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ABSTRACT

ELECTRICAL TRANSPORT MEASUREMENTS BELOW 1K
ON COLD WORKED POTASSIUM

Shi Yin

The electron-dislocation interaction has been studied with an
emphasis on resistivity for temperatures below 1K. Dislocations are
introduced into the sample by twisting using a device driven by
pressurized helium gas, and measurements of the temperature derivative
of the resistivity, dpo/dT, are made down to 20mK. 2mm-diameter samples
are used to avoid the complication due to a size effect when the sample
diameter is of the order of the electron mean free path. For deformed
K(Rb) samples or deformed K samples with vacancies, a vibrating
dislocation mechanism is observed; for deformed K samples in which the
vacancies are annealed out at 60K, a new behavior in do/dT is observed

which can be fit by a localized electronic—-energy-level model together



with a residual contribution from the vibrating dislocations. A
possible Charge Density Wave contribution is also discussed. A

comparison with previous experimental work is made. Thermoelectric

ratio measurements are also reported and discussed.
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INTRODUCTION

Potassium has long been a material of considerable theoretical and
experimental interest. Most people believe that potassium has the
simplest electronic structure in comparison with non-alkali metals. It
has a nearly spherical Fermi surface which is entirely contained with
in the first Brillouin zone, and it has no unfilled d- or f- shells.
Thus the nearly free electron model is a good approximation for many
calculations, making transport theory comparatively easy to carry out.
Furthermore, in contrast to potassium, 1lithium, sodium, and possibly
even rubidium(l) undergo Martensitic phase transformations at 1low
temperatures which complicate the interpretation of measurements.
Potassium is also a good testing ground for the existence of Charge
Density Waves (CDW), which are a broken translational symmetry of the
ground m&. Recently, two new experiments have addressed this CDW
hypothesis: the observation of CDW satellites in potassium by
Giebultowicz et al.(2) in their neutron diffraction experiment and the
failure in detecting such satellites by H. You et al. (3) in their
synchrotron X-ray diffraction experiment. If found to exist, CDW would
radically change our basic understanding of transport in such a simple
metal.

In this study we are going to report the effect of
electron-dislocation interaction on the transport properties of

potassium, where the dislocations are produced through deformation of



polycrystalline potassium samples. Since deformation of K might also
change the Q-domain textures of CDW's in pb'assium (4), the effect of
CDW’'s will also be discussed.

This study was begun by Mark L. Haerle et al.(5)(6), and the
results reported here are a continuation of their work with three
significant improvements: Firstly, we introduce the dislocations into
our sample by twisting Q:I.th a device driven by pressurized helium gas,
while Haerle ot al. did it by squashing the sample between two plates.
In our method of deformation the sample geometry change A(A/L), where
A is the sample cross sectional area and L is the sample length, is
much better controlled (<1%) than that of Haerle's (<10%). Since the
resistivity p = R(A/L), any change in A/L during deformation would
make it difficult to tell the real contribution of dislocatiohs to o .
Secondly, we have used a different dilution refrigerator which can
obtain a much lower temperature (T>20 mK) than that of Haerle et al.
(T>80 mK). This new region of temperature is crucial for determining
the low-energy vibration spectrum associated with the dillocations.
Finally, we used 2mm diameter samples to avoid a possible size effect
which made the amalysis of Haerle's 0.9mm diameter samples more
complicated.



Chapter I Basic Electrical Transport Theory

The fundamental basis for electrical transport study 1is the

following set of equations

J = LE + L,vT (1.1)
é = LuE + LT (1.2)

where J is the electric current density, Q is the heat flow current
density, E is the electric field, and ¢T is the temperature gradient.
The Lv.j coefficients are tensors in general, but they can be reduced to
scalars here because potassium has cubic symmetry.

In this work we mainly measure the electrical resistivity po and
the thermal 'pover S. They are defined as follows |

-4

pmom= (JIE)'vr:.L“ (1.3)

S = (E/eT)| = -L /L, (1.4)
Js0

1.1 Resistivity
Theory predicts that the resistivity for Bloch electrons in a

perfect lattice is 2zero, and the finite resistance in a real metal

comes from the interactions of the conduction electrons with the



imperfections of the lattice such as impurities, dislocations, 1lattice
vibrations, etc. If Matthiessen's rule is obeyed, one can write down

the resistivity of potassium as a sum of terms
P =P *Cp* Re* Pper (1.5)

where o, is the residual resistivity, which 1is independent of
temperature and is due to scattering by various static imperfections in
the crystal. The second term QP is usually a function of temperature: Q'
- p.P(T). It is due to electrons scattering off phonons. The third term
Pee is the electron—electron scattering term, and it 1is also
temperature dependent: p = Pee(T)e This term is usually 10% times
saaller than the residual resistivity p, in pure bouﬁim at 1K.

The last term can be expressed as a sum of tmﬁ for other
possible contributions to p. The resistivity due to electrons
scattering off phasons, p 2-ph which are the elementary excitation of
CDws, is one of these possible terms. Because of the recent observation
of CDW satellites in potassium by Giebultowicz et al.(2), a
phason-scattering term in p can not be ruled out.

Another possible term is p %4 which 1is the resistivity due to
interactions between electrons and dislocations. Normally one would
expect o, to be temperature independent and thus only contribute to Re
However, the work of Haerle has shown that there is also a temperature
dependent term which is of interest in this thesis. A dislocation is an

extended line—defect in a crystal. There are basically two kinds of



dislocations: the edge dislocation and screw dislocation. For an edge
dislocattion the Burgers vector b is perpendicular to the dislocation
line, and for a screw dislocation b 1is parallel to the dislocation
line(Fig. 1.1).

In our experiment we introduce the dislocations into our sample by
twisting. Ideally, torsional deformation along (001) direction in a
cubic symmetry crystal will produce networks of equally spaced screw
dislocations in two perpendicular directions (Fig. 1.2). However, for
our polycrystalline samplés the sample axis is not parallel to any
particular symmetry direction, and there may be imperfections 1like
vacancies or other dislocations already present in the sample before we .
deform it. We therefore expect to produce a very irregular dislocation
structure during deformation. As we will see later, the temperature at
which we deform the sanble and the possible subsequent annealing will
play an important role in affecting the detailed structure of these

imperfections.
l1.1.1 The residual resistivity due to dislocations

There are several theories that explain the origin of the
residual resistivity. Of particular interest here are those which
address electron scattering by dislocations.

Using a geometrical model of obstacles at which the conduction
electron energy dissipates, Tsivinskii (7) calculated classically the

residual resistivity due to impurities, vacancies and dislocations.
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An edge dislocation (a) and a screw dislocation (b).

Figure 1.1
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Figure 1.2

Screw dislocations

Two neighbouring planes in a simple cubic lattice rotated slightly with
respect to each other. A regular pattern of screw dislocations is
visible. The (001) direction is perpendicular to the page.



From this classical theory the resistivity is given by

p = (2mv/etn,)(1/1) (1.8)
where e and m are electron charge and mass, respectively, n, is the
free electron concentration per unit volume, v is the Fermi velocity,
and A is the mean free path.

For a dislocation contribution to p, Tsivinskii argued that the
mean free path 2 can be replaced by the following formula:

A= 1/bN (1.7)

where N is the dislocation demity(#lcnz) and b is approximately equal

to the magnitude of the Burgers vector. In this way, we obtain
o = 2mvbN/e?n,= WN . (1.8)
For potassium, Eq. (1.8) predicts that
-19 3
W= 1.6x10 (.n.clll )o (1.9)
This value of W i8  almost a factor of 2 smaller than the experimental

value obtained by Basinski et al. (8).

For the contribution of impurities or vacancies Tsivinskil uses



A = 1/[rn(x3-x2)] (1.10)

in which n is the atomic concentration per unit volume of the metal,
and x and x, are ionic and impurity radii, respectively. For vacancies
Xo,=0.

Another theory was proposed by Basinski et al.(8) in which they
calculated the mean atomic displacement from equilibrium due to the
strain field around a dislocation. They asked what temperature is
needed to give the same mean displacement via random thermal motion.
Then they assumed that the increase in p due to the dislocation is the
same as the resistivity due to the electron—-phonon interaction at this
temperature. They derived W = 4x10 'acad in formula (1.8) for
potassium, which is in good agreement with the experiment they
performed.

In a third theory, Brown(9) calculated the resistivity due to
resonant s-wave scattering of the electrons. The resonance 1is created
by virtual bound states which are associated with the dislocation
cores. He predicted that

-9
where for potassium W = 8x10 nca? which 1s a factor of 2 larger than
the experimental value from Basinski(8) et al. Brown argued against a
correction factor used by Basinski in obtaining their experiment result

which, if omitted, would bring Brown's theory in closer agreement with
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experiment.

Gurney and Gugan(10) performed an early study of the effects on
the residual resistivity.of annealing a wire of deformed potassium. In
their experiment the residual resistivity was measured first, and then
the sample was plastically deformed at 4.2K. Again p, was measured.
Next the sample was amnealed at a higher temperature and then slowly
cooled down to 4.2K where p was measured. They kept annealing and
measuring p, in stages until the initial value of p, was recovered. The
Gurney and Gugan interpretations, which are significant to this thesis,
are as follows:

1. Between 3 and 7K, the relatively few interstitials formed
during deformation anneal out, causing about 5% resistivity decrease.

2. Between 10 and 20K, about 40% of the extra resistivity caused
by deformation disappears. This is ascribed to the long-range migration
of monovacancies. There is evidence that the dominant processes at the
end of this stage involve the annihilation of defects at dislocation
sinks.

3. Between 20 and 80K, there is a region with no significant
peaks in the recovery rate, but over this temperature range about 30%
of the deformation—produced resistivity disappears. Part of this is
attributed to the detrapping of point defects, probably vacancies, from
impurities.

4, Between 80 and 150K, the recovery rate shows a strong peak at
about 110K and accounts for 25% of the total recovery. This is

associated with the annealing of dislocations during recrystallization.
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S. Between 5 and 20K, a major length recovery occurs considerably
before the resistivity recovery begins. Gugan(ll) ascribes this to a
rearrangement of dislocations rather than a decline in the number of
dislocations.

These temperature ranges are rough guesses based on the breaking
points in the complicated annealing curves of residual resistivity vs
the annealing temperature, and some of the proposed mechanisms which
explain the various recovery stages are unsubstantiated. Nonetheless,
this study does provide a basis on which the effects of dislocations on

the resistivity may be examined.
1l.1.2 Electron-phonon scattering

In calculating the electron-phonon interaction, the following
condition must be satisfied in order to obtain a non-vanishing matrix

element:
K -K=2q+0 (1.12)

where K and K  are the wave vectors for the incoming and scattered
electrons, respectively, § is the phonon wave vector, and G is the
reciprocal lattice vector. The plus or minus sign before q represents
the phonon absorption or emission processes. If '5#0, the process 1is
called Umklapp; and if G=0, it is the normal process.

The above phonon processes are 1illustrated in Fig. 1.3, where
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—- 0

1) Umklapp process

3

2) normal process

3) phonon absorption

Figure 1.3
The phorion processes

phonon emission
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potassium is assumed to have a nearly spherical Fermi surface which
does not touch the first Brillouin zone. This figure illustrates

1) The Umklapp process. When the magnitude of the emitted or
absorbed phonon wave vector q exceeds the minimum value — Qs this
process can occur. The characteristic feature of this process is that
even when the value of q is small there can be a large difference
between the directions of K and K'.

2) The normal process. The crystal momentum is conserved here.

3) The phonon absorption or emission.

By assuming an equilibrium phonon distribution, a relaxation <time
approximation for the Boltzmann equation, no Umklapp scattering, and a
Debye spectrum for phonons, Bloch(12) predicted that the electrical
resistivity due to electron-phonon scattering has the following
temperature dependences for the indicated limits:

p (T) e« T , (1.13)
for T > 0.58,, and

p (T) &« T35, (1.14)
for T < 0.1 6, ,where 6, is the Debye temperature.

Since 6, for potassium is about 100K, we therefore expect to have

in our experiment below 1K
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Pep= CT°, (1.15)

where C 18 a constant. However, measurements done by Gugan(13)
(T>1.2K), Ekin and Maxfield(14) (T>1.5K) and van Kempen et al.(15)
(T>1.1K) did not show this T° term. Instead their results could be fit

to an equation of the form
Ry(T) = BT EXB(-6"/T) (1.16)

with n~1 and 6~ 20K, When T is 1less than or equal to 1K, this
exponential term is negligible; and the data from Haerle et al.(6)
(T<1K) also failed to show the T° behavior in their unstrained
potassium samples.

The main reason for the failure of this model is attributed to the
presence of phonon drag (13). Basically phonon drag arises when the
phonon distribution 1s disturbed from its equilibrium state at 1low
temperatures. According to Danino, Kaveh and Wiser(16), the electrical
resistivity is caused by the electron system transfering its excess
momentum, gained from the electric field, to the phonon system via
electron-phonon scattering. However, at low temperatures, much of this
excess momentum is not dissipated by the phonons (not 1lost to the
lattice), but 18 returned to the electron system via phonon-electron
scattering. The electrons are thereby "dragged" along by the phonons
(phonon drag), so that there are less effective electron—-phonon

scatterings, and therefore the electrons experience a much reduced
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resistivity. In potassium at low temperatures, such a phonon drag
process can largely eliminate the normal scattering contribution (CT9)
to the resistivity(17); and at high temperatures this effect 1is
quenched because phonon-phonon Umklapp scattering equilibrates the
phonons with the lattice.

The exponential behaviour seen experimentally in Pep (T) can be
understood in terms of electron-phonon Umklapp scattering, which is the
scattering between two Brillouin zones. For potassium, this scattering
requires phonons with at least the minimum momentum (q,) to Jjump the
gap between the two cells. Phonons obey Bose-Einstein statistics, and
at low temperatures the density of phonons which can participate in an -

Umklapp process goes like

exp(-hvq, /kT) (1.17)

where v is the velocity of the phonons. This factor dominates the
electron-phonon resistivity seen experimentally; and at temperatures
below 1K, which is the temperature range of present interest, this term
is negligible.

There are mechanisms other than phonon-phonon Umklapp scattering
that can pull the phonons into equilibrium. For example, a high
concentration of impurities or dislocations(18) could interact with the
phonons to provide a way for the phonons to lose the momentum given to
them by the electrons, resulting in an equilibrium distribution.

Danino, Kaveh and Wiser(19) pointed out that the quenching of
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phonon drag by phonon-dislocation scattering is likely to be negligible
for potassium above 2K unless Ny>10" cm® ,where N4 is the dislocation
density. For dislocation density N4 ~ 10q cn'z. they and independently
Engquist(20) proposed a new electron-dislocation interaction mechanism,
which is based on the anisotropy of electron—dislocation scattering, to
explain the suppression of phonon drag in the electrical resistivity of
poﬁasium.

.

1.1.3 Electron-electron scattering

Electron-electron scattering can contribute to the resistivity.
Let K ; and sz be the initial wave vectors of the two scattering
electrons, and let fg andf, be the final wave vectors. Then we have

the following momentum conservation rule
K, +K,=K;+K,+0 (1.18)

If 5-0, we have a normal process, and otherwise we have an Umklapp
process.

In a calculation of the resistivity, we know from Ziman(21) that
an approximate solution to the Boltzman equation for a normal e—e

scattering process contains a factor of the following form:

[Ce(E, B, + ©(B JEy=c(E K, ~o(F, K, )- U1 (K, 4K, K, K,)  (1.19)
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where t(K) is the electron relaxation time, and U is a unit vector in
the direction of the electric field. When the scattering is isotropic,
t is a constant, and this term vanishes. Thus the normal process will
not contribute to the resistivity. In the second order approximation
the Umklapp process can take place, and the delta function given above

is replaced by

So we see that Umklapp scattering gives a finite contribution to
| resistivity even with the isotropic relaxation time approximation. The
calculation predicts a r? dependence of the e—e scattering contribution
to the resistivity for T << E./kg. ]

This 'rzbohnviour has been observed experimentally by van Kempen et
al.(22) and Levy et al.(23), I-bwever., some controversy arose when
Rowlands et al.(24), who were the first to carry out high precision
measurements below 1.2K, found that the resistivity of their potassium
sample(0.79 mm in diameter) behaved more 1like T'° than 1like T3
Overhauger(25) tried to explain this T  behaviour on a CDV basis. Later
Lee et al.(26) measured o(T) for a number of thicker samples and
confirmed the existence of a T2 term down to 0.4K. Then Yu et al.(27)
measured a series of samples with diameters ranging from 0.09 to 1.5 mm
and found important deviations from T? behaviour in samples thinner
than 1mm. Their interpretation invokes an effect proposed by Gurzhi(28)

involving interference between normal electron—-electron scattering and
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surface scattering. Since Haerle et al.(5) used 0.9mm diameter samples
in their deformation experiment, this size effect was present. Our
experiment is better because we used 2mm diameter samples where the
s8ize effect is negligible.

As for the coefficient A of this '.l'2 term, a theory was worked out
for potassium by Lawrence and Wilkins(29) for a screened Coulomb
interaction. This theory was later refined by MacDonald et al.(30), who
included both screened Coulomb scattering and phonon exchange
scattering., MacDonald et al. found that the screened Coulomb
interaction gave a much smaller contribution than the earlier work of
Lawrence and Wilkins, and instead they found that the dominant term
was due to phonon exchange scattering. Both theories predicted an A'l‘2
term with A = 1,7 £2a/K?,

However, this coefficient A has been found by various groups
mentioned above to be sample dependent, which conflicts with the
fundamental ideas underlying the calculations of A. A way had to be
found to introduce a non-intrinsic property, varying from sample to
sample, whi.ch affected the magnitude of A. As we mentioned earlier, the
normal electron-electron scattering does not contribute to the
resistivity if the relaxation time <t is isotropic, as shown in Eq.
(1.19). However, if t is not isotropic, this term will not vanish and
therefore can make a significant contribution to p. Kaveh and Wiser
(31) argued that dislocations are the best candidate for such an
anisotropic scatterer. At very low temperatures the dominant mechanisms

are impurity(p,, ) and dislocation(p, ) scatterings, and impurity
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scattering is believed to be almost isotropic. Thus the ratio el ‘/Q ; is

a measure of the relative amount of anisotropic scattering, where

P, =P, * Py (1.21)

Kaveh and Wiser obtained

A=A, +A, ’35/(903 + P ) (1.22)

where A, is the Umklapp contribution in the isotropic limit, and A,
corresponds to the maximum contribution from normal scattering. An
estimate of A, 1is difficult because the anisotropy of the
electron-dislocation scattering time 18 not known. Kaveh and Wiser
estimated this anisotropy and were able to fit Eq.(1.22) to the data,
although somewhat arbitrary estimates of R4 /po . were made for each set
of data. They found that A,= 3.5 fQm/K? and A, 0.5 fam/K?. The
squashing experiments of Haerle et g.(s) were designed to test this
theory by introducing a known value for e 4 Haerle et al. observed that
P(T) for deformed potassium did not exhibit the predicted '1'2 behavior,
which is in agreement with the results to be presented here. Thus the
theory of Kaveh and Wiser, although important for motivating these
deformation experiments, cannot explain these results, and different

electron—dislocation scattering mechanisms are needed.

1,1.4 Electron-dislocation scattering
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In his attempt to explain the residual resistivity due to
dislocations, Brown(9) proposed a theory where the electrons are
scattered primarily by the dislocation cores rather than by the
swrounding strain fields. As a result, the large angle scattering by a
segment of a dislocation line is independent of the proximity of other
dislocations. He also stated that there is no reason to distinguish
between the E:ores of edge, screw, or mixed character dislocations in
this regard. He suggested that dislocations could have virtual bound
states for electrons, with an energy slightly above the Fermi surface.
He estimated that these relative energy levels for potassium are about
10'“bv. These energy levels could be localized near the cores of the
dislocations. Recently, Fockel(32) pointed out that the potential of
the dislocation core contains resonance states below the Fermi energy.
Fockel used the pseudo—potential concept in which he treated the core
as discrete and the surrounding matrix as a non-linear elastic
continuum,

Let us suppose that there are some localized electronic 1levels
near the dislocation cores at some height E above (or below) the Fermi
level and that they become occupied (or unoccupied) as temperature
rises. Therefore the effective core charge changes with temperature.
Gantmakher and Kulesco(33) derived the following equation assuming that

the electrons were scattered elastically off the localized levels:

R4(T) = a(l+bexp(E/kgT) ) (1.23)



21

where b is the spin degeneracy of the level and a is a proportionality
constant.

There are other calculations which apply to interactions with
localized energy levels in crystals. Fulde and Peschel(34) calculated
the resistivity due to electrons scattering inelastically off localized
energy levels produced by a crystalline electric field splitting of
rare earth ions dissolved in metals. By using Matthiessen’s rule, they

derived the following expression

GZ

] (1.24)
L+ (2/3)sinh 2(39_—',)

Pp(T)=p [ 1+

where G and g, are constants, and D is the energy level splitting for
an assumed doublet. Even though this expression is not directly
associated with dislocations, we think this theory might be applicable
to scattering from local electron states caused by dislocations such as
the virtual bound states predicted by Brown.

O Hara and Anderson(35)(36), in their.study of the lattice thermal
conductivity on some superconducting metals, found the existence of a
resonant phonon-dislocation interaction at certain frequencies. This
work supports the @existence of dynamic dislocations at 1low
temperatures. They proposed two models for the possible vibrating
dislocations. One was originated by Granato(37) in which the
dislocation is treated as an elastic band stretched between two pinning

points a distance L apart and the natural resonant frequency y is given
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by
v = V/3L (1.25)

where V is the transverse phonon velocity and L 1is the dislocation
length. Hence the frequency is inversely proportioml to L. The pinning
source might:' be the intersection of a dislocation with other
dislocation 1lines, vacancies or impurities. The other model 1is
associated with the Peierls potential, which is important for bcc
metals such as potassium for a reason we. are going to discuss below.
Here the dislocation might oscillate in its potential well with a
frequency essentially independent of the length of the segment
involved(35): -

ve [tpl4ﬂzpmb2]i (1.26)

where T, is the Peierls stress, p, is the mass density and b is the
magnitude of the Burgers vector,

Potassium shows a rapid increase of critical flow stress with
decreasing temperature.(38) For example, from 20K to 4K its critical
shear stress increases by almost a factor of 2. This and other
significant differences from fcc metals are ascribed to a limited
mobility of the (a/2)<111> screw dislocation due to a high Peierls
potential(38). In contrast to screw dislocations, edge dislocations in

potassium do not feel the effect of a large Peierls potential and are
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comparatively mobile(39). For this reason we expect deformations at 9K
to produce more screw dislocations than edge dislocations; and for
deformations at 60K, where the Peierls stress is less important, we
expect to have more edge dislocations. Since screw dislocations are
thought not to be pinned by impurities or vacancies due to their lack
of a dilatational strain, we expect Eq.(1.26) is more viable for screw
dislocations, and because edge dislocations are thought to be pinned
by impurities or vacancies and not interact strongly with the Peierls
potential, we expect Eq.(1.25) to be more viable for edge
dislocations(6).

The inelastic interaction of these 1local modes in the phonon
spectrum with the <electrons was calculated by Gantmakher and
Kulesco(33) who approximated the local modes by a single frequency—the
Einstein oscillator. They found an additional electrical resistance

due to such an interaction of the form:
-2
R T) = (D/4T)sinh (fiw/2kyT) (1.27)
where w i8 the ground state frequency of the oscillator and D is a
proportionality constant. Note that Eq.(1.27) predicts ,%d('r)ae T for T
> fwfkg.

1.1.5 Electron-phason scattering and Charge Density Waves (CDW)

According to the CDW theory proposed by Overhauser(40), the
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electron density in an alkali metal is modulated due to the

electron—-electron interaction:
p(r) = p, (1 + poos(Q-T + ¢) (1.28)

where p is the modulation amplitude, 3 is the characteristic vector of
the CDW ( Q‘iekp), and ¢ is an arbitrary phase term. The lattice then
deforms sinusoidally in order to maintain overall charge neutrality.
(The positive—ion 1lattice is approximated by a deformable—jellium
model.) The wave vector 6 is incommensurate with the reciprocal lattice
vector G. Since the presence of CDWs in potassium would change its
nearly spherical Fermi surface into a complex intei-oonnected one, this
would have a profound effect on the transport propsrties of potassium.
For example, the 1interconnected Fermi surfaces would reduce the
magnitude of the minimum phonon wave vector qm;“in the electron-phonon
Umklapp scattering which would enhance such scattering. In addition the
electron-electron Umklapp scattering would also be eﬁhanced by another
channel K, +K,=K,+K, +Q ir addition to the original one K,+K,=K, +K,+G.
Therefore its contribution to resistivity is enhanced. This enhancement
would also depend on the relative orientation of the electric field
and the "Q" domains, which are defined as regions over which long range
correlations of the CDW exist. The orientation of the "Q" domain is
anticipated to be sample dependent, e.g. it can be changed by rapid
cooling and deformation, and therefore the electron-electron

scattering should also be sample dependent. According to Overhauser,
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CDW's can have elementary excitations in which the phase ¢ varies
periodically in time and space. These excitations are called phasons,
and they behave differently from phonons as far as their dispersion
relation is concerned. Using a phason—-scattering mechanism Bishop and
Overhauser(4l) tried to explain the T' behavior in the resistivity
measurement done by Rowlands et al.(24); but from the work done by Lee
et al.(42), Black,(43) and Yu et al.,(27) we now know that the sample
size can be responsible for the deviation from T2 behavior in potassium
samples thinner than lmm.

Bishop and Lawrence(4) have combined the above-mentioned CDW
electron-Umklapp scattering and phason scattering to explain the
variability in A that Kaveh and Wiser tried to explain by
electron-dislocation scattering. Bishop and Lawrence argued that
different Q-domain textures could cause different amounts of phason and
Umklapp contributions to p(T). Since deformation could modify the
Q-domain textures, our deformation studies have relevance to the CDW
hypothesis. We were particularly interested in observing what small
deformations might do to p(T), which twisting the sample allows.

To identify the existence of CDWs in potassium has long been a
subject of interest. Giebultowicz et al.(2), as we mentioned earlier,
reported the observation of CDW satellites in their single crystal
potassium sample by neutron diffraction. On the other hand, H. You et
al.(3) reported recently that they failed to observe such satellites in
their synchrotron X-ray diffraction experiments for their mosaic single

crystal potassium. Indeed we need more experiments to positively
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identify the existence of CDWs in potassium.
1.2 Thermoelectric Power S
From the basic transport equations given oarlfer

J = L,E + LvT (1.1)

Q=L,E + LpT, (1.2)

we obtain the thermopower S:
S = (E/eT)| = -L,/L, (1.29)

which 1is measured experimentally as follows: If we induce an
infinitesimal ‘temperature drop across the sample, there should be a
therm?electric voltage; and the thermopower is obtained if we divided
this voltage by the temperature drop.

Theory predicts that the thermopower usually consists of two

parts: the diffusion thermopower and the phonon drag thermopower.
1.2.1 Diffusion thermopower
The diffusion thermoelectric power contribution is usually

associated with a system of electrons that interacts with a random

distribution of scattering centers which are assumed to be in thermal
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equilibrium at the 1local temperature T. As we will see in the next
section, this assumption is a very poor approximation in the real
situation; an additional contribution will appear when the assumption
of local thermal equilibrium is lifted.

Assuming f:he conduction electrons constitute a degenerate Fermi
gas, if one uses the relaxation time approximation, and if the higher
order terms in the expansion of the Fermi-Dirac function are neglected,

then one obtains the Mott(21) expression for the diffusion thermopower:

-,rzg"'r 'aln O(E)

3€ 9E (1.30)

where ¢ is the conductivify and E. is the Fermi energy.

When impurity scattering dominates, one expects for potassium that
2ln 6(E)/9E will be independent of temperature. Thus the thermopower in
potassium should vary linearly with temperature T.

If there are two kinds of scattering processes involved in a
system, for example, impurity scattering and dislocation scattering,

and if Matthiessen's rule applies, then
P=p, *Py » (1.31)

where P; and py are considered as independent impurity and dislocation
contributions to the resistivity, respectively.
Using Egs.(1.30) and (1.31), we have the Gorter-Nordheim

relation(44) for the diffusion thermopower
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S = (1/p)lp,S, +p, 81 =54 + (p. /p)IS; - §;] (1.32)

where S, and S, represent the diffusion thermopowers due to impurity
scattering and dislocation scattering, respectively. Therefore, if we
assume p. is not changing during deformation and plot S as a function
of llp,. we should get a straight line which intercepts the S axis at Sd.

1.2.2 Phonon drag thermopower

As we mentioned earlier, the assumption of thermal equilibrium in
the calculation of the thermopower can be a poor one because the
application of a temperature gradient across the sample causes the
phonon distribution to go out of equilibrium. This phonon flow will
"drag" the electrons to the end of the sample until the electric field
formed by the piled-up electrons 1is 1large enough to stop further
electron dragging. This will cause an additional thermopower term, the
phonon drag thermopower,(45)

. The phonon drag thermopower is usually divided into two parts: one
due to the normal electron-phonon process and the other one due to the
Umklapp process. The general theory in both cases tends to be rather
complicated, but fortunately we will be working in the low temperature
limit, T < 1K. |

The normal process involves scattering of electrons within a
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single Brillouin zone. In the low temperature limit this contribution
to thermopower goes roughly as the lattice specific heat, which has a T3

temperature dependence:

Sg o T (1.33)

The Umklapp process is more complicated. As we have seen earlier,
a minimum phonon wave vector qM‘is needed to scatter from one Brillouin
zone to another if the Fermi surface does not touch the zone boundary,
as in the case of potassium. We can estimate the number of such phonons
to be proportional to exp(-fAVq_/kT).

Guenault and MacDonald(46) fit their  data to‘a simple equation of

the form
S = S,T + BT + Cexp(~8’/T) (1.34)

where S,T is the diffusion term, BT® is the normal electron-phonon
drag term and Cexp(-G?T) is the Umklapp electron-phonon drag term. S,
and B were found to be negative, and C was found to be positive, with
6'~21K, For temperatures lower than 1K the Umklapp term is usually

negligible,
1.2.3 Thermoelectric ratio G

If we want to measure the thermopower, we must produce and measure
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a temperature difference across the sample. Experimentally this turns
out to be very difficult for potassium because it has a very high
thermal conductivity, and it requires a huge heat flow across the
sample to produce a large emnough temperature difference for
measurement. This heat flow usually exceeds the cooling power of the
dilution refrigerator. Instead, the thermoelectric ratio G was actually

measured in this work:
G = (J/é)lg_-o L,/Ly; (1.35)
From (1.1), (1.2), and (1.29), we know that the resistivity p =
1/L,, the thermopower S = -L /L, , and the thermal resistivity W =
-1/L,,. So G can be written as

G = L,/Lg (L,/L,)(L,/L,) = SW/p (1.38)

Since the lLorenz ratio L is defined as

L =po/WT , (1.37)
we have
G = S/1T . (1.38)

Now the thermopower can be related directly to the thermoelectric ratio
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G. Ideally L should be a constant; and for T << 1K where elastic

impurity scattering dominates, this is indeed the case where
-8
L =L,=1k /3¢’ = 2,445x10 V /K* . (1.39)

From the results of Haerle et al.(47), we know that L/L,= 0.97 at
1K and that the ratio becomes even closer to 1 at lower temperatures.
Since our interests are below 1K where the exponential Umklapp term is

frozen out, G is expected to have the following simple form
G =G, + bT? (1.40)

where G, is the diffusion term and bT2 is the normal phonon drag term.
Any departure from this expression below 1K would indicate the presence
of some other scattering mechanism which has not been taken into

account in the above theory.



Chapter II Experimental Techniques

In this chapter, the major equipment used in the experiment will
be described. Details will be given about the thermometry, the sample
container, its functioning in deforming the sample, sample preparation,
and the measurement procedures. In addition, possible heaé flow

problems and the measurement uncertainties will be discussed.
2.1 Main Equipment Used For Measurements
2.1.1 The dilution refrigerator -

Since our emphasis on the properties of potassium is below 1K, a
locally-built dilution refrigerator, which is capable of reaching 10
mK, has been used in the experiment. This dilution refrigerator was
oriziﬁally built by J. Imes and W. Pratt Jr.,(48)(49) and then modified
by V. Heinen.(50) It can cool from room temperature to liquid nitrogen
temperature in about 12 hours. It takes about 15 1liters of liquid
helium to reach 4.2K. The lowest temperature (about 10 mK) can be
reached after 5-6 hours of SHe-%He mixture circulation. For a general
description of a dilution refrigerator and its operation see

Lounasmaa(51).

32



33

2.1.2 The high precision resistance bridge

As the discussion in section 2.6 will make clear, we measure dp/dT
in our experiments. For a typical unstrained potassium sample at 1K,
the relative change of p, ap/p, 18 about 10.5 with a temperature change
of AT = 0.1 K. Since dp/dT is usually smaller at lower temperatures,
rather precise measurements of sp/p are required. We have used a
high-precision current-comparator system with a SQUID' null detector.
The system was built by D. Edmunds et al.(52) and can resolve the

quantity ap/p to a precision of better than 0.1 ppm.
2.1.3 The screened room and floating pad

A commercial, double-layered screened room (from Erik A. Lingren
and Associates, Inc.) surrounds the cryostat and screens out any
radio-frequency noise which might affect the operation of the
rf-biased SQUID. Since mechanical vibrations in the presence of the
earth’s magnetic field can induce currents which exceed the dynamic
range of the extremely sensitive SQUID, the refrigerator body is
magnetically shielded with high-p metal and mounted on a vibration
isolation table. All the pumps are kept outside the screened room and

are connected to the refrigerator through flexible bellows.

2.1.4 A schematic diagram of the ultralow temperature part of the

cryostat
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Figure 2.1 shows the low temperature part inside the cryostat. The

details will be discussed in later sections.

2.2 The thermometry

The temperature was measured in this experiment with two germanium
resistance thermometers and one Cerrous Magnesium Nitrate(CMN)
susceptibility thermometer. The calibration of these thermometers was
done by C.W. Lee and V. Heinen et al.(50) The two germanium resistors
are mounted in the holes in the bottom piece of the sample mount using
Apiezon N grease for thermal contact. The auscehtometera of the CMN
thermometer are mounted. against and thermally isolated from the plastic
wall of the mixing chamber., Silver wires of l-mm—~diameter provide
thermal contact between the bottom piece of the sample mount and both
the CMN sensor and its susceptibility coils.

For temperatures above approximately 1.5K, "R6" is used, which is
a Lakeshore Cryotronics germanium resistor. The calibration was done as
follows: First, the susceptibility of a CMN sample was measured against
SRM767 and SRM768, which are the superconducting fixed point devices
from the National Bureau of Standards. Since the susceptibility of CMN
1s proportional to T & over the temperature range of interest here,
temperatures other than the fixed points could be easily determined by
interpolation. Then by using a least-squares fit, the resistance of R6

was fit to the temperatures given by the CMN for temperatures between
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1K and 4.2K using the following equations

N n
Log T = } a,(Log R) (2.1)

LE 1)

Log R = ¥ b,(Log T) (2.2)
N=o0
with N = 7, With these fits, the temperature given by R6 is estimated
to be within 0.3% of the absolute temperature.

For temperatures between approximately 40 mK and 1.5K, "R7" is
used, which is a Cryocal CRSO germanium resistor. The method of
calibration was similar to that used for R6, except that the
susceptibility of an irregular single crystal of 10% CMN and 90%
LMN(Lanthanam Magnesium Nitrate) was used for interpolating between the
fixed points. The resistance of R7 is fit to the temperatures given by
the susceptibility of the CMN-LMN using the equations given above with
N=9, The error is estimated to be within 0.7% of the absolute
temperature.

Below approximately 50 mK the CMN thermometer 1is used which
consists of a susceptometer (Fig. 2.2) and a CMN pill. The CMN pill is
a 50:50 volume mixture of CMN and 700-A Ag powder pressed onto a 0.012"
diameter Ag(0.4 at®% Au) wire. The pill is a right circular cylinder
(height=diameter=1/8") containing approximately 18 mg of CMN and 95 mg
of Ag. The Ag(Au) alloy wire is used to reduce any possible eddy
currents caused by the 17 Hz magnetic fileld used to measure the
susceptibility. The eddy currents can produce fields which would affect

the measured susceptibility and could also cause heating of the CMN



37

Niodium

1——— Ead Cap

=————Nicbium Tube

Secondary Primary Coil
Coils

H

IR} c i
VIS CMN pill

Coil-foil Tube

Niobium
End Cap

Ag(Au) wire

Figure 2.2
The CMN thermometer



38

pill. This wire is approximately 1" long and is spotwelded to a pure Ag
wire which 1is attached to the bottom Ag sample mount. For a more
detailed description of the CMN thermometer see V. Heinen’s Ph.D.
thesis.(50)

The CMN thermometer was calibrated against the SRM 768 which is
the low temperature standard. It has the following fixed points: W
(15.5 mK), Be (22,92 mK), Ir (99.13 mK), AuAl (160.43 mK), and Auln
(204,36 mK). The 22.92 mK point has not been used because this
superconducting transition point was in complete disagreement with the
other fixed points. A linear least-squares fit has been done to the 15,
99, 160, and 204 mK points assuming a Curie law behavior for the
susceptibility of the CMN. In the overlapping temperature range of the
CMN thermometer and R7, the temperature difference was found to be less
than 1%,

We have used two thermometers for temperature regulation of the
mixing chamber. A carbon resistor is used as the temperature sensor
for T 5 50 mK., The other sensor 1is a second identical CMN thermometer,
used for T < 50 mK, since CMN has a much better temperature response in
this range. This system has the unique feature that only one SQUID is
used as the null detector for both CMN mutual inductance bridges.
Figure 2.3 shows how this is done. Two independent AC oscillators, V;
and V, , drive the two bridges. Each Intersil #ICL 8038 sine wave
generator is powered by a separate 6V battery, one operates at 17 Hz
and the other at 40 Hz. Their maximum output is 1 V p-p. There is also

an optical coupler output for the reference channel of each lock-in
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amplifier. Two HR-8 lock-in amplifiers from Princeton Applied Research
Corp. are used to independently extract the two AC signals at the SQUID
output. No interference between these two CMN bridges has been observed
in this experiment.

Also a silicon diode thermometer from Lake Shore Cryotronics, Inc.
is used for determining the temperatures above 4.2K during twisting and
annealing of the sample. This thermometer is thermally connected to the
top end of the sample. The voltage across the diode is measured with 10

HA reversed biased current.

2.3 The sample can

Since potassium reacts with oxygen and water vapor, a
self-contained sample can has been used which permits both our
measuring the electrical properties of the sample and deforming the
sample at low temperatures.

Figure 2.4 shows a drawing of the sample can which is capable of
twisting the sample while mounted on the dilution refrigerator. The
sample can and dilution refrigerator are both mounted inside a main
vacuum can, which is surrounded by liquid helium, as shown in Fig. 2.1.
The sample can can be separated into three assemblies: The top flange D
on which the feed-throughs B and the sample holder H are mounted, the
central body cylinder F, and the bottom flange P on which the twister
is mounted.

The three assemblies are sealed together by two replaceable indium
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Figure 2.4
The sample can
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Table 2.1 A list of parts in sample can (shown in Figs. 2.4 - 2.6, not
all parts are shown in each figure)

A central rod s bglloua

B feed-through

T pulling gear bar
C central rod housing - U ratchet cam
D top flange V pawl
E top indium ‘0" ring W pushing bar
E° bottom indium 0" ring a flipper pin hole
F central body cylinder b ratchet cam pin

G top sample mount

H nylon sample holder
I potassium sample

J bottom sample mount
K twisting shaft

L torque coupler and rotation detector
L twisting key

L" rotation detector
M flipper

M flipper arm

M" flipper axis

inner track

outer track

bottom flange

track housing

wm © ‘v O =2

pressurizing line
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"0" rings located at E and E°, respectively. After the sample is
mounted, the top flange E 18 sealed last while the can is still
inside the argon glove~box. Then the whole can is taken out of the
glove-box and mounted underneath the mixing chamber of the dilution
refrigerator.

The top flange is made of brass. On it there are the central rod A
and two feed-throughs B. A is made of OFHC copper and is epoxied onto a
housing C, which is made of "Vespel" (SP-22 Polymide, from Dupont,
Inc.), a very good heat insulator at low temperatures. The rod serves
as both the heat path and one of the current 1leads of the sample. One
of the feed-throughs B is used for various electrical 1leads, and the
other one is used as a safety valve, made by soldering a thin brass
foil onto it. The central body cylinder F 1is made of copper’ to which
the two upper and lower flange housings are hard soldered. There is a
heater (not shown in the figure) mounted on the outside of the cylinder
to control both the deforming and annealing temperatures. The lower
flange assembly P consists of the bellows and the twister systems, and
their functions will be described in the following section.

Figure 2.5 is a perspective drawing of the sample holder H, which
is made of nylon. The two sample mounts, G and J, are made of OFHC
copper, and G is part of the central rod A. The lower sample mount J
can be turned by the torque coupler L, which is also made of "Vespel®”.
The coupler is driven by key L°, which is on the output shaft of the
twister. The current is run through A and J, and the voltage is picked

up through the V-probes in the figure. A heater is mounted on the back
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-

Figure 2.5
A perspective view of the sample holder
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side of J for the thermoelectric ratio G measurements (not shown in the
figure). Note a potentiometer L" is mounted on the torque coupler so

that the angle through which the sample is twisted can be read.
2.4 Plastic deformation of the sample

The main feature of the twister is as follows: At any temperature
above 4.2 K, if we apply about 30 psi pressure of helium gas to the
bellows S, we can obtain a maximum torque output through L° of about 5
pound-inch, which will twist potassium samples of 3mm diameter through
about #80 degrees. The direction of twist can be chosen at will and
twisting only occurs during the upward power stroke of bellows S. To
obtain a larger amount of deformation, one has to twist the sample back
and forth many times. Since the SQUID circuit is very sengitive to
stray magnetic fields, a purely mechanical method of setting the
direction of twist has been used, rather than the more o'bvious
electro-mechanical method.

The detailed description of this twister can be understood either
from Figure 2.4 or the simplified perspective drawings Figures 2.5 and
2,6.

Inside the twister there is a flipper M at the bottom of which is
a wheel. This wheel can sit at a position above either the inner track
N or the outer track O. When the tracks, together with their housing Q,
are driven up by the pressurized bellows, one of the tracks will hit

the wheel and force it to move along the slope. Since the attached
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Figure 2.6
A perspective drawing of the twister mechanism
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flipper is connected via M" and M° to the central shaft, this motion
will force the central shaft (with key L° at its top) to turn through
an angle. If the flipper sits above the other track which has the
opposite slope, L° will turn in the opposite direction.

There is a gear arm T attached to the housing of the tracks Q.
When the pressure inside the bellows is 1lowered, the housing will
return to its lower position. On its way back the gear arm T will turn
the ratchet cam U. Note that there is a curved groove in the ratchet
cam U, and pin b is engaged in it. When U turns, the curved groove
will force the pin b and hence bar W to move horizontally, which will
bring the flipper to the other position. When T rises, a pawl V keeps U
from turning. Usually several small up and down motions of T are
required to switch flipper M between tracks. During these oscillations
of T, the flipper M does not contact the track. Thus the sample is not
twisted.

When the bellows is driven up again by pressurized helium gas, the
central shaft this time will turn in the opposite direction. Thus a
back and forth rotation is accomplished. In addition to the rotation
detector, two similar position detectors have. been put inside the
twister to detect the actual position of the be.‘l:lows and the actual
position of the flipper(not shown in the Figures).

The He gas in the bellows must be isolated from sample area inside
‘the can because any helium gas there would provide a heat path between
the sample and the wall of the sample can. The residual argon gas

brought from the argon glove-box is solidified at helium temperature.
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The plumbing for the pressurization system connected to the
bellows is shown in Figure 2.7, which is similar to that of
Haerle s.(47) Normally when operating the bellows valve #1 is closed
and helium is slowly applied through valves #2 and #3. The two-line
system has been built for the following reasons: If a solid air plug
should form when pressurizing at around 10K, the bellows could still be
evacuated by using the second line because any plug Would take place in
the first line above the 1liquid helium level, which would be above the
place where the two lines Jjoined to form one thin 1line going into the
vacuum can. The ballast tanks are about 10 cubic inches in volume and

are uged to damp out any Taconis oscillations.

2.5 Sample preparation

The samples were prepared inside a commercial argon glove-box
(Vacuum Atmosphere Company) with the gas purifying system built
locally. In comparison with another VAC helium glove-box having a
nominal oxygen contamination of less then 0.4 ppm, the time that
potassium remained shiny inside the argon glove-box was longer or equal
to that of the potassium inside the helium one. So we know that the
oxygen concentration inside the argon glove-box is less than or equal
to 0.4 ppm. The water vapor content has not been directly measured but
exposed potassium remains shiny for hours. In order to allow the sample
can to outgas and the purification system time to remove any residual

contamination brought in with the can, all needed materials were placed
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in the air-lock and pumped on for at least 24 hours. Then they were
placed in the glove-box for another 24 hours before the sample was
made. To further reduce the contaminants inside the can, an oxygen
goetter was used. Before the can was closed, a thin copper sheet about
2"x7" in size was smeared on one side with a thin layer of K or Rb and
then placed inside the can with the unsmeared side against the inner
surface of the can body., In this way the sample surface remains
reasonably shiny even after a run of several weeks. It is very
important that the sample surface remain clean since thick deposits of
K compounds on the sample surface have been observed to significantly
alter the mechanical properties of the sample.

The pure potassium sample is made of 99.95% potassium obtained
from Callery Chemical Company, a division of Mine Safety Appliances
Company. Table 2.2 shows the chemical composition of a similar batch of
the potassium. The potassium came in glass ampoules sealed under argon
gas. The ampoules were opened inside the glove-box, and the potassium
was melted and transfered to the stainless steel press (Figure 2.8).
If the sample was K(Rb) alloy, the potassium was first melted and
poured into a hot glass beaker; and then some Rb was melted into the
beaker before the alloy was poured into the press.

The samples were extruded through a 2mm diameter die. The samples
were about 40mm long between the voltage probes (Figure 2.4) and were
cold welded onto the copper mounts J and G which had been smeared with
some potassium first. Then the sample ends were clamped onto the mounts

by two previously potassium-smeared copper clamps. This assures that
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Table 2.2 Chemical analysis of potassium

Element PPM Element PPM Element PPM
Pe <5 Cr <5 Sr <l
B <10 Si 25 Ba <3
Co <5 Ti <5 Ca 8
Mn 1l Ni <5 Na 15
Al <2 Mo <3 Pb <5
Mg 2 \'4 <1 ir <10
Sn <5 Be <l

Cu <l Ag <l

This information is from the Callery Chemical Company.
< means less than this level of impurities could not

detected.

be



52

A%

|'A1R "
PPl ‘!'.: ‘ °

‘e
tecce”

—

Figure 2.8
The press and die for extruding the sample
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we do have good mechanical and electrical contact between the sample
ends and sample mounts. Next, two potential probes of the same
potassium were extruded and cold welded onto the sample and then
attached to two 2x3 mm Ag tabs on which fine superconducting Niomax
wires had been soldered beforehand. Since potassium is very sticky at
room temperature, we have had no trouble with these cold-welded joints.
The fine superconducting wires are the voltage lead connections to the
SQUID circuit, and they are sufficiently flexible that negligible
torques are applied to the sample by them during twisting.

Before mounting the can onto the dilution refrigerator, the room
temperature resistance of the sample is measured by passing a known
current through the sample and measuring the r;sulting voltage across
the sample with a Keithley 180 nanovoltmeter. After the can ;s mounted,
the bellows pressurization 1line is connected and leak tested. Then a
small angle twist is made to ensure that every thing is working. This
twist would introduce no dislocations because all the dislocations and
vacancies anneal out at room temperature(10). Finally the bellows is
evacuated and left in this state until the first deformation of the

sample is to be performed,
2.6 Measurements
This section is intended to explain how the various parameters of

the samples are measured.

The ratio of the cross sectional area to the length of the sample,
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A/L, is measured before and after the run to make sure that the sample
geometry does not change during deformation of the sample.

Since A/L is given by

A/L = p(300K)/R(300K), (2.3)

we just measure the resistances before and after the run and compute

the ratio

R(300 K)betere
R(300K atter

(2.4)

which would tell us if the sample geometry has changed, since p(300K)
is a constant. Results show that the change is less than 1%, which is
much better than the previous work of Haerle (<10%).

Once the sample is cooled to 4.2K or lower, the circuit shown in
Figure 2.9 is used. This low temperature circuit consists of the SQUID
(Superconducting Quantum Interference Device) null detector and two
resistors wired in series. The two resistors are 1) Ry , which is the
potassium sample, and 2) R, , which is a Cu(Ag) alloy resistor designed
to have a resistance with small temperature and current dependences.
The wires connecting these resistors are made of Niomax CN, a
multi-filament Nb(Ti) superconducting wire with Cu(Ni) cladding from
Imperial Metal Industries(potential 1leads), and the T48B
superconducting wire from Supercon, Inc., with about 1 cm of the copper

cladding etched off for thermal isolation(current leads). To minimize
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the noise introduced by stray magnetic fields, most of the wires except
those near the sample are shielded in superconducting 1lead tubing. The
wires leading to the sample are all carefully tied or varnished down to
reduce magnetically induced currents and heating due to vibration.

The wires exit the can through electrical feed-through B (Figure
2.4). This feed-through is made by running the superconducting wires
through a clean stainless steel tube which is then inverted in a cup of
Stycast 1266 epoxy.

Two reference resistors have been used in the experiment, and they
are all made of oxygen—annealed dilute Cu(Ag) alloys. One of them was
made by Haerle (47), had a 4.2K resistance of about 1.6 uf? and was .
used for the K(Rb) alloy sample. The other one was made in a similar
manner, had a 4.2K resistance of 0.18 uf2? and was used for the pure K
sample.

The resistance ratio C can be measured by using the current
comparator together with the SQUID as the null detector mentioned in
2.1.2. The current comparator generates two currents, I, and Ig , with
the ratio C = Is/Im being stable to a 0.1 ppm precision. When comparing
resistances, one current I, passes through what is called the master
side resistor R, , and the other current Iy passes through the slave
side resistor Ry;. The master side current I, can be ramped slowly to a
predetermined value. The current Ig is C-I, where C 1is the switch
setting of the current comparator. C is adjusted until the SQUID output
signal indicates a null condition at its input.

The thermal EMFs generated in the circuit can be eliminated by the
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following procedure. Let VS be a str;y voltage 1in the circuit due to a
thermal EMF. Then for the currents going in one direction the SQUID

measures

V(+) = I,Rg = LRy + V5 . (2.5)
When one reverses the currents, one has

V(-) = -IsR; + LRy + Vy . (2.6)
Since C is adjusted until V(+)=V(-), one has

I¢Rg = LR+ Vg = -IsRs + LR + V. (2.7)
Finally one obtains

Is/Im- Re/Rg = C (2.8)

which is independent of Vs .

We now show how one can obtain the temperature derivative of the
resistivity by measuring the ratio C. One possible procedure would be
to keep the reference resistor at 4.2K and measure C as the sample
temperature is varied. The disadvantage of this method 1is that the
Johnson noise generated by the resistor at 4.2K is much larger than at

40mK. To minimize this noise one would 1like to cool the reference to



58

the same temperature as the sample, but then there 1is a problem of
separating its temperature dependence from that of the sample. This can
be solved in the following way: We regulate the reference temperature
(T") while applying steady heat to upper heater 1 (Figure 2.9, HUl),
and we measure the ratio C at temperature T. Next we switch the heat to
HL1 so that a temperature difference AT is produced across RL, a Ag(Au)
resistor of about 50 pS Then we measure C + AC at T + AT. We want to

calculate the quantity

c/(CaT) . (2.9)
Let us define

C = R, /Ry . (2.10)

After the sample temperature is raised the reference temperature 1is

still kept at the same temperature T . Therefore one has

AC = AR /R, , (2.11)
or

(1/C)AC/AT = (lle)ARk/AT. (2.12a)

If AT is small enough, this leads to
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(1/C)aC/aT => (1/p)dp/dT = (llpg)dp/dT . (2.12b)

Below about 1K, the right hand part of (2.12b) is obeyed since the
total variation of p below 1K is about ap/p = 10.? Therefore do/dT can
be obtained by multiplying (2.12b) by P, in the plots of the data.

One advantage of this temperature-modulation method is that we can
double—check our thermometry here. As mentioned above, we know the
amount of heat 6 being put into the heaters HUl and HL1 in order to
produce a temperature difference AT across R, the Ag(Au) resistor in

Figure 2.9. The Wiedemann-Franz law states that
RL/w = L,T (2.13)

where RL is the resistance, W = AT/Q is the heat resistance and L, is

the Lorenz number. We obtain that
R, = L,TAT/Q . (2.14)

If our thermometry were perfect, the value of R we calculate at
different temperatures using (2.14) should be a constant. Thus we check
our thermometry by calculating RL occasionally during our runs. We
usually measure R, at T = 0.03, 0.05, 0.15 and 0.6K during each run.
For example, in our run with sample K-1 the average of R was 46,65 pn

and the standard deviation was 1.1%; In our run with K-5 the average of
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R was 46.5 pftand the standard deviation was 2.6%. The overall
standard deviation of RL in each run was less than 3%.

The current put through the sample 1is wusually 5SOmA, but
occasionally checks are made to be sure that there 1is no current
dependence by using 25mA.

Another quantity measured in the experiment is G, the
thermoelectric ratio. G is defined as the ratio of the electrical

current to the heat flow at zero voltage drop across the sample:
. . 2
=T = T R .
G qu'zso 9/ Ih Rn (2.15)

where 19 is the current passing through the sample to counteract the
thermal voltage resulting from the heat flow through the sample: Q = I:
R, . Ip, is the G heater current, and R, is its resistance.

The measurement is done as follows. First we pass a known heat
flow Q through the sample, and this causes the SQUID to go off the null
value because a thermal voltage 1is generated. Then we put a balance
current I9 through the sample by adjusting the dials on the current
comparator until the SQUID indicates the null condition again. No
currents passed through R, during these measurements. Then from (2.15)

the G value is obtained.
2.7 Heat loss

It is important that all the thermometers which are mounted on the
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silver sample mount (Fig. 2.10) be at the same temperature as the
sample. Thus any heat flow between the sample and this sample mount
must be kept to a minimum level. The heat losses due to the
superconducting leads are negligible since they are very poor heat
conductors at these low temperatures.

Since the body of the sample can is directly attached to the
mixing chamber by a Ag wire, any heat paths to the can from the sample
will be considered to be heat leaks. From Fig. 2.4 we see two such
paths. One path is via the central rod housing C, and the other is via
the torque coupler L. They are both made of "Vespel". The empirical

formula for its thermal conductivity at low temperature is
K = 17 T% pw/(coK). (2.16)

We want all the heat generated by heater HL1 to flow only through the
weak thermal link R, (Figs.2.1, 2.9, 2.10), which is a Ag(Au) wire
with a resistance of ~ 50 ufl . By using the Wiedemann-Franz law, we
know that the thermal resistance of this wire is about 2x103 (K/watt).
The thermal resistance of the housing C is therefore designed to be
about 105 (K/wWatt), roughly 650 times that of R _at 1K. The bottom
sample mount J is made of OFHC copper and is hard soldered to a
stainless steel shaft K. The heat loss due to the torque coupler L is
estimated to be much less than that of the housing C.

The electrical resistance from the top sample mount G to the

silver tab (Fig. 2.10) was measured to be less than 2.4 ufl at 4.2K, the
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estimated temperature difference between the sample and the

thermometers is less than 0.2 mK for the worst case (at 1K).
2.8 Heat generated while deforming the sample

As we mentioned in Chap. 1 (Section 1.1.1 and 1.1.4), for
temperatures near 10K, the actual temperature at which the sample was
deformed must be known since screw dislocations appear to rearrange
themselves near 10K and vacancies begin to anneal out above 10K. It is
therefore necessary to calculate the temperature increase while the
sample is being twisted. Unfortunately, we do not have a thermometer
mounted directly on the sample. However, the diode thermometer 1is
mounted nearby on the tﬁp sample mount (Fig. 2.9) to which ;he sample
is cold welded. First let us calculate the heat relaxation time <t
of the sample. We know that the temperature distribution function

U(x,t) for a bar of length L is of the form

UCx,£) = T Cn © "'sin(!-’[_—"- (2.17)

nso
where the relaxation time Th is defined as

t = (L/nm 1/a%, and (2.18)

where L is the length of the bar and a? = k/co in which k is the

thermal conductivity, ¢ is the specific heat and-p is the mass density.
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For potassium at 10K, we have k=4.0 Watt/cmK, ¢=0.07 Joule/gK and

p=0.86 g/cm? . Therefore we have

t,= 0.034 sec , (2.19)

which is the 1longest relaxation time in <t,. Our twist is typically
done in about 1 second, which means that the whole sample is at a
uniform temperature during most of the deformation if, as a worst-case
example, we assume o heat is flowing out of the ends of the sample.
Now let us calculate the work needed to twist the potassium
sample. The yield stress o for potassium at 10K is about 1 Kg/mm?2 (57)
and according to Cottrell(58), the torque T needed to twist a bar of

radius r and shear stress ¢ is

T° = (n/2)r%. (2.20)
For our sample we have r=lmm, therefore we get T =1.57 (kg-mm). If we
twist the sample by w, the work done is ~ 0.05 Joule. The specific
heat of potassium near 10K is 0.07J/gK, and the sample mass is about
0.15 g. Thus the temperature increase due to this heating is

AT =5K . : ’ (2.21)

The actual temperature increase is much less than this because the

sample is in contact with the sample mounts which have a much bigger
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heat capacity. For example, let the total heat of deformation flow
through the whole sample and out of the upper end which is in contact
with the central rod. Since t << 1 sec, we can assume that a uniform
temperature gradient is rapidly established across the sample and

obtain for the temperature drop across the sample

AT = WQ , (2.22)

where W is the thermal resistance of the sample and 6 is the heating
rate due to twisting the sample: 6 = (0,05 Watt. We assume that the
sample end which 1is in touch with the central rod is at a constant
temperature (10K). The thermal resistance of our K sample is about 38
K/Watt at 10K, and therefore the temperature drop AT = 2K. Since we
assumed that all the heat flowed the whole 1length of the sample, AT is
an overestimate. In our experiment we have seen no noticeable
temperature increase on our diode thermometer while smoothly deforming

the sample.

2.9 Uncertainties

In our (1/p)dp/dT measurements the biggest uncertainty below 0.15K
comes from the determination of AC, whose uncertainty may exceed 10% at
the lowest temperatures. Thus possible systematic uncertainties in AT
are not significant below about 0.15K. For temperatures above 0.15K the

uncertainty in AC is usually less than 2%. For 0.03K < T < 0.6K, we
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estimated in section 2.6 that the systematic uncertainty in T was
less than 3%. If we restrict this estimate to T > 0.15K, we obtain 2%.
Thus for T > 0.15K we estimate the uncertainty in (1/p)dp/dT to be 3%.
In converting (1/p)dp/dT to do/dT, we must include the uncertainty in p,
which we estimate to be t3%.

In our G measurements the major source of uncertainty is from the
thermal drifts of the system which cause the effective 2zero of the
SQUID null detector to drift during the measurement of IQ . The
uncertainty in I9 is less than 2% for temperatures above 0.1K, and it
could be as large as 5 to 10% at the lowest temperatures (T< 0.05K),
since thermoelectric voltage is usually very small in this temperature
region. Other possible uncertainties are also negligible compared to

those given above.



Chapter III Experimental Results
3.1 Resistivity

In our experiment two kinds of samples have been used: One is a
pure potassium sample with Residual Resistance Ratio (RRR), which is

defined as

RRR = R(293K)/R(4.2K), (3.1)

and is of the order of 4100; and the other sample is a dilute K(Rb)
alloy (K-0.087 at % Rb).

We used the K(Rb) sample so that the electron scattering rate
would be dominated by a known impurity, Rb. For the most heavily
deformed K(Rb) sample, we will see that this condition is still met
since pd/p; < 0.09, where P, = pd + p3 o In this limit the theory of Kaveh
and Wiser would predict a small increase in A with deformation. The
presence of Rb impurities might also modify the dynamical properties of

the dislocations.
3.1.1 Residual resistivity

From Eq.(1.11) we know the increase in p due to dislocations goes
(]
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linearly with the change in the dislocation density Ng:

o = WNg4. (1.11)

The coefficient W is predicted by Basinski (8) to be 4x10 " acm3.
If we use the simple dislocation model shown in Fig. 1.2, we can
obtain a linear relation between the dislocation density N 4 and the

twist angle 6 (53)

where L is the sample length and b is the Burgers Vector.

From Eqs.(3.2) and (1.11), we see that the change ip residual
resistivity is predicted to vary linearly with the angle of twist. Fig.
3.1 is a plot of the change in R, vs the twist angle 6 for our K sample
in a series of twists at 9.3K (open circles). It can be seen from the
plot that a nice linear relation 1is obtained. As we will see later,
about 70% of ap, 1s due to vacancies, therefore one must assume that
the vacancy concentration is also proportional to 6. The full circles
are the data from van Vucht et al.(54). The data shown are corrected
because their sample was 10 cm long and ours was 4 cm long. The higher
slope of their data might be related to the higher yield stress of K at
4,2K., For our K-5 sample which was twisted 1329° at 9.3K, we have a
change in g of ap & 0.7 nficm. The corresponding change in ap, due to

the dislocations is estimated to be Py & 0.21 nfcm, which is the value
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aR 1is plotted as a function of the angle of twist for K samples
(open circle). The full circles are the data from van Vucht et al.



70

of ap, after the sample was annealed at 60K. With L ~4cm, b ~5A for K,
and © = 1329° , Egs.(3.2) and (1.11) predict that g, ~ 0.1 nacm. Thus
the theoretical and experimental values of p, agree within a factor of
2.

We can also use (1.11) to estimate the dislocation density for our
deformed sample. For our 1329° twisted sample K-5 with Py = 0.2 nfcm,

Eq.(1.11) gives N-5x10° cm'z.

3.1.2 K(Rb) data

In Fig. 3.2 we present a set of data obtained in a series of
deformations. The theory of Kaveh and Wiser (19).wcu1d predict that the
introduction of dislocations would only slightly increase the
coefficient A of the e—-e scattering T2 term, since o, /93 < 0.09.
Instead we see a rather different behavior for dp/dT as we introduce
dislocations. See Table 3.1 for details about the deformation
procedures. Note that annealing at 200K very effectively removes the
dislocations and essentially restores the behavior of do/dT to that
seen before deformation.

We shall try to fit the data with
-2
p(T) = AT? = C°T + (D/4T)sinh (E/2T), (3.3)

where AT2 is the e-e effective scattering term and -C°T is an

anomalous term observed in our laboratory for unstrained alloy samples
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dp/dT vs T for K(Rb) samples

do/dT is plotted as a function of T for the K(Rb) samples in a series
of twists. The details are given in Table 3.1.



Table 3.1
K(0.087 at% Rb) Alloy Sample
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Sample p“(nncm) R (nacm) E,(K) D, (famK)
KRb-1 11.94 11.61 - -

KRb-2 12.17 11.85 0.35410.093 0.174+0.094
KRb-3 12.38 12.04 . 0.408+0.028 0.336+0.046
KRb—-4 13.03 12.68 0.539+0.044 1.20+0.18
KRb-S 12.62 12.29 0.452+0.032 0,62+£0.09
KRb-4 13.03 12.68 0.7454#0.051 1.21+0.09
A = 4,01:0.01 (fam/K2)

C° = 0.,22¢0.01 (fam/K )

E(K) D,(fAmK)

0.296+0.042 0.180£0.077

The temperature is limited to T < 0.7K in the least-squares fit.

KRb~1
KRb~-2
KRb-3
KRb-4
KRb-5

KRb—6

Untwisted

480° twisted at 60K

4800° twisted (total) at 60K

additional 4800° at 9.3K then annealed at 36K for 30 min.

annealed at 60K for 30 min.

annealed at 200K for 2 hrs.
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with high concentration of impurities(55), which is not of interest to
this work. The third term is the vibrating dislocation term modeled by
Gantmakher and Kulesco (Eq. 1.27), which was also used by M. Haerle et
al.in their work. The coefficients A and C° were obtained from the fit
of the undeformed sample KRb~1 and were then kept constant in the fits
of the deformed samples KRb—-2 to KRb-5 wﬁere the vibrating dislocation
term (1.27) was introduced.

Table 3.1 also shows how the various parameters change as the
deformation is increased.

In Fig. 3.2 we obtain reasonably good fits with the vibrating
dislocation model. For sample KRb-4 we see a significant deviation
below 0.2K. This fit can be improved by assuming that there is more
than one frequency in the spectrum of the vibrating dislocations. Fig.
3.3 shows such an improved fit. In this figure we plotted do/dT -
(2AT-C") vs the temperature. In this way we see more clearly the
step-like function in do/dT caused by deforming the samples. The dotted
lines are the fits plotted in Fig. 3.2, and the solid curve is the fit

using a two—-frquency model
p(T) = AT2= C°T + (D, /4T)sinh (E,/2T) + (D,/4T)sinh (E,/2T) . (3.4)

The parameters of this two frequency fit for KRb—4 are also given in
Table 3.1.
Our success in making do/dT measurements well below 80 mK was

necessary in order to establish the need for this two-frequency fit. We
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do/dT - (2AT-C") vs T for K(Rb) samples
dp/dT - (2AT-C°) is plotted as a function of T for the K(Rb) samples.
A step~like function is seen for samples KRb—4 and KRb-5.
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recall that making measurements down to about 20 mK was one of the
goals of this research.

It is worth mentioning here that the one-frequency model seems to
be adequate for samples KRb—-2, KRb-3 and KRb-S5, which are deformed at
60K or annealed at 60K after deformation at 9.3K. From Chapter I we
know that the all vacancies in potassium will not be annealed out until
60K. Since KRb-4 was annealed only at 36K, we might ascribe this
multi-frequency behavior to the presence of vacancies in the sample.

From Table 3.1 we see a saturation in the residual resistivity
when twisting at 60K. For KRb-2 we twisted 480°, and we got an increase
in p of about 0.23 nacm. In KRb—-3 we twisted about 10 times more, but
the change in p 1is only 0.44 nfcm. We may 'ancribo this to the
following fact: After the sample has been twisted back and forth
several times, there will exist dislocations with opposite-sign Burgers
vectors which can annihilate if they are close enough. The dislocation
density will then saturate when the annihilation and generation rates

are equal.
3.1.3 Pure K data without annealing

To see the effect of small angle twists, we did a series of
deformations in a pure K sample with RRR ~ 4100. We saw behaviors which
were similar to the K(Rb) samples. The magnitude of the step-like
function went up systematically as the amount of deformation was

increased. Recall that Fig. 3.1 shows that ] increases linearly with
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the total angle of twist for this sample. In Figs. 3.4 and 3.5 and in
Table 3.2 we show the data and parameters obtained in a least-squares
computer fit.

We first fit K-1 by using
2
p(T) = AT (3.5)

to obtain the value of A. We then kept A constant in the fits of the

strained samples. For K-2, K-3, K-4 and K~5 we used
2 -2
p(T) = AT + (D|/4T)sinh (E,/2T) (3.6)

with T < 0.6k so that the electron-phonon scattering terms were
negligible. In Fig. 3.4 we plot (eu/p )do/dT v T and see a reasonably
good fit. Fig. 3.5 shows the plot of (pkz/P)dp/dT-ZA'T where the
step~-like behavior is clearer. Since (%z/p )do/dT is what we actually
measure during the experiment, wé fit our equations to this form of the
datas and A° which appears in Figs. 3.5 and 3.6 is a parameter related
to Aby: A= (o /%. A°. Typically P, , 18 15% larger than p_ , which we
define to be p at about 30mK. All the parameters in the tables have
been properly corrected. Since p4.2 is very close to R, for the K(Rb)
sample, we chose to convert that data directly to do/dT.

We see a rapid increase in Figs. 3.4 and 3.5 for T > 0.6K, and
this has been ascribed to the quenching of phonon drag, which results

in the reappearance of the normal electron-phonon scattering term CTs.
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Figure 3.4

(g,/P)dp/dT vs T for the pure K samples.

The samples are twisted at 9.3K without annealing. The details of
twist are given in Table 3.2.
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(p.,/p)do/dT = 2A°T v8 T for the unannealed K samples

A step—-like function 1is seen. The solid and dashed curves are the
best computer fits. Details are given in the text.



Table 3.2
Pure K Sample Without Annealing
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Sample eﬂfn.ﬂcm) p, (nfkcn) E,(K) D, (famK) E(K) D ,(£0mK)
K-1 1.776 1.497 - - - -

K-2 1.805 1.531 0.219+£0.080 0.0121£0.009 - -

K-3 1.908 1.632 0.152+0.046 0.019%0.011 - -

k-4 2.056 1.773 0.179£0.023 0.041£0.010 - -

K-5 2.489 2,193 0.242+£0.036 0.124+0.036 - -

K-5 2.489 2.193 0.162+0.014 0.041+0.009 0.580£0.050 0.210£0.023

A = 2.66$0.02 (£Am/K?%)

C = 0.300 (£am/K )
K-1 untwisted

-2 77° at 9.3K

K-3 267° at 9.3K

E-4 540° at 9.3K

K-5

1329° at 9.3K
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The solid curve for K-5 shows the improved fit with a CTsterm added to

Eq.(3.6). From the Table 3.2 we see that the value of C is less than
0.35 fOm/KY , the theoretical value predicted by Frobose (56) for
totally quenched phonon drag.

As we did with KRb-4, we can also improve the low temperature fit

for T < 0.6K by using a two frequency model
2, -2 -2
p(T) = AT+ (D,/4T)sinh(E,/2T) + (D,/4T)sinh (Ez/2T) (3.7)

Fig. 3.6 shows such a plot. We fit Eq.(3.7) only to K-5 because the
improvement there was significant. The parameters are also given in
Table 3.2.
In Fig. 3.7 we plot the parameter D in Eq.(3.6) as a function of
ap, for both K(Rb) and K samples. The circles are the data from the K
sample which was twisted at 9.3K without annealing, and the triangles
are the data érom the K(Rb) samples. We see in the plot that
deformation systematically increased D for both K(Rb) and K samples.
Indeed D varies almost linearly with AR, which is in agreement with our
expectation that D~Ng4. For a comparison, we also plot Haerle's data in
the figure: the diamond is from his K(Rb) sample KRbhb, which was
deformed at 60K; and the square is from his K sample Kh9b, which was
deformed at 4.2K. We see that they are in agreement with our data
points even though a rather &1fferent method of deformation was used.
It should be pointed out here that the K(Rb) samples were deformed or

annealed at 60K, where the vacancies are believed to anneal out.
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Figure 3.6

A two-frequency fit vs the one frequency-fit for sample K-5.
An improved fit is obtained.
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The coefficient D of Eq.(3.3) or Eq.(3.6) is plotted as a function of
ap, for the K(Rb) samples or pure K samples with out annealing. The
data from Haerle et al. are also shown. The dashed line is the fit to
the K samples after the vacancy contribution is corrected for, see
text for details.
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However, the K samples were deformed at 9.3K, where vacancies, as well
as screw dislocations, were produced. From Tables 3.2 and 3.3 below we
see that for our sample K-5, which was deformed at 9.3K, sp, = 0.696 no
cm, and for K-7, which was annealed at 60K, a0 = 0.207 nocm. We see
that 70% of the increase in AR with deformation at 9.3K is due to
vacancies. If we correct for this and plot D vs p4 (due to dislocation
contribution only), we get the dotted line in the figure.

We see from the plot that the K(Rb) data have a slope higi'xer than
that of the K sample. We know for a bcc metal that at 9K, deformation
produces more screw dislocations than edge dislocations, and at 60K,
deforming K is thought to produce more edge dislocations(6). Perhaps
the difference in the slopes is due to the different dislocations in
these K(Rb) and K samples or to the presence of Rb in one of ‘t.:hom.

For the vibrating dislocation mechanism, we have discussed two
possible models in Chapter I. One is the Granato model (37) in which
the dislocation is considered to be a vibrating elastic band stretched

between two pinning points. The resonant frequency is given by

v=V/3L (1.25)
where V is the transverse phonon velocity and L is the pinned
dislocation length. From Eq.(1.11) we know that Py is proportional to

the dislocation density Ny; and if we simply assume Nd"a' 1/L2, then
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Thus the characteristic frequency (or .energy) is proportional to the
square root of Py The other model 1is associated with the Peierls
potential in which the dislocation oscillates. The characterestic

frequency is given in Chapter I as
2
v = (cp/anip byt (1.26)

where Tp is the Peierls stress, pm is the mass density and b is the
Burgers vector. An important feature of this model is that the
vibration frequency 1is independent of the dislocation segment length L
and consequently, is independent of Py

In Fig. 3.8 we plot the characteristic energy E, obtained by
fitting Eq. (3.3) or (3.6) to the K(Rb) data and the unannealed K data
as a function of Ap, . We also plot the data from Haerle et al. in the
figure, and we see that they are also in agreement with our data. For
our K(Rb) data, there seems to be a systematic increase in E with 4R,
which might imply that the Granato model is applicable. Unfortunately,
the error bars are sufficiently large that we cannot discriminate
between E~Ap. and E--(Ag )*. For our K samples: we do not see a reallyb

significant AR dependence in E.
3.1.4 Pure K data after annealing

When we ameal the K(Rb) samples at 60K, we see a drop in the
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E vs 49 for K(Rb) and K samples

The characteristic energy E is plotted as a function of aR for the
K(Rb) and K samples. The data from Haerle et al. are in agreement
with ours.
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height of the step-like function in dp/dT (Fig. 3.3). However, when we
anneal the K samples at 60K, we see a peak rising even above the
height of the step of the unannealed samples. This is shown in Fig 3.9
in which we again plotted (%u{p)qp/dT-ZA'T as a function of T. The
dashed curve is the best fit to K-5, which was twisted at 9.3K without
annealing. The solid curves are the fits to the data which we will
discuss below.

To fit this peak we tried several models. The vibrating
dislocation model Eq.(3.6) failed to fit this peak, even with two
frequencies. Then we tried to let A be a variablé parameter in
Eq.(3.6). In Table 3.3 we present the fitting parameters obtained by
using this method. Figure 3.10 is such a plot in which we show the fit
to K-7(solid curve). The parameter A in Fig. 3.10 is from Table 3.2
and is derived from A=2.66 f0m/K2. Since A in Table 3.3 is smaller than
2.66 fxlm/Kz, the fit in Fig. 3.10 has a negative slope at higher
temperatureé. The fit was done for T < O0.55K where the phonon
contribution is negligible. To fit the data for T > 0.6K, a TS term
has to be added where C was found to be 0.30 fxlm/KS, which 1is less
than the maximum value 0.35 £nm/K5 predicted by Frobose(56). We had an
improved fit. However, the resulting drop in A turned out to be hard to
explain since the theory of Kaveh and Wiser (19) predicted that the
introduction of dislocation would only increase A.

To avoid letting A become smaller, we then tried the following
method: we thought that the peak might be associated with some other

mechanism and used the following:
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Figure 3.9

/p)dp/dT = 2A°T v8 T for the annealed pure K samples
A peak is seen at 0.2K., The dashed curve is the best fit for the
unannealed sample K-5. The solid curves are explained in the text.



Table 3.3
Pure K sample with A as a variable parameter
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Sample o, (nfcm) o, (nfcm) A (fa/K?) E (K) D (£0mK)
K-1  1.776  1.497  2.6550.018 - -

K-2  1.805 1.531  2.42240,073 0.242+0.046 0.0220.009
K-3  1.908  1.632  2.31940.066 0.156+0.023 0.0230.008
K-4  2.056 1.773  2.44120.062 0.183+0.016 0.046+0.008
K-5  2.489  2.193  3.16740.129 0.21840.025 0.0890.020
K-6 2,095 1.806  2.28940.137 0.25410.020 0.174:0.028
K-7  1.985  1.704  1,638£0.088 0.2220.018 0.132:0.021
K-8  1.853  1.574  1.95940.074 0.1430.020 0.027:0.008

The temperature range is limited to T < 0.55K
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Figure 3.10

The improved fit to K-7 with A as a variable parameter
The dashed curve is without the CT’term. A CT® term helps to fit the

rising tail of the data.
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Table 3.4

Pure K samples after annealing or deformation at 60K
(The parameters are for Eq. (3.10).)

Sample g, (naca) p, (nacm) E, (K) D (fMmK)  E (K) B (fom)
K-6 2,095 1.806  0.184$0.014 0.072+0.012 0.530£0.020 0.222:0.025
R-7 1,985 1,704  0,140+0,017 0,033+0,009 0.372#0.013 0.227#0.015

K2-2 1.879 1.618 0.17240.021 0,053+0.013 0.430+0.016 0.240+0.019

A = 2.66£0.02 (£fam/K?)
K-6 annealed at 35K for 30 min.
K=-7 annealed at 860K for 30 min.

K-8 annealed at 100K for 30 min.

A = 2.43:0.02 (fnm/K?)
K2-1 untwisted

K2-2 2510° at 60K
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-2 -
p(T) = AT*+ (D/4T)sinh (E,/2T) + a(l+bexp(E,/T)) = (3.9)

where the last term is the model of the localized electronic levels
associated with dislocations, also proposed by Gantmakher and Kulesco
(Eq.(1.23)]. With A still fixed, we had a very good fit; unfortunately,
the parameters a and b were s0 strongly correlated with each other that
we could not obtain any sensible values for them.

We finally used the following formula which gave us a curve that
was almost identical to that for Eq.(3.9):

-2 -1
o(T) = AT? (D/4T)sinh (E,/2T) + BI1 + (2/3)sinh™(E,/2T)]  (3.10)

where the third term, proposed by Fulde and Peschel(35), is due to
inelastic scattering off localized energy 1levels produced by a
crystalline electric field. The advantage of using Eq.(3.10) instead
Eq.(3.9) is that the parameter B was well-behaved in the computer fit,
which made it easier to analyse the data.

In Fig. 3.9 the solid curves show the fits using Eq.(3.10). We
limit the temperature range to T < 0.6K where the phonon terms are
negligible. The parameters from the least-squares fit using Eq.(3.10)
are given in Table 3.4. We see that the new term in Eq.(3.10) has been
used to fit primarily the prominent peak in the annealed K data. No

such term is needed for the annealed K(Rb) data.



92

3.1.5 Annealing at 60K after deformation at 9.3K vs

deforming directly at 60K for K samples.

If the peak arising in do/dT-2A°T for K after amnealing (Fig. 3.9)
is due to some complicated process which occurred during annealing,
then the question arises as to whether the peak will still be there if
we directly deform our K sample at 60K. In Fig. 3.11 we make such a
comparison. K-7 is the sample which was twisted by 1329%at 9.3K and
then annealed at 60K. K2-2 is another K sample which was twisted by
2510° at 60K. The fitting parameters for these samples are given in
Table 3.4. In Fig. 3.11 we see that these two samples have remarkably
similar behaviors which correlate well with their similar values of ap,
where ap = 0.21 nficm and 0.24 nScm for K-7 and K2-2, respectively.
Note that K2-2 required a much larger angle of twist at 60K. Thus the
electron scattering characteristics of the dislocations seem to depend
only on the fact that the sample was heated to 60K and not on the

process of deformation and annealing.

3.1.6 Comparison of 60K annealed pure K sample with those
of Haerle et al.
In Figs. 3.7 and 3.8 our values of D and E were in good areement
with those of Haerle et al. We wish now to compare our results
presented in Fig. 3.9 - 3.11 with theirs. Since Haerle et al. were able

to fit their data for samples deformed at 60K with a single-energy
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A comparison between annealing at 60K after twisting at 9.3K (K-7)
and twisting directly at 60K (K2-2)
A similar behavior is seen. The data of Haerle et al. are also
presented.
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vibrating dislocation model [Eq.(3.6)], there would seem to be a
contradiction between our respective results. We now believe that this
disagreement is not real and that the "size-effect" contribution to
their undeformed 0.S-mm—diameter samples was probably not corrected for
properly in their deformed samples. In undeformed samples this size
effect shows up as an apparent e—e term in o of the form: T" where n<2.
If their very lowest temperature data were constrained to fit a T2
behavior, then they obtained A = 1.5 £2m/K? which is much smaller than
typical values of A ( 2.5 fam/K? ) for our 2-mm—diameter samples. It is
not known what happens to the size effect contribution when the sample
is deformed. Haerle et al. fit Eq.(3.6) to their data and obtained 1.0
< A7 1.5 fan/K? for their deformed samples. Since the A’s before and
after deformation were comparable, it was implicitly assumed by Haerle
et al. that the size effect was not significantly changed by
deformation. If, on the contrary, we assume that severe deformation
eliminated the size effect in the data of Haerle et al. and raised A to
about 2.5 ﬁlmlxz, then their results look very much like ours. In Fig.
3.11 we present their data for sample K8hf which was severely deformed
at 60K with Ap = 0.73 nflcm where A = 2.5 £0m/K2rather than their value
of 1.340.07 fom/K2, Plotted in this way, their data behave in a very
similar manner to ours. To uncover this unusual behavior in our 60K
annealed sample, 2-mm—-diameter samples were necessary so that this size

effect was eliminated.
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3.2 Thermoelectric ratio

From Chapter I we know that the thermoelectric ratio G for
potassium below 1K is expected to obey

G = G+ bT% | (1.40)

where G, is the diffusion term and bT? 1s the normal phonon drag term.
In Figs. 3.12 and 3.13 we present the G data for the K(Rb) and K
samples. We can fit K-1 and KRb-1 reasonably well(solid curves) by
using Eq.(1.40), but we see the fit is not as good for the strained '
samples (the dashed curves). For most of tﬁe strained samples, there is
a maximum in G at about 0.5K. We then tried the following empirical

formula
G = G+ aT + bT? , (3.11)

and we obtained much improved fits. The solid curves except K-1 and
KRb-1 show these fits. The reason for the down-turn at the lowest
temperatures, below 0.1K, is not known at this time.

The parameters obtained from the least-squares fit are given in
Table 3.5. It is ciear that dislocations make a negative contribution
to G, in a systematic way.

In Chapter I we have shown the Gorter—-Nordheim relation for



96

Figure 3.12
G vs T for the K(Rb) samples
Details of the fit are given in the text.
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Figure 3.13
G vs T for the pure K samples.



Table 3.5
Parameters in G for the K(Rb) and K samples

Sample p, (nfcm) G (1/V)

KRb-1
KRb-2
KRb-3
KRb—-4
KRb-5

KRb—6

R-2
K-3
k-4
K-5
K-6
R-7

K-8

11.61
11.85
12.04
12.68
12.29

11.73

1.497
1.531
1.632
1.773
2.193
1.806
1.704

1.574

0.415+0.001
0.362+0.002
0.337+0.002
0.230+0.001
0.303+0.002

0.420+0.002

-0.065+0.,003
-0.119+0.004
-0.230+0.006
-0.369+0.003
-0.677+0.003
-0.408+0.004
-0.312+0.004

-O 3 175t0 [} 004

G4(KRb) = -1.7840.19 (1/V)
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a (1/VK)

0.099+0.008
0.093+0.010
0.072+0.004
0.092+0.008

0.124+0.014
0.118+0.023
0.063+0.013
0.105+0.009
0.193+0.015
0.204+0.015

0.177+£0.012

b (1/VK?)

-0.260+0.003
-0.185+0.006
-0.153+0.008
-0.115+0.003
-0,138+0.003

-0.25640.003

-0.30310.004
-0.358+0.010
-0.296+0.018
-0.17840.010
-0.187+0.006
-0.27640.011
-0.29240.011
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diffusion thermopower:

§ =84 + (p; /p)[S;- 841 (1.32)

where Sz and S4 are the diffusion thermopowers due to impurity
scattering and dislocation scattering, respectively. We know that the

thermopower S can be related to the thermoelectric ratio G by

G = S/LT (1.38)

where L is the Lorenz ratio which is approximately a constant below 1K.

Therefore we have

G = Gy+ (p; /IP)G;- G4l , (3.12)

where G4 and G; correspond to the diffusion thermoelectric ratio due to
dislocation scattering and impurity scattering, respectively. If we
plot G, as a function of 1/p we should get a straight line intercepting
the G, axis at G4 . Fig. 3.14 is such a plot for both K(Rb) and K
samples. Note that G, for the K(Rb) and K samples has the same value
within the experimental error: G4(K(Rb)) = -1.78 % 0.19 (1/V) and G4(K)
= -1.97 £ 0.02 (1/V¥). This means that G4 is independent of the type of
impurity which 1is present in the sample. For K(Rb) the dominant
impurity is Rb, and for our pure K sample we have unknown impurities

with vacancies present in samples K2-KS. Note samples K-6 and K-7 have
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Figure 3.14
A Gorter-Nordheim plot for both K(Rb) and K samples
G4 seems to be the same in both cases.
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vacancies being annealed out, and yet their G;s also follow the same
straight line as K-2 to K-5. The simplest interpretation of this
unusual result is that G, for vacancles is very similar to Gy4.

Fig. 3.15 is the plot of the coefficient b of the phonon drag term
vs AP, for both K(Rb) and K samples. As is expected, we see that
dislocations also suppress the phonon drag term, which 1is consistent
with our do/dT measurements. Note that the presence of Rb impurities
also tends to suppress phonon drag.

No systematic changes have been observed for a, the coefficient of
the linear term we used in G. Its value is about 0.10 (1/VK) for all
samples except for K-6, K-7 and K-8 where it jumps to 0.20 (1/VK). No

theory has been found to explain this term so far.
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b vs s for both K(Rb) and K samples
A systematic change is visible.



Chapter IV Discussion and Conclusions

Deformation has a profound influence on the electrical properties
of potassium. The residual resistivity of pure K has been found to
increase linearly with the twist-angle of deformation for small angles
(8 < 1400°) at 9.3K. However, a tendency toward saturation in ap, is
also observed when the twist angle @ > 4800° at 60K, and this is
probably due to the high mobility of dislocations at this temperature
so that close dislocations with opposite Burgers vectors are more
likely to annihilate each other. For the K(Rb) samples which are
deformed at 60K or the K samples which are deformed at 9.3K- without
annealing (where impurities or vacancies are present), the
electron—dislocation interaction can be described by a vibrating
dislocation model proposed by Gantmakher and Kulesco (Eq. 1.27).
However, a two—-frequency model has been used to give a better fit for
sample KRb-4, which is twisted 4800° at 9.3K and then annealed at 35K,
and sample K-5, which is twisted 1329°at 9.3K without annealing. The
temperature is limited to T < 0.6X where the phonon contribution is
negligible. Deformation also suppresses the phonon drag which exists in
the unstrained samples. The coefficient C of this Normal
electron-phonon term CT5 has been found to be ~» 0.30 fflm/Ks , which is
less than its maximum value 0.35 ffzm/Ks'predicted by Frobdse (56).

The coefficient of the vibrating dislocation term D increases

103
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close to linearly with the change in p, due to deformation. This 1is
expected because D should be proportional to the total dislocation
length in the sample. D vs op, for K(Rb) samples apparently has a much
higher slope (Fig. 3.7) £han the pure K samples. However, we know the
increase in p for K when it 1is deformed at 9.3K contains also the
contribution of vacancies which could be as large as 70% of the total
increase in ap, . If the vacancy contribution is corrected for, this
slope for the K samples increases and becomes about 67% of the slope
for K(Rb). The remaining discrepancy in the slopes might be ascribed to
the higher yield stress in potassium when the Rb impurities are added,
since it is observed that K(Rb) has a higher yield stress than pure K
at room temperature by us and at liquid nitrogen temperature by Hands
and Rosenberg.(59)

The characteristic energy E of this vibrating dislocation term
seems to have a op, dependence for the K(Rb) sample (Fig.3.8). For the
K sample this dependence appears to be smaller. However, if we correct

ap, for the vacancy contribution to the pure K sample in the same manner
as in Fig.3.7, then the slopes in Fig. 3.8 could be the same for both

samples, with K(Rb) having on average a larger E. If we use the Granato
elastic band model of the vibrating dislocations, we might be able to
explain the ap, dependence in E, since the frequency is proportional to
the square root of the dislocation density. However, both slopes do not
extrapolate to E=0 as ap,-+0, and this might suggest some other
mechanisms. ‘

The average Rb-Rb atom distance 1in our alloy is about SOK. If we
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use the Tsivinskii model (Eq.1.10) with an ion radius for K of x =
1.33& and x, = O for the case of vacancy, we can obtain the average
vacancy-vacancy distance for the most severly deformed sample X-5 ( R, =
0.5 nficm) to be about 2405. If we use Eq.(1.8), the corresponding
dislocation separation is about AOOOX. ( Ly= 0.2 nm for K-5). If we
think that the dislocation is a pinned elastic band of length 4000R,
its resonant vibrating frequency 1is about l.leOq Hz or the
characteristic energy E 4is about 0.1K for sample K-5, which is a
reasonable value if we compare it with the experimental value for K-3:
E ¥ 0.2K . The K(Rb) apparently has a higher value for E than that of
the K sample, even if the vacancy contribution is corrected for in the
pure K samples. This might be ascribed to the presence of the Rb
impurity which modifies partially <the pinning distances of the
oscillators so that the average pinning distance becomes smaller, and
thus the characteristic energy E 1is higher. If we wuse the Rb or
vacancy separation length as the pinning length, then we would obtain
an E with a value much higher than our experimental ones. If we use
the model (Eq.1.26) in which the dislocations oscillate within the
Peierls potential, we might' not expect any ap, dependence in E.
However, this is not always true: if the yleld stress 6} depends on the
concentration of either impurities or dislocations, we might have a ap,
dependence in E. We are planning to explore further the impurity
dependence of E and D by deforming K(Rb) alloys with different Rb
concentrations. We also want to see 1f there exists a vacancy

contribution to E or D for K(Rb) samples, since our K(Rb) samples were
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all annealed above 35K where most vacancies were annealed out. Thus we
plan to deform K(Rb) alloys at 9.3K and measure dp/dT below 1K.

For our 60K annealed pure K samples where the vacancies are
annealed out, we see a peak in do/dT which cannot be fit by the
vibrating dislocation model, even with a two-frequency one. It is found
that this peak does not depend on the process of annealing, since our
sample K2-2, which was directly deformed at 60K, also shows the peak in
dp/dT. This peak is apparently suppressed by the impurities because we
do not see any of this in the K(Rb) samples which were also annealed at
60K. By 1letting A vary we can get an improved fit even with the
one-frequency vibrating dislocation model. However, the drop in A is‘
hard to explain considering that the theory of Kaveh and Wiser(19)
predicts an increase in A after deformation. The drop in A might be
associated with the rearrangement of the Q-domain structure predicted
by Bishop and Lawrence(4), but a more detailed theory is needed before
this idea can be explored experimentally. This unusual peak can be fit
instead by keeping A fixed and by adding a new term to the vibrating
dislocation model, and this new term 1is the 1localized-energy-level
model associated with dislocations which was proposed also by
Gantmakher and Kulesco in the same paper.(33) An alternative term from
Fulde and Peschel (Eq.l1.24) was actually used to obtain the same fit
because it gave more sensible values for the fitting parameters.

The appearance of this localized-energy-level term raises the
possibility that annealing the K sample at 60K porduces a rearrangement

of this energy-level distribution and that the energy-level
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distribution before annealing produces a behavior in do/dT which looks
like the vibrating dislocation model. This 1idea also needs to be
further explored.

For our G data we obtain reasonably good fits by using Eq. (1.40)
for our unstrained samples. However, a new peak is visible for the
strained K(Rb) and K samples. An empirical term, aT, which has no
theoretical explanation, has been added to obtain the best fit. The
Gorter-Nordheim plot (Fig.3.14) exhibits good straight-line behaviors
for both the K(Rb) and K samples. The characteristic diffusion term Gy
due to dislocation scattering is found to be the same for both samples.
Analysis of this Gorter—Nordheim plot for pure K suggests that the
dislocation scattering and vacancy scattering produce quite similar
contribution to Gy. If this is not the case, then the Gugan and Gurney
assertion that vacancies anneal out above about 10K must be
re—examined. For example, the apove behavior for the Gbof pure K could
be explainéd as being due to lowering of the dislocation density rather
than a reduction of vacancy density as the sample is warmed from 9K to
60K.

This study has been a continuation of M. Haerle's work, with
emphasis on the electron~dislocation interaction in K below 1lK. By
using a completely different mechanism of deformation with much
better control of sample geometry, we have observed similar behaviors
in qp/dT. By using a second dilution refrigerator, we extended the
lowest temperature down to 20 mK, which is much 1lower than that of

Haerle s (80mK). This extended region has helped us in determining the
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multi-frequency spectrum of the vibrating dislocations. We used 2mm
diameter samples to avoid the complication of the size effect observed

in Haerle’s work.
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