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ABSTRACT

TEST CHARACTERISTICS AND THE BIAS AND SAMPLING VARIABILITY

or CRITERION-REFERENCED RELIABILITY COEFFICIENTS

By

Loraine Son

The present study examined the bias and sampling variability of

the major single test administration criterion-referenced reliability

coefficients given various test parameters. These coefficients were

categorized by the type of loss function (squared error or threshold)

upon which they were based and by whether they included a chance

agreement correction. The extent of bias was studied as a function of

different parallelism conditions (classic versus random), distribution

shapes, and cut-off scores. Distributions not belonging to the beta-

binomial family and the random parallelism condition were included in

the study to examine the robustness of several coefficients to viola-

tions of their underlying assumptions. Each coefficient's sampling

fluctuation was investigated for various test lengths and sample

sizes. Data from the Michigan Educational Assessment Program and from

a psychology mid-term exam were used to generate item domains as well

as test scores, and were altered to reflect the various parameters

investigated. For each cell of the design, population coefficients

were computed from either randomly or classically parallel alternate
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forms. To determine the magnitude and direction of bias, the

population values were compared to the mean of the corresponding

single test administration sample estimates taken across many

samples. The standard deviation of these sample estimates indicated

the coefficient's sampling variability.

For distributions derived from homogeneous item domains, all the

coefficients, except the kappa estimates, were robust to violation of

the classic parallelism assumption. For the other distributions, the

parallelism condition did affect the coefficients' biases, although

not always in the expected direction. Generally, as the cut-off score

approached a distribution's mean, the squared error coefficients

became more biased for randomly parallel tests consisting of hetero-

geneous items. The cut-off score also significantly affected the bias

of the threshold agreement coefficients. However, the results,

generally, did not follow a pattern. The hypothesis that the po and

kappa estimates would be more biased for distributions which were not

beta-binomial was unsupported. Sampling variability decreased as the

test length and sample size increased. Based on these results,

recommendations were made about which coefficient to use within each

category given various test conditions.
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TEST CHARACTERISTICS AND THE BIAS AND SAMPLING VARIABILITY

0F CRITERION-REFERENCED RELIABILITY COEFFICIENTS

Reliability denotes the consistency of measurement or the extent

to which scores are reproducible over repeated testings on different

occasions, or over different sets of parallel or randomly parallel

items, and/or under other small variations in conditions (Anastasi,

1976). Although it is frequently stated that a tg§t_is reliable,

reliability actually refers to the consistency of the score interpre-

tation obtained from the test, not to the test, in and of itself.

In industrial-organizational psychology as well as in other

applied sciences, norm-referenced interpretations of test scores have

become the sine qua non of measurement. In norm-referenced measure-

ment, an individual's score is given meaning by determining the

individual's relative standing within a normative group (POpham &

Husek, 1969). Quite appropriately, those reliability coefficients

associated with classical test theory and norm-referenced measurement

(e.g., correlation between two test administrations, coefficient

alpha) indicate the extent to which examinees' relative standings

remain consistent. However, norm-referenced interpretations of data

do not satisfy all the measurement needs of psychologists. For

example, in many situations, scores ultimately serve as a basis for

making dichotomous decisions (e.g., accept/reject) or placing

individuals into groups (e.g., successful/unsuccessful). In order to

address these and other measurement needs, many educational psycholo-

gists and measurement experts have turned to criterion-referenced
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measurement and, in so doing, have had to create coefficients

indicating the extent to which criterion-referenced interpretations of

data are reliable.

ggiterion-Referenced Measurement and Tests

Norm- and criterion-referenced measurements were distinguished by

Glaser (1963) on the basis of the standard used to interpret scores.

As previously noted, the former uses the test scores of members of a

relevant group as the standard for Judging an individual's

performance. Consequently, the mean serves as the anchor point of

these scales and raw scores are typically converted into standard

scores, percentiles, stanines, or ranks (Eignor & Hambleton, 1979).

On the other hand, criterion-referenced measurement uses defined

levels of criterion behavior along an achievement, skill, or attain-

ment continuum as the performance standard (Glaser, 1963; Glaser &

Klaus, 1962). More specifically, the behaviors required to

demonstrate competence at each proficiency level are identified and

are compared to the behaviors exhibited by an individual on the

testing instrument. A typical criterion-referenced measure is the

percentage of items answered correctly. This type of scale has two

anchor points, one at each end of the scale, i.e., 0% and 100%

(Hambleton & Eignor, 1979). In most circumstances, some evaluation is

made as to whether or not an individual's score indicates mastery of a

particular skill, objective, etc.; a minimally acceptable level of

performance, cut-off score, is established and an individual is

classified as either a master or non-master according to whether

his/her score is above or below this predetermined level of competence
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(Buck, 1975; Hambleton & Novick, 1973). In other applications,

several cut-off scores may be used to divide the examinees into appro-

priate groups. Contrary to norm-referenced measures, criterion-

referenced scores indicate what an individual can and cannot do

”independent of reference to the performance of others" (Glaser, 1963,

p. 520; Glaser & Klaus, 1962). In short, norm-referenced measures

employ a relative standard, while criterion-referenced measures are

based upon an absolute standard (Glaser, 1963).

Situations where criterion-referenced measurement would be more

appropriate than norm-referenced measurement are easily discernible.

The standards used indicate that both are appropriate for making

various decisions about individuals (Popham & Husek, 1969; Wardrop,

Anderson, Hively, Hastings, Anderson, & Muller, 1982). In education,

criterion-referenced measurement gained prominence partly due to the

necessity of diagnosing student needs and assessing performance in

individualized instructional programs (Mehrens & Ebel, 1979). The

objective of measurement in these instances was to determine what

skills a student possessed or to simply assess whether a student was

proficient in a particular area. Similar types of score interpreta-

tions have long existed in various aspects of industrial-

organizational psychology such as performance appraisal, job

placement, training performance, and personnel selection via the

multiple cut-off and the multiple hurdle techniques (Glaser & Klaus,

1962; Goldstein, 197“). In all these areas, a frequent concern has

been the determination of an individual's performance independent of

others' performance, and decisions have been typically made about the

individual's mastery of an objective. Such score interpretations have
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been particularly prevalent within a free quota system (Wardrop et

al., 1982).

Criterion-referenced measurement is also appropriate for making

decisions about treatments (e.g., training programs), while norm-

referenced measurement is not as suitable (Mehrens & Ebel, 1979;

POpham & Husek, 1969). The latter technique is designed to increase

the within group variance, while having a small within group variance

is desirable when evaluating the effects of different treatments

(Popham & Husek, 1969). A typical criterion-referenced measure in

this case is the proportion of individuals achieving mastery on a

post-test.

As can be seen in the above examples, criterion-referenced

measurement is not concerned with rank-ordering individuals, but with

drawing conclusions about an individual's behavioral repertoire

(Glaser, 1963). The psychometric implications of this score interpre-

tation are far-reaching. Several experts have suggested that tests

built using classical methods do not provide adequate representation

of the content needed to make generalizations about what an individual

can do (Glaser & Nitko, 1971; Hambleton & Novick, 1973). In response,

researchers have focused on the development of criterion-referenced

tests.

Various definitions of criterion-referenced tests have been

offered. Ivens (1970) proposed the following general definition: "A

criterion-referenced test is one composed of items keyed to a set of



behavioral objectives" (p. 2). In comparison, a very specific and

restrictive definition was offered by Harris and Stewart (1971):

A pure criterion-referenced test is one consisting of a

sample of production tasks drawn from a well-defined

population of performances, a sample that may be used

to estimate the proportion of performances in that

population at which the student can succeed (p. 1).

Similarly, Glaser and Nitko (1971) advanced the following

definition: "A criterion-referenced test is one that is deliberately

constructed to yield measurements that are directly interpretable in

terms of specified performance standards" (p. 653). Expanding upon

this definition, Glaser and Nitko (1971) stated:

Performance standards are generally specified by

defining a class or domain of tasks that should be

performed by the individual. Measurements are taken on

representative samples of tasks drawn from this domain,

and such measurements are referenced directly to this

domain for each individual measured (p. 653).

These definitions of criterion-referenced tests are sufficiently dif-

ferent that a particular test could be classified as either norm- or

criterion-referenced, or could contain characteristics of each

depending upon the definition adopted (Hambleton & Novick, 1973).

However, all these definitions imply that criterion-referenced tests

are constructed by and dependent upon the existence of a well-

specified content domain as well as procedures for generating samples

of items from this domain (Hambleton & Novick, 1973).

Some measurement experts questioned the accuracy and relevance of

distinguishing between norm- and criterion-referenced tests (Brennan,

1979; Hambleton & Novick, 1973; Mehrens & Ebel, 1979). On the other

hand, Hambleton and Eignor (1979) contended that a distinction should

be made since a methodology now exists for constructing the latter



tests. Mehrens and Ebel (1979) observed that any test, whether it be

criterion- or norm-referenced, represents a specified content

domain. Moreover, a criterion-referenced test can be used to make

norm-referenced measurements and, conversely, criterion-referenced

measurements can be derived from norm-referenced tests, although

neither of these usages may be very satisfactory (Hambleton & Novick,

1973). Given these facts, the primary distinction appears to be be-

tween norm- and criterion-referenced measurement (i.e.,

interpretation) rather than between different types of tests (Brennan,

1979; Ebel, 1971; Hambleton & Novick, 1973; Mehrens & Ebel, 1979). Of

course, choosing a particular type of measurement prior to test

construction has different implications for the method used to

determine the items to be included on a test. However, Brennan (1979)

proposed that different methods of test construction and item analysis

produce changes in the definition of the item domain relevant for each

measurement type rather than effect changes in the measurements them-

selves. The point is that scores can be interpreted using either

standard for most tests. The legitimacy of such an interpretation is

a different issue and depends upon the manner used to construct the

tests as well as how restrictive a definition one adopts for a criterion-

referenced test (Mehrens & Ebel, 1979; Wardrop et al., 1982).

In preparing test items for a criterion-referenced score inter-

pretation, the overriding interest is how well the item samples the

content domain or criterion behavior (Wardrop et al., 1982). The

reason for such concern is the need for generalizing from specific

test item responses to the whole domain of behaviors in order that

inferences can be made about what skills the examinee possesses
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(Hambleton & Eignor, 1979). Although test development for norm-

referenced measurement is frequently concerned with defining the

domain of interest, criterion-referenced testing involves far more

concern with this issue and with obtaining a representative sample of

items from this domain (Hambleton & Novick, 1973; Wardrop et al.,

1982). In short, the basic steps in constructing tests specifically

for criterion-referenced measures are specifying the domain, writing

items reflecting these specifications, and selecting items via a

sampling procedure (random or stratified random sampling, repre-

sentative sampling) which assures representativeness. Similarly, the

primary approach for conducting an item analysis after test

construction is to have content specialists judge whether each item

appropriately measures some part of the content domain as well as

whether the items adequately sample the domain (Buck, 1975; Hambleton

& Signor, 1979).

An objective of tests designed for norm-referenced measurement

has been to maximize variability so that individuals can be reliably

rank-ordered. Norm-referenced measures, such as standard scores,

depend upon the existence of variability since they are derived by

comparing an individual’s scores to the scores of a relevant group.

Variability is partly achieved by using classical test development

methods to analyze items. The assumption underlying classical methods

is that a measurement procedure should provide the most discrimination

possible among individuals on a particular characteristic. Conse-

quently, items are largely analyzed and chosen based on their

statistical characteristics, e.g., discrimination index, difficulty

level, and item-total correlation.
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On the other hand, the need for a "criterion-referenced test" to

produce variability has been the topic of some debate. Some theorists

have contended that variability is irrelevant to criterion-referenced

measurement since these scores derive their meaning through a direct

comparison with the performance criterion (Millman & Popham, 197A;

Popham & Husek, 1969). In addition, many applications (e.g., a post-

training test) exist in which the goal may be to have every examinee

in the sample achieve mastery and, in so doing, to actually restrict

the test score range. In contrast, Woodson (197ua) has argued that a

”criterion-referenced test" must produce variability or else it is not

informative or useful. The premise for Woodson's argument was that a

test should be analyzed and developed on observations representative

of those within the range of interest and, as a result, should

discriminate between different observations of the characteristic.

Using this approach, one would include pre- and post-training test

scores in the range of possible observations used to calibrate an

instrument (Woodson, 1979a). No variance may exist within the pre-

training test nor within the post-training test, but the test should

discriminate between these two testing observations. In contrast,

Millman and Popham (1974) contended that the population of

observations for a test designed to elicit criterion-referenced

measures is "a domain of items and the responses of a single

individual to them" (p. 137). Furthermore, they stated that if items

were chosen on the basis of their ability to discriminate between

observations, the test would not contain a sample of items truly

representative of the content domain. The major difference between

these two positions clearly lies in defining the appropriate group to



be used for calibrating the scale (Woodson, 197flb). Proponents of

both sides agree, however, that items should not be chosen so as to

maximize test score variance (Woodson, 1979b). Therefore, the

variability can be expected to be lower than for "norm-referenced

tests". Moreover, in typical usage, the test score variance may be

very limited or non-existent if a test is administered to a sample of

examinees who have just completed an instructional program.

Reliability

The possible absence or dimunition of score variability and, more

importantly, the type of score interpretation associated with

criterion-referenced measurement make classical reliability estimates

inappropriate for indexing the consistency of these measures. In

classical test theory, the reliability coefficient equals the squared

correlation between true scores and obtained scores, i.e., the ratio

of true to obtained score variance. All of the practical formulations

(e.g., correlation between classically or randomly parallel tests,

coefficient alpha, split-half reliability) for estimating this ratio

require the computation of a correlation coefficient whose size is

largely a function of the amount of variability in the sample. As is

well known, the more heterogeneous the sample, the higher the relia-

bility coefficient. This fact is easily seen from the equation for

reliability: r =

11

reliability and s1 , sez, and st2 denote the true score variance, the

$2 / §§2 = 1 - (§§2 / s22) where};1 equals the

error variance, and the total score variance, respectively. For any

given test, the error variance remains the same from sample to sample,

regardless of the size of the total variance, because the size of the
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error only depends upon the test's inability to provide accurate

measures of individual true scores (Magnusson, 1967). However, the

total and true score variances increase when a more heterogeneous

sample is given the test, resulting in a larger reliability

coefficient. Conversely, when no true score variance exists, the

reliability equals zero (unless §§2=O, in which case, reliability is

undefined). Due to this dependence upon score variability, a test

used for criterion-referenced measurement might be highly consistent

in a test-retest sense, and yet the classical reliability estimates

might deem it to be unreliable because almost everyone has received

the same score. A criterion-referenced measure might even have a

negative internal consistency index and still be a reliable measure

(Popham & Husek, 1969). In short, classical reliability estimates

provide an unjustified pessimistic view of the consistency of

criterion-referenced measurement due to the farmer’s dependence upon

variability (Buck, 1975). High classical reliability estimates can be

used to support a claim of consistency, but low estimates do not

indicate a lack of reliability (Popham & Husek, 1969).

As noted previously, criterion-referenced measurement most

commonly involves mastery assessment where one cut-off score is used

as the performance standard. Therefore, reliability for this type of

measurement should assess the dependability of the mastery decision.

Clearly, classical reliability estimates are insensitive to this type

of consistency. Since reliability is based on the relationships

between true, observed, and error scores, this viewpoint can be

presented more clearly by determining the impact of mastery score

interpretation upon these variables and their relationships. Marshall
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(1978) provided an excellent discussion in this area, and much of the

following material was derived from his presentation.

In classical test theory, the relationship among obtained score

(3), true score (I), and error (E) is expressed by the well-known

equation §=1+§. The distributions of true and error scores are

continuous, while 3 has a polytomous or many-valued discrete

distribution (Marshall, 1978). Theoretically, obtained scores could

have a continuous distribution, but measurement instruments do not

provide the necessary discriminations (Marshall, 1978). The effect of

mastery testing upon this basic equation can be easily seen if testing

is viewed within a decision-theoretic framework (Hambleton & Novick,

1973). In mastery testing, one wants to decide whether an examinee's

true performance level is above or below a threshold or cut-off score;

mastery testing can be viewed as a classification problem (Hambleton &

Novick, 1973). Therefore, the comparable equation for mastery testing

is Q=Q+M where D, C, and M represent the obtained classification, the

true classification, and the instance as well as the direction of

misclassification, respectively (Marshall, 1978). This model differs

from its classical test theory counterpart in that all the variables

in the equation are discrete as well as dichotomous given the absolute

value of the misclassification error (Marshall, 1978). Viewed in this

way, mastery testing results in a Platonic true score model (Marshall,

1978).

Using a Platonic inatead of a classical true score model for

mastery testing has implications for the determination of

reliability. First, according to Marshall (1978), statistics such as
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a mean or a variance are "theoretically not meaningful" for the former

model since observed and true scores in the Platonic true score model

cannot be attributed with more than ordinal properties (p. 4). (This

point is debatable; one could argue that these scores have interval

properties when only two mastery levels exist since there is one

interval equal to itself.) The absolute value of the misclassi-

fication error can also be assumed to be ordinal (Marshall, 1978).

Second, measurement error is defined differently for the two models.

In classical test theory, one is concerned with the size of the

error. However, in the Platonic true score model, error can only be

defined in terms of the existence of misclassification, not its size,

i.e., the examinee is either correctly or incorrectly classified

(Marshall, 1978). Moreover, these two types of measurement error need

not be highly correlated (Marshall, 1978). Given these facts, the

issue in assessing reliability for mastery testing is whether an

examinee is assigned to the same mastery state on parallel tests or on

a retest (Hambleton & Eignor, 1979; Hambleton & Novick, 1973).

Swaminathan, Hambleton and Algina (197”) defined mastery testing

reliability as ”the.measure of agreement between the decisions made in

repeated test administrations" (p. 26%). Consequently, given the

Platonic true score model, the appropriate loss function for

reliability estimation is threshold loss, where loss is either zero or

one depending upon whether the two testing procedures assign the

examinee to the same or to different mastery states, respectively

(Hambleton & Novick, 1973; Marshall, 1978). The correlational

reliability estimates use a squared error loss function and are,

therefore, inappropriate (Hambleton & Novick, 1973).
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Some correlational statistics, the phi and the tetrachoric coef-

ficients, do use a threshold loss function and, therefore, might seem

appropriate for assessing reliability in the Platonic model. Marshall

(1978) examined the ability of these coefficients to accurately

measure the squared correlation between the obtained and true

classifications (i.e., classical reliability) given two mastery

states. The phi coefficient was found to be deficient on both

theoretical and statistical grounds. As is well known, the phi coef-

ficient is only appropriate for true dichotomies. One can easily

argue that the mastery/non-mastery dichotomy is artificial since the

underlying variable is continuous and the setting of the cut-off score

is somewhat arbitrary (Glass, 1978; Marshall, 1978). The statistical

problem is that phi can be negative when a negative value does not

correctly reflect the relationship between the true and obtained

classifications. More specifically, if either the true positive or

true negative classification is zero and the false positive and false

negative classifications are non-zero, the phi coefficient will be

negative (Marshall, 1978).

This would mean, for instance that even though there

were only a few true non-masters (5%, say), if they are

all misclassified then phi is negative, even though 90%

or more of the examinees are correctly classified as

masters (Marshall, 1978, p. 7).

One other problem with phi occurs when no variability exists with

respect to the true mastery status and/or the obtained classifi-

cation. In this instance, phi is undefined.

Contrary to phi, the use of the tetrachoric correlation

coefficient is appropriate when the two variables are artificially

dichotomized. However, this coefficient assumes that the two
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variables-have a bivariate normal distribution while mastery test

score distributions are often bimodal (Marshall & Berlin, 1979).

Since dichotomous variables have ordinal data properties,

Marshall (1978) also considered the Spearman rank order correlation

coefficient. However, this statistic is inappropriate when a sub-

stantial number of tied ranks exist (Marshall, 1978). This problem

cannot be solved by computing the Pearson g_using the tied ranks as

data points since the resultant formula is algebraically equivalent to

the phi coefficient and, consequently, is subject to the problems

previously discussed (Marshall, 1978).

Since none of the correlational approaches proved satisfactory,

Marshall (1978) examined the ratio of the true classification variance

to the obtained classification variance: n(1-n) / 2(1fip) where n and

‘2 are the true and obtained proportions of mastery classification,

respectively. This formula can also be expressed in terms of the cell

frequencies shown in Figure 1, i.e., fl(1-") / 2(1gp) = (5+8) (9&2) /

(Ayn) (Bin) (Marshall, 1978). Marshall also found several statistical

problems with this formula. First, if A;Q or a;g, the ratio equals

one, regardless of the frequencies contained in the other two cells.

Second, the ratio can be greater than one if o557<2 or £<WS-5.

Finally, if the obtained score variance is zero, either plor 112 must

equal zero, and the ratio will be undefined. The latter problem is

similar to that of the typical correlational reliability estimates.

In conclusion, none of the correlational indices nor the ratio of true

to obtained mastery score variance adequately reflect the reliability

of the data even though all these indices use a threshold loss

function.
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Obtained Classification
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Figure 1.--Joint Distribution of True and Obtained Classifications

Not everyone in the field agrees that the Platonic true score

model and, consequently, threshold loss are appropriate for mastery

testing (Brennan, 1979; Kane & Brennan; 1977; Livingston, 1972b).

Although more will be said about this viewpoint at a later time, these

individuals contend that the major question in mastery testing is how

far an examinee's score is from the cut-off. This conceptualization

of reliability uses a squared error loss function. Despite this fact,

classical estimates are still inappropriate for evaluating the relia-

bility of this criterion-referenced interpretation because the former

uses a squared error loss function with respect to the mean while the

latter requires squared error loss with respect to the cut-off score.

One other issue should be addressed in judging the applicability

of classical reliability estimates to criterion-referenced measure-

ment. Does criterion-referenced measurement satisfy the assumptions

underlying classical test theory? Briefly, these assumptions are:

(1) §=§-I; (2) €(§)=O in every non-null subpopulation of individuals;

(3) O(I,§)=O; (4) 0(E1,§2)=O; and (5) 0(E1,IZ)=O (Lord & Novick,

1968). (The subscripts 1 and 2 denote parallel tests.) Brennan

(197“) noted that €(§) cannot be zero for the suprpulation with true

score equal to the highest value nor for the subpopulation with true
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score equal to zero. Furthermore, Marshall (1978) found that these

assumptions did not fare very well under the Platonic true score

model.

Klein and Cleary (1967) have shown, among other things,

that with the Platonic true-score model, the correla-

tion of true and error scores is generally negative and

is zero only under extraordinary circumstances, that

the expected value of Platonic error is not likely to

be zero, and that errors on parallel tests cannot be

expected to have zero correlation (Marshall, 1978, p.

5).

To summarize, classical reliability estimates used in norm-

referenced measurement are inappropriate for criterion-referenced

measurement, in general, because of the farmer's dependence upon score

variance. In addition, classical estimates are particularly unsatis-

factory for mastery assessment for two other reasons: (1) they use an

inappropriate loss function, squared error loss with respect to the

mean, and; (2) the classical assumptions underlying their use may not

be met if the Platonic true score model is accepted as the model for

mastery measurement.

Several reliability coefficients have been developed for

criterion-referenced measurement. Since mastery assessment is

involved in the vast majority of cases, most of the coefficients have

been proposed within this context. Basically, reliability formula-

tions for mastery assessment can be divided into two types based upon

whether they use a threshold loss function or a squared error loss

function with respect to the cut-off score. Of course, the choice of

a loss function depends upon one's definition of the purpose of

mastery testing. To reiterate, advocates of threshold loss contend

that mastery testing is a matter of classifying examinees into two or
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possibly more mutually exclusive categories (Hambleton & Novick, 1973;

Kane & Brennan, 1977). Proponents of the Opposing view assert that

the issue is the "degree to which the student has attained criterion

performance", implying that the estimation of the distance between the

examinee’s score and the cut-off score is the major concern (Glaser,

1963, p. 519). Both types of coefficients are presented below along

with studies evaluating their performance under a variety of test

characteristics.

Reliability Formulations Based Upon Squared Error Loss

Livingston. Livingston (1972b) developed a general form of the

typical reliability coefficient applicable to both criterion- and

norm-referenced measurement. He adapted the classical test theory

model by replacing the deviation of scores about the mean with the

deviation of scores about the cut-off in computing all relevant

statistics. For example, he defined a criterion-referenced correla-

tion coefficient as a product-moment parameter based on moments about

the cut-off. The classical test theory assumptions, the traditional

definitions of true score and errors of measurement, and the well-

known relationships among true, error, and observed scores remained

intact in his formulation. Corresponding to the classical reliability

definition, Livingston defined criterion-referenced reliability as the

squared criterion-referenced correlation between observed and true

scores. This definition in conjunction with the classical test theory

assumptions resulted in the following formula:
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where Q! is the cut-off score, p?(X.Ix) equals any norm-referenced

reliability coefficient, GE? is the variance, u! is the mean, and 0%,

equals the.true score variance (Livingston, 1972b).

Lovett (1977) defined 32(X’TX) in analysis of variance terms. He

assumed the data came from the responses of 9 individuals to 5

parallel measurements or items, resulting in gxk observations. The

design of the ANOVA was a randomized complete block design without

interaction. Given that the only major differences in using ANOVA to

estimate the reliability of norm-referenced versus mastery scores are

the degrees of freedom for both the total sum of squares and the sum

of squares for people, and the substitution of Ex for the mean in all

relevant statistics, Lovett (1977) defined the reliability of mastery

measurement as:

gasp-muse)

E<M§ )
P

where all sums of squares are expressed as deviations from Q .

 

Brennan and Kane. Brennan and Kane's "index of dependability"

was derived from generalizability theory rather than from classical

test theory (Brennan & Kane, 1977a). Two major differences between

these theories are: (1) classical test theory is built upon the

assumption of classically parallel tests, while generalizability

theory assumes random parallelism; and (2) classical test theory does

not differentiate among various types of errors while generalizability

theory does (Brennan, 1978; Cronbach, Gleser, Nanda, Rajaratnam,

1972). This differentiation is accomplished by constructing a general

linear model of the data and using analysis of variance procedures to
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derive a reliability coefficient. Since a complete understanding and

derivation of Brennan and Kane's index requires a very lengthy discus-

sion, only a brief outline of their analysis has been provided below.

Assuming that test data have been derived from a random sample of

items from an infinite domain of items and a random sample of people

from an infinite population, the following linear model represents the

observed score of person Up? on item Vi}:

321 = “+927+R$7+u££: where

grand mean in the population of persons and the domain

I
: l
l

of items

I
: I l
l

effect for person 2

effect for item‘i

I
:

I N

u ~= effect for the interaction of‘p and i plus

experimental error (Brennan, 1979).

Given the assumptions of analysis of variance, this equation repre-

sents a random effects model for the pxi design (Brennan, 1979).

Similarly, the linear model for the proportion of items answered

~ where the subscript "1"

RI

equals the average score for a particular sample of items, and all

correctly on a test is: $2; = u+p£l+pll +u

terms are expressed as averages (Brennan, 1979). From the sample'

sizes and the mean squares generated in the analysis of variance of

the pxi design, the variance components associated with each of the

score effects in the latter equation can be derived. The total of

these variances equals the observed score variance. The variance

component associated with the effect of person 3, qEZ, 13 called the

universe score variance and is comparable to the true score

variance of classical test theory (Brennan, 1979). Similarly, OE;
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equals the error variance in classical test theory for a test of

length a; (Brennan, 1979). The variance of mean test scores over all

tests, oi, has no comparable statistic in classical test theory

(Brennan, 1979). This fact is not surprising since the classically

parallel test assumption requires equal test means. Therefore,

OI = O for classical test theory (Brennan, 1979). Brennan and Kane

(1977a) used these variance components to derive indices of dependa-

bility for both norm- and criterion-referenced measurement. Although

the focus has been on the latter type of measurement, the index of

dependability for norm-referenced measurement is also presented below

for comparison purposes.

Cronbach et al. (1972) defined the index of dependability for

norm-referenced measurement as the ratio of universe score variance to

expected observed score variance. This ratio was found to equal:

02

p gl

This index is called the generalizability coefficient and its estimate

equals coefficient alpha (Brennan, 1979).

To obtain a mastery testing coefficient, Brennan and Kane (1977a)

assumed the major interest is in estimating the difference between a

person's universe score and the cut-off, i.e., up: A where both terms

are expressed as proportions. To estimate this difference, the

person's average test score is subtracted from the cut-off, resulting

in an error of estimation e ual to: A = X -A - -q Pl ( pI ) (112 A)

where EDI is the mean observed score of person 2 on test I, and the

other terms are defined as previously (Brennan and Kane, 1977a).

Brennan and Kane (1977a) proved that the variance of these
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of, equals a: + 0:1 and, then, defined the index of dependa-errors,

bility for mastery measurement in terms of expected squared deviations

from A:

+ (u-A)2

 
 

+ (u-l) 2+ 02 + q

I
H

V
O
N

L.

There are two very important distinctions between ¢(A) and the

generalizability coefficient. First, the true deviation in the former

2
case equals op + (u-A)2 while it equals 0: for the generalizability

coefficient. —The first quantity is the same as the true deviation or

numerator in Livingston's K?(§,Ix), while the numerator of the

generalizability coefficient is comparable to the true score variance

of classical reliability coefficients. Clearly, these similarities

and differences are a function of the intended score interpretations,

i.e., mastery measurement (up-A) versus norm-referenced

measurement (Up-u). Second, the error variance in 802 equals OSI,

whereas it equals 031 + 0% in 9(A). Obviously, the error variance

for ¢(A) is greater than its counterpart in €02 unless all the test

means are equal. The generalizability coefficient does not

incorporate 0% into the error variance because the test effect adds a

constant to every examinee's score resulting in no change in their

relative ordering, i.e., no change in the examinees' norm-referenced

scores (Brennan, 1979).. Since mastery measurement concerns the

absolute magnitude of the distance between an examinee's universe

score and the cut-off, any effect which increases or decreases this

distance for a particular examinee results in an error of measurement

(Brennan, 1979). Despite this fact, Livingston's 52(X,Tx) and



Lovett's ANSI

because of tr

Livingston's

in a domain h

H

Both :3“ formations of

signal/noise '

procedure (Sr.

of the desire

CEOUPE'S purp

or the effect

nation (Brenr.

“0:58 determ:

(Brennan & Ka

this ratio 33

For mate-FY m

of the 318m;

Wer Persons

1
"
)



22

Lovett's ANOVA based index do not include oi in their error variance

because of their underlying assumption of classic parallelism.

Livingston's K2(§,Ix) and ¢(A) are equal when all the possible tests

in a domain have equal means (Brennan & Kane, 1977a).

Both 802 and ¢(l) can alternatively be viewed as monotonic trans-

formations of signal/noise ratios (Brennan & Kane, 1977b). The

signal/noise ratio indexes the relative precision of a measurement

procedure (Brennan & Kane, 1977b). The signal indicates the magnitude

of the desired discrimination needed to achieve the measurement pro-

cedure's purpose, and the noise represents the magnitude of the errors

or the effect of extraneous factors in blurring the desired discrimi-

nation (Brennan & Kane, 1977b). The relative sizes of the signal and

noise determine whether the desired discrimination can be made

(Brennan & Kane, 1977b). Brennan and Kane's derivation (1977b) of

this ratio was based upon the principles of generalizability theory.

For mastery measurement, the signal is defined as up-A and the power

of the signal (§(g)) equals the expected value of the squared signal

2 .

over persons or €p(up-X) . The noise equals gpI-up. Noise power

(3(9)) is defined as the expected value of the squared noise over the

‘population of people and samples of items and is expressed

as e (x )2. Combining this information, the signal/noise ratio
6 -

g I 591 ”3

for mastery tests, v<g), becomes:

 

 

2 2 2

62(uB-A) op + (u-A)

W(d) a which equals ‘ (Brennan &

_ 2 2 2 Kane, 1977b).

EBELQE—I- u ) 01. + CPL
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The index of dependability can now be expressed as:

v(d) §(d)

1 + v(g) a §(g) + n(a) (Brennan & Kane, 1977b).

 

¢(A) =

Although intuitively appealing, using signal/noise ratios to express

measurement precision has one major drawback from the author's

perspective; its upper limit is not one (Brennan, 1979).

Brennan and Kane's o. Kane and Brennan (1977) have shown that

the quantities "(u;§x)2" in K2(3,I¥) and "(u-A)2" in o(l) equal the

expected consistency-due to chance factors. The expected chance

agreement depends only upon the marginal distribution of scores, not

the reliability of the examinee's performance (Kane & Brennan,

1977). Consequently, K2(§,Ix) and ¢(A) can be large even when scores

from the distribution are randomly assigned to examinees on each test

administration (Kane & Brennan, 1977).

By subtracting the quantity (u-A)2 from both the numerator and

denominator of'®(A), Kane and Brennan (1977) introduced a coefficient

which does take chance agreement into account. This coefficient

equals:

(I):

Q

N
N
N

2 2

+ +cg. 01 02;

where each term is defined as in<©(l). Note that<bis the lower limit

of $0.) occurring when X = u (Brennan 8: Kane, 1977b).

o is a general or multipurpose index of dependability for

criterion-referenced measurement (Brennan & Kane, 1977b). Speci-

fically, o can serve as a measure of the reliability of examinees'

absolute universe scores and/or as a general index of the reliability
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of a measurement procedure designed for several decisions using

different cut-off scores (Kane & Brennan, 1977).

The signal power (0:) in O is the same as that in the generaliza-

bility coefficient and is also comparable to the true score variance

in classical test theory. Brennan and Kane (1977b) stated that 03 is

the appropriate measure of signal power for o since it is independent

of the cut-off score and is often used as the signal power in physical

measurement. The difference between o and the generalizability coef-

ficient lies in the definition of the noise power. Within the context

of generalizability theory and the general linear model, Brennan

(1979) showed that the error variance in using the observed score as a

universe score estimate is 0% + 021. As previously noted, the error

P_

term in the generalizability coefficient is OSI' Therefore, o is

always less than or equal to the generalizability coefficient.

"Intuitively, this is a reasonable characteristic of o since domain-

referenced interpretations of 'absolute' scores are more 'stringent'

than norm-referenced interpretations of 'relative scores'" (Brennan,

1979. P- 23).

Related Coefficients. Two additional coefficients employing

squared error loss have been proposed within the context of relia-

bility. Harris' index of efficiency (ucz) equals the squared

correlation between mastery state, dummy coded as O or 1, and the

total test score (Harris, 1972b). In analysis of variance terms, u:

equals §,S_,2 / (Eggs!) where S_Sh and _S__Sw are the between and within-

group sum of squares, respectively (Harris, 1972b). Harris (1972b)

stated that his coefficient can be interpreted as the ratio of true
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score variance to obtained score variance if the group mean is defined

as the true score for every subject within the group. Clearly, the

validity of such a denotation is questionable since mastery and non-

mastery are not typically defined by just one score value. Another

problem is that ”£2 is actually a squared point-biserial correlation

coefficient and, therefore, uses an inappropriate loss function

(squared-error with respect to the mean) and requires the presence of

variability.

Similar to Harris' formula, Marshall's index of separation also

assesses the extent to which an instrument achieves separation between

two groups of people (Marshall, 1976). Assuming that the expected

test scores of the knowledgeable group and the not knowledgeable group

are the number of test items (9) and 0, respectively, Marshall (1976)

developed the following index:

2 2
C -X -

§ ri- 2 ix -§ - + E .f_ if}:
E. _.X - K.

593 (5‘ .2?ng 3-9;

 

where Ex is the frequency of score 3, fl equals the number of

examinees, and the other terms are as defined previously. Marshall's

definition of error is analogous to Harris', i.e., within group vari-

ation, and, consequently, using §c as a reliability measure for

mastery testing is not appropriate.

Characteristics of Squared-Error Loss Indices. Given a desire to

interpret scores relative to a particular cut-off, Livingston's

2(X,Tx) and Brennan and Kane's @(A) are currently the best squared

error loss reliability coefficients. If a coefficient accounting for
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chance is desired, Brennan and Kane's o is appropriate. The evalu-

ation and interpretation of these indices require an analysis of the

factors influencing them. First, as can be seen from the formulas,

these three coefficients increase as the norm-referenced reliability

increases (Livingston, 1972b). Intuitively, a more accurate true

score estimate also implies less error in estimating the distance

between the true score and the cut-off. Second, given the previous

statements, it is no surprise that lengthening a test increases the

value of 32(x,zx), o(i), and o. Livingston (1972b) algebraically

proved that the Spearman-Brown prophecy formula applies to K2(X,Tx).

and Marshall (1976) empirically supported this derivation. The magni-

2 and 02tudes of @(A) and o increase since the error terms, GI I

_ P-

decrease (Brennan 1979).

Third, although a lack of variability severely affects classical

reliability coefficients, 52(§,Ix) and ¢(A) do not suffer from this

limitation (Kane & Brennan, 1977; Livingston, 1972b). When oi-O,

52(§,I£) reduces to (U§-§;)2 / (“E-gx)2 which equals one when ggiux

and is undefined when Qx=ux (Livingston, 1972b). The value assumed

by 9(1) when the variance equals zero is not as clear-cut. However,

the important point is @(A) can still equal one given this

situation. This lack of dependence upon variability is intuitively

reasonable when placed within a signal/noise ratio context. Even

if 0380, the signal will still be easy to detect as long as the

distance between the mean and the cut-off is large relative to the

noise (Brennan and Kane, 1977b). These statements do not mean the

variance has no effect on these coefficients. A change in the vari-

ance can induce a change in K2(X,Ix) and ¢(l) when the value of the
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norm-referenced reliability coefficient is affected (Livingston,

1972b). On the other hand, o does depend upon the existence of score

variance and equals zero when everyone scores the same (Brennan,

1979).

Fourth, when the cut-off score equals the sample mean, fi?(x,zx) =

.§1 (norm-referenced reliability coefficient) and, given dichotomously

scored items, $(A)-&21 (Brennan, 1977; Livingston, 1972b). In this

case, all the coefficients use squared error loss with respect to the

mean as the loss function. As the cut-off score moves farther away

from the mean in either direction, K?(X,Tx) and $(A) increase (Brennan

& Kane, 1977a; Livingston, 1972b). In other words, the relationship

between these coefficients and the cut-off is characterized by a U

function with the lowest point occurring when 9x and A equal the

mean. Obviously, 12205.13) 3 £11 and do) _>_ 6221 (Brennan, 1979).

Correspondingly, Schmitt and Schmitt (1977) found that the average £_-

20 over 1H7 criterion-referenced tests was equal to .53 while the

average 32(X,Tx) was .67, and the difference between these coeffi-

cients increased as the distance between the mean and the cut-off

increased. Likewise, Downing and Mehrens (1978) found that the mean

value of K2(Z,TK) taken over 33 achievement tests was greater than the

mean values of Kfi-ZO and Kfi-21. Livingston (1972b) presented two

reasons why the value of K?(X,Ix) and 9(l) should change as the

distance between the mean and the cut-off changes: (1) if an indivi-

dual's obtained score is farther away from the cut-off, his true and

obtained scores are more likely to lie on the same side of the cut-

off. "Then, if two groups of scores have equal variance and equal

reliability in the norm-referenced sense, the group of scores
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whose mean is farther away from the criterion score must have the

greater criterion-referenced reliability" (p. 18); and (2) a change in

the cut-off leads to a different interpretation of scores. Similarly,

Brennan and Kane (1977b) viewed an increase in the distance between

the mean and the cut-off as an increase in the ability to detect the

signal. Others have stated that these coefficients' sensitivity to

the relative position of the cut-off is either inappropriate or

undesirable (Harris, 1972a, 1973; Shavelson, Block, & Ravitch, 1972).

Shavelson, et al. (1972) believed that the cut-off score's effect

on the size 0f.£?(Z,Tx) means the latter does not directly reflect the

measurement's repeatability. (This argument could also pertain

to 9(2).) However, given the desire to interpret scores in relation to

,9 , the difference between the mean and Cx reflects true variance and,

therefore, K?(K,Ix) does reflect the measurement's consistency

(Livingston, 1972c).

Harris (1972a) proved that K?(£,Ix) equals the norm-referenced

reliability coefficient computed on pooled data from two populations

equal 02

g

cut-off. According to Harris (1972a)..K?(K.Ix) is deficient because

and means equidistant above and below the
, 9

2

having equal oI

ceiling and floor effects do not always allow one to postulate the

existence of two means equidistant from 9x. Therefore, the higher

reliabilities obtained with 52(X'3x) are simply due to implicitly

increasing the range of talent (Harris, 1972a). In rebuttal,

Livingston (1972a) stated, "Criterion-referenced test score interpre-

tations do not require that the criterion score be conceptualized as

the mean of some distribution" (p. 9). Simply stated, one must reject



29

the notion that the first moment of a distribution has to be the mean

(Lovett, 1977).

Livingston's coefficient was also criticized because the standard

error of measurement remains constant even though K?(§,Ix) increases

as the cut-off score moves further from the mean, i.e., the use of the

higher K?(l,1x) as opposed to a classical coefficient does not lead to

a more dependable estimate of where a particular examinee truly falls

relative to Cx (Harris, 1972a; Shavelson, et al. 1972). This

criticism also applies to 9(k) (Brennan & Kane, 1977a). However,

reliability refers to the dependability of a group of scores, not a

single score (Livingston, 1972a). When a mastery decision must be

made for every group member, the larger value of 52(X,Tx) implies a

more reliable overall estimate of each member's mastery state

(Livingston, 1972a). The situation is analogous to the effect that an

increase in variance has upon a classical coefficient. Moreover, the

standard error of measurement and the squared error criterion-

referenced reliability coefficients provide different information:

the former measures the variability of an individual's scores

independent of the cut-off score, while the latter indicates the

consistency of scores relative to the cut-off (Berk, 1980).

In another critique, Harris (1973) showed that the squared

standard errors of estimate associated with a linear prediction of

true score and of the observed score on a parallel test increase when

g?(X,T£) is substituted for.,:1:,1 in the regression equations.

Livingston (1973) considered this substitution inappropriate because

.g1, not_E2(§,T£), is the least squares linear regression coeffi-

cient. Replacing};1 by g?(K,TX) removes the regressor for the
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mean and clearly results in an increased residual variance

(Livingston, 1973).

Finally, the appropriateness of 52(5’21) and 0(k) was questioned

because these coefficients increase as the cut-off moves from the mean

toward either mode of a symmetric bimodal distribution (Marshall,

1976; Marshall & Serlin, 1979; Subkoviak, 1976). Intuitively, one

would expect the Opposite to be true, i.e., K?(£,Ix) and 0(A) should

be greatest when the mean equals the cut-off since the mean is the

point of lowest score concentration and, therefore, the point at which

more people should be reliably assigned to mastery states (Marshall,

1976; Subkoviak, 1976). Clearly, this counterintuitive relationship

also applies to a unimodal skewed distribution (Marshall & Serlin,

1979). In short, the magnitude of KZ(X,TX) and 9(k) is sensitive to

the distance between the mean and the cut-off, but not to the cut-

off's relative position to the mode or to heavy score density areas

(Marshall & Serlin, 1979). This criticism is unwarranted given that

K?(3,Tx) and dKA) define reliability as the average squared deviation

from the cut-off. Like any mean, this average is heavily affected by

outliers present in skewed distributions. As the cut-off approaches

the mode of such distributions, the outliers become even more

influential resulting in an increased average squared deviation. An

analogous process occurs for bimodal distributions. In summary, when

the cut-off approaches heavy score density areas, more individuals are

likely to be misclassified but the reliability in terms of the average

squared deviation increases and is appropriately reflected by the

magnitude of K?(X.Ix) and ¢(A).
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Reliability Formulations Based Upon Threshold Loss

Carver. Carver (1970) introduced two methods for assessing the

reliability of mastery measurement. One method consisted of admin-

istering the same test to two comparable groups and comparing the

percentages of examinees achieving mastery in each group. In the

other procedure, the percentages of examinees achieving mastery on two

parallel tests are compared. Both procedures are subject to the same

limitation; the two percentages compared can be equal even if the

measure unreliably classifies every individual (Subkoviak, 1978b).

For example, according to the second procedure, perfect reliability

can be obtained when "01 of the examinees are classified as masters

based on the first test administration and a different #01 are classi-

fied as masters on the second administration (Subkoviak, 1978b).

Another problem with these procedures is that they do not allow

consistent non-mastery decisions to contribute to the reliability

measure 0

Hambleton and Novick. Hambleton and Novick (1973) suggested that

reliability be expressed as the proportion of times a consistent

mastery decision is made with two parallel measurement procedures.

(Hambleton and Novick (1973) do not use the proportion correct score

as an examinee's true score estimate nor as the whole basis for

mastery classification. First, they recommend using a Bayesian

estimation procedure to determine the probabilities of an examinee

being a master and a non-master. Then, based upon the criterion of

minimizing threshold loss, these probabilities and the estimated



32

losses caused by making erroneous decisions are used to classify an

examinee.) Given,g_mastery states, their index can be expressed as:

where‘pii is the proportion of people classified in the ith mastery

state on both test administrations (Hambleton a Eignor, 1979). This

coefficient is frequently called the coefficient of agreement.

Although they certainly were not referring to mastery testing at the

time of their writing, Goodman and Kruskal (195") had suggested using

this index as a reliability measure for two polytomies consisting of

the same classes.

The upper limit offlpo is, of course, one. Its size is partly a

function of the magnitude of the cut-off score relative to the

examinees' ability level. For example, 20 will be high when the cut-

off score is very low and the examinees have just completed a training

program relevant to the tested skill (Millman, 197“). In other words,

.3g does not take into account the proportion of agreement expected

merely by chance (Kane & Brennan, 1977; Swaminathan et al., 197R).

This fact has led to criticism of this index since, as long as the

base rate for one category is high,‘po can be high even if the

measurement procedure does not contribute to correct classification.

Goodman and Kruskal;AKoslowsky and Bailit. In 19SH, Goodman and

Kruskal advanced an alternative to 20' They recommended using their

index when no relevant continuum underlying the classification scheme

existed and when the classifications did not have ordinal properties

(Goodman & Kruskal, 195“). One can easily argue that mastery
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measurement satisfies neither of these conditions. However, using

their measure is possible when only two classifications exist since

the ordinal properties are largely irrelevant and since interest lies

in evaluating mastery, not an examinee's score on the underlying

continuum. The proposed reliability measure is:

 

Ar . flag, - [1/2 (12% + 2&3]

- 1 - E/z (PM. + P.1~L)]

where 2;; is defined as previously, and BM- andf.‘M represent the

marginal proportions corresponding to the modal category for rows and

columns, respectively. The numerator equals the decrease in the

probability of misclassification occurring when an examinee's mastery

status is known on one test as opposed to when no information is

available (Goodman & Kruskal, 1959). In the latter case, the best

guess of the examinee's status is the modal class (Goodman & Kruskal,

195“). The denominator equals the probability of misclassification

given no information, and the coefficient equals the proportionate

decrease in the probability of misclassification as one moves from the

no information situation to a situation where the individual's status

is known on one test administration (Goodman & Kruskal, 195“).

Koslowsky and Bailit (1975) expanded upon this formula to deter-

mine the reliability of a series of items. This extended index can be

used to assess the reliability of a series of mastery decisions.

Their measure simply equals the average oflhrtaken over all the

\

ii - [1/2 (By: +£.Mfl ‘_:

mastery decisions (2): /

>32
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A problem with A; and A; is that they are indeterminate when all

examinees are masters (non-masters) and both test administrations

classify them as such. Clearly, the measurement is perfectly reliable

in this case. Koslowsky and Bailit (1975) suggested automatically

assigning a value of 1 to Kr when this situation occurs. Cohen (1960)

questioned the appropriateness of it as a reliability index since

using the modal category as the "best guess" in the no information

situation is more logical within the context of prediction rather than

reliability.

Swaminathan, Hambleton,gand Algina. To eliminate the influence

of chance agreement found with go, Swaminathan et al. (197“) proposed

using Cohen's coefficient kappa, K. This coefficient is defined as:

(39-13.)

58(1 )
Be

where-pc is the proportion of agreement expected by chance alone

m -

or fp p 1 (Cohen, 1960). The symbols Bi and 9.i represent the
i.-.

151- -

marginal proportions in a joint classification of the same decision

categories on two test administrations, or the proportion of examinees

assigned to a mastery state, i, on the first and second test

administrations, respectively (Swaminathan et al., 197“). Therefore,

9c is actually a function of the group composition and is the

proportion of agreement one would obtain regardless of whether or not

the two administrations were statistically independent (Hambleton &

Eignor, 1979).
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The numerator of K equals the difference between the obtained and

the chance proportions of agreement while the denominator equals the

maximum value this difference can assume (Millman, 197“). Therefore,

K_measures the proportion of agreement obtained over and above that

expected by chance alone and is, in a sense, independent of the

proportion of masters and non-masters in a particular group (Hambleton

a Eignor, 1979; Swaminathan et al., 1979).

A limitation of K, as well as of go, is that their computation

requires two test administrations. Since obtaining data on a parallel

test or a retest is not always feasible, an index of classification

consistency estimated from a single test administration is definitely

needed.

Subkoviak. Subkoviak (1976) offered a single test administration

estimate of 90’ He first defined the coefficient of agreement for

person Vi? as the probability of i being placed in the same mastery

state on two parallel tests:

where K and K’ represent the two test administrations. The first term

on the right of the equation denotes the joint probability of person i

being consistently classified as a master, and the second term

represents the joint probability of a consistent non-mastery

decision. Subkoviak then defined the coefficient of agreement (30)

for a group of g examinees as the mean of the individual 20(i):

p = 33— }? (ED/l!
-_ i=1 2
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To obtain estimates of 29);) from a single test administration,

Subkoviak assumed: (1) scores on the two tests were independent for a

fixed examinee; and (2) given an individual's true score, the condi-

tional obtained score distributions on both tests were identically

binomial. These assumptions led to the following equation for 29(1):

2 (9 - (2(XiZCX))2 + (Heal zcxnz where

- - - B (P. 31 3-51

maize; = it 2:92; (143;)

‘i ‘23

In the latter equation,_£i denotes an individual's true probability of

obtaining a correct item response, Q equals the number of test items,

and Xi represents individual i's obtained score.

Once 2(zizgx) has been calculated from the data obtained on one

test administration, both Po(;) and p0 can be easily computed. The

key to determining 2(32293) is estimating 2;. One could choose the

maximum likelihood estimate which equals xL/g (Subkoviak, 1976).

However, the standard error of this estimate is {§;(T:f;77§ which is

relatively large when n 5&0 (Subkoviak, 1976). Due to this

limitation, Subkoviak (1976) recommended using a regression estimate

of 2i when the observed scores approximately follow a negative hyper-

geometric unimodal distribution. Specifically, he proposed the

following equation:

2. = [0.21 (Ki/9)] + [<l—o21) mam]
L

where a21 and'ux equal 53-21 and the test mean, respectively. (In a

later paper, Subkoviak (1978b) used Kfi-ZO instead of 53-21 in this

equation.) This regression estimate is particularly useful when n is

small because the estimate incorporates collateral information
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provided by the group (Subkoviak, 1976). The validity of this

approach depends upon the sample estimate of the mean and the

reliability (Subkoviak, 1976). When the test score distribution is

bimodal, Subkoviak (1976) recommended computing separate regression

equations for each group or pOpulation. Bayesian estimation

procedures have also been developed.

Algina and Noe (1978) compared the bias and standard error of go

based upon the maximum likelihood true score estimate to that ofpo

using the regression estimate. (They used 53—20 rather than 53-21 as

the regressor.) Bias and standard error were defined as the mean

square deviation of £9 from 29 over replications and the standard

deviation of this estimate across replications, respectively. The

data were simulated using various values for the number of examinees,

true score variance, number of items, and cut-off score. Basically,

the bias of:po for both true score estimators was affected by the cut-

off score, the true score variance, and the number of items. However,

changes in these factors affected the extent and/or direction of the

biases associated with these two models differently. The regression

estimator resulted in a substantially biased estimate when the cut-off

scores were close to the mean true score and KR-ZO 2.U8. In all other

cases, the bias was reasonably small. On the other hand, the maximum

likelihood estimator tended to result in a substantially biasedpo

when the cut-off was close to the mean and KR-205:.32. The standard

error of go for both estimators was small in all conditions and

increased slightly as the number of examinees decreased. Algina and

Noe concluded that, in most cases, using the 53-20 estimator with the

binomial error model produced accurate Po estimates for tests



38

conforming to this model. However, they also suggested averaging the

maximum likelihood and regression‘po estimates when KR-ZO is large.

Since Subkoviak's procedure depends upon both an independence and

a binomial assumption, the reasonableness of these assumptions should

be discussed. The former assumption means the errors of measurement

on parallel tests are independent for examinee i_and can be met if the

tests contain different items or are administered at different times

(Subkoviak, 1976). These are obviously the conditions under which

many of the classical reliability estimates are determined. When the

independence assumption is violated, Subkoviak's index under- or over-

estimates the dual administrationpo depending upon whether the two

tests are positively or negatively correlated, respectively

(Subkoviak, 1976).

To satisfy the binomial assumption, items must be independent and

have the same difficulty level. These conditions may not accurately

reflect the real world (Gross & Shulman, 1980; Subkoviak, 1976).

According to Brennan (1979), items should not be expected to have the

same difficulty level. Violating this assumption results in a

conservative estimate of mastery classification consistency

(Subkoviak, 1976). More accurateipo estimates can be obtained by

replacing the binomial with a compound binomial model which allows

varying item difficulties (Subkoviak, 1976). However, Marshall and

Serlin (1979) found that these two models produced almost the same

results, except in one case.

The binomial error model seems better suited for describing the

conditional test score distribution than does the normal error model

typically applied in norm-referenced measurement (Brennan, 197“). The
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problem with the latter model concerns its assumptions that the errors

of measurement are independent of true score and are distributed

normally with a mean of zero and homogeneous variances. In criterion-

referenced measurement, individuals commonly receive a score of one

(expressed as the proportion of correct answers) since they are being

trained to achieve mastery (Brennan, 197“). Adopting the classical

assumption that €(§/1) = 0 implies that people with a true score of

one always obtain this score (Lord and Novick, 1968). Likewise, those

with a true score equalling zero must always score zero since the

observed score can never be negative (Lord & Novick, 1968). In either

case, the variance of the errors of measurement is zero.

This conclusion shows that under any model with bounded

observed score and unbiased errors (not all zero), the

conditional distribution of the observed score cannot

be independent of true score; equally, the conditional

distribution of the error of measurement cannot be

independent of true score (Lord & Novick, 1968, p.

509).

Consequently, the normality, homogeneity of variance, and independence

assumptions of the normal error model are not appropriate for

describing the conditional score distribution for criterion-referenced

measurement (Brennan, 197“). The formula for the binomial distri-

bution indicates that this model does not make these assumptions.

In summary, Subkoviak's procedure requires the following steps:

(1) computei’1 through the appropriate regression equation; (2)

compute £03 Z-x) assuming a binomial distribution of test scores given

,fi ; (3) determine 90(1); (“) sum the individual 20(i) and divide by y

to obtain 20. If the univariate and bivariate score distributions are

approximately normal, the procedure outlined above need not be used to
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estimatepo (Subkoviak, 1976). Subkoviak (1976) proposed the

following equation:

<9 .a'<o. ) = l - [2(B(§<Q§)-E(§<§£,E'<Q§))J

where cx=(§£--5-u§)/G£, 0! equals the standard deviation of 3, and U5
-

equals the mean oflg (Subkoviak, 1976). In this equation, P(z<=gx)

represents the probability that a standardized normal variable is less

than 9x and can be found in univariate normal distribution tables.

-§(§‘9x’§'<9x) is the probability that two standardized normal

variables with a correlation equal to KR-ZO are both less than 9 .

This probability is obtained from tables of the bivariate normal

distribution.

At a later time, Subkoviak (1978b) introduced a single test

administration estimate of coefficient kappa by computing the probaa

bility of chance agreement which would occur given his model of the

data. This probability equals:

{ A A 2
Pa = 1 - 12‘}; -o ms - (2(E(?$_2-§))/l1> ]

This formulation was derived by defining the base rate for mastery

classification as the average probability (taken across examinees) of

being designated a master.

Marshall and Haertel. Marshall and Haertel (1975) also proposed

a single administration estimate of_po, known as coefficient beta

(8). Their coefficient equals "the mean of all possible split-half

coefficients of agreement" and is, consequently, analogous to coeffi-

cient alpha (Marshall & Haertel, 1975, p. 3).
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To derive 8, scores on a hypothetical Zg-item test must first be

simulated from examinees' scores on an n-item test. Using the

binomial error model, this simulation is accomplished via the

following equation:

3 B -

13 - z 31 (2g) (25/9)H (l-()_(/.r_1))213W

where fix denotes the frequency of score 3 on the n-item test, and -w

equals the frequency of score 3 on a 23-item test. Using these

simulated scores, Marshall and Haertel define 8 for an g-item test as:

;_v

8 a v 2 p

o=1 Q

where Po is the proportion of agreement consistency between two split-

half tests of g items each, and u is the number of possible splits

which can be obtained from the 29-item test. The latter quantity

2n

equals (gf). Marshall and Haertel's computational formula for B is:

Qx-l 2-x-2 3+Qx-l

a - + - o - .. - ~ 0 -

B l/waoy! EC :33 210.4 (CE 1). 9‘3 leizc EH “3595’” 93.)

_ _ 5 _ :3

2r;

+ 2 N

where fl=_-I~(_:x_5‘-J

.5 = number of examinees

.fl : examinee's score on a 23-item test

B = number of test items

3" = frequency of score E

cut-off score on an g-item test

I
0

I

u

D(H 2g-W\ 2g

Qw(§,p) e; j n—j/ / Q or the proportion of splits

- =§~ --
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resulting in a half-test score of from a to b inclusive, given a total

score of E.

As can be seen, 8 is the mean of its additive parts and,

therefore, each examinee's score makes a specific contribution to

beta's magnitude (Marshall, 1976). The further the score departs from

the value 2Qx-1, the more it contributes to the size of B (Marshall,

1976). A score equalling 2§x—1 makes a zero contribution; at this

particular value, the examinee must always be classified as a master

on one half of the test and a non-master on the other half (Marshall,

1976).

Similar to Subkoviak's model, the validity of using the binomial

error model in Marshall and Haertel's formula is questionable.

However, results of a study investigating the bias of various

estimates showed that 8 produced quite accurate estimates of £0 when

items were not homogeneous, particularly for longer tests (n=30, 9:50)

(Subkoviak, 1978a).

One drawback of this model, as noted in a personal communication

from Marshall (1980), is the use of the proportion correct score as

the true score estimate in computing MK. As previously mentioned, the

standard error of this estimate is reasonably large when n 5 1‘0.

Apparently, Marshall no longer recommends this procedure (Marshall &

Serlin, 1979). A regression or Bayesian estimate can easily be incor-

porated into the procedure. In one study, Marshall and Serlin (1979)

actually used a predictive Bayesian beta model as well as other models

to obtain the frequency distribution for a ZQ-item test.
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flgygh, Huynh (1976) developed a single administration estimate

of £9 and kappa based upon Keats and Lord's beta-binomial test score

model. Like Subkoviak's and Marshall and Haertel's formulations, this

model assumes an examinee's scores given his/her true score follow a

binomial distribution (Huynh, 1976; Keats & Lord, 1962). According to

Huynh (1976), assuming similarity of item difficulty and item content

(i.e., item exchangeability) is reasonable for criterion-referenced

measurement because all items should measure a single trait.

Moreover, his 99 appears robust with respect to violation of the

former assumption (Subkoviak, 1978a). Specifically, violation of this

assumption resulted in slightly conservative estimates of reliability

for a 10-item test and had little effect on longer tests (Subkoviak,

1978a).

The Keats-Lord model also assumes true scores follow a beta

distribution. The beta distribution family includes a wide range of

shapes although multi-humped distributions are not included (except

for a U-shaped function where the modes occur at 0 and n). The para-

meters of the beta distribution, a and B, can be computed from the mean

and standard deviation of a large sample score distribution:

' 1

a ' (-1-+'--) ' U
a

21 1‘- '” u (LI-u )
n E K

B a - a - B.+ 2.. where a21 = KB-21= 551 1 ‘ 2 (Huynh,

a21 “ BU . 1976).

Under the beta-binomial model, the observed score distribution

has a negative hypergeometric distribution with the following density:

(1:) Home. 94-8-15)

§(a.B)
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where §_denotes the beta function (Huynh, 1976). Huynh (1976) has

provided computational formulas for evaluating §(x). Estimating‘po

and kappa also requires determining the joint distribution of

equivalent test forms, f(x,y). Assuming local independence with

respect to the true score, f(x,y) can be simulated. This distribution

follows a bivariate negative hypergeometric or beta-binomial distri-

bution with the following density:

n n

£(§.y) -(§) ‘§)§(a+§+y. 29+B-z-y) (Huynh. 1976).

‘ moms) ' ‘

Huynh (1976) also presented computational formulas for §(x,y).

Given a particular cut-off score, these formulas can be used to

calculate the proportion of examinees who would be placed in the

mastery category on both test forms @911), the proportion who would be

consistently classified as non-masters (poo), and the proportion who

would be given mastery status by only one form (21). These propor-

tions are defined in the following manner:
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Given the assumption that the marginal distribution is the same for

each form, Huynh (1976) defined Po and kappa as:
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When the cut-off score is small, the following formula for E is far

more convenient:

Poo'l’o

20-20

where 90 is the proportion of examinees classified as non-masters by

only one test form (Huynh, 1976).

When the number of test items is moderately large (e.g., n_>10),

Huynh (1976) suggested using a normal approximation procedure to

estimate kappa. In this procedure, an arcsine transformation is

applied to the data, resulting in an approximately normal score

distribution. Univariate and bivariate normal distribution tables are

then used to estimate the probabilities needed for computing 5.

Peng and Subkoviak (1980) found that, in the vast majority of his

simulated distributions, a simple normal approximation procedure using

Yate's correction resulted in less proportionate error in estimating §_

than did Huynh's normal approximation procedure. Pens varied the beta

distribution parameters, the cut-off score, and the test length. The

upper limit of the latter variable was 30. Using real data, Peng

(1979) collaborated his findings. The superiority of the simple

normal procedure was more pronounced for short tests and/or moderate

cut-off scores (between 65% and 85%). Similar results were obtained

when the two normal approximation procedures were used to estimate p0

(Peng, 1979; Peng & Subkoviak, 1980).

Characteristics of Threshold Loss Indices. As can be seen, the

most appropriate threshold loss coefficients are divided into two

categories: (1) 29 coefficients; and (2) kappa coefficients. Because
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the former indices do not take account of chance agreement while the

latter ones do, various population and test characteristics affect_po

and kappa differently. Since research has shown these factors affect

dual and single administration coefficients similarly, the following

discussion applies to both unless otherwise stated.

First, under the assumption of exchangeability, the theoretical

lower limit of‘po is the proportion of agreement expected by chance,

while kappa's limit is zero (Huynh, 1978; Subkoviak, 1978b). In

general, however, the lower limit of kappa, computed from two test

administrations, depends upon the marginal distributions (Cohen,

1960). The upper limit of both coefficients is +1.00.

Second, as the cut-off approaches the extremes, p0 generally

approaches one (Marshall, 1976; Marshall & Haertel, 1975; Subkoviak,

1976, 1977). This trend is particularly evident for symmetric uni-

modal distributions (Marshall & Haertel, 1975). On the other hand,

kappa generally approaches its lowest value as the cut-off moves

toward the distribution extremes (Huynh, 1976; Subkoviak, 1977). This

difference can be partly explained by the fact that the probability of

chance consistency generally tends toward one as the cut-off

approaches the extremes (Huynh, 1976). Therefore, Bo also approaches

one, while kappa decreases because not much opportunity exists for

increasing agreement above chance (Huynh, 1976).

Third, the magnitude of_o has been found to increase as the

distance between the cut-off and areas of heavy score density (e.g.,

the mode) increase (Eignor & Hambleton, 1979; Marshall, 1976;

Subkoviak, 1976, 1977). Given_¥1<:1.00, examinees scoring close to
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the cut-off on the first test administration could easily obtain a

score on the opposite side of the cut-off on the second administra-

tion. 0n the other hand, those further away from the cut-off would

more likely be placed in the same mastery state in both testing

sessions. Therefore, the greater the number of scores further away

from the cut-off, the higher the 20' EXceptions to this relationship

have been found for the single administration coefficients (Marshall &

Serlin, 1979). Marshall and Serlin (1979) examined the behavior of

these coefficients given five different distributions: (1) bell-

shaped; (2) highly negatively skewed unimodal; (3) bimodal with a

stronger mode at the higher end; (fl) symmetric bimodal with modes

widely separated; and (S) symmetric bimodal with modes close

together. With the exception of the fifth distribution, the size of

Subkoviak's};o generally reflected the distance between the cut-off

and the mode for both unimodal and bimodal distributions. Fortu-

nately, the fifth distribution is atypical in mastery testing

8 reflected the cut-off's

~2.

position for unimodal distributions and bimodal distributions with

(Marshall & Serlin, 1979). Huynh's

extreme modes, but not for bimodal distributions not belonging to the

beta-binomial family. For Marshall and Haertel's index, five

different test score models were used to simulate scores on a 29-item

test from scores on an gyitem test. The adequacy of their fig in

reflecting the cut-off's relative position depended upon the model

used to generate scores. One of the best models was a binomial

regression model comparable to that used in Subkoviak's index. This

model produced results similar to those obtained with Subkoviak's

.fig: An averaged double binomial model introduced by Marshall and
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Serlin also reflected the location of the mode(s) for both unimodal

and bimodal distributions.

In contrast, given the assumption of exchangeability, Huynh

(1978) mathematically proved that kappa is an inverted U function of

the cut-off when the data are normally distributed. This relationship

was also empirically supported for normally distributed data as well

as for various beta-binomial and some bimodal distributions (Eignor &

Hambleton, 1979; Huynh, 1976, 1978; Marshall & Serlin, 1979;

Subkoviak, 1977). Apparently, the location of the cut-off relative to

the score density affects kappa in a manner Opposite to its effect on

.99’ i.e., kappa is greater when the cut-off is located near heavy

score density areas. Intuitively, one might expect kappa to behave

similarly t°.Po' The difference appears to be due once again to the

influence of chance agreement. Specifically, in many distributions,

2c decreases as the cut-off approaches heavy score density areas,

leading to a decrease in 99. However, kappa increases because more

Opportunity exists for agreement above that expected by chance.

Generally, the cut-off score appears to affect the magnitude of

‘39 and kappa in two ways, i.e., through its relative position to the

extremes and to the heavy score density areas. Conceivably, these two

influences could interact, producing some unpredictable results. For

example, what would happen to the size of_po and kappa 1f the cut-off

and the mode were equal to 2? Marshall (1976) used this interactional

effect to explain the unpredictable relationships found between the

cut-off and his coefficient. This effect probably also explains some

unforseen trends Eignor & Hambleton (1979) found with kappa.
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Fourthhpo does not require score variability to attain its upper

limit but kappa does (Kane & Brennan, 1977). However, both coeffi-

cients increase as the variance increases (Huynh, 1976; Marshall,

1976; Swaminathan et al., 197“). A large variance implies extreme

scores and, consequently, better differentiation between masters and

non-masters (Marshall, 1976).

Fifth, although all the aforementioned variables affect‘po and

kappa differently, the test length and the classical reliability

coefficients affect them similarly. Specifically, as the number of

test items increase, Bo and kappa increase (Eignor & Hambleton, 1979;

Huynh, 1976, 1978; Marshall, 1976; Marshall & Haertel, 1975;

Subkoviak, 1978b; Swaminathan et al., 197R). Increasing the test

length probably results in a more accurate true score estimate and,

consequently, a more reliable estimate of an examinee's mastery

state. Correspondingly, as the classical reliability coefficient

increases so should .0 and kappa. Marshall (1976) found the mean of

his coefficient taken over various cut-off scores was highly

correlated with Kfi-21 across several distributions (Bh9=.93). Given

parallel tests, dual administration kappa was mathematically and

empirically shown to increase as the classical reliability coefficient

increased for a normal distribution and a beta-binomial model,

respectively (Huynh, 1978). In addition, Downing and Mehrens (1978)

found that Huynh's single administration kappa coefficient correlated

.96 and .98 with K§-20 and 33:21, respectively. On the other hand,

Algina and Noe's results (1978) did not support a relationship between

Subkoviak's go and a classical coefficient.
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Synthesis

In the foregoing discussion, which coefficient to use in a

particular mastery testing situation was not delineated. The present

section addresses this issue by synthesizing the previous material and

determining the major distinctions among the various coefficients.

Using the concept of agreement functions, Kane and Brennan (1977)

provided a single consistent framework for viewing the reliability

coefficients. As explained by Kane and Brennan (1977), an agreement

function denotes the extent of agreement between the interpretation of

examinees' scores on randomly parallel tests. For mastery measure-

ment, coefficients are based upon either a squared-error (with respect

to the cut-off) or a threshold agreement function corresponding to the

squared-error and threshold loss functions previously discussed. Kane

and Brennan showed that the indices equal either the proportion of

maximum agreement achieved by the measurement procedure or the

proportion of maximum agreement achieved over and above that expected

by chance. Maximum agreement is the expected agreement between a

testing procedure and itself, while the agreement produced by the

measurement procedure is the expected value of the agreement

function. Figure 2 presents the major single test administration

reliability coefficients within their appropriate categories, formed

by crossing type of agreement function with the presence of a chance

agreement correction.

One must first decide whether to use squared error or threshold

agreement coefficients (Kane & Brennan, 1977). Since the former

coefficients are concerned with the extent of deviation from the cut-

off, their size reflects the magnitude of errors (Brennan & Kane,
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Chance Agreement
 

 

 

TYpe of Agreement Function Uncorrected Corrected

Squared Error Livingston's K?(X,Ix) Brennan & Kane's 0

:Brennan & Kane's ¢(X)

Threshold gSubkoviak's po Subkoviak's kappa

‘Marshall & Haértel's Huynh's kappa

‘20, Huynh's 29

  
 

Figure 2.--Mastery Testing Reliability Formulations

1977a). In other words, they do not consider all inconsistent classi-

fications or misclassifications to be equally serious, but assume that

misclassifying an examinee whose true ability level is far from the

cut-off is much more serious than misclassifying someone whose true

ability is close to the cut-off (Brennan & Kane, 1977a). This advan-

tage is particularly compelling since cut-off scores are, to some

extent, arbitrarily determined and, therefore, a sharp distinction

between masters and non-masters seldom exists (Brennan & Kane, 1977a;

Glass, 1978). Furthermore, different procedures for setting cut-off

scores result in different cut-offs (Brennan & Lockwood, 1979).

However, a drawback of these coefficients is their sensitivity to all

errors, even those not resulting in inconsistent mastery decisions

(Brennan & Kane, 1977a).

On the other hand, threshold agreement indices do not reflect the

magnitude of errors but are only sensitive to errors resulting in

misclassification (Brennan & Kane, 1977a). The disadvantage of these

coefficients is that they consider all misclassifications to be

equally serious (Brennan & Kane, 1977a).
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Clearly, neither the squared error nor the threshold agreement

coefficients are optimal in every situation. Kane and Brennan (1977)

suggested the following course of action:

The threshold agreement coefficient is appropriate

whenever the only distinction that can be made usefully

is a qualitative distinction between masters and non—

masters. If, however, different degrees of mastery and

non-mastery exist to an appreciable extent, the

threshold agreement function is not appropriate because

it ignores such differences (p. “0).

Since reliability is relative to the score interpretation, the appro-

priate agreement function should be dictated by the way the scores

will be used (Popham & Husek, 1969; Subkoviak, 1978b). If the degree

of mastery or non-mastery is of interest, coefficients incorporating a

squared-error agreement function are more suitable (Subkoviak,

1978b). This situation occurs when different actions or programs are

to be initiated based on how far from the cut-off an examinee scores

and/or when distance from the cut-off leads to unequal misclassifi-

cation losses (Brennan & Kane, 1977a; Popham & Husek, 1969). When

only two courses of action are possible and misclassification losses

are considered equal, threshold agreement coefficients should be

applied (Brennan & Kane, 1977a). Likewise, if there exist more than

two mastery categories and no differential misclassification loss

related to distance, threshold agreement indices can be used.

However, Kane and Brennan (1977) stated that threshold agreement

coefficients are inappropriate when more than two mastery

classifications exist and these categories are ordered. Addressing

the ordered case, Goodman and Kruskal (195D) proposed two other

measures which account for how different an individual's mastery

classification on two test administrations is. No single
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administration index of these ordered coefficients has been formally

developed. However, it seems the single administration threshold

agreement indices could easily be adapted to this purpose.

The next decision one must face is whether or not to use a

coefficient accounting for chance agreement. Differentiating between

corrected and uncorrected coefficients is important because they

provide different kinds of information about reliability (Kane &

Brennan, 1977; Subkoviak, 1978b). The uncorrected squared-error and

threshold agreement indices indicate the reliability of the deviation

scores and the mastery classifications, respectively, i.e., the

consistency of the score interpretation (Kane & Brennan, 1977). Both

chance agreement and the consistency contributed by the testing

procedure affect the value of these coefficients (Kane & Brennan,

1977). In comparison, corrected coefficients measure only the latter

source of consistency, i.e, the contribution of the testing procedure

to the reliability of scores over and above that expected by chance

(Kane & Brennan, 1977). Clearly, the choice between corrected and

uncorrected coefficients depends upon whether one wants to determine

the consistency of scores regardless of the causes of this consistency

(i.e., test procedure, group composition, group's mean ability) or the

reliability of the testing procedure irrespective of the group's

characteristic ability or mastery level (Subkoviak, 1977).

In discussing threshold loss indices, Livingston and Wingersky

(1979) and Berk (1980) do not recommend using the corrected

coefficient, kappa, in situations where an absolute cut-off has been
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established because the correction for chance takes the marginal

frequencies as given. As stated by Livingston and Wingersky (1979):

Applying such a correction to a pass/fail contingency

table is equivalent to assuming that the proportion of

examinees passing the test could not have been anything

but what it happened to be (p. 250).

However, the present author fails to see how this fact differentiates

kappa from any other reliability estimate which uses sample statistics

(e.g., the sample mean) as estimates of population values.

The corrected indices, coefficient kappa and 0, could be

criticized because they approach or equal zero when little or no true

mastery score variability exists (i.e., when everyone is placed in the

same mastery state or receives the same domain score, respectively)

even though the scores may be perfectly reliable (Berk, 1980).

However, this criticism is unwarranted. These coefficients' low

values in the presence of small variability do not indicate that the

mastery scores are unreliable, but simply that the testing procedure

does not add much more reliability to the scores above that achieved

by chance processes (Kane & Brennan, 1977). In other words, a testing

procedure resulting in some sort of criterion-referenced score

interpretation must produce variability in terms of those scores if

the procedure is going to contribute to reliability (Kane & Brennan,

1977). On the other hand, the uncorrected coefficients can be large

even when no true score variability exists because of the score

«consistency contributed by chance processes. These observations

provide a new perspective on Popham and Husek's disagreement with

Woodson over the variability issue (Kane 8: Brennan, 1977). To
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reiterate, Popham and Husek contended that variability is not a

necessary characteristic of a good criterion-referenced test, while

Woodson argued that a test with no variability provides no informa-

tion. It appears that Popham and Husek's argument applies to the

score interpretation, while Woodson's argument applies to the test's

contribution to this interpretation (Kane & Brennan, 1977).

As previously discussed, the four types of coefficients depicted

in Figure 2 react differently to the relative position of the cut-

off. Obviously, the cut-off's location does not affect the corrected

squared error coefficient. However, the uncorrected squared error

indices are sensititve to the distance between the mean and the cut-

off; they increase as this distance increases. The Bo and kappa

indices are generally not expected to be sensitive to this difference

unless the mean reflects heavy score density areas.

On the other hand, squared error indices are not sensitive to the

distance between the cut-off and the mode or heavy score density

areas, while uncorrected threshold indices are hypothesized to

increase as this distance increases. In contrast, the corrected

threshold indices appear to be greater when the cut-off is located in

heavy score density areas. For example, when scores are normally

distributed, a U function characterizes the relationship between the

cut-off score and po, while kappa is an inverted U function of the

cut-off.

Similar t°.Po’ the uncorrected squared error indices are also a U

function of the cut-off score given a normal distribution since the

mean equals the mode (Marshall, 1976). However, when the distribution

is skewed and/or bimodal, uncorrected squared error coefficients will
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increase while uncorrected threshold indices will decrease as the cut-

off moves from the mean toward the mode(s). Correspondingly, for

bimodal distributions, Marshall (1976) found that the magnitude of his

g2 and 32(§,IX) did not fluctuate similarly as the cut-off score

varied. This observation is particularly relevant in mastery measure-

ment since the score distribution on any given test administration is

often bimodal and, in some cases, is expected to be skewed (e.g.,

after an instructional program) (Marshall, 1976; Marshall & Serlin,

1979).

Although the list of applicable coefficients can be reduced by

choosing an appropriate agreement function and deciding whether or not

to correct for chance processes, one must still select among alterna-

tive formulas in many cases. The choice of an appropriate index in

these instances depends upon the number of feasible test administra-

tions, the satisfaction of the assumptions underlying a particular

index, the coefficient's robustness to violations of these

assumptions, the coefficient's bias in estimating the dual administra-

tion population index, and the degree of sampling fluctuation

exhibited by the coefficient. In most situations, two test

administrations are not possible and, therefore, the applicable

coefficients are typically those requiring only one test administra-

tion.

If one has decided to use an uncorrected squared error coeffi-

cient, one can choose Livingston's K?(§,Tx) and/or Brennan and

Kane's 0(A). A major difference between these indices is that K?(K,Tx)

is based upon classical test theory, while ¢(A) is derived from



57

generalizability theory (Brennan, 1979). The latter theory has two

distinct advantages over the former. First, generalizability theory

provides the opportunity to examine the reliability of data derived

from different types of experimental designs, e.g., nested design

(Brennan, 1978). This theory also allows one to take account of

whether the various effects are fixed or random (Brennan, 1978).

Second, generalizability theory can differentiate norm- from

criterion-referenced measurement by distinguishing between different

error variances, while classical test theory cannot (Brennan, 1979).

Specifically, Brennan and Kane's approach indicates that 021 is the

appropriate error term for norm-referenced measurement, -

while 031 + 0% is the proper error variance in criterion-referenced

measurement (Brennan, 1979). Clearly, the classically parallel test

assumption obviates the existence of 0%. Generalizability theory

assumes tests are randomly parallel. Brennan (1979) finds the classi-

cally parallel test assumption unreasonable for criterion-referenced

testing since the test construction method does not require content

specialists to include only items with the same difficulty level in

the domain. If, as expected, the items in a domain have various

difficulty levels, it would be very unlikely for all tests constructed

from this domain to be classically parallel (Brennan, 1979). Further-

more, since K?(X,Tx) equals @(X) when test means are equal, K2(K,Tx)

is really a special case of 0(K)- For these reasons, the more

general 0(A) appears preferable to K2(K,Tx) (Brennan, 1979). Unfortu-

nately, no empirical research concerning the bias and sampling

fluctuation of these coefficients exists.
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When considering uncorrected threshold lOss indices, the appro-

priateness of several alternative Bo formulas must be evaluated. If

feasible, 2 can, of course, be estimated from two test administra-
o

tions. The dual administration p0 is unbiased and its standard error

equals (2(1-9)/y)‘/2 (Huynh & Saunders, 1979). Generally, formulas

for evaluating the standard error of the single administration 39

estimates have not been developed and very little empirical evidence

pertaining to their bias and standard error have been produced.

However, assuming a beta-binomial score distribution, Huynh (1978)

showed that his go index is asymptotically unbiased and also presented

a formula for the asymptotic standard error of this estimate. In

addition, Huynh and Saunders (1979) found that Huynh's p9 generally

underestimated the dual administration;o for large data sets not

conforming to the beta-binomial model as well as for small and

moderate sized samples (§=ZO,HO,60). In the former case, the average

amount of bias was -2.31 across various test lengths and cut-off

scores. For the small and moderate sized samples, the average degree

of bias was -2.6% across various test lengths.

Assuming a large sample size, Huynh and Saunders (1979) also

compared the standard error of the dual administration pg to that of

Huynh's estimate for various beta-binomial distributions, test

lengths, and cut-off scores. The mean and 53921 of the distributions

were chosen to reflect one of the following shapes: (1) U-shaped with

the higher mode at the upper end of the distribution; (2) symmetric;

(3) unimodal with the mode lying between H and g; and (u) J-shaped.

In every instance, the standard error of Huynh's estimate was lower

than its dual administration counterpart. On the average, the



dist:

SEVQ!

Saunc

error

A“; '

hub:



59

standard error of the former was 59.3% of the latter. The uniformly

smaller standard error of Huynh'slpo was also found for large sample

distributions significantly different from the beta-binomial in

several instances and for small to moderate sized samples (Huynh &

Saunders, 1979). Over all the situations considered, the standard

error of Huynh's fie was 5o.u: and 51.us of that of the dual

administration estimate, respectively.

Only one study correctly compared the bias and standard error of

all the _pa estimates (including the dual administration 139)

(Subkoviak, 1978a). In this study, Subkoviak's coefficient was based

upon a compound binomial instead of a binomial model, and the

proportion correct score was used as the true score estimate in

Marshall's p2. Each estimate was computed for 50 random samples of 30

students each and compared to the dual administration_po obtained in

the population (fle1586). Comparisons were made for three test lengths

(10, 30, SO) and four cut-off scores (.594 .6n, .7n, .8n). The mean

and standard deviation of each estimate across the 50 samples provided

the necessary data for judging the estimate's bias and standard

error. All the estimates became more accurate as the test length and

the distance between the mean and the cut-off increased. Moreover,

the estimates' standard errors decreased. The influence of the

distance between the mean and the cut-off can be partly explained by

the fact that estimates become more accurate and less variable as the

population parameter becomes more extreme (Subkoviak, 1978). Corre-

sponding to Huynh and Saunder's results (1979), the dual

administration estimate was unbiased but had the largest standard

error regardless of the test length and cut-off score. Huynh's‘pO
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underestimated go for short tests and was, generally, less variable

than the other indices for 30- and 50-item tests. Marshall and

Haertel's E0 was biased upward when the cut-off was near the mean and

biased downward when the cut-off was in the tails of the

distribution. This effect was more pronounced for shorter tests.

Conversely, for short tests, Subkoviak's fio underestimated go when the

cut-off was near the mean and overestimated £0 for more extreme cut-

offs. This finding was similar to that found by Algina and Noe

(1978). The opposite reaction of Marshall's & Subkoviak's indices may

have been due to the use of different true score estimates. Specifi-

cally, Marshall and Haertel's use of the proportion correct score

produces an overestimate of the true score variance, while Subkoviak's

regression true score estimate results in an underestimate of this

variance (Algina & Noe, 1978). It should be noted that Subkoviak's go

showed no consistent pattern for longer tests. Finally, Marshall and

Haertel's index was the least variable but the most biased for 3:10.

Except in this latter case, none of the four coefficients was substan-

tially biased.

In evaluating which single administration Po estimate to apply,

the assumptions underlying each of them should be examined. All

assume the distribution of an examinee's test scores given his/her

true score is binomial. Recognizing that the equal item difficulty

assumption might be unrealistic, Subkoviak (1976) proposed using the

compound binomial instead of the binomial model. However, whether or

not this more complicated procedure improves estimation of_po is

highly questionable. Use of the compound binomial in Subkoviak's fig

generally produced results similar to those obtained using the
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binomial model (Marshall A Serlin, 1979). Furthermore, Huynh and

Saunders (1979) found the standard deviation of item difficulties was

not related to the degree of bias associated with Huynh's_§g and

Huynh's kappa estimate, and Subkoviak (1978a) provided evidence that

all three coefficients are robust with respect to violation of the

equal item difficulty assumption.

Another assumption implicit in all three single administration

coefficients is classic parallelism (Kane A Brennan, 1977). The

validity of this assumption in criterion-referenced testing has

already been questioned. When tests are not classically parallel,

these coefficients will probably overestimate 20. To the author's

knowledge, no empirical evidence addressing this question exists.

Those few studies examining the bias of one or more of these estimates

included only parallel tests (for example, Subkoviak, 1978a).

HuYnh and Saunders (1979) noted that Subkoviak's procedure and

Huynh's procedure assume the score distribution is beta-binomial.

Therefore, they should have similar patterns of bias and standard

error. Huynh and Saunders (1979) concluded that such was the case in

Subkoviak's investigation (1978a). Although not explicitly stated,

Subkoviak's study of bias appears to have been performed on data

fellowing a normal distribution. The normal distribution is not a

member of the beta-binomial family, although this family does include

a ”normally" shaped distribution (Gross A Shulman, 1980). The bias

and standard error of these estimates have not been investigated for

distributions more typically found in criterion-referenced

measurement, i.e., skewed and bimodal (Marshall, 1976; Marshall A
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Serlin, 1979). Examining these coefficients given the latter distri-

bution would be particularly interesting because the beta-binomial

family does not include bimodal distributions, except for U-shaped and

J-shaped functions (Gross A Shulman, 1980). Both these distributions

are not expected to occur in the real world (Marshall A Serlin,

1979). Subkoviak (1976, 1978a) has stated that using a single

regression equation to estimate the true score in his procedure is

inappropriate given a bimodal distribution and has recommended using

Huynh's procedure. However, Marshall and Serlin (1979) found that the

magnitude of Huynh's p9 did not reflect the location of the modes for

bimodal distributions, while Subkoviak's fie reflected the mode(s) for

both unimodal and bimodal distributions. Although not explicitly

stated, the researchers appear to have used a single regression equa-

tion to obtain Subkoviak's true score estimate for the bimodal as well

as the unimodal distributions. Gross and Shulman (1980) investigated

the robustness of the beta-binomial model; they compared empirical

values ofpo obtained from two test administrations to the theoretical

values of‘p9 derived from the beta-binomial model when its underlying

assumptions were violated. They found that the theoretical and

empirical values were in close agreement. However, the authors did

not indicate the shape of the score distribution nor how severely the

assumptions were violated.

One of the most enlightening findings concerning the_po estimates

evolved from Marshall and Serlin's study (1979). They used five

versions of Marshall and Haertel's go varying in terms of the model

used to simulate scores on a Zn-item test. They found that Huynh's p0

and Subkoviak's p0 were empirically equivalent to Marshall and
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Haertel's estimate when the assumptions of the former indices were

applied to the latter coefficient. Specifically, when the Keats and

Lord beta-binomial model was used to simulate scores on a 29-item test

for Marshall's p0, this index was equal to Huynh's?)o in each of 300

cases. Similarly, when a binomial regression model was used to

simulate scores, Marshall's and Subkoviak's indices were equal. In

summary, Marshall's p0 appears to be a general index subsuming the

other two coefficients and is equal to them when the data are postu-

lated to meet certain assumptions (Marshall A Serlin, 1979).

Therefore, a choice among the three coefficients seems reduced to

choosing among various test models rather than among three entirely

different coefficients (Marshall A Serlin, 1979). Clearly, much more

empirical research is needed to choose which test model results in the

least bias and standard error given a particular type of distribution.

Finally, if the situation demands a corrected threshold agreement

index, one can use a dual test administration kappa estimate,

Subkoviak's model, and/or Huynh's procedure. The dual administration

kappa estimate is asymptotically unbiased (Huynh A Saunders, 1979).

However, Huynh and Saunders (1979) found a small negative bias for

both small (fl=20, HO) and moderate (fl=60) sized samples. They also

presented a formula for computing this estimate's asymptotic standard

error.

Given a beta-binomial distribution, Huynh (1978) showed that his

single administration kappa formula is also asymptotically unbiased

and presented a formula for its asymptotic standard error. For

several large data sets, some of which were significantly different

from a beta-binomial distribution, Huynh and Saunders (1979) found
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that this estimate tended to underestimate the pOpulation dual

administration kappa. Across various test lengths and cut—off scores,

the average percent of bias was —7.8. The same trend was found for

small and moderate sized samples; across various test lengths, the

average percent of bias was -11.0.

Huynh and Saunders (1979) also compared the standard error of

Huynh's kappa to that of the dual administration estimate. Over

various beta-binomial distributions, test lengths, and cut-off scores,

the standard error of Huynh's kappa was consistently lower. On the

average, it was 53.2% of the standard error of the dual administration

kappa. The uniformly smaller standard error of Huynh's estimate was

also found for large data sets with distributions significantly

different from the beta-binomial in several instances as well as for

small and moderate sized samples. On the average, the standard error

of Huynh's estimate was 50.2% and 56.9$ of the standard error of the

dual administration coefficient, respectively.

The bias of Subkoviak's kappa has not been investigated, and no

studies have compared the bias and standard error of Subkoviak's and

Huynh's kappa estimates. The same issues raised under the discussion

of the bias of the go estimates are also relevant for kappa formu-

lations. Specifically, these coefficients' biases and standard errors

need to be evaluated for various score distributions, including a

bimodal, and for situations where the classic parallelism assumption

is violated.

Obviously, the lack of empirical research does not allow

definitive recommendations as to which coefficient to use within each

cell of Figure 2 given a particular situation. In order to address
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some of the uninvestigated issues raised in this discussion, the

current study was conducted to assess the influence of various test

characteristics upon the bias and standard error associated with each

major single test administration coefficient when estimating the

appropriate dual test administration population coefficient. Speci-

fically, the effects of the following variables were examined:

(1) violation of the classic parallelism assumption

(2) shape of the test score distribution

(3) test length

(n) cut-off score

(5) number of examinees in the sample

Those coefficients whose derivation is based upon the assumption of

classically parallel tests were expected to be more biased when this

assumption was violated (i.e., when the tests were randomly

parallel). The shape of the test score distribution (particularly a

bimodal distribution) was hypothesized to influence the bias of the

threshold agreement indices because of their implicit or explicit

distributional assumptions. The location of the cut-off was not

expected to affect the extent of bias. Finally, a decrease in

standard error was predicted as test length and sample size increased.



METHOD

Data Base

Several populations reflecting different distributional shapes

were generated from data obtained from one of two sources. The first

data base came from the responses of a sample of Michigan public

school fourth graders to various criterion-referenced tests admin-

istered by the Michigan Educational Assessment Program (MEAP). MEAP

annually collects data on fourth, seventh, and tenth grade students'

attainment of various reading and mathematics objectives which address

several of the minimal skills beginning students in these grades

should have. Using a replicated, systematic sampling procedure, MEAP

annually selects approximately 5000 students in each grade and

computes each test's technical characteristics from their data

(Michigan Department of Education, 1977). (In applying this sampling

plan, the Michigan Department of Education (1977) randomly chooses ten

numbers identifying the first member of each of ten systematic

samples. A spacing factor is computed and added to each of these

numbers to identify the next member of each set. The spacing factor

is repeatedly added to the previous set of numbers until the requisite

sample size has been attained.) The data obtained from a sampling of

5,0fl0 fourth grade students in the fall of 1979 served as the major

population data base in this study. The second data source or popu-

lation was the responses of 589 college students to a mid-term exam

given in their introductory psychology course. This exam was a "norm-

referenced test" and produced a distribution not commonly found with

criterion-referenced tests.

66
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Procedure

Test Characteristics

Distribution shape. Four distributions were incorporated into

the study: (1) severely negatively skewed; (2) J-shaped; (3) bimodal

with a bigger mode at the upper end and a lower mode not equal to

zero; and (A) normal. The first distribution was believed to typify

that found when a criterion-referenced test is given after an instruc-

tional or a training program (Marshall, 1976). Correspondingly, this

distribution was found in the MBA? data. The J-shaped distribution

was included in the study because it was also represented in the MEAP

data. According to Marshall and Serlin (1979), a bimodal distribution

is also frequently found in mastery testing situations. Setting the

lower mode unequal to zero was intended to reflect the probability

that a non-master would guess the correct answer to one or more

questions. Marshall and Serlin (1979) contended that this distri-

bution is much more likely to occur in mastery testing than a J- or U-

shaped distribution, especially when guessing is a viable factor. In

some cases, the MEAP data (considering each grade) did follow a

bimodal distribution with the lower mode equal to one. However, the

bimodal did not occur more often than the J-shaped distribution.

Finally, a normal distribution was included to explore the appro-

priateness of the reliability formulas for typical norm-referenced

tests. Note that the bimodal and the normal distributions are not

members of the beta distribution family.
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Test length. Test lengths of 5, 10, 15, and 20 items were

examined. These test lengths typify those found for criterion-

referenced tests and/or are representative of those needed to produce

a high probability of accurately assigning respondents to a mastery

state (Algina A Noe, 1978; Klein A Kosecoff, 1973; Marshall, 1976;

Novick and Lewis, 1974). Furthermore, Berk (1980) recommended using

between five and ten items per objective for most classroom decisions

and between 10 and 20 items for school, system, and state level

decisions.

Cut-off score. Three cut-off scores, 70%, 80$, and 90$ were

employed because they are representative of those occuring in mastery

measurement and/or those recommended for usage (Block, 1972; Marshall,

1976; Novick A Lewis, 1974). To adequately effect cognitive learning

and, concurrently, maintain interest in learning, Block's research

(1972) has shown that the cut-off should be set between 80 and 85

percent. Marshall (1976) stated that one would typically use between

60 and 90 percent, and Novick and Lewis (1979) noted that the range

seems to be between 70 and 85 percent in Individually Prescribed

Instruction.

Given the previously specified test lengths and the integer value

of test scores, specifying three test scores (advancement scores)

equalling the chosen cut-off levels was not always possible. There-

fore, reliabilities were only computed for those combinations of test

length and cut-off score for which a test score resulting in a

percentage equal to or slightly greater than the given cut-off could
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be specified. Figure 3 presents these combinations and each advance-

ment score with its associated cut-off level.

Number of examinees. Sample sizes of 25, 35, and 50 were

randomly selected from the population. The first two values were

chosen because they were believed to typify classroom sizes and to be

illustrative of the number of people participating in various

organizational training programs. A sample size of 50 was used

because it has been recommended that estimation of'c and 8 in Huynh's

formulas be accomplished with u_> no for very short tests and N Z_2n

for longer tests (Subkoviak, 1978). Finally, these three sample sizes

were believed to be divergent enough to study the effects of sample

 

 

size.

Cut-off Level

Test Length 701 80$ 90%

5 “/5 (80%)

10 7/10 (701) 8/10 (80%) 9/10 (905)

.15 11/15 (73%) 12/15 (801) 1u/15 (93%)

20 1u/20 (70:) 16/20 (80%) 18/20 (90%)

Figure 3.--Advancement Scores for Each Combination of

Test Length and Cut-off Level

Data Generation

Item Domain. The study required a domain of items from which

randomly and classically parallel tests of various lengths could be

drawn. Specifically, a content domain consisting of at least ”0 items

was needed to construct alternate forms of all possible test lengths

included in this study. Since all the MEAP criterion-referenced tests
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consisted of five items, items had to be taken from at least eight

tests, measuring different objectives, to form the domain. MEAP

groups the mathematic and reading objectives into major skill areas.

For example, the program includes 15 mathematics objectives tapping

various aspects of numeration skill. A content analysis indicated

that eight tests from the numeration skill area appeared to measure

similar objectives. These “0 items were intercorrelated and subjected

to a principal components analysis. The mean item intercorrelation

within objectives was .36. The mean intercorrelation between items on

different objectives, computed by systematically sampling correlations

within the “O x “0 correlation matrix, was .16. The principal compo-

nents analysis yielded a general factor accounting for 21.“% of the

variance. Ten factors had eigenvalues greater than or equal to one.

A varimax rotation indicated that, generally, items within a partic-

ular test loaded highest on the same factor and each factor was

defined by the items on one particular test. In summary, the set of

“0 items was more heterogeneous than what one might find for a very

narrowly defined objective. However, the KB-ZO was .89, indicating a

fairly high internal consistency. Therefore, the researcher decided

to use these items to construct the domain.

Forty students did not reach the questions in one or more of the

eight MEAP tests comprising the domain and were, therefore, eliminated

from the data base. Based upon 5,000 students, the p values of the “0

items ranged from .69 to .96. The mean and standard deviation of

domain scores were 35.7“ and 5.3“, respectively.
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The second data base, the psychology mid-term exam, consisted of

“6 items. To increase this item domain's internal consistency, six

items with low item-total correlations were eliminated. The resultant

KR-ZO was .68. The 2 values ranged from .19 to .96, and the mean and

standard deviation of domain scores were 27.7“ and “.5“, respectively.

Score Distributions. The reason for using two data sources in
 

this study was to provide a population representative of each distri-

bution under investigation. The negatively skewed, J-shaped, and

bimodal distributions were based upon the MEAP data, while the normal

distribution was represented by the psychology mid-term domain scores.

Similar to the majority of MEAP's criterion-referenced tests, the

eight numeration tests produced negatively skewed distributions. Not

surprisingly, the frequency distribution of total scores on the “0-

item domain was also negatively skewed. Figure “ presents the graph

of this population distribution.

To generate the J distribution, the domain scores were inverted

and merged with the original scores. The resulting distribution

closely resembled a U. Then, a new population was formed by randomly

sampling 3,500 students from the original distribution (upper half of

the "U") and 1,500 students from the inverted distribution (lower half

of the "U"). As can be seen in Figure 5, the graph of this population

closely follows a J-shape.

The bimodal distribution was formed by altering the scores of a

random sample of people from the negatively skewed distribution on a

random sample of items. Specifically, the researcher first sampled 6%

of those with scores greater than or equal to 30 and changed their
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scores from right to wrong on a sample of 30 items. If a student had

already answered a particular question wrong, the item response was

not altered. The reason for changing 30 items was to assure that the

lower mode would equal the number of items expected to be answered

correctly merely by guessing. This same procedure was repeated two

more times with replacement of items and people occurring between each

sampling procedure. If a student was selected in more than one

sampling procedure, he/she was deleted from the second and/or third

sample. These three samples were combined with the unaltered scores

in the original distribution, producing the pOpulation frequency

distribution depicted in Figure 6.

Finally, the psychology mid-term scores were duplicated five

times to create enough examinees for the sampling process. The

resultant domain scores of 2,9“5 examinees produced the approximately

normal distribution shown in Figure 7. The skewness and kurtosis

moments were -.30 and .15, respectively. (In the computer package

used in this study, the kurtosis of a normal distribution was zero

instead of three.) These statistics indicated that the distribution

was slightly negatively skewed and somewhat more peaked than a normal

distribution. However, the departure did not appear to be practically

significant.

Alternate forms. Following the construction of an item domain

(and the distribution manipulations, alternate parallel and randomly

parallel forms were constructed for each test length. Randomly

I>arallel five item tests were formed by randomly sampling items from

the domain without replacement. Consequently, alternate test forms
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did not have any items in common. The items from both forms were not

replaced in the domain when longer tests were constructed. For each

alternate form, tests of 10, 15, and 20 items were built by using

those items found on the next shorter test and randomly sampling

(without replacement) the necessary number of additional items from

those remaining in the domain. For the MEAP data, the same tests were

used for the skewed and J distributions. However, since these

particular tests did not produce bimodal distributions, the test con-

struction process was repeated for the bimodal score domain. The

sampling procedure was also repeated for the psychology exam data.

Alternate classically parallel forms were constructed by pairing

items based on their 2_values and item-total correlations. One item

from each pair was placed in each form. The five pairs having the

most equivalent items within each pair were used to construct the

five-item tests. In forming longer tests, the next closest pairs were

chosen and added to those on the next shorter test. Since the 2

values and/or the item-total correlations were expected to change when

altering the distribution shape, this process was repeated for each

distribution.

Determination of Bias

For every combination of test length, cut-off score, distribution

Shape, and type of parallelism, population values of Bg’ kappa, and

lutvingston's K?(K,T ) were computed from two test administrations.

BPenman and Kane's (MA) and <I> were also computed in every condition

e>t<.~.ept those involving classically parallel alternate forms because

3511. items in the domain would have to have equal 3 values to meet this
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assumption. Moreover, if all items had equal 2 values, ©(l) would

simply equal Livingston's_§2(x,Ix) and 9 would equal the

generalizability coefficient (Brennan, 1978, 1979). (Note also that

the value of 0 does not change as the cut-off score is altered.) In

all, 320 population values were computed. Formulas for each popu-

lation coefficient can be found in Figure 8.

Thirty independent random samples of 25, 35, and 50 cases were

drawn with replacement from each of the four population distribu-

tions. Within each cell of the design, an estimate of each population

coefficient was computed for each of the 30 samples using the appro-

priate single test administration coefficients. These estimates were

obtained for only one alternate form. The mean of the estimates

within each cell was compared to the population value to determine the

magnitude and direction of bias. The standard deviation of these

estimates indicated each coefficient's sampling error. The total

design contained 2“O cells (four distribution shapes, four test

lengths, three cut-off scores for tests of 10, 15, and 20 items, one

cut-off score for a five-item test, three sample sizes, and either

Classically or randomly parallel alternate forms).

One problem was encountered in sampling examinees; K§r20 and K_-

131 for some samples were negative or equal to zero. Although negative

r‘e.liability coefficients can be equated to zero and many of the

Coefficients can be computed when 53-20 equals zero, Huynh's Bo and

kappa estimates cannot. For each case in which KB-ZO or 113-21 was

negative or zero, the random sampling process was repeated until other

Samples with positive coefficients were found.
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Within each distribution, the same samples were used to compute

estimates of the coefficients for every combination of test length and

cut-off score. Furthermore, the same samples were used for estimating

the reliability of randomly and classically parallel tests. As

mentioned previously, when a test had a zero or a negative 53-20 or

‘Efie21 in a particular sample, the sample was eliminated and another

one was chosen. However, only the internal consistency of five-item

tests comprised of randomly chosen items was examined in determining

which samples to delete. Since the classically parallel forms

consisted of different items and since the same set of samples was

used in both parallelism conditions, some samples retained in the set

had a negative or zero 53221 for the classically parallel form. This

problem occurred only for the normal distribution and was probably due

to the relatively low internal consistency of the items in this

domain. Moreover, within this distribution, the 33-21 for longer

tests within both parallelism conditions was negative or zero for some

of the retained samples. In those cells where this difficulty sur-

faced, the sample(s) was dropped from the cell. Therefore, within

some cells, the mean and standard deviation were based on less than 30

samples. However, every cell contained at least 20 samples.

Estimation Formulas. Figure 8 presents the single test admin-

istration formulas used to estimate each population alternate form

coefficient. A few formulas require some explanation. In estimating

@(A), Brennan and Kane (1977a) noted that (X-A)2 is not an unbiased
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estimate of (u-A)2. They presented an unbiased estimate of this

term: . 2

 

. 32 s 32 \

2 (""2 "1 ‘21 \

(XI-A)-".r1—+n-—+nn\

3 \‘2 11 1311/

In addition, previous discussion of Brennan and Kane's indices assumed

the item domain was infinite. However, the domain in this study is a

finite universe. To account for this design factor, Brennan (1978)

provided formulas for @(l) and e in which a finite universe correction

factor is applied to the variance components comprising these coeffi-

cients. These latter formulas which also incorporate an unbiased

estimate of (u - A)2 were used in this study and appear in Figure 8.

For Huynh's, Subkoviak's, and Marshall's indices, the researcher

assumed that an individual's test scores followed a binomial distri-

bution given his/her true score, rather than a compound binomial

model. Studies cited previously have indicated that using the

binomial model for heterogeneous item difficulty values does not sub-

stantially affect the accuracy of these coefficients. Moreover, the

binomial model has produced results similar to those found using the

compound binomial for Subkoviak's go (Marshall a Serlin, 1979).

For Marshall's EC, scores on a anitem test were simulated via a

binomial regression model. Specifically, a linear regression was used

to predict true score from obtained score and the predicted true score

was used in a binomial error model to estimate the frequency distri-

bution of a Zggitem test. As noted previously, Marshall and Serlin

(1979) used five different models for simulating scores. The binomial

regression model was chosen over the others because the relative size



8”

of Marshall's £2 using this model better reflected the distance

between the cut-off and the mode(s) for distributions similar to those

used herein.



RESULTS

Population Values

Tables 1 and 2 present the population distributional character-'

istics associated with each randomly and classically parallel

alternate form, respectively. For the bimodal distribution within the

randomly parallel condition, one five-item form had only one mode and

one ten-item form had three modes. As can be seen from the skewness

and kurtosis moments, the normal distributions departed from their

theoretical shape.

For each condition, Tables 3 to 8 present the alternate form

population values of the classical reliability coefficient (O13),

Livingston's K?(X,Tx), Brennan and Kane's ¢(l), Brennan and Kane's ¢,

20’ and kappa. To compute the kappa coefficient for classically

parallel tests, the average of the corresponding marginal proba-

bilities was used to determine the probability of chance agreement.

Similarly, for K?(X,Tx), the average of the classically parallel

tests' means and variances were used as the values of “x (UV) and

02 (02), respectively.

x Y

‘13 can be seen in Table 3, p33 increased as test length

increased. In general, given a particular distribution and test

length, 011 was higher in the classically parallel condition than in

the randomly parallel condition. The exceptions occurred for shorter

tests. Comparing the results for each distribution, it becomes clear

that tests derived from more internally consistent domains had higher

alternate form reliabilities than those from domains in which the item

intercorrelations were not as high.
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Table 3.--Classical Reliability of Randomly and Classically Parallel

Test

Length

5

1O

15

20

Table 4.--Alternate Form Population Values of Livingston's 52(Z,Ix)

Each Cell of the Design. ‘

Skewed

.60

.62

.711

.77

_J_

.911

.911

.96

.97

 

Randomly Parallel

Alternate Forms

Bi-

modal

.77

.89

.93

.95

Randomly Parallel

Alternate Forms

Alternate Forms for Each Distribution/Test Length

Combination.

Classically Parallel

i

.93

.97

.98

.98

Alternate Forms

Bi-

modal

.80

.90

.94

.95

Normal

.16

for

Classically Parallel

 

Alternate Forms

 

 

 

 

Test Cut-off Bi- Bi-

Length Score Skewed g_ modal Normal Skewed g_ modal Normal

5 4 .736 .945 .734 .336 .774 .940 .800 .181

7 .847 .939 .899 .190 .904 .975 .917 .413

10 8 .709 .945 .888 .558 .809 .977 .899 .523

9 .591 .954 .905 .775 .692 .981 .909 .735

11 .876 .962 .927 .309 .921 .977 .946 .466

15 12 .809 .965 .925 .563 .869 .979 .942 .590

14 .756 .973 .942 .843 .782 .984 .954 .832

14 .911 .966 .941 .416 .942 .980 .956 .518

20 16 .824 .969 .936 .654 .883 .982 .951 .710

18 .761 .975 .947 .842 .830 .985 .958 .862
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Table 5.--P0pulation Values of Brennan and Kane's ©(l) for Each Cell

of the Design.

Randomly Parallel

Alternate Forms

 

 

 

Test Cut-off Bi-

Length Score Skewed g_ modal Normal

5 4 .632 .915 .789 .378

7 .877 .951 .893 .393

10 8 .774 .956 .882 .548

9 .697 .964 .897 .736

11 .894 .967 .921 .521

15 12 .837 .970 .918 .645

14 .790 .977 .935 .841

14 .935 .975 .943 .564

20 16 .873 .977 .937 .708

18 .822 .981 .946 .848
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Table 6.--Population Values of Brennan and Kane's 0 for Each Cell

of the Design.

Randomly Parallel

Alternate Forms

 

 

 

Test Cut-off Bi-

Length Score Skewed g_ modal Normal

5 4 .535 .905 .789 .244

7 .697 .950 .882 .392

10 8 .697 .950 .882 .392

9 .697 .950 .882 .392

11 .775 .966 .918 .492

15 12 .775 .966 .918 .492

14 .775 .966 .918 .492

14 .821 .974 .937 .563

20 16 .821 .974 .937 .563

18 .821 .974 .937 .563
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Table 7.--Alternate Form Population Values of go for Each Cell of the

 

Design.

Randomly Parallel Classically Parallel

Alternate Forms Alternate Forms

Test Cut-off 81- B1-

Length Score Skewed i modal Normal Skewed :1 modal Normal

5 4 .927 .943 .852 .499 .935 .928 .925 .613

 

7 .931 .945 .938 .497 .957 .977 .966 .667

10 8 .873 .908 .891 .621 .917 .964 .929 .657

9 .783 .847 .828 .815 .826 .904 .829 .733

 

11 .926 .943 .931 .569 .963 .967 .953 .643

1 5 12 .896 .925 .897 .615 .934 .950 .933 .650

14 .760 .835 .782 .893 .766 .851 .791 .879

 

1a .990 .953 .9uu .645 .956 .965 .953 .676

23C) 16 .898 .929 .908 .683 .927 .948 .927 .749

18 .798 .862 .833 .888 .830 .885 .859 .900
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Table 8.--Alternate Form Population Values of Kappa for Each Cell of the

 

   

 

 

Design.

Randomly Parallel Classically Parallel

Alternate Forms Alternate Forms

Test Cut-off Bi- Bi-

Length Score Skewed i modal Normal Skewed i modal Normal

ES 4 .517 .875 .635 .106 .591 .846 .792 .135

7 .505 .879 .824 .132 .611 .948 .897 .221

1t) 8 .435 .807 .735 .162 .572 .922 .809 .310

9 .387 .692 .637 .120 .461 .803 .622 .210

11 .579 .878 .815 .215 .705 .928 .864 .270

‘155 12 .579 .844 .752 .154 .636 .893 .824 .279

14 .462 .668 .566 .107 .439 .703 .576 .305

10 .593 .896 .802 .296 .690 .920 .865 .335

22c) 16 .589 .851 .777 .253 .696 .892 .819 .372

18 .500 .725 .655 .233 .580 .771 .705 .283
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Several characteristics of the criterion-referenced coefficients

deserve attention. First, not surprisingly, those computed using clas-

sically parallel tests were generally greater than their counterparts in

the randomly parallel condition. (This comparison was, of course, only

relevant for §2(X,Tx), p0, and kappa.) The exceptions appeared to be

related to the size of p11 and the location of the cut-off. For example,

within the J distribution, Table 3 indicates that p11 of the S-item

randomly parallel tests was slightly greater than its classically

parallel counterpart. Likewise, §2(§,Ix), Po' and kappa were also higher

in the randomly parallel condition. In other cases, §2(§,Ix) was higher

in the randomly parallel condition even though p11 was lower. In these

instances, the means of the randomly parallel tests were further from the

cut-off than the means of the classically parallel tests. As Shavelson

et al. (1972) noted, the difference between the cut-off and the mean can

influence §?(§,Tx) more than 011 does. For 2 and kappa, the relation-
o

ship of the cut-off to heavy score density areas and to the size of the

chance agreement probability appeared to account for the other excep-

tions.

Second, 0(l) and 6 increased as test length increased. Except for a

few instances in the randomly parallel condition, §?(§,TX) was also an

increasing function of test length. Contrary to previous findings,

.90 and kappa did not follow this trend even though p11 increased

(Eignor & Hambleton, 1979; Subkoviak, 1978). This latter result

indicates that the size of the error (expressed as a proportion) found

in classical reliability may not correlate with the proportion of error

found in reliability coefficients based on the Platonic true score model.
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Third, given a particular test length increased as the cut-off.99

moved away from heavy score density areas. For the skewed, J, and bi-

modal distributions, these areas were in the upper extremes of the

distribution. Although 29 has been known to increase as the cut-off

approaches the extremes, the score density appears to have had more in-

fluence on the size of‘po in this study. Except for the normal distri-

bution, the changes in the value of kappa as a function of the cut-off

generally followed the same pattern as 90. One might expect kappa to

become higher as the cut-off approaches denser areas because the proba-

bility of chance agreement decreases. However, the author believes that

due to the large size of these dense areas in the skewed, J, and bimodal

distributions, po was reduced enough to outweigh this factor. For the

normal distribution, the strength of the heavy score density areas and

the size of the chance agreement probability also appeared to interact,

producing some unusual patterns of kappa coefficients. Finally, as ex-

pected, §2(§,Tx) and ¢(l) increased as the distance between the cut-off

and the mean increased.

Egggi

Appendices A1 to A24 present the mean bias and standard deviation of

each single test administration coefficient for each cell of the

design. A negative value indicates underestimation, and a positive value

means that the single test administration coefficient overestimated its

population value. Except in two instances, the results for Subkoviak's

and Marshall's p estimates were equal, confirming Marshall and Serlin's

2

findings (1979). For the two exceptions, one for bias and one for

standard deviation, the results differed by only .001, indicating that
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the differences may simply be due to rounding error. Therefore, to avoid

redundancy, only one of these coefficients, Subkoviak's Eo’ is mentioned

and discussed below. The reader should assume that this discussion

applies equally to Marshall's p0. To investigate each hypothesis, the

mean of these statistics across-appropriate cells was computed. In doing

so, each cell's mean and standard deviation was weighted by the number of

samples upon which it was based.

Throughout the ensuing discussion, the use of the term

"significance" means practical significance, rather than statistical

significance. For this study, any mean biases and standard deviations

greater than or equal to .025 and differences between mean biases and

standard deviations greater than or equal to this value were considered

practically significant.

The relative ability of the coefficients to estimate their respec-

tive population reliability coefficients for randomly versus classically

parallel tests was examined for 52(g,§x), Po’ and kappa since their

single test administration estimates assume classic parallelism.

Collapsing across number of examinees, distribution type, test length,

and cut-off score, Table 9 contains the mean bias of each estimate for

both types of parallelism. Contrary to expectation, the absolute mean

bias in the randomly parallel condition was less than or equal to that in

the classically parallel condition for every coefficient. However, the

only significant difference between the two conditions was for

Subkoviak's E. Taking direction into account, violation of the classic

parallelism assumption significantly altered the mean bias of 32(3’Ix)

and the kappa estimates, while the Po estimates were fairly robust. In
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Table 9.--Mean Bias (Across Cells) of Various Coefficients in Estimating

the Reliability of Classically and Randomly Parallel Alternate

 

 

Forms.

Type of Parallelism

Coefficient Random Classic

Livingston's 32(x,zx) .019 -.019

Subkoviak's §o -.010 -.030

Huynh's 90 .011 -.012

Subkoviak's E -.023 -.111

Huynh's E .039 -.050

 

the classically parallel case, all indices underestimated the population

coefficient with the kappa estimates and Subkoviak's p0 doing 30 31831-

ficantly. Given randomly parallel tests, only Subkoviak's coefficients

were underestimates. The others overestimated their corresponding para-

meters with Huynh's E being a significant overestimate. In previous

research, Huynh's coefficients have always been underestimates (Huynh &

Saunders, 1979; Subkoviak, 1978). However, these studies used equivalent

tests. The present findings support the past research, but also indicate

that past results do not generalize to the randomly parallel condition.

The second hypothesis was that the Po and kappa estimates would be

more biased for those distributions not belonging to the beta-binomial

family (i.e., bimodal and normal). Even though no hypotheses were

generated for the influence of the distribution upon §2(§,Tx),

0(l), and 0, Table 10 presents the mean bias of every coefficient for

each distribution. Based upon the absolute value of the mean bias, the
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Table 10.--Mean Bias Across Cells of Each Reliability Coefficient for

Each Distribution.

 

 

Distribution

Coefficient Skewed J-Shaped Bimodal Normal

Livingston's 22(x,rx) .004 -.005 -.025 .028

Brennan & Kane's $(l)a .057 .008 .010 .061

Brennan & Kane's $3 .086 .009 .011 .141

Subkoviak's fie -.020 -.011 -.028 -.019

Huynh's §Q_ -.o11 .018 -.011 .000

Subkoviak's fi_ -.076 -.o32 -.069 -.092

Huynh's i -.018 .030 -.025 -.010

8Means for these coefficients were based only on cells within the

randomly parallel condition.

pattern of results for Subkoviak's coefficients conformed somewhat to

that predicted. Specifically, Subkoviak's fio and E were least biased

for the J distribution and most biased given the bimodal and the normal

distributions, respectively. In the case of Subkoviak's g, the differ-

ences between the J and the other distributions were significant.

Contrary to expectation, Subkoviak's go was almost equally biased for the

skewed and normal distributions, and Subkoviak's E was slightly more

biased for the skewed than for the bimodal. Generally, the absolute mean

bias of Huynh's coefficients followed a pattern opposite to that

predicted; Huynh's go and g were least biased for the normal distri-

bution and most biased for the J distribution. However, as expected,

Huynh's g was less accurate for the bimodal than for the skewed
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distribution. For Huynh's go, the biases associated with these two

distributions were equal and in the same direction. In no case did any

distribution significantly change the absolute mean bias of Huynh's

coefficients.

Considering both magnitude and direction, Subkoviak's p9 consis-

tently underestimated the population value with significant bias

occurring for the bimodal distribution. Note, however, that the mean

bias of this coefficient was not significantly altered by changes in the

distribution's shape, regardless of whether or not the type of distri-

bution violated the underlying assumptions. 0n the other hand, altering

the distribution changed the direction of bias for Huynh's fig,

significant differences between the results for the J distribution and

leading to

those found for the skewed and bimodal distributions. Specifically,

Huynh's fie was unbiased for the normal distribution, slightly negatively

biased for the skewed and bimodal, and positively biased for the J

distribution. In no case were these degrees of bias significant. For

both kappa estimates, the bias associated with the J distribution was

significantly different from that found in the other conditions.

Specifically, Subkoviak's E underestimated kappa much more for the other

distributions, although the extent of bias was significant throughout.

In the case of Huynh's E, the J distribution significantly affected the

direction of bias as it had done for Huynh's go; Huynh's §_was positively

biased for the J distribution and negatively biased for the others. In

addition, the biases associated with the J and bimodal distributions were

significant.
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Table 10 indicates that the bias of &2(§,Tx) was significantly

affected by the type of distribution in terms of both magnitude and

direction. The biases for the bimodal and normal distributions differed

significantly with significant overestimation associated with the former

and an approximately equal, but negative, bias corresponding to the

latter distribution. The mean biases for the skewed and J distributions

were close to zero and were significantly different from those found for

the bimodal and normal distributions, respectively.

$(A) and 8 followed the same pattern. They consistently over-

estimated their parameters and were significantly less accurate for the

normal and skewed distributions than for the others. As a matter-of-

fact, the extent of bias associated with the normal and skewed distri-

butions was quite high and significant, but was very slight for the other

distributions. For 8, the normal distribution's mean bias was also

significantly greater than that found for the skewed distribution.

Finally, 8 was more biased than $(A), although the differences for the J

and bimodal distributions were negligible.

Moving the location of the cut-off score was expected to have no

influence on the coefficients' accuracy. The mean bias associated with

each cut-off score can be found in Table 11. These means were based on

the results for 10, 15, and 20-item tests. Five-item tests were not

included because only one cut-off score was examined for this test

length, i.e., the design of the study was not completely crossed. Al-

though the cut-off scores associated with the 15-item tests were not

exactly equal to those of the other two test lengths, the researcher felt

the slight deviations would not significantly affect the results.
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Table 11.--Mean Bias Across Cells of Each Coefficient for Each Cut-off

 

 

Score.

Cut-Off Score

Coefficient 70$ 80% _90fi,

Livingston's 13205.13!) ~ .016 -.000 -.003

Brennan & Kane's $(l)a .038 .032 .035

Subkoviak's £30 -.012 -.029 -.012

Huynh's‘po -.010 -.014 .027

Subkoviak:s E -.071 -.069 -.030

Huynh's g -.052 -.016 .075

8Means for these coefficients were based only on cells within the

randomly parallel condition.

As can be seen, the expectation was confirmed for EZ(§.IX),

$(A), and Subkoviak's 60 since changes in the cut-off score did not

significantly alter these coefficients' accuracy. However, the biases of

Huynh's estimates and Subkoviak's g for the 90% cut-off were

significantly different from those found for the other two cut-offs.

Specifically, Huynh's E significantly overestimated kappa for the 90%

cut-off, but significantly and moderately underestimated this parameter

for cut-offs of 70% and 80%, respectively. Huynh's p0 followed a similar

pattern, although the bias associated with the 701 out score was not

significant. Subkoviak's E significantly underestimated kappa,

regardless of cut-off score, but did so significantly less for the 90%

cut score. Finally, for Huynh's 3, setting the cut-off score at 701 led

to significantly more underestimation than did the 80% cut-off.

Since the main effects hypotheses concerning bias were generally

unsupported, a three-way interaction effect among the relevant variables
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(i.e., type of parallelism, distribution, and cut-off score) was

examined. The bias of each S-item test was again excluded because only

one cut-off score was examined for this test length. The results of this

analysis can be seen in Table 12 and are discussed below for each coeffi-

cient separately.

Livingston's §2(X.Ix). For the J and bimodal distributions, neither

violating the classic pa;allelism assumption nor moving the cut-off score

significantly altered this coefficient's accuracy. 0n the other hand,

the absolute mean biases belonging to the skewed and normal distributions

were significantly greater in the randomly parallel condition than in the

classically parallel case for cut-off scores located nearest to the

distributions' population means. Accounting for both magnitude and

direction, altering parallelism conditions significantly changed the bias

of §2(§,Tx) for every cut-off score within the skewed distribution and

for the 70% cut-off within the normal distribution. In the former case,

the differences increased as the cut-off approached the population mean

since the mean bias became more negative in the classically parallel case

and more positive in the randomly parallel condition. As a matter-of-

fact, varying the cut-off score significantly altered the bias in the

randomly parallel condition. Significant differences as a function of

cut-off score were also evident in the classically parallel condition

when the results for the 70% and 90% cut-offs were compared. For the

normal distribution, altering the cut-off did not appreciably affect the

mean bias in the classically parallel condition. However, given random

parallelism, the mean bias associated with the 70% cut-off was very
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Table 12.--Mean Bias Across Cells of Each Coefficient for

Every Parallelism/Distribution/Cut-off Score Combination.

 

 

 

 

 

 

 

701

Type of Bi-

Coefficient Parallelism Skewed J modal Normal

A2 Random .018 .004 -.016 .171

Livingston's g (X,T£)

Brennan & Kane's 600 Random .027 .008 .013 .107

Subkoviak's go

A Random -.O17 -.006 -.037 .090

Huynh's 20

A Random .000 -.028 -.071 -.037

Subkoviak's _Ig

Classic -.205 -.040 -.084 -.106

A Ratldom 0016 ”0012 ”0078 0037

Huynh's 5_

(3138810 -0175 “00311 -012“ -0037
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Table 12 (cont'd.)

 

 

 

 

 

 

 

80%

Type of Bi-

Coefficient Parallelism Skewed J modal Normal

A2 Random .050 .002 -.017 -.003

Livingston's,§ (X’Ix)

" Classic -.028 -.008 -.031 . .000

Brennan & Kane's ¢WA§ Random .054 .007 .015 .053

Subkoviak's‘p‘£2

Classic -.035 -.027 -.037 -.062

A Random -0009 0016 -0012 0002

Huynh's 29_

Classic -.038 -.003 -.032 -.036

A Random .026 -.022 -.048 -.025

Subkoviak's‘g

A Random .062 .032 -.007 .056

Huynh's K

Classic -.109 -.008 -.065 -.093
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Table 12 (cont'd.)

 

 

 

 

 

 

 

90%

Type of Bi-

Coefficient Parallelism Skewed J modal Normal

Livingston's §?(§,Ix)

‘ Classic -.042 -.007 -.030 -.002

Brennan & Kane's 0%A) Random .083 .005 .014 .038

Subkoviak's p0

Huynh's Bo

" Classic .007 .061 .048 -.021

Subkoviak's 3

Classic -.057 -.027 -.008 -.190

A Random .150 .151 .108 .024

Huynh's 5
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large and significantly different from that found for the other two cut-

offs. Specifically, §2(X.Ix) greatly overestimated its parameter when

the cut-off equalled 701, but fairly accurately estimated §?(§,TX) for

the 801 cut-off, and moderately underestimated §2(§,Ix) given the 90%

cut-off.

Although no hypothesis was made concerning the influence of distri-

butional shape, this variable did have an impact. In the randomly

parallel condition, the effects varied across cut-off score due to the

changes induced by this variable within the normal and skewed distri-

butions. The J distribution resulted in the least bias. As a matter-of-

fact, its bias was close to zero, regardless of cut-off score. Although

not significant, §?(§,Tx) consistently underestimated its parameter for

the bimodal distribution. The relationship between the J and bimodal

distributions' results remained fairly consistent across cut-off score.

The greatest degree of bias was associated with the normal distribution

for the 70% cut-off and with the skewed distribution given the other two

cut-offs. In these instances, the bias differed significantly from that

corresponding to the other distributions with each one significantly

overestimating its population value. The only other significant

difference was found between the bimodal and skewed distributions for a

701 cut-off score. §2(§,Ix) underestimated 32(§,EX) in the former case

and overestimated g?(x,gx) in the latter case.

For the classic parallelism condition, the pattern of mean bias

created by changing the distribution was similar across cut-off score.

The mean biases for the normal and J distributions were almost zero in

every case with the former distribution resulting in no bias for the 80%
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cut-off. The mean biases associated with the skewed and bimodal

distributions were quite similar. In both cases, §2(§,Tx) was consis-

tently underestimated with significant bias occurring fo; the 80$ and 90%

cut-offs. The bimodal distribution led to significant underestimation

for the 701 cut-off, as well. The biases produced by these distributions

were significantly different from those found for the normal distri-

bution, regardless of cut-off score. For the 905 cut-off, the skewed

distribution also displayed significantly more bias than the J distri-

bution did. Once again, the relationship between the mean biases of the

J and bimodal distributions was fairly consistent across cut-off score.

Brennan and Kane's $(l1, Since $(A) was not computed for classi-
 

cally parallel tests in this study, Table 12 contains the mean bias of

this coefficient for every distribution/cut-off score combination. The

results almost paralleled those found for 32(X'Ix) in the randomly

parallel condition. As a matter-of-fact, in terms of absolute value, the

pattern of results for §2(§,Tx) and $(A) were, with one exception,

nearly identical. In many cases, the actual degrees of bias were very

similar. Note, however, that $(X), on the average, consistently over-

estimated its parametric value, while §2(§,Ix) did not. The following

discussion elaborates upon the similarities between these coefficients.

Altering the cut-off score within the J and bimodal distributions

hardly changed this coefficient's accuracy. However, as the cut-off

approached the population means of the other distributions, the mean

biases increased. For the skewed distribution, each increase was signi-

ficant. When the distribution was normal, the mean bias associated with
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the 70% cut-off score was significantly greater than that found for the

other two cut-offs .

Changes in the frequency distribution also altered the results. The

mean biases corresponding to the J distribution were consistently close

to zero. The bimodal distribution created slightly more inaccuracy.

Because neither of these distributions was affected by cut-off score, the

relationship between them remained fairly constant across cut-off

score. When the cut-off was 70%, the normal distribution's mean bias was

extremely large and significantly different from that found for the other

distributions. Contrary to the pattern established by &?(x,zx), the

biases of the skewed and normal distributions were, on the average,

comparable, significant, and significantly different from that found for

the other two distributions when the cut-off equalled 801. Finally,

given a 90% cut-off, the skewed distribution produced a large mean bias

which was significantly greater than the biases of the other distri-

butions. In this situation, the mean bias associated with the normal

distribution was also significant as well as significantly greater than

the J distribution's mean bias.

Subkoviak's 60. In terms of absolute value, violating the classic

parallelism assumption did not significantly affect the accuracy of

Subkoviak's go for the J and bimodal distributions. If one considers

direction, however, type of parallelism did significantly alter the J

distribution's results when the cut-off was 90%; on the average, the

random parallelism situation led to overestimation, while its classically

parallel counterpart produced a fairly accurate estimate.
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Contrary to the hypothesis, the skewed distribution's absolute mean

bias was greater when the classic parallelism assumption was valid. As

the cut-off approached this distribution's population mode (mean), the

differences in the mean bias of the classically and randomly parallel

conditions increased since the bias became more negative in the former

case and less negative in the latter case. In the latter condition, the

bias was even slightly positive for the 90$ cut-off. However, whether or

not direction was taken into account, violating the classic parallelism

assumption significantly altered only the biases corresponding to the 80$

and 90$ cut-offs.

Although neither type of parallelism was consistently associated

with less bias, significant differences also occurred for the normal

distribution. For the 80$ cut-off, the absolute mean bias was greater in

the classically parallel situation, while the opposite was true for the

90$ cut-off. Taking direction into account, violating the classic

parallelism assumption significantly altered the results for all cut-off

scores within this distribution. For the 80$ and 90$ cut-off scores, go

consistently underestimated its parametric value. The bias corresponding

to the 70$ cut-off was negative in the classically parallel condition but

positive in the randomly parallel situation.

Keeping type of parallelism constant, changing the cut-off score did

not significantly alter the mean biases within the beta-binomial distri-

butions, except in the case of randomly parallel J distributed tests. In

this instance, the mean bias for the 90$ cut-off was positive, while the

mean biases for the 70$ and 80$ cut-offs were slightly negative. When

the distribution was either bimodal or normal, moving the cut-off did
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lead to significant differences. Specifically, given classic

parallelism, the 80$ cut-off produced much more underestimation than did

the 90$ cut—off. In addition, for the normal distribution, the 70$ cut-

off resulted in significantly more negative bias than did the 90$ cut-

off. The accuracy of the reliability estimates for randomly parallel

tests was also significantly affected. When the distribution was bi-

modal, Subkoviak's?o largely underestimated-pO for a 70$ cut-off but

fairly accurately estimated the population value given the 90$ cut-off.

For the normal distribution, Subkoviak's coefficient largely over-

estimated'po when the cut-off was 70$ while largely underestimating?o

for higher cut-off scores. Also, the 90$ cut-off produced significantly

more underestimation than did the 80$ cut-off.

For the 70$ and 80$ cut-off scores, the patterns of results formed

by changing the distributional shape were similar and partially supported

the hypothesis that the normal and bimodal distributions would produce

more bias than the beta-binomial distributions. Given random

parallelism, the biases corresponding to the J and skewed distributions

were low, negative, and approximately equal. The bimodal distribution

produced significant underestimation, but the results were not signi-

ficantly different from those found for the J and skewed distributions.

Although differing in direction, the normal distribution was

significantly biased for both cut-off scores and, for the cut-off closest

to its population mode (mean), significantly more biased than the other

distributions. When the cut-off equalled 80$, the bias found for the

normal distribution was also much worse than that found for the beta-

binomial distributions, but the differences did not attain significance.

Given classic parallelism, the J distribution once again produced the
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least bias with significant underestimation occurring for the 80$ cut-

off. The skewed and bimodal distributions resulted in slightly more

negative bias which, therefore, also reached significance for the 80$ ‘

cut-off. For the latter distribution, the extent of underestimation was

also greater than -.025 when the cut-off was 70$. When the distribution

was normal, significant underestimation occurred for both cut-off

scores. In support of the hypothesis, the differences between the normal

distribution's results and those of the beta-binomial distributions

attained significance. The mean biases associated with the normal and

bimodal distributions also differed significantly for the 80$ cut-off.

The pattern of results for the 90$ cut-off was somewhat different.

Unexpectedly, the bimodal distribution, on the average, produced fairly

accurate estimates in both parallelism conditions. For the randomly

parallel situation, the negative bias associated with the normal distri-

bution was significant and, in terms of absolute value, significantly

greater than that found for the other distributions. However, such was

not the case for the classically parallel condition. As a matter-of-

fact, the skewed distribution claimed the greatest bias which was

significantly negative as well as significantly greater than that found

for the J and bimodal distributions.

Huynh's g . Similar to the results found for Subkoviak's 50’ vio-

lating the clagsic parallelism assumption did not significantly ;ffect

the bias within the J and bimodal distributions. When the distribution

was skewed, type of parallelism did significantly alter the results for

the 80$ and 90$ cut-offs. These differences were significant whether or

not direction was taken into account. The direction and degrees of bias
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corresponding to the 80$ cut-off were almost exactly the same as those

found for Subkoviak's So with the classic parallelism situation resulting

in more underestimation. However, for the 90$ cut-off, Huynh's p0 was

significantly more biased in the randomly parallel condition, while

Subkoviak's estimate produced more bias in the classically parallel

condition. In fact, Huynh's coefficient significantly overestimated the

parameter in the randomly parallel condition but provided a fairly

accurate estimate in the classically parallel condition. Finally,

whether or not one considers direction, the biases associated with each

parallelism condition within the normal distribution were significantly

different from each other, regardless of cut-off score. Once again, both

90 estimates followed a similar pattern. For cut-offs of 70$ and 90$,

the absolute mean bias associated with random parallelism was greater

than that found in the classically parallel condition, while the opposite

held true for the 80$ cut-off. The mean bias was consistently negative

in the classic parallelism condition. However, in the random parallelism

situation, the mean bias was highly positive, virtually zero, and highly

negative for the 70$, 80$, and 90$ cut-offs, respectively.

Changes in the cut-off score significantly impacted the mean bias

within every distribution. For those distributions with their population

mode (mean) close to 90$, the mean bias corresponding to this extreme

cut-off differed significantly from that found for the other cut-off

scores. Generally, the mean biases for the 90$ cut-off were signi-

ficantly positive, while the mean biases associated with the other cut-

off scores ranged from slightly positive to significantly negative. One

exception to this trend occurred when estimating the reliability of
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classically parallel tests having skewed distributions. In this case,

the mean bias for the 90$ cut-off was close to zero. Among the three

distributions, the bimodal produced the only significant difference

between the 70$ and 80$ cut-offs; given random parallelism, significantly

more negative bias was found for the former than for the 80$ cut-off.

On the other hand, within the normal distribution, altering the cut-

off had no major effect in the classic parallelism condition. In the

case of random parallelism, the results for the various cut-off scores

were all significantly different from each other. As noted previously,

the 70$ cut-off led to significant overestimation as it had done for most

of the other coefficients, while the 80$ and 90$ cut-off scores resulted

in a fairly accurate estimate and a significant negative bias, respec-

tively.

The hypothesis that the normal and bimodal distributions would

produce more bias than the beta-binomial distributions was generally

unsupported. Although the type of distribution significantly affected

the direction and/or extent of bias, no consistent pattern could be found

either across cut-off score or parallelism condition.

Subkoviak's E. Contrary to previous results, type of parallelism

significantly affected the accuracy of Subkoviak's 3 within every distri-

bution. In terms of absolute value, the J and bimodal distributions were

sensitive to this variable when the cut-off was 80$; §_was more nega-

tively biased in the classically parallel condition. When direction was

considered, parallelism produced an additional significant effect for the

J distribution. Specifically, when the cut-off was 90%, the biases asso-

ciated with the two types of parallelism were equal but opposite in
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direction. As usual, parallelism significantly affected the results

associated with the skewed and normal distributions. In terms of

absolute value, the differences were significant for all cut-off scores

within the normal distribution and for the 70$ and 80$ cut-off scores

within the skewed distribution. In all these cases, the classic

parallelism condition produced more bias than did its randomly parallel

counterpart. When direction was considered, all respective comparisons

within these two distributions were significant. For classically

parallel tests having skewed distributions, g consistently underestimated

its parameter. However, for randomly parallel skewed tests, 3 was, on

the average, unbiased when the cut-off was 70$ and positively biased

1
7
¢
)

given the other cut-offs. When the tests were normally distributed,

underestimated the p0pulation value, regardless of cut-off score and type

of parallelism.

Cut-off score also had a pervasive effect. For the three distri-

butions having their population modes (means) near 90$, the mean biases

associated with this extreme cut-off were, in general, significantly less

negative than that found for the other two cut-offs. Two very distinct

deviations from this trend occurred for the skewed and J distributions

within the randomly parallel condition. For the former distribution, the

mean bias was either zero or positive and increased significantly as the

cut-off approached 90$. For the J distribution, moving the cut-off

affected the bias' direction but not its magnitude in that g over-

estimated kappa for the 90$ cut-off and almost equally underestimated

this parameter for the other cut-offs. In addition, given classic

parallelism, the 80$ cut-off produced significantly greater
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underestimation than did the 70$ cut-off for the J distribution, while

the opposite occurred for the skewed distribution.

The pattern of results formed by moving the cut-off was quite

different for the normal distribution. In the randomly and classically

parallel situations, the 90$ cut-off produced more underestimation than

did the 80$ and 70$ cut-offs, respectively. In addition, given classic

parallelism, the 80$ cut—off resulted in significantly more negative bias

than did the 70$ cut-off.

Generally, the hypothesis that §_would be more accurate for beta-

binomial distributions was not supported. Once again, the pattern of

results formed by altering the distribution varied across cut-off

score. However, in the classically parallel condition, 2 significantly

underestimated kappa for every distribution and cut-off score, except

one; for the bimodal distribution, the bias found when the cut-off was

90$ was close to zero. In the randomly parallel condition, the degree of

bias was generally significant but varied in direction. However, for the

skewed and bimodal distributions, the mean bias was zero or close to zero

for the 70$ and 90$ cut-off scores, respectively.

Huynh's 2. With relatively few exceptions, the bias of Huynh's i

was significantly affected when any of the variables in the study changed

values. Moreover, the results did not follow any pattern, making

interpretation very difficult. Therefore, the following observations are

not as specific as those presented for the other coefficients.

Across all distributions and cut-off scores, the absolute mean

biases within the parallelism conditions were comparable in only four

cases. For the 90$ cut-off within the J distribution, E produced

significantly more overestimation in the randomly parallel condition. On
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the other hand, when the distribution was bimodal, the bias was signi-

ficantly more negative in the classically, as Opposed to the randomly

parallel, condition when the cut-off was either 70$ or 80$. In terms of

absolute value, the skewed distribution also produced significantly more

bias for the classically parallel situation given cut-off scores of 70$

and 80$. However, when the cut-off equalled 90$, the randomly parallel

condition produced significantly more bias. Finally, the absolute mean

bias for classically parallel normally distributed tests was greater than

that found for their randomly parallel counterparts for cut-off scores of

80$ and 90$.

Violating the classic parallelism assumption also affected the

direction as well as the magnitude of the bias, especially for the skewed

and normal distributions. For both these distributions, &_was positive

in the random parallelism condition and, generally, negative in the

classic parallelism condition.

For the three distributions having their modes (means) near 90$, the

bias associated with this extreme cut-off differed significantly from

that found for the other cut-offs. Specifically, the mean biases for the

90$ cut-off were significantly positive, while the mean biases corres-

ponding to the other cut-offs ranged from significantly positive to

significantly negative. In all three distributions, the results for the

70$ and 80$ cut-offs also differed significantly, regardless of

parallelism. As the cut-off moved from 70$ to 90$, the bias moved toward

overestimation.

Changing the cut-off did not affect the normal distribution as

drastically. In the randomly parallel condition, the bias for the 80$

cut-off was significantly more positive than that found for the 90$ cut-
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off. When the tests were classically parallel, the 70$ cut-off produced

significantly less negative bias than did the 80$ and 90$ cut-off scores.

The hypothesis that 3 would be more accurate for the skewed and J

distributions than for the other two distributions was generally not sup-

ported. Once again, the pattern of results was inconsistent across cut-

off score. In general, the degrees of bias were significant. However,

for the 80$ cut-off, the biases associated with the J and bimodal distri-

butions were close to zero for the classically and randomly parallel

conditions, respectively.

SamplingiVariability

The variability of each coefficient across samples was predicted to

be inversely related to the test length and the sample size. For each

coefficient, Tables 13 and 14 present the weighted mean standard devi-

ation across cells associated with each test length and sample size,

respectively. Clearly, the results support the hypothesis, i.e., the

sampling variability decreased as the test length increased as well as

when the sample size increased. As can be seen, Subkoviak's coefficients

were more variable than Huynh's coefficients for every test length and

cut—off score. 0 appeared to be more unstable than 6(A).

Table 15 contains the mean standard deviation for every test

length/sample size combination. No significant interaction effects were

evident.
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Table 13.--Mean Standard Deviation Across Cells of Each Coefficient for

Each Test Length.

Test Length

 

Coefficient 10 15 20

Livingston's 32(z,_x) .009 .039 .032

Brennan & Kane's 9(l)a .042 .028 .019

Brennan & Kane's $3 .050 .037 .026

Subkoviak's go .035 .033 .030

Huynh's go .029 .025 .022

Subkoviak's E .089 .085 .078

Huynh's g .073 .064 .058

8The mean standard deviations for these coefficients were based only

on cells within the randomly parallel condition.

Table 14.--Mean Standard Deviation Across Cells of Each Coefficient for

Each Sample Size.

 

 

Sample Size

Coefficient * 25 ' 35 50

Livingston's 32(Z’Ix) .050 .043_ .042

Brennan & Kane's $(X)a .040 .036 .031

Brennan & Kane's $3 .050 .043 .037

Subkoviak's fie .038 .033 .030

Huynh's fig. .030 .025 .020

Subkoviak's i, .099 .085 .077

Huynh's fi_ .078 .067 .063

aThe mean standard deviations for these coefficients were based only

on cells within the randomly parallel condition.
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Table 15.--Mean Standard Deviation Across Cells for Each Sample Size/Test

Length Combination.

 

 

 

 

 

 

 

 

Sample Size

Test

Coefficient Length 25 35 50

10 .055 .048 .046

Livingston's &2(x,73) 15 .043 .037 .038

20 .036 .031 .029

10 .047 .044 .037

Brennan & Kane's 8(A)a 15 .031 .027 .026

20 .022 .019 .016

10 .057 .051 .042

Brennan 8 Kane's 8a 15 .043 .035 .033

20 .031 .025 .022

10 .039 .034 .032

Subkoviak's 80 15 .038 .031 .029

20 .034 .030 .027

10 .032 .028 .026

Huynh's E12 15 .028 .023 .022

20 .025 .021 .019

10 .100 .088 .080

Subkoviak's §_ 15 .097 .081 .076

20 .091 .077 .068

10 .081 .073 .067

Huynh's E 15 .073 .061 .060

20 .067 .057 .052
 

8The mean standard deviations for these coefficients were based

only on cells within the randomly parallel condition.



DISCUSSION

Although all the coefficients in this study, except for 8(1),

were derived under the assumption of classic parallelism, they were in

many cases robust to violation of this assumption, i.e., type of par-

allelism did not significantly alter the absolute mean bias. Speci-

fically, for fi2(§,T£) and the pg estimates, this variable had no

significant effect when the distributions were either J-shaped or

bimodal. However, type of parallelism, in general, affected the

absolute mean bias when the distributions were either skewed or

normal. These findings can perhaps be explained by examining the item

characteristics which must be present to form each distribution. If

the domain score distribution is either J-shaped or bimodal, the

domain must consist of items having fairly homogeneous p values and

high item intercorrelations. On the other hand, items within a domain

having either a skewed or a normal distribution are more heterogeneous

and have lower item intercorrelations. When items are randomly chosen

to construct alternate forms, some or all of the statistics computed

from one test are more likely to adequately represent the charac-

teristics of the other form when the item domain is more

homogeneous. In other words, the relationship between randomly

parallel tests derived from a homogeneous, in contrast to a heter-

ogeneous, item domain more closely resembles that found between

classically parallel tests. In addition, for E2(X,Tx), coefficient

alpha is probably a better estimate of the alternate form reliability

when the domain is homogeneous, leading to more accurate estimation of

121
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52(X,Ix) for randomly parallel tests having a J or bimodal distri-

bution. Given these facts, one would expect type of parallelism to

have a greater effect when alternate forms are derived from a hetero-

geneous item domain, i.e., from an item domain having either a skewed

or a normal distribution.

Type of parallelism did affect the absolute mean bias of the

kappa estimates, regardless of distribution. However, the effects

were somewhat less pervasive for the J and bimodal distributions.

When parallelism did significantly alter the absolute mean

biases, the random parallelism condition did not always result in the

most bias. For example, except in one case, Subkoviak's coefficients

displayed greater bias in the classic parallelism situation. This

latter result can perhaps be understood by examining Subkoviak's

formula more closely. Specifically, notice that using a regression

estimate of true score causes regression toward the mean which becomes

more severe as EB-ZO decreases. When the distribution was either

normal or skewed in this study, 53-20 was likely to be fairly low.

The resultant regression toward the mean may have caused the alternate

form population value within the classically parallel condition to be

severely underestimated, leading to a greater degree of bias for the

classically parallel situation. As predicted, for E2(§,z§), the

random parallelism condition did produce the most bias. Finally, the

type of parallelism associated with more bias varied for Huynh's

estimates.

Cut-off score had a significant effect on all the coefficients.

For 52(X11x) and 0(1), the effects were found predominantly within the

random parallelism condition when the distributions were either
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skewed or normal. For the most part, these biases tended to increase

as the cut-off approached the mean; the biases were positive when the

cut-off was located near the population mean. Note that as the cut-

off moves close to the mean, the difference between the mean and the

cut-off has less of an impact on the value of these coefficients.

When the cut-off almost equals the mean, the squared-error agreement

coefficients are approximately equal to 53-20 or KR-21. Therefore,

the present results indicate that as the difference between the mean

and the cut-off becomes less influential and the norm-referenced

reliability coefficient accounts more for the magnitude of §2(x,7x)

and 8(1), the bias becomes significantly more positive for randomly

parallel tests having a skewed or a normal distribution. For the J

and bimodal distributions, the bias of E?(Z,Tx) and 8(1) did not

significantly change as a function of cut-off score. Because of these

distributions' homogeneous item domains, 53-20 is probably a fairly

accurate estimate of the population coefficient used in these

formulas.

No general statements can be made about the effect of cut-off

score on the threshold agreement coefficients since the results varied

widely. The most consistent finding occurred for Huynh's coeffi-

cients. Specifically, for distributions having their population mode

(mean) near 90$, the bias associated with this extreme cut-off score

was significantly positive. Significant overestimation may occur in

this case because, according to the binomal error model, the standard

deviation around an extreme true score is smaller than that around

non-extreme scores. However, the data in this study do not conform
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exactly to the binomial error model and, therefore, scores may be more

variable than what is predicted by this model. Since scores

within these distributions cluster about the 90$ cut-off, this

increased variability will have more of an effect in decreasing the

population values, leading to overestimation by Huynh's coefficients.

The hypothesis that the};O and kappa estimates would be less

biased for the beta-binomial distributions than for the bimodal and

normal distributions was, generally, not supported. A possible expla-

nation for this finding is that the J and skewed distributions in this

study did not conform closely enough to members of the beta-binomial

family. In addition, the normal and skewed distributions may not have

been different enough since the normal distribution was actually

somewhat skewed.



SUMMARY AND CONCLUSIONS

Due to the variable results found in this study, no general rules

can be offered for choosing between coefficients falling within each

category (e.g., uncorrected threshold agreement coefficients) of

Figure 2. For each parallelism/distribution/cut-off score combi-

nation, Table 16 indicates the direction of bias produced by each

coefficient. If a coefficient had a mean bias less than .025 in

either direction, the coefficient was considered to be unbiased.

Recommendations about which coefficient to use in each of these cells

can be made and are presented in Table 17. Two criteria were used in

choosing a coefficient in each case:

(1) when the biases were in the same direction, the

coefficient with the least bias was selected;

(2) when the biases were opposite in direction, the

negatively biased coefficient was chosen, unless

the positively biased coefficient was fairly

accurate (i.e., had a bias near zero) or much more

accurate than its competitor.

The latter situation occurred only once where Huynh's E had a posi-

tive, but nonsignificant, bias, while Subkoviak's i had a significant

negative bias.

Several other points about Table 17 should be mentioned. First,

sampling variability was not taken into account in making these recom-

mendations. There were two reasons for taking this course of

action: (1) the bias of an estimator is more important than its
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Table 16.-—Direction of Bias of Each Coefficient for Each

Parallelism/Distribution/Cut-off Score Combination

 

 

 

 

 

 

 

 

701

Type of Bi-

Coefficient Parallelism Skewed J modal Normal

No No No Over-

Livingston's Random Bias Bias Bias est.

82(X T ) No No Under- No

- -’~§ Classic Bias Bias est. Bias

Brennan & Over- No No Over-

Kane's 8(1) Random est. Bias Bias est.

Brennan & Over- No No Over-

Kane's 3 Random est. Bias Bias est.

No No Under- Over-

A Random Bias Bias est. est.

Subkoviak's po No No Under- Under-

-' Classic Bias Bias est. est.

No No Under- Over—

A Random Bias Bias est. est.

Huynh's 20 Under- No Under- No

" Classic est. Bias est. Bias

No Under- Under- Under-

A Random Bias est. est. est.

Subkoviak's 5 Under- Under- Under- Under-

Classic est. est. est. est.

No No Under- Over-

A Random Bias Bias est. est.

Huynh's 5 Under- Under- Under- Under-

Classic est. est. est. est.
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sampling variability in determining the estimator's adequacy; and (2)

Tables 13, 1H, and 15 indicate that the differences in stability of

each coefficient within a particular category are not very large.

Second, there were two instances where Subkoviak's and Huynh's coeffi-

cients were equally biased, and, consequently, both were listed.

However, since Huynh's coefficients appeared to be slightly more

stable, one might want to select his estimates. Third, even though 8

significantly overestimated its parametric value when the distribution

was either skewed or normal, this coefficient is the only available

corrected squared-error formula and was, therefore, recommended in

every situation. Finally, although either §2(§,Ix) or $(A) was

recommended in each case, one must remember that these two

coefficients are not really comparable because they do not estimate

the same population value. Specifically, g2(§,Tx) measures the

reliability associated with a particular test, while $(A) indicates

the reliability of any set of items randomly selected from a domain.

Because of the latter fact, all tests which can possibly be

constructed from an item domain must be classically parallel for the

classic parallelism assumption to be valid. This situation is

unlikely to occur, unless all items within the domain have equal p

values. When this situation does occur, §2(§,IX) and ¢(A) are equal,

and one can directly compare the accuracy of 32;§,Tx) and $(A).

However, since this study did not contain a domain of items having

equal p values, $(A) could not be computed in the classic parallelism

condition. Therefore, g2(§,Tx) was consistently recommended as the
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appropriate uncorrected squared-error coefficient within the classic

parallelism condition.

Finally, mention should also be made of two other methods of

estimating reliability; Subkoviak and Wilcox (1978) and Livingston and

Wingersky (1979) introduced mastery coefficients which measure the

extent of agreement between the observed score and the estimated true

score. The former coefficient uses a threshold loss fUnction.

Livingston and Wingersky's index reflects the size of the misclassi-

fication error but does not use a squared error loss function. Since

reliability is really concerned with accurately estimating an

examinee's true score or true classification, these indices deserve

considerable attention.
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APPENDIX A“

0(1) Access Samples of 25 Examinees

Randomly Parallel

Alternate Forms

Mean Bias and Standard Deviation of Brennan and Kane's
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APPENDIX A5

Mean Bias and Standard Deviation of Brennan and Kane's

¢(l) Across Samples of 35 Examinees

Randomly Parallel

Alternate Forms
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APPENDIX A6

Mean Bias and Standard Deviation of Brennan and Kane's

¢(A) Across Samples of 50 Examinees

Randomly Parallel

Alternate Forms
 

 

 

 

Test Cut-off J- Bi-

Length Score Skewed shaged modal Normal

5 u .077 .01“ -.032 .021

.069 . 32 .067 .126

7 .021 .003 -.002 .073

/.0/23 45 /.02 .098

0052 .001 -0003 003”

10 8

2’7658 r’7616 ,z’763 .085

.091 .000 .000 .031

9

fl .%5 .03 437

.03” .008 .017 .089

11

43 .008 42 41

15 12 .056 .006 017 .033

.022 .009 .017 .078

.08" .005 .01” .026

14

.032 -m3 45 %

1n .026 .009 .022, .161

.008 .%5 fie %%

20 16 .056 .008 .02“ .082_

./015 .45 /01 .0113

.091 .006 .021 .053

18

/.62 .005 .01 41      
140



APPENDIX A7

Mean Bias andAStandard Deviation of Brennan and Kane's

¢>Across Samples of 25 Examinees

Randomly Parallel

Alternate Forms
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APPENDIX A8

Mean Bias andAStandard Deviation of Brennan and Kane's

¢1Aoross Samples of 3S Examinees

Randomly Parallel

Alternate Forms
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.029 .00u 019 2’7659     
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APPENDIX A9

Mean Bias andAStandard Deviation of Brennan and Kane's

¢>Across Samples of 50 Examinees

Randomly Parallel

Alternate Forms
 

 

 

 

Test Cut-off J- Bi-

Length Score Skewed shaped modal Normal

0069 0019 -003“ .1143

5 U

.092 W .061 .13

7 .093 .003 -.002 .116

.035 47 .03 46

10 8 .093 .003 -.002 .116

.035 2’7511 ,,//765 ./7666

9 .093 .003 -.002 .116

.035 .017 A3 46

.09 .009 .017 .14

11

./032 409 45 476

.09 .009 .017 .1”

15 12

.032 .009 m 476

009 0009 0017 01""

1”

./032 49 % 476

1” .091 .01 .02“ .169

«/’762 2’7665 z”661 z’TEEA

20 16 .091 .01 .024. .169

42 40/5 .01 ./0511

18 0091 001 002” 0169

AZ %5 41 ./0511      
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