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ABSTRACT

THE IMAGE PARAMETER METHOD FOR THE DESIGN

OF THE FREQUENCY—UNSYMMETRICAL BAND-PASS LADDER FILTERS

USING SPECIAL TYPES OF ELEMENTARY SECTIONS

by Kudrat Soemintapoera

The design of electrical filters can be accom—

plished by either of two methods, viz., (1) the insertion

parameter method which was developed by Cauer [CA 1] and

Darlington [DA 1] or (2) the image parameter method which

finds its origin in the early works of Campbell [CAM 1]

and Zobel [20 1].

In insertion parameter theory, after special types

of insertion loss requirements are selected (flat loss in

both the pass and stop bands) exact formulas for the char—

acteristic functions of the filter exist. However9 in the

general case, the insertion loss requirement in the block

band is arbitrary and an approximation for the character»

istic function is necessary. Only recently some work

toward this general case has been conducted [EU 2]. The

second part of filter design by the insertion parameter

method is the determination of the network element values.

This necessitates the solution of high-order equations and

the method of zero shiftingo It is known that in these

calculations an abnormal number of digits must be considm
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ered, otherwise the calculated element values are far from

accurate or unrealizable. 0n the other hand, filter

design based on the image parameter method does not ne-

cessitate tedious calculations and the element values

are explicitly given by very simple formulas. Discussions

of the advantages and disadvantages of image parameter

method over that of insertion parameter method can be

found elsewhere [TO 1].

In this thesis some of the work done by Tokad

[T0 1] for the low-pass filters are extended to the

frequency unsymmetric band-pass filters. The contri=

butions of this thesis are

1. Complete characterizations of the elementary

basic sections are developed and the formu-

las for the element values of these sections

are develOped.

2. A systematic design technique is described

for the frequency unsymmetric band-pass

filters.

3. A general approach to the evaluation of

terminating sections is given which utilizes

a network transformation.

4. The image impedance function of a higheru

order terminating section is studied and the

results which are important to the designer
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are shown.

In addition, discussions necessary for completeness in

develOpment of the primary subject material are given

so as to make the thesis self contained.
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Chapter I

INTRODUCTION

Although techniques for electrical filter design

are well established, there is still improvement that can

be accomplished in both the image parameter and the inser-

tion parameter methods. In the insertion method, once the

characteristic function is obtained, an exact realization

is available. However if the loss requirement is not

taken as one of a special kind (as is usually done) the

calculation of the characteristic function requires some

approximations. Such approximations are discussed in the

literature [FR1], [EU 2]. Even these approximations can

effectively be done by reducing the problem to the use of

the image transfer function as in the case of a reference

filter [DA 1] or the method described by Fischer [FIS 1].

This, of course, indicates one phase of usefulness of the

image parameter method. In general, it canvbe said that

the image parameter method of filter design is well estab-

lished. In many cases the filter so designed is suffi-

cient for the particular purpose which lead to the design

of the filter. However, certain considerations in terms

of improving this design method may yield a more econom-

ical filter, i.e., a filter with fewer elements. Such

1



considerations can be found elsewhere [BE 2], [TO 1],

[F18 1,2]. Even though the design becomes more involved,

still the simplicity in the calculation of the filter ele-

ment values remains unaltered. However in the insertion

loss parameter method calculation of the element values

is a major problem. Therefore, the image parameter method,

due to some of the simplicities in the design, is still

widely in use.

In this thesis some of the improvements suggested

for the image parameter method [TO 1], which cannot be

used directly for frequency unsymmetric band—pass filters

are considered. A complete study of elementary sections

for this type of band pass filters is given. A technique

for realizing frequency unsymmetric band pass filters

based on the image parameter method is described. Fur-

ther, the prOperties of certain terminating sections are

investigated. A general deve10pment of the derivation of

terminating sections is described. In this derivation

(there is no limitation on the complexity of the terminating

sections as there is in methods previously given by the

other authors [BO 1], [RE 1], [TO 1].

The method of design described in this thesis also

contains the design of crystal ladder filters [SK 1]. In

fact since the branches of the elementary sections are

identical with the electrical circuit representation of

a quartz crystal, a quartz crystal symbol is used in the



branches of these sections. However, crystal filters

require additional conditions on their element values,

therefore the method described in this thesis may not

always lead to a filter whose branches may be replaced

by crystals. This problem is not discussed in this

thesis.



Chapter II

SPECIAL TYPES OF ELEMENTARY SECTIONS FOR THE

FREQUENCY UNSYMMETRIC BAND-PASS FILTERS

2.1 . Introduction.

The image attenuation function of band—pass fil-

ters which can be obtained by a real* frequency transfor—

mation from a low—pass filter attenuation function, has a

geometric symmetry property. Filters of this kind are

generally called frequency symmetric band-pass filters.

The frequency transformation,which is real, reduces the

design of such band-pass filters to the design of low—pass

filters. The low-pass filter can be realized through the

existing several well knowntechniques and the inverse

transformation yields the band4pass filter.

There are band-pass filters whose attenuation

functions cannot be obtained through a real frequency

transformation from the attenuation function of a low—

pass filter. These band—pass filters exhibit non—sym-

metrical attenuation characteristics and therefore they

 

* By the word "real" it is meant that the transformation

function is a positive real function.
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are, in general, referred to as frequency unsymmetrical

band-pass filters. However, for some special cases, as

Laurent [LA 1] has shown, it is possible to obtain such

characteristics from the low-pass attenuation character-

istics by means of a frequency transformation followed

by a non-constant factor multiplication. This method

yields a band-pass filter section which should be used,

as it is, without any reference as to how it is derived.

In the design of the image parameter filters, the

filters are considered as being composed of cascaded ele-

mentary sections. For this purpose there must be image

impedance matching at the terminal pairs of the cascaded

sections. The elementary sections used in image parameter

filters are, in general, mpderived type sections.

Laurent [LA 1] has described several elementary band—pass

filter sections. One of the elementary sections (called

a zig-zag filter section) is the one that is considered

here in detail.

In this thesis, this elementary section (zig-zag

filter) forms the basis for designing frequency unsym-

metric band-pass filters. The zig-zag filter is a band-

pass ladder network in which the attenuation poles are

created, alternatively in the upper and the lower stOp

bands, by either (1) only series arms or (2) only par-

allel arms or (3) both the series and the parallel arms,

so that the attenuation poles in the upper st0p band are



created by the series arms while those in the lower stOp

band by the parallel arms. The latter type of filter is

used as the ultimate form of the filter designed by the

method developed in this thesis. In general, this type

of filter is frequency unsymmetric.

Economical considerations are also important in

the design of filters. For such reasons it is desirable

to have the least number of inductors and capacitors pos-

sible. For practical reasons, minimum number of inductors

is preferred, For ladder networks, this is achieved if

most of the ladder arms are reactance networks which have

the appearance of the electrical representation of a quartz

crystal.

Watanabe [WA 1] has extended the necessary and

sufficient conditions given by Fujisawa [FU 1] to the

design of frequency unsymmetric band-pass filters based

on the insertion loss method. His method results in a

band_pass filter with minimum capacitors and inductors

without mutual inductance. This network has most of

its ladder branches in the form which could be consid-

ered as the electrical equivalent circuit of a quartz

crystal. Thus, in this case, the zig-zag configuration

appears but partially. In a recent article, using an

insertion loss design technique, Schoeffler [SC 1] has

obtained ladder filters in which all ladder arms are

replaceable by crystals and some capacitors. In this



approach a special form of characteristic function is

produced so that when the synthesis is carried out by

the zero shifting method, a zig-zag type filter is ob-

tained, i.e., most of the arms of the filter are made

of reactance networks which represent a crystal.

An extensive survey [BE 1, CA 1, TO 1, MO 1,

F18 1,2, NO 1, R0 1,2, SA 1, CO 1, BR 1, MA 1, SH 1]

has shown that a complete design procedure of frequency

unsymmetric band-pass filters based on the image para-

meter theory does not exist. The present work is an

attempt to design a frequency unsymmetric band-pass fil-

ter based on the image parameter design technique. Spe-

cial elementary sections, to be used as building blocks

of this filter, will produce a zig—zag filter of the

third type mentioned above. This type of filter has

a minimum number of capacitors and inductors. In certain

cases it is possible to replace some or all ladder arms

by crystals. Therefore, this configuration can also be

utilized in the design of ladder band-pass crystal filters

[SC 1,2]. It has been mentioned above that the elementary

sections used in the design procedure to be described are

of special form. These sections cannot be derived from

other simpler sections as in the case of those derived

from prototype sections by Zobel's m—derivation. For

this reason it is necessary to investigate these elemen-

tary sections separately and establish the necessary



information for the design procedure. The following

sections of this chapter are devoted to the descriptions

of these elementary sections.

2.2 . The elementary sections.

The salient feature of the zig-zag filters to be

considered are that (1) the series arms will produce

poles of the attenuation function only in the upper stOp

band and (2) the parallel arms will produce poles of

the attenuation function only in the lower stOp band.

-The arms of this ladder filter are formed from a react-

ance network which is similar in appearance to that of

the electrical representation of a quartzzcrystal. 0n

the other hand, there are also elementary sections in

which these types of reactances appear only in one of

the components which form the ladder arms. However, these

sections do not form elementary sections for the zig—zag

filter of the third type. All the three types of ele—

mentary sections will however be considered here. Since

reactance network shown in Fig. 2.2.1 resembles closely

the equivalent circuit of a crystal, it will sometimes

be replaced by the crystal symbol. Figure 2.2.2 a, b

and c, represent the three types of elementary sections,

their attenuation curves and image impedance curves, re-

spectively. It is evident from Fig. 2.2.2 that only the



first type or only the second type of section will not

be able to produce the zig-zag filters. This follows

since type E.S.1 has an attenuation pole only in the

lower stOp band, type E.S.2 has an attentuation pole

only in the upper stOp band, while the E.S.Z. type sec-

tion has one attenuation pole in each of the stOp bands.

In this latter section, the upper stOp band attenuation

pole is created by the series arm and the lower stOp

band attenuation pole is created by the parallel arm.

The element values and further prOperties of these sec—

tions will be given later. First it is necessary to give

some general discussions on these elementary sections.
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2.3 . General discussions of the elementary sections.

In Fig. 2.3.1 the E.S.Z. section is shown in

some detail. As is shown later, once the cut—off fre—

quencies, the poles of the attenuation function and the

constant of one of the image impedances are given, the

section E.S.Z is completely determined.

In the design of image parameter band-pass fil—

ters these sections are connected in cascade as shown in

Fig. 2.3.2 for n = 3. There exists, of course, image

impedance matching between the interconnected terminal

pairs. Note that in Fig. 2.3.2, the series and par-

allel arms of the filter are indicated by the symbol of

a quartz crystal for convenience. The resulting filter

has the form shown in Fig. 2.3.3.

The other types of elementary sections, i.e.,

E.S.1 and E.S.2 are shown in figures 2.3.4-a and

2.3.4-b. Their attenuation poles are on the lower and

upper stOp bands, respectively. Thus, the attenuation

poles of the filters constructed in cascading the E.S.1

sections only are concentrated all in the lower stOp band

and those of the filters constructed from E.S.2 only,

are concentrated in the upper stop band. Once the cut-

off frequencies, the attenuation poles and the constant

of one of its image impedances are given, the E.S.1

and E.S.2 are completely determined.
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. In forming a filter, these different types of

elementary sections can be used provided the image im-

pedance matching exists at the terminal pairs. One

disadvantage of constructing filters this way is that,

once the constant of one of the image impedances is given,

the constants of all the image impedances of the elemen-

tary sections in the filter will automatically be fixed.

This also means that the element values in these sections

are fixed. Therefore, it might not be possible to re-

place the filter branches by the quartz crystals. In

addition, since the impedance level at the other termi-

nal pair is fixed, in general, there is a necessity to

use an ideal transformer at this terminal pair.

A study of the pole locations of these elementary

sections shows that the section E.S.Z can be considered

as the cascade connection of E.S.1 and E.S.2. Indeed,

this equivalence exists with the addition of an ideal

transformer at one of the terminal pairs of the cascaded

sections. It is necessary to study this equivalence re-

1ation, because it will help in the determination of the

element values of composite filter which is formed by

cascade connected sections. Before starting a discus-

sion on this equivalence relation, in the next section,

some analytical detail of the different types of elemen-

tary sections is given. The information obtained from

these details of the sections is utilized for the design
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of the band-pass filter having these sections.

2.4 . Analysis of the elementary sections.

Each of the sections is treated separately in

the following subsections of this section.

2.4.1. Type 1. elementary section (E.S.1)

The network structure of E.S.1 is given in

Fig. 2.4.1.

 a...“ . .

  

or

L1 [—

Z; -—) —__ 6‘—

T1 T Cs Z11:

01

(L T 0

FIG. 2.4.1

The various functions of E.S.1 are given as

 

 

 

follows.

1 Cr 1 s + 1
Z = — 1 + - -2——-2—. (2.4.1)

T‘ or U; 9 s +002

2 2 .

z‘ = 61' 1 .1. (S “”019 (2.4.2)

n: B s 2 2 2 2
/1+_é_cr s+w1)(s+w2)

s

2
w

H _ (s+ ) (20403)

A /11.H__Cr \/(8:2+0.) 5%)
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where

O1, mg : cut—off angular frequencies

on 2 1
01 =

1767

I4101+1+ 9.1:. 1510's

Cs

2

“’2 = 1 1

L1C1 + L109

The element values of this section can be ex—

pressed in terms of the parameters w01, w1, (oz and

RT as follows:
1

From equation (2.4.4):

2 2

21 _ “’2 - “’01

or '-

“’01

(2.4.5)

2 2

Cr w2,_ ”1

6" = 2 2

8 “’1 " “’01

Let Cr/Cs = K1 and let the constant of the image im-

pedances be RT1 and Rn:, then:

K1 =

1

RT, = U; ’\/1 + K1



Therefore:

Thus, when the critical frequencies and RT:
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1 T:

w2 w2
2 ' 01

C1 = 2 Cs

“’ 01

1

L1 = 2

(”0101

R _ .12.;
It: — 1 + K1 RT:

 

(2.4.6)

(2.4.6-a)

(or Rn!)

are known all the element values are determined from

equation 2.4.6 and equation 2.4.6-a. '

2.4.2. Type 2. elementary section (E.S.2)

The network structure is shown in Fig. 2.4.2.

arm—1 t°2
  

  
x1 '1

CD

 

 
FIG. 2.4.2
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The various functions of E.S.2 are given as follows:

ZTQ

“2

where

1 1
_ 1 + .—

Cp V q s0
‘
6
0

 

 

 

 

  

From equation 2.4.10 we have,

e
°
l
e

2 . 2

C2 __ w21 - 1

'
d

‘
8

(
3

ll 8

'
3 I

N
fi
v
n
é
h
l

C s

1 +-5£

q

2 2
1 (s + w1

2’ 2
C (s + w )

1 +'CB 2

q

L202

1 1

E202 + 5 5

1/<s2+ wi><s2+ w§>‘<2.4.7>

(82+ wg1)

(2.4.9)

(2.4.10)

(2.4.11)
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Let cp/cq = K2, then 2 2

00-0)

2 1-
K =

2 2 2

“’21 " “’2

 

Formulas for determining the element values are:

1

R118 = '6‘ ’\/1+K2

P

— _l_. 4/
Op - RT 1+K2

1

C = -——- ‘V 1 + K

q KZRTa 2 (2.4.12)

 

  

w2 2

21 - m1

w1

1

L2 = 2

”102 ]

K2.

. Rug = 'T_I_Rg (2.4.12-a)

Thus, as in the previous case, the element values and

one of the impedance constants, RTa or R are de-
3113’

termined from Eqs. 2.4.12 and 2.4.12-a, if the critical

frequencies and RTa (or Rug) are given.

2.4.3. Type 3. elementary section (E.S.Z)

The network structure is shown in Fig. 2.4.3.
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16— 421

FIG. 2.4.3

The various functions for E.S.Z are given as follows:

The series and parallel arms reactances are:

1 .2. .3
series arm: x1 = '5- '-§-—§-

8.8 8 + (1)21

2 2

llel arm x 1 s + ”01para : 2=C_—_2-_'2_

bs
s + wO

«10: confluent angular frequency (ofi<wb<w2)

The image parameters are:

22222
.l. [1 +_§E:. A/(s + w1)(s +102) (2.4.13)

03 Cb s(32+ mg1)

 

 

  

 

ZT =

2 2

z _1_ ___1____ . (S 1’ “’01) (2.4.14)

3 = Cb c

2 m2

H 1 (S + 0) (2.4.15)

_ c 2 2 2 2 '
1*‘6'3 ’\/(s+w1)(s+w2)

Where
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2
(00 = 1 or

L202

2

“)0: 1+1

L101 L1Gb (2 4 16)

‘”61 = __l_.
L101

2

m21 = 1 1 1

5202 E2Ca

At the cut-off angular frequencies m1 and w2, H

becomes infinite, thus at these frequencies the denom—

inator of H approaches zero. Since

2 ' 2
. s + w .

3:1/_i1_ ‘ o’ ,

x1+X2 1// 2 2 21 1 2 2 2 2

62(8 W0) '1' 6:6(8 +0901)(S + (”21)

 

 

 

 

then at s2 = -w§,

Ca (4»? +w§)2 ,

h I_; _ - (-w§ + d12 )(-w? + “2 ) (2.4.17ma)
O1 1 21

and at s2 — —w§,

Ca _ _ ('“2 + ”6)2 !_ . (2.4.17-b)

'6; - (‘“2 + ”61)('“§ 1 ”21)

Then from these two equations, 2.4.17-a and -b, we have

2 2
2 2 2 2

_ (-w1 + too) = _ (-w2 + (no)

2 2 2 2 2 2 2

(‘“H 1*“o1)(‘“H + “21) (‘“2 + ”o1)(‘“2 + “21)
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2 2 2 2 2 2

(”’1 + “’0’ = 2: ('“’1 + “01)(““’1 + “’21) .

2 2 2 2 2 2

(““2 + “’o) (" 2 + “’01’("“’2 1' “’21)

Since only real frequencies are to be considered, in this

expression the negative sign is used which gives

 

 

 

 

 

(2.14.18)

("“2 1 “’21’(“’2 + “’21)

e2 = “’1 + “’2 ("“2 + “21“"2 + “’21)

o
2 2 2

1 + ("2+“01H‘1 “’21)

(«>3 1... 31>1-w§+ «531)

Substituting this expression into Eq. 2.4.17, we obtain:

2 (2.4.19)

Ca (cog -w2)

Cb - [2/(‘1’2"*’2'“’o1’(“’21"“’2”+ V(”2‘”21’(w21'2’]2

 

  

The numerical values of Ca and ob are determined after

the constant RT or R1‘ of the impedances in Eq. 2.4.13

or Eq. 2.4.14 is given. [Note that when one of the above

constants is given the value of the other is fixed auto-

matically. The values of the capacitors Ca and "Cb are

where: (2.4.20)

Ca = T\/ Cb = 'RE 1 + K

63V“
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Other formulas necessary for the determination of the

element values are developed in the following.

From Eq. 2.4.17:

 

 

2

(402 + <43)

K = 2 2 2 2

(“’1 '“’01’(“’21 " “’1’

2 1/ 2 2 2 2’ 2]

“’0 = i “”1 - “’01)(“’21 -“’1) + “’1

where, since wo>w1, the positive sign is to be used.

From Eq. 2.4.16

 

 

“’2 = “’2“1 + g-

and, then, g I

C1 “2"“21 1/K(“’2-“’21)(“’21-“’2) + (“’2-“21)

2; = “’21 = “’21

Thus C1 is determined in terms of Cb and hence L1

is also found as

 

From the relation given in Eq. 2.4.16

2 2 Cg

a

then

C 1 w2
2 = __ 2

ca( 1 -1)

c
a
l
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which determines also L2 by the relation I

Further, we have the relation

= .1. ____1__ = K (2.4.21)

R" Cb W' 1" K RT °

In the above analysis, the factor K1, K2 or K appears

for each different section. ,These factors are used later

as the characterizing factor for these sections.

2.5 . H-functions and some basic sections of band-pass

filters.

The H-functions of the sections E.S.1 and

E.S.2 have similar frequencv dependent parts as the

Hefunctions of the sections shown in Figs. 2.5.1 and

2.5.2.

’ For E.S.1, the expression for the H—function is:

k

    

j

2 2 2

(32.. 113) (w?- “’01) (w - .2)
 

(“’3‘ “’51) (“’2’ w?)

The H—function of the section in Fig. 2.5.1 is

31/”":::\/-(--————"J”)2) .- (2.5.1)

(w2-'w2
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Therefore, if one performs an m-derivation Operation

on this section (series m-derivation) a section which

has similar structure and Héfunction to the E.S.1

will be obtained where for the m—parameter the expres-

sion used is

2 2

2__“_’_g“’1"“’01 .
m _ ”1 2

”2‘ ”01

The section in Fig. 2.5.1 is called the basic section

for the band-pass filters.

For the E.S.2 section, the H-function is

 

(s + w2)

H = 1/11+K2 lM/(s:1+w2)

 

 
 

1 2 I

wa-é> <&-%>

(“31' m?) (“g' “2) .

 

i
n

II

Similarly, from the section shown in Fig. 2.5.2, after

the application of Zobel m-derivation, a structure

having the same circuit configuration and H—function

as that of the section E.S.2 can be obtained. The

H—function of E.S.2 is

 

((02— w?)

(.2—.@
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FIG. 2.5.1

T 28L . 43

FIG. 2.5.2

2.6 . Equivalence of the elementary sections.

Comparing the image impedances of E.S.1, E.S.2

and E.S.Z we notice the following:

1. §n8 has the same expression as ZT1’ except

for the constant.’

2. ZTa has the same expression as ZT’ except

for the constant.
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3. Zm has the same expression as Zn, except

for the constant.

By adjusting the values of the constant in the image

impedances (this can be done by adjusting the element

values) an image impedance matching can be provided for

the cascaded E.S.1 and E.S.2 sections at their inter-

connected terminal pairs. The resulting section will have

the same image impedances as that of E.S.Z except for

the constants (see Figs. 2.5.3 and 2.5.4). However

this cascaded E.S.1 and E.S.2 section and E.S.Z

have identical HEfunctions. Complete equivalence will

be obtained if an ideal transformer is connected at the

end of the cascaded network shown in Fig. 2.5.5.

From Eq. 2.4.12-a and Eq. 2.4.6—a, in Fig.

2.5.3 with Rug = 11,“, we have

Rn = __E1_RT = 31...?! = Li.
2 1+K1 1 1+K1 2 1+K11+K2 T8°

For the network in Fig. 2.5.4, from Eq. 2.4.21 we

have

__ .__.I.<__

R“: " 1 + K RT .

If the constant factors Rm and Rn: are equal, then

the constant factors on the other side of the networks,

i.e., RTa and REP will be identical when an ideal

transformer is connected at the terminals of one of the



28

o 0 

 

 

 
 

 
 

 

 
 

I F l I _1—

ZT ::> —L' [:3 <::: Z
a fix

. T T 2,

FIG. 2.5.3

A cascade of E.S.1 and E.S.2

o 10'. .,

ZT :E Zn

Qi— 0

FIG. 2.5.4

E.S.Z

o_____%[]¥ n:1

ZT. = ZT :1; Zn = Zn.

,4. .75

FIG. 2.5.5

Equivalent network
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equivalent networks. Let this transformer be connected

at the terminal pairs of E.S.Z as shown in Fig. 2.5.5.

Then the transformer ratio is given by

  

 

2
2 2 2 2

2 __ 311: + ”21"“2 + “’1'“’01 .

n - RTa 002 to: w: on:
21 " 1 2 ‘ 01

It remains to investigate whether the networks in Figs.

2.5.3 and 2.5.5 have equivalent Hefunctions. The

H-function of the network in Fig. 2.5.3 is a composite

Hefunction, i.e., it is related to the H-functionsof

both E.S.1 and E.S.2. Let the H+function of E.S.1

be H1 and that of E.S.2 be H2. Then the H;function

of the composite network in Fig. 2.5.3 is

 

H—H1+H2 .

1 4 H1H2

Since

1

H1 =

1 + K1

and

1 82 + w2

H2: r—— 2 g

1+K2 S+w1

then

(82 + w?) (s2 + mg)

V 1 + K1 + W’1 + K2

H = _

1 __ 2 2 2 2

[1 + V(K1+ 1)(K2+11)] [We
+ 031MB + 1.12)]

 

 

 

 

 



3O

82Hl(21/1+Km12+111+K1w2)Z(1/1+K1+1+K2)]°

1 + ’V11+K1)(1+K2)

m . «r175

 

 

 

l'¢(s2 + w1H)(s + w2)

From this final expression and Eq. 2.4.15 we have

w?1/1+K1+w§1/—1__+K—2

W+ W+K2

 

 

I

If 2 2 2 2

1(“1 “ “01)(“21 ' “1)
 

 

 

2 2 2 2 2 2
_ “1 + £02 (“2 ‘ “01)(“21 ' “g1 = mg .

5* 2 2 2 2 ’

1 (“1 ' ”o1)(“21 ' “1)
+  

2 2 2

(“2 ' “01)(“21 ‘ “2)

On the other hand, since

 

1 + \1(1 + K1)(1 + K2)

«[1 + K;+1/1 + K2

 

 

K1K2

[\l1-1—K1 + V1+K2T

2

(«é-w?)
 

  

[:qug‘ ”g1’(“g1w2’ + IV(“1‘ ”01)(“21w$.12

then, from Eq. 2.4.19 it can be seen that this expres-

sion is equal to K. Thus,
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1+ 171+ K1)(1+ K2)

’V1 + K1 + V1 + K2

 

= 1 + K 

and finally

(82 + mg)

m [v.2 + gm]
H z  

This last expression is exactly the expression of the

HAfunction of the E.S.Z section. Therefore the equiv-

alence of the networks in Fig. 2.5.3 and 2.5.5 is

established.

The last part of the above discussion can be

simplified by the theorem given in the following.

THEOREM:

The H-function of a lossless 2-port network

will not change if the network is augmented by

an ideal transformer connected to one (or both)

of its ports.

PROOF:

The proof is trivial since by definition

so
H = --

Zoc

and the cpen and short circuit impedances Zoc

and Zsc at one of the terminal pairs of this

2-port are either unaltered or both multiplied by

the same turns ratio when ideal transformer is added.
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Note: The impedance constants on both ports can be

multiplied by a constant factor without changing

the K's of the section as can be seen from the

relation

R = ._E_ .

n 1+K RT

This means that only the element values of the

section are changed.

2.7 . Further equivalence characteristics.

The H-function of the E.S.Z section has the

following form

2 2

1 (s + wo)

1+K NE52+ w$)(s2+ mg)

  

 

Note that if K, as well as the critical frequencies,

is not changed the H—function remains unaltered.

Now consider a network consisting of cascade con-

nected sections of Fig. 2.5.3. Let each of these ele-

mentary sections be replaced by its equivalent network,

given in Fig. 2.5.5. The resulting network is shown in

Fig. 2.7.1. The structure to the left of s1 is an

E.S.Z, the structure between s1 and 82, also that

between s2 and s3, can be replaced by E.S.Z's ac—

cording to the above theorem thereby eliminating the
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FIG. 2.7.2

transformers. The resulting network will be in the form

as in Fig. 2.7.2, having an ideal transformer. This

transformer has a different transformer ratio as compared

to that last transformer in Fig. 2.7.1, but the H—func—

tions of these networks are identical.

Thus, it can be concluded that any filter consisting

of cascade connected pairs of E.S.1 and E.S.2 can be

replaced by a filter consisting of E.S.Z sectiOns ter-

minated on an ideal transformer at one of its terminal

pairs. Since the H-function will be the same, the calcu-

.1ation of image attenuation and the image phase functions



.
/
-
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of the complete filter might be easier from one of these

networks as compared to the other.

2.8 . Pole distributions and structure configurations.

In this section possible locations of the atten-

'uation poles of a band-pass filter containing E.S.1,

'E.S.2 or E.S.Z are considered. The following rules

may be observed:

1. The network consisting only of E.S.1, E.S.2

and E.S.Z will be obtained if there are at

most two half poles and the rest of the poles

are full poles.

2. Network consisting only of E.S.1 will be

obtained if besides the condition 1, all

poles are on the lower step band.

3. Network consisting only of E.S.2 will be

obtained if besides the condition 1, all the

poles are on the upper stop band.

4. Network consisting only of E.S.Z will be

obtained if besides the condition 1, there

are equal numbers of poles in the upper as

well as the lower stop band. Full poles are

counted as two.

Figure 2.8.1 is an example of the application of these

rules with six poles.
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2.9 . The impedances.

The filters composed only of elementary sections

that have been discussed in detail previously, i.e.,

E.S.1, E.S.2 and E.S.Z have terminal image impedances

of the following forms

 

 

 

 

11.. (.2- 0%.)
Z3040) = E)—

VmZ- «$1.13- .2)

and _

RT VmZ— 2mg— .2)
Z (w) = -——

T ‘” < 2 - 2)
“’21

where

s = 3w

w1’ w2 : angular cut-off frequencies

RT and R1, : constants

m21’ “b1 : critical frequencies that cor-

respond to the attenuation poles.

Using the frequency transformation discussed in Chapter III,

section 3.5, they will have the following form

3-1—1 (ft—710,)

E;-j:i 34—Fi- U1 — izi?

 

  P, a

(2.9.1)

 

:12 617121 Ti—fi 1/1 471.2

”m 1521—1 3.71 fi-figi

w = Jw1w , .ffi. is the transformed frequency .
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The plot in Fig. 2.9.1 represents these impedances.

They are normalized with respect to the factors

Rn: V 52 '1 for Zn and

a; 3‘7 E01 (2 9 2)

122 3—17.21 for 2T

mm E -1

These two factors still leave RT and Rn free to be

selected. In the design of a filter with E.S.1, E.S.2

and E.S.Z as elementary sections, RT or Rn' is one

of the numbers that should be given before the design is

carried out. It determines the values of the elements.

From the plot of the impedance curves in Fig. 2.9.1 it

is seen that there is only a narrow effective pass band

range, i.e., the range where the impedances are relatively

less fluctuating is a small portion of the entire pass

band. Thus if a wider effective pass band is needed, a

terminating section (T.S.) with higher order image

impedance will be necessary. Note that the extremum point

of these curves are close to one of the cut-off frequen-

cies. This is mainly due to the fact that the form of

these curves is controlled by either .ino1 or :?3:21

and the extremum points in the pass band are closer to

these frequencies which are in the block band. The in—

vestigation of these curves then suggests that if the

image impedance is a function of at least two control
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frequencies and one of them lies in the lower block band

and the other in the upper block band, then the extremum

point can be pulled towards the center of the pass band

or perhaps the impedance curves will now contain two

maximums or minimums which are located close to the cut-

off frequencies. Indeed, if this is the case then it is

possible to improve the matching requirements by arranging

the location of the controlling frequencies so that the

impedance is relatively less fluctuating in the pass range,

i.e., so that there is a wider effective pass band. Two

types of sections having image impedances with control

frequencies in the upper stop band and lower st0p band,

i.e., of higher order, can be readily obtained from the

E.S.Z. These are sections obtained by series and shunt

m-derivations of E.S.Z. They will be used as the ter-

minating sections. These sections will be studied in

detail in the rest of this section. In order to simplify

the investigation of their image impedances some frequen-

cy transformation will be used.

2.9.1. T.S. made of shunt m-derived E.S.Z.

The structure and the image parameters of this

section are shown in Fig. 2.9.2. In detail the m-

derived impedance is

__1_ W1 («12.01511 Wfl-ufixwéfif

m _ Ca (1-m2)+K w (9?;w5p1)(w2p1’w2)

 

ZT

(2.9.3)



4O

 

 

 

    

 

 

mx:

J 1

1 1

Q_
0

1 .L
z m x2 C:j'§% z
Tm '12? T n

C} r 0‘

FIG. 2.9.2

Shunt m—derived — E.S.Z section

 

 

 

 

2 2

Ru (9 + “01)

25 = __ 2 2 2 2s .V(8 +w0p)(s + wzp)

Z = RTm (s2+w01) 1/(82+ (:111)(s2 +002)

Tm s (s+1.12)(s+w2)

S = 3m

-1<1n< 1

wOp’ “2p attenuation poles

2 2
(s + w )

H = O

1/(s2+ 0%)(82-1- mg)

11 : constant
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and the H—function (H = tanh PI) is

 

 

< 2 2)
H - —-—I-I-l——- (no-w (209.4)

111 + K Wong- (132)03- (1)2)

At the frequencies “’Op1 and w2p1, H200) = 1.

Therefore from the expression for H it follows that

 

 

2 2 2 2 2 2

“’0‘ “021 _ __ (“091+ “WW2" “’0 1)

2 2 - ( 2 2)( 2 )

“’0" c”2p1 “’2p1" “’1 “2p1‘ “’2

01'  

(«o2 + 002) (1.12- “2 )
Op1 1 2 0p1

2)(.12

 

1.12 + 002 (1.12 - (1)2)(1112 -
Op1 2p1 2 1 1 2 1       

  

 

(2.9.5)

0n the other hand, at the cut-off frequencies (.11 and

<02, H(w) is infinite. Then by a similar discussion

to that in section 2.4.3 we have

 

 

Ca (mg - «€12

3. ” (.3 - «vim? - .3)

2 (2.9.6)

.22 _ (qg - mg)

Cb - (1.122 - 1.131)“); -- 103)

(where 9.92-11) ..
C _

0
‘
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Equating these last two equations the following is obtained.

2 2 2 2

(”0" 2)(“’1" ”011)
 

 

 

  

2 2 2 ’2 2 2

.2 _ 9.2.1.1.”;“0‘ “1)(“2‘ ”2L. (2.9.7)
21 fl 2 2 2 2

1 _ (”0" c“’2)(“’1" “01)

( 2 2 2 2

“0" “1)(“2‘ “’01)

We also have

RT _ 1 V1; + K __ ET

m — '5; (1-m‘) ¥IK — (1-m‘) + K

(2.9.8)

where RT = G: 1 + K .

2.9.2. T.S. constructed of series m—derived E.S.Z.

All the formulas from Eq. 2.9.4 to Eq. 2.9.7

above by replacing 0001 by (.121, w0p1 by ”Op? (021”

by w2p2 apply also for this T.S. elementary section.

The structure and the image parameters are shown in

Fig.. 2.9.3. The image impedance in detail has the form

 

 

 

Zn = is (“’2’ “322””322' “2) (2.9.9)

m “’ (.31- .2>1f<.2- .§><..g- .2)

where Rum = Rn[(1‘m:) +3K] and

(2.9.10)

1

__1___.___.
Err-01m
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 1’ - -- ,,,._.___._______._,._. ._- _. __.._.____0

FIG. 2.9.3

Series m—derived E.S.Z section

 

ET— 4(82+ w§)(82+ (.13)

s
2 2

(s + w21)

 

 

2 2 2 2

Rim (8 + wOD)(s + 002p)

s
(82+ 10:1) «82+- w§)(s2+ 002)

2

(82+ 00(2))

(s2+ w§)(s‘2+ mg)

 

 

Note that for series and shunt m-derived cases

000p > 0001 and

“’21)< m21 .
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2.9.3. The frequency transformation.

For the investigation of the impedance curves of

ZTm and an, it is convenient to use a frequency trans-

formation. First, let the expressions for the impedances

be rewritten for ready reference.

‘ (.2_ 2 >
ZTIn RTm% (002 2 (2)1 2 Ww‘g- wfiflwg- 2)

" w0p1)(w2p1" w )

 

 

2 2 2 2

Zn = Rn _1_ (“2112‘ w )(w " ”0p2)

m m w (.31- .2) 1/(.2- .$)<.§- .2)
 

(”01 < m0p< “’1

“’2‘ “’2p< “’21

In these expressions the angular frequencies “01 and

(D21 do not correspond to the attenuation poles for the

corresponding sections. The frequency transformation

‘used here for ZTm will transform (001 to —a5 and

(#21 to +¢> for an. Therefore it will have the form

‘with the following conditions:

(c1)- w1)(w2- 6) + (w- w2)(w1-8)

‘2‘ ‘ «112-91W“ (2.9...)

‘Where 6 is mo, or' w21 depending whether ZTm or

an is being investigated.
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For m = w1 we have JAL = -1

(n =<02 we have JAL = +1

2w1w2 - y(w1+ w2)

w = O we have JAL,= J“L(0)

Y(°°2- 91)

 

(w1+.w2) - 2Y

(W2- ”1)

w = on we have f\. = fl(oo)
 

If 6 = w01 (case ZTm) ,

n(o)>n_(ao) with n.(«»)> 1 .

If a = (.21, n(m)< 11(0) with n(o)< —1.

Since the frequency transformation is a bilinear trans-

formation, so is the inverse transformation

 

 

 

 

fih 2w1w2

031+ (02 — 6

_ J“L + L_ mg — w1 (2 9 13)

w " 5 "001+ng ° '

fl- J- “’2 - “’1 ]

Fig: 2.9.4 shows the transformation from the w-axis to

the JflL—axis. Figs. 2.9.5 and 2.9.6 are the plots

of’the ZTm and an normalized to RTm and Ram

 

 

respectively.

MLEEEW_~ 11131111) fit/.1 ggfip/pjafigj

1’01 Op “1 ‘12 m2p 1’21

lLL/ILJ'II' I£l1’//’I//l ' ’/| ll/IIL/ll/l I Irjry/Il/H/LA

-1 +r +0

FIG. 2.9.4

Frequency transformation
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The curves in Figs. 2.9.5 and 2.9.6 represent

the variation of an and ZTm in the pass-band, re-

spectively. From these figures one can observe that the

curves are either flat or have almost a Chebyshev char-

acter over a wider range of the pass band. The latter

type is preferable. Note that these characteristics are

considerably improved as compared to those of elementary

sections. Among these impedance curves one should select

the "best" curve. Since the best image impedance is the

one which causes smallest insertion loss in a given ef-

fective pass—band, then this, of course, implies that

the image impedance must have Chebyshev behavior in this

effective pass-band [CA 1]. In order to obtain best

image impedance one has to locate the critical frequen—

cies of this image impedance in the block bands properly.

To study the effect of the location of the critical fre-

quencies on the form of the image impedance curves which

are already indicated in Riga. 2.9.5 and 2.9.6, a new

frequency scale, J“L, is used. On this .fW.—axis,

either w01 or w21 is transformed to infinity. The

cut-off angular frequencies w1 and ”2 correspond to

11- On the other hand, the critical frequencies .fW_Op

and .fl_2p are chosen so that they satisfy the relation

.IW_Op +_I\_2p = O .

This relation will provide almost a symmetrical character

for the image impedance in the pass band. On the OJ-axis,
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_Fl.= 0 corresponds to an angular frequency which is

located in the vicinity of “a = £(w1 + mg), the arith-

metic means angular frequency. Thus, on the co-axis

these impedance curves are also relatively symmetrical

with respect to w It can be observed that the forma'

of these curves is almost independent of the location of

w01 or w21, which is the critical frequency of the

impedance. Based on these observations one can locate

”Op and pr’ perhaps by cut and try method on the

computer, to obtain the desired image impedance char-

acteristics.



 
 

Chapter III

THE FREQUENCY TRANSFORMATION

AND THE TEMPLATE METHOD

3.1 . Introduction.

In the design of ideal filters by the image para-

meter theory, as well as by the insertion loss theory,

one of the problems is the determination of the number

and the locations of the attenuation poles. One method

useful in practical filter design involves use of the

template. This method was developed by several authors,

[RU 1, LA 1, SA 2, F0 1], each differing slightly from

the others. The one discussed and used here is the one

set forth by Rumpelt [RU 1], which can be applied to

the low-pass, band-pass or high-pass filters.

In this chapter some techniques of frequency

transformations are considered. The following sections

are devoted to the development of these transformation

formulas and their usage.

3.2 . Template for the low-pass filters.

For this type of filters the normalized frequency

51
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with respect to w1 is

(\ = £L

m,

where w1 is the cut—off angular frequency of the low-

pass filter. The frequency transformation used is

2
JfiL

Y = i 111 (T) (3.2.1)

JAL > 1 .

Since the Hsfunction of the prototype section of the

low-pass filters is given as

 

H(jw) = w (3.2.2)

.2 - .3

then

H(Jl) = n , JIM. (3.2.3)
 

 

V112.»

From Eqs. 3.2.1 and 3.2.3? the following relation is

obtained

H(Y) = eY 0 (30204)

The image attenuation function is given as

 

= 1 H
AI ln ’1 _ H

 

Therefore, substituting Eq. 3.2.4 into this equation

 

the following results (3.2.5)

‘ Y
A = MILLS. = 1n cothl I
I 1 - eY I?
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On the other hand a simple m-derived section of the

prototype has an Hsfunction of the form'

H(jw) = mm . (3.2.6)

At the attenuation pole w21 this Héfunction has the

value of unity. Therefore we obtain

 

 

 

 

“g1 ‘ “1
m =- (30207)

“21

or, letting JAL21 = w21 ,

“1

2

m = 1/‘(1’21 - 1

fl-21

= e-YQ: o (3.208)?

Thus, in general, for an m-derived section

H(Y) = eY'YQ‘

and

Y-Y21
AI(Y-721) = ln coth __§__

'(3.2.9)

 

 

The total attenuation of a low-pass filter is

Alt = E AI(Y-Yi) (3.2.10)

where Y1 is the attenuation pole.

Thus, the total attenuation curves can be obtained by

plotting the curves represented by Eq. 3.2.9 along
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the y-axis such that the peaks of these curves occur

at the locations of the attenuation poles on the Yaaxis.

The value of the attenuation at any frequency can be ob-

tained by adding the ordinates of these curves at that

frequency. Repeating this sum for every frequency will

then yield the attenuation curve concerned. In Figs.

3.2.1 and 3.2.2 the template and the total attenuation

curves are shown respectively.

 

  
o ‘ >Y

FIG. 3.2.1

Template curve
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    Yas
FIG. 3.2.2

Total attenuation

 

l/‘////////!////j////J/l/l/II/ (]

m

.flpa

Ull/ ///////n/////////l///1/1m

Yea Ya: °°’Y

 

FIG. 3.2.3

Frequency transformation

3.3 . Template for the band-pass filters.

There are two types of band-pass attenuation
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curves. The first is the frequency symmetrical atten—

uation curve and the second one is that of the frequency

unsymmetrical attenuation curve. For the first type of

attenuation curves the deve10pment and the use of the

template method can be reduced to that of the low—pass

filter method. The deve10pment of the second type which

is more general, will be discussed separately.

3.3.1. Frequency symmetrical band-pass filter.

Ict m1, ”2 be the cut-off frequencies of the

band-pass filter and wm = ([5753. the geometric mean

of these frequencies. The frequency transformation used

for the frequency symmetric band pass filter is

«2- “2.

fl: m . ..w(w2 _ w1) (3 2 11) 

Fig. 3.3.1 shows how the w—axis is transformed into

the .fl_-axis by this transformation. It can be observed

from this figure that the .fl.-scale is symmetrical with

respect to .13. = O, which corresponds to mm in the

w-scale. Since the curve of the attenuation is also

symmetrical with respect to a vertical axis passing

through the zero value of the .fW_-axis, if there exists

an attenuation at ma in the upper stOp band, an identi-

cal attenuation will be obtained on the lower stOp band

corresponding to the mirror image of ad. Therefore the

design of the band-pass filter is reduced to the design of

a low—pass filter. Once this lowhpass design is obtained,
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the desired band-pass filter is then obtained by substi-

tuting Eq. 3.2.11 into the element values formulas.

 

 

£9,218,I,',,9:19P, £29119. 4 HEW/9 119290211, .,
(:01 um ‘92

Ibo/”3);, g/Egp/ ’1/Jgnd|
L 4,12%?!) /§;/9P/ lbfi'pfi_1 O 1 51.

FIG. 3.3.1

Frequency transformation

[ PASS-B 1/'///////S;D/O/?7IBI’/II ///// I/ / / A

O 1 “7.0.

FIG. 3.3.2

The range which is considered

as low-pass range on the 57L scale

3.3.2. Frequency unsymmetric band-pass filters.

The several methods of frequency transformations

considered here for the frequency unsymmetric filters
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differ slightly from that of symmetrical case. The

reason it is necessary to have various modifications

is that one can then make a choice as to which form is

more appropriate to apply to a certain problem in order

to treat it in a less complicated manner. These trans-

formations are not only useful in treating the attenuation

characteristic but also usefulfor treating the image imy

pedances. In the pass—band, the consideration of the im-

pedances is particularly essential.

In the following discussions it is necessary to

consider the H—functions of the band-pass filters. They

are of the following forms

 

(s2 + w

H = K

(82 + ”2)

(3.2.12-a)

or

/(82
K'V( 2 “2) (302012“b)

s +

 

1
:
:

ll

Only these two forms are considered since for all other

forms of the H—functions the treatment can be reduced

to the treatment of the above form of the H-functions.

Note that the frequency dependence part of these Héfunc-

tions is similar to that of the HAfunctions of the basic

sections. Three types of frequency transformations are

considered here. The last two types are frequently used in

the current publications. The Héfunctions are in Eqs.
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3.2.12-a and -b and the composition of these two, i.e.,

 
 

 

2 2

H 2 1 t (s + “0) (3.2.13)'

111 + K" 1((sz+ w$)(82+ 00:)

where S = 3” 9

2

m0 : confluent frequency ,

w1, mg : cut-off frequencies ,

K": a constant.

In the next three sections the various frequency trans-

formations that can be used to study the frequency unsym-

metrical filter characteristics are deveIOped.

3.3.2.1. The first method of transformation.

In this method one directly transforms the fre-

quency by not going first through the normalization.

This transformation is only useful for the attenuation

function. The transformation used is

(0)2 - 002)
Y = % 1n -———————2a (302014)

(‘0 "' 2)

Y0, = 1n :2 (3.2.15)
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Thus here one does not utilize the .JFL-scale but goes

straight from the (n-scale to the y-scale.

 

 

 

J/l/lx/‘x/A///l//l L,r///// ////,{ x w

1 I

/ \\ /////'////>1 v’///////////V_ AY

-a> O +m 7

Ya)

FIG. 3. 3.3

Frequency axis transformation

The basic section* has poles either at infinity or at

the zero frequency. The thunctions of the sections

for the frequency unsymmetric filters have the same forms

as those in Eqs. 3.2.127a and -b. The first one has a

pole at infinity and the second one has a pole at the

origin. Since the elementary sections of the filters

to be discussed in this thesis have the same HEfunctions ex-

cept fbraconstant factor, the basis for the template

method here will be the H-functions mentioned above.

Thus for the basic sections, the constant of the

 

* The basic section is discussed in Chapter II, section 2.5.
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H4functions are

K = 1 and

K' = 231 . (3.2.16)

“2

Therefore from Eqs. 3.2.14, 3.2.15, 3.2.12—a and -b

we have

H = e+Y or

(3.2.17)

H a e-Yme-Y = e—(Y+1g,)

The attenuation is given by

AI = ln cothlgl or

(3.2.18)

A :-
 ln coth I“?

l

13.3.2.2. The second method of transformation.

I

This method [BE 2, TE 1] is also developed without

first making a normalization. Thus it is also only useful

for the attenuation consideration. It differs from the

first method in that the transformed frequency is sym-

metric with respect to its origin. The transformation used

is

2 2

Y = 3 ln w ’ ('01

w? a?

' 2

(3.2.19)

Ya: = iln 22.
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and mm = to 1m 2

0 ——> --Y«»

+00 —-—> W...

w1 ---> .4»

w2 -——-—> .y»

1.1»). > 0 .

Thus for the basic section we have

 

H = eY'MQ or

(3.2.20)

H e_(Y+Ym) .

Therefore the attenuation function is

AI = ln coth rxfigknl

or (3.2.21)

AI = ln coth Ixflml .

2

Imag. lower upper Imaginary

13‘1- 02992) .913) L ‘ 2239p. 22 freq ency
 

 

     
1

  w

2 yam   

FIG. 3.3.4

Frequency transformation

Y - axis
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The above formula can be extended to the cases when the

sections have finite poles. Indeed, suppose there are

attenuation poles at 71 or ”Yi’ then the attenuation

function becomes

 

Y-Y’

AI = 1n coth ) 2 1' or

(3.2.22)

'AI = ln coth [IJELE °

It is important to note that the template to be used for

this case will depend on the band width.

3.3.2.3. The third method.

In this method, normalization of the frequency

variable is performed first and then the transformation

follows. The frequency normalization considered here is

also useful in treating the image impedances. The nor-

malization is sometimes called the Goth-transformation.

This transformation has been used by many authors, par-

ticularly by Cauer [CA 1].

a. The normalization (First step transformation)

‘”m

2 2 2

flr-aq +1=w2_m1m +0om

{12-1 Q2+w1w -0):

112 = JL+a , (.12 = (.12 JL+a
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(I. = 602-001

Sometimes an inverted .fW_-scale is used, i.e.,J;l

and this provides some simplicities. Thus we will use

this .77.-scale in a greater part of the application

of this method:

b. The transformation (second step transformation)

 

fl = .1.

J“L

._ _ 1
Y — tlnifil—{j (3.2.23)

1 = ’d > In m2 =E ‘2 (1)—1 You

—1 =—E “-9 £111.21]. = _Ym

(1 (02

Thus for the basic sections one has

 

 

H = .V(E'+ 1i _f1.+1 or

O. - 1 fl—1

(3.2.24)

H -.-.

Ham/3.1%

Then, substituting Eqs. 3.2.23 into Eqs. 3.2.24

results in (3.2.25)

H = ev—Ym or H = e—(Ywm).
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Hence,

3
>

III ln coth 112932!

or
(3.2.26)

ln coth Iii-219' .p ll

When the sections with finite poles exist then an anal-

ogous method can be used. For example, if there are

poles at Y1 and -Yi’ then

A = 1n coth (3.2.27)
 

YiYil

'_—2__ °

As has been mentioned earlier, the normalization can also

be applied to the image impedances. The following sec-

tion is devoted to this matter. The impedances concerned

are those which appeared in the development of the filters

in an earlier discussion in Chapter II.

-—+ —>

AL/////j[///// PASS lull/n../)ul Inl-Lfreq

(A)

 

 

 /////// ///I P

FIG. 3.3.5

First step and second step transformation
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3.4.. Impedance with normalized frequency.

The image impedances are of the following form

2 2

z“ = Ro1 (w ' ”01)

w 1/(w2- .$)(.2- .3)

 

 

(3.4.1)
 

.221 1/(w2- w$)(w2— mg)

“’ («$1 - we)

N ll

 

where R01 and R21 are constants.

The following derivations are given to show how

the w variables are replaced by the 1:: variables.

Fig. 3.4.1 shows the scales of w, J”L and 3:1 . Also

it shows the locations of the critical frequencies of

these impedances. Notice the locations of the points

J"LO1 and .IW.21. in -1<J=L<1. 'These points are the

reciprocals of the attenuation poles .ffi;o1 and .FI.21.

It turns out that .f\.01 and .IW_21 _are in the vicinity

of the extremum locations of image impedances 2:: and ZT’

 

 

 

x I L l x

we: w! wW\ we we:

4 X l L k I n

.. ..a (1 1
1 11.: (12,

J l - I )l‘ l 41‘ I x J E

-O. Q at -11 no, O n“ l 338! G

FIG. 3.4.1



The derivation of the changing of variables from on

variables to the .75. variables is

 
 

m2 _ (a? = (.2 [flw 1-a] = 0.12.2a (n+1)

 

fl-a +0. m (Ii-a) (1 +d)

(as - (.12 = 0.12 _1_-_1-g_ _ AH: = m2 2a(f\-1)

m 1-a 11:0 m (n-a)(1-a) '

On the II -scale:

Zn = 391 111-0? Vfl-a (£0141)
 

 

 

 

 

“’m f“-01-“ 1/n+a‘ 1n? .. 7

' (3.4.2)

zT = _R_21 f121"]L Q—a If)? -1“

9.. 17142 Iva (xx-n21)

On the fi-scale:

Zn = 391 1012-1 B-fi (ii-7101)

”m 0-13.01 511—1 :11-f—i2

(3.4.3)

-1 __ .

z. = 3.2.1 .2-. an.M .
mm Rink—121 E+fi (1121-11)

From inspection of the curves of these impedances it is

seen that these are not satisfactorily suited for ter—

minating impedances. Note also, on the .fNL-scale the

two points 'fF-O1 and .FI.O1 and also .{\_21 and

j2121 are reciprocals of each other. This fact also
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shows clearly on Fig. 2.10.1 when w21 or (n01 ap-

proaches the cut-off frequencies then the minimum or

maximum points of the image impedance curves in the pass-

band also approach the cut-off frequencies. This suggests

that these extremum points are in the vicinity of _f\.01

or .{\_21 in the pass-band on the.]:L-scale.



Chapter IV

TERMINATING SECTIONS

4.1 . Introduction.

The image impedances of an image parameter filter

are functions of frequencies, whereas the filter is usu4

ally terminated in load impedances at both ends which are

purely resistive. Thus to minimize the loss at least in

the pass band, it is necessary to provide a high order

image impedance at the terminal pairs of the filter, so

that the mismatch at the terminal pairs is somewhat cor-

rected. This can'be done by use of so-called terminating

sections [RE 1]. The whole filter then can be considered

as being composed of the intermediate sections and the

terminating sections. The intermediate section consists

of cascade connected elementary sections, which are-

prototype sections corresponding to the type of the fil-

ter, i.e., low-pass, band-pass or high-pass filters.

The terminating sections, on the other hand, are also

elementary sections or a composition of elementary sec-

tions with a higher ordered impedance at one of its ports.

One method by which terminating sections can be generated

is by the procedures of repeated m-derivations as

69
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described by Zobel [Z0 1]. This kind of terminating

section, although possessing the desired higher ordered

image impedance, is in general rather cumbersome in

structure, i.e., it contains an unnecessarily high number

of elements and hence is not practical. However, as it

will be shown in this thesis, this does not constitute

a major objection since by using a network transformation,

cascaded Zobel sections can be transformed into the known

economical terminating sections. This approach has the

advantage over the other methods [TO 11 that it can

easily be extended to the general case. These termi-

nating sections suffer from the fact that the poles of

their attenuation function are coincident with the con-

trol frequencies of their image impedances. These sec-

tions then are called "associated sections". It seems

that their use limits the design procedure. The other

types of filters, the so-called "disassociate sections"

will be considered next.

4.2 . The disassociate filter.

The main feature of this filter section is that

the attenuation poles do not coincide with the critical

frequencies of the image impedances. Therefore they can-

not be considered as a collection of matched elementary

sections. However they can be considered as the filters
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between image parameter filters and insertion loss fil-

ters. The notion of this kind of filters has been in-

vestigated rather thoroughly in recent years by several

authors [00 1, BE 1, R0 1]. The basic idea involved in

these filters comes from the fact that for the lattice

sections or symmetric ladder sections, the image impedance

critical frequencies do not necessarily coincide with the

attenuation poles.

Collins [co 1], in his research directed at

generating new kinds of structures, comes out with dis-

sociate filters produced by using the following proce-

dures:

1. Prescribe the image transmission factor a

of the filter to be designed defined by

Tanh 6 = 53.9.

ZOO

2. Prescribe the image impedance of the filter,

the critical frequencies, none of which coin-

cide with that of the attenuation poles. The

image impedance is:

ZI = Zochc °

3. The frequencies of the unity value of Tanh e

depend on the parameters m of Zobel. The

critical frequencies of the image impedance

ZI depend on the parameters n which are
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not equal to the parameter m. These para-

meters are related to the critical frequen~

cies of ZI and the relation is identical

in form to that relation between the para-

meters m and the attenuation poles.

4. 2I

20° = tanh 6

ZSC = ZI tanh 6

5. Synthesize Zoo and Zsc by the zero shifting

technique. The resulting filter is the desired

filter. It must have the above open and short

circuit impedances, Zoc and Zsc’

Thus both the image parameter formulations and insertion

loss synthesis are involved in this procedure.

‘Rowland also develOped sections of disassociate

filters [R0 1,2]. However his section has image imped-

ances of m-derived type but the critical frequencies of

the image impedance do not coincide with the attenuation

poles. Later he has shown how his method can be gener-

alized [BO 3].

Belevitch [BE 3] tabulated some of the disasso-

ciate filters in which some sections developed earlier

are included. Some extensions for higher order image

impedances are also given. In the treatment of the dis—

associate filters the above authors have been dealing
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only with the case of low—pass and high-pass filters.

However as Collins [CO 1] mentioned, his procedure is

also applicable to the band-pass filters. There has not

been any explicit discussion on the problem of frequency

unsymmetric band-pass disassociate filters.

It appears that, although the disassociate fil-

ters provide some savings on the number of elements, they

still require relatively complicated calculations as com-

pared to the associated sections. Thus the use of the,

image parameter theory for the design of filters is still

a simple one. A close comparison.will easily show that,

the disassociated filters will hardly contribute to the

attenuation of the stop band, because they do not possess

as many attenuation poles as the image parameter T.S.

with the same order of image impedance. As a result, we

might be able to reduce the number of intermediate sec-

tions in the image parameter filters, thereby reducing

the number of elements.

The rest of the sections in this chapter are

devoted to discussions on the derivation of the termi—

nating sections, i.e., associated sections. The discus-

sion is kept in general and it is applicable to low-pass,

high-pass and band-pass filters terminating sections.

The resulting sections when applied to the low—

pass filter case agree with the result obtained by Tokad

[TO 1] developed by a different approach.
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Some network equivalences, which are very impor-

tant for the further development of our sections, will

also be considered in the next following section.

4.3 . The image parameter ladder terminating sections.
 

The terminating section to be considered is a

general one. Some network transformations and the net-

work equivalences are needed for the derivation of these

terminating sections.

4.3.1. The transformation and the equivalent network.

This transformation was also used by Tokad in

his deve10pment of the lowepass terminating sections

[T0 1]. It can be best shown by means of diagrams (Figs.

4.1, 4.2, 4.3). Figure 4.1 shows the original general

half section. Figures 4.2 and 4.3 are the resulting

network on performing the transformation on the original

network of Fig. 4.1.

The real parameter s has values in the interval

O< s< 1. It is obvious from these figures that the re—

sulting networks, i.e., the networks in Figs. 4.2 and

4.3 are equivalent networks. The network of Fig. 4.2

will be designated as T network and that of Fig. 4.3
T

as Tn network.
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4.3.2. The derivation of the terminating sections (TS).

For this purpose we use m-derived sections.

The higher the order of the image impedance which is

desired, the more repeated m—derived section has to

be utilized. Terminating sections, having third and

fourth order image impedances, will be derived. Higher

ordered image impedance possessing terminating sections

can be obtained by using more repeated m-derived sections

by the same method. For convenience the m-derived sec-

tions to be used for this purpose are shown in the fol-

lowing diagrams, i.e., Fig. 4.4 and Fig. 4.5. They are

the shunt m-derived and the shunt-series m m'—derived

sections. The procedure for obtaining the terminating

section having a third order image impedance is as follows:

1. Cascade the sections in Fig. 4.4 and Fig.

4.5 such that there is an image impedance

matching at their interconnected terminal

pairs. The resulting network is the network

of Fig. 4.6.

2. Make the rearrangement as in Fig. 4.7. The

parameter s is so chosen that the section

parallel to Z is the Tn: section.Y

3. The result of replacing TI‘by TT in item 2, is given

in Fig. 4.8. This is the desired ladder ter-

minating section.

It should be noted that a minimum mumber of ladder arms
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will be obtained if the rearrangement by equivalences,

as shown in Fig. 4.7, is always started from the side

of the network with the higher ordered image impedance.

If a higher ordered image impedance is required

at one of the terminal pairs, higher order derived sec—

tions will be used. Thus, for example, if an mm'm"-

derived section is utilized the terminating section of

fourth order image impedance will be obtained as shown

in Fig. 4090
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The other type of terminating sections can also

be derived in a similar manner using the transformed net-

work in Fig. 4.3. These terminating sections are given

in Figs. 4.10 and 4.11. It can be shown that these

are the dual to those in Figs. 4.4, 4.8 and 4.9.

Since our purpose is to investigate frequency

unsymmetric band-pass filters, the T.S. derived from

the basic sections and E.S.Z will be as shown in

Figs. 4.12, 4.13, and 4.14, respectively.
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Chapter V

FILTER DESIGN I

DERIVATION OF FORMULAS

5.1 . Introduction.

For the general design of electrical filters,

two different procedures are available. One of them

which was established earlier is the image parameter

method [20 1]. The other is the insertion loss method

[DA 1, CA 1]. The image parameter method utilizes the

image parameters of the filters, i.e., the image imped-

ance (Z1) and the image transmission factor (PI).

On the other hand, in the insertion loss method these

parameters are in general, the insertion transmission

factor (P8) and the driving point impedance (Zd).

For this latter method, some authors prefer to use the

reflection factor |p| and the characteristic function 9 .

Under certain conditions, the two parameters Ps

and PI become identical. This condition is obtained

if image impedance matching at all terminals of the fil-

ter is provided. This can be clearly seen from the for-

mula derived by Zobel for the insertion loss in terms of

the image parameters [TO 1]. Both of the above methods

. 82
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have their own advantages and disadvantages. In the image

parameter method, due to the fact that simpler calcula—

tions are required, realization can be achieved in a

shorter time. However the resulting filter might COD!

tain more elements than is actually needed. The inser-

tion loss method on the other hand generally contains a

smaller number of elements. However, a more complicated

method of calculation is required which implies the use

of electronic calculators in this design. Using the

image parameter method for filter design we can immedi-

ately obtain the elementary sections completely which

are the building block of the filter.

There often arise occasions in which the filters

which are designed by the insertion loss method will have

the same number of elements as those designed by the

image parameter method. The only difference between

these two filters is that there is an improvement in the

electrical prOperties of the filters designed by the in-

sertion loss method, which are not really required. In

such cases, indeed due to its simplicity, the image para-

meter method is preferable.

Another design technique which has been established

is the reference filter design method. In this design

technique both the image parameter and the insertion loss

parameters are involved. The synthesis is mainly carried

out by the insertion loss method, and the image parameter
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is used for finding the locations of the attenuation

poles and also to determine the characteristic function.

This can be seen from the following formula of the char—

acteristic function for the filter

m = E) sinh (PI)

where 43 is a constant, c is the characteristic func-

tion, PI is the transmission factor of an image para-

meter filter (reference filter) which has nothing to do

with the actual filter, except that it has identical

attenuation pole locations with this filter. The advan-

tage of the reference filter method over the image para—

meter method is that it provides a flat loss in the pass

band, i.e., the Chebyshev type of attenuation character-

istics. However, the calculation of the filter elements

is by no means as easy as that of the filter designed by

the image parameter method.

It is than desirable at this point to establish

some formula which will furnish the relationship between

the insertion loss properties of the filters and its

image parameters. When such a relationship is established,

then from the given insertion loss requirements, the image

parameters of the filter can be obtained so that the fil—

ter can be designed by means of the image parameter meth-

od. Based on these parameters, some exact design proce-

dures for low-pass filters exist and can be found else-

where [TO 1]. Fisher [FIS 1] has used an approximation
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formula and carried out an insertion loss design for

symmetrical and antimetrical band-pass filters Uti-

lizing the image parameter. However the design was

completed by insertion loss synthesis. Some fundamental

discussions on the attenuation and phase functions, es-

pecially for symmetric and antimetric .filters, are

given by Belevitch [BE 1,2].

The present work is the extension of the method

presented by Tokad [TO 1] to the design of frequency

unsymmetric band-pass filters, especially those having

dissymmetrical characteristics. In the following sec-

tions of this chapter the important features of the in-

sertion loss and image parameter methods as well as the

tOpics pertinent to the deve10pment of the desired for-

mulas are presented.

p5.2 . The characterizing function of the image parameter

filters.

The salient features of the image parameters,

i.e., the image impedances and the transmission factor

(21:, Z19 and PI) are considered first.

5.2.1. Input and output image impedances, Z1, and ZI,‘

For convenience, normalized values of image im-

pedances are used. The normalization being with respect

to the terminating resistors. The normalized impedances
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are indicated by the symbols z1 and z2 and their

properties are as follows:

(i) in the pass band they are real and a func—

tion of the angular frequency w .

(ii) in the st0p band they are purely imaginary

and a function of w .

(iii) for symmetrical filters, 21 = z2.

(iv) for antimetrical filters, Z122 = con-

stant, usually taken as unity.

5.2.2. The transmission factor, PI'

PI = AI + jBI

where- AI is the image attenuation or loss function.

AI is identically zero in the pass band and non—negative

in the stOp band.for all types of lossless filters, i.e.,

all elements are lossless. BI is the image phase func-

tion. It has distinct features for different types of

filters. The following are the pr0perties of BI and

AI in detail.

5.2.2.1. In the pass band.

AI is zero. BI is monotonic increasing as a

function of frequency. The properties are

(i) For frequency unsymmetric band—pass filters.

1. Symmetrical types

-m:n§_BIg_n:rt (5.2.1)

2. Antimetrical filter types

(5.2.2)

—(mn + 3/2) {BIQ (nn + J1/2)
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where m and n are the number of the

attenuation pole locations in the lower

and upper st0p bands respectively.

(ii) For lowhpass filters.

1. Symmetrical types

ogBIgn (5.2.3)

2. Antimetrical types

03 BIS. (nn + Tl:/2) (5.2.4)

where n is the number of the locations

of the attenuation poles. The properties

of the frequency symmetrical band-pass

filters are implicitly covered by the low—

pass filters.

(iii) For dissymmetrical filters we have the pos-

sibilities of either one of the cases in

(ii) and (1).

5.2.2.2. In the stOp band.

‘AI> 0. (AI = O at cut-off frequencies.) BI is

a constant except at the pole locations where it jumps

down by It or It/2 depending whether there is a full

pole or a half pole. The properties are

(i) For frequency unsymmetric band-pass filters.

1. Symmetrical types

I. In the lower stOp band

BI: -(m—11)n,..., -(m—2):n,...,

-(m-1)fl. -mIt (5.2.5)



(11)

where:

3.

p

v

88

II. In the upper stop band

BI = neg (n—1)n,..., (ndv)n

(5.2.6)

Antimetrical types

I. In the lower st0p band

BI = 0, -[(m-11)1t + n/2],...,

-[(m-1)n + n/2]. -[mn+ 11/2]

(5.2.?)

II. In the upper stop band

BI == nfl+n/2, (n—1)1t + ”/2,...,

(n-v)n + 1!/2, 0 (5.2.8)

For dissymmetrical filters BI could

be given as in 1 or 2.

low-pass filters.

Symmetrical types

BI = nn, (n-1)n,..., (n-v)n

5.2.9)

Antimetrical types

BI = nJ + “/2, (n~1)n + J1V2,...,

(n— )n + “V2, 0 (5.2.10)

For dissymmetrical types BI could

be given as in 1 or 2.

"O, 000, m

0, 0.0, n o
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5.3 . The chain matrix.

In order to obtain a formula for the insertion

loss function in terms of the image parameters, the chain

matrix of the 2-port filter network is utilized. It re-

lates the terminal currents and voltages of the filter.

From the diagram in Fig. 5.3.1, we have the following

relationships

V1 AV2 + 312 = AVZ + sz/RZ (5 3 1)

I1 CV2 + D12 == CRQZ + DI2

where A, B, C, D are the elements of the chain matrix.

If R1 = ZI1 and R2 = 219’ i.e., matching at the termi-

nations, then V1/I1 = 21, and V2/12 = ZIa and from

Eq. 5.3.1 we have

_ AZ + B
Z _ Is

I, 7—35
(5.3-2)

Z = DZI‘ + B

I” CZI: + D

From these equations we obtain

zI 21 = 3/0

' ' (5.3.3)

ZI,/ZI. = A/D .

Hence

Z = ’BA

(5.3.4)

Z1 8 = BD
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4 T.N. Reactance network

5.4 . Current and voltage transmission factors (M and N).

These functions are used by Cauer [CA 1] in treating

the insertion loss filter design technique. From Eq.

5.3.1 we have

v1 sz + 312 = AV2 + BV2/R2

Therefore.

I /I = CR + D = M

1 2 2 (5.4.1)

The driving point impedance is

Z = V1/I1 = R2 (N/M). (50402)

5.5 . Entries of chain matrix in terms of the image

parameters.

From Eq. 5.4.2, we have

ZOO = A/C (R2 = w)
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230 = B/D (R = O) . (5.5.1)

Then the H—function is given by

H = figs; = ‘IBC . (5.5.2)
280 7:5

From this equation, since H = tanh PI, we have

 

ePI = 1 + H = 4B0 + TAD

(1 .. H 4m-

9391 = (cosh P]; + sinh PI)

(cosh PI - sinh PI) °

Therefore

’VAD = cosh PI

(5.5.3)

‘VBC = sinh PI

Since

AD - BC = —sinh2P + cosh2P = 1,
I I

passivity of the network is implied.

From' Eqs. 5.5.3 and 5.3.3, the following expressions

are immediate:

ZI.

C = 1 sinh PI

VZI, 219

D = 213 cosh PI ,
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5.6 . Insertion loss parameters.

Figures 5.6.1 and 5.6.2 are to be used as

an aid in deriving an expression for the insertion func-

tion. It is assumed that the reactance 2-port network

is terminated in two resistances, R1 and R2, and

driven by the voltage driver E.

5.6.1. The insertion transmission function.

In Fig. 5.6.1, the power delivered to the load

through the 2-ports is given by

. 2 2

[Nll = IIZRZI = 1.2. 0 (5.6.1)

R2

The power delivered directly to the load as can be seen

from Fig. 5.6.2, is

2

lNdl = II'22R2I = |_Vé_| . (5.6.2)

R2

The insertion transmission factor is defined as

_ N

Ps ‘ % in N% (5.6.3—a)

= fi-ln.l§d‘ + j arg Nd

N1 Ff

P3 = A8 + 3B8 0

Thus

A = iln‘ggi = 1n I‘2l = Inn;
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B3 = arg .32 = arg I: , (5.6.3-b)

I2 V2

where

As = attenuation function

B8 = phase function .

R
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5.6.2. The echo-loss (return-loss).

This loss function is related to the power re-

flected back to the driver. Thus, it is the power de-

livered directly to the load minus that delivered through

the 2-port, i.e.,

[Nel = [Nd] - lNll- (5.6.4)

The echo transmission factor is defined as

Pe
N = N N

ilnfid ilnlfigl+jarg[_dx

6 Ne

= Ae + ,jBeo

Thus, the echo—loss is given by

A8 = 1n & c (50605)

Ne

 

5.6.3. The characteristic function.

From the relation in Eq. 5.6.4 we have

lNdl = lNll + lNel

1 = N1 « Ne

ta [ta

1 — e‘ZAS + e‘ZAe .

Therefore

e2A8 = 1 + e-2A6

e-ZAS ‘

The characteristic function is defined as

 

 

2 —2Aew
= 6

[ml I —2As . (5.6.6)

e

Thus A = t In [1 + lml2] .
8
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5.7 . The effectiveLoperating) loss.

The definition of insertion transmission factor

given in Eq. 5.6.3-a can be modified if Fig. 5.6.2

is replaced by Fig. 5.6.3. This will yield a new trans—

mission factor, P which is called the effective or0’

Operating transmission function. Ps and Po will be

identical if the terminating resistances are identical.

The advantage of using Po in the design is that it will

avoid the occurrence of negative losses in the pass band.

The possibility that negative loss occurs is evident from

the definition of P3 in Eq. 5.6.3. When an ideal

transformer at one port is used, as will be apparent

later, the form of the formula is also simplified.

5.7.1. Effective transmission factor.

Using the diagram in Fig. 5.6.3, the maximum

available power is

2

lel = [1112,]. (5.7.1)

The power delivered to the load, from Fig. 5.6.1, is

2

[111' = 112122]. (5.7.2)

The transmission factor is defined as

2

Po = & ln Nm - i lnIEl +'§ ln'El

If 2
l 2 12

(5.7.3)

P0 = A0 + 3B0 o
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Thus the attenuation is:

A0 = i-ln.El + ln‘El

R2 I2

and the phase is: (5.7.4)

B = arg( I1) .
o ‘T_

2

The characteristic function is also defined here as before

-2A2 e 6

-2A. . (5.7.5)lvl "  

e

where Ae is the effective return loss (echo loss).

5.7.2. The echo loss.

The echo power here is defined as the total maxi-

mum available power minus the power delivered to the load.

Thus, in the definition of the characteristic function

above, we have the situation that a fraction e-ZAO of

the total power is delivered to the load and another

fraction, e-2Ae, is reflected, hence

1 = emzA0 + 6"2Ae

(a relation due to Feldtkeller).

To study the relationship between A9 and the termi-

nating impedances R1 and Z (or 21), consider Figs.

5.7.1, 5.7.2 and 5.7.3. In general, it is sufficient

to consider only Fig. 5.7.2 and Fig. 5.7.3. In Fig.

5.7.2, Z represents the load impedance. The circuit in

Fig. 5.7.3 contains the same driver E, but instead of

Z there is a driver V representing the
39
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echo, and resistor R1. V8 is selected in such a way

that the current I1 and the voltage V1 in Fig. 5.7.3

are identical to those in Fig. 5.7.2. Then the following
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relationship can be written

 

 

E = E - ve

R1 + Z 2R1

or

Ve = Z "' R .

2 RE

Hence

2

lel = ——E
2R1

v 2 2 2
lNe' = e = Z - R .

2R1 (Z + R E‘ 4R1

Thus

Ae = 6111133131 = lnlz + R11 . (5.7.6)

Ne AZ — R1

Let

IZ+R1 = 1

Z-R1l m

where [PI is referred to as the reflection factor.

The echo loss is important for the filter design by the

insertion loss method in the pass band. In the remaining

parts of this section, discussion is devoted to the study

of the echo loss, in the pass band, for dissymmetrical

filters. Substituting Eq. 5.4.2 into Eq. 5.7.6 we

obtain

Ae ln M + N

M - N

'CR2 + B/R2 + D + A

fig—B/32+D—A

 

ln
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As = 4;. ln (az1 + [1/a]zg)zcoszBI + (1/a + az1zz)sin2BI
 

(az1 - [1/a]zz)2coszBI + (1/a az1zz)sinZBI

where a = 1/Eh'

R2

Ae = t In (a2z1 + 222)2 + (1 - 222)(1 - a4z12)sinzBI

(azz1 - 222)2 a (11- 222)(1 --a4z12)sin2BI

 

(5.7.7)

In order to determine a bound on As function let

Eq. 5.7.7 be written as

 

As =4§ 1n ~(a221+22)2 + {(1+a221zg)2 - (a221+zg)2}sinZBI ,

(a221-22)2 + {(1-a22122)2 - (a221-22)2}sin231

(5.7.8)

From Eq. 5.7.8 it can be seen that if

(a2z1 + 22)2 z (1 + a221z2)2

then also

2
1(a221 - z2)2 z (1 - a 2122)2.

Since, in the pass band, Z1, 22, and a are positive,

then

(a221 + 22)2 > (8221 - 22)2

(1 + a22122)2 > (1 - a22122)2 .

The value of the numerator expression in Eq. 5.7.8 is

always between (azz1 + 22)2 and (1 + a22122)2 and the
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value of the denominator is between (3221 - 22)2 and

(1 - a22122)2. The curve corresponding to the denomina-

tor will always be below that corresponding to the nu-

merator. In Fig. 5.7.4 the curves are sketched.

 
   

FIG. 5.7.4

Curves 1 and 2 correspond to the numerator of Eq.

5.7.8 when sin2BI is O and 1, respectively.

Curves 3 and 4 correspond to the denominator of Eq.-

5.7.8 when sinZBI is O and 1, respectively.

Curve 5 is the echo-loss, Ae.

Curve I corresponds to the numerator of Eq. 5.7.8.

Curve II corresponds to the denominator of Eq. 5.7.8.
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5.8 . Derivation of insertion loss parameters in terms

of image parameters.

Referring to Figs. 5.6.1 and 5.6.2, consider

Eq. 5.6.3:

P8 = ln I2' .

I2

This relation can be put into the following form

P8 = 1n<_I_'2 £1): 1n<£g + 1n(fl) .

2 1 I1 I2
(5.8.1)

From Figs. 5.6.1 and 5.6.2 we also have

IQ = E

R1+R2

I1 = E .

R1+Z

Equation 5.4.1 gives

_I_1_ = CR2+D = M,

I2

Substituting these expressions into Eq. 5.8.1 we obtain

Pa =-. ln R1 + Z + 1n M . (5.8.2)

R1 + R2

When Eq. 5.4.2 for Z is substituted into Eq. 5.8.2,

it gives

 

P5 = 1,1121 + 112(N/M)M =ln 1"$111“ 157112 .

R1 + R2 (121-+122)

Using the espressions for N and M we have
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P3 = 1n R132 + 1n[:QR1R§o +1’El D +,«Eg A.+ B

R + R R R .1 2 2 1 ‘VR1R2

Substituting Eq. 5.5.4 into this equation and making

the following normalizations,

21 = :11

1

(5.8.3)

22 = 213 ’

R2

the desired result is obtained as

P8 = ln 2 MR1R2 + ln[;+ Z1Z2 sinh PI + Z1 + Z2 cosh PI] .

R1 + R2 z 22 2:92 z

1 1 2 (5.8.4)

Since P8 = As + st the derivations of the attenuation

function AS and the phase function. B5 for special types

of structures, i.e., symmetrical, antisymmetrical or dis—

symmetrical filters are cbnsidered next.

5.8.1. Symmetrical filters.

For this filter since, by definition,

Z1 = 22 = z ,

then

= 1n ’(EIEE- + 1n 2EmshrI + 1 + 22 sinh P£]

R1 + R2 22 '

a) In the pass band

AI = 0

PI = 331

Z1, Z2 are real, thus 2 is real .



103

Then

*
8

m

I

_ 1n 2 1R1R2 + 1n [cos BI + j 1 + 22 sin BI]

RT—+ R2 22

= ln 2 R1R2 + i In [cos2BI + (1 +2 2222sin2BI]

R1 + R2 422

+ j arc tan [1 + 22 tan BI]

2z

Therefore, we have:

ln 2 R132 + 1; ln [00823]: + (1 + 2222 13111231]

(5.8.5)

A8

B8 arc tan, 1 + 22 tan BI .

22

b) In the stop band.

2 is purely imaginary

z = jx

PI: AI+jkn, (k=0,+1, ...)

and

cosh PI =.i cosh AI

sinh PI = + sinh AI

where the upper or lower signs must be used simultaneously.

Therefore ‘ 2

P8 = ln 231131112 + i In [3308th1 + 1 - x2 sinhZAI]

R1 + R2 2x

+jarctan [_1-12tanhAI]

2x
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As = ln 2 R132 + % 1n [oosthI + 1 - x? 2sinh2Ai]

R1 + R2 . 5x

(5.8.6)

B8 = arc tan[:-21-xx2 tanh AI .

5.8.2. Antimetric filters.

For this filter 21:21a = R1R2. Thus,using

the same normalization as in Eq. 5.8.3 we have

2221 = 1

21 = 1/22 = z .

The transmission factor is then

P = ln 2 R132 + 1n [sinh P + 1 + 22 cosh P 1'
s -——————- I --- I

R1 + R2 22

a) In the pass band

AI = 0

PI = 3B1

and

sinh PI = sinh jBI = 3 sin BI

cosh PI = cosh jBI = 3 cos BI .

Then

P = 1n 2‘VR1RZ + ln 3 sin B + 1 + 22 cos B '
s —————-—- I ~-—-—-- I

R1 + R2 22

= ln 2 R1Rg + % ln[sinzBI + 1 + 22)2 cos2B;]

R1 + R2 22

+ j are tanh 22 tan BI .

[1 + z2 ]

Therefore,
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As = % ln sin2BI + £1 + 2212 coszBi] + 1n 2 R1R2

(5 8 7)

B3 z are tan 22 tan Bi] .

1 + 22

b) In the block band

2 = jx

PI.= AI+ (kit‘i'n/Z), k=0, :19...

sinhPI= isinh (A1». 3 “/2 ) =.t:1 coshAI

cosh PI = '1 cosh (AI + j 372 ) =.i j sinh AI .

Then:

P8 = ln 2 R1R2 + ln [3 cosh AI + 1 — x2 sinh A£]

R1 + R2 21

= 1n 21111112 + a} 1n E03112“ + (1 — 1:2 213111112111

R1 + R2 Ex

+ j are tan ' 2x coth AI

1 - x2

and

A8 = 1n 2 R1R2 + 4} ln [:cosh2AI + 1 -2xx___2_)2 sinhZAI]

R1 + R2

(5.8.8)

B8 = arc tan 2x coth AI] .

1 - x

4.8.3. Dissymmetrical filters.

The transmission factor is
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P8 = 1n 2 R122 + 1n.[1+-21Z2 sinh PI + Z1 + 22 cosh Pi] .

2 V2122R1 + 32 2 V2122

a) In the pass band

21, z2 are real

Therefore,

P8 = 1n 2;nyRz + lnljz1 + 22 cos BI + 3 1"'21952 sin Bi]

R1 + R2 2 2122

and thus

A8 =

R1 + R2 42122

B z: are tan 1 + 2122 tan BI

21 + 22

b) In the stop band

2 2122

Z1 = JX1

22 = 3x2

PI = AI + jkn or

PI = AI + J(kn + F/Z),

(1) PI = AI + jkfl , k = o, 11,.32, ...

P3 = 1n 2 R132

R1 + R2

2 2

1n 2 R132 + & 1n [:1+Z122) sinzBI + (21+22) cosZB?]

42122

(5.8.9)

k=0, i1, 000

+ 1n[1 ‘ x1x2 sinh A1 + x1 + x2 cosh At]

ZJ‘Vx1x2 2 X1X2
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AS = ln 2 R132

R1 + R2

2 2 .

+ i In [(1-1122) sinthI + (21+X2) cosh2A{]

4X1X2 4X1X2

B8 = arc tan ._ 1 - X112 tanh AI .

X1 + X2

(ii) PI = A1 + j(kn + 3/2)

P8 = ln 23(3132

R1 + R2

+ 1n 1"I122 cosh AI — 3 x1+ x2 sinh AI

24x1x2 2Vx1x2

A = ln 2 R132

R1+R2

+.§ ln[(1"‘x1x2)2cosh2AI + (x1+12) 2sinthJE]

4x1x2 4X1x2

BS = arc tan _X1 + x2 tanh AI

1- X1X2

(5.8.10)

As was mentioned earlier the operating loss will be the

same as the insertion loss if the terminating resistors

at both terminal pairs are identical. Thus, in the 0p-

erating loss, we have the same formula as in the case of

insertion loss, except that the term containing R1, R2

disappears. Thus, we have a more convenient set of for-

mulas if Operating loss formulas are used. This is what

will be done in the following sections and if insertion
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loss is required then the term

ln 2fR1Rz

R1+R2

will be added to the formula. In the next section the

formulas for the operating loss will be presented.

5.9 . Formulas for the operating loss design technique.

The operating transmission factor is

Po = ln [1+ 2122 sinh PI + z1+ z2 cosh PI

2 V2122 2V2122

(5.9.1)

5.9.1. For symmetrical filters.

a) In the pass band

A - i In cosh2B S1 222 inh2Bo — I + +22 3 I

42

(5.9.2)

Bo z are tan[_1_____2+ 22 tan BI].

b) In the stOp band

A0 = é'ln [costhI + 1 - x2 2 sinhzal]

4x2

(5.9-3)

B0 = arc tan ‘_ 1 - x2 tanh AI .

2x

5.9.2. Antimetric filters.

a) In the pass band
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2 1n [sinZBI + g1 + 2222 coseBI]

42

(5.9.4)

= arc tan 2z tan BI .

1 + 22

block band

= 2 ln.[cosh2AI + {13-2x222 sinheAIi]

4x ' (5.9.5)

arc tan.[' 2x coth AI .

1 - xfi

5.9.3. Dissymmetrical filters.

a) In the

A0

pass band

  

2 1 2'

2 ln[}1 + 2122) sinZBI + (Z1 + Z2) c08231:]

42122
42122

1
(50906)

are tan + Z1Z2 tan BI .

Z1 + 22

b) In the block band

or

2 2

g ln (1-x1x2) sinthI + (11+X2) costhI

4X112
4x1x2

1 (50907-8)

arc tan ‘_ ' x1x2 tanh AI ,

X1 + X2

_ 2 2

‘§ In (1-x1x2) cosh2AI + (X1+12) sinthI

4X1X2 4X1X2

(5.9.7—b)

arc tan ‘_ x1 + x2 tanh AI .

1 - X1X2



Chapter VI

FILTER DESIGN II

APPROXIMATION AND DESIGN PROCEDURE

6.1 . Introduction.

The filter design procedure considered in this

chapter is based on the image parameter method. It is

assumed that the insertion (effective loss) requirements

of the filter are specified. The synthesis of the filter

network is carried out using the image parameter method.

Some exact design procedures for the filter utilizing the

image parameter method and approximate techniques for sym-

metrical and antimetrical. filters with the insertion

loss method are already develOped [TO 1, F18 1]. In this

thesis the work is mainly devoted to the.design of frequen-

cy unsymmetric band—pass filters, especially those having

dissymmetric configurations. The realization procedure

is carried out by the image parameter method. The ele-

mentary sections used in this type of filter cannot be ob—

tained as those of frequency symmetrical filters by the

frequency transformation from a low-pass filter. The

technique deve10ped by Laurent, to generate elementary

sections for general filters, can be utilized. However

110
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these generated sections must be used as is without re-

ferring to how they are generated [LA 1]. There are other

techniques available to generate a set of elementary sec-

tions [BR 1, SH 1, MA 1, NO 1, BO 1, CO 1, SA 1]. These

elementary sections should be used as is. Since each ele-

mentary section is considered as independent, its prOp—

erties must be investigated separately. The necessary

information required for the design can be obtained from

analytical investigations.

One method which seems to be less complicated

than others, hence preferable, is to develop the elemen~

tary sections from the basic sections by m-derivation

[NO 1, B0 1, see also Chapter II, section 2.5]. One

other factor to be considered before deve10ping relations

for the elementary section is the fact that these sections

should contain a minimum number of inductors [SA 1, WA 1]

The elementary sections which are suited to the discus-

sion of this thesis are those E.S.1, E.S.2, and E.S.Z

which are presented in Chapter II.

The approximation of the loss functions for sym-

metric and antisymmetric filters are given by the formulas

AeZAI - 1n 2 Nepers for stOp band

A332 ln {z 22122 Nepers for pass band

where A8 is the insertion attenuation

AI is the image attenuation
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z is the normalized image impedance .

The approximation has to satisfy the overall requirements,

1.8.,

(1) in the pass band Asg’As min

(2) in the stOp band AsZ.As max .

An improvement on the approximation in the stop band for

symmetrical and antisymmetrical filters [FIS 1] is

2

A0 é AI + 1n [z2-+ 1] - ln 2 Nepers

2z

where A is the effective attenuation

I

All 3 Nepers .

6.2 . Approximation for the attenuation function of dis—

symmetrical filters.

In the pass band Belevitch [BE 1] has made an

extensive discussion especially for the low-pass filters,

frequency symmetrical and unsymmetrical band-pass fil-

ters of symmetrical and antimetrical types. However

for the dissymmetrical case he considered only epecial

types of filters. Here formulas for completely dissym-

metrical filters will be established. From Eq. 5.9.6-a

and -b, in the pass band, we have
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‘F 2 2

e2A° = (1+z122) sin2BI + (21+Z2) cos2BI

_ 42122 42122

 

2 2 2
e2A0 [_(1+z122) + ((z1+z2) _ (1+z122) )coszBI .

 

 

L. 4z1z2 4z1z2 4z1z2

2

Let (1 + Z122) = B

42122

2

(21 + 22) = C

42122 .

Consider now the value of the function e2A° at a fixed

frequency. If C - B<1O then, at this frequency, e2A°

will have a maximum when coszBI = O. This maximum is

B. The minimum at this frequency will occur when

cos2BI = 1. This minimum is C. The converse is true

when B — C<<O. Thus, the curve of A0 will always

lie between the two curves of % 1n (1+z122)2 and
 

 

 

   

 

42122

2

% ln (21+22) as is shown in Fig. 6.2.1.

42122

A when cos2B = 1 A0 when coszBI = O

ALN O I

or or % ln (1+Z122)2

% 1n (z1+22)2 /,.Az1z2

‘ ‘-4z122 ’

/ \\  

  

  
FIG. 6.2.1



114

In the block band, from Eqs. 5.9.7-a and -b, it is

evident that

2A 2 2

e 0 = } (1-X1x2) sinhZAI + (X1+X2) cosh2AI

X1X2 X1X2

or

2 2

e2A° = & (14112) cosh2AI + (X1112) sinhZAI .

x1x2 x1x2

If AIZ.3 Neper the following approximations can be

made

sinh AI: cosh AI: eAI/2

V e2AI- 1 2 6A1 0

Thus, the above formulas of eZAO, using these approx-

imations give

2 2

BZAO zi. l’(1-x1x2) eZAI + (x1+x2) BZAI

x1x2 4 x1x2 4

2 2

A0 :A1 + a} 1n(1+x1)(1+x2)_ 1n 2

4X1XZ

Hence,

2 2
AI on — it ln(1+x1)(1+12)+ ln 2 . (6.2.1)

4X1x2

( 2 2
If 2 ln 1+x1 )(1+12 ) is equal to In 2 then A0 = A1.

4X1X2

 

This will occur when |z1| = |22| = 1, which is the case

when an image impedance matching exists. On the other

hand if
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2 2

f(x1,x2) = i In (1+x1 )(1+x2 ))>ln 2 ,

4X1 X2

then AI<1AO. Therefore it is necessary to investigate

the behavior of the function f(x1,x2) to check if the

condition ln 2<if(x1,x2) is possible.

Since

2 2

f(X1,X2) = i In (14-11 )(1+X2 )
 

  

 

 

 

4X1 12

then

2

Br = (1 + x22) (x1 - 1)

2

3x1 2x2 x1

2 ’ '

a r = (1 + 122) 1

2 3
3x1 x2 x1

bf = (1 + x12) (x22 - 1)

2
3x2 2x1 x2

62: = (1 + ‘12) 1

""2 "‘3
3x2 x1 x2

622 = x12 ‘ 1 x22 ' 1

2 2
5x15x2 x1 x2

8x1

bf = o ———9 x2 = 1
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x2=1

fx,x, = 2 >0

,/:1—1

xg-1

fxaxa = 2 >0 0

1/41=1

xg=1

Thus we will have an extremum at (x1,x2) = (1,1) be- '

cause DD’O. However this extremum is a minimum

(f > O, f > O). From this discussion it is seen

xxx: xexa

that f(x1,x2) can be made as large as we desire. This,

of course, implies that, according to Eq. 6.1.2, AI

can be made as small as possible, thus a minimum number

of elements will be required in the filter. However, this

possibility is limited by the available types of imped-

ances, z1 and 22.

6.3 . The design procedure.

As the starting points for the design for the

insertion loss filters, the following requirements are

given:

I. Effective pass band and the required effec-

tive return loss in this range, i.e.,
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A or Ipl = e 9
e .

II. Effective stOp band and the corresponding

attenuation requirements.

III. The requirements on the imput and output

impedances in the stOp band.

For the image parameter filters we have the following

requirements:

If The interval in which the image impedances

are real.

I

II and III’ as in the II and III above.

Consider the function

2 2

NW.) -- tlnilifll+tlnflifal
2x1 2x2 °

The following curve in Fig. 6.2.2 is the curve

of % ln §1+x22 , where x) O. This curve is to be used

2x

as an aid in determining the attenuation curve in the stop

band. The curve is symmetric with reSpect to x = 1. Thus

only the part of this curve for x< 1 is plotted in Fig.

6.2.2.
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2.00

1.75

1.50

1.25

1.00

  J A ll l l l l

.01 .02 .04 .06 .2 .4 .6 .8 1.0

x-1o X "9

FIG. 6.2.2

k ln §1+x22 Nepers

2x

The design procedure consists of the considera-

tions of the following items: I’, II’, 111’.

If Gives the cut-off frequencies.

/

II. Gives the lower bound on the attenuation

or the poles of attenuation.
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III{ Gives the types of image impedances.

Additional requirements are: filter is lossless and

contains a minimum number of inductors. The procedure

is described briefly in the following:

(1) Plot the y-scale.'

(ii) Plot the impedances on the Yescale, then

with the aid of Fig. 6.2.2, plot

ln f(x1,x2) on the yhscale.

(iii) Substract the curve in (ii) from the

required attenuation curve.

(iv) The remaining curve is usually, after

adding ln 2 to it, the requirement

for the intermediate section.

By using the template we can find the poles of attenua-

tion, as is shown in Fig. 6.2.4. In Fig. 6.2.3 the

plots of A0 min and in f(x1,x2) are shown. In Fig.

6.2.4 the template curves which will approximate AI

are illustrated, i.e., the image attenuation of the inter—

mediate section to be designed. Since the terminating

image impedances are supposed to be given in advance,

this means that the conditions in the pass band are

completely satisfied.
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,/ A Nepers

“aft
.fl

/: Upper stop band ”£9229

2 2
Aomin lower stop band 1‘ %1n(1+x1)(1+x2)

2 2 C ‘ 4X1XQ

%1n(1+X1)(1+X2) , /’

4X1X2

\\\\ //’/’ \\\
\\ /// AI

g \/

\

'FIG.6.2.3

1A Nepers

' Template .

i curve

i x /”
\ /

Q J \/

\Y Yes You Yes Ya:

FIG. 6.2.4
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_§;4 . Some more study of the high order image impedance

"Z'Tiil and ermo
 

In Chapter II, general discussions of these

types of impedances are given. In this section these

impedances are studied to obtain some details useful

in the filter design.

Figures 6.3.1 and 6.3.2 illustrate the plot

of the image impedances me and an, which are nor-

malized with reapect to the constants RTm and an°

Note that the frequency axis is the J”L-axis described

in Chapter II rather than the actual (n-axis. These

curves are calculated with the aid of digital computer.

In these figures, curve (1) represents the image imped-

ance with critical frequencies (attenuation poles),

mop and wgp which are relatively close to the cut-off

frequencies. In the image impedance corresponding to

curve (2), the critical frequencies are taken far from

the cutaoff frequencies, and finally curve (3) corre—

sponds to the situation that the critical frequencies

are taken still farther from the cut-off frequencies.

The effect of the location of the critical frequencies

of the image impedance on the impedance curve is evident

from these examples. It is to be noted that the shape

of these curves depends also on the band width. In fil-

ter design, using these types of impedances9 one should
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plot Z1 or Z2 and choose the best curve fitting the‘

requirements.

The following is a table of the quantities which

is useful in the design.' All of the quantities are cal-

culated for a fixed band width of (22—18) = 4 k rad/sec

and only the best curves are included in the table where:

JfiLmin,1JfiLmax,.J”Le are extremum frequencies

D1 : maximum

D2 : minimum

JfiLZ — JAL1 : effective band width

Amax : expected attenuation in the pass-band .

Table I

Z1 = ZTm/Rmm (refer to Fig. 6.3.1)

w01 1 2 5 10 k rad/sec

J“Lop1 -1.10 —1.10 -1.10 -1.10

.!\_2p1 1.10 1.10 1.10 1.10

nmin 0.090 0.050 0.090 0.120

Joimax -O.895 —0.890 -0.965 -O.965

, JfiLe 0.875 0.990 0.870 0.885

JAL1 -O.9650 -0.970 -0.965 -0.965

JALQ 0.945 0.945 0.915 0.925

D1 0.282 0.283 0.269 0.215

02 0.208 0.283 0.192 0.152

Amax 0.0275 0.0190 0.0195 0.02 Nepers
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Table II

(refer to Fig. 6.3.2)

“21 35

JoLOpg —1.10

47L2p2 1.10

JflLmax —0.110

JflXmin 0°895

17L. —0.875

J“L1 —0.925

J"12 0.960

D1 5.88 10‘3

02 4.16 10‘3

Amax 0.019

49

-1.10

1.10

-0.105

0.990

-0.930

-0.950

0.975

2.42 10"3

1.61 10’3

0.02N

30 k rad/sec

—1.10

1.10

-0.150

0.885

—O.87O

—0.920

0.965

9.9 10’3

6.9 10"3

0.02N Nepers

In.general the image impedances are normalized with

respect to the terminating resistance, RL° Thus, the

normalized impedance used in the design is

ZTm _ Z ZTm RTm z RTm

RL I RTm RI: 1 RI.

or

E12. = Z — ..Z—J-IE Ell Z ELISE °

RL II R m RL 2 RL

Let

max min 2 max min 2

ZTm ZTm = RI: (OI‘ Zflm an RL )0
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Then Rum/BL (or RTm/RL) is equal to 1/V575E .

Thus, RTm = R 45755 (Rum = 85/957553 which can

also be used to determine the value of RTm or Rum .

Note that the expected attenuation in the pass band,

A is the only required condition for the determina—
max 9

tion of the image impedance if the filter is symmetric.
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Chapter VII

CONCLUSIONS AND FURTHER PROBLEMS

Complete characterizations of elementary band—

pass filter sections have been developed as well as

formulas for the values of the elements of these sec-

tions. The elementary sections discussed in this the-

sis are of Special types (see Chapter II). However,

the deve10pment can also be applied to other types of

sections. The reason that only the Special type of

sections are considered here is that a filter made out

of these sections is an economical filter, i.e., it

contains a minimum number of elements. A systematic

design technique is described using an approximation

formula for the attenuation function, which takes into

consideration the effect of image impedance. The effects

of image impedances are generally omitted in the earlier

approximation formulas for the attenuation function.

The study of higher order image impedances by

using a frequency transformation technique is discussed

and the selection of the location of the critical fre-

quencies of the impedance function is considered. For

the determination of the location of these critical

frequencies a digital computer program has been employed.
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After using a frequency transformation on the image im—

pedance expression, through a trial and error method

these frequencies are located to give the "best" image

impedance function. However, an analytical approach,

perhaps utilizing elliptic functions, could be used.

Such an approach is not considered in this thesis, but

rather is left as a further problem.

In this thesis only lossless band-pass filters

are considered. In the ease of incidental losses, as

is known for the low-pass case [T0 1], as long as the

losses are assumed to be uniformly distributed, a simple

computer program can be written to take into account the

effect of losses. In this thesis, the program written

and used for the calculation of the insertion loss func-

tion can easily be extended to the lossy case. However,

since the main objective in this thesis for the designing

of "zig-zag" type of band-pass filter is to describe an

exact design procedure, such an additional program

coveringthe lossy case is not written.
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APPENDIX

EVALUATION OF ATTENUATION FUNCTION

BY DIGITAL COMPUTER

The following is an example of the evaluation

of attenuation function using a digital computer. The

filter considered in this example is of the form shown

in Fig. A—1. The ideal transformer of turn ratio

1xn is used to make both the image impedances of this

filter identical.
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The following table gives the explanation of the symbols

used in the computer program. The program is also

included after the table and it is used for the filter

in Fig. A—1 with the following parameter values.

1001 10 kc/sec

30 kc/sec
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—1.1
“0p1 = “(“0p1)

92p1 = 9(w2p1) = 1.1

Amax a max. attenuation in the pass band

0.02 Nepers

(see also Table I on page 122 for case w01 = 10)

The result is included in the following and the sketch

of the attenuation function in both stop bands and pass

band are given in Fig. A-2.



Symbol used in
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Table III

Meaning Symbol used

 

 

 

 

 

the program in the text

201(1) I attenuation poles in the (.001

upper and the lower st0p -

P02(I) band (I = number of E.S.Z. w21

‘ sections or its m derived) “

PP1 transformed critical fre- 90p1

quencies in impedance in-

PP2 vestigation (PP1 = -PP2) 92p1

21(1) attenuation poles in the no,

/ fi-scale

P2(I) §21

GAP1(I) attenuation poles in the Y01

y-scale (logarithmic ‘

GAP2(I) scale) Y21

H(I) the Hqunction of E.S.Z. Hi

of its m—derived section

2 _

Hf e mi (6 -1) $992512)

(5456(1))2 (9241)

-S(I) confluence frequenc of 50(1)

each E.S.Z. in the -scale

§0(1)=§2 119591-15502119EE1"

, 2

47:13:51-1 Alton—1

20(1) constant of the Héfunction m1

2 2

m1: 1 (L92p1W90p1-1“3'90p1W9221-1

1’—-2

ATI total attenuation AIt

‘-
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(Table III continued)

Symbol used in

the

AI

BIT

BI

X1

A01

A03

DEL

OS

0B

A0

OM

1

program

Meaning

...“ ..-... .. ...—.... 

‘ image attenuation of each

section

AI = ln 1+H

1-H

total image phase

BIt = 213I

image phase

BI = arc tan [2H1]

normalized impedance

x1 -—- ZTm/RTmW

STOP band attenuation

(exact)

STOP band attenuation

(apprOX)

0.5 log f(x1,x2)

logarithmic frequency

scale

transformed frequency for

:impedance investigation

angular frequency

pass band attenuation

transformed angular

frequency

Symbol used

in the text

AI
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* 041917 SOEMINTAPOERA

10

11

12

13

100

15

16

18

17

21

PROGRAM DESIGN

ODIMENSION POI(2)0P02(2)0P1(2)0PZ(2)0GAPI(2)0GAP2(2)0S(2)0

120(210H12IOHA(2)0AG(2)0AI(Z)0BI(2)

PP18-1.100

PPZSI .100

P01(2):109000

POI(1)=PPO(POI(2)0PPI)

POZ(I)RPPO(POI(2)0PPZI

P0212):300000

DO 2 I3102

P11I)=POLE(POI(I))

PRINT 30 (PI(I)0I81021

FORMAT (1H003X07HPOLEIB 0F80303X0F803l

DO 4 18102

P211)=POLE(POZ(I)1

PRINT 50 (P21I1018102)

FORMAT (1H003X07HPOLEZ= 0F80303X0F803)

DO 6 I8102

GAPI(I)=005iLOGF((PI(I)+10)/(P1(I)-10I1

PRINT 70 (GAPI(II0I8102)

FORMAT (IHO03X06HGAPI3 0F80303X0F803)

DO 8 I810?

GAP2(II'D-SiLOGFI(P2(I)+lo)/(PZIII-Iol)

PRINT 90 (GAP21I10131021

FORMAT (IHO03X06HGA923 0F80303X0F803)

DO 10 1'102

S‘II3COL(PI(I10PZII)I

PRINT 110 (5(11018102)

FORMAT (1H003XOIZHCONFLUENCES 03X05150803X051508)

DO 12 I310?

ZO(I)8CONS(PI(I10PECIII

PRINT I30 (ZOCI9018102)

FORMAT'11H003X0IZHM =03X0F150803X0F1508)

PRINT 100

FORflAT (1HO03X025HSTOP BAND ATTEN IN NEPERS)

ON8-9025

DO 14 K'I068

IFIK-33) 15015016

GO T0 17

IF (K-34) 15018015

0N30M+2025

GO TO 17

IF (K-I) 20021020

PRINT 22

ZZOFORMAT (1H006X02H0M0lOXtBHGAM016X03HATI018X03HA01¢18X.3HA03.

20

25

24

115X0IIHLOGF(XI0X2))

CONTINUE

ATI'O

DO 23 18102

HCI)'RATHCZOCIIOSCIIOOM)

HACII‘fiBSFIHII’)

IF (HAfII-Io) 3‘02502‘

GO TO 23

AG(II'ABSF((I0+HA(III/Ilo-HACIIII

IF (AGCIII 23023035



141

38 IF (AGIII-100**8) 39039023

39 AICI)*20*LOGF(AG(III

23 ATIBATI+AIII1

STIIISINHIATII)**2

OBSABSF($ORTF((180*2201*(100+ON1/(100-OM111

XI‘ZIMCOB0POICZI0POIII10P02(1I)

IF (XI) 27028027

28 GO TO 14

27 C8ABSF1X1)

IF (C-lo) 29030029

IF (C‘100**6) 29029030

30 GO TO 14

29 CONTINUE

GICCIC+XI**2)/(20*X1II**2

DIABSF110+G*ST1)

IF (DI 40040041

40 GO TO 14

41 A013=005*LOGF(DI

TaABSFISORTFCG’I

IF (T) 42042043

42 GO TO 14

43 ZSLOGFCTI

6.005*LOGF(ABSF(10M+101l¢0fl~1011I

AO3IATI+Z-LOGF(201

PRINT 310 0MOGOATIOAOIOAO30Z

31 FORMAT (3X0F8020513X02150811

14 ON-ON+0025

PRINT 110

110 FORMAT (1H003X021HPASS BAND ATTENUATIONI

PRINT 34

34 FURNAT (1H008X02HXI0IBX02HAO018X03HBIT012X02H0N012X03HDEL)

DEL8-1.OOO

DO 19 L31064

IF (L‘Io) 490‘9050

49 GO TO 60

50 IF (L-55) 70070049

60 DEL'DEL+0001

GO TO 80

7O DEL'DEL+0004

GO TO 80

80 OS'PPOIPOICZIODELI

OH'POLE(OSI

BIT'O

DO 35 I'102

HIII'R‘TH‘ZOCII05‘IIOONI

BICII.2¢*(ATANF(20*H(III)

35 BIT'BIT+BIIII

5T2ICSINF(BITI)**2

X1=ZINIOSOPOI(210POI(I)0POZ(I))

02'1110-X1**2)/(20*X1))**2

ACID-fiiLOGFCABSFI10+02*ST2I1

PRINT 360X10AO0BIT0ON0DEL

36 FORNAT (3(3X0EI505)03X0F80303X0F803I

19 CONTINUE -
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STOP

END

FUNCTION COL(AOBI

DIMENSION A13I0BI3I

RISORTF(A*A-IOI

OISORTF(B*B-10)

COL'(A*O+B*R)/(O+RI

RETURN

END

FUNCTION CONSIAOBI

DIMENSION A13IOBK3)

C3100

R-(C*AI*SQRTF(B*B-10)

O'CC-BI*SORTF(A*A-Io)

RBB-A

S‘SORTFCCiC-IOI

CONS3(G+R)/(R*SI

RETURN

END

FUNCTIONMRATHCA0B0CI

DIMENSION A13)0B(3)

DSIOQ

GBSORTFCD*D-Io)

TnD-B

PBC-B

OBSORTFIABSFICic-IOII

RATH“A§G§RI/CT*Q)

RETURN

END

FUNCTION ZIN(9000UOSI

TORI'Ilo/RI*CP*R‘O*O)/I(9*P-U*U)*(5*S-R*RII

TOR23$ORTFIABSFC(9*R-180*180I*(220*220-R*P)I)

0180.215

0230.152

COIIlolsoRTFKD1*DZ)

ZIM'TORI*TOR2*COI

RETURN

END

FUNCTION ROLE(OI

GSSORTFIIaoi22oI

A8001

TASA*(O*0+G*GI/IQ*Q-G%GI

ROLEFIo/TA

RETURN

END

FUNCTION RPOCAOBI

REN35+I4oo-20*Iao*22o/AI/4o

REN'B-C4Oo-2.*A1/40

PDQ-AlPEN/PEM

RETURN

END

END
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STOP BAND ATTENUATION IN NEPERS

OH

-9025

'9000

-8075

-8050

"8025

-8000

'7075

-7050

-7025

“7000

-6075

-6050

-6025

“6000

-5075

-5050

-5025

-5000

“0075

-0050

-0025

-4000

-3075

-3050

-3025

-3000

-2075

'2050

-2025

-2000

’1075

-1050

-1025

1025

1050

1075

2000

2025

2050

2075

3000

3025

3050

4000

4025

4050

0075

5000

5025

5050

5075

6000

6025

GA!

“010853225E+OO

’011157178E+OO

*01I478722E+OO

011819439E+OO

‘012161104E+00

-0I2565721E+OO

'0I2975560E+OO

’013‘I3I99E+OO

‘0I3881587E+OO

“010384106E+OO

’014924649E+OO

-015507746E+OO

'0I6138670E+00

”016823612E+00

-017569394E+OO

-018386239E+00

‘0I928312‘E+00

”020273255E+OO

‘021372201E+OO

“022599256E+00

”02397865‘E+OO

-025541281E+OO

”027327I85E+00

‘029389333E+00

-031799‘38E+00

’03‘657359E+O°

’038107003E+OO

“042369893E+OO

‘0‘7775572E+OO

-050930610E+00

'06‘96‘!‘9E+00

‘060471996E+00

-010986123E+OI

010986IZBE+01

0804716965+00.

060960109E+00

05‘93O6I4E+00

0QT775572E+00

042364393E+00

03BIO7003E+OO

030657359E+00

031799938E+OO

029309333E+00

02554128IE+00

023978650E+00

022599256E+00

02I372201E+00

020273255E+00

019283124E+OO

018386239E+00

017569394E+00

016823612E+00

016I38670E+OO

AT!

012153058E+02

012239682E+02

012337574E+02

012449ISSE+02

012577634E+02

0127273BIE+02

012904549E+02

013118161E+02

0I3382188E+02

013719900E+02

014174373E+02

010839844E+02

0159989555+02

020222259E+02

016282573E+02

014626395E+02

013636026E+02

012396565E+02

012286595E+02

01I753083E+02

011267581E+02

010812592E+02

010376121E+02

099991111E+01

095240619E+01

090941730E+01

086527426E+01

081926852E+01

077061754E+01

071847347E+01

066215437E+01

060274069E+01

0559III23E+01

072523363E+01

071555523E+01

077167214E+01

083098361E+OI

089980807E+01

096632370E+OI

0I0364844E+02

0III3BOS3E+02

012050583E+02

013282581E+02

016207818E+02

0I4039082E+02

013163435E+02

01260336OE+02

012289783E+02

012031465E+02

011533969E+02

013678126E+02

011552237E+02

011008683E+02

A01

012032159E+02

012291305E+02

012547024E+02

012809294E+02

013085837E+02

013388769E+02

013726091E+02

014113623E+02

01¢573289E+02

015140750E+02

015881228E+02

016936590E+02

018731231E+02

025121373E+02

019266597E+02

016836987E+02

015406330E+02

014352611E+02

0134940655+02

012751526E+02

0120827585+02

0114620152+02

010871897E+02

010299546E+02

0973‘6209E+OI

091681059E+01

085915444E+01

079965588E+01

073747732E+01

067189042E+01

060285976E+01

05341783OE+01

050112407E+01

071047596E+OI

065006564E+01

070268563E+OI

077054453E+01

080210205E+01

0915931882+01

099344433E+01

010780384E+02

011765822E+02

013061211E+02

016114935E+02

014007BIIE+02

013192399E+02

012731470E+02

012436238E+02

012235745E+02

012095841E+02

011997651E+02

011929784E+02

011884955E+02

A03

012032159E+02

012291305E+02

012547024E+02

012809294E+02

013086837E+02

013388769E+02

01372609IE+02

014113623E+02

014573289E+02

015140750E+02

015881228E+02

0I693659OE+02

01873123IE+02

025121373E+02

019266597E+02

016836987E+02

015406330E+02

014352611E+02

013094065E+02

012751526E+02

012082758E+02

011462015E+02

010871897E+02

010299546E+02

097346209E+01

091631059E+01

085915444E+01

079965589E+01

073747732E+01

06718904IE+01

060285965E+01

053417774E+01

050112324E+01

07104759BE+01

065006555E+02

070268561E+01

077054453E+01

08¢210205E+01

091593188E+01

0993444335+01

0I0780348E+02

011765822E+02

0130612IIE+02

016I14935E+02

014007811E+02

013192399E+02

012731470E+02

012436238E+02

012235745E+02

012095841E+02

011997651E+02

011929784E+02

0I188‘955E+02



6050 015507706E+00

6075 014920649E+00

7000 014384104E+00

7025 013881587E+00

7050 013413199E+00

7075 012975560E+00

8000 012555721E+00

802$ 0I2I81104E+00

8050 011819039E+00

8075 011078722E+OO

9000 011157178E+00

9025 010853225E+00

9050 010565455E+00

9075 010292603E+00

PASS BAND ATTENUATION IN

X1 A0

067256E+00 0159195-01

087333E+00 0334I4E’02

098897E+00 03II49E-04

010622E+01 011020E-02

011103E+01 0398085-02

0II‘21E+01 071442E-02

01163IE+01 099590E-02

0II763E+01 012150E¢01

0I1840E+01 013651E-01

011877E+01 014501E-01

0II794E+0I 013285E-01

01I505E+01 039334E-02

011250E+01 048403E-02

010954E+01 0211285-02

010625E+01 069647E-03

010410E+OI 0144‘2E‘03

010170E+OI 099766E-05

099512E+00 013073E-06

097530E+00 099010E’06

095736E+00 0‘3064E-04

094114E+00 024592E-03

092650E+00 075248E-03

091332E+00 0167675-02

090148E+00 030576E‘02

089089E+00 048310E-02

038105E+00 063230E-02

087311E+00 087651E‘02

086579E+00 010332E’01

085945E+00 OIIZOIE-OI

085405E+00 OIIIZZE-OI

080955E+00 0999‘9E‘02

084594E+00 079361E-02

084318E+00 053053E-02

08¢I28E+00 026703E-02

084023E+00 07I3IIE-O3

084004E+OO 047371E-06

080073E+00 081‘22E-03

080230E+00 029902E-O2

089080E+00 05934IE'02

144

011362254E+02

011289252E+02

011226971E+02

011173381E+02

011126930E+02

011086407E+02

011050855E+02

011019507E+02

010991742E+02

010967051E+02

010945013E+02

010925278E+02

010907553E+02

010891589E+02

NERERS

BIT

-058256E+01

~056363E+01

~0509IIE+01

-053687E+01

~052609E+01

~051635E+01

~050738E+OI

-049904E+01

~049II9E+OI

-048376E+01

-045715E+01

-043396E+01

-04I3OOE+01

-039360E+01

-037532E+01

~035787E+01

-034104E+01

*032463E+01

-030853E+01

-029260E+01

-027675E+01

-026089E+OI

-024‘92E+01

-022878E+01

~021238E+01

-0I9566E+01

~017855E+01

-016099E+01

~014292E+01

~012428E+0I

~0105052+01

-085182E+00

“060672E+00

-043524E+00

-021765E+00

0555625-02

023366E+00

046570E+00

070077E+00

011858321E+02

011846602E+02

011847579E+02

0118598135+02

011882479E+02

0119153OOE+02

0119585585+02

01201319BE+02

012081077E+02

012165502E+02

012272414E+02

012413356E+02

012614687E+02

012961136E+02

OM DEL

'0993 ‘0990

“0985 ‘0980

-0978 “097°

‘0971 1 '0960

-0963 “0950

‘0956 '0940

‘0948 -0930

“0941 -0920

-0933 ‘0910

‘0926 -0900

“0895 -0860

‘0865 -0820

'0834 -0780

-0802 -0740

‘0771 -0700

‘0739 “0660
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