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ABSTRACT

GROWTH OF MECHANICAL TWINS
IN ZINC SINGLE CRYSTALS

by Man Hyong Yoo

The growth process of the {1012} <10I1> type twin in
hexagonal close-packed zinc crystals is investigated from the geometric
and the energetic points of view. A mechanism for the twin growth by
the incorporation of slip dislocations at the coherent twin boundary is
proposed. The geometric aspect of the incorporation process has been
analyzed by using matrix algebra, whereas the energetic factors have
been calculated by applying anisotropic elasticity theory of dislocations.
Experimental observations on the process of twin growth do not in any
way contradict the proposed mechanism.

Based on the anisotropic elasticity calculations, the interaction
of a pair of twin dislocations in the edge orientation has been derived
from the stress field of such a twin dislocation and found to be in
general noncentrosymmetrical. Three possible shapes of advancing
twin interfaces can be predicted in accordance with the stable config-
urations of a group of twin dislocations; of these three two have been
observed. The energy associated with the coherent twin boundary is
estimated tobe 1.4+ 0.4 ergs/cmz. The results of calculations of
the elastic energies of the various slip dislocations are applied to a

discussion of the feasibility of certain dislocation dissociation processes.
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I. INTRODUCTION

Mechanical twinning is one of the two fundamental processes
by which crystalline solids can be plastically deformed. The other
deformation process, namely slip, has been extensively studied both
theoretically and experimentally, and consequently it is in general
well understood. On the other hand, except for the crystallography
of the twinned structures, the process of mechanical twinning is not
clearly understood as far as the nucleation and the growth of twins
are concerned. In order to understand a mechanical twinning process
three aspects of the twinning process are to be investigated: 1) the
criteria that a particular twin system should be operative and its
crystallography, 2) the nucleation of twins, and 3) the growth of
twins. As a part of a research project for the investigation of the
mechanical twinning process in zinc crystals the present work is
devoted to a study of the growth aspect of the twins.

According to Barrett (1), crystals are said to be twinned if
they are composed of portions that are joined together with ""a definite
mutual orientation.' A more general and complete definition was
made by Cahn (2):

"A twin may be defined as a polycrystalline
edifice, built up of two or more homogeneous
portions of the same crystal species in
juxtaposition, and oriented with respect to
each other to 'well defined laws', "

The orientation relationship between two neighboring portions of a

twin is such that they can be brought into one congruent orientation

by a reflection with respect to a lattice plane of low indices, or by
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a rotation through either T-3r—, 1—;—, %n , or w about a lattice row of low
indices. Twins, according to their origins, are classified by Cahn (2)
as (i) growth twins, (ii) thermal and transformation twins, and

(iii) mechanical twins.

Zinc crystals are known to twin readily when they are oriented
unfavorably for the basal slip system to be operative unde.r particular
loading conditions. The {1012} <1011> type twin in zinc, which has
been known as the sole active twin system, is associated with a twin
shear y = 0.139. This low Yy value satisfies one of the criteria
which govern the selection of the possible modes of twinning in a
material that the smaller the shear of a possible twin mode, the
greater its chance of being operative (3). According to the investigation
by Kiho (4), it is the smallest twin shear of all possible twin systems
in zinc. The next smallest twin shear y = 0.467 for the {1011}
<1012> type twin is more than three times larger than the above
value.

Another criterion for the choice of a favorable twin system is
that the twinning process should involve the least amount of reshuffling
of the atoms in the crystal. It is known that only a fraction of the total
number of atoms in a zinc crystal can be brought to the twinned positions
by a homogeneous shear (5), (6), and (3). A reshuffling of the rest of
the atoms is necessary. The reshuffling mechanism is a controversial
subject. It is not included in the present work, not for the reason that
it is unimportant,but rather because there is yet no known experimental
method by which a certain reshuffling mechanism can be verified. Thus,

with the crystallography of the twin in zinc crystals known,mechanical



twinning in this material is treated in the usual way as a problem of
the nucleation and the growth of the twin.

For the homogeneous nucleation of twins one may use an
expression similar to that for the slip process (7) to estimate the
critical resolved shear stress (C.R.S.S.) for twinning = K, y/2m,
where Kt is the transformed shear modulus on the twin plane in the
twinning direction., For the {1012} <10I1> type twins in zinc K,
has been calculated to be 4. 08 x 1011 dynes/cmz. Substituting this
value and y = 0.139, a C.R.S.S. for twinning Z 90 kg/mm2 is
obtained. The fact that twins are formed in zinc under widely varying
resolved shear stresses from about 80 to 4, 400 g/mm2 suggests that
either a local stress concentration or some type of dislocation
mechanism, or both are necessary for the twinning process.

Cottrell and Bilby (8) proposed a dislocation pole mechanism
for the nucleation and growth of twins in the body-centered cubic
structure. The essence of the pole mechanism is that a partial twin
dislocation rotates about a sessile pole dislocation to form a helix
which expands under stress. The formation of a twin requires only
one twin dislocation resulted from a dislocation dissociation process.
If mechanical twinning in a given crystal is to be described by this
mechanism, the following conditions must be satisfied:

(i) The sweeping dislocation must produce the right

shear displacement to generate the transformed
structure on the sweeping plane.

(ii) The Burgers vector of the pole dislocation must

have a component perpendicular to the sweeping
plane that is equal to the spacing of these planes.
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(iii) The pole dislocation must be anchored strongly
enough to prevent it from moving under the stress
causing the sweeping dislocation to move.
(iv) The sweeping and pole dislocations, together

perhaps with other associated dislocation lines,

must be concurrent at a node which acts as an

anchor point and around it the sweeping dislocation

must be free to move 1n a sweeping plane which is

intersected by the pole.
The formation of the {112} <111> type twin in the body-centered
cubic structure can be accounted for with the pole mechanism where
these conditions are found to be fully satisfied. In the case of the
{111}<112> type twin in the face-centered cubic structure, however,
the second part of the last condition (iv) is not satisfied; consequently
only monolayer twins could be formed. This conclusion was regarded
as especially satisfactory because at the time the pole mechanism was
advanced no one had demonstrated unambiguously that mechanical twins
could also be formed in face-centered cubic crystals. In hexagonal
close-packed cadmium, Thompson and Millard (9) considered a screw
dislocation along the c axis, a '"'major dislocation', which was inter-
sected at some point by the {1012} composition plane of the twin.
They proposed that a dissociation of the '""major dislocation' would
initiate a pole mechanism similar to that proposed by Cottrell and
Bilby (8). They (9) contended that all four of the necessary conditions
for the pole mechanism were satisfied by the mechanism they introduced.
So far there has been no experimental evidence to substantiate Thompson
and Millard's theory.

More contributions have been made to the understanding of the

twinning process in body-centered cubic crystals in recent years.

Sleeswyk and Verbraak (10) studied the incorporation of slip dislocations
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at the coherent twin boundary and arrived at a mechanism to account
for the twin growth. Sleeswyk (11) observed also the so-called ""emissary
dislocations'' emanating from the incoherent twin tips. According to
him, an "emissary dislocation'' is a dissociation product of the twin
dislocation at the incoherent twin tip accompanying a '"complementary
twin dislocation''. Votava and Sleeswyk (12) showed by a study with
transmission electron microscopy of a Mo-35 at. % Re alloy that there
were two types of emissary dislocation arrays. Fragmentation of the
twin lamellae often resulted due to the incorporation of certain
slip dislocations. Ogawa and Maddin (13) also studied the twinning in
Mo-Re alloys with transmission electron microscopy and proposed a
modified pole mechanism that three-layer twins, also called '"emissary
sets', could be generated from slip dislocations and grow by means of
a ""'super pole mechanism''.

In ﬁ-fin crystals Ishii and Kiho studied the incorporation of
slip dislocations in mechanical twins (14) and the resistive stress
required for the thickening of the twins (15). They considered all the
slip dislocations as the pure screw type and arrived at a model similar
to that proposed by Thompson and Millard. Fourie et al. (16) examined
the nucleation and growth of twins in tin by transmission electron
microscopy. They showed consistent evidence to support the assumption
that an advancing non-coherent twin interface consists of an array of
twin dislocations. The mechanism by which a twin might widen as a
result of the production of additional twin dislocations was not disclosed

by their observation.






The fact that mechanical twinning does occur in face-centered
cubic metals was indisputably established first by Blewitt et al. (17),
who found that Cu single crystals of certain orientations twinned under
high stresses at 77°K and 4. 2°K. Suzuki and Barrett (18) found in
tensile tests at low temperatures that mechanical twinning occurred in
Ag-Au alloy single crystals of suitable orientation throughout the entire
range of alloy composition. In attempting to rationalize these experi-
mental results, Venables (19) arrived at a dislocation mechanism by
extending the pole mechanism and allowing the associated dislocation
to slip ""prismatically' from one plane to the next after each revolution
of the twin dislocation. Cohen and Weertman (20) suggested a dislocation
dissociation mechanism for twinning in the face-centered cubic metals that
twin dislocations are produced by the dissociation of slip dislocations which
are in a pile-up state of the Lomer -Cottrell lock and move under the applied
stress to form a twin. Venables studied mechanical twinning in single
crystals of face-centered cubic Cu alloys by transmission electron micro-
scopy (21) and presented in a subsequent article (22) a calculation of the
stress required for twin nucleation in terms of stacking fault energy and
an analysis of the dynamics of twin propagation.

Another fundamental concept on twinning besides the dislocation
mechanism is the homogeneous twin nucleation suggested by Orowan (23).'
He introduced a model thaf a lenticular twin lamella is bounded by twin
dislocation loops. According to Orowan's calculation, homogeneous
formation of mechanical twins can take place with the aid of a local
stress concentration in the absence of any thermal activation. The work
of Bell and Cahn (24) shows that twinning in hexagonal close-packed zinc

occurred after both the second-order pyramidal and the basal slips had
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taken place. They concluded that the twin nucleus was created locally

as an entity by a homogeneous shear of the lattice at the site of sufficient
stress concentration produced by the pile-up of slip dislocations against
a suitable obstacle. Price (25) studied twinning in dislocation-free zinc
platelets by deforming the samples inside an electron microscope. He
concluded that twins were nucleated at regions where there was a stress
concentration in the absence of any dislocations, and that twins grew by
the repeated nucleation at the platelet edges and movements of twin
dislocations. He also considered some possible dislocation reactions

at the twin boundary.

From the above review it is seen that twinning and slip are
interdependent in the course of plastic deformation. The degree of
mutual influence depends to a marked degree upon the orientation of
the crystal and the loading conditions. Certain configuration of the
slip dislocations may result in a state of dislocation pile-up. The
stress concentration due to the pile-up may in turn enhance the process
of twin nucleation as well as twin growth. On the other hand, twins
dispersed in the crystal can act as effective barriers against moving
slip dislocations. The slip dislocations which move up against the
coherent twin boundary will have to either pile up against the latter or
be incorporated into the twin.

In the present work an attempt will be made to analyze the growth
of the {1012} <1011> type twins in zinc crystals as a result of the
incorporation of slip dislocations at the coherent twin boundary by
extending the method advanced by Sleeswyk and Verbraak (10). Itis

assumed that such a twin bounded by coherent twin boundaries is present



C1
C]

Le

01

Rt

th

he

W



in the crystal, and that appreciable deformation by slip has taken place
prior to the twin formation. Geometric and energetic factors will be
considered in the analysis.

Zinc has a hexagonal close-packed structure with the lattice
parameters a = 2.6649 A and c - 4. 9468 2 (c/a =1.856) at room
temperature (26). The five independent elastic constants of zinc single
crystals (27), and the elastic moduli and Lame's constants of poly-
crystalline zinc (28) are listed in Table 1. Since the c axis of the
hexagonal lattice is a unique six-fold symmetry axis, the elastic
properties of zinc single crystal are axially symmetric about the c axis
or transversely isotropic. Most of the available solutions of the stress
fields around dislocations, their elastic energies, and the discussions
of the interaction between dislocations are based on isotropic elasticity
theory, which is oftentimes inadequate even for cubic crystals. For the
hexagonal zinc crystal an application of the anisotropic elasticity theory
is deemed necessary.

The following is an outline of the scheme used in the present
work:

1. Calculate the elastic energies of the dislocations of
the various slip systems and the twin system.

2. Calculate the stress field around a twin dislocation
and investigate the interaction between twin dislocations.

3. Choose proper coordinate systems for both the matrix
and the twin.

4. Derive a matrix equation for expressing a vector in
the matrix in terms of the coordinate system chosen
for the twin.



10.

11.

Derive another matrix equation for expressing the

same vector with the coordinate system of the twin
after applying to this vector a homogeneous shear

corresponding to the twinning action.

Find the difference of the two matrix equations thus
derived, a matrix equation for the homogeneous twin
shear.

Apply the equations on various slip vectors of the
active slip systems at room temperature to find
the corresponding slip vectors in the twin and the
associated twinning actions.

Examine all the possible equations from energetic
and geometric points of view.

Find the feasible mechanism or mechanisms for the
twin growth by the incorporation of slip dislocations.

Prepare zinc single crystals of various orientations
and design specific ways of loading to test the
validity of the mechanisms.

Interpret and discuss the experimental results in
the light of the theory thus developed.
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Table 1. Elastic Constants of Zinc Crystal

Elastic compliance constants (10-12 cmz/dyne)
511 512 513 533 Sga See 7 205;-51) Ref.
0.838 0.053 -0.731 2,838 2.610 1.570 27
———eee e —_—— L ——

Elastic stiffness constants (1011 dynes/cmz)

C C C C C C

11 12 13 33 44 66 = 1/2(C11-C,) Ref.

16.10 3.35% 5.01 6.10 3.83 6.38 217

Elastic constants (observed) of polycrystalline

zinc (10ll dynes/cmz)

E G \ M Ref.
9.22 3.72 6.92 3.72 28
%
The correct value of C12 from the inversion of Sij's is 3.35

and not 3,42 as given in the reference.
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II. THEORY
1. Application of anisotropic elasticity theory to dislocations in
zinc

The anisotropic elasticity theory of dislocations was developed
by Burgers (29), Eshelby (30), Leibfreid (31), Eshelby, Read, and
Shockley (32), and Seeger and Schock (33). Eshelby et al,derived the
general elastic solution for a straight dislocation of any orientation
in an anisotropic crystal. Although anisotropic elasticity theory has
been applied to a few crystal structures, only its application to
hexagonal crystals will be discussed here.

Foreman (34) calculated the elastic energy of a straight
dislocation with a Burgers vector in the close-packed direction. Chou
and Eshelby (35) derived an expression for the energy of a circular
dislocation loop and calculated the line tension of a dislocation. The
width of an extended dislocation (36) and the interaction Between

parallel dislocations (37) have been investigated by Chou.

1.1. Elastic energies of dislocations
Foreman (34) has shown that the elastic energy per unit length
of a straight dislocation line of either edge, mixed, or screw character

in an anisotropic crystal is given by

E = (1-1)

where R is the radius of the dislocation strain field, T, is the radius

of the dislocation core, b is the magnitude of the Burgers vector, and

11
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K is a function of the elastic constants of the crystal and orientation

of both the Burgers vector and the dislocation with respect to the crystal
axes. Fig. 1 shows the vari'ous slip systems and twin system considered.
The transformation of the elastic constants obeys the law for the trans-

formation of a fourth-rank tensor. (See Appendix A)

1
Cijkl = a ajn CI alp Cmnop (1-2)

!
ijkl1 -~ 2%im %jn ®ko ®1p Smnop

(1-3)

The complete expansion for any stiffness or compliance can be conveniently
obtained by using the ''table of composite equation'' for transforming stiff-
nesses and compliances (28).

Let it be defined that the z axis of a right-handed Cartesian
coordinate system is parallel to the dislocation line under consideration,
and the y axis is perpendicular to the slip plane. The direction cosines
ai.'s for the coordinate transformation, where m = cos ® and n = sin 0,
and the transformed elastic constants are tabulated in Table 2. As an
example the coordinate transformation for the {1012} <1011> type
twin considered is illustrated in Fig. 2. The S;‘j's relate the strain

and the stress of the plane strain elastic state around an edge dislocation

according to the following equation (30):

3 x* £
€ xx S11 SIZ Slé T xx
_ %* % %k
e | = |S12 S22 Sy © g (1 -4)
* * *
exy S16  S26 See 7 xy

where



wh
St
ar
in
to

50,

<l



13

ij Si3 S'14 SiS
S35 S33 S3q4 S35
’ ’ ’ 4
S45  S43 S4a Sys
. Ss;  Ss3 Ssa Sss
57 - : : ' (i, j=1, 2, or 6)
S33 S3q4 S35
/ /7 /
Sg3 Sga 5S4
/ ’ /
Ss3 Ssq4 Sss

1.1.1. Calculation of K from analytic solution

(1-5)

In general it is necessary to find the six complex parameters

which are the roots of a sextic equation in order to obtain K for a

straight dislocation in an anisotropic crystal (32).

are special cases for which analytic solutions exist.

in the case of hexagonal crystals if the dislocation line lies parallel

However, there

For example,

to a symmetry axis and perpendicular to a symmetry plane, then the

solution K for an edge dislocation is given by (34)

’

= ) 1/2

C. +C ) Ce6 (C11 - C12)
11 12 1 = 7 7 ’
Cp2 (Cpy +Cyp +2C¢)

K =

where Ell = (C'“C'ZZ)I/Z. For a screw dislocation

Cl

) 2 1/2
K = (C44Cg5 - Cys)

1
44
For the edge dislocations of the slip systems, (i) { 0001}

<1120>, (ii) {1100} <1120> , and (v) { hk.0} <0001> , the

(1-6)

(1-7)
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conditions stated above are satisfied. Therefore, K values for these
systems are obtained from Eq. (1 -6) and are tabulated in Table 2. The
same values may be obtained using the equations developed by Eshelby
(30). Chou (37) reported the same K values for these systems.

For screw dislocations Eq. (1-7) can be applied only to the slip
systems, (i) { 0001} <1120>, (ii) {1100} <11Z0>, (iii) {1101}
<1120> , and (v) { hk.0} <0001>. A value of K = 4,94 x 101!
dynes/cm2 is obtained for the systems (i), (ii), and (iii), and

11 dynes/cm'2 for the system (v). Since there is no

K=3.83x10
unique slip plane associated with a screw dislocation, K is an

invariant for a rotation of the axes about the dislocation line (z axis).

1.1.2. Calculation of K from numerical solution

For the systems that do not satisfy the orientation conditions
mentioned in Sec. 1.1.1. the value K can only be solved numerically.
Numerical solutions are found for the edge dislocation where only the
second condition is satisfied, that is, the dislocation line is perpen-
dicular to a symmetry plane.

Under such a condition the problem is reduced to a two
dimensional problem. The results obtained by Eshelby (30) can be

directly applied. The expression for K in this case is
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MNir Mop o SOy =Ry

)‘li )‘21 ()\lr-)\Zr)

Di, Do (Dy; - Dyy)
K =

M Mar Oy =Ry

Cii Cu (Cyp = Cop)

Dir Dy (Dy; = Dyy)

where the subscripts r, i denote the real and imaginary parts of a
complex quantity respectively. The complex constants )\l and A 2

relate the two complex variables z s where

variables x, y by

Z =
n

x + 1)\ny

n=1, 2,

(1-8)

with two real

(1-9)

where )\n is given implicitly in terms of the elastic constants by the

following relations:

l-Yn-16n

n 1+Yn+15n

a -1
Yn 7 1 .2.1/2
a_ +1+2(a_ ==k
n n 4 n
5 = n
Dy 4142 -Lidl/e
n n n

where

(1-10)

(1-11)

(1-12)

(1-13)
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Jy
a0, = —% (1-14)
S22
zs;_‘6
Ky +k, = - —f (1-15)
S22
zsf6
k1a2+k2al = - — (1-16)
S,2

1.2 e
where (o.n -an) and a ~are real and positive; kn, Y, and 6n

are real. Cn and Dn are given by

I ) x %
C. = S| Mo - S;,+ik S/ (1-17)
I U * o X
D_ = r;-(slzxn - S5, + ik _S5.) . (1-18)

The orientation of the edge dislocations of the slip system (iv)
{1122} <1123> and the twin systems (x) {1012} <1011> is such that
the dislocation lines are perpendicular to a symmetry plane. But they
are not parallel to a symmetry axis, hence 81'6 £ 0, Séé £ 0 and
S;g A0, Syt 0.

The procedure of a numerical calculation is explained for the
twin system, First S:‘j's are calculated from the transformed elastic
constants S;j's with an aid of Schweins expansion (30). Then on
substituting S:; into the Eqs. (1-13), (1-14), (1-15), and (1-16) four
simultaneous algebraic equations are obtained. These can be reduced
to an equation of sixth degree in a . The real and positive roots are
found to be a, = 3.18, a, = 0.35; and correspondingly k1 = 0. 84,

k2 = 0,37, Substituting these roots into Eqgs. (1-12), (1-11), (1-10),



17

(1-17), and (1 -18) successively, one obtains

61 = -0.11 62 = -0.15
Y, = 0.29 v, = -0.26
)\1 = 0.60 + 0.13i )\2 = 1.60 + 0.53i
) = 0.72 - 0.27i 5 = 3.19 + 0.70i
Dl = -1.77 - 0.30i D2 = -0.96 - 0. 56i

12

where Cn and Dn are in units of 10~ cmz/dyne. From Eq. (1-8)

one finds K = 4.08 x 10*! dynes/ cm? for the twin system. Similarly

11 dynes/cmz is found for the {1122}<1123> slip system.

K=3.90x10
For the slip systems (iii) { 1101} <1120>, (vii) { 1122} < 2023>,
(ix) {1100} <1123>, and (xi) { 10T1} <1123> neither one of the
orientation conditions is satisfied by such edge dislocation lines.
Numerical calculation for these four systems becomes more complicated
involving three complex variables with six complex parameters. K
values for the three slip systems (iii), (vii), and (ix) are calculated by
assuming that these dislocation lines were perpendicular to the
corresponding symmetry planes of the crystal as a first approximation.
The actual angles that these dislocation lines deviate from the corre-
sponding normals to the symmetry planes are respectively 25, lo,
15.3°%, and 28.3° It may be noted that this approximation is probably
poor for the slip systems (iii) and (ix) but may be close for the slip

system (vii).

1.1.3. Elastic energy of edge dislocations
Certain properties of edge dislocation in an anisotropic crystal

can be calculated quantitatively once the values of K for the different
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slip systems are known. The elastic energy of an edge dislocation is
obtained from Eq. (1-1). The numerical value of E depends upon the
choice of R and r,. Except for a factor of In (R/ ro) the values of
E in ergs per cm of the edge dislocation line are listed in column (10)
of Table 3. These values can be considered as the relative energies
of the various edge dislocations and can be compared with one another
directly. In the last five rows of Table 3 data pertaining to certain
partial dislocations are listed.

Eshelby (30) defined a quantity { =1/2 K S(',é d as a measure
of the width of a dislocation. He also suggested that {/b would serve
as a measure of the '"'ease of gliding.'" These quantities are also

calculated and listed in Table 3.

1.2. Interaction of two parallel twin dislocations

Chou (37) derived the equations for the stress field of an edge
dislocation and a screw dislocation with b = -;—- [1120] and an edge
dislocation with b = [ 0001] . As mentioned before, analytic solutions
are available for these dislocations. He also analyzed the forces
between two parallel dislocations and stress fields of various types
of infinite dislocation walls,

In this section the stress field of a twin dislocation in the edge
orientation will be calculated and the results will be applied to finding

the interaction forces between two parallel twin dislocations.

1.2.1. Stress field of a twin dislocation

As discussed in the previous section, the solution by Eshebly (30)
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directly applies to an edge type twin dislocation. Calculated K for
the twin system {1012} <1011> is K, = 4.08 x 10! dynes/cm®
9

and the magnitude of Burgers vector is bt =0.088 a=2.35x10 " cm.

The expressions for the stress components are

¢ = - =T A% f(z)+c.c. (1-19)
XX n=1, 2 n n n

o = 2 f''" (z_) + c.c. (1-20)
Yy n=1, 2 n n

o = 44 = A f'"(z)+c.c. (1-21)*
Xy n=l,2 ©n n n

where c.c. represents the complex conjugate of the quantity preceding
it and fn (zn) is a component of the stress function. For an edge

dislocation

1
1 — - -
fn (z.) = > A 1n z. (1-22)

where An is a complex constant. In order for the total force and the

couple on any Burgers circuit to vanish it is necessary that

Ay = - AL (1-23)

N, A, +N,_ A, -(\

1r ""1r 2r " 2r 0. (1-24)

1i - Aoy A

* Eshelby et al,(32) made some corrections of the earlier paper (30).

The author finds some misprints in the reference (30) namely that Eq. (1 -21)%
should have )\n following the summation sign and the sign of the last

term in Eq. (1 -26)* should be + instead of - .
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If the Burgers vector is (bx, 0), it follows

b
- X -
Crifir T C2i 22 T C1p -C2) A1y 7 2n (1-25)
*
Dy Ajp ¥ D Ay (D - Dp) Ay = 0 (1-26)
Again the subscripts r, i denote the real and imaginary parts of a
quantity respectively.
Substituting the values of )\n’ Cn’ and Dn from Sec. 1.1.2.
into Eq's. (1-24), (1-25), and (1-26), one obtains
Al = - F (1.25 + 3, 53i) (1-27)
AZ = F (1.35 + 3.53i1), (1-28)
where F = bt/ZTT x lO11 dynes/cm. From Eq. (1-22)
1 1
1" - - — -
f1(z) = 3 A —— . (1-29)

n

Finally, the expressions for the stress components are obtained by
substituting Eq's. (1-27), (1-28), and (1-29) into Eq's. (1-19), (1-20),

and (1 -21) and rearranging

_ Kb, 0.03x - 0,21y 0.72x - 4. 44y
“xx = Zm 2 T - 2 7| (1-30)
(x - 0:13y)% + 0.36y°  (x - 0.53y)% + 2. 56y
_ Kby 0.31x + 0. 48y 0.33x - 1.2y
vy T 7w 2 7 - 2 7 | (1-31)
vy (x - 0.13y)° + 0.36y (x - 0.53y)" + 2. 56y
- _
_ Kby 0.56x - 0.12y 1.56x - 0.94y
“xy = 2w z 7 - z 7| (1-32)
y (x - 0.13y)" + 0.36y (x - 0.53y)° + 2. 56y
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1.2.2. Interaction between two parallel twin dislocations
The force of one dislocation acting on another can be defined as

the gradient of U., the interaction energy between them. Following

I H
Cottrell (38) the ith component of the force F exerted on one dislocation

by the other is

F, =-3— . (1-33)

The signs of Eq's. (1-30), (1-31), (1-32), and (1-33) have been
chosen to be consistent with Frank's convention (39). The components
of the force F per unit length exerted on a twin dislocation at (x, y)

by another at the origin are (38)

Fx = o-xy bt (1-34)

Foo= 0 by (1-35)

If the twin dislocation at (x, y) lies on the adjacent plane, i.e. y =d

where d = 0.633 a is the spacing between neighboring twin planes, then

K. bZ
P d) - bt 0.56x - 0.12d __ ___1.56x - 0.94d
x 2™ | (% - 0.13d)% + 0.36d°  (x - 0.53d)% + 2. 564d°
-
(1-36)
kb2 |
_ Kby 0.03x - 0.21d 0.72x - 4. 44d
Fobxd) = —- 3 > - 3 3
y (x - 0.13d)“ + 0.36d (x - 0.53d)° + 2.56d

(1-37)

These results are plotted in Fig.3 and Fig. 4. Unlike the isotropic
elasticity theory of dislocation Fx becomes noncentrosymmetrical in

this case.
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1.3, Application
1.3.1. Dislocation reactions

Frank and Nicholas (40) discussed the relative stability of
perfect and imperfect dislocations in hexagonal close-packed crystals
using the simplified criterion that the line energy of a dislocation is
proportional to the square of the absolute value of its Burgers vector.
This method would not yield a definite solution of the feasibility of a
dislocation dissociation process when the Burgers vectors of the
three dislocations involved are the three sides of a right triangle
and the Burgers vector of the dissociating dislocation is the hypotenuse.
The application of the anisotropic elastic energies of the various
components will yield a definite answer to this problem.

Following Eshelby (30), if D(EL) represents a dislocation with
a Burgers vector T;, a dislocation dissociation (or association) process

may be written as
A Y -
D(bl) + D(bZ) ‘—_—‘—*D(b?’) (1-38)

-3 —3 - )
where b1 + b2 = b3. According to Eq. (1-1) the energy of dissociation
may be written as

1 2 2
AE = = (K;by +K,b;

2 R
1P1 - K3b3) In (i) . (1-39)

The reaction will take place in the direction of dissociation or association
according to whether AE ' is negative or positive.

Thus the decrease in elastic energy associated with the dissociations
of the total dislocations of the basal and the second-order pyramidal slips

into extended dislocations are



for

or

and

for

or

where the vectors <7a>
dislocations and <p> and <p+1/27T> are those of the partial

dislocations.
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AE = -1.031n (R/ro) x107° ergs/cm
1 1 1p oo
5[1120]-—9 3-[1010] + 5[0110]

- - -

-a3———)-p3 +P2 ’

AE = -4.211n (R/ro)xlo-5 ergs/cm
1 sz 1 == 1 ==
§[1123]——) 3[2023] + 3[0223]

Y Y 1] = Y 1=
-(c+a3)——)-(ﬁ3+zc)+(p2-zc),

which is similar to that given by Price (41).

(1 -40)

(1-41)

and T are the Burgers vectors of the total

Fig. 5 gives a representation of these Burgers vectors,

The following two dislocation reactions, which are energetically

reversible from the isotropic elasticity point of view, become unidirec-

tional toward dissociation from the anisotropic elasticity point of view:

for

or

and

AE= -0.251n (R/r ) x 107° ergs/cm

L1123 —y S{1120] +[ 0001]

=
C,

O N { =
-(C+a3)——)-a3-

AE = -0.151n (R/r ) x 10°° ergs/cm

(1-42)
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for

rl2023]— ;—[IO'IO] + [ 0001]
or (1-43)

..
Cc

3] Lo

- (py + T— - P, -
Perhaps it is of interest to note that, judging from Eshelby's
criterion for the ease of gliding ¢{/b as listed in Table 3 for the
various slip processes, the order in increasing difficulty is; basal
slip, second-order pyramidal slip, first-order pyramidal slip,
prismatic slip, prismatic slip with D = 1/6 <1123> , and normal

slip, Such an order seems to agree with existing observations.

1.3.2. Incoherent twin boundaries

The interaction forces between two parallel twin dislocations
of edge orientation have been calculated in Sec. 1. 2. 2. and plotted in
Fig. 3 and Fig. 4. The Fx component of the interaction force is of
significance since it acts in the direction of the twin shear. As
illustrated in Fig. 3, F_ =0 when x/d =1.31, -0.07, or - 0.56.
These are the neutral positions of the twin dislocation in the absence
of applied stresses.

There exist two maxima of the interaction force per unit length

of dislocation line:

-+

Ktb X

Fl = 0.204 Smd at g - - 2,45 (1-44)
Ktbf *1

FZ = 0.360 —zﬁ at T = 0.528 . (1 -45)
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The critical shear stress T, to overcome the first maximum repulsive

1
force F1 can be found by equating the driving force Fd =T bt and

Flz

7.z 0.20 =t y = 19 kg/mm? , (1 -46)

where y = bt/d = 0.139 is the shear strain associated with the {1012}
<1011> type twin in zinc. Similarly for the second maximum the
critical shear stress is

Kt 2

= 0.36 v = 33 kg/mm (1 -47)

T2
The shape of the advancing twin interfaces depends mainly upon
the applied shear stress and the interaction between the twin dislocations.
It can be discussed with the aid of the schematic diagrams in Fig. 6.
Assume that n twin dislocations with equal Burgers vector are situated
on successive atomic planes and form a coherent group. If the leading

dislocation is halted by an obstacle the force acting on the immediately

following dislocation will be

Fd = (n-l)'rabt (1-48)

where T is the applied resolved shear stress. If Fd is smaller than

F, the configuration shown in Fig. 6(a) is stable. 91 must be smaller

than arctan (d/xl) or 22°. If Fd is greater than Fl but smaller than
F2 the configuration shown in Fig. 6(b) is a possible one. In this case
< 118° If the mth

arctan (1/0.07) < 6_ < arctan (-d/xz) or 86°< 6

2 2
dislocation is halted by an obstacle and the force acting on the (m + 1)th
dislocation is momentarily greater than FZ’ the configuration shown in

Fig. 6(c) may result,
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1.3.3. Coherent twin boundary energy

In the absence of an effective obstacle the advancement of the
twin interfaces will be limited by the increase in energy associated
with the increase in area of the coherent twin boundaries. Thus the
angle 0 provides an estimate of the coherent twin boundary energy
Yo If the position of the leading twin dislocation is varied by 6x
from its equilibrium position the area of the coherent twin boundaries
will be increased by 26x per unit length of the twin dislocation line.

Hence

Zyt6x= Fd6x (1 -49)

or y, = Fd/Z. Fd can be evaluated from observed 6 and Fig. 3.

2. Transformation of indices

2.1. Derivation of transformation matrices

Fig. 7 shows the four coordinate systems chosen. _akl ’ 3.‘2,

and C are the base vectors which define the hexagonal lattice of the

] - Y Y .
matrix. n,, n,, and n, are three vectors chosen in such a way

. - - Y .
that a rotation of m about n, will bring aj, 2y, and c respectively

1

to 'é.‘i , 'é':z, and ¢', the corresponding base vectors in the twin, and

;'11 , ?‘12, and '1'1‘3 to _r‘1i, ?;'2 , and ?‘1_!,, respectively.

Thus any vector can be described equally well by using one of

the four coordinate systems. For instance,

X = X.2 X
X = Xla1 + 2a2 + 3c
N = N + N.n, +N.7n
= N7 22 373
N'= N!'m! + N'nl + NIo



X' = Xral + X'al + X'
121 232 3
or
X = (X X; X3)
N = (N, N, N;) (2-1)
| - 1 1 1
N' = (N} N, N3)
1 - 1 1 1
X'= (X X X3)

- —) - -
In order that X, N, N', and X' are to represent the same
vector the vector components in the four coordinate systems must
be related in a certain way. The relationships may best be described

by using matrix algebra.

Since
- _ -— — -
), =2 -3 -
H‘Z = -_‘1 + a, - -é"
-3 _ - + -
N3 = 3 a2
or

n, 1 -1 -1 a,

n, = -1 1 -1 a, (2-2)

n, 1 1 0 c .

-
Then the components of X and N are related by (see for instance

reference 42)
(X1 X2 X3) = (N1 NZ N3) 1 -1 -1

-1 1 -1
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or
X =Na (2-3)
where
A=1/1 -1 -1
-1 1 -1
1 1 0 (2-4)
which means upon multiplying,
X1 = (Nl -N‘2 +N3)
X2 = (-N1 + N2 + N3)
X3 = (“Nl" NZ) .
It follows from Eq. (2-3) that
N = xa” (2-5)
where
-1 _ 1
A = 7 1 -1 2
-1 1 2
-2 =2 0 (2-6)
is the inverse of the matrix A.
Similarly,
_l' _ 'y
ny = m
nL = em -
2 1 2
2 -_.\ _
ny = n, , (2-7)

where e is a numerical factor such that eﬁ‘l is the projection of

ﬁ'z in 'i'xl (also 'ﬁi ). For zinc e = 0.069 and leﬁ'll =0.176 a,
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a is the spacing of atoms in the close-packed plane. Let

R =/1 0 0
e -1 0
0 0 -1 (2-8)
then
N = N'R (2-9)
and
N' = NR™ = NR . (2-10)
It is necessary that R = B_l since NR R = N is equivalent to a

rotation of 2w about n,, which must leave N unchanged. It follows,

therefore, that R R =1 and hence R = 5-1.

The transformation from N' to X' can be written as

X' = N'A. (2-11)
Thus
X' = N'A=NRA=XA"RA
or
X' = XT (2-12)
where
T = é'lgé = % -2-e -2+e -2+e
-.2+e -2-e 2-e
-4-2e 4+2e 2e /. (2-13)

_\ 3 . . _‘ -J A .
A vector X originally expressed in the aps a,, and c coordinate
system can be expressed in terms of the base vectors '3'1, 2', and

-t
T' as X' using the matrix equation (2-12).
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The twinning action can be conveniently introduced as a

homogeneous shear of the vector N. Let

= - - -
E = Elnl + Ezn2 + E3n3 (2-14)

-3
to be the vector which is different from N but represents the vector

-

N after the twin shear, then

El = (N1 —eNZ)
E2 = N‘2
E; = N; . (2-15)
Let
sT = /1 - 0
0 1 0
0 0 1 (2-16)
then
E=5'N (2-17)
or
E=NS, (2-18)
where
S = /1 0 0
-e 1 0
0 0 1 , (2-19)

which is the transpose of §T .

-—h -
Thus a vector X will be transformed into X* after the twin

-—d

= -
shear, if X* is to be expressed in the coordinate system of a!, a‘z,

£ 3

and ' as §*= (X’I’< X2 X;). Therefore,



X* = XATSRA
or
x* = xr* (2-20)
where
1 = a'sRA=-3 11 1
1 1 -1
2 -2 0 . (2-21)

After a homogeneous shear corresponding to the twinning action is
applied to the vector 3.‘(, it is transformed into another vector X*
according to the matrix equation (2-20).

The difference between i* and 3\(' represents the homogeneous

shear applied to the vector '}-E Thus

X¥-X = XIT*-XT = X(T'-1I) = XB (2-22)

B =TI%-T-=
-1
2 (2-23)
B

according to the

where

-
(¢4
—

Multiplying the original vector X by the matrix
matrix equation (2-22), one obtains the homogeneous shear applied to

the vector.

2.2. Transformation of indices of Burgers vectors

The slip systems observed in zinc crystals at room temperature
are the basal slip and the second-order pyramidal slip. The slip vectors
are respectively < 2> and < c+a>. Multiplying these vectors by

%k
T and by B, one obtains the transformed vectors after
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the twin shear and the corresponding twin actions respectively. The
results are listed in Table 4. The subscripts m and t indicate the

matrix and the twin respectively, and

e ‘n‘1 (2-24)

|-

-‘l 1 J'
b, = Ze(a -az-c) =

-
is a vector in the twinning direction n; and may be considered as a
unit twin vector or the Burgers vector of a twin dislocation. The

magnitude of the Burgers vector of the twin dislocation is 0. 088 a.

2.3. Transformation of indices of slip planes
1 1 .
The vectors E[ 111] m E[ 111] oy and [110] m Will be
transformed into 'a"l, 'a"z, and ¢ respectively after the twin shear
is applied to them. Thus a plane (hkl) in the matrix is transformed

into (HKL) in the twin according to the following equations:

- .1 1 1
H = - > h - > k - > 1
_ 1 1 1
K = - > h - > k + > 1
L = - h+ k
or in matrix notation
(HKL) = (hkl) M (2-25)
where
- L
M = - > 1 1 2
1 1 =2
1 -1 0 (2-26)

is the transpose of I* .
On multiplying the Miller indices of a slip plane in the matrix
with M, one obtains the Miller indices of the corresponding plane in the

twin. The transformations of the slip planes are listed in Table 5.
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3. Incorporation of slip dislocations at a coherent twin boundary

A dislocation line is defined in general by its Burgers vector,
its orientation, and its slip plane. Even a screw dislocation may not
glide on an arbitrary crystallographic plane because of crystal
anisotropy. Therefore, the slip plane as well as the Burgers vector
of a dislocation will have to be considered for an incorporation process.
A dislocation approaching the coherent twin boundary would probably
be a portion of an expanding loop. The orientation of the portion of
the dislocation incorporated into the twin should be that of a dislocation
line which is tangent to the dislocation loop and lies in the coherent twin
boundary, or parallel to the line of intersection of the slip plane and
the coherent twin boundary. Unless this portion of the dislocation line
happens to be in pure screw orientation, it can not glide on crystallo-
graphic planes in the twin otherthanthose listed in Table 5.

It is also true that the Burgers vector of a mobile dislocation
is in general a low index vector which is in a densely packed direction,
and that the slip plane is a low index plane which has a high atomic
density. On examining Tables 4 and 5, it is concluded that the
incorporation of the dislocations described by (6), (7), (8), and (9),
are not likely to take place since high index directions and planes are
involved. The remaining five types of dislocation incorporation

processes are of particular interest and will be discussed one by one.

3.1. Incorporation process (1)
The incorporation process described in (1) means that for the

(112)[ 111] twin the basal slip vector [110] q in the matrix is not
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affected by the twinning action since it is parallel to the twin plane
(112). Furthermore, it is also parallel to the line of intersection,
[110] m °F [110] & of the basal plane in the matrix, the basal plane

in the twin, and the coherent twin boundary (11 Z)m' ¢ Thus a dislocation
with the [110] = Burgers vector will be in screw orientation when it
meets the coherent twin boundary. It can be incorporated into the twin
and glide in the basal plane of the twin provided that there is a suitable
stress field. The line energy of the dislocation before and after the
incorporation process remains the same and hence this process as
sketched in Fig. 8 is energetically feasible. This process, however,
will not cause the twin either to grow or to shrink since there is no
change in either the direction or the magnitude of the Burgers vector.
Each dislocation of this type on passing through the matrix and the twin
will form a step on the crystal surface (110) along the slip traces. A

series of such dislocations will form a macroscopic step.

3.2. Incorporation process (2) and (3)

The dislocation reactions (2), (3), (4), and (5) are important to
the growth of twins. The reaction (2) means that the basal slip vector
[100] o in the matrix is sheared into 1/2[ 111] ¢ upon being incorporated
into the twin. The quantity of the twin shear applied to this vector is bt
as defined by Eq. (2-22). The vector 1/2[111] ¢ is common to both the
second-order pyramidal plane (112)t and the first-order prism plane
(-ilO)t. However, because of the fact that the vector [ 100] m is oblique
to the coherent twin boundary, the portion of the dislocation incorporated
is mixed in nature as discussed previously, and hence it can probably

glide only on ('iIO),c at least at the beginning of the incorporation process.
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This process encounters two difficulties which may not be
unsurmountable. The first difficulty is that the first-order prism
plane is not a favorable slip plane at room temperature, nor [111] ¢
a favorable slip direction (see Table 3). The second difficulty is
that the vector 1/2[111] . must be associated with a stacking fault
on (ilO)t plane since it is not a lattice vector nor does it connect the
centers of two atoms. The arrangement of the atoms, using a hard
sphere model, over the first-order prism plane is shown in Fig. 9
as discussed by Rosenbaum (43). Slip along [111] or T +3 may
involve atomic movements in the directions 0—1—+2—+3—+4., One may
say that a total dislocation [111] ¢ Wwould dissociate into four partial
dislocations separated by three faults. Thus, a complete incorporation
process may involve two successive [ 100] m, dislocations. A complete
as well as a partial incorporation process is illustrated in Fig. 10.
The relative elastic energies of the basal slip dislocation and a hypo-
thetical partial dislocation 1/2[ 111] have been calculated to be
3.11 : 2.10 (see Table 3). Furthermore, an 1/2[111] or 1/2(C + 2)
dislocation is likely to be in a dissociated state with the partial
disloca?:ions discussed before since the resultant vector subtends
obtuse angle in the vector triangle in Fig. 9, using the criterion of
the square of magnitude of the Burgers vector. Therefore, the
dislocation reaction described in Fig. 10 is not impossible.

One can write the dislocation reaction (2) as

2x[100]m__) [’1‘1‘1]t (3-1)
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where [111] ¢ is an extended dislocationas discussed above. One
may also say that each basal dislocation [100] 5, is an extended
one with its partials of Burgers vector P (40). The reaction
described by (3) is crystallographically equivalent to the reaction

(2). By analogy, one can write

Zx[OlO]m-——) [111]t (3-2)

In the reactions (2) and (3) what happens at the coherent twin
boundary can be expressed by the amount of the twin shear ZT;t applied
to the original vectors, This vector ZT;t may be called a double twin
dislocation as suggested by Thompson and Millard (9) or a zonal twin
dislocation (44). Its magnitude is 2b, = 0. 176 a, twice as large as
that of the unit twin dislocation. This double twin dislocation signifies
a step formed at the coherent twin boundary due to the incorporation of
slip dislocations. The role played by the double twin dislocations in the

process of twin growth and untwinning will be discussed in Sec. 4.

3.3. Incorporation process (4) and (5)
The dislocation reaction for the incorporation process (4) can

be written as

[11‘1]m——) 2 x [olo]t (3-3)

which resembles Eq. (3-2) in reverse except the interchange of the
matrix and the twin. However, the nature of the dislocations involved
is very much different from that discussed in Sec. 3.2. The original

slip dislocation considered here is a second-order pyramidal slip
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dislocation which lies in (112) .. The product [ 010] ¢ lies, according
to Table 5, in the first-order prism plane (1 OO)t. Eventhough the basal
plane (001 )t’ the first-order pyramidal plane (Oll)t, and the first-order
prism plane belong to the same zone of crystallographic planes with
[o10] ¢ 2as the zone axis, the portion of the dislocation line incorporated
is in the mixed orientation so that it can probably glide only on (1 OO)t

at the beginning of the incorporation process.

The relative elastic energies of a total second-order pyramidal
slip dislocation and a pair of first-order prismatic slip dislocations are
9.79 : 2(3.97) = 7.94 (see Table 3). Therefore, the reaction described
by Eq. (3-3) is energetically feasible. The slip vector [111] or T+ 32
is considered to be split in the second-order pyramidal plane into
partial dislocations whose Burgers vector is ’f; +1/2 < (40). According
to Rosenbaum (43), each partial may dissociate into two other partials.
Thus, [ 111] m may be an extended dislocation with four partials
separated by three faults. By analogy, one can write for the reaction
(5)

[111]m—-——-> 2x[ioo]t (3-4)

In Fig. 11 a schematic illustration is given for the incorporation

process (4).

4. Process of twin growth
The effect of the incorporation of slip dislocation at the
coherent twin boundary on the growth and untwinning of the existing

twins was discussed by Sleeswyk and Verbraak (10) for the body-centered
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cubic structure. The following is an extension of their theory to
hexagonal zinc crystals.
Take an ideal case that an (1102)[ 110I] twin is introduced
into a zinc crystal of (1120)[1100] orientation as shown in Fig. 12.
If a hypothetical pure edge dislocation with an 1/2[1100] m Burgers
vector is forced to glide in the basal plane of the matrix and in the
first-order prism plane of the twin by the applied shear stress as
indicated in Fig. 12, the net effect would be to cause the portion of
the crystal above the slip traces to glide to the left by 1/2[1100]
with respect to the portion below. A step will be formed at each of
the two interfaces. Each step is in fact a twin dislocation since it
separates the twinned region from the matrix. Whether the twin
will grow or shrink depends upon the direction of the shear stress
applied to these twin dislocations. The shear stress shown in Fig.
12 will cause the twin to grow by one twin layer as the twin dislocations
are forced to glide to the free surfaces. Reversing the direction of the
applied shear stress will cause the twin to shrink by one twin layer.
The effect of an actual basal slip dislocation 1/3[ 2110] m may
be considered as the equivalent of the combined effects of the edge
component 1/2[1100] m 28 discussed above and the screw component
1/6[1120] . The latter is parallel to the coherent twin boundary and
has no effect on the twin other than causing the upper portion of the
crystal to glide in the direction normal to the plane of drawing by
1/6[ 1120] with respect to the lower portion,
When the surfaces in Fig. 12 are restrained or in an actual

case that the stress field in the neighborhood of the twinned region
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resists the change in shape and volume of the twin, the net effect will
be equivalent to forcing the dotted line contour to coincide with the
solid line contour in Fig. 12. This action will cause the twinned
region at A to untwin and the region of the matrix at B to twin. In
other words, a pair of twin dislocations of opposite sign is formed at
each coherent twin boundary as shown in Fig. 13. Under the applied
shear stress as indicated the pair at B will annihilate each other,
whereas the pair at A will move away from each other and cause
the twin to grow by one twin layer over the area swept by this pair
of twin dislocations. Reversing the direction of the shear stress
acting on these twin dislocations, the pair at A will annihilate

each other whereas the pair at B will move away from each other
causing the existing twin to untwin by one twin layer. Thus, whether
the resulting effect is to cause the twin to grow or to shrink depends
only upon the direction of the applied shear stress.

In the above, twin growth resulting from the incorporation of
slip dislocations at the coherent twin boundary has been discussed with-
out questioning the mobility of the resulting dislocations in the twin
after the incorporation process. For instance there has been no
experimental evidence of an active slip system with a < T +a>
slip vector on the first-order prism plane in zinc. The calculation of
the degree of ease of gliding of six potential slip systems in zinc shows
that prismatic slip in the diagonal direction is the second hardest one
next only to the ''normal slip' with the slip vector T (see Table 3).

Prismatic slip in the close-packed direction was observed by Gilman (45)
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in zinc only at elevated temperatures of 250 ~ 400°C. The calculation
also shows that this slip system ranks fourth in the relative ease of
gliding next to basal, second-order pyramidal, and first-order pyramidal
slips. Thus, unlike the case of the body-centered cubic lattice as
discussed by Sleeswyk and Verbraak,the reaction product described in
(2) or (3), a prismatic slip dislocation with a < c+a> Burgers vector,
would not probably glide to any great extent on the prism plane.
Subsequent dislocations in the matrix may form a pile-up against the
coherent twin boundary and produce a region of stress concentration.
This stress concentration may indeed facilitate the dislocation
incorporation process by farcing the reaction product to glide on the
unfavorable slip plane over a short distance, and then its screw portion
may cross glide onto the second-order pyramidal plane. Similarly, the
reaction product described in (4) and (5), a prismatic slip dislocation
with Burgers vector <a> , would probably glide only over a limited
extent on the prism plane at room temperature, but its screw portion
may cross glide onto the basal plane.

The incorporation of the other second-order pyramidal slip
dislocations described in (6) through (9) of Table 4 is not likely to take
place for the reasons mentioned previously. These dislocations may,
however, pile up against the coherent twin boundary and may even cause
new twins to be nucleated.

Some combinations of the incorporation processes discussed
above may possibly take place. For instance, an association of a

dislocation with the Burgers vector T+ 2 and another with -7 aided
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by a stress concentration will give a dislocation with the Burgers

vector ?:‘, which may be incorporated at the coherent twin boundary
-3 - .

to produce a double twin dislocation 2b, and a [ -ai + a'z] ¢

dislocation in the twin as described in (10) of Table 4.
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Figure 2. Coordinate transformation for {1012} A011> twin system;
y and z' axes coincide both perpendicular to the plane of drawing.
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Figure 5. Burgers vectors in hexagonal close-packed lattice.
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Figure 6. Possible shapes of twin boundaries in zinc crystals.
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Figure 7. Base vectors of the coordinate systems used for
transformation of the Burgers vectors of slip
dislocations.
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Figure 8.

Incorporation of [ 110] , slip dislocation in the (112)[ 111]
twin., .© represents a pure screw dislocation with the
Burgers vector normal to and outward from the plane of
drawing (110).
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Figure 9. First-order prism plane of hexagonal close-packed
structure of hard spheres,
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TWIN

MATRIX

Figure 10. Incorporation of [ 100] , slip dislocation in the (112)[ 111]
twin, L and ¢4 represent a pure edge and a mixed

dislocation respectively. * ¢ represents a stacking fault.
Plane of drawing is (110).
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Figure 11. Incorporation of [ 111],, slip dislocation in the (112)[ 111]
twin, Plane of drawing is nearly (112).



53

MATRIX

|+
N

MATRIX
—
[1To0] (1120)

Figure 12. Twin growth by incorporation of a slip dislocation in the

absence of surface restraints.
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Figure 13. Twin growth by incorporation of a slip dislocation in the
presence of surface restraints.
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Table 4. Transformation of Burgers Vectors
X X =xT" X -X =XB

(1) :h[llO]m :a[l’lo]t [ 000]
) {100 _ + 13[111] . £ e[111] = t?;t
3)  #{o10] :klz[lll]t £ 3 e[111] = 5B,
(4 +[111] + 2[ 010] s Lef1n) =527,
) #{111] + 2[100] :!:lz-e[l'll] _— z'ﬁt
) ={101] 1%[13f]t £ 3 e[111] =¢T§t
M #fon] :hlz[?:ll]t t}ze[lll] -+,
8  «{ol) :l:é—[l3l]t £ e[111] = %3,
9)  #{101] + 2 311] . £ e[111] =+ 3%,
(o) [ oo01] _ + [110], £3e[111] =527,
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Table 5. Transformation of Slip Planes

(hkl) (HKL),
(1)(2)(3) (oo1) basal (11 0), prismatic
(1st-order)
prismatic
(5) (11 2)m (01 0), (1st-order)
(6) (212)m (31 6)1;
(7) (122) > " fg’:;_’gi%fr) (136),
(8) (122) (318)
i t high index
(9) (21 Z)m (l§6)t plane
(10) (110) (001),

The factor of 2, due to the double lattice in h. c. p. structure, is

omitted for brevity.






III. EXPERIMENTAL PROCEDURES

The purpose of the experimental part of the present work was
to find material proof of some, if not all, of the mechanisms described
in Chapter II that might account for the growth of existing twins in zinc
and to determine, if possible, the resolved shear stresses for the
thickening and widening of the twins by using specific loading methods

and oriented zinc single crystals.

1. Preparation of the specimens

Zinc single crystals were grown from the melt using zinc of
99. 995+ % purity and a modified Bridgeman technique (46). The
orientation of the crystals was controlled by welding a seed to the
blank so that, after growing, the (000l) plane was parallel to one of
the specimen surfaces. The crystals were then cut into various
desired dimensions with an acid saw, and chemically polished using
a technique suggested by Vreeland et al (47). The orientation and

the dimensions of the specimens tested are described in Fig. 14.

2. Methods of loading
2.1. Simple bending

The specimens E, F, and G (see Fig. 14) were simply
supported on a bending fixture which was laid on the base plate of a
compression load cell in an Instron testing machine. The bending
fixture consisted of two knife edges, a stationary one and a movable

one, by means of which the beam span could vary from 25 to 76 mm.
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Another knife edge was fixed on the crosshead of the testing machine.
The downward speed of the crosshead was adjusted to 0. 005 cm/min
and occasionally to 0. 05 cm/min. The knife edges were carefully

aligned before each series of testings.

2.2. Uniaxial tension

The specimens E, F, G, and H were cemented to tensile
specimen holders by using Armstrong cement. Most of the crystals
tested in tension were constricted with approximately 30% reduction
in the cross-sectional area over a gage length of 32 mm. The
specimens were held by their holders with a pair of jaws attached
to the testing machine. A crosshead speed of 0.005 cm/min was

selected for the tension tests.

2.3. Point loading

The specimens A, B, C, and D (see Fig. 14) were mounted
on the base plate of a compression load cell with a sheet of plastic
laid underneath to avoid non-uniform contact between the crystal and
the base plate. The downward speed of the crosshead was adjusted
to 0. 05 cmm/min. The load was applied by a pin indenter, which was
fixed on the crosshead, in the [ 0001] direction on the (0001) surface
of the specimens. Twelve different pin indenters with the radii of
their tips ranging from 0. 009 to 0. 205 mm and the apex angles from
16° to 36° were used.

In all three types of loading, the load vs. crosshead displace-

ment curves were recorded with a pre-calibrated Speedomax recorder.
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The appearance and the size of the twins and the slip traces were
examined with a Bausch and Lomb Research Metallograph. An
intermittent polishing was often given to the specimens between

successive tests at increasing load levels.
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IVv. RESULTS

1. Simple bending tests

Six specimens were tested by simple bending with the beam
span L = 40 mm. The R.S.S. respectively for the nucleation of
twins and the growth of twins are calculated in accordance with the
stress analysis described in the Appendix C, and the values for the
growth of twins are listed in Table 6. The Eq. (C-4) in the Appendix
C can be directly used for the simple bending tests (S.B.) No. 1, 2,

3, and 6. The R.S.S. for twinning in S. B. No. 4 and No. 5 were
obtained by a proper transformation of the stress components into
their respective twin planes and directions using the Eq's. (C-2)
and (C-3).

The specimens in which the basal planes were parallel to the
axes of the applied bending moments continued to deform and became
unstable on the bending fixture. In S.B. No. 5 no twins were formed
by the continuous bending up to the load P = 4,5 kg and the maximum
deflection 6m = 2.1 mm. Basal slip traces were observed on both
(1010) edges. The specimen was then bent in the reverse direction up
to P=8.0kg and 6 = - 0.22 mm without forming any twins. When
the bending in the original direction was resumed, a twin nucleation
took place at P = 5.55 kg and 6 = 0. 03 mm accompanied by a load drop
of approximately 20%. A pair of conjugate twins were observed on one
of the (1010) edges, one impinging upon the other. The twin on the other
(1010) edge is as shown in Fig. 15, whereas on the (0001) surface, as

shown in Fig. 16. In S.B. No. 3 the specimen was deformed continuously
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to P=4.3 kg and 6m = 3.0 mm without twinning. Upon reverse
bending at the loading rate 0.05 cm/min, which was ten times faster
than the original rate, successive twin nucleations occurred as the
load increased from 2.5 to 3.5 kg. The load vs. deflection diagram
of S. B. No. 3 is given in Fig, 17.

The specimen G-4 in S. B, No. 4 exhibited a marked difference
in its deformation behavior compared with that of S. B. No. 3. As
shown in Fig. 18, it yielded at P = 2 kg followed by a rapid work-
hardening rate, and large twins were nucleated at P = 4. 8 kg
accompanied by a 47% load drop. The specimen was polished and
then loaded successively to examine the growth behavior of the twins.
Fig. 19 shows the thickening of the twin on the (1120) surface of the
tension side.

The center strip of this specimen G-4 was cut out into a
separated specimen with a width of 3 mm by using a sectioning
instrument, Semiconductor Model 716, and the new specimen was
then used for S. B. No. 6. The conjugate twins were eliminated and
the specimen was left with a nearly straight twin across its entire
3 mm width. The bending moment was applied about the [ 1120] axis.
The portion of the twin in the tension side was found to have thickened,
and that in the compression side to have shrunk, as shown in Fig. 20
(a) and (b) respectively.

In S.B. No. 1 and No. 2 twins were first introduced by point
loading on the (0001) surface at four different locations near the center

of each specimen. The specimens were then bent in the testing machine
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in such a way that the twins were on the tension side so that they would
normally grow. On the contrary to the expectation the twins formed
by the point loading did not grow, but new twins were nucleated at a
R.S.S. of approximately 3, 000 g/mrnz. Upon reverse bending, the
twins formed by the simple bending were untwinned while the twins
formed by the point loading remained virtually unchanged. Fig. 21 (a)
clearly shows the formation of new twins crossing the original twins.
Fig. 21 (b) shows the untwinning of the newly formed twins upon

reverse bending.

2. Uniaxial tension tests

Table 7 lists the R.S.S. for twinning at nucleation and at growth
together with other related data. The angles X and N between the
tensile axis and respectively the twin plane and the twin direction were
obtained from sterographic projection plots according to the actual
orientation determined by using the back reflection Laue method. The
strain rate used throughout the testing was 2. 8 x 107> sec™! which is
equivalent to the crosshead speed of 0. 005 cm/min averaged over the
3 cm gage length.

The specimen E-7 in the uniaxial tension test (U. T.) No. 1 was
the only one not contricted. A series of parallel twins were nucleated
at the C.R.S. S, T, = 2. 85 kg/mm2 at near the grip of the specimen.
Fig. 22 (a) shows these twins on the (1120) edge after polishing. The
growth of the twins at the R.S. S. Tg = 241 g/mm2 is shown in
Fig.22 (b). Twin nucleation in U. T. No. 3 also occurred at the

grip at Th = 2.24 kg/mmz. Then, after an elongation of 4.5% a

large crack was formed extending diagonally from an edge to the grip
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at 7 =1.93 kg/mm2 accompanied by a load drop of 96%. The habit
plane of the crack was found to be the first-order prism plane (1 010).
The whole sequence of loading and unloading in U. T. No. 3 is shown
in Fig. 23. The three photomicrographs in Fig. 24 show the successive
stages of the thickening of a twin observed on the (1010) surface of the
specimen H-1c in U, T. No. 4. A pair of conjugate twins were
nucleated at the grip at T, = 4,38 kg/rn.rn2 and grew away from the
grip at 'rg = 535 g/mmz. The junction of the conjugate twins is shown
at the lower right-hand corner of each photomicrograph in Fig. 24.

In U.T. No. 5, a twin was also nucleated at the grip but at a different
stress T = 2.32 kg/mm2 with a 57% load drop. Upon reloading after
microscopic examination and polishing, the twin was thickened while
the R.S. S. dropped from Ty = 720 g/mmz to 520 g/mxn2 as
recorded in Fig. 25. Some unusual markings were observed on the

(0001) surface inside the twin as shown in Fig., 26.

3. Point loading tests

The specimens were loaded to successively increasing load
levels and examined with a microscope at each load level to determine
in what load range twins were nucleated directly under the indentor.
Table 8 lists the load levels at which twins were detected on the (0001)
surfaces for the six indentors of varying tip radii. The avefage normal
stresses, the load at twin nucleation divided by the indented area, are
also listed in Table 8. Narrow twin lamellae were observed to grow
outward from the point of application of the load in more than one of

the six <1120> directions, which were the traces of the {1012}
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<1011> type twins on the (0001) surface. Fig. 27 shows such a
configuration of the twin lamellae. The various specimens were
loaded to different maximum loads, and the average lengths of the
twin lamellae r measured from the point of application of the load
to the tips of the twins were measured with a microscope. The
results obtained from the testings of twenty specimens are tabulated
in Table 9. A typical diagram of the load vs. the penetration of the
indenter is given in Fig. 28. For the point loading experiments with
the specimens 2A, 3A, and 4A the indenter having a tip radius of
0.01 mm and an apex angle of 28° was used. The indentor with a
tip radius of 0. 015 mm and an appex angle of 27° was used for the
specimens 5C, 7B, 8C, and 9D. The stresses at the radial distance
r and the (0001) surface were calculated by using the solutions given
by Elliott (48) and by Shield (49) with some further development as
described in the Appendix B. The R.S.S. acting on the twin plane

in the twinning direction was calculated and listed in Table 9. The
average value is 130 % 50 g/mm2 which can be taken as the R.S.S.
required for the {1012} <1011> type twins to grow in the <1120>

directions.
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(1010)

(a)

(1010)

(b)

Figure 15. Basal slip traces across (1102)[ 1101] twin
boundary in S. B. No. 5. (1010) edge of
specimen F-4, 10Q x. (a) P = 4.0 kg
(b) P = 4.8 kg.
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(0001)

Figure 16. Twin growth in S. B. No. 5. Tension
side (0001) of specimen F-4.
P=4,5kg. 70x.
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(1120)

Figure 19. Growth of (1102)[1101] twin and its
conjugate (1102)[ 1101] twin in S. B. No.
4. Tension side (1120) of specimen G-4.
P =3kg. 100x.
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(1120)

(a)

(1120)

(b)

Figure 20. Growth and untwinning of (1102)[ 1101]
twin in S. B, No. 6. (1120) edge of
specimen G-4. P = 860 g. 70x.

(a) Growth on tension side.
(b) Untwinning on compression side.
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(b)

S. B. No. 2 after twin formation by point
loading. Tension side (0001) surface of
specimen E-4. 100x.

(a) Twinning.

(b) Untwinning upon reverse bending.
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(1120)

(1120)

(b)

Figure 22. Twin nucleation and growth in U. T. No. 1.
(1120) edge of specimen E-7. 70 x.
(a) Nucleation of twins near at the gr 2)
after polishing. Th = 2. 85 kg/mm

2
(b) Growth of twins. T 241 g/mm",



78

*[-225 ¢-01 X g °Z ?3BI UTRl}g

4

*o7-d zoEﬁu.omm ‘¢ "ON °I °N JO weideIp ureijs °sa ssaIjg ‘¢z 2andig
(%) NOILVY®NON3 .
0°S Sv (o G2 o'e Sl o'l g'c 0
A1 \ 1 A A I 1 L L A
<— Bujpooje.
ojDIpowIwW| 00
JY 008
dolp ‘dwey woo4
pool 10 snoy 2 ooz
% 96 49430 Buippojes
0091
ANEE\S
r
- 0002
A
ww/by €6°1 = L 4D -00¥2
oup|d (0{01) U0 %d0JI




79

(1010)

Figure 24,

(c)
Twin thickening in U. T. No. 4. (1010)
surface of specimen H-1C. 120x.
(a) Tg = 535 g/mmz, (b) 573 g/mmz, and
(c) 610 g/mmz.
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Figure 26.

(a) 100x

(b)

Twin growth in U. T. No. 5. (0001) surface
of specimen F-1C. 100x. |

(a) At coherent twin boundary.

(b) At incoherent twin boundary.
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wl

(0001)

60x

Figure 27. Twin lamallae formed by the point loading
to Pm =1 kg. Specimen 2A-1 after polishing.
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(kg)

0 (o].] 10 (K-
h (mm)

Figure 28, Load vs. penetration of the indenter diagram in point
loading. Specimen 8C-3. Loading rate 0.05 cm/min.



<
[c o]

‘ww 0y = T uedg weag

‘utwt fxd g0 *0 = peadg peayssox)

SLHt 6% °0 -- -- -- 0°¢ 1 v-D 9
*3urpuaq asIaad1
pue Surpueq 099 ‘2 €0 °0 + 66 °g
Jo 9104D ® a9y 0Py ‘1 00°¢ 22°0 -
UOIjEa[ONU UIM]} 1°2 + 0°2 0°TI1 -4 ]
081°1  gz°1 0SS ‘¥ Z°0 08 '¥ 0°2 0°11 ¥-D 14
‘utwr fuad
G0 °0 = @jex
ay3 je Surpuaq
9si12A91 uodn 061'% 20°0 - v °¢
UOIjea[dNU UM} -- -- 0°¢+ ’ g°1 S°01 RC €
.d .oz .m .m
se awes ayj 09L ‘s 0z °2 -- -- -- g1 S0l -3 2
*summj reutdtio
ay} Burssoid
UOTIJBRUIIOJ UIM] 0%s ‘2 69 °2 -- -- -- 0°2 0°11 €~ I
(,urvg /3) (81 3) (urw) (LR
L d L Q d (wurua) (wrua)
syIerwWRy Ymarid xy yimoin *[oNN I0J UOTIII[JO(d ‘PN UIM]T q q uorjel}  ‘oN
‘S°S°¥ 1B pPeOT °S'S'¥°'D "XeN 3B PROTT SSOWOTY] YIpEAIg -USLIQ

31s89J, Burpuag arduig

"9 21q®],



‘utwx fud GoQ °0 = peads peayssoi)
*P2301I38U0D sem uawrdads ayj jeyjl sajedIput O*

*3utuajyos
-YIom Jurinp
ymoisd umm3  02L ¥°C 69 2€°2 T1 L8€°0 €9 0 OI-4d S
wn
% S¢S 52 ZL 8¢ % 9 85% 0 25 8% OIH ¥
‘(o101)
Uuo }Oo®'Id == Sy 1¢ ve'e 11 SZ¥ "0 13 14 o-da €
601 L1 gL 65 °¢ L 26% °0 0% 0¥ *UN-U 14
|844 g°1 8L g8 °¢ 01 €8% °0 9% 144 L~ I
(,ura /B) 6) (%) /B ()
3 u
L 'aIy (92a8ap) (22a3ap)
sIeway Yimold I0J “°[ONN }B UOIJeXB[dY °[ONN JI0J [BUOI}OdG Y So0d X urs X X uotje} °‘oN
‘S°s*y uoneluoly  peor ‘S'S*¥°*D ~-ssox) d e

}s9 ] uolsua], [eIXeIUu) °, 2[q®L



86

‘onyea ajewixoxddy

*

‘utwt fwxd GO0 *0 = peads peayssor)

"ITeq 12238

*eIp ‘ur Z¢ /¢ 0°6 8L %59 798 %9701 0t1°1 == 9¢ "¢ A
*ITeq 12°3s
*eTp ‘ut 91/1 '8 8L 0°G6 0°T1 0L°0 -- LS T €1
€ '8¢ 08 0€°82 0°9 0% "1 61 ¥ °0 1
L°02 9¢ 0¥ °LI LY S8 °0 ve 61°0 It
SL91 81 gL01 L€ Sy 0 22 L0°0 L
0°29 9 I | °1 82°0 9¢ L1070 I
(zuurux /33) (8) (vuru) (verear) (urea)
Yo GnH ¢|O~ N...O_” Nwoﬁ (e2x3ap) (wrux)
889131Q uonye v g ®elay Wy
s)yIeway [EWJION =-93[ONN UIMT, LER Y, pPajusapuy Jo uoljeIdUdg Iduy I3jdwWeIq *ON
23eaaay je peor] pa3juapujg I9jdweI(q WINWIXBA xaddy drg, Iojuapuy

9oryang (1000) uo 3urpeoT jurtod £q UOTJBWIIO ] UIM],

‘g 2IqeL



87

Table 9. Resolved Shear Stress for Twin Growth by
Point Loading on (0001) Surface

Maximum Maximum Ave.Radial Radial or R.S.S. for
Specimen Load Penetration Length of Circumferencial Growth
Py h., r Stress Te
or ¢

(kg) (mm) (mm) “TT PN 8% (g/mmd)
2A-1 1 0.28 0.50 296 148
2A-2 3 0. 62 1.00 222 111
3A-1 1 0. 25 0. 55 244 122
3A-2 3 0. 62 1.10 183 92
3A-3 5 0.77 1.60 189 95
4A -1 1 0.30 0.45 365 182
4A -2 1 0.30 0. 45 365 182
4A -3 1 0.30 0.55 244 122
5C-1 1 0.23 0.45 365 182
5C-2 1 0.22 0.59 212 106
5C-3 3 0. 67 1.10 183 92
5C-4 5 0.76 1.31 216 108
7B-1 2 0.37 0.76 256 128
7B-2 4 0. 61 1.34 165 83
8C-1 1 0.24 0. 60 206 103
8C-2 3 0. 60 1.01 218 109
8C-3 5 0. 80 1.49 166 83
9D-1 1 0.23 0.51 284 142
9D-2 3 0. 50 -- -- -
9D-3 5 0.72 -- -- --

Crosshead speed = 0.05 cm/min.



V. DISCUSSION
1. Incorporation of basal slip dislocations by cross-gliding at the
twin boundary

The slip traces shown in Fig., 15 (a) and (b) are continuous
across the twin boundary, and their orientations are in agreement
with the incorporation of 1/3[1120]  slip dislocations in the
(1102)[ 1101] twin as discussed in Sec. 3.1 in Ch. II (see Fig. 8).
The slip traces in the twin are distinctly sharper than those in the
matrix where the sharpness of the slip band gradually diminishes at
a distance away from the twin boundary. This suggests that the slip
dislocations are generated in the twin and propagated under the applied
stress toward the twin boundary, and then they cross-glided into the
basal plane of the matrix. The slight thickening of the twin is probably
due to the other incorporation process as described in Sec. 3.2,
Ch, II (see Fig. 11).
2. Twin thickening by bulging out of the twin boundary in the presence

of restraints

The growth process of twins through the incorporation of slip
dislocations can be divided into two stages: the thickening of the existing
twin by the production of twin dislocations at the twin boundary and the
widening of the twin by the gliding of these twin dislocations under the
applied stress. The evidences of twin thickening by the bulging out of
the twin boundary as a consequence of the production of twin dislocations
are given in Fig, 20 (a) and in Fig. 24 (a), (b), and (c). The basal slip

traces in the matrix as well as in thickened region of the twin are in
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agreement with what would be produced by the 1/3[1120] _ or
1/3[1210] m basal slip dislocations, indicating that the incorporation
processes discussed in Sec. 3.2 (see Fig. 10) and the model of twin
growth developed in Sec. 4 (see Fig. 13) of Ch. II are in agreement
with the experimental observations. At the later stage of deformation
basal slip traces began to appear in the twin in abundance. The basal
slip dislocations in the twin can also be incorporated at the twin
boundary, in accordance with the same analysis described in Sec. 3.2
in Ch. II since it is entirely arbitrary to call either of the neighboring
parts the twin or the matrix. The restraining effect on the bulged twin
(e) in Fig. 19 appears to have been caused by the impingement of the
conjugate twin under the applied stress. The free surface of the crystal
was approximately 3 mm away from the site shown in Fig. 19. This

seems to be also true in the specimen H-lc as shown in Fig., 24.

3. Twin growth in the absence of restraints

The growth of the twins shown in Fig. 22 (b) may be considered
as having taken place in the absence of restraints. The specimen E-7
was heavily polished to an average thickness of approximately 1 mm.
As shown in Fig. 22 (b) the edge of the specimen was polished down to
0. 6 mm. Although there might have been thickening and widening of
the twin in the growth process, only the nearly parallel growth of the
original twin boundary was observed under the microscope. The R.S.S.
acting on the twin dislocations was nearly the maximum for a given
applied load since x =\ = 47°. Therefore, the twin dislocations

produced at the twin boundary as a result of the incorporation of basal
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slip dislocations would glide to the free surfaces under the applied
stress,

Fig. 16 and Fig. 27 also show the growth of twins in the
absence of restraints. Fig. 16 reveals the thickening of the twin,
the basal slip traces in the twin, and two sets of second-order
pyramidal slip traces on the (0001) surface of the matrix. The set
of traces normal to the twin boundary are the (1122)[1123] or the
(1122)[1123] second-order pyramidal slip traces which might have
caused the twin to grow according to the incorporation process
discussed in Sec. 3.3 of Ch, II (see Fig., 11). The other set might
not have contributed anything to the growth of the twin since the
processes described by (6), (7), (8), or (9) in Table 4 would have been
involved and are very unlikely to take place. No associated traces of
the second-order pyramidal slips have been detected on nonbasal
planes in the present work. Further experimental investigations are
necessary in order to fully understand the role the second-order
pyramidal slip plays in the growth of twins., The angle between the
basal slip traces in the twin and the twin boundary in Fig, 16 is an
indication of the incoherency of the twin boundary and was found to
be approximately 6°.

In U.T. No. 5 the stress vs. strain diagram (Fig. 27) shows
a fall of the R.S.S. from 720 to 520 g/mmz during the twin growth.
As shown in Fig. 28 some unusual surface markings triangular in
shape along the coherent twin boundary and also irregular markings

along the non-coherent twin boundary were observed on the (0001)
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surface of the specimen F-lc. The nature of these markings and their

possible relationships to the growth are not understood.

4. Twin growth and untwinning under opposite stress conditions

In S. B. No. 2 (Fig. 21) twinning by simple bending and untwinning
of the twin by reverse bending were observed. Since the signs of the
stresses at any point in the specimen will be reversed upon reversing
the direction of the applied bending moment, the dislocation mechanism
must be reversible in order to account for the twinning and untwinning
in S. B. No. 2.

In S. B. No. 6 the growth of the twin on the tension side and the
untwinning of the twin on the compression side were observed as shown
in Fig. 20 (a) and (b). The directions of the stress components due to
the applied bending moment are given in Fig., 29 (b). Since the magnitude
of the normal stress was much greater than that of the shear stress,
the signs of the shear stresses on the twin plane in the twinning direction
are as indicated. The slip dislocations with the Burgers vector
1/3[ 2110] m °F 1/3[1210] m ©on the right will move to the left toward
the twin, and those with the Burgers vector 1/3[ 2110] m ©°F 1/3[1210] m
on the left of the twin to the right. Twin dislocations will be produced at
the twin boundary as shown in Fig, 29 (b) as the results of the incorpo-
ration of the slip dislocations. The notations for the twin dislocations
are consistent with the sign convention described in Fig. 29 (a), where
a positive twin dislocation with the Burgers vector %t = e/4 1101] is
shown. The dashed lines represent the paths of the twin dislocations

under the applied shear stress acting in the neighborhood of the
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corresponding twin boundaries. However, since this process may
occur simultaneously at many sites along the twin boundaries, a

final configuration such as shown in Fig. 20 can be resulted.

5. Resolved shear stress for twin growth

The average normal stress o n directly under the pin indenter
was rather high. The R.S.S. for the twins should be apr;oroximately
1/2 Fn' Therefore, the apparent C.R.S.S. for the twin nucleation
as a function of the size of the pin indenters varied from 4.5 to
30 kg/mm2 as the radius of the pin indentor decreased from 1.18
to 0. 009 mm. The sharp indenters actually produced the necessary
stress concentration to nucleate the twins,

The average value of the R.S.S. for twin widening by point
loading on (0001) surface was found to be 130 % 50 g/mmz. Since
the twins were growing into the mechanically least disturbed regions,
one might expect the resistance to the twin growth and hence the
R.S.S. both to be low under such a condition. On the other hand,
thickening of the twins occurred at widely scattered values of R.S. S.
from 110 to 1, 500 g/mﬁz. It is possible that this variation in R.S. S,
might have been caused by the difference in the history of plastic
deformation in the various specimens, the inhomogeneous distribution
of the twin lamellae, and the size and shape of the specimens.

In the simple bending and the uniaxial tension tests twin
nucleations occurred at C.R.S.S. = 2.32~4.55 kg/mm2 accompanied
always by a load drop of approximately 30~70%. In many cases other

twins were formed which impinged on or crossed the original twins such
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as shown in Fig. 19 and Fig. 21 (a) at R.S.S., =123~ 3,760 g/mmz.
Thus the R.S.S. for the twin growth by continuous thickening
and widening of a twin was found to vary from 83 to 1, 500 g/mmz.

This does not support a simple C.R.S.S. law for twin growth.

6. Incoherent twin boundaries and coherent twin boundary energy.

Two of the three possible shapes of twin boundaries discussed
in Sec, 1.3.2 of Ch. II (see Fig. 6) have been observed; the incoherent
twin boundaries shown in Fig. 19 (d) and (e) and Fig. 20 (a) and (b) are
the typical examples of the type (a) in Fig. 6, whereas Fig. 19 (a) and
Fig. 24 (c) show the shapes of the twin boundaries conforming to the
type (c) in Fig. 6. No twin boundary of the type (b) in Fig. 6 has been
observed in the present work.

In a number of cases 0 has been observed to be approximately

9°+ 4°, From Fig. 3 one finds F, = 2.7+ 0.7 dynes/cm. Therefore,

d
from Eq. (1-49) in Ch. II the coherent twin boundary energy is Yy =
1.4+ 0.4 ergs/cmz. The twin fault can be considered as equivalent

to two coherent twin boundaries. Thus the twin fault energy is

numerically equal to F,, or 2.7 ergs/cmz.
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VI. CONCLUSIONS

The incorporation of slip dislocations at the coherent twin boundary
has been analyzed for the {1102}<1101> type twins in hexagonal
close-packed zinc crystals by applying matrix algebra and anisotropic
elasticity theory of dislocations. The results indicate that a[[110]
screw dislocation in the matrix may cross-glide onto the basal plane
in the twin with no effect on the growth or untwinning of the existing
twin, whereas mixed dislocations with Burgers vectors [ 100] and

[ 010] of the basal slip system and [111] and [111] of the
second-order pyramidal slip system can only be incorporated

into the first-order prism planes in the twin leaving twin dislocations
at the coherent twin boundary. The growth or untwinning of the
existing twin depends upon whether the resolved shear stress

acting on these twin dislocations is in the direction of twinning or

in the opposite direction.

A number of zinc single crystals of various orientations were
tested in simple bending, uniaxial tension, and by point loading.
Experimental observations on the growth of twins support the
above proposed mechanism., The resolved shear stress for the
growth of twins by continuous thickening and widening of the twins
was found to vary from 83 to 1, 500 g/mmz. This does not

support a simple C.R.S. S, law for twin growth.

The interaction of a pair of twin dislocations in the edge orientation
for the {1102}<1101> twin system has been derived from the

stress field of such a twin dislocation and found to be in general
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noncentrosymmetrical. Three possible shapes of advancing
twin interfaces can be predicted based on an analysis of the
stable configurations of a group of twin dislocations. Two of

these shapes have been observed.

The energy associated with the coherent boundary for the
{1102}<1101> twin system is estimated to be 1.4+ 0.4
ergs/cmz. The twin fault energy, which can be considered
as twice the coherent twin boundary energy, is therefore

2.7+ 0.8 ergs/cmz.

The results of calculations of the anisotropic elastic energies
of dislocations in the edge orientation also show that the
following dislocation dissociation processes are energetically

feasible:

1/3[1123] —1/3[1120] +[o0001],

AE=-0.251n (R/r ) x 107> ergs/cm
1/6[ 2023] —1/3[1010] +1/2[0001],

AE=-0.151n (R/r) x 107> ergs/cm
1/3[1120] —1/3[1010] +1/3[0110],

AE =-1.031n (R/ro) x107° ergs/cm
1/3[1123] —1/6[ 2023] + 1/6[ 0223],

AE = -4.211n (R/ro) x107° ergs/cm.



APPENDIX A. Transformation of the elastic constants

The elastic stiffness constants C's and the elastic compliance
constants S's relate the components of the stress and strain which are

second-rank tensors,

.. = C

ij ijkl €kl (A-1)

€5 = Sy T - Ghk1=1,2 0r3) (A-2)

They are therefore fourth-rank tensors. Upon coordinate transformation

from one set of axes to another by

x! = a,.x, , (A-3)

they transform in accordance with the following laws:

Cl,, =

ijkl 2im aLjn %ko alp Cmnop (A-4)

1 —_
ijkI - %im %jn ®ko %1p Smnop . (A-5)

(i, jyk,1, myn,0,p =1, 2, or 3)

Each of the Eq's. (A-4) and (A-5) represents 81 equations
containing 81 terms each. These 81 equations are reduced to 21
independent equations containing 21 terms each. In the case of
hexagonal zinc crystal there are 5 independent elastic constants
only. The generalized Hooke's law, (A-1) or (A-2), can be written

in the matrix notation as follows (50):
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o) Ciy € Cy3 0 O 0 €
T, Ci2 €1 G430 0 0 €,
T Ci3 C3 C33 0 0 0 €3
= (A-6)
o, 0 0 0 C, 0 0 €
o o o 0o o cC, 0 €
T 0 0 0 0 0 1/.7_(cll-cl ) €
€ S, S, S,3 0 O 0 o)
€, S12 511 S5 0 0 0 “,
63 813 S13 S33 0 0 0 0'3
= (A-7)
€, 0o 0 0 S, 0 0 o,
€ o 0o o0 o s, 0 o
€ 0 0 0 0 0 25, -5, oy
or
o = C €
r rs S
€. =S o . (r,s =1,2,.0..., 6)
Ir Irs S

The stress components and the strain components are written

with a single suffix from 1 to 6.

11 %12 T3 1 % s
12 %22 923 |T™| %6 %2 94
31 923 933 g T4 93

’
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€11 €12 €31 € 1/2 €¢ 1/2 €
€, €5 €3 | 1/2 €, €, 1/2 €,
€37 €3 €33 1/2 € 1/2 €4 €,
In the S.. and C.. the first two suffices are abbreviated into a
ijkl ijkl

single one running from 1 to 6, and the last two are abbreviated in

the same way, according to the following scheme:

tensor notation 11 22 33 23,32 31,13 12,21

matrix notation 1 2 3 4 5 6

At the same time factors of 2 and 4 are introduced as follows:

S..,, =S when r and s arel, 2, or 3
ijkl rs

2S.... =S when either r or s are 4, 5, or 6
ijkl rs

4S... . = S when both r and s are 4, 5, or 6
ijkl rs

To transform the elastic constants upon coordinate transformation
it is necessary to go back to the tensor notation. The composite equations
(A-4) and (A-5) can be simplified considerably when the transformation is

a rotation of the axes about one of the axes (28).



APPENDIX B, Calculation of the resolved shear stress for twin
growth in the point loading experiments
(a) Fundamental formulae
Three-dimensional stress distributions in hexagonal aeolotropic
materials were analyzed by Elliott (48), who obtained a general solution
of the elastic equations of equilibrium in terms of two harmonic
functions. He also showed that in the case of axially symmetrical
stress system the solutions might be written in terms of a single
stress function. The following is a brief account of Elliott's solution.
If one chooses coordinate axes so that the axes X and x,
are parallel to the basal plane and the X3 axis normal to the basal
plane, the equation (A-6) or (A-7) describes precisely the stress-
strain relationship.

Neglecting the body forces the equation of equilibrium are

do ..
—a'f.l =0 . (i,j=1,2, or 3) (B-1)
J
Also, if U, Uy, and u, are the displacements, then
1 aui du.
5 =z Bx * o) when i = ]
and (B-2)
Bui 81{i
Yij = Zeij = 5% 1 axi wheni £ j.

One can obtain the equations of equilibrium in terms of the displace-

ments by substituting (B-2) into (A-6) and into (B-1).

100
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Assume a solution such that

BT re . Wt R, uys R,
%2 *3

0
axl ’ 2 (B-3)

where ¢ = ¢(xl, X x3) is a strain potential function. Substituting
the relationships (B-3) into the equations of equilibrium expressed in

terms of the displacements, one will arrive at the characteristic

equation
2 _
C11C4q? " t[C 3(2C 44C 3) - CCy3lw +C33C,, = 0 (B-4)
or
2 2 2 2
(S3-S118330v " £25)5(5),-5,1)-5) S, lv + S, - 8]} =0, (B-5)

which is a quadradic equation in v with roots vy and Ve The
roots v yr YV, may be real or complex depending upon the elastic
constants; they are real, for example, in the case of magnesium but

are complex conjugates for zinc. The corresponding values of k's

are
v.C -C
K, = —— o 44 q=1, 2) (B-6)
13 44
The possible functions ¢'s are the solutions of
2 52
(Vl + vV 2)¢>i = 0 (i=1, 2) (B-7)
X
3
where
2 2
vZ = 8_ _3_ (B-8)
1 3 x2 3 x>
1 2
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also
u = ad)l + 34)2
1 3x1 3x1
3 3
_ 1 2
u2 % 9%, T Ox, (B-9)
IS WA
U3 = 5 3x3 2 8x3

Since the material is transversely symmetric, for an axially
symmetric stress distribution the solutions are better expressed in

the cylindrical coordinate system (r, 8, z). The governing equations

become
2 52
(Vy + v ) ¢. = 0 (i=1,2) (B-10)
1 5 2 i
z
where
o]
ur = gr (Pt e (B-11)
and also
6¢1 8¢2
w = k1 5% +k2 52 . (B-12)

The stress components are given by

2 2
_ 9 1 9 .1 _98—
I e A T ) 3] (9,16)
or T 006
32¢1 az¢2
+C..(k, —=> +k )
330952 2 5.2
2 2
9 1 8 1 8
099 =[Cio—== +C)) (T 37 t 3 —3) (&) +9))
or r 06
az¢1 az¢2
+C lk — + k, —=)

1 5, 92
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azopl 82¢2
Tz = (& C33 -7 Cypy) .zt (k C33 - ¥, Cy3) Py
VA Z
1 8?2 1 o
o0 =€y -C T 5750 - =z 36 (0, T ¢,) (B-13)
1 32¢1 1 824’z
oo, = Caall +K)) T 3555 + 1 +X,) T 3355)
] aqu1 ] az¢z
0-rz = C44[ (1 +k1) T Or oz +( +kZ) T 8raz]

Because of the axial symmetry c.9 %9, " 0.

The three-dimensional stress distributions at any point in the
medium can be determined when the proper functions ¢l and <|>2 for
a given problem are judiciously chosen and the arbitrary constants in

these functions are determined by satisfying the boundary conditions.

(b) The solutions
The specimens will be considered as a semi-infinite medium
acted upon by a concentrated force P in the -z direction., Shield (49)

introduced the following potential functions for such a problem:

R1+Z

°1 T = 3 j log Rz
™ 2 |
(B-14)
6 = F o, o272
2 811'(1/1 - vz) R2 - Z2
(C +C,,)
where F = P 13 44 , R.2 = r2 + z.z, z. = 1/-.1/2 z (B-15)
C11C44 i i i i

In applying these general solutions (B-14) to the problem on

hand to calculate the stresses at z = 0 plane, an approximation is



R . 4
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made that the depth of penetration of the indentor is neglected due to
its smallness in comparison with the distance from the origin to the
point of interest on the z = 0 surface. The following results are

obtained for z = 0O:

Nv NV k,C -v,C k,C C

(B-16)

F ( {133 1713 2733° 213}1_
Ur T ZnBv,-v,) 1+k l+k ) v v
1 1 2
. Fa k1C33-71C13 kG35 -V,Cy5 y 1
W= 2B ) { v B v r
2 1 2
where
k k
1 2
a = - (B-18)
l+kl 1+k2
k,C v,C k, C -v,C
B = 1733 71713 _ 2733 2713 (B-19)
\}vl(1+k1) ' '\/vz(l+k2)
and
2
ZC13 Bu u
“rrt %90 = (C1p +Cyp - C33)(8r ) (B-20)
8ur u_
“rr ~ %00 ° (Cll - CIZ)(_B_;- - _r—) : (B-21)
The roots of the characteristic equation (B-4) or (B-5) for zinc
crystals are found to be
v, = 0.2819 + 0.5476 j i=1, 2) (B-22)

using the elastic constants in Table 1. Let

Nv Ny k.C,,-v,C k,C C

P(C), +C 1¢33°Y1%13 233" 213}

)
A = 13 ~ ~44

(B-17)

(1+k 1+k ){ v v

2mp(v -V ,)C 1 Cyy ] 1 2

(B-23)
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then after proper substitutions the numerical value of A is

A = Px5.84x10-14 . (B-24)
Thus

u

Tr = - AZ (B-25)
T

Jdu
A

8rr = = (B-26)
r

Combining (B-20) and (B-21) and substituting (B-25) and (B-26) the

nonvanishing stress components at z = 0 are

A

“rr T Cn-C12d 2 (B-27)
cop = (C1, -Ci) (B-28)
66 12 11 rZ
Hence
o o
rr _ 66 74 -3
P - - P T 72X 10 (B-29)
r
o o
A plot of —X and - vs. r is shown in Fig. 30. The shear

P
stress, T, on the { 1012} plane in the <1011> directions is obtained

by a transformation

' = -
O'ij = a0 ajl Ty (B-30)
where
a,ij = cos ¢ sin ¢
-sin ¢ cos ¢ . (B-31)
Thus T = 0! = sin ¢ cos ¢ o

12 11
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1
T = 3 %gg - (B-32)

It is of interest to compare the Eq. (B-29) with that calculated
by assuming the crystal to be isotropic. Using the solutions by Sneddon
et al (51), Young's and shear moduli for zinc given in Table 1, and a

Poisson's ratia of 1/3, the results are

x10 7, (B-33)

This is 50% higher than that given in Eq. (B-29) as far as the stresses
in the z = 0 plane are concerned. It seems apparent that crystal

anisotropy should be taken into consideration for this kind of problems.



APPENDIX C. Calculation of the resolved shear stress for twin
growth by simple bending

The stress vs. strain diagram is simplified to that shown in
Fig. 31 (a) and is assumed to be the same in tension and compression.
The flexure stress distribution shown in Fig. 31 (b) can be applied
after a large amount of deformation well beyond the elastic limit has
taken place. In computing the stresses in terms of the applied moment
the stresses corresponding to the triangular areas abc and bde in
Fig. 31 (b) may be neglected without unduly impairing the accuracy.
They contribute little resistance to the applied bending moment M,
owing to their short moment arms. Hence the simplification of the
stress distribution to that shown in Fig. 31 (c) is permissible.

The whole upper half of the beam is subjected to a uniform
compressive stress - ¢ , while the lower half is under a uniform

tension + ¢ . Therefore, an equilibrium equation can be obtained as

o e bR by oLy 2
M = ¢ (2)(2) = 4<rbh . (C-1)
The maximum flexure stress LA, is at the center of the beam span

1

L where the bending moment is also the maximum; Mm =3 PL.
Thus,
o =22 (C-2)
bh

The distribution of the shear stress is simplified as shown in Fig. 31 (d).

The magnitude of the shear stress becomes

P
55 ¢ (C-3)

K
Il
o] Lo

107
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The resolved shear stress for the twin T, is obtained from the

transformation equations (B-30) and (B-31).

Q
1}

. 2
sin ¢ cos¢o'm+cos T

T, = % + 0,233 b% i (C -4)
bh

In the above development, the material is considered to be
""perfectly plastic'' at the stage of twin formation. This assumption
is justified for the simple bending tests, since the load vs. deformation
curves recorded such as shown in Fig. 17 can be closely approximated
to the elastic-perfectly plastic stress vs. strain diagram given in

Fig. 31 (a).
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