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(\) ABSTRACT
6»\\ INVESTIGATION OF ANTINATRIFERIC ACTIVITY

IN HEMODIALYSIS FLUID, BLOOD,
AND PLASMA ULTRAFILTRATE

By

James Murray Terris

An investigation of the literature of the last few years dealing
with the renal excretion of sodium reveals that at the present time
there are a number of theories available to describe the manner in
which the excretion of this ion is regulated by the kidney. Most of
the hypotheses deal with alterations in intrarenal hemodynamics.
However, evidence since 1960 has been accumulating suggesting the
existence of a presently unidentified natriuretic hormone which appears
in the urine and/or blood of man, rats, cows, dogs, and cats, under
certain conditions of extracellular fluid volume expansion. Plasma
demonstrating natriuretic activity has also been reported to inhibit
sodium transport across frog skin and toad bladder membranes (anti-
natriferic activity). Whether the material responsible for these
activities is a single substance, or has a definite physiological
function, has not yet been determined.

Antinatriferic and natriuretic activities have been reported to
occur in the plasma of humans with chronic renal disease. Since the
possibility exists that an antinatriferic substance might be dialyz-

able in vivo from humans, as appears to be the case with dogs, a study
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was undertaken to determine if antinatriferic activity could be iso-
lated from plasma ultrafiltrates and spent hemodialysis fluid following
maintenance hemodialysis of patients with end-stage chronic renal
failure. Methods are described for processing and concentrating these
large volumes of fluid which can be as much as 180 liters in a given
dialysis treatment. The assay employed to detect this substance uti-
lized isolated ventral frog skins held in a Ussing-type chamber.
Potential difference and short circuit current across the membranes
were alternately monitored before and after addition of a test sample.
There was no reproducible antinatriferic activity observed in
the specimens obtained from the patients in this study. Al1l patients
had been maintained by hemodialysis for 2 weeks or more, and none
demonstrated a fluid retention greater than 5% of their body weight
since the previous dialysis treatment. Plasma samples with and without
trichloroacetic acid deproteinization were studied. In addition,
dialysis fluid samples were concentrated 3600-fold by ultrafiltration
and plasma ultrafiltrates obtained from the artificial kidney were
similarly concentrated 8 to 27 fold and assayed for antinatriferic
activity. It is concluded that patients who have a fluid retention
which is less than 5% of their body weight, and who are undergoing
chronic maintenance hemodialysis, do not possess measurable quantities
of a previously described natriuretic hormone which others have sug-

gested has antinatriferic activity.
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In addition to the uremic human studies, dogs were expanded with
saline to examine the antinatriferic activity of expanded plasma. No
reproducible antinatriferic activity was demonstrated in expanded dog
plasma with or without trichloroacetic acid deproteinization. Also,
evidence is presented suggesting that direct application of trichloro-
acetic acid treated samples to frog skin membranes may yield erroneous
results due to the presence of small amounts of residual trichloro-
acetate anion not removed by conventional extraction procedures. From
these studies it is concluded that the natriuresis seen in acute
expansion of the extracellular fluid volume with isotonic saline cannot

be attributed to an antinatriferic substance.
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INTRODUCTION

In the maintenance of the volumes of the various fluid compart-
ments of the body, the most important inorganic constituent is the
sodium ion. The volume of the extracellular fluid compartment is
determined primarily by the total amount'of osmotically acfive solute
which it contains. Since sodium and chloride are by far the most
abundant osmotically active solutes in the extracellular fluid, and
since changes in chloride are largely secondary to changes in sodium,
the amount of sodium in the extracellular fluid is the most important
determinant of the extracellular fluid volume. Therefore, the mechan-
isms that control sodium balance are the major mechanisms 'defending'
this volume.

Prior to 1961 ideas concerning sodium excretion by the kidney
were dominated by considerations of glomerular filtration rate (GRF
or factor I) and the adrenal hormones, primarily aldosterone (factor
II). Selkurt et al. (153), in 1949, showed that reduction of the GFR
to 63% of the control value resulted in almost total sodium reabsorp-
tion, an observation conffrmed more recently by others (22,1Q1,107).
Simpson and Tait (156), in 1952, isolated a new adrenal steroid which
was to be called aldosterone and was shown to be the most potent of
the naturally occurring sodium retaining steroids. With these observa-
tions it was felt that the primary factors concerned with sodium

control by the kidney were established.
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One of the first indications that there is a renal mechanism
which operates independently of factor I and factor II for the excre-
tion of excess sodium evolved during the period from 1941 io 1960.
Investigations by several workers (6,63,75,143) demonstrated the ex-
istence of a phenomenon now referred to as 'mineralocorticoid escape'.
When deoxycorticosterone acetate (DOCA) or aldosterone was chronically
administered to humans (6,143), it was noted that there was a dramatic
fall in sodium excretion. Following an initial period of sodium
retention and weight gain (fluid retention), weight gain ceased and
sodium excretion returned approximately to control levels despite con-
tinued administration of these compounds. Davis and Howell (63)
demonstrated, in the dog, that even with an increased GFR there was
only a transient retention of sodium with continued use of DOCA.
DeWardener et al. (65) established another line of evidence for a
sodium excreting factor not related to GFR or mineralocorticoids when
they demonstrated that saline diuresis could occur in the presence of
a reduced GFR during acute volume expansion with saline infusion in
dogs treated with 9-alpha-fluorohydrocortisone.

With the findings that natriuresis could still occur in volume
expanded states despite an appreciable fall in GFR and high mineral-
ocorticoid levels, some other mechanism, or 'third factor', had to be
sought which would presumably affect tubular reabsorption of sodium
independently of factor I and factor II. That such a 'third factor'
exists is not disputed. The nature of this factor, on the other hand,

has been the subject of extensive studies, prompting one investigator



to ask "Which factor is third (16)f? The result of these studies has
led to the conclusion that the renal handling of the sodium ion is a
very complex interrelationship of many factors, both physical and
hormonal, and that the 'third factor' natriuresis seen following extra-
cellular fluid volume expansion may in fact be the result of changes
in many factors.

During the early 1960's investigations began to suggest that
this 'third factor' natriuresis observed in volume expanded states may
in part be due to an unidentified 'natriuretic hormone' ('NH'). One
study suggested that this 'NH' may induce natriuresis by inhibiting
active reabsorption of sodium in the nephron by inhibiting Na-K-ATPase
(99). However, this is not a consistent finding (97,166). Other
studies have demonstrated that plasma obtained from volume expanded
animals and humans not only induces natriuresis but also inhibits
sodium transport across frog skin and toad bladder membranes (an anti-
natriferic activity) (19,20,21,32,33,35,49,53,137). In addition, using
an Ussing-type short circuit current preparation, Nutbourne et al. (37)
demonstrated that following volume expansion in the dog there was a
reduction in sodium transport across frog skins incorporated into the
dog's circulation. The expansion in these studies was performed with
blood equilibrated with that of the dog undergoing expansion. Concomi-
tant with the decreased sodium transport in the frog skin there was an
increase in urinary excretion of sodium in the expanded animal. These
observations, and others to be discussed in a later section, suggested
that the natriuretic and antinatriferic activities observed in plasma

following volume expansion may be due to a single substance.
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The present studies were designed to further evaluate the con-
tribution of a 'natriuretic hormone' (with antinatriferic activity)
to the third factor natriuresis seen in volume expanded states.
A natriuretic and antinatriferic activity has been demonstrated to be
present in the serum of chronically uremic humans (19,20,21), who are
characteristically volume expanded. Since an antinatriferic substance
has been reported to be dialyzable in vivo from dogs exhibiting natri-
uresis as a result of saline expansion (36), the possibility that the
material observed in humans with end-stage renal failure might also be

dialyzable in vivo was considered. If the material is dialyzable from

humans undergoing maintenance hemodialysis, plasma ultrafiltrates and
spent dialysis fluid obtained from the artificial kidney could serve

as an unlimited source for this substance. With such a source suffi-
cient quantities of material might be obtained permitting its identifi-
cation.

The newness of the concept of this 'natriuretic hormone', and
the manner in which it was viewed as late as 1969, is perhaps best
described by Cort and Lichardus (55) in reference to a symposium held
in June of that year at Smolenice Castle in Czechoslovakia: "Most
symposia tend to stress conceptual and theoretical advances in a
delimited field of research. The present meeting had quite different
goals--to discuss whether a given field exists or not and in detail
the methods applied to try to find out."

The following discussion first reviews the literature which has

provided evidence for the existence of this 'natriuretic hormone' in



situations of extracellular fluid volume expansion. This is followed
by a summary of the information currently available which suggests
that this same 'natriuretic hormone' may also be antinatriferic with
regard to sodium transport across toad bladders and frog skins.
Finally, a consideration of the source of this natriuretic-antinatri-
feric substance is given, in addition to a review of some of the
physical factors which have been shown to contribute to the 'third

factor' natriuresis seen with volume expansion.



REVIEW OF THE LITERATURE

A. Circulating Hormonal Factors in
Volume Expanded States

The first evidence suggesting a circulating sodium excreting
hcermone in volume expanded states evolved from the experiments of
DeWardener et al, (65). These workers demonstrated that natriuresis
occurred not only in dogs volume expanded with isotonic saline, but
also in an isolated kidney being perfused with blood from the expanded
animal. This transmitted natriuresis also occurred in a cross perfused
intact recipient animal. Administration of exogenous aldosterone ruled
out mineralocorticoid dilution (which could cause natriuresis by
decreasing sodium retention), and a complex system of perfusion pres-
sure regulation was employed to keep the perfused intact animal at a
constant body weight. There was thus no volume stimulus from cross
circulation in the recipient animal, Changes in hematocrit, plasma
protein oncotic pressure, and serum sodium were also not responsible
for the observed natriuresis. Levinsky (103) and Levinsky and Lalone
(104) later substantiated these findings.

Johnston and Davis (91) and Johnston et al. (92), with cross
perfusion experiments performed on intact dogs, also provided evidence
for the involvement of a hormonal substance in the natriuresis accompany-

ing saline loading. In a control study blood was cross circulated



between DOCA escape donors and normal recipients. There was no sig-
nificant increase in sodium excretion in the recipient dogs due to
the cross circulation itself. When the donor dogs were expanded with
1 Titer of 0.9% saline there was a significant increase in sodium
excretion in the recipient dogs. In these experiments it was also
noted that there was a significant increase in sodium excretion during
periods of cross circulation when the filtered load of sodium in the
recipient was significantly decreased by aortic constriction above both
renal arteries.

Using a Ringer Locke solution containing canine red blood cells
and 6% bovine albumin to expand a donor dog, Lichardus and Pearce (114)
also demonstrated a natriuresis in a cross perfused recipient animal
when the GFR was decreased by clamping the arterial perfusion line.
This recipient natriuresis was not due to changes in hematocrit,
oncotic pressure, or increased renal plasma flow. Similar results were
reported by Bahlmann et al. (9) in cross circulation studies with dogs
in which the donor dog was expanded with whole blood.

Martinez-Maldonado et al. (123) report a 38% decrease in proximal
tubule reabsorption, as measured by micropuncture techniques, when
plasma from saline expanded animals was perfused into isolated kidneys.
Kaloyanides and Azer (94) demonstrated an increased sodium excretion
in an isolated kidney being perfused with blood from a second dog under-
going volume expansion with equilibrated blood in a reservoir to which
had been added 5% albumin in saline. The natriuresis in these studies

occurred in spite of a decreased renal blood flow, decreased arterial



pressure, and in the absence of any change in plasma protein concen-
tration or packed red cell volume. The donor animal had been pre-
treated with DOCA.

As a result of these cross circulation experiments the use of
the term 'natriuretic activity' began to make an appearance in the
literature in reference to a potential substance in the blood respons-
ible for the natriuresis being observed. Rector et al. (142), in
1968, became one of the first to refer to this postulated circulating
substance as 'natriuretic hormone' ('NH').

Stronger evidence for the existence of a 'natriuretic hormone'
is provided by studies such as those of Sealey and Laragh (151) and
Sealey et al. (150). Plasma and urine from salt-loaded humans and
sheep, as well as patients with primary aldosteronism and essential
hypertension, demonstrated an inhibitory effect on sodium reabsorption
in rats. Similar results were obtained by Kruck (100) utilizing
dialysates and ultrafiltrates prepared from urine of orally hydrated
humans. Glomerular filtration rate, renal plasma flow, and blood pres-
sure were not affected. Buckalew and Lancaster (33) demonstrated in
dogs undergoing DOCA escape that a substance appeared in plasma ultra-
filtrates which inhibited the short circuit current (SCC) in toad
bladders. It was also noted that variations in urinary excretion of
sodium coincided with oscillations in the inhibitory activity of the
plasma samples. These authors suggested that a natriuretic hormone
(with antinatriferic activity) may thus be involved in the day-to-day

regulation of sodium balance.



Clarkson et al. (44), using whole blood to volume expand dogs,
demonstrated that renal tubule fragments incubated in plasma obtained
after expansion were less able to maintain a sodium gradient or
accumulate para-aminohippurate (PAH) than when incubated in plasma
obtained before expansion. PAH transport has been shown to be a
sodium dependent process (19). Individuals carrying out the transport
studies did not know the identity of the plasma samples. Extracts of
urine were prepared by Clarkson and DeWardener (43) from salt-depleted
and salt-loaded humans. The extracts from salt-loaded subjects in-
hibited sodium transport in tubules prepared from rabbit kidneys.
Extracts from salt-depleted subjects had no effect.

Finally, Lichardus and Nizet (113) expanded the blood volume of
dogs with whole blood from a donor dog in which the hematocrit and
protein concentration were matched. Prior to the expansion, one of the
dog's own kidneys was tied off, transplanted to the neck and anastomosed
to thé carotid artery and jugular vein in order to eliminate afferent
and efferent renal nerves. Although there were no significant changes
in GFR, renal blood flow, post-glomerular hematocrit, or plasma protein
concentration following the transfusion, there were moderate but sig-
nificant increases in urine output and renal sodium excretion in the
transplanted kidney. The animals had been pretreated with DOCA and
ADH prior to the experiment. The authors interpret the results as
being consistent with the proposition that a specific factor ('NH')
plays a role in the mechanism of natriuresis after blood volume expan-

sion.
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Although a considerable number of investigators have reported evi-
dence in favor of a circulating salt excreting hormone during periods
of blood volume expansion, a few have reported negative findings (7,10,
18,147,170). However, it might be of interest to note that with only
two exceptions (147,170), all of these experiments reporting negative
findings involved attempts to elicit the substance 1n rats. Wright
et al, (170) failed to show the presence of a dialyzable inhibitor of
pﬁoxima] sodium reabsorption from plasma of dogs undergoing DOCA
escape, and Schrier et al. (147) failed to demonstrate it with hypo-
tonic volume expansion 1n dogs.

Lichardus and Ponec (116), commenting on their own negative find-
ings in the rat, suggest that a species difference may exist and that
the natriuretic response mechanism in the rat could be more dependent
on a mutual 1nterplay of the hormonal and physical factors than in the
dog. They noted that diuresis due to blood volume expansion with iso-
tonic or iso-oncotic blood in rats leads to a significant increase 1in
plasma protein concentration When the urine of a donov rat was re-
turned intravascularly through a catheter connecting the bladder with
the jugular vein, the protein concentration in the cross circulated
blood to a recipient did not change. Under these cond:tions a signifi-
cant diuresis and natriuresis took place in the recipient ddving donor
expansion., Utilizing this procedure, Sonnenberg et al. (160) substan-

tiated these findings in cross perfused rats.
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Chemical Characteristics of Natriuretic-
Antinatriferic Factors

Although the chemical nature of the natriuretic-antinatriferic
factors studied is unknown, comparison of the available information
regarding these factors reveals some interesting similarities. For
example, a natriuretic activity has been reported to appear in the
blood of animals during mineralocorticoid escape (32,33,35,137), volume
expansion in dogs (37), carotid artery occlusion in cats (49,53), and
humans with chronic renal disease (19,20,21). This same blood has
also been shown to be antinatriferic when tested on frog skins and toad
bladders in these experiments. Table 1 lists these various natriuretic-
antinatriferic substances and their effects on renal sodium excretion
(natriuretic-antinatriuretic activity) and sodium transport in frog
skins and toad bladders (natriferic-antinatriferic activity). Also
included are other known compounds or classes of compounds which have
been considered as possible candidates for 'NH'.

From the table it can be seen that the only substances which
demonstrate natriuretic as well as antinatriferic activity are the
so-called natriuretic hormones. The possibility exists, of course,
that there are actually two substances involved, one of which is
natriuretic and the other antinatriferic. Further comparisons, however,
tend to suggest that if the activities are not due to a single substance,
they are at least due to similar substances. Summarized in Table 2 are
the effects of various treatments on natriuretic and antinatriferic
activities which appear in cats during carotid artery occlusion, dogs

during mineralocorticoid escape and saline expansion, and in chronically
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uremic humans. The only striking difference between the human and
cat material is the apparent unresponsiveness of the human material
to degradation by proteolytic enzymes. Bricker (27), however, does
state that he is able to inactivate the substance with a specific
peptidase, although the nature of this peptidase was not revealed.
The human substance is not, therefore, completely immune to enzymic
degradation.

Cort et al. (49,58) and Cort (47) have concluded that the sub-
stance released during carotid artery occlusion in cats is a peptide,
small enough not to be precipitated by trichloroacetic acid (H-TCA).
They suggest that the substance has at least one basic amino acid
since both natriuretic and antinatriferic activities are destroyed by
trypsin. The partial loss of both activities following incubation
with aminopeptidase suggested a free terminal group, and the partial
loss of both activities following incubation with chymotrypsin sug-
gested one or more aromatic amino acid residues existed somewhere 1in
the structure. Incubation of nondeproteinized plasma at 37°C resulted
in complete loss of both activities within 20 minutes. A similar incu-
bation at 0°C had no effect.

The fact that there were parallel changes in natriuretic and
antinatriferic activities with the treatments described above and
listed in Table 2, suggested that a single substance was responsible
for both of the observed activities. Although no known purified
naturally occurring substance possesses both activities, the observa-
tion that synthetic (4-leu)-oxytocin (152) does possess all the proper-

ties attributed to 'NH' provides evidence that such a naturally
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occurring substance could exist. In cats, (4-leu)-arg-vasotocin is
even more natriuretic than (4-leu)-oxytocin (60), Furthermore,
oxytocin inhibitors (i.e., 2-0-methyltyrosine-oxytocin) inhibit not
only the natriuretic action of oxytocin, but also the natriuretic
response to carotid artery occlusion (144). This suggests that the
'NH' in cats may be similar in structure to oxytocin.

Comparing the natriferic (enhanced sodium transport in frog
skin and toad bladder) effects of known concentrations of oxytocin with
the antinatriferic activity of carotid artery occluded cat plasma,
Cort et al. (58) estimate the maximum plasma concentration of this

-11 to 10-15

antinatriferic substance to be 10 molar. The assumption
made in arriving at this conclusion, which is open to criticism, was
that one molecule of oxytocin and antinatriferic material have equal
but opposite effects on frog skin sodium transport. Finally, use of
dibenzyline to counteract circulating catecholamines had no effect on
the natriuretic response to carotid artery occlusion or 20% blood
volume expansion with 6% dextran in saline (51). This suggested that
the natriuretic substance is not a catecholamine.

Bricker et al. (29) observed that, following Sephadex fractiona-
tion of plasma from chronically uremic humans, one fraction was obtained
that inhibited the accumulation of PAH by rabbit kidney cortical
slices. A similar fraction from normal humans had no effect. Inter-
estingly, the same fraction obtained from saline loaded dogs and cows

also inhibited PAH transport whereas that from non-expanded animals did

not. In subsequent studies, this same Sephadex fraction was shown to



16

inhibit the SCC in frog skin (20) and enhance sodium excretion in rat
kidneys (19). These observations, and others 1isted in Table 2,
suggest that the antinatriferic-natriuretic activities observed with
acute volume expansion in animals and uremia in humans are due to
substances which are at least similar.

Utilizing Sephadex chromatography and ultrafiltration studies,
Bourgoignie et al. (20) estimated the molecular weight of this human,
cow, and dog natriuretic-antinatriferic material to be approximately
500 to 1000 Daltons. Other studies demonstrated that the natriuretic
activity was not destroyed by boiling or freeze drying (19,20,29), and,
in contrast to Cort's findings in the cat, was also not susceptible to
degradation by pronase and chymotrypsin. Boiling the active Sephadex
fraction for 10 minutes at pH 10.5 destroyed the natriuretic activity
in the rat assay (19). This treatment was not performed on the
samples used in the frog skin and PAH studies. Also, these authors
noted in the frog skin studies that the antinatriferic activity was
stable for at least 4 weeks if stored frozen. If the specimen was kept
at -80°C it could be stored for ten weeks before Sephadex fractionation
without a detectable loss in antinatriferic activity.

Ultrafiltration studies by Buckalew et al. (36) led these authors
to conclude that the molecular weight of an antinatriferic factor
obtained from volume expanded dogs could not exceed 3000 Daltons.
Fractionation on Sephadex G10 resin suggested that the minimum molecular
weight was approximately 500 to 700 Daltons (34), although in further
studies the molecular weight appeared to be less than 500 to 700

Daltons (37). Similar ultrafiltration studies with an antinatriferic
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factor obtained during mineralocorticoid escape suggested that this
material had a molecular weight less than 10,000 Daltons (35). No
attempts were made to determine how much less. Of interest was the

observation that the antinatriferic substance was dialyzable in vivo

from dogs undergoing volume expansion with saline, as it suggests

that it might also be dialyzable in vivo from other species including

humans.

Martinez-Maldonado et al. (123) report that a natriuretic sub-
stance obtained by them from saline loaded rats and dogs was small
enough to be dialyzable, could be stored at 4°C, but was destroyed
when freeze dried. Cort et al. (56) describe a bovine material ob-
tained by volume expansion of cows with dextran. From Sephadex
chromatographic separation studies the molecular weight was estimated
to be from 800 to 1000 Daltons. Sealey et al. (150) and Sealey and
Laragh’(151) report that a natriuretic substance obtained in the urine
from salt-loaded humans appeared to have a molecular weight between
10,000 and 50,000 Daltons based on ultrafiltration and gel filtration
studies. Attempts to demonstrate a lower molecular weight sodium
transport inhibitor proved to be unsuccessful due to technical problems.
The material was not destroyed by boiling, a finding consistent with
Bourgoignie and Cort, but, in contrast to Cort, Sealey reports that
her material is destroyed by H-TCA.

In summary, a few studies have attempted to characterize the
substances responsible for the natriuretic and antinatriferic activities

observed in plasma following various modes of extracellular fluid
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volume expansion. These studies suggest that both of these actiyi~
ties may be due to a single substance, or at least to substances which
are very similar chemically, irregardliess of the type of expansion or
species studied.

Source of Hormonal Natriuretic-Antinatriferic
Factors

If a 'natriuretic-antinatriferic hormone' exists, and accumulat-
ing evidence would seem to suggest that it does, then it should be
possible to identify the source of such a hormone. Lichardus (109)
and Lichardus et al. (115) are of the opinion that the main cause of
difficulties in the identification of such a substance is the lack of
knowledge concerning this production site. Studies to date have in-
volved body fluids in which the concentration of the 'hormone' may be
very low. In efforts to overcome this difficulty cows have been used
in an attempt to secure larger plasma volumes without significantly
decreasing the total blood volume in expansion experiments (29,115).
However, if the substance is dialyzable in vivo from humans, another
alternative to secure larger quantities of material would be to isolate
it from spent dialysis fluid from uremic patients undergoing maintenance
hemodialysis.

A report which appeared May, 1971, by Sealey and Laragh (150) did
not contribute to the clarification of this question. These authors
found that, of ten different organs investigated in salt-loaded sheep,

8 possessed a natriuretic activity. It seems unlikely that a]T.of these

organs can be responsible for the secretion of such a factor. A more
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probable explanation would be that blood circulated to these organs
during imposed natriuresis contained the natriuvetic factor which was
then extracted by the investigators. Particularly disturbing in
Sealey's study was the lack of activity found in the brain, since other
investigators have found evidence indicating this organ to be the
primary source of an antinatriferic and/or natriuretic factor.

One of the first indications that a sodium transport inhibiting
substance may be elaborated from some area of the brain came from
observations that jugular venous blood produced a greater sodium
diuresis in the kidney and a greater inhibition of sodium transport
across frog skins and toad bladders than blood from other areas of the
body (36,47,54,57). Cort and Lichardus (54) observed that during
bilateral common carotid artery occlusion in cats, jugular venous
samp1e§ decreased frog skin short circuit current by 26.3%, while
femoral arterial blood decreased it only 10.6%. Femoral venous blood
and renal venous blood increased the short circuit current 10.8% and
5.8% respectively. All samples obtained from these anatomical loca-
tions befere occlusion increased the SCC from 6.5 to 12.5%. Buckalew
et al. (36) observed that ultrafiltrates prepared from jugular venous
blood inhibited the SCC of toad bladders significantly more than did
similar ultrafiltrates from femoral venous blood following saline
expansion in dogs.,

From 14 rats, a total of 8000 posterior, ventromedial, dorsomedial,
and arcuate nuclei were histologically examined in 2 groups of animals

by Lichardus et al. (112). One group of rats was given 2% saline to
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drink ad libitum, and a second group drank tap water. A statistically
significant decrease in nuclear volume was noted only in the posterior
hypothalamic nuclei of the saline group. This was taken as evidence
that the posterior nucleus has a neurosecretory function in the
elimination of a saline load. In addition, it has been noted that
electrolytic lesions of the posterior hypothalamus eliminate the natri-
uresis seen with carotid artery occlusion (52,53,59) and iso-oncotic
blood volume expansion in cats (50).

Acute hypophysectomy markedly decreased sodium and urine output
compared to nonhypophysectomized rats during blood volume expansion
(110). Homogenates of anterior pituitary tissue were ineffective in
restoring the ability of these hypophysectomized rats to excrete sodium
after infusion of a saline load (117). Homogenates from the posterior
pituitary, on the other hand, were effective.

Incubation of anterior and posterior bovine hypothalamic extracts
with proteolytic enzymes such as chymotrypsin, trypsin, and swine kidney
aminopeptidase, resulted in the appearance of an antinatriferic activ-
ity from posterior extracts (47,57,58). However, continued incubation
with these enzymes resulted in a progressive loss of antinatriferic
activity. The conclusion from these studies was that a small antinatri-
feric substance was first released from a larger 'hormonogen' form dur-
ing the incubation. Further incubation resulted in a proteolytic
degradation of the active material. Anterior hypothalamic material
gave rise only to natriferic activity.

Since no differences were found in the natriuretic response to

carotid occlusion in intact and adrenalectomized cats, Licardus and
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Cort (111) concluded that the adrenals are not the source of a poten-
tial natriuret c hormone. Bourgoignie et al. (20) report that 2 of
3 anephric chronically uremic patients studied demcnstrated in their
serum an inhibitor of sodium transport in frog skin. Thus they con-
cluded that the kidney was not responsible for the synthesis of this
antinatriferic material. Evisceration and nephrectomy before saline
loading in rats and dogs did not abolish the inhibitory activity of
plasma on proximal tubule sodium reabsorption as measured by micro-
perfusion techniques (123). Finally, Levinsky (103) found that the
natriuresis observed 1n iso-oncotic blood volume expansion in dogs
persisted after adrenalectomy and removal of the spleen, liver, and
intestines. Elimination of the head and brain did not prevent a
natriuresis, However, this is a rather drastic procedure, changing
many parameters, and rendering rigid controls difficult.

Andersson et al. (1) noted that injection of 0,85 M NaCl into
the third ventricle of unanesthetized goats resulted in a 5 to 10-fold
increase in sodium excretion and a 3-fold increase in urine flow.
Although depression of aldosterone secretion could not be ruled out in
these experiments, further studies the following year (2) demonstrated
that aldosterone administration did not prevent the increase in electro-
lyte excretion and that injections into the lateral ventricle had no
effect.

In 1969 Dorn and Porter (68) perfused the third ventricle of rat
brains with several substances and was able to induce natriuresis.

When 0.85 M NaCl was perfused at a rate of 0.7 ul/min he noted an
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insignificant increase in urine flow but a 10-fold increase in sodium
excretion over the control rate. Infusion of 0.154 M NaCl and 1.7 M
glucose into the ventricle and intravenous infusion of 0.85 M NaCl at
the same rate produced no natriuresis. One explanation offered for
the observed natriuresis was that hypertonic saline solution may pass
from the ventricle into adjacent hypothalamic tissue and stimulate a
neural or hormonal mechanism which mediated the natriuretic response.

Similar injections by Dorn et al. (67) into third ventricles of
anesthetized dogs also induced a significant increase in urinary sodium
excretion which was not related to alterations in renal plasma flow,
GFR, or filtered load of sodium. The authors interpret all of these
findings as being consistent with the action of a cerebral natriuretic
hormone. They comment that "... the identicalness of an 'NH' whose
secretion is stimulated by systemic volume loading and one whose re-
lease follows injection of the third ventricle with hypertonic saline
is conjectural. It is conceivable that 2 hormones exist, one respon-
sive to alterations in volume and one to changes 1n concentration of
sodium. These hormones acting in concert could serve as a hormonal
modulator of total body sodium."

It would seem, therefore, that a natriuretic-antinatriferic
factor, or facfors, has its origin in the posterior hypothalamus.
This, however, remains to be proven unequivocally.

Possible Natriuretic Hormone Involvement with
Reduced Nephron Populations and Renal Disease

Third factor hormonal activity has been demonstrated under situa-

tions of acute and massive expansion of extracellular fluid volume and
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carotid artery occlusion. An interesting question which arises is
whether or not this factor is available only as an emergency mechanism
or does it play a role in the day-to-day regulation of sodium balance
as has been suggested (33,35,150). This is difficult to ascertain 1in
normal individuals with a full complement of nephrons because changes
in salt excretion per nephron required by the usual range of salt in-
gestion are of such a magnitude that it is difficult to distinguish
between glomerular and tubular factors. With a decreased number of
nephrons, however, the distinction might be more readily determined
since each nephron is required to excrete a greater fraction of the
filtered load in situations of imposed saline loads. This type of
assay system was used by Bourgoignie et al. (19), in rats, to test for
a natriuretic substance in the plasma of uremic humans. These authors
(19,149,157), and others (168), feel that the response to a given
natriuretic stimulus is increased under these circumstances.

Schultz et al. (148) decreased the nephron population of one
kidney of dogs approximately 80% by ligating terminal branches of the
renal artery. The residual nephrons retained their normal blood supply.
Prior to the removal of the contralateral kidney, the remnant kidney
reabsorbed 99% of the filtered load of sodium. On the same salt intake,
with the contralateral kidney removed, sodium excretion increased in
the remnant kidney and fractional reabsorption decraased. Renal artery
constriction ruled out hyperfiltration as the cause of the natriuresis.
Since the dogs were on supramaximal doses of fluorohydrocortisone,
mineralocorticoid insufficiency was also disregarded as the cause of

the elevated saline diuresis. These authors conclude that the volume
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control mechanism becomes more responsive in uremia, with the relative
contribution of an 'NH' versus changes in intrarenal physical factors
needing further investigation. Similar conclusions from experiments
with dogs were reported by Wen et al. (168).

Hayslett et al. (80,81), in rats, reduced renal mass by progres-
sively excising renal tissue. Following uninephrectomy these authors
noted a 2-fold increase in sodium excretion per nephron with a 75%
increase in GFR per nephron. With further removal of renal tissue,
sodium excretion per nephron increased 5 to 6 times normal with no
further rise in GFR per nephron. However, the half-time of fluid
reabsorption in proximal tubules blocked with oil was unchanged by
renal ablation. The authors therefore concluded that a 'third factor'
" hormone did not participate in the adjustment made to experimental
renal insufficiency in these studies since this substance has been
proposed to exert its effect in the proximal tubule. Here again is a
negative finding with attempts to elicit 'NH' in the rat. This finding
is in contrast to the observation of Bourgoignie and co-workers (19,20,
21,27,28,29), discussed previously, who have found evidence for a
natriuretic and antinatriferic activity in the serum of patients with
chronic renal disease. These individuals do have a reduced population

of functional nephrons.

B. Physical Factors Affecting Tubular Reabsorption
of Sodium Independently of
Factor I and Factor II

In 1963 Blythe and Welt (17) infused 5% saline into dogs and de-

creased the GFR by inflation of a balloon inserted via the femoral vein
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into the inferior vena cava to a point distal to the renal veins.
Noting that urinary excretion of sodium could change independently of
the filtered load of sodium, they concluded that the excretion of
sodium is somehow related to the plasma levels of the ion and not
necessarily to the filtered load. Dirks et al. (66), infusing isotonic
and hypertonic saline into dogs, also noted a marked depression of
proximal tubular fractional reabsorption which was independent of GFR
and not blocked by reduction in GFR. Glabman et al. (76), however,
concluded from micropuncture studies on proximal tubules of nonexpanded
rats that filtered load of sodium is an important determinant of the
rate of sodium reabsorption by the proximal tubule.

Compounding the difficulties of detecting decreased proximal
sodium reabsorption by measuring the urinary excretion of sodium is
reabsorption of the ion in the distal portions of the nephron. Higgins
(84), for example, showed that infusions of 600 ml of 5% albumin or
dextran in 5% glucose into normally hydrated dogs caused only moderate
increases or even decreases in sodium excretion. Similar expansion
with blockage of sodium reabsorption distal to the proximal tubule by
ethacrynic acid and chlorothiazide resulted in large increases in
sodium excretion. He concluded, therefore, that during plasma volume
expansion the ultimate sodium excretion rate is determined by distal
reabsorption in spite of a decreased proximal reabsorption. Similar
conclusions were reached by Buckalew et al. (38) and Davis et al. (64)
with acute saline loading in dogs and Sellman et al. (154) and Hayslett

et al. (79) in the rat. During mineralocorticoid escape in normal man,
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Martino and Earley (126) report that most of the proximally rejected
sodium is recaptured by reabsorption at a site distal to the medullary
loop of Henle, with Sonnenberg (158) placing it in the collecting duct
during deoxycorticosterone escape in the rat.

Studies of McDonald et al. (128), in which dogs underwent yolume
expansion with Ringer's lactate solution or saline plus 6% dextran,
and Martino and Earley (127) using isotonic saline or saline plus 5%
bovine albumin, suggested that decreases in blood and plasma viscosity
accompanying saline infusion may potentiate the natriuretic response
by decreasing renal vascular resistance and increasing capillary hydro~
static pressure. This 'pressure natriuresis' was also obseryed by
Kaloyanides et al. (96) when the arterial pressure was increased in an
isolated kidney being perfused with blood from a nonexpanded intact dog.
Similar observations were made by MacDonald and DeWardener (121) in
isolated kidneys perfused at constant pressure with blood from an
intact dog receiving an intravenous infusion of saline.

Lewy and Windhager (105) and Windhager et al. (169), from micro-
puncture studies in the rat, suggest that proximal tubular reabsorption
is partly controlled by the rate of vascular removal of epithelial
reabsorbate. Capillary removal of reabsorbate is influenced by the
hydrostatic pressure gradient between renal interstitium and capillary
lumen. Increased peritubular capillary hydrostatic pressure could lead
to a decrease in the rate of capillary removal of reabsorbate. This
would decrease the rate of sodium reabsorption by increasing renal
interstitial pressure. Decreases in renal interstitial hydrostatic

pressure would have the opposite effect (55, pp. 17-25).
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Earley (69) demonstrated that vasodilatation of the kidney with
infusions of acetylcholine into the renal artery resulted in an in-
creased sodium excretion. Increasing the arterial pressure in this
vasodilated kidney resulted in an additional increase in sodium excre-
tion, which occurred even when renal blood flow and GFR were decreased.
These observations provided additional evidence that changes in arterial
pressure or vascular resistance may be involved in determining the
natriuretic response to saline loading.

Other investigators have shown that postglomerular plasma protein
concentration, either with (3,5,88,124,136) or with (4,23,25,105,161,165)
blood volume expansion, is an important determinant in sodium excretion.
Martino and Earley (125), for example, showed that when hyperoncotic
albumin solutions (30%) were infused into animals previously loaded with
isotonic saline, sodium excretion decreased despite an increase in GFR,
renal blood flow, and arterial pressure. Spitzer and Windhager (161)
found that perfusion of capillaries with colloid-free Ringers decreased
reabsorption of sodium 49%, but inclusion of dextran (8%) in the
Ringers produced results similar to those during normal blood perfusion.
These observations support the Windhager theory that renal interstitial
pressure affects sodium reabsorption.

Another factor which appeared to affect sodium reabsorption, both
with (90,130,131,146) and without (24,26,39,42,98,132,133,145) blood
volume expansion, is the hematocrit. Brenner et al. (26) and Brenner
and Galla (24), as a result of micropuncture studies in rats, observed
that although changes in hematocrit lead to corresponding changes in

proximal sodium reabsorption, parallel changes in peritubular capillary
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protein concentration also occur. It was concluded that this change

in postglomerular protein concentration may in fact be responsible

for the changes observed in sodium reabsorption which accompany changes
in hematocrit. Substantiating this conclusion, Bahlmann et al. (8)
isovolemically decreased the hematocrit in the dog 28% with Hartmann's
solution containing bovine albumin and found no appreciable change in
sodium excretion. A similar result was reported by Ponec and Lichardus
(139) in the rat. Burke et al. (39), with recollection micropuncture
techniques in the dog, suggest that changes in viscosity which alter
capillary hydrostatic pressure may also account for hematocrit changes
on proximal sodium reabsorption.

In addition to the physical factors previously discussed, others
have been advanced to explain the mechanisms controlling sodium excre-
tion. These include changes in renal plasma flow (70,71,72,169) and
redistribution of blood flow from medullary to more superficial high
sodium excreting nephrons both with (40,103) and without (11,85,87)
saline loading. For example, Windhager et al. (169) demonstrated with
micropuncture techniques in rat kidneys that the decreased proximal
reabsorption of sodium seen with experimentally increased renal venous
pressure was proportional to the decrease in renal plasma flow. With
saline loading in the dog, Earley and Friedler (70,72) suggested that
the increased renal plasma flow seen in their experiments may be one
factor that contributes to the decreased tubular reabsorption of
sodium,
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Using Xe washout techniques, Hollenberg et al. (85) found that

67% of the total renal blood flow in humans on a 10 mEq/day salt intake
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was cortical. In subjects on a 200 mEq/day salt diet 84% of the total
renal blood flow was cortical. Barger (11) suggested a similar redis-
tribution in dogs with right sided congestive heart failure. Other
investigators, however, have reported that there is no significant
redistribution of blood flow following saline loading (120,129,155).

In summary, it is apparent that the 'third factor' natriuresis
which occurs following extracellular fluid volume expansion is a compli-
cated interrelationship of many factors. In vivo experiments attempting
to evaluate the role of a 'natriuretic hormone' must be carefully de-
signed in order that the physical factors just described, which con-

tribute to this 'third factor' natriuresis, do not change significantly.



PURPOSE OF INVESTIGATION

From the preceding review it is evident that the 'third factor'
natriuresis observed with volume expansion may in fact prove to be
multi-factoral, with the importance of individual physical and/or
hormonal factors being dependent upon the mode of expansion. The cur-
rent study was undertaken to 1) substantiate the observation that an
antinatriferic substance exists in the plasma of expanded chronically
uremic humans, and 2) to investigate the potential of utilizing spent
hemodialysis fluid as a source of this substance. To substantiate
Cort's finding that an antinatriferic substance remains in plasma
following trichloroacetic acid deproteinization, the antinatriferic
activity of H-TCA deproteinized and non H-TCA deproteinized plasma

from uremic humans and moderately volume expanded dogs was also studied.
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METHODS

A. Sodium and Potassium Determination

Sodium and potassium were determined by flame photometry using
a lithium internal standard (double beam technique) which has a reson-
ance line at 671 mu. The resonance doublet employed for sodium occurs
at 590 mu and that for potassium at 767-769 mu. In practice, the
ratio of the emission intensity of the analysis line to that of the
internal standard line is recorded and plotted against the concentra-
tion of the analysis element to prepare a calibration curve for a series
of standards. Unknown concentrations of test element are then deter-
mined from the standard curve. Some advantages of this method over
direct determination (single beam methods measuring absolute light
intensities rather than ratios) in the flame are:
Better precision
Compensates for effects of irregularities of atomization
Compensates for variable loss of liquid in the spray chamber
Reduces systematic errors due to possible differences in
viscosity and surface tension of samples (affects rate of

delivery of sample into the flame)
5. Reduces errors due to some radiation interferences.

PWN —

The instrument used was a Baird-Atomic Model KY-3 combination
clinical and research filter flame photometer equipped with a gravity
feed spray chamber aspirator (flow rate 3-6 ml/min) and Meker burner.
A gas air mixture (air pressure 10 psi) yielding a lTow flame tempera-

ture of approximately 2100°K was utilized.
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Reagents

[) 2.00 mMolar sodium chloride and potassium chloride stock
solution: Weigh 11.688 mg of dried reagent grade NaCl and
14,912 mg of dried reagent grade KC1 into a 100 m! volumetric
flask. Dilute to volume with 90 ppm lithium water.

I1) Stock lithium water: Dilute 5.0 ml1 of 18,000 ppm 1ithium
solution to 1000 ml with deionized water. Final 1ithium ion
concentration is 90 ppm. This solution is to be used to
prepare all samples and standards to be analyzed.

Preparation of Samples

Pipette 0.020 m]l of unknown sample to be analyzed into 10 ml of
90 ppm 1lithium water for the determination of sodium. For the deter-
mination of potassium, pipette 0,020 ml of unknown sample into 2 ml of
90 ppm lithium water. Mix by inversion or vortexing and read in flame

photometer,

Preparation of Standards

In Table 3 is the procedure for the preparation of the sodium and
potassium standard solutions utilized for the preparation of the
standard curves. The designated volumes were pipetted into 15 ml Pyrex
test tubes and mixed by inversion.

A11 solutions to be stored for indefinite periods should be stored
in plastic bottles to prevent leaching of ijons from the glass (especial-
ly new glassware), and refrigerated to minimize bacterial growth. The
procedure for the preparation of the standards and samples was adapted

from Terris (163).
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Table 3. Procedure for the preparation of the sodium and potassium
solutions utilized for the preparation of standard curves.

Standard Reagent 1 Reagent 11 Na:K

Number (m1) (m1) (mEq/1)
1 0.12 9.87 0.024
2 0.25 9.75 0.050
3 0.50 9.50 0.10
4 0.75 9.25 0.15
5 1.00 9.00 0.20
6 1.50 8.50 0.30

Calculation of Unknown Na and K Concentrations

Na(mEq/1) = I"S”g'{‘ﬁgz Reading y  pijytion Factor
- Instrument Reading
STope X 500
_ Instrument Reading . .
K(mEq/1) = STope X Dilution Factor

_  Instrument Reading
= STope X 100

If the samples are prepared as described, the dilution factors
employed in the calculations are as given above. The slope is obtained
from a standard curve prepared by plotting the instrument reading
(ordinate) versus the concentration of the standards (abscissa) in

mEq/1. An example of such a curve is given by Figure 1.



Figure 1.
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Standard curves for sodium and potassium as determined
with a Baird-Atomic Model KY-3 combination clinical and
research filter flame photometer. Instrument reading
(arbitrary units) is plotted on the ordinate, with
known concentrations of sodium and potassium in mEq/1
being plotted on the abscissa.
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B. Chloride Determination

Chloride was determined by a coulometric-amperometric titration
with silver jons utilizing a Buchler-Cotlove chloridometer. The method
is based on the coulometric generation of reagent (silver ions) and
amperometric indication of the end-point. A constant direct current
is passed between a pair of silver generator electrodes in the genera-
tor (coulometric) circuit, causing release of silver ions into the
titration solution at a constant rate. The end-point is indicated,
after all chloride has been precipitated, by the increasing concentra-
tion of free silver ions which cause a rising current to flow through
a pair of silver indicator electrodes. At a preset increment of indica-
tor current a relay is actuated, stopping a timer which runs simul-
taneously with the generation of silver ions. Since the rate of genera-
tion of silver ion is constant, the amount of chloride precipitated is

proportional to the e]apséd time.

Reagents

I) Nitric-Acetic Acid Reagent (0.1 N HNO3 and 10%, V/V, glacial
acetic acid): To 900 ml of distilled”water add 6.4 ml of
concentrated reagent grade nitric acid and 10 m1 of reagent
grade glacial acetic acid. Store in glass container with a
glass stopper.

II) Gelatin Reagent: To 6.2 grams of 60:1:1 dry mixture (gelatin:
thymol blue (water soluble): thymol (reagent grade crystals))
add approximately 1 liter of hot water and stir gently until
the solution is clear. Store refrigerated in glass tubes in
volumes sufficient for a set of analyses. A new tube should
be used for each day's analyses. To liquify the gelatin
immerse the tube in hot water. Do not freeze (as this destroys
the effectiveness of the gelatin). Do not use the gelatin if
it has been at room temperature for more than a day or two.

III) Sodium Chloride Reagent (160 mEq/]): Dissolve 9.3520 grams
of dried-reagent grade NaCl in distilled water and dilute to
exactly 1 liter.
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Preparation of Samples, Standards, and Blanks

A) Unknowns: To 0.1 ml of sample in a titration vial add 4 ml
of nitric-acetic acid reagent and 4 drops of gelatin reagent.

B) Standard Sample: To 0.1 ml of NaCl standard solution (160
mEg/1) in a titration vial add 4 ml of the nitric-acetic acid
reagent and 4 drops of the gelatin reagent.

C) Blank Sample: To approximately 4 ml of the nitric-acetic
acid reagent in a titration vial add 4 drops of gelatin
reagent.

Samples and reagents should not be stored in contact with rubber
as sulfhydryl groups may be released which may combine with silver ions
leading to inaccurate determinations. In addition, do not titrate a
sample unless the solution is acid and the gelatin reagent is present

(indicated by a red color of the thymol blue indicator).

Calculation of Chloride Ion Concentration

a) Gross seconds = timer reading

b) Average net seconds of standard = average gross seconds of
standard minus average blank
seconds

c) Calibration factor = K

K = (ml of NaCl reagent) ([C17] in mEq/1)
average net seconds of standard

d) Net seconds of unknown = gross seconds minus average blank
seconds

K (net seconds of unknown)

Unknown C1 concentration = m] of unknown

If the samples, standards, and blanks are prepared as previously
described, the above equation for the concentration of chloride ion in

the unknown samples (in mEq/1) reduces to the following:
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[c1j = (160) (0.1) net seconds for unknown
net seconds for standard ml of unknown

160 X
net seconds for standard

net seconds for unknown

_ net seconds for unkrown
= et seconds For standard (160) mEQ/I

C. Glucose Determination

Glucose was determined by a glucose oxidase method, which combines

the following two reactions:

1) Glucose + 0, + H,0 glucose oxidase

2 > H)0, + gluconic acid

2) H202 + o-dianisidine (reduced) peroxidase>§ o-dianisidine
(oxidized) + H20
Glucostat, a prepared reagent for the quantitative colorimetric deter-
mination of glucose containing peroxidase, glucose oxidase, and reduced
o-dianisidine, is available in a lyophilized form from Worthington
Biochemical Corp., Freehold, N, J. This preparation was used in these
analyses.

Glucose oxidase is highly specific for beta-D-glucose, and since
glucose in solution is usually 36% alpha and 64% beta, complete oxida-«
tion requires mutarotation of the alpha to the beta form. Complete
oxidation is not necessary for the success of the method. If, however,
the glucose preparation does not contain mutarotase to accelerate this
reaction, standard solutions prepared from dry glucose should stand at
least 2 hours to insure that mutarotation has reached a state of equi-

T1ibrium.
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Reagents

I) Stock glucose: 200 mg percent--Dissolve 200 mg of reagent
grade glucose in 100 ml of distilled water in a 100 ml
volumetric flask. Store refrigerated.

II) Glucostat reagent: Dissolve 1 vial of 4X chromogen (o-di-
anisidine) and 1 vial of 4X enzyme in 200 ml of distilled
water. Prepare fresh for each assay, or if storage of the
prepared reagent is desired, place in an amber bottle and
keep refrigerated for no longer than 1 month.

III) 4 N HC1: Dilute 33.33 ml of concentrated HC1 (12 N) to 100
ml with distilled water.

Preparation of Standards

In Table 4 is the procedure for the preparation of the standard
solutions utilized for the preparation of the standard curves. The
designated volumes were pipetted into 15 ml Pyrex test tubes and mixed

by inversion.

Table 4. Procedure for the preparation of the glucose standard solu-
tions utilized for the preparation of standard curves.

Standard Reagent 1 H»0 Glucose Glucose
Number (m1) (m%) (mg/m1) (mMolar)

1 0.25 10.00 0.49 0.27

2 0.50 10.00 0.98 0.54

3 0.75 10.00 0.14 0.78

4 1.00 10.00 0.18 1.01

5 1.25 10.00 0.22 1.22

6 1.50 10.00 0.26 1.45
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Preparation of Samples and Standards for

Analysis
Dilute 1/2 ml of unknown(s) to 10 ml with distilled water.

Pipette 1/2 ml1 of this diluted sample to 2 m1 with 1.5 ml of glucostat
reagent (Reagent II above). To prepare the standards for analysis,
pipette 1/2 ml of the above solutions to 2 m1 with 1.5 m1 of the glu-
costat reagent. Exactly 10 minutes after the addition of the gluco-
stat reagent add 2 drops of the 4 N HC1 to halt color development

(the 10 minute incubation having been performed at room temperature).
Following the addition of the acid, mix by inversion or vortexing
immediately. Standards and unknowns should be analyzed simultaneously
under conditions such that the rate of oxidation is proportional to
the glucose concentration. In some methbds the final mixture is acidi-
fied slightly to stop the reaction and the yellow color developed is
measured at 400 mu (as is the case here). In stronger acid, the color
becomes pink with maximum absorption at 540 mu (where both sensitivity
and stability are improved). Introduction of the enzyme peroxidase
and a chromogenic 02 acceptor (reduced o-dianisidine) provides the

color development.

Calculation of Unknown Glucose Concentration

Glucose (mg/m1) = (A/Slope) (dilution factor)

A = absorbance of unknown at 400 mu

Slope = slope of standard curve, with absorbance of standards
plotted on the ordinate and concentration of standards
on the abscissa

Dilution Factor = 20 if the above procedures are followed.

A representative standard curve is given in Figure 2.
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Figure 2. Standard curve for glucose as determined with a Beckman
Model DB spectrophotometer at 400 mu. Absorbance at
400 mu is plotted on the ordinate against known concentra-«
tions of glucose in mg/ml on the abscissa.
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D. Ammonium Ion Determination

The determination of ammonium ion as ammonia utilized the general
principle of microdiffusion of volatile substances. A small aliquot
of the sample to be tested is placed into a special microdiffusion
apparatus originally described by Conway and Byrne (45). The sample
is mixed with a concentrated alkali solution and the volatile ammonia
thus liberated diffuses from an inner chamber to an inner well which
contains an indicator solution. The concentration of alkali (sodium
carbonate) in these studies was approximately 16%, adopted from Brown
et al. (30). Titration of the absorbed ammonia with an acid of known
concentration permits the quantitative determination of the ammonium
ion contained in the original sample.

The apparatus employed for the determination of ammonium ion in
these studies was a modified Conway unit described by 0'Brink in

1955 (138). Figure 3 shows the construction of the unit.

Reagents

1) 20% sodium carbonate: weigh 20 grams of anhydrous sodium
carbonate into a 100 ml volumetric flask and dilute to volume
with distilled water. The final concentration in the diffu-
sion unit will be approximately 16% if 0.2 ml1 of sample to
be tested is used.

II) 0.004N HC1: dilute 0.40 ml of 1.0 N HC1 (Acculute) to 100
ml with distilled water.

III) Tashiro's reagent (162): to 200 ml of a 0.1% alcoholic solu-
tion of methyl red add 50 ml of a 0.1% alcoholic solution of
methylene blue. If stored in a brown bottle the solution
will keep indefinitely.

IV) 1% boric acid: weigh 1 gram of boric acid into a 100 ml volu-
metric flask and dilute to volume with distilled water.
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V) Indicator solution: to 35 ml of distilled water add 15 ml
of the 1% boric acid prepared as described above. To this
mixture pipette 5 ml of Tashiro's reagent and mix thoroughly.
For best results prepare this solution fresh just prior to
use.
Procedure
Into the inner well of the microdiffusion apparatus pipette 1 ml
of the indicator solution and place the 1id onto the unit. Gently
rotate the apparatus to completely wet and distribute the solution
over the entire inner well. Observe the indicator color for 5-10
minutes to insure that the well is not contaminated (indicator will turn
from violet to brown or green if a contaminant is present). Remove the
lid, and into the inner and outer chambers pipette 1 ml of the 20%
sodium carbonate solution. Into the inner chamber pipette 0.2 ml of
sample to be tested in such a manner that it does not come into contact
with the alkali. Replace and rotate the 1id to completely distribute
the alkali between the 1id and outer chamber areas of contact. This
must be done very carefully to insure a complete seal between the 1id
and diffusion apparatus. An incomplete seal will permit the ammonia
liberated to diffuse out of the unit and lead to erroneous results.
With the establishment of a complete seal between the 1id and
outer chamber, the entire unit is then rotated several times to mix
the test sample with the sodium carbonate in the inner chamber. Care
must be taken not to allow spillage of the contents of the inner and

outer chambers into the inner well, If this occurs the determination

must be repeated. With the above volumes this danger is minimal.
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Once the solutions have mixed, the unit is allowed to sit for 90<120
minutes to allow diffusion of the liberated ammonia into the inner
well. An occasional swirling of the solution during this period will
facilitate the process.

Following the incubation period the 1id is very carefully re-
moved. Care must be taken to avoid splashing of the sodium carbonate
from the outer chamber and 1id into the inner well. With gentle
swirling the inner well is titrated with 0.004 N HC1 to the original
color of the indicator solution. For a blank, prepare the apparatus
as described using 0.2 ml of water in place of the test solution.
Titrate the blank and subtract this volume of HC1 from that required
to titrate the test solutions. As an alternative, known concentrations
of ammonium ion can be titrated and standard curves established.

To clean the units after use do not use detergent. Allow them
to soak in dilute acid overnight and rinse several times with tap
water. Follow the tap water rinses with several distilled water rinses
and allow the units to dry before reuse.

Calculation of the Unknown Ammonium Ion
Concentration

At the equivalence point in any titration the number of mEq of
standard is exactly equal to the number of mEq of substance being deter-
mined. To calculate the mEq of ammonia, therefore, one need only
determine the mEq of HC1 utilized during the titration. The final value
can then be expressed as desired.

mEQ HC1 utilized = (vol of HC1 in ml1) (N of HC1)

+ _ (m1 HC1) (N HC1)
NH, (mEq/1) = ml of unknown X 1000
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E. Ether Extraction of Trichloroacetic
Acid (H-TCA) from Samples

As previously discussed, Cort et al. (49,58) and Cort (47) have
reported that plasma from carotid artery occluded cats which had been
deproteinized with approximately 6% H-TCA exhibits both antinatriferic
and natriuretic activities. The procedure which Cort describes for
the removal of the added H-TCA involves repeated extractions with
diethyl ether until the sample attains a pH between 5.0 and 6.0. At
this point Cort et al. (58) report that the H-TCA is no longer an acid
and that nearly all of the added acid has been removed. This procedure
for the removal of plasma proteins was adopted in some of the studies
reported here, since work by Cort and others suggests that rapid removal
of proteins is desirable to retain maximum activity of any salt losing
hormone which might be present in a given sample. Once proteins have
been removed, samples have reportedly been stored up to 7 months (36)
at -5°C with apparently no loss of activity.

To determine the number of ether extractions required to obtain
a pH of 5.0 to 6.0 following addition of H-TCA to plasma, blood
samples were obtained from several cats. To ten ml of plasma was
added 5 ml of 20% H-TCA. Following the removal of the protein precipi-
tate by centrifugation, the deproteinized plasma was decanted into a
60 ml separatory funnel and approximately 3 volumes (30 ml1) of ether
added to it. The separatory funnel was shaken for either 5 or 10
minutes, the layers allowed to separate, and the ether removed and dis-

carded. A fresh 30 ml aliquot of ether was added to the aqueous layer
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in the separatory funnel and the process repeated until a pH between
5.0 and 6.0 was obtained. Since there was no difference between the
samples which had been extracted for 5 and 10 minutes, the results
were combined and averaged. Figure 4 summarizes these results, and

83 can be seen at least 9 such extractions weare required to obtain a
pH of approximately 5.0, with several more being required if one is to
obtain a pH of 6.0. This procedure is not only arduous, but as will
be shown, apparently does not effectively remove all of the TCA™ anion.
At pH 5.0 to 6.0 the TCA™ is perhaps no longer in the acid form, as
Cort et al. (49) have stated, but in this form it is no longer ether
soluble and may lead to erroneous results as it exhibits 'NH'-Tike
activity on amphibian membranes.

Since TCA™ demonstrates antinatriferic activity on amphibian
nembranes (RESULTS--Section B), it becamé necessary to quantify the
levels of this ion remaining in samples following ether extraction.

A colorimetric procedure was developed in order to determine the effi-
ciency with which ether extraction, as described by Cort et al. (49),
removes H-TCA from plasma samples. As a result of these studies,
Cort's procedure was modified to more effectively remove the H-TCA.

Figure 5 illustrates the ultraviolet absorbance spectrum of 1
mMolar H-TCA in water and 0.096 N HCl1. In each case the H-TCA sample
was referenced against the corresponding solvent. Samples were prepared
by diluting 0.2 m1 of 25 mMolar H-TCA to 5 ml with the appropriate sol-
vent. There is an absorption maximum in the vicinity of 202-206 mu

when the diluting solvent is made acidic. In HC1 at 205 mu, however,
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Figure 5.
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Ultraviolet absorption spéctrum of 1 mMolar H-TCA in
distilled water (upper curve) and 0.09 N HC1 (lower .
curve). Samples were blanked against water and 0.09
N HC1 respectively. Absorbance is plotted on the
ordinate against wavelength in mu on the abscissa.
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there is a marked deviation from linearity above 1.0 mMolar as can be
seen in the standard curve in Figure 6. At 210 mu in an acidic en-
vironment the relationship between absorption and concentration does
not deviate markedly from linearity until the concentration exceeds
2.0 mMolar. A similar situation exists when the diluting solvent is
water (Figure 7).

Although there is no apparent absorption maximum in water for
dilute solutions of H-TCA, it was chosen as the diluting solvent for
purposes of convenience. The wavelength of choice was 210 mu as the
relationship between absorbance and concentration was linear over a
greater range of concentrations than was true with 205 mu. Verifica-
tion of adherence to Beer's Law under a given set of conditions is
necessary to justify the use of a single molar extinction coefficient
(e) if one is to be u§ed when quantitative determinations are made.
Non-adherence to Beer's Law would necessitate a standard curve or use
of multiple molar extinction coefficients over limited concentration
ranges. Tab]e 5 summarizes the results of the determination of ¢ for
H-TCA at 210 mp with water as the diluting solvent.

With the molar extinction coefficient for H-TCA in water having
been determined, it should theoretically be possible to determine the
concentration of TCA™ anion remaining in a given sample following each
of a series of ether extractions by observing the absorption at 210 mu.
In Figure 8 the results of the extraction of H-TCA from 9 dog plasma
samples (upper curve) with ether are plotted with H-TCA concentration

in mMoles/1 against extraction number. It can be noted that after the
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Figure 6. Standard curves for H-TCA in approximately 0.6 N HC]
at 205 mu (upper curve) and 210 mu (lower curve).
Absorbance is plotted on the ordinate against H-TCA
concentration in mMoles/1 on the abscissa.



ABSORBANCE

1.0 |

0.5

56

205 wp . 210 wp

T T T
0.5 1.0 1.5 2.0 2.5
H-TCA (uMoles/1)

Figure 6.



57

Figure 7. Standard curves for H-TCA in distilled water at 205 mu
(upper curve) and 210 mp (lower curve). Absorbance is
plotted on the ordinate against H-TCA concentration in

mMoles/1 on the abscissa.
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Ether extraction of H-TCA from dog plasma with (lower
curve) and without (upper curve) acidification with HCI
after extraction number 2. TCA absorption at 210 mu

was not corrected for plasma ultrafiltrate absorption at
210 mu. Data points are averages of 9 extractions

(lower curve) and 8 extractions (upper curve) + SEM.
Samples were diluted with distilled water. Acidification
following extraction number 2 was accomplished by adding
0.5 ml of 0.6 N HC1. H-TCA concentration remaining after
each extraction in mMoles/1 is plotted on the ordinate.
Extraction number is plotted on the abscissa.
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second extraction there is apparently very little change in the concen-
tration of H-TCA with subsequent extractions. Following the second
extraction the concentration does not fall below approximately 41 mMolar.
If one acidifies the sample with HC1 to a pH of 2.0 or less following
the second extraction, further extractions lower the apparent TCA™ con-
centration to approximately 7 mMblar (lower curve). A1l extractions
were performed by shaking the ether and aqueous layers for 30 seconds,
allowing the layers to separate, and discarding the ether.

Figure 9 illustrates that if one starts with the sodium salt of
trichloroacetic acid (Na-TCA), very little is extracted by the ether
until the solution is acidified with HC1 to a pH of approximately 2.0.
When the pH rises above 3, extraction of the TCA™ anion decreases with
further extraction until the solution once again is acidified to pH 2.0.
This would indicate that the sodium salt of the acid is not ether solu-
ble whereas the undissociated acid is ether soluble and thus-ether
extractable.

The preceding results suggested that the first 2 or 3 ether ex-
tractions are very efficient in removing the TCA™ anion in H-TCA solu-
tions because as the undissociated acid is removed by the ether, there
are sufficient H' and TCA™ ions available for a shift of the following

equilibrium to the left:

>

H-TCA H™ + TCA™

D
As the concentrations of H-TCA, H+, and TCA™ decrease, and the pH rises,

Na-TCA predominates because of the high concentration of plasma sodium
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Ether extraction of Na-TCA added to dog plasma ultra-
filtrate. TCA absorption at 210 mu was not corrected
for plasma ultrafiltrate absorption at 210 mu. Samples
were acidified with HC1 to approximately pH 2 following
extraction numbers 2 and 5. Data points are averages
for 5 samples + SEM. Samples were diluted in distilled
water. Na-TCA concentration (left ordinate) in mMoles/]1
and pH (right ordinate) are plotted against extraction
number (abscissa).
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relative to the H' concentration. Addition of sufficient acid (HC1)

to lower the pH to approximately 2.0 and raise the hydrogen ion con-
centration, therefore, should be expected to enhance tne extract-
ability of the TCA™ as H-TCA. The results of such a procedure,
summarized in Figure 8, suggest that this is the case. Addition of
acid following the second extraction resulted in approximately a 6-fold
decrease in the apparent final TCA™ concentration (lower curve). The
results also suggest that there is a concentration of TCA™ of approxi-
mately 7 mMolar following a series of five 30-second extractions with

3 volumes of ether even with acidification with HC1.

In the preceding discussion the assumption made was that all of
the optical density measured in the samples was due to TCA™ only.
Therefore it is possible that all calculations of TCA™ concentrations
in extracted plasma were overestimations. Thus it was desirable to
determine if there is some optical deﬁéity in protein free plasma per
se, and to correct the absorbance of the H-TCA treated plasma samples
for this background absorption. Such a procedure is described below.,

To determine the background absorption of the plasma, a protein
free fi]trate‘was prepared by ultrafiltration of plasma through
dialyzing tubing (Visking cellulose, Will Scientific, Inc.). A piece
of 1% inch diameter Visking tubing was cut as a single layer to fit the
300 ml capacity ultrafiltration unit used to concentrate the dialysis
fluid and plasma ultrafiltrate in the human studies (to be discussed
in METHODS--Section J). This membrane was used in place of the Amicon
UMO5 membrane (also to be discussed in METHODS--Section J). Plasma

was pipetted into the unit and ultrafiltered at a pressure of 55 to 60



66

psi at 0 to 4°C. Addition of H-TCA to the filtrate thus obtained
produced no precipitate, and optical density measurements at 210 mu
gave results identical to those of ether extracted H-TCA treated

plasma which had been acidified with HC1 after the second ether extrac-
tion (an apparent TCA™ concentration of approximately 7 mMolar--

Figure 8). It was concluded, therefore, that deproteinization by H-TCA
and ultrafiltration through Visking cellulose membranes give protein
free plasmas which are identical in terms of substances which demon-
strate an absorbance at 205 and 210 mu. To correct the H-TCA treated
plasma samples for the background absorption due to the plasma, the
following procedure was employed:

1) ten ml of H-TCA treated plasma and approximately 3 volumes
(30 m1) of ether were pipetted into a 60 ml separatory funnel,

2) into 10 ml of plasma ultrafiltrate was pipetted 5 ml of dis-
tilled water (recall that 5 ml of 20% H-TCA was added to the
plasma in step 1. The water here is added to accomplish the
same dilution of the plasma substituents that may demonstrate
an absorption at 210 mu). Ten ml of this diluted plasma and
30 m1 of ether were pipetted into a second 60 ml separatory
funnel,

3) both separatory funnels were shaken for 30 seconds,

4) after phase separation, the ether layers were discarded,

5) to the aqueous layers in the separatory funnels was added
another 30 ml aliquot of ether. The funnels were shaken as
before and the ether layers discarded,

6) 0.5 ml of 0.6 N HC1 was pipetted into the aqueous layers, 30
ml of ether added, and the separatory funnels again shaken
for 30 seconds. Again the ether layers were discarded, and

7) step 5 was repeated until a total of 8 extractions with ether
had been performed.

Figure 10 depicts the results of 5 samples prepared and extracted

as described above. Following each extraction the background optical
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Ether extraction of H-TCA from dog plasma. TCA™ absorp-
tion at 210 mu was corrected for plasma ultrafiltrate
absorption at 210 mu. Acidification following extraction
number 2. Data points are averages of 5 independent
extractions * SEM for the H-TCA curve. H-TCA concentration
(Teft ordinate) in mMoles/liter and pH (right ordinate)
are plotted against extraction number (abscissa). Samples
were diluted in distilled water.
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density obtained from the ultrafiltrate sample was subtracted from the
H-TCA treated sample. The result of this subtraction equals A in the
formula below. The concentration of TCA™ in the H-TCA sample is then
calculated according to:

A = C, and C = A/e, where ¢ for H-TCA in water is 732

(Table 5) and C equals the concentration of H-TCA in mEq/1. The concen-
tration of H-TCA in the original sample then equals C times the appro-
priate dilution factor.

It can be seen from Figure 10 that after the second ether extrac-
tion the pH has risen to approximately 2.0, at which point addition of
0.5 ml of 0.6 N HC1 Towers the pH to about 1.5 and it remains below
2.0 throughout the rest of the extraction procedure. It can also be
seen that the resultant TCA™ concentration is in fact not 7 mMolar,
but 0.4 or less following subtraction of non-TCA absorption at 210 myu.
Figure 11 is a similar diagram, except no acid was added following
the second extraction, consistent with the procedure of Cort to prepare
plasma samples for antinatr:feric activity determinations. With sub-
traction of non-TCA absorption but no acidification, the resultant TCA™
concentration is on the order of 33 mMolar, which can significantly

inhibit sodium transport (Figure 28).

F. Removal of TCA by Fractionation
on Sephadex Resin

A second procedure for the removal of the TCA™ anion from the
sample is fractionation of the sample on Sephadex resin. Figure 12

illustrates the results of the fractionation of a 10 m1 sample of frog
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Ether extraction of H-TCA from dog plasma. H-TCA absorp-
tion at 210 muy was corrected for plasma ultrafiltrate
absorption at 210 mu. No acidification following extrace
tion number 2. Data points are averages of 3 independent
extractions+ SEM. Samples were diluted in distilled water,.
H-TCA concentration (left ordinate) and pH (right ordinate)
are plotted against extraction number abscissa).
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Results of fractionation of 10 ml of Na-TCA frog buffer
on Sephadex G25F resin at 4°C. The sample was eluted
with 10 mMolar ammonium acetate from a 2.5 X 95 cm

column. 10 ml aliquots were collected by fraction col-
lector.
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buffer, the composition of which is described in METHODS--Section G,
with NaCl being replaced by Na-TCA. The absorption at 210 muy coincides
with the appearance of the other osmotically active ions in an elution
volume from approximately 350 to 500 ml1. Therefore it can be concluded
that the fraction reported to contain natriuretic-antinatriferic
activity, which occurs in the elution volume from approximately 550-780
ml, does not contain the contamination TCA™ anion. Sodium ion and
other osmotically active substances were separated as when blood,
dialysis fluid, and plasma ultrafiltrate are fractionated as shown in

RESULTS--Section A.

G. Short Circuit Current Determinations

Frogs, Rana Pipiens, were either purchased (Mogul Corp., Oshkosh,
Wisc.; Wards Natural Science Est., Inc., Rochester, N, Y.,) or captured
from local ponds. In earlier studies the animals were kept i1n the cold
in the presence of running water until the time of use. In later
studies the animals were kept at room temperature in a large sink with
running water. A portion of the sink was covered with sod to provide
an area of dry terrain. From the time of purchase to the time of use
the animals were provided with a diet of meal worms, crickets, and other
live insects.

On the day of a run the frogs were sacrificed by double pithing
or decapitation. A section of ventral unpigmented skin was immedi-
ately removed and mounted on the apparatus. The skins were rinsed

several times with frog buffer prior to connecting a bubbler which
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served both to aerate and stir the buffer in contact with the skin.
The procedure from the killing of the frog to the start of the
equilibration period usually required 2-4 minutes,

The Ussing type apparatus (164) employed is i1llustrated in Figure
13. It consists of 2 acrylic plastic chambers between which is clamped
the frog skin membrane (M). The surface area exposed to the frog
buffer measures 2.54 cmzo The capacity of the chamber on each side of
the membrane is approximately 4 ml.

A solution of agar and frog buffer was prepared by boiling gently
until the agar became dissolved. It was then drawn into sections of
polyethylene tubing (A) which served to establish contact between the
2 halves of thevapparatus and the calomel electrodes (C). The calomel
electrodes in turn were connected to a Grass Polygraph recorder {mV)
which measured the membrane potential across the skin. The external
current required to maintain the potential dif*erence across the mem-
brane (M) equal to zero was supplied by a 6V dvy cell battery (B) and
read from a Keithly Model 610C Electrometer (HA). The external re-
sistance was adjusted to maintain the membrane potential equal to zero
with a series of variable resistors (VR).

Once the skins had been mounted in the apparatus and rinsed
several times with buffer, the chambers were connected to the aerating
system at (D). The bubble rate per chamber was adjusted with an
aquarium gang valve (AGV), and the air supplied by a small aquavium
pump (AP) was saturated with water by bubbling it through a water bottle

(WB) before entering the chamber at (0). Air bubbles were allowed to
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Figure 13. Frog skin short circu't current set-up.

A

[l

agar-KCl-frog buffer bridye 1n polyethylene tubing

AGV = aquarium gang va've to regulate bubb!e rates to chambers
AP = aquarium pump

B = 6 volt battery

C = calomel electrodes

D = 17 gauge reedles used to cornect chamber to bubbler (WB)

E = silver electrodes

G = recessed groove to prevent a°r bubb'e¢ from contacting
skin

I = sample inlet and air outlet
M = frog skin membrane
mV = Grass Polygraph recorder
0 = sample outlet and air "n'et (small polyethylene tubing)
S = toggle sw tch
pHA = Kerthly Model 610C Electrcmeter
VR = variable resistors

WB = water bottle to saturate the air with water before
entering the chambers
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escape at (I), and were prevented from contacting the skin surface by
a recessed groove (G) which was cut into the inner circumference of
each chamber,

The skins were continuously short-circuited according to
Bourgoignie et al. (20), with membrane potential and short circuit
current readings being taken every 5 minutes by turning off the external
emf briefly with switch (S). Every 30-40 minutes the fluid from both
sides of the skin was drained through the sample outlet (0) by discon-
necting the system at (D). Fresh frog buffer was then added to both
sides of the skin. This procedure was continued until an interval of at
least 20 minutes was obtained during which the short circuit current
was stable. When this occurred the unknown sample of interest was
added to the serosal side of the skin. Readings at 5 minute intervals
were obtained on the unknown sample for 30-50 minutes--after which it
was removed; the skin flushed 3 times on both sides with fresh buffer;
and measurements made every 5 minutes until a stable short circuit
current was again obtained. At this point a new unknown was added to
the serosal side of the skin. An attempt was made not to employ skins
which had short circuit currents of less than 15 uA/cmz, although this
was not always possible.

Ussing et al. (164) demonstrated that under normal conditions,
with frog buffer on both sides of the skin, the short circuit current
is equal to the net active transport of sodium across the skin. Under
these circumstances, therefore, changes in short circuit current would
be indicative of changes in net active transport of sodium. This 1is

the reason this type of system has been used to assay for 'NH', which
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is thought to inhibit active transport of sodium in the kidney in a
similar fashion.

The composition of the frog buffer utilized throughout the stud-
ies is given in Table 6. The pH of the buffer was adjusted to 7.8 +
0.2 with approximately 0.45 ml of 1 N NaOH.

Table 6. Composition of frog buffer utilized through the studies con-
cerned with short circuit current measurements on frog skins

(20).

SALT g/500 ml Con. (mM/1)
Sodium chloride 3.214 110.0
Potassium chloride 0.093 2.5
Calcium chloride dihydrate 0.110 1.5
Magnesium chloride heptahydrate 0.204 2.0
Glucose 0.901 10.0
Tris-chloride 0.198 2.5

H. Column Chromatography

Column Preparation

Sephadex G25F resin (Pharmacia, Fine Chemicals Inc., Piscataway,
N. J.) was allowed to swell in the elution solution, 10 mM ammonium
acetate, for at least 3 hours at room temperature prior to column pack-
ing. During this period gentle stirring was accomplished with a stir-
ring bar and magnetic stirrer (excessive stirring should be avoided as
it may lead to rupture of the resin beads). The slurry was then de-

aerated under vacuum (trapped air bubbles must be removed to prevent
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uneven sample flow through the packed column); the resin allowed to
settle; and excess eluant decanted until a fairly thick slurry re-
mained.

Once the resin had been allowed to swell, and the slurry deaerated
and excess eluant removed, all of the slurry was poured at one time
into a siliconized 2.5 X 95 cm column. Construction of the column is
shown in Figure 14. Flow through the column was started as soon as
possible in order to obtain an even sedimentation of the resin. Flow
was allowed to continue for 12-24 hours in order to stabilize and
equilibrate the gel bed. The quantity of dry resin required to pack a
given column can readily be determined -if the volume of the resin bed
and water regain of the resin being used are known:

column inner diameter (cm)

Bed Volume = n(rz)H r
H = column height (cm)

Water Regain = g of water absorbed/g dry resin

= G-typ$0number of the resin being used

For the column utilized in these studies the quantity of dry resin
required would be approximately:

2
. m(1.25 cm)® (95 cm)
g dry G25F resin = 775 g/cm3

186 ¢

Before use, column performance and void volume were determined by allow-
ing 10 ml1 of a dilute solution of Blue Dextran (Pharmacia) to pass
through it. During extensive periods of no activity, 1 liter of 0.02%

sodium azide in 10 mMolar ammonium acetate was passed through the
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Figure 14. Construction of Sephadex resin column.
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packed resin and allowed to remain there until the next run. In order
to prevent the column from running dry when unattended during a frac-
tionation, a polyethylene safety loop was employed as shown in Figure

14.

Sample Application

Most of the eluant above the gel surface was removed by suction.
The column outlet was opened and the remaining eluant above the resin
surface drained away. As soon as the eluant had drained to the sur-
face of the resin, 8-25 ml of sample was very carefully applied with a
pipette (the surface of the resin must not be disturbed). After the
sample had drained into the bed, the gel surface and column wall in
contact with the sample were washed with eluant 3 times. During these
operations the eluant must not be allowed to run below the resin sur-
face as air bubbles may become entrapped within the gel bed. Fina]]y,
the space above the resin in the column was partially filled with eluant
and connected to the eluant flask. Fractionation was performed at 0-4°C
in most cases, with 10 m1 aliquots of eluant being collected by a frac-

tion collector to a total elution volume of 1100 ml.

I. Collection and Handling of Uremic
Human Specimens

Patients involved in this study had been undergoing regular
maintenance hemodialysis for periods of 2 weeks or more at the Vieteran's

Administration or University hospitals in Ann Arbor, Michigan.
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Specimens routinely collected from these patients included blood,

plasma ultrafiltrate, and/or spent hemodialysis fluid. None of the
patients studied was anephric, and all had at least some residual kidney
function. Figure 15 illustrates one manner in which a patient can be
attached to the artificial kidney or hemodialyzer. Blood passes from

an arm or leg artery to the dialyzer unit. On passing through the
dialyzer unit the blood is dialyzed and ultrafiltered and then returned
to the patient via an arm or leg vein.

Fifteen to thirty ml of whole blood was obtained just prior to
attachment of the patient to the hemodialyzer. The blood was centri-
fuged at room temperature to remove the red blood cells, and the plasma
immediately placed into an ice bath or dry ice-acetone bath until
application of the sample to the Sephadex resin column. The time from
collection to application to the resin varied from approximately 2 to 4
hours. When plasma samples were deproteinized with H-TCA, 5 ml of 20%
H-TCA was added to a 10 ml aliquot of plasma immediately after the re-
moval of the red blood cells. The sample was shaken and placed into
an ice bath until removal of the H-TCA by ether extraction.

To collect the plasma ultrafiltrate, the dialysis fluid inflow
and outflow tubes were disconnected from the hemodialyzer at (X) and (Y)
in Figure 15. The transmembrane pressure across the hemodialyzer was
increased in order to increase the yield of the ultrafiltrate. This was
accomplished by partially occluding the venous return tubing at (C) in
Figure 15 and increasing the speed of the blood pump (Z). The trans-

membrane pressure usually obtained was 200-400 mm Hg, and the yield of
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Figure 15. Diagrammatic representation of attachment of patient
to hemodialyzer.



Figure 15,
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ultrafiltrate ranged from approximately 150-400 ml (Table 16, RESULTS--
Section C). Ultrafiltrate was routinely collected for 30 minutes,
after which the dialysis fluid lines were reconnected and the normal
hemodialysis treatment commenced. The ultrafiltrate was collected in
an ice bath and remained there until fractionation on the Sephadex
resin column. During the collection of ultrafiltrate, the patient
underwent a saline infusion at point (I) in Figure 15 at a rate compar-
able to or greater than the removal of fluid from the blood by the
ultrafiltration process. This was done to prevent volume depletion dur-
ing the collection period.

Two types of hemodialyzers were used in this study, both having
similar ultrafiltration characteristics. The device pictured at the
top of Figure 15 is the Gambro-Lundia plate-type hemodialyzer, in which
the dialysis membranes are laid on flat polyethylene supports. The
blood is spread out in a thin film on passing through the unit.
Another type employed was the Cordis Dow hollow fiber dialyzer, in
which the dialysis membrane is in the form of thousands of small tubules.
The blood flowed within these tubules. In both types the dialysis tluid
flows in a direction opposite to that of the blood (countercurrent).

With the establishment of the normal hemodialysis period, the
collection of the dialysis fluid was initiated. Normally the dialysis
outflow line empties into a drain with the spent fluid being discarded.
For this study the spent dialysis fluid was allowed to flow into 2
five-gallon plastic carboys. In most instances the dialysis fluid flow

rate was about 500 m1/min, approximately 40 minutes being required to
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fill each of the carboys. Since the artificial kidneys which were used
in this study dialyzed and ultrafiltered by positive pressure, the
dialysis fluid obtained was not diluted or contaminated by tap water
which is often the case with negative pressure systems. In addition,
the dialysate source was supplied on a single-pass basis, in that it
ran by the membrane surface only once and was then discarded.

To retard bacterial growth in the dialysis fluid, 20 m1 of 12 N
HC1 was added to each carboy resulting in a final concentration of
approximately 0.01 N HC1 and a pH of 5.5-6.0. The combination of Tow
pH and cold storage was found to prevent bacterial growth during the
period of ultrafiltration. Sodium azide at 0.02% was found not to be
as effective. Antibiotics were judged to be undesirable, as problems
of massive concentration of the drug might be encountered during the
ultrafiltration process which was used to concentrate the dialysis

fluid.

J. Ultrafiltration Procedure

The technique of ultrafiltration was employed in order to concen-
trate the large volumes of dialysis fluid and plasma ultrafiltrate
which were obtained from the artificial kidney machines. This method
was selected because of the availability of appropriately selective
membranes, and because of the potential rapidity with which the process
can be carried out. The apparatus used was constructed from acrylic

plastic, and is depicted in Figure 16.
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Figure 16. Construction of the ultrafiltration chambers employed to
concentrate dialysis fluid and plasma ultrafiltrate and
prepare protein free dog plasma ultrafiltrate.
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For the ultrafiltration of the dialysis fluid two chambers were
used in parallel, each with a capacity of approximately 1800 ml.

A single fiberglas reservoir with a qapacity of 12 liters was also
employed in order to minimize the number of shut-downs required to
replace the fluid which was being forced from the system. Stirred cells
were used to minimize concentration polarization effects which occur at
the membrane surface which affect both the permeability of the membranes
and the rate of ultrafiltration.

The membrane employed in the units, supplied by Amicon Corpora-
tion, Lexington, Mass., was the UMO5 type which has a molecular weight
cut-off of approximately 500 Daltons. The chambers were constructed
to withstand a pressure of 100 psi. For the ultrafiltration of the
smaller volumes of uremic plasma ultrafiltrate, a smaller unit with
a capacity of approximately 300 ml was constructed in a manner similar
to the larger units. Dog plasma samples were also ultrafiltered in
this smaller unit employing a dialysis membrane described elsewhere
(pages 65-66). The larger units have a minimum stirred volume of
approximately 150 ml, and for this reason the final concentration of the
dialysis fluid was performed in the smaller unit which has a minimum

stirred volume of approximately 15 ml.

Procedure

a) Dialysis Fluid

The 12 liter fiberglas reservoir was first filled with dialysis
fluid and the inflow tube connected to the regulator of a large cylinder

of nitrogen gas. The outflow tube was attached to the assembled
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ultrafiltration chambers with the pressure relief caps removed.
Sufficient pressure was applied from the nitrogen cylinder to the 12
liter reservoir to force the dialysis fluid into the ultrafiltration
chambers. When the chambers were filled, the pressure relief caps were
secured, the pressure adjusted to 55-60 psi, and the ultrafiltration
allowed to proceed until the 12 liter reservoir became empty. At this
time the nitrogen gas was shut off, the pressure relief valve on the
reservoir opened, and the reservoir refilled with dialysis fluid.
The pressure relief valve was then closed, the pressure again adjusted
to 55-60 psi, and the ultrafiltration continued. Concentration of the
dialysis fluid from an initial volume of 36 liters to a final volume
of approximately 200 ml required about 4 days. The resulting 200 ml
was transferred to the 300 ml capacity ultrafiltration unit and reduced
to a volume of approximately 15-25 ml1. This usually required an addi-
tional 8 hours. The entire procedure was carried out at 0-4°C.
Stirring of the cells was accomplished by a magnetic stirrer and stir
bar as shown in Figure 16.

b) Plasma Ultrafiltrate

The plasma ultrafiltrate obtained directly from the dialyser unit
of the artificial kidney underwent a second ultrafiltration in the 300
ml capacity unit. The sample was syphoned into the unit which was then
attached directly to the nitrogen cylinder. A reservoir was not re-
quired. Flow rate through the UMO5 membrane in this unit at 55-60 psi
was approximately 0.4 ml/minute. Flow rate through the larger units

under the same conditions was approximately 4 ml/min. With extended
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periods of use the flow rates were observed to decrease in both units.
At the completion of a given ultrafiltration, the membranes can

be rinsed and allowed to soak in distilled water for 1 or 2 days.

This is usually adequate to restore the membrane so that 1t can be

reused. Storage in 25% alcohol will prevent bacterial growth on the

membrane between uses.

K. Acute Volume Expansion with Dogs

Fourteen dogs, of both sexes, ranging in weight from 7.3-12 Kg,
were volume expanded with 0.154 M saline. With the exception of 2 dogs
(numbers 13 and 14), all were expanded via a cannula inserted into the
brachial vein. Dogs 13 and 14 were expanded by infusion into the
femoral vein. A1l blood samples were collected with a cannula which
was inserted into one external jugular vein.

Dogs numbered 2-8 received an initial expansion equivalent to 3%
of the total body weight at a rate of 3 ml/Kg/min. Sustaining infusion
rates ranged from 0.44 to 0.72 m1/Kg/min and continued until the collec-
tion of the final blood sample. When the final sample was collected
the total volume of fluid added ranged from 3.4% to 6.2% of the total
body weight (Table 7). In all dogs 20 ml samples of whole blood were
collected in ice and the red blood cells (RBC) immediately removed by
centrifugation at approximately -10°C. Five ml of 20% H-TCA was added
to 10 m1 of the resultant plasma (final H-TCA concentration 6.67% or

approximately 400 mMolar), mixed by inversion, and centrifuged at room
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temperature to remove the precipitated proteins. The H-TCA was ex-
tracted with ether as described in METHODS--Section E. Figure 17 sum-
marizes the procedure followed for dogs 2-8 receiving this initial

3% expansion, with Table 7 summarizing the experimental conditions of
each of the 3% expansion studies.

In addition to the 3% expansion experiments just described, 6
animals were initially expanded to 6% of their total body weight. The
initial infusion rate was 6 ml/Kg/min with sustaining rates ranging
from 0.30 to 1.56 m1/Kg/min. In these experiments the total expansion
at the time of collection of the final sample ranged from 7.1% to 10.6%
of the total body weight (Table 8). Figure 17 summarizes the procedure
for the first such experiment, dog 9, where samples were collected and
treated as previously described. In this experiment samples were ob-
tained at 0, 15, 30, and 45 minutes following the completion of the
initial expansion. Following the collection of the 15 and 30 minute
samples, the blood removed was replaced with 0.154 M NaCl.

Figure 18 summarizes the procedure for dogs numbered 10, 11, and
12. In these experiments 100 ml of whole blood was obtained for the
control period as well as the experimental period. Following the removal
of the control sample, the red blood cells were resuspended to 100 ml
with 0.154 M NaCl and reinfused into the animal. With both the control
and experimental samples, 3 aliquots of plasma were obtained. One ali-
quot was treated with H-TCA to render it protein free as in the 3%
experiments; one aliquot was ultrafiltered as described previously to

remove the proteins; and the third aliquot was applied directly to a
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Sephadex G25F resin column. The ultrafiltered aliquot was used merely
as a control which was extracted with ether to attempt to quantitate
the effectiveness of removal of H-TCA from the first aliquot. The
second aliquot served to compare activities on the frog skins of
samples which were and were not treated with H-TCA.

Figure 19 summarizes the procedyre for 3 experiments in which
H-TCA was not utilized. A1l samples in these experiments were applied
directly to the Sephadex resin column. Table 8 summarizes the experi-

mental conditions of each of the 6% expansion studies.

L. Sample Preparation for Short Circuit
Current Measurements

A1l plasma samples deproteinized with H-TCA first underwent re-
moval of the added H-TCA with ether as described in METHODS--Section E.
These deproteinized plasma samples were then either fractionated on
Sephadex G25F resin or immediately lyophilized to dryness. The prepara-
tion of fractionated specimens for SCC measurements is described below
(METHOD I AND METHOD II). Lyophilized samples were diluted to the
original plasma volume with distilled water containing 2.5 mMolar
tris-C1 and 2.0 mMolar magnesium chloride. The pH was adjusted to
approximately 7.8 with 1 N NaOH and the sodium chloride and potassium
Chloride concentrations adjusted to conform with the frog buffer
(Table 6, METHODS--Section G). If the milliosmolality of the sample
was equivalent to that of the frog buffer no further adjustments were

made. Samples which were hypo-osmotic were made isosmotic with the

addition of glucose.
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Figure 19. Protocol for dogs 13-15 receiving an initial 6%

(total body weight) expansion with 0.154 M NaCl.

(-) signifies removal of substance by centrifuga-
tion (cent.).
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The individual 10 ml aliquots obtained from samples which were
fractionated on Sephadex G25F resin were pooled into 5 fractions as
shown in Figure 23. These pooled fractions were lyophilized to dryness
and fraction IV prepared for short circuit current measurements by one
of the following methods:

Method I (20):

Plasma samples, both H-TCA treated and non-H-TCA treated, were
diluted with distilled water to 1/10 the volume which was applied to
the resin column. For short circuit current determinations 0.3 ml of
this concentrated sample was mixed with 0.15 ml of a 3-fold concentrated
frog buffer. Removal of 0.45 ml of frog buffer from the serosal side
of the frog skin and injection of the 0.45 ml of sample resulted in an
approximate 10-fold dilution of the reconstituted sample. Thus the
concentration of any plasma antinatriferic substance in contact with
the frog skin would be nearly equal to that of the original sample
obtained. Plasma ultrafiltrate and dialysis fluid concentrates were
handled in a similar fashion, except that the concentration of an anti-
natriferic material in these samples relative to plasma was unknown.
Ammonium ion concentration determinations were performed on all samples,
as it has been shown that low levels of this ion have an antinatriferic
effect on amphibian membranes (78)--0.5 mMolar ammonium ion decreasing
the short circuit current by 12%, 1.0 mMolar 22%, and 2.0 mMolar 30%.
Method II (20,36):

Following lyophilization to dryness, fraction IV samples were

diluted with frog buffer to a volume equivalent to the volume of sample
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applied to the resin column. Ammonium ion concentration, milliosr
molality, and pH of the sample were measured before short crrcu't

current measurements were made.



RESULTS

A. Fractionation of Specimens on
Sephadex Resin

Elution of a sample of plasma (dog or human) with ammonium
acetate (10 mMolar) from Sephadex G25F resin produced an optical dens-
ity pattern of 280 mu similar to that observed by Bourgoignie et al.
(20). The pattern obtained from patient GS is illustrated in Figure
20, showing the 3 major absorption peaks used by Bourgoignie et al.
(20) to 1ocalize the region of natriuretic-antinatriferic activity.
This region, believed to contain these activities, occurs between the
latter two peaks in Figure 20 in an approximate elution volume of 500
to 780 ml.

Figure 21 compares the fractionation of a plasma sample from
patient CH with that of an aliquot of plasma ultrafiltrate obtained
from the artificial kidney before and after an 8-fold concentration by
ultrafiltration at 0-4°C. It can be noted that the latter 2 peaks of
the concentrated plasma ultrafiltrate have an increase in absorbance
at 280 mu. Conspicuously absent from these ultrafiltrate patterns is
the absorbance due to protein in the region of approximately 150 to
300 ml. This demonstrates the effectiveness with which the hemodialysis
membranes used in the hemodialyzer retain these large molecular weight
substances. Figure 22 depicts the elution pattern of plasma ultra-

filtrate after a 15-fold concentration from patient GS.

106
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Figure 23 indicates the absorbance at 280 and 360 mu of the
individual 10 ml fraction collector samples obtained following elution
of an aliquot of concentrated dialysis fluid obtained from patient GS.
To be noted first is the presence again of the 2 major absorbance
peaks at 280 mu and the absence of a protein peak at about 180 ml.
During the concentration of dialysis fluid and plasma ultrafiltrate,
the specimens become progressively pigmented. The nature of the pig-
ment is at present not known. The color varies from a light yellow to
brown and can occasionally be noted to be present in as much as the
first 900 mi of the elution volume (depicted in Figure 23 by the
horizontal line above the elution volume axis). An absorbance spectrum
of the pigmeht demonstrated a maximum absorbance at approximately 360
mu. The individual 10 ml1 fraction collector samples exhibited 3 ab-
sorbance peaks at 360 muy, the latter 2 corresponding to the maximum
visible coloration as indicated by the darkened area on the horizontal
pigment line.

In addition to the absorbance at 280 and 360 mu, the pH and
milliosmolality of the individual 10 ml fraction collector samples are
also shown in Figure 23. The pH of the eluant is approximately 6.5.
As noted earlier, the 36 liters of dialysis fluid is aﬁidified with
HC1 to retard bacterial growth over the period of 4 days required for
concentration by ultrafiltration. This added hydrogen ion can be seen
to be eluted in a volume very closely correlated with the major
osmotically active substances, the lowest pH occurring at a volume of

approximately 400 m1. Plasma, and plasma ultrafiltrates obtained
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directly from the artificial kidney, are not acidified with HCl. As
shown in Figure 24 these specimens exhibit no decrease ih pH in this
region but rather an increase. The presence of proteins in the plasma
imparts an additional pH peak in an elution volume of approximately
220 to 300 ml1 (protein buffering of the eluant perhaps) not seen in
the ultrafiltrate samples.

Closer inspection of the composition of the osmotic peak reveals
that sodium, chloride, potassium, and glucose are the major contribu-
tors. These substances do not appear in any other region in measurable
quantities. Elution of glucose with the inorganic ions was unexpected.
Based on its molecular weight (180 Daltons) one would have expected it
to appear in the volume containing small amino acids (approximately
850 m1). Figure 25 illustrates the elution pattern of these substances
from a sample of plasma ultrafiltrate concentrate obtained from patient
GS. The importance of these observations is the demonstration that there
is no sodium, potassium, chloride, glucose, inorganic acid or base,
or any other osmotically active substance in the fraction reported to
contain antinatriferic-natriuretic activity (Fraction IV). There also
is an absence of substances with a measurable absorbance at 280 mu in
Fraction IV.

To estimate the approximate molecular weights of substances in
the various fractions obtained, compounds of known molecular weight
were applied to the resin column and eluted with 10 mMolar ammonium

6

acetate. Substances employed were Blue Dextran (M.W. 2 X 10~ Daltons),

bovine albumin (M.W. 69,000 Daltons), -inulin (M.W. 5000 Daltons),
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bacitracin (M.W. 1400 Daltons), and tryptophan (M.W. 204 Daltons).
Figure 26 demonstrates that Blue Dextran, albumin, and inulin are all
eluted with the column void volume of approximately 180 ml. Bacitracin
is eluted with a volume of approximately 300 ml, and tryptophan at
approximately 850 ml. Substances eluted with volumes between 300 and
850 m1 (Fraction IV) might therefore be expected to have molecular
weights on the order of 1400 to 200 Daltons, a molecular weight range
consistent with that reported for 'NH'.

It should be stressed, however, that although there may be a cor-
relation between molecular weight and elution volume, a more accurate
relationship exists between the three-dimensional configuration of a
molecule and its elution volume. Non-linear substances, for example,
are excluded from the resin particles to a greater extent than are
linear molecules of similar molecular weight and are therefore eluted
from the column sooner than would have been expected. Heterocyclic
and aromatic substances are often abnormally retarded in their passage
through the resin and therefore are eluted later than would have been
expected based on their molecular weight. This phenomenon is affected
by such parameters as ionic strength and pH of the medium being

employed. Column calibration must be cautiously interpreted therefore.

B. Effects of ADH, TCA~, and Ammonium Ion on
Frog Skin Short Circuit Current, Membrane
Potential, and Resistance

As mentioned in METHODS, Sections E and L, ammonium ion and TCA™

exhibit antinatriferic activity with frog skin preparations. As these
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substances were employed in the separation procedures, it was desirable
to estimate quantitatively the magnitude of their effect. Several
determinations were made with these substances on the skins of several
different frogs. For purposes of comparison, several determinations
of the effects of ADH were also made. These results are discussed below.
Following a period of equilibration, during which the short circuit
current was stable for approximately 20-30 minutes, 0.02 ml of Pitressin
(4 units /m1) was pipetted into the buffer on the serosal side of the
frog skin. Measurements were carried out for 40-50 minutes, after which
the medium was drained from both sides of the skin and fresh buffer
added. The effects of ADH on frog skin short circuit current, membrane
potential, and resistance are summarized in Table 9, and illustrated in
Figure 27. These observations of increased SCC and decreased resistance
with ADH are similar to those made by others (13,86,102) and therefore

indicate that techniques and frogs used were adequate.

Table 9. Effect of ADH on frog skin short circuit current, membrane
potential, and resistance. The percent change in the para-
meter was determined by averaging the difference between
the last 3 measurements during the control and experimental
periods. A total of 11 determinations were made on skins
from 9 frogs. Averages are reported as + SEM. Resistance

was calculated by:
R(ohms) = ggcm%A X 103

PARAMETER AVERAGE PERCENT CHANGE AFTER
ADDITION OF ADH

Short Circuit Current (uA) +156 + 37
Membrane Potential (mV) +128 + 31
Resistance (ohms) —23+ 6




Figure 27.
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Effect of ADH on frog skin short circuit current (SCC),
membrane potential (MP), and resistance (R). Following
a 30 minute control period, 0.02 ml (final concentration
of ADH equals 0.02 units/ml) of a commercial preparation
of Pitressin was injected into the serosal side of the
chamber (time zero). Fifty minutes after the addition
of ADH, the medium from both sides of the membrane was
drained and the chambers flushed 3 times with fresh frog
buffer. Fresh buffer was added to both sides of the
membrane and measurements continued for another forty
minutes. At this time the chambers were again drained
and fresh buffer added. The skins were continuously
short circuited, with MP and SCC being recorded at 5
minute intervals throughout the control and experimental
periods.
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To ascertain the effects of the trichloroacetate anion (TCA™)
on the frog skin, the sodium salt of the acid (Fischer Scientific)
was utilized. Two buffer solutions were prepared, one as usual
(METHODS--Section G), and the second with Na-TCA replacing NaCl.
Buffers with various concentrations of Na-TCA were then prepared
according to Table 10. Following a period of equilibration, one of the
Na-TCA buffer solutions was applied to the serosal side of the skin;
measuremehts obtained for 40 minutes; and the Na-TCA buffer then re-
placed with the normal NaCl buffer. Figure 28 summarizes the results
of the TCA™ anion on the short circuit current and resistance of the
frog skin, with Figure 29 depicting the effects on the membrane po-
tential. Figure 30 illustrates the time course of the effects of 0.9

mMolar TCA™ on these parameters.

Table 10. Preparation of _Na-TCA samples employed to determine the
effects of TCA on frog skin short circuit current,
membrane potential, and resistance. Buffers were prepared
as described in METHODS--Section G. The designated
volumes were pipetted into 15 ml Pyrex test tubes and
mixed by vortexing.

TCA™ CONCENTRATION ml Na-TCA ml NaCl
(mHoles/liter) BUFFER BUFFER
0.10 0.009 9.99
0.20 0.018 9.98
0.30 0.027 9.97
0.40 0.036 9.96
0.50 0.045 9.96
0.60 0.054 9.95
0.70 0.064 9,94
0.80 0.073 9.93
0.90 0.082 9.92
1.10 0.100 9.90
1.50 0.136 9.86
2.00 0.182 9.82
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Figure 28. Effects of TCA™ on frog skin short circuit current
and resistance.
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Figure 29. Effects of TCA” on frog skin membrane potential.
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Figure 30.
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Effect of 0.9 mMolar Na-TCA on frog skin short circuit
current (SCC), membrane potential (MP), and resistance
(R). Following a 25 minute control period, the frog
buffer was drained from both sides of the membrane and
replaced by regular frog buffer on the mucosal side of
the skin and frog buffer containing 0.9 mMolar Na-TCA
on the serosal side. After 40 minutes the medium was
drained from both sides of the membrane and flushed 3
times with fresh frog buffer. Fresh frog buffer was
added to both sides of the membrane and measurements
continued for another 30 minutes. The skins were con-
tinuously short circuited, with MP and SCC being
recorded at 5 minute intervals throughout the control
and experimental periods.
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From these figures it can be seen that the TCA™ produces an inhibition
of the SCC and MP which is reversible. The effects of the TCA™ on the
SCC and MP result in a reversible increase in the calculated resist-
ance.

To determine the effects of ammonium ion on the frog skin, a
stock solution of 20 mMolar ammonium acetate was prepared by dissolving
77 mg in 50 ml of frog buffer. Solutions to be tested on the skins

were prepared according to Table 11.

Table 11. Preparation of samples employed to determine the effects of
ammonium ion on frog skin short circuit current, membrane
potential, and resistance. Buffers were prepared as-*
described in METHODS--Section G. The designated volumes
were pipetted into 15 ml Pyrex test tubes and mixed by vor-

texing.
ml AMMONIUM FREE ml 20 mMolar AMMONIUM AMMONIUM ION
BUFFER BUFFER (mMoles/1)
9.80 0.20 0.40
9.60 0.40 0.80
9.00 1.00 2.00

The results of 2.0 mMolar ammonium ion on the frog skin are
illustrated in Figure 31. Figure 32 summarizes the percent change in
short circuit current, membrane potential, and resistance produced by
0.4, 0.8, and 2.0 mMolar ammonium ion. Comparison of Figures 27, 30,
and 31 i{llustrates that in contrast to ADH, TCA”™ and ammonium ion
result in a decrease in short circuit current and membrane potential

with an increase in resistance.



Figure 31.
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Effect of 2.0 mMolar ammonium ion on frog skin short
circuit current (SCC), membrane potential (MP), and
resistance (R). Following a 25 minute control period,
the frog buffer was drained from both sides of the
membrane and replaced by regular frog buffer on the
mucosal side of the skin and frog buffer containing
2.0 mMolar ammonium acetate on the serosal side.

After 40 minutes the medium was drained from both
sides of the membrane and flushed 3 times with fresh
frog buffer. Fresh buffer was added to both sides of
the membrane and measurements continued for another 30
minutes. The skins were continuously short circuited,
with MP and SCC being recorded at 5 minute intervals
throughout the control and experimental periods.
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C. Human Uremic Studies

Patients involved in this study were selected on the basis of
a change in their dry body weight following the previous dralysis
treatment, an increase being indicative of fluid retention and possible
volume expansion. The dry body weight for a given individual is de-
fined as the total body weight at which the patient develops hypoten-
sion (a decrease in diastolic pressure of 30 mm Hg or orthostatic
hypotension). This changé in dry body weight for the patients studied,
as shown in Table 12, ranged from -0.54 to +4.17%.

Table 13 presents a summary of the types of specimens (plasma,
plasma ultrafiltrate from the artificial kidney, and/or dialysis fluid)
obtained from each of the individuals studied. Non H-TCA treated
plasma specimens were obtained from 9 patients, with H-TCA being used
to precipitate proteins from the plasma of 4 patients. Dialysis fluid
was obtained from 5 patients, and plasma ultrafiltrate from the
artificial kidney was obtained from 8 patients. Non-TCA treated
plasma from patients JS2, CdeB, and DH was frozen in a dry 1ce-acetone
bath until fractionated on Sephadex GZ5F resin. A1l other specimens,
excluding dialysis fluid, were placed in an ice bath until Sephadex
fractionation.

Table 13 also summarizes the effects of lyophilized fraction IV
from each sample on frog skin short circuit current. This fraction
(elution volume of approximately 550 to 780 ml) has been reported to
contain natriuretic and antinatriferic activities following elution
of human uremic plasma and plasma of volume expanded dogs and cows

(19,20,21,29).
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The short circuit current during the control period (C), following
addition of the fraction IV sample (E), and during the recovery period
(R) after the sample was replaced with fresh frog buffer are recorded.
Inspection of the table indicates that only with the plasma ultrafil-
trate concentrate samples from patients JSe and GS was there a large,
reproducible and reversible inhibition of the short circuit current.
These specimens, however, contained levels of ammonium ion (Table 15)
sufficient to account for this inhibition (Figure 32--RESULTS).

Table 14 and Appendixes I-III, which summarize the effects of the frac-
tion IV samples on short circuit current, membrane potential, and
resistance, further demonstrate that only these 2 specimens resulted
in a reproducible decrease in membrane potential and an increase in
skin resistance.

Table 15 summarizes the results of ammonium ion determinations on
lyophilized fraction IV following specimen elution from Sephadex G25F
resin with 10 mMolar ammonium acetate. Values obtained ranged from
0.00 to 4.40 mEq/liter. It has been shown that concentrations of
ammonium ion greater than 0.4-0.5 mEq/1 exhibit antinatriferic activity
with frog skin preparations (78, and this thesis). Therefore specimens
containing ammonium concentrations of 0.4-0.5 mEq/1 or higher will
produce an artifactitious decrease in SCC.

Table 16 summarizes the initial volumes of plasma ultrafiltrate
which were obtained from each of 9 patients. These specimens were
concentrated by ultrafiltration and then fractionated on Sephadex G25F
resin with 10 mMolar ammonium acetate. Fraction IV was lyophilized to

dryness and diluted in frog buffer.
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Table 16. Initial volumes and magnitude of concentration of plasma
ultrafiltrates obtained from the artificial kidney.
The initial volumes of plasma ultrafiltrate were reduced
and concentrated by ultrafiltration at 0-4°C using an
Amicon UMO5 ultrafiltration membrane. Following ultrafil-
tration the specimen remaining in the ultrafiltration cell
was eluted from Sephadex G25F resin with 10 mMolar ammon-
ium acetate, fraction IV 1yophilized to dryness, and
diluted in frog buffer.

INITIAL VOLUME OF PLASMA MAGNITUDE OF CONCENTRATION
ULTRAFILTRATE OBTAINED INCREASE AFTER ULTRAFILTRA-
FROM ARTIFICIAL KIDNEY TION AND SEPHADEX FRAC-
PATIENT (m1) TIONATION
CH 400 8
HM 240 9
co 180 18
JSe 275 27
Js2 265 26
CdeB 250 25
DH 150 15
GS 150 15

These procedures resulted in an 8- to 27-fold concentration of the
original sample. From Tables 13 and 14 and Appendix III it can be seen
that, even after these concentration procedures, the plasma ultra-
filtrates did not contain marked reversible antinatriferic activity in
the absence of ammonium ion. A similar result was obtained with
dialysis fluid specimens which had been concentrated 3600-fold.

As previously described (METHODS--Section L), samples for
frog skin measurements were prepared in two ways. Samples from patients

Cz, JK, CH, ML, and CO were diluted in distilled water to approximately
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1/10 of the volume applied to the Sephadex column. A 0.3 ml aliquot
was then diluted to 0.45 ml with a 3-fold concentrated frog buffer;
0.45 ml of frog buffer removed from the serosal side of the frog skin;
and the 0.45 m]l of sample added (Method I, Section L--METHODS). AIl1l
other specimens were assayed on the frog skins according to Method II

described in Section L of METHODS.

D. Acute Volume Expansion Experiments with Dogs

Dogs numbered 2 through 8 underwent an initial volume expansion
with 0.154 M NaCl equivalent to 3% of their total body weight. A1l
plasma samples obtained were deproteinized with H-TCA, the H-TCA being
removed by ether extractions as previously described in METHODS--
Section E. Samples from dogs 2, 3, 7, and 8, were then prepared for
short circuit current assay before fractionation on Sephadex G25F resin.
The results of chemical analyses of these samples are tabulated in
Table 17. Sodium in these samples averaged 110 + 0.3 SEM mEq/liter;
potassium, 2.9 + 0.0 SEM mEq/liter; and milliosmolality, 228 + 0.3 SEM
mOsmol/liter. Samples from dogs 2-8, following elution from Sephadex
resin and lyophilization, exhibited a range of ammonium ion concentra-
tion from 0.00 to 62.0 mEq/liter (Table 17).

Table 19 and Appendix IV summarize the effects of the unfrac-
tionated 3% expansion samples from dogs 2, 3, 7, and 8, on frog skin
short circuit current, membrane potential, and resistance. With the
exception of a plasma sample from dog 7, obtained 30-minufés éfter expan-

sion, there is no evidence for a reproducible antinatriferic substance.
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Table 18 summarizes the values of the short circuit current during the
control (C), experimental (E), and recovery periods (R). The results
in this table demonstrate that the effects of nearly all the specimens,
whether inhibitory or stimulatory, were reversible.

Table 20 and Appendix V summarize the effects of lyophilized
fraction IV from samples obtained during the 3% expansion studies. A1l
plasmas were eluted from Sephadex G25F resin with 10 mMolar ammonium
acetate. Table 21 summarizes the values of the short circuit current
during the control period (C), following addition of the test samples
(E), and 20-30 minutes after replacement of these samples by fresh frog
buffer. Inspection of these tables reveals that although there are
several instances of a reversible increase in short circuit current,
evidence for a reversible inhibitory activity is lacking.

Since there was no evidence for an antinatriferic substance in
dog plasma following a 3% total body weight expansion, dogs numbered
9-15 were expanded with a volume of 0.154 M NaCl equivalent to 6% of
their total body weight. Ten plasma samples were deproteinized with
H-TCA and prepared for assay on the frog skin. Results of chemical
analysis of these samples is given in Table 22. For these samples
sodium averaged 111 + 2.2 SEM mEq/liter, potassium 2.8 + 0.1 SEM
mEq/liter, and milliosmolality 229 + 1.6 SEM mOsmol/1iter. Following
Sephadex fractionation, ammonium ion concentration in lyophilized
fraction IV ranged from 0.00 to 0.40 mEq/liter (Table 22).

Table 23 summarizes the values of the short circuit current dur-

ing the control period (C), following the addition of unfractionated
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H-TCA treated plasma samples from the 6% expanded dogs (E), and 20-30
minutes after replacing the test samples by fresh frog buffer (R).

The control samples from dogs 10, 11, and 12, contained TCA™ at a con-
centration of 2.9, 1.2, and 1.4 mEq/liter, respectively, following
ether extraction. The 45 minute sample for dog 12 contained TCA™ at

a concentration of approximately 1.3 mEq/liter, and the 15 minute
sample from dog 10 contained 0.82 mEq/liter. Quantitative data on the
levels of TCA™ in the plasma samples from dog 9 are not available.

The TCA™ concentration in each of the above samples would be expected
to be somewhat less in the final sample following lyophilization.

This is because there is some sample loss during the ether extraction
procedure and the specimens become slightly overdiluted when made up
in the frog buffer. Nonetheless,.the reversible inhibition of the
short circuit current seen with these samples was probably due to TCA™
contamination. Table 24 and Appendix VI summarize the effects of
these samples on frog skin short circuit current, membrane potential,
and resistance. As can be seen the effects were variable.

Table 25 summarizes the values of the short circuit current dur-
 ing the control period (C), following addition of lyophilized fraction
IV from H-TCA treated 6% expansion plasma samples from dog 9 (E), and
20-30 minutes after replacing the sample with fresh frog buffer (R).
Only with the 45 minute sample is there an indication of a reproducible
reversible inhibition of short circuit current. Also in this table
(and Appendix VII) is a summary of the effects of these samples on short
circuit current, membrane potential, and resistance, and it can be seen

that the 45 minute sample had a variable effect on the membrane potential.
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H-TCA treated plasma samples from dogs 10, 11, and 12, were not frac-
tionated

Table 26 summarizes the values of the short circuit current during
the control period (C), following the addition of 1lyophilized fraction IV
from non H-TCA treated plasma samples from dogs 10-15 (E), and 20-30
minutes after replacing the test samples by fresh frog buffer (R).
Table 27 and Appendix VIII summarize the effects of these samples on
frog skin short circuit current, membrane potential, and resistance.
Inspection of these tables again reveals no consistent evidence for a
reversible inhibition of short circuit current which is accompanied by
a reproducible decrease in membrane potential and increase in resist-

ance.
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DISCUSSION

It has been reported that an antinatriferic-natriuretic sub-
stance, which appears to be similar to that found 1n experimental acute
and chronic volume expansion, occurs in the serum of patients with
end-stage renal disease (19,20,21). This observation, plus the finding
that an antinatriferic substance i; dialyzable in vivo from acutely
volume expanded dogs (36), promptcd an investigation for this substance
in spent hemodialysis fluid and plasma ultrafiltrates from patients
with chronic renal failure undergoing maintenance hemodialysis.

Studies were also conducted to measure the antinatriferic activity of
plasma, with and without deproteinization with trichloroacetic acid,
obtained from these patients and saline expanded dogs.

The membranes currently employed in artificial kidney hemodi-
alyzers have been shown to have solute clearances of approximately
30 m1/min for substances with molecular weights of 500 and approximately
10 ml/min for substances with molecular weights of 3000 (77) (and per-
sonal communication with Cordis Dow Corp., Walnut Creek, Calif.). In
addition, approximately 3 to 13 m1/min of plasma ultrafiltrate appear
in the dialysis fluid depending on the transmembrane pressure gradient
developed between the blood and dialysis fluid line (Gambro, Inc.,
Wheeling, I11.). This plasma ultrafiltrate would increase substantially

the yield of any antinatriferic substance which might be dialyzable.
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In the present studies the yield of plasma ultrafiltrate was from 150
to 400 m1 during a 30 minute collection period.

It seems, therefore, that if a small molecular weight antinatri-
feric material is present in uremic serum it should appear in the
dialysis fluid and/or plasma ultrafiltrate in vivo. However, evidence
that this substance is dialyzable from humans can only be inferred
from the work of others. Bourgoignie et al. (20) observed, in non-
dialyzed patients, that a fraction obtained following elution of serum
from Sephadex G25F resin produced a 24.9% (N=18) inhibition of sodium
transport across frog skins. The same fraction from dialyzed patients
produced a significantly smaller inhibition of 16.2% (N=13), and that
from normal subjects 5.3% (N=11).

In the studies of this thesis a 2.5 X 95 c¢cm column, packed with
Sephadex G25F resin, was employed to fractionate the uremic specimens
and samples obtained in the expansion studies performed with dogs.
This column was similar to that employed by Bourgoignie et al. (20).
Comparison of elution patterns at 280 mp suggests that the column
used by Bourgoignie was similar to the one used in the present study.
Further evidence for the similarity of these systems was obtained with
electrolyte determinations in the individual 10 ml fraction collector
samples. Electrolytes in the present studies were found to be eluted
in a volume similar to that in which Bourgoignie et al., above, noted
a high specific conductance. Therefore, a similar elution volume
(fraction IV--approximately 550-780 m1) would be expected to contain
any antinatriferic material which might be present in the specimens of

this investigation.
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To be noted in the elution patterns of plasma ultrafiltrate and
dialysis fluid (Figures 21, 22, and 23) is the absence of a protein
absorbance at 280 mu in the region of approximately 150 to 300 ml.

As proteins are not dialyzable or ultrafilterable through the artificial
kidney hemodialyzer membranes, this is to be expected. However, in
these fluids there is an absorbance maximum at approximately 400 and
850 ml which is seen with elution of plasma. Both of these regions
show an increased absorbance following concentration. These observa-
tions are important because they indicate that 1) substances with
molecular weights larger than the postulated antinatriferic substance
are being dialyzed and ultrafiltered from the patient's blood (absor-
bance peak at 400 m1), and 2) that it may be being retained and concen~
trated by the ultrafiltration procedure (greater absorbance at 850 ml
than is seen with unconcentrated plasma).

The absence of measurable amounts of sodium, potassium, chloride,
osmotically active substances, and no unusual pH's beyond an elution
volume of 500 ml, indicates an efficient desalting by the resin column
of fraction IV (Figures 23, 24, and 25). Elution of substances with
known molecular weights from the column suggested that materials with
elution volumes from 300 to 850 ml might be expected to have molecular
weights from approximately 1400 to 200 Daltons (Figure 26), a range
consistent with that reported by others for natriuretic and anti-
natriferic substances (20,27,28,29,36,37,56). This conclusion must be
viewed with caution, however, since as pointed out in RESULTS--Section

A, some substances may be abnormally retained by or excluded from the
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resin particles during elution. Glucose appeared to be an example of
such a substance in these studies since it was eluted from the resin
much earlier than would be predicted on the basis of its molecular
weight (Figure 25).

In addition to decreasing the short circuit current, fraction IV
from uremic serum was also reported to decrease the membrane potential
and increase the resistance in frog skin preparations (20). These
effects were reversible when the test sample was removed and replaced
with fresh frog buffer. Similar findings were reported by Buckalew
et al. (36) using plasma dialysates and ultrafiltrates from volume
expanded dogs. In the present studies there ware no uremic samples,
either plasma with or without H-TCA deproteinization, dialysis fluid,
or plasma ultrafiltrates, that reproducibly demonstrated these effects
that could not be accounted for by ammonium ion contamination (Tables
13 and 14).

The dialysis fluid sample from patient CZ produced a 13% de-
crease in short circuit current which was reversible, a second decter-
mination producing a 1% decrease which was not reversible. Plasma
ultrafiltrate from patient CO, which had been concentrated 18-fold,
produced a 10% reversible decrease in one frog skin run but a non-
reversible 9% decrease in a second determination. Dialysis fluid from
patient ML inhibited the short circuit current 7% reversibly in one
determination, but had no effect in a second determination. The effect
of these specimens on membrane potential and resistance were variable,

H-TCA treated plasma from patient ML was without effect. Although non
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H-TCA treated plasma from patient DH reversibly inhibited the SCC 7%
and 13%, the membrane potential decreased 5% and increased 15%,
respectively. The plasma ultrafiltrate from this patient, which had
been concentrated 15-fold, inhibited the SCC an average of 6% non-
revefsibiy.

The only examples of a marked reversible inhibition of both
the SCC and MP, which were accompanied by an increase in resistance,
occurred with plasma ultrafiltrates from patients JSe and GS. However,
the ammonium ion concentrations in these samples were 4.40 and 1.10
mEq/liter, respectively. This level of ammonium ion is sufficient to
account for all of the inhibition seen (refer to Figure 32--RESULTS).

In the experiments of’this study, in which dogs underwent an acute
volume expansion with 0.154 M sodium chloride equivalent to 3% of
their total body weight, all plasma samples were quickly deproteinized
with H-TCA to eliminate possible degradation of antinatriferic activity.
Blood samples were obtained prior to the expansion and 0, 15, 30, and
45 minutes after completion of the expansion. Before being fractionated
on Sephadex G25F resin, only 2 samples (Table 19) demonstrated an in-
hibitory effect of frog skin short circuit current and membrane poten-
tial. One determination with H-TCA deproteinized plasma taken 15
minutes after expansion from dog 3 decreased the SCC 17%, the membrane
potential 7%, and increased the resistance 12%. As can be seen in
Table 18 this effect was partially reversible upon sample removal.
A second determination with this sample on another skin was without
effect. Plasma sampled from dog 7, 30 minutes after expansion, reversi-

bly inhibited the SCC and MP but caused hoth an increase and a decrease
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in resistance in two separate runs (Table 19).

Following fractionation of the 3% expansion samples on Sephadex
G25F resin, several exhibited inhibitory effects on the short circuit
current (Table 20). However, the effects on membrane potential and
resistance were variable. Only one determination with a plasma sample
from dog 2, taken 15 minutes following expansion, exhibited a reversi-
ble (Table 21) inhibition of SCC of 8% (Table 20). Since most samples
did not inhibit the SCC prior to Sephadex fractionation, it is con-
cluded that the levels of TCA™ obtained following ether extraction
were low enough not to interfere with the determinations. It is also
concluded that there was very little, if any, antinatriferic material
recovered as a result of the expansion followed by H-TCA deproteiniza-
tion of the plasma at any of the sample times. This is in contrast
to the findings of Cort (47) and Cort et al. (49,58) with H-TCA de-
proteinized plasma from carotid artery occluded cats. Although the
inhibition of SCC seen by these authors following occlusion could have
been the result of TCA™ contamination, it is difficult to explain why
other samples treated similarly were not inhibitory.

In addition to the 3% total body weight expansion experiments,
several animals were expanded with a volume of 0.154 M saline equiva-
lent to 6% of the total body weight. Blood samples were obtained prior
to the expansion and 0, 15, 30, and 45 minutes after the expansion.
There were several examples of inhibition of SCC with the samples before
fractionation on Sephadex resin, including inhibition with control

samples (Table 24). However, the effects on membrane potential and

~
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resistance were variable. Only with the control samples from dogs 9,
10, and 12, and the 45 minute sample from dog 12, are found examples

of reversibility of the effect (Table 23). Since H-TCA was found to

be present in the samples from dogs 10 and 12 (0.82 to 2.90 mEq/liter),
inhibition due to H-TCA cannot be discounted. Quantitative determina-
tions of H-TCA could not be made for the samples from dog 9.

Following fractionation of the samples from dog 9 on Sephadex
resin, inhibitory activity was found with fraction IV plasma samples
obtained immediately following (0 minutes) and 45 minutes after com-
pletion of the expansion (Table 25). Only with the 45 minute sample
was the inhibition reversible (Table 25). With both determinations
there was an increase in resistance, but the effect of the specimen
on MP was variable.

In addition to the samples from dogs 10, 11, and 12, which were
deproteinized with H-TCA, samples were also obtained which were not
treated with H-TCA but were deproteinized by fractionation on Sephadex
G25F resin. Although there were several samples which resulted in a
decrease in frog skin short circuit current (Table 27), none were
reversible (Table 26). The effects on the membrane potential and
resistance were variable. Similar samples from dogs 13, 14, and 15,
including the control samples, also exhibited inhibitory activity on
the SCC (Table 27). However, in only one instance (30 minute sample
from dog 13) was the effect a reversible one (Tabie 26). A second
determination with this sample produced an increase in the SCC. Effects

on MP and R were variable.
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These studies indicate that hemodialyzed uremic patients, who
exhibit a fluid retention which is less than 5% of their dry body
weight, possess no reproducible evidence of an antinatriferic activity
in their plasma. Plasma ultrafiltrates which were concentrated from
8~ to 27-fold, and dialysis fluids concentrated 3600-fold, also did not
demonstrate an antinatriferic activity previously described by others.
Dogs which were acutely volume expanded with saline, equivalent to 3%
and 6% of their total body weight, also exhibited no antinatriferic
activity which was similar to that reported by others. If a natri-
uretic hormone exists which is also antinatriferic, it is concluded
that such a substance was not present in the specimens of thi1s investi-
gation.

The lack of antinatriferic activity in the uremic plasma samples
might have been due to the long delay between sample collection and
fractionation. Cort (47) and Cort et al. (49,58) report that an anti-
natriferic substance from carotid artery occluded cats i1s destroyed
by a 30 minute incubation in the presence of plasma protein at 37°C.

A similar incubation at 0°C resulted in no loss of active material (as
measured by its effect on frog skin SCC). Although the material from
cats is stable at 0°C for at least 30 minutes in nondeproteinized
plasma, the human material in the present studies may not have been
stable in an ice bath for the 2 to 4 hours which elapsed between col-
lection and fractionation. However, plasmas from JSe, CdeB, and DH
were frozen in a dry ice-acetone bath immediately after removai of the

red blood cells by centrifugation. Only fraction IV from the plasma
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from DH resulted in a reproducible reduction in short circuit current,
but a variable effect on membrane potential was obtained. Also, none
of the plasmas deproteinized with H-TCA was inhibitory.

A lack of antinatriferic activity in the dialysis fluid and
plasma ultrafiltrate samples could indicate that the substance is not

dialyzable from humans in vivo. Bourgoignie et al!. (20), for example,

observed that when whole uremic serum was ultrafiltered through a
membrane with a molecular weight rejection of 50,000 Daltons, no anti-
natriferic activity was present in the ultrafiltrate. On the other
hand, ultrafiltration of an active fraction (fraction IV) from
Sephadex G25F resin through the same memprane did result in anti-
natriferic activity in the ultrafiltrate. It was suggested that per-
haps the active material was released from a larger molecule (i.e.,
bound to a plasma protein) on passage through the resin.

Nondeproteinized uremic plasma samples, as discussed previously,
have been shown to retain an antinatriferic activity. Also, plasma
samples from carotid artery occluded cats have been shown to possess an
antinatriferic activity following H-TCA deproteinizaticn., Uremic plasma
samples in the studies reported here, which were similarly treated,
exhibited no such activity. This observation further substantiates
the conclusion that the patients studied did not possess an antinatri-
feric material in their plasma, which would also account for the lack of
this activity in the concentrated dialysis fluid and plasma ultrafiltrate
specimens.

One possible explanation for the lack of antinatriferic activity

in the volume expansion experiments may be that none of tha animals
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studied were prehydrated, pretreated with mineralocorticoids, or given
excess salt in their diet prior to the studies. These maneuvers are
frequently done in experiments of this type (9,32,65,71,§],94,104,13],
147,148,165). As a result there may not have been an adequate expan-
sion of the extracellular fluid volume with isotonic saline to require
the release of an antinatriferic substance. Other factors previously
discussed (REVIEW OF THE LITERATURE--Section B) may have been suffi-
cient to eliminate the imposed saline load.

Higgins (83), for example, observed that dogs which were in a
state of positive sodium balance, as a result of DOCA administration
and a high salt diet, showed a more rapid rate of sodium excretion dur-
ing saline loading than did dogs that were salt depleted. It was
postulated that the interstitial fluid volume may play an important role
in the control of sodium excretion. In salt depleted dogs, with a
plasma volume significantly below normal, influsion of 6% dextran in 5%
glucose expanded the plasma volume from 3.5% to 5.4% but failed to
increase the rate of sodium excretion (84). Even in dogs on a normal
salt diet, infusion of up to 600 ml of albumin or dextran caused only
moderate increases (and also decreases) in sodium excretion.

In support of Higgens' observations, Schrier et al. (147) ob-
served that the stimulus to natriuresis in the dog seemed to be an
increase in the total extracellular fluid volume, including the inter-
stitial space, rather than an increase in just the intravascular volume.
Also, Sonnenberg and Pearce (159), investigating the natriuretic re-

sponse to measured blood volume expansion in differently hydrated dogs,
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observed that there was a significantly greater response in animals
prehydrated with saline than was true in normally hydrated or de-
hydrated animals. These authors suggested that the renal regulation
of the extracellular fluid volume in the dog in response to intra-

vascular expansion is determined by the existing extravascular volume.



SUMMARY AND CONCLUSIONS

The possibility of using spent hemodialysis fluid and plasma
ultrafiltrates from uremic humans undergoing maintenance hemodialysis
as a source of antinatriferic activity was investigated. Uremic plasma,
from the patients studied, either with or without H-TCA deproteiniza-
tion, demonstrated very little if any reversible antinatriferic activ-
ity in fraction IV following Sephadex fractionation. Fraction IV from
spent hemodialysis fluid and plasma ultrafiltrate concentrates also
demonstrated no reversible antinatriferic activity which could not be
attributed to ammonium ion.

It is concluded from these studies that patients who have a fluid
retention which is less than 5% of their dry body weight, who are being
maintained by chronic hemodialysis, do not possess measurable quanti-
ties of a previously described antinatriferic material. It is also
concluded that the spent hemodialysis fluid and plasma ultrafiltrates
from these patients do not contain measurable amounts of this substance
as determined by the methods used in this investigation.

Plasma samples from acutely volume expanded dogs, with or without
H-TCA deproteinization, demonstrated no reversible antinatriferic
activity in fraction IV following Sephadex fractionation. Plasma samples
from these dogs which had been deproteinized with H-TCA, but had not

been fractionated on Sephadex resin, demonstrated no reversible

174
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antinatriferic activity that could not be attributed to TCA™ anion
contamination. From these results it is concluded that the natriuresis
seen in situations of acute expansion of the extracellular fluid volume
with isotonic saline cannot be attributed to an antinatriferic sub-
stance in the plasma. If a natriuretic hormone possesses antinatri-
feric activity, as previously described by others, it is also concluded
that there was no natriuretic hormone present in any of the uremic or

dog specimens of this study.
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APPENDIX VII

Effects of lyophilized fraction IV from H-TCA deproteinized plasma
samples from dog 9 (6% total body weight expansion) following fraction-
ation on Sephadex G25F resin. Duplicate determinations were made using
different skins. The average of the last 3 measurements obtained dur-
ing the control period (C) is followed by the-average of the last 3
measurements taken after addition of sample to the membrane (E). Imme-
diately below these figyres is the percent change from control obtained
during the experimental period. Frog skins were continuously short
circuited, with SCC and MP being recorded at 5 minute intervals throughe
out the control and experimental periods. The resistance was calculated
as shown in Appendix I. H-TCA deproteinized plasma samples from dogs
10-12 were not fractionated.

MP (mV) SCC (pA) R (ohms)

069 | skiNn| ¢ | E c | ¢ ¢ |

CONTROL 1 | 22.0l27.0 | 35.0 '39.8 628 | 678
+23% +14% +8%

2 | 6.511.2 | 48.7 180.7 133 | 140
+72% +66% 5%

0 MINUTES 1 | 25.7 l2s.0 | 48.7 139.0 528 | 641
Z3% -201 +21%

2 | 47.5 182.2 | 28.3 123.0 1670 11840
114 “19% +10%

15 MINUTES 1 | 7.8116.0 | 43.2 Is9.3 182 | 269
+105% +37% +485%

2 | 21.0129.0 59.3 168.0 345 | 426
+38% ¥15% +245%

30 MINUTES 1 [19.5]22.7 | 46.3 Is5.3 421 | 410
+16% ¥19% -39

2 | 8.8110.0 | 68.0 176.7 130 | 131
+14% +13% 1%

45 MINUTES 1 | 7.3 7.0 | 42.7 l3a.7 171 | 202
“43 -19% +17%

2 |13.2 14.0 | 27.7 125.8 476 | 542
+6% 7% +14%
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