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ABSTRACT

ON THE APPLICATION OF RELEVANCE MEASURES

IN MECHANICAL DEDUCTION

By

James Stephen Soddy

In this thesis, the question of the relevance of one

predicate to another is investigated in the light of choosing

clauses as input to a resolution theorem prover. Several

potential measures of relevance are surveyed and entropy

is chosen for primary investigation. A procedure is developed

for using such a measure to choose input clauses which can

shorten the search for a proof. In a similar fashion, the

question of the relevance of one attribute to another in

a relational data base is explored, and a method is developed

to use the entropic relevance measure for finding keys to

the relation.
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Chapter 1

INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION
 

Mechanical theorem proving has many potential appli-

cations in the realm of artificial intelligence. Consider,

for example, a deductive question answering system. Such

a system consists of a data base containing facts and

information relating those facts, along with some mechanism

(a computer program) which allows the user to interrogate

the system about those facts and relations. A deductive

capability allows such a system to deduce answers which

are not explicitly stored, if they follow logically from

the information which is stored.

There is however, a practical difficulty which is en-

countered in this, or any other, application of mechanical

theorem proving. The size of the search for a proof becomes

so large that time and space limits are reached, or the

search becomes unjustifiably expensive. A great deal of

research effort has been expended in the direction of guiding

and limiting the search for proofs.

An extensive study of theorem proving strategies at

Stanford Research Institute [REBOH] concludes:

1
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"We believe that the most promising strategies

and those to which most of the future research

effort should be directed are those that are

concerned with the semantics of clauses,

predicates, and functions involved. The

investigation of new syntactic~type strategies

is of course not without importance, but we

believe that the practical limit on the

usefulness of such strategies has been reached."

Another study done at the University of Maryland

[Wilson] concludes:

"None of the inference systems tested enabled

more than a marginal improvement in the overall

power of unrestricted binary resolution. We

suspect that further testing would cause the

same conclusions to be reached about other

refinements to binary resolution not tested

here. ... We concur with the conclusions of

Reboh that practical limits on syntactic type

strategies are near, if not already acheived.

... We advocate investigation into ways for

incorporating domain-dependent and problem-

specific information into the unification

process, the inference system, and the search

strategy."

The question addressed in this research is how measures

of "relevance" between predicates might be computed and

employed in such a way as to be useful in directing the

search for a proof. The best search strategies which are

now available fall far short of human ability to select

the "most promising paths" toward a proof. The role of

the relevance measure is to aid in the selection of these

paths. The measure should provide an ordering of the avail-

able information according to the liklihood that it will

be employed in proving a given theorem. We might wish to

interpret the statement 'A is relevant to B' as meaning

that A is likely to be included in a deduction of B.

We show in this research that entropy is a reasonable
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basis for computing a relevance measure; and suggest proba—

bility estimates as a method for capturing "expert knowledge"

about relevance, We examine the structure of inter-predicate

relationships. This examination serves to show both some

strengths and limitations of our approach.

Included in this chapter are a brief description of

resolution theorem proving, and a mechanism for its employ-

ment in question answering. In chapter 2 we survey several

potential measures of relevance. Chapter 3 contains a dis—

cussion and example of a strategy for employing a relevance

measure in a proof. In Chapter 4 we look at the object-

predicate table in an effort to gain insight about the

nature of the entropic relevance measure. In Chapter 5

some of the difficulties inherent in combining relevant

evidence are considered. Finally, in Chapter 6, we compare

the object-predicate table and the relational data base,

and consider how the entropic relevance measure can be used

in the analysis of the latter.

1.2 AN INTRODUCTION TO THEOREM PROVING USING RESOLUTION

The essential background on this topic may be found

in Chang and Lee [1973]. We first establish some defini-

tions essential to describing mechanical theorem proving

techniques. A representation of formulas in which quanti-

fiers and connectives do not explicitly appear is specified,

and a method of proving theorems with the use of representa-

tion is demonstrated.
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Before continuing further, it is necessary to state

some basic definitions. They are as follows:

TERM: A constant, a variable, or an n—place function symbol

followed by n terms.

(e.g. a, x, f(x), g(a, f(X)) )

ATOM: (Atomic formula) An n-place predicate symbol followed

by n terms.

LITERAL: An atom or the negation of an atom.

(e.g. Pa, -Pa, Qxy, -Qxf(x) )

CLAUSE: The disjunction of zero or more literals.

CONNECTIVES: Implication 'es', disjunction 'V', conjunction

'&', and negation '—'.

QUANTIFIERS: Universal '(x)' and existential 'Ex'.

Unless otherwise indicated, a,b,c represent constants;

f,g,h, represent functions; x,y,z, represent universal

variables, and upper case letters represent predicates.

If a formula consists of a string of quantifiers

followed by M, where M is the remainder of the formula

(called the matrix) and contains no quantifiers, then the

formula is in PRENEX NORMAL FORM.
 

Every formula has an equivalent prenex normal form

from which we can obtain its SKOLEM STANDARD FORM as follows:
 

1. The matrix is converted to conjunctive normal form.

(i.e. a conjunction of disjunctions)

2. The existential quantifiers are eliminated by introduc-

ing SKOLEM FUNCTIONS. (i.e. The existential variables
 

are replaced by functions of those universal variables

which precede them.)



Two examples follow:

Formula 1: (x)(Ey)(Px V (Qxy & ny))

CNF: (X)(EY)((PX V QXY) & (PX V RXY))

SSF: (x)((Px V Qxf(x)) & (Px V Rxf(x)))

Formula 2: (Ex)(y)(Ez)(u)(v)(Ew)nyzuvw

SSF: (y)(u)(v)Payf(y)uvg(y.u,v)

Now, the only quantifiers in an SSF formula are univer-

sal. If we maintain a standard convention to distinguish

universal variables from constants, we may then drop the

remaining quantifiers. If we make the further convention

that a set of clauses represents the conjunction of those

clauses, we obtain the CLAUSEFORM of a formula. In this
 

form, we would represent formula 1 as follows:

(Px V Qxf(x), Px V Rxf(x))

In a proof, each line will be a clause so that the

symbol for disjunction may also be omitted. Formula 1 would

appear in a proof as:

1. Px, Qxf(x)

2. Px, Rxf(x)

The RESOLUTION proof procedure is a mechanical procedure
 

which will derive a contradiction (THE EMPTY CLAUSE) if,

and only if, it is given an inconsistent set of clauses.

Further, a first order predicate calculus formula is incon-

sistent if, and only if, the associated clauseform is an

inconsistent set of clauses. Thus, to prove a theorem from

a set of clauses representing the axioms and the negation

of the theorem is inconsistent.

There are two rules of inference, the first of which
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is SUBSTITUTION FOR UNIVERSAL VARIABLES. TWO literals,
 

L1 and L2, are said to be UNIFIABLE if there is a substitu-
 

tion 8 such that s applied to L1 yeilds the same result

as s applied to L2. For example, the literal Px and the

literal Pa are unifiable by the substitution a/x (a for

x). The literals Pa and Pb are not unifiable because a

and b are both constants.

The second rule allows us to form a new clause given

two clauses C1 and CZ containing literals L1 and L2 respec-

tively, and such that L1 is the negation of L2. For example:

C1: Pa, an, —Rc

C2: Rb, -an

Resolvent: Pa, -Rc, Rb

1.3 QUESTION ANSWERING USING RESOLUTION

Consider the application of the resolution proof proce—

dure in the question answering environment. The ideas pre-

sented here are due to Cordell Green [1969] and may also

be found in Hunt [1975]. A deductive QA system is capable

of deducing the answer to a question even though that answer

is not explicitly stored, as long as the answer is a logical

consequent of facts and relations which are stored.

One approach to a deductive QA system is the use of

a theorem prover. The facts and their relationships are

stored as expressions in the first order predicate calculus.

The system then treats a question as a theorem to be proved

and in the process of finding the proof, generates the
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answer to the question. This approach provides the user

with the expressive capability of the predicate calculus,

a language which is well defined, unambiguous, and very

general. With a complete proof procedure, and sufficient

time and space, an answer will always be found if sufficient

information is present.

A possible dialogue between the user and a QA system

is suggested by Green [1969] as follows:

1. The first statement is 'Smith is a man.‘

Input - STATEMENT: MAN(SMITH)

Response — OK

2. Ask the question, ‘18 Smith a man?‘

Input - QUESTION: MAN(SMITH)

Response - ANSWER: YES

3. STATEMENT: (x)(MAN(X) -> ANIMAL(X))

OK

4. Question: (Ey)ANIMAL(y)

ANSWER: YES, y=SMITH

5. STATEMENT: (x)(ROBOT(X) -> MACHINE(X))

OK

6. STATEMENT: ROBOT(ROB)

OK

7. STATEMENT: (X)(MACHINE(X) -> -ANIMAL(x))

OK

8. QUESTION: (x)ANIMAL(x)

ANSWER: NO, x=ROB

9. STATEMENT: AT(SMITH,WORK) V AT(JONES, WORK)

OK

10. QUESTION: (Ex)AT(x, WORK)

ANSWER: YES, x=SMITH OR x=JONES

Evidently, we require more than the simple knowledge

that our "theorem" has been proved. The system must keep

track of the values of the variables which lead to the proof

so that it can provide the answer which we are seeking.
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Green accomplishes this by appending the 'Answer' predicate

to the theorem to be proved. When a clause containing only

the answer predicate is derived, the theorem prover views

it as the empty clause and considers the theorem proved.

The value of the variable in the answer predicate is the

answer to the question. A demonstration of how this is

used to obtain answer number 4 in the preceeding example

is now given.

1. -ANIMAL(Y), ANSWER(Y)

(When the question is negated, we obtain (Y)-ANIMAL(Y).

The clauseform is found by deleting the quantifier and

adding the ANSWER predicate.)

2. -MAN(X), ANIMAL(X)

(Clauseform of statement 3.)

3. -MAN(X), ANSWER(X)

(Resolvent of 1 and 2.)

4. MAN(SMITH)

(Statement 2.)

5. ANSWER(SMITH)

(SMITH/X in 3 and resolve with 4.)

The preceeding example is a simple illustration of

how the question answering process might be carried out,

given relevant information. (An extension of the "answer

finding" technique may be found in Nilsson [1980].) However,

the example sidesteps the problem of finding and ordering

the relevant clauses, given a large base of facts and a

question to answer from them. This problem requires that

we employ a SELECTION STRATEGY which chooses the clauses
 

required to solve the problem at hand, and a SEARCH STRATEGY
 

which determines the order in which the inference mechanism

employs these clauses in a search for proof.
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The degree to which a QA system is practical in a large

data base environment depends on the efficiency of these

strategies. The effort which has gone into their study

has been oriented almost exclusively to syntactic criteria

such as the length of clauses, the occurrence of common

predicates and constants, and the depth within the search

tree. Some ”semantic" strategies have been introduced which

rely upon an arbitrary model of a set of clauses [KOWALSKI,

1969; LOVELAND, 1969].

FISHMAN [1973] proposed a "semantic closeness” measure

based upon syntactic criteria, which he found was not notice—

ably helpful. He attributes this to the fact that the

"... distance of the axioms is not at all an indication

of their relevance to a particular query". The central

purpose of this research is to compute a measure which does

reflect the relevance of an axiom to a query.

1.4 IMPLEMENTATION CONSIDERATIONS
 

As we have previously observed, the size of the search

space is a practical limitation in a computer implementation

of a mechanical theorem prover. The most straightforward

computer method is ”unrestricted resolution" employing the

"level-saturation (resolution) method" [CHANG, 1973]. To

implement this procedure, we begin with the list of clauses

representing the axioms and the negation of the theorem

to be proved. This list constitutes level 0 of the proof.

We perform all possible resolutions of the level 0 clauses,
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thereby obtaining the level 1 list. We then perform all

possible resolutions of the level 1 clauses with the level

0 clauses and with each other, thus obtaining the level

2 list. This process continues until the null clause appears

in the list. As may be seen in the Chang [1973] example,

this procedure introduces many redundant and irrelevant

clauses into the proof.

Two syntactic strategies stand out for ease of imple-

mentation and general reduction of search size. A first

approach to eliminating unwanted clauses is known as the

"deletion strategy" [CHANG, 1973]. A clause C is subsumed

by a clause D if there is a substitution s, such that s

applied to D yeilds a subset of C. In other words, D sub—

sumes C means D implies C. When a clause is generated which

is a tautology or is SUBSUMED by another clause, it is de-

leted from the list. For example, the clause P V Q V R

is subsumed by the clause P V Q. It is given in Chang

[1973] that the deletion strategy is complete when employed

with the level saturation method. The Maryland study

[WILSON, 1976] found a restricted form of the deletion

strategy, which allows substitution for single variables

only, was not very costly while it significantly reduced

the growth of the search space. Unrestricted deletion was

found to be too costly in compute time.

A second strategy which may be employed in addition

to deletion is the set-of—support strategy [CHANG, 1973].

Recall that the resolution procedure involves showing that

a set of clauses S is inconsistent. A subset T of S is



11

called a set-of-support if S-T is consistent. The set-

of—support strategy does not allow any resolutions between

clauses in the set S-T. It is shown in Chang that the

method is complete. The Maryland study [Wilson, 1976]

indicates that resolution with set-of—support did perform

significantly better than any of the other five inference

systems tested.

We will employ deletion and set—of—support along with

relevance based selection of clauses in the examples in

Chapter 3 of this research. A study of these examples will

aid in understanding the techniques discussed above.



CHAPTER 2

SOME MEASURES OF RELEVANCE

Recall that the major obstacle to the use of mechanical

proof procedures is the very large number of paths which

are developed in the search for a proof. The role of the

releVance measure is to aid in the selection of the "most

promising paths" to explore in the search for a proof. The

relevance measure is required to lead to an ordering of

the information available according to the liklihood that

the information will be used in a proof of a theorem.

In this chapter, we consider possible measures of the

relevance which one predicate has to another. Subsequently,

it will be necessary to develop a strategy for the selection

of clauses most relevant to a theorem. The measures consid-

ered here are probabilistic and statistical in nature. Their

computation uses estimates of the joint and conditional

probabilities of the properties or events in question. For

the present, assume that the probability estimates are

available as needed while we consider some of the possible

measures of one predicate to another. The problem of esti-

mating probabilities is considered in chapter 3.

The meaning of the word 'predicate' has some significant

consequences regarding potential measures of relevance. A

12
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predicate is a two valued function of one or more arguments,

whose two values are normally interpreted as 'true' and

'false'. For example, G(x,y) might be interpreted as 'x

is greater than y', and would be either true or false for

a specific x,y pair. Hence, the values of a predicate are

nominal, as opposed to being ratio, interval, or ordinal

values. Since, however, the value of a predicate is binary,

measures normally reserved for interval data (e.g. the pro-

duct moment correlation) may be applied. In fact, any

analysis method which is invariant under linear transfor-

mation may be applied to binary variables [ANDERBERG, 1973].

As a consequence, many kinds of measures are available and

the choice must be based on the interpretation of a partic—

ular relevance measure, or how well it works in practice.

In this chapter, we consider several classes of relevance

measures in the light of the theorem proving application.

Since we are considering the relationship between two

binary variables, we may summarize their relationship in

a 2x2 contingency table. The discussion in this chapter

centers around such a table. On the next page is a summary

(Table 2.1) of some of the measures which we can compute

from a contingency table. These and other possible measures

are discussed in the material which follows.
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TABLE 1

ASSOCIATION MEASURES BASED ON THE 2x2 CONTINGENCY TABLE

m H

O
D
>
H
U
J

C
U

Correlation Coefficient

CC = (AB-BC) / SQRT[(A+B)(C+D)(A+C)(B+D)]

Cosine of the Angle, 9, Between the Vectors

COS(9) = [SQRT(A/(A+B)][SQRT(A/(A+C)]

Cross-ratio

X = BC / AD

Gamma

Q (AD - BC)/(AD + BC)

Various means of the Conditional Probabilities

TM = §[A/(A+B) + A/(A+C)]

FM1 i[A/(A+B) + A/(A+C) + D/(B+D) + D/(C+D)]

FMZ &[B/(A+B) + B/(B+D) + C/(A+C) + C/(C+D)]

Concomitant Variation

CV = FM1 - FM2
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TABLE 2

SAMPLE COMPUTATIONS
 

PRODUCT MOMENT CORRELATION = -0.485000

CONCOMITANT VARIATION = -0.485000

CHI SQUARED 0.235225 R

CROSS RATIO 989901.00

GAMMA = -0.999998

COSINE OF THE ANGLE = 0.010000

AVERAGE OF TWO COSINES = 0.005050

ARITHMETIC MEAN OF PROBABILITIES = 0.010000

MEAN OF FOUR PROBABILITIES = 0.257500

CONDITIONAL ENTROPY = 0.693550

UNCONDITIONAL ENTROPY = 0.918296

 

PRODUCT MOMENT CORRELATION = 0.580065

CONCOMITANT VARIATION = 0.603598

CHI SQUARED 0.336476 R

CROSS RATIO 3459.27

GAMMA = -0.999422

COSINE OF THE ANGLE 0.587975

AVERAGE OF TWO COSINES = 0.582520

ARITHMETIC MEAN OF PROBABILITIES = 0.612857

MEAN OF FOUR PROBABILITIES = 0.801799

CONDITIONAL ENTROPY = 0.123203

UNCONDITIONAL ENTROPY = 0.177908

99 101

906
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2.1 STATISTICAL MEASURES
 

Assume that the knowledge we have about two predicates

is represented by a 2x2 contingency table which shows how

many out of n objects yield values of true and false for

each predicate. 'A' tells the number of objects about which

both predicates are true, and so on.

U
)

H C

All of our statistical measures of association of 'R' and

'S' may be computed using the values in this table. Also,

we might to some extent infer their operational interpreta-

tions by examining these computations.

The predicates 'R' and 'S' are being applied to n

objects and receiving a score of 0 or 1 on each object.

(n = A+B+C+D). Consider the order of the objects to be

fixed, and the result is a vector of scores for each pre-

dicate, say X for the first, and Y for the second. Given

that the vectors are identical, then the interpretations

of the predicates are identical in the given universe. If

they are not identical, there are a number of ways to compute

a measure of "similarity" or "dissimilarity" of these vectors.

One method is to compute a measure of the angle between

these vectors in n-space.
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It can be shown that the cosine of this angle is given

by the following:

cos(angle) = A/SQRT[(A + B)(A + C)]

(This is equivalent to the inner product of the vectors

divided by the product of their lengths.) If the means

of the scores are subtracted from the original scores, and

we compute the inner product of each vector with itself,

and divide by n, we obtain the variance. Similarly, we

can compute the covariance.

VAR(Y) = Y-Y/n

COV(X,Y) = X-Y/n

The product moment correlation is then computed:

R(X,Y) = COV(X,Y)/SQRT[(VAR(X))(VAR(Y))]

R(X,Y) may also be computed as the cosine of the angle

between X' and Y' which represent X and Y normalized to

zero mean and unit variance.

In terms of our 2x2 table:

R(X,Y) = (AD - BC)/SQRT[(A+B)(C+D)(A+C)(B+D)]

'AD - BC' represents the product of the number of matches

(both zero or both one) minus the product of the numbers

of mismatches. The factors in the denominator are the row

and column sums. (e.g. 'A + B' represents the number of

objects for which 'R' is true. The denominator is in fact

the square of the geometric mean of these factors.)

It is given in Anderberg [1973] that the Chi-square

statistic for the 2x2 contingency table is n times the

square of the product moment correlation. Relative to the
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Chi-square he further comments that it and related measures

are useful as tests of hypotheses, but not so useful as

measures of association. Similarly, Goodman and Kruskal

[1954] state that they "have been unable to find any

convincing published defense of Chi-square like statistics

as measures of association." The correlation coefficient

on the other hand is well established as a measure of

association between two vectors of scores. Hogg and Craig

[1970] explain that R(X,Y) is a measure of the intensity

of concentration of the probability for X and Y about a

line of the form Y = a + b(X). It would appear from the

foregoing that the correlation coefficient would be a

reasonable choice from among the statistical measures for

association between predicates.

2.2 MEASURES BASED ON THE CROSS RATIO

Another group of measures useful in the analysis of

2x2 tables is based on the cross ratio (X = BC/AD). This

is the ratio of mismatches to matches between the two predi-

cates. One possible function of the cross ratio is

Q = (l-X)/(1+X). In terms of the table values:

Q = (AD - BC)/(AD + BC)

Q is independent of the marginal totals in a 2x2 table and

is equivalent to a measure which Goodman and Kruskal [1954]

call "gamma".

For the purpose of associating predicates, the cross

ratio does not appear to be promising at all. That this
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ratio is sensitive to concentration of values on a particular

diagonal of the table is clearly seen in the sample computa-

tions. For purposes of predicate association, we might

wish to detect concentrations anywhere in the table. This

idea appears to be borne out when we look at the results

of computing this and other measures of association for

some particular tables.

2.3 MEASURES BASED ON CONDITIONAL PROBABILITIES
 

We have considered the cosine of the angle (9) between

two vectors of scores as a measure of association. Note

that it may be written as follows:

COS(Q) = [SQRT(A/(A+B)][SQRT(A/(A+C)].

This is the geometric mean of two conditional probabilities.

Namely, A/(A+B) is the probability of 'R' given '8'. If

we reversed the meanings of the zeroes and ones in the

table, the corresponding computation would be:

COS(92) = [SQRT(D/(B+D))][SQRT(D/(C+D))]

The product of these two cosines is sometimes used as a

measure of association in a 2x2 table.

An alternative approach is to employ arithmetic rather

than geometric means of probabilities. We may define some

as follows:

TM = é[A/(A+B) + A/(A+C)]

FM1

FM2

TM and FM1 are average probabilities of matches in the

%[A/(A+B) + A/(A+C) + D/(B+D) + D/(C+D)]

&[B/(A+B) + B/(B+D) + C/(A+C) + C/(C+D)]
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table. FM2 is a corresponding mean of probabilities of

mismatches. The difference,

CV = FM - FM
1 2

is mathematically identical to the measure which Haralick

[1975] calls the concomitant variation of events 'R' and

'S'. In his paper, he describes applications of this measure

to form clusters based on association. This measure assumes

the same range of values as the product moment correlation,

and in the tables [TABLE 2] which were evaluated as trial

computations, it shows equal to 'nearly equal' values.

2.4 MEASURES BASED ON OPTIMAL CLASS PREDICTION
 

The basic question asked here is: "If we know whether

or not 'S' is true, what effect does this have on the proba-

bility that we can correctly guess whether 'R' is true?"

Consider the following table, [AGARD, 1971]

0 99 101

If we do not know 'S'. we can guess 'R' correctly 2/3

of the time, by a strategy such as always guessing that

'R' is false. It happens that this remains exactly the

same if we in fact DO know the truth value of 'S'! That

is, the probability of a correct guess is given by:
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1/3(99/100) + 213(101/200) = 213.

Although there is no increase, on the average, in

any ability to predict 'R' given 'S', a knowledge of 'S'

significantly increases my knowledge of the probability

distribution of 'R'. Thus, I consider 'S' relevant to 'R'

in a manner which measures of this type are unable to sense.

This example will be considered further in the following

section.

2.5 ENTROPIC MEASURES
 

When we prove a theorem, we may say that we have reduced

our "uncertainty" about that theorem to zero. We might

also say, about individual clauses used in a proof, that

each makes a contribution toward our reduction in uncertainty

about the theorem. This viewpoint leads to a conjecture,

that the first clauses to be employed in an attempt to prove

a theorem should be those which cause the greatest reduction

in our uncertainty about the theorem. A rigorous description

of this idea will require a quantitative definition of what

is meant by "uncertainty". An approach is to assume that

our uncertainty as to which of several events is going to

occur is a function of the probabilities of those events.

In what follows, let us assume that H(P1,P ,...Pm) is such
2

a function of several possibilities.

Robert Ash [1965] describes four requirements which

might be placed on an uncertainty measure. The mathematical

descriptions given by Ash might be interpreted as follows:
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1. If we increase the number of equiprobable choices

for the outcome of an experiment, we increase our

uncertainty of the outcome.

For example, H(§,%) H(&,i,&,i). In fact,

one form of the function to be suggested yields

1 bit and 2 bits respectively for the measure

of uncertainty in these two cases.

2. Our uncertainty as to the joint occurrence of two

independent events equals the sum of our uncertain-

ties as to their individual occurrences.

For example, assume that E and E are independent

events, each having probabilities §,§. Then

their joint distribution will be i,&,i,i. (If

the uncertainty of either event is 1 bit, the

uncertainty of the joint event must be 2 bits.)

3. The average reduction in uncertainty which results

from an observation does not depend upon whether

we consider that observation in its entirety or

broken into component parts.

For example, consider choosing at random a digit

by first deciding even or odd (1 bit) and then

choosing which even or odd digit (2 bits), then

the total uncertainty should be 3 bits.

4. The uncertainty measure must be a continuous

function of the probabilities involved. That is,

a small change in the probabilities must be assoc-

iated with a small change in our uncertainty.

It is then proved [ASH, 1965] that there is only one

function which satisfies the four given conditions. Given

m possible outcomes of an experiment, having respective

probabilities of P1, P2""Pm’ our uncertainty function

is given by:

where C is an arbitrary positive number, and the logarithm

base is greater than one. This function is known in infor-

mation theory as the entropy of an information source. The

particular form of H to which the examples referred uses

C=1 and logarithms base 2. As an information measure, 1
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bit is equivalent to answering a yes/no question.

We may View any reduction in uncertainty as information

gained about the outcome of an event, hence the uncertainty

measure is a measure of the information which is gained

by performing an experiment. To meet our needs, this measure

is extended to tell us how much information is gained regard—

ing an event Y if we are told that a second event X has

occurred. If P(Xi, Yj) is the probability of the i'th

possible outcome for X and the j'th possible outcome for

Y, and P(Yj/Xi) is the corresponding conditional probability,

then the conditional uncertainty of an event is defined

as follows:

H(Y/X) = — 1% P(Xi,Yj)Log[P(Yj/Xi)].

The conditional uncertainty is never larger than the absolute

uncertainty, H(Y), further, there is equality provided that

X and Y are independent. In general, the difference between

the uncertainties is a measure of the information contained

in X about Y. Thus, based upon some reasonable assumptions

as to the nature of an uncertainty measure, we have arrived

at conditional entropy to tell us how much information one

event contains about another.

Returning to the example from the previous section,

recall that knowledge of event S did not increase our ability

to predict event R. H(R) = .9183 and H(R/S) = .6936 which

shows approximately a 20% reduction in our uncertainty of

R. Thus, conditional entropy detects the type of relevance

which 'increase in predictability' fails to uncover.

Finally, we should consider how the correlation
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coefficient is likely to compare with the entropy function

as a relevance measure. Watanabe [1969] states that the

correlation coefficient measures the degree of agreement

between the values, whereas entropy measures the degree

of departure from probabilistic independence. It is the

case that probabilistic independence implies zero correlation,

but the converse is not true. Thus the "entropic measure

can uncover a relation ...that the correlation coefficient

may not uncover." [Watanabe, 1969]

The discussion in this chapter combined with the sample

computations suggests that entropy is a suitable basis for

relevance measurement. Considerable support for this choice

is added in Chapter 4 as we study the underlying structure

which must be captured by the relevance measure. That the

measure can indeed serve as a basis for selection of appro-

priate clauses from a larger set is demonstrated in the

next chapter.



Chapter 3

RELEVANCE AND THEOREM PROVING

3.1 THE ROLE OF EXPERT KNOWLEDGE
 

We have already considered the idea that given a 2x2

table of association between two predicates, we can assign

measures of association in various ways; in particular,

we can compute the entropy of the table. Now, we will con-

sider in more detail, the derivation of the original table

and the significance of the entropy measure in this context.

Suppose that 'R' and 'S' represent either predicates

or propositions. Then P(R&S) = A/n, P(RheS) = B/n, and

so on. The measures of association discussed in Chapter 2

are functions of relative frequency, so we may replace A,

B, C, and D with the correct probabilities. Completion

of the 2x2 table requires that we know P(R), P(S), and

P(R/S). In general, exact values for these probabilities

are not available. Thus, the question is reduced to whether

or not workable approximations to the probabilities are

available. We argue that suCh approximations might reasonably

be available in the context of this application.

Recall that this work is an effort to provide a tool

which may limit the size of search for proof in a mechanical

25
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deduction. When skillful humans search for a proof, they

employ a kind of judgement as to what information is most

relevant and which paths are most promising. We might con-

sider it desirable to incorporate some of that judgement

in a mechanical proof environment. Now, let us consider

a quote from Watanabe [1969].

"Thus we are led to consider the notion of

conditional probability (or its crude

prototype) as the most primary and basic form

of thought. ...In talking about the probab-

ility of a proposition B, if we knew (or

determined the truth or falsehood of) all the

facts relevant to B, the occurrence or non-

occurrence of B would already be determined

by these facts and there would hardly be any

room for probabilistic guessing. On the

other hand, if nothing relevant were known

except logical tautologies, the value of the

probability could not be decided at all, except

perhaps by counting the possible cases the

language happens to provide. ...The true

usefulness of probability resides in the

intermediate domain between these two extremes,

and the value of probability depends critic-

ally on the relevant facts that are taken into

account."

One approach to our problem is to accept human estimates

of the unknown probabilities in an effort to obtain a reflec-

tion of human judgement. For the purposes of making these

estimates, our ”human theorem prover" need not provide

correct values of these probabilities, but only the values

which he uses in finding proofs. This is prehaps analagous

to Jaynes' [1979] statement, concerning predicting the out-

comes of experiments, that "we are asking only for predic-

tions of EXPERIMENTALLY REPRODUCIBLE things; and for these

all circumstances that are not under the experimenter's

control must, of necessity, be irrelevant."
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3.2 CONTEXT PROVIDES CONSTRAINTS
 

Let R1, R2, ...Rn represent a set of propositions or

predicates and consider what is involved in constructing

a table of probabilities. We might begin by estimating

P(Ri), i=1,n. Keep in mind that these estimates are to

be made in the context of a set of clauses (axioms) which

includes relations among the predicates. This provides

significant help in estimating the probabilities. First,

it provides a context in which to decide which of the

"relevant" facts to take into account. Second, it provides

prima facie constraints on the estimates in a manner to

be discussed shortly.

Once we have estimates of the P(Ri), we might next

construct estimates of the P(Ri/Rj). Note that for each

i,j pair, an estimate of P(Rj/Ri) will be computable from

the previously estimated probabilities using:

[P(Ri/RJ')] [P(RJ')] = [P(Rj /Ri) ] [P(Ri)] -

This application of Baye's Theorem allows us to make a

choice of which conditional probability is easier to esti-

mate for each pair of propositions or predicates. For

example, P(wearing jacket/ it is snowing) should be easier

to estimate than P(it is snowing] wearing jacket). We also

have the option of estimating both conditional probabilities

and cross checking the estimates for consistency, and then

making the necessary revisions. Once again the axiom system

provides constraints which are an aid in estimating the
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the probabilities. Let us focus on the nature of these

constraints.

Consider the fact that each clause is a disjunction,

and that there is a strong relation between disjunction

and implication. That is:

(R1 —+ R2) 4—+ (-R1 V R2).

Then, given the clause —R1 V R2, we can state the following:

P(R2/R1) = 1

P(Rl/RZ) = P(R1)/P(R2)

P(Rl) S P(R2)

P(Rl) + P(-R2) s 1

These relationships are quite easy to establish formally.

Proofs of the first three, along with dozens of similar

results can be found in Rudolf Carnap's work [1962].

To summarize the current position of this discussion,

we need conditional probabilities to determine a measure

of "relevance" and we might reasonably accept human estimates

of these probabilities within the context of the constraints

provided by a set of clauses. Further, we have considered

several ways in which we might compute a measure of assoc-

iation based on those probabilities. We now wish to compute

a number which reflects the relevance of one predicate to

another in the sense that the first will contribute to a

proof of the second.

We have a set of clauses (axioms) which we may refer

to as our knowledge, K. To prove that some result 'R' is

true, is to show that the entropy if R/K is zero. The

entropy of 'R' measures our degree of uncertainty of 'R', or
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the amount of information required to determine whether

'R' is true or false. It seems reasonable to say that those

predicates are most relevant which, on the average, provide

the most information about 'R'. It ahould be acknowledged

that it does not logically follow that the most relevant

group of predicates is composed of those predicates which

are individually most relevant. A computational remedy

of this difficulty requires obtaining the conditional entropy

of 'R' relative to all pairs, triples, and so on, of the

predicates which are present in 'K'. The result of this

procedure is the kind of combinatorial explosion which we

are here attempting to avoid. The alternative is to assume

that by grouping the individually most relevant predicates

we will obtain a reasonable approximation to the most

relevant groups. Some support for this approach may be

found in a report of the Advisory Group for Aerospace

Research and Development [1971]:

"Here, one assumes that the best n-variable

predictors that are genuinely better than the

best (n—1)-variable predictors are most likely

to come from the best (n-1)-variable predictors

genuinely better than the best (n-2)-variable

predictors, and so forth. This assumption may

not be true, but no better assumption exists

which is still practical."

3.3 TWO EXAMPLES
 

Two examples illustrate the method which is being

suggested here. For simplicity, this example will be in

terms of proving theorems in the propositional calculus.
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A series of tables are presented in the following pages

which give:

1. A list of propositional variables with estimated

probabilities and computed entropies.

2. A table of estimated conditional probabilities.

3. The resulting mutual entropies.

4. A list of axioms which serve as the context of

the estimates and the basis for some sample proofs.

Two proofs are given for the first theorem, and three for

the second. The proofs illustrate the effect of establish-

ing different values for a "relevance level" parameter.

A discussion of the methods involved follows the tables

and proofs.



31

 

Z
O
E
D
’
J
’
T
J
O
C
-
a
m

 

TABLE 3

PROPOSITIONS

S(it is snowing) P(S) = .10, H(S) = .4590

J(wearing jacket) P(J) = .50, H(J) = 1.000

C(comfortable) P(C) = .90, H(C) = .4690

F(freezing) P(F) = .40, H(F) = .9710

H(hot) P(H) = .30, H(H) = .8813

B(bright sun) P(B) = .20, H(B) = .7219

0(overcast) P(O) = .60, H(O) = .9710

N(night) P(N) = .50, H(N) = 1.000

TABLE 4

CONDITIONAL PROBABILITIES

S J C F H B O H

1.00 0.18 0.09 0.25 0.00 0.00 0.16 0.10

0.90 1.00 0.50 0.90 0.10 0.45 0.55 0.55

0.81 0.90 1.00 0.90 0.90 0.90 0.90 0.90

1.00 0.72 0.40 1.00 0.00 0.30 0.35 0.45

0.00 0.06 0.30 0.00 1.00 0.40 0.35 0.20

0.00 0.18 0.20 0.15 0.27 1.00 0.00 0.00

0.96 0.66 0.60 0.53 0.70 0.00 1.00 0.60

0.50 0.55 0.50 0.56 0.33 0.00 0.50 1.00
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TABLE OF AXIOMS AND THEIR

C1

C2

C3

C4

C5

C6

C7
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Table 6

B V O V N

CLAUSE FORMS

-F V -J V C

-H V -J V -C

B V O V N
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Table 7

EXAMPLE 1 4 TWO PROOFS
 

Theorem: Snow -> —Bright Sun (S -> —B)

Negation: S & B

Clauseform: T1: S

T2: B

PROOF 1 - Resolution with Set of Support

Resolvents - Level 1

R1: F (T1, C1)

R2: 0 (T1, C4)

R3: -0 (T2, C3)

Resolvents — Level 2

R4: -J, C (R1, C2)

R5: -H (R1, C5)

R6: -B (R2, C3)

R7: -S (R3, C4)

B, N (R3, C7) (Subsumed by T2)

R8: Null (R3, R2)

PROOF 2 - Using Clauses Relevant at 10% Level (C3, C4)

Resolvents - Level 1 9

R1: 0 (T1, C4)

R2: -0 (T2, C3)

Resolvents - Level 2

R3: —B (R1, C3)

R4: -S (R2, C4)

R5: Null (R2, R1)
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Table 8

EXAMPLE 2 - THREE PROOFS
 

Theorem: Snow & Jacket -> Comfort

Clauseform: T1: S

T2: J

T3: -C

PROOF l — Resolution with Set of Support

Resolvents — Level 1

R1: F (C1, T1)

R2: —F, C (C2, T2)

R3: -F, -J (C2, T3)

R4: 0 (C4, T1)

-H, -C (C6, T2)

Resolvents - Level 2

R5: -S, C (C1, R2)

R6: -S, —J (C1, R3)

R7: -J, C (C2, R1)

R8: -B (C3, R4)

R9: ~H (C5, R1)

-H, -J, -F (C6, R2)

R10: -F (T2, R3)

—F (T3, R2)

R11: C (R1, R2)

R12: -J (R1, R3)

Resolvents - Level 3

R13: -S (C1, R10)

(cont. following page)



R14:

R15:

PROOF 2 - Using Clauses Relevant at 10% Level (Cl, C2, C5, C6)

-H, -J, —S

-H, -J

-H, —J

C

-J

-S

C

Null

(C6,

(C6,

(C6,

(T1,

(T1,

(T2,

(T2,

(T2,
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Table 8 (cont.)

R5)

R7)

R11)

R5)

R6)

R6)

R7)

R12)

.(24 Resolvents Generated)

Resolvents -

R1: F

R2: -F, C

R3: —F, J

—H, -C

Resolvents -

R4: -S, C

R5: -J, C

R6: -H

-H, -J, -F

R7: -F

-F

R8: C

R9: -J

(cont. following page)

Level 1

Level 2

(C1,

(C2,

(C2,

(C6,

(C1.

(C2,

(C6,

(C6:

(T2,

(T3,

(R1,

(R1,

T1)

T2)

T3)

T2)

R2)

R1)

T2)

R2)

R3)

R2)

R2)

R3)
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Table 8 (cont.)

-F, —H (R2, R4)

Resolvents — Level 3

R10: -S (C1, R7)

-H, -J, -S (06, R4)

—H, -J (C6, R5)

C (T1, R4)

C (T2, R5)

R11: Null (T2, R9)

(19 Resolvents Generated)

PROOF 3 - Using Clauses Relevant at the 15% Level (01, c2)

Resolvents - Level 1

R1: F (C1, T1)

R2: -F, C (C2, T2)

R3: -F, J (C2, T3)

Resolvents - Level 2

R4: -S, C (T1, R2)

R5: -S, —J (T1, R3)

R6: -F (T2, R3)

-F (T3, R2)

R7: C (R1, R2)

R8: —J (R1, R3)

Resolvents - Level 3

C (Tl, R4)

—J (T1, R5)

(cont. following page)
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Table 8 (cont.)

R9: -S (T2, R5)

R10: Null (T2, R8)

(13 Resolvents Generated)

The preceding proofs represent a simulation of a proce-

dure, which can be implemented on a computer, for resolu-

tion proofs using the set-of—support strategy. The pro-

cedure is the "level saturation method" [CHANG, 1973]. A

new level is established by carrying out all possible reso-

lutions of previous clauses with clauses which follow them

in the current level. This procedure is repeated until

the empty clause is generated.

The difference between multiple proofs of the same

theorems above are the result of a screening of the axioms

to be employed in the proof attempt. The screening consists

of two steps. First, a list of predicates (propositions)

which are relevant to N of more of the predicates in the

theorem is constructed. For these proofs N = 2 is employed.

In other words, we form a list of predicates relevant to

at least two of the predicates in the theorem to be proved.

We add to this list, the predicates which occur in the

theorem itself. Then, we form a new list of the axioms

which contains only those predicates on the first list.

We say that a predicate 'A' is relevant to a predicate

'B' if H(B/A) is a fixed percent (P) lower than H(B).
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Characterized another way, 'A' must provide, on the average,

a percent 'P' of the information required to determine 'B'.

Thus, we have two parameters to set before a proof is

attempted; they are the values of 'N' and 'P'. The proofs

without relevance filtering may be viewed as P = 0%. A proof

of each theorem is given with P = 10%, and a proof if the

second is given w th P = 15%. (Note that there is no proof

of the first with P = 15%.)

To illustrate, consider the second proof of the first

theorem. The predicates in the theorem are 'S' and 'B'.

A check of the table on page 33 shows that only clauses C3

and C4 are constructed using only these predicates. So,

a proof is attempted and completed using axioms 03 and C4.

This proof is notably shorter than the original proof with

P = 0%. If we attempt the proof with P=15%, we find that

there are no predicates which can be added to the two in

the theorem, and there are no axioms containing only those

predicates, and thus there is no proof.

The choice of the 10% and 15% levels here is ad hoc,

but we can expect this to be close to the correct levels

for other applications. There is an interesting analogy

in a study of bacterial classification. Woese [1981] des—

cribes bacteria in terms of an RNA "dictionary" and forms

an association coefficient based on the number of shared

"words". On the basis of these coefficients, the bacteria

are clustered into three groups. It is interesting to note

that only in one case is there an association measure as

high as 14% between groups, they are generally below 10%.
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In only 4 cases is there an association measure as low as

13% within groups, all others are at least 15%. We are

talking in a sense about "shared information" in both of

these cases.

We may now make some observations regarding the effect

of this relevance preselection method. First, since the

clause selection does not interact with the proof attempt,

it follows that neither the completeness nor the consis-

tency of the theorem proving strategy will be affected.

Further, since at P = 0% no clauses are eliminated, it

follows that for some P level, the chosen clauses will be

inconsistent if and only if the original set of clauses is

inconsistent. It is however possible to choose a consistent

subset of an inconsistent set for a proof attempt. This

last may be an apparently undesirable aspect of our method-

ology. Yet, if we are to emulate some of the strength of

human ability at proof, we may inherit some of its weakness.

The method allows us to attempt to find a shorter proof

without inhibitibg our ability to return to a larger set

of clauses and employ any strategy desired.

In summary, we have demonstrated that if we can obtain

a reasonable estimate of the appropriate conditional probab-

ilities, we can effectively compute levels of information

sharing between predicates. By restricting clause selection,

using levels of information sharing as a criterion, we can

select a good subset of the original clauses for proof

attempts.

In chapter 4 we will be taking a more formal look at
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the nature of the predicate interdependencies which are

uncovered by the relevance measure. We will also consider

the possible application of this technique to groups of

predicates and clauses. We will demonstrate the nature of

the interactions which our entropy computations are measur-

ing. We will then be better able to see the strengths and

limitations of the selection technique we have developed.



Chapter 4

RELEVANCE AND THE OBJECT PREDICATE TABLE

4.1 OBJECT RELATIONSHIPS
 

In this chapter, we are considering the question of

mutual relevance of predicates in the light of Watanabe's

Theorem of the Ugly Duckling" [Watanabe, 1969]. Briefly,

this theorem states that (from a certain formal point of

view) any two non-identical objects are equally similar or

dissimilar as any other two. To establish these results

formally, we must consider Watanabe's object—predicate table

To be as consistent as possible with Watanabe's nota-

tion, we will let X = (x1, x2, ...xm) be a set of objects

and Y = (y1, y2, ...yn) be a collection of predicates. The

proposition Yj(xi) which states that the object xi affirms

the predicate yj is to be meaningful whether or not it is

true. This requirement permits the application of all pre—

dicates to all objects so that we may have a complete table,

and may be met by the modification of some predicates. For

example, the predicate "is red" may be replaced by "has

color, and if so is red" in the event that there is some

element of X without color. The object-predicate table is

a matrix of m rows and n columns Whose element T(i,j) is

42
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equal to 1 or 0 according to whether yj(xi) is true or false,

and p(yj) is the relative frequency of ones in column j.

As a simple example, consider a table formed from two objects

and two predicates.

y1 y2

x1 0 1

x2 1 0

Observe that with two predicates there could be at most

4 distinct rows or "object types". If a table T does not

contain two identical rows it is said to be irreducible with

respect to X. Our example table contains two of the four

possible object types and is irreducible.

We extend the table T by substituting Y* for Y. Y*

is obtained by adding to Y all possible predicates which

are logical combinations of the original y's. That is, we

form new predicates from the old by the use of conjunction,

disjunction and negation until no new predicates can be

formed. Watanabe calls Y* the Boolean completion of Y. We

might now consider the extension of our example table.
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Note that y3 = y1 & y2 while y4 = y1 V y2, and no new predi-

cates may be formed.

The theorem of the ugly duckling states that:

"The number of those predicates y- in a

completed Boolean lattice Y* of predicates

satisfied simultaneously by two non-identical

objects xi and xk (of the list of objects X)

is a fixed constant independent of the

choice of the two objects." (The proof of

this theorem is provided in APPENDIX A.)

Watanabe found a similar result concerning the number of

predicates affirmed by one but not the other of the two

objects, and the number of predicates simultaneously denied

by both objects. Thus, we could come to the conclusion that

"an ugly duckling and a swan are just as similar to each

other as are two swans". (In this instance, similarity is

based simply on the number of properties shared and not

shared in the context of a scope of observation established

by a set of predicates Y.)

Watanabe claims that a formal (syntactical) discussion

of similarity must be based upon Y* and not upon a subset

Y which might generate Y*. He argues that among the many

subsets of predicates which might give rise to the completed

Boolean lattice Y*, there is no logical ground to prefer

one over another. We might ask, for example, on what logical

basis should we prefer "red" to ”neither yellow nor blue"?

It is the case that the theorem is no longer valid when

we consider particular subsets Y of Y*. Thus, it follows

that when we form groups of "similar" objects, we are

actually applying some extra-logical weighting function to

the various predicates which are shared by the objects.
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Concerning the extension of Y to Y*, Watanabe observes

that:

"...everything we have done in the fore—

going paragraphs can be done when we

interchange the roles of X and Y, because

the basic assumption of the entire dis-

cussion is that we are given a rectangular

matrix with entries that are either 0 or 1.

...By the same method used in extending

Y to Y*, we can extend X to X*. This

amounts to adding all object types which

were missing from the original table."

He goes on to suggest that in some cases we may

"...have to exercise a great deal of

imagination and mental flexibility to

understand these 'fictitious' objects.

Nonetheless, a formal discussion involving

X* proves to be useful and productive."

4.2 PREDICATE RELATIONSHIPS
 

The formal interchangeability of X and Y is referred

to as object-predicate reciprocity. Applying this, the

theorem of the ugly duckling may be dualized to read:

The number of those objects Xj in a

completed Boolean lattice of objects X*

simultaneously affirming two non-identical

predicates yi and yk (of the list of

predicates Y) is a fixed constant indepen-

dent of the choice of the two predicates.

Thus, in this formal sense, it is not possible to group

predicates on the basis of the number of object types of

which they are simultaneously true. It follows then that

when we form groups of "similar" predicates we are applying

some extra—logical weighting function to the various object

types which are shared by these predicates. In the para—

graphs which follow, we will be dualizing Watanabe's
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analysis of relationships between objects. Our purpose is

to use his methods to gain insight into interactions of

predicates.

Let Y' be a subset of Y consisting of r predicates (y1,,

y2,,...yr,). For each object, we have a set of values for

these predicates which can be denoted by (a1,, a2,, ...ar.),

where aj, will be 0 or 1 depending on the corresponding table

entry in the column under yj,. The relative frequency with

which each such combination occurs in the object-predicate

table may be given by:

. 1.1 d(aj" T(xi’ y

1 J

)),
a
h
a

p(a1|’ 3'21! °°°arl) = j:

where d(a,b) is 1 if a = b, and 0 otherwise. With the help

of this formula, we can define the entropy of our subset

Y'.

S(Y') = - z p(a1.. a2.. ---ar.) log[p(a1.. a2.. ---a .)l
r

Finally, using the expression for entropy, we can define

what Watanabe calls the ”interdependence" of a set.

J(Y'; y1.. y2.. .--yr.> = f' S(yj.> - S<Y')

The notation indicates that we have partitioned Y' into

individual predicates. Other partitions into subsets may

be indicated after the semicolon. For example, to compute

the interdependence between yl, and the rest of the set,

we would use the following:

J(Y'; j1.. (y2.. y3.. --oyr.>) = S<y1.) + S(Y'-y1.> - S(Y')o
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Observe that Watanabe's "interdependence", j, is the

extension to larger sets of predicates of what we have

called ”decrease in entropy", or the ”mutual information"

of two predicates. Consider two examples intended to demon—

strate the application of this concept.

The following table is isomorphic to Carnap's chess

tournament example [CARNAP, 1962]. He used the example to

demonstrate a pathological situation in measuring relevance.

In his terminology, the predicate y2 is "positively relevant"

to the predicate y1 in the sense that p(y1/y2) > p(y1).

Similarly, y3 is ”positively relevant" to yl. Yet the con-

junction y2 & y3 is "negatively relevant" in the same sense

that p(y1/y2&y3) < purl).

x1 1 l 1

x2 1 1 0

x3 1 1 0

x4 1 0 1

x5 1 0 1

x6 0 l 1

x7 0 1 1

x8 0 0 0

x9 0 0 0

x 0 0 0

H O



48

Analysis of the interdependence of the predicates

requires the following conditions:

s<y1> = s<y2) = s<y3> 1 bit.

s<y1. y2> = s<y1. y3> = s<y2. Y3) = 1.9710 bits.

S(yl, yz, Y3) = 2.2464 bits.

Hence, the pairwise interdependencies are very small:

J(yl, y2) = 2 - 1.9710.

Whereas, there is substantial interdependence in the group:

J(yl, y2, y3) = 3 — 2.2464.

If we were trying to determine the truth of y1, neither

y2 nor y3 individually would be very helpful on the average.

In combination however, they greatly reduce the uncertainty

of y1. That these complex interactions may be uncovered

by the computation of entropies indicates some of the power

of this method of analysis. Observe the conditional uncer-

tainties (entropies):

S(y1/y2) = S(yl, yz) - S(YZ) = .97 bits,

S(y1/y2.y3) = S(yl, y2, y3) - S(yz, Y3) = .28 bits.

These are respectively a 3% and a 72% reduction in the uncer-

tainty of y1.

The second example, we will consider, is the dual of

an example discussed quite extensively by Watanabe [1969].
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x1 1 l 0 1

x2 1 1 0 0

x3 0 1 1 1

x4 0 1 1 0

x5 1 0 1 1

x6 1 0 1 0

x7 0 0 0 1

x8 0 0 0 0

For this table, the entropy of each single predicate

is 1 bit, the entropy of each pair of predicates is 2 bits,

and the entropy of all but one of the triples is 3 bits.

That special triple, (y1, y2, y3) has an entropy of 2 bits.

This means that no single predicate would be of use in

determining the value of any other single predicate, and

no pair containing y4 would be useful in determining the

value of any other predicate. However, a pair out of the

special triple will always determine the value of the third

member of the triple. The following are representative

computations:

S(y1/y2) = S(yl, y2) - S(yz) = 2 - 1,

ll

I
N
)

I

.5
"

S(Yl/YZ9y3) = S(YI, YZ’ Y3) - S(Yz’ Y3)

S(YIIY3!Y4) = S(Yl, Y3, Y4) "' S(y3, Y4) = 3 - 2o
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Once again, we see entropic analysis revealing a complex

structure through a straightforward computation. Watanabe

observes:

"It is interesting that none of the other

mathematical methods so far proposed seems

to be able to analyze a table as simple

as Table 8.1 (this example).” [1969].

At this point, consider some of the implications of

the preceding paragraphs. As a consequence of the Theorem

of the Ugly Duckling, we know that the restricted object—

predicate table contains non-logical information which is

absent in the completed Boolean lattice. This information

is inherent in the non-uniform probability distributions

over the rows of the O-P table. And, this information is

captured, at least in part, by interdependence analysis

of the predicates.

The preceding examples were specifically intended to

demonstrate the effectiveness of our methods for uncovering

structure within the table. But, recall that we would not,

in general, have such a table to analyze when we wished

to prove a theorem. We argued in Chapter 3 that a reason-

able approximation might be obtained for the probabilities

of individual predicate symbols. It does not seem reason-

able to argue that we could equally well obtain probability

estimates for groups of predicates without an actual table.

We might also wonder, even if such estimates were available,

whether the search for structure in the table would corres-

pond with a decrease in the size of a proof search.

Having observed that we can uncover the structure in
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a group of predicates using this method of analysis, we

might ask whether we could uncover the relationships in

a set of clauses or other expressions built from predicates.

In answer, consider this example.

y1 y2 y3

x 1 0 1

1

x2 1 0 0

x3 0 l 1

x4 0 l 0

Observe that we have a set of three predicates, each

having an entropy of 1 bit. The entropy of the clause

(y1 V yz) is 0. The entropy of the clause (y1 V y3) is

.81, showing that the entropy of the clauses cannot be com—

puted from the individual entropies of the predicates.

Computing the entrpoy of a clause requires a probability

distribution on the clause itself. This is essentially

the creation of a new predicate, as in our previous exten-

sion to Y*. Once again, it does not seem reasonable to

argue that we could obtain good probability distributions

for these new predicates without the O-P table.

We may now conclude two things. First, there is a

structure underlying predicate interdependencies which is

effectively uncovered by entropic analysis. Second, exten—

sion of the selection strategy developed in Chapter 3

requires that we have the equivalent of an object-predicate

table available.



Chapter 5

RELEVANCE AND COMBINED EVIDENCE

In this chapter, we consider relevance measures in

a somewhat different setting. Some deductive systems arrive

at conclusions (recommendations) on the basis of probabilis-

tic reasoning rather than implication. A good example is

an expert system such as MYCIN [SZOLOVITS, 1978] which will

diagnose bacterial infections and recommend treatment. This

system is considered in greater detail in later paragraphs.

Expert systems introduce some new difficulties. A

theorem proving strategy is helpful if it reduces the average

effort required to find a proof. If there are exceptional

cases for which the proof is lengthened by employing a par-

ticular heuristic, this will not destroy its overall value.

When a proof is found, it is valid. 0n the other hand,

if we employ a deduction strategy which is occasionally

erroneous in an expert system, the overall value of the

system may be diminished.

Some of the difficulties involved here have been men-

tioned previously. In Chapter 3 (Section 3.2, p. 29), we

considered the possibility that the individually most rele—

vant predicates may not be those which form the most rele-

vant groups for the purpose of proving a theorem.

52
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This same difficulty may be applied to the factors in a

decision problem, Further, in Chapter 4 (Section 4.2, P.

48) we constructed a case in which each of two propositions

were positively relevant to a third, yet their conjunction

was negatively relevant. (Note, we can construct from this

an example in which each of two propositions is positively

relevant to a third while their disjunction is negatively

relevant.) These cases pose difficulties when we attempt

to logically combine observations which are individually

supportive of an hypothesis.

It is appropriate here to consider why and how frequent-

ly these pathological cases may occur. Carnap [1962] details

"possible relevance situations" in a general way. Interpre—

ting his discussion in terms of probabilities, we have A

as positively relevant to B if p(B/A) > p(B) and A as nega-

tively relevant to B if p(B/A) < p(B). Carnap's relevance

measure [r(A,B) = p(A&B) - p(A)p(B)] is positive in the

first case, and negative in the second. Using this measure.

Carnap explores whether and how the relevance measures r(i,h)

and r(j,h) determine the relevance measures of their combin-

ations to h.

Carnap's discussion is based on the possible sign com-

binations (+,-,0) which various relevance measures can have

in this situation. He considers seven possible combinations

of i and j, namely: i&j, i&-j, -i&j, -i&-j, i, j, iVj. He

finds that there are 75 possible sign combinations over

the possible measures of relevance that each of these

sentences may have to a sentence h. A list of these cases
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is included as an appendix (Appendix B).

Most of the possible cases are intuitively reasonable.

For example, if i is positively relevant to h and j is nega-

tively relevant to h, then their conjunction or alternation

could have +, -, or 0 relevance. Four of the 75 cases are

somewhat counter to intuition. In one case, both i and

j are positively relevant to h while their conjunction is

negatively relevant. Also, cases like the last two occur

for disjunction. If might be noted that if i and j are

positively relevant to h, then at least one of their con—

junction and disjunction must be positively relevant. We

may wonder whether 4 out of 75 cases gives an indication

of the frequency of occurence of pathological cases in

actual practice.

Carnap gives a recipe for constructing each of the

4 cases [CARNAP, 1962]. The first one is described here,

in detail. For a given h (assuming background information

e which determines the probabilities) we take any three

sentences (1), (2), and (3) satisfying the following condi-

tions: The sentences are pairwise exclusive with respect

to e; (1) is negatively relevant to h, its r-value being

—r; both (2) and (3) are positive to h with r-value greater

than r. If we take 1 as the disjunction of (1) and (2),

and j as that of (l) and (3), then i and j both have posi—

tive r values found by adding those of the disjuncts. The

conjunction of i and j is equivalent to (1), and hence has

negative relevance to h.

It seems worthwhile, at this point, to include a des—
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cription of Carnap's example, in order to provide increased

insight into the foregoing discussion. In the example,

we have ten chess players who participate in a chess tourna-

ment in New York City [CARNAP, 1962]. The group contains

local and out of town players, junior and senior players,

men and women, distributed as in the following arrangement.

i(local) -1(stranger)

j(junior) M,W,W M,M

-j(senior) M,M W,W,W

It is known that exactly one of these ten will win, and

our evidence e indicates that each has an equal probability

(.1) of winning. Further, we assume that additional

evidence that some player or group cannot win will leave

the remaining players with equal chances to win.

Let h represent the sentence 'a man wins'. Based on

our evidence e, we have p(h) = 1/2. Now, suppose we receive

a report that 'a local player wins', which may be based

upon information that the strangers have been eliminated.

This new evidence increases the probability of h to 3/5,

and thus is positively relevant. If we had instead received

a report that 'a junior player wins', we would likewise

increase the probability ot h to 3/5. 0n the other hand,

if we receive both reports, that is 'a local junior wins',

we would diminish the probability of h to 1/3.

If we consider another hypothesis k, that is 'a woman

wins', we can observe reversed relevance situations. An

initial probability of 1/2 will be diminished by a report
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of either i or j separately. A report of i&j will, however,

be positively relevant.

If we are going to have a computer program emulate

the behavior of a human expert, it seems reasonable to think

that pathological cases of evidence combination must be

identified. An individual program might successfully ignore

or avoid these difficulties, but a general theory of expert

systems must account for them.

Consider the Zadeh fuzzy-set rules. Namely,

p(A V B) = max[P(A), p(B)], p(A&B = min[P(A),p(B)]. As

rules for combining evidence, they may overconfirm or under-

confirm the hypothesis. We will agree with Hart [1975]

that when we are dealing with interdependent evidence, "the

exact nature of these dependencies will rarely if ever be

known." In general, however, following the fuzzy set rules

may lead, as seen above, to accepting as positive some

evidence which is actually negative and as negative some

evidence which is actually positive. Further, in the light

of the 75 cases, no single combining rule will avoid this

possibility. We recommend that in the construction of an

expert system, we call upon our human experts to identify,

insofar as possible, those cases in which evidence applicable

to an hypothesis will combine in unusual ways. We recommend

further that the system include a mechanism for handling

these cases when they occur.

If two rules which separately support a conclusion

will tend to disconfirm it in combination, then this informa—

tion can be built into those rules.
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IF: 1) IT IS KNOWN THAT A LOCAL PLAYER WINS, AND

2) IT IS NOT KNOWN WHETHER A JUNIOR OR SENIOR

WINS,

THEN: THERE IS EVIDENCE (.6) THAT A MAN WINS.

If there is a similar rule for juniors, neither rule will

be activated inappropriately.

Note that this discussion is not intended as criticism

of any existing programs. Rather, it is intended as a

general analysis which may be useful in the construction

of some future systems.

In the light of the foregoing discussion, let us briefly

consider the MYCIN program. The purpose of this is to demon—

strate a specific context for the type of reasoning mechanisms

discussed in the preceeding paragraphs. The MYCIN program

is an interesting and successful example of an expert system.

It does, in part, employ the fuzzy set rules mentioned above.

The MYCIN program is designed to guide physicians in

the appropriate treatment of bacterial infections. The

primary knowledge base of the program is a set of independent-

ly stated rules of deduction. An example from the Szolovits

article follows.

IF: 1) THE STAIN OF THE ORGANISM IS GRAM POSITIVE,

2) TEE’MORPHOLOGY OF THE ORGANISM IS COCCUS,

3) THE,GROWTH CONFORMATION OF THE ORGANISM IS

CHAINS,

THEN: THERE IS SUGGESTIVE EVIDENCE (.7) THAT THE

IDENTITY OF THE ORGANISM IS STREPTOCOCCUS.

Computation of certainties in this program occurs at

two levels. First, the program user must provide a degree

of certainty for the antecedent individual conditions of
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a rule. The certainties of the individual antecedents are

combined using fuzzy-set rules to obtain an overall certainty

of the antecedent. This measure of belief in the antecedent

is multiplied by a certainty factor (.7 in the example)

that the antecedent in the rule actually does imply the

consequent. The resulting product is the measure of belief

in the conclusion which is contributed by that rule. Second,

if more than one rule contributes to the program's certainty

of a fact, the measure of belief from the various rules

are combined to yield the overall measure of belief in the

given fact. If one rule gives us fact h with certainty

CFl, and later another rule gives us fact h with certainty

CF2, then the overall confidence CF = CFl + CF2 - CF1xCF2.

In another system patterned after this model, it seems

unlikely that there would be conflicting combinations within

the individual rules. Caution would be indicated however,

when it came to combining evidence contributed by different

rules. Our human expert should look very carefully for

pathological connections among different facts in the data

base even where it is unreasonable to consider all interac-

tions. If we can accomplish this, at least we will have

all of our adjustments of confirmation going in the correct

direction.

In the light of our earlier analysis of the object-

predicate table, we may conclude with the following

observations:

1) A combination of two facts is a new fact whose

relevance to a conclusion is not a simple function
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of the separate relevances.

It is unreasonable to consider all possible combina-

tions of facts when providing guidance to a reason-

ing system.

It is worthwhile to ask our expert to consider

how the most relevant (positive or negative) facts

will affect a conclusion when acting in combination.



Chapter 6

THE USE OF ENTROPY IN UNCOVERING RELATIONAL STRUCTURE

Assume that we are given a set of objects and the

values of various attributes which the objects possess.

If we are to impose structure on this information in the

form of a data model, we require information about the

underlying relationships in the data. Even if we are given

a data model, we may wish to study current relationships

within the data with an eye toward validating or modifying

the model. Entropy may be considered a valuable tool in

the analysis of these relationships.

Let a relation be defined in an m x n table, with each

row representing one of m objects (entities) and each column

representing one of n attributes. Note that object-predicate

tables previously discussed represent examples of such rela-

tions if we view the predicates as our attributes. ~What

we are discussing here, is the relational data base type

relation which is more general in that attribute values

need not be binary. In this discussion, we are looking

at the use of entropic relevance measures for identifying

structure, and, in particular, for finding keys in this

more general relation. An example of such a relation,

60
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adopted from Tsichritzis [1977], follows.

HOMESl ( BUILDER, STYLE, PRICE )

Cadillac Duplex 65000

Delzoto Duplex 65000

Howlett Bungalow 45000

Joint Ranch 50000

Monza Duplex 65000

Terex Ranch 50000

Wimpey Ranch 50000

The above example will help to illustrate the following

definitions.

A subset P1 of attributes Ail’ A12, A13, °"Air is

a 53X.if the value of every attribute in the set of

attributes is functionally dependent upon Pi’ and if

Pi is minimal in the sense that none of its proper sub—

sets has this property. In our example, builder is

a key.

A subset of Di of attributes is a DETERMINANT if the
 

value of at least one attribute Ak, not belonging to

Di’ is functionally dependent upon the values of Di'

In our example, style is a determinant of price.

A subset of attributes Si is a SUBDETERMINANT of A
 

k

if knowing values for the members of Si will sometimes,
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but not always, determines the value of Ak' Style is

a subdeterminant of builder, as the only bungalow is

built by Howlett.

An individual attribute Ak is a NUCLEAR attribute if

it participates in every key. All other attributes

are nonnuclear.

An individual attribute Ak is a PRIME attribute if it

participates in at least one key. All other attri—

butes are nonprime.

Note that not all keys are determinants. The set of

nuclear attributes however, is a subset of every key and

a subset of the set of prime attributes. Following the

pattern used to compute interdependence of predicates in

the object-predicate table, we may define the interdepen-

dence of the attributes in our relation.

Given a subset P1 of attributes, let Xi = (ail’ aiz,

...air) represent an assignment of values to the attributes

in the order in which they occur in the table. Then, the

probability p(Xi) may be computed as the relative frequency

of occurrence of this assignment of values in the appro-

priate columns of our table. This corresponds exactly to

the definition given in Chapter 4 (Section 4.2, p. 46) for

the table of binary values.

Given the probability defined above, we may compute

S(Pi)’ the entropy of the subset of attributes. .The inter-



dependence of a subset of attributes J(Pi) is then defined

as the difference between the sum of the individual entropies

and the entropy of a subset. This repeats the pattern of

Watanabe's [1969] object interdependence computations.

S(Pi) = ‘ Af. p(Ailr A129 °°°Air) 10g[p(Aila A12! °°°Air)]

J

J(Pi) = g S(Aij) - S(Pi)

Consider an example which is equivalent to that found in

Chapter 4 (Section 4.2, p. 49).

a a

1 2 3 4

x1 1 1 0 1

x2 1 l 0 0

x3 0 1 1 1

x4 0 l l 0

x5 1 0 1 1

x6 1 0 1 0

x7 0 0 0 1

x8 0 0 0 0

As discussed earlier, each attribute has entropy equal

1 and each pair of attributes has entropy equal 2, while

all other triples have entropy equal 3. The entropy of

the entire relation is also 3. The interdependence of the

first triple is 1+1+1-2 = 1 bit, the same as the interdepen-

dence in the relation. The interdependence of any other

subset is 0. A nonzero value for j tells us that some of
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the attributes included in a set can give us information

about other attributes in that set. Consider the manner

in which this helps us to find the keys.

Suppose that Pi is a determinant for Ak. Then we have

S(Ak/Pi) equal to 0, since total information destroys all

uncertainty. Now since,

S(Ak/Pi) = S(A Pi) - S(Pi)
k!

we have

S(Ak, Pi) = S(Pi).

That is, adding A to the set of attributes Pi does not

k

change the entropy of the set Pi’ It also follows that

the interdependence of the set is increased by the entropy

of Ak when it is added to the set. This reflects the depend-

ence of Ak on the rest of the set.

This situation is evident in our attribute triple

(a1, a2, a3) from our example. The entropy of a1, a2 is

a determinant of a adding a to any pair of attributes
3’ 4

will increase the entropy of the set. Thus, a4 has no de-

terminant. Thus, we may conclude that the set a1, a2, a4

is a key to the relation, and that a is a nuclear attribute.

4

The previous example provides a number of insights

into the problem we are discussing. Since a nuclear attri-

bute has no determinant, the deletion of a nuclear attribute

from a set must decrease the entropy of the set. Thus,

the nuclear attributes of a relation may be determined by

singly deleting each attribute from the relation and comput—

ing the entropy of the resulting set. In the above example,
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the deletion of a4 left a triple of entropy 2, whereas the

deletion of any other attribute left a triple of entropy

3. Thus, in one pass through the entropy list, we have

determined that a4 is the only nuclear attribute.

Once we have determined the set of nuclear attributes,

we must consider the various ways in which it can be expand-

ed into a key. Once again, this can be determined from

the entropies of attribute sets. The essential fact is

that the entropy of a key must equal the entropy of the

relation. In the case that the entropy of the set of nuclear

attributes does equal the entropy of the relation, it is

the unique key. In other cases, additional attributes must

participate in any key.

In the case of our example, we have analyzed the en-

tropies of all of the subsets of attributes. We could see

at the beginning that there were exactly three minimal sub-

sets of entropy 3. These are all of the keys to the rela-

tion.

Consider the manner in which this approach might be

used to uncover the structure of two examples given in

Tsichritzis [1977]. The relations are based on information

about a group of houses, and are given with keys underlined.

First consider the previous example.

HOMESl ( BUILDER, STYLE, PRICE )

An analysis of the table (Chapter 6, p. 61) correspond-

ing to this data model shows that there is one nuclear attri—

bute. It also shows that the entropy of this nuclear attri-

bute equals that of the relation, establishing it as a uni-



66

que key. Of course, we may also observe that the entropy

of the remaining pair of attributes is less than that of

the relation.

In the following example from Tsichritzis [1977],

HOUSES ( lg, ADDRESS, LOT#, SUBDIVISION, STYLE, BUILDER )
 

an analysis of the corresponding table reveals that there

are no nuclear attributes. An examination of the entropy

of single attributes shows that two of these have entropy

equaling that of the relation, thus each of these single

attributes is a key. An analysis of the entropy of pairs

of the remaining attributes shows that one of the eight

possible pairs has entropy equal to that of the relation

and, thus, is a key. At this point, only a pair of attri-

butes would remain. These last two are nonprime attributes.

Consider one more example, which is equivalent to that

in Chapter 4 (Section 4.2, p. 49).

a1 a2 a3

x1 1 1 1

x2 1 1 0

x3 1 1 0

x4 1 0 1

x5 1 0 1

x6 0 l 1

x7 0 1 1

x8 0 0 0

x9 0 0 O

x 0 0 0
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For this table, the entropy of each attribute is 1,

the entropy of each pair is just less than 2, and the en-

tropy of the relation is 2.2464 bits. Since the entropy

of the relation is diminished by the deletion of any single

attribute, we may conclude that every attribute is a

nuclear attribute. The only key is the full attribute set.

To summarize, keyfinding using entropy involves two

phases. In the first phase, the list of nuclear attributes

is obtained. The second phase consists of searching for

subsets of the remaining attributes which can be combined

with the nuclear attributes to give us a set whose entropy

equals that of the relation. Further, a guide to ordering

the phase two search is that you consider first subsets

of those attributes with the individually highest entropies.

Consider an algorithm for the search based upon Nilsson's

A* algorithm [NILSSON, 1980].

In the following, let K represent the nuclear attri-

bute set of a relation R. Let A = R - K represent the set

of remaining attributes. The Keysearch Algorithm may be
 

described informally as follows:

1. Create a search graph G, consisting solely of the

start node, K. Put K on a list called OPEN.

2. Create a list called CLOSED and a list called KEYS,

both initially empty.

3. LOOP: if OPEN is empty, exit and return to KEYS.

4. Select the first node on OPEN, remove it from OPEN,

and put it in CLOSED. Call this node n.

5. If n is a goal node, (I.E. if S(n) = S(R) and n
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is not a superset of a set already on KEYS) add it

to the list of KEYS.

6. If n is a superset of a key, go to LOOP.

7. Expand node n, generating the set, M, of its suc—

cessors. Install the members of M as successors of

n in G. Add the members of M to OPEN, if they have

entropy greater than the entropy of n.

8. Reorder the list OPEN using evaluation function

f (described below).

9. Go LOOP.

Now, we are searching for all of the minimal subsets

of R whose entropy is the same as R. Each node in the

search space represents a subset of R. When we expand a

node, the set M represents each subset of R which can be

obtained by adding one of the remaining attributes (of

higher index) to those in the set represented at node n.

The cost of reaching a node is the length of the path to

the node which also equals the number of attributes added.

One consequence of this is that the cost of reaching a node

is independent of the path taken to it. Further, the use

of indexing will prevent multiple generation of identical

nodes. 1

To estimate the cost of reaching a goal node from a

given node n, we consider the entropies of the attributes

which remain to be added. The entropy of the union of two

sets is less than or equal to the sum of their entropies.

Consequently, when we add a new element to the set at n,

the resulting increase in entropy of the set is at most
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that of the attribute added. So, if we consider the dif-

ference between current entropy and goal entropy divided

by the maximum of the remaining attribute entropies, we

have an underestimate of the number of steps required to

reach the goal. These considerations lead to the following

evaluation function:

f(n) = g(n) + h(n)

g(n) = cost of reaching node n

h(n) = 1 + FIX[(S(R) - S(N))/S(a)].

S(a) represents the maximum of the remaining attribute en-

tropies.

Since we know the exact value of g(n), and since h(n)

underestimates the cost of reaching a goal, we are guaran-

teed to find a minimal cost path to a goal node. A minimal

cost path is equivalent to a minimal size set and hence

to a key [NILSSON, 1980]. Any later generation of superkeys

is blocked by checking candidates against the KEYS list.

The evaluation function guarantees that keys will be gener-

ated before their superkeys. The algorithm is guaranteed

to terminate successfully, since the full relation R will

be returned as a key if there is no proper subset of R which

works. The algorithm will find all keys, since a node goes

on CLOSED only if it is expanded or is a successor node

to a key.

A version of the A* algorithm which would expand fewer

nodes than this one would require a "more informed" evalua—
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tion function than the one given. One such function is

obtained if, instead of using the single maximum remaining

entropy, we sum the remaining entropies in decreasing order

until the needed difference is exceeded. The number of

entropies added will give us an estimate at least as large

as our h(n). It is doubtful that the additional computation

required would be profitable.

Two examples are presented here in order to demonstrate

the order in which the algorithm would generate the keys

in our previous examples. First, consider the example pre-

sented on page 63. K = {a4}.

Figure 1

SAMPLE SEARCH TREE
 

 

  

{a4}

2 I I I
{31:34} 3{azra4} 4{33:a4}

5{a1,a;,a4}* 6{a1,a3,a4}* 7{a2,a3,a4}*

In Figure l, a total of seven nodes are generated to

locate the three keys. Figure 2 (page 71) shows the search

tree resulting from the application of the tree search

algorithm to the six attributes of the HOUSES relation

presented on page 66. Note that the nuclear set is empty.
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It is worthy of note that the analysis of a data base

instance may be done in two stages. A complete analysis

may be done on a sample of tuples. Any key of the entire

set will be a key for the sample. The second stage will

consist of verifying that keys found work in the whole data

base. This approach reduces the size of the required entropy

computations.

6.1 EVALUATION gr; DATA BASE USAGE
  

Suppose that we are to analyze a relation which has

been available over a period of time to a group of data

base users. Further suppose that, in addition to the table

defining the relation, we are given a record of the number

of times each row of the table has been accessed. For

example, consider the following:

a1 a2 a3 count

x1 1 1 l (1)

x2 1 1 0 (2)

x3 1 0 ‘ 1 (2)

x4 0 1 1 (2)

x5 0 0 0 (3)

As before, let Xi represent an assignment of values

to Pi’ a subset of the attributes. We may now compute a

new probability, p*(Xi), which represents the relative

frequency of access of rows containing this particular
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assignment of values in the appropriate columns of our

table. We may also compute S*(Pi) and J*(Pi) by replacing

p with p* in the previous definition. We might now say

that we are working with a VIRTUAL data base which could

be expanded into an actual data base. Observe that the

expanded form of the current example is the previous example.

In the event that every row has been accessed at least

once, analysis based on p* will reveal exactly the same

set of keys as analysis based on p. This is a consequence

of the fact that functional dependencies are not changed

by the repetition of a tuple. In the event that some rows

have never been accessed, they will not participate in the

virtual data base. As a result, we may have changes in

the functional dependenCies over time. An analysis of the

virtual data base reflects the actual usage which the cor—

responding data base has had and thus could serve as a guide

to useful modifications of the data model.

An analysis of the virtual data base may provide other

kinds of assistance to the data base manager as well. Given

the keys to a relation, we would like to use them as effi-

ciently as possible. This means that we would like to have

our search lead us as directly as possible to a record con-

taining the information sought. To accomplish this, we

would direct the search, using first those attributes from

the key which most quickly narrow the search. These are

those with the highest entropy. In particular, if efficiency

is to conform with actual usage, we wish to employ first

those attributes with the highest entropy in the VIRTUAL
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data base, if indeed these are different from the highest

entropy attributes of the data base under study.

Consider again the example on page 72. Our analysis

need not stop at the discovery that the only key is the

full attribute set. We can observe that the entropy of

the relation is much less than the sum of the entropies

of the attributes comprising the key. This suggests that

there is interdependence among these attributes which is

not reflected in the functional dependencies. For example:

S(a1/a2,a3) = S(a1,a2,a3) - S(a2,a3) = .28 bits.

This represents an average 72% reduction in the uncertainty

of a1 when we know a2 and a3. Similar reductions in the

uncertainties of a2 or a3 occur when we are given the other

two. Thus, for example, D1 = a2, a3 might be considered

a "significant" subdeterminant of a1. We could be guided

by this to modify the data model so as to take advantage

of this structure.

Consider a hypothetical relation, in the spirit of

the Tsichritzis example, defined by:

HOUSES'(OWNER, ADDRESS, LOT#, SUB#, STYLE, BUILDER)
 

We might find in analyzing the data base that the OWNER

attribute is able, on the average, to provide a 99% reduc-

tion in the uncertainty of the other attributes. We could

then restructure our data so that HOUSES' admitted only
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owners of one house, causing owner to become a key. A

second relation HOUSES" could be defined admitting owners

of more than one house.

Security information may also be gained from the entro-

pic analysis of a data base. If the base contains some

attribute information which is meant to be guarded from

determination, the extent to which other attributes are

"significant" subdeterminants may be computed from the

mutual entropies.

If the efficiency of access and security of information

are primary concerns of a data base manager, then the analy-

sis tools developed in this chapter should be of assistance

to him. A preliminary analysis of an instance of a data

base may be done with a random sample of tuples to keep

down computational cost. From this a complete picture of

attribute interdependencies may be obtained.



Chapter 7

SUMMARY AND RECOMMENDATIONS

7.1 SUMMARY

The need for further employment of semantic information

in deductive systems has led us to explore the use of rele-

vance measures for clause selection. Preliminary explora-

tion lead us to concentrate on the entropic relevance

measures and their meaning. A strategy for the employment

of these measures in choosing clauses for a deduction was

developed and the object—predicate table underlying these

measures was explored. The analogy between the object-

predicate table and a relational data base was considered

and applications to the study of data base structure were

developed.

In Chapter 1, the basic concepts of resolution type

theorem proving were introduced, and the manner in which

it might be employed in question answering was considered.

In Chapter 2 we surveyed various measures of the rela-

tionship between two predicates and concluded that entropic

measures are the most promising.

In Chapter 3 we developed a strategy for employing

the relevance measures in the clause selection process and
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illustrated this concept with some examples.

In Chapter 4 the object—predicate table underlying

the relationships of the predicates was examined. We also

considered the significance of Watanabe's theorem of the

Ugly Duckling to this problem.

In Chapter 5 we considered the difficulties of combin—

ing relevant evidence, particularly in the light of Carnap's

work on relevance.

Finally, in Chapter 6, we considered the application

of entropic relevance measures in the analysis of data base

structure and the development of keys.

7.2 RECOMMENDATIONS
 

Consider a few of the problems for which much better

answers could be desirable. One class of problems stems

from the fact that the object-predicate table is not actually

available for our direct analysis in the theorem proving

environment. We have suggested that for some applications

we may use probability estimates obtained from a human

”expert". In other circumstances [HART, 1975] more direct

estimates of entropies would appear to be appropriate. More

research on the best means for estimating the appropriate

numbers is definately indicated.

Another problem which stems from the same source is

the difficulty of estimating interactions of groups of

predicates. Any insight which could be developed into this

problem would be desirable. Also, further research into
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the practical problems of combining evidence in a deductive

system seems to be indicated.

The strategies developed in Chapter 3 pertain only

to clause selection before the proof attempt is begun.

Techniques which employ this information during the actual

proof process might prove to be very useful. This problem

is, of course, related to the problems already mentioned.

Lastly, we mention that terms such as "significant"

have been used several times in this thesis. When is 15%

mutual information significant, or when is 72% mutual infor—

mation significant? It would appear that answers to ques-

tions of this kind must result from experimentation with

implemented systems.
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APPENDIX A

Watanabe's Theorem of the Ugly Duckling

The number of those predicates y*, in a completed Bool—

ean lattice Y* of predicates satisfied simultaneously by two

nonidentical objects xi and xk (of the list of objects X)

is a fixed constant independent of the choice of the two

objects. By "nonidentical" is meant "belonging to two

different types," that is, "corresponding to two different

rows in the object-predicate table." To be able to speak

of a completed lattice Y*, we must fix a "scope of observa-

tion". But, every time we change the scope we get a new Y*,

and the theorem holds again in this new Y*.

2329:. Suppose that there are m different rows (object

types) in the object-predicate table, which means that there

are correspondingly m atoms in the lattice of Y*, and Y*

has 2In different members. Any predicate y* in Y* is a dis-

junction of a certain number of these atoms. A predicate

shared by x1 and xk is characterized by the fact that it

contains the two atoms corresponding to these two object

types. It can contain any number of the remaining (m — 2)

atoms. There are 2m—2 different ways of taking some (or

none) of the (m - 2) different atoms. Hence, 2m-2 different

predicates are shared by these two objects, and this number,

of course, does not depend on the choice of the two objects

insofar as they belong to two different rows (nonidentical
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objects).

More precisely, there are (m ; 2) different ways of

taking r out of the remaining (m - 2) predicates. Hence

(m ; 2) different predicates of dimension (r + 2) are

shared by these two objects. Of course the number 2 men-

m-2 (m - 2

tioned above is obtained by Z _
r—0 r

).



APPENDIX B

Carnap's Relevance Situations for Two Observations
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APPENDIX B (cont'd.)
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APPENDIX B (cont'd.)
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