

LIBRARY Michigan State University

This is to certify that the

dissertation entitled

Synthesis and Properties of Heme \underline{d} -, \underline{d}_1 -

And Sulfur-Containing Green Hemes

presented by

Chariklia Sotiriou

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Chemistry

Click Clear

Date October 29, 1987

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

RETURNING MATERIALS:
Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

SYNTHESIS AND PROPERTIES OF HEME d-, d1AND SULFUR-CONTAINING GREEN HEMES

Ву

Chariklia Sotiriou

AN ABSTRACT OF A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

1987

ABSTRACT

SYNTHESIS AND PROPERTIES OF HEME d-, d1AND SULFUR-CONTAINING GREEN HEMES

By

Chariklia Sotiriou

The discovery of the presence of chlorin and isobacteriochlorin green heme prosthetic groups in a significant number of proteins and enzymes has generated much interest. In this work, syntheses of C-hydroxy, alkyl, alkenyl, and oxo chlorins are described. The conditions and migratory aptitudes for the pinacol-pinacolone type rearrangements involved in the formation of oxo and dioxo compounds have been studied. These results have laid the foundation from which porphyrindiones such as heme di can be synthesized. The vic-dihydroxychlorins in dilute acids can also undergo non-pinacolic rearrangement by which new functional groups can be introduced at the porphyrin side chain. This route has also been applied successfully to creating the acrylic acid group in the di-type porphyrindiones.

vic-Dihydroxychlorins substituted with a geminal propionic ester group have a propensity to lactonize. Mild bases such as NaOAc cyclize the geminal groups without inversion of configuration while prolonged contact with silica gel, invariably gives the trans diastereomer. ¹H

NMR spectra have provided important information on the conformation of the cis and trans spirolactones. This work supports the argument that the proposed Y-spirolactone structure of heme d in E. coli is most likely 12,13-dihydroxyprotochlorin IX, the cis and trans isomers and the lactone forms of which have been synthesized.

Sulfur-containing porphyrin thiones have been synthesized from the corresponding oxo-analogues and Lawesson's reagent. These compounds exhibited "hyper" type absorption spectra. Moreover, their redox potentials obtained by cyclic voltammetry revealed a reduction of the HOMO-LUMO energy gap.

Finally, the kinetic and equillibrium constants of CO and O₂ binding to myoglobin reconstituted with several synthetic green hemes were measured by using flash photolysis and spectrophotometric titrations. In comparison with the native myoglobin, the generally faster association rates observed in the green hemes might be attributed to their larger core size which facilitates the spin state change during ligand binding.

To My Mother

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor C. K. Chang for his encouragement and support throughout the course of this "colorful" work. I would also like to thank Dr. K. Hallenga who taught me the "secrets" of the NOE experiments. Special thanks are also extended to the members of our group, particularly to Weishih Wu and Gladys Avilés for their friendship.

Financial support from Michigan State University in the form of teaching assistantships, National Institute of Health in the form of research assistantships, and SOHIO Company in the form of one year industrial fellowship are gratefully acknowledged.

My deepest appreciation is due to my mother for her constant encouragement and faith in me.

Finally, I would like to thank Nick for his love, patience and understanding.

TABLE OF CONTENTS

		P	age
LIST OF	TABI	LRS	iii
LIST OF	FIGU	URES	xiv
LIST OF	APPE	RNDIX FIGURES	xvi
GENERAL	INTE	RODUCTION	1
CHAPTER	1	SYNTHETIC METHODOLOGY FOR C-SUBSTITUTED CHLORINS AND OTHER PORPHYRINOIDS	4
	ı.	INTRODUCTION	4
]	ΙΙ.	RESULTS AND DISCUSSION	8
		A. vic-Dihydroxychlorins and Derivatives	8
		B. Migratory Aptitudes in Pinacol Rearrangement of vic-Dihydroxychlorins	17
		Applications	21
		C. Differentiation of Bacteriochlorin and Isobacteriochlorin Formation by Metalation	24
		D. A Novel Method of Functionalizing the Ethyl Chain of Octaethylporphyrin	28
1	II.	EXPERIMENTAL	32
		General	32
		Dimethyl cis-7,8-dihydroxy-3,7,8,12,13, 17-hexamethylchlorin-2,18-dipropionate (16a)	33
		Dimethyl cis-2,3-dihydroxy-3,7,8,12,13, 17-hexamethylchlorin-2,18-dipropionate (17a)	34
		Methyl cis-3-hydroxy-3,7,8,12,13,17- hexamethyl- 2,2-7-spirolactone-chlorin-18- propionate (18a)	34

	Page
Methyl trans-3-hydroxy-3,7,8,12,13,17-hexamethyl-2,2-7-spirolactone-chlorin-18-propionate (19a)	35
Dimethyl cis-7,8,12,13-tetraethyl-7,8-dihydroxy-3,17-dimethylchlorin-2,18-dipropionate (16b)	35
Dimethyl cis-7,8,12,13-tetraethyl-2,3-dihydroxy-3,17-dimethylchlorin-2,18-dipropionate (17b)	36
Methyl cis-7,8,12,13-tetraethyl-3-hydroxy-3,17-dimethyl-2,2-Y-spirolactone-chlorin-18-propionate (18b)	36
Methyl trans-7,8,12,13-tetraethyl-3-hydroxy-3,17-dimethyl-2,2-Y-spirolactone-chlorin-18-propionate (19b)	36
Dimethyl trans-7,8,12,13-tetraethyl-2,3-dihydroxy-13,17-dimethylchlorin-2,18-dipropionate (20)	37
Dimethyl 3,8,8,12,13,17-hexamethyl-7-porphinone-2,18-dipropionate (21a) and 3,7,7,12,13,17-hexamethyl-8-porphinone-2,18-dipropionate (22a)	38
Dimethyl 8,8,12,13-tetraethyl-3,17-dimethyl-7-porphinone-2,18-dipropionate (21b) and Dimethyl 7,7,12,13-tetraethyl-3,17-dimethyl-8-porphinone-2,18-dipropionate (22b)	39
Dimethyl 3,7,7,12,13,17-hexamethyl-8-methylenechlorin-2,18-dipropionate (23)	40
Dimethyl 3,7,7,8,12,13,17-heptamethylchlorin-2,18-dipropionate (24)	41
General Procedure of Oxidation and Rearrangement of 15a, 29, 36 and 41	41
Dimethyl 3,7,8,12,13,17-hexamethyl-18-porphinone-2,17-dipropionate (28)	42
Dimethyl 12,18-diethyl-3,7,13,17-tetramethylporphine-2,8-diacetate (36)	42
Dimethyl 12,18-diethyl-12,13-dihydroxy-3,7, 13,17-tetramethyl-chlorin-2,8-diacetate (37)	43

			Page
Dimethyl 12,18-diethyl-2,3-dihydroxy-3,7,13, 17-tetramethylchlorin-2,8-diacetate (38)	•		44
Dimethyl 13,18-diethyl-3,7,13-17- tetramethyl-12-porphinone-2,8-diacetate (39)	•		44
Dimethyl 12,18-diethyl-2,7,13,17-tetramethyl-3-porphinone-2,8-diacetate (40).		•	44
Dimethyl 7,8-dihydroxy-3,8,13,18- tetramethyl-7,17-dipentylchlorin-2,12- diacetate (42)		•	45
Dimethyl 2,3-dihydroxy-3,8,13,18- tetramethyl-7,17-dipentylchlorin-2,12- diacetate (43)		•	45
2,3-Dihydroxy-2,12-bis(2-hydroxyethyl)- 3,8,13,18-tetramethyl-7,17- dipentylchlorin (44)		•	46
Dimethyl 3,9,13,18-tetramethyl-8,17-dipentyl-7-porphinone-2,12-diacetate (45)			46
Dimethyl 2,8,13,18-tetramethyl-7,17-dipentyl-3-porphinone-2,12-diacetate (46)	•	•	47
3,12-Bis(2-hydroxyethyl)-3,8,13,18- tetramethyl-7,17-dipentyl-2-porphinone (47).	•	•	47
Tetramethyl 2,7,12,17-tetramethyl-3-porphinone-2,8,13,18-tetrapropionate (49)		•	48
t-Butyl 2-acetoxymethyl-3-ethyl-4-methyl-5-pyrrole-carboxylate (55)	•		49
Rthyl 3',4-diethyl-3,4'-dimethyl- 5'-t-butoxycarbonyl-dipyrromethane- 5-carboxylate (57)	•	•	49
Methyl 7,12-diethyl-3,8,13,17,18-pentamethylporphine-2-propionate (50)	•	•	49
Methyl 7,12-diethyl-3,8,13,17,17-pentamethyl-18-porphinone-2-propionate (51) and Methyl 7,12-diethyl-3,8,13,18,18-pentamethyl-	-		
17-porphinone-2-propionate (52) Dimethyl 12,13-dihydroxy-	•	•	51
3,8,8,12,13,17-hexamethyl-7-porphinone- 2,18-dipropionate (68)			52

		Page
	Dimethyl 3,8,8,13,13,17-hexamethyl-7,12-porphinedione-2,18-dipropionate (69)	53
	Dimethyl 17,18-dihydroxy-3,8,8,13,13,17-hexamethyl-7,12-porphinedione-2,18-dipropionate (89)	54
	Methyl 18-[2-(methoxycarbonyl)ethenyl]- 3,8,8,13,13,17-hexamethyl-7,12-porphinedione -2-propionate (70)	54
	Dimethyl 12,13-dihydroxy-3,7,7,12,13,17-hexamethyl-8-porphinone-2,18-dipropionate (72) and Dimethyl 2,3-dihydroxy-3,7,7,12, 13,17-hexamethyl-8-porphinone-2,18-dipropionate (73)	55
	Dimethyl 3,7,7,13,13,17-hexamethyl-8,12-porphinedione-2,18-dipropionate (74)	55
	Dimethyl 2,7,7,12,13,17-hexamethyl-3,8-porphinedione-2,18-dipropionate (75)	56
	vic-Dihydroxyoctaethylchlorin (76)	57
	3,7,12,13,17,18-Heptaethyl-2- (1-hydroxyethyl)-porphine (77)	57
	3,7,8,12,13,17,18-Heptaethyl- 2-(1-acetoxyethyl)-porphine (78)	58
	3,7,8,12,13,17,18-Heptaethyl- 2-(1-methoxyethyl)-porphine (79)	58
	3,7,8,12,13,17,18-Heptaethyl- 2-vinylporphine (80)	59
	2,3,7,8,12,13,17-Heptaethylporphine (81)	59
	Reactions of vic-Dihydroxyetiochlorin I (82)	59
	Dimethyl 7,8,12,13-tetraethyl-3-(hydroxymethyl)-17-methyl-2,18-porphinedipropionate (87)	60
	SYNTHESIS OF THE HEME & PROSTHETIC GROUP OF BACTERIAL TERMINAL OXIDASE	
I. 1	INTRODUCTION	61

		Page
II.	RESULTS AND DISCUSSION	64
	A. Model Studies	64
	B. Synthesis of "Lactochlorin"	66
	C. ${}^{1}\mathrm{H}$ NMR Spectra and Structure of the Chlorins	70
	D. Structure of Heme d: Lactone vs. Diol?	80
III.	EXPERIMENTAL	81
	Dihydroxychlorins 94a, 94b, and 94d	81
	Methyl 7,8,12,13,17,18-hexaethyl-12,13- dihydroxy-4-methyl-chlorin-2-propionate (94a)	82
	(94a)	02
	(94b)	83
	Methyl 7,8,12,13,17,18-hexaethyl-17,18-dihydroxy-3-methyl-chlorin-2-propionate (94d)	83
	cis-7,8,12,13,17,18-Hexaethyl-3-hydroxy-3-methyl-2,2-Y-spirolactone-chlorin (95)	83
	trans-7,8,12,13,17,18-hexaethyl-3-hydroxy-3-methyl-2,2-Y-spirolactone-chlorin (96)	84
	3,8-Bis(2,2-dimethoxyethyl)-deuteroporphyrin IX dimethyl ester (98)	84
	3,8-Bis(2-hydroxyethyl)-deuteroporphyrin IX dimethyl ester (100)	85
	3,8-Bis(2-chloroethyl)-deuteroporphyrin IX dimethyl ester (101)	86
	Spirolactones 103a and 103b	86
	cis-3,8-Bis(2-chloroethyl)-12-hydroxy-13, 13-7-spirolactone-deuterochlorin IX dimethyl ester (103a)	87
	cis-3,8-Bis(2-chloroethyl)-18-hydroxy-17, 17-Y-spirolactone-deuterochlorin IX dimethyl ester (103b)	87
	cis-12-Hydroxy-13,13-Y-spirolactone- protochlorin IX methyl ester (104)	88

		Page
•	cis-12,13-dihydroxyprotochlorin IX dimethyl ester (106)	. 89
	trans-12-Hydroxy-13,13-Y-spirolactone- protochlorin IX methyl ester (92)	. 89
	cis-18-Hydroxy-17,17-Y-spirolactone- protochlorin IX methyl ester (105a)	. 90
	trans-18-Hydroxy-17,17-Y-spirolactone- protochlorin IX methyl ester (105b)	. 90
	cis-17,18-Dihydroxy-protochlorin IX dimethyl ester	. 90
	trans-3,8-Bis(2-chloroethyl)-12-hydroxy- 13,13-7-spirolactone-deuterochlorin IX dimethyl ester (107)	. 91
	trans-12,13-dihydroxyprotochlorin IX dimethyl ester (108)	. 91
CHAPTER 3	SYNTHESIS AND PROPERTIES OF SULFUR-CONTAINING SATURATED OCTAETHYLPORPHYRINS	. 92
I.	INTRODUCTION	. 92
II.	RESULTS AND DISCUSSION	. 93
	Absorption Spectra	. 100
	Cyclic Voltammetry	. 103
	Closing Remarks	. 106
III.	EXPERIMENTAL	. 107
	3,3,7,8,12,13,17,18-Octaethyl- 2-porphinethione (111)	. 107
	3,3,8,8,12,13,17,18-Octaethyl-2-thio-7-prophinedione (112) and 3,3,8,8,12,13,17,18-Octaethyl-2,7-porphinedithione (113)	. 108
	2,2,8,8,12,13,17,18-Octaethyl-3-thio-7-porphinedione (114) and 2,2,8,8,12,13, 17,18-Octaethyl-3,7-porphinedithione (115)	. 109

		Page
	3,3,8,8,13,13,17,18-Octaethyl-2-thio-7,12-porphinetrione (117), 3,3,8,8,13,13,17,18-Octaethyl-2,12-dithio-7-porphinetrione (118), 3,3,8,8,13,13,17,18-Octaethyl-2,7,dithio-12-porphinetrione (119), and 3,3,8,8,13,13,17,18-Octaethyl-2,7,12-porphinetrithione (120)	110
	3,3,7,8,12,13,17,18-Octaethyl-2-methyl-2-mercaptochlorin (121)	111
	3,3,7,8,12,13,17,18-Octaethyl-2- mercaptochlorin (122)	112
	2,2,7,8,12,13,17,18-Octaethylchlorin (123)	112
	General Procedure for Zinc and Copper Insertion	113
CHAPTER 4	KINETIC AND EQUILIBRIUM STUDIES OF CO AND O ₂ BINDING TO HORSE HEART MYOGLOBIN RECONSTITUTED WITH SYNTHETIC GREEN HEMES	114
I.	INTRODUCTION	114
II.	RESULTS AND DISCUSSION	118
III.	SUMMARY	125
IV.	MATERIALS AND METHODS	126
	Preparation of Hemins	126
	Preparation of Myoglobins	126
	Kinetic and Equilibrium Measurements	127
REFERENCES	AND NOTES	132
APPENDIX .		140

LIST OF TABLES

		Page
Table 1	¹ H NMR Assignments for the pyrroline substituents of the four forms of 12,13-dihydroxyprotochlorin	. 78
Table 2	Couplings (Hz) and rotamer populations of the cis-diol 106	. 79
Table 3	¹ H NMR Data of sulfur-containing saturated octaethylporphyrins in comparison with their oxo-analogues	. 99
Table 4	Redox potentials of sulfur-containing saturated octaethylporphyrins and oxo-octaethylporphyrins. The latter are indicated in parenthesis	. 104
Table 5	Kinetic and equilibrium constants for CO and O2 binding	. 119
Table 6	Absorption spectral maxima of synthetic hemes and myoglobins	. 122

LIST OF FIGURES

						Page
Figure 1	Tautomeric forms of porphyrin			•		6
Figure 2	1900-1500 cm ⁻¹ IR spectra of (A) porphyrin; (B) dihydroxychlorin; (C) γ -spirolactone chlorin.	•	•	•	•	11
Figure 3	250 MHz ¹ H NMR spectra of 21b and 22b. Irradiations of the methyl resonances as indicated resulted in NOE observable at the neighboring groups whose chemical shifts are marked by the pointers	•	•	•	•	15
Figure 4	Arrangement of cytochromes in the respiratory chain of cells of E. coli in the late exponential phase of aerobic growth. The Em' values are indicated in parentheses. Cyt, cytochrome; Q, ubiquinone-8	•	•	•	•	62
Figure 5	¹ H NMR spectra (in CDCl ₃ , 250 MHz) of trans- lactone 83 (A); of the hexaethyl trans-lactone 87 with simulation (B)	•	•			71
Figure 6	1 H NMR spectra (in CDCl ₃) of cis lactone 95 at 250 MHz (A); at 500 MHz with simulation (B)	•	•	•	•	72
Figure 7	Suggested conformation of the isomeric spirolactones. The slope estimated for the trans isomer is 35° while for the cis isomer is less than 10°	•	•	•	•	73
Figure 8	¹ H NMR spectra (in CDCl ₃) of cis-diol 97 at 250 MHz (A); at 500 MHz with simulation (B)	•	•	•	•	76
Figure 9	¹ H NMR spectra (in CDCl ₃) of trans-diol 99 at 250 MHz (A); at 250 MHz with simulation (B).	•		•	•	77
Figure 10	Sulfheme models		•			93
Figure 11	1800-1300 cm ⁻¹ IR spectra of: (A) porphyrinone 8; (B) porphyrinthione 111	•	•	•		96
Figure 12	250 MHz ¹ H NMR spectra of porphyrinone. 8 and porphyrinthione 111		•			97

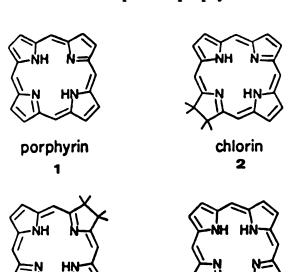
Figure			Page
Figure	13	Visible spectra (in CH ₂ Cl ₂) of thione lll (A); thiol 122 (B); Cu-thione (C); Cu-thiol (D)	101
Figure	14	Visible spectra (in CH ₂ Cl ₂) of 3,7-dithione 115(A); 2-7-dithione 113 (B); 2,7,12-trithione 120 (C)	102
Figure	15	Cyclic voltammograms of 2,7,12-trione 116 (A); 2,7,12-trithione 120 (B)	105
Figure	16	The low-resolution structure of Mb (A); the O_2 -binding site in Mb (B)	115
Figure	17	Structures of synthetic green hemes used for myoglobin reconstitutions	117
Figure	18	Optical spectra of 7-keto-heme myoglobin (A); 8-keto-heme myoglobin (B); Ferric (—), Deoxy (—), Oxy (—), CO (—), in 10 mM (pH 7.4) potassium phosphate buffer	121
Figure	19	Autoxidation of reconstituted myglobins at 22°C in 10mM (pH 7.4) potassium phosphate buffer, saturated with O ₂ . Protoheme (native)O, slope = 8.6x10 ⁻⁵ , r = 0.989; P ₃ BO, slope = 9.0x10 ⁻⁵ , r = 0.984; methylchlorin-heme\(\Delta \), slope = 9.7x10 ⁻⁵ , r = 0.999; 7-keto-heme\(\Delta \), slope = 1.3x10 ⁻⁴ , r = 0.999; P ₃ AO, slope = 1.9x10 ⁻⁴ , r = 0.989; 8-keto-heme\(\Delta \), slope = 2.5x10 ⁻⁴ , r = 0.996	. 124
Figure	20	(a) Oscilloscope trace of absorbance vs. time for the recombination of P_3A -Mb and CO after flash photolysis at $22^{\circ}C$ in 10 mM (pH 7.4) potassium phosphate buffer. [CO] = 5.25×10^{-5} M; sweeptime = $1,5,20$ msec/div.; wavelength = 420 nm. (b) The recombination of P_3A -Mb with O_2 and CO at 422 nm. [CO] = 5.25×10^{-5} , [O_2] = 3.49×10^{-5} M. Upper trace; sweeptime = 0.1 , 0.2 sec/div.; lower trace; sweeptime = 0.2 , 1 msec/div	129
Figure	21	Spectrophotometric titration of 7-keto-heme myoglobin in 10 mM (pH 7.4) potassium phosphate buffer, with CO at R.T.; [CO]x10 ⁸ M = 0.0, 2.63, 5.26, 9.65, 17.55 and 1760. Inset: plot of A-A _o /A _o -A vs. [CO] at 615 nm	130
Figure	22	Spectrophotometric titration of dione-heme myglobin in 10 mM (pH 7.4) potassium phosphate buffer with CO at R.T.; [CO]x108M = 0.0, 2.66, 5.32, 9.31, 15.97, 1346. Inset: plot of A-A _o /A _o -A _{vs} . [CO] at 628 nm	131

LIST OF APPENDIX FIGURES

		Page
Figure Al	250 MHz ¹ H NMR spectrum of dimethyl cis-7,8-dihydroxy-3,7,8,12,13,17-hexamethylchlorin-2,18-dipropionate (16a)	. 140
Figure A2	2 250 MHz ¹ H NMR spectrum of dimethyl cis- 7,8,12,13-tetraethyl-7,8-dihydroxy-3,17- dimethylchlorin-2,18-dipropionate (16b)	. 141
Figure A3	250 MHz ¹ H NMR spectra of (a) dimethyl cis- 7,8,12,13-tetraethyl-2,3-dihydroxy-3,17- dimethylchlorin-2,18-dipropionate (17b); (b) dimethyl trans-7,8,12,13-tetraethyl-2,3- dihydroxy-13,17-dimethylchlorin-2,18- dipropionate (20)	. 142
Figure A4	250 MHz ¹ H NMR spectra of (a) methyl cis- 7,8,12,13-tetraethyl-3-hydroxy-3,17-dimethyl- 2,2-\gamma-spirolactone-chlorin-18-propionate (18b); (b) methyl trans-7,8,12,13-tetraethyl-3-hydroxy- 3,17-dimethyl-2,2-\gamma-spirolactone-chlorin-18- propionate (19b)	. 143
Figure A5	250 MHz ¹ H NMR spectra of (a) dimethyl 3,8,8,12,13,17-hexamethyl-7-porphinone-2,18-dipropionate (21a); (b) dimethyl 3,7,7,12,13,17-hexamethyl-8-porphinone-2,18-dipropionate (22a)	. 144
Figure A6	250 MHz ¹ H NMR spectrum of dimethyl 3,7,7,12,13,17-hexamethyl-8-methylenechlorin-2,18-dipropionate (23)	. 145
Figure A7	7 250 MHz ¹ H NMR spectrum of dimethyl 3,7,7,8,12,13,17-heptamethylchlorin-2,18-dipropionate (24)	. 146
Figure A8	250 MHz ¹ H NMR spectrum of dimethyl 3,7,8,12,13,17-hexamethyl-18-porphinone-2,17-dipropionate (28)	. 147
Figure A9	250 MHz ¹ H NMR spectrum of dimethyl 12,18- diethyl-3,7,13,17-tetramethylporphine-2,8- diacetate (36)	. 148

		Page
Figure Al0	250 MHz ¹ H NMR spectra of (a) dimethyl 12,18-diethyl-12,13-dihydroxy-3,7,13,17-tetramethylchlorin-2,8-diacetate (37); (b) dimethyl 12,18-diethyl-2,3-dihydroxy-3,7,13,17-tetramethylchlorin-2,8-diacetate (38)	. 149
Figure All	250 MHz ¹ H NMR spectra of (a) dimethyl 13,18-diethyl-3,7,13,17-tetramethyl-12-porphinone-2,8-diacetate (39); (b) dimethyl 12,18-diethyl-2,7,13,17-tetramethyl-3-porphinone-2,8-diacetate (40)	. 150
Figure Al2	250 MHz ¹ H NMR spectra of (a) dimethyl 7,8-dihydroxy-3,8,13,18-tetramethyl-7,17-dipentylchlorin-2,12-diacetate (42); (b) dimethyl 2,3-dihydroxy-3,8,13,18-tetramethyl-7,17-dipentylchlorin-2,12-diacetate (43)	. 151
Figure Al3	250 MHz ¹ H NMR spectra of (a) dimethyl 3,9,13,18-tetramethyl-8,17-dipentyl-7-porphinone-2,12-diacetate (45); (b) dimethyl 2,8,13,18-tetramethyl-7,17-dipentyl-3-porphinone-2,12-diacetate (46)	. 152
Figure Al4	250 MHz ¹ H NMR spectrum of methyl 7,12-diethyl-3,8,13,17,18-pentamethyl-porphine-2-propionate (50)	. 153
Figure Al5	250 MHz ¹ H NMR spectrum of dimethyl 12,13-dihydroxy-3,8,8,12,13,17-hexamethyl-7-porphinone-2,18-dipropionate (68)	. 154
Figure Al6	250 MHz ¹ H NMR spectrum of dimethyl 3,8,8,13,13,17-hexamethyl-7,12-porphinedione-2,18-dipropionate (69)	. 155
Figure Al7	250 MHz ¹ H NMR spectrum of dimethyl 17,18-dihydroxy-3,8,8,13,13,17-hexamethyl-7,12-porphinedione-2,18-dipropionate (89)	. 156
Figure Al8	250 MHz ¹ H NMR spectrum of methyl 18-[2- (methoxycarbonyl)ethenyl]-3,8,8,13,13,17- hexamethyl-7,12-porphinedione-2-propionate (70)	. 157
Figure Al9	250 MHz ¹ H NMR spectrum of dimethyl 3,7,7,13,13,17-hexamethyl-8,12-porphinedione- 2,18-dipropionate (74)	. 158

Figure			Page
Figure	A20	250 MHz ¹ H NMR spectra of (a) dimethyl 12,13-dihydroxy-3,7,7,12,13,17-hexamethyl-8-porphinone-2,18-dipropionate (72); (b) dimethyl 2,3-dihydroxy-3,7,7,12,13,17-hexamethyl-8-porphinone-2,18-dipropionate (73)	159
Figure	A21	250 MHz ¹ H NMR spectrum of dimethyl 2,7,7,12,13,17-hexamethyl-3,8-porphinedione-2,18-dipropionate (75)	160
Figure	A22	250 MHz ¹ H NMR spectrum of <i>vic</i> -dihydroxyoctaethylchlorin (76)	161
Figure	A23	250 MHz ¹ H NMR spectra of (a) 3,7,8,12,13,17,18-heptaethyl-2-(1-acetoxyethyl)-porphine (78); (b) 3,7,12,13,17,18-heptaethyl-2-(1-hydroxyethyl)-porphine (77); (c) 3,7,8,12,13,17,18-heptaethyl-2-(1-methoxyethyl)-porphine (79)	162
Figure	A24	250 MHz ¹ H NMR spectra of (a) 3,7,8,12,13,17,18-heptaethyl-2-vinylporphine (80); (b) 2,3,7,8,13,17-heptaethylporphine (81)	163
Figure	A25	250 MHz ¹ H NMR spectrum of dimethyl 7,8,12,13- tetraethyl-3-(hydroxymethyl)-17-methyl-2,18- porphinedipropionate (87)	164
Figure	A26	250 MHz ¹ H NMR spectrum of methyl 7,8,12,13,17,18-hexaethyl-4-methyl-porphine-2-propionate (93)	165
Figure	A27	250 MHz ¹ H NMR spectrum of methyl 7,8,12,13,17,18-hexaethyl-12,13-dihydroxy-4-methylchlorin-2-propionate (94a)	166
Figure	A28	250 MHz ¹ H NMR spectrum of methyl 7,8,12,13,17,18-hexaethyl-7,8-dihydroxy-3 methylchlorin-2-propionate (94b)	167
Figure	A29	250 MHz ¹ H NMR spectrum of methyl 7,8,12,13,17,18-hexaethyl-17,18-dihydroxy-3-methylchlorin-2-propionate (94d)	168
Figure	A30	250 MHz ¹ H NMR spectra of (a) cis- 7,8,12,13,17,18-hexaethyl-3-hydroxy-3-methyl- 2,2-γ-spirolactone-chlorin (95); (b) trans- 7,8,12,13,17,18-hexaethyl-3-hydroxy-3-methyl- 2,2-γ-spirolactone-chlorin (96)	169


			Page
Figure	A31	250 MHz ¹ H NMR spectrum of ² ,8-bis(2-chloroethyl)-deuteroporphyrin IX dimethyl ester (101)	170
Figure	A32	250 MHz ¹ H NMR spectra of (a) cis-3,8-bis(2-chloroethyl)-12-hydroxy-13,13-\tau-spirolactone-deuterochlorin IX dimethyl ester (103a); (b) cis-3,8-bis(2-chloroethyl)-18-hydroxy-17,17-\tau-spirolactone-deuterochlorin IX dimethyl ester (103b)	171
Figure	A33	250 MHz ¹ H NMR spectrum of trans-3,8-bis(2-chloroethyl)-12-hydroxy-13,13-\gamma-spirolactonedeuterochlorin IX dimethyl ester (107)	172
Figure	A34	250 MHz ¹ H NMR spectra of (a) 3,3,8,8,12,13,17,18-octaethyl-2,7-porphinedione (64); (b) 3,3,8,8,12,13,17,18-octaethyl-2-thio- 7-porphinedione (112); (c) 3,3,8,8,12,13,17,18- octaethyl-2,7-porphinedithione (113)	173
Figure	A35	250 MHz ¹ H NMR spectra of (a) 2,2,8,8,12,13,17,18-octaethyl-3,7-porphinedione (66); (b) 2,2,8,8,12,13,17,18-octaethyl-3,7- porphinedithione (115); (c) 2,2,8,8,12,13,17,18- octaethyl-3-thio-7-porphinedione (114)	174
Figure	A36	250 MHz ¹ H NMR spectra of (a) 3,3,8,8,13,13,17,18-octaethyl-2-thio-7,12- porphinetrione (117); (b) 3,3,8,8,13,13,17,18- octaethyl-2,12-dithio-7-porphinetrione (118); (c) 3,3,8,8,13,13,17,18-octaethyl-2,7,dithio-12- porphinetrione (119)	175
Figure	A37	250 MHz ¹ H NMR spectra of (a) 3,3,8,8,13,13,17,18-octaethyl-2,7,12- porphinetrione (116); (b) 3,3,8,8,13,13,17,18- octaethyl-2,7,12-porphinetrithione (120)	176
Figure	A38	250 MHz ¹ H NMR spectrum of 3,3,7,8,12,13,17,18-octaethyl-2-methyl-2-mercaptochlorin (121)	177
Figure	A39	250 MHz ¹ H NMR spectrum of 3,3,7,8,12,13,17,18-octaethyl-2-mercaptochlorin (122)	178
Figure	A40	250 MHz ¹ H NMR spectrum of 2,2,7,8,12,13,17,18-octaethylchlorin (123)	179
Figure	A41	Visible spectra (in CH ₂ Cl ₂) of (a) 3,3,8,8,12,13,17,18-octaethyl-2-thio-7-porphine- dione (112); (b) its Zn-complex	180

		Page
Figure A42	Visible spectra (in CH ₂ Cl ₂) of (a) 2,2,8,8,12,13,17,18-octaethyl-3-thio-7-porphine- dione (114); (b) its Zn-complex	181
Figure A43	Visible spectra (in CH ₂ Cl ₂) of Zn-complexes of (a) 3,3,8,8,12,13,17,18-octaethyl-2,7- porphinedithione (113); (b) 2,2,8,8,12,13,17,18- octaethyl-3,7-porphinedithione (115)	182
Figure A44	Visible spectra (in CH ₂ Cl ₂) of (a) 3,3,8,8,13,13,17,18-octaethyl-2-thio-7,12- porphinetrione (117); (b) 3,3,8,8,13,13,17,18- octaethyl-2,12-dithio-7-porphinetrione (118); (c) 3,3,8,8,13,13,17,18-octaethyl-2,7-dithio-12- porphinetrione (119)	183
Figure A45	Visible spectra (in CH ₂ Cl ₂) of (a) dihydro-OEP; (b) tetrahydro-OEP; (c) hexahydro-OEP (under argon)	184
Figure A46	Optical spectra of methylchlorin-heme myoglobin; Ferric (——), Deoxy (——), Oxy (———), CO (———) in 10 mM (pH 7.4) potassium posphate buffer	185
Figure A47	Optical spectra of dione-heme myoglobin; Ferric (), Deoxy (), CO (), in 10 mM (pH 7.4) potassium posphate buffer	186

GENERAL INTRODUCTION

The majority of heme-containing proteins and enzymes found in nature possess prosthetic groups in which an iron atom is bound to a fully unsaturated porphyrin macrocycle 1 and is further coordinated by one or two axial ligands from protein side chains. Familiar examples include myoglobin and hemoglobin (oxygen transport and storage), cytochromes b and c (electron transfer), cytochrome P450 (substrate hydroxylation), and peroxidases (substrate halogenation and peroxidation).

Porphyrins and certain of their metal complexes are subject to reduction leading to a variety of isolable products.² Among these are dihydroporphyrins (chlorins, 2) and tetrahydroporphyrins (bacteriochlorins, 3; isobacteriochlorins, 4) resulting from saturation of peripheral double bonds of the parent porphyrin. Biological interest in

bacteriochlorin isobacteriochlorin

reduced porphyrins has centered principally on chlorins and bacteriochlorins inasmuch as the magnesium complexes of these macrocycles are the essential chromophoric units of algae and plant chlorophylls and bacteriochlorophylls, respectively.³

However, a significant number of organisms have now been shown to contain pyrrolic macrocycles based on C-substituted chlorins and isobacteriochlorins. Examples include bonellin (5), the sex-differentiating pheromone isolated from the echurian worm Bonellia viridis⁴, Factor I from the B₁₂-producing Clostridium tetanomorphum⁵, heme d (6) of Escherichia coli⁶ which catalyzes the reduction of O₂ to H₂O, heme d₁ (7) from Pseudomonas aeruginosa⁷, which is involved in a

process known as "denitrification" by reducing nitrite to nitrous oxide, and sirohydrochlorin of nitrite and sulfite reductases as well as a B₁₂ intermediate. The principal difference between these macrocycles and the unsubstituted hydroporphyrins is that the C-substituted compounds can resist dehydrogenation (back to porphyrins) and therefore, are better suited for undertaking the redox processes with which they may be associated in vivo. As the structures of these unique molecules are being elucidated, it has become timely to investigate the chemistry

and to identify their functional roles in their respective host systems.

To realize such goals, however, requires workable quantities of

materials which are often difficult to obtain from natural sources.

In this thesis, Chapter 1 is devoted to the development of short and reliable syntheses for functionalized C-substituted chlorins and isobacteriochlorins for general reactivity and biomimetic studies. The work initially focused on vicinal dihyroxychlorins and progressed into other substituted ring systems as a consequence of the lability of the vicinal diol. Chapter 1 also describes a novel method by which alkyl groups of porphyrins can be functionalized. Chapter 2 then gives a detailed account of the total synthesis of heme d and the effort to deduce its true structure. In chapter 3 the synthesis and properties of several sulfur containing saturated porphyrins, derived from their oxoanalogues are reported for the first time. Finally, the kinetic study of CO and O2 binding to myoglobin reconstituted with some of the above synthetic green hemes is presented in chapter 4, in an effort to cast some light on their structure-function relationship.

CHAPTER 1

SYNTHETIC METHODOLOGY FOR C-SUBSTITUTED CHLORINS AND OTHER PORPHYRINOIDS

I. INTRODUCTION

Saturation of β - β ' pyrrole double bonds in a porphyrin ring can be brought about by either reduction or oxidation. Fischer and his group pioneered the use of sodium in alcohol to reduce porphyrin to chlorin10 and this method has been extented by others 1 to obtain reduction levels beyond the chlorin stage, e.g., to bacteriochlorin and isobacteriochlorin. In the opposite direction, Fischer again was first to study the effect of oxidants on porphyrin. In the 1930s, he reacted porphyrin with hydrogen peroxide in concentrated sulfuric acid and obtained what he thought at first was the vic-dihydroxy adduct.12 This product was It was not until the later determined to contain only one oxygen. 13 1960s that the keto-gem-dialkylporphyrin (oxochlorin) structure was characterized. 14-16 The acidic hydrogen peroxide oxidation, which yields not only oxochlorins but diketo-(dioxoisobacteriochlorins and dioxobacteriochlorins) and triketoporphyrins arising from pinacolic rearrangements, has prevented the isolation of the expected dihydroxy intermediate. Fischer, however, demonstrated that hydroxylation of type IX porphyrins can be achieved with osmium tetraoxide although the resultant trimeric dihydroxy chlorins were not individually identified. 13, 17

The passage from a vic-dihydroxy or epoxy chlorin to the keto porphyrin by means of pinacolic rearrangements could be a useful method to provide C-substituted derivatives. Chang has reported the synthesis of methyl octaethylchlorin as well as dimethyloctaethylisobacteriochlorins via the keto porphyrins. However, precedence of this rearrangement in porphyrin so far has been limited to octaethylporphyrin (OEP) and etioporphyrin I with simple alkyl groups. A central question in the pinacolic rearrangement is the migratory aptitude of the side chains. While this question has been addressed amply in alicyclic systems, 19 the outcome when applied to porphyrin rings is not readily predictable. This information would be absolutely necessary if this method is to be used for the synthesis of biologically relevant molecules whose side chain substituents often determine the function.

Recently, the keto porphyrins themselves also became the center of interest because of the discovery made in our laboratory that the green colored dn heme prosthetic group present in cytochrome cdn has a dioxoisobacteriochlorin structure. The only method known to date for the synthesis of such compounds is the hydrogen peroxide-sulfuric acid oxidation of β-substituted porphyrins resulting in a complex mixture of isomeric products containing one, two, and three oxo groups on the ring with uniformly poor yields. 18,18 The oxochlorins (porphyrinones), such as 8 can be prepared with a significantly higher yield by an alternative 2-step reaction via 0,504 oxidation and acid catalyzed pinacolic rearrangement. 14,20 Unfortunately, further oxidation of 8 by 0,504 invariably leads to the bacteriochlorin 9,16 which upon rearrangement gives two isomeric dioxobacteriochlorins, 10 and 11 (Scheme 1). The

preference of attacking the opposite pyrrole double bond may be prompted by the diagonal electron delocalization pathway in chlorin that bypass the outer β - β ' bond of the pyrroline ring and its opposite partner, leading to the bacteriochlorin formation with minimum loss of τ -energy. If this is the case, we reasoned, any disruption of such a locked-in tautomeric form should decrease the bacteriochlorin formation and at the

Figure 1. Tautomeric forms of porphyrin.

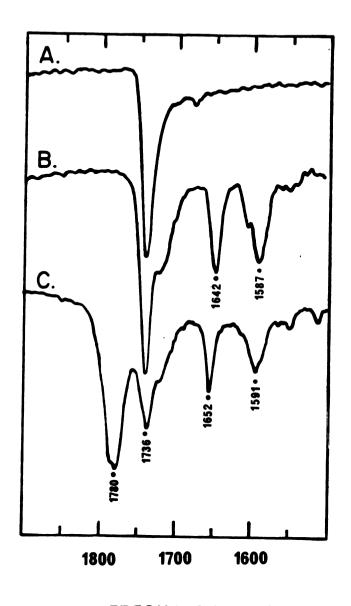
same time, promote the isobacteriochlorin formation. One simple way to accomplish this feat would be the use of metal ion in the ring so that the two diagonal NH protons would be removed and the overall D4 symmetry

is enhanced. There is precedence that the reduction site of porphyrin Whitlock and Oester observed that the can be altered by metalation. diimide reduction of free base tetraphenylchlorin (TPC) produces only tetraphenylbacteriochlorin whereas ZnIITPC gives exclusively ZnII tetraphenylisobacteriochlorin.21 Similarly, reduction of the Ni^{II} pheophorbide family of chlorins by Raney nickel promotes the formation isobacteriochlorins.²² However, the osmate reaction metalloporphyrins has never been studied before. As it turned out, this hypothesis was a complete success and this method now becomes the foundation for the total synthesis of di heme and its analogues. 7e, 23

In the course of our study of the vic-dihydroxy chlorins, it was frequently observed that acid treatment of certain diols also gave porphyrins that are very different from the expected oxo products. This phenomenon is particularly common if less concentrated acid was used to promote the rearrangement. The product is usually a mixture comprising red porphyrins and some purple porphyrinone derived from pinacolic rearrangement of the diol. 16,24 With OEP-diol, the major porphyrin component is OEP-alcohol, presumably derived via hydration of an ethenylhydroxychlorin intermediate. An analogous reaction has been observed previously in a vic-dihydroxybacteriochlorin (scheme 2).24

This reaction appeared to us as a potentially attractive method to introduce functional groups to the side chain of alkylporphyrins. For example, OEP has been a tremendously useful compound in porphyrin chemistry but the lack of functional groups can hinder its application in studies wherein some manipulation of side chains would be required. In such cases, it is often a choice between total synthesis, which is usually lengthy and of low yield, and the natural protoporphyrin or its derivatives, which on the other hand may have too many functional groups all at once. The mild elimination-hydration reaction obtainable from OEP-diol gives a simple method to functionalize the ethyl chain of OEP so that the broad range of chemical transformations²⁶ ascribed for the vinyl group of protoporphyrin would become accessible to OEP.

In the following sections the synthesis and reactivities of vic-dihydroxychlorins will be described first, followed by the pinacolic rearrangement migratory aptitudes and site specificity. Examples of C-alkylated chlorins derived from the keto porphyrins are given and finally the functionalization of ORP and other porphyrin macrocycles are discussed.


II. RESULTS AND DISCUSSION

A. vic-Dihydroxychlorins and Derivatives

Osmium tetroxide was added to dimethyl 3,7,8,12,13,17-hexamethylporphine-2,18-dipropionate (15a)²⁷ in CH₂Cl₂. The reaction was quenched after 20 h to yield the two dihydroxychlorins 16a (37%) and 17a (8%) plus the unreacted porphyrin (30%). Increasing the amount of OsO₄ and lengthening the reaction time invariably led to the formation of tetrahydroxybacteriochlorin and intractable pigments at the expense of the dihydroxy product. A similar reaction was tested on dimethyl

7,8,12,13-tetraethyl-3,17-dimethylporphine-2,18-dipropionate (15b).28With this porphyrin apparently for steric reasons, the dihydroxylation occurred more favorably at the "southern" pyrroles (ring C or D reduced) affording nearly 1:1 ratio of 16a and 17a. During the separation of 16a and 17a on TLC plates with CH2Cl2/CH3OH (pair 16a, 17a requires multiple developments, whereas pair 16b, 17b requires only one development for separation) we observed the gradual development of a third, fastestmoving green spot. The IR spectrum of this new pigment showed a strong new band at 1780 cm-1 that was characteristic of a Y-spirolactone29 (Figure 2). Mass spectral analyses confirmed that, the south diol 17a had lost a methanol and had become a spirolactone. Further study revealed that this intramolecular lactonization is a general basecatalyzed reaction that can be brought about by sodium acetate, pyridines, basic alumina, as well as silica gel.

When a small amount of the above lactone chlorin (18a) was extensively chromatographed on TLC plate (silica gel, CH2Cl2/CH3OH), it was converted to an even faster moving green spot. IR and mass spectral analyses still showed the presence of a 7-spirolactone. This lactone chlorin model compound, 19a exhibits a ¹H NMR spectrum almost indistinguishable from that of Timkovich's lactochlorin (from heme d)⁶ for those structural elements that are directly comparable to one another. Particularly interesting is the region between 2.3 and 3.4 ppm where the methylene protons of the rigid spirolactone should appear. On the basis of the absence of a measurable NOE between the 3-Me group (2.0 ppm) and any lactone ring protons, as well as on analyses of the lactone methylene peaks, Timkovich et. al. concluded that the two oxygen substituents have a trans configuration. In our model chlorin lactone,

FREQUENCY, cm⁻¹

Figure 2 1000-1500 cm⁻¹ IR spectra of (A) porphyrin; (B) dihydroxychlorin; (C) Y-spirolactone chlorin.

19a we also could not detect any NOE between the 3-Me peak (1.92 ppm) and the lactone protons. The remarkable similarity of the overall pattern between the model complex and the heme d derived lactones would thus argue that the model should likewise have a trans configuration about the pyrroline substituents. If this is true, it means that an inversion of the diol configuration has taken place, because the osmium tetroxide oxidation only affords cis diols.

In an effort to elucidate this possible inversion process, we have examined the lactonization of a number of south diol chlorins. The tetraethylchlorin complex 17b, by virtue of its superior chromatographic mobility on silica gel, proves to be a more informative system for delineating the reactions involved. When diol 17b is heated briefly in MeOH with sodium acetate on a steam bath, TLC (silica gel, 10% ethyl acetate in CH₂Cl₂) indicates that the slow-moving diol (Rf 0.3) is cleanly converted into a fast-moving spot (Rf 0.8). Both mass spectral (diol 17b minus 32) and IR (1780 cm-1) analyses suggest that this compound is a lactone, but 1H NMR shows the lactone methylene protons merged together between 3.3 and 3.8 ppm, distinctively different from that of lla or the lactochlorin methyl ester.6 If this green compound is rechromatographed on TLC, an even faster moving spot (Rf 0.88) emerges when the major spot is halfway up on the plate. If the plate is sufficiently long or the chromatography is repeated, the new pigment will eventually replace the original one and become the major spot. This new compound, as shown by mass spectroscopy and IR after isolation is still a lactone and has 1H NMR features very similar to those of the trans lactones observed earlier. This compound can also be shown to be identical with the lactone prepared by repeated chromatography of the diol 17b.

On the basis of these observations, we have assigned the NaOAccyclized product to be the cis lactone, while the silica gel induced lactone is trans (the NMR assignments for the cis and trans chlorin lactones are discussed in detail in Chapter 2). The cis-trans isomerization is illustrated in Scheme 4, with the key step being a unimolecular alkyl-oxygen fission process.

Scheme 4

The north diol chlorins (16a and 16b), lacking the propensity to lactonize, apparently can resist inversion upon repeated chromatography on silica gel; we have not observed another isomeric diol during chromatography or base-catalyzed conditions. A possible indirect way then, for the cis-trans diol conversion might be through silica gel-promoted lactone opening. Indeed, heating the cis lactone 18b and trans lactone 19b under reflux in pyridine-30% aq. KOH for prolonged periods of time, resulted in their hydrolysis giving back the diols. The product from the cis lactone 18b was identical in all respects to the cis diol 17b, whereas the product from the trans lactone 19b was identified by spectral analyses (see Chapter 2) as being the trans diol

20. If repeatedly chromatographed on TLC plate, both diels would eventually convert to the trans lactone 19b.

From all the above, the following general Scheme 5 for the cistrans diol and lactone transformations can be written.

Treating the dihydroxychlorin 16a in CH₂Cl₂ with 70% HClO₄ cleanly produced the rearranged ketones 21b and 22b in equal amount. The two isomers were separated by chromatography and their structures were determined by nuclear Overhauser enhancements (NOE) on the proton resonances. Selective irradiation of the methyl substituents resulted in NOEs (>5%) at the adjacent positions; by determining the nearest meso protons it is possible to assign the structures unambiguously (see Figure 3). Similar reaction and characterization were applied successfully for the tetramethyl homologues 21a and 22a. It is interesting to note that the NH protons of 21a and 21b should appear as two peaks while they remain as singlet in 22a and 22b. It is not evident whether an alteration of the tautomeric patterns or structural distortions is a possible cause for the splitting of the NH resonance.

The oxochlorin (porphyrinone) 22a reacted sluggishly with methylenetriphenylphosphorane. The excess Wittig reagent present in the reaction invariably converted the ester group into the β-keto methylphosphonium salt.³⁰ Thus the methyl ester 22a was first hydrolized in aqueous KOH, and the carboxyl groups were protected as the

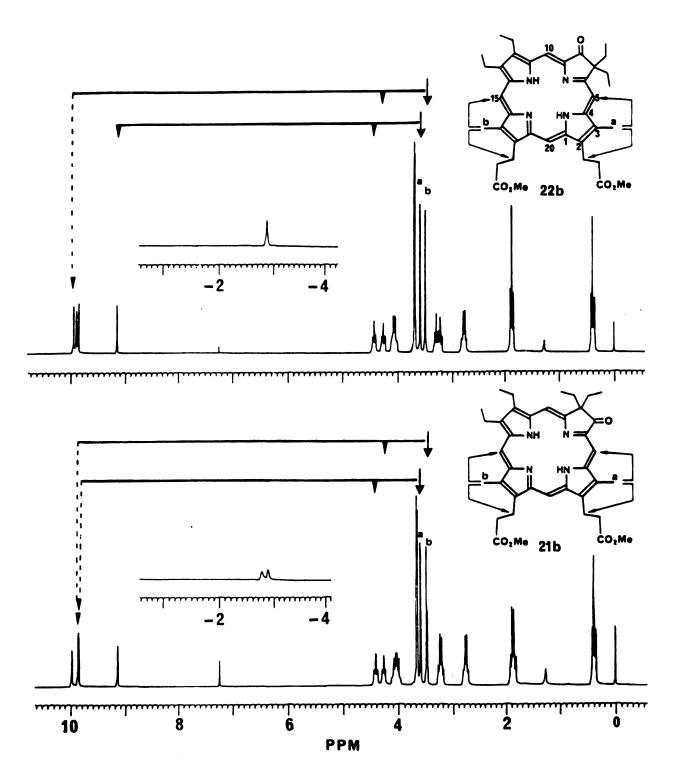


Figure 3 250 MH. H NMR spectra of 21b and 22b. Irradiations of the methyl resonances as indicated resulted in NOE observable at the neighboring groups whose chemical shifts are marked by the pointers.

methylenechlorin was esterified and then hydrogenated quantitatively to the methylchlorin 24 with PtO₂ in formic acid.

The dihydroxychlorin isomers 16a/17a and 16b/17b have almost identical visible absorption spectra whose overall features are indistinguishable from that of the common dihydroporphyrins or the methylchlorin 24. The dihydroxychlorins are inert toward quinone oxidation; at room temperature they are relatively stable in most acids (including concentrated HCl) and undergo the pinacolic rearrangement only with >60% sulfuric acid or perchloric acid. When left in concentrated HI/HOAc, the dihydroxychlorin slowly changes into porphyrin presumably via one of the sequences in Scheme 6. This conversion is

Scheme 6

Aerobacter aerogenes is a dihydroporphyrin. Reductive removal of OH group by HI was also used previously by Chang to prepare symmetric alkylated chlorins and isobacteriochlorins. The present series of C-methyl- and C-hydroxychlorindipropionic acids is particularly useful for hemoprotein reconstitution studies.

Several rational approaches toward the synthesis of C-alkyl chlorins, starting with alicyclic precursors, have been described very recently.³³⁻³⁵ Unfortunately these lengthy and demanding syntheses do not lend themselves as a more serviceable route than harvesting organisms for providing the compound. Our approach from the vic-diols would seem to be a highly attractive route at providing the C-substituted chlorins.

There is one recent report³⁶ that a C-alkyl chlorin (27) can be obtained from a hydroxy porphyrin (25) by a Claisen rearrangement followed by hydrogenation (Scheme 7). The generality of this approach, however, seems to be limited.

Scheme 7. Reagents: (a) CH₃C(OCH₃)₂N(CH₃)₂; (b) H₂, Pd/C

B. <u>Migratory Aptitudes in Pinacol Rearrangement</u> of *vic*-Dihyroxychlorins.

Four porphyrins 15a, 29, 36, 41 were chosen for investigation.³⁷ These porphyrins were converted into the dihydroxychlorins using osmium tetroxide as reported.³⁸ The porphyrins were allowed to react with 1.2 equivalents of osmium tetroxide in methylene chloride and the reaction was quenched after 20 hours with the osmium esters being decomposed by hydrogen sulfide. Analyses (tlc, silica gel, methylene chloride-

SCHEME 8a

SCHEME 86

methanol) indicated that the reaction mixtures contained variable amounts of chlorins plus the unreacted porphyrin. Isolation of individual components by chromatography and crystallization afforded the chlorin isomers as well as the starting porphyrin with yields shown in Scheme 8. The formation of the osmium esters is highly dependent on the porphyrin substituents. The relative yields of the chlorins thus produced a crude reactivity scale for the osmium tetroxide addition to porphyrin \$-\$f' double bonds: as would be expected, barring electronic effects, the larger the side chain, the slower the rate. The chlorin structures were determined by ¹H NMR and by mass spectra. In the case of deuteroporphyrin dimethyl ester 29, the separation of A-ring and B-ring chlorins was difficult; the mixture was employed for the subsequent rearrangement study.

The acid-catalyzed pinacol-pinacolone rearrangement required different acid strength depending on whether the substituents are electron releasing or withdrawing. For example, while diol 16a was converted smoothly into equal amounts of the two ketones by one drop of 70% perchloric acid in methylene chloride, the rearrangement of 38 required dissolution in 98% sulfuric acid for 2 hours. Except for 15a, each diol gave only one oxochlorin (porphyrinone) with a yield generally greater than 80% (only 40 and 46 were obtained with ~30% yield). The structure of the porphyrinones was established by nuclear Overhauser enhancements (NOE). Selective irradiation of methyl or methylene protons resulted in enhancement (≥4%) at the nearest meso protons (see Scheme 8). Since the meso proton adjacent to the reduced ring, but not next to the keto group, invariably appears as a singlet near 9.0-9.1 ppm and the other three meso protons are around 9.5-9.9 ppm, it is possible

to assign the structures unambiguously. In the case of the mixture of 34 and 35, irradiation of the 3 and 8-pyrrole protons resulted in a strong enhancement of both the 9.12 and 9.50 ppm meso protons; had the rearrangement gone the other direction, NOE should occur only at the two downfield meso protons, not at the 9.12 ppm peak. These experiments thus established the migratory aptitudes of the substituents; hydrogen, ethyl, alkyl groups including propionate side chains will migrate over methyl group. The only group that has a lower mobility than methyl is acetate; this is confirmed in two compounds 40 and 46. It seems that the electron-withdrawing nature of the acetate plays a determinant role. If the acetate group is first reduced with LiAlH4, the pinacol rearrangement of the 2-hydroxyethyl group has been found to migrate over the methyl group.

The knowledge of the migratory aptitudes, besides Applications. in discerning possible biosynthetic precursors, being useful immediately applicable in planning new chlorin syntheses. For example, starting with coproporphyrin I (48),above hydroxylationthe rearrangement sequence gave a type III coprochlorin 49. Alkylation of the keto groups by Wittig reagents as described before20 would afford all-alkyl chlorins (Scheme 9). Similarly, porphyrin 50, prepared by stepwise assembling of the a,c-biladiene dihydrobromide 61 followed by Cu(II)-catalyzed cyclization38 (Scheme 10), produced two separable gem-dimethyl porphyrinones, one of which, 51, after coupling with the appropriate Wittig reagent and hydrogenation, would provide and easy entry into the family of the exotic echurian pigment bonellin 53. Previously, (±) bonellin has been made by a rather long synthesis.34b

SCHEME 9

SCHEME 10

Finally, the total synthesis of the green heme prosthetic group in cytochrome cd1 achieved recently, 7e was based on the knowledge of the migratory aptitudes.

C. Differentiation of Bacteriochlorin and Isobacteriochlorin Formation by Metalation.

The OsO4 addition preference can be altered dramatically in favor of the isobacteriochlorin formation simply by metalation of the ring. The zinc complex 62 was found to react with OsO4 (1.5 equiv.) in CH2Cl2 containing 1% pyridine to give predominantly 63 (>60% yield) which can be treated with sulphuric acid to give 64. A small amount of the ring D diol 65 was also obtained which rearranged to yield about equally 64 and 66. If the synthetic goal is 64, the crude dihydroxylation product can be used directly in the pinacol rearrangement as the ratio of 64:66 is usually greater than 30. That the osmate addition mainly occurred at ring B (63) is possibly due to the electron withdrawing effect of the carbonyl group rendering the adjacent ring D double bond less reactive. It is also noteworthy that during the pinacol rearrangement of 63 or its free base, none of the possible porphyrin-2,8-dione was observed. Insertion of other metal ions such as Culi and Nill had the same effect of switching the osmate addition pattern but the yields of osmate esters were less satisfactory.39 The remarkable alteration of site of attack by metalation in the chlorin system appears to be a general phenomenon.

The previously observed diimide reduction of ZnIITPP21 as well as the reduction of NiII pheophorbides22 all serve to attest the significance of the metalation effect. The tautomerization patterns were thought to be more equalizing in a metal chlorin than in a free base chlorin to promote isobacteriochlorin formation. This hypothesis

SCHEME II

did not explain why the double bond saturation occurs exclusively at the adjacent ring in the metal complex since one would expect that the absence of a preferred π -delocalizing pattern only favors a more random attack. Neither did previous MO calculations of ZnTPC show a significant difference in π -electron density between the opposite and the adjacent β - β ' double bonds.⁴⁰ Presently, extended Huckel calculations are being undertaken on the metalloporphyrinone system using the newly acquired crystal structure parameters of Ni^{II} OEP-porphinone.⁴¹ It is hoped that the refined calculations may uncover clues to explain this phenomenon.

The selective saturation of the porphyrinone double bonds has made possible the synthesis of a variety of porphyrin-2,7-diones with side chains at specific positions. For example, the stereochemically uncomplicated dione 69 and its acrylic derivative 70, either in solution or in a reconstituted protein environment, proved to be accurate model compounds and spectral probes for heme d1. The dione 69 could be prepared by the H2O2-H2SO4 oxidation of 15a, with a <2% yield after tedious separations from a mixture of no less than 10 oxo products.42 With the zinc method, 69 was prepared from 15a20 cleanly with a high yield (Scheme 12), and the unreacted starting material in the OsO4 oxidation of 15a and 67 could always be recovered for recycling. intermediacy of the porphyrinone 67 seems necessary. Attempts to react the Zn complex of 15a or Zn^{II} octaethylporphyrin directly with an excess of OsO4 have only resulted in intractable pigments. The two-stage oxidation via isolated porphyrinone has also imparted a higher degree of regioselectivity for the isobacteriochlorin-type porphyrindione formation. In the present study, if the isomeric 7120 is used, the

SCHEME 12

major product is 73 under reaction times > 36 h, with osmate selectivity of ring D vs. B 4:3. However, for shorter reaction times (24 h) the osmate selectivity is not obvious (ring B vs. ring D 1.2:1). In any case, the attack of ring D is much more favorable for porphyrinone 71 than for porphyrin 15a. The pinacolic rearrangement of 72 gave 69 and 74 in equal amounts. On the other had, the porphyrindione derived from the pinacolic rearrangement of 73 is exclusively 75, apparently reversing the migratory aptitude of methyl < propionate observed in simple vic-dihydroxychlorins⁴³ but fully agreeing with the above observation of porphyrinone diols.

Further reaction of free base 69 with 1.8 equiv. of OsO₄ resulted in exclusively a ring C-diol, presumably for the same reason cited above for 63: to avoid the carbonyl group next to ring D. Heating the diol in HCl-dioxane-H₂O or HCl-benzene, triggered an elimination of H₂O and yielded a β-hydroxy propionate which eliminates further to give the acrylate 70 in 80% yield using the first solvent system or quantitatively using the second one.

D. A Novel Method of Functionalizing the Ethyl Chain of Octaethylporphyrin.

When OEP-diol 76, is heated in aqueous HCl/dioxane, the major porphyrin component is OEP-alcohol 77 with yields never greater than 50%. This reaction seemed highly sensitive to the acid concentration: dilute acid gave insufficient reaction while too strong an acid only let to pinacol rearrangement. To improve the reaction, other nucleophilic media were tested. When 76 was dissolved in glacial acetic acid and heated at 90°C, the acetoxy 78 was obtained within 10 min in 85% yield. Likewise, if 76 in methanol was heated in the presence of HCl, the

SCHEME 13

methoxy 79 can be isolated in >75% yields. Both 78 and 79, of course, can serve as starting points for further derivatizations. Vinylation may also be achieved in a single step (90-95% yield) by heating 76 in benzene containing HCl. As 76 can be prepared readily from OEP by OsO₄ oxidation, the simple preparation of 80 therefore offers expeditious synthetic routes to a wide range of monosubstituted heptaethylporphyrins having for instance, Br,⁴⁴ CN,⁴⁵ CHO,^{26,46} COCH₃,²⁶ CH=CHCO₂R,^{45,47} CH₂OH,⁴⁸ CH₂CH₂OH,⁴⁹ CH₂CH₂CO₂R,⁴⁹ plus other moieties attached via these groups. The Experimental Section includes a procedure for making 81 by devinylating 80. It was also observed that the preparation of 77-81 can be scaled up without lowering the yield.

When the above procedures are applied to other vic-diols with dissimilar alkyl chains, two products are expected. Indeed, dihydroxy-etiochlorin 82 has been found to yield the two alcohols 83 and 84 or the two acetoxyetioporphyrins 85 and 86 under appropriate conditions. The same is true with porphyrins bearing methyl and propionate substituents (e.g., 87 and 88). While the ratio of the two possible products, varies from case to case, the methyl group appears to be the more favorable site of attack, at least with common dihydroxychlorins. Such a result would suggest that the reaction is subject more to kinetic control.

with porphyrinones, the course of the reaction can be dependent upon the symmetry of the molecule as well as the reaction conditions employed.³⁹ However, in our recently reported synthesis of heme di analogue, 89 gave exclusively 90 before it was dehydrated to the acrylate.²³ In this case, the stability of the exocyclic alkene intermediate seems to be the determinant factor. The specificity associated with these molecules further suggests that the mild

SCHEME 14

elimination-hydration of vic-diol (or an epoxide precursor) may have some biosynthetic significance. We speculate that the acrylate group of heme di is indeed produced biosynthetically from a propionate side chain by this route. The demonstrated conversion²⁵ from chlorophyll a to chlorophyll b via a vic-diol could be a viable biosynthetic pathway. As for the heme a moiety of cytochrome oxidase,⁵⁰ the 18-carboxaldehyde group could come from a CH₃, not by harsh direct oxidation but by way of CH₂OH resulted from the vic-diol. These hypotheses possibly can be tested by future experiments.

III. EXPERIMENTAL

General

NMR spectra were obtained at 250 MHz on a Bruker WM-250 instrument. Spectra were recorded in CDCl3; the residue CHCl3 was used as the internal standard set at 7.24 ppm. Nuclear Overhauser enhancements (NOE) were measured by difference between a spectrum with preirradiation on a target peak minus a spectrum with equivalent preirradiation at a dummy position. Typical parameters: D1 (relaxation delay) $\approx 5T_1=1.5$ sec, D_2 (NOR generation time) = 0.03 or 0.095 sec, D_3 (pulse interval) = 0.1-0.3 sec, DP (decoupling power) = 26 or 36 L (depending on D₂), PW = 90-degree pulse. Magnitudes of NOEs were calculated as the area of the enhanced resonance in difference spectra divided by the area in the control spectrum with no enhancement. spectra were obtained using a Finnigan 4021 GC-MS (direct insertion probe, 70ev, 200-300°C), or a JEOL HX 110-HF spectrometer equipped with a fast atom bombardment (FAB) gun. A matrix of thioglyceroldithioerythreitol-dithiothreitol (2:1:1) containing 0.1% trifluoroacetic acid was used for the FAB-MS. Elementary analyses were performed by MicAnal. Visible absorption spectra (in CH₂Cl₂) were measured with a Cary 219 or a Shimadzu 160 spectrophotometer. IR spectra were obtained from KBr pellets on a Perkin-Elmer 283B spectrophotometer. Melting points were obtained on an electrothermal melting point apparatus and are uncorrected. Preparative TLC plates were from Analtech (silica gel G, 1000 or 1500 µm). Methylene chloride and pyridine were distilled from CaH₂, THF from LiAlH₄, and methanol from sodium before use.

Dimethyl cis-7,8-dihydroxy-3,7,8,12,13,17-hexamethylchlorin-2,18-dipropionate (16a)

Osmium tetroxide (300 mg, 1.2 mmol) in anhydrous ether (3 ml) was added to a methylene chloride (200 ml) solution of dimethyl 3,7,8,12,13,17-hexamethylporphine-2,18-dipropionate $(15a)^{27}$ (566 mg, 1) mmol). Dry pyridine (0.2 ml) was added subsequently, and the mixture was allowed to stir at room temperature, under nitrogen, in the dark for It was then diluted with methanol (100 ml) and bubbled with H2S for 10 min in order to decompose the osmium ester. The precipitated osmium sulfide was removed by filtration, and the crude product in the filtrate was chromatographed on a silica gel column. porphyrin was eluted first with CH₂Cl₂/3% MeOH. The slower moving major isomer which turned out to be 16a was crystallized from CH2Cl2-hexane. The mother liquor combined with the faster moving component was chromatographed once again by preparative TLC (CH2Cl2/2% MeOH) to give pure 16a vields: unreacted porphyrin, 164 mg, 30%; 16a, 220 mg, 37%; 17a, 50 mg, 8%.

16a: NMR & 2.10, 2.12 (3H each, s, 7,8-Me), 3.11, 3.13 (2H each, t, CH₂CH₂CO₂), 3.40 (6H, s, 2xMe), 3.43, 3.45 (3H each, s, Me), 3.63,

3.66 (3H each, s, CO_2Me), 4.15, 4.22 (2H each, t, $CH_2CH_2CO_2$), 9.07, 9.09 (1H each, s, 5,10-H), 9.68 (2H, s, 15,20- H), -2.78 (2H, br s, NH); UV-vis λ_{max} (ϵ_M) 642 nm (44 700), 614 (3 800), 588 (4 700), 522 (3 400), 495 (13 300), 490 (13 300), 392 (179 000); MS, m/e 600.2936 (calcd for $C_{34}H_{40}N_4O_6$ 600.2950).

Dimethyl cis-2,3-dihydroxy-3,7,8,12,13,17-hexamethylchlorin-2,18-dipropionate (17a)

NMR & 2.12 (3H, 2, 3-Me), 2.47-2.83 (4H, m, 2-CH₂CH₂CO₂), 3.16, 3.18 (1H each, t, 18-CH₂CH₂CO₂), 3.36, 3.37, 3.39, 3.45, 3.46 (3H each, s, ring Me), 3.50 (3H, s, 2-CCCO₂Me), 3.68 (3H, s, 18-CCCO₂Me), 4.16, 4.20 (1H each, t, 18-CH₂CH₂CO₂), 9.08, 9.10 (1H each, s, 5,20-H), 9.58, 9.67 (1H each, s, 10,15-H), -2.91 (2H, br s, NH); UV-vis \(\lambda_{max}\) (\(\ext{EM}\)) 643 nm (43 400), 614 (3 400), 589 (3 900), 521 (2 500), 495 (13 400), 490 (13 400), 392 (188 000).

Methyl cis-3-hydroxy-3,7,8,12,13,17-hexamethyl-2,2-\gamma-spirolactone-chlorin-18-propionate (18a)

Prepared either by heating the dihydroxychlorin, 17a, in methanol with sodium acetate under reflux for 20 min, or by repeated chromatography on preparative TLC plates. NMR δ 1.80 (3H, s, 3-Me), 3.05 (2H, t, 18-CH₂CH₂CO₂), 3.21-3.83 (4H, m, 2-CH₂CH₂CO₂), 3.30 (6H, s, 2xMe), 3.34, 3.40, 3.43 (3H each, s, ring Me), 3.48 (3H, s, CO₂Me), 3.87 (br s, OH), 4.17 (2H, m, 18-CH₂CH₂CO₂), 9.02, 9.08 (1H each, s, 5,20-H), 9.59, 9.71 (1H each, s, 10,15-H), -2.65 (2H, br s, NH); UV-vis λmax (tm) 641 nm (41 600), 614 (3 500), 588 (4 000), 520 (3 100), 493 (12 900), 488 (13 100), 389 (176 000); MS, found: m/e 569.2753 for (M+H)+, C₃₃H₃₇N₄O₅ requires m/e 569.2766.

Methyl trans-3-hydroxy-3,7,8,12,13,17-hexamethyl-2,2-\gamma-spirolactone-chlorin-18-propionate (19a)

Obtained from the cis-lactone 18a by repetitive chromatography.

NMR & 1.92 (3H, s, 3-Me), 2.38 (1H, sext, 2a₄), 2.98 (1H, oct, 2b₂),

3.16 (2H, t, 18-CH₂CH₂CO₂), 3.21 (1H, 2b₃), 3.35 (6H, s, 2xMe), 3.39,

3.40, 3.50 (3H each, s, Me), 3.47 (1H, 2a₁), 3.66 (3H, s, CO₂Me), 4.18

(2H, t, 18-CH₂CH₂CO₂), 8.86, 8.91 (1H each, s, 5,20-H), 9.63, 9.71 (1H each, s, 10,15-H), -2.58 (2H, br s, NH); UV-vis Amax (2M) 643 nm (34 800), 590 (3 400), 520 (2 500), 492 (11 400), 488 (11 100), 388 (150 000); MS, found: m/e 569.2761 for (M+H)+, C₃₃H₃₇N₄O₅ requires m/e 569.2766.

Dimethyl cis-7,8,12,13-tetraethyl-7,8-dihydroxy-3,17-dimethylchlorin-2,18-dipropionate (16b)

Osmium tetroxide (90 mg, 0.35 mmol) in ether (1 ml) was added to dimethyl 7,8,12,13-tetraethyl-3,17-dimethylporphine-2,18-dipropionate 15b²⁸ (170 mg, 0.27 mmol) in CH₂Cl₂ (50 ml), followed by dry pyridine (0.1 ml). The reaction was allowed to proceed in the dark for 20 h and worked up in the same manner as described above. The products isolated according to their elution pattern from the silica gel column were the unreacted porphyrin (20 mg, 11.8%), isomer 16b (50 mg, 28%), and isomer 17b (47 mg, 28%). (Notice that the isomer 16b is the faster moving chlorin in this case).

16b: NMR & 0.90, 0.98 (3H each, t, 7,8-CH₂CH₃), 1.74, 1.76 (3H each, t, 12,13-CH₂CH₃), 2.50, 2.58 (2H each, q, 7,8-CH₂CH₃), 2.93, 3.06 (2H each, t, CH₂CH₂CO₂), 3.27, 3.37 (3H each, s, Me), 3.59, 3.66 (3H each, s, CO₂Me), 3.85 (4H, q, 12,13-CH₂CH₃), 3.94, 4.06 (2H each, t, CH₂CH₂CO₂), 8.92, 9.00 (1H each, s, 5,10-H), 9.46, 9.67 (1H each, s, 15,20-H), -2.62 (2H, br s, NH); UV-vis λ_{max} (ϵ_{M}) 643 nm (46 900), 614 (4

000), 590 (4 200), 522 (2 900), 494 (14 200), 490 (14 200), 392 (198 **000**).

Dimethyl cis-7,8,12,13-tetraethyl-2,3-dihydroxy-3,17-dimethylchlorin-2,18-dipropionate (17b)

NMR & 1.79 (12H, m, 4xCH₂CH₃), 2.18 (3H, s, 3-Me), 2.52-2.92 (4H, m, 2-CH₂CH₂CO₂), 3.15 (2H, t, 18-CH₂CH₂CO₂), 3.48 (3H, s, 17-Me), 3.54 (3H, s, 2-CCCO₂Me), 3.68 (3H, s, 18-CCCO₂Me), 3.86, 3.90, 3.92, 3.96 (2H each, q, CH₂CH₃), 4.19 (2H, t, 18-CH₂CH₂CO₂), 9.04, 9.08 (1H each, s, 5,20-H), 9.71, 9.73 (1H each, s, 10,15-H), -2.57 (2H, br s, NH); UV-vis λmax (2M) 643 nm (44 000), 615 (3 600), 590 (3 900), 521 (2 600), 494 (13 700), 490 (13 700), 392 (193 000).

Methyl cis-7,8,12,13-tetraethyl-3-hydroxy-3,17-dimethyl-2,2-γ-spirolactone-chlorin-18-propionate (18b)

Prepared the same way as 18a. NMR & 1.79, 1.80, 1.81, 1.84 (3H each, t, CH₂CH₃), 1.86 (3H, s, 3-Me), 3.10, 3.11 (1H each, t, 18-CH₂CH₂CO₂), 3.26-3.85 (4H, m, 2-CH₂CH₂CO₂), 3.46 (3H, s, 17-Me), 3.52 (3H, s, CO₂Me), 3.87 (4H, q, 2xCH₂CH₃), 3.93, 4.00 (2H each, q, CH₂CH₃), 4.17, 4.20 (1H each, t, 18-CH₂CH₂CO₂), 9.10, 9.21 (1H each, s, 5,20-H), 9.76 (2H, s, 10,15-H), -2.62 (2H, br s, NH). IR 1780 cm-1, 1736; UV-vis \(\text{\text{Max}}\) (2M) 640 nm (42 600), 614 (3 600), 586 (3 600), 521 (2 700), 492 (12 300), 488 (12 400), 389 (179 000); MS, found: m/e 625.3401 for (M+H)+, C₃₇H₄₅N₄O₅ requires m/e 625.3392.

Methyl trans-7,8,12,13-tetraethyl-3-hydroxy-3,17-dimethyl-2,2-7-spirolactone-chlorin-18-propionate (19b)

Prepared the same way as 19a. NMR δ 1.79 (12H, m, 4xCH₂CH₃), 1.96 (3H, s, 3-Me), 2.43 (1H, sext, 2a₄), 3.04 (1H, oct, 2b₂), 3.22 (1H, quint, 2b₃), 3.50 (1H, sept, 2a₁) $[J(2a_1, 2b_2 = 4.1 \text{ Hz}, J(2a_1, 2b_3) = 9.6,$

 $J(2a_1,2a_4) = -12.8$, $J(2b_2,2b_3) = -17.9$, $J(2b_2,2a_4) = 9.6$, $J(2b_3,2a_4) = 9.6$], 3.15 (2H, t, $18-CH_2CH_2CO_2$), 3.52 (3H, s, 17-Me), 3.66 (3H, s, CO_2Me), 3.85 (2H, q, $2xCH_2CH_3$), 3.88, 3.98 (2H each, q, CH_2CH_3), 4.20 (2H, t, $18-CH_2CH_2CO_2$), 8.89, 9.04 (1H each, s, 5,20-H), 9.75 (2H, s, 10,15-H), -2.54 (2H, br s, NH). IR 1780 cm $^{-1}$, 1734, 1714; UV-vis λ_{max} (a) 643 nm (34 800), 591 (3 300), 521 (2 800), 489 (10 900), 484 (10 800), 391 (162 000). MS, found: m/e 625.3387 for (M+H)+, $C_{37}H_{45}N_4O_5$ requires m/e 625.3392.

Dimethyl trans-7,8,12,13-tetraethyl-2,3-dihydroxy-13,17-dimethylchlorin-2,18-dipropionate (20)

To a refluxing solution of trans-lactone 19b (22 mg, 0.035 mmol) in pyridine (20 ml) under argon, KOH (0.48 g) in water (1.6 ml) was added and the heating was continued for 7 h before the mixture was evaporated to dryness under reduced pressure. The residue was redissolved in cold dry methanol saturated with HCl gas. The mixture was allowed to stir in an ice-water bath for 10 min before being partitioned between CH₂Cl₂ and water. The organic layer was separated, washed three times with water, dried (Na₂SO₄) and evaporated to dryness. The product was chromatographed rapidly on TLC (10% RtOAc/CH₂Cl₂) to separate the slower moving trans diol 20 (8 mg, 36.4%) from the faster moving trans lactone 19b (10 mg, 43.5%).

20: NMR & 1.76, 1.78, 1.79, 1.81 (3H each, t, CH_2CH_3), 1.86 (3H, s, 3-Me), 1.88, 2.06, 2.47, 2.66 (1H each, quint, 2- $CH_2CH_2CO_2$) [J(2a₁, 2b₂ = 7.3Hz, J(2a₁, 2b₃) = 7.3, J(2a₁, 2a₄) = -14.6, J(2b₂, 2b₃) = -14.6, J(2b₂, 2a₄) = 7.3, J(2b₃, 2a₄) = 7.3], 3.17 (2H, t, 18- $CH_2CH_2CO_2$), 3.34 (3H, s, 17-Me), 3.54 (3H, s, 2- $CCCO_2Me$), 3.67 (3H, s, 18- $CCCO_2Me$), 3.84 (6H, q, 3xCH₂CH₃), 3.97 (2H, q, CH₂CH₃), 4.22 (2H, t, 18- $CH_2CH_2CO_2$),

8.97, 9.03 (1H each, s, 5,20-H), 9.70, 9.72 (1H each, s, 10,15-H), -2.34 (2H, br s, NH); UV-vis λ_{max} (ϵ_{M}) 647 nm (35 900), 592 (3 800), 522 (2 700), 495 (10 900), 490 (11 100), 391 (150 000); MS, found: m/e 657.3649 for (M+H)+, $C_{38}H_{49}N_{4}O_{6}$ requires m/e 657.3655.

Dimethyl 3,8,8,12,13,17-hexamethyl-7-porphinone-2,18-dipropionate (21a) and Dimethyl 3,7,7,12,13,17-hexamethyl-8-porphinone-2,18-dipropionate (22a)

Perchloric acid (70%, 1 ml) was added to a methylene chloride solution (60 ml) of 16a (150 mg, 0.25 mmol). The mixture was allowed to stir at room temperature for one-half hour before being extracted with water (3x, 60 ml each). The CH₂Cl₂ layer contained the mixture of 21a and 22a, which were separated on preparative TLC plates (silica gel, CH₂Cl₂/1% MeOH), yielding 60 mg (42%) each of the porphyrinones.

21a (slower component on TLC): NMR & 2.09 (6H, s, 8,8-Me), 3.12, 3.15 (2H each, t, $CH_2CH_2CO_2$), 3.37, 3.43, 3.46, 3.49 (3H each, s, ring Me), 3.57, 3.59 (3H each, s, CO_2Me), 4.15, 4.30 (2H each, t, $CH_2CH_2CO_2$), 9.02, (1H, s, 10-H), 9.70 (1H, s, 5-H), 9.75 (1H, s, 15-H), 9.84 (1H, s, 20-H), -3.06, -2.86 (1H each, br s, NH); MS, m/e 582.2838 (calcd for $C_34H_{38}N_4O_5$); m.p. 265-266°C; UV-vis λ_{max} (am) 642 nm (32 400), 585 (6 000), 546 (12 000), 508 (9 500), 490 (6 200), 404 (169 000).

22a (faster component on TLC): NMR δ 2.00 (6H, s, 7,7-Me), 3.13, 3.18 (2H each, t, $CH_2CH_2CO_2$), 3.39, 3.44, 3.46, 3.50 (3H each, s, ring Me), 3.59 (6H, s, $2xCO_2Me$), 4.16 (2H, t, $18-CH_2CH_2CO_2$), 4.32 (2H, t, 2- $CH_2CH_2CO_2$), 9.07 (1H, s, 5-H), 9.74 (1H, s, 10-H), 9.79 (1H, s, 20-H), 9.80 (1H, s, 15-H), -3.12 (2H, br s, NH). Irradiating the triplet at δ 4.32 caused the singlets at δ 9.79 and 3.50 to increase in intensity. Moreover, irradiating the singlet at δ 3.50 caused the singlet at δ 9.07 (most upfield meso proton) to increase in intensity. MS, m/e 582 (M⁺);

m.p. 266-268°C; UV-vis λ_{max} (\$\mathbf{e}_{\text{M}}\$) 642 nm (32 300), 585 (5 500), 546 (11 300), 508 (8 500), 490 (5 600), 404 (151 000). Anal. calcd: C, 70.07; H, 6.58; N, 9.62. Found C, 70.18; H, 6.66; N, 9.57.

Dimethyl 8,8,12,13-tetraethyl-3,17-dimethyl-7-porphinone-2,18-dipropionate (21b) and Dimethyl 7,7,12,13-tetraethyl-3,17-dimethyl-8-porphinone-2,18-dipropionate (22b)

The dihydroxychlorin 16b (50 mg, 0.076 mmol) in CH₂Cl₂ was treated with perchloric acid (70%, 1 ml), and the reaction was worked up in the same manner as described above to afford 19 mg of each (40%) of the isomeric porphyrinones. The structure assignment for the slower moving 21b and the faster moving 22b was achieved via NOE measurements (see Figure 3).

21b: NMR δ 0.38 (6H, t, 8,8-CH₂CH₃), 1.86 (6H, t, 12,13-CH₂CH₃), 2.75 (4H, q, 8,8-CH₂CH₃), 3.20, 3.24 (3H each, t, CH₂CH₂CO₂), 3.48, 3.59 (3H each, s, Me), 3.65, 3.66 (3H each, s, CO₂Me), 4.00, 4.06 (2H each, q, 12,13-CH₂CH₃), 4.25 (2H, t, 18-CH₂CH₂CO₂), 4.40 (2H, t, 2-CH₂CH₂CO₂), 9.13 (1H, s, 10-H), 9.84 (1H, s, 5-H), 9.85 (1H, s, 15-H), 9.95 (1H, s, 20-H), -2.91, -2.78 (1H each, br s, NH); UV-vis λ_{max} (ϵ_{M}) 642 nm (34 700), 586 (5 900), 546 (11 800), 508 (9 600), 490 (6 300), 406 (173 000).

22b: NMR & 0.38 (6H, t, 7,7-CH₂CH₃), 1.85 (6H, t, 12,13-CH₂CH₃), 2.76 (4H, q, 7,7-CH₂CH₃), 3.21, 3.28 (3H each, t, CH₂CH₂CO₂), 3.48, 3.58 (3H, s, Me), 3.67, 3.68 (3H each, s, CO₂Me), 4.06 (4H, q, 12,13-CH₂CH₃), 4.25 (2H, t, 18-CH₂CH₂CO₂), 4.41 (2H, t, 2-CH₂CH₂CO₂), 9.13 (1H, s, 5-H), 9.84 (1H, s, 10-H), 9.88 (1H, s, 20-H), 9.93 (1H, s, 15-H), -2.90 (2H, br s, NH); UV-vis λ_{max} (ϵ_{M}) 642 nm (35 000), 586 (5 700), 546 (11 800), 508 (9 000), 490 (6 000), 406 (162 000).

Dimethyl 3,7,7,12,13,17-hexamethyl-8-methylenechlorin-2,18-dipropionate (23)

The methyl ester groups of porphyrinone 22a (100 mg, 0.18 mmol) were hydrolyzed in a mixture of equal volume of THF and 2N aqueous KOH. The mixture was stirred for 12 h before the THF solvent was removed in a rotorvap. The remainder of the aqueous solution was acidified with HCl, and the precipitated porphyrinone diacid was collected by filtration, washed with water and dried.

To a suspension of Ph₃PCH₃Br (614 mg, 1.72 mmol) in dry THF (20 ml) was added an equivalent amount of n-butyllithium (1.6M solution in hexane) under nitrogen. The resultant orange suspension was allowed to stir at room temperature for 30 min before being added to a solution of the porphyrinone diacid (95 mg, 0.172 mmol) in dry THF (25 ml) at 0°C. The mixture was allowed to stir at room temperature for 12 h, after which time the reaction was quenched with water. The solvent was evaporated, and the residue was esterified in dry methanol (50 ml), saturated with HCl gas, and left overnight. The solvent was again evaporated, and the residue was taken in CH2Cl2, washed with water, and chromatographed on silica gel (CH₂Cl₂). The methylenechlorin 23 (68 mg, 71% yield), migrating in front of the unreacted 22a (20 mg), was further purified by crystalization from CH2Cl2/hexane: m.p. 229-231°C; NMR & 2.03 (6H, s, gem-Me), 3.17, 3.20 (2H each, t, $CH_2CH_2CO_2$), 3.41 (6H, s, 2xMe), 3.45, 3.49 (3H each, s, Me), 3.66, 3.67 (3H each, s, CO₂Me), 4.19, 4.33 (2H each, t, $CH_2CH_2CO_2$), 5.81, 6.78 (1H each, s, = CH_2), 8.86, 9.38 (1H each, s, 5,10-H), 9.65, 9.71 (1H each, s, 15,20-H), -2.54 (2H br s, NH); MS, m/e 580.3049 (calcd for C35H40N4O4 580.3052); UV-vis hax (a_{1}) 656 nm (36 000), 600 (4 400), 534 (13 000), 506 (9 600), 498 (9 600), 400 (136 000).

Dimethyl 3,7,7,8,12,13,17-heptamethylchlorin-2,18-dipropionate (24)

The above chlorin 23 (10 mg) was dissolved in formic acid (88%, 8 ml), to which a small amount of Adams catalyst (PtO₂, 5 mg) was added. A gentle stream of hydrogen was passed into the mixture for 5 min. A distinct color change was observed. The hydrogenated product was obtained almost quantitatively by evaporating the formic acid and purified by passing through a short silica gel pad with CH₂Cl₂: m.p. 215-218°C; NMR & 1.83, 2.01 (3H each, s, gem-Me), 1.98 (3H, d, tertiary Me), 3.17, 3.20 (2H each, t, CH₂CH₂CO₂), 3.41, 3.42, 3.47, 3.50 (3H each, s, ring Me), 3.67 (6H, s, 2xCO₂Me), 4.20, 4.33 (2H, t, CH₂CH₂CO₂), 4.55 (1H, q, tertiary H), 8.81, 8.85 (1H each, s, 5,10-H), 9.68, 9.70 (1H each, s, 15,20-H), -2.42 (2H, br s, NH); MS, m/e 582.3200 (calcd for C₃₅H₄₂N₄O₄ 582.3208; UV-vis λ_{max} (2M) 643 nm (36 900), 614 (3 700), 589 (4 200), 524 (4 000), 497 (9 900), 490 (9 800), 392 (141 000).

General Procedure of Oxidation and Rearrangement of 15a, 29, 36 and 41

Osmium tetroxide (1.2 mmol) in ether (3 ml) was added to a dichloromethane solution (200 ml) of porphyrin (1 mmol) containing pyridine (0.2 ml). The mixture was allowed to stir at room temperature under nitrogen for 20 hours. The reaction was quenched by addition of methanol (100 ml) and followed by bubbling hydrogen sulfide into the solution. The precipitated osmium sulfide was filtered, the filtrate was evaporated, and the residue was chromatographed on silica gel using dichloromethane/ 1 3% methanol as eluent.

The pinacolic rearrangement of the dihydroxychlorins was brought about by three different acid treatments: (1) dichloromethane with a couple drops of 70% perchloric acid (16a, 37, 42); (2) chlorin in

dichloromethane, shaking with concentrated sulfuric acid (17a, 30, 31, 44); (3) neat concentrated sulfuric acid for several hours, followed by esterification (38, 43).

Dimethyl 3,7,8,12,13,17-hexamethyl-18-porphinone-2,17-dipropionate (28)

Yield (from 17a): 85%; m.p. 191-193°C, MS (direct probe, 70 ev) m/e 582 (M⁺). NMR δ 1.51 (2H, m, 17-CH₂CH₂CO₂), 2.08 (3H, s, 17-Me), 3.06 (2H, t, 17-CH₂CH₂CO₂), 3.23 (2H, t, 2-CH₂CH₂CO₂), ring Me: 3.28 (3H, s), 3.40 (6H, s), 3.51 (3H, s), 3.55 (3H, s), 3.60 (3H, s, 17-CCCO₂Me), 3.74 (3H, s, 2-CCCO₂Me), 4.35 (2H, t, 2-CH₂CH₂CO₂), 9.08 (1H, s, 15-H), 9.77 (2H, s, 10,20-H), 9.87 (1H, s, 5-H), -2.94, -2.81 (1H each, br s, NH); UV-vis λ_{max} (\$\alpha\$) 643 nm (35 400), 586 (5 500), 548 (10 800), 508 (8 500), 490 (6 300), 406 (160 000).

Dimethyl 12,18-diethyl-3,7,13,17-tetramethylporphine-2,8-diacetate (36)

4,4'-Dimethoxycarbonylmethyl-3,3',5,5'-tetramethyl-2,2'-dipyrromethenium bromide³⁷ (4.25 g, 10 mmol) and 5,5'-dibromo-4,4'-diethyl-3,3'-dimethyl-2,2'-dipyrromethenium bromide⁵¹ (4.67 g, 10 mmol) were suspended in formic acid (50 ml, 98-100%) and treated with bromine (0.5 ml). The mixture, protected from moisture, was refluxed in an oil bath maintained at 130-135°C for 2.5 h. The condenser was then removed and the solvent was boiled off under air. The black residue was dissolved in methanol (100 ml), the solvent was boiled off again, and the residue redissolved in 100 ml of methanol. Trimethyl orthoformate (20 ml) and sulfuric acid (concentrated, 2 ml) were added and the mixture was allowed to stand at room temperature, protected from moisture in the dark, for a day. Crystalline porphyrin often separated from the liquid

by this time. If so the crystals were collected by filtration, the filtrate was evaporated and the residue was loaded onto a silica gel A black nonfluorescent band was eluted first by using column. dichloromethane and discarded. The porphyrin methyl ester came off with 1% CH3OH/CH2Cl2 but often required 2% CH3OH/CH2Cl2 to be eluted completely. The main porphyrin fractions were combined and evaporated while the heavily contaminated fractions required a second column. 36 further purified bу recrystallization porphyrin was from CH₂Cl₂/CH₃OH. Yield (1.8 g, 32 %); m.p. 310-312°C; MS found: m/e 567.2887 for $(M+H)^+$, $C_{34}H_{38}N_4O_4$ requires m/e 567.2895; NMR & (6H, t, t) $2xCH_2CH_3$), 3.58, 3.61 (6H, s, ring Me), 3.74 (6H, s, $2xCCO_2Me$), 4.05 (4H, q, 2xCH₂CH₃), 5.01 (4H, s, 2xCH₂CO₂), 10.01, 10.02 (1H each, s,5,15-H), 10.06 (2H, s, 10,20-H), -3.82 (2H, br s, NH); UV-vis λ_{max} (ϵ_{M}) 620.5 nm (4 300), 567 (6 600), 531.5 (9 400), 498.5 (14 000), 399 (169 000).

Dimethyl 12,18-diethyl-12,13-dihydroxy-3,7,13,17-tetramethyl-chlorin-2,8-diacetate (37)

Slower moving component on TLC: yield 48%; MS found: m/e 601.3018 for (M+H)+, $C_{34}H_{41}N_{4}O_{6}$ requires m/e 601.3028; NMR & 0.67 (3H, t, 12-CH₂CH₃), 1.75 (3H, t, 18-CH₂CH₃), 2.12 (3H, s, 13-Me), 2.20, 2.37 (1H each, m, 12-CH₂CH₃), 3.22, 3.33, 3.37 (3H each, s, ring Me), 3.66, 3.68 (3H each, s, $CO_{2}Me$), 3.89 (2H, q, $CH_{2}CH_{3}$), 4.55, 4.65 (1H each, AB, J_{AB} = 15.8 Hz, 9-CH₂CO₂), 4.72 (2H, s, 1-CH₂CO₂), 8.88, 8.89 (1H each, s, 10,15-H), 9.50, 9.66 (1H each, s, 5,20-H), -2.61 (2H, br s, NH); UV-vis λ_{Max} (2M) 642 nm (41 000), 612 (3 200), 588 (3 900), 526 (3 000), 498 (12 800), 494 (12 500), 394 (173 000).

Dimethyl 12,18-diethyl-2,3-dihydroxy-3,7,13,17-tetramethylchlorin-2,8-diacetate (38)

Faster moving component on TLC: yield 6%; MS found: m/e 601.3022 for $(M+H)^+$, $C_{34}H_{41}N_{4}O_{6}$ requires m/e 601.3028; NMR δ 1.74, 1.75 (3H each, t, CH₂CH₃), 1.93 (3H, s, 3-Me), 3.33, 3.38, 3.47 (3H each, s, ring Me), 3.67 (3H, s, 2-CCO₂Me), 3.62, 4.07 (1H each, AB, J_{AB} = 16.5 Hz, 2-CH₂CO₂), 3.85 (4H, m, CH₂CH₃), 3.92 (3H, s, 8-CCO₂Me), 4.72, 4.82 (1H each, AB, J_{AB} = 15.3 Hz, 8-CH₂CO₂), 9.02, 9.14 (1H each, s, 5,20-H), 9.67, 9.73 (1H each, s, 10,15-H), -2.80 (2H, br s, NH); UV-vis λ_{max} (2M) 642 nm (47 400), 614 (3 500), 590 (3 800), 538 (1 600), 520 (2 200), 492 (13 600), 488 (13 300), 389 (186 000).

Dimethyl 13,18-diethyl-3,7,13-17-tetramethyl-12-porphinone-2,8-diacetate (39)

Yield (from 37): 90%; MS found: m/e 583.2925 for (M+H)+, $C_{34}H_{39}N_{4}O_{5}$ requires m/e 583.2923; NMR δ 0.44 (3H, t, $13-CH_{2}CH_{3}$), 1.82 (3H, t, $18-CH_{2}CH_{3}$), 2.06 (3H, s, $13-CH_{3}$), 2.75 (2H, q, $13-CH_{2}CH_{3}$), 3.40 3.47, 3.51 (3H each, s, ring Me), 3.71, 3.80 (3H each, s, $2\times CCO_{2}Me$), 4.00 (2H, q, $18-CH_{2}CH_{3}$), 4.78, 4.94 (2H each, s, $CH_{2}CO_{2}$), 9.08 (1H, s, 15-H), 9.74, 9.80 (1H each, s, 10,20-H), 9.79 (1H, s, 5-H), -2.88, -2.73 (1H each, br s, NH); UV-vis λ_{max} (and 638 nm (26 400), 582 (5 000), 546 (10 600), 508 (8 200), 490 (5 500), 406 (151 000).

<u>Dimethyl 12,18-diethyl-2,7,13,17-tetramethyl-3-porphinone-2,8-diacetate (40)</u>

Yield (from 38): 30%; MS found: m/e 583.2930 for $(M+H)^+$, $C_{34}H_{39}N_4O_5$ requires m/e 583.2923; NMR δ 1.79 (6H, t, $2xCH_2CH_3$), 1.96 (3H, s, 2-Me), 2.90 (3H, s, 2-CCO₂Me), 3.44, 3.58 (3H each, s, 13,17-Me), 3.62 (3H, s, 7-Me), 3.74 (3H, s, 8-CCO₂Me), 3.94 (6H, m, $2xCH_2CH_3$ and 2-CH₂CO₂), 5.06 (2H, s, 8-CH₂CO₂), 9.07 (1H, s, 20-H), 9.82 (1H, s,

15-H), 9.93 (1H, s, 5-H), 9.95 (1H, s, 10-H), -2.96, -2.73 (1H each, br s, NH); UV-vis λ_{max} (ϵ_{M}) 642 nm (35 300), 586 (5 400), 541 (9 700), 504 (9 900), 490 (6 400), 402 (162 000).

<u>Dimethyl 7,8-dihydroxy-3,8,13,18-tetramethyl-7,17-dipentylchlorin-2,12-diacetate (42)</u>

Slower moving component on TLC: yield 11%; MS found: m/e 685.3961 for (M+H)+, C40H53N4O5 requires m/e 685.3968; NMR & 0.64 (3H, t, 7-C4HaCH3), 0.95 (3H, t, 17-C4HaCH3), 1.03 (4H, m, 7-C2H4CH2CH2CH3), 1.52 (4H, m, 17-C3H5CH2CH3) and 7-CH2CH2C3H7), 1.66 (2H, quint, 17-C2H4CH2C2H5), 2.16 (2H, m, CH2CH2C3H7), 2.24 (3H, s, 8-Me), 2.38 (2H, m, 7-CH2C4H9), 3.38, 3.41, 3.49 (3H each, s, ring Me), 3.73, 3.75 (3H each, s, CO2Me), 3.81 (2H, t, 17-CH2C4H9), 4.84 (4H, s, 2xCH2CO2), 9.01, 9.06 (1H each, s, 5,10-H), 9.68, 9.70 (1H each, s, 15,20-H), -2.50 (2H, br s, NH); UV-vis 2max (2M) 648 nm (46 800), 622 (3 700), 594 (3 700), 546 (1 700), 520 (2 700), 494 (13 400), 490 (13 400), 392 (178 000).

<u>Dimethyl 2,3-dihydroxy-3,8,13,18-tetramethyl-7,17-dipentylchlorin-2,12-diacetate (43)</u>

Faster moving component on TLC: yield 19%; MS found: m/e 685.3959 for (M+H)+, C40H53N4O6 requires m/e 685.3968; NMR & 0.94, 0.95 (3H each, t, C4H8CH3), 1.53 (4H, sext, $2xC_3H_6CH_2CH_3$), 1.64 (4H, quint, $2xC_2H_4CH_2C_2H_5$), 1.95 (3H, s, 3-Me), 2.19 (4H, quint, $2xCH_2CH_2C_3H_7$), 3.44, 3.47, 3.52 (3H each, s, ring Me), 3.68, 4.17 (1H each, AB, JAB = 16.5 Hz 2-CH2CO2), 3.73 (3H, s, 2-CCO2Me), 3.89, 3.96 (2H each, t, CH2C4H9), 3.98 (3H, s, 12-CCO2Me), 4.86 (2H, s, 12-CH2CO2), 9.01, 9.18 (1H each, s, 5,20-H), 9.78, 9.80 (1H each, s, 10,15-H), -2.67, -2.59 (1H each, br s, NH); UV-vis λ_{Max} (λ_{M}) 638 nm (39 900), 610 (2 800), 584 (3 700), 526 (3 600), 498 (12 700), 494 (12 300), 394 (170 000).

2,3-Dihydroxy-2,12-bis(2-hydroxyethyl)-3,8,13,18-tetramethyl-7,17-dipentylchlorin (44)

The dihydroxychlorin 43 (75 mg, 0.11 mmol) was dissolved in dry THF (50 ml) and LiAlH4 (21 mg, 0.55 mmol) was added carefully. The mixture was stirred at room temperature under argon for 1 h (the progress of the reaction can be monitored by TLC as the product's Rf value is much smaller than that of the starting material), the reaction was then quenched by addition of 5 ml EtOAc, followed by addition of 5 ml of water after 5 min. The solvent was removed in vacuo and the residue was redissolved in CH2Cl2, washed with 5% NaOH, then water and dried (anhydrous Na₂SO₄). The tetrahydroxychlorin 44 was purified by passing through a short silica gel pad (CH₂Cl₂/3% MeOH). Yield (62 mg, m/e 629.4059 for $(M+H)^+$, $C_{38}H_{53}N_4O_4$ requires m/e90%); MS found: 629.4070; NMR δ 0.97, 0.98 (3H each, t, C₄H₈CH₃), 1.56 (4H, m, $2xC_{3}H_{5}CH_{2}CH_{3}$), 1.68 (4H, m, $2xC_{2}H_{4}CH_{2}C_{2}H_{5}$), 1.71 (3H, s, 3-Me), 2.23 (4H, m, 2xCH₂CH₂C₃H₇), 2.28, 2.38 (H each, m, 2-CH₂CH₂O), 3.12, 3.18 (1H each, m, 2-CH₂CH₂O), 2.79, 3.36, 3.43 (3H each, s, ring Me), 3.70, 3.85 (2H each, t, 12-CH₂CH₂O), 3.95 (4H, t, 2xCH₂C₄H₉), 8.47, 8.93 (1H each, s, 5,20-H), 9.13, 9.45 (1H each, s, 10,15-H), -2.86 (2H, br s, NH); UVvis hax (2M) 640 nm (34 600), 614 (3 100), 588 (3 200), 524 (2 700), **496** (10 **600**), 492 (10 400), 392 (151 000).

<u>Dimethyl 3,9,13,18-tetramethyl-8,17-dipentyl-7-porphinone-2,12-diacetate (45)</u>

Yield (from 42) 90%; MS found: m/e 667.3871 for (M+H)+, $C_{40}H_{51}N_{4}O_{5}$ requires m/e 667.3862; NMR δ 0.50 (3H, t, 8-C₄H₈CH₃), 0.86 (2H, m, 8-C₃H₆CH₂CH₃), 0.95 (3H, t, 17-C₄H₈CH₃), 1.67 (4H, m, 17-C₃H₆CH₂CH₃ and 8-CH₂CH₂C₃H₇), 1.70 (2H, quint, 17-C₂H₄CH₂C₂H₅), 2.05

(3H, s, 8-Me), 2.18 (2H, quint, $17-CH_2CH_2C_3H_7$), 2.71 (2H, t, 8- $CH_2C_4H_9$), 3.41, 3.56, 3.62 (3H each, s, ring Me), 3.75 (6H, s, $2\times CO_2Me$), 3.82 (2H, t, $17-CH_2C_4H_9$), 4.98, 5.00 (2H each, s, CH_2CO_2), 9.18 (1H, s, 10-H), 9.80, 9.84 (1H each, s, 5,15-H), 9.89 (1H, s, 20-H), -2.79, -1.84 (1H each, br s, NH); UV-vis λ_{max} (an) 646 nm (39 000), 588 (5 100), 540 (9 700), 504 (10 200), 486 (6 100), 402 (172 000).

<u>Dimethyl 2,8,13,18-tetramethyl-7,17-dipentyl-3-porphinone-2,12-diacetate (46)</u>

Yield (from 43) 31%; MS found: m/e 667.3867 for (M+H)+, C40Hs1N4Os requires m/e 667.3862; NMR δ 0.97 (6H, t, 2xC4HaCH3), 1.53 (4H, m, 2xC3HsCH2CH3), 1.70 (4H, m, 2xC2H4CH2C2H5), 1.96 (3H, s, 2-Me), 2.23 (4H, m 2xCH2CH2C3H7), 2.93 (3H, s, 2-CCO2Me), 3.51, 3.52, 3.59 (3H each, s, ring Me), 3.75 (3H, s, 12-CCO2Me), 4.01 (4H, t, 2xCH2C4H9), 3.89, 3.98 (1H each, AB, JAB = 16.8 Hz, 2-CH2CO2), 4.92 (2H, s, 12-CH2CO2), 9.08 (1H, s, 20-H), 9.87 (2H, s, 5,15-H), 9.98 (1H, s, 10-H), -3.00, -2.92 (1H each, br s, NH); UV-vis λmax (εμ) 640 nm (30 500), 584 (5 500), 548 (10 800), 510 (8 400), 490 (5 400), 406 (160 000).

3,12-Bis(2-hydroxyethyl)-3,8,13,18-tetramethyl-7,17-dipentyl-2-porphinone (47)

Yield (from 44) 80%; MS found: m/e 611.3973 for $(M+H)^+$, $C_{38}H_{51}N_{4}O_{3}$ requires m/e 611.3964; NMR δ 0.93, 0.95 (3H each, t, $C_{4}H_{8}CH_{3}$), 1.56 (4H, m, $2xC_{3}H_{6}CH_{2}CH_{3}$), 1.65 (4H, m, $2xC_{2}H_{4}CH_{2}C_{2}H_{5}$), 2.09 (3H, s, 3-Me), 2.22 (4H, m, $2xCH_{2}CH_{2}C_{3}H_{7}$), 2.98, 3.10, 3.32, 3.48 (1H each, m, 3- $CH_{2}CH_{2}O$), 3.51, 3.56, 3.59 (3H each, s, ring Me), 3.97, 4.03, 4.19, 4.42 (2H each, t, $2xCH_{2}C_{4}H_{9}$ and $12-CH_{2}CH_{2}O$), -2.98, -2.89 (1H each, br s, NH); UV-vis λ_{max} (2M) 640 nm (30 900), 584 (5 600), 548 (9 900), 508 (8 200), 490 (6 000), 406 (152 000).

Tetramethyl 2,7,12,17-tetramethyl-3-porphinone-2,8,13,18-tetrapropionate (49)

Osmium tetroxide (52 mg, 0.21 mmol) in ether (0.5 ml) was added to coproporphyrin I tetramethyl ester, 48 (100 mg, 0.14 mmol) in dry CH₂Cl₂ (50 ml) followed by dry pyridine 0.1 ml. The reaction was allowed to proceed in the dark for 26 h and worked up in the same manner as described before. Yield: unreacted porphyrin (31 mg, 31%), vicdihydroxycoprochlorin I tetramethylester (42 mg, 40%). The latter was dissolved in 20 ml CH2Cl2 containing 0.5 ml of concentrated sulfuric The mixture was allowed to stir at room temperature for 30 min acid. before being extracted with water (3 x 20 ml each). The CH2Cl2 layer was dried (Na2SO4) and the solvent was removed under reduced pressure. Recrystallization from CH₂Cl₂/CH₃OH gave pure 49 (35 mg, 85%) as purple crystals. MS found: m/e 727.3338 for (M+H)+, C40H47N4O9 requires m/e 727.3345; NMR δ 1.50 (2H, m, 2-CH₂CH₂CO₂), 2.09 (3H, s, 2-Me), 3.10 (2H, m, 2-CH₂CH₂CO₂), 3.22 (6H, m, 3xCH₂CH₂CO₂), 3.25, 3.49, 3.58 (3H each, s, ring Me), 3.63, 3.65, 3.67, 3.69 (3H each, s, CO_2Me), 4.23, 4.34, 4.38 (2H each, t, $CH_2CH_2CO_2$), 9.18 (1H, s, 20-H), 9.83 (1H, s, 5-H), 9.85, 9.94 (1H each, s, 10,15-H), -2.88, -2.98 (1H each, br s, NH). Irradiation at & 4.23 caused the signal at & 9.85 to increase in intensity by 5%, while irradiation at 8 4.36 caused the signals at 8 9.18 and 8 9.94 to increase in intensity by 8%; had the rearrangement gone the other direction NOE should never occur at & 9.18. (24) 642 nm (31 900), 614 (2 200), 584 (5 800), 544 (11 800), 508 (9 **700), 490 (6 400), 406 (165 000).**

t-Butyl 2-acetoxymethyl-3-ethyl-4-methyl-5-pyrrole-carboxylate (55)

t-Butyl 3-ethyl-2,4-dimethyl-5-pyrrole-carboxylate⁵² (54) (20 g, 0.09 mol) was dissolved in glacial acetic acid (100 ml) and acetic anhydride (10 ml). This solution was added to lead tetraacetate (47.68 g, 0.11 mol) and heated with stirring under nitrogen at 70°C for 15 min. The solution was then diluted with water until a precipitate formed. The product was isolated by filtration and purified by recrystallization from methanol. Yield (23 g, 91%); m.p. 96-98°C; MS m/e 281 (M+); NMR & 1.1 (3H, t, CH₂CH₃), 1.6 (9H, s, t-Bu), 2.0, 2.2 (3H each, s, arom. Me and OAc), 2.4 (2H, q, CH₂CH₃), 5.0 (2H, s, CH₂O), 8.9 (1H, br s, NH).

Ethyl 3',4-diethyl-3,4'-dimethyl-5'-t-butoxycarbonyl-dipyrromethane-5-carboxylate (57)

A suspension of ethyl 3-ethyl-4-methyl-2-pyrrole-carboxylate⁵³ (56) (7.73 g, 43 mmol) and the foregoing pyrrole (55) (12 g, 43 mmol) in methanol (300 ml) was treated with toluene-p-sulfonic acid hydrate (350 mg) and heated with stirring under argon at 40°C for 5 h. The homogenized mixture was then partitioned between water (300 ml) and methylene chloride (400 ml) and the organic layer was dried (Ne₂SO₄) and evaporated to dryness. The product was used in the next steps without further purification; MS m/e 403 (M⁺); NMR & 1.0, 1.1 (3H each, t, CH₂CH₃), 1.3 (3H, t, CO₂CH₂CH₃), 1.6 (9H, s, t-Bu), 1.9, 2.2 (3H each, s, Me), 2.4, 2.7 (2H each, q, CH₂CH₃), 3.8 (2H, s, methane CH₂), 4.3 (2H, q, CO₂CH₂CH₃), 8.5 (2H, br s, NH).

Methyl 7,12-diethyl-3,8,13,17,18-pentamethylporphine-2-propionate (50)

Dipyrromethane 57 (3g, 7.5 mmol) was treated with trifluoro-acetic acid (20 ml) under argon atmosphere at ambient temperature for 5 min. A solution of formyl pyrrole 5854 (1.03 g, 7.5 mmol) in methanol (100 ml)

was then added all at once and the dark red solution was stirred for an additional 90 min, followed by addition of a 30% HBr-CH3COOH solution (1 ml) and ether (200 ml). Continued stirring for 15 min resulted in the formation of reddish-orange crystals which were collected by filtration The mother liquor was and washed thoroughly with ether (1.5 g). concentrated to approximately 100 ml, and ether (200 ml) was added to give a second crop of the product (0.5 g). Overall yield 53%; MS m/e 421 (M^+ - HBr). This tripyrrin 59 (2 g, 4 mmol) was stirred in a mixture of 48% HBr (30 ml), acetic acid (20 ml) and trifluoroacetic acid (30 ml) under N_2 , at 65-70°C for 6 h. A solution of formylpyrrole 50⁵⁴ (0.84 g, 4 mmol) in methanol (100 ml) was then added all at once and stirring was continued for 1 h at room temperature. The reaction mixture was evaporated under reduced pressure and redissolved in dry DMF (100 ml) containing copper (II) chloride (10 g). The solution was stirred for 8 h at room temperature under argon. The reaction mixture was then poured into water and extracted with methylene chloride. organic layer was then dried (Na2SO4) and evaporated to dryness, followed by column chromatography (silica gel - CH2Cl2). The red eluants were evaporated to dryness and the residue was treated with concentrated H₂SO₄ (30 ml) in order to demetalate the copper-porphyrin. The mixture was then partitioned carefully between CH_2Cl_2 and water. The organic layer was washed with water $(2 \times 50 \text{ ml})$, saturated NaHCO₃ $(2 \times 50 \text{ ml})$ x 50 ml), dried (Na2SO4) and evaporated to dryness. This crude product further purified by column chromatography (silica gel-l% CH3OH/CH2Cl2) and recrystallized from CH2Cl2/CH3OH to give purple crystals. Overall yield (from dipyrromethane 57): 324 mg, 8%; m.p. 234-236°C; MS found m/e 523.3085 for (M+H)+ C33H39N4O2 requires m/e 523.2076; NMR δ 1.84 (6H, t, 2xCH₂CH₃), 3.24 (2H, t, CH₂CH₂CO₂), ring Me: 3.55 (3H, s), 3.56 (6H, s), 3.57 (3H, s), 3.60 (3H, s), 3.67 (3H, s, CO₂Me), 4.03, 4.06 (2H each, q, CH₂CH₃), 4.35 (2H, t, CH₂CH₂CO₂), 9.96, 9.98 (1H each, s, meso), 10.03 (2H, s, meso), -3.85 (2H, br s, NH); UV-vis λ_{max} (ε_M) 619.5 nm (5 600), 566 (7 700), 530.5 (11 000), 497 (14 700), 396.5 (166 000).

Methyl 7,12-diethyl-3,8,13,17,17-pentamethyl-18-porphinone-2-propionate (51) and Methyl 7,12-diethyl-3,8,13,18,18-pentamethyl-17-porphinone-2-propionate (52)

Osmium tetroxide (90 mg, 0.35 mmol) in ether (0.9 ml) was added to porphyrin 50 (150 mg, 0.29 mmol) in dry CH₂Cl₂ (50 ml) followed by dry pyridine 0.1 ml. The reaction was allowed to proceed in the dark for 18 h and worked up in the same manner as described before. mixture was chromatographed on TLC plates, developed with CH2Cl2/1% CH3OH. There were four distinct bands: the recovered red porphyrin 50 moving at the front (30 mg, 20%), followed by ring C dihydroxychlorin (6 mg, 4%), mixture of ring A and B dihydroxychlorins (46 mg, 29%) and another green band containing ring D dihydroxychlorin (21 mg, 13%). The structure assignments were based on 1H NMR data: the mixture of A and B dihydroxychlorins had & 0.61 (3H, t, pyrroline Et), ring C dihydroxychlorin had & 2.05-2.58 (4H, m, pyrroline CH₂CH₂CO₂) and ring D dihydroxychlorin had 2.13 (6H, s, 2 x pyrroline Me). The latter (20 mg, 36 mmol) in CH₂Cl₂ was treated with perchloric acid (70%, 0.5 ml) and the reaction was worked up in the same manner as described for 21a, 22a to afford 8 mg of each (41%) of the isomeric porphyrinones.

51 (most polar band on TLC): NMR & 1.78, 1.82 (3H each, t, CH₂CH₃), 2.08 (6H, s, 17,17-Me), 3.23 (2H, t, CH₂CH₂CO₂), 3.44, 3.54, 3.60 (3H each, s, ring Me), 3.74 (3H, s, CO₂Me), 3.88, 4.04 (2H each, q,

CH₂CH₃), 4.35 (2H, t, CH₂CH₂CO₂), 9.12 (1H, s, 15-H), 9.78 (1H, s, 10-H), 9.81 (1H, s, 20-H), 9.87 (1H, s, 5-H); -2.81, -2.96 (1H each, br s, NH). Irradiating the triplet at δ 4.35 caused the singlet at δ 9.81 to increase in intensity by 12%.

52 (faster moving component on TLC): NMR δ 1.78, 1.81 (3H each, t, CH₂CH₃), 2.09 (6H, s, 18,18-Me), 3.21 (2H, t, CH₂CH₂CO₂), 3.44, 3.55, 3.61 (3H each, s, ring Me), 3.65 (3H, s, CO₂Me), 3.88, 4.03 (2H each, q, CH₂CH₃), 4.34 (2H, t, CH₂CH₂CO₂), 9.15 (1H, s, 20-H), 9.81, 9.84, 9.89 (1H, s, 5,10,15-H), -2.93, -3.00 (1H each, br s, NH). Irradiating the triplet at δ 4.34 caused the singlet at δ 9.15 to increase in intensity by 5%.

Dimethyl 12,13-dihydroxy-3,8,8,12,13,17-hexamethyl-7-porphinone-2,18-dipropionate (68)

To the porphyrinone 21a (500 mg, 0.86 mmol) in CHCl₃ (200 ml) is added a saturated solution of zinc acetate in methanol (3 ml). After 15 min refluxing (the reaction can be monitored by TLC as the Rf value of the green-colored product is smaller than that of the purple-colored starting material), the mixture was concentrated, diluted with a little methanol, and after cooling the zinc complex is filtered off in virtually quantitative yield.

To a solution of 68 (500 mg, 0.77 mmol) in CH₂Cl₂ (250 ml), osmium tetroxide (295 mg, 1.16 mmol) and pyridine (0.3 ml) were added and the reaction was allowed to proceed in the dark, under argon for 36 h at 23°C. The reaction mixture was worked up in the same manner as described for 16a to give after separation on silica gel column (CH₂Cl₂/1% MeOH, then CH₂Cl₂/2% MeOH): unreacted starting material, 200 mg, 40% and a green zinc dihydroxy-porphyrinone, 250 mg, 47%. A

methylene chloride solution of the latter was completely demetalated, by shaking with 10% HCl in a separtory funnel, to give the violet 68 as the exclusive isomer. M.p. 216-219°C; NMR & 1.68, 1.71, 1.76, 1.99 (3H each, s, pyrroline Me), 2.84, 2.93 (3H each, s, ring Me), 2.87 (4H, t, 2xCH₂CH₂CO₂), 3.59, 3.62 (3H each, s, CO₂Me), 3.67, 3.73 (2H each, t, CH₂CH₂CO₂), 7.42 (1H, s, 10-H), 7.78 (1H, s, 15-H), 8.56 (1H, s, 5-H), 8.66 (1H, s, 20-H); UV-vis >max (sm) 642 nm (7 500), 589 (13 100), 583 (10 000), 547 (10 000), 512 (6 600), 429 (18 100), 386 (57 800).

Dimethyl 3,8,8,13,13,17-hexamethyl-7,12-porphinedione-2,18-dipropionate (69)

The foregoing dihydroxyporphyrinone 68 (200 mg, 0.32 mmol) was dissolved in 5 ml of concentrated H2SO4 and the reaction mixture was allowed to stir at room temperature for 5 min before the careful addition of CH3OH (20 ml). The solution was then partitioned between CH₂Cl₂ (100 ml) and water (100 ml). The organic layer was separated, washed with saturated NaHCO3 (100 ml), water (100 ml), dried (Na2SO4) and evaporated to dryness, to give after recrystallization CH₂Cl₂/CH₃OH the green colored 69 in almost quantitative yield. M.p. 293-295°C; NMR δ 1.93, 1.97 (6H each, s, genr-Me), 3.12, 3.13 (2 H each, t, $CH_2CH_2CO_2$), 3.28, 3.33, (3H each, s, ring Me), 3.59, 3.62 (3H each, s, CO₂Me), 4.17, 4.18 (2H each, t, CH₂CH₂CO₂), 8.51 (1H, s, 15-H), 8.74 (1H, s, 10-H), 9.33 (1H, s, 5-H), 9.58 (1H, s, 20-H), -0.32 (2H, br s, 10-H)NH); UV-vis λ_{max} (EM) 638 nm (15 500), 592 (14 400), 584 (14 800), 540 (9 700), 436 (91 300), 415 (88 600), 400 (74 900); MS found: m/e 599.2865 for $(M+H)^+$, $C_{34}H_{39}N_4O_6$ requires m/e 599.2872.

Dimethyl 17,18-dihydroxy-3,8,8,13,13,17-hexamethyl-7,12-porphinedione-2,18-dipropionate (89)

Osmium tetroxide (115 mg, 0.45 mmol) and pyridine (0.4 ml) were added to a dichloromethane solution of 69 (150 mg, 0.25 mmol) and the reaction was allowed to proceed under argon at room temperature for 36 h. The reaction mixture was worked up in the same manner as described for 16a. The products isolated from the silica gel column were the unreacted 69 (65 mg, 43%) followed by the gray 89 (55 mg, 35%). NMR & 1.57 (6H, s, pyrroline Me), 1.59, 1.71, 1.72 (3H each, s, pyrroline Me), 2.52 - 3.01 (4H, m, 18-CH₂CH₂CO₂), 2.80 (3H, s, ring Me), 3.52 (2H, t, 2-CH₂CH₂CO₂), 3.62 (3H, s, 18-CCCO₂Me), 3.74 (3H, s, 2-CCCO₂Me), 3.88 (2H, t, 2-CH₂CH₂CO₂), 7.12 (1H, s, 15-H), 7.60 (1H, s, 10-H), 7.66 (1H, s, 20-H), 8.42 (1H, s, 5-H). Irradiating the singlet at & 2.80 caused the singlet at & 8.42 to increase in intensity by 4.4%. UV-vis \(\text{Nax} \) (2M) 684 mm (7 200), 656 (8 700), 602 (6 600), 539 (8 100), 505 (6 300), 410 (39 700), 382 (47 800).

Methyl 18-[2-(methoxycarbonyl) ethenyl]-3,8,8,13,13,17-hexamethyl-7,12-porphinedione-2-propionate (70)

Compound 89 (50 mg, 0.08 mmol) was heated to reflux in benzene (25 ml), followed by the gradual addition of 5 drops of concentrated HCl. After 20 min, water (20 ml) was added, the organic layer was separated, washed two more times with water (20 ml each), dried (Na₂SO₄), evaporated to dryness and recrystallized from CH₂Cl₂/MeOH to give the green 70 in quantitative yield. M.p. 337-340°C, NMR & 1.87, 1.94 (6H each, s, gem-Me), 3.04 (2H, t, CH₂CH₂CO₂), 3.22, 3.32 (3H each, s, ring Me), 3.62, 4.00 (3H each, s, CO₂Me), 4.03 (3H, t, CH₂CH₂CO₂), 6.88, 8.94 (1H each, d, acrylic, JAB = 16.1 Hz), 8.31 (1H, s, 15-H), 8.48 (1H, s, 10-H), 9.15 (1H, s, 5-H), 9.39 (1H, s, 20-H), 0.67 (2H, br s, NH); UV-

vis (CHCl₃) λ_{max} (2M) 661 nm (15 400), 611 (25 000), 568 (14 000), 446 (66 000), 423 (93 000); MS found: m/e 597.2721 for (M+H)⁺ C₃₄H₃₇N₄O₆ requires m/e 597.2715.

Dimethyl 12,13-dihydroxy-3,7,7,12,13,17-hexamethyl-8-porphinone-2,18-dipropionate (72) and Dimethyl 2,3-dihydroxy-3,7,7,12,13,17-hexamethyl-8-porphinone-2,18-dipropionate (73)

Prepared in the same way as described for 68 yield: unreacted starting material 71 (40%), green 72 (15%), and violet 73 (20%).

72 (slower moving component on TLC): NMR δ 1.86, 1.90, 2.02, 2.05 (3H each, s, pyrroline Me), 2.94, 3.03 (2H each, t, CH₂CH₂CO₂), 3.13, 3.23 (3H each, s, ring Me), 3.57, 3.58 (3H each, s, CO₂Me), 3.93, 4.04 (2H each, t, CH₂CH₂CO₂), 8.45 (1H, s, 5-H), 8.60 (1H, s, 15-H), 8.74 (1H, s, 10-H), 9.28 (1H, s, 20-H); UV-vis λ_{max} (a) 634 nm (15 700), 593 (14 000), 520 (6 200), 431 (92 000), 406 (104 000).

64 (Faster moving component on TLC): NMR & 1.70, 1.71, 1.86 (3H each, s, pyrroline Me), 1.78 (2H, t, 2-CH₂CH₂CO₂), 2.64 (2H, t, 2-CH₂CH₂CO₂), 2.86 (2H, t, 18-CH₂CH₂CO₂), 2.92, 2.94, 2.98 (3H each, s, ring Me), 3.59 (2H, t, 18-CH₂CH₂CO₂), 3.64, 3.68 (3H each, s, CO₂Me), 7.43 (1H, s, 5-H), 7.78 (1H, s, 20-H), 8.59 (1H, s, 10-H), 8.67 (1H, s, 15-H); UV-vis \(\lambda_{max}\) (2M) 640 nm (8 800), 589 (21 000), 546 (13 200), 412 (31 300), 385 (71 000), 376 (73 000).

Dimethyl 3,7,7,13,13,17-hexamethyl-8,12-porphinedione-2,18-dipropionate (74)

Obtained from the pinacolic rearrangement of 72, the same way as described for 69, and separated from the faster moving isomer 69 by TLC plates using 1-2% CH₃OH/CH₂Cl₂. The yield of each isomer was 45%. The yellow-green porphyrindione 74 was further purified by recrystallization from CH₂Cl₂/MeOH. M.p. 296-297.5°C; NMR & 1.99 (12H, s, gem-Me), 3.19

(4H, t, 2xCH₂CH₂CO₂), 3.45 (6H, s, ring Me), 3.59 (6H, s, 2xCO₂Me), 4.33 (4H, t, 2xCH₂CH₂CO₂), 8.91 (1H each, s, 5,15-H), 9.65 (1H, s, 10-H), 9.89 (1H, s, 20-H), -1.73 (2H, br s, NH). Irradiating the triplet at δ 4.33 caused the singlet at δ 9.89 to increase in intensity by 9.4%. UV-vis λ_{max} (z_M) 634 nm (15 300), 620 (21 400), 590 (9 400), 577 (8 200), 432 (116 000), 411 (136 000); MS found: m/e 599.2881 for (M+H)⁺, C₃₄H₃₉N₄O₈ requires m/e 599.2872.

Dimethyl 2,7,7,12,13,17-hexamethyl-3,8-porphinedione-2,18-dipropionate (75)

Obtained from the pinacolic rearrangement of 73 in the same manner as described for 69, except that the reaction time was 30 min. The products isolated from the TLC plates (CH₂Cl₂/1-2% MeOH), were the faster moving porphyrinone 22a (42%) and the slower moving green porphyrindione 75 (42%). [Note: if the spirolactone of 73 is employed for the pinacolic rearrangement, porphyrinone 22a is the only product obtained.] NMR & 1.95 (3H, s, 2-Me), 1.96 (6H, s, 7,7-Me), 1.74, 2.15 (1H each, m, 2-CH₂CH₂CO₂), 2.94 (2H, t, 2-CH₂CH₂CO₂), 3.08 (2H, t, 18-CH₂CH₂CO₂), 3.32, 3.37, 3.40 (3H each, s, ring Me), 3.44 (3H, s, 2-CCCO₂Me), 3.62 (3H, s, 18-CCCO₂Me), 4.09 (2H, t, 18-CH₂CH₂CO₂), 8.64 (1H, s, 20-H), 8.83 (1H, s, 5-H), 9.40 (1H, s, 10-H), 9.55 (1H, s, 15-H), -0.69 (2H, br s, NH); UV-vis \(\lambda_{max}\) (and 634 nm (15 600), 591 (13 000), 582 (12 200), 542 (7 800), 435 (76 500), 413 (83 200), 400 (72 500); MS found: m/e 599.2863 for (M+H)+, C₃₄H₃₉N₄O₆ requires m/e 599.2872.

vic-Dihydroxyoctaethylchlorin (76)

To a solution of OEP⁵⁵ (1.168 g, 2.2 mmol) in CH₂Cl₂ (250 ml) and pyridine (1 ml) was added osmium tetroxide (1.0 g, 3.9 mmol) in diethyl ether (10 ml). The mixture was allowed to stir at room temperature in the dark for two days. This mixture was diluted with methanol (50 ml) and was bubbled with H2S for 15 min. The precipitated osmium sulfide was recovered by filtration, and the solvent was evaporated. The residue was triturated with methanol, which dissolved most of the diol chlorin from unreacted OEP. The solution was filtered, and the product was further purified on a silica gel column, eluting with CH2Cl2 containing 0.5% of methanol: yield 827 mg (66.6%), plus unreacted OEP [201 mg (17.1%)]; m.p. 213-214°C; NMR & 0.96 (6H, t, pyrroline Et), 1.74 (18H, t, Et), 2.55 (4H, q, pyrroline Et), 3.38 (2H, s, OH), 3.79, 3.82, 3.91 (12H, q, Et), 9.00 (2H, s, 5,20-H), 9.68 (2H, s, 10,15-H), -2.68(2H, br s, NH); UV-vis λ_{max} (2M) 643 nm (54 000), 590.5 (9 700), 523.5 (8 700), 496 (19 900), 392 (206 000); MS, found m/e 569.3887 for (M+H)+, C36H49N4O2 requires m/e 569.3858. The dihydroxylation of OEP with OsO4 was found to proceed poorly under catalytic conditions, e.g., using Nmethylmorpholine oxide.56

3,7,12,13,17,18-Heptaethyl-2-(1-hydroxyethyl)-porphine (77)

Diol 76 (20 mg, 0.035 mmol) was heated in a mixture consisting of dioxane (6 ml), water (3.5 ml), and concentrated HCl (0.5 ml) on a steam bath for 30 min. The mixture was partitioned in CH₂Cl₂ and water; the organic layer was evaporated and the residue was separated on TLC plate with CH₂Cl₂ as solvent. The major product 77 was further crystallized from CH₂Cl₂/hexane: yield 9.7 mg (49%); NMR & 1.90, 1.91 (21H, t, Et), 2.34 (3H, d, CH(0H)CH₃), 2.78 (1H, br s, OH), 4.06, 4.12 (14H, q, Et),

6.56 (1H, q, CH(OH)CH₃), 10.08 (2H, s, meso), 10.10, 10.62 (1H each, s, meso), -3.73 (2H, br s, NH); UV-vis λ_{max} (ϵ_{M}) 620.5 nm, 566.5, 533, 500, 400; MS, found m/e 551.3726 for (M+H)+, $C_{36}H_{47}N_{40}$ requires m/e 551.3753.

3,7,8,12,13,17,18-Heptaethyl-2-(l-acetoxyethyl)-porphine (78)

Diol 76 (20 mg, 0.035 mmol) was heated in glacial acetic acid (5 ml) at 90°C for 10 min. The reaction mixture was partitioned in CH₂Cl₂ and water; the organic layer was separated and evaporated. The residue was recrystallized from CH₂Cl₂/MeOH: yield 17.8 mg (85%) [note: upon purification on TLC plates using CH₂Cl₂/MeOH, 78 was largely converted to the methoxide 79. Silica gel promoted solvolysis is a facile reaction for acetylated hematoporphyrins.⁵⁷]; NMR & 1.95 (21H, t, Et), 2.30 (3H, s, acetyl), 2.41 (3H, d, CHCH₃), 4.09, 4.16, 4.20 (14H, q, Et), 7.53 (1H, q, CHCH₃), 10.12 (2H, s, meso), 10.16, 10.52 (1H each, s, meso), -3.70 (2H, br s, NH); UV-vis λ_{max} (an) 620 nm (9 400), 567 (12 000), 536 (15 300), 500 (17 300), 401 (156 000); MS, found m/e 593.3873 for (M+H)*, C₃₈H₄₉N₄O₂ requires m/e 593.3858.

3,7,8,12,13,17,18-Heptaethyl-2-(1-methoxyethyl)-porphine (79)

Diol 76 (20 mg) was heated to reflux for 1 h in methanol (20 ml) with one drop of concentrated HCl. The solvent was then evaporated, and the residue was crystallized from CH₂Cl₂/MeOH: yield 15.4 mg (77.5%); m.p. 243-245°C; NMR & 1.93 (21H, t, Et), 2.32 (3H, d, CHCH₃), 3.62 (3H, s, OMe), 4.08, 4.14 (14H, q, Et), 5.96 (1H, q, CHCH₃), 10.10 (2H, s, meso), 10.12, 10.66 (1H each, s, meso), -3.70 (2H, br s, NH); UV-vis \(\text{\text{Nex}} \) (2M) 620.5 nm (9 200), 566.5 (11 500), 533 (14 700), 499 (18 300), 399.5 (172 000); MS, found m/e 565.3888 for (M+H)+, C₃₇H₄₉N₄O requires 565.3909.

3,7,8,12,13,17,18-Heptaethyl-2-vinylporphine (80)

Diol 76 (100 mg, 0.175 mmol) was heated to reflux in benzene (25 ml) containing five drops of concentrated HCl for 3 h. The solvent was evaporated, and the residue was crystallized from CH₂Cl₂/MeOH: yield 85 mg (90%); m.p. > 300°C; NMR & 1.91, 1.93 (21H, t, Et), 4.09, 4.16, 4.22 (14H, q, Et), 6.16, 6.38 (2H, dd, CH=CH₂), 8.25, 8.31 (1H, dd, CH=CH₂), 10.12 (2H, s, meso), 10.16, 10.28 (1H each, s, meso), -3.68 (2H, br s, NH); UV-vis \(\lambda_{max}\) (2M) 623.5 nm (10 000), 569.5 (14 700), 539 (19 300), 503 (20 000), 402.5 (179 000); MS, found m/e 533.3641 for (M+H)+, C36H45N4 requires m/e 533.3647.

2,3,7,8,12,13,17-Heptaethylporphine (81)

Solid vinylporphyrin 80 (60 mg, 0.113 mmol) was mixed and ground with resorcinol (240 mg, 2.18 mmol) in a mortar. The powder placed in a test tube was swirled over a flame until boiling. The mixture was cooled momentarily and then heated again to boiling. This cycle was repeated three times, and the residue, after cooling, was extracted with CH₂Cl₂ and water. The porphyrin in the organic phase was purified by crystallization from CH₂Cl₂/MeOH: yield 51 mg (89%); m.p. 236-239°C; NMR & 1.98 (15H, t, Et), 2.10 (6H, t, Et), 4.16 (10H, q, Et), 4.30 (4H, q, Et), 9.16 (1H, s, 8-H), 10.11, 10.16, 10.18, 10.20 (1H each, s, meso); UV-vis max (an) 618.5 nm (9 700), 565 (13 000), 531.5 (16 300), 498 (21 000), 398.5 (215 000); MS, found m/e 507.3457 for (M+H)+, CaaHa3Na requires m/e 507.3491.

Reactions of vic-Dihydroxyetiochlorin I (82)

Diol 82 was heated in dioxane/aqueous HCl in the same manner as described above. The overall yield for the two etioporphyrin alcohols

was about 50%, with the ratio of 83 to 84 being near 2:1. If the diol 82 was heated in acetic acid, the acetoxy porphyrin 85 was obtained in 67% yield and 86 in 11% yield (6:1 ratio). These ratios can be observed directly by using NMR peaks of CH_2OR vs. CH(OR)Me: δ 6.10 (s, 83):6.52 (q, 84) = 4:1; 6.61 (s, 85):7.55 (q, 86) = 12:1.

Dimethyl 7,8,12,13-tetraethyl-3-(hydroxymethyl)-17-methyl-2,18-porphinedipropionate (87)

Diol 17b²⁰ (40 mg) was heated in dioxane (10 ml)/aqueous HCl (10%, 4 ml) on a steam bath overnight. The solvent was evaporated, and the residue was esterified in MeOH/H₂SO₄. The principal product isolated from TLC plates, was 87: 9.8 mg (~25% yield); m.p. 196-198°C; NMR δ 1.90 (12H, t, Et), 3.26 (4H, t, CH₂CH₂CO₂), 3.49 (3H, s, CH₂), 3.61, 3.66 (3H each, s, CO₂Me), 4.05, 4.11 (8H, q, Et), 4.42, 4.45 (2H each, t, CH₂CH₂CO₂), 6.11 (2H, s, CH₂OH), 10.06 (2H, s, meso), 10.08, 10.28 (1H each, s, meso), -3.78 (2H, br s, NH); UV-vis λmax (am) 621.5 mm, 567, 535.5, 499.5, 402; MS, found m/e 639.3521 for (M+H)⁺, C₃₈H₄₇N₄O₅ requires m/e 639.3549. The alternative alcohol 88 was not detected, but a small amount of acrylic porphyrin [~5% yield; NMR δ 7.05, 7.11, 9.28, 9.36, acrylic] was isolated, which can only result from 88.

CHAPTER 2

SYNTHESIS OF THE HEME d PROSTHETIC GROUP OF BACTERIAL TERMINAL OXIDASE

I. INTRODUCTION

Escherichia coli, like many other microbes, have a branched respiratory system with two terminal oxidases, cytochrome d and cytochrome o, which catalyze the reduction of O2 to H2O.59 Both cytochrome d and o complexes contain two polypeptides. Moreover, the cytochrome d complex contains two cytochrome d centers (heme d), one cytochrome bsss center (high-spin protoheme IX), and one cytochrome bsss center (low-spin protoheme IX); whereas the cytochrome o complex contains one cytochrome bss2 and one cytochrome o, which is again a btype cytochrome. Cytochrome o prevails in the early exponential phase during aerobic growth of culture while cytochrome d becomes important in the late exponential phase, or when cells are grown under limiting oxygen supply.60,81 The Km value for oxygen of cytochrome d is about eight times lower than that of cytochrome o.59 The more efficient utilization of oxygen by cytochrome d presumably allows the microbes to maintain efficient oxidative energy conservation over a wide range of oxygen pressures by changing the relative ratio of the two oxidases (Figure 4).

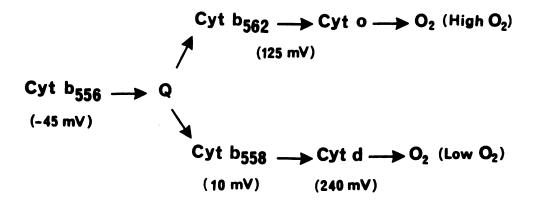


Figure 4. Arrangement of cytochromes in the respiratory chain of cells of E. coli in the late exponential phase of aerobic growth. The Em' values are indicated in parentheses. Cyt, cytochrome; Q, ubiquinone-8.

The oxygen binding site in the membrane-bound cytochrome d complex is a green-colored heme prosthetic group displaying a prominent a-band near 630 nm. Keilin⁶² originally designated the name "a2" for this cytochrome absorbing in the red region; a2 was later changed to d to avoid confusion with aa3 hemes of mammalian cytochrome oxidase. It should be made clear that cytochrome d does not reduce nitrite; it is different from the soluble cd1-type oxidases^{7,63} from Pseudomonas aeruginosa and Paracoccus denitrificans, which primarily function as nitrite reductase and are not components of the aerobic respiratory chain.

The green heme moiety of cytochrome d was first studied by Barrett (1956) who extracted cells of <u>Aerobacter aerogenes</u> and identified an iron chlorin core structure 91.32 The site of saturation and the nature of the side chains on the chlorin macrocycle could not be determined at that time. Barrett suggested the possible presence of vinyl,

hydroxyethyl, and propanoic acid substituents in an arrangement similar to a hydrated protoporphyrin IX. The tentatively formulated structure of Barrett remained unchallenged in the literature for almost 30 years and has served as the de facto model for many other green hemes 64 subsequently found in various bacterial cytochromes. Recently. Timkovich and collaborators isolated sufficient amounts of the heme d prosthetic group from purified E. coli oxidase and characterized the structure of the metal-free, esterified chromophore by means of 1H NMR, IR, UV-vis, and mass spectroscopy. The proposed structure comprises an unusual chlorin core with a spiro-Y-lactone group at the saturated pyrrole ring C (92). This "lactochlorin" structure is certainly unique but as the authors noted it is not clear whether the lactone ring found in the metal-free macrocycle is an authentic feature of the heme, or whether it is an artifact formed during isolation. The evidence of the Y-lactone in the metal-free heme d was largely based on an intense IR absorption at ~1782 cm-1. In a recent paper, however, the Timkovich group reported that this IR peak was not present in the extracted heme d,65 thus supporting structure 6.

Considering the limitation imposed by the scarcity of natural material, we believe that a full-scale study of heme d as well as the confirmation of the proposed structure must rely upon organic syntheses. In this chapter, we report the total synthesis of Timkovich's "lactochlorin", its diastereomer, and the non-lactonized forms. The chemical reactivities inherent in these structures are also addressed.

II. RESULTS AND DISCUSSION

A. Model Studies

In the first chapter, we examined several vic-dihydroxychlorins results can be summarized here. 20,43,86,67 principal Dihydroxylation of the porphyrin β - β ' double bond can be routinely accomplished by using osmium tetroxide. If the diol chlorin bears a geminal propionate ester side chain, unstable It is chromatography, especially on TLC plate. Given enough time, the initially slow moving diol can completely change into a fast moving ~spirolactone as evidenced by the characteristic strong IR band near 1780 It turns out that hydroxychlorins with an angular propionate ester always have a tendency to lactonize into the 5-membered ring under the influence of general base catalysis. 67 A variety of bases including silica gel and sodium acetate are effective to bring about this cyclization. However, preliminary results indicate that lactones resulting from different reagents may not be spectroscopically identical, a difference perhaps attributable to diastereomers.67

The above description can be exemplified by the reaction of a model compound 93 in Scheme 15; the reason for choosing this particular porphyrin will become evident in later discussion. Treatment of 93 with $0sO_4 - H_2S$ yielded a mixture of four isomeric chlorins, 94a - 94d, which

SCHEME 15

can be separated by preparative TLC into three green bands. The two faster moving chlorins were characterized by ¹H NMR to be the two north diols, 94a and 94b; the site of saturation was unambiguously identified by nuclear Overhauser enhancements (NOE's), as indicated in Scheme 15. The two south diols, contained in the slow moving TLC band, was difficult to separate directly. Consequently, we recovered the mixture and heated it in CH₂Cl₂/MeOH with sodium acetate, and the cyclized 95 was then separated easily from 94d. Lactone 95, which has a strong IR peak at 1780 cm⁻¹, was found to undergo further changes during developing on TLC plates; it slowly converted to another green compound possessing unchanged mass spectral and IR peaks. However, ¹H NMR of the two (95 and 96) were different, which eventually allowed us to deduce the configuration of the two lactone forms (vide infra). The more stable 96 could also be obtained directly by lactonizing diol 94c under prolonged contact with silica gel.

B. Synthesis of "Lactochlorin"

The synthetic strategy, which was guided by the results of model compounds, is shown in Schemes 16 and 17. We began with protoporphyrin (97), a probable precursor also in the biosynthesis of heme d. The reactive vinyl groups were protected as the chloroethyl side chains by oxidation with $T1(NO_3)_3$ to the aldehyde $99,^{49}$ followed by reduction to 100 with NaBH4, and then by chlorination with PhCOC1/DMF68 to 101, each step giving essentially quantitative yield (literature procedures have been modified). Porphyrin 101 was treated with 1.3 equivalents of OsO_4 for a day before being quenched with H_2S to effect dihydroxylation at the four possible sites: pyrrole ring A (6.8%), ring B (6.8%), ring C (22%), and ring D (26%). The separation of the north vic-diols from the

SCHEME 16

south was easily accomplished by chromatography. The two south regioisomers were separated by TLC via the lactones. Structural assignments of 103a and 103b were based on NOE connectivities (key measurements are indicated by structures in Scheme 17). Regeneration of the vinyl side chains was brought about by heating 103a in pyridine-30% KOH, 69 during which most of the lactone chlorin was hydrolized but some The hydrolyzed chlorin was methylated with diazomethane to survived. give the cis-diol 106. The dehydrated lactone 104 has all the structural elements of Timkovich's "lactochlorin" yet it exhibited a 1H NMR spectrum showing discrepancies in the lactone proton region as compared with that of the natural compound. An obvious explanation is that this compound does not have the correct configuration. Indeed. when this lactone was chromatographed on silica gel repeatedly, the expected isomeric chlorin emerged which was shown by IR and mass spectra to be a Y-lactone; more significant, it exhibited 1H NMR features basically indistinguishable from that of "lactochlorin." Furthermore, the synthetic lactone and the natural compound have identical retention time in HPLC analyses. Based on their NMR spectra discussed below, the lactones 103 and 104 were assigned a cis configuration (with respect to the two oxygen position) while the "lactochlorin" should have a trans Configuration, as suggested by Timkovich. When 107, obtained from 103a by repetitive chromatography on silica gel, was subjected to hydrolysis under the same reaction conditions as 103a, a different diol form was Obtained. This diol, 108, assigned as trans (based on 1H NMR data) can be lactonized to give once again the trans "lactochlorin" 92.

When the regioisomer 103b was subjected to the same reaction Conditions described above, the cis and trans lactones, 105a and 105b,

were obtained. These unnatural compounds not only have provided us more variety of this class of chromophores, but may be used for probing the structure-function relationship in the heme protein.

C. ¹H NMR Spectra and Structure of the Chlorins

The two synthetic lactones 104 and 92 have distinctive 1H NMR signatures, particularly in the & 2.4-3.4 ppm region where the methylene protons of the Y-lactone appear. As shown in Figure 5A, at 250 MHz 92 almost identical to the published spectrum of a spectrum "lactochlorin."6 Timkovich concluded the trans configuration based on the assumption that the single proton peaks around 2.4 ppm are from H4 (refer to Figure 7) which points away from the OH group and should have a chemical shift similar to those of a-methylene protons of normal pyrroline alkyl substituents. The peaks of Hl, because of the large deshielding imparted by the nearby OH oxygen, should occur relatively downfield. The four protons were thus labelled as the following: 3.169, H2 3.032, H3 3.231, and H4 2.431. However, these peak assignments and the reported simulation had a large degree of uncertainty due to the presence of overlapping peaks in this region. fact, on close examination of Figure 5A and the spectra of the natural molecule, as well as several other synthetic analogues, 67 it becomes evident that there are peaks near 3.5 ppm (at the shoulder of the dominant 18-methyl singlet) which can be nothing but part of the lactone methylenes. This is illustrated by the spectrum of the model lactone 96 whose 4-spin system can be readily assigned and simulated (Figure 5B). Going back to the "lactochlorin" spectrum, we now assign H1 at 3.490 ppm and other parameters as tabulated on Table 1, which fit the natural spectrum more closely in terms of relative heights of some of the

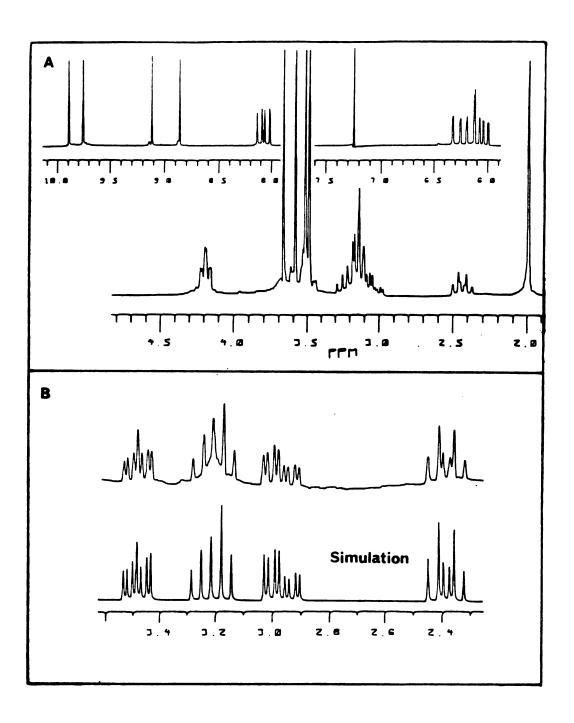


Figure 5

1 H NMR spectra (in CDCl₃, 250 MHz) of trans-lactone 83 (A); of the hexaethyl trans-lactone 87 with simulation (B).

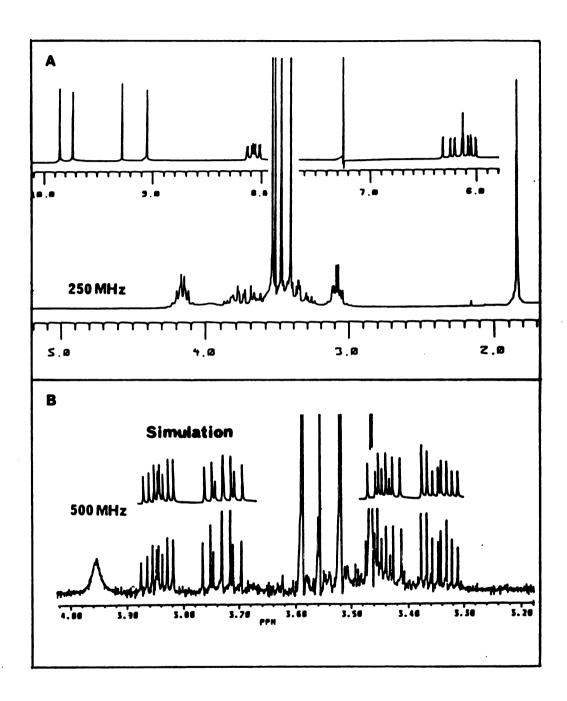
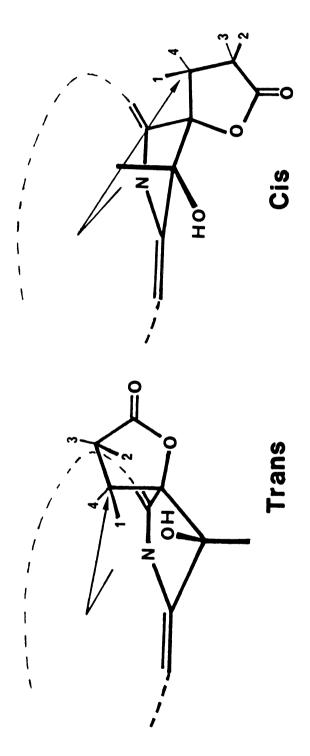



Figure 6 ¹H NMR spectra (in CDCl₃) of cis lactone 95 at 250 MHz (A); at 500 MHz with simulation (B).

Suggested conformation of the isomeric spirolactones. The slope estimated for the trans isomer is 35° while for the cis isomeris less than 10° . Figure 7

resolved transitions and in explaining the weak signals overlapping with the 18-methyl.

The spectrum of the lactone isomer cyclized by NaOAc has very different features in the spectral region discussed above (Figure 6A). The most evident difference is that there are no lactone peaks lower than 3.3 ppm. The complex splitting pattern of the methylene protons is not discernible at 250 MHz but reduced to first-order at 500 MHz (Figure The chemical shifts and parameters are listed in Table 1. lack of large differentiation between Hl and H4 or, for that matter, any two protons in this group suggests that the shielding and deshielding effect of the OH group is absent or diminished. The fact that the chemical shifts are all located at a much downfield region indicates that the four methylene protons must be experiencing uniformly a greater deshielding than in the trans isomer. Using the known patter of isoshielding lines of porphyrin ring current, 70 our NMR data can best be fit into a cis-lactone in which the methylene protons are near the horizontal plane of the macrocycle (Figure 7). In the trans isomer, the relatively small deshielding effect experienced by the methylene protons, particularly H4, is an indication that they are located higher above the plane, near the "blank region" interfacing the opposite isotropic and anisotropic ring current effects. The presence of the adjacent OH oxygen to H1 could add up to 0.8 ppm deshielding to H1 but the shielding effect on H4 should not exceed 0.2 ppm. These arguments can be applied to the 12-methyl equally well. In the cis isomer (1.823 ppm), it is axial and has no nearby deshielding oxygen whereas in the trans form (1.992 ppm) it is more equatorial and also closer to the ester oxygen.

The broad peak at 3.924 ppm in Figure 6B is the 12-OH proton. NOE experiments revealed that irradiation of the 12-Me singlet enhances the lactone Hl peaks as well as the 10-H proton (9.272 ppm), and irradiation of the 12-OH peak enhances the same meso proton. This observation ruled out the possibility that the NaOAc-cyclized product may be a 6-membered lactone fused across the 12,13-position.

The NMR spectra of the diols 106 and 108 are shown in Figures 8 and 9. The methylene protons of the angular propionate side chain were anaylzed at 500 and 250 MHz, respectively (Figure 8B and 9B). spin systems were simulated to give the chemical shifts and J values tabulated in Table 1. Their configuration was deduced from several considerations. Firstly, cis-diols were frequently obtained in model compounds following the osmate cleavage. In these cis-diols, 20 the NMR peaks of the methylene protons of the pyrroline propionic acid side chain usually gave a densely packed pattern which resembled the ABCM pattern of the diol 106. Second, when either the cis or trans diol was lactonized in the presence of NaOAc, which should not epimerize the lactone, each gave only the corresponding cis or trans lactone. symmetric pattern of diol 108 suggests there is a greater rotational freedom of the pyrroline methylene protons in the trans configuration. The lack of a large differentiation between Hl and H4, in contrast to the case of the trans lactone 92 (Figure 7), is again a consequence of this freedom of rotation. In both diols, no NOE could be detected between the 12-Me or any of the methylene protons.

The vicinal couplings obtained from the cis-diol 106 can be used to provide information about the conformation of the pyrroline propionic group. These measured numbers are average values of the component

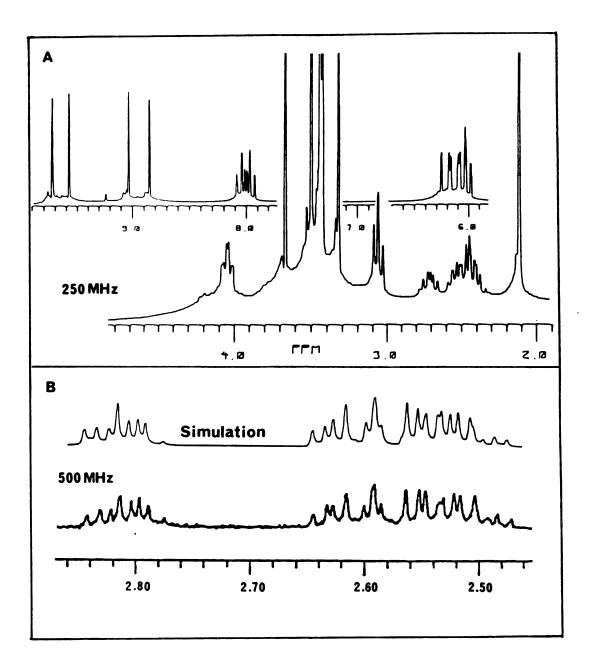


Figure 8 1H MMR spectra (in CDCl₅) of cis-diol **97** at 250 MHz (A); at 500 MHz with simulation (B).

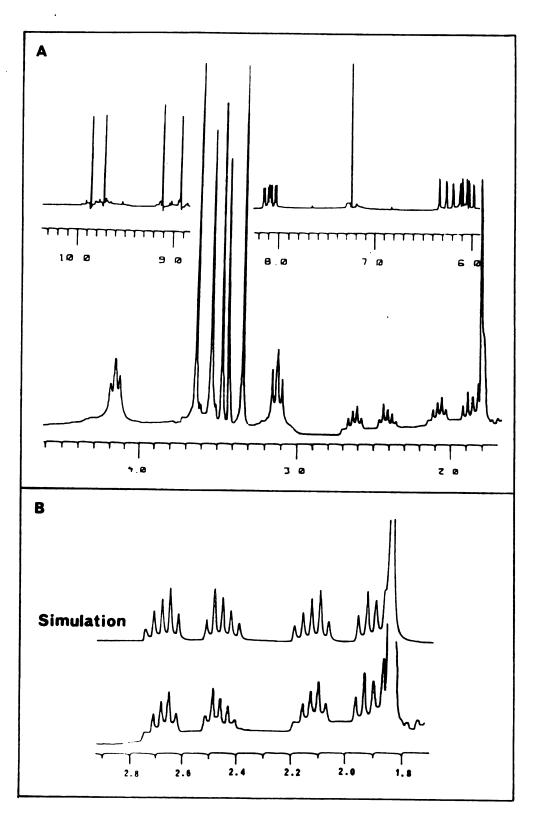


Figure 9 H NMR spectra (in CDCl₃) of trans-diol 99 et 250 MHz (A); at 250 MHz with simulation (B).

Table 1. ¹H NMR Assignments for the Pyrroline Substituents of the Four Forms of 12,13-Dihydroxyprotochlorin.

Form	Н	δ(ppm)	Coupling Constant (Hz)
Lactone			
trans	1	3.490	$J_{1,2} = 4.1, J_{2,4} = 9.6$
	3	3.213	$J_{1,3} = 9.6, J_{3,4} = 9.6$
	2	3.032	$J_{1,4} = -13.3$
	4	2.430	$J_{2,3} = -17.9$
	12-Me	1.992	
cis	4	3.846	$J_{1,2} = 7.4, J_{2,4} = 9.8$
	2	3.731	$J_{1,3} = 9.8, J_{3,4} = 5.2$
	1	3.443	$J_{1,4} = -13.3$
	3	3.345	$J_{2,3} = -17.8$
	12-Me	1.823	
Diol			
cis	1	2.816	$J_{1,2} = 5.0, J_{2,4} = 9.4$
	4	2.614	$J_{1,3} = 9.2, J_{3,4} = 5.0$
	2	2.562	$J_{1,4} = -14.4$
	3	2.508	$J_{2,3} = -16.2$
	12-Me	2.110	
trans			
	2,3	2.660 2.417	$J_{1,2} = 7.3, J_{2,4} = 7.3$ $J_{1,3} = 7.3, J_{3,4} = 7.3$
	1,4	2.116 1.882	$J_{1,4} = -14.6$ $J_{2,3} = -14.6$
	12- Me	1.847	

coupling constants in rotamers I to III weighted by their fractional populations. The component coupling constants of I - III have previously been estimated for chlorophyll derivatives and can be applied directly in this case. These J values and our calculated populations for 106 are given in Table 2. While this analysis may have substantial error margins (±10%), the results are entirely consistent with what a molecular model would qualitatively predict: the anti conformer I is most favorable while the sterically congested rotamer II may be neglected. In the trans-diol 108, because of the greater rotational freedom, there should be no significant difference in the population of the rotamers.

Table 2. Couplings (Hz)^a and Rotamer Populations of the cis-Diol 106.

H ⁴ -	СО,СН, Н ² СН,	Ho OH	CH,O,C H3 CH,
	ī	II	III
J _{1,2}	4.4	13.2	2.8
J ₁ , ₃	13.2	3.6	3.6
J ₂ , ₄	13.2	3.6	3.6
J3,4	4.4	2.8	13.2
Population	0.60	0.12	0.28

^aFrom reference 72.

D. Structure of Heme d: Lactone versus Diol?

Before commenting on this quesiton, we would like to recapitulate the experimental observation. cis, vic-Dihydroxychlorins carrying a pyrroline propionate ester chain would readily cyclize into either a cis or trans lactone by reagents encountered in common heme extraction protocols. Mild bases such as sodium acetate, sodium bicarbonate, and pyridine cleanly lactonize the ester without inversion of configuration. Silica gel acts upon the diol in two steps: first it lactonizes the geminal groups and then promotes the inversion of lactone to give the more stable trans diastereomer. In an ideal case, all three compounds can be seen on TLC plate during developing, arising from a pure diol. Under alkaline hydroytic conditions, the cis or trans lactone, if not hydrolyzed, apparently do not epimerize, and the hydrolysis of which yields the diol with complete retention of configuration, undoubtedly the result of a common Bac2 mechanism.73

Given these intrinsic labilities, we may quite safely conjecture that the lactone ring found in "lactochlorin" is produced during the chromatographic purification of the demetalated and esterified chromophore. The observed trans configuration is also irrelevant as far as the true structure of the in vivo heme d is concerned. That issue, unfortunately, remains unanswered. From a biosynthetic point of view, saturation of the protoporphyrin ring is most likely brought about by an epoxidation. There have been efforts to prepare epoxychlorin but thus far such a compound has not been observed, presumably it is too labile to have a stable existence. If the epoxy ring is opened in aqueous medium, most likely a trans diol will result. However, one cannot be certain about the configuration as the propionate group may participate in epoxide opening even though the resulting lactone may not be the final form of heme d. To date, the strongest argument against the lactone being present in the in vivo heme d is the absence of IR peak in the extracted, but unesterified, heme d.65 We noticed that the lactones are uniformly resistant to acid or base hydrolysis and the extraction procedure employed by Timkovich et.al. is too mild to open the lactone ring. In any case, the true structure of heme d awaits further confirmation. Our finding that the various forms of dihydroxychlorin have slightly different absorption and resonance Raman (RR) spectra⁶⁷ indicates that this is a problem solvable by RR studies of the heme enzyme.

III. EXPERIMENTAL

NMR spectra were routinely obtained at 250 MHz on a Bruker WM-250 instrument. Occasionally we managed to obtain spectra recorded at 360, 400, or 500 MHz on spectrometers (all Bruker make) located at other institutions. Spectra were recorded in CDCl3; the residue CHCl3 was used as the internal standard set at 7.240 ppm. The concentration of chlorin samples were maintained at 2-3 mM to avoid concentration effects. All NOE's were positive and are expressed as the area of the enhanced resonance in difference spectra divided by the area in the control spectrum. Simulations were carried out first on an IBM-PC with the PMR software and then on Aspect 2000 which outputs to the NMR plotter.

Dihydroxychlorins 94a, 94b, and 94d

Methyl 7,8,12,13,17,18-hexaethyl-4-methylporphine-2-propionate

(93) was synthesized by condensing 5,5'-dibromo-3,3',4',4'-tetraethyl-

2,2'-dipyrrylmethene hydrobromide74 and 4'-(2-carboxyethyl)-3,4-diethyl-3',5,5'-trimethyl-2,2'-dipyrrylmethene hydrobromide74 in formic acid and worked up in the usual manner; 51 yield: 32%; m.p. 193-195°C; 1H NMR: 1.94 (9H each, t, Et), 3.29 (2H, t, CH₂CH₂CO₂), 3.65, 3.68 (3H each, s, ring Me and CO_2Me), 4.09, 4.12 (6H each, q, Et), 4.42 (2H, t, $CH_2CH_2CO_2$), 10.09, 10.10 (1H each, s, 5,20-H), 10.12 (2H, s, 10,15-H), -3.73 (2H, br s, NH); UV-vis λ_{max} (2M) 619 nm (8 800), 566.5 (10 400), 533 (13 100), 499 (15 900), 399 (142 000). To a solution of this porphyrin (200 mg, 0.35 mmol) in CH_2Cl_2 (60 ml) and pyridine (0.25 ml) was added osmium tetraoxide (114 mg. 0.45 mmol). The mixture was stirred at room temperature in the dark for 36 h; it was then diluted with methanol (20 ml) and bubbled with H2S for 10 min. The precipitated osmium sulfide was removed by filtration and the filtrate was concentrated and chromatographed on preparative TLC plates, developed with CH2Cl2/5% EtOAc. There were four distinct bands: the red porphyrin moving at the front followed by 94a, 94b, and another green band containing 94c and 94d. Unambiguous structure assignments were achieved by NOE (see Scheme 15). The two south diols were dissolved in a mixture of methanol (20 ml) and CH₂Cl₂ (5 ml) and was brought to reflux in the presence of anhydrous NaOAc (1 g). The reflux was continued for 20 min before the mixture was washed with water and evaporated. The residue was chromatographed on TLC to separate the lactonized 95 (higher Rf) and 94d; overall yields: unchanged 93, 22 mg (11x); 94a, 34 mg (16x); 94b, 29 mg (13.7x); 94d, 32 mg (15x); and 95, 28 mg (14%).

Methyl 7,8,12,13,17,18-hexaethyl-12,13-dihydroxy-4-methyl-chlorin-2-propionate (94a). M.p. 138°C (dec); NMR δ 1.00 (6H, t, pyrroline Et), 1.79, 1.81, 1.82, 1.85 (3H each, t, Et), 2.59, 2.61 (2H each, q, pyrroline Et), 3.11 (2H, t, CH₂CH₂CO₂), 3.40 (3H, S, Me), 3.68 (3H, S, CO₂Me), 3.91 (8H, q, Et), 4.14 (2H, t, CH₂CH₂CO₂), 9.01, 9.02 (1H each, s, 10,15-H), 9.66 (1H, s, 20-H), 9.69 (H, s, 5-H), -2.53 (2H, br s, NH): UV-vis > (2H) 642 nm, 590.5, 525, 496, 393; MS, found m/e 613.4152 for (M+H)+, C₃7H₄9N₄O₄ requires m/e 613.4189.

Methyl 7,8,12,13,17,18-hexaethyl-7,8-dihydroxy-3-methyl-chlorin-2-propionate (94b). M.p. 180-182°C (dec); NMR δ 0.90, 1.00 (3H each, t, pyrroline Et), 1.80, 1.83 (6H each, t, Et), 2.54, 2.64 (2H each, q, pyrroline Et), 3.08 (2H, t, CH₂CH₂CO₂), 3.36 (3H, s, Me), 3.64 (3H, s, CO₂Me), 3.88, 3.89 (4H each, q, Et), 4.15 (2H, t, CH₂CH₂CO₂), 8.96 (1H, s, 5-H), 9.02 (1H, s, 10-H), 9.66, 9.73 (1H each, s, 15,20-H), -2.57 (2H, br s, NH): UV-vis λmax (εM) 644 nm, 590.5, 523, 494, 392.

Methyl 7,8,12,13,17,18-hexaethyl-17,18-dihydroxy-3-methyl-chlorin-2-propionate (94d). NMR δ 0.92, 1.02 (3H each, t, pyrroline Et), 1.80, 1.83 (6H each, t, Et), 2.58, 2.64 (2H each, q, pyrroline Et), 3.10 (2H, t, CH₂CH₂CO₂), 3.41 (3H, s, Me), 3.65 (3H, s, CO₂Me), 3.86, 3.92 (4H each, q, Et), 4.11 (2H, t, CH₂CH₂CO₂), 8.94 (1H, s, 20-H), 9.04 (1H, s, 15-H), 9.65, 9.72 (1H each, s, 5,10-H): UV-vis λmax (εM) 643.5 nm, 591, 523, 497, 391.5.

cis-7,8,12,13,17,18-Hexaethyl-3-hydroxy-3-methyl-2,2- γ -spirolactone-chlorin (95)

M.p. 239-241°C; NMR & 1.82, 1.85 (9H each, t, Et), 1.88 (3H, s, Me), 3.29-3.54 (2H, m 2a₂ and 2b₄), 3.75-4.14 (14H, m, 6xEt, 2a₁,2b₃), 9.02, 9.20 (1H each, s, 5,20-H), 9.78, 9.85 (1H each, s, 10,15-H), -2.65, -2.57 (1H each, br s, NH); UV-vis λ_{max} (a_M) 640.5 nm (42 000),

588 (5 900), 522 (5 000), 492 (14 000), 390 (161 000); MS, found m/e 581.3480 for $(M+H)^+$, $C_{36}H_{45}N_4O_3$ requires m/e 581.3494.

trans-7,8,12,13,17,18-Hexaethyl-3-hydroxy-3-methyl-2,2- γ -spirolactone-chlorin (96)

The cis-lactone 95 (20 mg, 0.034 mmol) was loaded on a 1500 µm TLC plate and left in the dark overnight. The plate was developed with CH₂Cl₂/3% EtOAc to give the faster moving 96 in about 20% and the unchanged 95 (75%). If the plate was developed repetitively, 95 was completely converted to 96; however, some minor degradation was also observed. M.p. 253-255°C; NMR & 1.79, 1.83 (9H each, t, Et), 1.97 (3H, s, Me), 2.38 (1H, sext, 2a4), 2.97 (1H, oct, 2b2), 3.21 (1H, quint, 2b3), 3.48 (1H, sept, 2a1) [J(2a1,2b2) = 3.7 Hz, J(2a1,2b3) = 9.6, J(2a1,2a4) = -13.3, J(2b2,2b3) = -17.9, J(2b2,2a4) = 9.6, J(2b3,2a4 = 9.6], 3.87, 3.90, 4.00 (4H each, q, Et), 8.87, 9.00 (1H each, s, 5,20-H), 9.76, 9.77 (1H each, s, 10,15-H), -2.51 (2H, br s, NH); UV-vis \(\lambda_{max} \) (an) 643 nm (31 500), 590 (2 600), 522 (4 800), 493 (11 000), 390 (153 000); MS, found m/e 581.3473 for (M+H)+, C36H45N4O3 requires m/e 581.3494.

3,8-Bis(2,2-dimethoxyethyl)-deuteroporphyrin IX dimethyl ester (98)

To a solution of 1 lt of dichloromethane and 170 ml of methanol containing 4 g of protoporphyrin IX dimethyl ester⁷⁵ was added 10.5 g (3.3 mol equiv) of thallium (III) trinitrate trihydrate dissolved in 340 ml of methanol. The mixture was stirred under argon for 10 min at room temperature. Hydrogen sulfide was then bubbled through the mixture for 10 min, followed by the addition of 17 ml of concentrated hydrochloric acid. The mixture was stirred for 5 min before the supernatant was decanted and the precipitated thallium (I) salts were washed with

methylene chloride. The combined organic solutions were washed three times with 1 lt of water and evaporated under vacuum, to give porphyrin 98 in quantitative yield. NMR δ 3.29, 3.32 (2H each, t, CH₂CH₂CO₂), ring methyl: 3.45 (3H, s), 3.53 (6H, s), 3.60 (3H, s), 3.46, 3.51 (6H, each, s, OCH₃), 4.09, 4.20 (2H each, d, CH₂CH(OCH₃)₂), 4.34, 4.39 (2H each, t, CH₂CH₂CO₂), 5.08, 5.14 (1H each, t, CH₂CH(OCH₃)₂), 9.84, 9.87, 9.95, 9.97 (1H each, s, meso), -4.05 (2H, br s, NH).

3,8-Bis(2-hydroxyethyl)-deuteroporphyrin IX dimethyl ester (100)

The foregoing porphyrin 98 (2 g, 2.8 mmol) was dissolved in 500 ml of tetrahydrofuran and the solution was brought to reflux, followed by the addition of 5 ml conc. HCl in 15 ml of H2O. After 5 min, the solution was cooled immediately, diluted with 500 ml CH2Cl2, and washed three times with water. The solvent was evaporated under vacuum and the residue was dissolved in an arbitrary mixture of THF/MeOH. This solution (mixture of dialdehyde diester 99 and dialdehyde monoesters) was treated at 0°C with 6 g of NaBH4 in ice-cold methanol. stirred for 10 min before ~20 ml of acetic acid was carefully added to quench excess borohydride. The solvent was evaporated under vacuum and the residue was stirred for 12 h in 500 ml of dry methanol containing 25 ml of concentrated sulfuric acid. The acidic solution was then diluted with 500 ml CH2Cl2 and washed with 3 x 500 ml of water. The product was chromatographed on neutral alumina (Brochmann Grade III) to separate a small amount of the faster moving mixture of 3-(2-hydroxyethyl)-8-(2,2'dimethoxyethyl)-deuteroporphyrin IX dimethyl ester and 8-(2hydroxyethyl)-3-(2,2'-dimethoxyethyl)-deuteroporphyrin IX dimethyl ester (elution with CHCl3) from the desired compound 100 (elution with CHCl₃/2% CH₃OH). Yield 71%; NMR (CDCl₃ at 315°K) & 3.25 (4H, t,

CH₂CH₂CO₂), 3.57 (12H, s, ring Me), 3.65 (6H, s, CO₂Me), 4.23 (4H, t, CH₂CH₂CO₂), 4.37 (8H, m, CH₂CH₂O), 9.98, 10.00 (2H each, s, meso), -3.80 (2H, br s, NH).

3,8-Bis(2-chloroethyl)-deuteroporphyrin IX dimethyl ester (101)

To a solution of the foregoing porphyrin 100 (1 g, 1.59 mmol) in dry DMF (200 ml) was added benzoyl chloride (20 ml). The mixture was heated as 98°C for 1 h under nitrogen and allowed to cool. Water (500 ml) and triethyl amine (30 ml) were then added and the precipitated compound was filtered, washed with water and purified by passing through a short silica gel column using CH₂Cl₂/1% CH₃OH as eluant. The product was further purified by recrystallization from CH₂Cl₂/CH₃OH. Yield 91%; m.p. 216-217°C (lit. 68°a m.p. 216-217°C); NMR & 3.24, 3.26 (2H each, t, CH₂CH₂CO₂), 3.46, 3.50, 3.53, 3.56 (3H each, s, ring Me), 3.66, 3.67 (3H each, s, CO₂Me), 4.19-4.38 (12H, m, CH₂CH₂Cl and CH₂CH₂CO₂), 9.75, 9.82, 9.87, 9.96 (1H each, s, meso), -4.06 (2H, br s, NH); MS, m/e 663.1049 (calcd for C₃₆H₄₁N₄O₄Cl₂ 663.2508).

Spirolactones 103a and 103b

To a solution of 3,8-bis(2-chloroethyl)deuteroporphyrin IX dimethyl ester 101 (850 mg, 1.28 mmol) in CH₂Cl₂, osmium tetraoxide (423 mg, 1.66 mmol) was added, followed by addition of pyridine (0.2 ml). The reaction was stirred in the dark for 26 h before being diluted with methanol (50 ml) and quenched by H₂S. The chlorin products were chromatographed on a silica gel column. Porphyrin 101 (180 mg, 21% recovered) was eluted first with CH₂Cl₂ while the mixture of the four dihydroxychlorins was washed out with CH₂Cl₂/2% MeOH. This mixture was then chromatographed on TLC plates (CH₂Cl₂/10% EtOAc) to separate the

two faster moving north diols (120 mg, 1:1 ratio) from the two south diols 102a and 102b (430 mg, 1.2:1 ratio). The distinction of the north and south diols was based on NMR of the methyl ester singlets: δ 3.64, 3.63, 3.60, 3.59 (north diols) versus 3.67, 3.65, 3.55, 3.52 (south diols).

The mixture of 102a and 102b in MeOH (100 ml) was refluxed with anhydrous NaOAc (5 g) for 30 min. the solution was evaporated and the residue was dissolved in CH₂Cl₂ and chromatographed on TLC (CH₂Cl₂/10% EtOAc) without interruption, in a single path, to yield the faster moving 103a (160 mg) and the slower moving 103b (180 mg), the structure assignment of which had been based on NOE (see Scheme 17).

cis-3,8-Bis(2-chloroethyl)-12-hydroxy-13,13-γ-spirolactone-deuterochlorin IX dimethyl ester (103a). M.p. 226-228°C; NMR δ 1.84 (3H, s, 12-Me), 3.06 (2H, t, 17- CH₂CH₂CO₂), 3.38, 3.41 (3H each, s, 2,18-Me), 3.51 (3H, s, 7-Me), 3.52 (3H, s, CO₂Me), 3.26-3.90 (4H, m, 13-CH₂CH₂), 4.06 (1H, br s, OH), 4.12, 4.20, 4.28 (10H, t, 2xCH₂CH₂Cl and 17-CH₂CH₂CO₂) 9.08, 9.12 (1H each, s, 10,15-H), 9.64 (1H, s, 20-H), 9.71 (1H, s, 5-H), -2.67 (2H, br s, NH): UV-vis λmax (εм) 641 nm (57 000), 588.5 (10 000), 522.5 (9 000), 497 (21 900), 392 (226 000); MS, found m/e 665.2345 for (M+H)+, C₃₅H₃₉N₄O₅Cl₂ requires m/e 665.2300.

cis-3,8-Bis(2-chloroethyl)-18-hydroxy-17,17-γ-spirolactonedeuterochlorin IX dimethyl ester (103b). M.p. 239-240°C; NMR δ 1.85 (3H, s, 18-Me), 3.12 (2H, t, 13- CH₂CH₂CO₂), 3.41, 3.49 (3H each, s, 7,12-Me), 3.44 (3H, s, 2-Me), 3.52 (3H, s, CO₂Me), 3.27-3.86 (4H, m, 17- CH₂CH₂), 3.98 (1H, br s, OH), 4.19, 4.22, 4.30 (10H, t, 2xCH₂CH₂Cl and 13-CH₂CH₂CO₂), 9.14 (1H, s, 15-H), 9.19 (1H, s, 20-H), 9.66, 9.70 (1H each, s, 5,10-H), -2.70 (2H, br s, NH); UV-vis λ_{max} (ϵ_{M}) 641 nm (55 000), 588 (11 900), 524.5 (12 800), 494 (22 000), 395.5 (255 000).

cis-12-Hydroxy-13,13-Y-spirolactone-protochlorin IX methylester (104)

To a refluxing solution of cis-lactone 103a (100 mg, 0.15 mmol) in pyridine (50 ml) under argon, KOH (1.2 g) in water (4 ml) was added and the heating was continued for 6 h before the mixture was evaporated to dryness under reduced pressure. The residue dissolved in ice-water was treated with 10% HCl whereupon the product precipitated. The solid was filtered, washed with water and esterified in MeOH with diazomethane. The product was chromatographed rapidly on TLC to separate the faster moving lactone 104 (8 mg) and the slower moving diol 106 (12 mg). non-mobile material, after eluting with CH2Cl2/2% MeOH was believed to be degradation products due to the prolonged heating with strong base. However, if more dilute solution of KOH or less time (<3 h) was allowed for the reaction, the mono-vinyl compound: 3-(2-chloroethyl)-12,13dihydroxy-8-vinyldeuterochlorin IX dimethyl ester was mainly resulted (structure determined by NOE). The condition for this elimination has not been optimized. NMR of 104: ring methyl (3H each, s): 3.433 (18-Me), 3.490 (2), 3.527 (7); propionate: 4.263 (2H, t, 17a), 3.087 (2H, t, 17b) [J(17a,17b) = 7.4 Hz], 3.558 (3H, s, CO₂Me); vinyl (1H each): 8.073 (X_i) , 8.073 (X_j) , 6.281 (A_i) , 6.101 (B_i) , 6.165 (A_j) , 6.022 (B_j) $[J(X_i,A_i) = 17.8, J(X_i,B_i) = 11.5, J(A_i,B_i) = 1.3, J(A_j,B_j) = 1.7];$ meso (1H each, s): 9.856 (5), 9.272 (10), 9.048 (15), 9.737 (20); NH: -2.618 (2H, br s); pyrroline substituents: see Table 1. IR 1780 cm^{-1} . 1735; UV-vis λ_{max} (ϵ_{M}) 650 nm (37 200), 594 (7 500), 530 (8 000), 500 (14 200), 401 (147 000). MS, found m/e 593.2742 for $(M+H)^+$, $C_{35}H_{37}N_4O_5$ requires m/e 593.2766.

cis-12,13-dihydroxyprotochlorin IX dimethyl ester (106)

NMR & 2.11 (3H, s, 12-Me), 3.06 (2H, t, 17b), 4.04 (2H, t, 17a) [J(17a,17b) = 7.4], 3.32, 3.34, 3.44 (3H each, s, ring Me), 3.49 (3H, s, 13-CCCO₂Me), 3.66 (3H, s, 17-CCCO₂Me), 5.99, 6.05, 6.13, 6.22 (1H each, dd, vinyl), 8.01 (2H, m, vinyl), 8.84 (1H, s, 15-H), 9.03 (1H, s, 10-H), 9.57, 9.72 (1H each, s, 5,20-H), -2.41 (2H, br s, NH), 13-CH₂CH₂CO₂: see Table 1; UV-vis λ_{max} (ϵ_{M}) 650 nm (45 000), 594 (4 600), 532 (4 400), 498 (13 800), 401 (179 000). MS found m/e 625.3039 for (M+H)+, C₃₆H₄₁N₄O₆ requires m/e 625.3028.

trans-12-Hydroxy-13,13-Y-spirolactone-protochlorin IX methyl ester (92)

The cis lactone 104 (20 mg) was loaded on a TLC plate and was developed with $CH_2Cl_2/3\%$ EtOAc) in the dark for at least 4 times to convert 104 into the slightly faster moving 92. NMR 5 ring methyl (3H each, s): 3.484 (18-Me), 3.514 (2), 3.584 (7); propionate: 3.132 (2H, t, 17b), 4.189 (2H, t, 17b) [J(17a,17b) = 7.4 Hz]; 3.662 (3H, s, CO_2Me), vinyl (1H each): 8.069 (X_i), 8.069 (X_j), 6.286 (A_i), 6.091 (B_i), 6.157 (A_j), 6.010 (B_j) [J(X_i,A_i) = 17.8, J(X_i,B_i) = 11.5, J(A_i,B_i) = 1.3, J(A_j,B_j) = 1.7]; meso (1H each, s): 9.889 (5), 9.113 (10), 8.856 (15), 9.752 (20); NH: -2.254 (2H, br s); pyrroline substituents: see Table 1. IR 1780 cm⁻¹, 1738, 1718; UV-vis λ_{max} (ϵ_{M}) 653 nm (40 500), 596 (6 300), 532 (6 600), 501 (14 500), 401 (156 000). MS, found m/e 593.2736 for (M+H)+, $C_{35}H_{37}N_4O_5$ requires m/e 593.2766.

cis-18-Hydroxy-17,17-7-spirolactone-protochlorin IX methyl ester (105a)

The chlorin-bearing lactone 103b was treated with KOH in refluxing pyridine and worked up in the same manner as described for 104. NMR & 1.84 (3H, s, 18-Me), 3.06 (2H, t, 13b), 3.27-3.88 (4H, ABMN, lactone), 3.32, 3.39, 3.43 (3H each, s, ring Me), 3.54, (3H, s, CO₂Me), 4.05 (1H, br s, OH), 4.10 (2H, t, 13a), 5.99, 6.07, 6.13 6.25 (1H each, dd, vinyl), 8.00 (2H, m, vinyl), 9.04, 9.15 (1H each, s, 15,20-H), 9.71, 9.72 (1H each, s, 5,10-H), -2.70 (2H, br s, NH); UV-vis > 20.0 (2M of the color) (40 000), 596 (7 300), 533 (7 400), 501 (15 800), 402 (164 000).

trans-18-Hydroxy-17,17-γ-spirolactone-protochlorin IX methylester (105b)

Obtained from the cis-lactone 105a by a repetitive chromatography.

NMR & 2.01 (2H, s, 18-Me), 2.43 (1H, sext, 17a4), 3.04 (1H, oct, 17b2),

3.22 (1H, quint, 17b3), 3.48 (1H, sept, 17a1) [J(17a1,17b2) = 3.7 Hz,

J(17a1,17b3) = 9.6, J(17a1,17a4) = -13.3, J(17b2,17b3) = -17.9,

J(17b2,17a4) = 9.6, J(17b3,17a4) = 9.6], 3.13 (2H, t, 13b), 3.66 (3H, s,

CO₂Me), 4.19 (2H, t, 13a), 6.02, 6.13, 6.19, 6.35 (1H each, dd, vinyl),

8.11 (2H, m, vinyl), 8.88, 9.05 (1H each, s, 15,20-H), 9.86, 9.93 (1H each, s, 5,10-H), -2.34 (2H, br s, NH); UV-vis \(\lambda_{max}\) (and 652 nm (41 800), 597 (8 200), 533 (9 000), 500 (16 800), 401 (166 000); MS, found m/e 593.2730 for (M+H)+, C35H37N4O5 requires m/e 593.2766.

cis-17,18-Dihydroxy-protochlorin IX dimethyl ester

Obtained by pyridine/KOH treatment of 105a. NMR & 2.09 (3H, s, 12-Me), 2.32-2.78 (4H, ABCM, 17-CH₂CH₂CO₂), 3.01 (2H, t, 13b), 3.24, 3.40, 3.41 (3H each, s, ring Me), 3.50 (3H, s, 17-CCCO₂Me), 3.65 (3H, s, 13-CCCO₂Me), 3.97 (2H, t, 13a), 5.99, 6.07, 6.11, 6.24 (1H each, dd, vinyl), 7.98 (2H, m, vinyl), 8.82, 8.91 (1H each, s, 15,20-H), 9.62,

9.71 (1H each, s, 5,10-H), -2.45 (2H, br s, NH); UV-vis λ_{max} (2M) 651 nm (41 000), 597 (8 000), 533 (8 600), 501 (15 800), 402 (159 000).

trans-3,8-Bis(2-chloroethyl)-12-hydroxy-13,13-7-spirolactone-deuterochlorin IX dimethyl ester (107)

Obtained from the cis-lactone 103a by repetitive chromatography. NMR δ 1.99 (3H, s, 12-Me), 2.41 (1H, sext, 13a₄), 3.03 (1H, oct, 13b₂), 3.23 (1H, quint, 13b₃), 3.45 (1H, sept, 13a₁) [J(13a₁,13b₂ = 4.1 Hz, J(13a₁,13b₃) = 9.6, J(13a₁,13a₄) = -13.3, J(13b₂,13b₃) = -17.9, J(13b₂,13a₄) = 9.6, J(13b₃,13a₄) = 9.6], 3.14 (2H, t, 17b), 3.42, 3.52, 3.54 (3H each, s, ring Me), 3.66 (3H, s, CO₂Me), 4.16, 4.20, 4.21, 4.24, 4.30 (2H each, t, 2xCH₂CH₂Cl and 17a), 8.98, 8.90 (1H each, s, 10,15-H), 9.75, 9.66 (1H each, s, 5,20-H), -2.46 (2H, br s, NH); UV-vis λ_{max} (2M) 641 nm (42 200), 588 (6 300), 520 (4 600), 495.5 (18 700), 392 (184 000); MS, found m/e 665.2335 for (M+H)+, C₃₅H₃₉N₄O₅Cl₂ requires m/e 665.2300.

trans-12, 13-Dihydroxyprotochlorin IX dimethyl ester (108)

Obtained by pyridine/KOH treatment of 107. NMR & 1.85 (3H, s, 12-Me), 3.15 (2H, t, 17b), 3.39, 3.49, 3.52 (3H each, s, ring Me), 3.59 (3H, s, 13-CCCO₂Me), 3.66 (3H, s, 17-CCCO₂Me), 4.19 (2H, t, 17a), 6.00, 6.07, 6.15, 6.29 (1H each, dd, vinyl), 8.08 (2H, m, vinyl), 8.93, 9.11 (1H each, s, 10,15-H), 9.72, 9.86 (1H each, s, 5,20-H), -2.08 (2H, br s, NH), 13-CH₂CH₂CO₂: see Table 1; UV-vis λ_{max} (am) 653 nm (37 200), 598 (4 600), 533 (4 800), 499.5 (12 800), 401 (154 000); MS found m/e 625.3014 for (M+H)⁺, C₃₆H₄1N₄O₆ requires m/e 625.3028.

CHAPTER 3

SYNTHESIS AND PROPERTIES OF SULFUR-CONTAINING SATURATED OCTAETHYLPORPHYRINS

I. INTRODUCTION

Our interest in sulfur-containing saturated porphyrins stems from sulfmyoglobin (SMb) and sulfhemoglobin (SHb). These sulfglobins are unusual green derivatives of either myoglobin or hemoglobin produced in vitro according to the following scheme:

The existence of sulfglobins is more than a laboratory curiosity. SHb has been reported to be formed in vivo under certain pathological conditions or in the presence of high dosages of some drugs related to common analysics such as phenacetin. The increased levels of Shb have been correlated with exposure to chemical pollutants.

Over the years, several groups have made contributions to the available structural knowledge of sulfglobins. 76,78 Today, it is generally accepted that these abnormal globins contain a chlorin prosthetic group with a sulfur moiety on the pyrroline ring, however, both the final sulfur modification and the site of ring reduction are still questions under investigation by a number of laboratories. Recently, La Mar⁷⁹ and Timkovich⁸⁰ have independently shown that it is possible to isolate a stable sulfchlorin from SMb and suggested a

thiophene-like cyclic structure (III) based on ¹H NMR data. They further proposed than an episulfide (I) or a thio-substituted chlorin (II) is most likely to be the initial product during sulfheme formation (Figure 10).

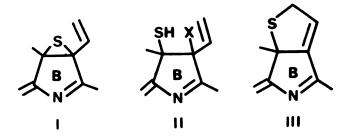


Figure 10. Sulfheme Models

Since such a sulfchlorin structure has not been know in the literature, we decided to develop the synthesis and to study the properties of sulfur-containing chlorins. Moreover, our curiosity let us proceed further and explore the chemistry of even higher saturated porphyrin systems containing up to three sulfur atoms.

II. RESULTS AND DISCUSSION

Our approach towards the synthesis of sulfur-containing saturated porphyrins starts with the transformation of a carbonyl into a thiocarbonyl group, using 2,4-bis(p-methoxy-1,3-dithiadiphosphetane-2,4-disulfide) 109 now popularly referred to as Lawesson's reagent. This reagent has been used in the literature for the high yield thionation of a variety of aliphatic and aromatic carbonyls. 5b,81 It has been suggested that a highly reactive dithiophosphine ylide 110, rather than Lawesson's reagent itself, might be the active thionating agent82 and two possible mechanisms might be envisioned, both involving Wittig-type intermediates83 (Scheme 18).

$$ArP \stackrel{S}{\stackrel{S}{\stackrel{}}} PAr \implies 2 Ar \stackrel{S}{\stackrel{}} P - S^{\Theta} + R - C - R'$$

$$109 \qquad 110 \qquad \downarrow O$$

$$\begin{bmatrix} Ar - P - S & O & Ar - P - S - C - R' \\ O - C - R & O & Ar - P - S - C - R' \end{bmatrix}$$

$$R \stackrel{S}{\stackrel{}} R = C - R' + Ar - P - S^{\Theta}$$

Scheme 18

In an effort to synthesize OEP-thione (111), we reacted OEP-monoketone¹⁸ (8) with two equivalents of Lawesson's reagent in refluxing THF for 24 h, to yield the thione 111 (60%), plus the unreacted starting material (35%). Lengthening the reaction time had no effect on the product's yield. On the other hand, increasing the amount of Lawesson's reagent led to the formation of polymeric material at the expense of the desired product.

Thione 111 exhibited a characteristic IR band at 1230 cm⁻¹ ⁸⁴ (Figure 11) and a ¹H NMR spectrum shown in Figure 12 in comparison with its oxo-analogue. Notable features of this spectrum are: (1) the deshielding effect of the sulfur on the adjacent meso proton; (2) the multiplication of the geminal ethyl groups, suggesting that these groups have less freedom of rotation in comparison with the oxo-analogue 8; and (3) the slight downfield shift of the N-H protons.

The thione structure is stable in acids and on silica gel (during purification), however, in the presence of oxidizing agents, e.g., OsO₄,

SCHEME 19

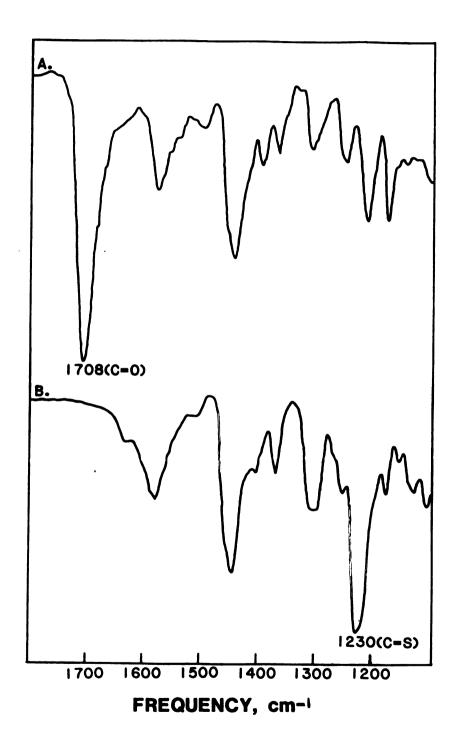
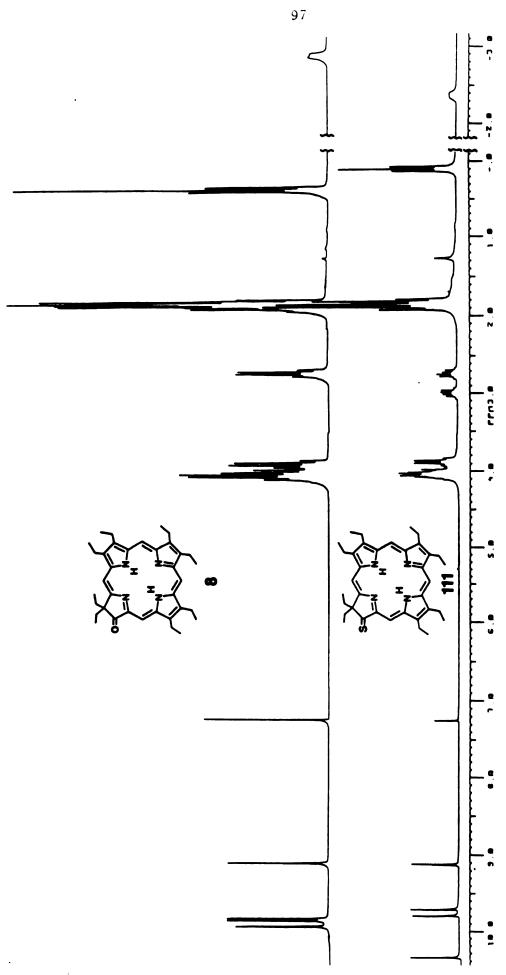



Figure 11 1800-1300 cm⁻¹ IR spectra of: (A) porphyrinone 8; (B) porphyrinthione 111.

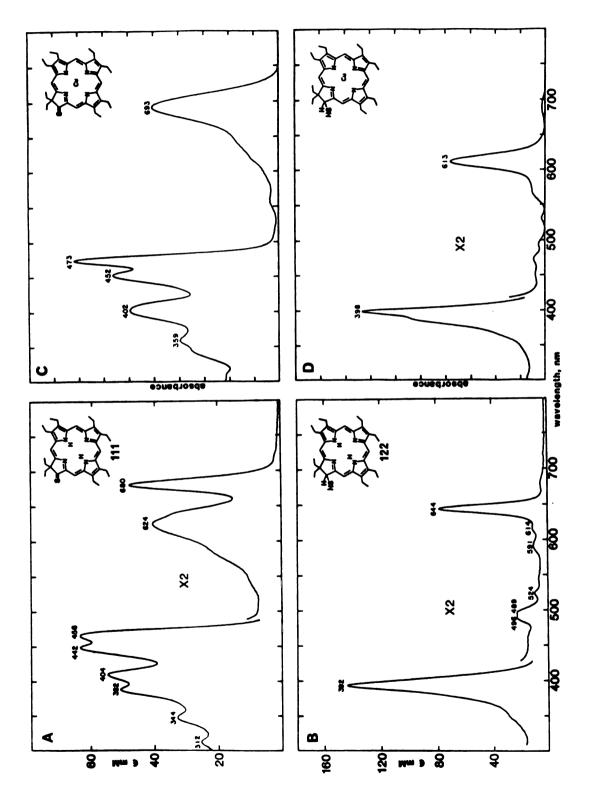
250 MHz ¹H NMR spectra of porphyrinone 8 and porphyrinthione 111. Figure 12

SCHEME 20

Table 3. ¹H NMR Data of Sulfur-Containing Saturated Octaethylporphyrins in Comparison with Their Oxo-Analogues.

Meso Protons, & Compound 5-H 15-H 20-H 10-H Ketone (8) 9.86 9.94 9.13 9.84 9.78 10.32 9.10 9.69 Thione (111) Methyl-thiol (121) 8.81 (9.75)(9.77)9.32 9.76 9.76 9.35 Thiol (122) 8.79 2,7-dione (64) 8.61 8.42 9.41 9.26 2-thiol-7-dione (112) 8.65 8.37 9.25 9.72 8.37 9.19 9.69 2,7-dithione (113) 9.04 9.77 8.87 3,7-dione (66) 9.58 8.87 3-thio-7-dione (114) 10.01 (8.87)9.61 (8.80)3,7-dithione (115) 10.40 8.74 9.40 8.74 2,7,12-trione (116) 8.05 7.81 8.12 8.92 2-thio-7,12-trione (117) 8.03 7.70 7.98 9.38 9.34 2,12-dithio-7-trione (118) 8.04 8.26 8.10 2,7-dithio-12-trione (119) 8.59 7.92 8.08 9.53 2,7,12-trithione (120) 8.60 8.46 8.19 9.48

Note: The chemical shifts in parentheses are tentative assignments.


it reverts to the starting ketone. Moreover, thione lll reacts readily with alkyllithium reagents, e.g., CH₃Li in a manner similar to porphyrinone 8¹⁸, giving rise to methylthiol 121. In contrast to porphyrinone 8 which requires LiAlH₄ for complete reduction, ⁸⁵ thione lll can be reduced cleanly to 122 with NaBH₄. Finally, desulfuration of lll with Raney Nickel (W-2)⁸⁶ affords gem-OEC (octaethylchlorin) (123), quantitatively.

Dithiones 113, 115 and trithione 120 can also be obtained from the reaction of their corresponding oxo-analogues^{18,18} with 4eq and 6eq of Lawesson's reagent, respectively (Scheme 19). The low yields (<12%) associated with these molecules can be attributed to both steric and electronic reasons. The ¹H NMR data for the meso protons of all the above sulfur-containing saturated octaethylporphyrins are listed in Table 3 for a general comparison.

Desulfurations by Ra-Ni have also been carried out with dithione 113 and trithione 120, providing an easy access to the tetrahydro-isobacteriochlorins^{11b} and hexahydro-pyrrocorphins⁸⁷, respectively.

Absorption Spectra. The visible spectra of thione 111, thiol 121 and their Cu-complexes as well as those of dithiones 113, 115 and trithione 120 are shown in Figures 13 and 14. Thione 111 gives rise to a "hyper" type spectrum, presumably as a consequence of the mixing of n
** and **-** transitions, where n are the nonbonding sulfur orbitals, **

are the highest occupied molecular orbitals (HOMO) and ** are the lowest unoccupied molecular orbitals (LUMO) of the porphyrin ring. Moreover, the absorption bands are shifted to longer wavelengths due to the conjugation of the thione with the ring. **8** On the other hand, thiol 121**

Visible spectra (in CH_2Cl_2) of thione III (A); thiol 122 (B); Cuthione (C); Cu thiol (D). Figure 13

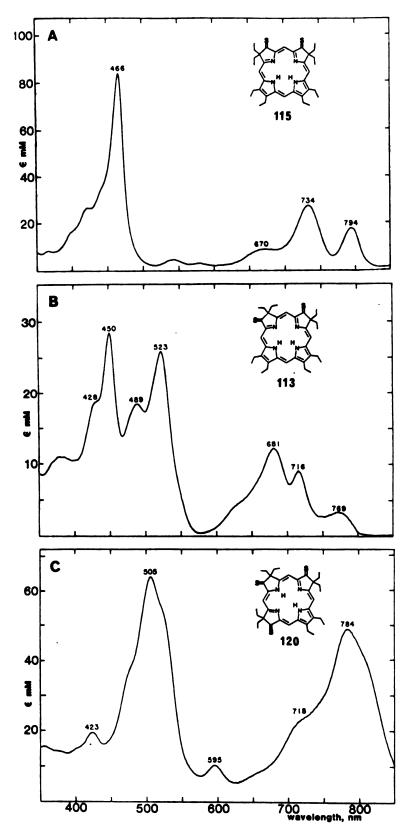
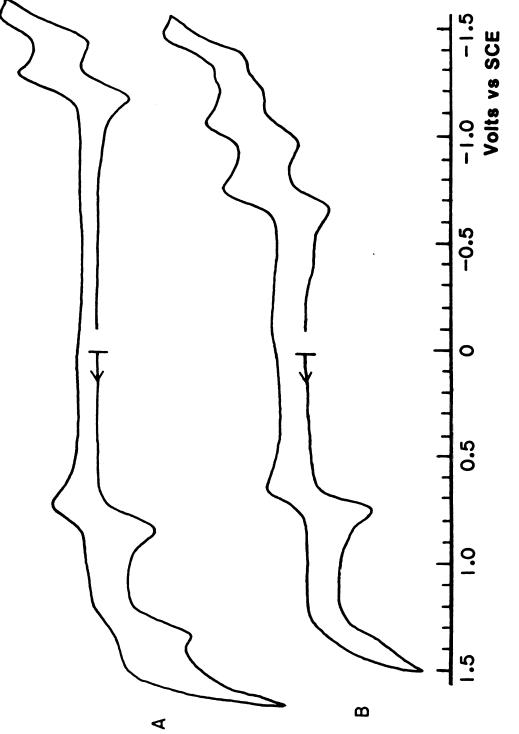


Figure 14 Visible spectra (in CH₂Cl₂) of 3,7-dithione 115(A); 2-7-dithione 113 (B); 2,7,12-trithione 120 (C).

exhibits a typical chlorin spectrum since the sulfur atom is no longer in conjucation with the aromatic ring.

Introduction of a second and third sulfur atom into the porphyrin ring (dithiones 113, 115 and trithione 120) shifts the absorption bands further to the red and the overall pattern depends on the relative position of the sulfur atoms, as well as the saturation degree of the porphyrin ring.


Cyclic Voltammetry. The redox properties of free-base and metal porphyrins, 89,90 hydroporphyrins 90-97 and of porphyrins41,98 have been extensively investigated and the principal resutls, for the OEP series, can be summarized here. Porphyrinones exhibit ring oxidation potentials very similar to those of the parent porphyrin, in sharp contrast to those of chlorins, isobacteriochlorins and bacteriochlorins, which are significantly easier to oxidieze than the porphyrin (by as much as 0.6 V). Again, in contrast to the behavior of the isobacteriochlorin derivatives, which are harder to reduce than porphyrins by ~0.3 V, the dioxo-isobacteriochlorins are easier to reduce by ~0.2 V for a net change of ~0.5 V in reduction potential upon introduction of the dioxo-functions onto the isobacteriochlorin skeleton.

The redox properties of sulfur containing saturated octaethylporphyrins are being examined here, for the first time. Potentials are
listed in Table 4 in comparison with those of oxoporphyrins. These
measurements reveal that substitution of 0 with S renders the porphyrin
ring easier to reduce (by as much as 0.53 V in trithione 120, see Figure
15) and easier to oxidize (by as much as 0.3 V in Zn-3,7-dithione 115.
The potentials of the redox processes of the Cu and Zn complexes of

Table 4. Redox Potentials of Sulfur-Containing Saturated Octaethylporphyrins and Oxo-Octaethylporphyrins. The latter are Indicated in Parenthesis.

Compound	Ring Oxidation	Ring	Reductio	n
	0/1+	0/1-	1-/2-	2-/3-
Thione (111)				
H ₂	0.76(0.84)	-1.03(-1.36)		
Cu	0.61(0.68)			
Zn	0.50(0.56)	-1.10(-1.46)		
Thiol (122)				
H ₂	0.68	-1.49		
Cu	0.47	-1.49		
Zn	0.52	-1.51		
2-thio-7-dione (112)	•			
H ₂	0.72 ^b	-1.01		
Zn	0.40	-1.20		
2,7-dithione (113)				
H ₂	0.70 ^b (0.82)	-0.85(-1.29)	-1.20	
Zn	0.44(0.70)	-0.97	-1.40	
3-thio-7-dione (114)				
H ₂	0.705	-0.86	-1.41	
Zn	0.38	-0.94	-1.50	
3,7-dithione (115)	•			
H ₂	$0.70^{b}(0.79)$	-0.77(-1.14)	-1.24	
Zn	0.40(0.70)	-0.85	-1.38	
2,7,12-trithione (120))			
H ₂	0.70(0.79)	-0.71(-1.24)	-1.02 (-1.50)	-1.43

^aE_{1/2} vs. SCE obtained by cyclic voltammetry at a Pt electrode in CH₂Cl₂ containing 0.1 M tetrabutylammonium perchlorate. Scan rate: 20 mv/s. ^bQuasi-reversible.

Cyclic voltammograms of 2,7,12-trione 116~(A);~2,7,12-trithione 120~(B).Figure 15

these sulfur-containing saturated porphyrins are shifted negatively relative to the potentials of their free bases in a fashion parallel to the shifts observed upon metalation of oxoporphyrins.^{41,97} Thus, the metal exerts an inductive influence (via the sigma framework) on the porphyrin T-levels.

To a first approximation, the redox span for formation of the monocation and monoanion radicals corresponds to the HOMO-LUMO energy gap which can be related further to the wavelength of the first absorption band. 90-99 Since the inductive substituent effect is expected to shift the whole stack of T and T orbital energies up or down without altering the HOMO-LUMO gap while the resonance effect should narrow the gap with increasing delocalization, it is obvious from the electrochemical data that sulfur atoms conjugated to the porphyrinoid ring have strong T-interactions with it. The redox potentials of thiol 122 which is not in conjugation with the ring, are very similar to those of any typical chlorin.

An intriguing point is that the redox potentials are also sensitive to the position of the sulfur atoms at the prophyrinoid ring, e.g., 114 and 115 are easier to reduce than 112 and 113, respectively.

Closing Remarks. The above work presented the synthesis and properties of the very first model sulfchlorins. In addition, the sulfur effects were examined in model compounds with different number and position of thio groups.

Further efforts will be aimed at the synthesis of episulfides and vicinal -SH and -OH (ring opened products) which are closer mimics of the alleged biological sulfhemes.

The chemical events that lead to the sulfheme formation in proteins remain to be the most intriguing question. Judging from the obligatory presence of ferryl (Fe^{IV}) species in the proteins prior to the sulfheme formation, it may be reasonable to consider the involvement of certain electron-deficient forms of sulfur (RS+ or Fe(IV)-OS) as the reactive species. This hypothesis awaits to be tested by future model experiments (for example, reactions of Fe(IV)OEP with (Bu4)2S or other appropriate sulfur reagent).

III. EXPERIMENTAL

Visible spectra were recorded on a Cary 219 spectrophotometer interfaced to a Bascom-Turner recorder. Spectra shown here were plotted directly from data stored on floppy diskettes. Cyclic voltammetry was performed using a Bioanalytical System CV-IA unit. All measurements were carried out in CH₂Cl₂ containing 0.1 M tetrabutylammonium perchlorate at a scan rate of 200 mV/sec.

3,3,7,8,12,13,17,18-Octaethyl-2-porphinethione (111)

Lawesson's reagent (40 mg, 0.1 mmol) was added to a solution of porphinone 8 (55 mg, 0.1 mmol) in dry THF (50 ml) and the reaction mixture was refluxed under N₂ for 24 h or until no more product was formed (monitored by TLC). The solvent was evaporated in vacuo and the residue was chromatographed on preparative TLC plate (silica gel, CH₂Cl₂/hexane) to separate the faster moving yellow-green thione 111 (34 mg, 60%) from the purple starting material 8 (20 mg, 35%). Thione 111 was further purified by recrystallization from CH₂Cl₂/CH₃OH. M.p. 234-236°C; NMR & 0.07 (6H, t, CH₂CH₃ sat), 1.79, 1.83, 1.86 (6H each, t, CH₂CH₃), 2.70, 2.97 (2H each, m, CH₂CH₃ sat), 3.86, 4.00, 4.03 (4H each,

q, CH₂CH₃), 9.10 (1H, s, 5-H), 9.69 (1H, s, 10-H), 9.78 (1H, s, 15-H), 10.32 (1H, s, 20-H), -2.38, -2.42 (1H each, br s, NH); IR 1230 cm⁻¹; UV-vis λ_{max} (z_M) 680 nm (24 200), 624 (20 500), 458 (63 700), 442 (63 700), 404 (54 800), 382 (48 400), 344 (32 200), 312 (24 200); MS (direct probe, 70 eV) m/e 566(M⁺). Anal. Calcd for C₃₅H₄₅N₄S: C, 76.28; H, 8.18; N, 9.88. Found: C, 76.17; H, 8.28; N, 9.79.

3,3,8,8,12,13,17,18-Octaethyl-2-thio-7-prophinedione (112) and 3,3,8,8,12,13,17,18-Octaethyl-2,7-porphinedithione (113)

56 mg (0.1 mmol) of dione 64 and 81 mg (0.2 mmol) of Lawesson's reagent were reacted as described for 111. Separation on TLC plate gave the fastest moving brown-orange dithione 113 (5.6 mg, 9.4%) followed by the green 112 (31.7 mg, 53%) and the dark-green starting material 64 (10.1 mg, 17.8%).

112: NMR δ 0.17, 0.58 (6H each, t, CH₂CH₃ sat), 1.69, 1.70, 1.72, 1.73 (3H each, t, CH₂CH₃), 2.60 (6H, m, CH₂CH₃ sat), 2.87 (2H, m, CH₂CH₃ sat), 3.73 (8H, m, CH₂CH₃), 8.37 (1H, s, 10-H), 8.65 (1H, s, 5-H), 9.25 (1H, s, 15-H), 9.72 (1H, s, 20-H), 0.47 (2H, br s, NH). Irradiating the multiplets at δ 2.60 and 2.80 caused the respective singlets at δ 8.37 and 8.65 to increase in intensity. IR 1716 cm⁻¹, 1248, 1216; UV-vis λmax (2M) 681 nm (24 000), 641 (16 900), 612 (12 900), 476.5 (34 900), 453 (37 400), 419.5 (59 800). MS (direct probe, 70 eV), m/e 582 (M⁺).

113: NMR δ 0.15, 0.26 (6H each, t, CH₂CH₃ sat), 1.66, 1.70 (6H each, t, CH₂CH₃), 2.56, 2.79 (4H each, m, CH₂CH₃ sat), 3.63 (2H, q, CH₂CH₃), 3.73 (6H, m, CH₂CH₃), 8.37 (1H, s, 10-H), 9.04 (1H, s, 5-H), 9.19 (1H, s, 15-H), 9.69 (1H, s, 20-H). Irradiating the multiplets at δ 2.56 and 2.79 caused the respective singlets at δ 8.37 and 9.04 to increase in intensity. IR 1073 cm⁻¹; UV-vis λmax (2M) 769 nm (5 100),

716 (8 400), 681 (12 700), 523 (25 800), 489 (18 200), 450 (28 500), 428 (19 600); MS (direct probe, 70 eV) m/e 598 (M⁺).

2,2,8,8,12,13,17,18-Octaethyl-3-thio-7-porphinedione (114) and 2,2,8,8,12,13,17,18-Octaethyl-3,7-porphinedithione (115)

Prepared as above. Separation on TLC plate gave three green bands. The least polar band 115 (4.1%) followed by 114 (22.3%) and the recovered starting material 66 (50.2%).

114: NMR δ 0.19, 0.52 (6H each, t, CH₂CH₃ sat), 1.74, 1.76, 1.78, 1.81 (3H each, t, CH₂CH₃), 2.62, 2.85 (6H,2H each, m, CH₂CH₃ sat), 3.83, 3.86, 3.94, 3.95 (2H each, q, CH₂CH₃), 8.80, 8.87 (1H each, s, 10,20-H), 9.61 (1H, s, 15-H), 10.01 (1H, s, 5-H), -1.06 (2H, br s, NH). Irradiating at δ 3.84 caused the singlets at δ 8.80 and 8.87 to increase in intensity. Moreover, irradiating at δ 3.94 caused the singlet at δ 9.61 to increase in intensity. IR 1700 cm⁻¹, 1108, 1200; UV-vis λmax(2M) 701 nm (34 100), 631 (11 200), 455 (124 000), 429 (68 500); MS (direct probe, 70 eV) m/e 582 (M⁺).

115: NMR δ 0.20 (12H, t, CH₂CH₃ sat), 1.71, 1.76 (6H each, t, CH₂CH₃), 2.60, 2.81 (4H each, m, CH₂CH₃ sat), 3.76, 3.85(4H each, q, CH₂CH₃), 8.74 (2H, s, 10,20-H), 9.40 (1H, s, 15-H), 10.40 (1H, s, 5-H), -0.45 (2H, br s, NH). Irradiating at δ 3.76 and 3.85 caused the respective singlets at δ 8.74 and 9.40 to increase in intensity. IR 1072 cm⁻¹, UV-vis $\lambda_{\text{max}}(\epsilon_{\text{M}})$ 794 nm (17 300), 734 (27 900), 670 (9 900), 466 (82 900); MS (direct probe, 70 eV) m/e 598 (M⁺).

3,3,8,8,13,13,17,18-Octaethyl-2-thio-7,12-porphinetrione (117), 3,3,8,8,13,13,17,18-Octaethyl-2,12-dithio-7-porphinetrione (118), 3,3,8,8,13,13,17,18-Octaethyl-2,7,dithio-12-porphinetrione (119), and 3,3,8,8,13,13,17,18-Octaethyl-2,7,12-porphinetrithione (120)

58 mg (0.1 mmol) of trione 116 and 121 mg (0.3 mmol) of Lawesson's reagent were reacted as described for 111. Separation on TLC plate gave the fastest moving rosy trithione 120 (7.1 mg, 11.3%) followed by the brown 119 (16.2 mg, 26.5%), the green 118 (7.1 mg, 11.6%) and the yellow-green 117 (21 mg, 35.2%).

117: NMR δ 0.17, 0.54, 0.57 (6H each, t, CH₂CH₃ sat), 1.54, 1.61 (3H each, t, CH₂CH₃), 2.27-2.60 (12H, m, CH₂CH₃ sat), 3.48, 3.56 (2H each, q, CH₂CH₃), 7.70 (1H, s, 10-H), 7.98 (1H, s, 15-H), 8.03 (1H, s, 5-H), 9.38 (1H, s, 20-H). Irradiating at δ 3.48 and 3.56 caused the respective singlets at δ 7.98 and 9.38 to increase in intensity. UV-vis λ_{max}(ω) 692 nm (30 100), 670 (35 200), 636 (24 300), 448 (65 400), 430 (67 400). MS found: m/e 599.3411 for (M+H)+, C₃₅H₄₇N₄O₂S requires m/e 599.3423.

118: NMR δ 0.18, 0.26, 0.60 (6H each, t, CH₂CH₃ sat), 1.57, 1.63 (6H, t, CH₂CH₃), 2.30 (1H, br s, NH), 2.34-2.64 (12H, m, CH₂CH₃ sat), 3.51, 3.58 (2H each, q, CH₂CH₃), 8.04 (1H, s, 5-H), 8.10 (1H, s, 15-H), 8.26 (1H, s, 10-H), 9.34 (1H, s, 20-H). Irradiating at δ 3.51 and 3.58 caused the respective singlets at δ 8.10 and 9.34 to increase in intensity. UV-vis λmax(ε_M) 767 nm (50 400), 698 (26 300), 652 (9 400), 486 (67 600), 454 (47 300), 445 (45 500), 422 (37 900), 388 (21 700), 376 (20 400); MS found: m/e 615.3200 for (M+H)+, C₃₆H₄₇N₄OS₂ requires m/e 615.3195.

119: NMR δ 0.18, 0.28, 0.54 (6H each, t, CH₂CH₃ sat), 1.57, 1.64 (3H each, t, CH₂CH₃), 1.92, 2.22 (1H each, br s, NH), 2.32-2.81 (12H, m, CH₂CH₃ sat), 3.53, 3.61 (2H each, q, CH₂CH₃), 7.92 (1H, s, 10-H), 8.08

(1H, s, 15-H), 8.59 (1H, s, 5-H), 9.53 (1H, s, 20-H). Irradiating at δ 3.53 and 3.61 caused the respective singlets at δ 8.08 and 9.53 to increase in intensity. UV-vis λ_{max} (ϵ_{M}) 794 nm (22 700), 692 (32 700), 646 (15 500), 556 (9 100), 498 (31 700), 468 (75 700), 443 (34 400), 396 (21 000); MS found: m/e 615.3180 for (M+H)+, C36H47N4OS2 requires m/e 615.3195.

120: NMR δ 0.19, 0.26, 0.30 (6H each, t, CH₂CH₃ sat), 1.60, 1.65, (3H each, t, CH₂CH₃ sat), 3.56, 3.62 (2H each, q, CH₂CH₃), 8.19 (1H, s, 15-H), 8.46 (1H, s, 10-H), 8.60 (1H, s, 5-H), 9.48 (1H, s, 20-H). Irradiating at δ 3.56 and 3.62 caused the respective singlets at δ 8.19 and 9.48 to increase in intensity. UV-vis λmax (εM) 784 nm (50 500), 718 (26 100), 595 (10 600), 505 (65 800), 423 (20 000); MS found: m/e 631.2975 for (M+H)+, C₃₆H₄7N₄S₃ requires m/e 631.2967.

3,3,7,8,12,13,17,18-Octaethyl-2-methyl-2-mercaptochlorin (121)

Thione 111 (10 mg, 0.018 mmol) was dissolved in dry THF (10 m1) and treated with a two-fold excess of CH₃Li (1.4 M in ether) at R.T. under argon. After a few minutes the reaction was quenched with water (2 ml). The organic layer was separated, dried and evaporated to dryness. The residue was redissolved in CH₂Cl₂ and passed through a short silica gel pad (CH₂Cl₂ as eluant) to afford 121 in almost quantitative yield. NMR δ 0.73, 0.99 (3H each, t, CH₂CH₃ sat), 1.62 (3H, s, Me), 1.81, 1.86 (12H, 6H each, t, CH₂CH₃), 2.15, 2.49, 2.89 (1H, 2H, 1H each, m, CH₂CH₃ sat), 3.90, 3.93, 4.03 (2H each, q, CH₂CH₃), 5.65 (1H, s, SH), 8.81 (1H, s, 5-H), 9.32 (1H, s, 20-H), 9.75, 9.77 (1H each, 10,15-H), -2.53 (2H, br s, NH). Irradiating the singlet at δ 1.62 caused the singlet at δ 9.32 to increase in intensity. UV-vis λmax 644

nm, 615.5, 590.5, 524.5, 496, 393; MS (direct probe, 70 eV) m/e 582 (M+).

3,3,7,8,12,13,17,18-Octaethyl-2-mercaptochlorin (122)

Thione 111 (10 mg, 0.018 mmol) was dissolved in dry THF (10 ml) and a three-fold excess of NaBH4 in CH2OH was added. After 10 min at R.T., the reaction was worked up in the same manner as described for 121 to give (122), quantitatively. NMR & 0.51, 0.94 (3H each, t, CH2CH3 sat), 1.79, 1.84 (9H each, t, CH2CH3), 2.34 (1H, d, SH), 2.34, 2.58, 2.70 (2H,1H,1H each, m, CH2CH3 sat), 3.88, 3.95, 4.01 (4H each, q, CH2CH3), 5.92 (1H, d, 2-H), 8.79 (1H, s, 5-H), 9.35 (1H, s, 20-H), 9.76 (2H, s, 10,15-H), -2.55 (2H, br s, NH). Irradiating the doublet at & 5.92 caused the singlet at & 9.35 to increase in intensity. UV-vis \(\lambda_{max}(\pi_M) \) 644 nm (38 600), 614 (4 300), 591 (4 000), 524 (3 600), 496 (11 700), 489 (11 700), 392 (143 000); MS (direct probe, 70 eV) m/e 568 (M+).

2,2,7,8,12,13,17,18-Octaethylchlorin (123)

Thione 111 (10 mg, 0.018 mmol) was dissolved in dioxane (10 ml) and an excess of freshly prepared Raney Nickel-W286 was added under argon. The reaction mixture was heated in an oil bath at 60°C for 10 min, followed by filtration through a glass wool. The filtrate was evaporated to dryness to give 123 quantitatively. NMR δ 0.68 (6H, t, CH₂CH₃ sat), 1.80 (18H, m, CH₂CH₃), 2.41 (4H, q, CH₂CH₃ sat), 3.87, 3.90, 4.00 (4H each, q, CH₂CH₃), 4.60 (2H, s, 3,3-H), 8.71 (1H, s, 5-H), 8.96 (1H, s, 20-H), 9.71, 9.74 (1H each, 10,15-H), -2.53 (1H, br s, NH). Irradiating the singlet at δ 4.60 caused the singlet at δ 8.96 to

increase in intensity. UV-vis λ_{max} 643 nm, 613, 589, 521, 495, 488, 391; MS (direct probe, 70 eV) m/e 536 (M⁺).

General Procedure for Zinc and Copper Insertion

To a solution of the free-base porphyrinoid (10 mg) in boiling chloroform (10 ml) was added a saturated solution (1 ml) of the metal (II) acetate in methanol, followed by the addition of sodium acetate (~2 mg). After ~30 min refluxing and checking by TLC (metal-complex moves slower than the corresponding free-base), the solvents were evaporated in vacuo and the residue was redissolved in CH2Cl2/H2O (1:1). The organic phase was separated, washed twice with water, dried (Na2SO4) and evaporated to dryness to give the metal complex in quantitative yield. The ¹H NMR peaks of the zinc complexes are generally shifted upfield in relation to their free bases.

CHAPTER 4

KINETIC AND EQUILIBRIUM STUDIES OF CO AND O₂ BINDING TO HORSE HEART MYOGLOBIN RECONSTITUTED WITH SYNTHETIC GREEN HEMES

I. INTRODUCTION

Reconstitution of heme proteins is often used as a method of probing the prosthetic group structure-protein function relationship. To date, heme proteins that have been successfully reconstituted with foreign hemes or recombined with the native prosthetic group include myoglobin, hemoglobin, peroxidases, catalase, cytochrome P-450, b-type, and c-type cytochromes as well as cytochrome cdi. 100 Among these, myoglobin is the simplest system for monitoring perturbations brought by heme structure changes.

Myoglobin (Mb) is a monomeric protein of 160 amino acid residues (MW 17,800) and one molecule of heme (Protoheme IX). Mb is found in the skeletal muscles and stores diogygen, transported to it by hemoglobin (Hb) for use in the mitochondria. A generic structure for Mb is shown in Figure 16A. A closer examination of the region near the heme in the deoxy form reveals the iron atom in a square pyramidal structure, the equator defined by the porphyrin plane and an axial position occupied by the imidazole of histidine F8 which is called the "proximal histidine" (Figure 16B). The iron atom is approximately 0.5A out of the plane of the porphyrin and the Fe-N (imidazole) bond vector is

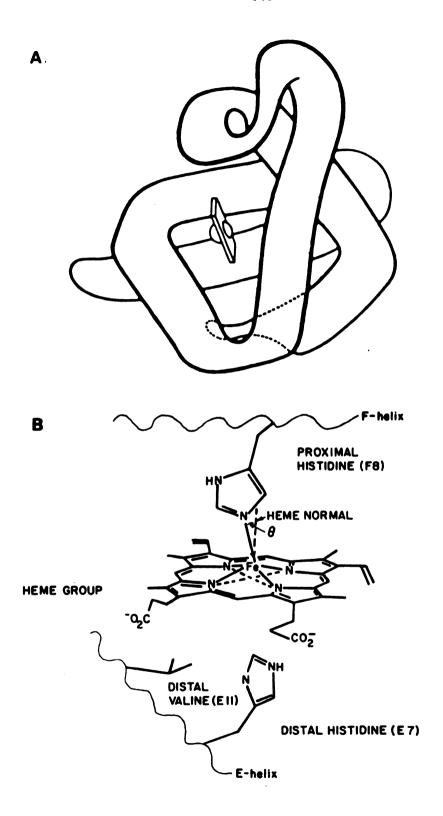


Figure 16 The low-resolution structure of Mb (A); the 0_2 -binding site in Mb (B).

approximately 8° off the heme normal.¹⁰² The iron atom is high-spin (S=2) Fe(II). Upon binding a sixth ligand (CO or O₂), Mb undergoes a change in the tertiary structure that places the iron within 0.2A of the porphyrin plane, resulting in a diamagnetic, low-spin (S=0) Fe(II) for carbon-monoxymyoglobin (MbCO).¹⁰³ MbO₂ has been discussed as various spin-coupled system.¹⁰⁴

The ligand binding properties of myoglobin as well as myoglobin reconstituted with a variety of porphyrin hemes modified at the side chains, have been extensively investigated. 105-115 Studies on myoglobin containing saturated macrocycles are limited to only few systems which include sulfmyoglobin 180, 118 chlorophyllide—Mb117 as well as iron and cobalt complexes of pheophorbide—a—Mb, pyro—, meso—, and mesopyropheophorbide—a—Mb. 118 In each of these cases however, greater structural perturbation than simple pyrrole ring reduction has been involved.

As part of an effort to probe structure-function relationships of green heme enzymes, we report here the oxygen and carbon monoxide binding behavior of horse heart myoglobin reconstituted with several synthetic green heme (124-130) shown in Figure 17. We believe that these derivatives are more useful approximations of the iron-prosthetic groups found in naturally occurring chlorin and isobacteriochlorin containing enzymes^{6,64,65} than the previously reported cases. Moreover, the dehydrogenation (oxidation of chlorin to porphyrin) problem often encountered with regular chlorin hemes¹¹⁹ is not present in our stable systems. Finally, the static and kinetic parameters measured from reconstituted myoglobins may be closer to the primary systems than those obtained with isolated hemes in organic solution. 119,120

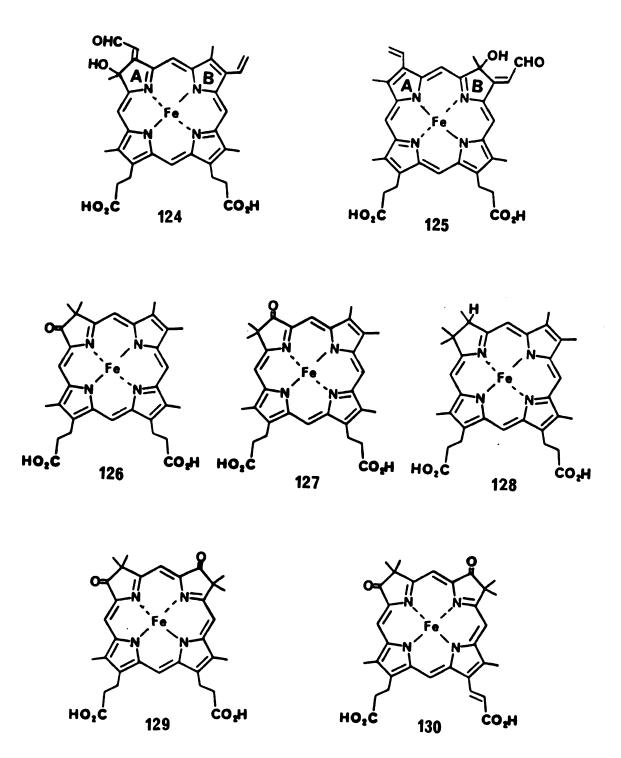


Figure 17 Structures of synthetic green hemes used for myoglobin reconstitutions.

II. RESULTS AND DISCUSSION

The kinetic and equilibrium constants for CO and O₂ binding to the reconstituted Mbs of this study are summarized in Table 5. The results indicate that substitution of the protoheme with saturated hemes, particularly 126-130 affects the ligand binding constants.

Focusing on methylchlorin heme-Mb 128, it can be seen that the carbon monoxide association rate & underwent an almost seven-fold increase in comparison with the natural protoheme-Mb. This can arise from the fact that chlorins have intrinsically larger cores than porphyrins and can more easily accommodate the low-spin six-coordinate Fe(II) atom which moves towards the plane of the macrocycle. Clearly, other explanations may be offered. It could be argued that chlorins are weaker bases than porphyrins causing an Fe(II) chlorin to be a stronger Lewis acid than an Fe(II) porphyrin towards the substrate ligand such as CO. In fact, it is well known that free-base chlorins are weaker Bronsted bases than free-base porphyrins.^{2,121} However, metal-ligand affinities could be governed not by the basicity of the free-bases, but by the total basicity of the macrocycle dianions, of which nothing quantitative has been reported.

The oxygen association rate, k', for the same myoglobin has experienced only a two-fold increase, in comparison with the native Mb. Perhaps, triplet oxygen can induce the S=0 state of iron even before the heme becomes planar, consequently, diminishing the core-size effect. In the case of CO, this singlet molecule must combine with a high spin Fe(II) giving a singlet product. To pair these spins, the necessity for spin inversion could retard the rate of reaction. 122

Kinetic and Equilibrium Constants for CO and Oz Binding. Table 5.

	Reac	Reaction With CO		React	Reaction With Oz	
Myoglobins	P1/2(torr)	P _{1/2} (torr) l(M ⁻¹ s ⁻¹)	A(s-1)	P1/2(torr)	P _{1/2} (torr) k'(M ⁻¹ s ⁻¹) k(s ⁻¹)	k(s-1)
Protoheme	0.025	6.4x10s	0.022	0.40	2.4x107	15
Photoprotoheme A (124)	0.028	1.3×10	0.050	99.0	1.8x107	21.4
Photoprotoheme B (125)	0.062	8.0x10 ⁵	0.067	0.43	1.7×10 ⁷	13.1
7-Keto-heme (126)	0.049	3.4×106	0.227	0.71	4.0x107	51.3
8-keto-heme (127)	0.024	6.5x10e	0.210	1.59	5.8x107	166
Methylchlorin-heme (128)	0.016	4.2x10	0.089	0.64	4.9x107	56.3
Dione-heme (129)	0.018	3.5x10e	0.085	1.59	3.9x10 ⁷	111.4
Acrylo-dione-heme (130)	0.018	3.2×10	0.076	2.31	4.2×107	175

a In 10 mM phosphate buffer, pH 7.4, 20-22°C.

Focusing on a different chlorin heme, 8-keto heme-Mb 127 the electronic effect can be monitored on the oxygen dissociation rate constant, k. The presence of the e-withdrawing oxygen atom in conjugation with the ring causes k to increase while k' remains fairly constant. Therefore, the P_{1/2}O₂ is larger. This indicates that decreasing e-density in the iron d orbitals could lessen the Fe-O₂ m-backbonding and effectively weaken the Fe to O₂ bonding. For the CO ligand, the same trend in L value can be seen, but to a lesser extent. This suggests the predominant role of 6 bond formation in determining the iron-carbon monoxide binding while m-bond break-up may be predominant for iron-oxygen binding.¹¹¹

To probe the protein effect, 7-keto heme-Mb 126 possessing the oxo group on the same pyrrole ring but on the other \$\mathbb{F}\$-pyrrole position has been examined in comparison with 8-keto heme-Mb 127. These two Mbs show differences in their electronic spectra, particularly in their met (ferric) forms. Moreover, the absorption maxima of 7-keto heme-Mb 126 are shifted slightly, bathochromically relative to 8-keto heme-Mb 127 (Figure 18). In contrast, visible absorption peaks of pyridine hemochrome of both hemes are essentially identical (see Table 6). In addition, their ligand binding constants are quite different (see Table 5). This can only be attributed to modulations by local environment.

To verify these results, P₃A-Mb 124 and P₃B-Mb 125 (photoprotochlorin Mbs saturated at either ring A or B) were tested and indeed showed differences in electronic spectra (Table 6) and binding properties (Table 5). Although these chlorin Mbs behave differently from the previously discussed chlorin Mbs (126-128), due to the conjugation of a formyl group with the macrocycle, they offer another

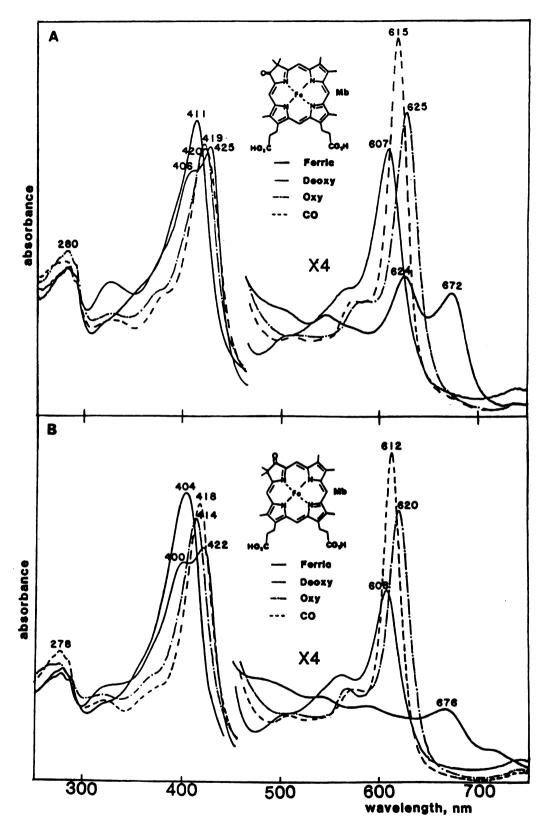


Figure 18 Optical spectra of 7-keto-heme myoglobin (A); 8-keto-heme myoglobin (B); Ferric (—), Deoxy (—), Oxy (—), CO (---), in 10 mM (pH 7.4) potassium phosphate buffer.

Table 6.	Absorption	Spectral	Maxima	of	Synthetic	Hemes	and
	Myoglobins.						

Mb/Heme	Soret (nm)	Visible Bands (nm)
Photoprotoheme A (124)		
met Mb	408.5	500, 602
deoxy Mb	431	562
O ₂ Mb	414	542, 578, 598
CO Mb	421	542, 576, 594
Pyridine hemochromeb	419.5	558
Photoprotoheme B (125)		
met Mb	406	599, 500
deoxy Mb	428	593, 556
O ₂ Mb	409	5 94, 5 44
CO Mb	415	593 , 538
Pyridine hemochromeb	418.5	556.5
7-keto heme (126)		
met Mb	411	624, 672
deoxy Mo	406, 425	607
O ₂ Mb	419	625
CO Mb	420	615
Pyridine hemochrome ^b	414	589
8-keto heme (127)		
met Mb	404	676 .
deoxy Mb	400, 422	608
O ₂ Mb	414	620
CO Mb	418	612
Pyridine hemochromeb	415	590
methylchlorin heme (128)		
met Mb	390	602
deoxy Mb	408	616
0 ₂ Mb	400	624
CO Mb	401	614
Pyridine hemochromeb	415 	598.5
Dione heme (129)		
met Mb	388, 424	634, 638
deoxy Mb	398, 436	616
CO Mb	394, 439	628
Pyridine hemochromeb	395, 319, 445	605
Acrylo-dione heme (130)		
met Mb	411	643
deoxy Mb	424	632
CO Mb	410, 434	644
Pyridine hemochromeb	376, 404, 450	626

a In phosphate buffer, pH 7.4; b In pyridine-1% NH2 NH2.

example in which the Mb reaction parameters can be affected upon changing the position of the "northern" saturated pyrrole ring. A similar case reported by Sono et al. 105 noticed that Mbs reconstituted with spirographis and isospirographis hemes exhibit different absorption maxima even though the two hemes have the same spectrum outside the protein.

The stability of the various chlorin-containing oxymyoglobins was examined and their autoxidation kinetics are presented in Figure 19 in comparison with the native myoglobin. As is apparent, isomers P3A-MbO2/ P₃B-MbO₂ and 7-keto heme-MbO₂/8-keto heme-MbO₂ exhibit different autoxidation rates. P3B-MbO2 and 7-keto heme-MbO2 are about two times slower towards autoxidation than their corresponding isomers. In view of the fact that P3B-Mb and 7-keto heme-Mb have slower CO association rate constants (%) when compared with their corresponding isomers, it would appear that the heme pocket is tighter around the ligand binding site that stabilizes the oxyheme. This stabilization is also reflected in the k' values which are smaller in the P3B-Mb and 7-keto heme-Mb cases. On the other hand, the autoxidation rate of native myoglobin and 125, 126, 128, Mbs are approximately within experimental error with one This suggests that the saturation of a porphyrin ring alone, does not perturb the protein native structure and produces stable myoglobins. However, both the position of the saturated pyrrole ring and the side chains are crucial in determining myoglobin's stability.

Myoglobin has also been reconstituted with two porphinedione-hemes (heme di analogues). However, the soret/A280 ratios (1.1 for dione heme Mb 129 and 0.6 for acrylo-dione heme Mb 130 indicate that these hemes do not fit well in the myoglobin pocket, particularly heme 130

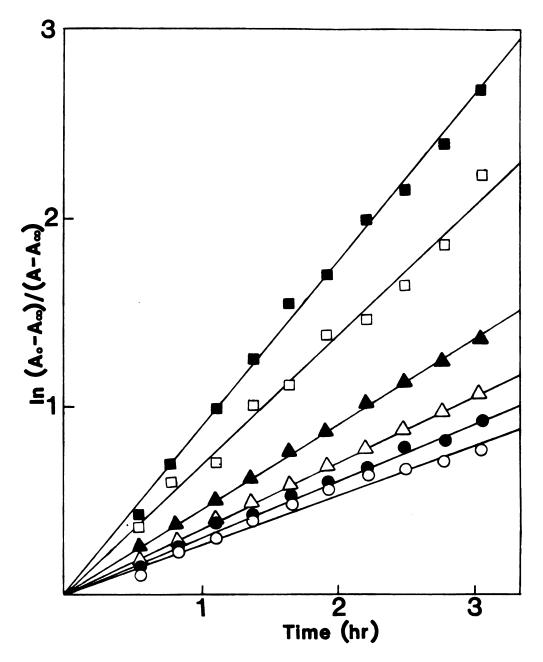


Figure 19 Autoxidation of reconstituted myglobins at 22°C in 10mM (pH 7.4) potassium phosphate buffer, saturated with O2. Protoheme (native)○, slope = 8.6×10⁻⁵, r = 0.989; P₃B, slope = 9.0×10⁻⁵, r = 0.984; methylchlorin-heme△, slope = 9.7×10⁻⁵, r = 0.999; 7-keto-heme△, slope = 1.3×10⁻⁴, r = 0.999; P₃A□, slope = 1.9×10⁻⁴, r = 0.989; 8-keto-heme □, slope = 2.5×10⁻⁴, r = 0.996.

that possesses one acrylic propionic acid chain. The significance of the two propionic acid groups of the heme at positions 2 and 18, which constitute hydrogen bonds with Arg CD3 and His FG2, respectively, of the apoprotein, has been addressed by Ogoshi. 113 129-Mb and 130-Mb retained the ability to bind CO in the ferrous state but bleached rather quickly upon exposure to oxygen. Apparently the macrocyclic ring destruction is faster than iron autoxidation in these cases. It is quite possible that the quinone porphyrin ring structure of these heme d1 analogues reduces O2 and generates its own hydrogen peroxide equivalent, which, in turn, might attack the macrocycle ring, resulting in its oppening. 122 The fact that the protein conformation around these hemes is significantly altered due to the introduction of a second pair of angular methyl groups should contribute to the instability of the oxy-form. In any case, this is a point that merits further investigation.

III. SUMMARY

present studies establish that apomyoglobin reconstituted with chlorin hemes to produce stable forms of protein that retain the ability to bind dioxygen and carbon monoxide in the reduced In comparison with the native Mb, the generally faster state. association rates observed in the green hemes might be attributed to their larger core size which facilitates the spin state change during ligand binding. In an attempt to probe the effect of the degree of ring saturation on the protein function, we reconstituted Mb with two isobacteriochlorins, having the core structure of heme d1. these synthetic isobacteriochlorin-hemes didn't provide us with any further clue for possible relationship between protein function and the degree of ring saturation, an interesting phenomenon was observed:

their ferrous forms bleached upon exposure to oxygen. Further studies of this phenomenon are necessary. For example, it would be interesting to see if the heme destruction was due to the protein environment or to an intrinsic property of this heme.

IV. MATERIALS AND METHODS

<u>Preparation of Hemins.</u> Photoprotoporphyrin IX dimethyl ester $A(P_3A)$ and $B(P_3B)$ were synthesized according to a literature procedure.¹²⁴

Dimethyl 3,8,8,12,13,17-hexamethyl-7-porphinone-2,18-dipropionate (21a), dimethyl 3,7,7,12,13,17-hexamethyl-8-porphinone-2,18-dipropionate (22a), dimethyl 3,7,7,8,12,13,17-heptamethylchlorin-2,18-dipropionate (24),dimethyl 3,8,8,13,13,17-hexamethyl-7,12-porphinedione-2,18-dipropionate (69) and methyl 18-[2-(methoxycarbonyl)ethenyl]-3,8,8,13,13.17-hexamethyl-7.12-porphinedione-2-propionate (70) were synthesized as described in Chapter 1 of this thesis. Iron insertions were accomplished by the ferrous bromide method¹²⁵ (P₃A, P₃B and methylchlorin 24) and by the ferrous sulfate method¹²⁶ (porphyrinones 21a, 22a and porphyrindiones 69, 70). The ester groups of these hemins were hydrolyzed in 1:1 THF/2N KOH at R.T. as described for 22a (Chapter 1) to afford the diacid hemins shown in Figure 17.

Preparation of Myoglobins. Horse heart myoglobin (Sigma, Type III) was used as received. Apomyoglobin was prepared from myoglobin by the acidified butanone procedure. 100,127,128 The concentration of apoprotein was determined on the basis of its absorbance at 280 nm (2280 = 15.4 mM⁻¹cm⁻¹). 129

For reconstitution, a 1.2-fold excess of green heme to apoprotein was dissolved in a minimal volume of 1% KOH/MeOH and added to the

apoprotein solution (0.2-0.5 mM) at 0°C. The resultant solution was gently stirred for 20 min at 0°C (frothing should be avoided as it denatures the protein). The mixture was then adjusted to pH 8.0 with 0.2 M Tris-HCl buffer (PH 5.0) and dialyzed (Spectrapor: 25 or 45 mm x 100' membrane tubing) against 10 mM phosphate buffer (pH 7.0) and against distilled water twice. The deionized Mb solution was centrifuged (15 KG at 4°C), and loaded onto a DE 23 column that was equilibrated with 10 mM phosphate buffer (pH 7.4). The column was developed with the equilibrating buffer at 4°C. Excess heme was adsorbed on the top of the column, while the reconstituted myoglobin was easily eluted from the column (reconstituted myoglobins bathochromically shifted absorption maxima relative to their free hemes and possess a new absorption peak at ~280 nm). Reconstituted Mbs had Asoret/Azso ratios: ~3.0 (P3A, P3B, porphyrinones 126, 127 and methylchlorin 128 Mbs), 1.1 (dione 129 Mb) and 0.6 (acrylo-dione 130 In the last two cased the Asoret/A280 ratio was increased upon Mb). storage (-70°C freezer).

For kinetic and equilibrium measurements, solutions of met Mbs (~10⁻⁵M) in pH 7.4, 10 mM potassium phosphate buffer were degassed in a 120 ml tonometer by freeze-pump-thraw cycles at 10⁻⁵ Torr and were reduced with a minimum amount of aqueous sodium dithionite in an argon atmosphere.

Kinetic and Equilibrium Measurements. Kinetic rates were measured at 22°C by flash photolysis 222,130 according to:

Fe + CO
$$\stackrel{\mathfrak{A}'}{\rightleftharpoons}$$
 FeCO $\stackrel{\mathfrak{A}}{\bowtie}$ $(h\nu)$

$$\begin{array}{ccc} & k' \\ \text{Fe + O}_2 & \rightleftarrows & \text{FeO}_2 \\ & k \end{array}$$

Flash photolysis was carried out with either a Xenon photographic flash gun (Braun 2000) or a flash lamp pumped dye laser (Phase-R DL 2100) with rhodamine 6G dye. With carbon monoxide present, ℓ was measured directly as a pseudo-first order decay, ℓ [CO] = ℓ _obs which included concentration of CO (Figure 20a). However, when oxygen was added, two decays were observed (Figure 20b). The fast decay to a certain absorbance $A_{f \approx 0.2}$ is $k'[O_2] = k'_{obs}$ followed by a decay R from this absorbance to $A_{f \approx 0.0}$. CO association rates (ℓ) were calculated from plots of the observed pseudo-first order rate constants vs. CO concentration and O_2 association rates (ℓ) were calculated from similar plots. $P_{1/2}O_2$ (oxygen pressure at half saturation) were obtained from direct titration or calculated according to the Gibson equation: 130b

$$1/R = 1/k + K[O_2]/2'[CO]$$

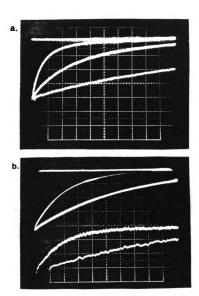


Figure 20 (a) Oscilloscope trace of absorbance vs. time for the recombination of P₃A-Mb and CO after flash photolysis at 22°C in 10 mM (pH 7.4) potassium phosphate buffer. [CO] = 5.25xl0⁻⁵M; sweeptime = 1,5,20 msec/div.; wavelength = 420 nm. (b) The recombination of P₃A-Mb with O₂ and CO at 422 nm. [CO] = 5.25xl0⁻⁵, [O₂] = 3.49xl0⁻⁵M. Upper trace; sweeptime = 0.1, 0.2 sec/div.; lower trace; sweeptime = 0.2, 1 msec/div.

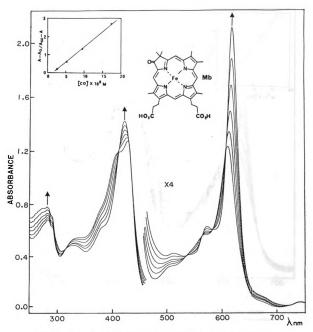


Figure 21 Spectrophotometric titration of 7-keto-heme myoglobin in 10 mM (pH 7.4) potassium phosphate buffer, with CO at R.T.; [CO]x10*M = 0.0, 2.63, 5.26, 9.65, 17.55 and 1760. Inset: plot of A-A₀/A₀-A vs. [CO] at 615 mm.

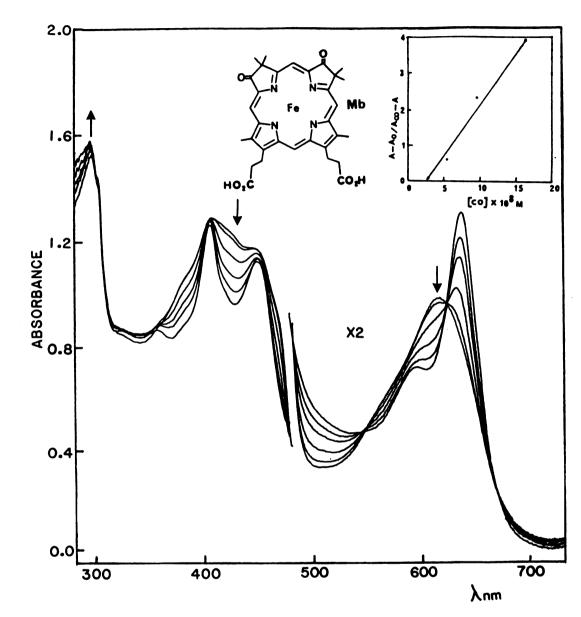


Figure 22 Spectrophotometric titration of dione-heme myglobin in 10 mM (pH 7.4) potassium phosphate buffer with CO at R.T.; [CO]x108M = 0.0, 2.66, 5.32, 9.31, 15.97, 1346. Inset: plot of A-Ao/Ao-A vs. [CO] at 628 nm.

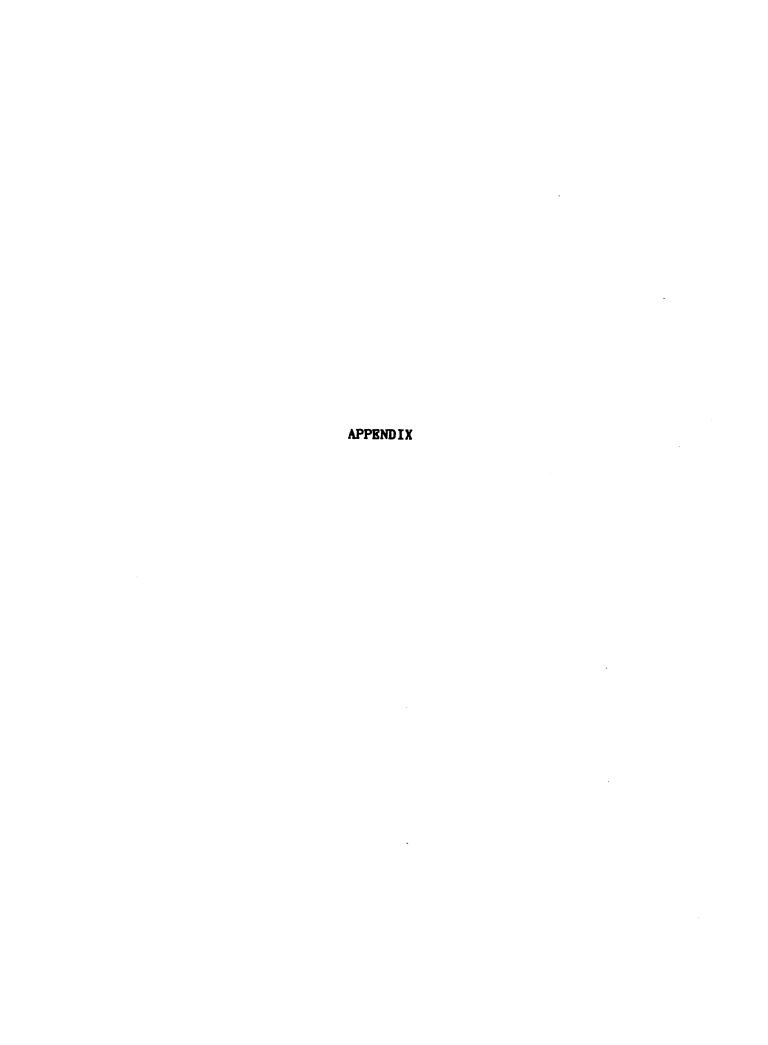
REFERENCES AND NOTES

REFERENCES AND NOTES

- 1. An exhaustive compilation on the chemistry, physics, and biology of porphyrins appeared as the multivolume set entitled "The Porphyrins," Dolphin, D., ed., Academic Press, New York, 1978.
- 2. Shceer, H. In "The Porphyrins," Vol. II, Part B, Dolphin, D., Ed., Academic Press, New York, 1978, Chapter 1.
- 3. (a) Katz, J.J. In "Inorganic Biochemistry," Vol. 2, Eichhorn, G.L., Ed., Elsevier Publishing Co., Amsterdam, 1973, Chapter 29. (b) Clayton, R.K.; Sistrom, W.R. "The Photosynthetic Bacteria," Plenum Press, New York, 1978.
- 4. Agius, L.; Ballantine, J.A.; Ferrito, V.; Jaccarini, V.; Murray-Rust, P.; Pelter, A.; Psaila, A.F.; Schembri, P.J. Pure & Appl. Chem. 1979, 51, 1847.
- 5. (a) Imfeld, M.; Arigoni, D.; Deeg, R.; Muller, G. In "Vitamin B₁₂"; Zagalak, B.J.; Friedrich, W. Eds.; de Gruyter: Berlin, 1979; pp. 315. (b) Turner, S.P.D.; Block, M.H.; Sheng, Z-C.; Zimmerman, S.C.; Battersby, A.R. J. Chem. Soc., Chem. Commun. 1985, 583.
- 6. Timkovich, R.; Cork, M.S.; Gennis, R.B.; Johnson, P.Y. J. Am. Chem. Soc. 1985, 107, 6069.
- 7. (a) Timkovich, R.; Cork, M.S.; Taylor, P.V. J. Biol. Chem. 1984, 259, 1577. (b) Chang, C.K. J. Biol. Chem. 1985, 260, 9520. (c) Chang, C.K.; Wu, W. J. Biol. Chem. 1986, 261, 8593. (d) Chang, C.K.; Timkovich, R.; Wu, W. Biochemistry 1986, 25, 8447. (e) Wu, W.; Chang, C.K. J. Am. Chem. Soc. 1987, 109, 3149.
- 8. (a) Payne, W.J. Denitrification; Wiley: New York, 1981. (b) Delwiche, C.C. Denitrification, Nitrification, and Atmospheric Nitrous Oxide; Wiley: New York, 1981.
- 9. (a) Scott, A.I.; Irwin, A.J.; Siegel, L.M.; Shoolery, J.N. J. Am. Chem. Soc. 1978, 100, 7987. (b) Battersby, A.R.; McDonald, E. Bioorg. Chem. 1978, 7, 161.
- (a) Fischer, H.; Helberger, H. Liebigs Ann. Chem. 1929, 471, 285.
 (b) Fischer, H.; Gibian, A. Liebigs Ann. Chem. 1942, 550, 208.
- 11. (a) Risner, U. J. Chem. Soc. 1957, 1957, 3461-3469. (b) Stolzenberg, A.M.; Spreer, L.O.; Holm, R.H. J. Am. Chem. Soc. 1980, 102, 364.

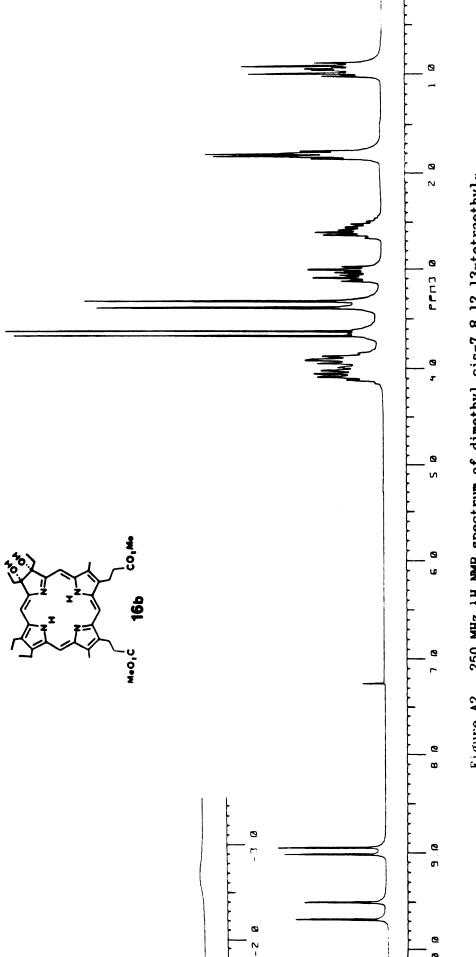
- 12. Fischer, H.; Orth, H. "Die Chemie des Pyrrols"; Akademische Verlagsgesselschaft: Leipzig, 1937, Vol. II, Part I; p. 269.
- 13. Fischer, H.; Pfeiffer, H. Liebigs Ann. Chem. 1944, 556, 131.
- 14. Bonnett, R.; Dolphin, D.; Johnson, A.W.; Oldfield, D.; Stephenson, G.F. Proc. Chem. Soc. (London) 1964, 371.
- 15. Bonnett, R.; Dimsdale, M.J.; Stephenson, G.F. <u>J. Chem. Soc, (C)</u> 1969, 564.
- 16. Inhoffen, H.H.; Nolte, W. Liebigs Ann. Chem. 1969, 725, 167.
- 17. Inhoffen, H. H.; Ullrich, J.; Hoffmann, H. A.; Klinzmann, G. Tetrahedron Lett. 1969, 613.
- 18. Chang, C.K. Biochemistry 1980, 19, 1971.
- 19. Collins, C.J. Quart. Rev. Chem. Soc. 1960, 14, 357.
- 20. Chang, C.K.; Sotiriou, C.; J. Org. Chem. 1985, 50, 4989.
- 21. Whitlock, H.W.; Hanauer, R.; Oester, M.Y.; Bowry, B.K. J. Am. chem. Soc. 1969, 91, 7485.
- 22. Smith, K.M.; Goff, D.A. J. Am. Chem. Soc. 1985, 107, 4954.
- 23. Chang, C.K.; Sotiriou, C.; Wu, W. J. Chem. Soc., Chem. Commun. 1986, 1213.
- 24. Johnson, A.W.; Oldfield, D. J. Chem. Soc. 1965, 4303.
- 25. Inhoffen, H.H.; Jager, P.; Mahlhop, R. <u>Justus Liebigs Ann. Chem.</u> 1971, 749, 109.
- 26. Dinello, R.K.; Chang, C.K. In "The Porphyrins," Dolphin, D., Ed.; Academic: New York, 1978, pp. 290-340.
- 27. Araiso, T.; Dunford, H.B.; Chang, C.K. Biochem. Biophys. Res. Commun. 1979, 90, 520.
- 28. Synthesized by condensing 5,5'-dimethyl-3,3',4,4'-tetraethyl-2,2'-dipyrrylmethene bromide and the same 5,5'-dibromo dipyrrylmethene as described in ref. 27 following the same procedures.
- 29. Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. Spectrometric Identification of Organic Compounds, 4th ed.; Wiley: New York, 1981; pp. 121-123.
- 30. Trippett, S.; Walker, D.M. J. Chem. Soc. 1961, 1266.
- 31. Bhalerao, U.T.; Plattner, J.J.; Rapoport, H. J. Am. Chem. Soc. 1970, 92, 3429.

- 32. Barrett, J. Biochem. J. 1956, 64, 626.
- 33. Montforts, F.P. Angew. Chem, Int. Ed. Engl. 1981, 20, 778.
- 34. (a) Battersby, A.R.; Dutton, C.J.; Fookes, C.J.R.; Turner, S.P.D. J. Chem. Soc., Chem. Commun. 1983, 1235. (b) Ballantine, J.A.; Psaila, A.F.; Pelter, A.: Murray-Rust, P.; Ferrito, V.; Schembri, P.; Jaccarini, V. J. Chem. Soc., Perkin Trans. I, 1980, 1080.
- 35. (a) Battersby, A.R.; Fookes, C.J.R.; Snow, R. J. Chem. Soc., Perking Trans I 1984, 2725. (b) Battersby, A.R.; Bladon, C.; Huang, J.J.; Seo, S. J. Chem. Soc., Chem. Commun. 1986, 1492. (c) Battersby, A.R. Acc. Chem. Res. 1986, 19, 147.
- 36. Montforts, F.P.; Zimmermann, G. Angew. Chem. Int. Ed. Engl. 1986, 25, 458.
- 37. Porphyrins 15a, 36, 41 were prepared by dipyrromethene condensations, see Eaton, S.S; Eaton, G.R. and Chang, C.K. J. Am. Chem. Soc. 1985, 107, 3177.
- 38. Smith, K.M.; Craig, G.W. J. Org. Chem. 1983, 48, 4302.
- 39. Wu, W., unpublished results.
- 40. Oester, M.Y. Ph.D. Dissertation, The University of Wisconsin, 1971.
- 41. Stolzenberg, A.; Glazer, P.A.; Foxman, B.M. <u>Inorg. Chem.</u> 1986, 25, 983.
- 42. Personal, unpublished results. See example: Chang, C.K.; Wu, W. J. Org. Chem. 1986, 51, 2134.
- 43. Chang, C.K.; Sotiriou, C. J. Heterocyclic Chem. 1985, 22, 1739.
- 44. Fischer, H.; Kirstahler, A. <u>Justus Liebigs Ann. Chem.</u> 1928, 466, 178.
- 45. Fischer, H.; Beer, H. Hoppe-Seylers Z. Physiol. Chem. 1936, 244, 31.
- 46. Chang, C.K.; Hatada, M.H.; Tulinsky, A. J. Chem. Soc., Perkin Trans. II 1983, 371.
- 47. Griffiths, G.F.; Kenner, G.W.; McCombie, S.W.; Smith, K.M.; Sutton, M.J. Tetrahedron 1976, 32, 275.
- 48. Fischer, H.; Riedl, H.J. Justus Liebigs Ann. Chem. 1930, 482, 214.
- 49. Kenner, G.W.; McCombie, S.W.; Smith, K.M. Justus Liebigs Ann. Chem. 1973, 1329.

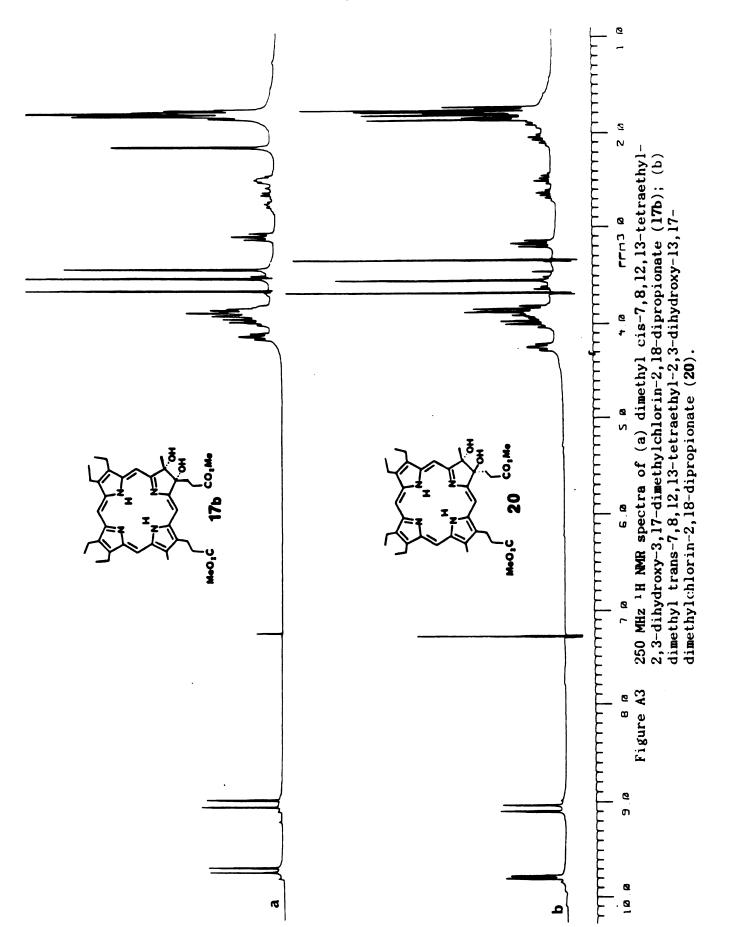

- 50. Caughey, W.S.; Smythe, G.A.; O'Keeffe, D.H.; Maskaky, J.E. J. Biol. Chem. 1975, 250, 7602.
- 51. Paine, J.B.; Chang, C.K.; Dolphin, D. Heterocycles 1977, 7, 831.
- 52. Johnson, A.W.; Kay, I.T.; Markham, E.; Price, R.; Shaw, K.B. J. Chem. Soc. 1959, 3416.
- 53. Abchibald, J.L.; Walker, D.M.; Shaw, K.B.; Markovac, A.; MacDonald, S.F. Can. J. Chem. 1966, 44, 345.
- 54. Clezy, P.S.; Fookes, C.J.R.; Liepa, A.J. <u>Aust. J. Chem.</u> 1972, <u>25, 1979.</u>
- 55. Wang, C.B.; Chang, C.K. Synthesis, 1979, 548.
- 56. Van Rheenen, V.; Kelly, R.C.; Cha, D.Y. <u>Tetrahedron Lett</u>. 1976, 1973.
- 57. (a) Chang, C.K.; Takamura, S.; Musselman, B.D.; Kessel, D. ACS Adv. Chem. Ser. 1986, No. 321, 347. (b) Clezy, P.S.; Hai, T.T.; Henderson, R.W.; Van Thuc, L. Aust. J. Chem. 1980, 33, 585.
- 58. Johnson, A.W.; Oldfield, D. J. Chem. Soc. 1965, 4303.
- 59. Kita, K.; Konishi, K.; Anraku, Y. J. Biol. Chem. 1984, 259, 3375.
- 60. (a) Lemberg, R.; Barrett, J. "Cytochromes"; Academic Press; New York, 1973; pp. 8-14 and 233-240. (b) Miller, M.J.; Gennis, R.B. J. Biol. Chem. 1983, 258, 9159.
- 61. Haddock, B.A.; Jones, C.W. Bacteriol. Rev. 1977, 41, 47.
- 62. Keilin, D. Nature 1933, 132, 783.
- 63. (a) Horio, T.; Higashi, T.; Yamanaka, T.; Matsubara, H.; Okunuki, K. J. Biol. Chem. 1961, 236, 944. (b) Timkovich, R.; Dhesi, R.; Martinkus, K.J.; Robinson, M.K.; Rea, T.M. Arch. Biochem. Biophys. 1982, 215, 47.
- 64. For example, heme a₂ from Pseudomonas cytochrome oxidase (now characterized as dioneheme, see ref. 7, 63); catalase of Neurospora Crassa: Jacob, G.S.; Orme-Johnson, W.H. Biochemistry 1979, 18, 2975; green heme from Asperillus niger: Horie, S.; Watanabe, T.; Nakamura, S. J. Biochem. 1976, 80, 579.
- 65. Varra, M.R.; Timkovich, R.; Yap, F.; Gennis, R.B. Arch. Biochem. Biophys. 1986, 250, 461.
- 66. Chang, C.K.; Sotiriou, C. J. Org. Chem. 1987, 52, 926.
- 67. Andersson, L.A.; Sotiriou, C.; Chang, C.; Loehr, T.M. J. Am. Chem. Soc. 1987, 109, 258.

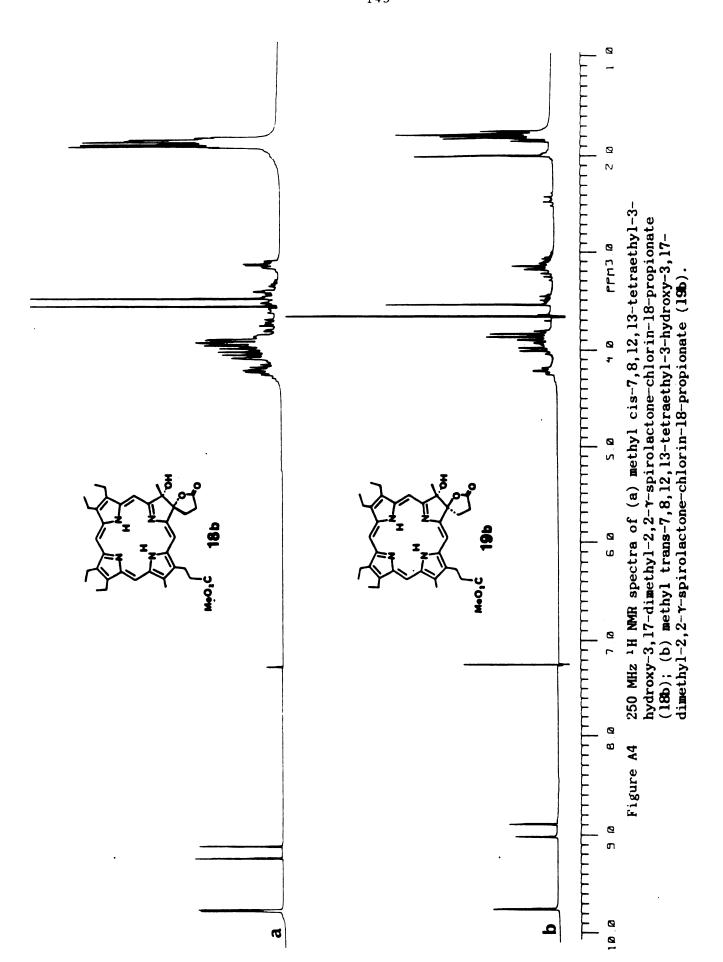

- (a) Carr, R.P.; Jackson, A.H.; Kenner, G.W.; Sach, G.S. J. Chem. Soc. (c) 1971, 487. (b) Clezy, P.S.; Fookes, C.J.R.; Sternhell, S. Aust. J. Chem. 1978, 31, 639. (c) Smith, K.M.; Fujinari, E.M.; Langry, K.C.; Parish, D.W.; Tabba, H.D. J. Am. Chem. Soc. 1983, 105, 6638.
- 69. Clezy, P.S.; Fookes, C.J.R. Aust. J. Chem. 1977, 30, 217.
- 70. Scheer, H.; Katz, J.J. In "Porphyrins and Metalloporphyrins," Smith, K.M., Ed.; Elsevier: Amsterdam, 1975, pp. 402.
- 71. Feeney, J. J. Mag. Res. 1976, 21, 473.
- 72. Smith, K.M.; Goff, D.A.; Abraham, R.J. <u>Tetrahedron Lett</u>. 1981, <u>22</u>, 4873.
- 73. Ingold, C.K. "Structure and Mechanism in Organic Chemistry," 2nd Ed., Cornell University Press, Ithaca, New York, 1969, pp. 1142-1144.
- 74. Wang, Ching-Bore Ph.D. Dissertation, Michigan State University, 1981.
- 75. DiNello, R.; Chang, C.K. In "The Porphyrins,: vol. I, Part A, D. Dolphin, Ed., Academic Press, New York, 1978, pp. 291.
- 76. Morell, D.B.; Chang, Y., Clezy, P.S. <u>Biochim. Biophys. Acta</u> 1967, 136, 121.
- 77. (a) Buckley, J.A. Bull. Environ, Contam. Toxicol. 1982, 29, 637. (b) Lambert, M.; Sonnet, T.; Mahieu, P.; Hassoun, A.; J. Toxicol. 1982, 19, 45. (c) Mills, C.F.; Bremner, I.; Young, B.W.; Davies, N.T. In "Trace Elements in the Metabolism of Man and Animals," Gawthorne, J.M.; McHowell, J.; White, C.L., eds, Springer, Berlin, 1982, pp. 549.
- 78. (a) Michel, H.O. J. Biol. Chem. 1938, 123, lxxxv. (b) Michel, H.O. J. Biol. Chem. 1938, 126, 323. (c) Nicholls, P. Biochem. J. 1961, 81, 374. (d) Berzofsky, J.A.; Piesach, J.; Blumberg, W.E. Biol. Chem. 1971, 246, 3367-3377. (e) Berzofsky, J.A.; Piesach, J.; Blumberg, W.E. Biol. Chem. 1971, 246, 7366-7372. (f) Berzofsky, J.A.; Piesach, J.; Alben, J.O. Biol. Chem. 1972, 247, 3774-3782. (g) Horecker, B.L. Biol. Chem. 1972, 247, 3783-3791.
- 79. (a) Chatfield, M.J.; La Mar, G.N.; Balch, A.L.; Lecomte, J.T.J. Biochem. Biophys. Res. Commun. 1986, 135, 309-315. (b) Chatfield, M.J.; La Mar, G.N.; Balch, A.L.; Smith, K. M.; Parish, D.W.; Le Page, T.J. FEBS Lett. 1986, 206, 343-346. (c) Chatfield, M.J.; La Mar, G.N.; Lecomte, J.T.J.; Balch, A.L.; Smith, K.M.; Langry, K.C. J. Am. Chem. Soc. 1986, 108, 7108-7110.
- 80. (a) Timkovich, R.; Vavra, M.R. <u>Biochemistry</u>, 1985, 24, 5189-5196. (b) Bondoc, L.L.; Chau, M.H.; Price, M.A.; Timkovich, R. Biochemistry 1986, 25, 8458-8466.

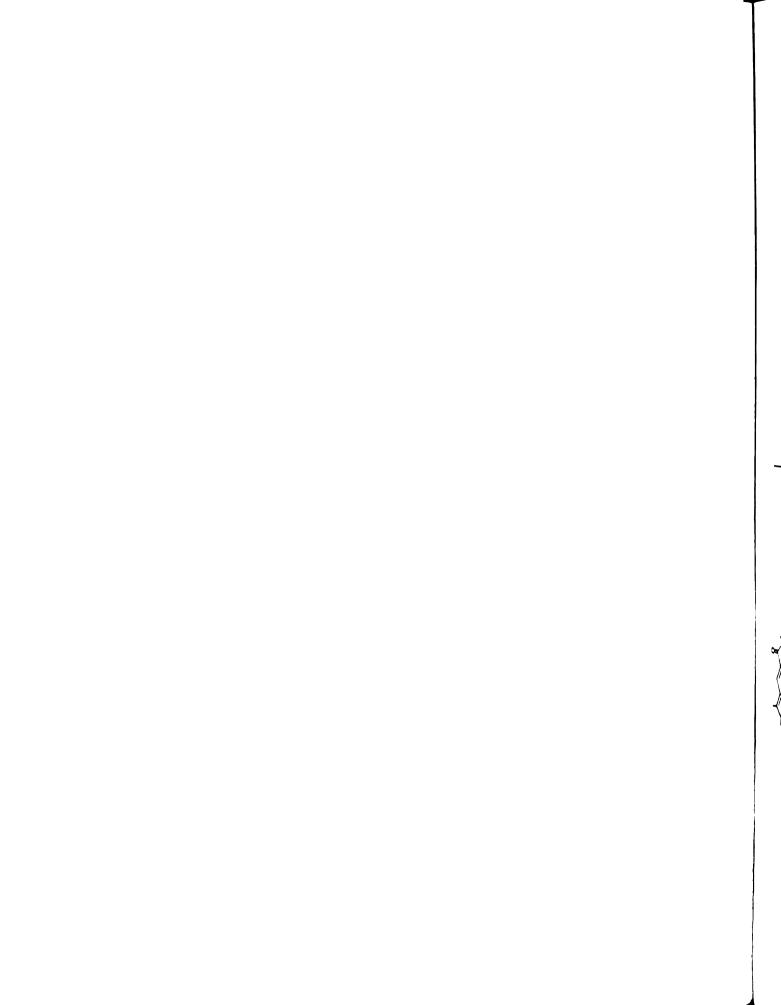
- 81. Cava, M.P.; Levinson, M.I. Tetrahedron Lett. 1985, 41, 5061.
- 82. Navech, J.; Majoral, J.P.; Kraemer, R. Tetrahedron Lett. 1983, 24, 5885.
- 83. Perregaard, J.; Thomsen, I.; Lawesson, S.-O. Bull. Soc. Chim. Belg. 1977, 86, 321.
- 84. Silverstein, R.M.; Bassler, G.C.; Morril, T.C. Spectrometric dentification of Organic Compound, 4th ed.; Wiley: New York, 1981; pp. 132.
- 85. Young, R. Ph.D. Dissertation, Michigan State University, 1984, pp 163.
- 86. Prepared as described In "Organic Synthesis" Coll. Vol. III, pp. 181.
- 87. Johansen, J.E. Piermattie, V.; Angst, C.; Diener, E.; Kratky, C.; Eschenmoser, A. Angew. Chem. Int. Ed. Engl. 1981, 20, 261.
- 88. For a theoretical interpretation of substitution effects in porphyrin absorption spectra see Gouterman, M. J. Chem. Phys. 1959, 30, 1139.
- 89. Furhop, J.H. Structure Bonding (Berlin) 1974, 18, 1.
- 90. Felton, R.H. In "The Porphyrins," Dolphin, D., Ed.; Academic Press: New York, 1978; vol. V, Chapter 3.
- 91. Stolzenberg, A.M.; Strauss, S.H.; Holm, R.H. <u>J. Am. Chem. Soc.</u> 1981, 103, 4763.
- 92. Stolzenberg, A.M.; Spreer, L.O.; Holm, R.H. J. Chem. Soc. Chem. Commun. 1979, 1077.
- 93. Richardson, P.F.; Chang, C.K.; Spaulding, L.D.; Fajer, J. J. Am. Chem. Soc. 1979, 101, 7736.
- 94. Richardson, P.F.; Chang, C.K.; Hanson, L.K.; Spaulding, L.D.; Fajer, J. J. Phys. Chem. 1979, 83, 3420.
- 95. Chang, C.K.; Fajer, J. J. Am. Chem. Soc. 1980, 102, 848.
- 96. Chang, C.K.; Hanson, L.K.; Richardson, P.F.; Young, R.; Fajer, J. Proc. Nat'l. Acad. Sci. U.S.A. 1981, 78, 2652.
- 97. Fujita, E.; Fajer, J. J. Am. Chem. Soc. 1983, 105, 6743.
- 98. Chang, C.K.; Barkigia, K.M.; Hanson, L.K.; Fajer, J. J. Am. Chem. Soc. 1986, 108, 1352.
- 99. Fuhrhop, J.-H.; Kadish, K.M.; Davis, D.G. J. Am. Chem. Soc. 1973, 95, 5140.

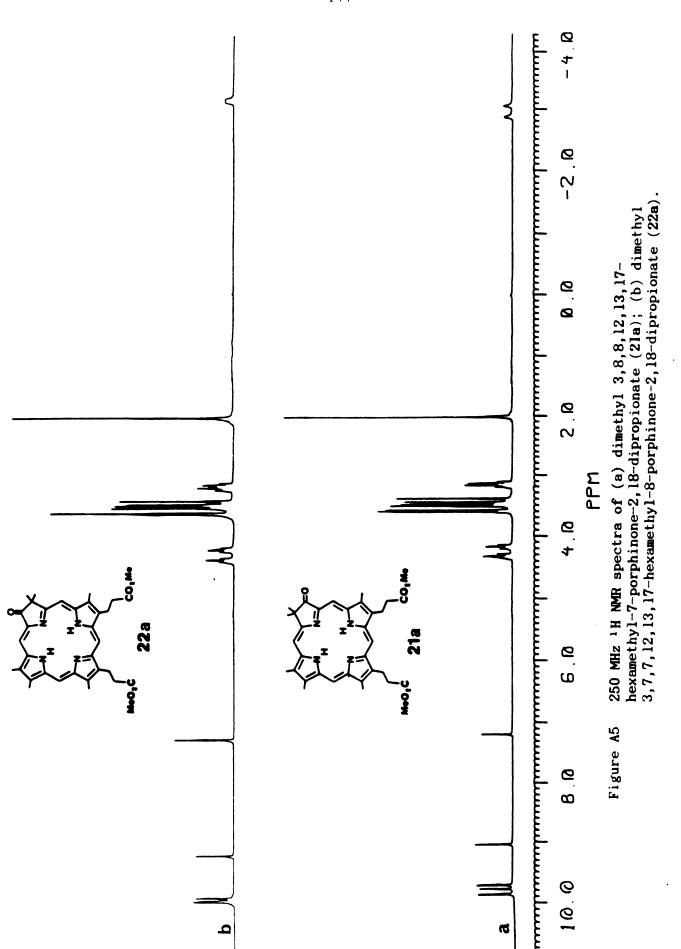

- 100. General reference: Sano, S. In "The Porphyrins" Vol. VII; Dolphin, D., ed.; Academic Press, New York, 1979, pp. 378-402.
- 101. (a) Theorell, H. Biochem. J. 1934, 268, 73. (b) Wittenberg, J.B. Physiol. Rev. 1970, 50, 559. (c) Hills, B.A. Science 1973, 182, 823.
- 102. Dickerson, R.E.; Geis, I. In "Hemoglobin: Structure, Function, Evolution and Pathology," Benjamin/Cummings Publishing, Menlo Park, CA, 1983.
- 103. Scheidt, W.R.; Reed, C.A. Chem. Rev. 1981, 81, 543.
- 104. Newton, J.E.; Hall, M.B. Inorg. Chem. 1984, 23, 4627.
- 105. Sono, M.; Asakura, T. J. Biol. Chem. 1975, 250, 5227.
- 106. Asakura, T.; Sono, M. J. Biol. Chem. 1974, 249, 7087.
- 107. Mamoru, T.; Woodrow, III, G.V.; Yonetani, T. Biochim. Biophys. Acta 1973, 317, 34.
- 108. Antonini, T.; Brunori, M.; Caputo, A.; Chiancone, E.; Fanelli, A.R.; Wyman, J. Biochim. Biophys. Acta 1964, 79, 284.
- 109. Seybert, D.W.; Moffat, K.; Gibson, Q.H. Biochem. Biophys. Res. Commun. 1975, 63, 43.
- 110. Antonini, E.; Gibson, Q.H. Biochem. J. 1960, 76, 534.
- 111. Sono, M.; Smith, P.D.; McCray, J.A.; Askura, T. J. Biol. Chem. 1976, 251, 1418.
- 112. Seybert, D.W.; Moffat, K.; Gibson, Q.H. J. Biol Chem. 1976, 251, 45.
- 113. Seybert, D.W.; Moffat, K.; Gibson, Q.H.; Chang, C.K. J. Biol Chem. 1977, 252, 4225.
- 114. (a) Iizuka, T.; Watanabe, K.; Makino, R.; Sakaguchi, K.; Mitani, F.; Ishimura, Y.; Kawabe, K.; Yoshida, Z.; Ogoshi, H. In "Oxyganases and Oxygen Metabolism," Academic Press, New York, 1982, pp. 445-450. (b) Kawabe, K.; Imaizumi, K.; Imai, K.; Tyuma, I.; Ogoshi, H.; Iwahara, T.; Yoshida, Z. J. Biochem. 1982, 92, 1703.
- 115. Chang, C.K.; Ward, B.; Ebina, S. Arch. Biochem. Biophys. 1984, 231, 366.
- 116. Sishta, B.P.; Mauk, A.G. Inorg. Chem. 1987, 26, 622.
- 117. (a) Boxer, S.G.; Wright, K.A. J. Am. Chem. Soc. 1979, 101, 6791.
 (b) Pearlstein, R.M.; Davis, R.C.; Ditson, S.L. Proc. Nat'l. Acad. Sci. U.S.A. 1982, 79, 400.

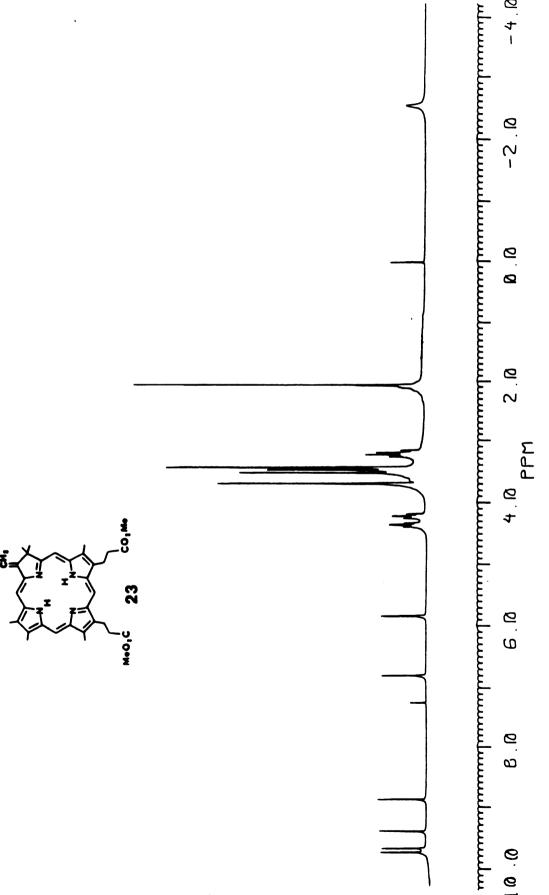
- 118. Takeda, M.; Aoyagi, K.; Aoyama, Y.; Ogoshi, H. Chem. Lett. 1983, 1393.
- 119. Chang, C.K. In "The Biological Chemistry of Iron," Dunford, H.B.; Dolphin, D.; Raymond, K.N.; Sieker, L., Eds. D. Reidel: Dordrecht, 1982, pp. 313-334.
- 120. (a) Strauss, S.H.; Holm, R.H. <u>Inorg. Chem.</u> 1982, <u>21</u>, 863. (b) Strauss, S.H.; Silver, M.E.; Ibers, J.A. <u>J. Am. Chem. Soc.</u> 1983, <u>105</u>, 4108.
- (a) Fischer, H.; Orth, H. In "Die Chemie des Pyrrols," Akademische Verlagsgesselschaft: Leipzig, Germany, 1937; Vol. II. Parts 1 and 2. (b) Falk, J.E. "Porphyrins and Metalloporphyrins,"; Elsevier: Amsterdam; 1964.
- 122. (a) Chang, C.K.,; Traylor, T.G. Proc. Nat'l. Acad. Sci. U.S.A. 1975, 72, 1166. (b) Traylor, T.G.; Magde, D.; Taube, D.; Jongeward, K. J. Am. Chem. Soc. 1987, 109, 5864.
- 123. Frydman, R.B.; Frydman, B.; Acc. Chem. Res. 1987, 20, 250.
- 124. Inhoffen, H.H.; Brockmann, H.Jr.; Bliesener, K.M. <u>Liebigs Ann.</u> Chem. 1969, 730, 173.
- 125. Young, R.; Chang, C.K. J. Am. Chem. Soc. 1985, 107, 898.
- 126. Falk, J.E. "Porphyrins and Metalloporphyrins,"; Elsevier: Amsterdam; 1964. pp. 28.
- 127. Yonetani, T.; Asakura, T. J. Biol. Chem. 1969, 244, 4580.
- 128. Teale, F.W.J. Biochim. Biophys. Acta 1959, 35, 543.
- 129. (a) Tamura, M.; Asakura, T.; Yonetani, T. Biochim. Biophys. Acta 1973, 295, 467. (b) Tamura, M.; Woodrow, G.V, III: Yonetani, T.; Biochim. Biophys. Acta 1973, 317, 34.
- 130. (a) Traylor, T.G.; Chang, C.K.; Geibel, J.; Benzinis, A.; Mincey, T.; Cannon, J. J. Am. Chem. Soc. 1979, 101, 6716. (b) Antonini, R.; Bruhori, M. In "Hemoglobin and Myoglobin in Their Reactions with Ligands," North-Holland, Amsterdam, 1971.
- 131. Marzilli, G.L.; Marzilli, P.A.; Halpern, J. J. Am. Chem. Soc. 1971, 93, 1374.

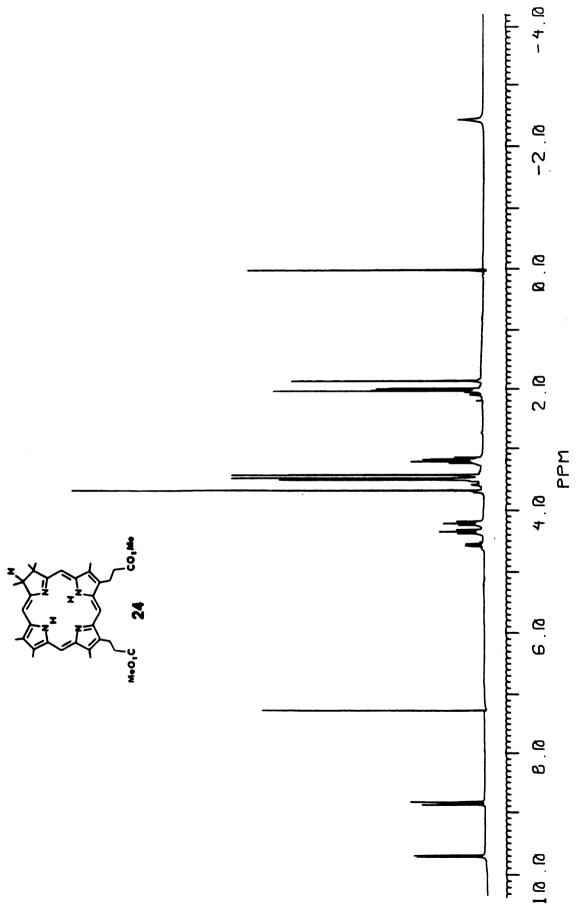


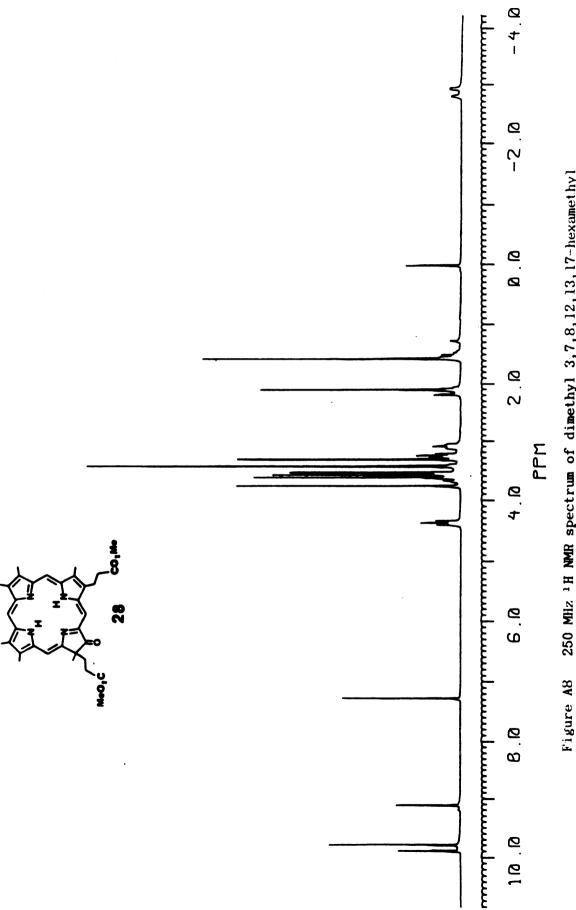


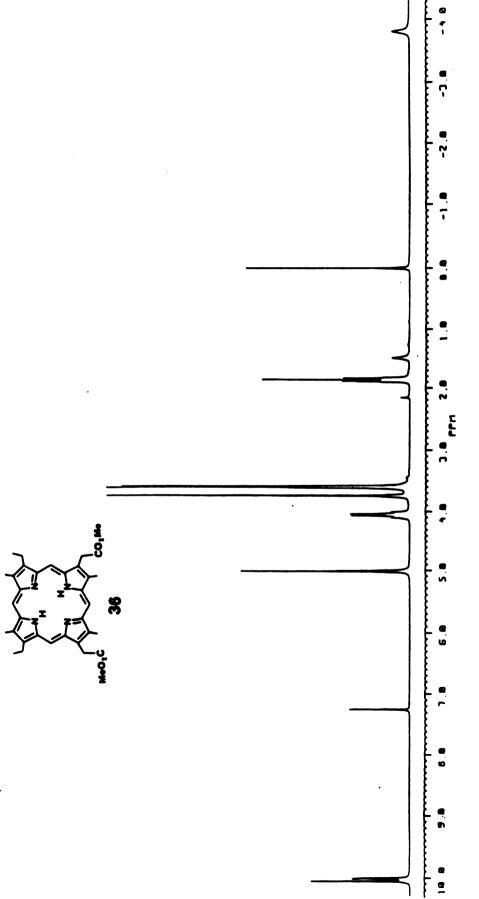

250 MHz ¹H NMR spectrum of dimethyl cis-7,8-dihydroxy-3,7,8,12,13,17-hexamethylchlorin-2,18-dipropionate (16a).

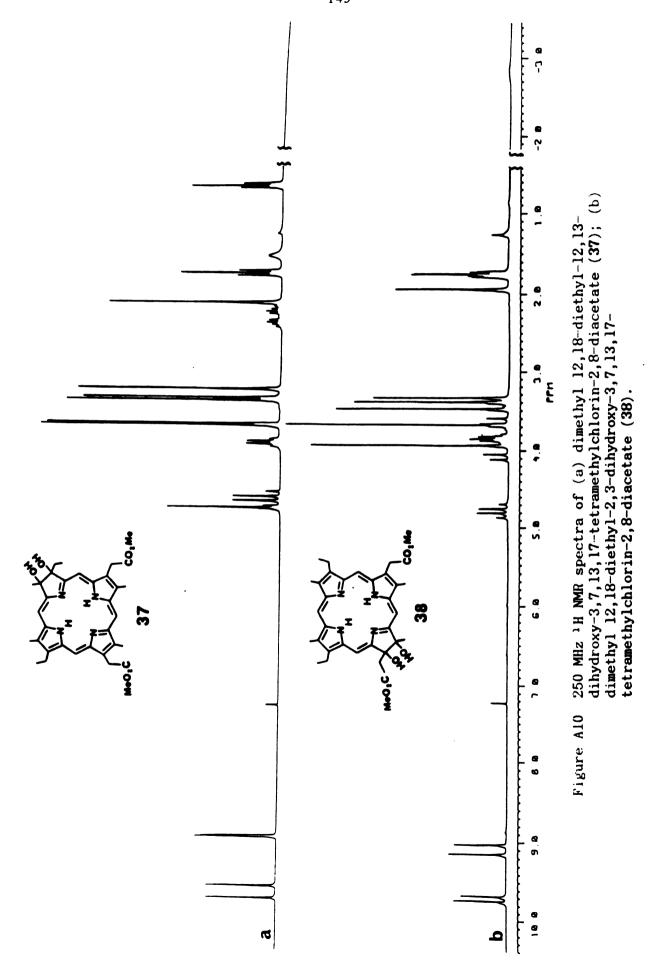


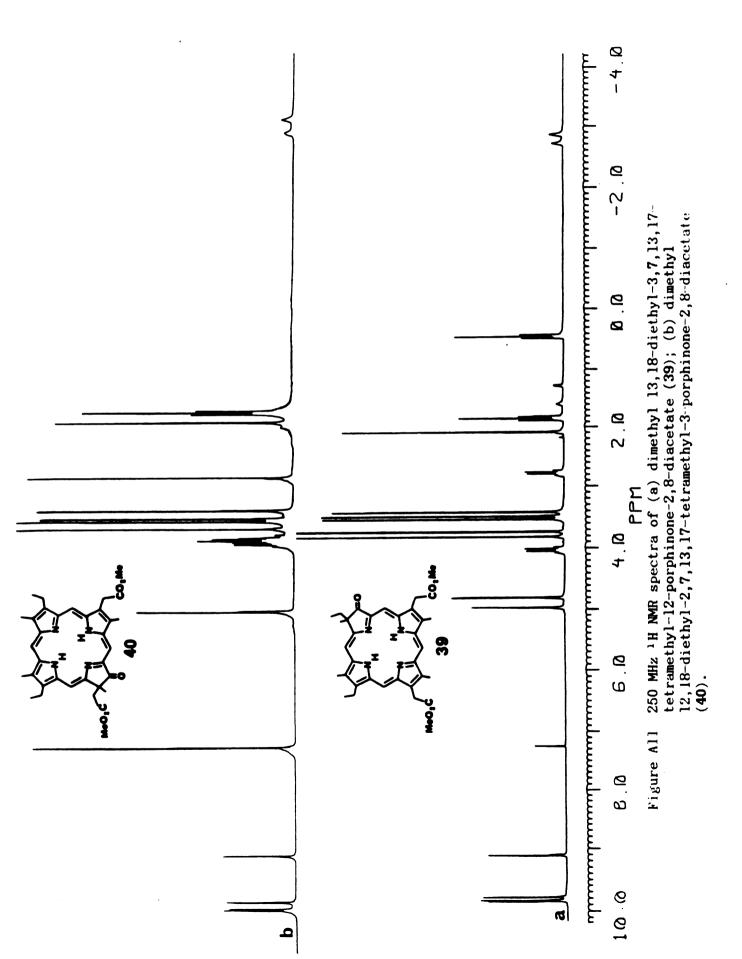

250 MHz ¹H NMR spectrum of dimethyl cis-7,8,12,13-tetraethyl-7,8-dihydroxy-3,17-dimethylchlorin-2,18-dipropionate (16b). Figure A2

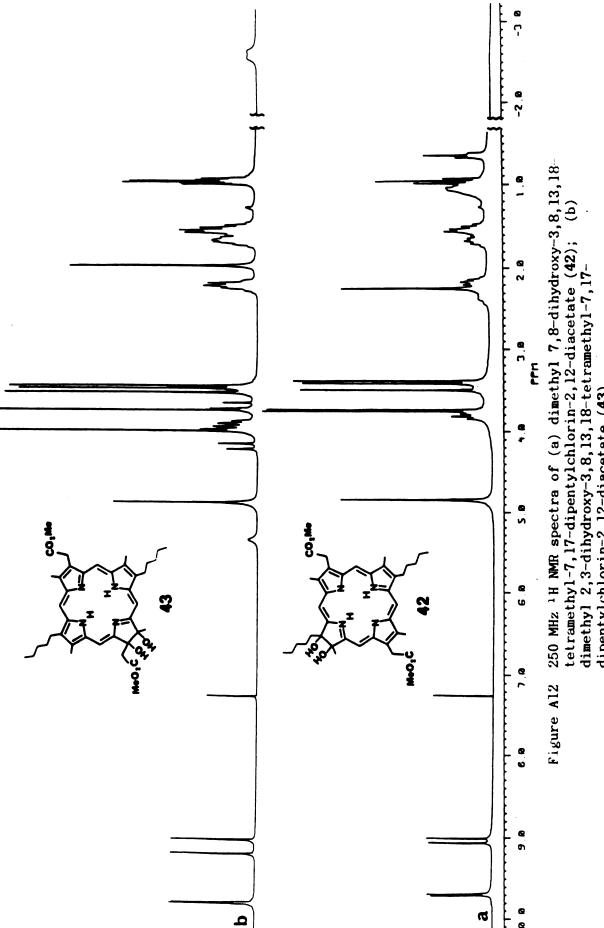




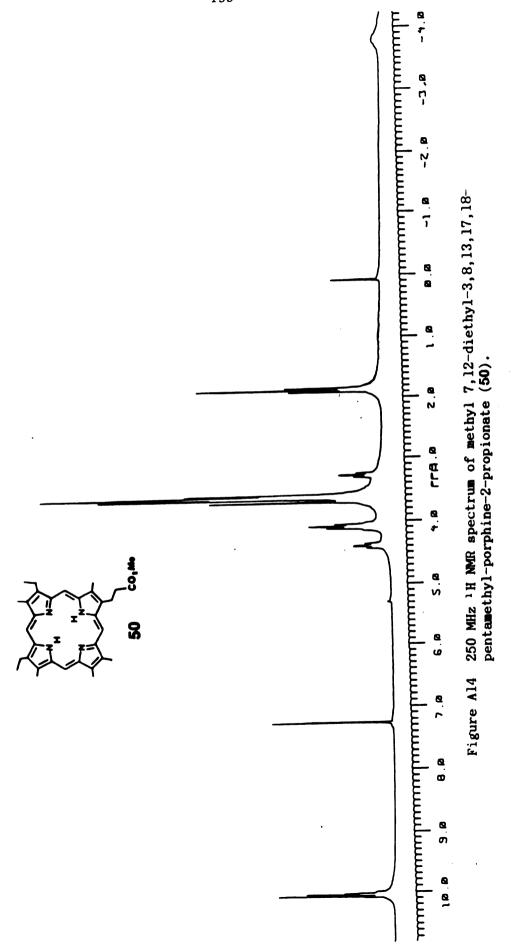

250 MHz ¹H NMR spectrum of dimethyl 3,7,7,12,13,17-hexamethyl-8-methylenechlorin-2,18-dipropionate (23). Figure A6

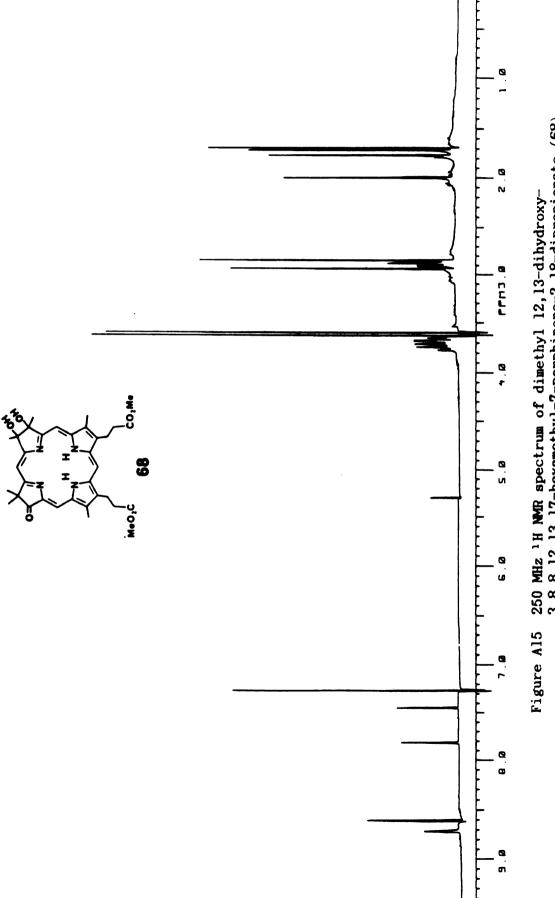

250 MHz ¹H NMR spectrum of dimethyl 3,7,7,8,12,13,17 heptamethylchlorin-2,18-dipropionate (24). Figure A7

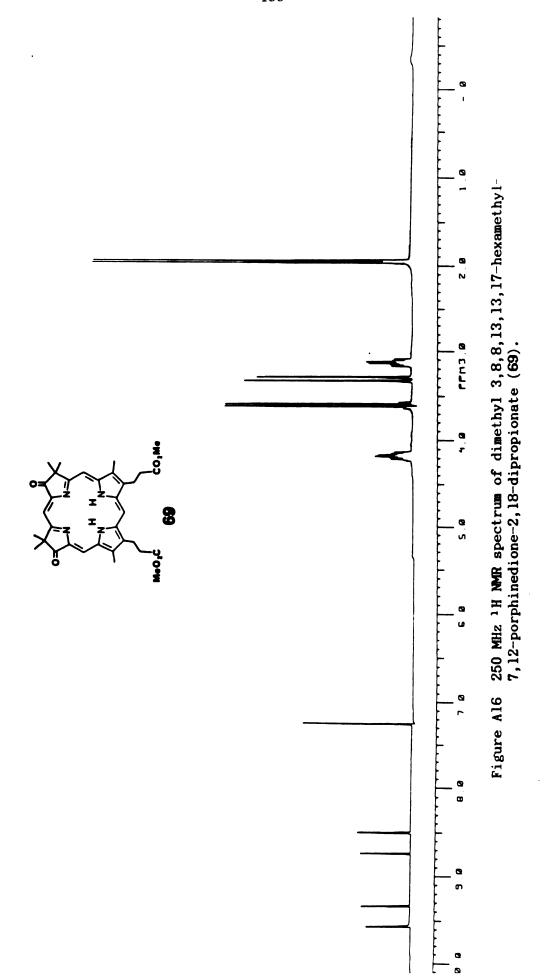


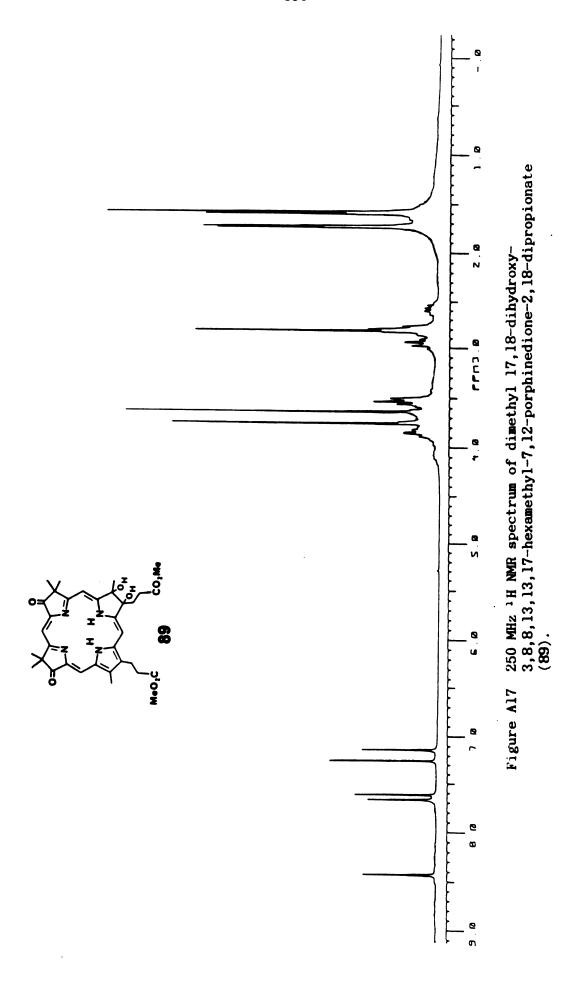

250 MHz ¹H NMR spectrum of dimethyl 3,7,8,12,13,17-hexamethyl 18-porphinone-2,17-dipropionate (28).

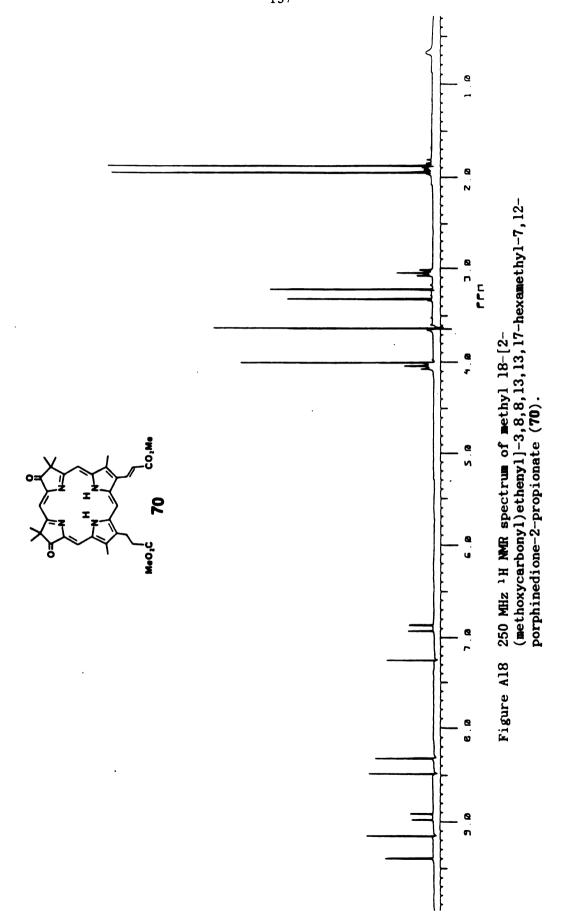
250 MHz ¹H NMR spectrum of dimethyl 12,18-diethyl-3,7,13,17-tetramethylporphine-2,8-diacetate (36). Figure A9

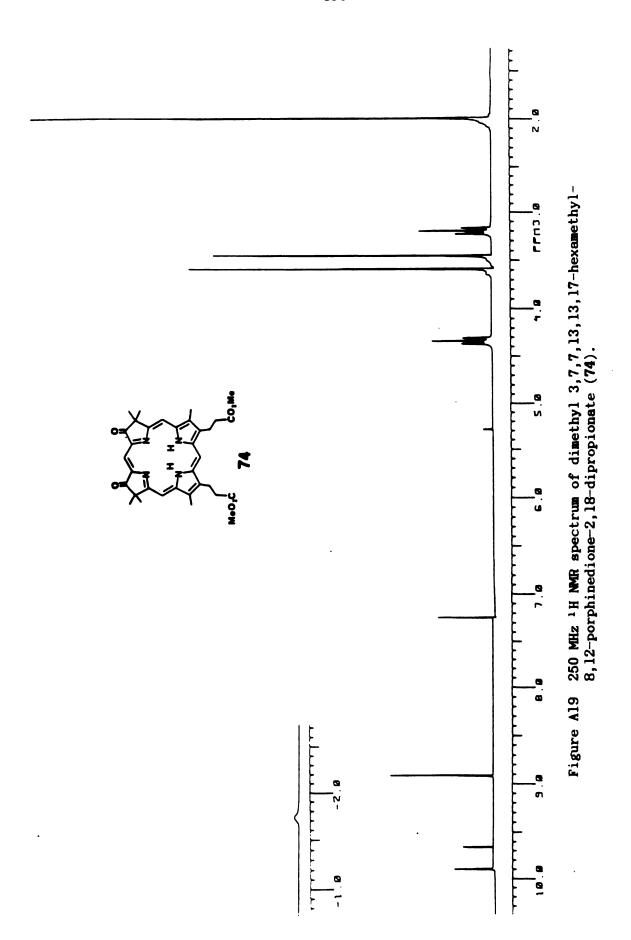


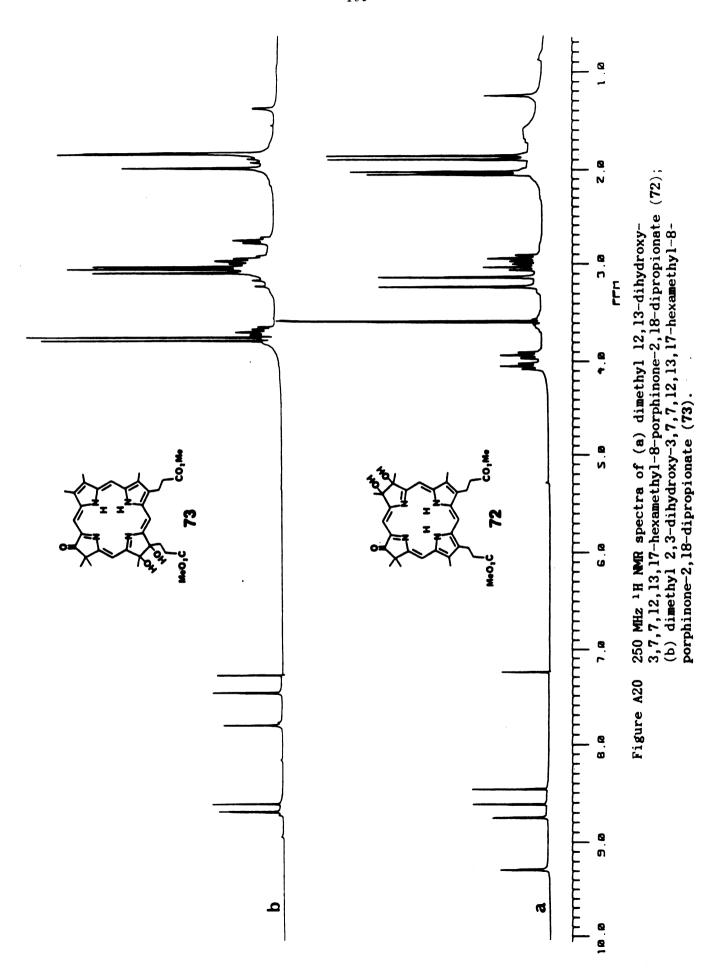


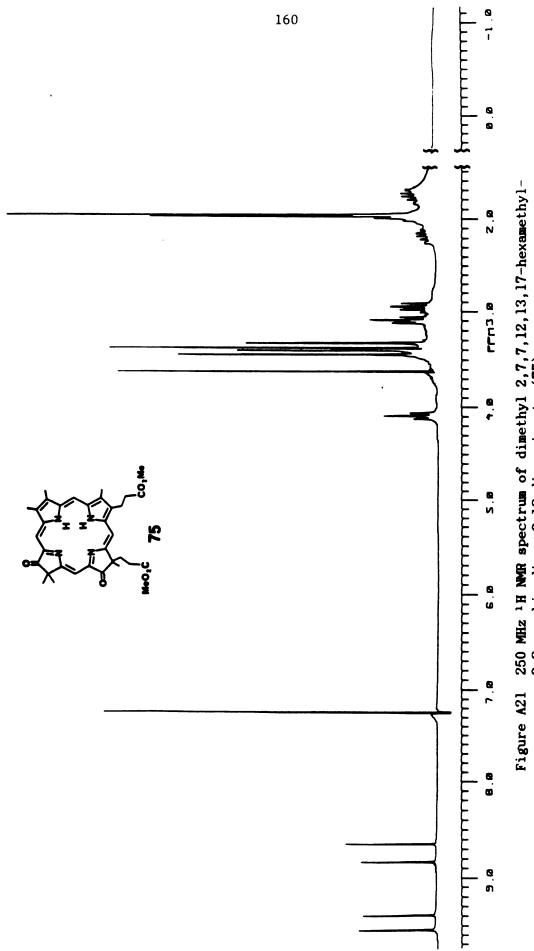

250 MHz ¹H NMR spectra of (a) dimethyl 7,8-dihydroxy-3,8,13,18-tetramethyl-7,17-dipentylchlorin-2,12-diacetate (42); (b) dimethyl 2,3-dihydroxy-3,8,13,18-tetramethyl-7,17-dipentylchlorin-2,12-diacetate (43).








250 MHz ¹H NMR spectrum of dimethyl 12,13-dihydroxy-3,8,8,12,13,17-hexamethyl-7-porphinone-2,18-dipropionate (68).



250 MHz ¹H NMR spectrum of dimethyl 2,7,7,12,13,17-hexamethyl-3,8-porphinedione-2,18-dipropionate (75).

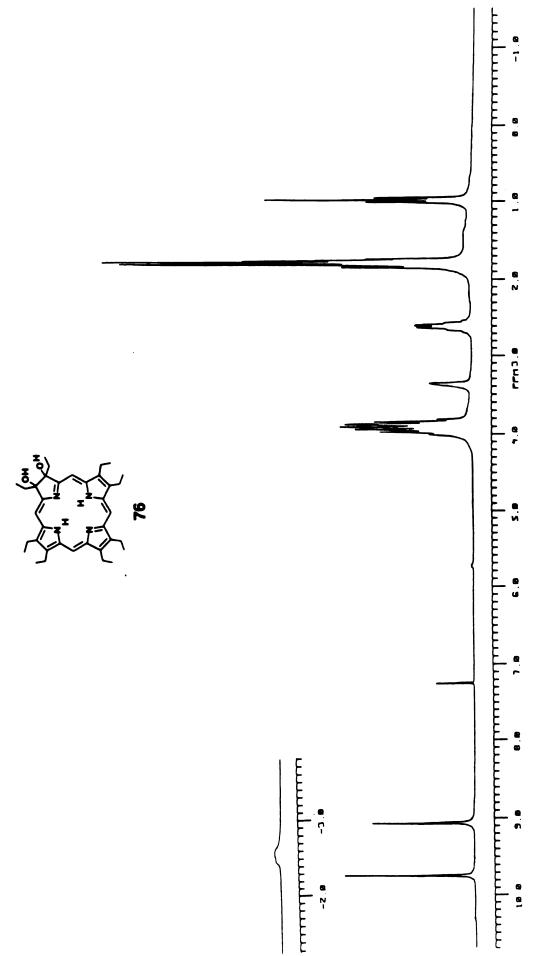
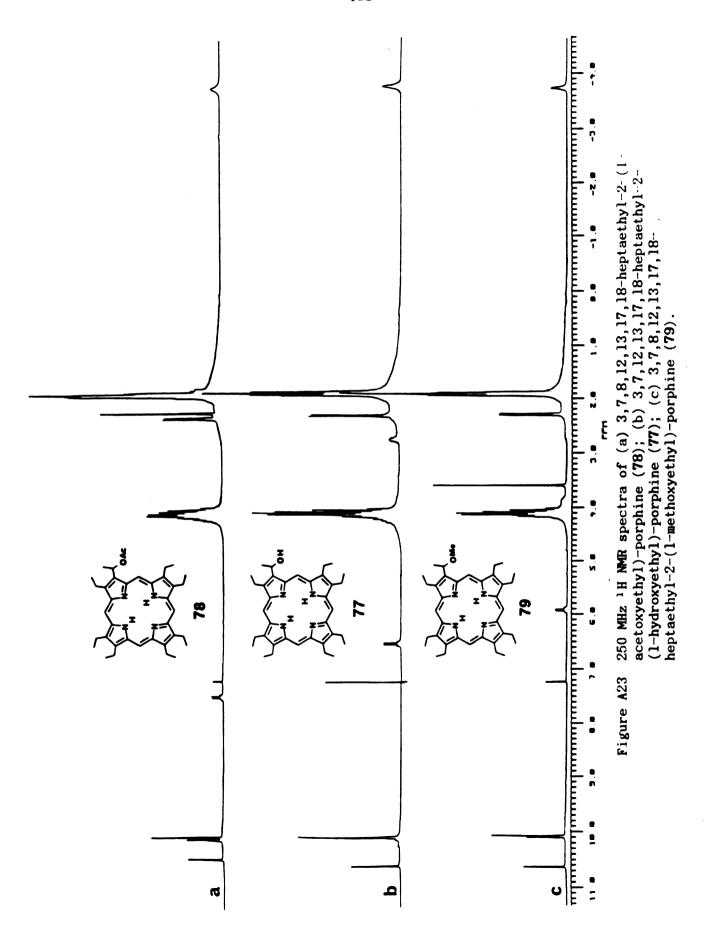
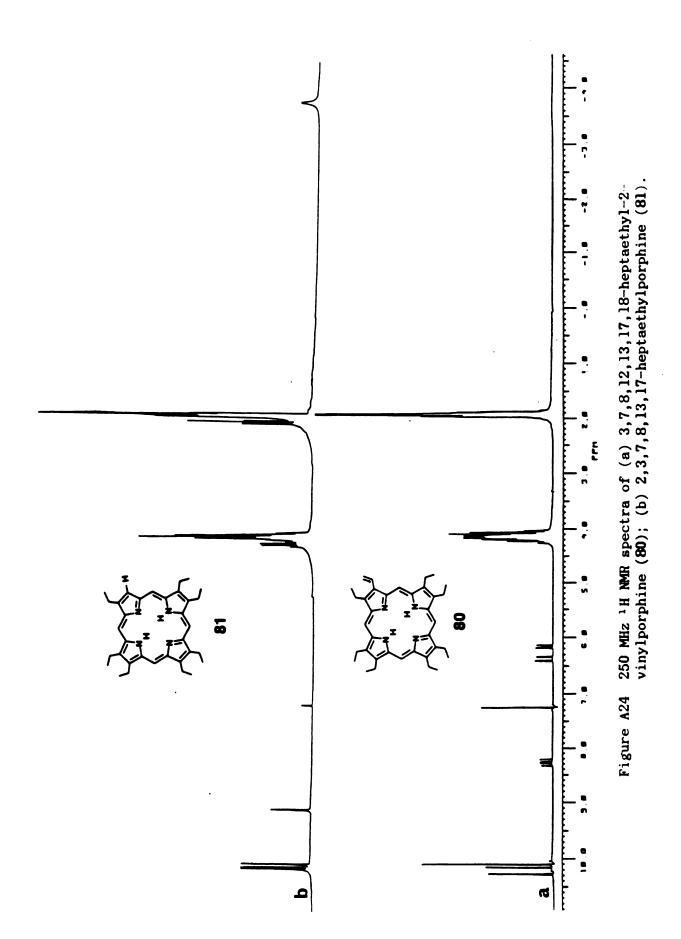
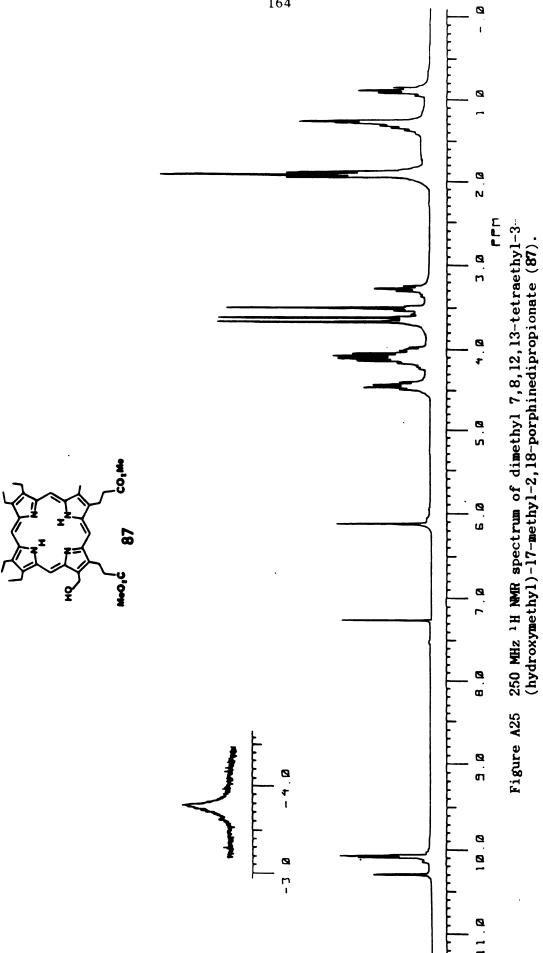
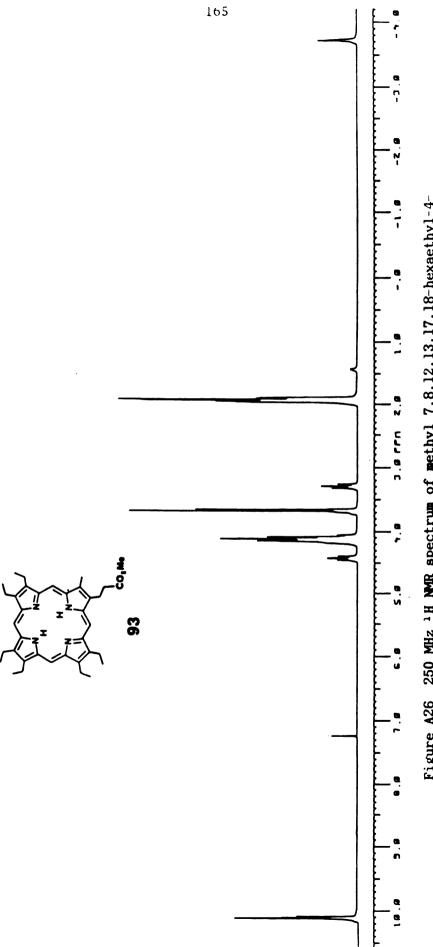
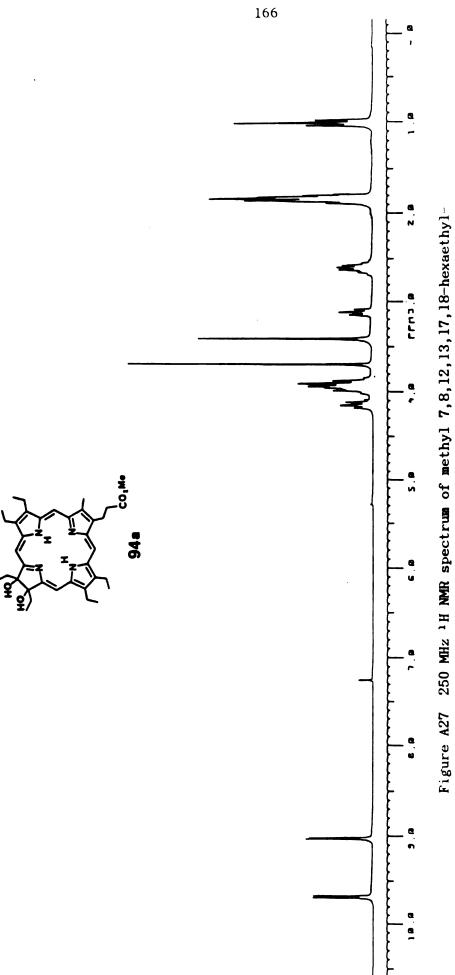
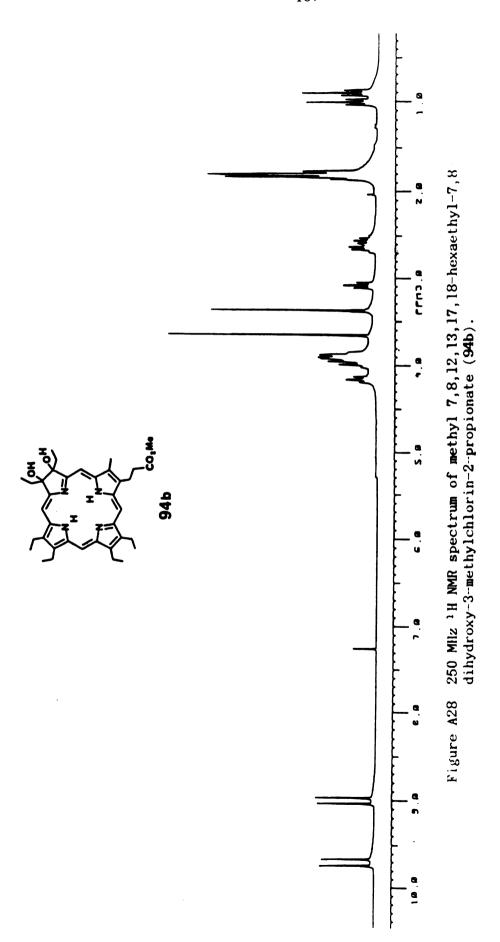
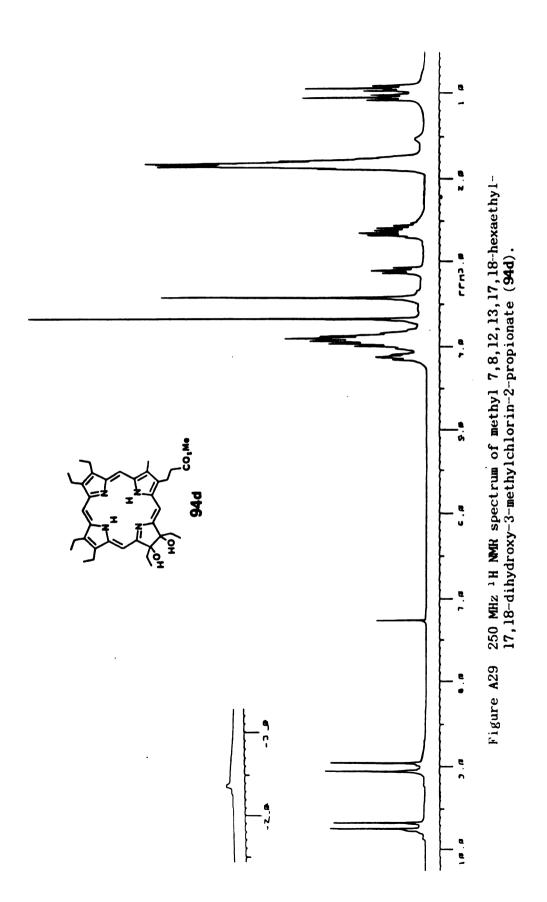
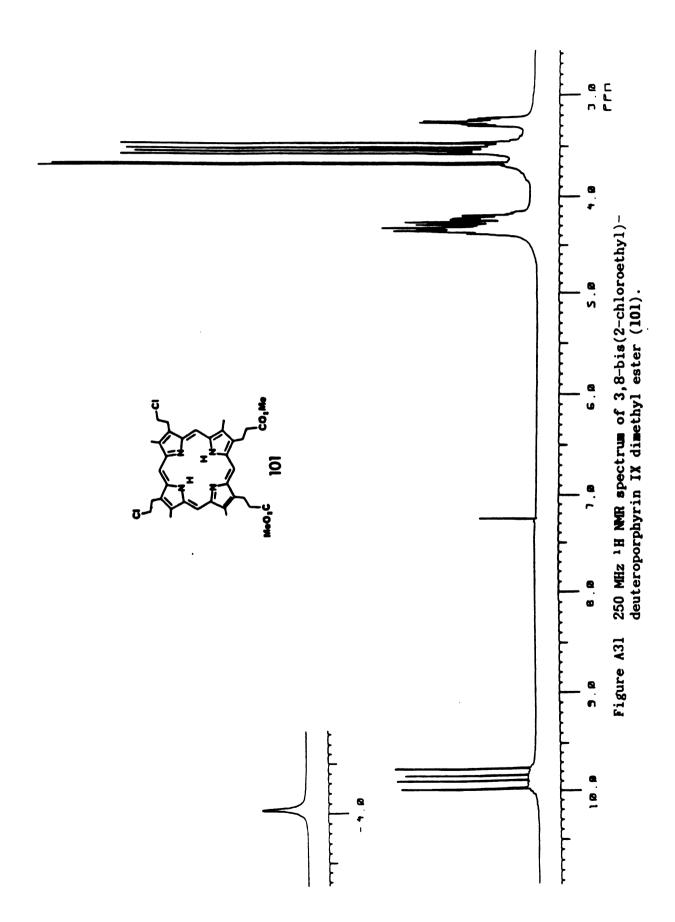






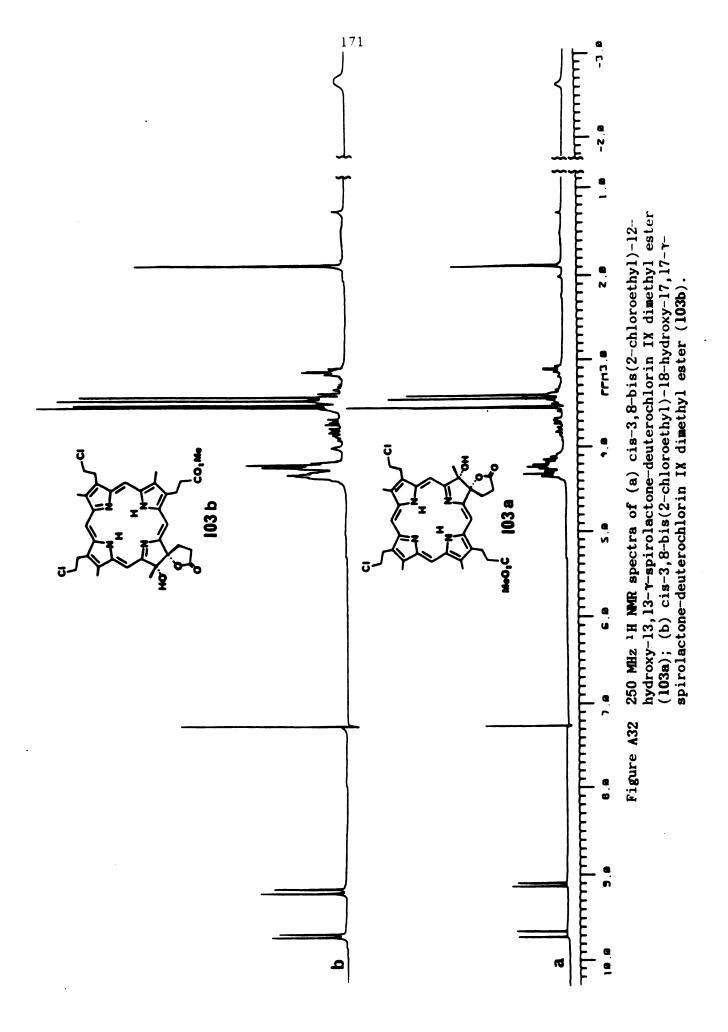
Figure A22 250 MHz ¹H NMR spectrum of vic-dihydroxyoctaethylchlorin (76).

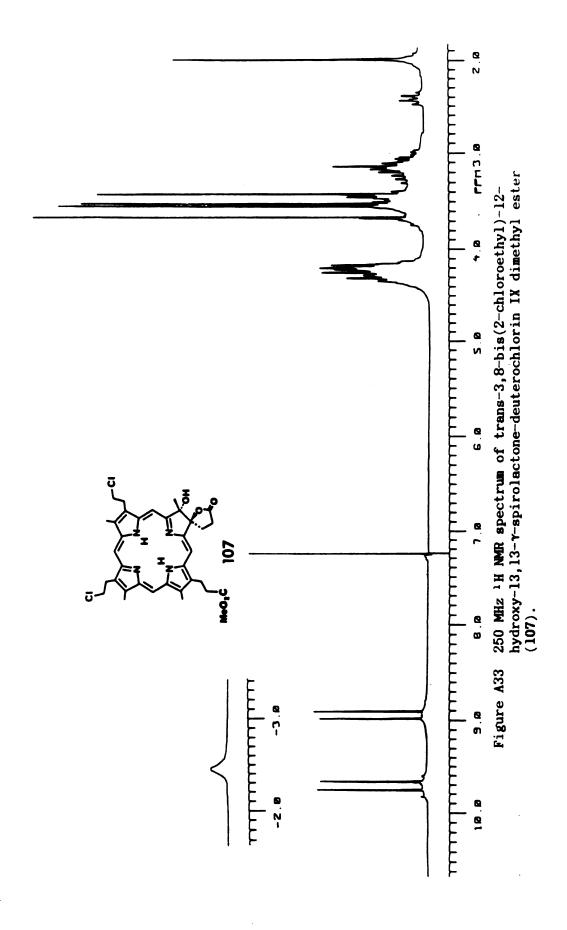


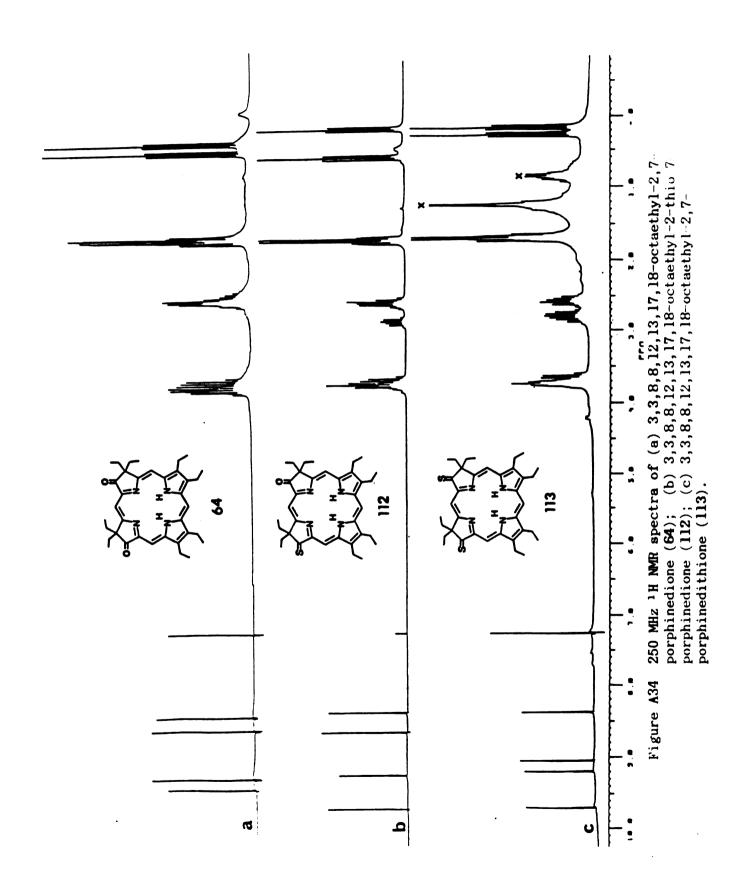


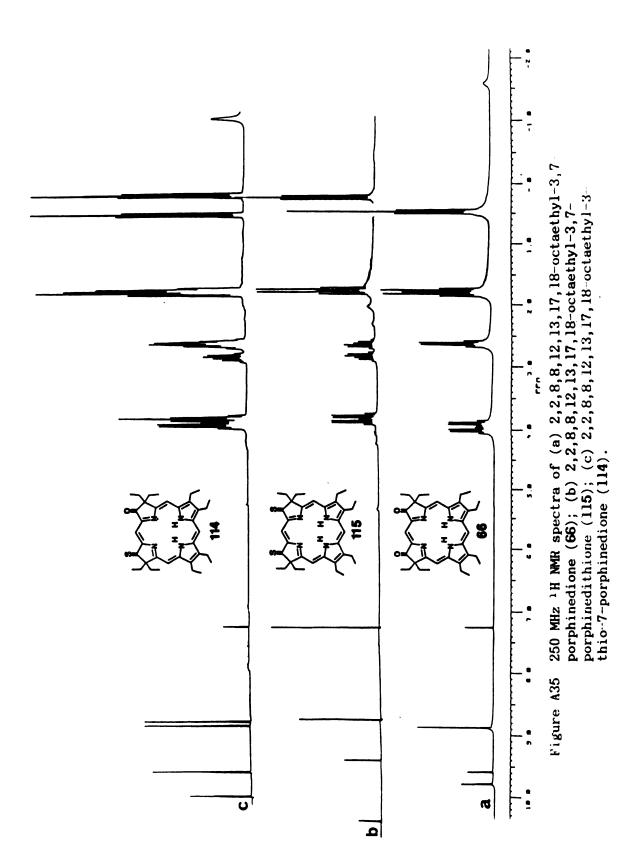


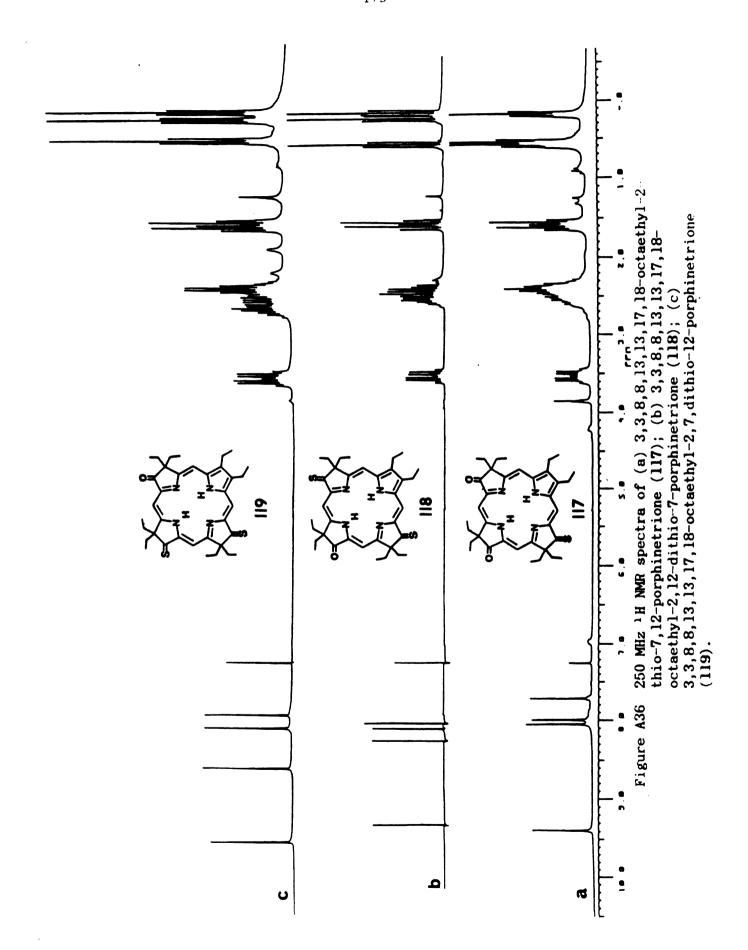

250 MHz ^1H NMR spectrum of methyl 7,8,12,13,17,18-hexaethyl-4-methyl-porphine-2-propionate (93). Figure A26

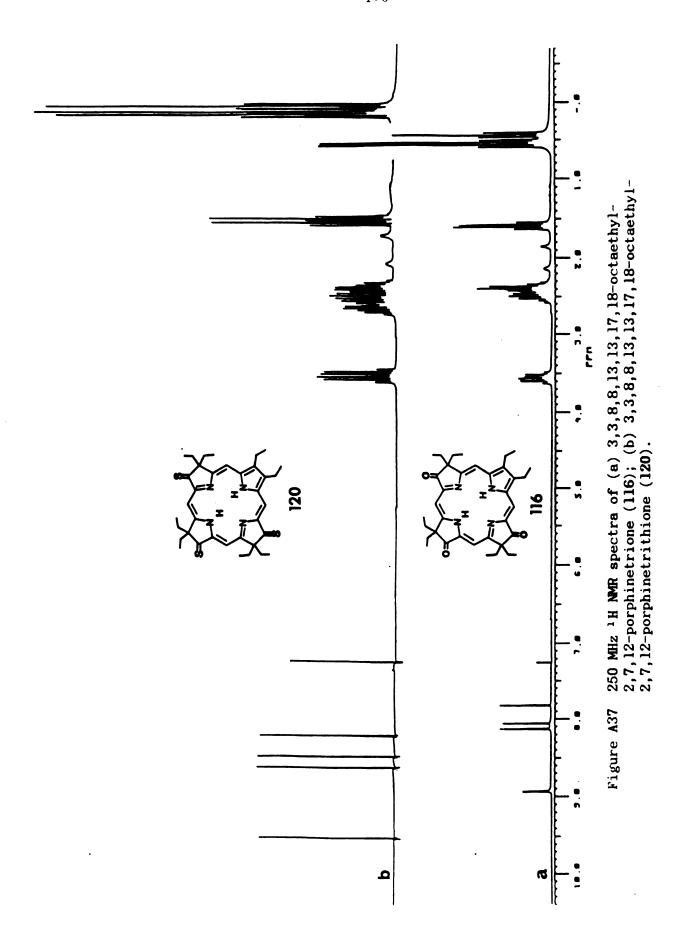


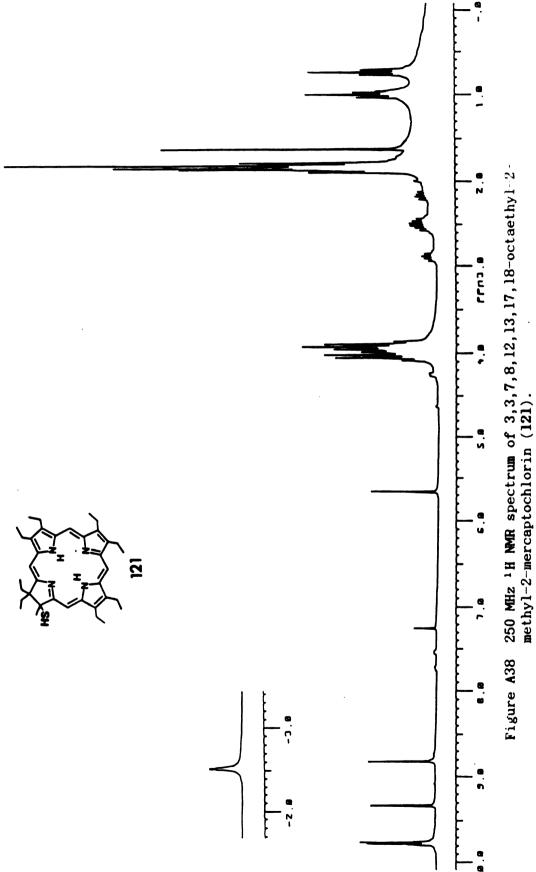

250 MHz ¹H NMR spectrum of methyl 7,8,12,13,17,18-hexaethyl-12,13-dihydroxy-4-methylchlorin-2-propionate (94a).

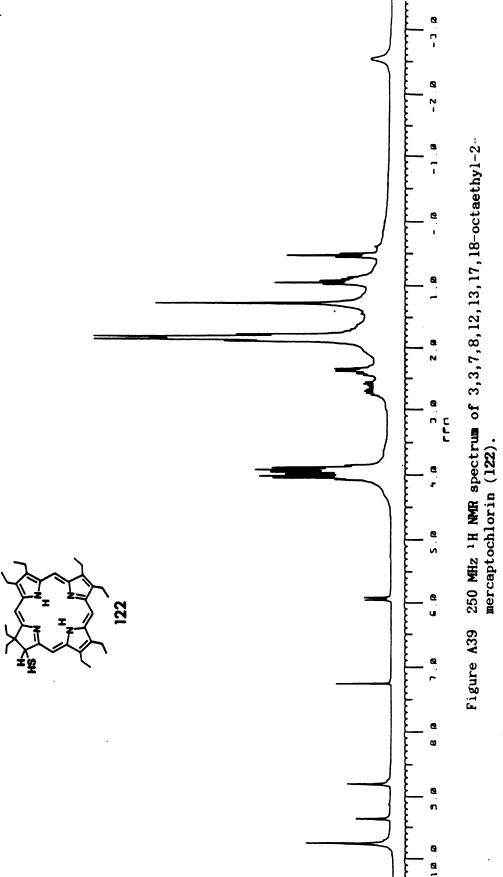


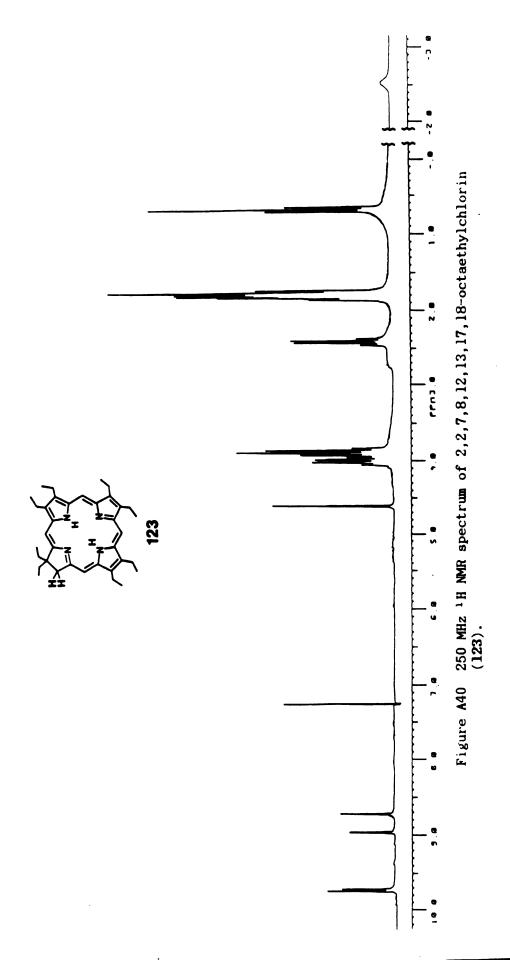












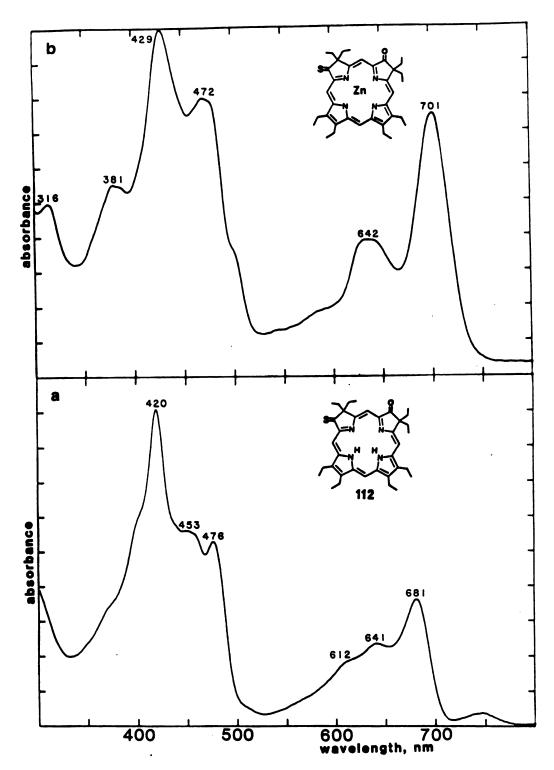


Figure A41 Visible spectra (in CH₂Cl₂) of (a) 3,3,8,8,12,13,17,18-octaethyl-2-thio-7-porphine-dione (112); (b) its Zn-complex.

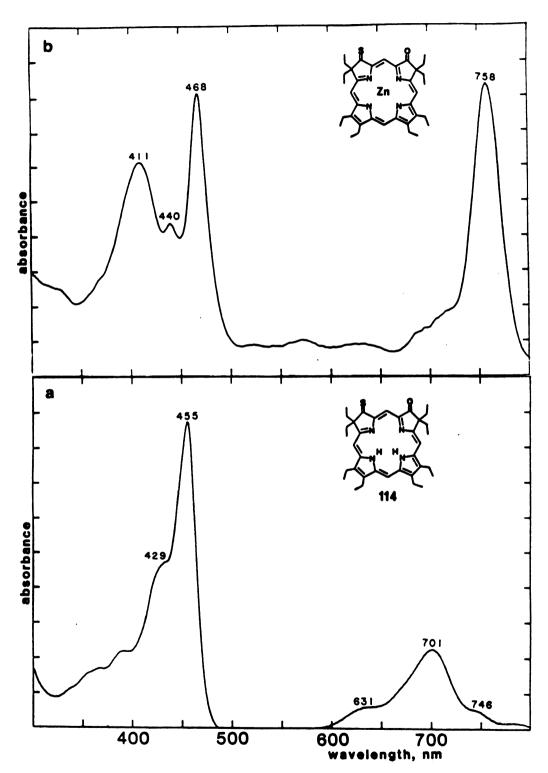


Figure A42 Visible spectra (in CH₂Cl₂) of (a) 2,2,8,8,12,13,17,18-octaethyl-3-thio-7-porphine-dione (114); (b) its Zn-complex.

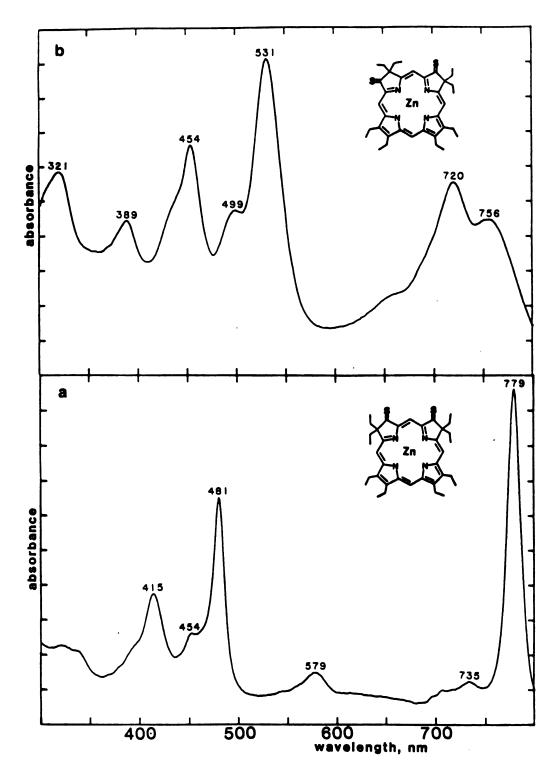


Figure A43 Visible spectra (in CH₂Cl₂) of Zn-complexes of (a) 3,3,8,8,12,13,17,18-octaethyl-2,7-porphinedithione (113); (b) 2,2,8,8,12,13,17,18-octaethyl-3,7-porphinedithione (115).

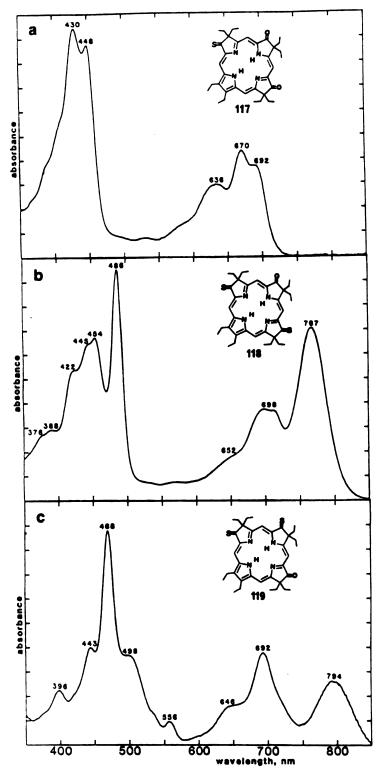


Figure A44 Visible spectra (in CH₂Cl₂) of (a) 3,3,8,8,13,13,17,18-octaethyl-2-thio-7,12-porphinetrione (117); (b) 3,3,8,8,13,13,17,18-octaethyl-2,12-dithio-7-porphinetrione (118); (c) 3,3,8,8,13,13,17,18-octaethyl-2,7-dithio-12-porphinetrione (119).

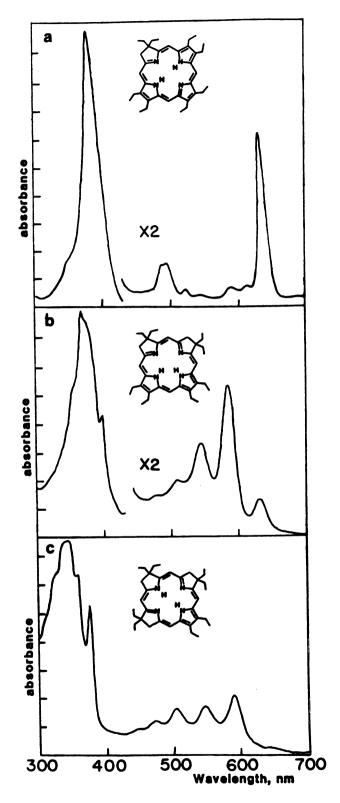


Figure A45 Visible spectra (in CH₂Cl₂) of (a) dihydro-OEP; (b) tetrahydro-OEP; (c) hexahydro-OEP (under argon).

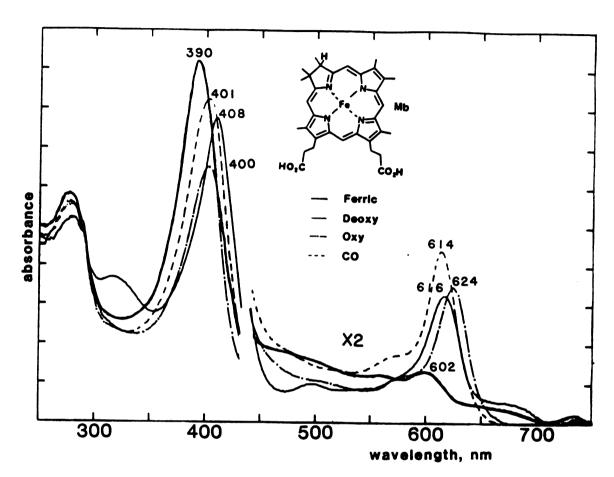


Figure A46 Optical spectra of methylchlorin-heme myoglobin; Ferric (——), Deoxy (——), Oxy (——), CO (——) in 10 mM (pH 7.4) potassium posphate buffer.

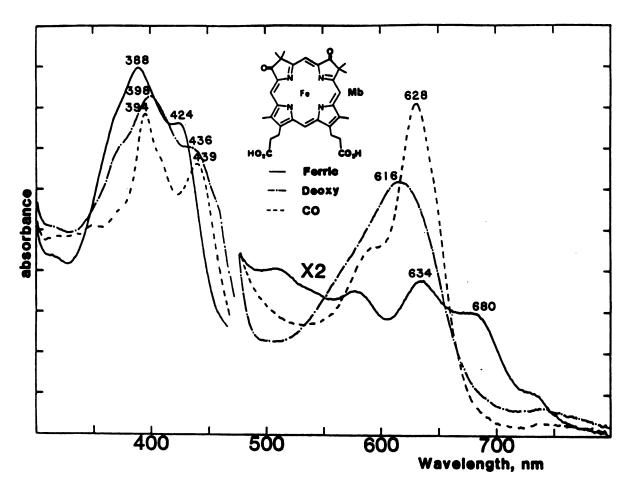


Figure A47 Optical spectra of dione-heme myoglobin; Ferric (—), Deoxy (—·—), CO (---), in 10 mM (pH 7.4) potassium posphate buffer.