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ABSTRACT

THE UNIQUENESS OF THE

NORDSTROM—ROBINSON AND THE GOLAY BINARY CODES

BY

Stephen Lee Snover

In this thesis a code is considered to be any

collection of vectors in V(n,2), the vector space of

n-dimensions over GF(2) . Two codes are considered to be

equivalent if one can be obtained from the other by (a) a

translation, i.e. adding a fixed vector of V(n,2) to each

code vector and/or (b) a permutation of the n fixed basis

vectors of V(n,2), i.e. the n coordinate positions of

all the vectors. The notation (n,M,d) refers to a code

of M vectors chosen from V(n,2) so that the minimum

Hamming distance between any pair of code vectors is d

It is shown in this thesis that the codes given by the

notation (15,256,5) , (16,256,6) , (23,212,7) , and (24,212,8)

are unique up to equivalence, and are the Nordstrom-Robinson

code, its parity check extension code, the Golay binary code,

and its extension, resp. Note that the uniqueness of the

Golay code is proved without assuming linearity.

The key to the uniqueness proof lies in the fact that

the minimun non-zero weight vectors in each of these codes

are elements in a t-design: the sets of weight 5 and 6
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vectors in the Nordstrom-Robinson code and its extension give

rise to 4—(2,5,15) and 4—(3,6,l6) designs while the sets

of weight 7 and 8 code vectors in the Golay code and its

extension form S(4,7,23) and S(5,8,24) Steiner systems.

After discussing a new tool for the analysis of t-designs,

called generalized block intersection numbers and a new

definition, t-designs with d;;d i.e. t-designs which can0’

be embedded in codes with minimum distance do, it is shown

that the structure of each of these designs fixes the

structure of the corresponding code. It follows that the

proof of the uniqueness of the code up to an equivalence is

reduced to showing that the corresponding minimum weight

vector t—design is unique up to a permutation of the n

coordinate positions.

The 4—(3,6,16) design with d;z6 generated by the

weight 6 vectors in the extended Nordstrom—Robinson

(l6,256,6) code is called the XNR-design and plays a

fundamental role in showing the uniqueness of all the designs

in question. In the first place, the XNR—design is shown

to be unique by showing that any such design may always be

embedded in V(4,2) and then by showing that within V(4,2)

the design can only be constructed in one way, up to an

automorphism of V(4,2) . Since the constructive proof of

the XNR—design within V(4,2) actually involves PG(3,2) ,

the uniqueness of both the Nordstrom-Robinson code and its

extension follows.
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Stephen Lee Snover

From the uniqueness of the XNR—design, it is also

possible to conclude the uniqueness of the S(4,7,23)

Steiner system. Both the generalized block intersection

numbers and the fact that a subgroup isomorphic to A7 of

PSL(4,2) is l-transitive on lines of PG(3,2) aid in

showing that the XNR—design builds the S(4,7,23) design

uniquely, up to an arbitrary permutation of the 7 added

coordinates. Witt [40] proved the uniqueness of S(4,7,23)

based on the geometry of PG(2,S), while the same result is

proved here based on PG(3,2) and the fact that the XNR—

design is unique within this geometry.) Finally, from the

uniqueness of S(4,7,23), the uniqueness of S(5,8,24) and

of the Golay code and its extension, up to equivalence,

follow. Because these proofs proceed from the XNR-design,

it is actually shown that the extended Nordstrom-Robinson

code extends to the Golay binary code uniquely, up to an

arbitrary permutation of the added coordinates.

In order to tackle the coding theory problem basic to

this thesis, concepts from t-designs, the finite geometries

of V(n,2) and PG(n—l,2), and permutation and automorphism

groups are used. In particular, it is shown that A -+T(4),
7

i.e. A7 extended by the elementary abelian group of order

16, is the automorphism group of both the XNR-design and the

extended Nordstrom-Rdbinson code. Some graph theory is also

used in establishing what appears to be a new proof of the

classical isomorphism, A8 a PSL(4,2) . While this thesis
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offers new definitions, proofs, or results for each of these

topics in finite mathematics, the major contribution lies in

the application of t—designs to the study of non-linear

codes. In fact, it is the concept of the generalized block

intersection numbers for t-designs, yielding necessary

conditions for the building and extension of t-designs, Which

is most helpful in the analysis of non-linear codes and their

designs.
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Numbering and Notation
 

All the theorems, corollaries, lemmas, and important

equations and remarks are numbered consecutively through-

out this thesis with a three position label. For

example, theorem (6.5.9) is the ninth item worth labelling

in Section 5 of Chapter 6. If an item is referred to in

the chapter in which the item originally appears, a two

position reference number is given; the chapter number

is discarded in this case because it is not really

necessary and because then the fact that this item occurs

in the same chapter will be emphasized. If an item is

referred to in a different chapter from where it

originates, the entire three position reference number is

used. For example, within Chapter 6, Theorem (6.5.9) is

referred to as Theorem (5.9), and in other chapters, the

same theorem is referred to as Theorem (6.5.9).

In various places throughout this thesis the

following notation shall be used:

:= means "is defined to be" .

|X| means the cardinality of set X .

X‘\Y means the set difference of X and Y,

i.e. X\\Y := the set of elements

in X but not Y .

XZSY means the symmetric difference of sets

X and Y ,

i.e. XAY := (X\Y)L_)(Y\X) .



PSL(n,2)

06(+,2)

is the map m with its domain

restricted to the set 5

mean the symmetric and alternating

groups on n letters.

are notations used for certain

classical simple groups by E. Artin

in [1].



PART A: INTRODUCTION

CHAPTER 1

§1.1 Heuristic Introduction

In all forms of human communication messages are sent

by means of codes. We naturally code our ideas into

English phrases and sentences. English is a prototype for

the kind of code we wish to discuss, as it is a code

involving an agreed upon alphabet, a dictionary of code

words which are meaningful sequences of letters from this

alphabet, and messages being sentences or special sequences

of words. we should note that not all sequences of letters

form words, nor all sequences of words, messages.

Some codes, those commonly used during war times, are

designed to disguise messages so that no one but the

intended receiver can understand the message properly.

Such codes arecalled minimum decodable. We will be

concerned, however, with more common and very different

types of codes -- maximum decodable or error correcting

codes. These codes are designed to send messages in a

way that even errors in transmission do not change or

destroy the intended meaning of the message.

Errors in speaking or writing English, i.e. mispro-

nunciations or misspellings, are most often detected

1.1
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because the resulting "words" are meaningless sequences

of letters (words that are not in the code). Such errors

can then be corrected either from context or by asking

the sender to repeat the message. Sometimes, however,

small changes in Spellings or pronunciations cause

misunderstandings.

Error correcting codes are designed with the

following desirable features:

(1) The alphabet is simple; there are few symbols.

(2) There are enough words to convey any message,

so that it is not necessary to rely upon context or repeats

of messages in order to correct transmissional errors:

(3) words are not too "close" together, i.e. the

number of letters that need to be changed to convert a

code word into another is relatively large. Finally, in

practice it is important to be able to distinguish between

the end of one word and the beginning of the next by other

than a time lapse (as in English) or a punctuation mark

(as in Amharic, the Ethiopian language). Therefore, the

so-called fixed block length codes require that

(4) words all are of a fixed length of n letters.

Technically we may describe a fixed block length error

correcting code as follows: Let A := [0,1,2,...,k-—1} be

the alphabet and S := the cartesian product of n copies

of A be the code space. A code C in the code space S

is a subset of S . Each element x in C is called a



1.3

"word" of C and ‘x := (xl,x2,...,xn), where xi is the

i-th letter of the code word x,. A reasonable measure

of distance between two words is the number of places in

which their corresponding i-th letters differ. This is the

historical definition of the "Hamming distance" between

words.

A code C is often specified by the four parameters

(k,n,M,d) where k is the cardinality of the alphabet,

n is the length of each word, M is the number of code

words in code C , and d is the minimum distance between

any pair of code words from C . These parameters corre-

spond directly to the four features of an error correcting

code.

In this thesis, only the case of alphabets of two

letters is considered. we therefore shorten the parameters

for a code the (n,M,d) with k = 2 being understood.

Parameter 6 needs more explanation to make clear

the correspondence between 6 and the ability to correct

transmission errors in received words without relying upon

context or repeats. In the example of English, the

minimum distance is 1 since the words "step" and "stop"

differ only in one place. If "step" is sent and "stop"

received, you might not be able to even detect the error,

let alone be able to correct it. If English were refined

so that no two words in the dictionary differed by only





one letter, then the minimum distance would still be small,

namely 2, as exhibited by the pair of words "sign" and

"sing". In general we would like a code to have a

relatively high minimum distance d so that such minor

changes would not go unnoticed.

Although any subset of a code space S is a code, not

every one is "good". Most codes with many words are like

English in that the minimum distance between some pairs of

words equals 1 . "Good" codes have a maximum number of

code words relative to their parameter values of n and d

Thus, a fundamental problem in coding theory is the deter-

mination of the largest possible code and its "structure"

that can be selected in a given code space if the minimum

distance between code words is Specified.

In a way, the search for "good" codes amounts to a

search for sphere packings in given code spaces. Because

the Hamming distance is a legitimate distance function

which satisfies the triangle inequality, the spheres of

radius e about each code word in a (n,M,d) code are

disjoint spheres, When e = [(d-d)/Q]. Codes having the

property that the spheres of radius e pack the code

space are so "good" that they are called perfect. All

perfect codes are known (for k being any prime power)

and nearly-perfect and quasi—perfect codes are the topic

of much current study.
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If k (the number of letters in the alphabet) is a

power of a prime,field properties may be imposed upon the

alphabet so that the code space S has the structure of a

vector space Where, if .5 = (x1,x2,...,xn) and

X_= (Y1,Y2,...,yn) are any two vectors in S , then

95.41 = (x1 ”rs/1.x2 +y2,.. .,xn +yn) and

xx = (xly1,x2y2,...,xnyn), the component-wise operations

being performed in GF(k). These Operations have no

immediate intuitive interpretations, however, and are

imposed merely in order to apply What is already known

about the algebra and geometry of vector spaces to the

study of codes.

Codes having the property that they are subspaces of

their code vector space are called linear; more is known

about this kind of code than any other. Unfortunately,

linear codes are not in general as "good" as other

non-linear codes. One of the major accomplishments of

this thesis is the presentation of a new method of handling

some non-linear, "good" codes.

§l.2 The History 2: the Fundamental Questions ig_this

Thesis

Even before the discovery of either the Golay (23,212

or the Nordstrom-Robinson (15,28,S) binary codes, the

,7)

history of their uniqueness began. In 1927 Witt [39] and

[40], in an effort to establish the uniqueness of the 4-

and Mand S- trans1t1ve Math1eu groups M23 24





demonstrated the uniqueness of the Steiner systems,

S(4,7,23) and S(5,8,24), on Which these groups operate

as automorphism groups. Then shortly after Golay

discovered his (23,212,7) code Paige [29] showed that

12,7) code possesses a S(4,7,23) as its set ofany (23,2

weight 7 code vectors. Since Golay defined his code to be

linear, Paige could then display 12 linearly independent

weight 7 vectors in the S(4,7,23), which was already

shown to be unique by Witt, and claim that M23 is also

the automorphism group of Golay's code.

Pless [31] reproduced Paige's arguments and extended

12,7) or (24,212,8)them to showing that any linear (23,2

binary code contains S(4,7,23) or S(5,8,24) Steiner

system as its set of non-zero minimal weight code vectors

and possesses the automorphism group M23 or M24 ,

respectively. prever, both Paige and Pless relied on

Golay's original definition of the linearity of his code

in order to establish the facts about the automorphism

groups and uniqueness, in spite of the fact that they

showed that an arbitrary code with the right parameters

would contain the appropriate Steiner system. This

brings up the following question:

Qgestion #1: Is the uniqueness of the S(4,7,23)

and the S(5,8,24) systems sufficient to imply the

12 l
uniqueness of the (23,2 ,7) and (24,2 2,8) binary

codes without the restriction of linearity?
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1.7

If the answer be affirmative, then clearly by

quoting Pless, Paige, and‘Witt, the unique codes of those

parameters would also possess the automorphism groups,

M23 and M24

Golay's codes have the maximum number of possible

code vectors relative to their lengths and distances, a

property also shared by Nordstrom and Robinson's (15,28,S)

and (16,28,6) non-linear codes. When analyzing Golay's

(24,212,8) code, J. M. Goethals [15] noticed that this

code contained a (16,28,6) non-linear code in a special

way, and from this construction, he was able to find the

automorphism group of this code. Although he never

established a correspondence between Nordstrom-Robinson's

(16,28,6) code and his, Goethals was privately convinced

that they were the same and that perhaps the code in question

was unique. 80 it was Goethals Who inspired the following:

Qpestion #2: Are the (15,28,5) and (16,28,6)

Nordstrom-Robinson codes unique?

Question #3: Are the automorphism groups of these

codes A7 and A7 extended by the elementary abelian

group of order 16, respectively?

Question #4: Does the (16,28,6) code extend to

l

 

the Golay (24,2 2,8) code in essentially one way?

These four questions are all answered affirmatively

in this thesis. All the definitions, developments, and

proofs to these questions are completely self—contained
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1.8

herein, and the results of all but Question #3 are new.

§l.3 The Scope 2£_this Thesis
 

Although the basic and most difficult theorems in

this thesis show the uniqueness of the Nordstrom-Robinson

(15,28,5) and (16,28,6) and the Golay (23,21

1

2,7) and

(24,2 2,8) binary codes, this is certainly not the only

new nor important concept.

In a manner similar to Paige's analysis of the Golay

12,7) code [29], we proceed toward answering the(23,2

four basic questions of the thesis by showing that the

minimal weight non—zero code words in the Nordstrom-

Robinson (16,28,6) code form a t-design, a 4-(3,6,l6)

design with d216, which we call an XNR-design. Then the

question of the uniqueness of this code is found to be

equivalent to the uniqueness of the XNR-design. While

the uniqueness of the S(4,7,23) design of minimal

weight non-zero code vectors in the Golay (23,212 ,7) code

was proved to be unique by Witt even before the discovery

of the code, neither the existence nor the uniqueness of

the XNR-design seem to have previously been known. Thus

it is, that t—designs become basic in the analysis leading

to the uniqueness proofs of this thesis.

To the theory of t-designs, we unveil a new

definition, t-designs with dZLdO: and a new tool,

generalized block intersection numbers for any t-design.
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The extra condition, d;:do, for any t-design enables

one to distinguish among those t-designs which might be

useful for binary coding theory purposes and the rest.

The generalized block intersection numbers, a link between

Mendelsohn's intersection numbers [25] and J. M. Goethal's

block intersection numbers [16], become fundamental to the

analysis, being essential in Chapters 5, 6, 7, 11, and 12.

First of all, they are helpful in proving that the uniqueness

of the codes is equivalent to the uniqueness of the

t-designs of the minimal non-zero weight vectors of those

codes. These numbers prove that the S(5,8,24) design

can be built in essentially one way from the XNR-design.

12,8)With these numbers, we can deduce that any (24,2

code is necessarily the linear span of the S(5,8,24)

design formed by its minimal weight non-zero code vectors.

In fact, these new generalized intersection numbers are

just the tool necessary to tackle these codes without

assuming any linearity.

Permutation groups come into play in order to establish

a new construction of the important XNR-design, perhaps the

first direct explicit construction. Constructing this

design to contain the group A7 extended by the elementary

abelian group of order 16, it is then possible to conclude

at a later time that this group is the automorphism group

8
of the unique Nordstrom-Robinson code (16,2 ,6) and its

essential design.
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In order to establish the uniqueness of the XNR-design,

we need to appeal to the action of A7 on the geometry

of PG(3,2).- Instead of quoting the literature, however,

we establish What appears to be a new proof of the classical

isomorphism A8e=PSL(4,2), and then restrict our attention

to the action of A7

This thesis attempts to present new results, new

approaches, or at least new proofs in each of the

following studies:

(1) coding theory

(2) t-designs

(3) automorphism groups

(4) finite vector spaces over

GF(2), especially PG(3,2).

§1.4 The Organization Scheme 2§_the Chapters
 

As explained in §1.2, this thesis answers the four

questions:

Question #1: Is the uniqueness of the S(4,7,23)

and S(5,8,24) Steiner systems sufficient to imply the

12:7) and (24,212,8) binaryuniqueness of the (23,2

codes without the restriction of linearity?

Questionp: Are the (15,28,5) and (16,28,6)

Nordstrom-Robinson codes unique up to a permutation of

their 15 and 16 coordinates, respectively?

Question #3: Are the automorphism groups of these

codes A7 and A7 extended by the elementary abelian
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group of order 16, respectively?

Question t4: Does the (16,28,6) code extend to

the Golay (24,212,8) code in essentially one way?

 

We shall now explain how the chapters of this thesis

are organized in order to answer these questions.

First of all, the second through fifth chapters are

introductory in nature, developing definitions, examples,

and constructions of the codes under consideration.

Definitions used in more than one of the following chapters

are defined in these initial chapters. Other definitions,

for example those concerning graph theory, occur within the

only chapter where they are used. As often as possible,

the examples used to explain the definitions are examples

that will be referred to in a later part of this work.

Also within these introductory chapters are constructions

of the Golay codes, the S(4,7,23) and S(5,8,24) Steiner

systems, the Nordstrom—Robinson codes and the XNR—design.

Chapters 2 and 3 are devoted to coding theory definitions

and the existence of the codes under study, Chapter 4 to

t-designs and the development of the generalized block

intersection numbers, and Chapter 5 to permutation groups

and an explicit construction of the XNR-design.

Commencing with Chapter 6, we embark on an analysis of

the Nordstrom—Robinson codes culminating, in Chapter 10,

with the affirmative answers to Questions #2 and #3.
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This analysis begins in the first half of Chapter 6

by trying to parallel Paige's analysis of Golay's

(23,212,?) code. Although Golay's code is perfect, the

property Paige made use of in his proofs, the Nordstrom-

Robinson codes are not. However, both types of codes have

a maximal number of code vectors relative to their length

and minimum distance parameters. Using this property, we

are able in Theorem (6.3.1) to show that the minimum weight

8
non-zero code vectors of any (16,2 ,6) code, C , with

0 CC , form a XNR-design.

We find ourselves well on the way to answering

Question 2 in the second half of Chapter 6 after proving

that any XNR-design builds a (16,28,6) code in a unique

way (Theorem (6.5.9)). The key to this important theorem

lies in calculating and analyzing the generalized block

intersection numbers for the XNR-design determined by the

weight 6 vectors of the code. These numbers indicate

necessary requirements for augmenting this set of 112 weight

6 code vectors to a (16,28,6) code. So thanks to these

intersection numbers and the theorems of Chapter 6, we

reduce the question of uniqueness to the study of the

XNR-design.

In Chapters 7, 8, and 9 the question of the uniqueness

of this XNR-design is answered. Chapter 7 employs the

generalized intersection numbers to prove that any XNR-

design is embeddable in a copy of V(4,2), the finite four
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dimensional vector space over GF(2), Theorem (7.5.1). In

other words, the blocks of the XNR-design can be viewed as

special subsets of points in PG(3,2), the projective space

of 3 dimensions over GF(2). Chapter 8 occurs as an

intermezzo, developing line coordinates (Theorem (8.10.1)

for the lines of PG(3,2), Which line coordinates are then

used in Chapter 9 to prove the uniqueness of the design

within the framework of the geometry of PG(3,2),

Theorem (9.5.1).

Finally, Chapter 10 assembles the results of Chapters

6, 7, 8, and 9 to answer the fundamental Questions 2 and

3. Questions 1 and 4 relating to the Golay codes are

considered in Chapters 11 and 12 after all the work

relative to the XNR-design has been completed.

Since it was shown in Chapter 6 that the (16,28,6)

code is unique if and only if the XNR-design is also

unique and since a similar theorem will be shown in

Chapter 12 relative to the Golay (24,212 ,8) code and

the S(5,8,24) design, Chapter 11 tackles Question 4 by

considering only the designs in question. Chapter 11 shows

that, up to an arbitrary permutation of the 7 additional

coordinates, the XNR-design builds a S(4,7,23) in a

unique way, Theorem (11.2.8). They by appling the fact

that the S(5,28,24) design can be built from the S(4,7,23)

design only by adding a new 2452- coordinate which acts as

a parity check on the other 23 coordinates, Theorem (11.3.9),
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we have the theorem that the XNR—design builds S(5,8,24)

in essentially one way. Use of the generalized block

intersection numbers relative to each of the large Steiner

systems is requisite in the proofs of this theorem.

Inspired by the approach of Chapter 8, which was the real

reason for including that chapter as it appears, we can

establish the uniqueness of both the S(4,7,23) and the

S(5,8,24) designs relative to the already proven uniqueness

of the XNR—design. Furthermore, as a corollary to these

uniqueness theorems, we can establish the facts that the

automorphism groups of these Steiner systems are 4— and

5- transitive on the points of the designs, respectively,

as well as block transitive on them, Theorems (11.2.18),

(11.3.14), (11.2.16), and (11.3.13).

By almost literally duplicating the proof of theorem

1
(6.5.9), but relative to the Golay (24,2 2,8) code and

S(5,8,24), we can show in Theorem (12.3.5) that the

(24, 212,8) code is unique since the S(5,8,24) is unique.

This proof uses the generalized block intersection numbers

to full advantage and establishes the equivalence with no

assumption of linearity. In fact, linearity of the unique

12,8) 'code ispa lucky, non-essential outcome. Since(24,2

we can answer Questions 4 and 1 affirmatively after

proving Theorem (12.4.1), we now have reached the goal of

these chapters.





PART B: PRELIMINARIES

CHAPTER 2

Binary Codes: Basic Definitions and Properties

§2.l Introduction
 

A binary code will be viewed in this thesis as a

carefully chosen subset of the set of all vectors of an

n—dimensional vector space over GF(2), the field of two

elements. We shall customarily write the code vectors as

column vectors and represent the entire code by an incidence

matrix whose columns are precisely all the code vectors. As

in the case with the Nordstrom-Robinson and Golay binary

codes, this incidence matrix can be considered as a collecticni

of t—designs; and as such, the concepts of binary vector

spaces, binary codes, t-designs, and automorphism groups

assist one another.

This Chapmatincludes most of the needed definitions

relating to binary codes. The concepts of perfect and

nearly perfect codes are defined in the next chapter along

with definitions of the Golay and Nordstrom-RObinson codes.

The tools relating to t-designs and automorphism groups will

also come later. (References about binary coding related to

this chapter are [3], [21], and [30].)

2.1



§2.2 Binary Vector Spaces

(2.1) Let V(n,2) denote the vector space of n

dimensions over GF(2), the Galois Field of the two elements,

0 and l . Let ‘5 denote any vector in V(n,2). Some-

times elements of V(n,2) shall be called pgints. Let

B := [e1,e2,...,en} , be a basis of V(n,2). Then

relative to B , each ‘x£EV(n,2) is uniquely represented

T
as a column vector, §_= (x1,x2,...,x ) , where each

n

xi €GF(2) for i = l,2,...,n , and where T denotes

the transpose of the indicated row vector. Unless other-

wise stated, V(n,2) will always be considered as posses-

sing a given fixed basis. Let .9 and 1_ be the vectors of

V(n,2) all of whose entries are either 0 or 1 ,

respectively.

(2.2) Let PG(n-1,2) denote the set of one-dimensional

subspaces of V(n,2) . Since the equation

(2.3) §+y=g for _x_,y€V(n,2)

is equivalent over GF(2) to

(2.4) as = y ,

it follows that PG(n-l,2) = V(n,2)‘\[g} .

Call a non-zero vector of V(n,2) a point, when considered

as an element of PG(n-l,2).

The mapping

(2.5) ( , ) : V(n,2) xV(n,2) 4GF(2)

given by

y. (modulo 2)
1

n

(251) = 2 xi

i=1
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TEV(n,2),for the vectors x.= (x1,x2,...,xn)

X = (Y1,Y2,...,yn)T'€V%n,2) defines a symmetric bilinear

form, which is an inner product. For a given .x(5V(n,2)

any y€V(n,2) such that

(35,1) = 0

is said to be orthogonal to x. in V(n,2) . The set

{XI (25,1) = 0, ye V(n,2)] for a given _}£€V(n,2) is the

(n-l)-dimensional subspace of V(n,2) orthogonal to x .

For a point _x_ePG(n-l,2), the set [1 | (35,1) = O,y€PG(n-l,2)}

is a hyperplane of PG(n-l,2) and is called the polar of
 

x in PG(n-l,2).

(Linear) subspaces of PG(n-l,2) are (perhaps empty)

sets of points of PG(n-l,2) which are closed under vector

addition defined in V(n,2) . It is well known that the set

of all subspaces of PG(n-l,2) forms a lattice under A and

v , which are given respectively by set intersection and

linear span. Collineations of PG(n-l,2) are lattice

preserving permutations of the points of PG(n-l,2) .

Correlations are lattice inverting permutations, which send

the i-dimensional subspaces of PG(n-l,2) to ((n-l)-i)

dimensional supspaces, for -lgign-l where points are

0-dimensional supspaces and 0' the (-1)-dimensional subspace:

of PG(n—l,2). In particular, correlations exchange the sets

of points and hyperplanes of PG(n-l,2)



§2.3 Binapy Codes
 

Given any two vectors §_= (x1,x2,...,xn)£EV(n,2)

and ‘y = (y1,y2,...,yn)£5V(n,2), with coordinates

relative to a given fixed basis of V(n,2), then define

the following:

The weight, |x|, of a vector .§(EV(n,2) is a

mapping | ‘: V(n,2)-4 the set of integers,, 2 given by

n

(3.1) |x| := 2 xi , where addition is now computed in Z .

i=1

The (Hamming) distance‘*, d(x,y) , between two vectors,

x and yEV(n,2) is

(3.2) d(x,y) := [x-ty] .

The coordinate-wise product of two vectors is

(3.3) fl 3: (xlyl’x2Y2""’ann)

A vector .x is contained in a vector y ,

(3.4) £31 iff 35:31.

One can easily check the following list of properties

that pertain to the above definitions:

(3.5) the Hamming distance is a distance function.

(3.6) Isl + I2) = la +x| + lexl -

(3.7) xx =,§ .

(3.8) g_is a partial ordering on vectors of V(n,2)

(3.9) 3531 iff IE +xl = IX) - III

 

*

The Hamming distance is the square of the customary

Euclidean distance in the binary case.
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A (binary) code, C , is any set of vectors from
 

V(n,2) .

(3.10) A code word is a vector ve:V(n,2) that is also
 

in C . A (n,M,dO) code C is a code C of [Cl = M

vectors from V(n,2) so that

(3.11) min [5+112d0 .

x,y€C.

xa‘y

(3.12) we sometimes write "C is a code with dgldo" or

 

"C has minimum distance do" if C is an (n,M,do) code

and if the value of n is understood.

(3.13) A linear code C is a code satisfying

5X60 imply 35 +y€C .

(3.14) A linear code is a subspace V(m,2) of V(n,2) for

OSmgn , and is said to have dimension _n_1_ . Any linear
 

code C with at least one code word contains .9 , and as

such is an (n,2n,d0) code for

(3.15) d0 = min Ix] .

xeC

x#0

We shall, for the most part, consider non-linear codes,

although occasionally the concept of linear codes is a

useful tool in this thesis.

52.4 Incidence Matrices

(4.1) An incidence matrix for an (n,M,dO) code C is

an nth zero-one matrix whose columns are the code words

(per def. (3.10))





(4.2) If C is a linear code, then one may choosezabasiscaf

code words and form an n.xm matrix ‘Q called a generator
 

matrix for C , having as columns those m basis vectors

which span the code (a V(m,2) subspace, cf. (3.14)). Let

C be a code, and define

(4.3) C1 := [y€V(n,2) | (35y) = O for all _)_(_€C}

Cl is called the code orthogonal to C .
 

By the definition (4.3) of Cl it is clear that the

following properties hold:

(4.4) C‘L is always a linear code.

(4.5) (Cl)1 is the linear span of C .

(4.6) (C1)1 = C iff C is linear.

(4,7) Let any generator matrix of Cl be denoted by H

and be called a parity check matrix of C .

We now proceed to define the Hamming codes in terms of

the generator matrix of their orthogonal codes. Let Hn be

the (2n—l) xn. matrix Whose rows are all the (Zn-l)

distinct non-zero vectors of V(n,2), and so placed in

Hn , that the iEh-row of Hn represents (relative to a

fixed basis of V(n,2)) the binary expansion of the

integer i , for lgian-l . Let

(4.8) on := [_x_€V(2n-1,2) | gen = 9T }

The code Cn is called the Hamming code of length 2n-l

(4.9) m: cn isa linear (2“-1,2(2n‘1'“),3) code.

Proof:

Property (4.5) shows that CD is linear. Then it is
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z 2((2“-1)—n)
clear that |Cn| It now suffices to

check d023 in (3.15). If |x| = l for xeCn,

then xifln = 9? implies that one of the rows of Hn is the

Q€V(n,2), contradiction. If [3“ = 2, for xecn , then

xyfln =.QT implies that two distinct non-zero vectors of

V(n,2) are linearly dependent, contradicting equations (2.3)

and (2.4). Hence, d0213 . //

 

§2.5 Modifications pf codes

Given an (n,M,dO) code C , one can obtain related

codes by a number of different standard modifications. Some

of these are given in the following list of definitions.

(5.1) A coset, C +‘x , of a code C is

C +_}_{_ := [y +x | xEV(n,2), yec}

Note that if C is linear then y,§€C + 35 imply y + 2 EC ,

but not so if C is not linear.

(5.2) A punctured code of C is a code with an incidence

matrix identical with that for C except that one of the

rows is eliminated.

(5.3) A parity check code of C is a code with an

incidence matrix identical with that for C and with one

extra row; the zero or one entries in the extra row are

chosen so that the weights of the resulting column vectors

are always even. The added row is called the parity check
 

coordinate row.
 

(5.4) An equivalent code to code C is a code Whose
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incidence matrix N can be transformed into that for C

after a suitable permutation of the rows and columns of N .

One can easily see that the following properties hold

for a given (n,M,dO) code C

(5.5) A punctured code of C is a (n-1,M,dO-1) code.

(5.6) If dO is odd, then a parity check code of C is

a (n + l,M,dO-+l) code.

(5.7) The relation of "being an equivalent code" is an

equivalence relation.

(5.8) A punctured code of a linear code C is again a

linear code.

(5.9) A parity check code of a linear code C is again

a linear code.

(5.10) As examples of parity check codes, we define the

 

Extended Hamming code, E;', of length 2n as the parity

check code of C whose parity check coordinate row is the

first row of the corresponding incidence matrix. Then by

(5.6) and (5.9) we have proved:

(5.11) Lemma: The Extended Hamming code, 53', of length

n

2n is a (2’222 ‘1‘“,4) linear code.

§2.6 Geometric Codes
 

Let m be any fixed one to one correspondence:

(6.1) m : V(2“,2)..2V(“’2)

so that the standard basis vectors from a fixed basis B

of V(2n,2) are mapped to points of V(n,2). Then the

vectors of V(2n,2) are called characteristic functions
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of subsets of the points of V(n,2) relative to w and B .

(6.2) Let cp : ei€B4x€V(n,2)

so that, relative—:0 a fixed basis A of V(n,2), the binary

expansion of i is x . From (6.2) it follows directly

that:

(6.3) Lemma: For m defined in (6.2) and for fixed

bases A and B of V(n,2) and V(2n,2) respectively,

the code words in the Hamming code C are precisely the
n )

characteristic functions of binary dependent sets from

PG(n—l,2)

A geometric code is a binary code, whose code words can

be interpreted in terms of the geometries of V(n,2) or

PG(n-l,2) by an appropriate one to one correspondence T .

' From Lemma (6.3) one can see that the Hamming codes are

geometric codes.

The Nordstrom-Robinson code, which will be defined

in the following chapter, is also a geometric code,

Theorem (7.5.1). This observation is a key step in the

uniqueness proofs, Theorems (10.3.2) and (10.2.1), of the

Nordstrom-Robinson code and its extension.



CHAPTER 3

Definitions and Existence of the

Golay and Nordstrom-Robinson Binary Codes

§3.1 Introduction
 

The definitions and existence of the Golay and

Nordstrom-Robinson codes will be presented in Sections 3.3

and 3.5. To this end it will be useful to establish the

sphere packing bound, in Section 3.2, which gives an upper

bound for the number, M , of code words in an (n,M,(2e+l))

code. Those codes satisfying equality in this bound are

called perfect codes. Thus if C is a perfect code in

V(n,2) all the points of V(n,2) can be "perfectly"

covered by the disjoint spheres of (Hamming) radius e

centered about the points of C . The Golay code is an

example of a perfect code. The Nordstrom-Robinson code is

not perfect, but does satisfy equality for a refinement of

the sphere packing bound, called the specialized JOhnson

bound. This is introduced in Section 3.4. Codes satisfying

equality in this bound are called nearly perfect codes, a

name coined by Goethals and Snover [17]. The class of nearly

perfect codes contains the class of perfect codes. In terms

of V(n,2), if C is a nearly perfect code, then the spheres

of radius e-tl centered about points of C cover all

points of V(n,2) . (The Spheres are not disjoint in this
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case, though.)

All perfect codes are known. VanLint [21] and

Tietgvginen and Perko [34] have shown that they must be of

the following types:

(1) the Hamming (linear) codes and the Vasil'ev (non-linear)

2k—k-1
codes, both with parameters (ZR-1,2 ,3) for any k ,

12,7), and(2) the Golay binary code with parameters (23,2

(3) the trivial one word and two word codes of lengths

n = e and n = e-tl respectively for any e

It is known that the Hamming codes are unique up to

isomorphism. While no proof of this can readily be found

in the literature, a proof similar to that of Theorem (7.4.4)

of this thesis can be constructed. However, without the

restriction of linearity, codes with the same parameters as

k Zk-k—l
the Hamming codes, (2 -l, 2 ,3), are not unique for

k214 as was shown by Vasil'ev [36]. In 1968 V. Pless

showed [31] that any linear (23,212,?) code must be

isomorphic to the Golay code. One major purpose of this

thesis is to establish the fact that the Golay binary code is

unique even without the linearity assumption. This will be

accomplished in Chapter 12.

Furthermore, the Nordstrom-Robinson code will be shown

to be unique up to isomorphism in Chapter 10. This code

is the first code in each of the infinite families of

k

Preparata codes of parameters (4k-l, 24 -1-4k,5) for
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k;12 [32], and Kerdok codes of parameters

(4k-1, 24k,((4k—2k)/2—1)) for k22 [20].

Our present purpose in this chapter is to develop the

concepts of perfect and nearly perfect codes, to establish

the existence of the Golay and Nordstrom-Robinson codes,

and to show that these codes are both nearly perfect While

the Golay code is perfect.

§3.2 Perfect Codes
 

For a given (n,M,dO) code C let

(2.1) e :=

Then e is called the error correctingpcapabilipy of code

C . C is said to be an e—error correcting code. Let the

sphere, B(w,r), of radius r about w€V(n,2) be defined

as follows:

(2.2) B(y_,r) := {y€V(n,2) |d(_w_,y)gr} .

Since the Hamming distance is a distance function by (2.3.5),

it satisfies the triangle inequality. Therefore, the

spheres of radius e about code words in the given (n,M,dO)

code C must be disjoint. This observation proves the

following inequality:

| u B(§,e)| g (V(n,2)| = 2“,
xQEC o

and gives the sphere packing bound:

(13) (q.(1+(§)+(§)+...+(2))g2“.
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3.4

(2.4) A code C satisfying equality in the sphere

packing bound (2.3) is called a perfect code. Notice that
 

e = n yields the trivial solution of equality in (2.3) for

[C] = 1.; the corresponding code C is the trivial code,

consisting of (any) one vector of V(n,2) . For |C| > 1,

necessarily e < n/2, in which case e is defined as in

(2.1).

(2.5) Lemma: The Hamming code Cn of length 2n—l is

perfect.

2n-1
n

2 "1"“).(1+ (2“-1)) = 2 . //Proof: 2(

§3.3 Definition pf the Golay Code
 

With a construction method due to E. F. Assmus and

H. F. Mattson, cf. VanLint [21], we shall construct from

1
E; , the extended Hamming code of length 8 , a (24,2 2,8)

code. Then by puncturing this code we shall show that the

1
(23,2 2,7) code called the Golay binary code obtained in

this way is linear and perfect with e = 3

Let '5; be the extended Hamming code of length 8 with

incidence matrix N given in Figure (3.1). Notice that the

indicated 7 x7 submatrix M is the familiar symmetric

form of the incidence matrix of PG(2,2) . The rows of N

are numbered by m (of. (2.6.1) with the integers 0,1,2,...,7.



Figure (3.1)
 

 

 

     

 

 

N

o 000 0111111110000000

1 O O 1 O O 1 1 O 1 O O 1 l O O l O 1 1

2 O 1 O O O O l 1 O 1 O l 1 1 O O l O 1

4 l O O O O O O 1 l O l 1 l 1 1 O O 1 O

5 1 O 1 O 1 O O O l l O l O l l l O O l

7 1 1 1 O O 1 O O O 1 1 1 l O 1 1 l O O

3 O 1 1 O 1 O 1 O O O l 1 O l O 1 1 1 O

6 110 0110100010010111

M .

Figpre (3.2)

O O O O O 1 1 1 1 1 1 1 1 O O O O O O O

6 110 0110100010010111

3 O 1 1 O 1 O 1 O O O 1 1 O 1 O l 1 l O

7 1 1 1 O O 1 O O O l 1 1 1 O l l 1 O O

5 1 O 1 O l O O O 1 1 O 1 O 1 l 1 O O 1

4 1 O O O O O O 1 1 O 1 1 1 1 1 O O 1 O

2 O 1 O O O O l 1 O 1 O 1 1 1 O O l O 1

1 O O l O O 1 1 O 1 O O 1 1 O O 1 O l 1  
 

Perform the row permutation (16)(23)(47) on N ,

inverting the order of the last seven rows, and obtain

the equivalent code '5; , (cf. figure (3.2)) and N'

(3.3) £13119: (1.) 6306; = {9,1} .

(2.) All code words of '5; and '5; ‘have

weights 0, 4, and 8

(3.) All vectors of the form mgty , where

age-C; and y 6C: have even weight.

Proofs: Claims (1.) and (2.) are immediate from inspecting
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the incidence matrices N and N' of 53' and '5; given

in Figures 1 and 2 respectively. Claim (3.) follows from

(2.) and Formula (2.3.6) Which reads:

(3-4) M + (Y) = 122 +x| + 2W)-

Now define

(3.5) XGOLAY := [(3 +15 :13 +_)_(, _a_ +1; +35)T |_a_,:_b_eE—3- and

to be the extended Golay code, or XGOLAY.

l

 5.},

) Theorem: XGOLAY is a (24,2 2,8) linear code.

Proof: That XGOLAY is linear is immediate from Definition 3.55).

That XGOLAY has dimension 12 is an immediate consequence of

the fact that Q? has no nontrivial representation of the

form (§.+ m, p_+ m, a_+'p_+.§)T . It now suffices to show

that d028 .

If y_ =(a_+x_,_b_+_x_,§_+b_+_)£)T#9_T andifat

least one of g, 2, 3+2, or 35 is either 9 or _]_._, then

(3.3) implies that [g] 2_8 .

Three applications of (3.4) yield the following equality;

(3.7) |e+§l +Lle+2s|+le+12+r|=

= (2+2! +2I<e+th+§>l + |s+2+2£|

= [5| + 2{|(s +§)(s+§)|+(e+s)(l+r)|l

= [5] + 2‘2 +»p + gp,+ m] .

If none of g, p, a +-p, m are either 9_ or p; , then

[5| = 4, and it is necessary to show |§'+-p,+'§p +.§|§2 2 .

Since IQ] = [b] = 4 and (3.4) implies that [am] is even,

|E+2+22+2£1 mustalsobeeven. If |g+p+§p+§|=o
3

then _a_+p+§la_=x. Then (3+_]:)(_b_+l)= (35+_l_),and





3.7

hence §_= 2,: §_. Therefore .§(§E;(W é , contradicting

Isl =4.//

(3.8) Any punctured code of XGOLAY is called the‘*Golay

code or GOLAY.

(3.9) Lemma: The Golay code is a linear (23,212,7) code»

Proof: Use (2.5.5), (2.5.8), and Theorem (3.6). //

(3.10) Theorem: The Golay code is a perfect linear

 

(23,212,7) code.

2152:: 212(1 + (213) + (223) + (233)) = 223 . //

§3.4 Nearly Perfect Codes

Let C be any (n,M,dO) code where d0 = 2e+1, i.e.

dO is odd.

Let B(m,r) be as in (2.2) and 356C . Let

(4.1) T(x) := [er(n,2) |d(_x,y_) = e+l] . Now

partition T(m) into two classes, Ta(§) and TB(X)’

according as the elements of T(m) belong to some B(y,e)

for some yEC, or not, that is,

(42) any F{£€TBHBXEC,X£BQfiU}o

(4.3) 13(3) := (xeerrxec, “amen.

(4.4) Lflnmg: For each _x_€C, |Ta(3§) |g[(n-e)/(e+l)](2) ,

392:: Let yeTan) = e+l, d(_\_r_,y)ge , d(§,y)>_2e+l = do .

By the triangle inequality, necessarily it follows that

d(y,y) + d(y_,3<_) = d(y,_x_) = 2e+l = do .

 

*

Later we shall prove that this code is unique up to

equ1valence, and so the article "the" is not a mistake.
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In this case

|TG(§) fl B(z,e)\ = [29”),

e+l

from Which,

(4.5) [Ta(3_<_)l = (26:1

e l) IN2e+l(
§)l ’

where N2e+1(§) is the set of code words y, at distance

2e+l from .5 . Since any two vectors in N2e+l(§) are at

least a distance 2e+l apart, the (2e+l)-sets of coordinate

places in Which they both differ from y_ share at most t

coordinate places. Furthermore since there are at most

[(n—e)/(e+l)] subsets of cardinality (2e+l) of a set of

n elements which share precisely a given sdbset of

cardinality e , we deduce

4. _ 1 n 2e+l .

< 6) (N29+1<1<_)|_<_[(ne)/(e+ )]<e)/( 6+1)

Inequality (4.6) converts (4.5) into the desired result. //'

(4.7) Corollary: |T (§)|2( “ ) — [(n-e)/(e+l)](n)

B e+l_ e

Proof: This result follows immediately from Lemma (4.4),

since for any gee ,

(T (§)|+|T (in = (my) = “ .//
a B <ie+lt>

Now we are able to state and prove a refinement of the

Sphere packing bound, which is a specialized version of the

S. JOhnson bound [18] . The Johnson bound itself uses the

numbers max [Nd(§)| rather than the particular value in

.§€C

terms of n and e given by inequality (4.6).

(4.8) Theorem: (the specialized Johnson bound)



Fer

pm



For any code of length n , and minimum distance 2e+1,

n n 1 11 n-e n—e r1
c.1+( )+( )+...+ ()---‘--— $2~

Before proving this theorem we note the following

equivalent form of the specialized Johnson bound:

n n n 1 n+1 tr

(4.9) ICI- \1 H1) + (2) + +Ke-1)+[ (n+1)/(e+1)]\e+1/‘}$2

Which is equivalent to that in the statement of Theorem (4.8)

 

because

n-e ,n-e _ _ _ _£L_n .2114\EII’LET-IJ) .. o e n = l (mode+l)eLe+lJ#Le+1J .

Proof of Theorem (4.8):

There are at least |(J TB(§)| vectors of the space,

V(n,2), not contained in afifrc B(§,e), mEC . A given vector

of the space can belong to at most [n/(e+l)] distinct sets

TB(_x_) , for 35 6C , since vectors of the code are at

least a distance 2e+l apart. Hence, using Corollary (4.7),

we obtain

(4.10) UT (g) M n -' 319' n ,Ixec f5 |2[n7(e+1)] \Kefl) Le+l JKeN

from which the result follows by noting that the number of

 

vectors in L)(B(§,e)lJ TB(§)) is less than or equal to

xec
n —

2 -//

(4.11) Codes meeting the bound of Theorem (4.8) are called

nearly perfect.
 

The next lemma shows the important fact that the class

of nearly perfect codes contains the class of perfect codes.

(4.12) Lemma: Every perfect code is also a nearly perfect

code.
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Proof: The specialized Johnson bound reduces to the sphere

packing bound exactly when n+1 -:—' 0 (mod (e+l)) . //

We can describe nearly perfect codes in more detail

with:

(4.13) .EETEE! For any nearly perfect e~error correcting

code of length n

(i) any vector at a distance greater than e from

every code word is at a distance e+l from exactly

[n/(e+l)] code words,

(ii) any vector at a distance e from a given code

word is at a distance e+l from exactly [(n—e)/(e+l)]

other code words.

.gmgpj: Equality in (4.9) implies equality also in (4.10)

and (4.7). Equality in both (4.7) and (4.10) implies that

each vector at a distance greater than e from each code

word is at a distance e+l from exactly [n/(e+l)] code

words, i.e. part (i). Equality in (4.7) together with (4.5)

proves (ii).//

§3.5 Definition 9; the Nordstrom-RObinson Code

Various people involved in binary coding theory were

aware in the early 60's that there might exist a (16,256,6)

code. The specialized Johnson bound (Theorem (4.8)), which

was known then, inspired the search, since this showed that

no (l6,M,6) code could have an M:>256. Moreover, since

256 is a power of 2 , it was natural to ask if there was a

linear code with parameters (l6,256,6) . Calabi et al.,
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answered this question [7] in the negative. However, Nadler

[27] had discovered in 1962 a (l3,32,6) non-linear code,

that, even up to today, is the (13,M,6) code with the

largest known M value. Nordstrom and a high school

student named Robinson were able to construct a (15,256,5)

and hence a (l6,256,6) non-linear code from Nadler's code

[28].

In this section we construct the extended Nordstrom—

Rdbinson code from IE; , the extended Hamming code of

length 8, in a way resembling the construction of XGOLAY

given in Section 3.3. In this construction, due to C. L. Lin,

B. G. Ong, and G. R. Ruth [22], we create a code of length

Zn from two codes of length n , the first of which must be

linear. In order to better understand this scheme, we first

prove a few remarks and lemmas regarding linear codes.

Since a linear code C is a subgroup of the additive

abelian group [V(n,2), +], Where + is vector addition in

V(n,2), it is necessary (by the Lagrange theorem for group

theory) that

|C| = M = 2k for some 03kgn .

Furthermore, the set V(n,2) may be partitioned into

2n/2k = 2”“k cosets (cf. Definition (2.5.1)) by c

Therefore,

(5.1) Lgmmg: Let C be a linear (n,2k,d) code and let

L = {il’l2""’i2n-k} be a set of distinct coset



. n- . .
representat1ves, one chosen from each of the 2 k d1st1nct

cosets of C in V(n,2) . Then each er(n,2) can be

expressed uniquely as y = .11 + m, where 16L and mEC .

we omit the standard proof.

Note that it is always possible to choose coset

representatives 1, of minimum weight, since each coset C +4;

of C in V(n,2) is a finite set.

Let E; be the extended Hamming code of length 8 .

By Lemma (2.5.11), '5; is a linear (8,16,4) code and is

given by the 8;(16 incidence matrix of Figure (3.1). Let I.

be the set of 16 minimum weight coset leaders of E; to

cosets of 63' in V(8,2) given in Figure (5.3).



Figure (5.3)
 

 
 

 
 

Cosets of ‘5; Assignment by f of words

(identified by their leaders) in C; to the cosets

1151‘ 15(1):) 6C3

0 0 0 0 O 0 O 0 O 0 O 0 0 0 0 0

0 1 0 0 0 0 0 0 l 0 0 O l 0 l l

0 0 l O 0 O O 0 l l 0 0 0 l O l

0 O 0 1 0 O O 0 l l 1 0 O 0 l 0

O O O 0 l 0 0 0 l 0 l l 0 O O l

O 0 0 O 0 l 0 0 1 l O 1 l O 0 0

O 0 0 0 0 0 l 0 l 0 l 0 1 1 O O

0 O 0 0 0 O 0 1 l O 0 l 0 l l 0

l 0 O 0 0 O 0 0 l 1 l l l l l l

l l O 0 O O O 0 0 l l l 0 l 0 0

1 0 l O 0 O O 0 0 0 l 1 l 0 l O

1 0 0 l O O 0 0 O 0 0 l 1 l O l

l O 0 O 1 0 O 0 0 l 0 0 l 1 l 0

1 0 0 0 O l O 0 O 0 l 0 O 1 l l

1 0 0 0 0 0 l 0 O 1 0 1 0 0 1 l

l O O O 0 0 0 1 O l l 0 l O O 1

NT where N is from

Figure (3.1)

Now define

(5.4) XNR := {(2, y_+f(y))T| “V(8,2)

and f(y) = f(1i-+m) = f(Ji) for f

given in Figure (5.3)]

to be the extended Nordstrom-Robinson code or XNR.

(5.5) Theorem: XNR is a (16,28,6) code.

 





Proof: From (3.4) we may derive

we) m+xl+u+x+sl E|+Me+xH§+x+yl

Le) + 2l(.>_<.+1) + (e+x)a|

=LM+2BE+E)+mx+y|.

Furthermore, if 11 and 12 denote coset leaders of C3

from L and if f(&i) and f(12) denote the code words of

5?

verify that

(5.7) “11 +1.2)(11 +1.2 + f(1.1)+ f(1,2))| = 1

Whenever |f(&l) + f(&2) | = 4 .

assigned to them in Figure (5.3), then one can easily

Now choose any two distinct code words (21,31 + f(yl))

and (32,32 + f(yz)) from XNR. The distance between these

two words is

|(.Y.]_ +312: .21 +12 + f(V1) + f(22))| .

S1nce Lemma (5.1) 1mp11es that .31 = ‘1 +-ml, 22 = 12 + m2

for suitable 11 and AZEL and ml and mzec3 ,

this distance may be written as

|(-lt]_ +1111 +112 +322: 111 +331 +1.2 +9.2 '1' f(fil)+f(_&2))|

= 'f(.&1)+ “12” + Zlui +1.2)(11 +12 + t"41”“ 1‘"42”

+031 *rmsz1 +912 + f(11)+f(1.2))| by (5.6).

we examine three cases:

Case 1: |f(Al) + f(12)| = 8 . Clearly, the distance between

the two words is greater than or equal to 8 .

Case 2: lf(&l) + f(&2)| = O . This implies that «£1 =‘12

and f(11) = f(&2) . The distance between the two words is



then

ZIQEI +s2Hs1 +512)! = 2|(ml +192” ;._8

because ml a! m2

Case 3: |f(&1) + f(12)| = 4 . By (5.7) we now have

((11 +12H11 +12 + f(J.1)+ f(12))| = 1.

Since ml, m2, f(11), and f(12) are in C3 ,

[(El +'92)(fll + 92 + f(&1) + f(&2))| is an even number.

It follows that

lul +1.2) (1.1 +1.2 + “11) + f(1.2)) + (191 +112) (1111 +_er + f(_§1)+f(3._2))|,\0

and the distance is at least 6 .

XNR has [C] = M = 28 since 3. may be chosen

arbitrarily from V(8,2). XNR has distance 2_6 since in

all three cases above, the distance between any two distinct

words of XNR is greater than or equal to 6 . //

(5.8) Any punctured code NR of XNR is called the

Nordstrom-Robinson code or N3 .

(5.9) Lgmmg: The NR code is a (15,256,5) code.

uggppfi: Use (2.5.5), (2.5.8), and Theorem (5.5). //'

(5.10) Theorem: The NR code is a nearly perfect (15,256,5)

code.

8 15
Proof: 2 - (l + ( 1 ) 15+ (136))=2 .//1

T6"
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CHAPTER 4

t-Design and Generalized

Block Intersection Numbers

§4.l Main Definitions
 

Let an x-(sup)set denote a (sub)set of cardinality x.
 

A block design is a collection B of k-subsets of a given

v—set X . Elements of X and B are pgints and blocks,

respectively.

(1.1) A t-desigp with parameters A-(t,k,v) is a block
 

design with the property that each t-subset of X is

contained in precisely 1 blocks of B . The parameters of?

a t-design are all non-negative integers so that ogtgkgv

mm 1>0.

Whenever a t-design with parameters x-—(t,k,v) exists,

there exist positive integers bi’ i = O,l,...,t, so that

(1.2) bt = A and (v-i)b1+1 = (k-i)bi for Ogi<t

Some immediate properties of t-designs are:

v k
(1.3) [3| =1:O = 1(t)/(t) .

(1.4) A t-design is a (t—l)-design for t;:2 .

(1.5) The blocks of B containing a fixed P ex form a

(t-—l)-design with parameters l-—(t-l,k—l,v-l) on the set

X\ [P] as long as t212 . This is called the derived





design of the t—design.

Many times one does not know at the outset the value

of t for a t-design. Because of this it is useful to

define the following for a block design, B, ‘Whose point

set is X and Whose blocks have cardinality k .

A
. . _average -

(1.6) Define bi"‘over all[bA] where bA 15 the nwmber

i-sets,A

of blocks of B containing a given i-set, A .

Then by induction on the cardinality i one can derive:

formulas analogous to (1.2):

A A

(1.7) (v—i)bi = (k-i)bi for all lgigt .
+1

A

Since there is only one O-set, the empty set, bO = |B| and

= bo . From this follows:

(1.8) lg. = |B|(1‘)/(Y) for all Ogigk .
1 1 1

If bA is constant, independent of which particular

A

t-set, A , is used, bt = bA = bt

is by definition a t—design. Example 3 in Section 4.2 shovm;

and the block design, B ,

how (1.8) can be used to obtain the value of t for a

t-design.

A t-design with k==v is called trivial and one with

t = k is called complete, since in that case B contains

all the k—subsets of X , each 1 times. Let a complete

(lb-design denote a 1-(t,t,v) design. If O<t<k<v, the

 

t-design is called incomplete.
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(1.9) A Steiner system, denoted by S(t,k,v), is a
 

1-(t,k,v) design which is incomplete. A t—design with

t = l is often called a tactical configuration. A

t-design with t;;2 is balanced. It follows that an
 

incomplete t—design with t,12 is a balanced incomplete

block design, (BIBD), when considered as a 2-design.

(1.10) An incidence matrix N of a t-design is a v;xb
 

0

matrix of zeros and ones so that the elements of X are

indicated by the rows of N , the blocks of B by the

columns of N , and so that a point P of X is contained

in a particular block iff the corresponding matrix entry is

a one. For a BIBD one has the equations:

(1.11) vb = Rho and (v-1))\ = (k-1)bl
1

If we let J be the matrix of all ones, j_ the columri

vector of all ones, and I the identity matrix, then

equations (1.11) imply

(1.12) iTN=kj_T,Nj_=b_j_=b1j_, and NNT= (k-A)I+).J ,

for any BIBD .

§4.2 Examples

Example 1: As a first example we shall consider the Fano
 

plane, PG(2.2). A drawing of6 this geometry is given in

Figure 12.1):
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Letting the points of the geometry be the points of a block

design with

dually:

7 blocks(2.2) l. v 7 points , b

O

2. k 3 points per block , bl = 3 blocks per point

3. l 1 block determined

by two points

So this yields a l—(2,3,7) design also denoted by S(2,3,7).

An incidence matrix for this design corresponding to

Figure (2.1) is given in Figure (2.3):

Figure,12.3)

 

   

a b c d e f g

l O l l O l O O

2 O O l l O l O

3 O 0 O l l O l

4 l O O O l 1 O

S O 1 O 0 O 1 l

6 l O 1 O O O 1

7 l l O l O O O

Q

Example 2: Considering V(3,2) we may choose points to be
 

the 8 vectors of V(3,2) . Since the sum of three vectors

of V(3,2) is a single and distinct fourth vector of V(3,2)

(due to the fact that the sum of two distinct vectors over

GF(2) is never null), each triple out of the 8 points of

this t-design is contained in a unique block. So we

immediately have a 3-(1,4,8) design and can calculate, by

formula (1. 3)

b0 = 143) / (‘3‘) = 14 dependent 4—sets in V(3,2).





In fact, we have encountered this design earlier in the

4

code '5; , the extended Hamming code witn parameters (8,2 ,4),

(cf. Lemma (2.5.ll)). Its incidence matrix was given in

Chapter 3 and shall be reproduced in full here, but with

the all-one column vector moved to the right end:

Figure (2.4)
 

 

 

     
 

P

O 1 1 1 1 1 1 1 O O O O O O O 1

O O 1 1 O 1 O O 1 O O 1 O 1 1 1

O O O 1 1 O 1 O 1 l O O 1 O 1 1

O O O O 1 1 O 1 l l l O O 1 O 1

0 1 O O O 1 l O O l 1 1 O O 1] 1

O O l O O O 1 1 l O l l 1 O O 1

0 i1 0 1 O O O 1 O 1 O 1 1 1 O 1

O l l O 1 O O O O O 1 O l 1 1 1

Q R

Notice that P (see Figure (2.4)) is the incidence matrix

of all the dependent sets of cardinality 4 and is therefore

an incidence matrix for this l-(3,4,8) or S(3,4,8)

design. Furthermore, notice that the incidence matrix Q

for the t-design in Example 1 occurs as a sub-matrix. As

such, the S(2,3,7) is a derived design from the S(3,4,8)

design (cf. (1.5)).

Example 3: Consider once again the Fano plane and this time
 

choose for points and blocks of a new design the points and

the sets of 4 points, no three of which are collinear,

respectively. Since such sets are co-lines, there are 7
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blocks and 7 points in this design. Since co-lines are the

complements of lines in PG(2,2) and Since two lines meet

in at most one point of the geometry, co-lines meet on at

most two points. In other words, each triple of points is

contained in at most one block (co-line) of the design in

question. From (1.8) we have

A

b2 = 7.4.3/7.6 = 2

Yet, since each triple of points is in at most one block,

and since there are only 7 points, each pair of points is

contained in at most 2 blocks. Therefore, b2 is a

constant and equals 2 . So this is a 2-(2,4,7) design.

An incidence matrix for this design is given by matrix R

of Figure (2.4).

§4.3 53 Application 9; t—Designs £2 Binary Codes

(3.1) ,Lgmmg: (Goethals, Snover [17]) Given any nearly

perfect e-error correcting code C of length n , with

0 EC, the code words of minimum non-zero weight form a

[(n-e)/(e-+l)]-(e,2e-+l,n) design.

ggpgfi: Let X ‘be the set of coordinate places, and considemr

the set B of code vectors of weight d = 2e-+l . Any

x 6B determines a d-subset of X , namely the subset of

coordinate places Where the d ones of “m are. It

follows from Lemma (3.4.13) part (ii) that any e-subset

of S is contained in precisely [(n-e)/(e-+l)] such

d-subsets. //
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(3.2) Lgmmg: (Goethals and Snover [17]) If a punctured

code C of code C' of length n-tl is a nearly perfect

e-error correcting code of length n , and if _C_)_' 69' ,

then the vectors of weight d-+l = 2e-+2 in C' determine

a [(n-e)/(e+l)] - (e+l,d+l,n+l) design.

Iggggf: Let X' be the set of n-+1 coordinate places of

the code C' and let P be any fixed place of X' . Let

B‘ be the (6 +1) — subsets of X determined by the coordinate

places in which vectors 5' eC' of weight d+l have their

(d-tl) ones. In order to show that (X',B') is the

appropriate (e-t1)-design, consider the code C of length

n obtained from C' by systematically deleting the

coordinate associated to P from each of the vectors of C' .

Then C is nearly perfect, and according to Lemma (3.1),

the vectors at distance d from any vector 5 EC determine

an e—design with parameters [(n-e)/(e-+l)]-(e,d,n) on

the set X = X' - {P} . It follows that any (e+l)-subset of

X containing P is contained in precisely [(n-e)/(e-tl)]

blocks of (X',B') . Since P may be chosen arbitrarily,

the theorem is proved. //

(3.3) Remark: Lemmas (3.1) and (3.2) may be applied to

the Golay code and its extension defined in Section 3.3

because of Lemmas (3.3.10) and (3.4.12). Applying them

yields 1-(4,7,23) and l-(5,8,24) designs, i.e. S(4,7,23)

and S(5,8,24) Steiner systems.

(3.4) Remark: Likewise, Lemma (3.5.10) implies that

Lemmas (3.1) and (3.2) may be applied to the Nordstrom-





Robinson code and its extension (defined in Section (3.5)

yielding 4-(2,5,15) and 4-(3,6,l6) designs.

§4.4 Block Intersection Numbers bi .

 

In the first section of this chapter we encountered

several constants relating to a t-design. Other than the

parameters t,v,k, and bt were the constants bi for

ogigt - 1 . These are the (integer) counts of the number

of blocks of the design passing through any set of

cardinality i of points of that design. There are more

constanuh however, which are worth mentioning.

Let us consider first one example. In Section 4.2

we discussed the 1-(2,3,7) design of points and lines

(as blocks) of the Fano plane, PG(2.2) . In this geometry;

since there are three lines through each point, there are

precisely 4 lines missing each point. Of the fbur lines

(blocks) not passing through a given point, two pass through

a second given point and two miss the second point. These

three counts are constants independent of the points in

question.

Let the symbol bi j be the (integer) number of blocks

’

of a (fixed) t-design passing through a given i-subset of

the point set X of the t-design and avoiding a given

j-subset of X . These numbers bi j are called block

’

intersection numbers, according to J. M. Goethals [16].
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In the example of points and lines of PG(2,2) the

block intersection numbers are:

(4.1) b = 7

D
; I

N U
‘ H

N 0
' II

p
.
.
.

Notice that the numbers b are exactly the numbers bi
i,O

previously defined since the bi 0 means the number of

,

blocks passing through an i-set and avoiding the empty set.

The block intersection numbers are integers by definiticmn

The counts bi jare well-defined constants as long as

3

031 +jgt and we prove this in the following lemma.

Lemma: The block intersection numbers bi j satisfy:

9

(4.3) b =bi for 03131:,
i,0

(4.4) bi j are constants (hence well-defined) independent

)

of the particular i-set and j-set in question as long as

ogi+jgt,

(4.5) (Pascal Property) b = b +b for i+jSt-l .
i,j i+1,j i,j+1

gmpgg: Property (4.3) is immediate since the only O-set

is ¢'. In order to prove properties (4.4) and (4.5), we

proceed by double induction on s = i-+j and on k = j

and establish both simultaneously. For 8 = O, b0,0 = bO =

a constant.

Assume for all i +jgs-l<t that bi j is constant.

1

Assume also for all i +jgs-2 (t that



 

And
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1)i,j = bi+l,j +bi,j+1

Then consider 3 so that sg;t .

Considering bs-k k we further proceed by induction on k .

.9

For k = O’bs-k,k = bs,O = b8 and 1s constant.

Assuming for all k<:k is constant andthat b
so -k, k

b b
s-k-l,k-l = bs-k,k-l + s-k-l,k ’

then consider b . In order to evaluate this,
s-ko,ko-l

we define the following.

Let b denote the number of blocks passing through a
11,3

given set A and avoiding a given set B, for |B| = ko-l ,

and A F)B = ¢'. By the induction hypotheses we have

b
A,B=bs-k0,kO-l

But for any PKA U B,

bA,B = bA U [P],B+bA,B U[P] °

Furthermore, bA L)[P},B = bs-k0+1’kO-1 wh1ch 1s a constant

by the 1nduct1on hypothes1s. Hence, bs-ko = bA,BlJ [P] =

b8_ko’ko_1--bs_ko,ko_1 and is constant. This proves (4.4)

and (4. 5) . //

Properties (4.3), (4.4), and (4.5) require i+jgt .

And the counts b. .

1:3

unless the t-design was actually an (i +j)-design

for i-tj;>t are never constants

originally.

We conclude this section by revisiting the example of
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the 14 planar 4-tuples in V(3,2) . The counts

bO = 14, b1 = 7, b2 = 3, and b3 = 1 can be found from the

three equations of (1.2) and the parameters l-(3,4,8) of

the design. Then noting that b1 0 = bi for ogigt = 3,

2

and employing the Pascal property for block intersection

numbers we find the bi j for this design to be:

3

(4.6) 14

To help clarify these counts, the number 4 is the count

b and represents the number of dependent 4-tuples of
1,1

V(3,2) containing a given point (vector) v1 of V(3,2)

and missing another given point v2 . Choosing any third

point of V(3,2), say v3 , then there are two blocks

containing v1, missing v2 and containing v3 and two

blocks containing v1 , missing v and also missing v3 .

These counts are b2 1 = 2 and b = 2, respectively.

9
1,2

1-+b = b holds.

’

Note that the Pascal property b l 2

3
2 1,1

§4.5 Motivation for the Generalized Block Intersection

Numbers Using the Design g£_the Thirty 3-Cubes $2 the

4-Cube

Although in a t-design the counts bi,j are not constant

for i-+j:>t (unless the t-design were originally at least

a (i-+j)-design), these counts may depend only on a certain

character of the (i-tj)-set in question. For example, in

V(3,2) the count of the number of dependent 4-sets passing



through a given 4-set is either 1 or 0 depending upon

whether that 4-set be a dependent 4-set or an independent

one. In the next section we shall define generalized block

intersection numbers which are constants, like the block

intersection numbers, as long as we specify the particular

(k-tj)-set in question. However, we now preempt that

discussion by exploring in depth one important example.

Consider the thirty 3-cubes contained in the 4-cube.

That is, consider the thirty copies of V(3,2) contained in

V(4,2) . That there are thirty is established in the following

lemma.

(5.1) “Egmmgz There are 30 copies of V(3,2) in V(4,2) .

Egggfi: First notice that each V(3,2) contains 14

dependent 4-tuples and hence (2) - 14 = 56 independent

4-tuples. Now count the ways to choose an independent

4-tuple from V(4,2). The first three vectors of V(4,2)

may be chosen arbitrarily. But then the fourth, in order to

form an independent 4-set must not be the unique vector

sum of the first three. Since these four vectors from V(4,2)

may be chosen in any order, we obtain

16.15.14.12

4.3.2.1

 

= 1680 independent 4—tuples in V(4,2)

Finally, because each V(3,2) contains 56 of these

independent 4—tuples, there are in total 1680/56 = 30 copies

of V(3,2) in V(4,2). //

Consider now the t-design whose points are the 16 vectors



of V(4,2) and whose blocks are the 30 copies of V(3,2)

in V(4,2).

(5.2) Elélfl= This design of the thirty 3—cubes in the

4-cube as blocks and the sixteen vectors of the 4—cube as

points is a 3-(3,8,l6) design.

.ggggf: The key to this proof rests on an inspection of the

planar 4-tuples, Which are copies of V(2,2). To this end

we note the following:

(5.3) Remark: Each pair of V(3,2) can intersect in

either a V(—l,2) = G, a V(O,2), a V(l,2), or a V(2,2) and

hence the intersection set has cardinality 0,1,2, or 4 .

Now proceeding with the proof of (5.2) we note that

any planar 4-tuple is contained in at most three copies of

V(3,2), since the sets of the four points other than the

planar 4-tuples from each of the V(3,2) must be disjoint.

So eadh triple is contained in a unique planar 4-tuple.

Next considering formula (1.8) for t-designs we have:

k v
A

average b = b = b ( )/( ) = 30.8.7.6/16.15.l4==3
3 3 O 13 3

Finally, since no triple can be contained in more than three

blocks, we see that each triple is contained in exactly three

blocks, making the design a 3-(3,8,16) design.

Now the formulas (1.2) and v = 16, k = 8, and b3 = 3
3

imply that bO = 30, b = 15, and b = 7 . From the
l 2

Pascal property the block intersection numbers for any

3-(3,8,l6) design follow:



(5.4) 30

This design of the 30 c0pies of V(3,2) in V(4,2) is

not a 4-design. Indeed, although each planar 4—tuple is

contained in three blocks (3-cubes), each non-planar

(independent) 4-tuple spans a unique 3-cube. Hence b4 is

A

non-constant. Note that b4 is not even an integer:

/\

_ 14.3 +56.1 __ _7_

(5'5) ’04- 7o “’5’
 

Since each of the 14 planar 4—sets is contained in three

blocks and each of the 70—14 = 56 non-planar 4—sets is

contained in just one block.

So there are two types of 4-tuples in V(4,2): planar

and non-planar 4-tuples. However, the number of blocks

through any type of 4-set is a constant. Therefore, it makes

sense to define b: = 3, and bi = l, for the planar, and

non-planar 4-sets respectively. This leads to a generalizatirni

of the bi j w.r.t. the planar set P by defining

)

bi,j=bi,j for 1+Jg3,

P _ P _
b4’0 —‘b4 - 3

and

P P _ P _ . . .
bi,j+l+bi+l,j -bi,j for 1+3 - 3,031,333 .

This last statement defined all bi j

’



for 4;:j;:l . These b: j then are:

’

(5.6) 30

15 15

7 8 7

3 4 4 3

3 O 4 O 3

Similarly we can extend the b. . to by . :

1,3 1:3

(5.7) 30

15 15

7 8 7

3 4 4 3

l 2 2 2 1

Suppose we try extending the bi,j to other sets L .

For example, let L be a dependent 6-tuple in V(4,2) .

(In the following chapter we establish the existence of 448

of these.) A dependent 6-tuple has certainly no subset of

4 points which are also dependent (since then the remaining

pair of points could not be distinct by (2.2.3) and (2.2.4)).

Hence, a dependent 6-tup1e contains no planar 4-sets. Then

each 4-set contained in the 6-tup1e, being an independent

set of 4 vectors of V(4,2), spans a unique V(3,2) .

Furthermore, if a S-set contained in this dependent 6-set

were contained in a V(3,2), the S-set would then contain

a dependent 4-set; so each S—set contained in the dependent

6-set must span all of V(4,2)

Actually, we have proved the following lemma which will

be useful in Chapter 5:



(5.8) Lemma: Dependent 6—tuples contained in V(4,2)

are composed of 6 vectors of V(4,2) no 4 of which are

dependent (form a V(2,2)) and no 5 of which are contained

in a 3-cube (span a V(3,2))

We may now define bi = 1, 'b? = 0, 'b2 = 0 (well-

defined so long as the set L is a dependent 6—set in V(4,2)).

Then we may generalize the bi j to b]; j for O3i +j36

1 .9

by defining

L _ . .
bi,j _bi,j for O31+j33 ,

L L .

bi,0=bi for 03136 ,

and

bL +bL -b f o '+° 5
1+1 i,j+1 " i,j or $1 33 '

The numbers b? .

1:]

3-(3,8,16) design passing through a given i-set and avoidixu;

now count the number of blocks of the

j-set where the (i +j)—set is a subset of the special set

L, namely a dependent 6-tup1e from V(4,2) . These by

1,3

are:

(5.9) 30

15 15

7 8 7

3 4 4 3

1 2 2 2 1

o 1 1 1 1 o

o o 1 o 1 o 0

Our use of these generalized block intersection numbers

lies in the interpretation of the bottom line, the b? j

2



for i+j=6:

(5.10) ggmmg; A given dependent 6—tuple of V(4,2) meets;

any copy of V(3,2) in V(4,2) in exactly two or four

places.

Proof: Each bi j for i-+j = |L| counts the number of

3

blocks of the design in question passing through exactly 1

( and not the other j ) of the points of L . Since in

(5.4) only bi 2 and b; 4 are non-zero, the lemma follows.//

1 3

Finally we shall extend the bi j to the counts bf

3 ’

where B is a block of the design.

We already calculated, in (5.5), that each 4-tup1e

contained in an block of this 3-(3,8,16) design was

contained in 7/5 blocks, on the average. Each S-set, which

is contained in a block, a V(3,2), certainly contains an

independent 4-set, so this 5-set is contained in only that

block, and no other. Therefore, we may set

A
B _ _ B _ _ B _ B _ B

Then again by the definitions:

b1? . =b. . for 03i+j33
1’] 1’]

B _ B .
bi,0 — bi for 03138

b3 +1:B =b for 0 1+' 8
i+1,j i,j+l i,j S 33 ’

we obtain generalized block intersection numbers for this

design relative to a block of the design:



(5.11) 30

15 15

3 4 4 3

7/5 8/5 12/5 8/5 7/5

1 2/5 6/5 6/5 2/5 1

1 0 2/5 4/5 2/5 0 1

1 o 0 2/5 2/5 0 o 1

1 o o 0 2/5 0 o o 1

Now interpreting these generalized intersection numbers we

have:

(5.12) Lemma: Blocks of the 3-(3,8,16) design of the

thirty 3-cubes in the 4-cube meet one another in 0 or 4

places.

Proof: Only the b? j 7’ o with i+j = 8 = [a] for
)

i = 0,4, or 8 . That bB = 1 means that the block B
8,0

of the design meets only itself in all of its 8 places. /7’

This lemma was not evident a priori. Compare (5.3)

to the statement of Lemma (5.12).

(5.13) Note also that we do not wish to consider the

B

generalized numbers bi to be integers, but rather average:

’

over all i—sets of the number of blocks through each i-set

contained in the given set B .

§4.6 Generalized Block Intersection Numbers

J. M. Goethals in [16] defined the block intersection

numbers bi j for a t-design and for 03i+j3t . The

’

 

generalized block intersection numbers bi j for L being a

J



block of the design were considered by N. S. Mendelsohn in

[25]. These numbers b? j’ to be formally defined in this

3

section, provide a link between the two concepts as well as

a legitimate generalization of both.

Remembering the comment (5.13) at the end of the last

section we shall define, relative to a given L set

L

(contained in the point set X of a t-design), bi as the:

.7

average over all the possible (i +j)-sets contained within L

of the number of blocks of the t-design passing through the

i-set and avoiding the j-Set.

Formally:

L

B,A\B

a given t-design containing all points of A and no points

(6.1) Let b denote the integer number of blocks of’

of B, for given sets so that BcA CL .

(6.2) Then

bi” . := (11") z: (( “fifl 2: bg’MB) .
1,3 1+j ACL

New (31:1

So the numbers b: A\B are integer counts whereas the

2

L L
i,j are averages over all the poss1ble bB,A\B w1th

BgAEL . (Relative to the very last example in the last

b

section with the set L being a block of the thirty 3-cubes

. _ . L _ L _ L

1n the 4 cube des1gn, bP,P - 3, bN,N _ 1, and b4,0 = 7/5

Where the sets P and N were the planar and non—planar

4-sets contained in the block L, respectively.)

(6.3) Lemma: The generalized block intersection numbers

L .

bi,j sat1sfy:



L
6.4 b. . = b. . f r L t

() 1,3 1.3 O ‘K

(6.5) b? j are constants depending only on the particular

3

set L and the cardinalities i and j, and

L L _L
(6.6) (Pascal Property) bi+l,j'+bi,j+l — bi,j for

i+j3|L|-1

Proof: Since the b: A\B ans constants independent of the

3

set L and the cardinality of B, as long as |B|5;t,

property (6.4) is clear. Again, since the b? are

1,5

averages over all the possible subdivisions of the given set:

L, into subsets of cardinality i,j, and (|Ll-i-j), these

numbers are constants dependent only on the set L and the:

cardinalities i and j .

Property (6.6) is established directly.

L := L] -l 1+j -l .. L ‘by

bi,j (i+j ) BE ( i ) CZ“ bc,13\c

|afii+j (cfii

definition.

Since for each P EL\B the following holds:

L _ L L

bc,s\c “ bcup + be, (BUP)\C(BUP) \ (CUP)

we can write

L ._ L —1 . 1+j L-('+') —1
bi,j’(i+3‘) L (1)2(11113)

BCL CcB

|BT=i+j [CTsi

23 (bL L

where CLJP means CLJ[P} .



. L 1+j-1"]. __ L L _(i+j)

Slnce (iljil)(l ) —. (1+;)() | )

and Since

2:] 2" = 1"
Z for A : BL'P ,

)Bi=i+j
[ATri+j+1

L _ L i+j+l -1 . 1+j-l

bi:j — (i‘ij-i-l)-l
( ) A:

P%A( i )

[ATei+j+1

z (bL(CUP), A\(CUP) +bL )

[ng\P
c,A\C

=1

Then by separation;

bf j =(1le-‘4l-l)-l
Z (1+i+1)-1 §A(ii+j)_1

’
AcL

P

|ATéi+j+1

bL

. o

CC§\Pb
(CL/P), A

\ (CUP)
4» (iljll)-1AZJ

(1+1).+1)_1

'
L

ICTtl

|A =i+j+l

2 (14-3)”1
2: bL

PEA 1 Cd, P C,A\C .

NOW: Since

(i+i+l”i;j’ = (1315“?) = (“9+1Hi)

and since

\ =02] 2k ,

Paéipé
iPeAC

— L ‘ i“"341 -1 1+1 —1

bi,j — (iljil); SET ( 1+1 ) ( l )

IATEi+j+l
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.‘ L

2, 23 b |L| -1

ICT=i
. . .-l

.‘ + ..

L (1 {+1) 1(1) 2: 2: bf; A\c
AcL CcA PeA\C ’

|AT=i+j+1 |CT=i

Furthermore, 23 Z. Z) L, for D = CLJP yield

ccA PeA\C D PED

|CT=i |DT21+1

. . . -1
L __ |L| -1 1+j+l -1 1+1

bi,j " (1+j+1) AZL ( i+1 ) 2’ ( 1 )

|Af;i+j+1 |nT=i+1

L |L| -1 i+j+1 -1
Lb +(. . ) Z ( . )
PED D,A\D 1+j+l Ad 1

|AIEi+j+l

. ' —1 L

L (3) 2: b .
1 P€A\C C,A\C

c

|Cfii

L
Then since b is constant for each P 6D and since

D,A\D

bg,A\C is constant for each P EA c, bij = b§+l,j+bi,j+l' //

'Eggg: If all the b§,0 can be calculated for a given set

L relative to a given t-design, then by the Pascal property

(6.6) all bi,j can be calculated. Then one may conclude

facts from the other b£,j for j #'0, especially those for-

i+j = |L| . This process can work in other ways as well, (3.9,

if the bi,j can be found for 1+j = |L| then the bi,0

may be calculated.

§4.7 t—Designs with dzdO

 
 

Throughout this thesis we shall deal with various

t-designs having the property that bE+l O = 1 for every

J



block L of a design. This property means that each (t+1)-

set is contained in at most one block, or equivalently that

columns of the incidence matrix for the t-design are a

distance at least 2(k-t) apart when considered as vectors“

Hence we have now proved:

(7.1) Lemma: Vector columns of the 0,1 incidence matrix

for a t-design have distance 2_2(k-t) from one another

iff bL = 1 for the generalized block intersection
t+1,0

numbers of the t-design relative to a given block L of the

design.

Remarks: If b: 0 = 1 for a given t-design and block L ,

J

the design is a Steiner System. A t—design with bt+1 O = 1.

’

for blocks L is a generalized Steiner system that by
 

Lemma (7.1) has use in coding theory.

Lemma (7.1) now serves as a motivation for the following

definition.

(7.2) Define a t-design with d;;do to be a t-design so

 

that the column vectors of the incidence matrix for the

design have mutual distance at least dO .

(7.4) L_e_m__r_n_;a_: The 3-(3,8, 16) design of the thirty 3-cubes

in the 4-cube is a 3-(3,8,16) design with d218 .

L
Proof: By the b? . in (5.11) we see that b = 1 so
———-— 1 3 5,0

that d22(8-4) = 8 - //

As applications and examples of the concept of a t-design

with dlido we establish the following lemmas.

(7.5) Lemma: A vector set of vectors of length v and
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all of weight k and of mutual distance dzdO has bO

vectors with

v—t \7 k

(7.6) bOg[ f: ](t)/(t)

d6 do+l

for t = (k-T) and d0 = 2[ —-2—] . (do = smallest even

integer greater than or equal to do)

m: For t and d6 defined above (d6 is the even

integer 260) , through each t-set can pass at most [if—E]

vectors. Given bO vectors, then the average bt for

this system of b vectors is

 

O

k
b ( ) A
O t __ .123. from (1.8)

(v) - th[k-t]

t

since for each particular t-set btg[]‘-:-}E] . Solving for 130

proves the lemma. //

(7.7) Lemma: A vector set of vectors of length v , weight

k and mutual distance dzdO and the maximum possible

b0 = [13%](Z)/(]:) (according to (7.6) is a t-design. If

k

-t - . . .
also [h] = iii , then the t—de31gn 18 a (t+1)-—Ste1ner

system.

Proof: The first part arises from the fact that RSV—1:5]

A _

for any given t-set bt = [fig] from the fact that bo is

maximal. Hence bt = [E]. dzdO ensures that each (t+1)..

t
set is contained in a unique block. If also [g] = 3‘5? ,

then each (t+1)—set is contained. in at least one block. //

One could at this point apply Lemma (7.7) to the GOLAY

and NR codes and obtain the same result as stated in (3.3)

and (3.4). However, the proof given in Section 4.3 is more
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efficient as well as sufficient for our purpose. We shall

instead give an example of (7.7) that shall be used later

in Chapter 8 .

(7.8) Lemma: If T is maximal set of vectors of V(8,2)

of weight 4 and having mutual Hamming distance 2’4, then

T is a S(3,4,8) design.

8-2
Proof: From (7.6), t = 4-4/2 = 2 . Then bO = [2:3] .

8.7

4.3

the design is a S(3,4,8) . //

= 14. Equality holds in the inequality (7.6) so by (7.7),

Furthermore, one obtains from the generalized block

intersection numbers for this S(3,4,8) design T relative

to a block of the design:

(7.9) ‘Lgmmg: T as given in Lemma (7.8) is composed of

7 complementary pairs of vectors, with representatives from:

distinct complementary pairs having Hamming distance exactlgr

equal to 4 .

2529;: Let L be any block of T , then the generalized

block intersection numbers for T relative to L are

necessarily:

(7.10) 14

7 7

3 ‘4 3

l 2 2 1

1 (D 2 O l

where bL = 1 = bL since d214 in this design. In
3,0 4,0

(7.10), b3 4 = 1, so the complement of each block is

3

necessarily a block, all other blocks meet L then at

distance exactly equal to 4 . //



It is important to note that this added condition,

with dzid is not necessarily satisfied by a general
0 :

t-design. Consider for the moment the 4-(3,6,16) design

of minimum non-zero weight vectors in an XNR code

containing Q_(see Remark (3.4)). Since this design has an

incidence matrix whose columns are code words in XNR, and

since XNR has minimum distance 6 between code words, the

design has the "with d216" property. We have constructed

numerous non-isomorphic 4-(3,6,16) designs, but we show

(after Chapter 9) that there is only one 4-(3,6,16) desigr:

with d>_6 ; that is, there is only one such design which can

 

be embedded in a code.

(7.3) So that it will be easier to state later theorems

we shall call any 4-(3,6,16) design with d216 an gag:

design. One such exists by Theorem (3.9), is explicitly

constructed in Chapter 5 and is shown to be unique up to

isomorphism in Chapter 9.



CHAPTER 5

Automorphism Groups and an

EXplicit Construction of the XNR—Design

§5.l Permutation Groups

Given a finite set X Whose elements are called points,

a permutation on X is a bijection x::Xh+X . Under the
 

operation of composition, the set of all permutations on

X, S is the symmetric group on X . If X is fixed in a
x)

particular discussion and |X| = n, ‘we sometimes write 3n

for Sx. A tranSposition is a permutation which fixes all but:
 

two of the points of X and exchanges those two points. .A

permutation can be written as a product of transpositions in.

numerous ways, but the number modulo 2 of transpositions used

is always a constant; hence, a permutation is considered

9gg_or 2323 as the number of transpositions needed is odd

or even, respectively. The group of all even permutations

of Sx is a normal subgroup of index 2 denoted by Ax or

A

n

A permutation group is a triple (X,G,i), where X is

a finite set, G is an abstract finite group, and i is a

lkamomorphic injection i :G-oS We say that G acts on ix
x O

(n: G has a (permutation) representation on X . If the

luarnel of the injection is trivial, the representation of G

5.1



is faithful and ‘X‘ is the degree of the representation.
 

In practice, for faithful representations, we shall identify

G with its image in 8X .

An orbit of a point P’eXZ under the action of G on

X is the set

xG: {xg | gEG} .

G is transitive on X if all points of X are in one
 

orbit of the action of G on X . Clearly, G is

transitive on any given orbit; and a representative of an

orbit is simply any member of the orbit. G is k-transitive

on X if for each pair of k-subsets of X , [x1,x2,...,xk}

and {yl,y2,...,yk} c 2x , there exists an element 9 EG

so that

xig = yi for i = l,2,...,k .

Then by definition it is clear that the concepts of

"l-transitive" and "transitive" are identical. A group G

is half-transitive on X if there are t orbits for
 

1J<t<(|X| and each of the orbits has the same cardinality.

A regular group G is a group G transitive on X and so

that |G| = |x| .

§ 5 . 2 Automorphi sm Gropps
 

 

An n)<n ypermutation matrix Pn is a matrix obtained

from the n xn identity matrix, In , by permuting its

<X>1umns. Clearly, the set of all permutation matrices is Sn'



(2.1) The group of automorphisms, the automorphism group,

Aut(N), of a v)(b incidence matrix N is the set of all

permutation matrices Pv for which there exists a corre-

sponding permutation matrix Qb so that

The set {Pv} is a group under matrix multiplication since

for given pi, i = 1,2, there exist 0;, i = 1,2, so that

1 2 2 1 _ 1 1 _
(pvpvmmbob) — PVNQb — N .

Let D = (X,B) be a t—design.

(2.2) An automorphism group of a t-design D is the group
 

of permutations w of the point set X so that for each

h EB, b1r EB . As a special case of this definition, we state

in particular that the automorphism group of a graph is
 

the group of permutations v of the points (vertices) of the

graph so that for each edge {vl,v2}, {v1n,v2w} is also

an edge. One can easily establish the following properties:

(2.3) The automorphism group Aut(N) of an incidence

matrix N for a t-design is isomorphic to the automorphism

group of the t-design.

are two incidence matrices for a(2.4) If N and N
l 2

t-design, then Aut(N1)=*Aut(N2) .

$2.5) The automorphism group of a code C is the group of
 

Inermutations w of the standard basis elements, i.e. the

coordinate positions, so that for each _v EC, y_1r EC . Since

‘Ule incidence matrix of vectors of C can be arranged as a





disjoint union of incidence matrices of vectors of C of

each distinct weight class, which matrices are O—designs,

we have

(2.6) Lemma: The automorphism group of a binary code C

is the intersection of the groups Aut(Ck), Vk

Proof: Each class Ck of all of the vectors of weight k in

C has, as a 0-design a group Aut(Ck) of automorphisms.

Each of these groups acts on X , the set of n coordinate

positions. For each V in the automorphism group of C ,

n

Aut(C) holds necessarily 51k” = wk 6C , so 7r EC fl Aut (Ck)

k=0
n

Clearly for each 7r 6 fl Aut(Ck) , _y_1r EC for each 16C , so

k=O

n

Aut(C) = flAut(Ck) . //

k=0

§S.3 Applications and Examples

In this section we shall apply some of the definitions

given in Section 5.2 to specific examples. Our goal is to

construct from the action of the group of translations of

V(4,2) acting on the set of 448 dependent 6-tuples of V(4,2)

an XNR-design, [Theorem(3.10)], thus establishing the fact

that the group of translations of V(4,2) acts on this

design. The XNR-design is a 4-(3,6,l6) design with d216

Iaccording to Definition (4.7.3).

The points of V(n,2) form an additive abelian group

luader vector addition.

(3.1) Definition: T(n) is the group of translations on
 

V(n,2), i.e. T§ET(n) is a translation given by



(X)T§=X+?$ for each 16V(n,2)

(3.2) Lemma: T(n) acts as a regular group on the points

of V(n,2)

Proof: For two points y,3<_€V(n,2) then gTy = _sz for

is equivalent to 35 =

exa ctly |V(n,2)|

y . Hence, there are

elements in T(n) . But also, for each

pa 1 r y,_x£V(n,2) there is a vector (5+1) , and hence a

t ra nslation T(x +1) , so that yT(_x+y) = y+§+y = is .

Hence, T(n) is transitive on the points of V(n,2) .//

there exist 448 dependent 6-tuples.

These as blocks and the 16 vectors of V(4,2)

E: 3L.6—(3,6,16)

(3 - 3) Lemma: In V(4,2)

as points form

design with d24 .

Eroof: By the Lemma (4.5.8) we can see that in choosing 6

Vectors to form a dependent set from V(4,2) the first

tllree may be chosen arbitrarily, so there are 16, 15, and

14 choices for each of these. The fourth must not be the

Sum of the first three, so this may be chosen in 12 ways.

The fifth cannot be in the V(3,2) spanned by the first

150 ur, so this may be chosen in 8 ways. The final vector is

then the (unique) sum of the first five. So in total there

are

16.15.14.12.8.l/6: = 448

S“ (:11 sets.

NeXt we notice that an arbitrary triple of vectors from

V

(4., 2) may be completed to a dependent 6-set in

12.8.1/3! ways, i.e. b3 = 16
2



since the first three of a dependent 6-set may be completely

arbitrarily chosen. So the design is a l6—(3,6,l6) design.

Let B1 and 82 be any two distinct dependent 6-sets from

V (4,2) . Their symmetric difference:

(3-4) BlAB2 := (Bl\BZ) b (B2\Bl)

i s also dependent and has even cardinality :» 0 . Since no

pa ir of distinct vectors over GF(2) are dependent,

I B ABZ‘Z4 . Hence, the design has dz4 . //
IL

( 3 - 5) Theorem: T(4) acts on the 448 dependent 6-tup1es

0 f points of V(4,2) yielding 28 orbits of 16 dependent

6— tuples per orbit. Each orbit is a 2-(2,6, 16) design

wi th d28 . Furthermore, T(4) acts half-transitively on

th ese 448 dependent 6-tuples.

Eroof: Let

( 3 -6) Q := {§1,§2,§_3,£4,§5:§6 liege]; = .9}

be any one of the dependent 6-tup1es. Let also

_1’—2: - - ”—6’51 +£2 +33% +252 +54, . "’931 +255 us}

_2’__1 _3’°"’2(_5 +£6’Q}

—2’°'°’-’56’-’57’l‘e’°°°’§15’9}

By simply checking, one sees that |B| = 16 = |A| = [XI ,

whence, X =A = B .

(3-7) Let yeX,y#0. Thenwe claim that

|W+x)flo|=2.

r y 7! 9, there exists a unique non—zero element of B(=X)



so that y = x1 +x2 , say.

111611

| _ x x x +x +x x +x +x x +x +x x+ +

(Q X) { 2’ 1’ l 2 3’ l 2 4’ l 2 5’ 1 x2 x6}

and (0+X) 0 Q = {xl’xz}

Hence (3.7) holds.

since Q +1cA .

But each non-zero element y of X

yi e lds (by considering B) a distinct dependent 6—tuple

(Q +y), so orbits under the action of T(4) on the 448

:3 ependent 6-tup1es have cardinality 1+15 = 16.

Each pair of points from Q is contained in Q and

precisely one other dependent 6-tuple in the orbit of Q

under T(4). Since this property holds for each member of

the orbit, each pair of points of V(4,2) is contained in

Precisely two members of the orbit.

6~

Hence the 16 dependent

tuples in any orbit form a 2-(2,6, 16) design. Finally

d 2 8 since, in a given orbit, any pair of dependent 6—tuples

8113 re precisely two points of V(4,2). //

(3 - 8) .11-£11193: For Q being one of the dependent 6-tup1es

of points of V(4,2) as defined in (3.6) and for any

n°n~zero point 5 €V(4,2) then

(Q +_z_) A0 in a 3-cube.

Pr 6,
00f: Let Q 3: {£l:_§2:§3:§.4’£5’§6

I '2’ £1 = 9}

i=1

men by Theorem (3.5), 2 - 35-1 +52 say and (Q +5) AQ =

{£3’é4’3—5’56’35-1 +§2 +§3v§1 +3.2 +£43.51 +952 +355:251 +52 +36}

x3,§4,x5, and £6 are a basisone can easily see that

Of 6

2<_-=9.)
i=1 1

(Q+g)AQ (using



As such, (Q-+§)ZSQ is a copy of V(3,2) within V(4,2)

and is therefore by definition a 3-cube. //

(3.9) Theorem: An XNeresign exists with T(4) acting

transitively on the 16 points of the design.

Egggfi: It suffices to construct the 4-(3,6,l6) design as;

a set of 7 disjoint orbits. Consider the following 7

dependent 6—tuples:

Q1 ‘= {"1’52’353’54’935 —6 ‘ Z "i = 9}
i=1

Q2 ‘= {—1’—2’-"-3’"—1 —2 —4’"1+"3 +5951 +1‘4 +195}

Q3 i: {£1’§2:x3’x1+x3+—6’—1+55+§6’§l+-§2 +355}

Q4 3: {£13.’_{2:§32§1 +354 +§6’-}21+—2+—6’—1 +X3 +£4}

Qs={"4’"—5’—6’ "1 +"2 +"4’351 +933 +"6’351 +254 +356}

Q6 := (£4, 335,56,x1+x3+x5,x1+x5 +_6,x1+x2 +_6}

Q7 ‘= {—"4’1‘5’1‘6’51 +"4"5’"1 +"2 +"5’"1 +"3 +394} °

(3.11) It is straightforward to check that each of these

Qi is a dependent 6-set and that any pair of distinct Qi

meet one another in either 1 or 3 places.

Define D to be the 7.16 = 112 dependent 6-sets,

called blocks of D , obtained from the 7 orbits (of

dependent 6-tuples under the action of T(4)) whose

representatives are Qi’ i = l,2,...,7 . Since no 2 of the

Qi meet on exactly 2 places, no 2 of the orbits coincide

Let,for the moment, 0 and R be any 2 distinct

dependent 6—tuples from among the 448 in V(4,2) . Let .5



be any non—zero point of V(4,2), then Lemmas (3.8) and

(4.5.9) imply

II

MIQfl((R+§)AR)| or 4.

Therefore

0 mod 2(00 ((R+g)AR)l

But |QF]((R+_§)AR)I= |(Qfl(R+z._))A(QnR)|

= (on (R+§)|+|Qfl (n+5) fl Rl ,

so that

(3.12) (on R| = |Q n (R+£)| modulo 2

Now letting Q and R be blocks of D, (3.11) and

(3.12) imply that by considering the representatives for Q

and R among {Qi}, i = l,2,...,7,

(3.13) |Q n R| e 1 modulo 2

iff Q and R are in distinct orbits.

If Q and R are in the same orbit then, by Theorem (3.5),

[011R] = 8 . If Q and R are in different orbits then,

by (3.4) and (3.13), |QAR| = 10 or 6 . Therefore

(3.14) d216 in this design.

Finally (3.14) together with Lemma (4.7.7) imply that D

is a 4-(3,6,l6) design with d216, i.e. by Definition (4(7.3),

D is an XNR—design. Now Theorem (3.9) is proved. //



PART C: THE NORDSTROM-ROBINSON CODE

CHAPTER 6

Equivalence of the Uniqueness of the

XNR Code and the Uniqueness of the XNR-Design

§6.1 Introduction
 

The method of constructing the extended Nordstrom-

Robinson cede, XNR, given in Theorem (3.5.4) is not the only'

one. J. M. Goethals demonstrated [15] that such a code

could be derived from the XGOLAY code. From his work with

these codes, Goethals suggested in a private communication

that the Nordstrom-Robinson code might be unique. Thanks

to his suggestion, we now show that this conjecture is true.

Our long proof of the uniqueness of XNR (and NR) is

subdivided for convenience into chapters. In this chapter

we reduce the question of uniqueness of these codes to that

of the uniqueness of the XNR-design, which was defined in

(4.7.3). It is then shown that every XNR-design can be

described in terms of the geometry of V(4,2) . In

Chapters 8 and 9 we show that within ‘I(4,2) the XNR-design

is unique up to an automorphism of Aut(V(4,2)) . Finally

Chapter 10 is a summary of the various parts of the

uniqueness proof.





§6.2 Organization 9.5. Chapter 6

This chapter is organized as follows. In Section 6.3

it is shown [Theorem (3.1)] that the set of minimum non-

zero- weight vectors in any (16,256,6) code, C , with 9 EC

form an XNR-design. Section 6.4 establishes the necessary

weight distribution of any (16,256,6) code, C , with 9 EC ,

and shows that the vectors of weights 10 and 16 in C are

the complementary vectors to those of weights 6 and 0 . In

Section 6.5 it is shown that the vectors of weight 8 in C

must necessarily be obtained from the XNR-design in a special

way. The equivalence of the questions of uniqueness of the

(16,256,6) code and the XNR-design is then stated in Section

6.6.

§6.3 The Fundamental XNR-Design _o_f Weight 9 Code Words in
 

 

any (16,256,6) Code C , with gec .

  
   

Note that there is no loss of generality in assuming

that any (16,256,6) code contains 9, since if C* is a

(16,256,6) code with _x_* EC* , then C := C* +19” is an

equivalent code with Q = _x_* +x* EC .

(3.1) Theorem: In any (16,256,6) code C , with QEC,

the set of 112 weight 6 code words forms an XNR-design.

Pro____q__f: Since 256( 1+(1611)+__16 (1:5)) __ 2(16--1)

{—3—}

any punctured code of C is nearly perfect, by (3.4.11).

Then by Lemma (4.3.2), the set of weight 6 code words form

a 4-(3,6,16) design with d26, which is, by



Definition (4.7.3) an XNR-design. Finally this design has

be e “136)“? = 112 blocks by (4.1.3). //

§6.4 The Weight Distribution _o_f_ any (16,256gp) code, Q ,
 

with _9 EC

 

(4.1) Theorem: Any (16,256,6) code, C , with QEC

has 112 code words of weights 6 and 10, 30 words of weight

8, and one code word of weight 16. Such a code has the

additional property that the complementary vector to any

code word is also a code word.

M: Let C be any (16, 256,6) code with 9 EC . Since

vector addition is done modulo 2, 9 EC +5 for any coset

code C+_z_ . For this reason, for each _z_EC, 0+5 is a

(16,256,6) code with _QEC-i-g . Theorem (3.1) then applies

also to C-+z. showing (4.2) lemma. The 112 weight 6 code

words in any C +_z_, for _z_EC , are the elements of an

XNR-design. This is the key point in the proof of Theorem

(4.1). Indeed, many of the proofs of the following lemmas,

which eventually prove Theorem (4.1), consider the generalized

block intersection numbers for the XNR-design indicated by

the weight 6 code words of a C-+z_ coset code for a

particular 56C .

Useful in establishing the various generalized block

intersection numbers needed are the block intersection

numbers for any 4-(3,6,16) design:



(4.3) 112

70 42

42 28 14

24 18 10 4

We shall now proceed with the series of lemmas which

culminate in Theorem (4.16), a restatement of Theorem (4.1).

The following two lemmas will be proved simultaneously.

(4.4) _Lgltmg: Any (16,256,6) code, C , with QEC

contains 15 weight 8 code words, no two of which are

complementary.

(4.5) BEBE: Any (16,256,6) code, C , with QEC

contains at least 36 weight 10 code words.

Proofs of Lemmas (4.4) and (4.5): Let EEC be a code

word of weight 6 . By Theorem (3.1), the 112 weight 6 code

words in C-+g. indicate an XNR-design. Also in the coset

code C-rg. is the code word .5 . Let L be the 6-tuple

indicated by the vector 5.. Consider now the generalized

block intersection numbers for the XNRvdesign relative to 1.,

Since the design has d;i6, (cf. Definition (4.7.3)),

bio = l for each block L . Therefore these numbers, bi,j’

are the same relative to any block of any XNR-design, and

are:

(4.6) 112

70 42

42 28 14

24 18 10 4

13 ll 7 3 l

6 7 4 3 0 l



From these numbers, the b? j with i-+j = 6 imply that

2

6;x(i) = 36 blocks of the design meet L in one place,

1.x(g) = 15 blocks meet L in two places, and 3)((§) = 60

blocks meet L in three places. Therefore, of the 112

weight 6 code words in C-+g_, one is g_ and the 36,15, and

60 others are at distances 10, 8, and 6 from 5’, respectively.

Adding the vector 5_ to each of these 112 weight 6 code

words of C-+§ , we obtain code words in C = C-+§g+§ .

Therefore C contains .9 , at least 36 code words of

weight 10, and at least 15 code words of weight 8 . The

15 weight 8 code words could not have any pair being

complemented, for then the corresponding pair upon addition

of g_, would be a pair of weight 6 vectors in C-+§_ at a

distance 16 from each other. This is a contradiction, since

the distance between two weight 6 vectors is at most 12

Lemmas (4.4) and (4.5) are thus proved.

(4.7) .ngmg: C contains no code word of weight 12 .

Egggg: Consider the XNR-design relative to the 112 weight

6 code words in C . Let ‘3 ‘be any weight 12 vector. Then

‘i-h! is a vector of weight 4, for j_ the all one vector of

length 16. Now {jghg indicates the 4-tuple, M , which gives

these generalized block intersection numbers, b.1,j , for

this design:

(4.8) 112

70 42

42 28 14

24 18 10 4

12+x 12+x 6+x 4-x x



where b: 0 = x = 0 or 1 . This means that any such

.0

4-tup1e, M , is disjoint from at least 12 blocks of the

design. Hence, 3 contains at least 12 weight 6 code words

of C .

Let g_ be one of these 12 weight code words of C .

Then in C +_z_, 2+5: and _z are code words located at

L

0,6

contradiction follows the fact that .3 cannot be a code word

distance 12 , contradicting b = 0 in (4.6). From this

of C . Since 3 is an arbitrary weight 12 vector, Lemma

(4.7) is proved.

(4.9) £3993: Any weight 10 code word in any (16,256,6)

code, C , with _0 EC , is the complement of a weight 6 code

word in C .

Egggf: Consider any weight 10 vector 3,. Viewing the

complementary weight 6 vector, 13+! , as a 6-tuple, N , in

the XNR-design of the 112 weight 6 code words of C , we

obtain these b? :

,3

(4.10) 112

70 42

42 28 14

24 18 10 4

12+x 12-x 6+x 4-x x

2+5x-y 10-4x+y 2+3x-y 4-2x+y x-y y

-10+15x-6y+z 12-10x+5y-z -2+6x-4y+z 4-3x+3y-z x-2y+z y-z z

wa, a weight 10 code vector !_ cannot meet any weight

6 code word at distance 12, since then C-by would be a

(16,256,6) code with 9 EC and containing a code word of



weight 12, contradicting Lemma (4.7) . Hence,

(4.11) 0=bg6-10+15x—6y+z and
2

_ N _
(4.12) O - b4,2 x 2y+z .

Notice that z is an integer, because b2 0 is simply

2

the number of blocks meeting the set N in all of its points.

Moreover, z = l or 0 , because the 6—set N is either a

block or not. These equations (4.11) and (4.12) together

with z = l or 0 yield the following two possible sets of

solutions:

Case 1: x = y = z = l . Hence, the 6-tup1e N

represents a block, i.e. the vector “y is the complement of

a weight 6 code vector.

Case 2: z 0, y = 5/12, x = 5/6 . This implies that

the 6-tup1e meets:

(y-z). (g) = (5/12).6 = 5/2

blocks of the design in five places. But since 5/2 is not

an integral number of blocks, no such 6-tuple can exist. This

proves Lemma (4.9) along with the following corollary:

(4.13) Corollary: Any (16,256,6) code, C , with QEC
 

contains a weight 6 code word, whose complementary vector is

also a code word.

(4.14) _L_eLn_1_n_a_: Any (16,256,6) code, C , with QEC contains

1’, the all one vector of length 16

.Egggfi: Let z_ be a weight 6 code word of C , whose

complement j +5_ is also a code word, as guaranteed by



Corollary (4.13). Consider C+z_ . Not only are _0_ and

112 weight 6 code words in C +_z_, but 1 = (j+§)+§ (C41 .

By Lemma (4.9) all the 112 weight 10 code words are

complementary to the 112 weight 6 code words. Since _z_ = 9+;

is one of the weight 6 code words in C43, both _z_ and

j_+_z_ are code words of C+§ . Therefore (j+_z_)+g_ = j is a

code word of C .

(4.15) Corollary: If C is any (16,256,6) code with
 

9 EC , then the complement of any code word is also a code

word of C .

£33393: Let g be any code word of C , then c+_w contains

9 and is a (16,256,6) code. Then, by Lemma (4.4), _jEth .

Therefore g+iEC .

(4.16) Theorem: (A restatement of Theorem (4.1)): If C

is a (16,256,6) code with QEC , then C contains also

112 weight 6 code words, 15 weight 8 code words, no two of

which are complementary, together with the vectors comple-

mentary to those 1 +112 +15 = 128 code words.

2319;: This is a result of Lemmas (4.2), (4.4) and

Corollary (4.15).

(4.17) Corollary: Any (16,256,6) code, C , with 96C,
 

has the same weight distribution as any of the coset codes

C+_z, for any EEC.

Proof: Because C +5 is also a (16,256,6) code with

0 = _z_+_z_ EC +5 , for any 56C, Theorem (4.16) applies.



56.5 Each XNR—Desigp_Builds g (16,256,6) Code 13 just One

WaX

To build a (16,256,6) code from an XNR-design,

Theorem (4.1) requires that the code be complemented, so the

112 needed weight 10 vectors must form the design comple-

mentary to the given design. Then to complete this set of

l-+112-+112-+l vectors to a (16,256,6) code, 30 weight 8

vectors must be carefully selected. In trying to establish

Theorem (5.2), which says that these can be chosen in only

one way relative to a given XNR-design, we shall explore a

necessary condition for these "admissible“ weight 8 vectors.

(5.1) Define an admissible weight 8 vector to be a weight

8 vector which together with the set of l-+112-+112-+l

vectors given by Q_, the 112 weight 6 vectors in the given

XNR-design and their complements preserve the distance

condition 626 .

(5.2) Theorem: Given XNR-design, then admissible weight 8

vectors (by Definition (5.1)) are symmetric differences in

28 ways of two weight 6 vectors from D which share two

coordinate places.

uggggf: Let L be the 8—tuple indicated by an admissible

weight 8 vector. By the condition d;;6 , L meets blocks

of the XNR-design D in at most 4 places; so b: O = b: O =

L L L L ’ ’
b7,0 = b8,0 = O . Let b4,0 = x , then the bi,j become:



(5.3) 112

70 14

42 28 14

24 18 10 4

12+x 12-x 6+x 4-x x

2+5x lO-4x 2+3x 4-2x x O

-lO+le 12—10x —2+6x 4-3x x O O

-28+35x 18-20x -6+le 4-4x x O O O

-56+70x 28-35x -10+15x 4-5x x O O O O .

L
From —56+70x = b and 4-5x = b? 5310, 'we learn that

2
0,8?—0

x = 4/5, showing that the b? j really are:

2

(5.4) 112

70 42

42 28 14

24 1s 10 4

64/5 56/5 34/5 16 /5 4/5

6 34/5 22/5 12/5 4/5 0

2 4 14/5 8/5 4/5 0 o

o 2 2 4/5 4/5 0 o o

o o 2 0 4/5 0 o o 0

From the b? values with i-kj = |L| = 8 we can now see

:

that an admissible weight 8 vector meets a weight 6 vector

in either 2 or 4 places. But these b§,j tell us even more.

Let us view the incidence matrix N of the design D as

sectioned into two halves, upper and lower, according to the

8—tup1e L . Then we have

Figure (5.5)
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Here the x)(112 matrix A represents those parts of the

blocks of D meeting L, and B represents those parts

missing L . Matrix A can further be divided into two

parts according to its parts of blocks of weight 2 and its

parts of weight 4. After permuting the blocks so that all

the weight 4 parts occur to the left we obtain:

"4 A2 1L .

B B

Figure (5.6)
 

 

2 4     
Here A = [A4,A2] and A represents a design of weight

4

4 blocks on the 8 points of L while 82 represents a

design of weight 2 blocks on the other 8 points (which comprise

the rest of the blocks of D through A4 .)

Since D is a 4—(3,6,l6) design, each 3 points of L

must be located in precisely 4 blocks of A . These blocks

must be all in A4, so A4 is necessarily a 4-(3,4,8)

design. Since a 4-(3,4,8) design has b2 = 12 while

design D has b2 = |L|, each pair of points from L must

occur twice as a block in design A2 . Thus, A2 actually

consists of two copies of the complete pair design from 8

points. Denote A2 by [(3),(g)] to indicate that each

pair of points from L is a block of A2 occurring twice.

By exactly the same reasoning relative to the other 8 points,

not contained in L, B2 is two copies of the complete (3)-

design, and B4 is a 4-(3,4,8) design.

Now we wish to show that the two blocks of B2



representing any fixed pair of points from the complement L'

of L, are attached to complementary, disjoint weight 4

blocks of A Once this is shown, we have the fact that4 .

L is necessarily the modulo 2 sum or equivalently the

symmetric difference of two weight 6 blocks of D , which

meet each other on two places - the fixed pair from L' .

In fact, since this must be true relative to any fixed pair

of points chosen from L' , L is the symmetric difference

in 28 ways of two blocks of D , which share two places

since 28 = (g) is the number of pairs from L'

It suffices now to fix our attention on a pair of

points, say points 1 and 2 from L' , the complement of set

L . Choose also an arbitrary point, say a , from set L

itself.

(5.7) 91313: The sub-design of B4 corresponding to

exactly those blocks of D passing through B4 and

containing point a is a l-(3,4,8) design.

Proof: Consider the design A2 . This design has b = 14
2

1

so a is contained in 14 blocks of D which pass through

B4 . Now consider the design E of the 14 blocks of B4 on

the 8 points of L' . Since blocks of weight 2 in A2 and

all containing a differ in at most one place, such blocks

have Hamming distance 32 , when considered as vectors.

Yet blocks of D have Hamming distance :16 . So the 14

blocks of E have Hamming distance 234 . Now

lemma (4.7.7), applies with [%E%] = %E%' so that E is a

1-(3,4,8) Steiner system. This proves the Claim (5.7). //



Since by (5.7) E has b2 = 3, the triple of points

{a,l,2} are contained in precisely three blocks of D

passing through A2 . As such, that triple {a,l,2} is

necessarily contained in a unique (1 = 4—3) block of D

passing through A4 .

(5.8) This can be interpreted as: Given the pair {1,2}

from L', then each point a of L , the triple {o,l,2}

is contained in a unique block of D and meeting L in

four places.

Finally, we notice that there are two blocks of D

meeting L' in precisely {1,2} and meeting L in four

places. By (5.8) the 4-tuple parts of the two blocks of D

in question must be disjoint and complementary, relative to

L . This proves the theorem. //

(5.9) Theorem: Each XNR-design builds a (16,256,6) code

C uniquely.

.ggggg: According to Theorem (4.1) to form an XNeresign D

one must choose the vectors .Q,, i, and the 112 complements

of the weight 6 vectors indicated by D . Furthermore, by

Theorem (5.2) one may choose as admissible weight 8 vectors

only those vectors of weight 8 which are symmetric differences

of weight 6 vectors meeting one another on precisely two

places. By the bi,j for a block L of design D , as

listed in (4.6), each weight 6 vector meets exactly one other

block in each of its (3) = 15 pairs; so each weight 6 vector-

meets 15 other weight 6 vectors in precisely two places.



Choosing the weight 6 vectors in turn gives

112.15/2: = 840

admissible weight 8 vectors. But again by Theorem (5.2)

each of these must be formed as a symmetric difference in

28 ways, so there are but 840/28 = 30 admissible weight 8

vectors possible. By Theorem (4.1), all of these must be

used to complete design D to a (16,256,6) code. //

§6.6 Conclusion
 

Restating the previous Theorem (5.9) in a form more

suitable for later use we have:

(6.1) Theorem: The (16,256,6) code is unique ( up to a

permutation of the 16 points of the design) if the MIR-

design i 3 unique .



CHAPTER 7

Coordinatization of the XNR (16,256,6) Code by V(4,2)

§7.l Introduction

By Theorem (6.6.1), we need only show that the XNR-

design is unique in order to conclude the uniqueness of

the XNR (16,256,6) code. Proceeding towards this goal we

show in this chapter that the vectors of the XNR (16,256,6)

code can always be viewed as characteristic functions of

dependent sets in V(4,2), Theorem (5.1). Then combining

Theorems (6.6.1) and (5.1), it can be seen that any XNR-

design is embeddable in V(4,2). This reduces the problem

to studying PG(3,2) and V(4,2) in order to see that the

design is unique. Chapters 8 and 9 accomplish this latter

part of the uniqueness proof.

§7.2 Coherent 4-Tuple Vectors

The concept of coherent 4-tuples is important in the

analysis of the design of the weight 8 vectors from the XNR

code as well as essential in building the S(4,7,23) design

from the XNR—design. Briefly described, the coherent

4-tuples are precisely all those 4-sets not contained in any

block of the XNR-design. we shall now define these care-

fully and show that there are 140 such coherent 4-sets



weight 10 vectors of XNR are precisely the complementary

vectors of the weight 6 vectors of XNR (Lemma (6.4.9)),

any weight 8 vector meets 56 weight 10 vectors of XNR

at distance 6 and the other 56 weight 10 vectors of XNR at

distance 10, respectively. Then by the Theorem (6.4.1),

any weight 8 vector of XNR must meet other vectors of the

set A of weight 0,8, and 16 vectors of XNR at distance

8 or 16. One now sees that the code fi- has minimum

distance 8 and contains, for each 3563 a vector also of

3 and at distance 16 from ‘x . This means that the

complementary vector xffij is necessarily in 3 , and that

A is therefore complemented. //

(3.4) Lgmmg: The 30 weight 8 vectors of XNR (16,256,6)

fbrm the columns of a 3-(3,8,l6) complemented design with

62:8 .

ggggj: Since the complement of a weight 8 vector is again

of weight 8 and since code 3 is complemented, the design

C corresponding to the weight 8 vectors of XNR is a

complemented design.

Considering weight 8 code vectors as 0,1 incidence

matrix columns, choose any three of the rows of this

16 x30 matrix. Assume that these three rows are contained

in at least four blocks, B B 83’ and B4 , where blocks
1’ 2’

are the sets of cardinality 8 given by the ones from the

columns of the matrix. Then



§7.3 The 3—(3,8,l§) Design with d28 _o_fthe Weight_8_

 

Vectors pf XNR (16,256,6) and the Reed-Muller Code

Q_ with Parameters (16,32,8)

(3.1) Given the XNR (16,256,6) code, let ,Q_ be the

sub—code of weight O,£3, and 16 vectors. Then 3, is a

(l6,1+30+l,d) code for d to be yet determined. we shall

now show, Lemma (3.3), that d = 8 .

(3.2) 3’ is referred to in the literature as the §i£§£_

order Reed-Muller code of length 16 (cf. Petersen [30],

Berlekamp [3]).

(3.3) Lgmmg: y as defined in (3.1) has minimum distance

8, and is a (16,32,8) complemented code (i.e. the

complementary vector to each vector of the code is again in

the code).

ggggj: By Theorem (6.4.1), the XNR code contains 30 vectors

of weight 8 and 112 vectors of weight 6 and 10, respectively.

Considering the 6-sets and 8-sets for which the weight 6 and

8 code vectors are characteristic functions, we see from the

generalized block intersection numbers for the XNeresign

2 of those 6-sets relative to a given 8-set L (cf. (6.5.4))

that L meets 6-sets either in two or four places. More-

over, L meets precisely 2. ( g) = 56 of the 6-sets in

two places and g. ( 3) = 56 of them in four places.

Translated into terms of vectors, any weight 8 vector of XNR

meets 56 weight 6 vectors of XNR at distance 10 and the

other 56 weight 6 vectors of XNR at distance 6. Since the



which together form a S(3,4,l6) design.

(2.1) Let D be the XNR-design. Since d;16, b:,0 is

equal to l for any block L of the design (cf. (6.4.6)).

In other words, each 4-set from the set of 16 points is

contained either in one unique block of D or not at all.

(2) Define a 4-set to be a coherent 4-tuple relative to

D if the 4-set is contained in no block of D . A

coherent 4-tuple vector is then the characteristic function
 

vector of a coherent 4-tuple.

(2.3) Lgmgg: The coherent 4-tuples relative to the

given XNR-design D form a l-(3,4,16) or S(3,4,16)

Steiner system. There are 140 such coherent 4-tuples.

.ggggf: Since each 4-tuple of D , cf. (2.1), is contained

in at most one block of D , there are (146)-112( 2) = 140

coherent tuples. Any 3-tuple is contained in four blocks

of D , say Ai,i = l,2,3,4 . Since [.C) Ail = 15, the

3-tuple plus the remaining 16gb point f::m a 4-tup1e,

which is contained in no block of D (since the four blocks,

.Ai, are the only blocks containing the 3-tuple). Thus

each 3-tuple is in at least one coherent 4—tuple. But an

average indicates

14o.(§)A

1’3“ l6 ‘1'
(3)

 

Thus, the 4-tuples form a l-(3,4,l6) design. //



4 4

lJ B- = 23 B. - Z, B.{]B. ~+11:1 1| 1:11 .1 i,jl 1 ,|

I I4 Iz: [8. (113.0 - B.

mac/i 1 3 B" 31:1 1

e 4.8-6.4+Z}|BiflBjflBk| - I121 Bi]

Since |BiflBjflBk| = 3 or 4, [UBi|zl7 , a contradiction.

Therefore no 3-tuple of rows is contained in more than 3

blocks. However,

A 30.(f;)

133 = ——(T6—;- = 3 , from (4.1.8)

3

Thus b = 3 and the design C is a 3—(3,8,l6) design.

Finally, since these weight 8 vectors are all contained in

code 3' with minimum distance 8, C is a 3-(3,8,16)

design with d28 . //

§7.4 The Linearity and Unigueness g§_the Reed-Muller

(16,32,8) Code A; Contained in XNR (16,256,6)

As a consolidation of the Lemmas (4.3) and (4.4) in

this section we prove:

(4.1) Theorem: The (16,32,8) code 3' formed by the

weight 0, 8, and 16 vectors of a (16,256,6) XNR code is

linear and unique up to a permutation of the 16 coordinates.

(4.2) .Lgmmg: For C being the 3—(3,8,16) design with

dziB corresponding to the weight 8 vectors in XNR, any

three points of the design are contained in a unique



coherent 4-tuple which is in turn contained in precisely

three blocks of C .

Proof: Choose any weight 8 block B . Choose any three

rows incident with B . There are four weight 6 blocks,

A A A and A incident with these three rows. Each
12 22 32 4 2

of these Ai meets B in exactly 4 places, because the

correSponding weight 6 code vectors meet the weight 8 code

vector in either 2 or 4 places.

This gives

4

|(U Ai)nB|=7.
i=1

Therefore, the BEE-row incident with B together with

those 3 rows form a coherent 4—tuple of rows. Furthermore,

all of these four rows are incident with B .//

(4.3) Lemma: 3’ is a linear code.

Proof: Consider any two vectors and 52 in A . If
51

either of these is ‘Q or “i, or if these vectors are

complementary, then their sum is also in §_, since 3 is

a complemented code.

Let .51 and 52 correspond to two non-complementary

weight 8 blocks, B1 and B2 . Since 51 and 52 are at

distance 8, |B1r1B2| = 4 . Now considering any triple of

rows incident with BlrWBz, one can see that BlflB2 is a

coherent 4-tup1e by Lemma (4.2). But furthermore, the

three rows are incident with also a third block B of the

3

3-(3,8,l6) design with 6:18 . Therefore



131013an3 = 31032 = B10133 = 1320133

Let g3 be the weight 8 code vector corresponding to B3

Then gl-+zz = ig+£3 which is in 3 . Hence, 3 is

linear. //

(4.4) Lemma: Up to a permutation of the 16 basis coordinate

positions of V(l6,2), the code 3 is unique.

grogg: Since 3 is linear, 3 can be linearly generated

by a 5)<l6 matrix G , where the rows of G are five

linearly independent vectors from D . Choose such a basis

so that j_ is the first row of G and so that .gifi;=l,2,3,4,

are the other basis vectors. Let Bi’ i==l,2,3,4, be the

weight 8 blocks corresponding to the 51, i = l,2,3,4. Since

1_ is a basis vector

(4.5) |BirWBj| = 4 i # j, i, j = l,2,3,4 .

If |BiflBjflBk|23 for distance i,j,ke{l,2,3,4}, then

Lemma (4.2) implies that |BifWBerBk| = 4, so that

§i+5j = j7+£k . This contradicts the linear independence of

those four vectors.

If [Bins]. flBk|

If |Binsjflsk|

0, then Ei'+§j = Ek’ again a contradiction.

1, then the distance between ‘Ei'*£j and 2k

is 4, contradicting the fact that the linear code 3 has

distance d28, Lemma (3.3).

Hence

(4.6) |BiflBjflBk| = 2,1 #j 51k 7! i; i,j,kE{1,2,3,4}.

4

If ”1131]: 2, then 51 +_z_2 +53 = 54 .

1:

4

If {1 B. = 0, then 2 -+z -+z = '-+2 . Thu|i=l 1| —1 _2 _3 l —4 S we



conclude

(4.7) [.0 B

Statements (4.5), (4.6), and (4.7) applied in reverse

order show that, up to a permutation of the 16 columns, the

last four rows of G are:

  

(4.8) "1111011100010000‘

1110110011001000

*=

G 1101101010100100

1011100101100010
_- _J

Hence,

(4.9) j_

G:

6*

Since .1 is always in the linear code 3', there is no

loss in generality in assuming that j. is also in the

generator matrix G for 3'. Consequently, up to a

permutation of the 16 standard basis vectors for V(16,2),

the (16,32,8) code 3 is unique. //

§7.5 Coordinatization g; XNR ‘by_Points.9§ V(4,2)

(5.1) Theorem: There exists an isomorphism:

a : V(16,2) 4 2W4,“

so that a maps the standard basis vectors of V(16,2) to

the points of V(4,2) and so that each of the code vectors

in XNR (16,256,6) become characteristic functions of



linearly dependent sets in V(4,2)

This theorem shall be proved by Lemmas (5.4) and (5.8)

which tell more than what appears in the statement of

Theorem (5.1). In particular these lemmas show that the

XNR code contains the Reed-Muller first order code of

length 16 and is contained in the extended Hamming code of

the same length. The other lemmas in this section describe

in detail the nature of the linear dependent sets in

question.

(5.2) Let G be a generator matrix for the linear

(16,32,8) code 3» as given in (4.9). Then define a code

6 to be the orthogonal code to 3- in V(16,2):

(5.3) §EJGG§=Q.

(5.4) lggmmg: 5 3 XNR :>3 .

_P_r_g_g_f_: That XNR 33 is by definition. 6 depends only

on 3-, not on all of XNR, and, in fact, 6 is the

orthogonal space to 3 in V(16,2) . Since each weight 8

vector of XNR meets weight 6 and 10 code words of XNR in

an even number of places, and meets other weight 8 code

words in an even number of places, 3 is orthogonal to

XNR . Hence 5 3 XNR. //

We now define the mapping a needed for Theorem (5.1).

Let G* be the matrix G less the row 1.. Then as

in (4.8), up to a permutation q, 6816’ the symmetric group

of all permutations of the 16 standard basis vectors of

V(l6,2), G*, can be given as:



(5.6) r000000001111111f

0000111100001111

O O l 1 O 0 1 1 O O 1 1 O O 1 1

LO 1 O l O 1 O 1 O 1 O 1 O 1 O {J  

For the matrices G and G* as given above, define

the one to one corre5pondence:

(5.6) a :21 4 (Mei) = {Bi} c V(4,2)

where 31 = (0,0,...,1,0,...,O), theebasis vector of V(16,2)

with a single one in the 1&2. place, and where Bi is the

iEE' column of G* . Now extend this definition linearly

to all vectors of V(16,2) by

16

(5.7) mil; xigi) = Umi | xi 1}.

For example, GI§1'+£2) = {21,22} . Thus, a is a well-

defined linear map of V(16,2) onto 2V(4:2)

(5.8) Lemma: 5 is the Extended Hamming code '54 of

length 16.

V(4,2)
Proof: Define the subsequent map: 8 :2 » V(4,2) by

Email) =22, =23 eV(4,2), i,j = 0,1,2,...,15.

Then Boa, the composition of first a and then B , is

a linear homomorphism of V(16,2) onto V(4,2) so that

(5.10) (600035 = G*g<_ .

It follows from the fact that G* is the matrix G less

the row containing 1. and the definition of 6, (5.3),

1
that 6 c (50a)- (9) . Therefore all vectors of 6 are

characteristic functions of dependent sets in V(4,2) .



But moreover since vectors of a are also orthogonal

to j. as well as merely G* , the entry in the 20

coordinate place is either 1 or 0 so as to make the weight

of the entire vector even. So combining Lemma (2.6.3)

with this last statement, 6 is necessarily the parity

check code C; of the Hamming C4 of length 15. //

For the rest of this section assume that the map a

is defined as in (5.6) and (5.7) and is that described in

Theorem (5.1).

(5.11) Lgmmg: The weight 6 vectors of XNR are the

characteristic functions of 112 of the 448 possible

dependent 6-sets in V(4,2). These dependent 6-sets are

symmetric sums of pairs of planar 4-sets in V(4,2) which

span all of V(4,2) and which intersect in one point.

3599;: We have seen in Lemma (5.3.3) that there are 448

dependent 6-sets in V(4,2). Since by Lemma (5.4) and

Theorem (5.1), XNR cwE all the weight 6 vectors of
4 .9

XNR correspond to some (in fact 112) of the possible

dependent 6-sets in V(4,2).

Let a typical dependent 6-set be {351,352,353,§4,§5,§6},L .

Choose any three of these, say {51,52,53} = M . Then there

is a unique fourth point m7 from V(4,2) so that MLJ[§7}

is a dependent 4-set in V(4,2). Note that m? is not

already in L since a dependent 6—set by Lemma (4.5.8)

was shown to have no four of its points in a plane. If

58 is the unique point completing L\\M to a plane then
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set union ((L\\M)LJ{§8])LJ(MLJ{§7}) = {mi |i = l,...,8} is

also dependent. Then the symmetric difference

LA{xi [i = 1,...8} = {x7,x8} is also dependent. Then the

symmetric difference lefmi | i = 2,...,8} = {57*fi8} is

again dependent showing that [me = 57 . In this way, L

is the symmetric difference of two planar 4-sets sharing

one point. Finally these two planar 4-sets span V(4,2)

because their union contains L which spans V(4,2) by

Lemma (4.5.8). //

(5.12) Lemma: Under a , coherent 4—tuple vectors defined

from the weight 6 vectors of XNR (cf. Definition (2.2))

are the characteristic vectors of all the 140 planar 4-sets

in V(4,2) .

.E£22£= Let L be any 8—set of V(16,2) corresponding to

a weight 8 vector of XNR , and let C be the 3-(3,8,l6)

design with d;;8 of all such 8-sets. Let B be any

coherent 4-tup1e. Viewing the generalized block intersection

B
numbers bi for the design C relative to the coherent

2

4-tuple B we have:

(5.13) 30

x 3—x 4+x 3-x x

where b2 0 = x . By Lemma (4.2), if any three points of

2

B are contained in L , B c L , we have b? 1 = 0 = 3-x so

2

that x = 3 . Consequently b? 3 = O and B meets every

2

block of C in an even number of places. Therefore for



every coherent 4-tuple vector y eV(l6,2), m is orthogonal

to the code 3 of all weight 0,8, and 16 vectors of XNR.

Hence, _Xfiid =IE4 by Lemma (5.8) and m_ is a characteristic

vector of a dependent 4-set or planar 4-tuple in V(4,2) by

Theorem (5.1). Since there are 140 coherent 4-tuples and

the same number of planar 4-sets in V(4,2), a identifies

these sets. //

(5.14) Lemma: Under a , weight 8 vectors of XNR are

characteristic functions of the 30 copies of V(3,2) in

V(4,2).

gmeefi: Again using Lemma (4.2) we shall see that if three

points of V(4,2) of a planar 4+set are contained in the

image 8-set under a of a weight 8 code word in XNR, then

all four points of that planar 4-set are contained in that

8-set. This implies that each 8-set arising in this way is

the linear span of its points. Since any 8-set in V(4,2)

contains four independent points, the span of these is a

V(3,2) which must coincide with the 8-set. There are 30

copies of V(3,2) in V(4,2), so a identifies these

sets. //

(5.15) Theorem: The stabilizer group of 3 in 816 (the

symmetric group of all permutations of the 16 coordinates of

V(16,2)) is a degree 16 representation of Aut(V(4,2)) .

2592;: Let y = BOG:V(16,2) a V(4,2) for a as in (5.6)

and (5.7) and for 8 as in (5.9) be the linear

homomorphism given by

H35) = (600:) (as) = G*35



with 0,6, and G* as in (5.5) . Aut(V(4,2)) is the

set of motions w of V(4,2) preserving linear

dependency. Thus, for each W EAut(V(4,2)), y-JW 6516

and y-1 stabilizes 6 . Since y-1¢(G*) = 6* only if

W = l, the group 3': $16 which stabilizes 6 has no

more elements then the number of distinct generator matrices

i

G = for 3 .

6*

This number is 30.28.24.16, since that is the number of

ways of choosing 4 linearly independent vectors of 3 that

together with .1 form a basis of '3-. Consequently,

|3| g 30.28. 24. 16 .

But 3' contains a subgroup isomorphic to Aut(V(4,2))

which has the same order. Hence J's Aut(V(4,2)). //



CHAPTER 8

Coordinates for Lines of PG(3,2)

§8.l Introduction

In order to show the uniqueness in Theorem (9.5.1)

of the XNeresign within the context of V(4,2) and

PG(3,2), we need to use the fact that the alternating

group A7 operates transitively on the 35 lines of PG(3,2).

Therefore we shall establish in this chapter the classical

isomorphism PLS(4,2) 8 A8 and determine eight coordinates

for lines of PG(3,2) .

The classical isomorphism making possible the needed

coordinatization was early known to group theorists,

(cf. Dickson [l3], and as early as 1910 was interpreted in

a geometrical context by Conwell [10]. Perhaps this

geometrical representation was forgotten, for the same sort

of work was duplicated by Edge [14] in 1954 and just

recently duplicated independently (for different goals) by

Jonsson in [19] and Seidel in [S] and [6].

A seven coordinate system for lines of PG(3,2) was

introduced by Gleason in a very efficient manner in 1952

(cf. Wagner [38]). This development would suffice for our

purposes, but we Shall instead develop these coordinates in

8.1



a new manner which will lend a bit more insight into the

geometric counterparts of these seven and eight coordinates

for lines of PG(3,2).

§8.2 Eingigg P§(5,2) within V(8,2)

(2.1) Given V(8,2), consider the set of all even

weight vectors. These form a V(7,2) within V(8,2), in

8

fact, the hyperplane 2335. = 0 .

i=1

(2.2) Define a relation "~" by

39.2 if y_=_x_ or y=m+i, where _i is the

all—one column vector of length 8.

(2.3) This relation is easily seen to be an equivalence

relation. New define "+" and "." for these

equivalence classes:

(2.4) <5> + <1> == <35 + 1> 35,er(7,2)

(2.5) Kg) := < u> §€V(7,2), x eGF(2) .

Now it is clear that the set of equivalence classes under

~ of V(7,2) with the "+" and ".“ operations defined

in (2.4) and (2.5) form a V(6,2) .

(2.6) Finally by restricting our attention to the

vector equivalence classes other than <9) we have a copy

of PG(5,2) contained in V(8,2) .

Remark: This relatively strange way of locating PG(5,2)

within V(8,2) is contrived so that we can within this

setting show PSL(4,2) = A8 .



§8.3 The Klein Quadric

The 128 vectors in V(7,2) considered in (2.1) have

length 8. There are (2) = 70 weight 4 vectors, (3) = 28

weight 2 and weight 6 vectors, plus the Q and i vectors.

It is convenient to subdivide these by

8

(3.1) O(§) = _Z[ xixj = 0 where [m = (xl,x2,...,x8)

1<J

Then vectors of weights 0,4, and 8 have 0(a) = O and the

others have 0(5) = l .

The quadratic form n has the prOperty that

(3.2) 0(a) = 0 iff n(j_+;_c) == 0 for §€V(7,2) .

Because of this, Q is well defined on equivalence classes,

<Qm)», under ~ as defined in (2.2). Thus, choosing

representative vectors of these equivalence classes to be

of weights 2 and 4 we see that in PG(5,2) (cf. (2.6)):

(3.3) 0(<§>) = 1 iff 35 has weight 2 ,

0 iff x has weight 4 .n(<_=5>)

we can relate the quadratic form a given in (3.1)

to the Klein quadric (cf. [1] or [35]) in PG(5,2) as

follows.

Under the transformation:

(3.4) y1 = x3-+x5-+x8 , y5 = x2-+x3-+x

y2 = x4-+x6-+x8 , y6 = x1-+x4-+x7

y3 = x2-+x6-+x7 , y7 = xz-rx4-kx5

x1+xS +x8 , y8 = x1 +x3 +x6



8

(305) i§jxixj = Y1Y2+Y3Y4+Y5y6+y7Y8

showing that n is a hyperbolic quadric (cf. [1] or [35])

in V(8,2). This transformation maps even weight vectors

onto even weight vectors and the all one vector onto itself.

Then by considering the equivalence classes under ~

(in (2.2)), one may set

(3.6) y8 = O

and see that Q = 0 corresponds to

(3.7) y1y2+y3y4+y5y6 =0 in PG(5,2)

This statement (3.7) is equivalent to E. Artin's

definition of the Klein quadric in PG(5,q) for q = 2,

cf. [1] . Therefore we may define:

(3.8) K = the Klein quadric = {<x> EPG(S,2) | n(<_x,\) = O}

or equivalently, due to (3.3).

(3.9) K = the Klein quadric = [(35) £PG(5,2) ] |35| = 4] .

§8.4 Graph Theory Definitions

(4.1) A agape is a pair (X,B), where X is a set of

elements called vertices, and E is a set of pairs of

elements from X called eggea.

(4.2) The edges determine an adjacency relation, so that

two vertices, v1, v2, of (X,B) are adjacent iff the

pair {v1,v2} is an edge.

(4.3) A graph is connected if there exists a finite

sequence of edges of the form {[v1,v2},{v2,v3],...,[vn_l,vn}}

for each pair of vertices v1 and vn in (X,B)



(4.4) A complete graph is a graph whose edge set contains
 

all pairs of vertices.

(4.5) A clique in a graph (X,B) is a complete sub-graph.

(4.6) A maximal clique in a graph (X,B) is a clique

which cannot be augmented by another vertex and remain

a clique.

§8.5 The Graphs [g and ‘g and their Maximal Cliques

In our representation of PG(5,2) within V(8,2)

given by (2.6), we have the Klein quadric, K, given in

(3.8). On K and off K we may define two graphs G

and H as follows:

(5.1) Let G = (XG’EG) be the graph whose vertices are

the 35 points of' K and whose edges are given by the

adjacency relation:

<35) is adjacent to (y) iff aka-+1)) = O

for all (95> and (1) on K .

(i.e. for all (a) and (1) so that (“(5,3) = 0(<X>)=0 .)

(5.2) Let H be the graph H = (XH’EH) whose vertices

are the 28 points of PG(5,2) of K , i.e. those <35) of

PG(5,2) so that Q(<m>) = l , and whose edges are given by

the adjacency relation:

<_x_> is adjacent to <y> iff Q(<m+y>) = 1

for all (m) and (1) so

that n(<§>) = n(<x>) = 1 .



Then choosing representatives of the equivalence

classes, (ggy, to be weight 2 or 4 vectors of V(8,2), as

in (3.3) we see that equivalent definitions of the

adjacencies for G ~and H can be given as:

(5.3) (m) is adjacent to (y) in G iff <m+y> is

also of weight 4 (as both (95) and (y) are),

(5.4) (33> is adjacent to (y) in H iff <m+y> is

also of weight 2 (as both (35> and <1> are).

Consider now cliques in G . These by Definitions

(3.9), (5.1), and (5.3) are sets T of equivalence classes

of complementary weight 4 vectors in V(8,2) with mutual

Hamming distance exactly equal to 4. By Lemmas (4.7.7) and

(4.7.8) such a set T is a S(3,4,8) whose 7 sets of

complementary weight 4 vectors form a clique in G which is

maximal, by Lemma (4.7.6). 'Thus, we have:

(5.5) Lemma: Maximal cliques in G are precisely all the

sets of 7 points of the Klein quadric K (cf. (3.8))in

PG(5,2) so that their 14 vector representatives from V(8,2)

form all the distinct S(3,4,8) designs T in V(8,2)

Maximal cliques in H are easier to handle.. Vertices

of H are equivalence classes of complementary pairs of

vectors of weight 2 and 6 in V(8,2), by (3.3). Furthermore,

two such classes are adjacent iff their weight 2 representa-

tive vectors share preciesly one coordinate with entry 1

from GF(2), by (5.2) and (5.4). Then considering simply

the combinatorics of choosing representative vectors in a



maximal clique one Obtains:

(5.6) Lemma: Maximal cliques in H are of two types:

Type 1: three vectors whose vector sum is (Q)

Type 2: seven vectors no three of which sum up to

<9.>

.gmaaj: If a third vector in the clique is the vector sum

in V(6,2) of two others in the clique, then the maximal

clique of Type 1, containing these three vectors, is simply

this set of three.

If no vector of the clique is the vector sum of any

two of the others in the clique, then all vectors of the

clique of Type 2 must, in the V(8,2) representation, share

a fixed coordinate with value 1. Since there are 7 other

coordinates possible for the second coordinate with value 1

for the weight 2 representative, such maximal cliques have

7 vectors. //

(5.7) From the vector sum definition of linearity in

V(6,2), (a), (y), and (a) are collinear iff <m>+<y> +

<.z_-> = <9> and iff <s> = <2s>+<x> = <s+x> (by

(2.4)). This leads to geometric interpretations of maximal

cliques in G and H:

(5.8) Lemma: Maximal cliques in G correspond to coplanar

sets of seven points all contained in the Klein quadric K .

Maximal cliques of H of types 1 and 2 correspond

respectively to lines completely disjoint from K and to

sets of seven points not on K which form a simplex in

V(6,2)



Proof: By (5.7) and (5.1), maximal cliques in G are the

linear Spans in PG(5,2) of the 7 points; hence, the points

must form a Fano plane completely contained on the Klein

quadric K .

By (5.6) and (5.7) each Type 1 maximal clique in H is

a line of PG(5,2) disjoint from K while Type 2 maximal

clique is a set of seven points off K , no three of which

are collinear, no four coplanar, no five in a V(3,2), no

six in a V(4,2); i.e. a simplex. //

§3,6 38 ==- Aut(G) =- 66(+,2) =- Aut(H)

 

In the setting of PG(5,2 c V(8,2) given in Section 8.2,

it is particularly easy to establish the isomorphic action of

SB , the symmetric group of all permutations of the 8 coordinate

places of V(8,2), with —6(+:2): the group of all motions of

PSL(6,2) stabilizing the Klein quadric. The following series

of lemmas will complse Theorem (6.4) which says that

SB 3 Aut(G) 3 56(+,2) a Aut(H) for graphs G and H as

defined in (5.1) and (5.2), and for the Klein quadric defined

in (3.8).

(6.1) Lemma: If mesa fixes each vector of V(8,2) of

a given weight class k #'0, 8, then m is the identity

permutation of 88 .

.gmaag: Let R be the set of all weight k vectors of V(8,2).

Since all weight k vectors are present, it is possible to

find a pair of weight k vectors agreeing on all but two

coordinate places, and this coordinate pair may be



arbitrarily chosen. Since m fixes all weight k vectors,

m fixes all weight 2 vectors, and the problem reduces to the

_case where k = 2. Let S be the set of all weight 2 vectors

in V(8,2) . Because in S one can find a pair of weight 2

vectors sharing precisely one coordinate with value 1 and

disagreeing on any given pair of other coordinate places and

because m stabilizes each pair of coordinate places,¢p must,

fix each of the coordinates of that pair. Hence cp = 1 £88 . //

(6.2) [Lemma: 58 is isomorphic to a subgroup of PSL(6,2)

which fixes the Klein quadric (defined in (3.8)), hence

S C66(+)2)o

8

3522:: For any cpese , cp fixes Q and j . Since 1 is

fixed, m operates in a well-defined fashion on complementary'

pairs of vectors of V(8,2). Since 9 is fixed, Qp operates

on PG(5,2) and so 88 c PSL(6,2) . Furthermore, m

stabilizes the sets of weight 2 and weight 4 vectors which are

representatives of the equivalence classes which are points of’

PG(5,2) and that set of weight 4 classes is precisely the’

Klein quadric K as defined in (3.7). So cp€66(+,2), the

stabilizer group within PSL(6,2) of K . Finally, this

representation of S8 within 56(+,2) is faithful if w

fixes all points of PG(5,2), m fixes all the points not on

K , i.e. fixes the weight 2 vectors of V(8,2) . Then by

Lemma (6.1), cp = 1638 - //

(6.3) Lemma: S8 operates faithfully as a subgroup of

each of the groups Aut(G) and .Aut(H) , where the graphs

G and H are defined in (5.1) and (5.2).



_P_rc_>_g_)_i_:'_: Any c9658 preserves linearity of V(8,2) and

fixes Q_ and j_. Therefore, by Lemma (6.2), w

preserves linearity in PG(5,2). Since m also stabilizes

each weight class of vectors in V(8,2), w then preserves

the adjacencies in graphs G and H according to (5.3)

and (5.4). The proof follows by applying Lemma (6.1) and

the fact that vertices of G and H correspond respectivelgr

to weight 4 and weight 2 vectors. (For the graph G it is

important, in order to use Lemma (6.1), that all 70 weight

4 vectors must be fixed. But if 35 representative weight 4

vectors are fixed, the fact that j. is fixed assures us

that the complementary 35 weight 4 vectors are also fixed. ,0/

(6.4) Theorem: S a Aut(G) a 56(+,2) a Aut(H) .
8

Proof: By Lemmas (6.2) and (6.3) we have the faithful

injection of S into each of these groups. Each non-
8

adjacent pair of vertices in G determines by linearity

in PG(5,2) a unique point not on K with a representative

weight 2 vector from V(8,2). So each motion cpeAut (G)

induces a unique motion of 56(+,2) c PSL(6,2), which

agrees with w on G and preserves linearity. Similarly,

since any two non-adjacent vertices in H determine by

linearity a unique vector of weight 4 in V(8,2) and hence

a unique point of PG(5,2), each meAut H induces a

unique motion —g(+,2) c PSL(6,2) agreeing with m on H

and preserving linearity. If p is any motion of '56(+,2),

then p in turn induces a unique motion of V(8,2)

preserving linearity, stabilizing complementary pairs of



vectors of V(8,2) and fixing a, and j_. Hence we can

inject each of the groups Aut(G), Aut(H), and ‘56(+,2)

into 58 . Finally, these injections are faithful,

completing the proof. //

Used in the proof is the following fact that will later

be referred to:

(6.5) Corollary: Each. ¢.eAut(G) extends to a unique

motion m* of A8 which stabilizes ‘Q, 1,, equivalence

classes of complementary pairs of vectors in V(8,2) and

preserves linearity.

  

 

§8.7 S8 is 1-Transitive and A8 is %w-Transitive on the

29_Maximal Cliques 2; Graph g

It is well known that the Fano plane, PG(2,2) of 7

points and 7 lines, is combinatorially unique and has an

automorphism group of order 168 (cf. [8]). This means that

regardless of the numbering of the points of the plane, any

two such planes are isomorphic.. Allowing S7 to operate on

these 7 points produce 7!/168 = 30 distinct but isomorphic

numbering schemes. The fact that these are isomorphic can

be restated as the fact that S7 operates on the set of

30 distinct numberings of Fano planes giving one orbit. The

most succinct development of this fact is given by wagner

[38].

Rather than quoting the literature, we shall prove the

needed result in the context of coding theory.



(7.1) Lemma: Given any S(3,4,8) design T , then its

14 vectors from V(8,2) together with Q. and 1. form a

linear (8,16,4) code.

3592;: Since for any S(3,4,8) design each triple occurs

in exactly one block, two blocks share at most two places

and have Hamming distance 2fi4 . Augmenting the 14 vectors

of T by Q_ and j_ does not destroy the distance d;14

property, so the set of 16 vectors forms an (8,16,4) code,

5’.

According to the generalized block intersection numbers

for this design relative to a block L of the design (cf.

(4.7.9)), each block is complemented, so, for each 565, 35-5-1

is also in “E . Furthermore, since blocks of T meet one

another in exactly 2 or 0 places by (4.7.9) and since each

of 19 and j_ meet all other vectors in IE at distances

4, or 8, we see that two distinct code vectors of IE are

either at distance 4 from one another or are complementary.

If two vectors are complementary, their sum is :1 e5 . If

two vectors a, and ‘y are not complementary, they meet on

two places. Since b2 = 3 for a S(3,4,8) design, there is

a third vector a_ sharing with m. and ‘y those two places.

But since d>_4 , the remaining places of m, y, and a

take care of the 6 other coordinate places of V(8,2). As

such _)_c+y_ = _z_+j_ which, in turn, is in E . Therefore, E

is linear. //

(7.2) Lemma: A linear (8,16,4) code 5' is unique up to



a permutation of the 8 coordinate places of V(8,2).

.gmaag: Choose a basis 3 for the linear subspace IE of

V(8,2) so that the all-one vector is among those basis

vectors, 8 = {j’§l*§2*§3} . Let G be an 81x4 zero-one

matrix whose columns are the vectors of 5, i.e. G is a

generator matrix of IE . The linear independence condition

on basis vectors forces ‘51,.m2, and_x3 to be of weight 4

and to meet one another on precisely two places, i.e.

mi.mj| = 2 for i,j = 1,2,3 . But [£1.52._3|= l ,

because if 351’ m2, and 53 (i.e. [351 .352 .353| = 2) meet on

two places, ma-+j_= gl-sz and if they meet mutually on no

places then 53 =.§1‘*£2 contradicting linear independence.

Now three permutations can be found in S8 , $1: $2: $3

so that ¢1 permutes ml to (§l¢1)T = (O O 0 O 1 1 1 l )T,

so that $2 stabilizes .5161 and permutes m2¢1 to xzmlwz

so that (35261629 = (0 0 1 1 0 0 1 1)T, and so that $3

stabilizes both Elml and I§2¢1¢2 and moves -§3¢l¢2 to

.§3¢1¢2¢3 With (£3m1m263)T = (O 1 O l O l O 1)T . Thus GT

always can be put in the form

(7.3) F11111111"

'r 00001111

00110011

_010101014 .  
This shows that IE is unique up to a motion of 88 . //

(7.4) Lemma: S(3,4,8) is the design of the dependent

4-set in V(3,2).

Remark: This lemma is quickly proved in either of two ways:

Proof 1: Given V(3,2), each triple of vectors completes



uniquely to a dependent 4-set, so the dependent 4—sets form

an S(3,4,8), which by Lemmas (7.1) and (7.2) must be

unique.

Proof 2: Given a design S(3,4,8) and its spanning code C,

one can see via the b? . for a block L of the design

S(3,4,8) (cf. (4.7.9))’that all blocks meet in an even

number of places. Therefore in IE, all vectors are

orthogonal to all other vectors from 5'. In this way code

vectors of IE are the characteristic vectors of dependent

sets in the V(3,2) which vectors are mama of G (columns

of GT) as in (7.3). //

(7.5) Theorem: S8 operates transitively on the set

of 30 copies of S(3,4,8) in V(8,2).

2399;: We see via Lemma (7.2) that a design S(3,4,8) is

given by the set of weight 4 vectors in the linear span of

the matrix G of (7.3). we shall count the number of

distinct but isomorphic copies of S(3,4,8) in V(8,2)

under the action of 88 by counting the number of ways of

obtaining the generator matrix G . From the complete

design of all 4-tuples from the set of 8 coordinates of

V(8,2) we must choose vectors 51"52’ and'm3 which will

together with j_ form a generator matrix isomorphic to G .

There are 70 ways that .51 can be chosen. The number of

vectors m2 is then the number of 4-tup1es from 8 that

meet the 4-tuple correSponding to .51 in exactly two places.

This number is (‘2’) . (2:3) = 36.2 Then the number of

vectors 53 that can be chosen to meet 51’52-551'u4'1‘2L-52' (mi-m1),



and jgaml-th-txl52,(i.e. the four d13301nt pairs

determined by '51 and ‘52) in one place each is 24 = 16 .

Hence there are 70.36.16 matrices G .

Next we count the number of matrices G that correspond

to a particular S(3,4,8) design, T. From T, the 51 may

be chosen in 'bO = 14 ways, for the second, since .i,.§1

and .mz must be linearly independent,_x2 may not be the

vector jghml of T . Therefore,gc_2 may be chosen in 12

ways. Similarly due to the linear independence of

B = [ilmlxmzxm3],153 may be chosen from T in 14-6 = 8 ways

as the vectors m1,m2,§1-h§2, and their complements may not

be chosen.

Therefore, there are 70.36.16/14.12.8 = 30 distinct

copies of S(3,4,8) under the transitive action of S8 on

these 30 copies. //

(7.6) Corollagy: The design S(3,4,8) has an automorphism

group of order 8.7.6.4.

gmeag: There are 14.12.8 = 8.7.6.4 motions under $8

which stabilize a given S(3,4,8). //

(7.7) Theorem: A8 acts éu—transitively on the 30 copies

of S(3,4,8) in V(8,2), yielding two orbits of 15 copies

each.

gmeafi: Consider (as in the last Theorem (7.5)) the generator

matrix G (7.3) of a S(3,4,8) design T . Given the two

vectors 'El and '52 of G , there are 16 ways of choosing

the vector .m3 as we saw in the proof of Theorem (7.5).



But considering the design T , the 4 vectors

53,351 {153,352 +353,_§1 +352 +353 , and their complements all

meet the two vectors ‘51 and ‘52 in such a way that each

of these 8 vectors shares just one 1 with each of the pairs

351 . 52’51 . (1+mz) , 52 . (i+_x_1) , and i+351 +52 +5152 .

Therefore, the set {Lapmz} can be complemented in 16 ways

to generate 16/8 = 2 distinct copies of S(3,4,8) .

Consider now the set of automorphisms q, GAB which

stabilizes 51 and 52 . There are 24 = 16 motions in S8

stabilizing [51,m2} and therefore the 8 motions of A8

which stabilize LEILEZ} must yield 8 ways to complete

{1451*52} to generate 8/8 = 1 unique S(3,4,8). In other

words, under A8,ml and me determine a unique copy of

S(3,4,8).

Considering just 51’ this vector set {1’51} completes

to {i,ml,m2,§_3} in 36.16 ways giving 36/12.l6/8 = 6

copies of S(3,4,8) all sharing m1 . But {1,351} completes

then to only 36/12.8/8 = 3 copies of S(3,4,8) under the

action A8 .

Similarly under ‘AB’ L1] may be completed to G in

70.36.8 ways giving 70.36.8/14.12.8. = 15 copies of

S(3.4.8) in an orbit under the action of A8 . //

(7.8) Corollary: Under the action of A8 on the 30

copies of S(3,4,8), all distinct cepies T and S of

S(3,4,8) within one orbit share exactly one pair of



complementary vectors {£1,1N*§1} .

2529;; We see within the proof of Theorem (7.7) that the

set [1,51],, completes to 3 copies of S(3,4,8) under the

action of A8 all of which copies share only £1 and the

complementary vector jgtml . (Since if S and T were to

share m1 and £2 7! 1+5]. , then S = T due to the fact

that {1’51’52} completes uniquely to a copy of S(3,4,8)

under the action of A8.) //

(7.9) Corollary: Each pair of equivalence classes of 4—tuples
 

from V(8,2) and adjacent in G is contained in two copies

of S(3,4,8), one from each of the two orbits under action

of A8 .

Proof: Within the proof of Theorem (7.7) we saw that each

pair of complementary 4-tuples was contained in two copies

of S(3,4,8). //

§8.8 Finding PG(3,2) within the Klein Quadric 'K

Thanks to the construction given in Section 8.7 we may

now locate the points and lines of PG(3,2) to be the 15

maximal cliques in G under the action of A8 and the 35

points of K , Theorem (8.8). As an immediate byproduct

of this approach we obtain a proof of the classical group

isomorphism A8 a PSL(4,2), Theorem (8.10).

Let K be the Klein quadric as defined in (3.8) and G

be the graph as given in (5.1).

(8.1) Remark: A acts %-transitively on the 30 maximal
8



cliques in G giving two orbits of 15 maximal cliques each,

since the statement is merely a translation into terms

relative to G of Theorem (6.4), Lemma (5.5), and Theorem

(7.7).

(8.2) Let M be a fixed one of the orbits of 15 maximal

cliques in G under the action of A8 .

(8.3) ‘Lamma: In M each point P of K (each vertex of

G) is contained in precisely three maximal cliques of G .

The 3.(7-l) = 18 points other than P on these three

maximal cliques are precisely all the vertices of G adjacent

to P .

2329;: Interpreting Definition (3.9) and Corollary (7.8)

into terms relative to G , one learns that each vertex of

G (each complementary pair of weight 4 vectors in V(8,2))

is contained in precisely three maximal cliques of G

(copies of S(3,4,8) in V(8,2)) under the action of A8 .

Furthermore, given a weight 4 vector .5 of V(8,2)

corresponding to a vertex P of G , the number of vertices

Q of G , which are adjacent to P is the number of ways of

choosing representatives [y of distinct equivalence classes

of complementary vectors of V(8,2) with weight 4 which

representatives meet .5 on two places, i.e. [m.1y| = 2 .

(This is seen from (3.9).) The number of vectors y_ meeting

as on two places is (g) . (g) = 36 , but these fall into

18 classes of complementary pairs of weight 4 vectors, each

representative of which meets .5 on two places. So P is

adjacent in G to 18 vertices Q . Since the three maximal
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cliques through P under A8 are in one orbit, these

maximal cliques share only P with one another due to

Corollary (7.8). Hence contained in these cliques are

3.(7-l) = 18 other distinct vertices of G , each being

adjacent to P . So all the vertices Q of G adjacent

to P lie on these three maximal cliques. //

By Lemma (8.3) we may now define a design 9 as

follows:

(8.4) Let points of 9 be the maximal cliques of M

(defined in (8.2)). Let blocks of 0 be the sets of

three maximal cliques of M which share mutually a single

point. So a point of 0 is incident with a block of 9 if

that maximal clique is contained in the set of three maximal

cliques forming a block.

(8.5) Call blocks of o .liEEE- Two lines of ‘9

intersect if they share a point of 9 .

we have the correspondence of points of K (vertices

of G) with lines of 9 . we shall now proceed towards

showing that points and lines of 9 are the points and

lines of PG(3.2).

(8.6) Lemma: Vertices of G are adjacent iff the

corresponding lines in 0 intersect.

.gmaag: Let P and Q be two adjacent vertices of G .

By Lemma (8.3) there is just one maximal clique, w , of G

through P and containing 0 . So w is the maximal

clique of M containing both P and Q . Hence, the lines



corresponding to P and Q in 9 intersect. Conversely

if two lines of 9 intersect, the corresponding vertices P

and Q of G lie on a maximal clique of M and are, by the

definition of a clique, adjacent in G . //

(8.7) Theorem: The points and lines of 9 form the points

and lines of PG(3,2).

2399;: It is well known (c.f. Veblen and Y0ung [37] and

Dembowski [11]) that PG(3,2) is characterized by the

following axiom system:

(i) Each two points determine a line.

(ii) Each two lines intersect in at most one point.

(iii) There are three points on each line.

(iv) (Pasch Axiom) Given any three non-collinear points and

the three lines determined by these points, if another

line meets any two of these lines then it meets also the

third.

(v) There are 15 points.

From Lemma (8.3) follows (iii). Axiom (v) is by

definition. Axiom (ii) follows from the fact that each

adjacent pair P,Q of G is contained in precisely one

maximal clique of G , due to Lemma (8.3).

In order to verify Axiom (i) we proceed as follows.

A maximal clique n containes 7 points (Lemma (5.8)) and

each of these points is contained in three maximal cliques

of M , an orbit under A8 , by Lemma (8.3). So counting,

there are 2.(7) = 14 other maximal cliques in M meeting w



on a single point. Since A8 is transitive on M , (1)

follows.

Axiom (iv) follows from the existence of maximal

cliques in G other than those from M . Let w1,'n2,

and W3 be three non-collinear points of 9 (i.e. three

maximal cliques in M). Let 312,313, and 323 be the

three lines of 9 determined by those points and let P12,

P13, and P23 be the corresponding vertices of G (these are

distinct since the points wl,‘n2, and #3 are not

collinear). If g is any other line of 0 meeting two,

say 312 and 313, lines from {312,113,123}, then the

corresponding point P of G is by Lemma (8.7) adjacent

to both P12 and P13 . But vertices P12 and P13 are

in a unique clique of M due to Lemma (8.3), so that

P,P12P13 and P23 are all adjacent. Then again by

Lemma (8.7), lines 3 and 123 meet. //

(8.8) Corollary: The 15 maximal cliques of G other than

those of M correspond to the 15 planes of 9 = PG(3,2).

££22£= By axioms (iv) and (v) 15 planes of 0 exist. Each

of these is then a set of 7 lines of 9 mutually intersecting.

By Lemma (8.7) these 7 lines correspond to a clique of G ,

but me£_to a clique of M. //

(8.9) Corollagy: Three vertices of G which are

mutually adjacent are collinear in PG(5,2) iff they

correspond to planar fans of lines in PG(3,2), i.e. three

lines that are concurrent and coplanar.



.E£22£= By Lemma (7.9) two adjacent vertices of G are

contained in two maximal cliques, one from each orbit under

A8 . Three adjacent vertices which are also collinear are

therefore contained in two maximal cliques one corresponding

to a point and the other to a plane of PG(3,2) . //

(8.10) Theorem: A8 a Aut(G) a PSL(4,2) .

[gmaafiz PSL(4,2) is by definition the group of collineations

of PG(3,2)

A8 c PSL(4,2): Let (p 6A8 , then q; induces an

automorphism of G moving vertices while stabilizing each

of the sets of points, of lines and of planes. Because of

Corollary (8.9) and the fact that w preserves linearity in

PG(5,2) and adjacency in G, I; preserves linearity in

PG(3,2)

Conversely:

PSL(4,2) c A Let $€PSL(4,2), then cp induces a8'

motion m* of G stabilizing each of the orbits of maximal

cliques in G under A8 . cp* eAut (G) by virtue of

Lemma (8.7). But ¢* extends uniquely to a motion m of

PG(5,2) and V(8,2) via Corollary (6.5). Finally

q,€ 6(+,2) a A8 due to Corollary (8.9). //

(8.11) Corollary: 88 e the group of all collineations and
 

correlations of PG(3,2) = PrL(4,2).

Proof: The design 0 of Definition (8.4) is isomorphic to

PG(3,2) no matter which orbit of 15 maximal cliques of G

under A8 is used. With one of these orbits chosen to



represent points, a motion of 88\A8 induces a motion of

PG(3,2) preserving linearity but exchanging the roles of

points and planes. This motion is a collineation of the

PG(3,2) defined relative to the former orbit. Hence,

S8 g PrL(4,2). The converse inclusion is similarly shown. /7’

§8.9 Eight Objects in PG(5,2) Permuted by PSL(4,2) 3 A
8
  

Now that we have PSL(4,2) a A (Theorem 8.10), we

8

can recall the definition of the graph H (5.2) and the

Lemma (5.8) stating that there are eight simplices of

PG(5,2) disjoint from the Klein quadric K (3.8), which

eight simplices not only have their 7 vertices located off

K , but also (by Definition (5.4)) their (3) = 21 third

points on the (g ) = 21 lines joining pairs of vertices of

such a simplex located off K . There are only 8 simplices

of PG(5,2) of this nature, since any such simplex must be

a maximal clique of H of 7 vertices. These are 8

geometrical objects in PG(5,2) permuted by PSL(4,2):

(9.1) Theorem: PSL(4,2) faithfully permutes the 8

simplices whose 7 vertices and whose (Z) = 21 third points

on the l-skeleuxn the set of lines joining these 7 vertices,

are totally off K .

gaggm: Since by Lemma (5.6) the 8 maximal cliques of

graph H from (5.2)) are coordinatized under V(8,2) by

7 pairs of coordinates from V(8,2) which all share one

coordinate, these 8 maximal cliques correspond one to one to

the coordinates of V(8,2) . Furthermore, these correspond
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to 8 simplices of PG(5,2) whose 8 vertices and 21 third

points on the l-skeleton of such a simplex are off K

(Lemma (5.8)). Then Theorem (8.10) shows that PSL(4,2)

permutes these. The action is faithful because if all 8

simplices are fixed, all the 8 coordinates of V(8,2) must

be fixed and the motion must be the identity. //

§8.10 Line Coordinates for PG(3,2) and a Objects La.

PG(3,2 Permuted 21. PSL(4,2)

It has finally been established that lines of PG(3,2)

are permuted by PSL(4,2) exactly as the complementary

pairs of weight 4 vectors of V(8,2) are permuted by A8 ,

and so that lines of PG(3,2) intersect iff representative

weight 4 vectors share ones in exactly two coordinate places.

(10.1) Theorem: There is a one to one correspondence m

from the 35 lines to the 35 sets of complementary 4—tuples

from a given set of 8 letters so that PSL(4,2), operating

on the 35 lines, is mapped isomorphically to A8 , operating

on the 8 letters.

2392;: Let the set X of 8 letters correSpond to 8 standard

basis coordinate vectors of a V(8,2) . Then Theorem (6.4)

shows that corresponding to Definitions (2.6) of

PG(5,2) c V(8,2), (3.8) of the Klein quadric K in PG(5,2),

and (5.1) of the graph G in K , A a Aut(G) . Further-
8

more, defining 9 as in (8.4), we have by Theorem (8.7) that

9 is isomorphic as a geometry to PG(5,2) and that

PSL(4,2) a Aut(G) a A by Theorem (8.10). This gives a
8



correspondence m between lines of PG(3,2) and complementary'

pairs of 4-tuples from the set X of 8 letters via

Theorem (8.7), Lemma (8.6), and Definitions (5.2), (3.9),

and (2.6), so that lines of PG(3,2) intersect iff

representative 4-tuples from X share precisely two letters.

It follows that PSL(4,2) =~ A8 under cp . //

(10.2) Throughout this section let IX be the set of 8

letters X:= {a,b,c,d,e,f,g,h] on which A8 acts

isomorphically to PSL(4,2) according to Theorem (10.1).

Since Theorem (10.1) gives 8 letter coordinates for

lines of PG(3,2), sets of lines can also be coordinatized

by these 8 letters. Since points and planes of PG(3,2)

are each characterized by special sets of lines, we have:

(10.3) Lemma: The 15 points and the 15 planes of PG(3,2)

are each coordinatized by the 30 copies of S(3,4,8) in the

V(8,2) whose 8 standard basis vectors are the 8 elements of

X .

.gmaaj: Points of PG(3,2) are characterized by the 7 lines

of PG(3,2) through the point. Planes are characterized by

the 7 lines on that plane. Each set of 7 lines forms a

maximal clique of 7 mutually intersecting lines in PG(3,2)

and then the pairs of complementary 4-tuples coordinatizing

those 7 lines form a copy of S(3,4,8). Then by Lemma (5.5),

Definition (8.4), Theorem (8.7), and Corollary (8.8) the

result follows. //

Now we shall proceed to establish just what sets



of lines of PG(3,2) correspond in a one to one fashion to

the 8 letters on which A acts.
8

(10.4) Define a spread in PG(3,2) to be a set of lines

which are mutually disjoint and so that every point of PG(3,2)

is contained in exactly one of these lines. It is clear that

there are 15/3 = 5 lines in each spread of PG(3,2) . This

definition corresponds to D. M. Mesner's use of the word in

[26].

(10.5) Lemma: Triples from the set X of 8 letters on

which A8 actsisomorphically to PSL(4,2) correSpond under

this isomorphism to the (g) = 56 spreads of PG(3,2) . The

five lines in a spread all have representative 4-tuples

which contains the triple corresponding to that spread.

gmaeg: Given any triple, say {a,b,c] c X , there are

precisely 5 lines of PG(3,2) whose corresponding equivalence

classes of complementary 4-tup1es from X have a repre-

sentative containing [a,b,c} . Since by Theorem (10.1)

lines in PG(3,2) intersect iff their representative

4-tuples share precisely two letters, the 5 lines corresponding

to {a,b,c] are mutually disjoint. Together the 5 lines

contain all 3.5 = 15 points of PG(3,2) , so they form a

spread of PG(3,2) by Definition (10.4).

To show that the (3) = 56 spreads obtained in this

way are all the spreads of PG(3,2) we note that

representative 4-tuples for three mutually disjoint lines

having their representatives share three letters can be

chosen in the following two ways:
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of lines of PG(3,2) correspond in a one to one fashion to

the 8 letters on which A acts.
8

(10.4) Define a spread in PG(3,2) to be a set of lines

which are mutually disjoint and so that every point of PG(3,2)

is contained in exactly one of these lines. It is clear that

there are 15/3 = 5 lines in each spread of PG(3,2) . This

definition corresponds to D. M. Mesner's use of the word in

[26].

(10.5) Lemma: Triples from the set X of 8 letters on

which A8 actsisomorphically to PSL(4,2) correspond under

this isomorphism to the (g) = 56 spreads of pc(3,2) . The

five lines in a spread all have representative 4-tup1es

which contains the triple corresponding to that spread.

gmeag: Given any triple, say [a,b,c} C'X , there are

precisely 5 lines of PG(3,2) whose corresponding equivalence

classes of complementary 4-tuples from X have a repre-

sentative containing {a,b,c] . Since by Theorem (10.1)

lines in PG(3,2) intersect iff their representative

4-tuples share precisely two letters, the 5 lines corresponding

to {a,b,c] are mutually disjoint. Together the 5 lines

contain all 3.5 = 15 points of PG(3,2) , so they form a

spread of PG(3,2) by Definition (10.4).

To show that the (3) = 56 spreads obtained in this

way are all the spreads of PG(3,2) we note that

representative 4—tuples for three mutually disjoint lines

having their representatives share three letters can be

chosen in the following two ways:



{8,b,c,d }

{3,b,c, e ]

[a,b,c f}

or

{a,b,c,d }

{a,b,c, e }

{a,b, d,e ] .

Each of these completes uniquely to a set of 5 representative:

4-tuples for a spread, the first of which has all repre-

sentatives containing {a,b,c] and the second of which has

the complements of all representatives containing {f,g,h] .

Therefore each spread corresponds to one unique triple from

X . //

(10.6) 'Lemma: Two spreads of PG(3,2) share 0, l, or 2

lines of PG(3,2) according as the triples from X

corresponding to those two spreads share 1, 2, or 0 letters

respectively.

ugmaafi: The two spreads {a,b,c}, [a,b,d] share only the

line [[a,b,c,d] , {e,f,g,h}} . The two spreads [a,b,c] ,

[d,e,f} both share only the two lines given by {[a,b,c,g] ,

[d,e,f,h]] and [[a,b,c,h}, [d,e,f,g]] . None of the 5

lines of {a,b,c] are among those of the spread {a,d,e] ,

so two spreads sharing one letter are disjoint spreads. //

(10.7) Definition: The lines in a set of 6 Spreads of

PG(3,2) which pairwise share one line of PG(3,2) is



called a linear complex of lines of PG(3,2) . This
 

definition is equivalent in the setting of PG(3,2) to the

definition of linear complex given by Todd in [35], but

this equivalence shall not be established as we shall only

use the definition as a convenient name.

(10.8) Lemme: The (3) = 28 pairs of letters of X

correspond to the 28 linear complexes in PG(3,2) .

.gmpag: There are two types of sets of four spreads of

PG(3,2) which pairwise share one line of PG(3,2) . Using

Lemma (10.6) these are:

[a,b,c ] {a,b,c }

{d,b, d } {a,b, d}

and

[a,b, e ] [3, c,d]

{a,b, f} [ b,c,d]

The second of these cannot be completed to a set of even 5

spreads which pairwise share one line, whereas the first can

be completed to the linear complex:

{a,b,c

{a,b, d

{a,b, e

[a,b, f

[a,b, g

[a,b, h

Therefore, linear complexes correspond one to one to pairs

of the 8 letters of X . //
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(10.9) Lemma: Two linear complexes of PG(3,2) share 0 or

I spread of PG(3,2) iff their corresponding pairs of

letters from X share 0 or 1 letters reSpectively.

Empafi: [a,b] and {a,c} share the spread [a,b,c] . The

pair {a,b] and [c,d] share no spread. //

(10.10) Definition: A heptad of linear complexes in PG(3,2)

is a set of 7 linear complexes which pairwise share one

Spread. This name is used by Conwell, Edge, and Jonsson in

[10], [14], and [19], respectively.

(10.11) Lemma: The eight heptads of linear complexes in

PG(3,2) correspond to the eight letters of X themselves.

.gmppf: Using (10.9) and (10.10), a set of more than three

pairs of X which mutually share one letter must all contain

a fixed one of the letters of X . So each heptad corresponds

to one of the letters of X . //

Lemma (10.11) plus the fact that A permutes the 8
8

letters of X faithfully proves:

(10.12) Theorem: There are 8 heptads of linear complexes

of lines in PG(3,2) which A8 permutes faithfully in a way

so that A8 a PSL(4,2).



CHAPTER 9

The Uniqueness of the XNR-Design

Within the Geometry of V(4,2)

§9.l Introduction
 

It is the purpose of this chapter to complete the proof

of the uniqueness of the XNR-design, Theorem (9.5.1), by

showing that the design can be constructed within the

context of V(4,2) in only one way (up to an automorphism of'

V(4,2)). Chapter 7 has shown that the weight 6 code words

in any XNR code (containing 9) are embeddable in V(4,2),

Theorem (7.5.1) and Lemma (7.5.11). From the fact that the

weight 6 code words form an XNR-design, Definition (4.7.3)

and Remark (4.3.4), it follows that any XNR-design can be

embedded in V(4,2). Therefore, in order to prove that the

XNR-design is unique, it suffices to show that it can be

constructed within V(4,2) in only one way (up to auto-

morphism).

Within the context of V(4,2), the uniqueness proof

proceeds as follows. (First, in Section 9.2, necessary

conditions for the existence of the XNR-design, D , are

noted. The 112 blocks of D sub-divide into sets of 42 and

70 blocks according as therblocks contain the point

corresponding to p EV(4,2) or not. These 42 and 70 blocks



form designs 8 and L respectively on the point set

PG(3,2) = V(3,2)-{Q] . Moreover these blocks indicate

simplices and skew line pairs, respectively, in PG(3,2)

Design L gives rise to a one to one correspondence, 5 ,

between all the lines of PG(3,2) and some of the spreads

of PG(3,2) . Then, in Sections 9.3 and 9.4, it is shown

that, up to an automorphism of PG(3,2), correspondence 8

and designs L and S are unique. Finally, in Section 9.5,

it is shown that the XNR-design D is unique up to an

automorphism of V(4,2) . Designs S and L and

correspondence 3 , which are referred to throughout this

chapter, are defhaed in Section 9.2.

As a corollary of the uniqueness of the XNR-design,

D , we obtain the fact that D is coincident with the

design constructed in Chapter 5, Theorem (5.3.9). This leads

to the fact that the automorphism group of the XNR-design is

A7-+T(4), i.e. A7 extended by the groups of translations

of V(4,2) , Theorem (5.2)

§9.2 Necessary Conditions for the Existence 2; am XNReDesign:

Designs a, and .2 and Correspondence [a

Given an XNR-design D , from Theorem (7.5.11) all of

the 112 blocks, when viewed as weight 6 vectors in V(16,2)

are characteristic functions of dependent 6-sets of vectors

of V(4,2) . Since dependent sets in V(4,2) are given

relative to QEV(4,2) and since bl = 42 for design D

(c.f. (6.4.b)), there are 42 weight 6 vectors of D



containing the coordinate corresponding to Q_ and 70 not

containing 9 . Interpreted in terms of characteristic

functions relative to PG(3,2) = V(4,2)‘\{9] , we have:

(2.1) Lemma: When the point set is restricted to

PG(3,2) = V(4,2)\\[Q], the 112 blocks of the design D

subdivide into a set of 42 weight 5 blocks and a set of 70

weight 6 blocks. Their respective weight 5 and 6 vectors

are characteristic functions of simplices and pairs of skew

lines in PG(3,2) .

3222:: Let e1 be the basis vector of V(16,2) corresponding

to _0_€V(4,2). By b = 42 for D , the 42 weight 6 vectors
1

containing a l in the coordinate e1 place locate a

dependent set of 5 points in PG(3,2). Since no two points

in any PG(n,2) are dependent, this set must have no three

points dependent (collinear) and no four dependent (coplanar).

As such each dependent set of five points is a simplex in

PG(3,2). For the 70 weight 6 vectors containing a 0 in the

coordinate corresponding to £1 , each yields a set of 6

dependent points of PG(3,2). Simplices have in PG(3,2)

at most 5 points so at least 3 of the 6 points must be

dependent (collinear), but then the complementary set must

be also dependent of cardinality at least 3. So such a

dependent 6—set is necessarily a pair of skew lines in

PG(3,2) . //

(2.2) Corollary: The 42 simplices and 70 pairs of skew

lines from PG(3,2) form, respectively, a 44- (2,5,15)

design S and a 10-(2,6,15) design L , each with d216



Proof: According to (4.15), the 42 blocks of D having a l
 

in the place, el , form the derived design of D which is

a 4—(3-l,6-l,l6—l) design, S . The other 70 blocks then

form a (l4-4)-(3-l,6-0,16-l) design L , because D is

by (4.1.4) also a 14-(2,6,l6) design. These designs

clearly inherit d216 being no more than a subset of vectors

already with the d216 property. Hence these sets of 42

simplices and 70 pairs of skew lines must be 4-(2,5,15)

and 10-(2.6.15) designs with d26 . //

(2.3) So if D is any XNR-design embedded in V(4,2) ,

its 112 blocks define on the point set PG(3,2) a design _§

of 42 simplices of PG(3,2) and a design ‘L of 70 skew

line pairs of PG(3,2) . Designs S and L are 4-(2,5,15)

and 10-(2,6,15) designs with d216 , respectively, by

Corollary (2.2).

Since D is a 3-design, each triple of points from

PG(3,2) occurs a total of b3 = 4 times among the blocks

of the designs S and L . Since triples of points of

PG(3,2) are of two types, collinear or non-collinear,

(2.4) we shall call these sets LLmea and triangles of

PG(3,2) , respectively.

(2.5) [Lemma: Each triangle of PG(3,2) is contained in

exactly one of the blocks of S .

3599;: Since Corollary (2.2) shows that S has d216 , two

simplices of the design cannot share a triangle. Hence,

each triangle must be contained in a unique simplex. There



are (135) triples in pc(3,2) and of these, 15.14.1/3: = 3s

triples are lines, so there are (135) -35 = 420 triangles of

PG(3,2) . But there are then 42. ( g) = 420 triangles each

contained uniquely in the 42 blocks of the simplex design,

S . Therefore, each triangle of PG(3,2) is in exactly one

block. //

(2.6) Corollary: Each triangle of PG(3,2) is contained

in exactly three blocks of L .

IELQQL: Each triple of D is in precisely 4 blocks, and

each triangle is in a unique simplex, by (2.5). //

(2.7) [Lemma: Each line of PG(3,2) is contained in

exactly four blocks of L . Each such line and the four

others skew to it from each of the four blocks form a spread

in PG(3,2) .

.gmpag: Since no triple in a simplex can be dependent

(collinear), each line of PG(3,2) must be in 4 blocks of

L . Consider the 4 blocks from L containing a fixed line

11 0f PG(3,2) . Let ‘2, 33, L4, and 35 be the other

lines skew to ‘1 so that [11,11] i = 2,3,4,5 are those

four blocks of L . Because d216 in L (Corollary (2.2)),

the pairs {31,3j], i,j = 2,3,4,5, j #’i , must also be

skew. Therefore {Li | i = l,2,3,4,5] is a spread of PG(3,2)

(cf. Definition (8.10.5)). //

(2.8) Theorem: Corresponding to each design L in PG(3,2)

there is an injection, 8 , of the lines of PG(3,2) into

the spreads of PG(3,2) such that each of the four blocks

of L containing a line 1 contains also a second line



from the spread 5(3)

‘gmppL: By Lemma (2.7) the four blocks of L containing a

given line 11 of PG(3,2) determine a well—defined spread,

5(11) = {11,12,13,z4,15} in PG(3,2), so that {11,51}

for i = 2,3,4,5, are blocks of L . Should any two lines,

say ‘1 and L , from PG(3,2) determine the same spread,

then 8(31) =s(1,) so that 363(31) . Let 1, be 1.2

w.1.o.g. Now Lemma (2.7) applied to 8(12) implies that

{32,11} for i = 3,4,5 are also blocks of L . Hence

these are blocks of D . Then {11,54} and {12,53} are

two disjoint blocks of D . But since bB = 0 for
0,6

the generalized block intersection numbers for D relative

to a block B of this design D (cf. (6.4.6)), D has no

block disjoint from any given block B of D . This

contradiction forces the spreads 3(11) and 3(12) to be

distinct. Thus the correspondence s is one to one. //

(2.9) Define ‘e, to be any of the one to one correspondences

determined by a design L in PG(3,2)

§9.3 The Uniqueness Under 8 of the Correspondence s

 
 

and Design L

(3.1) [Lemma: The stabilizer of a line in PG(3,2) is

transitive on the set of 8 spreads of PG(3,2) which

contains that line.

.gmppfi: Since there is always an even permutation of X

mapping any 4-tuple from X to any other, A8 is transitive

on lines of PG(3,2). So w.l.o.g. we may consider a line



L of PG(3,2) to be coordinatized by [[a,b,c,d},[e,f,g,h]].

By Lemma (8.10.6) this line is contained in the 8 spreads:

{a,b,c], {a,b,d], {a,c,d], {b,c,d}, {e,f,g], {e,f,h}, [e,g,h],

and [f,g,h] . Since these 8 triples are completely contained

in either of the 4-tuples corresponding to the line L ,

there is a motion. “’EAB which stabilizes g and moves any

of these triples to any other of these triples. //

(3.2) Theorem: Any one to one correspondence 3 of lines

of PG(3,2) to 35 of the spreads of PG(3,2) such that

each line L' of PG(3,2) together with the four other

lines of the spread S(g') form a block of L , is uniquely

determined by any one line and its corresponding spread.

2229;: First consider any two skew lines. They must have 8

letter coordinates which by Theorem (8.10.1) have

representatives sharing 1 or 3 letters. There is a motion

6 of A8 sending the coordinates of a line 11 to

[{a,b,c,d], [e,f,g,h}] . Then a further motion 62 of A8

may be chosen to send the coordinates of a line 12 which

is skew to ‘1 to [{a,e,f,g}, [b,c,d,h]] . (A8 is shown

to be transitive on pairs of skew lines in this way.) Now it

is clear that 11 and 12 are both in the two spreads

{b,c,d} and [e,f,g], (cf. (8.10.6)).

Now let S(Ll) = [b,c,d} . If s is to generate the

blocks of a 10-(2,6,15) design L , with d;i6 , as

indicated in the hypotheses of this lemma, then {11,12}

must be a block of L . Now 12 must correspond to one of

the two spreads containing {11,12} since this set is
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already a block of L . But does not correspond to
‘2

[b,c,d] = 3(11) by Theorem (2.8), and hence, necessarily

5(11) in the spread {b,c,d] must correspond by s to the

spread {y,z,w] for {y,z,w] c [e,f,g,h] . Note that each

of the five lines with correspondence s defined already,

correspond to the spread given by that triple which

together with the letter a form a 4-tup1e representative for

the line.

Now by considering the 4.(5-2) = 12 other lines in

the four spreads [y,z,w} c [e,f,g,h] corresponding under

s to the other four lines in the initial spread {b,c,d} ,

one sees that each of these lines must correspond under s

to that triple which together with the letter a forms a

4-tuple representative of the line. For example, consider

the spread {e,f,g] and its five lines:

{{a,b,c,d}, {e,f,g,h}} = ‘1

{{bmfifil}, {9:f:9:a}} = 1,

[[a,c,d,h], {e,f,g,b]] = 13

[[a,b,d,h}, [e,f,g,c}]

{{a,b,c,h}, {e,f,g,d}] .

Since {12,13} is already necessarily a block of L ,

s(i3) = [c,d,h} .

Finally, by considering each of the 18 other lines

from PG(3,2), one finds that there is exactly one spread

that can correspond to each of these lines. This spread



is the one whose triple together with the letter a forms

a 4-tup1e representative of that line. //

(3.3) Corollapy: If 5(3) = [b,c,d} for the line L
 

given by {{a,b,c,d], [e,f,g,h}], then 5(3') = {x,y,z]

where [{a,x,y,z}, {w,m,n,p]] is the 8 coordinate name for

L' , and {x,y,z,w,m,n,p] = X\\[a] .

(3.4) Theorem: Up to a motion of PG(3,2), the design L

is unique.

.meag: By Theorem (2.8), there must be a correspondence 8

mapping the lines of PG(3,2) to 35 of the spreads of

PG(3,2) so that the correspondence locates the blocks of

the design L . Up to a permutation A8 the initial

choice of the spread S(L) corresponding to z is unique

for any fixed line L of PG(3,2), by Lemma (3.1). Then

Theorem (3.2) shows that s is completely determined by

these initial conditions. //

(3.5) Theorem: The automorphism group of the design L

is A7

gmppL: By Lemma (2.7) each line of PG(3,2) is contained

in four blocks of L . Any motion 6 of the points of L ,

i.e. the points of PG(3,2), which sends also blocks to

blocks must send the four blocks through one line to the

four blocks through another line. Hence 6 induces a

collineation ¢p* of PG(3,2) so ¢p*EPSL(4,2) e-A But8 0

w*, as a collineation of PG(3,2), permutes the set of 56

spreads of PG(3,2) . By Corollary (3.3), ¢* must move

these 56 spreads in two sets - the set of 35 spreads



corresponding under s to lines of PG(3,2) whose triples

are from X\\{a], and the set of 28 other spreads whose

triples contain the letter a. Since the subgroup of A8

which fixes the letter a is A7 ,Aut(L) : A7 .

If ¢EA7 where A7 operates on X\{a}, then m

induces a unique mapping 3 agreeing with the hypotheses of

Theorem (2.8) and the correspondence given in Corollary (3.3).

Therefore, the equivalent lO-(2,6,15) design (Lm) with

d;a6 induced by 6 has exactly the same correspondence 8

and hence the same blocks. Therefore A7 c Aut(L) . //

(3.6) Corollary: A7 is l-transitive on blocks of L .

‘gmppL: Consider for each line of PG(3,2) only the

representative 4—tuple which contains the letter a. Then on

X‘\{a], lines corre5pond to triples. Exactly these triples

are also the spreads under the correspondence 8 , as in

Corollary (3.3). This means that the two lines of a typical

block of L have corresponding triples which are disjoint

triples chosen from X\\{a} . Since A7 is transitive on

pairs of disjoint triples chosen from X)\{a}, A7 is

transitive on blocks L . //

§9.4 The Uniqpeness a; the Design Pair S,L

we know from Section 9.3 that design L and its related

correspondence 5 are unique up to a motion of PSL(4,2).

Aiming towards the uniqueness of D we show in this section

that there is a unique design 8 that can extend a fixed

design L to D . We do not prove that design S is



unique, but rather the uniqueness of the pair S,L which

can be extended to D .

(4.1) Theorem: Given PG(3,2) and the (unique) design 1.,

there is a unique design S which together with L can be

extended to an XNR-design D .

lgmpag: Assume that S and L are respectively 4-(2,5,15)

and lO-(2,6,15) designs which build an XNRedesign D by

attaching a sixteenth point to the point set of these two

designs. Considering the 15 point set to be the set of

points of PG(3,2), 0 may be then augmented to each simplex

and to none of the pairs of skew lines so that the resulting

design D has V(4,2) as its point set. Then by Lemma (2.5),

it is necessary that each triangle from PG(3,2) be located

in one and only one simplex of S .

(4.2) Furthermore, since d;;6 in D , two blocks of D ,

one from S and one from L must overlap on at most three

points of PG(3,2)

Consider any one triangle of PG(3,2). Label its three

lines as 31,12,33 . In PG(3,2) this triangle completes

to a Fano plane. Let the seventh point of this plane, which

is not on any of the three lines 31,12, or ‘3, be called

P . Through P pass seven lines of PG(3,2), three of

which occur on this plane. Let the four lines through P

and not contained in this plane be labeled ml,m2,m3 and

m4 . By the necessary correspondence 8 , as given in

Theorem 2.8) and Definition (2.9) spreads 3(11),s(12), and

3(13) must correspond to lines 31,12,13 of the fixed



triangle so that 1i together with each of the other four

lines in the spread S(Li) must form a block of L , for

i = 1,2,3 . Since one line of any spread, by Definition

(8.10.5), passes through each point of PG(3,2), one of the

four lines mj, j = 1,2,3,4, together with each Li’ i = 1,2,3,

must form a block of L . But furthermore, since d;a6

in design L , and since any two of the lines ‘i for

i = 1,2,3 meet on a point, each ‘i’ i = 1,2,3 must form a

block with a distinct one of the lines mj, j = l,2,3,4. So

w.l.o.g. let {11,mi], i = 1,2,3 be blocks of L , i.e.

let mi be contained in the spread S(ji) for i = 1,2,3.

Now, any triangle of PG(3,2) is contained in four

simplices of PG(3,2), namely the three points of the

triangle P12,P13,P23 (for Pij = ‘i Flzj , i, j = 1,2,3,

i i j), together with the two points of each of the four

lines mj, j = l,2,3,4 other than P . If the simplex to

be chosen through {P12,P13, P23} contains the two points of

mj for j = 1,2,3 other than P , say the two points 01

and R1 of m1, then the simplex [P12,P13,P23,01,R1] of

8 would meet the block {31,m1] of L in the four points

of {P12,P13,01.R1] , contradicting the fact stated in (4.2)

that a block of L and a block of M must share at most

three points.

Therefore, through [P12,P13,P23] can be chosen only

the simplex {P12,P13,P23,Q4,R4] where 04 and R4 are the

two points of m4 other than P . Hence, the triangle can



be contained in at most one simplex that can be used for the

design S .

Now the existence of the XNR-design D as guaranteed

by Remark (4.3.4) (and by Theorem (5.3.9)) shows together

with Lemma (2.5) that each triangle is contained in exactly

one simplex of S . //

(4.3) Corollary: The design 8 of 42 simplices as

referred to in Theorem (4.1) has d;z6

EmpaL: The uniqueness of the system as guaranteed by

Theorems (3.4) and (4.1) together with the existence of the

systems shown in Theorem (5.3.9) yields the distance

condition d;;6 for S as well for L and D . //

(4.4) Theorem: The automorphism group of S is A7 .

.2E22£= By Theorem (3.5) the automorphism group of design

L is A7 . Each motion of A7 then permutes the 15 points

of PG(3,2) and stabilizes the set of 70 pairs of skew

lines of PG(3,2) forming blocks of L . As such, since

the 70 block design L implies the existence of 42 simplices

uniquely chosen relative to L , each motion m of

Aut(L) 3 A7 moves points of PG(3,2) and stabilizes the set

of 42 simplices in S . Hence A7 c Aut(S)

Conversely, given any cp eAut(S), consider the four

blocks of S containing a given pair of points. As m

moves points of PG(3,2) to points and simplices of S to

simplices of S , m must move a pair of points together

with the four blocks of S containing that pair to another



pair of points together with its four blocks. Counting all

the points in these four blocks with use of d;;6 , four

blocks containing that pair involve 14 of the 15 points of

PG(3,2). By Lemma (2.7) this fifteenth point must be

collinear with that pair. Hence, 6 moves lines of PG(3,2)

to lines and therefore is a collineation of PG(3,2). But

as a collineation of PG(3,2), m permutes spreads of

PG(3,2). Were the 35 spreads corresponding to the design L ,

which according to the hypotheses of Theorem (4.1) exists

simultaneously with ,S , not stabilized by w , then T

would not stabilize the 70 blocks of L . Then the

correspondence s would not stabilize the 42 blocks of S ,

and ¢£Aut(S) , a contradiction.

Therefore 6 induces an automorphism of L showing

that Aut(S) c A7 .

As a result, Aut(S) = A7 a Aut(L) . //

§9.5 The Uniqueness a; the XNR-Design IQ
 

(5.1) Theorem: Up to a permutation of the 16 coordinates

of V(16,2) , the XNR-design D is unique.

35293: As seen in Theorem (6.5.9), each XNR-design D

generates a (16,256,6) code C , where standard basis

vectors of V(16,2) are the points of D . Then by

Theorem 7.5.11) the weight 6 vectors in C , i.e. those

corresponding to blocks of D must be characteristic

functions of dependent 6-sets in V(4,2) . Then by letting

 



an arbitrary coordinate place of V(16,2) correspond to

QEV(4,2) , these dependent 6-sets in V(4,2) yield a

design L according to Lemma (2.1) and Corollary (2.2).

Design L is unique, Theorem (3.4), up to a collineation

of PG(3,2) which is a permutation of the 15 coordinates

of V(16,2) other than the one corresponding to Q eV(4,2) .

Furthermore, design L induces a unique design S which

together with L builds design D whose points are the

16 vectors of V(4,2), by Theorem (4.1). Hence, even after

arbitrarily fixing the coordinate place of V(16,2)

corresponding to 0 eV(4,2) , there is a permutation of the

other 15 coordinates which puts D into a given standard

form for D . //

Actually the proof of Theorem (5.1) proves the stronger

statement:

(5.2) Corollamy: Given any two distinct c0pies D and
1

D2 of a XNeresign, then there is a motion m of the 16

coordinate places of V(16,2) which fixes one coordinate

and moves the other 15 coordinate places so that Dlm = D2 .

(5.3) Theorem: The automorphism group of the unique

XNR-design D is A7-+T(4), i.e. A7 extended by T(4),

the group of the 16 translations of V(4,2) .

gmpag: By Theorem (5.1), the design D is unique. As

constructed in Theorem (5.3.9), this design D is composed

of 7 orbits of dependent 6—sets under the action of T(4), the

translation group of V(4,2) . Hence, T(4) stabilizes D

Since T(4) is regular on V(4,2) , Lemma (3.2), any



motion of T(4) fixing _QEV(4,2) is the identity vector.

Then with .9 fixed, Lemma (2.1), Corollary (2.2), and

Theorems (3.5) and (4.4) show that A7 acts on D with El

fixed. Hence, the total group of automorphisms D is A7

7 WM) . //

(5.4) Theorem: The automorphism group A7-+T(4) of the

extended by T(4), A

XNR-design D is l-transitive on the 112 blocks of the

design.

3:29;: By the construction method of D as shown in

Theorem (5.3.9), T(4) acting on D is %-transitive on

blocks of D «giving 7 orbits of 16 blocks each. Since

T(4) is regular on the 16 coordinate places of V(16,2),

by Lemma (3.2), there is always at least one block of each

of these orbits which contains a 0 in the coordinate place

of V(16,2) corresponding to the Q€V(4,2) . In other

words at least one block of each of these orbits is

contained in L . By Theorem (3.5) and Corollary (3.6),

Aut(L) 8 A7 is l-transitive on these 70 blocks. Therefore

A7-+T(4) is l—transitive on all the 112 blocks of D . //

(5.5) Theorem: A7-+T(4) is 3-transitive on the 16 points

of X for the XNR-design D = (X,B)

LgppL: By Theorem (5.4), A7-+T(4) acts as a l-transitive

degree 112 group of permutations of the 112 blocks of D .

Since each of the motions of A7-+T(4) is an automorphism

of D , there is an isomorphic injection i mapping the

group which acts on the 112 blocks of B into the group

which acts on the 16 elements of X .



Let G be the subgroup of the action of A7-+T(4)

on /3 which stabilizes a block B EB . Via the injection

1 , Gi is a homomorphic image of G on X stabilizing

the two sets B and X\\B .

_CLaim: The homomorphic image Gi of G acting on the 6

elements of the stabilized block B gives a faithful

representation of G on B .

4 2V(4,2) for X3529:: Consider the mapping 0.:V(l6,2)

being a basis of V(16,2) which exists according to

Theorem (7.5.1) in such a way that blocks of D are

characteristic functions of dependent 6—sets in V(4,2)

Theorem (7.5.15) shows that each automorphism cp EAut (D)

induces a motion, a0¢,¢ followed by a , of V(4,2)

preserving linearity in V(4,2) . Then due to the fact that

each dependent 6—set in V(4,2) spans all of V(4,2) by

Lemma (4.5.8), it follows that if 00¢ fixes pointwise a

dependent 6-set of V(4,2) , then 006 must fix pointwise

all the 16 points of V(4,2) . Hence any motion of Gi

fixing B pointwise induces the identity motion in the

action Gi on X and hence is the identity automorphism

of G . This proves the claim. //

Proceeding with the proof of Theorem (5.5) we notice

that since G stabilizes one of the 112 blocks of B ,

|Gi| = 360 . Then the only subgroup of the set of all 6!

permutations of the elements of B of this order is A6

Hence Gi 3 A6 , which is 4-transitive on the 6 points of

B . As such, any triple of the 16 points of X may be
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moved to any other triple of X by first moving one of

the blocks through the first triple to one of the blocks

through the other triple and then by using a motion of G

on the image block. //

Note that the proof of Theorem (5.5) actually proves the

following:

(5.6) Corollary: A7-+T(4) is 4-transitive on the set of

(2).112 4-tuples contained in blocks of the XNR—design D .



CHAPTER 10

The Uniqueness of the Nordstrom—Robinson and

The Extended Nordstrom—Robinson Binary Codes

§10.l Introduction

This chapter will collect information from Chapters 5,

6, and 9 to show the uniqueness of the (15,256,5) code

first discovered by Nordstrom and Robinson, together with

the uniqueness of the extended (16,256,6) code. We shall

use the notation NR and XNR for the (15,256,5) and

(16,256,6) codes, respectively, according to Definition

(3.5.8) and (3.5.4).

§10.2 The Uniqueness pm the XNR(l6,256,6) Code

(2.1) Theorem: Up to a permutation of the 16 standard

basis vectors of V(16,2), the XNR(l6,256,6) code is

unique.

ngpL: From Theorems (9.5.1) and (6.6.1) the code is unique

up to a permutation of the 16 coordinate places. //

(2.2) Theorem: The automorphism group of the XNR(l6,256,(5)

code is a degree 16 representation of the group A7-tT(4) ,

i.e. A7 extended by the group of translations of V(4,2)
2

as long as QEXNR .

Proof: Given a particular copy of the unique XNR code, C ,

with 0 6C , then by Theorem (6.3.1), the set of 112 weight

10.1
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6 vectors of C form an XNR-design D . By Theorem (9.5.2)

this design D possesses the group A7 -tT(4) as its

group of automorphisms acting as a degree 16 group on the

16 standard basis vectors of V(16,2) . By the Definitions

(5.2.5) and (5.2.6), the group of automorphisms of C must

be a subgroup of A -+T(4) . But since Theorem (6.5.9)7

shows that the design D determines uniquely all the 256

vectors of C , each automorphism of D which by definition

stabilizes the set D of weight 6 vectors of C must also

stabilize the sets of weight 8, 10, 16, and 0 vectors of C ./9/

(2.3) Corollary: The group A7-+T(4) of automorphisms

of the XNR(l6,256,6) code is 3-transitive on the set of 16

standard basis vectors of V(16,2)

Proof: Use Theorem (9.5.5). //

§10.3 The Uniqueness a; the NR(15,256,5) Code
 

(3.1) Lemma: Given any two copies Ci and C5 of the

XNR(l6,256,6) code, then there is a motion m which

fixes one of the 16 coordinate places of V(16,2) , and

permutes the other 15 so that Cim = C5 .

aProof: By Corollary (9.4.2) there is m fixing one

coordinate place of V(16,2) and permuting the other 15

places so that the weight 6 vectors of Ci , which form an

XNR—design, D1 , are mapped onto the weight 6 vectors of Ci .

Then since each SNR-design D builds a (16,256,6) code in

only one way by Theorem (6.5.9), the same m maps 'Ci

c2.//

t0



 I‘-
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(3.2) Theorem: The NR(15,256,5) binary code is unique

up to a permutation of the 15 standard coordinate basis

vectors of V(15,2).

ELQQL: Given any two (15,256,5) codes, Cl and C2 , each

extends by a parity check coordinate augmentation to a

(16,256,6) code Ci and C5 respectively according to

Definition (2.5.3) and Lemma (2.5.6). Now by Lemma (3.1)

there is a permutation of the 15 coordinates of V(15,2)

mapping Ci and C5 simultaneously C1 to C5 . //

§10.4 The Non-Linearityqejpthe‘ma and XNR Codes

Using a simple idea due to J. M. Goethals [15] we can

now show the non-linearity of both the unique NR(15,256,5)

code and the XNR(16,256,6) code. As a by-product we have

a distinct proof of the Calabi, et al.[7] result that there

exists no linear (16,256,6) code.

(4.1) Theorem: The unique XNR(16,256,6) code is

non-linear.

L’maafi: (J. M. Goethals) Let w.l.o.g. _QeC , where C is

a (16,256,6) code. By (6.3.1) the set of weight 6 vectors

fonmsan XNR-design D . Choose any three coordinate places,

.e1,e2, and e3, from V(16,2) . Since b3 = 4 for the dBSing

D , there are exactly four vectors of weight 6 in C which

contain ones in these three coordinate places. Call these

four vectors -§l*§2*§3’ and ‘m4 . Then using the facts chat

d216 for all pairs of code vectors from C and since

5i . a). | 23 for each pair of these four vectors,
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i y’ j, i, j= 1,2,3,4, then [35 «Pm +35 +354] = 12 . But
1 2 3

according to Lemma (6.4.7), any (16,256,6) code C with

‘QGEC contains no vector of weight 12. This implies that

_J_{_ +35 +§3 +§4£C and that C is non-linear. //
l 2

(4.2) Corollary: The NR(15,256,5) code is non-linear.
 

.gmppL: By Definition (2.5.3) and Lemma (2.5.6) and by the

uniqueness of the NR and XNR codes, the XNR code is

necessarily the parity check code of the NR code.

Similarly, by Definition (2.5.2) and Lemma (2.5.5) the NR.

code is necessarily the punctured code of XNR . Then by

Lemmas (5.8) and (5.9) one code is linear iff the other is

also linear. Hence, by Theorem (4.1), the NR code is

non-linear. //

(4.3) Corollary: There exists no linear (16,256,6)

code.

Proof: The (16,256,6) code is unique. //



PART D: THE GOLAY BINARY CODE

CHAPTER 11

The Uniqueness of the Large

Steiner Systems S(4,7,23) and S(5,8,24)

§1l.1 Introduction

As a by-product of our work with the uniqueness of

the Nordstrom-Robinson code, we can show the uniqueness of

the Steiner systems S(4,7,23) and S(5,8, 24) . Furthermore,

we can show that the automorphism groups of these designs

are of order [M23] and |M24|, are block transitive on the

designs, and are 4- and 5-transitive on the 23 and 24 point

sets of those designs, respectively.

In an effort to locate a good setting for the action

of the 4- and 5- transitive groups M23 and M24 discovered

earlier by Mathieu [39], Witt (1938) showed in [40] the

uniqueness of these Steiner systems building them up from

the unique projective plane over GF(S) . Witt's concern

was to establish the uniqueness of the 4- and 5- transitive

groups M23 and M24 . Actually, H. Luneborg [23]

discovered and corrected a flaw in Witt's construction.

Much more recently, Jonsson built up the Steiner system

S(3,6,22) from facts concerning the geometry of PG(3,2),

cf. [19]. From the uniqueness of S(3,6,22) thus established,

11.1
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Jonsson concluded similar results about the uniqueness of

the three large Steiner systems S(3,6,22), S(4,7,23), and

S(5,8,24) and their related automorphism groups M22, M23,

and M Our construction of these designs corresponds to
24 '

constructing M23 from its maximal subgroup isomorphic to

A -+T(4) whereas that from Jonsson constructs M7 from S6 .

22

§1l.2 The Uniqueness a; S(4,7,23) Based pm_the Uniqueness
 

a; the XNR-Desigp
 

Throughout this section let X be a set of 23 points.

Also let S be an S(4,7,23) design.

(2.1) .Lemma: S = (X,B) is a l-(4,7,23) design with

d218 and each block B of B shares with 140 blocks of

8 three elements of B and with 112 blocks of B one

element of B .

.gmppL: By definition, S is a S(4,7,23) or a l-(4-7-23)

design so that each 4-tuple from X is contained in precisely'

one block of the design. Therefore, two distinct blocks

share at most three elements of X and have Hamming distance

d>_8 from one another.

By formulas (4.1.2) one sees that bO = 253, b1 = 77,

= 21, b3 = 5, and b4 = l . Furthermore, h4 = 1

B_B_B_ .
5’0 - b6,0 — b7,0 — l for a given block B of

design S . Hence, the generalized block intersection

b2

implies b

numbers for S relative to a block B of the design are:
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(2.2) 253

176 77

120 56 21

80 40 16 5

52 28 12 4 l

32 20 8 4 0 1

16 16 4 4 0 0 1

0 l6 0 4 0 0 0 1

From the b§,j for i-+j = 7 we conclude that each block

B meets 4 blocks on each triple from B and 16 blocks on

each element of B . Hence, B meets (g) . 4 = 140 blocks

on three elements of B and (3:). 16 = 112 blocks on one

element. //

Let Y = X‘\B be the set of the 16 points of S other

than those of a fixed block.

(2.3) ,Lemma: The 140 blocks of S meeting B on 3

places form an S(3,4,l6) design P on the 16 elements of

Y . The 112 blocks of S meeting B on one place form

an XNR-design D .

2399;: From the bE,j for S with respect to a block of

S as given in (2.2), the 112 blocks of S meeting B in

one place form, on the set B , 16 copies of the complete

(3 )-design. Similarly those 140 blocks meeting B on

three places form on B four copies of the complete

( ;)-design. Let the corresponding parts of these 112 and

140 blocks with point set y = X‘\B be called designs D

and P , respectively.



 

 

Figure (2.4) 112 140 l

D P Y

fi

7 7 7

16.41) 4M3) (7) B
     

U
}

Blocks of D have cardinality k = 6 since the corresponding

weight 7 blocks of S meet B in one place.

Each 4-set from X occurs in a unique block of S , so that

in D blocks have Hamming distance dga6 from one another.

Then for t = 6-6/2 = 3, equality in (4.7.5) holds

showing by Lemma (4.7.7) and Definition (4.7.3) that D is

an XNR-design. Design P is then a S(3,4,16) by the fact

that each 4-tuple from Y occurs uniquely either in D or

in P and by Definition (7.2.2) and Lemma (7.2.3). //

(2.5) Corollary: The 140 blocks of P as given in

Figure (2.4) form the 140 planar 4-tuples of V(4,2) where

the 16 vectors of V(4,2) are the 16 elements of Y .

_EmppL: This follows by Lemma (2.3) and Lemma (7.5.12). //

(2.6) ,Lemma: The 16 blocks of S through D meeting a

fixed block B of S on a given single element of B form

a 2-(2,6, 16) design T with d28 .

.gmppL: Consider the 16 blocks of S which meet B in

precisely the element x EB . Let T be the design whose

point set is Y and whose blocks are those 16 blocks

restricted to Y . Blocks of T have cardinality 6 and meet

one another on 0 or 2 places since blocks of S meet one

another on 1 and 3 places. Consider the average number of
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blocks of T through any pair of points from Y . Formula

(4.1.8) yields

b2 = l6.6.5/16.15 = 2

Since blocks of T meet on no more than 2 places, h2 = 2

is a constant, so that T is a 2-(2,6,l6) design with

628 . //

(2.7) Lemma: Each block of the XNR-design, D , is

contained in precisely one 2-(2,6,l6) design, T , with

d218 composed of 16 of the blocks from D . Thus the

design D decomposes into a collection of 7 disjoint

2-(2,6,l6) designs with dzB .

LLQQL: That each block of D is in a 2-(2,6,16) design

with d;;8 of 16 blocks of D is a result of Theorems

5.3.5) and (5.3.9). From the generalized block intersection

numbers for D relative to a block, L , of D given in

(6.4.6), bg’4 = 1 implies that there are precisely

21x (3) ==15 other blocks of D that meet L in precisely

two places, which blocks together with L could form a

2—(2,6,l6) design, T , with d;a8 . //

Now with these lemmas we can proceed to prove:

(2.8) Theorem: Up to a permutation of the 23 elements of

X , the S(4,7,23) design S is unique.

Proof: Let S and 82 be any two S(4,7,23) designs
1

defined on, for simplicity, the same point set X of

cardinality 23. Choose any two blocks Bieisi for i = 1,2,
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one from each design, and consider the corresponding

subdesigns Di and P1 of Si , i = 1,2 as shown in

Figure (2.4). Let Di = (X,Bi) for i = 1,2 . Because

of Theorem (9.5.1) and Definition (5.2.1) there exists a

pair of one to one correspondences (m,¢) for

(2.9) cp:X4X and ¢:Bl452

so that (m,¢) map points and the blocks of D1 to the

points and blocks of D2 . we shall now proceed to show

that each of the maps in the pair (¢,¢) extend to the

maps 6* and w* respectively in a unique way so that

(¢*,¢*) carry the points and blocks of S1 to those of

S and so that

2

Cp*‘X\B1=Cp and wit'31:w

By Lemma (2.7), W maps each of the 2-(2,6,16) designs

with d;i8 in D1 to one of D2 . Since each block of

D.1, i = 1,2, in a given 2-(2,6,16) design with d218

corresponds (Lemma (2.6)) to a single element of Bi,i = 1,2,

there is a unique map

(2.10) G:B 4B
1 2

so that the combined map

(2.11) cp*6823,cp:X 4 X

where

w* ‘ X\\Bl = w and m* l B1 = 9

carries points of S1 to those 8 at the same time that
2

w carries the 112 blocks of S1 meeting D1 to the 112

blocks of 82 meeting D2 .
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Now that m* is defined it is sufficient in proving

Theorem (2.8) to show that if the 23 x(112-+l) matrix

part of S is given

 

 

Figure (2.12) 112 l

D X\B

7 7

16ml) (7) B

    
then the corresponding 140 blocks completing the design to

an S(3,7,23) are uniquely determined. (That the other 140

blocks are uniquely determined forces the extension ¢* of

w to be unique.)

(2.13) gLaLm: Given the 113 blocks of S as in Figure (2.12),

then there is a unique way to complete these blocks to a

S(4,7,23) design.

£59533: Choose any three elements a,b,c, eX\B . These

three elements are contained in blocks Bj’ j = l,2,3,4 of

8 meeting D and must be contained in one other block B5

of S . Since dga6 in D , HJBi| = 15 and there is a

unique 4—tuple from X\\B containing [a,b,c] c X\\B .

Since blocks Bj intersect one another in three elements,

they are, by Lemma (2.7), members of distinct 2-(2,6,l6)

designs with d218 . Then by Lemma (2.6) the corresponding

single elements from B contained in the blocks

1,2,3,4, of S, must be distinct elements

u
. II

j2

xj,

design S each 4-tuple must be contained in a unique block,

j = 1,2,3,4, of B . Then because in the S(4,7,23)

the set of three elements of B contained in block BS

 



must be B\[xj [j = l,2,3,4] . So for each triple from

X\\B there is a unique block B5 that necessarily must be

chosen to complete the set of 113 blocks of Figure (2.12)

to the design S . This finishes the proof of Theorem (2.8)./Q’  
(2.14) Corollary: In a S(4,7,23) design S , the group

of automorphisms stabilizing a block B of the design is

A7-tT(4) .

 

Proof: This follows from Lemma (2.3), Theorem (9.5.3), and

the Claim (2.13). //  
(2.15) Corollary: The S(4,7,23) design exists and is

unique.

.gmppfi: Existence follows from Theorem (3.3.10) and Lemma

(4.3.3). Uniqueness follows from Theorem (2.8).//

(2.16) Theorem: The automorphism group of S(4,7,23)

design S is block transitive.

ugmppg: Consider the set of 112 blocks of S meeting a

fixed block B in one place. The stabilizer group of B

is by Corollary (2.14) transitive on these 112 blocks. This

means that given any two blocks B1 and B of S , if
2

there is a third block 33 meeting each of the first two

blocks on one place each, then there is an automorphism of

S moving B to B .
1 2

By the fact that any two blocks of S meet in either

1 or 3 places (Lemma (2.1)) we need only consider two cases.

Let B1 and B2 be blocks of S .

Case 1: If [Bl F.BZ| = l , then B2 is one of
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the 112 blocks meeting B1 on one place. By the generalized

block intersection numbers for the design D corresponding

to these blocks, (cf. (6.4.6)) there are 36 blocks of D

meeting B on one place of the 16 point set X\Bl of D .

2

Choose one of these 36 blocks and call the corresponding

block of S , B3 . Since blocks of S meet one another on 1

or 3 places and Since [83 FIBZ| = 1 , the single element of "1

B2 FIB1 must not be contained also in B3 . Hence, B3

A.

meets each of B1 and 82 on one place. Therefore there r;

 
exists an automorphism of S stabilizing B3 and moving B1

to B2

Case 2: If |Bl fl Bz| = 3 , then choose a QB].\B2 .

There are 16 blocks of S meeting B1 on only a and

forming, with respect to X\\B1, a 2-(2,6,16) design with

d;18 . At most 4 of these 16 blocks share point a and

three points of B2‘\B since each 4-tuple of X occurs in
1 2

a unique block of S . So there are blocks of S meeting

B1 on a and B2 on one place. Choose one of these, 83 .

Then |B3 rszl = |B3 F1B1| = 1 . Therefore again there is

an automorphism of S fixing B3 and moving B1 to 82 . //'

The group of automorphisms of S(4,7,23) is known to be

M23 (cf. Witt [39]). we may conclude at this point the

following:

(2.17) Corollary: The automorphism group of S(4,7,23)

design 8 is of order 253.112.360 = 23.22.21.20.4s = |M23| .

.gmaag: Since Aut(S) is block transitive on 253 blocks of

S by Theorem (2.16) and since the stabilizer group of a
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block of S has order 112.360 by Theorem (9.5.3), Aut(S)

has order 253.112.360. //

(2.18) Theorem: Aut(S) acts 4-transitively on the 23

points of S , where S = (X,B) is the S(4,7,23) design.

LLQQL: Since Aut(S) is block transitive on B by

Theorem (2.16), it suffices to show that the stabilizer of a i

block of S acts 4-transitively on the 7 points of that .—

block. Choose a block B EB . Then by Corollary (2.14), the

subgroup G of the action of Aut(S) on the 23 points of 0*:

 
X stabilizing the sets B and X‘\B is isomorphic to

A7-+T(4) . G acts necessarily as an automorphism of the

design P of Figure (2.4), since G must stabilize those

blocks of S meeting block B in precisely 3 places.

Furthermore, by Corollary (2.5), design P represents the

set of 140 planar 4—tuples of a V(4,2) whose 16 vectors

are the 16 elements of X\\B .

Choose a point a EXN\B . Call the subgroup of G

which fixes a eX\B as well as stabilizes sets X\B and

B , the group H . Then H must stabilize the 35 blocks of

P which contain a eX\B . But the design of 35 blocks of P

containing' a eXN\B when restricted to the point set

X‘\(B u [a]) is the design of the 15 points and 35 lines of

PG(3,2) , the derived design of the points and planar 4-tuples

of V(4,2) . Therefore, H is a subgroup of the collineation

group of PG(3,2) . By Theorem (9.5.3), Lemma (9.2.1),

Theorem (9.3.5), and Theorem (9.4.4), in that order, H 3 A7

Therefore H m PSL(4,2) by Theorem (8.8.10) and acts on the
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points and blocks of the derived design of P

Choose any m<EH so that m 7'1 , m moves the 15

points of X\\(BLJ[a]) non-trivially. Since w is a

collineation of PG(3,2), w moves the 35 blocks of the

derived design of P non-trivially.

Now since in S no two distinct blocks can contain the

same 4—tuple from X , no two blocks of S meeting the derived

design of P may contain the same triple [x,y,z] from B ,

 

for then the two blocks would contain the same quadruple

[a,x,y,z] c X . So the intersection of the 35 blocks of S

meeting the derived design of P must form a complete

(3) -design when restricted to the point set B (since all

35 triples thus obtained must be all the 35 distinct triples

that are possible).

Since m moves the 35 blocks of the derived design of

P non-trivially, 6 moves the 35 triples of the complete

(3) -design non—trivially.

Finally, we notice that under the action of H , the set

of 35 blocks of S passing through a eX\B and through the

derived design of P are stabilized. If m were to fix the 7

elements of B , m would also fix the 35 triples of the

complete ( ;)-design stabilized by the action of H .

Since 6 moves these 35 triples non-trivially, w also

moves the 7 elements of B non-trivially.
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Therefore that the action of H induces the faithful

action of A7 on the 7 elements of B . And since A7 is

5-transitive on the 7 elements of B , this suffices to

show that the stabilizer of a block of S is at least

4-transitive on the 7 elements of that block. //

 

§ll.3 The Uniqueness if. 815,8,24) Pr,

Now that we have the fact that S(4,7,23) is unique,

we may proceed to show that a S(4,7,23) design builds a

 
S(5,8,24) design in just one way (Theorem (3.9)). As such

the S(5,8,24) design will be shown to be unique (Corollary'

(3.10)).

Let X ‘be a set of cardinality 23 and m an additional

element augmenting X to X' = XIJ {a} . Let S be a

S(4,7,23) design on X . In order to augment S to

S' a S(5,8,24) , each block of S must be augmented by

the extra point e in order to obtain cardinality 8 .

(3.1) Call these 253 new blocks of cardinality 8 extended

blocks of S . The building of 8' now concerns only the

location of 506 = 759-—253 blocks of 8' none of which

contain a . For this reason we define:

(3.2) An admissible block of S' is a set of cardinality

8 on X which can be augmented to the set of extended

blocks of S to form 8' .

(3.3) Lemma: An admissible block 8' meets 15, 168, and

70 extended blocks of S on 0, 2, and 4 places, respectively.
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2392;: Let B be an admissible block of S' per

Definition (3.2). Since no S-tuple of X' may be contained

in more than one block of S' , B may not meet any block

of S in 5 or more places. Then considering the generalized

block intersection numbers for S relative to B and using

b§,0 = b2,0 = b$,0 = b§,0 = 0 , one obtains:

(3.4) 253

176 77

120 56 21

80 40 16 5

52 28 12 4 l

33 19 9 3 l 0

21 12 7 2 l 0 0

15 6 6 l l 0 0 0

15 0 6 0 l 0 0 0 0 .

From the bottom line we read that B meets 15. ((8)) = 15

blocks of S in 0 places, 6. (£23) = 168 blocks in 2 places

and l. ( ‘81) = 70 blocks in 4 places. //

(3.5) Lemma: The 15 blocks of 5 meeting an admissible

block, B , of S' in no places form, when restricted to the

set X\\B , a 3-(2,7,15) design, A . Furthermore, blocks

of A meet one another in either 1 or 3 places.

Igmaafi: Restricting the appropriate 15 blocks of S to the

set X‘\B of cardinality 15 one sees that these 15 blocks

have cardinality 7 each. They meet one another on either 1

or 3 places because they are contained in the design S

all of whose blocks have that property (Lemma (2.1)). Then

by Formula (4.1.8) we compute the average:

A

(3.6) b2 = 15.7.6/15.14 = 3 .
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Then since now two blocks meet in more than 3 places, all

 pairs must meet by (3.6) in exactly 3 places forcing this

design, A , to be a 3-(2,7,15) design. //

(3.7) Lemma: The 70 blocks of S which meet an admissible

block B of S' on 4 places form, when restricted to X\\B ,

a design M of whose blocks occurs twice. A duplicated F

triple of this S(3,4,15) design corresponds to two of the V”

70 blocks, which when restricted to B are complementary r

4—tuples.

 
3399;: Let the design M be the set of 70 blocks of S

meeting B in 4 places and restricted to the point set

X‘\B . Blocks of M are then triples from X\\B . Let L

be any one of these triples from M . Since A as defined

in Lemma (3.5) is a 3—(2,7,15) design, L is contained

in 3 blocks K3 , K4, and K of A . But L must be
52

contained in precisely 5 blocks of S , so that these 5

blocks K3 K K5, and say K
2 4, and K share pairwise

l 2

5 5

exactly the set L and so that Ki = X . Since (J Ki==

' i=3i=1

X\\B , L must be contained in two blocks of S which meet

B in four places each, and these 4-tuples must be

complementary. Therefore, L must occur twice as a block

in M . //

(3.8) Corollary: An admissible block, B , of S' is the

modulo 2 sum of blocks of S . which meet each other on

three places, in 35 ways.

Proof: The design M contains 70/2 = 35 duplicated
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triples. The corresponding 35 pairs of blocks each have B

as their modulo 2 sum. //

(3.9) Theorem: A S(4,7,23) design S with point set X

of cardinality 23 builds a S(5,8,24) design 8' on the

point set X\J {m} uniquely.

.gmeefi: From Corollary (3.8) each admissible block of 5'

occurs as the modulo 2 sum of 35 pairs of blocks of S .

But counting the maximal number of distinct admissible

blocks of S' , we have 253.140/2 = 17710 distinct pairs of

blocks of S sharing 3 places (cf. Lemma (2.1)) and there-

fbre 17710/35 : 506 distinct admissible blocks. All of

these must be used to form 8' , and since 3' exists

(by Lemma (4.3.3)) all of these may be used to form 8' . //

(3.10) Corollary: Up to a permutation of the 24 elements

of the point set X' , the S(5,8,24) design 8' is unique.

gmeeL: Let a S(5,8,24) design 8' with point set X' be

given. Upon choosing one of the elements, say a , from X' ,

the 253 blocks containing a form on X = X'\\{m} a

S(4,7,23) design S by (4.1.4). This design is unique up

to a motion of the 23 elements of X by Theorem (2.7).

Then by Theorem (3.9) this unique design builds S' uniquely./7’

We actually have proved:

(3.11) Lemma: There is a permutation of the 24 elements of

X' which fixes one element and maps any copy of S(5,8,24)

onto any other. //

(3.12) Corollary: The S(5,8,24) design exists and is

unique up to a permutation of its 24 points.
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2£22£= Use Lemma (4.3.3) and Theorem (3.9). //

(3.13) Theorem: The automorphism group of the S(5,8,24)

design 8' = (X',B') is of order 24.23.22.21.20.48 and

acts transitively on its 759 blocks.

igmeeL: The stabilizer of a point of the 24 point set X'

for S' has order [M by Corollary (2.16). Furthermore,
23I

the automorphism group acts transitively on the 24 points of

X' since it is always possible to choose three points a,b,

and e eX' so that c is fixed and a permutation $6823

operating on the 23 points of X'\\[c] may be found sending

a to b and sending S' to itself by Lemma (3.11). Hence'

|Aut(S')| = 24.|M23|. //

(3.14) Corollary: Aut(S') acts 5-transitively on the 24
 

points of the design 8' = (X',B') .

‘gmpeL: The proof of Theorem (3.13) establishes the fact

that Aut(S') is l-transitive on the 24 points of X' .

Since the stabilizer group of a point an €X' under the

action of Aut(S') is an element of Aut(S) for the

derived design S of S' , and since Aut(S) is 4-transi—

tive on X')\[e] by Theorem (2.18), Aut(S') is 5-transitive

on X' . //

 



CHAPTER 12

The Uniqueness of the

1
GOLAY (23,2 2,7) and XGOLAY (24,212,8) Codes

§12.l Introduction
 

Vera Pless has shown , in 1968, that any linear

(24,212,8) code is necessarily the extended Golay code,

[31]. However, her restriction of linearity is not

necessary. From the uniqueness of the Steiner systems

S(4,7,23) and S(5,8,24) established in the last chapter,

and from ideas similar from those used in Chapter 6 relative

to the Nerdstrom-Robinson code, we shall demonstrate the

1 12
uniqueness of the GOLAY (23,2 2,7) and the XGOLAY (24,2 ,8)

codes. Said in other words, for the Golay binary codes,

the number of code words M is less than or equal to 212

with equality iff the codes are the GOLAY and XGOLAY codes

defined in (3.3.5) and (3.3.8).

1
§12.2 The WeLght Distribution eL_Any 424,2 2,8) Code
 

Let C be a (24,M,8) code with M = 212 . Let also

9 €C , where Q is the all zero vector of length 24. We

shall show that M5;212 , (Lemma (2.1)). Equality for M

implies that C has one vector each of weights 0 and 24 ,

759 vectors of each of the weights 8 and 16, and 2576 vectors

of weight 12, Theorem (2.12). Furthermore, the 759 vectors

12.1
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of weight 8 necessarily determine a S(5,8,24) , Lemma (2.3).

12

(2.1) Lemma: Given C , any (24,M,8) code, then MELZ .

Proof: Consider the code CO which is a punctured code of

C . C is then by (2.5.5) a (23,M,7) code. By the

O

sphere packing bound (3.2.3)

23 12

2:+("§’)) =2(2.2) MSZZB/(l + (213)+(

where e = —:l = 3 . //

\
l

2

(2.3) Lemma: Any (24,212,8) code C with 96C has

 

759 weight 8 vectors which determine a S(5,8,24) design.

Proof: Let CO be a punctured code of C . Then by (2.2),

CO has its number M of code words satisfying equality in

the Sphere packing bound. So by Definition (3.2.4), Co is

a perfect code. Therefore by Lemma (4.3.1), Co possesses

253 weight 7 code words determining a S(4,7,23) . Then by

Lemma (4.3.2), C contains 759 weight 8 code words

determining a S(5,8,24) design. //

Within the proof of (2.3) we have the additional information:

(2.4) Corollary: Any (23,212,7) code C with 0(EC ,

O ’ O

is perfect and its weight 7 vectors determine a S(4,7,23)

 

design.

12,8) code C , with pec ,(2.5) [Lemma: Any (24,2

possesses code words of weights 8, 12, and 16 .

Empeg: By Lemma (2.3), C has 759 code words of weight 8.

But this is true of any (24,212,9) code, C , with 960 ,

for example C +5 where 5 6C . Consider now the coset

code C-+e , where a. is a code word of weight 8 of C .



The generalized block intersection numbers for the S(5,8,24)

design determined by the 759 weight 8 vectors of C-te

relative to a block L of the design (where L is

determined by the code vector e) are:

 

(2.6) 759

506 253 I

330 176 77 _

210 120 56 21 '1

130 80 40 16 5 ‘7

78 52 28 12 4 1. .31

46 32 20 8 4 0 1

30 16 16 4 4 0 0 1

30 0 16 0 4 0 0 0 1

since each 5-tuple is contained in a unique block of

L _ L = L = L

5,0 ‘ b6,0 b7,0 b8,0

concludes from these generalized block intersection numbers

S(5,8,24) forcing b = l . One

that each block L meets 4x( 2) = 280 blocks on 4 places,

16x( 3) = 448 blocks on 2 places, and 30 blocks on 0 places.

Therefore e_ meets 280 weight 8 code words of C-+e_ at

Hamming distance 8, 448 weight 8 code words at distance 12,

and 30 weight 8 code words at distance 16. This means that

in C there are code words of weight 0, 8, 12, and 16. //

12,8) code with mac ,(2.7) [Lemma: If C is any (24,2

then C contains no code words of weights 9, 10, or 11 .

13599;: C possesses 7S9 code words of weight 8 forming a

S(5,8,24) design, Lemma (2.3). If there exists a code

word 59 of weight 9, then the 9—set A of X corresponding

A
to 59 has b5,0

weight code vectors a, on 5 places. This is impossible

= b5 = 1 showing that 59 meets some
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because then the Hamming distance between E and .E9

would be 7<:8 . If ‘e is a code word of weight 10 or 11

in C , then a_ must meet weight 8 code words in at most

5 places to maintain d218 in C . This means that the

10- or ll-set L corresponding to a meets blocks of

the S(5,8,24) design in at most 5 places. Now considering

the generalized block intersection numbers for such a 10-

or ll-set L , necessarily b£,0 = b%,0 = b8,0 = b9,0 =

b10,0 = 0 and these numbers are:

759

506 253

330 176 77

210 120 56 21

130 80 40 16 5

78 52 28 12 4 1

33 19 9 3 l 0

12 7 2 l 0 0

6 6 l 1 0 0 0

6 0 l 0 0 0 0

—l 1 0 0 0 0 0

So necessarily b31620 showing that 5 cannot have

2

Hamming distance d218 with every weight 8 code vector.

Hence, C contains no weight 9, 10, or 11 vectors. //

(2.8) Corollary: C contains no two code vectors located
 

at distances 9, 10, or 11 from one another.

m: If _z_, 356C with |e+m| = 9, 10, or 11, then C+_z_

would have a code word 5 +m_ of weight 9, 10, or 11,

contradicting Lemma (2.7). //

- Define now
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(2.9) an admissible weight 16 vector of C to a weight
 

l6 vector V(4,2) which can be augmented to the set of

759 weight 8 vectors of C and yet preserve the distance

d 2 8 property.

(2.10) Lemma: An admissible weight 16 vector (cf.

12,8) code c with 060Definition (2.9)) of any (24,2

must be a complement of a weight 8 code word of C .

Proof: The point set X for the S(5,8,24) design S

determined by the weight 8 vectors of C is the set of 24

 

standard basis coordinates of V(4,2) on which C is

defined. Choose any admissible weight 16 vector of C . This

determines a set L of 16 of the 24 points of X . Let

L' be the complementary set to L , i.e. L' = X |L . Now

consider the generalized block intersection numbers for S

relative to this complementary set, L' :

759

506 253

330 176 77

210 120 56 21

130 80 40 16 5

78 52 28 12 4 l

45+x 33-x 19+x 9-x 3+x 1-x x

24+7x 21—6x 12+5x 7-4x 2+3x l—2x x-y y

”Y +Y 'Y +Y ”Y +Y

9+28x 15+21x 6+15x 6-10x 1+6x l-3x x-2y y-z z

-8y+z -7y-z -6y+z +5y-z -4y+z +3y-z +z

Now either 2 = l or 0, since 2 = b8:0 = the number of

blocks meeting L' in all of its 8 places and is either a



 

.
2
.
:
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block or not.

Suppose z = 0 , then by b2 2 = x—2y>_0 and since

2

L' _ L' . . \ . . (,_l_

b5,04b6,0 1mp11es lax , it is necessary that y_\_2 .

But since by Corollary (2.8) there exist no two vectors of

LI

1,7

Then noting that b]; 320 , it is necessary that 1—15/7-y+3y‘\._0

C at distance 10 apart, b = 0 implying that 15 +7y = 21x.

or 2y28/7 . This says that y>-:2L- contradicting yg% .

We may now only conclude that z = l . This means that L'

must be a code vector and that L must be a code vector and

that L is the complement of a code word. //

(2.12) _L_e_m_ma: Any (24,212,23) code, c , with 960 is

complemented, i.e. the complement of any code word of C is

again a code word.

L’mppL: Lemmas (2.5) and (2.10) ensure the existence in C

of a code word, _Z_EC , of weight 16, whose weight 8

complementary vector is also a code word. Considering the

codes C+e and C+ (1+5), one sees that, due to Lemma

(2.3), there are 759 weight 8 code words in each of these

coset codes. Therefore, 6 +_z_ contains 9 = 5+5, 1 =

(1+5) +e , and 759 code words of each of the weights 8

and 16. By Lemma (2.10), those weight 16 code words in

C +5 must be the complementary vectors to the 759 weight 8

code words in C+a . But a = Q+eec+e , so that both

_z_ and j_+_z_ are code words of C+_z_ as well as of C .

Then, since C = C+_z_-ta , j = (j +5) +_z_EC . So any

1
(24,2 2,8) code C with 96C , contains also j_ asa
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code word.

Next, let 2. be any code word of C . The coset code

C+_w_ is a (24,212,8) code with e = m+_w_£C+y_ , so

_‘iEC-i-m . Therefore, i+m€C = C+_v_v+ Hence, the

I
t

complementary vector to any code word of C is also a code

word of C . //

(2.13) Theorem: Any (24,212, 8) code C , with mac ,

has one code word of weights 0 and 24 each, 759 code words

of weights 8 and 16, and 2576 code words of weight 12.

meeL: Since by Lemma (2.12) the complement of each code word

is also a code word, and Since C has 759 weight 8 vectors

by Lemma (2.3), C has 759 weight 16 vectors complementary

to those weight 8 vectors. Furthermore, C has j,EC:.

The code words of weights l,2,...,7 are impossible since

d\_~.8 in C and 96C . Then by Lemmas (2.7) and (2.12),

all other code words of C must be of weight 12. There are

then 212-(1-+75912 = 2576 weight 12 vectors in c . //

§12.3 The Designs S(4,7,23) and S(5,8,24) Build

423,212,7) and (24,21

  

2,8) Codes, Respectively,

Lm One Way

By Chapter 11 we know that the designs S(4,7,23) and

S(5,8,24) are unique up to a permutation of the point sets

in question. Furthermore, by Lemma (2.3) and Corollary (2.4),

1 1
each (23,2 2,7) and (24,2 2,8) code with 96C contains

weight 7 and 8 vectors which determine S(4,7,23) and
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S(5,8,24) designs, reSpectively. If we can show that each

of these designs build the corresponding code in exactly

one way, it will be shown that the corresponding codes are

also unique. This is the goal of this section.

Let S = (X,B) be a S(5,8,24) design, with X

containing the 24 standard basis vectors of a V(24,2) as

elements. Consider the set C of l-+759 vectors of

V(24,2) which are ‘9, and the 759 vectors of weight 8 whose

8 coordinate places containing ones from the 8—sets of

the S(5,8,24) design. Define

(3.1) An admissible weight 12 vector to be a vector '5
 

of weight 12 from V(24,2) which has distance d218 from

each of the 759 weight 8 vectors already in C . Let the

lZ-set given by the 12 coordinate places of an admissible

weight 12 vector ml containing ones be called an

admissible lZ—tuple of S .

(3.2) Lemma: An admissible 12-tup1e L of S meets 132

blocks of S in 5 places, 495 blocks in 4 places, and 132

blocks in 2 places. These sets of blocks when restricted

to the complementary 12-tuple L' = X‘\L form two copies of?

the complete ( 122) -design, the complete (1:) -design, and

an S(5,6,12) design, respectively.

[gmea£: Consider the generalized block intersection numbers

for the design S relative to an admissible lZ-tuple, L ,

of S . Such a lZ-tuple meets blocks of 8 in at most 6

places, for otherwise the Hamming distance between the

corresponding vectors would be less than 8 . Hence,
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L . _ . K
j,0 — O for j — 7,8,...,12. Letting b6,0

see that the generalized block intersection numbers for 8

b = x, we

relative to the admissible lZ-tuples L are:

759

506 253

330 176 77

210 120 56 21

130 80 40 16 5

28 52 28 12 4 l

45+x 33-x l9+x 9-x 3+x l-x x

24 21 12 7 2 l x 0

+7x -6x +5x -4x +3x -2x y

9 15 6 6 l 1 x 0

+28x —21x +15x -10x +6x -3x *

84x 15 35x 6 10x 1 x 0

—6 —56x ~20x —4x ,

210x 22 70x 7 15x 1 x 0

-28 -126x -7 -35x —1 -5x

462x 38 126x 9 21x l-6x x 0 0

-66 -252x -l6 -56x -2

924x 66 210x 12 28x l—7x x 0 C) 0

-132 -462x -28 —84x -3

. L L

Since each b and b must be 2_0, 924x‘»l32 and
0,8 1,7 *-

6621462x Showing that x = 1/7 . Therefore the generalized

block intersection numbers b? j of S relative to L

2

with i-+j = 12 are b9 . = 0 except for bL = 2 ,

1:3 2’6

L = 1, and bL = 1/7 . These numbers imply that L
4,4 6,2

meets l/7x(162) = 132 blocks in 6 places, 1x( 142) = 495

b

blocks in 4 places and 2x( 122) = 132 blocks in 2 places.

Since in S(5,8,24) each 5-tuple from X occurs in a unique

block, the 132 blocks of S meeting L on 6 places must have

the property, when restricted to the point set of L , that

each S—tuple is contained in a unique block. These 132
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blocks then form a S(5,6,12) design. A S(5,6,12) design

has by the formulas (4.1.2), b4 = 4; the S(5,8,24) has

b4 = 5 . Therefore the set of 495 blocks of S meeting L

on 4 places must form one copy of the complete ( 12,2) —design

on L . Similarly h2 = 77 in S(5,8,24), b2 = 30 in

S(5,6,12), and b2 = 45 in the complete ( :é)—design. This

implies that each pair from L must occur twice among the 132

blocks of S meeting L on two places, and that these pairs

form two copies of the complete ('52)—design when restricted

to L .

According to Lemma (2.12), the set of 759+l vectors of C

12,8) code only if the comple—may be completed to a (24,2

mentary vector to each code word is also a code word. There—

fore the complementary lZ-tuple to L , i.e. L' = X\\L must

also be an admissible lZ-tuple. This means that L' meets

blocks of S in the same manner as L does. //

(3.4) Theorem: Each admissible lZ-tuple of S is the

symmetric difference of two blocks of S which meet on two

places in 66 ways.

gmeefi: Consider the dissection of S = (X,F) into subdesigns

according to an admissible lZ-tuple L c X , as given in

Lemma (3.2). Let sets A,B, and C be the sets of 132, 495,

and 132 blocks of S which reSpectively meet L on 6, 4,

and 2 places. Let L’ = X\.L .

12

Consider the complete ( 4 )-design of B restricted to

L' . Let 1, 2, and 3 be three arbitrary points of L'

Since b3 = 9 for a complete (142) -design (cf. 4.1.2),

-
m
a
.
.
.

_
'

I

g
a
?

.
a
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[1,2,3] is contained in 9 blocks of B

Consider these 9 blocks of B containing [1,2,3] and

restrict attention to the set L . These 9 blocks form on

L a design D of 12 points and 9 blocks. Design D has

d;i6 since in S(5,8,24) blocks have d;;8 and the parts

of these 9 blocks of B restricted to L' differ pairwise

in two places (i.e. have d = 2 when restricted to L').

Then D has k = 4 and t 4-6/2 = l yielding equality

in the formula (4.7.5)

12—1 12 _

bOS[_Z——1] ~71” 9

Therefore by Lemma (4.7.6), D is a 3-(l,4,12) design.

(Actually one can prove that D is the transpose of the

affine geometry AG(2,3) of two dimensions over GF(3), but

this is not necessary for our purposes.)

Let 0 be an arbitrary point of L . Since D has

bl = 3 , the set [0,1,2,3} is contained in precisely 3

blocks of B . Considering S , b4 = 5 , so {a,l,2,3} must

also be contained in precisely two blocks of CLJA . But

blocks of A restricted to L' are pairs of points of L' ,

so [d1,2,3] is contained in two blocks of C .

Considering the complete (142) -design, E , and the two

copies of the complete (122) -design, F , corresponding

to blocks of B and C restricted to L' , one calculates

bl = 165 in E and b1

is contained in 165 blocks of B and 22 blocks of C

= 2 x11 in F . Therefore [a]
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Now considering b2 for the designs G and H ,

b2 = 5 in H . This implies that for an arbitrary pair

{1,2,3} c L' , [a,l,2} is contained in 15+5 " 20 blocks

of BLJC . But b3 = 21 in the S(5,8,24) design S , so

that [0,1,2] must be contained precisely one block of A .

Restated, this last fact says that the pair [1,2] C L' ,

which is contained in precisely two blocks of A , is

contained together with each 0161. in.a unique block of A .

This means that the two blocks of A containing an arbitrary!

 

pair {1,2} c L' , when restricted to the set L form

complementary 6—tuples.

So we have finally Shown that the admissible 12-tup1e I.

is the symmetric difference (a modulo 2 sum) of two blocks

of S which share a given pair from L' = X\\L . Further-

more, since there are 2 x66 blocks of S in A and since

there are 66 pairs in the complete (122) -deSign, any

admissible lZ-tuple L is the symmetric difference of two

blocks of S in 66 ways. //

(3.5) Theorem: Given any S(5,8,24) design whose 24 point

set X contains, as points, the 24 standard basis vectors of

V(24,2), then S(5,8,24) always determines precisely one

(24,212,8) code whose weight 8 vectors determine that

S(5,8,24) design.

.gmeeL: Let C be the set of 759 vectors of V(24,2) which

have ones in the coordinate places corresponding to the

elements of X in the 759 blocks of the S(5,8,24) design.
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12

For C to be augmented to a (24,2 ,8) code,

Theorem (2.13) requires there to be one vector of weights

0 and 24, 759 vectors of weights 8 and 16 and 2576 vectors

of weight 12. By Lemma (2.12) the complement of each code

word must also be a code word. Therefore we must augment

C by Q, j, and the 759 weight 16 vectors complementary to

those already contained in C .

Now by Theorem (3.4), the only admissible weight 12

vectors are modulo 2 sums of two weight 8 vectors of C ,

each in 66 ways. By counting the maximum number of possible

admissible weight 12 vectors we see that there are

759.448/2 = 170,016 ways to choose pairs of blocks of S

which share two elements of X . This yields 170.016/66 =

2576 possible distinct admissible weight 12 vectors. All of

12
these must be present in order to augment C to a (24,2 ,8)

code.

Therefore, the S(5,8,24) design builds a (24,212,8)

code in a unique way. //

(3.6) Theorem: The S(4,7,23) design builds a (23,212,7)

code in a unique way.

lgmeeL: Let Y be a 23 point set and S = (Y,B) be a

S(4,7,23) design. Let m be an additional point not from

Y and let X = YLJ{m} . By Theorem (11.3.9) the design S

builds a unique S(5,8,24) design on X . Let the 23 points

of Y be the basis vectors of a V(23,2) and m be an

additional vector so that points of X form a basis of

 



  — -.__ 1..
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V(24,2) . Then by Theorem (3.5), the S(5,8,24) design

1
builds uniquely a (24,2 2,8) code C' on V(24,2) whose

weight 8 vectors determine that S(5,8,24) design. Then a

12
punctured code of this (24,2 ,8) code C' formed by

removing the coordinate place corresponding to w is a

(23,212,7) code C , (cf. (2.5.5)), whose weight 7 vectors

determine the S(4,7,23) design 8 that was given.

Were S to be contained in any other copy of C1 of a

12,7) code, then the parity check code, Ci 3 12

formed from C1 would have its weight 8 vectors determinixx;

(23,2 (24.2 ,8)

a distinct copy of the S(5,8,24) (by Theorem (3.5)) and

this would have (by Theorem (11.3.9)) a distinct S(4,7,23)

design as a derived design. This contradicts the fact that

the punctured code of Ci , namely Cl itself, has its

weight 7 vectors determining the Same design S as the code

1
C . Hence, S builds a unique (23,2 2,7) code C . //

§12.4 The Uniqueness eL_the GOLAY (23,212,7) and

XGOLAY (24,212,8) Binary Codes
 

Since each (23,212,?) code and (24,212,8) code

containing .9 has its minimum non-zero weight vectors

determining respectively the unique S(4,7,23) and S(5,8,24)

designs we have from Section 12.3 and Chapter 11 that:

(4.1) Theorem: Up to a permutation of the 23 basis

1
vectors of V(23,2), the GOLAY (23,2 2,7) code is unique.

Up to a permutation of the 24 basis vectors of V(24,2) the

 



12.15

XGOLAY (24,212,8) code is unique.

.EEQQEfi By Theorem (11.2.8) and Corollary (11.3.10) the

S(4,7,23) and S(5,8,24) designs are unique up to a

permutation of their 23 and 24 point sets respectively.

Then by Theorems (3.6) and (3.5) these designs build unique

(23,212,7) and (24,212,8) codes respectively. //

 

i "'74

Furthermore, due to the fact that these Steiner systems

build the respective codes in unique ways, we have:

1":

(4.2) Theorem: The automorphism groups of the (23,212,?) '

and (24,212,8) codes containing 9_ are isomorphic to the

automorphism groups of the respective Steiner systems

S(4,7,23) and S(5,8,24) determined by the minimum non-zert>

weight vectors of the codes. These automorphism groups are

respectively 4- and 5-transitive on the 23 and 24 basis

vectors of V(23,2) and V(24,2), while stabilizing these

codes.

Proof: Use Theorems (3.6) and (3.5), and Theorems (11.2.18)

and (11.3.14). //



BIBLIOGRAPHY

 



10.

11.

12.

13.

14.

BIBLIOGRAPHY

Artin, The orders a: the classical simple groups,

Comm. Pure Appl. Math. 8(1955), 455—72.

  

F. Assmus and H. F. Mattson, gm tactical configpr

rations and error-correcting codes, Journal of

Comb. Theory 3(1967), 243-257.

 

 

R. Berlekamp, Algebraic coding theory, McGraw Hill,

New York, 1968.

R. Berlekamp, Coding theory and the Mathieu groups,

Information and Control, L§(l97l), 40—64.

 

C. Bussemaker and J. J. Seidel, Symmetric Hadamard

matrices 2; order Le, Proc. Inter. Conf. Combin.

Math., N. Y. Acad. Sci. (1970), 66—79.

 

 

C. Bussemaker and J. J. Seidel, Symmetric Hadamard

matrices 9L order 36, Technological University

Eindhoven, The Netherlands, T. H. Report

70-WSK-02, (1970).

  

 

 

Calabi and E. Myrvaagnes, gm the minimal weight 2;

binary gropp codes, Correspondence IEEE Trans. on

Inform. Theory IT-10-4 (1964).

 

D. Carmichael, Introduction Le the theory 9L groups

9L finite order, Dover Publ., New York, (1956).

  

H. Conway, a_groupleL order 8,315,553,613,082,720y000,

Bull. Lond. Math. Soc. L(l969), 79-88.

M. Conwell, The three space PGj3,2) and its group,

Ann. of Math., (2), LL(1910), 60-76.

 

Dembowski, Finite geometries, Berlin, Springer (1968).

Dembowski, Some characterizations 9L finite projective

spaces, Arch. Math. LL(1960), 465-469.

 

E. Dickson, Linear groups, Dover Pub., New York,

(1958), p. 309.

L. Edge, The geometry 9L linear fractional group

LF(4,2 , Proc. London Math. Soc. (3) 3(1954), 317-342.



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

8.2

J. M. Goethals, gm the Golay perfect binary code,

Journal of Comb. Theory, LL(1971), 178—186.

 

J. M. Goethals, gm t-designs and threshold decoding,

Univ. of North Carolina, Institute of Statistics

Mimeo Series No. 600.29, June, 1970.

 

J. M. Goethals and S. L. Snover, NearLngerfect Binary

Codes, Discrete Mathematics, 3(1972), 65-88.

 

S. M. Johnson, a new upper bound for error-correcting

codes, IRE Trans. Inform. Theory IT—8, (1962),

203-207.

 

 

W. Jonsson, gm the Mathieu groups M22, M23, M24, and

the uniqueness e; the associated Steiner systems,

Math. Z., 125(1972), 193-214.

  

A. M. Kerdock, a_class emplow-rate nonlinear binary codes,

Information and Control 29_no. 2 (1972), 182-187.

 

J. H. Van Lint, Coding theory, Lecture notes Lm

mathematics, no. 201, Springer-Verlag, New York

(1971).

 

 

C. L. Liu, B. G. Ong, and G. R. Ruth, a construction

scheme for linear and non-linear codes, Discrete

Mathematics, 3(1973), 171—184.

 

H. Luneburg, Transitive Erweiterungen eindlicher

Permutationsgruppen, Lecture notes in mathematics,

no. 84, Springer-Verlag, New York (1969).

Mathieu, Journal de Mathematiques (1861), p. 270.

N. S. Mendelsohn, Intersection numbers of t-designs,

Studie in pure mathematics, ed. L._Mirsky, New York,

Academic Press (1971), 145—150.

  

D. M. Mesner, Sets 9L disjoint lines Lm_ PG(3,2),

Canad. J. Math., L2 (1967), 273-280.

  

M. Nadler, a 325point, n = 12, d = 5 code, IRE Trans.

Inform. Theory IT-8 (1962), 58.

A. W. Nordstrom and J. P. Robinson, am optimum nonlinear

code, Information and Control, Lle967), 613-616.

 

L. J. Paige, A note on the Mathieu groups, Canad. J.

Math., 2(1956),_TS—18.

W. W. Peterson, Error-correcting codes, MIT Press,

Cambridge (1961).

 

L
l

 



31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

Pless, 0n the uniqueness of the Golay codes,

Journal of Comb. Theory,—L1(l968), 215-228.

 
 

.P. Preparata, A class of optimum nonlinear double—
 

error-correcting codes, Information and Control,

L3(l968), 378—400.

Schonheim, gm linear and nonlinear Single-error-

correctimg qgnary perfect codes, Information and

Control Lg_(1968), 23-26.

 

 

Tietavainen and A. Perko, There are me unknown

perfect binary codes, Ann. Univ. Turku, Ser. AI

148(1971).

 

 

 

 A. Todd, Projective and analytical geometry, ; .

Sir Issac Pitman and Sons, Ltd., London (1958). 5'“

 

L. Vasil'ev and B. Lindstrom, 0n group and nonjgrour>

perfect codes, Math. Scand. 25(1969), 149- 158.

 

Veblen and J. W. Young, Projective geometry, Ginn

and Co., New York (1918).

Wagner, 0n collineation groups of projective spaces I,

Math. Z. 76(1961), 411-426.

 

Witt, Die S-fach transitiven Gruppen von Mathieu,

Abh. Math. Sem. Hamb. ngl938), 256-264.

Witt, Uber Steinersche Systeme, Abh. Math. Sem. Hambn,

[Lg(l938), 265-275.



 


