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ABSTRACT

DETERMINATION OF THE HILBERT CLASS FIELD

FOR CERTAIN ALGEBRAIC NUMBER FIELDS

BY

Colleen Theusch

To each algebraic number field K is

associated the Hilbert Class Field CF(K). This Field

CF(K) is characterized as the (unique) maximal

abelian unramified extension of K. CF(K)/K is of

degree h where h is the order of the ideal class

group of K, that is, h = h(K) is the class number

of the field K.

In general the determination of the Hilbert

Class Field of K is a very difficult problem. In

this thesis the properties of the number discriminant

of an element are employed to explicitly determine

the Hilbert Class Field of some quadratic number

fields. Then localization techniques are used to

determine the Hilbert Class Field of certain BEE:

normal algebraic number fields. A characterization

of the pure fields .(fields of the form Q(n/a) )

for which these techniques are valid is given through

the theorems and corollaries.
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INTRODUCTION

To each algebraic number field K is

associated the Hilbert Class Field CF(K). This field

CF(K) is characterized as the (unique) maximal

abelian unramified extension of K. CF(K)/K is of

degree h where h is the order of the ideal class

group of K, that is, h = h(K) is the class number

of the field K.

In general the determination of the class

field of K is a very difficult problem. The theory

of complex multiplication presents an adequate, though

rather involved, analytic method for determining the

class fields of the imaginary quadratic fields. When

K/Q is cyclic of prime degree n, CF(K) may be

abelian and hence identical with the genus field of

K, the maximal abelian subfield of CF(K)/Q. Thus

the method used to determine the genus field as found

in [2] applies. However, even in these cases the

explicit determination of the Hilbert Class Field is

difficult since the necessary calculation of the

class invariants and automorphisms is frequently

extremely tedious.



In the second chapter of this thesis I

will employ the properties of the number discriminant

of an element to explicitly determine the Hilbert

Class Field of some quadratic number fields. Local-

ization techniques which can be used to explicitly

determine the Hilbert Class Field of certain non-normal
 

number fields are presented in the third chapter. A

characterization of the pure fields (fields of the

form Q(n/a) ) for which these techniques are valid

is given through the theorems and corollaries.



CHAPTER I

BACKGROUND MATERIAL

In this chapter we will consider certain

concepts which are basic to the understanding of the E

material in Chapters II and III. I

We will be concerned here with algebraic

number fields, that is, finite algebraic extensions

of Q, the field of rational numbers. Any such

extension K of Q can be obtained by adjoining to

Q the root a of an irreducible monic polynomial

f(X) in Q[X]. The algebraic number a is referred

to as a primitive element for the extension while
 

f(X) = O is called the defining equation of a
 

which is denoted by f(X) = Irr.(a,Q). These two

concepts are defined similarly for an arbitrary

algebraic number field K = Q(a) so that we have an

extension L = K(B) with f(X) = Irr.(8,K) in K[X].

To retain the notion of unique factorization

in the algebraic number field K one considers the

ideals of K rather than its elements. Following

common practice we shall refer to a prime ideal of K

simply as a finite prime.



Ramification of the primes of K in

extensions of K plays a crucial role in class

field theory.

Definition l. A finite prime P of a
 

field K ramifies in an extension L of K if it

has a repeated factor in L, that is, if P extends

er
e . . .

to Q1 -°°Qn n Wlth each Qi prime in L and for

which at least one e- is greater than 1.
1

We state Kummer's Theorem here since it

supplies one method for determining the factorization

of all finite primes P of K in L = K(B)-

Kummer's Theorem. Let R be a Dedekind
 

Domain with quotient field k, K a finite separable

extension of k of degree n, and let S = intRK

be the integers of K. Suppose K has an integral

basis l,6,...,6n- over R. Let f(X) = Irr.(6,k)

and for a prime ideal P of R suppose

f(X) 2 flel(X)’°-fgeg(X) (mod P) where the fi(X)

are all distinct monic R-polynomials which are

irreducible modulo P. Then in S, P has the prime

. . . e1 99
ideal factorization SP = Q1 ---Q9 where

Q.
l = (SP: fi(e))o



Consideration of some valuation theory will

enable us to understand the ramification of the finite

and infinite primes of K.

Definition 2, A valuation of the field K
 
 

is a function ¢ from K into the non-negative reals

such that

(i) ¢(a) = 0 if and only if a = 0

(ii) ¢>(ab) = ¢(a)¢(b)

(iii) There exists a real constant C such

that ¢(a) :_1 implies ¢(l+a) i C.

An equivalent condition to (iii) is

(iiia) ¢(a+b) :_¢(a) + ¢(b). [6].

Definition ;. II¢H = inf. C where C runs
 

over all constants of Definition 2, (iii) above is

called the norm of o.

Each valuation on a field determines a

Hausdorff topology on that field. Those valuations

which yield the same topology are considered

equivalent and thus all valuations can be divided into

equivalence classes. For convenience we shall refer

to a complete equivalence class of valuations as a

valuation. The equivalence classes are sometimes



also called prime divisors of the field K and thus

each valuation ¢:K + R is associated with some

prime divisor or prime P of K. If “¢" = l we

term o a nonarchimedian valuation and the associated
 

 

P is then a nonarchimedian or finite prime. On the
-

other hand when H¢H > 1, ¢ and p are called

 
 

archimedian or infinite. We are primarily concerned
 

with the latter here since we already have a method

for determining the ramification of the finite primes

in a given field.

Archimedian valuations are in a sense an

extension of the concept of absolute value in a

complex field. For consider any isomorphism 0(i) of

K into the complex number field C. Galois theory

assures us that there are exactly n such isomorphisms

where n is the degree of K over Q. The image

field of say r of these isomorphisms will be

contained in the field of real numbers. The remaining

n-r occur in s conjugate pairs and have complex

image fields. Clearly n = r+25. We set

¢(l)(x) = [0(1)(x)l and note that this yields r+s

(i)
distinct valuations. As one would expect, the ¢

which correspond to those 0(1) which have real

images are termed real valuations, the others being

(i)

(I)

 

called complex valuations. The infinite primes P
 

are termed real or complex in accord with their



(1)

associated real or complex valuation ¢ .

1

Now if ¢( ) is a real valuation of K

which when extended to L becomes complex, we say

i

that its associated prime Poo has ramification
 

index ei = 2. In all other cases, that is, when

¢(i) remains real when extended or when ¢(i)

complex in K, the ramification index of the

associated Pm(i) is 1- A fact that will be used

repeatedly in what follows is that when K/k is

unramified, so is KL/kL.

While discussing ramification we referred

to class field theory. In the following pages we

will be particularly interested in the Absolute or

Hilbert Class Field of an algebraic number field
 

K = Q(a).

'Definition 3. The Hilbert Class Field of K
  

is the (unique) maximal abelian unramified extension

of K and is denoted by the symbol CF(K), where

unramified means unramified with respect to both

finite and infinite primes. Such an extension CF(K)

exists as demonstrated by Furtwangler in 1903. [4].

Let I be the group of all fractional ideals

and H the subgroup of principal ideals in K. The



order of I/H, the ideal class group of K, is
 

called the class number of K denoted h(K). One of
 

the standard facts of class field theory is that the

degree of the extension CF(K) over K is equal to

the class number of K.

The class number is an indication of how

far the ring int K (the integers of K) is removed

from being a principal ideal domain. In fact, h(K) is

1 if and only if int K is a principal ideal domain,

in which case K is its own Hilbert Class Field. It

is well known that while every ideal J of K when

lifted to CF(K) becomes principal, CF(K) itself

frequently contains non-principal ideals. This

gives rise to the classical problem of class field

towers. That is to ask, is the chain

K CKICK

o

where each Kn is the Hilbert Class Field of K

Coooc C000

2 Kn '

n-l'

necessarily finite? Clearly an affirmative answer to

this question would imply that each such tower would

have a principal ideal domain as one of its terms.

However, this question was answered negatively by

Golod and Safarevic in 1964. [5].

Generally it is extremely difficult to

calculate the Hilbert Class Field of an algebraic

number field. One criterion that may be used is that

the Galois group G(CF(K)/K) is isomorphic to the



ideal class group I/H. Thus in those cases where

this group has already been determined, considerations

of extensions of K having this as Galois group may

aid in the determination of the Hilbert Class Field

of K, since if such an extension is found to be

unramified, the uniqueness of CF(K) insures the

desired result.

Nevertheless, several inherent difficulties

remain. Even when the composition of the ideal class

group and consequently the class number is known, the

actual production of the abelian unramified extension

is problematic. Moreover for a wide range of fields

even the class number itself has not yet been computed.

Several tables of class numbers for quadratic, cubic,

and cyclotomic fields are exhibited by Borevich and

Shafarevich in [3]. All class numbers quoted in

this thesis are taken from that reference.

As has already been indicated, the problem

of calculating class fields involves proving that no

prime of K can ramify in certain extensions under

consideration. One method of achieving this is

through the use of discriminants.

Let L = K(e) be a finite separable

extension of K and let 01'02"°"On denote the n

distinct K-isomorphisms of L into the algebraic

closure of K. Let ej = o,(e), and

J



n-l 2 n-l 2 2
dL/K(l,6,...,e ) — l e e ... e — iI<Ij(ei-ej)

  

n-l)

Definition g. The element d (l,6,...,6
L/K

will be called here the number discriminant of 8.

 

 

Discriminants are of importance in

determining class fields since, according to Dedekind,

any finite prime P of K that ramifies in L must

n-l)

divide every number discriminant dL/K(l,6,...,6

Thus in searching for unramified extensions L of K

it is sufficient to show that there exist relatively

prime number discriminants for two elements of L or

to prove that those primes of K which divide any

given number discriminant remain unramified in L.

Both these methods will be employed in the following

chapters.

We must consider cyclotomic fields since

a cyclotomic extension of some algebraic number fields

will yield the Hilbert Class Field CF(K).

Definition E. An extension of the rational
 

field obtained by adjoining a primitive n-th root

of unity is termed a cyclotomic number field.
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Definition 1. K(a) is a cyclotomic
  

extension of K if a is a primitive element for a
 

subfield of a cyclotomic number field.

Let be a primitive n—th root of unity.
Cn

If K is an algebraic number field that meets QICn)

at Q, then K(cn) is an extension of degree ¢(n)

over K. In particular, for n = p (a prime) and any

K which does not contain any subfield of Q(cp) other

than Q, (K(Cp):K) = p-l. While every cyclotomic

number field is abelian, only those for which n = 2, 4,

e
p , and 2pe with p an odd prime are cyclic.

The defining equation for K(Cp) is

Xp"l + XE)"2 + ... + X + l = 0. If k is a subfield

of Q(Cp) with index m, then k = Q(6p) where 6p

a a2 0 O 0 am-1

p + 2;p + C9 + + C9 '

2 i a < p, and conversely. For instance Q(Cp+Cp'l)

is of the form C

has index 2 in Q(Cp). Since Eb = Cp'l, §p+;p'l

and all its conjugates are real. Thus Q(cp+§p'1)

is real as well as all its subfields. Since Q(Cp)

is cyclic, Q(Cp+cp‘l) is its only subfield of

index 2. Thus all the subfields of Q(§p) of odd

degree are contained in Q(;p+§p‘1) and hence are

real. When p E 1 (mod 4), Q(/p) is contained in

Q(Cp) and /p has defining equation X2 + X - (p-l)/4=0,

while for p E 3 (mod 4), Q(/-p) is the quadratic
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subfield of Q(Cp) with defining equation

x2 + X + (p+1)/4 = 0.

Definition g. Let f(X) = 0 be the
 

defining equation of the integer B of L = K(B)

over K. The integer f'(8) of L is called the

number different of 8 over K.
 

The number discriminant of an integer is

(within a sign) the norm of the number different.

Further any prime P of L which is ramified over

K divides every number different. Other useful

facts are that

(9-1)

2I = (-1) 2 pP‘2d(1,cp,...,cpp' ,

and that f'(Cp) divides p.

Thus the only primes P of L = K(;p)

which can ramify over K must divide p. Therefore

when H = K(6p) is a subfield of L, the only primes

of H which can ramify over K are those primes

which are divisors of p, since if a prime ramifies

in a subfield of L it must also ramify in L.

Since localization methods will be used to

exhibit the Hilbert Class Field for some algebraic

number fields, we consider some local field theory ---

primarily that related to Qp, the completion of the

field Q of rational numbers with respect to a



l3

p-adic valuation.

Definition 2. Let x be any rational
 

number other than zero. Then for any prime p,

x = pa(a/b) where p divides neither of the

integers a or b. Let

IXIp = 0 if x = 0

p‘a if x # 0.

The non—negative real valued function |x| + |x| is
P

called the p-adic valuation on Q.
  

The function thus defined is clearly a

valuation. Moreover for a p-adic valuation

condition (iiia) may be replaced by the stronger

(iiib) |a+b|p :_max (Ialp,|b|p).

A p—adic valuation is non—archimedian as can be seen

from (iiib) which yields Ia+l|p :_max(|a|p,|l|p) = 1

when la] 1 l. The ring of integers of Qp is
P

denoted by Op = {a in Qp:lalp : 1} while

P = {a in Qp:|a|p < l} is the unique prime ideal of

Qp. Since Qp has only one prime ideal, consideration

of the ramification which may occur in Qp(a) is much

simpler than that in an algebraic number field.

Definition lg. Qp(a)/Qp is totally ramified
  

if P, the unique prime ideal of Qp, has ramification
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index in Qp(a) equal to the degree of the extension.

From (x-1)¢pIX) a (x-i)P (mod p) it

follows that ¢p(x) E (X-l)p'1 (mod p) where ¢p(X)

is the p-th cyclotomic polynomial and hence Qp(cp)

is totally ramified by Kummer's Theorem.

Definition ll. Qp(a)/Qp is tamely ramified
 

if p does not divide the degree of the extension.

Since the degree of Qp(cp) over Qp is

p-l, Qp(z;p)/Qp is tamely ramified.

We state one form of Hensel's Lemma.
 

Let R be a Dedekind Domain with quotient

field k and let P be an integral prime ideal of

R. Suppose that f(X) is a polynomial of R[X]

such that for some a in R, ,f(a) E 0 (mod P) and

f'(a) ? 0 (mod P). Then f(X) = 0 has at least one

(non—repeated) root in the local field kP.

Hensel's Lemma implies that Qp contains

the (p-l)-th roots of 1 since

xP‘l-i 2 (X-1)(X—2)...(X-(p-l)) (mod p)

so that ¢p_l(X) must split completely in Qp.

For our purpose one of the most crucial
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aspects of local field theory is that the ramification

index of a rational prime p of Q in an extension

0(a) is the same as the ramification index of the

unique prime ideal P of Qp(a) as has been shown

by Artin.



CHAPTER II

DISCRIMINANTS DETERMINE CLASS FIELDS

In this section we shall see that the class

field of Q(/m), for certain composite m, can be

determined solely by consideration of relative

number discriminants. We will list those fields with

|m| < 500 to which the particular propositions apply.

Theorem I, Let m = pq > 0 where p and

q are distinct positive prime numbers with

1 (mod 4), and suppose Q(/m) has class number

"
O n

h = 2. Then

CF(Q(/m)) = QI/p,/q).

Proof. We have already seen that a

necessary condition that a finite prime of K = Q(/m)
 

ramify in an extension of K is that it divide

every relative number discriminant. Clearly

L = Q(/p,/q) is an extension of K of degree 2.

Further (l+/p)/2 and either (l+/q)/2 or /q

(depending on whether or not q E 1 (mod 4)) are

16
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integral. Now we have the relative number discriminants

for L/K:

d(l, (l+/p)/2) = p

d(l, /q) = 4q

d(1, (1+/q)/2) = q-

Since p and 4q are relatively prime, it is

impossible for any finite prime of K to ramify in the

extension L. Moreover since L is real, the

archimedian primes of K also are unramified. Hence

Q(/p,/q) is unramified of degree h = 2 over Q(/m)

and thus must be the Hilbert Class Field of

K = Q(/m).

This theorem can be applied to a rather

long list of real quadratic number fields. When

Hp E 1 (mod 4) with m = pq, Q(/m) has class number

2 for the following m and hence for these m we

have CF(Q(/m)) = Q(/p,/q).
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15

26

34

35

39

51

55

58

65

74

85

87

91

95

106

111

115
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41

149

13
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29

109
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53

13

193

17

197

13

37

137

149

41

229

233

157
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7

53
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Modification of the conditions placed on m

yield several corollaries to the above theorem. The

first of these concerns imaginary quadratic fields.

Corollary 1} Let m = pq > 0 where p and
 

q are distinct positive prime numbers with p # 2 and

such that Q(/—m) has class number 2. Then

CF(Q(/—m)) Q(/p./-q) if p 1 (mod 4)

CF(Q(/-m)) Q(/-p./q) if p 3 (mod 4).

Proof. The finite primes of Q(/-m) other

than p cannot ramify in the extension since we have

d(1, (i+/p)/2) p if p 1 (mod 4)

d(l, (i+/-p)/2 = -p if p 3 (mod 4).

But neither can the (repeated) prime factor of p in

Q(/—m) ramify in the extension since p # 2 and

d(1, /q) = 4g. The archimedian primes of Q(/-m)

are already complex and hence are no cause for

concern. The result follows as in the theorem.

As examples of this we have

CF(Q(/-m)) = QI/p./-q) or QI/-p,/q) for the

following m.
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m p q m p q

6 3 2 91 7 13

10 5 2 115 5 23

15 3 5 123 3 41

22 11 2 187 11 17

35 5 7 235 5 47

51 3 17 267 3 89

58 29 2 403 31 13

427 7 61

Returning again to the case of the real

quadratic fields we have

Corollary 2. Let m = pqr > 0 where p,
 

q, and r are distinct positive prime numbers with

p E 1 (mod 4) and neither q nor r E! 1 (mod 4).

Suppose that the class number of Q(/m) is 2. Then

CF(Q(/m)) = Q(/p./qr).

Proof. For the integers (l+/p)/2, /qr,

and (l+/qr)/2 of Q(/p,/qr) we have the relative

number discriminants over Q(/m) equal to p, 4qr,

and qr respectively. Since p and 4qr are

relatively prime and since Q(/p,/qr) contains only

real infinite primes, Q(/p,/qr) is an unramified

extension of degree 2 over Q(/m) and hence its

Hilbert Class Field.

As a result of this corollary we have
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CF(Q(/m)) = Q(/p,/qr) for the following m.

m p q r m p q r

30 5 2 3 285 5 3 19

70 5 2 7 286 13 2 11

78 13 2 3 310 5 2 31

102 17 2 3 318 53 2 3

105 5 3 7 345 5 3 23

110 5 2 11 357 17 3 7

165 5 3 11 366 61 2 3

174 29 2 3 374 17 2 11

182 13 2 7 385 5 7 11

190 5 2 19 406 29 2 7

222 37 2 3 429 13 3 11

230 5 2 23 430 5 2 43

238 17 2 7 465 5 3 31

246 41 2 3 470 5 2 47

273 13 3 7 494 13 2 19

Further changes in the hypotheses of the

theorem give the final result of this section as

Corollary 3. Let m = 2pq > 0 where p
 

and q are distinct odd positive primes with

p,q E 3 (mod 4). Moreover let the class number of

Q(%m) be 2. Then

CFIQI/mI) = QI/2./pq).

Proof. Since p,q E 3 (mod 4) we have

pg 5 1 (mod 4). Thus (l+/pq)/2 and /2 are

integers of Q(/2,/pq) with d(1, (l+/pq)/2) = pq

while d(1, /2) = 4. Moreover all archimedian
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primes remain real. Hence the conclusion follows

immediately.

Since the class number of Q(/m) is 2

for the following m, we have CF(Q(/m)) = Q(/2,/pq)

for these m.

m 2 p q m 2 p q

42 2 3 7 282 2 3 47

66 2 3 11 354 2 3 59

114 2 3 19 402 2 3 67

138 2 3 23 418 2 11 19

154 2 7 11 426 2 3 71

186 2 3 31 474 2 3 79

258 2 3 43 498 2 3 83

266 2 7 19
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CHAPTER III

HILBERT CLASS FIELDS THROUGH

LOCALIZATION TECHNIQUES

We now turn our attention to a more

interesting class of fields --- the pure fields,

that is, those of the form Q(n/a). Since the

rationals do not contain the n-th roots of unity

for n # 2 the pure fields are never normal over

the rationals when n f 2. In order to determine

the class fields of certain of these we will employ

localization techniques. The lemmas that follow are

the foundation of the technique.

Lemma A. Let p be a positive rational

prime number and C a primitive p-th root of

P

= P‘1 _unity. Then Qp(cp) Qp( / p) where Qp denotes

the field of p-adic rational numbers.

Proof. Since Qp(2;p)/Qp is tamely and

totally ramified we have that Qp(cp) = Qp(p"1/6p)

for some unit 8 of Qp. But in fact, -p = —u(1_;)P'1

where -u E -(p-l)! E l mod(l-C). But then by

23
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Hensel's Lemma there exists a unit a in Qp such

-1

that 8p = -u.

 

-1

Corollary. Qp(p /-p)/Qp is cyclic, and

tamely and totally ramified.

Proof. Q contains the (p-l)-th roots

P

of unity.

EEEEE.§° If h is an odd divisor of p-l,

then Qp(h/p) = Qp(6) where 6 is a primitive

element for the h-th degree subfield of Q(;p).

Proof. Clearly Qp(h/p) = Qp(h/-p) since

h is odd. Qp(cp) is a cyclic extension of Qp

and thus contains only one subfield of degree h.

This, together with Lemma A, yields the conclusion.

We are now in a position to prove our first

theorem concerning some fields which are ngt_normal

over the rationals. Direct application of this

theorem will enable us to actually display the Hilbert

Class Field of certain fields of this type for which

the class number is known.

Theorem 2. Let the class number h of

Q(e/p) be odd and let h be a divisor of e. Then

if p E 1 (mod e) we have
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CF(QIe/pI) = 0(e/p,6)

where 0 is a primitive element for the unique

subfield of degree h of the cyclotomic field Q(cp).

Proof. Since the discriminant of the

number over Q is a power of p, it is clear
Cp

that the only finite prime of Q(e/p) that can

ramify in the extension Q(e/p,§p) and hence in

Q(e/p,8) is e/p. But not even e/p can ramify.

For by Hensel's Lemma, Qp contains the (p-l)-th

roots of unity and hence also the e—th roots of

unity. Thus, locally, Qp(e/p)/Qp is normal, in

fact, cyclic. Since h is odd and divides e,

Qp(e/p) contains Qp(h/p). On the other hand,

Qp(h/p) = Qp(0) by Lemma B. The fact that global

ramification can be determined by local ramification

indicates that the ramification index of p in

Q(e/p,9) as well as in Q(e/p) is e. Hence e/p

does not ramify in the given extension.

Consideration of the following diagram

should help clarify the preceding statements.
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QPIP‘l/p)

 

h h

Qp( /p) = QPI /-p)

 

 

 

p-l_ _
Qp( / p) - Qp(cp)

 
e—

Qp( / p)

= Qp(9)
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Now that we have disposed of the finite

. . . . . . . i
primes we w111 conSider the infinite primes Pm( )

in Q(e/p). The only Pm(i) which could ramify in

the extension are those associated with the real

archimedian valuations ¢(i) of Q(e/p). Now since

Q(6)/Q is galois and of odd degree h, 0(0) is a

real field. Hence 6 and all its conjugates are also

(i)
real. Thus the extensions of the real 0 are real

in Q(e/p,0), and hence none of the Pm(1) ramify.

Thus Q(e/p,0) is an abelian unramified

extension of Q(e/p) of degree h and is therefore

the Hilbert Class Field.

We have now arrived at a position from which

we can specify the Hilbert Class Field for specific

pure fields. Since k = Q(3/p) has class number 3

for p = 7, 13, 19, 31, and 37 [3] the Hilbert Class

Field of k is k(0) where 0 is a primitive

element for the cubic subfield of Q(Cp). In

particular we have

CF(Q(3/7))=Q(3/7.C7+C76)

CF(Q(3/13))=Q(3/13,§ +2 5+; °+g 12)

13 l3 13 13

CF(Q(3/19))=Q(3/19.c19+47+c°+c‘1+412+c‘°)

CF(Q(3/31))=Q(3/31,C31+CZ+C“+C°+C15+C16+C23+C27+C29+c3°)

CF(Q(3/37))=Q(3/37,§ 7+cs+§°+§1°+§11+§1“+§23+;25+§27+

3

C29+C31+C36)O
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We note the corresponding defining equations

which yield these extensions.

Irr(8,Q(3/7 )) = x3 + x2 - 2x - 1

Irr(8,Q(3/13)) = x3 + x2 - 4x + 1

Irr(8,Q(3/19)) = x3 + x2 — 6X - 7

Irr(0,Q(3/3l)) = x3 + x2 - 10x - 8

Irr(e,Q(3/37)) = X3 + x2 — 12x + 11

We continue with

Lgmm3_g. If e is even and p E 1 (mod 2e),

then Qp(e/p) = Qp(e/-p).

Proof. We have already seen that Qp

contains the (p-l)—th roots of unity. Thus under

the hypotheses, Qp contains the 2e-th roots of

unity and hence also the e-th roots of -l. The

conclusion is immediate.

Lemma 2. Qp(C ) contains Qp(e/p) when
P

both e is even and p E 1 (mod 2e).

Proof. We first note that since

p E 1 (mod 2e), Qp(p-l/-p) contains Qp(e/—p). Then

Lemma C followed by Lemma A yields

9/ = e/— = e cQPI p) Qp( p) Qp( )<: Qp( p)

where 0 is a primitive element for the e-th degree
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subfield of Q(cp).

The preceding lemmas enable us to prove

Theorem 3. Let p E 1 (mod 2e) and suppose

Q(e/p) has class number h with e z 0 (mod 2h).

Then

CF(Q(e/p)) = QIe/p,e)

where 0 is a primitive element for the h-th degree

extension of Q(/p) in Q(Cp).

Proof. The stated hypotheses imply that

p 1 (mod 4). Since Q(Cp) contains Q(/p) when

1 (mod 4), Q(e/p,6) is an extension of Q(e/p)P

of degree h.

QIe/pIGI

/ e/2

Q(e/p) Q(/p,8)

e/2 h

Q(/p)

2
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Clearly e/p is the only finite prime of Q(e/p)

that can possibly ramify in Q(e/p,6). To see that

this in fact cannot occur, we again localize at p.

From Lemma D we have that Qp(cp) contains Qp(e/p)

with the unique subfield Qp(/p,6) = Qp(2h/p) of

degree 2h. Since e E 0 (mod 2h), Qp(e/p) contains

Qp(/p,0).

The following diagram illustrates the above

containments.

= p-1 -
Qp(cp) Qp( / p)

(p-l)/2 = 2m

 

Qp(e¢p) = Qp(e/-p)'

l em

Qp(2h/p) = Qp(/p,6)

h

Qp(/p)

2
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The local ramification index e of p in

Qp(e/p) indicates that the global ramification index

of p in Q(e/p,6) must also be e. Hence e/p

does not ramify in the extension.

Since the degree of Q(§p)/Q(8) is even,

0(6) is real. Thus all the conjugates of 8 are

real, and hence the infinite primes of Q(e/p) have

ramification index 1 in Q(e/p,0). Thus the Hilbert

Class Field of Q(e/p) is indeed Q(e/p,0).

Clearly Theorems 2 and 3 are also valid for

Q(e/pa) where a and e are relatively prime since

in that case Q(e/p) = Q(e/pa).

When p E 1 (mod 4), Q(§p) does ngt_

contain Q(/-p). Thus the hypothesis e E 0 (mod 2h)

of Theorem 3 can be omitted to obtain

Corollary 1, Let p E 1 (mod 2e) with
 

e E 0 (mod 2), and suppose that Q(e/—p) has class

number h where h divides e. Then

CF(Q(e/-p)) = QIe/—p,e)

where 0 is a primitive element for the h-th degree

subfield of Q(Cp).

Proof. Since e is even the archimedian
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primes in Q(e/-p) are already complex and therefore

cannot further ramify. Moreover the hypotheses

imply that p E 1 (mod 4). Since p E 1 (mod 2e),

Qp(e/-p) is cyclic over Qp by Lemma C. Application

of Lemma A yields Qp(6) = Qp(h/—p) as the unique

subfield of Qp(e/-p) of degree h.

As a special application of the above we

have

Corollaryg. Let p E 1 (mod 4) be such
 

that Q(/~p) has class number 2. Then

CF(Q(/—p)) = QI/-p./p) = QIi./p).

Proof. Q(/p) is the quadratic subfield

of Q(§p) when p E 1 (mod 4).

For p = 5, 13, and 37, Q(/-p) has class

number 2. Hence

CF(Q( /—5)) = QIi. /5)

CF(Q(/-13)) = Q(i,/l3)

CF(Q(/-37)) = QIi,/37).

The radicands of the pure fields we have

considered up to this point have all been primes.
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The theory can be extended to include certain

composite radicands. To begin this we shall deal

with cubic extensions of the rationals.

Lemma E, Let a,b be in Qp* (the

multiplicative group of the non-zero elements of

Qp) but not in Qp*3. Then when a/b is an element

*3 3 = 3
of Qp . Qp( /a) Qp( /b).

Proof. Clear.

Lgmma_§. Let the rational integer r be a

cubic residue modulo p with p a positive rational

prime distinct from 3. Then Qp(3/p) = Qp(3/rp).

Proof. By Hensel's Lemma, r is in Qp*3

and rp/p = r.

1 (mod 3) and let rI
l
l

Theorem 4. Let p

be a cubic residue modulo p. Suppose h(Q(3/rp)) =3.

Then

CF(Q(3/rp)) = Q(3/rp.6)

where 6 is a primitive element for the cubic

subfield of Q(Cp).

Proof. As we have observed before, 3/p is

the only finite prime that could ramify in the
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extension Q(3/rp,0) of Q(3/rp). Localizing at p

we see that since p E 1 (mod 3), Qp contains the

cube roots of unity. Hence Qp(3/P)/Qp is cyclic

and from Lemma F it follows that Qp(3/rp)/Qp is also

cyclic since r is a cubic residue modulo p. Moreover,

application of Lemmas F and B yield. Qp(3/rp) = Qp(6).

Thus globally p has ramification index 3 in

Q(3/rp,9) which is also its index in Q(3/rp).

Since Q(0)/Q is galois and of odd degree,

Q(6) is a real field. Therefore the real archimedian

primes of Q(3/rp) extend to real primes in

Q(3/rp,9). Hence Q(3/rp,9) is an abelian unramified

extension of Q(3/rp) of degree 3 and is therefore

the Hilbert Class Field.

For instance note that Q(3/42) has class

number 3. Thus CF(Q(3/42)) = Q(3/42,6) where 6

is a primitive element for the cubic subfield of

Q(Cp). That is, CF(Q(3/42)) = 0(3/42,c7+c7‘), with

defining equation Irr(6, Q(3/42)) = X3 + X2 - 2X - 1.

It can readily be seen that in Lemmas E and

F and in Theorem 4, the prime 3 can be replaced by

any odd q # p so that we have

Theorem 43. Let p E 1 (mod q) and
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q E 1 (mod 2). Further let r be a q—th power

residue modulo p, and suppose that h(Q(q/rp)) = q.

Then

q q

CF(Q( /rp)) = Q( /rp,e)

where 0 is a primitive element for the q-th degree

subfield of Q(Cp).

A very slight modification in the hypotheses

yields

Theorem 42, Let p E 1 (mod 2g) with

q E 0 (mod 2) and let the positive rational integer

r be a q-th power residue modulo p. Suppose that

h(Q(q/-rp)) = q. Then

CF(Q(q/-rp)) = QIq/—rp.e)

where 0 is a primitive element for the q-th degree

subfield of Q(Cp).

Proof. Since r is a q—th power residue

we have Qp(q/-rp) = Qp(q/—p), while the first

corollary to Theorem 3 assures us that

Qp(q/-p) = Qp(q/-p,0). Hence the finite primes of

Q(q/-rp) do not ramify in Q(q/-rp,0). Since the



36

archimedian primes of Q(q/-rp) are complex, no

ramification can occur.

Similarly we have

Theorem 43, Let p E 1 (mod 2q) with

q E 0 (mod 2) and let r > 0 be a q—th power

residue modulo p. Suppose that h(Q(q/rp)) = q. Then

CF(Q(q/rp)) = QIq/rp,e)

0 as before.

Proof. We need only note that since

p E 1 (mod 2q) Qp contains the q-th roots of —1.

Thus Qp(q/rp) = Qp(q/-rp) = Qp(q/—p) = Qp(q/—p,0).

The last equality is a result of Lemma A. Regarding

the infinite primes, we need only observe that since

(p-l)/q is even, Q(6) must be real.
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