from the given data. |f the hyper-rectangle is not aligned with
the coordinate axes, the estimation problem is very difficult and we are
not able to treat that case. Another possible shape of the sampling
window is a hypersphere. We give two methods of estimating a

hypersphere from the given data. We next consider linear
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transformations of the hyperspherical sampling window. That is we
consider the case when S is a hyperellipse. We use the principal
component transformation and the whitening transformation to estimate
the parameters needed to map the true sampling window into a
hypersphere. The transformed data is then tested in this simpler
sampling window. Though a linear transformation exists which would
transform any hyper-rectangle into an aligned hyper-rectangle, the
principal component method would estimate it poorly. Finally, we
consider the most general estimate of the sampling window based on the

convex hull of the data.

4.3 Aligned Hyper-Rectangle

This type of sampling window has been used frequently in studies
which assume that the sampling window is known. |Its simplicity gives us

an excellent estimation procedure.

An aligned hyper-rectangle S can be described by its range along
each coordinate axes. That is, each coordinate has a minimum and
maximum threshold which specifies the (K-1)-dimensional boundary flats
defining two sides of the hyper-rectangle. We write Ss[ai,bi];,to
specify the aligned vhyper-rectangle with range [ai,bi] along each
coordinate. Thus the vector Y=(yl,y2,..,yK) is in S if and only if
yi€[ai,bi] for each i=1,2,...,K. We derive an estimator of S under the
hypothesis that the given data is uniformly distributed over S. The

density function of Y can be written as
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K
£(Y) = r r T [a;Jb.-D (y:)
=1 (bi-Q:)

-

where 1 (A) is the indicator function of the set A.

The independence of the coordinates allows us to treat the
estimation problem along each axis in isolation. Thus we need to find
an estimate for the endpoints of a one-dimensional uniform distribution.
Let {Zi};;’l be a sample from a Uniform[a,b] density. Then the minimum

variance unbiased (MVU) estimators for a and b are given below [Rao73].
A
a=(NZ() -Z(N)) / (N-1)

B NZN) -Z(M)) / N-1)

where Z(1) and Z(N) are, respectively, the minimum and maximum order
statistics of the {Zi}. Thus the MVU estimator of S is given by
A A A K

S = [ai, bi]i:]

where ai and bi are the estimates of the end points along the ith

coordinate.

The time taken to compute this estimator is O( KN ), since, for
each of the K coordinates, we must find the minimum and maximum values

of the N sample points.
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L.4 Hypersphere

The problem of estimating a hypersphere can be stated as follows.
We have a set of i.i.d. random vectors {Xi} over a hyperspherical
sampling window S, with radius r centered at vector c. We will denote
this hypersphere as S(c,r). We wish to estimate the (K+1) scalar
parameters in (c,r). We would like to find a MVU estimator as we did
for the aligned hyper-rectangle. This does not appear possible and so

we offer the following two estimates.

L.4L.) Unbiased Center

We assume that the density function of the sample is radially
symmetric about the center of the hypersphere. This is true for the
uniform density. In this case the center of the hypersphere is also the
expected value of random vectors following this density. We know that
an unbiased estimator for the expected value is the mean of the data and
so this estimator is also unbiased for the K-dimensional parameter c.
We choose to estimate the radius of the hypersphere, given our estimate
for ¢, by the distance between ¢ and the sample vector with the maximum
distance from c¢. This is the minimum possible value of the radius for

this choice of center. Thus the estimators of ¢ and r are

2 - S ZXi and
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T = max I
“ i

L.4.,2 Smallest Hypersphere

Experimental evidence has shown that wusing the above estimator
produces a window whose volume exceeds the true volume. We decided to
obtain the smallest hypersphere which encloses the given set of points.
Appendix C gives details of the algorithm [E1272] used for computing the
smallest hypersphere, S(c*,r*). Since the true sampling window is a
hypersphere, r* is no larger than the true sampling window's radius.
Experimentally we have found that r* is closer to the true radius than

A . . .
rq found in the previous section.

4.5 Hyperellipses

One method of estimating more complicated sampling windows is to
transform the data into the simple cases of a hypersphere or aligned
hyper-rectangle treated above. It is well-known that a linear
transformation of uniform data preserves the uniformity of the data.
That is, if the uniform density is defined over a set S and if T is a
linear transformation, then the density induced on the image T(S) s
also the uniform density. For any hyperellipse there exists a linear
transformation which maps the hyperellipse into a hypersphere. Given
these facts we choose to estimate a hyperelliptical sampling window in
the following manner. First, we estimate the transformation T which

carries the hyperellipse into a hypersphere and then we find the
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smallest hypersphere enclosing the transformed data.

An estimate of the linear transformation T 1is based on the
principal component (Karhunen-Loeve) transformation [Fuk72]. It
operates as follows. The sample is first normalized to have a zero mean
vector. The principal component transformation, based on the
eigenvectors of the sample's covariance matrix, decorrelates the
features. We then apply the whitening transformation so that each
coordinate has unit variance. Since we use the sample mean vector and
covariance matrix this transformation need not necessarily map the
hyperellipsoidal sampling window into a hypersphere. This
transformation has been used in a clustering tendency study with limited

success by Cross [Cro80].

L.6 Compact Convex Sets

The most general sampling window is a compact convex set. We follow
the exposition of Ripley and Rasson [Rip77b] for estimating this type of

sampling window without presenting the details.

First we need some notation. Let H(A) denote the convex hull of a
set A. Let X={Xi} be N i.i.d. uniform vectors over the compact convex
sampling window S. We wish to find an estimate of S from the class of

all compact convex sets of positive measure in K-dimensional space.
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The joint density of the N points over a compact convex set S can

be written as

fo (0 = 1051 (X)

(u&)

where 1[S] is the indicator function of S and u(S) is its volume. Since

the convexity of set S implies that X is in S if and only if H(X) is in

S, we have

fg 00 = 115] (HW))
(u@))

Thus H(X) is both a sufficient statistic and the maximum likelihood

estimate of S. Note, however, that the volume of H(X) is strictly less
than the volume of S. We wil! use the convex hull of the data as the
estimate of'the sampling window and use the volume-based test to test
those points strictly inside the hull for uniformity. We delete those
points lying on the hull from consideration since they are obviously not
random in H(X). However, conditioned on the fact that the remaining
points lie in the convex hull, these interior points are uniformly

distributed in H(X).

For the two-dimensional case, Ripley and Rasson show that

% ( u(H(X)))

is an approkimately unbiased estimator of the volume of S, where M is
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the number of points strictly inside H(X). Appendix D gives details on
computing the convex hull of a set of points. We also verify whether
the above volume estimate remains unbiased in dimensions greater than

two.

4.7 Summary

Iin this chapter we have looked at several ways of estimating the
sampling window. In the case when the sampling window is restricted to
be an aligned hyper-rectangle, we find a MVU estimator of the window for
uniform data. When the sampling window is an arbitrary compact convex
set, we find that the convex hull of the uniform data is the maximum
likelihood estimate of the window. These two estimators have desirable
properties for uniform data but they are reasonable estimates of
sampling window for any data. For hyperspherical sampling windows, no
best estimator emerges. We propose the heuristic of choosing the mean
of the data, which is unbiased for uniform data, as the center of the
hypersphere. We also provide the smallest hypersphere containing the

data as an estimate of the sampling window.

We also propose a method of estimating a hyperellipsoidal sampling
window. This estimator operates in two steps. First, it estimates the
transformation needed to carry the hyperellipse into a hypersphere and
second, it estimates the hypersphere using one of the estimators

discussed above.



CHAPTER 5

PERFORMANCE OF THE VOLUME-BASED TEST

5.1 Introduction

In this chapter, we look at the performance of the volume-based
test. This performance will be measured by Monte-Carlo simulation using
various sampling window types. First, with known sampling windows, we
wish to check both the size and the power of the test. Although the
size of the test is guaranteed by Theorem 1, we wish to check if our
implementation truely reflects the theoretical result. To check the
power of the test, we study a number of clustered alternatives. For
unknown sampling window, we investigate the estimation procedures given

in Chapter L.

The simulations reported here involve the following three

parameters.

(1) N, the number of sample points,

(2) M, the number of Monte-Carlo trials, and

(3) K, the dimensionality of the space.

In addition, we vary the sampling window used, the distribution of the
points, and the placement of P. The 1level of the Kolmogorov-Smirnov

56
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test is set at 0.05, so that we expect a 5% rejection rate for uniform
data. The results of the simulations are reported as the percent
rejection of the null hypothesis of randomness at the .05 level of
significance. To determine if the true size of the volume-based test is
less than .05, we perform a binomial test [Con71] on the observed number
of rejections for the null hypothesis (size<.05) against the alternative
(size>.05). Likewise, to determine if there is a significant difference
in the size or power of the volume-based test between two different data
sets, we perform the Chi-squared test based on 2X2 contingency tables

[Con71].

5.2 Known Sampling Windows

The sampling windows considered are hyperspheres and aligned
hyper-rectangles. As we have said before, if a hypersphere is used as a
sampling window then we compute distances from point P to the sample
points using the Euclidean metric; for aligned hyper-rectangular

sampling windows, we use the supremum metric.

5.2.1 Uniform Data

Here we determine the actual size of the volume-based test when the
level of the K-S test is preset to 0.05. Table 1 shows the percent
rejections of the null hypothesis for the volume-based test when uniform
data is generated in the unit hypercube. Point P is placed randomly in

the hypercube. These results show that the size of the test is 0.05 and
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TABLE 1: Size of the Volume-Based Test for Uniform
Data in Unit Hypercube. M=500, P=random

N
50 100 200
2 L.3 5.3 L.7
5 L.3 6.7 L.7
K 10 4.3 6.0 L.7
15 3.0 3.7 L.3

the size does not depend on dimensionality or sample size at the 0.02

level.

Tables 2 and 3 show similar results when the sampling window is
changed to a hypersphere. A hypersphere of volume one is used for the
results of Table 2 while Table 3 presents the results for a hypersphere
of radius one. |In both cases the number of patterns, N, is 200. Here
we also study the effect of random placement of P in the sampling window
versus choosing P as the center of the hypersphere. No significant
differences (at the 0.02 level) are encountered between the entries in
the two tables and between different placements of point P. In

addition, no entry in these tables shows significant deviation (at the

TABLE 2: Size of the Volume-Based Test for Uniform
Data in Unit Volume Hypersphere. M=500, N=200

P=random P=center
2 4.2 5.4
3.8 L.6
K 10 4.8 5.2
3.8 4.4

.
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TABLE 3: Size of the Volume-Based Test for Uniform
Data in Unit Radius Hypersphere. M=500, N=200

P=random P=center

2 L.6 5.2
5 L.o 3.6
K 10 3.6 L.6
15 L.o 3.4

0.05 level) from its expected value of 5.

The similarity between Tables 2 and 3 is expected. The only
difference between them is in the volume of the sampling window, which
is normalized by the volume-based test. We present both tables to
confirm that the volume-based test does not lead to anomolies between

these two windows, as has been observed with a distance-based test

[smi81].

We conclude from these tables that the volume-based test works as

expected on uniform data. We now look at the power of the test.

5.2.2 Bilevel Density

The bilevel density [SmiB1] generates a single cluster of high
density in the middle of the unit hypercube. Formally, the N points are

generated i.i.d. with density
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he i€ X is in (Umr Nypercubf_-\l\l)

We 1§ Xisin W
(9] otherwise

f(x) =

where W is a hypercube of volume 1/9 centered inside the unit hypercube.
Here hl is a parameter which may vary from O to 9, while ho depgpds on
hl. Figure 7 shows a realization of the bilevel alternatfve in two
dimensions with hl equal to 5. If hl is 9 all the points are in W. In
the simulations, the parameter hl is varied from 1 (the null case) to 5
in steps of 1 for various values of N and K. Table 4 gives the results
of the volume-based test when P is placed randomly in the unit

hypercube.

TABLE L: Power of the Volume-Based Test Against
the Bilevel Density. M=100

hl
) 2 3 L 5
2 A 8 35 48 80
5 L L 17 W M
K 10 L 6 13 27 45 N=50
15 3 9 15 15 42
2 5 14 51 81 96
5 7 10 4 70 80
K 10 6 11 39 57 78 N=100
15 IN 7 23 38 62
2 5 29 79 96 100
5 5 21 68 92 100
K 10 5 15 58 82 94 N=200
15 L 8 39 68 88
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FIGURE 7: Realization of Points Following the Bilevel Density,
Shown are 100 points with hl=5
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We note the ubiquitous trends of increase in the power of the test
as N and hl increase. These trends are expected. The decrease in power
with increasing dimensionality is explained by the increasing side
length of the hypercube W needed to maintain constant volume as
dimensionality increases. Any sampling origin P which falls outside W
encounters points in W 'sooner' (in terms of distance from P) in high
dimensions than in low dimensions. |If P is chosen as the center of the

unit hypercube, then experiments show that this effect does not occur.

Using the bilevel density as a clustering alternative allows us to
compare the volume-based test's performance to the theoretical power of
a distance-based test described by Smith and Dubes [Smi81]. This test
is based on a count of the number of interpoint distances which are
pelow a given threshold. This threshold is defined by a parameter r.
The theoretical power of this test can be computed by referring to
asymptotic results, which are probably not valid for large r or small N.
Figure 8 shows a graph of the power of the small distance test in
various dimensionalities with r set to 1. Figure 9 is a graph of the
data in Table L4 when N=200. Comparing the two figures, we note the

higher power of the volume-based test against the bilevel alternative.

5.2.3 Neyman-Scott Clustering

This clustering alternative is the Neyman-Scott cluster process

[Ney72] modified to generate N points over a sampling window. This
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TABLE 5: Power of the Volume-Based Test Against a Neyman-Scott

Process (wrapped)

f‘

M

process is characterized by two parameters: s, the expected

points per
for a

generation.

TABLE 6: Power of the Volume-Based Test Against a Neyman-Scott
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In Table 5 we report the power of the volume-based test for various
values of g and @ when the sampling window is the unit hypercube. In
these tables, wrap around was used to generate the points while in Table
6 the same parameter values are studied, but without wrap around. Both
Tables were generated with P chosen randomly in the unit cube. There is
some effect of dimensionality on the power. For instance, Table 5 shows
a significant (at the .001 level) change with dimensionality for m =8
and 0 =.05. Table 6 shows a significant (at the .001 level) increase in
power between the K=2 and K=10 cases for M =8 with ¢=.2,.3, and M =1
with @ =,01. As expected, high power is achieved with a few tight
clusters (fLIarge and @ small). The power falls off as M is
decreased and o~ is increased. The only significant differences (at the
.001 level) between data sets with wrap around and no wrap around occurs
when @ is large; this is when most points get wrapped around. We see
higher power in the no wrap around case since here cluster centers near
the boundary of the sampling window generate clusters of higher density

than those in the wrapped case.

It should be noted that, unlike most of the distance-based tests,
the distances used in defining the volume-based test are not based on
wrap around. The reason for using wrap around in data generation as
well as in computing the test statistic has been to avoid edge effects
which arise due to the assumption of a Poisson process as the null
hypothesis. There are no edge effects in the volume-based test since

the null hypothesis is that the data are uniformly distributed over the

sampling window. Note also that no wrap around is possible for sampling
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windows other than the hyper-rectangle. |t is not reasonable to compare
the powers of a test against the Neyman-Scott process with wrap around

and without wrap around since they are 'different' data sets.

Iin the Neyman-Scott process with wrap around, we can compare the
power results of the volume-based test to that of the Hopkins test
reported by Cross and Jain [Cro82]. Table 7 gives these comparisons.
We note consistently higher power of the volume-based test in two
dimensions, while in 5 dimensions, with large M and ¢ , the Hopkins
test fairs better. Note the increasing power with dimensionality for
the Hopkins test, while the volume-based test is fairly stable with
respect to dimensionality. Table 8 shows the power comparison of the
volume-based test to the power of a test based on the Cox-Lewis
statistic. The powers for the Cox-lLewis statistic are taken from the
(corrected) tables of Panayirci and Dubes [Pan81]. We note higher power
for the volume-based test, except for the entries for K=5 with @ =05

and .1.

Table 9 reports the power against the Neyman-Scott process when the
sampling window is the unit volume hypersphere. All the parameters are
the same as in Table 6 except that we have decreased the range of & for
large dimensionalities. There-is no change between the hyperspherical
and hypercubic sampling windows at the 0.001 significance level. We
have also a study of the effect of varying the placement of P on the
power. We note slightly higher power when P is placed randomly in the

sphere except when O is large.
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TABLE 7: Comparison of the Power of the Hopkins and
Volume Based Tests

Entries are Hopkins/Volume
N=200
M=500 for Volume-Based Test
M=100 for Hopkins test

K=2
8 87/ 92.2 59/ 78.4 23/ 55.4
| ol 15/ 35.4 7/ 25.8 5/ 17.6

K=5
8 87/ 92.4 96/ 69.2 77/ L6.6
R 22/ 29.8 20/ 19.k4 L/ 16.4

.01 .05 .
ag

TABLE 8: Comparison of the Power of the Cox-Lewis and
Volume-Based Tests

Entries are Cox-Lewis/Volume
N=200
M=500 for Volume-Based Test
M=100 for Cox-Lewis Test
The Neyman-Scott parameter p =50

K=2 100/100 92/ 98 32/ 91 3/ 17
K=5 100/100 100/ 98 99/ 86 1/ 14

.01 .05 .1 .3
o
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TABLE 9: Power of the Volume-Based Test Against a Neyman-Scott
Process in Unit Volume Hypersphere for Different Placements of P
Entries are P=random/P=center, M=100

50 100/100 99/ 97 95/ 85 67/ 62 L2/ 35

M 8 94/ 91 79/ 6L 69/ 52 37/ 55 19/ 31 K=2
1 34/ 34 29/ 25 21/ 19 16/ 23 7/ 13
50 100/100 100/ 92 96/ 75 63/ 82
M 8 94/ 8 78/ 58 66/ 51 35/ 77 K=5
1 35/ 34 28/ 19 21/ 20 20/ 34
50 100/100 98/ 87 94/ 65
M 8 9/ 84 Bo/ 5k 62/ 66 K=10
1 32/ 28 29/ 22 24/ 32
.01 .05 . .3 .5
g

5.2.4 Other Types of Data

Two other types of alternatives need to be mentioned. The first
arises from points following the multivariate normal density with
identity covariance matrix. To perform the volume-based test on this
data, we scale the data to fit into the unit hypersphere centered at the
2zero vector by dividing each data point by the maximum norm among the N
samples. Performing the test with N=200 leads to 100% rejection of
uniformity for normal data in all dimensions, both when P is placed
randomly in the unit hypersphere and when P is placed at the origin. |If
we reduce the sample size to 50 then, with P placed at the origin,

rejection rates of 92, 100 and 100 percent in 2, 5 and 10 dimensions,



70
respectively are obtained. However, under these conditions, if P is
placed randomly, the rejection rates are only 33, 67 and 81 percent.
This shows the increased power of the volume-based test when P is placed

at the center of a cluster.

The other data ensemble is hardcore data. The generation procedure
used to produce hardcore data is given in Appendix A. In these
simulations, we do not use wrap around. The volume-based test shows no
power against hardcore data if P is chosen randomly in the sampling
window. This is expected, since the only difference between random data
and hardcore data occurs for small volumes around P. We expect fewer
points close to P in the hardcore case than in the random case due to
the spacing imposed by the hard spheres. However, thfs effect is masked
by the large volumes, where points generating these volumes do not have
to be spatially adjacent. |f P is chosen as the center of the sampling
window, we do see power (62 and 100 percent rejections for ﬂ-.l in L
and 5 dimensions, respectively) against the hard core alternative.
There is no power in two dimensions. This power in high dimensions
against the hardcore process is due to the fact that many points are
near the surface of'the sampling window in high dimensions; the hard
spheres around points near the surface take up less of the volume of the
sampling window. This allows a greater density of hardcore points near
the surface of the sampling window, a fact that is captured by the
volume-based test. We can not compare the power of the volume-based
test againsf the hardcore alternative to other studies since we did not

use wrap around in generating the hardcore data.
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5.3 Unknown Sampling Windows

In this section, we perform Monte-Carlo studies of the sampling
window estimation procedures given in Chapter L. We determine if the
true size of the volume-based test performed over the estimated window

is within the preset level of 0.05.

5.3.1 Estimator of an Aligned Hyper-Rectangle

Here we study the MVU estimate of an aligned hyper-rectangular
sampling window given in Section L.3. Table 10 gives the results of
this study. We generate 200 points uniformly distributed in the wunit
hypercube and use the MVU estimate as the true sampling window in the
volume-based test. None of the entries in the table are larger than 5.
Thus we conclude that the MVU estimate is a good estimator of an aligned

hyper-rectangular sampling window.

TABLE 10: Size of the Volume-Based Test with the
MVU Estimator. M=4LOO, N=200

K
2 3 4 5 10 15

50 3 1 3 2 4 5
N100O 5 2 3 2 4 5
200 4 4 3 4L 5 2
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5.3.2 Estimator of a Hypersphere

In Section 4.4, we gave two estimation procedures for a
hyperspherical sampling window. The first uses the sample mean as an
estimate of the center of the hypersphere. The radius estimate is the
distance from the farthest sample to the mean. We checked the
performance of this estimator in recognizing uniformity with 200 points
generated uniformly in the unit radius hypersphere. When P is chosen as
the center of the estimated window we get 46 and 86 percent rejections
of the null hypothesis in 2 and 5 dimensions, respectively. Analysis of
these simulations showed that the estimated radius was too large and

this made points in the center of the sampling window appear too dense.

The smallest hypersphere algorithm produced better results. Table
11 shows these results when P is chosen as the smallest hypersphere's
center. To produce this table, the K+1 data points defining the

smallest hypersphere are deleted from analysis by the volume-based test.

TABLE: 11: Size of the Volume-Based Test with the
Smallest Hypersphere Estimate. M=500, N=200

K
2 3 L 5 10 15

50 L 4 4 5 3 4
N1I00 3 5 3 4 6 5
200 b 3 L4 6 5 &
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If these points are not deleted, the density of the points near the
surface of the hypersphere becomes too large. The percent rejections
increases to 11.3 in 10 dimensions if the surface points are not
deleted. From Table 11, we conclude that the smallest hypersphere is a

good estimator of a hyperspherical sampling window.

5.3.3 Estimator of a Hyperellipse

In Section 4.5, we gave a two-step procedure to estimate a
hyperelliptical sampling window. This involved appyling both the
principal component and the whitening transformation to the data and
then testing the transformed data for wuniformity in the smallest
hypersphere enclosing it. The point P is chosen as the center of the
smallest hypersphere. The details on the generation of uniform data
over an ellipse are given in Appendix A, along with the parameters of

the ellipses used.
Even in 2 dimensions, this estimation procedure is inaccurate. For
200 points uniformly distributed in an ellipse, we obtain 22% rejections

of uniformity, while for 300 points we get 31% rejections. Table 12

TABLE 12: Effect of Transforming Uniform Data in a Circle

M=300
N Original Transformed
200 4.3 21.0
500 4.3 23.6

1000 2.8 33.3



74
studies the case of uniform data in a circle rather than in an ellipse.
The principal component and whitening transformations appear to perturb
the data enough to affect the volume-based test. Even though increasing
N increases the accuracy of the estimated mean and covariance matrix and
thus lessens the perturbation, it is not enough to counteract the
decreasing range of acceptable values for the K-S test statistic. We
conclude that the principal component transformation does not appear to
be a viable way to change the shape of the sampling window, at least for

the volume-based test.

5.3.4 Estimator of a Compact Convex Set

In Section L.6 we described a procedure for estimating a compact
convex sampling window by using the convex hull of the data. This is
the most general form of the sampling window in situations where no
prior information is available about the shape of the sampling window.
Unfortunately, computing the convex hull of points in high dimensions is
computationally difficult. More significantly, computing the volume of
the intersection of the hull with hypercubes (about P) is burdensome,
even in three dimensions. Finding the volume of the intersection set
requires the computation of all the vertices of that set; the
computation time grows exponentially with K. in two and three
dimensions it is possible to find the intersection set in time
proportional to m and mlogm, respectively, where m is the sum of the
number of vertices in the two sets to be intersected [Mul78]. We,
therefore, confine ourselves to two-dimensional data. Also, for

computational efficiency, it is desirable to have P near the center of
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the convex hull, and so we choose P as the mean of the data.

Using the convex hull as a sampling window we can now successfully
treat the elliptical data used in the previous section. For 200 points
generated uniformly in an ellipse in 2 dimensions, we have L rejections
out of 100. Table 13 1lists the results of using the convex hull
estimator on various types of data. The points on the hull are removed
from consideration in producing this table. We also compare the results
of the various sampling window estimation procedures discussed in this
chapter. We study both wuniform data and Neyman-Scott clustered data
with =50 and @=.1 in a unit square and unit circle. The Neyman-Scott

data is generated without wrap around.

From Table 13 we see that the convex hull estimator performs well.
The size of the test using the convex hull data is well within the
expecte& value of 5. For the clustered data over a unit square, there
is a slight loss of power when the window must be estimated from the

data versus when it is known. This loss of power does not seem to occur

TABLE 13: Comparison of Sampling Window Estimators
K=2, N=200, M=500, except convex hull where M=50

Random Data Neyman-Scott Data

Estimator Circle Square Circle Square
Convex Hull L.o 4.0 98.0 80.0
MVU Rectangle - L.0 -——— 81.2
Smallest Circle L.y -—- 95.8 -——-
Krown Circle 5.2 -——- 94.8 -———-

Known Square -—- L.7 ——-- 92.8
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for the circular sampling window. The convex hull estimator performs as
well as the two estimators geared to the special situations of circular

and rectangular sampling windows.

5.4 Summary

This chapter has presented the size and power of the volume-based
test. We have seen that the volume-based test can be set at a desired
size. Our power studies have shown that the volume-based test is at
least as powerful as other tests provided in the literature in most
cases. We have studied the effect of different placements of P, and
concluded that this can have an effect on the test. Our choice for P

when analyzing real data would be the center of the sampling window.

We have found excellent estimators of hyperspherical and aligned
hyper-rectangular sampling windows. However, if no prior information is
available about the shape of the window, then the convex hull of the
data is a good choice. Unfortunately, it is not computationally
feasible to determine the convex hull and its volume in high dimensions
(k>3) . For this reason, the next chapter looks at a new test of

uniformity of data.



CHAPTER 6

A MINIMAL SPANNING TREE BASED TEST

6.1 Introduction

We have seen that the volume-based test requires an accurate
estimate of the true sampling window. |f the true sampling window is a
hypersphere or an aligned hyper-rectangle then efficient estimators are
available to estimate the window. In situations where no prior
knowledge is available about the shape of the sampling window, the
convex hull of the data appears to be a reasonable estimate of the
window. Unfortunately, computing the convex hull and its volume in high
dimensions is not computationally feasible. Therefore, the
applicability of the volume-based test is limited to data in low

dimensions.

In this chapter we propose a test which does not explicitly require
any knowledge of the true sampling window. We still assume that the
convex hull of the data is a reasonable estimate of the sampling window,
but we do not need to compute the convex hull or its volume. The idea
of this test comes from a multivariate extension of the Wald-Wolfowitz
runs test [Wall0] proposed by Friedman and Rafsky [Fri79]. The
Friedman-Rafsky test determines if two sets of high dimensional sample
points belong to the same distribution. The test statistic is

71
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determined from the minimal spanning tree (MST) of the pooled sample
points. We adopt this test for our purposes as follows. The given data
which are to be tested for uniformity constitute one sample. We would
like the other sample needed for the Friedman-Rafsky test to be obtained
by generating points uniformly distributed over the convex hull of the
given data. |If the null hypothesis that the two samples belong to the
same population is accepted, then we say that the given data is
uniformly distributed over the convex hull. One of the problems, of
course, 1is in generating uniform data over the convex hull, since it is
not computationally feasible to form the convex hull of high dimensional
data. In Section 6.2 we present a heuristic that approximates the
convex hull for the purpose of generating uniform points over it.
Section 6.3 describes the Friedman-Rafsky test and the proposed
MST-based test. Section 6.4 determines the size and power of the

MST-based test for various sampling windows and data sets.

6.2 Generating Uniform Points over the Convex Hull

We describe a heuristic which produces uniform points over a set
which is approximately equivalent to the convex hull of the data. Our
overall procedure will be as follows. We determine a (relatively
simple) convex set containing the data. We generate uniformly
distributed points over this set and retain those that fall in the
convex hull of the data. This rejection technique would then result in

a set of uniform points over the convex hull.
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It is easy to reject points if the convex hull is known. However,
we wish to find a rejection method that is less costly than explicitly
determining the convex hull. Our rejection procedure will use the
following property of the convex hull, H(X), of the given data X={Xi}.
A point Y is not in H(X) if and only if Y can be separated from the set
{Xi} by a hyperplane. This follows from the definition of H(X) as the
intersection of all convex subsets containing {Xi}. We can restate this
property as follows. A point Y is not in H(X) if and only if there
exists a hyperplane, with normal vector n, passing through Y, such that
((Xi-Y).n) >0 for all i=1,2,..,N, where (v.w) is the inner product of
vectors v and w. It should be clear that, for a point Y not in H(X),
one normal vector that will always satisfy the above positivity
constraint is the vector n* = Z-Y, where Z is the unique point in H(X)

closest to Y.

We would like to estimate n* from the given data. This, however,
does not appear to be an easy problem to anaiyze and we resort to a
heuristic. |f the data are uniform over H(X), we expect to see points
in the data set which are near the point Z. These points could be used
to estimate n*. We choose to use the following estimator which takes a
weighted average over all points in the data set.

- +l
A% o= N (Xi-Y) / (||x;-y||2)K

This estimator is the sum over all i of the unit vectors from Y to Xi

weighted by an amount inversely proportional to the Kth power of the
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distance from Y to Xi. The Kth power of the distance penalizes points
far from Y. This penalty is proportional to the volume of a hypersphere
centered at Y and passing through Xi. The use of volume, rather than

distance, is suggested by the volume-based test.

The procedure to compute a second sample of points uniformly
distributed over (approximately) the convex hull of the data is as
follows. We place a simple compact convex set around the data. This
set is chosen as the MVU estimator of an aligned hyper-rectangle. The
smallest hypersphere enclosing the data could also have been used here.
We then consecutively generate points uniformly distributed over this
set. We reject any point, Y, if all the data lie in one half space of
the hyperplane passing through Y with normal vector ﬂ*, i.€., ﬁ*
satisfies the positivity constraint mentioned above. This procedure
continues until the desired number of points has been generated. If a
point Y is in the convex hull of the data, we are guaranteed that this
procedure will not reject Y. However, it is possible for a point Y
outside the hull to be accepted. This procedure is less costly than
computing the convex hull explicitly if the initial convex set used to
enclose the data is not too large. With this method, the time taken to

reject one point is proportional to N.

This procedure is demonstrated in Figure 10. One hundred uniform
points are given inside a triangle contained in the unit square. An
additiona! 100 uniform points were generated using the rejection
procedure by first generating points over the unit square. We note that

the points generated by the rejection procedure (denoted +) appear to be
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FIGURE 10: Points Generated by the Rejection Technique.
100 points '"o' are generated uniformly in the triangle.
Another 100 points are shown as '+'" after passing the
rejection procedure. A total of LO6 points were generated
randomly over the unit square to obtain this second sample.
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uniformly scattered like the original data in the triangle (denoted o).

It should be noted that this rejection procedure can be posed as a
classical Pattern Recognition problem. We wish to find a linear
discriminant function seperating the 'class' of points {Xi} from the
'class' containing one point Y. A number of algorithms are available to
solve this problem [Dud73]. However, all of these algorithms are
iterative in nature and most suffer from convergence problems. |In
addition, they do not offer any computational advantage over the

rejection technique which we have presented.

6.3 Definition of the Test

We wish to test whether the original data and points uniformly
distributed over a set which is approximately the convex hull of the
data belong to the same population. That is, we wish to determine if
the two samples have the same distribution function. Such a test would
determine if the given data are uniformly distributed. Of course, one
must keep in mind that the second sample is not independent of the
first. This problem always exists whenever the sampling window is not
known. We will see, however, that this only serves to make the proposed

test more conservative.

Testing the equality of two univariate samples is a well-studied
problem [Con71]. Classical wunivariate tests for general alternatives
include the Wald-Wolfowitz runs test and the Kolmogorov-Smirnov

two-sample test. Extension of the two-sample K-S test to a multivariate
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situation is possible but is not practical [Hal73]. We explore the use
of the multivariate extension of the Wald-Wolfowitz test recently

proposed by Friedman and Rafsky [Fri79].

The Friedman-Rafsky test is based on the minimal spanning tree
(MST) of the pooled sample points. The MST has been used extensively in
unsupervised pattern recognition, chiefly as a basis for clustering data
[And73, Zah71, Dub80]. The definition of an MST for points in an
Euclidean space involves computation of a complete weighted graph whose
nodes represent the points. The edges in the graph are weighted by the
Euclidean distance between the points. The MST is that subgraph which
is a spanning tree (a spanning tree is a connected graph with no cycles)
and which has minimal sum of edge weights [Har72]. For given data, if
the set of distances between points has no ties then its MST is unique.
Variants of Prim's algorithm [Pri57] are most widely used for forming an

MST.

The MST extends to higher dimensions the concept of the
one-dimensional sorted 1list needed to perform the Wald-Wolfowitz test.
The Friedman-Rafsky test makes use of this fact in the following manner.
The MST of the pooled samples is computed. Let the N data points in one
sample be labeled X and the M points in the second sample be labeled Y.
The number of edges in the MST linking a point labeled X to a point
labeled Y is found. Denote this X-Y join count as T. We assume that
the underlying distribution function of the samples is continuous so
that T is unique with probability one. Note that 1 § TS (M+N-1). Under

the null hypothesis that the two samples are from the same population,
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Friedman and Rafsky show that

E[LT]) = 2MN/ L

and

_2MN (2MN-L | C[+2 N
VAR[T|C] Y= N +m) [LLL 1) "IMN&Z]

where C is the number of edge pairs in the MST sharing a common node and
L=M+N. Further, the permutation distribution of T, conditioned on the

realized graph, is asymptotically normal. That is,

-------- ==> 7 as M,N-->0Q with M/N bounded away from 0 and ©0,
VAR[T|C]
where Z is a random variable following the standard normal distribution.
Friedman and Rafsky discuss the details of computing T and C. The most
expensive part of using this test is in determining the MST which has
computation time proportional to (H+N)2. Bentley and Friedman [Ben78]
present a MST algorithm whose expected run time is roughly proportional

to (M+N) 1og (M+N) .

In the context of our situation, the points labeled X are the given
data points and the points labeled Y are uniformly generated over a set
which approximates H(X). |If the given data are uniform, we expect the
null hypothesis of the friedman-Rafsky test to be true. In the case of
clustered data, we expect many of the points labeled Y to be generated
between clusters. This would produce an unusually high number of X-X

and Y-Y joins, thus reducing the value of the statistic T. We can thus
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perform a test for wuniformity against a clustered alternative as

follows. Reject the data as uniform when

VAR[T|C]

where Z(d) is the & quantile of the standard normal distribution. We
could, of course, perform the analogous upper tail test for uniformity

against a hardcore alternative.

The MST-based test to analyze a data set containing N points over
unknown sampling window can be summarized as follows. The number of
points to include in the uniformly distributed sample is open. For

simplicity, we choose to have the two samples of equal size.
(1) Determine the MVU hyper-rectangle containing the data.

(2) Generate uniformly distributed points over this
hyper-rectangle. Using the rejection technique, retain N of these
points which 1lie in a set which approximates the convex hull of

the data.

(3) Pool the N data points and the N uniform points generated in

Step 2 and compute their MST.

(k) Determine the test statistic T. Reject the data as uniform in
favor of a clustered alternative if T is too small. Reject the
data as uniform in favor of a regular alternative if T is too

large.

I1f the sampling window is known, we can replace steps 1 and 2 by
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generating N points uniformly distributed over this window.

6.4 Performance of the MST-Based Test

In this section we analyze the performance of the MST-based test by
simulation. We report only the rejection rates for a one-sided test
against a clhstering alternative. Since the distributional theory of
the test statistic T is asymptotic, our results report the rejection
rates of the test at both the .05 and .02 levels. The entries in the
tables are ( R(.05) , R(.02) ), where R(X) is the percent rejections of
the null hypothesis at the & level. The parameters K, N, and M in
these simulations are the same as in experiments with the volume-based

test reported in Chapter 5.

6.4.1 Uniform Data Over a Known Hypercube

Table 14 reports the results when a sample of uniform data in the
unit hypercube is subjected to the MST-based test. The second uniform

sample is also generated over this known sampling window. The results

TABLE 14: Size of the MST-Based Test for Uniform
Data in Unit Hypercube. M=100

K
2 5 10

50 (1,1) (4,0 (3,2)

N 100 (5,3) (6,4) (7,3)

200 (5,2) (5,4) (5,2)
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in the table provide a study of the effect of varying N and K. Since
all the entries in the Table 14 are within their expected values (at the
.05 level), we conclude that one can set the size of the MST-based test
at a given level. These simulations have also shown that the size of
the one-sided test against a regular alternative may also be set using

the asymptotic distribution of T.

6.4.2 Neyman-Scott Process with Known Sampling Window

Table 15 gives estimates of the power of the MST-based test for
Neyman-Scott clustering alternatives. To generate this table, we assume
that the hypercubic sampling window over which the data is generated is
known. Further, to compare our results with previous studies, we use
the wrap around paradigm, both for generating the data and computing the
interpoint distances. The MST defined with wrap around is then a tree
on a torus. The MST-based test shows the expected increase in power

with increasing a4 and decreasing 0. |t also shows an increasing power

TABLE 15: Power of the MST-Based Test Against a Neyman-Scott
Process (wrapped) in Unit Hypercube. N=200, M=100

P
.05 . .2
16 (100,100) (86, 74) (12, 7
M 8 (100,100) (56, 37) ( b, 1) K=2
1 (L6, 28) (n, 2) ( 5, )

16 (100,100) (100,100) ( 46, 32)
M 8 (00,1000 (100,100) ( 29, 18) K=5
1 (100,100) (99, 94) (15, 6)
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TABLE 16: Comparison of the Powers of the Hopkins, Cox-lLewis
and MST-Based Tests.
Entries are percent rejections for Hopkins,Cox-Lewis,MST (H,C,M)
M=100, N=200, M =16

H, C, M H, C, M H, C, M
k=2 80, 53,100 32, 7, 7k x, 2, 17
K=5 91,100,100 94, 90,100 x, B8, 32
.05 o .2
o

*entries not provided by Cross and Jain [Cro82]

with dimensionality. Comparing these results with Table 7, which
compared the powers of the volume-based and Hopkins tests for various
parameters of Neyman-Scott clustering, we see that the MST-based test is
the most powerful of these tests for these parameters. We can also
compare the Hopkins test [Cro82] and the Cox-lLewis test [Pan81] to the
MST-based when 'L-l6. Table 16 gives these comparisons. Again we see
higher power for the MST-based test. The MST-based test gives
significantly higher power (at the .001 level) against all other tests

for K=2 with 0 =.05 and .1 and for K=5 with 0 =.2.

6.4.3 Other Data Types with Known Sampling Window

As with the volume-based test we can estimate the power of the
MST-based test for a hardcore alternative. To use this alternative we
must change the test's critical region to the 1-& upper tail of the
normal distribution since we expect too few X-Y joins under a regular
alternative. We see considerable power of the MST-based test against

this alternative. With 100 Monte-Carlo trials, we have rejections of
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(6L,46), (100,100), and (100,100) in 2, L and 5 dimensions,
respectively. The alternative studied is hardcore over the unit
hypercube with out wrap around, with /9 =0.1, and with N=200. These
results are much better than the volume-based test, especially for
two-dimensional data. We will see, however, that for an unknown
s;mpling window, our point generation procedure will not allow the

MST-based test to be performed with hardcore data.

We also look at the power of the MST-based test for detecting a
normal swarm of points. As in the volume-based test, the normally
distributed points are forced into the unit radius hypersphere by
dividing all the points by the maximum norm of the data. The second
sample required for the MST-based test is then generated uniformly over
this hypersphere. As in the volume-based test when N=200, we obtain
rejection rates of 1008 for K=2, 5, and 10. However, when N is
decreased to 50; our rejection rates (at the .05 level) become 50, 84,
and 76 for 2, 5, and 10 dimensions, respectively. These are higher than
the corresponding rates for the volume-based test with P placed randomly

but lower than the rates with P placed at the center of the hypersphere.

6.4L.4L Uniform Data in Unknown Sampling Windows

Here we determine the size of the MST-based test for unknown
sampling windows. Table 17 reports the size estimates for uniform data
in a unit hypercube, while Table 18 reports similar results for data
uniform in a unit volume hypersphere. We note that all entries are

within or below their expected values. |t appear that as dimensionality
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TABLE 17: Size of the MST-Based Test for Uniform Data

in an Unknown Unit Hypercube. M=100
K
2 3 5 10
50 (4,1) (2,0) (0,0) (0,0)
N 100 (4,2) (5,2) (6,0) (0,0)
200 (6,1) (3,2) (0,0) (0,0)

increases, the test becomes more conservative, i.e. the observed number

of rejections of the null hypothesis is less than expected. This can be

verified by noting that the mean of the MST statistic T increases as

dimensionality increases. This arises from the fact that the volume of

the convex hull of the data underestimates the volume of the true
sampling window. Thus we are packing uniformly distributed points
inside the convex hull which decreases the data point to data point

(X-X) joins more than would be expected under the null hypothesis of the

Friedman-Rafsky test. This makes a test against clustering possible,

though a loss of power may result. However, this excludes using the

MST-based test as a test of uniformity versus a hardcore alternative,

since the proper size of the test can not be set with an unknown

sampling window. The disadvantage in having no prior knowledge of the

TABLE 18: Size of the MST-Based Test for Uniform Data

in an Unknown Unit Volume Hypersphere. M=100
K
2 3 5 10
50 (0,0) (1,0) (0,0) (0,0)
N 100 (4,2) (2,0) (0,0) (0,0)
200 (1,0) (0,00 (0,0) (0,0)
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sampling window can be seen by the time taken to perform the MST-based
test in high dimensions for a hyperspherical sampling window. The major
component of the computation time is in generating the second sample.
For 100 wuniform points in a hypersphere the times taken to perform the
test are 25, 70, 189, and 1040 CPU seconds in 2, 3, 5, and 10

dimensions, respectively, for 100 Monte-Carlo simulations.

Another type of uniform data is that generated over a hyperellipse.
Appendix A gives details on the parameters of the hyperellipses used.
For 100 uniform points over hyperellipses in 2, 3, L, and 5 dimensions
we obtain rejection rates of (3,1), (5,1, (,0), and (1,1),
respectively. The number of Monte-Carlo simulations performed is 100.
Also, for uniform data over a triangle in two dimensions, the rejection
rate of the MST-based test is (6,3) with 100 Monte-Carlo trials. This
triangle is formed by partitioning the unit square along one of the
diagonals. These results lead us to believe that the rejection
procedure used in generating the second uniform sample allows us to

determine the level of significance of the MST-based test.

6.4.5 Neyman-Scott Process over Unknown Sampling Windows

We now study the power of the MST-based test against Neyman-Scott
clustered data over an unknown sampling window. In Table 19, we use the
Neyman-Scott cluster alternative over a hyper-rectangular sampling
window with wrap around. Of course, since the sampling window is

unknown, distances are not computed using wrap around. These results



92

TABLE 19: Power of the MST-Based Test Against the Neyman-Scott
Process (wrapped) in an Unknown Unit Hypercube. M=100, N=200

16  (100,100) (78, 72) (14, 6)
a8 (100, 99) ( Lo, 30) (11, L4) k=2
1 (b7, 3D (12, 8 ( 3, 0)

16  (100,100) (100, 100) (21, 14)
M 8 (100,100) (100, 100) ( 6, 5) K=5
1 (100, 97) ( 68, 51) ( 3, 1)
.05 B .2

show that

is remarkably similar to the case when the

though a slight

sampling window on the power of the MST-based test, we repeat the above

simulations, but for the Neyman-Scott process over the unit volume
hypersphere. Here, however, wrap around can not be wused. Table 20
reports these power estimates. We note an increase in the power as

dimensionality increases, even though the test s

TABLE 20: Power of the MST-Based Test Against the Neyman-Scott
Process in an Unknown Hypersphere.

16 (100,100) (100, 100) ( 76, 60)
M 8 (100,100) (100, 96) ( 38, 32) K=2
1 (90, 86) ( 38, 28) ( b4, W)
16  (100,100) (100, 100) (93, 92)
P 8 (100,100) (100, 100) ( 43, LO) K=5
1 (96, 92) (96, 92) (10, 6)
.05 | .2

loss in

power

can be seen.

the power of the MST-based test with unknown sampling window

sampling window

To check the effect of

also becoming more

M=100, N=200
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conservative. There is an increase in power from the unknown hypercube
results, though this is probably due to the difference between the

realizations of a no wrapped and a wrapped Neyman-Scott cluster process.

6.4.6 Experiments with Some Real Data

To demonstrate the applicability of the MST-based test in practical
situations, we use this test to test for the presense of structure in
some data from actual studies in Pattern Recognition. We assume that no
information about the sampling window is available. In addition, we do
not utilize any category information (pattern labels). The data sets

used in this study are:

(1) IRIS....This is a well-known data set [Fis36] containing
measurements on three species of iris (setosa, versicolor, and
virginica). It consists of 50 patterns from each species on each of 4
features (sepal length, sepal width, petal length, and petal width).
See Figure 11 for a projection of the IRIS data to two dimensions by the
principal component method [Fuk72]. The axes are the eigenvectors
corresponding to the two largest eigenvalues of the covariance matrix of

the data.

(2) IR1S23....This is a subset of the IRIS data containing measurements
for only two of the species (versicolor and virginica). These 100
patterns are known to be well separated from the patterns corresponding
to the setosa specie. Figure 12 shows this cata projected to two

dimensions by the principal component method.
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(3) 80X....The 80X data set is derived from the Munson hand printed
FORTRAN character set. Included are 15 patterns from each of the
characters "8", "0", and '"X". Each pattern consists of 8 feature
measurements [Dub80]. Figdre 13(a) shows the 80X data projected to two
dimensions by principal component analysis while Figure 13(b) shows the

80X data projected to two dimensions by discriminant analysis [Fuk72].

(L) BCLUS....This data set, used by Bartlett [Barbli], consists of 100
patterns generated according to a Neyman-Scott cluster process over the
unit square. Bartlett was able to show that this data was nonuniform
with a spectral analysis technique. In our analysis of this data we
assume that the sampling window is unknown. Figure 14(a) shows the
original BCLUS data, while Figure 14(b) shows the BCLUS data after it

has been subjected to the whitening transformation [Fuk72].

(5) SPEECH....This data set consists of patterns measured on 72
utterances from 8 Chinese speakers [He82]. Each pattern consists of 5
features measured from the pitch waveform. The principal component

projection of this data to two dimensions is shown in Figure 15,
The data sets are tested in each of the following configurations.

(1) The original feature space.

(2) The patterns are transformed so that the data has 2zero mean and
identity covariance matrix. This is done by whitening the data, i.e.
applying the principal component transformation followed by the

whitening transformation [Fuk72].

(3) The patterns are projected to two dimensions by the principal
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FIGURE 13 (cont'd)
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FIGURE 14 (cont'd)
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FIGURE 15: SPEECH Data Projected by the Principal Component Method
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TABLE 21: The Performance of the MST-Based Test on Some Real Data Sets
Entries are the value of the normalized Friedman-Rafsky statistic.
The top number is the value using the rejection technique.

The bottom number is the value using either the MVU or smallest
hypersphere sampling window.

Data Sets

Configuration IRIS IR1S23 80x BCLUS SPEECH
Original -11.08 -3.59 -1.90 -L.24 -4.50
-12.91 -8.77 -4.64 -2.97 -6.33

Transformed -5.42 -2.83 -.90 -4.94 -3.50
-6.46 -5.45 -3.79 -6.13 -6.00

Projected -7.27 -1.55 -1.68 - -2.50
-6.00 -2.12 -1.08 - -1.83

component transformation.

Each configuration is tested by the MST-based test in two ways.
First, the rejection technique is used to generate the second sample of
uniform points needed for the MST-based test. Second, the MVU
hyper-rectangle and the smallest hypersphere enclosing the data are
found and the estimate with the smaller wvolume is used as the true
sampling window. The second sample of uniform points is then generated

inside this sampling window.

The results of these experiments are shown in Table 21. Except in
a few instances, the entries in the table are significant for rejecting
the null hypothesis of uniformity at the .05 level (the .05 quantile of
the normal distribution is -1.65). These exceptions are the transformed
80X data tested by using the rejection technique, the 80X data projected

to two dimensions and tested in the smallest circle, and the IRIS23 data
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set projected to two dimensions and tested by using the rejection
technique. Even in these cases, the value of the test statistic
indicates the presence of a slight clustering in the data. This can be
confirmed by Figures 12 and 13(a) for the two projected data sets.
There is a general trend in Table 21 which shows that the test statistic
using the rejection technique is larger than when the best fitting
sampling window is used, especially in high dimensions. This is
expected since the high dimensional data does not usually fit very well
inside the MVU or smallest hypersphere sampling windows, and tihe data
may look like a single cluster in the center of the window. This effect
also arises due to the conservative nature of the MST-based test when

using the rejection technique.

The original 80X data appears clustered at approximately the .03
level. Of course, 45 patterns in 8 dimensions constitute a rather
sparse data set and it is difficult to make a meaningful decision about
the structure of such data. These data, after applying the whitening
transformation, are accepted as uniform at the .05 level, which suggests
that the whitening transformation can distort the structure present in
the data. The representation of the 80X data in two dimensions produced
by the principal component transformation has critical level
approximately equal to .05 when using the rejection method. Even if the
80X data is projected to two dimensions using discriminant analysis, the
critical level drops to only .03. This suggests that the clusters in
the data are not compact or well-separated. This can be verified from
Figure 13(b). Of course, if category information (class labels) is

used, it may still be possible to determine simple decision boundaries
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to seperate the three classes present in this data.

In contrast to the 80X data, there is evidence for strong
clustering in the IRIS data. The values of the test statistic for all
representations of the IRIS data have critical levels less than .001.
This strong clustering can be seen in the two-dimensional representation
of the |IRIS data (Figure 11). By deleting the compact and
well-separated class (setosa) from the IRIS data in the IRIS23 data, we

can see an increase in the value of the test statistic.

The BCLUS and SPEECH data sets both show strong clustering
tendency. The BCLUS data seems to appear slightly more clustered after

the transformation.

One problem with the MST-based test is that repeating the test with
a different uniform sample can yield a different value of the test
statistic. For instance, if the transformed 80X data is retested by
both the rejection and the best fitting window methods, the test
statistic values are .21 and -1.90, respectively. These new values
suggest that this data are even less clustered than suggested
previously. |If the original IRIS data are retested we get about the
same value of the test statistic for the rejection method, but the value
using the MVU hyper-rectangle decreases to -17.20. This suggests that
the test will view well-clustered data as well clustered no matter what
uniform sample is used. However; if the value of the test statistic is
close to the critical value (for the level .05 say) then the

interpretation requires caution. One solution is to perform the test
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with various uniform samples and average the resulting statistic values.
Under the null hypothesis, this average should again have an approximate

normal distribution.

We conclude that the MST-based test is able to provide reliable

information about the structure of real data.

6.5 Summary

In this chapter we have presented a new test for uniformity, called
the MST-based test. The given data are tested against a second uniform
sample which needs to be generated. The test statistic is derived from
the MST of the pooled samples. |f the sampling window is known, this
second sample c¢an be taken as uniform data over that sampling window.
In this case, a Monte-Carlo study of the size and power of the MST-based
test shows that the test performs very well. The power of the MST-based
test is significantly higher (at the .001 level) compared to other tests
against clustered data. |If the sampling window is unknown, we present a
point rejection procedure which places samples uniformly in a set which
approximates the convex hull of the data. The size and power of the
MST-based test using this rejection procedure are shown by a Monte-Carlo
study. We conclude that the size of the MST-based test can be preset to
a specified level of significance when testing against a clustered
alternative. Due to the conservative nature of the MST-based test on
the clustered alternative, we can not apply the test on a hardcore
alternative in unknown sampling window. To demonstrate the

applicability of the MST-based test we have applied it to some real data
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sets.



CHAPTER 7

SUMMARY, DISCUSSION, AND FUTURE RESEARCH

7.1 Summary

Qur goal is to differentiate data sets with structure from those
with no structure. The structure we are most interested in is one of
clustering or aggregation of points. We wish to wuse a statistical
hypothesis test to make the decision. To do so, we define data with no
structure as a set of independent points following the uniform
distribution over a compact convex set in K-dimensional space, called

the sampling window.

A careful review of the currently available tests for structure

reveals three major deficiencies with these tests.

(1) Inapplicability to high dimensional data,

(2) The sampling window needs to be known, and

(3) Reliance on a Poisson process null hypothesis.

We feel that these limitations make the available tests inapplicable for

most data in a Pattern Recognition environment.
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The focus of this research has been on finding tests that would
address some of the above problems. We presented a volume-based test
which has the ability to compare density changes in the data to the
changes expected for uniformly distributed points over a known sampling

window in K-dimensional space.

To apply the volume-based test on data over an unknown sampling
window, an accurate estimate of the true sampling window is needed. We
presented a number of estimators when the shape of the window was known
to be a hyper-rectangle, a hypersphere or a hyperellipse. For an
arbitrary sampling window, the convex hull of the data appears to be an
adequate estimator. The volume of the convex hull is not an unbiased

estimator of the volume of the true sampling window.

We performed Monte-Carlo simulation to evaluate the volume-based
test. For known sampling windows, we found that the size of the
volume-based test could be fixed and that the power of the volume-based
test against clustered data is comparable to that of other tests in the
literature. We studied the proposed sampling window estimators by using
the estimates as the true sampling window in the volume-based test. We
found that we were able to set the size of the volume-based test wusing
the MVU estimator for an aligned hyper-rectangular sampling window and
the smallest hypersphere estimator for a hyperspherical sampling window.
The attempt to transform points in a hyperelliptical sampling window
into a hypersphere failed; the transformation did not produce uniform

data in a hypersphere according to the volume-based test. In two
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dimensions, the convex hull estimator yielded a test with determinable
size and with power comparable to the test performed over a known
sampling window. However, we found this estimator computationally

infeasible to apply to high dimensional data.

The requirement that the volume and shape of the sampling window be
precisely known 1limits the applicability of the volume-based test. To
overcome this limitation, we developed a MST-based test which assumes
only that the convex hull is a reasonable estimate of the sampling
window. This MST-based test uses the Friedman-Rafsky multivariate
extension of the Wald-Wolfowitz test to determine if two samples come
from the same population. |In our application, one of the samples is the
given data. The other sample is generated uniformly over the sampling
window of the given data. The generation of this second sample is
straightforward when the sampling window is known. For unknown sampling
windows we present a heuristic that generates uniformly distributed
boints over a set that approximates the convex hull of the given data.
This, however, violates an assumption of the Friedman-Rafsky test that

the two samples be independent.

We found that if the sampling window is known then the size of the
MST-based test could be determined, even for small sample size. The
power against the clustered alternative is significantly higher (at the
.001 level) than other tests. For unknown sampling windows, we found
that the MST-based test was conservative against a clustered alternative
but still showed good power. However, the MST-based test could not be

used as a test against a regular alternative in this environment.
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We conclude that the MST-based test is better than any other test
given in the literature to determine if data have any clustering

structure.

7.2 Discussion

The major contributions of this thesis have been in two areas.
First, we have defined two new tests for uniformity of given data. For
each of these tests, we have performed Monte-Carlo studies on the size
and power against various alternatives. These tests appear powerful

against clustered alternatives.

Second, this thesis provides the first study of tests for structure
in data when the sampling window is unknown. We provide a number of
sampling window estimators when the shape of the sampling window is
known a priori to be an aligned hyper-rectangle or hypersphere. For a
general sampling window, we have found that the convex hull of the data
should be used as its estimator. Unfortunately, computing the convex
hull of high dimensional data is computationally very demanding. To
alleviate this problem, we developed a test that does not explicitly
compute the convex hull of the data. This is the first study wﬁich has
provided a test that can be used to detect clustering in data over an

unknown sampling window.
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We now list some advantages and disadvantages of each of the tests

proposed in this thesis.

The volume-based test has the following advantages:

(1) The null hypothesis in the volume-based test is that the data are
uniform over some compact convex set. This contrasts with other tests
which use the null hypothesis of a Poisson process and eliminates the

need for an 'edge correction' factor.

(2) There appears to be little effect of dimensionality on the size and

power of the volume-based test.

(3) The volume-based test directly measures the density of the sample
points as opposed to some distance-based tests which utilize only local

information in the data.

The volume-based test has the following disadvantages:

(1) Using a single point P allows only one view of the data. Different
placements of P may yield different views of the data. It is not clear

how to utilize this information.

(2) The volume-based test is very sensitive to the size and shape of the
sampling window. This limits its applicability to low dimensional data
(K<h) when the convex hull is used as an estimate of the true sampling

window.

(3) It is necessary to compute the volumes and the intersection of sets
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in high dimensions, which is feasible only if the sets are simple.

The advantages of the MST-based test are:

(1) For known sampling window, the power of the MST-based test against
clustered alternatives is significantly better than some well-known

distance-based tests.

(2) The test does not require the exact shape and volume of the sampling
window. Therefore, it can be easily applied to high dimensional data

(k24) in an unknown sampling window.

The MST-based test has the following disadvantages:

(1) Generating the uniformly distributed sample over an unknown sampling

window may require large amounts of computation time.

(2) The test against regularity can not be performed with unknown

sampling window.

(3) The MST-based test could yield different results on the same data
depending on the second sample which needs to be generated uniformly

over the sampling window.

7.3 Future Research

Listed below are areas of investigation that extend the work in this

thesis.
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(1) 1t is wunlikely that a single test will provide all the
information needed to determine the structure of real data. We envision
a number of tests being applied to the data and the results of these
tests combined in some manner. There is a definite need to explore the
strategies for doing this. As an example, one would like to combine the

results from different placements of point P in the volume-based test.

(2) For the MST-based test, a study of other methods of rejecting
points outside the convex hull of the data should be undertaken. Our
estimate of n* was based on a heuristic which appears to give reasonable
results. However, one may be able to derive a different estimator that
does not lead to the conservative trend against clustered alternatives
in high dimensions. This would also allow us to define a test against

regularity in unknown sampling windows.

(3) The idea of using points generated over the convex hull of the
data may now allow tests based on sampling origins (such as the
Cox-Lewis test) to be used with data in unknown sampling windows. One
would need to check if the null distribution of the statistic would
still hold. Usfng these tests may have an advantage over the MST-based
test since fewer sampling origins need to be generated. Also, the
assumption that the sampling origins are uniformly distributed is
usually unnecessary to apply these tests. This may allow the origins to
be placed inside the convex hull by taking linear combinations of random

pairs of data points.
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(L) Our brief study of Ripley and Rasson's unbiased estimator of
the volume of the sampling window for planar data indicated that it
appears to be applicable to higher dimensional data. A proof of this

extension would be satisfying.

(5) Even if a data set is rejected as uniform it may still not be
very interesting from the point of view of clustering. For example, the
data may be unimodal Gaussian or may have a regular structure.
Therefore, it 1is necessary to 1look more closely at this non-uniform
data. |t would be exteremely useful to know the number of clusters
present in the data. Perhaps the sequence of ordered volumes generated
from the volume-based test would be helpful here. It is possible that
knowing the number and location of significant 'holes' in the data would
also be useful. A significant 'hole' could be defined as an unusually

large subtree of Y points using the MST-based test.

(6) Our analysis of the computational complexity of various
algorithms has assumed a serial model of computation. It may be
possible to develope parallel algorithms to generate the convex hull and
MST of the data, perform volume and set intersection computations,
generate random samples, etc. An analysis of the computational

requirements of the tests should be undertaken with this in mind.
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APPENDIX A

GENERATION OF RANDOM VARIABLES

This appendix describes the methods used to generate the random

variables and data set ensembles used in this study.

A.1 Uniform Random Variates

All uniform random variables used in this study were generated by
the 'Randomization by Shuffling' method (Algorithm M) described by Knuth
[Knu81, p. 32]. The auxillary table size was set to 64 elements. The
random number generator used to fill the table was the RANF generator
provided in FORTRAN IV on the CYBER 170/750. The generator used to
determine which element in the table to return at each call was a linear
congruential generator with multiplier 16807 and modulus 2147483647. It
is hoped that the use of this generator will avoid a problem of
sequentially generated random samples used as K-dimensional point
coordinates. Knuth [Knu81] has pointed out that such K-dimensional

points tend to fall 'mainly in the planes' [p. 90 Knu81].

A.2 Normal Random Variables

The standard normal random variables used in this study were
generated by the algorithm given in Kinderman and Ramage [Kin76]. This

method uses a modest number of uniform deviates to produce a single
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normal deviate by a rejection technique. |t proceeds by decomposing the
normal density into a number of regions where simpler density functions
can be defined. Uniform deviates are then used to produce deviates
following the appropriate component density. Samples from a
multivariate normal distribution with diagonal covariance matrix were
produced by wusing this method to generate each coordinate value

independently.

A.3 Poisson Random Variables

Poisson random variables were generated from uniform deviates by
using the algorithm given by Knuth [Knu81]. Essentially, we simulate a
Poisson process on the line. We can produce a Poisson deviate, X, with
mean r by generating independent exponential samples with mean 1/r,
denoted Y1,Y2,...., stoppping as soon as Y1+Y2+. . .4Ym>1; then
X <=-(m-1). Simplifying this, we see. that X can be obtained by
generating one or more uniform deviates Ul,U2,... until the product
(U1) (U2)...(Um) < exp(-r), finally setting X <--(m-1). On the average,

this procedure requires r+l uniform deviates.

A.L Uniform Random Vectors in a Hypersphere

Generating a sample from a uniform distribution in a K-dimensional
aligned hyper-rectangle is a trivial combination of K one-dimensional
uniform random variables, due to the independence among the coordinates.

However, generating random vectors uniform in a hypersphere can be
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computationally burdensome if a rejection technique is employed. To
perform this generation efficiently, we use the method described by
Pettis et. al. [Pet79], which uses K normal deviates and a uniform
deviate to place a vector uniform in a hypersphere. A random vector
following the normal distribution with zero mean and identity covariance
matrix is generated. This vector is normalized to have unit length.
Due to the lack of directionality in the normal density, this vector s
uniformly distributed on the surface of the unit hypersphere. Finally,
the length of the vector is made proportional to the Kth root of a
uniform deviate, thus placing the vector uniformly inside the unit

hypersphere.

Data uniformly distributed over a hyperellipse is derived from
uniform hyperspherical data by applying a linear transformation. This
transformation, T, is defined as follows. Transform each of the
standard coordinate basis vectors, dj, j=1,...,K (the jth component of
dj is 1, all other components are O0) into the orthogonal direction

vectors as follows:

T() = (1,1,...,1)

T(dj) = (Y.j (])OYJ (2).---,)’] (K)) j=2....,K where

yj(i) =0, for i=1,...,j-2 (when j#2)

yj (i) = -(K-j+1) for i=j-)

yj(i)=1 for i=j,...,K

Further, these direction vectors are normalized so that
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| 1T ) || =(modulo(j,5) if j is not a multiple of 5

5 if j is a multiple of §

In two dimensions, this transformation takes the unit circle into an
ellipse with major axis of length two on the y=-x line and minor axis of

length one on the y=x line.

A.5 Neyman-Scott Ensembles

A Neyman-Scott cluster process [Ney72] is a stochastic point
process representing a clustered alternative. It uses a Poisson field
of points as cluster centers and generates daughter points around each
cluster center with some specified distribution. To simulate this

process over a bounded sampling window, S, we use the following steps.

First, three parameters of the process are specified:

(1) N, the number of points desired,

(2) Mo the average cluster size, and

(3) g, the spread of each cluster.
Next, the following algorithm is applied.

(1) Select a point Y at random from S as a sample point. Y will also

serve as a cluster center.

(2) Find the number of daughter points, L, to be placed about Y. Let M
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be the number of points generated so far. Set L=min(N-M,X), where X is

a Poisson random variate with mean ’4.

(3) L points are then generated using the radially symmetric normal
density with mean Y and covariance matrix a*l, where | is the identity
matrix. |f wrap around is to occur, the point positions are taken
modulo the sampling window; otherwise, if a point falls outside the
window, it is rejected and new points are generated until one falls in

the window.

(4) Steps (1) through (3) are repeated until N points have been

generated.

To avoid edge effects wunder the null hypothesis of a Poisson
process, previous studies have generated data from a Neyman-Scott
process (as well as under other alternatives) using wrap around. The
concept of wrap around may only be defined in the case of a
hyper-rectangular sampling window. In the case of an aligned
hyper-rectangle, each of the two faces of the hyper-rectangle associated
with every coordinate axis are identified as being adjacent. To place
an arbitrary point Y=(yl,y2,...,yK) in the aligned hyper-rectangular
sampling window S=[ai,bi1:. we change each of the coordinate values to
yj<--modulo(yj,bj-aj)+aj, j=1,..,K. Distances can also be computed with
wrap around as follows. Let X and Y be two points in S-[ai.bi]:; with
components xi and yi, respectively. Let Z be defined as the vector with
components zj=min( |xj-yj|, (bj-aj)-|xj-yj| ). The distance between X

and Y is then ||Z||, using whatever norm is appropriate.
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A.6 Hardcore Ensembles

Hardcore data sets used were generated under the SSI (Simple
Sequential Inhibition) model of Diggle, Besag and Gleaves [Dig76]. This
method places N points in the sampling window S consecutively according
to the rule that the ith point is distributed uniformly over the set of
all points in S at Euclidean distance of at least d from all previously
located points. The parameter of the SS| process is its packing

density,
/)= N -Ak(d/Z)K

where A is the volume of a unit hypersphere in K dimensions. The value
of ,o , barring edge effects, is the proportion of S covered by N

non-intersecting spheres of diameter d.

To implement the SS| process, we use a rejection technique that
consecutively generates uniform points over S and checks if they satisfy
the minimum distance criterion. This procedure uses an inordinate

amount of computation if /&is large.
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APPENDIX B

THE VOLUME OF THE INTERSECTION OF TWO HYPERSPHERES

Let the two hyperspheres be denoted as S(cl,rl) and S(c2,r2), where
S(c,r) stands for a sphere of radius r with center ¢c. The following

prodedure returns the volume of their intersection.

INTVOL( S(cl,r1) , S(c2,r2) )

D <= || el=c2 ||,
IF (D >= rl+r2) THEN ; spheres don't intersect
INTVOL <-- 0
RETURN

IF (D+r2 < rl1) THEN ; sphere 2 is inside sphere |
INTVOL Ak * (r2) **K
RETURN

IF (D+r1 < r2) THEN ; sphere 1 is inside sphere 2
INTVOL <-- Ak * (r1)#%xK
RETURN

A

;s need to find both spherical caps

rl‘.dz_rz
Bl <-- cog™ [ * l/lﬁc\]

12
ndtrd
B2 <-- cog 2“9.&

INTVOL <-- CAP( r1 , B1) + CAP(r2, B2)
RETURN
END

Here Ak is the volume of a unit hypersphere in K dimensions,

Ak = 77"%/\—‘(;*\) -

The function CAP( r,B ) returns the volume of a spherical cap of a
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FIGURE 16: Definition of B to Compute Spherical Caps.
The spherical cap for S(c,r) is the shaded area

/,/“‘
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hypersphere of radius r, where B is the angie between the line generator
of the cap and the symmetric axis of the cap. Figure 16 shows the
definition of B in two dimensions. |In our case, Bl is the angle between
the line segment (cl,c2) and the line segment beginning at cl and ending
at any point on the surface of both spheres. B2 is similarly defined.
The formula for a cap's volume is given by Panayirci and Dubes [Pan81]

and can be rewritten as

CAP(rB)=-—-—AK [2_ KH) ‘L]

B
N, f s ¥dd

(&)

where Ix[q,b] 1s the im:omp'e"‘e Beta fonction

and
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APPENDIX C
COMPUTING THE SMALLEST HYPERSPHERE

The smallest hypersphere problem can be stated as follows. Given N
points, {Xi}, in K dimensions, find the smallest hypersphere which
contains all N points. That is, find a vector ¢ such that max||Xi-c]]|
is minimized over all c in RK. Historically, the smallest hypersphere
problem was first proposed for the planar case (K=2) in 1857 by J.J.
Sylvester [Syl157]. Later, he gave a geometric solution attributed to
Pierce [Sy160] which was rediscovered by Chrystal [Chr85]. A modern
account of their technique is given by Rademacher and Toeplitz [Rad57].
For K>2, Lawson [Lawb5] gives an iterative algorithm that converges to
the smallest hypersphere while Elzinga and Hearn [E1272] were the first
to exactly solve the problem. Their technique uses quadratic
programming. Supowit [Sup81] gives an algorithm based on a grid

heuristic.

We use Elzinga and Hearn's exact solution for the smallest

hypersphere. We wish to solve the following primal problem:

Minimize r over all positive r¢R and ceRK such that

> (xi-c)t (Xi-c), i=1,2,...,N.

After rewriting this in terms of its Wolf dual [E1272], we have the
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following concave quadratic programming problem,

l

i-’-i'z’o-ol N

’?

Svi=1l and V;20

where Vi, i=1,2,...,N are Lagrange multipliers, V is the vector of Vi's
and X is the matrix whose columns are the Xi. The smallest hypersphere

is then specified as

C=DWX; and ¥': Z Vi (x;-c)T(x;-C)

Solving this problem by a simplex algorithm involves the
introduction of an additional N nonnegative multipliers and an
unconstrained multiplier. This means that the simplex algorithm will
have basis size proportional to N. To reduce the complexity of the
problem, we decompose the problem as follows. For any subset of K+2
points of {Xi}, we can find the smallest hypersphere containing these
points by the simplex algorithm. |If this hypersphere contains all N
points, we have found the optimal hypersphere for {Xi}. If not, we use
the fact that the smallest hypersphere is defined by only K+1 points.
Thus the unused point can be eliminated from the set of K+2 points and
another inserted from the points in {Xi} which lie outside the current
hypersphere. Elzinga and Hearn prove that this procedure halts in a

finite number of steps. The algorithm is as follows:
(1) Given {Xi}, select K+2 points from this set.

(2) Solve the quadratic programming dual subproblem for the K+2
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points by the simplex method. One point, say Xj, will not te in

the optimal basis.

(3) If the hypersphere defined by the solution contains all N
points then stop. Otherwise, choose a point from {Xi} outside

this hypersphere and replace Xj by this point. Go to (2).

Specification of methods to select the K+2 points in step (1) and to
select the next point to be added in step (3) complete the algorithm.
These two choices can greatly affect the computational requirements of
the procedure. Our implementation chooses the K+2 points farthest from
the mean of the data. The point in {Xi} farthest from the current

hypersphere's center is added to the current basis in step (3).

The run times of our implementation of the smallest hyperséhere
problem are presented in Figure 17. Ten sets of both 100 and 200 péints
were generated at random in the unit hypersphere in 2,3,5,10 ana 15
dimensions. The times plotted are the averages over the ten runs. We
note the fairly linear behavior in computation time for small
dimensions. Other experiments by us have also shown a linear behévior

with respect to N.
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FIGURE 17/
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APPENDIX D
THE CONVEX HULL OF A FINITE SET OF POINTS

Computing the convex hull of a set of N points is a well-studied
problem. See Toussaint [TouB0] for a review. A number of algorithms
have been proposed for the two-dimensional case, the best of which runs
at minimum worst case time of 0(NlogN). Some of these have expected
time proportional to N. However, only a few algorithms are available
for computing the convex hull in high dimensional spaces. For K=3,
Preparata and Hong [Pre77] give an O0(NlogN) algorithm. Chand and Kapur
[Cha70] designed an algorithm based on the 'gift-wrapping' principle
which can be used for any value of K. Toussaint [Tou80] mentions the

time complexity of this algorithm is bounded below by

O N5 ],

Devroye [Dev80], by using results on maximal vectors [Ben78b], showed
that there exists a convex hull algorithm for general K that runs in

0(N) expected time for certain classes of point distributions.

Since the Chand and Kapur algorithm is the only complete algorithm
that has been published for high dimensional data, we choose to use it
in our convex hull implementation. Their algorithm proceeds by
'gift-wrapping' the points; that is it works by finding one face of the
hull, then finding its edges, and then pivoting this face about each

edge until it forms a new face of the hull.
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Due to inaccuracies in the published version of this algorithm, we
give a corrected version of it here. Let X={Xi} be the set of N points
in K dimesions. Its convex hull is found by calling the procedure
CONVEX (X,K,N) . This returns the faces of the convex hull in the form of
a normal vector to each face and the set of data points on each face.
The following is the terminology used in defining the procedure CONVEX.
Let nj, j=1,...,K be global variables holding the surface normals at
each recursion level of the algorithm. Let DIM(E) represent the
dimension of set E, i.e. one minus the number of 1linearly independent
points in E, and let |E| represent the number of points in set E. Let
( e.v ) represent the inner product of vectors e and v. The algorithm

requires that N>K.
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CONVEX (Y,M,L)

(1) Find a face (an M-1 dimensional flat)
NFACE <-- O, NFACE is the current number of faces found.
(a) Let E be the set of point(s) of Y with the smallest first
coordinate.
The hyperplane H passing through E with normal
na= (1,0,...,0)
is a support hyperplane of Y.
(b) Let {vi} be the DIM(E) unit vectors spanned by flat E.
Solve the K-1 equations with K variables (some of which may
be zero) for unit vector e
(e.vi) =0 i=1,2,..,DIM(E)
(e.ni ) =0 i=K,K-1,..,M
(c) Find the next point(s) to be added to E by finding those
points in Y which maximize

- e.V.
¢ ")/("n-"s\

where v; is the unit vector from a point in E to the jth point
of Y. Let W/m be this maximum value such that X +p’=1,
Update the normal to the hyperplane passing through E as
Ny = AN +pme.
(d) If DIM(E) < M-1 go to (b)

(2) Store the faces and compute the edges

NFACE <-- NFACE + 1

FACE (NFACE) <-- E

IF JE] = M
We can compute the M edges of E. Each edge is defined by a
subset of M-1 points. Store these edges in EDGES. |f an edge
is already stored, delete it.

ELSE  (|E|>M)
CALL CONVEX (E,M-1, |E]|)
Store the returned faces in EDGES. |If an edge is already there,
then delete it.

(3) Replace E by an edge from EDGES.
If there are none, then return FACES and end.
Let n be the normal to the face containing the edge in E.
Let Yo be a point in this face not in E.

(k) Go to step 1(b) with the additional constraint in step 1(b) on the
solution vector e that (e.v)>0, where v is the unit vector from
a point in E to Yo.

END
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Table 22 gives some results from our implementation of the Chand
and Kapur algorithm. We have used Cohen and Hickey's simplex
decomposition algorithm [Coh77] to compute the volume of the hull. The
table shows information about the convex hull for 100 points generated
uniformly in the unit hypercube. We note the rapid increase in computer
time, number of faces, and decrease in the volume of the convex hull as
dimensionality increases. However, Ripley's unbiased volume estimator
[Rip78] for planar data appears to operate quite well for higher
dimensions, indicating that his results are probably valid in higher

dimensions.

TABLE 22: Run Times to Compute the Convex Hull and its Volume
100 points at random in the unit hypercube
times are CPU seconds on a CYBER 170/750

K Number Time/ Avg. number Avg. number Avg. Avg. wunbiased
of runs run of faces points inside Volume Volume
2 10 .09 12 88 .87 .99
3 10 .86 56 68 .68 1.00
4 5 33.19 251 43 .46 1.10
5 1 >L50 1046 27 * %

*could not be run due to excessive computation time.
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