I. THE KINETICS AND MECHANISM OF THE DECOMPOSITION OF AQUEOUS SOLUTIONS OF THE PENTACYANOCOBALTATE (11) ION

II. THE KINETICS OF THE FORMATION OF COBALT (III)
PRODUCTS FROM THE REVERSIBLE OXYGEN CARRIER,

µ-PEROXOTETRAKIS (HISTIDINATO) DICOBALT (III)

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
CHARLES S. SOKOL.
1970

This is to certify that the

thesis entitled

I. THE KINETICS AND MECHANISM OF THE DECOMPOSITION OF AQUEOUS SOLUTIONS OF THE PENTACYANOCOBALTATE(II) ION II. THE KINETICES OF THE FORMATION OF COBALT(III) PRODUCTS FROM THE REVERSIBLE OXYGEN CARRIER, $\mu\text{-PEROXOTETRAKIS}(\text{HISTIDINATO}) \text{DICOBALT}(\text{III})$ presented by

Charles S. Sokol

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Chemistry

Major professor

Date February 23, 1970

O-169

ABSTRACT

- I. THE KINETICS AND MECHANISM OF THE DECOMPOSITION OF AQUEOUS SOLUTIONS OF THE PENTACYANOCOBALTATE (II) ION
 - II. THE KINETICS OF THE FORMATION OF COBALT(III)

 PRODUCTS FROM THE REVERSIBLE OXYGEN CARRIER,

 μ-PEROXOTETRAKIS(HISTIDINATO)DICOBALT(III)

Ву

Charles S. Sokol

The kinetics of the decomposition of the pentacyano-cobaltate(II) ion in aqueous solutions at low ionic strength has been investigated. The reaction is second order with respect to the pentacyanocobaltate(II) ion. The activation energy is 9.84 \pm 0.27 kcal/mole in the temperature region of 25-50° and is more than twice that previously reported. It was found that the discrepancy in the activation energy is due to the large ionic strength dependence of the decomposition reaction. As the ionic strength increases, the $\mathrm{Co(CN)_5}^{3-}$ ion forms ion pairs with the cations in solution. As the concentration of the ion pairs increases, the apparent activation energy decreases.

Limited evidence in support of the postulated monomerdimer equilibrium of the pentacyanocobaltate(II) ion has been observed. As the concentration of this ion decreases from 0.17 M, there is a slight spectral shift.

dinato coba _-peroxotet gated. Fro groduct on | tion of sma ion is prop greater tha is given fi of the $sup_{oldsymbol{\in}}$

The Ki

dicobalt(II distidine s Misms for cation are tiese mecha in determi nt conclus the bis (his

Evider.

matalytic a

its form

The kinetics of the slow formation of the bis(histidinato)cobalt(III) cation from the reversible oxygen carrier, μ-peroxotetrakis(histidinato)dicobalt(IΠ) has been investigated. From the dependence of the rate of formation of the product on the histidine concentration, the equilibrium formation of small quantities of the tris(histidinato)cobaltate(II) ion is proposed, when the histidine to cobalt(II) ratio is greater than two. Spectrophotometric and kinetic evidence is given for the formation of u-superoxotetrakis(histidinato)dicobalt(III) ion in low yield when cobalt(II)histidine solutions are oxygenated. The most likely mechanisms for the formation of the bis(histidinato)cobalt(III) cation are discussed and the mathematical equations for these mechanisms are derived. Least squares calculations for determination of rate and equilibrium constants could not conclusively confirm the mechanism for the formation of the bis(histidinato)cobalt(III) cation due to the presence of the superoxo complex.

Evidence is given which suggests the possible autocatalytic activity of the bis(histidinato)cobalt(III) cation in its formation from the peroxo oxygen carrier.

I. THE

II.

PR.

- I. THE KINETICS AND MECHANISM OF THE DECOMPOSITION OF AQUEOUS SOLUTIONS OF THE PENTACYANOCOBALTATE(II) ION
 - II. THE KINETICS OF THE FORMATION OF COBALT(III)

 PRODUCTS FROM THE REVERSIBLE OXYGEN CARRIER,

 μ-PEROXOTETRAKIS (HISTIDINATO)DICOBALT(III)

Ву

Charles S. Sokol

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

1970

662841 7-1-70

To my wife Myra and my parents Leona and Adolph.

The author

The author

for his con

the work.

The au

The fi

friends and

ACKNOWLEDGMENTS

The author expresses his deep gratitude to his wife,
Myra, whose patience and understanding made this possible.
The author is very grateful to Professor Carl H. Brubaker, Jr.
for his continued assistance and encouragement throughout
the work.

The author thanks Dr. R. S. Schwendeman and Dr. J. L. Dye for their helpful suggestions.

The financial support from the Atomic Energy Commission is gratefully acknowledged as is the moral support from friends and coworkers.

I. INTR

II. HIST

A. C B. T C. T

III. THEC

A. 1 B. N C. M

G. Z. C. E. J. C. a.

IV. EXPER

A. p.

B. A. C. EX

D. Ex

TABLE OF CONTENTS

		'	Page
ı.	INI	TRODUCTION	1
II.	HIS	STORICAL	3
	Α.	Cobalt Synthetic Oxygen Carriers	3
	в.	The Pentacyanocobaltate(II) Ion	7
		-	·
	C.	The Cobalt-Histidine Oxygen Carriers	11
III.	THE	SORETICAL	14
	A.	Linear Least Squares	14
	В.	Non-linear Least Squares	16
	C.	Mathematical Equations for the Decomposition of Pentacyanocobaltate(II) \dots	23
	D.	Mathematical Equations for the Formation and Decomposition of $\mu\text{-Dioxygentetrakis-}$ (1-histidinato)dicobalt	24
	Ε.	Calculation of Ligand Concentration During the Formation and Decomposition of $\mu\text{-Dioxygentetrakis}(1\text{-histidinato})\text{dicobalt}$.	33
	F.	Numerical Method Used to Solve Equation 87, the Newton Method	36
	G.	Numerical Method Used to Solve Equation 78.	40
	н.	Computer Programs	41
	I.	Estimation of $K_{4a_{+}}$ and K_{4b}	42
	J.	Correction of CoL_2 (L = histidine) Absorbance Due to the Presence of Co_{aq}^{III}	46
IV.	EXI	PERIMENTAL	48
	A.	Preparation of Reagents	48
	В.	Analytical	52
	C.	Experimental Procedure for the Study of the Co(CN) ₅ ³⁻ Decomposition	53
	D.	Experimental Procedure for the Study of the Cobalt-Histidine-Oxygen Reaction	57
		iv	

B. T

REFE

APPE

A. D B. D

c. c

TABLE OF CONTENTS (Cont.)

		P	age
v.	RES	SULTS AND DISCUSSION	60
	A.	The Decomposition of $Co(CN)_5^{3-}$	60
	В.		
		(histidinato)dicobalt(III)	71
	REI	FERENCES	112
	API	PENDIX	120
	Α.	Derivatives for the Non-Linear Least	
		Squares Calculation	120
	В.	Derivative for the Ligand Concentration	
		Calculation	127
	C.	Computer Programs	129
		1. Linear Least Squares	129
		2. Non Least Squares Calculation Program .	133
		3. Non-linear Least Squares Calculation .	137

TABLE

I. Pr

II. Ra Co

III. Po.

IV. Ac me Cc

V. Da

VI. Dan of and to

VII. Expose (C.

VIII. Da Coi

IX. A da

X. A or Tall short to

XI. Va i₫€

th€

LIST OF TABLES

TABLE		Page
I.	Preparation of the CoL ₂ solutions (2:1 histidine to cobalt ratio)	51
II.	Rate constants for the decomposition of $\operatorname{Co(CN)_5}^{3-}$ as a function of temperature	62
III.	Possible oxidation states of Co and H in $Co(CN)_5H^3$	66
IV.	Activation energies for reactions similar in mechanism to the decomposition of aqueous $\mathrm{Co(CN)_5}^{3-}\ldots\ldots\ldots\ldots$	68
٧.	Data of L. Zompa for the formation of CoL_2 from $(CoL_2)_2O_2$	75
VI.	of CoL_2^+ from $(CoL_2)_2O_2$ on the cobalt(II) and oxygen concentration at a 2:1 1-histidine	e 77
VII.	Experimental data in support of the catalytic nature of CoL_2^+ in the decomposition of $(CoL_2)_2O_2$	
VIII.	Data in support of the catalytic nature of ${\rm CoL_2}^+$ in the decomposition of $({\rm CoL_2})_2{\rm O}_2$	81
IX.	A typical set of calculated and experimental data that shows $K_3 \leq 1.4 \times 10^4.$	84
х.	A comparison of the calculated data from Table IX and data calculated with $K_3=1$ to show that a value of $K_3 \leq 1.4 \times 10^4$ significantly changes $[\text{CoL}_2^+]_{\text{calc}}$ only for ligand to metal ratios of greater than $2 \dots$.	86
XI.	Values of k_{5a} and k_{5b} which result in almost identical sets of values of $[CoL_2^{+}]_{calc}$ for	
	the mechanism including equation 49	89

LIST OF TA

TABLE

XII. Va

XIII. Ca ab

1.

LIST OF TABLES (Cont.)

TABLE	Page
XII.	Values of k; and k, which result in almost identical sets of values of [CoL2] calc for the mechanism including equation 5090
XIII.	Calculation of number of moles of O_2 initially absorbed per $2CO_{total(initial)}^{II}$ for $CO_{t}^{II} = 1.2 \times 10^{-2} \underline{M}$ and pure O_2 gas (at $25^{\circ}C$),
	$K_{AB} \cdot K_{AB} = 7.2 \times 10^6 \dots 97$

FIGURE

- 1. po
- 2. Ge:
- 3. A 2
- 4. A b
- 5. Spe
- 6. Com aque day; pre;
- 7. Comp aque day1
- 8. Secomof the
- 9. Arrhe Penta
- 10. The aque $K_6[]$
- 11. Enlar firskine-Co(C:
- 12. Plot solut

LIST OF FIGURES

FIGURE		Page
1.	Possible structures for the pentacyano-cobaltate(II) ion	10
2.	Geometric representation of the Newton method for numerical solution of equations	37
3.	A block diagram of computer program "Deriv" .	43
4.	A block diagram of computer subroutine "Co3calc"	44
5.	Special mixing cell	49
6.	Comparison of visible and near uv spectra of aqueous $Co(CN)_5^{3-}$ kept in darkness and in daylight for 2 hours and 15 minutes after preparation	54
7.	Comparison of visible and near uv spectra of aqueous $\mathrm{Co(CN)_5}^{3-}$ kept in darkness and in daylight for 48 hours after preparation	55
8.	Second order rate plots for the decomposition of the pentacyanocobaltate(II) ion	61
9.	Arrhenius plot for the decomposition of the pentacyanocobaltate(II) ion	63
10.	The visible and near uv spectra of monomeric aqueous $K_3[Co(CN)_5]$ and dimeric $K_6[(CN)_5CoCo(CN)_5]$ in a nujol mull	72
11.	Enlargement of the spectra near $625 \text{ m}\mu$ of the first three observations during the 50° kinetic experiment of the decomposition of $\text{Co(CN)}_5{}^3$	73
12.	Plot of absorbance <u>versus</u> time of the quenched solutions which shows the acid attack on these quenched solutions	87

LIST OF FIGT

PIGURE

- 13. Plot leas:
- 14. Plot leas: time
- 15. Abscr solu-
- 16-19. V

LIST OF FIGURES (Cont.)

FIGURE		Page
13.	Plot of experimental values of $[CoL_2^+]$ and least squares values of $[CoL_2^+]$ calc versus time for the mechanism including equation 49.	91
14.	Plot of experimental values of $[CoL_2^+]$ and least squares values of $[CoL_2^+]$ calc versus time for the mechanism including equation 50.	93
15.	Absorbance <u>versus</u> time of cbbalt-histidine solutions oxygenated with various gases	99
16-19	9. Visible spectra of solutions of (CoL ₂)NO ₃	102- 109

In the Ametics and mis time, t istermine th systems that A typic number tratic portional to actants or p Mechani unstant ion sant temper ally affect tere are re Eleantly alt tions will b lart" elec at to keep

leep the ion

 $^{\text{convenient}}$ w

Scottetric '

Spectro

I. INTRODUCTION

In the last 15 years, much work has been done on the kinetics and mechanisms of inorganic reactions. Prior to this time, the majority of investigations sought only to determine the stoichiometry and thermodynamics of the kinetic systems that were investigated.

A typical experiment involves the measurement of the concentration (or some property of the system that is proportional to the concentration) of one or more of the reactants or products of the reaction as the reaction proceeds.

Mechanistic investigations are usually performed at constant ionic strength and are always performed at a constant temperature since the ambient temperature will drastically affect both rates of reaction and equilibria. However, there are reactions in which ion pair formation will significantly alter the reaction rate and therefore, these reactions will be significantly affected by the presence of an "inert" electrolyte. In these cases, it is much more important to keep the ionic strength as low as possible than to keep the ionic strength as constant as possible.

Spectrophotometric methods of analysis can be very convenient where they can be applied. Generally, spectrophotometric methods of analysis do not give better than

me percention motometrical and product spectrophotometrical all chemical

one percent accuracy.² In order to be able to use the spectro-photometric method, it is necessary to know, for all reactants and products, the molar absorptivities in the region of the spectrophotometric investigation. Then, at any wavelength, the total absorbance will be the sum of the absorbances of all chemical species present.

peroxodecar 1852 by cx:

tion. Prio

diamagnetic

prepared.5-

century, We:

prepared mar

iridged spec

etry about t

interest in

possible use

^{la mode}ls fo

tion of hemo

synthetic cc

Several

*Clecular ox

2C

No series c

II. HISTORICAL

A. Cobalt Synthetic Oxygen Carriers

The first synthetic oxygen carrier, diamagnetic µ-peroxodecamminedicobalt(III), was prepared by Fremy³, ⁴ in 1852 by oxygenating an aqueous ammoniacal cobalt(II) solution. Prior to the start of the twentieth century, several diamagnetic and paramagnetic oxygen bridged compounds were prepared. ⁵⁻¹⁰ Then, around the turn of the twentieth century, Werner, the father of modern coordination chemistry, prepared many cobalt complexes including additional oxygen bridged species. He also established the octahedral geometry about the cobalt atom in these compounds. ⁹, ¹¹⁻¹⁸ Interest in synthetic oxygen carriers was renewed by the possible use of these compounds for oxygen fixation ¹⁹ and as models for the investigation of the reversible oxygenation of hemoglobin. ²⁰, ²¹ Recently, extensive research on synthetic cobalt oxygen carriers has been performed. ²¹⁻²⁶

Several cobalt(II) complexes react with, and absorb, molecular oxygen according to the following equation:

$$2\text{Co}^{\text{II}}\text{L}_{5}\text{X} + \text{O}_{2} \xrightarrow{\longleftarrow} \text{L}_{5}\text{CoO}_{2}\text{CoL}_{5} + \text{X}$$
.

Two series of cobalt oxygen carriers can be formed. One

series is

Werner⁹ sh

oxygen car

Werner des

ions. This

 \mathfrak{i}_{2}^{2} . The

A detailed

in reference

The ligand o

manide29 ar

ligands in t

the diamagne

oxigen carri

hare one unp

1.7 B.M.26

Werner

ters as bei

clature cont

by esr that

भ्वाide, 35, 3

Carriers.

equal influe

^decoe - I =

if cobalt ox

series is diamagnetic and the other series is paramagnetic. Werner⁹ showed that the diamagnetic binuclear cobalt ammonia oxygen carrier is the ion

$$[(NH_3)_5COO_2CO(NH_3)_5]^{4+}$$
.

Werner described the above ion as containing two cobalt(III) ions. This required that the oxygen bridge be peroxide, O_2^{2-} . The above ion can be oxidized²⁴ to a paramagnetic ion $[(NH_3)_5COO_2Co(NH_3)_5]^{5+}.$

A detailed discussion of much of Werner's work can be found in reference 27. There are other members of each series. The ligand can be ethylenediamine, 11 diethylenetriamine, 28, cyanide 29 and various amino acids. 26 There can be additional ligands in the bridge. 30-32 In the case of amines as ligand, the diamagnetic oxygen carriers are red and the paramagnetic oxygen carriers are green. The paramagnetic oxygen carriers have one unpaired electron and a magnetic susceptibility of 1.7 B.M. 26

Werner had characterized the paramagnetic oxygen carriers as being peroxo-cobalt(III,IV) species. This nomenclature continued in general use. 30 However, it was shown by esr that cobalt atoms were equivalent in the amine, 33,34 cyanide, 35,36 histidine 37 and some dibridged 35 cobalt oxygen carriers. The fifteen line esr signal results from the equal influence of the two cobalt atoms (59 Co - 100 % abundance - 1 = $^{7/2}$) on the unpaired electron. The two series of cobalt oxygen carriers were then called "diamagnetic

peroxo" and '
Linhard and W

Collin C

An investorage carried was a cis-boad discussed from the carriers can while vicek the relative oxygen carriers discussed from the relative oxygen carriers discussed d

Recent diamine bi diamine bi diamine bi diamine bi

of these at

47.

co-co bonc

peroxo" and "paramagnetic peroxo" complexes. 24,32,38,39 Linhard and Weigel 40 stated that Werner's formulation of ${\rm Co}^{\rm III}{\rm O_2}{}^2{}^-{\rm Co}^{\rm IV}$ for the paramagnetic oxygen carriers was incorrect and should be ${\rm Co}^{\rm III}{\rm O_2}{}^-{\rm Co}^{\rm III}$. As will be seen below, Linhard and Weigel were correct.

An investigation of the cobalt ammine paramagnetic oxygen carrier had incorrectly shown that the Co-O-O-Co was a cis-boat type configuration. 41 Dunitz and Orgel 42 had discussed the electronic structure for a linear Co-O-O-Co arrangement. Brosset and Vannerberg43 and others44 favored a structure with the O-O axis perpendicular to the Co-Co axis. Vlcek^{45,46} also postulated the perpendicular structure. He stated that the greater stability of the paramagnetic oxygen carriers relative to the diamagnetic oxygen carriers was due to the fact that the electron removed from the diamagnetic carriers to form the paramagnetic carriers came from a Co-O2-Co antibonding molecular orbital. While Vlcek's structure was incorrect, his explanation of the relative stabilities of the paramagnetic and diamagnetic oxygen carriers probably was correct. A detailed discussion of these structures mentioned above can be found in reference 47.

Recent X-ray studies of some ammonia and ethylene-diamine binuclear cobalt oxygen paramagnetic and diamagnetic oxygen carriers showed that for the diamagnetic oxygen carriers, the Co-O-O-Co bonds are "Z" shaped with Co-O-O bond angles of 110 to 1130 and an O-O bond distance

of 1.47 to 1. shaped for th angles of 117 1.36 A.39,50-C₂ carriers a The stri ragnetic amir

expected for paramagnetic 1.35 Å which dihedral angl oxygen carrie oxygen carrie the diamagnet eroxide.56

that they are The equ tagnetic cxy

in the diama the paramagn

of oxygen ca

guq

Thus, a sidered as c eroxo or a of 1.47 to 1.48 A48,49 and the Co-O-O-Co bonds are also "Z" shaped for the paramagnetic oxygen carriers with Co-O-O bond angles of 117 to $^{120^{\circ}}$ and an O-O bond distance of 1.31 to $^{1.36}$ $^{1.39,50-53}$ The O-O bond distances for the diamagnetic $^{0.39,50-53}$ The O-O bond distances for the diamagnetic $^{0.39,50-53}$ are within the range of $^{1.49}$ $^{\pm}$ 0.02 $^{1.49}$ which is expected for peroxides 54 and the O-O bond distances for the paramagnetic $^{0.39}$ carriers are within the range of 1.32 to $^{1.35}$ $^{1.39}$ which is expected for superoxides $^{1.39}$ The Co-O-O-Co dihedral angle is approximately $^{0.9}$ for the paramagnetic oxygen carriers and approximately $^{146^{\circ}}$ for the diamagnetic oxygen carriers. Thus, the configuration of the oxygen in the diamagnetic oxygen carriers is similar to hydrogen peroxide $^{1.96}$

The striking similarity between the esr of the paramagnetic amine and cyanide cobalt oxygen carriers indicates that they are isostructural. 35

The equivalence of the two cobalt atoms in the paramagnetic oxygen carriers, the presence of a peroxo group in the diamagnetic oxygen carriers and a superoxo group in the paramagnetic oxygen carriers showed that the two series of oxygen carriers should be formulated as follows:

$${\rm L_5Co}^{\rm III}{\rm O_2}^{\rm 2-Co}^{\rm III}{\rm L_5} \quad ({\rm diamagnetic})$$
 and
$${\rm L_5Co}^{\rm III}{\rm O_2}^{\rm -Co}^{\rm III}{\rm L_5} \quad ({\rm paramagnetic}).$$

Thus, all binuclear cobalt oxygen carriers are now considered as containing two cobalt(III) ions and either a peroxo or a superoxo bridge.

Earlier in mon of oxygenerine complexion. However carrier was f

3. The Penta

When cya: salt, a brown redissolves t moult ratio

explation als

This per

tion catalys

irvestigated

cobalt speci

Edwever, it

five coording

etion sphere

The vic

Peratagnetic

thent of 1.

Earlier research had incorrectly shown that the absorption of oxygen by ammoniacal cobalt(II)⁵⁷ and other cobalt(II) amine complexes^{28,58}, to form the oxygen carriers, was fairly slow. However, recent stopped-flow studies proved that the oxygen carrier was formed rapidly.^{59,60}

B. The Pentacyanocobaltate(II) Ion

When cyanide ion is added to a solution of a cobalt(II) salt, a brown precipitate of $\mathrm{Co}(\mathrm{CN})_2$ is first formed that redissolves to form a green solution⁶¹ when the cyanide to cobalt ratio reaches five to one.⁶²⁻⁶⁶ The maximum heat evolution also occurs at this ratio.⁶⁷

This pentacyanocobaltate(II) ion is of interest not only as an oxygen carrier 29,68,69 but also as a hydrogenation catalyst. In the last ten years, this ion has been investigated extensively. 71,72 It has been shown that the cobalt species present in solutions containing excess cyanide ion is actually Co(CN)_5^{3-} rather than $\text{Co(CN)}_6^{4-}.61,73$ However, it could not be determined whether this ion was five coordinate or contained a water molecule in the coordination sphere.

The violet solid which is in equilibrium with the aqueous green $\mathrm{Co(CN)_5}^{3-}$ solution may be precipitated by the addition of ethanol.⁶² Whereas the green $\mathrm{Co(CN)_5}^{3-}$ ion is paramagnetic with one unpaired electron and a magnetic moment of 1.72 B.M.,^{62,74} the violet solid is diamagnetic.^{62,75,76} Although the solid violet compound was reported to be

K400 CN 6 in m be a hydra the Co(CN 53that the soil wild explair determined so complex, [Co₂ In 1942 cc/cg/53- abs ratio of one the rate of ; with a Co:CN geneous abso harido spec studies which equeous sol $_{
m t}$ sodium-cesi teen synthe solutions o at a rate p loss of the and a hydri °°°(°°7') 3 - 8 the heterog

The "aging"

to dimeriza

*Description

 $K_4 \text{Co}(\text{CN})_6$ in the earlier literature, $^{77-79}$ it has been shown to be a hydrated 80 (probably a tetrahydrated 72) dimer of the $\text{Co}(\text{CN})_5$ ion, $K_6 [\text{Co}_2(\text{CN})_{10}]$. It has been suggested that the solid dimer contains a metal-metal bond 81 (which would explain the diamagnetism) as in the more recently determined structure for the analogous methyl isocyanide complex, $[\text{Co}_2(\text{MeNC})_{10}](\text{ClO}_4)_4.82$

In 1942, Iguchi⁸³ noted that aqueous solutions of $Co(CN)_5$ ³⁻ absorbed molecular hydrogen in the approximate ratio of one atom of hydrogen per atom of cobalt and that the rate of heterogeneous hydrogen absorption was greatest with a Co:CN ratio of 1:4.5. The product of this heterogeneous absorption was later assumed to be the colorless hydrido species $Co(CN)_5H^{3-.84}$ This was confirmed by nmr studies which showed the existence of Co-H bonds in reduced aqueous solutions of the pentacyanide.81 The solid mixed sodium-cesium salts of the Co(CN)₅H³⁻ ion have recently been synthesized.85 Mills and coworkers found that aqueous solutions of $Co(CN)_5^{3-}$ "aged" and lost their paramagentism at a rate paralleling the loss of reducibility (i.e., the loss of the ability to absorb H2 bubbled into the solution) and a hydride intermediate was proposed.86 Both the original $Co(CN)_5$ ³⁻ and the reduced solutions were found to catalyze the heterogeneous $D_2(qas)^{-H_2O}(liquid)$ hydrogen exchange. The "aging" of these solutions was first thought to be due to dimerization but it was shown to be due to homogeneous absorption of hydrogen from water to form the above mentioned

hydrido spec 'aged" solut species.87,8 homogeneous The heteroge reversible a librium shif On the the pentacya alkyl isocya and Williams contain a wa lated as Co tors, by me ruled out t structure.9 tetry and c tion site. either of t

There

Inder equi

certain ele

the interm

250 is est

Pigure 1.

Ecle.94

hydrido species. 70 In earlier literature, the reduced or "aged" solutions were thought to contain a cobalt(I) species. 87,88 Thus, $\text{Co}(\text{CN})_5\text{H}^{3-}$ is produced by both the homogeneous and the heterogeneous absorptions of hydrogen. The heterogeneous absorption of hydrogen by $\text{Co}(\text{CN})_5^{3-}$ is reversible and as the temperature is increased, the equilibrium shifts toward the evolution of H_2 . 89,90

On the basis of the similarity of solution spectra of the pentacyanocobaltate(II) ion with some corresponding alkyl isocyanates which are known to be $CoL_5H_2O^{3-}$, Pratt and Williams⁹¹ postulated that the pentacyano ion must also contain a water molecule and therefore, it should be formulated as $Co(CN)_5H_2O^{3-}$. At the same time, other investigators, by means of analysis of esr and visible spectra, had ruled out the possibility of a trigonal bipyramidal, D_{3h} structure. 92 , 93 They showed that the complex had C_{4v} symmetry and could have a water molecule at a sixth coordination site. Thus, the pentacyanocobaltate(II) ion could have either of the structures of C_{4v} symmetry as shown in Figure 1.

There is no evidence for the formation of $\mathrm{Co(CN)_6}^{4-}$ under equilibrium conditions ($\mathrm{K_{formation}}$ << 1).91 However, certain electron transfer reactions appear to proceed by the intermediate $\mathrm{Co(CN)_6}^{4-}$ ion whose formation constant at 250 is estimated to be within the range of $\mathrm{10^{-1}}$ to $\mathrm{10^{-4}}$ 1/mole.94

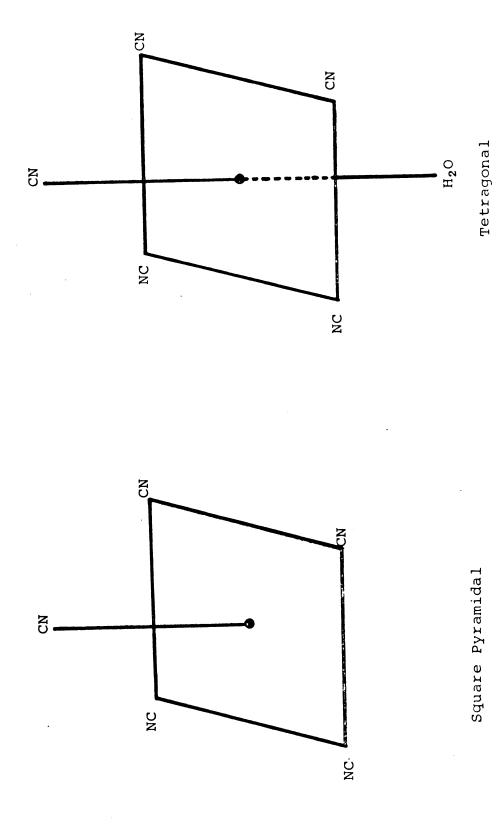


Figure 1. Possible structures for the pentacyanocobaltate(II) ion.

c. The Cobal

of the s

Histidir

biological cy

the carbon wi

the optical a

isomer that w

ation (withou

The sites of

protonless in

Mate oxygen!

bound to the both in the s

state, the in

other.95,97

boxyl groups

Teric confort

Hearon distribed oxy

stoichiometr:

te mole of

C. The Cobalt-histidine Oxygen Carriers

Of the synthetic oxygen carriers most closely resembling biological oxygen carriers, the cobalt 1-histidine oxygen carrier has probably been the most extensively investigated.

Histidine is an amino acid with the structure

The carbon with the asterisk is asymmetric and the site of the optical activity of the compound. Since 1-histidine is the optical isomer that is found biologically, this is the isomer that was used in this investigation. The histidinate anion (without the carboxyl proton) is a tridentate ligand. The sites of coordination are the amine nitrogen, the protonless imidazole nitrogen and the deprotonated carboxylate oxygen. All three of these coordination sites are bound to the cobalt in CoL₂ (L = 1-histidinato anion) both in the solid state⁹⁵ and in solution. In the solid state, the imidazole groups in the CoL₂ are trans to each other. In the trans imidazole configuration, the carboxyl groups must be cis to each other due to the enantiomeric conformation of the 1-histidine.

Hearon and his coworkers found that CoL_2 reversibly absorbed oxygen and they investigated the equilibria and stoichiometry of this oxygen absorption. They found that one mole of O_2 was absorbed per two moles of CoL_2 . 20 , $^{99-103}$

The oxygen of a solution c: oxygen carrid metic.20,96,: carrier is be ation sphere miecules on of a peroxo : carboxylate carrier, L₂C As expe: the cobalt an that the dian ${\rm Ey} \; {\rm Ce}^{{
m IV}}$ to a change during from amber t mlor change tagmetic hist Derfine sti of the two co is histidina wiscrbed one the oxygen Ca second mole Friducts.20, 1 bets of the ;

The oxygen carrier was formed very rapidly upon oxygenating a solution of the cobalt(II) histidine complex.²⁰,⁵⁹ The oxygen carrier, L₂CoO₂CoL₂, was amber colored and diamagnetic.²⁰,⁹⁶,¹⁰⁴,¹⁰⁵ The formation of the binuclear oxygen carrier is believed to occur by dissociation from the coordination sphere of the carboxylate group of one of the histidine molecules on each of two CoL₂ molecules and the formation of a peroxo bridge at the coordination sites vacated by the carboxylate groups.⁵⁹,⁹⁸ The solid trihydrate of the oxygen carrier, L₂CoO₂CoL₂·3H₂O has been isolated.⁹⁸

As expected from the two series of oxygen carriers in the cobalt ammonia and cyano systems, it was recently shown that the diamagnetic histidine oxygen carrier can be oxidized by Ce^{IV} to a paramagnetic oxygen carrier.³⁷ Even the color change during this oxidation of the histidine oxygen carrier from amber to blue-green was similar to the red to green color change in the ammonia system. The esr of the paramagnetic histidine oxygen carrier contained the 15-line hyperfine structure, once again confirming the equivalence of the two cobalt ions in the oxygen carrier. 37 The bis(histidinato)cobalt(II) complex rapidly and reversibly absorbed one mole of O2 per two moles of cobalt to form the oxygen carrier. 98 It then slowly irreversibly absorbed a second mole of O2 per two moles of cobalt to form cobalt(III) products.20,106 These final cobalt(III) products were isomers of the bis(1-histidinato)cobalt(III) cation. 106 There

have recent

observed.10

In str

lose a seco

carrier for

form an exy

are three isomers of the final cobalt(III) product and they have recently been separated and their spectra have been observed. 107

In strongly basic solutions (pH > 12), histidine can lose a second proton and can form the complex $Co(L-H)_2^{2-.96}$ This anionic cobalt(II) complex can also absorb oxygen to form an oxygen carrier that is different from the oxygen carrier formed by the oxygenation of the neutral $CoL_2.^{108}$

A. Linear

In thes

reaction are in a linear ieast square

for the line One for

where m and of the slope

mental data

tomber of ex

The res

The sum

III. THEORETICAL

A. Linear Least Squares

In those cases where the kinetics of a chemical reaction are simple enough, the rate law is usually written in a linear form. It is then possible to use the linear least squares method to calculate the optimum parameters for the linear equation. The method is as follows. 109,110

One form of the linear equation is

$$Y = mX + b \tag{1}$$

where m and b are respectively the least squares values of the slope and intercept of the straight line. The experimental data points are \mathbf{x}_i and \mathbf{y}_i and \mathbf{N} is the total number of experimental data points.

The residual of each data point is

$$x_i^m + b - y_i$$
 (2)

The sum of the squares of the residuals, S, is

$$S = \sum_{i=1}^{N} (x_{i}m + b - y_{i})^{2} = m^{2} \sum_{i=1}^{N} x_{i}^{2} + 2bm \sum_{i=1}^{N} x_{i}$$

$$- 2m \sum_{i=1}^{N} x_{i}y_{i} + nb^{2} - 2b \sum_{i=1}^{N} y_{i} + \sum_{i=1}^{N} y_{i}^{2}.$$
(3)

To obta be minimized and b are

Equation

It is a $\underbrace{\text{i.e.}}_{\text{i.e.}}$, the 5 cept, c_m a

Accordi can be obtai

To obtain the optimum values for m and b, S must be minimized. The derivatives of S with respect to m and b are set equal to zero

$$\frac{\partial S}{\partial m} = 0 = 2m \sum_{i=1}^{N} x_{i}^{2} + 2b \sum_{i=1}^{N} x_{i}^{2} - 2 \sum_{i=1}^{N} x_{i}^{2}$$
 (4)

$$\frac{\partial S}{\partial b} = 0 = 2m \sum_{i=1}^{N} x_{i} + 2bn - 2 \sum_{i=1}^{N} y_{i}.$$
 (5)

Equations 4 and 5 can be solved for m and b

$$m = \frac{N \sum x_i y_i - \sum x_i \sum y_i}{N \sum x_i^2 - (\sum x_i)^2}$$
 (6)

$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{N \sum x_i^2 - (\sum x_i)^2}$$
 (7)

It is also useful to determine the standard deviations (i.e., the 50% confidence limits) of the slope and incercept, σ_m and σ_b , respectively.

According to Youden, ^110 the values for σ_m and σ_b can be obtained from the following equations:

$$\alpha^{2} = \frac{\sum y_{i}^{2} - \frac{(\sum y_{i})^{2}}{N} - \frac{\left(\sum x_{i}y_{i} - \frac{\sum x_{i}^{\sum y_{i}}}{N}\right)^{2}}{\sum x_{i}^{2} - \frac{(\sum x_{i}^{2})^{2}}{N}}}{N - 2}$$
(8)

$$\sigma_{\rm m} = \sqrt{\frac{\alpha^2}{\sum x_i^2 - (\sum x_i)^2}}$$
 (9)

The value on the contract of t

least square

3. <u>Non-line</u>

In the able to interactly able to becomes neces

procedure.

The gen

Where x is

species, y

to be optimize

By def:

 $^{
m calculated}$ $_{
m c}$

The sur

becomes

$$\sigma_{\rm b} = S \sqrt{\frac{\sum x_{i}^{2}}{N \sum x_{i}^{2} - (\sum x_{i})^{2}}}$$
 (10)

The values of σ_m and σ_b can be multiplied by known constants to obtain confidence limits other than 50%.

The computer program written by the author for linear least squares calculations can be found in the Appendix.

B. Non-linear Least Squares

In the case of complex kinetic systems, even if one is able to integrate the differential rate expression, he is rarely able to linearize the expression. It therefore becomes necessary to resort to a non-linear least squares procedure. Such a procedure is derived as follows. 111

The generalized non-linear rate law can be written

$$f(x, y, a, b, c, \cdots) = 0$$
 (11)

where x is the concentration of one of the chemical species, y is the time and a, b, c, ··· are the kinetic parameters (the rate and equilibrium constants) which are to be optimized.

By defining the residuals between experimental and calculated data points, one obtains

$$R_{x_{i}} = x_{i} - x_{calc}$$
 (12)

$$R_{y_i} = y_i - y_{calc} . (13)$$

The sum of the squares of the residuals, S , now becomes

An chy

squares val

c_{1.s.}, ...

 $f(x_i)$ ca

One mu

kinetic par.

a Taylor's

 $\langle x_i, y_i, a_0 \rangle$

The fo

following e

∠a = a

5. 6: 0 = 0

F_i = f

$$S = \sum_{i=1}^{N} (R_{x_{i}}^{2} + R_{y_{i}}^{2}).$$
 (14)

An obvious condition that must be met by the least squares values of the kinetic parameters, al.s., bl.s., cl.s., ... is

$$f(x_{i_{calc}}, y_{i_{calc}}, a_{l.s.}, b_{l.s.}, c_{l.s.}, \cdots) = 0.(15)$$

One must have good enough initial estimates of the kinetic parameters, a_0 , b_0 , c_0 , \cdots to be able to truncate a Taylor's series expansion of equation 11 about the point $(x_i, y_i, a_0, b_0, c_0, \cdots)$ after the first order terms.

The following terms are defined in order to simplify following equations.

$$\Delta a = a_0 - a_{1.s.}$$
 estimate (16)

$$\Delta b = b_0 - b_{1.s. \text{ estimate}}$$
 (17)

$$\Delta c = c_0 - c_{l.s. \text{ estimate}}$$
, etc. (18)

$$F_{i} = f(x_{i,calc}, y_{i,calc}, a, b, c, \cdots)$$
 (19)

$$F_{i_0} = f(x_{i_0}, y_{i_0}, a_0, b_0, c_0, \cdots)$$
 (20)

$$F_{x_{i}} = \frac{\partial F_{i}}{\partial x} \begin{vmatrix} & & \text{for each} \\ (x_{i}, y_{i}, a_{0}, b_{0}, c_{0}, \cdots) \end{vmatrix}$$

$$F_{a_{i}} = \frac{\partial F_{i}}{\partial a} \left| (x_{i}, y_{i}, a_{0}, b_{0}, c_{0}, \cdots) \right|$$
 for each data point i. (22)

The ? point (x_i

terms is

P_i =

Rearr

F_{i0} =

In or residuals,

ds = -

Since must also s

24 must sti

F_x dR

If M

then there differentia

of the y

kinetic par

of 2N + M

the N equ

s of the d

5+M arbi

The Taylor's series expansion of equation 11 about point $(x_i, y_i, a_0, b_0, c_0, ...)$ including only first order terms is

$$F_{i} = F_{i_{0}} - F_{x_{i}}^{R} x_{i} - F_{y_{i}}^{R} y_{i} - F_{a_{i}}^{\Delta a} - F_{b_{i}}^{\Delta b} - F_{c_{i}}^{\Delta c} - \dots$$

$$= 0 \qquad i = 1, 2, \dots, N. \qquad (23)$$

Rearranging equation 23, one obtains

$$\mathbf{F_{i_0}} = \mathbf{F_{x_i}} \mathbf{R_{x_i}} + \mathbf{F_{y_i}} \mathbf{R_{y_i}} + \mathbf{F_{a_i}} \Delta \mathbf{a} + \mathbf{F_{b_i}} \Delta \mathbf{b} + \mathbf{F_{c_i}} \Delta \mathbf{c} + \dots (24)$$

In order to minimize the sum of the squares of the residuals, S, (see equation 14), dS is set equal to zero

$$dS = \frac{\sum (R_{x_{i}} dR_{x_{i}} + R_{y_{i}} dR_{y_{i}})}{2} = 0$$
 (25)

Since the change in the residuals, dR_{x_i} and dR_{y_i} must also satisfy equation 24 (the right side of equation 24 must still be equal to F_{i_0})

$$F_{x_{i}} \stackrel{dR}{=} x_{i} + F_{y_{i}} \stackrel{dR}{=} y_{i} + F_{a_{i}} \stackrel{d\triangle a}{=} + F_{b_{i}} \stackrel{d\triangle b}{=} + F_{c_{i}} \stackrel{d\triangle c}{=} + \dots$$

$$= 0 \qquad \qquad i = 1, 2, \dots, N. \qquad (26)$$

If M is the number of kinetic parameters, a, b, c, ..., then there are N sets of equation 26 with a total of N differentials of the x residuals, dR_{x_i} , N differentials of the y residuals, dR_{y_i} , and M differentials of the kinetic parameters, $d\triangle a$, $d\triangle b$, $d\triangle c$, etc. There are a total of 2N + M differentials with only N equations. Since the N equations can be used to mathematically substitute N of the differentials, there are only 2N + M - N = N + M arbitrary differentials.

% Lagrant plies each

Since N

-3.Fx

Adding equ

[(R_x

Since

for in in eliminate

1 + M diffe the differe

maining N

ents of eac

R

R

Σ

Σ

7

Since N of the differentials are not arbitrary, one defines N Lagrange multipliers, $-\lambda_1$, $-\lambda_2$, $-\lambda_3$, \cdots , $-\lambda_N$ and multiplies each of these by equations 26

$$-\lambda_{i}F_{x_{i}} dR_{x_{i}} - \lambda_{i}F_{y_{i}} dR_{y_{i}} - \lambda_{i}F_{a_{i}} d\Delta a - \lambda_{i}F_{b_{i}} d\Delta b$$

$$-\lambda_{i}F_{c_{i}} d\Delta c - \cdots = 0 \qquad i = 1, 2, \cdots, N.$$
(27)

Adding equations 25 and 27 and collecting terms, one obtains

$$\Sigma \left(R_{\mathbf{x_{i}}} - \lambda_{i}F_{\mathbf{x_{i}}}\right) dR_{\mathbf{x_{i}}} + \Sigma \left(R_{\mathbf{y_{i}}} - \lambda F_{\mathbf{y_{i}}}\right) dR_{\mathbf{x_{i}}}$$

$$+ \Sigma \lambda_{i}F_{\mathbf{a_{i}}} d\Delta \mathbf{a} + \Sigma \lambda_{i}F_{\mathbf{b_{i}}} d\Delta \mathbf{b} + \Sigma \lambda_{i}F_{\mathbf{c_{i}}} d\Delta \mathbf{c} + \cdots = 0.$$
(28)

Since there are N equations with N arbitrary values for λ_i in equation 28, the values of λ_i are chosen to eliminate N of the differentials. This process leaves N + M differentials. However, as stated above, N + M of the differentials are arbitrary. Therefore, since the remaining N + M differentials are arbitrary, the coefficients of each differential in equation 28 must be zero

$$R_{x_{i}} - \lambda_{i} F_{x_{i}} = 0 \qquad i = 1, 2, 3, \dots, N \quad (29a)$$

$$R_{y_{i}} - \lambda_{i} F_{y_{i}} = 0 \qquad (29b)$$

$$\sum \lambda_{i} F_{a_{i}} = 0 \qquad (29c) \qquad (29)$$

$$\sum \lambda_{i} F_{b_{i}} = 0 \qquad (29d)$$

$$\sum \lambda_{i} F_{c_{i}} = 0 \cdots \qquad (29e)$$

By rearran

By rearrang

F_i - F_i

By substitu

F_i - F_{io}

and solving

 $\lambda_i =$

Substituting

rearranging the followir

Σ F_a F

^Σ F_bi F

etc.

By rearranging equations 29a and 29b, one can solve for the residuals ${\bf R}_{{\bf x}_i}$ and ${\bf R}_{{\bf y}_i}$

$$R_{x_{i}} = \lambda_{i} F_{x_{i}}$$

$$R_{y_{i}} = \lambda_{i} F_{y_{i}}$$

$$i = 1, 2, 3, \dots, N. \quad (30)$$

By rearranging equation 23, one obtains

$$F_i - F_{i_0} = F_{x_i}^R x_i + F_{y_i}^R y_i + F_{a_i}^{\Delta a} + F_{b_i}^{\Delta b} + F_{c_i}^{\Delta c} + \cdots,$$

$$i = 1, 2, 3, \cdots, N.$$

By substituting equation 30 into 31, one obtains

$$\mathbf{F_{i}} - \mathbf{F_{i_{0}}} = \mathbf{F_{x_{i}}^{2}} \lambda_{i} + \mathbf{F_{y_{i}}^{2}} \lambda_{i} + \mathbf{F_{a_{i}}^{\Delta a}} + \mathbf{F_{b_{i}}^{\Delta b}} + \mathbf{F_{c_{i}}^{\Delta c}} + \cdots,$$

$$\mathbf{i} = 1, 2, 3, \cdots, \mathbf{N}$$

$$(32)$$

and solving equation 32 for λ_i

$$\lambda_{i} = \frac{F_{i} - F_{i_{0}} - F_{a_{i}}^{\Delta a} - F_{b_{i}}^{\Delta b} - F_{c_{i}}^{\Delta c} - \cdots}{F_{x_{i}}^{2} + F_{y_{i}}^{2}}$$

$$i = 1, 2, 3, \dots, N.$$
(33)

Substituting equation 33 into equations 29c, 29d, 29e, \cdots , rearranging and dividing by the quantity $(F_{x_1}^2 + F_{y_1}^2)$ yields the following set of equations

$$\Sigma \mathbf{F}_{\mathbf{a_{i}}} \mathbf{F}_{\mathbf{a_{i}}} \Delta \mathbf{a} + \Sigma \mathbf{F}_{\mathbf{a_{i}}} \mathbf{F}_{\mathbf{b_{i}}} \Delta \mathbf{b} + \Sigma \mathbf{F}_{\mathbf{a_{i}}} \mathbf{F}_{\mathbf{c_{i}}} \Delta \mathbf{c} + \cdots = \Sigma \mathbf{F}_{\mathbf{a_{i}}} (\mathbf{F}_{\mathbf{i}} - \mathbf{F}_{\mathbf{i_{0}}})$$

$$\Sigma \mathbf{F}_{\mathbf{b_{i}}} \mathbf{F}_{\mathbf{a_{i}}} \Delta \mathbf{a} + \Sigma \mathbf{F}_{\mathbf{b_{i}}} \mathbf{F}_{\mathbf{b_{i}}} \Delta \mathbf{b} + \Sigma \mathbf{F}_{\mathbf{b_{i}}} \mathbf{F}_{\mathbf{c_{i}}} \Delta \mathbf{c} + \cdots = \Sigma \mathbf{F}_{\mathbf{b_{i}}} (\mathbf{F}_{\mathbf{i}} - \mathbf{F}_{\mathbf{i_{0}}}) (\mathbf{34})$$

$$\Sigma \mathbf{F}_{\mathbf{c_{i}}} \mathbf{F}_{\mathbf{a_{i}}} \Delta \mathbf{a} + \Sigma \mathbf{F}_{\mathbf{c_{i}}} \mathbf{F}_{\mathbf{b_{i}}} \Delta \mathbf{b} + \Sigma \mathbf{F}_{\mathbf{c_{i}}} \mathbf{F}_{\mathbf{c_{i}}} \Delta \mathbf{c} + \cdots = \Sigma \mathbf{F}_{\mathbf{c_{i}}} (\mathbf{F}_{\mathbf{i}} - \mathbf{F}_{\mathbf{i_{0}}})$$
etc.

There are M equations 34 and M unknowns ($\triangle a$, $\triangle b$, $\triangle c$,...). Therefore, the M simultaneous linear equations can be solved for the M unknowns, $\triangle a$, $\triangle b$, $\triangle c$, The easiest way to solve the system of M linear equations is to use the method of determinants. The determinantal solutions are as follows:

Δa ≡	$\Sigma F_{a_{i}}(F_{i}-F_{i_{0}})$	$^{\Sigma}$ $_{\mathtt{a_{i}}^{\mathtt{F}}\mathtt{b_{i}}}$	$\Sigma \mathbf{F_{a_i}F_{c_i}}$	•••	(35 a)
	$\Sigma F_{b_i}(F_i-F_{i_0})$	$\Sigma \mathbf{f_{b_i}f_{b_i}}$	$^{\Sigma}$ $^{\mathbf{F}}$ $_{\mathbf{i}}$ $^{\mathbf{F}}$ $\mathbf{c}_{\mathbf{i}}$	•••	
	$\Sigma F_{c_i}(F_i-F_{i_0})$	$\Sigma \mathbf{F_{c_i}^F_b_i}$	$^{\Sigma}$ $^{\mathbf{F}}$ $\mathbf{c_i}$ $^{\mathbf{F}}$ $\mathbf{c_i}$	•••	
	•	•	•		
	$\Sigma_{\mathbf{a_i}^{\mathbf{F}_{\mathbf{a_i}}}}^{\mathbf{F_{\mathbf{a_i}}}}$	$\Sigma F_{a_i}F_{b_i}$	$\Sigma \mathbf{f_{a_i} f_{c_i}}$	•••	
	$\Sigma F_{\mathbf{b_i}}F_{\mathbf{a_i}}$	$^{\Sigma}$ $^{\mathbf{F_{b_{i}}F_{b_{i}}}}$	$^{\Sigma}$ $^{\mathbf{F_{b_i}F_{c_i}}}$	•••	
	Σ F F $\mathbf{r_{i^{\cdot}a_{i}}}$	$^{\Sigma}$ $^{\mathbf{F}}$ c $_{\mathbf{i}}$ $^{\mathbf{F}}$ b $_{\mathbf{i}}$	Σ F _{ci} F _{ci}	•••	
	•	•	•		
	•	•	•		

The r

If are not c

crocess c

This

The chemical

às well a

 $_{ t appendix}$

The new values of a, b, c, · · · are

$$a_{new} = a_0 + \Delta a$$

$$b_{new} = b_0 + \Delta b$$

$$c_{new} = c_0 + \Delta c , etc.$$
(36)

If $\triangle a$, $\triangle b$, $\triangle c$, \cdots are not small enough (a, b, c, \cdots are not close enough to their converged values), the whole process can be repeated by using $a_0 = a_{\text{new}}$, $b_0 = b_{\text{new}}$, $c_0 = c_{\text{new}}$, etc. and calculating a new $\triangle a$, $\triangle b$, $\triangle c$, etc.

This derivation is essentially that of Wentworth. 111

The derivatives necessary to use this method for the chemical system which has been investigated by the author, as well as the computer subroutine, will be found in the appendix.

C. Mathem

<u>cyance</u>

As wi cyanocobal type

This cand linear:

By plo

By pl

E_aR.

The control can cedure prethe author found in to

C. <u>Mathematical Equations for the Decomposition of Penta-</u> cyanocobaltate(II)

As will be shown later, the decomposition of pentacyanocobaltate(II) is a simple second order reaction of the type

$$2A \xrightarrow{k}$$
 products (37)

$$\frac{dA}{dt} = -kA^2. (38)$$

This differential equation can easily be integrated and linearized 112-114

$$\frac{1}{A} = kt + \frac{1}{A_0} . \qquad (39)$$

By plotting 1/A versus t, one obtains a straight line of slope k and intercept of $1/A_0$.

The activation energy of the reaction can be obtained from the Arrhenius equation $^{112-114}_{i}$

$$\ln k = \frac{-E_a}{RT} + \text{constant.}$$
 (40)

By plotting the value of $\ln k$ (at various temperatures, T) versus 1/T, one obtains a straight line of slope E_a/R .

The optimum straight line from the experimental data points can be obtained from the linear least squares procedure previously described. A computer program written by the author for the linear least squares procedure will be found in the Appendix.

D. Mather

tion o

As w

for this of fusion, for

dinato 10:

D. Mathematical Equations for the Formation and Decomposition of μ -Dioxygentetrakis(l-histidinato)dicobalt

As will be seen, the following mechanism is proposed for this reaction (L = 1-histidinato ion -- to avoid confusion, free histidine is shown as HL and free 1-histidinato ion is shown as L^{-})

$$Co^{2^{+}} + L^{-} \xrightarrow{K_{1}} CoL^{+}$$
 (41)

$$CoL^{+} + L^{-} \xrightarrow{K_{2}} CoL_{2}$$
 (42)

$$CoL_2 + L \xrightarrow{K_3} CoL_3$$
 (43)

$$CoL_2 + O_2 \xrightarrow{K_{4a}} CoL_2O_2$$
 (44)

$$CoL_2O_2 + CoL_2 \xrightarrow{K_{4b}} (CoL_2)_2O_2$$
 (45)

$$H^{+} + L^{-} \xrightarrow{K_{1H}} HL \qquad (46)$$

$$HL + H^{+} \xrightarrow{K_{2H}} H_{2}L^{+}$$
 (47)

$$H_2L^+ + H^+ \xrightarrow{K_{3H}} H_3L^{2+}$$
 (48)

$$(CoL_2)_2O_2 \xrightarrow{k_{5a}} > CoL_2^+ + CoL_2^- + O_2^-$$
 (49)

or
$$CoL_2O_2 + CoL_2 \xrightarrow{k_{\overline{5}a}^+} CoL_2^+ + CoL_2 + O_2^-$$
 (50)

$$CoL_2O_2 + CoL_2 + \frac{k_{5b}}{5b} > 2CoL_2 + O_2 - .$$
 (51)

Tate expres

d[CcI

Substituti

gt g[C≎

Since

equal to the

present

The equilibrium expressions for equations 41 to 48 are as follows:

$$K_{1} = [CoL^{+}]/[Co^{2}][L^{-}]$$

$$K_{2} = [CoL_{2}]/[CoL^{+}][L^{-}]$$

$$K_{3} = [CoL_{3}^{-}]/[CoL_{2}][L^{-}]$$

$$K_{4a} = [CoL_{2}O_{2}]/[CoL_{2}][O_{2}]$$

$$K_{4b} = [(CoL_{2})_{2}O_{2}]/[CoL_{2}O_{2}][CoL_{2}]$$

$$K_{1H} = [HL]/[H^{+}][L^{-}]$$

$$K_{2H} = [H_{2}L^{+}]/[HL][H^{+}]$$

$$K_{3H} = [H_{3}L^{2}]/[H_{2}L^{+}][H^{+}]$$

$$(54)$$

The rate law including reaction 49 will be derived first and then the rate law including equation 50 will be derived.

From equations 49 and 51, one obtains the following rate expression

$$\frac{d[CoL_2^+]}{dt} = k_{5a}[(CoL_2)_2O_2] + k_{5b}[CoL_2O_2][CoL_2^+]. (55)$$

Substituting equations 53 into 55

$$\frac{d[CoL_{2}^{+}]}{dt} = k_{5a}K_{4a}K_{4b}[CoL_{2}]^{2}[O_{2}]$$

$$+ k_{5b}K_{4a}[CoL_{2}][O_{2}][CoL_{2}^{+}]. \qquad (56)$$

Since the total cobalt ion concentration, $\operatorname{Co}_{\mathsf{t}}$, is equal to the sum of the concentrations of all cobalt species present

co_t =

By substitu

rearrangir.

 $[CoL_2]$

+ 1 +

For

 B_1 is de

B₁ =

Equation

[Co:

Equation

[Co

Si

equatio Tust be

[c

F ligard

ally v

_{cx}yger

 e^{χ} D $^{\chi}e$

ty si

$$Co_t = [Co^{2^+}] + [CoL_1^+] + [CoL_2] + [CoL_3^-] + [CoL_2O_2] + 2[(CoL_2)_2O_2] + [CoL_2^+].$$
 (57)

By substituting equations 52 and 53 into equation 57 and rearranging, one obtains

$$[CoL_{2}]^{2}(2K_{4a}[O_{2}]K_{4b}) + [CoL_{2}]\left(\frac{1}{K_{1}K_{2}[L^{-}]^{2}} + \frac{1}{K_{2}[L^{-}]} + 1 + K_{3}[L^{-}] + K_{4a}[O_{2}]\right) + [CoL_{2}^{+}] - Co_{t} = 0.$$
 (58)

For the purpose of simplifying equation 58, the quantity B_1 is defined

$$B_1 = \frac{1}{K_1 K_2 [L^-]^2} + \frac{1}{K_2 [L^-]} + 1 + K_3 [L^-] + K_{4a} [O_2] . (59)$$

Equation 58 then becomes

$$[CoL_2]^2(2K_{4a}K_{4b}[O_2])+[CoL_2]B_1+[CoL_2^+]-Co_t = 0.$$
 (60)
Equation 60 is then solved for $[CoL_2]$

$$[CoL_{2}] = \frac{-B_{1}^{\pm} \sqrt{B_{1}^{2}-4(2K_{4a}^{}K_{4b}^{}[O_{2}])([CoL_{2}^{+}]-CO_{t}^{})}}{4 K_{4a}^{}K_{4b}^{}[O_{2}]}.(61)$$

Since $[CoL_2]$ must be zero or positive, the real root of equation 61 must be the positive root and the negative root must be extraneous and therefore,

$$[CoL_{2}] = \frac{-B_{1} + \sqrt{B_{1}^{2} - 8K_{4a}K_{4b}[O_{2}]([CoL_{2}^{+}] - Co_{t})}}{2(2K_{4a}K_{4b}[O_{2}])}$$
 (62)

For the purpose of integrating the rate expression, the ligand concentration is assumed to be constant. (It actually varies slightly as the reaction proceeds.) Constant oxygen partial pressures are maintained in the solutions.

To further simplify the writing of the mathematical expressions, some of the constant terms will be represented by single terms as shown below

B3

32

and the

Ву

one chta

[Co.

By substi following

In or transforma

formation

Sett:

tating equ

$$B_3 = 8K_{4a}K_{4b}[O_2] (63)$$

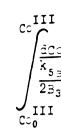
$$B_2 = B_1^2 + 8K_{4a}K_{4b}[O_2]CO_t = B_1^2 + B_3CO_t$$
 (64)

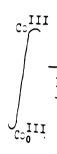
and the symbol Co^{III} will be used to represent $[CoL_2^+]$.

By substituting equations 63 and 64 into equation 62, one obtains

$$[CoL_{2}] = \frac{-B_{1} + \sqrt{B_{2} - B_{3}Co^{III}}}{B_{3}/2}$$

$$-\frac{2}{B_{3}} (-B_{1} + \sqrt{B_{2} - B_{3}Co^{III}}) . \qquad (65)$$


By substituting equation 65 into equation 56, one obtains the following:


$$\frac{dCo^{III}}{dt} = \frac{k_{5a}}{2B_3} \left(-B_1 + \sqrt{B_2 - B_3Co^{III}} \right)^2 + \frac{2k_{5b}K_{4a}[O_2][CoL_2^+]}{B_3} \left(-B_1 + \sqrt{B_2 - B_3Co^{III}} \right) . (66)$$

In order to be able to integrate equation 66, several transformations of variables must be made. The first transformation is shown below

$$\frac{dx}{dco^{III}} = \frac{d\sqrt{B_2 - B_3 Co^{III}}}{d(B_2 - B_3 Co^{III})} \cdot \frac{d(B_2 - B_3 Co^{III})}{dCo^{III}} = \frac{-B_3}{2x} \cdot (67)$$

Setting up the integration of equation 66 and substituting equations 67 in to the expression, one obtains

The

By s

ranging, c

To si

defined

$$\int_{\frac{d\text{Co}^{\text{III}}}{2B_3}}^{\frac{d\text{Co}^{\text{III}}}{k_{5a}}} \left(-B_1 + \sqrt{B_2 - B_3 \text{Co}^{\text{III}}}\right)^2 + \frac{2k_{5b}K_{4a}[O_2]\text{Co}^{\text{III}}}{B_3} \left(-B_1 + \sqrt{B_2 - B_3 \text{Co}^{\text{III}}}\right)$$

$$= \int_{0}^{\text{tdt}} dt = t$$
(68)

$$\int_{\text{Co}_{0}}^{\text{III}} \frac{\frac{-2xdx}{k_{5a}(x-B_{1})^{2} + 2k_{5b}K_{4a}[O_{2}] \left(\frac{B_{2} - x^{2}}{B_{3}}\right)(x - B_{1})}{\frac{k_{5a}(x-B_{1})^{2} + 2k_{5b}K_{4a}[O_{2}] \left(\frac{B_{2} - x^{2}}{B_{3}}\right)(x - B_{1})}$$

The second transformation of a variable is shown below

$$u = x - B_1$$

$$du = dx .$$
(70)

By substituting equations 70 into equation 69 and rearranging, one obtains

$$-2 \int_{Co_{0}}^{Co_{111}} \left[\frac{(u + B_{1})du}{u \left\{ \frac{-2K_{4}a^{[O_{2}]k_{5}b^{U^{2}}}}{B_{3}} + \left(\frac{k_{5}a}{2} - \frac{4K_{4}a^{[O_{2}]k_{5}b^{B_{1}}}}{B_{3}} \right) u \right]}{+ \left(\frac{2K_{4}a^{[O_{2}]k_{5}b^{B_{2}}}}{B_{3}} - \frac{2K_{4}a^{[O_{2}]k_{5}b^{B_{1}}}}{B_{3}} \right) \right]} = t.$$
(71)

To simplify equation 71, the following constants are defined

chtains $\begin{array}{c}
\text{Co} & \text{II} \\
\text{Co} & \text{U} \\
\text{Co} & \text{U}
\end{array}$

Bot be readily these two

X = X

$$a = \frac{2K_{4a}[O_{2}]k_{5b}B_{2}}{B_{3}} - \frac{2K_{4a}[O_{2}]k_{5b}B_{1}^{2}}{B_{3}}$$

$$b = \frac{k_{5a}}{2} - \frac{4K_{4a}[O_{2}]k_{5b}B_{1}}{B_{3}}$$

$$c = \frac{-2K_{4a}[O_{2}]k_{5b}}{B_{2}} .$$
(72)

By substituting equations 72 into equation 71, one obtains

$$-2 \int_{\text{Co}_{0}}^{\text{III}} \frac{\left(u + B_{1}\right) du}{u \left(cu^{2} + bu + a\right)} = t = -2 \int_{\text{Co}_{0}}^{\text{III}} \frac{du}{cu^{2} + bu + a} - 2 \int_{\text{Co}_{0}}^{\text{B}_{1}} \frac{du}{u \left(cu^{2} + bu + a\right)}.$$
(73)

Both terms of equation 73 are standard forms and can be readily integrated. The standard integrations 115 of these two terms is found below in equations 74

$$X = a + bu + cu^{2}$$

$$q = 4ac - b^{2}$$

$$\int \frac{du}{X} = \int \frac{du}{cu^{2} + bu + a} = \frac{1}{\sqrt{-q}} \log \left(\frac{2cu + b - \sqrt{-q}}{2cu + b + \sqrt{-q}} \right)$$

$$= \frac{1}{\sqrt{b^{2} - 4ac}} \log \left(\frac{2cu + b - \sqrt{b^{2} - 4ac}}{2cu + b + \sqrt{b^{2} - 4ac}} \right)$$

$$\int \frac{du}{uX} = \int \frac{du}{u(cu^{2} + bu + a)} = \frac{1}{2a} \log \left(\frac{u^{2}}{X} \right) - \frac{b}{2a} \int \frac{du}{X}$$

$$\int \frac{du}{uX} = \frac{1}{2a} \log \left(\frac{u^{2}}{cu^{2} + bu + a} \right) - \frac{b}{2a\sqrt{b^{2} - 4ac}} \log \left(\frac{2cu + b - \sqrt{b^{2} - 4ac}}{2cu + b + \sqrt{b^{2} - 4ac}} \right).$$
(74)

$$t = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

Then by s equation

$$t = \begin{bmatrix} \frac{b}{a} \end{bmatrix}$$

$$-\frac{B_1}{a}$$

$$t = \left[\frac{b}{a} \right]$$

^{3y} introdu

one obtain

By using equations 74 to integrate equation 73 and rearranging, one obtains

$$t = \left[\left(\frac{bB_1}{a\sqrt{b^2 - 4ac}} - \frac{2}{\sqrt{b^2 - 4ac}} \right) \log \left(\frac{2cu + b - \sqrt{b^2 - 4ac}}{2cu + b + \sqrt{b^2 - 4ac}} \right) - \frac{B_1}{a} \log \left(\frac{u^2}{cu^2 + bu + a} \right) \right]$$

$$Co_0^{\text{III}}$$

$$Co_0^{\text{III}}$$

$$Co_0^{\text{III}}$$

Then by successively substituting equations 70 and 67 into equation 75, one obtains the following

$$t = \left[\frac{bB_{1}}{a\sqrt{b^{2}-4ac}} - \frac{2}{\sqrt{b^{2}-4ac}} \right] \log \left(\frac{2c\{x-B_{1}\}+b-\sqrt{b^{2}-4ac}}{2c\{x-B_{1}\}+b+\sqrt{b^{2}-4ac}} \right) - \frac{B_{1}}{a} \log \left(\frac{\{x-B_{1}\}^{2}}{c\{x-B_{1}\}^{2}+b\{x-B_{1}\}+a} \right) \right] \begin{vmatrix} co^{III} \\ co^{III} \end{vmatrix}$$
(76)

$$t = \left[\frac{bB_{1}}{a\sqrt{b^{2}-4ac}} - \frac{2}{\sqrt{b^{2}-4ac}} \right] \log \left(\frac{2c\sqrt{B_{2}-B_{3}Co^{1}II} - B_{1}} + b - \sqrt{b^{2}-4ac}}{2c\sqrt{B_{2}-B_{3}Co^{1}II} - B_{1}} + b + \sqrt{b^{2}-4ac}} \right)_{(77)}$$

$$- \frac{B_{1}}{a} \log \left(\frac{\sqrt{B_{2}-B_{3}Co^{1}II} - B_{1}}}{c\sqrt{B_{2}-B_{3}Co^{1}II} - B_{1}} \right)^{2} + b\sqrt{B_{2}-B_{3}Co^{1}II} - B_{1}} + a \right) \right]_{Co_{0}}^{III}$$

By introducing the limits of integration and rearranging, one obtains

$$t = \left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}$$

If on

equation h

the bulk o

below.

The d

dCo^{II}

dco^{II}

Equations |

By sul

$$\frac{\partial C_0}{\partial t} = \frac{k}{2}$$

2

$$t = \left(\frac{2}{\sqrt{b^2 - 4ac}} - \frac{bB_1}{a\sqrt{b^2 - 4ac}}\right) \log \begin{bmatrix} \frac{2c(\sqrt{B_2 - B_3Co_0^{III}} - B_1) + b - \sqrt{b^2 - 4ac}}{2c(\sqrt{B_2 - B_3Co_0^{III}} - B_1) + b + \sqrt{b^2 - 4ac}} \\ \frac{2c(\sqrt{B_2 - B_3Co_0^{III}} - B_1) + b + \sqrt{b^2 - 4ac}}{2c(\sqrt{B_2 - B_3Co_0^{III}} - B_1) + b + \sqrt{b^2 - 4ac}} \end{bmatrix}$$

$$+ \frac{B_{1}}{a} \log \begin{bmatrix} \frac{(\sqrt{B_{2}-B_{3}Co_{0}^{III}} - B_{1})^{2}}{c(\sqrt{B_{2}-B_{3}Co_{0}^{III}} - B_{1})^{2} + b(\sqrt{B_{2}-B_{3}Co_{0}^{III}} - B_{1}) + a} \\ \frac{(\sqrt{B_{2}-B_{3}Co_{0}^{III}} - B_{1})^{2} + b(\sqrt{B_{2}-B_{3}Co_{0}^{III}} - B_{1}) + a}{c(\sqrt{B_{2}-B_{3}Co_{0}^{III}} - B_{2})^{2} + b(\sqrt{B_{2}-B_{3}Co_{0}^{III}} - B_{1}) + a} \end{bmatrix}.$$

If one repeats the derivation and integration of the rate equation but includes reaction 50 and deletes reaction 49, the bulk of the derivation remains the same except as stated below.

The differential rate law now becomes

$$\frac{dCo^{III}}{dt} = k_{5a}^{I} [CoL_{2}O_{2}][CoL_{2}] + k_{5b}^{I}[CoL_{2}O_{2}][CoL_{2}^{+}] (55a)$$

$$\frac{dCo^{III}}{dt} = k_{5a}^{'}K_{4a}^{'} [O_{2}][CoL_{2}]^{2} + k_{5b}^{'}K_{4a}^{'}[O_{2}][CoL_{2}][CoL_{2}^{+}].(66a)$$

Equations 57 to 65 obviously remain the same.

By substituting equation 65 into equation 56a, one obtains

$$\frac{dCo^{III}}{dt} = \frac{k_{5a}^{1}}{2B_{3}K_{4b}} \left(-B_{1} + \sqrt{B_{2} - B_{3}Co^{III}}\right)^{2} + \frac{2k_{5b}K_{4a}[O_{2}][Co^{III}]}{B_{3}} \left(-B_{1} + \sqrt{B_{2} - B_{3}Co^{III}}\right).$$
(66a)

Set equation

tion 70

 $\int_{0}^{1} \frac{dx}{x}$

Co

 $-2\int_{\mathbb{C}} \left[\begin{array}{c} (u) \\ u \\ C \end{array} \right]$

In c

only diff

Therefore

was with ,

^{repr}esent,

Setting up the integration of equation 66a, substituting equation 67 into the expression and then substituting equation 70 into the expression, one obtains

$$\begin{array}{c} \overset{\text{Co}^{\text{III}}}{\underset{S_{2}}{\text{dCo}^{\text{III}}}} \\ \overset{\text{k}^{\prime}_{5a}}{\underset{Co_{0}^{\text{III}}}{\text{d}}} (-B_{1} + \sqrt{B_{2} - B_{3}Co}^{\text{III}})^{2} + \frac{2k_{5b}K_{4a}[O_{2}]Co^{\text{III}}}{B_{3}} (-B_{1} + \sqrt{B_{2} - B_{3}Co}^{\text{III}}) \\ & = t \qquad \qquad (68a) \\ \\ \overset{\text{Co}^{\text{III}}}{\underset{Co_{0}^{\text{III}}}{\text{d}}} \\ & = t \qquad (69a) \\ \\ \overset{\text{Co}^{\text{III}}}{\underset{Co_{0}^{\text{III}}}{\text{d}}} \\ -2 \int_{Co_{0}^{\text{III}}} \overset{\text{Co}^{\text{III}}}{\underset{B_{3}}{\text{d}}} (-B_{1})^{2} + 2k_{5b}K_{4a}[O_{2}] \left(\frac{B_{2} - x^{2}}{B_{3}}\right) (x - B_{1}) \\ & = t \qquad (69a) \\ \\ & & = t \qquad (69a)$$

In comparing equations 71 and 71a, one sees that the only difference is the "b" term

$$b = \frac{k_{5a}'}{2K_{4b}} - \frac{4k_{5b}K_{4a}[O_2]B_1}{B_3} . \tag{72a}$$

Therefore, the integrated rate equation is the same as it was with equation 49. The only difference is in the term represented by "b".

By the equal sary to

describe

E. Calc

<u>d::.a</u>

The

is the so

Product v

[CoL2 +],

L_t =

+

Then cluding the which was

By substi

By inspecting equation 78, one can readily see that the equation cannot be solved algebraically. It is necessary to use a method of numerical solution which will be described later in this section.

E. Calculation of Ligand Concentration During the Formation and Decomposition of μ -Dioxygentetrakis(1-histidinato)dicobalt

The equation for calculating the ligand concentration is the same for either mechanism, based on inclusion of equation 49 or equation 50. By defining L_t as the total ligand present excluding the ligand from the cobalt(III) product which was present at the start of the reaction, $[CoL_2^+]$,

$$L_{t} = [L^{-}] + [HL] + [H_{2}L^{+}] + [H_{3}L^{2}] + [CoL_{2}] + 3[CoL_{3}] + 2[CoL_{2}] + 4[(CoL_{2})_{2}O_{2}] + 2[CoL_{2}] + 2[CoL_{2}].$$
(79)

Then defining n as the ligand-to-metal ratio (excluding the ligand and cobalt from the cobalt(III) product which was present at the start of the reaction, CoL_2^+)

$$\overline{n} co_t - 2[coL_2_0^+] = L_t.$$
 (80)

By substituting equations 52 to 54 into equation 79, one obtains

rt =

+

+43

collection

Then subs

 $[CoL_2]^2$

+[CoL2]

+(n-2)[co

The quant:

A_H =

E =

By stains the s

[CoL

and then

[cor⁵] = -

$$L_{t} = [L^{-}] + K_{1H}[H^{+}][L^{-}] + K_{1H}K_{2H}[H^{+}]^{2}[L^{-}] + K_{1H}K_{2H}K_{3H}[H^{+}]^{3}[L^{-}]$$

$$+ \frac{[CoL_{2}]}{K_{2}[L^{-}]} + 2[CoL_{2}] + 3K_{3}[CoL_{2}][L^{-}] + 2K_{4a}[CoL_{2}][O_{2}]$$

$$+ 4K_{4a}K_{4b}[CoL_{2}]^{2}[O_{2}] + 2[CoL_{2}^{+}] - 2[CoL_{2}^{+}]. \qquad (81)$$

Then substituting equations 58 and 81 into equation 80, collecting terms and rearranging, one obtains the following:

$$[CoL_2]^2(2\overline{n}-4)K_{4a}K_{4b}[O_2]$$

$$+[CoL_{2}]\left[\frac{\overline{n}}{K_{1}K_{2}[L^{-}]^{2}} + \frac{\overline{n}-1}{K_{2}[L^{-}]} + (\overline{n}-2) + (\overline{n}-3)K_{3}[L^{-}] + (\overline{n}-2)K_{4a}[O_{2}]\right]$$

$$+(\overline{n}-2)[CoL_{2}^{+}] - [L^{-}](1+K_{1H}[H^{+}] + K_{1H}K_{2H}[H^{+}]^{2} + K_{1H}K_{2H}K_{3H}[H^{+}]^{3}) = 0.$$
(82)

The quantities A_{H} and E are defined to simplify the equations

$$A_{H} = (1 + K_{1H}[H^{+}] + K_{1H}K_{2H}[H^{+}]^{2} + K_{1H}K_{2H}K_{3H}[H^{+}]^{3})$$

$$E = \frac{\overline{n}}{K_{1}K_{2}[L^{-}]^{2}} + \frac{\overline{n}-1}{K_{2}[L^{-}]} + \overline{n}-2 + (\overline{n}-3)K_{3}[L^{-}] + (\overline{n}-2)K_{4a}[O_{2}].$$
(83)

By substituting equations 83 into equation 82 one obtains the simplified equation

$$[CoL_{2}]^{2}(2\overline{n}-4)K_{4a}K_{4b}[O_{2}]+[CoL_{2}]E+(\overline{n}-2)[CoL_{2}^{+}]-[L^{-}]A_{H}=0$$
(84)

and then solving equation 84 for [CoL2], one obtains

$$[CoL_{2}] = \frac{-E^{\pm} \sqrt{E^{2}-4(2\bar{n}-4)}K_{4a}K_{4b}[O_{2}]\{(\bar{n}-2)[CoL_{2}]-[L^{-}]A_{H}\}}{2\{(2\bar{n}-4)K_{4a}K_{4b}[O_{2}]\}} (85)$$

Aga

 $[CoL_2]$:

85 is t

as folls

 $[CcL_2] =$

Then by

-B

A ca

tions 59,

present:

 $[CoL_2^+]$,

The

are known

fixed at

fore, by

Possible |

to use a

numerical

Again using the symbol ${\rm Co}^{\rm III}$ for $[{\rm CoL_2}^+]$ and since $[{\rm CoL_2}]$ must be zero or positive, the real root of equation 85 is the positive root. Therefore equation 85 is written as follows:

$$[CoL_{2}] = \frac{-E + \sqrt{E^{2} - 4(2\bar{n} - 4)} K_{4\bar{a}} K_{4\bar{b}} [O_{2}] \{(\bar{n} - 2) \cdot Co^{III} - [-L^{-}] A_{H}\}}{2 \{(2\bar{n} - 4) K_{4\bar{a}} K_{4\bar{b}} [O_{2}]\}} \cdot (86)$$

Then by substituting equation 86 into equation 65 one obtains

$$\frac{-E \sqrt{E^{2}-4(2\bar{n}-4)}K_{4a}K_{4b}[O_{2}]\{(\bar{n}-2)CO^{III}-[L^{-}]A_{H}\}}{(4\bar{n}-8)K_{4a}K_{4b}[O_{2}]}$$

$$= \frac{2}{B_{3}}(-B_{1} + \sqrt{B_{2}-B_{3}CO^{III}}), \qquad (87)$$

A careful examination of equation 87 and the variables within the equation, A_H , E (equations 83), B_1 , B_2 , B_3 (equations 59, 63, 64), reveals that the following variables are present: K_1 , K_2 , K_3 , K_{4a} K_{4b} , K_{1H} , K_{2H} , K_{3H} , $[H^+]$, $[O_2]$, $[CoL_2^+]$, and $[L^-]$.

The values of K_1 , K_2 , K_3 , K_{4a} , K_{4b} , K_{1H} , K_{2H} , and K_{3H} are known (see Discussion section). The $[H^+]$ and $[O_2]$ are fixed at known values by the experimental conditions. Therefore, by using the experimental value for $[CoL_2^+]$, it is possible to solve equation 87 for $[L^-]$. It is necessary to use a numerical method to solve this equation. The numerical method used is described next.

Sind

to use.11

the equat:

figures wy

Since

tion is av

tion 87 nu

The N

(see Figur

Let u

he wishes

ferent val

Obviously,

estimate o

then the ϵ

Referring

the equat:

 $^{\mathfrak{construct}}$

F. Numerical Method Used to Solve Equation 87, the Newton Method

Since it has been found that the ligand concentration does not change very much as the reaction proceeds, a good estimate can be obtained for the ligand concentration at any time during the reaction.

If one has a good initial estimate for the solution of an equation and a numerical solution of the equation is necessary, the Newton method is the best numerical technique to use. The Newton method converges on the solution to the equation very rapidly (usually to four significant figures within six iterations).

Since a good initial estimate of the ligand concentration is available, the Newton method is used to solve equation 87 numerically.

The Newton method can be best described graphically (see Figure 2).

Let us assume that one has an equation f(x) = 0 and he wishes to find a root of the equation. He can try different values of x and plot the equation f(x) = y. Obviously, y is the residual when one substitutes his estimate of x into the expression f(x). If y is zero, then the estimate of x is a root of the equation f(x) = 0. Referring to Figure 2, the initial estimate of a root to the equation f(x) = 0 is the quantity a_1 . Line $a_1 p_1$ is constructed perpendicular to the x axis and then the

Figure 2

-у

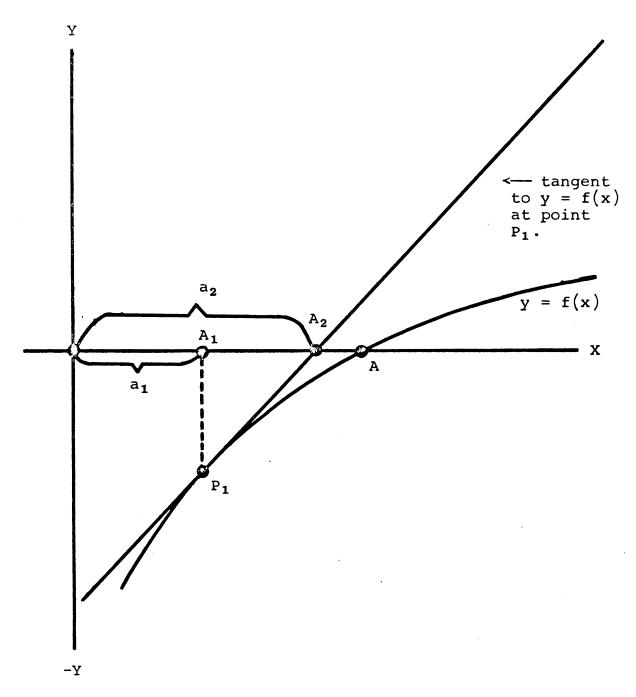


Figure 2. Geometric representation of the Newton method for numerical solution of equations.

tangent

structe the x is the structi and ther a to c repeated accurate Y the re the previ tust be o points or Y = f(x)the point or a chang

The n iescribed above, the

f(x) = 0

the equati

 P_1 , $f(a_1)$

x = a₁). Zow -

P_{1 Must b}

wist be the

Scint P1.

tangent to the equation f(x) = y at point P_1 is constructed. The value of x where this tangent intersects the x axis, $(x = a_2)$, is a better estimate of the root than is the original estimate, $x = a_1$. This process of constructing a line perpendicular to the x axis at point a, and then constructing the tangent to f(x) = y at point a; to obtain a new estimate of the root, a; 1, can be repeated until the estimate of the root is sufficiently accurate. The accuracy can be determined by the value of y (the residual), and the closeness of an estimate a; to the previous estimate. The initial estimate of the root must be close enough to the real root to avoid inflection points or changes in the sign of the slope of the equation y = f(x) between the point on the equation $x = a_1$ and the point where y = 0. If there is an inflection point or a change in slope, the Newton method will fail.

The mathematical equivalent of the geometric procedure described above and in Figure 2 is as follows. As stated above, the initial estimate of the root to the equation f(x) = 0 is the quantity a_1 . Point P_1 is the point on the equation f(x) = y where $x = a_1$. Therefore, at point P_1 , $f(a_1) = y$ ($f[a_1]$ is the value of f(x) evaluated with $x = a_1$). The coordinates of point P_1 are $(x, f[a_1])$.

Now the equation of the tangent to f(x) = y at point P_1 must be obtained. The slope of the tangent at point P_1 must be the same as the slope of the equation y = f(x) at point P_1 . The slope of the equation y = f(x) at point

 P_1 is f

 $x = a_1$.

m and co

Therefore

Rearrangi

The

where x

By substi

- 0

To us

respect to

The derive

Pendix.

Values of

is found

the Newto

based up_C

be found

 P_1 is $f'(a_1)$, (the derivative of f(x) evaluated with $x = a_1$). The general equation for a straight line of slope m and containing point (x_1, y_1) is as follows:

$$\frac{y-y_1}{x-x_1}=m. \tag{88}$$

Therefore, the equation of the tangent is

$$\frac{y - f(a_1)}{x - a_1} = f'(a_1). \tag{89}$$

Rearranging equation 89, one obtains

$$x = \frac{y - f(a_1)}{f'(a_1)} + a_1 . \qquad (90)$$

The point on this tangent where y = 0 is the point where $x = a_2$, the new estimate of a root of f(x) = 0.

By substituting y = 0 into equation 90, one obtains a_2

$$x = a_2 = a_1 - \frac{f(a_1)}{f'(a_1)}$$
 (91)

To use the Newton method to solve equation 87, it is necessary to obtain the derivative of equation 87 with respect to the unknown, [L], and a good estimate of [L]. The derivative of this equation can be found in the Appendix. The estimate of [L] can be obtained by using trial values of [L] in the Newton method until a trial value is found that is sufficiently close to the true [L] for the Newton method to work properly. The computer subroutine based upon the Newton method and written by the author will be found in the Appendix.

Upt

tries two
to get :
and signs

becomes ;

program

initial e

is based

If

between closer to

different the signs

the small

G. Numerical Method Used to Solve Equation 78

Upon examining equation 78 and the variables within the equation, it can be seen that all the variables from equation 87 are present as are K_{4a} , K_{4b} , k_{5a} , k_{5b} $[CoL_2^{\dagger}]$. By using the value of $[L^{\tilde{}}]$ as calculated from equation 87, choosing appropriate values for K_{4a} and K_{4b} (see Discussion section) and using the current estimates (either initial estimates of these variables or least squares estimates) for k_{5a} (or k_{5a}) and k_{5b} , one can solve equation 87 for [CoL2 +]. However, the initial estimates and in some cases the iterative computer estimates of k_{5a} (or k_{5a}) and k_{5b} may not be accurate enough to use the Newton method to solve equation 87 numerically. Therefore, it becomes necessary to derive a numerical method and a computer program for the method which can be used even with poor initial estimates of k_{5a} (or k_{5a}) and k_{5b} . This method is based on the method of successive approximations.

If one has a function of the form f(x) = 0 and he tries two estimates of roots to the equation, x_1 and x_2 , to get $f(x_1)$ and $f(x_2)$, he can tell from the magnitudes and signs of $f(x_1)$ and $f(x_2)$ whether there is a root between x_1 and x_2 and if not, whether x_1 or x_2 is closer to a root. If the signs of $f(x_1)$ and $f(x_2)$ are different, there must be a root between x_1 and x_2 . If the signs of $f(x_1)$ and $f(x_2)$ are the same, whichever has the smallest magnitude is based on a value of x which is

from x proachi

closer

H. <u>Com</u>

tine, w tion en

Th

ate(II)

6, 7, 9

in the A

The

oxygen r

concentr

calculat

ation su

The prelimin

squares

nitude es

reading :

the estin

subroutin

gud copal

gram can

the main

^{squar}es c

closer to a root. In this way, one can tell whether in going from $\mathbf{x_1}$ to $\mathbf{x_2}$ a root has been passed or if it is approaching or leaving a root.

H. Computer Programs

The computer program for the linear least squares routine, which is used to determine rate constants and activation energy for the decomposition of the pentacyanocobaltate(II) ion, is straightfoward. It is based upon equations 6, 7, 9, 10, 39 and 40. The computer program can be found in the Appendix.

The computer program used for the cobalt-histidine-oxygen reaction consists of a main program, "Deriv", a ligand concentration calculation subroutine, "Aligcalc", a $[CoL_2^{\ \ \ }]$ calculation subroutine, "Co3calc", and a determinant evaluation subroutine, "Dterm".

There are two basic versions of the main program. The preliminary version, "Kintslct", does not include any least squares calculations. It is used to detemine order of magnitude estimates for k_{5a} , $k_{5a}^{'}$ and k_{5b} . It consists of reading in the experimental data, the known variables, and the estimates of k_{5a} or $k_{5a}^{'}$ and $k_{5b}^{'}$ and then calling subroutines "Aligcalc" and "Co3calc" to calculate the ligand and cobalt(III) product concentrations. This computer program can be found in the Appendix. The regular version of the main program, "Deriv", includes the non-linear least squares calculations. There are, of course, two versions

"Derivg" equation (paramete of the ma can be se Subr It consis lating a previous checking close enc if not, g Mate of Subr approxima seen in F Subi tained fr library. of the de Subi

of each t

I. Esti

[cor+]'

The on the c

of each type of main program; one is based on equation 49, "Derivg" (and therefore, the parameter "b" is defined by equation 72); the other is based on equation 50, "Derivh" (parameter "b" is defined by equation 72a). A block diagram of the main program including the least squares calculations can be seen in Figure 3.

Subroutine "Aligcalc" is based on the Newton method. It consists of calculating the necessary derivative, calculating a new estimate of [L] (based upon the initial or previous iterative estimate of [L]) by means of equation 91, checking to see whether the previous and new estimates are close enough to each other to terminate the calculation and if not, going back and calculating the derivative, a new estimate of [L], etc.

Subroutine "Co3calc" is based on the method of successive approximations. A block diagram of this subroutine can be seen in Figure 4.

Subroutine "Dterm" is a standard program which was obtained from the Michigan State University computer program library. This subroutine is used to calculate the values of the determinants.

Subroutine "Cobltclc" is used to calculate $[Co^{2+}]$, $[CoL_{2}]$, $[CoL_{2}]$, $[CoL_{2}]$, and $[(CoL_{2})_{2}O_{2}]$.

I. Estimation of K_{4a} and K_{4b}

The estimation of the values of K_{4a} and K_{4b} is based on the observation that at 25^{0} , $K_{4a}\cdot K_{4b}=7.2\times 10^{6}.59$

and k
[CoL₂

If the close terming square

Pigure 3

Read in the values of all constants, the experimental kinetic data, (experimental conditions, initial concentrations of reactants, $[\text{CoL}_2^+]$ and time), least squares parameters, initial estimates of the parameters (k sa or k'sa, k sb and [L]).

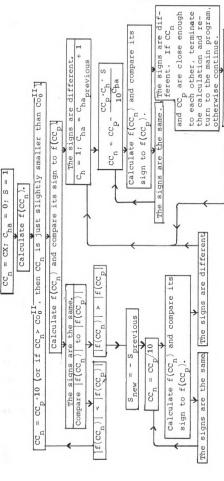
Call the "Aligcalc" subroutine to calculate the free ligand concentration (based on the experimental values for [CoL₂+]) for each experimental data point.

Call the "Co3calc" subroutine to calculate the $[CoL_2^+]$ (based upon the initial estimates of k or k and the $[L^-]$ calculated above) for each experimental data point.

Calculate the derivatives necessary for the least squares calculation (based on the current estimates of k_{5a} or k_{5a} and k_{5b}), the difference between $[CoL_2^+]_{exp}$ and $[CoL_2^+]_{calc}$ and set up the least squares determinants.

Call the "Dterm" subroutine to evaluate the determinants.

Use the determinants to calculate new values for k_{5a} or k_{5a} and k_{5b} .


Call the "Co3calc" subroutine to calculate $[CoL_2^+]$ (based on the new choices of k or k' and k or k' and k or each experimental data point.

Print out the previous and new estimates of k_{5a} or k_{5a} and k_{5b} , the new and old values of $[CoL_2^{+}]_{calc}$, $[CoL_2^{+}]_{experim}$, the quantity $([CoL_2^{+}]_{exp}^{-}[CoL_2^{+}]_{calc})$, and the mean and standard deviations.

If the old and new estimates of k_{5a} or k_{5a}^{\dagger} and k_{5b}^{\dagger} are close enough to each other (indicating convergence), terminate the calculations. Otherwise repeat the least squares procedure up to a maximum number of iterations.

Figure 3. A block diagram of computer program "Deriv".

 $Cc_n = CX; C_{ha} = 0; S = 1$ $Calculate f(CC_n).$

0; 11

= CX;

 $(\text{CX = [CoL}_2^+]_{\text{exp}}; \text{ CC = [CoL}_2^+]_{\text{Calc}}; \text{ In any step, } \text{ Cc}_{\text{previous}} \text{ (Cc}_p) \text{ is the CC}_{\text{new}} \text{ (Cc}_n) \text{ from comparison}$ Snew Figure 4. A block diagram of computer subroutine "Co3calc". the previous step.)

previous

Cne

Before an

Col

[coL

Since

calculated

The r

The equations 53 can be multiplied to obtain the product $K_{4a} \cdot K_{4b}$,

$$K_{4a} \cdot K_{4b} = 7.2 \times 10^6 = \frac{[(CoL_2)_2O_2]}{[CoL_2]^2[O_2]}$$
 (92)

One can then assume that a specific percentage of the total cobalt(II), $\operatorname{Co}_{\mathsf{t}}^{\mathsf{II}}$, is in the form $(\operatorname{CoL}_2)_2\mathrm{O}_2$ immediately after oxygenation (and before any decomposition of the oxygen carrier to form CoL_2^+). Then one can calculate $[\operatorname{CoL}_2]$, $[\operatorname{CoL}_2\mathrm{O}_2]$, and the number of moles of oxygen initially absorbed per two moles of cobalt.

By defining F as the fraction of Co_{t}^{II} that is initially $(CoL_{2})_{2}O_{2}$, and rearranging equation 92, one can calculate $[CoL_{2}]$ as follows:

$$[CoL_2] = \sqrt{\frac{[(CoL_2)_2O_2]}{K_{4a} \cdot K_{4b} \cdot [O_2]}} = \sqrt{\frac{Co_{t}^{II} \cdot F}{7.2 \times 10^6 \cdot [O_2]}}.(93)$$

Before any decomposition of the binuclear oxygen carrier

$$CO_{t}^{II} = [COL_{2}] + [COL_{2}O_{2}] + 2[(COL_{2})_{2}O_{2}]$$
 (94)

$$[CoL_2O_2] = Co_t^{II} - [CoL_2] - 2[(CoL_2O_2].$$
 (95)

Since $[(CoL_2)_2O_2]$ is assumed, $[CoL_2]$ and $[CoL_2O_2]$ can be calculated from equations 93 and 95, K_{4a} and K_{4b} can be calculated by using equations 53.

The number of moles of oxygen that are initially absorbed per two moles of cobalt(II) is equal to the quantity

$$\frac{[(CoL_2)_2O_2] + 2[CoL_2O_2]}{, 2Co_t^{II}} . (96)$$

J. Correct

A simp

quenched co

Since,

FCOL2+

where F is

start or enscribances le

tively the

the initial

Since

r_{CO}II

The only va

J. Correction of CoL_2^+ Absorbance Due to the Presence of Co_{aq}^{II}

A simple linear correction on the absorbance of the quenched cobalt-histidine-oxygen solutions for the absorbance due to $\text{Co}_{aq}^{\text{II}}$ has been derived by Zompa.^{117}

Since, at any wavelength of the spectral observations, the molar absorptivity of ${\rm CoL_2}^+$ is much greater than that of ${\rm Co}_{\rm ag}^{\rm II}$,

$$F_{CO}^{II} = \frac{A_{CO}^{II}}{A_{CO}^{II}}$$
 (97)

$$\mathbf{F_{CoL_2}}^{+} = \frac{[\mathbf{CoL_2}^{+}]}{[\mathbf{CoL_2}^{+}]} = \frac{\mathbf{A_{CoIII}}}{\mathbf{A_{CoO}}} \approx \frac{\mathbf{A_{total}^{-A}Co_0^{II}}}{\mathbf{A_{Coo}^{III} - A_{Co_0^{II}}}}$$
(98)

where F is the fraction of the subscripted species (relative to its maximum possible concentration, at either the start or end of the reaction). The A terms are all absorbances less any absorbance due to $\operatorname{CoL}_{2_0}^+$. At is the experimental absorbance; A and A of III are respectively the absorbances due to $\operatorname{Co}_{aq}^{2+}$ and $\operatorname{CoL}_{2}^{+}$; A of I is the initial absorbance of the solution and A of III is the final absorbance of the solution.

Since the whole is equal to the sum of its parts,

$$F_{CO}^{II} + F_{COL_2}^{II} + = 1 ; \frac{A_t^{-A}_{CO_0}^{II}}{A_{CO_0}^{III}^{-A}_{CO_0}^{II}} + \frac{A_{CO_0}^{II}}{A_{CO_0}^{II}} = 1.$$
 (99)

The only variable in equation 99 that is not known from the

experi

equati

be cal

and by

experimental procedure is A $_{\rm CO}^{\rm II}$ so that by rearranging this equation, the absorbance of the solution due to $_{\rm aq}^{\rm 2+}$ can be calculated

$$A_{CO}^{II} = A_{CO_0^{II}} \left(1 + \frac{A_{CO_0^{II}} - A_t}{A_{CO_0^{II}} - A_{CO_0^{III}}} \right) (100)$$

and by difference,

$$A_{CO}^{III} = A_{t} - A_{CO}^{II} . \qquad (101)$$

R

the con

A

was preg Tolar ra

lowed mi

eter cel

flask, w

shaped as

a spectro

flask was

fied nitr

IV. EXPERIMENTAL

A. Preparation of Reagents

Reagent grade materials were used throughout. The 1-histidine was obtained from Nutritional Biochemicals, Inc. and was used without purification. The water used to prepare the solutions was boiled distilled water. Throughout the boiling of the water and while cooling afterward, prepurified nitrogen gas was bubbled through the water to remove any dissolved oxygen. Thereafter, whenever water was pipetted out of the container, prepurified nitrogen was bubbled through the water to prevent air from entering the container.

A potassium pentacyanocobaltate(II) solution of $0.170\underline{M}$ was prepared by mixing solutions of KCN and $Co(NO_3)_2$ in a molar ratio of 5.49 to 1.00, in a special flask which allowed mixing and withdrawal of samples into a spectrophotometer cell in an atmosphere of prepurified nitrogen. The flask, which is shown in Figure 5, is essentially "H"-shaped and contains a sidearm with a stopcock for connecting a spectrophotometer cell to the flask. Before use, the flask was evacuated several times and filled with prepurified nitrogen. Whenever reagents were added to the flask,

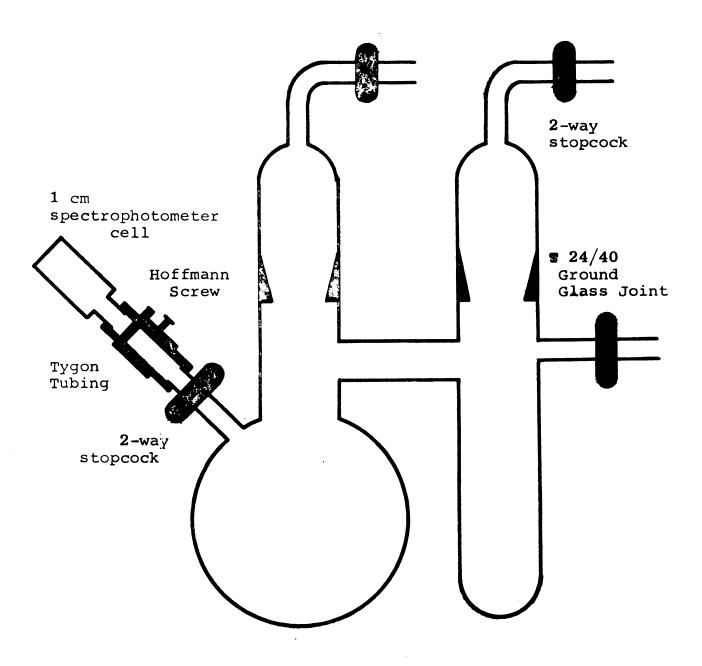


Figure 5. Special mixing cell.

nitr

cre s

trusi

was p

was c

agenti

soluti

photom

Н

spectr

permit

shaped

flask j

is abou

is tigh

cock is

--.. 1

Tygon t

disconn

spectro Bi

PH = 7

the rea

Por sim

rated C

designa

.

nitrogen was passed through the flask to prevent the intrusion of any air. The KCN solution was pipetted into one side of the "H"-shaped flask and the $Co(NO_3)_2$ solution was pipetted into the other side of the flask. The flask was closed, tipped and shaken to thoroughly mix the reagents and then tipped at an acute angle to allow the solution to flow through the sidearm and into the spectrophotometer cell.

Hardened Tygon tubing must be used to connect the spectrophotometer cell (which must have a round top to permit the connecting of the Tygon tubing) to the "H"-shaped flask to prevent collapse of the tubing while the flask is being evacuated. When the spectrophotometer cell is about to be disconnected from the flask, a Hoffman screw is tightened about the Tygon tubing and the sidearm stop-cock is closed. Then the spectrophotometer cell (with the Tygon tubing and the closed Hoffman screw attached) can be disconnected from the "H"-shaped flask and placed in the spectrophotometer.

Bis(1-histidinato)cobalt(II) solutions, buffered at pH = 7 and in a medium of $1\underline{M}$ KNO₃, were prepared by adding the reagents shown in Table I to a 100 ml volumetric flask. For simplicity, bis(1-histidinato)cobalt(II) will be designated CoL_2 and bis(1-histidinato)cobalt(III) cation will be designated CoL_2^+ .

g K%03

g 1-hi

g (Col

Il 0.12

ml H₂O

So

Tole ra

air whi the sol

reactio

approxi

ing fin

glass f

Water, ,

for app

line sa

was a m

Table I. Preparation of the CoL₂ solutions (2:1 histidine to cobalt ratio).

		· · · · · · · · · · · · · · · · · · ·	
	I	II	III
$[\mathtt{CoL_2}]$	6.08×10^{-3}	6.08×10^{-3}	12.16 x 10 ⁻³
$[\mathtt{CoL_2}^+]$	0.00	6.0×10^{-3}	0.00
ml 1 <u>M</u> KH_2PO_4	7.00	7.00	5.00
ml 1 <u>M</u> K_2 HPO $_4$	25.00	25.00	25.00
g KNO ₃	10.1	10.1	10.1
g l-histidine	0.1887	0.1887	0.3774
$g (CoL_2^+)(NO_3^-)$	0.00	0.2622	0.00
ml $0.1216\underline{M}$ $Co(NO_3)_2$	5.00	5.00	10.00
ml H ₂ O	up to the 100 ml mark	up to the 100 ml mark	. -

Solid (CoL₂)(NO₃) was prepared by adding a two to one mole ratio of 1-histidine and Co(NO₃)₂ to water and bubbling air which was passed through a glass wool filter through the solution for three days. No buffer was added to the reaction flask. The resulting red solution was added to approximately four times its volume of acetone. The resulting fine precipitate was filtered through a fine fritted glass funnel, washed several times with small quantities of water, washed with acetone and ether and then dried in vacuo for approximately two hours. The yield of the non-crystalline salmon-red powder was approximately 50%. The powder was a mixture of the three isomers of the product.¹⁰⁷

The KC titration. 1 small amoun

to 3.5 volt

turely prec

when a drop

erdpoint is

To che

 100.5 ± 0.2 In ord

fer necessa

dine soluti

standardize

was perfor:

1 ₩ KNO3 ar

for acetic

B. Analytical

The cobalt nitrate solution was standardized by a modification of a standard electrochemical method. A volume of solution containing 150 to 200 mg of cobalt was pipetted into a beaker; 0.3 g of NaHSO3, 5 g of NH4Cl, 50 ml of conc. NH4OH and approximately 20 ml of H2O was added to the beaker. The solution was electrolyzed for approximately five hours on a Fisher electroanalyzer using a rotating platinum anode and a platinum gauze cathode at 3.0 to 3.5 volts, 0.5 to 1.2 amperes.

The KCN solution was standardized by a silver ion titration. Potassium iodide was the indicator and a small amount of NH4OH was added to dissolve any AgCN prematurely precipitated due to a locally high Ag concentration when a drop of AgNO3 from the buret enters the solution. The endpoint is the first permanent clouding due to separation of AgCN.

To check the purity of the 1-histidine, a neutralization equivalent titration was performed. The result was $100.5 \pm 0.2\%$ for the purity of the 1-histidine.

In order to determine the quantity of phosphate buffer necessary to maintain a pH of 7 in the cobalt-histidine solutions listed in Table I, it was necessary to standardize a glass electrode for $1\underline{M}$ KNO₃. A titration was performed by using standardized dilute acetic acid in $1\underline{M}$ KNO₃ and standardized NaOH in $1\underline{M}$ KNO₃. Since the k_a for acetic acid in $1\underline{M}$ KCl is 3.071×10^{-8} (ref. 120), it is

possible to the point the same in and experimate. The high 117

Then, quantity of 7. The te except that titrated in with a sate

C. Experi

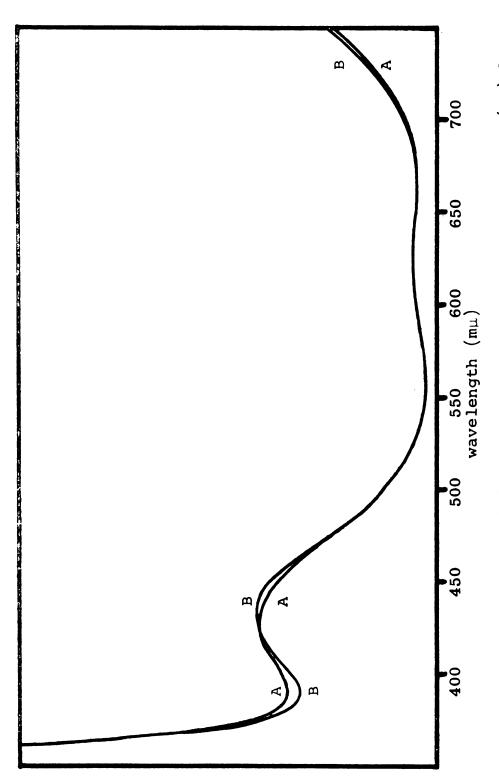
ized glass

Decomp

A pre

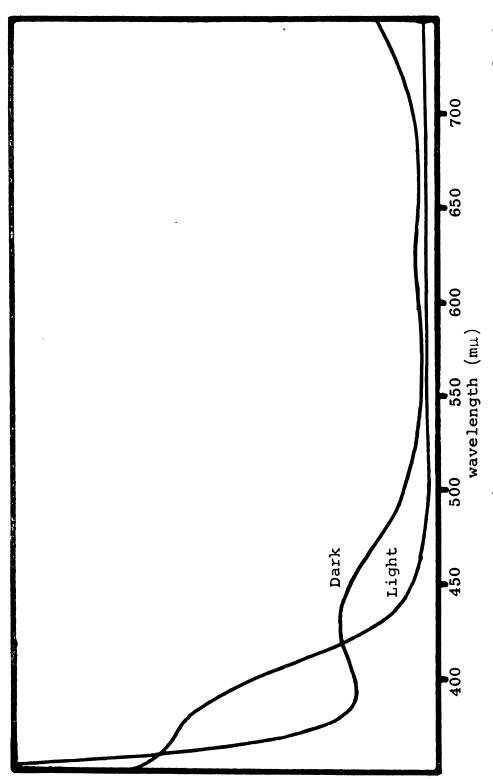
showed tha sample of was kept i periodical 6 and 7. is faster

the produc
from the p


^{cating} eff

possible to calculate the pH of the solution at all titration points (by assuming that the k_a for acetic acid is the same in $1\underline{M}$ KCl and KNO₃). By comparing the calculated and experimental values of pH, a calibration curve can be made. The pH meter reading was found to be 0.12 pH units high.¹¹⁷

Then, test solutions were prepared to determine the quantity of phosphate buffer necessary to maintain a pH of 7. The test solutions were the same as listed in Table I except that no KH₂PO₄ was added initially. Then KH₂PO₄ was titrated into the test solution until a Corning pH meter with a saturated calomel electrode and the 1<u>M</u> KNO₃ standardized glass electrode indicated pH 6.88.


C. Experimental Procedure for the Study of the $Co(CN)_5^{3-}$ Decomposition

A preliminary study of the decomposition of $\operatorname{Co(CN)}_5{}^3-$ showed that the decomposition was affected by light. One sample of $\operatorname{Co(CN)}_5{}^3-$ was kept in the light and another sample was kept in the dark. Spectra of both samples were taken periodically. Some of these spectra are shown in Figures 6 and 7. From Figure 6, one can see that the decomposition is faster in the light. From Figure 7, one can see that the products of the decomposition in the light are different from the products in the dark. Therefore, all further kinetic experiments were performed in darkness to avoid the complicating effects of the photochemical decomposition.

Comparison of visible and near uv spectra of aqueous ${\rm Co}({\rm CN})_5{\rm ^3-}$ kept in darkness and in daylight for 2 hours and 15 minutes after preparation. Figure 6.

A = spectrum of the sample kept in daylight. B = spectrum of the sample kept in darkness.

Comparison of visible and near uv spectra of aqueous $\text{Co}(\text{CN})_{\mathbf{5}}^{3}$ -kept in the dark and in daylight for 48 hours after preparation. Figure 7.

The rate(II identified identified

The matter ways.

concentrat

were prepa

were calculates

were obtain

as shown b

error prob All c

viously re

The earlie

solutions

First, fai

The rate of the decomposition of the pentacyanocobaltate (II) ion was followed by observing the decay of the 625 m μ peak of the Co(CN) $_5$ on the Unicam SP 800 visible-ultraviolet spectrophotometer. The sample was kept in a stoppered oxygen gas-free 1-cm spectrophotometer cell in the thermostated cell compartment of the Unicam SP 800 for the duration of each experiment and thus served to prevent any stray light from reaching the sample. Since the sealed spectrophotometer cell had very little gas volume above the solution, the decomposition of one of the reaction products 71 as shown below was prevented

$$2\text{Co}(\text{CN})_5\text{H}^{3} \longrightarrow 2\text{Co}(\text{CN})_5^{3} + \text{H}_2 \uparrow .(102)$$

The molar absorptivity of $\mathrm{Co(CN)_5}^{3-}$ was calculated in two ways. First, dilute solutions of $\mathrm{Co(CN)_5}^{3-}$ of known concentration, in which the decomposition was very slow, were prepared and the molar absorptivities of the solutions were calculated; second, the initial molar absorptivities were obtained for the solutions used in the rate studies. The value obtained was $\epsilon_{625}=6.15$ compared with the previously reported values^{71,84,91,121} of 10, 7, 6.3 and 7. The earlier reported spectra of $\mathrm{Co(CN)_5}^{3-}$ 76,122 were in error probably due to the presence of some oxygen.91

All of the previous workers had used the 970 m μ maximum for determining the concentration of $\text{Co(CN)}_5{}^3-$ in solutions. The 625 m μ peak was chosen for two reasons. First, fairly concentrated $(0.170\underline{\text{M}})$ solutions of the

melar absorbance

melar absorbance

melar absorbance

melar absorbance

measure of

D. Exper

for absort

Histic

The prepared

125.1, and

value of The

carrier,

Unicam SP

ance at 5

The temperatu

through a

pentacyano complex could be used because of the much lower molar absorptivity at the 625 m μ peak and second, none of the other species present have any measurable absorption at this wavelength. Neither $\text{Co}(\text{CN})_5\text{OH}^{3-}$, which is one of the $\text{Co}(\text{CN})_5^{3-}$ decomposition products, nor $\text{Co}(\text{CN})_6^{4-}$, which can be produced by the $\text{Co}(\text{CN})_5^{3-}$ catalyzed OH - CN exchange 123 has any measurable absorbance at 625 m μ . The colorless $\text{Co}(\text{CN})_5\text{H}^{3-}$ ion, which is the other product of the decomposition of the $\text{Co}(\text{CN})_5^{3-}$, has no measurable absorbance anywhere in the visible region of the spectrum. 84,85 Thus, the absorbance of the reacting solution at 625 m μ is a direct measure of the $[\text{Co}(\text{CN})_5]_3^{3-}$ and no correction is necessary for absorbance due to the presence of other species.

D. Experimental Procedure for the Study of the Cobalt-Histidine-Oxygen Reaction

The molar absorptivity at $500~\text{m}\mu$ for solutions of CoL_2^+ prepared by oxygenating aqueous CoL_2 for several days was 125.1, and agreed fairly well with the previously reported value of $115.^{117}$

The kinetics of the formation of ${\rm CoL_2}^+$ from the oxygen carrier, ${\rm L_2CoO_2CoL_2}$, was followed by observing, on the Unicam SP 800 spectrophotometer, the growth of the absorbance at 500 m μ due to the formation of ${\rm CoL_2}^+$.

The reaction was performed in a thermostated constant temperature bath at 25° . Oxygen gas mixtures were passed through a series of bubblers which were immersed in the

cons acti:

the s

ated

evapo

the t

bubb!

throu

ture.

ionio

above centr

charg

tain

Vatio

react

4M HN

it dia

as sho

constant temperature bath and then bubbled through the reacting solutions. The first bubbler contained $1_{\underline{M}}$ KOH and the second bubbler contained $1_{\underline{M}}$ KNO3. Both bubblers saturated the gas mixtures with water vapor which minimized evaporation of water from the reacting vessels and brought the temperature of the gas mixtures to 25° . The $1_{\underline{M}}$ KOH bubbler also removed any CO2 from the gas mixtures. The gas mixtures used were prepurified oxygen, air (first passed through a glass wool filter) and a 5% O2 - 95% N2 gas mixture. Since the solubility of oxygen in water at various ionic strengths is known 124 (and in particular, for the above experimental conditions with air as gas 91), the concentrations of O2 dissolved in the solutions were known.

It was necessary to use an acid quench to destroy any oxygen carrier present as the oxygen carrier has a very large charge transfer absorbance that made it impossible to obtain quantitative results from the spectrophotometric observations. 117

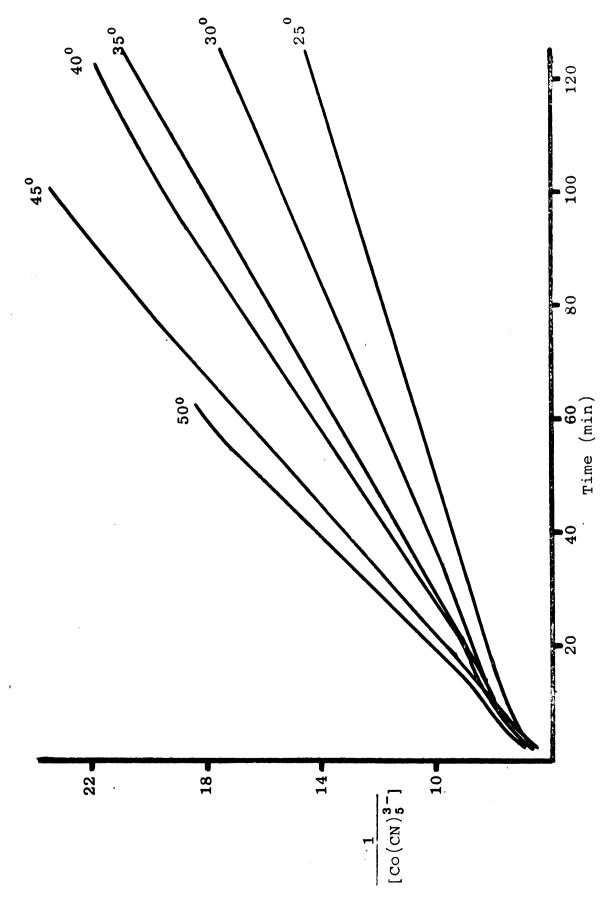
Every 100 minutes, a 5 ml aliquot was removed from the reacting sample and the aliquot was quenched with 1 ml of $4\underline{M}$ HNO₃. The HNO₃ did not affect the product, ${\rm CoL_2}^+$, but it did convert any oxygen carrier and ${\rm CoL_2}$ to aqueous ${\rm Co}^{2+}$ as shown below

$$CoL_{2} + 2H^{+} \longrightarrow Co_{aq}^{2+} + 2HL$$

$$CoL_{2}O_{2} + 2H^{+} \longrightarrow Co_{aq}^{2+} + 2HL + O_{2} \qquad (103)$$

$$(CoL_{2})_{2}O_{2} + 4H^{+} \longrightarrow 2Co_{aq}^{2+} + 4HL + O_{2}.$$

The spectrophotometric readings were taken 25 minutes after quenching for reasons that will be explained.


In the quenched solutions, the $\mathrm{Co}_{\mathrm{aq}}^{2+}$ had a small but measurable absorbance at 500 m μ ($\epsilon \approx 5$). Therefore, it was necessary to correct the experimentally measured absorbance for the absorbance due to the $\mathrm{Co}_{\mathrm{aq}}^{2+}$. This correction has already been described in the Theoretical section of this work (Section III, Part J).

V. RESULTS AND DISCUSSION

A. The Decomposition of $Co(CN)_5^{3}$

The three previous investigations of the decomposition of aqueous $Co(CN)_5^{3-}$ yielded results significantly different from ours. DeVries⁷¹ calculated an activation energy of only 4 kcal/mole but did not list rate constants. Burnett and coworkers¹²¹ reported rate constants which varied unexplainably between 0.002 and 0.007 M^{-1} sec.⁻¹ Pratt and Williams⁹¹ did not report rate constants. All three investigations showed that the decomposition was second order in $[Co(CN)_5^{3-}]$.

Our investigation was carried out at 5° intervals from 25 to 50° C. Second order rate plots are shown in Figure 8. The very early part of each experimental second order rate plot deviated from linearity due to the lack of the attainment of thermal equilibrium. This temperature deviation is due to the high heat of reaction of $74.4 \text{ kcal/mole.}^{125}$ To minimize this temperature deviation at the start of the reaction, the Co(NO_3)_2 and KCN solutions for the 25° kinetic run were cooled to 0° before mixing. The solutions for the 50° kinetic run were not cooled. Various degrees of cooling were used for the solutions that were investigated at

Second order rate plots for the decomposition of the pentacyanocobaltate(II) ion. Figure 8.

interm

rate p

forma:

is co

line

squar

versi

plot

line

was j

linea

iue 1

icn,

tempe

ingl

and a

Table

The vakcal/m

intermediate temperatures. Near the end of each experimental rate plot, there was a deviation from linearity due to the formation of an unidentified light brown precipitate. The precipitate was probably impure K₃Co(CN)₅H which, when pure, is colorless. 85 Those points that did lie on a straight line were treated by the previously described linear least squares computer program by use of the Michigan State University Control Data Corporation 3600 computer. An Arrhenius plot of the resulting rate constants yielded the straight line shown in Figure 9. A linear least squares calculation was performed on the Arrhenius equation. The deviation from linearity of the 500 point on the Arrhenius plot might be due to the decomposition of one of the products (the $Co(CN)_5H^{3-}$ ion) according to equation 102. It is known that as the temperature is increased, Co(CN)₅H³⁻ decomposes increasingly into $Co(CN)_5^{3-}$ and $H_2.7^1$ The resulting rate constants and activation energy are shown in Table II.

Table II. Rate constants for the decomposition of $Co(CN)_5^{3-}$.

Temp. (°C)	$k(M^{-1}sec^{-1}) \times 10^{3}$
25	1.00 ± 0.00
30	1.35 ± 0.01
35	1.72 ± 0.02
40	$\textbf{2.17} \pm \textbf{0.02}$
45	$\textbf{2.92} \pm \textbf{0.02}$
50	3.30 ± 0.02

The value for the Arrhenius activation energy is 9.84 ± 0.27 kcal/mole.

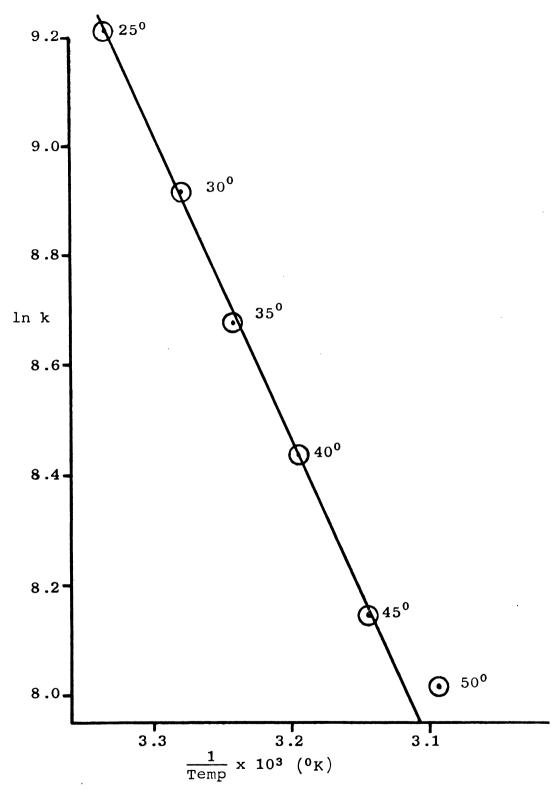


Figure 9. Arrhenius plot for the decomposition of the pentacyanocobaltate(II) ion.

That the $Co(CN)_5^{3-}$ ion is oxidized by molecular oxygen much more rapidly than $Co(NH_3)_6^{2+}$ to form the peroxo bridged species L5CoO2CoL5 has been used as evidence to show that the cyano species is five coordinate. The rate of the uptake of oxygen by ammoniacal cobalt(II) solutions has recently been measured⁶⁰ by the stopped-flow technique whereas an attempt to measure the rate of the oxygen absorption by $Co(CN)_5^{3-}$ by this same technique has failed because the reaction is too fast to measure by the stopped-flow method. 126 The explanation being that the reaction probably proceeds by an inner sphere mechanism and the five coordinate cyano species would not have to undergo dissociation before reacting with the oxygen, whereas the six coordinate ammine species would probably have to first undergo dissociation to react with the oxygen. However, the possibility that there is a loosely bound labile water molecule in the cyano species is not ruled out (see the Historical section).91,127

The mechanism for the decomposition need not necessarily be as previously proposed, namely

$$2\text{Co}(\text{CN})_{5}^{3-} + \text{H}_{2}\text{O} \longrightarrow (\text{NC})_{5}\text{CoHOHCo}(\text{CN})_{5}^{6-} \xrightarrow{k}$$

$$\longrightarrow \text{Co}(\text{CN})_{5}\text{OH}^{3-} + \text{Co}(\text{CN})_{5}\text{H}^{3-}$$
(104)

but it might proceed as follows:

$$Co(CN)_5H_2O^{3-} \xrightarrow{\text{fast}} Co(CN)_5^{3-} + H_2O$$
 (105)

$$Co(CN)_5H_2O^{3-} + Co(CN)_5^{3-} \longrightarrow (NC)_5COHOHCo(CN)_5^{6-}$$
 (106)

fol bri

of :

inv

be ;

the agu

K₃ [

inc

fin

pre

scl-

dry:

K₃[

Vaci

ðr.á

pro) the

nc 1

followed, as before, by the decomposition of the waterbridged species¹²⁸

$$(NC)_5COHOHCO(CN)_5^{6-} \xrightarrow{k} (NC)_5COH^{3-} + HOCO(CN)_5^{3-}. (107)$$

Therefore the decomposition or "homogeneous absorption of hydrogen" by $\mathrm{Co}(\mathrm{CN})_5^{3-}$ in aqueous solutions would actually involve a disproportionation of water.

If solid mononuclear paramagnetic $K_3[Co(CN)_5]$ could be prepared, analyzed for the presence of water, and its spectra compared with those of solutions of $K_3[Co(CN)_5]$, the question of whether $Co(CN)_5^{3-}$ is five coordinate in aqueous solutions or contains water at the sixth site might finally be answered. Any attempt to prepare solid monomeric $K_3[Co(CN)_5]$ from aqueous solution failed as precipitation immediately results in dimerization. 72 Even an attempt to prepare solid $K_3[Co(CN)_5]$ by rapid freezing of very dilute solutions of $K_3[Co(CN)_5]$ sprayed from an atomizer straight into liquid nitrogen and removing the solvent by freeze drying produced a pink ice containing the dimeric diamagnetic $K_6[(NC)_5CoC_0(CN)_5].^{91}$ Solid monomeric paramagnetic $K_3[Co(CN)_5]$ was recently prepared by heating the solid violet diamagnetic dimer, $K_6[(NC)_5CoCo(CN)_5]$, to 230° under vacuum for 15 to 20 minutes. 129 The product was light tan and had a magnetic moment of 2.09 to 2.22 B.M. and was probably anhydrous. 129 The magnetic moment was higher than the 1.72 B.M. for aqueous solutions. 62,74 However, since no visible spectra of the solid monomer are as yet available,

the can:

tha Min

the

Tab

Tab.

_

ton

eve:

ate(

uv s

of } that

is a

give

the final answer to the coordination number of $K_3[Co(CN)_5]$ cannot be answered.

In order to determine the nature of the electron transfer that occurs in reaction 107, it is first necessary to determine the oxidation state of the cobalt and the hydrogen in the $\text{Co}(\text{CN})_5\text{H}^{3-}$ ion. The three possibilities are listed in Table III.

Table III. Possible oxidation states of Co and H in $Co(CN)_5H^3$.

Co oxidation state	H oxidation state	Nature of the H
+1	+1	Proton
+2	0	Atom
+3	-1	Hydride

All three of the possibilities, cobalt(I) and a proton, 81,130 cobalt(II) and a hydrogen atom 121,131 and cobalt(III) and a hydride 84,85,132 have been proposed. However, the ability of $\text{Co(CN)}_5\text{H}^{3-}$ to hydrogenate some unsaturated organic compounds 133 along with evaluation of the near uv spectrum of $\text{Co(CN)}_5\text{H}^{3-}$ and consideration of the position of hydride in the spectrochemical series 134 strongly suggests that the hydrogen in this ion is hydride. Since Co(CN)_5^{3-} is a stronger reducing agent than H_2 , 135 one can consider the $^{\circ}\text{Co(CN)}_5^{3-}$ decomposition to be a reduction of water to give the hydride ion while itself being oxidized to Co^{III} .

the thr

Th:

tr

Èà

in

10

hyd ,eq

ār,d

sio int

Co (àrd

E20

Thus, $Co(CN)_5H^{3-}$ should be formulated as $[Co^{III}(CN)_5H^{-}]^{3-}$ and should be named hydridopentacyanocobaltate(III) ion.⁸⁵

We can now examine equation 107 to determine what electron transfers are necessary to maintain the proper charge balance. The two cobalt(II) ions in the water-bridged intermediate must be converted to cobalt(III). Equation 107 very probably occurs as follows:

$$(NC)_{5}CO^{II}_{H} \downarrow_{OHCO^{II}(CN)_{5}^{6-}} \longrightarrow (NC)_{5}CO^{II}_{H}._{3+}^{2-}._{OHCO^{II}(CN)_{5}^{3-}}^{e^{-}}$$

$$(108)$$

$$\longrightarrow (NC)_{5}CO^{III}_{H_{2}}._{3-}^{3-} + :OHCO^{III}(CN)_{5}.$$

In addition to the decomposition of $Co(CN)_5^{3-}$ which occurs by forming a water-bridged binuclear intermediate, there are several other reactions of $Co(CN)_5^{3-}$ which occur through similar bridged binuclear intermediates. These reactions are the reversible heterogeneous absorption of hydrogen gas bubbled into aqueous solutions of $Co(CN)_5^{3-}$ (equation 109)

$$2\text{Co}(\text{CN})_{5}^{3} + \text{H}_{2} \xrightarrow{<} 2 \text{Co}(\text{CN})_{5}\text{H}^{3}$$
 (109)

and the $Co(CN)_5^{3-}$ catalyzed ortho-para hydrogen interconversion (equation 110) both of which presumably involve the intermediate $(NC)_5CoH_2Co(CN)_5^{6-}$ 89,128,130,131 and the $Co(CN)_5^{3-}$ catalyzed deuterium-hydrogen exchange between H_2 and H_2O^{89} ,130,136 (equations 110-113) in which both H_2 and H_2O^{89} ,130,136 are probably intermediates

et

sp

eà

īà.

en en

Ĩà

Li Li De Cà

co co /

$$D_2 + 2Co(CN)_5^{3-} \rightleftharpoons (NC)_5CoD_2Co(CN)_5^{6-} \rightleftharpoons 2Co(CN)_5D^{3-} (110)$$

$$2\text{Co}(\text{CN})_{5}^{3-} + \text{H}_{2}\text{O} \xrightarrow{<} (\text{NC})_{5}\text{CoH}_{2}\text{OCo}(\text{CN})_{5}^{6-}$$
 (111)

$$(NC)_5 COHOHCO(CN)_5^{6-} + CO(CN)_5 D^{3-} \xrightarrow{>} (NC)_5 CODOHCO(CN)_5^{6-} + CO(CN)_5 H^{3-}$$
 (112)

DH +
$$2\text{Co}(\text{CN})_5^{3-} \xrightarrow{} (\text{NC})_5 \text{CoDHCo}(\text{CN})_5^{6-} \xrightarrow{}$$

$$\text{Co}(\text{CN})_5 \text{H}^{3-} + \text{Co}(\text{CN})_5 \text{D}^{3-}$$
(113)

etc. Because of the similarities of the $\rm H_2$ and HOH bridged species, one would expect similar activation energies for each of the above mentioned reactions. As can be seen from Table IV, the previously reported value for the activation energy for the $\rm Co(CN)_5^{3-}$ decomposition⁷¹ was lower than expected and was the reason for the present investigation.

Table IV. Activation energies for reactions similar in mechanism to the decomposition of aqueous $Co(CN)_5$.

Reaction	Activation Energy (kcal/mole)	Reference
Absorption of H_2 by $Co(CN)_5^{3}$	11.2 ± 0.2	71
Desorption of H_2 by $Co(CN)_5^{3}$	12 ± 1	128
Catalysis of D_2 - H_2 O exchange by $Co(CN)_5^3$	7.3 ± 0.4	130
$Co(CN)_5^{3-}$ decomposition	4	71
$Co(CN)_5^{3-}$ decomposition	9.84 ± 0.27	137 (this work)

KC ti

Co

SC

D₂ à. s:

à. Ca

çe Co

> (3) ti

> io tŀ. άŊ

ī.e

Wį

e:

it si

An interesting aspect of both the homogeneous (i.e. $Co(CN)_5^{3-}$ decomposition) and the heterogeneous hydrogen absorption was the large salt effect. 71 , 84 , 86 , 91 The salts KCl and KCN were about equally effective in accelerating the heterogeneous H_2 absorption and the $Co(CN)_5^{3-}$ catalyzed D_2 - H_2O exchange and thus indicated that $Co(CN)_6^{4-}$ is not an intermediate in these reactions. 86 Pratt and Williams showed the same salt effect in the $Co(CN)_5^{3-}$ decomposition and calculated the association constant for the Rb^+ , $Co(CN)_5^{3-}$ ion pair. 91

The probable reason for the large ionic strength dependence is the large repulsion between the two combining $\mathrm{Co(CN)_5^{3-}}$ ions during the formation of the intermediate, $(\mathrm{NC)_5}\mathrm{CoHOHCo(CN)_5^{6-}}$. As the ionic strength increases, more positive ions will surround the $\mathrm{Co(CN)_5^{3-}}$ (forming $\mathrm{M^+}$, $\mathrm{Co(CN)_5^{3-}}$ ion pairs and $\mathrm{M^+}$, $\mathrm{Co(CN)_5^{3-}}$, $\mathrm{M^+}$ ion triplets) and therefore the repulsion between adjacent $\mathrm{Co(CN)_5^{3-}}$ ions will decrease, and it should be easier to form the water-bridged intermediate. The apparent activation energy for the reaction will then be lower. This means that as the activation energy decreases, the reaction for the formation of the water bridge species becomes

$$2[M^{+}, Co(CN)_{5}^{3-}] + H_{2}O \longrightarrow M^{+}, (NC)_{5}COHOHCo(CN)_{5}^{6-}, M^{+}.(114)$$

Therefore, in performing rate studies on these systems, it is necessary to work at as low an ionic strength as possible. One must also work at as low a CN:Co ratio as possible

ti bi

> bi ti pi

II(

de

and no other salt should be added. DeVries, by using a KCN:Co ratio of approximately 400 (hence, at high ionic strength), obtained an activation energy for the decompostion reaction of 4 kcal/mole.⁷¹ We have used a KCN:Co ratio of 5.49, which is about as low a ratio as one can have and still have the $Co(CN)_5^{3-}$ ion. Our calculated activation energy, 9.84 \pm 0.27 kcal/mole, should be close to the thermodynamic activation energy.

We have made some qualitative observations of an interesting reaction originally proposed by Piringer, 130

$$4\text{Co}(\text{CN})_{5}\text{H}^{3-} + (\text{NC})_{5}\text{CoO}_{2}\text{Co}(\text{CN})_{5}^{6-} \longrightarrow$$

$$6\text{Co}(\text{CN})_{5}^{3-} + 2\text{H}_{2}\text{O}.$$
(115)

If air is admitted to a partially "aged" $Co(CN)_5^{3-}$ solution (i.e., it is partially decomposed), the color changes from the green of the pentacyano ion to the orange of the O_2 -bridged species. After approximately 20 min, the solution becomes green again and the visible spectrum returns to that of the pentacyano solution. This above mentioned Phenomenon agrees with Piringer's postulated reaction (equation 115). Thus, there is another advantage in using moderately concentrated solutions of the pentacyano ion to follow the decomposition reaction; the presence of small quantities of oxygen, which would produce the O_2 -bridged species, will not interfere with the ability to observe the decomposition reaction beyond the first few minutes. The

pr st th

pc in

or

At

di. . ,s

3.

Sü in

de:

ri

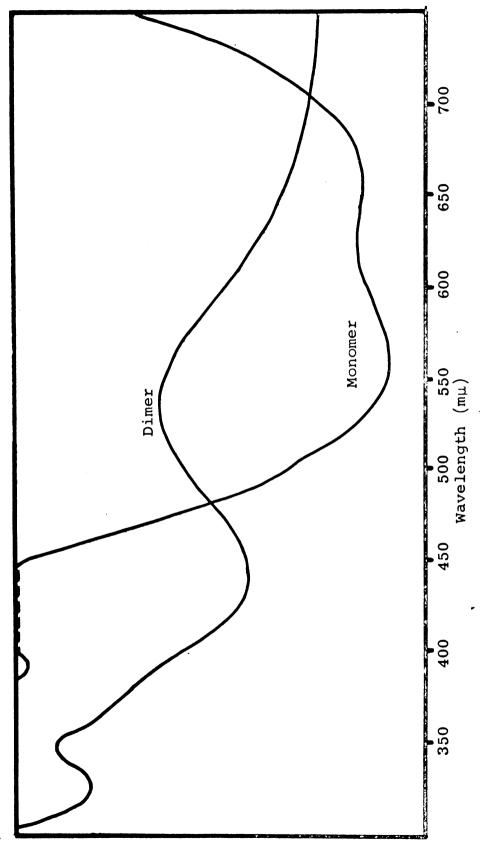
В.

CO.

present back to $Co(CN)_5^{3-}$ by reaction 115 as long as the stoichiometric quantity of the hydrido species is greater than the amount of oxygen present.

We have observed a limited amount of evidence in support of the postulated monomer-dimer equilibrium of ${\rm Co(CN)}_5^{3-}$ in aqueous solution

$$2\text{Co}(\text{CN})_5^{3-} \xrightarrow{<} (\text{NC})_5 \text{CoCo}(\text{CN})_5^{6-}$$
 (116)


or

$$Co(CN)_5^{3-} + Co(CN)_5H_2O^{3-} \longrightarrow (NC)_5CoCo(CN)_5^{6-} + H_2O.$$
 (117)

At the start of each experiment, the 625 mµ maximum shifts to slightly lower wavelengths. The spectrum of the solid dimer in a mineral oil mull shows the peak shifted to 535 mµ (see Figure 10). For example, at 50° (shown in Figure 11), for the first experimental observation, 1.90 minutes after mixing, the peak is at 620 mµ; for the second observation, 3.50 minutes after mixing, the peak is at 622 mµ. For all subsequent observations, the peak is at 625 mµ. The shifting of this peak at the start of the reaction is most evident for the experiments at 50° and least evident at 25° (the shift is about 2 mµ). The decreasing shift indicates that the equilibrium in reactions 116 or 117 shifts to the

Ene Formation of Cobalt(III) Products from the Oxygen Carrier, µ-Dioxygentetrakis(histidinato)dicobalt(III)

Zompa's investigation of the decomposition of the composition of the c

The visible and near uv spectra of monomeric aqueous $K_3[\text{Co}(\text{CN})_5]$ and dimeric $K_6[(\text{CN})_5\text{CoCo}(\text{CN})_5]$ in a nujol mull. Figure 10.

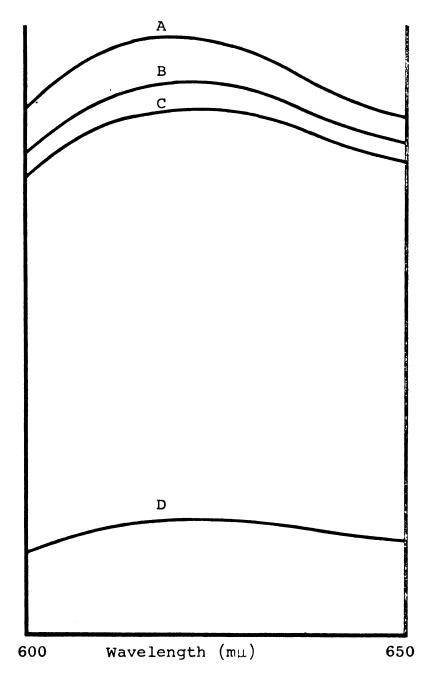


Figure 11. Enlargement of the spectra of the first three observations during the 50° kinetic experiment of the decomposition of $Co(CN)^{\circ}_{3}$. (Time after the start of the reaction— A = 1.90 min; B = 3.50 min; C = 5.00 min; D = 67.0 min.)

5. 5. I

S

À:

a

I

Π) 1.

Ď.

ţ;

A.

After very rapid absorption of one mole of oxygen gas per two moles of CoL_2 (L = 1-histidinate anion) to form the binuclear oxygen carrier, an additional mole of oxygen was absorbed per two moles of cobalt to form cobalt(III) products. This phenomenon of some of the absorbed O_2 being reversible and some irreversible had been previously observed. The data could be approximately fitted for the latter part of the reaction by means of a non-linear least squares computer program which assumed the following mechanism,

$$A \xrightarrow{k_1} 2B$$
 and $B \xrightarrow{k_2} C$. (118)

The experimental conditions for this preliminary investigation 106,117 were as follows: temperature 25^{0} , pure oxygen as gas, 1-histidine to cobalt ratios of 2,3,4,6,8 and 10 to 11 and 11 are shown in Table V. The cobalt(III) product was found to be a mixture of the three isomers of 11 and 11 are shown in 11 and 11 are shown in 11 are

It was decided to extend Zompa's investigation 106,107,117 to determine the cobalt and oxygen dependence on the formation of [CoL₂]NO₃ and to improve the least squares treatment.

All rate studies were performed at 25°C, pH = 7.0,

Table V. Data of L. Zompa for the formation of CoL_2^+ from $(CoL_2)_2O_2$ (every other data point is shown). $[Co_0^{II}] = 1.2 \times 10^{-2} \underline{\text{M}}$; pure O_2 as gas; $25^{\circ}C$.

to 2:1	3:1	[CoL2	T x 10 ²		
2.01	3 • 1				
		4:1	6:1	8:1	10:1
0	0	0	0	0	0
0.055	0.044	0.034	0.044	0.047	0.040
0.167	0.130	0.103	0.115	0.118	0.101
0.313	0.250	0.205	0.209	0.203	0.182
0.475	0.388	0.323	0.318	0.302	0.277
0.642	0.542	0.458	0.428	0.410	0.379
0.778	0.730	0.592	0.552	0.480	0.493
0.896	0.871	0.715	0.668	0.641	0.605
0.979	0.970	0.826	0.773	0.740	0.707
1.044	1.033	0.922	0.871	0.837	0.798
1.092	1.070	0.992	0.954	0.917	0.872
1.123	1.094	1.040	1.016	0.978	0.934
1.128	1.079	1.074	1.063	1.025	0.980
1.063		1.100	1.093	1.060	1.010
		1.100	1.117	1.076	1.032
		1.034	1.120	1.064	1.036
			1.054		0.978
	0.055 0.167 0.313 0.475 0.642 0.778 0.896 0.979 1.044 1.092 1.123 1.128	0.055 0.044 0.167 0.130 0.313 0.250 0.475 0.388 0.642 0.542 0.778 0.730 0.896 0.871 0.979 0.970 1.044 1.033 1.092 1.070 1.123 1.094 1.128 1.079	0.055 0.044 0.034 0.167 0.130 0.103 0.313 0.250 0.205 0.475 0.388 0.323 0.642 0.542 0.458 0.778 0.730 0.592 0.896 0.871 0.715 0.979 0.970 0.826 1.044 1.033 0.922 1.123 1.070 0.992 1.123 1.094 1.040 1.128 1.079 1.074 1.063 1.100 1.100	0.055 0.044 0.034 0.044 0.167 0.130 0.103 0.115 0.313 0.250 0.205 0.209 0.475 0.388 0.323 0.318 0.642 0.542 0.458 0.428 0.778 0.730 0.592 0.552 0.896 0.871 0.715 0.668 0.979 0.970 0.826 0.773 1.044 1.033 0.922 0.871 1.092 1.070 0.992 0.954 1.123 1.094 1.040 1.016 1.128 1.079 1.074 1.063 1.100 1.093 1.004 1.117 1.034 1.120	0.055 0.044 0.034 0.044 0.047 0.167 0.130 0.103 0.115 0.118 0.313 0.250 0.205 0.209 0.203 0.475 0.388 0.323 0.318 0.302 0.642 0.542 0.458 0.428 0.410 0.778 0.730 0.592 0.552 0.480 0.896 0.871 0.715 0.668 0.641 0.979 0.970 0.826 0.773 0.740 1.044 1.033 0.922 0.871 0.837 1.092 1.070 0.992 0.954 0.917 1.123 1.094 1.040 1.016 0.978 1.128 1.079 1.074 1.063 1.025 1.063 1.100 1.117 1.076 1.034 1.120 1.064

ķ

à

histidine:cobalt = 2 and in $1\underline{M}$ KNO₃. Rate studies of type I (see Table I) were performed with pure oxygen gas, and of type III were performed with oxygen, air and 5% O₂-95% N₂. The average of the data for each type of experiment performed are shown in Table VI.

In order to obtain the best possible least squares fits between experimental and calculated concentrations of $[CoL_2]$, it was decided to include in the proposed mechanism all equilibria which occur prior to the mechanistic steps in the formation of CoL_2^{-1} . The equilibria include the stepwise formation of the cobalt(II) histidine complex, the stepwise protonation of the histidinate anion and the stepwise formation of the binuclear cobalt-histidine oxygen carrier.

The first two stepwise formation constants for the formation of cobalt(II) histidine complex at 25^{0} are well $k_{10w}^{20}, 138, 139$

$$Co^{2+} + L^{-} \stackrel{K_{1}}{\longleftrightarrow} CoL^{+} K_{1} = 8.3 \times 10^{6} (41)$$

$$COL^{+} + L^{-} \xrightarrow{K_{2}} COL_{2} \qquad K_{2} = 3.3 \times 10^{5}.(42)$$

The stepwise protonation constants for the histidinate anion at 25° are also well known 138, 139

$$L^{-} + H^{+} \xrightarrow{K_{1H}} HL \qquad K_{1H} = 1.5 \times 10^{9} \quad (46)$$

$$HL + H^{+} \xrightarrow{K_{2H}} H_{2L}^{+} K_{2H} = 1.2 \times 10^{6}$$
 (47)

$$H_2L^+ + H^+ \xrightarrow{K_{3H}} H_3L^{2+} K_{3H} = 6.6 \times 10^1.$$
 (48)

Ţa

T:

Table VI. Data showing the dependence of the formation of ${\rm CoL_2}^+$ from $({\rm CoL_2})_2{\rm O_2}$ on the cobalt(II) and oxygen concentration at 2:1 l-histidine to cobalt ratio at 25°C. (Every other data point shown.)

		$[CoL_2]$	⁺] x 10	2	
CoO	6.08	х 10 ³ <u>м</u>		12.16 x 10) ⁻³ M
Time (min)	0 ₂ gas	$([{ m CoL_2}^+]_{ m exp})$	02gas	Air	5%0 ₂ gas
0	0	0	0	0	0
200	0.024	0.047	0.048	0.054	0.039
400	0.065	0.131	0.156	0.148	0.100
600	0.133	0.266	0.307	0.278	0.203
800	0.230	0.459	0.479	0.446	0.320
1000	0.309	0.618	0.640	0.590	0.488
1200	0.383	0.766	0.753	0.708	0.559
1400	0.432	0.864	0.834	0.802	0.681
1600	0.464	0.928	0.892	0.890	0.788
1800	0.482	0.963	0.932	0.937	0.885
2000	0.492	0.983	0.932	0.965	0.927
2200	0.499	0.999	0.961	0.971	0.976
2400	0.502	1.003	0.965	0.997	1.031
2600	0.510	1.020	0.969	1.008	1.077
800			0.964	1.009	1.110

Several mononuclear cobalt peroxo complexes are known. 60, 132, 140-142 An investigation of the rapid reversible uptake of oxygen by bis(1-histidinato)cobalt(II) shows that the oxygen uptake is a two-step process

$$CoL_2 + O_2 \xrightarrow{K_{4a}} CoL_2O_2 \qquad (44)$$

$$CoL_2O_2 + CoL_2 \xrightarrow{K_{4b}} L_2CoO_2CoL_2 \qquad (45)$$

with an overall formation constant for the binuclear oxygen carrier, $K_{4a} \cdot K_{4b} = 7.2 \times 10^6$ at $25^0.5^9$ A recent investigation showed that the two-step formation of the oxygen carrier also occurs for the cobalt(II) complexes of diethylenetriamine, histamine, ethylenediamine and 2-aminomethylpyridine. 143

The dependence of the formation of CoL_2^+ on the histidine concentration has been described earlier and can be seen from Table V. As the histidine to cobalt ratio increases, the ratio of fomration of CoL2 decreases slightly. The Oxygen dependence can be seen from inspection of the last three columns of Table VI. In the early stages of the reaction, the rate of formation of CoL_2^+ increases as $[O_2]$ in the solution increases. However, in the late stages of the reaction, there is a reversal of the oxygen dependence; the rate of formation of CoL, decreases as the [0,] in the Solution increases. By comparing columns 2 and 3 of Table **VI** $(0_2 \text{ as gas and } \text{Co}_0^{\text{II}} = 6.08 \times 10^{-3} \text{ and } 12.16 \times 10^{-3} \text{ M}$ respectively) one can see the dependence of the formation Of CoL2 on the cobalt(II) concentration is slightly less than first order. As stated earlier, one mole of O2 is *apidly and reversibly absorbed per two moles of CoL2 and

a second mole of O_2 is slowly and irreversibly absorbed per two moles of CoL_2 ⁺.

Any proposed mechanism would have to include equations 41, 42 and 44-48 and would have to explain the histidine, cobalt and oxygen dependencies on the rate of formation of the ${\tt CoL_2}^+$ as well as the stoichiometry and nature of the oxygen uptake.

Since there was some preliminary evidence for the dependence of the rate of formation of ${\rm CoL_2}^+$ on $[{\rm CoL_2}^+]$, experiments of types I and II (see Table I) were performed in which pure oxygen was used as the gas and the results are tabulated in columns 1 to 3 of Table VII. The underlined data from Table VII that are listed in Table VIII confirm the catalytic nature of ${\rm CoL_2}^+$ on the decomposition of the Cobalt-histidine oxygen carrier.

In comparing columns 1 and 2 of Table VIII, one sees that the solution containing the $6.08 \times 10^{-3} \underline{\text{M}} \text{ CoL}_2^{+}$ at "time 1" has a rate of production almost 40% greater than the solution without the CoL_2^{+} initially present. Even though the solution listed in column 3 has a smaller $[\text{Co}^{\text{II}}]_{\text{initial}}$ than the solution listed in column 2, and therefore a lower concentration of oxygen carrier, this solution has a greater $[\text{CoL}_2^{+}]_{\text{initial}}$ and thus there is a Greater production of CoL_2^{+} after 500 min. for the solution in column 3. When after 500 min., $6.08 \times 10^{-3} \underline{\text{M}} \text{ CoL}_2^{+}$ is added to the solution listed in column 1 (it then becomes the solution listed in column 4) the production of CoL_2^{+}

Ţā

=

1(

11

٠.

Table VII. Experimental data in support of the catalytic nature of ${\rm CoL_2}^+$ in the decomposition of $({\rm CoL_2})_2{\rm O}_2$. 6.08 x $10^{-3}{\rm M}$ ${\rm Co}_0^{\rm II}; 25^{\rm O}{\rm C}$

		$([CoL_2^+]$	- [CoL ₂	†]) x 10 ²	
Time (min.)	$0.0\underline{M}$ CoL_2^+ , O_2 gas	$\begin{array}{c} 6.08 \times 10^{-3} \underline{M} \\ \text{CoL}_{2} \\ 0 \\ \text{O}_{2} \text{ gas} \end{array}$	*	0.0 <u>M</u> CoL2 ₀ 5% O ₂ gas	$^{,6.08 imes10^{-3} ext{M}}_{,}^{,$
0	0	<u>o</u>		0	0
100		0.0202		0.0058	0.0163
200	0.0269	0.0422		0.0096	0.0240
300	0.0518	0.0796		0.0182	0.0384
400	0.0749	0.1055		0.0317	0.0643
500	0.1122	0.1554	0.1122	0.0394	0.0882
600	* *	0.1938	0.1458	0.0682	0.1093
700		0.2226	0.1756	0.0824	0.1343
800		0.2695	0.2254	0.1055	0.1688
900		0.2983	0.2666	0.1324	0.1928
1000		0.3338	0.3098	0.1736	0.2188
1100		0.3646	0.3338		

The solution listed in column 1 after $500 \text{ min}_{\bullet}$ of reaction to which $6.08 \times 10^{-3} \text{M}_{\odot}$ CoL₂ has been added.

Immediately after the 500 min measurement of $[CoL_2^+]$, $6.08 \times 10^{-3} M$ $[CoL_2^+]$ is added to this solution and it becomes the solution listed in column 3.

Data in support of the catalytic nature of ${
m CoL_2}^+$ in the decomposition of ${
m (CoL_2)_2O_2}$. Table VIII.

Column Number	1	2	3	4
Column of Table VII from which the data comes	I	II	II	III
Time 1 (min.)	0	0	400	200
Time 2 (min.)	200	200	006	1000
$[\mathtt{Co}_{\mathtt{total}}^{\mathbf{II}}]$ at time 1 $(\underline{\mathtt{M}})$	6.08×10^{-3}	6.08×10^{-3}	5.02×10^{-3}	4.96×10^{-3}
$[co_{total}^{II}]$ at time $2(\underline{M})$	4.96×10^{-3}	4.53×10^{-3}	2.74×10^{-3}	2.98×10^{-3}
$[CoL_2^+]$ at time 1 (\underline{M})	0	6.08×10^{-3}	7.14×10^{-3}	7.20×10^{-3}
$[\mathtt{CoL_2}^+]$ at time 2 $(\underline{\mathtt{M}})$	1.12×10^{-3}	7.64×10^{-3}	9.06×10^{-3}	9.18×10^{-3}
\triangle [CoL ₂ ⁺] during the 500 min. from time 1 to time 2. (\underline{M})	1.12 × 10 ⁻³	1.58 x 10 ⁻³	1.92 × 10 ⁻³	1.98 x 10 ⁻³

increases to the rate of the solution which had $6.08 \times 10^{-3} \underline{\text{M}}$ CoL_2^+ added initially (compare columns 3 and 4). The above data confirm that $[\text{CoL}_2^+]$ does indeed have a catalytic effect on the rate of formation of CoL_2^+ from the oxygen carrier.

Since the rate of formation of ${\rm CoL_2}^+$ depends both on the concentration of cobalt(II) species present and on the $[{\rm CoL_2}^+]$, two steps are postulated; one step depends upon $[{\rm CoL_2}]$ or $[({\rm CoL_2})_2{\rm O_2}]$ and the other depends upon $[{\rm CoL_2}^+]$

$$(CoL_2)_2O_2 \xrightarrow{k_{5a}} > CoL_2^+ + CoL_2^- + O_2^-$$
 (49)

or

$$CoL_2O_2 + CoL_2 \xrightarrow{k_{5a}^{\dagger}} CoL_2^{\dagger} + CoL_2 + O_2^{-}$$
 (50)

and

$$COL_2O_2 + COL_2^+ \xrightarrow{k_{5b}} 2COL_2^+ + O_2^-$$
 (51)

It was originally thought that the $\mathrm{CoL_2O_2}$ shown above and in the formation of the binuclear oxygen carrier (equations 44 and 45) might be $\mathrm{Co^{II}L_2O_2}$ and the initial product of equations 49 to 51 might be $\mathrm{Co^{III}L_2O_2}^-$ which then would either rapidly or at a measurable rate decompose to $\mathrm{CoL_2}^+$ and $\mathrm{O_2}^-$. However, a recent esr study of some stable mononuclear cobalt $\mathrm{O_2}$ adducts has shown that they contain only one unpaired electron which spends most of its time on the oxygen atoms and therefore the adducts should be formulated as $(\mathrm{Co^{III}X_mO_2}^-).^{142}$ Thus, the mononuclear $\mathrm{CoL_2O_2}$ is probably cobalt(III) and superoxide rather than $\mathrm{Co^{II}L_2O_2}$ and therefore, $\mathrm{CoL_2}^+$ and $\mathrm{O_2}^-$ would have to be formed directly by equations 49 to 51.

The most likely reason for the dependence of the rate of formation of CoL₂ to n histidine is the following reaction:

$$CoL_2 + L \xrightarrow{K_3} CoL_3 \xrightarrow{} . \tag{43}$$

Although a species such as ${\tt CoL_3}^-$ would not be favored sterically, this author feels that this is more likely than a dissociation reaction such as

$$(CoL2)2O2 \xrightarrow{\sim} L2CoO2L+ + L-$$
 (119)

as the dissociation of the L from the oxygen carrier would involve the breakage of two strong bonds, the cobalt imidazole and cobalt amine bonds, (the cobalt carboxylate bonds having been previously broken during the formation of the oxygen carrier), whereas only one fairly weak cobalt carboxylate bond in CoL₂ would have to break to allow the formation of CoL₃.

Preliminary attempts to fit the experimental data of Zompa¹¹⁷ (see Table V) show that the equilibrium constant for the postulated formation of CoL_3 is equal to or less than 1.4 x 10^4 . Considering the steric difficulty in forming CoL_3 , a value of 1.4 x 10^4 for the third stepwise cobalt-histidine formation constant is a little higher than expected but it is believable. A typical set of calculated and experimental data based on $K_3 = 1.4 \times 10^4$ is shown in Table IX.

A value for K_3 of equal to or less than 1.4×10^4 will only affect the calculated data for histidine to cobalt

A typical set of calculated and experimental data (based upon Zompa's^117 histidine dependence studies) that shows $~\rm K_3~^{<}~1.4~x~10^4.$ Table IX.

 $= 1.4 \times 10^4$.) gas, K_3 as = 0, pure 0_2 CollII $= 1.211 \times 10^{-2}$ (c_0^{II})

Histidine to			[CoL ₂ [†]] x 10 ³	x 10 ³		
and data set	2:1	3.1	4:1	6:1	8:1	10:1
	Exp Calc	Exp Calc	Exp Calc	Exp Calc	Exp Calc	Exp Calc
Time (min)						
200	0.055 0.063	0.044 0.063	0.034 0.059	0.044 0.051	0.047 0.044	0.040 0.038
400	0.167 0.153	0.130 0.151	0.103 0.140	0.115 0.120	0.118 0.104	0.101 0.089
009	0.313 0.275	0.250 0.272	0.205 0.251	0.209 0.214	0.203 0.182	0.182 0.155
800	0.475 0.432	0.388 0.428	0.323 0.394	0.318 0.333	0.302 0.282	0.277 0.239
1000	0.642 0.619	0.542 0.615	0.458 0.567	0.428 0.479	0.410 0.405	0.379 0.342

ratios of greater than 2:1 (see Table X). This is expected since with a histidine to cobalt ratio of 2:1, there should be only a negligible concentration of CoL_3 .

After the solutions are quenched, there is a slow attack on the solutions by the acid quench as shown in Figure 12. A quench with HCl compared to the HNO $_3$ yielded the same rate of acid attack. Therefore the H $^+$ is the species that is causing the attack and not the oxidizing ability of the nitrate. Since the rate of the acid attack decreases rapidly with time, all spectrophotometer readings were taken 25 minutes after quench when the rate of the acid attack is slow. The value used for the molar absorptivity of $(CoL_2)NO_3$ synthesized by oxygenating aqueous CoL_2 , ($\epsilon = 125.1$), includes a correction for the 25 minute acid attack before taking the spectrophotometer reading.

The initial reversible absorption of one mole of O_2 per two moles of CoL_2 results from the almost quantitative initial formation of $(CoL_2)_2O_2$ by reactions 44 and 45. The slow irreversible absorption of the additional mole of O_2 per two moles of CoL_2 results from the shifting of the equilibrium of reactions 44 and 45 toward the CoL_2O_2 as a result of the depletion of CoL_2O_2 resulting from reactions 49 to 51.

A preliminary calculation showed that if the value of $K_{4a} \cdot K_{4b}$ is kept constant at 7.2×10^6 , one can change the value K_{4a} from 7.2 to 7.2×10^{-10} and by making appropriate changes in k_{5a} and k_{5b} (see Tables XI and XII) one can obtain the identical set of calculated values for

A comparison of the calculated data from Table IX and data calculated with $K_3=1$ to show that a value of $K_3 \stackrel{<}{\sim} 1.4 \times 10^4$ significantly changes [CoL₂+] calc only for ligand to metal ratios of greater than 2. , $Co_0^{III} = 0$, pure O_2 as gas, A is $K_3 = 1.0$, B is $(c_0^{II} = 1.211 \times 10^{-2})$ Table X.

 $K_3 = 1.40 \times 10^4$

Histidine to			[CoL ₂ ⁺] x 10 ³	x 10 ³		
and data set	2:1	3:1	4:1	6:1	8:1	10:1
	AB	A B	A B	A B	A B	A B
Time (min)						
200	0.064 0.063	0.067 0.063	0.068 0.059	0.068 0.051	0.068 0.044	0.068 0.038
400	0.154 0.153	0.164 0.151	0.164 0.140	0.164 0.120	0.164 0.104	0.164 0.089
009	0.276 0.275	0.296 0.272	0.296 0.251	0.297 0.214	0.297 0.182	0.297 0.155
800	0.435 0.432	0.467 0.428	0.468 0.394	0.468 0.333	0.468 0.282	0.468 0.239
1000	0.623 0.619	0.670 0.615	0.671 0.567	0.671 0.479	0.672 0.405	0.672 0.342

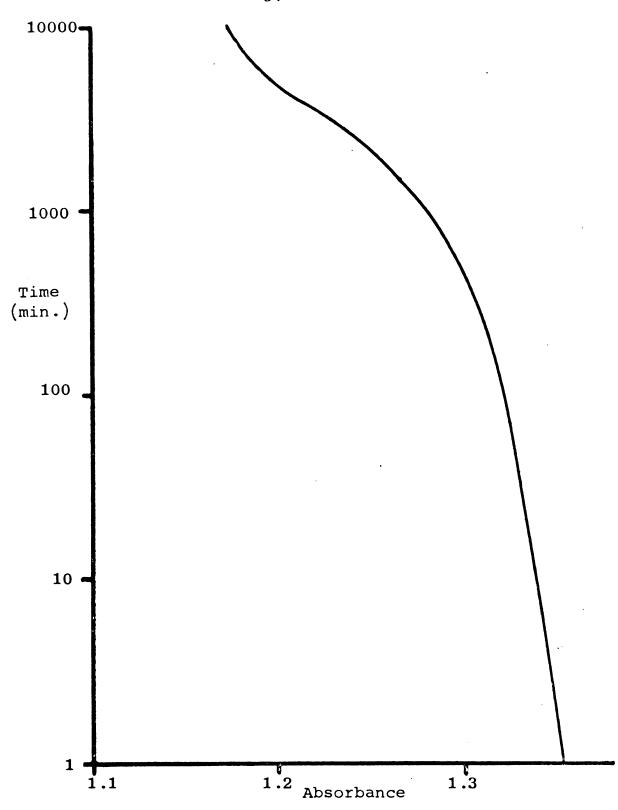


Figure 12. Plot of absorbance versus time of the quenched solutions which shows the acid attack on these quenched solutions.

 $[{\tt CoL_2}^+]$. By varying ${\tt K}_{4a}$ from 7.2 x 10³ to 7.2 and making the appropriate changes in ${\tt k}_{5a}$ and ${\tt k}_{5b}$, one can obtain similar sets of calculated values for $[{\tt CoL_2}^+]$. Examples of this can be seen in Table XI for the mechanism based on reaction 49 and in Table XII for the mechanism based on equation 50.

Therefore, it may not be possible to calculate optimum values for K_{4a} and K_{4b} by the least squares procedure. In this case the values for k_{5a} or k_{5a}^{\dagger} and k_{5b}^{\dagger} obtained by the least squares procedure would be related to the values of K_{4a} and K_{4b} as shown in Tables XI and XII.

The least squares values for $[CoL_2^+]$ for each of the proposed mechanisms and the experimental values for $[CoL_2^+]$ for the 5% O_2 rate study runs are shown in Figures 13 and 14.

As can be seen from Figures 13 and 14, the agreement between calculated and experimental values of $[{\rm CoL_2}^+]$ is not too good.

From the results shown in Figures 12 and 13, it can be seen that either the reaction mechanism must be incorrect or there must be something additionally occurring in the reaction. Other mechanisms including the following steps were found to be far less satisfactory

$$(CoL_2)_2O_2 + O_2 \longrightarrow CoL_2^+ + CoL_2O_2 + O_2^-$$
 (120)

$$CoL_2O_2 + CoL_2^+ \longrightarrow (CoL_2)_2O_2^+$$
 (121)

Equations such as (120) are unsatisfactory as they predict

Table XI. Values of k_{5a} and k_{5b} which result in almost identical sets of values of $[{\rm CoL_2}^+]_{\rm calc}$ for the mechanism including equation 49.

 $(K_1 = 8.316 \times 10^6, K_2 = 3.311 \times 10^5, K_3 = 1.40 \times 10^4)$

K _{4a}	K _{4b}	k _{5a}	k _{5b}
7.2×10^3	1.0×10^{3}	1.11 x 10 ⁻³	2.79×10^{-1}
7.2×10^2	1.0×10^4	1.11×10^{-3}	1.83
7.2×10^{1}	1.0×10^5	1.11×10^{-3}	1.74×10^{1}
7.2	1.0×10^6	1.11×10^{-3}	1.73×10^2
7.2×10^{-1}	1.0×10^7	1.11×10^{-3}	1.73×10^3
7.2×10^{-2}	1.0×10^8	1.11×10^{-3}	1.73×10^4
7.2×10^{-3}	1.0×10^9	1.11×10^{-3}	1.73×10^5
7.2×10^{-4}	1.0×10^{10}	1.11×10^{-3}	1.73×10^6
7.2×10^{-5}	1.0×10^{11}	1.11×10^{-3}	1.73×10^7
7.2×10^{-6}	1.0×10^{12}	1.11×10^{-3}	1.73×10^8
7.2×10^{-7}	1.0×10^{13}	1.11×10^{-3}	1.73×10^9
7.2×10^{-8}	1.0×10^{14}	1.11×10^{-3}	1.73×10^{10}
7.2×10^{-9}	1.0×10^{15}	1.11×10^{-3}	1.73×10^{11}
7.2×10^{-10}	1.0×10^{16}	1.11×10^{-3}	1.73×10^{12}

Table XII. Values of k_{5a}^{\dagger} and $k_{5b}^{}$ which result in almost identical sets of values of $[{CoL_2}^{\dagger}]_{calc}$ for the mechanism including equation 50.

 $(K_1 = 8.316 \times 10^6, K_2 = 3.311 \times 10^5, K_3 = 1.40 \times 10^4)$

K ₄ a	K _{4b}	k! 5a	k _{5b}
7.2×10^3	1.0×10^{3}	1.45	1.13 x 10 ⁻¹
7.2×10^2	1.0×10^4	1.45×10^{1}	2.19×10^{-1}
7.2×10^{1}	1.0×10^5	1.45×10^2	1.30
7.2	1.0×10^6	1.45×10^3	1.21×10^{1}
7.2×10^{-1}	1.0×10^7	1.45×10^4	1.21×10^2
7.2×10^{-2}	1.0×10^8	1.45×10^5	1.21×10^3
7.2×10^{-3}	1.0×10^9	1.45×10^6	1.21×10^4
7.2×10^{-4}	1.0×10^{10}	1.45×10^7	1.21×10^5
7.2×10^{-5}	1.0×10^{11}	1.45×10^8	1.21×10^6
7.2×10^{-6}	1.0×10^{12}	1.45×10^9	1.21×10^7
7.2×10^{-7}	1.0×10^{13}	1.45×10^{10}	1.21×10^8
7.2×10^{-8}	1.0×10^{14}	1.45×10^{11}	1.21×10^{9}
7.2×10^{-9}	1.0×10^{15}	1.45×10^{12}	1.21×10^{10}
7.2×10^{-10}	1.0×10^{16}	1.45×10^{13}	1.21 x 10 ¹¹

Figure 13. Plot of experimental values of $[\mathtt{CoL}_2^{\ +}]$ and least squares values of $\left[{{{ ext{CoL}}_2}} \right]_{ ext{calc}}$ $\stackrel{ ext{time}}{\text{for the mechanism including equation 49}}$

 $K_1 = 8.32 \times 10^6$, $K_2 = 3.31 \times 10^5$, $K_3 = 1.4 \times 10^4$, $K_{4a} = 1.93 \times 10^1$

 $K_{4b} = 3.74 \times 10^5$, $k_{5a} = 1.14 \times 10^{-3}$, $k_{5b} = 2.54$, $5\% \, O_2$ gas. A. $Co_0^{\text{II}} = 12 \times 10^{-3} \underline{\text{M}}, Co_0^{\text{III}} = 0.$

B. $Co_0^{II} = 6 \times 10^{-3} \underline{M}, Co_0^{III} = 0.$

C. $Co_0^{\text{II}} = 6 \times 10^{-3} \underline{\text{M}}, Co_0^{\text{III}} = 6 \times 10^{-3} \underline{\text{M}}.$

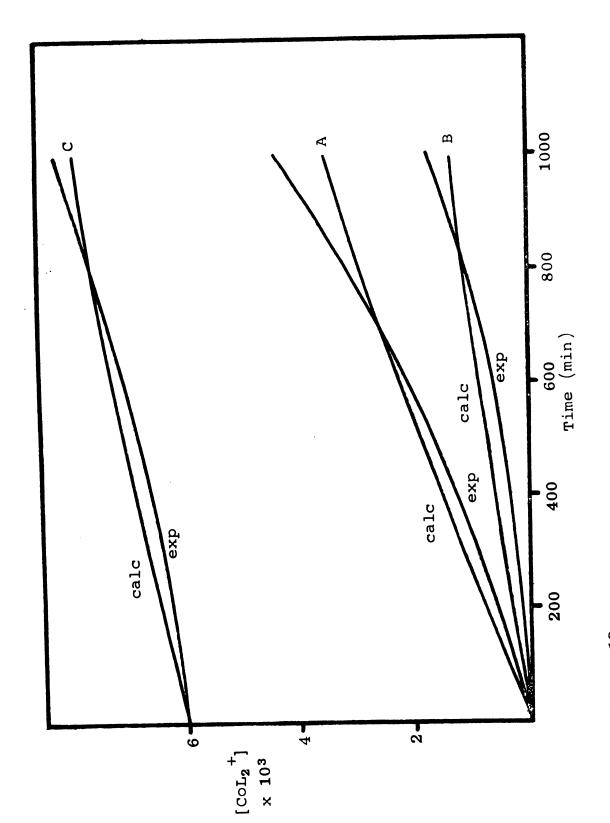


Figure 13.

Plot of experimental values of [CoL2 +] and least squares values of Figure 14.

[CoL₂⁺]_{calc} versus time for the mechanism including equation 50.

 $K_1 = 8.32 \times 10^6$, $K_2 = 3.31 \times 10^5$, $K_3 = 1.4 \times 10^4$, $K_{4a} = 3.62 \times 10^3$, $K_{4b} = 1.99 \times 10^3$, $k_{5a}^1 = 2.19$, $k_{5b} = 3.65 \times 10^{-1}$, 5% 0_2 gas.

A. $Co_0^{\text{II}} = 12 \times 10^{-3} \underline{M}, Co_0^{\text{III}} = 0.$

B. $Cq_0^{\text{II}} = 6 \times 10^{-3} \underline{M}, Co_0^{\text{III}} = 0.$

 $C_{00}^{II} = 6 \times 10^{-3} \underline{M}, C_{00}^{III} = 6 \times 10^{-3} \underline{M}.$

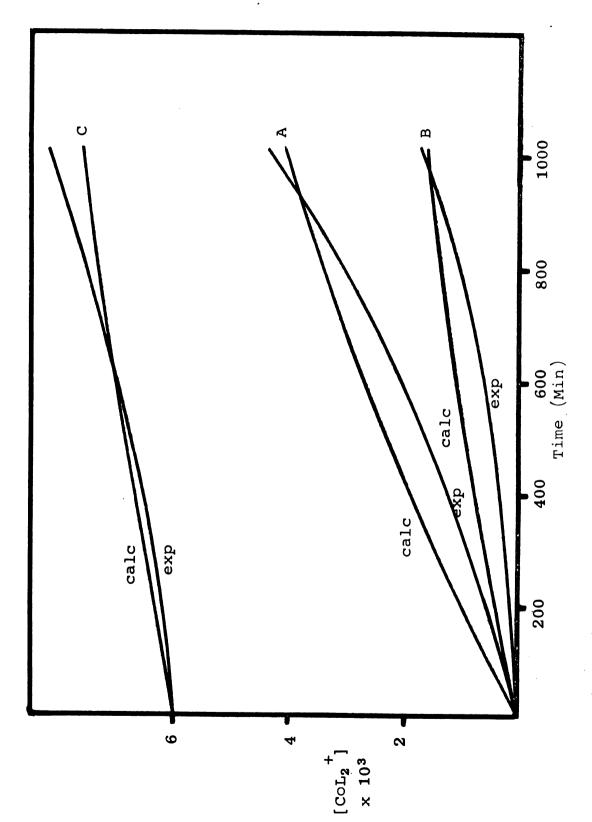


Figure 14.

a far greater oxygen dependence on the rate of formation of $\operatorname{CoL_2}^+$ than is found experimentally. The addition of equation 121 to the mechanism yields no change in the shape of the graph of $[\operatorname{CoL_2}^+]_{\operatorname{Calc}}$ versus time.

There are several unexpected results which are probably related to the influence of the oxygen on the decomposition of the binuclear cobalt-histidine oxygen carrier. These results can be used to explain the lack of agreement between the calculated and experimental curves in Figures 12 and 13. These unexpected results as described below are evidence for the presence of an additional oxygen oxidation reaction. Since the additional oxidation was suspected, only the data from the experiments performed with 5% O₂ were used in the least squares procedure.

As the reaction proceeds, there is a small downward shift of the spectral peak at 500 m μ to about 485 m μ . This downward shift occurs at different rates for the oxygen, air and 5% O_2 gases.

The molar absorptivity at $500 \text{ m}\mu$ of a mixture of the three isomers of $(\text{CoL}_2)\text{NO}_3$ (prepared and purified as described in the Experimental section) is 84; the separated isomers have molar absorptivities at $500 \text{ m}\mu$ of approximately 100, 40 and $34.^{107}$ However, the molar absorptivity of a solution of $(\text{CoL}_2)\text{NO}_3$, produced by bubbling air for several days through a solution containing a known number of moles of CoL_2 and then diluting with water to a known total volume, is reported to be 115.1^{117} and 125.1 by this author. The

absorbance of oxygenated solutions of CoL_2 is always greater than the absorbance of pure $(CoL_2)NO_3$. Studies of the oxygen uptake of CoL_2 solutions show that initially more than one mole of O_2 per two moles of CoL_2 is absorbed (about 1.14 to 1.32 moles of O_2 per two moles of CoL_2^{106}). In addition, Csaszar, Kiss and Beck¹⁴⁴ found the presence of traces of unidentifiable organic residues after the oxygenation of CoL_2 is complete and they suggest the most probable cause as the oxidation of histidine by oxygen. To determine if the oxygen could attack the final product, $(CoL_2)NO_3$, a solution of $6.08 \times 10^{-3} M$ $(CoL_2)NO_3$ was oxygenated for 900 minutes. The absorbance of this solution varied irregularly (within experimental error) from 0.501 to 0.509 (initial absorbance = 0.508, final absorbance = 0.505) and indicated that the oxygen does not attack the final product.

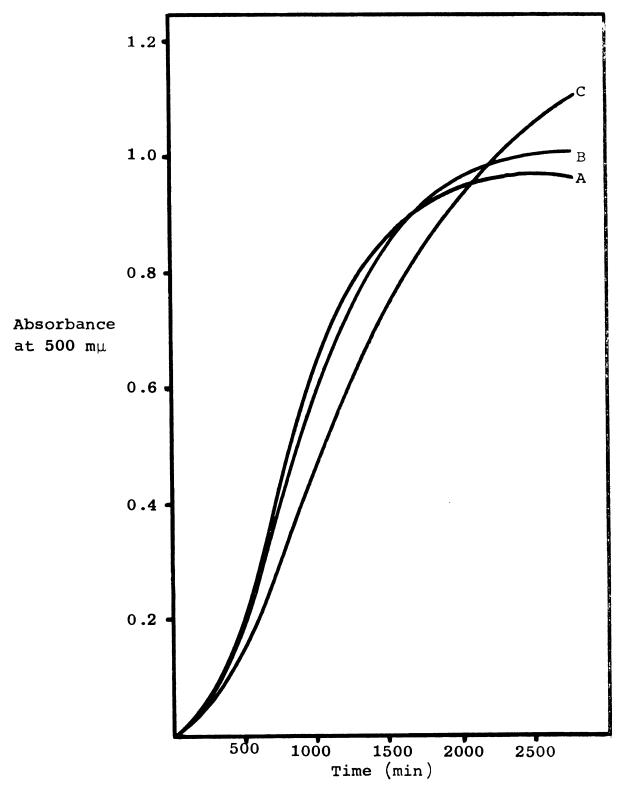
Since it is also possible for the initial oxygen uptake in excess of one mole of O_2 per two moles of CoL_2^+ to be due to the formation of CoL_2O_2 , a calculation (as described in the Theoretical section, Part H) was performed to estimate K_{4a} , K_{4b} and moles of O_2 absorbed per two moles of CoL_2^+ . The calculation is based on the knowledge that $K_{4a} \cdot K_{4b} = 7.2 \times 10^6$ and on the assumption of various values for the percentage of total cobalt that is $(CoL_2)_2O_2$ (before any decomposition of the oxygen carrier). The results of this calculation are shown in Table XIII.

Since it is not possible to confirm spectrophotometrically of chemically the presence of ${\rm CoL_2O_2}^{59}$ and since, in the

Calculation of number of moles of 0_2 initially absorbed per $2\text{Co}_{\text{total}}$ (initial) for $\text{Co}_{\text{t}}^{\text{II}}=1.2\times 10^{-2}\underline{\text{M}}$ and pure 0_2 gas (at 25^0C), K_4 · K_4 b = 7.2 x 10^6 Table XIII.

		$\times 10^3 \underline{M}$				
Assumed % of Co as (CoL ₂) ₂ O ₂	[(CoL ₂)O ₂]	[COL2]	[CoL ₂] [CoL ₂ O ₂]	4 а	K _{4b}	0 ₂ initially absorbed per 2Co ^{II}
94	5.64	0.803	0.07	8 × 10 ¹	1×10^5	0.95
06	5.40	0.787	0.41	4.40×10^2	1.64 x 104	26.0
80	4.80	0.742	1.66	1.85×10^3	3.90×10^3	1.08
70	4.20	0.694	2.91	3.46×10^3	2.08×10^3	1.18
09	3.60	0.643	4.16	5.34×10^{3}	1.35×10^3	1.28
50	3.00	0.586	5.41	7.61×10^{3}	9.45×10^2	1.57


The maximum possible percentage of cobalt as $(\text{CoL}_2)_2 \text{O}_2$ is about 94.5%.


kinetics of the formation of $(CoL_2)_2O_2$, the steady state approximation for CoL_2O_2 appears to be valid, ⁵⁹ it is highly unlikely that more than 10% of the total cobalt is in the form of CoL_2O_2 immediately after oxygenation. By looking at Table XIII, one can see that the maximum O_2 absorbed per 2 Co_1^{II} that can be accounted for by the presence of CoL_2O_2 is about 1.07. Therefore, the presence of CoL_2O_2 cannot be used to explain the unexpectedly high experimental value for the initial O_2 absorption.

The shape of the graph of the apparent rate of formation of ${\rm CoL_2}^+$ (assuming $\epsilon_{500}=125.1$) changes markedly as the gas bubbled into the solution is varied from oxygen to air to 5% ${\rm O_2}$ -95% ${\rm N_2}$ (see Figure 15). When pure oxygen is the gas, the apparent ${\rm [CoL_2}^+$ begins to decrease after approximately 2500 minutes from the start of the reaction. With air as the gas, the apparent ${\rm [CoL_2}^+$ appears to decrease after about 3000 minutes whereas with 5% ${\rm O_2}$, the apparent ${\rm [CoL_2}^+$ continues to increase.

The above phenomena strongly suggest that there is an oxygen attack on some species in the reacting solutions. The absorbance of the solutions are initially increased by the oxygen attack which causes the increase in the ϵ_{500} from 87 to 125.

Whereas oxygen rapidly attacks solutions of lycine and ${\rm Co}^{2+}$, as evidenced by ${\rm CO}_2$ evolution, oxygen does not attack lycine without the ${\rm Co}^{2+}$. This suggests that histidine is not attacked by ${\rm O}_2$ unless ${\rm Co}^{2+}$ is present. Therefore,

the oxygen must attack one or more of the following: CoL_2 , CoL_2 , CoL_2 , CoL_2 , CoL_2 , CoL_2 .

The product of the oxygen attack was originally thought to be a cobalt amine complex. However, this was not likely since over 90% of the cobalt at the end of the reaction is recoverable as CoL_2NO_3 . Upon separation of the three isomers of CoL_2NO_3 by ion exchange, there is only a small quantity of yellow to brown residue which remains on the ion exchange column. Since only a small quantity of the oxidation product is formed, it must have an absorptivity, ϵ_{500} , of several hundred to be able to raise the net molar absorptivity of the solution from 84 to 125. There are no known simple cobalt(II) or cobalt(III) complexes which have a large enough molar absorptivity in the visible region to cause the increase in the absorbance of the solution.

There is some evidence for the formation of traces of the superoxo cobalt ammine complex upon oxygenation of aqueous ammoniacal cobalt(II) solutions. The esr and visible spectra of oxygenated aqueous solutions of Co^{2^+} and excess cyanide, it has been shown that the superoxo cobalt cyanide oxygen carrier is formed in one to two percent yield. The recently isolated superoxo cobalt histidine complex has been shown to be stable even in strongly acidic solutions. This superoxo complex has a broad peak at $477~\mathrm{m}\mu~(\epsilon_{477}=502,\,\epsilon_{500}=498)$ and another broad peak at $677~\mathrm{m}\mu~(\epsilon=601).^{147}$

A solution containing $1.2 \times 10^{-2} \underline{\text{M}}$ CoL₂ was oxygenated with a 5% O₂ - 95% N₂ gas mixture for several days. Spectra of the solutions (see Figures 16 to 19) show that with increasing time, there is an increase in the absorption in the region of 477 and 677 m μ and the peak at 500 m μ gradually shifts to 482 m μ . This is strong evidence for the presence of the superoxo complex. The solutions were quenched with both HCl and HNO₃. The spectra of both quenched solutions were identical which proves that the HNO₃ is not causing the oxidation. The absorbance due to the superoxo complex is greater with water rather than acid quench (see Figure 19) and indicates that the acid does slowly decompose the superoxo complex. This explains the slow rate of decrease in the absorbance after the solutions are quenched (see Figure 12).

An experiment to attempt to observe the known esr spectrum of the superoxo complex did not succeed due to the low concentration of the superoxo complex and the presence of trace paramagnetic impurities in the quartz and Pyrex tubing used for the sample tubes. There did appear to be a small signal from the sample in the quartz tube. At the high gain necessary to observe this signal, the noise level is high and the signal from the impurities in the quartz is high which makes it impossible to ascertain if the signal is from the superoxo complex. Therefore, the additional reaction which causes the poor correlation between the least squares calculation and the experiment is

Figure 16. Visible spectra of solutions of $(CoL_2)NO_3$.

A. Baseline.

5 ml sample oxygenated for 800 min and quenched with 1 ml of $4\underline{M}$ HNO₃, (Co^{II}₀ = 1.2 x 10⁻² \underline{M} , 5% O₂ gas), 25 minutes after quenching. ъ

C. Same as B but quenched with 1 ml of $4\underline{M}$ HCl.

D. 1.2 x $10^{-2}\underline{M}$ purified (CoL₂)NO₃.

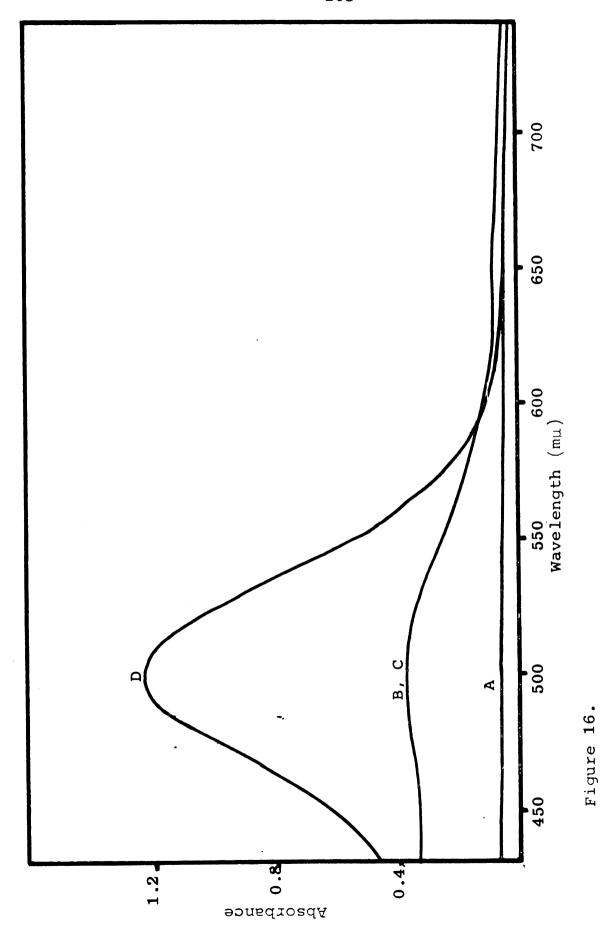
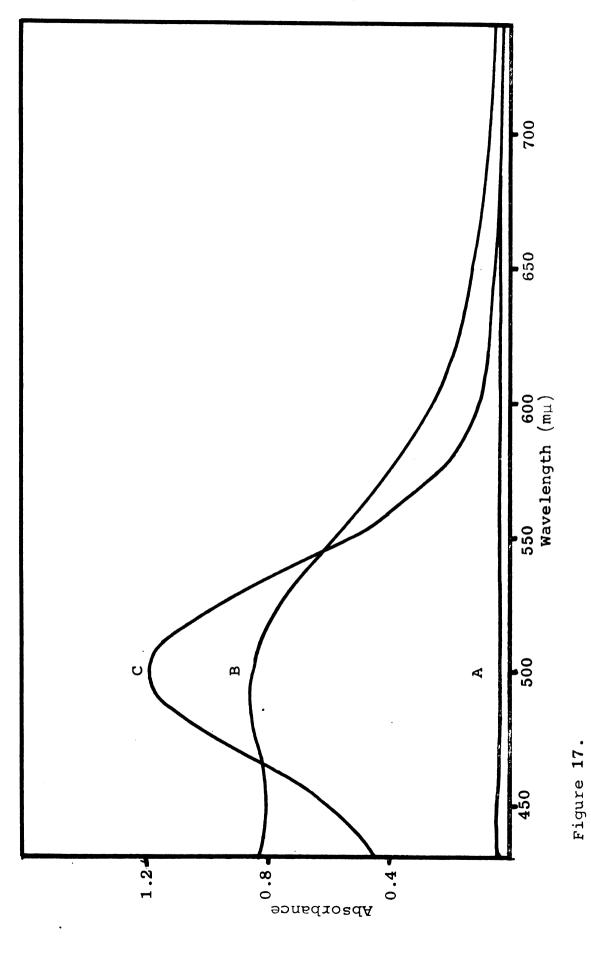



Figure 17. Visible spectra of solutions of $(Col_2)NO_3$.

A. Baseline.

1 ml of $4\underline{M}$ HNO₃, (Co₀^{II} = 1.2 x 10⁻² \underline{M} , 5% O₂ gas), 1 minute 5 ml of sample oxygenated for 1563 min and quenched with after quench. ъ.

C. 1.2 \times 10⁻² \underline{M} purified (CoL₂)NO₃.

Visible spectra of solutions of $(CoL_2)NO_3$. Figure 18.

A. Baseline.

B. 1.2 x $10^{-2}\underline{M}$ purified $(CoL_2)NO_3$.

5 ml of sample oxygenated for 2500 min and quenched with 1 ml of $4\underline{M}$ HNO₃, (Co $_0^{II}$ = 1.2 x 10 $^{-2}\underline{M}$, 5% O₂ gas), 1 minute after quench. ວ່

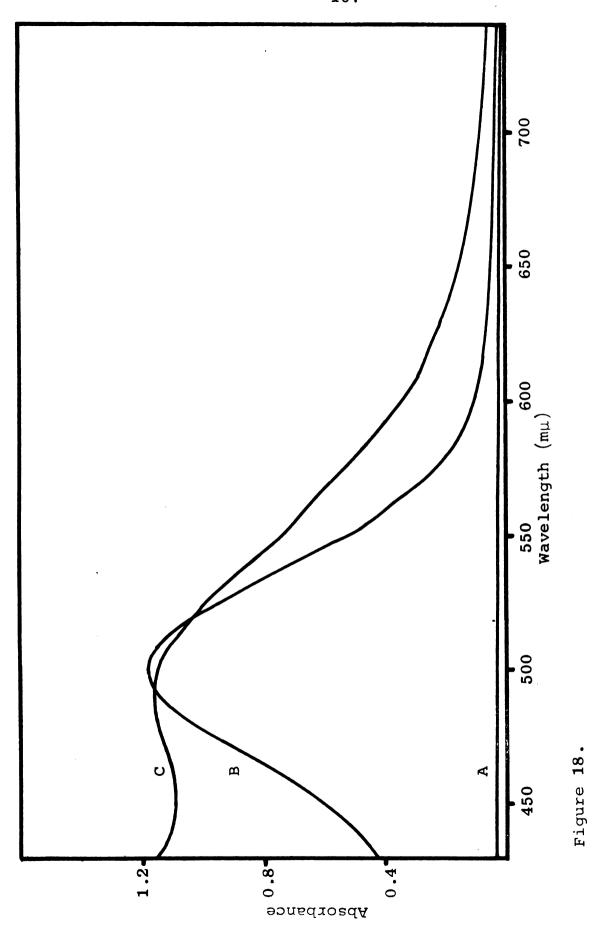


Figure 19. Visible spectra of solutions of (CoL₂)NO₃.

A. Baseline.

B. $1.2 \times 10^{-2} \underline{M}$ purified $(CoL_2)NO_3$.

5 ml of sample oxygenated for 5200 min and quenched with 1 ml of $4\underline{M}$ HNO₃, (Co $_0^{II}$ = 1.2 x 10 $^{-2}\underline{M}$, 5% O₂ gas), 1 minute after quench. ပ်

D. Same as C but quenched with 1 ml of $4\underline{M}$ HCl.

Same as C but unquenched, 1 ml of water added instead of ы •

1 ml of acid.

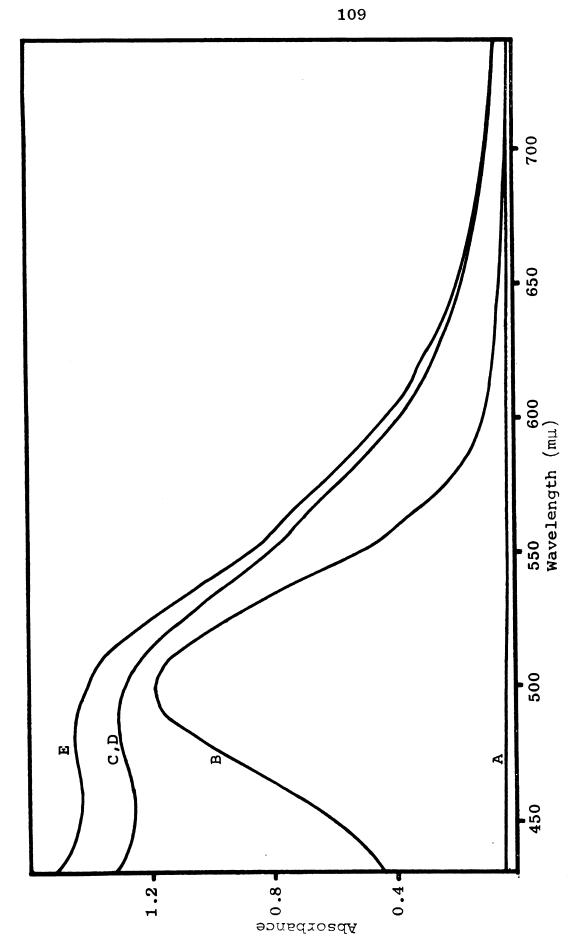


Figure 19.

$$(CoL_2)_2O_2 + O_2 \longrightarrow (CoL_2)_2O_2^+ + O_2^-.$$
 (122)

At long reaction times, especially with pure O₂ as gas, there probably is a further oxidation which fragments the histidine. This would explain the decrease in the absorbance, after about 2400 minutes, of the solutions oxygenated by pure oxygen, the presence of unidentifiable organic residues as found by Csaszar, Kiss and Beck, 144 and the traces of yellow to brown residue as found by Zompa. 117

Both proposed mechanisms (including either equation 49 or 50) appear to be about equally as good at predicting calculated values for $[CoL_2^+]$. The values for K_{4a} , K_{4b} , k_{5a} , k_{5a}^{\dagger} , and k_{5b} resulting from the least squares procedure are probably order of magnitude values.

Additional experiments must be performed in which the solutions are quenched for several days to destroy any superoxo cobalt-histidine complex and also experiments which include measuring of the absorbance at 677 m μ (by using 5 cm cells) to estimate the concentration of the superoxo complex so that corrections can be made for the presence and the absorbance at 500 m μ of the superoxo complex.

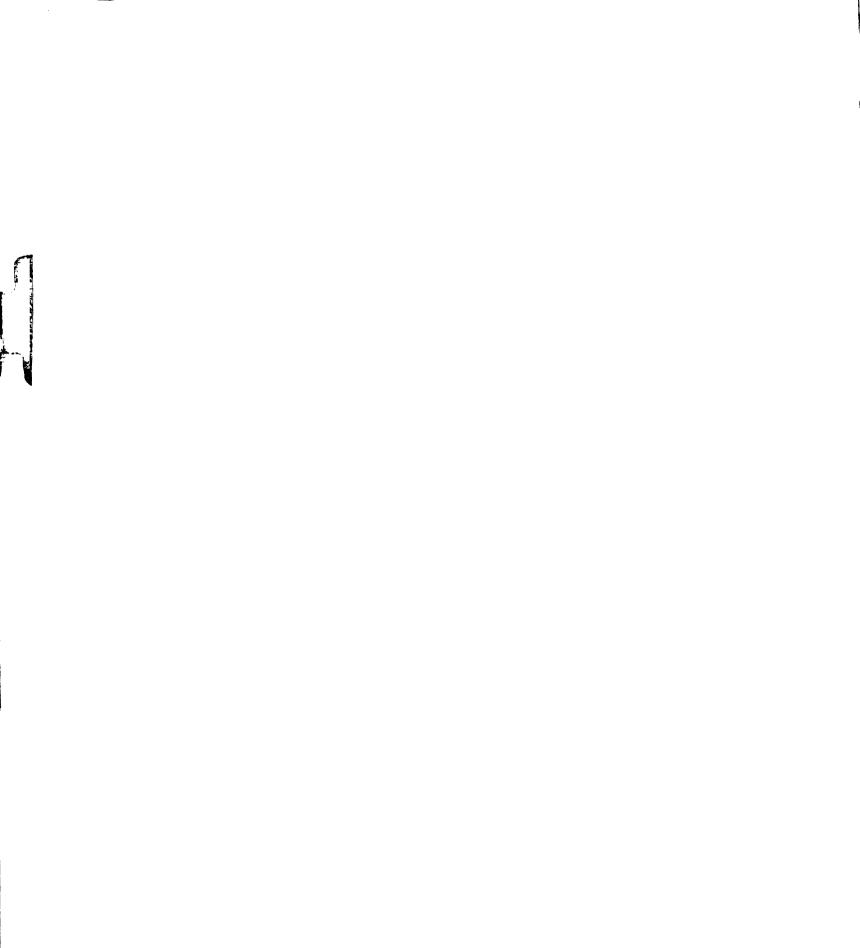
There is the possibility that the apparent catalytic activity of ${\rm CoL_2}^+$ (as shown in equation 51) is due instead to the following reaction:

$$CoL_2O_2 + CoL_2^+ \longrightarrow (CoL_2)_2O_2^+ \qquad (123)$$

If equation 123 rather than equation 122 is the major source of formation of the superoxo complex, $(CoL_2)_2O_2^+$, then an increase in $[CoL_2^+]$ will result in an increase in the rate of formation of $(CoL_2)_2O_2^+$ which will increase the absorbance of the solution at 500 m μ . Since the $[CoL_2^+]$ is determined by the absorbance of the solution at 500 m μ , an increase in the absorbance at this wavelength due to equation 123 will cause the $[CoL_2^+]$ to appear to affect the rate of formation of CoL_2^+ . Therefore, experiments will have to be performed to ascertain the influence of CoL_2^+ on the rate of formation of CoL_2^+ .

REFERENCES

REFERENCES


- Basolo, F. and R. G. Pearson, "Mechanisms of Inorganic Reactions," 2nd ed., John Wiley and Sons, Inc., New York, 1967.
- 2. Benson, S. W., "The Foundations of Chemical Kinetics," McGraw-Hill Book Co., New York, 1960, p. 63.
- 3. Fremy, E., Ann. Chim. Phys., 35, 257 (1852).
- 4. Fremy, E., Ann., 83, 289 (1852).
- 5. Vortmann, G., Ber., 10, 1451 (1877).
- 6. Vortmann, G., ibid., 15, 1890 (1882).
- 7. Vortmann, G., Monatsh., 6, 404 (1885).
- 8. Vortmann, G., and O. Blasberg, Ber., 22, 2648(1889).
- 9. Werner, A. and A. Mylius, Z. Anorg. Allgem. Chem., <u>16</u>, 245 (1898).
- 10. Jorgensen, S. M., J. Prakt. Chem., 31, 69 (1885).
- 11. Werner, A. and F. Beddow, Z. Anorg. Chem., 16, 109 (1898).
- 12. Werner, A., Z. Anorg. Chem., 21, 96 (1899).
- 13. Werner, A., Ber. Deut. Chem. Ges., <u>40</u>, 2103, 4426, 4434, 4605, 4834 (1907).
- 14. Werner, A., <u>ibid.</u>, <u>41</u>, 3879, 3912 (1908).
- 15. Werner, A., Justus Liebigs Ann. Chem., 375, 1 (1910).
- 16. Werner, A., Ber. Deut. Chem. Ges., 46, 3674 (1913).
- 17. Werner, A., <u>ibid</u>., <u>47</u> 1961 (1914).
- 18. Werner, A., Justus Liebigs Ann. Chem., 406, 261 (1914).
- 19. Gluud, W., K. Keller and H. Nordt, Ber. Ges. Kohlentech. (Halle), $\underline{4}$, 210 (1933).

- 20. Hearon, J., D. Burk and A. L. Schade, J. Natl. Cancer Inst., 9, 337 (1949).
- 21. Vogt, L. H., Jr., H. M. Faigenbaum and E. Wiberley, Chem. Rev., 63, 269 (1963).
- 22. "Gmelins Handbuch der anorganischen Chemie," 8 ed., System No. 58, part B, pp. 322 FF., Verlag Chemie G.M.B.H., Berlin, Germany, 1932, Suppl., Weinheim, 1964, pp. 615FF.
- 23. Goodman, G. L., H. G. Hecht and J. A. Weil, Advances in Chemistry Series, No. 36, American Chemical Society, Washington, D.C., 1965, p. 90.
- 24. Connor, J. A., and E. A. V. Ebsworth in "Advances in Inorganic Chemistry and Radiochemistry," Vol. 6, H. J. Emeléus and A. G. Sharpe, Ed., Academic Press, New York, 1964, pp. 279-381.
- 25. Fallab, S., Angew. Chem. (Int. Ed.), 6, 496 (1967).
- 26. Sykes, A. G., and J. A. Weil, Prog. Inorg. Chem. (in press).
- 27. Chester, A. W., Advan. Chem. Ser., 62, 78 (1967).
- 28. Erdem, B., and S. Fallab, Chimia, 19, 463 (1965).
- 29. Haim, A., and W. K. Wilmarth, J. Am. Chem. Soc., <u>83</u> 509 (1961).
- 30. Gleu, K. and K. Rehm, Z. Anorg. Allgem. Chem., 237, 79 (1938).
- 31. Ohyagi, Y., Bull. Chem. Soc. Japan, 15, 186 (1940).
- 32. Mori, M., J. A. Weil and M. Ishiguro, J. Am. Chem. Soc., 90, 615 (1968).
- 33. Bernal, I., E. A. V. Ebsworth and J. A. Weil, Proc. Chem. Soc., 57 (1959).
- 34. Ebsworth, E. A. V., and J. A. Weil, J. Phys. Chem., 63, 1890 (1959).
- 35. Mori, M., J. A. Weil and J. K. Kinnaird, J. Phys. Chem., 71, 103 (1967).
- 36. Bayston, J. H., F. D. Looney and M. E. Winfield, Australian J. Chem., 16, 557 (1963).

- 37. Weil, J. A., and J. K. Kinnaird, Inorg. Nucl. Chem. Letters, <u>5</u>, 251 (1969).
- 38. Mast, R. D., and A. G. Sykes, Chem. Commun., 270 (1965).
- 39. Marsh, R. E., and W. P. Schaefer, Acta. Cryst., <u>B24</u>, 246 (1968).
- 40. Linhard, M., and M. Weigel, Z. Anorg. Allgem. Chem., 308, 254 (1961).
- 41. Okaya, Y., unpublished results as described in Reference 23.
- 42. Dunitz, J. D., and L. E. Orgel, J. Chem. Soc., 2594 (1953).
- 43. Brosset, C., and N. Vannerberg, Nature, 190, 714 (1961).
- 44. Bekaroglu, O., and S. Fallab, Helv. Chim. Acta, <u>46</u>, 2120 (1963).
- 45. Vlcek, A. A., Collect. Czech. Chem. Commun., <u>25</u>, 3036 (1960).
- 46. Vlcek, A. A., Trans. Faraday Soc., <u>56</u>, 1137 (1960).
- 47. Bayer, E., and P. Schretzmann, Structure and Bonding, 2, 181 (1967).
- 48. Schaefer, W. P., Inorg. Chem., <u>7</u>, 725 (1968).
- 49. Thewalt, U., submitted to J. Am. Chem. Soc., as described in Reference 26.
- 50. Schaefer, W. P., and R. E. Marsh, J. Am. Chem. Soc., 88, 178 (1966).
- 51. Schaefer, W. P., and R. E. Marsh, Acta Cryst:, 21, 735 (1966).
- 52. Christoph, G. G., R. E. Marsh and W. P. Schaefer, Inorg. Chem., <u>8</u>, 291 (1969).
- 53. Thewalt, U. and R. E. Marsh, J. Am. Chem. Soc., <u>89</u>, 6364 (1967).
- 54. The Chemical Society (London), "Tables of Interatomic Distances," Special Publication 11, 1958.
- 55. Halverson, F., J. Phys. Chem. Solids, <u>23</u>, 207 (1962).

- 56. Cotton, F. A., and G. Wilkinson, "Advanced Inorganic Chemistry," Interscience Publishers, New York, 1962, p. 282.
- 57. Jouan, R., J. Chim. Phys., <u>56</u>, 277 (1959).
- 58. Fallab, S., Chimia, 19, 174 (1965).
- 59. Simplicio, J., and R. G. Wilkins, J. Am. Chem. Soc., 89, 6092 (1967).
- 60. Simplicio, J., and R. G. Wilkins, J. Am. Chem. Soc., 91, 1325 (1969).
- 61. Descamps, M. A., Compt. Rend., 67, 330 (1868).
- 62. Adamson, A. W., J. Am. Chem. Soc., <u>73</u>, 5710 (1951).
- 63. Glasstone, S., and J. C. Speakman, Analyst, <u>55</u>, 93 (1930).
- 64. MacDiarmid, A. C., and N. F. Hall, J. Am. Chem. Soc., 75, 5204 (1953).
- 65. Muller, E., and W. Schulttig, Z. Anorg. Allgem. Chem., 134, 327 (1924).
- 66. Rupp, E., and F. Pfennig, Chem. Z., 34, 322 (1910).
- 67. Mondain-Monval, P., and R. Paris, Compt. Rend., <u>198</u>, 1154 (1934).
- 68. Bayston, J. H., R. N. Beale, N. K. King and M. E. Winfield, Aust. J. Chem., <u>16</u>, 954 (1963).
- 69. Jezowska-Trzebiatowska, B., J. Mrozinski and W. Wojciechowski, J. Prakt. Chem., 34, 97 (1966).
- 70. Bayston, J., N. K. King and M. E. Winfield, "Advances in Catalysis," Vol. 9, Academic Press, New York, 1957, p. 312.
- 71. De Vries, B., J. Catal., $\underline{1}$, 489 (1962).
- 72. Chadwick, B. M., and A. G. Sharpe, Adv. Inorg. Chem. Radiochem., 8, 83 (1966).
- 73. Hume, D. N. and I. M. Kolthoff, J. Am. Chem. Soc., <u>71</u>, 867 (1949).
- 74. Schaefer, W. P., Inorg. Chem., 7, 725 (1968).
- 75. Ray, P. R., and H. Bhar, J. Indian Chem. Soc., <u>5</u>, 497 (1928).

- 76. Szego, L., and P. Ostinelli, Gazz. Chim. Ital., <u>60</u>, 950 (1930).
- 77. Biltz, W., W. Eschweiler and A. Bodenseik, Z. Anorg. Allgem. Chem., 170, 161 (1928).
- 78. Descamps, A., Compt. Rend., 87, 1039 (1878).
- 79. Rosenheim, A., and J. Koppel, Z. Anorg. Chem., <u>17</u>, 35 (1898).
- 80. Nast, R., H. Ruppert-Mesche and M. Helbig-Neubauer, Z. Anorg. Allgem. Chem., 312, 314 (1961).
- 81. Griffith, W. P., and G. Wilkinson, J. Chem. Soc., 2757 (1959).
- 82. Cotton, F. A., T. G. Dunne and J. S. Wood, Inorg. Chem., 3, 1495 (1964).
- 83. Iguchi, M., J. Chem. Soc. Japan , <u>63</u>, 634 (1942) as described in C. A., <u>41</u>, 2975D (1947).
- 84. King, N. K., and M. E. Winfield, J. Am. Chem. Soc., 83, 3366 (1961).
- 85. Banks, R. G. S., and J. M. Pratt, Chem. Commun., 776 (1967).
- 86. Mills, G. A., S. W. Weller and A. Wheeler, J. Phys. Chem., 63, 403 (1959).
- 87. Treadwell, W. D., and D. Huber, Helv. Chim. Acta, 26, 10 (1943).
- 88. Ginsberg, A. P., Trans. Metal Chem., $\underline{1}$, 111 (1965).
- 89. Schindewolf, U., Ber. Bunsenges. Phys. Chem., <u>67</u>, 2191 (1963).
- 90. King, N. K., and M. E. Winfield, J. Am. Chem. Soc., 80, 2060 (1958).
- 91. Pratt, J. M., and R. P. J. Williams, J. Chem. Soc. (A), 1291 (1967).
- 92. Alexander, J. J., and H. B. Gray, J. Am. Chem. Soc., 89, 3356 (1967).
- 93. Caulton, K. G., Inorg. Chem., 7, 392 (1968).
- 94. Candlin, J. P., J. Halpern and S. Nakamura, J. Am. Chem. Soc., <u>85</u>, 2517 (1963).

- 95. Fraser, K. A., H. A. Long, R. Candlin and M. M. Harding, Chem. Commun., 334 (1965).
- 96. McDonald, C. C., and W. D. Phillips, J. Am. Chem. Soc., 85, 3736 (1963).
- 97. Harding, M. M., and H. A. Long, J. Chem. Soc. (A), 2554 (1968).
- 98. Sano, Y., and H. Tanabe, J. Inorg. Nucl. Chem., <u>25</u>, 11 (1963).
- 99. Burk, D., J. Z. Hearon, L. Caroline and A. L. Scade, J. Biol. Chem., <u>165</u>, 723 (1946).
- 100. Hearon, J. Z., J. Nat. Cancer Inst., 9, 1 (1948).
- 101. Burk, D., J. Z. Hearon, H. Levy and A. L. Schade, Federation Proc., 6, 242 (1947).
- 102. Hearon, J. Z., <u>ibid</u>., 259, 260 (1947).
- 103. Burk, D., S. Fiala, J. Z. Hearon, M. Hesselbach, H. Levy and A. L. Schade, Federation Proc., 7, 148 (1948).
- 104. Earnshaw, A., and L. F. Larkworthy, Nature, <u>192</u>, 1068 (1961).
- 105. Michaelis, L., Arch. Biochem., 14, 17 (1942).
- 106. Zompa, L. J., C. S. Sokol and C. H. Brubaker, Jr., Chem. Commun., 701 (1967).
- 107. Zompa, L. J., Chem. Commun., 783 (1969).
- 108. Bagger, S., Acta Chem. Scand., 23, 975 (1969).
- 109. Daniels, F., J. H. Mathews, J. W. Williams, P. Bender and R. A. Alberty, "Experimental Physical Chemistry," McGraw-Hill Book Co., New York, 1956, p. 336-339.
- 110. Youden, W. J., "Statistical Methods for Chemists,"
 John Wiley and Sons, Inc., New York, 1951, p. 41-45.
- 111. Wentworth, W. E., J. Chem. Ed., <u>42</u>, 96 (1965).
- 112. Amdur, I., and G. G. Hammes, "Chemical Kinetics", McGraw-Hill Book Co., New York, 1966.
- 113. See Reference 2, in tota.

- 114. Frost, A. A., and R. G. Pearson, "Kinetics and Mechanisms," second edition, John Wiley and Sons, New York, 1961.
- 115. "The Handbook of Chemistry and Physics," 37th edition, Chemical Rubber Publishing Co., Cleveland, 1955, p. 253, Equations 89 and 99.
- 116. Smail, L. L., "Calculus," Appleton-Century-Crofts, Inc., New York, 1949, p. 100-101.
- 117. Zompa, L. J., and C. H. Brubaker, Jr., personal communication, 1969.
- 118. Furman, N. H., ed., "Standard Methods of Chemical Analysis," sixth ed., Vol. 1, D. Van Nostrand Co., Inc., Princeton, N.J., 1962, pps. 385-386.
- 119. Willard, H. H., N. H. Furman and C. E. Bricker, "Elements of Quantitative Analysis," fourth ed., D. Van Nostrand Co., Inc., Princeton, N.J., 1956, pps. 133-135.
- 120. Harned, H. S., and B. B. Owen, "The Physical Chemistry of Electrolytic Solutions", Reinhold Publishing Corp., New York, 1950.
- 121. Burnett, M. G., P. J. Connolly and C. Kemball, J. Chem. Soc. (A), 800 (1967).
- 122. Samuel, J., Z. Physik, <u>70</u>, 43 (1931).
- 123. Birk, J. P., and J. Halpern, J. Am. Chem. Soc., <u>90</u>, 304 (1968).
- 124. Truesdale, G. A., and A. L. Downing, Nature, <u>173</u>, 1236 (1954).
- 125. Guzzetta, F. H., and W. B. Hadley, Inorg. Chem., 3, 259 (1964).
- 126. Halpern, J., personal communication, 1969.
- 127. Pratt, J. M., and P. R. Silverman, J. Chem. Soc. (A), 1286 (1967).
- 128. Piringer, O., and A. Farcas, Z. Phys. Chem., <u>46</u>, 190 (1965).
- 129. Reinstein, J. G., E. Griswold and J. Kleinberg, Inorg. Chem., 8, 2499 (1969).
- 130. Piringer, O., Abh. Deut. Akad. Wiss. Berlin, kl. Chem. Biol., Geol., 821 (1964).

- 131. Simandi, L., and F. Nagy, Acta Chim. Hung., <u>46</u>, 101 (1965).
- 132. Bayston, J. H., and M. E. Winfield, J. Catalysis, 3, 123 (1964).
- 133. Kwiatek, J., I. L. Mador and J. K. Seylor, J. Am. Chem. Soc., <u>84</u>, 305 (1962).
- 134. Banks, R. G. S., and J. M. Pratt, J. Chem. Soc. (A), 854 (1968).
- 135. Grube, G., Z. Elektrochem., 32, 561 (1926).
- 136. Farcas, A., and L. Farcas, J. Chem. Phys., 2, 468 (1934).
- 137. Sokol, C. S., and C. H. Brubaker, Jr., J. Inorg. Nucl. Chem., 30, 3267 (1968).
- 138. Sillen, L. G., and A. E. Martell, ed., "Stability Constants of Metal-Ion Complexes," Chem. Soc. Special Pub. 17, The Chemical Society, London, 1964.
- 139. Albert, A., J. Biochem., <u>50</u>, 690 (1952).
- 140. Crumbliss, A. L., and F. Basolo, Science, <u>164</u>, 1168 (1969).
- 141. Crumbliss, A. L., and F. Basolo, J. Am. Chem. Soc., <u>92</u>, 55 (1970).
- 142. Hoffman, B. M., D. L. Diemente and F. Basolo, J. Am. Chem. Soc., 92, 61 (1970).
- 143. Miller, F., J. Simplicio and R. G. Wilkins, J. Am. Chem. Soc., 91, 1962 (1969).
- 144. Csaszar, J., L. Kiss and M. T. Beck, Naturwiss., <u>45</u>, 210 (1958).
- 145. Laussegger, H., and C. H. Brubaker, Jr., personal communication, 1969.
- 146. Charles, R. G., and S. Barnartt, J. Inorg. Nucl. Chem., 22, 69 (1961).
- 147. Weil, J. A., personal communication, 1970.

APPENDIX

APPENDIX

A. Derivatives for the Non-linear Least Squares Calculation.

By defining the following terms:

$$E_1 = 2 \sqrt{b^2 - 4ac}$$
 (124)

$$E_2 = \frac{-bB_1}{a\sqrt{b^2 - 4ac}}$$
 (125)

$$T_{10} = 2c(\sqrt{B_2 - B_3 Co_0^{III}} - B_1) + b - \sqrt{b^2 - 4ac(126)}$$

$$T_{1d} = 2c(\sqrt{B_2 - B_3 Co_0^{III}} - B_1) + b + \sqrt{b^2 - 4ac}(127)$$

$$T_{2D} = (\sqrt{B_2 - B_3 Co_0^{III}} - B_1)^2$$
 (128)

$$T_{2d} = c(\sqrt{B_2 - B_3 Co_0^{III}} - B_1)^2 + b(\sqrt{B_2 - B_3 Co_0^{III}} - B_1) + a (129)$$

$$T_{3n} = 2c(\sqrt{B_2-B_3} co^{III} -B_1) + b - \sqrt{b_2-4ac}$$
 (130)

$$T_{3d} = 2c(\sqrt{B_2-B_3} \text{ Co}^{III} -B_1) + b + \sqrt{b_2-4ac}$$
 (131)

$$T_{4n} = (\sqrt{B_2 - B_3 co^{III}} - B_1)^2$$
 (132)

$$T_{4d} = c(\sqrt{B_2 - B_3 Co^{III}} - B_1)^2 + b(\sqrt{B_2 - B_3 Co^{III}} - B_1) + a(133)$$

$$E_3 = B_1/a \tag{134}$$

and substituting these terms into equation 78, one obtains:

t =
$$(E_1 + E_2)\log\left(\frac{T_{1n}/T_{1d}}{T_{3n}/T_{3d}}\right) + E_3\log\left(\frac{T_{2n}/T_{2d}}{T_{4n}/T_{4d}}\right)$$
. (135)

For simplicity, the following terms are defined:

$$f(\Sigma r_i) = f(Co^{III}, K_1, K_2, K_3, K_{4a}, K_{4b}, k_{5a} \text{ or } k_{5a}, k_{5b})$$
 (136)

and ∂r_i is the derivative with respect to one of the variables of equation 135.

By substituting equation 135 into equation 136,

$$f(\Sigma r_i) = (E_1 + E_2) \log \left(\frac{T_{1n} T_{3d}}{T_{1d} T_{3n}} \right) + E_3 \log \left(\frac{T_{2n} T_{4d}}{T_{2d} T_{4n}} \right) - t.$$
 (137)

The generalized partial derivative of equation 137 is

$$\frac{\partial f(\Sigma r_i)}{\partial r_i} = (E_1 + E_2) \frac{\partial \left[\log \left(\frac{T_{1n} T_{3d}}{T_{1d} T_{3n}} \right) \right]}{\partial r_i} + \log \left(\frac{T_{1n} T_{3d}}{T_{1d} T_{3n}} \right) \frac{\partial (E_1 + E_2)}{\partial r_i}$$

$$+ E_3 \frac{\partial \left[\log \left(\frac{T_{2n}T_{4d}}{T_{2d}T_{4n}} \right) + \log \left(\frac{T_{2n}T_{4d}}{T_{2d}T_{4n}} \right) \frac{\partial E_3}{\partial r_i} - \frac{\partial t}{\partial r_i} \right]$$
(138)

For all r;,

$$\frac{\partial t}{\partial r_i} = 0. ag{139}$$

Since $\frac{\partial \log y}{\partial x} = \frac{1}{y} \frac{\partial y}{\partial x}$, one obtains

$$\frac{\partial f(\Sigma r_i)}{\partial r_i} = \frac{(E_1 + E_2)T_{1d}T_{3n}}{T_{1n}T_{3d}} \frac{\partial \left(\frac{T_{1n}T_{3d}}{T_{1d}T_{3n}}\right)}{\partial r_i} + \log \left(\frac{T_{1n}T_{3d}}{T_{1d}T_{3n}}\right) \frac{\partial E_1}{\partial r_i} + \frac{\partial E_2}{\partial r_i}$$

$$+ \frac{E_{3}T_{2d}T_{4n}}{T_{2n}T_{4d}} \frac{\partial \left(\frac{T_{2n}T_{4d}}{T_{2d}T_{4n}}\right)}{\partial r_{i}} + \log \left(\frac{T_{2n}T_{4d}}{T_{2d}T_{4n}}\right) \frac{\partial E_{3}}{\partial r_{i}} . \quad (140)$$

Two of the above terms can be expanded as follows:

$$\frac{\partial \left(\frac{T_{1n}T_{3d}}{T_{1d}T_{3n}}\right)}{\partial r_{i}} = \frac{T_{1d}T_{3n}\left(T_{1n}\frac{\partial T_{3d}}{\partial r_{i}} + T_{3d}\frac{\partial T_{1n}}{\partial r_{i}}\right) - T_{1n}T_{3d}\left(T_{1d}\frac{\partial T_{3n}}{\partial r_{i}} + T_{3n}\frac{\partial T_{1d}}{\partial r_{i}}\right)}{T_{1d}^{2}T_{3n}^{2}}$$
(141)

$$\frac{\frac{T_{2n}T_{4d}}{T_{2d}T_{4n}}}{\partial r_{i}} = \frac{T_{2d}T_{4n}\left(T_{2n}\frac{\partial T_{4d}}{\partial r_{i}} + T_{4d}\frac{\partial T_{2n}}{\partial r_{i}}\right) - T_{2n}T_{4d}\left(T_{2d}\frac{\partial T_{4n}}{\partial r_{i}} + T_{4n}\frac{\partial T_{2d}}{\partial r_{i}}\right)}{T_{2d}^{2}T_{4n}^{2}}.$$
(142)

The generalized derivatives of the variables from equations 124 to 134 are as follows:

$$\frac{\partial E_1}{\partial r_i} = \frac{4a \frac{\partial c}{\partial r_i} + 4c \frac{\partial a}{\partial r_i} - 2b \frac{\partial b}{\partial r_i}}{(b^2 - 4ac)^{3/2}}$$
(143)

$$\frac{\partial E_2}{\partial r_i} = \frac{bB_1 \left[\frac{a \left(2b \frac{\partial b}{\partial r_i} - 4a \frac{\partial c}{\partial r_i} - 4c \frac{\partial a}{\partial r_i} \right)}{2\sqrt{b^2 - 4ac}} + \sqrt{b^2 - 4ac} \frac{\partial a}{\partial r_i} \right]}{a^2 (b^2 - 4ac)}$$

$$-\frac{\left(b\frac{\partial B_1}{\partial r_i} + B_1\frac{\partial b}{\partial r_i}\right)}{a\sqrt{b^2 - 4ac}}$$
(144)

$$\frac{\partial T_{1n}}{\partial r_{i}} = 2c \left(\frac{1}{2\sqrt{B_{2}}} \frac{\partial B_{2}}{\partial r_{i}} - \frac{\partial B_{1}}{\partial r_{i}} \right) + 2 \left(\sqrt{B_{2}} - B_{1} \right) \frac{\partial c}{\partial r_{i}} + \frac{\partial b}{\partial r_{i}}$$

$$- \frac{1}{2\sqrt{b^{2} - 4ac}} \left(2b \frac{\partial b}{\partial r_{i}} - 4a \frac{\partial c}{\partial r_{i}} - 4c \frac{\partial a}{\partial r_{i}} \right)$$
(145)

$$\frac{\partial T_{1d}}{\partial r_{1}} = 2c \left(\frac{1}{2\sqrt{B_{2}}} \frac{\partial B_{2}}{\partial r_{1}} - \frac{\partial B_{1}}{\partial r_{1}} \right) + 2 \left(\sqrt{B_{2}} - B_{1} \right) \frac{\partial c}{\partial r_{1}} + \frac{\partial b}{\partial r_{1}}$$

$$+ \frac{1}{2\sqrt{b^{2} - 4ac}} \left(2b \frac{\partial b}{\partial r_{1}} - 4a \frac{\partial c}{\partial r_{1}} - 4c \frac{\partial a}{\partial r_{1}} \right)$$
(146)

$$\frac{\partial T_{2n}}{\partial r_{i}} = 2(\sqrt{B_{2}} - B_{1}) \left(\frac{1}{2\sqrt{B_{2}}} \frac{\partial B_{2}}{\partial r_{i}} - \frac{\partial B_{1}}{\partial r_{i}} \right)$$
(147)

$$\frac{\partial T_{2d}}{\partial r_{i}} = 2c \left(\frac{1}{2\sqrt{B_{2}}} \frac{\partial B_{2}}{\partial r_{i}} - \frac{\partial B_{1}}{\partial r_{i}} \right) + (\sqrt{B_{3}} - B_{1})^{2} \frac{\partial c}{\partial r_{i}}$$

$$+ b \left(\frac{1}{2\sqrt{B_{2}}} \frac{\partial B_{2}}{\partial r_{i}} - \frac{\partial B_{1}}{\partial r_{i}} \right) + (\sqrt{B_{2}} - B_{1}) \frac{\partial b}{\partial r_{i}} + \frac{\partial a}{\partial r_{i}}$$

$$(148)$$

$$\frac{\partial T_{3n}}{\partial r_{i}} = 2c \left[\frac{1}{2\sqrt{B_{2}-B_{3}Co^{111}}} \left(\frac{\partial B_{2}}{\partial r_{i}} - B_{3} \frac{\partial Co^{111}}{\partial r_{i}} - Co^{111} \frac{\partial B_{3}}{\partial r_{i}} \right) - \frac{\partial B_{1}}{\partial r_{i}} \right]
+ 2\left(\sqrt{B_{2}-B_{3}Co^{111}} - B_{1} \right) \frac{\partial c}{\partial r_{i}} + \frac{\partial b}{\partial r_{i}}
- \frac{1}{2\sqrt{b^{2}-4ac}} \left(2b \frac{\partial b}{\partial r_{i}} - 4a \frac{\partial c}{\partial r_{i}} - 4c \frac{\partial a}{\partial r_{i}} \right)$$
(149)

$$\frac{\partial T_{3d}}{\partial r_{i}} = 2c \left[\frac{1}{2\sqrt{B_{2}-B_{3}Co^{III}}} \left(\frac{\partial B_{2}}{\partial r_{i}} - B_{3} \frac{\partial Co^{III}}{\partial r_{i}} - Co^{III} \frac{\partial B_{3}}{\partial r_{i}} \right) - \frac{\partial B_{1}}{\partial r_{i}} \right]
+ 2\left(\sqrt{B_{2}-B_{3}Co^{III}} - B_{1} \right) \frac{\partial c}{\partial r_{i}} + \frac{\partial b}{\partial r_{i}} + \frac{1}{2\sqrt{b^{2}-4ac}} \left(2b \frac{\partial b}{\partial r_{i}} - 4a \frac{\partial c}{\partial r_{i}} \right)
- 4c \frac{\partial a}{\partial r_{i}} \right)$$
(150)

$$\frac{\partial \mathbf{T_{4n}}}{\partial \mathbf{r_i}} = 2c(\sqrt{B_2 - B_3 Co^{III}} - B_1) \begin{bmatrix} \left(\frac{\partial B_2}{\partial \mathbf{r_i}} - B_3 \frac{\partial Co^{III}}{\partial \mathbf{r_i}} - Co^{III} \frac{\partial B_3}{\partial \mathbf{r_i}}\right) - \frac{\partial B_1}{\partial \mathbf{r_i}} \\ 2\sqrt{B_2 - B_3 Co^{III}} & (151) \end{bmatrix}$$

$$\frac{\partial T_{4d}}{\partial r_{i}} = 2c\left(\sqrt{B_{2}-B_{3}CO}^{III}-B_{1}\right) = \begin{bmatrix} \frac{\partial B_{2}}{\partial r_{i}} - B_{3}\frac{\partial CO}{\partial r_{i}} & -CO^{III}\frac{\partial B_{3}}{\partial r_{i}} \\ \frac{2\sqrt{B_{2}-B_{3}CO}^{III}} & -CO^{III}\frac{\partial B_{3}}{\partial r_{i}} & -\frac{\partial B_{1}}{\partial r_{i}} \end{bmatrix}$$

+
$$(\sqrt{B_2-B_3CO}^{III}-B_1)^2 \frac{\partial c}{\partial r_i}$$
 +b
$$\frac{\left[\frac{\partial B_2}{\partial r_i}-B_3\frac{\partial CO}{\partial r_i}^{III}-CO^{III}\frac{\partial B_3}{\partial r_i}\right]}{2\sqrt{B_2-B_2CO}^{III}} - \frac{\partial B_1}{\partial r_i}$$

+
$$(\sqrt{B_2-B_3CO}^{III}-B_1)\frac{\partial b}{\partial r_i}+\frac{\partial a}{\partial r_i}$$
 (152)

$$\frac{\partial E_3}{\partial r_i} = \frac{a \frac{\partial B_1}{\partial r_i} - B_1 \frac{\partial a}{\partial r_i}}{a^2}.$$
 (153)

For the non-linear least squares calculation, the derivatives with respect to K_{4b} , k_{5a} or k_{5a}^{1} , k_{5b} and ${\rm Co}^{III}$ can be obtained from the following derivatives:

$$\frac{\partial B_1}{\partial K_{4b}} = 0 \tag{154}$$

$$\frac{\partial B_1}{\partial (k_{5a} \text{ or } k_{5a}')} = 0 \tag{155}$$

$$\frac{\partial B_1}{\partial k_{5b}} = 0 \tag{156}$$

$$\frac{\partial B_1}{\partial CO^{III}} = 0 \tag{157}$$

$$\frac{\partial B_2}{\partial K_{4b}} = 8 K_{4a}[O_2]CO_t$$
 (158)

$$\frac{\partial B_2}{\partial (k_{5a} \text{ or } k_{5a}!)} = 0 \tag{159}$$

$$\frac{\partial B_2}{\partial k_{5b}} = 0 \tag{160}$$

$$\frac{\partial B_2}{\partial CO^{III}} = 0 \tag{161}$$

$$\frac{\partial B_3}{\partial K_{4b}} = 8K_{4a}[O_2] \tag{162}$$

$$\frac{\partial B_3}{\partial (k_{5a} \text{ or } k_{5a}^{\dagger})} = 0 \tag{163}$$

$$\frac{\partial B_3}{\partial k_{5b}} = 0 \tag{164}$$

$$\frac{\partial B_3}{\partial CO^{III}} = 0 \tag{165}$$

$$\frac{\partial \mathbf{a}}{\partial \mathbf{K_{4b}}} = 0 \tag{166}$$

$$\frac{\partial a}{\partial (k_{5a} \text{ or } k_{5a}')} = 0 \tag{167}$$

$$\frac{\partial a}{\partial k_{5a}} = 2K_{4a}[O_2]CO_{t}$$
 (168)

$$\frac{\partial a}{\partial co^{III}} = 0 \tag{169}$$

$$\frac{\partial \mathbf{b}}{\partial \mathbf{k_{5a}}} = \frac{1}{2} \tag{170}$$

$$\frac{\partial \mathbf{b}}{\partial \mathbf{k}_{5a}^{\dagger}} = \frac{1}{2K_{4b}} \tag{171}$$

$$\frac{\partial b}{\partial k_{5b}} = -\frac{1}{2K_{4b}} \left(\frac{1}{K_{1}K_{2}[L^{-}]^{2}} + \frac{1}{K_{2}[L^{-}]} + 1 + K_{3}[L^{-}] + K_{4a}[O_{2}] \right)$$

$$+ K_{4a}[O_{2}]$$
(172)

$$\frac{\partial \mathbf{b}}{\partial \mathbf{C}_0} = 0 \tag{173}$$

$$\frac{\partial c}{\partial K_{4b}} = \frac{k_{5b}}{4K_{4b}^2} \tag{174}$$

$$\frac{\partial c}{\partial (k_{5a} \text{ or } k_{5a}^{\dagger})} = 0 \tag{175}$$

$$\frac{\partial c}{\partial k_{5b}} = \frac{-1}{4K_{4b}} \tag{176}$$

$$\frac{\partial c}{\partial C_0} = 0 \tag{177}$$

$$\frac{\partial CO^{III}}{\partial K_{4D}} = 0 \tag{178}$$

$$\frac{\partial \text{Co}^{\text{III}}}{\partial (k_{5a} \text{ or } k_{5a}^{\dagger})} = 0 \tag{179}$$

$$\frac{\partial k_{5b}}{\partial k_{5b}} = 0 \tag{180}$$

$$\frac{\partial CO^{III}}{\partial CO^{III}} = 1 . (181)$$

For the mechanism including equation 49

$$\frac{\partial b}{\partial K_{4b}} = \frac{k_{5b}}{2K_{4b}^2} \left(\frac{1}{K_1K_2[L^-]} + \frac{1}{K_2[L^-]} + 1 + K_3[L^-] + K_{4a}[O_2] \right) (182)$$

and for the mechanism including equation 50 instead of equation 49

$$\frac{\partial b}{\partial K_{4b}} = \frac{k_{5b} \left(\frac{1}{K_{1}K_{2}[L^{-}]^{2}} + \frac{1}{K_{2}[L^{-}]} + 1 + K_{3}[L^{-}] + K_{4a}[O_{2}]\right) - k_{5a}}{2K_{4b}}.$$
(183)

By substituting equations 154 to 183 into equations 143 to 153, then substituting the results into equations 141 and 142 and finally substituting the results into equation 140, one obtains all the necessary derivatives of the type

$$\frac{\partial f(\Sigma r_i)}{\partial r_i}.$$

To obtain the final derivatives required for the least squares calculation, the term q_i is defined as r_i except that Co^{III} is not included (see equation 136).

The final derivatives are

$$\frac{\partial c_{0}^{\text{III}}}{\partial q_{i}} = \frac{\frac{\partial f(\Sigma r_{i})}{\partial q_{i}}}{\frac{\partial f(\Sigma r_{i})}{\partial C_{0}^{\text{III}}}}.$$
 (184)

Thus, the final derivatives are obtained by substituting equations 140 into equation 184.

B. Derivative for the Ligand Concentration Calculations

By substituting equation 65 into 84, one obtains

$$f(L^{-}) = \left(\frac{-B_{1} + \sqrt{B_{2} - B_{3}CO}^{III}}{B_{3}}\right) 2E + \left(-B_{1} + \sqrt{B_{2} - B_{3}CO}^{III}\right)^{2} \frac{(n-2)}{B_{3}} + (n-2)CO^{III} - [L^{-}]A_{H} = 0.$$
 (185)

To be able to calculate the [L] by the Newton method, it is necessary to obtain $\partial f[L]/\partial[L]$ which is as follows:

•

$$\frac{\partial f[L^{-}]}{\partial [L^{-}]} = \left(\frac{-B_{1} + \sqrt{B_{2} - B_{3}CO}^{III}}{B_{3}}\right) (2) \left[(n-3)K_{3} - \frac{2n}{K_{1}K_{2}[L^{-}]^{3}} - \frac{(n-1)}{K_{2}[L^{-}]^{2}} \right] \\
+ E \left[\frac{2}{K_{1}K_{2}[L^{-}]^{3}} + \frac{1}{K_{2}[L^{-}]^{2} - K_{3}} + \frac{B_{1}}{4K_{4}a}K_{4b}[O_{2}] + \frac{B_{1}}{4K_{4}a}K_{4b}[O_{2}]\sqrt{B_{2} - B_{3}CO}^{III}} \right] \\
+ (n-2)(\sqrt{B_{2} - B_{3}CO}^{III} - B_{1}) \left(\frac{2}{B_{3}}\right) \left[\frac{2}{K_{1}K_{2}[L^{-}]^{3}} + \frac{1}{K_{2}[L^{-}]^{2} - K_{3}} + \frac{B_{1}}{K_{2}[L^{-}]^{3}} - \frac{2}{K_{1}K_{2}[L^{-}]^{3}} - \frac{1}{K_{2}[L^{-}]^{2}} \right] \\
+ \frac{B_{1}\left(K_{3} - \frac{2}{K_{1}K_{2}[L^{-}]^{3}} - \frac{1}{K_{2}[L^{-}]^{2}}\right)}{\sqrt{B_{2} - B_{2}CO}^{III}} - A_{H} . \tag{186}$$

C. Computer Programs

. Linear Least Squares.

PANGRAY LINEARLS

DIMENSION K(201), Y(200), 105NY(10)

C THIS PAUGRAM WILL CALCULATE THE LEAST SQUARES SLOPE, INTERCEPT AND THE STANDARD

۳ 0 SLOPE AND INTERCEPT FOR A STRAIGHT LINE CONTAINING 200 REVIATIONS OF THE Ü

FEMER EXPERIMENTAL POINTS, THIS PROGRAM CAN BE USED TO CALCULATE MULTIPLE C

EXPERIMENTAL POINTS IN COLUMNS THE FIRST DATA GARM SHOULD HAVE THE NUMBER OF ۲.)

SECOND DATA CARD SHOULD IPENTIFY THE RUN USING COLUMNS 1 TO 3. T.E

X A 47 COLUMNS 11 TO 20 FOR THE VALUE OF Y. THEN YOU CAN THE VALUE OF ? C.

U

YOU SHOULD HAVE DUE DATA CARD FOR FACH EXPERIMENTAL POTNT USING COLUMNS 1 TO

DATA CARD HAVE ANDIHER SET OF CARDS FOR THE NEXT RUN, FIC. AFTER THE LAST C

9

THE LAST RIN, THERE SHOULD BE ONE BLANK DATA CARP.

99 PEAD (53.1)

FD3447 (13)

PHAXMOS & DEUSAWAS & DEUSAMAS & CHAMIS & SHX..OS

IS THE VIMPER OF DATE POINTS ON THE STRAIGHT LINE, ANTEROPT IS THE INTERCEPT. 2 C

1F (*) 1.3,150,2

READ (40.11)(IPENT(I), I=1,10.1) ر.

11 FORMAT (1348)

70 4 I=1, V, 1

PEAD (50,3) X(1),Y(1)

FORMAT (2F10.9)

(1) A+(1) X+AXWIIS=AXWIIS S Z++(1) X+OSXWOS=USXFIIS S (1) X+xFI S=XFOS

Z++(1) A+CSAACS=SAAAS 9 (1) A+AFI S=AACS

BINILINOU V

(C++XmDS+0SXMDS+0)/(AmDS+XMDS+AxbdS+0)#sacTs

(C++XMDS+USXMDS+3)/(XXMDS+XMDS+XFIS+UXXFDV) = LeOcalive

CHRUMX+SUNY & DHRUMX++2 & FHSUMY++2 & SUMXWNEC/0 & BHD/D & ENHE/D

OFFICE OF YAY SOLED BY SOLE OF SECUMXSG-8 SCONESUMYSG-FSG/G

CSJECS-17(0-5) & HEFSUZG & STDFVSLOESORTF(SSAZG)

2317F (51,12)(IDFNT(I),I=1,11,1)

((Q+OSXM,)S+O)/OSXWiS+OSS) JIECS=I · I · BLIS

12 FJ2441 (***,1948)

MAITE (61,7) N

FURWATER + * * THE NIMBER OF DATA POINTS ON THE STRAIGHT LINE

KATIF(41,29)SUWX, SUWXSD, SUMYSD, SUMXXV, C.P. F

JANCITOO

F3244114 4.45J4X=+,F13,6,5X,+SUMY=+,F15,6,5X,+SUMXSQ=+,F15,6,5X,+SAPTIONAL

1-44SOH+,F15.6,/,+ SUMXYH+,F15.4,FX,+SUMX SUMYH+,F15.6,5%,+(SUMX)SWOPTIONAL

2=+,F15,5,5X,+(SUMY)S0=+,F15,6)

OPTIONAL

AA! TF (41,27) SJWKYN, 3, Eh, F, FSB, G, SSRN, SSB, H

DANCITAG

20 FORMATIVE * * * (S'IMY SUMY)/VE* FIF, 6.5X * (SUMX)SOZNE* FIS. 5.5X * (SUMY)PTIONAL

TOSTITE " STEE " STEE " STEE STANK SOUNT STEE STEE STEE STEE SOUNT SOUNT SOUND STEEL SOUND SOUND STEEL SOUND STEEL SOUND SOUND STEEL SOUND SOUND

2Y) / 4) SOUANED= *, F15, 6, 5X, *SUMXSO * (SUMX) SO/N#*, F15, 6, 5X, * (N-2) S SOUADPTIONAL

3987++,713,4,5%,/,+ S SCUARF=+,F15,4,5%,+(S!MXY+SUMX SJMY/N)SO/(SUMOPTIONAL

4457-(S!MX) 52/4)) = +, F15.6)

DANCITAC

XAITE (51, P)

* FORMAT (++*,*POINT NUMPER*,11X,*X*,18X,*Y*)

ERITE (61,9)(1,X(1),Y(1),I=1,N,1)

9 FORMAT' + 13,11x,2(F15,7,2X))

JATTE 161,1335LOPE, STDFVSLO, ANTERCPT, STDFVINT

1 FORMARY *** * SLOPER*, F15.7, *PLUS OR MINUS*, F15.5, 7, *INTERCEPTE*, F15

1,7, *FL 15 OR MINUS +, F15,7)

SU TO 39

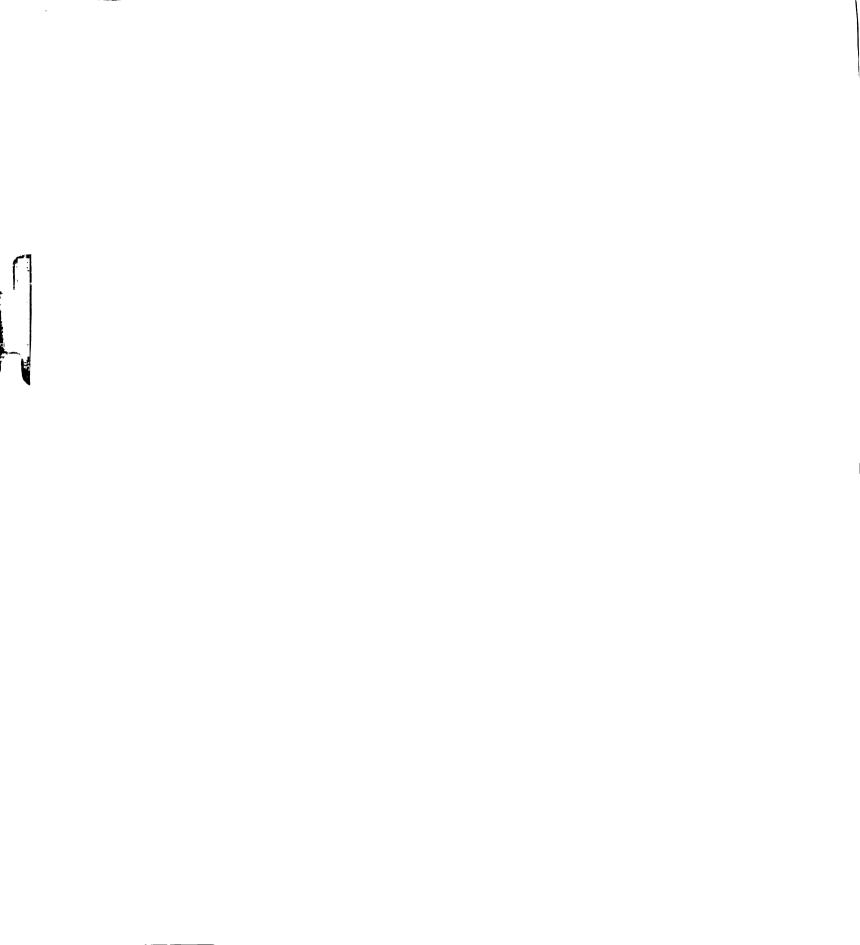
100 CONTINIE

L

and for the mechanism including equation 50 in place of equation 49 (derivation H). that are different for the mechanism including equation 49 (which is derivation G) the change is not listed at the end of the program. Any other changes are listed The programs as shown are for derivation G. If, in converting the computer card from derivation G to derivation H, the only change is to change a "G" to an "H", The boxed in lines of the two following programs indicate computer cards The numbers at the far right of each line are for at the end of the program. identification.

	Non Least Squares Calculation Program.
	PROGRAM KINTELCT
	THIS DECK INCLUDES THE CORRECTION OF 7/23/69 ON THE TERM EXP12.
C)	THIS DECK INCLUDES THE CORRECTION OF 7/23/69 ON THE TERM EXP12.
ſ,	THIS DECK INCLUDES THE CORRECTION OF 7/23/69 ON THE TERM EXP12.
	THIS DECK INCLUDES THE CORRECTION OF 7/23/69 ON THE TERM EXP12.
	THIS DECK IS BASED ON THE OPISINAL CATALYTIC MECHANISM. (DERIVATION 3
	THIS BECK IS PASED ON THE ORIGINAL CATALYTIC MECHANISM. (DERIVATION G
	THIS DECK IS DASED ON THE DRIGINAL CATALYTIC MECHANISM. (DERIVATION G
- 1	THIS DECK IS RASED ON THE OPIGINAL CATALYTIC MECHANISM, (DFRIVATION G
	COMMON TICCIPX, COILARORTIILTEST, ALIGIA1H, A2H, A3H, HCONCIN, ALIGGESS
	1,AL153
	PIMENSION T(+00);CX(100),CC(100),ALIGGESS(11),P(10),ALIGG(103)
	TYPE REAL K44
	THIS IS A TEST OF THE MOST PROBABLE CATALYTIC MECHANISM.
	THIS IS A TEST OF THE MOST PROPABLE CATALYTIC MECHANISM.

MOST PROBABLE CATALYTIC MECHANISM.	r ;
	7 A
	€0
(1048)	٥
2,C0,A1,A2,A3,A44,A48,A5A,A5B	⊖ ₩
FORMAT (AF10, C)	स्त स
(SENSE LIGHT 1)13,14	414
<pre><pre></pre></pre> <pre></pre> <pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre><pre><pre><pre><pre><pre><pre><pre></pre><pre><pre><pre><pre><pre><pre><pre< td=""><td>1 B</td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	1 B
LIGHT 4	ੁ ਜ
S.A1H.A2H.A3H.HCONC.ALIGIRYY.ALMRATIO,LTEST	₩
OPMAT (6F10,0,110)	13
IF((A1+A2+A3+A4A+A4B+A5A+A5B).EQ.O.O) SO TO 11	4
5	1
(* THIS IS A TEST OF CATALYTIC MECHANISM G. A4A IS FOUNT TO	9
(K4A)(OXYGEN CONC.), OXYGEN CONC. #1.212E=3 FOR PURE OXYGFN.+,/,+	16A
2,424E-4 FOP AIR AND 6,06E-5 FOR 5 PERCENT OXYGEN;♥)	17
4,8	9
FORMAT (//,1748)	10


© ₹ 3	21	22	23	V	25	\$ 6	27	88	50	()	31	32	33	46	N 5	36	37
PRINT 5,00,4 MPATIO, A1, A2, A3, A4A, A4B, A5A, A5B, ALIGTRYY, A1H, A2H, A3H,	1 HOPNO, K4A	S FORMAT(* ***THE CONC. OF TOTAL COBALT=**E10.3.5X**LIGAND TO METAL	19ATIO =+,F5,2,+ TO 1+,/,1x,+K1 =+,E10,3,5X,+K2 =+,E10,3,5X,+K3 =+,	251°,3,/,*A4A =*,51(,3,4X,*A4R =*,E10,3,4X,*A5A =*,E10,3,/,*A5B =*,	3F10,3,4x,*A4A = (K4A)(PXYGEN CBNCENTRATION)/;* INITIAL GUESS OF	4LIGAND CONC. =+,F10,3,5x,+K1H =+,E10,3,5x,+K2H =+,E1n,3,5x,+K3H =+	5,E10.3,/,+ HVDPOGEN ION CONCENTRATION ±+,E10.3,5%, FK4A =+,E10.3)	ALIGESTE(ALMGATIO+2,0)+CO/(1,0+A1H+HCONC+A1H+A2H+HCONC++2+A1H+A2H+	1 A3H#HCONC##3)	PRINT 514, ALIGEST	514 FORMAT (* *, *ESTIMATED VALUE OF LIGAND CONCENTRATION =*, F10.3)		6 PEAD 7, IDENT, T(I), CX(I)	7 FORMAT (11,F4,F10,4)	IF (19ENT,67.1) GO TO 10	ALIG?ESS(1)=ALIGTRYY	CALL ALIGCALF(A1,A2,A3,A4A,A4B,A5A,A5B,ALMRATIC)

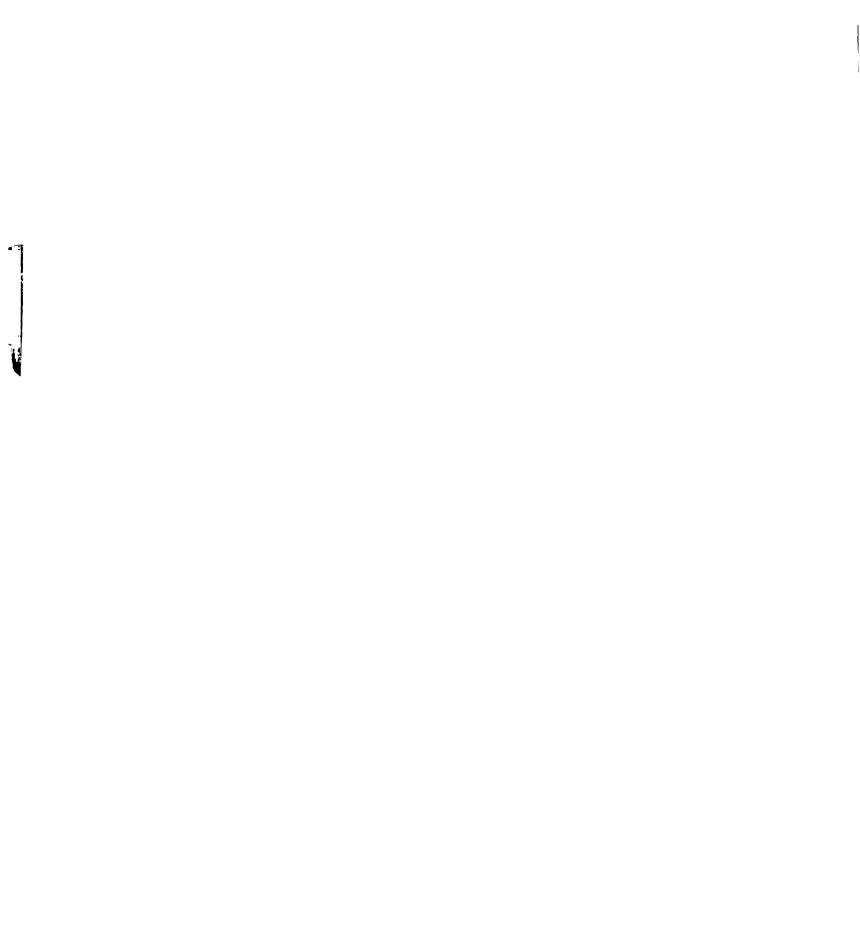
Calculation	
Squares	The same of the sa
Least	
Non-linear	
භ	

o[°]

PROGRAM REPIVG	
THIS DECK INCLUDES THE CORRECTION OF 7/23/69 ON EXP12.	
COMMON T(500), CC(500), CX(500), LARORT, I, LTEST, ALIG, A1H, A2H, A3H, HCON	~
10,% aliggessill) aligg(500), almratio(500), R(10,500), L, COMCOXYG(500	2 A
2),LL,C^(50~);C037EPO(50A),CXX(50A),C02(50B),COL(50C),COL2(50B),C^L	a C
3202(560), COL2202(510)	8 0
DIMENSION KARSON), AA(SON, 4), M(4,4), DPC(500), RB(3,3), ALIGTRYY(500),	4
11RUN(580),1RUNMIN(15),1RUNMAX(15),ALIGGG(500),CO3(500)	4 4
TYPE REAL W	r.
TYPE INTEGER R	R.
9814T 1609	9 8
DOG FORMAT (*THIS DECK INCLUDES THE CORRECTION OF 7/23/69 ON EXP12.**/	9
1. THIS DECK IS BASED ON THE CATALYTIC MECHANISM (DERIVATION G). + 1	50
1. THE PARAWETERS KAB,K5A,K58 ARE VARIED BY THE LEAST SQUARES PRO	30
1087UPE. *, /, * 1 IS K1, (THE FIRST STEPWISE FORMATION CONSTANT OF TH	5D-A

2E METAL-LIGAND COMPLEX), +5/04	50
3A2 IS K2, (THE SECONDSTEPHISE FORMATION CONSTANT OF THE METAL-LIGA	جر H
4ND COMPLEX). **/**A3 IS K3. (THE THIRD STEPWISE	35
5 FORMATION CANSTANT FOR THE LIGAND-METAL COMPLEX). *, /, *A4A IS K4A,	56
6 (THE FIRST RTEPWISE FORMATION CONSTANT FOR THE METAL-LIGAND-OXYGE	Ţ,
74 COMPLEX). *; /. * * 43 IS K4B, (THE SECOND STEPWISE FORMATION CONSTAN	51
87 FOR THE METALTLIGAND-OXYGEN COMPLEX) / . * A5A IS K5A. (THE COBAL	J.
9T 2 KINETIC RECOMPOSITION STEP OF THE REACTION)//**ASB IS K5R, (ŭ,
17HE COBALT 3 KINETIC DECOMPOSITION STEP OF THE REACTION) **/**	<u>r. </u>
ZAIH IS THE FIRST PROTONATION CONSTANT FOR THE LIGAND.	£.
3A2H IS THE SECOND PROTONATION CONSTANT FOR THE LIGAND, **/.*	₽U S
4A3H IS THE THIRD PROTOWATION CONSTANT FOR THE LIGAND.	7.
SAA(I, J OR K) IS A DFTERMINANT WHICH IS USED TO STORE THE DATA TO	R.
6SOLVE THE SYRTEM OF SIMULTANEOUS LINEAR EQUATIONS OF THE NON-LINEA	R
78*,/,* LEAST SQUARES PROCEDURE,	R V 55.
84D6 IS THE QUANTITY TO ADD TO THE GUESS OF K5A IN THE EVENT THAT T	R. N
9HE LEAST SAULRES PROCEDURE PRODUCES A NEGATIVE PARAMETER. +1/1+	1 C
1AD7 IS THE GYANTITY TO ADD TO THE GUESS OF KSB IN THE EVENT THAT T	J.C.

5 A	17ION (BASEN ON THE OXYGEN GAS SOLUBILITY AT THE OXYGEN PARTIAL */
5 A	9;+,/,+COMCOXYG IS THE CONCENTRATION OF OXYGEN IN THE REACTION SOLU
R.	8CO IS THE INITIAL CONCENTRATION OF COBALT 2 IN THE REACTION SAMPLE
SA A	73 IN MOLES PER LITER.
5 A	6ANEOUS LINEAR EQUATIONS, *, /, *CC IS THE CALCULATED VALUE OF COBALT
5 A	588 IS A DETERMINANT THAT IT USED TO SOLVE THE LEAST SQUARES SIMULT
₹ :	4ALMRATIO IS THE LIGAND TO METAL RATIO.
9. A	3ALIGTRYY IS THE INITIAL GUESS OF THE LIGAND CONCENTRATION, *,/.*
R.	2E VALUE OF THE LIGAND CONCENTRATION.
K .	1 THE METAL ION CONC. +,/,+ALIGGESS IS THE TRIAL OF THE VALUE OF TH
R/	9D CONCENTRATION RASED ON THE QUANTITY OF LIGAND IN EXCESS OF TWICE
A P	8SQUARES CALCHLATION. *, /, *ALIGEST IS A SIMPLE ESTIMATE OF THE LIGAN
SA A	7ALIGGG IS THE VALUE OF THE LIGAND CONCENTRATION USED IN THF LEAST
Z 🔄	6NTAL POINT I AS CALCULATED BY SUPROUTINE ALIGCALC.
K /	SALIGG(I) IS THE VALUE OF THE LIGAND ION CONCENTRATION FOR EXPERIME
ς. Χ	4CENT EXPERIMENTAL POINTS OF THE SAME KINETIC RUN.
E U	3ALIG IS THE AVERAGE VALUE OF THE LIGAND CONCENTRATION RETWEEN ADJA
ις. >	ZHE LEAST SOUARES PROCEDURE PROPUCES A NEGATIVE PARAMETER. **/**


NAR	SAR	SANE	A D	SAP	SAO	SADA	R. A.	SAS	FAZ	5 A U	SA V	5 A 2	A X	¥ ×	2 Y is	5 E A	α α α
2,* DRESSURE) AND CALCULATED IN MOLES PER LITER, *,/,*	3003 IS THE CALCULATED VALUE OF THE COBALT S CONCENTRATION LESS THE	3 COBALT 3 ADTED INITIALLY.	30032ERO IS THE INITIAL CONCENTRATION OF COBALT 3 IN THE REACTION S	4AMPLE.+,/,+CY IS THE EXPERIMENTAL VALUE OF COBALT 3 IN THE REACTIO	5N VESSEL IN MOLES PER LITER. **/ ** CXX IS THE EXPERIMENTAL VALUE OF	5THE COBALT 3 CONCENTRATION LESS THE COBALT 3 ADDED INITIALLY. *. /. *	67D IS THE FACTOR BY WHICH THE LEAST SQUARES CORRECTION ON THE COAS	71ANTS IS DECREASED.	8;*DDC(1) = CABALT 3 (EXPERIMENTAL) - COBALT 3 (CALCULATED) FOR DAT	9A POINT I.+,/,+DMIN IS THE MINIMUM PERMITTED VALUE OF THE SYMMETRI	1C LEAST SQUAPES DETERHINANT.	2DXMAX6 IS THE SMALLEST PERMITTED CORRECTION ON K5A.	3DXMAX7 IS THE SMALLEST PERMITTED CORRECTION ON K58.	4HCONG IS THE HYDROGEN ION CONCENTRATION (ASSUMED TO RE CONSTANT) I	5N THE PEACTION SAMPLE,	61 IS AN INDEXING VARIABLE FOR THE EXPERIMENTAL DATA POINT NUMBER.+	7./.*ICONST IS THE TOTAL NUMBER OF EXPERIMENTAL DATA POINTS READ IN

8TO THE COMPUTER.	*./.*	5BC
9 IRUN = 0 , NO PARTICULAR SIGNIFICANCE,	* 1/1*	r E
1 IPUN = 1 . FIRST DATA POINT FROM AN EXPERIMENTAL RUN.	**/**	588
2 IRUN = 2 , FIRST LEAST SOUARES DATA POINT OF AN EXPERIMENTAL	אַכּי	18 P.
3,+,/,+ IPUN = 3. LAST LEAST SQUARES DATA POINT OF AN EXPFRIMENTAL	VTAL	19
42UN. +, /, + IRHN = 4. LAST DATA POINT OF AN EXPEPIMENTAL RUN. +, /, +	1 **/	1.
SRUN = 5, FIRST DATA POINT AND FIRST LEAST SQUAPES DATA POINT (OF EX	587
6ERIMENTAL PUN.+,/,+ IRUN = 6, LAST DATA POINT AND LAST LEAST 8	SQUAR	5B.
7ES DATA POINT OF EXPERIMENTAL RUN. +, /, + IRUNMIN IS AN INDEX VAR	VARIAPL	κ. Σ
SE FOR THE FIRST DATA POINT OF KINETIC RUN LL WHICH IS TO BE IN	INCLUD	1 2
95D IN THE LEAST SQUARES PROCEDURE. +, /, + IRUNMAX IS AN INDEX VAR	VARIAPL	ເບ ວນ 3
1E FOR THE LAST DATA POINT OF KINETIC RUN LL WHICH IS TO PE IN	INCLUDE	20 20 20
2D IN THE LEAST SOUARES PROCEDURE. **/. *KA(1)=0 INDICATES THAT THE	H.H.	580
35XPERIMENTAL POINT I IS TO BE INCLUDED IN THE LEAST SQUARES CA	CALCUL	R 0
4ATION, +, /, +KA(I) #1 INDICATES THAT THE EXPERIMENTAL POINT I	0% S1	1 000
5T TO BE INCLUDED IN THE LEAST SQUARES CALCULATION. +, /, +KA(I)	о. м	9 88
6INDICATES THAT POINT (1-1) IS THE LAST EXPERIMENTAL DATA POINT	F F P O	F .
7" KINETIC RUN F.+, /, +L IS AN INDEXING VARIABLE FOR A DO LOOP.	118	R.

8MAXIMUM VALUE IS THE MAXIMUM PERMITTED NUMBER OF NON-LINEAR LEAST	UB _E
9SQUARES+,/.+ ITERATIONS.+,/.+LABORT = 1 WHEN A SURROUTIME	5 8V
1 CAN SUCCESSFULLY COMPLETE ITS CALCULATIONS, *, /, *LABORT = 0 WHEN A	₩ 30 33
2 SUBROUTINE FANNOT SUCCESSFULLY COMPLETE ITS CALCULATIONS. *./.*	R X
3LL IS AN INDEX VARIABLE TO IDENTIFY THE KINETIC RUN.	π. >=
4LLMAX IS THE TOTAL NUMBER OF KINETIC RUNS BEING FED INTO THE COMPU	285
5TER. **/. *LLMAX IS THE TOTAL NUMBER OF EXPERIMENTAL KINETIC RUNS RE	S C A
6ING READ INTO THE COMPUTER. * . / . * LLL IS A DIMENSION VARIAPLE FOR RC	الا م م
70 VARIABLE R TO ALLOW P BE SPACES. + 1/2 + LMAX IS THE MAXIMUM NUMBER	() () ()
80F LEAST SOUARES ITEPATIONS PERMITTED. **/ **LTEST INDICATES WHETHER	ر د ا
9 CERTAIN INTERMEDIATES IN THE CALCULATION OF COBALT 3 AND LIGAND C	50 E
19NCENTRATION WILL RE PRINTED OUT. * . / . + M(J.K) IS THE SUM OVER I OF	r .
2THE PAIRWISE PRODUCTS OF AA(I.J) AND AA(I.K).+1/4NN IS THE NUMBER	506
3PARAMETERS INCLUDED IN THE LEAST SQUARES PROCEDURE. +, /, +P IS THE T	SO H
4ITLE OF THE EXPERIMENTAL RUN, IT IS A BOD VARIABLE"+,/,+T IS TIME	5C I
5 IN MINUTES.	D
6X1 TO X5R ARE THE CURRENT COMPUTER VALUES FOR K1 TO K58. **/**	50 K
7XX1 TO XX7 APE INTERMENIATE VARIABLES FOR STORAGE OF CURRENT VALUE	105

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	225, DXMAXE, DXMAX7, BMIN 6
**************************************	7, LMAX, LTEST 19,11)
A3H, DD, HCONC, FACTOR A3H, DD, HCONC, FACTOR 3, A4A, A4B, A5A, A5B, A1H, A2H, A3H, HCONC, DD, FACTOR, EP 10,3,5x, 42 = *, E10,3,5x, * A3 = *, E10,3,5x, * A1H =*, E10,3,5x, * A5A = *, E10,3,5x, * HYBROGEN ION CONCE 5x, * TIVISOR OF CORRECTION TERMS OF K VALUES = *, F	• 7 S XX3=0.0 S XX4=0.0 S XX5=0.0 • 6 S L=0 S I=1 S LL=0
A3H,DD,HCONC,FACTOR OR 3.444,A48,A5A,A5B,A1H,A2H,A3H,HCONC,DD,FACTOR,EP 10.3.5X,+ A2 =+,E13.3.5X,+ A3 =+,E10.3.5X,+A4A = *E10.3.5X,+ A2 =+,E10.3.5X,+A5B =+,E10.3.5X,+A1H =+,E10.3.5X,+A3H =+,E10.3.7,+HYDROGEN ION CONCE 5X,+7IVISOR OF CORRECTION TERMS OF K VALUES =+,F	444 444 45A
3.444,448,454,459,41H,42H,43H,HCONC,DD,FACTOR,EP 10.3.5x,* A2 =*,E13.3.5x,* A3 =*,E10.3.5x,*A4A = 11.3.5x,* A2 =*,E10.3.5x,*A5B =*,E10.3.5x,*A1H =*,E10.3.5x,*A3H =*,E10.3./,* HYDROGEN ION CONCE 5x,*JIVISOR OF CORRECTION TERMS OF K VALUES =*,F	α O
A3.A4A.A4B.A5A.A5B.A1H.A2H.A3H.HCONC.DD.FACTOR.EP E10.3.5X.* A2 =*.E10.3.5X.* A3 =*.E10.3.5X.*A4A = *.E10.3.5X.* ARA =*.E10.3.5X.*A5B =*.E10.3.5X.*A1H =*.E10.3.5X.*A3H =*.E10.3.7.* HYDROGEN ION CONCE *5X.*JIVISOR OF CORRECTION TERMS OF K VALUES =*.F	1.5 0.R
E10,3,5x,+ A2 =+,E10,3,5x,+ A3 =+,E10,3,5x,+A4A = +,E10,3,7,* A5A =+,E10,3,5x,+A1H = +,E10,3,5x,+A1H = +,E10,3,5x,+A5H =+,E10,3,5x,+A1H = +,E10,3,5x,+A3H =+,E10,3,7,+ HYDROGEN ION CONCE = +,E10,3,5x,+A3H =+,E10,3,7,+ HYDROGEN ION CONCE = +,5x,+1VISOR OF CORRECTION TERMS OF K VALUES =+,F	3,844,848,854,859,81H,82H,83H,HCONC,DD,FACTOR,EP
Ein.3.5% ARA #**Eio.3.5%**A58 #**Eio.3.5%**Aih =*;Ein.3.5%**A3H #*,Eio.3./,* HYDROGEN ION CONCE .5%**TIVISOR OF CORRECTION TERMS OF K VALUES #*,F	A2 =+, E10.3, 5x, + A3 =+, E10.3, 5x, + A4A =
5X** TVISOR OF CORRECTION TERMS OF K VALUES *** F	**E10.3.5%.*ATH #**E10.3.5%.*ATH #**E10.3.5%.*AIH
	5X.+JIVISOR OF CORRECTION TERMS OF K VALUES **, F

44.1./,* FACTOR =**F7.3,5x,*MOLAR ABSORPTIVITY =*,F8,2)	18AA
97 LL=LL+1	18A
100 READ 500, (R(LLL,I),LLL=1,10)	64
500 FORMAT (10AB)	8
READ 227, ALWRATIO(1), CO(1), ALIGTRYY(1), CONCOXYG(1), CO3ZERO(1)	21
227 FOPMAT (5F10.C)	22
IF (ALMRATIO(1), FO.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.	22A
PRINT 502, (9(LLL,I),LLL=1,10)	22B
502 FORMAT (1H1,1CAB)	53
PRINT 503, Cr(1); ALMRATIO(1), ALIGTRYY(1), CONCOXYG(1), CA3ZERO(1)	24
503 FORMAT(* +,+THE CONC, OF TOTAL COBALT=+,E10,3,5%,+LIGAND TO METAL	25
1PATIO =+,F2,+ TO 1+,/,+ INITIAL GUESS OF LIGAND CONC =+,E1G.3,5%,+	98
20XYGEN CONCENTRATION =+, E10.3,+ INITIAL CCNCENTRATION OF CORA	27
3LT 3 =+, E1n, T)	28
IF (ALMRATIO GF. 2.0) 1 n 2, 1 n 1	29-31
101 PRINT 104	32
104 FORMAT (* *. THERE IS AN ERROR IN THE LIGAND TO METAL RATIO, THERE	33
1FORE THIS PROGRAM IS BEING ABORTED. *)	k) 4

TO 1000	Ki C
ALIGEST=(ALM9ATIO(I)-2,n)+CO(I)/(1,0+A2H+HCONC+A1H+A2H+HCONC+A1	36
1H*A2H*A3H*HCONC*+3)	37-44
	4 10
A! IGEST.LL	4
FORMAT (+ +,+ESTIMATED VALUE OF LIGAND CONCENTRATION #+,F110,3,5%,+	47
NUMAER+:13)	47A
504,KA(1),T(1),CXX(1),IRUN(1)	4
(11.F4.0.E15.0.15)	64
(IRUN(I), FQ.2.08, IRUN(I), FQ.5) IRUNMIN(LL)#I	4 9 A
(IRUN(I), FQ. 3.08, IRUN(I), EQ.6) IRUNMAX(LL)=I	4 9 B
CXX(I)=CXX(I)+FACTOR	4 9 C
IF(CXX(1),GT_(0,98+CO(1)))CXX(1)=CO(1)+0,98	491
CX(I)=CXX(I)+C03ZERO(I)	49E
(KA(I),GT_1) GO TO 97 % ALIGGESS(1)=ALIGTPYY(I)	10
CALL ALIGCALC(A1,A2,A3,A4A,A4B,A5A,A58)	स. स
(LABORT.En.0) GO TO 1000	51A
(A1, A2, A4A, A4H, A5A, A5H)	51AA

IF (T(I),E0,~,0)105,103	5148
105 ALIG=ALIGG(I) \$ TIME=T(I) \$ GO TO 988	5 1 8
103 ALIG=(ALIGG(!)+ALIGG(!-1))/2,0 % TIME=T(!)-T(!-1)	510
988 CALL COJCALCIA1, A2, A3, A4A, A4B, A5A, A5B, TIME)	510
IF (LARORT, En. 0) GO TO 1000	የ ህ ጠ
1F (LARORT, Er, 2) 520,521	#2. 64
520 ICONSTEI & IRUN(I=1)=4	516
522 READ 504, KA(1), T(1), CXX(1), IRUN(1)	立 (計 (的
CX(1) = CXX(1) + C032EPO(1)	511
523 Imiconstri « Go to 97	517
521 PRINT 600, KARI), I.T(I), CC(I), CX(I), ALIGG(I), TIME, ALIG	1 0
600 FORMAT(* KAB+, 12; * 18+, 13, * TIMEB*, F6, 1, * C(CALC) B%, E10, 4, * C(FXP)	55
18#1610.4,+ LIGAND CONC.E*,E10.4,+ ELAPSED TIMEE*,F5.1,+ AV, LIGAND	R) 4
2 CONC.=*, E10.4)	9.4A
I=1+1 \$ ALWRATIO(1)=ALMRATIO(1+1) \$ CONCOXYG(1)=CONCOXYG(1+1)	J. C.
CO(I)=CO(I-1) S ALIGTRYY(I)=ALIGTRYY(I-1)	55A
CO32ERO(1)=C-32ERO(1-1) \$ PO 557 LLL=1,10,1	5 58
557 R(LLL,I)=R(LLL,I-1)	55C

	70 TO 107	5 50	
۵ 0	PRINT 146	35 日	
4	FORMAT (+1+)	#U FC	
	IMAX#I+1 S LLMAX=LL+1 f X1=A1 f X2=A2 S X3+A3 f X4A=A44 f X48=A48	36	
	X5A=A5A & V5F=A5R & DO 144 I=1.1MAX	57	
4	PRINT 145,T(1),C02(1),C0L(1),C0L2(1),C0L202(1),C0L2202(1)	BZAA	
4	FORMAT(* TIME =* F6,1,3x,*(C0 2)2+ =+,E11,4,3x,*(C0L)+ =+,E11,4,3x	57AB	
· •	1,*(COL2) =*,F11,4,3X,*(COL2O2) =*,E11,4,3X,*(COL2)2 02 =*,E11,4)	57AC	
	DC 178 L=1, 1 MAX	574	
	r = 0	578	
	DO 109 I=1.1 VAX	58	
	IF (IRUN(I), FQ.1.0R.IRUN(I), EQ.5) LL=LL+1	A 8 A	
	ALIG=(ALIGG(TRUNMIN(LL))+ALIGG(IRUNMAX(LL)))/2.0 S ALIGGG(I)*ALIG	583	
	91=1.0/(A1+A2+AL1G++2)+1.n/(A2+ALI3)+1.0+A3+ALIG+A4A+CONCOXYG(I)	6	
	33=8.0*A4A+A4B+CONCOXYS(I)	46E	
€ #1	4C0TS0=B1++2+B3+C0(I) \$ 60 T0 312	99B	
77	ACOTS9=81*+2+83*CO(1)-93*CC(1-1)+83*CO3ZERO(1)		
<u>د</u>	ACOLSQ=81++2+83+CO(1)-R3+CC(1)+B3+CO3ZERO(1)	61	

92=81**2+83*(CC(I)+C03ZER3(I))	61A
701, ACALSG, ALIG, CC(1)	82
FORMAT(* ***ACOL SQUARED =**F11,3,5%**LIGAND CONC, B**E11,3,5%,*CO	63
9ALT(III) **,E11.3,/,* THIS PROGRAM IS BEING APORTED SINCE ONE OF	4
SQUARE RADIS IS IMAGINARY. + , 27x . + KNFTHULT CARD 65+)	65
1002	99
(ACOTSO)7^6,710,710	67
707, ACATSQ; CC(1)	%
FORMAT(* *,*ACOT SQUARED =*,E11,3,5x,*COBALT(III) CALC. =*,E11,3,/	%
THIS PROGRAM IS BEING ABORTED SINCE ONE OF THE SQUARE ROOTS IS	7 3
21MAGINARY.+,27x,+KWFTMULT CARD 71+)	71
1002	72
ACOL=SORTF(AFCLSO) \$ ACOT=SORTF(ACOTSO)	73
2.0+44A+COVCOXYG(1)+A59+(CO(1)+CO3ZERO(1))	4
5A/2,0-A59+R1/(2,0+A48) \$ C=A58/((+4,0)+A48)	75-76
CONSTESORTF(8*+2*4.0+A+C)	77
12=(-1,1)+8+81/(A+CONST)	78
TIBEN=2,8+6+64C0T+A1)+R+C3VST \$ EXP2=B1/A \$ T2NUM=(ACOT+919++2	19

€	39	9.5	W	6 0 4	60	80	87	c O	%	o	91	95	93	4	9 5	9 6	0.7
T2DEV=C+(ACOT-81)++2+8+(ACOT-81)+A	T3NUM#2.0+C+(ACOL+B1)+B+CONST	74NUM=(ACOL-¤1)++2 % T4DEN=C+(ACOL-B1)++2+8+{ACOL+B1)+A	T1=T1NUM/T1DFN & T2=T2NJM/T2EEN \$ T3=T3NUM/T3DEN	74=744UM/T4DSN R T13=T1/T3 R T24=T2/T4	P81=0.0 5 PA=0.0 4 D83=8.6+A4A+CONCOXYG(I) 4 DCO3=0.0	JC=0,0 ← D92=8.0+A4A+CONCOXY6(I)+(CO(I)+CO32ERO(I))	78=A58*81/(2.0*A48**2)	DExP11=(4.0*A*DC+4.0*C*DA-2.0*B*DB)/(B**2-4.0*A*C)**1.5	DEXP12=(B*B1+(A*(2.0+B+DB+4.0*A*DC-4.0+C+DA)/(2.9+CONST)+CONST+DA)	1#A+CONST+(R*181+R1+DR))/(A+CONST)++2	JT1NUM=2.0+C+(DB2/(2.0+ACOT)-DR1)+2.3+DC+(ACOT+B1)+DB+(2.0+B+DR-4.	13*A*DC*4,0*C*DA)/(2,6*CONST)	DT1DFN=2,0+C+(DB2/(2,0+ACOT)-DB1)+2,0+DC+(ACOT-B1)+DB+(2,0+B+DP-4,	13*A+DC*4,0+C+DA)/(2,0+CONST)	9T2NUM±2,0+(ACOT-81)+((D82+C03ZERO+D83)/(2,0+ACOT)+D81)	9T2DE\=2,0+C+((DR2-C03ZERO+DR3)/(2,C+ACOT)+DR1)+DC+(ACOT-B1)++2+R+	1((DB2-CO3ZER-+DB4)/(2.º+ACOT)-PB1)+DB+(ACOT+R1)+DA

6 € 0 *	6	0 C \$	101	102	103	404	105	4 06	107	103	109	110	111	112-223	112	113-22	225
0Exp2=(A+D-1-81+DA)/A++2	JT3NUM=2,0+C+((DR2+B3+DC03+CC(I)+DB3)/(2,0+ACOL)+DB1)+2,0+(ACOL+R1	1)+DC+D3+(2,0+B+DR+4,2+A+DC+4,0+C+DA)/(2,0+CONST)	5T3DFN=2,0+C+((DR2-B3+PC03-CC(I)+DB3)/(2,0+ACOL)+DB1)+2,0+(ACOL-P1	1)*DC+DB+(2.0+6*DR+4.6*A*DC+4.0*C+DA)/(2.0*CONST)	3T4NUM=2,0+(ACCL-81)+((D82-83+DC33-CC(1)+D83)/(2,0+ACOL)+D91)	DT4DEN=2,0+C+(ACOL+B1)+((DB2+B3+DCO3+CC(I)+DB3)/(2,0+ACOL)+DB1)+DC	1+(ACOL+B1)++2+P+((DB2+B3+DCO3+CC(I)+DB3)/(2.0+ACOL)+DB1)+(ACOL-B1)	2+D8+DA	DFUNCT=((EXP11+EXP12)/T13)+((T1DEN+T3NUM+(T1NUM+DT3DEN+T3DEN+DT14U	1M)-T1NUM+T3DFN+(T2PEN+PT3NUM+T3NUM+DT1DEN))/(T1DEN+T3NUM)++2)+L0GF	2(T13)*(DEXP14+DEXP12)+(EXP2/T24)+((T2DEN+T4NUM+(T2NUM+DT4DEN+T4DEN	3+DT2NUM) = T2N:IM = T4DEN = (T2DEN = PT4NUM + T4NUM = DT2DEN))/(T2DEN + T4NUM) = +2	4)+LOGF(T24)+rEXP2	DF!!NCK48*DFUncT	J81≖0.0 \$ r82=0.0 \$ D33=0.0 \$ DA=0.u \$ D8=0.5	DC=0.0	DEXP11=(4.n+a+FC+4.n+C+Da-2.n+P+DB)/(B++2=4.0+A+C)6+1.5

6	
on 4	1+(4COL+B1)++>+P+((PB2-F3+DCO3-CC(I)+DB3)/(2.0+ACOL)+DB1)+(ACOL-B1)
2	DT4DEN=2.0+C+(ACOL-81)+((D82-83+DCO3-CC(1)+D83)/(2.0+ACOL)+D81)+DC
5]
2	1)*DC+DB+(2.0+B*DB-4.0*A*DC-4.0*C*DA)/(2.0*CONST)
ev E)	DT3DEN=2,0+C+((DB2-B3+DC03+CC(I)+DB3)/(2,0+ACOL)+DB1)+2,0+(ACOL-R1
64	1) * DC * DB * (2, 0 + B * DB * 4, 0 * A * DC * 4, 0 * C * DA) / (2, 0 * C ONST)
64	JT3NUME2,0+C+((DR2-83+DC03-CC(I)+DB3)/(2,0+ACOL)-DB1)+2,0+(ACOL-81
Q)	DExP2=(A+DA1+B1+BA)/A++2
<u>~</u>	1((D82-C0325Rn+F83)/(2,f+ACCT)-D81)+D8+(ACOT+R1)+DA
N	JT2DEV=2,0+C+((DR2+CC3ZER3+DR3)/(2,0*ACOT)+DR1)+DC+(ACOT-81)++2+8*
6)	ST2NUM#2,0+(ACOT-81)+((DR2+C03ZER0+D83)/(2,0+ACOT)+D81)
8	13+4+DC+4,0+C+DA)/(2,0+COVST)
•	<pre>311DEN=2.0+C+(PB2/(2.n+AC3T)-DB1)+2.0+5C+(AC0T-B1)+DB+(2.0+B+DB+4.</pre>
2	13+4+DC-4,0+C+DA)/(2,5+CONST)
25	<pre>J11NUM=2.0+C+(PB2/(2.n+ACJT)+DR1)+2.0+DC+(ACOT+B1)+DR+(2.0+B+DR+4.</pre>
8	1•A+CONST+(A+PB1+B1+DP))/(A+CONST)++2
25	DEXP12=(R+31+(A+12,A+B+DB+4,B+A+BC-4,0+C+DA)/(2,0+CONST)+CONST+DA)

244	84 5	246	247	24 8	4 4	253	251	252	253	254	255	256	257	8 1	259	560	261
DFUNCTB((EXP41+EXP12)/T13)+((T1DEN+T3NUM+(T1NUM+DT3DEN+T3DEN+DT1NU	14)-T11UUM+T3DFN+(T2DEN+DT3NUM+T3NUM+DT1DEN))/(T1DEN\$T3NUM)++2)+L0GF	2(T13)*(DEXP14+DEXP12)+(EXP2/T24)*((T2DEN+T4NUM*(T2NUM*DT4DEN+T4DEN	3+DT2NU4)=T2NUM+T4DEN+(T2DEN+PT4NUM+T4NUM+DT2DEN))/(T2DEN+T4NUM)++2	4)+LOGF(T24)+mExP2	DFUNCK5A*DFUNCT	D81=0,0 \$ P82=4,7 \$ D83=0,4 \$ D8#81/(42.0)*A48) \$ DC03=0,	Da=2,0+A4A+CrncoxYS(1)+(C3(1)+C03ZERO)	?ExP11=(4.0+4+FC+4.0+C+DA-2.0+B+DB)/(B++2-4.0+A+C)4+1.5	CEXP12=(R+R1+(A+(2.0+B+DB+4.0+ADC-4.0+C+DA)/(2.0+CONST)+CONST+DA)	1#A+CONST+(R+MB1+B1+DB))/(A+CONST)++2	D71NUM=2,0+C+(D82/(2,n+ACOT)+D81)+2,0+DC+(ACOT+81)+DR+(2,0+8+D9-4,	10*A*DC*4,0*C+DA)/(2,0*CONST)	DT1DEN=2,0+C+(DB2/(2,0+ACOT)+DB1)+2,0+DC+(ACOT+B1)+DB+(2,0+B+DR+4,	10+A+DC-4,0+C+DA)/(2,0+CONST)	DT2NUM=2.0+(ACOT-B1)+((DB2+CO3ZERO+DB3)/(2.0+ACOT)+DB1)	DT2DEN=2.0+C+((D82+C03ZERO+D83)/(2.0+ACOT)+D81)+DC+(ACOT-81)++2+8+	1((DB2-C032ER-+[BX)/(2.0+ACOT)-DB1)+DB+(ACOT+R1)+DA

JEXP2=(A+D91+B1+DA)/A++2	292
DT3NUM#2.0+C+((DR2-83+DC03-CC(I)+D93)/(2.0+ACOL)+D81)+2.r+(ACOL-R1	263
1)*DC+D9+(2,0+B+DR+4,0+A+DC+4,0+C+DA)/(2,6+CONST)	264
3T3DEN≖2,0+C+((DR2-83+DC33-CC(I)+DB3)/(2,0+ACOL)+DR1)+2,0+(ACOL+R1	265
1)+PC+DB+(2.0+B+DB+4.0+A+DS+4.0+C+DA)/(2.0+CONST)	566
PT4NUM#2.0+(ACOL-B1)+((DB2+B3+DCO3+CC(1)+DR3)/(2.0+ACOL)+DB1)	267
]T4DEN#2,0+C+(ACOL-B1)+((D92-B3+DCO3-CC(I)+DB3)/(2:0+ACOL)+DB1)+DC	268
1+(ACOL+B1)++2+8+((JB2-83+)CO3-CC(I)+DB3)/(2,0+ACOL)+931)+(ACOL+B1)	569
2+D9+DA	270
JF!JNCT=((ExP11+ExP12)/T13)+((T1DEN+T3NUM+(T1NUM+DT3DEN+T3DEN+DT1\U	271
14)-T1VUM+T3DEN+(T2DEN+DT3VUM+T3NUM+DT1DEN))/(T1DEN+T3NUM)++2)+LOGF	272
2(T13)+(DEXP1=+DEXP12)+(EXP2/T24)+((T2DEN+T4NUM+(T2NUM+DT4DEN+T4DEN	273
3+DT2NUM) =T2N:IM+T4DEN+(T2DEN+DT4NUM+T4NUM+DT2DEN))/(T2DEN+T4NUM)++2	274
4)+L0SF(T24)*nEXP2	275
DFUNCKSB#DFUNCT	276
SB1z0.0 \$ PB2z0.1 % DB3z0.0 % DAz0.0 % DBző.0 \$ DCz0.0	277
JCJ3=1.0	278
JEYP11=(4,0+6+DC+4,0+C+DA-2,0+B+DB)/(8**2-4,0+A+C)4+1,5	279

DEXP12=(8*91+(A*12.0+8+D9-4.0*A*DC-4.0+C+DA)/(2.0+CONST)+CONST+DA)	280
-A+CONST+(R+nB1+R1+DP))/(A+CONST)++2	261
DT1NUME2.0+C+(BB2/(2.0+ACOT)+DB1)+2.0+DC+(ACOT-B1)+D9+(2.0+3+D9+4.	282
3*A*DC-4.0*C+DA)/(2.3*CONST)	283
JT1DEN=2,0+C+(BB2/(2,0+AC3T)-DB1)+2,0+BC+(AC0T-B1)+DR+(2,0+B+D9+4,	288
0*A*DC-4,0+C+DA)/(2,5+CONST)	8 8 5
DT2NUM=2,0 • (ACCT • B1) • (PB2/(2,0 • ACOT) + DB1)	888
DT2DEN=2,0+C+(DB2/(2,0+AC3T)-DB1)+DC+(AC0T-B1)++2+B+(DB2/(2,0+ACCT	287
)+DB1)+DR*(A^OT-91)+DA	288
DEXP2=(A+DR1+B1+PA)/A++2	8 8 8
DT3NUM#2.0+C+((DR2-83+DC03-CC(I)+D83)//2.0+ACOL)+D81)+2.6+(ACOL-R1	0 6 2
)+DC+D8+(2,0+8+DA+4,0+A+DC-4,0+C+DA)/(2,0+CONST)	291
DT3DEN=2.0+C+((DR2-83+DC03-CC(I)+D83)/(2.0+ACOL)+D81)+2.0+(ACOL-R1	92
)*PC+DB+(2,0+B*DB-4,0*A*DC-4,0+C+DA)/(2,0+CONST)	293
DT4NUM=2.0+(ACGL-B1)+((DB2-B3+DCO3-CC(I)+DB3)/(2.0+ACGL)-DB1)	294
DT4DEN=2.0+C+(ACOL-81)+((D82+83+DCO3+CC(1)+D83)/(2.0+ACOL)+DR1)+DC	295
-(ACOL-81)++>+F+((P82-93+DCO3-CC(1)+D83)/(2.0+ACOL)+981)+(ACOL-81)	962
:•DR+DA	297

	DFUNCT#((Exp11+Exp12)/T13)+((T1DEN+T3NUM+(T1NUM+DT3DEN+T3DFN+DT14U	с Э
	1M) = T1NUM = T3DEN = (T2DEN =)T3NUM = T3NUM = DT1DEN))/(T1DEN = T3NUM) = +2) + LOSF	662
	2(T13)*(DEXP1j+PEXP12)*(EXP2/T24)*((T2DEN*T4NUM*(T2NUM*DT4DEN+T4DEN	300
	3*DT2NUM)+T2NHM*T4DEN*(T2TEN*ST4NUM+T4NUM*DT2NEN))/(T23EN*T4NUM)**2	301
	4)+LOGF(724)*rExP2	808
	DFUNCC03#DFUNCT	80.00
	AA(I,1)=DFUNCK4B/DFUNCCO3 5 AA(I,2)=DFUNCK5A/DFUNCCO3	808
	AA(I,3) #DFUNFK5B/DFUWCCO3	305-307
109	AA(I,4)=CX(I)-CC(I)	808
	DO 110 J=1,4	8 00
	DO 110 K=1.4	10
	ロヸ゚゙゚゙゙゙゙゙゙゙゙゙゙゚゚゚゙゙゙゙゙ヿ゚ヺ゚゚゚゙゙゙゙゙゙゙゚゚゚゚゙゙゙゙゙゙゚゚゚゚ヹ゚゚゚゚゚゚゚゚゚゚	311
	DO 111 I=1, I AX	312
	IF (KA(1), EQ_1) 60 TO 111	813
	√ () ± M () ± M () • M ()	314
111	CONTINUE	315
110	CONTINUE	316
	00 112 J≠1,3,1	317

JO 112 K=1,3,1	318
(X*)HH(X*)	319
112 CONTINUE	820
CALL DIERM (NN. BR.D)	321
IF (ABSF(D), IT, ARSF(DMIN)) GO TO 190	322
FO 113 J#1,3,1	823
DO 113 K=1,3,1	824
(X*C)X=(X*C)BC	\$25
113 CONTINUE	326
00 114 J*1,3,1	327
RB(1,1) = M(1,4)	328
114 CONTINUE	829
CALL DTERM (NN.88,51)	029
no 115 J=1,3,1	331
DO 115 K=1,3,1	232
(X*7)##(X*7)8e	333
115 CONTINUE	334
00 116 J≈1,3,1	335

1,x58	388
509 FORMAT (/.+ NETERMINANT =+,E13.6,4X,+OLD K4A =+,E14,6,4X,+OLD K48	387
18+2E14.624x2+OLD K5A =+2E14.624X2+OLD K5B =+2E14.62/261X2+DK48 =+2	8 9
ZE14.6,7X,+PKSA =+,E14,6,7x,+DK9B =+,E14,6,1,31X,+NEW K4A =+,E14,6,	€ 60 60
34xs*NEW K4R m*sE14.624xs*NEW K5A m*sE14.624Xs*NEW K5B m*sE14.63	390-391
DDC1=0 \$ DDC2=0 \$ IM=0 \$ LL=0	392
126 70 199 I=1.1 WAX \$ IF (T(I).E0.0.0)530.531	262
530 ALIGEALIGG(1) S TIWE=T(1) S GO TO 533	10 4
531 ALIG=(ALIGG(1)+ALIGG(1-1))/2.0	800
533 CALL CO3CALC (X1,X2,X3,X4A,X4B,X5A,X5B,TIME)	968
IF (LABORT, En. 0) GO TO 1002	297
190 DDC(I)=CX(I)-CC(I)	800
IF (KA(I), EQ. 1) GO TO 160	399
DDC1#DDC1+AB4F(DDC(1)) \$ DDC2=DDC2+DDC(1)++2 \$ IM#IM+1	0.0
IF(X1.LT.OAR.X2.LT.O.AB.X3.LT.O.ABA.LT.Ö.AB.LT.O.ABR.X	401
15A.LT.OOR.X5R.LT.O.)198,550	400
198 PRINT 197	403
197 FORMAT (* +, * VALUES ARE NOT PRINTED SINCE ONE OR MORE OF THE SIX	4 0

1CONSTANTS ARE REGATIVE. +)	₹ ₽
30 TO 162	436
550 IF (IRUN(I),FG.1.0R.IRUN(I),EQ.5)551,160	407
551 LL=LL+1	4074
PRINT 552, (A(LLL,I))LLL=1,10),CO(I),ALMRATIO(I),ALISTRYY(I),CONCO	4C78
1×YG(I), ALIGGR(I), LL	4070
552 FORMAT (1H .1048;/.+ TOTAL COBALT =+,E10,3,5%.+LIGAND TO METAL RAT	4070
110 =+,F3,+ Th 1+,5%,+ INITIAL GUESS OF LIGAND CONC. =+,E13,3,/,+ 0	407E
2XYGEN CONC. =*,E10,3,5%,*LIGAND CONC, USED IN LEAST SQUARES CALC =	437F
3*, E10, 3, /, * EXPERIMENTAL DATA SET NUMBER *, I3, *, *, *)	4076
PRINT 500	407H
509 FORMAT (/,1x;3HFIT,2x,4HTIME;3x,8HDDC/DK48,4x,8HDDC/DK5A,4x,8HDDC/	4671
1DK58,4x,7HC(ralc),5x,6HC(ExP),4X,10HDIFFERENCE,4X,4NEW CORALT 3+,	407
2/.84x, + (LESS COBALT 3 ADDED INITIALLY)+,/)	₩0.
160 G03(I)=CC(I)=C03ZEP0(I)	408A
PRINT 510, KARI), NT. AA(I,1), AA(I,2), AA(I,3), GC(I), CX(I), DDC(I), CO3(0 0 4
11)	V 6 0 V
510 FORMAT (1X,114,3X,14,7(2X,E10,3))	410

199 CONTINUE	411
DDC1=DDC1/IM \$ DRC2=SGRTF(DDC2)/IM	412
PRINT 511,00-1,00C2	413
511 FORMAT(/,25x,20HMEAN DEVIATION #,E15,4,/,25x,20HSTANPAPD DEVIA	4 1 4
77ION =, E15, 4; /)	415
IF(ABSF(DK5A).LT.DXMAX6,AV5,ABSF(DK59).LT.DXMAX7)651.170	416-418
651 PRINT 652	419
652 FORMAT (* **+THE ABOVE VALUES OF K1 TO K58 ARE THE CONVERGED VALUE	420
15,+)	421
30 TO 1002	422
162 XX1ma1 % XY2=A2 % XX3=A3 % XX4B=A4B+AD5	423
XX4A=7.2+10++6/XX49 & XX5A=A5A+AD6 % XX5B=A58+AD7 % X1=XX1	424
X2#XX2 % X4#XX3 % X4A#XX4A % X4B#XX48 % X5A#XX5A	425
X58=XX58 & A1=X1 & A2=X2 & A3=X3 S A4A=X4A F A48=X48	426
ASAEXSA S ASPEXSR	426A
PRINT 164, x1, x2, x3, x44, x43, x54, x5B	427
164 FORMAT(* ****1 =*,E11,3,* X2 =*,E11,3,* X3 =*,E11,3,* X4A =*	428
1,E11,3,* X48 =+,E11,3,* X5A =+,E11,3,* X58 =4,E11,3)	429

1F(x1,LT.0.,^R,X?.LT.A.,O3.X3.LT.0OR.X4A.LT.0OR.X49.LT.0	2.x 4.5
15A.LT.9.,0R. Y5R.LT.A.)759,128	431
75r BRINT 752	432
752 FORMAT(* *,*THIS CALCULATION IS REING ABORTED SINCE THE CORRECTION	DN 433
1 TERMS PROPUCES A MEGATIVE CONSTANT.+)	434
30 TO 1002	435
128 0 163 [#1,] "AX \$ IF (T(!), E9.0.0)534,535	436
534 ALIG=ALIGG(1) \$ TIME=T(1) \$ GO TO 536	436/
535 ALIG=(ALIGG(1)+ALIGG(1-1))/2.0	4 368
536 CALL CO3CALC (X1,X2,X3,X4A,X48,X5A,X5B,TIME)	437
IF (LABORT, Eq. 0) GO TO 1602	43 3
163 CONTINUE	430
170 CONTINUE	4
PRINT 512, LMAX	441
512 FORWAT(/,1x,12, + ITERATIONS WITHOUT CONVERGENCF+,/)	4 4 2
30 TO 1002	443
180 PRIN 513,7	444
513 FORWAT(/,+ THE DETERMINANT IS TOO SMALL*,/,+ D **,E15.6,/)	4 4 7

30 TO 1002	4. 4.
1000 IF (L.FO.0)1063,1032	447
1003 READ 1001, KA(I), T(I), CXX(I)	4 &
1881 FORMAT (11,F4,0,E15,3)	4 4
IF (KA(I), EQ_1)GO TO 1003	4 20
READ 500, (R(LLL'I),LLL=1,10)	451
READ 227, ALMRATIO(1),CO(1),ALIGTRYY(1),CONGOXYG(1),CJ3ZFRO(1)	451A
IF (ALMRATIO(1), EQ.0,0)131211693	524
1002 CONTINUE	4 7.0 7.
באש	454

To convert "Derivg" to "Derivh" the following computer cards must be changed: (the numbers at the right are for identification only)

75-76	87
C=A5B/((-4.0)*A4B)	
-4.0*A5B*A4A*B1/B3 §	(2.0*A4B**2)
=A5A/(2.0*A4B)-	(A5B*B1-A5A)/(
<u>"</u>	DB=

		SUPROUTINE DIEFM (NN, A,D)	**
		COMMON T(500), CC(5:0), CX(500), LARORT, I, LTEST, ALIG, A1H, A2H, A3H, HCON	~
		15.N,ALIGGESS111),ALIGG(510),ALHRATIO(500),R(10,590),L,CONCOXYG(590	8
		2),LL,CO(50m);CC3ZEPO(5~m),CXX(500),CO2(500),COL(505),COL2(500),COL	€
		3202(500),60L2202(500)	M
		DIMENSION A(4,3)	M
O		EVALUATION OF A 3 8Y & DETERMINANT.	4
)=1.	r
	с Ħ	DO 34 MKE1,NV	·
		Αρ m O	~
		2	α.
		30 12 K=MM,NV	σ
		IF (2-ABSF(A(K, M4)))11,12,12	C
	11	7HABSF(A(K,ME))	त स
		Y a a Y	42
	12	CONTINUE	₩
		IF (MM+KP)13,20,20	4
	M	JO 14 JEMM,NA	15

3

42

56

ZHA(MM, U) HA(KP", U)
A(MM, U) HA(KP", U)

20 IF (MM-NV)31,40,40 31 LP1#MM+1

0==0

ت **د** 21

22

ا ا

30 34 KELP1, 'N

IF (A(K, MM)) 72,34,32

32 RATIOHA(K, MM)/A(MM, MM)

DO 33 JELP1, NN

33 A(K, J) #A(K, J) . PATIO * A(L, J)

34 CONTINUE

40 DO 41 KH1, NN

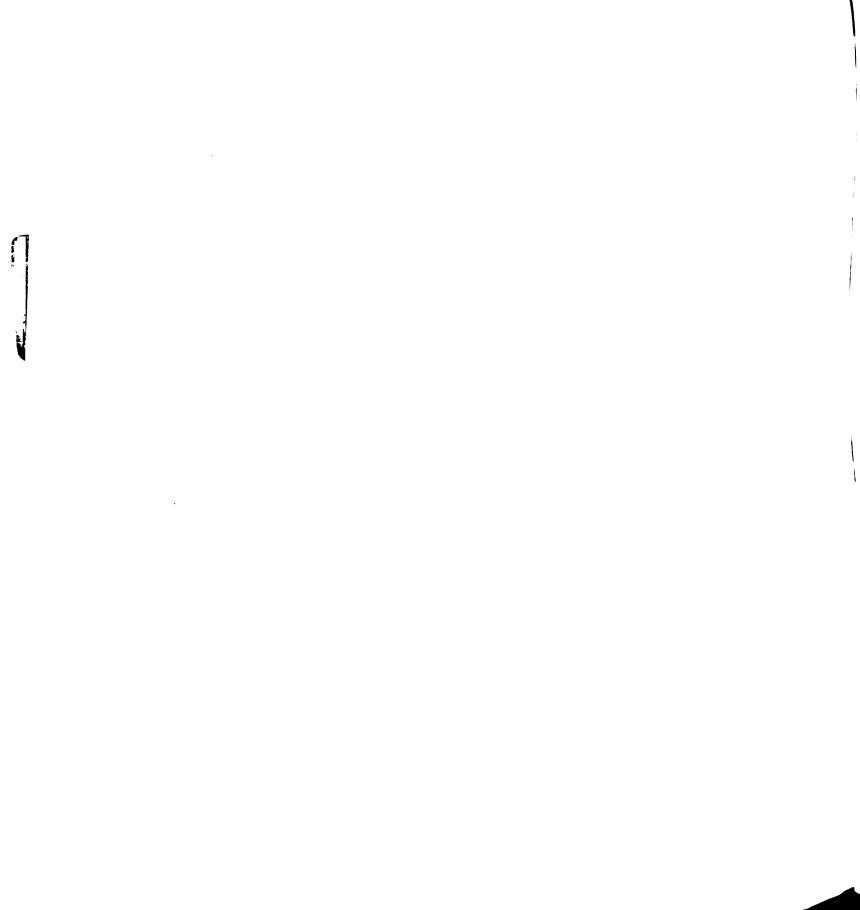
41 DEDAA(K.K)

ر ا ا

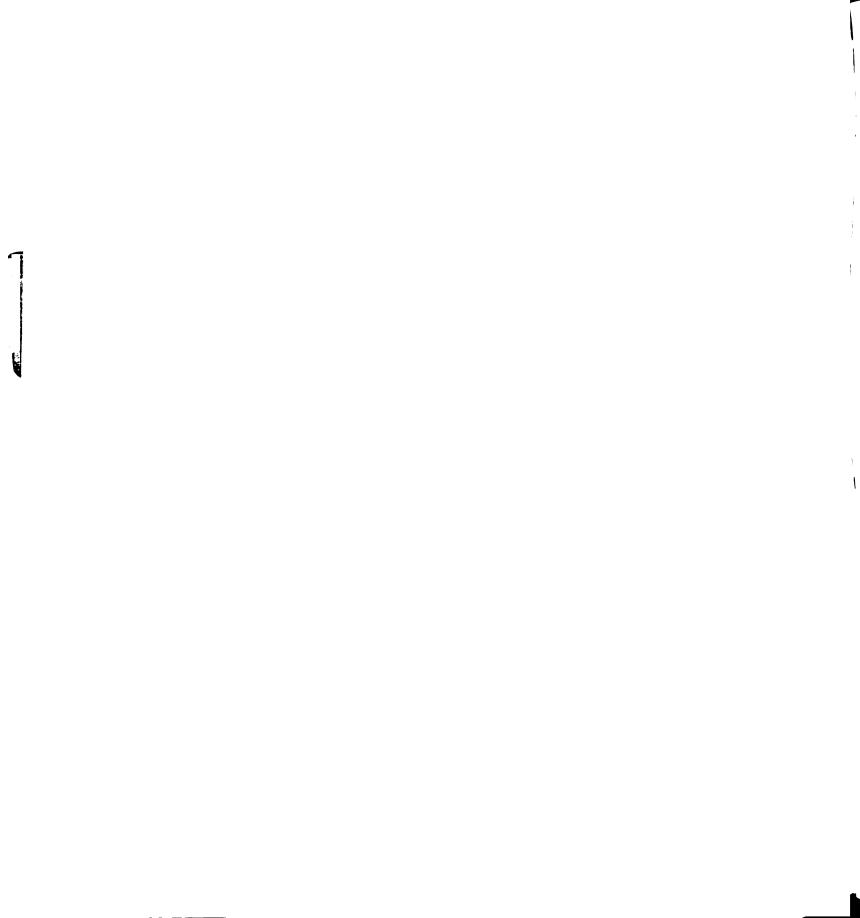
RETURE

58

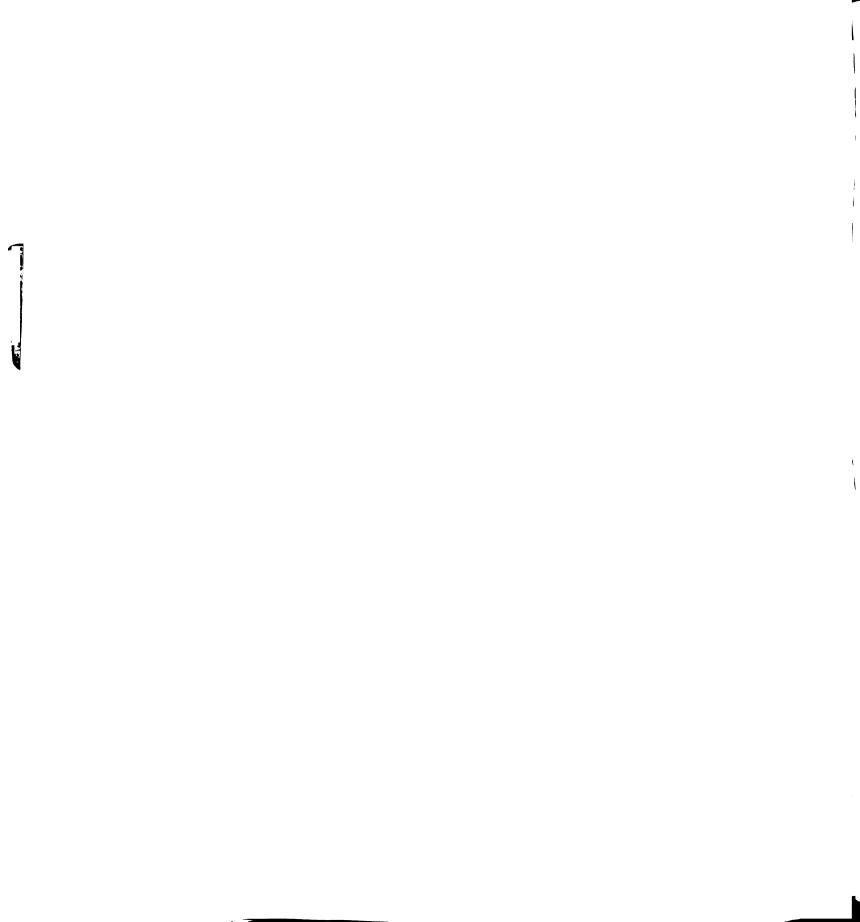
27

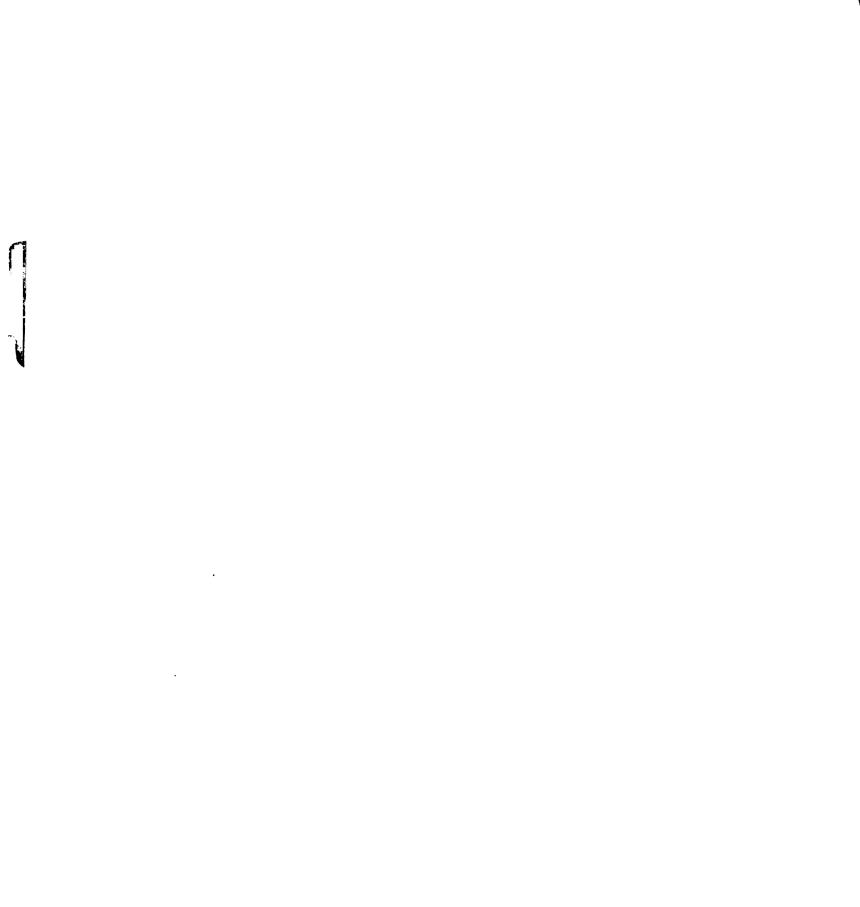

58

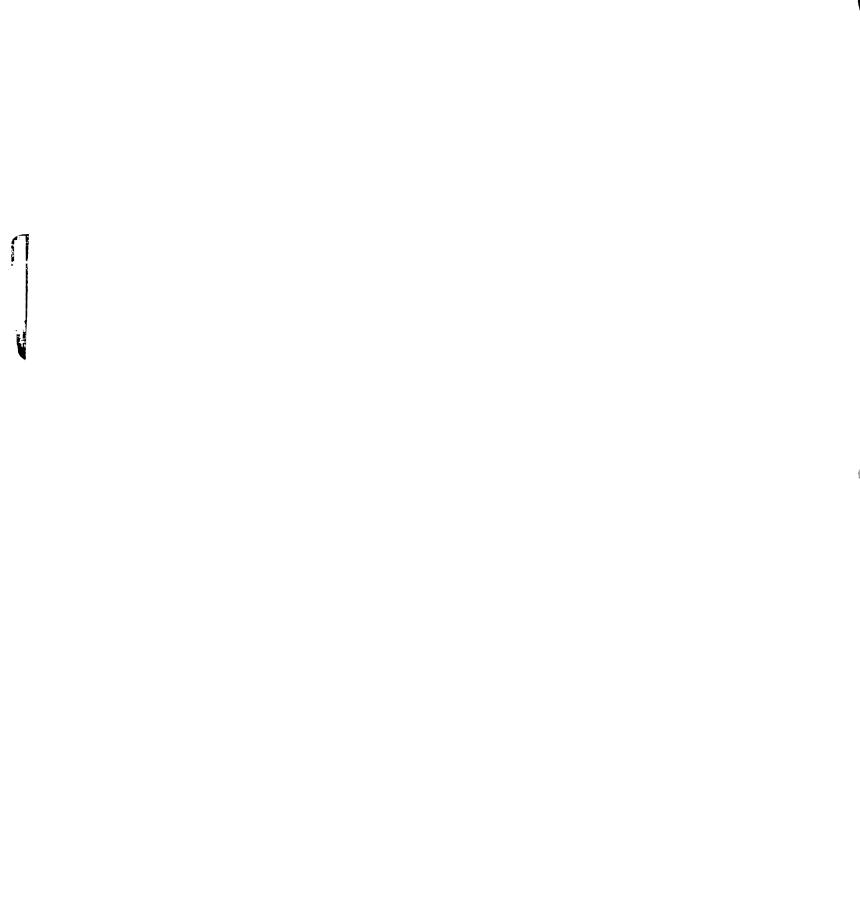
(I)


Ŀ

	SUPROUTINE ALIGCALC (A1,A2,A3,A4A,A48,A5A,A5B)	₩1
	COMMON T(500), CC(590), CX(500), LABORT, I, LTEST, ALIG, A1H, A2H, A3H, HCON	8
	1C.N.ALIGGESS(11);ALIGG(500),ALMRATIO(500),P(10,500),L.CONCOXYG(500	2 A
	2).LL,G0(500),C037E90(5^0),CXX(900),C02(505),C0L(500),C0L2(500),C0L	8
	3202(500),60L2262(5:0)	ю
U	ONLY FOR A LIGAND TO METAL RATIO OF EQUAL TO OR GREATER THAN 2 TO 1.	
U	CHLY FOR A LIGAND TO METAL RATIO OF EQUAL TO OR GREATER THAN 2 TO 1,	
U	PALY FOR A LIGAND TO METAL RATIO OF EQUAL TO OR GREATER THAN 2 TO 1.	
	IF (ALMRATIO(1), LT, 2, n)14,13	A &
	14 PRINT 15	8 0
	15 FORMAT (* +,+ THERE IS AN ERROR IN THE VALUE OF THE LIGAND TO META	S
	1L RATIO. +)	S)
	GO TO 3	W
	13 DO 1 NH1,10,4	4
	D=1.0/(A1*A2+ALIGGESS(N)+*2)+1.0/(A2*ALIGGESS(N))+1.0+A3*ALIGGESS(M /
	12)+A4A+CONCOXYG(1)	v
	ACOL=SARTF(D++2+9.0+A44+A4B+CONCOXYG(I)+(CO(I)-CXX(I)))	^
	Esalmratio(1)/(Aj*A2*AliGGESS(N)*+2)+(Almratio(1)+1,0)/(A2*AliGGES	αc

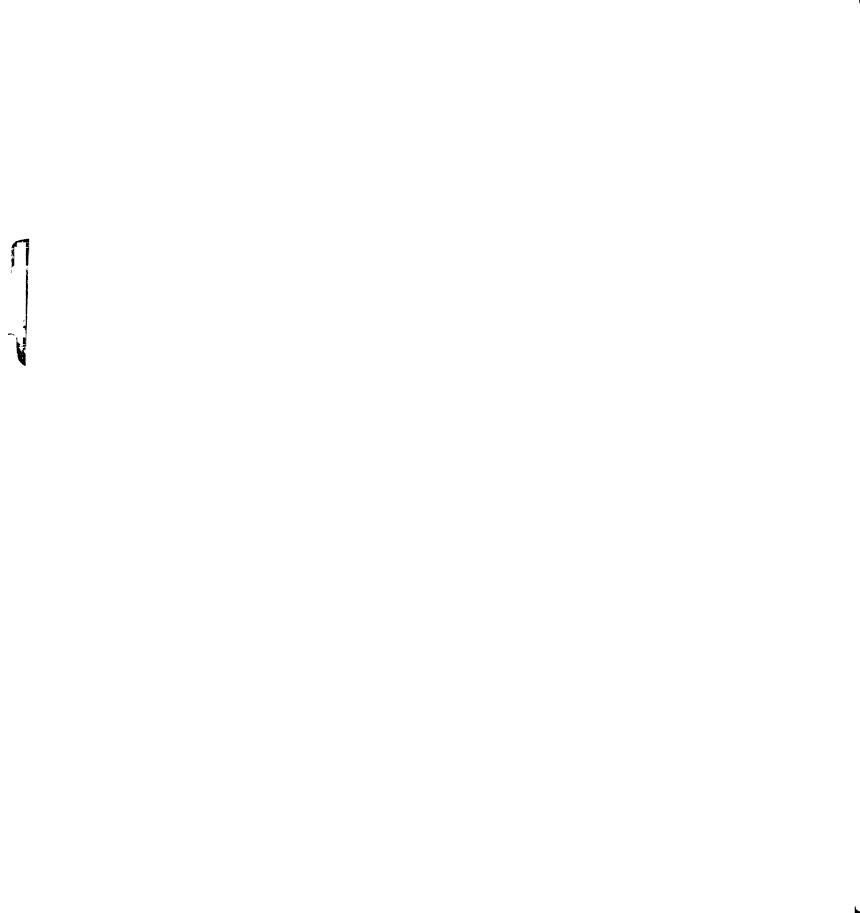

CN	10 ADIFRATI=(ALTGRESS(N+1)-ALIGGESS(N))/ALIGGESS(N)
2	1 GUESS OF LIGAND CANG, **, E11.3)
2	11 FORMAT(* *,** =*,13,5x,*OLD GUESS OF LIGAND CONC. =*,E11.3,5x,*NFW
2	16 PRINT 11,N, ALIGGESS(N), ALIGGESS(N+1)
41	IF (LTEST.EG. 2.0R.LTEST.EG.1.AND.L.GT.0)16,10
**	ALIGGESS(N+1)=ALIGGESS(N)-FLIG/DFLIG
H	2L+D)+(F+D+F/ACOL)/(4.0+A4A+CONCOXYG(I)+A4B)-AH
न	11) * 448) "D*F/ (4, 0 * 44*CONCOXYG(1) * 448*ACOL) } + (ALMRATIO(1) - 2, 0) * (ACO
7	DFLIG=G+(ACOL-D)/(4,5+A4A+CONCOXYG(I)+A4B)+E+(F/(4,0+A4A+C∩NCOXYG(
**	23(1)-2.0)+CX×(1)-ALIGGESS(N)+AH
↔	1XYG(1)+A4B))++2+(2.0+ALMRATIO(1)-4.0)+A4A+CONCOXYG(1)+A4P+(ALMRATI
*	FLIG=(ACOL-D)+E/(4.0+A4A+CONCOXYG(I)+A4B)+((ACCL+D)/(4.0+A4A+CONCO
+	F=2.0/(A1+A2+ALIGGESS(N)++3)+1.0/(A2+ALIGGESS(N)++2)+A3
•	19ATIO(1)-1.01/(A2+4LIGGESS(N)++2)
77	G=(ALMRATIO(!)+3.0)+A3-2.0+ALMRATIO(I)/(A1+A2+ALIGGESS(N)++3)+(ALM
₹1	AHH1.0+A1H+HCONC+A1H+A2H+HCONC++2+A1H+A2H+A3H+HCONC++3
6	2)-2.0)*A4A+C^NCO×Y6(1)
O.	1S(N))+ALMRATIO(1)-2.8+(ALMRATIO(1)-3.6)*A3+ALIGGESS(N)+(ALMRATIO(1


₩	20	26	27	\$ €	29	N	31	N	SS 33	k) 4			इन् र	۵	2 A
ADIFRAT2=(ALIGGESS(N+1)+ALIGGESS(N))/ALIGGESS(N+1)	IF (ABSF (ADIFRAT1).LT.(0.901*ALIGGESS(N)),AND.ARSF (ADIFRAT2).LT.(0.	1901+ALIGGESS(N+1)) 18,1	1º ALIGG(I)#ALIGGESS(%+1) % GO TO 3	1 CONTINUE	DRINT 2	2 FORMAT (+ +, +THIS PROGRAM IS BEING ABORTED SINCE THE LIGANT CONCEN	1TRATION CAWNOT BE CALCULATED. +)	LABORT=0 & GC TO 4	3 LABORT=1	4 CONTINUE	2 COLUMN TO THE PROPERTY OF TH		SUBROUTINE CASCALC(A1, A2, A3, A4A, A4B, A5A, A5A, TIME)	COMMON T(500), CC(500), CX(500), LABORT, I, LTEST, ALIG, A1H, A2H, A3H, HCON	15.N, ALIGGESS111), ALISG(500), ALWRATIO(500), R(10,500), L, CONCOXYG(5°C


21) =+,E15,6,+THIS PROGRAM IS BEING ABORTED SINCE THE SQUARE ROOT I	4 8
35 IMAGINARY, +, 13x, +CO3CALC CARE 19+)	19
60 TO 250	8
410 CEASB/((-4,0)*A4R) & ACOLESGRTF(ACOLSG)	21
A=2,0*A4A+COvccxYG([)*A5B+(CO([)+CO3ZERO([))	21 A
B=A5A/2,0+A5A+F1/(2,5+A48) \$ CONSTSQ=B++2+4.0+4+C	218
ACOT#SORTF(ACOTSO) & IF (CONSTSO)411,413,413	210
411 PRINT 412, A, C, B, CONSTSD	210
412 FORMAT (* ***A =**F11,3,5x**C ***E11,3,5x**B =**E11,3,5x**CONSTSO	21E
1**,E11,3,/,* THIS PROGRAM IS BEING ABORTED SINCE THE SQUARE ROOT I	21F
25 IMAGINARY, +, 35x, + CO3CALC CARD 213+)	216
60 10 250	214
413 CONSTESORTF(R**2+4.0*A+C) \$ U1=TIME	25
U2 = (2,0/C^N <t+b+b1 (2,<="" (a+const))+logf(((2,0+c+(acot+91)+b+const)="" td=""><td>23</td></t+b+b1>	23
1+C+(ACOT=B1)+B+CnNST))/((2.+C+(ACOL=B1)+B-CONST)/(2.0+C+(ACOL+B1)+	23A
29+CONST)))+(91/A)*LOGF(((ACOT-B1)*+2/(C*(ACOT-B1)*\$2+8+(ACOT-B1)+A	23B
3))/((ACOL-P1)++2/(C+(ACOL-P1)++2+8+(ACOL-B1)+A)))	() () ()
IF (L.EQ.0)5-4,5"1	230

7. 4.0	I TE EXPONENT FAULT 500,501	23BA
503	BOLLNIA SOU	23E
503	S FORMAT (* THERE IS EITHER AN EXPONENT UNDERFLOW OR EXPONENT OVERFL	23F
	104 IN THE CALCULATIONS FOR THE NEXT DATA POINT. * . Z. * THEREFORE THI	233
	2S DATA SET IR REING ABORTED. +)	23H
	LARORT#2 & GO TO 201	231
501	JUDIFF=U2-U1 \$ CHANGE=1.0 F LSTEP=24	4
	IF (LTEST.F3]2.08.LTEST.EQ.1.AND.L.GT.0)2007,482	25
2007	PRINT 2000,CC(1),U1,U2,UDIFF,KK,LSTEP	56
2000	FORMAT(* *** CC(]) =**E15*6*5X**U1 =**E15*6*5X**U2 =**E15*6*5X*	27
	1+UPIFF = #*, E15, 6, 5%, *KK = *, 13,5%, *STATEMENT NO. *, 13)	28
462	F(UD1FF)110;300;111	58
109	LSIGN=(+1)	8
101	LSIGN=1	31
102	> CC(1)=CC(1)++t.	32-34
	IF (CC(1), 9T, (CO(1)+C03ZERO(1)))600,475	58
6.00	" WULTEL & MMER & GC(I)=GC(I)/10.0 \$ ADD=1.0 \$ ADE1.0 \$ GCC=GC(I)	80
601	CC(1)=CC(1)+CC+ADD/10.**AP	22

IF (CC(1), GT_(CO(1)+C03ZE30(1))) 602, 603	30(1)))502,603	w w
602 CC(1) #CC(1) + CCC + ADD/10.0 + + AD	*AD S ADHAD+1.0 S MMHMM+1 S CCC=CC(1)	39
IF (CC(I),GT_(0,999*(CO(I)	999+(CO(I)+CO3ZERO(I)), AND.CC(I).LT.(CO(I)+CO3ZER	4 0
12(1)))625,601		4 0 A
603 AC7LSQ=B2+R3+CC(1)	\$ IF(ACOLSO)415,414,414	4.00
415 PRINT 416, ACOLSO,CO(I),CC(I),B2,B3	2(1),82,83	4 0 9
416 FORMAT (* ACAL SQUARED =*,	=+,E15,6,5%,+C0	₩
1,/,* 82 =*,E15,6,5x,*83 =*	=+,E15,6,57x,+C03CALC CARD 40D+)	4 0
30 TO 250		4 ©
414 ACOL=SORTF(ACOLSO) % UA1	UAI=TIME	∵
UA2=(2,0/CON <t-8+81 (a+cov<="" td=""><td>8+81/(A+COVST))+LOGF(((2.0+C+(ACOT+B1)+R+CONST)/(2.</td><td>42</td></t-8+81>	8+81/(A+COVST))+LOGF(((2.0+C+(ACOT+B1)+R+CONST)/(2.	42
1+C+(ACOT-81)+B+CONST))/((2	CONST))/((2.*C*(ACOL-81)+B+CONST)/(2.0+C*(ACOL+81)+	454
23+CONST)))+(P1/A)*LOGF(((A	A) +LOSF(((ACOT-B1)++2/(C+(ACOT-R1)+\$2+3+(ACOT-B1)+A	428
3))/((ACOL+R1)++2/(C+(ACOL+	2/(C*(ACOL-R1)**2+8*(ACOL-B1)*A)))	420
IF (L.FO.0)575.546		420
505 IF EXPONENT FAULT 507,506		42E
507 PRINT 503		42F
LAGORT=2 & GC TO 2'1		426


506 UAPIFFEUA2-UA1 & MMECM+1	4 8
IF (LTEST, FQ.2, OR, LTEST, EQ.1, AND, L, GT, 0)617,61F	4 3 A
617 PRINT 609.CC(1).UA1,UA2,UADIFF,AD,ADD,AM	4
609 FORMAT(* ***FC(I) =**E14.6*3X**UA1 ***E14.6*3X**UA2 =**E14.6*3X**U	4
1ADIFF = *, E14, 6, 3x, * AD = *, F5, 1, 3X, * ADD = *, F9, 1, 3X, * * M = *, 14)	4
610 IF (UADIFF)644,300,625	47
604 LSIGNA=(-1) < GO TO 606	₩
605 LSIGNA=1	4 0
606 IF (LSIGN.EQ_LSIGNA) 607, 508	1 0
608 CHAMAD & G1 TO 120	4
607 IF (ABSF(UDIFF),LT,ARSF(UADIFF))113,616	52
616 UI=UAI S U?=UA2 & UDIFF=UADIFF S LSIGN=LSIGNA	W)
IF (AD.GT,10.)611,613	10 4
611 PRINT 612	35
612 FORMAT(* ***THE EXPONENT IS GREATER THAN 18 INDICATING THAT SOMETH	36
TING IS ERONG: +:	78
GO TO 250	10
613 IF (MM,GT,10n)614,601	5.0

614 PRINT 615	63
615 FORMATIA *** WH IS SREATER THAN 100 INDICATING THAT THE CALCULATION	61
15 ARE TRAPPED IN A LOOP, THEREFORE, THE CALCULATIONS ARE BEING ARD	82
22TED)	63
30 TO 250	4
475 ACOLSQ=82-R3+CC(1)	6 4 A
418 PRINT 419, A OLSO, CO(1), CC(1), B2, B3	4 8
419 FORMAT (* ACHL SQUARED =*,E15.6,5%,*CO =*,E15.6,5%,*CC(I) =*,E15.6	640
1,/,* B2 =*,E15,6,5%,*B3 =*,E15,6,57%,*C03CALC CARD 643+)	640
30 TO 250	4 7.
417 ACOL=SORTF(AFOLSO) & UA1=TIME	65
JA2±(2,0/CONST-8+81/(A+CONST))+LOGF(((2,0+C+(ACOT+81)+8-CJNST)/(2,	99
1+C+(ACOT-81)+B+CONST))/((2;+C+(ACOL-81)+B+CONST)/(2,ñ+C+(ACOL-91)+	66A
23+50NST)))+(R1/A)*L0GF(((ACOT-B1)**2/(C*(ACOT-B1)**2+B*(ACOT-B1)+A	668
3))/((ACCL+B1)++2/(C+(AFOL+R1)++2+B+(ACOL-B1)+A)))	299
IF (L.EQ.0) 5C8,509	660
508 IF EXPONENT FAULT 510,509	665
51° PAINT 503	665

LARORT=2 & GC TO 2.1	99
569 LSTEP=67 & MULT=1 & UADIFF*UA2-UA1 % KK=KK+1	67
IF (LTEST.EQ.2.0R.LTEST.EQ.1.AND.L.GT.0)2009,483	6.8
2009 PRINT 2001, CC(1), UA1, UA2, JADIFF, KK, LSTEP	69
2001 FORMAT(* *,* CC(1) =*,E15,6,5%,*UA1 =*,E15,6,5%,*UA2 =*,E15,6,5%,	7 3
1+UADIFF #**E15.6.5X*+KK =** [3,5,4,x*STATEMENT NO. + 13)	71
483 IF(UADIFF)10%,300,104	72
103 LSIGNA=(-1) < GO TO 105	73
104 LSIGNA=1	4
105 IF(LSIGNA, EQ_LSIGN)106,120	75
106 IF(ABSF(UADIFF),LT.ABSF(UDIFF))107.113	76
107 CHANGE=CHANGF+1. S UI=UAI f U2=UA2 S UNIFF=UANIFF % LSIGN=LSIGNA	77
IF(CHANGE,GT.5,)109,110	78
104 PRINT 109, CC(1)	10
109 FORMAT(* +,*THE CALCULATED VALUE OF COBALT THREE IS GREATER THAN*,	a
1510,3,*THEREFORE,THE GUESSES OF A1,A3,A4 ARE NOWHERE NEAR THE CORR	8
2ECT VALUES.+;//)	æ 23
SO TO 250	83

e er	THIS A6	1 IN 87	88	Ø.	6	91	6	6	40	5,6 9,5	954	96	67	66 .5)	66 +(1)	.)+A 100
111 PRINT 112	112 FORMAT(* *. * THERE ARE MORE THAN 300 ITERATIONS IN CALCULATING T	1 VALUE OF COPALT 3 INDICATING THAT THE CALCULATIONS ARE TRAPPED	2 A LOOP / THEREFORE THE CALCULATION IS BEING ABORTEN. +)	GO TO 250	113 CHANGEE1,	114 JI=UAI \$ U?=!'A2 & UDIFF=UARIFF \$ LSIGN=LSIGNA	CC(1)#CC(1)/4[, \$ MULT=(+1) \$ KK#KK+1	ACOLSQ=82-93.450.45F	445 PRINT 446, ACTLSQ, CO(1), CC(1), B2, B3	445 FORMAT (+ ACAL SOUARED #*, E15.6,5X, +CO #*, E15.6,5X, +CC(1) #*, E15,	1;/, + 82 = +, E = 5, 6; 5 x, + 83 = +, E 15, 6, 57 x, + C 03CALC CARD 95A+)	50 TO 250	45g ACOL=SORTF(AFGLSG) & UA1=TIME	UA2=(2,0/CON <t-8+81 (2<="" (a+const))+logf(((2,0+c+(acot-91)+8-const)="" td=""><td>1+C+(ACDT+B1)+B+C^NST))/((2,+C+(ACOL-B1)+B-CONST)/(2,1+C+(ACOL+B1</td><td>28+CONST)))+(91/A)*LOGF(((ACOT-R1)**2/(C*(ACOT-R1)**2+8*(ACOT-B1)+</td></t-8+81>	1+C+(ACDT+B1)+B+C^NST))/((2,+C+(ACOL-B1)+B-CONST)/(2,1+C+(ACOL+B1	28+CONST)))+(91/A)*LOGF(((ACOT-R1)**2/(C*(ACOT-R1)**2+8*(ACOT-B1)+

116	117	118	119	120	121	121A	1218	122	122A	123	124	125	126	127	128	129	129A
IF(MULT)123,123,124	123 COL2PLA=CC(I)+CHANGEA % GO TO 125	124 COLZPLA=CC(I)-CHANGEA	125 IF (COL2PLA, T. (CO(1)+CO3ZERO(1)).AND.MULT.EQ.(-1))619,618	619 COL2PLA=CC(1)+CHANGEA \$ GO TO 120	618 Ul#UA1 S U2#HA2 & UDIFF#UADIFF S LSIGN=LSIGNA	IF (COL2PLA,LT,(CO(1)+CO3ZFRO(1)),AND.COL2PLA.GT.(5,999+(CO(1)+CO3	17ERO(1)))) FO TO 625	ACOLSG=82-R3+COL2PLA \$ IF(ACOLSG)465,470,470	625 CC(1)=CO(1)+-03ZFRO(1) % UA2=TIME % GO TO 200	465 PRINT 466, AC1LSQ	466 FORMAT (+ +,+ACOL SQUARED =+,E15.6)	30 TO 250	470 ACOL#SORTF(ACOLSO) & UA1#TIME	UA2=(2,0/CONST-8+81/(A+CONST))+LOGF(((2,0*C+(ACOT-91)+8-CONST)/(2,	1+C+(ACOT-81)+B+CCNST))/((2.+C+(ACOL+81)+B-CONST)/(2.0+C+(ACOL+R1)+	29+COWST)))+(91/A)+LOGF(((ACOT-B1)++2/(C+(ACOT-B1)+52+B+(ACOT+B1)+A	3))/((4CCL-91\++2/(C+(ACOL-51)++2+8+(ACOL-81)+A)))

IF (L,EG,0)545,516	1298
515 IF EXPONENT FAULT 517,516	129C
517 PRINT 503	129D
LARORT=2 & GN TO 201	129E
516 UADIFF=UA2-UA1 & LSTEP=130	137
IF (LTEST, EQ. 2.0R.LTEST, EQ. 1. AND.L.GT.0)2011,485	131
2011 PRINT 2002, C^L2PLA, UA1, UA2, UADIFF, KK, LSTEP	132
2002 FORMAT(* ****OL2PLA =**E15;6,5%,*UA1 =**E15,6,5%;*UA2 =**E15,6,5%;	₩ ₩
1+UADIFF == E15.6'5X +KK =+ I3.5X +STATEMENT NO.+ 13)	134
485 IF(ABSF(UADIFF-UBIFF),LT.ARSF(.0001+UDIFF),AND.ABSF(UADIFF-UDIFF),	135
1LT.ABSF(,000++UADIFF),AND,ABSF(COL2PLA+CC(I)).LT.ABSF(.0001+(CC(I)	136
1-C032EP0(1))))GO TO 200	137
IF (UADIFF) 124, 300, 127	138
126 LSIGNA=(-1) + GO TO 128	139
127 LSIGNA=1	140
12ª KKEKK+1	141
IF (KK,GT,30~)111,129	142
129 CC(I)#COL2PL4	143

\$ GO TO 120 D.ABSF(UADIFF-JDIFF).LT001*UDIFF.AND.ABSF(UANIFF-U 147 DADIFF.AND.ABSF(COL2PLA-CC(1)).LT0001*(CC(1)-CO3ZE 148 F).LT.5.n*10.**(-6))200.302 IFF OR UADIFF IS EQUAL TO ZERO.*) 153 154 155 155 156
⊕ • • • • • • • • • • • • • • • • • • •
€ • 0 • 0
IS EDUAL TO ZERO.+)
IS EQUAL TO

To convert this subroutine to derivation H, the following computer card must be changed:

21B.

B = A5A/(2.0*A4B)-4.0*A5B*A4A*B1 B3

SUBROUTINE CABLICLC (Al, A2, A3, A4A, A4B, A5A, A5B)	•
COMMON T(510), CC(510), CX(500), LABORT, I, LTEST, ALIG, A1H, A2H, LTON	- c
1C.N. ALIGGESS(11); ALIGG(500), ALMRATIO(500), R(10, K00), L. CONCASSO,	N (
2).LL.CO(500),CO3ZERO(500),CXX(400),CO2/560) CO1/563, CO1/6000	2 4
3202(500), COL2202(500)	8
AC#2.0*A4A*A48*CONCOXYG(1)*ALIGG(1)**4*(A1*42)**2	6 0 •
BC=1.0+A1+AL(GG(I)+A1+A2+AL(GG(I)++2+A1+A2+A4A+CONCOXYG(I)+A1 766/1	4 F
1)**2	ית יי
CCC = CX(1) + C0 / 1) + C0 3 Z F R O (1)	W (
CO2(1)=((-AC)+SQR7F(BC++2=4.0*AC+CCC))/(2.0*AC)	a a
COL(I)=A1+CO>(I)+ALIGG(I) \$ COL2(I)=COL(I)+A2+ALIGG(I)	۰ .
COL202(1)=A4A+CONCOXYG(1)+COL2(1)	\
COL2202(I) = A4B+C0L202(I)+C0L2(I)	C· 0
PETUR.	t C (
END	.
	C.

