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ABSTRACT

GROWTH OF MECHANICAL TWINS

IN ZINC SINGLE CRYSTALS

by Man Hyong Yoo

Thegrowth process of the {IOIZ} < lOlI> type twin in

hexagonal close-packed zinc crystals is investigated from the geometric

and the energetic points of view. A mechanism for the twin growth by

the incorporation of slip dislocations at the coherent twin boundary is

preposed. The geometric aspect of the incorporation process has been

analyzed by using matrix algebra, whereas the energetic factors have

been calculated by applying anisotropic elasticity theory of dislocations.

Experimental observations on the process of twin growth do not in any

way contradict the pr0posed mechanism.

Based on the anisotropic elasticity calculations, the interaction

of a pair of twin dislocations in the edge orientation has been derived

from the stress field of such a twin dislocation and found to be in

general noncentrosymmetrical. Three possible shapes of advancing

twin interfaces can be predicted in accordance with the stable config-

urations of a group of twin dislocations; of these three two have been

observed. The energy associated with the coherent twin boundary is

estimated to be 1. 4 :t O. 4 ergs/cmz. The results of calculations of

the elastic energies of the various slip dislocations are applied to a

discussion of the feasibility of certain dislocation dissociation processes.
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I. IN TR ODUC TION

Mechanical twinning is one of the two fundamental processes

by which crystalline solids can be plastically deformed. The other

deformation process, namely slip, has been extensively studied both

theoretically and experimentally, and consequently it is in general

well understood. On the other hand, except for the crystallography

of the twinned structures, the process of mechanical twinning is not

clearly understood as far as the nucleation and the growth of twins

are concerned. In order to understand a mechanical twinning process

three a5pects of the twinning process are to be investigated: 1) the

criteria that a particular twin system should be operative and its

crystallography, 2) the nucleation of twins, and 3) the growth of

twins. As a part of a research project for the investigation of the

mechanical twinning process in zinc crystals the present work is

devoted to a study of the growth aspect of the twins.

According to Barrett (1), crystals are said to be twinned if

they are composed of portions that are joined together with "a definite

mutual orientation. " A more general and complete definition was

made by Cahn (2):

"A twin may be defined as a polycrystalline

edifice, built up of two or more homogeneous

portions of the same crystal species in

juxtaposition, and oriented with respect to

each other to 'well defined laws'. "

The orientation relationship between two neighboring portions of a

twin is such that they can be brought into one congruent orientation

by a reflection with reSpect to a lattice plane of low indices, or by
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13:, %, gin , or TT about a lattice row of lowa rotation through either

indices. Twins, according to their origins, are classified by Cahn (2)

as (i) growth twins, (ii) thermal and transformation twins, and

(iii) mechanical twins.

Zinc crystals are known to twin readily when they are oriented

unfavorably for the basal slip system to be operative under particular

loading conditions. The {1012} < 1011> type twin in zinc, which has

been known as the sole active twin system, is associated with a twin

shear y = 0.139. This low y value satisfies one of the criteria

which govern the selection of the possible modes of twinning in a

material that the smaller the shear of a possible twin mode, the

greater its chance of being operative (3). According to the investigation

by Kiho (4), it is the smallest twin shear of all possible twin systems

in zinc. The next smallest twin shear y : 0. 467 for the { 1011}

< 1012> type twin is more than three times larger than the above

value.

Another criterion for the choice of a favorable twin system is

that the twinning process should involve the least amount of reshuffling

of the atoms in the crystal. It is known that only a fraction of the total

number of atoms in a zinc crystal can be brought to the twinned positions

by a homogeneous shear (5), (6), and (3). A reshuffling of the rest of

the atoms is necessary. The reshuffling mechanism is a controversial

subject. It is not included in the present work, not for the reason that

it is unimportant,but rather because there is yet no known experimental

method by which a certain reshuffling mechanism can be verified. Thus,

with the crystallography of the twin in zinc crystals known,mechanica1



twinning in this material is treated in the usual way as a problem of

the nucleation and the growth of the twin.

For the homogeneous nucleation of twins one may use an

expression similar to that for the slip process (7) to estimate the

critical resolved shear stress (C. R. S. S. ) for twinning = Kt y/21r ,

where Kt is the transformed shear modulus on the twin plane in the

twinning direction. For the { 1012} < 1011> type twins in zinc Kt

has been calculated to be 4. 08 x 1011 dynes/cmz. Substituting this

value and y = 0.139, a C.R. S. S. for twinning 5 90 kg/mm2 is

obtained. The fact that twins are formed in zinc under widely varying

resolved shear stresses from about 80 to 4, 400 g/mmZ suggests that

either a local stress concentration or some type of dislocation

mechanism, or both are necessary for the twinning process.

Cottrell and Bilby (8) prOposed a dislocation pole mechanism

for the nucleation and growth of twins in the body-centered cubic

structure. The essence of the pole mechanism is that a partial twin

dislocation rotates about a sessile pole dislocation to form a helix

which expands under stress. The formation of a twin requires only

one twin dislocation resulted from a dislocation dissociation process.

If mechanical twinning in a given crystal is to be described by this

mechanism, the following conditions must be satisfied:

(i) The sweeping dislocation must produce the right

shear displacement to generate the transformed

structure on the sweeping plane.

(ii) The Burgers vector of the pole dislocation must

have a component perpendicular to the sweeping

plane that is equal to the spacing of these planes.
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(iii) The pole dislocation must be anchored strongly

enough to prevent it from moving under the stress

causing the sweeping dislocation to move.

(iv) The sweeping and pole dislocations, together

perhaps with other associated dislocation lines,

must be concurrent at a node which acts as an

anchor point and around it the sweeping dislocation

must be free to move in a sweeping plane which is

intersected by the pole.

The formation of the { 112} < 111> type twin in the body-centered

cubic structure can be accounted for with the pole mechanism where

these conditions are found to be fully satisfied. In the case of the

{ 111}< 112> type twin in the face-centered cubic structure, however,

the second part of the last condition (iv) is not satisfied; consequently

only monolayer twins could be formed. This conclusion was regarded

as especially satisfactory because at the time the pole mechanism was

advanced no one had demonstrated unambiguously that mechanical twins

could also be formed in face-centered cubic crystals. In hexagonal

close-packed cadmium, Thompson and Millard (9) considered a screw

dislocation along the c axis, a "major dislocation", which was inter-

sected at some point by the {1012} composition plane of the twin.

They pr0posed that a dissociation of the “major dislocation" would

initiate a pole mechanism similar to that proposed by Cottrell and

Bilby (8). They (9) contended that all four of the necessary conditions

for the pole mechanism were satisfied by the mechanism they introduced.

So far there has been no experimental evidence to substantiate Thompson

and Millard's theory.

More contributions have been made to the understanding of the

twinning process in body-centered cubic crystals in recent years.

Sleeswyk and Verbraak (10) studied the incorporation of slip dislocations
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at the coherent twin boundary and arrived at a mechanism to account

for the twin growth. Sleeswyk (11) observed also the so-called ”emissary

dislocations" emanating from the incoherent twin tips. According to

him, an "emissary dislocation" is a dissociation product of the twin

dislocation at the incoherent twin tip accompanying a "complementary

twin dislocation". Votava and Sleeswyk (12) showed by a study with

transmission electron microsc0py of a Mo-35 at. % Re alloy that there

were two types of emissary dislocation arrays. Fragmentation of the

twin lamellae often resulted due to the incorporation of certain

slip dislocations. Ogawa and Maddin (13) also studied the twinning in

Mo-Re alloys with transmission electron microscopy and pr0posed a

modified pole mechanism that three-layer twins, also called "emissary

sets", could be generated from slip dislocations and grow by means of

a "super pole mechanism".

In fi-tin crystals Ishii and Kiho studied the incorporation of

slip dislocations in mechanical twins (l4) and the resistive stress

required for the thickening of the twins (15). They considered all the

slip dislocations as the pure screw type and arrived at a model similar

to that proposed by Thompson and Millard. Fourie et a1. (16) examined

the nucleation and growth of twins in tin by transmission electron

microsc0py. They showed consistent evidence to support the assumption

that an advancing non-coherent twin interface consists of an array of

twin dislocations. The mechanism by which a twin might widen as a

result of the production of additional twin dislocations was not disclosed

by their observation.
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The fact that mechanical twinning does occur in face-centered

cubic metals was indisputably established first by Blewitt et a1. (17),

who found that Cu single crystals of certain orientations twinned under

high stresses at 770K and 4. 20K. Suzuki and Barrett (18) found in

tensile tests at low temperatures that mechanical twinning occurred in

Ag -Au alloy single crystals of suitable orientation throughout the entire

range of alloy composition. In attempting to rationalize these experi-

mental results, Venables (l 9) arrived at a dislocation mechanism by

extending the pole mechanism and allowing the associated dislocation

to slip "prismatically" from one plane to the next after each revolution

of the twin dislocation. Cohen and Weertman (20) suggested a dislocation

dissociation mechanism for twinning in the face-centered cubic metals that

twin dislocations are produced by the dissociation of slip dislocations which

are in a pile-up state of the Lomer-Cottrell lock and move under the applied

stress to form a twin. Venables studied mechanical twinning in single

crystals of face-centered cubic Cu alloys by transmission electron micro-

sc0py (21) and presented in a subsequent article (22) a calculation of the

stress required for twin nucleation in terms of stacking fault energy and

an analysis of the dynamics of twin prOpagation.

Another fundamental concept on twinning besides the dislocation

mechanism is the homogeneous twin nucleation suggested by Orowan (23).,

He introduced a model that a lenticular twin lamella is bounded by twin

dislocation loops. According to Orowan's calculation, homogeneous

formation of mechanical twins can take place with the aid of a local

stress concentration in the absence of any thermal activation. The work

of Bell and Cahn (24) shows that twinning in hexagonal close-packed zinc

occurred after both the second-order pyramidal and the basal slips had
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taken place. They concluded that the twin nucleus was created locally

as an entity by a homogeneous shear of the lattice at the site of sufficient

stress concentration produced by the pile-up of slip dislocations against

a suitable obstacle. Price (25) studied twinning in dislocation-free zinc

platelets by deforming the samples inside an electron microsc0pe. He

concluded that twins were nucleated at regions where there was a stress

concentration in the absence of any dislocations, and that twins grew by

the repeated nucleation at the platelet edges and movements of twin

dislocations. He also considered some possible dislocation reactions

at the twin boundary.

From the above review it is seen that twinning and slip are

interdependent in the course of plastic deformation. The degree of

mutual influence depends to a marked degree upon the orientation of

the crystal and the loading conditions. Certain configuration of the

slip dislocations may result in a state of dislocation pile-up. The

stress concentration due to the pile-up may in turn enhance the process

of twin nucleation as well as twin growth. On the other hand, twins

diapersed in the crystal can act as effective barriers against moving

slip dislocations. The slip dislocations which move up against the

coherent twin boundary will have to either pile up against the latter or

be incorporated into the twin.

In the present work an attempt will be made to analyze the growth

of the { 1012} < 1011> type twins in zinc crystals as a result of the

incorporation of slip dislocations at the coherent twin boundary by

extending the method advanced by Sleeswyk and Verbraak (10). It is

assumed that such a twin bounded by coherent twin boundaries is present
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in the crystal, and that appreciable deformation by slip has taken place

prior to the twin formation. Geometric and energetic factors will be

considered in the analysis.

Zinc has a hexagonal close-packed structure with the lattice

parameters a = 2. 6649 A and c = 4. 9468 A (c/a = l. 856) at room

temperature (26). The five independent elastic constants of zinc single

crystals (27), and the elastic moduli and Lamé's constants of poly-

crystalline zinc (28) are listed in Table 1. Since the c axis of the

hexagonal lattice is a unique six-fold symmetry axis, the elastic

properties of zinc single crystal are axially symmetric about the c axis

or transversely isotrOpic. Most of the available solutions of the stress

fields around dislocations, their elastic energies, and the discussions

of the interaction between dislocations are based on isotr0pic elasticity

theory, which is oftentimes inadequate even for cubic crystals. For the

hexagonal zinc crystal an application of the anisotropic elasticity theory

is deemed necessary.

The following is an outline of the scheme used in the present

work:

1. Calculate the elastic energies of the dislocations of

the various slip systems and the twin system.

2. Calculate the stress field around a twin dislocation

and investigate the interaction between twin dislocations.

3. Choose prOper coordinate systems for both the matrix

and the twin.

4. Derive a matrix equation for expressing a vector in

the matrix in terms of the coordinate system chosen

for the twin.
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11.

Derive another matrix equation for expressing the

same vector with the coordinate system of the twin

after applying to this vector a homogeneous shear

corresponding to the twinning action.

Find the difference of the two matrix equations thus

derived, a matrix equation for the homogeneous twin

shear.

Apply the equations on various slip vectors of the

active slip systems at room temperature to find

the corresponding slip vectors in the twin and the

associated twinning actions.

Examine all the possible equations from energetic

and geometric points of view.

Find the feasible mechanism or mechanisms for the

twin growth by the incorporation of slip dislocations.

Prepare zinc single crystals of various orientations

and design specific ways of loading to test the

validity of the mechanisms.

Interpret and discuss the experimental results in

the light of the theory thus deve10ped.
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Table 1. Elastic Constants of Zinc Crystal

 

 

12

 

 

Elastic compliance constants (10- cmZ/dyne)

S11 S12 S13 S33 S44 566 = 2(511'512) Ref‘

0. 838 0.053 -0.731 2. 838 2.610 1.570 27

 

 

========= d

Elastic stiffness constants (10ll dynes/cmz)

 

C C C C C
11 12 13 33 44 C66 =1/2(Cll-C12) Ref.

 

16.10 3.35* 5.01 6.10 3.83 6.38 27

 

 

Elastic constants (observed) of polycrystalline

zinc (10ll dynes/cmz)

 

 

 

 

E G X p. Ref.

9.22 3.72 6.92 3.72 28

>1:

The correct value of C12 from the inversion of Sij's is 3. 35

and not 3. 42 as given in the reference.



(
I
)

(
'
0

h.



II. THEORY

1. Application of anisotr0pic elasticity theory to dislocations in

zinc

The anisotrOpic elasticity theory of dislocations was deve10ped

by Burgers (29), Eshelby (30), Leibfreid (31), Eshelby, Read, and

Shockley (32), and Seeger and Scho'ck (33). Eshelby et al,derived the

general elastic solution for a straight dislocation of any orientation

in an anisotrOpic crystal. Although anisotropic elasticity theory has

been applied to a few crystal structures, only its application to

hexagonal crystals will be discussed here.

Foreman (34) calculated the elastic energy of a straight

dislocation with a Burgers vector in the close-packed direction. Chou

and Eshelby (35) derived an expression for the energy of a circular

dislocation loop and calculated the line tension of a dislocation. The

width of an extended dislocation (36) and the interaction between

parallel dislocations (37) have been investigated by Chou.

1.1. Elastic energies of dislocations

Foreman (34) has shown that the elastic energy per unit length

of a straight dislocation line of either edge, mixed, or screw character

in an anisotrOpic crystal is given by

sz 1,, (a,
471' ro' ’

 

E: (1-1)

where R is the radius of the dislocation strain field, rO is the radius

of the dislocation core, b is the magnitude of the Burgers vector, and

11
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K is a function of the elastic constants of the crystal and orientation

of both the Burgers vector and the dislocation with respect to the crystal

axes. Fig. 1 shows the various slip systems and twin system considered.

The transformation of the elastic constants obeys the law for the trans-

formation of a fourth-rank tensor. (See Appendix A)

l

Cijkl — aim ajn ako alp C:mn0p (1-2)

I

ijkl - aim ajn ako alp Smnop
(1 -3)

The complete expansion for any stiffness or compliance can be conveniently

obtained by using the ”table of composite equation” for transforming stiff-

nesses and compliances (28).

Let it be defined that the z axis of a right-handed Cartesian

coordinate system is parallel to the dislocation line under consideration,

and the y axis is perpendicular to the slip plane. The direction cosines

aij's for the coordinate transformation, where m = cos 9 and n = sin 9 ,

and the transformed elastic constants are tabulated in Table 2. As an

example the coordinate transformation for the { 1012} < 1011> type

twin considered is illustrated in Fig. 2. The sfj's relate the strain

and the stress of the plane strain elastic state around an edge dislocation

according to the following equation (30):

* >l< >,‘<

exx S11 S12 516 Uxx

_ * >:< *
eyy - 512 522 s‘26 syy (1 -4)

>l< >:< *

Exy S16 S26 S66 ny

where



 

wh

stl

an

to

so?

<1
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I I / I

lj S13 Si4 S15

S33 S33 -S34 535

s’ s’ s' s’
43 43 44 45

* 553 S53 S54 S55

sij = . . ’ (szl,2,or'6) (1-5)

533 S34 S35

/ I I

543 S44 S45

5’ s' s’
53 54 55  

1.1.1. Calculation of K from analytic solution

In general it is necessary to find the six complex parameters

which are the roots of a sextic equation in order to obtain K for a

straight dislocation in an anisotropic crystal (32). However, there

are special cases for which analytic solutions exist. For example,

in the case of hexagonal crystals if the dislocation line lies parallel

to a symmetry axis and perpendicular to a symmetry plane, then the

solution K for an edge dislocation is given by (34)

 

c’ «f -.c’ ) 1/2
_ — . 66 11 12

l< _ (C11 +<312) ' __ . , . (1-6)

C22(C11l‘clz‘*2C66)

where C = (CI C, )1/2 Forascrew dislocation
11 11 22 °

_ I I '2 1/2

K.— (c44c55..c45) . (1-7)

For the edge dislocations of the slip systems, (i) { 0001}

<1120>, (ii) {1100}<1120> , and (v) {hk.0}<0001> , the
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conditions stated above are satisfied. Therefore, K values for these

systems are obtained from Eq. (1 -6) and are tabulated in Table 2. The

same values may be obtained using the equations developed by Eshelby

(30). Chou (37) reported the same K values for these systems.

For screw dislocations Eq. (1-7) can be applied only to the slip

systems, (i) {0001} <1120>, (ii) {1100} <1120>, (iii) { 1101}

<1120> , and (v) {hk.0} < 0001> . A value of K = 4. 94 x1011

dynes/cm2 is obtained for the systems (i), (ii), and (iii), and

11 dynes/cm‘Z for the system (v). Since there is noK = 3. 83 x 10

unique slip plane associated with a screw dislocation, K is an

invariant for a rotation of the axes about the dislocation line (2 axis).

1. 1. 2. Calculation of K from numerical solution

For the systems that do not Satisfy the orientation conditions

mentioned in Sec. 1.1. l. the value K can only be solved numerically.

Numerical solutions are found for the edge dislocation where only the

second condition is satisfied, that is, the dislocation line is perpen-

dicular to a symmetry plane.

Under such a condition the problem is reduced to a two

dimensional problem. The results obtained by Eshelby (30) can be

directly applied. The expression for K in this case is
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)‘1r )‘Zr 7(xli-X21)

)‘li )‘2i (Xlr-XZr)

Dlr D2r (D11 ' D21)

K :

)‘lr )‘Zr ‘O‘li'i‘zfl

Cli C2i (Clr ‘ C2r)

Dlr D2r (Dli " D21) 
where the subscripts r, i denote the real and imaginary parts of a

complex quantity respectively. The complex constants x1 and X 2

relate the two complex variables zn’ where

variables x, y by

= + 'kzn x 1 ny

n=1,

 

(1 -8)

with two real

(1-9)

where Kn is given implicitly in terms of the elastic constants by the

following relations:

l-Yn-16n

 

n ’1+yn+15n

 

 

a -1

Y = n

n a +l+2(o .1162)”2
n n 4 n

-k

5 = n
n

where

 

(1 -10)

(1-11)

(1-12)

(1-13)



l6

 

 

S

(11 a2 = —1*L (1 -14)

522

*
2826

k1+k2 = - * (1-15)

522

2:

2516

kluz+k2<1l — - * (1-16)

822

where (o. --i—k2) and o. are real and positive; k , y , and 6

n 4 n n n n n

are real. Cn and Dn are given by

>l< 2 >:< >1:

cn = sllxn - slz+ixns16 (1-17)

_ L >1< 2 at , >1:

Dn _ x (512).n — $22 + rinszé) (1 -18)

The orientation of the edge dislocations of the slip system (iv)

{1122}<1123> and the twin systems (x) { 1012} <1011> is such that

the dislocation lines are perpendicular to a symmetry plane. But they

are not parallel to a symmetry axis, hence $16 )5 0, Séé )4 0 and

5:6 ,4 0, 5:6 ,é 0.

The procedure of a numerical calculation is explained for the

twin system. First Sfj's are calculated from the transformed elastic

constants s;j's with an aid of Schweins expansion (30). Then on

substituting 5:. into the Eqs. (1 -13), (1 -14), (1 -15), and (1 -16) four

simultaneous algebraic equations are obtained. These can be reduced

to an equation of sixth degree in an. The real and positive roots are

found to be 0.1 = 3.18, (12 = 0. 35; and correspondingly k1 = 0. 84,

k2 = 0. 37. Substituting these roots into Eqs. (1-12), (1 -11), (1 ~10),
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(1-17), and (1-18) successively, one obtains

61 = -0.11 62 = -0.15

Y1 = 0.29 Y2 = -O.26

X1: 0.60+0.13i k2:1.60+0.53i

l = 0.72 -0.27i C2 = 3.19+0.70i

D1 = -1.77 - 0.30i D2 = -0.96 - 0. 56i

12
where Cn and Dn are in units of 10- cmZ/dyne. From Eq. (1-8)

11 dynes/cmz for the twin system. Similarlyone finds K = 4. 08 x10

K = 3. 90 x1011 dynes/cm2 is found for the { 1122}<1123> slip system.

For the slip systems (iii) { 1101} <1120>, (vii) { 1122} < 2023>,

(ix) { 1100} <1123>, and (xi) {1011} <1123> neither one of the

orientation conditions is satisfied by such edge dislocation lines.

Numerical calculation for these four systems becomes'more complicated

involving three complex variables with six complex parameters. K

values for the three slip systems (iii), (vii), and (ix) are calculated by

assuming that these dislocation lines were perpendicular to the

corresponding symmetry planes of the crystal as a first approximation.

The actual angles that these dislocation lines deviate from the corre-

sponding normals to the symmetry planes are respectively 25.10,

15. 3°, and 28. 30. It may be noted that this approximation is probably

poor for the slip systems (iii) and (ix) but may be close for the slip

system (vii).

1.1. 3. Elastic energy of edge dislocations

Certain properties of edge dislocation in an anisotropic crystal

can be calculated quantitatively once the values of K for the different



l8

slip systems are known. The elastic energy of an edge dislocation is

obtained from Eq. (1-1). The numerical value of E depends upon the

choice of R and r0. Except for a factor of In (R/ro) the values of

E in ergs per cm of the edge dislocation line are listed in column (10)

of Table 3. These values can be considered as the relative energies

of the various edge dislocations and can be compared with one another

directly. In the last five rows of Table 3 data pertaining to certain

partial dislocations are listed.

Eshelby (30) defined a quantity C. = 1/2 K S66 (1 as a measure

of the width of a dislocation. He also suggested that Q/b would serve

as a measure of the "ease of gliding. ” These quantities are also

calculated and listed in Table 3.

1. 2. Interaction of two parallel twin dislocations

Chou (37) derived the equations for the stress field of an edge

dislocation and a screw dislocation with I; = g— [ 1120] and an edge

dislocation with I; = [ 0001] . As mentioned before, analytic solutions

are available for these dislocations. He also analyzed the forces

between two parallel dislocations and stress fields of various types

of infinite dislocation walls.

In this section the stress field of a twin dislocation in the edge

orientation will be calculated and the results will be applied to finding

the interaction forces between two parallel twin dislocations.

1. 2.1. Stress field of a twin dislocation

As discussed in the previous section, the solution by Eshebly (30)
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directly applies to an edge type twin dislocation. Calculated K for

11 dynes/ cm2

9
and the magnitude of Burgers vector is bt = 0. 088 a = 2. 35 x10- cm.

the twin system {1012}<10'i‘1> is Kt=4.08x10

The expressions for the stress components are

0' = .. z 1.2 f" (z ) + c.c. (149)
XX 11:1, 2 n n n

a : E f" (z ) + c.c. (1-20)

YY n=1,2 n n

0' = -i Z X f" (z )+ c. c. (1-21)"<
xy n=1,2 n n n

where c. c. represents the complex conjugate of the quantity preceding

it and fn (zn) is a component of the stress function. For an edge

dislocation

1
l - _ _f (z ) — 2 A ln 2 , (1 22)

where An is a complex constant. In order for the total force and the

couple on any Burgers circuit to vanish it is necessary that

AZi = .A1i (1-23)

xA+1A.-(>.
1r 1r 2r 2r ">‘21)Ali = 0 ° “‘24)11

 

* .

Eshelby et a1,(3 2) made some corrections of the earlier paper (30).

The author finds some misprints in the reference (30)namely.that Eq. (1 -21)*

should have Kn following the summation sign and the sign of the last

term in Eq. (1 -26)* should be + instead of — .
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If the Burgers vector is (bx’ 0), it follows

   

 
 

 

 

b

_ .33 -

CliA1r+CZiA2r+(Clr 'Czr)A1i ' 2n (1 25)

*

D1r A1r + D2r A2r +(D1i ' DZi) A1i ‘ 0 “’26)

Again the subscripts r, i denote the real and imaginary parts of a

quantity respectively.

Substituting the values of )‘n’ Cn’ and Dn from Sec. 1.1. 2.

into qus. (1-24), (1-25), and (1-26), one obtains

A1 = - F (l. 25 + 3. 531) (1-27)

A2 = F(l.35+3.53i), (1-28)

where F = bt/21r x1011 dynes/cm. From Eq. (1 -22)

1 l
H — _ _

.-fn (zn) _ 2 An 2 . (l 29)

11

Finally, the expressions for the stress components are obtained by

substituting Eq's. (1-27), (1-28), and (1 -29) into Eq's. (1-19), (1-20),

and (1 -21) and rearranging

_ Ktbt 0. 03x - 0. 21y 0. 72x - 4. 44y

“xx ‘ 211’ 2 2 ‘ 2 2 “'30)
(x - Oll3y) + 0.36y (x - O. 53y) + Z. 56y

_ Ktbt 0. 31x + 0.48y 0. 33x - 1. 21y

‘T ‘ 2n 2 2 ' 2 2 “‘31)
YY (x - 0.13y) + 0. 36y (x - O. 53y) + 2. 56y

_ Ktbt 0. 56x - 0.12y 1. 56x - 0. 94y
0' — -—- - (1-32)
xy Zn 2

(x - 0.13y)‘Z + 0.36y2 (x - 0. 53y)2 + 2. 56y
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1. 2. 2. Interaction between two parallel twin dislocations

The force of one dislocation acting on another can be defined as

the gradient of U the interaction energy between them. Following
I !

Cottrell (3 8) the ith component of the force F exerted on one dislocation

by the other is

315

r} =-axi _ (L63) 

The signs of Eq's. (1-30), (1,-31), (1-32), and (1 -33) have been

chosen to be consistent with Frank's convention (39). The components

of the force F per unit length exerted on a twin dislocation at (x, y)

by another at the origin are (38)

FX = o-xy bt (1-34)

FY = 0'xx bt . (1-35)

If the twin dislocation at (x, y) lies on the adjacent plane, 1. e. y = d

where d = 0. 633 a is the Spacing between neighboring twin planes, then

   

   

icbz
F.(x d) = t t 0.56x-—0.12d _ l.56x-—0.94d

x 2“ (x - 0.13d)Z + 0. 36d2 (x .. 0. 53d)2 + 2. 56d2

(1-36)

Kb2
F.(x d) z t t 0.03x-0.21d _ 0.72x-4.44d

y ' 2n 2 2 2 2
(x-O.13d) +-0.36d bc- 0.53d) +-2.56d

(1-37)

These results are plotted in Fig. 3 and Fig. 4. Unlike the isotropic

elasticity theory of dislocation FX becomes noncentrosyrnmetrical in

this case.
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1.3. Application

1. 3.1. Dislocation reactions

Frank and Nicholas (40) discussed the relative stability of

perfect and imperfect dislocations in hexagonal close-packed crystals

using the simplified criterion that the line energy of a dislocation is

prOportional to the square of the absolute value of its Burgers vector.

This method would not yield a definite solution of the feasibility of a

dislocation dissociation process when the Burgers vectors of the

three dislocations involved are the three sides of a right triangle

and the Burgers vector of the dissociating dislocation is the hypotenuse.

The application of the anisotropic elastic energies of the various

components will yield a definite answer to this problem.

Following Eshelby (30), if D65) represents a dislocation with

a Burgers vector 1;, a dislocation dissociation (or association) process

may be written as

DESI) + D532) ‘__—:_-—_‘D(b‘3) (1 -38)

_| _S _8

where b1 + b2 = b3. According to Eq. (1 -l) the energy of dissociation

may be written as

_ 1_ 2 2 2 3
AE _ 4n (th1 + biz - K3b3)1n(ro) . (1 -39)

The reaction will take place in the direction of dissociation or association

according to whether A E i is negative or positive.

Thus the decrease in elastic energy associated with the dissociations

of the total dislocations of the basal and the second-order pyramidal slips

into extended dislocations are



for

01‘

and

for

01‘
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AB = -1.03 1n (R/ro)x10"5 ergs/cm

g—[1120]———) $1010] + g—[ 0110]

(1-40)

A .4 _\

'- a3—__-) “p3 +132 9

AB = -4.21ln(R/ro)x10-5ergs/cm

l -- 1 -- 1 ..

§[1123]——) g[2023] + 3[0223]

(1-41)

.4 4 1.1 .1 1.3.

-(c+a3)——9-(§3+§c)+(pz-gc).

where the vectors <3> and 72" are the Burgers vectors of the total

dislocations and (13> and (3+ 1/2€> are those of the partial

dislocations. Fig. 5 gives a representation of these Burgers vectors,

which is similar to that given by Price (41).

The following two dislocation reactions, which are energetically

reversible from the isotropic elasticity point of view,become unidirec-

tional toward dissociation from the anisotrOpic elasticity point of view:

for

01‘

and

AE = - 0. 251n (R/ro) x10-5 ergs/cm

%[1123]—_) g—[1120] +[000‘1]

(1-42)

_$

C

A...‘ —\

-(c+a3)—-—)-a3-

AB = - 0.151n (R/ro) x10-5 ergs/cm
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for

13[202‘3]__.) 33-[1010] + 1§[000'i]

or (1-43)

.3

C

N
P
“.1 1 .3 _\

- (P3 + 3C)-—-—) -P3 -

Perhaps it is of interest to note that, judging from Eshelby's

criterion for the ease of gliding 12./b as listed in Table 3 for the

various slip processes, the order in increasing difficulty is; basal

slip, second-order pyramidal slip, first-order pyramidal slip,

prismatic slip, prismatic Slip with 76 = 1/6 < 1123> , and normal

slip, Such an order seems to agree with existing observations.

1. 3. 2. Incoherent twin boundaries

The interaction forces between two parallel twin dislocations

of edge orientation have been calculated in Sec. 1. 2. 2. and plotted in

Fig. 3 and Fig. 4. The Fx component of the interaction force is of

significance since it acts in the direction of the twin shear. As

illustrated in Fig. 3, Fx = 0 when x/d = 1. 31, - 0.07, or - 0. 56.

These are the neutral positions of the twin dislocation in the absence

of applied stresses.

There exist two maxima of the interaction force per unit length

of dislocation line:

”
‘
N

Ktb xl

Fl = 0.204 Zr—d— at -d— = -2.45 (1-44)

Ktb: x1

F2 2 0.360 m at T = 0.528 . (1-45)
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The critical shear stress 7'1 to overcome the first maximum repulsive

force Fl can be found by equating the driving force Fd = '1'l bt and

F1:

Kt 2
7'1ng 0.20 2—1r-Y E 19kg/mm , (1-46)

where Y = bt/d = 0.139 is the shear strain associated with the { 1012}

< 1011> type twin in zinc. Similarly for the second maximum the

critical shear stress is

E. 0.36 — = 33 kg/mm2217 _ (l -47)
72

The shape of the advancing twin interfaces depends mainly upon

the applied shear stress and the interaction between the twin dislocations.

It can be discussed with the aid of the schematic diagrams in Fig. 6.

Assume that n twin dislocations with equal Burgers vector are situated

on successive atomic planes and form a coherent group. If the leading

dislocation is halted by an obstacle the force acting on the immediately

following dislocation will be

Fd = (n-1)'Tabt (1-48)

where Ta is the applied resolved shear stress. If Fd is smaller than

F1 the configuration shown in Fig. 6(a) is stable. 91 must be smaller

than arctan (d/xl) or 220. If Fd is greater than Fl but smaller than

F2 the configuration shown in Fig. 6(b) is a possible one. In this case

arctan (1/o.07) < e < arctan(-d/x2) or 86°< e < 118°. If the mth
2 2

dislocation is halted by an obstacle and the force acting on the (m + 1)th

dislocation is momentarily greater than F the configuration shown in
2’

Fig. 6(c) may result.
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1. 3. 3. Coherent twin boundary energy

In the absence of an effective obstacle the advancement of the

twin interfaces will be limited by the increase in energy associated

with the increase in area of the coherent twin boundaries. Thus the

angle 9 provides an estimate of the coherent twin boundary energy

Yt . If the position of the leading twin dislocation is varied by 6x

from its equilibrium position the area of the coherent twin boundaries

will be increased by 26x per unit length of the twin dislocation line.

Hence

2Yt6x= Fdox (1-49)

or Yt = Fd/Z. Fd can be evaluated from observed 9 and Fig. 3.

2. Transformation of indices

2. l. Derivation of transformation matrices

. . _.l ._l

F1g. 7 shows the four coordinate systems chosen. a1, a2,

.4

and c are the base vectors which define the hexagonal lattice of the

._I _i. —\ .
matrix. n1 , n2 , and n3 are three vectors chosen in such a way

u A n o A A A a

thatarotatlon of 17 about n Will bring a1, a , and c respectively
1 2

to ‘aii , 3'2, and "c" , the corresponding base vectors in the twin, and

.1 .1 .1 .1! .1' _1' ,

n1, n2, and n3 to n1, n2 , and n3 reSpectively.

Thus any vector can be described equally well by using one of

the four coordinate systems. For instance,

it — )c" + it“ + it“
‘ 1&1 2&2 3C

ii - bi -+ N" N"
‘ 1n1 2H2 + 3H3

'41 _ 1'41 1": 1'41
N — Nln1 + Nzn2 + N3n



x' = X'l i + ija.‘2 + xgc'

0r

3(- = (X1 X2 X3)

11 = (N1 N2 N3) (2-1)

E : (Ni N2 N3)

35' z (X1 X2 X3)

c.) _) .4 _\

In order that X, N, N', and X' are to represent the same

vector the vector components in the four coordinate systems must

be related in a certain way. The relationships may best be described

by using matrix algebra.

Since

_I _ .4 _I _|

n1 ‘ a1 ' a2 '

_1 .1 _1

n2 — - 1 + a2 - c

_| _ _!. + .8

n3 — a1 a2

or

n1 1 -l -1 a1

n2 = -1 1 -1 a2 (2-2)

n3 1 1 0 c ,

_I

Then the components of X and N are related by (see for instance

reference 42)

(X1 X2 X3) = (N1 N2 N3)
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or

a = s4. (2-3)

where

A = l -1 -l

-l 1 -1

1 1 0 (2-4)

which means upon multiplying,

X1 = (N1 -N2 +N3)

X2 = (-N1 + N2 + N3)

X3 : (‘N1' N2)

It follows from Eq. (2-3) that

s = .444 <2-5)

where

-1 _ 1—

A — 4 l -1 2

-l l 2

-2 -2 0 (2-6)

is the inverse of the matrix _A.

Similarly,

'r‘i' — ii
1 — l

_L' _ .J _8

n2 - enl - n2

.1' _ -.1 _-

n3 _ n3 , (z 7)

where e is a numerical factor such that e'r'i1 is the projection of

ii'z in "til (also Iii ). For zinc e = 0.069 and Ie‘fi‘ll = 0.176 a ,
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a is the spacing of atoms in the close-packed plane. Let

R = l 0 0

e -1 0

0 0 -1 (2-8)

then

E : 5' 3 (2‘9)

and

s' = rs" = as . (240)

It is necessary that _R = R-1 Since ERR = N is equivalent toa

rotation of 217 about n1, which must leave N unchanged. It follows,

therefore, that R R =1 and hence _R = R71.

The transformation from N' to X' can be written as

20 = 5'4. (“1)

Thus

3' = E'é = .1334 = $4434

or

5' = 142 (2-12)

where

_i; = £9133. = :- -2-e -2+e ~2+e

42+e -2-e 2-e

-4-2e 4+2e Ze . (2-13)

‘4 o o u A .4 A o

A vector X originally expressed in the al, a2, and c coordinate

system can be expressed in terms of the base vectors "ii, '3' , and

.A

‘6" as X' using the matrix equation (2-12).
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The twinning action can be conveniently introduced as a

.4

homogeneous shear of the vector N. Let

.| .1 _1 _I
i

E = Elnl + Ezn2 + E3n3 (2-14)

_1

to be the vector which is different from N but represents the vector

A

N after the twin shear, then

E1 = (N1 -eN2)

E2 = N.2

E3 = N3 . (2-15)

Let

ST = 1 -e 0

0 l 0

0 0 1 (2-16)

then

s = Es (247)

or

E = l‘lé . (2-18)

where

S = l 0 0

-e 1 0

0 0 l , (2-19)

which is the tran3pose of ST .

_1

Thus a vector X will be transformed into If)”: after the twin

4
_1

shear, if X* is to be expressed in the coordinate system of a' , 3'2,

*

and E" as X*= (X); X‘2 Xi). Therefore,



>1: -1

r =54 she

or

£4: : §I>k
(2-20)

where

I*=4"§se=-% 1 1 1

l l -l

2 -2 O . (2-21)

After a homogeneous shear corresponding to the twinning action is

applied to the vector 31, it is transformed into another vector TC“

according to the matrix equation (2-20).

The difference between 53* and 31' represents the homogeneous

shear applied to the vector 31. Thus

2.0-3 = sit-r: =2<<:*-I> = as <2-22)

where

g = I* - I = 4 e 1 -1 -1

-1 l 1

2 -2 -2 . (2-23)

Multiplying the original vector 35 by the matrix B according to the

matrix equation (2-22), one obtains the homogeneous shear applied to

the vector.

2. 2. Transformation of indices of Burgers vectors

The slip systems observed in zinc crystals at room temperature

are the basal slip and the second-order pyramidal slip. The slip vectors

are respectively < 3.5 and < 01+ 3‘ > . Multiplying these vectors by

:1:

_'I_‘ and by B, one obtains the transformed vectors after
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the twin shear and the corresponding twin actions respectively. The

results are listed in Table 4. The subscripts m and t indicate the

matrix and the twin respectively, and

e :1 (2-24)

N
I
H

b -1—e(:'-'s"-‘e‘v) —
t ' 4 l 2 _

is a vector in the twinning direction Til and may be considered as a

unit twin vector or the Burgers vector of a twin dislocation. The

magnitude of the Burgers vector of the twin dislocation is 0. 088 a.

2. 3. Transformation of indices of slip planes

1 1 .
The vectors 2[111] m , 21 111] m' and [-110] m W111 be

transformed into _ai'l, 3'2, and 'c" reSpecu'vely after the twin shear

is applied to them. Thus a plane (hkl) in the matrix is transformed

into (HKL) in the twin according to the following equations:

- 1_ 1_ 1_
H - - 2 h - 2 k - 21

_ 1_ 1_ l.
K — - 2 h - 2 k + 21

L = - h + k

or in matrix notation

(HKL) = (hkl) M (2-25)

where

1

M — - '2- l l 2

l l -2

l -1 0 (2-26)

is the transpose of 2* .

On multiplying the Miller indices of a slip plane in the matrix

with M: one obtains the Miller indices of the correSponding plane in the

twin. The transformations of the slip planes are listed in Table 5.



33

3. Incorporation of slip dislocations at a coherent twin boundary

A dislocation line is defined in general by its Burgers vector,

its orientation, and its slip plane. Even a screw dislocation may not

glide on an arbitrary crystallographic plane because of crystal

anisotropy. Therefore, the slip plane as well as the Burgers vector

of a dislocation will have to be considered for an incorporation process.

A dislocation approaching the coherent twin boundary would probably

be a portion of an expanding loop. The orientation of the portion of

the dislocation incorporated into the twin should be that of a dislocation

line which is tangent to the dislocation loop and lies in the coherent twin

boundary, or parallel to the line of intersection of the slip plane and

the coherent twin boundary. Unless this portion of the dislocation line

happens to be in pure screw orientation, it can not glide on crystallo-

graphic planes in the twin other than those listed in Table 5.

It is also true that the Burgers vector of a mobile dislocation

is in general a low index vector which is in a densely packed direction,

and that the slip plane is a low index plane which has a high atomic

density. On examining Tables 4 and 5, it is concluded that the

incorporation of the dislocations described by (6), (7), (8), and (9).

are not likely to take place since high index directions and planes are

involved. The remaining five types of dislocation incorporation

processes are of particular interest and will be discussed one by one.

3.1. Incorporation process (1)

The incorporation process described in (1) means that for the

(112)[ 111] twin the basal slip vector [ 110] m in the matrix is not
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af_f_ected by the twinning action since it is parallel to the twin plane

(112). Furthermore, it is also parallel to the line of intersection,

[ 110] m or [110] t’ of the basal plane in the matrix, the basal plane

in the twin, and the coherent twin boundary (l1 2)m, t' Thus a dislocation

with the 1 110] m Burgers vector will be in screw orientation when it

meets the coherent twin boundary. It can be incorporated into the twin

and glide in the basal plane of the twin provided that there is a suitable

stress field. The line energy of the dislocation before and after the

incorporation process remains the same and hence this process as

sketched in Fig. 8 is energetically feasible. This process, however,

will not cause the twin either to grow or to shrink since there is no

change in either the direction or the magnitude of the Burgers vector.

Each dislocation of this type on passing through the matrix and the twin

will form a step on the crystal surface (110) along the slip traces. A

series of such dislocations will form a macrosc0pic step.

3. 2. Incorporation process (2) and (3)

The dislocation reactions (2), (3), (4), and (5) are important to

the growth of twins. The reaction (2) means that the basal slip vector

[ 100] m in the matrix is sheared into l/2[111] t upon being incorporated

into the twin. The quantity of the twin shear applied to this vector is bt

as defined by Eq. (2-22). The vector 1/2[111] t is common to both the

second-order pyramidal plane (112),c and the first-order prism plane

(110)t. However, because of the fact that the vector [ 100] m is oblique

to the coherent twin boundary, the portion of the dislocation incorporated

is mixed in nature as discussed previously, and hence it can probably

glide only on (110)t at least at the beginning of the incorporation process.
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This process encounters two difficulties which may not be

unsurmountable. The first difficulty is that the first-order prism

plane is not a favorable slip plane at room temperature, nor [111] t

a favorable slip direction (see Table 3). The second difficulty is

that the vector 1/2[111] t must be associated with a stacking fault

on (110)t plane since it is not a lattice vector nor does it connect the

centers of two atoms. The arrangement of the atoms, using a hard

sphere model, over the first-order prism plane is shown in Fig. 9

as discussed by Rosenbaum (43). Slip along [111] or 'd + '5 may

involve atomic movements in the directions 0-*1 -‘2-r3->4. One may

say that a total dislocation [111] t would dissociate into four partial

dislocations separated by three faults. Thus, a complete incorporation

process may involve two successive [ 100] m dislocations. A complete

as well as a partial incorporation process is illustrated in Fig. 10.

The relative elastic energies of the basal slip dislocation and a hypo-

thetical partial dislocation 1/2[ 111] have been calculated to be

3.11 : 2.10 (see Table 3). Furthermore, an 1/2[111] or 1/2(-c':‘ +3..)

dislocation is likely to be in a dissociated state with the partial

dislocations discussed before since the resultant vector subtends

obtuse angle in the vector triangle in Fig. 9, using the criterion of

the square of magnitude of the Burgers vector. Therefore, the

dislocation reaction described in Fig. 10 is not impossible.

One can write the dislocation reaction (2) as

2x[100]m——) [111] (3-1)
1:
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where [111] t is an extended dislocation as discussed above. One

may also say that each basal dislocation [ 100] m is an extended

one with its partials of Burgers vector 'p (40). The reaction

described by (3) is crystallographically equivalent to the reaction

(2). By analogy, one can write

2x[010]m—-) [‘1'11]t (3-2)

In the reactions (2) and (3) what happens at the coherent twin

boundary can be expressed by the amount of the twin shear 21;t applied

to the original vectors. This vector 21ft may be called a double twin

dislocation as suggested by Thompson and Millard (9) or a zonal twin

dislocation (44). Its magnitude is th = 0.176 a, twice as large as

that of the unit twin dislocation. This double twin dislocation signifies

a step formed at the coherent twin boundary due to the incorporation of

slip dislocations. The role played by the double twin dislocations in the

process of twin growth and untwinning will be discussed in Sec. 4.

3. 3. Incorporation process (4) and (5)

The dislocation reaction for the incorporation process (4) can

be written as

[mum—9 2x [010]t (3-3)

which resembles Eq. (3-2) in reverse except the interchange of the

matrix and. the twin. However, the nature of the dislocations involved

is very much different from that discussed in Sec. 3. 2. The original

slip dislocation considered here is a second-order pyramidal slip
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dislocation which lies in (112)m. The product [ 010] t lies, according

to Table 5, in the first-order prism plane (100)t. Eventhough the basal

plane (001)t, the first-order pyramidal plane (011)t, and the first-order

prism plane belong to the same zone of crystallographic planes with

[ 010] t as the zone axis, the portion of the dislocation line incorporated

is in the mixed orientation so that it can probably glide only on (100)t

at the beginning of the incorporation process.

The relative elastic energies of a total second-order pyramidal

slip dislocation and a pair of first-order prismatic slip dislocations are

9. 79 : 2(3. 97) = 7. 94 (see Table 3). Therefore, the reaction described

by Eq. (3-3) is energetically feasible. The slip vector [ 111] or E+ '5'

is considered to be split in the second-order pyramidal plane into

partial dislocations whose Burgers vector is '15 + 1/2 E (40). According

to Rosenbaum (43), each partial may dissociate into two other partials.

Thus, [ 111] m may be an extended dislocation with four partials

separated by three faults. By analogy, one can write for the reaction

(5)

[111]m—————) 2x[100]t (3-4)

In Fig. 11 a schematic illustration is given for the incorporation

process (4).

4. Process of twin growth

The effect of the incorporation of slip dislocation at the

coherent twin boundary on the growth and untwinning of the existing

twins was discussed by Sleeswyk and Verbraak (10) for the body-centered
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cubic structure. The following is an extension of their theory to

hexagonal zinc crystals.

Take an ideal case that an (1102)[ 1101] twin is introduced

into a zinc crystal of (1120)[ 1100] orientation as shown in Fig. 12.

If a hypothetical pure edge dislocation with an 1/2[ 1100] m Burgers

vector is forced to glide in the basal plane of the matrix and in the

first-order prism plane of the twin by the applied shear stress as

indicated in Fig. 12, the net effect would be to cause the portion of

the crystal above the slip traces to glide to the left by 1/2[ 1100]

with respect to the portion below. A step will be formed at each of

the two interfaces. Each step is in fact a twin dislocation since it

separates the twinned region from the matrix. Whether the twin

will grow or shrink depends upon the direction of the shear stress

applied to these twin dislocations. The shear stress shown in Fig.

12 will cause the twin to grow by one twin layer as the twin dislocations

are forced to glide to the free surfaces. Reversing the direction of the

applied shear stress will cause the twin to shrink by one twin layer.

The effect of an actual basal slip dislocation 1/3[ 2110] m may

be considered as the equivalent of the combined effects of the edge

component 1/2[ 1100] m as discussed above and the screw component

1/6[ 1120] m' The latter is parallel to the coherent twin boundary and

has no effect on the twin other than causing the upper portion of the

crystal to glide in the direction normal to the plane of drawing by

1/6[ 1120] with re5pect to the lower portion.

When the surfaces in Fig. 12 are restrained or in an actual

case that the stress field in the neighborhood of the twinned region
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resists the change in shape and volume Of the twin, the net effect will

be equivalent to forcing the dotted line contour to coincide with the

solid line contour in Fig. 12. This action will cause the twinned

region at A to untwin and the region of the matrix at B to twin. In

other words, a pair of twin dislocations of Opposite sign is formed at

each coherent twin boundary as shown in Fig. 13. Under the applied

shear stress as indicated the pair at B will annihilate each other,

whereas the pair at A will move away from each other and cause

the twin to grow by one twin layer over the area swept by this pair

of twin dislocations. Reversing the direction of the shear stress

acting on these twin dislocations, the pair at A will annihilate

each other whereas the pair at B will move away from each Other

causing the existing twin to untwin by one twin layer. Thus, whether

the resulting effect is to cause the twin to grow or to shrink depends

only upon the direction Of the applied shear stress.

In the above, twin growth resulting from the incorporation of

slip dislocations at the coherent twin boundary has been discussed with-

out questioning the mobility of the resulting dislocations in the twin

after the incorporation process. For instance there has been no

experimental evidence Of an active slip system with a < O + 21>

slip vector on the first-order prism plane in zinc. The calculation of

the degree Of ease Of gliding of six potential slip systems in zinc shows

that prismatic slip in the diagonal direction is the second hardest one

next only to the "normal slip" with the slip vector 3 (see Table 3).

Prismatic slip in the close-packed direction was Observed by Gilman (45)
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in zinc only at elevated temperatures of 250 .1 4000C. The calculation

also shows that this slip system ranks fourth in the relative ease of

gliding next to basal, second-order pyramidal, and first-order pyramidal

slips. Thus, unlike the case Of the body-centered cubic lattice as

discussed by Sleeswyk and Verbraak,the reaction product described in

(2) or (3), a prismatic Slip dislocation with a < O + 5f> Burgers vector,

would not probably glide tO any great extent on the prism plane.

Subsequent dislocations in the matrix may form a pile-up against the

coherent twin boundary and produce a region Of stress concentration.

This stress concentration may indeed facilitate the dislocation

incorporation process by fnrcing the reaction product tO glide on the

unfavorable slip plane Over a short distance, and then its screw portion

may cross glide onto the second-order pyramidal plane. Similarly, the

reaction product described in (4) and (5), a prismatic slip dislocation

with Burgers vector < 55 , would probably glide only over a limited

extent on the prism plane at room temperature, but its screw portion

may cross glide onto the basal plane.

The incorporation Of the other second-order pyramidal slip

dislocations described in (6) thrOugh (9) of Table 4 is not likely to take

place for the reasons mentioned previously. These dislocations may,

however, pile up against the coherent twin boundary and may even cause

new twins to be nucleated.

Some combinations Of the incorporation processes discussed

above may possibly take place. For instance, an association of a

dislocation with the Burgers vector 3 + E and another with 53'." aided
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by a stress concentration will give a dislocation with the Burgers

vector O, which may be incorporated at the coherent twin boundary

_3 .3 _l

to produce a double twin dislocation th and a [ -a' + a'z] t

l

dislocation in the twin as described in (10) Of Table 4.
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Table 4. Transformation of Burgers Vectors

a _* = a: 5* - 5' = as

(1) :i:[110]m 4110]t [000]

(2) 4[100]m :l: 12[111]t % e[111] a slit

(3) r[010]m té—[111]t %e[lll] :43;

(4) :I:[111]m 42[010]t é—e[111] =42}:t

(5) r[111]m r 2[‘100]t é—e[111] =:|:2-1-;t

(6) :I:[101]m rl§[13f]t %e[1ll] :43;

(7) r[ 011] m :t ‘172-[311]t i; e[111] = {St

(8) =(:[011]m i=l§[131]t %e[111] ==I=3‘13t

(9) 4(1011m 4 g 311] t % e[111] = 4 3T3t

(10) :I:[001]m :1: [110]t l§e[lll] “‘th
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Table 5. Transformation Of Slip Planes

 

 

 

(hkl)“, (HKL)t

(l)(Z)(3) (001)m basal (“110)t prismatic

(lst-order)

prismatic

(5) (112)m
(amt (lst-order)

(7) (12mm I 3:331:31) (136)t

(8) (122) (316)

m
t high index

(9) (212)mj
(136% plane 

(10) (1‘10)m (001)t

 

The factor of 2, due to the double lattice in h. c.p. structure, is

omitted for brevity.



 



III. EXPERIMENTAL PR OCEDURES

The purpose of the experimental part Of the present work was

to find material proof of some, if not all, of the mechanisms described

in Chapter II that might account for the growth Of existing twins in zinc

and to determine, if possible, the resolved shear stresses for the

thickening and widening Of the twins by using Specific loading methods

and oriented zinc single crystals.

1. Preparation Of the specimens

Zinc single crystals were grown from the melt using zinc Of

99. 995+ % purity and a modified Bridgeman technique (46). The

orientation of the crystals was controlled by welding a seed to the

blank so that, after growing, the (0001) plane was parallel to one Of

the Specimen surfaces. The crystals were then cut into various

desired dimensions with an acid saw, and chemically polished using

a technique suggested by Vreeland et a1 (47). The orientation and

the dimensions Of the specimens tested are described in Fig. 14.

2. Methods Of loading

2. 1. Simple bending

The specimens E, F, and G (see Fig. 14) were simply

supported on a bending fixture which was laid on the base plate of a

compression load cell in an Instron testing machine. The bending

fixture consisted of two knife edges, a stationary one and a movable

one, by means Of which the beam span could vary from 25 to 76 mm.
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Another knife edge was fixed on the crosshead Of the testing machine.

The downward Speed Of the crosshead was adjusted to 0. 005 cm/min

and occasionally to O. 05 cm/min. The knife edges were carefully

aligned before each series of testings.

2. 2. Uniaxial tension

The specimens E, F, G, and H were cemented to tensile

Specimen holders by using Armstrong cement. Most Of the crystals

tested in tension were constricted with approximately 30% reduction

in the cross-sectional area over a gage length Of 32 mm. The

Specimens were held by their holders with a pair Of jaws attached

to the testing machine. A crosshead speed of 0. 005 cm/min was

selected for the tension tests.

2. 3. Point loading

The specimens A, B, C, and D (see Fig. 14) were mounted

on the base plate of a compression load cell with a sheet Of plastic

laid underneath to avoid non-uniform contact between the crystal and

the base plate. The downward speed of the crosshead was adjusted

to 0. 05 cm/min. The load was applied by a pin indenter, which was

fixed on the crosshead, in the [ 0001] direction on the (0001) surface

Of the Specimens. Twelve different pin indenters with the radii Of

their tips ranging from 0. 009 tO 0. 205 mm and the apex angles from

160 to 360 were used.

In all three types of loading, the load vs. crosshead displace-

ment curves were recorded with a pre-calibrated Speedomax recorder.
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The appearance and the size of the twins and the slip traces were

examined with a Bausch and Lomb Research Metallograph. An

intermittent polishing was Often given to the specimens between

successive tests at increasing load levels.



 



IV. RESULTS

1. Simple bending tests

Six Specimens were tested by simple bending with the beam

span L = 40 mm. The R. S. 5. respectively for the nucleation of

twins and the growth Of twins are calculated in accordance with the

stress analysis described in the Appendix C, and the values for the

growth of twins are listed in Table 6. The Eq. (C -4) in the Appendix

C can be directly used for the simple bending tests (S. B.) NO. 1, 2,

3, and 6. The R. S. S. for twinning in S. B. NO. 4 and No. 5 were

obtained by a prOper transformation of the stress components into

their reSpective twin planes and directions using the Eq's. (C -2)

and (C-3).

The specimens in which the basal planes were parallel to the

axes Of the applied bending moments continued to deform and became

unstable on the bending fixture. In S. B. NO. 5 no twins were formed

by the continuous bending up to the load P = 4. 5 kg and the maximum

deflection 6m = 2.1 mm. Basal slip traces were observed on both

(1010) edges. The Specimen was then bent in the reverse direction up

to P = 8. 0 kg and 6 = - 0. 22 mm without forming any twins. When

the bending in the original direction was resumed, a twin nucleation

took place at P = 5. 55 kg and 6 = 0. 03 mm accompanied by a load drOp

of approximately 20%. A pair Of conjugate twins were Observed on one

Of the (1010) edges, one impinging upon the other. The twin on the other

(1010) edge is as shown in Fig. 15, whereas on the (0001) surface, as

shown in Fig. 16. In S. B. NO. 3 the Specimen was deformed continuously
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to P = 4. 3 kg and 6m = 3. 0 mm without twinning. Upon reverse

bending at the loading rate 0. 05 cm/min, which was ten times faster

than the original rate, successive twin nucleations occurred as the

load increased from 2. 5 to 3. 5 kg. The load vs. deflection diagram

Of S. B. NO. 3 is given in Fig. 17. '

The specimen G-4 in S. B. NO. 4 exhibited a marked difference

in its deformation behavior compared with that Of S. B. NO. 3. AS

shown in Fig. 18, it yielded at P .1: 2 kg followed by a rapid work-

hardening rate, and large twins were nucleated at P = 4. 8 kg

accompanied by a 47% load drop. The specimen was polished and

then loaded successively to examine the growth behavior Of the twins.

Fig. 19 Shows the thickening Of the twin on the (1120) surface of the

tension side.

The center strip Of this specimen G-4 was cut out into a

separated specimen with a width of 3 mm by using a Sectioning

instrument, Semiconductor Model 716, and the new specimen was

then used for S. B. No. 6. The conjugate twins were eliminated and

the Specimen was left with a nearly straight twin across its entire

3 mm width. The bending moment was applied about the [ 1120] axis.

The portion Of the twin in the tension side was found to have thickened,

and that in the compression side to have shrunk, as shown in Fig. 20

(a) and (b) reSpectively.

In S. B. No. l and NO. 2 twins were first introduced by point

loading on the (0001) Surface at four different locations near the center

Of each specimen. The specimens were then bent in the testing machine
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in such a way that the twins were on the tension side so that they would

normally grow. On the contrary to the expectation the twins formed

by the point loading did not grow, but new twins were nucleated at a

R. S. S. of approximately 3, 000 g/mmz. Upon reverse bending, the

twins formed by the simple bending were untwinned while the twins

formed by the point loading remained virtually unchanged. Fig. 21 (a)

clearly shows the formation of new twins crossing the original twins.

Fig. 21 (b) shows the untwinning Of the newly formed twins upon

reverse bending.

2. Uniaxial tension tests

Table 7 lists the R. S. S. for twinning at nucleation and at growth

together with other related data. The angles x and X between the

tensile axis and reSpectively the twin plane and the twin direction were

Obtained from sterographic projection plots according to the actual

orientation determined by using the back reflection Laue method. The

strain rate used throughout the testing was 2. 8 x 10-5 sec.1 which is

equivalent to the crosshead Speed Of 0. 005 cm/min averaged over the

3 cm gage length.

The Specimen E-7 in the uniaxial tension test (U. T.) No. 1 was

the only one not contricted. A series Of parallel twins were nucleated

at the C.R. S. S. Tn = 2. 85 kg/mm2 at near the grip of the Specimen.

Fig. 22 (a) shows these twins on the (1120) edge after polishing. The

growth of the twins at the R. S. S. 7g = 241 g/mm'Z is shown in

Fig. 22 (b) . Twin nucleation in U. T. NO. 3 also occurred at the

grip at 'Tn = 2. 24 kg/mmz. Then, after an elongation Of 4. 5% a

large crack was formed extending diagonally from an edge to the grip
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at 'r = l. 93 kg/mm2 accompanied by a load drOp of 96%. The habit

plane Of the crack was found to be the first—order prism plane (1010).

The whole sequence of loading and unloading in U. T. NO. 3 is Shown

in Fig. 23. The three photomicrographs in Fig. 24 Show the successive

stages of the thickening of a twin observed on the (1010) surface Of the

specimen H-lc in U. T. NO. 4. A pair of conjugate twins were

nucleated at the grip at Tn = 4. 3.8 kg/rnrn2 and grew away from the

grip at 7g = 535 g/m2. The junction Of the conjugate twins is shown

at the lower right-hand corner Of each photomicrOgraph in Fig. 24.

In U. T. NO. 5, a twin was also nucleated at the grip but at a different

stress Tn = 2. 32 kg/mm2 with a 57% load drop. Upon reloading after

microscopic examination and polishing, the twin was thickened while

the R.S. S. drOpped from 7g = 720 g/mmZ to 520 g/mmz as

recorded in Fig. 25. Some unusual markings were observed on the

(0001) surface inside the twin as shown in Fig. 26.

3. Point loading tests

The Specimens were loaded to successively increasing load

levels and examined with a microsc0pe at each load level to determine

in what load range twins were nucleated directly under the indentor.

Table 8 lists the load levels at which twins were detected on the (0001)

surfaces for the six indentors Of varying tip radii. The average normal

stresses, the load at twin nucleation divided by the indented area, are

also listed in Table 8. Narrow twin lamellae were Observed to grow

outward from the point Of application Of the load in more than one Of

the six <1120> directions, which were the traces Of the { 1012}
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<1011> type twins on the (0001) surface. Fig. 27 shows such a

configuration of the twin lamellae. The various specimens were

loaded to different maximum loads, and the average lengths Of the

twin lamellae F measured from the point of application Of the load

to the tips of the twins were measured with a micrOSCOpe. The

results obtained from the testings of twenty specimens are tabulated

in Table 9. A typical diagram Of the load vs. the penetration Of the

indentor is given in Fig. 28. For the point loading experiments with

the specimens 2A, 3A, and 4A the indentor having a tip radius of

0. 01 mm and an apex angle of 280 was used. The indentor with a

tip radius of 0. 015 mm and an appex angle of 270 was used for the

specimens 5C, 7B, 8C, and 9D. The stresses at the radial distance

r and the (0001) surface were calculated by using the solutions given

by Elliott (48) and by Shield (49) with some further development as

described in the Appendix B. The R. S. S. acting on the twin plane

in the twinning direction was calculated and listed in Table 9. The

average value is 130 :1: 50 g/mmZ which can be taken as the R. S. S.

required for the { 1012} < 1011> type twins to grow in the < 1120>

directions.
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Figure 14. Orientation and dimensions of lht' spet‘llnvns.
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(1010)

 

(a)

(1010)

 

Figure 15. Basal slip traces across (1102)[1101] twin

boundary in S. B. NO. 5. (1010) edge Of

specimen F—4. 100 x. (a) P = 4. 0 kg

(b) P = 4. 8 kg.
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Figure 16. Twin growth in S. B. No. 5. Tension

side (0001) of specimen F-4.

r>= 4.5 kg. 70 x.
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(1120)

 
Figure 19. Growth of (1102)[1-10-1] twin and its

conjugate (1-102)[110-1] twin in S. B. No.

4. Tension side (1120) of specimen G-4.

P = 3 kg. 100x.



75

(1120)

 

(a)

(1120)

 

(b)

Figure 20. Growth and untwinning of (l-IOZ)[1101]

twin in S. B. No. 6. (1120) edge of

specimen G-4. P = 860 g. 70x.

(a) Growth on tension side.

(b) Untwinning on compression side.
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(b)

S. B. No. 2 after twin formation by point

loading. Tension side (0001) surface of

specimen E-4. 100x.

(a) Twinning.

(b) Untwinning upon reverse bending.
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(1120)

 

(1120)

 

Figure 22. Twin nucleation and growth in U. T. No. 1.

' (1120) edge of specimen E—7. 70 x.

(a) Nucleation of twins near at the grif

after polishing. Tn 2.2 85 kg/g/mm

2

(b) Growth of twins. 7g: 241 g/m .
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(1010)

 
(C)

Figure 24. Twin thickening in U. T. No. 4. (1010)

surface of specimen H-lC. 120x.

(a) 'Tg = 535 g/mmz, (b) 573 g/mmz, and

(c) 610 g/mmz.
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(a) 100x

 
Figure 26.

(b)

Twin growth in U. T. No. 5. (0001) surface

of specimen F-lC. 100x. _

(a) At coherent twin boundary.

(b) At incoherent twin boundary.
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(0001)

 

60x

Figure 27. Twin lamallae formed by the point loading

to Pm = 1 kg. Specimen ZA-l after polishing.
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61

(IO)

 
  

0 05 I0 l5

h (mm)

Figure 28. Load vs. penetration of the indenter diagram in point

loading. Specimen 8C -3. Loading rate 0. O5 trn/min.
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Table 9. Resolved Shear Stress for Twin Growth by

Point Loading on (0001) Surface

 

 

Maximum Maximum Ave.Radia1 Radial or R. S. S. for

Specimen Load Penetration Length of Circumferencial Growth

Pm th r UStggs: 'Tg

(kg) (mm) (mm) “fig/Mae (g/mmz)

ZA-l 1 0. 28 0. 50 296 148

2A-2 3 0. 62 1. 00 222 111

3A-1 l 0. 25 0. 55 244 122

3A-2 3 0.62 1.10 183 92

3A-3 5 0.77 1. 60 189 95

4A-1 1 0.30 0.45 365 182

4A-2 1 0.30 0.45 365 182

4A-3 1 0. 30 O. 55 244 122

5C-1 1 0. 23 0. 45 365 182

5C -2 1 0. 22 0. 59 212 106

5C-3 3 0.67 1.10 183 92

5C-4 5 0.76 1.31 216 108

7B-1 2 0. 37 0. 76 256 128

7B-2 4 0.61 1.34 165 83

8C -1 1 0. 24 0. 60 206 103

8C-2 3 0. 60 1. 01 218 109

8C -3 5 0. 80 1. 49 166 83

9D-1 l 0. 23 0. 51 284 142

9D-2 3 0. 50 -- -- --

9D-3 5 0. 72 -- -- --

 

Crosshead speed = 0. 05 cm/min.



V. DISCUSSION

1. Incorporation of basal slip dislocations by cross-gliding at the

twin boundary

The slip traces shown in Fig. 15 (a) and (b) are continuous

across the twin boundary, and their orientations are in agreement

with the incorporation of 1/3[ 1120] m slip dislocations in the

(1'102)[1'101] twin as discussed in Sec. 3.1 in Ch. 11 (see Fig. 8).

The slip traces in the twin are distinctly sharper than those in the

matrix where the sharpness of the slip band gradually diminishes at

a. distance away from the twin boundary. This suggests that the slip

dislocations are generated in the twin and prepagated under the applied

stress toward the twin boundary, and then they cross-glided into the

basal plane of the matrix. The slight thickening of the twin is probably

due to the other incorporation process as described in Sec. 3. 2,

Ch. II (see Fig. 11).

2. Twin thickening by bulging out of the twin boundary inthe presence

of restraints

The growth process of twins through the incorporation of slip

dislocations can be divided into two stages; the thickening of the existing

twin by the production of twin dislocations at the twin boundary and the

widening of the twin by the gliding of these twin dislocations under the

applied stress. The evidences of twin thickening by the bulging out of

the twin boundary as a consequence of the production of twin dislocations

are given in Fig. 20 (a) and in Fig. 24 (a), (b), and (c). The basal slip

traces in the matrix as well as in thickened region of the twin are in

88
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agreement with what would be produced by the 1/3[ 1120] m or

1/3[ 1210] m basal slip dislocations, indicating that the incorporation

processes discussed in Sec. 3. 2 (see Fig. 10) and the model of twin

growth developed in Sec. 4 (see Fig. 13) of Ch. II are in agreement

with the experimental observations. At the later stage of deformation

basal slip traces began to appear in the twin in abundance. The basal

slip dislocations in the twin can also be incorporated at the twin

boundary, in accordance with the same analysis described in Sec. 3. 2

in Ch. II since it is entirely arbitrary to call either of the neighboring

parts the twin or the matrix. The restraining effect on the bulged twin

(e) in Fig. 19 appears to have been caused by the impingement of the

conjugate twin under the applied stress. The free surface of the crystal

was approximately 3 m away from the site shown in Fig. 19. This

seems to be also true in the specimen H-lc as shown in Fig. 24.

3. Twin growth in the absence of restraints

The growth of the twins shown in Fig. 22 (b) may be considered

as having taken place in the absence of restraints. The specimen E-7

was heavily polished to an average thickness of approximately 1 mm.

As shown in Fig. 22 (b) the edge of the specimen was polished down to

0. 6 mm. Although there might have been thickening and widening of

the twin in the growth process, only the nearly parallel growth of the

original twin boundary was observed under the microsc0pe. The R. S. S.

acting on the twin dislocations was nearly the maximum for a given

applied load since x = A = 470. Therefore, the twin dislocations

produced at the twin boundary as a result of the incorporation of basal
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slip dislocations would glide to the free surfaces under the applied

stress.

Fig. 16 and Fig. 27 also show the growth of twins in the

absence of restraints. Fig. 16 reveals the thickening of the twin,

the basal slip traces in the twin, and two sets of second-order

pyramidal slip traces on the (0001) surface of the matrix. The set

of traces normal to the twin boundary are the (1122)[ 1123] or the

(1122)[ 1123] second-order pyramidal slip traces which might have

caused the twin to grow according to the incorporation process

discussed in Sec. 3. 3 of Ch. II (see Fig. 11). The other set might

not have contributed anything to the growth of the twin since the

processes described by (6), (7), (8), or (9) in Table 4 would have been

involved and are very unlikely to take place. No associated traces of

the second-order pyramidal slips have been detected on nonbasal

planes in the present work. Further experimental investigations are

necessary in order to fully understand the role the second-order

pyramidal slip plays in the growth of twins. The angle between the

basal slip traces in the twin and the twin boundary in Fig. 16 is an

indication of the incoherency of the twin boundary and was found to

be approximately 60.

In U. T. No. 5 the stress vs. strain diagram (Fig. 27) shows

a fall of the R. S. S. from 720 to 520 g/mm2 during the twin growth.

As shown in Fig. 28 some unusual surface markings triangular in

shape along the coherent twin boundary and also irregular markings

along the non-coherent twin boundary were observed on the (0001)
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surface of the Specimen F-lc. The nature of these markings and their

possible relationships to the growth are not understood.

4. Twin growth and untwinning under Opposite stress conditions

In S. B. No. 2 (Fig. 21) twinning by Simple bending and untwinning

of the twin by reverse bending were observed. Since the Signs of the

stresses at any point in the specimen will be reversed upon reversing

the direction of the applied bending moment, the dislocation mechanism

must be reversible in order to account for the twinning and untwinning

in S. B. No. 2.

In S. B. No. 6 the growth of the twin on the tension side and the

untwinning of the twin on the compression side were observed as shown

in Fig. 20 (a) and (b). The directions of the stress components due to

the applied bending moment are given in Fig. 29 (b). Since the magnitude

of the normal stress was much greater than that of the shear stress,

the signs of the Shear stresses on the twin plane in the twinning direction

are as indicated. The slip dislocations with the Burgers vector

1/3[ 2110] m or 1/3[ 1210] m on the right will move to the left toward

the twin, and those with the Burgers vector 1/3[ 2110] m or 1/3[1 210] m

on the left of the twin to the right. Twin dislocations will be produced at

the twin boundary as shown in Fig. 29 (b) as the results of the incorpo-

ration of the Slip dislocations. The notations for the twin dislocations

are consistent with the Sign convention described in Fig. 29 (a), where

a positive twin dislocation with the Burgers vector Tit = e/4{ 1101] is

shown. The dashed lines represent the paths of the twin dislocations

under the applied Shear stress acting in the neighborhood of the
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correSponding twin boundaries. However, since this process may

occur simultaneously at many sites along the twin boundaries, a

final configuration such as shown in Fig. 20 can be resulted.

5. Resolved shear stress for twin growth

The average normal stress 3 11 directly under the pin indenter

was rather high. The R. S. S. for the twins should be approximately

1/2 En. Therefore, the apparent C. R. S. S. for the twin nucleation

as a function of the size of the pin indenters varied from 4. 5 to

30 kg/mm2 as the radius of the pin indentor decreased from 1. 18

to 0. 009 mm. The sharp indenters actually produced the necessary

stress concentration to nucleate the twins.

The average value of the R. S. S. for twin widening by point

loading on (0001) surface was found to be 130 :t: 50 g/mmz. Since

the twins were growing into the mechanically least disturbed regions,

one might expect the resistance to the twin growth and hence the

R. S. S. both to be low under such a condition. On the other hand,

thickening of the twins occurred at widely scattered values of R. S. S.

from 110 to 1, 500 g/mmz. It is possible that this variation in R. S. 8.

might have been caused by the difference in the history of plastic

deformation in the various Specimens, the inhomogeneous distribution

of the twin lamellae, and the Size and shape of the Specimens.

In the Simple bending and the uniaxial tension tests twin

nucleations occurred at C. R. S. S. = 2. 32 ~ 4. 55 kg/mm2 accompanied

always by a load drOp of approximately 30”? 0%. In many cases other

twins were formed which impinged on or crossed the original twins such
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as Shown in Fig. 19 and Fig. 21 (a) at R. S. S. =123~ 3, 760 g/mmz.

Thus the R. S. S. for the twin growth by continuous thickening

and widening of a twin was found to vary from 83 to l, 500 g/m2.

This does not support a simple C. R. S. S. law for twin growth.

6. Incoherent twin boundaries and coherent twin boundary energy.

Two of the three possible shapes of twin boundaries discussed

in Sec. 1. 3. 2 of Ch. II (see Fig. 6) have been observed; the incoherent

twin boundaries Shown in Fig. 19 (d) and (e) and Fig. 20 (a) and (b) are

the typical examples of the type (a) in Fig. 6, whereas Fig. 19 (a) and

Fig. 24 (c) Show the Shapes of the twin boundaries conforming to the

type (c) in Fig. 6. No twin boundary of the type (b) in Fig. 6 has been

observed in the present work.

In a number of cases] 6 has been observed to be approximately

9° :1: 4°. From Fig. 3 one finds F = 2. 7 :t: 0. 7 dynes/cm. Therefore,
(1

from Eq. (1-49) in Ch. II the coherent twin boundary energy is Yt =

1. 4 :l: 0. 4 ergs/cmz. The twin fault can be considered as equivalent

to two coherent twin boundaries. Thus the twin fault energy is

numerically equal to Fd, or 2. 7 ergs/cmz.



M
A
T
R
I
X

 

(
I
T
O
Z
)

.
L

 

  
 

  
F
i
g
u
r
e

2
9
.

(
b
)

T
w
i
n
g
r
o
w
t
h
a
n
d
u
n
t
w
i
n
n
i
n
g
b
y
s
i
m
p
l
e
b
e
n
d
i
n
g
.

P
l
a
n
e

o
f
d
r
a
w
i
n
g

i
s

(
1
1
2
0
)
.

 

94



VI. C ONCLUSIONS

The incorporation of slip dislocations at the coherent twin boundary

has been analyzed for the { 1102}< 1101> type twins in hexagonal

close-packed zinc crystals by applying matrix algebra and anisotr0pic

elasticity theory of dislocations. The results indicate that a[110]

screw dislocation in the matrix may cross-glide onto the basal plane

in the twin with no effect on the growth or untwinning of the existing

twin, whereas mixed dislocations with Burgers vectors [ 100] and

[ 010] of the basal Slip system; and [ 111] and [ 111] of the

second-order pyramidal Slip system can only be incorporated

into the first-order prism planes in the twin leaving twin dislocations

at the coherent twin boundary. The growth or untwinning of the

existing twin depends upon whether the resolved Shear stress

acting on these twin dislocations is in the direction of twinning or

in the Opposite direction.

A number of zinc single crystals of various orientations were

tested in simple bending, uniaxial tension, and by point loading.

Experimental observations on the growth of twins support the

above prOposed mechanism. The resolved Shear stress for the

growth of twins by continuous thickening and widening of the twins

was found to vary from 83 to 1, 500 g/mmz. This does not

support a Simple C. R. S. S. law for twin growth.

The interaction of a pair of twin dislocations in the edge orientation

for the { 1102}< 1101> twin System has been derived from the

stress field of such a twin dislocation and found to be in general
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noncentrosymmetrical. Three possible shapes of advancing

twin interfaces can be predicted based on an analysis of the

stable configurations of a group of twin dislocations. Two of

these shapes have been observed.

The energy associated with the coherent boundary for the

{ 1102}< 1101> twin system is estimated to be 1. 4:1: 0. 4

ergs/cmz. The twin fault energy, which can be considered

as twice the coherent twin boundary energy, is therefore

2. 7 :l: 0. 8 ergs/cmz.

The results of calculations of the anisotr0pic elastic energies

of dislocations in the edge orientation also Show that the

following dislocation dissociation processes are energetically

feasible:

1/3[1123] —~1/3[1120] +[000‘1],

AE = — 0. 25 In (R/ro) x10.5 ergs/cm

1/6[2023‘] —>1/3[10‘10] +1/2[000‘1],

AB = — 0.151n (R/ro) x10.5 ergs/cm

1/3[1120]—~1/3[10'10] +1/3[01‘10],

AE = .1.031n(1>./r0)x10'5 ergs/cm

1/3[1123] —~1/6[2023]+1/6[0223],

AE : - 4. 211n(R/ro)x10-5 ergs/cm.



APPENDIX A. Transformation of the elastic constants

The elastic stiffness constants C's and the elastic compliance

constants S'S relate the components of the stress and strain which are

second-rank tensors .

0'..=C

13 ijkl €k1 (A'l)

Eij = Sijkl (r kl . (1, J, k,1 = l, 2, or 3) (A-Z)

They are therefore fourth-rank tensors. Upon coordinate transformation

from one set of axes to another by

x.' = a..x. , (A'3)

they transform in accordance with the following laws:

C! =
ijkl aim a'jn ako a1p CmnOp (PL-4)

' .- -

ijkl — airn ajn ako alp SmnOp (A 5)

(i,j,k,l,m,n,o,p =1, 2, or 3)

Each of the Eq's. (A-4) and (A-5) represents 81 equations

containing 81 terms each. These 81 equations are reduced to 21

independent equations containing 21 terms each. In the case of

hexagonal zinc crystal there are 5 independent elastic constants

only. The generalized Hooke's law, (A-l) or (A-Z), can be written

in the matrix notation as follows (50):

97



98

   

   

   

   

“1 C11 C12 C13 0 0 61

“2 C12 C11 C13 0 0 62

or3 C13 C13 C33 0 0 E3

:
(A-6)

0'4 0 0 0 C44 0 64

\0'5 \0 0 0 0 C44 \65

06 0 0 0 0 0 1/2(Cll-C12) 66

6, 511 512 513 0 0 0 0'1

62 S12 S11 S13 0 0 0 e2

63 $13 513 S33 0 0 0 0'3

= (A-7)

e4 0 0 0 s44 0 0 0'4

65 0 0 0 0 S44 0 0'5

66 0 0 0 0 0 2(s -512) 0'6

01'

0' = C 6

1‘ rs S

E =5 U (r.s =1.2. ..... .6)
1‘ 1‘8 8

The stress components and the strain components are written

with a Single suffix from 1 to 6.

or11 “12 “31 “1 0'6

“12 “22 “23 —’ “6 0'2

“31 “23 “33 0'5 “4
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£11 612 631 el 1/2 66 1/2 65

612 622 623 —> 1/2 66 62 1/2 64

E31 623 633 1/2 65 1/2 64 63

In the S.. and C.. the first two suffices are abbreviated into a

1Jk1 13k].

Single one running from 1 to 6, and the last two are abbreviated in

the same way, according to the following scheme:

tensor notation ll 22 33 23, 32 31,13 12, 21

matrix notation 1 2 3 4 5 6

At the same time factors of 2 and 4 are introduced as follows:

S.. :8 when r and s are 1, 2, or3
1Jkl rs

28.. = S when either r or s are 4, 5, or 6

13k]. rs

4S.. 2 S when both r and S are 4, 5, or 6

IJkl rS

To transform the elastic constants upon coordinate transformation

it is necessary to go back to the tensor notation. The composite equations

(A-4) and (A-5) can be simplified considerably when the transformation is

a rotation of the axes about one of the axes (28).



APPENDIX B. Calculation of the resolved Shear stress for twin

growth in the point loading experiments

(a) Fundamental formulae

Three-dimensional stress distributions in hexagonal aeolotr0pic

materials were analyzed by Elliott (48), who obtained a general solution

of the elastic equations of equilibrium in terms of two harmonic

functions. He also Showed that in the case of axially symmetrical

stress system the solutions might be written in terms of a single

stress function. The following is a brief account of Elliott's solution.

If one chooses coordinate axes so that the axes x1 and x2

are parallel to the basal plane and the x3 axis normal to the basal

plane, the equation (A-6) or (A-7) describes precisely the stress-

Strain relationship.

Neglecting the body forces the equation of equilibrium are

 

 

80' ..

fil = 0 . (i,j = 1,2, or 3) (13-1)

j

Also, if 111, uz, and u3 are the diSplacements, then

1 ani Bu.

Eij = '2' (8x. + “85.1) When ”3

and (B'Z)

aui au.

Yij = Zeij = axj + 43x1 wheni/éj.

One can obtain the equations of equilibrium in terms of the displace-

ments by substituting (B-2) into (A-6) and into (B-l).
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Assume a solution such that

_ 34> _ 59¢) _ 34>

u1 _ 8x1 ’ 112— 8x2 ' 113— 3x3 ' (B-3)

where 4) = ¢(xl, x2, x3) is a strain potential function. Substituting

the relationships (B-3) into the equations of equilibrium expressed in

terms of the displacements, one will arrive at the characteristic

equation

c c u2+[c (2c +c )-c c ]v+C (3 =0 (13-4)
11 44 13 44 13 11 33 33 44

or

2 2 2 2 _

(513'311533)” ‘[ 2513(512'511)'511544] V + S12 ' S11 ‘ 0 ' (13-5)

which is a quadradic equation in V with roots U1 and V2. The

roots V1, V2 may be real or complex depending upon the elastic

constants; they are real, for example, in the case of magnesium but

are complex conjugates for zinc. The corresponding values of k's

 

are

U. C - C

ki = E ll+c 44 (121, 2) (B-6)

13 44

The possible functions Cb's are the solutions of

2 82
(V + 11.—)4). : 0 (i=1, 2) (B-7)

1 1 8 2 1
x
3

where

2 2

V? = 33—2 + 3? (B-8)

8x 3x
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also

u . ELI 5’2
1 8x1 8x1

34> 34>
_ l 2

u2 — 8xZ + 8x2 (B-9)

3 1 8x3 2 8x3

Since the material is transversely symmetric, for an axially

symmetric stress distribution the solutions are better expressed in

the cylindrical coordinate system (r, 9 , z). The governing equations

 

become

2 02
(V + v )4). = 0 (i=1,2) (B-10)

1 8 2 1

z

where

8

ur — E (¢1+¢2) (3‘11)

and also

8¢l 8492

W = kl 5-2— +k2 73-2—- . (B-lZ)

 

 

 

 

2 2
_ a 1 a 1 a

arr-[C11 2+C12(r'5?+—2’ ' 2)](¢1+¢2)
8r r 89

azdl azdz

+C33(1‘1 '2" ”‘2 2)
82 82

2 2
a 1 a 1 a

Gee-[C12 2 +C11(?a_£+—2' 2)] (¢1+¢2)
8r r 80

82¢, 82¢,

+C13(1‘1 2 “‘2 2)
82 82



 
I

.
l
a
.
“

..
.,
I
.

.
,

......t
.

l
a
w
s
u
i
t
s

.
5

.
7
2
4
1
)
1



 

 

azel azdz

0'zz:(k1 C33'V1C13) 2 + “‘2 C33‘ ”2C13) 2
82 82

1 0‘2 1 a

“re =(C’11'C12)[F 8r88 ‘ :2 8‘8] (¢1+¢2) (3'13)

1 824’1 1 824’2

“en: C44[(1+k1) F 3082 +(14’1‘2) F 8982]

1 82¢1 1 824)2

“rz z C44[ (1 + 1‘1) 'r' ‘at—az + (1 “(2) 'r" a'i- 82]

Because of the axial symmetry 61-0 : 0'ez = 0 .

The three-dimensional stress distributions at any point in the

medium can be determined when the prOper functions (PI and (b 2 for

a given problem are judiciously chosen and the arbitrary constants in

these functions are determined by satisfying the boundary conditions.

(b) The solutions

The specimens will be considered as a semi-infinite medium

acted upon by a concentrated force P in the -z direction. Shield (49)

introduced the following potential functions for such a problem:

 

 

 

4, F 10,, if;
1 811(1/1 - V2) Rl - Z1

(B-14)

2 87r(l/1 -U2) R2 -ZZ

(C +C )

where F = P 13 44 , R.2 = r2 + 2.2, 2. = 1171/2 2 (B-15)

C11C44 1 1 1 1

In applying these general solutions (B-l4) to the problem on

hand to calculate the stresses at z = 0 plane, an approximation is
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made that the depth of penetration of the indentor is neglected due to

its smallness in comparison with the distance from the origin to the

point of interest on the z = 0 surface. The following results are

obtained for z = 0:

F VII «JV kC -VC kC C

 
  

   

 

  

 
 

u ( { l 33 1 13_ 2 33V2 13} _l_

I

r:12.1rfi(v -V2) 1+kl 1+k: V1 112

(B-16)

_ Fa k1C33V1C13 k2C33"V2C13 1

w anv ) { V 7 v } F (13-17)
2 l 2

where

k k

1 2
(1 = - -— (B-18)

1+k1 ltkz

k C - V C k C - V C

B== 1 33 1 13 _ 2 33 2'13 (B-l9)

Vvl(l+kl) N/V2(l+k2)

and

2

2Cl3 8ur ur

“rt + “08 = (C11+C12 ' 'c"3'3) (_ar' 1‘) (3'20)

8ur ur

0-rr -009 : (C11 -C12)(8r - T) ' (B-Zl)

The roots of the characteristic equation (B-4) or (B-5) for zinc

crystals are found to be

Vi = 0.2819+0.5476j (i=1, 2) (B-ZZ)

using the elastic constants in Table 1. Let

“V “V k1C33'V1Ci3 k2C33V2C13}
( 2){

szllc44 1+k1 1+k2 v1 v2

P(C13 + C44)

A: 2178(1/1-1!

   

(B-23)
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then after prOper substitutions the numerical value of A is

 

  

 

A : Px 5. 84x10.14 (B-24)

Thus

u
r _ A

T - ' ‘2' (3'25)
r

8u

r _ 4 »
8r - 2 (13.-26)

r

Combining (B-20) and (B-21) and substituting (B-25) and (B-26) the

nonvanishing stress components at z = 0 are

_ A

on ‘ (C11'C12) r2 (13'7”?)

0' - (c -c ) 5- (B-28)
00 12 11 1.2

Hence

0' 0'
rr _ 00 _ 74 -3
P — - P - 7 x 10 (B-29)

r

0 0

Aplot of —£—1: and - vs. r is shown in Fig. 30. The Shear
P

stress, 7, on the { 1012} plane in the < 1011> directions is obtained

by a transformation

' _ -O'ij - aik ajl Ukl , (B 30)

where

aij = cos 4) sin <1)

-sin <1) cos <19 (B-31)

Thus 7' = 0' ' = sin (3) cos (b 0'

12 11
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(B-32)

It is of interest to compare the Eq. (B-29) with that calculated

by assuming the crystal to be isotr0pic. Using the solutions by Sneddon

et a1 (51), Young's and Shear moduli for zinc given in Table 1, and a

Poisson's ratio of 1/3, the results are

   x 10 . (B-33)

This is 50% higher than that given in Eq. (B-29) as far as the stresses

in the z = 0 plane are concerned. It seems apparent that crystal

anisotropy Should be taken into consideration for this kind of problems.



APPENDIX C. Calculation of the resolved shear stress for twin

growth by simple bending

The stress vs. strain diagram is Simplified to that Shown in

Fig. 31 (a) and iS assumed to be the same in tension and compression.

The flexure stress distribution Shown in Fig. 31 (b) can be applied

after a large amount of deformation well beyond the elastic limit has

taken place. In computing the stresses in terms of the applied moment

the stresses corresponding to the triangular areas abc and bde in

Fig. 31 (b) may be neglected without unduly impairing the accuracy.

They contribute little resistance to the applied bending moment M,

owing to their short moment arms. Hence the simplification of the

stress distribution to that Shown in Fig. 31 (c) is permissible.

The whole upper half of the beam is subjected to a uniform

compressive stress - 0' , while the lower half is under a uniform

tension + 0' . Therefore, an equilibrium equation can be obtained as

M=e(1-’Zl‘-) (211) =1zobhz. (C4)

The maximum flexure stress am is at the center of the beam Span

L where the bending moment is also the maximum; Mm = 12- PL.

Thus,

0' m = 2 3% . (cs-2)
bh

The distribution of the shear stress is simplified as shown in Fig. 31 (d).

The magnitude of the shear stress becomes

P

13"}; (C -3).
1 l
l

N
I
H
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The resolved shear stress for the twin Tt is obtained from the

transformation equations (B-30) and (B-31).

.
1 ll

. 2

51nd) cos¢0m+cos (#7

PL 3
h . (C -4)

0
‘

In the above development, the material is considered to be

“perfectly plastic” at the stage of twin formation. This assumption

is justified for the Simple bending tests, since the load vs. deformation

curves recorded such as shown in Fig. 17 can be closely approximated

to the elastic -perfectly plastic stress vs. strain diagram given in

Fig. 31 (a).



llll l lllll 1

(
c
m
)

-
2

I
O

-

lJll l  
l
l
l
l
l

l
l

I

1
0

I
1
0

F
i
g
u
r
e

3
0
.

R
a
d
i
a
l
a
n
d
c
i
r
c
u
m
f
e
r
e
n
t
i
a
l

s
t
r
e
s
s

v
s
.

r
a
d
i
a
l
d
i
s
t
a
n
c
e

(
0
0
0
1
)

s
u
r
f
a
c
e
b
y

p
o
i
n
t
l
o
a
d
i
n
g
.

1
1
1
1

l
1

l
l

1

(
0
“
-

0
'
2
)

"
'
5

(
g
/
c
m
z
)

l
o
/
c
m
z
)

1
°
1
2
“
C
H
)
'
3

-
5
.
8
3
5
5

F
x

1
0

(
 

d
y
n
e

109

l
l
l
l

l
1
A
l
l

l
0

_
2

l
0

(
c
m

)



1
3
1
3
4
1
1
1
.
.
.
)

-
i
i



 

 

 
  

 

 
 

 
  

 

 
 

 

  

  

 
 

 

 

 

‘
~

d
(
'
1

‘
8

E
E

+
"
r
:

;
1’

'
5
3
3

h
,  

 

 
 

 

 

 

 
 

 
 

 
 

 
 

110

 

 

 

 
 

 
 

/////A *

(
a
)

(
b
)

(
c
)

(
(
1
)

F
i
g
u
r
e

3
1
.

S
t
r
e
s
s

d
i
s
t
r
i
b
u
t
i
o
n
b
y
s
i
m
p
l
e
b
e
n
d
i
n
g
.



10.

ll.

12.

13.

14.

15.

16.

17.

BIBLIOGRAPHY

Barrett, C. 5., Structure of Metals, p. 376, McGraw Hill Inc.,
 

New York (1952).

Cahn, R. W., .Adv. in Phys., 3_, 363 (1954).

Jawson, M. A. and Dove, D. B., Acta Cryst., 13, 232 (1960).

Kiho, H., J. Phys. Soc. Japan, 2, 739 (1954).

Mathewson, C. H., Trans. A. I. M. E., 16, 554 (1928).

Barrett, C. 5., Cold Working of Metals, p. 78, A. S. M.,
 

Cleveland (1949).

Cottrell, A. H. , Dislocation and Plastic Flow in Crystals, p. 9,
 

Oxford Univ. Press, London (1953).

Cottrell, A. H. and Bilby, B. A., Phil. Mag., Ser. 7, 42, 573

(1951).

Thompson, N. and Millard, D. 1., Phil. Mag., set. 7, 3_3_, 422

(1952).

Sleeswyk, A. W. and Verbraak, C. A., Acta Met., 9, 917 (1961).

Sleeswyk, A. W., Acta Met., l_(_)_, 705 (1962).

Votava, E. and Sleeswyk, A. W., Acta Met., 1_g, 965 (1962).

Ogawa, K. and Maddin, R., Acta Met., _1_2_, 713 (1964).

Ishii, K. and Kiho, H., J. Phys. Soc. Japan, 1__8_, 1122 (1963).

Ishii, K. and Kiho, H., J. Phys. Soc. Japan, Lg, 1133 (1963).

Fourie, J. T., Weinberg, F., and Boswell, F. W. C., Acta Met.

_8_, 851 (1960).

Blewitt, T. H., Coltman, R. R., and Redman, J. K., J. Appl.

Phys., g, 651 (1957).

111



 



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

112

Suzuki, H. and Barrett, C. S., Acta Met., 6, 156 (1958).

Venables, J. A., Phil. Mag., 6, 379 (1961).

Cohen, J. B. and Weertman, J., Acta Met., 1_1_, 997 (1963).

Venables, J. A., J. Phys. Chem. Solids, 22, 685 (1964).

Venables, J. A., J. Phys. Chem. Solids, 2_5_, 693 (1964).

Orowan, E., Dislocations in Metals, A. I. M. E., New York,
 

p. 116 (1954).

Bell, R. L. and Cahn, R. W., Proc. Roy. Soc. (London), A_2_3_9,

494 (1957).

Price, P. B., Proc. Roy. Soc. (London), A269, 251 (1961).

Taylor, A. and Kagle, B. J., Crystallographic Data on Metal and
 

AHOJ' Structures, p. 263, Dover, New York (1962).
 

Huntington, H. B., Solid State Physics, p. 213, Academic Press
 

Inc. , New York (1958).

Hearmon, R. F. S. , An Introduction to Applied Anisotrggic
 

Elasticity, p. 44, Oxford Univ. Press, London (1961).
 

Burgers, J. M., Proc. Acad. Sci. Amst., 4_2, 378 (1939).

Eshelby, J. D., Phil. Mag., :10, 903 (1949).

Leibfreid, G., 2. fiir Physik, 1_3__5_, 23 (1953).

Eshelby, J. D., Read, W. T., and Shockley, W., Acta Met.,

1, 251 (1953).

Seeger, A. and Schgck, G., Acta Met., _1_, 519 (1953).

Foreman, A. J. E., Acta Met., 3_, 322 (1955).

Chou, Y. T. and Eshelby, J. D., J. Mech. Phys. Solids, U.»

27 (1962).

Chou, Y. T., Acta Met., l_g, 739 (1962).



37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

113

Chou, Y. T., J. Appl. Phys., 33, 2747 (1962).

Cottrell, A. H., Dislocation and Plastic Flow in Crystals, p. 46,

Oxford Univ. Press, London (1953).

Frank, F. C., Phil. Mag., _4_2_, 809 (1951).

Frank, E. C. and Nicholas, J. F., Phil. Mag., fl, 1213 (1953).

Price, P. B. , Electron Microsc0py and Strerggth of Crystals,

p. 41, Interscience Publ., New York (1963).

Hohn, F. E., Elementary Matrix Algebra, p. 179, Macmillan Co.,
 

New York (1958).

Rosenbaum, H. S., Deformation Twinning, p. 66, A. I. M. E. Met.
 

Soc. Conf. , Gordon and Breach, New York (1964).

Westlake, D. G., Deformation Twinning, p. 34, A. I. M. E. Met.
 

Soc. Conf., Gordon and Breach, New York (1964).

Gilman, J. J., J. of Metals, 8, 1326 (1956).

Noggle, T. S., Rev. Sci. Instr., a, 184 (1953).

Brandt, R. C., Adams, K. H., and Vreeland Jr., T., Cal. I. T.

Res. Report, December (1961).

Elliott, H. A., Proc. Cambridge Phil. Soc., 2:}, 522 (1948).

Shield, R. T., Proc. Cambridge Phil. Soc., 41, 401 (1951).

Nye, J. F., Physical PrOperties of ngstals, p. 134, Oxford
 

Press, London (1960).

Dean, W. R., Parson, H. W., and Sneddon, I. N., Proc.

Cambridge Phil. Soc., 33, 5 (1943).



((111)
6

V
I

ll]

 


