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ABSTRACT

DISCONTINUOUS GALERKIN METHODS FOR HAMILTON-JACOBI
EQUATIONS AND HIGH-DIMENSIONAL ELLIPTIC EQUATIONS

By

Zixuan Wang

This thesis focuses on two related topics, which are to design efficient discontinuous

Galerkin (DG) schemes for Hamilton-Jacobi (HJ) equations and high-dimensional elliptic

equations.

In the first part, we propose a new DG method that solves for the viscosity solution

of the general HJ equations. The new method is compact and easy to implement. We

avoid the reconstruction of the solution across elements by utilizing the interfacial terms

involving the Roe speed. A penalty term proportional to the jump of the normal derivative

of the numerical solution is added to fix the entropy violation, which was inspired by the

Harten and Hymans entropy fix [53] for Roe scheme for the conservation laws. Numerical

experiments demonstrate good performance for general Hamiltonians, including nonconvex

Hamiltonians.

In the second part, we develop an interior penalty DG method on sparse grids for efficient

computations of high-dimensional second-order elliptic problems. Using a hierarchical basis

representation, we construct a sparse finite element approximation space, reducing the degree

of freedom from the standard O(h−d) to O(h−1| log2 h|d−1) for d-dimensional problems,

where h is the uniform mesh size in each dimension. Compared to the traditional full grid

approaches, the accuracy of the numerical approximation of this method is only slightly

deteriorated by a factor of | log2 h|d−1 in the energy norm. Error estimates are provided and

confirmed by numerical tests in multi-dimensions.
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Chapter 1

Introduction

1.1 Overview

Ever since the discontinuous Galerkin (DG) finite element method was first developed by

Reed and Hill to solve the conservation laws, the use of DG discretizations has become

more widespread. The appeal of DG methods relates to their flexibility to choose bases,

combined with compact stencils and favorable properties for arbitrarily unstructured meshes.

Moreover, DG methods generally are able to capture the physically relevant discontinuities

accurately for problems with rough solutions. DG methods also have excellent parallel

efficiency and can easily accommodate the hp-adaptivity. Therefore, DG methods have

attracted interest of many researchers and practitioners and have been proved useful in the

real-world problems like meteorology, weather-forecasting, semiconductor device simulation,

electrodynamics and plasma physics.

In this thesis, we will focus on the improvement of the DG methods for the general

Hamilton-Jacobi (HJ) equations and the development of sparse grid DG methods for high-

dimensional elliptic problems to make the numerical simulations more accurate, efficient and

stable.
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1.2 Numerical Methods for HJ Equations

In this section we will introduce the HJ equation and review numerical methods for solving

this equation.

We consider the numerical solution of a general time-dependent HJ equation

ϕt +H(∇xϕ, x) = 0, ϕ(x, 0) = ϕ0(x), x ∈ Ω ∈ Rd (1.1)

with suitable boundary conditions on ∂Ω. The HJ equation arises in many applications, e.g.,

optimal control, differential games, crystal growth, image processing and calculus of varia-

tions. The solution of such equation is Lipschitz continuous but may develop discontinuous

derivatives in finite time even when the initial data is smooth.

The viscosity solution [32, 33] was introduced as the unique physically relevant solution,

and has been the focus of many numerical methods. Starting from [34, 78], finite difference

methods such as essentially non-oscillatory (ENO) [67, 68] or weighted ENO (WENO) meth-

ods [58, 87] have been developed to solve the HJ equation. Those finite difference methods

work quite efficiently for Cartesian meshes, however they lose the advantage of simplicity on

unstructured meshes [1, 87].

Alternatively, the Runge-Kutta discontinuous Galerkin (RKDG) method, originally de-

vised to solve the conservation laws [31], is more flexible for arbitrarily unstructured meshes.

The first work of DG methods for HJ equations [56, 61] relies on solving the conservation law

system satisfied by the derivatives of the solution. The methods work well numerically even

on unstructured mesh, with provable stability results for certain special cases, and were later

generalized in e.g. [50, 24]. Unfortunately, the procedure of recovering ϕ from its derivatives

has made the algorithm indirect and complicated. In contrast, the design of DG methods for
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directly solving the HJ equations is appealing but challenging, because the HJ equation is not

written in the conservative form, for which the framework of DG methods could easily apply.

In [25], a DG method for directly solving the HJ equation was developed, motivated by the

idea that the one-dimensional linear HJ equation can be rewritten as a conservation law

with a source term. Later, this algorithm was applied to solve front propagation problems

[15] and front propagation with obstacles [16], in which simplified implementations of the

entropy fix procedure were proposed. Meanwhile, central DG [62] and local DG [84] meth-

ods were recently developed for the HJ equation. Numerical experiments demonstrate that

both methods work for nonconvex Hamiltonians. In addition, the first order version of the

local DG method [84] reduces to the monotone schemes and thus has provable convergence

properties. However, the central DG methods based on overlapping meshes are difficult to

implement on unstructured meshes, and the local DG methods still need to resort to the

information about the derivatives of ϕ, making the method less direct in computation. L2

error estimates for smooth solutions of the DG method [25] and local DG method [84] have

been established in [83]. For recent developments of high order and DG methods for HJ

equations, one can refer to the review papers [74, 75].

The direct method in [25] works well numerically for both linear and convex cases, but

still needs to resort to the complicated procedure in [56, 61] for the entropy fix. Based on the

observation that the method in [25] is closely related to Roe’s linearization, we propose to

use interfacial terms involving the Roe speed and develop a new entropy fix that was inspired

by the Harten and Hyman’s entropy fix [53] for Roe scheme for the conservation laws. In

Chapter 2, we develop such a direct solver. Moreover, we will show that the new method

has the following advantages. Firstly, the scheme works on unstructured meshes even for

nonconvex Hamiltonian. Secondly, the method is simple to implement. The cumbersome

3



L2 reconstruction of the solutions’ derivative at the cell interface in [25] is avoided, and the

entropy fix is automatically incorporated by the added jump terms in the derivatives of the

numerical solution. Finally, the scheme is direct and compact, and the computation only

needs the information about the current cell and its immediate neighbors.

1.3 Review of DG Schemes for Elliptic Equations

Elliptic equations have been used successfully in many application areas such as aeroacous-

tics, electro-magnetism, oil recovery simulation, weather forecasting, etc. There has been a

lot of effort on the numerical methods for the elliptic equations, including the standard fi-

nite difference methods, collocation methods, Galerkin finite element methods, least squares

methods, among the others. DG methods work well for purely hyperbolic problems by na-

ture, yet these methods also prove to be useful for elliptic equations. As pointed out in the

review paper [7], many DG discretization methods have been developed such as the method

of Bassi and Rebay [12], the variations in [17], and the local DG methods introduced in

[23, 27, 28, 30].

In the 1970s, a class of interior penalty (IP) DG finite element methods was proposed in

[6, 10, 37, 82]. These IPDG methods arose from Nitsche’s idea that, just as the Dirichlet

boundary conditions can be imposed weakly by adding a penalty term instead of being re-

stricted strongly in the approximation space, the continuity across interelement boundaries

could be attained similarly. Therefore, it is possible to use the more flexible discontinuous

finite element space in this penalty technique. In 1973, Babuska [9] proposed another penal-

ization technique to weakly impose C1 continuity. In 1978, Wheeler [82] generalized Nitsche’s

method to second-order elliptic problems and later Alnold generalized this technique and an-

4



alyzed in further detail for linear and nonlinear elliptic and parabolic problems in his thesis

[6]. A family of IPDG methods, which includes Oden-Baumann-Babusk [66], symmetric in-

terior penalty Galerkin [82], nonsymmetric interior penalty Galerkin [70], incomplete interior

penalty Galerkin [35], has been proposed to deal with elliptic problems during the last few

decades. However since 1980s, less attention has been paid to IP methods mainly because

these penalty methods were never proved to be more efficient than conforming finite element

approximation space. In spite of this, IP methods have the advantage of flexibility in choos-

ing the approximation space and are more suited for hp-adaptivity. For instance, in 1990,

Baker [11] used the nonconforming finite element approximations to enforce the divergence-

free condition point-wise in each triangle mesh for the Stokes system. The interior penalties

were used to deal with the discontinuity in the velocity across interelement boundaries.

1.4 Sparse Grid Methods for High-dimensional PDEs

In this thesis, we are concerned with the numerical solution of high-dimensional PDEs. High-

dimensional PDEs have been a major challenge in the scientific computing areas due to the

storage requirements and computational complexity. How to conquer the the curse of di-

mensionality [14] is vital to the real-world problems as such high-dimensional problems often

come from kinetic simulations, stochastic analysis, control, optimization and mathematical

modeling in finance or statistics. Examples include high-dimensional Laplace problems and

high-dimensional convection-diffusion problems which result from diffusion approximation

techniques or the Fokker–Planck equation. The challenge of those problems typically cannot

be simply solved by increase of computational resources, but requires the improvement of

numerical techniques, better computational implementation and usage of parallel comput-
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ing. Those different perspectives of treatment have attracted increasing attention over the

last decades. Among them, the sparse grid techniques, introduced by Zenger [86], have been

developed as a major tool to break the curse of dimensionality of grid-based approaches.

Such approaches rely on a tensor product hierarchical basis representation, and can suc-

cessfully reduce the degrees of freedom from the standard O(h−d) to O(h−1| log h|d−1) for

d-dimensional problems, where h is the uniform mesh size. The underlying ideas of sparse

grid techniques can be traced back to Smolyak [77] for numerical integration, and the meth-

ods are closely related to hyperbolic cross [8, 79], boolean method [36], discrete blending

method [13], and splitting extrapolation method [63] in the literature. The trick is to bal-

ance the cost complexities and the accuracy of the scheme and find a proper truncation of

the tensor product hierarchical bases, which could be formally derived by solving an opti-

mization problem of cost/benefit ratios, as discussed in [45]. For recent developments of

sparse grids method, we refer to the survey paper [21] and lecture notes [38].

When solving high-dimensional PDEs, besides the natural choice of traditional Galerkin

finite element methods [86, 21, 71], sparse grids have been incorporated in finite difference

methods [44, 49], finite volume methods [54], and spectral methods [46, 42, 72, 73]. However,

the potential of sparse grids has not yet been fully realized under the DG framework, in

which discontinuous basis function spaces are under consideration. The flexibility and the

mature development of DG scheme make it an excellent candidate to be combined with the

sparse grid approach to solve high-dimensional PDEs. In Chapter 3, we will develop DG

methods on sparse grids for efficient computations of high-dimensional elliptic equations. Our

study consists of a thorough investigation of the underlying sparse approximation space, its

utilization in conjunction with the IPDG method, and the properties of the schemes implied.

Numerical results validate our theoretical findings, which give promising outlook for the
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extension of the scheme to wider applications.
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Chapter 2

DG Method for Directly Solving the

Hamilton-Jacobi Equations

In this chapter, we improve upon the DG method for HJ equation with convex Hamiltonians

in [25] and develop a new DG method for directly solving the general HJ equations. The

new method avoids the reconstruction of the solution across elements by utilizing the Roe

speed at the cell interface. Besides, we propose an entropy fix by adding penalty terms

proportional to the jump of the normal derivative of the numerical solution. The particular

form of the entropy fix was inspired by the Harten and Hyman’s entropy fix [53] for Roe

scheme for the conservation laws.

The rest of this chapter is organized as follows: in Section 2.1, we introduce the numerical

scheme for one-dimensional HJ equations. We generalize the scheme to compute on two-

dimensional Cartesian meshes in Section 2.2 and on general unstructured meshes in Section

2.2. Section 2.4 is devoted to the discussion of the numerical results. Benchmark numerical

experiments in one dimension and two dimensions are provided to validate the performance

of the method on both structured and unstructured meshes.
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2.1 Scheme in One Dimension

In this section, we will describe the numerical methods for the one-dimensional equation.

We follow the method of lines approach, and below we will only describe the semi-discrete

DG schemes. The resulting method of lines ODEs can be solved by the total variation

diminishing (TVD) Runge-Kutta methods [76] or strong stability preserving (SSP) Runge-

Kutta methods [41].

2.1.1 One-dimensional Formulation

In this subsection, we will start with the simple one-dimensional HJ equation. In this case,

(1.1) becomes

ϕt +H(ϕx, x) = 0, ϕ(x, 0) = ϕ0(x). (2.1)

Assume the computational domain is [a, b], we will divide it into M cells as follows

a = x1
2
< x3

2
< . . . < x

M+1
2

= b. (2.2)

Now the cells and their centers are defined as

Ij = [x
j−1

2
, x
j+1

2
], xj =

1

2

(
x
j−1

2
+ x

j+1
2

)
, j = 1, · · · ,M (2.3)

and the mesh sizes are

∆xj = x
j+1

2
− x

j−1
2
, h = max

j
∆xj . (2.4)
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The DG approximation space is

V kh = {υ : υ|Ij ∈ P
k(Ij), j = 1, · · · ,M} (2.5)

where P k(Ij) denotes all polynomials of degree at most k on Ij , and we let H1 = ∂H
∂ϕx

be

the partial derivative of the Hamiltonian with respect to ϕx.

To introduce the scheme, we need to define several quantities at the cell interface where

the DG solution is discontinuous. If x∗ is a point located at the cell interface, then ϕh ∈ V kh

would be discontinuous at x∗. We can then define the Roe speed at x∗ to be

H̃ϕh(x∗) :=


H((ϕh)x(x+

∗ ),x+
∗ )−H((ϕh)x(x−∗ ),x−∗ )

(ϕh)x(x+
∗ )−(ϕh)x(x−∗ )

, if (ϕh)x(x+
∗ ) 6= (ϕh)x(x−∗ ),

1
2

(
H1((ϕh)x(x+

∗ ), x+
∗ ) +H1((ϕh)x(x−∗ ), x−∗ )

)
, if (ϕh)x(x+

∗ ) = (ϕh)x(x−∗ ).

In the notations above, we use superscripts +, − to denote the right, and left limits of a

function. Notice that in order for the above definition to make sense, we restrict our attention

to k ≥ 1 case, i.e. piecewise linear polynomials and above.

Similar to Harten and Hyman’s entropy fix [53], to detect the entropy violating cells, we

introduce

δϕh(x∗) := max
(

0, H̃ϕh(x∗)−H1((ϕh)x(x−∗ ), x−∗ ), H1((ϕh)x(x+
∗ ), x+

∗ )− H̃ϕh(x∗)
)

and

Sϕh(x∗) := max
(
δϕh(x∗), |H̃ϕh(x∗)|

)
.

We note that Sϕh(x∗) 6= |H̃ϕh(x∗)| only if |H̃ϕh(x∗)| < δϕh(x∗).

Now we are ready to formulate our DG scheme for (2.1). We look for ϕh(x, t) ∈ V kh , such

10



that

∫
Ij

(∂tϕh(x, t) +H(∂xϕh(x, t), x))vh(x) dx

+ min

(
H̃ϕh(x

j+1
2

), 0

)
[ϕh]

j+1
2

(vh)−
j+1

2

+ max

(
H̃ϕh(x

j−1
2

), 0

)
[ϕh]

j−1
2

(vh)+

j−1
2

−C∆xj

(
Sϕh(x

j+1
2

)− |H̃ϕh(x
j+1

2
)|
)

[(ϕh)x]
j+1

2
(vh)−

j+1
2

−C∆xj

(
Sϕh(x

j−1
2

)− |H̃ϕh(x
j−1

2
)|
)

[(ϕh)x]
j−1

2
(vh)+

j−1
2

=0, ∀ j = 1, . . . ,M (2.6)

holds for any vh ∈ V kh with k ≥ 1. Here [u] = u+ − u− denotes the jump of a function at

the cell interface, ∆xj serves as the scaling factor. C is a positive penalty parameter. The

detailed discussion about the choice of C is contained in Section 2.4. In particular, we find

that C = 0.25 works well in practice.

2.1.2 Interpretation of the Scheme

In this subsection, we provide interpretation of the scheme (2.6) for the linear HJ equation

with variable coefficient

ϕt + a(x)ϕx = 0

to illustrate the main ideas.

To better interpret our scheme and compare it with the old method, we first review the

direct DG scheme in [25]. As we mentioned, Cheng and Shu in [25] used the idea that

ϕt + a(x)ϕx = 0 (2.7)

11



with a′(x) ≥ 0, is equivalent to a conservation law with a source term:

ϕt + (a(x)ϕ)x = a′(x)ϕ. (2.8)

The authors assumed a(x) is smooth and applied DG method to (2.8) with Roe flux which

requires an upwinding flux to obtain:

∫
Ij

(∂tϕh(x, t) + a(x)∂xϕh(x, t))vh(x) dx

+
1

2

(
a(x

j+1
2

)− |a(x
j+1

2
)|
)

[ϕh]
j+1

2
(v)+

j+1
2

+
1

2

(
a(x

j−1
2

) + |a(x
j−1

2
)|
)

[ϕh]
j−1

2
(v)+

j−1
2

=0, j = 1, . . . ,M. (2.9)

This motivated them to propose the following are scheme for general HJ equations:

find ϕh ∈ V kh , such that

∫
Ij

(∂tϕh(x, t) +H(∂xϕh(x, t), x))vh(x)dx

+
1

2

 min
x∈I

j+1
2

H1(∂xϕh, xj+1
2

)− | min
x∈I

j+1
2

H1(∂xϕh, xj+1
2

)|

 [ϕh]
j+1

2
(vh)−

j+1
2

+
1

2

 max
x∈I

j−1
2

H1(∂xϕh, xj−1
2

) + | max
x∈I

j−1
2

H1(∂xϕh, xj−1
2

)|

 [ϕh]
j−1

2
(vh)−

j−1
2

=0, j = 1, . . . ,M (2.10)

The reconstructed information of ∂xϕh on the cells I
j+1

2
and I

j−1
2

was needed. Therefore,

L2 type projection was used to reconstruct a continuous approximation of ϕh(x, t) in their
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scheme. They defined a polynomial w
j+1

2
∈ P 2k+1 on Ij

⋃
Ij+1, s.t.

∫
Ij

ϕhvdx =

∫
Ij

w
j+1

2
vdx

and

∫
Ij+1

ϕhvdx =

∫
Ij+1

w
j+1

2
vdx

then ∂xϕh = ∂xwj+1
2

on I
j+1

2
.

Their scheme has provable stability and error estimates for linear equations and demon-

strates good convergence to the viscosity solutions for nonlinear equations. However, this

scheme only works for equations with convex Hamiltonians. Moreover, in entropy violat-

ing cells, where it satisfies H1(ϕ−x (x
j−1

2
)) < 0 < H1(ϕ+

x (x
j−1

2
)) or H1(ϕ−x (x

j+1
2

)) < 0 <

H1(ϕ+
x (x

j+1
2

)), a correction based on the schemes in [56, 61] is necessary to guarantee sta-

bility of the method.

Now we provide an interpretation of the proposed scheme (2.6). Our scheme can be

thought as an improvement upon the above direct DG method (2.10). Firstly, if a(x) ∈ C1,

we have

H̃ϕh(x
j+1

2
) = a(x

j+1
2

), δϕh(x
j+1

2
) = 0, Sϕh(x

j+1
2

) = |a(x
j+1

2
)|, ∀j = 1, . . . ,M,

therefore the scheme (2.6) reduces to
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∫
Ij

(∂tϕh(x, t) + a(x)∂xϕh(x, t))vh(x) dx

+ min

(
a(x

j+1
2

), 0

)
[ϕh]

j+1
2

(vh)−
j+1

2

+ max

(
a(x

j−1
2

), 0

)
[ϕh]

j−1
2

(vh)+

j−1
2

,

=0, ∀j = 1, . . . ,M. (2.11)

This is exactly the same as the direct DG method (2.9). Therefore, stability and error

estimates of our scheme could be established the same as [25].

In addition, when a(x) is no longer smooth, especially when a(x) contains discontinuity

at cell interfaces. The old scheme (2.9) will produce entropy violating shocks in the solutions’

derivative [25]. In this case, the penalty terms in the proposed scheme (2.6) come into play,

and the added viscosity enables us to capture the viscosity solution as demonstrated in

Section 2.4. In particular, suppose a(x) is discontinuous at x
j+1

2
, then

H̃ϕh(x
j+1

2
) =

[a(x)ϕh]
j+1

2

[ϕh]
j+1

2

.

If the entropy condition is violated at x
j+1

2
, i.e., a(x−

j+1
2

) < 0 < a(x+

j+1
2

), then

δϕh(x
j+1

2
) = max

0,

[a(x)ϕh]
j+1

2

[ϕh]
j+1

2

− a(x−
j+1

2

), a(x+

j+1
2

)−
[a(x)ϕh]

j+1
2

[ϕh]
j+1

2

 > 0,

and Sϕh(x
j+1

2
) > 0. When |H̃ϕh(x

j+1
2

)| < δϕh(x
j+1

2
), the penalty term

−C∆xj

(
Sϕh(x

j+1
2

)− |H̃ϕh(x
j+1

2
)|
)

[(ϕh)x]
j+1

2
(vh)−

j+1
2
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will be nonzero. On the other hand, if a(x−
j+1

2

) > 0 > a(x+

j+1
2

), corresponding to a shock

in ϕx, we know the Roe scheme (2.11) could correctly capture this behavior. In fact, in this

case

δϕh(x
j+1

2
) = max

0,

[a(x)ϕh]
j+1

2

[ϕh]
j+1

2

− a(x−
j+1

2

), a(x+

j+1
2

)−
[a(x)ϕh]

j+1
2

[ϕh]
j+1

2

 = 0,

and Sϕh(x
j+1

2
)−|H̃ϕh(x

j+1
2

)| = 0, the method (2.6) will reduce to (2.11). Similar arguments

extend to the nonlinear case for sonic expanding cells for convex Hamiltonians,

H1(ϕ−x (x
j+1

2
)) < 0 < H1(ϕ+

x (x
j+1

2
)).

The penalty term in (2.6) would be turned on automatically.

Finally we remark that the key differences of the scheme (2.6) compared to the method

in [25] are: (1) the L2 reconstruction of ϕh across two elements is avoided and we use

the Roe speed which could be easily computed, which is advantageous especially for multi-

dimensional problems on unstructured meshes, as to be illustrated in Sections 2.2 and 2.3,

(2) the added penalty terms automatically treat the sonic points, and the key idea is to add

the viscosity based on the jump in (ϕh)x, but not ϕh itself. This is natural considering the

formation of monotone schemes such as the Lax-Friedrichs scheme for HJ equation. We will

verify in Section 2.4 that the penalty terms do not degrade the order of the accuracy of the

numerical scheme.
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2.2 Scheme on Two-dimensional Cartesian Meshes

In this subsection, we generalize the scheme to compute HJ equations on two-dimensional

Cartesian meshes. Now equation (1.1) is written as

ϕt +H(ϕx, ϕy, x, y) = 0, ϕ(x, y, 0) = ϕ0(x, y), (x, y) ∈ [a, b]× [c, d]. (2.12)

The rectangular mesh is defined by

a = x1
2
< x3

2
< . . . < x

Nx+1
2

= b, c = y1
2
< y3

2
< . . . < y

Ny+1
2

= d (2.13)

and

Ii,j = [x
i−1

2
, x
i+1

2
]× [y

j−1
2
, y
j+1

2
], Ji = [xi−1/2, xi+1/2], Kj = [yj−1/2, yj+1/2]

i = 1, . . . Nx, j = 1, . . . Ny. (2.14)

Let

∆xi = xi+1/2 − xi−1/2, ∆yj = yj+1/2 − yj−1/2, h = max(max
i

∆xi,max
j

∆yj).

We define the approximation space as

V kh = {υ : υ|Ii,j ∈ P
k(Ii,j), i = 1, . . . Nx, j = 1, . . . Ny} (2.15)

where P k(Ii,j) denotes all polynomials of degree at most k on Ii,j with k ≥ 1.

Let us denote H1 = ∂H
∂ϕx

and H2 = ∂H
∂ϕy

. Similar to the one-dimensional case, we need
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to introduce several numerical quantities at the cell interface.

If x∗ is located at the cell interface in the x direction, then ϕh ∈ V kh is discontinuous at

(x∗, y) for any y, and we define the Roe speed in the x direction at (x∗, y) to be

H̃1,ϕh
(x∗, y) :=

H((ϕh)x(x+
∗ ,y),(ϕh)y,x

+
∗ ,y)−H((ϕh)x(x−∗ ,y),(ϕh)y,x

−
∗ ,y)

(ϕh)x(x+
∗ ,y)−(ϕh)x(x−∗ ,y)

,

if (ϕh)x(x+
∗ , y) 6= (ϕh)x(x−∗ , y),

1
2

(
H1((ϕh)x(x+

∗ , y), (ϕh)y, x
+
∗ , y) +H1((ϕh)x(x−∗ , y), (ϕh)y, x

−
∗ , y)

)
,

if (ϕh)x(x+
∗ , y) = (ϕh)x(x−∗ , y),

where

(ϕh)y =
1

2

(
(ϕh)y(x+

∗ , y) + (ϕh)y(x−∗ , y)
)

is the average of the tangential derivative. Again, we define

δ1,ϕh(x∗, y) := max
(

0, H̃1,ϕh
(x∗, y)−H1((ϕh)x(x−∗ , y), (ϕh)y, x

−
∗ , y),

H1((ϕh)x(x+
∗ , y), (ϕh)y, x

+
∗ , y)− H̃1,ϕh

(x∗, y)
)

and

S1,ϕh
(x∗, y) := max

(
δ1,ϕh(x∗, y), |H̃1,ϕh

(x∗, y)|
)
.

Similarly, for y∗ located at the cell interface in the y direction, ϕh ∈ V kh is discontinuous at
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(x, y∗) for any x, and we define the Roe speed in the y direction at (x, y∗) to be

H̃2,ϕh
(x, y∗) :=

H((ϕh)x,(ϕh)y(x,y+
∗ ),x,y+

∗ )−H((ϕh)x,(ϕh)y(x,y−∗ ),x,y−∗ )

(ϕh)y(x,y+
∗ )−(ϕh)y(x,y−∗ )

,

if (ϕh)y(x, y+
∗ ) 6= (ϕh)y(x, y−∗ ),

1
2

(
H1((ϕh)x, (ϕh)y(x, y+

∗ ), x, y+
∗ ) +H1((ϕh)x, (ϕh)y(x, y−∗ ), x, y−∗ )

)
,

if (ϕh)y(x, y+
∗ ) = (ϕh)y(x, y−∗ ),

where

(ϕh)x =
1

2

(
(ϕh)x(x, y+

∗ ) + (ϕh)x(x, y−∗ )
)

is the average of the tangential derivative. Again, we define

δ2,ϕh(x, y∗) := max
(

0, H̃2,ϕh
(x, y∗)−H2((ϕh)x, (ϕh)y(x, y−∗ ), x, y−∗ ),

H2((ϕh)x, (ϕh)y(x, y+
∗ ), x, y+

∗ )− H̃2,ϕh
(x, y∗)

)

and

S2,ϕh
(x, y∗) := max

(
δ2,ϕh(x, y∗), |H̃2,ϕh

(x, y∗)|
)
.
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We now formulate our scheme as: find ϕh(x, t) ∈ V kh , such that

∫
Ii,j

(∂tϕh(x, y, t) +H(∂xϕh(x, y, t), ∂yϕh(x, y, t), x, y))vh(x, y)dxdy

+

∫
Kj

min

(
H̃1,ϕh

(x
i+1

2
, y), 0

)
[ϕh](x

i+1
2
, y)vh(x−

i+1
2

, y)dy

+

∫
Kj

max

(
H̃1,ϕh

(x
i−1

2
, y), 0

)
[ϕh](x

i−1
2
, y)vh(x+

i−1
2

, y)dy

+

∫
Ji

min

(
H̃2,ϕh

(x, y
j+1

2
), 0

)
[ϕh](x, y

j+1
2

)vh(x, y−
j+1

2

)dx

+

∫
Ji

max

(
H̃2,ϕh

(x, y
j−1

2
), 0

)
[ϕh](x, y

j−1
2

)vh(x, y+

j−1
2

)dx (2.16)

−C∆xi

∫
Kj

(
S1,ϕh

(x
i+1

2
, y)− |H̃1,ϕh

(x
i+1

2
, y)|

)
[(ϕh)x](x

i+1
2
, y)vh(x−

i+1
2

, y)dy

−C∆xi

∫
Kj

(
S1,ϕh

(x
i−1

2
, y)− |H̃1,ϕh

(x
i−1

2
, y)|

)
[(ϕh)x](x

i−1
2
, y)vh(x+

i−1
2

, y)dy

−C∆yj

∫
Ji

(
S2,ϕh

(x, y
j+1

2
)− |H̃2,ϕh

(x, y
j+1

2
)|
)

[(ϕh)y](x, y
j+1

2
)vh(x, y−

j+1
2

)dx

−C∆yj

∫
Ji

(
S2,ϕh

(x, y
j−1

2
)− |H̃2,ϕh

(x, y
j−1

2
)|
)

[(ϕh)y](x, y
j−1

2
)vh(x, y+

j−1
2

)dx = 0

holds for any vh ∈ V kh with k ≥ 1. In practice, the volume and line integrals in (2.16) can

be evaluated by Gauss quadrature formulas. The main idea in (2.16) is that in the normal

direction of the interface, we apply the ideas from the one-dimensional case, but tangential

to the interface, we use the average of the tangential derivatives from the two neighboring

cells.
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2.3 Scheme on General Unstructured Meshes

In this subsection, we describe the scheme on general unstructured meshes for (1.1). Let

Th = {K} be a partition of Ω, with K being simplices. We define the piecewise polynomial

space

V kh =
{
v ∈ L2(Ω) : v|K ∈ P k(K), ∀K ∈ Th

}
,

where P k(K) denotes the set of polynomials of total degree at most k on K with k ≥ 1.

For any element K, and edge in ∂K, we define nK to be the outward unit normal to the

boundary of K, and tK is the unit tangential vector such that nK · tK = 0. In higher

dimensions, i.e. d > 2, d − 1 tangential vectors need to be defined. In addition, for any

function u ∈ V kh , and x ∈ ∂K, we define the traces of uh from outside and inside of the

element K to be

u±h (x) = lim
ε↓0

uh(x± εnk),

and [uh](x) = u+
h (x)− u−h (x), uh(x) = 1

2(u+
h (x) + u−h (x)). We also let HnK

= ∇∇ϕH ·nK .

Now following the Cartesian case, we define, for any x ∈ ∂K,

H̃nK,ϕh
(x) :=

H((∇xϕh·nK )+,∇xϕh·tK,x
+)−H((∇xϕh·nK )−,∇xϕh·tK,x

−)
[∇xϕh·nK ](x)

,

if [∇xϕh · nK ](x) 6= 0,

1
2

(
HnK

((∇xϕh · nK)+,∇xϕh · tK ,x+) +HnK
((∇xϕh · nK)−,∇xϕh · tK ,x−)

)
,

otherwise,
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δnK,ϕh(x) := max
(

0, H̃nK,ϕh
(x)−HnK

((∇xϕh · nK)−,∇xϕh · tK ,x−),

HnK
((∇xϕh · nK)+,∇xϕh · tK ,x+)− H̃nK,ϕh

(x)
)
,

and

SnK,ϕh(x) := max
(
δnK,ϕh(x), |H̃nK,ϕh

(x)|
)
.

Then we look for ϕh ∈ V kh , such that for each K,

∫
K

((ϕh)t +H(∇xϕh, x)) vh dx +

∫
∂K

min
(
H̃nK,ϕh

(x), 0
)

[ϕh](x)v−h (x)ds

−C ∆K

∆SK

∫
∂K

(
SnK,ϕh(x)− |H̃nK,ϕh

(x)|
)

[∇xϕh · nK ](x)v−h (x)ds = 0

for any test function vh ∈ V kh with k ≥ 1, where ∆K, ∆SK are size of the element K and

edge SK respectively. In practice, the volume and edge integrals need to be evaluated by

quadrature rules with enough accuracy. For example, we use quadrature rules that are exact

for (2k)-th order polynomial for the volume integral, and quadrature rules that are exact for

(2k + 1)-th order polynomial for the edge integrals.

2.4 Numerical Results

In this section, we provide numerical results to demonstrate the high order accuracy and

reliability of our schemes. In all numerical experiments, we use the third order TVD-RK

method as the temporal discretization [76].
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2.4.1 One-dimensional Results

In this subsection, we provide computational results for one-dimensional HJ equations.

Example 2.4.1 We solve the following linear problem with smooth variable coefficient



ϕt + sin(x)ϕx = 0, x ∈ [0, 2π]

ϕ(x, 0) = sin(x),

ϕ(0, t) = ϕ(2π, t).

(2.17)

Since a(x) is smooth in this example, the penalty term automatically vanishes and the choice

of C does not have an effect on the solution. We provide the numerical results for P 1,P 2

and P 3 polynomials in Table 2.1. The CFL numbers used are also listed in this table. For

P 3 polynomials, we set ∆t = O(∆x
4
3 ) in order to get comparable numerical errors in time

as in space. From the results, we could clearly observe the optimal (k+ 1)-th order accuracy

for P k polynomials.

Example 2.4.2 We solve the following linear problem with nonsmooth variable coefficient



ϕt + sign(cos(x))ϕx = 0, x ∈ [0, 2π]

ϕ(x, 0) = sin(x),

ϕ(0, t) = ϕ(2π, t).

(2.18)

The viscosity solution of this example has a shock forming in ϕx at x = π/2, and a

rarefaction wave at x = 3π/2. We use this example to demonstrate the effect of the choice of

C on the numerical solution. The solutions obtained with different values of C are provided
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Table 2.1: Errors and numerical orders of accuracy for Example 2.4.1 when using P k, k =
1, 2, 3, polynomials and third order Runge-Kutta time discretization on a uniform mesh of
M cells. Final time t = 1.

P 1 CFL = 0.3

M L1 error order L2 error order L∞ error order
40 1.20E-03 2.55E-03 1.52E-02
80 3.07E-04 1.96 6.83E-04 1.90 4.32E-03 1.81
160 7.84E-05 1.97 1.78E-04 1.94 1.14E-03 1.92
320 1.99E-05 1.98 4.56E-05 1.97 2.94E-04 1.96
640 5.03E-06 1.99 1.15E-05 1.98 7.43E-05 1.98

P 2 CFL = 0.1
40 4.76E-05 9.97E-05 5.23E-04
80 5.97E-06 2.99 1.36E-05 2.88 8.77E-05 2.58
160 7.48E-07 3.00 1.82E-06 2.90 1.35E-05 2.70
320 9.38E-08 2.99 2.38E-07 2.93 1.96E-06 2.78
640 1.18E-08 2.99 3.08E-08 2.95 2.72E-07 2.85

P 3 CFL = 0.05
40 2.12E-06 5.13E-06 2.89E-05
80 1.36E-07 3.97 3.49E-07 3.89 2.16E-06 3.75
160 8.71E-09 3.97 2.30E-08 3.93 1.57E-07 3.79
320 5.14E-10 4.09 1.35E-09 4.10 9.47E-09 4.06
640 4.83E-12 6.75 9.06E-12 7.24 4.52E-11 7.73
1280 2.03E-13 4.58 2.96E-13 4.94 1.42E-12 5.00
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in Figure 2.1. If we take the penalty constant C = 0, that is, without entropy correction,

the entropy condition is violated at the two cells neighboring x = 3π/2, and the numerical

solution is not convergent towards the exact solution. As we slowly increasing the value of

C, we could observe better and better convergence property. In particular, once C passes

some threshold, its effect on the quality of the solution is minimum, and bigger values of C

only cause slightly larger numerical errors. This is also demonstrated in Table 2.2. For this

problem, the viscosity solution is not smooth, so we do not expect the full (k + 1)-th order

accuracy for this example. However, for different values of C ranging from 0.125 to 1.0, the

numerical errors listed in Table 2.2 are all of second order. Actually, for all of the simulations

performed in this paper, we find that C = 0.25 to be a good choice of the penalty c onstant.

Unless otherwise noted, for the remaining of the paper, we will use C = 0.25.

Example 2.4.3 One-dimensional Burgers’ equation with smooth initial condition



ϕt + 1
2ϕ

2
x = 0, x ∈ [0, 2π]

ϕ(x, 0) = sin(x),

ϕ(0, t) = ϕ(2π, t).

(2.19)

At t = 0.5, the solution is still smooth, and the optimal (k + 1)-th accuracy is obtained for

P k polynomials with both uniform and random meshes, see Tables 2.3 and 2.4. At t = 1,

there will be a shock in ϕx, and our scheme could capture the kink sharply as shown in

Figure 2.2.
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Figure 2.1: Example 2.4.2. The numerical solution with various values of penalty constant
C: (a) C = 0, (b) C = 0.001, (c) C = 0.25, and (d) C = 1. Here t = 1, CFL = 0.1, P 2

polynomials, M = 80. Solid line: the exact solution; circles: the numerical solution. For
interpretation of the references to color in this and all other figures, the reader is referred to
the electronic version of this thesis.
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Table 2.2: Errors and numerical orders of accuracy for Example 2.4.2 when using P 2 polyno-
mials and third order Runge-Kutta time discretization on a uniform mesh of M cells. Final
time t = 1. CFL = 0.1.

M L1 error order L2 error order L∞ error order
C = 1.0

40 1.05E-03 1.85E-03 3.49E-03
80 2.71E-04 1.95 4.78E-04 1.95 8.73E-04 2.00
160 6.89E-05 1.98 1.21E-04 1.98 2.18E-04 2.00
320 1.73E-05 1.99 3.06E-05 1.98 5.46E-05 2.00
640 4.34E-06 2.00 7.67E-06 2.00 1.37E-05 2.00

C = 0.5
40 9.92E-04 1.74E-03 3.28E-03
80 2.56E-04 1.95 4.50E-04 1.95 8.22E-04 2.00
160 6.49E-05 1.98 1.14E-04 1.98 2.06E-04 2.00
320 1.63E-05 1.99 2.88E-05 1.98 5.14E-05 2.00
640 4.09E-06 2.00 7.22E-06 2.00 1.29E-05 2.00

C = 0.25
40 8.74E-04 1.53E-03 2.87E-03
80 2.25E-04 1.96 3.95E-04 1.95 7.19E-04 2.00
160 5.69E-05 1.98 1.00E-04 1.98 1.80E-04 2.00
320 1.43E-05 1.99 2.52E-05 1.99 4.50E-05 2.00
640 3.58E-06 2.00 6.32E-06 1.99 1.13E-05 2.00

C = 0.125
40 6.38E-04 1.10E-03 2.05E-03
80 1.62E-04 1.97 2.84E-04 1.96 5.14E-04 2.00
160 4.09E-05 1.98 7.18E-05 1.98 1.29E-04 2.00
320 1.03E-05 1.99 1.81E-05 1.99 3.23E-05 2.00
640 2.57E-06 2.00 4.53E-06 2.00 8.57E-06 1.91

.
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Table 2.3: Errors and numerical orders of accuracy for Example 2.4.3 when using P 2 poly-
nomials and third order Runge-Kutta time discretization on a uniform mesh of M cells.
Penalty constant C = 0.25. Final time t = 0.5. CFL = 0.1.

M L1 error order L2 error order L∞ error order

P 1

40 8.45E-04 1.23E-03 5.04E-03
80 2.02E-04 2.07 2.99E-04 2.04 1.27E-03 1.99
160 4.93E-05 2.03 7.42E-05 2.01 3.42E-04 1.89
320 1.22E-05 2.01 1.86E-05 2.00 9.08E-05 1.91
640 3.04E-06 2.01 4.66E-06 2.00 2.36E-05 1.94

P 2

40 1.27E-05 2.33E-05 1.28E-04
80 1.53E-06 3.05 2.93E-06 2.99 2.10E-05 2.61
160 1.91E-07 3.00 3.73E-07 2.98 2.52E-06 3.06
320 2.39E-08 3.00 4.74E-08 2.98 3.56E-07 2.82
640 3.63E-09 2.72 6.23E-09 2.93 4.82E-08 2.88

Table 2.4: Errors and numerical orders of accuracy for Example 2.4.3 when using P 1 and P 2

polynomials and third order Runge-Kutta time discretization on a random mesh with 40%
perturbation of M cells. Penalty constant C = 0.25. Final time t = 0.5. CFL = 0.1.

M L1 error order L2 error order L∞ error order

P 1

40 1.23E-03 1.91E-03 1.01E-02
80 2.70E-04 2.19 4.25E-04 2.17 2.59E-03 1.96
160 6.70E-05 2.01 1.05E-04 2.01 6.22E-04 2.06
320 1.62E-05 2.05 2.67E-05 1.97 2.03E-04 1.61
640 3.97E-06 2.03 6.69E-06 2.00 6.52E-05 1.64

P 2

40 2.27E-05 4.52E-05 2.96E-04
80 2.54E-06 3.16 5.84E-06 2.95 5.25E-05 2.50
160 3.19E-07 3.00 6.87E-07 3.09 5.82E-06 3.17
320 4.00E-08 3.00 9.34E-08 2.88 8.96E-07 2.70
640 5.38E-09 2.89 1.16E-08 3.01 1.32E-07 2.77
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Figure 2.2: Example 2.4.3. Here t = 1.5, CFL = 0.1, P 2 polynomials, M = 40. Penalty
constant C = 0.25. Solid line: the exact solution; circles: the numerical solution.

Example 2.4.4 One-dimensional Burgers’ equation with a nonsmooth initial condition



ϕt +
ϕ2
x
2 = 0, x ∈ [0, 2π]

ϕ(x, 0) =


π − x, if 0 ≤ x ≤ π,

x− π, if 0 ≤ x ≤ 2π,

ϕ(0, t) = ϕ(2π, t).

(2.20)

The exact solution should have a rarefaction wave forming in its derivative, so the initial

sharp corner at x = π should be smeared out at later times. Since the entropy condition

is violated by the Roe type scheme, the entropy fix is necessary for convergence. Figure

2.3 shows the comparison of our schemes with various values of penalty constant C for this

nonlinear problem. Again, we could see that C = 0.25 is a good choice for this example.
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Figure 2.3: Example 2.4.4. The numerical solution with various values of penalty constant
C: (a) C = 0, (b) C = 0.001, (c) C = 0.25, and (d) C = 1.0. Here t = 1, CFL = 0.1, P 2

polynomials, M = 80. Solid line: the exact solution; circles: the numerical solution.
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Table 2.5: Errors and numerical orders of accuracy for Example 2.4.5 when using P 2 poly-
nomials and third order Runge-Kutta time discretization on a uniform mesh of M cells.
Penalty constant C = 0.25. Final time t = 1. CFL = 0.1.

M L1 error order L2 error order L∞ error order
40 6.24E-04 1.09E-03 2.13E-03
80 1.69E-04 1.88 2.98E-04 1.87 5.54E-04 1.94
160 4.35E-05 1.96 7.67E-05 1.96 1.40E-04 1.98
320 1.10E-05 1.99 1.94E-05 1.99 3.51E-05 2.00
640 2.75E-06 2.00 4.88E-06 1.99 8.77E-06 2.00

Example 2.4.5 One-dimensional Eikonal equation



ϕt + |ϕx| = 0, x ∈ [0, 2π]

ϕ(x, 0) = sin(x),

ϕ(0, t) = ϕ(2π, t).

(2.21)

The exact solution is the same as the exact solution of Example 2.4.2. Our scheme could

capture the viscosity solution of this nonsmooth Hamiltonian. The numerical errors and

orders of accuracy using P 2 polynomials are listed in Table 2.5. Since the solution is not

smooth, we do not expect the optimal (k + 1)-th order accuracy for P k polynomials.

Example 2.4.6 One-dimensional equation with a nonconvex Hamiltonian



ϕt − cos(ϕx + 1) = 0, x ∈ [−1, 1]

ϕ(x, 0) = − cos(πx),

ϕ(−1, t) = ϕ(1, t).

(2.22)

This example involves a nonconvex Hamiltonian with smooth initial data. At t = 0.5/π2,

the exact solution is still smooth, and numerical results are presented in Table 2.6, demon-
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Table 2.6: Errors and numerical orders of accuracy for Example 2.4.6 when using P 2 poly-
nomials and third order Runge-Kutta time discretization on a uniform mesh of M cells.
Penalty constants C = 0.25. Final time t = 0.5/π2. CFL = 0.1.

M L1 error order L2 error order L∞ error order
40 1.46E-05 2.16E-05 9.89E-05
80 1.79E-06 3.02 2.87E-06 2.91 1.59E-05 2.64
160 2.22E-07 3.01 3.73E-07 2.95 2.39E-06 2.74
320 2.76E-08 3.01 4.79E-08 2.96 3.39E-07 2.82
640 3.51E-09 2.98 6.13E-09 2.97 4.53E-08 2.90

strating the optimal order of accuracy of the scheme. By the time t = 1.5/π2, nonsmooth

features would develop in ϕ, which are reliably captured in Figure 2.4.
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Figure 2.4: Example 2.4.6. Here t = 1.5/π2, CFL = 0.1, P 2 polynomials, M = 80. Penalty
constant C = 0.25. Solid line: the exact solution; circles: the numerical solution.

Example 2.4.7 One-dimensional Riemann problem with a nonconvex Hamiltonian


ϕt + 1

4(ϕ2
x − 1)(ϕ2

x − 4) = 0, x ∈ [−1, 1].

ϕ(x, 0) = −2|x|.
(2.23)
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Table 2.7: Errors and numerical orders of accuracy for Example 2.4.7 when using P 2 poly-
nomials and third order Runge-Kutta time discretization on a uniform mesh of M cells.
CFL = 0.05. Penalty constant C = 0.25. Final time t = 1. A minmod limiter is used.

M L1 error order L2 error order L∞ error order
Even M

40 9.49E-03 2.21E-02 5.96E-02
80 4.64E-03 1.03 1.10E-02 1.00 3.17E-02 0.91
160 2.28E-03 1.03 5.48E-03 1.00 1.64E-02 0.95
320 1.12E-03 1.02 2.73E-03 1.01 8.40E-03 0.97
640 5.60E-04 1.00 1.36E-03 1.00 4.27E-03 0.98

Odd M
41 2.81E-03 6.74E-03 2.94E-02
81 1.34E-03 1.09 3.35E-03 1.03 2.38E-02 0.31
161 6.41E-04 1.07 1.61E-03 1.06 9.88E-03 1.28
321 3.17E-04 1.02 7.99E-04 1.01 4.36E-03 1.19
641 1.56E-04 1.02 3.96E-04 1.02 3.12E-03 0.49

For this problem, the initial condition has a singularity at x = 0. Similar to [62, 84], a

nonlinear limiter is needed in order to capture the viscosity solution. We use the standard

minmod limiter [31]. This example and Example 2.4.14 are the only examples needing

nonlinear limiting in this paper.

The numerical solutions with and without the limiter are listed in Figure 2.5 for odd and

even values of M . Those different behaviors are due to the fact that the singular point x = 0

would be exactly located at the cell interface for even M but not odd M at t = 0. We note

that the method with limiter can correctly capture the viscosity solution for both even and

odd M . The numerical errors and orders of accuracy using P 2 polynomials with limiters

are listed in Table 2.7. We could see that both methods converge, while the odd M giving

slightly smaller errors. However, similar to [62], the method is only first order accurate for

this nonsmooth problem.
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Figure 2.5: Example 2.4.7. Comparison of the numerical solution with and without the
limiter: (a) M = 80, without limiter; (b) M = 80, with limiter; (c) M = 81, without limiter;
and (d) M = 81, with limiter. Here t = 1, P 2 polynomials, CFL = 0.05. Penalty constant
C = 0.25. Solid line: the exact solution; circles: the numerical solution.
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2.4.2 Two-dimensional Results

In this subsection, we provide computational results for two-dimensional HJ equations on

both Cartesian and unstructured meshes.

Example 2.4.8 Two-dimensional linear problem with smooth variable coefficients

ϕt − yϕx + xϕy = 0. (2.24)

The computational domain is [−1, 1]2. The initial condition is given by

ϕ0(x, y) =


0, 0.3 ≤ r,

0.3− r, 0.1 < r < 0.3,

0.2, r ≤ 0.1,

(2.25)

where r =
√

(x− 0.4)2 + (y − 0.4)2. We impose periodic boundary condition on the domain.

This is a solid body rotation around the origin. The exact solution can be expressed as

ϕ(x, y, t) = ϕ0(x cos(t) + y sin(t),−x sin(t) + y cos(t)). (2.26)

For this problem, same as the argument in Example 2.4.1, the choice of C does not have

an effect on the scheme. We list the numerical errors and orders in Table 2.8. With this

nonsmooth initial condition, we do not expect to obtain (k + 1)-th order of accuracy. At

t = 2π, i.e. one period of rotation, we take a snapshot at the line y = x in Figure 2.6. It can

be clearly seen that a higher order scheme can yield better results for this nonsmooth initial

condition.
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Table 2.8: Errors and numerical orders of accuracy for Example 2.4.8 when using P 2 poly-
nomials and third order Runge-Kutta time discretization on a uniform mesh of M ×M cells.
Final time t = 1. CFL = 0.1.

M L1 error order L2 error order L∞ error order
10 1.21E-03 3.10E-03 2.21E-02
20 4.13E-04 1.55 1.32E-03 1.23 1.14E-02 0.95
40 1.38E-04 1.58 5.51E-04 1.26 6.49E-03 0.81
80 4.74E-05 1.54 2.36E-04 1.22 3.62E-03 0.84
160 1.54E-05 1.62 1.01E-04 1.23 2.07E-03 0.81

.
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Figure 2.6: Example 2.4.8. Here t = 2π, CFL = 0.1, 80 × 80 uniform mesh. (a) P 1

polynomials; (b) P 2 polynomials. One dimensional cut of 45◦ with the x axis. Solid line:
the exact solution; circles: the numerical solution.
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Table 2.9: Errors and numerical orders of accuracy for Example 3.9 when using P 2 polyno-
mials and third order Runge-Kutta time discretization on a uniform mesh of M ×M cells.
Final time t = 1. CFL = 0.1.

M L1 error order L2 error order L∞ error order
20 1.42E-03 1.03E-02 2.79E-01
40 1.54E-04 3.20 1.47E-03 2.81 5.25E-02 2.41
80 1.10E-05 3.81 1.10E-04 3.73 5.77E-03 3.19
160 1.12E-06 3.30 1.15E-05 3.26 8.96E-04 2.69

Example 2.4.9 We solve the same equation (2.24) as in Example 2.4.8, but with a smooth

initial condition as

ϕ0(x, y) = exp

(
−(x− 0.4)2 + (y − 0.4)2

2σ2

)
. (2.27)

The constant σ = 0.05 is chosen such that at the domain boundary, ϕ is very small, hence

imposing the periodic boundary condition will lead to small errors. We then could observe

the optimal order of accuracy in Table 2.9.

Example 2.4.10 Two-dimensional Burgers’ equation


ϕt +

(ϕx + ϕy + 1)2

2
= 0,

ϕ(x, y, 0) = − cos

(
π(x+ y)

2

)
,

(2.28)

with periodic boundary condition on the domain [−2, 2]2.

In this example, we test the performance of our method on unstructured meshes. A

sample mesh used with characteristic length h = 1/4 is given in Figure 2.7. At t = 0.5/π2,

the solution is still smooth. Numerical errors and order of accuracy using P 2 polynomials

are listed in Table 2.10, demonstrating the optimal order of accuracy. At t = 1.5/π2, the

solution is no longer smooth. Our scheme could capture the viscosity solution as shown in

Figure 2.8.
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Figure 2.7: Examples 2.4.10 and 2.4.13. The unstructured mesh used with characteristic
length h = 1/4.

Table 2.10: Errors and numerical orders of accuracy for Example 2.4.10 when using P 2

polynomials and third order Runge-Kutta time discretization on triangular meshes with
characteristic length h. Penalty constant C = 0.25. Final time t = 0.5/π2. CFL = 0.1.

h L1 error order L2 error order L∞ error order
1 1.36E-02 2.31E-02 2.22E-01

1/2 1.77E-03 2.93 3.23E-03 2.84 5.14E-02 2.11
1/4 2.25E-04 2.98 4.50E-04 2.84 8.95E-03 2.52
1/8 2.74E-05 3.04 5.82E-05 2.95 1.30E-03 2.78
1/16 3.40E-06 3.01 7.53E-06 2.95 1.84E-04 2.83
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(a) (b)

Figure 2.8: Example 2.4.10. Here CFL = 0.1, P 2 polynomials. Triangular mesh with
characteristic length 1/8. 2816 elements. Penalty constant C = 0.25. (a) t = 0.5/π2; (b)
t = 1.5/π2.

Table 2.11: Errors and numerical orders of accuracy for Example 2.4.11 when using P 2

polynomials and third order Runge-Kutta time discretization on a uniform mesh of M ×M
cells. Penalty constant C = 0.25. Final time t = 0.8. CFL = 0.1.

M L1 error order L2 error order L∞ error order
10 2.22E-03 3.95E-03 4.78E-02
20 2.75E-04 2.98 4.50E-04 2.98 7.79E-03 2.62
40 3.70E-05 2.89 7.33E-05 2.77 1.50E-03 2.38
80 4.80E-06 2.95 9.83E-06 2.90 2.40E-04 2.64

.

Example 2.4.11 Two-dimensional nonlinear equation from [62]


ϕt + ϕxϕy = 0,

ϕ(x, y, 0) = sin(x) + cos(y),

(2.29)

with periodic boundary condition on the domain [−π, π]2.

At t = 0.8, the solution is still smooth, as shown in the left figure of Figure 2.9. Numerical

errors and order of accuracy using P 2 polynomials are listed in Table 2.11, demonstrating

the optimal order of accuracy. At t = 1.5, singular features would form in the solution, as

shown in the right figure of Figure 2.9.
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Figure 2.9: Example 2.4.11. Here CFL = 0.1, P 2 polynomials on a 80 × 80 uniform mesh.
Penalty constant: C = 0.25. (a) t = 0.8; (b) t = 1.5.

Example 2.4.12 An example related to controlling optimal cost determination from [68]


ϕt + sin(y)ϕx + (sin(x) + sign(ϕy))ϕy −

1

2
sin2(y) + cos(x)− 1 = 0,

ϕ(x, y, 0) = 0,

(2.30)

with periodic boundary condition on the domain [−π, π]2.

The Hamiltonian is not smooth in this example. Our scheme can capture the features

of the viscosity solution well. The numerical solution (left) and the optimal control term

sign(ϕy) (right) at t = 1 are shown in Figure 2.10.

Example 2.4.13 Two-dimensional equation with a nonconvex Hamiltonian


ϕt − cos(ϕx + ϕy + 1) = 0,

ϕ(x, y, 0) = − cos(
π

2
(x+ y)),

(2.31)

with periodic boundary condition on the domain [−2, 2]2.

We use the same unstructured mesh as in Example 2.4.10, see for example Figure 2.7.

39



(a)
−3−2−101234

−5

0

5

0

0.5

1

1.5

2

2.5

(b)
−3

−2

−1

0

1

2

3

4

−4

−2

0

2

4

−1

−0.5

0

0.5

1

Figure 2.10: Example 2.4.12. Here t = 1, CFL = 0.1, P 2 polynomials on a 40× 40 uniform
mesh. Penalty constant: C = 0.25. (a) the numerical solution; (b) sign(ϕy).

At t = 0.5/π2, the solution is still smooth, see Table 2.12 for numerical errors and order

of accuracy using P 2 polynomials. At t = 1.5/π2, singular features would develop in the

solution, as shown in Figure 2.11.

Table 2.12: Errors and numerical orders of accuracy for Example 2.4.13 when using P 2

polynomials and third order Runge-Kutta time discretization on triangular meshes with
characteristic length h. Penalty constant C = 0.25. Final time t = 0.5/π2. CFL = 0.1.

h L2 error order L2 error order L∞ error order
1 1.05E-02 1.65E-02 1.48E-01

1/2 1.59E-03 2.71 2.49E-03 2.73 3.11E-02 2.25
1/4 2.42E-04 2.71 4.02E-04 2.63 6.35E-03 2.29
1/8 3.28E-05 2.89 5.84E-05 2.78 1.03E-03 2.62
1/16 3.96E-06 3.05 7.45E-06 2.97 1.72E-04 2.58

Example 2.4.14 Two-dimensional Riemann problem


ϕt + sin(ϕx + ϕy) = 0,

ϕ(x, y, 0) = π(|y| − |x|),
(2.32)

on the domain [−1, 1]2.
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(a) (b)

Figure 2.11: Example 2.4.13. Here CFL = 0.1, P 2 polynomials. Triangular mesh with
characteristic length 1/8. 2816 elements. Penalty constant: C = 0.25. (a) t = 0.5/π2. (b)
t = 1.5/π2.

Similar to [56, 84], a nonlinear limiter is needed for convergence in this example. We use

the moment limiter [60] and the numerical solution obtained by P 2 polynomial at t = 1 is

provided in Figure 2.12.
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Figure 2.12: Example 2.4.14. Here t = 1, CFL = 0.1, P 2 polynomials on a 41× 41 uniform
mesh. Penalty constant: C = 0.25.
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Example 2.4.15 The problem of a propagating surface


ϕt −

√
ϕ2
x + ϕ2

y + 1 = 0,

ϕ(x, y, 0) = 1− 1

4
(cos(2πx)− 1), (cos(2πy)− 1)

(2.33)

with periodic boundary condition on the domain [0, 1]2. This is a special case of the example

used in [67], and is also the two-dimensional Eikonal equation arising from geometric optics

[59]. We use an unstructured mesh shown in Figure 2.13 with refinements near the center

of the domain where the solution develops singularity. The numerical solutions at different

times are displayed in Figure 2.14. Notice that the solution at t = 0 is shifted downward by

0.35 to show the detail of the solutions at later times.

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2.13: Example 2.4.15. The unstructured mesh used in the computation. Number of
elements: 3480.

Example 2.4.16 The problem of a propagating surface on the unit disk {(x, y) : x2 + y2 ≤
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Figure 2.14: Example 2.4.15. CFL = 0.1. P 2 polynomials. Penalty constant: C = 0.25.
The numerical solution at the indicated times.
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1} 
ϕt −

√
ϕ2
x + ϕ2

y + 1 = 0,

ϕ(x, y, 0) = − sin(
π(x2 + y2)

2
).

(2.34)

We use an unstructured mesh as depicted in Figure 2.15 with refinements near the origin

where solution develops singularity. The numerical solutions at different times are displayed

in Figure 2.16. Notice that the solution at t = 0 is shifted downward by 0.2 to show the

detail of the solutions at later times.
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Figure 2.15: Example 2.4.16. The unstructured mesh used in the computation. Number of
elements: 5890.
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Figure 2.16: Example 2.4.16. Here CFL = 0.1, P 2 polynomials. Penalty constant: C = 0.25.
The numerical solution at the indicated times.
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Chapter 3

Sparse Grid DG Methods for

High-Dimensional Elliptic Equations

In this chapter, we will develop sparse grid DG methods to treat high-dimensional PDEs.

As an initial effort in our investigation, we focus on elliptic problems and use the symmetric

IP method for the discretization of the following d-dimensional model equation,

−∇ · (K∇u) = f in Ω = [0, 1]d, (3.1)

with Dirichlet boundary condition

u = g on ∂Ω, (3.2)

where u(x) : Ω → R is the unknown function and the matrix-valued coefficient function

K = (ki,j)1≤i,j≤d is symmetric positive definite and bounded below and above uniformly,

i.e. there exist two positive constant K0, K1, such that

∀x ∈ Ω, K0 x · x ≤ Kx · x ≤ K1 x · x.

As shown in the previous chapter, the DG method has two essential ingredients in its

design: (1) a (weak) formulation of the method based on the underlying PDEs, (2) an under-
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lying approximation space. The appropriate choice of the formulation of the scheme as well

as approximation properties of the space can guarantee the methods with desirable properties

such as stability and convergence. One of the main advantages of the DG methods compared

to continuous finite element methods is their freedom in choosing the approximation space

due to the lack of continuity requirement. In fact, DG methods based on traditional piecewise

polynomial space have been extensively studied for the last few decades, and the methods

are rather mature for applications such as elliptic, parabolic and hyperbolic problems. The-

oretical foundations are laid out using tools from finite element analysis. In recent years, the

idea of using non-polynomial spaces [85, 81], or polynomial spaces with specific properties

such as locally divergence-free properties [29] has been explored. They are mainly driven by

the needs to mimic particular properties of the exact solution. Another interesting and more

relevant development, which was inspired by early success in the finite volume framework

[52], is to use multiresolution analysis with DG methods for adaptivity [22, 5, 57, 55, 39] and

trouble-cell indicator [80] for hyperbolic conservation laws.

In this chapter, we will develop sparse grid IPDG methods for the model elliptic equation,

staring with the construction and approximation properties of the sparse finite element space,

and then apply it to elliptic problems in conjunction with IP method, with focus on error

estimates, implementation and numerical simulations. The rest of this chapter is organized

as follows: in Section 3.1, we construct and analyze the DG approximation space on sparse

grids. In Section 3.2, we formulate the scheme and perform error analysis of the sparse grid

IP method. Numerical examples in multi-dimensions are given to validate the accuracy and

performance of the scheme in Section 3.3.

Notice that our method is restricted to problems on a box shaped domain. For more

general domains, either a coordinate transformation or a more complex sparse finite element
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space based on hierarchical decompositions on unstructured meshes will be required. We do

not pursue such cases in this thesis and leave them to future study.

3.1 DG Finite Element Spaces on Sparse Grids

In this section, we will introduce the main ingredient of our algorithm: the DG finite element

space on sparse grids. We proceed in several steps. First, we will review the standard

piecewise polynomial spaces in one dimension, and introduce a hierarchical decomposition

with a set of orthonormal bases. Second, we will construct the sparse finite element space

from multi-dimensional multiwavelet bases based on the 1D construction. Finally, we will

discuss some key features and approximation properties of the sparse finite element space.

Numerical tests are given to compare several definitions of sparse discontinuous finite element

spaces.

3.1.1 Hierarchical Decomposition of Piecewise Polynomial Spaces

in One Dimension

In this subsection, we will introduce the hierarchical representation of piecewise polynomial

spaces in one dimension. Without loss of generality, consider the interval Ω = [0, 1], we define

the n−th level grid Ωn, consisting of I
j
n = (2−nj, 2−n(j+ 1)], j = 0, . . . , 2n−1 with uniform

cell size h = 2−n. On this grid, we use || · ||Hs(Ωn) to denote the broken Sobolev norm, i.e.

||v||2
Hs(Ωn)

=
∑2n−1
j=0 ||v||

2

Hs(I
j
n)
, where ||v||

Hs(I
j
n)

is the standard Sobolev norm on I
j
n. Sim-

ilarly, | · |Hs(Ωn) denotes the broken Sobolev semi-norm, i.e. |v|2
Hs(Ωn)

=
∑2n−1
j=0 |v|

2

Hs(I
j
n)
.

We can define

V kn = {v : v ∈ P k(I
j
n), ∀ j = 0, . . . , 2n − 1}
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to be the usual piecewise polynomials of degree at most k on this grid. V kn has degrees of

freedom 2n(k + 1), and we notice that they have the nested structure for different values of

n,

V k0 ⊂ V k1 ⊂ V k2 ⊂ V k3 ⊂ · · ·

Due to the nested structure, we can define the multiwavelet subspace W k
n , n = 1, 2, . . . as

the orthogonal complement of V kn−1 in V kn with respect to the L2 inner product on Ω, i.e.

V kn−1 ⊕W
k
n = V kn , W k

n ⊥ V kn−1.

For notational convenience, we also denote the base space W k
0 := V k0 , which consists

of all polynomials of up to degree k on [0, 1]. Now, we have found a hierarchical repre-

sentation of the standard piecewise polynomial space on grid {Ijn, j = 0, . . . , 2n − 1} as

V kN =
⊕

0≤n≤N W k
n . We remark that the space W k

n , for n > 1, represents the finer level

details when the mesh becomes refined and this is the key to the reduction in degrees of

freedom in higher dimensions. The dimension of W k
n is 2n−1(k + 1) when n ≥ 1, and k + 1

when n = 0.

For implementation purpose, we need to introduce basis functions for space W k
n . The

case of n = 0 is trivial. It suffices to use a standard polynomial basis on [0, 1]. For example,

by using the scaled Legendre polynomials, we can easily obtain a set of orthonormal bases

in W k
0 . When n > 1, we will use the orthonormal bases introduced in [4]. In particular, the

bases for W k
1 are defined as

hi(x) = 21/2fi(2x− 1), i = 1, . . . , k + 1
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where {fi(x), i = 1, . . . , k+ 1} are functions supported on [−1, 1] and depend on k, with the

following properties.

1. The restriction of fi to the interval (0, 1) is a polynomial of degree k.

2. The function fi is extended to (−1, 0) as an even or odd function according to the

parity of i+ k:

fi(x) = (−1)i+kfi(−x).

3. The bases have vanishing moments:

∫ 1

−1
fj(x)xi dx = 0 i = 0, 1, · · · , j + k − 1.

4. The bases have the orthogonality and normality properties:

∫ 1

−1
fi(x)fj(x) dx =< fi, fj >= δij , i, j = 1, . . . , k.

Functions fi can be computed by a repeated Gram-Schmidt algorithm. The particular

form of fi for up to k = 4 are listed in Table 1 in [4]. For completeness, we provide them in

Table 3.1.

Multiwavelet bases in [4] retain the orthonormal properties of wavelet bases for different

hierarchical levels. More generally, the basis for W k
n , n ≥ 1 are defined as

v
j
i,n(x) = 2(n−1)/2 hi(2

n−1x− j), i = 1, . . . , k + 1, j = 0, . . . , 2n−1 − 1.

To make the notations consistent and compact, when n = 0, the bases v0
i,0(x), i =

1, . . . k + 1 are defined as the rescaled Legendre polynomials on [0, 1] with orthonormal
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Table 3.1: Orthonormal, vanishing-moment functions f1, · · · , fk+1, for k = 0, · · · , 4, for
x ∈ (0, 1). The functions fi is extended to the interval (−1, 1) as an odd or even function
based on the rule fi(x) = (−1)i+kfi(−x) for x ∈ (−1, 0), and is zero elsewhere.

k = 0

f1(x) =
√

1
2

k = 1

f1(x) =
√

3
2 (−1 + 2x)

f2(x) =
√

1
2 (−2 + 3x)

k = 2

f1(x) = 1
3

√
1
2 (1− 24x+ 30x2)

f2(x) = 1
2

√
3
2 (3− 16x+ 15x2)

f3(x) = 1
3

√
5
2 (4− 15x+ 12x2)

k = 3

f1(x) =
√

15
34 (1 + 4x− 30x2 + 28x3)

f2(x) =
√

1
42 (−4 + 105x− 300x2 + 210x3)

f3(x) = 1
2

√
35
34 (−5 + 48x− 105x2 + 64x3)

f4(x) = 1
2

√
5
42 (−16 + 105x− 192x2 + 105x3)

k = 4

f1(x) =
√

1
186 (1 + 30x+ 210x2 − 840x3 + 630x4)

f2(x) = 1
2

√
1
38 (−5− 144x+ 1155x2 − 2240x3 + 1260x4)

f3(x) =
√

35
14694 (22− 735x+ 3504x2 − 5460x3 + 2700x4)

f4(x) = 1
8

√
21
38 (35− 512x+ 1890x2 − 2560x3 + 1155x4)

f5(x) = 1
2

√
7

158 (32− 315x+ 960x2 − 1155x3 + 480x4)
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property. In summary, we have [4, 3],

∫ 1

0
v
j
i,n(x)v

j′
i′,n′(x) dx = δii′δnn′δjj′ ,

where δii′ , δnn′ , δjj′ are the Kronecker delta symbols.

We remark that the multiwavelet bases under consideration in this section are closely

related to the original Haar wavelet [51] and the multiwavelet bases constructed in [4, 3],

and used for adaptive computations of DG methods [22, 5, 57, 55, 39].

The one-dimensional construction of piecewise polynomial space is complete, as can be

seen from the following property.

Property 3.1.1 (Completeness of the One-dimensional Construction [4].) We de-

fine

V k := lim
N→∞

V kN =
⊕

0≤n≤∞
W k
n

which is actually the union of all V kN , and observe that

V k = L2(0, 1).

By the orthogonality of the multiwavelet bases, the completeness of the one-dimensional con-

struction can be proved.

Next, we will discuss about the projection operators which are essential in the finite

element analysis. We define P kn as the standard L2 projection operator from L2[0, 1] to V kn .
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From there, we can introduce the increment projector,

Qkn :=


P kn − P kn−1, ifn ≥ 1

P k0 , ifn = 0,

then we can see that

W k
n = QknL

2(0, 1).

In summary, we arrive at the following identities for the hierarchical decomposition of

the piecewise polynomial space and the projection operator:

V kN =
⊕

0≤n≤N
W k
n , P

k
N =

∑
0≤n≤N

Qkn.

The properties of Qkn naturally relies on P kn . For the L2 projection, we recall the following

approximation results.

Property 3.1.2 (Convergence Property of the Projection Operator [26]) For a func-

tion v ∈ Hp+1(0, 1), we have the convergence property of the L2 projection P kn as follows:

for any integer t with 1 ≤ t ≤ min{p, k},

||P knv − v||Hs(Ωn) ≤ ck,s,t2
−n(t+1−s)||v||

Ht+1(Ω)
, (3.3)

where ck,s,t is a constant that depends on k, s, t, but not on n.

From this property, using basic algebra, we can deduce that for n ≥ 1,

||Qknv||Hs(Ωn) ≤ c̃k,s,t2
−n(t+1−s)||v||

Ht+1(Ω)
,
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with

c̃k,s,t = ck,s,t (1 + 2−(t+1−s)). (3.4)

Finally, we want to remark on a subtle issue concerning the hierarchical decomposition

and the multiwavelet space. If we use a projection other than P kn , say P kn is another projec-

tion from L2(Ω) to V kn . Then the increment projector Qk
n
6= Qkn. The space W k

n = Qk
n
L2(0, 1)

is different from W k
n , and likewise for the multiwavelet bases. However, the hierarchical struc-

ture V kn−1⊕W
k
n = V kn still holds. In our discussion in the next subsection, we will highlight

the implication of this statement and show that using different definitions of the projec-

tor and the increment space will not affect the definition of the sparse discontinuous finite

element space.

3.1.2 Sparse Discontinuous Finite Element Spaces in Multi-dimensions

In this subsection, we introduce the sparse finite element space constructed from multi-

dimensional multiwavelet bases based on the one-dimensional bases in Section 3.1.1.

For a d-dimensional problem, we consider the domain x = (x1, . . . , xd) ∈ Ω = [0, 1]d. To

facilitate the discussion, we first introduce some notations on the norms and operations of

multi-indices in Nd0, where N0 denotes the set of nonnegative integers. Forα = (α1, . . . , αd) ∈

Nd0, we define the l1 and l∞ norms

|α|1 :=
d∑
j=1

αj , |α|∞ := max
1≤j≤d

αj ,

the component-wise arithmetic operations

α · β := (α1β1, . . . , αdβd), c ·α := (cα1, . . . , cαd), 2α := (2α1 , . . . , 2αd),
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and the relational operators

α ≤ β ⇔ αj ≤ βj , ∀j

α < β ⇔ α ≤ β and α 6= β.

Now, for a multi-index l = (l1, . . . , ld) ∈ Nd0, which indicates the level of the mesh

in a multivariate sense, we consider the standard rectangular grid Ωl with mesh size hl :=

(2−l1 , . . . , 2−ld).We define the smallest size among all dimensions to be h = min{2−l1 , . . . , 2−ld},

an elementary cell I
j
l = {x : xi ∈ (2−liji, 2

−li(ji + 1)}, and

Vk
l = {v : v(x) ∈ P k(I

j
l ), 0 ≤ j ≤ 2l − 1},

where P k(I
j
l ) denotes polynomials of degree up to k in each dimension on cell I

j
l . The

space Vk
l contains the traditional tensor-product piecewise polynomials used in the DG

discretizations. Moreover, if we use equal refinement of size 2−N in each direction, we

denote the space to be Vk
N , and it consists of (2N (k + 1))d degrees of freedom.

The foundation of sparse grid is to use the tensor product of the one-dimensional hier-

archical decomposition, and only chooses enough bases to guarantee suitable approximation

properties. To illustrate the main ideas, we introduce

Wk
l = W k

l1,x1
×W k

l2,x2
· · · ×W k

ld,xd
,

where W k
li,xi

corresponds to the space W k
li

defined in the i-th dimension as defined in the
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previous subsection. The number of degrees of freedom associated with Wk
l is

dim(Wk
l ) =

d∏
i=1

dim(W k
li

).

Based on the one-dimensional hierarchical decomposition, it is easy to see

Vk
l = V kl1,x1

× V kl2,x2
· · · × V kld,xd =

⊕
j1≤l1,...,jd≤ld

Wk
j ,

and

Vk
N = V kN,x1

× V kN,x2
· · · × V kN,xd =

⊕
|l|∞≤N

Wk
l .

The basis functions for Wk
l can be defined by a tensor product

v
j
i,l(x) :=

d∏
t=1

v
jt
it,lt

(xt), jt = 0, . . . ,max(0, 2lt−1 − 1); it = 1, . . . , k + 1.

They form a set of orthonormal basis due to the property of the one-dimensional bases.

Now, we are ready to introduce the sparse finite element approximation space. In par-

ticular, we define

V̂k
N :=

⊕
|l|1≤N

Wk
l .

This definition is motivated by continuous finite element space on sparse grid [21]. Instead of

considering the standard piecewise polynomial space Vk
N , which has exponential dependence

on the dimension d, we shall use its subspace V̂k
N . This space has good approximation results

(see Section 3.1.3 for details) with significantly reduced degrees of freedom. We remark that

the key in the construction lies in the choice of condition for l. Here we have taken it to be
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|l|1 ≤ N . As demonstrated in [21], other conditions are also possible to realize dimension

reduction with aims on optimizing various types of approximation results. We defer the

numerical study for the comparison of different spaces to Section 3.1.4.

Remark 3.1.3 We mentioned in the previous subsection that there are different ways to

construct the increment space W k
n . However, the choice won’t affect the definition of V̂k

N .

This is because ⊕
|l|1≤N

Wk
l =

⊕
|l|1≤N

Vk
l =

⊕
|l|1≤N

Wk
l ,

for any space Wk
l constructed from one dimensional increment space W k

n satisfying V kn−1⊕

W k
n = V kn .

The next lemma will give a count of dimensions for the space V̂k
N .

Lemma 3.1.4 The dimension of V̂k
N is given by

dim(V̂k
N ) =

(k + 1)d


d−1∑
m=0

(
d

m

)(−1)d−m + 2N+m−d+1
d−m−1∑
i=0

(
N

i

)
· (−2)d−m−1−i

+ 1

 .

Suppose there is an upper bound on the dimension d ≤ d0, then there exist constants cd0
, Cd0

depending only on d0, such that

cd0
(k + 1)d2NNd−1 ≤ dim(V̂k

N ) ≤ Cd0
(k + 1)d2NNd−1.

Proof: Due to the distinctiveness of the zero-th level in a mesh, we need to distinguish the

zero-th level from other levels in the proof. Therefore, for each multi-index l, we define the
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set of the dimensions with mesh level 0 as l0 = {i| li = 0, i = 1, . . . , d} and the number of

such dimensions as

|l|0 := # in l0.

Then

dim(V̂k
N ) = dim(

⊕
|l|1≤N

Wk
l )

=
d∑

m=0

dim(
⊕

|l|0=m,|l|1≤N
Wk

l ).

We will discuss two cases based on the value of |l|0.

Case 1. 0 ≤ |l|0 = m ≤ d − 1, i.e., there are m dimensions of level zero from the d

dimensions of the multi-index l. Clearly,

dim(
⊕

|l|0=m,|l|1≤N
Wk

l ) =

(
d

m

)
dim(

⊕
lt=0, 1≤t≤m; lt>0, t>m

|l|1≤N

Wk
l ).

Since there are d−m dimensions that have meshes of level no less than one, we always

have |l|1 ≥ d − m. Define em = (0, · · · , 0, 1, · · · , 1) to be a vector in Nd0 whose first m
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dimensions are 0, and the rest d−m dimensions are 1. Then, by Lemma 3.6 in [21],

dim(
⊕

lt=0, 1≤t≤m; lt>0, t>m
|l|1≤N

Wk
l ) =(k + 1)d

∑
lt=0, 1≤t≤m; lt>0, t>m

|l|1≤N

2|l−em|1

=(k + 1)d
N∑

i=d−m
2i−(d−m)

∑
lt=0, 1≤t≤m; lt>0, t>m

|l|1=i

1

=(k + 1)d
N∑

i=d−m
2i−(d−m)

(
i− 1

(d−m)− 1

)

=(k + 1)d
N+m−d∑
i=0

2i
(
i+ (d−m)− 1

(d−m)− 1

)

=(k + 1)d

(−1)d−m + 2N+m−d+1
d−m−1∑
i=0

(
N

i

)
· (−2)d−m−1−i

 .

Case 2. |l|0 = d means l = 0. Therefore,

dim(
⊕

|l|0=d,|l|1≤N
Wk

l ) = dim(Wk
0) = (k + 1)d.

Finally, we combine both cases, and arrive at

dim(V̂k
N ) =

d∑
m=0

dim(
⊕

|l|0=m,|l|1≤N
Wk

l )

= (k + 1)d


d−1∑
m=0

(
d

m

)(−1)d−m + 2N+m−d+1
d−m−1∑
i=0

(
N

i

)
· (−2)d−m−1−i

+ 1

 .
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We notice that

d−1∑
m=0

(
d

m

)
2N+m−d+1

d−m−1∑
i=0

(
N

i

)
· (−2)d−m−1−i

≤
d−1∑
m=1

(
d

m

)
2N+m−d+1Cd0

Nd−m−1

≤ Cd0
2N−d+1Nd−1

d∑
m=0

(
d

m

)
2mN−m

= Cd0
2NNd−1(1 +

2

N
)d ≤ Cd0

2NNd−1,

where we use Cd0
, cd0

to denote generic constants that depend only on d0, not on d, k,N .

They may have different values in each occurrence throughout the proof.

Similarly,

dim(V̂k
N ) ≥ dim(

⊕
|l|0=0,|l|1≤N

Wk
l ) = (k + 1)d

(−1)d + 2N−d+1
d−1∑
i=0

(
N

i

)
· (−2)d−1−i


≥ (k + 1)d(−1 + cd0

2N−d+1Nd−1) ≥ cd0
(k + 1)d2NNd−1.

In summary, there exist constants cd0
, Cd0

, such that

cd0
(k + 1)d2NNd−1 ≤ dim(V̂k

N ) ≤ Cd0
(k + 1)d2NNd−1,

and we are done. �

This lemma implies that, upon mesh refinement, the degrees of freedom for the sparse fi-

nite element space will grow in the order of h−1| log2(h)|d−1 instead of h−d for the traditional

piecewise polynomial space. This translates into a significant reduction in computational cost

when d is large. However, we still need to verify the approximation properties of the reduced
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space, and we will discuss it in the next subsection.

3.1.3 Approximation Results

Given any one-dimensional projection operator P kn and its increment operator Qk
n
, we can

naturally define a projection from H1(Ω) to V̂k
N as,

P̂
k
N :=

∑
|l|1≤N

Qk
l1,x1

⊗ · · · ⊗Qk
ld,xd

, (3.5)

where Qk
li,xi

denotes the operator Qk
li

in the i-th dimension. In [71], continuous sparse

finite element space is used with streamline diffusion method to solve transport-dominated

diffusion problem. The finite element space considered is V̂
c,k
N := V̂k

N ∩ C
0(Ω) for k ≥ 1.

The approximation properties for projector defined in (3.5) in L2(Ω), H1(Ω), H2(ΩN ) norms

are obtained when P kn is a univariate projector onto V kn ∩C0([0, 1]) satisfying (3.3). Because

V̂
c,k
N is a subset of V̂k

N , we can directly use the results in [71] and obtain an estimate of the

projection error for P̂
k
N .

We introduce some notations about the seminorm of a function’s mixed derivatives. For

any set I = {i1, . . . ik} ⊂ {1, . . . d}, we define Ic to be the complement set of I in {1, . . . d}.

For non-negative integers α, β and set I, we define the seminorm

|v|
Hα,β,I (Ω)

:=

∑
0≤α1≤α

· · ·
∑

0≤αk≤α

∑
0≤β1≤β

· · ·
∑

0≤βd−k≤β

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ∂α1

∂x
α1
i1

· · · ∂
αk

∂x
αk
ik


 ∂β1

∂x
β1
j1

· · · ∂
βd−k

∂x
βd−k
jd−k

 v

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L2(Ω)

,
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and

|v|Ht+1(Ω)
:= max

s∈{0,1}
max

1≤k≤d

(
max |v|

Ht+1,s,I (Ω)

)
.

We recall the following results in [71] about the approximation properties in L2(Ω), H1(Ω)

and H2(ΩN ) norm.

Theorem 3.1.5 Let P̂
k
N defined in (3.5) be constructed from P kn which is a univariate

projector onto V kn ∩ C0([0, 1]) satisfying (3.3), then for k ≥ 1, any 1 ≤ t ≤ min{p, k}, there

exist constant ck,t, κ0(k, t, N), κ1(k, t, N) > 0, such that for any v ∈ Hp+1(Ω), N ≥ 1,

d ≥ 2, we have

|P̂kNv − v|Hs(ΩN ) = |P̂kNv − v|Hs(Ω) ≤ ck,td
1+s/2κs(k, t, N)d−1+s2−N(t+1−s)|v|Ht+1(Ω)

,

for s = 0, 1 (L2 norm and H1 seminorm), and

|P̂kNv − v|H2(ΩN )
≤

ck,t

(
d3/2κ1(k, t, N)d + d2κ0(k, t, N)d−12−N

)
2−N(t−1)|v|Ht+1(Ω)

, k ≥ 2

ck,t

(
d1/2 + d2κ0(k, t, N)d−12−N

)
|v|H2(Ω)

, k = 1,

where

κs(k, t, N) =


c̃k,0,t(N + 1)e1/(N+1) + ck,0,0, s = 0

2c̃k,0,t + ck,0,0, s = 1,

and c̃k,0,t, ck,0,0 are defined in (3.3) and (3.4). Moreover, for s = 0, if

c̃k,0,t2
t+1/(2t+1 − 1) + ck,0,0 < 1,
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there exists a positive constant ct,k, such that κ(k, t, s,N) < 1 for all N ≥ 1, d ≥ 2 with

N + 1 ≤ ct,k(d− 1).

This theorem implies a convergence rate of O(hk+1) up to the polylogarithmic term

| log2 h|d−1 in the L2 norm, which is comparable with the traditional full grid approach

when the function v retains enough smoothness. This estimate serves as the foundation in

the error estimates of IP method in the energy norm. We remark that when switching the

projection operator (say L2 projection or other projectors on to V̂k
N ) the error bound may

change. However, our estimates in Section 3.2.2 does not require any particular property

from the projection. Therefore, it suffices for us to use this theorem directly from [71]. In

future work, we will establish convergence property of projections onto V̂k
N , for k ≥ 0. This

will be essential for error estimates for broader definitions of DG methods for other types of

equations.

3.1.4 Approximations from Various Sparse Discontinuous Finite

Element Spaces: A Numerical Investigation

In this subsection, we numerically investigate the approximation properties of several sparse

finite element spaces, including V̂k
N defined in the previous subsections, and

Ṽk
N :=

⊕
|l|1≤N+d−1
|l|∞≤N

Wk
l ,

which is a slightly larger space. Ṽk
N contains the sparse continuous piecewise linear space

in [21] when k ≥ 1. Moreover, by a similar argument as in the proof of Lemma 3.1.4, its

degrees of freedom is also of the order h−1| log2(h)|d−1.
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The other space we consider here retains not only sparsity with respect to h, but also

with respect to the degree of polynomials (we call this as p-sparsity). If we introduce

Ŵk
l =

⊕
|k|1≤k

W
k1
l1,x1

×W k2
l2,x2

· · · ×W kd
ld,xd

,

with k = (k1, · · · , kd), the new sparse space can be defined as

ˆ̂
Vk
N :=

⊕
|l|1≤N

Ŵk
l .

It is clear that

ˆ̂
Vk
N ⊂ V̂k

N ⊂ Ṽk
N .

A count of dimensions for the space
ˆ̂
Vk
N is given by the following lemma.

Lemma 3.1.6 The dimension of
ˆ̂
Vk
N is

dim(
ˆ̂
Vk
N ) =(

k + d

d

)
d−1∑
m=0

(
d

m

)(−1)d−m + 2N+m−d+1
d−m−1∑
i=0

(
N

i

)
· (−2)d−m−1−i

+ 1

 .

Suppose there is an upper bound on the dimension d ≤ d0, then there exist constants cd0
, Cd0

depending only on d0, such that

cd0

(
k + d

d

)
2NNd−1 ≤ dim(

ˆ̂
Vk
N ) ≤ Cd0

(
k + d

d

)
2NNd−1.

Note that, when k and d are large, dim(
ˆ̂
Vk
N ) can be significantly smaller than dim(V̂k

N )

and dim(Ṽk
N ).
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As for the implementation of the space
ˆ̂
Vk
N , we can no longer use the orthogonal hier-

archical bases in Section 3.1.1 to represent functions in
ˆ̂
Vk
N , since the vanishing-moment

functions fi, which are used to construct the orthogonal hierarchical bases, have the same

degrees, see Table 3.1. Instead, we can adopt another set of non-orthogonal hierarchical

basis functions defined as follows. We first construct the bases for W k
n . Again, the case of

n = 0 is trivial. Similar to the orthogonal case, the bases for W k
1 are defined as

ĥi(x) = 21/2f̂i(2x− 1), i = 1, · · · , k + 1,

where f̂i, i = 1, · · · , k + 1 are functions supported on [−1, 1]. Rather than choosing f̂i from

Table 3.1, we let

f̂i(x) = xi−1, x ∈ (−1, 0)

and

f̂i(x) = −xi−1, x ∈ (0, 1).

The bases for W k
n , n ≥ 1 can be defined accordingly as

v̂
j
i,n(x) = 2(n−1)/2 ĥi(2

n−1x− j), i = 1, . . . , k + 1, j = 0, . . . , 2n−1 − 1.

Therefore, the basis functions in Ŵk
l (and

ˆ̂
Vk
N ) are defined as

v̂
j
i,l(x) :=

d∏
t=1
|i|1≤k

v
jt
it,lt

(xt), jt = 0, . . . ,max(0, 2lt−1 − 1).

The purpose of our study in this subsection is to provide a numerical comparison of the
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three types of sparse approximation spaces. In particular, we consider a smooth function

u(x) = exp

 d∏
i=1

xi

 , x ∈ [0, 1]d,

where d = 2, 3 and the standard L2 projections: P̂kn, P̃kn, and
ˆ̂
Pkn from H1(Ω) to V̂k

N , Ṽk
N ,

and
ˆ̂
Vk
N , respectively. We measure various norms of the projection errors and the degrees

of freedom for each space to find the best balance between accuracy and efficiency.

In Tables 3.2-3.7, we report the projection errors e1 = P̂knu − u, e2 = P̃knu − u and

e3 =
ˆ̂
Pknu − u in L1, L2, L∞, and H1 norms and the associated orders of accuracy for

k = 1, 2, 3. In the implementation, the projections are obtained via the Gaussian quadrature

based on sparse grids to save computational cost. When computing the error norms, the

domain is uniformly divided into 2dN cell. Note that on each cell, the projection functions

are smooth, and hence we adopt the 6d-point gaussian quadrature with 12-th order accuracy

to evaluate the errors in L1, L2, L∞, and H1 norms.

For all three spaces, the degrees of freedom are all significantly less than (k + 1)d2Nd,

which is the degree of freedom for the full grid approximation. For space Ṽk
N , (k + 1)-th

order of accuracy is clearly observed for the L1 and L2 errors, and k-th order of accuracy is

observed for the H1 error, while slight reduction of accuracy is observed for the L∞ error.

For space V̂k
N , k-th order of accuracy is observed for the H1 error and slight reduction

of accuracy is observed for L1 and L2 errors. However, we do observe about half-order

reduction of accuracy for the L∞ error. We remark that, on one hand, the magnitude of

errors computed by space V̂k
N is larger than that by space Ṽk

N for a fixed N . The apparent

reason is that the degrees of freedom of V̂k
N is smaller than Ṽk

N . On the other hand, when the

degrees of freedom are comparable for the two spaces, the magnitude of errors computed by
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space V̂k
N is smaller than Ṽk

N . Therefore, V̂k
N is preferred if the computational efficiency is

concerned. For
ˆ̂
Vk
N , which has the least degrees of freedom among the three sparse spaces,

severe reduction of accuracy is observed for all error norms. Moreover, the magnitude of

errors is significantly larger than that by space V̂k
N or Ṽk

N with comparable degrees of

freedom.

In summary, based on the discussion, we will adopt space V̂k
N in the computation for

elliptic equations in the next section. A further reduction in computational cost is possible

by finding the optimal subset of V̂k
N by adaptive algorithms. We do not pursue this direction

in this thesis, but leave it to future study.
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Table 3.2: L2 projection errors and orders of accuracy. FGDOF denotes the degrees of
freedom of the full grid approximation space. d = 2. k = 1.

N dim Ṽk
N dim V̂k

N dim
ˆ̂
Vk
N FGDOF

2 48 32 24 64
3 192 80 60 256
4 320 192 144 1024
5 768 448 336 4096
6 1792 1024 768 16384

N L1 error order L2 error order L∞ error order H1 error order

Ṽk
N

2 1.58E-03 2.41E-03 2.16E-02 7.45E-02
3 4.05E-04 1.97 6.14E-04 1.97 6.62E-03 1.71 3.73E-02 1.00
4 1.03E-04 1.97 1.56E-04 1.98 1.98E-03 1.74 1.86E-02 1.00
5 2.62E-05 1.98 3.96E-05 1.98 5.81E-04 1.77 9.32E-03 1.00
6 6.64E-06 1.98 1.00E-05 1.98 1.68E-04 1.79 4.66E-03 1.00

V̂k
N

2 2.28E-03 3.16E-03 3.21E-02 8.10E-02
3 6.30E-04 1.86 8.98E-04 1.82 1.17E-02 1.46 4.09E-02 0.99
4 1.72E-04 1.87 2.50E-04 1.85 4.01E-03 1.54 2.05E-02 1.00
5 4.68E-05 1.88 6.82E-05 1.87 1.31E-03 1.61 1.03E-02 1.00
6 1.26E-05 1.90 1.84E-05 1.89 4.13E-04 1.67 5.13E-03 1.00

ˆ̂
Vk
N

2 1.95E-02 2.59E-02 1.94E-01 3.60E-01
3 8.47E-03 1.21 1.14E-02 1.18 1.07E-01 0.86 2.72E-01 0.40
4 3.77E-03 1.17 5.13E-03 1.16 5.69E-02 0.91 2.18E-01 0.32
5 1.72E-03 1.13 2.34E-03 1.13 2.94E-02 0.95 1.81E-01 0.27
6 7.94E-04 1.11 1.08E-03 1.11 1.49E-02 0.98 1.55E-01 0.23
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Table 3.3: Projection errors and orders of accuracy. FGDOF denotes the degrees of freedom
of the full grid approximation space. d = 2. k = 2.

N dim Ṽk
N dim V̂k

N dim
ˆ̂
Vk
N FGDOF

2 108 72 48 144
3 432 180 120 576
4 720 432 288 2304
5 1728 1008 672 9216
6 4032 2304 1536 36864

N L1 error order L2 error order L∞ error order H1 error order

Ṽk
N

2 2.82E-05 4.36E-05 4.05E-04 2.26E-03
3 3.50E-06 3.01 5.47E-06 2.99 5.94E-05 2.77 5.66E-04 2.00
4 4.39E-07 3.00 6.86E-07 2.99 8.54E-06 2.80 1.42E-04 2.00
5 5.51E-08 3.00 8.61E-08 3.00 1.21E-06 2.81 3.54E-05 2.00
6 6.90E-09 3.00 1.08E-08 3.00 1.71E-07 2.83 8.84E-06 2.00

V̂k
N

2 3.51E-05 5.23E-05 6.48E-04 2.41E-03
3 4.84E-06 2.86 7.26E-06 2.85 1.23E-04 2.40 6.08E-04 1.99
4 6.56E-07 2.88 9.96E-07 2.87 2.21E-05 2.47 1.53E-04 1.99
5 8.81E-08 2.90 1.35E-07 2.88 3.77E-06 2.55 3.82E-05 2.00
6 1.17E-08 2.91 1.81E-08 2.90 6.13E-07 2.62 9.55E-06 2.00

ˆ̂
Vk
N

2 1.73E-03 2.51E-03 2.78E-02 5.62E-02
3 4.86E-04 1.83 7.22E-04 1.80 1.09E-02 1.35 2.80E-02 1.01
4 1.35E-04 1.85 2.02E-04 1.84 3.99E-03 1.46 1.39E-02 1.01
5 3.68E-05 1.88 5.53E-05 1.87 1.37E-03 1.55 6.95E-03 1.00
6 9.90E-06 1.89 1.49E-05 1.89 4.45E-04 1.62 3.47E-03 1.00
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Table 3.4: Projection errors and orders of accuracy. FGDOF denotes the degrees of freedom
of the full grid approximation space. d = 2. k = 3.

N dim Ṽk
N dim V̂k

N dim
ˆ̂
Vk
N FGDOF

2 192 128 80 256
3 768 320 200 1024
4 1280 768 480 4096
5 3072 1792 1120 16384
6 7168 4096 2560 65536

N L1 error order L2 error order L∞ error order H1 error order

Ṽk
N

2 3.72E-07 6.12E-07 4.67E-06 4.66E-05
3 2.32E-08 4.00 3.84E-08 4.00 3.32E-07 3.82 5.83E-06 3.00
4 1.45E-09 4.00 2.40E-09 4.00 2.31E-08 3.85 7.29E-07 3.00
5 9.09E-11 4.00 1.50E-10 4.00 1.59E-09 3.86 9.11E-08 3.00
6 5.68E-12 4.00 9.39E-12 4.00 1.09E-10 3.86 1.14E-08 3.00

V̂k
N

2 4.37E-07 6.77E-07 7.54E-06 4.82E-05
3 2.90E-08 3.91 4.55E-08 3.90 7.47E-07 3.34 6.07E-06 2.99
4 1.92E-09 3.92 3.05E-09 3.90 7.08E-08 3.40 7.61E-07 3.00
5 1.26E-10 3.93 2.03E-10 3.91 6.33E-09 3.48 9.52E-08 3.00
6 8.28E-12 3.93 1.35E-11 3.92 5.35E-10 3.57 1.19E-08 3.00

ˆ̂
Vk
N

2 1.95E-04 2.88E-04 3.57E-03 8.44E-03
3 4.20E-05 2.22 6.36E-05 2.18 1.10E-03 1.70 3.16E-03 1.42
4 9.26E-06 2.18 1.42E-05 2.17 3.19E-04 1.79 1.23E-03 1.35
5 2.09E-06 2.14 3.19E-06 2.15 8.77E-05 1.86 5.03E-04 1.29
6 4.81E-07 2.12 7.31E-07 2.13 2.32E-05 1.92 2.12E-04 1.24
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Table 3.5: Projection errors and orders of accuracy. FGDOF denotes the degrees of freedom
of the full grid approximation space. d = 3. k = 1.

N dim Ṽk
N dim V̂k

N dim
ˆ̂
Vk
N FGDOF

2 352 104 52 512
3 1216 304 152 4096
4 3584 832 416 32768
5 9728 2176 1088 262144
6 25088 5504 2752 2097152

N L1 error order L2 error order L∞ error order H1 error order

Ṽk
N

2 6.23E-04 1.20E-03 2.98E-02 3.76E-02
3 1.57E-04 1.99 3.02E-04 1.99 9.30E-03 1.68 1.87E-02 1.01
4 3.95E-05 1.99 7.60E-05 1.99 2.91E-03 1.67 9.34E-03 1.00
5 9.99E-06 1.98 1.91E-05 1.99 9.20E-04 1.66 4.67E-03 1.00
6 2.52E-06 1.98 4.82E-06 1.99 2.91E-04 1.66 2.33E-03 1.00

V̂k
N

2 1.18E-03 1.91E-03 6.13E-02 4.41E-02
3 3.65E-04 1.69 5.91E-04 1.69 2.71E-02 1.18 2.24E-02 0.98
4 1.09E-04 1.74 1.79E-04 1.72 1.13E-02 1.26 1.13E-02 0.99
5 3.21E-05 1.76 5.34E-05 1.75 4.45E-03 1.34 5.67E-03 1.00
6 9.28E-06 1.79 1.56E-05 1.77 1.68E-03 1.40 2.84E-03 1.00

ˆ̂
Vk
N

2 2.16E-02 3.01E-02 3.76E-01 3.22E-01
3 1.10E-02 0.97 1.56E-02 0.95 2.80E-01 0.43 2.53E-01 0.35
4 5.61E-03 0.98 7.99E-03 0.96 1.94E-01 0.53 2.07E-01 0.30
5 2.83E-03 0.99 4.07E-03 0.97 1.27E-01 0.61 1.74E-01 0.25
6 1.42E-03 0.99 2.06E-03 0.98 7.97E-02 0.67 1.49E-01 0.22
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Table 3.6: Projection errors and orders of accuracy. FGDOF denotes the degrees of freedom
of the full grid approximation space. d = 3. k = 2.

N dim Ṽk
N dim V̂k

N dim
ˆ̂
Vk
N FGDOF

2 1188 351 130 1728
3 4104 1026 380 13824
4 12096 2808 1040 110592
5 32832 7344 2720 884736
6 84672 18576 6880 7077888

N L1 error order L2 error order L∞ error order H1 error order

Ṽk
N

2 8.65E-06 1.88E-05 5.64E-04 9.83E-04
3 1.08E-06 3.00 2.36E-06 3.00 8.11E-05 2.80 2.45E-04 2.00
4 1.35E-07 3.00 2.95E-07 3.00 1.15E-05 2.82 6.12E-05 2.00
5 1.69E-08 3.00 3.69E-08 3.00 1.65E-06 2.80 1.53E-05 2.00
6 2.12E-09 3.00 4.62E-09 3.00 2.40E-07 2.78 3.83E-06 2.00

V̂k
N

2 1.41E-05 2.58E-05 1.33E-03 1.10E-03
3 2.12E-06 2.73 3.86E-06 2.74 3.16E-04 2.08 2.80E-04 1.98
4 3.15E-07 2.75 5.76E-07 2.74 7.07E-05 2.16 7.07E-05 1.99
5 4.62E-08 2.77 8.56E-08 2.75 1.50E-05 2.24 1.77E-05 1.99
6 6.66E-09 2.79 1.26E-08 2.76 3.01E-06 2.31 4.44E-06 2.00

ˆ̂
Vk
N

2 4.50E-03 6.59E-03 1.13E-01 9.32E-02
3 1.82E-03 1.30 2.71E-03 1.28 7.36E-02 0.62 5.93E-02 0.65
4 7.51E-04 1.28 1.11E-03 1.29 4.30E-02 0.78 3.91E-02 0.60
5 3.10E-04 1.28 4.53E-04 1.29 2.32E-02 0.89 2.70E-02 0.54
6 1.30E-04 1.25 1.88E-04 1.26 1.18E-02 0.97 1.95E-02 0.47
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Table 3.7: Projection errors and orders of accuracy. FGDOF denotes the degrees of freedom
of the full grid approximation space. d = 3. k = 3.

N dim Ṽk
N dim V̂k

N dim
ˆ̂
Vk
N FGDOF

2 2816 832 260 4096
3 9728 2432 760 32768
4 28672 6656 2080 262144
5 77824 17408 5440 2097152
6 200704 44032 13760 16777216

N L1 error order L2 error order L∞ error order H1 error order

Ṽk
N

2 9.39E-08 2.37E-07 6.61E-06 1.80E-085
3 5.96E-09 3.98 1.49E-08 3.99 5.33E-07 3.63 2.25E-06 3.00
4 3.66E-10 4.03 9.27E-10 4.01 3.13E-08 4.09 2.81E-07 3.00
5 2.30E-11 3.99 5.81E-11 4.00 2.47E-09 3.66 3.52E-08 3.00
6 2.09E-12 3.46 5.26E-12 3.46 6.07E-10 2.03 4.41E-09 2.99

V̂k
N

2 1.32E-07 2.82E-07 1.55E-05 1.92E-05
3 9.66E-09 3.78 2.01E-08 3.81 2.01E-06 2.95 2.43E-06 2.98
4 6.94E-10 3.80 1.44E-09 3.80 2.35E-07 3.10 3.05E-07 2.99
5 4.99E-11 3.80 1.04E-10 3.78 2.66E-08 3.15 3.83E-08 3.00
6 3.92E-12 3.67 8.49E-12 3.62 3.13E-09 3.08 4.80E-09 2.99

ˆ̂
Vk
N

2 7.49E-04 1.18E-03 2.52E-02 2.24E-02
3 2.38E-04 1.65 3.86E-04 1.61 1.48E-02 0.77 1.11E-02 1.02
4 7.31E-05 1.70 1.22E-04 1.67 7.48E-03 0.98 5.46E-03 1.02
5 2.18E-05 1.75 3.71E-05 1.71 3.41E-03 1.13 2.69E-03 1.02
6 6.35E-06 1.78 1.10E-05 1.75 1.43E-03 1.25 1.76E-03 0.62
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3.2 IP Method on Sparse Grids for Elliptic Equations

In this section, we solve the second order linear elliptic boundary value problems (3.1) by IP

methods with the sparse finite element space V̂k
N . We will first formulate the scheme and

discuss its implementation issues, and then perform error analysis in the energy norm.

3.2.1 Formulation of the Scheme

First, we will introduce some basic notations about jumps and averages for piecewise func-

tions defined on a grid ΩN . Let Γ :=
⋃
T∈ΩN

∂T be the union of the boundaries for all the

elements in ΩN and S(Γ) := ΠT∈ΩN
L2(∂T ) be the set of L2 functions defined on Γ. For

any q ∈ S(Γ) and q ∈ [S(Γ)]d, we define their averages {q}, {q} and jumps [q], [q] on the

interior edges as follows. Suppose e is an interior edge shared by elements T+ and T−, we

define the unit normal vectors n+ and n− on e pointing exterior to T+ and T−, then

[q] = q−n− + q+n+, {q} =
1

2
(q− + q+),

[q] = q− · n− + q+ · n+, {q} =
1

2
(q− + q+).

If e is a boundary edge, then we let

[q] = qn, {q} = q,

where n is the outward unit normal.

Now we are ready to formulate the IPDG scheme for (3.1). We look for uh ∈ V̂k
N , such

that

B(uh, v) = L(v), ∀ v ∈ V̂k
N (3.6)
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where

B(w, v) =

∫
Ω
K∇w · ∇v dx−

∑
e∈Γ

∫
e
{K∇w} · [v] ds

−
∑
e∈Γ

∫
e
{K∇v} · [w] ds+

∑
e∈Γ

σ

h

∫
e
[w] · [v] ds, (3.7)

and

L(v) =

∫
Ω
fv dx−

∫
∂Ω

(
K∇v · n+

σ

h
v
)
g ds, (3.8)

where σ is a positive penalty parameter, h = 2−N is the uniform mesh size in each dimension.

The IP methods developed in [82, 6] are commonly used to solve elliptic problems, but usually

with standard piecewise polynomial space. Here, by using the sparse finite element space, we

can achieve a significant reduction in the size of the linear algebraic system (3.6) especially

when the dimension is large.

We notice that there are still several important factors in ensuring real computational

gains in implementation. First of all, it’s obvious that we need efficient algorithms to evaluate

L(v) when v is taken to be the basis functions v
j
i,l(x) in V̂k

N . A standard integration scheme

will incur computational complexity with exponential dependence on dN . To avoid this, in

our algorithm, we take full advantage of numerical integration on sparse grids developed in

the literature [77, 40]. In particular, for each basis v
j
i,l(x), its domain of dependence consists

of 2d smooth patches. Therefore, when evaluating
∫

Ω fv
j
i,l dx, we first divide this integral

into 2d parts accordingly, and then for each patch, we implement a sparse grid integration

with Gauss quadrature, and the number of levels employed in this calculation is taken as

(Iquad − |l|1/2), where Iquad is a fixed integer chosen large enough to guarantee sufficient
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accuracy. The evaluation of
∫
∂Ω

(
K∇v · n+ σ

hv
)
g ds can be performed in a similar fashion.

Another important factor when we assemble the linear system is the so-called unidirec-

tional principle [19]. To demonstrate the main ideas, we can see that evaluating
∫

Ω φ(x) dx

with φ(x) = φ1(x1) . . . φd(xd) is equivalent to multiplication of one-dimensional integrals∫
[0,1] φ1 dx1 · · ·

∫
[0,1] φd dxd. Therefore, computing

∫
Ω fv

j
i,l dx when f(x) is separable, i.e.

f(x) = f1(x1) . . . fd(xd) or when f(x) is a sum of seperable functions is straightforward,

because we only need some small overhead to compute 1D integrals and assemble them to

obtain the multi-dimensional integrations.

The same discussion holds true for the computation of the bilinear term B(uh, v). For

example, if we use a direct method, we need to evaluate B(w, v) for (w, v) being all possible

basis functions in V̂k
N . From the definition of B(w, v), each matrix element will involve

four multi-dimensional integrations. If K is separable (in particular, when K is a constant

function), due to the unidirectional principle, the matrices can be assembled fast. When K

is a general function, we need to compute true high dimensional integrals. This difficulty is

identified as one of the main challenging tasks for computing PDEs on sparse grids, see e.g.

[20, 2]. In this case, we can either use the sparse grid integration procedure mentioned above

or by a computational procedure outlined as follows. Assume K to be a smooth function,

then we can find Kh = P̂ 2k
N K as the L2 projection of K onto the sparse finite element

space V̂2k
N , and use Kh in place of K in the scheme. Notice that Kh is a sum of separable

functions, therefore the computation of the bilinear term is accelerated as the unidirectional

case. The reason we use a higher order sparse finite element for projection of Kh is to obtain

exact evaluation of the volume integral
∫

Ω K∇u · ∇v dx. However, this process does change

the values of three other terms up to approximation error of Kh−K. Another thing we did

not explore is the efficient solver for the linear algebraic system. In the literature, iterative
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methods have been proposed based on the semi-coarsening approach and its sparse grid

extensions [64, 65, 43, 48, 47, 69, 18]. We leave those interesting implementation aspects to

future study.

3.2.2 Error Analysis

This section contains error estimates of the IPDG method on sparse grids. Following [6], we

define the energy norm of a function v ∈ H2(ΩN ) by

|||v|||2 :=
∑

T∈ΩN

∫
T
|∇v|2 dx +

∑
e∈Γ

h

∫
e

{
∂v

∂n

}2

ds +
∑
e∈Γ

1

h

∫
e
[v]2 ds.

We review some basic properties of the bilinear operator B(·, ·).

Lemma 3.2.1 (Orthogonality) Let u be the exact solution to (3.1), and uh be the numer-

ical solution to (3.6), then

B(u− uh, v) = 0, ∀v ∈ V̂k
N .

Proof: Using integration by parts, we can easily show B(u, v) = 0, ∀v ∈ V̂k
N . The Galerkin

orthogonality immediately follows. �

Lemma 3.2.2 (Boundedness[6, 7]) There exists a positive constant Cb, depending only

on K1, σ, such that

B(w, v) ≤ Cb|||w||| · |||v|||, ∀w, v ∈ H2(ΩN ).
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Lemma 3.2.3 (Stability[6, 7]) When σ is taken large enough, there exists a positive con-

stant Cs depending only on K0, such that

B(v, v) ≥ Cs|||v|||2, ∀ v ∈ V̂k
N .

Theorem 3.2.4 Let u be the exact solution to (3.1), and uh be the numerical solution to

(3.6). For k ≥ 1, u ∈ Hp+1(Ω), 1 ≤ t ≤ min{p, k}, N ≥ 1, d ≥ 2, we have

|||u− uh||| ≤
(

1 +
Cb
Cs

)√
Cdck,tC

∗2−Nt|u|Ht+1(Ω)
.

where Cd is a constant that depends on d linearly. Cb, Cs are defined in Lemmas 3.2.2 and

3.2.3.

C∗ = max

(√
d2κ2d−2

0 + 3d3κ2d
1 + 2d4κ2d−2

0 2−2N ,√
d2κ2d−2

0 + d3κ2d
1 + 2d+ 2d4κ2d−2

0 2−2N

)
,

where κs = κs(k, t, N), s = 0, 1 and ck,t are defined in Theorem 3.1.5.

Proof: Choose any function uI ∈ V̂k
N , then we decompose the error into e = u − uh =

(u− uI) + (uI − uh). By Céa’s lemma, using Lemma 3.2.1, 3.2.2 and 3.2.3,

Cs|||uI − uh|||2 ≤ Bh(uI − uh, uI − uh) = Bh(uI − u, uI − uh) ≤ Cb|||u− uI ||| · |||uI − uh|||.

Therefore, |||uI − uh|| ≤
Cb
Cs
|||u− uI |||, and

|||e||| ≤ |||uI − uh|||+ |||u− uI ||| ≤
(

1 +
Cb
Cs

)
|||u− uI |||.
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We have

|||e||| ≤
(

1 +
Cb
Cs

)
inf

uI∈V̂
k
N

|||u− uI ||| ≤
(

1 +
Cb
Cs

)
|||u− P̂

k
Nu|||,

where the projection operator P̂
k
N has been specified in Theorem 3.1.5.

Next, we need to bound the energy norm of η := u− P̂
k
Nu. Recall that

|||η|||2 =
∑

T∈ΩN

∫
T
|∇η|2 dx +

∑
e∈Γ

h

∫
e

{
∂η

∂n

}2

ds +
∑
e∈Γ

1

h

∫
e
[η]2 ds.

The first term in the summation is

∑
T∈ΩN

∫
T
|∇η|2 dx = |η|2

H1(ΩN )
.

To bound the second and third terms, we use the trace inequalities [6]:

||φ||2
L2(∂T )

≤ Cd

(
1

h
||φ||2

L2(T )
+ h|φ|2

H1(T )

)
, ∀φ ∈ H1(T )∣∣∣∣∣∣∣∣∂φ∂n

∣∣∣∣∣∣∣∣2
L2(∂T )

≤ Cd

(
1

h
|φ|2

H1(T )
+ h|φ|2

H2(T )

)
, ∀φ ∈ H2(T )

where Cd is a generic constant that depends on d linearly. It may have different values in

each occurrence in the proof. Sum over all the elements, we get

∑
e∈Γ

h

∫
e

{
∂η

∂n

}2

ds ≤ Cd

(
|η|2
H1(ΩN )

+ h2|η|2
H2(ΩN )

)

∑
e∈Γ

1

h

∫
e
[η]2 ds ≤ Cd

(
1

h2
||η||2

L2(ΩN )
+ |η|2

H1(ΩN )

)
.
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In summary,

|||η|||2 ≤ Cd

(
1

h2
||η||2

L2(ΩN )
+ |η|2

H1(ΩN )
+ h2|η|2

H2(ΩN )

)
.

By Theorem 3.1.5,

|||η|||2 ≤ Cd c
2
k,t

(
d2κ2d−2

0 + 3d3κ2d
1 + 2d4κ2d−2

0 2−2N
)

2−2Nt|u|2Ht+1(Ω)
, k ≥ 2

|||η|||2 ≤ Cd c
2
k,t

(
d2κ2d−2

0 + d3κ2d
1 + 2d+ 2d4κ2d−2

0 2−2N
)

2−2Nt|u|2Ht+1(Ω)
, k = 1

where we have used the shorthand notation κs = κs(k, t, N), s = 0, 1. Let’s define

C∗ = max

(√
d2κ2d−2

0 + 3d3κ2d
1 + 2d4κ2d−2

0 2−2N ,√
d2κ2d−2

0 + d3κ2d
1 + 2d+ 2d4κ2d−2

0 2−2N

)
.

Then,

|||η||| ≤
√
Cdck,tC

∗2−Nt|u|Ht+1(Ω)
.

Therefore, we have proved the error estimate in the energy norm

|||e||| ≤
(

1 +
Cb
Cs

)√
Cdck,tC

∗2−Nt|u|Ht+1(Ω)
.

�

This theorem implies a convergence rate ofO(hk) up to the polylogarithmic term | log2 h|d−1

in the energy norm when u is smooth enough. However, we do require more regularity of u

compared with IP methods using traditional piecewise polynomial space.
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Remark 3.2.5 Proving convergence in L2 norm with the standard duality argument will

encounter some difficulties in this framework. For example, let ϕ be the solution to the

adjoint problem

−∇ · (K∇ϕ) = u− uh on Ω, ϕ = 0 on ∂Ω.

Since Ω is convex, we have ϕ ∈ H2(Ω), and ||ϕ||
H2(Ω)

≤ C||u−uh||L2(Ω)
. From the adjoint

consistency of the IP method, we get

||u− uh||2L2(Ω)
= B(u− uh, ϕ).

However, to proceed from here, we will need to define an interpolant of ϕ: ϕI ∈ V̂1
N , and

bound |||ϕ−ϕI |||. From our previous discussion, this will require a bound in ||ϕ||H2(Ω)
. This

is a stronger norm than the classical H2 norm, and cannot be bounded by ||u− uh||2L2(Ω)
.

3.3 Numerical Results

In this section, we provide multi-dimensional numerical results to demonstrate the perfor-

mance of our sparse grid IPDG scheme.

3.3.1 Two-dimensional Results

In this subsection, we gather computational results for two-dimensional cases. The penalty

constant in this subsection is chosen to be σ = 10 for k = 1, and σ = 20 for k = 2.

Example 3.3.1 We solve the following two-dimensional problem with constant coefficient
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Table 3.8: Numerical errors and orders of accuracy for Example 3.3.1 computed by space
V̂k
N with k = 1, 2 and indicated N .

N L1 error order L2 error order L∞ error order H1 error order
k = 1

3 4.49E-03 6.97E-03 3.26E-02 1.77E-01
4 1.18E-03 1.93 1.93E-03 1.85 9.71E-03 1.75 8.80E-02 1.01
5 3.03E-04 1.96 5.09E-04 1.92 3.19E-03 1.60 4.36E-02 1.01
6 7.68E-05 1.98 1.32E-04 1.98 9.68E-04 1.72 2.16E-02 1.01

k = 2
3 9.52E-05 1.33E-04 5.74E-04 7.61E-03
4 1.42E-05 2.75 2.03E-05 2.71 9.65E-05 2.57 1.91E-03 1.99
5 2.05E-06 2.79 3.02E-06 2.75 1.59E-05 2.60 4.78E-04 2.00
6 2.89E-07 2.83 4.36E-07 2.79 2.66E-06 2.58 1.19E-04 2.00

on Ω = [0, 1]2.


−∆u = 0, x ∈ Ω,

u = sin(πx1)
sinh(πx2)

sinh(π)
, x ∈ ∂Ω,

(3.9)

where the exact solution is u = sin(πx1)
sinh(πx2)

sinh(π)
. We test scheme with k = 1 and k = 2 on

different levels of meshes. Numerical errors and orders of accuracy measured in L1, L2, L∞

and H1 norms are listed in Table 3.8. We observe k-th order of accuracy for H1 norm, close

to (k+1)-th order accuracy for L1, L2 norms and slightly less than (k+1)-th order accuracy

for the L∞ norm. The results agree with the error estimates performed in the previous

section.

In addition, we provide the sparsity patterns of the stiffness matrices for k = 1 and k = 2

in Figure 3.1 and Table 3.9. From Table 3.9, the number of nonzero elements scales like

O(SGDOF 1.5), where SGDOF is the degree of freedom of the space used. This is a denser

matrix than the one generated from traditional piecewise polynomial space. However, this

is natural considering that the basis functions in V̂k
N are no longer locally defined.
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Table 3.9: Sparsity and condition number of the stiffness matrix. Example 3.3.1 com-
puted by the space V̂k

N with k = 1, 2. SGDOF is the degree of freedom used for the
sparse grid DG scheme. NNZ is the number of nonzero elements in the stiffness matrix.
Order=log(NNZ)/ log(SGDOF).

N SGDOF NNZ Order Condition Number
k = 1

3 80 992 1.57 3.58E+02
4 192 3216 1.54 1.43E+03
5 448 9168 1.49 5.68E+03
6 1024 24144 1.45 2.26E+04

k = 2
3 180 3456 1.57 1.40E+03
4 432 11124 1.54 5.49E+03
5 1008 31596 1.50 2.16E+04
6 2304 83028 1.46 8.58E+04

(a)
0 250 500 750 1000

0
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500

750

1000
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0 500 1000 1500 2000

0

500

1000

1500

2000

Figure 3.1: Example 3.3.1. The sparsity pattens of the matrices computed by the space V̂k
6

with k = 1, 2 and N = 6. Each dot represents a non-zero element in the stiffness matrix.
(a): k = 1, (b): k = 2.

Example 3.3.2 We solve the following two-dimensional problem with smooth variable co-

efficient on Ω = [0, 1]2.


−∇ · ((sin(x1 x2) + 1)∇u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(3.10)
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Table 3.10: Numerical errors and orders of accuracy for Example 3.3.2 computed by the
space V̂k

N with k = 1, 2 and indicated N .

N L1 error order L2 error order L∞ error order H1 error order
k = 1

3 1.30E-02 1.65E-03 4.50E-02 3.37E-01
4 3.18E-03 2.03 4.08E-03 2.01 1.34E-02 1.74 1.66E-01 1.02
5 7.81E-04 2.02 1.01E-03 2.01 4.43E-03 1.60 8.26E-02 1.01
6 1.94E-04 2.01 2.55E-04 1.99 1.48E-03 1.58 4.11E-02 1.00

k = 2
3 1.77E-04 2.17E-04 5.74E-04 1.35E-02
4 2.71E-05 2.70 3.37E-05 2.69 1.01E-04 2.51 3.37E-03 2.00
5 3.99E-06 2.76 5.08E-06 2.73 1.91E-05 2.40 8.41E-04 2.00
6 5.67E-07 2.82 7.37E-07 2.78 2.99E-06 2.67 2.10E-04 2.00

f is a given function such that the exact solution is u = sin(πx1) sin(πx2). The numerical

results are provided in Table 3.10. The conclusion is very similar to Example 3.3.1.

Example 3.3.3 We solve the following two-dimensional problem with discontinuous coeffi-

cient on Ω = [0, 1]2.


−∇ · ((sign((x1 − 0.5)(x2 − 0.5)) + 2)∇u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(3.11)

f is a given function such that the exact solution is u = sin(πx1) sin(πx2). We provide the

numerical results with k = 1 and k = 2 in Table 3.11. For this problem with smooth solution

but discontinuous coefficient, the convergence rates are maintained.

3.3.2 Three-dimensional Results

In this subsection, we gather computational results for three-dimensional elliptic equations.

The penalty constant in this subsection is chosen to be σ = 15 for k = 1, and σ = 30 for

k = 2.
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Table 3.11: Numerical errors and orders of accuracy for Example 3.3.3 computed by the
space V̂k

N with k = 1, 2 and indicated N .

N L1 error order L2 error order L∞ error order H1 error order
k = 1

3 1.24E-02 1.57E-02 4.55E-02 3.33E-01
4 3.07E-03 2.02 3.94E-03 2.00 1.36E-03 1.75 1.66E-02 1.00
5 7.58E-04 2.02 9.78E-04 2.01 4.50E-03 1.59 8.32E-02 1.00
6 1.89E-04 2.00 2.46E-04 1.99 1.50E-03 1.58 4.16E-02 1.00

k = 2
3 1.96E-04 2.59E-04 1.21E-03 1.56E-02
4 2.72E-05 2.85 3.50E-05 2.89 1.55E-04 2.96 3.70E-03 2.08
5 3.85E-06 2.82 4.94E-06 2.82 2.05E-05 2.92 8.93E-04 2.05
6 5.36E-07 2.84 7.02E-07 2.82 3.01E-06 2.82 2.19E-04 2.03

Example 3.3.4 We solve the following three-dimensional problem with constant coefficient

on Ω = [0, 1]3.


−∆u = 0, x ∈ Ω,

u = sin(πx1) sin(πx2)
sinh(πx3)

sinh(π)
, x ∈ ∂Ω,

(3.12)

where the exact solution is u = sin(πx1) sin(πx2)
sinh(πx3)

sinh(π)
. We provide the numerical results

with k = 1 and k = 2 in Table 3.12. For this three-dimensional example, we obtain k-th order

for the H1 norm, and close to (k + 1)-th order for the L1 and L2 norm. However, L∞ error

seems to degrade to (k + 1
2)-th order. However, upon closer examination, similar behaviors

have been observed in Section 3.1.4 for the L2 projection error of a smooth function onto

V̂k
N . The sparsity patterns of the stiffness matrices for k = 1 and k = 2 are reported in Figure

3.2. From Table 3.13, we can see the stiffness matrices scale less than the two-dimensional

examples, i.e. the number of nonzero elements scales like O(SGDOF 1.4), where SGDOF is

the degree of freedom of the space used.
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Table 3.12: Numerical errors and orders of accuracy for Example 3.3.4 computed by the
space V̂k

N with k = 1, 2 and indicated N .

N L1 error order L2 error order L∞ error order H1 error order
k = 1

3 1.29E-02 2.19E-02 1.09E-01 2.85E-01
4 4.05E-03 1.67 6.98E-03 1.65 4.75E-02 1.20 1.44E-01 0.98
5 1.07E-03 1.92 1.94E-03 1.85 2.34E-02 1.02 7.02E-02 1.04
6 2.76E-04 1.96 5.22E-04 1.89 8.44E-04 1.47 3.39E-02 1.05

k = 2
3 1.41E-04 2.06E-04 1.26E-03 1.05E-02
4 2.51E-05 2.49 3.80E-05 2.44 3.35E-04 1.91 2.72E-02 1.95
5 4.18E-06 2.59 6.49E-06 2.55 6.51E-05 2.36 6.87E-04 1.98
6 6.69E-07 2.64 1.06E-06 2.62 1.09E-05 2.58 1.72E-04 2.00

Table 3.13: Sparsity and condition number of the stiffness matrix. Example 3.3.4 com-
puted by the space V̂k

N with k = 1, 2. SGDOF is the degree of freedom used for the
sparse grid DG scheme. NNZ is the number of nonzero elements in the stiffness matrix.
Order=log(NNZ)/ log(SGDOF).

N SGDOF NNZ Order Condition Number
k = 1

3 304 3760 1.43 3.73E+02
4 832 14080 1.42 1.51E+03
5 2176 45760 1.39 5.97E+03
6 5504 135872 1.37 2.36E+04

k = 2
3 1026 20250 1.43 1.58E+03
4 2808 74628 1.41 5.98E+03
5 7344 240516 1.39 2.32E+04
6 18576 710532 1.37 9.15E+04
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Figure 3.2: Example 3.3.4. The sparsity pattens of the matrices computed by the space V̂k
6

with (a) k = 1 and (b) k = 2. N = 6.

Example 3.3.5 We solve the following three-dimensional problem with smooth variable

coefficient on Ω = [0, 1]3.


−∇ · ((sin(x1x2x3) + 1)∇u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(3.13)

f is a given function such that the exact solution is u = sin(πx1) sin(πx2) sin(πx3). We

provide the numerical results with k = 1 and k = 2 in Table 3.14. The conclusion is similar

to Example 3.3.4.

87



Table 3.14: Numerical errors and orders of accuracy for Example 3.3.5 computed by the
space V̂k

N with k = 1, 2 and indicated N .

N L1 error order L2 error order L∞ error order H1 error order
k = 1

3 2.64E-02 3.40E-02 1.55E-01 4.32E-01
4 6.23E-03 2.08 8.58E-03 1.98 3.54E-02 2.13 2.04E-01 1.08
5 1.49E-03 2.06 2.10E-04 2.03 2.07E-02 0.77 9.82E-02 1.06
6 3.68E-04 2.02 5.32E-04 1.98 7.58E-03 1.45 4.80E-02 1.03

k = 2
3 1.63E-04 2.05E-04 8.24E-04 1.19E-02
4 2.88E-05 2.50 3.66E-05 2.48 1.63E-04 2.34 3.00E-03 1.98
5 4.72E-06 2.61 6.06E-06 2.60 2.73E-05 2.58 7.54E-04 2.00
6 7.42E-07 2.67 9.58E-07 2.66 5.80E-06 2.23 1.88E-04 2.00

3.3.3 Four-dimensional Results

In this subsection, we gather computational results for four-dimensional cases. The penalty

constant in this subsection is chosen to be σ = 30 for k = 1, and σ = 60 for k = 2.

Example 3.3.6 We solve the following four-dimensional problem with constant variable

coefficient on Ω = [0, 1]4.


−∆u = 0 x ∈ Ω,

u = sin(πx1) sin(πx2) sin(πx3)
sinh(πx4)

sinh(π)
x ∈ ∂Ω

(3.14)

where the exact solution is u = sin(πx1) sin(πx2) sin(πx3)
sinh(πx4)

sinh(π)
.

We plot the numerical results for k = 1 and k = 2 in Figure 3.3 and Table 3.15. For this

four-dimensional example, we obtain k-th order for the H1 norm, and close to (k + 1
2)-th

order for the L1 and L2 norm. The L∞ error seems to fluctuate. However, we expect the

order of accuracy in L∞ norm to grow upon refinement. The sparsity patterns of the stiffness

matrices for k = 1 and k = 2 are reported in Figure 3.4. From Table 3.16, we can see the
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Table 3.15: Numerical errors and orders of accuracy for Example 3.3.6 computed by the
space V̂k

N with k = 1, 2 and indicated N .

N L1 error order L2 error order L∞ error order H1 error order
k = 1

3 2.44E-02 4.22E-02 3.31E-01 3.91E-01
4 1.08E-02 1.18 2.08E-02 1.02 1.16E-01 1.51 2.37E-01 0.73
5 3.68E-03 1.54 7.15E-03 1.54 9.33E-02 0.31 1.22E-01 0.96

k = 2
2 8.21E-04 1.34E-03 1.11E-02 4.20E-02
3 1.76E-04 2.22 2.79E-04 2.27 2.76E-03 2.00 1.20E-02 1.81
4 3.32E-05 2.40 5.39E-05 2.37 8.76E-04 1.66 3.18E-03 1.91

stiffness matrices scale less than the two-dimensional and three-dimensional examples, i.e.

the number of nonzero elements scales like O(SGDOF 1.35), where SGDOF is the degree of

freedom of the space used.
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Figure 3.3: Example 3.3.6. (a) k = 1 ; (b) k = 2. N = 4. Plotted along x1 = 0.4930, x2 =
0.4930.
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Table 3.16: Sparsity and condition number of the stiffness matrix. Example 3.3.6 com-
puted by the space V̂k

N with k = 1, 2. SGDOF is the degree of freedom used for the
sparse grid DG scheme. NNZ is the number of nonzero elements in the stiffness matrix.
Order=log(NNZ)/ log(SGDOF).

N SGDOF NNZ Order Condition Number
k = 1

3 1008 12272 1.36 4.27E+02
4 3072 51712 1.35 2.26E+03
5 8832 187008 1.34 9.27E+03

k = 2
2 1539 19683 1.35 7.40E+02
3 5103 102303 1.35 2.62E+03
4 15552 420336 1.34 9.72E+03
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Figure 3.4: Example 3.3.6. The sparsity pattens of the matrices computed by the space V̂k
4

with (a) k = 1 and (b) k = 2.
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Example 3.3.7 We solve the following four-dimensional problem with smooth variable co-

efficient on Ω = [0, 1]4.


−∇ · ((sin(x1x2x3x4) + 1)∇u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(3.15)

f is a given function such that the exact solution is u = sin(πx1) sin(πx2) sin(πx3) sin(πx4).

We provide the numerical results with k = 1 and k = 2 in Table 3.17. The conclusion is

similar to Example 3.3.6.

Table 3.17: Numerical errors and orders of accuracy for Example 3.3.7 computed by the
space V̂k

N with k = 1, 2 and indicated N .

N L1 error order L2 error order L∞ error order H1 error order
k = 1

3 6.15E-02 8.97E-02 2.94E-01 6.67E-01
4 1.89E-02 1.70 2.63E-02 1.77 2.54E-01 0.21 3.20E-01 1.06
5 4.51E-03 2.07 6.80E-03 1.95 7.15E-02 1.83 1.45E-01 1.14

k = 2
2 8.38E-04 1.09E-03 3.49E-03 3.74E-02
3 1.62E-04 2.37 2.13E-04 2.36 1.34E-03 1.38 1.01E-02 1.90
4 2.97E-05 2.44 3.91E-05 2.45 3.80E-04 1.82 2.57E-03 1.97
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Chapter 4

Conclusion

In this thesis, we proposed efficient DG schemes for HJ equations and high-dimensional

elliptic equations to save computation and storage costs while maintaining accuracy of the

numerical solution.

In Chapter 2, we proposed a new entropy fix DG method to directly solve for the viscos-

ity solution of the general HJ equations. The Harten and Hymans entropy fix term, which

is proportional to the jump of the normal derivative of the numerical solution, is added to

correct the entropy violation automatically when needed. One and two dimensional numeri-

cal experiments on both structured and unstructured meshes were provided to demonstrate

good performance of this method.

In Chapter 3, we developed a sparse grid IPDG method for efficient computations of high-

dimensional second-order elliptic problems. The orthonormal hierarchical tensor product

basis representation allowed us to utilize the sparse grid technique to reduce the degrees

of freedom from the standard exponential dependence O(h−d) to O(h−1| log2 h|d−1) for

d-dimensional problems. Error estimate in the energy norm has been proved for the IP

formulation of the elliptic equations. The good performance of this method is validated

by the numerical results in multi-dimensions. Compared to conventional full grid methods,

the new sparse grid DG methods can save storage and computation cost as the size of

approximation spaces are significantly reduced. Future work includes the development of

adaptive sparse grid DG methods based on hierarchical surplus and approximation theory
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for various types of sparse finite element space.
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