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ABSTRACT

THE UNIQUENESS OF THE
NORDSTROM-ROBINSON AND THE GOLAY BINARY CODES

By

Stephen Lee Snover

In this thesis a code is considered to be any
collection of vectors in V(n,2), the vector space of
n-dimensions over GF(2) . Two codes are considered to be
equivalent if one can be obtained from the other by (a) a
translation, i.e. adding a fixed vector of V(n,2) to each
code vector and/or (b) a permutation of the n fixed basis
vectors of V(n,2), i.e. the n coordinate positions of
all the vectors. The notation (n,M,d) refers to a code
of M vectors chosen from V(n,2) so that the minimum

Hamming distance between any pair of code vectors is d

It is shown in this thesis that the codes given by the
notation (15,256,5) , (16,256,6) , (23,212,7), and (24,212,8)
are unique up to equivalence, and are the Nordstrom-Robinson
code, its parity check extension code, the Golay binary code,

and its extension, resp. Note that the uniqueness of the

Golay code is proved without assuming linearity.

The key to the uniqueness proof lies in the fact that
the minimun non-zero weight vectors in each of these codes

are elements in a t-design: the sets of weight 5 and 6
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vectors in the Nordstrom-Robinson code and its extension give
rise to 4-(2,5,15) and 4-(3,6,16) designs while the sets
of weight 7 and 8 code vectors in the Golay code and its
extension form S(4,7,23) and S(5,8,24) Steiner systems.
After discussing a new tool for the analysis of t-designs,
called generalized block intersection numbers and a new
definition, t-designs with dZidO’ i.e. t-designs which can
be embedded in codes with minimum distance do, it is shown
that the structure of each of these designs fixes the
structure of the corresponding code. It follows that the
proof of the uniqueness of the code up to an equivalence is
reduced to showing that the corresponding minimum weight
vector t-design is unique up to a permutation of the n

coordinate positions.

The 4-(3,6,16) design with d> 6 generated by the
weight 6 vectors in the extended Nordstrom-Robinson
(16,256,6) code is called the XNR-design and plays a
fundamental role in showing the uniqueness of all the designs
in question. 1In the first place, the XNR-design is shown
to be unique by showing that any such design may always be
embedded in V(4,2) and then by showing that within V(4,2)
the design can only be constructed in one way, up to an
automorphism of V(4,2) . Since the constructive proof of
the XNR-design within V(4,2) actually involves PG(3,2) ,
the uniqueness of both the Nordstrom-Robinson code and its

extension follows.
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From the uniqueness of the XNR-design, it is also
possible to conclude the uniqueness of the S(4,7,23)
Steiner system. Both the generalized block intersection
numbers and the fact that a subgroup isomorphic to A7 of
PSL(4,2) is l-transitive on lines of PG(3,2) aid in
showing that the XNR-design builds the S(4,7,23) design
uniquely, up to an arbitrary permutation of the 7 added
coordinates. Witt [40] proved the uniqueness of S5(4,7,23)
based on the geometry of PG(2,5), while the same result is
proved here based on PG(3,2) and the fact that the XNR-
design is unique within this geometry.) Finally, from the
uniqueness of S(4,7,23), the uniqueness of S(5,8,24) and
of the Golay code and its extension, up to equivalence,
follow. Because these proofs proceed from the XNR-design,
it is actually shown that the extended Nordstrom-Robinson
code extends to the Golay binary code uniquely, up to an

arbitrary permutation of the added coordinates.

In order to tackle the coding theory problem basic to
this thesis, concepts from t-designs, the finite geometries
of V(n,2) and PG(n-1,2), and permutation and automorphism
groups are used. In particular, it is shown that A7-+T(4),
i.e. A7 extended by the elementary abelian group of order
16, is the automorphism group of both the XNR-design and the
extended Nordstrom-Robinson code. Some graph theory is also
used in establishing what appears to be a new proof of the

classical isomorphism, Ag = PSL(4,2) . While this thesis
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offers new definitions, proofs, or results for each of these
topics in finite mathematics, the major contribution lies in
the application of t-designs to the study of non-linear
codes. In fact, it is the concept of the generalized block
intersection numbers for t-designs, yielding necessary
conditions for the building and extension of t-designs, which
is most helpful in the analysis of non-linear codes and their

designs.
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Numbering and Notation

All the theorems, corollaries, lemmas, and important
equations and remarks are numbered consecutively through-
out this thesis with a three position label. For
example, theorem (6.5.9) is the ninth item worth labelling
in Section 5 of Chapter 6. 1If an item is referred to in
the chapter in which the item originally appears, a two

position reference number is given; the chapter number

is discarded in this case because it is not really
necessary and because then the fact that this item occurs
in the same chapter will be emphasized. If an item is
referred to in a different chapter from where it
originates, the entire three position reference number is
used. For example, within Chapter 6, Theorem (6.5.9) is
referred to as Theorem (5.9), and in other chapters, the
same theorem is referred to as Theorem (6.5.9).

In various places throughout this thesis the

following notation shall be used:

= means "is defined to be" .
x| means the cardinality of set X .
X\Y means the set difference of X and Y,

i.e. X\Y := the set of elements
in X but not Y .
XAY means the symmetric difference of sets
X and Y,

i,e. XAY := X\Y)U(Y\X) .



PSL(n, 2)

Og (+,2)

is the map ¢ with its domain
restricted to the set g .
mean the symmetric and alternating

groups on n letters.

are notations used for certain
classical simple groups by E. Artin

in [1] .



PART A: INTRODUCTION

CHAPTER 1

$41.1 Heuristic Introduction

In all forms of human communication messages are sent
by means of codes. We naturally code our ideas into
English phrases and sentences. English is a prototype for
the kind of code we wish to discuss, as it is a code
involving an agreed upon alphabet, a dictionary of code
words which are meaningful sequences of letters from this
alphabet, and messages being sentences or special sequences
of words. We should note that not all sequences of letters

form words, nor all sequences of words, messages.

Some codes, those commonly used during war times, are
designed to disguise messages so that no one but the
intended receiver can understand the message properly.
Such codes are called minimum decodable. We will be
concerned, however, with more common and very different
types of codes -- maximum decodable or error correcting
codes. These codes are designed to send messages in a
way that even errors in transmission do not change or

destroy the intended meaning of the message.

Errors in speaking or writing English, i.e. mispro-

nunciations or misspellings, are most often detected

1.1
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because the resulting "words" are meaningless sequences
of letters (words that are not in the code). Such errors
can then be corrected either from context or by asking
the sender to repeat the message. Sometimes, however,
small changes in spellings or pronunciations cause

misunderstandings.

Error correcting codes are designed with the

following desirable features:

(1) The alphabet is simple; there are few symbols.

(2) There are enough words to convey any message,
so that it is not necessary to rely upon context or repeats
of messages in order to correct transmissional errors:

(3) Words are not too "close" together, i.e. the
number of letters that need to be changed to convert a
code word into another is relatively large. Finally, in
practice it is important to be able to distinguish between
the end of one word and the beginning of the next by other
than a time lapse (as in English) or a punctuation mark
(as in Amharic, the Ethiopian language). Therefore, the
so-called fixed block length codes require that

(4) Words all are of a fixed length of n letters.

Technically we may describe a fixed block length error
correcting code as follows: Let A := {0,1,2,...,k-1} be
the alphabet and S := the cartesian product of n copies
of A Dbe the code space. A code C in the code space S

is a subset of S . Each element x in C is called a
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"word" of C and Xx := (xl,xz,...,xn), where X5 is the

i - th letter of the code word Xx . A reasonable measure

of distance between two words is the number of places in
which their corresponding i - th letters differ. This is the
historical definition of the "Hamming distance" between

words.

A code C 1is often specified by the four parameters
(k,n,M,d) where k is the cardinality of the alphabet,
n 1is the length of each word, M is the number of code
words in code C, and 4 1is the minimum distance between
any pair of code words from C . These parameters corre-
spond directly to the four features of an error correcting

code.

In this thesis, only the case of alphabets of two
letters is considered. We therefore shorten the parameters

for a code the (n,M,d) with k = 2 Dbeing understood.

Parameter d needs more explanation to make clear
the correspondence between d and the ability to correct
transmission errors in received words without relying upon
context or repeats. 1In the example of English, the
minimum distance is 1 since the words "step" and "stop"
differ only in one place. If "step" is sent and "stop"
received, you might not be able to even detect the error,
let alone be able to correct it. If English were refined

so that no two words in the dictionary differed by only
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one letter, then the minimum distance would still be small,
namely 2, as exhibited by the pair of words "sign" and
"sing”. In general we would like a code to have a
relatively high minimum distance d so that such minor

changes would not go unnoticed.

Although any subset of a code space S 1is a code, not
every one is "good". Most codes with many words are like
English in that the minimum distance between some pairs of
words equals 1 . "Good" codes have a maximum number of
code words relative to their parameter values of n and d
Thus, a fundamental problem in coding theory is the deter-
mination of the largest possible code and its "structure"
that can be selected in a given code space if the minimum

distance between code words is specified.

In a way, the search for "good" codes amounﬁs to a
search for sphere packings in given code spaces. Because
the Hamming distance is a legitimate distance function
which satisfies the triangle inequality, the spheres of
radius e about each code word in a (n,M,d) code are
disjoint spheres, when e = [(d-1)/2]. Codes having the
property that the spheres of radius e pack the code
space are so "good" that they are called perfect. All
perfect codes are known (for k being any prime power)
and nearly-perfect and quasi-perfect codes are the topic

of much current study.
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If k (the number of letters in the alphabet) is a
power of a prime, field properties may be imposed upon the
alphabet so that the code space S has the structure of a
vector space where, if x = (xl,xz,...,xn) and
y = (yl’YZ"”’yn) are any two vectors in S , then
X+y = (%) +¥y,X, +y,,...,X +y ) and
Xy = (xlyl,xzyz,...,xnyn), the component-wise operations
being performed in GF (k). These operations have no
immediate intuitive interpretations, however, and are
imposed merely in order to apply what is already known
about the algebra and geometry of vector spaces to the

study of codes.

Codes having the property that they are subspaces of
their code vector space are called linear; more is known
about this kind of code than any other. Unfortunately,
linear codes are not in general as "good" as other
non-linear codes. One of the major accomplishments of
this thesis is the presentation of a new method of handling

some non-linear, "good" codes.

§1.2 The History of the Fundamental Questions in this

Thesis
Even before the discovery of either the Golay (23,212

or the Nordstrom-Robinson (15,28,5) binary codes, the

»7)

history of their uniqueness began. 1In 1927 Witt [39] and
[40], in an effort to establish the uniqueness of the 4-

and 5- transitive Mathieu groups M,q and M24






demonstrated the uniqueness of the Steiner systems,
S(4,7,23) and S(5,8,24), on which these groups operate
as automorphism groups. Then shortly after Golay

discovered his (23,212,7) code Paige [29] showed that

12,7) code possesses a S(4,7,23) as its set of

any (23,2
weight 7 code vectors. Since Golay defined his code to be
linear, Paige could then display 12 1linearly independent
weight 7 vectors in the §S(4,7,23), which was already

shown to be unique by Witt, and claim that M23 is also

the automorphism group of Golay's code.

Pless [31] reproduced Paige's arguments and extended

12 2y or (24,212,8)

them to showing that any linear (23,2
binary code contains §S(4,7,23) or S(5,8,24) Steiner
system as its set of non-zero minimal weight code vectors
and possesses the automorphism group M23 or M24 s
respectively. prever, both Paige and Pless relied on
Golay's original definition of the linearity of his code
in order to establish the facts about the automorphism
groups and uniqueness, in spite of the fact that they
showed that an arbitrary code with the right parameters
would contain the appropriate Steiner system. This

brings up the following question:

Question ¢$l: Is the uniqueness of the S(4,7,23)

and the 8(5,8,24) systems sufficient to imply the

12 1

uniqueness of the (23,27%,7) and (24,2 2,8) binary

codes without the restriction of linearity?
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If the answer be affirmative, then clearly by
quoting Pless, Paige, and Witt, the unique codes of those
parameters would also possess the automorphism groups,

M and M

23 24 °

Golay's codes have the maximum number of possible
code vectors relative to their lengths and distances, a
property also shared by Nordstrom and Robinson's (15,28,5)
and (16,28,6) non-linear codes. When analyzing Golay's

12 '8) code, J. M. Goethals [15] noticed that this

(24,2
code contained a (16,28,6) non-linear code in a special
way, and from this construction, he was able to find the
automorphism group of this code. Although he never
established a correspondence between Nordstrom-Robinson's
(16,28,6) code and his, Goethals was privately convinced
that they were the same and that perhaps the code in question

was unique. So it was Goethals who inspired the following:

Question #2: Are the (15,28,5) and (16,28,6)

Nordstrom-Robinson codes unique?

Question #3: Are the automorphism groups of these

codes A7 and A7 extended by the elementary abelian
group of order 16, respectively?

Question #4: Does the (16,28,6) code extend to
1

the Golay (24,2 2,8) code in essentially one way?

These four questions are all answered affirmatively
in this thesis. All the definitions, developments, and

proofs to these questions are completely self-contained
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herein, and the results of all but Question #3 are new.

§1.3 The Scope of this Thesis

Although the basic and most difficult theorems in
this thesis show the uniqueness of the Nordstrom-Robinson

(15,28,5) ana (16,2%,6) and the Golay (23,2!

2,7) and
N .

(24, 2 2,8) binary codes, this is certainly not the only
3

new nor important concept.

In a manner similar to Paige's analysis of the Golay

12,7) code [29], we proceed toward answering the

(23,2
four basic questions of the thesis by showing that the
minimal weight non-zero code words in the Nordstrom-
Robinson (16,22,6) code form a t-design, a 4-(3,6,16)
design with d. 6, which we call an XNR-design. Then the
question of the uniqueness of this code is found to be
equivalent to the uniqueness of the XNR-design. While
the uniqueness of the S(4,7,23) design of minimal

weight non-zero code vectors in the Golay (23,212

,7) code
was proved to be unique by Witt even before the discovery
of the code, neither the existence nor the uniqueness of
the XNR-design seem to have previously been known. Thus

it is, that t-designs become basic in the analysis leading

to the uniqueness proofs of this thesis.

To the theory of t-designs, we unveil a new
definition, t-designs with dELdo: and a new tool,

generalized block intersection numbers for any t-design.
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The extra condition, d;ldo, for any t-design enables

one to distinguish among those t-designs which might be
useful for binary coding theory purposes and the rest.

The generalized block intersection numbers, a link between
Mendelsohn's intersection numbers [25] and J. M. Goethal's
block intersection numbers [16], become fundamental to the
analysis, being essential in Chapters 5, 6, 7, 11, and 12.
First of all, they are helpful in proving that the uniqueness
of the codes is equivalent to the uniqueness of the
t-designs of the minimal non-zero weight vectors of those
codes. These numbers prove that the S(5,8,24) design
can be built in essentially one way from the XNR-design.

12,8)

With these numbers, we can deduce that any (24,2
code is necessarily the linear span of the S(5,8,24)
design formed by its minimal weight non-zero code vectors.
In fact, these new generalized intersection numbers are

just the tool necessary to tackle these codes without

assuming any linearity.

Permutation groups come into play in order to establish
a new construction of the important XNR-design, perhaps the
first direct explicit construction. Constructing this
design to contain the group A7 extended by the elementary
abelian group of order 16, it is then possible to conclude
at a later time that this group is the automorphism group
8

of the unique Nordstrom-Robinson code (16,27,6) and its

essential design.
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In order to establish the uniqueness of the XNR-design,
we need to appeal to the action of A7 on the geometry
of PG(3,2). 1Instead of quoting the literature, however,
we establish what appears to be a new proof of the classical
isomorphism Aaa:PSL(4,2), and then restrict our attention

to the action of A7 .

This thesis attempts to present new results, new
approaches, or at least new proofs in each of the
following studies:

(1) coding theory

(2) t-designs

(3) automorphism groups

(4) finite vector spaces over

GF (2), especially PG(3,2).

§1.4 The Organization Scheme of the Chapters

As explained in §1.2, this thesis answers the four

questions:

Question $1: Is the uniqueness of the S(4,7,23)

and S(5,8,24) Steiner systems sufficient to imply the

12,7) and (24,212,8) binary

uniqueness of the (23,2
codes without the restriction of linearity?

Question ¢2: Are the (15,28,5) and (16,28,6)

Nordstrom-Robinson codes unique up to a permutation of
their 15 and 16 coordinates, respectively?

Question #3: Are the automorphism groups of these

codes A7 and A7 extended by the elementary abelian
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group of order 16, respectively?

Question $4: Does the (16,28,6) code extend to

12

the Golay (24,27 °,8) code in essentially one way?

We shall now explain how the chapters of this thesis

are organized in order to answer these questions.

First of all, the second through fifth chapters are
introductory in nature, developing definitions, examples,
and constructions of the codes under consideration.
Definitions used in more than one of the following chapters
are defined in these initial chapters. Other definitions,
for example those concerning graph theory, occur within the
only chapter where they are used. As often as possible,
the examples used to explain the definitions are examples
that will be referred to in a later part of this work.

Also within these introductory chapters are constructions
of the Golay codes, the S(4,7,23) and S(5,8,24) Steiner
systems, the Nordstrom-Robinson codes and the XNR-design.
Chapters 2 and 3 are devoted to coding theory definitions
and the existence of the codes under study, Chapter 4 to
t-designs and the development of the generalized block
intersection numbers, and Chapter 5 to permutation groups

and an explicit construction of the XNR-design.

Commencing with Chapter 6, we embark on an analysis of
the Nordstrom-Robinson codes culminating, in Chapter 10,

with the affirmative answers to Questions #2 and #3.
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1.12

This analysis begins in the first half of Chapter 6
by trying to parallel Paige's analysis of Golay's
(23,212,7) code. Although Golay's code is perfect, the
property Paige made use of in his proofs, the Nordstrom-
Robinson codes are not. However, both types of codes have
a maximal number of code vectors relative to their length
and minimum distance parameters. Using this property, we
are able in Theorem (6.3.1) to show that the minimum weight

non-zero code vectors of any (16,28,6) code, C , with

O0€C, form a XNR-design,

We find ourselves well on the way to answering
Question 2 in the second half of Chapter 6 after proving
that any XNR-design builds a (16,28,6) code in a unique
way (Theorem (6.5.9)). The key to this important theorem
lies in calculating and analyzing the generalized block
intersection numbers for the XNR-design determined by the
weight 6 vectors of the code. These numbers indicate
necessary requirements for augmenting this s=2t of 112 weight
6 code vectors to a (16,28,6) code. So thanks to these
intersection numbers and the theorems of Chapter 6, we

reduce the question of uniqueness to the study of the

XNR-design.

In Chapters 7, 8, and 9 the question of the uniqueness
of this XNR-design is answered. Chapter 7 employs the
generalized intersection numbers to prove that any XNR-

design is embeddable in a copy of V(4,2), the finite four
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dimensional vector space over GF(2), Theorem (7.5.1). 1In
other words, the blocks of the XNR-design can be viewed as
special subsets of points in PG(3,2), the projective space
of 3 dimensions over GF(2). Chapter 8 occurs as an
intermezzo, developing line coordinates (Theorem (8.10.1)
for the lines of PG(3,2), which line coordinates are then
used in Chapter 9 to prove the uniqueness of the design
within the framework of the geometry of PG(3,2),

Theorem (9.5.1).

Finally, Chapter 10 assembles the results of Chapters
6, 7, 8, and 9 to answer the fundamental Questions 2 and
3. Questions 1 and 4 relating to the Golay codes are
considered in Chapters 11 and 12 after all the work

relative to the XNR-design has been completed.

Since it was shown in Chapter 6 that the (16,2°,6)

code is unique if and only if the XNR-design is also

unique and since a similar theorem will be shown in

Chapter 12 relative to the Golay (24,212,8) code and

the §S(5,8,24) design, Chapter 1l tackles Question 4 by
considering only the designs in question. Chapter 11 shows
that, up to an arbitrary permutation of the 7 additional
coordinates, the XNR-design builds a S(4,7,23) in a

unique way, Theorem (11.2.8). They by appling the fact

that the S(5,28,24) design can be built from the S(4,7,23)

design only by adding a new 24—151-3 coordinate which acts as

a parity check on the other 23 coordinates, Theorem (11.3.9),
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we have the theorem that the XNR-design builds S(5,8,24)
in essentially one way. Use of the generalized block
intersection numbers relative to each of the large Steiner
systems is requisite in the proofs of this theorem.
Inspired by the approach of Chapter 8, which was the real
reason for including that chapter as it appears, we can
establish the uniqueness of both the S(4,7,23) and the
S(5,8,24) designs relative to the already proven uniqueness
of the XNR-design. Furthemmore, as a corollary to these
uniqueness theorems, we can establish the facts that the
automorphism groups of these Steiner systems are 4- and
5- transitive on the points of the designs, respectively,
as well as block transitive on them, Theorems (11.2.18),

(11.3.14), (11.2.16), and (11.3.13).

By almost literally duplicating the proof of theorem

1

(6.5.9), but relative to the Golay (24,2 2,8) code and

S(5,8,24), we can show in Theorem (12.3.5) that the

12,8) code is unique since the §S(5,8,24) is unique.

(24,2
This proof uses the generalized block intersection numbers
to full advantage and establishes the equivalence with no
assumption of linearity. 1In fact, linearity of the unique
(24,212,8) code is a lucky, non-essential outcome. Since
we can answer Questions 4 and 1 affirmatively after

proving Theorem (12.4.1), we now have reached the goal of

these chapters.






PART B: PRELIMINARIES
CHAPTER 2

Binary Codes: Basic Definitions and Properties

$2.1 Introduction

A binary code will be viewed in this thesis as a
carefully chosen subset of the set of all vectors of an
n-dimensional vector space over GF(2), the field of two
elements. We shall customarily write the code vectors as
column vectors and represent the entire code by an incidence
matrix whose columns are precisely all the code vectors. As
in the case with the Nordstrom-Robinson and Golay binary
codes, this incidence matrix can be considered as a collection
of t-designs; and as such, the concepts of binary vector
spaces, binary codes, t-designs, and automorphism groups

assist one another.

This chapter includes most of the needed definitions
relating to binary codes. The concepts of perfect and
nearly perfect codes are defined in the next chapter along
with definitions of the Golay and Nordstrom-Robinson codes.
The tools relating to t-designs and automorphism groups will
also come later. (References about binary coding related to

this chapter are [3], [21], and [30].)

2.1



§2.2 Binary Vector Spaces

(2.1) Let V(n,2) denote the vector space of n
dimensions over GF(2), the Galois Field of the two elements,
O and 1 . Let x denote any vector in V(n,2). Some-
times elements of V(n,2) shall be called points. Let

B := {el,ez,...,en} , be a basis of V(n,2). Then

relative to B, each x€V(n,2) is uniquely represented

)T , Wwhere each

as a column vector, Xx = (xl’XZ""’xn

X €GF(2) for i =1,2,...,n, and where T denotes
the transpose of the indicated row vector. Unless other-
wise stated, V(n,2) will always be considered as posses-
sing a given fixed basis, Let O and 1 be the vectors of
V(n,2) all of whose entries are either 0 or 1 ,
respectively.

(2.2) Let PG(n-1,2) denote the set of one-dimensional
subspaces of V(n,2) . Since the equation

(2.3) Xx+y =0 for x,ye€eVv(n,2)

is equivalent over GF(2) to

(2.4) X=Y,

it follows that PG(n-1,2) = V(n,2) \ {0} .

Call a non-zero vector of V(n,2) a point, when considered

as an element of PG(n-1,2).

The mapping
(2.5) ( , ) :V(n,2) xv(n,2) +GF(2)
given by

(modulo 2)

n
(x,9) = 2 *3¥;
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Tevin,2),

for the vectors x = (xl,xz,...,xn)
Yy = (Yl’y2""’yn)T €Vv(n,2) defines a symmetric bilinear
form, which is an inner product. For a given x€V(n,2)

any y €V(n,2) such that
(x,¥) =0

is said to be orthogonal to x in V(n,2) . The set

{y| (xy) =0, ye V(n,2)} for a given x€V(n,2) is the

(n-1)-dimensional subspace of V(n,2) orthogonal to x .

For a point x €PG(n-1,2), the set (y | (x,y) = O,y €PG(n-1,2)}

is a hyperplane of PG(n-1,2) and is called the polar of

x in PG(n-1,2).

(Linear) subspaces of PG(n-1l,2) are (perhaps empty)
sets of points of PG(n-1,2) which are closed under vector
addition defined in V(n,2) . It is well known that the set
of all subspaces of PG(n-1,2) forms a lattice under A and
vV , which are given respectively by set intersection and

linear span. Collineations of PG(n-1,2) are lattice

preserving permutations of the points of PG(n-1,2) .

Correlations are lattice inverting permutations, which send

the i-dimensional subspaces of PG(n-1,2) to ((n-1)-1i)
dimensional supspaces, for =-1<in-1 where points are
O-dimensional supspaces and ¢ the (-1l)-dimensional subspace
of PG(n-1,2). 1In particular, correlations exchange the sets

of points and hyperplanes of PG(n-1,2) .



§2.3 Binary Codes

Given any two vectors Xx = (xl’XZ""’xn) €V(n,2)
and y = (yl,yz,...,yn) €V(n,2) , with coordinates
relative to a given fixed basis of V(n,2), then define

the following:

The weight, |x|, of a vector x€V(n,2) is a
mapping | |- V(n,2) » the set of integers, 2 given by

n
(3.1) |x| := 2 x; , where addition is now computed in Z.
i=1

The (Hamming) distance *, d(x,y) , between two vectors,

x and y€eV(n,2) is

(3.2) d(x,y) := |x+y] .

The coordinate-wise product of two vectors is

(3. 3) )_cz Hid (lel,x2Y2:---,xnyn)

A vector x 1is contained in a vector vy ,

(3.4) X<y 1iff x = xy .

One can easily check the following list of properties

that pertain to the above definitions:

(3.5) the Hamming distance is a distance function.
(3.6) x| + |x| = |x + x| + 2|xy]| .
(3.7) xx =x .

(3.8) < is a partial ordering on vectors of V(n,2)

(3.9) x<y iff |x +y| = |y| - |x|

*
The Hamming distance is the square of the customary
Euclidean distance in the binary case.






A (binary) code, C , 1is any set of vectors from

vV(n,2) .

(3.10) A code word 1is a vector v e€V(n,2) that is also
in ¢. A (n,Md,) code C is a code C of |C| =M
vectors from V(n,2) so that

(3.11) min |§+X\}_do .
X,Y€EC
x#y

(3.12) We sometimes write "C is a code with dzdo" or

"C has minimum distance do" if C 1is an (n,M,do) code

and if the value of n 1is understood.

(3.13) A linear code C 1is a code satisfying
X,y €C imply x + ye€cC .

(3.14) A linear code is a subspace V(m,2) of V(n,2) for
om<n , and is said to have dimension m . Any linear
code C with at least one code word contains O , and as
such is an (n,2n,do) code for
(3.15) do = min |x]| .

x€C

x50

We shall, for the most part, consider non-linear codes,

although occasionally the concept of linear codes is a

useful tool in this thesis.

§2.4 Incidence Matrices

(4.1) An incidence matrix for an (n,M,dO) code C is

an n xM zero-one matrix whose columns are the code words

(per def. (3.10))






(4.2) If C is a linear code, then one may choose abasis of

code words and form an n xm matrix G called a generator
matrix for C , having as columns those m basis vectors
which span the code (a V(m,2) subspace, cf. (3.14)). Let
C be a code, and define

(4.3) c* := {yev(n,2) | (x,y) = 0 for all x€C)

c! is called the code orthogonal to C .

By the definition (4.3) of C! it is clear that the
following properties hold:
(4.4) ¢! is always a linear code.
(4.5) (ct)! is the linear span of C .
(4.6) (ct)yt = c iff C is linear.
(4,7) Let any generator matrix of C! be denoted by H

and be called a parity check matrix of C .

We now proceed to define the Hamming codes in terms of
the generator matrix of their orthogonal codes. Let Hn be
the (27-1) xn matrix whose rows are all the (27-1)
distinct non-zero vectors of V(n,2), and so placed in
Hn , that the iEQ row of Hn represents (relative to a
fixed basis of V(n,2)) the binary expansion of the
integer i , for 13132“—1 . Let
(4.8) ¢ := (xev(2"1,2) | x'B_ =0T } .

The code Ch is called the Hamming code of length 271 .

n
(4.9) Lemma: C_ is a linear (2R-1,2(27-17n) 3y 4.
Proof:

Property (4.5) shows that Cn is linear. Then it is






o | = 2(@"-1)-n)
n

clear that . It now suffices to

check d,>3 in (3.15). If |x| =1 for xec_,

then gTHn = g? implies that one of the rows of H is the
0 €V(n,2), contradiction. If |x| =2, for x€C_ , then
E?Hn = QT implies that two distinct non-zero vectors of
V(n,2) are linearly dependent, contradicting equations (2.3)

and (2.4). Hence, d;>3 . //

§2.5 Modifications of codes

Given an (n,M,do) code C , one can obtain related
codes by a number of different standard modifications. Some
of these are given in the following list of definitions.

(5.1) A coset, C + x, of a code C is
C+x:={y+x | x€ev(n2), yec}

Note that if C 1is linear then y,z€C + x imply y + z€C,
but not so if C is not linear.

(5.2) A punctured code of C 1is a code with an incidence

matrix identical with that for C except that one of the

rows is eliminated.

(5.3) A parity check code of C 1is a code with an

incidence matrix identical with that for C and with one
extra row; the zero or one entries in the extra row are
chosen so that the weights of the resulting column vectors

are always even. The added row is called the parity check

coordinate row.

(5.4) An equivalent code to code C 1is a code whose
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incidence matrix N can be transformed into that for C

after a suitable permutation of the rows and columns of N .

One can easily see that the following properties hold
for a given (n,M,dO) code C
(5.5) A punctured code of C 1is a (n-l,M,dO-l) code.
(5.6) If do is odd, then a parity check code of C 1is
a (n + 1,M,do-+1) code.
(5.7) The relation of "being an equivalent code" is an
equivalence relation.
(5.8) A punctured code of a linear code C 1is again a
linear code.
(5.9) A parity check code of a linear code C 1is again
a linear code.

(5.10) As examples of parity check codes, we define the

Extended Hamming code, E; s, of length 2" as the parity
check code of C whose parity check coordinate row is the
first row of the corresponding incidence matrix. Then by
(5.6) and (5.9) we have proved:

(5.11) Lemma: The Extended Hamming code, E; , of length

n
2" isa (27,22 "1™ 4) 1linear code.

§2.6 Geometric Codes

Let ¢ be any fixed one to one correspondence:
(6.1) o : v(2",2) 42V 2)
so that the standard basis vectors from a fixed basis B
of V(2n,2) are mapped to points of V(n,2). Then the

vectors of V(Zn,z) are called characteristic functions
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of subsets of the points of V(n,2) relative to ¢ and B .
(6.2) Let ¢ : e, €EB+x¢€V(n,2)

so that, relativé—:o a fixed basis A of V(n,2), the binary
expansion of i is x . From (6.2) it follows directly
that:

(6.3) Lemma: For ¢ defined in (6.2) and for fixed

bases A and B of V(n,2) and V(2n,2) respectively,

the code words in the Hamming code Cn , are precisely the
characteristic functions of binary dependent sets from

PG (n-1,2)

A geometric code is a binary code, whose code words can

be interpreted in terms of the geometries of V(n,2) or
PG(n-1,2) by an appropriate one to one correspondence ¢ .
" From Lemma (6.3) one can see that the Hamming codes are

geometric codes.

The Nordstrom-Robinson code, which will be defined
in the following chapter, is also a geometric code,
Theorem (7.5.1). This observation is a key step in the
uniqueness proofs, Theorems (10.3.2) and (10.2.1), of the

Nordstrom-Robinson code and its extension.



CHAPTER 3
Definitions and Existence of the

Golay and Nordstrom-Robinson Binary Codes

§3.1 Introduction

The definitions and existence of the Golay and
Nordstrom-Robinson codes will be presented in Sections 3.3
and 3.5. To this end it will be useful to establish the
sphere packing bound, in Section 3.2, which gives an upper
bound for the number, M , of code words in an (n,M, (2e+l))
code. Those codes satisfying equality in this bound are
called perfect codes. Thus if C 1is a perfect code in
V(n,2) all the points of V(n,2) can be "perfectly"
covered by the disjoint spheres of (Hamming) radius e
centered about the points of C . The Golay code is an
example of a perfect code. The Nordstrom-Robinson code is
not perfect, but does satisfy equality for a refinement of
the sphere packing bound, called the specialized Johnson
bound. This is introduced in Section 3.4. Codes satisfying
equality in this bound are called nearly perfect codes, a
name coined by Goethals and Snover [17]. The class of nearly
perfect codes contains the class of perfect codes. 1In terms
of V(n,2), if C is a nearly perfect code, then the spheres
of radius e +1 centered about points of C cover all

points of V(n,2) . (The spheres are not disjoint in this






case, though.)

All perfect codes are known., VanLint [21] and

Tietavainen and Perko [34] have shown that they must be of
the following types:

(1) the Hamming (linear) codes and the Vasil'ev (non-linear)
k
2 'k_1,3) for any k ,

1

codes, both with parameters (2k-1,2
(2) the Golay binary code with parameters (23,2 2,7), and
(3) the trivial one word and two word codes of lengths

n=e and n = e+1 respectively for any e .

It is known that the Hamming codes are unique up to
isomorphism. While no proof of this can readily be found
in the literature, a proof similar to that of Theorem (7.4.4)
of this thesis can be constructed. However, without the
restriction of linearity, codes with the same parameters as

" 2k k-1

the Hamming codes, (27-1, 2 ,3) , are not unique for

k>4 as was shown by Vasil'ev [36]. 1In 1968 V. Pless

showed [31] that any linear (23,212,7) code must be
isomorphic to the Golay code. One major purpose of this
thesis is to establish the fact that the Golay binary code is

unique even without the linearity assumption. This will be

accomplished in Chapter 12,

Furthermore, the Nordstrom-Robinson code will be shown
to be unique up to isomorphism in Chapter 10. This code

is the first code in each of the infinite families of
k

Preparata codes of parameters (4k-l, 24 -l-4k,5) for
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k> 2 [32], and Kerdok codes of parameters

(a¥_1, 2% ((4K-2%) 2-1)) for k2 [20].

Our present purpose in this chapter is to develop the
concepts of perfect and nearly perfect codes, to establish
the existence of the Golay and Nordstrom-Robinson codes,
and to show that these codes are both nearly perfect while

the Golay code is perfect.

§3.2 Perfect Codes

For a given (n,M,dO) code C let
(2.1) e :=

Then e 1is called the error correcting capability of code

C . C 1is said to be an e-error correcting code. Let the

sphere, B(w,r), of radius r about we€V(n,2) be defined

as follows:
(2.2) B(w,r) := {yev(n,2) | d(w,y)<r} .
Since the Hamming distance is a distance function by (2.3.5),
it satisfies the triangle inequality. Therefore, the
spheres of radius e about code words in the given (n,M,do)
code C must be disjoint. This observation proves the
following inequality:

| U B(x,e)| < |V(n,2)| = 2",

XxXeC -

and gives the sphere packing bound:

(2.3)  Je|. M+ () + () + ...+ (00 2™,
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(2.4) A code C satisfying equality in the sphere

packing bound (2.3) is called a perfect code. Notice that

e = n yields the trivial solution of equality in (2.3) for
|C| = 1; the corresponding code C 1is the trivial code,
consisting of (any) one vector of V(n,2) . For |c|> 1,
necessarily e < n/2, in which case e is defined as in
(2.1).

(2.5) Lemma: The Hamming code Cn of length 2.1 is
perfect.

20,

n
2°-1)-n) (3 4 (27-1)) = 2 .

Proof: 2(

§3.3 Definition of the Golay Code

With a construction method due to E. F. Assmus and

H., F. Mattson, cf. VanLint [21], we shall construct from

12,8)

E; , the extended Hamming code of length 8 , a (24,2
code. Then by puncturing this code we shall show that the
(23,212,7) code called the Golay binary code obtained in

this way is linear and perfect with e = 3

Let E; be the extended Hamming code of length 8 with
incidence matrix N given in Figure (3.1). Notice that the
indicated 7 x7 submatrix M 1is the familiar symmetric
form of the incidence matrix of PG(2,2) . The rows of N

are numbered by ¢ (cf. (2.6.1) with the integers 0,1,2,...,7.



Figure (3.1)

N
(0] 00O 01111111100000O00
1 001 olol10100{11001011
2 0O1lo ojoollolojll1100101
4 1 00 oOloool101lj]1 1110010
5 101 O{fLoooO0Ol1l1l10j10111001
7 111 ololooolljl11011100
3 o1l1 olloloooljlolol1l1lo
6 110 olll101000|10010111
M

Figure (3.2)

0] 00O 01111111100000O00
6 110 011010001001 0111
3 o1l1l 0lolooollololl1lo
7 111 00loo0o0o01l1l1l111011100
5 101 0100011010111 001
4 100 0O00O0O0O110111110010
2 O1lo0 0001101011100101
1 001 0011010011001 011

Perform the row permutation (16) (23)(47) on N ,
inverting the order of the last seven rows, and obtain
the equivalent code Eg , (cf. figure (3.2)) and N'
(3.3) Claim: (l.) C N C§ = {0,1} .

(2.) All code words of C, and Cj have
weights O, 4, and 8 .

(3.) All vectors of the form x +y , where
5&'_(3 and xe'c':'; have even weight.

Proofs: Claims (1.) and (2.) are immediate from inspecting
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the incidence matrices N and N' of C_3 and E'g given
in Figures 1 and 2 respectively. Claim (3.) follows from
(2.) and Formula (2.3.6) which reads:

(3.4) x| + |y| = |x + y| + 2|xy]| .

Now define

(3.5) XGOLAY := {(a + x, b + x, a + Db +§)T | a,b (E; and

x €C3} , to be the extended Golay code, or XGOLAY.
1

(3.6) Theorem: XGOLAY is a (24,2 2,8) linear code.

Proof: That XGOLAY is linear is immediate from Definition 3.5).
That XGOLAY has dimension 12 is an immediate consequence of

the fact that _Q_T has no nontrivial representation of the

form (a +x, b +x, a +b + E)T . It now suffices to show

that 6028 .

T

If vi=(a+x,b+x,a+b+x)° #0° and if at

o

least one of a, b, a +b, or x 1is either O or 1, then

(3.3) implies that |v| > 8 .

Three applications of (3.4) yield the following equality:
(3.7)  |la+x| +|p+x|+]a+b+x|-=
= la+b|+2|@+x)k+x)]|+|a+b+x|
= |x| + 2{|(@ + x) (k+x)[Ha +b) (L +x) |}
= |x| +2|a +b +ab + x| .

If none of a, b, a + b, X are either O or 1, then

|x] = 4, and it is necessary to show |a +b +ab + x| > 2 .
Since |a| = |b| = 4 and (3.4) implies that |ab| is even,
la + b + ab + x| must also be even. If |a +b + ab + x| = O,

then a +b+ab=x. Then (a +1l)(b+1) = (x + 1), and
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hence a =b = x . Therefore 56-(—2; (€3 , contradicting
|x| =4.//
(3.8) Any punctured code of XGOLAY is called the * Golay

code or GOLAY,

12

(3.9) Lemma: The Golay code is a linear (23,2 7) code.

Proof: Use (2.5.5), (2.5.8), and Theorem (3.6). //
(3.10) Theorem: The Golay code is a perfect linear

1

(23,2'2,7)  code.

Proof: 212(1 + (213) + (223) + (233)) = 223 /7

§3.4 Nearly Perfect Codes

Let C Dbe any (n,M,do) code where do = 2e+1, i,e.

do is odd.

Let B(w,r) be as in (2.2) and x€C . Let
(4.1) T(x) := {ve€V(n,2) | d(x,v) = e+1l} . Now
partition T(x) into two classes, Ta(z) and TB(x),
according as the elements of T(x) belong to some B(y,e)

for some y €C, or not, that is,

(4.2) T (x) := (VET(x)|Ty€C, veEB(y,e)} .

(4.3) Tg(x) := (VET(x)|¥y€C, veB(y,e)} .

(4.4) Lemma: For each x¢€C, |Ta(_§) |g[(n-e)/(e+1)](:) .
Proof: Let ge'ra(g) = e+l, d(v,y)<e , d(x,y) > 2e+l = do .
By the triangle inequality, necessarily it follows that

d(v,y) + d(v,x) = d(y,x) = 2e+l = do .

*
Later we shall prove that this code is unique up to
equivalence, and so the article "the" is not a mistake.
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In this case

2e+l
T ) B( ,e) = 2
| Q(é n X l ( e+l)
from which,
_ 2e+l
(4.5) |Ta(§)| = ( e+&.)‘N2e+1(§)‘ s

where N2e+1(5) is the set of code words y at distance
2e+l from x . Since any two vectors in N2e+1(5) are at
least a distance 2e+l apart, the (2e+l)-sets of coordinate
places in which they both differ from v share at most ¢t
coordinate places. Furthermore since there are at most

[ (n-e)/(e+l)] subsets of cardinality (2e+l) of a set of

n elements which share precisely a given subset of

cardinality e , we deduce

n 2e+l
(4.6) |N29+1(3‘.)|_<-[(n'e)/(e+l)](e)/( e+l).

Inequality (4.6) converts (4.5) into the desired result. //
(4.7) Corollary: |Tf3 (x) | 2(‘ e?-l) - [(n-e) /(e+l) ] ( 2 )
Proof: This result follows immediately from Lemma (4.4),
since for any xe€C,
n
ITq ) | +]Tg(x) | = |T(x)] _(e+l ) ./

Now we are able to state and prove a refinement of the
sphere packing bound, which is a specialized version of the
S. Johnson bound [18] . The Johnson bound itself uses the

numbers max |Nd(§)| rather than the particular value in
xec

terms of n and e given by inequality (4.6).

(4.8) Theorem: (the specialized Johnson bound)
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For any code of length n , and minimum distance 2e+l,

n 1 n,n-e _n-e n
lc] - L+ () +(5) +...+ (e )edT ~lev1l) )52 -

[n7(e+1)]

Before proving this theorem we note the following

equivalent form of the specialized Johnson bound:
n n n 1 n+l n
(4.9) lc| - \l +( 1 )+ (2) MR +\e-l)+[ (n+l)/(e+l)]\e+1/‘)Sz

which is equivalent to that in the statement of Theorem (4.8)

because
n-e  n-e,, _ _ _n_, , ntl,
et ~le71)) = 0= m =1 (odetl) oo [ 7 | ev1)

Proof of Theorem (4.8):

There are at least | U TB(§)| vectors of the space,
xeC

V(n,2), not contained in any B(x,e), x €C .
[n/(e+l)] distinct sets

A given vector

of the space can belong to at most

Tf3 (x) , for xe€C, since vectors of the code are at

least a distance 2e+l apart. Hence, using Corollary (4.7),

we obtain

c n IETE' n
Tg (x) | 2 I] (le+1) " Lert ile)) -

U
X€C [n7(e+l)]

from which the result follows by noting that the number of

(4.10) |

vectors in U (B(x,e) U TB(§)) is less than or equal to

xe€C
n —
27 .//
(4.11) Codes meeting the bound of Theorem (4.8) are called

nearly perfect.

The next lemma shows the important fact that the class
of nearly perfect codes contains the class of perfect codes.

(4.12) Lemma: Every perfect code is also a nearly perfect

code.
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Proof: The specialized Johnson bound reduces to the sphere

packing bound exactly when n+l = O (mod (e+l)) . //

We can describe nearly perfect codes in more detail
with:
(4.13) Lemma: For any nearly perfect e-error correcting
code of length n
(i) any vector at a distance greater than e from
every code word is at a distance e+l from exactly
[n/(e+l)] code words,

(ii) any vector at a distance e from a given code
word is at a distance e+l from exactly [ (n-e)/(e+l)]
other code words.

Proof: Equality in (4.9) implies equality also in (4.10)
and (4.7). Equality in both (4.7) and (4.10) implies that
each vector at a distance greater than e from each code
word is at a distance e+l from exactly [n/(e+l)] code
words, i.e. part (i). Equality in (4.7) together with (4,5)

proves (ii).//

§3.5 Definition of the Nordstrom-Robinson Code

Various people involved in binary coding theory were
aware in the early 60's that there might exist a (16,256,6)
code. The specialized Johnson bound (Theorem (4.8)), which
was known then, inspired the search, since this showed that
no (16,M,6) code could have an M> 256, Moreover, since
256 1is a power of 2 , it was natural to ask if there was a

linear code with parameters (16,256,6) ., Calabi et al.,
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answered this question [7] in the negative. However, Nadler
[27] had discovered in 1962 a (13,32,6) non-linear code,
that, even up to today, is the (13,M,6) code with the
largest known M value. Nordstrom and a high school
student named Robinson were able to construct a (15,256,5)
and hence a (16,256,6) non-linear code from Nadler's code

[28].

In this section we construct the extended Nordstrom-
Robinson code from '5; , the extended Hamming code of
length 8, in a way resembling the construction of XGOLAY
given in Section 3.3. 1In this construction, due to C. L. Liu,
B. G. Ong, and G. R. Ruth [22], we create a code of length
2n from two codes of length n , the first of which must be
linear. In order to better understand this scheme, we first

prove a few remarks and lemmas regarding linear codes.

Since a linear code C 1is a subgroup of the additive
abelian group {V(n,2), +}, where + is vector addition in
V(n,2), it is necessary (by the Lagrange theorem for group

theory) that

lc| = M = 2*  for some o<k<n .

Furthermore, the set V(n,2) may be partitioned into

2" /2K = 287K ogets (cf. Definition (2.5.1)) by C
Therefore,

(5.1) Lemma: Let C be a linear (n,zk,d) code and let

L = {&1’12""’12n—k} be a set of distinct coset



representatives, one chosen from each of the an-k

distinct
cosets of C in V(n,2) . Then each Vv e€V(n,2) can be
expressed uniquely as v = 4 +m, where Jg4€L and meC .

We omit the standard proof.

Note that it is always possible to choose coset
representatives § of minimum weight, since each coset C + g
of € in V(n,2) is a finite set.

Let C3

By Lemma (2.5.11), E; is a linear (8,16,4) code and is

be the extended Hamming code of length 8

given by the 8 x 16 incidence matrix of Figure (3.1). Let L
be the set of 16 minimum weight coset leaders of E; to

cosets of C,; in V(8,2) given in Figure (5.3).



Figure (5.3)

Cosets of E; Assignment by f of words
(identified by their leaders) in E; to the cosets
L; €L £(4;) €Cy
00000O0O0O 0000O0OO0OO0OO0O
0l10000O0O0OO 10001011
00O1000O0O0O l1lo000101
000100O00O ll1100010
00001000 10110001
0O000O0OO0O1lO00O 11011000
0O00O0OO0O010O 10101100
000OO0OO0OO0OO01 lool1o01l1l1lo0
l1looo0o0O0O0OO0OO 11111111
11000000 0l1l110100
10100000 00Ol1l1l1010
looloo0o00O0 00011101
loooloo0o0 01001110
loooo0100 00100111
looooo1lo0 0lo0l10011
10000001 01101001
NT where N 1is from

Figure (3.1)

Now define
(5.4) XNR := {(v, v+£(v))T| v €V(8,2)
and f(v) = f(yg; +m) = £(g;) for f
given in Figure (5.3)}
to be the extended Nordstrom-Robinson code or XNR.

(5.5) Theorem: XNR 1is a (16,28,6) code.
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3.14

Proof: From (3.4) we may derive

(5.6) |x+y| + |x+y+z|=|z|] +2](x+y)x+y+2)]

lz] +2](x +y) + (x + y)z|

lz| +2|x(x +2) +yx+2)] .
Furthermore, if 4. and 4, denote coset leaders of C,
from L and if £(g;) and f(_&z) denote the code words of
€3
verify that

whenever |fu_1) + £(4,) | = 4 .

assigned to them in Figure (5.3), then one can easily

Now choose any two distinct code words (31’!1 + f(gl))
and (v,,v, + f(gz)) from XNR. The distance between these
two words is

|(_‘.’.1 Vo ¥y Y, + f(.!]_) + f(Xz))l .

Since Lemma (5.1) implies that vy =4y tmy, Yy = gy +0,
for suitable 4, and 4,€L and m and m, €Cy ,

this distance may be written as

l(-‘l]_ +mo+ 4, Wy, Ay +m o+ 4, +m, + f(.&l) +f(£2))|
= |Ey) + £ | + 2]y + 4y) 4y + 2y + £(y) + £(4y))
+ (M +my)(m +m, + £(g;) +£(L,))| by (5.6).

We examine three cases:

Case 1: |f(4;) + £(g,)| =8 . cClearly, the distance between
the two words is greater than or equal to 8 .

Case 2: |f(_g_1) + £(4,)| = 0. This implies that 4y = 4

and ful) = fuz) . The distance between the two words is



then

2| (my +my)(m +m)| =2[(m +m))| . 8

because m, 7 m, .

Case 3: |f(&l) + f(iz)l =4 , By (5.7) we now have

| gy + £5) (4 + 4y + £(4y) + £ =1 .

since m,, m,, f(g;), and f£(g,) are in [P
|(_@l + 92)(21 +m, + f(il) + f(iz))l is an even number.
It follows that

| (g +45) (L) + 4y +£(4y) +E(Uy)) + (m) +my) (M) +my + £(L) ) +E£(L;)) [0

and the distance is at least 6 .

XNR has |c| =M = 2% since v may be chosen
arbitrarily from V(8,2). XNR has distance > 6 since in
all three cases above, the distance between any two distinct
words of XNR is greater than or equal to 6 . //

(5.8) Any punctured code NR of XNR is called the

Nordstrom-Robinson code or NR .

(5.9) Lemma: The NR code is a (15,256,5) code.
Proof: Use (2.5.5), (2.5.8), and Theorem (5.5). //
(5.10) Theorem: The NR code is a nearly perfect (15,256,5)

code.

8 15

Proof: 2 - (1 + ( 1 15 .

)+16(136))=2 //

. 16
L3
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CHAPTER 4
t-Design and Generalized

Block Intersection Numbers

§4.1 Main Definitions

Let an x-(sub)set denote a (sub)set of cardinality =x.

A block design is a collection B of k-subsets of a given

v-set X . Elements of X and B are points and blocks,
respectively.

(1.1) A t-design with parameters A - (t,k,v) 1is a block
design with the property that each t-subset of X is
contained in precisely )\ blocks of B . The parameters of
a t-design are all non-negative integers so that 0O t<k<wv

and A>O0 .

Whenever a t-design with parameters )\ - (t,k,v) exists,
there exist positive integers bi’ i=o0,1,...,t, so that

(1.2) b, =\ and (v-i)bi_'_1 = (k-i)b; for Ogi<ct.

Some immediate properties of t-designs are:
v k
(1.3) |B|=b0=x(t)/(t).
(1.4) A t-design is a (t-1l)-design for t> 2 .
(1.5) The blocks of B containing a fixed Pe€X form a
(t - 1)-design with parameters \ - (t-1,k-1,v-1) on the set

X\ {P} as long as t>2 . This is called the derived

4.1






design of the t-design.

Many times one does not know at the outset the value
of t for a t-design. Because of this it is useful to
define the following for a block design, B, whose point

set is X and whose blocks have cardinality k .

A

. . _average :
(1.6) Define b,:=__- "~7,{bp} where b, is the number

i-sets,A

of blocks of B containing a given i-set, A .

Then by induction on the cardinality i one can derive
formulas analogous to (1.2):
A A
(1.7) (v—1)bi+l = (k—i)bi for all 1i(t .

Since there is only one O-set, the empty set, b, = |B| and

= b0 . From this follows:

A _ k v .
(1.8) b, = |B|(i)/(i) for all 0<i<k .

If bA is constant, independent of which particular
A
t-set, A , is used, bt = bA = bt

is by definition a t-design. Example 3 in Section 4.2 shows

and the block design, B ,

how (1.8) can be used to obtain the value of t for a

t-design.

A t-design with k =v is called trivial and one with
t =k 1is called complete, since in that case B contains
all the k-subsets of X , each )\ times. Let a complete

(Z)-design denote a 1-(t,t,v) design. If O<t<k(v, the

t-design is called incomplete.
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(1.9) A Steiner system, denoted by S(t,k,v), is a

1-(t,k,v) design which is incomplete. A t-design with

t =1 is often called a tactical configuration. A

t-design with t>2 1is balanced. It follows that an

incomplete t-design with t 2 is a balanced incomplete

block design, (BIBD), when considered as a 2-design.

(1.10) An incidence matrix N of a t-design is a V’xbo

matrix of zeros and ones so that the elements of X are
indicated by the rows of N , the blocks of B by the
columns of N , and so that a point P of X is contained
in a particular block iff the corresponding matrix entry is
a one. For a BIBD one has the equations:

(1.11) vb, = kbo and (v-1)) = (k-—l)bl

1

If we let J be the matrix of all ones, j the column
vector of all ones, and I the identity matrix, then
equations (1.11) imply
(1.12) "N =%i",Nj =bj=bii, and NN' = (k- NI+AJ ,

for any BIBD .

§4.2 Examples

Example 1l: As a first example we shall consider the Fano
plane, PG(2.2). A drawing o%sthis geometry is given in

Figure (2.1):
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Letting the points of the geometry be the points of a block

design with

dually:
7 blocks

(2.2) l. v 7 points , b

o)
2. k = 3 points per block , b1 3 blocks per point

3. A 1 block determined

by two points
So this yields a 1-(2,3,7) design also denoted by S(2,3,7).
An incidence matrix for this design corresponding to

Figure (2.1) is given in Figure (2.3):

Fiqure (2. 3)

abcdefg
10110100
2|]0011010
3|0001101
411000110
5/0100011
6 |]1l010001
711101000

Q

Example 2: Considering V(3,2) we may choose points to be
the 8 vectors of V(3,2) . Since the sum of three vectors

of V(3,2) 1is a single and distinct fourth vector of V(3,2)
(due to the fact that the sum of two distinct vectors over

GF (2) 1is never null), each triple out of the 8 points of
this t-design is contained in a unique block. So we
immediately have a 3-(1,4,8) design and can calculate, by

formula (1.3)

by = 1.(3) / (3) = 14 dependent 4-sets in V(3,2).
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In fact, we have encountered this design earlier in the
code E; , the extended Hamming code witn parameters (8,24,4),
(cf. Lemma (2.5.11)). 1Its incidence matrix was given in
Chapter 3 and shall be reproduced in full here, but with

the all-one column vector moved to the right end:

Figure (2.4)

P
01111111 o00000O00O0]1
0Ojoll10lo00|1001011]1
0joollo01lo0|1100101]1
Ojooollolj|jll1l10010}]1
O|]looollo|jolllo01;}1
ojolooo1l1l|jlol11l1o00]1
0OJj]loloooljol1o0o1110}1
0Ojl101000jO00101111
Q R

Notice that P (see Figure (2.4)) is the incidence matrix
of all the dependent sets of cardinality 4 and is therefore
an incidence matrix for this 1-(3,4,8) or §S(3,4,8)
design. Furthermore, notice that the incidence matrix Q
for the t-design in Example 1 occurs as a sub-matrix. As
such, the §(2,3,7) 1is a derived design from the §5(3,4,8)
design (cf. (1.5)).

Example 3: Consider once again the Fano plane and this time
choose for points and blocks of a new design the points and
the sets of 4 points, no three of which are collinear,

respectively. Since such sets are co-lines, there are 7
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blocks and 7 points in this design. Since co-lines are the
complements of lines in PG(2,2) and since two lines meet
in at most one point of the geometry, co-lines meet on at
most two points. In other words, each triple of points is
contained in at most one block (co-line) of the design in
question, From (1.8) we have

A
b

, =7.4.3/1.6 =2,

Yet, since each triple of points is in at most one block,
and since there are only 7 points, each pair of points is
contained in at most 2 blocks. Therefore, b2 is a

constant and equals 2 . So this is a 2-(2,4,7) design.
An incidence matrix for this design is given by matrix R

of Figure (2.4).

4.3 An Application of t-Designs to Binary Codes

(3.1) Lemma: (Goethals, Snover [17]) Given any nearly
perfect e-error correcting code C of length n , with

O €C, the code words of minimum non-zero weight form a
[(n-e)/(e+1l)] - (e,2e +1,n) design.

Proof: Let X be the set of coordinate places, and consider
the set B of code vectors of weight d = 2e+1 . Any

Xx € B determines a d-subset of X , namely the subset of
coordinate places where the d ones of x are. It

follows from Lemma (3.4.13) part (ii) that any e-subset

of S is contained in precisely [(n-e)/(e+1l)] such

d-subsets., //






(3.2) Lemma: (Goethals and Snover [17]) If a punctured
code C of code C' of length n+1l is a nearly perfect
e-error correcting code of length n, and if Q' e€C',

then the vectors of weight d+1 = 2e+2 in C' determine

a [(n-e)/(e+l1l)]-(e+l1l,d+1,n+1l) design.

Proof: Let X' be the set of n+1l coordinate places of
the code C' and let P be any fixed place of X' . Let

B' be the (d+1) - subsets of X determined by the coordinate
places in which vectors x' €C' of weight d+1 have their
(d+1) ones. In order to show that (X',B') is the
appropriate (e +1)-design, consider the code C of length

n obtained from C' by systematically deleting the
coordinate associated to P from each of the vectors of C' .
Then C 1is nearly perfect, and according to Lemma (3.1),

the vectors at distance d from any vector x €C determine
an e-design with parameters [(n-e)/(e+1l)] - (e,d,n) on

the set X = X' -{P} . It follows that any (e +1)-subset of
X containing P is contained in precisely [(n-e)/(e+1))]
blocks of (X',B') . Since P may be chosen arbitrarily,

the theorem is proved. //

(3.3) Remark: Lemmas (3.1) and (3.2) may be applied to

the Golay code and its extension defined in Section 3.3
because of Lemmas (3.3.10) and (3.4.12). Applying them
yields 1-(4,7,23) and 1-(5,8,24) designs, i.e. S(4,7,23)
and S(5,8,24) Steiner systems.

(3.4) Remark: Likewise, Lemma (3.5.10) implies that

Lemmas (3.1) and (3.2) may be applied to the Nordstrom-
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Robinson code and its extension (defined in Section (3.5)

yielding 4-(2,5,15) and 4-(3,6,16) designs.

§4.4 Block Intersection Numbers bi 3

In the first section of this chapter we encountered
several constants relating to a t-design. Other than the
parameters t,v,k, and bt were the constants bi for
0 igt-1 . These are the (integer) counts of the number
of blocks of the design passing through any set of
cardinality i of points of that design. There are more

constants, however, which are worth mentioning.

Let us consider first one example. In Section 4.2
we discussed the 1-(2,3,7) design of points and lines
(as blocks) of the Fano plane, PG(2.2) . In this geometry,
since there are three lines through each point, there are
precisely 4 lines missing each point. Of the four lines
(blocks) not passing through a given point, two pass through
a second given point and two miss the second point. These
three counts are constants independent of the points in

question.

Let the symbol bi 3 be the (integer) number of blocks
3

of a (fixed) t-design passing through a given i-subset of
the point set X of the t-design and avoiding a given
j-subset of X . These numbers bi j are called block

s
intersection numbers, according to J. M. Goethals [16].
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In the example of points and lines of PG(2,2) the

block intersection numbers are:

(4.1) bo,0 =7

bo,l = 4 bl,o =3
bo,2 = 2 byj1 =2 br,0 =1
Notice that the numbers bi’0 are exactly the numbers bi
previously defined since the bi,o means the number of

blocks passing through an i-set and avoiding the empty set.

The block intersection numbers are integers by definition.

The counts bi jare well-defined constants as long as
3

0<i+jgt and we prove this in the following lemma.

Lemma: The block intersection numbers bi j satisfy:
E

(4.3) b, o =b, for 0Ki(t,

i,0
i,J

of the particular i-set and j-set in question as long as

(4.4) b are constants (hence well-defined) independent

o<i+jLgt,

(4.5) (Pascal Property) b =Db +b for i+j < t-1.

i,J i+l,j Ti,j+1

Proof: Property (4.3) is immediate since the only O-set
is g . In order to prove properties (4.4) and (4.5), we
proceed by double induction on s =i+3j and on k = j
and establish both simultaneously. For s =0, b ,0 = bo =
a constant.

Assume for all i+j<s-1<Kt that b, 3 is constant.

’

Assume also for all i+j<s-2<t that
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b 5 = Pis1,5¥Pi, 541

Then consider s so that st .
Considering bs—k xk Ve further proceed by induction on Kk .
L

For k = o’bs-k,k = bs,o = b, and is constant.

Assuming for all k<ko that bs-k,k is constant and

b

bs x-1,k-1 = Ps—k,x-1 *Ps-x-1,k°

then consider b . In order to evaluate this,
s-ko, ko -1

we define the following.

let Db denote the number of blocks passing through a

A,B
given set A and avoiding a given set B, for |B| = ko-]. R

and AN B =¢g . By the induction hypotheses we have

b

A,B - P

s-ko, ko-l *

But for any PgA U B,

b

a,B - °ay (p},B*P

A,B U{P} °

Furthermore,

bA U {P},B = bs_k0+1’ko-l which is a constant

by the induction hypothesis. Hence, bs_ko = bA,B U {P} -

b b and is constant. This proves (4.4)

8-k, ko-1 7 Os-kg, k-1
and (4.5). //

Properties (4.3), (4.4), and (4.5) require i +jt .

And the counts b for i+j>t are never constants

i3
unless the t-design was actually an (i +3j)-design

originally.

We conclude this section by revisiting the example of
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the 14 planar 4-tuples in V(3,2) . The counts

b0 = 14, bl =17, b2 = 3, and b3 = 1 can be found from the

three equations of (1.2) and the parameters 1-(3,4,8) of

the design. Then noting that bi = b, for oLigt = 3,

O
’
and employing the Pascal property for block intersection

numbers we find the bi 3 for this design to be:
E

(4.6) 14

To help clarify these counts, the number 4 is the count

b and represents the number of dependent 4-tuples of

1,1
V(3,2) containing a given point (vector) vy of V(3,2)

and missing another given point Vo . Choosing any third

point of V(3,2), say V3, then there are two blocks

containing vy missing vy and containing V3 and two

blocks containing vy o missing v and also missing vy .

These counts are b2 1= 2 and Db = 2, respectively.
3

1,2
Note that the Pascal property b2 1-+bl 9 = bl 1 holds.
3 k] )

§4.5 Motivation for the Generalized Block Intersection

Numbers Using the Design of the Thirty 3-Cubes in the

4-Cube

Although in a t-design the counts bi,j are not constant
for i+3j>t (unless the t-design were originally at least
a (i+j)-design), these counts may depend only on a certain
character of the (i +j)-set in question. For example, in

V(3,2) the count of the number of dependent 4-sets passing



through a given 4-set is either 1 or O depending upon
whether that 4-set be a dependent 4-set or an independent
one, In‘the next section we shall define generalized block
intersection numbers which are constants, like the block
intersection numbers, as long as we specify the particular
(k +j) -set in question. However, we now preempt that

discussion by exploring in depth one important example.

Consider the thirty 3-cubes contained in the 4-cube.
That is, consider the thirty copies of V(3,2) contained in
V(4,2) . That there are thirty is established in the following
lemma.
(5.1) Lemma: There are 30 copies of V(3,2) in V(4,2) .
Proof: First notice that each V(3,2) contains 14
dependent 4-tuples and hence (g) - 14 = 56 independent
4-tuples. Now count the ways to choose an independent
4-tuple from V(4,2). The first three vectors of V(4,2)
may be chosen arbitrarily. But then the fourth, in order to
form an independent 4-set must not be the unique vector
sum of the first three. Since these four vectors from V (4, 2)

may be chosen in any order, we obtain

lealg'%4i12 = 1680 independent 4-tuples in V(4,2) .

Finally, because each V(3,2) contains 56 of these
independent 4-tuples, there are in total 1680/56 = 30 copies
of V(3,2) in V(4,2). //

Consider now the t-design whose points are the 16 vectors



of V(4,2) and whose blocks are the 30 copies of V(3,2)
in V(4,2).

(5.2) claim: This design of the thirty 3-cubes in the
4-cube as blocks and the sixteen vectors of the 4-cube as
points is a 3-(3,8,16) design.

Proof: The key to this proof rests on an inspection of the
planar 4-tuples, which are copies of V(2,2). To this end
we note the following:

(5.3) Remark: Each pair of V(3,2) can intersect in
either a V(14,2) =g, a Vv(0,2), a V(1,2), or a V(2,2) and

hence the intersection set has cardinality 0,1,2, or 4 .

Now proceeding with the proof of (5.2) we note that
any planar 4-tuple is contained in at most three copies of
V(3,2) , since the sets of the four points other than the
planar 4-tuples from each of the V(3,2) must be disjoint.

So each triple is contained in a unique planar 4-tuple.

Next considering formula (1.8) for t-designs we have:

k v

A
average b3 = b3 = bo( 3)/(3 ) = 30.8.7.6/16.15.14 = 3,

Finally, since no triple can be contained in more than three
blocks, we see that each triple is contained in exactly three

blocks, making the design a 3-(3,8,16) design.

Now the formulas (1.2) and v = 16, k = 8, and b3 = 3

=7 . From the

>

imply that b0 = 30, b, =15, and b

1 2
Pascal property the block intersection numbers for any

3-(3,8,16) design follow:



(5.4) 30

This design of the 30 copies of V(3,2) in V(4,2) 1is
not a 4-design. 1Indeed, although each planar 4-tuple is
contained in three blocks (3-cubes), each non-planar
(independent) 4-tuple spans a unique 3-cube. Hence b4 is

A
non-constant. Note that b4 is not even an integer:

A
_14.3+56.1 _ 7
(5.5) b, = 70 =35

since each of the 14 planar 4-sets is contained in three
blocks and each of the 70-14 = 56 non-planar 4-sets is

contained in just one block.

So there are two types of 4-tuples in V(4,2): planar
and non-planar 4-tuples. However, the number of blocks
through any type of 4-set is a constant. Therefore, it makes
sense to define bZ =3, and bli = 1, for the planar, and

non-planar 4-sets respectively. This leads to a generalization

of the bi . w,.r.t. the planar set P by defining

5]
b . =b, , for i+j<3
1,] 1,] ’
P _ .P _
b4,0 = b4 = 3
and
P 3 _ P .l L
bi,j+1+bi+1,j —bi,j for i+j =3;0<Ki,j<3 .

P

This last statement defined all bi 3 for i+j =4 and
3



for 4> 3j>1 . These bli? 3 then are:
s
(5.6) 30
15 15
7 8 7
3 4 4 3
3 (0] 4 o] 3
Similarly we can extend the b, . to bg .2
1,3 1,3
(5.7) 30
15 15
7 8 7
3 4 4 3
1 2 2 2 1

Suppose we try extending the bi,j to other sets L .
For example, let L be a dependent 6-tuple in V(4,2) .
(In the following chapter we establish the existence of 448
of these.) A dependent 6-tuple has certainly no subset of
4 points which are also dependent (since then the remaining
pair of points could not be distinct by (2.2.3) and (2.2.4)).
Hence, a dependent 6-tuple contains no planar 4-sets. Then
each 4-set contained in the 6-tuple, being an independent
set of 4 vectors of V(4,2), spans a unique V(3,2) .
Furthermore, if a 5-set contained in this dependent 6-set
were contained in a V(3,2), the 5-set would then contain
a dependent 4-set; so each 5-set contained in the dependent

6-set must span all of V(4,2) .

Actually, we have proved the following lemma which will

be useful in Chapter 5:



(5.8) Lemma: Dependent 6-tuples contained in V(4,2)
are composed of 6 vectors of V(4,2) no 4 of which are
dependent (form a V(2,2)) and no 5 of which are contained

in a 3-cube (span a V(3,2)) .

L _ L _ _
5—-0, b6—0(well

defined so long as the set L is a dependent 6-set in V(4,2)).

We may now define bg =1, b

Then we may generalize the b, j to in“ 3 for 0Ci+j<K6
k) b

by defining

L L
bi,j _bi,j for 0<i+jg3,
L _,.L .
bi,o_bi for 0Kig6 s
and
by, . +b" = b for 0¢i+3jg5
i+1 TPi, 541 T Pq,5 For 01 *I<o .

The numbers bY .
1,3
3-(3,8,16) design passing through a given i-set and avoiding

now count the number of blocks of the

j-set where the (i +j)-set is a subset of the special set

L, namely a dependent 6-tuple from V(4,2) . These bl

i,3

are:

(5.9) 30

15 15
7 8 7
3 4 4 3
1 2 2 2 1
(0] 1 1 1 1 o)
(0] (o) 1 o 1 0] (0]

Our use of these generalized block intersection numbers

lies in the interpretation of the bottom line, the b? 3
3



for i+j =6 :

(5.10) Lemma: A given dependent 6-tuple of V(4,2) meets
any copy of V(3,2) in V(4,2) in exactly two or four
places.

Proof: Each bi,j for i+3j = |L| counts the number of
blocks of the design in question passing through exactly i

( and not the other j ) of the points of L . Since in

(5.4) only bg > and bg 4 2are non-zero, the lemma follows. //
B ’

Finally we shall extend the bi j to the counts b?

L 3

where B 1is a block of the design.

We already calculated, in (5.5), that each 4-tuple
contained in an block of this 3-(3,8,16) design was
contained in 7/5 blocks, on the average. Each 5-set, which
is contained in a block, a V(3,2), certainly contains an
independent 4-set, so this 5-set is contained in only that

block, and no other, Therefore, we may set

A
B _ _ B _ _ B _,B _.B
b, =b, =7/5, by =1=0bg =by =bg .
Then again by the definitions:
b2 . = b, . for 0<i+3j<3
i,] ,]
B B .
bi,0 = b, for 0igs
b> +b5 = b for 0<i+3j<8
i+l,3 Ui, 3+l i,j < 1L8,

we obtain generalized block intersection numbers for this

design relative to a block of the design:



(5.11) 30
15 15

3 4 4 3
7/5 8/5 12/5 8/5 17/5
1 2/5 6/5 6/5 2/5 1
1 o 2/5 4/5 2/5 O 1
1 o o 2/5 2/5 0 o 1
1 0 o o 2/5 O o) o 1

Now interpreting these generalized intersection numbers we
have:
(5.12) Lemma: Blocks of the 3-(3,8,16) design of the

thirty 3-cubes in the 4-cube meet one another in O or 4

places.
Proof: Only the b? j #0 with i+j=8= |B| for
b4
i =0,4, or 8 . That bg o= 1 means that the block B
3

of the design meets only itself in all of its 8 places. //

This lemma was not evident a priori. Compare (5.3)
to the statement of Lemma (5.12).

(5.13) Note also that we do not wish to consider the

B

generalized numbers bi to be integers, but rather average

3
over all i-sets of the number of blocks through each i-set

contained in the given set B .

§4.6 Generalized Block Intersection Numbers

J. M. Goethals in [16] defined the block intersection

numbers bi 3 for a t-design and for 0Ki+jgt . The

Ed
generalized block intersection numbers bP for L being a

3



block of the design were considered by N. S. Mendelsohn in

[25]. These numbers b~ to be formally defined in this

i,3°
section, provide a link between the two concepts as well as

a legitimate generalization of both.

Remembering the comment (5.13) at the end of the last

section we shall define, relative to a given L set

L

(contained in the point set X of a t-design), bi as the

k4

average over all the possible (i +j)-sets contained within L

of the number of blocks of the t-design passing through the
i-set and avoiding the j-set.

Formally:

L
B,A\B

a given t-design containing all points of A and no points

(6.1) Let Db denote the integer number of blocks of

of B, for given sets so that BcAcL .

(6.2) Then

L . |zl |afy-1 L
B,y = Chay) B (U0 T By ag) -
|aAT=1i+3 |Bi=i
So the numbers bL are integer counts whereas the
B,A\B
L . L .
bi,j are averages over all the possible bB,A\B with

BcAcL . (Relative to the very last example in the last
section with the set L being a block of the thirty 3-cubes
: _ . L _ L _ L

in the 4-cube design, bP,P = 3, bN,N =1, and b4,0 =7/5
where the sets P and N were the planar and non-planar
4-sets contained in the block L, respectively.)

(6.3) Lemma: The generalized block intersection numbers

L .
bi,j satisfy:



(6.4) by 5 =Db; 5 for L] <t
(6.5) in' 3 are constants depending only on the particular
Iy
set L and the cardinalities i and 3j, and
L L _.L
(6.6) (Pascal Property) bi+1,j +bi,j+1 = bi,j for

i+ji<|n]-1.

Proof: Since the bg,A\B are constants independent of the
set L and the cardinality of B, as long as |B|¢t,
property (6.4) is clear. Again, since the b i3 are
averages over all the possible subdivisions of the given set
L, into subsets of cardinality i,j, and (|L|-i-j), these

numbers are constants dependent only on the set L and the

cardinalities i and j

Property (6.6) is established directly.

L - L 1+J by
bi,j ( lﬂ‘ ( ) c, B\C
|B I =i+j IC%B
definition.

Since for each P e¢L\B the following holds:

L _ L L
be,B\c ~ beyr * be, (BUp)\c(BUP) \ (CUP)

we can write
Y s=(Jth 1y (119 Z (1El-(143))-1
BcL
| BT=1+7 |cT-

L o

where CUP means C|{P}



Since |L|l)(1+3+1) = 1£l)(\L|—{i+j))

1+J+

and since

2:1 2.1 = L/ Z for A = BLJP s
BcL PeEL\B AcL PEA
‘Bl=i+3 lAT—1+J+1
1
in',j - (ilgll) (1+3+1) -1 A%:L pz.:fA(lIJ)
|AT=1+j+1
2 (b”
Ig_crA\p (CUP),A\(CUP) +bC me)
=1
Then by separation:
pl |L| -1 < 1+3+1 -1 1+J -1
") Tz ( z (14
l’ l+J+1 AcL 1 PEA
|aT=i+j+1
L . .
|cT=i |A o
Cps o1 L
> (1 > b
PGA 1 CcA P C,A \C .
|cT=1

Now, since

AP AP = Ah At = Ah )

and since

2 Z,\ =3 \ ,
T

iy = " ; (1+3#+1y-1 i+l

bi:j - (11311) Aéi itl ) T ( 1 )~

|aT=i+3+1
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- L
L 2 b L] -1
|cT=
-1
. i+3+1,-1 .7
5 AHTTD T T v -
AcL CcA PeA\C
|aT=1i+3+1 |cT=1

Furthermore, 2 2 Z 2 for D =CUP yield

C—A PeA\C D PeD

|cT=1 |Df21+1

. . -1
L |n| (-1 i+j+l,-1 i+l
bi,j B (i+j+1) AZL ( i+l ) z 1)
|A$=i+j+1 |Di=i+1
L L] (-1 i+j+1,-1
b +(;1514) z '3 )
PeD D, A\D i+j+l AcL i
|AT=1i+j+1
. j\-1 L
L H™T Z b .
c 1 PEA\C C,A\C
lcl=1i

Then since bL is constant for each P €D and since

D,A\D

L . L _.L
bC,A\C is constant for each P €A c, bi,j = bi+1,j+bi,j+l’ //
Note: If all the b? o ¢an be calculated for a given set
3

L relative to a given t-design, then by the Pascal property

(6.6) all b? j can be calculated. Then one may conclude
3

facts from the other bg j for j # O, especially those for
3
i+j = |L| . This process can work in other ways as well, e.g.
L L . L
if the bi,j can be found for i+j = |L| then the bi,o

may be calculated.

§4.7 t-Designs with dzdo

Throughout this thesis we shall deal with various

t-designs having the property that b£+1 o~ 1 for every
3
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block L of a design. This property means that each (t+1)-
set is contained in at most one block, or equivalently that
columns of the incidence matrix for the t-design are a
distance at least 2(k-t) apart when considered as vectors.
Hence we have now proved:

(7.1) Lemma: Vector columns of the 0,1 incidence matrix

for a t-design have distance > 2(k-t) from one another

iff b£+1,0 = 1 for the generalized block intersection
numbers of the t-design relative to a given block L of the
design.

Remarks: If bf,o = 1 for a given t-design and block L ,
the design is a Steiner System. A t-design with b£+1,0 = 1

for blocks L is a generalized Steiner system that by

Lemma (7.1) has use in coding theory.

Lemma (7.1) now serves as a motivation for the following
definition.

(7.2) Define a t-design with d;:do to be a t-design so

that the column vectors of the incidence matrix for the
design have mutual distance at least do .
(7.4) Lemma: The 3-(3,8,16) design of the thirty 3-cubes
in the 4-cube is a 3-(3,8,16) design with d>8 .

L

Proof: By the b? . in (5.11]) we see that b =1 so
— i,J 5,0

that d>2(8-4) =8 . //

As applications and examples of the concept of a t-design
with d>d, we establish the following lemmas.

(7.5) Lemma: A vector set of vectors of length v and
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all of weight k and of mutual distance dlido has bO

vectors with

v-t v k
(7.6) bog[ *—t ](t)/(t)
dé do+l
for t = (k-—5) and do = 2] —5] - (dO = smallest even

integer greater than or equal to do)
Proof: For t and d'O defined above (d(') is the even
integer zdo) , through each t-set can pass at most [%_-_%]

vectors. Given Db vectors, then the average bt for

(0]
this system of bO vectors is
k
bo(t) _ g [v-t from (1.8)
v 1:S k-t]
(})

since for each particular t-set btfg[if%] . Solving for bo
proves the lemma. //
(7.7) Lemma: A vector set of vectors of length v , weight

k and mutual distance d;zdo and the maximum possible

v-t. v, ,k . . .
bo = [i:T](t)/(t) (according to (7.6) is a t-design. 1If
also [%E%] = %E% , then the t-design is a (t+l)-Steiner
system.
Proof: The first part arises from the fact that btg[ﬁ]
A -

for any given t-set b, = [%:%] from the fact that b, is
maximal. Hence b, = [;:—:%]. d>d, ensures that each (t+l1)-

. . . . v-t v-t
set is contained in a unique block. If also [3—%] = 3—¢ >

then each (t+l)-set is contained in at least one block. //

One could at this point apply Lemma (7.7) to the GOLAY
and NR codes and obtain the same result as stated in (3.3)

and (3.4). However, the proof given in Section 4.3 is more
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efficient as well as sufficient for our purpose. We shall
instead give an example of (7.7) that shall be used later
in Chapter 8 .

(7.8) Lemma: If T is maximal set of vectors of V(8,2)
of weight 4 and having mutual Hamming distance > 4, then

T is a S(3,4,8) design.

Proof: From (7.6), t =4-4/2 =2 . Then by = [323] .
8.7

23 = 1l4. Equality holds in the inequality (7.6) so by (7.7),

the design is a S(3,4,8) . //

Furthermore, one obtains from the generalized block
intersection numbers for this S(3,4,8) design T relative
to a block of the design:

(7.9) Lemma: T as given in Lemma (7.8) is composed of

7 comnplementary pairs of vectors, with representatives from
distinct complementary pairs having Hamming distance exactly
equal to 4 .

Proof: Let L be any block of T , then the generalized

block intersection numbers for T relative to L are

necessarily:
(7.10) 14
7 7
3 4 3
1 2 2 1
1 o 2 (o] 1
L L . . .
where b3’0 =1 = b4,0 since d>4 in this design. 1In
(7.10), bg 4 = 1, so the complement of each block is
’

necessarily a block, all other blocks meet L then at

distance exactly equal to 4 . //



It is important to note that this added condition,

with d>d is not necessarily satisfied by a general

o’
t-design. Consider for the moment the 4-(3,6,16) design
of minimum non-zero weight vectors in an XNR code
containing O (see Remark (3.4)). Since this design has an
incidence matrix whose columns are code words in XNR, and
since XNR has minimum distance 6 between code words, the
design has the "with d> 6" property. We have constructed
numerous non-isomorphic 4-(3,6,16) designs, but we show

(after Chapter 9) that there is only one 4-(3,6,16) design

with d> 6 ; that is, there is only one such design which can

be embedded in a code.

(7.3) So that it will be easier to state later theorems
we shall call any 4-(3,6,16) design with d4>6 an XNR-
design. One such exists by Theorem (3.9), is explicitly

constructed in Chapter 5 and is shown to be unique up to

isomorphism in Chapter 9.



CHAPTER 5
Automorphism Groups and an

Explicit Construction of the XNR-Design

§5.1 Permutation Groups

Given a finite set X whose elements are called points,

a permutation on X is a bijection x:X-+X . Under the

operation of composition, the set of all permutations on

X, S is the symmetric group on X . If X is fixed in a

x)
particular discussion and |X| = n, we sometimes write 8,

for Sx. A transposition is a permutation which fixes all but

two of the points of X and exchanges those two points. A
permutation can be written as a product of transpositions in
numerous ways, but the number modulo 2 of transpositions used
is always a constant; hence, a permutation is considered

odd or even as the number of transpositions needed is odd

or even, respectively. The group of all even permutations

of Sx is a normal subgroup of index 2 denoted by Ax or

A .
n

A permutation group is a triple (X,G,i), where X 1is

2 finite set, G 1is an abstract finite group, and i 1is a
homomorphic injection i :G-oSx . We say that G acts on X

or G has a (permutation) representation on X . If the

kernel of the injection is trivial, the representation of G

5.1



is faithful and |X| is the degree of the representation.
In practice, for faithful representations, we shall identify

G with its image in SX .

An orbit of a point P €X under the action of G on

X 1is the set
XG := {xg | g €G} .

G is transitive on X if all points of X are in one

orbit of the action of G on X . Clearly, G is

transitive on any given orbit; and a representative of an

orbit is simply any member of the orbit, G is k-transitive

on X 1if for each pair of k-subsets of X , [xl,xz,...,xk}
and (yl,yz,...,yk} c 2x , there exists an element g €G

so that

X;9 =Yy, for i =1,2,...,k .

Then by definition it is clear that the concepts of
"l-transitive" and "transitive" are identical. A group G

is half-transitive on X if there are t orbits for

1<t< |X| and each of the orbits has the same cardinality.
A reqular group G 1is a group G transitive on X and so

that |G| = |X| .

§5.2 Automorphism Groups

An n xn permutation matrix Pn is a matrix obtained
from the n xn identity matrix, I, > by permuting its

Co lumns. Clearly, the set of all permutation matrices is S



(2.1) The group of automorphisms, the automorphism group,

Aut(N), of a v xb incidence matrix N is the set of all
permutation matrices P, for which there exists a corre-

sponding permutation matrix Q, so that

The set {Pv} is a group under matrix multiplication since

for given pi, i =1,2, there exist Q;, i=1,2, so that
1.2 2.1, _ 1.1 _
(PVPV)N(Qbe) = P,NQ, =N .

Let D = (X,B) be a t-design.

(2.2) An automorphism group of a t-design D is the group

of permutations 7 of the point set X so that for each
beB,br €B. As a special case of this definition, we state

in particular that the automorphism group of a graph is

the group of permutations 7 of the points (vertices) of the
graph so that for each edge {vl,vz}, {vlv,vzn} is also

an edge. One can easily establish the following properties:
(2.3) The automorphism group Aut(N) of an incidence
matrix N for a t-design is isomorphic to the automorphism
group of the t-design.

are two incidence matrices for a

(2.4) If N and N

1 2
t—-design, then Aut(Nl)=*Aut(N2) .

(2.5) The automorphism group of a code C 1is the group of

Permutations 7 of the standard basis elements, i.e. the
coordinate positions, so that for each veC,vreC . Since

the incidence matrix of vectors of C can be arranged as a
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disjoint union of incidence matrices of vectors of C of

each distinct weight class, which matrices are O-designs,

we have

(2.6) Lemma: The automorphism group of a binary code C

is the intersection of the groups Aut(Ck), ¥y

Proof: Each class C, of all of the vectors of weight k in
C has, as a O-design a group Aut(Ck) of automorphisms.

Each of these groups acts on X , the set of n coordinate

positions. For each 1w in the automorphism group of C ,

n

Aut (C) holds necessarily v, 7™ =w, €C, so 7 €C () Aut(C.)
-k -k k= k

n =0
Clearly for each 71 € F\Aut(ck) , vir eC for each ve€C , so
k=0
n
Aut (C) = N Aut(c,) . //
k=0

£5.3 Applications and Examples

In this section we shall apply some of the definitions
given in Section 5.2 to specific examples. Our goal is to
construct from the action of the group of translations of
V(4,2) acting on the set of 448 dependent 6-tuples of V(4,2)
an XNR-design, [Theorem (3.10)], thus establishing the fact
that the group of translations of V(4,2) acts on this
design. The XNR-design is a 4-(3,6,16) design with d> 6

according to Definition (4.7.3).

The points of V(n,2) form an additive abelian group
under vector addition.

(3.1 Definition: T(n) is the group of translations on

V(n,2), i.e. Tx€T(n) is a translation given by



(y)Tx = y+x for each yeV(n,2)
(3.2) Lemma: T(n) acts as a regular group on the points

of V(n,2)

Proof: For two points y,x€V(n,2) then 2zTy = zTx for
=1 1 z€V(n,2) 1is equivalent to x =y . Hence, there are
e>caa ctly |V(n,2)| elements in T(n) . But also, for each
e i r y,xevV(n,2) there is a vector (x+y), and hence a
T == nslation T(x+y), so that yT(x+y) =y+x+y =x .

-/
(3 _ 3) Lemma: In V(4,2) there exist 448 dependent 6-tuples.

e xace, T(n) is transitive on the points of V(n,2)

“T"Fn « se as blocks and the 16 vectors of V(4,2) as points form

a ™ 6-(3,6,16) design with d> 4 .

P x> of:

By the Lemma (4.5.8) we can see that in choosing 6
V& < tors to form a dependent set from V(4,2) the first

T Ix x— ece may be chosen arbitrarily, so there are 16, 15, and

1a choices for each of these. The fourth must not be the

Swaxn of the first three, so this may be chosen in 12 ways.

TIx « fifth cannot be in the V(3,2) spanned by the first

fo ®Xar, so this may be chosen in 8 ways. The final vector is

TX¥a «=n the (unique) sum of the first five. So in total there

are
16.15.14.12.8.1/6! = 448
S\ c—h sets.

Ne;.:t we notice that an arbitrary triple of vectors from

v
(=2 _ 2) may be completed to a dependent 6-set in

12.8.1/3! ways, i.e. b3 = 16

»



since the first three of a dependent 6-set may be completely
arbitrarily chosen. So the design is a 16-(3,6,16) design.
L.et B, and B, be any two distinct dependent 6-sets from
VvV (4,2) . Their symmetric difference:
(3 .4) B, AB, := (Bl\ B2) U (B2\ Bl)
A =s also dependent and has even cardinality > O . Since no
F>aa dr of distinct vectors over GF(2) are dependent,
| B:LABZ|24 . Hence, the design has d>4 . //
(= _5) Theorem: T(4) acts on the 448 dependent 6-tuples
< ¥= points of V(4,2) yielding 28 orbits of 16 dependent
& — ®uples per orbit. Each orbit is a 2-(2,6,16) design
“W X ®h d>8 . Furthermore, T(4) acts half-transitively on
T X2 «&se 448 dependent 6-tuples.
Excof: Let

(= _e6) 0

{51’52:.’5.3:_’54,55,35_6 li%:JGEi = 0}

e any one of the dependent 6-tuples. Let also
A := {3-1’52""”—(6’51'*-}52 +§3,51+}_2 +54,...,_)51+§5+§6}
B := {§1 +§2:§1 +X35.- <3 Xg +?_‘6:Q}
X := {Elizz’ LI "',—(6’257’,-('8"'."515’9}

BNy~ simply checking, one sees that |B| = 16 = |A| = |X]|,

“WEaence, X=A=B.

(= _ 7) Let y€eX,y # O . Then we claim that

l@+y) ne| =2.

= Y # 0, there exists a unigue non-zero element of B (=X)



so that y = X, +x,, say.

Then

(Q+y) = {xz,xl,xl +X, +X3,%;) +X, +X,,X) FX, +x5,x1+x2+x6}
arnndad

(Q +X) naQ-= {xl’xz}

since
FIe xaxce (3.7) holds.

Q+ycA.

But each non-zero element y of X
3 i <« 1lds (by considering B) a distinct dependent 6-tuple
(<> +y), so orbits under the action of T(4)

on the 448
3 &= p>endent 6-tuples have cardinality

1+15 = 16.

Each pair of points from Q 1is contained in Q and

B> X = cisely one other dependent 6-tuple in the orbit of Q
rndder T(4).

Since this property holds for each member of
th e orbit, each pair of points of V(4,2) is contained in
PXr ecisely two members of the orbit.

Hence the 16 dependent
S —

Tuples in any orbit form a 2-(2,6,16)

design., Finally
= = 8 since, in a given orbit, any pair of dependent 6-tuples
Sha re precisely two points of V(4,2). //
(3. 8) Lemma: For Q being one of the dependent 6-tuples
of Ppoints of V(4,2) as defined in (3.6) and for any

Norn—zero point z €V(4,2) then

(Q+2z) AQ in a 3-cube.

6
P _ .
roof: Let Q := {X),X5,X3,X,, X5, X | .2_, X, = 0}
i=1
Then by Theorem (3.5), z = x, +x, say and (Q+2z)AQ =
X

{53’§4’55’£6’51 +X, X
One can easily see that

ESIRES IS NSRS T RE T RERE"Y
of

X3,X,,Xs, and
6

X.= 0)
i=1 ~1

X, are a basis
(Q+2) AQ

(using



As such, (Q+2z)AQ 1is a copy of V(3,2) within v(4,2)
and is therefore by definition a 3-cube. //

(3.9) Theorem: An XNR-design exists with T(4) acting
transitively on the 16 points of the design,

Proof: It suffices to construct the 4-(3,6,16) design as
a set of 7 disjoint orbits. Consider the following 7

dependent 6-tuples:
Q) = [X)Xp, X3 Xy, X5, X | L x; = 0}

Q) = {X],X,,Xq,X) +Xy +X,,X) +Xq3 +Xe,X; +X, +Xc]

Q3 := {X),X5,X3,X) +X3 +Xg,X) +Xg +Xg,X) +X; +Xg]
Qq = {X),X5,X3,X) +X) + X, X) +X) + X, X) v X3 +X, ]
Qg := {X4:X5,Xg,X) +X) +X4,X) +X3 +Xg,X) +Xg +X5]
Qp = (XgsX5:Xg,X) +X3 +X5,X) +Xg +Xg,X) +Xp +Xg ]
Q; 2= (X X5, Xg,X) +Xg +Xg, X) +X) +Xg, Xy +X3+X,] .

(3.11) It is straightforward to check that each of these
Qi is a dependent 6-set and that any pair of distinct Qi

meet one another in either 1 or 3 places.

Define D to be the 7.16 = 112 dependent 6-sets,
called blocks of D, obtained from the 7 orbits (of
dependent 6-tuples under the action of T(4)) whose
representatives are Qi’ i=1,2,...,7 . 8Since no 2 of the

Qi meet on exactly 2 places, no 2 of the orbits coincide

Let, for the moment, Q and R be any 2 distinct

dependent 6-tuples from among the 448 in V(4,2) . Let 2z



be any non-zero point of V(4,2), then Lemmas (3.8) and

(4.5.9) imply

1l
N

lo N ((R+2) AR) | or 4 .

Therefore

O mod 2 .

lo N ((R+2z) AR)|

But loe N ((R+2)AR)| = |[(@N (R+2))A (@ N R)|

= leN (R+z)|+|eN (R+2) N R| ,
so that
(3.12) |@NR| = |@N (R+2)| modulo 2 .

Now letting Q and R be blocks of D, (3.11) and
(3.12) imply that by considering the representatives for Q
and R among {Qi}, i=12,...,7,

(3.13) |@ N R| =1 modulo 2

iff Q and R are in distinct orbits.

If Q and R are in the same orbit then, by Theorem (3.5),
|QAR| =8 . If Q and R are in different orbits then,

by (3.4) and (3.13), |QAR| =10 or 6 . Therefore

(3.14) d>6 in this design.

Finally (3.14) together with Lemma (4.7.7) imply that D

is a 4-(3,6,16) design with d>6, i.e. by Definition (4.7.3),

D is an XNR-design. Now Theorem (3.9) is proved. //



PART C: THE NORDSTROM-ROBINSON CODE
CHAPTER 6
Equivalence of the Uniqueness of the

XNR Code and the Uniqueness of the XNR-Design

§6.1 Introduction

The method of constructinj the extended Nordstrom-
Robinson cede, XNR, given in Theorem (3.5.4) is not the only
one. J. M. Goethals demonstrated [15] that such a code
could be derived from the XGOLAY code. From his work with
these codes, Goethals suggested in a private communication
that the Nordstrom-Robinson code might be unique. Thanks

to his suggestion, we now show that this conjecture is true.

Our long proof of the uniqueness of XNR (and NR) is
subdivided for convenience into chapters. In this chapter
we reduce the question of uniqueness of these codes to that
of the uniqueness of the XNR-design, which was defined in
(4.7.3). It is then shown that every XNR-design can be
described in terms of the geometry of V(4,2) . 1In
Chapters 8 and 9 we show that within V(4,2) the XNR-design
is unique up to an automorphism of Aut(v(4,2)) . Finally
Chapter 10 is a summary of the various parts of the

uniqueness proof.






§6.2 Organization of Chapter 6

This chapter is organized as follows. In Section 6.3
it is shown [Theorem (3.1)] that the set of minimum non-
zero weight vectors in any (16,256,6) code, C , with O0€C
form an XNR-design. Section 6.4 establishes the necessary
weight distribution of any (16,256,6) code, C , with O €C,
and shows that the vectors of weights 10 and 16 in C are
the complementary vectors to those of weights 6 and O . 1In
Section 6.5 it is shown that the vectors of weight 8 in C
must necessarily be obtained from the XNR-design in a special
way. The equivalence of the questions of uniqueness of the
(16,256,6) code and the XNR-design is then stated in Section

6. 6.

§6.3 The Fundamental XNR-Design of Weight 6 Code Words in

any (16,256,6) Code C , with Oe€cC .

Note that there is no loss of generality in assuming
that any (16,256,6) code contains O, since if C* 1is a
(16,256,6) code with x* €¢C*, then C := C* +x* 1is an
equivalent code with O = x* +x* €C .

(3.1) Theorem: In any (16,256,6) code C , with OQO¢cC,
the set of 112 weight 6 code words forms an XNR-design.

. . ] 1l6-1 1 /16 _ o (16-1)
Proof: Since 256 ( 1+ (1O7h) + g3 (3)) =2 ,
(3]
any punctured code of C 1is nearly perfect, by (3.4.1l1).

Then by Lemma (4.3.2), the set of weight 6 code words form

a 4-(3,6,16) design with d>6, which is, by



Definition (4.7.3) an XNR-design. Finally this design has

by = 4(%3)/(3) = 112 blocks by (4.1.3). //

§6.4 The Weight Distribution of any (16,256,6) code, C ,

with O €C

(4.1) Theorem: Any (16,256,6) code, C , with Oe€C

has 112 code words of weights 6 and 10, 30 words of weight
8, and one code word of weight 16. Such a code has the
additional property that the complementary vector to any
code word is also a code word.

Proof: Let C be any (16,256,6) code with O €C . Since
vector addition is done modulo 2, 0 €C+z for any coset
code C+z ., For this reason, for each 2z €C, C+z 1is a
(16,256,6) code with 0€C+z . Theorem (3.1) then applies
also to C+z showing (4.2) lemma. The 112 weight 6 code
words in any C+z, for 2€C, are the elements of an
XNR-design. This is the key point in the proof of Theorem
(4.1). Indeed, many of the proofs of the following lemmas,
which eventually prove Theorem (4.1), consider the generalized
block intersection numbers for the XNR-design indicated by
the weight 6 code words of a C+2 coset code for a

particular 2z €C .

Useful in establishing the various generalized block
intersection numbers needed are the block intersection

numbers for any 4-(3,6,16) design:



(4.3) 112
70 42
42 28 14
24 18 10 4
We shall now proceed with the series of lemmas which
culminate in Theorem (4.16), a restatement of Theorem (4.1).
The following two lemmas will be proved simultaneously.
(4.4) Lemma: Any (16,256,6) code, C, with Q¢€C
contains 15 weight 8 code words, no two of which are
complementary.
(4.5) Lemma: Any (16,256,6) code, C , with O0¢€C
contains at least 36 weight 10 code words.

Proofs of Lemmas (4.4) and (4.5): Let 2z €C be a code

word of weight 6 . By Theorem (3.1), the 112 weight 6 code
words in C+2z indicate an XNR-design. Also in the coset
code C+z is the code word 2z . Let L be the 6-tuple
indicated by the vector 2z . Consider now the generalized
block intersection numbers for the XNR-design relative to L

Since the design has d)>6, (cf. Definition (4.7.3)),

bi‘ o= 1 for each block L . Therefore these numbers, b
2

")

s3°
are the same relative to any block of any XNR-design, and

are:
(4.6) 112
70 42
42 28 14
24 18 10 4
13 11 7 3 1
6 7 4 3 o 1



From these numbers, the b? j with i+3j = 6 imply that
’
6x ()
6
1x(,)

blocks meet L in three places. Therefore, of the 112

36 blocks of the design meet L in one place,

15 blocks meet L in two places, and 3 X(g) = 60

weight 6 code words in C+2z , one is z and the 36,15, and

60 others are at distances 10, 8, and 6 from 2z , respectively.

Adding the vector 2z to each of these 112 weight 6 code
words of C+z , we obtain code words in C =C+2z+2z .
Therefore C contains O, at least 36 code words of
weight 10, and at least 15 code words of weight 8 . The
15 weight 8 code words could not have any pair being
complemented, for then the corresponding pair upon addition
of z , would be a pair of weight 6 vectors in C+z at a
distance 16 from each other. This is a contradiction, since
the distance between two weight 6 vectors is at most 12
Lemmas (4.4) and (4.5) are thus proved.

(4.7) Lemma: C contains no code word of weight 12 .
Proof: Consider the XNR-design relative to the 112 weight

6 code words in C . Let w be any weight 12 vector. Then
j+w is a vector of weight 4, for j the all one vector of
length 16. Now j +w indicates the 4-tuple, M , which gives

these generalized block intersection numbers, b for

i,j °
this design:
(4.8) 112
70 42
42 28 14
24 18 10 4
124+x 12+x 6+x 4-x X



where bz o= X*= O or 1 . This means that any such
3

4-tuple, M , is disjoint from at least 12 blocks of the

design. Hence, w contains at least 12 weight 6 code words

of C .

Let z be one of these 12 weight code words of C .

Then in C+2z,w+z, and 2z are code words located at

L
0,6

contradiction follows the fact that w cannot be a code word

distance 12 , contradicting b = 0 in (4.6). From this
of C. Since w is an arbitrary weight 12 vector, Lemma
(4.7) is proved.

(4.9) Lemma: Any weight 10 code word in any (16,256,6)
code, C , with 0O0€¢C , 1is the complement of a weight 6 code
word in C .

Proof: Consider any weight 10 vector v . Viewing the
complementary weight 6 vector, j+v , as a 6-tuple, N, in
the XNR-design of the 112 weight 6 code words of C , we

obtain these b? ]

s ]
(4.10) 112
70 42
42 28 14
24 18 10 4
12+x 12-x 6+x 4-x x
2+5x~y 10-4x+y 2+3x-y 4-2x+y X-y Y

-10+15%x-6y+z 12-10x+5y-z =-2+6x-4y+z 4-3x+3y-z x-2y+z y-z

Now, a weight 10 code vector V cannot meet any weight
6 code word at distance 12, since then C+v would be a

(16,256,6) code with O €C and containing a code word of

4



weight 12, contradicting Lemma (4.7) . Hence,
(4.11) ©0 = by ¢ -10+15x -6y +z and

_ . N
(4.12) 0 =b, , x-2y+z .

b

Notice that 2z 1is an integer, because bg o
2

the number of blocks meeting the set N in all of its points.

is simply

Moreover, z =1 or O , because the 6-set N is either a
block or not. These equations (4.11) and (4.12) together
with z =1 or O yield the following two possible sets of
solutions:

Case l: x =y =2 =1 . Hence, the 6-tuple N
represents a block, i.e. the vector v is the complement of

a weight 6 code vector.

Case 2: z O, y=5/12, x =5/6 . This implies that

the 6-tuple meets:
(v-2). &) = (512).6 = 5,2

blocks of the design in five places. But since 5/2 1is not

an integral number of blocks, no such 6-tuple can exist. This
proves Lemma (4.9) along with the following corollary:

(4.13) Corollary: Any (16,256,6) code, C , with QO €C
contains a weight 6 code word, whose complementary vector is
also a code word.

(4.14) Lemma: Any (16,256,6) code, C , with O €C contains
j , the all one vector of length 16

Proof: Let 2z be a weight 6 code word of C , whose

complement j +z 1is also a code word, as guaranteed by



Corollary (4.13). Consider C+2 . Not only are O and

112 weight 6 code words in C+z, but j = (j+z)+z €C+z .

By Lemma (4.9) all the 112 weight 10 code words are
complementary to the 112 weight 6 code words. Since 2z = 0+z
is one of the weight 6 code words in C+z, both 2z and

j+z are code words of C+z . Therefore (j+z)+z = 3j is a
code word of C .

(4.15) corollary: If C is any (16,256,6) code with

0 €C, then the complement of any code word is also a code
word of C .

Proof: Let w be any code word of C , then c+w contains
O and is a (16,256,6) code. Then, by Lemma (4.4), j €C+w .
Therefore w+je€cC .

(4.16) Theorem: (A restatement of Theorem (4.1)): If C

is a (16,256,6) code with 0O0€C , then C contains also
112 weight 6 code words, 15 weight 8 code words, no two of
which are complementary, together with the vectors comple-
mentary to those 1 +112 +15 = 128 code words,

Proof: This is a result of Lemmas (4.2), (4.4) and

Corollary (4.15).

(4.17) Corollary: Any (16,256,6) code, C , with OQO€C,
has the same weight distribution as any of the coset codes
C+z, for any z€C .

Proof: Because C+2z 1is also a (16,256,6) code with

O=2z+2€C+2z , for any zeC, Theorem (4.16) applies,



56.5 Each XNR-Design Builds a (16,256,6) Code in just One

Way

To build a (16,256,6) code from an XNR-design,
Theorem (4.1) requires that the code be complemented, so the
112 needed weight 10 vectors must form the design comple-
mentary to the given design. Then to complete this set of
1+112 +112 +1 vectors to a (16,256,6) code, 30 weight 8
vectors must be carefully selected. 1In trying to establish
Theorem (5.2), which says that these can be chosen in only
one way relative to a given XNR-design, we shall explore a
necessary condition for these "admissible" weight 8 vectors.

(5.1) Define an admissible weight 8 vector to be a weight

8 vector which together with the set of 1+112 +112 +1
vectors given by O , the 112 weight 6 vectors in the given
XNR-design and their complements preserve the distance
condition d>6 .

(5.2) Theorem: Given XNR-design, then admissible weight 8
vectors (by Definition (5.1)) are symmetric differences in
28 ways of two weight 6 vectors from D which share two
coordinate places.

Proof: Let L Dbe the 8-tuple indicated by an admissible

weight 8 vector. By the condition d>6 , L meets blocks

of the XNR-design D in at most 4 places; so bg o= bé o=
L L L L ’ ’
b7’0 = bB,O = 0 . Let b‘,‘,O = x , then the bi,j become:



6.10

(5.3) 112
70 14
42 28 14
24 18 10 4
12+x 12-x 6+x 4-x x
2+5x 10-4x 2+3x 4-2x X (o]
-10+15x 12-10x -2+6x 4-3x X (o] (o)
-28+35x 18-20x -6+10x 4-4x X 0 (o) o
-56+70x 28-35x -10+15x 4-5x X (o) (0] (o) o .

L
(0]

x = 4/5, showing that the b? 3 really are:

b

From -56+70x = Db g>20 and 4-5x = bg‘ 520, we learn that
) s

(5.4) 112
70 42
42 28 14
24 18 10 4
64/5 56/5 34/5 16/5 4/5
6 34/5 22/5 12/5 4/5 o)
2 4 14/5 8/5 4/5 o0 o0
o 2 2 4/5 4/5 o0 o o
o o 2 0 4/5 0 0 o o
From the b?,j values with i+j = |L| = 8 we can now see

that an admissible weight 8 vector meets a weight 6 vector
in either 2 or 4 places. But these bi,j tell us even more.
Let us view the incidence matrix N of the design D as
sectioned into two halves, upper and lower, according to the

8-tuple L . Then we have

Figure (5.5)
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Here the x x 112 matrix A represents those parts of the
blocks of D meeting L, and B represents those parts
missing L . Matrix A can further be divided into two
parts according to its parts of blocks of weight 2 and its
parts of weight 4, After permuting the blocks so that all
the weight 4 parts occur to the left we obtain:

Figure (5.6)

A, A,

B2 B4

Here A = [A4,A2] and A, represents a design of weight
4 blocks on the 8 points of L while 82 represents a
design of weight 2 blocks on the other 8 points (which comprise

the rest of the blocks of D through A4 .)

Since D is a 4-(3,6,16) design, each 3 points of L
must be located in precisely 4 blocks of A . These blocks
must be all in A,, so A, is necessarily a 4-(3,4,8)
design. Since a 4-(3,4,8) design has b2 = 12 while
design D has b, = |L], each pair of points from L must
occur twice as a block in design A2 . Thus, A2 actually
consists of two copies of the complete pair design from 8
points. Denote A2 by [(g),(g)] to indicate that each
pair of points from L is a block of A2 occurring twice,
By exactly the same reasoning relative to the other 8 points,
not contained in L, B, is two copies of the complete (g)—

design, and B, is a 4-(3,4,8) design.

Now we wish to show that the two blocks of B2



6.12

representing any fixed pair of points from the complement L'
of L, are attached to complementary, disjoint weight 4

blocks of A Once this is shown, we have the fact that

4 °
L 1is necessarily the modulo 2 sum or equivalently the
symmetric difference of two weight 6 blocks of D , which
meet each other on two places - the fixed pair from L' .
In fact, since this must be true relative to any fixed pair
of points chosen from L' , L is the symmetric difference

in 28 ways of two blocks of D , which share two places

since 28 = (g) is the number of pairs from L' .

It suffices now to fix our attention on a pair of
points, say points 1 and 2 from L' , the complement of set
L . Choose also an arbitrary point, say a , from set L
itself.

(5.7) Claim: The sub-design of B, corresponding to
exactly those blocks of D passing through B4 and
containing point o is a 1-(3,4,8) design.

Proof: Consider the design A, . This design has b, = 14

1
so a 1is contained in 14 blocks of D which pass through

>

B, . Now consider the design E of the 14 blocks of B4 on
the 8 points of L' . Since blocks of weight 2 in A, and
all containing a differ in at most one place, such blocks
have Hamming distance <2 , when considered as vectors.

Yet blocks of D have Hamming distance >6 . So the 14

blocks of E have Hamming distance >4 . Now
Lemma (4.7.7), applies with [{:E] = z:t so that E 1is a

1-(3,4,8) Steiner system. This proves the Claim (5.7). //



6.13

Since by (5.7) E has b, = 3, the triple of points
{a,1,2} are contained in precisely three blocks of D
passing through A2 . As such, that triple {a,1,2} is
necessarily contained in a unique (1 = 4-3) Dblock of D
passing through A, .

(5.8) This can be interpreted as: Given the pair (1,2}
from L', then each point a of L , the triple {a,l1,2}
is contained in a unique block of D and meeting L in

four places.

Finally, we notice that there are two blocks of D
meeting L' in precisely {1,2} and meeting L in four
places. By (5.8) the 4-tuple parts of the two blocks of D
in question must be disjoint and complementary, relative to
L . This proves the theorem. //

(5.9) Theorem: Each XNR-design builds a (16,256,6) code
C uniquely.

Proof: According to Theorem (4.1) to form an XNR-design D
one must choose the vectors 0O, j, and the 112 complements
of the weight 6 vectors indicated by D . Furthermore, by
Theorem (5.2) one may choose as admissible weight 8 vectors
only those vectors of weight 8 which are symmetric differences
of weight 6 vectors meeting one another on precisely two
places. By the bg,j for a block L of design D , as
listed in (4.6), each weight 6 vector meets exactly one other
block in each of its (g) = 15 pairs; so each weight 6 vector

meets 15 other weight 6 vectors in precisely two places.



Choosing the weight 6 vectors in turn gives
112.15/2: = 840

admissible weight 8 vectors. But again by Theorem (5.2)

each of these must be formed as a symmetric difference in
28 ways, so there are but 840/28 = 30 admissible weight 8
vectors possible. By Theorem (4.1), all of these must be

used to complete design D to a (16,256,6) code. //

$§6.6 Conclusion

Restating the previous Theorem (5.9) in a form more
suitable for later use we have:
(6.1) Theorem: The (16,256,6) code is unique ( up to a
permutation of the 16 points of the design) if the XNR-

design is unique.



CHAPTER 7

Coordinatization of the XNR (16,256,6) Code by V(4,2)

§7.1 Introduction

By Theorem (6.6.1), we need only show that the XNR-
design is unique in order to conclude the uniqueness of
the XNR (16,256,6) code. Proceeding towards this goal we
show in this chapter that the vectors of the XNR (16,256,6)
code can always be viewed as characteristic functions of
dependent sets in V(4,2) , Theorem (5.1). Then combining
Theorems (6.6.1) and (5.1), it can be seen that any XNR-
design is embeddable in V(4,2). This redﬁces the problem
to studying PG(3,2) and V(4,2) in order to see that the
design is unique. Chapters 8 and 9 accomplish this latter

part of the uniqueness proof.

§7.2 Coherent 4-Tuple Vectors

The concept of coherent 4-tuples is important in the
analysis of the design of the weight 8 vectors from the XNR
code as well as essential in building the §(4,7,23) design
from the XNR-design. Briefly described, the coherent
4-tuples are precisely all those 4-sets not contained in any
block of the XNR-design. We shall now define these care-

fully and show that there are 140 such coherent 4-sets

7.1



weight 10 vectors of XNR are precisely the complementary
vectors of the weight 6 vectors of XNR (Lemma (6.4.9)),

any weight 8 vector meets 56 weight 10 vectors of XNR

at distance 6 and the other 56 weight 10 vectors of XNR at
distance 10, respectively. Then by the Theorem (6.4.1),
any weight 8 vector of XNR must meet other vectors of the
set p of weight 0,8, and 16 vectors of XNR at distance
8 or 16. One now sees that the code #5 has minimum
distance 8 and contains, for each x €5 a vector also of
5 and at distance 16 from x . This means that the
complementary vector X+j is necessarily in J» , and that
5 1is therefore complemented. //

(3.4) Lemma: The 30 weight 8 vectors of XNR (16,256,6)
form the columns of a 3-(3,8,16) complemented design with
a>s8 .

Proof: Since the complement of a weight 8 vector is again
of weight 8 and since code 5 1is complemented, the design
C corresponding to the weight 8 vectors of XNR is a

complemented design.

Considering weight 8 code vectors as 0,1 incidence
matrix columns, choose any three of the rows of this
16 x 30 matrix. Assume that these three rows are contained
in at least four blocks, Bl’ 82, B3, and B4 s Wwhere blocks
are the sets of cardinality 8 given by the ones from the

columns of the matrix. Then



$7.3 The 3-(3,8,16) Design with d>8 of the Weight 8

Vectors of XNR (16,256,6) and the Reed-Muller Code

S with Parameters (16,32,8)

(3.1) Given the XNR (16,256,6) code, let S5 be the
sub-code of weight O, 8, and 16 vectors. Then S/ 1is a
(16,1+30+1,d) code for d to be yet determined. We shall
now show, Lemma (3.3), that 4 =8 .

(3.2) B 1is referred to in the literature as the first

order Reed-Muller code of length 16 (cf. Petersen [30],

Berlekamp [3]).

(3.3) Lemma: # as defined in (3.1) has minimum distance
8, and is a (16,32,8) complemented code (i.e. the
complementary vector to each vector of the code is again in
the code).

Proof: By Theorem (6.4.1l), the XNR code contains 30 vectors
of weight 8 and 112 vectors of weight 6 and 10, respectively.
Considering the 6-sets and 8-sets for which the weight 6 and
8 code vectors are characteristic functions, we see from the
generalized block intersection numbers for the XNR-design

b5 of those 6-sets relative to a given 8-set L (cf. (6.5.4))
that L meets 6-sets either in two or four places. More-
over, L meets precisely 2.(2 ) = 56 of the 6-sets in

two places and ~%.(2) = 56 of them in four places.
Translated into terms of vectors, any weight 8 vector of XNR

meets 56 weight 6 vectors of XNR at distance 10 and the

other 56 weight 6 vectors of XNR at distance 6. Since the



which together form a S(3,4,16) design.

(2.1) Let D bDe the XNR-design., Since d 6, bi"o is
equal to 1 for any block L of the design (cf. (6.4.6)).
In other words, each 4-set from the set of 16 points is

contained either in one unique block of D or not at all.

(2) Define a 4-set to be a coherent 4-tuple relative to

D if the 4-set is contained in no block of D . A

coherent 4-tuple vector is then the characteristic function

vector of a coherent 4-tuple.

(2.3) Lemma: The coherent 4-tuples relative to the
given XNR-design D form a 1-(3,4,16) or S(3,4,16)
Steiner system. There are 140 such coherent 4-tuples.
Proof: Since each 4-tuple of D, cf. (2.1), is contained
in at most one block of D , there are (Ef)-llZ(g) = 140
coherent tuples. Any 3-tuple is contained in four blocks

4
of D, say A,,i =1,2,3,4. Since |U A,|
* i=1 1

3-tuple plus the remaining 16-51—1 point form a 4-tuple,

= 15, the

which is contained in no block of D (since the four blocks,

A are the only blocks containing the 3-tuple). Thus

i,
each 3-tuple is in at least one coherent 4-tuple. But an

average indicates

A 140. ( g )
3

Thus, the 4-tuples form a 1-(3,4,16) design. //
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Since |BirﬂBj(\Bk| = 3 or 4, |L)Bi|2_r7, a contradiction.
Therefore no 3-tuple of rows is contained in more than 3
blocks. However,

A 30.(2)

b3=——1-6—— = 3, from (4.1.8)

(3)

Thus b3 = 3 and the design C is a 3-(3,8,16) design.
Finally, since these weight 8 vectors are all contained in

code S with minimum distance 8, C is a 3-(3,8,16)

design with d4>8 . //

§7.4 The Linearity and Uniqueness of the Reed-Muller

(16,32,8) Code S Contained in _XNR (16,256,6)

As a consolidation of the Lemmas (4.3) and (4.4) in
this section we prove:
(4.1) Theorem: The (16,32,8) code S formed by the
weight O, 8, and 16 vectors of a (16,256,6) XNR code is
linear and unique up to a permutation of the 16 coordinates.
(4.2) Lemma: For C being the 3-(3,8,16) design with
d>8 corresponding to the weight 8 vectors in XNR, any

three points of the design are contained in a unique



coherent 4-tuple which is in turn contained in precisely
three blocks of C .

Proof: Choose any weight 8 block B . Choose any three
rows incident with B . There are four weight 6 blocks,
and A incident with these three rows. Each

A, A, A

27 T3 4’
of these Ai meets B 1in exactly 4 places, because the
corresponding weight 6 code vectors meet the weight 8 code
vector in either 2 or 4 places.

This gives
4
(U a)NBl=7.
i=1

Therefore, the 81:-h row incident with B together with
those 3 rows form a coherent 4-tuple of rows. Furthermore,
all of these four rows are incident with B .//

(4.3) Lemma: S is a linear code.

Proof: Consider any two vectors z, and gz, in 5. If
either of these is O or j, or if these vectors are
complementary, then their sum is also in p , since p is

a complemented code.

Let 2, and z, correspond to two non-complementary
weight 8 blocks, B, and B, . Since 2z; and z, are at
distance 8, |Blr]B2| = 4 . Now considering any triple of
rows incident with BlrﬁBz, one can see that BlﬂB2 is a
coherent 4-tuple by Lemma (4.2). But furthermore, the

three rows are incident with also a third block B of the

3
3-(3,8,16) design with d>8 . Therefore



B,NB,NBy = BjNB, = B; 1By = B,NB; .

Let z3 be the weight 8 code vector corresponding to B3 .
Then 2z, +2z, = j+2z, which is in # . Hence, Jp |is

linear. //

(4.4) Lemma: Up to a permutation of the 16 basis coordinate
positions of V(16,2), the code B is unique.

Proof: Since B/ is linear, S can be linearly generated

by a 5 x16 matrix G , where the rows of G are five
linearly independent vectors from D . Choose such a basis
so that j is the first row of G and so that gi,i= 1,2,3,4,
are the other basis vectors. Let B;, i=1,2,3,4, Dbe the

weight 8 blocks corresponding to the z.

z;, i = 1,2,3,4. Since

j is a basis vector

(4.5) |BiﬂBj| =4 i#3, i, j =1,2,3,4 .

Iif |Bir\.BjﬂBk|23 for distance 1i,j,k €({1,2,3,4}, then
Lemma (4.2) implies that |BinBjﬂB~k| = 4, so that

Ei+£j = j+z, . This contradicts the linear independence of
those four vectors.

If |Bimajmak|
1f |BiﬂBjﬂBk|

is 4, contradicting the fact that the linear code S8 has

O, then 2z, +gj = 2, , again a contradiction.

1, then the distance between z; -|-‘_z_j and z,

distance d> 8, Lemma (3.3).

Hence
(4.6) ) IBiﬂBjﬁBkl =2,i73j#k #i; i,3,k€(1,2,3,4} .

If |ir=1131| =2, then z,+z,+2; =z, .

4
If IinBil = 0, then z) +2,+2z; = 3j+2, . Thus we



conclude
(4.7) | N B

Statements (4.5), (4.6), and (4.7) applied in reverse
order show that, up to a permutation of the 16 columns, the

last four rows of G are:

(4.8) 1111011100010000
110110011001000
* =
G 101101010100100
0ll110010110001l0
Hence,
(4.9) i
G =

G*
Since j is always in the linear code S , there is no
loss in generality in assuming that j is also in the
generator matrix G for S5 . Consequently, up to a
permutation of the 16 standard basis vectors for V(16,2),

the (16,32,8) code B/ is unique. //

§7.5 Coordinatization of XNR by Points of V(4,2)

(5.1) Theorem: There exists an isomorphism:

a:v(le,2) + 2V(4:2)

so that a maps the standard basis vectors of V(16,2) to
the points of V(4,2) and so that each of the code vectors

in XNR (16,256,6) become characteristic functions of



linearly dependent sets in V(4,2) .

This theorem shall be proved by Lemmas (5.4) and (5.8)
which tell more than what appears in the statement of
Theorem (5.1). In particular these lemmas show that the
XNR code contains the Reed-Muller first order code of
length 16 and is contained in the extended Hamming code of
the same length. The other lemmas in this section describe
in detail the nature of the linear dependent sets in
question.

(5.2) Let G be a generator matrix for the linear
(16,32,8) code p as given in (4.9). Then define a code
8 to be the orthogonal code to 8 in V(16,2):

(5.3) X€EQ o Gx =0 .

(5.4) Lemma: & D XNR D 5 .

Proof: That XNR o 5 is by definition. 4§ depends only
on 5, not on all of XNR, and, in fact, 84 is the
orthogonal space to S/ in V(16,2) . Since each weight 8
vector of XNR meets weight 6 and 10 code words of XNR in
an even number of places, and meets other weight 8 code
words in an even number of places, S/ 1is orthogonal to

XNR . Hence @& O XNR. //

We now define the mapping @ needed for Theorem (5.1).

Let G* be the matrix G less the row j . Then as
in (4.8), up to a permutation ¢’€816’ the symmetric group
of all permutations of the 16 standard basis vectors of

vV(16,2), G*, can be given as:



(5.5) (000000001 111111 1]
0000111100001111
0011001100110011
0Ololololololo1lo {

-

For the matrices G and G* as given above, define
the one to one correspondence:

(5.6) a:e; +ale;) = {p;} cV(4,2)

where e; = (0,0,...,1,0,...,0), the basis vector of V(16,2)

with a single one in the ish place, and where B; is the

ig—1 column of G* . Now extend this definition linearly
to all vectors of V(16,2) by

16
(5.7) a(i2=31 x.e:) =U(R; | ¥

1} .

For example, a(gl-fgz) = {RysP,} . Thus, a is a well-

defined linear map of V(16,2) onto 2V (4:2)

(5.8) Lemma: g is the Extended Hamming code EA of

length 16.

v(4,2)

Proof: Define the subsequent map: B : 2 -+ V(4,2) by

BU{r;})) =2Zp; =py €V(4,2), 1,5 =0,1,2,...,15 .

Then PBOa, the composition of first o and then B, is
a linear homomorphism of V(16,2) onto V(4,2) so that
(5.10) (BOa)x = G*x .

It follows from the fact that G* is the matrix G less
the row containing j and the definition of ¢, (5.3),

1

that 4 « (BOa) ~(0) . Therefore all vectors of 4§ are

characteristic functions of dependent sets in V(4,2) .



But moreover since vectors of § are also orthogonal

to j as well as merely G* , the entry in the By
coordinate place is either 1 or O so as to make the weight
of the entire vector even. So combining Lemma (2.6.3)
with this last statement, @& is necessarily the parity

check code E; of the Hamming C, of length 15. //

For the rest of this section assume that the map a
is defined as in (5.6) and (5.7) and is that described in
Theorem (5.1).

(5.11) Lemma: The weight 6 vectors of XNR are the
characteristic functions of 112 of the 448 possible
dependent 6-sets in V(4,2). These dependent 6-sets are
symmetric sums of pairs of planar 4-sets in V(4,2) which
span all of V(4,2) and which intersect in one point.
Proof: We have seen in Lemma (5.3.3) that there are 448
dependent 6-sets in V(4,2). Since by Lemma (5.4) and

Theorem (5.1), XNR c C all the weight 6 vectors of

4 s
XNR correspond to some (in fact 112) of the possible

dependent 6-sets in V(4,2).

Let a typical dependent 6-set be {51’52’53’54’55’56}’L .
Choose any three of these, say {51,52,53} = M . Then there
is a unique fourth point X from V(4,2) so that MLJ{§7}
is a dependent 4-set in V(4,2). Note that X is not
already in L since a dependent 6-set by Lemma (4.5.8)
was shown to have no four of its points in a plane. If

Xg is the unique point completing L\M to a plane then
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set union ((L\M)U{xg})UMU{x;}) = {x; |i=1,...,8] is
also dependent. Then the symmetric difference

LA {x; |i =1,...8} = {x4,%g} is also dependent. Then the
symmetric difference LA({x. | i = 2,...,8} = {x5,%x3} is
again dependent showing that Xg = Xy . In this way, L

is the symmetric difference of two planar 4-sets sharing
one point. Finally these two planar 4-sets span V(4,2)
because their union contains L which spans V(4,2) by
Lemma (4.5.8). //

(5.12) Lemma: Under a , coherent 4-tuple vectors defined
from the weight 6 vectors of XNR (cf. Definition (2.2))
are the characteristic vectors of all the 140 planar 4-sets
in V(4,2) .

Proof: Let L be any 8-set of V(16,2) corresponding to
a weight 8 vector of XNR , and let C be the 3-(3,8,16)
design with d>8 of all such 8-sets. Let B be any

coherent 4-tuple. Viewing the generalized block intersection
B

i,]
4-tuple B we have:

numbers b for the design C relative to the coherent

(5.13) 30

15 15

7 8 7
3 4 4 3
X 3-x 4+x 3-x x
where bg o= %X - By Lemma (4.2), if any three points of
2
B are contained in L, Bc L , we have bg 1-0= 3-x so
s
o

that x = 3 . Consequently b1 3 = O and B meets every
I

block of C in an even number of places. Therefore for



every coherent 4-tuple vector v e€V(16,2), v is orthogonal
to the code 5 of all weight 0,8, and 16 vectors of XNR,
Hence, v e€g = E4 by Lemma (5.8) and v 1is a characteristic
vector of a dependent 4-set or planar 4-tuple in V(4,2) by
Theorem (5.1). Since there are 140 coherent 4-tuples and
the same number of planar 4-sets in V(4,2), a 1identifies
these sets. //

(5.14) Lemma: Under a , weight 8 vectors of XNR are
characteristic functions of the 30 copies of V(3,2) in
v(4,2).

Proof: Again using Lemma (4.2) we shall see that if three
points of V(4,2) of a planar 4-set are contained in the
image 8-set under a of a weight 8 code word in XNR, then
all four points of that planar 4-set are contained in that
8-set. This implies that each 8-set arising in this way is
the linear span of its points. Since any 8-set in V(4,2)
contains four independent points, the span of these is a
V(3,2) which must coincide with the 8-set. There are 30
copies of V(3,2) in V(4,2), so a identifies these
sets. //

(5.15) Theorem: The stabilizer group of $ in 816 (the
symmetric group of all permutations of the 16 coordinates of
V(16,2)) is a degree 16 representation of Aut(v(4,2)) .
Proof: Let vy = pfoa:V(16,2) + V(4,2) for a as in (5.6)
and (5.7) and for B as in (5.9) be the linear

homomorphism given by

y(x) = (BOa) (x) = G*x
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with a,B, and G* as in (5.5) . Aut(vV(4,2)) 1is the
set of motions § of V(4,2) preserving linear
dependency. Thus, for each § €Aut(V(4,2)), y-lt €Sy¢
and y-l stabilizes § . Since Y-IW(G*) = G* only if
vV =1, the group 4 c 56 which stabilizes ¢ has no
more elements then the number of distinct generator matrices

i

G = for 5 .

G*
This number is 30.28.24.16, since that is the number of
ways of choosing 4 linearly independent vectors of 5 that

together with j form a basis of "5 . Consequently,
|&| £30.28.24.16 .

But & contains a subgroup isomorphic to Aut(V(4,2))

which has the same order. Hence g = Aut(v(4,2)). //



CHAPTER 8

Coordinates for Lines of PG(3,2)

§8.1 Introduction

In order to show the uniqueness in Theorem (9.5.1)
of the XNR-design within the context of V(4,2) and
PG(3,2), we need to use the fact that the alternating
group A7 operates transitively on the 35 lines of PG(3,2).
Therefore we shall establish in this chapter the classical
isomorphism PLS(4,2) -~ A8 and determine eight coordinates

for lines of PG(3,2) .

The classical isomorphism making possible the needed
coordinatization was early known to group theorists,
(cf. Dickson [13], and as early as 1910 was interpreted in
a geometrical context by Conwell [10]. Perhaps this
geometrical representation was forgotten, for the same sort
of work was duplicated by Edge [14] in 1954 and just
recently duplicated independently (for different goals) by

Jonsson in [19] and Seidel in [5] and [6].

A seven coordinate system for lines of PG(3,2) was
introduced by Gleason in a very efficient manner in 1952
(cf£. Wagner [38]). This development would suffice for our

purposes, but we shall instead develop these coordinates in

8.1



a new manner which will lend a bit more insight into the
geometric counterparts of these seven and eight coordinates

for lines of PG(3,2).

§8.2 Finding PG(5,2) within V(8,2)

(2.1) Given V(8,2), consider the set of all even
weight vectors. These form a V(7,2) within V(8,2), in
8

fact, the hyperplane Z}zi =0 .
i=1

(2.2) Define a relation "." by

X~y 1if y=x or y=x+j, where j 1is the

all-one column vector of length 8.

(2.3) This relation is easily seen to be an equivalence
relation. Now define "+" and "." for these
equivalence classes:

(2.4) <x> +<y> :=<x+y> XxX,YyeVv(7,2)

(2.5) A XD> 1= < AXD xX€V(7,2), A €GF(2) .
Now it is clear that the set of equivalence classes under
~ Oof V(7,2) with the "+" and "." operations defined
in (2.4) and (2.5) form a V(6,2) .

(2.6) Finally by restricting our attention to the

vector equivalence classes other than < 0> we have a copy
of PG(5,2) contained in V(8,2) .

Remark: This relatively strange way of locating PG(5,2)
within V(8,2) 1is contrived so that we can within this

setting show PSL(4,2) = Aa .



§8.3 The Klein Quadric

The 128 vectors in V(7,2) considered in (2.1) have
length 8. There are (2) = 70 weight 4 vectors, (g) = 28

weight 2 and weight 6 vectors, plus the O and j vectors.
It is convenient to subdivide these by
8
(3.1) Qlx) = 2 X;Xy = O where X = (x7,X5,...,Xg) .
1<3J
Then vectors of weights 0,4, and 8 have q(x) = O and the

others have Q(x) =1 .

The quadratic form ( has the property that
(3.2) Q(x) = 0 iff (j+x) = 0 for xeV(7,2) .
Because of this, (O is well defined on equivalence classes,
<xXx> , under . as defined in (2.2). Thus, choosing
representative vectors of these equivalence classes to be
of weights 2 and 4 we see that in PG(5,2) (cf. (2.6)):
(3.3) Q(<x>) =1 iff x has weight 2 ,

Q(<x>) = 0 iff x has weight 4 .

We can relate the quadratic form ( given in (3.1)
to the Klein quadric (cf. [1] or [35]) in PG(5,2) as

follows.

Under the transformation:
(3.4) Y, = x3+x5+x8 s Y5 = X5 +X3 +Xg
Y, = x‘,.+x6+x8 » Yg = xl+x4+x7
y3 = x2+x6+x.7 » y7 = x2+x4+x5

1+x5 +x8 » Yg = X +x3 +x6



8
(3.5) i?)xix] = le2+Y3Y4+Y5y6+Y7y8
showing that ( is a hyperbolic quadric (cf. [1] or [35])
in V(8,2). This transformation maps even weight vectors

onto even weight vectors and the all one vector onto itself.

Then by considering the equivalence classes under -~
(in (2.2)), one may set
(3.6) Yg = o)
and see that () = O corresponds to

(3.7) y1y2-+y3y4-+y5y6 =0 in PG(5,2) .

This statement (3.7) is equivalent to E. Artin's
definition of the Klein quadric in PG(5,q) for q = 2,
cf. (1] . Therefore we may define:

(3.8) K = the Klein quadric = {< x> €PG(5,2) | n(<x>~) = 0}

or equivalently, due to (3.3).

(3.9) K = the Klein quadric = {< x> €PG(5,2) | |x| = 4} .

§8.4 Graph Theory Definitions

(4.1) A graph is a pair (X,E), where X is a set of
elements called vertices, and E 1is a set of pairs of
elements from X called edges.

(4.2) The edges determine an adjacency relation, so that

two vertices, Vis Vo of (X,E) are adjacent iff the

pair {vi>V,1 is an edge.

(4.3) A graph is connected if there exists a finite

sequence of edges of the form {[vl,vz},{vz,v3},...,{vn_1,vn}}

for each pair of vertices vy and v in (X,E)



(4.4) A complete graph is a graph whose edge set contains

all pairs of vertices.
(4.5) A clique in a graph (X,E) is a complete sub-graph.

(4.6) A maximal clique in a graph (X,E) 1is a clique

which cannot be augmented by another vertex and remain

a clique.

§8.5 The Graphs G and H and their Maximal Cliques

In our representation of PG(5,2) within V(8,2)
given by (2.6), we have the Klein quadric, K, given in
(3.8). On K and off K we may define two graphs G
and H as follows:

(5.1) Let G = (xG,EG) be the graph whose vertices are
the 35 points of K and whose edges are given by the

adjacency relation:

< X> is adjacent to <y> iff QQ(Kx+y>) =0

for all <x> and <y> on K .

(i.e. for all <x> and <y> so that Qq(<Kx>) = Q(<y>)=0.)
(5.2) Let H be the graph H = (XH,EH) whose vertices

are the 28 points of PG(5,2) of K, i.e. those <x> of
PG(5,2) so that (<x>) = 1 , and whose edges are given by

the adjacency relation:

<X> 1is adjacent to <y> iff Q(Kx+y>) =1
for all < x> and <y> so
that Q(<x>) = a(Ky>) =1 .



Then choosing representatives of the equivalence
classes, <X, , to be weight 2 or 4 vectors of V(8,2), as
in (3.3) we see that equivalent definitions of the
adjacencies for G ‘and H can be given as:

(5.3) < x> 1is adjacent to <y> in G iff <<x+y> is
also of weight 4 (as both <x> and <y> are),
(5.4) <x> 1is adjacent to <y> in H iff <<x+y> |is

also of weight 2 (as both <x> and <y> are).

Consider now cliques in G . These by Definitions
(3.9), (5.1), and (5.3) are sets T of equivalence classes
of complementary weight 4 vectors in V(8,2) with mutual
Hamming distance exactly equal to 4. By Lemmas (4.7.7) and
(4.7.8) such a set T is a §S(3,4,8) whose 7 sets of
complementary weight 4 vectors form a clique in G which is
maximal, by Lemma (4.7.6). .Thus, we have:

(5.5) Lemma: Maximal cliques in G are precisely all the
sets of 7 points of the Klein quadric K (cf. (3.8)) in
PG(5,2) so that their 14 vector representatives from V(8,2)

form all the distinct §S(3,4,8) designs T in V(8,2) .

Maximal cliques in H are easier to handle. Vertices
of H are equivalence classes of complementary pairs of
vectors of weight 2 and 6 in V(8,2), by (3.3). Furthermore,
two such classes are adjacent iff their weight 2 representa-
tive vectors share preciesly one coordinate with entry 1
from GF(2), by (5.2) and (5.4). Then considering simply

the combinatorics of choosing representative vectors in a



maximal clique one obtains:

(5.6) Lemma: Maximal cliques in H are of two types:
Type 1l: three vectors whose vector sum is <0O>
Type 2: seven vectors no three of which sum up to

<O0> .

Proof: If a third vector in the clique is the vector sum

in V(6,2) of two others in the clique, then the maximal

clique of Type 1, containing these three vectors, is simply

this set of three.

If no vector of the clique is the vector sum of any
two of the others in the clique, then all vectors of the
clique of Type 2 must, in the V(8,2) representation, share
a fixed coordinate with value 1. Since there are 7 other
coordinates possible for the second coordinate with value 1
for the weight 2 representative, such maximal cliques have
7 vectors. //
(5.7) From the vector sum definition of linearity in
vV(6,2), <x>, <Y>, and <z> are collinear iff <x> +<y> +
<z> =<0> and iff <2> =<x>+<{y> =<x+y> (by
(2.4)). This leads to geometric interpretations of maximal
cliques in G and H:
(5.8) Lemma: Maximal cliques in G correspond to coplanar
sets of seven points all contained in the Klein quadric K .
Maximal cliques of H of types 1 and 2 correspond
respectively to lines completely disjoint from K and to
sets of seven points not on K which form a simplex in

v(e,2) .



Proof: By (5.7) and (5.1), maximal cliques in G are the
linear spans in PG(5,2) of the 7 points; hence, the points
must form a Fano plane completely contained on the Klein

quadric K .

By (5.6) and (5.7) each Type 1 maximal clique in H is
a line of PG(5,2) disjoint from K while Type 2 maximal
clique is a set of seven points off K , no three of which
are collinear, no four coplanar, no five in a V(3,2), no

six in a V(4,2); i.e. a simplex. //

§8.6 Sg = Aut(G) = O (+,2) = Aut(H)

In the setting of PG(5,2 ¢ V(8,2) given in Section 8.2,
it is particularly easy to establish the isomorphic action of
Sg » the symmetric group of all permutations of the 8 coordinate
places of V(8,2), with 66(+,2), the group of all motions of
PSL(6,2) stabilizing the Klein quadric. The following series
of lemmas will complse Theorem (6.4) which says that
Sg = Aut(G) =~ —g(+,2) ~ Aut(H) for graphs G and H as
defined in (5.1) and (5.2), and for the Klein quadric defined
in (3.8).

(6.1) Lemma: If ¢>€88 fixes each vector of V(8,2) of

a given weight class k ¥ O, 8, then ¢ is the identity
permutation of Sg -

Proof: Let R be the set of all weight k vectors of V(8,2).
Since all weight k vectors are present, it is possible to

find a pair of weight k vectors agreeing on all but two

coordinate places, and this coordinate pair may be



arbitrarily chosen. Since ¢ fixes all weight k vectors,

¢ fixes all weight 2 vectors, and the problem reduces to the
case where k = 2., Let S be the set of all weight 2 vectors
in V(8,2) . Because in S one can find a pair of weight 2
vectors sharing precisely one coordinate with value 1 and
disagreeing on any given pair of other coordinate places and
because ¢ stabilizes each pair of coordinate places, ¢ must
fix each of the coordinates of that pair. Hence ¢ =1 ESB . //
(6.2) Lemma: Sg is isomorphic to a subgroup of PSL(6,2)
which fixes the Klein quadric (defined in (3.8)), hence

Sg < 66(+,2).

Proof: For any o¢€Sg , o fixes O and j . Since j is
fixed, ¢ operates in a well-defined fashion on complementary
pairs of vectorsof V(8,2), Since O is fixed, ¢ operates
on PG(5,2) and so Sg € PSL(6,2) . Furthermore, o
stabilizes the sets of weight 2 and weight 4 vectors which are
representatives of the equivalence c¢lasses which are points of
PG(5,2) and that set of weight 4 classes is precisely the
Klein quadric K as defined in (3.7). So q>efk(+,2), the
stabilizer group within PSL(6,2) of K . Finally, this
representation of Sg within 56(+,2) is faithful if o
fixes all points of PG(5,2), ¢ fixes all the points not on
K, i.e. fixes the weight 2 vectors of V(8,2) . Then by
Lemma (6.1), ¢ =1 €5g . //

(6.3) Lemma: 88 operates faithfully as a subgroup of

each of the groups Aut(G) and Aut(H) , where the graphs

G and H are defined in (5.1) and (5.2).



Proof: Any ¢ €Sg preserves linearity of V(8,2) and

fixes 0 and j . Therefore, by Lemma (6.2), o

preserves linearity in PG(5,2). Since ¢ also stabilizes
each weight class of vectors in V(8,2), ¢ then preserves
the adjacencies in graphs G and H according to (5.3)

and (5.4). The proof follows by applying Lemma (6.1) and

the fact that vertices of G and H correspond respectively
to weight 4 and weight 2 vectors. (For the graph G it is
important, in order to use Lemma (6.1), that all 70 weight

4 vectors must be fixed. But if 35 representative weight 4
vectors are fixed, the fact that j is fixed assures us

that the complementary 35 weight 4 vectors are also fixed. //

(6.4) Theorem: S, = Aut(G) = 36(+,2) ~ Aut (B) .

8
Proof: By Lemmas (6.2) and (6.3) we have the faithful
injection of S8 into each of these groups. Each non-
adjacent pair of vertices in G determines by linearity

in PG(5,2) a unique point not on K with a representative
weight 2 vector from V(8,2). So each motion ¢ € Aut(G)
induces a unique motion of 56(+,2) c PSL(6,2), which

agrees with ¢ on G and preserves linearity. Similarly,
since any two non-adjacent vertices in H determine by
linearity a unique vector of weight 4 in V(8,2) and hence
a unique point of PG(5,2), each @ e€Aut H induces a

unique motion 56(+,2) c PSL(6,2) agreeing with ¢ on H
and preserving linearity. If p is any motion of 0 (+,2),
then p in turn induces a unique motion of V(8,2)

preserving linearity, stabilizing complementary pairs of



vectors of V(8,2) and fixing O and j . Hence we can
inject each of the groups Aut(G), Aut(H), and 66(+,2)
into 58 . Finally, these injections are faithful,

completing the proof. //

Used in the proof is the following fact that will later
be referred to:
(6.5) Corollary: Each ¢ €Aut(G) extends to a unique
motion ¢* of A8 which stabilizes 0, j, equivalence
classes of complementary pairs of vectors in V(8,2) and

preserves linearity.

§8.7 s is l-Transitive and Ag is %-—Transitive on the

Maximal Cliques of Graph G

®

8 |

It is well known that the Fano plane, PG(2,2) of 7
points and 7 lines, is combinatorially unique and has an
automorphism group of order 168 (cf. [8]). This means that
regardless of the numbering of the points of the plane, any
two such planes are isomorphic.. Allowing S7 to operate on
these 7 points produce 7!/168 = 30 distinct but isomorphic
numbering schemes. The fact that these are isomorphic can
be restated as the fact that S7 operates on the set of
30 distinct numberings of Fano planes giving one orbit. The
most succinct development of this fact is given by Wagner

[38].

Rather than quoting the literature, we shall prove the

needed result in the context of coding theory.



(7.1) Lemma: Given any S(3,4,8) design T , then its

14 vectors from V(8,2) together with O and j form a
linear (8,16,4) code.

Proof: Since for any §(3,4,8) design each triple occurs
in exactly one block, two blocks share at most two places
and have Hamming distance >4 . Augmenting the 14 vectors
of T by O and j does not destroy the distance 4 4
property, so the set of 16 vectors forms an (8,16,4) code,

c.

According to the generalized block intersection numbers
for this design relative to a block L of the design (cf.
(4.7.9)), each block is complemented, so, for each x €C, x+j
is also in C . Furthermore, since blocks of T meet one
another in exactly 2 or O places by (4.7.9) and since each
of ’_o_ and j meet all other vectors in C at distances
4, or 8, we see that two distinct code vectors of C are
either at distance 4 from one another or are complementary.
If two vectors are complementary, their sum is j €ec . If
two vectors x and y are not complementary, they meet on
two places. Since b2 =3 for a S(3,4,8) design, there is
a third vector 2z sharing with x and y those two places.
But since d> 4, the remaining places of x,y, and 2z
take care of the 6 other coordinate places of V(8,2). As
such x+y = z+j which, in turn, is in C . Therefore, C
is linear. //

(7.2) Lemma: A linear (8,16,4) code C is unique up to



a permutation of the 8 coordinate places of V(8,2).

Proof: Choose a basis B for the linear subspace C of
V(8,2) so that the all-one vector is among those basis
vectors, R = [1,51,52,53} . Let G be an 8 x4 zero-one
matrix whose columns are the vectors of 5, i.e. G is a
generator matrix of C . The linear independence condition
on basis vectors forces X1, X, and X4 to be of weight 4
and to meet one another on precisely two places, i.e.

%, .%x| =2 for i,j=1,2,3. But |x .xX,.%| =1,

51
because if x,, x,, and x3 (i.e. |x, .X,.X,| = 2) meet on

two places, x3+j = X, +x, and if they meet mutually on no

places then Xy = X, +Xx, contradicting linear independence.

Now three permutations can be found in Sg s @5 ¥y P,

so that ¢; permutes x, to (§1¢1)T = (00001111 )T,
so that @, Stabilizes X,9, and permutes X9 to X,0,0,

)T =

T
so that (x,9;0, (00110011)7, and so that ¢,

stabilizes both x,¢, and X, 9, and moves Xip,p, to

§3¢1¢2¢3 with (§3¢1m2¢3)T = (01010110 l)T . Thus G-

always can be put in the form
(7.3) (11111111
00001111

00110011
0lololo1 .
-

-

This shows that C is unique up to a motion of Sg - //
(7.4) Lemma: §S(3,4,8) is the design of the dependent
4-set in V(3,2).

Remark: This lemma is quickly proved in either of two ways:

Proof 1: Given V(3,2), each triple of vectors completes
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uniquely to a dependent 4-set, so the dependent 4-sets form
an S(3,4,8), which by Lemmas (7.1) and (7.2) must be
unique,

Proof 2: Given a design §S(3,4,8) and its spanning code C,
one can see via the b? . for a block L of the design
S(3,4,8) (cf. (4.7.9)),that all blocks meet in an even
number of places. Therefore in C, all vectors are
orthogonal to all other vectors from C . In this way code
vectors of C are the characteristic vectors of dependent
sets in the V(3,2) which vectors are rows of G (columns
of GY) as in (7.3). //

(7.5) Theorem: 88 operates transitively on the set

of 30 copies of S(3,4,8) in V(8,2).

Proof: We see via Lemma (7.2) that a design §S(3,4,8) is
given by the set of weight 4 vectors in the linear span of
the matrix G of (7.3). We shall count the number of
distinct but isomorphic copies of §(3,4,8) in V(8,2)
under the action of 58 by counting the number of ways of
obtaining the generator matrix G . From the complete
design of all 4-tuples from the set of 8 coordinates of
V(8,2) we must choose vectors X1, X5, and x, which will
together with j form a generator matrix isomorphic to G .
There are 70 ways that X, can be chosen. The number of
vectors x, is then the number of 4-tuples from 8 that
meet the 4-tuple corresponding to X in exactly two places.

8-4)

This number is (g) . (4_ = 36; Then the number of

vectors x, that can be chosen to meet x,.X,,X;.({+X%LX, (j+X,),



and jg+§l-+§2-+§1§2,(i.e. the four disjoint pairs
determined by x, and 52) in one place each is 24 =16 .

Hence there are 70.36.16 matrices G .

Next we count the number of matrices G that correspond
to a particular S(3,4,8) design, T. From T, the X, may
be chosen in bo = 14 ways, for the second, since j, X;
and X, must be linearly independent, x, may not be the
vector j+x, of T . Therefore, x, may be chosen in 12
ways. Similarly due to the linear independence of
B = {1,51,52,53}, X3 may be chosen from T in 14-6 = 8 ways
as the vectors X1:Xy,%; +X,, and their complements may not

be chosen.

Therefore, there are 70.36.16/14.12.8 = 30 distinct
copies of §S(3,4,8) under the transitive action of 88 on
these 30 copies. //

(7.6) Corollary: The design S(3,4,8) has an automorphism
group of order 8.7.6.4.

Proof: There are 14.12.8 = 8.7.6.4 motions under Sg

which stabilize a given §(3,4,8). //

(7.7) Theorem: Ag acts %-—transitively on the 30 copies
of §S5(3,4,8) in V(8,2), yielding two orbits of 15 copies
each,

Proof: Consider (as in the last Theorem (7.5)) the generator
matrix G (7.3) of a S(3,4,8) design T . Given the two
vectors X and X, of G , there are 16 ways of choosing

the vector x, as we saw in the proof of Theorem (7.5).



But considering the design T , the 4 vectors
Xy X +Xq,Xy + X3, X) +Xy +X4, and their complements all

meet the two vectors X, and x, in such a way that each

of these 8 vectors shares just one 1 with each of the pairs
Xy Xy5X, - (1+x5),%,. (J+x,), and j+x, +x, +X,%, .
Therefore, the set {1,51,52} can be complemented in 16 ways

to generate 16/8 = 2 distinct copies of §(3,4,8) .

Cconsider now the set of automorphisms ¢ eAa which
stabilizes x, and x, . There are 2% = 16 motions in Sg
stabilizing {51,52} and therefore the 8 motions of Ae
which stabilize {51,52} must yield 8 ways to complete
{j,gl,ze} to generate 8/8 = 1 unique §S(3,4,8). 1In other

words, under A8’51 and X, determine a unique copy of

s(3,4,8).

Considering just X5 this vector set {j,gl} completes
to  {i,X%X;,X,,%X3} in 36.16 ways giving 36/12.16/8 = 6
copies of S(3,4,8) all sharing X, - But (j,gl} completes
then to only 36/12.8/8 = 3 copies of §8(3,4,8) under the

action A8 .

Similarly under Ae, {i} may be completed to G in
70.36.8 ways giving 70.36.8/14.12.8. = 15 copies of
$(3.4.8) in an orbit under the action of Ag . //

(7.8) Corollary: Under the action of Ag on the 30
copies of S(3,4,8), all distinct copies T and S of

S(3,4,8) within one orbit share exactly one pair of



complementary vectors [gl,jg+§1] .

Proof: We see within the proof of Theorem (7.7) that the

set {j,gl}, completes to 3 copies of §(3,4,8) under the
action of Ag all of which copies share only x, and the
complementary vector jg+51 . (Since if S and T were to
share x, and x, #’jgﬁgl, then S = T due to the fact

that {j,gl,zz} completes uniquely to a copy of §(3,4,8)
under the action of AB‘) //

(7.9) Corollary: Each pair of equivalence classes of 4-tuples
from V(8,2) and adjacent in G is contained in two copies
of S(3,4,8), one from each of the two orbits under action

of A8 .
Proof: Within the proof of Theorem (7.7) we saw that each

pair of complementary 4-tuples was contained in two copies

of §S(3,4,8). //

§8.8 Finding PG(3,2) within the Klein Quadric K

Thanks to the construction given in Section 8.7 we may
now locate the points and lines of PG(3,2) to be the 15
maximal cliques in G wunder the action of Ae and the 35
points of K , Theorem (8.8). As an immediate byproduct
of this approach we obtain a proof of the classical group

isomorphism Ag = PSL(4,2) , Theorem (8.10).

Let K Dbe the Klein quadric as defined in (3.8) and G
be the graph as given in (5.1).

(8.1) Remark: AB acts %w-transitively on the 30 maximal



8.18

cliques in G giving two orbits of 15 maximal cliques each,
since the statement is merely a translation into terms
relative to G of Theorem (6.4), Lemma (5.5), and Theorem
(7.7).

(8.2) Let M be a fixed one of the orbits of 15 maximal
cliques in G under the action of Ag .

(8.3) Lemma: In M each point P of K (each vertex of
G) 1is contained in precisely three maximal cliques of G .
The 3.(7-1) = 18 points other than P on these three
maximal cliques are precisely all the vertices of G adjacent
to P .

Proof: Interpreting Definition (3.9) and Corollary (7.8)
into terms relative to G , one learns that each vertex of

G (each complementary pair of weight'4 vectors in V(8,2))
is contained in precisely three maximal cliques of G

(copies of S(3,4,8) in V(8,2)) under the action of AB .
Furthermore, given a weight 4 vector x of V(8,2)
corresponding to a vertex P of G , the number of vertices
Q of G, which are adjacent to P is the number of ways of
choosing representatives y of distinct equivalence classes
of complementary vectors of V(8,2) with weight 4 which
representatives meet x on two places, i.e. |§,.x‘ =2 .,
(This is seen from (3.9).) The number of vectors y meeting
X on two places is (g) . (g) = 36, but these fall into

18 classes of complementary pairs of weight 4 vectors, each
representative of which meets x on two places. So P is

adjacent in G to 18 vertices Q . Since the three maximal



cliques through P under A8 are in one orbit, these
maximal cliques share only P with one another due to
Corollary (7.8). Hence contained in these cliques are
3.(7-1) = 18 other distinct vertices of G , each being
adjacent to P . So all the vertices Q of G adjacent

to P lie on these three maximal cliques. //

By Lemma (8.3) we may now define a design ¢ as
follows:
(8.4) Let points of ¢ be the maximal cliques of M
(defined in (8.2)). Let blocks of ¢ be the sets of
three maximal cliques of M which share mutually a single
point. So a point of ¢ 1is incident with a block of ¢ if
that maximal clique is contained in the set of three maximal
cliques forming a block.
(8.5) Call blocks of @ 1lines. Two lines of ¢

intersect if they share a point of ¢ .

We have the correspondence of points of K (vertices
of G) with lines of ¢ . We shall now proceed towards
showing that points and lines of ¢ are the points and
lines of PG(3.2).

(8.6) Lemma: Vertices of G are adjacent iff the
corresponding lines in ¢ intersect.

Proof: Let P and Q be two adjacent vertices of G .
By Lemma (8.3) there is just one maximal clique, 7 , of G
through P and containing Q . So 7 is the maximal

clique of M containing both P and Q . Hence, the lines
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corresponding to P and Q in ¢ intersect. Conversely

if two lines of ¢ intersect, the corresponding vertices P

and Q of G 1lie on a maximal clique of M and are, by the

definition of a clique, adjacent in G . //

(8.7) Theorem: The points and lines of ¢ form the points

and lines of PG(3,2).

Proof: It is well known (c.f. Veblen and Young [37] and

Dembowski [11]) that PG(3,2) is characterized by the

following axiom system:

(i) Each two points determine a line.

(ii) Each two lines intersect in at most one point.

(iii) There are three points on each line.

(iv) (Pasch Axiom) Given any three non-collinear points and
the three lines determined by these points, if another
line meets any two of these lines then it meets also the
third.

(v) There are 15 points.

From Lemma (8.3) follows (iii). Axiom (v) is by
definition. Axiom (ii) follows from the fact that each
adjacent pair P,Q of G is contained in precisely one

maximal clique of G , due to Lemma (8.3).

In order to verify Axiom (i) we proceed as follows.
A maximal clique 7 containes 7 points (Lemma (5.8)) and
each of these points is contained in three maximal cliques
of M, an orbit under Ag by Lemma (8.3). So counting,

there are 2. (7) = 14 other maximal cliques in M meeting



on a single point. Since A8 is transitive on M, (i)

follows.

Axiom (iv) follows from the existence of maximal
cliques in G other than those from M . Let Tys Moo
and T be three non-collinear points of ¢ (i.e. three
maximal cliques in M). Let U VIRIEY and Ly3 be the
three lines of ¢ determined by those points and let P12’
and P

P be the corresponding vertices of G (these are

13’ 23
distinct since the points Ty s Moo and Ty are not
collinear). If g is any other line of & meeting two,
say 4, and 4135 lines from {312,113,323}, then the
corresponding point P of G is by Lemma (8.7) adjacent
to both Pis and P13 - But vertices P,y and P,, are

in a unique clique of M due to Lemma (8.3), so that

P’P12P13 and P23 are all adjacent. Then again by

Lemma (8.7), lines g4 and L,3 meet. //

(8.8) Corollary: The 15 maximal cliques of G other than
those of M correspond to the 15 planes of ¢ = PG(3,2).
Proof: By axioms (iv) and (v) 15 planes of ¢ exist., Each

of these is then a set of 7 lines of ¢ mutually intersecting.
By Lemma (8.7) these 7 lines correspond to a clique of G ,

but not to a clique of M. //

(8.9) Corollary: Three vertices of G which are

mutually adjacent are collinear in PG(5,2) iff they

correspond to planar fans of lines in PG(3,2), i.e. three

lines that are concurrent and coplanar.



Proof: By Lemma (7.9) two adjacent vertices of G are
contained in two maximal cliques, one from each orbit under
AB . Three adjacent vertices which are also collinear are
therefore contained in two maximal cliques one corresponding
to a point and the other to a plane of PG(3,2) . //

(8.10) Theorem: A8 >~ Aut (G) =~ PSL(4,2) .

Proof: PSL(4,2) is by definition the group of collineations

of PG(3,2) .

Ag < PSL(4,2): Let o €EAg , then ¢ induces an

automorphism of G moving vertices while stabilizing each
of the sets of points, of lines and of planes. Because of
Corollary (8.9) and the fact that ¢ preserves linearity in
PG(5,2) and adjacency in G, 5 preserves linearity in
PG(3,2) .

Conversely:

PSL(4,2) c A Let ¢ €PSL(4,2), then ¢ induces a

88
motion ¢* of G stabilizing each of the orbits of maximal

cliques in G under Ag . o* €Aut (G) by virtue of

Lemma (8.7). But ¢* extends uniquely to a motion ¢ of
PG(5,2) and V(8,2) via Corollary (6.5). Finally
q>€6g(+,2) ~ Ag due to Corollary (8.9). //

(8.11) Corollary: SS >~ the group of all collineations and
correlations of PG(3,2) = PrL(4,2).

Proof: The design ¢ of Definition (8.4) is isomorphic to
PG(3,2) no matter which orbit of 15 maximal cliques of G

under A8 is used. With one of these orbits chosen to



represent points, a motion of 88‘\A8 induces a motion of
PG(3,2) preserving linearity but exchanging the roles of
points and planes. This motion is a collineation of the
PG(3,2) defined relative to the former orbit. Hence,

SB ¢ PTL(4,2). The converse inclusion is similarly shown. //

§8.9 Eight Objects in PG(5,2) Permuted by PSL(4,2) = Ag

Now that we have PSL(4,2) = A (Theorem 8.10), we

8
can recall the definition of the graph H (5.2) and the
Lemma (5.8) stating that there are eight simplices of

PG (5, 2) disjoint from the Klein quadric K (3.8), which
eight simplices not only have their 7 vertices located off

K , but also (by Definition (5.4)) their (.) = 21 third
points on the (;) = 21 lines joining pairs of vertices of
such a simplex located off K . There are only 8 simplices
of PG(5,2) of this nature, since any such simplex must be
a maximal clique of H of 7 vertices. These are 8
geometrical objects in PG(5,2) permuted by PSL(4,2):

(9.1) Theorem: PSL(4,2) faithfully permutes the 8
simplices whose 7 vertices and whose (Z) = 21 third points
on the l-skeleton, the set of lines joining these 7 vertices,
are totally off K .

Proof: Since by Lemma (5.6) the 8 maximal cliques of

graph H from (5.2)) are coordinatized under V(8,2) by

7 pairs of coordinates from V(8,2) which all share one
coordinate, these 8 maximal cliques correspond one to one to

the coordinates of V(8,2) . Furthermore, these correspond



to 8 simplices of PG(5,2) whose 8 vertices and 21 third
points on the l-skeleton of such a simplex are off K
(Lemma (5.8)). Then Theorem (8.10) shows that PSL(4,2)
permutes these. The action is faithful because if all 8
simplices are fixed, all the 8 coordinates of V(8,2) must

be fixed and the motion must be the identity. //

§8.10 Line Coordinates for PG(3,2) and 8 Objects in

PG(3,2) Permuted by PSL(4,2)

It has finally been established that lines of PG(3,2)
are permuted by PSL(4,2) exactly as the complementary
pairs of weight 4 vectors of V(8,2) are permuted by A8 s
and so that lines of PG(3,2) intersect iff representative
weight 4 vectors share ones in exactly two coordinate places.
(10.1) Theorem: There is a one to one correspondence ¢
from the 35 lines to the 35 sets of complementary 4-tuples
from a given set of 8 letters so that PSL(4,2), operating
on the 35 lines, is mapped isomorphically to Ag , operating
on the 8 letters.
Proof: Let the set X of 8 letters correspond to 8 standard
basis coordinate vectors of a V(8,2) . Then Theorem (6.4)
shows that corresponding to Definitions (2.6) of
PG(5,2) c v(8,2), (3.8) of the Klein quadric K in PG(5,2),

and (5.1) of the graph G in K , A, = Aut(G) . Further-

8
more, defining & as in (8.4), we have by Theorem (8.7) that
¢ 1is isomorphic as a geometry to PG(5,2) and that

PSL(4,2) = Aut(G) == A8 by Theorem (8.10). This gives a



correspondence ¢ between lines of PG(3,2) and complementary
pairs of 4-tuples from the set X of 8 letters via

Theorem (8.7), Lemma (8.6), and Definitions (5.2), (3.9),

and (2.6), so that lines of PG(3,2) intersect iff
representative 4-tuples from X share precisely two letters.
It follows that PSL(4,2) = Ag under ¢ . //

(10.2) Throughout this section let X be the set of 8

letters X:= {a,b,c,d,e,f,g,h} on which A8 acts

isomorphically to PSL(4,2) according to Theorem (10.1).

Since Theorem (10.1) gives 8 letter coordinates for
lines of PG(3,2), sets of lines can also be coordinatized
by these 8 letters. Since points and planes of PG(3,2)
are each characterized by special sets of lines, we have:
(10.3) Lemma: The 15 points and the 15 planes of PG(3,2)
are each coordinatized by the 30 copies of §(3,4,8) in the
V(8,2) whose 8 standard basis vectors are the 8 elements of
X .

Proof: Points of PG(3,2) are characterized by the 7 lines
of PG(3,2) through the point. Planes are characterized by
the 7 lines on that plane. Each set of 7 lines forms a
maximal clique of 7 mutually intersecting lines in PG(3,2)
and then the pairs of complementary 4-tuples coordinatizing
those 7 lines form a copy of S(3,4,8). Then by Lemma (5.5),
Definition (8.4), Theorem (8.7), and Corollary (8.8) the

result follows. //

Now we shall proceed to establish just what sets



of lines of PG(3,2) correspond in a one to one fashion to

the 8 letters on which A acts.

8
(l0.4) Define a spread in PG(3,2) to be a set of lines

which are mutually disjoint and so that every point of PG(3, 2)
is contained in exactly one of these lines. It is clear that
there are 15/3 = 5 lines in each spread of PG(3,2) . This
definition corresponds to D. M. Mesner's use of the word in
[26].

(10.5) Lemma: Triples from the set X of 8 letters on

which Ag acts isomorphically to PSL(4,2) correspond under
this isomorphism to the (g) = 56 spreads of PG(3,2) . The
five lines in a spread all have representative 4-tuples

which contains the triple corresponding to that spread.

Proof: Given any triple, say {a,b,c} ¢ X, there are
precisely 5 lines of PG(3,2) whose corresponding equivalence
classes of complementary 4-tuples from X have a repre-
sentative containing {a,b,c} . Since by Theorem (10.1)

lines in PG(3,2) intersect iff their representative

4-tuples share precisely two letters, the 5 lines corresponding
to {a,b,c} are mutually disjoint. Together the 5 lines
contain all 3.5 = 15 points of PG(3,2) , so they form a

spread of PG(3,2) by Definition (10.4).

To show that the (g) = 56 spreads obtained in this
way are all the spreads of PG(3,2) we note that
representative 4-tuples for three mutually disjoint lines
having their representatives share three letters can be

chosen in the following two ways:
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{a,b,c,d }
{a,b,c, e }

{a,b,c f}
or

{a,b,c,d }
{a)bﬁc, e }

{a,b, d,e } .

Each of these completes uniquely to a set of 5 representative
4-tuples for a spread, the first of which has all repre-
sentatives containing {a,b,c}] and the second of which has
the complements of all representatives containing {f,g,h} .
Therefore each spread corresponds to one unique triple from
X. /

(10.6) Lemma: Two spreads of PG(3,2) share O, 1, or 2
lines of PG(3,2) according as the triples from X
corresponding to those two spreads share 1, 2, or O letters
respectively.

Proof: The two spreads {a,b,c}, {a,b,d} share only the
line ({{a,b,c,d} , {e,f,g,h}} . The two spreads ({a,b,c} ,
{d,e,f] Dboth share only the two lines given by {{a,b,c,g} ,
{d,e,f,h}} and ({{a,b,c,h}, {d,e,f,g}} . None of the 5
lines of ({a,b,c} are among those of the spread {a,d,e} ,
so two spreads sharing one letter are disjoint spreads. //

(10.7) Definition: The lines in a set of 6 spreads of

PG(3,2) which pairwise share one line of PG(3,2) 1is



called a linear complex of lines of PG(3,2) . This

definition is equivalent in the setting of PG(3,2) to the
definition of linear complex given by Todd in [35], but
this equivalence shall not be established as we shall only
use the definition as a convenient name.

(l0.8) Lemma: The (g) = 28 pairs of letters of X
correspond to the 28 linear complexes in PG(3,2) .

Proof: There are two types of sets of four spreads of
PG(3,2) which pairwise share one line of PG(3,2) . Using

Lemma (10.6) these are:

{a,b,c } {a,b,c }

{a,b, d } {a,b, d}
and

{a, Db, e 1} {a, ¢,4d}

{a,b, £} { b,c,d}

The second of these cannot be completed to a set of even 5
spreads which pairwise share one line, whereas the first can

be completed to the linear complex:

{a,b,c }
{a,b, d }
{a,Db, e }
{a,Db, f }
{a, b, g }
{a,b, h}

Therefore, linear complexes correspond one to one to pairs

of the 8 letters of X . //
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(10.9) Lemma: Two linear complexes of PG(3,2) share O or
1 spread of PG(3,2) iff their corresponding pairs of
letters from X share O or 1 letters respectively.

Proof: {a,b} and {a,c} share the spread {a,b,c} . The
pair ({a,b} and {c,d} share no spread. //

(10.10) Definition: A heptad of linear complexes in PG(3,2)
is a set of 7 linear complexes which pairwise share one
spread. This name is used by Conwell, Edge, and Jonsson in
[10], [14], and [19], respectively.

(10.11) Lemma: The eight heptads of linear complexes in
PG(3,2) correspond to the eight letters of X themselves.
Proof: Using (10.9) and (10.10), a set of more than three
pairs of X which mutually share one letter must all contain
a fixed one of the letters of X . So each heptad corresponds

to one of the letters of X . //

Lemma (10.11) plus the fact that A8 permutes the 8
letters of X faithfully proves:
(10.12) Theorem: There are 8 heptads of linear complexes
of lines in PG(3,2) which A8 permutes faithfully in a way

so that AB >~ PSL(4,2).



CHAPTER 9
The Uniqueness of the XNR-Design

Within the Geometry of V(4,2)

§9.1 Introduction

It is the purpose of this chapter to complete the proof
of the uniqueness of the XNR-design, Theorem (9.5.1), by
showing that the design can be constructed within the
context of V(4,2) in only one way (up to an automorphism of
V(4,2)). Chapter 7 has shown that the weight 6 code words
in any XNR code (containing O) are embeddable in V(4,2),
Theorem (7.5.1) and Lemma (7.5.11]). From the fact that the
weight 6 code words form an XNR-design, Definition (4.7.3)
and Remark (4.3.4), it follows that any XNR-design can be
embedded in V(4,2). Therefore, in order to prove that the
XNR-design is unique, it suffices to show that it can be
constructed within V(4,2) in only one way (up to auto-

morphism).

Within the context of V(4,2), the uniqueness proof
proceeds as follows, First, in Section 9.2, necessary
conditions for the existence of the XNR-design, D , are
noted. The 112 blocks of D sub-divide into sets of 42 and
70 blocks according as the blocks contain the point

corresponding to O €V(4,2) or not. These 42 and 70 blocks

9.1



form designs S and L respectively on the point set
PG(3,2) = V(3,2) - {0} . Moreover these blocks indicate
simplices and skew line pairs, respectively, in PG(3,2) .
Design L gives rise to a one to one correspondence, s ,
between all the lines of PG(3,2) and some of the spreads
of PG(3,2) . Then, in Sections 9.3 and 9.4, it is shown
that, up to an automorphism of PG(3,2), correspondence s
and designs L and S are unique. Finally, in Section 9.5,
it is shown that the XNR-design D is unique up to an
automorphism of V(4,2) . Designs S and L and
correspondence s , which are referred to throughout this

chapter, are defined in Section 9.2.

As a corollary of the uniqueness of the XNR-design,
D , we obtain the fact that D is coincident with the
design constructed in Chapter 5, Theorem (5.3.9). This leads
to the fact that the automorphism group of the XNR-design is
A7-+T(4), i.e. A7 extended by the groups of translations

of V(4,2) , Theorem (5.2) .

§9.2 Necessary Conditions for the Existence of an XNR-Design:

Designs S and L and Correspondence s

Given an XNR-design D , from Theorem (7.5.1l1]) all of
the 112 blocks, when viewed as weight 6 vectors in V(16,2)
are characteristic functions of dependent 6-sets of vectors
of V(4,2) . Since dependent sets in V(4,2) are given
relative to 0O €V(4,2) and since b, = 42 for design D

(c.f. (6.4.b)), there are 42 weight 6 vectors of D



containing the coordinate corresponding to O and 70 not
containing O . Interpreted in terms of characteristic
functions relative to PG(3,2) = V(4,2) \ {0} , we have:
(2.1) Lemma: When the point set is restricted to
PG(3,2) = V(4,2) \ {0}, the 112 blocks of the design D
subdivide into a set of 42 weight 5 blocks and a set of 70
weight 6 blocks. Their respective weight 5 and 6 vectors
are characteristic functions of simplices and pairs of skew
lines in PG(3,2) .

Proof: Let e, be the basis vector of V(16,2) corresponding
to 0€V(4,2). By bl = 42 for D , the 42 weight 6 vectors
containing a 1 in the coordinate e, place locate a

dependent set of 5 points in PG(3,2). Since no two points

in any PG(n,2) are dependent, this set must have no three
points dependent (collinear) and no four dependent (coplanar).
As such each dependent set of five points is a simplex in
PG(3,2), For the 70 weight 6 vectors containing a O in the
coordinate corresponding to ¢, > each yields a set of 6
dependent points of PG(3,2). Simplices have in PG(3,2)

at most 5 points so at least 3 of the 6 points must be
dependent (collinear), but then the complementary set must

be also dependent of cardinality at least 3. So such a
dependent 6-set is necessarily a pair of skew lines in

PG(3,2) . //

(2.2) Corollary: The 42 simplices and 70 pairs of skew
lines from PG(3,2) form, respectively, a 4- (2,5,15)

design S and a 10-(2,6,15) design L , each with d>6 .



Proof: According to (4.15), the 42 blocks of D having a 1

in the place, e, form the derived design of D which is

a 4-(3-1,6-1,16-1) design, S . The other 70 blocks then
form a (14-4)-(3-1,6-0,16-1) design L , because D is

by (4.1.4) also a 14-(2,6,16) design. These designs
clearly inherit d>6 being no more than a subset of vectors
already with the d) 6 property. Hence these sets of 42
simplices and 70 pairs of skew lines must be 4-(2,5,15)

and 10-(2.6.15) designs with d>6 . //

(2.3) So if D is any XNR-design embedded in V(4,2) ,

its 112 blocks define on the point set PG(3,2) a design S
of 42 simplices of PG(3,2) and a design L of 70 skew

line pairs of PG(3,2) . Designs S and L are 4-(2,5,15)
and 10-(2,6,15) designs with d>6 , respectively, by
Corollary (2.2).

Since D 1is a 3-design, each triple of points from
PG(3,2) occurs a total of b3 = 4 times among the blocks
of the designs S and L . Since triples of points of
PG(3,2) are of two types, collinear or non-collinear,

(2.4) we shall call these sets lines and triangles of
PG(3,2) , respectively.

(2.5) Lemma: Each triangle of PG(3,2) is contained in
exactly one of the blocks of S .

Proof: Since Corollary (2.2) shows that S has d4>6 , two
simplices of the design cannot share a triangle. Hence,

each triangle must be contained in a unique simplex. There



are (%f) triples in PG(3,2) and of these, 15.14.1/3! = 35
triples are lines, so there are (E?)-3S = 420 triangles of
PG(3,2) . But there are then 42, ( g) = 420 triangles each
contained uniquely in the 42 blocks of the simplex design,

S . Therefore, each triangle of PG(3,2) is in exactly one
block. //

(2.6) Corollary: Each triangle of PG(3,2) 1is contained

in exactly three blocks of L .

Proof: Each triple of D 1is in precisely 4 blocks, and

each triangle is in a unique simplex, by (2.5). //

(2.7) Lemma: Each line of PG(3,2) is contained in

exactly four blocks of L . Each such line and the four
others skew to it from each of the four blocks form a spread
in PG(3,2) .

Proof: Since no triple in a simplex can be dependent
(collinear), each line of PG(3,2) must be in 4 blocks of

L . Consider the 4 blocks from L containing a fixed line

Ly of PG(3,2) . Let Lys b3y by and L be the other
lines skew to L, so that {zl,zi} i=2,3,4,5 are those
four blocks of L . Because d>6 in L (Corollary (2.2)),
the pairs {zi,zj}, i,j = 2,3,4,5, j # i , must also be

skew. Therefore (4, | i =1,2,3,4,5] is a spread of PG(3,2)
(cf. Definition (8.10.5)). //

(2.8) Theorem: Corresponding to each design L in PG(3,2)
there is an injection, 8 , of the lines of PG(3,2) into

the spreads of PG(3,2) such that each of the four blocks

of L containing a line g contains also a second line



from the spread s(4)

Proof: By Lemma (2.7) the four blocks of L containing a
given line 51 of PG(3,2) determine a well-defined spread,
s(zl) = [11,12,33,14,55} in PG(3,2), so that {gl,zi}

for i = 2,3,4,5, are blocks of L . Should any two lines,
say and ¢ , from PG(3,2) determine the same spread,
then s(zl) = s(g4) so that j,es(zl) . Let 4 be ¢,
w.l.0.g9. Now Lemma (2.7) applied to s(zz) implies that
{zz,gi} for i = 3,4,5 are also blocks of L . Hence

these are blocks of D . Then [11,54} and {;2,33} are
two disjoint blocks of D . But since bg’s = 0 for

the generalized block intersection numbers for D relative
to a block B of this design D (cf. (6.4.6)), D has no
block disjoint from any given block B of D . This
contradiction forces the spreads s(zl) and s(jz) to be
distinct. Thus the correspondence s is one to one. //
(2.9) Define s to be any of the one to one correspondences

determined by a design L in PG(3,2)

$§9.3 The Uniqueness Under 8 of the Correspondence s

and Design L

(3.1) Lemma: The stabilizer of a line in PG(3,2) is
transitive on the set of 8 spreads of PG(3,2) which
contains that line.

Proof: Since there is always an even permutation of X
mapping any 4-tuple from X to any other, Ae is transitive

on lines of PG(3,2). So w.l.o.g. we may consider a line



¢ of PG(3,2) to be coordinatized by {{a,b,c,d},{e,f,g,h}}.
By Lemma (8.10.6) this line is contained in the 8 spreads:
{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {e,f,g9}, (e, £,h}, {e,g,h},
and {f,g,h} . Since these 8 triples are completely contained
in either of the 4-tuples corresponding to the line ¢ ,

there is a motion q>eA8 which stabilizes g4 and moves any
of these triples to any other of these triples. //

(3.2) Theorem: Any one to one correspondence s of lines
of PG(3,2) to 35 of the spreads of PG(3,2) such that

each line p' of PG(3,2) together with the four other

lines of the spread s(g') form a block of L , is uniquely
determined by any one line and its corresponding spread.
Proof: First consider any two skew lines. They must have 8
letter coordinates which by Theorem (8,10.1) have
representatives sharing 1 or 3 letters. There is a motion

o of AB sending the coordinates of a line N to
{{a,b,c,d}, (e,f,9,h}} . Then a further motion Py of A8
may be chosen to send the coordinates of a line Ly which

is skew to Ly to (({a,e,f,g}, {b,c,d,h}1} . (A is shown

8
to be transitive on pairs of skew lines in this way.) Now it
is clear that Ly and L, are both in the two spreads

{b,c,d} and (e, f,g3l, (cf. (8.10.6)).

Now let s(‘l) = {b,c,d} . If s 1is to generate the
blocks of a 10-(2,6,15) design L , with d>6 , as
indicated in the hypotheses of this lemma, then [31,12}
must be a block of L . Now Ly must correspond to one of

the two spreads containing {£1, 25} since this set is
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already a block of L . But Ly does not correspond to
{b,c,dl = s(zl) by Theorem (2.8), and hence, necessarily
s(zl) in the spread (b,c,d} must correspond by s to the
spread (y,z,w} for (y,z,w} c {e,f,g,h} . Note that each
of the five lines with correspondence s defined already,
correspond to the spread given by that triple which

together with the letter a form a 4-tuple representative for

the line.

Now by considering the 4. (5-2) = 12 other lines in
the four spreads ({y,z,w} < {e,f,g,h}] corresponding under
s to the other four lines in the initial spread ({b,c,d} ,
one sees that each of these lines must correspond under s
to that triple which together with the letter a forms a
4-tuple representative of the line. For example, consider

the spread {e,f,g} and its five lines:

{{a,b,c,d}, {e,f,g,h}]} = 4y
{{b,c,d,h}, (e,f,g,a}} = Ly
{{a,c,d,h}, {e,f,9,b}] = 43
{{a,b,d,h}, {e,f,q,c}]

{{a,b,c,h}, {e,f,g9,d}} .

Since {12,53} is already necessarily a block of L ,

s(z3) = {c,d,h} .

Finally, by considering each of the 18 other lines
from PG(3,2), one finds that there is exactly one spread

that can correspond to each of these lines. This spread



is the one whose triple together with the letter a forms

a 4-tuple representative of that line. //

(3.3) Corollary: If s(g) = {b,c,d} for the line ¢
given by {{a,b,c,d}, {e,f,g,h}}, then s(e') = {x,Y,2}
where {{a,x,y,z}, {w,m,n,p}} is the 8 coordinate name for
', and (x,y,z,w,m,n,pl = X\ {a} .

(3.4) Theorem: Up to a motion of PG(3,2), the design
is unique.

Proof: By Theorem (2.8), there must be a correspondence s
mapping the lines of PG(3,2) to 35 of the spreads of
PG(3,2) so that the correspondence locates the blocks of
the design L . Up to a permutation Ag the initial
choice of the spread s(g4) corresponding to ¢ is unique
for any fixed line g4 of PG(3,2), by Lemma (3.1). Then
Theorem (3.2) shows that s 1is completely determined by
these initial conditions. //

(3.5) Theorem: The automorphism group of the design L
is A7 .

Proof: By Lemma (2.7) each line of PG(3,2) is contained
in four blocks of L . Any motion ¢ of the points of L ,
i.e. the points of PG(3,2), which sends also blocks to
blocks must send the four blocks through one line to the
four blocks through another line. Hence ¢ induces a

collineation o* of PG(3,2) so ¢* €PSL(4,2) =~ A But

8 L]
¢*, as a collineation of PG(3,2), permutes the set of 56
spreads of PG(3,2) . By Corollary (3.3), o* must move

these 56 spreads in two sets - the set of 35 spreads



corresponding under s to lines of PG(3,2) whose triples
are from X\ {a}, and the set of 28 other spreads whose
triples contain the letter a. Since the subgroup of A8
which fixes the letter a is A7, Aut (L) ¢ A7 .

If ¢ €A, where A, operates on X\ {a}, then ¢
induces a unique mapping s agreeing with the hypotheses of
Theorem (2.8) and the correspondence given in Corollary (3.3).
Therefore, the equivalent 10-(2,6,15) design (Lyp) with
d>6 induced by ¢ has exactly the same correspondence s
and hence the same blocks. Therefore A, c Aut(L) . //
(3.6) Corollary: A7 is l-transitive on blocks of L .
Proof: Consider for each line of PG(3,2) only the
representative 4-tuple which contains the letter a. Then on
X\ {a}, lines correspond to triples. Exactly these triples
are also the spreads under the correspondence s , as in
Corollary (3.3). This means that the two lines of a typical
block of L have corresponding triples which are disjoint
triples chosen from X\ {a} . Since A, is transitive on
pairs of disjoint triples chosen from X\ {a}, A7 is

transitive on blocks L . //

$§9.4 The Uniqueness of the Design Pair S,L

We know from Section 9.3 that design L and its related
correspondence s are unique up to a motion of PSL(4,2).
Aiming towards the uniqueness of D we show in this section

that there is a unique design S that can extend a fixed

design L to D . We do not prove that design S is



unique, but rather the uniqueness of the pair S,L which

can be extended to D .

(4.1) Theorem: Given PG(3,2) and the (unique) design L,
there is a unique design S which together with L can be
extended to an XNR-design D .

Proof: Assume that S and L are respectively 4-(2,5,15)
and 10-(2,6,15) designs which build an XNR-design D by
attaching a sixteenth point to the point set of these two
designs. Considering the 15 point set to be the set of
points of PG(3,2), O may be then augmented to each simplex
and to none of the pairs of skew lines so that the resulting
design D has V(4,2) as its point set. Then by Lemma (2.5),
it is necessary that each triangle from PG(3,2) be located
in one and only one simplex of S .

(4.2) Furthermore, since d>6 in D , two blocks of D ,
one from S and one from L must overlap on at most three

points of PG(3,2)

Consider any one triangle of PG(3,2). Label its three
lines as L1529543 . In PG(3,2) this triangle completes
to a Fano plane. Let the seventh point of this plane, which
is not on any of the three lines L15 455 OF A3, be called
P . Through P pass seven lines of PG(3,2), three of
which occur on this plane. Let the four lines through P
and not contained in this plane be labeled my,m,, My and
m, - By the necessary correspondence 8 , as given in
Theorem 2.8) and Definition (2.9) spreads s(zl),s(tz), and

5(53) must correspond to lines ‘1"2"3 of the fixed



triangle so that gi together with each of the other four
lines in the spread s(zi) must form a block of L , for

i =1,2,3 . Since one line of any spread, by Definition
(8.10.5), passes through each point of PG(3,2), one of the
four lines mj, j =1,2,3,4, together with each L5 i=12,3,
must form a block of L . But furthermore, since d>6

in design L , and since any two of the lines 4. for

i
i =1,2,3 meet on a point, each 255 i=1,2,3 must form a
block with a distinct one of the lines mj, j =1,2,3,4, So
w.l.o0.g9. let {Li,mi}, i=1,2,3 be blocks of L, i.e.

let m. be contained in the spread S(‘i) for i =1,2,3.

Now, any triangle of PG(3,2) is contained in four
simplices of PG(3,2), namely the three points of the
triangle Py55Py35P55 (for Pij = 4 N ‘j s 1, 3 =1,2,3,
i # j), together with the two points of each of the four
lines mj, j=1,2,3,4 other than P . If the simplex to
be chosen through {Plz’Pl3’P23} contains the two points of
mj for j =1,2,3 other than P , say the two points Q,
and Rl of m then the simplex {PIZ’P13’P23’QI’R1} of
S would meet the block ({g,,m;} of L in the four points
of {Plz,P13,Ql.Rl} s contradicting the fact stated in (4.2)
that a block of L and a block of M must share at most

three points.

Therefore, through [P12,P13,923] can be chosen only
the simplex {Plz,P13,P23,Q4,R4} where Q4 and R4 are the

two points of m, other than P . Hence, the triangle can
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be contained in at most one simplex that can be used for the

design S .

Now the existence of the XNR-design D as guaranteed
by Remark (4.3.4) (and by Theorem (5.3.9)) shows together
with Lemma (2.5) that each triangle is contained in exactly
one simplex of S . //
(4.3) Corollary: The design S of 42 simplices as
referred to in Theorem (4.1) has d>6 .
Proof: The uniqueness of the system as guaranteed by
Theorems (3.4) and (4.1) together with the existence of the
systems shown in Theorem (5.3.9) yields the distance
condition d>6 for S as well for L and D . //
(4.4) Theorem: The automorphism group of S is A7 .
Proof: By Theorem (3.5) the automorphism group of design
L 1is A7 . Each motion of A7 then permutes the 15 points
of PG(3,2) and stabilizes the set of 70 pairs of skew
lines of PG(3,2) forming blocks of L . As such, since
the 70 block design L implies the existence of 42 simplices
uniquely chosen relative to L , each motion ¢ of
Aut (L) = A7 moves points of PG(3,2) and stabilizes the set

of 42 simplices in S . Hence A7 c Aut(S) .

Conversely, given any ¢ €Aut(S), consider the four
blocks of S containing a given pair of points. As ¢
moves points of PG(3,2) to points and simplices of S to
simplices of S , ¢ must move a pair of points together

with the four blocks of S containing that pair to another



pair of points together with its four blocks. Counting all
the points in these four blocks with use of d:6 , four
blocks containing that pair involve 14 of the 15 points of
PG(3,2). By Lemma (2.7) this fifteenth point must be
collinear with that pair. Hence, ¢ moves lines of PG(3,2)
to lines and therefore is a collineation of PG(3,2). But
as a collineation of PG(3,2), ¢ permutes spreads of
PG(3,2). Were the 35 spreads corresponding to the design L ,
which according to the hypotheses of Theorem (4.1l) exists
simultaneously with S , not stabilized by ¢ , then ¢
would not stabilize the 70 blocks of L . Then the
correspondence s would not stabilize the 42 blocks of S ,

and ¢ £Aut(S) , a contradiction.

Therefore ¢ induces an automorphism of L showing

that Aut(s) ¢ A7 .
As a result, Aut(S) > A, =~ Aut(L) . //

$9.5 The Uniqueness of the XNR-Design D

(5.1) Theorem: Up to a permutation of the 16 coordinates
of V(16,2) , the XNR-design D is unique.

Proof: As seen in Theorem (6.5.9), each XNR-design D
generates a (16,256,6) code C , where standard basis
vectors of V(16,2) are the points of D . Then by
Theorem 7.5.11) the weight 6 vectors in C , i.e. those

corresponding to blocks of D must be characteristic

functions of dependent 6-sets in V(4,2) . Then by letting




an arbitrary coordinate place of V(16,2) correspond to

0 €V(4,2) , these dependent 6-sets in vV(4,2) yield a
design L according to Lemma (2.1) and Corollary (2.2).
Design L is unique, Theorem (3.4), up to a collineation

of PG(3,2) which is a permutation of the 15 coordinates
of V(16,2) other than the one corresponding to 0 €V(4,2).
Furthermore, design L induces a unique design S which
together with L builds design D whose points are the

16 vectors of V(4,2), by Theorem (4.1). Hence, even after
arbitrarily fixing the coordinate place of V(16,2)
corresponding to 0 €V(4,2) , there is a permutation of the
other 15 coordinates which puts D into a given standard
form for D . //

Actually the proof of Theorem (5.1) proves the stronger
statement:

(5.2) Corollary: Given any two distinct copies D, and
D, of a XNR-design, then there is a motion ¢ of the 16
coordinate places of V(16,2) which fixes one coordinate

and moves the other 15 coordinate places so that D,;p = D, .
(5.3) Theorem: The automorphism group of the unique
XNR-design D is A7-+T(4), i.e. A7 extended by T(4),

the group of the 16 translations of V(4,2) .

Proof: By Theorem (5.1), the design D is unique. As
constructed in Theorem (5.3.9), this design D is composed

of 7 orbits of dependent 6-sets under the action of T(4), the
translation group of V(4,2) . Hence, T(4) stabilizes D

Since T(4) 1is regular on V(4,2) , Lemma (3.2), any



motion of T(4) fixing O €V(4,2) is the identity vector.
Then with O fixed, Lemma (2.1), Corollary (2.2), and

Theorems (3.5) and (4.4) show that A acts on D with O

7
fixed. Hence, the total group of automorphisms D 1is A7
extended by T(4), A7-FT(4) 4

(5.4) Theorem: The automorphism group A7-+T(4) of the
XNR-design D is l-transitive on the 112 blocks of the
design.

Proof: By the construction method of D as shown in
Theorem (5.3.9), T(4) acting on D is %«-transitive on
blocks of D giving 7 orbits of 16 blocks each. Since
T(4) is regular on the 16 coordinate places of V(16,2),
by Lemma (3.2), there is always at least one block of each
of these orbits which contains a 0 in the coordinate place
of V(16,2) corresponding to the 0€V(4,2) . 1In other
words at least one block of each of these orbits is
contained in L . By Theorem (3.5) and Corollary (3.6),
Aut (L) = A, is l-transitive on these 70 blocks. Therefore
A7-+T(4) is l-transitive on all the 112 blocks of D . //
(5.5) Theorem: A7-+T(4) is 3-transitive on the 16 points
of X for the XNR-design D = (x,8)

Proof: By Theorem (5.4), A7-+T(4) acts as a l-transitive
degree 112 group of permutations of the 112 blocks of D .
Since each of the motions of A7-+T(4) is an automorphism
of D, there is an isomorphic injection i mapping the
group which acts on the 112 blocks of 3 into the group

which acts on the 16 elements of X .



Let G be the subgroup of the action of A7-+T(4)
on 5 which stabilizes a block B€A . Via the injection
i, Gi 1is a homomorphic image of G on X stabilizing
the two sets B and X\B .
Claim: The homomorphic image Gi of G acting on the 6
elements of the stabilized block B gives a faithful
representation of G on B .

2 2V(4:.2) s

Proof: Consider the mapping a :V(16,2)
being a basis of V(16,2) which exists according to

Theorem (7.5.1) in such a way that blocks of D are
characteristic functions of dependent 6-sets in V(4,2) .
Theorem (7.5.15) shows that each automorphism ¢ € Aut (D)
induces a motion, aOp,p followed by a , of V(4,2)
preserving linearity in V(4,2) . Then due to the fact that
each dependent 6-set in V(4,2) spans all of V(4,2) by
Lemma (4.5.8), it follows that if aOp fixes pointwise a
dependent 6-set of V(4,2) , then aOp must fix pointwise
all the 16 points of V(4,2) . Hence any motion of Gi
fixing B pointwise induces the identity motion in the

action Gi on X and hence is the identity automorphism

of G . This proves the claim, //

Proceeding with the proof of Theorem (5.5) we notice
that since G stabilizes one of the 112 blocks of &,
|Gi| = 360 . Then the only subgroup of the set of all 6!
permutations of the elements of B of this order is A .
Hence Gi = Ag , which is 4-transitive on the 6 points of

B . As such, any triple of the 16 points of X may be
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moved to any other triple of X by first moving one of

the blocks through the first triple to one of the blocks
through the other triple and then by using a motion of G
on the image block. //

Note that the proof of Theorem (5.5) actually proves the
following:

(5.6) Corollary: A7-+T(4) is 4-transitive on the set of

(2).112 4-tuples contained in blocks of the XNR-design D .



CHAPTER 10
The Uniqueness of the Nordstrom-Robinson and

The Extended Nordstrom-Robinson Binary Codes

§10.1 Introduction

This chapter will collect information from Chapters 5,
6, and 9 to show the uniqueness of the (15,256,5) code
first discovered by Nordstrom and Robinson, together with
the uniqueness of the extended (16,256,6) code. We shall
use the notation NR and XNR for the (15,256,5) and
(16,256,6) codes, respectively, according to Definition

(3.5.8) and (3.5.4).

$10.2 The Uniqueness of the XNR(16,256,6) Code

(2.1) Theorem: Up to a permutation of the 16 standard
basis vectors of V(16,2), the XNR(16,256,6) code is
unique.

Proof: From Theorems (9.5.1) and (6.6.1) the code is unique
up to a permutation of the 16 coordinate places. //

(2.2) Theorem: The automorphism group of the XNR(16,256,6)
code is a degree 16 representation of the group A7-+T(4) R
i.e. A7 extended by the group of translations of V(4,2) ,
as long as O €XNR .

Proof: Given a particular copy of the unique XNR code, C

L]

with O0e€C , then by Theorem (6.3.1), the set of 112 weight

10.1
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6 vectors of C form an XNR-design D . By Theorem (9.5.2)
this design D possesses the group A7 +T(4) as its
group of automorphisms acting as a degree 16 group on the

16 standard basis vectors of V(16,2) . By the Definitions
(5.2.5) and (5.2.6), the group of automorphisms of C must

be a subgroup of A, +T(4) . But since Theorem (6.5.9)

7
shows that the design D determines uniquely all the 256
vectors of C , each automorphism of D which by definition
stabilizes the set D of weight 6 vectors of C must also
stabilize the sets of weight 8, 10, 16, and O vectors of C .//
(2.3) Corollary: The group A7-+T(4) of automorphisms

of the XNR(16,256,6) code is 3-transitive on the set of 16

standard basis vectors of V(16,2) .

Proof: Use Theorem (9.5.5). //

§10.3 The Uniqueness of the NR(15,256,5) Code

(3.1) Lemma: Given any two copies C; and C). of the

1 2
XNR (16,256,6) code, then there is a motion ¢ which
fixes one of the 16 coordinate places of V(16,2) , and
permutes the other 15 so that C;p = C, .
Proof: By Corollary (9.4.2) there is a ¢ fixing one
coordinate place of V(16,2) and permuting the other 15
places so that the weight 6 vectors of Ci , which form an
XNR-design, Dl , are mapped onto the weight 6 vectors of Cé .
Then since each SNR-design D builds a (16,256,6) code in

only one way by Theorem (6.5.9), the same ¢ maps Ci to
c, - //
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(3.2) Theorem: The NR(15,256,5) binary code is unique
up to a permutation of the 15 standard coordinate basis
vectors of V(15,2).

Proof: Given any two (15,256,5) codes, C; and C, , each
extends by a parity check coordinate augmentation to a
(16,256,6) code Ci and Cé respectively according to
Definition (2.5.3) and Lemma (2.5.6). Now by Lemma (3.1)

there is a permutation of the 15 coordinates of V(15,2)

mapping C; and C, simultaneously C; to C, . //

§10.4 The Non-Linearity of the NR and XNR Codes

Using a simple idea due to J. M. Goethals [15] we can
now show the non-linearity of both the unique NR(15,256,5)
code and the XNR(16,256,6) code. As a by-product we have
a distinct proof of the Calabi, et al. [7] result that there
exists no linear (16,256,6) code.

(4.1) Theorem: The unique XNR(16,256,6) code is
non-linear.

Proof: (J. M. Goethals) Let w.l.o.g. O€C , where C is
a (16,256,6) code. By (6.3.1) the set of weight 6 vectors
forms an XNR-design D ., Choose any three coordinate places,
e,,8,, and e,, from V(16,2) . Since b3 = 4 for the design
D , there are exactly four vectors of weight 6 in C which
contain ones in these three coordinate places. Call these
four vectors X1sXy,X3, and X, - Then using the facts that
d>6 for all pairs of code vectors from C and since

‘5i'<§j|2;3 for each pair of these four vectors,
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i#3j, 41, j =1,2,3,4, then |§1-+§2-+§3-+§4| =12 ., But
according to Lemma (6.4.7), any (16,256,6) code C with
0 €C contains no vector of weight 12. This implies that
X, +X, +X3+x, £C and that C is non-linear. //

(4.2) Corollary: The NR(15,256,5) code is non-linear.
Proof: By Definition (2.5.3) and Lemma (2.5.6) and by the
uniqueness of the NR and XNR codes, the XNR code is
necessarily the parity check code of the NR code,
Similarly, by Definition (2.5.2) and Lemma (2.5.5) the NR
code is necessarily the punctured code of XNR . Then by
Lemmas (5.8) and (5.9) one code is linear iff the other is
also linear. Hence, by Theorem (4.1l), the NR code is
non-linear. //

(4.3) Corollary: There exists no linear (16,256,6)

code.

Proof: The (16,256,6) code is unique. //



PART D: THE GOLAY BINARY CODE
CHAPTER 11
The Uniqueness of the Large

Steiner Systems §S(4,7,23) and S(5,8,24)

§11.1 Introduction

As a by-product of our work with the uniqueness of
the Nordstrom-Robinson code, we can show the uniqueness of
the Steiner systems S(4,7,23) and S(5,8,24) . Furthermore,
we can show that the automorphism groups of these designs
are of order |M23| and |M24|, are block transitive on the
designs, and are 4- and 5-transitive on the 23 and 24 point

sets of those designs, respectively.

In an effort to locate a good setting for the action
of the 4- and 5- transitive groups M23 and M24 discovered
earlier by Mathieu [39], Witt (1938) showed in [40] the
uniqueness of these Steiner systems building them up from
the unique projective plane over GF(5) . Witt's concern
was to establish the uniqueness of the 4- and 5- transitive
groups M,, and My, - Actually, H. Lﬁneborg [23]

discovered and corrected a flaw in Witt's construction.

Much more recently, Jonsson built up the Steiner system
$(3,6,22) from facts concerning the geometry of PG(3,2),

cf. [19]. From the uniqueness of §(3,6,22) thus established,

11.1
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Jonsson concluded similar results about the uniqueness of
the three large Steiner systems S(3,6,22), S(4,7,23), and
S(5,8,24) and their related automorphism groups M22’ M23,
and M24 . Our construction of these designs corresponds to

constructing M, 4 from its maximal subgroup isomorphic to

A7-+T(4) whereas that from Jonsson constructs M22 from 86 .

§11.2 The Uniqueness of §S(4,7,23) Based on the Uniqueness

of the XNR-Design

Throughout this section let X be a set of 23 points.
Also let S be an S(4,7,23) design.
(2.1) Lemma: S = (X,B8) is a 1-(4,7,23) design with
d>8 and each block B of 3 shares with 140 blocks of
 three elements of B and with 112 blocks of B one
element of B .
Proof: By definition, S is a §S(4,7,23) or a 1-(4-7-23)
design so that each 4-tuple from X is contained in precisely
one block of the design. Therefore, two distinct blocks
share at most three elements of X and have Hamming distance

d>8 from one another.

By formulas (4.1.2) one sees that bo = 253, b, =77,

2 3 = 5, and b4 = 1 ., Furthermore, b4 =1

implies bg,o = bg’o = b?,o =1 for a given block B of

b, =21, b

design S . Hence, the generalized block intersection

numbers for S relative to a block B of the design are:
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(2.2) 253
176 77
120 56 21
80 40 16 5
52 28 12 4 1
32 20 8 4 (o] 1
16 16 4 4 O O 1
o 16 o} 4 o o (o) 1
From the b?,j for i+3j =7 we conclude that each block

B meets 4 blocks on each triple from B and 16 blocks on
each element of B . Hence, B meets (; ) . 4 = 140 blocks
on three elements of B and (1 ) .16 = 112 Dblocks on one

element. //

Let Y = X\ B be the set of the 16 points of S other
than those of a fixed block.
(2.3) Lemma: The 140 blocks of S meeting B on 3
places form an S(3,4,16) design P on the 16 elements of
Y . The 112 Dblocks of S meeting B on one place form
an XNR-design D .
Proof: From the b?,j for S with respect to a block of
S as given in (2.2), the 112 blocks of S meeting B 1in
one place form, on the set B , 16 copies of the complete
(1) - design, Similarly those 140 blocks meeting B on
three places form on B four copies of the complete
(;)—design. Let the corresponding parts of these 112 and
140 blocks with point set y = X\ B be called designs D

and P , respectively.
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Figure (2.4) 112 140 1
D P Y
—
7 7 7
16x () 4x(3) ()| B

n

Blocks of D have cardinality k = 6 since the corresponding
weight 7 blocks of S meet B in one place.

Each 4-set from X occurs in a unique block of S , so that
in D blocks have Hamming distance d> 6 from one another.
Then for t =6-6/2 = 3, equality in (4.7.5) holds

showing by Lemma (4.7.7) and Definition (4.7.3) that D is
an XNR-design. Design P 1is then a §S(3,4,16) by the fact
that each 4-tuple from Y occurs uniquely either in D or
in P and by Definition (7.2.2) and Lemma (7.2.3). //

(2.5) Corollary: The 140 blocks of P as given in

Figure (2.4) form the 140 planar 4-tuples of V(4,2) where
the 16 vectors of V(4,2) are the 16 elements of Y .
Proof: This follows by Lemma (2.3) and Lemma (7.5.12). //
(2.6) Lemma: The 16 blocks of S through D meeting a
fixed block B of S on a given single element of B form
a 2-(2,6,16) design T with d4>8 .

Proof: Consider the 16 blocks of S which meet B in
precisely the element x€B . Let T be the design whose
point set is Y and whose blocks are those 16 blocks
restricted to Y . Blocks of T have cardinality 6 and meet
one another on O or 2 places since blocks of S meet one

another on 1 and 3 places. Consider the average number of
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blocks of T through any pair of points from Y . Formula

(4.1.8) yields

b2 = 16.6.5/16.15 = 2 ,

Since blocks of T meet on no more than 2 places, b2 = 2
is a constant, so that T is a 2-(2,6,16) design with
a>8 . //

(2.7) Lemma: Each block of the XNR-design, D , is
contained in precisely one 2-(2,6,16) design, T , with
d>8 composed of 16 of the blocks from D . Thus the
design D decomposes into a collection of 7 disjoint
2-(2,6,16) designs with d>8 .

Proof: That each block of D is in a 2-(2,6,16) design
with d4>8 of 16 blocks of D is a result of Theorems
5.3.5) and (5.3.9). From the generalized block intersection
numbers for D relative to a block, L, of D given in
(6.4.6), bg’4 = 1 implies that there are precisely

1 x (g) = 15 other blocks of D that meet L in precisely
two places, which blocks together with L could form a

2-(2,6,16) design, T , with d4>8 . //

Now with these lemmas we can proceed to prove:
(2.8) Theorem: Up to a permutation of the 23 elements of
X, the S(4,7,23) design S is unique.
and S

Proof: Let S 2 be any two S(4,7,23) designs

1
defined on, for simplicity, the same point set X of

cardinality 23. Choose any two blocks B, esi for i =1,2,
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one from each design, and consider the corresponding

subdesigns Di and Pi of S, i =1,2 as shown in

i
Figure (2.4). Let Di = (X,Bi) for i =1,2 . Because
of Theorem (9.5.1) and Definition (5.2.1) there exists a
pair of one to one correspondences (yx,y) for

(2.9) ®:X » X and t:@l-osz

so that (¢,y) map points and the blocks of D1 to the
points and blocks of D2 . We shall now proceed to show
that each of the maps in the pair (¢,¥) extend to the
maps o* and ¢* respectively in a unique way so that
(p*,y*) carry the points and blocks of S, to those of

S and so that

2
* —_ * —
o* | =@ and y* | =y
X\ B, B,
By Lemma (2.7), ¢ maps each of the 2-(2,6,16) designs
with d>8 in D; to one of D, . Since each block of

Di’

i=1,2, in a given 2-(2,6,16) design with d> 8
corresponds (Lemma (2.6)) to a single element of Bi,i =1,2,
there is a unique map

(2.10) e:B, » B

1 2
so that the combined map
(2.11) op*€S,3,0:X 4+ X

where
co*|x\Bl=co and o* | By = ©

carries points of Sl to those S2 at the same time that

y carries the 112 blocks of S1 meeting D, to the 112

blocks of 82 meeting D2 .
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Now that ¢* is defined it is sufficient in proving
Theorem (2.8) to show that if the 23 x (112 +1) matrix

part of S 1is given

Figure (2.12) 112 1
D X\B
7 7

then the corresponding 140 blocks completing the design to
an S(3,7,23) are uniquely determined. (That the other 140
blocks are uniquely determined forces the extension ¢* of
¥ to be unique.)

(2.13) Claim: Given the 113 blocks of S as in Figure (2.12),
then there is a unique way to complete these blocks to a
S(4,7,23) design.

Proof: Choose any three elements a,b,c, €eX\ B . These
three elements are contained in blocks Bj’ j=1,2,3,4 of
S meeting D and must be contained in one other block B5
of . sSince d»6 in D, |UB;| = 15 and there is a
unique 4-tuple from X\B containing ({a,b,c} c X\B .
Since blocks Bj intersect one another in three elements,
they are, by Lemma (2.7), members of distinct 2-(2,6,16)
designs with d>8 . Then by Lemma (2.6) the corresponding
single elements from B contained in the blocks

=1,2,3,4, of S, must be distinct elements

.
|

j)
xj,
design S each 4-tuple must be contained in a unique block,

j =1,2,3,4, of B . Then because in the §S(4,7,23)

the set of three elements of B contained in block B5
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must be B‘\[xj |3 = 1,2,3,4} . So for each triple from

X\ B there is a unique block B that necessarily must be

5
chosen to complete the set of 113 blocks of Figure (2.12)

to the design S . This finishes the proof of Theorem (2.8).//
(2.14) Corollary: In a S(4,7,23) design S , the group

of automorphisms stabilizing a block B of the design is
A7-+T(4) .

Proof: This follows from Lemma (2.3), Theorem (9.5.3), and

the Claim (2.13). //

(2.15) Corollary: The S(4,7,23) design exists and is
unique.

Proof: Existence follows from Theorem (3.3.10) and Lemma
(4.3.3). Uniqueness follows from Theorem (2.8).//

(2.16) Theorem: The automorphism group of S(4,7,23)
design S is block transitive.

Proof: Consider the set of 112 blocks of S meeting a
fixed block B in one place. The stabilizer group of B

is by Corollary (2.14) transitive on these 112 blocks. This

means that given any two blocks B, and B of s, if

2
there is a third block 33 meeting each of the first two
blocks on one place each, then there is an automorphism of

S moving B to B, .

1 2

By the fact that any two blocks of S meet in either
1 or 3 places (Lemma (2.1)) we need only consider two cases,

Let Bl and B be blocks of S .

2

case 1: If |[B; N le =1, then B, is one of
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the 112 blocks meeting B on one place. By the generalized

1
block intersection numbers for the design D corresponding
to these blocks, (cf. (6.4.6)) there are 36 blocks of D

meeting B on one place of the 16 point set X\Bl of D .

2
Choose one of these 36 blocks and call the corresponding

block of S, B Since blocks of S meet one another on 1

3 -
or 3 places and since |B3 N le = 1 , the single element of
82 N B1 must not be contained also in B3 . Hence, B3
meets each of B, and B, on one place. Therefore there
exists an automorphism of S stabilizing By and moving B,
to 32 .
Case 2: 1If |Bl N le = 3, then choose a €B; \B, .
There are 16 blocks of S meeting B1 on only a and
forming, with respect to x\\Bl, a 2-(2,6,16) design with
d>8 . At most 4 of these 16 blocks share point a and

three points of Bz‘\B since each 4-tuple of X occurs in

1 ’
a unique block of S . So there are blocks of S meeting
B, on a and 32 on one place. Choose one of these, By .
Then |B3 N B2| = |B3 N Bl| = 1 . Therefore again there is

an automorphism of S fixing By and moving B; to B, . //

The group of automorphisms of S(4,7,23) is known to be
M,q (cf. Witt [39]). We may conclude at this point the
following:
(2.17) Corollary: The automorphism group of S(4,7,23)
design S 1is of order 253,112,360 = 23.22.21.20.48 = |M23| .
Proof: Since Aut(S) is block transitive on 253 blocks of

S Dby Theorem (2.16) and since the stabilizer group of a
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block of S has order 112,360 by Theorem (9.5.3), Aut(S)
has order 253.112.360. //

(2.18) Theorem: Aut(S) acts 4-transitively on the 23
points of S , where S = (X,B8) 1is the S(4,7,23) design.
Proof: Since Aut(S) is block transitive on 5 by

Theorem (2.16), it suffices to show that the stabilizer of a
block of S acts 4-transitively on the 7 points of that
block. Choose a block B€pB . Then by Corollary (2.14), the
subgroup G of the action of Aut(S) on the 23 points of
X stabilizing the sets B and X\ B is isomorphic to

A, +T(4) . G acts necessarily as an automorphism of the
design P of Figure (2.4), since G must stabilize those
blocks of S meeting block B in precisely 3 places.
Furthermore, by Corollary (2.5), design P represents the
set of 140 planar 4-tuples of a V(4,2) whose 16 vectors

are the 16 elements of X\B .

Choose a point a €X\B . Call the subgroup of G
which fixes a ¢X\B as well as stabilizes sets X\ B and
B, the group H. Then H must stabilize the 35 blocks of
P which contain a €X\B . But the design of 35 blocks of P
containing a €X\ B when restricted to the point set
X\ (B {a}) is the design of the 15 points and 35 lines of
PG(3,2) , the derived design of the points and planar 4-tuples
of V(4,2) . Therefore, H is a subgroup of the collineation
group of PG(3,2) . By Theorem (9.5.3), Lemma (9.2.1),
Theorem (9.3.5), and Theorem (9.4.4), in that order, H > A, .

Therefore H = PSL(4,2) by Theorem (8.8.10) and acts on the
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points and blocks of the derived design of P

Choose any @ €H so that o # 1 , ¢ moves the 15
points of X\ (BU {a}) non-trivially. Since ¢ 1is a
collineation of PG(3,2), ¢ moves the 35 blocks of the

derived design of P non-trivially.

Now since in S no two distinct blocks can contain the
same 4-tuple from X , no two blocks of S meeting the derived
design of P may contain the same triple {x,y,z} from B ,

for then the two blocks would contain the same quadruple

{a,x,¥,2] ¢ X . So the intersection of the 35 blocks of S
meeting the derived design of P must form a complete

(;) - design when restricted to the point set B (since all
35 triples thus obtained must be all the 35 distinct triples

that are possible).

Since ¢ moves the 35 blocks of the derived design of
P non-trivially, ¢ moves the 35 triples of the complete

(g) - design non-trivially.

Finally, we notice that under the action of H , the set
of 35 blocks of S passing through a €X\ B and through the
derived design of P are stabilized. If ¢ were to fix the 7
elements of B, ¢ would also fix the 35 triples of the
complete (;) - design stabilized by the action of H .

Since ¢ moves these 35 triples non-trivially, ¢ also

moves the 7 elements of B non-trivially.
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Therefore that the action of H induces the faithful
action of A, on the 7 elements of B . And since A, is
S5-transitive on the 7 elements of B , this suffices to
show that the stabilizer of a block of S is at least

4-transitive on the 7 elements of that block. //

§11.3 The Uniqueness of §(5,8,24)

Now that we have the fact that §S(4,7,23) is unique,
we may proceed to show that a S(4,7,23) design builds a "
S(5,8,24) design in just one way (Theorem (3.9)). As such
the S(5,8,24) design will be shown to be unique (Corollary

(3.10)).

Let X bDe a set of cardinality 23 and « an additional
element augmenting X to X' =X U {«} . Let S be a
S(4,7,23) design on X . 1In order to augment S to
s' a §8(5,8,24) , each block of S must be augmented by
the extra point « in order to obtain cardinality 8 .

(3.1) Call these 253 new blocks of cardinality 8 extended

blocks of S . The building of S' now concerns only the

location of 506 = 759 - 253 Dblocks of S' none of which
contain o . For this reason we define:

(3.2) An admissible block of S' 1is a set of cardinality

8 on X which can be augmented to the set of extended
blocks of S to form §S' .
(3.3) Lemma: An admissible block S' meets 15, 168, and

70 extended blocks of S on O, 2, and 4 places, respectively,
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Proof: Let B be an admissible block of S' per

Definition (3.2). Since no 5-tuple of X' may be contained
in more than one block of S' , B may not meet any block

of S in 5 or more places. Then considering the generalized

block intersection numbers for S relative to B and using

bg,o = bg,o = b$,o = bg,o = 0 , one obtains:
(3.4) 253
176 77
120 56 21
80 40 16 5
52 28 12 4 1
33 19 9 3 1 (0]
21 12 7 2 1 (0] (0]
15 6 6 1 1 0 (0] (0]

15 0] 6 (0] 1 (0] (o] (0] 0 .
From the bottom line we read that B meets 15.(8) = 15

blocks of S in O places, 6.(2) = 168 blocks in 2 places
and l.(i) = 70 blocks in 4 places. //

(3.5) Lemma: The 15 blocks of S meeting an admissible
block, B, of S' in no places form, when restricted to the
set X\B, a 3-(2,7,15) design, A . Furthermore, blocks
of A meet one another in either 1 or 3 places.

Proof: Restricting the appropriate 15 blocks of S to the
set X\ B of cardinality 15 one sees that these 15 blocks
have cardinality 7 each. They meet one another on either 1
or 3 places because they are contained in the design S

all of whose blocks have that property (Lemma (2.1)). Then
by Formula (4.1.8) we compute the average:

A

(3.6) b, = 15.7.6/15.14 = 3 .
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Then since now two blocks meet in more than 3 places, all
pairs must meet by (3.6) in exactly 3 places forcing this
design, A , to be a 3-(2,7,15) design. //

(3.7) Lemma: The 70 blocks of S which meet an admissible
block B of S' on 4 places form, when restricted to X\B ,
a design M of whose blocks occurs twice. A duplicated
triple of this §S(3,4,15) design corresponds to two of the
70 blocks, which when restricted to B are complementary
4-tuples.

Proof: Let the design M be the set of 70 blocks of S
meeting B in 4 places and restricted to the point set

X\B . Blocks of M are then triples from X\B . Let L
be any one of these triples from M . Since A as defined
in Lemma (3.5) is a 3-(2,7,15) design, L 1is contained

in 3 blocks K3 R K4, and K of A . But L must be

5 ’
contained in precisely 5 blocks of S , so that these 5

blocks Ky, K,, K, and say K, and K, share pairwise
5 5
exactly the set L and so that Ki = X . Since U Ki.=
i=1 i=3

X\B, L must be contained in two blocks of S which meet
B in four places each, and these 4-tuples must be
complementary. Therefore, L must occur twice as a block
in M. //

(3.8) Corollary: An admissible block, B, of S' 1is the
modulo 2 sum of blocks of S . which meet each other on
three places, in 35 ways.

Proof: The design M contains 70/2 = 35 duplicated

P*"




11.15

triples. The corresponding 35 pairs of blocks each have B
as their modulo 2 sum. //

(3.9) Theorem: A S(4,7,23) design S with point set X
of cardinality 23 builds a S(5,8,24) design S' on the
point set X U {«] wuniquely.

Proof: From Corollary (3.8) each admissible block of S'
occurs as the modulo 2 sum of 35 pairs of blocks of S .

But counting the maximal number of distinct admissible

blocks of S' , we have 253.140/2 = 17710 distinct pairs of
blocks of S sharing 3 places (cf. Lemma (2.1)) and there-
fore 17710/35 = 506 distinct admissible blocks. All of
these must be used to form S' , and since S' exists

(by Lemma (4.3.3)) all of these may be used to form S' . //
(3.10) Corollary: Up to a permutation of the 24 elements

of the point set X' , the 8(5,8,24) design S' is unique.
Proof: Let a §S(5,8,24) design S' with point set X' Dbe
given. Upon choosing one of the elements, say o , from X' ,
the 253 blocks containing o« form on X = X'\ {«] a
S(4,7,23) design S by (4.1.4). This design is unique up
to a motion of the 23 elements of X by Theorem (2.7).

Then by Theorem (3.9) this unique design builds S' |uniquely.//
We actually have proved:

(3.11) Lemma: There is a permutation of the 24 elements of
X' which fixes one element and maps any copy of §S(5,8,24)
onto any other. //

(3.12) Corollary: The §S(5,8,24) design exists and is

unique up to a permutation of its 24 points.
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Proof: Use Lemma (4.3.3) and Theorem (3.9). //

(3.13) Theorem: The automorphism group of the S(5,8,24)
design S' = (X',B') 1is of order 24.23.22.21.20.48 and

acts transitively on its 759 blocks.

Proof: The stabilizer of a point of the 24 point set X'

for S' has order |M by Corollary (2.16). Furthermore,

231

the automorphism group acts transitively on the 24 points of -
X' since it is always possible to choose three points a,b,
.\‘

and c €X' so that ¢ is fixed and a permutation q,esz3
operating on the 23 points of X'\ {c] may be found sending
a to b and sending S' to itself by Lemma (3.11). Hence
|aut (s') | = 24. |My5]. //

(3.14) Corollary: Aut(S') acts 5-transitively on the 24
points of the design S' = (X',p') .

Proof: The proof of Theorem (3.13) establishes the fact
that Aut(S') is l-transitive on the 24 points of X' .
Since the stabilizer group of a point « €X' under the
action of Aut(S') 1is an element of Aut(S) for the
derived design S of S' , and since Aut(S) is 4-transi-

tive on X'\ {0} by Theorem (2.18), Aut(S') is 5-transitive

on X' . //



CHAPTER 12

The Uniqueness of the

1

Goray (23,212,7) and xcoray (24,2%

2,8) Codes

§12.1 Introduction

Vera Pless has shown , in 1968, that any linear

1

(24,2 2,8) code is necessarily the extended Golay code,

[31]. However, her restriction of linearity is not
necessary. From the uniqueness of the Steiner systems
S(4,7,23) and S(5,8,24) established in the last chapter,
and from ideas similar from those used in Chapter 6 relative

to the Nordstrom-Robinson code, we shall demonstrate the

1 12

uniqueness of the GOLAY (23,2 2,7) and the XGOLAY (24,27 7,8)

codes. Said in other words, for the Golay binary codes,
the number of code words M 1is less than or equal to 212
with equality iff the codes are the GOLAY and XGOLAY codes

defined in (3.3.5) and (3.3.8).

1

$12.2 The Weight Distribution of Any (24,2'2.8) code

Let C be a (24,M,8) code with M = 212 . Let also

O€C , where O is the all zero vector of length 24. We
shall show that M5;212 , (Lemma (2.1)). Equality for M
implies that C has one vector each of weights O and 24 ,
759 vectors of each of the weights 8 and 16, and 2576 vectors
of weight 12, Theorem (2.12). Furthermore, the 759 vectors

12,1
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of weight 8 necessarily determine a S(5,8,24) , Lemma (2.3).
(2.1) Lemma: Given C , any (24,M,8) code, then M_g_212 .

Proof: Consider the code CO which is a punctured code of

C . C0 is then by (2.5.5) a (23,M,7) code. By the

sphere packing bound (3.2.3)

2.2) M2+ (Bl 330 = 22

where e=-7;1-=3. //

1

2
(2.3) Lemma: Any (24,2 2,8) code C with 0Oe€C has

759 weight 8 vectors which determine a S(5,8,24) design.

Proof: Let CO be a punctured code of C . Then by (2.2),

Co has its number M of code words satisfying equality in

the sphere packing bound. So by Definition (3.2.4), Co is

a perfect code. Therefore by Lemma (4.3.1), Co Possesses
253 weight 7 code words determining a S(4,7,23) . Then by
Lemma (4.3.2), C contains 759 weight 8 code words
determining a S(5,8,24) design. //

Within the proof of (2.3) we have the additional information:

12

(2.4) Corollary: Any (23,27°7,7) code C with 0€C0 s

O ’
is perfect and its weight 7 vectors determine a §S(4,7,23)

design.

12,8) code C , with Oe€cC,

(2.5) Lemma: Any (24,2
possesses code words of weights 8, 12, and 16 .
Proof: By Lemma (2.3), C has 759 code words of weight 8.

12,9) code, C , with O€cC ,

But this is true of any (24,2
for example C+Z where 2 €C . Consider now the coset

code C+z , where 2z 1is a code word of weight 8 of C .
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The generalized block intersection numbers for the s(5,8,24)
design determined by the 759 weight 8 vectors of C+2z
relative to a block L of the design (where L is

determined by the code vector 2z) are:

(2.6) 759
506 253
330 176 77 a
210 120 56 21 ]
130 80 40 16 5 .
78 52 28 12 4 1 4
46 32 20 8 4 o 1
30 16 16 4 4 o o 1
30 o 16 o 4 o o o 1

since each 5-tuple is contained in a unique block of

L L _,L _.L
5,0 °6,0 °7,0 " 8,0

concludes from these generalized block intersection numbers

S(5,8,24) forcing b =Db b b =1 . One
that each block L meets 4x(g) = 280 blocks on 4 places,
16x(5) = 448 blocks on 2 places, and 30 blocks on O places.
Therefore 2z meets 280 weight 8 code words of C+2z at
Hamming distance 8, 448 weight 8 code words at distance 12,
and 30 weight 8 code words at distance 16. This means that
in C there are code words of weight 0, 8, 12, and 16. //

12,8) code with O€C ,

(2.7) Lemma: If C is any (24,2
then C contains no code words of weights 9, 10, or 11 .
Proof: C possesses 759 code words of weight 8 forming a
S(5,8,24) design, Lemma (2.3). If there exists a code

word 24 of weight 9, then the 9-set A of X corresponding
to z4 has bg’o =

weight code vectors x on 5 places. This is impossible

b, = 1 showing that zy5 meets some
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because then the Hamming distance between x and 2zq

would be 7<8 . If z is a code word of weight 10 or 11
in Cc, then 2z must meet weight 8 code words in at most

5 places to maintain d>8 in C . This means that the

10- or ll-set L corresponding to 2z meets blocks of

the S(5,8,24) design in at most 5 places. Now considering

the generalized block intersection numbers for such a 10-

or ll-set L , necessarily bg,o = bg’o = bg’o = bg,o =
bio,o = 0 and these numbers are:
759
506 253
330 176 77
210 120 56 21
130 80 40 16 5
78 52 28 12 4 1
33 19 9 3 1 0
12 7 2 1 0 (0]
6 6 1 1 (0] (o] (o]
6 (o} 1 0 (o] o] (0]
-1 1 0 0 0 (0] (0]

So necessarily bi"GZO showing that 2z cannot have
Hamming distance d>8 with every weight 8 code vector.
Hence, C contains no weight 9, 10, or 11l vectors. //

(2.8) Corollary: C contains no two code vectors located
at distances 9, 10, or 11 from one another,

Proof: If 2z, x€C with |z+x| =9, 10, or 11, then C+z
would have a code word z +x of weight 9, 10, or 11,
contradicting Lemma (2.7). //

- Define now
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(2.9) an admissible weight 16 vector of C to a weight

16 vector V(4,2) which can be augmented to the set of
759 weight 8 vectors of C and yet preserve the distance
d>8 property.

(2.10) Lemma: An admissible weight 16 vector (cf.

12,8) code C with O0¢€¢C

Definition (2.9)) of any (24,2
must be a complement of a weight 8 code word of C .
Proof: The point set X for the §(5,8,24) design S

determined by the weight 8 vectors of C 1is the set of 24

standard basis coordinates of V(4,2) on which C is
defined. Choose any admissible weight 16 vector of C . This
determines a set L of 16 of the 24 points of X . Let

L' be the complementary set to L, i.e. L' =X |L . Now
consider the generalized block intersection numbers for S

relative to this complementary set, L' :

759
506 253
330 176 77
210 120 56 21
130 80 40 16 5
78 52 28 12 4 1
45+x 33-x 19+x 9-x 34+x l-x x
24+7x 21-6x 12+5x% 7-4x 2+3x 1-2x x-y vy
4 +y -y +y 4 ty
9+28x 15+21x 6+15x 6-10x 1+6x 1-3x x-2y y-z =z .
-8y+2z -7y-z -6y+2 +5y-2 -4y+z +3y-z +2
Now either z =1 or O, since z = bg:o = the number of

blocks meeting L' in all of its 8 places and is either a
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block or not.

Suppose z = O , then by bé‘ 2
’
L'  ,L' . . . Co s 1
5,04b6,0 implies 1>x , it is necessary that Y<y -
But since by Corollary (2.8) there exist no two vectors of
L|
1,7

Then noting that bg" 320 , it is necessary that 1-15/7-y+3y >0
3

= Xx-2y>0 and since
b
C at distance 10 apart, D = 0 implying that 15 +7y = 21x.
or 2y>8/7 . This says that y>% contradicting yg% .

We may now only conclude that z =1 . This means that L'

must be a code vector and that L must be a code vector and

that L is the complement of a code word. //

(2.12) Lemma: Any (24,2'2,8) code, C, with QecC is
complemented, i.e. the complement of any code word of C 1is
again a code word.

Proof: Lemmas (2.5) and (2.10) ensure the existence in C
of a code word, 2z €C , of weight 16, whose weight 8
complementary vector is also a code word. Considering the
codes C+z and C+ (j+2z), one sees that, due to Lemma
(2.3), there are 759 weight 8 code words in each of these
coset codes. Therefore, 6 +2z contains 0 =32+2, j =
(j+2z) +z , and 759 code words of each of the weights 8
and 16. By Lemma (2.10), those weight 16 code words in
C+z must be the complementary vectors to the 759 weight 8
code words in C+z . But 2z =0+z€C+z , so that both
2 and j+2z are code words of C+z as well as of C .
Then, since C=C+2z2+2 , j = (j+2)+z€C . So any

1

(24,2 2,8) code C with 0O0€C , contains also j as a
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code word.

Next, let w be any code word of C . The coset code

12,8) code with O = w+weC+w , so

C+w is a (24,2
jec+w . Therefore, j+we€eC =C+w+w . Hence, the
complementary vector to any code word of C 1is also a code
word of C . //

(2.13) Theorem: Any (24,212,

8) code C , with Oe€cC,

has one code word of weights O and 24 each, 759 code words
of weights 8 and 16, and 2576 code words of weight 12.

Proof: Since by Lemma (2.12) the complement of each code word
is also a code word, and since C has 759 weight 8 vectors

by Lemma (2.3), C has 759 weight 16 vectors complementary

to those weight 8 vectors. Furthermore, C has j€C .

The code words of weights 1,2,...,7 are impossible since
d>8 in C and 0O0€C . Then by Lemmas (2.7) and (2.12),

all other code words of C must be of weight 12, There are

then 212-(1 +759.2 = 2576 weight 12 vectors in C . //

§12,3 The Designs S(4,7,23) and S(5,8,24) Build

23,212.7) ana (24,2!

24 8) Codes, Respectively,

in One Way

By Chapter 11 we know that the designs §S(4,7,23) and
S(5,8,24) are unique up to a permutation of the point sets

in question., Furthermore, by Lemma (2.3) and Corollary (2.4),

1 1

each (23,2'%,7) and (24,2'2%,8) code with 0€C contains

weight 7 and 8 vectors which determine $S(4,7,23) and
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s(5,8,24) designs, respectively. If we can show that each

of these designs build the corresponding code in exactly
one way, it will be shown that the corresponding codes are

also unique. This is the goal of this section.

Let S = (X,3 be a 8S(5,8,24) design, with X
containing the 24 standard basis vectors of a V(24,2) as
elements. Consider the set C of 1+759 vectors of
V(24,2) which are 0O and the 759 vectors of weight 8 whose
8 coordinate places containing ones from the 8-sets of
the S(5,8,24) design. Define

(3.1) An admissible weight 12 vector to be a vector 2z

of weight 12 from V(24,2) which has distance d>8 from
each of the 759 weight 8 vectors already in C . Let the
12-set given by the 12 coordinate places of an admissible
weight 12 vector 2z containing ones be called an

admissible 12-tuple of S .

(3.2) Lemma: An admissible l2-tuple L of S meets 132

blocks of S in 5 places, 495 blocks in 4 places, and 132
blocks in 2 places. These sets of blocks when restricted

to the complementary l2-tuple L' = X\L form two copies of
the complete (Ef)-design, the complete (if)-design, and
an S(5,6,12) design, respectively.

Proof: Consider the generalized block intersection numbers
for the design S relative to an admissible 12-tuple, L ,
of S . Such a 1l2-tuple meets blocks of 8 in at most 6
places, for otherwise the Hamming distance between the

corresponding vectors would be less than 8 . Hence,
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L _ . . UK _
j,0 = O for j=7,8,...,12. Letting b6,0 = X, we

see that the generalized block intersection numbers for 8

b

relative to the admissible 12-tuples L are:

759
506 253
330 176 77
210 120 56 21
130 80 40 16 5
28 52 28 12 4 1
45+x 33-x 194x 9-x 3+x1-x X

24 21 12 7 2 1 x o
+7x -6x +5x -4x +3x -2x N
9 15 6 6 1 1 X (o]
+28x -21x +15x -10x +6X -3x .
84x 15 35x% 6 l1ox 1 X o]
-6 -56x -20x -4x .
210x 22 70x 7 15x 1 X (0]
-28 -126x -7 -35x% -1 -5x%
462x 38 126x 9 21x 1-6x X (o] 0
-66 -252x -16 -56x -2
924x 66 210x 12 28x 1-7x X (0] (0] (0]
-132 -462x -28 -84x -3

Since each b~ and br must be > O, 924x> 132 and
0,8 1,7 <

66 > 462x showing that x

1/7 . Therefore the generalized

block intersection numbers bL of S relative to L

i,3
v s o L L _
with i+3j = 12 are bi,j = 0 except for b2,6 2,
bi 4= 1, and bg 2 = 1/7 . These numbers imply that L
i

’
meets 1/7x( ) = 132 blocks in 6 places, lx( ) = 495
blocks in 4 places and 2x( 23) = 132 blocks in 2 places.
Since in §S(5,8,24) each 5-tuple from X occurs in a unique
block, the 132 blocks of S meeting L on 6 places must have
the property, when restricted to the point set of L , that

each 5-tuple is contained in a unique block. These 132
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blocks then form a S(5,6,12) design. A §S(5,6,12) design
has by the formulas (4.1.2), b4 = 4; the §5(5,8,24) has

b4 = 5 ., Therefore the set of 495 blocks of S meeting L
on 4 places must form one copy of the complete ( tf)—design
on L . Similarly b2 =77 in §S(5,8,24), b2 = 30 1in

s(5,6,12), and b2 = 45 in the complete ( 2?)—design. This
implies that each pair from L must occur twice among the 132
blocks of S meeting L on two places, and that these pairs

form two copies of the complete (23)-design when restricted

to L .

According to Lemma (2.12), the set of 759+1 vectors of C
may be completed to a (24,212,8) code only if the comple-
mentary vector to each code word is also a code word. There-
fore the complementary 12-tuple to L , i.e. L' = X\L must
also be an admissible 12-tuple. This means that L' meets
blocks of S in the same manner as L does. //

(3.4) Theorem: Each admissible 12-tuple of S 1is the
symmetric differeﬁce of two blocks of S which meet on two
places in 66 ways.

Proof: Consider the dissection of S = (X,r) into subdesigns
according to an admissible 1l2-tuple L ¢ X, as given in

Lemma (3.2). Let sets A,B, and C be the sets of 132, 495,
and 132 blocks of S which respectively meet L on 6, 4,

and 2 places. Let L' = X\L .

12
Consider the complete ( 4 ) ~design of B restricted to
L' . Let 1, 2, and 3 be three arbitrary points of L'

Since b3 = 9 for a complete (142) -design (cf. 4.1.2),
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{1,2,3} 1is contained in 9 blocks of B .

Consider these 9 blocks of B containing {1,2,3} and
restrict attention to the set L . These 9 blocks form on
L a design D of 12 points and 9 blocks. Design D has
d .6 since in §S(5,8,24) blocks have d.8 and the parts
of these 9 blocks of B restricted to L' differ pairwise
in two places (i.e. have d = 2 when restricted to L').

Then D has k =4 and ¢t

4-6/2 =1 yielding equality

in the formula (4.7.5)

12-1 12
bog[—r_—r].—i—‘B .

Therefore by Lemma (4.7.6), D is a 3-(1,4,12) design,
(Actually one can prove that D is the transpose of the
affine geometry AG(2,3) of two dimensions over GF(3), but

this is not necessary for our purposes.)

Let o Dbe an arbitrary point of L . Since D has
b, = 3, the set {o0,1,2,3} 1is contained in precisely 3
blocks of B . Considering S , b4 =5, so {a,1,2,3} must
also be contained in precisely two blocks of C(_'A . But
blocks of A restricted to L' are pairs of points of L' ,

so {al,2,3} 1is contained in two blocks of C .

Considering the complete ( ZE)-design, E , and the two
copies of the complete (Ef)—design, F , corresponding
to blocks of B and C restricted to L' , one calculates

b1 = 165 in E and bl

is contained in 165 blocks of B and 22 blocks of C .

= 2x11 in F . Therefore ({a}
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Now considering b2 for the designs G and H ,
b, = 5 in H . This implies that for an arbitrary pair
{1,2,3} c L' , {a,1,2} 1is contained in 15+5 " 20 blocks
of BUC . But b3 = 21 in the 8(5,8,24) design S , so

that {a,1,2} must be contained precisely one block of A .

Restated, this last fact says that the pair {1,2} <« L' ,
which is contained in precisely two blocks of A , is
contained together with each o €L in a unique block of A .

This means that the two blocks of A containing an arbitrary

pair {1,2} <« L' , when restricted to the set L form

complementary 6-tuples.

So we have finally shown that the admissible 12-tuple L
is the symmetric difference (a modulo 2 sum) of two blocks
of S which share a given pair from L' = X\L . Further-
more, since there are 2 x66 blocks of S in A and since
there are 66 pairs in the complete (23)-design, any
admissible 12-tuple L 1is the symmetric difference of two
blocks of S in 66 ways. //
(3.5) Theorem: Given any S(5,8,24) design whose 24 point
set X contains, as points, the 24 standard basis vectors of
v(24,2), then S(5,8,24) always determines precisely one

12,8) code whose weight 8 vectors determine that

(24,2
S$(5,8,24) design.

Proof: Let C Dbe the set of 759 vectors of V(24,2) which
have ones in the coordinate places corresponding to the

elements of X in the 759 blocks of the §S(5,8,24) design.
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1
For C to be augmented to a (24,2 2,8) code,

Theorem (2.13) requires there to be one vector of weights

O and 24, 759 vectors of weights 8 and 16 and 2576 vectors
of weight 12, By Lemma (2.12) the complement of each code
word must also be a code word. Therefore we must augment

C by O, j, and the 759 weight 16 vectors complementary to

those already contained in C .

Now by Theorem (3.4), the only admissible weight 12
vectors are modulo 2 sums of two weight 8 vectors of C ,
each in 66 ways. By counting the maximum number of possible
admissible weight 12 vectors we see that there are
759.448/2 = 170,016 ways to choose pairs of blocks of S
which share two elements of X . This yields 170.016/66 =
2576 possible distinct admissible weight 12 vectors. All of

12

these must be present in order to augment C to a (24,277,8)

code.

Therefore, the §(5,B,24) design builds a (24,2'2,8)

code in a unique way. //

(3.6) Theorem: The S(4,7,23) design builds a (23,212,7)
code in a unique way.

Proof: Let Y be a 23 point set and S = (Y,s3) be a
S(4,7,23) design., Let o be an additional point not from

Y and let X = YU{«} . By Theorem (11.3.9) the design S
builds a unique S(5,8,24) design on X . Let the 23 points

of Y be the basis vectors of a V(23,2) and o« be an

additional vector so that points of X form a basis of
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V(24,2) . Then by Theorem (3.5), the S(5,8,24) design

1

builds uniquely a (24,2 2,8) code C' on V(24,2) whose

weight 8 vectors determine that S(5,8,24) design. Then a

12

punctured code of this (24,27°,8) code C' formed by

removing the coordinate place corresponding to « 1s a
(23,212,7) code C, (cf. (2.5.5)), whose weight 7 vectors

determine the S(4,7,23) design S that was given.

Were S to be contained in any other copy of C1 of a

(23, 21 12

2,7) code, then the parity check code, Ci , (24,277,8)
formed from c, would have its weight 8 vectors determining
a distinct copy of the §S(5,8,24) (by Theorem (3.5)) and

this would have (by Theorem (11.3.9)) a distinct S(4,7,23)
design as a derived design. This contradicts the fact that
the punctured code of Ci , hamely C1 itself, has its

weight 7 vectors determining the same design S as the code

1

C . Hence, S builds a unique (23,2 2,7) code C . //

§12.4 The Uniqueness of the GOLAY 123,212,7) and

XGOLAY (24,212,§l, Binary Codes

Since each (23,272,7) code and (24,2%

2,8) code
containing O has its minimum non-zero weight vectors
determining respectively the unique §S(4,7,23) and S(5,8,24)
designs we have from Section 12.3 and Chapter 11 that:

(4.1) Theorem: Up to a permutation of the 23 basis

1

vectors of V(23,2), the GOLAY (23,22,7) code is unique.

Up to & permutation of the 24 basis vectors of V(24,2) the
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2

XGOLAY (24,21 ,8) code is unique.

Proof: By Theorem (11.2.8) and Corollary (11.3.10) the
S(4,7,23) and S(5,8,24) designs are unique up to a
permutation of their 23 and 24 point sets respectively.
Then by Theorems (3.6) and (3.5) these designs build unique

(23,212,7) and (24,212,8) codes respectively. //

Furthermore, due to the fact that these Steiner systems

build the respective codes in unique ways, we have:

(4.2) Theorem: The automorphism groups of the (23,212,7)

1

and (24,2 2,8) codes containing O are isomorphic to the

automorphism groups of the respective Steiner systems

S(4,7,23) and S(5,8,24) determined by the minimum non-zero

weight vectors of the codes. These automorphism groups are
respectively 4- and 5-transitive on the 23 and 24 basis
vectors of V(23,2) and V(24,2), while stabilizing these
codes.

Proof: Use Theorems (3.6) and (3.5), and Theorems (11.2.18)
and (11.3.14). //
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