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ABSTRACT
INTEGRAL EQUATION METHODS FOR EIGENVALUE ESTIMATION
IN SYSTEMS WITH DISCONTINUQUS COEFFICIENTS
By

John Patrick Spence

Systems with abruptly varying physical properties occur in many
contexts, both natural and artificial. Of particular interest is the
solution of eigenvalue problems which arise in the mathematical models
of composite systems. The analysis of such problems hinges on the
development of effective and appropriate approximate methods, since
exact solution of eigenvalue equations is only possible in the simplest
of discontinuous systems. It has been found that traditional techniques
which are quite effective in determining the dynamic characteristics
of systems with slowly varying properties do not perform nearly as well
in discontinuous systems without the application of considerable extra
effort.

In the present work, the advantages of taking an integral equation
approach to problems in eigenvalue estimation in discontinuous systems
are investigated. The inherent smoothing properties of integrals sug-
gest that methods based on integral equations should be quite effective
in handling systems with discontinuous material properties.

It is found that the integral equation formulation of the Galerkin

method leads to upper bounds for the eigenvalues which are superior to



John Patrick Spence

those obtained from the traditional differential equation formulation.
Furthermore, the usually unavailable lower bounds to the eigenvalues
may be readily computed by the use of trace identities involving the
kernel of the integral equation and infinite sums of powers of the
eigenvalues. These lower bounds complement any set of upper bounds
and, by their convergence behavior, give insight into the distribution

of the generally irregular spectra of discontinuous systems.
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INTRODUCTION

Systems with abrupt changes in physical properties occur in many
contexts in nature and engineering. Among the naturally occurring
systems are the layered structure of skin and teeth, the lipid bilayer
biological membranes which separate regions of differing solute con-
centrations, and rock layers in the earth. Problems of engineering
interest include vibration and buckling of stepped shafts, wave pro-
pagation through composite media, cooling of nuclear fuel rods and
redistribution of impurities in semiconductors.

Exact solution of the eigenvalue problems posed in the mathematical
models of discontinuous systems such as these are only possible in
the simplest of cases. Thus the analysis of such systems depends on
the development of appropriate approximate methods. It has been found
that traditional techniques which are quite effective in determining
the eigenvalues of systems with slowly varying properties do not
perform nearly as well in these discontinuous systems, unless con-
siderable additional effort is applied. Further, accurate lower
bounds to the eigenvalues are generally unavailable from these methods.

In this dissertation, a series of eigenvalue problems arising
from the application of the technique of separation of variables to
linear partial differential equations with linear time invariant
boundary conditions are analyzed. These problems are all essentially

one dimensional, but the methods used are not restricted to cases which



are or can be made to be such. As shall be seen in the following
chapters, the crux of the integral equation formulations prerequisite
to applying the methods of this dissertation lies in the availability
or derivability of a static impulse response or Green's function.

In one-dimensional cases over a finite region, the Green's functions
may be found in a closed form which makes the eigenvalue problems in
their integral equation form tractable by formally exact methods.
However, in problems which cannot be reduced to one spatial dimension
by techniques such as conformal mapping or separation of variables,
the Green's function itself must be approximated. This, although by
no means a trivial task, may be accomplished by methods such as finite
differences or finite elements to any desired degree of accuracy.

Once a suitably accurate impulse response has been determined, the
methods of this dissertation may be applied to find eigenvalue estimates
for the new model defined by the Green's function approximation.

Past work in the area of eigenvalue estimation includes use of
Laplace transform methods [1,2] finite difference methods [3-5],
Sturm-Liouville theory [6-9,12] and many variational schemes. Among
the variational approaches taken are Rayleigh-Ritz schemes using both
smooth, non-smooth and piecewise defined test functions [6,7,10-17,19]
and saddle point variational principles [12-16,19]. Lower bounds for
eigenvalues have been obtained by Weinstein's method of intermediate
problems [18] and application of results from Sturm-Liouville theory
[(6,7,12] and eigenvalue extremization [7,19,20]. Some of the lower
bound results based on integral equation techniques from the third

chapter of this dissertation also appear in [20]. More detailed



expositions of the advantages and pitfalls of these methods are in the
application chapters of this dissertation.

In the present work, the advantages of taking an integral equation
approach to problems in eigenvalue estimation are investigated. The
inherent smoothing properties of integrals suggest that methods based
on integral equations should be quite effective in handling systems
with discontinuous material properties. For example integral equation
methods have proven quite effective in a problem of beam vibration with
random coefficients [21]. Variational methods, such as the Rayleigh-
Ritz or Galerkin methods, developed in the context of differential
formulations of the problems, may also be applied to the integral
equation formulation to obtain upper bounds for the eigenvalues. Add-
jtionally, lower bounds to complement the upper bounds from variational
methods may be readily computed, a distinct advantage over the dif-
ferential formulations. The lower bounds in each case are presented
in terms of basic parameters of the system in question and thus allow
a parametric analysis of the dependence of the eigenvalues on system
characteristics.

In Chapters 1 and 2 of this dissertation, the fundamental concepts
of integral equation theory and some of the results applicable to eigen-
value estimation are discussed. Chapter 3 presents the results of
applying both upper and lower bound integral equation methods to heat
conduction in a layered slab, comparing the results to those obtained
by eigenvalue extremization and differential equation variational

methods. In Chapter 4, lower bounds are computed for the frequencies



of vibration of stepped beams, and are compared to those from the
method of intermediate problems. Chapter 5 addresses a problem of
wave propagation, where lower bounds are found for the frequencies
of non-dispersive wave forms travelling normal to the interfaces of
laminated composites. In Chapter 6, upper and lower bounds are found
by integral equation methods for the frequencies of vibration of a
circular membrane with a stepped radial density. The results of this
study, together with some suggestions for further study, are summarized
in Chapter 7.

The results of this study indicate that integral equation methods
may be profitably employed in the analysis of the dynamics of composite

structures.



CHAPTER 1
FUNDAMENTALS OF INTEGRAL EQUATIONS

This chapter presents the basic definitions and theorems of the
theory of linear integral equations used in the subsequent chapters
of this dissertation. The particulars of the integral equation based
techniques used to bound eigenvalues are presented in Chapter 2. For
a more detailed exposition of the theory of integral equations, see

the books of Cochran [22], Tricomi [23] and Stakgold [24].

1.1 Basic Concepts of Linear Integral Equation Theory
Generally speaking, any equation which incorporates an unknown

function under one or more signs of integration is an integral equation.

Foregoing technical assumptions concerning smoothness, two particular

classes of interest are the Fredholm integral equations of the first

kind

x) = Lkx,y)e(y)dy (1.1

and of the second kind

8(x) = w(x) *+ & L2k(x,y)o(y)dy (1.2)

In these equations, ¢ is the unknown function, A is a complex parameter,
and ¥ and k are known functions. The function k(x,y) is called the
kernel of the integral equation. Notationally, the independent variables

are suppressed and the integral is written as



Ko = £2k(x,y)0(y)dy.

Thus the Fredholm integral equations in operator form are written as
Ko =y

and (1.3)
b =y + AK¢.

This operator notation is reminiscent of that found in linear algebra;
in fact, much of the terminology and theory are analogous. Matrix
algebra is easily imbedded in linear integral equation theory, since
summation over a discrete index may be considered as integration of
step functions over a continuous index. Thus the definitions and
theorems that follow may be viewed as generalizations of the familiar

notions of linear algebra.

Definition 1.1 The complex valued functions f(x) and k(x,y) are

said to be square-integrable or LE_if the quantities

1911 = 21600 1 Paxy /2

and

[KIT = (2P k(x,y) |Payaxt !/

are finite. The dependence on the domain of integration is sometimes

denoted by saying that f is nga,b}.



Definition 1.2 For f, geLZ(a,b) the complex inner product of f and g

is defined by
_ /b =
<f,g> = [ f(x)g(x)dx
where the superior bar denotes complex conjugation.

Definition 1.3 Two Lz(a,b) functions f and g are said to be grthogonal
if <f,g> = 0.

Theorem 1.1 The complex inner product <-,+> satisfies the following

properties for f, g, heLz(a,b) and a, B complex scalars:

(1) <af + Bg,h> = a<f,h> + g<g,h>
(2) <g,f> = <f,g>

(3) <f,f> > 0 with equality if and only if f = 0 (almost everywhere).

Theorem 1.2 Let f and g be elements of Lz(a,b). Then the functional

is an inner product norm; that is

(1) |Irfl| = |x] ||f]| where X is a complex scalar

(2) |If+gll < [Ifl| + [lg]l  (Minkowski inequality)
(3) ||f|] > 0 with equality if and only if f = 0 (almost

everywhere).
Further, the inner products <<, <> and norm ||-|| satsify
(4) |<f,g>] < ||f]]|lg]] (Schwartz inequality)
Theorem 1.3 Lz(a,b), under the inner product norm ||.||, contains

the 1imits of all Cauchy sequences of elements of Lz(a,b). Thus Lz(a,b)
is a Hilbert space (complete normed linear vector space with inner

product norm).



Definition 1.4 The adjoint k*(x,y) of the kernel k(x,y) is given by

the complex conjugate of the transpose of k; that is
k*(x,y) = k(y,x),

and, in operator notation, the adjoint K* of K is defined by
ke = L2k*(x,y)o(y)dy.

Remark: An alternative definition based on the L2 inner product is

that K* is the operator with kernel k* satisfying, for all

f, g ¢ L%(a,b),

<Kf,g> = < f,K*g>

Definition 1.5 The trace of the operator K with L2 kernel k(x,y) is
given by
_ b
tr(K) =<£ k(x,x)dx

Definition 1.6 The composition k of two kernels k] and k2 is given by

k(x,y) = 2k

Ky (xs2)k,(2,y)dz

and one writes in operator notation
K = K]Kz.

Theorem 1.4 Let K-I and K2 be linear integral operators with L2 kernels

k] and k2' Then the composite kernel of K = K]K2 is L2, and

L]

) 1K = KKl < 11K 11K
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Further, if ¢ is Lz(a,b) so is ¢ = K¢ with

(2) [lwll < [IK]]:

]

Definition 1.7 A kernel k(x,y) (or operator K) is said to be Hermitian
if k = k* (or K= K*). If k is real valued and Hermitian, it is said
to be symmetric. If KK* = K*K, K is said to be normal; all Hermitian

kernels have this property.

Definition 1.8 A Fredholm integral equation of the second kind,

¢ =¥ + XK, is said to be homogeneous if y = 0.

Definition 1.9 A value of the complex parameter X in the homogeneous
equation ¢ = AK¢ which admits only the trivial solution ¢ = 0 is called

a reqular value of K. Values of A admitting a nontrivial solution ¢ 2 0

are called eigenvalues of K, and ¢ is an eigenfunction of K belonging

to X.

Theorem 1.5 Let K be a linear integral operator with LZ kernel k(x,y).
Then:

(1) The eigenvalues of a Hermitian kernel form a non-void
finite or countable sequence {\p} of real numbers ordered
by their magnitude 0 < |A;| < |Ay| < ...; this sequence
has no finite limit point. ~ -

(2) The eigenfunctions of the Hermitian kernel k belonging
to distinct eigenvalues are orthogonal and may be chosen
to have norm 1; that is, they can be chosen orthonormal.

(3) The eigenfunctions of a symmetric kernel k may be chosen
to be real.

(4) The finite number of eigenfunctions belonging to any distinct
eigenvalue X of a Hermitian kernel k may be chosen to be
orthonormal.



(5)

1.2

10

If ¢1, ¢2, ... ¢y are distinct orthonormal eigenfunctions
of a Hermitian kernel k belonging to the eigenvalues

Xs Aps ... Ay (not necessarily distinct), then Bessel's
inequality ho?ds:

2
N[ (x)]
I s P 1K(x,y) [Py
1:

Integration of the inequality (5) leads to

()72 < 11K

1

nmo~Mm=2
—_

1

and if each eigenvalue of K, repeated according to its
multiplicity, is included in the sum, equality holds.

Formulation of Integral Equation Eigenvalue Problems

One way of obtaining linear integral equation eigenvalue problems

is to transform linear differential eigenvalue problems to integral form.

This is accomplished by using an associated Green's function which

captures both the internal and boundary behavior of the underlying

differential equation in terms of the response to unit point excitation

[25]. For example, examine the following linear differential eigen-

value problem:

Llu]
Blu]

AM[u] on domain D
(1.4)

0 on boundary 9D.

The operators L, M, and B are linear and do not depend on the eigen-

parameter XA. If one then can solve the associated problem

L[G(x,y)] = 8(x-y) onD
B[G(x,y)] =0 on 3D,
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where L and B are understood to operate on the X dependence of G(X,y)
and § is the Dirac delta distribution, the solution to an equation

L{u] = v, B[u] = 0 is given by
u(x) = £ 6{xy)v(y)dy.
In particular then, the eigenvalue problem 1.4 can be expressed as
u(x) = Af G(x,y)Mlul(y)dy (1.5)

In the case where L and B lead to a self-adjoint problem, that is,

if for all functions u and v (for which the equation makes sense),
<u,L[v]> = <L[ul,v>,

the resulting Green's function is Hermitian. However the integral equa-
tion 1.5 does not have a Hermitian kernel unless M[ul(y) = meu(y) for
some scalar m # 0. In the case where M is algebraic, M[ul(y) = m(y)u(y),
with m(y) > 0, the equation 1.5 can be made to have a Hermitian kernel

by the substitutions

¢() =v/m(=T u(-)

k(x,y) = /M{XJG(x,y)/m{yT] 1.6)
giving the eigenvalue problem with Hermitian kernel k,

o(x) = A k(x,y)e(y)dy
or (1.7)

¢ = AKo.



CHAPTER 2
INTEGRAL EQUATION EIGENVALUE ESTIMATION PROCEDURES

This chapter outlines the basis and mechanics of the procedures
used in this dissertation to provide upper and lTower bounds for the
eigenvalues in the examples of the subsequent chapters. Upper bounds
to the eigenvalues are obtained by the Galerkin method, which for
Hermitian kernels coincides with the traditional Rayleigh-Ritz method.
Lower bounds are computed using these upper bounds and the trace of
a related kernel. For a more detailed exposition of these methods and

many others, see the excellent book of Baker [26].

2.1 The Galerkin Method
The essence of the Galerkin method is the use of finite expansions
of the true eigenfunctions in a series of appropriately chosen known
functions. That is, a true eigenfunction y of the eigenvalue problem

¥ - AKp = 0 is approximated by
Y= zaj 05 (2.1)

where the aj areas yet undetermined constants and the ¢j are
linearly independent functions. If the approximant is substituted into

the expression Y - AKy one obtains an error term r(x),

N

V- AKD = r(»). (2.2)

12
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Various minimizations of the error term lead to the expansion approxima-
tion methods. In the general Galerkin method, the constants aj and A
are found by requiring that the error term be orthogonal to the test
functions used under a weighted inner product with known positive L2

weight w(x) defined by

<f,g>, = é?f(x)ﬁ(x)w(x)dx.

One possible choice of w is w(x) = 1, leading to orthogonality under
the usual L2 inner product.

If Equation 2.2 is multiplied by 6} and integrated over the domain,
one obtains

§aj<¢j,¢i> - §3j<K¢j’¢i> = <ry;>

for each i =1, 2, ... n. If the matrices A and B are defined by

Aij = <¢j’¢i> (2.3)
<K¢ja¢i>

requiring that the error term be orthogonal to the test functions

used leads to the general matrix eigenvalue problem for the a; and X
(A - %B)a = 0. (2.4)

The choice of linearly independent test functions guarantees that A is
nonsingular. Further, it is clear that A is Hermitian, since by

Theorem 1.1,

<¢j’¢i> = <¢is¢j>'
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If the kernel k(x,y) is Hermitian, the matrix B is as well, since

<K¢j’¢i> = <¢j’K*¢i> (Definition 1.4)
= <¢j’K¢i> (Definition 1.7)
= <K¢i’¢j>' (Theorem 1.1)

That the approximate eigenvalues obtained by the Galerkin pro-
cedures are upper bounds in magnitude to the actual eigenvalues is a
consequence of the Poincare characterization of the eigenvalues, namely

max min
S(n) ¢€S(n)

= <K040> /<056
n

2

S(n) ranges over all n-dimensional subspaces of L®. This result

where

is stated in the following theorem proven in Baker [26], page 321.

Theorem 2.1 Let k(x,y) be a Hermitian L2 kernel, ¢], ce ¢n linearly
independent L2 functions, and A and B the Galerkin matrices from
Equations 2.3a and 2.3b . Then if X:(i;) is the rth positive (negative)
eigenvalue satisfying (A - AB)@ = 0, then

. - ot - - .
provided A, Xr(kr,ﬁr) both exist.

A choice of a complete sequence of test functions leads to the
monotone convergence of the approximate eigenvalues to the actual and
thus completeness in L2 is a desirable property for the test functions
chosen to have. Further characteristics of the test functions leading
to generally better results are that they share as many of the known

properties of the true eigenfunctions as possible, such as boundary
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conditions, number of zeros in the interval, and, of some consequence
in discontinuous systems, smoothness conditions at internal points.

It should be noted that the convergence of the approximate eigen-
functions as more terms are added is in a mean-square sense to the
actual eigenfunctions. In cases where there are jumps in the actual
eigenfunctions (or their derivatives), the use of continuous (or
smooth) test functions can lead to poor uniform approximations. These
effects are ameliorated by the use of K¢j rather than the ¢j in the

eigenfunction approximations; the iterated Galerkin method [27].

2.2 Lower Bounds by Trace Identities
Define the iterated kernels k(n)(x,y) by the recursion

KM (x,y) = K(x,y)
(2.5)

k("”)(x,y)

QPk(x,z)k(n)(z,y)dz.

Then if k is L2 so are each of the k("). Further, the following theorem

holds:

Theorem 2.2 ([22], pg. 51) Let k(x,y) be an L2 kernel with spectrum
0 <Al < [xp] < -.. . Then for n> 2,

tr(K(n)) = é?k(n)(x,x)dx = 3 xi'".
i=1

Of particular interest is the case when k is Hermitian and positive

definite. In this case truncation of the series leads to

tr(K(n)) = A" A.-n, i=1,2, ...
=7 =
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giving the lower bound

-1/n

g 2 (er(x(My) (2.6)

This bound is of course most accurate for the least eigenvalue.
If a set of M upper bounds 7% is available, then the inequality

(2.6) may be improved considerably:

er(k(™y = 3 x].’"
i=1
M
> A T
- i#m
M
St T
i#m
giving the lower bounds
(n) M n -1/n
Ap > (tr(k*) - A ) (2.7)
i#m

This bound differs from each m, and is improvable by obtaining either
more or better upper bounds.
In this dissertation, the bounds obtained from the particular case

of n=2 are used and are denoted by

A0 = (e (x(2)))1/2 (2.8)
and
M
AM s ek L pox 77V, (2.9)

ifm
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and are called the truncation lower bound and the corrected truncation

lower bound respectively.



CHAPTER 3
STURM-LIQUVILLE PROBLEMS WITH DISCONTINUOUS COEFFICIENTS

3.1 Introduction and Literature Review

This chapter addresses the problem of eigenvalue estimation for
Sturm-Liouville problems with discontinuous coefficients in the context
of diffusion in a laminated medium. Other problems of the Sturm-
Liouville form that have been the subject of much recent attention
include vibration problems in geophysics [8,9,28], buckling of stepped
beams [12,18], and harmonic waves in layered composites [6,10-15,19],
among others. The latter problem is discussed in Chapter 5 of this
dissertation.

Considerable emphasis has been placed on the development of compu-
tational schemes for estimating the eigenvalues and eigenfunctions for
such problems. These efforts have met with serious difficulties due to
the non-smoothness of the coefficients and the resulting spectral
irregularities. Early attempts were focused mainly on variational tech-
niques, with emphasis on obtaining upper bounds for the eigenvalues.
These techniques include Rayleigh-Ritz approximation using smooth test
functions and improved test functions with appropriate derivative dis-
continuities [7,12,19]. Also in the variational mode, mixed variational
principles where two field quantities are independently varied have been

employed [7,12,19]. Alternative methods, such as finite difference

18
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and finite element methods, which lead to matrix eigenvalue problems,
have been investigated [3-5. A direct variational scheme employing
piecewise polynomial eigenfunction approximation has also been used
[17]. More recently, results from classical Sturm-Liouville theory

and eigenvalue optimization techniques have been adapted for these
problems to obtain upper and lower bounds for the eigenvalues [7,12,19].
The most valuable contribution of [7] was the reduction of the general
Sturm-Liouville problem to that of a string with discontinuous density.
In this simpler form, the various techniques are more easily applied
and give better results for a comparable amount of effort. Lower
bounds have also been found by a variation on Weinstein's method of
intermediate problems [18]. A complete theoretical discussion of dif-
fusion in laminated media under general linear interface conditions has
been set forth in [29], with an extensive bibliography.

In this chapter, integral equation methods are applied to a problem
of heat conduction in a layered slab with fixed temperature boundary
conditions and perfect thermal contact interface conditions. Lower
bounds to the least eigenvalue obtained using the iterated kernel trace
are compared to those based on eigenvalue extremization discussed in
[19]. Upper bounds are generated using Galerkin's method applied to
both the differential and integral equation formulations of the problem.
These upper bounds are compared in terms of their accuracy and are also
used to generate the sequences of lower bounds for higher eigenvalues
obtained by correction of the truncation of the series summing to the
iterated kernel trace. The actual eigenvalues,obtained by numerical

solution of the actual transcendental eigenvalue equation, are used
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to compute errors in the bounds. Numerical results are presented for
a variety of material property combinations, and sources of error in
the approximate methods are discussed. The results suggest that
integral equation techniques, with their inherent smoothing properties,
may be particularly appropriate for investigation of the problems of

concern here.

3.2 Eigenvalue Problem Formulation
The general partial differential equation modelling diffusion

with no internal sources is

= o OU
Ve(kVu) = ¢ T (3.1)

In the one-dimensional problem of heat conduction in a layered slab
with fixed surface temperature and perfect thermal contact between
the layers, separation of spatial and temporal variables leads to the

Sturm-Liouville problem:

(k(x)u'(x))* + X c(x)u(x) =0 0<x<lL
u(0) = u(L) =0 (3.2)

u(x), x(x)u'(x) continuous for 0 < x < L

The coefficient functions k and c, representing conductivity and
capacity respectively, are piecewise continuous positive functions
with step discontinuities at the interface locations Xps Xps +e Xpo
It has been recently demonstrated [7] that conversion of the
problem (3.2) to Liouville normal form leads to computational advan-

tages. Thus, let
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and (3.3)
v(t) = u(x(t)), f(t) = T2e(x (t))c(x(t)).
Then the eigenvalues of the system (3.2) are the same as those of

V+Afv =20 0<t 5_1

v(0) =v(1) =0 (3.4)

v, v continuous for 0 < t < 1

where the superposed dot represents differentiation with respect to

the new independent variable t. The coefficient function f(t) is
positive and bounded for 0 < t < 1 and admits step discontinuities at
the points ti = T'] {fi K-](S)dS. The effect of the transformation

has been to remove the discontinuous coefficient « from its position
subject to differentiation in the system (3.2) and move the locations
of the discontinuities. When standard variational methods using smooth
test functions are applied to the transformed system (3.4), the re-
sults are equivalent to those obtained using improved test functions
satisfying the condition of continuity in flux, xu', with less computa-
tional effort. A further advantage of this form is the availability

of lower bounds to the eigenvaluesbased on eigenvalue extremization in

vibrating strings.
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3.3 Integral Equation Formulation
The eigenvalue problem (3.4) is readily transformed to the integral

equation
v(t) = & f G(t,s)F(s)v(s)ds (3.8)

where

G(t,s) = - (3.9)

is the Green's function, obtained by solving

2
- 36 (t.6) = s(t-s); 6(0,s) = G(1,s) = O. (3.10)

3t2

Note that if we view the kernel of the integral equation as
k(t,s) = G(t,s)f(s) (3.11)

then the kernel is not symmetric in s and t. However, we may obtain
an integral equation with symmetric kernel by multiplying (3.8) by
Yf(t) and thus obtaining the equivalent eigenvalue problem

w(t) = A Jb] K(t,s)u(s)ds = AKy (3.12)

where p(t) = /F(t) v(t) and k(t,s) = /F(t) G(t,s) /F(s). Equation (3.12)
is a Fredholm integral equation of the second kind with a kernel which,
although discontinuous in s and t, is real, symmetric, square-integrable
and continuous in the mean [30]. The trace of the second iterate of
this kernel, which equals the L2 norm of the kernel, is given by the

double integral
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er(k(2)) = g1 gl f(0)62(t,5) F(s)dsdt (3.13)

In the case of piecewise constant f(t), this equation involves easy
integrations of polynomials of degree < 3 in s and t over appropriate
subregions of the unit square, and are easily carried out either by

hand or numerically.

3.4 Lower Bounds by Eigenvalue Extremization
Lower bounds for the eigenvalues of (3.2) have been obtained in
[19] based on the normal form (3.4) and the results of Krein [31] on
eigenvalue extremization. In [31], Krein is concerned with the problem
of maximizing and minimizing the eigenfrequencies uﬁ(f) of a string
of variable density f, as in (3.4), subject to the constraints on f of

a fixed total mass
[f(t)dt = M (3.14)
and various bounds on the density, such as

0<f<H with H>M
(3.15)
0<h<f with h<M

Under conditions (3.14), (3.15b) the minimum A is attained by the

singular function
f(t) = h + (M-h)&(t-1/2) (3.16)

which may be viewed as a uniform string with a bead at the center.

Under the conditions (3.14), (3.15a) the minimum N is attained by
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H o |2t - 1] < WH
f(t)

(3.17)
0 otherwise.

The maximizing densities for the higher eigenvalues An have n equally
spaced beads or dense intervals at the antinodal points of the nth
eigenfunction of a uniform string. Thus we see that Krein's work
leads to consideration of problems directly related to the investiga-
tion of eigenvalue problems with discontinuous coefficients. This
relationship was exploited in [19] and their development follows.

Under the conditions (3.14), (3.15a), Krein [31] has shown that
M@ (3.18)

and under (3.14), (3.15b)

2
Ap(F) 3‘%)((%) (3.19)

where x(d) is the least positive root of the transcendental equation
/X tan /x = d/(1-d) (3.20)

The lower bounds may be made explicit on obtaining bounds for the

lowest root. One such bound, obtained by Krein [31], is
x(d) > d[1 - 3+ (GF + d?1/? (3.21)
m
This result, in conjunction with (3.18), was utilized in [19] for n = 1.

When used with (3.19) more bounds are found; these results are pre-

sented in the next two sections on the example problem.
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3.5 Example Problem
In order to evaluate the various bounding techniques, we consider
the example of a three layer slab composed of two identical homogeneous
outer layers enclosing an inner homogeneous layer as has been treated
in [7,12,19]. The piecewise constant material property coefficients «
and ¢ are given by
K1, ¢ in 1> |2x-1| > b (outer layers)

(3.22)
Ko, Cp in |2x-1] < b (inner layer)

The problem is then nondimensionalized and parametrized by the sub-

stitutions
K C
Y =‘E§ » 8 = Eg > Ny = 1-b, ny =b,
] 1 (3.23)

and so, using the normalization <=1, c = 1, we obtain

_ -1
¢ = (n] + nze) » Cp

-1

e(n]+n26)']

i (3.24)
)71,

<p = (ng +nyy) s kp = v(ng +onyy

The corresponding dimensionless eigenvalue is then denoted by v and
given by
(3.25)

For given values of the geometric parameters n, and Nos the effect of
the material discontinuities on v is conveniently analyzed through

consideration of the dependence of v on the dimensionless material
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parameters y and 6. For continuous conductivities y = 1, while for
continuous capacities 6 =1. Henceforth, we will set b = 1/2, giving
ny =N, = 1/2 and interfaces at Xy = 1/4 and Xy = 3/4. For this

case, the exact eigenvalue equations, obtained by solving (3.2)
exactly in each material subinterval and matching temperature and flux

at the interfaces, are:

/A6 sinfv sinav - cosBv cosav = 0
(3.26)
/A8 cosBv sinav + sinBv cosav = 0
where
-1
1,147,172 12
a I (]"’6) ’ B - 4(]+e-]) .

The two separate equations for Vis Vg eeo and Vos Vgs e result from
the symmetry of the problem about the slab center.

Under this parametrization, the coefficient f(t) in (3.4) is

given by
h |t - ]I > 1
1 20 7 2(v+1)
f(t) = (3.27)
1 1
hy It -3l < 5Ty
where

3
= éY+1) =
] = h2 = Yeh].

h s
4y~ (1+0)

For this f(t), the trace of the second kernel iterate is given by
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2
tr(K(z)) = h?{_l_ - M Q(]-Q)3(3+,Q,2) +

90 ~ 144
2
Q%Oi 2(15-1022+32%)} (3.28)

where 2 = (1+Y)-] is the center interval length and Y8 is the coefficient
discontinuity ratio in the Liouville normal form.
The truncation lower bound (2.8) for the least eigenparameter v

becomes

V1 s (er(k(2)))7178, (3.29)
and the lower bounds for higher eigenparameters (2.9) becomes

CEEC GO A e i (3.30)
nym

An additional parameter to be used in the bounds from Krein [31]

is the total "mass"

2
M= pf(t)dt = ﬁ%})— (3.31)

Thus from (3.18) and (3.19), using (3.20) and the above parametrization,

we obtain the lower bounds

1/2
dny 4 11, 4, 2,-1/4
2 [ -3dt Gt ) &) (3.32)

where d is given by one of the four expressions:

- 1497

S

if Y6 > 1 under f.§ H = h2,
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1+Y']

d = BT ifys > 1 under f > h = h],
d=—0_ 5fve <1under £ <H=h,,
T < < ]
y
or
d = Yo, ifyo < 1 under f > h = h,.

1+6

3.6 Numerical Results

In order to assess the accuracy and nature of the error involved
in the lower bounds based on the iterated kernel trace, a number of
bounds were computed for various combinations of material properties.
The Tower bounds for the least eigenvalue based on truncation of the
series at the first term (3.29) are shown in Table 3.1, with the best
Krein bound (3.32) and actual eigenvalues from (3.26) for comparison.
Upper bound sets from the Galerkin method using trigonometric test
functions in the differential and integral formulations are presented
for four cases, together with the corresponding lower bound sets from
(3.30), in Table 3.2. An additional study of the progressively improv-
ing upper and lower bounds obtained as the number of test functions
used in the integral Galerkin method increases appears in Tables 3.3
and 3.4. Also in these tables, the best possible lower bounds from
(3.30), where the actual eigenvalues are used as the upper bounds, are
presented for comparison purposes.

A11 of the numerical results in this chapter were computed in
double precision on the Prime 750 computer of the Case Center for

Computer Aided Design at Michigan State University.
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3.7 Discussion of Results

Table 3.1 provides a comparison between the integral equation
lower bounds (3.29) and the eigenvalue extremization bounds (3.32).

In all cases where the Liouville normal form (3.4) has a center
weighted density f(t), that is, where the product of the discontinuity
ratios, Y9, exceeds or equals one, the extremization bounds (3.32) are
quite accurate. When both ratios y and 6 exceed one, the only cases con-
sidered in [7,12,19], the integral equation lower bounds (3.29) compare
favorably with the extremization bounds (3.32). In mixed cases, where
either Y or 8, but not both, and the product v6 is less than one, the
coefficient function f(t) is no longer similar to the extremizing
densities (3.16) and (3.17) of Krein, and the corresponding bounds
(3.32) are quite poor. In these edge-weighted cases, the accuracy of
the integral equation bounds (3.29) suffer as well, but for a quite
different reason.

The error induced by using (3.29) depends on the appropriateness
of the truncation of the series that sums to the iterated kernel trace,
and thus depends on the distribution of the spectrum. The closer the
least eigenvalue is to the rest of the spectrum, the less accurate the
results of the truncation can be. Table 3.1 shows that the accuracy
of (3.29) is exceptional for highly center weighted cases with yo >> 1
and falls off for the edge weighted cases with y6 < 1. Using the
vibrations of a string as an analogy, one can interpret this phenomenon
in terms of the effect of the heavier region on the modes of vibration.
In the center weighted cases, the concentration of the mass in the

center about the antinodal point of the first mode significantly lowers
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the fundamental frequency compared to that obtained for a uniform
string. However, this mass concentration occurs about the nodal point
of the second mode, and the lesser amplitude of motion reduces the
effect on the frequency. Thus the first two frequencies are more
widely separated, and the series can be truncated at the first term
and still give good results. In contrast, in the edge weighted

cases, with Y6 < 1, the motion of the concentrated masses near the
ends is comparable in the first two modes, and the frequencies are
correspondingly closer than those of a uniform string. Such cluster-
ing of the lower eigenvalues increases the error due to truncation in
(3.29). This defect is remedied by the use of upper bound information
as in the bound (3.30), as can be seen in Table 3.2, case 4, where

Y =06 =0.1.

In Table 3.2, two sets of six upper bounds and the resulting lower
bound sets are presented for four combinations of material properties.
Both upper bound sets were obtained using Galerkin's method with test
functions of the form

6

t = .. « .
Vi( ) JE]cwsmgwt

in the differential formulation, and
b3(t) = FTET v;(t)

in the integral formulation. In this particular example problem, the
symmetry of the system about the midpoint allows separation into odd
and even matrix eigenvalue problems, since the test functions and

true eigenfunctions are even and odd about the midpoint, and the
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resulting inner products, which constitute the Galerkin matrices,
vanish for pairs with different parity.

As can be seen in all four cases in Table 3.2, the upper bounds
from the integral equation formulation are superior to those from
the differential equation formulation. This leads to a marked
superiority of the lower bounds based on the integral formulation.
The error in these lower bounds from Equation (3.30) comes from two
sources: truncation of the series after six terms and the approxima-
tion of the second, or correction, term. The error due to truncation
depends on the number of terms used as well as the distribution of the
spectrum. The error due to the approximation of the correction term
depends primarily on the accuracy of the upper bound for the least
eigenvalue used in the correction term.

In Table 3.2, Case 1, the eigenvalues are nearly equally spaced
and the upper bounds are quite accurate. In this case, the lower
bound error is primarily due to series truncation, the accuracy of
the lower bounds increasing only slightly when the better integral
equation bounds are used. In Case 2, the spectrum is again nearly
equally spaced, but the differential upper bound to vy is significantly
less accurate than the integral, leading to far less accurate lower
bounds for the rest of the spectrum. This difference is even more
pronounced in Cases 3 and 4, but the effects of eigenvalue spacing
enter into these bounds as well. Within each case, the accuracies
of lower bounds within a cluster of closely spaced eigenvalues are
comparable. In Case 3, the lower bounds to the least two isolated
eigenvalues are accurate (particularly those from the integral upper

bounds), and the lower bounds to the cluster V3 - Vg are of 27-36
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percent relative error, jumping to 53 percent for the isolated Ve

In Case 4, one cluster is V] - V3 and the corresponding lower bounds
range from 2-8 percent relative error, 7 is isolated with 34 percent
relative error, and Vg = Vg is another cluster with 51-56 percent
relative error in the Tower bounds.

Tables 3.3 and 3.4 present another examination of Cases 3 and 4
designed to isolate the effects of the number of bounds used and of
the spectral distribution from that of the accuracy of the upper bounds
used. Thus in these tables, the best possible lower bounds obtainable
from Equation (3.30), where the actual eigenvalues are used as upper
bounds, are given along with the integral formulation upper bounds and
their resulting lower bound sets. Again, within a cluster of closely
spaced eigenvalues the error in these best possible lower bounds is
seen to be comparable for a given number of upper bounds. One obvious
effect of the number of upper bounds used is the increase in the
accuracy of the lower bounds. A more subtle effect is the interaction
with the effect of clustering. When upper bounds for all members of
a cluster are used, there is a significant improvement in the accuracy
of the lower bounds in that cluster which is greater than the improve-
ment obtained upon adding a bound to an isolated eigenvalue. For
example, examine the relative error changes down the columns of Table
3.3. When the third upper bound is added, the relative error in
columns 1 and 2 drops sharply; the addition of the fourth upper bound
cuts the error by a more typical rate. A similar phenomenon occurs in

Table 3.4, columns 4-6.



34

One other source of error in these series approximations which
must be mentioned is that of the numerical truncation errors inherent
in summing numbers of disparate magnitudes and in taking smaller
differences of larger numbers. Both problems occur in the use of the
corrected truncation lower bounds, especially in bounding the higher
eigenvalues. Any use of this method must take account of these sources
of error by summing from small to large and using high precision arith-

metic.
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TABLE 3.1

Comparison of Truncation and Extremization

Lower Bounds for the Least Eigenvalue

y ° 0.1 1.0 10. 100.
EV 5.058 2.421 1.8063 1.73177

0.1 LK 1.190(76.) 1.430(41.) 1.8014(.27) 1.72653(.30)
LI 4.447(12.) 2.364(2.4) 1.7709(2.0) 1.69822(1.9)
EV 4.21 3.142 2.5292 2.44333

1.0 LK 2.488(41.) 3.133(.27) 2.4877(1.6) 2.43646(.28)
LI 3.947(6.3) 3.080(2.0) 2.5043(.99) 2.42059(.93)
EV 1.806 1.454 1.2251 1.19037

10. LK 1.801(.27) 1.430(1.6) 1.1901(2.9) 1.18666(.31)
LI 1.771(2.0) 1.448(.37) 1.2246(.04) 1.18994(.04)
EV 0.596 0.484 0.4100 0.39868

100. LK 0.595(.30) 0.482(.28) 0.4087(.31) 0.39737(.33)
LI 0.587(1.5) 0.483(.27) 0.4099(.01) 0.39867(<.001)

EV = actual eigenvalue

LK = best of Krein lower bounds, Equations 3.32

LI = iterated trace truncation lower bound, Equation 3.29

Figures in parentheses are percent relative errors.
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TABLE 3.2
Comparison of Six-Term Upper Bounds from Integral

and Differential Formulations with Lower Bound Sets

Case 1: y =0.1, 6 = 100

v 1.731772 3.469050 5.21637 6.9767 8.751 10.54 12.3
Uub 1.731776 3.469163 5.21736 6.9804 8.767 10.58
LD 1.731284 3.453456 5.10183 6.5369 7.625 8.34 9.43
Uur  1.731772  3.469052 5.21642 6.9770 8.754 10.55
LI 1.731301 3.454027 5.10578 6.5510 7.655 8.39 9.54
Case 2 y =100, 8 = 0.1
v 0.59643 1.298409 1.79655 2.5966 3.0140 3.8943 4.25
Ub 0.59697 1.298409 1.80962 2.5966 3.0676 3.8943
LD 0.59622 1.263957 1.65526 2.0044 2.1017 2.1796 2.24
UI  0.59644 1.298409 1.79844 2.5966 3.0364 3.8943
LI  0.59627 1.290145 1.75801 2.3813 2.6311 2.9364 3.24
Case 3 Yy=10.0, 8 = 10.0
v 1.22511 6.283 11.34 12.57 13.79 18.85 23.9
UD 1.23884 8.165 12.52 14.79 24.63 27.76
LD 1.22477 2.656 2.66 2.66 2.66 2.66 2.66
Ur 1.22515 6.422 12.06 12.96 22.52 26.12

_LI 1.22503 6.038 8.29 8.41 8.78 8.80 8.83
Case 4 vy=0.1, 6 = 0.1
v 5.058 6.283 7.508 12.57 17.62 18.85 20.1
Uub 5.316 8.165 10.827 14.79 21.84 27.76
LD 4.601 5.368 5.552 5.62 5.65 5.65 5.65
Ul  5.088 6.422 7.879 12.96 19.87 26.12
LI  4.950 6.022 6.936 8.33 8.64 8.70 8.72

v = actual eigenvalues
UD = upper bounds, differential formulation LD = corresponding Tower bounds
UI = upper bounds, integral formulation LI = corresponding lower bounds
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CHAPTER 4
LOWER BOUNDS FOR THE EIGENFREQUENCIES
OF STEPPED ELASTIC BEAMS

4.1 Introduction and Literature Review

In this chapter, the integral equation lower bound technique is
applied to the problem of determining the free vibration frequencies
of stepped elastic beams. This problem is quite similar to that of
Chapter 3 on heat conduction and string vibrations, the primary dif-
ference being the higher order of the associated differential operator.

The beam problem has been investigated in a number of ways. As in
the cases of heat conduction (Chapter 3) and harmonic waves (Chapter 5),
Lang and Nemat-Nasser have applied their stationary principle varia-
tional method. In[16] both smooth and improved test functions were
used to approximate the displacement and bending moment; estimates and
bounds for the frequencies in a variety of beam configurations were
obtained. Their results on a cantilevered beam will be used in the
first example problem of this chapter. A variation of Weinstein's
method of intermediate problems [32,33], namely Bazley and Fox's method
of truncation [34,35], was employved by Bickford [18] to obtain lower bounds
for the frequencies of a simply supported stepped beam. He also ob-
tained upper bounds by the traditional Rayleigh-Ritz method. His re-

sults will be used in the second example problem of this chapter.
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A number of authors have used some results from the integral equa-
tion formulations of beam problems. Buckens [36] obtained lower bounds
for the first two frequencies of a stepped simply supported beam by a
decomposition of the beam into simpler subsystems to bound the least
frequency, and by use of a trace identity to bound the second frequency.
Janos [37] also uses integral equation formulations of two related
string problems to obtain a geometric mean type inequality involving
partial products of eigenvalues of the beam and the related strings.
His method reduces to that of finding frequencies or appropriate bounds
for two string problems to obtain two sided bounds for A], A]-AZ,
A]-Az-x3, etc. His technique, however, does not give sharp results for
even the lowest frequency. Integral equation bounds were used on a
beam problem with random elastic support by Boyce and Goodwin [21]. They
used the usual lower bound obtained by truncation of the trace identity
for the second kernel iterate, noting that information about higher
frequencies can be used to improve the bound, although they did not
do so.

The numerical results in this chapter are obtained for two example
problems. In sections 4.4-4.5 a three piece cantilever beam is used to
compare the resultsof the integral equation lower bound technique to
those of the variational method used by Lang and Nemat-Nasser [16]. In
sections 4.6-4.7, a two piece simply supported beam is used to compare
the integral equation lower bounds to those obtained by the method of
truncation by Bickford [18]. First, the source of the eigenvalue problem
and the formulation of the related integral equation are discussed in

sections 4.2-4.3.
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4.2 Formulation of the Eigenvalue Problem
The most economical beam model is that of the Euler beam, described

by the partial differential equation

ch Mx)az“) - o(x)azu (4.1)
e el at?

with spatially varying material properties, stiffness « and density
p, and with appropriate boundary and initial conditions.
Separation of variables yields the eigenvalue problem for free

vibrations

(k(x)w")" = Apw (4.2)
Typical boundary conditions include the cantilever or fixed-free case

w(0) =w'(0) =0 w'(1) = («w")'(1) =0 (4.3)
and the simply supported or hinged-hinged case

w(0) = w"(0) = w(1) =w"'(1) =0 (4.4)

For the stepped beam case, where the stiffness « is piecewise continuous,
continuity of displacement, slope, bending moment and shear force are

assumed at points of discontinuity in stiffness.

4.3 Green's Functions and Integral Equation Formulation

The Green's functions for the operator

LIw] = [<(x)w"] (4.5)
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under the various boundary conditions are obtained by repeated integra-

tion of the equation

L[G] = &(x-y) (4.6)

and application of the boundary conditions.

The integrations lead to the general Green's function

G(x,y) = w(0) + w'(0)x + «w"(0)B,(x) + (xw")"(0)B,(x) + B3(x,y)

(4.7)
where the functions Bi are given by the double integrals
_ X 5 dt
B-I(X) = fo fo m ds
tdt (4.8)

= xS
BZ(X) = fo Jb m)-ds

_ X t-
B3(x,y) = f Jj ﬂ%)—dtds

It can be shown, however, that B3 can be expressed in terms of B], 82

and the Heaviside unit step function H by

B3(x,y) = H(x-y)[B,(x) - yBy(x) - By(y) + xB;(y)]. (4.9)
When appropriate boundary conditions are applied, one obtains the
Green's functions. Two of these are:

Cantilever case :

¥B;(x) - B,(x) 0<x<y<]
(4.10)

G (x,y) =
¢ xB(y) - B,(y) O<y<xc<]
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Simply supported case:

6 (xy) Cxy + x(By(y) - By(y)) + (y-1)By(x) 0<x<y<]
Xy =

st Cxy + ¥(By(x) - By(x)) = (x-1)B,(y)  0<y<x<]

where C = 81(1) - Bz(l) (4.11)

As usual, integral equation formulations are obtained from the Green's

functions and symmetrization of the resulting kernels. That is,

k(x,y) = Volx] G(x,y)Vp(y)
P(e) = Vo(+Tw(+) (4.12)
B(x) = A ] K(xy)u(y)dy

It should be noted that in the case of piecewise constant material
properties, the functions B] and B2 are piecewise defined polynomials,
and thus the kernel k is a piecewise continuous polynomial in x and y

which is simply, though arduously, square-integrable.

4.4 Sample Problem #1--Cantilever Case

Lang and Nemat-Nasser [16] analyze a three-piece beam problem under
three cases of boundary conditions: cantilever, simply supported,
and fixed-hinged. They also consider buckling problems and vibrations
under compressive loads for the simply supported case. Of the cases
they considered, the cantilever beam under no compressive load has
the simplest Green's function. Thus, it is the most tractable example
of a three piece beam for analysis by integral equation methods. In

this section, the parametrization and nondimensionalizations in [16]
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are followed and integral equation lower bounds are found for the
material property combinations discussed in their article.

Suppose a beam of unit length has material properties given by

§
K2 [2x-]| i b

b < [2x-1] <1

A
—
x
~
]
A

(4.13)
o b < |2x-1] <1

tpz |2x-1] < b

where b is the length of center section of the beam.

The eigenvalue problem is nondimensionalized by the substitutions

s(x) = «(x)/%  d(x) = p(x)/5 = \p/% (4.14)

where the average material properties p and « are

E= p](]°b) + sz

(4.15)
X = K](1-b) + bi
The material property discontinuities are parametrized by
\EERSYAS and 8 = pz/p.I (4.16)

We then are lead to the dimensionless eigenvalue problem

(s(x)v")" - vZd(x)v = 0
v(0) = v'(0) = 03 v'(1) = (s(x)v")'(1) =0 (4.17)

v, v', sv", (sv")' continuous on (0,1)
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For the results that follow, a center integral length of b = 1/2 is
assumed.
The components of the Green's functions (4.10) are then given by the

piecewise defined continuous polynomial:

-~

1 2 1
_ )1 Y 2 1 3
By(t) = {5~ Zs, [t + (“;‘)(t ) ] ity (4.18)

2 [+ O - (D] v

<t f_%— (4.19)

Here s, = K]/E-= 1/(1+b(y-1)) = 2/(1+y).

Integration of the squared amplitude of the kernel over the unit square

then yields the iterated kernel trace, written as a matrix product:
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54256 61456 17780| | 1 |

(2)\ _ 1 T+y 12 .2
tr(k{?)) = — (csep? [F v 11 |61456 40936 7808| | 6
17780 7808 1056 GZJ

(4.20)
For the continuous case, withy =6 =1, tr(Kéz)) = 11/1680. This
gives the lower bound of léo) = 3.5154 to the least frequency of
vy = 3.5160, a relative error of -.017%. Lower bounds for the least
frequency from Equation 2.5 and lower bounds for the least two fre-
quencies from Equation 2.9 and upper bounds from [16]were calculated

for the five combinations of material properties in[16]. The results

are presented in Table 4.1.

4.5 Numerical Results and Discussion
The numerical results contained in Table 4.1 were obtained on a
TI-57 calculator, carrying 11 decimal digits in accuracy. The results

0)

for v( are based on the iterated kernel trace alone, and are accurate

to the digits shown. The other lower bounds are based on the upper
bound correction to the iterated kernel trace and, except where noted,
the results as reported in [16] In the exceptional case, where y = 100
and 6 = 1, it can be seen that the reported numbers in [16] do not show
a sufficient number of places to use in the upper bound correction. In
fact, the upper bounds to four decimals are not upper bounds at all.
The different extra digit assumptions in N and Gk for this case were

chosen to show the radical difference in the accuracy of lower bounds

obtainable from upper bounds which agree to four places. The same
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FIGURE 4.1

FIGURE 4.2 Stepped simply supported beam - sample problem #2

2> P2 “1° P
nyn 2 _
(ku™)" = wpu =0
u(0) = u'(0) =0

u(1) = (u")*(1) = 0

Stepped cantilever beam - sample problem #1

B], M] BZ’ M2
(Bu")" - szu =0
u(0) = u"(0) =0
u(1) =u"(1) =0

=g
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comment may be made on all entries in the last three columns pertain-
ing to the least frequency; that is, they represent true lower bounds,
but may not be the results which would be obtained had the full number
of digits in the upper bounds been available. In the other chapters
of this dissertation, all upper bounds used were calculated and all
digits retained, rather than relying on figures tabulated elsewhere or
rounded figures.

As can be seen in Table 4.1, in all these cases the first two
frequencies are widely separatéd, accounting for the sharpness of the
lower bounds 2§0). In cases of widely separated frequencies such as
these, the dominant contribution to the kernel trace is that of the
first frequency. Until that frequency is bounded very well from above,
the lower bounds to the second frequency are quite poor. This is
BN and Y
where the bound from the new quotient approach is better than that

demonstrated by the marked difference in the lower bounds

from the Rayleigh-Ritz method.

4.6 Sample Problem #2--Simply Supported Case
Bickford [18] obtained lower bounds for the frequencies of a two-
piece simply supported beam by Bayley and Fox's method of truncation
[34]. In this section his development will be followed for the parametri-
zation and nondimensionalization of the problem.

Suppose a beam of length & has material properties given by

B] 0<y <Y
B(y) =

B, ¥yt (4.21)
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M] Oiy_<_y]
M, Yi<Y <% (4.21)

M(y) =

We then consider the eigenvalue problem

d? d%u
— (B(y) =) = MM(y)u, O<yc<?
dy dy
2 2
u(0) = 48 (0) = u(z) = L4(2) = 0 (4.22)
dy dy
du dzu d d2u
u, g0 B ——-(B——EQ continuous on (0,%)
Y' dy dy gy

This problem is transformed by the substitutions

- - - - (o4 4

and v(x) = u(y(x)) (4.23)

to the dimensionless eigenvalue problem, where primes denote dif-

ferentiation with respect to x,

(bv")" = n4¢mv
v(0) = v"(0) = v(1) =v"(1) =0 (4.24)

v,v', bv", (bv")' continuous

where b = B/Bz, m= M/M].

Bickford considers cases where B] 3_32 and M] 3_M2, though with
1ittle modification, his analysis applies to all cases.

In applying the method of truncation, the underlying base problem
of a uniform beam of unit stiffness and density has the eigenvalues and

eigenfunctions
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g = nt and vg = /Z  sin nmx (4.25)
These functions form the basis of the Rayleigh-Ritz upper bounds re-
ported in [18]and used in this section. Additional functions are
used in generating the intermediate operators that approximate the
actual operators of the problem. To this end, Bickford used the func-

tions

p!(X)

; sin(inx/x])cos(nx/Zx])

q}(X) sin(imx) (4.26)

for cases of discontinuous B and M respectively. In one case, he

also uses the eigenfunctions r} of a uniform beam of length X

satisfying
r] iv qu] - 0
1 _a ] _ 1 _
r(0)=r (0)=r (x]) =r (x]) =0 (4.27)

for the approximation of the operator with discontinuous stiffness B.
n,k,2
P
where the superscripts refer to the number n of base eigenfunctions

and eigenvalues used, the number k of p} or r} used, and the number

1
i

The lower bounds from the truncation method are denoted by ¢

2 of q. used in forming the k + 2 dimensional determinant equation to
be solved for up to n lower bounds. If formally evaluated, solution
of his determinant equation is equivalent to finding the zeros of a
rational function whose poles are at the base eigenvalues.

Following his development, we find the iterated kernel trace and

lower bounds in the form
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tr(K(z)) = ; )

e (4.28)
1
1
o0 = (er(x(B))2 < g, (4.29)
M 1
Qrf‘M) = (tY‘(K(Z)) - T ¢n 2) 2 < ¢,m (4.30)
n#m
where the $h are any upper bounds.
The value of tr(K(z)) in terms of system parameters and for Xy = 0.5
is, in matrix product form,
791 710 175 1
(2), _ o 2
tr(K'"7) = > R my mo] 710 1372 710 b0 (4.31)
6144-9450-b0 2
175 710 791 b0

Bickford's results, and the Tower bounds for the least two eigenvalues
based on the lower bounds of equations 4.29 and 4.30 using his upper

bounds, are summarized in Table 4.2.

4.7 Discussion of Results--Problem #2
As can be seen in Table 4.2, the lower bounds based on the iterated
kernel trace either with or without using upper bound information give
comparable results in bounding the least eigenvalue to the far more
expensive bounds from the method of truncation. In fact, the bounds
computed from the trace and only the four low precision bounds of the

twenty-four Rayleigh bounds are superior in all cases considered.

These lower bounds would be

upper bounds were available.

second eigenvalue was based

even better if all digits and all of the

In the second case, the bound for the

-R,24

on a pessimistic extra digit in ¢
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since the reported figure from [18] is not an upper bound. In all
likelihood, the true upper bound was much better, and would have
yielded a much better lower bound, though even the reported bound
is quite good.

Also of note is the contrast between the results of the second
and fourth cases, where the eigenvalues are the same. The coincidence
of the spectra, which Bickford found remarkable, is due to the fact
that the cases are duals of each other. That the results are the same
when b61 replaces my and mal replaces by is apparent from an examina-
tion of the equation for tr(K(Z)). As in all variational methods,
discontinuities in coefficients associated with differentiated terms
lead to poorer results. Thus when a dual problem is available, one
should analyze the one which has a lesser discontinuity in the coef-
ficient of the most highly differentiated term.

In the fourth case, with discontinuous stiffness, Bickford used
the beam functions r} to improve the results obtained from using the
p}. The most accurate figures from each of these are those reported
in Table 4.2. These bounds are much more expensive than those which
were obtained for the dual second case, and far less accurate as well.

The question remains, however, whether a comparable computational
investment in a Rayleigh-Ritz method, either through the use of more
terms, improved test functions, or integral equation formulation,
rather than in the method of truncation, would pay off by giving far
better upper bounds and comparable lower bounds based on the iterated

kernel trace.
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TABLE 4.2

Bounds for the Least Two Squared Frequencies
of a Stepped Simply Supported Beam

S ¢32,16 ¢64’32 5R,24 9(0) 9(4)
4 1.5198 1.5452 1.5945  1.57118 1.57298
32.907 33.237 33.789 - 9.24096 rJ
cb8,4 qb16,8 3 R,24 _Q(o) 9(4) h.
1 0.5 1.3262 1.3262 1.3262  1.32394 1.32622
23.111 23.111 23.111 - 22.9544%
¢32,16,4 ¢64,32,4 ry R,24 i(0) $(4)
2 0.5 1.7701 1.8212 1.8479  1.83768 1.84064
33.132 33.199 33.215 -- 17.6167
’ 6 [ - ’
¢g4 32 ¢r4 32 3 R, 64 g(0) 9“)
2 1.0 1.3129 1.3149 1.3281 1.32394 1.32394
23.077 23.082 - -- 16.7328

Legend to Table 4.2

¢"’k’£ lower bounds from method of truncation

r RN N term Rayleigh-Ritz upper bounds

g(o) Lower bound based on Equation 4.29

Q(J) Lower bounds based on Equation4.30 and J upper bounds

*This bound computed using ?6]R’24 = 1.32625



CHAPTER 5
HARMONIC WAVES IN LAYERED COMPOSITES

5.1 Introduction and Literature Review

This chapter discusses the application of the integral equation
lower bound technique to the problem of elastic waves propagating
normal to the interfaces of layered composites with periodic structure.
This problem was proposed by Lee [10] as a test case for variational
methods to be applied to composites with periodic structures, and has
been the subject of a number of papers [6,10-15]. Composite materials
are highly dispersive in their wave propagation behavior, but Floquet
theory shows that they admit certain stable wave systems, called
Floquet waves, which do not disperse and retain their form relative
to the periodic structure of the composite. In two- and three-dimensional
lattices, the wave forms may only be determined approximately. However,
for the one-dimensional composite formed by parallel plates, the wave
forms for waves travelling normal to the interfaces can be determined
exactly, and thus provides an objective measure of the accuracy of
approximate methods.

In this chapter, numerical results are obtained for composites of
two materials for a variety of material property combinations and wave
numbers. Upper bounds are obtained by application of a Rayleigh-Ritz

technique to the Sturm-Liouville eigenvalue problem with discontinuous

55



56

coefficients and quasi-periodic boundary conditions that arises from
the application of Floquet theory to the governing partial differential
equations. These are the upper bounds as discussed in [6]. Correspond-

ing sets of lower bounds are obtained from the L2

norm of the complex-
valued kernel of the analogous integral equation. The actual eigen-
frequencies were also obtained from the transcendental eigenvalue

equation, and errors in the approximations are discussed.

5.2 Formulation of the Eigenvalue Problem

The governing partial differential equation for plane waves is

the wave equation in each material subregion
2 2.\ 32U(X,t
v2u(x,t) = cf(x) ULt (5.1)
ot

where U may represent displacement, stress or strain and c is the
spatially varying wave speed. Floquet waves are represented by a solu-

tion of the form

i(QTX-mt)

U(x,t) = u(X)e (5.2)

where u(X) is a periodic function with the period of the composite, Q
is a vector wave number giving the direction and wave length of the
wave, and w is the frequency.

For displacement waves travelling normal to the interfaces in a
layered composite, Q and X are scalars, and insertion of (5.2) into
(5.1) yields the eigenvalue problem for a cell of one period, the

length of which is assumed to be 1,




%////////
J\\\\\

////\
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(n(x)u')’ +wzo(X)u =0
(5.3)

u(M) = '%)  (ut)(1) = e Qnu)(0)

The unit cell is chosen to start and end at the midpoint of two layers
of the same material, and thus the second material layer is centrally
located in the unit cell. Further, we require that certain inter-

face conditions hold, namely continuity of displacement and stress,
u(x’) = u(x+) and n(x )u'(x") = n(x+)u'(x+) (5.4)

at the location x of any interface.

It has been shown that transformation of this problem to Liouville
normal form by a substitution for the spatial variable x gives better
results in the application of the Rayleigh-Ritz method for upper bounds

[6]. Accordingly we set

t = % i ns)ds, T = f0‘ 0"V (s)ds (5.5)
£(t) = T2n(x(t))p(x(t)) (5.6)
v(t) = u(x(t)), (5.7)

With these substitutions, the eigenvalue problem becomes

V + u?fv =0

v(1) = v(0)e'? (5.8)
v(1) = v(0)e'@

v, v continuous at interfaces

The problem (5.3) may also be cast in terms of the stress o = nu', to

be called the dual formulation:

1= -
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(p-]o')' + wzn-]o =0
o(1) = e'%(0); (p7'a")(1) = (o7 10")(0)-e'd (5.9)

O p-]o' continuous at interfaces
The system (5.9) also admits transformation to Liouville normal

form by the substitutions

-1 x .S = 1 "

s =3 jb o(t)dt; Jb p(t)dt (5.10) i

|

a(s) = 207 (x(s))07 " (x(s)) (5.11) 3
w(s) = o(x(s)) (5.12)

With these substitutions, the dual problem becomes

W+ wzgw =0
w(1) = w(0)e'® (5.13)
w(1) = w(0)e'@

w, w continuous at interfaces

Both the primal formulation (5.8) and the dual formulation (5.13)
have the same eigenvalues, but their eigenfunctions differ. It has
been shown in [6] that, depending on the relative magnitude of the
discontinuities in the material constants, these formulations give
differing eigenvalue bounds when a Rayleigh-Ritz procedure is applied
to the corresponding variational formulations. This will be discussed

further in section 5.5 on numerical results.
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5.3 Integral Equation Formulation
and Iterated Kernel Trace
The complex valued Green's function for either primal or dual
formulation is the solution of the boundary value problem for each

wave number Q # m

2
28 (s,t30) = 8(s-t)
9s
6(1,t;Q) = ¢'%(0,t;Q) (5.14)

8 (1,60 = ' 28 (0,t50)

9S
giving the solution
( 10
(S-;?()I - 0<s<t<l
1-e (1-e'¥)
G(s,t;Q) = < (5.15)

eiQ(sjt)_ eiq
1-e'0 (1-'Y2 - T

\

Note that G is hermitian, that is,
G(t,s;Q) = G(s,t;Q) (5.16)

Using this Green's function, one transforms the equations of the form

of (5.8) and (5.13),

i = wlhy

u(1) = e'Qeo) a1 = e'%(o) (5.17)
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to the integral equation
u(s) = w? g 6(s,t:0)h(t)u(t)dt. (5.18)

The kernel of this equation, Gh, is not Hermitian, but an integral

equation with a Hermitian kernel is obtained by the substitutions

kQ(s,t) = /h(s)G(s,t;Q) /h(E) (5.19)
giving
_ 2 _ 2
z(s) =" § kQ(s,t)c(t)dt = WK (5.20)

Further, the kernel of the second iterate KS is

(2) _ ] A
kQ (s,r) = P kQ(s,t)kQ(t,r)dt = {)kQ(s,t)Eb(r,t)dt (5.21)
giving
tr(k2) = k€2 (s,5)ds
Q 0°Q ?
- 5 f0‘|kQ(s,t)|2dtds. (5.22)

For the problem at hand, we define

C=- e (5.23)
(1_910)2 2(1-cosQ) :
and thus
|kQ(s,t)|2 = h(s)h(t)C(C-|s-t| + (s-t)2). (5.24)

The value of tr(Ké), which is the same as the L2 norm of the kernel kq,

will be obtained for the sample problem in the next section.
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5.4 Sample Problem
We consider the sample problem of a layered composite consisting
of equal amounts of two materials. The unit cell stiffness and den-

sity functions, then, are, for 0 < x <1

( . Ix - 11 5]
n(x) = { ! AN (5.25)
N, Ix -5 <x
| " zl <3
( 1, 1
n Ix-zl>g
p(x) = ] ] (5.26)
| P2 x -2l <7

We then non-dimensionalize the problem by introducing the parameters
- - 2 _ 2— —
Y = nz/n] e = oz/o] v = wp/n (5.27)

where n and p are the average material properties. We then analyze
the problem for the case n = p = 1, the frequencies for other cases
following from the definition of v.

Noting that the Liouville transformation changes the relative
Tlengths of the two material regions, in either case we are led to a

problem of the form (5.17), here repeated for convenience, and using

. 2
eigenparameter v,

i +v2hu = 0

u(1) = ')  3(1) = ' %(o) (5.28)

where the coefficient function h has the form



h(t) (5.29)

For the primal formulation,

b=(1+y)7
hy = (14 )37(@4%0 + 6)) (5.30)

h2 = Y8h1.
For the dual formulation,

b=26/(1+08)
h] = (1 +v)(1 +86)/4v6 (5.31)
h2 = h]/ye.

In either case, one obtains the same value for tr(KQZ), namely

h

h
2 _1yp)2 4 b2(1-0)2( - 5%02] (5.32)

tr(ky?) = h§ & [(6c-1)(1 + &

or in terms of the parameters Q, vy, 6:

tr(kgd) = (DZLEE) (142 + ((H21/192(1-cos0) (5.33)

Either of these are seen to reduce in the continuous case to

2 C 2+cosQ
tr(K = Z (6C-1) = ———= 5.34
Y‘( Q ) 6 ( ) ]2(]-cosQ) ( )

The transcendental equation for the eigenparameter v in terms of Q,

Y and 8 is

478 cosQ = (1 + J?E)zcosg]v - (1 - AB)2cose,y (5.35)



1 1+ -
where £, = 5 ( —;X- + " (5.36)
and €, = H{"T3 - '/“Y':) (5.37)
1+6~

5.5 Numerical Results
Numerical results have been obtained for the sample problem on
the Cyber 750 computer of the Computer Laboratory at Michigan State
University. Upper bounds for the eigenparameter v were obtained by
applying a Rayleigh-Ritz procedure to both the primal and dual formula-

tions of the problem. For this procedure, test functions of the form

M

c ei(Qr2nm)t

u(t) = n

n=-M

with M ranging from 0 to 6 provide sets of 1 to 13 upper bounds
from each formulation.

Preliminary lower bounds to the least eigenparameter Vv, were
found from (5.33) and the lower bound (2.8). Increasing sets of lower
bounds were obtained from the primal and dual upper bounds and the
Tower bounds (2.9). Additionally, lower bounds based on (2.9) and a
merged set of upper bounds chosen from the primal and dual upper bound
sets were also computed.

The actual eigenvalues were obtained from the eigenvalue equation
(5.35) by using the best bounds obtained, searching these intervals
for a sign change, and then using the secant method to converge on the
roots. These roots were then used as upper bounds to generate the best

possible lower bounds obtainable from Equation (2.9).
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The lower bounds for the least eigenvalue for various combinations
of vy and 6 are in Tables 5.1 and 5.2 for Q = 1 and 3 respectively.
These figures contain the actual eigenvalues, the preliminary lower
bounds based on (2.8), the better of the primal and dual upper bounds
based on test functions with M = 1 (three term approximations), and
the lower bound based on the best bound set obtained from the primal
and dual upper bounds with M = 1.

Lower bounds for the second eigenvalue for the same values of
v and 6 as Tables 5.1 and 5.2 are presented in Tables 5.3 and 5.4 for
Q =1 and 3 respectively. These figures show the effect of using more
and better upper bounds in the lower bound (2.9). The figures contain
the actual second eigenvalues, lower bounds based on the better of
the primal and dual upper bounds for M = 1 and M = 6, and the best
possible lower bounds for the corresponding number of upper bounds.

A detailed examination of the upper and lower bounds for y = 10,

8 = 0.01 and Q = 1 and 3 are presented in Tables 5.5 and 5.6. The
tabulated numbers, with percent relative errors, are: the actual
eigenvalues; primal and dual upper bound sets; corresponding lower
bound sets; lower bound sets based on choosing the best upper bounds
from the primal and dual formulations; and the best possible lower

bounds for the corresponding number of upper bounds.

5.6 Discussion of Results
An examination of Tables 5.1 and 5.2 shows that the preliminary
lower bounds are very accurate for Q = 1 and less so for Q = 3. This

is due to the relatively wide separation of the first two eigenvalues



66

in the former case and the lesser separation in the latter. In fact,
the continuous cases, where the product y6 = 1, produce the least
accurate lower bounds. This defect is remedied by use of some upper
bound information, and the lower bounds obtained using this informa-
tion have less than 0.4% error for all combinations of y and 6 studied.

An examination of Tables 5.3 and 5.4 on the second eigenvalue
shows the marked increase in the accuracy of these lower bounds as more
upper bound information is included. Of particular note are the cases
where y8 >> 1, where the bounds based on the variational upper bounds
are very poor, indicative of the poor performance of the upper bound
techniques in these highly discontinuous cases. Clearly, the use of
improved test functions with appropriate interface behavior may be
worth the additional computational cost in such cases. The use of
integral equation variational methods would also be of aid here, as is
seen in Chapter 3 and Chapter 6. The best possible lower bounds shown
in Tables 5.3 and 5.4 show how much better the lower bound technique
could perform with good upper bounds, and thus provide a measure of
how poor the upper bounds are.

Tables 5.5 and 5.6 allow comparison of the primal and dual upper
bounds for the first seven eigenvalues. In Table 5.5, it is seen that
the primal bounds are better than the dual, with the exception of the
highest frequency estimated in each 1ine. However in Table 5.6, it
is seen that the primal is better for the odd numbered eigenvalues,
the dual for the even. Similar analysis was applied to many combina-
tions of material properties and wave numbers with the result that

neither formulation was ever superior for the bounding of the whole
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spectrum, further there were cases where the performance of primal
and dual formulations were the opposite of that noted in Tables 5.5
and 5.6.

Also of note in Tables 5.5 and 5.6 is the performance of the
lower bound technique, particularly when the better upper bounds were
selected from the primal and dual bounds to obtain the lower bound
sets. When these lower bounds are compared in accuracy to the best
possible lower bounds, it is seen that, for at least the first half
of the number of frequencies estimated, the performance of the lower
bound technique is excellent. This reflects the accuracy of the
corresponding upper bounds in this case with a relatively mild dis-
continuity, y6 = 0.1.

The results of more highly discontinuous cases which are not
here tabulated are quite poor due to the inability of the Rayleigh-
Ritz method based on the differential equation form with smooth test
functions to cope with the important interface conditions and con-
comitant curvature changes in the true eigenfunctions. The mixed
variational scheme of Nemat-Nasser [13] deals more successfully with
these cases, and upper bounds he obtained, used in conjunction with
the lower bound technique developed in Chapter 2, give better results.
It is quite possible however that the more standard upper bound methods
using either the integral equation formulation or improved test func-
tions could perform as well as has been seen in Chapter 3 and Chapter 6.

These methods were not tested on the case of harmonic waves.
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CHAPTER 6
FREE VIBRATIONS OF A CIRCULAR MEMBRANE
WITH RADIALLY STEPPED DENSITY

6.1 Introduction and Literature Review

In this chapter, integral equation methods are applied to the
problem of determining the free vibration frequencies of a circular
membrane with a discontinuous density. Upper bounds to the frequencies
are found by applying Galerkin's method to both the differential and
integral equation forms of the eigenvalue problem. Lower bounds are
obtained by use of the trace identity and the aforementioned upper
bounds. The actual eigenvalue equations are derived and solved numer-
ically to assess the various bounds for their accuracy.

Considerable attention has been paid to the related problem of
plates of stepped thickness in the acoustics literature [38-40]. The
motivation behind this concern is the excellent directional radiative
properties of such plates when used as high frequency transducers.
The analysis of such plates by integral equation methods is possible,
but much more complex than that of membranes just as the beam problem
is more complex than the string problem. (See Chapters 3 and 4.) The
membrane problem is chosen then as a more tractable illustrative case.

One numerical result on the stepped membrane problem was found

in Krein's article [31] on eigenvalue extremization, where bounds were
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found for the least frequency ranging from 3 percent to 10 percent in
their spread. The mathematical theory and description of the free
vibration eigenfunctions and eigenvalue equations have been discussed
by Vodicka [41] and De [42], although no numerical examples of such
membranes were given in their articles.

The numerical results in this chapter were obtained only for
the axisymmetric modes of an axisymmetric circular membrane of two
materials. The iterated kernel traces were found for modes with any

number of nodal diameters, however. Bounds for the spectra and the

“ .E‘ u_._e.__.-a

actual eigenfrequencies were found for a number of internal radii and
density ratios. The results suggest that the integral equation
methods again give superior results in the upper bounds to the more
traditional differential equation bounds and have the advantage of

supplying lower bounds as well, with little additional effort.

6.2 Formulation of the Eigenvalue Problem
Small amplitude vibrations of a membrane clamped at its boundary

may be modelled by the boundary value problem

2
TV2w =p 9—%- on domain D, t >0

ot (6.1)

W =0 on boundary 3D, t>0

where the boundary curve is piecewise smooth, D is simply connected,
T is the membrane tension, p the membrane density and W the transverse

displacement.
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Under the assumption that the tension and density are time-
independent, the temporal and spatial dependence of the displacement

may be separated by assuming a product solution

W(X,t) = w(X)f(t) (6.2)

This yields an eigenvalue problem in the separation constant w2

2

fo, twf=0

tt

(6.3)
Tv%w + wlow = 0 on D

w=20 on 3D

In the particular case of a circular membrane under constant
tension and with a radially symmetric density, the angular and radial
dependence of the response may be further separated by assuming a

product solution
w(r,0) = u(r)g(s) (6.4)

This yields a separation constant n2 and two sets of ordinary dif-

ferential equations

g" + nzg =0
g(0) = g(2m) (6.5)
g'(0) = g'(2m)

and



2
S((ru) - D) = g2 el

1
1im ru(r) = 0
r~>0

(6.6)
u(R) =0

u, ru' continuous

where the primes denote differentiation with respect to the appropriate
variables.

The system for g yields a solution for nz, namely,
n=mym=0,1,2, ... (6.7)

The parameter m represents the number of nodal diameters in the
corresponding free vibration problem.

For notational convenience define the linear differential operators
Lm by

m2

L [ul=-(ru")" 4+ —wu, m=20,1,2, ... (6.8)

m r
Thus, separation of radial and angular dependence leads to a countable
set of eigenvalue problems for the modes of vibration of the radially

symmetric circular membrane of radius R:

Lm[u] = wzrp(r)u/T, m=20,1, 2, ...
1im ru(r) = 0, u(R) = 0, u, ru' continuous (6.9)
r-0
6.3 Integral Equation Formulation
System (6.9) may be recast in the form of integral equations by

finding the corresponding Green's functions, that is, by solving
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L [G (r;s)] = &(r-s)
mom (6.10)
1im rG(r;s) = 0; G(R;s) =0
r~0
Then the eigenvalue problems can be written
2 R
u(r) = Q%— _6 Gm(r;s)so(s)u(s)ds (6.11)

This problem may be cast in a form with a symmetric kernel by

multiplication by v/rp(t) and the substitutions

¥(t) = Vto(t] u(t) and k_(r,s) = JFBT?T'Gm(r;s) /sp(s)/T (6.12)

yielding

ur) = uf foR kn(rss)u(s)ds (6.13)

The equation in this form is amenable to the techniques of
analysis described in Chapter 2, and, as will be seen in the following,

the kernel is symmetric and square-integrable.

6.4 Sample Problem
In the sequel, the problem of a circular membrane with a stepped
radial density will be analyzed; numerical results are presented for
the axisymmetric modes with m = 0.
Suppose the membrane density is given by
o8 0O0<t<A

o(t) = (6.14)
Py A<t<R

The average density p is then given by
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7= —;7 27 R to(t)dtde

=3

The problem is cast in terms of dimensionless parameters by the

substitutions
_ _ _ _ = 2 _ 2-
r =t/R, a=A/R, 08 = oz/o], d =p/p, V7 =w p/T
giving

(a% + 0(1-a%))"" 0

d =
) e/(a2 + e(]-az)) a

A
-~
A
o

A
-
A
-

and
L [u] = -(ru')" + mE-u = vzrd(r)u
m r
The Green's functions for the operators Lm are

-Ins Oir<si1
Go(r,s) =
-lnr 0<s<r<]

and for m > 0

rm( S’m

]
v
3
A
~
n
3
o
A
-~
A
w
A
—

G (r,s) = -
m s"(r™™ - ¥™)/2m O<s<rc<l

The L2 norms of the corresponding kernels are given by

|1kl 12 =.{)] fol rd(r)6 (r,s)sd(s)dsdr

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)
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For the density d(r) given above, these norms are

2
d
7%?-{1 +02 - NI - aY) - 8a*(1na)? + 4a*1na3

2
| Tkg !

Q

+88(1 - 8)[a2(1 - a®) - 2a%(1na)? + 2a%1na7} (6.22)
2
1

k112 = 505 01+ (62 - D160 - a%) - 801 - a®) + 301 - a®)3

+66(1 - 6)a’[24Tna - 24(1 - a%) + 6(1 - %)} (6.23)

and form > 1

2
1

4m2(m+1

d 2 4 2m

2 1-
) {4(m+r1n)(m+27 7 - NI -

2 _
k112 =

(6.24)

Note that in these formulae as a approaches 0 or 1 or as 6 approaches 1

these formulae reduce to those of the continuous case, namely

1k 12 = 1/06(m1)2m2)); m=0,1, 2, ... (6.25)

The differential equations Lm[u] = vzrdu have as their solutions

linear combinations of Bessel functions of order m in each material

subinterval, namely
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Cyqd _(ar) + C,,Y (ar) DO<r<a
u(r) = 117" m 12'm (6.26)

CZ]Jm(sr) + szYm(Br) a<rc<]

where o = JHT v and B = /HE V.

Using the four conditions, two boundary and two interface

Tim rugy(r) = 0, up(1) = 0
r~0
(6.27)

1] S -
um, rum continuous at r a

a nontrivial solution is obtained when v satisfies the equation

J&(aav) Jm(a¢§év)Ym(a/§b) - Ym(aJ§hv)Jm(a/§b)
5 3 (a/eav)Y (a/Bv) - V. (a/av)d (aveu)” |

Jm(aaV) = 6.28)

In the continuous case, these reduce to the familiar equations
J(v)=0,m=0,1, 2, ... (6.29)

Upper bounds to the eigenvalues may be obtained by applying
Galerkin's method to either the integral or differential form of the
problem. For the problem at hand, both methods were applied, using

approximate eigenfunctions of a form appropriate for the axisymmetric

modes:
n
us==z aisininr/inr in the differential form (6.30)
1
or
p = /rd(r] u in the integral form. (6.31)



82

The matrices for the method, in terms of the usual L2 inner product

are

(H)ij = < rug, uj o>
(M5 = < ¥y vy > = <rdlr)ug, ug > (6.32)
(G)ij = <Yy KK’JJ >

The approximating eigenvalue problems then are:

Ha = CeMa in differential form
and (6.33)
Ma = v2Ga in integral form.

6.5 Numerical Results
The numerical results in this section include the actual eigenvalues
and both upper and lower bounds obtained by implementing the following
procedure on the Prime 750 computer of the Case Center for Computer
Aided Design at Michigan State University:

1. Generate increasing sets of upper bounds and corresponding
Tower bound sets from the Galerkin methods and equation (2.9).

2. Use the bounds generated to solve the actual eigenvalue
equation by

a. finding an interval where the equation has a sign change
b. applying the secant method until the root is found
3. Use the actual eigenvalues to generate the best possible lower

bounds obtainable from equation (2.9) and to compute relative
errors.
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Table 6.1 contains lower bounds to the least frequency for a number
of internal radii and density ratios. These bounds were obtained from
the kernel norm alone, using none of the upper bound information.

Tables 6.2 through 6.4 contain bounds to the spectrum of 3 cases
of internal radius and density ratios, as well as the actual eigenvalues
and percent relative errors of the bounds. The numbers tabulated are
the upper bounds from both the integral and differential equation based
Galerkin method, the lower bounds based on the integral upper bounds,
and the best possible lower bounds, based on using the actual eigenvalues

as bounds.

6.6 Discussion of Results

Examination of Table 6.2 shows that the upper bounds from the
integral equation formulation are clearly superior to those from the
differential equation formulation. However, both methods have dif-
ficulty coping with highly discontinuous cases. The superior per-
formance of the integral formulation stems from the iteration of the
test functions with the kernel, yielding essentially improved test
functions having more of the properties of the actual eigenfunctions
at the interface.

Examination of Table 6.1 shows that the preliminary lower bound
based on knowledge only of the kernel norm are quite accurate, with
relative errors ranging from 0.4 percent to 2 percent in the cases
studied. The accuracy of this bound depends on the spectral structure,
and for the cases studied the least frequency is well separated from

the higher frequencies, yielding good Tower bounds.
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Examination of Tables 6.2, 6.3 and 6.4 shows that accurate lower
bounds can be obtained provided that good upper bounds are used. The
accuracy of the lower bounds for higher frequencies depends primarily
on the accuracy of the upper bounds to the lesser frequencies. Given
a good upper bound to the lower frequencies, the effects of eigenvalue
spacing can be seen, especially in Table 6.2, where the actual fre-
quencies come in closely spaced pairs after the isolated initial
frequency. The lower bounds to each of the close pairs are of com-
parable accuracy, though the first lower bound obtained for the higher
of the frequencies is better than the comparable bound for the lower

of a pair; this is the effect of clustering on lower bound accuracy.



85

=

2
(ru')' - %r U+ wl %ﬂ u=0

u, ru' continuous
u(0) finite, u(R) = 0
m = # of nodal diameters

FIGURE 6.1 Circular membrane with radially stepped density
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TABLE 6.1

Bounds to the Least Frequency of the
Two-Piece Circular Membrane

° 10 3 1/3 1/10

v 2.43282 2.4257 2.33789 2.09196

ub 2.44599(+.54)  2.43715(+.47) 2.34503(+.30) 2.16144(+3.3)
1 uI 2.43496(+.09) 2.42765(+.08) 2.33848(+.03) 2.10638(+.69)

Lp 2.40815(-1.0) 2.40067(-1.0) 2.30659(-1.3) 2.05683(-1.7)

v 3.02808 2.83469 1.91760 1.61114

ub 3.39475(+12) 2.97186(+4.8) 1.92658(+.47) 1.63398(+1.4)
- Ul 3.06703(+1.3) 2.85978(+.89) 1.91852(+.05) 1.61259(+.09)

LP 3.00730(-.7) 2.804397(-1.1) 1.90554(-.63) 1.60399(-.44)

v 3.72529 3.09024 2.01280 1.84025

ub 4.36498(+17) 3.18748(+31.) 2.01352(+.04) 1.84090(+.04)
i ul 3.88142(+4.2) 3.11528(+.81) 2.01288(+.004) 1.84027(+.001)

LP 3.67186(-1.4) 3.03337(-1.8) 1.99646(-.81) 1.82659(-.74)

v 3.87949 2.81390 2.25019 2.19328

up 3.92151(+1.1)  2.82612(+.43) 2.25681(+.29) 2.19952(+.28)
2 uI 3.89011(+.27) 2.81613(+.08) 2.25132(+.05) 2.19434(+.05)

Lp 3.80068(-2.0) 2.77939(-1.2) 2.22614(-1.1) 2.17003(-1.1)

v 3.28768 2.62759 2.32573 2.29739

ub 3.30066(+.39) 2.63647(+.34) 2.33318(+.32) 2.30471(+.32)
e Ul 3.29001(+.07) 2.62913(+.06) 2.32701(+.06) 2.29865(+.05)

LP 3.24764(-1.2) 2.59826(-1.1) 2.30030(-1.1) 2.27230(-1.1)

v = actual least frequency
UD = upper bound, differential formulation
UI = upper bound, integral formulation

L@ = truncation lower bound, Equation 2.8
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CHAPTER 7
SUMMARY AND SUGGESTIONS FOR FURTHER STUDY

7.1  Summary

As has been seen in the previous chapters of this dissertation,
integral equation based approximate methods are quite effective in
bounding the eigenvaluesof systems with discontinuous coefficients.

The integral equation formulation of the Galerkin method leads
to superior upper bounds to those obtained using the differential
equation formulation. It is reasonable to expect that the results of
other approximate methods applied to the differential formulation would
be improved by using their integral equation formulations as well.

A further advantage of analyzing eigenvalue problems in integral
equation form is the availability of the readily computed corrected
truncation lTower bounds from the trace identities. These bounds
complement any set of upper bounds and by their convergence behavior
give insight into the distribution of the spectrum as well.

There are, of course, some deficiencies in the integral equation
approach. Of primary importance is the fact that in truly multi-
dimensional problems over finite regions the Green's function nec-
essary for integral equation formulation cannot be expressed in a closed
form. Thus it is difficult to transform the differential equations to

integral equations in a form amenable to computation. Secondarily,

90
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the numerical roundoff and truncation errors inherent in applying
the corrected truncation lower bounds from the trace identities on
machines with finite precision must be dealt with effectively. This
latter problem can be addressed by careful programming and the use

of high precision arithmetic.

7.2 Suggestions for Further Study
The problem of eigenfunction approximation in discontinuous
systems by integral equation methods is certainly deserving of con-
sideration. Particularly of interest here is the application of the
iterated Galerkin method [27], where the eigenfunctions are expressed
in an expansion of test functions of the form K¢i rather than LI
using the same coefficients as those determined for the expansion in

the ¢ That is, if the Galerkin expansion of the nth eigenfunction

is given by

A

b= Za s,
the iterated Galerkin expansion is given by K@n, or
@n = in Za Ko, .

The results of the latter expansion will generally be superior to that
of the former, since iteration with the kernel gives functions which
better satisfy the conditions at material interfaces than non-iterated
functions. Further, this method requires little extra computation,
since the K¢i must be determined in order to obtain the Galerkin

matrices.
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Also of interest in both eigenvalue and eigenfunction determina-
tions would be the results of other approximate methods in integral
equation form such as collocation [26,43], the Nystrom method [44,45]
or finite element type approaches using hybrid elements appropriate
for the material properties of the various subregions [10].

Most importantly, these integral equation based methods should be
extended to problems in truly multidimensional systems where the
Green's function may only be approximately determined. Likely
candidates for approximation of the Green's function in complicated
geometries are truncations of series representations (appropriate for
Galerkin type methods) or finite difference or finite elementstatic
jmpulse responses (appropriate for collocation or Nystrdm methods).
Also possible would be experimental determinations of the Green's
function. It should be noted that the use of such procedures is
equivalent to placing additional constraints on the dynamics of the
systems in question and thus lower bounds which are based on traces
of approximate kernels with generally raised eigenvalues need not be
lower bounds to the true eigenvalues of the systems in question. They
however are still of some use in assessing the accuracy of the upper
bounds to the eigenvalues of the approximate kernels.

At the present stage of development, the user of the methods of
this dissertation needs a fairly sophisticated understanding of the
methods of integral equations and how their problem can be placed in
the context of linear integral equations with time invariant boundary

conditions. The software development for the example problems of this



93

project used many common modules, but required ad hoc sections for

the various Green's functions, Galerkin test functions and inner product
matrix evaluations. In addition, the iterated kernel traces that

were found either by hand or symbolic manipulation computer programs

in a parametric form were programmed in as formulae rather than being
numerically determined. Further development of these algorithms so

that they could be implemented on a computer for a non-sophisticated

user thus would also be a fruitful area of investigation.



LIST OF REFERENCES



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

LIST OF REFERENCES

Thomson, W.T., "Critical load of columns of varying cross section,"
J. Appl. Mech., 17 (1950), 132-134.

Carslaw, H.S., and Jaeger, J.C., Conduction of Heat in Solids
(2nd edition), Clarendon Press, Oxford, 1959.

Yang, W.H. and Lee, E.H., "Modal analysis of Floquet waves in
composite materials," J. Appl. Mech., 41 (1974), 429-433.

Paramasivam, P. and Sridhar Rao, J.K., "Free vibrations of
rectangular plates of abruptly varying stiffness,”" Int. J. Mech.
Sci., 11 (1969), 885-895.

Golub, G.H., Jenning, L. and Yang, W.H., "Waves in periodically
structured media," J. Comp. Phys., 17 (1975), 349-357.

Horgan, C.0., Lang, K.-W. and Nemat-Nasser, S., "Harmonic waves
in layered composites: new bounds on eigenfrequencies," J. Appl.
Mech., 45 (1978), 829-833.

Horgan, C.0. and Nemat-Nasser, S., "Bounds on eigenvalues of
Sturm-Liouville problems with discontinuous coefficients," J. Appl.
Mth. Phys. (ZAMP), 30 (1979), 77-86.

McNabb, A., Anderssen, R.S. and Lapwood, E.R., "Asymptotic
behavior of the eigenvalues of a Sturm-Liouville system with
discontinuous coefficients," J. Math. Anal. Appl., 54 (1976),
741-751.

Anderssen, R.S. and Cleary, J.R., "Asymptotic structure in
torsional free oscillations of the earth: I-overtone structure,"
Geophys. J. Roy. Astr. Soc., 39 (1974), 241-268.

Lee, E.H., "A survey of variational methods for elastic wave
propagation in composites with periodic structures,” in Dynamics
of Composites (E.H. Lee, ed.), ASME, New York, 1972, 122-i3§.

Kohn, W., Krumhansl, J.A. and Lee, E.H., "Variational methods
for dispersion relations and elastic properties of composites,"
J. Appl. Mech., 39 (1972), 327-336.

Lang, K.-W., Determination of Dynamic Characteristics of Elastic
Composite Structures, Ph.D. dissertation, Northwestern University,

Evanston, 1978.

94



(13]

(14]

(15]

(16]

[17]

(18]

(19]

£20]

[21]

[22]

(23]
(24]

[25]

(26]

[27]

95

Nemat-Nasser, S., "Harmonic waves in layered composites," J. Appl.
Mech., 39 (1972), 850-852.

Nemat-Nasser, S. and Fu, F.C.L., "Harmonic waves in layered
composites: bounds on frequencies," J. Appl. Mech., 41 (1974)
288-290.

Nemat-Nasser, S. and Minagawa, S., "Harmonic waves in layered
composites: comparison among several schemes," J. Appl. Mech.
42 (1975), 699-704.

Lang, K. W. and Nemat-Nasser, S., "Vibration and buckling of
composite beams," J. Struct. Mech., 5 (1977), 395-419.

Hodges, D.H., "Direct solution for Sturm-Liouville systems with
discontinuous coefficients," AIAA Journal, 17 (1979), 349-357.

Bickford, W.B., "Lower bounds to eigenvalues of piecewise con-
tinuous elastic systems," J. Appl. Mth. Phys. (ZAMP), 30 (1979),
65-75.

Horgan, C.0. and Nemat-Nasser, S., "Variational methods for
eigenvalues in composites," in Variational Methods in the Mechanics
of Solids (S. Nemat-Nasser, ed.), Pergamon Press, New York, 1980,
52-58.

Spence, J.P., Andry, A.N. and Horgan, C.0., "Lower bounds for
eigenvalues of Sturm-Liouville problems with discontinuous
coefficients: integral equation methods," Q. Appl. Math., to appear.

Goodwin, B.E. and Boyce, W.E., "The vibrations of a random elastic
string: the method of integral equations," Q. Appl. Math., 22
(1964), 261-266.

Cochran, J.A., The Analysis of Linear Integral Equations, McGraw-
Hill, New York, 1972.

Tricomi, F.G., Integral Equations, Wiley, New York, 1957.

Stakgold, I., The Boundary Value Problems of Mathematical Physics
(Vols. I and IT), McMillan, New York, 1967 and 1968.

Shun, 0.H., "Green's functions for composite media," Int. J. Engng.
Sci., 16 (1978), 475-482.

Baker, C.T.H., The Numerical Treatment of Integral Equations,
Clarendon Press, Oxford, 1977.

Sloan, I.H., "Iterated Galerkin method for eigenvalue problems,"
SIAM J. Numer. Anal., 13 (1976), 753-760.



(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

(401]

[41]

96

Wang, C., Gettrust, J.F. and Cleary, J.R., "Asymptotic overtone
structure in eigenfrequencies of torsional modes of the earth:
a model study," Geophys. J. Roy. Astr. Soc., 50 (1977), 289-302.

Wirth, P.E. and Rodin, E.Y., "A unified theory of linear diffusion
in laminated media," preprint, Washington University, St. Louis,
1979.

Collatz, L., The Numerical Treatment of Differential Equations
(3rd edition), Springer-VerTag, Berlin, 1960.

Krein, M.G., "On certain problems on the maximum and minimum of
characteristic values and on the Lyapunov zones of stability,"
AMS Translations, Ser. 2, 1 (1955), 163-187.

Weinstein, A., "Sur la stabilité des plaques encastrées," C.R. Acad.
Sci. Paris, 200 (1935), 107-109.

Aronzajn, N. and Weinstein, A., "Existence, convergence and
equivalence in the unified theory of plates and membranes," Proc.
Nat. Acad. Sci. U.S.A., 27 (1941), 188-191.

Bazley, N.W. and Fox, D.W., "Truncations in the method of inter-
mediate problems for lower bounds to eigenvalues," J. Res. Nat.
Bur. Stds., 65B (1961), 105-111.

Fox, D.W. and Rheinboldt, W.C., "Computational methods for deter-
mining lower bounds for eigenvalues of operators in Hilbert space,"
SIAM Review, 8 (1966), 427-462.

Buckens, F., "Eigenfrequencies of nonuniform beams," AIAA Journal,
1 (1963), 121-127.

Janos, L., "Some inequalities concerning the characteristic
frequencies of elastic continuum," Ann. Mat. Pur. Appl., 112
(1977), 273-283.

Gutierrez, R.H., Laura, PA.A. and Grossi, R.0., "Transverse vibra-
tions of plates with stepped thickness over a concentric circular
region," J. Sound Vibr. 69 (1980), 285-295.

Barone, A. and Gallego Juarez, J.A., "Flexural vibrating free
edge plates with stepped thicknesses for generating high direc-
tional ultrasonic radiation," J. Acoust. Soc. Am., §l_?1972),
953-959.

Gallego Juarez, J.A., "Axisymmetric vibrations of circular plates
with stepped thickness," J. Sound Vibr., 26 (1973), 411-416.

Vodicka, V., "Free vibrations of a composite circular membrane,"
J. Phys. Soc. Jap., 17 (1962), 698-702.



[42]

[43]

[44]

[45]

97

De, S., "Vibrations of a composite circular membrane," Indian
J. Pure Appl. Math., §_(1972§, 1150-1160.

Noble, B., "Error analysis of collocation methods for solving
Fredholm integral equations," in Topics in Numerical Analysis
(J.J.H. Miller, ed.), Academic Press, London, 1973, 211-232.

Spence, A., "Error bounds and estimates for eigenvalues of
integral equations," Numer. Math., 29 (1978), 133-147.

Spence, A., "On the convergence of the Nystrom method for the
integral equation eigenvalue problem," Numer. Math., 25 (1975),
57-66.



NIVERSITY LIBRARIES

i

Ak SIATE by Enaty Lisnar

T

IH”\”; Il \! L
3 1293 03175 2102

5




