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ABSTRACT

INTEGRAL EQUATION METHODS FOR EIGENVALUE ESTIMATION

IN SYSTEMS NITH DISCONTINUOUS COEFFICIENTS

By

John Patrick Spence

Systems with abruptly varying physical properties occur in many

contexts, both natural and artificial. Of particular interest is the

solution of eigenvalue problems which arise in the mathematical models

of composite systems. The analysis of such problems hinges on the

development of effective and appropriate approximate methods, since

exact solution of eigenvalue equations is only possible in the simplest

of discontinuous systems. It has been found that traditional techniques

which are quite effective in determining the dynamic characteristics

of systems with Slowly varying properties do not perform nearly as well

in discontinuous systems without the application of considerable extra

effort.

In the present work, the advantages of taking an integral equation

approach to problems in eigenvalue estimation in discontinuous systems

are investigated. The inherent smoothing properties of integrals sug-

gest that methods based on integral equations should be quite effective

in handling systems with discontinuous material properties.

It is found that the integral equation formulation of the Galerkin

method leads to upper bounds for the eigenvalues which are superior to
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those obtained from the traditional differential equation formulation.

Furthermore, the usually unavailable lower bounds to the eigenvalues

may be readily computed by the use of trace identities involving the

kernel of the integral equation and infinite sums of powers of the

eigenvalues. These lower bounds complement any set of upper bounds

and, by their convergence behavior, give insight into the distribution

of the generally irregular spectra of discontinuous systems.
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INTRODUCTION
 

Systems with abrupt changes in physical properties occur in many

contexts in nature and engineering. Among the naturally occurring

systems are the layered structure of skin and teeth, the lipid bilayer

biological membranes which separate regions of differing solute con-

centrations, and rock layers in the earth. Problems of engineering

interest include vibration and buckling of stepped shafts, wave pro-

pagation through composite media, cooling of nuclear fuel rods and

redistribution of impurities in semiconductors.

Exact solution of the eigenvalue problems posed in the mathematical

models of discontinuous systems such as these are only possible in

the simplest of cases. Thus the analysis of such systems depends on

the development of apprOpriate approximate methods. It has been found

that traditional techniques which are quite effective in determining

the eigenvalues of systems with slowly varying properties do not

perform nearly as well in these discontinuous systems, unless con-

siderable additional effort is applied. Further, accurate lower

bounds to the eigenvalues are generally unavailable from these methods.

In this dissertation, a series of eigenvalue problems arising

from the application of the technique of separation of variables to

linear partial differential equations with linear time invariant

boundary conditions are analyzed. These problems are all essentially

one dimensional, but the methods used are not restricted to cases which



are or can be made to be such. As shall be seen in the following

chapters, the crux of the integral equation formulations prerequisite

to applying the methods of this dissertation lies in the availability

or derivability of a static impulse response or Green's function.

In one-dimensional cases over a finite region, the Green's functions

may be found in a closed form which makes the eigenvalue problems in

their integral equation form tractable by formally exact methods.

However, in problems which cannot be reduced to one spatial dimension

by techniques such as conformal mapping or separation of variables,

the Green's function itself must be approximated. This, although by

no means a trivial task, may be accomplished by methods such as finite

differences or finite elements to any desired degree of accuracy.

Once a suitably accurate impulse response has been determined, the

methods of this dissertation may be applied to find eigenvalue estimates

for the new model defined by the Green's function approximation.

Past work in the area of eigenvalue estimation includes use of

Laplace transform methods [1,2] finite difference methods [3-5],

Sturm-Liouville theory [6-9,12] and many variational schemes. Among

the variational approaches taken are Rayleigh-Ritz schemes using both

smooth, non-smooth and piecewise defined test functions [6,7,10-17,19]

and saddle point variational principles [12-16,19]. Lower bounds for

eigenvalues have been obtained by Weinstein's method of intermediate

problems [18] and application of results from Sturm-Liouville theory

[6,7,12] and eigenvalue extremization [7,19,20]. Some of the lower

bound results based on integral equation techniques from the third

chapter of this dissertation also appear in [20]. More detailed



expositions of the advantages and pitfalls of these methods are in the

application chapters of this dissertation.

In the present work, the advantages of taking an integral equation

approach to problems in eigenvalue estimation are investigated. The

inherent smoothing properties of integrals suggest that methods based

on integral equations should be quite effective in handling systems

with discontinuous material properties. For example integral equation

methods have proven quite effective in a problem of beam vibration with

random coefficients [21]. Variational methods, such as the Rayleigh-

Ritz or Galerkin methods, developed in the context of differential

formulations of the problems, may also be applied to the integral

equation formulation to obtain upper bounds for the eigenvalues. Add-

itionally, lower bounds to complement the upper bounds from variational

methods may be readily computed, a distinct advantage over the dif-

ferential formulations. The lower bounds in each case are presented

in terms of basic parameters of the system in question and thus allow

a parametric analysis of the dependence of the eigenvalues on system

characteristics.

In Chapters 1 and 2 of this dissertation, the fundamental concepts

of integral equation theory and some of the results applicable to eigen-

value estimation are discussed. Chapter 3 presents the results of

applying both upper and lower bound integral equation methods to heat

conduction in a layered slab, comparing the results to those obtained

by eigenvalue extremization and differential equation variational

methods. In Chapter 4, lower bounds are computed for the frequencies



of vibration of stepped beams, and are compared to those from the

method of intermediate problems. Chapter 5 addresses a problem of

wave propagation, where lower bounds are found for the frequencies

of non-dispersive wave forms travelling normal to the interfaces of

laminated composites. In Chapter 6, upper and lower bounds are found

by integral equation methods for the frequencies of vibration of a

circular membrane with a stepped radial density. The results of this

study, together with some suggestions for further study, are summarized

in Chapter 7.

The results of this study indicate that integral equation methods

may be profitably employed in the analysis of the dynamics of composite

structures.



CHAPTER 1

FUNDAMENTALS OF INTEGRAL EQUATIONS

This chapter presents the basic definitions and theorems of the

theory of linear integral equations used in the subsequent chapters

of this dissertation. The particulars of the integral equation based

techniques used to bound eigenvalues are presented in Chapter 2. For

a more detailed exposition of the theory of integral equations, see

the books of Cochran [22], Tricomi [23] and Stakgold [24].

1.1 Basic Concepts of Linear Integral Equation Theory

Generally speaking, any equation which incorporates an unknown

function under one or more signs of integration is an integral equation.
 

Foregoing technical assumptions concerning smoothness, two particular

classes of interest are the Fredholm integral equations of the first
 

kind
 

Mxl = fa k(x,y)¢(y)dy (l .1)

and of the second kind
 

MM=OU)+A§MMHMHW (La

In these equations, o is the unknown function, A is a complex parameter,

and w and k are known functions. The function k(x,y) is called the

kernel of the integral equation. Notationally, the independent variables

are suppressed and the integral is written as



KO 2 gfk(x,y)¢<y)dy.

Thus the Fredholm integral equations in operator form are written as

KO = w

and (1.3)

¢ = w + AKo.

This operator notation is reminiscent of that found in linear algebra;

in fact, much of the terminology and theory are analogous. Matrix

algebra is easily imbedded in linear integral equation theory, since

summation over a discrete index may be considered as integration of

step functions over a continuous index. Thus the definitions and

theorems that follow may be viewed as generalizations of the familiar

notions of linear algebra.

Definition l.l The complex valued functions f(x) and k(x,y) are

said to be square-integrable or LE_if the quantities
 

Ilfll {[?|f(x)lzdx}1/2

and

IIKII {gf4?1k<x.y)lzdyde‘/2

are finite. The dependence on the domain of integration is sometimes

denoted by saying that f is nga,b).



Definition 1.2 For f, geL2(a,b) the complex inner product of f and g
 

is defined by

<f,g> s 4Ff(x)g(x)dx

where the superior bar denotes complex conjugation.

Definition 1.3 Two L2(a,b) functions f and g are said to be orthogonal

if <f,g> = 0.

Theorem 1.1 The complex inner product <-,-> satisfies the following

properties for f, g, heL2(a,b) and a, B complex scalars:

(1) <af + Bg.h> = a<f,h> + B<g,h>

(2) <9,f> = <TT§$

(3) <f,f> 3_O with equality if and only if f = 0 (almost everywhere).

Theorem 1.2 Let f and g be elements of L2(a,b). Then the functional

  

 

 
is an innerproductnorm; that is

(l) llell = IAI ||f|| where A is a complex scalar

(2) l|f+9|| :,||f|| + llgll (Minkowski inequality)

(3) ||f|| 3_0 with equality if and only if f = 0 (almost

everywhere).

    

   

 

Further, the inner products <-, -> and norm - satsify

(4) l<f,g>|_: ||f . g|| (Schwartz inequality)

Theorem 1.3 L2(a,b), under the inner product norm . , contains
   

 

the limits of all Cauchy sequences of elements of L2(a,b). Thus L2(a,b)

is a Hilbert space (complete normed linear vector Space with inner

product norm).



Definition 1.4 The adjoint k*(x,y) of the kernel k(x,y) is given by

the complex conjugate of the transpose of k; that is

k*(st) = ENYSX):

and, in operator notation, the adjoint K* of K is defined by

* - b 'k

K ch = fa k (x,y)¢(y)dy.

Remark: An alternative definition based on the L2 inner product is

that K* is the operator with kernel k* satisfying, for all

f. g e L2(a.b).

<Kf,g> = < f,K*g>

Definition 1.5 The trace of the operator K with L2 kernel k(x,y) is

given by

_ b

tr(K) : fak(x,x)dx

Definition 1.6 The composition k of two kernels k1 and k2 is given by

b

k(x,y) = fal k1(X.2)k2(Z.y)dz

and one writes in operator notation

K = K1K2.

Theorem 1.4 Let K1 and K2 be linear integral operators with L2 kernels

k1 and k2. Then the composite kernel of K E K1K2 is L2, and

    (1) 11K11=11K1K211:11K] K211
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Further, if o is L2(a,b) so is w = K¢ with

 

  (2) llwll i IIK ¢>l| 

Definition 1.7 A kernel k(x,y) (or operator K) is said to be Hermitian

if k = k* (or K = K*). If k is real valued and Hermitian, it is said

to be symmetric. If KK* = K*K, K is said to be normal; all Hermitian

kernels have this property.

Definition 1.8 A Fredholm integral equation of the second kind,

4 = w + AK¢, is said to be homogeneous if u = 0.
 

Definition 1.9 A value of the complex parameter A in the homogeneous

equation ¢ = AK¢ which admits only the trivial solution 6 E 0 is called

a regular value of K. Values of A admitting a nontrivial solution o i O
 

are called eigenvalues of K, and o is an eigenfunction of K belonging
  

to A.

Theorem 1.5 Let K be a linear integral operator with L2 kernel k(x,y).

Then:

(1) The eigenvalues of a Hermitian kernel form a non-void

finite or countable sequence {An} of real numbers ordered

by their magnitude 0 < |A1| < | 2| < ...; this sequence

has no finite limit point. " "

(2) The eigenfunctions of the Hermitian kernel k belonging

to distinct eigenvalues are orthogonal and may be chosen

to have norm 1; that is, they can be chosen orthonormal.

(3) The eigenfunctions of a symmetric kernel k may be chosen

to be real.

(4) The finite number of eigenfunctions belonging to any distinct

eigenvalue A of a Hermitian kernel k may be chosen to be

orthonormal.



(5)

1.2

10

If 61, oz, ... ¢N are distinct orthonormal eigenfunctions

of a Hermitian kernel k belonging to the eigenvalues

A], A2, ... A (not necessarily distinct), then Bessel's

inequality ho ds:

N |¢1(x)|2 b 2

.21 ———;?r—*’ j: .g lK(X,Y)I dy
1:

Integration of the inequality (5) leads to

m4: IIKII21M
2

—
1

1:

and if each eigenvalue of K, repeated according to its

multiplicity, is included in the sum, equality holds.

Formulation of Integral Equation Eigenvalue Problems

One way of obtaining linear integral equation eigenvalue problems

is to transform linear differential eigenvalue problems to integral form.

This is accomplished by using an associated Green's function which

captures both the internal and boundary behavior of the underlying

differential equation in terms of the response to unit point excitation

[25]. For example, examine the following linear differential eigen—

value problem:

L[u]

B[u]

AM[u] on domain 0

(1.4)

0 on boundary 30.

The operators L, M, and B are linear and do not depend on the eigen-

parameter A. If one then can solve the associated problem

L[G(X.y)l = 6(x-y) on D

B[G(x,y)] = O on 30,
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where L and B are understood to operate on the X dependence of G(X,y)

and 6 is the Dirac delta distribution, the solution to an equation

L[u] = v, B[u] = O is given by

u(x) = IDG(x.y)V(y)dy.

In particular then, the eigenvalue problem 1.4 can be expressed as

U(X) = AIDG(x,y)MLUJ(y)dy (1.5)

In the case where L and 8 lead to a self-adjoint problem, that is,

if for all functions u and v (for which the equation makes sense),

<u,L[v]> = <LLU],V>,

the resulting Green's function is Hermitian. However the integral equa-

tion 1.5 does not have a Hermitian kernel unless M[u](y) = m-u(y) for

some scalar m f 0. In the case where M is algebraic, M[u](y) = m(y)u(y),

with m(y) > 0, the equation 1.5 can be made to have a Hermitian kernel

by the substitutions

¢(-)=fifil_-Tu(-)

k(x,y) = memwmw (1'6)

giving the eigenvalue problem with Hermitian kernel k,

¢(X) = Aka(x,y)¢(y)dy

or
(1.7)

¢ = AK¢.



CHAPTER 2

INTEGRAL EQUATION EIGENVALUE ESTIMATION PROCEDURES

This chapter outlines the basis and mechanics of the procedures

used in this dissertation to provide upper and lower bounds for the

eigenvalues in the examples of the subsequent chapters. Upper bounds

to the eigenvalues are obtained by the Galerkin method, which for

Hermitian kernels coincides with the traditional Rayleigh-Ritz method.

Lower bounds are computed using these upper bounds and the trace of

a related kernel. For a more detailed exposition of these methods and

many others, see the excellent book of Baker [26].

2.1 The Galerkin Method

The essence of the Galerkin method is the use of finite expansions

of the true eigenfunctions in a series of appropriately chosen known

functions. That is, a true eigenfunction w of the eigenvalue problem

0 - AKw = O is approximated by

{13 I
l
l

355%
(2.1)

where the aj are as yet undetermined constants and the ‘bj are

linearly independent functions. If the approximant is substituted into

the expression w - AKw one obtains an error term r(x),

w - AKv = r(x). (2.2)

12
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Various minimizations of the error term lead to the expansion approxima-

tion methods. In the general Galerkin method, the constants aj and A

are found by requiring that the error term be orthogonal to the test

functions used under a weighted inner product with known positive L2

weight w(x) defined by

<f,g>w E £Ef(x)§(x)w(x)dx.

One possible choice of w is w(x) E 1, leading to orthogonality under

the usual L2 inner product.

If Equation 2.2 is multiplied by 6} and integrated over the domain,

one obtains

§8j<¢j’¢1> ' A §3j<K¢js¢i> = <r9¢1>

for each i = l, 2, ... n. If the matrices A and B are defined by

Aij <¢j’¢1>

<K¢j’¢1>

(2.3)

requiring that the error term be orthogonal to the test functions

used leads to the general matrix eigenvalue problem for the a1 and A

(A - AB)§ = 0. (2.4)

The choice of linearly independent test functions guarantees that A is

nonsingular. Further, it is clear that A is Hermitian, since by

Theorem 1.1,

<¢j’¢1> = <¢1’¢j>'
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If the kernel k(x,y) is Hermitian, the matrix B is as well, since

<K¢j’¢i> = <¢j’K*¢i> (Definition 1.4)

= <¢j’K¢i> (Definition 1.7)

= <K¢i’¢j>' (Theorem 1.1)

That the approximate eigenvalues obtained by the Galerkin pro-

cedures are upper bounds in magnitude to the actual eigenvalues is a

consequence of the Poincare characterization of the eigenvalues, namely

max min
1 =

An 8(n) ¢ES(n) <K¢9¢>/<¢a¢>

(n)
where S ranges over all n-dimensional subspaces of L2. This result

is stated in the following theorem proven in Baker [26], page 321.

Theorem 2.1 Let k(x,y) be a Hermitian L2 kernel, o], ... on linearly

independent L2 functions, and A and B the Galerkin matrices from

Equations 2.3a and 2.3b . Then if A:(A;) is the rth positive (negative)

eigenvalue satisfying (A - AB)3 = 0, then

. - + - - .
prov1ded Ar, Ar(Ar,Ar) both eXTst.

A choice of a complete sequence of test functions leads to the

monotone convergence of the approximate eigenvalues to the actual and

thus completeness in L2 is a desirable property for the test functions

chosen to have. Further characteristics of the test functions leading

to generally better results are that they share as many of the known

properties of the true eigenfunctions as possible, such as boundary
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conditions, number of zeros in the interval, and, of some consequence

in discontinuous systems, smoothness conditions at internal points.

It should be noted that the convergence of the approximate eigen-

functions as more terms are added is in a mean-square sense to the

actual eigenfunctions. In cases where there are jumps in the actual

eigenfunctions (or their derivatives), the use of continuous (or

smooth) test functions can lead to poor uniform approximations. These

effects are ameliorated by the use of K¢j rather than the oj in the

eigenfunction approximations; the iterated Galerkin method [27].

2.2 Lower Bounds by Trace Identities

Define the iterated kernels k(n)(x,y) by the recursion

k"’<x.y) e um
(2.5)

k("+')( [?k(x,z)k(n)(z,y)dz.X.y)

Then if k is L2 so are each of the k
(n).

Further, the following theorem

holds:

Theorem 2.2 ([22], pg. 51) Let k(x,y) be an L2 kernel with spectrum

0 <|A1| §_|A2| 5_... . Then for n 3_2,

Of particular interest is the case when k is Hermitian and positive

definite. In this case truncation of the series leads to

tr(K(n)) = Z A:n > A.'n, j = l, 2, ...

i=l1—J
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giving the lower bound

Aj > (tr(k(")))"/". (2.6)

This bound is of course most accurate for the least eigenvalue.

If a set of M upper bounds Xi is available, then the inequality

(2.6) may be improved considerably:

tr(K(n)) = :30).-

|
v >
2

+ M >
J

I
v

>
J

+ M >
2

giving the lower bounds

N

Am > (tr(K(n)) - z ‘A'i'nfl/n

—' ifm

(2.7)

This bound differs from each m, and is improvable by obtaining either

more or better upper bounds.

In this dissertation, the bounds obtained from the particular case

of n=2 are used and are denoted by

_I§°) 2 (tr(K‘2)))"/2 (2.8)

and

M

_;é“1 ; (tr(K(2)) z 'xi'2)"/2, (2.9)
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and are called the truncation lower bound and the corrected truncation

lower bound respectively.



CHAPTER 3

STURM-LIOUVILLE PROBLEMS WITH DISCONTINUOUS COEFFICIENTS

3.1 Introduction and Literature Review

This chapter addresses the problem of eigenvalue estimation for

Sturm-Liouville problems with discontinuous coefficients in the context

of diffusion in a laminated medium. Other problems of the Sturm-

Liouville form that have been the subject of much recent attention

include vibration problems in geophysics [8,9,28], buckling of stepped

beams [12,18], and harmonic waves in layered composites [6,10-15,l9],

among others. The latter problem is discussed in Chapter 5 of this

dissertation.

Considerable emphasis has been placed on the development of compu-

tational schemes for estimating the eigenvalues and eigenfunctions for

such problems. These efforts have met with serious difficulties due to

the non-smoothness of the coefficients and the resulting spectral

irregularities. Early attempts were focused mainly on variational tech-

niques, with emphasis on obtaining upper bounds for the eigenvalues.

These techniques include Rayleigh-Ritz approximation using smooth test

functions and improved test functions with appropriate derivative dis-

continuities [7.12.19]. Also in the variational mode, mixed variational

principles where two field quantities are independently varied have been

employed [7,12,19]. Alternative methods, such as finite difference

18
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and finite element methods, which lead to matrix eigenvalue problems,

have been investigated [3-3. A direct variational scheme employing

piecewise polynomial eigenfunction approximation has also been used

[17]. More recently, results from classical Sturm-Liouville theory

and eigenvalue optimization techniques have been adapted for these

problems to obtain upper and lower bounds for the eigenvalues [7,12,19].

The most valuable contribution of [7] was the reduction of the general

Sturm-Liouville problem to that of a string with discontinuous density.

In this simpler form, the various techniques are more easily applied

and give better results for a comparable amount of effort. Lower

bounds have also been found by a variation on Weinstein's method of

intermediate problems [18]. A complete theoretical discussion of dif-

fusion in laminated media under general linear interface conditions has

been set forth in [29], with an extensive bibliography.

In this chapter, integral equation methods are applied to a problem

of heat conduction in a layered slab with fixed temperature boundary

conditions and perfect thermal contact interface conditions. Lower

bounds to the least eigenvalue obtained using the iterated kernel trace

are compared to those based on eigenvalue extremization discussed in

[19]. Upper bounds are generated using Galerkin's method applied to

both the differential and integral equation formulations of the problem.

These upper bounds are compared in terms of their accuracy and are also

used to generate the sequences of lower bounds for higher eigenvalues

obtained by correction of the truncation of the series summing to the

iterated kernel trace. The actual eigenvalues,obtained by numerical

solution of the actual transcendental eigenvalue equation, are used
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to compute errors in the bounds. Numerical results are presented for

a variety of material property combinations, and sources of error in

the approximate methods are discussed. The results suggest that

integral equation techniques, with their inherent smoothing properties,

may be particularly appropriate for investigation of the problems of

concern here.

3.2 Eigenvalue Problem Formulation

The general partial differential equation modelling diffusion

with no internal sources is

v-(KvU) = c g3 (3.1)

In the one-dimensional problem of heat conduction in a layered slab

with fixed surface temperature and perfect thermal contact between

the layers, separation of spatial and temporal variables leads to the

Sturm-Liouville problem:

(K(x)u'(x))' + A C(x)u(x) = 0 O < x < L

u(O) = u(L) = O (3.2)

u(x), K(x)u'(x) continuous for 0 < x < L

The coefficient functions K and c, representing conductivity and

capacity respectively, are piecewise continuous positive functions

with step discontinuities at the interface locations x1, x2, ... xn‘

It has been recently demonstrated [7] that conversion of the

problem (3.2) to Liouville normal form leads to computational advan-

tages. Thus, let
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K-](S)dS, t = T-1 A? K-](S)dS

and (3.3)

v(t) = u(x(t)). f(t) = T2K(x(t))c(x(t)).

Then the eigenvalues of the system (3.2) are the same as those of

V + Afv = 0 0.: t_: l

v(O) = v(l) = 0 (3.4)

v, v continuous for O < t < l

where the superposed dot represents differentiation with respect to

the new independent variable t. The coefficient function f(t) is

positive and bounded for 0.: t.fi l and admits step discontinuities at

the points ti = T.1 Cfi K-](S)dS. The effect of the transformation

has been to remove the discontinuous coefficient K from its position

subject to differentiation in the system (3.2) and move the locations

of the discontinuities. When standard variational methods using smooth

test functions are applied to the transformed system (3.4), the re—

sults are equivalent to those obtained using improved test functions

satisfying the condition of continuity in flux, Ku', with less computa-

tional effort. A further advantage of this form is the availability

of lower bounds to the eigenvaluesbased on eigenvalue extremization in

vibrating strings.
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3.3 Integral Equation Formulation

The eigenvalue problem (3.4) is readily transformed to the integral

equation

v(t) = A 10' G(t,s)f(s)v(s)ds (3.8)

where

f

(l-s)t 0 §_t < s < l

G(t.S) = 4 (3.9)

(l-t)s O §_s < t < l

 L

is the Green's function, obtained by solving

2

- LG- (t,s) = 6(t-s); G(o.s) = G(I.s) = 0. (3-10)
Btz

Note that if we view the kernel of the integral equation as

E(t,s) = G(t,s)f(s) (3.11)

then the kernel is not symmetric in s and t. However, we may obtain

an integral equation with symmetric kernel by multiplying (3.8) by

/T(t) and thus obtaining the equivalent eigenvalue problem

w(t) = A 10' k(t,s)w(s)ds = my (3.12)

where w(t) = JTTET v(t) and k(t,s) = JTTET G(t,s) JFTST. Equation (3.12)

is a Fredholm integral equation of the second kind with a kernel which,

although discontinuous in s and t, is real, symmetric, square-integrable

and continuous in the mean [30]. The trace of the second iterate of

this kernel, which equals the L2 norm of the kernel, is given by the

double integral
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tr(K(2)) = [0' 10' f(t)GZ(t,s)f(s)dsdt (3.13)

In the case of piecewise constant f(t), this equation involves easy

integrations of polynomials of degree 3 3 in s and t over appropriate

subregions of the unit square, and are easily carried out either by

hand or numerically.

3.4 Lower Bounds by Eigenvalue Extremization

Lower bounds for the eigenvalues of (3.2) have been obtained in

[19] based on the normal form (3.4) and the results of Krein [31] on

eigenvalue extremization. In [31], Krein'hsconcerned with the problem

of maximizing and minimizing the eigenfrequencies w§(f) of a string

of variable density f, as in (3.4), subject to the constraints on f of

a fixed total mass

10 f(t)dt = M (3-14)

and various bounds on the density, such as

O < f §_H with H 3.M

(3.15)

0 < h §_f with h < M

Under conditions (3.14), (3.15b) the minimum A1 is attained by the

singular function

f(t) = h + (M-h)6(t-l/2) (3.16)

which may be viewed as a uniform string with a bead at the center.

Under the conditions (3.14), (3.15a) the minimum A1 is attained by
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H |2t - 1| < M/H

f(t) (3.17)

0 otherwise.

The maximizing densities for the higher eigenvalues An have n equally

spaced beads or dense intervals at the antinodal points of the nth

eigenfunction of a uniform string. Thus we see that Krein's work

leads to consideration of problems directly related to the investiga-

tion of eigenvalue problems with discontinuous coefficients. This

relationship was exploited in [19] and their development follows.

Under the conditions (3.14), (3.15a), Krein [31] has shown that

A (f) > 513% X(%) (3.18)

An(f) ZTXHT) (3.19)

where x(d) is the least positive root of the transcendental equation

Ji— tan JET = d/(l-d) (3.20)

The lower bounds may be made explicit on obtaining bounds for the

lowest root. One such bound, obtained by Krein [31], is

-1/2

x(d) > W - 5‘39 + (£- + iii-NZ] (3.21)

This result, in conjunction with (3.18), was utilized in [19] for n = 1.

When used with (3.19) more bounds are found; these results are pre-

sented in the next two sections on the example problem.
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3.5 Example Problem

In order to evaluate the various bounding techniques, we consider

the example of a three layer slab composed of two identical homogeneous

outer layers enclosing an inner homogeneous layer as has been treated

in [7,12,19]. The piecewise constant material property coefficienusK

and c are given by

K], c1 in l_: |2x-l| > b (outer layers)

(3.22)

K2, c2 in |2x-l| §_b (inner layer)

The problem is then nondimensionalized and parametrized by the sub-

stitutions

K c

y = E; , O = 52-, n1 = 1-b, n2 = b,

1 1 (3.23)

K = n1K1 + n2K2, c = nlc1 + n2c2,

and so, using the normalization :2= 1, E'= 1, we obtain

c = (n + n G)'] c = G(n +n O)-1
1 l 2 ’ 2 l 2

_] 1 (3.24)

K] (1'11 + nzY) 9 K2 = Y(n'| + nzY)-

The corresponding dimensionless eigenvalue is then denoted by v and

given by

v = (IE/E)”2 = AUZ. (3.25)

For given values of the geometric parameters 111 and n2, the effect of

the material discontinuities on v is conveniently analyzed through

consideration of the dependence of v on the dimensionless material



 

 
 

K2 = 0.1‘K]

C2 = 100::l

XL.

(KT')' ACT 0

T(O) = T(L) = 0

T,KT' ntinuo

FIGURE 3.2 Fundamental mode temperature profiles
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parameters y and 6. For continuous conductivities y = 1, while for

continuous capacities 0 =1. Henceforth, we will set b = 1/2, giving

111 = n2 = 1/2 and interfaces at x1 = 1/4 and x2 = 3/4. For this

case, the exact eigenvalue equations, obtained by solving (3.2)

exactly in each material subinterval and matching temperature and flux

at the interfaces, are:

I
I

0/A5 SinBO Sinav - cost cosav

(3.26)

JAB cost sinav + sinBv COSaV = 0

where

0': 1+0 ’ 8:4—.
p
p
a 1+y 1/2 1 1+v" 1/2

(——) ( _,) .
1+9

The two separate equations for v1, v3, ... and v2, v4, ... result from

the symmetry of the problem about the slab center.

Under this parametrization, the coefficient f(t) in (3.4) is

 

given by

'11 It - 11> '
1 2 217117'

f(t) = l (3.27)

1 1

1 h2 It ' 21 f-ETTTTT

where

3

h1= 1’” , 112 =Y0h].

4v (1+9)

For this f(t), the trace of the second kernel iterate is given by
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2

tr(K(2)) ._. h${-L M Q(]-Q,)3(3+2,2) +

90 ' 144

2

£1%%5ll-2(15-1022+324)I (3.28)

where C = (1W)-1 is the center interval length and ye is the coefficient

discontinuity ratio in the Liouville normal form.

The truncation lower bound (2.8) for the least eigenparameter v

becomes

9].: (tr(k(2)))"/4, (3.29)

and the lower bounds for higher eigenparameters (2.9) becomes

v > mod”) - z (3.)'4)"/4m_ f 1 (3.30)

T1 111

An additional parameter to be used in the bounds from Krein [31]

is the total "mass“

2

M = (;f(t)dt = §1§%1—- (3.31)

Thus from (3.18) and (3.19), using (3.20) and the above parametrization,

we obtain the lower bounds

4ny1/2 4 11 1L. 2 -1/4

VnZ'TTFT—[1'3d+(24+fl4)d]
(3.32)

where d is given by one of the four expressions:

d = 1+3"1

1+) ’
 

if v0.3 1 under f :.H = hz,
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_ HY"1

 

d-W, 1fY931 under th=h],

d=—'l9—, ifyO<lunderf<H=h,
1+-1 — — 11

01"

d - “f1, ifve_<_l under f_>_h= 112.

1+6

3.6 Numerical Results

In order to assess the accuracy and nature of the error involved

in the lower bounds based on the iterated kernel trace, a number of

bounds were computed for various combinations of material properties.

The lower bounds for the least eigenvalue based on truncation of the

series at the first term (3.29) are Shown in Table 3.1, with the best

Krein bound (3.32) and actual eigenvalues from (3.26) for comparison.

Upper bound sets from the Galerkin method using trigonometric test

functions in the differential and integral formulations are presented

for four cases, together with the corresponding lower bound sets from

(3.30), in Table 3.2. An additional study of the progressively improv-

ing upper and lower bounds obtained as the number of test functions

used in the integral Galerkin method increases appears in Tables 3.3

and 3.4. Also in these tables, the best possible lower bounds from

(3.30), where the actual eigenvalues are used as the upper bounds, are

presented for comparison purposes.

All of the numerical results in this chapter were computed in

double precision on the Prime 750 computer of the Case Center for

Computer Aided Design at Michigan State University.
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3.7 Discussion of Results

Table 3.1 provides a comparison between the integral equation

lower bounds (3.29) and the eigenvalue extremization bounds (3.32).

In all cases where the Liouville normal form (3.4) has a center

weighted density f(t), that is, where the product of the discontinuity

ratios, Y6, exceeds or equals one, the extremization bounds (3.32) are

quite accurate. When both ratios Y and e exceed one, the only cases con-

SldETEd'UlL7,12,l9],the integral equation lower bounds (3.29) compare

favorably with the extremization bounds (3.32). In mixed cases, where

either Y or a, but not both, and the product v6 is less than one, the

coefficient function f(t) is no longer similar to the extremizing

densities (3.16) and (3.17) of Krein, and the corresponding bounds

(3.32) are quite poor. In these edge-weighted cases, the accuracy of

the integral equation bounds (3.29) suffer as well, but for a quite

different reason.

The error induced by using (3.29) depends on the appropriateness

of the truncation of the series that sums to the iterated kernel trace,

and thus depends on the distribution of the spectrum. The closer the

least eigenvalue is to the rest of the spectrum, the less accurate the

results of the truncation can be. Table 3.1 shows that the accuracy

of (3.29) is exceptional for highly center weighted cases with ya >> 1

and falls off for the edge weighted cases with ya < 1. Using the

vibrations of a string as an analogy, one can interpret this phenomenon

in terms of the effect of the heavier region on the modes of vibration.

In the center weighted cases, the concentration of the mass in the

center about the antinodal point of the first mode significantly lowers
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the fundamental frequency compared to that obtained for a uniform

string. However, this mass concentration occurs about the nodal point

of the second mode, and the lesser amplitude of motion reduces the

effect on the frequency. Thus the first two frequencies are more

widely separated, and the series can be truncated at the first term

and still give good results. In contrast, in the edge weighted

cases, with ya < l, the motion of the concentrated masses near the

ends is comparable in the first two modes, and the frequencies are

correspondingly closer than those of a uniform string. Such cluster-

ing of the lower eigenvalues increases the error due to truncation in

(3.29). This defect is remedied by the use of upper bound information

as in the bound (3.30), as can be seen in Table 3.2, case 4, where

Y = e = 0.1.

In Table 3.2, two sets of six upper bounds and the resulting lower

bound sets are presented for four combinations of material properties.

Both upper bound sets were obtained using GalerkinS method with test

functions of the form

6

. t = .. ' 'v1( ) jilcustflt

in the differential formulation, and

11m = «1117 v,(t)

in the integral formulation. In this particular example problem, the

symmetry of the system about the midpoint allows separation into odd

and even matrix eigenvalue problems, since the test functions and

true eigenfunctions are even and odd about the midpoint, and the
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resulting inner products, which constitute the Galerkin matrices,

vanish for pairs with different parity.

As can be seen in all four cases in Table 3.2, the upper bounds

from the integral equation formulation are superior to those from

the differential equation formulation. This leads to a marked

superiority of the lower bounds based on the integral formulation.

The error in these lower bounds from Equation (3.30) comes from two

sources: truncation of the series after six terms and the approxima-

tion of the second, or correction, term. The error due to truncation

depends on the number of terms used as well as the distribution of the

spectrum. The error due to the approximation of the correction term

depends primarily on the accuracy of the upper bound for the least

eigenvalue used in the correction term.

In Table 3.2, Case 1, the eigenvalues are nearly equally spaced

and the upper bounds are quite accurate. In this case, the lower

bound error is primarily due to series truncation, the accuracy of

the lower bounds increasing only slightly when the better integral

equation bounds are used. In Case 2, the spectrum is again nearly

equally spaced, but the differential upper bound to v] is significantly

less accurate than the integral, leading to far less accurate lower

bounds for the rest of the spectrum. This difference is even more

pronounced in Cases 3 and 4, but the effects of eigenvalue spacing

enter into these bounds as well. Within each case, the accuracies

of lower bounds within a cluster of closely spaced eigenvalues are

comparable. In Case 3, the lower bounds to the least two isolated

eigenvalues are accurate (particularly those from the integral upper

bounds), and the lower bounds to the cluster v3 - us are of 27-36
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percent relative error, jumping to 53 percent for the isolated 06.

In Case 4, one cluster is v] - v3 and the corresponding lower bounds

range from 2-8 percent relative error, v4 is isolated with 34 percent

relative error, and 05 - O7 is another cluster with 51-56 percent

relative error in the lower bounds.

Tables 3.3 and 3.4 present another examination of Cases 3 and 4

designed to isolate the effects of the number of bounds used and of

the spectral distribution from that of the accuracy of the upper bounds

used. Thus in these tables, the best possible lower bounds obtainable

from Equation (3.30), where the actual eigenvalues are used as upper

bounds, are given along with the integral formulation upper bounds and

their resulting lower bound sets. Again, within a cluster of closely

spaced eigenvalues the error in these best possible lower bounds is

seen to be comparable for a given number of upper bounds. One obvious

effect of the number of upper bounds used is the increase in the

accuracy of the lower bounds. A more subtle effect is the interaction

with the effect of clustering. When upper bounds for all members of

a cluster are used, there is a significant improvement in the accuracy

of the lower bounds in that cluster which is greater than the improve-

ment obtained upon adding a bound to an isolated eigenvalue. For

example, examine the relative error changes down the columns of Table

3.3. When the third upper bound is added, the relative error in

columns 1 and 2 drOps sharply; the addition of the fourth upper bound

cuts the error by a more typical rate. A similar phenomenon occurs in

Table 3.4, columns 4-6.
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One other source of error in these series approximations which

must be mentioned is that of the numerical truncation errors inherent

in summing numbers of disparate magnitudes and in taking smaller

differences of larger numbers. Both problems occur in the use of the

corrected truncation lower bounds, especially in bounding the higher

eigenvalues. Any use of this method must take account of these sources

of error by summing from small to large and using high precision arith-

metic.
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TABLE 3.1

Comparison of Truncation and Extremization

Lower Bounds for the Least Eigenvalue

 

 

 

Y 6 0.1 1.0 10. 100.

EV 5.058 2.421 1.8063 1.73177

0.1 LK 1.190(76.) 1.430(41.) 1.8014(.27) 1.72653(.30)

LI 4.447(12.) 2.364(2.4) l.7709(2.0) 1.69822(1.9)

EV 4.211 3.142 2.5292 2.44333

1.0 LK 2.488(41.) 3.133(.27) 2.4877(1.6) 2.43646(.28)

LI 3.947(6.3) 3.080(2.0) 2.5043(.99) 2.42059(.93)

EV 1.806 1.454 1.2251 1.19037

10. LK 1.801(.27) 1.430(1.6) 1.1901(2.9) 1.18666(.31)

LI l.771(2.0) 1.448(.37) 1.2246(.04) 1.18994(.04)

EV 0.596 0.484 0.4100 0.39868

100. LK 0.595(.30) 0.482(.28) 0.4087(.31) 0.39737(.33)

LI 0.587(l.5) 0.483(.27) 0.4099(.01) 0.39867(<.001)

EV = actual eigenvalue

LK = best of Krein lower bounds, Equations 3.32

LI = iterated trace truncation lower bound, Equation 3.29

Figures in parentheses are percent relative errors.
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TABLE 3.2

Comparison of Six-Term Upper Bounds from Integral

and Differential Formulations with Lower Bound Sets

 

Case 1: y = 0.1, e = 100

 

 

 

 

 

 

 

 

 

 

 

v 1.731772 3.469050 5.21637 6.9767 8.751 10.54 12.3

UD 1.731776 3.469163 5.21736 6.9804 8.767 10.58

LD 1.731284 3.453456 5.10183 6.5369 7.625 8.34 9.43

UI 1.731772 3.469052 5.21642 6.9770 8.754 10.55

LI 1.731301 3.454027 5.10578 6.5510 7.655 8.39 9.54

Case 2 v = 100, e = 0.1

v 0.59643 1.298409 1.79655 2.5966 3.0140 3.8943 4.25

U0 0.59697 1.298409 1.80962 2.5966 3.0676 3.8943

LD 0.59622 1.263957 1.65526 2.0044 2.1017 2.1796 2.24

UI 0.59644 1.298409 1.79844 2.5966 3.0364 3.8943

LI 0.59627 1.290145 1.75801 2.3813 2.6311 2.9364 3.24

Case 3 1'= 10.0, e = 10.0

v 1.22511 6.283 11.34 12.57 13.79 18.85 23.9

UD 1.23884 8.165 12.52 14.79 24.63 27.76

LD 1.22477 2.656 2.66 2.66 2.66 2.66 2.66

UI 1.22515 6.422 12.06 12.96 22.52 26.12

.LI 1.22503 6.038 8.29 8.41 8.78 8.80 8.83

Case 4 'Y= 0.1, e = 0.1

v 5.058 6.283 7.508 12.57 17.62 18.85 20.1

UD 5.316 8.165 10.827 14.79 21.84 27.76

LD 4.601 5.368 5.552 5.62 5.65 5.65 5.65

UI 5.088 6.422 7.879 12.96 19.87 26.12

LI 4.950 6.022 6.936 8.33 8.64 8.70 8.72

 

v = actual eigenvalues

UD upper bounds, differential formulation

UI. upper bounds, integral formulation

corresponding lower bounds

corresponding lower boundsH
O
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CHAPTER 4

LOWER BOUNDS FOR THE EIGENFREQUENCIES

OF STEPPED ELASTIC BEAMS

4.1 Introduction and Literature Review

In this chapter, the integral equation lower bound technique is

applied to the problem of determining the free vibration frequencies

of stepped elastic beams. This problem is quite similar to that of

Chapter 3 on heat conduction and string vibrations, the primary dif-

ference being the higher order of the associated differential operator.

The beam problem has been investigated in a number of ways. AS in

the cases of heat conduction (Chapter 3) and harmonic waves (Chapter 5),

Lang and Nemat—Nasser have applied their stationary principle varia—

tional method. In[l6] both smooth and improved test functions were

used to approximate the displacement and bending moment; estimates and

bounds for the frequencies in a variety of beam configurations were

obtained. Their results on a cantilevered beam will be used in the

first example problem of this chapter. A variation of Weinstein's

method of intermediate problems [32,33], namely Bazley and Fox's method

of truncation [34,35], was employed by Bickford [18] to obtain lower bounds

for the frequencies of a simply supported stepped beam. He also ob-

tained upper bounds by the traditional Rayleigh-Ritz method. His re-

sults will be used in the second example problem of this chapter.
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A number of authors have used some results from the integral equa-

tion formulations of beam problems. Buckens [36] obtained lower bounds

for the first two frequencies of a stepped simply supported beam by a

decomposition of the beam into simpler subsystems to bound the least

frequencysand by use of a trace identity to bound the second frequency.

Janos [37] also uses integral equation formulations of two related

string problems to obtain a geometric mean type inequality involving

partial products of eigenvalues of the beam and the related strings.

His method reduces to that of finding frequencies or appropriate bounds

for two string problems to obtain two sided bounds for A], A1°A2’

A1-A2-A3, etc. His technique, however, does not give sharp results for

even the lowest frequency. Integral equation bounds were used on a

beam problem with random elastic support by Boyce and GoodwinL211- 'They

used the usual lower bound obtained by truncation of the trace identity

for the second kernel iterate, noting that information about higher

frequencies can be used to improve the bound, although they did not

do so.

The numerical results in this chapter are obtained for two example

problems. In sections 4.4-4.5 a three piece cantilever beam is used to

compare the resultsof the integral equation lower bound technique to

those of the variational method used by Lang and Nemat-NasserLlfiJ- In

sections 4.6-4.7, a two piece simply supported beam is used to compare

the integral equation lower bounds to those obtained by the method of

truncation by Bickford[l8]. First,the source of the eigenvalue problem

and the formulation of the related integral equation are discussed in

sections 4.2-4.3.
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4.2 Formulation of the Eigenvalue Problem

The most economical beam model is that of the Euler beam, described

by the partial differential equation

2 2 2
3 3 u 3 u

= ( 4.13;? (v<(X)ax ) o X)? ( )

with Spatially varying material properties, stiffness K and density

p, and with appropriate boundary and initial conditions.

Separation of variables yields the eigenvalue problem for free

vibrations

(K(X)W")" = Aow (4.2)

Typical boundary conditions include the cantilever or fixed-free case

w(O) = w'(0) = 0 w"(1) = (Kw")'(l) = 0 (4.3)

and the simply supported or hinged-hinged case

w(O) = w"(0) = w(l) = w"(1) = 0 (4.4)

For the stepped beam case, where the stiffness K is piecewise continuous,

continuity of displacement, slope, bending moment and shear force are

assumed at points of discontinuity in stiffness.

4.3 Green's Functions and Integral Equation Formulation

The Green's functions for the operator

L68 2 [K(x)w"1" (4.5)
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under the various boundary conditions are obtained by repeated integra~

tion of the equation

L[G] = 6(x-Y)

and application of the boundary conditions.

The integrations lead to the general Green's function

(4.6)

G(X.y) = W(0) + W'(0)x + KW"(0)B](X) + (KW")"(0)BZ(X) + B3(X.y)

where the functions Bi are given by the double integrals

_ x 5 dt

_ x S tdt

_ x t-

B3(x,y) - ID I; flfidtds

(4.7)

(4.8)

It can be shown, however, that 83 can be expressed in terms of B], B2

and the Heaviside unit step function H by

83(st) = H(X‘Y)L82(X) ' YB](X) ‘ 32(Y) + XB](Y)]. (4.9)

When appropriate boundary conditions are applied, one obtains the

Green's functions. Two of these are:

Cantilever case :

ymO)-%u) 01x:y:l
Gc(x.y) =

me)-%U) Ogygxgl

(4.10)
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Simply supported case:

G ( ) W + X(82(y) - B1(y)) + (y-l)Bz(X) 0 _<_ x _<_y :1

X, =

55 y W + y(82(X) - B1(X)) - (x-1)Bz(y) 0 j y 5 x < l

where C = B](l) - 82(1) (4.11)

As usual, integral equation formulations are obtained from the Green's

functions and symmetrization of the resulting kernels. That is,

k(x,y) E w(x) G(X.y)»/9(y)

(2M 2 77—19-w(-) (4.12)

w(x) = 1 70' k(x,y)mywy

It should be noted that in the case of piecewise constant material

properties, the functions 81 and B2 are piecewise defined polynomials,

and thus the kernel k is a piecewise continuous polynomial in x and y

which is Simply, though arduously, square-integrable.

4.4 Sample Problem #l-~Cantilever Case

Lang and Nemat-Nasser[l6].analyze a three-piece beam problem under

three cases of boundary conditions: cantilever, simply supported,

and fixed-hinged. They also consider buckling problems and vibrations

under compressive loads for the simply supported case. Of the cases

they considered, the cantilever beam under no compressive load has

the simplest Green's function. Thus, it is the most tractable example

of a three piece beam for analysis by integral equation methods. In

this section, the parametrization and nondimensionalizations in [16]
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are followed and integral equation lower bounds are found for the

material property combinations discussed in their article.

Suppose a beam of unit length has material properties given by

K] b< (2x-1|:1

K(X) =

K2 l2X"1| : b

(4.13)

p] b < |2x~1| §_l

o(X) =

02 I2X-1I : b

where b is the length of center section of the beam.

The eigenvalue problem is nondimensionalized by the substitutions

S(X) = (<(X)/l<' d(X) = 9(X)/'5 v2 = AE/Té (4.14)

where the average material properties 6 and E are

E: 91(1‘b) + 02b

(4.15)

12 = K‘I(]'b) + bi

The material property discontinuities are parametrized by

y E KZ/K1 and 6 E p2/p1 (4.16)

We then are lead to the dimensionless eigenvalue problem

(s(x)v")" - 92mm = o

v(O) = v'(0) = 0; v"(1) = (s(x)v")'(l) = 0 (4.17)

v, v', sv", (sv")' continuous on (0,1)
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For the results that follow, a center integral length of b = 1/2 is

assumed.

The components of the Green's functions (4.10) are then given by the

piecewise defined continuous polynomial:

‘

1 2 1
2;? t O :_t <3Z

- _L 2 1:1 -12 J. .3.
B](t) “1251 Lt + ( Y )(t 4) :1 4iti4 (4'18)

 

 

B2(t) = (_L [t3 + (Lynn-M3 + %(t~l—)2)] K: t :% (4.19)

 
Here 51 = K1/E = l/(l+b(y~l)) = 2/(1+y).

Integration of the squared amplitude of the kernel over the unit square

then yields the iterated kernel trace, written as a matrix product:
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54256 61456 177801 1

 tr(K(2)) ' 8 (+(115112 [+2 y 1] 61456 40936 7808 e

    
17780 7808 1056 a?)

I)... _u b

(4.20)

For the continuous case, with y = e = l, tr(Kéz)) = 11/1680. This

gives the lower bound of 3(0) = 3.5154 to the least frequency of

v] = 3.5160, a relative error of ~.017%. Lower bounds for the least

frequency from Equation 2.8 and lower bounds for the least two fre-

quencies from Equation 2.9 and upper bounds from [16] were calculated

for the five combinations of material properties in[16]. The results

are presented in Table 4.1.

4.5 Numerical Results and Discussion

The numerical results contained in Table 4.1 were obtained on a

TI-57 calculator, carrying 11 decimal digits in accuracy. The results

for 3‘0) are based on the iterated kernel trace alone, and are accurate

to the digits shown. The other lower bounds are based on the upper

bound correction to the iterated kernel trace and, except where noted,

the results as reported ir1[l6]. In the exceptional case, where y = 100

and e = 1, it can be seen that the reported numbers in [16] do not show

a sufficient number of places to use in the upper bound correction. In

fact, the upper bounds to four decimals are not upper bounds at all.

The different extra digit assumptions in VN and Oh for this case were

chosen to show the radical difference in the accuracy of lower bounds

obtainable from upper bounds which agree to four places. The same
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FIGURE 4.1 Stepped cantilever beam - sample problem #1

 

 

 

u(1) = u"(1) = 0

FIGURE 4.2 Stepped simply supported beam - sample problem #2
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comment may be made on all entries in the last three columns pertain-

ing to the least frequency; that is, they represent true lower bounds,

but may not be the results which would be obtained had the full number

of digits in the upper bounds been available. In the other chapters

of this dissertation, all upper bounds used were calculated and all

digits retained, rather than relying on figures tabulated elsewhere or

rounded figures.

As can be seen in Table 4.1, in all these cases the first two

frequencies are widely separated, accounting for the sharpness of the

lower bounds 340). In cases of widely separated frequencies such as

these, the dominant contribution to the kernel trace is that of the

first frequency. Until that frequency is bounded very well from above,

the lower bounds to the second frequency are quite poor. This is

3N and YR’

where the bound from the new quotient approach is better than that

demonstrated by the marked difference in the lower bounds

from the Rayleigh-Ritz method.

4.6 Sample Problem #2-~Simply Supported Case

Bickford [18] obtained lower bounds for the frequencies of a two-

piece simply supported beam by Bayley and Fox's method of truncation

[341- In this section his development will be followed for the parametri-

zation and nondimensionalization of the problem.

Suppose a beam of length I has material properties given by

% nyil (mm)
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M1 0 :y i y1

M2 y]< .Y _<_ 9. (4.21)

We then consider the eigenvalue problem

d2 dzu

—ng)—@=Amwm 0:Y:£

dy dy

2 2

u(O) = 9——;—(0) = u(o = d—%(s2.) = 0 (4.22)
dy dy

2 2

u, 993 89—33 51—(B9—3) continuous on (0,2)
dy dy2 dy dy2

This problem is transformed by the substitutions

x = y/2 b0 = B1/B2 m0 = Mz/M1 ¢ = (24M1/n482)A

and v(x) = u(y(x)) (4.23)

to the dimensionless eigenvalue problem, where primes denote dif-

ferentiation with respect to x,

(bv")" = n4¢mv

v(O) = V"(0) = V(l) = V"(l) = 0 (4.24)

v,v', bv", (bv")' continuous

where b = B/Bz, m = M/M].

Bickford considers cases where B1 3_B2 and M1 3_M2, though with

little modification, his analysis applies to all cases.

In applying the method of truncation. the underlying base problem

of a uniform beam of unit stiffness and density has the eigenvalues and

eigenfunctions
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¢0 = n4 and v3 = /2_ Sin nnx (4.25)

These functions form the basis of the Rayleigh-Ritz upper bounds re-

ported in [18] and used in this section. Additional functions are

used in generating the intermediate operators that approximate the

actual operators of the problem. To this end, Bickford used the func-

tions

'
0

—
—
l

A

X

v

1

— sin(inx/x])cos(nx/2x1)

.
0

.
_
-
l

A

X

v

I
I

sin(inx) (4.26)

for cases of discontinuous B and M respectively. In one case, he

also uses the eigenfunctions r} of a uniform beam of length x1

satisfying

rl iv _ B4r] = 0

1 _ l" _ l _ l' _
r (0) - r (0) - r (x]) - r (x]) — 0 (4.27)

for the approximation of the operator with discontinuous stiffness B.

n,k,2
i

where the superscripts refer to the number n of base eigenfunctions

The lower bounds from the truncation method are denoted by O

and eigenvalues used, the number k of p} or r} used, and the number

A of q1 used in forming the k + 2 dimensional determinant equation toi

be solved for up to n lower bounds. If formally evaluated, solution

of his determinant equation is equivalent to finding the zeros of a

rational function whose poles are at the base eigenvalues.

Following his development, we find the iterated kernel trace and

lower bounds in the form
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tr(K(2)) = 2 41'2 (4.28)

l

1

910) = (tr(K(z)>) 2 < 0] (4.29)

M l
M 2 -— ~2 ~-—

9; ) = (tr(K( )) ~ 2 ¢n ) 2 < ¢m (4.30)

nfim

where the 66 are any upper bounds.

The value of tr(K(2)) in terms of system parameters and for x1 = 0.5

is, in matrix product form.

F791 710 1757—1 7

(2) _ “8 2
tr(K ) - 2 [1 m0 m0] 710 1372 710 bO , (4.31)

6144-9450-bO 2

L175 710 791‘Lb0d    

Bickford's results,and the lower bounds for the least two eigenvalues

based on the lower bounds of equations 4.29 and 4.30 using his upper

bounds,are summarized in Table 4.2.

4.7 Discussion of Results-~Problem #2

As can be seen in Table 4.2, the lower bounds based on the iterated

kernel trace either with or without using upper bound information give

comparable results in bounding the least eigenvalue to the far more

expensive bounds from the method of truncation. In fact, the bounds

computed from the trace and only the four low precision bounds of the

twenty-four Rayleigh bounds are superior in all cases considered.

These lower bounds would be even better if all digits and all of the

upper bounds were available. In the second case, the bound for the

second eigenvalue was based on a pessimistic extra digit in $$’24,
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since the reported figure from [18] is not an upper bound. In all

likelihood, the true upper bound was much better, and would have

yielded a much better lower bound, though even the reported bound

is quite good.

Also of note is the contrast between the results of the second

and fourth cases, where the eigenvalues are the same. The coincidence

of the spectra, which Bickford found remarkable, is due to the fact

that the cases are duals of each other. That the results are the same

when b6] replaces m0 and ma] replaces b0 is apparent from an examina-

tion of the equation for tr(K(2)). As in all variational methods,

discontinuities in coefficients associated with differentiated terms

lead to poorer results. Thus when a dual problem is available, one

should analyze the one which has a lesser discontinuity in the coef-

ficient of the most highly differentiated term.

In the fourth case, with discontinuous stiffness, Bickford used

the beam functions r} to improve the results obtained from using the

1

p..1 The most accurate figures from each of these are those reported

in Table 4.2. These bounds are much more expensive than those which

were obtained for the dual second case, and far less accurate as well.

The question remains, however, whether a comparable computational

investment in a Rayleigh-Ritz method, either through the use of more

terms, improved test functions, or integral equation formulation,

rather than in the method of truncation, would pay off by giving far

better upper bounds and comparable lower bounds based on the iterated

kernel trace.
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TABLE 4.2

Bounds for the Least Two Squared Frequencies

of a Stepped Simply Supported Beam

 

b0 m0 $32,16 $64,32 $R,24 9(0) 9(4)

4 1 1.5198 1.5452 1.5945 1.57118 1.57298

32.907 33.237 33.789 -- 9.24096 [[1

$8,4 ¢l6,8 $—R,24 9(0) 9(4) L,

1 0.5 1.3262 1.3262 1.3262 1.32394 1.32622

23.111 23.111 23.111 -- 22.9544*

$32,16,4 $64,32,4 $-R,24 i(O) 2(4)

2 0.5 1.7701 1.8212 1.8479 1.83768 1.84064

33.132 33.199 33.215 -- 17.6157

4, 2 64, 2 —- , 4$3 3 ¢r 3 ¢ R 6 9(0) 9(1)

2 1.0 1.3129 1.3149 1.3281 1.32394 1.32394

23.077 23.082 -- -- 16.7328

 

Legend to Table 4.2

¢n,k,£ lower bounds from method of truncation

E’R’N N term Rayleigh-Ritz upper bounds

9(0) Lower bound based on Equation 4.29

$(J) Lower bounds based on Equation4.30 and J upper bounds

*This bound computed using 61R’24 = 1.32625



CHAPTER 5

HARMONIC WAVES IN LAYERED COMPOSITES

5.1 Introduction and Literature Review

This chapter discusses the application of the integral equation

lower bound technique to the problem of elastic waves propagating

normal to the interfaces of layered composites with periodic structure.

This problem was proposed by Lee [10] as a test case for variational

methods to be applied to composites with periodic structures, and has

been the subject of a number of papers [6,10-15]. Composite materials

are highly dispersive in their wave propagation behavior, but Floquet

theory shows that they admit certain stable wave systems, called

Floquet waves, which do not disperse and retain their form relative

to the periodic structure of the composite. In two~ and three-dimensional

lattices, the wave forms may only be determined approximately. However,

for the one-dimensional composite formed by parallel plates, the wave

forms for waves travelling normal to the interfaces can be determined

exactly, and thus provides an objective measure of the accuracy of

approximate methods.

In this chapter, numerical results are obtained for composites of

two materials for a variety of material property combinations and wave

numbers. Upper bounds are obtained by application of a Rayleigh-Ritz

technique to the Sturm-Liouville eigenvalue problem with discontinuous

55
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coefficients and quasi-periodic boundary conditions that arises from

the application of Floquet theory to the governing partial differential

equations. These are the upper bounds as discussed in [6]. Correspond-

ing sets of lower bounds are obtained from the L2 norm of the complex—

valued kernel of the analogous integral equation. The actual eigen~

frequencies were also obtained from the transcendental eigenvalue

equation, and errors in the approximations are discussed.

5.2 Formulation of the Eigenvalue Problem

The governing partial differential equation for plane waves is

the wave equation in each material subregion

2 2 820 x t
v U(x,t) = c (X) 47—1 (5.1)

at

where U may represent displacement, stress or strain and c is the

spatially varying wave speed. Floquet waves are represented by a solu-

tion of the form

T(QTX-wt)
U(x,t) = u(X)e (5.2)

where u(X) is a periodic function with the period of the composite, Q

is a vector wave number giving the direction and wave length of the

wave, and w is the frequency.

For displacement waves travelling normal to the interfaces in a

layered composite, Q and X are scalars, and insertion of (5.2) into

(5.1) yields the eigenvalue problem for a cell of one period, the

length of which is assumed to be 1,
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(Hour-HENOu=o
(5.3)

u(1) = e'°u(0) (nu')(1) = e'°(nu')(o)

The unit cell is chosen to start and end at the midpoint of two layers

of the same material, and thus the second material layer is centrally

located in the unit cell. Further, we require that certain inter~

face conditions hold, namely continuity of displacement and stress,

u(x ) = u(x+) and n(x-)u'(x—) = n(x+)u'(x+) (5.4)

at the location x of any interface.

It has been shown that transformation of this problem to Liouville

normal form by a substitution for the spatial variable x gives better

results in the application of the Rayleigh-Ritz method for upper bounds

[6]. Accordingly we set

t = I- 70" 6"(s)ds, T = 70' 6"(s)ds (5.5)

f(t) = 126(x(t))6(x(t)) (5.6)

V(t) = U(X(t)) (5 7)

With these substitutions, the eigenvalue problem becomes

V + wzfv = 0

- V(0)eiQ (5.8)

(7(1) = (1(0)e"Q

<

A

—
I

v

I

v, 9 continuous at interfaces

The problem (5.3) may also be cast in terms of the streSSCI = nu', to

be called the dual formulation:

1
-
-
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(6"6')' + 426"o = 0

6(1) = e'°o(0); (6"6')(1) = (6"6')(o)-e'Q (5.9)

o, 0’10' continuous at interfaces

The system (5.9) also admits transformation to Liouville normal

form by the substitutions

s = %-IX o(t)dt; S = 4} p(t)dt (5.10) .n
1 .

|

0(s) = s26“'(x(s))p"(x(s)) (5.11) h.

w(S) = o(x(s)) (5.12)

With these substitutions, the dual problem becomes

W + wzgw = O

w(l) = w(O)e'Q (5.13)

0(1) W(0)eiQ

w, w continuous at interfaces

Both the primal formulation (5.8) and the dual formulation (5.13)

have the same eigenvalues, but their eigenfunctions differ. It has

been shown in [6] that, depending on the relative magnitude of the

discontinuities in the material constants,these formulations give

differing eigenvalue bounds when a Rayleigh-Ritz procedure is applied

to the corresponding variational formulations. This will be discussed

further in section 5.5 on numerical results.



60

5.3 Integral Equation Formulation

and Iterated Kernel Trace

The complex valued Green's function for either primal or dual

formulation is the solution of the boundary value problem for each

wave number 0 7‘ 3111

2

3—3 (s,t;Q) = 6(s-t)
as

G(l,t;Q) = e'QG(0.t;O) (5.14)

3% (l.t;Q) = e'Q 32-(o.t;0)

giving the solution

 

 

1'0

45—13% - ——§—1—d—_2— 0 _<_ S i t _<_1

l-e (l-e )

G(s,t;Q) = ( (5.15)

10 1'0

e (513) - 6 i0 2 0 §_t 5_s 5_1

L 1'9 (1'9 )

Note that G is hermitian, that is,

5(t.s;Q) = G(S.t;Q) (5.16)

Using this Green's function, one transforms the equations of the form

of (5.8) and (5.13),

~U = wzhu

u(1) = e'Qu(0) 6(1) = e'QO(0) (5.17)
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to the integral equation

u(s) = 02 70' G(s,t;Q)h(t)u(t)dt. (5.18)

The kernel of this equation, Gh, is not Hermitian, but an integral

equation with a Hermitian kernel is obtained by the substitutions

kQ(s.t) = mama) W (5.19)

giving

2(5) =62 70' kQ(s.t)c(t)dt 2 02(02. (5.20)

Further, the kernel of the second iterate K6 is

(2) - 1 _ 1
kQ (s,r) — A) kQ(s,t)kQ(t,r)dt - {)kQ(s,t)Eb(r,t)dt (5.21)

giving

tr(KZ) = f1k(2)(s s)ds

Q (1 Q ’

= 70' lekQ(s,t)|2dtds. (5.22)

For the problem at hand, we define

€10 1
C = ' (l-eiQ)2 = 2(1-cosQ) (5'23)

and thus

IkQ(s,t)|2 = h(s)h(t)C(C-|s~t| + (s-t)2). (5.24)

The value of tr(Kg), which is the same as the L2 norm of the kernel kQ,

will be obtained for the sample problem in the next section.
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5.4 Sample Problem

We consider the sample problem of a layered composite consisting

of equal amounts of two materials. The unit cell stiffness and den-

sity functions, then, are, for 0 §_x §_l

1 1

9 IX - -l >

n(x) = ' f 2f (5.25)

1 1

p1 1" ‘ 2' > 4

00‘) = 1 1 (5-26)

02 'X ‘ 2" < 4

We then non-dimensionalize the problem by introducing the parameters

_ _ 2 _ 2—-—

v - n2/n1 6 - 02/01 v - w o/n (5-27)

where E and 5 are the average material properties. We then analyze

the problem for the case fi'= EI= l, the frequencies for other cases

following from the definition of v.

Noting that the Liouville transformation changes the relative

lengths of the two material regions, in either case we are led to a

problem of the form (5.17), here repeated for convenience, and using

. 2
eigenparameter v ,

U +vzhu = 0

u(1) = e'Qu(0) 0(1) = e'Qa(0) (5.28)

‘where the coefficient function h has the form



lt-1§>

1
h2 |t - §1 <

For the primal formulation,

1

b = (l + Y)-

h - (1 + 3 21 T Y) /(4Y (1 + 6))

h2 = yeh].

For the dual formulation,

b = 8/(1 + 0)

h1 = (l + Y)(1 + 9)/4Y9

h2 = h1/v0.

In either case, one obtains the same value for tr(KQZ), namely

2 _ 2
tr(KQ ) — h1

o
fl
r
:

or in terms of the parameters 0, y, 0:

tr(KQz) = (111)2[(2+C°$Q)(1+v)2 + (
1-COSQ

Either of these are seen to reduce in the continuous case to

“
é
F
J

n
fl
;
d

[(6C-l)(1 + (

h
2

1
h

)2]/l92(l~cosQ)

 tr(KQZ) = %~(6C-1) = 2+°°SQ~

12(l~cosQ)2

(5.29)

(5.30)

(5.31)

h

- 1)6)2 + b2(l-b)2(l - E$2] (5.32)

(5.33)

(5.34)

The transcendental equation for the eigenparameter v in terms of 0,

y and 0 is

4276 cosQ = (l + 275)2cos€]v - (l - JT§)ZCOSEZv (5.35)
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l «177' /___:T
where E = —-( __X. + .LEL_T (5 36)'I o

2 1+0 1+0-

andg =3-(V—~i+Y - “HY-1) (5.37)
2 2 1+0 1+6_1

5.5 Numerical Results

Numerical results have been obtained for the sample problem on

the Cyber 750 computer of the Computer Laboratory at Michigan State

University. Upper bounds for the eigenparameter u were obtained by

applying a Rayleigh-Ritz procedure to both the primal and dual formula-

tions of the problem. For this procedure, test functions of the form

u(t) = g C NW“)t
= n

with M ranging from 0 to 6 provide sets of l to 13 upper bounds

from each formulation.

Preliminary lower bounds to the least eigenparameter u] were

found from (5.33) and the lower bound (2.8). Increasing sets of lower

bounds were obtained from the primal and dual upper bounds and the

lower bounds (2.9). Additionally, lower bounds based on (2.9) and a

merged set of upper bounds chosen from the primal and dual upper bound

sets were also computed.

The actual eigenvalues were obtained from the eigenvalue equation

(5.35) by using the best bounds obtained, searching these intervals

for a sign change, and then using the secant method to converge on the

roots. These roots were then used as upper bounds to generate the best

possible lower bounds obtainable from Equation (2.9).
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The lower bounds for the least eigenvalue for various combinations

of y and e are in Tables 5.1 and 5.2 for Q = l and 3 respectively.

These figures contain the actual eigenvalues, the preliminary lower

bounds based on (2.8), the better of the primal and dual upper bounds

based on test functions with M = 1 (three term approximations), and

the lower bound based on the best bound set obtained from the primal

and dual upper bounds with M = 1.

Lower bounds for the second eigenvalue for the same values of

y and 6 as Tables 5.1 and 5.2 are presented in Tables 5.3 and 5.4 for

Q = 1 and 3 respectively. These figures Show the effect of using more

and better upper bounds in the lower bound (2.9). The figures contain

the actual second eigenvalues, lower bounds based on the better of

the primal and dual upper bounds for M = l and M = 6, and the best

possible lower bounds for the corresponding number of upper bounds.

A detailed examination of the upper and lower bounds for y = 10,

0 = 0.01 and Q = l and 3 are presented in Tables 5.5 and 5.6. The

tabulated numbers, with percent relative errors, are: the actual

eigenvalues; primal and dual upper bound sets; corresponding lower

bound sets; lower bound sets based on choosing the best upper bounds

from the primal and dual formulations; and the best possible lower

bounds for the corresponding number of upper bounds.

5.6 Discussion of Results

An examination of Tables 5.1 and 5.2 shows that the preliminary

lower bounds are very accurate for Q = l and less so for Q = 3. This

is due to the relatively wide separation of the first two eigenvalues
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in the former case and the lesser separation in the latter. In fact,

the continuous cases, where the product ya = 1, produce the least

accurate lower bounds. This defect is remedied by use of some upper

bound information, and the lower bounds obtained using this informa-

tion have less than 0.4% error for all combinations of y and 0 studied.

An examination of Tables 5.3 and 5.4 on the second eigenvalue

shows the marked increase in the accuracy of these lower bounds as more

upper bound information is included. Of particular note are the cases

where ya >> 1, where the bounds based on the variational upper bounds

are very poor, indicative of the poor performance of the upper bound

techniques in these highly discontinuous cases. Clearly, the use of

improved test functions with appropriate interface behavior may be

worth the additional computational cost in such cases. The use of

integral equation variational methods would also be of aid here, as is

seen in Chapter 3 and Chapter 6. The best possible lower bounds shown

in Tables 5.3 and 5.4 Show how much better the lower bound technique

could perform with good upper bounds, and thus provide a measure of

how poor the upper bounds are.

Tables 5.5 and 5.6 allow comparison of the primal and dual upper

bounds for the first seven eigenvalues. In Table 5.5, it is seen that

the primal bounds are better than the dual, with the exception of the

highest frequency estimated in each line. However in Table 5.6, it

is seen that the primal is better for the odd numbered eigenvalues,

the dual for the even. Similar analysis was applied to many combina-

tions of material properties and wave numbers with the result that

neither formulation was ever superior for the bounding of the whole
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spectrum, further there were cases where the performance of primal

and dual formulations were the opposite of that noted in Tables 5.5

and 5.6.

Also of note in Tables 5.5 and 5.6 is the performance of the

lower bound technique, particularly when the better upper bounds were

selected from the primal and dual bounds to obtain the lower bound

sets. When these lower bounds are compared in accuracy to the best

possible lower bounds, it is seen that, for at least the first half

of the number of frequencies estimated, the performance of the lower

bound technique is excellent. This reflects the accuracy of the

correspOnding upper bounds in this case with a relatively mild dis~

continuity, ya = 0.1.

The results of more highly discontinuous cases which are not

here tabulated are quite poor due to the inability of the Rayleigh-

Ritz method based on the differential equation form with smooth test

functions to cope with the important interface conditions and con-

comitant curvature changes in the true eigenfunctions. The mixed

variational scheme of Nemat-Nasser [13] deals more successfully with

these cases, and upper bounds he obtained, used in conjunction with

the lower bound technique developed in Chapter 2, give better results.

It is quite possible however that the more standard upper bound methods

using either the integral equation formulation or improved test func-

tions could perform as well as has been seen in Chapter 3 and Chapter 6.

These methods were not tested on the case of harmonic waves.
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CHAPTER 6

FREE VIBRATIONS OF A CIRCULAR MEMBRANE

WITH RADIALLY STEPPED DENSITY

6.1 Introduction and Literature Review

In this chapter, integra1 equation methods are app1ied to the

prob1em of determining the free vibration frequencies of a circu1ar

membrane with a discontinuous density. Upper bounds to the frequencies

are found by applying Ga1erkin's method to both the differentia1 and

integra1 equation forms of the eigenva1ue prob1em. Lower bounds are

obtained by use of the trace identity and the aforementioned upper

bounds. The actua1 eigenva1ue equations are derived and soTved numer-

ica11y to assess the various bounds for their accuracy.

Considerab1e attention has been paid to the re1ated prob1em of

p1ates of stepped thickness in the acoustics 1iterature [38-40]- The

motivation behind this concern is the exce11ent directiona1 radiative

properties of such p1ates when used as high frequency' transducers.

The ana1ysis of such p1ates by integra1 equation methods is possible,

but much more comp1ex than that of membranes just as the beam prob1em

is more comp1ex than the string prob1em. (See Chapters 3 and 4.) The

membrane prob1em is chosen then as a more tractab1e i11ustrative case.

One numerica1 resu1t on the stepped membrane prob1em was found

in Krein's artic1e [31] on eigenva1ue extremization, where bounds were
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found for the 1east frequency ranging from 3 percent to 10 percent in

their spread. The mathematica1 theory and description of the free

vibration eigenfunctions and eigenva1ue equations have been discussed

by Vodicka [41] and De [42], a1though no numerica1 examp1es of such

membranes were given in their artic1es.

The numerica1 resu1ts in this chapter were obtained on1y for

the axisymmetric modes of an axisymmetric circu1ar membrane of two

materia1s. The iterated kerne1 traces were found for modes with any

number of noda1 diameters, however. Bounds for the spectra and the

actua1 eigenfrequencies were found for a number of interna1 radii and

density ratios. The resu1ts suggest that the integra1 equation

methods again give superior resu1ts in the upper bounds to the more

traditiona1 differentia1 equation bounds and have the advantage of

supp1ying 1ower bounds as we11, with 1itt1e additiona1 effort.

6.2 Formu1ation of the EigenvaTue Prob1em

Sma11 amp1itude vibrations of a membrane c1amped at its boundary

may be mode11ed by the boundary va1ue prob1em

2

TVZN = p g—g- on domain D, t 3.0

at (6.1)

w = 0 on boundary 30, t 3_0

where the boundary curve is piecewise smooth, 0 is simp1y connected,

T is the membrane tension, p the membrane density and w the transverse

disp1acement.

E
n
m
u
.
-
_
‘
_
3
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Under the assumption that the tension and density are time-

independent, the tempora1 and spatia1 dependence of the disp1acement

may be separated by assuming a product so1ution

N(X,t) = w(X)f(t) (6.2)

This yie1ds an eigenva1ue prob1em in the separation constant w2

2
f + m f = 0
tt

(6.3)

Tvzw + wzpw = 0 on D

w = 0 on 80

In the particu1ar case of a circu1ar membrane under constant

tension and with a radia11y symmetric density, the anguTar and radia1

dependence of the response may be further separated by assuming a

product so1ution

W(r,6) = U(r)9(6) (6 4)

This yie1ds a separation constant n2 and two sets of ordinary dif-

ferentia1 equations

2

g" + n 9 = 0

9(0) = 9(2w) (6.5)

g'(0) = g'(2w)

and



(6.6)

u, ru' continuous

where the primes denote differentiation with respect to the appropriate

variab1es.

The system for g yie1ds a so1ution for n2, name1y,

The parameter m represents the number of noda1 diameters in the

corresponding free vibration prob1em.

For notational convenience define the 1inear differentia1 operators

Lm by

2

L [u] = ~(ru')' + m—-u, m = 0, 1, 2, ... (6.8)
m r

Thus, separation of radia1 and angu1ar dependence 1eads to a countab1e

set of eigenva1ue prob1ems for the modes of vibration of the radia11y

symmetric circu1ar membrane of radius R:

Lm[u] = wzrp(r)u/T, m = 0, 1, 2, ...

1im ru(r) = 0, u(R) = O, u, ru' continuous (6.9)

r+0

6.3 Integra1 Equation Formu1ation

System (6.9) may be recast in the form of integra1 equations by

finding the corresponding Green's functions, that is. by soiving
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Lm[6m(r;5)] = G(r-S)

1im rG(r;s) = 0; G(R;s) = 0 (6°10)

r+0

Then the eigenvalue problems can be written

2 R
u(r) = 9%— f0 Gm(r;s)so(s)u(s)ds (6.11)

This problem may be cast in a form with a symmetric kerne1 by

multiplication by erlfl and the substitutions

v(t) = JFSTFT U(t) and km(r.S) = /FETFT'Gm(r;S) J§BT§TYT (6 12)

yielding

W) = ,2 r0“ km<r.s)w<s)ds (6.13)

The equation in this form is amenable to the techniques of

analysis described in Chapter 2, and, as will be seen in the following,

the kernel is symmetric and square-integrable.

6.4 Sample Problem

In the sequel, the problem of a circular membrane with a stepped

radia1 density will be analyzed; numerical results are presented for

the axisymmetric modes with m = 0.

Suppose the membrane density is given by

01 0 < t < A

0(t) = (6.14)

.02 A < t < R

The average density 6 is then given by
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J7 IOZ" IOR tp(t)dtd6

nR

2

(A201 + (1'A2)02)/A

The problem is cast in terms of dimensionless parameters by the

substitutions

r = t/R, a = A/R. 6 = 02/0]. d = 0/3. v2 = wZ'E/T

giving

uz+mn¥n4 0<r<a

d”) z 2 2
9/(6 + 6(1-a )) a < r < 1

and

_ . . L = 2
Lm[u] - ~(ru ) + r, u v rd(r)u

The Green's functions for the operators Lm are

-lns 0 §_r < s §_1

Go(r,s) =

-lnr 0 5_s < r < l

and for m > 0

m(S-lll

The L2 norms of the corresponding kernels are given by

||km||2 = [0‘ 4} rd(r)Gm(r,s)sd(s)dsdr

(6.19)

(6.20)

(6.21)
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For the density d(r) given above, these norms are

  

2
d

((1.0))2 = 7%f-{i +-62 - 1)[(1 - a4) - 864(1na)2 + 4641na]

+ 80(1 - e)[a2(1 - 82) - 264(1na)2 + 2641naj} (6.22)

2 d 2
||k1l| = T%—-{l + (62 — l)[6(l - a4) - 8(1 - a6) + 3(1 - 88)]

4 2 4
+ 66(1 - e)a [241na - 24(1 - a ) + 6(1 - a )1} (6.23)

and for m > 1

d 2 2 4 2m+4
llk I12 = 1 { m + (62 _ ])[1-a - 1''a

m 4m2(m+l) 4(m+l)(m+2) 4 m+2

4m+4 2- 2m
+

'T4fi%IT) 3 T 9(1'9)a 2m 2[] 2-2m ‘ (1‘32)

2m+2
l--a

2m,2 l} (6.24)

Note that in these formulae as a approaches 0 or 1 or as e approaches 1

these formulae reduce to those of the continuous case, namely

||km ((2 /(16 (m+1)2(m+2)); m 0, 1, 2, ... (6.25)

vzrdu have as their solutionsThe differential equations Lm[u]

linear combinations of Bessel functions of order m in each material

subinterval, namely
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C J (or) + C Y (or) 0 < r < a
u (r) = 11 m 12 m (6.26)

C21Jm(8r) + szYm(Br) a < r < l

where a = J3; °v and B = 73; ~v.

Using the four conditions, two boundary and two interface

lim rum(r) = O, um(l) = 0

  

r+0

.
(6.27)

um, rum continuous at r = a

a nontrivial solution is obtained when 0 satisfies the equation

( ) J$(aav) Jm(a/§8v)Ym(a/8v) ~ Ym(a/88v)dm(a/8v)

J aav = - I , . ,
m ,6- Jm(6/666)vm(6/6'6) — vm(6/666)am(6/66) (5 28)

In the continuous case, these reduce to the familiar equations

J (v) = 0, m = 0, 1, 2, ... (6.29)

Upper bounds to the eigenvalues may be obtained by applying

Galerkin's method to either the integral or differential form of the

problem. For the problem at hand, both methods were applied, using

approximate eigenfunctions of a form appropriate for the axisymmetric

modes:

n

u = Z aisininr/inr in the differential form (6.30)

1

or

w = er(r) u in the integral form. (6.31)
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The matrices for the method, in terms of the usual L2 inner product

are

(H)..

(M)..

(G)

I
I

A 2 J
-

C V

1.1 1 J

1
1

A

‘
6

a
n
.
.
.

€
— V

1
1

< rd(r)ui, u. > (6.32)

1.] 3

'ij <¢1,K¢j>,

The approximating eigenvalue problems then are:

Ha

and

Ma

32Ma in differential form

(6.33)

326a in integral form.

6.5 Numerical Results

The numerical results in this section include the actual eigenvalues

and both upper and lower bounds obtained by implementing the following

procedure on the Prime 750 computer of the Case Center for Computer

Aided Design at Michigan State University:

1. Generate increasing sets of upper bounds and corresponding

lower bound sets from the Galerkin methods and equation (2.9).

Use the bounds generated to solve the actual eigenvalue

equation by

a. finding an interval where the equation has a sign change

b. applying the secant method until the root is found

Use the actual eigenvalues to generate the best possible lower

bounds obtainable from equation (2.9) and to compute relative

errors.
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Table 6.1 contains lower bounds to the least frequency for a number

of internal radii and density ratios. These bounds were obtained from

the kernel norm alone, using none of the upper bound information.

Tables 6.2 through 6.4 contain bounds to the spectrum of 3 cases

of internal radius and density ratios, as well as the actual eigenvalues

and percent relative errors of the bounds. The numbers tabulated are

the upper bounds from both the integral and differential equation based

Galerkin method, the lower bounds based on the integral upper bounds.

and the best possible lower bounds, based on using the actual eigenvalues

as bounds.

6.6 Discussion of Results

Examination of Table 6.2 shows that the upper bounds from the

integral equation formulation are clearly superior to those from the

differential equation formulation. However, both methods have dif-

ficulty coping with highly discontinuous cases. The superior per-

formance of the integral formulation stems from the iteration of the

test functions with the kernel, yielding essentially improved test

functions having more of the properties of the actual eigenfunctions

at the interface.

Examination of Table 6.1 shows that the preliminary lower bound

based on knowledge only of the kernel norm are quite accurate, with

relative errors ranging from 0.4 percent to 2 percent in the cases

studied. The accuracy of this bound depends on the spectral structure,

and for the cases studied the least frequency is well separated from

the higher frequencies, yielding good lower bounds.
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Examination of Tables 6.2, 6.3 and 6.4 shows that accurate lower

bounds can be obtained provided that good upper bounds are used. The

accuracy of the lower bounds for higher frequencies depends primarily

on the accuracy of the upper bounds to the lesser frequencies. Given

a good upper bound to the lower frequencies, the effects of eigenvalue

spacing can be seen, especially in Table 6.2, where the actual fre-

quencies come in closely spaced pairs after the isolated initial

frequency. The lower bounds to each of the close pairs are of com-

parable accuracy,though the first lower bound obtained for the higher

of the frequencies is better than the comparable bound for the lower

of a pair; this is the effect of clustering on lower bound accuracy.
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m = # of nodal diameters

FIGURE 6.1 Circular membrane with radially stepped density
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TABLE 6.1

Bounds to the Least Frequency of the

Two-Piece Circular Membrane

 

 

10 3 1/3 1/10

v 2.43282 2 42571 2 33789 2 09196

UD 2.44599(+.54) 2.43715(+.47) 2.34503(+.30) 2.16144(+3.3)

'1 UI 2.43496(+.09) 2.42765(+.08) 2.33848(+.03) 2.10638(+.69)

L0 2.40815(~1.0) 2.40067(~1.0) 2.30659(~1.3) 2.05683(-1.7)

v 3.02808 2.83469 1.91760 1.61114

UD 3.39475(+12) 2.97186(+4.8) 1.92658(+.47) 1.63398(+1.4)

.5 UI 3.06703(+1.3) 2.85978(+.89) 1.91852(+.05) 1.61259(+.09)

L0 3.00730(~.7) 2.804397(~1.1) 1.90554(~.63) 1.60399(~.44)

v 3.72529 3.09024 2.01280 1.84025

UD 4.36498(+17) 3.18748(+31.) 2.01352(+.04) 1.84090(+.04)

.7 UI 3.88142(+4.2) 3.11528(+.81) 2.01288(+.004) 1.84027(+.001)

L0 3.67186(~1.4) 3.03337(~1.8) 1.99646(~.81) 1.82659(~.74)

v 3.87949 2.81390 2.25019 2.19328

UD 3.92151(+1.1) 2.82612(+.43) 2.25681(+.29) 2.19952(+.28)

.9 UI 3.89011(+.27) 2.81613(+.08) 2.25132(+.05) 2.19434(+.05)

L0 3.80068(-2.0) 2.77939(~1.2) 2.22614(~1.1) 2.17003(-1.1)

v 3.28768 2.62759 2.32573 2.29739

UD 3.30066(+.39) 2.63647(+.34) 2.33318(+.32) 2.30471(+.32)

.95 UI 3.29001(+.07) 2.62913(+.06) 2.32701(+.06) 2.29865(+.05)

L0 3.24764(-1.2) 2.59826(~1.1) 2.30030(~1.1) 2.27230(~1.1)

 

= actual least frequencyV

UD = upper bound, differential formulation

UI = upper bound, integra1 formulation

L0 = truncation lower bound, Equation 2.8
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CHAPTER 7

SUMMARY AND SUGGESTIONS FOR FURTHER STUDY

7.1 Summary

As has been seen in the previous chapters of this dissertation,

integral equation based approximate methods are quite effective in

bounding the eigenvaluesof systems with discontinuous coefficients.

The integral equation formulation of the Galerkin method leads

to superior upper bounds to those obtained using the differential

equation formulation. It is reasonable to expect that the results of

other approximate methods applied to the differential formulation would

be improved by using their integral equation formulations as well.

A further advantage of analyzing eigenvalue problems in integral

equation form is the availability of the readily computed corrected

truncation lower bounds from the trace identities. These bounds

complement any set of upper bounds and by their convergence behavior

give insight into the distribution of the spectrum as well.

There are, of course, some deficiencies in the integral equation

approach. Of primary importance is the fact that in truly multi-

dimensional problems over finite regions the Green's function nec~

essary for integral equation formulation cannot be expressed in a closed

form. Thus it is difficult to transform the differential equations to

integral equations in a form amenable to computation. Secondarily,
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the numerical roundoff and truncation errors inherent in applying

the corrected truncation lower bounds from the trace identities on

machines with finite precision must be dealt with effectively. This

latter problem can be addressed by careful programming and the use

of high precision arithmetic.

7.2 Suggestions for Further Study

The problem of eigenfunction approximation in discontinuous

systems by integral equation methods is certainly deserving of con~

sideration. Particularly of interest here is the application of the

iterated Galerkin method [27], where the eigenfunctions are expressed

in an expansion of test functions of the form K¢i rather than ¢i’

using the same coefficients as those determined for the expansion in

the ¢i’ That is, if the Galerkin expansion of the nth eigenfunction

is given by

A

w = zani¢i’

the iterated Galerkin expansion is given by K0", or

wn = An zaniK¢i'

The results of the latter expansion will generally be superior to that

of the former, since iteration with the kernel gives functions which

better satisfy the conditions at material interfaces than non-iterated

functions. Further, this method requires little extra computation,

since the K¢i must be determined in order to obtain the Galerkin

matrices.
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Also of interest in both eigenvalue and eigenfunction determina-

tions would be the results of other approximate methods in integral

equation form such as collocation [26,43], the Nystrbm method [44,45]

or finite element type approaches using hybrid elements appropriate

for the material properties of the various subregions [10].

Most importantly, these integral equation based methods should be

extended to problems in truly multidimensional systems where the

Green's function may only be approximately determined. Likely

candidates for approximation of the Green's function in complicated

geometries are truncations of series representations (appropriate for

Galerkin type methods) or finite difference or finite Element static

impulse responses (appropriate for collocation or Nystr6m methods).

Also possible would be experimental determinations of the Green's

function. It should be noted that the use of such procedures is

equivalent to placing additional constraints on the dynamics of the

systems in question and thus lower bounds which are based on traces

of approximate kernels with generally raised eigenvalues need not be

lower bounds to the true eigenvalues of the systems in question. They

however are still of some use in assessing the accuracy of the upper

bounds to the eigenvalues of the approximate kernels.

At the present stage of development, the user of the methods of

this dissertation needs a fairly 50phisticated understanding of the

methods of integral equations and how their problem can be placed in

the context of linear integral equations with time invariant boundary

conditions. The software development for the example problems of this
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project used many common modules, but required ag_hgg_sections for

the various Green's functions, Galerkin test functions and inner product

matrix evaluations. In addition, the iterated kernel traces that

were found either by hand or symbolic manipulation computer programs

in a parametric form were programmed in as formulae rather than being

numerically determined. Further development of these algorithms so

that they could be implemented on a computer for a non-sophisticated

user thus would also be a fruitful area of investigation.
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