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ABSTRACT

THE IMAGE PARAMETER METHOD FOR THE DESIGN
OF THE FREQUENCY-UNSYMMETRICAL BAND-PASS LADDER FILTERS
USING SPECIAL TYPES OF ELEMENTARY SECTIONS

by Kudrat Soemintapoera

The design of electrical filters can be accom-
plished by either of two methods, viz., (1) the insertion
parameter method which was developed by Cauer [CA 1] and
Darlington [DA 1] or (2) the image parameter method which
finds its origin in the early works of Campbell [CAM 1]
and Zobel (20 1],

In insertion parameter theory, after special types
of insertion loss requirements are selected (flat loss in
both the pass and stop bands) exact formulas for the char-
acteristic functions of the filter exist. However, in the
general case, the insertion loss requirement in the block
band is arbitrary and an approximation for the character-
istic function is necessary. Only recently some work
toward this general case has been conducted [FU 2]. The
second part of filter design by the insertion parameter
method is the determination of the network element values,
This necessitates the solution of high-order equations and
the method of zero shiftingo It is known that in these

calculations an abnormal number of digits must be consid-
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ered, otherwise the calculated element values are far from
accurate or unrealizable. On the other hand, filter
design based on the image parameter method does not ne-
cessitate tedious calculations and the element values
are explicitly given by very simple formulas. Discussions
of the advantages and disadvantages of image parameter
method over that of insertion parameter method can be
found elsewhere [TO 1].

In this thesis some of the work done by Tokad
[TO 1] for the low-pass filters are extended to the
frequency unsymmetric band-pass filters. The contri-
butions of this thesis are

1, Complete characterizations of the elementary
basic sections are developed and the formu-
las for the element values of these sections
are developed.

2. A systematic design technique is described
for the frequency unsymmetric band-pass
filters.

3. A general approach to the evaluation of
terminating sections is given which utilizes
a network transformation.

4, The image impedance function of a higher-
order terminating section is studied and the

results which are important to the designer
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are shown.
In addition, discussions necessary for completeness in
development of the primary subject material are given

so as to make the thesis self contained.,



THE IMAGE PARAMETER METHOD FOR THE DESIGN
THE FREQUENCY-UNSYMMETRICAL BAND-PASS LADDER FILTERS
USING SPECIAL TYPES OF ELEMENTARY SECTIONS

by

Kudrat Soemintapoera

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Department of Electrical Engineering

1965



ACKNOWLEDGEMENT

The author is indebted to his thesis advisor,
Dr. Yilmaz Tokad, for his guidance and constant encour-
agement in the preparation of this thesis.

The author wishes to thank his major professor,
Dr. Harry G. Hedges, for his guidance, his encouragement
and his patient advices during the difficult phases of
the author's study.

Thanks also are due to Dr. Joseph A Strelzoff

and Dr. Edward Nordhaus for their encouragements.

i1



TABLE OF CONTENTS

CHAPTER I. INTRODUCTION « .« ¢ o o o o o

CHAPTER

2.4
2.5

2.6
2.7
2.8

2.9
CHAPTER

301
3.2
3.3
3.4
CHAPTER
4.1
4.2
4.3

II. SPECIAL TYPES OF ELEMENTARY SECTIONS
FOR THE FREQUENCY UNSYMMETRIC BAND-
PASS FILTERS. o ¢ o o o o
Introduction e« o o o e o e e
The elementary sections . .. . .+
General discussions of the elementary
sections e e o e o e o o
Analysis of the elementary sections .
H-functions and some basic sections
of band-pass filters . . « .« o
Equivalence of the elementary sections
Further equivalence characteristics .
Pole distributions and structure
configurations . . « « .« .« o+
The impedances . . e o . . . .
III. THE FREQUENCY TRANSFORMATION AND

THE TEMPLATE METHOD
Introduction e o+ s & o o o
Template for the low-pass filter . .
Template for the band-pass filter . .

Impedance with normalized frequency .

IV. TERMINATING SECTIONS . . . .

Introduction o e o o o o o e
The disassociate filter . « ¢ o

The image parameter ladder terminating
sections e o e e o o e o

iii

11
15

24
26
32

34
36
51

51
51
55
66
69
69
70

T4



CHAPTER V. FILTER DESIGN I - DERIVATION OF
FORMULAS ¢ e e e e e e e e 82

5.1 Introduction e o e e e o e e o 82

5.2 The characterizing function of the
image parameter filters . . . .« .« 85

53 The chain matrix e o o o o o o e 89

5¢4 Current and voltage transmission
factors (M and N§ e e« s o e e e o 90

5.5 Entries of chain matrix in terms of
the image parameters . . « ¢« « o 90

5.6 Insertion loss parameters e e o e e 92
5.7 The effective (operating) loss . . . . 95

5.8 Derivation of insertion loss parameters
in terms of image parameters e« o« o« o 101

5.9 Formulas for the operating loss design
technique e o e o e e o e + 108

CHAPTER VI. FILTER DESIGN II - APPROXIMATION
AND DESIGN PROCEDURE . . « + « « 110

6.1 Introduction e o o o e e e e e« 1710

6.2 Approximation for the attenuation
function of dissymmetrical filters « o 112

6.3 The design procedure . . « o« o« « « 116

6.4 Some more study of the high order
image impedance ZTm and an S, -

CHAPTER VII. CONCLUSIONS AND FURTHER PROBLEMS o« 127
BIBLIOGRAPHY, : e o o o + & e e« o 129

APPENDIX. EVALUATION OF ATTENUATION FUNCTION
BY DIGITAL COMPUTER ¢« + o« o o o o 134

iv



Chapter I
INTRODUCTION

Although techniques for electrical filter design
are wéll established, there is still improvement that can
be accomplished in both the image parameter and the inser-
tién parameter methods. In the insertion method, once the
characteristic function is obtained, an exact realization
is available. However if the loss requirement is not
taken as one of a special kind (as is usually done) the
calculation of the characteristic function requires some
approximations. Such approximations are discussed in the
literature [FR1], [FU 2]. Even these approximations can
effectively be done by reducing the problem to the use of
the image transfer function as in the case of a reference
filter [DA 1] or the method described by Fischer [FIS 1].
This, of course, indicates one phase of usefulness of the
image parameter method. In general, it can-be said that
the image parameter method of filter design is well estab-
lished. In many cases the filter sd designed is suffi-
cient for the particular purpose which lead to the design
of the filter. However, certain considerations in terms
of improving this design method may yield a more econom-
ical filter, i.e., a filter with fewer elements. Such

1



considerations can be found elsewhere [BE 2], [TO 1],

(FIS 1,2]. Even though the design becomes more involved,
8till the simplicity in the calculation of the filter ele-
ment values remains unaltered. However in the insertion
loss parameter method calculation of the element values

is a major pfoblem. Therefore, the image parameter method,
due to some of the simplicities in the design, is still
widely in use.

In this thesis some of the improvements suggested
for the image parameter method [TO 1], which cannot be
used directly for frequency unsymmetric band-pass filters
are considered. A complete study of elementary sections
for this type of band pass filters is given. A technique
for realizing frequency unsymmetric band pass filters
based on the image parameter method is described. Fur-
ther, the properties of certain terminating sections are
investigated. A general development of the derivation of
terminating sections is described. 1In this derivation
there is no limitation on the complexity of the terminating
sections as there is in methods previously given by the
other authors [Bo 11, [RE 1], [TO 1].

The method of design described in this thesis also
contains the design of crystal ladder filters [SK 1]. 1In
fact since the branches of the elementary sections are
identical with the electrical circuit representation of

a quartz crystal, a quartz crystal symbol is used in the



branches of these sections. However, crystal filters
require additional conditions on their element values,
therefore the method described in this thesis may not
always lead to a filter whose branches may be replaced
by crystals. This problem is not discussed in this
thesis.,



Chapter II

SPECIAL TYPES OF ELEMENTARY SECTIONS FOR THE
FREQUENCY UNSYMMETRIC BAND-PASS FILTERS

21 » Introduction.

The image attenuation function of band-pass fil-
ters which can be obtained by a real* frequency transfor-
mation from a low-pass filter attenuation function, has a
geometric symmetry property. PFilters of this kind are
generally called frequency symmetric band-pass filters.
The frequency transformation,which is real, reduces the
design of such band-pass filters to the design of low-pass
filters., The low-pass filter can be realized through the
existing several well known techniques and the inverse
transformation yields the band-pass filter.

There are band-pass filters whose attenuation
functions cannot be obtained through a real frequency
transformation from the attenuation function of a low-
pass filter. These band-pass filters exhibit non-sym-

metrical attenuation characteristics and therefore they

* By the word "real" it is meant that the transformation
function is a positive real function.
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are, in general, referred to as frequency unsymmetrical
band-pass filters. However, for some special cases, as
Laurent (LA 1] has shown, it is possible to obtain such
characteristics from the low-pass attenuation character-
istics by means of a frequency transformation followed
by a non-constant factor multiplication. This method
yields a band-pass filter section which should be used,
as it is, without any reference as to how it is derived.

In the design of the image parameter filters, the
filters are considered as being composed of cascaded ele-
mentary sections. For this purpose there must be image
impedance matching at the terminal pairs of the cascaded
sections. The elementary sections used in image parameter
filters are, in general, m-derived type sections.
Laurent [LA 1] has described several elementary band-pass
filter sections. One of the elementary sections (called
a zig-zag filter section) is the one that is considered
here in detail.,

In this thesis, this elementary section (zig-zag
filter) forms the basis for designing frequency unsym-
metric band-pass filters. The zig-zag filter is a band-
pass ladder network in which the attenuation poles are
created, alternatively in the upper and the lower stop
bands, by either (1) only series arms or (2) only par-
allel arms or (3) both the series and the parallel arms,

so that the attenuation poles in the upper stop band are



created by the series arms while those in the lower stop
band by the parallel arms. The latter type of filter is
used as the ultimate form of the filter designed by the
method developed in this thesis. In general, this type
of filter is frequency unsymmetric.

Economical considerations are also important in
the design of filters. For such reasons it is desirable
to have the least number of inductors and capacitors pos-
sible. For practical reasons, minimum number of inductors
is preferred, For ladder networks, this is achieved if
most of the ladder arms are reactance networks which have
the appearance of the electrical representation of a quartz
crystal.,

Watanabe [WA 1] has extended the necessary and
sufficient conditions given by Pujisawa [FU 1] to the
design of frequency unsymmetric band-pass filters based
on the insertion loss method. His method results in a
band -pass filter Qith minimum capacitors and inductors
without mutual inductance. This network has most of
its ladder branches in the form which could be consid-
ered as the electrical equivalent circuit of a quartz
crystal. Thus, in this case, the zig-zag configuration
appears but partially. In a recent article, using an
insertion loss design technique, Schoeffler [SC 1] has
obtained ladder filters in which all ladder arms are

replaceable by crystals and some capacitors. In this



approach a special form of characteristic function is
produced so that when the synthesis is carried out by
the zero shifting method, a zig-zag type filter is ob-
tained, i.e., most of the arms of the filter are made
of reactance networks which represent a crystal.

An extensive survey [BE 1, CA 1, TO 1, MO 1,
FIS 1,2, NO 1, RO 1,2, SA 1, CO 1, BR 1, MA 1, SH 1]
has shown that a complete design procedure of frequency
unsymmetric band-pass filters based on the image para-
meter theory does not exist. The present work is an
attempt to design a frequency unsymmetric band-pass fil-
ter based on the image parameter design technique. Spe-
cial elementary sections, to be used as building blocks
of this filter, will produce a zig-zag filter of the
third type mentioned above., This type of filter has
a minimum number of capacitors and inductors. In certain
cases 1t is possible to replace some or all ladder arms
by crystals. Therefore, this configuration can also be
utilized in the design of ladder band-pass crystal filters
[sCc 1,2]. It has been mentioned above that the elementary
sections used in the design procedure to be described are
of special form. These sections cannot be derived from
other simpler sections as in the case of those derived
from prototype sections by Zobel's m-derivation. For
this reason it is necessary to investigate these elemen-

tary sections separately and establish the necessary



information for the design procedure. The following
sections of this chapter are devoted to the descriptions

of these elementary sections.

2.2 « The elementary sections.

The salient feature of the zig-zag filters to be
considered are that (1) the series arms will produce
poles of the attenuation function only in the upper stop
band and (2) the parallel arms will produce poles of
the attenuation function only in the lower stop band.

- The arms of this ladder filter are formed from a react-
ance network which is similar in appearance to that of
the electrical representation of a quartz crystal. On
the other hand, there are also elementary sections in
which these types of reactances appear only in one of

the components which form the ladder arms. However, these
sections do not form elementary sections for the zig-zag
filter of the third type. All the three types of ele-
mentary sections will however be considered here. Since
reactance network shown in Fig. 2.2.1 resembles closely
the equivalent circuit of a crystal, it will sometimes

be replaced by the crystal symbol. Figure 2.2.2 a, b

and c¢, represent the three types of elementary sections,
their attenuation curves and image impedance curves, re-

spectively. It is evident from Fig. 2.2.2 that only the



first type or only the second type of section will not
be able to produce the zig-zag filters. This follows
since type E.S.1 has an attenuation pole only in the
lower stop band, type E.S.2 has an attentuation pole
only in the upper stop band, while the E.S.Z. type sec-
tion has one attenuation pole in each of the stop bands.
In this latter section, the upper stop band attenuation
pole is created by the series arm and the lower stop
band attenuation pole is created by the parallel arm.
The element values and further properties of these sec-
tions will be given later. PFirst it is necessary to give

some general discussions on these elementary sections.

o— | B oEo—lDl._o
— 00—

FIG. 2.2.1
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2.3 o General discussions of the elementary sections.

In Fig. 2.3.1 the E.S.Z. section is shown in
some detail. As is shown iater, once the cut-off fre-
quencies, the poles of the attenuation function and the
constant of one of the image impedances are given, the
section E.S.Z 1s completely determined.

In the design of image parameter band-pass fil-
ters these sections are connected in cascade as shown in
Fig. 2.3.2 for n = 3. There exists, of course, image
impedance matching between the interconnected terminal
pairs. Note that in Fig. 2.3.2, the series and par-
allel arms of the filter are indicated by the symbol of
a quartz crystal for convenience. The resulting filter
has the form shown in PFig. 2.3.3.

The other types of elementary sections, i.e.,
E.S.1 and E.S.2 are shown in figures 2.3.4-a and
2.3.4-b. Their attenuation poles are on the lower and
upper stop bands, respectively. Thus, the attenuation
poles of the filters constructed in cascading the E.S.1
sections only are concentrated all in the lower stop band
and those of the filters constructed from E.S.2 only,
are concentrated in the upper stop band. Once the cut-
off frequencies, the attenuation poles and the constant
of one of its image impedances are given, the E.S.1

and E.S.2 are completely determined.
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. In forming a filter, these different types of
elementary sections can be used provided the imége im-
pedance matching exists at the terminal pairs. One
disadvantage of constructing filters this way is that,
once the constant of one of the image impedances is gi?en,
the constants of all the image impedances of the elemen-
tary sections in the filter will automatically be fixed.
This also means that the element values in these sections
are fixed., Therefore, it might not be possible to re-
place the filter branches by the quartz crystals. 1In
addition, since the impedance level at the other termi-
nal pair is fixed, in general, there is a necessity to
use an ideal transformer at this terminal pair.

A study of the pole locations of these elementary
sections shows that the section E.S.Z can be considered
as the cascéde connection of E.S.1 and E.S.2. Indeed,
this equivalence exists with the addition of an ideal
transformer at one of the terminal pairs of the cascaded
sections. It is necessary to study this equivalence re-
lation, because it will help in the determination of the
element values of composite filter which is formed by
cascade connected sections. Before starting a discus-—
sion on this equivalence relation, in the next section,
some analytical detail of the different types of elemen-
tary sections is given., The information obtained from

these details of the sections is utilized for the design
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of the band-pass filter having these sections,

2.4 o Analysis of the elementary sections.

Each of the sections is treated separately in
the following subsections of this section.
2.4.1, Type 1. elementary section (E.S.1)

The network structure of E.S.1 1is given in

Fig. 2.4.1.

[o NN ICII( O
2 —> o L &~
Ts 7—' Cg by
C
o— 1T ©
FIG. 2.4.1

The various functions of E.S.1 are given as

follows,.
1 Cr 1 8"+ @1
Zm, = = A /1 4 - (2.4.1)
Ts Cr UI; 8 S+(02
2 2
2, =g 1 1 (s7+ w5q) (2.4.2)
T 8 1 r 82+ w2)(82+ w?2)
+ 5 1 2
8
E = L (2.4.3)
Cp
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where

wqy, Wo : cut-off angular frequencies

2
W o = 1
o7
L1 7 4, & L1Cs
s
2
Yoo = 1 _1
L1C1 L1Cqg

The element values of this section can be ex-
pressed in terms of the parameters wgq, wq, Wo and

Rp, as follows:

1

From equation (2.4.4):

2 2
C1 _ 92 -%o1
Cr
“o1
(2.4.5)
2 2

Cr Y2 - @
Ca ~ ~2 2

. wy = wgy

Let C,/Cq = K4 and let the constant of the image im-
pedances be RT1 and Rn;’ then:

w2 w2
K, = 2 1
Wq = Wo1

1
Rp, = C—r '\/1 + Kq



Therefore:
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:
By = G

1" T
0)2 w2
¢, = 2 201 c
@ 01
1
L‘] = 2
“01°1
S
Te B 1 + K1 RT’

N1 + K1

(2.4.6)

(2.4.6-a)

Thus, when the critical frequencies and RT: (or Rﬂz)

are known all the element values are determined from

equation 2.4.6 and equation 2.4.6-a.
2.4.2. Type 2.

elementary section

(E.S.2)

The network structure is shown in Fig. 2.4.2.

LT b2

FIG. 2.4.2
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The various functions of E.S.2 are given as follows:

. 5 3.3 oo
g o Loal1,.% 1 W/<9 + wy)(s™+ W3) (2,4.7)
Ta Cp Cq

S 2 2
(87+ wyq)
2 2\
7 1 1 1 (s7+ wy) (2.4.8)
g - Cq C S (S§+ w2)
1 + 52 2
qQ
2 2
1 (87+ uy) (2.4.9)
i (s2+ o)
1+ EB 5T
Cq
where
(A)? = 1
L>Co
2
Wy = 1 . 1 1 (2.4.10)
L,C; ] Cq L20p
+~53
P
w§1 = 1,
L0, * IoC,

From equation 2.4.10 we have,

2 . 2
Co _ Woq = @y
P W]
(2.4.11)
2 )
Cq = Y21 - “é
T, “%
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Let cp/cq = K,, then
wg - wﬁ .
K = ————
2 2 2
Woq -5

Formulas for determining the element values are:

1
Rf[l2 = G- ‘\/1 + Ko
P
= =1 A/
Cp = RT 1+K2

1
Cq = = /1 +K
d KR, T e (2.4.12)

2 2

w - W
¢, - “2r= ¢ g

>
Wy

1
L, = 5
w102 //

K2
,Rng = -1'+_K2 (2.4.12-3)

p

Thus, as in the previous case, the element values and

one of the impedance constants, RTa or R#B, are de-
termined from Eqs. 2.4.12 and 2.4.12-a, if the critical
frequencies and Rq, (or Rna) are given.

2.4.3. Type 3. elementary section (E.S.Z)

The network structure is shown in Fig. 2.4.3.
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|
I
ZT Wo1 <:Zn
e |

FIG. 2.4.3
The various functions for E.S.Z are given as follows:

The series and parallel arms reactances are:

2, 2
1 87+ W,

C 2 2

series arm: X4
as 87+ Wy

]

2, .2
1. 8 * %01
parallel arm: X, = @ 55

bs
S+wo

w53 confluent angular frequency (““l<“’o<““2)

The image parameters are:

2, 2y (e2s 2)
1 ]'1'_—'+k.'\/(s+w1)(s +w2) (2.4.13)
Ca Co s(52+w§1)

ZT =
2. 2

2 A 1 . (8%+ w5q) (2.4.14)
n = Cp C

» 1*_(_:%, g\e™+ wl) (8%+ w3)

2, o2
. 1 (s%+ @5) (2.4.15)
= C 2, 2v(.2, .2y
4 *"C_:' '\/(s+w1)(s+w2)

where
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Wg = 1 or
L,C5
2
Wy = 1 + 1
T-.C T,C
LR (2.4.16)
“81 = 1
L0,
2
Wor = 1, .1
I,C; * IC,

At the cut-off angular frequencies wq and wy, H
becomes infinite, thus at these frequencies the denom-

inator of H approaches zero. Since

2 "9
H - ] X4 (8%+ wj). ,
X1+X2 ,b/ 2 2.2

1 1 2 2 2 2
Fa-(s W) "+ '(-;:;(s -#001)(5 + m21)

then at 82 = -w?,
2 2,2
Ca _ _ (~wy +wo) ' (2.4.17-a)
b (_ 2 + 2 )(_ 2 + 2 ) e
w1 @01 W+ Wy
and at 82 = —wg,
2 2.2
gg (—wy + wg) s (2.4.17-D)
= = p) 2 2 )
b (=03 + woq) (=) + ©59)

Then from these two equations, 2.4.17-a and -b, we have
2 2

2 2 2 2
(-w1 + wo) (-w2 + wo)

- 2 =7 2 2 2 2
(-wy + “31)('“3 + ”31) (—wp + wyq) (=wy + wpy)
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2 2 2 2 2 2
(o + wp) (0] + @) (20 4 W)
C— I >
(- + wp) (- + 0gq) (=0 + Why)

Since only real frequencies are to be considered, in this

expression the negative sign is used which gives

(2.14.18)
ik B &)
2 - of +up | (-up + ugq)(=up + wpy)
(-5 +wgq) (=0 + 05y)

Substituting this expression into Eq. 2.4.17, we obtain:
) (2.4.19)

2 2

Cq (we-w1)

% Vgl (BiB) VB ) ) |2

The numerical values of Cy, and C, are determined after
the constant Ry or Ry of the impedances in Eq. 2.4.13%
or Eq. 2.4.14 1is given, 'Note that when one of the above
constants is given the value of the other is fixed auto-

matically., The values of the capacitors Cqy and "Cb are

where: (2.4.20)

Ca = 55 A1 + K Cb = - Y1+ K
’V1 + K

= A
Rp = oo
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Other formulas necessary for the determination of the
element values are developed in the following.

From Eq. 2.4.17:

2
(-F + wh)
K = =7 .2
(W) = wg1)(@zg = ©3)
2 k@2 - oyl 2] 2}
“o = |2V K(®q - @1)(w21 - @9) + ¥

where, since wo>w1, the positive sign is to be used,
From Eq. 2.4.16

“’c2> = “%1(1 + g—l)
and, then,
C Wg-u ~ \/K(“’? w51) (050 2) + (03-081)
i “01 “’c2)1

Thus C4 is determined in terms of Cp and hence 1y

is also found as

From the relation given in Eq. 2.4.16

2
w3y = 651 +—)

then
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which;determines also L, by the relation |

Further, we have the relgtion

= L 1 _ = _K (2.4.21)
" TS Frox  TeR T

In the above analysis, the factor K4, K, or K appears
for each different section. These factors are used later

as the charactérizing factor for these sections.

2,5 « H-functions and some basic sections of band-pass

filters.

The H-functions of the sections E.S.1 and
E.S.2 have.similar frequencj dependent parts as the
H-functions of the sections shown in Figs. 2.5.1 and
2.5.2,

For E.S.1, the expression for the H-function is:

(2.5.1)
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Therefore, if one performs an m-derivation operation
on this section (series m-derivation) a section which
has similar structure and H-function to the E.S.1
will be obtained where for the m-parameter the expres-

sion used is

2 2
2 _ W 9= %54 .
m = (5)1 5

Wo= @44

The section in Fig. 2.5.1 1is called the basic section
for the band -pass filters.
For the E.S.2 section, the H-function is

(52+ w%)
2
(s2+ w5)

(B 6D [

Similarly, from the section shown in Fig. 2.5.2, after
the application of Zobel m-derivation, a structure
having the same circuit configuration and H-function

as that of the section E.S.2 can be obtained. The
H-function of E.S.2 is

(w?- w?)
H = — o
2 2)



26

8 | — 4

h T "

¢ 4
FIG. 2.5.1
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Zb_1 —_ Za

o— —0
FIG. 2.5.2

2,6 + Equivalence of the elementary sections.

Comparing the image impedances of E.S.1, E.S.2
and E.S.Z we notice the following:
1. %na has the sam?‘expression as ZT:’ except
for the constant.
2. ZTB has the same expression as ZT’ except

for the constant.
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3 Zn, has the same expression as Z,, except
for the constant.

By adjusting the values of the constant in the image

impedances (this can be done by adjusting the element

values) an image impedance matching can be provided for

the cascaded E.S.1 and E.S.2 sections at their inter-

connected terminal pairs. The resulting section will have

the same image impedances as that of E.S.Z except for

the constants (see Figs. 2.5.3 and 2.5.4). However

this cascaded E.S.1 and E.S.2 section and E.S.2

have identical H-functions. Complete equivalence will

be obtained if an ideal transformer is connected at the

end of the cascaded network shown in PFig. 2.5.5.
From Eq. 2.4.12-a and Eq. 2.4.6-a, in Fig.

2.5.3 with Rﬂ.’a = RT:’ we have
B’t = —-—K_l— RT = —ﬁ_ R'JT = K1 K2 R
1 T+ Ky Tt 1+ Kq 2 T+ Ky 1+ Ky Te°

For the network in Fig. 2.5.4, from Eq. 2.4.21 we

have
K
Bn = T3xxfr
If the constant factors Rn‘ and R, are equal, then

the constant factors on the other side of the networks,

i.e.y, R and R will be identical when an ideal

Te ™
transformer is connected at the terminals of one of the
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FIG. 2.5.3

A cascade of E.S.1 and E.S.2

FIG. 2.5.4
E.S.Z
[}
= 2Zp [::j
4
FIG. 2.5.5

Equivaient network

g
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equivalent networks. Let this transformer be connected
at the terminal pairs of E.S.Z as shown in Fig. 2.5.5.

Then the transformer ratio is given by

2
2 2 2 2
2 _ B %21 =% %1 - oy :
- RT: w? w wz wz
21 T 1 2 7 01

It remains to investigate whether the networks in Figs.
2,53 &and 2.5.5 have equivalent H-functions. The
H-function of the network in Fig. 2.5.3 1is a composite
H-function, i.e., it is related toithe H-functions of
both E.S.1 and E.S.2. Let the H-function of E.S.1
be H; and that of E.S.2 be Hy. Then the H-function
of the composite network in PFig. 2.5.3 1is

Hi + H
i - TTgs
172
Since
2
1 8 + Wy
H =
1 V1 + K1 82 + wg
and
1 32 + w2
Hy = 2 g
Vi+g, V5 T
then
(92 + w?) (s2 + “S)
+
H =

2 2
|:1 V(K1+ 1)(K2+ ‘Il):l Jj V(S * e )(S * e )]
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. 82 +L1/1+K2 wf + 414K, wg)/( A 1+Kq + 4{1+K2)]

g
1 (14K 1+K5)
[ + V + 1)( +Ko "v(sz_’_wf)(sz*’wg)]

V1+K1 + 4/ 14Ko

From this final expression and Eq. 2.4.15 we have

W$1/1 + K1 + w§1/1 + K2
\/1 + Kq + Vfi + Ko

2 ., 2 o
[(wy = w5q) (wyq = w7)
2 2 2 2 5
Y +“2\/(“2 = wop)(wpq = w5) £

1

2 . 2 2
(wy - wyq) (wpq = w])

> >
(w5 = wgq)(wzq = wp)

On the other hand, since

2 +N’(1 + K1)(1 + K2)
A1+ K+ 41+ K

K1K»

[\/ﬁi{{ﬁ» V1 + Ky

2

2 2
(wa - u1)

= k— —[2 ’
(02 02 \(ul _ 2 2_ 2 v(u2 _ .2y
[\ﬁ“’z‘ wo1) (W= w3) + V“’F wor)(wq= w) |

then, from Eq. 2.4.19 it can be seen that this expres-

sion is equal to K. Thus,
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1+ VO + 5)(1 + Kp)

‘V1 + K1 + ’V1 + Ko

and finally
(32 + mg)

V1 + K [:N[SQ + w?;Z;E + wé)]. .

H =

This last expression is exactly the expression of the
H-function of the E.S.Z section. Therefore the equiv-
alence of the networks in PFig. 2.5.3 and 2.5.5 {is
established.

The last part of the above discussion can be

simplified by the theorem given in the following.

THEOREM:
The H-function of a lossless 2-port network
will not change if the network is augmented by
an ideal transformer connected to one (or both)
of its ports.

PROOF:
The proof is trivial since by definition

H = ZSC
ZOC

and the open and short circuit impedances 2.,
and Zg, at one of the terminal pairs of this
2-port are either unaltered or both multiplied by

the same turns ratio when ideal transformer is added.
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Note: The impedance constants on both ports can be
multiplied by a constant factor without changing
the K's of the section as can be seen from the
relation

R = _K_ .
T 1+K Ry
This means that only the element values of the

section are changed.

2.7 « Further equivalence characteristics.

The H-function of the E.S.Z section has the

following form
2 2
1 (S + wo)
H = *
V14K Nks2+ w?)(32+ wg)

Note that if K, as well as the critical frequencies,
is not changed the H-function remains unaltered.

Now consider a network consisting of cascade con-
nected sections of Fig. 2.5.3. Let each of these ele-
mentary sections be replaced by its equivalent network,
given in PFig. 2.5.5. The resulting network is shown in
Fig. 2.7.1. The structure to the left of 8, is an
E.S.Z, the structure between sy and 8y, also that

between 8o and sz, can be replaced by E.S.Z's ac-

cording to the above theorem thereby eliminating the
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b - -

| ‘ 1
| 2 | !
e [ w30 m

FIG. 2.7.1

g |
I'=1 IT IIT %é
g ‘

FIG. 2.7.2

transformers. The resulting network will be in the form
as in Pig. 2.7.2, having an ideal transformer. This
transformer has a different transformer ratio as compared
to that last transformer in Fig. 2.7.1, but the H-func-
tions of these networks are identical.

Thus, it can be concluded that any filter consisting
of cascade connected pairs of E.S.1 and E.S.2 can be
replaced by a filter consisting of E.S.Z sections ter-
minated on an ideal transformer at one of its terminal
pairs. Since the H-function will be the same, the calcu-

dlation of image attenuation and the image phase functions






34

of the complete filter might be easier from one of these

networks as compared to the other.

2.8 . Pole distributions and structure configurations.

In this section possible locations of the atten-
uation poles of a band-pass filter containing E.S.1,
E.S.2 or E.S.Z are considered. The following rules
may be observed:

1« The network consisting only of E.S.1, E.S.2
and E.S.Z will be obtained if there are at
most two half poles and the rest of the poles
are full poles.,

2. Network consisting only of E.S.1 will be
obtained if besides the condition 1, all
poles are on the lower stop band.

3. Network consisting only of E.S.2 will be
obtained if besides the condition 1, all the
poles are on the upper stop band.

4, Network cénsisting only of E.S.Z will be
obtained if besides the condition 1, there
are equal numbers of poles in the upper as
well as the lower stop band. Full poles are
counted as two,

Figure 2.8.1 1is an example of the application of these

rules with six poles.



35

|
|
|
|
|
[

i
]
i
i
U
i

|
|
|
l
|
1
|
|
|
|

O 7o) ) Oo— Ne)
////@4/@(//@/ m N/ 2/148181/74 Y7 /1411 14 T

| | [ ]

e O

| [ “{
0 O OO O [
J-. ¢ —F a— ' o
ﬁ%ﬂmlﬂ" NI, L//_ﬂz@aﬂ@um YL L B
M (]|
#— il {— ° ! + b
] 3 - = =
B £ o o
I.LLLL@LLLLL“UIM (L1 W ’ AL/_@LWM .//llllxw
o, /
| | [ |
11 |DI | |
CJ 3
X half pole . PFIG. 2.8.1 ® full pole

Possibilities of network configurations
with 6 attenuation poles



36

2.9 + The impedances.

The filters composed only of elementary sections
that have been discussed in detail previously, i.e.,
E.S.1, E.S.2 and E.S.Z have terminal image impedances

of the following forms

Z2_(w) Ry (w2_ mg1)
w = -
T ©  V(eR- w%)(wg— w?)
and
Ry V(@2 @) (uB- o?)
Zm(w) = —
’ @ (- o?)
w21T W
where
8 = Jjw
Wy, Wy d angular cut-off frequencies
RT and Ry : constants
wrq, o1 3 critical frequencies that cor-

respond to the attenuation poles.

Using the frequency transformation discussed in Chapter III,
section %.5, they will have the following form

— Ry 1/(a2- 1) - (ML-Mgq)
n ® Ty, | ey - Az

N

—~

P/
I

(2.9.1)

Rp @-7Vpq [erv 41 -112
“m 4G2- 1 | @Iy M-I

W, = Jw1w ’ L is the transformed frequency .

(W]

~
Bl

-
]
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The plot in Fig. 2.9.1 represents these impedances.

They are normalized with respect to the factors

Rn Va2 -1 for Zpy and

Wy TP Yo (2.9.2)
Rp a-/p1  for 2,
“n ac -1

These two factors still leave Rp and R, free to be
selected. In the design of a filter with E.S.1, E.S.2
and E.S.Z as elementary sections, RT or R 1is one

of the numbers that should be given before the design is
carried out., It determines the values of the elements.
From the plot of the impedance curves in PFig. 2.9.1 it
is seen that there is only a narrow effective pass band
range, i.e., the range where the impedances are relatively
less fluctuating is a small portion of the entire pass
band. Thus if a wider effective pass band is needed, a
terminating section (T.S.) with higher order image
impedance will be necessary. Note that the extremum point
of these curves are close to one of the cut-off frequen-
cies. This is mainly due to the fact that the form of
these curves is controlled by either J=i01 or 3=[21

and the extremum points in the pass band are closer to
these frequencies which are in the block band. The in-
vestigation of these curves then suggests that if the

image impedance is a function of at least two control



10

Q5

38
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"1, II, III represe
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hpper stop band
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, FIG. 2.9.1
N



39

frequencies and one of them lies in the lower block band
and the other in the upper block band, then the extremum
point can be pulled towards the center of the pass band
or perhaps the impedance curves will now contain two
maximums or minimums which are located close to the cut-
off frequencies. 1Indeed, if this is the case then it is
possible to improve the matching requirements by arranging
the location of the controlling frequencies so that the
impedance is relatively less fluctuating in the pass range,
i.e., s0 that there is a wider effective pass band. Two
types of sections having image impedances with control
frequencies in the upper stop band and lower stop band,
i.e.y, of higher order, can be readily obtained from the
E.S.Z. These are sections obtained by series and shunt
m-derivations of E.S.Z. They will be used as the ter-
minating sections. These sections will be studied in
detail in the rest of this section. In order to simplify
the investigation of their image impedances some frequen-
cy transformation will be used.
2.9.1. T.S. made of shunt m-derived E.S.Z.

The structure and the image parameters of this
section are shown in Fig. 2.9.2. In detail the m-

derived impedance is

. 11w K (R) (R (Re?)
T = Ca (1-m2)+K © (P-wdp1) (@Bp1-6P)

(2.9.3)
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o— | o
ILF =L
X "I—h Z
n T m n
0.
FIG. 2.9.2

Shunt m~derived - E.S.Z section

2 2
2 B (s™+ wp4)
T T g 2+ w2 2. w2
‘V(s +w0p)(s + wzp)

2 2 2 2 2 2
2y = RTm (s +w5) \/(s + m1)(s +w2)
= 2 2 2 2

m
s (s +w0p)(s + wzp)
S = j(_.)
-1<m< 1
wOp’ wzp attenuation poles
2 2
(s+ w%)
H = Y

V(82+ w?)(s2+ wg)

1 ¢ constant
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and the H-function (H = tanh PI) is

o ( 2 2)
H - o~ @ _ (2.9.4)
V1 + K Vﬁng- w2)(w§- w?)
At the frequencies w0p1 and W2p1e Hz(w) = 1.

Therefore from the expression for H it follows that

2 2 2 2 2

®0= ¥op1 (—wgpq+ w7) (wp= “’o%l

wo~ Yop1 Wop1~ Wq/\Wop1= W2
or

2 2., 2 2
(=wopg+ @) (w5 wopq)
2 2 5 I 2
o2 _ Yop1 * Wap1 | (@opi- @9)(wppq- wp)
2 .

1= “op1) (Wo= @opq)
i 2y, 2 2
(.w2p1- W1)(w2p1‘ wz) (20905)

On the other hand, at the cut-off frequencies W, and
w5, H(w) is infinite. Then by a similar discussion
to that in section 2.4.3 we have

Cq (wg B w?)
PR . IO .
2. .6
5 (2.9.6)
C (w2 - 2)
el -0 2
%o (5 = wgq) (639 = w)

C
(where 65 - K ) .

o



Equating these last two equations the following is obtained.

2 2,,.2 2
(wp— wp) (wy- uyy)

2 2 2 2 2 2
2. - Sz ol (e w)leym ) (2.9.7)
- 2
21 1 (wy=- wg)(wi— w@1)
- 2 2 2 2
(- &) (03~ o)
We also have
_ 1 1 + K _ R
RTm - Ca (-me) + - (1=m¢) + K
(2.9.8)
where R - éL 1+K,
a _

2.9.2. T.S. constructed of series m-derived E.S.Z.

All the formulas from XEq. 2.9.4 to Eq. 2.9.7
above by replacing woq by Wpq 9  Wopq by Wopoe (°2p1
by w2p2 apply also for this T.S. elementary section.
The structure and the image parameters are shown in

Fig.. 2.9.3. The image impedance in detail has the form

2 2
Z, = R::m (- %DZ)(“’222' “) (2.9.9)
n (w§1- w2) V(we- w?)(wg- w?)
where an _ Ru[(1“mf) + K] and

(2.9.10)
1

a1
o= Ty VTex
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FIG. 2.9.3

Series m-derived E.S.Z section

Rp V(sz+ w?)(82+ wg)
s

Zp = 5 5
(s + wsq)
2 2 2 2
7, = an (s + wop) (87 + W)
m S (82+ w2)) Ws%+ w?)(s2+ w?d)
21 1 2
(s%+ wd)
H =12
(s%+ w?)(s%+ wh)

Note that for series and shunt m-derived cases
wOp > (.oo1 and

Wop < Woy
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2.9.3. The frequency transformation.

For the investigation of the impedance curves of
ZTm and an, it is convenient to use a frequency trans-
formation. First, let the expressions for the impedances

be rewritten for ready reference.

‘ 2 2
Py = Boy & — ;“’ - g” = (2= 2) (wd-?)
(0= w0p1)(w2p1" w~)

[ B

2 2.2 2
Zp = R; 1 (Wopo= @) (W~ %po)

TP D) /(P AR A

W< Whp< Wy

W< Wpp< W
In these expressions the angular frequencies Wy 9 and
W54 do not correspond to the attenuation poles for the
corresponding sections., The frequency transformation
used here for sz will transform wnq to =-x, and
W54 to +o for an. Therefore it will have the form
with the following conditions:

(- wp)(wo- &) + (w-w5)(wq-8)
(Wp-©q)(@-8) (2.9.11)

no=

where 8 is Wgq Or Wy, depending whether ZTm or

an is being investigated.
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For w =wq we have S L = -1
W =wo we have L = +1
w =0 we have L = N (0) = 201wp - Y(@g+ @)
Y(wa- w1)
w = we have L= N (w) = (W1+ Wp) = 27
(wp= w1q)
If 8 = wyy (case ZTm) R
L(0) > MN(w) with ML(e)> 1,
If 8 = wpqy S Llw)< L(0) with L (0)< -1,

Since

the frequency transformation is a bilinear trans-

formation, so is the inverse transformation

-+

2(»1(02
W1+ W2 - —T—
L+ | Wo = Wq
w = § "(01-0-(.02-- 28 1 (209013)
- |5

Fig: 2.9.4 shows the transformation from the w-axis to

the J \L-axis,

Figs. 2.9.5 and 2.9.6

are the plots

of the Zp  and Zx, normalized to Rp, and Rm
respectively.
LS BYOR DONA 0 L 2pper stop pand,
Io1 Op 1 72 w2p I21
_%//Ljil NN NN NN /:. +./1/7/,u//// Lo L1l 2l /Liw

FIG. 2.9.4

Frequency transformation
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The curves in Figs. 2.9.5 and 2.9.6 represent
the variation of Zn, and Zp  in the pass-band, re-
spectively. From these figures one can observe that the
curves are either flat or have almost a Chebyshev char-
acter over a wider range of the pass band. The latter
type is preferable. Note that these characteristics are
considerably improved as compared to those of elementary
sections. Among these impedance curves one should select
the "best" curve. Since the best image impedance is the
one which causes smallest insertion loss in a given ef-
fective pass-band, then this, of course, implies that
the image impedance must have Chebyshev behavior in this
effective pass-band [CA 1] In order to obtain best
image impedance one has to locate the critical frequen-
cies of this image impedance in the block bands properly.
To study the effect of the location of the critical fre-
quencies on the form of the image impedance curves which
are already indicated in Figs. 2.9.5 and 2.9.6, a new
frequency scale, )\, 1is used. On this (L -axis,
either wpq or wpq 1is transformed to infinity. The
cut-off angular frequencies w; and w, correspond to
+1. On the other hand, the critical frequencies J“Lop
and _fl.zp are chosen so that they satisfy the relation

J"Lop +Mop =0
This relation will provide almost a symmetrical character

for the image impedance in the pass band. On the W -axis,
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4L =0 corresponds to an angular frequency which is
located in the vicinity of Wy = é(w1 + w2), the arith-
metic means angular frequency. Thus, on the w-axis
these impedance curves are also relatively symmetrical

with respect to w It can be observed that the form

a*
of these curves is almost independent of the location of
wgq Or wpq, Wwhich is the critical frequency of the
impedance. Based on these observations one can locate
“op and Wops perhaps by cut and try method on the

computer, to obtain the desired image impedance char-

acteristics.



Chapter III

THE FREQUENCY TRANSFORMATION
AND THE TEMPLATE METHOD

3¢l o Introductibn.

In the design of ideal filters by the image para-
meter theory, as well as by the insertion loss theory,
one of the problems is the determination of the number
and the locations of the attenuation poles. One method
useful in practical filter design involves use of the
template. This method was developed by several authors,
(RU 1, LA 1, SA 2, FO 1], each differing slightly from
the others. The one discussed and used here is the one
set forth by Rumpelt [RU 1], which can be applied to
the low-pass, band-pass or high-pass filters.

In this chapter some techniques of frequency
transformations are considered. The following sections
are devoted to the development of these transformation

formulas and their usage.

3.2 « Template for the low-pass filters.

For this type of filters the normalized frequency

51
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with respect to wq is

L= W
y
where w4 1is the cut-off angular frequency of the low-
pass filter. The frequency transformation used is

Yy = 4 1n (—-:Cli-) (3.2.1)
N2 _ 4

e > .

Since the H-function of the prototype section of the

low-pass filters is given as

H(jw) = w (3.2.2)
2 - o
then
H(LL) = L y L1, (3.2.3)
M2 o

From Egs. 3.2.,1 and 3.2.3 the following relation is
obtained
H(‘Y) = eY ° (30204)

The image attenuation function is given as

= 1+ H .
AI in l1 - HI
Therefore, substituting Eq. 3.2.4 1into this equation

the following results (3.2.5)

1+ eYl - 15 coth l%l'
1 - eY
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On the other hand a simple m-derived section of the

prototype has an H-function of the form

H(jw) = mw . (3.2.6)

At the attenuation pole W54 this H-function has the

value of unity. Therefore we obtain

”31 - “ﬁ
m =. (30207)
©Wo1
or, letting Mpq = %21,
w9
2
a2 Vg -
S Lo
= e-Ya‘ ° (30208)’

Thus, in general, for an m-derived section

H(y) = e'7Y®!
and

- Y-Y21
AI(Y-Y21) = 1ln coth —=

*(3.2.9)

The total attenuation of a low-pass filter is
Ap, = E Ar(y-v4) (3.2.10)

where ¥Y; 1s the attenuation pole,
Thus, the total attenuation curves can be obtained by

plotting the curves represented by Eq. 3.2.9 along
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the +vy-axis such that the peaks of these curves occur

at the locations of the attenuation poles on the y-axis.
The value of the attenuation at any frequency can be ob-
tained by adding the ordinates of these curves at that
frequency. Repeating this sum for every frequency will
then yield the attenuation curve concerned. 1In Figs.
3.2.1 and 3.2.2 the template and the total attenuation

curves are shown respectively.

Y
1n coth l?'

o) >Y
FIG. 3.2.1

Template curve
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Yase
FIG. 3.2.2

Total attenuation
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0 ©
J Lea1 Mes

/
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g Yae Yo1 @ %y

FIG. 3.2.3

Frequency transformation

3.3 « Template for the band-pass filters.,

There are two types of band-pass attenuation
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cuf&es. The first is the frequency symmetrical atten-
uation curve and the second one is that of the frequency
unsymmetrical attenuation curve. For the first type of
attenuation curves the development and the use of the
template method cén be reduced to that of the low-pass
filter method. The development of the second type which
is more general, will be discussed separately.
3.3.1. Frequency symmetrical band-pass filter.

Let Wy Wy be the cut-off frequencies of the
band-pass filter and W, = Vn;;;;. the geometric mean
of these frequencies. The frequency transformatioﬁ used

for the frequency symmetric band pass filter is

e wf “’i
= . 211
o (3.2.11)

Fig. 3.3.1 s8hows how the w-axis 1s transformed into
the \_-axis by this transformation. It can be_qbser&ed
from this figure that the L -scale is symmetrical with
respect to L = 0, which corresponds to wy 1in the
w-scale, Since the curve of the attenuation is also
symmetrical with respect to a vertical axis passing
through the zero value of the . -axis, 1f there exists
an attenuation at w; in the upper stop band, an identi-
cal attenuation will be obtained on the lower stop band
corresponding to the mirror image of wg. Therefore the
design of the band-pass filter is reduced to the design of
a low-pass filter. Once this low-pass design is obtained,
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the desired band-pass filter is then obtained by substi-
tuting Eq. 3.2.11 into the element values formulas,

Lower stoR band Ugyyr §§o

1120 1107007071077 71 17)) 1 /p//////l W

w
1 W w

ver,8}49p, bgnd | /YPper 840D /bﬁP}i
-1 0 1

FIG. 3.3.1

Frequency transformation

L PASS-B \/ /4t ;[‘/O/}/? /B!’/// NN N
0 1 L

FIG. 3.3.2

The range which is considered

as low-pass range on the () scale

3.3.2. Frequency unsymmetric band-pass filters.
The several methods of frequency transformations

considered here for the frequency unsymmetric filters
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differ slightly from that of symmetrical case. The
reason it is necessary to have various modifications
is that one can then make a choice as to which form is
more appropriate to apply to a certain problem in order
to treat it in a lesé complicated manner. These trans-
formations are not only useful in treating the attenuation
characteristic but also useful for treating the image im-
pedances., In the pass-band, the consideration of the im-
pedances is particularly essential.

In the following discussions it is necessary to
consider the H-functions of the band-pass filters. They

are of the following forms

(52 + w?)
H = (7——7) (3.2.12—&)
or
H = (3.2.12-b)

Only these two forms are considered since for all other
forms of the H-functions the treatment can be reduced

to the treatment of the above form of the H-functions.
Note that the frequency dependence part of these H-func-
tions is similar to that of the H-functions of the basic
sections. Three types of frequency transformations are
considered here. The last two types are frequently used in

the current publications. The H-functions are in Egs.
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3.2.12-a and -b and the composition of these two, i.e.,

2 .2
. ! (s7+ @) (3.2.13)"

V1 + K" ‘V}s2+ Q%)(82+ wg)

where s = Jjw,

confluent frequency ,

€
(@]
.

Wy, Wy : cut-off frequencies ,

K!l

a constant.

In the next three sections the various frequency trans-
formations that can be used to study the frequency unsym-
metrical filter characteristics are developed.
3¢3¢2e1. The first method of transformation.

In this methed one directly transforms the fre-
quency by not going first through the normalization.
This transformation is only useful for the attenuation

function. The transformation used is

(® - o)

Y = é‘ 1n -—2——-;—- (302.14)
((A) - 2)

Yo = 1n ;’% (3.2.15)



60

Thus here one does not utilize the _J L-scale but goes

straight from the w-scale to the y-scale.

VS LSSy \L L Ls L4 > W
7
1

/ > 9
el 72 DIV ENID

-0 —Yw 0 +

V4
=<

FIG. 3.3.3

Frequency axis transformation

The basic section* has poles either at infinity or at

the zero frequency. The H-functions of the sections

for the frequency unsymmetric filters have the same forms

as those in Eqs. 3.2.12-a and -b. The first one has a
pole at infinity and the second one has a pole at the
origin. Since the elementary sections of the filters

to be discussed in this thesis have the same H-functions ex-
cept BHr a constant factor, the basis for the template

method here will be the H-~functions mentioned above.

Thus for the basic sections, the constant of the

* The basic section is discussed in Chapter II, section 2.5.
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H-functions are
K = 1 and
K' = gl- . (302016)
w2

Therefore from Egs. 3.2.14, 3.2.,15, 3.2.12-a and -b

we have
H = e or
(3.2.17)
H = e Twe~Y = e‘(Y+¥p)
The attenuation is given by
AI = 1n coth1 %I or
(3.2.,18)
_ Y Yoo
AI = 1n coth l 5 ‘

3¢ 3%242. The second method of transformation.

This method [BE 2, TE 1] is also developed without
first making a normalization. Thus it is also only useful
for the attenuation consideration. It differs from the

first method in that the transformed frequency is sym-

metric with respect to its origin. The transformation used

is
2 2
Y = % 1n w- o
w§ u;
- R
(3.2.19)
Yo = % 1n @2
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and wm = w 1@ 2

> 0 R

Thus for the basic section we have

H = el Yo or
(3.2.20)
H - e_(Y+Ym) .
Therefore the attenuation function is
Ay = 1n coth .Yqéiml
or (3.2.21)
AI = 1n coth |Y +Im| .
2
Imag. lower upper Imaginary
{qu. ngﬁgp band ) © stop ban freqpency
("] (0] 3o w
—jw 1 2 m
m
| [/ |__> Y
- Yoo Yoo
FIG. 3.3.4

Frequency transformation
Y - axis
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The above formula can be extended to the cases when the
sections have finite poles. Indeed, suppose there are
attenuation poles at Yi OT =Yi» then the attenuation

function becomes

Y-y
AI = 1n coth 3 i or
(3.2.22)
AI = 1ln coth ﬁg_:L .

It is important to note that the template to be used for
this case will depend on the band width,
3. 3243, The third method.

In this method, normalization of the frequency
variable is performed first and then the transformation
follows., The frequency normalization considered here is
also useful in treating the image impedances., The nor-
malization is sometimes called the Coth-transformation.
This transformation has been used by many authors, par-
ticularly by Cauer [CA 1],

a. The normalization (First step transformation)

W
2 2 2
_('\_=a1'| + 1 _ Wy =0y “’_+“’%
2
n< _ 1 Wy 4+ 0, WS oWl
n2 = ) +a , w2 = w2 N +¢g
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a = m2"°’1

Sometimes an inverted _\_-scale is used, i.e., L
and this provides some simplicities., Thus we will use
this JL-scale in a greater part of the application
of this method.

b. The transformation (second step transformation)

o= 1
L
= L+ 1
Y %+ 1n =7 (3.2.23)
1 = @ > 1n Y2 =
a é‘ W{ Yoo
-1 =@ —> % ln.fl = =Yg
a Wy
1 ——>
-] —)
Thus for the basic sections one has
H = ‘\/7!74-1l L+ 1 or
a - 1 L -1

(3.2.24)

o+
]

RN E=Ex

Then, substituting Egs. 3.2.23 into Egs. 3.2.24

results in (3.2.25)
H = eYo or H = e-(Y+m»).
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Hence,

>
I

or (3.2.26)

I 1ln coth ‘LQL- @
A = 1n coth Iiéﬁg

When the sections with finite poles exist then an anal-
ogous method can be used, For example, if there are

poles at Yi and -Yi, then

Y:.nl

A = 1n coth ——

(3.2.27)
As has been mentioned earlier, the normalization can also
be applied to the image impedances. The following sec-
tion is devoted to this matter. The impedances concerned
are those which appeared in the development of the filters

in an earlier discussion in Chapter II.

— —
NI IR PASS RPNy Im-freq
1 We—Wga

Il/”l/l//

FIG. 3.3.5

First step and second step transformation
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3.4 o Impedance with normalized frequency.

The image impedances are of the following form

2 2
z. = Bor _ (@ - 9,

¢ 1/(w2— w?)(wz— wg)

(3.4.1)

Ry V(- o) (oP o)
W

[S]
|

2 2
(039 = w7)

where R01 and Ry,q are constants.

The following derivations are given to show how
the w variables are replaced by the L\ variables.
Fig. 3.4.1 shows the scales of w, £ L and L . Also
it shows the locations of the critical frequencies of
these impedances. Notice the locations of the points
Mo1 and Loy in -1</<1. These points are the
reciprocals of the attenuation poles 'j=£01 and J;i.21.
It turns out that (\L5q and (1,4 are in the vicinity

of the extremum locations of image impedances Zjy and Zq.

¥ i 1 1 [V

Wo 1 Wy Wm Wg Wea1
! X- 1 1 ;" | Q
-1 Llos -a a ngg 1
L A . (] Y 1 -2 1 % Lﬁ
-a Do -L Wy O 0ay 1 D1 ©

FIG; 3441
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The derivation of the changing of variables from w

variables to the L variables is

mz_w$ = wl —_('\.+a_ 1-a| = w2.2a ((L+1
Bl N0~ Twa mw{—ﬂ—ﬁ Tia

-
w2 - w? = w?| 14a _ +a = w2 _2¢(MN\ 1) .
T-a ~ ‘"~ " (-a) (1-a)

2, = Bot N1-02 Vs igr =N
wp SLo1-¢ YA vd VN2 -

(3.4.2)
zZp = Bt 1219 /N g Yn2_ 1
©p }71_a2= MNte (MNL-Mpq)
On the L -scale:
Z, = Roq 1!(12_11 VE._Z\__I (I—i-f—\_o‘])
“n Tt 1T - Az
(3.4.3)

A
Zp = R21< a? -1 -n Vi1i-n7"2 |

Wnp E—ﬁ21 -G—+_F-\_ (ﬁ21—ﬁ)

From inspection of the curves -of these impedances it is
seen that these are not satisfactorily suited for ter-
minating impedances. Note also, on the \L-scale the
two points L; and L L and also (\,y and
ﬁm are reciprocals of each other. This fact also
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shows clearly on Fig. 2.10.1 when Wpq OT Wy 8ap-
proaches the cut-off frequencies then the minimum or
maximum points of the image impedance curves in the pass-
band also approach the cut-off frequencies. This suggests
that these extremum points are in the vicinity of .f\.o1
or J"L21 in the pass-band on the J/ \L-scale.



Chapter IV

TERMINATING SECTIONS

4,1 o Introduction.

The image impédances of an image parameter filter
are functions of frequencies, whereas the filter is usu;
ally terminated in load impedances at both ends which are
purely resistive. Thus to minimize the loss at least in
the pass band, it is necessary to provide a high order
image impedance at the terminal pairs of the filter, so
that the mismatch at the terminal pairs is somewhat cor-
rected. This can be done by use of so-called terminating
sections [RE 1], The whole filter then can be considered
as being composed of the intermediate sections and the
terminating sections. The intermediate section consists
of cascade connected elementary sections, which are
profotype sections corresponding to the type of the fil-
ter, i.e., low-pass, band-pass or high-pass filters.

The terminating sections, on the other hand, are also
elementary sections or a composition of elementary sec-
tions with a higher ordered impedance at one of its ports.
One method by which terminating sections can be generated

is by the procedures of repeated m-derivations as

69
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described by Zobel [Z0 1]. This kind of terminating
section, although possessing the desired higher ordered
image impedance, is in general rather cumbersome in
structure, i.e., it contains an unnecessarily high number
of elements and hence is not practical. However, as it
will be shown in this thesis, this does not constitute

a major objection since by using a network transformation,
cascaded Zobel sections can be transformed into the known
economical terminating sections. This approach has the
advantage over the other methods [TO 1j that it ocan
easily be extended to the general case. These termi-
nating sections suffer from the fact that the poles of
their attenuation function are coincident with the con-
trol frequencies of their image impedances. These sec-
tions then are called "assoclated sections"., It seems
that their use limits the design procedure. The other
types of filters, the so-called "disassociate sections"

will be considered next.

4,2 o The disassociate filter.

The main feature of this filter section is that
the attenuation poles do not coincide with the critiecal
frequencies of the image impedances. Therefore they can-
not be considered as a collection of matched elementary

sections. However they can be considered as the filters
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between image parameter filters and insertion loss fil-
ters. The notion of this kind of filters has been in-
vestigated rather thoroughly in recent years by several
authors [CO 1, BE 1, RO 1]. The basic idea involved in
these filters comes from the fact that for the lattice
sections or symmetric ladder sections, the image impedance
critical frequencies do not necessarily coincide with the
attenuation poles.

Collins [CO 1], in his research directed at
generating new kinds of structures, comes qut with dis-
sociate filters produced by using the following proce-
duress

1. Prescribe the image transmission factor g

of the filter to be designed defined by

Tanh 6 = EEQ
oc

2. Prescribe the image impedance of the filter,
the critical frequencies, none of which coin-
cide with that of the attenuation poles. The

image impedance is:

i = Zoc2ge -

3. The frequencies of the unity value of Tanh 6
depend on the parameters m of Zobel. The
critical frequencies of the image impedance

ZI depend on the parameters n which are
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not equal to the parameter m. These para-
meters are related to the critical frequen-
cies of Z; and the relation is identical
in form to that relation between the para-

meters m and the attenuation poles.

4. ZI
Zoe = tanh 6
ZSC = ZI tanh 6

5 Synthesize Zgo, and 2Zgo, Dby the zero shifting

technique. The resulting filter is the desired

filter. It must have the above open and short

circuit impedances, 2 and Zgg,e

oc
Thus both the image parameter formulations and insertion
loss synthesis are involved in this procedure.

Rowland also developed sections of disassociate
filters [RO 1,2]. However his section has image imped-
ances of m-derived type but the critical frequencies of
the image impedance do not coincide with the attenuation
poles., Later he has shown how his method can be gener-
alized [RO 3].

Belevitch [BE 3] tabulated some of the disasso-
ciate filters in which some sections developed earlier
are included. Some extensions for higher order image

impedances are also given. In the treatment of the dis-

associate filters the above authors have been dealing
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only with the case of low-pass and high-pass filters.
However as Collins [CO 1] mentioned, his procedure is
also applicable to the band-pass filters. There has not
been any explicit discussion on the problem of frequency
unsymmetric band-pass disassociate filters.

It appears that, although the disassociate fil-
ters provide some savings on the number of elements, they
8till require relatively complicated calculations as com-
pared to the associated sections., Thus the use of the
image parameter theory for the design of filters is still
a simple one. A close comparison will easily show that,
the disassociated filters will hardly contribute to the
attenuation of the stop band, because they do not possess
as many attenuation poles as the image parameter T.S.
with the same order of image impedance. As a result, we
might be able to reduce the number of intermediate sec-
tions in the image parameter filters, thereby reducing
the number of elements.,

The rest of the sections in this chapter are
devoted to discussions on the derivation of the termi-
nating sections, i.e., associated sections. The discus-
sion is kept in general and it is applicable to low-pass,
high-pass and band-pass filters terminating sections.

The resulting sections when applied to the low-
pass filter case agree with the result obtained by Tokad

(TO 1] developed by a different approach.
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Some network equivalences, which are very impor-
tant for fhe further development of our sections, will

also be considered in the next following section.

4.3 . The image parameter ladder terminating sections,

The terminating section to be considered is a
general one, Some network transformations and the net-
work equivalences are needed for the derivation of these
terminating sections.

4,3.,1, The transformation and the equivalent network.

This transformation was also used by Tokad in
his development of the low-pass terminating sections
[TO 1]. It can be best shown by means of diagrams (Figs.
4.1, 4.2, 4.3)., Pigure 4.1 shows the original general
half section. Figures 4.2 and 4.3 are the resulting
network on performing the transformation on the original
network of Fig. 4.1.

The real parameter s has values in the interval
0<s8<1, It is obvious from these figures that the re-
sulting networks, i.e., the networks in Figs. 4.2 and
4,3 are equivalent networks. The network of Fig. 4.2
will be designated as T network and that of PFig. 4.3

T
as Ty network.
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4.3.2. The derivation of the terminating sections (TS).

For this purpose we use m-derived sections.

The higher the order of the image impedance which is
desired, the more repeated m-derived section has to

be utilized. Terminating sections, having third and
fourth order image impedances, will be derived. Higher
ordered image impedance possessing terminating sections
can be obtained by using more repeated m-derived sections
by the same method. For convenience the m-derived sec-
tions to be used for this purpose are shown in the fol-
lowing diagrams, i.e., PFig. 4.4 and PFig. 4.5. They are
the shunt m-derived and the shunt-series m m'-~derived
sections., The procedure for obtaining the terminating
section having a third order image impedance is as follows:

1. Cascade the sections in PFig. 4.4 and Fig.
4.5 such that there is an image impedance
matching at their interconnected terminal
pairs. The resulting network is the network
of PFig. 4.6.

2., Make the rearrangement as in PFig. 4.7. The
parameter 8 1is so chosen that the section
parallel to ZY is the T, section.

3. The result of replacing T by TT in item 2, is given
in PFig. 4.8. This is the desired ladder ter-
minating section.

It should be noted that a minimum mumber of ladder arms
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FIG. 4.4

Shunt derived section
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FIG. 4.5
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78

o e o
1-s8
58 Z'CI.
0] [
ehla
Zn '——i iﬁ
s
[ [o]
FIG. 4.7
O] )
ng dza
R gy S— —
EJezg [] fzg
Zy ’
mm'
o -0
FIG. 4.8
Terminating section
a = (1-m'®)m b = m 1-m'?
T-m®
c = mm'(1+m') d = mm'(1+m')
1-m*"m'
e = f =

Bl-



79

will be obtained if the rearrangement by equivalences,
as shown in PFig. 4.7, 1s always started from the side
of the network with the higher ordered image impedance.
If a higher ordered image impedance is required
at one of the terminal pairs, higher order derived sec-
tions will be used. Thus, for example, if an mm'm'"-
derived section is utilized the terminating section of
fourth order image impedance will be obtained as shown

in Figo 4090

£:j ___{:]_—_‘ _J
az, C2Z, €z,
o0— --0
— {1 {1
ng ng fZg
Z ] <=1z
Tnun'm" H] z z H] z T
m( 1 -ma m* %) mm' (1 -%E" ) rmn’m"
o o
FIG. 4.9
a = m(1-m®
1-nf2m"
P = m(1-m'®
1-m*m" 1-m
c = mo'(1+m')(1-m"2)
(T-n' %" ®) (1+m'm" 9)
d = mm'(1+m')(1-m"®
1+m'm" 1-m'®m 1-m®m
e = §1+m'mﬁg(1+m'0mm'm”
1+m'm"*)
f = (1+m'm")(1+m')mm'm"

(T+n'o"¥) [+n(n'n" +n" *n" -m)]
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The other type of terminating sections can also
be derived in a similar manner using the transformed net-
work in PFig. 4.3. These terminating sections are given
in Figs. 4.10 and 4.11. It can be shown that these
are the dual to those in PFigs. 4.4, 4.8 and 4.9,

Since our purpose is to investigate frequency
unsymmetric band-pass filters, the T.S. derived from
the basic sections and E.S.Z will be as shown in

Figs. 4.12, 4.13, and 4.14, respectively.

mzg mn'za
~

ladll _J — —¢
1 1-m® 1-m®m'®
o -me A L] m' G+m)
__H <.__
2 1.1, 11 21
m T 2 nm Tem 2
P ! %
FIG. 4.10
o m(1—mﬁgj"°)z2 md(Ligp@)z,_ mm'm" zg
d g —
1z, []% Z4 1z
1 1 1 o
Z‘nmm'm" T 21 [j— Zg T 21 Ly
o o

FIG. 4.11
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Chapter V

FILTER DESIGN I
DERIVATION OF FORMULAS

5¢1 « Introduction.

For the general design of electrical filters,
two different procedures are available. One of them
which was established earlier is the image parameter
method [20 1]. The other is the insertion loss method
(DA 1, CA 1]. The image parameter method utilizes the
image parameters of the filters, i.e., the image imped-
ance (Zy) and the image transmission factor (Pg).

On the other hand, in the insertion loss method these
parameters are in general, the insertion transmission
factor (Pg) and the driving point impedance (Z4).

For this latter method, some authors prefer to use the
reflection factor |p| and the characteristic fuhction § .

Under certain conditions, the two parameters Pg
and Py become identical. This condition is obtained
if image impedance matching at all terminals of the fil-
ter is provided. This can be clearly seen from the for-
mula derived by Zobel for the insertion loss in terms of
the image parameters [TO.-1]. Both of the above methods

| 82
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have their own advantages and disadvantages. In the image
parameter method, due to the fact that simpler calcula-
tions are required, realization can be achieved in a
shorter time. However the resulting filter might con-
tain more elements than is actually needed. The inser-
tion loss method on the other hand generally contains a
smaller number of elements. However, a more complicated
method of calculation is required which implies the use
of electronic calculators in this design. Using the
image parameter method for filter design we can immedi-
ately obtain the elementary sections completely which
are the building block of the filter.

There of ten arise occasions in which the filters
which are designed by the insertion loss method will have
the same number of elements as those designed by the
image parameter method. The only difference between
these two filters is that there is an improvement in the
electrical properties of the filters designed by the in-
sertion loss method, which are not really required. 1In
such cases, indeed due to its simplicity, the image para-
meter method is preferable.

Another design technique which has been established
is the reference filter design method. In this design
technique both the image parameter and the insertion loss
parameters are involved. The synthesis is mainly carried

out by the insertion loss method, and the image parameter
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is used for finding the locations of the attenuation
poles and also to determine the characteristic funection.
This can be seen from the following formula of the char-
acteristic function for the filter

® =05 sinh (Pg)
where 5 1is a constant, ¢ is the characteristic func-
tion, Py 1is the transmission factor of an image para-
meter filter (reference filter) which has nothing to do
with the actual filter, except that it has identical
attenuation pole locations with this filter. The advan-
tage of the reference filter method over the image para-
meter method is that it provides a flat loss in the pass
band, i.e., the Chebyshev type of attenuation character-
istics. However, the calculation of the filter elements
is by no means as easy as that of the filter designed by
the image parameter method.

It is then desirable at this point to establish
some formula which will furnish the relationship between
the insertion loss properties of the filters and its
image parameters. When such a relationship is established,
then from the given insertion loss requirements, the image
parameters of the filter can be obtained so that the fil-
ter can be designed by means of the image parameter meth-
od, Based on these parameters, some exact design proce-
dures for low-pass filters exist and can be found else-

where [TO 1]. Fisher [FIS 1] has used an approximation



85

formula and carried out an insertion loss design for
symmetrical and antimetrical band-pass filters uti-
lizing the image parameter. However the design was
completed by insertion loss synthesis. Some fundamental
discussions on the attenuation and phase functions, es-~
pecially for symmetric and antimetric filters, are
given by Belevitch [BE 1,2].

The present work is the extension of the method
presented by Tokad [TO 1] to the design of frequency
unsymmetric band-pass filters, especially those having
dissymmetrical characteristics. In the following sec-
tions of this chapter the important features of ‘the in-
sertion loss and image parameter methods as well as the
topics pertinent to the development of the desired for-

mulas are presented.

5.2 « The characterizing function of the image parameter

filters.

The salient features of the image parameters,
i.e., the image impedances and the transmission factor
(ZI:’ Zr, and PI) are considered first.
52.1. Input and output image impedances, ZI, and ZI,‘
For convenience, normalized values of image im-
pedances are used. The normalization being with respgct

to the terminating resistors. The normalized impedances
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are indicated by the symbols 2z1 and z2 and their
properties are as fgllows:
(1) in the pass band they are real and a func-
tion of the angular frequency w .
(ii) in the stop band they are purely imaginary
and a function of w .
(iii) for symmetrical filters, Z, = Zye
(iv) for antimetrical filters, Z,%, = con-
stant, usually taken as unity.
5.2.2. The transmission factor, Pr.
Py = A7 + 3Bg
where - Ar is the image attenuation or loss function.
AI is identically zero in the pass band and non-negative
in the stop band. for all types of lossless filters, i.e.,
all elements are lossless., By 1is the image phase fune-
tion. It has distinct features for different types of
filters. The following are the properties of BI and
AI in detail.
5¢2¢2.1. In the pass band.
AI is zero. BI is monotonic increasing as a
function of frequency. The properties are
(1) For frequency unsymmetric band-pass filters.
1. Symmetrical types
-mn ¢ By < nm (5.2.1)
2. Antimetrical filter types

(5.2.2)
~(mn + 1/2) gBlg(nn + 1/2)
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where m and n are the number of the
attenuation pole locations in the lower
and upper stop bands respectively.
(i1) For low-pass filters.
1. Symmetrical types
0< By<n (5.2.3)
2. Antimetriecal types
0< Br< (nm + 7/2) (5.2.4)
where n 1is the number of the locations
of the attenuation poles. The properties
of the frequency symmetrical band-pass
filters are implicitly covered by the low-
pass filters.
(1ii) PFor dissymmetrical filters we have the pos-
sibilities of either one of the cases in
(11) and (1).
5.2.2.2. In the stop band.
Ay> 0. (A7 = 0 at cut-off frequencies.) By 1is
a constant except at the pole locations where it jumps
down by m or T /2 depending whether there is a full
pole or a half pole. The properties are
(1) For frequency unsymmetric band-pass filters.
1. Symmetrical types
I. In the lower stop band
By= -(m-1)Ty 000y, =(M=-2)T,00,0,

-(m=-1)n, -mn (5.2.5)
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where:

For

1.

3

n

v

88

II. In the upper stop band
B; = nm, (n=1)m,..., (n=v)n
(5.2.6)
Antimetrical types
I. In the lower stop band
By = 0, =[(m-p)n + 7/2]y00.,
-((m=1) + n/2], =[mn+ /2]
(5.2.7)
II. In the upper stop band
By = nn +n /2, (n=1)n + /2,...,
(n—v)n + Y2, 0 (5.2.8)
For dissymmetrical filters BI could
be given as in 1 or 2.
low-pass filters.
Symmetrical types

By = nm, (n=1)yeeey (n=-v)m
5¢249)

Antimetrical types
By = nm + /2, (n=1)n + W2,.44y
(n- )n + Y2, 0 (5.2.10)
For dissymmetrical types BI could

be given as in 1 or 2.

“O, ooo,m

O, ooy Il &
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5«3 « The chain matrix.

In order to obtain a formula for the insertion
loss function in terms of the image parameters, the chain
matrix of the 2-port filter network is utilized. It re-
lates the terminal currents and voltages of the filter.
From the diagram in Fig. 5.3.1, we have the following
relationships

Vi

AV, + BIo = AV, + BVy/Ro

CRJ, + DI,

where A, B, C, D are the elements of the chain matrix.

(5.3.1)
I,

If Ry =27, and Ry = ZIg' i.e., matching at the termi-
nations, then V./I; = Zy, and Vo/I5 = Zy, end from
Eq. 5.3.1 we have

- AZ + B
Z = ITe
(5.3.2)
7 = DZy, + B
Ie CZy, + D
From these equations we obtain
Z21,21, = B/C
v (5.3.3)
zI‘/zIa = A/D .
Hence
Z = ,BA
I, /\iCT
(5.3.4)

ZIa = ,/BD
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R
1 1 I
§ z : A B z : R
| 1 I 2
L - c D 2
FIG. 5.3.1

4 T,N. Reactance network

5,4 o Current and voltage transmission factors (M and N).

These functions are used by Cauer [CA 1] in treating
the insertion loss filter design technique. From Eq.
5.3.1 we have

V4

AV, + BI, = AV, + BV,/R,
I; = CIyR, + DI, .

Therefore .
I,/I,=CR, + D=M
Ve 2 (5.4.1)
V4/V5 = (1/Ry) (AR, + B) = N.
The driving point impedance is
Z =Vy/I; =Ry (N/M). (5.4.2)

5¢5 « Entries of chain matrix in terms of the image

parameters.,

From Eq. 5.4.2, we have
Zoo = AC (Ry = )
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Zse = B/D (R = 0) . (5.5.1)

Then the H-function is given by

H = _ZLO_ = BC . (505.2)
W/Zsc v AD

From this equation, since H = tanh Py, we have

efI = (1 +H = (A48C + A4AD
(1 - H A4AD -

efI - (cosh Pr + sinh Py)
(cosh Py - sinh PI) ’

Therefore
NAD = cosh PI
(5.5.3)
VBC = 8inh PI
Since
AD - BC = -sinthI + cosh2PI =1,

passivity of the network is implied.

From Egs. 5.5.3 and 5.3.3, the following expressions

A = ZI; = cosh PI
V 2,

are immediate:

c = 1 sinh Pp
»\}ZIIZIe
D = 21, cosh Pr .
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5.6 « Insertion loss parameters.

Figures 5.6.1 and 5.6.2 are to be used as
an aid in deriving an expression for the insertion func-
tion. It is assumed that the reactance 2-port network
is terminated in two resistances, Ry and Rp, and
driven by the voltage driver E.
5.6.1. The insertion transmission function.

In Fig. 5.6.1, the power delivered to the load

through the 2-ports is given by

(5.6.1)

2 2
[N1| = |I2R2| = |Xg
R2

The power delivered directly to the load as can be seen

from Fig. 5.6.2, 1is

2
| Ng] = | I Ry| = |_Vé_| . (5.6.2)
R,

The insertion transmission factor is defined as

_ N
Pg = #1n ﬁ% (5.6.3-a)
= 4% 1n IEQ‘ + j arg Nq
1] n
P, = Aj + JBy .
Thus
A =

sl e
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Bg = arg 32 = arg zé ,
Iz V2
where
Ag = attenuation function
By = phase function .
R
— I I
g | S ¢
E o v, 4.T.N | Ry
FIG. 5.6.1
R, I,
CF—
[¢]
E o E‘ R2
FIGC 5.6.2
Ry I,
= }— 5
J 4
[e] 1
E ¢ v, R,

FIG.

5.6.3

(5.6.3-b)
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5.6.2. The echo-loss (return-loss).

This loss function is related to the power re-
flected back to the driver. Thus, it is the power de-
livered directly to the load minus that delivered through
the 2-port, i.e.,

INJJ = |Ng] - |Nq]. (5.6.4)

The echo transmission factor is defined as

Pe

Ny _ N N
4 1n ﬁg + 1n lﬁ%l + j arg Li%

e Ne
Thus, the echo-loss is given by

A = lnl%ﬂ . (5.6.5)

5.6.3., The characteristic function.
From the relation in Eq. 5.6.4 we have

| Na| = |N1] + |Ng
1 = N1 + |Ne
m |m
1 = e~2hs 4 o=%he .
Therefore
e2hs - 9 4 g%he
e—2Ag *

The characteristic function is defined as

o (5.6.6)

2 ~2A¢
o] [ e

Thus Ag = % 1n[1 + |¢|2] .
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5.7 « The effective (operating) loss.

The definition of insertion transmission factor
given in Eq. 5.6.3-a can be modified if Fig. 5.6.2
is replaced by Fig. 5.6.3. This will yield a new trans-

mission factor, P which is called the effective or

o?
operating transmission function. Py and P, will be
identical if the terminating resistances are identical.
The advantage of using P, in the design is that it will
avoid the occurrence of negative losses in the pass band.
The possibility that negative loss occurs is evident from
the definition of Py in Eq. 5.6.3. When an ideal
transformer at one port is used, as will be apparent
later, the form of the formula is also simplified.
5.7«1. Effective transmission factor.

Usihg the diagram in PFig. 5.6.3, the maximum
avallable power is

2
The power delivered to the load, from Fig. 5.6.1, 1is
2
IN1| = |12 Rp|. (5.7.2)

The transmission factor is defined as

2
P, = #1nXn = 3 1n R4 + 4 1n I
¥ 2
1 2 I3
(5.7.3)
PO = AO + jBo .
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Thus the attenuation is:

A, = % 1n Ri 4+ 1n I
Rp I,
and the phase is: (5.7.4)

By = arg(%) .

The characteristic function is also defined here as before

=2A
2 e e

=y vl (5.7.5)

lo| =

e

where Ag 1is the effective return loss (echo loss).

5.7.2. The echo loss.

The echo power here is defined as the total maxi-
mum available power minus the power delivered to the load.
Thus,. in the definition of the characteristic function
above, we have the situation that a fraction e-2Ao of
the total power is delivered to the load and another

fraction, e-2Ae, is reflected, hence

1 = e-2A° + e—ZAe

(a relation due to Feldtkeller).

To study the relationship between Ag and the termi-
nating impedances Rq and Z (or 21), consider PFigs.
5.T¢1y, 5¢7.2 and 5.7.3. In general, it is sufficient
to consider only Fig. 5.7.2 and Fig. 5.7.3. In Fig.
5.7.2, 2 represents the load impedance. The circuit in
Fig. 5.7.3 contains the same driver E, but instead of

Z +there is a driver ') representing the

e’
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E v, D Z1
PIG. 5.7.1
R4 I
1 (-
>
6
E

FIG. 5.7.2

|

e

[} >
R
1
v, ?E 4
i,v

FIG. 5.7.3

echo, and resistor Rq. Vg, 18 selected in such a way

that the current I1

are identical to those in Pig. 5.7.2.

and the voltage V4

in Fig. 5673
Then the following
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relationship can be written

E = EBE-7V,
R1 + Z 2R
or
A = Z -R
e z R E L ]
Hence
2
Mol = | B
2R1
v 2 2 2
INeI = e | = Z = R .
2Rq Iz + R E‘ 4R,
Thus
Ae = ‘&' lnl_u:g, = 1n Z + R1| . (50706)
N, 7 - Ry
Let

'Z + R1i
Z - Ry

where [P | is referred to as the reflection factor.

]
ol

The echo loss is important for the filter design by the
insertion loss method in the pass band. In the remaining
parts of this section, discussion is devoted to the study
of the echo loss, in the pass band, for dissymmetrical
filters. Substituting Eq. 5.4.2 into Eq. 5.7.6 we
obtain

Ag

i

CR, + B/R2 + D+ A
CR, - B/By + D - A

1n
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A, = 4 1n (azq + [1/8-122)2008231 + (1/a + az1z2)sin2BI

(azq - [1/a]z2)2coszBI + (1/a - az1zz)sinzBI

where a = 1/31
Ry

Ag =% 1In (a22q + 25%)2 + (1 = 252)(1 - a*2,2)s1nBy

(5.7.7)
In order to determine a bound on Ag function let

Eq. 5.7.7 be written as

Ag =% 1n '(aaz1+zz)2 + {(1+a2z122)2 - (aaz1+za)2}sin231 .
(azz1-22)2 + {(1—&22122)2 - (3221—22)2}sin231

(5.7.8)
From Eq. 5.7.8 it can be seen that if

(a2, + 2p)2 2 (1+ a2,2,)2
then also

_(aaz1 - z2)2 z (1 - a22122)2.

Since, in the pass band, 24, zp, &and a are positive,
then

(3221 + 22)2 > (a221 - 22)2
(1 + a22122)2 > (1 - a2z1z2)2 o

The value of the numerator expression in Eq. 5.7.8 1is

always between (azz1 + 22)2 and (1 + azz1z2)2 and the
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value of the denominator is between (azz1 - z2)2 and

(1 - a2

2122)2. The curve corresponding to the denomina-
tor will always be below that corresponding to the nu-

merator. In Fig, 5.7;4 the curves are sketched.

FIG. 5.7.4

Curves 1 and 2 correspond to the numerator of Eq.
5.7.8 when einaBI is 0 and 1, respectively.

Curves 3 and 4 correspond to the denominator of Eq..
5.7.8 when sinzBI is 0O and 1, respectively.

Curve 5 1is the echo-loss, Ag.

Curve I corresponds to the numerator of Eq. 5.7.8.

Curve 1II corresponds to the denominator of Eq. 5.7.8.
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5.8 « Derivation of insertion loss parameters in terms

of image parameters.

Referring to Figs. 5.6.1 and 5.6.2, consider
Eq. 5.6.3:

P = 1n(I2") |
Iz

This relation can be put into the following form

Pg = 1n<I_'2 hj= ln(_ILZ_ + ln(ﬁ) .
2 I4 I4 I

(5.8.1)

From Figs. 5.6.1 and 5.6.2 we also have

I, = E
R1+Rz
I1= E .
R1+Z
Equation 5.4.1 gives
E_‘L:CR2+D=M,
12

Substituting these expressions into Eq. 5.8.1 we obtain

Pg = 1n B4+ 2, 1q M . (5.8.2)
Rq1 + Ro

When Eq. 5.4.2 for Z 1is substituted into Eq. 5.8.2,

it gives
PS = 1n Rq + RQ(N/M) M = 1n/ MRq + NR2 .
R1 + Rp (R1 +RD)

Using the espressions for N and M we have
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Pg = 1n YRR 1n[\/R1R2|C +],El D + 1,_R_z A+ __B
R R °
1+ R R2 R4 AR4R,
Substituting Eq. 5.5.4 into this equation and making

the following normalizations,

z] = :I,
1
(5.8.3)
zZp = ZIg ,
Ro

the desired result is obtained as

s = 1n 2 YR1R2 1n[ + 2122 ginh Py + 21_* 22 cosh PI] .

R1 + Rp 21292 2:\72 z
! 172 (5.8.4)
Since Py = Ag + jBgy the derivations of the attenuation

function Ag and the phase function Bb for special types
of structures, i.e., symmetrical, antisymmetrical orldis—
symmetrical filters are cénsidered next.
581, Symmetrical filters.
For this filter since, by definition,
Z1 = 22 = z ,
then
Py = 1ln YRRy, 1n 2|:coshPI + 1 + 22 sinh PI]
Ry + Ry 2z .
a) In the pass band
Ay = O
P = JBg

z1, 2o are real, thus 2z 1is real .
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Therefore,

Ag

Bs

b) 1In the

and
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=1n 2 4 1R2 + 1n [%os By + J 1 ¢+ z2 sin BIl
R1 + Rp 22
=1n 2 YR4R> , 4 1n [éoszBI + (1 + A lzsinzBI]
Ry + Rp 4z
+ J arc tan |1 + z2 tan By
2z
we have:
=1n 2 4RB2 4+ % 1n [?OSZBI + (1 + 22)2 sinzB#]
R1 + R2 4z
(5.8.5)
= arc tan | 1 + 22 tan By .
2%
stop band

z 1is purely imaginary
z = Jx

PI= AI+ jkn, (k=0, _‘t1, oo )

cosh Pr = + cosh Ay
sinh PI = + 8inh AI

where the upper or lower signs must be used simultaneously.

Therefore

P8=

2
1n 2 YR1R2 4+ % 1n |cosh@Ay + (1 - 12> sinhzﬁl]

R1 + R2 x

+ J arc tan [; 1 - x2 tanh AI}
2x
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Ag = 1n 2VR1R2 4 % 1n [%osthI + (1 = x2 zsinthi}
R1 + Ro 2x
(5.8.6)
Bg = arc tan{— 1 = xc x2 tanh Ay .

5.8.2. Antimetric filters.
For this filter lezIa = R4Rp. Thus,using
the same normalization as in Eq. 5.8.3 we have
z2ozq9 = 1
z¢y = 1/zp = 2z .
The transmission factor is then

P_ = 1n 2 R4Rp + 1n |sinh Py + 1 + 22 cosh P
8 t————— I ——— I
R1 + R2 2z

a) In the pass band

A; = O
P = 3B
and
sinh Pt = sinh jBy = J sin By
cosh Py = cosh jBy = J cos Bj .
Then

Py =1n 2‘VR1R2 + 1ln [j sin BI + 17+ z2 cos BI]
R1 + Ry 2z

=1n 2 VR1B3 4+ % 1n [sinQBI + (1 + 22)2 coszBI]
R, + R2 2z

+ J arc tanh 2z _ tan By| |
L + 22 ]

Therefore,
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Ag = 3 1n sin2BI + (1 + 2222 coszBi] + 1n 2 YRR
422 R1 + R2
(5.8.7)
Bg = arc tan 2z tan B#] .
1 + 22

b) In the block band
z = Jx
P = Ay + (kn + /2), k =0, £1,...
sinh Py = 4 sinh (A7 + J /2 ) = + J cosh Ag

cosh Py = + cosh (A + J /2 ) =+ J sinh A7 .
Then:
Pg = 1n 2 VR1R2 4+ 1n [j cosh Ay + sinh AI]
Ry + R
1 2
- 1n 24R1R2 4 } 1n E:oshZAI + < 2 ginh2A1
R4 + Ro
+ J arc tan _2x__ coth At
1 =-x
and
Ag = 1n 2YR1R2 4 4 1n l:costhI + (1 = x2)2 sin.thI:]
R1 + Ro
(5.8.8)
Bg = arc tan [; 2x _ coth A11 .
1 -x

4.8.3., Dissymmetrical filters.

The transmission factor is
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Pg = 1n 24R1R2 + 1n | 1+ 2122 sinh Py + 21 + 22 cosh Pr| .
Ry + Rp

2 Vz122 2 Vz1z2

a) In the pass band

Z1, Zp are real

AI = 0
PI = jBI °
Therefore,
Py = 1n 2 YR{R2 , ln.[z1 + 22 cos By + j 1 * 2122 sin B{]
R1 + Rp 2 \z425 2 2425
and thus
2 2
Ag = 1n 2VR1Bo | 41 S1+z122) sinBy + (29+2p) cos®By
Ry + Rp 4242o 42120
‘ (5.8.9)
By = arc tan | 1 * 2122 tan By | .
z2q + 2o
b) In the stop band
z1 = Ix
Zp = X
Pr = Ap + jkm or
Pr = Ap + J(kn + 7/2), k=0, £1, ...
(1) Pp = A+ Jkm, k = 0, 1, #2, ...
Ps = 1n 2 VR4Rp
R1 + R2

+ 1n [3 - X1X2 ginh AT + X1 * X2 cosh A?J

2J ‘VX‘IXQ 2 X1X2
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Ag = 1n 2VR4Rp
R1 + Rp

2 2
+ 4% 1n [(1‘1112) sinh%Ay + (x1+x3) coshaA%l

4x1X2 4x9X2
Bg = arc tan|_ 1 = X1X2 tanh A7 .
X1 + X2
(11) P = Ar + j(knm + V/2)
P, = 1n 24yRiRo
R1 + R2

+ 1n | ] =X1X2 cosh A; - § X1 * X2 sinh A;

2 4Yx1x5 2 Vx1x
Ag = 1n 2 YR1Rp
R1 + R2
+ 4 ln[(1"x1x2) coshAr + (x9+x5) sinthI]
4x1x2 4x4xp
B, = arc tan|_ X1 * X2 tanh Ap
-1 XqXp

(5.8.10)

As was mentioned earlier the operating loss will be the
same as the insertion loss if the terminating resistors
at both terminal pairs are identical. Thus, in the op-
erating loss, we have the same formula as in the case of
insertion loss, except that the term containing R4, Rj
disappears. Thus, we have a more convenient set of for-
mulas if operating loss formulas are used. This is what

will be done in the following sections and if insertion
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loss is required then the term

1n 213132
R1 + Rz
will be added to the formula, In the next section the

formulas for the operating loss will be presented.

5.9 + Formulas for the operating loss design technigue.

The operating transmission factor is

P, = 1n [1 * 21%Z2 sinh Py + 21 * 22 cosh Py

2 VZ122 2 Vz122
(5.9.1)
5.9.1. For symmetrical filters.
a) In the pass band
Ao =% 1n [;osthI + (1 + 2222 sinthIJ
4z
(5.9.2)
By, = arc tan [1 + 2% tan Br |.
2z
b) In the stop band
2 2,2 2
Ao = % 1n [cosh®AT + (1 = x7)° sinh®Ag
4x2
(5.9.3)
By = arc tan [' 1 -x x tanh AI]
5¢9.2. Antimetric filters.

a) In the pass band



109

A. =4 1n [;inzB + (1 + 2222 cos?B ]
0 I I
4z
(5.9.4)
Bo = arc tan 2z 5 tan BI R
1+ 3
b) In the block band

Ay =% 1n [}osheAI + §1u-2x222 sinthI-]

4x (5.9.5)

By = arc tan 2x _ coth A .
P

1 = x

5¢9¢3. Dissymmetrical filters.

a) In the pass band

2 2
Ap =% 1n [}1 + 2123) sinzBI + (29 + 2p) cosaBI:]
42122 42122
(5.9.6)
B, = arc tan | ! * 2122 tan By .
zq + 2o

b) In the block band

2 2
(1) Ap =% ln.[(1’x1x2) sinh?a; + (X1+%3) costhIi}

41112 4x1x2
1 (50907-3)
By, = arc tan | _ ' = X1X2 tanh Ay |,
Xq + X
or -
2 2 2
(11) Ay = # 1n | (I-X1%2) " cosn2a; + (X1+X2) " ginn2a;
41112 4X1X2
B, =

(50907-b)
arc tan| _ X1 * X2 +tanh Ag .
1 - x9Xp



Chapter VI

FILTER DESIGN II
APPROXIMATION AND DESIGN PROCEDURE

6.1 « Introduction.

The filter design procedure considered in this
chapter is based on the image parameter method. It is
assumed that the insertion (effective loss)'requirements
of the filter are specified. The synthesis of the filter
network is carried out using the image parameter method.
Some exact design procedures for the filter utilizing the
image parameter method and approximate techniques for sym-
metrical and antimetrical filters with the insertion
loss method are already developed [TO 1, FIS 1]. In this
thesis the work is mainly devoted to the design of frequen-
cy unsymmetric band-pass filters, especially those having
dissymmetric configurations. The realization procedure
is carried out by the image parameter method. The ele-
mentary sections used in this type of filter cannot be ob-
tained as those of frequency symmetrical filters by the
frequency transformation from a low-pass filter. The
technique developed by Laurent, to generate elementary
sections for general filters, can be utilized. However

110
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these generated sections must be used as is without re-
ferring to how they are generated [LA 1], There are other
techniques available to generate a set of elementary sec-
tions [BR 1, SH 1, -MA 1, NO 1, BO 1, CO 1, SA 1]. These
elementary sections should be used as is., Since each ele-
mentary section is considered as independent, its prop-
erties must be investigated separately. The necessary
information required for the design can be obtained from
analytical investigations.

One method which seems to be less complicated
than others, hence preferable, is to develop the elemen-
tary sections from the basic sections by m-derivation
[NO 1, BO 1, see also Chapter II, section 2.5]. One
other factor to be considered before developing relations
for the elementary section is the fact that these sections
should contain a minimum number of inductors [SA 1, WA 1]
The elementary sections which are suited to the discus-
sion of this thesis are those E.S.1, E.S5.2, and E.S.Z
which are presented in Chapter II.

The approximation of the loss functions for sym-
metric and antisymmetric filters are given by the formulas

Ag> Ay - ln 2 Nepers for stop band
Ag<2 1n (z 221 )2 Nepers for pass band

where As is the insertion attenuation

AI is the image attenuation
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z 1s the normalized image impedance .

The approximation has to satisfy the overall requirements,
ioeo,

(1) in the pass band Ag€ Ag pin

(2) 1in the stop band  Ag> Ag pay -

An improvement on the approximation in the stop band for
symmetrical and antisymmetrical filters [FIS 1] is

2
Ajg # A1 + 1n [%2 + 1] - 1ln 2 Nepers
22
where A is the effective attenuation

I
Ar>3 Nepers .

6.2 . Approximation for the attenuation function of dis-

symmetrical filters.

In the pass band Belevitch [BE 1] has made an
extensive discussion especially for the low-pass filters,
frequency symmetrical and unsymmetrical band-pass fil-
ters of symmetrical and antimetrical +types. However
for the dissymmetrical case he considered only special
types of filters. Here formulas for completely dissym-
metrical filters will be established. From Eq. 5.9.6-a

and -b, in the pass band, we have
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i 2 2
e2ho - | (1+2q2p) 8in®By + (21+25) cos2BIjl

L 42922 42122
—
2 2 2
e2ho _ | (1+2q920)7, ((2q+25) _ (1+242)p) cos®By
B 4z12> 4z42o 42422
2
Let (1 + 2920) _ B
42122
2
(Z1 + 22) = C
424125 )

Consider now the value of the functiqn e2A° at a fixed
frequency. If C - B<O then, at this frequency, 240
will have a maximum when coszBI = 0, This maximum is
B. The minimum at this frequency will occur when

coszBI = 1¢ This minimum is C, The converse is true

when B - C<0. Thus, the curve of A, will always
lie between the two curves of % 1n (1%2122)2 apg

42122
2
4 1n (z4+23) as is shown in Fig. 6.2.1.
4292
A when coseB = 1 Ao when coszBI =0
AN 0 I
or or % 1n (1+292p)2
% 1n (z1+22)2 /_,52122

__4z122

~

FIG. 6.2.1
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In the block band, from Eqs. 5.9.7-a and -b, it is
evident that

r—

2 2
= 3| (U-X1%2) "sinn2a; + (X1+X2) cosh2ag
x1x2 X1XZ

o2h0

or —

2 2
32A° =4 (1-x4x)) cosh2AI + (xq+xp) sinthI .
X1X2 X1X2

If A;> 3 Neper the following approximations can be

made

sinh A1 % cosh Apz ehl/2

N e?hI. 1z,

Thus, the above formulas of e2A°, using these approx-

imations give

2 2
e2ho z 3 | (1=-x1xp) eZAT | (xq+xp)” G2AI
X91X2 4 XqX2 4

2 2
Ag ~Ap + 4 1n (x )45 ) 9y 5
4x1X2

Hence,

2 2
A shg-#1n (X )X ) 4 35 20, (6.2.1)
4x1X2

2 2
If 4 1n (14X )(1+X5 ) 45 equal to 1n 2 then A, = Af.

This will occur when |z4|= |z,]|= 1, which is the case
when an image impedance matching exists. On the other

hand if
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2 2
f(X1,X2) = é’ 1ln (1+X1 )(1+x2 )>ln 2 ’
41112

then Ay <A,. Therefore it is necessary to investigate
the behavior of the function f(x1,x2) to check if the
condition 1n 2<f(xq,x5) 1is possible.

Since

2 2
f(X1,X2) = % 1n (1+x1 )(1+X2 )

4x4Xo
then
2
3x1 2x, x,
2 .
2 3
311 x, x,
2 = U+x®) (x°-1)
2
X, 2x1 X,
¥ o= Oz
2 3
bxz x, X,
>r = X -1 e
2 2
Bx13x2 x, X,
Bx1
of = 0 — X, = 1
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fxgxe = 2 >O .
‘/41=1
x2=1

Thus we will have an extremum at (xq,x5) = (1,1) be-:
cause D> 0, However this extremum is a minimum

(f >0, f > 0). PFrom this discussion it is seen

X, X, XgXg

that f(x1,x2) can be made as large as we desire. This,
of course, implies that, according to Eq. 6.1.2, Ay

can be made as small as possible, thus a minimum number
of elements will be required in the filter. However, this
possibility is limited by the available types of imped-

ances, zq and 2.

6.3 « The design procedure.

As the starting points for the design for the
insertion loss filters, the following requirements are
given:

I. Effective pass band and the required effec-

tive return loss in this range, i.e.,
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-A
A or |p|l =e"®

II. Effective stop band and the corresponding
attenuation requirements.
ITII. The requirements on the imput and output

impedances in the stop band.

For the image parameter filters we have the following
requirements:
0 The interval in which the image impedances
are real.

’

II and III’ as in the II and III above,

Consider the function

2 2
£(xq,%,) = % 1n (1+247) 4 1n (1+x5,7)
2x, 2%, °

The following curve in Fig. 6.2.2 1is the curve

of % 1n §1+x22 s Wwhere x> 0, This curve is to be used
2x

as an aid in determining the attenuation curve in the stop

band. The curve is symmetric with respect to x = 1. Thus
only the part of this curve for x¢ 1 1is plotted in Fig.

6.2.2,
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4 1ln §1+x22 Nepers
2x

The design procedure consists of the considera-
tions of the following items: I’, II/, III/.
1’ Gives the cut-off frequencies.,

/

IT. Gives the lower bound on the attenuation

or the poles of attenuation.



119

IIIf Gives the types of image impedances.

Additional requirements are: filter is lossless and
contains a minimum number of inductors. The procedure
is described briefly in the following:
(1) Plot the y-scale;
(1i) Plot the impedances on the Y-scale, then
with the aid of Fig. 6.2.2, ©plot
In f(xy,%5) on the y-scale.
(1ii) Substract the curve in (ii) from the
required attenuation curve.
(iv) The remaining curve is usually, after
adding 1n 2 +to it, the requirement

for the intermediate section.

By using the template we can find the poles of attenua-
tion, as is shown in Fig. 6.2.4. In Fig. 6.2.3 the
plots of A, min and 1n f(x1,x2) are shown. In Fig.
6.2.4 the template curves which will approximate AI

are illustrated, i.e., the image attenuation of the inter-
mediate section to be designed. Since the terminating
image impedances are supposed to be given in advance,

this means that the conditions in the pass band are

completely satisfied.
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A Nepers
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FIG. 6.2.4



121

6.4 . Some more study of the high order image impedance

In Chapter II, general discussions of these
types of impedances are given. In this section these
impedances are studied to obtain some details useful
in the filter design.

Figures 6.3.1 and 6.3.2 1illustrate the plot
of the image impedances ZTm and an, which are nor-
malized with respect to the constants Rp, and Ry .
Note that the frequency axis is the J L-axis described
in Chapter II rather than the actual w-axis. These
curves are calculated with the aid of digital computer.
In these figures, curve (1) represents the image imped-
ance with critical frequencies (attenuation poles),
wop &and wpp which are relatively close to the cut-off
frequencies. In the image impedance corresponding to
curve (2), the critical frequencies are taken far from
the cut-off frequencies, and finally curve (3) corre-
sponds to the situation that the critical frequencies
are taken still farther from the cut-off frequencies.
The effect of the location of the critical frequencies
of the image impedance on the impedance curve is evident
from these examples. It is to be noted that the shape
of these curves depends also on the band width, In fil-

ter design, using these types of impedances, one should
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plot z4 or 2z, and choose the best curve fitting the ’
requirements.

The following is a table of the quantities which
is useful in the design. All of the quantities are cal-
culated for a fixed band width of (22-18) = 4 k rad/sec

and only the best curves are included in the table where:

SLpiny < Lmaxy L Le are extremum frequencies
D9 ¢ maximum

Do : minimum

1o - 9 ¢ effective band width

Apgx ¢ expected attenuation in the pass-band .

Table I
zq = ZTm/FTm (refer to Fig. 6.3.1)

o1 1 2 5 10 k rad/sec
Mopt  =1.10  =1,10  =1.10 ~1.10

JAL2P1 1.10 1.10 1.10 1.10

Lpin  0.090 0.050 0.090 0.120

Mpgx =0.895 -0.890 =0.965 ~0.965

Mg 0.875 0.990 0.870 0.885

My -0.965 -0.970 =0.965 -0.965

- 0.945 0,945 0.915 0.925

D1 0.282 0,283 0,269 0.215

Do 0.208 0.283 0.192 0.152

Apax 0.0275 0.0190 0,0195 0.02 Nepers
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Table II
(refer to Fig. 6.3.2)

Wo 4 35 49 30 k rad/sec
Mgpa =110 ~1.10 ~1.10

Mg 1.10 1.10 1.10

Mipax  =0.110 ~0.105 ~0.150

MNpin  0.895 0.990 0.885

Me ~0.875 ~0.930 ~0.870

My ~0.925 ~0.950 ~0.920

My, 0.960 0.975 0.965

D, 5.88 1072 2,42 1072 9.9 107>

D, 4.16 1072 1.61 1072 6.9 107

Apax 0.019 0.02N 0.02N  Nepers

In general the image impedances are normalized with
respect to the terminating resistance, Rj. Thus, the

normalized impedance used in the design is

EEIE = Z = ?_.].:g ET—Q = Z1 :R-T—m'-

RL, 1 Ry, Ry Ry,
or

Z"m - g - Iny  Bmp - 5 Rry .
Let

max min 2 max _min 2
ZTm ZTm = Ry, (or Zg-[m Z:n;m = Ry ).
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Then Rpy,/Rp (or Rpy/Ry) is equal to 1/@.
Thus, Rp, = Rp/4D1D2 (Bny = RL/VﬁTﬁz) which can
also be used to determine the value of Rpp, or Rmy, .
Note that the expected attenuation in the pass band,

A is the only required condition for the determina-

max?

tion of the image impedance if the filter is symmetric.
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Chapter VII

CONCLUSIONS AND FURTHER PROBLEMS

Complete characterizations of elementary band-
pass filter sections have been developed as well as
formulas for the values of the elements of these sec-
tions. The elementary sections discussed in this the-
sis are of special types (see Chapter II). However,
the development can also be applied to other types of
sections. The reason that only the special type of
sections are considered here is that a filter made out
of these sections is an economical filter, i.e., it
contains a minimum number of elements, A systematic
design technique is described using an approximation
formula for the attenuation function, which takes into
consideration the effect of image impedance. The effects
of image impedances are generally omitted in the earlier
approximation formulas for the attenuation function.

The study of higher order image impedances by
using a frequency transformation technique is discussed
and the selection of the location of the critical fre-
quencies of the impedance function is considered. For
the determination of the location of these critical
frequencies a digital computer program has been employed.

127
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After using a frequency transformation on the image im-
pedance expression, through a trial and error method
these frequencies are located to give the "best" image
impedance function. However, an analytical approach,
perhaps utilizing elliptic functions, could be used.
Such an approach is not considered in this thesis, but
rather is left as a further problem.

In this thesis;only lossless band-pass filters
are considered. In the case of incidental losses, as
is known for the low-pass case [TO 1], as long as the
losses are assumed to be uniformly distributed, a simple
computer program can be written to take into account the
effeet of losses., In this thesis, the program written
and used for the calculation of the insertion loss func-
tion can easily be extended to the lossy case. However,
since the main objective in this thesis for the designing
of "zig-zag" type of band-pass filter is to describe an
exact design procedure, such an additional program

covering the lossy case is not written.
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APPENDIX

EVALUATION OF ATTENUATION FUNCTION
BY DIGITAL COMPUTER

The following is an example of the evaluation
of attenuation function using a digital computer. The
filter considered in this example is of the form shown
in Pig. A-1. The ideal transformer of turn ratio
1tn 1is used to make both the image impedances of this
filter identical.

{0 —0—
I[] L wa:

Wop: T Wotu Wo1
n Wapt

1:n o

IQIOF.’., é é sz

Wgp1

[
[

-

l——oO0

FIG. A-1

The following table gives the explanation of the symbols
used in the computer program. The program is also
included after the table and 1t is used for the filter
in PFig. A-1 with the following parameter values.

10 ke/sec

wo1

Woy 30 kc/sec
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~1.1

i

op1 = %(wgpq)
82p1 = 9(w2p1) = 1.1
Amax ¢t max., attenuation in the pass band
0.02 Nepers
(see also Table I on page 122 for case Woq = 10)
The result ie included in the following and the sketch
of the attenuation function in both stop bands and pass

band are given in Fig. A-2.
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Table III

Meaning

Symbol used

the program in the text
PO1(I) | attenuation poles in the w01
upper and the lower stop :
P02(I) band (I = number of E.S.Z. wWo4
‘ sections or its m derived)
PP1 transformed critical fre- 20p1
quencies in impedance in-
PP2 vestigation (PP1 = -PP2) R2p1
P1(I) attenuation poles in the Qo1
{-scale
P2(I) Q21
GAP1(I) attenuation poles in the Yoi
y-scale (logarithmic
GAP2(I) scale) Y21
H(I) the H-function of E.S.Z. Hy
of its m-derived section
- 2
B = m (8-1) (B-8,(1))
(a-R0(1))2 (R°=1)
S(I) confluence frequency of Qo (1)
each E.S.Z, in the &-scale
o (1)P2p1NBp1~1+R0p BB
z20(1) constant of the H-function mj
)v 2 L )d 2 '
mi=_1 (u-ngpi QOpi"‘H'(‘a'QOpi QQJi-‘]
=2
Va2 Ropi — Sopi
ATI total attenuation A1y
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(Table III continued)

Symbol used in

AT

the program

BIT

BI

X1

AO1

AO03

DEL

0S
OB
AO
OM

|

Meaning

| image attenuation of each

section

A1 = 1n [1¢§
1-H

potal image phase

Bry = ZBg

image phase

By = arc tan ([2H]

normalized impedance

X1 = Zpy/RpyVDqD

STOP band attenuation
(exact)

STOP band attenuation
(approx)

0.5 log f(xq,x0)

logarithmic frequency
scale

transformed frequency for

- impedance investigation

angular frequency

pass band attenuation

transformed angular
frequency

Symbol used
in the text

Ar
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*# 041917 SOEMINTAPOERA

PROGRAM DESIGN
ODIMENS ION PO1(2)+PO2(2) +P1(2)esP2(2) +GAP1(2) +GAP2(2)+S(2)
1ZO(2)+H(2) s HA(2)+AG(2)4A1(2)4B1(2)
PP1==1,100
PP2=1,100
PO1(2)=10,000
PO1(1)Y=PPO(PO1(2)PP1)
PO2(1)=PPO(PO1(2) PP2)
P02(2)=30,000
DO 2 I=1.42

2 P1(1)Y=POLE(POI(I)Y)
PRINT 3. (P1(1)el=1,42)

3 FORMAT (1HO ¢3Xe7HPOLELl= +F8e¢3¢3X¢F8e31
DO 4 I=1,2

4 P2(1)Y=POLE(PO2(T1))
PRINT Se¢ (P2(1)el=1,42)

5 FORMAT (1HO ¢3X s 7HPOLE2= +F8e¢3¢3XeF8e3)
DO 6 1I=1,2

6 GAP1(1)=0S#LOGF((P1(1)+1)/(P1(1)=-14))
PRINT 7+ (GAP1(1)41=1,42)

7 FORMAT (1HO ¢3X+6HGAPLI=2 (FB8e3¢3XeF8e3)
DO 8 1=1,2

8 GAP2(1)=0.S#LOGF((P2(1)+1e¢)/(P2(1)=1¢))
PRINT 9¢ (GAP2(1)el=],2)

9 FORMAT (1HO¢3X«OHGAP2= (F8e3¢3XF8e3)
DO 10 1=1,2

10 S(1)=COL(PI(1)«P2(1))
PRINT 11s (S(I)el=1,2)

11 FORMAT (1HO 43X 12HCONFLUENCE= 3X+E15¢8¢3X+E1548)
DO 12 1=1,2

12 ZO(1)=CONS(P1(1).P2(1))
PRINT 13¢ (ZO(1)e1=142)

13 FORMAT (1HO+3Xe12HM ZE93XeF15e8e¢3XeF15e8)
PRINT 100

100 FORMAT (1HO+3X¢25HSTOP BAND ATTEN IN NEPERS)
OM==9 4,25

DO 14 K=1,68
IF(K=33) 15,15,16

15 GO TO 17

16 1IF (K=34) 15,18,15

18 OM=0OM+2.25
GO TO 17

17 IF (K=1) 20+21,20

21 PRINT 22

220FORMAT (1HO+6Xe2HOM 4 1OXs3HGAM 4 16X e 3HATI ¢ 18X ¢3HAO1 418X ¢3HAQ3,
11S5Xe11HLOGF (X1 eX2))

20 CONTINUE
ATI=0
DO 23 I=1,2
HC(I)IERATH(ZOC(I) +S(I) OM)
HA(I)=ABSF(H(1))
IF (HA(I)=14) 24,25.,24

2% GO TO 23

24 AG(1)1=ABSF((1e+HACI))/(1e=HA(1)))
IF (AG(1)) 23.23.38
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38 IF (AG(I)=10%##8) 39439,23

39 AI(1)=2.%#LOGF(AG(1))

23 ATI=ATI+AI(])
STI=(SINH(ATI)) #%2
OB=ABSF (SQRTF((18¢#22,)%(10e¢+0M)/(10,—-0M)))
X1=2ZIM(OB,PO1(2)PO1(1),P02(1))
IF (X1) 27.28+.27

28 GO TO 14

27 C=ABSF(X1)
IF (C=1¢) 29,30,29
IF (C=10e#%#6) 29,29,30

30 GO TO 14

29 CONTINUE
QE((le+X1%##2)/(2e#X1))#R2
D=ABSF (1 e+Q#*#ST1)
IF (D) 40,40,41

40 GO TO 14

41 AQl==0,S5#L.0GF (D)
T=ABSF (SQRTF (Q))
1F (T) 42,82,43

42 GO TO 14

43 Z=LOGF(T)
G0 SH_OGF (ABSF((OM+1¢)/7(OM=1¢)))
AO3=AT1+4+Z~LOGF (24)
PRINT 31¢ OM.GsATIAO1,A03,2

31 FORMAT (3XeFB8e2¢5(3X+E158))

14 OM=OM+0 .25
PRINT 110

110 FORMAT (1HO+3X«21HPASS BAND ATTENUATION)
PRINT 34

34 FORMAT (1HO :8Xe2HX1 418X e2HAO 18X ¢3HBIT 12X ¢2HOM, 12X 3HDEL)
DEL=-1,000
DO 19 L=1,64
IF (L-10) 49,49,50

49 GO TO 60

S50 If (L=-5S5) 70,70.49

60 DEL=DEL+0,01
GO TO 80

70 DEL=DEL+0,04
GO TO 80

80 0S=PPO(PO1(2)DEL)
OM=pPOLE (0S)
BI1T=0
DO 395 1=1,2
HCI)I=RATH(ZO(I)eS(I)OM)
BI(I)=2.%#(ATANF(2.%#H(1)))

35S BIT=BIT+BI(])
ST2=(SINF(BIT))#%2
X1=ZIM(OSPO1(2)PO1(1),P02(1))
Q2= ( (1 ¢=X1%82)/(2e%#X1)) #%2
AO=0+S5#LOGF (ABSF(1.+Q2%#ST2))
PRINT 36¢X1+A0BIT+OM,DEL

36 FORMAT (3(3XeE15e¢5) e3XeFB8e3¢3XFBe3)

19 CONTINUE .
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STOP

END

FUNCTION COL(A.B)
DIMENSION A(3).B8(3)
P=SQRTF (A#A-1¢)
Q=SQRTF(B#B-1,)
COL=(ARQ+B®P) /(Q+P)
RETURN

END

FUNCTION CONStAB)
DIMENSION A(3).B(3)
C=10.

Pe (C-A)#SQRTF(BaB-1,.)
Q= (C-B)#SQRTF (A#A=1,)
R=B-A

S=SORTF(C%xC=14¢)
CONS=(Q+P )/ (R%*S)
RETURN

END

FUNCTION RATH(AB,C)
DIMENSION A(3).B(3)
D=10e

G=SAQRTF(D#D=1,)

T=D-B

P=C-8
Q=SQRTF(ABSF(C#C~1,4))
RATH= (ARGRP ) /( THQ)
RETURN

END

FUNCTION ZIM(P4sQesUsS)
TOR1=(1¢/P)#(PRP—-QRQ) /( (PRP=URY) X (SHS-P*P))
TOR2=SQRTF (ABSF( (P¥P=18,#18¢ )% (22¢%#22¢~P*P)))
D1=20,215

D2=0.1%2
COl=1,./SQRTF(D1#D2)
ZIM=TOR1I#TOR2#CO!
RETURN

END

FUNCTION POLE(Q)
G=SARTF(18.%#22,)
A=0,1

TA=A® (Q#Q+GRG) /(QHQ=-GHG)
POLE=14,/TA

RETURN

END

FUNCTION PPO(A+8)
PEN=B+(40,-2,#18.%#22,/A)/4 ¢
PEM=B-(40,-2.%A)/4,
PPO= ARPEN/PEM

RETURN

END

END
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STOP BAND ATTENUATION IN NEPERS

om
-9.25
-9,,00
~8¢7S
-8¢50
-8¢29
-8.00
-Te7S5
=750
=725
=700
-6¢7S
-6¢50
-6¢25
=600
-5 78
~-5¢50
-5.28
-5.00
-4 TS
-‘.50
-4 ,25
-4 ,00
=378
=350
-3¢25
=300
-2¢78
-2¢50
—2:25%
-2¢00
-1e¢78
=150
~12%
1295
150
1675
2.00
229
2¢50
2¢75
3.00
325
3¢50
4,00
4,2%
4450
4,75
5.00
5.28
550
S¢e7S
600
623

GAM
-+¢10883225SE+00
—e11157178E+00
-e11478722E+00

¢11819439E+00
-e12181104E+00
-e12565721E+400
- ¢12975860E+00
—e¢13413199E+00
-¢13881587E+00
—¢14384106E+00
= ¢14924649E+00
e 15507746E+00
-¢16138670E+00
-e16823612E+00
=+ 17569894E+00
-¢18386239E+00
—e¢19283124E+00
=e2027325SE+00
=e21372201E+00
- ¢22599256E+00
=~ e23978654E+00
-e25541281E+00
~e2732718SE+00
= ¢29389333E+00
- e¢31799438E+00
=+ 346573S9E+00
=¢38107003E+00
=e8423646893E+00
= eAT7T7SST2E+00
=¢354930614E+00
-+ 64964149E+00
-e¢80471896E+00
-¢10986123E+01
¢10986123E+01
«80471896E+00
¢ 649641 49E+00
¢ 854930614E+00
e 4TT7SST2E+00
¢ 42364893E+00
«38107003E+00
¢ 34657359E+00
¢ 31799438E+00
«29389333E+00
e 25541281E+00
¢ 23978654E+00
2 22599256E+00
¢21372201E+00
«20273255E+00
«19283124E+00
¢ 18386239E+00
¢ 1 7569894E+00
¢ 16823612E+00
¢16138670E+00

AT1
¢121530S8E+02
¢« 12239682E+02
¢ 12337574E+02
¢ 12449155E+02
¢ 12577634E+02
e1272738B1E+02
¢ 12904S49E+02
¢13118161E+02
¢ 13382188E+02
¢ 13719900E+02
¢14174373E+02
¢ 14839844E+02
¢ 189989S5E+02
¢202222S9E+02
¢ 16282573E+02
¢ 14626395E+02
¢ 13636026E+02
« 1289656SE+02
¢ 12286595E+02
¢11753083E+02
e11267S81E+02
«10812592E+02
¢10376121E+02
¢99491111E+01
¢ 95240619E+401
¢90941730E+01
e 86527426E+01
«81926852E+01
¢ 77061 7S4E+01
e 71847347E+01
¢ 66215437E+01
+60274069E+01
¢5%5911123E+401
¢ 72523363E+01
¢ 71555523E+01
e T7T7167214E+01
+83498361E+01
+89980807E+01
¢ 96632370E+01
¢10364844E+02
¢111388S3E+02
¢ 12054583E+02
¢ 13282S81E+02
¢ 1620781 8BE+02
¢ 14039082E+02
¢ 13163435E+02
¢ 12643360E+02
¢ 12289783E+02
¢ 1203146SE+02
¢ 11833969E+02
e 11678126E+02
¢ 11852237E+02
¢11448683E+02

AO1
¢ 12032159E+02
¢ 12291305E+02
¢ 12547024E+02
¢ 12809294E+02
¢13086837E+02
¢ 13388769E+02
e13726091E+02
¢14113623E+02
¢ 14573289E+02
¢15140750E+02
¢ 15881228E+02
¢ 16936S90E+02
e18731231E+02
¢25121373E+02
¢ 19266597E+02
¢ 16836987E+02
¢ 15406330E+02
¢ 14352611E+02
¢ 13494065E+02
¢ 12751526E+02
¢ 12082758E+02
¢11462015E+02
¢10871897E+02
¢ 10299S46E+02
097346209E+01
¢91681059E+01
¢85915444E+01
¢ 79965588E+01
e 7374 7T732E+01
¢67189042E+01
0602859 76E+01
«53417830E+01
¢50112407E+01
¢71047S96E+01
¢65006564E+01
¢70268563E+01
¢ 77054453E+01
+8421020SE+401
e915931688E+01
¢99344433E+01
«10780384E+02
¢ 11765822E+02
¢13061211E+02
¢1611493SE+02
¢14007811E+02
¢ 13192399E+02
¢12731470E+4+02
¢ 12436238BE+02
¢ 12235745E+02
¢12095841E+02
¢ 119976S1E+02
¢ 11929784E+02
¢ 11884955E+02

AO3
¢12032159€E+02
¢1229130SE+02
¢ 12547024E+02
¢12809294E+02
¢13086837E+02
¢13388769E+02
e13726091E+02
¢14113623E+02
¢ 14573289E+02
015140750€+02
¢15881228E+02
¢ 16936590E+02
«18731231E+02
e25121373E+02
¢ 19266597€E+02
¢ 16836987E+02
¢ 15406330E+02
e 14352611E+02
¢13494065E+02
¢12751526E+02
¢12082758E+02
¢11462015E+02
¢10871897E+02
¢ 10299546E+02
097346209E+01
«91681059E+01
e85915444E+01
e 79965589E+01
¢73747732E+401
e67189041E+01
06028596SE+01
e53417774E+01
¢50112324E+01
¢ 71047S98E+01
+65006555E+02
¢70268561E+401
¢ 770544S3E+01
¢8421020SE+01
¢91593188E+01
099344433E+01
¢ 10780348E+02
¢11765822E+02
¢13061211E+02
¢1611493SE+02
«14007811E+02
¢13192399E+02
¢12731470E+02
«12436238E+02
¢12235745E+02
¢ 12095841E+402
¢119976S1E+02
¢11929784E+02
¢ 1188495SE+02



6450 *» 15507746E+00
6e75 ¢« 14924649E+00
700 ¢14384104E+00
Te25 «13881587E+00
Te50 ¢13413199E+00
Te75 ¢ 12975560E+00
8.00 ¢ 12565721E+00
8¢25 ¢12181104E+4+00
8¢50 ¢11819439E+00
8e7S e11478722E+00
9.00 ¢11157178E+00
9¢25 ¢ 10883225E+00
9450 ¢ 105654SSE+4+00
9e¢7S ¢ 10292603E+00
PASS BAND ATTENUATION IN
X1 AO
e 67256E+00 ¢ 15919E-01
«87333E+00 ¢33414E-02
«98897E+00 ¢31149E~-04
¢ 10622E+01 ¢11420E-02

¢11103E+01
¢11421E+01

¢39808E~-02
e 71442E-02

¢11631E4+01  +99S90E-02
¢11763E4+01  +12150E-01
¢11B40E+01  +13651E-01
¢11877E4+01  +14501E-01
¢11794E+01  +1328SE-01
¢11S4SE+01  +89334E-02
¢11250E+01  +48403E-02
¢109S4E+01  +21128E-02
¢10625E+01  +69647E-03
¢10410E+01  +14442E-03
¢10170E+01  +99766E-0S
¢99512E4+00  +13073E-06
¢9T7S30E+00  +99010E-06
+OST736E+00  +43464E-04
*94114E+00  +24592E-03
+926S0E+00  +75248E-03
¢91332E+00  +16767E-02
¢9014BE+00  +30576E-02
+89089E+00  +48310E-02
+88145E4+00  +68230E-02
e87311E+00  +87651E-02
¢86579E+00  +10332E-01
+85945E+00  +11201E-01
+8540SE+00  +11122E-01
¢BAOSSE+00  ¢«99949E-02
¢BASO4E+00  +T79361E-02
¢8431B8E+00  +S53053E-02
¢B412BE+00  +26743E-02
«84023E4+00  +71311E-03
+B4004E+00  +47371E-06
+B4073E+00  +B81422E-03
+84230E400  +29902E-02
+844B0E+00  +59341E-02
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¢ 11362254E+02
¢ 11289252E+02
e11226971E+02
e11173381E+02
¢11126930E+02
¢11086407E+02
+11050855E+02
¢11019507E+02
«10991742E+02
e 10967051E+02
e 10945013E+02
¢ 1092S278E+02
¢ 10907SS3E+02
¢ 10891589E+02
NEPERS
B8IT
-e¢582S6E+01
-e56363E+01
-e54911E+01
-e53687E+01
-e¢52609E+01
-e5163SE+01
-¢5073BE+01
-e89904E+01
-e49119E+01
-e848376E+01
-e4ST715E+01
—-e43396E+01
-e¢41300E+01
-039360E+01
-¢37S32E+01
-e35787E+01
-e34104E+01
-e32463E+01
-¢30883E+01
—-e29260E+401
-e27675SE+401
- 26089E+01
-0 24492E+01
-0 22878BE+01
-e21238E+01
-0 19566E+01
-e¢ 17TB55E+01
-e¢16099E+01
-e 14292E+01
-0 12428E+01
-¢10505E+01
-+¢85182E+00
-e6A4672E+00
-e43524E+00
-e2176SE+00
¢e55562E~-02
e 23366E+00
e46S5S74E+00
¢ 7007 7E+00

¢11858321E+02
¢ 11846602E+02
¢ 11847579E+02
¢11859813E+02
¢ 11882479E+02
«11915300E+02
¢ 11958558E+02
¢12013198E+02
«12081077E+402
¢ 12165502E+02
0 12272414E+02
¢124133S6E+02
«12614687E+02
e 12961136E+02

OoM DEL
-e993 -e990
- 985 - 0980
-e978 -e970
-e971 -e960
—e963 -¢950
".956 "0940
-e948 -e¢930
-e04al ~e920
-e933 -e¢910
“0926 -0900
-e¢ 895 -e¢860
- e865 -e820
-e 834 -e¢780
-e802 -e740
-e771 -¢700
-e739 - e660
~e 706 -e620
-e673 -¢580
—e640 -e540
-e607 -¢500
-.573 - 08460
-¢538 - o420
".503 '.380
".465 "‘3‘0
-e433 -¢300
".397 -0260
- 360 -¢220
-e323 -¢180
—e286 -e140
-e248 -¢100
-e210 -¢060
-e171 -0020
-e132 «020
-e092 «060
-e052 ¢100
-e012 ¢140

«029 «180

«071 «220

o113 260

¢11858321E+02
¢11846602E+02
¢11847S579E+02
¢11859813E+02
¢11882479E+02
¢1191S300E+02
«11958558E+02
¢12013198E+02
¢12081077E+02
¢12165502E+02
0122724 14E+02
¢ 1241335S6E+02
e12614687E+02
¢12961136E+02



+84826E+00
«8S272E+00
«85825E+00
*86491E+00
¢B872TBE+00
«88195E+00
+892%3E+00
¢90460E+00
¢ 91829E+00
¢9336SE+00
¢95070E+00
¢ 96926E+00
«98878E+00
¢«10078E+01
¢ 10224E+4+01
+10226E+401
¢10176E+01
¢ 10092E+01
¢ 99614E+00
¢ 976S2E+00
¢ 94761E+00
«90S00E+00
+84115E+00
¢ 74149E+00
«S5T003E+00

¢« 88024E-02
e10782E-01
¢ 11352E~-01
¢ 10431E-01
«83613E-02
«STSBLIE~-02
¢32843E-02
e14317E-02
¢ 3867TSE-03
e23730E-04
e 22847E-04
e65044E-04
«21663E-04
¢ 17872E~-04
«20803E-03
«24743E-03
¢ 15267E-~-03
e4187SE-04
¢ 71882E-0S5
¢ 285796E-03
e 12176E-02
¢36901E-02
e91383E~-02
¢20132€E-01
¢41003E-01
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¢93762E+00
¢ 11752E+01
e 14126E+01
¢ 16490E+01
¢ 18838E+01
¢21170E+4+01
0 23486E+01
e 25792E+01
e 28096E+01
¢30411E+4+01
¢32756E+01
¢35155E+01
¢37642E+01
¢40265E+01
¢43101E+01
«46283E+01
«4T7159E+01
«48081E+01
e49056E+01
«S0097E+01
«S51224E+01
¢ 52464E+01
¢538B66E+0
«S5S520E+01
¢ ST7668E+01

e 156
¢199
0243
«288
¢332
«378
424
o471
518
e 566
0615
« 664
o714
e 764
815
«867
«880
893
0907
920
¢933
0946
«960
«973
987

«300
340
¢ 380
e420
e460
«S500
540
580
«620
¢ 660
¢ 700
¢ 740
¢ 780
«820
¢860
«900
910
920
¢930
940
¢950
e 960
970
980
990
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