

This is to certify that the

dissertation entitled

Structural Studies of Rhamnogalacturonan II, a Plant Cell Wall Pectic Polysaccharide

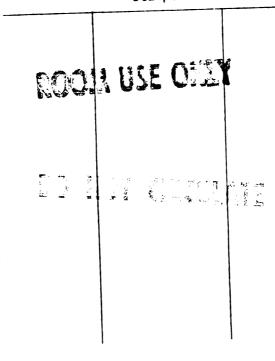
presented by

Michael W. Spellman

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Biochemistry

Major professor


Date February 8, 1983

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

RETURNING MATERIALS:
Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

STRUCTURAL STUDIES OF RHAMNOGALACTURONAN II, A PLANT CELL WALL PECTIC POLYSACCHARIDE

Ъу

Michael W. Spellman

A DISSERTATION

Submitted to

 $\begin{array}{c} \text{Michigan State University} \\ \\ \text{in partial fulfillment of the requirements} \\ \\ \text{for the degree of} \end{array}$

DOCTOR OF PHILOSOPHY

Department of Biochemistry

ABSTRACT

STRUCTURAL STUDIES OF RHAMNOGALACTURONAN II, A PLANT CELL WALL PECTIC POLYSACCHARIDE

By

Michael W. Spellman

This dissertation describes the elucidation of part of the primary pectic structure of the plant cell wall polysaccharide rhamnogalacturonan II. Rhamnogalacturonan II may the most Ъe structurally complex plant polysaccharide ever isolated. Rhamnogalacturonan II is composed of at least ten different monosaccharides interconnected by at least 20 different glycosidic linkages.

A branched-chain acidic sugar, 3-C-carboxy-5-deoxy-L-xylose, was isolated anion-exchange chromatography by of acid-hydrolyzed rhamnogalacturonan II. The sugar was shown to be a carboxyl-branched deoxy-pentose by nuclear magnetic resonance spectroscopy and mass spectrometry of the isolated sugar and of several derivatives. crystallography of one of the derivatives revealed that the sugar had the xylo configuration. The sugar was shown to have the L absolute configuration by the identification of L-lactic acid as the major product of periodate oxidation of the anomeric mixture of methyl glycosides. This is the first report of a naturally occurring branched-chain acidic monosaccharide. "Aceric acid" has been proposed as a trivial name for 3-C-carboxy-5-deoxy-L-xylose.

Selective acid hydrolysis of apiosyl glycosidic linkages of

rhamnogalacturonan II was used to generate a mixture of oligosaccharides for structure analysis. A heptasaccharide was purified to homogeneity by gel-filtration and anion-exchange chromatography of partially hydrolyzed rhamnogalacturonan II. Apiose was at the reducing end of the heptasaccharide. The heptasaccharide was found to contain, in addition to 3¹-linked apiose, terminal L-rhamnopyranosyl, terminal (2-0-methyl)-L-fucopyranosyl, 2-linked L-arabinopyranosyl, 2,4-linked Dgalactopyranosyl, 2-linked L-acerofuranosyl, and 3-linked Lrhamnopyranosyl residues. The sequence of these glycosyl residues was determined by forming and characterizing overlapping partially 0deuteriomethylated, partially 0-deuterioethylated oligosaccharidealditols from the heptasaccharide. Some of the heptasaccharide molecules were found to be mono- and di-O-acetylated.

All aspects of the primary structure of the heptasaccharide were determined except the absolute configuration of the apiose and the point of attachment of O-acetyl esters. Comparison of the glycosyl-linkage composition of the heptasaccharide to that of intact rhamnogalacturonan II revealed that a molecule of rhamnogalacturonan II probably contains more than one heptasaccharide unit. It is postulated that the heptasaccharide units occur in rhamnogalacturonan II as side chains attached to a galactosyluronic acid-rich backbone.

To Jody and to my parents for their love, support, and patience

ACKNOWLEDGMENTS

I would like to acknowledge the National Science Foundation, the U. S. Department of Energy, and the Celanese Research Company for their financial support during my graduate work.

I would like to thank N. Edward Tolbert for serving as my advisor at Michigan State University. I am especially indebted to Dr. Tolbert for arranging for me to finish my thesis research at the University of Colorado.

I am very grateful to Peter Albersheim for the opportunity to work and learn in his laboratory. My time there has been very enjoyable and has been very important in my development as a scientist. I would also like to thank Mike McNeil and Al Darvill for their advice, support, and enthusiasm during the past three years. Special thanks go to Barbara Sloane for her tremendous effort in preparing this dissertation.

I am indebted to Dr. Anne Dell who performed the fast atom bombardment mass spectrometry and to Dr. Kim Henrick who performed the X-ray crystallography reported in this dissertation.

TABLE OF CONTENTS

Page
LIST OF TABLESviii
LIST OF FIGURESx
INTRODUCTION1
LITERATURE REVIEW
The Plant Cell Wall
Structural Analysis of Complex Carbohydrates9
LITERATURE CITED15
CHAPTER I: ISOLATION AND CHARACTERIZATION OF THE FIRST NATURALLY OCCURRING BRANCHED-CHAIN ACIDIC MONOSACCHARIDE20
ABSTRACT21
INTRODUCTION22
EXPERIMENTAL23
¹ H-N.m.r. Spectroscopy23
¹³ C-N.m.r. Spectroscopy23
Fast Atom Bombardment-Mass Spectrometry (F.A.BM.S.)23
G.L.C. and M.S24
Isolation of RG-II24
Isolation of 3-C-Carboxyl-5-Deoxy-L-Xylose (1) from RG-II24
Preparation of a Polysaccharide-Enriched Fraction from Pectinol AC24

	Preparation of 3-C-Carboxy-5-Deoxy-L-Xylitol-3 ¹ -1-Lactone (2)25
	Preparation of 3-C-Hydroxymethy1-5-Deoxy 2,3,4-Tri-O-Acety1-L-Xylito1-3 ¹ -1-Lactone (3)
	Preparation of 3-C-Hydroxymethy1-5- Deoxy- 1,2,3 ¹ ,4-Penta-O-Acety1- D-Xylitol (5a)26
	Preparation of 3-C-Carboxy-5-Deoxy-L- Xylone-1,4-Lactone (6)26
	X-Ray Crystallography of Compound 627
	Determination of Absolute Configuration28
RESULTS	AND DISCUSSION29
	Isolation of Compound 129
	Comparison of 1 Isolated from Sycamore Cell Wall RG-II to 1 Isolated from Pectinol AC Polysaccharide31
	Characterization of Underivatized 135
	Preparation and Characterization of Reduction Products of 1
	Determination of the Relative Configurations of the Three Assymetric Carbons of Compound 1
	Determination of the Absolute Configuration of 1
GENERAL	DISCUSSION51
REFERENC	CES52
	CHARACTERIZATION OF A STRUCTURALLY COMPLEX RIDE ISOLATED FROM RHAMNOGALACTURONAN II54
ABSTRACT	555

INTRODUC	CTION
EXPERIME	ENTAL57
	Isolation of RG-II57
	Glycosyl-Composition Analysis57
	Preparation of 2-0-Methyl-L-Fucose57
	Glycosyl-Linkage Composition of the Heptasaccharide57
	Per- <u>O</u> -Deuteriomethylation58
	L.CM.S. Separation of the Mixture of Per-O Deuteriomethylated Oligosaccharides and Oligosaccharide-Alditols Generated by Degradation of the Aceryl Residue During Per-O-Deuteriomethylation of the Hepta- saccharide-Alditol
	Preparation of Per-O-Alkylated Oligo-saccharide-Alditols from per-O Deuteriomethylated Fragments Generated by Degradation of the Aceryl Residue of the Heptasaccharide-Alditol
	G.L.CM.S. of Per-O-Alkylated Oligo-saccharide-Alditols Derived from the Heptasaccharide59
	Isolation of Per-OAlkylated Oligosaccharide-Alditols [a], [d'], and [f] (Tables II and III) by L.C
	¹ _H -N.M.R59
RESULTS	AND DISCUSSION61
	Isolation of an Oligosaccharide Released by Partial Acid Hydrolysis of RG-II61
	Determination of Glycosyl Composition and Size of the Isolated Oligosaccharide64

Determination of the Absolute Configuration
of the Glycosyl Residues of the Hepta-saccharide67
Determination of the Glycosyl-Linkage Com- position of the Heptasaccharide68
Determination of the Sequence of Glycosyl Residues in the Heptasaccharide70
Determination of the Ring Forms of the Glycosyl Residues of the Heptasaccharide84
Determination of the Anomeric Configurations of the Glycosyl Residues of the Hepta-saccharide87
GENERAL DISCUSSION95
REFERENCES99
APPENDIX
TABLE AI103
TABLE AII104
TABLE AIII
TABLE AIV106
TARLE AV

LIST OF TABLES

Tabl	Le Page
	CHAPTER I
I•	13C-N.m.r. Chemical Shifts of the Mixture of Anomers of Compound 1
	CHAPTER II
I.	Glycosyl-Linkage Composition of the Heptasaccharide69
II.	Diagnostic Ions from e.im.s. of Partially O-Deuteriomethylated, Partially O-Deuterioethylated Disaccharide-Alditols Derived from Heptasaccharide80
III.	Diagnostic Ions from e.im.s. of Partially O-Deuteriomethylated, Partially O-Deuterioethylated Tri- and Tetrasaccharide-Alditols Derived from the Heptasaccharide
IV.	Determination of the Point of Attachment of the Arabinosyl- and the 2-0-Methyl Fucosyl Residues to the 2,4-Linked Galactosyl Residue85
V•	¹ H-N.m.r. Chemical Shifts and Coupling Constants of the anomeric Protons of the Per-O-Deuteriomethylated Heptasaccharide-Alditol and of Derived Per-O-Alkyl- ated Oligosaccharide-Alditols90
VI.	Comparison of the Glycosyl-Linkage Composition of Intact RG-II to that of the Heptsaccharide96
	APPENDIX
AI.	Fraction Atomic Coordinates and Anisotropic Thermal Parameters (Ueq) for the Nonhydrogen Atoms of 3-C-Carboxy-5-Deoxy-L-Xylono-1,4-Lactone H ₂ 0

	Page
AII.	Fractional Atomic Coordinates and Isotropic Thermal Parameters (U _{iso}) for the Hydrogen Atoms of 3-C-Carboxy-5-Deoxy-L-Xylono-1,4-Lactone *H ₂ 0
	3-C-Carboxy-5-Deoxy-L-Xylono-1,4-Lactone 'H ₂ 0
AIII.	Bond Lengths of 3-C-Carboxy-5-Deoxy-L-Xylono- 1,4-Lactone *H ₂ 0105
AIV.	Bond Angles for 3-C-Carboxy-5-Deoxy-L-Xylono- 1,4-Lactone *H ₂ 0
AV.	Observed and Calculated Structure Factors for 3-C-Carboxy-5-Deoxy-1-Xylono-1,4-Lactone*H ₂ O107

LIST OF FIGURES

Figure	Page
	CHAPTER I
1.	Summary of the Derivatives Prepared from Compound 1
2.	Chromatography of the Acid-Hydrolyzate of the Pectinol AC polysaccharide on AGI-X8 (acetate) Anion-Exchange Resin
3.	E.i. Mass Spectra of Compound 3 Formed by Reduction and Per-O-Acetylation of: A) Compound 1 Isolated from Sycamore Cell Wall RG-II, and B) Compound 1 Isolated from the Pectinol AC polysaccharide34
4.	¹ H-N.m.r. Spectrum of the Mixture of Anomers of Compound 1 in D ₂ 0
5.	¹ H-N.m.r. Spectrum of Compound 2 in D ₂ O40
6.	¹ H-N.m.r. Spectrum of Compound 3 in CDC1 ₃ 43
7.	E.i. Mass Spectra of A) Compound 5a and B) Compound 5b
8.	¹ H-N.m.r. Spectrum of Compound 6 in D ₂ 047
9.	Structure of Compound 6, as Determined by X-Ray Crystallography48
10.	Reaction Sequence Used to Determine the Absolute Configuration of Compound 1

CHAPTER II

Figure		Page
1.	Chromatography of Partially Hydrolyzed RG-II on a Heated (65°) Column (1.5 x 85 cm) of Biogel P-10 (200-400 mesh)	62
2.	Chromatography, on QAE-Sephadex, of Pooled Material from the Biogel P-10 Column	63
3.	Chromatography, on Biogel P-6, of the Material that Eluted from the QAE-Sephadex Column in 30 mM NH ₄ hCO ₃	65
4.	$^{1}\text{H-N.m.r.}$ Spectrum of the Underivatized Heptasaccharide in $^{\text{D}}2^{\text{O}}$	66
5.	Reaction Sequence Used to Determine the Glycosyl Linkage of the Aceryl Residue in the Heptasaccharide-Alditol	71
6.	E.i. Mass Spectrum of Compound 6	72
7.	Reverse-Phase 1.c. Elution profile of the Per-O-Deuteriomethylated Oligosaccharides and Oligosaccharide-Alditols Generated by Degradation of the Aceryl Residue during Per-O-Deuteriomethylation of the Heptasaccharide-Alditol	74
8.	G.l.cm.s. Elution Profile of the Per-O-Alkylated Oligosaccharide-Alditols Derived from the Heptasaccharide	 76
9.	E.i. Mass Spectrum of Per-O-Alkylated Tetra-saccharide-Alditol [f]	78
10.	Positive-Ion f.a.b. Mass Spectrum of the Per-O-Deuteriomethylated Heptasaccharide-Alditol	86
11.	Spectral Region from 3.75 to 5.75 p.p.m. of the lH-n.m.r. Spectrum of the Per-O-Deuterio-methylated Heptsaccharide-Alditol in CDCl3	88
12.	¹ H-N.m.rn.O.e. Difference Spectrum of the Underivatized Heptasaccharide in D ₂ O	92

INTRODUCTION

A major goal of plant cell wall research is to determine the structures of the macromolecular components of the cell wall and, from this knowledge, to attempt to describe the structure of the cell wall. The experiments described in this dissertation were aimed at elucidating part of the primary structure of one such macromolecule, the pectic (galactosyluronic acid-rich) polysaccharide rhamnogalacturonan II (RG-II).

RG-II is an extremely complex, yet structurally well-defined, polysaccharide released from primary cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells by incubation of the walls with a purified endopolygalacturonase. RG-II yields at least 10 different monosaccharides upon acid hydrolysis, and appears to be the most structurally complex plant polysaccharide that has been isolated to date.

Chapter I of this dissertation describes the isolation and characterization of 3-C-carboxy-5-deoxy-L-xylose, a branched-chain acidic glycosyl residue of RG-II. This is the first report of a naturally occurring branched-chain acidic sugar. Chapter II describes the isolation and the elucidation of the primary structure of a heptasaccharide released from RG-II by selective acid hydrolysis. This heptasaccharide was found to contain six different glycosyl residues,

including aceric acid. The structure of this heptsaccharide has provided insight into the primary structure of RG-II.

The two chapters are preceded by a literature review, which is divided into two sections. The first section provides an overview of the research on plant cell wall structures, with emphasis on pectic polysaccharides. The second section reviews current approaches to structural analysis of complex carbohydrates.

LITERATURE REVIEW

THE PLANT CELL WALL

Introduction

The plant cell wall, which surrounds every plant cell and which is composed primarily of polysaccharides and glycoproteins, has long been the object of research because it is involved in so many aspects of plant growth and development. Several excellent reviews are available on this subject. $^{1-4}$

Plant cell walls are sufficiently rigid to provide support for the plant and to protect the plant cells against osmotic shock, but the walls of growing cells must also be capable of enlarging to allow cell growth and development. The wall presents a physical barrier to invading pathogens, and thus plays a role in host-pathogen interactions in plants. Recent reports that oligosaccharide fragments of the plant cell wall can function as regulatory molecules in plant-pathogen interactions 5-8 and in plant growth and development 7,9 have added new impetus to plant cell wall research.

Plants contain both primary and secondary cell walls. Primary cell walls are the thin, flexible walls synthesized by undifferentiated cells that are still growing. The primary cell wall is a dynamic substance, capable of loosening as the cells elongate.

Secondary cell walls are synthesized by cells that are no longer growing; these walls are thicker and more rigid than primary walls. RG-II, the subject of this dissertation, is a primary cell wall polysaccharide. Therefore, this literature review will be limited to components of the primary cell wall and will not consider biopolymers (for example, lignin) that are present exclusively in secondary cell walls.

There has been a great deal of research on the biosynthesis of cell wall polymers and on the ultrastructure of plant cell walls. Both topics have been reviewed $^{10-12}$, and will not be considered here. Classification of the Major Types of Primary Cell Wall Polymers

Early workers divided cell wall polymers into three major types: pectic polysaccharides, the hemicelluloses, and cellulose. This classification was made primarily on the basis of solubility. Pectic fractions were extracted from the wall by hot water, ammonium oxalate, weak acid, or chelating reagents; hemicelluloses were extracted by strong alkali; and cellulose remained as an insoluble residue after alkali extraction³.

Pectic polysaccharides are now classified as those in covalent association with D-galactosyluronic acid residues³. Cellulose is known to consist of unbranched chains of 4-linked β -D-glucosyl residues, and the hemicelluloses are those polysaccharides that are non-covalently bound to cellulose³. Two other classes of primary cell wall polymers have also been identified. These are the non-cellulosic glucans and the hydroxyproline-rich glycoproteins³.

Cellulose 13,14 , the hemicelluloses 3,15,16 , the hydroxyproline-rich glycoproteins 17 , and the chemistry of non-cellulosic glucans $^{2-4}$ have all

been the subjects of reviews. The pectic polysaccharides have also been considered in $reviews^{18-21}$, but they will be discussed in detail here because rhamnogalacturonan II, the subject of this dissertation, is a pectic polysaccharide.

Pectic polysaccharides

Introduction. The pectic substances are a heterogeneous mixture of polysaccharides that are characterized by a relatively large proportion (10-100%) of D-galactosyluronic acid residues 3,4 . These polysaccharides are found as constituents of all plant cell walls, and are localized in the primary cell wall²².

Many neutral sugars, in addition to galactosyluronic acid, have been recognized as components of pectic polysaccharides. These sugars are L-rhamnose $^{23-25}$, D-galactose $^{23-25}$, D-xylose 23,24 , L-arabinose 26 , L-fucose 24 , D-glucose 23 , D-apiose $^{27-30}$, 2-0-methyl fucose 23,24,30 , and 2-0-methyl xylose 23,24,30 . The carboxyl groups of the galactosyluronic acid residues of pectic polysaccharides are frequently methylesterified 31,32 . O-Acetyl esters have also been reported in pectic polysaccharides 4,33 .

Early workers established that the predominant feature of pectin was a linear chain of 4-linked- α -D-galactosyluronic acid residues in which some of the carboxyl groups were methyl-esterified 1 , 18 , 19 , 31 . It was believed that pectins consisted of a triad of homopolymers 18 , 19 ; isolations of pure galacturonan 34 , araban 26 , 35 , 36 , and galactan 37 were reported. However, it eventually became apparent that the idea of a triad of homopolymers was an oversimplification 1 , and it now seems likely that most of these "homopolymers" were artifacts caused by acid- 1,4 or base- 38 , 39 catalyzed degradation during extraction of the

polysaccharides from the cell walls. There are a few well-documented instances of homopolymeric arabans $^{40-42}$, galactans 43 , and galacturonans 44,45 being isolated under such mild conditions that degradation was unlikely. However, the polyuronide is found far more often to contain covalently attached neutral sugar components $^{46-51}$.

Isolation of the aldobiuronic acid $2-\underline{O}-(\alpha-D-\text{galactosyluronic}$ acid)-L-rhamnose $^{24,47-49}$ provided the first direct evidence for covalent attachment between neutral sugar residues and galactosyluronic acid residues. It is now accepted that the basic structural units of pectins are rhamnogalacturonans in which the 4-linked $\alpha-D$ -galacturonan chains are interrupted at intervals by the insertion of 2-linked and 2,4-linked $\alpha-L$ -rhamnosyl residues 3,4 . Most neutral glycosyl residues are thought to occur in side chains attached to rhamnosyl residues of the rhamnogalacturonan backbone 2,3,4 .

Rhamnogalacturonans from primary cell walls of suspension-cultured sycamore cells. In 1973, Albersheim and co-workers published the results of an analysis of structural polymers of cell walls of suspension-cultured sycamore cells⁵²⁻⁵⁴. In this study, cell wall preparations were obtained from suspension-cultured sycamore cells⁵⁵ that had been transferred and harvested in the logarithmic phase of growth, thus providing a source of homogeneous primary cell walls⁵⁶. Structural polymers were solubilized by incubating these walls with purified hydrolytic enzymes, such as an endopolygalacturonase purified from the culture filtrate of the fungus Colletotrichum lindemutheanum⁵⁷. This approach was an improvement over earlier cell wall structural studies, because polymers were solubilized in a defined manner from homogeneous cell wall preparations.

Pectic polysaccharides account for approximately 30% of the primary cell wall of suspension-cultured sycamore cells². Digestion of the wall with endopolygalacturonase solubilizes approximately 16% of the cell wall material⁵². Two pectic polysaccharides, rhamnogalacturonan II^{58,59} and rhamnogalacturonan II³⁰, have been isolated from the material released by endopolygalacturonase digestion of cell walls isolated from suspension-cultured sycamore cells.

Rhamnogalacturonan I (RG-I) comprises approximately 7% of the cell wall of suspension-cultured sycamore cells and, therefore, represents 20-25% of the pectic material. The molecular weight of RG-I is estimated to be approximately 200,000, as determined by gel-filtration chromatography 58.

Some aspects of the structure of RG-I are known. RG-I is thought to have a backbone that is made up of alternating rhamnosyl and galactosyluronic acid residues. About half of the rhamnosyl residues are 2-linked, while the other half are 2,4-linked. Side chains, with an average size of six glycosyl residues, are attached to 0-4 of the 2,4-linked rhamnosyl residues. The side chains are rich in L-arabinosyl and D-galactosyl residues⁵⁸. Thus, isolation of RG-I side chains could explain many of the early reports of araban and galactan homopolymers.

RG-I is not a homogeneous polysaccharide as isolated⁵⁸, but instead appears to be a family of related polysaccharides⁵⁹. It has been found that seven differently linked glycosyl residues are attached to 0-4 of 2,4-linked rhamnosyl residues of RG-I⁵⁹. These seven glycosyl residues are, therefore, the first residues of at least seven different side chains of RG-I. These results give an indication of the great structural complexity of RG-I.

The other pectic polysaccharide that has been isolated from cell walls of suspension-cultured sycamore cells is rhamnogalacturonan II (RG-II)³⁰. RG-II comprises 3-4% of the primary cell wall of suspension-cultured sycamore cells and, therefore, 10-15% of the pectic material. RG-II is a size-homogeneous polysaccharide with a molecular weight of approximately 10,000. Acid hydrolysis of RG-II yields at least ten different monosaccharides, including galactosyluronic acid, glucosyluronic acid, rhamnose, fucose, arabinose, galactose, glucose, apiose, 2-0-methyl fucose, and 2-0-methyl xylose. With the exception of xylose, all of the neutral sugars that have been reported to be constituents of pectin⁴ are found in RG-II. The isolation of RG-II provided the first indication that the minor glycosyl constituents of pectins were located in a single small (50-60 glycosyl residues) polysaccharide³⁰.

RG-II is fundamentally different from RG-I. Galactosyluronic acid and rhamnosyl residues are abundant glycosyl residues of both RG-I and RG-II, but the rhamnosyl residues of RG-II are mostly terminal and 3-linked 30 , while those of RG-I are 2-linked and 2,4-linked 57 . Therefore, RG-II cannot contain the rhamnogalacturonan backbone present in RG-I 58 . The other glycosyl residues of these two polysaccharides are also very dissimilar 30,58 .

RG-II has been found in all dicots that have been examined 3,30,60 . In addition, a polysaccharide with the glycosyl-residue composition of RG-II has been isolated from the walls of suspension-cultured gymnosperm cells 61 . Small amounts of the unusual sugars that characterize RG-II have also been found in monocots 3,30 . It is interesting that such a structurally complex polysaccharide should be so widely distributed in the plant kingdom.

STRUCTURAL ANALYSIS OF COMPLEX CARBOHYDRATES

Introduction

Seven characteristics of a complex carbohydrate must be elucidated before its complete primary structure can be $known^{62}$. These characteristics are

- 1) the glycosyl residue composition of the complex carbohydrate
- 2) the absolute configuration, D or L, of each glycosyl residue
- 3) the glycosyl-linkage composition of the complex carbohydrate
- 4) the ring form, furanoid or pyranoid, of each glycosyl residue
- 5) the sequence of the variously linked glycosyl residues
- 6) the anomeric configuration, α or β , of each glycosyl residue
- 7) the identity and points of attachment of any noncarbohydrate moieties.

The techniques that are available to determine these features are described below. This review is not intended to be all-inclusive, but will, instead, introduce techniques used in this dissertation.

Glycosyl-residue composition

A sugar residue glycosidically linked through its own reducing carbon (C-1) is called a glycosyl residue. The glycosyl-residue composition of a complex carbohydrate describes the types and ratios of glycosyl residues that comprise the complex carbohydrate. For example, a complex carbohydrate could be composed of 50% glucosyl residues and 50% galactosyl residues. Several methods are available for acquiring this information. One method is to acid-hydrolyze the complex carbohydrate, reduce the resulting monosaccharides to the corresponding alditols, and form the volatile O-acetyl derivatives called alditol

acetates⁶³. The mixture of alditol acetates is then resolved and quantitated by gas-liquid chromatography (g.l.c.). Another widely used method involves depolymerizing the complex carbohydrate by methanolysis⁶⁴ and the subsequent synthesis of the trimethylsilyl derivatives⁶⁵ of the resulting methyl glycosides. The O-trimethylsilyl derivatives of the methyl glycosides are then resolved and quantitated by g.l.c.

Absolute configuration of the glycosyl residues

Both D sugars and L sugars are found in nature. In fact, different optical isomers of the same glycosyl residue have been found in the same complex carbohydrate⁶⁶. For example, porphyran is a polysaccharide that is made up of alternating D-galactosyl and L-galactosyl residues⁶⁷. Therefore, the absolute configurations of all glycosyl residues in a complex carbohydrate must be determined.

The most versatile methods for determining absolute configuration utilize solvolysis reactions in which the solvent is an optically active $alcohol^{68,69,70}$. When enantiomers are derivatized with an optically active reagent, the products are diastereomers that can be resolved by g.1.c.

Glycosyl-linkage composition

The glycosyl-linkage composition of a complex carbohydrate describes, for each glycosyl residue, the positions to which other glycosyl residues are attached. For example, a 4-linked galactosyl residue is linked to another glycosyl residue through C-1 and has a glycosyl residue linked to it at C-4. A 2,4-linked galactosyl residue is linked to another glycosyl residue through C-1 and has glycosyl residues linked to C-2 and C-4. A terminal galactosyl residue is linked

to another glycosyl residue through C-1 and has no glycosyl residues linked to other carbons. The glycosyl-linkage composition also describes the ratios of the variously linked glycosyl residues within the complex carbohydrate. For example, a complex carbohydrate could be composed of 50% 4-linked galactosyl residues, 25% 2,4-linked galactosyl residues, and 25% terminal galactosyl residues.

The most widely used technique for determining glycosyl-linkage composition is the formation and analysis of partially O-methylated alditol-acetate 71 derivatives of the glycosyl residues that comprise the The intact complex carbohydrate is per-0complex carbohydrate. methylated by treatment with sodium dimethylsulfinyl anion and methyl iodide^{72,73}. This reaction does not depolymerize the complex carbohydrate, but, instead, converts all free hydroxyl groups into The per-0-methylated complex carbohydrate is then methyl ethers. depolymerized by acid-catalyzed hydrolysis or formolysis, yielding a mixture of partially-0-methylated monosaccharides that are then reduced to partially-0-methylated alditols. The free hydroxyl groups of each partially 0-methylated alditol mark those carbon atoms to which other glycosyl residues were attached in the complex carbohydrate and those carbon atoms involved in forming the ring (C-1 and C-5 for a residue in the pyranoid ring-form). The mixture of partially O-methylated alditols partially-0-methylated per-O-acetylated, yielding is alditol acetates 74. The partially-0-methylated additol acetates are analyzed by g.l.c.-mass spectrometry (g.l.c.-m.s.). The electron-impact (e.i.) mass spectral fragmentation patterns of partially-0-methylated alditol acetates have been well characterized 75,76 and reveal the positions of 0-methyl and 0-acetyl groups on each partially 0-methylated alditol acetate. The glycosyl linkage of each residue is deduced from this information. The ratios of the variously linked glycosyl residues are determined by flame ionization g.l.c. of the mixture of the derived partially O-methylated alditol acetates. This gives the glycosyllinkage composition of the complex carbohydrate.

Ring form of each glycosyl residue

Most glycosyl residues can exist in furanoid (5-membered) or pyranoid (6-membered) rings. The ring form of a glycosyl residue can often be determined from the positions of O-methyl groups on the derived partially methylated alditol acetate⁶². For example, a partially O-methylated alditol acetate with an O-methyl group at C-4 and an O-acetyl group at C-5 must be derived from a glycosyl residue in the pyranoid ring-form. If a partially methylated alditol acetate has O-acetyl groups at both C-4 and C-5, the ring form cannot be determined from the methylation analysis. Two methods have been developed ^{77,78} for resolving this possible ambiguity; one of the methods is described in Chapter II of this dissertation.

Sequence of glycosyl residues

Determining the sequence of glycosyl residues in a complex carbohydrate is more difficult than, for example, determining the sequence of amino acids in a peptide. This is because glycosyl residues can be interconnected by a great variety of linkages, and the linkage information must be retained in any glycosyl-residue sequencing procedure. For example, a sequence in which a 4-linked galactosyl residue is linked to C-4 of a glucosyl residue is different from a sequence in which a 2-linked galactosyl residue is linked to C-4 of a glucosyl residue. A general method for determining the sequence of the

variously linked glycosyl residues in complex carbohydrates has been developed in the laboratory of Professor Peter Albersheim at the University of Colorado 62,77 . This sequencing method is described in Chapter II, and will not be discussed here.

Anomeric configurations

C-1 of a sugar that is glycosidically linked is an asymmetric carbon and can exist in either of two configurations. These are the two possible anomeric configurations of glycosyl residues and are designated α and β . Proton nuclear magnetic resonance ($^1\text{H-n.m.r.}$) spectroscropy is the most versatile technique for determining the anomeric configuration of each glycosyl residue of a complex carbohydrate $^{79-81}$. Both the coupling constant between H-1 and H-2 ($J_{1,2}$) and the chemical shift of the anomeric proton can give information about the anomeric configuration of a glycosyl residue that is in the pyranoid ring-form.

The coupling constant depends upon the dihedral angle between H-1 and H-2^{82,83}. A coupling constant of 7-8 Hz is usually observed with a 1,2-trans-diaxial relationship for H-1 and H-2, whereas a 2-4 Hz coupling constant is observed when H-1 and H-2 are in gauche orientation. For most glycopyranosyl residues, H-1 is axial. Therefore, these residues will exhibit $J_{1,2}$ of 7-8 Hz when the anomeric proton is axial, and $J_{1,2}$ of 2-4 Hz when H-1 is equatorial. This information can be related to the anomeric configuration of a glycosyl residue. If, for example, the anomeric proton resonance of a D-glucopyranosyl residue has a 7 Hz coupling constant, then H-1 of this residue is axial, and the residue has the β anomeric configuration. In the case of a glycosyl residue (such as rhamnose) in which H-2 is equatorial, the coupling constant cannot be used to determine anomeric configuration. This is

because H-l and H-2 are in <u>gauche</u> orientation in both anomers. The anomeric configuration of such a glycosyl residue can usually be determined from the chemical shift of the anomeric proton. Equatorial anomeric protons typically have chemical shifts less than 4.9 p.p.m., and axial protons have chemical shifts greater than 4.9 p.p.m.⁸⁴.

Non-carbohydrate moieties

Pectic polysaccharides are known to contain endogenous O-acetyl esters 4,33 These substituents, which are readily detected by H-n.m.r. spectroscopy of the underivatized polysaccharide, are base-labile and are, therefore, removed by the strong base (sodium dimethylsulfinyl anion) routinely used in determining glycosyl-linkage composition of polysaccharides. Several chemical methods 85,86,87 are available for determining the locations of base-labile substituents. These methods involve derivatizing the free hydroxyl groups of the complex carbohydrate under conditions (neutral or mildly acidic pH) that do not remove the base-labile substituents.

Summary

The techniques described above permit the elucidation of the complete primary structure of most complex carbohydrates, starting with milligram quantities of material. The greatly improved methods now available for complex carbohydrate structure determination have made it feasible to attempt the elucidation of the primary structures of extremely complex polysaccharides such as RG-II.

LITERATURE CITED

- G. O. ASPINALL, in F. LOEWUS (Ed.), <u>Biogenesis</u> of <u>Plant Cell Wall</u> Polysaccharides, Academic Press, New York, 1973, pp. 95-115.
- 2 M. McNEIL, A. G. DARVILL, AND P. ALBERSHEIM, in W. HERZ, H. GRISEBACH, AND G. W. KIRBY (Eds.), <u>Progress in the Chemistry of Organic Natural Products</u>, 37, Springer-Verlag, New York, 1979, pp. 191-249
- A. DARVILL, M. McNEIL, P. ALBERSHEIM, AND D. P. DELMER, in N. E. TOLBERT (Ed.), The Biochemistry of Plants, Vol. 1, Academic Press, New York, 1980, pp. 91-162.
- G. O. ASPINALL, in J. PREISS (Ed.), The Biochemistry of Plants, Vol. 3, Academic Press, New York, 1980, pp. 473-500.
- 5 C. A. RYAN, P. BISHOP, G. PEARCE, A. G. DARVILL, M. McNEIL, AND P. ALBERSHEIM, Plant Physiol., 68 (1981) 616-618.
- 6 M. G. HAHN, A. G. DARVILL, AND P. ALBERSHEIM, Plant Physiol. 68 (1981) 1161-1169.
- 7 P. ALBERSHEIM, A. G. DARVILL, M. McNEIL, B. S. VALENT, M. G. HAHN, G. LYON, J. K. SHARP, A. E. DESJARDINS, M. W. SPELLMAN, L. M. ROSS, B. K. ROBERTSON, P. AMAN, AND L. E. FRANZEN, Pure and Applied Chemistry, 53 (1981) 79-88.
- 8 E. A. NOTHNAGEL, M. McNEIL, P. ALBERSHEIM AND A. DELL, Plant Physiol., in press.
- 9 P. ALBERSHEIM, M. McNEIL, A. G. DARVILL, B. VALENT, M. HAHN, B. ROBERTSEN, P. AMAN, L.-E. FRANZÉN, A. DESJARDINS, L. M. ROSS, AND M. SPELLMAN, 2nd Int. Congr. Cell Biol., Berlin, <u>Eur. J. Cell Biol.</u>, 22 (1980) 230.
- 10 D. G. ROBINSON, Advances Bot. Res., 5 (1977) 89-151.
- M. C. ERICSON AND A. D. ELBEIN in J. PREISS (Ed.), The Biochemistry of Plants, Vol. 3, Academic Press, New York, 1980, pp. 589-616.
- JEAN-CLAUDE ROLAND AND B. VIAN, <u>International Review of Cytology</u>, 61 (1979) 129-166.
- 13 K. H. GARDNER AND J. BLACKWELL, Biopolymers, 13 (1974) 1975-2001.
- 14 F. J. KOLPAK AND J. BLACKWELL, Macromolecules, 9 (1976) 273-278.
- G. O. ASPINALL AND A. M. STEPHEN, in G. O. ASPINALL (Ed.), M.T.P. Int. Review Sci: Org. Chem. Ser.One, 7, 1973, Butterworth, London, pp. 285-313.
- 16 G. O. ASPINALL, Adv. Carbohydr. Chem., 14 (1959) 429-468.

- D. T. A. LAMPORT in J. PREISS (Ed.), The Biochemistry of Plants, Vol. 3, Academic Press, New York, 1980, pp. 501-541.
- 18 E. L. HIRST AND J. K. N. JONES, Adv. Carbohydr. Chem., 2 (1946) 235-251.
- 19 H. G. J. WORTH, Chem. Rev., 67, 1967, pp. 465-473.
- G. O. ASPINALL, in W. PIGMAN AND D. HORTON (Eds.), The Carbohydrates, Vol. IIB, Academic Press, New York, 1970, pp. 515-536.
- 21 Y. S. OVODOV, Pure and Applied Chem., 42 (1975) 351-369.
- M. P. HALL (Ed.), Plant Structure, Functions and Adaptation, MacMillan, New York, 1976, p. 63.
- 23 G. O. ASPINALL AND A. CANAS-RODRIGUEZ, <u>J. Chem. Soc.</u> (1958) 4020-4027.
- 24 G. O. ASPINALL AND R. S. FANSHAWE, J. Chem. Soc. (1961) 4215-4225.
- R. J. COLEMAN, J. F. LENNEY, A. T. COSCIA, AND F. J. DICARLO, Arch Biochem. Biophys., 59 (1955) 157-164.
- 26 E. L. HIRST AND J. K. N. JONES, J. Chem. Soc. (1938) 496-505.
- 27 D. J. BELL, F. A. ISHERWOOD, AND N. E. HARDWICK, <u>J. Chem. Soc.</u> (1954) 3702.
- 28 J. D. S. BACON, Biochem J., 89 (1963) 103P.
- 29 D. A. HART AND P. K. KINDEL, Biochem. J., 116 (1970) 569-579.
- A. G. DARVILL, M. McNEIL, AND P. ALBERSHEIM, Plant Physiol., 62 (1978) 418-422.
- 31 G. G. SCHEIDER AND H. BOCK, Ber. 71, (1938) 1353.
- 32 C. S. SATO, R. U. BYERRUM, AND C. D. BALL, <u>J. Biol. Chem.</u>, 224 (1957) 717-723.
- 33 E. A. McCOMB AND R. M. McCREADY, Analyt. Chem., 29 (1957) 819-821.
- 34 G. H. BEAVEN AND J. K. N. JONES, J. Chem. Soc. (1947) 1218-1221.
- 35 G. H. BEAVEN, E. L. HIRST, and J. K. N. JONES, <u>J. Chem. Soc.</u> (1939) 1865-1868.
- 36 E. L. HIRST AND J. K. N. JONES, J. Chem. Soc. (1947) 1221-1225.
- 37 E. L. HIRST, J. K. N. JONES, AND W. O. WALDER, <u>J. Chem. Soc.</u> (1947) 1225-1229.

- 38 P. HEIM AND H. NEUKOM, Helv. Chem. Acta, 45 (1962) 1735-1737.
- P. ALBERSHEIM, H. NEUKOM, AND H. DEUEL, Arch. Biochem. Biophys., 90 (1960) 46.
- 40 D. A. REES and I. W. STEELE, Biochemistry, 5 (1966) 3108-3110.
- 41 D. A. REES AND N. G. RICHARDSON, Biochemistry, 5 (1966) 3099-3107.
- J.-P. JOSELEAU, G. CHAMBAT, M. VIGNON, AND F. BARNOUD, Carbohydr. Res., 58 (1977) 165-175.
- J. M. LABAVITCH, L. E. FREEMAN, AND P. ALBERSHEIM, <u>J. Biol. Chem.</u>, 251 (1976) 5904-5910.
- 44 C. T. BISHOP, Can. J. Chem., 44 (1966) 1275-1282.
- 45 S. S. BHATTACHARJEE AND T. E. TIMMELL, <u>Can. J. Chem.</u>, 43 (1965) 758-765.
- 46 D. M. ANDERSON AND N. J. KING, J. Chem. Soc. (1961) 5333-5338.
- 47 G. O. ASPINALL, B. GESTETNER, J. A. MOLLOY, AND M. UDDIN, <u>J. Chem.</u> Soc.(C) (1968) 2554-2559.
- 48 G. O. ASPINALL, J. W. T. CRAIG, AND J. L. WHITE, <u>Carbohydr. Res.</u>, 7 (1968) 442-452.
- 49 G. O. ASPINALL, AND K.-S. JIANG, Carbohydr. Res., 38 (1974) 247-255.
- 50 I. R. SIDDIQUI AND P. J. WOOD, Carbohydr. Res., 50 (1976) 97-107.
- 51 D. A. REES AND N. J. WIGHT, Biochem. J., 115 (1969) 431-439.
- 52 K. W. TALMADGE, K. KEEGSTRA, W. D. BAUER, AND P. ALBERSHEIM, Plant Physiol., 51 (1973) 158-173.
- W. D. BAUER, K. W. TALMADGE, K. KEEGSTRA, AND P. ALBERSHEIM, Plant Physiol. 51 (1973) 174-187.
- K. KEEGSTRA, K. W. TALMADGE, W. D. BAUER, AND P. ALBERSHEIM, Plant Physiol., 51 (1973) 188-196.
- 55 D. T. A. LAMPORT AND D. H. NORTHCOTE, Biochem J., 76 (1960) 52P.
- 56 G. E. BECKER, P. A. HUI, AND P. ALBERSHEIM, <u>Plant Physiol.</u>, 39 (1964) 913-920.
- P. D. ENGLISH, A. MAGLOTHLIN, K. KEEGSTRA, AND P. ALBERSHEIM, Plant Physiol, 49 (1972) 293-297.
- M. McNEIL, A. G. DARVILL, AND P. ALBERSHEIM, Plant Physiol., 66 (1980) 1128-1134.

- 59 M. McNEIL, A. G. DARVILL, AND P. ALBERSHEIM, <u>Plant Physiol.</u>, 70 (1982) 1586-1591.
- 60 S. ISHII, Phytochemistry, 20 (1981) 2329-2333.
- 61 J. THOMAS, A. G. DARVILL, AND P. ALBERSHEIM, unpublished results.
- M. McNEIL, A. G. DARVILL, P. AMAN, L. E. FRANZEN, AND P. ALBERSHEIM, in V. Ginsberg (Ed.) Methods in Enzymology, Vol. 83, Academic Press, New York, 1982, pp. 3-45.
- P. ALBERSHEIM, D. J. NEVINS, P. D. ENGLISH, AND A. KARR, Carbohydr. Res., 5 (1967) 340-345.
- 64 R. E. CHAMBERS AND J. R. CLAMP, Biochem J., 125 (1971) 1009-1018.
- 65 C. C. SWEELEY, R. BENTLEY, M. MAKITA, AND W. W. WELLS, <u>J. Am. Chem.</u> Soc., 85 (1963) 2497.
- 66 D. A. REES, Biochem J., 126 (1972) 257-273.
- 67 N. S. ANDERSON AND D. A. REES, J. Chem. Soc. (1965) 5880.
- G. J. GERWIG, J. P. KAMERLING, AND J. F. G. VLIEGENTHART, Carbohydr. Res., 62 (1978) 349-357.
- 69 G. J. GERWIG, J. P. KAMERLING, AND J. F. G. VLIEGENTHART, Carbohydr. Res., 77 (1979) 1-7.
- 70 K. LEONTEIN, B. LINDBERG, AND J. LONNGREN, Carbohydr. Res., 62 (1978) 359-362.
- B. LINDBERG, in V. GINSBERG (Ed.), Methods in Enzymology, Vol. 28, Academic Press, New York, 1972, pp. 178-195.
- 72 S.-I. HAKOMORI, J. Biochem., 55 (1964) 205-208.
- 73 H. E. CONRAD, Methods Carbohydr. Chem., 6 (1972) 361-364.
- H. BJORNDAL, C. G. HELLERQVIST, B. LINDBERG, AND S. SVENSSON, Angew. Chem. Int. Ed. Eng., 9 (1970) 610-619.
- 75 H. BJORNDAL, B. LINDBERG, AND S. SVENSSON, Carbohydr. Res., 5 (1967) 433-440.
- 76 H. BJORNDAL, B. LINDBERG, A. PILOTTE, AND S. SVENSSON, <u>Carbohydr</u>. Res., 15 (1970) 339-349.
- 77 B. S. VALENT, A. G. DARVILL, M. McNEIL, B. K. ROBERTSEN, AND P. ALBERSHEIM, Carbohydr. Res., 79 (1980) 165-192.
- 78 A. G. DARVILL, M. McNEIL, AND P. ALBERSHEIM, Carbohydr. Res., 86 (1980) 309-315.

- 79 D. R. BUNDLE AND R. U. LEMIEUX, Methods in Carbohydr. Chem., 7 (1976) 79-86.
- 80 G. KOTOWYCZ and R. U. LEMIEUX, Chem. Rev., 73 (1973) 670-698.
- 81 J. D. STEVENS AND H. G. FLETCHER, <u>J. Org. Chem.</u>, 33 (1968) 1799-1805.
- 82 R. U. LEMIEUX AND J. D. STEVENS, Can. J. Chem., 44 (1966) 249.
- 83 P. L. DURETTE AND D. HORTON, Carbohydr. Res., 18 (1971) 57.
- R. V. LEMIEUX, R. K. KULLNIG, H. J. BERNSTEIN, AND W. G. SCHNEIDER, J. Am. Chem. Soc., 80 (1958) 6098.
- 85 P. PREHM, Carbohydr. Res., 78 (1980) 372-374.
- J. ARNARP, L. KENNE, B. LINDBERG, AND J. LONNGREN, Carbohydr. Res., 44 (1975) C5-C7.
- A. N. DE BELDER AND B. NORRMAN, Carbohydr. Res., 8 (1968) 1-6.

CHAPTER I

ISOLATION AND CHARACTERIZATION OF THE FIRST NATURALLY OCCURRING BRANCHED-CHAIN ACIDIC MONOSACCHARIDE

ABSTRACT

A branched-chain acidic monosaccharide, 3-C-carboxy-5-deoxy-L-xylose, has been identified for the first time as a component of plant cell walls. This sugar was first observed as a constituent of rhamnogalacturonan II, a primary cell wall pectic polysaccharide. The sugar was shown to be a 3-C-carboxy-5-deoxypentose by nuclear magnetic resonance spectroscopy and mass spectrometry of the underivatized sugar and of several derivatives. X-ray crystallography of one of the derivatives confirmed these structural features and established that the sugar has the xylo configuration. The absolute configuration of the sugar was elucidated by the identification of L-lactic acid as the major product of periodate oxidation of the methyl glycoside. "Aceric acid" has been proposed as a trivial name for this, the first branched-chain acidic sugar to be found as a natural product.

INTRODUCTION

Rhamnogalacturonan II (RG-II) is a pectic polysaccharide that is released from primary cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells by incubation with an endopolygalacturonase purified from the culture fluid of the fungus Colletotrichum lindemuthianum. RG-II is an extremely complex polysaccharide that comprises approximately 3% of the plant cell wall and contains at least 10 different monosaccharides, including apiose (3-C-[hydroxymethyl]-D-glycerotetrose), 2-0-methyl fucose, and 2-0-methyl xylose. The glycosyl residues of RG-II are interconnected by a great variety of glycosyl linkages.

The presence in RG-II of two unidentified glycosyl residues has been reported. These residues were detected by gas-liquid chromatography (g.l.c.) analysis after hydrolysis of RG-II, reduction of the resulting aldoses to alditols, and acetylation. One of the unidentified components was subsequently shown to be an underacetylated derivative of apiose (W. S. York, M. McNeil, A. G. Darvill, and P. Albersheim, unpublished results).

The electron impact—mass spectrometry (e.i.—m.s.) fragmentation patterns of the second unidentified component did not allow its identification as an alditol acetate. However, the gross features of the mass spectral data were consistent with those of an acetylated carbohydrate derivative. The e.i. mass spectrum was characterized by losses of ketene, acetic acid, and acetic anhydride^{2,3}. The residue could be reduced with borohydride only after acid hydrolysis; therefore, the unknown appeared to be an internal glycosidic residue of RG-II. We now describe the isolation and characterization of this sugar.

EXPERIMENTAL

 $\frac{1}{\text{H-n.m.r.}}$ spectroscopy. - $^1\text{H-N.m.r.}$ spectra were recorded on a Bruker WM-250 Fourier-transform n.m.r. spectrometer operated at 250 MHz. Water-soluble samples were lyophilized twice from deuterium oxide (99.7 atom % D), then dissolved in deuterium oxide (99.997 atom % D). Chemical shifts were assessed relative to an external standard (capillary) of hexamethyldisilazane (δ 0.6995). The acetylated sample (compound 3, Figure 1) was run in deuteriochloroform (99.997 atom % D), and chemical shifts were assigned relative to internal chloroform (δ 7.26).

 $13_{\text{C-n.m.r.}}$ spectroscopy. - $13_{\text{C-N.m.r.}}$ spectra were recorded on a Bruker WM-250 Fourier-transform n.m.r. spectrometer operated at 62.9 MHz. Samples were run in deuterium oxide (99.7 atom % D). Chemical shifts were assessed relative to internal dioxane (δ 67.4). The $13_{\text{C-n.m.r.}}$ spectra of compounds 1 and 6 (Figure 1) were recorded at pH 1.5. At this pH, the carboxyl resonances were sharper and more intense than those observed when the spectra were recorded at neutral pH.

Fast atom bombardment-mass spectrometry (f.a.b.-m.s.). - [Note: The f.a.b.-m.s. analyses in this dissertation were performed by Dr. Anne Dell of the Imperial College of Science and Technology, London, United Kingdom.] F.a.b.-m.s. 4 spectra were obtained using a VG Analytical HF-ZAB 1 F mass spectrometer fitted with an f.a.b. source. Samples were dissolved in 5% (v/v) aqueous acetic acid (5 to 10 μ g/ μ L), and a 1 μ L aliquot was added to a drop of glycerol on the stainless steel target. Xenon was used as the bombarding gas. Spectra were recorded on UV-sensitive chart paper, and m/z ratios were determined by manual counting.

<u>G.1.c.</u> and <u>g.1.c.-m.s.</u> - All g.1.c. and g.1.c.-m.s. conditions were as described 5,6 .

Isolation of RG-II. - Cell walls were prepared from suspension-cultured sycamore (Acer pseudoplatanus) cells 7 . Isolated cell walls were incubated with \underline{C} . Iindemutheanum endopolygalacturonase 8 , as described 1 . The material solubilized from the cell walls by the enzyme was dialyzed against $\mathrm{H_2O}$, lyophilized, and de-esterified with NaOH (pH 12, $\mathrm{L_2O}$, 2 h). The pH was adjusted to 5.2 with acetic acid, and 100 units of \underline{C} . Iindemutheanum endopolygalacturonase were added to the de-esterified wall polymer. Thimerosal (0.1% w/v) was added as an antimicrobial agent. The solution was incubated overnight at SO , dialyzed against $\mathrm{H_2O}$, and then lyophilized. The lyophilized material was dissolved in 5 mL of 50 mM sodium acetate buffer (pH 5.2), and chromatographed on a column of Biogel P-10, as described 1 .

Isolation of 3-C-carboxy-5-deoxy-L-xylose (1) from RG-II. - Isolated RG-II (4 mg) was hydrolyzed in 2N trifluoroactic acid (TFA) (120°, 1 h), and the TFA removed by evaporation. The hydrolyzate was applied to a column (1 x 70 cm) of AG1-X8 (acetate form) anion-exchange resin (200-400 mesh) that had been equilibrated with 0.2N acetic acid. Galactosyluronic acid and glucosyluronic acid were eluted from the column by a gradient consisting of 200 mL of 0.5N acetic acid and 200 mL of 2N acetic acid. The column was then washed with 200 mL of 4N acetic acid. Compound 1, which was detected by g.l.c. and e.i.-m.s. after reduction and acetylation, eluted from the column in the 4N acetic acid wash.

Preparation of a polysaccharide-enriched fraction from Pectinol AC. - Pectinol AC (600 g) was suspended in 2.5 L H₂0, and

insoluble material was removed by filtration through GF/C glass fiber filter paper (Whatman LTD.). The filtrate was concentrated to 800 mL by rotary evaporation. Solid trichloroacetic acid (TCA) (80 g) was added, and the solution was allowed to stand 2 h at 4° . Precipitated protein was removed by centrifugation.

Absolute ethanol was added to the 10% TCA supernatant to a final concentration of 63% (v/v). After 12 h at 4°, the solution was centrifuged, and the precipitate discarded. The supernatant was brought to an ethanol concentration of 86% (v/v), allowed to stand 12 h at 4°, and then centrifuged. The material that was soluble in 63% ethanol but insoluble in 86% ethanol represented more than 60% of the orcinol-positive 10 carbohydrate initially present in Pectinol AC.

Preparation of 3-C-carboxy-5-deoxy-L-xylitol-3¹,1-lactone (2). - Sodium borohydride (1 mg) in 1N NH₄OH (0.1 mL) was added to 1 mg of isolated 1. The solution was allowed to stand 1 h at room temperature, after which excess borohydride was destroyed by adding glacial acetic acid. The solution was evaporated to dryness under a stream of filtered air. Boric acid was removed by successive addition and evaporation of four aliquots (0.5 mL) of 10% (v/v) acetic acid in methanol and 4 aliquots (0.5 mL) of methanol¹¹. The residue was dissolved in 0.5 mL H₂O and passed through a column (2 mL) of Dowex 50 cation-exchange resin (H⁺ form), and the sample was lyophilized. Compound 2 (Figure 1) was recovered as a syrup.

Preparation of 3-C-carboxy-5-deoxy-2,3,4-tri-0-acetyl-L-xylitol- $\frac{3^1,1-\text{lactone}}{3^1,1-\text{lactone}}$ (3). - Compound 2 (0.25 mg) was treated for 3 h at 120° with acetic anhydride (0.2 mL) containing 2 mg of sodium acetate, and excess acetic anhydride was destroyed by adding NaHCO3. The sample was

partitioned between CH_2Cl_2 (0.5 mL) and H_2O (0.5 mL). The CH_2Cl_2 layer was washed with two aliquots (0.5 mL) of H_2O , and then evaporated to dryness under a stream of filtered air, yielding compound 3 (Figure 1).

Preparation of 3-C-hydroxymethyl-5-deoxy-1,2,3,3¹,4-penta-0-acetyl-D-xylitol (5a). - A carboxyl-reduced alditol (compound 4a, Figure 1) was prepared by reduction of compound 2, using the procedure of Jones and Albersheim¹². Compound 2 (0.2 mg) was dissolved in a few drops of 10 mM sodium borate buffer (pH 7.5). Sodium borohydride (2.5 mg), dissolved in 0.25 mL of the same buffer, was added. The reaction was quenched with acetic acid after 1 h at room temperature. Boric acid was removed as described above. The sample was per-0-acetylated by treatment with 0.2 mL of pyridine/acetic anhydride (1:1) for 30 min at 120° to yield compound 5a (Figure 1). Compound 4b (Figure 1) was prepared by an analogous procedure, using sodium borodeuteride and 10 mM sodium borate buffer made with D₂O, and then per-0-acetylated to yield compound 5b (Figure 1).

Preparation of 3-C-carboxy-5-deoxy-L-xylono-1,4-lactone (6). - Compound 1 (20 mg) was dissolved in 3 mL H₂O. Bromine (0.05 mL) was added to the solution with vigorous stirring. The solution was incubated 72 h in the dark. Excess bromine was removed by rotary evaporation. The sample was neutralized with solid AgCO₃, and then the insoluble AgBr was removed by filtration through GF/C glass fiber filter paper. The filtrate was lyophilized, yielding a syrup. The syrup was dissolved in 2-pentanone, and then crystallized from a mixture of 2-pentanone and CHCl₃¹³ using vapor diffusion¹⁴. The sample was recrystallized twice from 2-pentanone/CHCl₃, yielding 15 mg (75% recovery) of crystalline compound 6 (melting point: 120 to 122°, uncorrected).

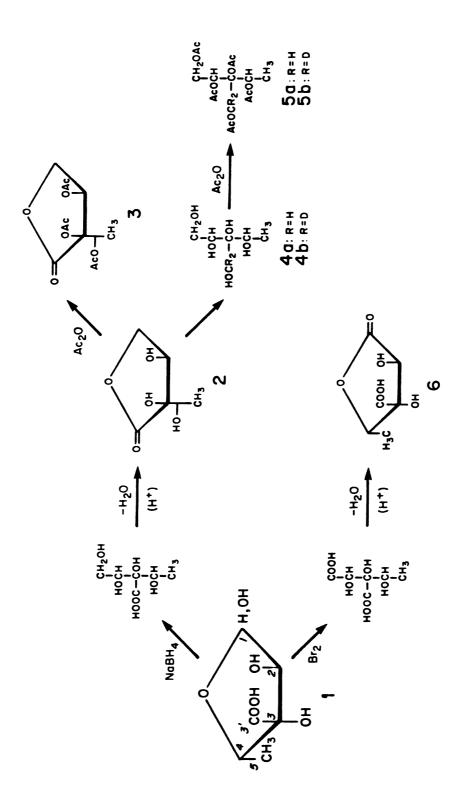
X-ray crystallography of compound 6. - [Note: the X-ray crystallography of compound 6 was performed by Dr. Kim Henrick of the Polytechnic of North London, London, United Kingdom.] $C_6H_8O_6$ • H_2O , \underline{M}_r = 194.14, Monoclinic, space group $P2_1$, \underline{a} = 7.697(2), \underline{b} = 7.414(2), \underline{c} = 7.336(2) \underline{A} , $\underline{\beta}$ = 101.88(2) \underline{O} , \underline{Z} = 2, $\underline{F}(000)$ = 204, \underline{D}_c = 1.567 g cm $^{-3}$, 787 reflections, [524; \underline{I} > 3 $\underline{\sigma}$ (\underline{I})], in the range 3 < $\underline{\theta}$ < 25 $^{\circ}$.

A crystal with dimensions 0.14 x 0.12 x 0.12 mm was selected. The crystal data showed the systematic absences $0\underline{k}0$ (\underline{k} = $2\underline{n}$ + 1) that established the space group as P2₁ (for an optically active compound). Intensity data were collected on a Philips PW1100 diffractometer with Mo-K_{\alpha} radiation (λ = 0.7106 Å) and a θ -2 θ scan mode. Three standard reflections were measured every 2 h during the course of data collection to monitor crystal quality and alignment; these were constant within 5%. Absorption corrections were not applied. Equivalents were averaged to give 787 unique reflections.

The structure was solved by standard multisolution tangent refinement with SHELX76¹⁵. Using E > 1.2, the second E map from the sign expansion (\underline{R}_a = 0.073) revealed the positions of all 13 nonhydrogen atoms. The H atoms were found in a subsequent difference Fourier synthesis. The nonhydrogen atoms were refined assuming anisotropic motion, and the H atoms on isotropic motion, using full-matrix least-squares methods. Final refinement of the model in the L configuration gave a conventional \underline{R} value of 0.0421, and a weighted \underline{R} value of 0.0401 using a weighting factor, $w = 1/2(\underline{F}_0)$. The final Hamilton \underline{R}_g factor \underline{R}_g fac

configuration from the same starting parameters gave identical values of \underline{R} , \underline{R}_{ω} , and \underline{R}_{o} , making an assignment of the optical isomer impossible.

Determination of absolute configuration. - Compound 1 (2 μ mole) was dried under reduced pressure over P_2O_5 . The sample was treated with dry 1N methanolic HCl (1 mL) for 16 h at 85°, neutralized with solid $AgCO_3$, and centrifuged. The insoluble material was washed with 3 aliquots (1 mL) of methanol, and the supernatants were pooled and evaporated 18. The sample was de-esterified with NaOH (pH 12, 2°, 2 h), neutralized with acetic acid, passed through a column (2 mL) of Dowex 50 (H⁺ form), and then lyophilized, yielding an anomeric mixture of methyl glycosides (7, Figure 10).


The methyl glycosides were dissolved in 2.5 mL of 0.05M sodium acetate buffer (pH 5.2). To this was added 0.5 mL of 0.1M NaIO₄ in $\rm H_2O$. The sample was incubated in the dark at $\rm 22^{O}$ for 68 h. Excess periodate was eliminated by adding 40 $\rm \mu L$ of 1M glycerol. The sample was reduced with sodium borohydride, as described above, hydrolyzed in 0.5 mL of 1N HCl for 12 h at $\rm 22^{O}$, and neutralized with NaOH.

The content of L-lactic acid was determined enzymatically in 0.2M glycine buffer (pH 9.2) containing 0.16M hydrazine, 0.8 mg/mL nicotinamide adenine dinucleotide, and 15 units/mL beef heart L-(+)-lactic acid dehydrogenase (Sigma). Total assay volume was 1.5 mL. Substrate-dependent formation of NaDH was determined spectrophotometrically (\underline{A}_{340}). The content of D-lactic acid was determined in the same manner except that 20 units of <u>Lactobacillus leichmannii</u> D-(-)-lactic acid dehydrogenase (Sigma) were used in place of the L-(+)-lactic acid dehydrogenase. Readings of \underline{A}_{340} were corrected by subtracting the \underline{A}_{340} value of a solution containing all assay components except enzyme.

RESULTS & DISCUSSION

Isolation of compound 1. - Compound 1 (Figure 1) was bound by anion-exchange resins, and it could be eluted only under conditions stronger than those under which uronic acids are eluted. These results demonstrated that 1 was an acidic compound, and suggested that it could be purified by anion-exchange chromatography of the mixture of monosaccharides produced by acid hydrolysis of RG-II. Compound 1 (25-50 μg) was isolated from acid-hydrolyzed sycamore cell wall RG-II (3 mg) by chromatography in acetic acid on a column of AG1-X8 (acetate) anion-exchange resin.

Compound 1 represents about 7% of purified RG-II, and RG-II about 3% of isolated sycamore cell walls 1. Therefore, it was impractical to use sycamore cell wall RG-II as the starting material for the isolation of sufficient 1 for structural characterization. Fortunately, a more abundant and readily accessible source of 1 was found in our laboratory. Pectinol AC (Corning Inc.), a commercial preparation of the enzymes secreted by the fungus Aspergillus niger when the fungus is grown using plant cell walls as the carbon source, was found to contain Experiments (J. Thomas, W. S. York, A. G. Darvill, and P. Albersheim, unpublished results) have shown that Pectinol AC contains approximately 3% carbohydrate by weight, about 50% of which is a polysaccharide with a glycosyl-residue composition, glycosyl-linkage composition, and a size very similar to those of sycamore cell wall The Pectinol AC RG-II contains apiose, 2-0-methyl fucose, 2-0methyl xylose, and compound 1, the rarely seen glycosyl residues that Therefore, Pectinol AC was selected as an inexcharacterize RG-II. pensive, plentiful starting material from which sufficient compound 1 could be isolated to permit its structural characterization.

numbering of carbon atoms indicated on compound I was used with all derivatives. The Summary of the derivatives prepared from compound 1. Figure 1.

A polysaccharide-enriched fraction was prepared from Pectinol AC (600 g) as described in the "Experimental" section. This material was dissolved in 500 mL of 2N TFA, and then heated under reflux for 18 h The TFA was removed by rotary evaporation, and the hydrolyzate was applied to a column (2 x 70 cm) of AG1-X8 (acetate form) anionexchange resin (Figure 2). Material that adsorbed to the column was eluted with 2N acetic acid, followed 4N acetic by acid. Galactosyluronic acid (peak "a," Figure 2) and glucosyluronic acid (peak "b," Figure 2) eluted in the 2N acetic acid wash. Compound 1 was detected by g.l.c. after aliquots from fractions were reduced with borohydride and acetylated. Compound 1 eluted from the column in the 4N acetic acid wash (peak "c," Figure 2) and was recovered as a syrup (60 mg).

Comparison of 1 isolated from sycamore cell wall RG-II to 1 isolated from Pectinol AC polysaccharide. - Samples of 1 isolated from sycamore cell wall RG-II and from Pectinol AC polysaccharide were reduced and acetylated⁸. The acetylated derivatives were indistinguishable by g.l.c. on two different capillary columns (SP 2330, Supelco, and DB 1, J&W Scientific). The e.i. mass spectra of the alditol acetates were identical (Figure 3).

The procedure of Gerwig et al. 19 was used to demonstrate that only one optical isomer of 1 was present in the Pectinol AC polysaccharide, and that the same optical isomer of 1 was present in sycamore cell RG-II. Aliquots of 1 isolated from Pectinol AC were treated with (+)-2-butanol in HCl, and with (-)-2-butanol in HCl. Trimethylsilyl derivatives of the products of these reactions were analyzed by g.l.c. The pattern of peaks obtained with (+)-2-butanol was different from that obtained with (-)-2-butanol. In both cases, peaks that would have

Figure 2. Chromatography of the acid hydrolyzate of the Pectinol AC polysaccharide on AGI-X8 (acetate) anion-exchange resin. The column (2 x 70 cm) was equilibrated with 0.2N acetic acid. The acid-hydrolyzed Pectinol AC polysaccharide was dissolved in 1.2 L of H₂O and the pH of this solution was adjusted to 9.0 with 0.1N NaOH. After sample application, the column was washed with 500 mL of 0.2N acetic acid. The column was eluted with 2 L of 2N acetic acid, followed by 2 L of 4N acetic acid. The 2N and 4N acetic acid effluent was collected in fractions (10 mL). Aliquots of the fractions were for uronic acid content (A_{520}) The relative assayed content of compound 1 was assayed as follows. Aliquots (20 $\mu L)$ of the fractions were reduced with NaBD $_L$ and acetylated; this treatment converts compound 1 to compound 3 (Figure 1), which was quantitated by g.l.c. The relative content of 1 was calculated by dividing the g.l.c. peak area of compound 3 by the peak area of internal standard myo-inositol hexaacetate.

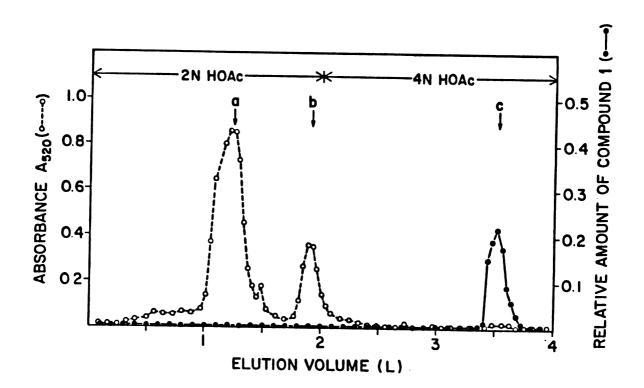


Figure 2

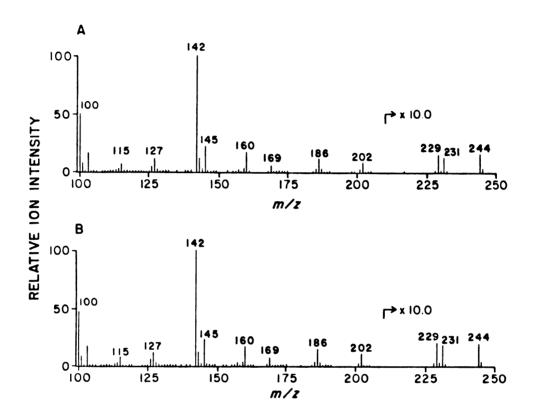
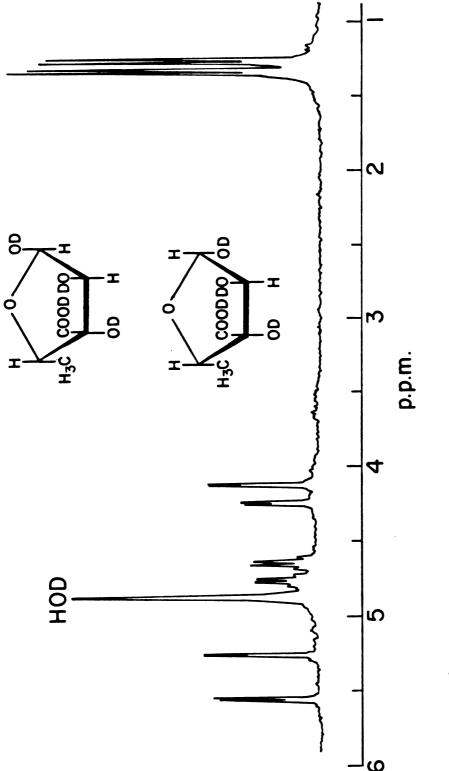


Figure 3. E.i. mass spectra of compound 3 formed by reduction and per-O-acetylation of: A) compound 1 isolated from sycamore cell wall RG-II, and B) compound 1 isolated from the Pectinol AC polysaccharide.

corresponded to the other optical isomer of 1 were not present. Therefore, it was concluded that a single optical isomer of 1 was present in Pectinol AC.

A heptasaccharide that was isolated from sycamore cell wall RG-II and that contained 1 as an internal glycosyl residue (M. Spellman, Chapter II of this dissertation) was treated with (+)-2-butanol in HCl, then derivatized with TMS and analyzed. The g.l.c. analysis of the heptasaccharide contained, inter alia, the same pattern of peaks as was observed with compound 1 isolated from the Pectinol AC polysaccharide. The combined results demonstrated that compound 1 isolated from the Pectinol AC polysaccharide was identical to compound 1 from sycamore cell wall RG-II.


Characterization of underivatized 1

Colorimetric assays. - Compound 1 gave a positive response in the Nelson-Somogyi 20 and the <u>p</u>-hydroxybenzoic acid hydrazide 21 assays for reducing sugars. It did not give a positive response in the anthrone 10 , orcino 10 , or <u>m</u>-hydroxydiphenyl 22 assays. These results indicated that 1 was a reducing sugar that could not be transformed into a furfural derivative 10 .

Fast atom bombardment-mass spectrometry. - The molecular weight of 1 was found to be 178 by fast atom bombardment-mass spectrometry (f.a.b.-m.s.). The f.a.b. mass spectrum of compound 1 did not contain the characteristic isotope ratios that would indicate the presence of silicon or sulfur in the molecule 23. Compound 1 did not contain phosphate, as assayed by a modification of the Fisk-SubbaRow procedure 24. Therefore, it was concluded that the acidic moiety in 1 was a carboxyl group.

 1 H-n.m.r. spectroscopy. - The 1 H-n.m.r. spectrum of 1 is shown in Figure 4. This spectrum provided evidence that 1 was a 3-Ccarboxy-5-deoxy-pentose. In solution, 1 existed as a mixture of its two anomers, which were present in a ratio of approximately 1.2:1. concentration difference was large enough to allow each resonance to be assigned to one of the two anomers on the basis of its area in the n.m.r. spectrum. Each anomer gave rise to an upfield, 3-proton doublet (δ 1.27, and δ 1.34); this indicated that the molecule contained a methyl group (C-5). In each anomer, H-4 was split by the methyl protons and gave rise to a quartet (\delta 4.76 and 4.64, respectively). The resonances at δ 5.56 and δ 5.27 arose from the hemiacetal protons (H-1). The hemiacetal proton of each anomer was coupled to one other proton (δ 4.25 and δ 4.13, respectively), which was not further split. The magnitude of the coupling between H-1 and H-2 of a furanose sugar can be used to distinguish the anomer in which H-l and H-2 are cis from the anomer in which they are $trans^{25,26}$. Therefore, the resonance at δ 5.56 (J_{1.2} of 4.3 Hz) arises from H-1 of the anomer containing a cis-1,2-diol, and the resonance at δ 5.27 (J_{1.2} of 2.6) arises from H-1 of the anomer containing a trans-1,2-diol.

13C-n.m.r. spectroscopy. - The ¹³C-n.m.r. spectrum of the mixture of anomers of 1 was consistent with the proposed structure (Table I). The chemical shifts of the hemiacetal carbons (C-1) of the two anomers differed by 5 p.p.m. This difference is characteristic of a furanose sugar; the hemiacetal carbon of the anomer containing a <u>trans</u>-1,2-diol resonates 5-6 Hz downfield of the corresponding carbon of the anomer containing a <u>cis</u>-1,2-diol²⁷. The resonances that have been assigned as the C-3' carbons of the anomers had chemical shifts and

 $^l \text{H-N.m.r.}$ spectrum of the mixture of anomers of compound 1 in D₂0. Chemical shifts were assessed relative to an external standard (capillary) of hexamethyldisilazane (§ 0.6995). Figure 4.

TABLE I ${}^{13}\text{C-N.M.R.}$ CHEMICAL SHIFTS OF THE MIXTURE OF ANOMERS OF COMPOUND 1

	Chemical shift ^a (p	trans ^b anomer
C-1	97.3	102.2
C-2	79.8 ^c	83.5
C-3	83.6	81.0
C-3'	172.2	174.2
C-4	79.2 ^c	79.7
C-5	11.4	14.6

^a Chemical shifts were assessed relative to internal dioxane at δ 67.4. ^bThe designation "cis" refers to the anomer containing a cis-1,2-diol, while "trans" refers to the anomer with a trans-1,2-diol. ^cThese assignments may be reversed in the "cis" anomer.

intensities characteristic of carbonyl carbons (in this case, carboxyl). These signals were approximately 30% as intense as those arising from the methyl carbons; low signal intensity is usually observed with carbon atoms that do not have any hydrogen atoms bonded to them. The resonances assigned as C-3 carbons had chemical shifts typical of alcohol carbons, and had intensities comparable to those of the carboxyl carbons. These results indicated that C-3 of each anomer was a tertiary-alcohol carbon, and provided additional evidence for the branched-chain structure of compound 1.

Preparation and characterization of reduction products of 1

Compound 2. - Reduction of 1 with borohydride yielded a 3-C-carboxy-5-deoxy-pentitol, which readily formed a γ -lactone upon acidification (2, Figure 1). Evidence for the formation of 2 was obtained by f.a.b.-m.s. The molecular weight of borohydride-reduced 1 was found to be 162, which is the molecular weight of 2. No ion was observed with m/z 181 that would correspond to the $(M+H^+)$ ion of the free-acid form of the hydride-reduced derivative. The 1H -n.m.r. spectrum of 2 in D_2O (Figure 5) contained a 3-proton doublet $(J=6.5\ Hz)$ at δ 1.36, and a 1-proton quartet $(J=6.5\ Hz)$ at δ 4.11. These signals arose from the methyl protons and H-4, respectively. The other three nonexchangeable protons (2 protons on C-1, and 1 proton on C-2) gave rise to a complex 3-proton multiplet between δ 4.33 and δ 4.70. The 13 C-n.m.r. spectrum of 2 in D_2O contained as expected, resonances at δ 16.5 (methyl); 68.5, 68.6, 74.3 (alcohol); 79.2 (3° alcohol); and 180.1 (carbonyl).

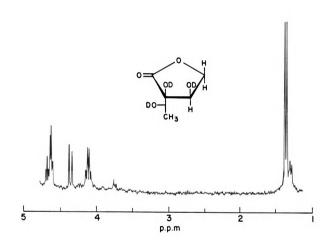
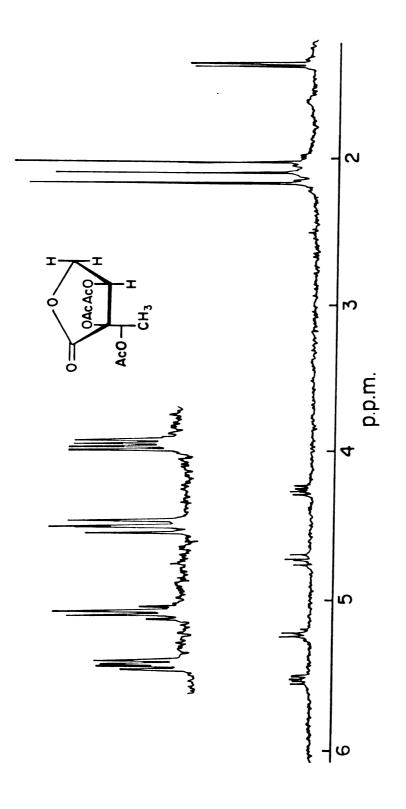
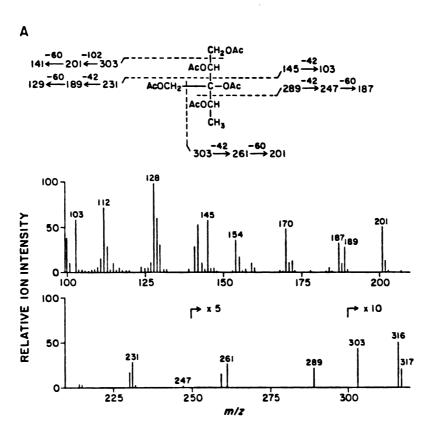


Figure 5. $^{1}\mathrm{H-N.m.r.}$ spectrum of compound 2 in D₂0. Chemical shifts were assessed relative to an external standard (capillary) of hexamethyldisilazane ($^{\delta}$ 0.6995).


Compound 3. - Acetylation of compound 2 yielded a volatile tri-O-acetyl lactone (3, Figure 1). The molecular weight of 3 was 288, as determined by c.i.-m.s. (isobutane) and f.a.b.-m.s. The molecular weight of the corresponding derivative that was per-O-acetylated using hexadeuterioacetic anhydride was 297. The difference of nine mass units indicated that three O-acetyl groups were incorporated.

The e.i. mass spectrum of 3 is shown in Figure 3. The ion with m/z 244 (M-44) corresponded to loss of carbon dioxide from the molecular ion. This is characteristic of a lactone 28 . The M-CO $_2$ ion sequentially eliminated two molecules of ketene to yield the ions with m/z 202 and m/z 160. The base peak, with m/z 142, arose from the elimination of acetic anhydride from the M-CO $_2$ ion. The ion with m/z 231 arose from the sequential losses of a methyl radical and ketene from the molecular ion. The other features of the mass spectrum were typical of those of alditol acetates 2 , 3 . The ion with m/z 229 resulted from the loss of an acetoxy radical from the molecular ion. This ion lost acetic acid to generate the ion with m/z 169, which in turn eliminated ketene to yield the ion with m/z 127. Loss of acetic acid from the molecular ion yielded the ion with m/z 228, which in turn lost ketene to yield the ion with m/z 186.

The $^1\text{H-n.m.r.}$ spectrum of 3 in CDCl $_3$ (Figure 6) contained a three-proton doublet (J = 6.3 Hz) at $^{\circ}$ 1.38 and a one-proton quartet (J = 6.3 Hz) at $^{\circ}$ 5.24, arising from the methyl group and H-4, respectively. The methyl protons of the O-acetyl groups gave rise to three-proton singlets at $^{\circ}$ 2.04, 2.11, and 2.18. The other three non-exchangeable protons comprised an AMX spin system, and gave rise to one-proton doublets-of-doublets at $^{\circ}$ 4.27 (J = 9.7 Hz, J = 5.5 Hz), $^{\circ}$ 4.74 (J = 9.7 Hz, J = 8.2 Hz), and $^{\circ}$ 5.54 (J = 5.5 Hz, J = 8.2 Hz).


Carboxyl-reduced alditols. - Borohydride reduction of lactone 2 yielded compound 4a (Figure 1), a branched-chain deoxy Reduction of 2 with borodeuteride in borate buffer yielded compound 4b (Figure 1), the dideuteriolabeled derivative of 4a. Compounds 4a and 4b were per-0-acetylated, yielding compounds 5a and 5b, respectively (Figure 1), which were analyzed by g.l.c.-m.s. The e.i. mass spectrum of compound 5a is shown in Figure 7A. The highest ions in the spectrum (m/z 317 and m/z 316) were formed by eliminating from the molecular ion an acetoxy radical and acetic acid, respectively. The other primary fragment-ions arose from fission of the alditol chain, as indicated in Figure 7A. Secondary fragment-ions were formed by eliminations of ketene, acetic acid, and acetic anhydride from the primary fragment ions. The base peak at m/z 128 and the ion at m/z 170 are present in the e.i. mass spectra of all hexa-O-acetyl hexitols and penta-0-acetyl-6-deoxy-hexitols²⁹, and are, therefore, of no diagnostic value.

Comparison of the e.i. mass spectrum of compound 5a to that of compound 5b (Figure 7B) confirmed the location and nature of the branch in compound 1. The primary ions with m/z 317, 316, 289, and 231 in the mass spectrum of 5a were shifted to m/z 319, 318, 291, and 233 in the mass spectrum of 5b. The secondary ions derived from these primary fragments were also shifted by two mass units. The primary ion at m/z 145 and the secondary ion derived from it were not changed by carbo-xyl reduction with borodeuteride. Compound 5a gave rise to two different primary fragment-ions with m/z 303. In the mass spectrum of compound 5b, one of these ions had m/z 303, while the other had shifted to m/z 305. These results confirmed that compound 1 had a carboxyl branch at C-3.

¹H-N.m.r. spectrum of compound 3 in CDCl₃. Chemical shifts were assessed relative to internal chloroform (§ 7.26). The upper trace is an expanded plot of the spectral region from 4 to 5.7 p.p.m. Figure 6.

Figure 7. E.i. mass spectra of A) compound **5a** and B) **5b**. Secondary fragment-ions, formed by eliminations of ketene (42 mass units), acetic acid (60 mass units), and acetic anhydride (102 mass units) have been indicated.

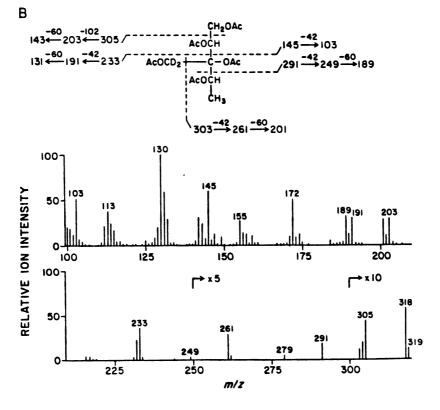


Figure 7

Determination of the relative configurations of the three asymmetric carbons of compound 1. - The results presented above clearly established that compound 1 was a 3-C-carboxy-5-deoxy-pentose. The open-chain form of such a sugar has three asymmetric carbons; therefore, compound 1 could exist as one of eight stereoisomers (four L isomers and four D isomers). The relative configurations of the three asymmetric carbons were established by X-ray crystallography of compound 6 (Figure 1), an oxidation product of compound 1.

Compound 6 was prepared by bromine oxidation of compound 1. The general structure of compound 6 was confirmed by $^1\text{H-n.m.r.}$ and $^{13}\text{C-n.m.r.}$ The $^1\text{H-n.m.r.}$ spectrum of 6 in D₂O (Figure 8) contained a three-proton doublet (J = 6.6 Hz) at δ 1.40, and a 1-proton quartet at δ 4.70, arising from the methyl group and H-4, respectively. H-2 gave rise to a one-proton singlet at δ 4.62. The $^{13}\text{C-n.m.r.}$ spectrum of 6 contained, as expected, the following signals: δ 15.7 (methyl); 73.4 and 80.5 (alcohol); 81.0 (3° alcohol); 173.9 and 175.9 (carbonyl).

Compound 6 was crystallized from a mixture of 2-pentanone and chloroform. X-ray crystallography of compound 6 confirmed all previously determined structural features, and revealed that the sugar has the <u>xylo</u> configuration (Figure 9)*. It was not possible to determine absolute configuration of 6 from the crystallography data.

Determination of the absolute configuration of 1. - The absolute configuration of 1 was determined by periodate oxidation of the anomeric

^{*}The other results of the X-ray crystallographic analysis of compound 6 are presented in the Appendix.

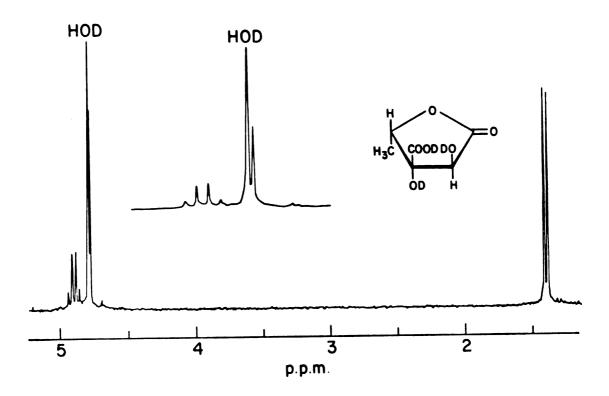


Figure 8. $^{1}\text{H-N.m.r.}$ spectrum of compound 6 in D₂0. Chemical shifts were assessed relative to an external standard (capillary) of hexamethyldisilazane (δ 0.6995). The upper trace is an expanded plot of the spectral region between 4.6 and 5.0 p.p.m.

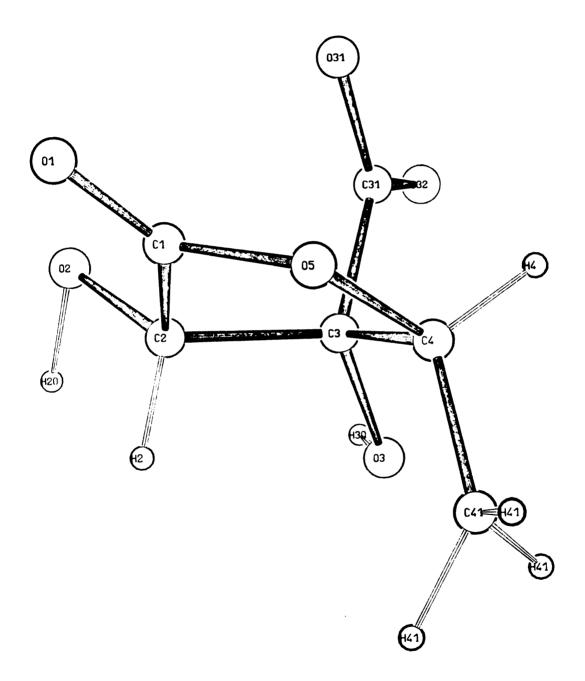


Figure 9. Structure of compound 6, as determined by X-ray crystallography.

mixture of the methyl glycosides (Figure 1). The methyl glycosides were prepared by methanolysis of 1, followed by base de-esterification. The methyl glycosides were subjected to Smith degradation (periodate oxidation, followed by borohydride reduction and mild acid hydrolysis)³⁰. The expected product of this series of reactions was D-lactic acid if 1 had the D configuration, or L-lactic acid (Figure 10) if 1 had the L configuration.

Enzymatic analysis was used to determine the concentrations of D-and L-lactic acid obtained by Smith degradation of the methyl glycosides of 1. L-lactic acid (0.6 µmole of L-lactic acid per µmole of starting material) was the major product recovered. Therefore, it was concluded that 1 was an L sugar. A small amount of D-lactic acid (0.1 µmole/µmole starting material) was also detected. The origin of the D-lactic acid is not understood because compound 1 was shown to be optically pure by the method of Gerwig et al. (see above). A possible explanation for the formation of D-lactic acid is that some isomerization occurred during the series of reactions used to form the lactic acid.

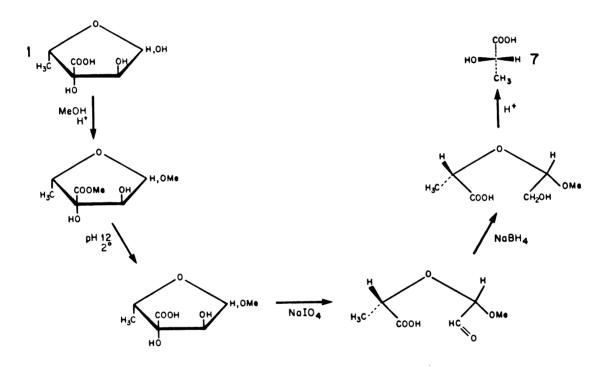


Figure 10. Reaction sequence used to determine the absolute configuration of compound 1.

GENERAL DISCUSSION

Compound 1 is 3-C-carboxy-5-deoxy-L-xylose. We propose the trivial name "aceric acid" for this sugar because it was first observed as a constituent of cell walls isolated from suspension-cultured cells of <u>Acer pseudoplatanus</u> (sycamore). More than a dozen branched-chain sugars have been found in nature, frequently as components of antibiotics 31,32. Streptose (3-C-formyl-5-deoxy-L-lyxose) 10, a neutral-sugar component of the antibiotic streptomycin, is the most similar of these to aceric acid, but it has a formyl rather than a carboxyl group at C-3', and the <u>lyxo</u> rather than the <u>xylo</u> configuration. Only two other branched-chain sugars have previously been found in plant tissue 33; these are apiose (3-C-(hydroxymethyl)-D-glycero-tetrose) and hamamelose (2-C-(hydroxymethyl)-D-ribose). Aceric acid is the first branched-chain acidic sugar to be found as a natural product.

REFERENCES

- A. G. DARVILL, M. MCNEIL, AND P. ALBERSHEIM, Plant Physiol., 62 (1978) 418-422.
- 2 O. S. CHISOV, L. S. GOLOVKINA, AND N. S. WULFSON, <u>Izv. Akad. Nauk</u> SSSR, Ser. Khim. (1966) 1915.
- 3 J. LÖNNGREN AND S. SVENSSON, Adv. Carbohydr. Biochem., 29 (1974) 41-106.
- 4 M. BARBER, R. S. BORDOLI, R. D. SEDGWICK, AND A. N. TYLER, <u>Nature</u> (<u>London</u>), 293 (1981) 270-275.
- 5 B. S. VALENT, A. G. DARVILL, M. MCNEIL, B. K. ROBERTSON, AND P. ALBERSHEIM, Carbohydr. Res., 79 (1980) 165-192.
- 6 M. MCNEIL AND P. ALBERSHEIM, Carbohydr. Res., 56 (1977) 239-248.
- 7 K. W. TALMADGE, K. KEEGSTRA, W. D. BAUER, AND P. ALBERSHEIM, Plant Physiol., 51 (1973) 158-173.
- 8 P. D. ENGLISH, A. MAGLOTHLIN, K. KEEGSTRA, AND P. ALBERSHEIM, Plant Physiol., 49 (1972) 293-297.
- 9 B. LARSEN AND A. HAUG, Acta Chem. Scand., 15 (1961) 1397-1398.
- 10 Z. DISCHE, Methods Carbohydr. Chem., 1 (1962) 477-512.
- P. ALBERSHEIM, D. J. NEVINS, P. D. ENGLISH, AND A. KARR, Carbohydr. Res., 5 (1967) 340-345.
- 12 T. M. JONES AND P. ALBERSHEIM, Plant Physiol., 49 (1972) 926-936.
- 13 F. J. KUEHL, Jr., Methods Carbohydr. Chem., 1 (1962) 268-272.
- G. H. STOUT AND L. H. JENSEN, X-ray Structure Determination, Macmillan Publishing, New York, 1968, p. 65.
- 15 G. M. SHELDRICK, SHELX76. Program for crystal structure determination, University of Cambridge, England, 1976.
- 16 W. C. HAMILTON, Acta Cryst., 18 (1965) 502-510.
- 17 D. T. CROMER AND J. B. MANN, Acta Cryst., A24 (1968) 321-324.
- 18 R. E. CHAMBERS AND J. R. CLAMP, Biochem. J., 125 (1971) 1009-1018.
- 19 G. J. GERWIG, J. P. KAMERLING, AND J. F. G. VLIEGENTHART, Carbohydr. Res., 77 (1979) 1-7.
- 20 N. J. NELSON, J. Biol. Chem., 153 (1944) 375-380.
- 21 M. LEVER, Anal. Biochem., 47 (1972) 273-279.

- N. BLUMENKRANTZ AND G. ASBOE-HANSEN, Anal. Biochem., 54 (1973) 484-489.
- R. M. SILVERSTEIN, G. C. BASSLER, AND T. C. MORRILL, <u>Spectrometric</u>

 Identification of <u>Organic Compounds</u>, John Wiley & Sons, New York,

 1974, p. 13.
- B. N. AMES, in Methods in Enzymology, Vol. 8, Academic Press, New York, 1966, pp. 115-118.
- 25 J. D. STEVENS AND H. G. FLETCHER, JR., <u>J. Org. Chem.</u>, 33 (1968) 1799.
- D. R. BUNDLE AND R. U. LEMIEUX, Methods Carbohydr. Chem., VII (1976) 79-86.
- 27 A. S. PERLIN, N. SYR, H. J. KOCH, AND B. KORSCH, Ann. N. Y. Acad. Sci., 222 (1973) 935-942.
- F. W. MCLAFFERTY, <u>Interpretation of Mass Spectra</u>, University Science Books, Mill Valley, California, 1980, p. 283.
- P.-E. JANSSON, L. KENNE, H. LIEDGREN, B. LINDBERG, AND J. LONNGREN, Chem. Commun., Univ. Stockholm, 8 (1976) 1-75.
- 30 I. J. GOLDSTEIN, G. W. HAY, B. A. LEWIS, AND F. SMITH, Methods Carbohydr. Chem., 5 (1965) 361-370.
- 31 H. GRISEBACH AND R. SCHMID, <u>Angew</u>. <u>Chem</u>. <u>Int</u>. <u>Ed</u>. <u>Engl</u>., 11 (1972) 159-173.
- N. R. WILLIAMS AND J. D. WANDER, in W. PIGMAN AND D. HORTON (Eds.),
 The Carbohydrates, Vol. 1B, 2nd ed., Academic Press, New York, 1980,
 pp. 761-798.
- H. GRISEBACH, in J. PREISS (Ed.), The Biochemistry of Plants, Vol. 3, Academic Press, New York, 1980, pp. 171-197.

CHAPTER II

CHARACTERIZATION OF A STRUCTURALLY

COMPLEX HEPTASACCHARIDE ISOLATED

FROM RHAMNOGALACTURONAN II

ABSTRACT

A heptasaccharide was released from the plant cell wall pectic polysaccharide rhamnogalacturonan II by selective acid hydrolysis of the glycosidic linkages of apiosyl residues. The heptasaccharide was purified to homogeneity by gel-filtration and anion-exchange chromatography. Some of the heptasaccharide molecules were found to be monoand di-O-acetylated; the location of the acetyl esters was not determined. The heptasaccharide was found to have the following structure (where Rha = rhamnosyl, Ara = arabinosyl, Gal = galactosyl, Fuc = fucosyl, and AcA = aceryl [3-C-carboxy-5-deoxy-L-xylosyl] residues, and Api = apiose):

$$L-Rha_{p} \xrightarrow{\alpha} 2-L-Ara_{p} \xrightarrow{\alpha} 4-D-Gal_{p} \xrightarrow{\alpha} 2-L-AcA_{f} \xrightarrow{\beta} 3-L-Rha_{p} \xrightarrow{\beta} 3'-Api$$

$$\uparrow \alpha$$

$$L-Fuc_{p}$$

$$\uparrow \alpha$$

$$Methyl$$

INTRODUCTION

Rhamnogalacturonan II (RG-II) is a complex pectic polysaccharide that is released from the cell walls of suspension-cultured sycamore cells (Acer pseudoplatanus) by the action of an endopolygalacturonase isolated from Colletotrichum lindemutheanum. RG-II is size-homogeneous, containing about 60 glycosyl residues.

RG-II yields at least 10 different monosaccharides upon acid hydrolysis, including the unusual sugar apiose (Api; 3-C-[hydroxy-methyl]-D-glycero-tetrose), and the unusual sugar derivatives 2-O-methyl-fucose, and 2-O-methyl-xylose¹. A new branched-chain sugar, aceric acid (AcA; 3-C-carboxy-5-deoxy-L-xylose) has also been identified as a component of RG-II (Chapter 1). The monosaccharide constituents of RG-II are interconnected by at least 15 different glycosidic linkages¹.

The structure of intact RG-II is too complex to be characterized by conventional methods. Therefore, selective acid hydrolysis of the apiosyl glycosidic linkages of RG-II was used to generate a mixture of smaller oligosaccharides. In this paper, we report the structural characterization of a heptasaccharide that was isolated after selective acid hydrolysis of RG-II.

EXPERIMENTAL

<u>Isolation of RG-II.</u> - RG-II was isolated from primary cell walls of suspension-cultured sycamore cells, as described in Chapter I.

Glycosyl-composition analysis. - The glycosyl-residue composition of the heptasaccharide was determined by g.l.c. and g.l.c.-m.s. analyses after hydrolysis in 2N trifluoroacetic acid (TFA) (2 h, 120°), reduction with sodium borodeuteride (NaBD $_{\Delta}$), and acetylation².

Preparation of 2-0-methyl-L-fucose. - A sample of 2-0-methyl-L-fucose was prepared from methyl-α-L-fucopyranoside (Sigma Chemical Co.). Methyl-α-L-fucopyranoside (25 mg) was converted to the 3,4-di-0-isopropylidene derivative by the procedure of Liptak et al.³, and then 0-methylated^{4,5}. Acid hydrolysis of this product (2-0-methyl-3,4-di-0-isopropylidene-α-methyl-L-fucopyranoside) yielded 2-0-methyl-L-fucose.

Glycosyl-linkage composition of the heptasaccharide. - Isolated RG-II heptasaccharide (0.5 mg) was dissolved in 0.4 mL dimethyl sulfoxide. Sodium dimethylsulfinyl anion (75 μ L of 4M) was added, and the solution stirred for 2 h. Methyl iodide (75 μ L) was added, and the solution stirred for another 2 h. Per-0-methylated carbohydrate was recovered by chromatography on a Sep-Pak C₁₈ cartridge (Waters Associates), as described by Waeghe et al. The glycosyl linkages of the neutral residues were determined by g.l.c.-m.s. after hydrolysis, reduction with NaBD₄, and acetylation. The glycosyl linkage of aceric acid was determined by a modified procedure. An aliquot (0.2 mg) of the per-0-methylated carbohydrate was hydrolyzed and reduced with NaBD₄, as described 7, deionized by passage through a column (2 mL) of Dowex 50 (H⁺)

form), and then lyophilized. This procedure yielded a mono-O-methyl lactone derivative of aceric acid (compound 2, Figure 5). The mono-O-methyl lactone was carboxyl reduced, using the procedure of Jones and Albersheim⁸. This process yielded compound 4 (Figure 5), which was analyzed by g.l.c.-m.s. after per-O-acetylation (compound 5, Figure 5).

Per-O-deuteriomethylation. - The heptasaccharide-alditol (3 mg) was dissolved in dimethyl sulfoxide (2 mL), and the solution was stirred for 4 h. Sodium dimethylsulfinyl anion (75 μ L of 4M) was added, and the mixture was stirred overnight. Trideuteriomethyl iodide (20 μ L; Stohler Isotopic Chemicals) was added, and the solution was stirred for 2 h. Sodium dimethylsulfinyl anion and trideuteriomethyl iodide were added twice more; 100 μ L of trideuteriomethyl iodide was used for the final addition.

L.c.-m.s. separation of the mixture of per-O-deuteriomethylated oligosaccharides and oligosaccharide-alditols generated by degradation of the aceryl residue during per-O-deuteriomethylation of the heptasaccharide-alditol. - The mixture of per-O-deuteriomethylated oligomers, generated by partial degradation of the aceryl residue of the heptasaccharide, was separated by l.c.-m.s. on a Dupont Zorbax ODS column using a linear, 45-min gradient of 50 to 75% acetonitrile. All other l.c.-m.s. conditions were as described.

Preparation of per-O-alkylated oligosaccharide-alditols from per-O-deuteriomethylated fragments generated by degradation of the aceryl residue of the heptasaccharide-alditol. - The fractions containing material that eluted from the Dupont Zorbax ODS column with retention times between 4 and 10 min (Figure 7) were pooled and evaporated to

dryness under a stream of filtered air. The material was partially hydrolyzed by treatment with 88% formic acid for 2 h at 50° , and the formic acid was evaporated under a stream of filtered air. The sample was reduced with NaBD₄, deionized by passage through a column (2 mL) of Dowex 50 (H⁺ form), lyophilized, and then dried overnight in a vacuum oven at 40° . The sample was dissolved in 0.5 mL of dimethyl sulfoxide. Sodium dimethylsulfinyl anion (100 μ L of 4M) was added, and the solution was stirred for 4 h. Pentadeuterioethyl iodide (100 μ L; Stohler Isotopic Chemicals) was added, and the mixture was stirred for 3 h. The per-O-alkylated oligosaccharide-alditols were recovered from the reaction mixture by chromatography on a Sep-Pak C₁₈ cartridge, as described.

G.l.c.-m.s. of per-O-alkylated oligosaccharide-alditols derived from the heptasaccharide. - Partially-O-deuteriomethylated, partially-O-deuterioethylated, oligosaccharide-alditols were analyzed by g.l.c.-m.s. on a 15-m DB1 (J&W) capillary column (0.32 mm i.d.), as described 10

Isolation of per-O-alkylated oligosaccharide-alditols [a], [d'], and [f] (Tables II and III) by 1.c. - An aliquot (2 mg) of the per-O-alkylated oligosaccharide-alditols derived from the heptasaccharide was separated by 1.c. on a Dupont Zorbax ODS column using a linear, 30-min gradient of 50 to 65% acetonitrile. Per-O-alkylated oligosaccharide-alditols were detected in the 1.c. effluent by g.1.c.-m.s. (e.i.) analysis 7 of aliquots of the column fractions.

 $\frac{1}{\text{H-N.m.r.}}$ - $^{1}\text{H-N.m.r.}$ spectra were recorded on a Bruker WM-250 Fourier-transform n.m.r. spectrometer operated at 250 MHz. Water-soluble samples were lyophilized twice from deuterium oxide (99.7 atom %

D), then dissolved in deuterium oxide (99.997 atom % D). Chemical shifts of aqueous samples were assessed relative to internal dioxane (δ 3.70). Methylated samples were run in hexadeuterioacetone (99.997 % D) and chemical shifts were assessed relative to internal pentadeuterio acetone (δ 2.04).

RESULTS AND DISCUSSION

Isolation of an oligosaccharide released by partial acid hydrolysis of RG-II. - Purified RG-II (125 mg) was treated with 0.1N TFA for 24 h at 40°, and the extent of hydrolysis of glycosyl residues was determined as described 10. Under these conditions, approximately 35% of the apiosyl glycosidic linkages and approximately 5% of the methyl fucosyl and the arabinofuranosyl glycosidic linkages were hydrolyzed. There was no detectable hydrolysis of any other glycosidic linkage.

The partially hydrolyzed RG-II was applied to a heated (65°) column (1.5 x 85 cm) of Biogel P-10 (200-400 mesh) that had been equilibrated in 50mM sodium acetate buffer (pH 5.2). Two major peaks of carbohydrate-containing material were resolved (Figure 1). The first peak had the same approximate elution volume as untreated RG-II. The second peak (shaded) was pooled, deionized by passage through a column (1 x 6 cm) of Dowex 50 (H⁺ form), and then lyophilized.

Lyophilized peak II from the Biogel P-10 column was chromatographed on a column (1 x 2 cm) of QAE Sephadex Q-50-120 that had been equilibrated in 30mM $\mathrm{NH_4HCO_3}$ (Figure 2). The column was washed with 15 bed volumes of 30mM $\mathrm{NH_4HCO_3}$, then with 15 bed volumes of 250mM $\mathrm{NH_4HCO_3}$. A peak of orcinol-positive 11 material (shaded region, Figure 2) was eluted from the column in the 30mM $\mathrm{NH_4HCO_3}$ wash. This material, which did not give a positive response in the m-hydroxydiphenyl assay 12 for uronic acids, was the oligosaccharide characterized in the remainder of this paper. The 250 mM $\mathrm{NH_4HCO_3}$ wash eluted material that gave positive responses in both the orcinol and the

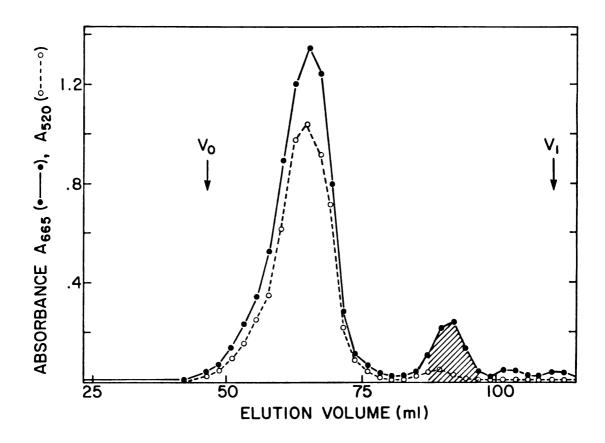
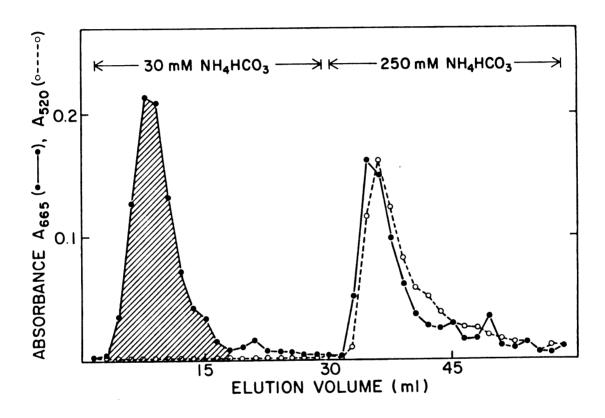
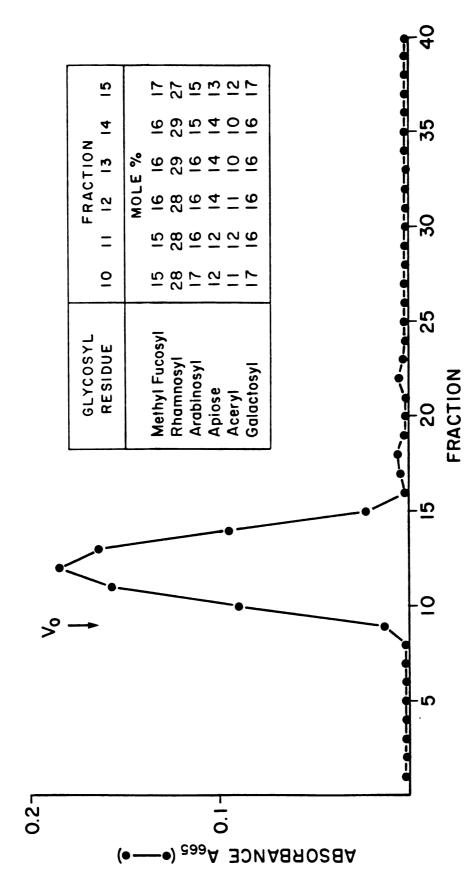


Figure 1. Chromatography of partially hydrolyzed RG-II on a heated (65° column (1.5 x 85 cm) of Biogel P-10 (200-400 mesh). The column was equilibrated in 50 mM sodium acetate buffer (pH 5.2). Collected fraction volume was 2.5 mL. Fractions were assayed for neutral-sugar content by the orcinol method ((A_{665})) and for uronic acid content by the m-hydroxydiphenyl method ((A_{520})). The shaded fractions were pooled for further purification.




Figure 2. Chromatography, on QAE-Sephadex, of pooled material from the Biogel P-10 column. A column (1 x 2 cm) of QAE-Sephadex Q-50-120 was equilibrated with 30 mM NH₄HCO₃. After sample application, the column was washed with 15 bed volumes of 30 mM NH₄HCO₃ followed by 15 bed volumes of 250 mM NH₄HCO₃. Collected fraction volume was 1.5 mL. Fractions were assayed as described in the Figure 1 legend.

m-hydroxydiphenyl assays. This material has not been further characterized.

Determination of glycosyl composition and size of the isolated oligosaccharide. - The material that eluted from the QAE Sephadex column in 30mM NH_LHCO₃ (shaded region, Figure 2) was pooled and lyophilized. This material was chromatographed in water on a heated (65°) column (1 x 75 cm) of Biogel P-6, and eluted as a symmetrical, partially included peak (Figure 3). Aliquots were taken from the fractions comprising the peak, and the glycosyl-residue composition was determined by g.l.c. and g.l.c.-m.s. analysis of the products of reduction with 120°, 1 h), reduction with TFA. borohydride, hydrolysis (2N borodeuteride, and acetylation. The glycosyl-residue composition was constant across the peak (Figure 3, inset). The glycosyl composition data were consistent with those of a heptasaccharide. Only apiose was reducible before acid hydrolysis; this indicated that apiose was at the reducing end of the heptasaccharide, as would be anticipated from the partial hydrolysis results.

Fast atom bombardment-mass spectrometry (f.a.b.-m.s.) provided strong evidence that the isolated oligosaccharide was a heptasaccharide. The negative-ion f.a.b. mass spectrum contained ions corresponding to [M]-H (m/z 1056), [M + acetyl]-H (m/z 1097), and [M + 2 acetyl]-H (m/z 1139). The results were consistent with the glycosyl composition data, and also indicated the presence of one and of two acetyl esters on some of the heptasaccharide molecules.

The $^1\text{H-n.m.r.}$ spectrum of the underivatized heptasaccharide in D $_2^0$ (Figure 4) confirmed the presence of acetyl esters on some of the heptasaccharide molecules. The spectrum contained singlets, at $^\delta$ 2.16, 2.12,

Collected fraction volume was 2.5 mL. Fractions were assayed for neutral-sugar content by the orcinol method 12 . The glycosyl-Chromatography, on Biogel P-6, of the material that eluted from the A heated (65°) column (1 x was equilibrated in H,0. residue compositions of fractions 10-15 (inset) were determined as QAE-Sephadex column in 30 mM $^{\rm NH}_4$ HCO $^{\rm 3}_3$. 75 cm) of Biogel P-6 (100-200 mesh) described in the text. Figure 3.

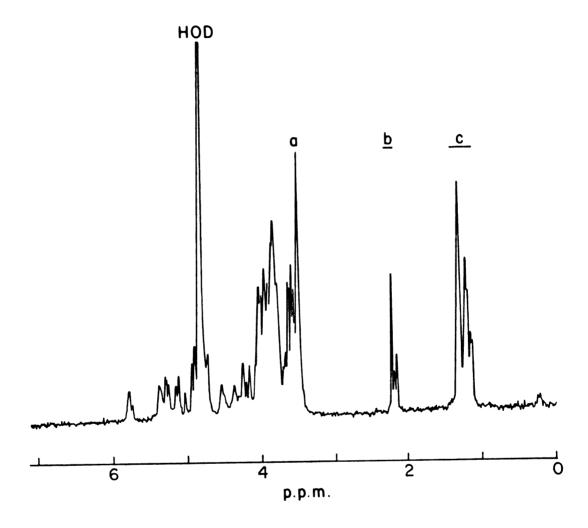


Figure 4. 1 H-N·m·r. spectrum of the underivatized heptasaccharide in D₂O. Chemical shifts were assessed relative to internal dioxane (δ 3.70). The resonances arising from the methoxy protons of the 2-O-methyl-fucosyl residue (a), the methyl protons of the O-acetyl esters (b), and the methyl protons of the deoxy-glycosyl residues (c) are indicated.

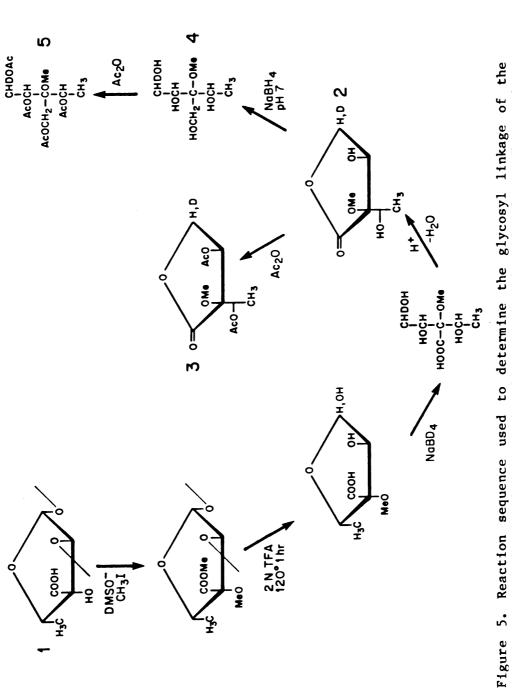
and 2.08, having typical chemical shifts for the methyl protons of $\underline{0}$ -acetyl esters 13 . Integration of these resonances showed that the $\underline{0}$ -acetyl esters were present in less than one mole per mole of heptasaccharide: the largest resonance (δ 2.16) corresponds to 0.6 mole acetyl ester per mole heptasaccharide; each of the other two resonances corresponds to less than 0.3 mole acetyl ester per mole heptasaccharide. It is likely that the $\underline{0}$ -acetyl esters were partially hydrolyzed by the acidic conditions used to release the heptasaccharide from RG-II. Acidic conditions are also known to cause migration of $\underline{0}$ -acetyl esters 14 . No attempt was made to determine the points of attachment of these substituents.

<u>residues of the heptasaccharide</u>. - The absolute configurations of all of the constituent sugars of the heptasaccharide except apiose were determined by the methods of Gerwig <u>et al</u>. ¹⁵, ¹⁶ and Leontein <u>et al</u>. ¹⁷. Both methods utilize solvolysis reactions in which the solvent is an optically active alcohol. When a pair of enantiomers is treated with a chiral reagent, the products are diastereomers, which can usually be resolved by g.l.c. The procedure of Gerwig <u>et al</u>. uses optically active butanol; the products of butanolysis are then converted into their trimethylsilyl derivatives, and analyzed by g.l.c.—m.s. The procedure of Leontein <u>et al</u>. is analogous, but the solvolysis reaction is run in optically active octanol, and the acetyl derivatives of the products are analyzed by g.l.c.

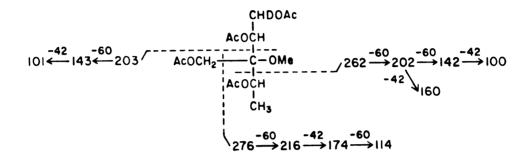
The galactosyl residue was shown to have the D absolute configuration, and the rhamnosyl and 2-0-methyl fucosyl residues L absolute configurations by the method of Gerwig et al. Authentic 2-0-methyl-L-

fucose was synthesized for use in these experiments, as described in the "Experimental" section. The arabinosyl residue was shown to have the L absolute configuration by the method of Leontein et al. Aceric acid was previously shown to have the L absolute configuration (Chapter 1). It was not possible to assign the absolute configuration of apiose by the method of Gerwig et al. or by the method of Leontein et al. because the diastereomeric products were not sufficiently resolved by g.l.c. The L optical isomer of apiose has not been found in nature 18. Therefore, the apiose in the heptasaccharide has been assumed to have the D absolute configuration.

Determination of the glycosyl-linkage composition of the heptasaccharide. - The heptasaccharide was reduced with NaBD, to yield the The glycosyl-linkage composition of the heptasaccharide-alditol. heptasaccharide-alditol was determined by per-O-methylation^{4,5} followed by hydrolysis, reduction with NaBD,, and acetylation (Table I). glycosyl linkage of aceric acid was determined by a modified procedure, which will be discussed separately. Prereduced apiose was recovered in low yield, presumably because some of the volatile tetra-0-methyl derivative was lost in the workup²⁰. Aceric acid was partially degraded under the conditions used to methylate the heptasaccharide and consequently was also recovered in low yield. Degradation of aceric acid during the alkaline conditions of methylation became apparent from the results of experiments performed to determine the glycosyl-residue sequence of the heptasaccharide, as will be discussed later. Alkaline degradation of similar compounds has been reported²¹.


TABLE I
GLYCOSYL-LINKAGE COMPOSITION OF THE HEPTASACCHARIDE

Glycosyl residue	Points of attachment of O-methyl groups	Deduced glycosidic linkage	Mole % ^a
2-0-methyl Fucosyl	2,3,4	terminal	17
Rhamnosy1	2,3,4	terminal	19
Rhamnosyl	2,4	3-linked	18
Arabinosyl	3,4	2-linked	19
Galactosyl	3,6	2,4-linked	15
Aceryl	3 ^b	2-linked	6
Apiose	1,2,3,4	3 ¹ -linked (alditol)	5


^a Calculated using "Effective Carbon Ratio"²⁰. ^bDetermined in a separate experiment, as described in text.

The glycosyl linkage of aceric acid was determined as follows. Per-O-methylation of the heptasaccharide, followed by hydrolysis, reduction, and acetylation, yielded a di-O-acetyl-mono-O-methyl lactone (compound 3, Figure 5), which was identified by g.l.c.-m.s.(e.i.). Because compound 3 is cyclic, it was not possible to determine the position of the O-methyl group using the established fragmentation patterns of partially-O-methylated alditol acetates²⁰. Therefore, compound 2 was reduced with sodium borohydride in borate buffer⁸ to yield the acyclic, carboxyl-reduced alditol (compound 4, Figure 5). This derivative was per-O-acetylated, yielding compound 5, which was analyzed by g.l.c.-m.s. The e.i.-m.s. fragmentation pattern of compound 5 (Figure 6) clearly established that aceric acid was 2-linked in the heptasaccharide.

Determination of the sequence of glycosyl residues in the heptasaccharide. - The formation, resolution, and characterization of overlapping per-O-alkylated oligosaccharide-alditol fragments constitute a general procedure for determining the glycosyl-residue sequence of a complex carbohydrate 9,10 such as the heptasaccharide. The sequencing method was modified in the present study by using deuterated alkylating reagents in place of the normal (i.e., nondeuterated) alkylating reagents. The reason for this modification will become evident in the following discussion. The present study was complicated by degradation of the aceryl residue during per-O-deuteriomethylation of the heptasaccharide-alditol. The partial degradation of the aceryl residue made necessary an extra resolution step to recover the per-O-deuteriomethyl derivative of the intact heptasaccharide-alditol from the mixture of per-O-deuteriomethylated oligosaccharides and oligosaccharide-alditols that resulted from this degradation.

Reaction sequence used to determine the glycosyl linkage of the aceryl residue in the heptasaccharide-alditol. This scheme illustrates the derivatives obtained from the 2-linked aceryl residue (1).

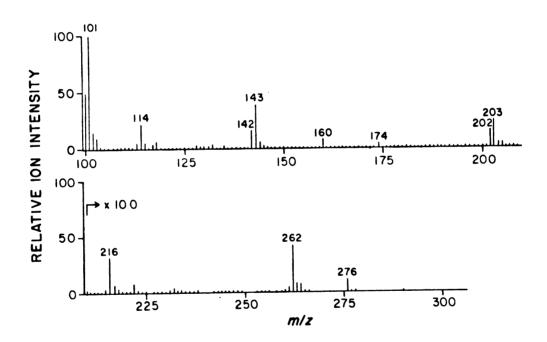
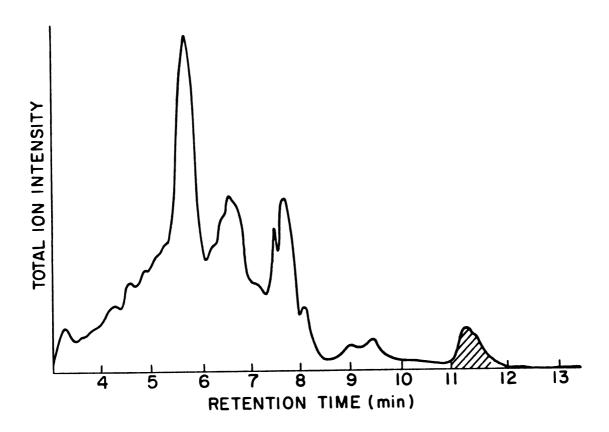



Figure 6. E.i. mass spectrum of compound 5. Compound 5 is the per-O-acetylated branched-chain-deoxy-alditol produced from the aceryl residue of the heptasaccharide by the sequence of reactions outlined in Figure 5. Secondary fragment-ions formed by eliminations of ketene (42 mass units) or acetic acid (60 mass units) are indicated.

The first step of the sequencing procedure was to reduce the heptasaccharide with NaBD₄ to form the corresponding heptasaccharide-alditol, which was then per-O-deuteriomethylated. As mentioned above, the aceryl reside was partially degraded during per-O-deuteriomethylation of the heptasaccharide-alditol, generating a mixture of per-O-deuteriomethylated oligosaccharides and oligosaccharide-alditols. This mixture was partially resolved by 1.c. on a Dupont Zorbax ODS column. The elution was monitored by chemical ionization (c.i.)-m.s. of 3% of the 1.c. effluent (Figure 7). The remaining 97% of the 1.c. effluent was collected as fractions (0.5 mL).

The material that eluted with a retention time of 11.3 min (shaded region, Figure 7) was found to be the per-O-deuteriomethyl derivative of the intact heptasaccharide-alditol. This was established by the results of hydrolysis, reduction, and acetylation of aliquots of the 1.c. fractions comprising the peak (data not shown), and by f.a.b.-m.s., as will be discussed later. The fractions containing the per-O-deuteriomethylated heptasaccharide-alditol were combined and evaporated to dryness under a stream of filtered air, and saved for subsequent f.a.b.-m.s. and n.m.r. analyses.

Most features of the sequence of glycosyl residues in the heptasaccharide were elucidated by forming and characterizing overlapping per-O-alkylated oligosaccharide-alditol fragments of the heptasaccharide. The per-O-alkylated oligosaccharide-alditol fragments were produced by partial acid hydrolysis, reduction, and per-O-deuterio-ethylation of the mixture of per-O-deuteriomethylated oligosaccharides and oligosaccharide-alditols that resulted from degradation of the aceryl residue of the heptasaccharide (material with retention times

7. Reverse-phase 1.c. elution profile of the per-O-deuteriomethylated oligosaccharides and oligosaccharidealditols generated by degradation of the aceryl residue during per-O-deuteriomethylation of the heptasaccharidealditol. The profile is the c.i.-m.s. total-ion response of 3% of the effluent from the 1.c. column introduced directly into the source of the mass spectrometer. The mass spectrometer scanned from m/z 150 to 1000 once every 3 s.

between 4 and 10 min, Figure 7). These experiments are described below. The eluent fractions of the l.c. column (Figure 7) collected between 4 and 10 min were combined and evaporated to dryness. Preliminary analyses of this material were carried out as described 10 to determine conditions for further hydrolysis to form di-, tri-, and tetrasaccharide fragments. Treatment of the per-O-deuteriomethylated oligosaccharides and oligosaccharide-alditols in the 4 to 10 min eluent with 88% formic acid for 2 h at 50° was found to yield useful mixture of fragments.

The partially-O-deuteriomethylated oligosaccharide and oligosaccharide-alditol fragments generated by this partial hydrolysis were reduced with NaBD₄ and then per-O-deuterioethylated, yielding a mixture of partially-O-deuteriomethylated, partially-O-deuterioethylated oligosaccharide-alditols. The O-deuterioethyl groups of these derivatives mark the points of attachment of other residues in the intact heptasaccharide-alditol¹⁰. The term "per-O-alkylated oligosaccharide-alditols" will be used to refer to components of this mixture in the remainder of this paper.

An aliquot (200 µg) of the mixture of per-O-alkylated oligosaccharide-alditols was resolved and analyzed by g.l.c.-m.s. (Figure 8). The structures of the per-O-alkylated oligosaccharide-alditol fragments were elucidated from diagnostic ions in their e.i. mass spectra. This is illustrated in Figure 9, in which the e.i. mass spectrum of per-O-alkylated tetrasaccharide-alditol [f] is shown and the A- and J-series of fragment ions, which are typical of these molecules²², are indicated. The A- and J-series of ions, in conjunction with the glycosyllinkage composition of the intact heptasaccharide, established, with one

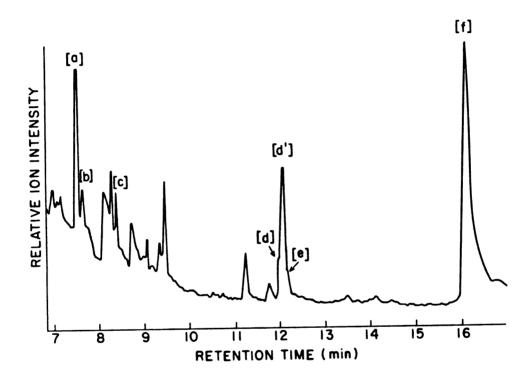


Figure 8. G.1.c.-m.s. elution profile of the per-0-alkylated oligosaccharide-alditols derived from the heptasaccharide. The per-O-alkylated oligosaccharide-alditols were produced hydrolysis, reductions, deuterioethylation of the oligosaccharide fragments that resulted from partial degradation of the aceryl residue during per-0-deuteriomethylation of the heptasaccharidealditol. the mass spectrometer scanned from m/z 100 to 1000 Each per-O-alkylated fragment structurally every 1.5 s. characterized has been assigned a letter to show where it eluted from the g.l.c. column (Tables II, III, and IV and Figure 9).

Figure 9. E.i. mass spectrum of per-O-alkylated tetrasaccharide-alditol [f]. The g.l.c.-m.s. conditions are described in the Figure 8 legend.

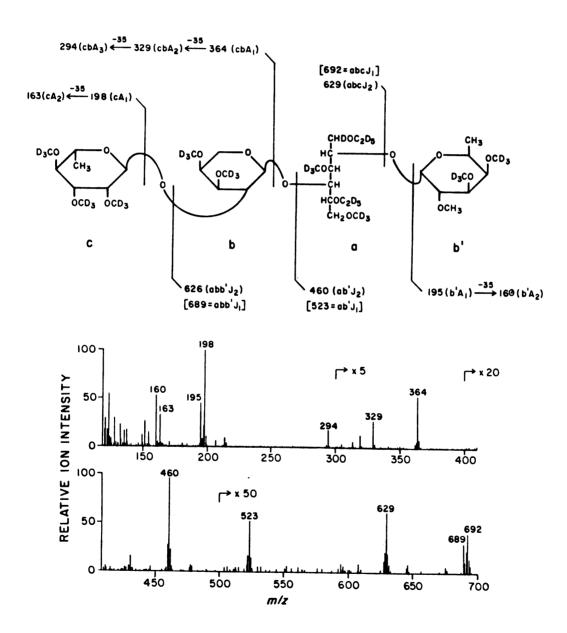


Figure 9

exception, the sequence of glycosyl-residues in fragment [f]. The feature of the glycosyl-residue sequence of fragment [f] that could not be determined unambiguously from this analysis was the point of attachment to the 2,4-linked galactosyl residue of the 2-0-methyl fucosyl and the arabinosyl residues. This ambiguity was clarified in an experiment, described later.

The e.i. mass spectrum of fragment [f] also illustrates the value of using deuterated alkylating agents for the sequence analysis of the heptasaccharide. For example, the A_1 and A_2 ions with m/z 198 and m/z 163 could arise only from a terminal rhamnosyl residue. These ions were only distinguishable from the A_1 and A_2 ions arising from the terminal 2-0-methyl fucosyl residue (m/z 195 and m/z 160) because the heptasaccharide was per-0-deuteriomethylated. Had non-deuterated alkylating reagents been used, the A_1 and A_2 fragment ions of both of these residues would have had m/z 189 and m/z 154, respectively, and, thus, the terminal rhamnosyl and the terminal 2-0-methyl fucosyl residues could not have been distinguished.

Three per-O-alkylated disaccharide-alditols and three per-O-alkylated trisaccharide-alditols were identified by g.l.c.-m.s. analysis, in addition to per-O-alkylated tetrasaccharide alditol [f]. These per-O-alkylated oligosaccharide-alditols are shown in Tables II and III, and the pertinent e.i.-m.s. ions are listed. The use of deuterioethyl iodide in the second alkylation step resulted in a unique molecular weight for each of the per-O-alkylated oligosaccharide-alditols derived from the heptasaccharide. In fact, alkylation with deuterated reagents allowed the unequivocal identification from mass spectral data of the derivative of each glycosyl residue, simplifying the sequence analysis.

TABLE II

DIAGNOSTIC IONS FROM E.I.-M.S. OF PARTIALLY O-DEUTERIOMETHYLATED, PARTIALLY O-DEUTERIOETHYLATED DISACCHARIDE-ALDITOLS DERIVED FROM THE HEPTASACCHARIDE

Oligosaccharide	Fragment ^a		mpact Mass Sp z (relative a	•	ent-Ions
		aJ ₂	<u>aJ</u> 1	<u>bA</u> 1	bA ₂
Et+3Rha+3 ¹ Api	[a]	204(100)	283(26)	214(74)	163(21)
Rha+2Ara+	[b]	236(84)	299(28)	198(100)	163(33)
Et+4Gal+ ^b 2 Fuc 2 Me	[c]	299(17)	362(4)	195(100)	160(67)

^aSee Figure 8 for location of fragment on g.l.c. trace. ^b The point of attachment of the 2-0-methyl fucosyl and arabinosyl residues to the 2,4-linked galactosyl residue was determined in a separate experiment.

TABLE III

DIAGNOSTIC IONS FROM E.I.-M.S. OF PARTIALLY O-DEUTERIOMETHYLATED, PARTIALLY O-DEUTERIOETHYLATED TRI- AND TETRASACCHARIDE-ALDITOLS DERIVED FROM THE HEPTASACCHARIDE

Oligosaccharide	Fragment		Ele	ctron-Impa	ct Mass Sp z (relativ	Electron-Impact Mass Spectral Fragment-Ions m/z (relative abundance)	gment-Ions e)		
		<u>a.J.</u> 2	$\frac{aJ_1}{aJ_1}$	abJ ₂	abJ ₁	c bA ₁	cbA ₂	cA₁	CA ₂
Rha+2Ara+4Gal+ ^b 2 † Et	[4]	362(2)	299(13)	465(4)	528(1)	364(8)	329(2)	198(100)	163(37)
Rha+2Ara+4Gal+b	[47]	346(2)	283(21)	449(2)	512(3)	364(6)	329(5)	198(100)	163(38)
		ab'J2	ab'J ₁	abJ ₂	abJ ₁	b' A1	b' A ₂	VQ V	bA ₂
Ara+4Cal+ ^b 7	[e]	460(4)	523(1)	465(3)	528(1)	195(100) 160(63)	160(63)	200(63)	165(50)
		ab'J2	ab'J ₁	cbA ₁	cp42	[[] √]	CA2	$\frac{b'A_1}{a}$	b' A2
Rha+2Ara+4Gal+ ^b 2 7 Fuc 7 Me	[£]	460(5)	523(1)	364(9)	329(5)	198(100) 163(34)	163(34)	195(43)	160(53)

^bThe point of attachment of the 2-0-methyl fucosyl and arabinosyl residues to the 2,4-linked galactosyl residue was determined in a separate experiment. a See Figure 8 for location of fragment on g.l.c. trace.

Fragments [d] and [d'] (Table III) had the same sequence of glycosyl residues, and differed only in the number of O-deuterioethyl groups on the alditol moiety. Each fragment had O-deuterioethyl groups at O-1 and O-5 of the alditol, showing that the galactosyl residue was reduced after the partial hydrolysis. Fragment [d] had a third O-deuterioethyl group, marking the point of attachment of the 2-O-methyl fucosyl residue in the original heptasaccharide. Fragment [d'] had an O-deuteriomethyl group instead of a third O-deuterioethyl group. The ethylation pattern indicated that fragment [d'] was derived from a hexasaccharide molecule in which the 2-O-methyl fucosyl residue was absent.

The presence of fragment [d'] in the mixture of per-0-alkylated oligosaccharide-alditols is explained by hydrolysis of some of the glycosidic linkages of 2-0-methyl fucosyl residues in the partial hydrolysis that released the heptasaccharide from RG-II. The rates of hydrolysis determined for apiosyl and 2-0-methyl fucosyl glycosidic linkages support this interpretation. Under the hydrolysis conditions used to release the heptasaccharide from RG-II, 35% of the glycosidic linkages of apiosyl residues were hydrolyzed, and 5% of the glycosidic linkages of 2-0-methyl fucosyl residues were also hydrolyzed. Hydrolysis of 2-0-methyl fucosyl glycosidic linkages would have generated hexasaccharide molecules lacking the 2-0-methyl fucosyl residue. Removal of the 2-0-methyl fucosyl residue from the heptasaccharide would have had little effect on its radius of gyration and on its charge-tomass ratio. Therefore, it is not surprising that the hexasaccharide eluted with the intact heptasaccharide during chromatography on Biogel P-10, QAE Sephadex, and Biogel P-6.

Per-O-alkylated tetrasaccharide-alditol [f] (Table III and Figure 9) and per-0-alkylated disaccharide-alditol [a] (Table II) define the sequence of six of the glycosyl residues in the heptasaccharide. No per-O-alkylated oligosaccharide-alditol containing aceric acid characterized in this experiment. This was as expected, because the per-O-alkylated alditols were generated from the mixture of per-O-deuteriomethylated oligosaccharides and oligosaccharide-alditols resulted from degradation of the aceryl residue during per-O-deuteriomethylation of the heptasaccharide-alditol. The 2-linked aceryl residue the only other residue in the intact heptasaccharide, and, therefore, had to be situated between the 2,4-linked galactosyl residue and the 3-linked rhamnosyl residue. This was confirmed by f.a.b.-m.s., as described later. Each of the per-O-alkylated oligosaccharide-alditol fragments identified was consistent with the deduced glycosyl residue sequence of the heptasaccharide.

Determination of the points of attachment of the 2-0-methyl fucosyl and arabinopyranosyl residues to the 2,4-linked galactosyl residue. - The point of attachment of the 2-0-methyl fucosyl and the arabinopyranosyl residues to the 2,4-linked galactosyl residue was determined by partial acid hydrolysis of the underivatized heptasaccharide, followed by glycosyl-linkage analysis of the hydrolyzate. This experiment is described below.

An aliquot (0.2 mg) of the underivatized heptasaccharide was treated with 2N TFA for 30 min at 80° . The extent of hydrolysis of the arabinosyl glycosidic linkage was determined as described 10 to be 34%, and the hydrolysis of the 2-0-methyl fucosyl glycosidic linkages was determined to be 63%.

An identical aliquot of the heptasaccharide was partially hydrolyzed using the same conditions. This sample was then reduced with NaBD4, per-0-methylated, fully hydrolyzed (2N TFA, 1 h, 120°), reduced with NaBD4, and per-0-acetylated. This treatment generated a mixture of terminal, 2-linked, 4-linked, and 2,4-linked galactosyl residues (Table IV). The 4-linked galactosyl residues listed in Table IV resulted from hydrolysis of the glycosidic linkage to 0-2 of the 2,4-linked galactosyl residue, whereas the 2-linked galactosyl residues resulted from hydrolysis of the linkage to 0-4 of the 2,4-linked galactosyl residue. The observed ratio (51:16) of 4-linked to 2-linked galactosyl residue established that the 2-0-methyl fucosyl residue was glycosidically linked to 0-2, and the arabinosyl residue to 0-4, of the 2,4-linked galactosyl residue.

F.a.b.-a.s. of the per-O-deuteriomethylated heptasaccharidealditol. - The proposed sequence of glycosyl residues in the heptasaccharide was confirmed by positive-ion f.a.b.-m.s. of the per-O-deuteriomethylated heptasaccharide-alditol (Figure 10). This material had been isolated by l.c. (retention time of 11.3 min, Figure 7), as described above. Ions corresponding to $[M + H]^+$ (m/z 1349) and $[M + Na]^+$ (m/z 1371) were observed in the f.a.b. mass spectrum. The A series of fragment ions, resulting from fragmentation from the nonreducing termini of the molecule, was also observed, as indicated in Figure 10. These fragment ions confirmed the glycosyl residue sequence of the heptasaccharide, and provided definitive evidence for the location of the aceryl residue.

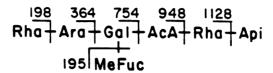

Determination of the ring forms of the glycosyl residues of the heptasaccharide. - Glycosyl residues can exist in furanoid (5-membered)

TABLE IV

DETERMINATION OF THE POINT OF ATTACHMENT OF THE ARABINOSYL- AND THE 2-O-METHYL FUCOSYL RESIDUES TO THE 2,4-LINKED GALACTOSYL RESIDUE

Glycosyl resídue	Positions of O-methyl	Deduced glycosidic	Observed area %	Predicted area %	
	groups	linkage		If 2-0-methyl fucosyl residue is linked to 0-2 of the 2,4-linked galactosyl residue	If 2-O-methyl fucosyl residue is linked to O-4 of the 2,4-linked galactosyl residue
Galactosyl	2,3,4,6	Terminal	21		
Galactosyl	2,3,6	4-linked	51	42	13
Galactosyl	3,4,6	2-1inked	16	13	42
Galactosyl	3,6	2,4-11nked	11		

 a Calculated, based on 34% hydrolysis of arabinosyl glycosidic linkages and 63% hydrolysis of 2-0-methyl fucosyl glycosidic linkages.

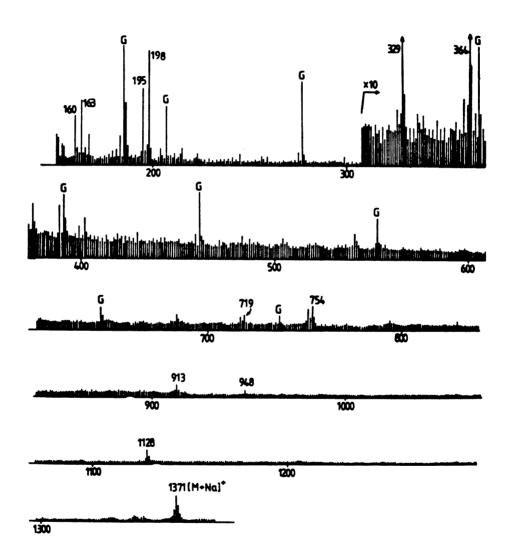


Figure 10. Positive-ion f.a.b. mass spectrum of the per-O-deuteriomethylated heptasaccharide-alditol. The signals labeled G represent glycerol polymers generated from the glycerol matrix on the f.a.b. target. The per-O-deuteriomethylated heptasaccharide-alditol was isolated by 1.c. (retention time of 11.3 min, Figure 7).

or pyranoid (6-membered) rings. The apiosyl and aceryl residues of the heptasaccharide can form only furanoid rings. Methylation analysis of the heptasaccharide (Table I) established the pyranoid ring-forms of the 2-0-methyl fucosyl, arabinosyl, and the two rhamnosyl residues of the heptasaccharide because the partially-0-methylated alditol acetates derived from these residues had methyl groups at 0-4.

The partially-0-methylated alditol acetate derived from the galactosyl residue of the heptasaccharide was 1,2,4,5-tetra-0-acetyl-3,6-di-0-methyl galactitol (Table I). This derivative could have arisen from a 2,4-linked galactopyranosyl residue or from a 2,5-linked galactofuranosyl residue. This ambiguity was resolved in the experiment that revealed the point of attachment of the arabinosyl and 2-0-methyl fucosyl residues to the galactosyl residue. In that experiment, the partially hydrolyzed, reduced, heptasaccharide was and methylated. The resulting fragments were then completely hydrolyzed, reduced, and acetylated. One of the partially O-methylated alditol acetates resulting from this series of reactions was 1,2,5-tri-0-acetyl-3,4,6-tri-0-methyl galactitol (Table IV). The methyl group at 0-4 of this derivative established that the galactosyl residue in the heptasaccharide was in the pyranoid ring-form²³.

Determination of the anomeric configurations of the glycosyl residues of the heptasaccharide. - The anomeric configurations of the glycosyl residues of the heptasaccharide were determined by lh-n.m.r. The lh-n.m.r. spectrum of the per-O-deuteriomethylated heptasaccharide alditol (Figure 11) contained resonances from the six anomeric protons. Four of those resonances were assigned to specific glycosyl residues of the heptasaccharide with the assistance of the lh-n.m.r.

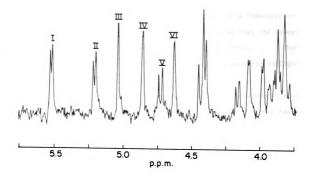


Figure 11. Spectral region from 3.75 to 5.75 p.p.m. of the \$^1\text{H-n.m.r.}\$ spectrum of the per-O-deuteriomethylated heptasaccharide-alditol in CDCl_2. Chemical shifts were assessed relative to internal hexadeuterio-acetone (\$ 2.04). The resonances arising from the six anomeric protons have been designated I-IV (Table V). The per-O-deuteriomethylated heptasaccharide-alditol was isolated by 1.c. (retention time of 11.3 min. Figure 7).

spectra of per-O-alkylated oligosaccharide-alditol fragments [a], [d'], and [f] (Table V). These fragments were isolated by l.c. of an aliquot (2 mg) of the mixture of per-O-alkylated oligosaccharide-alditols, and were detected by g.l.c.-m.s.(e.i.) of aliquots of the column fractions.

The $^1\text{H-n.m.r.}$ spectrum of per-0-alkylated disaccharide-alditol [a] contained an anomeric resonance, from the anomeric proton of the 3-linked rhamnosyl residue, at δ 4.70 with a 1 Hz coupling constant (Table V). A small (0-2 Hz) coupling constant is typical of a rhamnopyranosyl anomeric resonance 24 , and the chemical shift indicated that the anomeric proton of the 3-linked rhamnopyranosyl residue was axial. Therefore, the 3-linked rhamnopyranosyl residue had the β anomeric configuration.

It should be noted that the chemical shift of the anomeric-proton resonance of a particular glycosyl residue may differ when the residue is situated in different oligosaccharide-alditols. For example, the chemical shift of the β -rhamnosyl residue was δ 4.64 in the per-O-deuteriomethylated heptasaccharide-alditol and δ 4.70 in fragment [a]. This was as expected, because the anomeric proton was not in an identical chemical environment in both oligosaccharide-alditols.

The $^1\text{H-n.m.r.}$ spectrum of per-O-alkylated trisaccharide-alditol [d'] contained a resonance at δ 5.34, with a coupling constant of less than 1 Hz, and another resonance at δ 4.61 with a 7 Hz coupling constant. These resonances arose from the anomeric protons of the terminal rhamnopyranosyl residue and the arabinopyranosyl residue. The resonance with a 7 Hz coupling constant could not have arisen from a

TABLE V

THE PER-O-DEUTERIOMETHYLATED 1H-N.M.R. CHEMICAL SHIFTS AND COUPLING CONSTANTS OF THE ANOMERIC PROTONS OF

Per-O-deuteriomethylated	lomethylated de-alditol		Per-O-alkylated oligosaccharide-alditol	ed .de-alditol		Assignment
Resonance	Chemical shift ^b (p.p.m.)	J _{1,2}	Fragment	Chemical shift b (p.p.m.)	J _{1,2}	
ı	5.53	4 Hz				a-D-Galactosyl
11	5.21	2H 7	[£]	5.21	4 Hz	a-L-(2-O-methyl)-Fucosyl
111	5.04	< 1 Hz	[4] [f]	5.34 5.18	< 1 Hz < 1 Hz	a-L-Rhamnosyl (Terminal)
ΣI	4.87	2 Hz				8-L-Aceryl
>	4.73	7 Hz	[4] [f]	4.61 4.70	7 Hz 7 Hz	a-L-Arabinosyl
IA	4.64	1 Hz	[a]	4.70	1 Hz	8-L-Rhamnosyl (3-linked)

^aSee Figure 11. ^bAssessed relative to internal pentadeuterioacetone at § 2.04. ^cSee Tables II and III.

rhamnopyranosyl residue because H-1 and H-2 of both α- and β-rhamnopyranosyl residues are in gauche orientation and exhibit coupling constants of less than 2 Hz²⁴. Therefore, the resonance at δ 4.61 with a 7 Hz coupling constant was assigned to the 2-linked arabinopyranosyl The chemical shift and coupling constant of this resonance indicated that the 2-linked arabinopyranosyl residue had the a anomeric configuration. The resonance at δ 5.34 with a coupling constant of less than 1 Hz must have arisen from the terminal rhamnopyranosyl residue. The chemical shift indicated that the anomeric proton of this residue equatorial and that the residue had the a anomeric configuwas ration.

The $^1\text{H-n.m.r.}$ spectrum of per-O-alkylated tetrasaccharide-alditol [f] contained resonances arising from the anomeric protons of the 2-O-methyl fucopyranosyl residue, the terminal rhamnopyranosyl residue, and the arabinopyranosyl residue. Two of the resonances corresponded to those identified in the spectrum of per-O-alkylated trisaccharide alditol [d']. Therefore, the third resonance (δ 5.21, with a 4 Hz coupling constant) must have arisen from the anomeric proton of the 2-O-methyl fucopyranosyl residue. The chemical shift and coupling constant of this resonance indicated that the 2-O-methyl fucopyranosyl residue had the a anomeric configuration 25.

The assignments of the $2-\underline{0}$ -methyl fucopyranosyl and the arabino-pyranosyl anomeric configurations were confirmed by a nuclear Overhauser effect (n.0.e.) difference n.m.r. experiment 26,27 that was performed with underivatized RG-II heptasaccharide in D_20 . The anomeric region of the $^1\text{H-n.m.r.}$ spectrum of the underivatized heptasaccharide (trace B, Figure 12) was more complex than the same region of the spectrum of the

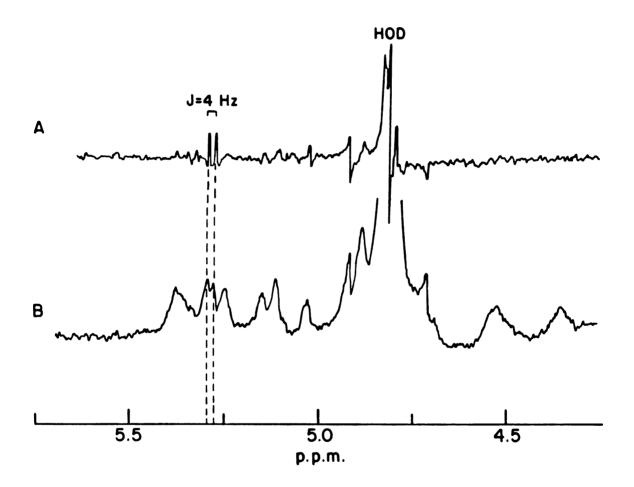


Figure 12. ¹H-N.m.r.-n.O.e. difference spectrum of the underivatized heptasaccharide in D₂O. Trace A: spectral region from 4.25 to 5.75 p.p.m. of an n.O.e. difference spectrum obtained with presaturation of the methoxy protons of the 2-O-methyl fucosyl residue ("a", Figure 4). Trace B: spectral region from 4.25 to 5.75 p.p.m. of the normal Fourier transform spectrum.

per- $\underline{0}$ -deuteriomethylated heptasaccharide-alditol. There were two causes for most of the increased complexity of the former spectrum: the heptasaccharide was not reduced to the heptasaccharide-alditol; therefore, some of the heptasaccharide molecules had α -apiose, while others had β -apiose, at their reducing termini. Some of the heptasaccharide molecules also contained $\underline{0}$ -acetyl esters. The inductive effect of an $\underline{0}$ -acetyl ester can cause the resonance of a non-anomeric proton to appear in the anomeric region of the spectrum.

n.O.e. difference n.m.r. experiment was designed discriminate between the anomeric protons of the 2-0-methyl fucosyl and arabinosyl residues by taking advantage of the O-methyl group on C-2 of the fucosyl residue. The experiment entailed presaturating the methoxy protons of the 2-0-methyl fucosyl residue (Figure 4, 8 3.5) of the underivatized heptasaccharide. Under the conditions of the experiment, any protons that were within approximately 4 Å of the presaturated protons would experience a slight (1-5%) enhancement in signal The n.O.e. enhancement is extremely distance-dependent, diminishing with increasing distance as R^{-6} . Trace A in Figure 12 shows the anomeric region of the n.O.e. difference spectrum. The n.O.e. difference spectrum was generated by obtaining free induction decays with and without presaturation of the methoxy protons of the 2-0-methyl fucosyl residue and then performing a Fourier transformation on the difference between the free induction decays. The resonance at δ 5.3 with ${\rm J_{1}}_{2}$ of 4 Hz, which was the only anomeric resonance with significant n.O.e. enhancement, was attributed to the anomeric proton of the 2-0methyl fucosyl residue. The result confirmed the assignment of this resonance made on the basis of H-n.m.r. analysis of fragments [d'] and [f].

the ¹H-n.m.r. spectrum of the per-0of resonances deuteriomethylated heptasaccharide alditol (δ 5.53, 4 Hz coupling constant δ 4.87, 2 Hz coupling constant) were not assigned by $^{1}H-n.m.r.$ analysis of per-0-alkylated alditols [a], [d'] and [f]. resonances were attributed to the anomeric protons of the 2,4-linked galactopyranosyl residue and the 2-linked acerofuranosyl residue because these were the only glycosyl residues whose anomeric resonances were not identified in the above experiments. A 2 Hz coupling constant is smaller than that usually observed with either anomeric configuration of a galactopyranosyl residue, but is typical of that observed when H-1 and H-2 are trans in a furanoid ring 25,28. Therefore, the resonance at δ 4.87 was attributed to the 2-linked acerofuranosyl residue in the β configuration. The resonance at δ 5.53 with a 4 Hz coupling constant was in a typical range of chemical shift, with a coupling constant typical for a galactosyl residue with the a anomeric configuration. This resonance was assigned to a 2,4-linked-\u03c4-galactosyl residue. Thus, anomeric configuration of each glycosyl residue of the the heptasaccharide was determined.

GENERAL DISCUSSION

The heptasaccharide released from RG-II has the structure shown in the abstract figure. All aspects of the primary structure have been elucidated except the points of attachment of the O-acetyl groups. The heptasaccharide contains six different glycosyl residues, including aceric acid, a hitherto unobserved glycosyl residue. The complexity of this heptasaccharide is unprecedented among structures that have been elucidated for primary cell wall constituents; this finding reinforces our belief that RG-II is a well-defined, structurally complex polysaccharide.

The glycosyl-linkage composition of RG-II is compared to that of the heptasaccharide in Table VI. The value given in Table VI for the 2-linked aceryl residue is an estimate because this residue cannot be quantitated reliably after methylation. The glycosyl residues that comprise the heptasaccharide are present in approximately equal numbers in intact RG-II, and, with the exception of the 4-linked galactosyluronic acid residues, are the most abundant glycosyl residues of RG-II. The data in Table VI also reveal that a molecule of RG-II probably contains more than one heptasaccharide unit.

Three heptasaccharide units would account for approximately 30%, and four heptasaccharide units for more than 40% of the glycosyl residues of RG-II. Release of the heptasaccharide(s) does not change significantly the P-10 elution volume of the remainder of the molecule (unpublished results). This suggests that the radius of gyration of RG-II is not changed significantly by release of the heptasaccharide, and implies that the heptasaccharide units may be side chains on a 4-linked galactosyluronic acid-rich backbone. RG-II is believed to be linked to

TABLE VI

COMPARISON OF THE GLYCOSYL-LINKAGE COMPOSITION OF INTACT RG-II TO THAT OF THE HEPTASACCHARIDE

Glycosyl residue	Linkage	Number per RG-II molecule ^a	Number per heptasaccharide molecule
Galactosyluronic acid	4-linked	12	
•	Terminal	2	
	3,4-linked	1	
Rhamnosyl	Terminal	4	1
•	3-linked	4	1
	2,4-linked	1	
	3,4-linked	1	
:	2,3,4-linked	1	
Arabinosyl 2-linke	ed(pyranose)	4	1
	l (furanose)	2	
Galactosyl	2,4-1inked	5	1
•	Terminal	2	
	3-linked	1	
Apiosyl	3 ¹ -linked	.	1
Aceryl	2-linked	(4) ^b	1
2-0-Methyl Fucosyl	Terminal	3	1
Fucosyl	3-linked		
	3,4-linked	1	
2-0-Methyl Xylosyl	Terminal	2	
Glucosyluronic Acid	2-linked	2	
Glucosyl	4-linked	2	
	TOTAL	60	

a The values given for intact RG-II are calculated, using the data of Darvill et al. b The value given for the 2-linked aceryl residue is an estimate because this residue cannot be quantitated reliably after methylation.

other cell wall polysaccharides by such a 4-linked galactosyluronic acid chain.

The structure of the heptasaccharide provides the first information about the locations of the 2-0-methyl fucosyl and apiosyl residues in the primary cell wall of dicots. Methyl fucose has been long recognized as a minor constituent of pectic polysaccharides 29,30 , and was identified as a component of RG-II 1 . The heptasaccharide is the first plant cell wall oligosaccharide characterized that contains a 2-0-methyl fucosyl residue.

Apiose-containing polysaccharides from monocots been partially characterized. The best-characterized of these is the apiogalacturonan of Lemna^{31,32}, which consists of a chain of 4-linked α -Dgalactosyluronic acid residues, with apiobiose units attached to 0-2 or 0-3 of some of the galactosyluronic acid residues 31,32. Zosterin, an apiose-containing polysaccharide isolated from Zosteraceae 33, is structurally more complex than the Lemna apiogalacturonan, but is degraded by pectinase to a molecule very similar to the Lemna apiogalacturonan 34. The apiosyl residue in the RG-II heptasaccharide occurs in a chain with other neutral glycosyl residues, the first such example. It is possible that the apiosyl residues of RG-II are gycosidically linked to 4-linked galactosyluronic acid residues. If this is true, then RG-II could be structurally related to zosterin and to apiogalacturonans.

The heptasaccharide molecule has many hydrophobic functional groups: four of the glycosyl residues are deoxy sugars and contain methyl groups instead of hydroxymethyl groups at C-6; the arabinosyl residue is in the pyranoid ring-form and contains no hydroxymethyl group; and the heptasaccharide has one endogenous O-methyl group and at

least two endogenous \underline{O} -acetyl esters. The hydrophobicity and structural complexity of the heptasaccharide are important because recent evidence indicates that the interactions between carbohydrates and their protein receptors are governed by hydrophobic bonding 35,36 . These properties of the heptasaccharide are made more significant by recent reports that oligosaccharide fragments of the cell walls function as regulatory molecules in plant-pathogen interactions and in plant growth and development 37,38 .

REFERENCES

- 1 A.G. DARVILL, M. MCNEIL, AND P. ALBERSHEIM, Plant Physiol., 62 (1978) 418-422.
- P. ALBERSHEIM, D. J. NEVINS, P. D. ENGLISH, AND A. KARR, Carbohydr. Res., 5 (1967) 340-345.
- 3 A. LIPTAK, J. IMRE, AND P. NANASI, <u>Carbohydr</u>. <u>Res.</u>, 92 (1981) 154-156.
- 4 S.-I. HAKOMORI, J. Biochem., 55 (1964) 205-208.
- 5 H. E. CONRAD, Methods Carbohydr. Chem., 6 (1972) 361-364.
- 6 T. J. WAEGHE, Ph. D. Dissertation, 1982, University of Colorado, Boulder, Colorado.
- 7 P. ÅMAN, M. MCNEIL, L.-E. FRANZÉN, A. G. DARVILL, AND P. ALBERSHEIM, Carbohydr. Res., 95 (1981) 263-282.
- 8 T. M. JONES AND P. ALBERSHEIM, Plant Physiol., 49 (1972) 926-936.
- 9 M. MCNEIL, A. G. DARVILL, P. AMAN, L.-E. FRANZEN, AND P. ALBERSHEIM, in V. GINSBERG (Ed.), Methods in Enzymology, Vol. 83, Academic Press, New York, 1982, pp. 3-45.
- 10 B. S. VALENT, A. G. DARVILL, M. MCNEIL, B. K. ROBERTSEN, AND P. ALBERSHEIM, Carbohydr. Res., 79 (1980) 165-192.
- 11 Z. DISCHE, Methods Carbohydr. Chem., 1 (1962) 477-512.
- N. BLUMENKRANTZ AND G. ASBOE-HANSEN, Anal. Biochem., 54 (1973) 484-489.
- 13 G. M. BEBAULT AND G. G. S. DUTTON, <u>Carbohydr. Res.</u>, 64 (1978) 199-213.
- 14 A. N. DE BELDER AND B NORRMAN, Carbohydr. Res., 8 (1968) 1-6.
- 15 G. J. GERWIG, J. P. KAMERLING, AND J. F. G. VLIEGENTHART, Carbohydr. Res., 62 (1978) 349-357.
- 16 G. J. GERWIG, J. P. KAMERLING, AND J. F. G. VLIEGENTHART, Carbohydr. Res., 77 (1979) 1-7.
- 17 K. LEONTEIN, B. LINDBERG, AND J. LONNGREN, Carbohydr. Res., 62 (1978) 359-362.
- R. R. WATSON AND N. S. ORENSTEIN, Advan. Carbohydr. Chem. Biochem., 31 (1975) 135-184.

- 19 D. P. SWEET, R. H. SHAPIRO, AND P. ALBERSHEIM, <u>Carbohydr</u>. <u>Res.</u>, 40 (1975) 217-225.
- 20 H. BJORNDAL, C. G. HELLERQVIST, B. LINDBERG, AND S. SVENSSON, Angew. Chem. Int. Ed. Eng., 9 (1970) 610-619.
- 21 R. U. LEMIEUX AND M. L. WOLFROM, <u>Advan.</u> <u>Carbohydr.</u> <u>Chem.</u> 3(1948) 337-384.
- 22 N. K. KOCHETKOV AND O. S. CHISOV, <u>Advan. Carbohydr. Chem.</u>, 21 (1966) 39-93.
- 23 A. G. DARVILL, M. MCNEIL, AND P. ALBERSHEIM, Carbohydr. Res., 86 (1980) 309-315.
- 24 G. M. BEBAULT, G. G. S. DUTTON, N. A. FUNNELL, AND K. L. MACKIE, Carbohydr. Res., 63 (1978) 183-192.
- 25 D. R. BUNDLE AND R. U. LEMIEUX, Methods in Carbohydr. Chem., 7 (1976) 79-86.
- 26 G. WAGNER AND K. WUTHRICH, J. Magnetic Resonance, 33 (1979) 675-680.
- 27 A. KUMAR, R. R. ERNST, AND K. WUTHRICH, <u>Biochem. Biophys.</u> Res. Commun., 95 (1980) 1-6.
- 28 J. D. STEVENS AND H. G. FLETCHER, JR., <u>J. Org. Chem.</u>, 33 (1968) 1799.
- 29 G. O. ASPINALL AND A. CAÑAS-RODRIGUEZ, <u>J. Chem. Soc.</u> (1958) 4020-4027.
- 30 G. O. ASPINALL AND R. S. FANSHAWE, J. Chem. Soc. (1961) 4215-4225.
- 31 D. A. HART AND P. K. KINDEL, Biochem. J., 116 (1970) 569-579.
- 32 D. A. HART AND P. K. KINDEL, Biochemistry, 9 (1970) 2190-2196.
- 33 R. G. OVODOVA, V. E. VASKOWSKY, AND Y. S. OVODOV, <u>Carbohydr. Res.</u>, 6 (1968) 328-332.
- 34 Y. S. OVODOV, R. G. OVODOVA, O. D. BONDARENKO, AND I. N. KRASIKOVA, Carbohydr. Res., 18 (1971) 311-318.
- 35 E. A. KABAT, Structural Concepts in Immunology and Immunochemistry, 2nd. ed., Holt, Rinehart, and Winston, New York, 1976, pp. 156-161.
- 36 O. HINDSGAUL, T. NORBERG, J. LE PENDU, AND R. U. LEMIEUX, Carbohydr. Res., 109 (1982) 109-142.
- 37 M. G. HAHN, A. G. DARVILL, AND P. ALBERSHEIM, <u>Plant Physiol.</u>, 68 (1981) 1161-1169.

P. ALBERSHEIM, A. G. DARVILL, M. MCNEIL, B. S. VALENT, M. G. HAHN, G. LYON, J. K. SHARP, A. E. DESJARDINS, M. W. SPELLMAN, L. M. ROSS, B. K. ROBERTSEN, P. AMAN, AND L.-E. FRANZÉN, Pure and Applied Chemistry, 53 (1981) 79-88.

APPENDIX

APPENDIX

Crystal Structure of 3-C-Carboxy-5-Deoxy-L-Xylono-1,4-Lactone

This appendix contains the results of the X-ray crystallographic analysis of 3-C-carboxy-5-deoxy-L-xylono-1,4-lactone (compound 6, Chapter I). Experimental details were included in the "Experimental" section of Chapter I.

TABLE AI

FRACTIONAL ATOMIC COORDINATES AND ANISOTROPIC THERMAL PARAMETERS (Ueq) FOR THE NONHYDROGEN ATOMS OF 3-C-CARBOXY-5-DEOXY-L-XYLONO-1,4-LACTONE*H20

Atom ^a	Fractional	Atomic	Coordinates ^b	Ueq ^C
	<u>x</u>	<u>y</u>	<u>z</u>	
C-1	175(10)	5385(13)	702(10)	29(4)
C-2	1610(8)	6378(14)	2031(9)	28(4)
C-3	3271(8)	5235(14)	1952(9)	25(4)
C-4	2868(8)	4590(13)	-108(9)	25(4)
0-5	901(6)	4597(12)	- 630(6)	34(4)
0-1	-1376(6)	5281(13)	689(7)	40(3)
0-2	1203(6)	6483(12)	3826(6)	34(3)
0-3	4865(5)	6229(13)	2340(6)	28(3)
C-31	3377(8)	3649(14)	3270(9)	26(4)
0-32	4649(5)	3353(12)	4513(7)	38(3)
0-31	1901(6)	2663 13)	2930(7)	37(3)
C-41	3579(10)	5814(15)	-1403(10)	44(5)
0-1w	-1794(5)	4944(13)	4768(6)	35(3)

^a The numbering system is shown in Figure 9, Chapter I. ^bValues are $x10^4$. Estimated standard deviations, in parentheses, refer to the least-significant digit. ^cValues are $A^2 \times 10^4$. Estimated standard deviations, in parentheses, refer to the least-significant digit.

TABLE AII

FRACTIONAL ATOMIC COORDINATES AND ISOTROPIC THERMAL PARAMETERS (Uiso) FOR THE HYDROGEN ATOMS OF 3-C-CARBOXY-5-DEOXY-L-XYLONO-1,4-LACTONE*H20

At om ^a	Fractional	Atomic	Coordinates ^b	U _{iso} c
	<u>x</u>	<u>y</u>	_ z	
H-2	182(7)	760(10)	135(8)	4(2)
H-20	190(7)	746(10)	427(8)	12(2)
H-30	512(7)	641(10)	357(8)	5(2)
H-310	195(8)	166(10)	339(8)	9(2)
H-4	332(7)	323(9)	-20(8)	1(2)
H-41a	305(7)	543(10)	-268(8)	3(2)
H-41b	487(8)	587(10)	-110(8)	4(2)
H-41c	358(7)	720(10)	-145(8)	9(2)
H-low	-106(7)	536(11)	392(8)	7(2)
H-2ow	-291(7)	528(10)	445(8)	12(2)

^a The numbering system is shown in Figure 9, Chapter I. ^bValues are $x10^3$. Estimated standard deviations, in parentheses, refer to the least-significant digit. ^cValues are $A^2 \times 10^3$. Estimated standard deviations, in parentheses, refer to the least-significant digit.

TABLE AIII

BOND LENGTHS OF 3-C-CARBOXY-5-DEOXY-L-XYLONO-1,4-LACTONE*H20

Bond ^a	Length ^b	Bond ^a	Length ^b
C-1C-2	1.508(9)	C-10-5	1.357(9)
C-10-1	1.195(9)	C-2C-3	1.545(11)
C-20-2	1.422(9)	C-3C-4	1.560(10)
C-30-3	1.409(10)	C-3C-31	1.517(13)
C-40-5	1.483(7)	C-4C-41	1.499(12)
C-310-31	1.331(10)	C-310-32	1.215(7)
C-2-H-2	1.06(7)	C-4H-4	1.08(7)
0-2н-2о	•92(6)	0-3H-3o	.90(6)
0-31H31o	.81(7)	C-41H-41a	•99(6)
C-41H-41b	•98(6)	C-41H-41c	1.03(7)
0-1wH-1ow	•98(6)	0-1wH-2ow	.88(5)

^a The numbering system is shown in Figure 9, Chapter I.

^bValues are in A. Estimated standard deviations, given
in parentheses, refer to the least-significant digit.

TABLE AIV

BOND ANGLES FOR 3-C-CARBOXY-5-DEOXY-L-XYLONO-1,4-LACTONE*H20

Angle ^a	Degrees ^b	Angle ^a	Degrees ^b
0-5C-1C-2	108.9(6)	0-1C-1C-2	129.3(7)
0-1C-1O-5	121.8(6)	C-3C-2C-1	102.0(7)
0-2C-2C-1	111.0(6)	0-2C-2C-3	114.1(6)
C-4C-3C-2	101.8(5)	0-3C-3C-2	113.5(8)
0-3C-3C-4	110.4(6)	C-31C-3C-2	109.7(6)
C-31C-3C-4	111.0(8)	C-31C3O-3	110.2(5)
0-5C-4C-3	103.8(5)	C-41C-4C-3	114.0(7)
C-41C-40-5	108.6(6)	C-40-5C-1	111.4(5)
0-31C-31C-3	112.0(6)	0-32C-31C-3	123.5(8)
0-32C-310-31	124.5(9)	H-2C-2C-3	104(3)
H-2C-2C-1	106(3)	H-4C-4C-3	110(3)
H-2C-20-2	118(3)	H-4C-4C-41	111(3)
H-4C-40-5	108(3)	H-300-3C-3	106(4)
H-2o0-2C-2	99(4)	H-41aC-41C-4	107(4)
H-3100-31C-31	117(4)	H-41bC-41H-41a	115(5)
H-41bC-41C-4	111(4)	H-41cC-41H-41a	105(5)
H-41cC-41C-4	129(4)	H-2ow0-1wH-1ow	114(5)
H-41cC-41H-41b	88(5)		

^a The numbering system is shown in Figure 9, Chapter I. ^bEstimated standard deviations, given in parentheses, refer to the least-significant digit.

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR 3-C-CARBOXY-5-DEOXY-L-XYLONO-1,4-LACTONE·H,0 TABLE AV

	19FC	81	25	49	53	47	96	25	129	24	47	216	54	21	110	474	140	152	72	125	4	42	121	75	132	8	29	86	244	195	195	4	129	165	165	113	121
	1 w F O	81	52	62	+	20	102	53	131	51	20	221	28	25	114	466	143	153	74	126	46	48	116	71	130	81	51	95	233	190	111	63	129	160	166	106	120
	د	-	-	-	-	-	-	~	7	~	~	~	~	~	7	7	~	~	~	~	~	~	7	~	~	7	~	~	~	7	7	~	~	~	~	~	7
	×	7	_	æ	30	œ	20	2	3	0	0	9	9	3	3	9	Ð	9	2	9	Ð	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7
	I	4	S	~	7	9	-	89	-	•	1	Ť	-5	7	2	-	7	~	S	9	œ	Ð	-	î	5	7	~	-	7	20	-	7	~	4	S	9	-
	1 0FC	114	41	75	124	98	130	130	49	103	80	9	36	46	154	71	53	28	68	1.05	4	9	9.S	8 7	9.6	83	25	73	62	16	66	35	53	197	101	68	21
1	10F0	114	41	19	125	88	123	131	89	104	86	72	43	51	153	16	28	57	91	104	45	9	19	87	86	82	57	67	89	96	91	43	47	106	111	8	57
	د.	-	-	~	_	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	~	~	~	_	_	_	_	-	-	~	~	_
	¥	•	4	7	*	•	*	*	4	•	4	v	S	S	S	S	÷	S	J	S	S	٥	٥	•	٥	ø	9	٥	9	٥	٥	1	7	1	7	7	7
	I	\$-	4	•	3	-	~	~	*	S	٥	9	•	7	~	~	-	e	-	~	S	9	₹.	4	~	-5	7	29	-	7	*	•5	7	7	3	7	~
	10FC	392	212	33	187	113	51	191	91	41	33	113	81	38	296	200	375	337	303	92	145	126	118	37	175	203	225	288	233	117	248	42	9 8	96	9 6	25	69
	10F0	371	202	5 6	185	119	57	161	96	42	38	115	11	35	299	202	385	329	298	93	149	122	114	42	186	207	238	293	239	116	246	46	98	16	49	48	75
	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	¥	-	-	-		-	-	-	-	~	7	7	7	~	~	7	~	7	~	7	7	~	~	m	~	m	m	m	m	~	m	m	m	~	m	4	4
	Ŧ	20	-	7	~	4	ŝ	9	7	-1	9		4	~	-5	7	39	-	7	m	4	.C	9	-1	~	-2	7	3	-	7	~	4	2	•	7	-1	٩
	10FC	119	235	31	99	62	9	20	134	133	28	48	81	63	29	131	9	117	137	253	88	492	86	43	250	44	38	57	26	67	63	53	153	116	129	317	251
	10F0	116	236	32	63	65	99	44	136	136	53	48	8	99	28	137	61	123	137	252	84	456	92	47	248	43	4	99	90	52	61	55	156	109	124	325	245
	ے	0	0	3	0	0	0	0	2	0	0	0	G	0	3	-	-	-	-	-			-	-	-	-	-	-	-	-	-	~	~	-	-	~	-
	¥	S	S	S	S	S	S	S	9	9	9	7	®	œ	ထ	0	0	9	0	S	0	3	0	20	9	2	3	3	0	-	-	-	-	-	-	-	
	I	-	7	m	4	ഹ	9	7	0	~	ß	~	9	-	~	-1	9	\$	7	~	-2	7	-	7	m	4	S	7	30	6	7	9•	• 5	4-	•	-2	7
	10FC	57	328	122	143	199	312	262	160	223	74	55	49	4	447	209	16	183	94	72	74	36	61	236	184	97	238	96	84	11	121	240	171	31	36	86	86
	18FO 18FC	57	329	123	142	193	300	261	163	231	7.1	25	25	63	450	212	72	190	91	71	16	4 3	70	244	185	100	251	94	8	76	125	238	173	36	33	97	98
	.3	3	3	0	0	0	3	3	3	2	0	9	3	3	0	0	9	3	9	0	3	3	9	3	3	0	3	3	2	9	0	3	3	3	29	3	3
	¥	0	9	0	3	3	-	-	-	-	-	-	-	-	~	7	~	~	7	7	~	~	7	~	m	m	~	~	m	m	4	4	4	4	•	4	4

																													_	_	_					
10FC	198	149	9	33	39	113	65	4	93	4	56	131	174	85	117	103	89	100	42	4	74	57	106	97	33	121	159	82	110	59	56	Ş	92	54	198	40
1060	106	147	96	5 8	33	109	63	43	94	51	44	134	175	81	116	100	73	94	8 4	45	64	54	66	101	38	122	166	82	110	28	25	40	8	53	107	62
	•	4	4	4	•	•	4	4	4	4	•	4	4	•	4	4	4	4	4	4	4	4	4	*	4	4	4	4	4	•	4	4	4	4	4	4
· Z	9	9	3	3	2	0	2	-	_	_	-	-	-	-	_	-	-	-	-	-	~	7	7	7	7	?	~	~	~	~	7	~	7	~	~	m
I	-2	7	9	-	7	4	٥	8	٩	. 5	4	~	-2	7	30	-	7	'n	9	7	-1	٥	• 5	4	~	-2	7	3	-	7	~	4	S	Ð	-1	•
1 UFC	106	102	52	48	141	30	84	19	115	76	168	125	57	36	30	8 2	74	81	127	156	43	39 80	37	62	56	7.1	33	73	4	20	63	5.	26	200	123	243
UPFO	195	102	57	29	135	8 9	8 2	55	118	8	103	121	54	4	39	82	11	8	135	150	41	8	46	99	9	72	4	69	45	9	68	44	51	161	127	245
ے	~	~	~	~	m	~	~	m	m	m	m	~	~	~	~	~	m	m	m	~	~	~	~	m	~	m	~	~	~	~	m	~	~	*	4	4
¥	~	~	~	~	•	4	4	4	4	4	4	4	•	4	4	s	s	s	'n	s	·V	S	'n	s	٥	9	•	٥	٥	_	1	~	_	•	9	9
T	4	J.	٥	7	ň	*	ښ.	Ņ	<u>-</u>	9	-	7	~	4	٥	4	Ţ	્ય	<u>.</u>	.	_	~	4	٥	٥	ù	4	ņ	~	4	-	2	~	9	4	7
					•	•	•	•	•							•	•	•	•						•	•	•	•		•	٠			•	•	•
10FC	33	192	403	210	125	66	76	101	9	53	40	Я9	36	123	110	195	136	144	122	147	143	75	83	120	61	53	108	21	130	85	93	201	31	75	85	62
	9	~	4	9	5	۰	~	S	9	7	6	~	6 0	~	_	29	_	6	6	7	4		7	9	٥		~	4	30	20	9	8	_	7	7	7
10F0	36																					_	80	12	4	Ś	13	9	11	œ	0	2.5	m	7	0	9
J	m	~	m	m	m	m	m	m	m	m	m	~	m	M	m	~	m	m	m	m	m	m	~	~	m	m	~	~	~	m	m	n	~	m	~	m
¥	-	-	-	-	-	-	-	-	-	~	~	~	7	~	7	7	~	~	7	7	7	7	7	7	7	~	~	~	m	m	m	~	~	m	~	m
I	~	-2	7		7	m	4	so	٥	7	8	-1	î	4	÷	-2	7	.9	-	7	~	4	S	9	7	-7	9	• 5	7	~	-2	7	.9	-	7	m
	_	0	م	'n	~	20	9	6 0	4	6	۰		9	σ.	6	3	۰	6	~	80	9	6	Z.	6	'n	σ	7	S	6	_	~	~	0	9	9	9
10FC	9	8	11	ŝ	ις	16	6	12	7	œ	Ĩ	7	ō	Š	13	16	æ	91	6	Ñ	~	_	7	4	7	7	17	60	36	S	7	11	Ñ	106	œ	10
10F0	58	74	109	47	50	166	89	126	65	86	127	72	65	56	132	102	8	106	93	9	79	71	83	54	71	84	173	96	357	49	73	113	53	101	69	106
د	~	7	~	7	~	7	~	7	~	7	~	~	~	~	~	~	7	~	7	7	~	~	7	m	m	m	~	m	~	m	m	~	m	m	m	m
×	S	S	ις.	ß	Ŋ	ß	S	S	S	Ŋ	S	9	9	٥	9	و	9	9	_	7	^	œ	œ	2	0	B	0	3	0	0	3	0	3	-	-	-
Ŧ	9-	-	4	m.	-2	7	0	-	7	m	•	٥	.	7	~	-2	2	m	-	0	-	9	7	6	9	7	-2	7	-	7	m	S	9	-	5	4
19FC	151	107	245	253	346	400	255	62	148	67	39	43	52	26	94	127	36	120	228	186	113	34	23	44	63	54	96	100	9	15B	78	161	165	87	69	47
10F0	155	103	251	252	350	392	259	19	152	68	35	53	65	25	95	126	43	124	236	188	114	36	29	42	7.5	9	85	103	39	155	98	164	108	86	99	48
	7	7	7	~	7	7	~	~	~	~	~	7	~	7	7	7	~	~	~	~	~	7	~	7	~	7	~	7	7	~	~	7	7	7	7	7
×	7	~	~	7	~	7	7	~	7	7	7	~	m	~	~	~	~	~	~	~	~	~	m	m	~	4	•	4	4	4	•	4	4	4	4	4
x	5	7	~	-2	7	9	-	7	~	4	ß	7	-1	Ģ	5	7	ĩ	-2	-	0		7	m	4	٥	9	5	7	~	-2	7	0	7	~	4	9

TABLE AV (cont'd.)

1 OFC	4	48	25	32	116	89	62	9	9	57	51	9	55	49	53	47	45	69	83	61	14	53	4	53	65	4	4	7	7.1	51	36	40	
10F0	51	47	57	35	116	7.1	71	65	9	25	7	67	48	57	39	51	40	10	92	64	37	53	47	44	72	42	44	39	19	S.	42	46	
_	٥	9	9	7	7	7	1	7	1	1	1	7	1	1	_	7	1	1	7	-	7	7	^	7	1	90	70	8	30	8	00	30	
×	'n	٥	9	2	3	9	9	2	-	-	-	-	-	-	~	~	~	~	~	~	~	~	•	ŝ	S	2	3	3	-	~	7	m	
æ	-	7	-	~	-2	7	2	-	î	Š	•	7	9	~		~	-5	-	2	~	0	-	7	-2	20	-5	-	9	8	7	9	-5	
1 DFC	39	69	96	11	45	153	34	48	52	64	97	62	83	107	61	108	44	42	99	9	70	47	77	49	39	43	57	59	19	63	26	26	63
10F0	47	99	102	16	37	155	41	49	47	28	8 7	67	83	113	61	195	41	46	99	7	6.5	41	16	51	45	4	29	62	81	99	55	61	53
	9	9	9	9	9	٥	9	9	9	•	9	٥	9	9	٥	9	9	9	٥	٥	•	9	9	9	9	9	٥	9	9	9	9	•	•
×	-	-	-	-	-	-	-	-	-	7	~	7	~	~	~	~	~	7	~	~	~	~	~	m	~	~	4	•	4	•	4	S	S
T	-5	7	~	?	7	3	-	7	~	-1	9-	~	-5	-	3	-	~	4	9	7	~	-	3	-	8	~	Ť	~	7.	7	7	.5	ĩ
10FC	74	95	46	115	118	103	44	44	49	53	9	135	112	101	72	127	28	26	43	72	54	21	25	57	33	84	8	126	67	66	28	22	7.1
10F0	74	97	35	114	114	66	48	41	54	49	19	129	111	93	63	129	28	48	48	69	54	48	₩	23	48	78	93	129	99	97	9	55	75
	Ŋ	S	S	Ŋ	v	ß	S	ß	S	Ŋ	S	S	S	S	S	'n	Ŋ	S	3	S	S	S	S	'n	S	ß	9	•	9	9	9	9	٥
¥	~	~	~	~	~	m	m	m	4	4	•	4	4	4	•	4	S	S	S	S	S	2	S	9	1	-	0	3	20	0	3	9	-
I	7	۳ .	7	0	-	7	~	S	-		4	~	7	.9	-	~	9	•5	-2	7	39	-	7	•	-7	7	~	-3	-	7	~	'n	9
10FC	51	57	23	92	49	53	130	155	106	115	137	120	82	26	98	186	8.5	91	93	68	43	84	S.	29	84	145	144	95	5 6	16	89	61	77
1060	46	25	49	97	54	55	142	149	109	108	133	116	8	57	8	188	19	95	93	98	43	96	21	89	88	149	141	97	32	16	76	67	74
ے	*	•	4	4	4	S	S	S	S	S	S	S	S	S	S	S	S	2	S	S	Ŋ	S	ស	ß	ស	'n	S	S	'n	3	Ŋ	S	2
¥	9	~	7	7	1	3	3	20	9	3	-	-	-	-	-	-	-	-	-	-	-	~	~	~	7	~	7	7	7	~	7	~	~
Ŧ	*	~	-2	9	7	*	•	7	7	S	9-		7	~	-2	7	0	-	7	~	4	9.	• 2	*	~	-5	7	0	-	m	4	9	-5
10FC	45	71	109	118	106	72	85	96	84	110	25	26	185	8	74	62	62	141	63	57	28	9 S	55	9	113	75	99	28	59	53	39	69	25
	51	99	105	116	109	11	83	82	16	111	54	57	178	8	69	58	99	134	63	62	54	53	9	57	103	62	54	69	55	56	40	73	20
_	4	4	*	•	4	4	4	4	4	4	*	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	*	4	4	•	4	4	4
×	~	~	m	m	m	~	m	m	~	~	*	4	4	4	•	4	4	4	4	4	S	'n	S	S	S	ß	S	S	S	S	9	9	9
I	•	7	~	-5	7	9	-	7	m	*	-1	•	4	-5	7	0	-	7	m	•	-1	4	~	-2	7	3	-	7	m	4	~	7	3

TABLE AV (cont'd.)

