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ABSTRACT

SIMULATING RIGID BODY ENGINE DYNAMICS

By

Charles E. Spiekermann

The vibration response of a vehicle is dependent on the location

and direction of the forces acting on it. Notions of the engine

contribute a significant excitation transmitted through the engine

mounting points. Currently, packaging constraints and mounting

locations have already been decided by the time engine vibration modes

can be experimentally determined. 'An advance knowledge of the dynamic

characteristics of the engine/mounts system would allow better mount

locations to be designed into the vehicle structure. This thesis

develops the analysis for a computer simulation of the dynamics of an

engine modeled as a rigid body on elastic mounts tied to ground.

The analysis is based on linearized equations of motion that are

incorporated into an interactive computer program which utilizes

computer graphics and animation. Results of the simulation are the

natural frequencies. mode shapes, static deflection, mount forces,

elastic axes, and torque axis of the engine/mounts system.



This to certify that the

thesis entitled

SIMULATING RIGID BODY ENGINE DYNAMICS

presented by

wigfdflcmwy Nov 3, I981

Charles E. Spiekermann Date

MASTER OF SCIENCE Candidate

has been accepted towards fulfillment

of the requirements for

MASTER OF SCIENCE degree in Mechanical Engineering

Michigan State University

by

W--- Ada-£1932.-
Clark J. Radcliffe Date

Assistant Professor

Thesis Advisor

W/L/u. MJ-éh NM 2 Hit

Charles R. St. Clair Jr. Date

Acting Chairman

Department of Mechanical Engineering

ii



with love to my wife, LINDA

iii



ACKNOWLEDGEMENTS

I would like to thank Dr. Clark J. Radcliffe, my

major professor. for his help. friendship, and advice over

the last two years.

Also, I wish to thank Dr. James E. Bernard for all of

his encouragement and help.

Many thanks to Don Dine. of Oldsmobile, for being so

helpful during the research project funded by Oldsmobile.

Finally, I would especially like to thank my parents.

Frank and Marie Spiekermann. for instilling in me a desire

to excel and for giving me the opportunities to do so.

Their love and encouragement will always be appreciated.

iv



TABLE OF CONTENTS

Page

LIST OF FIGURES .............................................. vi

LIST OF TABLES .............................................. vii

NOMENCLATURE ............................................... viii

CHAPTER 1 - INTRODUCTION ................................... 1

CHAPTER 2 RIGID BODY DYNAMICS OIOOOOCCCOOOOO0.00.00.00.00. 4

CHAPTER 3 - EIGENVALUE PROBLEM FORMULATION ................. 9

CHAPTER 4 - COORDINATE SYSTEM CONVERSIONS .................. 16

CHAPTER 5 - INTRINSIC PROPERTIES OF INERTIA AND STIFFNESS .. 21

CHMER6_ WE mmLEMOO...OIOOCOOOOOOOCOOOOOOOOO0.... 27

CMR7- CONaJUSIONS O..0.0.....0.COCOOOOOOOOOOCOOOOOOOOO 32

APPENDIX A - USING THE ENGINE DYNAMICS SIMULATION' ENGSIM .... 34

LISTOF REFWCES 00.00.000.000.00000000000000000.000.00.000. 49



FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

LIST OF FIGURES

Page

Engine/mounts coordinate system ......... 5

Mount coordinate system ....... ........

Predicted sixth mode of engine/mounts ..

Predicted and measured fifth mode ......

Engine/mounts coordinate system ........

Mount coordinate system ....... ........

Additional mount rotation of Oy=~60 ....

Additional mount rotation of Oz= 20

vi

17

3O

31

35

38

39

39



LIST OF TABLES

Page

TABLE 1 - Comparison of predicted and measured

engine natural frequencies............... 29

vii



DOF

[H]

[I]

{w}

{Mlm

[M]

[C]

[D]

[K]

{F}

{x}

{A}

[U]

{y}

{s}

[M]:

[K]:

{F}:

{B}

[V]

{p}

[A]

NOMENCLATURE

Degrees of freedom

Angular Momentum vector,

Inertia Matrix.

Angular velocity vector,

Externally applied moment vector,

Mass/inertia coefficient matrix,

Viscous damping coefficient matrix.

Structural damping coefficient matrix,

Stiffness coefficient matrix,

Force/torque vector.

Generalized coordinate vector.

Eigenvalue

2nd order eigenvector,

Modal matrix, columns are eigenvectors {A},

2nd order modal coordinate vector,

1st order transformation vector,

1st order mass matrix,

1st order stiffness matrix,

1st order force/torque function,

1st order eigenvectors,

1st order modal matrix,

1st order modal coordinate vector,

Flexibility matrix.

viii

12

12

12

12

12

12

12

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

by

12.

12.



CHAPTER 1

INTRODUCTION

Smaller and more fuel efficient vehicles must be designed

throughout' the automobile industry to satisfy consumer demand and

federal laws. In the future. vehicle designs will be deveIOped and

put into production in much less time than was done in the past in

order to meet this demand. This thesis will show how the use of

computer aided design techniques can be used to help achieve this

goal.

This thesis presents the analysis for a computer simulation of

the dynamics of an engine on elastic mounts tied to ground. The

simulation predicts the natural frequencies and mode shapes of this

system and also finds the forces transmitted through the engine mounts

to the vehicle structure. An accurate prediction of these forces

before a vehicle is even built can be used to design an engine

mounting system with reduced vehicle vibration response.



The motivation for this thesis was provided by the increased

implementation of diesel engines and lighter weight vehicles to

achieve better fuel economy. This new combination has resulted in

increased noise and vibration control problems since the high

compression ratios and sharp torque pulse rise experienced in diesel

combustion cause higher force levels which are then transmitted

through the diesel engine mounting locations. Vehicle structural

vibration is then increased. The engine mounting system is the

preferable component to change to control this problem, but the

packaging constraints of smaller engine compartments allow less design ~

flexibility.

As an example, consider the recent down-sizing which included

converting from vehicles with longitudinal mounted engines and rear

wheel drive to vehicles with transverse mounted engines and front

wheel drive (TFWD) with diesel engines. This is being widely used.

An extensive re-design of existing vehicles was required. The

vibration characteristics of TFWD mounted engines are not well known

because of the lack of practical experience with this design. The

past design method of physically testing many possible component

designs (e.g. engine mount locations, orientation. and spring rates)

is too slow and inconclusive. A computer simulation can be used to

evaluate the best designs.

By using a simulation, the engineer can change one parameter or

many parameters. such as the engine mount locations. and see the

results in a very short time. This eases the process of sorting out

the effects of design changes. Ultimately. ”physical testing of



designs is required to insure good correlation between the simulation

and the actual design, but the amount of testing is reduced.

In the past. it was not clear whether inertia or stiffness

effects were more important as engine/mounts system design

considerations. Separate consideration of these effects was necessary

without a computer to handle the large computations involved. If

desired, both effects can be considered separately in a computer

simulation. However, neither effect acts just by itself. The

complete system response is really a combination of many effects.

Chapter two develops the equations of motion for the rigid body A

dynamics involved in the engine/mounts simulation. Chapter three

formulates and solves the associated eigenvalue problem. Chapter four

discusses coordinate system conversions. Chapter five describes

special design calculations dependent only on the inertia and

stiffness properties. Chapter six presents an example problem.

Appendix A discusses an interactive computer program, ENGSIM. which

incorporates the previous topics.



CHAPTER 2

RIGID BODY DYNAMICS

The goal here is to develop an analytical model of an automobile

engine/mounts system which will predict its vibration characteristics.

The approach to be taken will be to first construct a conceptual model

of the system. In a rigid body model, all of the elements of the body

are at fixed distances from each other. Since the flexural natural

frequencies of the engine are much higher than any of the natural

frequencies of the engine on its mounts, the engine/mounts system will

be viewed as a rigid body.

The motion of all points on the engine can be described as

translations and rotations about the center of mass of that engine. A

rectangular coordinate system with its origin at the center of gravity

will be placed so that the positive Y axis is along the crankshaft and

facing the front of the engine. (Figure 1) The Z axis points up and

the X axis points to the rear of a vehicle with a transverse mounted



engine.

A rigid body model has six degrees of freedom (DOF) which means

that there can be translations along each of the three coordinate axes

and rotations around each of those axes.
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Figure 1 Engine/mounts coordinate system

Six independent coordinates are needed to specify completely the

location and orientation of a general rigid body motion. For example.

three cartesian coordinates may be used to specify the location of the

center of mass of the body and three angles may be used to specify the

orientation of the body about this point. For each of these six DOF,

it is required that an equation of motion be written in order to

completely describe the motion of the body.



Three of the equations equate the vector sum of the external

forces acting on the engine rigid body with its rate of change of

linear momentum. The other three equations equate the vector sum of

the external torques acting on the engine rigid body with its rate of

change of angular momentum. The three translational equations are

represented in matrix form as

{F} = [M] {a} (1)

Each is a statement of Newton's Second Law and relates the external

force. {F}. acting on the body to the acceleration. {a}. of the body's

mass center. [M].

The three rotational equations relate the body's rotational

motions to the moments created by torques or external forces. In

general. these differential equations will be difficult to solve

because the elements of the inertia matrix. [I]. will produce non-zero

terms when taking the time derivative of the angular momentum. {H},

{H} = [I] {w} (2)

where m is the angular velocity. Choosing the reference coordinate

system to be fixed in and to move with the body. as in Figure 1. will

alleviate this problem. Then the moments and products of inertia

relative to these axes will be constant during motion and their

derivatives are zero. [‘1‘ The general rotational equation of motion

‘ Numbers in brackets [ ] designate references at end of thesis.



is

{Min = {dH/dt] + [[w} x {3}] (3)

where {Mlm are the externally applied moments. This equation allows

for both the time rate of change of the angular momentum itself and

also the change in angular momentum caused by the rotation of the

coordinate system. If only small motions are assumed to occur. the

higher order non-linear terms can be assumed to be very small and

disregarded to obtain

{Mlm = [Ilidw/dt} (4)

where {M}m are the external moments applied to the body. [I] is the

inertia matrix. and dm/dt is the rotational acceleration. These three

scalar rotational equations of motion. together with the three scalar

translational equations of motion. can be solved to find the natural

frequencies and mode shapes of the rigid body. The external forces

applied to the body can be restoring forces from elastic elements such

as springs. dissipative forces from dampers. or other externally

applied forcing functions.

The general case to be solved is the damped forced vibration

problem. The form of the general equation is

[ultd’x/dt‘} + [C][dx/dtl +-%%l{dx/dt) + [Klixl = {F} (5)

where [M] is the mass/inertia matrix. [C] is the viscous damping

coefficient matrix. [D] is the structural damping coefficient matrix.



w is the excitation frequency. [K] is the stiffness coefficient

matrix. {F} is the externally applied harmonic force/torque. t is

time. and {x} is a generalized coordinate vector.

{xiT = {X.Y.Z.Ox.0y.Ozl (6)

Viscous damping takes the form of a force proportional in magnitude to

the velocity and acting in the direction opposite to the direction of

the velocity. Structural damping is associated with internal energy

dissipation due to the hysteresis in cyclic stresses. The energy loss ‘

per cycle of stress is proportional to the amplitude squared. The

structural damping has been treated in Equation 5 as an equivalent

viscous damping term which is inversely pr0portiona1 to the driving

frequency. w. of the harmonic excitation. [’1 These damping models

are the two used most frequently to represent damping effects.



CHAPTER 3

EIGENVALUE PROBLEM FORMULATION

The solution of Equation (5) begins by looking at the homogeneous

case with no forcing functions. [F]. present. In many cases. the

system damping is very small and can be neglected. This undamped free

vibration problem is the easiest to solve and still results in much

useful information. Equation (5) is then reduced to

[Mltd'x/at’} + [KJle = {01 (7)

where [M] and [K] are six by six matrices representing the inertia and

stiffnesses of the rigid body. In this case, the only external forces

applied to the body are from the elastic elements. The eigenvalue

problem [’1 formed from Equation (7) is

[KIIA] = A[M]{A] (8)
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This eigenvalue problem is useful because it provides information

about the natural frequencies and mode shapes of the system. The

physical interpretation of this eigenvalue problem is straightforward.

The constant. A. is an eigenvalue representing the square of a natural

frequency. Assume that six distinct eigenvalues. one for each of the

six degrees of freedom (DOF). will be found for this problem. Once

the six eigenvalues are known, each will have an eigenvector. [A].

associated with it. The eigenvectors are distinct. except for the

possibility of a constant multiple of themselves.

Each eigenvector is a mode shape formed from the six DOF, {x}. in

Equation 6. The six DOF locate any point on the rigid body with three

translations of the center of mass along the reference coordinate axes

and a rotation of the body around each of those axes. With no damping

present. the eigenvectors will all be real values and each DOF will

reach its maximum and minimum at the same time because there is no

phase lag due to damping. [3]

A modal matrix. [D]. is formed by letting the columns of [U] be

the six eigenvectors. [A]. The modal matrix forms a basis for this

system and can be used to decouple the system of differential

equations by making the substitution

{x} = [Uliy] (9)

into Equation (7) and then premultipling by [U]T to obtain

[alTrmum'y/u’] + [0111mm {y} = {a} (10)
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The matrices [UITIMIIU] and [U]T[K][U] are diagonal. as long as

[M] and [K] are symmetric positive definite. [4] The system of

equations is now six decoupled differential equations and can be

solved easily. The response to a harmonic excitation. {F}. with a

frequency equal to a system natural frequency will be infinite because

there is no dissipation. [3] Damping is needed to get a meaningful

frequency response.

A computer solution to this eigenvalue problem. Equation (8). can

be obtained by standard eigenvalue solution techniques. One of these

is the International Mathematics and Statistical Library (IMSL)

Fortran subroutine EIGZF. [‘1

The forced damped vibration problem. Equation (5). cannot in

general be solved in the same manner as above. Unless [C] and [D] are

some linear combination of [M] and [K]. they will not be diagonalized

by the modal matrix. [D]. Thus. a transformation must be made to

facilitate finding a solution. The transformation to be used here is

shown in Equation (11).

[z] = [dx/dt.x] (11)

The structural damping will be included as a complex stiffness term

[1] where [x] will be assumed to be of the same form as the harmonic

excitation.

[x] = amt (12)

Substitute Equations (11) and (12) into Equation (5) to get
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r

[O] [M] -[M] [0] {0]

[dz/dt] + {z} 3 (13)

m [C] [0] margin] in

This is simplified to

[M]z {dz/dt] + [Klz {z} = {Flz (14)

where [M]z and [K]z are twelve by twelve matrices and [Z] and [F]z are

twelve by one vectors. There are twice as many DOF in this first

order problem as were in the second order problem above. The upper

six DOF are three translational velocities and three angular

velocities. The lower six DOF are three translations and three

rotations.

To solve Equation (14). first look at the homogeneous equation

with [F]z equal to {0}. Then assume a solution to be of the form

{2} = {B} em) (15)

Substitute this in and rearrange to obtain

[KliB] = -A[M][B] (16)

Equation (16) is in a form ready to be solved by the IMSL Fortran

subroutine EIGZC. [‘1 The eigenvalues. A. are complex. The imaginary

part can be associated with the natural frequency and the real part

can be associated with the damping present. The eigenvector. {B}. is

a twelve by one complex vector representing the mode shape. [’1
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When viscous damping is present but there is no structural

damping. the twelve eigenvalues and eigenvectors will each appear in

six complex conjugate Plirb» 1i = (R t jI). The real and imaginary

parts of the eigenvalue are represented by R and jI. If structural

damping is the only damping present. the eigenvalues and eigenvectors

appear as if pure imaginary complex conjugate pairs were rotated

through the same angle. A-1 I *(-R + 31). A combination of the above

two effects will be observed if both viscous and structural damping

are present. In all cases. for small damping the natural frequency

values change only slightly from the undamped case.

To solve for the forced response. first form another modal

matrix. [V]. by letting the columns of [V] be the eigenvectors. {B}.

Then make the transformation

[2] = [V]{p] (17)

Substitute Equation (17) into Equation (14) and premultiply by [V]T to

obtain

[Mlp {dp/dt] + [Klp {p} = {Flp (18)

The matrices [Mlp and [Klp are diagonal and Equation (18) is a set of

decoupled first order ordinary differential equations.

To solve for the forced response of one of these differential

equations. choose a representation for the harmonic forcing function.
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[Flp = (r1 .(iwt) (19)

Then assume a solution to the differential equation of the same form.

[p] = {p} o‘iwt> (20)

Substitute Equation (20) into Equation (18) and rearrange to obtain

f/m

P = Jiwt) (21) 

im-l

where P is the response for one of the twelve DOF and A is defined by

Equation (16). The response in the reference coordinate system. {x}.

is obtained by using the previous transformations. Equations (12) and

(17). This response is a complex value with the magnitude equal to

the square root of the sum of the squares of the real and imaginary

parts. The phase is the arctangent of the angle found from the

imaginary divided by the real part of the response.

The magnitude of the modal response. P. is effected significantly

by the method of normalizing or scaling the eigenvectors. Normalizing

with the mass matrix means that the equation

[UJTIMJIU] = [I] (22)

is solved to find the apprOpriate scale for the ratios between the

DOF. This type of normalization gives an indication of the amount of

kinetic energy in a mode. The kinetic energy in each mode is

proportional to the natural frequency squared as seen by
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(mi = [x] a“ (23)

Kinetic Energy = A’ixlTlM][x] (24)

Normalizing with the stiffness matrix gives an indication of the

amount of potential energy in a mode. This is done by solving the

equation

[vimel = [11 (25)

Here each mode has the same potential energy.

Normalizing to the largest DOF in each mode is useful to“

graphically display the mode. Since the largest DOF after this

normalization is equal to one. all modes have the same amount of

deflection during animation.



CHAPTER 4

COORDINATE SYSTEM CONVERSIONS

In Chapter two. the equations of motion were derived for the

engine/mounts system. The equations require inertia. stiffness. and

damping parameters. These parameters can be defined by experimental

testing. Mount stiffness and damping values are measured for the

three local orthogonal principle mount directions; compression.

lateral. and fore/aft. An engine mount is commonly installed in the

reference coordinates (Figure 1) at some angle and location specified

by the mount system designer. The stiffness values expressed in the

reference coordinate system are needed for Equation 5. This chapter

discusses the transformation between values expressed in the local

mount coordinates to those expressed in the reference coordinates.

If the compression. lateral. and fore/aft directions of the mount

local coordinate system are aligned with the X. Y. and 2 directions of

the reference coordinate system. no conversion has to be made. As the

16
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mount is rotated and orientated differently. the principle stiffness

values in the local mount coordinate system do not change. but the

stiffness values as viewed in the reference coordinate system do

change.

‘Consider that the tip of the mount is free to move and that the

mount can rotate in any direction around its base. Position the mount

so that the compression (P). lateral (Q). and fore/aft (R) directions

are aligned with the X. Y. and 2 directions. (Figure 2)

 \I 
   

Figure 2 Mount coordinate system

The tip of the mount can be pointed in any desired direction by

performing three rotations. Each rotation is additive to the previous

one. Many combinations of rotations will put the mount in the same

orientation. Once a combination of three rotations is selected. they

must be performed in that specific order. Changing the order will
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generally orientate the mount in another direction.

Euler angles are commonly used for this purpose because they are

a unique set for any specific orientation. But because the rotation

axes move with each additional rotation. errors can easily occur when

prescribing the rotations. For this reason. rotations around the

fixed X. Y. and 2 reference coordinates (Figure 2) are used here. The

rotations are done in the following order: a rotation around the X

axis. then a rotation around the Y axis. and finally a rotation around

the Z axis. This method is easier to visualize and will orient the P.

Q. and R axes in any way desired.

These rotations are accomplished by multiplying by the

apprOpriate three by three direction cosine rotation matrix. The

following matrices produce a rotation of the end point of a vector

when post-multiplied by that three by one vector.

  

l 0 0

[Rx]= O cosOx sinex (26)

O -sin9x cosOx Rotation about X

.. .J

cosGy 0 -sinOy

[Ry]-= 0 1 0 (27)

sinOy 0 cosOy Rotation about Y

_ ._  
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r. ._

cosGz sinGz 0

[R2]8 -sin92 cost 0 (28)

O O 1 Rotation about 2

The angles Ox, 0y, and 91 are measured according to the right hand

rule around the X. Y. and Z axes respectivly. Several vectors can be

transformed at once by letting the vectors be the columns of a

coordinates matrix. A combination of these rotations will move a

mount local coordinate system from an orientation where the P. Q. and

R axes are aligned with the X. Y. and Z axes to one where the P. Q,

and R axes are in the correct design orientation. Doing the rotations

in the reverse order will do the opposite transformation. Consecutive

rotations are performed by consecutive multiplications of these

matrices. Equations (26).(27).(28). The desired rotation matrices can

be combined into one matrix.

[R] 8 [R2] [Ry] [Rx] (29)

The conversion of stiffness values from one coordinate system to

another is done as follows. [’1

Xxx Xxy sz Kpp O O

ny ryy ryz = [a] o m o [121T (30)

[xx sz Kzz O O Krr

The stiffness matrix on the right is evaluated in the local mount

coordinate system and is diagonal because it contains only the

principal mount stiffness values. The stiffness matrix on the left is

evaluated in the reference coordinate system and all six values can be
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non-zero. For instance. if the term sz is nonrzero there will be a

force in the X direction due to a Z displacement. The same procedure

is used for transforming damping values.



CHAPTER 5

INTRINSIC PROPERTIES OF INERTIA AND STIFFNESS

This chapter describes prOperties dependent upon the inertia and

stiffness matrices that are useful during the engine mounting design

process. Each depends solely on the inertia or stiffness matrix and

describes something about the engine/mounts system dynamic or static

characteristics. The prOperties to be discussed are the elastic axes.

the torque axis. the static deflection. and the mode dependent mount

forces. These are time consuming to calculate manually. but can

easily be incorporated into a computer program which can perform the

calculations quickly. More detailed derivations of the elastic axes

and torque axis calculations are presented in the references cited.

ELASTIC AXES

Ideally. the elastic axes form an orthogonal coordinate system in

which the only displacement or angular response due to an applied

force or torque is in the same direction as the degree of freedom

21
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(DOF) in which the input force or torque is directed. The center of

elasticity is the origin of this coordinate system. With the elastic

axes coordinate system. the response will be pure decoupled

translational modes and pure decoupled rotational modes. The desired

result is to achieve a design in which the elastic axes are aligned

with the reference coordinate system about which the input torque acts

so that a torque input does not cause a displacement response.

This ideal definition of elastic axes can only occur in planar

analysis. In planar problems. motion is described by two translations

in a plane and a rotation about an axis normal to that plane. The

elastic axes are found so that if a force is applied along one of the

axes in the plane. only a translation along that axis will result. If

a torque is applied around the axis normal to the plane. only a

rotation around that axis will result. Elastic axes can be easily

found for planar problems by finding the coordinate system in which

the flexbility matrix is diagonal.

The elastic axes are found by using the general flexibility

matrix. [A]. which is the inverse of the stiffness matrix. [I]. The

flexibility matrix post-multiplied by a force vector. [F]. is equal to

a shape vector. [x]. describing the location and orientation of the

body using the six DOF.

[x] = [Kl-1IF] = [A][F] (31)

Planar problems have a flexibility matrix given by
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e e a

[A] g m e t . (32)

a e e e = non-zero terms

The DOF needed are two translations describing motion in the plane and

a rotation about an axis normal to the plane. The planar flexibility

matrix. [A]. evaluated in the elastic axes coordinates would be

diagonal. (Equation 33)

‘ 0 O

[A] = O ‘ O (33)

O O ‘ * = non-zero terms

There is not a clear analogy between the planar problem and the

general three dimensional problem with six degrees of freedom. In the

latter case. the flexibility matrix is a six by six symmetric matrix.

a s a a a a

a s a s e e

[A] g e s e s s a (34)

s a e a e a

a s a a e a

a s s t 0 t t = non-zero terms

Changing six DOF can introduce at most six symmetric zeroes. a total

of twelve zeroes. ['1 Because there are thirty off diagonal terms.

coupling is always present. A decision must be made as to what kind

of partial decoupling is acceptable or most useful.

One choice would be to maximize decoupling between the

translational modes and the rotational modes by diagonalizing or

possibly zeroing out rows or columns of the off diagonal sub-matrices.

The diagonalization method ['1 used to obtain Equation 35 will be
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discussed here. In the diagonalization method. if a force is applied

along one of the coordinate axes. the only resultant rotation will be

around that axis combined with a translation along an axis which in

general is not one of the coordinate axes. If a torque is applied

around one of the coordinate axes. the only resultant translation will

be along that axis combined with a rotation about an axis which is in

general not one of the coordinate axes.

a e s a o o

a a e o a o

[A] = ‘ ‘ ' 0 O R (35)

s o o a e a

o a o a a s

0 O * ‘ ‘ ‘ ‘ = non-zero terms

This is not analogous to the planar analysis. which one could attempt

to imitate in the three dimensional problem by assuming infinite

stiffness normal to a plane containing two of the reference axes.

Obviously. this does not represent the problem as accurately as the

three dimensional elastic axes.

TORQUE AXIS

The torque axis is defined as that axis about which the engine

will tend to rotate due to a torque T applied around the Y axis. which

is the crankshaft axis in this problem. It is calculated [’1 solely

as a property of the principle inertia axes centered at the center of

mass and their geometric relationship to the reference coordinate

system. No effects of stiffness are considered.

The computations involved find the reactions around each of the

principle inertia axes due to the components of the torque T in terms
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of the principle inertia values and the inertia direction cosines. An

axis about which these reactions add up to a pure rotation with no

translation is then found. This is the torque axis relative to the

principle inertia axes. It is then transformed to the reference

coordinate system for interpretation by the user.

STATIC DEFLECTION

An important question to the engineer long before any physical

parts are made is whether the designed engine package will fit into

the engine compartment. The engine mounts will be compressed because

of the weight of the engine and will allow the engine to be displaced

to a static deflection condition. The mount spring rates and mounting

locations could be such that this static deflection collides with the

engine compartment. Also. the maximum travel of the engine mounts

could be reached.

To find the static deflection. the following problem is solved.

is] = [A]{F] (36)

[x] is the six by one static displacement vector of the center of

gravity. [A] is the six by six flexibility matrix built up from all

the engine mounts. [F] is the six by one force vector and has as its

only non-zero element the vertical weight of the engine. The

displacement vector. [x]. locates the static position of the engine.

MOUNT FORCES

Each of the six mode shapes of the engine may be associated with

forces transmitted through the engine mounts because of the

displacement of the elastic elements involved. These forces are
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useful in themselves and can be used as input to other models. for

example. a model of the vehicle structure.

The forces transmitted through a mount are found by building up

the six by six stiffness matrix using only the stiffness values for

that mount and solving

[F] = [X][x] (37)

This is done for each of the six eigenvectors. [x]. The result is a

force vector containing three component forces and three component

torques. In this case. the component torques at each engine mount

location are zero because the mounts were assumed to have zero

rotational stiffness. It is useful to normalize the component forces

for each mode to the largest value. The absolute magnitudes may vary

depending on how the eigenvectors are normalized. but the relative

magnitudes will stay the same.



EXAMPLE PROBLEM

The development of an engine/mounts simulation and the properties

obtainable from the stiffness and inertia matrices have been discussed

in this thesis. This chapter will present an example combining these

ideas into an interactive computer program to solve a practical

problem.

The Albert H. Case Center for Computer Aided Design. a part of

the College of Engineering at Michigan State University. has recently

finished a joint project with the Oldsmobile Division of General

[10,11,12]
Motors Corporation. A partial list of the goals of this

project were to

1. Develop an interactive computer engine mounting design tool.

2. Predict forces transmitted from the engine to the vehicle

structure.

3. Develop methods to explain why accepted engine mounting design

concepts of the past were not working on current transverse

front wheel drive designs.

27
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These goals were accomplished by deveIOping a computer pragram

entitled ENGSIM. or rigid body engine dynamics simulation.

ENGSIM is an interactive. "user friendly" computer program. It

asks questions which prompts the user to reply and in this way. leads

the user through the program without requiring detailed knowledge of

the program structure or the analysis performed. ENGSIM includes the

various calculations discussed previously in this thesis into a single

program allowing many design questions to be investigated with this

one program package. The output relies heavily on computer graphics

and animation. An example run of ENGSIM is presented in Appendix A.

The input data to the program describes the configuration of the

engine and mounts being simulated. It includes the engine inertia

data and the mounts spring rates. damping. location. orientation. and

number. Both viscous and structural damping may be input. The values

used in this example were measured experimentally by Oldsmobile.

The output of the simulation includes engine vibrational modes

and natural frequencies. engine static deflection. elastic and torque

axes. and the normalized mount forces for all modes. Mode shapes can

be animated. The input data can be modified interactively and the

resultant output viewed to determine the effects of the change.

A comparison of this analytical model with experimentally

obtained results was conducted by Oldsmobile. A modal test was done

on a Vr6 diesel engine mounted in a cradle by four engine mounts. The

cradle was attached directly to a bed plate. Other connections such

as hoses. exhaust system. and the driveline were disconnected. A

shaker located near the front transmission mount provided random
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excitation. The experimental modal data was analyzed with a Hewlett

Packard Structural Analyzer (HP5423A) to determine the natural

frequencies and mode shapes with the output stored on cassette tape.

The results are shown in Table 1.

TABLE 1

Comparison of predicted and measured engine natural frequencies.

NATURAL FREQUENCIES

MODE COMPUTER EXPERIMENTAL DIFFERENCE

SIMULATION TESTING

1 4.47 Hz 4.17 Hz 7.2%

2 5.97 Hz 5.66 Hz 5.5%

3 7.48 Hz 6.47 Hz 15.6%

4 9.87 Hz 8.76 Hz 12.7%

5 12.26 Hz 12.47 Hz -1.7%

6 16.46 Hz --- ---

The natural frequencies in Table 1 show that the computer

prediction and the experimental values correlate well except for the

sixth mode. The experiment did not find a sixth mode. The mode shape

predicted for the sixth mode by the simulation has a node very near

the point on the engine -where the shaker was placed in the

experimental tests. (Figure 3) This may have resulted in insufficient

excitation of the sixth mode in the experimental tests.

Figure 4 compares the fifth mode shapes from the simulation and

from the experiment. The same general shape is seen here and were
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also seen for the other modes. Differences in natural frequency and

mode shape could be caused by the difficulty in accurately determining

the stiffness and damping values of the engine mounts. Only the

compression stiffness values could be easily obtained because of the

test procedure used. Lateral and fore/aft values were arrived at by

using empirical ratios for mounts of similar geometry and durometer.

Differences could also be attributed to error in the assumption of

small motion made in the simulation.

  

 

Y

Figure 3 Predicted sixth mode of engine/mounts
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Figure 4 Predicted and measured fifth mode



CHAPTER 7

CONCLUSIONS

This thesis has developed the analysis for a computer simulation

of the dynamics of a rigid body engine on elastic mounts tied to

ground. The results of the simulation are the natural frequencies.

mode shapes. static deflection. mount forces. elastic axes. and torque

axis. of the engine/mounts system. The simulation predictions of

natural frequencies and modes shapes for a specific V-6 diesel engine

were then compared to experimentally measured data. The two results

correlate within about ten percent.

The analysis is based on linearized equations of motion which are

incorporated into a ”user friendly" interactive computer program. The

program asks questions of the user and leads one through without

requiring detailed knowledge of the analysis being performed. Data

input to the simulation include the engine inertia and the engine

mount spring rates. damping. location. orientation. and number. Both

32



33

viscous and structural damping may be entered.

The computer simulation provides the engine mount designer with

direct visual information on the specific engine mounts which pass the

largest idle shake forces to the structure. This is done with plots

and animations of the engine/mounts system mode shapes and is useful

when optimizing a mount design. Using the animation and natural

frequencies provided by the simulation. the designer can minimize

mount deflections likely to excite vehicle structural modes.

The three dimensional elastic axes analysis is a better approach

than a two dimensional analysis. The two dimensional definition -

requires inaccurate assumptions which are not needed in the three

dimensional problem.

The simulation is valuable when designing engine mounting

packages and can be used separately from any vehicle structural model

to aid in optimizing mounting designs. The early specification of

mount locations is useful for improving the idle shake isolation of

future vehicle models. This will allow better mount locations to be

designed into the vehicle structure and reduce the physical testing

required.



APPENDIX



APPENDIX A

USING THE ENGINE DYNAMICS SIMULATION ENGSIM

This appendix presents an example run of the interactive rigid

body engine dynamics simulation. ENGSIM. which was developed to

incorporate the analysis discussed in this thesis. An input file will

be shown along with a complete run of ENGSIM showing the program

prompts. the user answers. and the program output. Before trying to

run the program. a user should have a run image of ENGSIM. an input

file with the input data. and a geometry file used when drawing the

pictures. The input and geometry files must be available before

starting because ENGSIM asks for them.

The XYZ reference coordinate system with its origin at the center

of mass of the engine is shown in Figure A1. This is the coordinate

system which mount coordinates given in vehicle global coordinates are

converted to. The user must be cautious to convert input data

measured in a coordinate system oriented another way to this one in

34
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order for the results to make sense.

 
 A

‘ /lV

Figure A1 -Engine/mounts coordinate system

The following is the form that the input file must be in. This

input file name is INPUT.2 and will be asked for by ENGSIM.

 INPUT.2

seeessaeseeseseeeasaaeseeea

Oldsmobile engine test stand configuration.

as

esseeesseseaeeeeeeseeeea

Mass of engine. Kg mass and Kg force are numerically equal.

as

276.7

eeeeeeesseseseeseaaseeee

Engine center of gravity coordinates. (X Y Z Meters)

as

1.5366 .0693 .661

eeseaeeeeseeseseesseeeea

Number of engine mounts.

as

4
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OOOOOOOOOOOOOOOOOOOOOOOO

Engine mount coordinates.(Meters)(X Y Z mount 1. X Y Z mount 2 etc.)

as

1.312 -.24 .462

1.898 -.213 .41

1.342 .21 .432

1.83 .236 .416

eaeeeeeasaeeaeseeaeeseaa

Mount Stiffness.

“ Compression Lateral Fore/Aft (N/m) ThetaX ThetaY ThetaZ (Degrees)

223667. 44733. 44733. 0. '45. 0.

170167. 126050. 48619. 0. '39. 180.

217167. 434334. 108583. 0. -75. 0.

232167. 464334. 116083. 0. -45. 180.

saeeeaaaaaaaeeeeea

Engine mass moment of inertia matrix. (N—M—SECZ)

as

15080 -0080 .9

-0.80 11.64 -3.2

.90 -3.2 15.69

eaeeeaeaseeeeeeaaa

Direction Cosine Angles to Principal Inertia Axis (Degrees)

as

17.87 73.91 82.43

100.52 31.07 118.87

104.28 64.19 30.03

eseeeseeeeeeeaesse

Mount viscous damping. Compression Lateral Fore/Aft (N-sec/M)

as

45. 100. 150.

45. 100. 150.

45. 100. 150.

45. 100. 150.

aeeeeeseseeeeaeeea

Mount structural damping. Compression Lateral Fore/Aft (N/M)

as

26000. 25000. 27000.

26000. 25000. 27000.

26000. 25000. 27000.

26000. 25000. 27000.

eeaessssseeeeeaasaeeeesa

Number of cradle mounts. (enter 0 for no cradle)

as

6

OOOOOOOOOOOOIOOOOOOOOOI‘

Cradle mount coordinates.(Meters)(X Y Z mount 1. X Y Z mount 2 etc.)

as

‘1.125 -.541 .511

1.125 .541 .511

2.041 -.4265 .3495

2.041 .4265 .3495

2.168 -.584 .3495

2.168 .584 .3495
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OOOOOOOOOOCOOOOOOOOOOOOO

Cradle stiffness (N/M) (X Y Z mount 1.x Y Z mount 2 etc.)

as

144000 280000 400000 0 0

144000 280000 400000 0 0

250000 520000 950000 0 0

250000 520000 950000 0 0

250000 520000 950000 0 0

250000 520000 950000 0 0

eeeeeaeeeaaaaaeeaeeeeeee

EOF

0

0

0

0

0

0

e

The mass of the engine. mass moment of inertia matrix. and direction

cosine angles to principal inertia axes were obtained from Oldsmobile.

The inertia values. I. are entered as

IX'X IX'Y IX'Z

IY'X IY'Y IY'Z (A1)

IZ'X IZ'Y IZ'Z

where XYZ is the reference coordinate system in Figure A1 and X'Y'Z'

are the principal inertia axes of the engine. The inertia direction

cosine matrix. L. locates the X'Y'Z' axes relative to the XYZ

reference coordinate system. They are entered as

LX'X LX'Y LX'Z

LY'X LY'Y LY'Z (A2)

LZ'X LZ'Y LZ'Z

The coordinates locating the mounts and the center of mass were

obtained from drawings. Mount stiffness and damping values were
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obtained from an elastomer dynamic rubber test. Remember. the

coordinate system used must conform to the reference coordinate

system.

Mounts are orientated by performing three rotations. First.

assume that the compression axis (P). lateral axis (0). and fore/aft

axis (R) are aligned with the XYZ axes respectively as in Figure A2.

 

Figure A2 Mount coordinate system

The object is to orient the PQR axes in the design orientation of the

mount. The rotations are done as follows: (1) rotate around the X

axis (2) rotate around the Y axis and (3) rotate around the Z axis.

They must be performed in this order. An example of rotating zero

degrees around the X axis (0x=0). then adding a rotation of minus

sixty degrees around the Y axis (0y=-60). and then adding a rotation

of twenty degrees around the Z axis (Oz-20) is. shown in Figures

A2.A3.A4.
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Figure A3 Additional mount rotation of Oy= -60

 
 

\Y

Figure A4 Additional mount rotation of Oz= 20
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Positive rotations are determined according to the right hand rule.

Three rotations such as this can orientate a mount in any way desired.

Another file used is the geometry file that contains the geometry

for drawing pictures of the engine. The first value is the number of

points. N. in the picture. The next N lines are the X. Y. and Z

coordinates of the points measured from the C.G. of the engine. The

next value is the number of entries. M. describing how to connect the

points. The next M values are point numbers. If a point number is

positive. a line will be drawn from the current cursor position to the

coordinates of that point number. If a point number is negative. the <

cursor will move to those coordinates without drawing a line. The

following file is called GEOENG and will be used to draw a V-shaped

block resembling an engine. Distances here are measured in meters.

  

GEOENG

29

.2934 .1667 -.251

-.1946 .1667 -.251

-.1946 -.137 -.251

-.2246 -.3093 -.251

.3614 -.3093 -.251

.3614 -.137 -.251

.2934 -.137 -.251

.2934 .1667 .251

-.1946 .1667 .251

-.1946 -.137 .05

.2934 -.137 .05

-.2246 -.3093 -.051

.3614 -.3093 -.051

.3614 -.137 -.051

.2934 -.1370 ".051

.2934 .1667 .05

.3934 .1667 .225

.1934 .1667 .277

.0494 .1667 .15

-.0946 .1667 .277
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-.2946 .1667

-.1946 .1667

.2934 -.137

.3934 -.137

.1934 -.137

.0494 -.137

-.0946 -.137

-.2946 -.137

-.1946 -.137

46

-1 2 3 4 5 6 7 1

.225

.05

.05

.225

.277

.15

.277

.225

.05

16 17

-7 23

3 -17

28 -10

18 19

24 25

24 -18

2O 21

26 27

25 -20

12 4 -12 13

22 2

28 29

27 -21

5 -13

14 6 -14 15 -13 11

and AA sample run of ENGSIM is presented next. Program prompts

output are indented and user typed answers shown underlined.

SEQ {ENGSIM

M M 88888 U U

MM MM S U U

M M M SSSSS U U

M M S U U

M M SSSSS UUUUU

ENGSIM

RIGID BODY ENGINE DYNAMICS SIMULATION

” Rev. 7.1 JUL 26.1982 “

ENTER NAME OF FILE WITH MOUNT“GEOMETRY.STIFFNESSES.and DAMPING

INPUT.2

WEIGHT (NEWTONS) 2711.66 MASS (KILOGRAMS) 276.70

COORDINATES (METERS) GLOBAL LOCAL

X Y Z X Y Z

C.G. 1.5366 0.0693 0.6610 0.0000 10.0000 0.0000

MOUNT 1 1.3120 -0.2400 0.4620 -0.2246 -0.3093 -0.1990

MOUNT 2 1.8980 -0.2130 0.4100 0.3614 -0.2823 -0.2510

MOUNT 3 1.3420 0.2100 0.4320 -0.1946 0.1407 -0.2290
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MOUNT 4 1.8300 0.2360 0.4160 0.2934 0.1667 -0.2450

MOUNT STIFFNESS (NEWTONS/METER)

COMPRESSION LATERAL FORE/AFT THETAX THETAY THETAZ

MOUNT 1 223667. 44733. 44733. 0.0 -45.0 0.0

MOUNT 2 170167. 126050. 48619. 0.0 -39.0 180.0

MOUNT 3 217167. 434334. 108583. 0.0 -75.0 0.0

MOUNT 4 232167. 464334. 116083. 0.0 -45.0 180.0

MOUNT DAMPING (N-sec/M) VISCOUS STRUCTURAL

COMPRESSION LATERAL FORE/AFT COMPRESSION LATERAL FORE/AFT

MOUNT 1 45.0 100.0 150.0 26000.0 25000.0 27000.0

MOUNT 2 45.0 100.0 150.0 26000.0 25000.0 27000.0

MOUNT 3 45.0 100.0 150.0 26000.0 25000.0 27000.0

MOUNT 4 45.0 100.0 150.0 26000.0 25000.0 27000.0

DO YOU WANT TO CHANGE ANY OF THESE VALUES ENTER Y 0R N

N

ENTER COMPREHENSIVE LEVEL OF OUTPUT (MINIMUM: 1 MAXIMUM= 4)

1

MASS MATRIX EQUALS...

276.70 0.00 0.00 0.00 0.00 0.00

0.00 276.70 0.00 0.00 0.00 0.00

0.00 0.00 276.70 0.00 0.00 0.00

0.00 0.00 0.00 15.80 0.80 -0.90

0.00 0.00 0.00 0.80 11.64 3.20

0.00 0.00 0.00 -0.90 3.20 15.69

STIFFNESS MATRIX EQUALS...

546210.00 0.04 -875.04 -16746.68 -62636.55 30629.07

0.04 1069450.50 0.02 253764.56 -0.02 87221.59

-875.04 0.02 614975.25 -10264.08 -9948.91 16746.70

-16746.68 253764.56 -10264.08 89904.45 569.74 20711.11

-62636.55 -0.02 -9948.91 569.73 42328.55 2635.68

30629.07 87221.59 16746.70 20711.11 2635.68 104834.89

CENTER OF ELASTICITY (Meters)

X Y 2

0.034135 -0.023090 -0.182742

ELASTIC CENTER ROTATION MATRIX

-0.786903 0.615756 -0.040357

0.565569 0.745833 0.351944

-0.246812 -0.254121 0.935150

X Y 2 ON TORQUE AXIS FROM C.G.

-0.33 5.25 -1.09

(Measured from the C.G.)

ENTER VALUE FOR (DYNAMIC/STATIC) STIFFNESS

1...!
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STATIC DEFLECTIONS ARE ... (METERS)

X Y Z THETAX THETAY THETAZ

C.G. -0.00039 0.00046 -0.00628 -0.00235 -0.00211 0.00126

MOUNT 1 0.00041 -0.00029 -0.00603

MOUNT 2 0.00049 0.00032 -0.00486

MOUNT 3 -0.00009 -0.00033 -0.00702

MOUNT 4 -0.00009 0.00025 -0.00606

Choose the MODE SHAPE NORMALIZATION method

MASS---------(MA) STIFFNESS--(ST) LARGEST DOF-(LD)

Q

THE MODE SHAPES ARE ... (normalized to largest DOF)

0.080 0.414 -.137 -.093 0.078 0.018

-.300 0.107 0.058 “.018 -.117 0.180

0.029 0.050 1.000 -.004 0.029 0.005

1.000 -.220 -.021 -.134 -.609 1.000

0.163 1.000 0.015 1.000 -.708 -.491

0.019 -.195 -.243 0.392 1.000 0.987

NATURAL FREQUENCIES ... (CYCLES/SEC)

4.47 5.97 7.48 9.87 12.26 16.46

Choose one of the options by entering the two letters.

MODE SHAPES--(MS) ELASTIC AXIS---(EA) RESTART PROGRAM---(RS)

MOUNT FORCES-(NF) FREQ RESPONSE--(FR) RESTART W/NU DATA-(NU)

CHG NORM-----(N0) NEW INPUT FILE-(IN) QUIT (0U)
 

SEG #ENGSIM was entered to run the program. The title header

appeared and the user was asked for the name of the input file. The

user entered INPUT.2 and ENGSIM read in that file. Then this

information was displayed in tabular form. The coordinates were

displayed in both the global vehicle coordinates and the local

coordinates with origin at the center of mass. ENGSIM performs all

local coordinate Engine mountcalculations system.using the

stiffness. damping. and orientation were also displayed. Any of these

input design parameters may be changed within ENGSIM to see the effect

on program output. Changing parameters at this point does not change

the input file. The comprehensive level of output determines how much

output the user will see at the terminal. Level 1 prints out what is
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considered the basic useful information. Higher levels print out more

data.

At this point. ENGSIM begins forming matrices and computing

output. The mass. stiffness. viscous damping. and structural damping

matrices were formed and an eigenvalue problem was solved for engine

natural frequencies and mode shapes. The location and orientation of

the elastic axes and torque axis were found and printed out.

In order to calculate static deflection of the engine due to its

weight on the mounts. the user was then asked to enter the ratio of

dynamic to static stiffness rate for all mounts. The dynamic.

stiffness rate is entered in the input file above. but the static rate

must be known to calculate static deflections. The deflection of the

center of mass in terms of the six degrees of freedom and the

deflection of the engine mounts in terms of the X. Y. and Z

coordinates of the local coordinate system was printed out.

Next the user was asked to select the type of mode shape

normalization to be used. The mode shapes can be normalized to the

mass matrix. the stiffness matrix. or the largest degree of freedom.

Normalizing to the mass matrix scales by the amount of kinetic energy

in each mode. Normalizing to the stiffness matrix results in all

modes having equal potential energy. Normalizing to the largest

degree of freedom means that the largest entry in the mode shape will

always be equal to one after normalization.

The mode shapes and natural frequencies for the six undamped free

vibration modes are printed out next. Modes are shown from lowest

frequency to highest frequency. The six entries in the mode shapes
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represent the six degrees of freedom. They are. from top to bottom.

translations along the X. Y. and Z coordinate axes and rotations

around the X. Y. and Z axes. Several options are available to the

user at this point.

Two letter acronyms are entered by the user to indicate the

Option selected. Selecting the MODE SHAPES options allows the user to

view any of the six mode shapes from any viewpoint and with the user

defined input geometry representing the engine. The mode shape may be

animated depending on the type of output terminal device being used.

The MOUNT FORCES option will print out the forces at each engine‘

mount caused by the maximum motion of a mode shape. The X. Y. and 2

components and the resultant magnitude are shown for each mount force.

For each mode. the values are normalized to the largest entry.

Therefore. the user can find the largest values and know at which

engine mount and in which direction the significant forces are

expected.

The CHG NORM option simply allows the user to go back to the

prompt asking what type of normalization procedure to use. The

program procedes from that point then.

The NEW INPUT FILE command writes the input data currently being

used in ENGSIM to a file with the proper form to be used as a new

input file at a later time. RESTART PROGRAM begins ENGSIM again. but

uses the same input data. It allows the user to go back and change a

value for a coordinate or stiffness etc. RESTART W/NU DATA also

begins ENGSIM again. This time though. the user can read in a new

input file. QUIT will close all files and exit ENGSIM. Examples of
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some of these options are shown below.

Choose one of the options by entering the two letters.

MODE SHAPES-~(MS) ELASTIC AXIS--(EA) RESTART PROGRAM---(RS)

MOUNT FORCES-(NF) FREQ RESPONSEE-(FR) RESTART W/NU DATAr(NU)

 

CHG NORM----(N0) NEW INPUT FILEP(IN) QUIT (0U)

.53

NORMALIZED MOUNT FORCES ARE ...

FX FY FZ F RESULT

MODE 1 MOUNT 1 -0.26 -0.09 -0.50 0.57

MODE 1 MOUNT 2 0.44 -0.10 -0.59 0.74

MODE 1 MOUNT 3 0.18 -0.59 0.79 1.00

MODE 1 MOUNT 4 -0.04 -0.42 0.43 0.60

MODE 2 MOUNT 1 0.65 0.06 0.75 1.00

MODE 2 MOUNT 2 0.35 -0.03 -0.38 0.52

MODE 2 MOUNT 3 0.38 0.52 0.64 0.91

MODE 2 MOUNT 4 0.65 -0.02 -0.76 1.00

MODE 3 A MOUNT 1 0.29 0.02 0.55 0.62

MODE 3 MOUNT 2 -0.40 -0.02 0.52 0.65

MODE 3 MOUNT 3 0.07 0.21 0.98 1.00

MODE 3 MOUNT 4 -0.35 -0.04 0.84 0.91

MODE 4 MOUNT 1 0.01 -0.08 0.28 0.29

MODE 4 MOUNT 2 -0.13 0.16 -0.25 0.32

MODE 4 MOUNT 3 -0.54 -0.76 0.36 1.00

MODE 4 MOUNT 4 -0.72 0.41 -0.45 0.94

MODE 5 MOUNT 1 0.38 -0.10 0.28 0.48

MODE 5 MOUNT 2 0.19 0.06 0.06 0.21

MODE 5 MOUNT 3 0.03 -0.98 -0.19 1.00

MODE 5 MOUNT 4 0.03 0.06 0.09 0.12

MODE 6 MOUNT 1 0.06 0.02 -0.05 0.08

MODE 6 MOUNT 2 0.17 0.29 -0.10 0.35

MODE 6 MOUNT 3 0.00 0.28 0.03 0.28

MODE 6 MOUNT 4 -0.07 0.98 0.17 1.00

Choose one of the options by entering the two letters.

MODE SHAPES--(MS) ELASTIC AXIS---(EA) RESTART PROGRAM---(RS)

MOUNT FORCES-(NF) FREQ RESPONSEE-(FR) RESTART'W/NU DATAr(NU)

CHG NORM----(NO) NEW INPUT FILE-(IN) QUIT (0U)

MS

IS THIS TO BE THE COLOR VERSION 7

ENTER YES. NO

119
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mm ms GEOMETRY DISPLAY FILE

seems

ENTER me mur- NUIBER To as snow

6

muss vmvpomr

1.9 1.9 3.

mm me PLOT FILE NAME

21,211.25

mm me PLOT Tin-B

£925 6. 1.6.4.6 E.

no you WANT TO um IN 11112 mums ms on NO 7

r

  

 

MODE 6 16.46 HZ

DO AGAIN YES OR NO 7

CHANGE THE VIEW POINT YES OR NO 7

Z

- no ANOTHER Ions ms or NO 7

N

2i)
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Choose one of the options by entering the two letters.
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