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ABSTRACT

ELECTRICAL TRAl‘BPORT MEASURBIENTS am 1K

on COLD BURIED POTASSIUM

Shi Yin

The electron-dislocation interaction has been studied with an

emphasis on resistivity for temperatures below 1K. Dislocations are

introduced into the ample by busting using a device driven by

pressurized helium gas, and meamments of the temperature derivative

of the resistivity. dp/d‘l‘. are made down to ZOmK. Zm-diameter samples

are used to avoid the complication due to a size effect when the sample

diameter is of the order of the electron mean free path. For deformed

K(Rb) samples or deformed K samples with vacancies. a vibrating

dislocation mechanism is observed: for deformed K samples in which the

vacancies are annealed out at 60K, a new betavior in dp/d'r is observed

which can be fit by a localized electronic-energy-level model together



with a residual contribution from the vibrating dislocations. A

possible Charge Density wave contribution is also discussed. A

comparison with previous experimental work is made. Thermoelectric

ratio measurements are also reported and discussed.
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INTRODUCTION

Potassium has long been a material of considerable theoretical and

experimental interest. Most people believe that potassium has the

simplest electronic structure in comparison with non-alkali metals. It

has a nearly spherical Fermi surface which is entirely contained with

in the first Brillouin zone, and it has no unfilled d- or fb shells.

Thus the nearly free electron model is a good approximation for many

calculations, making transport theory comparatively easy to carry out.

Furthermore, in contrast to potassium, lithium, sodium. and possibly

even rubidium(l) undergo Martensitic phase transformations at low

temperatures which complicate the. interpretation of measurements.

Potassium is also a good testing ground for the existence of Charge

Density Waves (CDW), which are a broken translational symmetry of the

ground state. Recently, two new experiments have addressed this CD!

hypothesis: the observation of CDU satellites in potassium by

Giebultowicz gt 21.(2) in their neutron diffraction experiment and the

failure in detecting such satellites by H. Yen gt, 2;. (3) in their

synchrotron X-ray diffraction experiment. If found to exist, CDW’would

radically change our basic understanding of transport in such a simple

metal.

In this study we are going to report the effect of

electron-dislocation interaction on the transport properties of

potassium, where the dislocations are produced through deformation of



polycrystalline potassium samples. Since deformation of K might also

change the Q-domain textures of CDw's in potassium (4), the effect of

CDVI's will also be discussed.

This study was begun by Mark I... Haerle _e_t 1149(6). and the

results reported here are a continuation of their work with three

significant improvements: Firstly, we introduce the dislocations into

our sample by twisting with a device driven by pressurized helium gas,

while Pherle g; 91. did it by squashing the sample between two plates.

In our method of deformation the sample geometry change MAIL), where

A is the sample cross sectional area and I. is the sample length, is

much better controlled «1%) than that or rserle‘s (<los). Since the

resistivity p - R(A/L), any change in All. during deformation would

make it difficult to tell the real contribution of dislocations to p .

Secondly, we love used a different dilution refrigerator which can

obtain a much lower temperature (T>20 mK) than that of Haerle 95 31.

(T>80 mK). This new region of temperature is crucial for determining

the low-energy vibration spectrum associated with the dislocations.

Finally, we used 2mm diameter samples to avoid a possible size effect

which made the amlysis of Haerle's 0.9mm diameter samples more

complicated.



Chapter I Basic Electrical Transport Theory

The fundamental basis for electrical transport study is the

following set of equations

J - LuE + an'r (1.1)

Q " Lug + Lair (1.2)

where J is the electric current density, Q is the heat flow current

density, E is the electric field, and vT is the temperature gradient.

The Ir.)- coefficients are tensors in general, but they can be reduced to

scalars here because potassium ins cubic symetry.

In this work we mainly measure the electrical resistivity p and

the thermal power S. They are defined as ,follows

4
p a - (JIE)LT;L.. (1.3)

s - (ENNIS: -I.,,/l.,, (1.4)

1.1 Resistivity

Theory predicts that the resistivity for Bloch electrons in a

perfect lattice is zero, and the finite resistance in a real metal

comes from the interactions of the conduction electrons with the



imperfections of the lattice such as impurities, dislocations, lattice

vibrations, etc. If Matthiessen's rule is obeyed, one can write down

the resistivity of potassium as a sum of terms

p-p.+ap+p“+p“ (1.5)

where p. is the residual resistivity, which is independent of

temperature and is due to scattering by various static imperfections in

the crystal. The second term 3? is usually a function of temperature: a,

- p.P(T). It is due to electrons scattering off phonons. The third term

p“ is the electron-electron scattering term, and it is also

temperature dependent: pu- p.e(T). This term is usually 10* times

smaller ttmn the residml resistivity p. in pure potassium at 1K.

The last term can be expressed as a sum of terms for other

possible contributions to p. The resistivity due to electrons

scattering off phasons, p01* which are the elementary excitation of

CDWs, is one of these possible terms. Because of the recent observation

of CD“ satellites in potassium by Giebultowicz .e_t_ g1.(2), a

phason-scattering term in p can not be ruled out.

Another possible term is p“ , which is the resistivity due to

interactions between electrons and dislocations. Normally one would

expect pd to be temperature independent and thus only contribute to F3.“

However, the work of Haerle has shown that there is also a temperature

dependent term which is of interest in this thesis. A dislocation is an

extended line-defect in a crystal. There are basically two kinds of



dislocations: the edge dislocation and screw dislocation. For an edge

dislocation the Burgers vector b is perpendicular to the dislocation

line, and for a screw dislocation b is parallel to the dislocation

line(Fig. 1.1).

In our experiment we introduce the dislocations into our sample by

twisting. Ideally, torsional deformation along (001) direction in a

cubic symmetry crystal will produce networks of equally spaced screw

dislocations in two perpendicular directions (Fig. 1.2). However, fer

our polycrystalline samples the sample axis is not parallel to any

particular symmetry direction, and there may be imperfections like

vacancies or other dislocations already present in the sample before we.

deform it. we therefore expect to produce a very irregular dislocation

structure during deformation. As we will see later, the temperature at

which we deform the sample and the possible subsequent annealing will

play an important role in affecting the detailed structure of these

imperfections.

1.1.1 The residual resistivity due to dislocations

There are several theories that explain the origin of the

residual resistivity. Of particular interest here are those which

address electron scattering by dislocations.

Using a geometrical model of obstacles at which the conduction

electron energy dissipates, Tsivinskii (7) calculated classically the

residual resistivity due to impurities, vacancies and dislocations.



 

 

 

 

 

-«fishnet»,

(M
(a)

An edge dislocation (a) and a screw dislocation (b).

Figure 1.1



 

Figure 1.2

Screw dislocations

Two neighbouring planes in a simple cubic lattice rotated slightly with

respect to each other. A regular pattern of screw dislocations is

visible. The ( 001) direction is perpendicular to the page.



From this classical theory the resistivity is given by

p - (ZMVIe‘n.)(1/l) (1.6)

where e and m are electron charge and mass, respectively, n. is the

free electron concentration per unit volume, v is the Fermi velocity,

and a is the mean free nth.

For a dislocation contribution to p, Tsivinskii armed that the

mean free path 1 can be replaced by the following formula:

A ' 1/bN (1.7)

where N is the dislocation density(#lcm2) and b is approximately equal

to the magnitude of the Burgers vector. In this way, we obtain

p - 2mvbN/e2n,- UN . (1.8)

For potassium, Eq. (1.8) predicts tint

-‘9 3

W - 1.6x10 (11cm )e (1.9)

This value of w is- almost a factor of 2 smaller than the experimental

value obtained by Basinski 333 51. (a).

For the contribution of impurities or vacancies Tsivinskii uses



A - 1/[1rn(xz-x2;)] (1.10)

in which n is the atomic concentration per unit volume of the metal,

and x and x, are ionic and impurity radii, respectively. For vacancies

x,-O.

Another theory was proposed by Basinski 'et al.(8) in which they

calculated the mean atomic displacement from equilibrium due to the

strain field around a dislocation. They asked what temperature is

needed to give the same mean displacement via random thermal motion.

Then they assumed that the increase in p due to the dislocation is the

same as the resistivity due to the electron-phonon interaction at this

temperature. They derived VI - «lo-”ncfi’ in formula (1.8) for

potassium, which is in good agreement with the experiment they

performed.

In,a third theory, Brown(9) calculated the resistivity due to

resonant s-wave scattering of the electrons. The resonance is created

by virtual bound states which are associated with the dislocation

cores. He predicted that

~10

where for potassium w - 8x10 11cm3 which is a factor of 2 larger than

the experimental value from Basinski(8) ggflg1. Brown argued against a

correction factor used by Basinski in obtaining their experiment result

which, if omitted, would bring Brown's theory in closer agreement with
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experiment.

Gurney and Gugan(10) performed an early study of the effects on

the residual resistivityof annealing a wire of deformed potassium. In

their experiment the residual resistivity was measured first, and then

the sample was plastically deformed at 4.2K. Again p. was measured.

Next the sample was amealed at a hiduer temperature and then slowly

cooled down to 4.2K where po was measured. They kept annealing and

measuring oo in stages until the initial value of pa was recovered. The

Gurney and Gugan interpretations, which are significant to this thesis,

are as follows:

1. Between 3 and 7K, the relatively few interstitials formed '

during deformation ameal out, causing about 5% resistivity decrease.

2. Between 10 and 20K, about 405 of the extra resistivity caused

by deformation disappears. This is ascribed to the long-range mimtion

of monovacancies. There is evidence that the dominant processes at the

end of this stage involve the annihilation of defects at dislocation

sinks.

3. Between 20 and 80K, there is a region with no significant

peaks in the recovery rate, but over this temperature range about 30%

of the deformation-prochced resistivity disappears. Part of this is

attributed to the detrapping of point defects, probably vacancies, from

impurities.

4. Between 80 and 150K, the recovery rate shows a strong peak at

about 110K and accounts for 25% of the total recovery. This is

associated with the annealing of dislocations during recrystallization.
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5. Between 5 and 20K, a major length recovery occurs considerably

before the resistivity recovery begins. Gugan(11) ascribes this to a

rearrangement of dislocations rather than a decline in the number of

dislocations.

These temperature ranges are rough guesses based on the breaking

points in the complicated annealing curves of residual resistivity vs

the annealing temperature, and some of the proposed mechanisms which

explain the various recovery stages are unsubstantiated. Nonetheless,

this study does provide a basis on which the effects of dislocations on

the resistivity may be examined.

1.1.2 Electron-phonon scattering

In calculating the electron-phonon interaction, the following

condition must be satisfied in order to obtain a non—vanishing matrix

element:

71“ -E-:H+E (1.12)

where K and K' are the wave vectors for the incoming and scattered

electrons, respectively,'3' is the phonon wave vector, and ‘5 is the

reciprocal lattice vector. The plus or minus sign before q represents

the phonon absorption or emission processes. If Etc, the process is

called Umklapp: and if'ELo, it is the normal process.

The above phonon processes are illustrated in Fig. 1.3, where



12

 

 

   

 

 

2' ) Unululopp procggg

 

   
2 ) normal process

 

3) phonon absorption phonon omission

Figure 1.3

The phonon processes



13

potassium is assumed to have a nearly spherical Fermi surface which

does not touch the first Brillouin zone. This fimre illustrates

1) The Umklapp process. When the magnitude of the emitted or

absorbed phonon wave vector q exceeds the minimum value — q“, this

process can occur. The characteristic feature of this process is that

even when the value of q is small there can be a large difference

between the directions of E and K'.

2) The normal process. The crystal momentum is conserved here.

3) The phonon absorption or emission.

By assuming an equilibrium phonon distribution, a relazntion time

approximation for the Boltzmann equation, no Umklapp scattering, and a

Debye spectrum for phonons, Bloch(12) predicted that the electrical

resistivity die to electron-phonon scattering has the following

temperature dependences for the indicated limits:

p (T) as T , (1.13)

for r > 0.59,, and

p (1') - 1'5 . (1.14)

for T < 0.1 8. ,where 80 is the Debye temperature.

Since 8, for potassium is about 100K, we therefore expect to have

in our experiment below 1K
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Pep- 6T5! - (1.15)

where C is a constant. However, measurements done by Gugan(13)

(T>1.2K), min and Maxfield(14) (T>1.5K) and van Kempen g; a1.(15)

(T>1.1K) did not show this T5 term. Instead their results could be fit

to an equation of the form

QPU') - firm-671') (1.16)

with n~1 and 8'~ 20K. When T is less than or equal to 1K, this

eaqaonential term is negligible: and the data from fherle 31: a1.(6)

(T<1K) also failed to show the 1'5 behavior in their unstrainod

potassium samples.

The main reason for the failure of this model is attributed to the

presence of phonon drag (13). Basically phonon drag arises when the

phonon distribution is disturbed from its equilibrium state at low

temperatures. According to Danino, Kaveh and Wiser(16), the electrical

resistivity is caused by the electron system transfering its excess

momentum, gained from the electric field, to the phonon system via

electron-phonon scattering. However, at low temperatures, much of this

excess momentum is not dissipated by the phonons (not lost to the

lattice), but is returned to the electron system via phonon-electron

scattering. The electrons are thereby "dragged" along by the phonons

(phonon drag), so that there are less effective electron-phonon

scatterings, and therefore the electrons experience a much reduced
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resistivity. In potassium at low temperatures, such a phonon drag

process can largely eliminate the normal scattering contribution (CTS)

to the resistivity(17): and at high temperatures this effect is

quenched because phononephonon Umklapp scattering equilibrates the

phonons with the lattice.

The exponential beraviour seen experimentally in p¢P(T) can be

understood in terms of electron-phonon umklapp scattering, which is the

scattering between two Brillouin zones. For potassium, this scattering

requires phonons with at least the minimum momentum (q,) to Jump the

gap between the two cells. Phonons obey Bose-Einstein statistics, and

at low temperatures the density of phonons which can.participate in an '

Umklapp process goes like

exp(-th‘lkT) (1.17)

where v is the velocity of the phonons. This factor dominates the

electron-phonon resistivity seen experimentally: and at temperatures

below 1K; which is the temperature range of present interest, this term

is negligible.

There are mechanisms other than phonon-phonon Umklapp scattering

that can pull the phonons into equilibrium. Fer example, a high

concentration of impurities or dislocations(18) could interact with the

phonons to provide a way for the phonons to lose the momentum given to

them by the electrons, resulting in an equilibrium distribution.

Danino, Kaveh and Wiser(19) pointed out that the quenching of
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phonon drag by phonon-dislocation scattering is likely to be negligible

for potassium above 2K unless Nd >10” cur).2 ,where N; is the dislocation

density. For dislocation density Nd ~ 109 on“, they and independently

Engquist(20) proposed a new electron-dislocation interaction mechanism,

which is based on the anisotropy of electron—dislocation scattering, to

explain the suppression of phonon drag in the electrical resistivity of

potassium.

1 . l . 3 Electron-electron scattering

Electron-electron scattering can contribute to the resistivity.

Let f, and if; be the initial wave vectors of the two scattering

electrons, and let 7?, and K, be the final wave vectors. Then we have

the following momentum conservation rule

K, +K2-K3+K4+G (1.18)

If 3-0, we have a normal process, and otherwise we have an Umklapp

process.

In a calculation of the resistivity, we know from Ziman(21) that

an approximate solution to the Boltzman equation for a normal e—e

scattering process contains a factor of the following form:

(mi, )‘ic‘, + «Rpm-1:653)Ea-t(if, )‘f:‘,)- in? “if, iris-71E.) (1 . 19)
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where t(K) is the electron relaxation time, and U is a unit vector in

the direction of the electric field. When the scattering is isotropic,

u: is a constant, and this term vanishes. Thus the normal process will

not contribute to the resistivity. In the second order approximation

the Umklapp process can take place, and the delta function given above

is replaced by

“Kirk‘s-Era) . (1.20)

So we see that Umklapp scattering gives a finite contribution to

. resistivity even with the isotropic relaxation time approximation. The

calculation predicts a T1 dependence of the H scattering contribution

to the resistivity for 1! << lama. ’

This szehaviour has been observed experimentally by van Kempen 35

31. (22) and Levy gt a_l_. (23). However, some controversy arose when

Rowlands _e_t_ 51424), who were the first to carry out high precision

measurements below 1.2K, found that the resistivity of their potassium

samplo(0.79 mm in diameter) behaved more like 1"" than like 1'?

Overhauser(25) tried to explain this 'r"5behaviour on a cow basis. Later

Lee .e_t_ 31426) measured p(T) for a number of thicker samples and

confirmed the existence of a T2 term dom to 0.4K. Then Yu 35 11427)

measured a series of samples with diameters ranging from 0.09 to 1.5 mm

and found important deviations from 'r2 behaviour in samples thinner

than 1mm. Their interpretation invokes an effect proposed by Gurzhi(28)

involving interference between normal electron-electron scattering and
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surface scattering. Since Haerle gt; a_l.(5) used 0.9mm diameter samples

in their deformation experiment, this size effect was present. Our

experiment is better because we used 2mm diameter samples where the

size effect is negligible.

As for the coefficient A of this T2 term, a theory was worked out

for potassium by Lawrence and Wilkins(29) for a screened Coulomb

interaction. This theory was later refined by MacDonald 91' 11430), who

included both screened Coulomb scattering and phonon exchange

scattering. MacDonald 93 91. found that the screened Coulomb

interaction gave a much smaller contribution than the earlier work of

Lawrence and Wilkins, and instead they found that the dominant term

was due to phonon excrange scattering. Both theories predicted an AT2

term with A - 1.7 fan/K2.

However, this coefficient A no been found by various groups

mentioned above to be sample dependent, which conflicts with the

fundamental ideas underlying the calculations of A. A way had to be

found to introduce a non-intrinsic property, varying from sample to

suple, which affected the magnitude of A. As we mentioned earlier, the

normal electron-electron scattering does not contribute to the

resistiviw if the relaxation time t is isotropic, as shown in Eq.

(1.19). However, if t is not isotropic, this term will not vanish and

therefore can make ‘a siguificant contrihition to p. Kaveh and Wiser

(31) argued that dislocations are the best candidate for such an

anisotropic scatterer. At very low temperatures the dominant mechanisms

are impuritygo“) and dislocation(p“) scatterings, and impurity
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scattering is believed to be almost isotropic. Thus the ratio 34/13”. is

a measure of the relative amount of anisotropic scattering, where

po . Per. 4. Pod. (1'21)

Kaveh and Wiser obtained

A - A. + A, ej/(g, + p0, )2 (1.22)

where A, is the Umklapp contribution in the isotropic limit, and A.

corresponds to the maximwn contribution from normal scattering. An

estimate of A, is difficult because the anisotropy of the

electron-dislocation scattering time is not known. Kaveh and Wiser

estimated this anisotropy and were able to fit Eq.(l.22) to the data,

although somewhat arbitrary estimates of ed lo,3 were made for each set

of data. They found that A,- 3.5 film/K2 and A,- 0.5 film/K2 . The

squashing experiments of Haerlo _e_t_ a_l. (6) were designed to test this

theory by introducing a k_no_wn_ value for ad. Haerle 3 91. observed that

p(T) for deformed potassium did not exhibit the predicted T2 behavior,

which is in ag‘oement with the results to be presented here. Thus the

theory of Kaveh and Wiser, although uportant for motivating these

deformation experiments, cannot explain these results, and different

electron—dislocation scattering mechanisms are needed.

1 . 1 .4 Electron-dislocation scattering
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In his attempt to explain the residual resistivity due to

dislocations, Brown(9) proposed a theory where the electrons are

scattered primarily by the dislocation cores rather than by the

surrounding strain fields. As a result, the large angle scattering by a

segment of a dislocation line is independent of the proximity of other

dislocations. He also stated that there is no reason to distinguish

between the cores of edge, screw, or mixed character dislocations in

this regard. He suggested that dislocations could have virtual bound

states for electrons, with an energy slightly above the Fermi surface.

He estimated that these relative energy levels fer potassium are about

10‘4ev. These energy levels could be localized near the cores of the

dislocations. Recently, Fockel(32) pointed out that the potential of

the dislocation core contains resonance states below the Fermi energy.

Fockel used the pseudo-potential concept in which he treated the core

as discrete and the surrounding matrix as a non-linear elastic

continuum.

Let us suppose that there are some localized electronic levels

near the dislocation cores at some height E above (or below) the Fermi

level and that they become occupied (or unoccupied) as temperature

rises. Therefore the effective core charge changes with, temperature.

Gantmakher and Kulesco(33) derived the following equation.assuming that

the electrons were scattered elastically off the localized levels:

pa“(1) - a(l+bexp(E/k8T))-1 (1.23)
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where b is the spin degeneracy of the level and a is a preportionality

constant.

There are other calculations which apply to interactions with

localized energy levels in crystals. Fulde and Pesohel(34) calculated

the resistivity due to electrons scattering inelastically off localized

energy levels produced by a -crystalline electric field splitting of

rare earth ions dissolved in metals. By using Matthiessen's rule, they

derived the following expression '

<12

] (1.24)

1 + (2/a)sinh $59.?)

p (T) -mp°[ 1 +

where G and g, are constants, and D is the energy level splitting for

an assumed doublet. Even though this expression is not directly

associated with dislocations, we think this theory might be applicable

to scattering from local electron states caused by dislocations such as

the virtual bound states predicted by Brown.

O'Hara and Anderson(35)(36), in their-stuch' of the lattice thermal

conductivity on some superconducting metals, found the existence of a

resonant phonon-dislocation interaction at certain frequencies. This

work supports the existence of dynamic dislocations at low

temperatures. They pr0posed two models for the possible vibrating

dislocations. One was originated by Granato(37) in which the

dislocation is treated as an elastic band stretched betwoen two pinning

points a distance L apart and the natural resonant frequency v is given,
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by

v - V/3L (1.25)

where V is the transverse phonon velocity and L is the dislocation

length. Hence_the frequency is inversely proportional to L. The pinning

source might7 be the intersection. of’ a dislocation with other

dislocation lines, vacancies or impurities. The other model is

associated with the Peierls potential, which is important for bcc

metals such as potassium for a reason.we. are going to discuss below.

Here the dislocation might oscillate in its potential well with a

frequency essentially independent of the length of the segment

inNolved(35): ' ‘

v - [tP/4nzpmbzli (1.26)

where u:P is the Peia‘ls stress, p" is the mass density and b is the

magnitude of the Burgers vector.

Potassium shows a rapid increase of critical flow stress with

decreasing temperature.(38) For example, from 20K to 4K its critical

shear stress increases by almost a factor of 2. This and other

significant differences from fcc metals are ascribed to a limited

mobility of the (a/2)<111> screw dislocation due to a high Peierls

potential(38). In contrast to screw dislocations, edge dislocations in

potassium do not feel the effect of a large Peierls potential and are
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comparatively mobile(39). For this reason we expect deformations at 9K

to produce more screw dislocations than edge dislocations: and for

defOrmations at 60K, where the Peierls stress is less important, we

expect to have more edge dislocations. Since screw dislocations are

thought not to be pinned by impurities or vacancies due to their lack

of a dilatational strain, we expect Eq.(l.26) is more viable for screw

dislocations, and because edge dislocations are thought to be pinned

by impurities or vacancies and 'not interact strongly with.the Peierls

potential, we expect Eq.(l.25) to be more viable for edge

dislocations(6).

The inelastic interaction of these local modes in the phonon

spectrum with the electrons was calculated by Gantmakher and

Kulesco(33) who approximated the local modes by a single frequency-the

Einstein oscillator. They found an additional electrical resistance

due to such an interaction of the form:

-2

p“(T) - (DI4T)sinh (fifl'IZkBT) (1.27)

where a) is the ground state frequency of the oscillator and D is a

proportionality constant. Note that Eq.(l.27) predicts 34“.)“ T for T

>> fwd/k3.

1.1.5 Electron-phason scattering and Charge Density Waves (CDW)

According to the CDW theory prOposed by Overhausor(40), the
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electron density in an alkali metal is modulated due to the

electron-electron interaction:

p(r) =- p" (1 + pcos(6-? + 4’) (1.28)

where p is the modulation amplitude, '6 is the characteristic vector of

the CDV ( Q‘I‘Qk F), and 4‘ is an arbitrary prase term. The lattice then

deforms simsoidally in order to maintain overall charge neutrality.

(The positive—ion lattice is approximated by a deformable-jellium

model.) The wave vector 6 is incommensurate with the reciprocal lattice

vector 6. Since the presence of CDVls in potassium would orange its

nearly spherical Fermi surface into a complex interconnected one, this

would have a profound effect on the transport properties of potassium.

For example, the interconnected Fermi surfaces would reduce the

magnitude of the minimum phonon wave vector qfihin the electron-phonon

Umklapp scattering which would enhance such scattering. In addition the

electron-electron Umklapp scattering would also be enhanced by another

channel Edit-133+?“ +75 in addition to the origiml one E-e-Ez-ifa {£45.

Therefore its contribution to resistivity is enl'nnced. This enrancement

would also depend on the relative orientation of the electric field

and the "0" domains, which are defined as regions over which long range.

correlations of the CW exist. The orientation of the "Q" domain is

anticipated to be sample dependent, e.g. it can be changed by rapid

cooling and deformation, and therefore the electron-electron

scattering should. also be sample dependent. According to Overhauser,
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CDW's can have elementary excitations in which the phase ¢ varies

periodically in time and space. These excitations are called phasons,

and they behave differently from phonons as far as their dispersion

relation is concerned. Using a phason-scattering mechanism Bishop and

Overrnuserul) tried to explain the Tubehavior in the resistivity

measurement done by Rowlands gt al.(24); but from the work done by Lee

2§_gl,(42). Black,(43) and Yu ‘3; g;.,(27) we now know that the sample

size can be responsible for the deviation from T2 behavior in potassium

samples thinner than 1mm.

Bishop and Lawrence(4) have combined the above-mentioned CDW

electron-Umklapp scattering and phason scattering to explain the.

variability in A that Kaveh and Wiser tried to explain by

electron-dislocation scattering. Bishop and Lawrence argued that

different Q-domain textures could cause different amounts of phason and

Umklapp contributions to p(T). Since defamation could modify the

Q-domain textures, our defbrmation studies have relevance to the CDW

hypothesis. We were particularly ‘interested in observing what small

defbrmations might do tolp(T), which twisting the sample allows.

To identify the existence of CDWs in potassium has long been a

subject of interest. Giebultowicz g£_§l.(2), as we mentioned earlier,

reported the observation of CDW satellites in their single crystal

potassium sample by neutron diffraction. On the other hand, H. You 25‘

al.(3) reported recently that they failed to observe such satellites in

their synchrotron Xéray diffraction experiments for their mosaic single

crystal potassium. Indeed we need more experiments to positively
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identify the existence of CDWs in potassium.

1.2 Thermoelectric Power S

From the basic transport equations given earlier

J - Lula: + 1.,sz (1.1)

Q - 1.2,]: + 1.,sz , (1.2)

we obtain the thermopower S:

s - (E/v'mm- -L,,/L.. (1.29)

which is measured experimentally as follows: If we induce an

infinitesimal temperature drop across the sample, there should be a

thermoelectric voltage: and the thermopower is obtained if we divided

this voltage by the temperature drOp.

Theory predicts that the thermOpower usually consists of two

parts: the diffusion thermopower and the phonon drag thermopower.

1.2.1 Diffusion thermopower

The diffusion thermoelectric power contribution is usually

associated with a system of electrons that interacts with a random

distribution of scattering centers which are assumed to be in thermal
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equilibrium at the local temperature ’1'. As we will see in the next

section, this assumption is a very poor approximation in the real

situation: an additional contribution will appear when the assumption

of local thermal equilibrium is lifted.

Assuming the conduction electrons constitute a degenerate Fermi

gas, if one uses the relaxation.time approximation, and if the higher

order terms in the expansion of the Fermi-Dirac function are neglected,

then one obtains the Mott(21) expression for the diffusion thermopower:

_ «Zea-r eln ans)

3 e e E “'30)
‘E sip

where o is the conductiviiar and s:F is the Fermi energy.

When impurity scattering dominates, one expects for potassium that

aln o(E)/0E will be independent of temperature. Thus the thermopower in

potassium should vary linearly with temperature T.

If there are two kinds of scattering processes involved in a

system, for example, impurity scattering and dislocation scattering,

and if Matthiessen's rule applies, then

pulpi +pd , (1.31)

where p: and p“ are considered as independent impurity and dislocation

contributions to the resistivity, respectively.

Using Eqs.(l.30) and (1.31), we have the Gorter-Nordheim

relation(44) for the diffusion thermopower
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S - (llp)[p..S.. + pd Sd] - S, + (pl. /p)[Si - Sd] (1.32)

where S; and Sd represent the diffusion thermOpowers due to impurity

scattering and dislocation scattering, respectively. Therefore, if we

assume‘p; is not changing during deformation and plot S as a function

of 149, we should get a straight line which intercepts the S axis at Sd

1.2.2 Phonon drag thermopower

As we mentioned earlier, the assumption of thermal equilibrium in

the calculation of the thermopower can be a poor one because the

application of a temperature gradient across the sample causes the

phonon distribution to go out of equilibrium. This phonon flow will

"drag" the electrons to the end of the sample until the electric field

formed by the piled-up electrons is large enough to stop further

electron dragging. This will cause an additional thermopower term, the

phonon drag thermopower.(45)

. The phonon drag thermOpower is usually divided into two parts: one

due to the normal electron-phonon process and the other one due to the

umkiapp process. The general theory in both cases tends to be rather

complicated, but fortunately we will be working in the low temperature

limit, T < 1K. I

The normal process inNolves scattering of electrons within a
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single Brillouin zone. In the low temperature limit this contribution

to thermOpower goes roughly as the lattice specific heat, which has a T3

temperature dependence:

3; .. T3. (1.33)

The Umklapp process is more complicated. As we have seen earlier,

a minimum phonon wave vector q...“ is needed to scatter from one Brillouin

zone to another if the Fermi surface does not touch the zone boundary,

as in the case of potassium. We can estimate the number of such phonons

to be proportional to exp(-fqu_/kT).

Guenault and MacDonald(46) fit their data to. a simple equation of

the form

3 - 3,? + 131'3 + Cexp(-e’/'r) (1.34)

where S,T is the diffusion term, 8T3 is the normal electron-phonon

drag term and Cexp(—67T) is the Umklapp electron-phonon drag term. S,

and B were found to be negative, and C was found to be positive, with

659 21!. For temperatures lower than 1K the Umklapp term is usually

negligible.

1.2.3 Thermoelectric ratio G

If we want to measure the thermopower, we must produce and measure
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a temperature difference across the sample. EXperimentally this turns

out to be very difficult for potassium because it has a very high

thermal conductivity, and it requires a huge heat flow across the

sample to produce a large enough temperature difference for

measurement. This heat flow usually exceeds the cooling power of the

dilution refrigerator. Instead, the thermoelectric ratio G was actually

measured in this work:

a - (J/QHE: LHL/I.22 (1.35)

From (1.1), (1.2), and (1.29), we know that the resistivity p -'

1/L,,, the thermopower S - ilk/L” , and the thermal resistivity W =-

’1/1'22' So G can be written as

c - Ln/Lzé- (Ln/LHKLHILZZ) - am: (1.36)

Since the Lorenz ratio L is defined as

L - p/WT , (1.37)

we have

G ‘ SILT e (1.38)

Now the thermopower can be related directly to the thermoelectric ratio
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G. Ideally L should be a constant: and for T << 1K where elastic

impurity scattering dominates, this is indeed the case where

‘3

1. - Lo- wr’kalaez- 2.445x10 vz/K2 . (1.39)

From the results of Haerle 93 al_. (47), we know that L/L,- 0.97 at

1K and that the ratio becomes even closer to 1 at lower temperatures.

Since our interests are below 1K where the exponential Umklapp term is

frozen out, G is expected to have the following simple form

(1 - c, + 131'2 (1.40)

where G, is the diffusion term and sz is the normal phonon drag term.

Any departure from this expression below 1K would indicate the presence

of some other scattering mechanism which has not been taken into

account in‘ the above theory.



Chapter II Experimental Techniques

In this chapter, the major equipment used in the experiment will

be described. Details will be given.about the thermometry, the sample

container, its functioning in deforming the sample, sample preparation,

and the .measurement procedures. In addition, possible heat flow

problems and the measurement uncertainties will be discussed.

2.1 Main Equipment Used For Measurements

2.1.1 The dilution refrigerator ~

Since our emphasis on the properties of potassium is below 1K, a

locally-built dilution refrigerator, which is capable of reaching 10

mK, has been used in the experiment. This dilution refrigerator was

originally built by J. Imes and W. Pratt Jr.,(48)(49) and then modified

by V. Heinen.(50) It can.cool from room temperature to liquid nitrogen

temperature in about 12 hours. It takes about 15 liters of liquid

helium to reach 4.2!; The lowest temperature (about 10 mK) can be

reached after 5-6 hours of 3He-ihe mixture circulation. For a general

description. of a dilution refrigerator and its operation see

Lounasmaa(51).

32
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2.1.2 The high precision resistance bridge

As the discussion in section 2.6 will make clear, we measure dp/dT

in our experiments. For a typical unstrained potassium sample at 1K,

the relative change of p, solo, is about 10.5 with a temperature change

of AT - 0.1 (K. Since dp/dT is usually smaller at lower temperatures,

rather precise measurements of‘Ap/p are required. we have used a

high-precision current-comparator system with a SQUID' null detector.

The system was built by D. Edmunds gt, al.(52) and can resolve the

qmntity Ap/p to a precision of better trnn 0.1 ppm.

2.1.3 The screened room and floating pad

A commercial, double-layered screened room (from Erik A. Lingren

and Associates, Inc.) surrounds the cryostat and screens out any

radio-frequency noise which might affect the Operation of the

rf-biased SQUID. Since mechanical vibrations in the presence of the

earth's magnetic field can.induoe currents which exceed the dynamic

range of the extremely sensitive SQUID. the refrigerator body is

magnetically shielded with high-p. metal and mounted on a vibration

isolation table. All the pumps are kept outside the screened room and

are connected to the refrigerator through flexible bellows.

2.1.4 A schematic diagram of the ultralow temperature part of the

cryostat
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Figure 2.1 shows the low temperature part inside the cryostat. The

details will be discussed in later sections.

2.2 The thermometry

The temperature was measured in this experiment with two germanium

resistance thermometers and one Cerrous magnesium Nitrate(CMN)

susceptibility thermometer. The calibration of these thermometers was

done by C.W. Lee and V. Heinen gtflgl.(50) The two germanium resistors

are mounted in the holes in the bottom piece of the sample mount using

Apiezon N grease for thermal contact. The susceptometers of the CNN

thermometer are mounted.against and thermally isolated from the plastic

wall of the. mixing chamber. Silver wires of l-mm-diameter provide

thermal contact between the bottom piece of the sample mount and both

the CNN sensor and its susceptibility coils.

For temperatures above approximately 1.5K, "R6" is used, which is

a Lakeshore Cryotronics germanium resistor. The calibration was done as

follows: First, the susceptibility of a CMN sample was measured against

SRM767 and SRM768, which are the superconducting fixed point devices

from the National Bureau of Standards. Since the susceptibility of CNN

is proportional to T”1 over the temperature range of interest here,

temperatures other than the fixed points could be easily determined by

interpolation. Then by using a least-squares fit, the resistance of R6

was fit to the temperatures given by the CMN for temperatures between
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1K and 4.2K using the following equations

AI

Leg T a Z an(Log 1’1)fl (2.1)
680

LOg a - fibnaog T)" (2.2)

"80

with N - 7. With these fits, the temperature given by 86 is estimated

to be within 0.3% of the absolute temperature.

For temperatures between approximately 40 mi! and 1.5K, "R7" is

used, which is a Cryocal CRSO germanium resistor. The method of

calibration was similar to that used for R6, except that the

susceptibility of an irregular single crystal of 10% CMN and 90x'

LMN(Lanthanam Magnesium Nitrate) was used for interpolating between the

fixed points. The resistance of R7 is fit to the temperatures given by

the susceptibility of the CMN-LMN using the equations given above with

13-9. The error is estimated to be within 0.7% of the absolute

temperature.

Below approximately 50 ml! the CNN thermometer is used which

consists of a susceptometer (Fig. 2.2) and a CNN pill. The CMN pill is

a 50:50 volume mixture of CNN and 700—3. Ag powder pressed onto a 0.012"

diameter Ag(0.4 atx Au) wire. The pill is a right circular cylinder

(height-diameter-lla"). containing approximately 18 mg of CNN and 95 mg

of Ag. The Ag(Au) alloy wire is used to reduce any possible eddy

currents caused by the 17 Hz magnetic field used to measure the

susceptibility. The eddy currents can produce fields which would affect

the measured susceptibility and could also cause heating of the CNN
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pill. This wire is approximately 1" long and is spotwelded to a pure Ag

wire which is attached to the bottom Ag sample mount. For a more

detailed description of the CMN thermometer see V. Heinen's Ph.D.

thesis.(50)

The CMN thermometer was calibrated against the SRM 768 which is

the low temperature standard. It has the following fixed points: W

(15.5 mK), Be (22.92 mK), Ir (99.13 mK), AuAl (160.43 mK), and AuIn

(204.36 mK). The 22.92 mK point has not been used because this

superconducting transition point was in complete disagreement with the

other fixed points. A linear least-squares fit has been done to the 15,

99, 160, and 204 mK points assuming a Curie law behavior for the

susceptibility of the CNN. In the overlapping temperature range of the

CNN thermometer and R7, the temperature difference was found to be less

than 1%.

We have used two thermometers for temperature regulation of the

mixing chamber. A carbon resistor is used as the temperature sensor

for T 3 50 mK. The other sensor is a second identical CMN thermometer,

used for T < 50 mK, since CMN has a much better temperature response in

this range. This system has ,the unique feature that only one SQUID is

used as the null detector for both CMN mutual inductance bridges.

Figure 2.3 shows how this is done. Two independent AC oscillators, V1

and‘Vz , drive the two bridges. Each Intersil #ICL 8038 sine wave

generator is powered by a separate 6V battery, one operates at 17 Hz

and the other at 40 Hz. Their maximum output is 1 V p-p. There is also

an optical coupler output for the reference channel of each lock-in
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amplifier. Two HR-B lock-in amplifiers from Princeton Applied Research

Corp. are used to independently extract the two AC signals at the SQUID

output. No interference between these two CMN bridges has been observed

in this experiment.

Also a silicon diode thermometer from Lake Shore Cryotronics, Inc.

is used for determining the temperatures above 4.2K during twisting and

annealing of the sample. This thermometer is thermally connected to the

top end of the sample. The voltage across the diode is measured with 10

HA reversed biased current.

2.3 The sample can

Since potassium reacts with oxygen and water vapor, a

self-contained sample can has been used which permits both our

measuring the electrical properties of the sample and deforming the

sample at low temperatures.

Figure 2.4 shows a drawing of the sample can which is capable of

twisting the sample while mounted on the dilution refrigerator. The

sample can and dilution refrigerator are both mounted inside a main

vacuum can, which is surrounded by liquid helium, as shown in Fig. 2.1.

The sample can can be separated into three assemblies: The top flange D

on which the feed—throughs B and the sample holder H are mounted, the

central body cylinder F, and the bottom flange P on which the twister

is mounted.

The three assemblies are sealed together by two replaceable indium
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Table 2.1 A list of parts in sample can (shown in Figs. 2.4 - 2.6, not

all parts are shown in each figure)

A central rod S bellows

B feed-throuzh T pulling gear bar

0 central rod housing . U ratchet cg”

D top flange V pawl

B tOp indium '0' ring W ngm bar

3' bottom indium '0' ring a flippgr pin hole

F central body cylinder b ratchet cam pin

G top sample mount

H nylon sample holder

I potassium sample

J bottom sample mount

K twisting shaft

L torque coupler and rotation detector

L twisting key

L" rotation detector

M flipper

M flipper arm

M" flipper axis

inner track

outer track

N

0

P bottom flange

0 track housing

R pressurizing line
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"0" rings located at E and s', respectively. After the sample is

mounted, the tap flange E is sealed last while the can is still

inside the argon glove—box. Then the whole can is taken out of the

glove-box.and mounted underneath the mixing chamber of the dilution

refrigerator.

The top flange is made of brass. On it there are the central rod A

and two feed-throughs B. A is made of OFHC capper and is epoxied onto a

housing 0, which is made of "Vespel" (SP—22 Polymide, from Dupont,

Inc.), a very good heat insUlator at low temperatures. The rod serves

as both the heat path and one of the current leads of the sample. One

of the feed-throughs B is used for various electrical leads, and the

other one is used as a safety valve, made by soldering a thin brass

foil onto it. The central body cylinder F is made of capper’ to which

the two upper and lower flange housings are hard soldered. There is a

heater (not shown in the figure) mounted on the outside of the cylinder

to control both the deforming and annealing temperatures. The lower

flange assembly P consists of the bellows and the twister systems, and

their functions will be described in the following section.

Figure 2.5 is a perspective drawing of the sample holder H, which

is made of nylon. The two sample mounts. G and J. are made of OFHC

capper, and G is part of the central rod A. The lower sample mount J

can be turned by the torque coupler L, which is also made of "Vespel".

The coupler is driven by key L', which is on the output shaft of the

twister. The current is run through A and J, and the voltage is picked

Up through the Veprobes in the figure. A heater is mounted on the back
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side of J for the thermoelectric ratio G measurements (not shown in the

figure). Nets a potentiometer L" is mounted on the torque coupler so

that the angle through which the sample is twisted can be read.

2.4 Plastic deformation of the sample

The main feature of the twister is as follows: At any temperature

above 4.2 K, if we apply about 30 psi pressure of helium gas to the

bellows S, we can obtain a maximum torque output through L' of about 5

pound-inch, which will twist potassium samples of 3mm diameter throngh

about :80 degrees. The direction of twist can be chosen at will and

twisting,only occurs during the upward power stroke of bellows S. To

obtain a larger amount of deformation, one has to twist the sample back

and forth many times. Since the SQUID circuit is very sensitive to

stray magnetic fields, a purely mechanical method of setting the

direction of twist has been used, rather than the more obvious

electro-mechanical method.

The detailed description of this twister can be understood either

from Figure 2.4 or the simplified perspective drawings Figures 2.5 and

2.6.

Inside the twister there is a flipper M at the bottom of which is

a wheel. This wheel can sit at a position above either the inner track

N or the outer track 0. When the tracks, together with their housing Q,

are driven up by the pressurized bellows, one of the tracks will hit

the wheel and force it to move along the slope. Since the attached
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flipper is connected via M" and M' to the central shaft, this motion

will force the central shaft (with key L' at its tOp) to turn through

an angle. If the flipper sits above the other track whiCh has the

opposite slape. L' will turn in the opposite direction.

There is a gear arm T attached to the housing of the tracks Q.

When the pressure inside the bellows is lowered, the housing will

return to its lower position. On its way back the gear arm T will turn

the ratchet cam U. Nets that there is a curved groove in the ratchet

cam U, and pin b is engaged in it. When U turns, the curved groove

Will force the pin b and hence bar W to move horizontallY, which.will

bring the flipper to the other position. When T rises, a pawl V keeps U

from turning. Usually several small up and down motions of T are

required to switch flipper M between tracks. During these oscillations

of T, the flipper M does not contact the track. Thus the sample is not

twisted.

When.the bellows is driven up again by pressurized helium gas, the

central shaft this time will turn in the opposite direction. Thus a

back and forth rotation is accomplished. In addition to the rotation

detector, two similar position detectors have. been put inside the

twister to detect the actual position of the bellows and the actual

position of the flipperCnot shown in the Figures).

The He gas in the bellows mUst be isolated from sample area inside

‘the can because any helium gas there would provide a heat path between

‘uhe sample and the wall of the sample can. The residual argon gas

brought from the argon glove-box is solidified at helium temperature.
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The plumbing for the pressurization system connected to the

bellows is shown in Figure 2.7, which is similar to that of

Haerle's.(47) Nermally when operating the bellows valve #1 is closed

and helium is slowly applied through valves #2 and #3. The two-line

system has been built for the following reasons: If a solid air plug

should form when pressurizing at around 10K, the bellows could still be

evacuated by using the second line because any plug Would take place in

the first line above the liquid helium level, which would be above the

place where the two lines Joined to form one thin line going into the

vaCuum can. The ballast tanks are about 10 Cubic inches in volume and

are used to damp out any Taconis oscillations.

2.5 Sample preparation .

The samples were prepared inside a commercial argon glove-box

(Vacuum Atmosphere Company) with the gas purifying system built

locally. In comparison with another VAC helium glove-box having a

nominal oxygen contamination of less then 0.4 ppm, the time that

potassium remained shiny inside the argon glove-box was longer or equal

to that of the potassium inside the helium one. So we know that the

oxygen concentration inside the argon glove-box is less than or equal

to 0.4 ppm. The water vapor content has not been directly measured but

exposed potassium remains shiny for hours. In order to allow the sample

can to outgas and the purification system time to remove any residual

contamination brought in with the can, all needed materials were placed
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in the air-lock and pumped on for at least 24 hours. Then they were

placed in the glove-box for another 24 hours before the sample was

made. To further reduce the contaminants inside the can, an oxygen

getter was used. Before the can was closed, a thin Copper sheet about

2"x7" in size was smeared on one side with a thin laYer of K or Rb and

then plaCed inside the can with the unsmeared side against the inner

surface of the can body. In this way the sample surface remains

reasonably shiny even after a run of several weeks. It is very

important that the sample surface remain clean since thick deposits of

K compounds on the sample surface have been observed to significantly

alter the mechanical properties of the sample.

The pure potassium sample is made of 99.95% potassium obtained

from Callery Chemical Company, a division of Mine Safety Appliances

Company. Table 2.2 shows the chemical composition of a similar batch of

the potassium. The potassium came in glass ampoules sealed under argon

gas. The ampoules were Opened inside the glove-box, and the potassium

was melted and transfered to the stainless steel press (Figure 2.8).

If the sample was K(Rb) allOY, the potassium was first melted and

poured into a hot glass beaker; and then some Rb was melted into the

beaker before the alloy was poured into the press.

The samples were extruded through a 2mm diameter die. The samples

were about 40mm long between the voltage probes (Figure 2.4) and were

cold welded onto the copper mounts J and G which had been smeared with

some potassium first. Then the sample ends were clamped onto the mounts

by two previously potassium-smeared capper clamps. This assures that
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Table 2.2 Chemical analysis of potassium

Element PPM Element PPM Element PPM

to <5 Cr <5 Sr <1

3 <10 Si 25 Ba <3

Co <5 Ti <5 Ca 8

Mn 1 Ni <5 Ma 15

A1 <2 Mo <3 Pb <5

Mg 2 v <1 2: <10

Sn <5 Be <1

Cu <l Ag <1

This information is from the Callery Chemical Company.

< means less than this level of impurities could not be

detected.
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we do have good mechanical and electrical contact between the sample

ends and sample mounts. Next, two potential probes of the same

potassium were extruded and cold welded onto the sample and then

attached to two 2x3 mm Ag tabs on whiCh fine sUperconducting Niomax

wires had been soldered beforehand. Since potassium is very sticky at

room temperature, we have had no trouble with these cold-welded Joints.

The fine superconducting wires are the voltage lead connections to the

SQUID circuit, and they are sufficiently flexible that negligible

torques are applied to the sample by them during twisting.

Before mounting the can onto the dilution refrigerator, the room

temperature resistance of the sample is measured by passing a known

current through the sample ’and measuring the resulting voltage across

the sample with a Keithley 180 nanovoltmeter. After the can is mounted,

the bellows pressurization line is connected and leak tested. Then a

small angle twist is made to ensure that every thing is working. This

twist would introduce no dislocations because all the dislocations and

vacancies anneal out at room temperature(10). Finally the bellows is

evacuated and left in this state until the first deformation of the

sample is to be performed.

2.6 Measurements

This section is intended to explain how the various parameters of

the samples are measured.

The ratio of the cross sectional area to the length of the sample,
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A/L, is measured before and after the run to make sure that the sample

geometry does not change during deformation of the sample.

Since AIL is given by

All. = p(3OOK)/R(300K). (2.3)

we Just measure the resistances before and after the run and compute

the ratio

R‘3OOK)behre

flaccid“...
(2.4)

which would tell us if the sample geometry has changed, since‘p(3OOK)

is a constant. Results show that the change is less than 1%, which is

much better than the previous work of Haerle ((10%).

Once the sample is cooled to 4.2K or lower, the circuit shown in

Figure 2.9 is used. This low temperature circuit consists of the SQUID

(Superconducting Quantum Interference Device) null detector and two

resistors wired in series. The two resistors are l) Rh. , which is the

potassium sample, and 2) Rr , which is a Cu(Ag) alloy resistor designed

to have a resistance with small temperature and current dependences.

The wires connecting these resistors are made of Niomax ON, a

multi-filament Nb(Ti) superconducting wire with Cu(Ni) cladding from

Imperial Metal Industries(potential leads), and the T488

superconducting wire from Supercon, Inc., with about 1 cm of the copper

cladding etched off for thermal isolation(current leads). To minimize
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the noise introduced by stray magnetic fields, most of the wires except

those near the sample are shielded in superconducting lead tubing. The

wires leading to the sample are all carefully tied or varnished down to

reduce magnetically induced currents and heating due to vibration.

The wires exit the can through electrical feed-through B (Figure

2.4). This feed-through is made by running the superconducting wires

through a clean stainless steel tube which is then inverted in a cup of

Stycast 1266 epoxy.

Two reference resistors have been used in the experiment, and they

are all made of oxygen-annealed dilute Cu(Ag) alloys. One of them was

made by Haerle (47), had a 4.2K resistance of about 1.6 ufil and was I

used for the K(Rb) alloy sample. The other one was made in a similar

manner, had a 4.2K resistance of 0.18 pi! and was used for the pure K

sample. 6

The resistance ratio C can be measured by using the current

comparator together with the SQUID as the null detector mentioned in

2.1.2. The current comparator generates two currents, I",and Is , with

the ratio C - ISII,.being stable to a 0.1 ppm precision. When comparing

resistances, one current Im passes through what is called the master

side resistor R,,, and the other current Is passes through the slave

side resistor 3,. The master side current In can be ramped slowly to a

predetermined value. The current Is is Col". where C is the switch

setting of the current comparator. C is adjusted until the SQUID output

signal indicates a null condition at its input.

The thermal EMFs generated in the circuit can be eliminated by the
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following procedure. Let V5 be a stray voltage in the circuit due to a

thermal EMF. Then fer the currents going in one direction the SQUID

measures

V(+) a ISRS - 1.11,, «I» vs . (2.5)

When one reverses the currents, one has

v(-) - -ISRS + I42. + v, . (2.6)

Since C is adjusted until V(+)=V(-), one has

Isas - 1.3,” \Is - 4333 + I R. + vs. (2.7)

Finally one obtains

15”... - tin/RS = C (2.8)

which is independent of Yb.

we now show how one can obtain the temperature derivative of the

resistivity by measuring the ratio C. One possible procedure would be

to keep the reference resistor at 4.2K, and measure C as the sample

temperature is varied. The disadvantage of this method is that the

Johnson noise generated by the resistor at 4.2K is much larger than at

AOmK. To minimize this noise one would like to cool the reference to
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the same temperature as the sample, but then there is a problem of

separating its temperature dependence from that of the sample. This can

be solved in the following way: We regulate the reference temperature

(T') while applying steady heat to upper heater 1 (Figure 2.9, H01),

and we measure the ratio C at temperature T. Next we switch the heat to

HLl so that a temperature difference AT is produced across RL' a Ag(Au)

resistor of about 50 ’19. Then we measure C + AC at T + AT. We want to

calculate the quantity

C/(CAT) . (2.9)

Let us define

C - Rk/Rr . (2.10)

After the sample temperature is raised the reference temperature is

still kept at the same temperature T'. Therefore one has

so =- ARk/Rr , (2.11)

or

(llC)aC/aT - (1/Rk)aRk/AT. (2.12s)

If‘aT is small enough, this leads to
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(1/C)AC/AT -> (1/p)dp/dT a (1/p.)dp/dT . (2.12b)

Below about 1K, the right hand part of (2.12b) is obeyed since the

total variation of p below 1K is about ap/p =- 10"? Therefore dp/dT can

be obtained by multiplying (2.12b) by p. in the plots of the data.

One advantage of this temperature—modulation method is that we can

double-check our thermometry here. As mentioned above, we know the

amount of heat Q being put into the heaters H01 and HLl in order to

produce a temperature difference AT across RL' the Ag(Au) resistor in

Figure 2.9. The Wiedemann—Franz law states that

RL/W - L,T ' (2.13)

where RL is the resistance, W - aT/Q is the heat resistance and L. is

the Lorenz number. We obtain that

RL - L,TAT/Q . (2.14)

If our thermometry were perfect, the value of RL we calculate at

different temperatures using (2.14) should be a constant. Thus we check

our thermometry by calculating RL occasionally during our runs. We

usually measure RI. at T - 0.03, 0.05, 0.15 and 0.6K during each run.

For example, in our run with sample K-l the average of RL was 46.65 M

and the standard deviation was 1.1%; In our run with K-5 the average of
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RL was 46.5 leand the standard deviation was 2.6%. The overall

standard deviation of RL in each run was less than 3%.

The current put through the sample is usually SOmA, but

occasionally checks are made to be sure that there is no current

dependence by using 25mA.

Another quantity measured in the experiment is G, the

thermoelectric ratio. G is defined as the ratio of the electrical

current to the heat flow at zero voltage drOp across the sample:

. . a

G - I - I I R .

where IQ is the current passing through the sample to counteract the

thermal voltage resulting from the heat flow through the sample: Q - Is'

Rh . Ih is the G heater current, and Rh is its resistance.

The measurement is done as follows. First we pass a known heat

flow Q through the sample, and this causes the SQUID to go off the null

value because a thermal voltage is generated. Then we put a balance

current I9 through the sample by adjusting the dials on the current

comparator until the SQUID indicates the null condition again. No

currents passed through Rr during these measurements. Then from (2.15)

the G value is obtained.

2.7 Heat loss

It is important that all the thermometers which are mounted on the
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silver sample mount (Fig. 2.10) be at the same temperature as the

sample. Thus any heat flow between the sample and this sample mount

must be kept to a minimum level. The heat losses due to the

superconducting leads are negligible since they are very poor heat

conductors at these low temperatures.

Since the body of the sample can is directly attached to the

mixing chamber by a Ag wire, any heat paths to the can from the sample

will be considered to be heat leaks. From Fig. 2.4 we see two such

paths. One path is via the central rod housing C, and the other is via

the torque coupler L. They are both made of "Vespel". The empirical

formula for its thermal conductivity at low temperature is

K - 17 r2 pw/(cmx). (2.16)

We want all the heat generated by heater HLl to flow only through the

weak thermal link RL (Figs.2.l, 2.9, 2.10), which is a Ag(Au) wire

with a resistance oflv 50 p11 . By using the Wiedemann-Franz law, we

know that the thermal resistance of this wire is about 2x103 (K/Watt).

The thermal resistance of the housing C is therefore designed to be

about 105 (K/Watt), roughly 50 times that of RI. at 1K. The bottom

sample mount J is made of OFHC copper and is hard soldered to a

stainless steel shaft K. The heat loss due to the torque coupler L is

estimated to be much less than that of the housing C.

The electrical resistance from the top sample mount G to the

silver tab (Fig. 2.10) was measured to be less than 2.4 pn at 4.2K, the
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estimated temperature difference between the sample and the

thermometers is less than 0.2 mK for the worst case (at 1K).

2.8 Heat generated while deforming the sample

As we mentioned in Chap. 1 (Section 1.1.1 and 1.1.4), for

temperatures near 10K, the actual temperature at which the sample was

deformed must be known since screw dislocations appear to rearrange

themselves near 10K and vacancies begin to anneal out above 10K. It is

therefore necessary to calculate the temperature increase while the

sample is being twisted. Unfortunately, we do not have a thermometer

mounted directly on the sample. However, the diode thermometer is

mounted nearby on the top sample mount (Fig. 2.9) to which the sample

is cold welded. First let us calculate the heat relaxation time t

of the sample. We know that the temperature distribution function

U(x,t) for a bar of length L is of the form

nix- =32.
U(X.t) - X C“ e SIMT (2.17)

“‘9

where the relaxation time tn is defined as

t n - (Llnflzllaz, and ‘ (2.16)

where L is the length of the bar and a2 - k/cp in which k is the

thermal conductivity, c is the specific heat andqp is the mass density.
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For potassium at 10K, we have k-4.0 watt/ch, c=0.07 Joule/gK and

p'0.66 g/cm3 . Therefore we have

t,8 0.034 sec , (2.19)

which is the longest relaxation time in tn. Our twist is typically

done in about 1 second, which means that the whole sample is at a

uniform temperature during most of the deformation if, as a worst-case

example, we assume no heat is flowing out of the ends of the sample.

Now let us calculate the work needed to twist the potassium

sample. The yield stress a'for potassium at 10K is about 1 Kg/mm2'(57)

and according to Cottrell(56), the torque T' needed to twist a bar of

radius r and shear stress 0'13

1" = (1r/2)r30’. (2.20)

For our sample we have r-lmm, therefore we get T'81.57 (kg-mm). If we

twist the_sample by'n, the work done is av 0.05 Joule. The specific

heat of potassium near 10K is 0.07J/gK. and the sample mass is about

0.15 g. Thus the temperature increase due to this heating is

AT 3' 5 K . ~ ' (2.21)

The actual temperature increase is much less than this because the

sample is in contact with the sample mounts which have a much bigger
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heat capacity. For example, let the total heat of deformation flow

through the whole sample and out of the upper end which is in contact

with the central rod. Since t << 1 sec, we can assume that a uniform

temperature gradient is rapidly established across the sample and

obtain for the temperature drop across the sample

AT - W0 . (2.22)

where W is the thermal resistance of the sample and Q is the heating

rate due to twisting the sample: 0 - 0.05 Watt. We assume that the

sample end which is in touch with the central rod is at a constant

temperature (10K). The thermal resistance of our K sample is about 36

KlWatt at 10K, and therefore the temperature drop AT 3 21:. Since we

assumed that all the heat flowed the whole length of the sample, AT is

an overestimate. In our experiment we have seen no noticeable

temperature increase on our diode thermometer while smoothly deforming

the sample.

2.9 Uncertainties

In our (lhO)dP/dT measurements the biggest uncertainty below 0.15K

comes from the determination of AC, whose uncertainty may exceed 10% at

the lowest temperatures. Thus possible systematic uncertainties in IAT

are not significant below about 0.15K. For temperatures above 0.15K the

uncertainty in AC is usually less than 2%. For 0.031: < 'r < 0.6K, we
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estimated in section 2.6 that the systematic uncertainty in T was

less than 3%. If we restrict this estimate to T > 0.15K, we obtain 2%.

Thus for T > 0.15K we estimate the uncertainty in (le)dp/dT to be 3%.

In converting (100)dp/dT'to do/dT, we must include the uncertainty inoD

which we estimate to be t3%.

In our G measurements the major source of uncertainty is from the

thermal drifts of the system which cause the effective zero of the

SQUID null detector to drift during the measurement of IQ . The

uncertainty in IQ is less than 2% for temperatures above 0.1K, and it

could be as large as 5 to 10% at the lowest temperatures (T< 0.05K),

since thermoelectric voltage is usually very small in this temperature

region. Other possible uncertainties are also negligible compared to

those given above.



Chapter III Experimental Results

3.1 Resistivity

In our experiment two kinds of samples have been used: One is a

pure potassium sample with Residual Resistance Ratio (RRR), which is

defined as

RRR - R(293K)/R(4.2K). (3.1)

and is of the order of 4100: and the other sample is a dilute K(Rb)

alloy (£90.087 at % Rb).

We used the K(Rb) sample so that the electron scattering rate

would be dominated by a known impurity, Rb. For the most heavily

deformed K(Rb) sample, we will see that this condition is still met

since pd /p; < 0.09, where p" - pa + pi . In this limit the theory of Kaveh

and Wiser would predict a small increase in A with deformation. The

presence of Rb impurities might also modify the dynamical properties of

the dislocations.

3.1.1 Residual resistivity

From Eq.(l.11) we know the increase in.p due to dislocations goes

0
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linearly with the change in the dislocation density Nd:

The coefficient w is predicted by Basinski (a) to be 4x10." ncm3.

If we use the simple dislocation model shown in Fig.’ 1.2, we can

obtain a linear relation betwun the dislocation density Nd and the

twist angle 6 (53)

N4 - 26/bL _ (3.2)

where L is the sample length and b is the Burgers Vector.

From Eqs.(3.2) and (1.11), we see that the change in residual

resistivity is predicted to vary linearly with the angle of twist. Fig.

3.1 is a plot of the change in ,0“ vs the twist angle 6 for our K sample

in a series of twists at 9.3K (open circles). It can be seen from the

plot that a nice linear relation is obtained. As we will see later,

about 70% of so. is due to vacancies, therefore one must assume that

the vacancy concentration is also proportional to 6. The full circles

are the data from van Vucht g; _a_l.(54). The data shown are corrected

because their sample was 10 cm long and ours was 4 cm long. The higher

slope of their data might be related to the higher yield stress of K at

4.2K. For our K—S sample which was twisted 1329° at 9.3K, we have a

change in o of Ag 3' 0.7' nncm. The corresponding change in AA due to

the dislocations is estimated to be 3, 3'- 0.21 nflcm, which is the value
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AP. (90m)
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(mecMeOel 4.2K)

(Yin eral 9K)

  
  

9( 100')

Figure 3.1

A vs 9

AB is plotted as a function of the angle of twist forKsamples

(open circle). The full circles are the data from van Vucht '95 21.
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of AP. after the sample was annealed at 60K. With L~4cm, b~5A for K,

and e - 1329‘ , Eqs.(3.2) and (1.11) predict that pd~0.l nacm. Thus

the theoretical and experimental values of'g, agree within a factor of

2.

We can also use (1.11) to estimate the dislocation density for our

deformed sample. For our 1329‘ twisted sample K-S with pd 3 0.2 nflcm,

Eq.(1.ll) gives N~5xlo' cm'z.

3.1.2 K(Rb) data

In Fig. 3.2 we present a set of data obtained in a series of

deformations. The theory of Kaveh.and Wiser (19) would predict that the

introduction of dislocations would only slightly increase the

coefficient A of the e-e scattering Tz' term, since ,ed 00; < 0.09.

Instead we see a rather different behavior for dp/dT as we introduce

dislocations. See Table 3.1 for details about the deformation

procedures. Note that annealing at 2003 very effectively removes the

dislocations and essentially restores the behavior of qo/dT to that

seen before deformation.

We shall try to fit the data with

'2

p(T) - ATZ - C'T + (D/4T)sinh (BIZT). (3.3)

where AT2 is the e-e effective scattering term and -C'T is an

anomalous term observed in our laboratory for unstrained alloy samples
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Figure 3.2

dp/dT vs T for K(Rb) samples

dp/dT is plotted as a function of T for the K(Rb) samples in a series

of twists. The details are given in Table 3.1.



Table 3.1

K(0.087 at% Rb) Alloy Sample

Sample pm(nncm) 5: (Mom) E.(K)

KRb-l

KRb-Z

KRb-S

KRb-4

KRb-S

KRb-6

KRb-4

A' - 4.0110.01

0' - 0.22:0.01

11.94

12.17

12.38

13.03

12.62

12.06

13.03

11.61

11.85

12.04

12.68

12.29

11.73

12.68

(film/K2)

(mm/x )

72

u, (fan)

0.354io.oee 0.174t0.094

0.40810.028 0.336t0.046

053930.044 1.20:0.13

0.45210.032 0.6220.09

0.745t0.051 1.21:0.09

22m)

0.296t0.042 0.180t0.077

02(fan)

The temperature is limited to T < 0.7K in the least-squares fit.

KRb-l

KRb-2

KRb-S

KRb-d

KRb-S

KRb-G

Untwisted

480" twisted at 60K

4800' twisted (total) at 60K

additional 4300' at 9.3K then annealed at 36K for 30 min.

annealed at 60K for 30 min.

annealed at 200K for 2 hrs.
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with high concentration of impurities(55), which is not of interest to

this work. The third term is the vibrating dislocation term modeled by

Gantmakher and Kulesco (Eq. 1.27), which was also used by M. Haerle gt

21.1n their work. The coefficients A and C' were obtained from the fit

of the undeformed sample KRb-l and were then kept constant in the fits

of the deformed samples KRb-2 to KRb-S where the vibrating dislocation

term (1.27) was introduced.

Table 3.1 also shows how the various parameters change as the

deformation is increased.

In Fig. 3.2 we obtain reasonably good fits with the vibrating

dislocation model. For sample KRb-4 we see a significant deviation

below 0.23. This fit can be improved by assuming that there is ‘more

than one frequency in the spectrum of the vibrating dislocations. Fig.

3.3 shows such an improved fit. In this figure we plotted dp/dT -

(2AT-C') vs the temperature. In this way we see more clearly the

step-like function in qo/dT caused by deforming the samples. The dotted

lines are the fits plotted in Fig. 3.2, and the solid curve is the fit

using a two-frquency model

pm - In"- our + (D,/4T)sinh.2(F../2T) + (oz/ansixnzcszlz'r) . (3.4)

The parameters of this two frequency fit for KRb-4 are also given in

Table 3.1.

Our success in making dp/dT measurements well below 80 mK was

necessary in order to establish the need for this two-frequency fit. We
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Figure 3.3

do/dT - (2AT-C') vs T for K(Rb) samples

dp/dT - (2AT-C') is plotted as a function of T for the K(Rb) samples.

A step-like function is seen for samples KRb-4 and KRb-S.
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recall that making measurements down to about 20 mK was one of the

goals of this research.

It is worth mentioning here that the one-frequency model seems to

be adequate for samples KRb—Z, KRb-3 and KRb-S, which are deformed at

60K or annealed at 60K after deformation at 9.3K; From Chapter I we

know that the all vacancies in potassium will not be annealed out until

60K. Since KRb-4 was annealed only at 36K, we might ascribe this

multi-frequency behavior to the presence of vacancies in the sample.

From Table 3.1 we see a saturation in the ,residual resistivity

when twisting at 60K. For KRb-2 we twisted 480°, and we got an increase

in g of about 0.23 nncm. In KRb-3 we twisted about 10 times more, but

the change in p. is only 0.44 nn cm. We may ascribe this to the

following fact: After -the sample has been twisted back and forth

several times, there will exist dislocations with opposite-sign Burgers

vectors which can annihilate if they are close enough. The dislocation

density will then saturate when the annihilation and generation rates)

are equal.

3.1.3 Pure K data without annealing

To see the effect of small angle twists, we did a series of

deformations in a pure K sample with RRR ~14100. we saw behaviors which

were similar to the K(Rb) samples. The magnitude of the step-like

function went up systematically as the amount of deformation was

increased. Recall that Fig. 3.1 shows thatjq increases linearly with
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the total angle of twist for this sample. In Figs. 3.4 and 3.5 and in

Table 3.2 we show the data and parameters obtained in a least-squares

computer fit.

we first fit K-l by using

p<'r) = ATz (3.5)

to obtain the value of A. We then kept A constant in the fits of the

strained samples. For K92, K93, K94 and K95 we used

2 ’2

p(T) 8 AT + (D,/4T)sinh (E,/2T) (3.6)

with T < 0.6K so that the electron-phonon scattering terms were

negligible. In Fig. 3.4 we plot (ad/p )dp/dT vs T and see a reasonably

good fit. Fig. 3.5 shows the plot of (pig/P)dP/dT-2A'T where the

step-like behavior is clearer. Since (3.2/Io )dp/dT is what we actually

measure during the experiment, we fit our equations to this form of the

data: and A' which appears in Figs. 3.5 and 3.6 is a parameter related

to A by: A - (I)o lpu)A'. Typically p42 is 15% larger than p0 , which we

define to be p at about 30mK. All the parameters in the tables have

been properly corrected. Since pa.2 is very close to o, for the K(Rb)

sample, we chose to convert that data directly to dp/dT.

We see a rapid increase in Figs. 3.4 and 3.5 for T > 0.6K, and

this has been ascribed to the quenching of phonon drag, which results

in the reappearance of the normal electron-phonon scattering term 0T5.
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Figure 3.4

(on/p)dp/dT vs T for the pure K samples.

The samples are twisted at 9.3K without annealing. The details of

twist are given in Table 3.2.



78

 

 

fi I I If I

" d

o K-l

O K-2

A K-3

_ 6 [-4 1

V s-s V

I- -I

' d

d

0

O

-o- -- - - - - - --

O

A

- '1

Q

afi ‘ 

 

a a a  l J l L L
 

0

Figure 3 .5

.2 .4 .6 .8 1.0

1' (K)

(pulp)dp/d'1' - 2A'T vs T for the unannealed K samples

A step-like function is seen.

best computer fits. Details are given in the text.

The solid and dashed curves are the



Table 3.2

Pure K Sample Without Annealing

Sample e‘énncm) p. (nficm) E,(K)

K-l

K-2

K-3

K94

K95

A - 2.6610.02 (fem/K?)

1.776

1.805

1.908

2.056

2.489

2.489

1.497

1.531

1.632

1.773

2.193

2.193

(mm/K )c - 0.300

K-l untwisted

sea 77‘ at 9.3K

K-3 267' at 9.3K

540‘ at 9.3K

1329' at 9.3K

79

D,(fan)

0.219i0.060 0.0l2i0.009

0.152i0.046 0.01930.011

0.179:0.023 0.041t0.010

0.242:0.036 0.12410.036

0.16210.014 0.04110.009

E,(K) D,(£nmx)

0.58030.050 0.210t0.023
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The solid curve for K95 shows the improved fit with a CTsterm added to

Eq.(3.6). From the Table 3.2 we see that the value of C is less than

0.35 film/K5 , the theoretical value predicted by Frobose (56) for

totally quenched phonon drag.

As we did with KRb-4, we can also improve the low temperature fit

for T < 0.6K by using a two frequency model

2 . ‘2 '2
p(T) 8 AT + (D,/4T)sinh(E,/2T) + (Dz/4T)sinh (El/2T) (3.7)

Fig. 3.6 shows such a plot. We fit Eq.(3.7) only to K-5 because the

improvement there was significant. The parameters are also given in

Table 3.2.

In Fig. 3.7 we plot the parameter D in Eq.(3.6) as a function of

A9, for both K(Rb) and K samples. The circles are the data from the K

sample which was twisted at 9.3K without annealing, and the triangles

are the data from the K(Rb) samples. We see in the plot that

deformation systematically increased 0 for both K(Rb) and K samples.

Indeed D varies almost linearly with 4% which is in agreement with our

expectation that D~JNa. For a comparison, we also plot Haerle's data in

the figure: the diamond is from his K(Rb) sample KRbhb, which was

deformed at 60K: and the square is from his K sample Kh9b, which was

deformed at 4.2K. We see that they are in agreement with our data

points even though a rather different method of deformation was used.

It should be pointed out here that the K(Rb) samples were deformed or

annealed at 60K, where the vacancies are believed to anneal out.
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A two-frequency fit vs the one frequency-fit for sample K-5.

An improved fit is obtained.
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D vs 53 for K(Rb) and K samples

The coefficient D of Eq.(3.3) or Eq.(3.6) is plotted as a function of

#8 for the K(Rb) samples or pure K samples with out annealing. The

data from Haerle 35,31. are also shown. The dashed line is the fit to

the K samples after the vacancy contribution is corrected for. see

text for details.
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However, the K samples were deformed at 9.3K, where vacancies, as well

as screw dislocations, were produced. From Tables 3.2 and 3.3 below we

see that for our sample K-5, which was deformed at 9.3K, AP, = 0.696 nn

cm, and for K—7, which was annealed at 60K,‘qq - 0.207 nncm. We see

that 70% of the increase in hp. with deformation at 9.3K is due to

vacancies. If we correct for this and plot D vs 9d (due to dislocation

contribution only), we get the dotted line in the figure.

We see from the plot that the.K(Rb) data have a slope higher than

that of the K sample. We know for a bcc metal that at 9K, deformation

produces more screw dislocations than edge dislocations, and at 60K,

deforming K is thought to produce more edge dislocations(6). Perhaps

the difference in the slopes is due to the different dislocations in

these K(Rb) and K samples or to the presence of Rb in one of them.

For the vibrating dislocation mechanism, we have discussed two

possible models in Chapter I. One is the Granato model (37) in which

the dislocation is considered to be a vibrating elastic band stretched

between two pinning points. The resonant frequency is given by

v= V/3L (1.25)

where V is the transverse phonon velocity and L is the pinned

dislocation length. From Eq.(l.11) we know thatp‘j is proportional to

the dislocation density N3: and if we simply assume N3; lle, then

v Apart (3.6)
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Thus the characteristic frequency (or energy) is proportional to the

square root of 9d . The other model is associated with the Peierls

potential in which the dislocation oscillates. The characterestic

frequency is given in Chapter I as

v - (t,,/¢m’,:>mb)‘k (1.26)

where t:P is the Peierls stress, on is the mass density and b is the

Burgers vector. An important feature of this model is that the _

vibration frequency is independent of the dislocation segment length L

and consequently, is independent of pd .

In Fig. 3.8 we plot the characteristic energy 8, obtained by

fitting Eq. (3.3) or (3.6) to the K(Rb) data and the unannealed K data

as a function of Ape . We also plot the data from Haerle e_t 51. in the

figure, and we see that they are also in agreement with our data. For

our K(Rb) data, there seems to be a systematic increase in E with 43.

which might imply that the Granato model is applicable. Unfortunately,

the error bars are sufficiently large that we cannot discriminate

between E~ap° and E~(Ag )‘k. For our K samples: we do not see a really

significant M3, dependence in 8.

3.1.4 Pure K data after annealing

When we anneal the K(Rb) samples at 60K, we see a drop in the



85

E (K)

 

axes
as ...>(VIn em)

<>Klb
("eerie-cal)

as)

    

  
 

A P. (nflcm)

Figure 3.6

B vs do for K( Rb) and K samples

The ctnracteristic energy E is plotted as a fuhction of so for the

K( Rb) and K samples. The data from Raerle 95 31. are in agreement

with ours.
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height of the step-like function in dp/dT (Fig. 3.3). However, when we

anneal the K samples at 60K, we see a peak rising even above the

height of the step of the unannealed samples. This is shown in Fig 3.9

in which we again plotted (eh1/p)dp/dT—21I‘T as a function of T. The

dashed curve is the best fit to K95, which was twisted at 9.3K without

annealing. The solid curves are the fits to the data which we will

discuss below.

To fit this peak we tried 'several models. The vibrating

dislocation model Eq.(3.6) failed to fit this peak, even with two

frequencies. Then we tried to let A be a variable parameter in

Eq.(3.6). In Table 3.3 we present the fitting parameters obtained by '

using this method. Figure 3.10 is such a plot in which we show the fit

to K-7(solid curve). The parameter A' in Fig. 3.10 is from Table 3.2

and is derived from A!2.66 fan/K2; Since A in Table 3.3 is smaller than

2.66 film/K2, the fit in Fig. 3.10 has a negative slope at higher

temperatures. The fit was done for T < 0.55K where the phonon

contribution is negligible. To fit the data for T > 0.6K, a CT5 term

has to be added where C was found to be 0.30 film/K5, which is less

than the maximum value 0.35 film/K5 predicted by Frobose(56). We had an

improved fit. However, the resulting drop in A turned out to be hard to

explain since the theory of Kaveh and Wiser (19) predicted that the

introduction of dislocation would only increase A.

To avoid letting A become smaller, we then tried the following

method: we thought that the peak might be associated with some other

mechanism and used the following:
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he)do/dT - 2A'T vs T for the annealed pure K samples

A peak is seen at 0.2K. The dashed curve is the best fit for the

unannealed sample K-S. The solid curves are explained in the text.



Table 3.3

Pure K sample with A as a variable parameter

Sample p¢.2(nncm) p. (nflcm) A (mm/K2) E (K)

K-l

K92

K93

K94

K95

K96

K-7

K98

1.776

1.805

1.908

2.056

2.489

2.095

1.985

1.853

1.497

1.531

1.632

1.773

2.193

1.806

1.704

1.574

88

2.655i0.018

2.422t0.073

2.31920.066

2.441t0.062

3.16710.129

2.289t0.137

1.638t0.088

1.959t0.074

D (ian)

0.242t0.046 0.022t0.009

0.156t0.023 0.02310.008

0.18320.016 0.04610.008

0.218t0.025 0.08910.020

0.254t0.020 0.174:0.028

0.22210.018 0.13210.021

0.14310.020 0.027i0.006

The temperature range is limited to T < 0.551!
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Figure 3.10

The improved fit to K97 with A as a variable parameter

The dashed curve is without the CT5term. A CT5 term helps to fit the

rising tail of the data.
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Table 3.4

Pure K samples after annealing or deformation at 60K

(The parameters are for Eq. (3.10).)

Sample an1(nncm)p.(nncm) E,(K) D (M) 82(K) 8 (film)

K96 2.095 1.806 0.18410.014 0.07210.012 0.530t0.020 0.22210.025

K-8 1.853 1.574 0.51:0.36 0.18i0.23 0.182t0.052 0.145t0.079

K2-2 1.879 1.618 0.17210.021 0.05310.013 0.43010.016 0.240t0.019

A - 2.66io.02 (fem/x2)

K-6 annealed at 35K for 30 min.

K-7 annealed at 60K for 30 min.

K-6 annealed at 100K for 30 min.

A - 24320.02 (mm/x2)

K2-l untwisted

K2-2 2510° at 60K
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-2 -

p(T) I AT1+ (D/4T)sinh (E,/2T) + a(l+bexp(Ez/T)) ‘ (3.9)

where the last term is the model of the localized electronic levels

associated with dislocations, also proposed by Gantmakher and Kulesco

[Eq.(l.23)]. With A still fixed, we had a very good fit: unfortunately,

the parameters a and b were so strongly correlated with each other that

we could not obtain any sensible values for them.

We finally used the following formula which gave us a curve that

was almost identical to that for Eq.(3.9):

-2 _l

p(T) - AT2+ (D/4T)sinh (E,/2T) + B[1 + (2/3)sinh2(Ez/2T)] (3.10)

where the third term, proposed by Fulde and Peschel(35), is due to

inelastic scattering off localized energy levels produced by a

crystalline electric field. The advantage of using Eq.(3.10) instead

Eq.(3.9) is that the parameter 8 was well-behaved in the computer fit,

which made it easier to analyse the data.

In Fig. 3.9 the solid curves show the fits using Eq.(3.10). We

limit the temperature range to T < 0.6K where the phonon terms are

negligible. The parameters from the least-squares fit using Eq.(3.10)

are given in Table 3.4. We see that the new term in Eq.(3.10) has been

used to fit primarily the prominent peak in the annealed K data. No

such term is needed for the annealed K(Rb) data.
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3.1.5 Annealing at 60K after deformation at 9.3K vs

deforming directly at 60K for K samples.

If the peak arising in dp/dT-ZA'T for K after annealing (Fig. 3.9)

is due to some complicated process which occurred during annealing,

then the question arises as to whether the peak will still be there if

we directly deform our K sample at 60K. In Fig. 3.11 we make such a

comparison. K97 is the sample which was twisted by l329'at 9.3K and

then annealed at 60K. K2-2 is another K sample which was twisted by

25100 at 60K. The fitting parameters for these samples are given in

Table 3.4. In Fig. 3.11 we see that these two samples have remarkably

similar behaviors which correlate well with their similar values of 4p.

where ao’- 0.21 nncm and 0.24 n£1cm for K97 and K2-2, respectively.

Note that K2-2 required a much larger angle of twist at 60K. Thus the

electron scattering characteristics of the dislocations seem to depend

only on the' fact that the sample was heated to 60K and not on the

process of deformation and annealing.

3.1.6 Comparison of 60K annealed pure K sample with those

of Haerle 95 21.

In Figs. 3.7 and 3.8 our values of D and B were in good areement

with those of Haerle gt ‘31. We wish now to compare our results

presented in Fig. 3.9 - 3.11 with theirs. Since Haerle gt 31. were able

to fit their data for samples deformed at 60K with a single-energy
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Figure 3.11

A comparison between annealing at 60K after twisting at 9.3K (K—7)

and twisting directly at GCK (K2-2)

A similar behavior is seen. The data of Haerle gt a_1_. are also

presented.
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vibrating dislocation model [Eq.(3.6)], there would seem to be a

contradiction between our respective results. We now believe that this

disagreement is not real and that the "size-effect" contribution to

their undeformed 0.9-mm-diameter samples was probably not corrected for

properly in their deformed samples. In undeformed samples this size

effect shows up as an apparent e-e term inyo of the form: T" where n<2.

If their very lowest temperature data were constrained to fit a T2

behavior, then they obtained A - 1.5 film/Kz'which is much smaller than

typical values of A ( 2.5 mmle ) for our 2-Imn-diameter samples. It is

not known what happens to the size effect contribution when the sample

is deformed. Haerle g§,§l. fit Eq.(3.6) to their data and obtained 1.0

2 A z 1.5 film/1K2 for their deformed samples. Since the A's before and

after deformation were comparable, it was implicitly assumed by Haerle

_t '31. that the size effect was not significantly changed by

deformation. If, on the contrary, we assume that severe deformation

eliminated the size effect in the data of Haerle g§_§1. and raised A to

about 2.5 film/K2, then their results look very much like ours. In Fig.

3.11 we present their data for sample K6hf which was severely deformed

at 60K with Ap.- 0.73 nflcm where A = 2.5 film/Karather than their value

of 1.34:0.07 ism/K2. ‘ Plotted in this way, their data behave in a very

similar manner to ours. To uncover this unusual behavior in our 60K

annealed sample, 2-mm-diameter samples were necessary so that this size

effect was eliminated.
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3.2 Thermoelectric ratio

From Chapter I we know that the thermoelectric ratio G for

potassium below 1K is expected to obey

c = c,+ 8T2, ; (1.40)

where c, is the diffusion term and sz'is the normal phonon drag term.

In Figs. 3.12 and 3.13 we present the 0 data for the K(Rb) and K

samples. We can fit K91 and ‘KRb-l reasonably well(solid curves) by

using Eq.(l.40), but we see the fit is not as good for the strained .

samples (the dashed curves). For most of the strained samples, there is

a maximum in G at about 0.5K. We then tried the following empirical

formula 1

0 - c,+ aT + bT2 , (3.11)

and we obtained much improved fits. The solid curves except K91 and

KRb-l show these fits. The reason for the down-turn at the lowest

temperatures, below 0.1K, is not known at this time.

The parameters obtained from the least-squares fit are given in

Table 3.5. It is clear that dislocations make a negative contribution

to Go in a systematic way.

In Chapter I we have shown the Garter-Nerdheim relation for
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Figure 3.12

G vs T for the K(Rb) samples

Details of the fit are given in the text.
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0 vs T for the pure K samples.
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Table 3.5

Parameters in G for the K(Rb) and K samples

Suple P. (nflcm) G°(l/V)

KRb-l

KRb-2

KRb-3

KRb-4

KRb-S

KRb-6

11.61

11.85

12.04

12.68

12.29

11.73

1.497

1.531

1.632

1.773

2.193

1.806

1.704

1.574

0.415i0.001

0.36210.002

0.337t0.002

0.23010.001

0.30310.002

0.42010.002

-0.06510.003

-0.11910.004

-0.23010.006

-0.36910.003

-0.677t0.003

-0.408t0.004

-0.312i0.004

04(KRb) - -l.7ei0.19 (l/v)

04(K) - -i.967i0.014 (l/V)

98

a (l/VK)

0.09910.008

0.09310.010

0.07210.004

0.092t0.005

0.12410.014

0.11810.023

0.06310.013

0.10510.009

0.19310.015

0.204t0.015

0.17710.012

b (l/VK?)

-0.260i0.003

-0.185t0.006

-0.153i0.008

-0.115t0.003

-0.lsei0.003

-0.256t0s003

-0.30310.004

-0.358t0.010

-0.29610.018

-0.178t0.010

-0.18710.006

-0.276i0.011

-0.29210.011
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diffusion thermopower:

S = Sd + (p:Ap)[Si- Sd] (1.32)

where Si and 6,, are the diffusion thermopowers due to impurity

scattering and dislocation scattering, respectively. We know that the

thermopower S can be related to the thermoelectric ratio 0 by

G = S/LT (1.38)

where L is the Lorenz ratio which is approximately a constant below 1K.

Therefore we have

G,3 644- (P; lp)[G.-- Gd] . (3.12)

where Gd and 0} correspond to the diffusion thermoelectric ratio due to

dislocation scattering and impurity scattering, respectively. If we

plot 0, as a function of l/p we should get a straight line intercepting

the 0, axis at Gd . Fig. 3.14 is such a plot for both K(Rb) and K

samples. Note that q,for the K(Rb) and K samples has the same value

within the experimental error: Gd(K(Rb)) a -l.76 t 0.19 (l/V) and Gd(K)

= -1.97 i 0.02 (l/V). This means that Gd is independent of the type of

impurity which is present in the sample. For K(Rb) the dominant

impurity is Rb, and for our pure K sample we have unknown impurities

with vacancies present in samples K2-K5. Nets samples K-6 and K-7 have
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Figure 3.14

A Gorter-Nordheim plot for both K(Rb) and K samples

04 seems to be the same in both cases.
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vacancies being annealed out, and yet their G;s also follow the same

straight line as K92 to K-S. The simplest interpretation of this

unusual result is that Go for vacancies is very similar to Gd .

Fig. 3.15 is the plot of the coefficient b of the phonon drag term

vs,Ap5 for both K(Rb) and K samples. As is expected, we see that

dislocations also suppress the phonon drag term, which is consistent

with our dp/dT measurements. Note that the presence of Rb impurities

also tends to suppress phonon drag.

No systematic changes have been observed for a, the coefficient of

the linear term we used in G. Its value is about 0.10 (l/VK) for all

samples except for K96, K97 and K96 where it jumps to 0.20 (l/VK). NO'

theory has been found to explain this term so far.
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b vs no for both K(Rb) and K samples

A systematic change is visible.



Chapter IV Discussion and Conclusions

Deformation has a profound influence on the electrical properties

of potassium. The residual resistivity of pure K has been found to

increase linearly with the twist-angle of deformation for small angles

(6 < 1400') at 9.3K. However, a tendency toward saturation in no. is

also observed when the twist angle 9 > 4600° at 60K, and this is

probably due to the high mobility of dislocations at this temperature

so that close dislocations with opposite Burgers vectors are more

likely to annihilate each other. For the K(Rb) samples which are

deformed at 60K or the K samples which are deformed at 9.3K} without

annealing (where impurities or vacancies are present), the

electron-dislocation interaction can be described by a vibrating

dislocation model proposed by Gantmakher and Kulesco (Eq. 1.27).

However, a two-frequency model has been used to give a better fit for

sample KRb-4, which is twisted 4600' at 9.3K and then annealed at 35K,

and sample K-5, which is twisted l329°at 9.3K without annealing. The

temperature is limited to T < 0.6K where the phonon contribution is

negligible. Deformation also suppresses the phonon drag which exists in

the unstrained samples. The coefficient C of this Nbrmal

electron-phonon term CT5 has been found to be ~ 0.30 ffl m/Ks , which is

less than its maximum value 0.35 frlm/K5 predicted by Frobdse (56).

The coefficient of the vibrating dislocation term 0 increases

103
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close to linearly with the change in 9. due to deformation. This is

expected because D should be proportional to the total dislocation

length in the sample. D vs Apa for K(Rb) suples apparently has a much

higher slope (Fig. 3.7) than the pure K samples. However, we know the

increase in p. for K when it is deformed at 9.3K contains also the

contribution of vacancies which could be as large as 70% of the total

increase in ap. . If the vacancy contribution is corrected for, this

slope for the K samples increases and becomes about 67% of the slope

for K(Rb). The remaining discrepancy in the slopes might be ascribed to

the higher yield stress in potassium when the Rb impurities are added,

since it is observed that K(Rb) has a higher yield stress than pure K

at room temperature by us and at liquid nitrogen temperature by Hands

and Rosenberg.(59)

The characteristic energy E of this vibrating dislocation term

seems to have a go, dependence for the K(Rb) sample (Fig.3.6). For the

K sample this dependence appears to be smaller. However, if we correct

“q. for the vacancy contribution to the pure K sample in the same manner

as in Fig.3.7, then the slopes in Fig. 3.6 could be the same for both

samples, with K(Rb) having on average a larger E. If we use the Granato

elastic band model of the vibrating dislocations, we might be able to

explain the 5p. dependence in E, since the frequency is proportional to

the square root of the dislocation density. However, both slopes do not

extrapolate to £90 as apo-rO, and this might suggest some other

mechanisms. 7

The average Rb-Rb atom distance in our alloy is about 50A. If we
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use the Tsivinskii model (Eq.l.10) with an ion radius for K of x =

1.33A and x. 8 O for the case of vacancy, we can obtain the average

vacancybvacancy distance for the most severly deformed sample K-S (;%==

0.5 nlicm) to be about 240A. If we use Eq.(1.6), the correSponding

dislocation separation is about 4000A ( pd- 0.2 nflcm for K—S). If, we

think that the dislocation is a pinned elastic band of length 40001,

its resonant vibrating frequency is about 1.5x109 Hz or the

characteristic energy E is about 0.1K for sample K-S, which is a

reasonable value if we compare it with the experimental value for K-5:

5: 2: 0.2K . The K(Rb) apparently has a higher value for 1: than that of

the K sample, even if the vacancy contribution is corrected for in the

pure K samples. This might be ascribed to the, presence of the Rb

impurity which modifies partially the pinning distances of the

oscillators so that the average pinning distance becomes smaller, and

thus the characteristic energy E is higher. If we use the Rb or

vacancy separation length as the pinning length, then we would obtain

an E with a value much higher than our experimental ones. If we use

the model (Eq.1.26) in which the dislocations oscillate within the

Peierls potential, we might. not expect any App dependence in E.

However, this is not always true: if the yield stress d} depends on the

concentration of either impurities or dislocations, we might have a AR,

dependence in B. We are planning to explore further the impurity

dependence of E and D by deforming K(Rb) alloys with different Rb

concentrations. We also want to see if there exists a vacancy

contribution to E or D for K(Rb) samples, since our K(Rb) samples were
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all annealed above 35K where most vacancies were annealed out. Thus we

plan to deform K(Rb) alloys at 9.3K and measure dp/dT below 1K.

For our 60K.annealed pure K samples where the vacancies are

annealed out, we see a peak in qp/dT which cannot be fit by the

vibrating dislocation model, even with a two-frequency one. It is found

that this peak does not depend on the process of annealing, since our

sample K2-2, which was directly deformed at 60K, also shows the peak in

dp/dT. This peak is apparently suppressed by the impurities because we

do not see any of this in the K(Rb) samples which were also annealed at

60K. By letting A vary we can get an improved fit even with the

one-frequency vibrating dislocation model. However, the drop in A is '

hard to explain considering that the theory of Kaveh and Wiser(19)

predicts an increase in A after deformation. The drop in A might be

associated with the rearrangement of the Q—domain structure predicted

by Bishop and Lawrence(4), but a more detailed theory is needed before

this idea can be explored experimentally. This unusual peak can be fit

instead by keeping A fixed and by adding a new term to the vibrating

dislocation model, and this new term is the localized-energy-level

model associated with dislocations which was proposed also by

Gantmakher and Kulesco in the same paper.(33) An alternative term from

Fulde and Peschel (Eq.1.24) was actually used to obtain the same fit

because it gave more sensible values for the fitting parameters.

The appearance of this localized-energy—level term raises the

possibility that annealing the K sample at 60K porduces a rearrangement

of this energy-level distribution and that the energy-level
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distribution before annealing produces a behavior in dp/dT which looks

like the vibrating dislocation model. This idea also needs to be

further explored.

For our G data we obtain reasonably good fits by using Eq. (1.40)

for our unstrained samples. However, a new peak is visible for the

strained K(Rb) and K: samples. An empirical term, aT, which has no

theoretical explanation, has been added to obtain the best fit. The

Gorter-Nordheim plot (Fig.3.14) exhibits good straight-line behaviors

for both the K(Rb) and K samples. The characteristic diffusion term Gk

due to dislocation scattering is found to be the same for both samples.

Analysis of this Gorter—Nordheim plot for pure K suggests that the

dislocation scattering and vacancy scattering produce quite similar

contribution to G.. If this is not the case, then the Gugan and Gurney

assertion that vacancies anneal out above about 10K must be

re-examined. For example, the above behavior for the Ggof pure K could

be explained as being due to lowering of the dislocation density rather

than a reduction of vacancy density as the sample is warmed from 9K to

60K.

This study has been a continuation of M. Haerle's work, with

emphasis on the electron-dislocation interaction in K below 1K. By

using a completely different mechanism of deformation with much

better control of sample geometry, we have observed similar behaviors

in dp/dT. By using a second dilution refrigerator, we extended the

lowest temperature down to 20 mK, which is much lower than that of

Haerle's (BOmK). This extended region has helped us in determining the
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multi—frequency spectrum of the vibrating dislocations. We used 2mm

diameter samples to avoid the complication of the size effect observed

in Haerle's work.
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