
EXPLOITING MULTIPLE DATA SOURCES FOR NETWORK MINING

By

Prakash Mandayam Comar

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor of Philosophy

2013

ABSTRACT

EXPLOITING MULTIPLE DATA SOURCES FOR NETWORK MINING

By

Prakash Mandayam Comar

Network mining is an active research area with application to diverse fields including

computer science, social science, and biological sciences. However, previous studies have

focused mostly on developing algorithms for mining data from a single network. Such al-

gorithms are susceptible to imperfections in the network data such as noisy links and node

attribute values. The focus of this thesis is on exploiting multiple data sources to enhance

the performance of network mining algorithms for community detection, node classification

and link prediction tasks.

The first contribution of this thesis is the development of a joint matrix factorization

framework for mining multiple networks. The framework offers a principled way to per-

form community detection simultaneously across multiple related networks. It is also highly

flexible, allowing the link structure, node attributes, and any prior knowledge about the

relationship between communities in different networks to be seamlessly integrated under a

unified formulation. The framework is then extended to a multi-task learning setting where

one could perform community detection on one network and node classification on the other.

Multi-task learning is natural for networks considering the intimate relation between the

link structure and node attributes of the networks. However, designing a framework for

multi-task network learning requires a joint objective function that can be used for various

network mining tasks while accommodating some of the existing objective functions (such

as the well-known modularity measure for community detection). As second contribution,

this thesis presents a novel cost-sensitive loss function that enables the joint learning for link

prediction and community detection on one or more networks. The loss function addresses

the class skewness and degree skewness problems inherent in most link prediction tasks.

A formal proof is provided to show the equivalence between the proposed loss function

and the modularity measure used in community detection. To enhance the scalability of

the approach, a divide and conquer scheme was developed where the learning algorithm is

applied to smaller partitions of a network and their results are systematically combined using

the boosting framework.

Acquiring reliable labels is crucial for network learning tasks such as link prediction and

node classification. While for the most part the labels can be gleaned from the network itself,

they are often incomplete and noisy, thus requiring alternative mechanism to solicit more

label information. This thesis explores the viability of using crowdsourcing technology as an

external source for obtaining additional labeled data for network mining tasks. Adopting

crowdsourcing for network data is non-trivial due to the difficulty in designing a human

intelligence task (HIT) that can be easily handled by non-experts (i.e., the crowd). To

overcome this problem, this thesis proposes an approach for transforming network data into

a set of images that can be easily labeled by non-experts. The conditions under which the

transformation preserves the original network data was also examined. To the best of our

knowledge, this is the first study to examine the use of crowdsourcing for acquiring labels in

network learning tasks.

This thesis is a step forward towards resolving some of the fundamental challenges in

performing multi-source network mining. Though the methods described in this thesis were

designed for network mining, some of them (e.g., methodology to transform network data

into image data) are applicable to non-network learning problems.

Copyright by
PRAKASH MANDAYAM COMAR
2013

ACKNOWLEDGMENTS

This PhD dissertation is an end product of a very long delightful journey during which I

was helped by several wonderful personalities, many of whom have left a lasting impression

in my mind. I would like to sincerely acknowledge each of their contribution in shaping this

dissertation.

With at most sincerity and gratitude, I thank my advisor Dr. Pang-Ning Tan for all the

technical guidance, support and encouragement he showered on me. He generously funded

my PhD programme with assistantships and internship opportunities. He was always very

approachable, kind and encouraged me to pursue problems of my liking and interest. He

always stressed on the importance of mathematical representation and analysis of problems,

instead of solving by heuristics and intuition. The data mining course offered by Dr. Tan,

the biweekly meetings, seminars, paper reviews and generous funding for conference travel

has kept me up to date with most recent technical advances in my field of research. In

all he made my stay here in Michigan State University very comfortable, memorable and

enlightening. I will certainly cherish my leanings from his association for long time to come.

Next, I would like to thank my PhD committee members, Prof. Anil K Jain, Dr. Rong Jin

and Prof. Ramamoorthi for their support and guidance throughout my PhD programme. Dr.

Jain took special interest in my work and advised me to pursue research, associating social

networks with crowdsourcing. I was very delighted with every meeting and conversation I

had with him and Chapter 6 of this dissertation is result of the impetus given by him. I

would also like to specially thank Dr. Jin for shaping my thinking during the weekly seminar

on convex optimization in fall 2010. His machine learning course and seminars had influential

impact on my research work. Finally I thank Prof. Ramamoorthi for being instrumental

v

in me joining Michigan State University. It was great honor to have worked with each of

my PhD committee member and I sincerely thank them for all the help and guidance they

offered to me. I earnestly look forward to continue my research collaborations with each of

my committee member in the future.

Further, I heartily thank my peer group here in LINKS lab Lei Liu, Zubin Abraham,

Jianpeng, Shai and Xi, specially for their help in manual labeling of images which otherwise

would have been a very costly and time consuming endeavor. I specially thank my colleague

Meherdad Mahdavi for keeping my lab hours interesting and informative with his update

on recent technical happenings in optimization field. My special thanks to our department

secretaries Linda Moore and Norma Teague for helping with all the administrative and travel

related work. My sincere thanks to all my friends and roommates for keeping my stay in

East Lansing a happy and fun filled affair.

Finally I thank my parents for the unconditional love, support and encouragement they

showered on me throughout my life. I dedicate this work to Sri Sathya Sai, who has been

my inspiration and guide all though my life.

vi

Chapter 1 Introduction . 1
1.1 Thesis Statement . 2
1.2 Why Multi-Source Network Mining? . 3
1.3 Why Multi-Task Network Mining? . 4
1.4 Label Acquisition for Network Mining . 5
1.5 Thesis Contributions . 6

Chapter 2 Background and Related Work . 8
2.1 Categorization of Network Types . 9
2.2 Learning Tasks on Networks . 10
2.3 Multi-Network Mining . 13
2.4 Multi-task Learning on Networks . 15
2.5 Summary . 16

Chapter 3 Joint Community Detection Across Multiple Networks 17
3.1 Preliminaries . 19
3.2 Joint Clustering Framework . 21

3.2.1 Joint Clustering of Multiple Networks 21
3.2.2 Incorporating Prior Information . 23
3.2.3 Computational Complexity . 25
3.2.4 Semi-Supervised Learning . 26

3.3 Experimental Evaluation . 28
3.3.1 Baseline Algorithms and Evaluation Metrics 28
3.3.2 Synthetic Data set . 29
3.3.3 Complexity Verification . 29

3.3.3.1 Effect of noise in one network 30
3.3.3.2 Effect of noise in between the networks 32

3.3.4 Wikipedia Dataset . 33

vii

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF ALGORITHMS . xiv

3.3.5 Digg Data Set . 37
3.4 Summary . 39

TABLE OF CONTENTS

Chapter 4 Joint Clustering and Classification on Multiple Networks . . . 41
4.1 Joint Learning Framework . 43
4.2 Joint Learning vs Independent Learning . 45

4.2.1 Joint Factorization vs Label Propagation 46
4.2.2 Joint Factorization vs Graph Cuts . 48

4.3 Experimental Evaluation . 51
4.3.1 Baseline Algorithms and Evaluation Metrics 51
4.3.2 Synthetic Data . 52

4.3.2.1 Varying Noisy Links Within a Network 53
4.3.2.2 Varying Noisy Links Between Networks 56
4.3.2.3 Effect of Unequal Number of Clusters and Classes 57

4.3.3 Wikipedia Data . 57
4.3.3.1 Number of Iterations . 61

4.3.4 Digg Data . 62
4.4 Summary . 65

Chapter 5 Joint Community Detection and Link Prediction 66
5.1 Approaches for Link Prediction . 68
5.2 Loss Function and Risk . 71
5.3 Variable Cost Loss Function for Link Prediction 74
5.4 Modularity . 76
5.5 Boosting Approach for Link Prediction . 78

5.5.1 Estimating αt . 79
5.5.2 Weak Learners . 81
5.5.3 Scalability . 83

5.6 Experimental Evaluations . 85
5.6.1 Baseline Algorithms . 86
5.6.2 Data Sets for Inferring Missing Links 87
5.6.3 Data Sets for Predicting Future Links 87
5.6.4 Links Within Community . 89
5.6.5 Missing and Future Links . 92
5.6.6 Low Degree Nodes . 93

5.7 Summary . 93

Chapter 6 Crowdsourcing for Network Mining 95
6.1 Transforming Network Data into Images . 96
6.2 Preliminaries . 99
6.3 Proposed Framework . 100
6.4 Surrogate Mapping . 101

6.4.1 Reconstruction Error Analysis . 103
6.4.2 Parameter Estimation . 106

6.5 Experimental Evaluations . 110

viii

6.5.1 Evaluation Methodology and Baseline 111
6.5.2 Synthetic Data . 112
6.5.3 Biology Article Corpus . 113
6.5.4 Wiki Editor Networks . 117

6.6 Conclusions . 120

Chapter 7 Future Work . 121

APPENDIX . 125

BIBLIOGRAPHY . 131

ix

Table 3.1 Data Category and Sub Category 34

Table 3.2 The link distribution between different author clusters in Wikipedia
data set . 34

Table 3.3 Average Cluster NMI on Wikipedia dataset 35

Table 3.4 Confusion matrix of article network using the Ncut algorithms on the
multi graph G gave NMI 0.55. 36

Table 3.5 Confusion matrix of article network using the Joint clustering method
gave NMI 0.40. 36

Table 3.6 Confusion matrix on digg user and wiki editor network using Ncut on
Multigraph . 39

Table 3.7 Confusion matrix of Digg users and Wikipedia editors using the pro-
posed joint clustering method. 39

Table 4.1 Summary of notations used in the chapter. 44

Table 4.2 Parameters of multi-network generator 52

Table 4.3 Configurations of various synthetic data 53

Table 4.4 Clustering results of Wikipedia editors. Here (ME) refers to the run
with minimum error. 60

Table 4.5 Classification results of Wikipedia articles. Here (ME) refers to the
run with minimum error. 60

Table 4.6 Confusion Matrix - Article Network using Joint algorithm 62

x

LIST OF TABLES

Table 4.8 Confusion matrix for Wikipedia classification. The left panel gives
the confusion matrix on applying LGC on Wikipedia editor network
and the bottom panel gives the confusion matrix on applying LGC

on multi graph consisting of both Digg user network and Wikipedia
editor network. 64

Table 4.9 Confusion matrix for Joint with prior information for the run with
minimum error. 64

Table 5.1 Link Prediction: The table shows the AUC of predicted missing links
and future links in each of the four data sets. 88

Table 6.1 This table shows the F measure for each of the four article categories.
Here Wi denotes the ith worker in the crowd. Each independent
worker performs better than SVM with rbf kernel (σ = 0.1). The
Crowd + SVM performed better than individual workers in the crowd. 117

Table 6.2 This table gives the AUC values of SVM and Crowd + SVM approach
for link prediction problem on two different Wikipedia editor net-
works. Here the proposed Crowd approach outperforms the baseline
SVM by 8% on Computer science network and fares slightly better
than SVM on Natural science editor network. 119

xi

Table 4.7 Confusion matrix for Digg clustering. The top panel shows the result
of Ncut on Digg user network. The bottom panel shows the clustering
result on the multi graph consists of both Digg users and Wikipedia
editors. Only two dominant clusters were found on both. 64

Figure 3.1 Multi Network Clustering: GraphG1 = (V1, E1), graphG2 = (V2, E2

1 and G2. For interpretation of the references to
color in this and all other figures, the reader is referred to the elec-
tronic version of this dissertation. 19

Figure 3.2 This plot shows the variation of computation time with increase in
number of links in the network (due to increase in nodes) 30

Figure 3.3 Effect of Noisy links in Network B on clustering performance of Net-
work A (p1 = 0.4 and p2 = 0.35) . 31

Figure 3.4 Effect of Noisy links between networks on the clustering performance
of Network A (p1 = 0.4 and p2 = 0.35) 32

Figure 3.5 Spy plot for Article (Left) and User (Right) networks in Wikipedia . 33

Figure 3.6 Adjacency matrix plot for digg user and Wikipedia editor networks
(best viewed in color). 38

Figure 4.1 Sample multi-network to illustrate the functioning of graph cut based
partitioning techniques. Left: The link density in the bipartite graph
G12 is sparse. As as result, the graph cut based algorithm would
first disintegrate the multi-network into individual networks and then
continue to split individual networks based on their link densities.
Right:: The link density is very different between network G1 from
G2, as a result, one of them may get split many times while the other
remain intact. Such problem wont arise in proposed joint factorization. 49

Figure 4.2 Effect of varying the between-cluster link probabilities (P12) on G1.
Top: Accuracy on G1. Bottom: NMI on G2. 54

xii

LIST OF FIGURES

)
and the bipartite graph capturing the relationship between the nodes
of the networks G

xiii

Figure 4.3 Effect of varying the between-cluster link probabilities (P12) on G1.
Top: accuracy on G2. Bottom: NMI on G1. 56

Figure 4.4 Effect of varying the between-cluster link probabilities (q2) of bipar-
tite network G12 with same number of clusters/classes in both G1 and
G2. Top: accuracy on G1. Bottom: NMI on G2. 58

Figure 4.5 Effect of varying between-cluster Link probabilities (q2) of bipartite
network G12 with uneven number of clusters/classes. Top: Accuracy
on G1. Bottom: NMI on G2. 59

Figure 4.6 Plot showing the variation of classification accuracy and clustering
NMI for every 10 iterations (best viewed in color). 63

Figure 4.7 Adjacency matrix plot for Digg users (right) and Wikipedia editors
(left) networks (best viewed in color). 63

Figure 5.1 Proportion of within community links (good links) as function of topK
values . 88

Figure 5.2 ROC curves comparing performances of different link prediction al-
gorithms. 90

Figure 5.3 ROC curves comparing performances of different link prediction al-
gorithms. 91

Figure 5.4 ROC curves comparing performances of different missing link predic-
tion algorithms on the subgraph induced by the low degree nodes in
the citation networks. 94

Figure 6.1 A toy example consisting of target network data (A) and source hand-
written digit data (B). We map each distinct labeled target node to a
unique source image and learn the transformation between target and
source data. When this transformation is applied on all the target
nodes, we get the transformed target data (C). The blurry images are
interpreted in Section 6.1. 97

Figure 6.2 Left panel shows the distribution of three classes (in three colors)
with respect to first and second principal components. The top and
bottom right panel gives the transformed data using 4 and 12 fea-
tures respectively. The blurry images are formed because of poor
transformation quality. This is discussed in detail in section 6.4.1 . . 106

xiv

Figure 6.3 Plot of two normal distributions used in generating synthetic data. . 113

Figure 6.4 The transformed Data from two normal distributions. The text above
each image is not meant to be readable but for visual reference only.
The number above each image is the actual sample value. The inter-
pretation of images is illustrated in section 6.5.2. 114

Figure 6.5 Wikipedia article corpus: The left result shows the decreasing er-
ror with each iteration for 10 random initializations. The right figure
shows the rank of the source data almost decreases with successive
iterations. Lowest error is achieved when the rank of the source falls
below the target rank. 116

xiv

Algorithm 1 Multi-network Clustering 25

Algorithm 2 LinkBoost 34

LIST OF ALGORITHMS

Algorithm 3 Surrogate Mapping Algorithm 108

Chapter 1

Introduction

The rapid growth of online social media services such as Facebook , Twitter and Wikipedia

the study of complex networks. The field of social network analysis (SNA) has focused on a

variety of issues, from inferring the formation of links in a social network to understanding

how social phenomena such as homophily, social influence, and communities emerge from

the interactions between individuals in a network. Significant progress was achieved in

the 1990s following the seminal works of Watts et al. [104] and Barabasi et al. [8], who

showed that the structural properties of many social, biological, and physical networks can

be characterized by the same mathematical principles. This has led to increasing research

into the development and application of network mining techniques to other areas beyond

social science, including systems biology (e.g., for modeling proteins and gene interaction

networks) and geo-sciences (e.g., for modeling teleconnections among climate variables and

ecological processes).

A great deal of research in network mining has focused on the development of algorithms

for mining data from a single network. This includes algorithms for solving network link

prediction, node classification, and community detection tasks. As more diverse sources of

network data becomes available, the need for multi-source network mining has grown in

recent years. However, developing a robust algorithm that can effectively combine informa-

tion from other networks is a challenge. The algorithm needs to be applied not only to one

1

has triggered a wave of interest in applying data mining and machine learning techniques to

network, but also simultaneously to other related networks. This requires a flexible com-

putational framework that can utilize potentially noisy information from other sources and

produce consistent solutions across all networks. Furthermore, the learning tasks applied

to the multiple networks may not be the same. For example, one might be interested in

predicting the formation of links in a network based on the community structure found in

another network. Previous works, which are mostly limited to performing the same task on

one or more networks, must therefore be extended to deal with multi-task network mining

problems. Finally, acquiring labeled data for network analysis is an important but under-

studied problem. Although most networks already contain some label information (e.g.,

the partial links in a network can be used to train a link prediction model), the labels are

usually incomplete and noisy. This raises an interesting question whether it is possible to

design an approach for acquiring additional labeled data from alternative sources to enhance

performance of network learning algorithms. These are the key issues investigated in this

thesis.

1.1 Thesis Statement

This thesis focuses on multi-source and multi-task network mining problems. The techniques

developed in this thesis are based on the following two conjectures. First, augmenting data

from alternative sources (e.g., from crowdsourcing and other related networks) is expected

to improve the performance of network mining algorithms. Second, given the inherent inter-

dependencies between the link structure and node attributes, network learning tasks such

as link prediction, community detection, and node classification are mutually related, which

makes multi-task learning a natural fit for analyzing network data.

2

1.2 Why Multi-Source Network Mining?

The need for multi-source network mining has grown in recent years due to the following

reasons. First, network data from the target domain alone may not be sufficient to yield

high-quality results. In particular, any imperfections in the network data such as noisy

links or missing node attribute values can have an adverse effect on the performance of the

network learning algorithm. Second, network data has become more diverse. For exam-

ple, it has become increasingly common for individuals to create user profiles on multiple

social media Web sites. According to a recent report by the Pew Internet and American

Life Project, about 51% of social network users have two or more online profiles. Each of

the social media sites often maintains different aspects of information about the users. For

example, Twitter provides information about user opinions and other personal communica-

tions while FourSquare 1 contains a trove of user mobility information. The users may also

have a LinkedIn 2 profile containing information about their professional networks. Many of

these Web sites provide easy-to-use application programming interface (APIs) to facilitate

access to their public data. Similarly, advances in high throughput genomic technologies

have enabled the modeling of complex biological systems using diverse types of networks,

including protein interaction networks, metabolic networks, gene interaction networks, or

gene regulatory networks. There has also been increasing interest in analyzing climate net-

works, which can be constructed using climate variables such as temperature, precipitation,

and atmospheric pressure measured at different heights.

Despite the availability of the diverse sources of network data, there are very few studies

that consider integrating the diverse sources of network data to improve the analysis of

1www.foursquare.com
2www.linkedin.com

3

complex networks. This thesis aims to develop new learning formulations that can effectively

harness network data from multiple sources.

1.3 Why Multi-Task Network Mining?

A network consists of an inter-connected set of nodes, whose properties are represented by

the node attributes. There is often a tight coupling between the link structure of a network

and some of the attributes of the nodes. For example, individuals are more likely to befriend

others who work in the same organization or attend the same school compared to those

who work or attend different schools. Due to their inter-dependent relationships, many

of the network learning tasks are mutually related to each other. For example, consider

the product recommendation problem at an online retail store such as Amazon. Here, a

“link” can be established between customers if they had bought similar products in the

past. The product recommendation problem can be cast as a link prediction task on the

user-product bipartite graph. It would be natural for the recommendation algorithm to

first identify segments of customers who share similar purchasing behavior before making its

recommendations. Identifying different customer segments can be modeled as a clustering

or community detection problem. There is a close relationship between the network link

prediction and community detection tasks. A good link prediction algorithm should take

into consideration the community structure present in the network. Conversely, the link

prediction algorithm could be used as a pre-processing step to enhance the within community

links before applying a community detection algorithm [34]. This example illustrates the need

to design network learning algorithms that can simultaneously solve a collection of learning

tasks on one or more networks, instead of performing only a single task.

4

A key challenge in performing multi-task network learning is in designing a joint objective

function that simultaneously performs all the related learning tasks. The shared objective

function should be designed in such a way that each learning task is aided by the partial

solutions obtained from other related learning tasks and the partial solutions must be intel-

ligently combined in order to attain an optimal solution. Despite its promise, to the best of

our knowledge, there has been no significant research work on multi-task network learning.

1.4 Label Acquisition for Network Mining

Adequate labeled data is the key requirement for training supervised learning algorithms

for link prediction or node classification tasks. Even unsupervised learning tasks such as

community detection and anomaly detection can benefit from utilizing partially labeled

data (via the semi-supervised learning paradigm). In both cases, domain experts are often

needed to manually peruse the data and categorize them into different labels. This is both a

tedious and time consuming process, and may not always generate enough labeled data for

the effective mining of large-scale networks. Annotating network data is cumbersome as the

label information depends not only on the attributes of a node, but also, on the attributes

and labels of its neighboring nodes. Labeling a non-network data instance is easier as its

label does not depend on the label assignment for other instances. In fact, there is a subset

of labeling problems known as human intelligence tasks (HITs), where it is easy (or cheap)

to train non-experts to provide their reasonably accurate labels on the given data. Typical

examples of HITs include digit, letter, or text recognition, image classification, and object

identification in image, and video streams. It would be useful to develop a framework for

exploiting labeled data (especially from HITs or other non-related domains) in order to

5

generate additional labeled examples for the network mining problem.

1.5 Thesis Contributions

As mentioned earlier, the focus of the thesis is in developing network mining algorithms

that can exploit data from multiple sources. This is akin to network learning with side-

information [57, 62]. However, previous studies on learning with side information (also

known as semi-supervised learning) have focused primarily on independent and identically

distributed (i.i.d.) data or network data obtained from a single source. These approaches

assume there is a target data for which a learning algorithm is designed to solve with auxiliary

information provided by the alternative sources (e.g., in the form of must-link and cannot-

link constraints for clustering). In contrast, our approach for learning from multiple networks

assumes each network is equally important and has its own learning task to be solved. In

fact, the networks may have different learning parameters (e.g., number of communities in

the different networks may not be the same) or learning tasks (node classification on one

network and link prediction in another).

The main contributions of this thesis are as follows. In Chapter 3, we provide a ma-

trix factorization based framework to perform joint community detection across multiple

related networks, [63, 64]. In Chapter 4, we further extend the above framework to perform

multi-task learning where we simultaneously perform clustering and classification on the dif-

ferent networks, [21, 65]. We found that the matrix factorization approach has a significant

advantage over graph partitioning methods such as normalized cut especially when com-

bining networks with different link densities. Another advantage of the framework is that

it can systematically combine both content and link information from the multiple related

6

networks. Finally, prior information about the relationships between communities in the

different networks can also be incorporated into the framework.

In Chapter 5, we present a framework to perform joint learning for link prediction and

community detection [22]. Here, we have designed a novel cost-sensitive loss function that

addresses both class skewness and degree skewness problems that are prevalent in most link

prediction tasks. With a proper choice of the cost parameters, the proposed loss function

can be theoretically shown to be equivalent to the well-known modularity measure used in

community detection. We have employed a divide and conquer scheme for constructing the

model, where the learning algorithm is initially applied to smaller partitions of the given

network and the results obtained from each partition are systematically combined using the

boosting framework.

In Chapter 6, we consider the problem of acquiring additional labeled data for supervised

network mining tasks such as link prediction and node classification using crowdsourcing

technology. Due to the difficulty in designing a HIT that can be easily solved, even by non-

experts, we present a generic framework that transforms the network data into an image set,

thereby giving a distinct visual representation of the network data for non-experts to label.

Such an approach is shown to produce reliable labeled data that can be augmented to boost

the performance of network mining algorithms.

7

Chapter 2

Background and Related Work

The study of complex networks has leaped to the forefront of data mining research spurred

by the rapid proliferation of relational data generated from various physical, biological, and

socio-information systems. Substantial progress has been made over the past decade to

address fundamental questions such as: How are links established in a network? How do

communities formed and sustained over time? What are the most influential nodes in the

network? and How to infer missing attributes or links in a network? To provide answers to

these and many other questions, innovative computational solutions have been developed to

mine the rapidly growing repositories of network data. In this chapter we present a detailed

review of advances in mining network data.

Ever since Euler first applied graph-theoretic principles to solve the Königsberg Bridge

Problem [41], the study of networks has become increasingly popular, from the analysis of

social and biological systems to the modeling of disease outbreaks, supply chains, power grids,

and transportation networks. A network is typically represented as a graph of interconnected

nodes, where each node represents an entity that is characterized by a set of attributes.

Formally, let N = (V,E,X) be a network, where V is the vertex (node) set, E ⊆ V × V is

the edge (link) set, and X is a matrix of nodal attributes.

8

2.1 Categorization of Network Types

Networks can be characterized based on the types of nodes and links they contain. A

network is homogeneous if all the nodes in the network are of the same type. Otherwise,

it is called a heterogeneous network. Furthermore, a network is mono-relational or uniplex

if all the links are of the same type and multi-relational or multiplex if it contains links of

different types [68]. For example, a co-authorship network is a uniplex network since each

link indicates a pair of authors have written an article together. An online social network

can often be treated as a multiplex network because two people who are linked together

could be friends, relatives, fans (followers), or even complete strangers. Networks can also

be characterized as static or dynamic, depending on the temporal properties of its link

structure. The former is represented by a graph with fixed connectivity whereas the latter

is represented by a sequence of network snapshots, each indexed by its corresponding time

stamp, i.e., NT = {(Vt, Et, Xt)}Tt=1.

In this thesis we present algorithms for mining multiple networks. Here we assume the

availability of a collection of homogeneous networks, {N1,N2, · · · ,Nk}, each of which is

obtained from a different data source. As used herein, the term “data source” broadly refers

to any repository that houses the network data or a specific approach used to generate

the data for constructing the network. For example, there are many data sources available

for studying online social networks, including Facebook, Twitter, Digg, and YouTube, each

of which has its own application programming interface (API) to facilitate searching and

downloading data in a standardized format such as XML or JSON. Furthermore, the nodes

in different networks may be connected by a set of inter-network links. In this thesis, we

refer to the collection of such multiple networks along with their links as a multi-network.

9

Definition 1 A multi-network N is a collection of of homogeneous networks {N1,N2, · · · ,Nk},

where each homogeneous network Ni is an attributed graph (Vi, Ei, Xi) and the different net-

works are connected by a set of inter-network links, Ê = {(vp, vq) | vp ∈ Vi, vq ∈ Vj , i ̸= j}.

With this definition, it is easy to verify that multiplex networks and heterogeneous k-partite

graphs are special cases of multi-networks. For example, a multi-network with homogeneous

nodes and no inter-network links (i.e., ∀i : Vi = V and Ê = ∅) is equivalent to a multiplex

network whereas a multi-network with disjoint node sets (∀i, j : Vi ∩ Vj = ∅) and no within-

network links (i.e., ∀i : Ei = ∅ but Ê ̸= ∅) is a heterogeneous k-partite graph.

2.2 Learning Tasks on Networks

Network mining research can be broadly divided into the following tasks—network genera-

tion and characterization, link prediction, node classification, community finding, and rank

analysis. We briefly review these tasks below. A more detailed exposition can be found in

the following books and survey articles [35, 87, 90].

ships in a network. It can be used, for example, to identify covert ties in an adversarial

network or to predict regulatory interactions in a biological network. There are two common

approaches to solve the link prediction problem: (1) by using a generative modeling ap-

proach [70, 77, 98, 103] to learn a joint probability model of the network components (node

attributes and link structure) and marginalize the distribution to make a prediction, or (2)

by using a discriminative approach to learn a target function that directly maps an input

pair to its corresponding class [42, 47, 55]. Discriminative approaches are often preferred

for several reasons. First, generative approaches require specifications of the dependence

10

Link Prediction: Link prediction attempts to uncover previously unknown relation-

relationships among the network components via a graphical model and assumptions about

the parametric forms of the probability distributions. Second, estimation of the model pa-

rameters can be very expensive, thus requiring approximation techniques such as Markov

Chain Monte Carlo (MCMC) and variational methods [27].

to all the nodes in a network using the partial class information available on a few selected

nodes in the network. This is similar to conventional pattern classification problem with

the difference being that the objects to be classified are not independent and identically dis-

tributed (i.i.d.). Instead, the label of each node is dependent on the labels of its neighboring

nodes. Due to such dependency, any node classification method should take into consider-

ation the link structure as well as node attribute values when assigning class labels to the

nodes. It has been previously shown that augmenting the nodal attributes of the neighbors

may yield poor classification performance [14]. However, if the labels of the neighboring

nodes are incorporated into the feature vector, this will improve the overall classification

accuracy [14, 61]. Another important consideration for node classification is the presence

of different types of regularities in the networks [110]. Here, nodes of a similar class label

tend to form more links among themselves than with the rest of the network. Researchers

in the past have also used probabilistic models [96] and matrix factorization [86] methods to

perform the node classification task.

in a network. The rank of a node reflects the measurement of some particular structural

property of the network, which conveys a semantic meaning such as importance, popularity,

authority, etc. As an end in itself, rankings can also be used to look for well-connected or

central nodes in a network. In network mining, ranking is often performed using centrality

11

Node Classification: The node classification problem attempts to assign a class label

Rank analysis: Ranking is the process of assigning an ordering among the nodes

measures [103] such as degree, closeness, and betweenness. A popular ranking method for

large directed networks such as the World Wide Web is the PageRank algorithm [75], which

employs a random walk with restart approach to compute the dominant eigenvector of a

matrix. Other eigenvector-based algorithms, similar to PageRank, include HITS [50] and

SALSA [53]. Recently, there has been considerable interest in assigning rank values to

nodes based on their community belongingness. Guimera et al. [40] introduced a metric

called participation coefficient, which measures to what degree a node participates in other

communities. Scripps et al. [84] introduced an alternative metric called rawComm for

assigning ranks and roles to nodes without applying a community finding algoruthm.

the data clustering problem. Traditional clustering methods seek to find groups of objects

with highly similar attribute values. In contrast, the technique of community finding places

nodes in a network into cohesive subgroups in such a way that the nodes within a group

are highly connected to each other and disconnected from nodes in other groups [63, 108].

Community finding is an ill-posed problem; there is no agreed-upon metric for evaluation.

A popular graph-based metric from Newman and Girvan [71], called modularity, is based on

the fraction of links within a community to those between communities. Some community

finding methods do not try to completely cluster the entire network. Instead they form

communities from a given seed set of nodes [30, 36]. More recently, progress in community

finding has focused along finding communities in dynamic networks, where the nodes, links,

and attributes change over time. Backstrom et al. [5] studied how the structural features

of communities affect how nodes join and leave communities. Tantipathananadth et al. [95]

proposed a new framework for tracking community changes in dynamic networks by modeling

it as a graph coloring problem. Communities are then identified by approximately solving a

12

Community Finding: Identifying communities in a network is closely related to

combinatorial optimization problem using dynamic programming.

2.3 Multi-Network Mining

As mentioned in Section 2.1, a multi-network consists of a collection of networks that are

inter-connected with each other. Previous works have focused mostly on mining special

cases of such networks, either as multiplex networks or heterogeneous k-partite graphs. For

example, a multiplex network of articles (or documents) can be constructed by defining

different types of links between the articles (e.g., based on their co-citations, similarity of

keywords in abstracts or titles, and similarity of authors). There have been recent efforts

to identify communities in multiplex networks [12]. Zhou et al. [115] has used the different

link types to create similarity matrices between nodes which are then used to cluster the

multiplex network. Researchers have also customized the well known matrix factorization

techniques to cluster the multiplex networks. For example, Tang et al. [94] has proposed a

linked matrix factorization approach for fusing information from multiple graphs. Lin et al.

[56] also investigated a similar problem using a relational hypergraph factorization approach

to detect communities of users based on various social contexts and interactions.

Another type of multi-network is a heterogeneous k-partite network, where links exist

only between nodes of different types. This type of graphs has been successfully used to

model relationships such as documents-words, products-users, blogs-bloggers, etc. Clustering

bipartite and k-partite graphs are often referred to as co-clustering or multi-way clustering

in the literature. Long et al. [58] investigated the problem of co-clustering as a matrix

factorization problem and derived multiplicative update formulas for identifying the clusters.

Dhillon et al. [25] presented a framework for co-clustering that minimizes the loss in mutual

13

information between the original joint distribution of related data and the corresponding joint

distribution of the clustered data. Long et al. [59, 60] also provided a unified framework for

attributes-based clustering, semi-supervised clustering, co-clustering, and graph clustering

using a probabilistic framework.

The focus of this thesis is on mining multi-network data that can be conceived as a

fusion of multiplex network and a heterogeneous k-partite network. Research on mining

such type of networks has flourished recently. Narayanan et al. [69] propose simultaneous

clustering of multiple networks as a framework to integrate large-scale datasets on the in-

teractions among and activities of cellular components. They present an algorithm called

JointCluster that finds sets of genes that cluster well in multiple networks of interest, such as

co-expression networks summarizing correlations among the expression profiles of genes and

physical networks describing protein-protein and protein-DNA interactions among genes or

gene-products. Chen et al. [16] recently presented a co-classification approach for detecting

Web spam and spammers in social media applications. They formalized the joint detection

tasks as a constraint optimization problem, in which the relationships between users and

their submitted Web content are represented as constraints in the form graph regulariza-

tion. A pair of classifiers for detecting Web spam (url nodes) and spammers (user nodes)

is simultaneously trained taking into consideration the url-url and user-user links. They

demonstrated that the co-classification strategy is more effective than training the pair of

classifiers independently.

14

2.4 Multi-task Learning on Networks

Multi-task learning is a machine learning paradigm that simultaneously learns a collection

of related problems using a shared problem representation. Such an approach is desirable

when the solution to one of the learning tasks can be used in learning other related tasks. It

leads to a better model for each learning task, because it allows the learner to harness the

commonality between the learning tasks. The merits of multi task learning over single-task

learning has been discussed in detail by Caruana [13]. As mentioned in [13], if the tasks

can share what they learn, the learner may find it easier to learn them together than in

isolation. Thus, if we simultaneously train a classifier to recognize object outlines, shapes,

edges, regions, subregions, textures, reflections, highlights, shadows, text, orientation, size,

distance, etc., it may learn better to recognize complex objects in the real world, compared

to learning them independently.

Multi-task learning can be considered a form of transfer learning [76]. Given a source

domain DS and learning task TS , a target domain DT and learning task TT , transfer learning

aims to help improve the learning of the target predictive function fT (.) in DT using the

knowledge in DS and TS , where DS ̸= DT ,or TS ̸= TT . Typically, in a multi-task learning

the domains are identical (DS = DT) but the learning tasks are different. One such example

is in identifying the hair color and eye color of a given face image. These are two separate

tasks applied to the same data (image corpus). Most of the previous works on multi-task

learning have focused on learning multiple, related classification tasks [28, 74, 106]. There

has been some recent efforts to extend the formulation to learning different tasks such as

classification and regression [1, 111] or regression and ranking [88]. However, none of these

previous works are designed for relational data, which is the focus of this thesis.

15

Definition 1 (Multi-task Multi-network Learning) Given a multi-network N , the multi-

task multi-network learning problem is to solve k learning tasks, where a learning task is

associated with a subnetwork Ni = (Vi, Ei, Xi) of N .

The learning tasks stated in the preceding definition may correspond to the same class of

learning problem or different classes of problems (e.g., classification, community detection, or

link prediction). For example, one might be interested in classifying the nodes in one network

while detecting communities in another. Furthermore, we only consider learning tasks that

are mutually related; i.e., the classes or communities in one network are dependent on the

classes or communities in another.

2.5 Summary

This section reviews the previous works on network mining. The past research has mostly

focused on learning from a single network, temporal networks, k-partite graphs or multiplex

networks. There has been very little work on combining multiple related networks nor multi-

task learning on on multi-networks, which is the focus of this thesis.

16

Chapter 3

Joint Community Detection Across

Multiple Networks

Community detection in networks is an algorithmic approach to partition the nodes in a

network into cohesive groups (known as communities) in such a way that the nodes within a

group are highly related (connected) with each other and are mostly unrelated (disconnected)

from nodes in other groups. Most of the previous work has focused on finding communities in

a single network or in a bipartite graph formed on heterogeneous nodes (e.g., co-clustering of

articles and authors in a bibliographic network) [73, 83, 109, 112]. This chapter investigates

the problem of combining link information from more than one network to improve the

efficiency of community detection task.

Our work on clustering multiple networks of heterogenous nodes is motivated by its

many potential applications. For example, it can be used to simultaneously find clusters of

scientific papers and clusters of authors working in the same research areas. Similarly, it can

also be used to perform joint clustering on Wikipedia articles and editors of the Wikipedia

pages. The multiple networks may also represent relational data from different domains.

For example, one could perform joint clustering of Wikipedia editors and Digg1 users, where

the links between Wikipedia editors and Digg users are established based on the content

1Digg.com is a social networking web site that allows users to share news stories with
other users.

17

similarity between the edited Wikipedia pages and the submitted news stories in Digg. The

advantages of multi-network clustering are that

• Attribute set of nodes in individual networks may not be rich enough for the purpose

of clustering.

• An individual network may have noisy or partially observed links. In such a case

the link structure may be enhanced by considering information from other associated

networks.

A naive approach for multi-network clustering is to partition each network separately.

Such an approach is useful when the link structure and subgroup information in different

networks are independent of each other. However if the networks are related to each other,

then the link structures in the individual networks are not only characteristic of the re-

spective networks but often contains implicit information about the underlying clusters of

other related networks. In such a scenario, we expect a joint clustering would enhance the

performance of the clustering algorithm.

The proposed framework is equally applicable to clustering multiple networks created

from heterogeneous nodes of the same source (e.g., Wikipedia articles and editors) or nodes

from different sources (e.g., Wikipedia editors and Digg users) as long as the correspond-

ing links between nodes in different networks can be established. One possible motivation

for jointly identifying communities across different network domains is that it allows us to

compare the characteristics of the similar communities present across different domains. For

example, the political science community in Wikipedia may consists of lot of academic pro-

fessionals and university students where as a similar community in digg.com may consist of

tech savy netizens with political interests. Another motivation is that the joint clustering

18

`

allows us to incorporate the auxiliary information from multiple data sources that are related

to a given network.

3.1 Preliminaries

In this thesis, we formulate the multi-network clustering problem on a pair of related net-

works. Our formulation can be extended to more than two networks. Let G1(V1, E1) and

G2(V2, E2) be a pair of graphs associated with two networks. The objective of multi-network

clustering is to create sets of partitions {P1j}
k1
j=1 and {P2j}

k2
j=1 such that V1 =

∪k1
j=1P1j

and V2 =
∪k2
j=1P2j . We seek a pair of functions g1 : V1 → [0, 1]k1 and g2 : V2 → [0, 1]k2

such that gi(vj) = (c1, c2, ..., cki), where each cj ∈ [0, 1] is the degree of membership node vj

belongs to cluster partition Pij . Figure 3.1 depicts the different graphs and their relation-

ships.

In the independent clustering approach, the cluster membership functions g1 and g2 are

learnt separately using their corresponding adjacency matrices. To simplify the notation,

let A be the adjacency matrix associated with graph G1, where Aij = 1 if (vi, vj) ∈ E1.

19

Graph G1 BiPartite Graph Graph G2

Figure 3.1 Multi Network Clustering: GraphG1 = (V1, E1), graphG2 = (V2, E2

1 and G2

)
and the bipartite graph capturing the relationship between the nodes
of the networks G . For interpretation of the references to
color in this and all other figures, the reader is referred to the elec-
tronic version of this dissertation.

Similarly, B is the adjacency matrix for graph G2, where Bij = 1 if (vi, vj) ∈ E2. In

addition, we assume there is a third set of edges E3 ⊆ V1×V2 connecting the nodes between

G1 and G2. We denote the adjacency matrix for these edges as C, i.e., Cij = 1 if (vi, vj) ∈ E3.

In this study, the cluster partitions are obtained by decomposing the adjacency matrix

representation of a graph into a product of its latent factors. In particular, we seek to

minimize the distance function D(A∥B) between the adjacency matrix A and the product

of latent factors B, where:

D(A∥B) =
∑
ij

Aij log

(
Aij

Bij

)
− Aij +Bij (3.1)

Note that if
∑

ij Aij =
∑

ij Bij = 1, the distance function reduces to Kullback-Leibler

divergence measure.

Depending on the application domain, the adjacency matrix C is either readily avail-

able as part of the data or needs to be estimated from the data. For example, consider

the document-document network (A) and author-author network (B). Both networks are

naturally linked by a document-author bipartite graph C. In another example, consider two

networks constructed from Wikipedia editors and Digg users. Suppose we want to simulta-

neously cluster these two user networks such that each cluster represent users with interest

in certain topics like science, sports, entertainment, etc. Here there is no natural link matrix

C that is readily available to perform joint clustering. Nevertheless, it can be estimated from

the data. Two users from different networks are linked if the Wikipedia pages one of them

have edited has high similarity value to the news stories submitted by the Digg user.

20

3.2 Joint Clustering Framework

This section outlines our proposed framework for identifying cohesive subgroups in multiple

networks. Our framework uses the non-negative matrix factorization technique given in

[26, 52]. Let A ∈ Rn×n
+ and B ∈ Rm×m

+ be the adjacency matrices of the graphs G1 and G2,

respectively, whereas C ∈ Rn×m
+ be the adjacency matrix for the links between nodes in G1

and G2. Here R+ represents set of non negative real numbers. Note that our framework is

applicable to both directed and undirected graphs.

3.2.1 Joint Clustering of Multiple Networks

To simultaneously cluster the networks, we minimize the following objective function with

respect to X,Y, U, V and W .

J = D(A ∥ XUXT) +D(B ∥ YWY T) +D(C ∥ XV Y T) (3.2)

where X ∈ ℜN×k1+ and Y ∈ ℜM×k2+ are the corresponding cluster membership matrices

for the two networks. The decomposition of A into a 3-factor XUXt instead of a 2-factor

XXt enables the framework to deal with directed links [26, 117]. For each node i in graph

G1 , Xij indicates the cluster membership of node i to cluster j. The cluster membership

values are not necessarily probabilities. Large values of Xij indicates greater affinity for the

node i to be a member of the cluster j. Similarly, we can interpret Yij . The matrix V reflects

the correspondence between the subgroups derived from the two networks.

21

The objective function can be written as follows:

J = min
XY UVW

∑
ij

Aij log
Aij

[XUXT]ij
− Aij + [XUXT]ij

+
∑
ik

Cik log
Cik

[XV Y T]ik
− Cik + [XV Y T]ik

+
∑
ks

Bks log
Bks

[YWY T]ks
−Bks + [YWY T]ks (3.3)

Taking the partial derivatives of J with respect to X and Y yield the following(the partial

derivatives with respect to U, V and W can be similarly derived)

∂J
∂Xij

=
N∑
a=1

[−Aia[XUT]aj

[XUXT]ia
+ [XUT]aj −

Aai[XU]aj

[XUXT]ai

+ [XU]aj

]
+

M∑
a=1

[−Cia[Y V T]aj

[XV Y T]ia
+ [Y V T]aj

]
∂J
∂Yij

=
M∑
a=1

[−Bia[YWT]aj

[YWY T]ia
+ [YWT]aj −

Bai[YW]aj

[YWY T]ai

+ [YW]aj

]
+

N∑
a=1

[−Cai[XV]aj

[XV Y T]ai
+ [XV]aj

]
(3.4)

Given the objective function (3.3) and its partial derivatives, one can solve for X, Y, U, V

and W using a gradient descent approach. Here, we give a converging iterative matrix

factorization based update formulas for the unknown factors:

Xij = Xij

∑N
a=1(

Aia[XUT]

T]ia
+

Aai[XU]aj

[XUXT]ai
) +

∑M
a=1

Cia[Y V T]aj

[XV Y T]ia

(
∑N

a=1 [XU +XUT]aj +
∑M

a=1 [Y V T]aj)
(3.5)

22

aj

[XUX

Yij = Yij

∑M
a=1(

Bia[YWT]aj

[YWY T]ia
+

Bai[YW]aj

[YWY T]ai
) +

∑N
a=1

Cai[XV]aj

[XV Y T]ai

(
∑M

a=1 [YW + YWT]aj +
∑N

a=1 [XV]aj)
(3.6)

Vij = Vij

[∑N
a=1

∑M
b=1

Cab
[XV Y T]ab

XaiYbj∑N
a=1

∑M
b=1XaiYbj

]
(3.7)

Uij = Uij

[∑N
a=1

∑N
b=1

Aab
[XUXT]ab

XaiXbj∑N
a=1

∑N
b=1XaiXbj

]
(3.8)

Wij = Wij

[∑M
a=1

∑M
b=1

B

T]ab
YaiYbj∑M

a=1
∑M

b=1 YaiYbj

]
(3.9)

Theorem 1 For a fixed Y, U V and W the update formula for X, given in Equation (3.5)

monotonically decreases the objective function of the objective function defined in (3.3).

The proof of theorem is given in the Appendix.

3.2.2 Incorporating Prior Information

Many times, we may have additional information about the correspondence between clus-

ters in multiple networks. In what follows we give a motivation to incorporate this prior

information into the objective function.

Example 1 Consider a citation network between research articles and a co-authorship net-

work between researchers. Suppose the articles are grouped into the following topics: Algo-

rithms, Artificial Intelligence, Databases, Cell Biology, and Genetics. Typically,

23

ab
[YWY

an author may work on multiple related topics, therefore the article partitions are not re-

flected as it is in the author network, rather they are further grouped into coarser clusters,

namely, Computer Science and Biotechnology. The author cluster (Computer Sci-

ence) is related to the first three article clusters, while Biotechnology is related to Cell

Biology and Genetics. We expect such prior information will enhance the joint clustering

results. This information can be encoded in a 5× 2 prior matrix:

P =



1 0

1 0

1 0

0 1

0 1


where the rows are the article clusters and the columns are the author clusters.

To incorporate prior, we first need to interpret the role of the V matrix in the objective

function. As mentioned earlier, V is the ’between network’ cluster correspondence matrix.

The elements of V matrix reflect the relationship between the clusters between the two

networks. If we have the prior knowledge about the proportion P of links between the

clusters in both the networks, then it can be incorporated into the objective function (3.3)

as follows

J = D(A ∥ XUXT) +D(B ∥ YWY T)

+ D(C ∥ X(λV + (1− λ)P)Y T) (3.10)

24

Algorithm 1 Multi-network Clustering Algorithm

Input: Matrices A, B, C, and maximum iteration T .
Output: Matrices X, Y , and V .

Initialize Xold, Y old, Uold, V old, and W old to random matrices.
for i = 1 to T do

update Xnew using (3.5)
update Y new using (3.6) with Xnew

update V new using (3.7) with Xnew and Y new

update Unew using (3.8) with Xnew

update Wnew using (3.9) with Y new

set Xold ← Xnew;Y old ← Y new; Uold ← Unew;
W old ← Wnew and V old ← V new

end for

where λ is a parameter provided by the user. We call V ′ = λV +(1−λ)P as the adjusted

correspondence matrix. The λ parameter in V ′ controls the tradeoff between fitting V ′

directly to the data and fitting V ′ to the prior matrix P . If λ = 0, then the correspondence

between clusters is given by the prior matrix. If λ = 1, then the formulation reduces to the

joint clustering framework given in Equation (3.3). In situations where the proportion of data

scattered between the clusters in two networks is unknown, we can use a non-informative

prior where Pij is 0 or 1 indicating whether the ith article cluster is related to jth author

cluster (see Example 1).

3.2.3 Computational Complexity

This section presents analysis of the computational complexity of our algorithm. To begin

with, consider the clustering of a single network. The objective function for this would be

D(A ∥ XUXT) and the update formula for the cluster membership matrix X is given by

Xij = Xij

∑N
a=1(

Aia[XUT]aj

[XUXT]ia
+

Aai[XU]aj

[XUXT]ai
)

(
∑N

a=1 [XU +XUT]aj)
(3.11)

25

Let k be the number of clusters we wish to identify. Each Xij is multiplied by an update

factor, that involves several matrix multiplications. The product XU and XUT can be

computed in O(nk2) while XUXT requires an additional computation of order O(n2k).

Since A is a sparse matrix, the element-by-element division between the matrices A and

XUXT can be computed in O(|e|A), where |e|A is the number of edges in matrix A. This

reduces the computation of term A
XUX

to O(|e|Ak). Note that the update factor needs to

be computed only once at each iteration and then applied, element-by-element, to each Xij .

Thus, the overall complexity for clustering a single network into k clusters is O(T |e|Ak)),

where T is the total number of iterations.

Next we consider the case of two networks of comparable sizes and having the same num-

ber of clusters. The joint optimization is given by Equation (3.3) and the update formula

for X is given by Equation (3.5). This differs from the update formula for a single network

with an additional term that represents the relation between the two networks. If both net-

works are of comparable link densities, then this additional term incurs additional overhead

of O(|e|AkT). By similar argument, each of the five update formulas given in Algorithm 1

requires a time complexity of O(ekT), where e denotes the average number of links in a net-

work. Putting it altogether, this implies the proposed algorithm has an overall complexity

of O(5ekT) where T is the maximum number of iterations.

3.2.4 Semi-Supervised Learning

Before we end this section, we discuss the similarity between the proposed joint commu-

nity detection problem with well known semi-supervised learning models. The paradigm of

learning from multiple related networks can be modeled as semi-supervised network learning,

where the additional data from related network is used as side information in order to per-

26

T

form supervised or unsupervised learning. One way to incorporate the side-information from

related networks would be to add additional knowledge derived from the side-information

as constraints to the original learning problem. For example, depending on the nature and

quality of the side information, a set of must-link and cannot-link constraints on the node

pairs can be extracted from the side information and included in the objective function

[9, 10, 57, 62, 100]. A drawback here is that it requires a good heuristic to extract the

must-link, cannot-link constraints which may not be readily available. Also, it may not be

possible to get a feasible clustering solution that satisfy all the constraints extracted from

the side information [24].

One way to avoid using heuristics to extract constraints from the side-information is to

directly use all the available information and let the algorithm extract the best suitable

information from the data. In context of multiple related networks, we combine all the

networks to form one giant multi-network. This is accomplished by constructing a single

adjacency matrix G for the entire network as follows

Gij =



Aij i, j = 1, 2,n,

Cij i = 1, 2, ..n and j = n+ 1, ..m

Cji j = n+ 1, ..n+m and i = 1, ...n

Bij i = n+ 1, ..n+m and j = n+ 1, ..n+m .

We then apply any manifold learning algorithms like label propagation or normalized cut

[92] algorithms on the entire multi-network G. It should be noted that the proposed joint

factorization framework can be thought of as novel approach to incorporate side information

as well as prior knowledge into the learning framework for performing clustering on networks.

In the next section, we present the results comparing the performance of the proposed

27

algorithm against its manifold learning counterpart.

3.3 Experimental Evaluation

We have evaluated the effectiveness of the proposed algorithm on both synthetic and real

world network data. The details of the real world network and synthetic networks are given

below.

3.3.1 Baseline Algorithms and Evaluation Metrics

As a baseline, we used three clustering algorithms. The first one is the normalized cut (Ncut)

algorithm by [92]. The other two algorithms are part of the objective function given in (3.3).

The first term in the objective function (3.3) refers to independent clustering of a single

network. The first two terms corresponds to the co-clustering of a single network using the

bi-partite graph between two networks. We compare our joint clustering algorithm against

the independent clustering (denoted by Ind) of single network and co-clustering (denoted by

CoC). We denote our proposed framework as Joint or Joint + Prior in the remainder of

this section. For a fair comparison, we applied the normalized cut algorithm on the entire

multi-network G described above (instead of G1 and G2 separately).

We use the normalized mutual information (NMI) measure to evaluate clustering results.

It is defined as follows. Let C = {C1, C2, ...Ck} denote the true set of clusters. Let Ĉ =

{Ĉ1, Ĉ2, ...Ĉk} denote the cluster obtained from the algorithm. Then mutual information

between them is defined as

MI(C, Ĉ) =
∑
Ci,Ĉj

p(Ci, Ĉj)
p(Ci, Ĉj)

p(Ci)p(Ĉj)

28

and the normalized mutual information is given by

NMI(C, Ĉ) = MI(C, Ĉ)
H(C)H(Ĉ)

where H(C) and H(Ĉ) denote the entropies of partition C and Ĉ respectively.

3.3.2 Synthetic Data set

Our synthetic data set is generated as follows. First, the number of nodes and number of

clusters (k) in each network are given. In our experiment, the number of clusters in each

network is fixed to be 4 with 400 data points in each cluster. Within each cluster i, a link

is created between any two nodes with probability p1. On the other hand, an inter-cluster

link is created between a node in cluster i and nodes in other clusters in the network with

probability p2. In addition, links are also created between nodes from different networks.

We create links between networks G1 and G2 with probabilities q1 and q2, where the former

is the probability of link between corresponding clusters and the latter is the probability of

noisy link between non-corresponding clusters. For example, if networks G1 and G2 have 4

clusters each, q1 is probability of link between clusteri in network G1 and clusteri in network

G2. q2 is the probability of link between clusteri in G1 and clusterj in G1 with i ̸= j.

3.3.3 Complexity Verification

In this section, we use the synthetic network to verify the theoritical computational complex-

ity derived in section 3.2.3. Here we computed the time for factorization of single network

with k = 4 clusters. We set the inter-cluster link probability to be 0.01 and intra-cluster link

probability to be 0.001. We then varied the number of nodes in the network from 400 to 4400

29

in step size of 800 nodes. For each network we computed the factorization D(A ∥ XUXT)

and plot the computation time as function of number of links in the network. This is shown

in Figure 3.2. Clearly, the computation time is seen to be linear in the number of links in

the network as derived in section 3.2.3.

0

50

100

150

200

250

300

350

400

Number of links

T
im

e
in

 S
ec

on
ds

3.3.3.1 Effect of noise in one network

We created two networks namely, Network A and Network B using the above mentioned

parameters. Network A was generated with p1 = 0.4 and p2 = 0.35. The links between the

network was generated with q1 = 0.6 and q2 = 0.45. Network B was generated with p1 = 0.5

30

5
0 1 2 3 4

x 10
Figure 3.2 This plot shows the variation of computation time with increase in

number of links in the network (due to increase in nodes).

and we varied the inter cluster link probability for Network B from 0.1 to 0.4 in step size of

0.1. These are the noisy link in the Network B. We studied the effect of varying noisy links

in Network B on the cluster NMI on network A. The results are plotted in Figure 3.3. As

expected, low level of noise in network B helped in identifying the clusters in Network A with

higher accuracy. As the noise level increases in Network B, the NMI of clusters obtained in

Network A decreases. This reflects our belief that if one of the networks is less noisy then

it helps in improving the clustering accuracy of the other network. Ncut-M and Ncut-I in

the figures 3.3 and 3.4, refers to normalized cut algorithm applied on the Multi graph and

Individual network respectively.

0.2

0.4

0.6

0.8

1

31

Joint
Ncut−M
CoC
Ncut−I

0
0 0.1 0.2 0.3 0.4 0.5

Noise in Network B

N
M

I o
n

N
et

w
or

k
A

1.2

Figure 3.3 Effect of Noisy links in Network B on clustering performance of Net-
work A (p1 = 0.4 and p2 = 0.35)

3.3.3.2 Effect of noise in between the networks

Here, we tested the effect of noise between the networks on the clustering accuracy. To do

this we created two networks with following parameters. Network A with p1 = 0.4 and

p2 = 0.35 and Network B with p1 = 0.5 and p2 = 0.45. We created the links between them

with q1 = 0.6. We varied the noise between the networks by varying q2 from 0.1 to 0.5 in step

size of 0.1. The results of clustering accuracy on Network A is shown in Figure 3.4. When

the link between the networks are less noisy, the CoC algorithm gives good result. The Joint

algorithm gives better results. This is because the information flow between the networks

is more reliable and the link structure in Network B helps in improving the performance of

Joint clustering over the CoC clustering.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

Joint
Ncut−M
CoC
Ncut−I

32

Noise between Networks

N
M

I o
n

N
et

w
or

k
A

Figure 3.4 Effect of Noisy links between networks on the clustering performance
of Network A (p1 = 0.4 and p2 = 0.35)

3.3.4 Wikipedia Dataset

We use the Wikipedia dump from Oct-09-2009 for our experiments. We have chosen four

topics as the ground truth clusters—Biology, Natural Science, Computer Science and Social

Science. Each of the four topics are further divided into subtopics which are shown in Table

3.1. We collected roughly 20K articles, with 5K articles in each category. After removing

stubs and other smaller articles we were left with 10K articles and 53K editors (who have

edited the articles). We removed articles/editors that do not have sufficient links (less than

3 links) with other articles/editors in our corpus. Our final data set contains 6403 articles

and 5361 editors. A visual representation of the adjacency matrices of the article and editor

networks is shown in Figure 3.5. Our goal of clustering is to identify the 12 sub-categories in

the article network and relate them to 4 categories in the editor network. Such a clustering

is useful in other real world application, where in, low level label information like sub topics

are assigned to each article in the article corpus and high level label information are assigned

to authors based on their research interests. Joint clustering can then used to identify and

associate the related communities between these networks and propagate the high level labels

from authors networks to more refined low level labels in the article clusters.

The Wikipedia data set is particularly challenging. Firstly, the editors do not seem to

33

Figure 3.5: Spy plot for Article (Left) and User (Right) networks in Wikipedia

Table 3.1: Data Category and Sub Category

Category Sub-Categories
User clusters Article clusters

Political Science
Civil-Rights Liberties(878); Imperialism(601);

Nationalism(368);

Natural Science
Physics(568); Earth Sciences(513);

Astronomy(613)

Computer Science
Algorithms(112); Operating Systems(395);

Computer Architecture(350)

Biology
Zoology(392); Anatomy(897);

Cell-Biology(716);

Table 3.2: The link distribution between different author clusters in Wikipedia data set

Political Natural Computer Biology
Science Science Science

Political Science 8313 1113 749 844
Natural Science 1113 3398 657 592

Computer Science 749 657 5337 516
Biology 844 592 516 4806

have a fixed domain of interest. As seen in the spy plot in Figure 3.5, a good proportion of

editors have edited articles in all the four categories. We assign a ground truth label to each

user based on the category for which the user has made the most number of contributions.

Secondly, although each editor has his/her own Wikipedia page, many of these pages do not

contain enough useful features that can be used to identify the cluster of an editor. Thirdly,

the links between articles tend to be noisy. The article-article spy plot in Figure 3.5 shows

9 visually distinct groups even though there are 12 article clusters. This is because, in our

sample, the articles in some of the sub categories are highly connected to other realted sub

categories. It is therefore not visually discernable.

We first clustered the article network and user network independently and used them as

our baseline result. As shown in Table 3.3, independent clustering of article gives a NMI of

0.30 and co-clustering of article network using the article-editor bipartite graph increases the

NMI to 0.38. However, the joint clustering gave a slightly higher NMI of 0.41, highlighting

34

the importance of information flowing from the other network. Joint clustering with prior

information increases the NMI further to 0.45. The normalized cut algorithm produced

the highest NMI of 0.55 on the article network. The confusion matrix of Ncut and Joint

algorithms on article network is given in Table 3.5 and Table 3.4.

Table 3.3: Average Cluster NMI on Wikipedia dataset

Experiment Article Editor
Normalized Cut on Multi Graph 0.550 -

(12 clusters)
Normalized Cut on Multi Graph - 0.010

(4 clusters)
Independent clustering 0.304 0.080

Co-clustering 0.381 0.208
Joint clustering without Prior (λ = 1) 0.405 0.213
Joint clustering with Prior (λ = 0.5) 0.454 0.259

As seen in the Table 3.4, the Ncut algorithm on the multi graph G has found 4 predom-

inant clusters in the article network, one for each category. For example, clusters 1, 6, 9, 11

in the confusion matrix of Ncut algorithm represent predominantly represent the underlying

major four categories and rest of the columns are very sparse. However, the Joint clustering

algorithm has found the fine sub categories in the article network. For example, the clusters

1− 3 predominantly represent the sub categories of political science, clusters 4− 6 predomi-

nantly represent natural science subcategories and clusters 10− 12 predominantly represent

the subcategories of biology. The algorithm has found only two predominant subcategories

(columns 7− 8)for the computer science category.

In the editor network, the Joint + Prior has out performed all other approaches. The

Ncut on multi graph could not identify any of the major four categories. Both Joint and CoC

algorithms has shown similar performance with NMI of 0.21. A simple Joint algorithm did

not give any additional benefit compared to the CoC. However, adding the non-informative

35

Table 3.4: Confusion matrix of article network using the Ncut algorithms on the multi graph
G gave NMI 0.55. The columns 1,6,9 and 11 are the dominant clusters identified by the Ncut

algorithm. These four dominant clusters correspond to the four major categories and the algorithm
has failed to identify the sub categories.

1 2 3 4 5 6 7 8 9 10 11 12
Ground Truth Clusters Output by Ncut Algorithm
Civil rights 536 286 42 0 1 3 2 4 1 0 3 0
Imperialism 331 0 222 2 1 6 21 2 0 1 15 0
Nationalism 286 2 17 1 0 0 3 1 11 2 45 0
Physics 3 0 270 0 1 21 247 0 3 0 23 0
Earth Sc 17 21 16 161 234 27 26 2 8 0 1 0
Astronomy 49 0 10 0 0 347 20 179 2 1 5 0

Algo 0 0 0 0 0 1 7 0 104 0 0 0
OS 1 0 0 0 0 20 2 1 371 0 0 0

Architecture 19 1 101 0 0 2 213 0 0 0 0 14
Zoology 25 0 18 0 0 1 1 0 0 1 346 0
Anatomy 1 0 0 0 0 2 1 1 0 0 892 0

Cell Biology 5 1 11 0 0 2 0 1 5 200 491 0

Table 3.5: Confusion matrix of article network using the Joint clustering method gave NMI 0.40.
Unlike the Ncut algorithm, the Joint clustering is able to identify the finer sub categories. For
example, columns 1,2,3 predominantly identifies the sub categories of political science category.
Similarly, columns 10,11 and 12 relates to sub categories of the biology category.

1 2 3 4 5 6 7 8 9 10 11 12
Ground Truth Clusters Output by Joint Algorithm
Civil rights 21 416 14 1 2 265 0 2 0 112 34 11
Imperialism 208 177 110 0 15 54 1 0 0 31 4 1
Nationalism 14 261 14 0 36 7 3 7 0 18 6 2
Physics 8 1 9 4 295 245 1 0 3 0 2 0
Earth Sc 18 4 25 248 171 13 0 7 5 6 9 7
Astronomy 120 1 96 78 13 130 162 12 0 0 0 1
Algorithm 0 0 0 2 0 0 62 48 0 0 0 0

OS 2 0 0 1 0 0 122 251 0 0 12 7
Architecture 32 9 26 195 13 55 11 0 0 1 3 5
Zoology 23 13 20 0 19 38 1 2 8 4 176 88
Anatomy 0 1 0 0 47 54 11 0 11 172 393 208

Cell Biology 5 9 4 0 32 12 1 30 4 187 286 146

36

prior boosted the performance of the joint clustering algorithm.

3.3.5 Digg Data Set

The web site www.digg.com is a popular social bookmarking web site where each individual

users bookmark URL’s and share them publicly with other users. The goal is to identify

different user community based on the topics of the bookmarked URL’s. As mentioned in the

abstract and introduction, the objective of this work is to investigate whether it is possible to

combine information from several networks to improve community detection. However, one

of the challenges in demonstrating this effect empirically is the lack of ground truth informa-

tion about the true clusters of various domains. So, the main reason we choose Wikipedia

and Digg data sets for our experiments is the availability of the ground truth class labels

that can be used to evaluate the performance of our joint community detection framework.

Furthermore, though there may not be a direct correspondence between Wikipedia editors

and Digg users, their community structures are often defined based on the topics of the

articles they have edited or posted. Since there exists common topics among articles in

both networks, this information that can be harnessed to improve their community detec-

tion tasks. The idea of using Wikipedia as an auxiliary data source for improving clustering

has also been investigated before (see for example, the works by [6]), though none of the

previous works consider the Wikipedia as source of auxiliary network data for user commu-

nity detection. Our experiment suggests that Wikipedia is a potentially useful source to

improve clustering of users in a domain such as Digg.com as well. The exact data collection

mechanism is described below.

We first sampled 5670 digg users who have bookmarked URLs on the following three

topics: Politics, Computer Science, and Natural Science. We formed a user-user connectivity

37

matrix from the user-URL matrix. Two users are linked if they have at least τ = 5 URLs in

common. We sampled 4206 Wikipedia editors that belong to aforementioned 3 categories.

We established the links between the digg users and theWikipedia editors by first establishing

a similarity between the bookmarked URLs and the edited articles. Each URL bookmarked

at digg.com has a title and a short description about the content of the web site. The digg

url-word matrix and Wikipedia article-word matrix are used to establish a “weighted link”

between a digg url and a Wikipedia article. Specifically, the weight of the link corresponds to

the cosine similarity between the words in the title and description of a URL and the words

that appear in the content of a Wikipedia article. We finally establish the link between a

digg user and Wikipedia editor if there is high similarity between the contents of bookmarked

URL and edited article. Here again, we assign a ground truth label to each editor (user)

based on the category for which the editor has made the most number of contributions.

Figure 3.6 shows the adjacency spy plot for two networks. In both these networks a good

proportion of editors/users have contributed articles in all three categories. However, notice

that the there is large number of links between the first two user communities in the digg

network. These two communities refer to the politics and computer science. It indicated that

in our sample, the users who have bookmarked politics related URL have also bookmarked

technology related URLs.

38

Figure 3.6: Adjacency matrix plot for Digg user and Wikipedia editor networks.

Table 3.6: Confusion matrix on digg user and wiki editor network using Ncut on Multigraph

Ncut on Digg+ Wiki MultiGraph
Digg User Network Wiki Editor Network

167 1481 0 108 1708 0
997 638 0 707 492 0
1952 435 0 1113 77 1

NMI:0.185 NMI:0.307

Table 3.7: Confusion matrix of Digg users and Wikipedia editors using the proposed joint clus-
tering method.

Joint on Digg+ Wiki MultiGraph
Digg User Network Wiki Editor Network
1242 63 343 102 70 1644
169 220 1246 631 270 298
338 1889 160 122 1023 46

NMI:0.387 NMI:0.418

We first applied the Ncut algorithm on the multi graph containing both digg and wiki

networks. Both the networks contain three corresponding clusters. The confusion matrix

is shown in Table 3.6. Clearly, the Ncut algorithm identified only two clusters on each

network. This is because, the digg network had predominantly two clusters. Table 3.7 gives

the confusion matrix of digg and Wikipedia network using the proposed Joint approach. It

has identified the three dominant community on each network. Since there was a natural

correspondence between the three clusters on both the networks, adding prior information

(identity matrix of size 3) did not give any additional improvements.

3.4 Summary

In this chapter we have discussed the problem of learning cohesive subgroups and their cor-

respondences in multiple related networks. Our experiments reveal that the joint clustering

of multiple networks gives better results in terms of normalized mutual information between

39

the actual clusters and the clusters identified by algorithm. We have also introduced the

idea of using a prior to guide the clustering process. We have performed a through analysis

of the convergence of the proposed algorithm and we have also given heuristics for faster

convergence. The proposed algorithm is of order O(n2T) in complexity where n is number

of nodes on either network and T is number of iterations. The scalability of the proposed

algorithm for networks with millions of nodes will be pursed in future.

40

Chapter 4

Joint Clustering and Classification on

Multiple Networks

In the previous chapter, we focused on learning a single task (community detection) simul-

taneously on a two related networks. In this chapter we extend the framework for multi-task

learning on two related network data. Specifically, we present a novel framework that enables

one to perform classification on one network and community detection in another related

network. Multi-task learning is accomplished by introducing a joint objective function that

must be optimized to ensure the classes in one network are consistent with the link struc-

ture, nodal attributes, as well as the communities detected in another network. Experiments

performed on both real-world and synthetic data sets demonstrate the effectiveness of the

joint framework compared to applying classification and community detection algorithms on

each network separately.

The motivation for this study is two-fold. First, the rapid proliferation of online social and

information networks raises the question whether we can leverage network data from known

information sources (say, Wikipedia) to enhance the network learning tasks. In a previous

chapter, we have demonstrated the advantages of combining data from multiple related

networks to improve community detection. However, the approach presented in Chapter 3

considers the same learning task—community detection—on all networks. Here, we extend

41

the analysis to the case when a different learning task is performed on each network. For

example, one might be interested in leveraging the knowledge about the classes of Wikipedia

editors (based on the articles they have edited) to identify the communities of users at

Digg.com, a social news Web site. Though the correspondence between the identities of Digg

users and Wikipedia editors may not be known, their community structures and classes are

potentially well-aligned as they are based on the topics of articles posted or edited by the

users.

Second, by comparing the classes and communities across different networks, one could

potentially explain the identified communities in one network in terms of the known classes

defined in another network, especially when there is high connectivity between nodes that

belong to a community and its associated class. Furthermore, it is also possible to perform

a comparative network analysis to identify the classes (clusters) found in one network but

not the other. For example, given the known classes of users at Facebook, can we identify

groups of MySpace users whose link structure and nodal behavior do not correspond to any

known groups in Facebook?

One approach to solve this multi-task multi-network learning problem is to combine all the

networks into one giant graph and apply the classification or community finding algorithms

to the combined graph. However such an approach has many limitations. First, by applying

a single algorithm to the combined graph, we have no control over the number of clusters

or classes that will be found in each of its underlying networks. In particular, as will be

shown in our experiments, this approach does not work well when the number of classes in

one network is different than the number of communities in another network. Furthermore,

it may lead to a suboptimal solution as it attempts to fit a global model to a graph that

contains local networks with their own distinctive properties.

42

The main contributions of this chapter are as follows. First, we extend the framework

in Chapter 3, for joint classification and community detection in heterogeneous network

data. The framework is applicable even when the number of classes in one network differs

from the number of communities in another network. In addition, we have drawn parallels

between the update formula and the label propagation algorithm [114, 118]. We have also

included extensive experiments using synthetic data sets to assess the performance of our

proposed framework under different multi-network parameter settings. In particular, these

experiments help to shed light into fundamental questions such as (1) Can clustering on

one network help to improve classification on another network, and vice-versa? (2) Does

combining multiple related networks help in solving a task better than solving the same task

independently on individual networks? (3) How does the presence of noisy links in different

networks affect performance of each learning task?

4.1 Joint Learning Framework

The notations used in this chapter are similar to the ones used in chapter. We summarize

these notions in Table 4.1.

The objective function for joint clustering and classification is very similar to the objective

function (3.2) defined in Chapter 3 with an additional term for aligning the label information

present in the network.

L = min
X,U,V,Y,W

D(A ∥ XUXT) +D(C ∥ XV Y T)

+ D(B ∥ YWY T) +D(βL ∥ Yl) (4.1)

43

Table 4.1: Summary of notations used in the chapter.

Symbol Description

G1 A homogeneous network for detecting communities
G2 A homogeneous network for classification
G12 A bipartite graph connecting nodes between G1 and G2

vij ∈ Vi A node in network Gi (i = 1 or 2)
Ei The set of links in network Gi
Ed The set of links in the bipartite graph G12
k1 number of communities in G1
k2 number of classes in G2
l number of labeled nodes in G2
A An n× n adjacency matrix for network G1
B An m×m adjacency matrix for network G2
C An n×m adjacency matrix for bipartite graph G12
X An n× k1 pseudo-label matrix for community membership of the nodes in G1
Y An m× k2 pseudo-label matrix for class membership of the nodes in G2
V A k1 × k2 community-class correspondence matrix
L An l × k2 true class membership matrix for the labeled nodes in G2

The first term in the objective function deals with the clustering of nodes in G1 by factorizing

the adjacency matrix A into a product involving the pseudo label matrix X. The last two

terms deal with the classification of nodes in G2 by estimating the pseudo label matrix Y ,

taking into account both the link structure (B) and class information (L). Thus, Yl is an l×k2

sub-matrix of Y consisting on rows of Y corresponding to the labeled data points. Thus, the

last term in the objective function, D(L ∥ Yl), does not apply to unlabeled nodes in network

G2. Meanwhile, the second term in the objective function is used to learn the relationship

between the clusters found in network G1 and the classes obtained for network G2. The

association between the clusters and classes are encoded by the cluster-class correspondence

matrix V . The constant β indicates the factor by which Yl would be fit to the ground truth

label L. Since L is fixed binary label matrix, the constant factor β can be absorbed into it.

That is, Lij = β if the node v2i ∈ V2 belongs to class j and zero otherwise. In what follows

we would not explicitly mention the label factor β.

44

Here again, the optimization problem is solved using an alternating minimization scheme.

The update formula for matrices X, U , W , and V are same as (3.5),(3.8), (3.9) and (3.7)

respectively. The update formula for Yij depends on whether the node is labeled or not. It

is given by

Yij =


Yij

∑
a(

Bia[YWT]aj

[YWY T]ia
+
Bai[YW]aj

[YWY T]ai
)+

∑
a
Cai[XV]aj

[XV Y T]ai
(
∑

a [YW+YWT]aj+
∑

a [XV]aj)
, i > l ;

Yij

∑
a(

Bia[YWT]aj

[YWY T]ia
+
Bai[YW]aj

[YWY T]ai
)+

∑
a
Cai[XV]aj

[XV Y T]ai
+
−Lij
Yij

(
∑

a [YW+YWT]aj+
∑

a [XV]aj)+1
, i ≤ l.

(4.2)

We highlight the advantages of our proposed multi-task learning technique compared to

single-task learning with label propagation and cut-based graph partitioning algorithms in

the next section.

4.2 Joint Learning vs Independent Learning

In this section, we will give an insight into the exact mechanism by which the proposed

framework performs the iterative clustering and classification between the networks until

the community structure and classes crystalize in each of the network. We explain this

from the point of view of classification problem, though similar explanation can be made

for the clustering problem. We also compared our joint learning approach to independent

learning using the well-known label propagation (for classification) and graph partitioning

(for clustering) algorithms.

45

4.2.1 Joint Factorization vs Label Propagation

Consider a binary classification problem in a network where each node belongs to either

class 1 or class 2. Suppose the class information is encoded in a two dimensional row vector,

where [1, 0]T represents a node assigned to class 1 and [0, 1]T represents a node assigned

to class 2. Unlabeled nodes are assigned a vector [0, 0]T . A node classification algorithm

can be designed to propagate a fraction of the class information from a labeled node to its

neighbors at each iteration. An unlabeled node will sum up the label vector it receives from

each of its neighbor. After a sufficient number of iterations, an unlabeled node in the network

whose label vector is denoted by [l1i , l
2
i] will be assigned to class 1 if l1i > l2i and to class

2 otherwise. This is the learning strategy employed by a broad class of label propagation

algorithms [114, 118].

Two important parameters that govern the propagation of labels between nodes in a

network are (1) propagation structure and (2) rate of propagation. The former refers to the

link structure that defines the neighborhood structure of each node in the network while the

latter determines the fraction of amount by which the label information is propagated to

neighboring nodes at each iteration. The rate of propagation is usually modeled as a function

of the weight associated with the link between an adjacent pair of nodes. More formally, the

update formula for the label propagation algorithm is given by

Y (t) ← αPY (t−1) + (1− α)L, (4.3)

or equivalently,

Y
(t)
ij = α

∑
a

PiaY
(t−1)
aj + (1− α)Lij (4.4)

46

where P is the propagation matrix constructed from the adjacency matrix of the network.

There are several forms of label propagation matrices proposed in the literature, including

P = D−1B [118] and P = D−
1
2BD−

1
2 [114], where B is the adjacency matrix and D

is a diagonal matrix who diagonal entries are Dii =
∑

j Bij . Next, we show that the

multiplicative update formula given by our matrix factorization framework have similar

mathematical form, which suggests that our multiplicative update formula can be viewed as

a form of multi-task multi-network label propagation.

Consider the problem of classification on a single network G2 without using the infor-

mation from the bipartite graph G12. The objective function involves minimizing the terms

D(B ∥ YWY T)+D(L ∥ Yl). The update formula for Y can be obtained by considering only

the relevant terms in Equation (4.2). Assuming the links in the network are undirected, this

imposes symmetry restriction on the matrices B and W . Furthermore, let Mij =
Bij

[YWY T]ij
,

which represents a weighted adjacency matrix, whose large weights are associated with links

that were incorrectly predicted by YWY T in the previous iteration. Hence, the update

formula Y for labeled nodes can be re-written as

Yij = Yij

∑
a(

Bia[YWT]aj

[YWY T]ia
+

Bai[YW]aj

[YWY T]ai
) +

Lij
Yij∑

a(YW + YWT) + 1

= Yij

∑
aMia[YW]aj +

Lij
Yij

(
∑

a[YW]aj) + 1
(4.5)

Notice that the denominator term approximately normalizes the columns of the matrix

YW . Let D be the diagonal matrix with diagonal entries consisting of the column sums of

YW matrix. That is, Dii =
∑

a[YW]ai + 1. Then the column normalized label matrix is

given by Ỹ = YWD−1. Let Y j represent the jth column of Y (that is, the label information

47

of jth class), then the above update formula can be written as

Yij = Yij
∑
a

MiaỸaj +
Lij

Djj
(4.6)

Comparing the equations (4.4) and (4.6), we notice that the multiplicative update formula

has the same mathematical form as the label propagation algorithm. The key difference

between them is that the multiplicative updates have a varying propagation matrix M,

instead of a fixed propagation matrix P. The role of α in (4.4), is to establish consistency

between the actual and predicted labels on the labeled data set. This is done by the factor

β in (4.6). Recall that β is absorbed into L, i.e Lij = β if the node v2i ∈ V2 belongs to class

j and zero otherwise.

The update formula for unlabeled nodes can be similarly shown to have same mathe-

matical form as (4.4) albeit with different propagation matrix. This aspect makes it very

adaptive in that, the propagation matrix can be updated at each iteration to accommodate

more information from the other network. At each iteration, the partial cluster informa-

tion from network G1 and the partial label information from G2 determines the propagation

structure and the propagation rate for the classification problem. The label information thus

propagated would minimize the class ambiguity among the unlabeled nodes. The enriched

class information is again propagated back for performing the clustering in G1.

4.2.2 Joint Factorization vs Graph Cuts

The earliest algorithms on identifying communities in a given network were borrowed from

the graph theory literature, where, subset of the edges were removed to induce partition on

48

the vertex set. Given a graph G = (V,E), a cut <M,N> is a partitioning of the vertex

set V = M
∪

N of graph by removing edges between the vertex sets M and N. The size of

the cut is defined as number of edges removed from the edge set E. Let A be the adjacency

matrix of the graph G.

cut<M,N> =
∑

v∈M,u∈N
Auv (4.7)

A min-cut of the graph is a cut that has a smallest cut size. The well known algorithm

for solving min-cut problem is based on the max-flow min-cut theorem by Ford and Fulk-

erson [33]. The flow based algorithm for identifying graph cuts has been used to solve the

community detection problem in large World Wide Web graphs [31, 32].

A key hinderance in applying the cut based algorithm for community detection in a multi-

relational heterogeneous network setting is that the link density in different networks (data

sources) are different. As a result one may get trivial partitions or suboptimal partitions.

For example, consider a multi-relational heterogeneous network G, whose adjacency matrix

49

, as a result, one of them may get split many times while the other
remain intact. Such problem wont arise in proposed joint factorization.
2

from
G

1Right:: The link density is very different between network G

12G

Figure 4.1 Sample multi-network to illustrate the functioning of graph cut based
partitioning techniques. Left: The link density in the bipartite graph

is sparse. As as result, the graph cut based algorithm would
first disintegrate the multi-network into individual networks and then
continue to split individual networks based on their link densities.

U584825
Typewritten text
G1

U584825
Typewritten text
 G1

U584825
Typewritten text
 G2

U584825
Typewritten text
 G2

U584825
Typewritten text
 G12

U584825
Typewritten text
 G12

is constructed as follows

Gij =



Aij i, j = 1, 2,n,

Cij i = 1, 2, ..n and j = n+ 1, ..m

Cji j = n+ 1, ..n+m and i = 1, ...n

Bij i = n+ 1, ..n+m and j = n+ 1, ..n+m .

(4.8)

If the link density in bipartite graph G12 is very low, then the cut based algorithm would

chop the multi-network into individual networks and subsequently split each of the individual

networks independently, thus ignoring the valuable information given in the bipartite graph

G12. On the other hand, if the link density within one of the two networks is much higher

than the other (including the bipartite graph), then the cut based algorithm would treat it

as a dense community and split the other network repeatedly. This is illustrated graphically

in Figure 4.1. Such problems would not arise in the joint learning framework as the proposed

objective function factorizes each network separately into their respective communities (and

classes) and these latent factor variables in turn induce partition on the bipartite graph that

link the two networks. Nevertheless, the link density does affect the working of the update

formula in two ways. If the link density in one of the network is higher than the other, then

it contributes more to the objective function than the other network. For example, in the

objective function (4.1), if the matrix A is denser than the other two matrices, then more

weights would be given in minimizing the first term making the algorithm more focussed

in determining a better estimate of value X than for Y. This problem can be addressed by

appropriately weighting the terms in the objective function or scaling the adjacency matrices.

50

4.3 Experimental Evaluation

This section presents the results of applying the proposed framework to the multi-task learn-

ing problem on both synthetic and real-world network data. We have designed a multi-

network simulator to generate the synthetic data for our experiments. In addition, the

Wikipedia and Digg data discussed in Chapter 3, are used to evaluate the performance of

the proposed multi-task learning framework.

4.3.1 Baseline Algorithms and Evaluation Metrics

As a baseline, we use the normalized cut (Ncut) algorithm by Shi and Malik [91] for clustering

and the label propagation algorithm with local and global consistency (LGC) by Zhou et al.

[114] for classification. For a fair comparison, we applied each baseline algorithm on the entire

multi-network G (instead of G1 and G2 separately). This is accomplished by constructing a

single adjacency matrix G for the entire network using (4.8). In each experiment, we set the

proportion of labeled nodes for the classification problem in one of the two network to be

0.2. The label factor β is set to 0.5 for synthetic data and set to 50 for Wikipedia, Digg data.

We use the normalized mutual information (NMI) measure to evaluate clustering results and

accuracy to evaluate classification results. Since we perform the classification task as semi

supervised clustering, the accuracy measure is computed differently. Here , each estimated

cluster is assigned to the ground truth class to which is most frequent in the cluster. If

rows of the confusion matrix represents the ground truth class and columns represent the

estimated clusters, then we sum the maximum values across each column and divide by total

number of points. Note that if the confusion matrix is diagonal heavy (maximum of each

row/column occurs in diagonal) then this measure is same as regular accuracy measure.

51

We denote our proposed multi-task, multi-network learning framework as Joint or Joint

+ Prior in the remainder of this section. Since the iterative update formula converges to a

locally optimal solution, the Joint and Joint + Prior algorithms were run several times,

each with different random initialization values for the pseudo-label matrices. We report

the results produced by the run which minimizes the objective function (4.1) (instead of

choosing the run that maximizes the accuracy of inferring the class and cluster membership

of the nodes). For the synthetic data, we show the scatter plot of all the values from 15

different runs and highlight the values of the run with minimum error. We denote this run

as Joint(ME)

4.3.2 Synthetic Data

Our multi-network simulator constructs two networks, G1 and G2. The parameters for con-

structing each network is summarized in Table 4.2 below. We assume there is a correspon-

Table 4.2: Parameters of multi-network generator

Parameter Explanation
k1 Number of clusters/classes in G1
P11 Probability of within cluster link in G1
P12 Probability of between cluster link in

G1
k2 Number of clusters/classes in G2
P21 Probability of within cluster link in G2
P22 Probability of between cluster link in

G2
Q1 Probability of link between nodes in

two corresponding clusters in G12
Q2 Probability of link between nodes in

two non-corresponding clusters in G12

dence between the clusters/classes in G1 and the clusters/classes in G2. A bipartite graph

G12 is also constructed by linking the nodes in G1 to those in G2. By default, each cluster

52

Table 4.3: Configurations of various synthetic data

Configuration Network G1 Network G2
k1 P11 P12 k2 P21 P22

Noisy Network 4 0.30 0.05 - 0.25 4 0.20 0.10
Noisy Bipartite 4 0.20 0.12 4 0.20 0.15

Uneven 3 0.20 0.12 5 0.20 0.15

Configuration Links in bipartite network G12
Q1 Q2

Noisy Network 0.12 0.03
Noisy Bipartite 0.30 0.05 - 0.25

Uneven 0.30 0.05 - 0.25

contains 100 nodes (so a network with 4 clusters will contain 400 nodes).

In this thesis we investigate three main configurations of the network parameter settings.

The configurations are given in Table 4.3. The “Noisy Network” configuration varies the

proportion of noisy links (i.e., P12) in G1 while fixing all other parameters. The ”Noisy

Bipartite” configuration varies the proportion of noisy links (i.e., Q2) in the bipartite graph.

In both configurations, there is a one-to-one correspondence between the clusters/classes in

the two networks. For the ”Uneven” configuration, the networks contain different number

of clusters/classes. We have 5 clusters in G1 and 3 clusters in G2. Thus, a many-to-one

correspondence is established between clusters/classes in G1 to those in G2.

We evaluate the performance of our algorithm on the synthetic data set under four

configurations that are listed in Table 4.3. These four configurations evaluate different

aspects of learning multiple related networks.

4.3.2.1 Varying Noisy Links Within a Network

We use the ”Noisy Network” configuration in which we vary the inter cluster noise (P12) in

network G1 from 0.05 to 0.25 (with a step size of 0.05). we the performed clustering on G1

53

Joint (ME)
LGC

(classification on G2) and classification on G1 (clustering on G2) to study the effect of noise

on both the learning task.

Classification on G1 Figure 4.2 compares the results for Joint learning against the LGC

and Ncut on multi-graph. The top panel shows classification accuracy on G1 and the bottom

panel shows the NMI of clusters obtained from G2.

When the noise level is low, the LGC algorithm performs slightly better than Joint.

However, at higher noise levels, the performance of LGC drops significantly and the joint

54

0.6

0.7

0.8

0.9

1

0.05 0.10 0.15 0.20 0.25
 Proportion of noisy links in network 1

C
la

ss
. a

cc
ur

ac
y

in
 n

et
w

or
k

1
C

lu
st

er
in

g
N

M
I i

n
ne

tw
or

k
2

Proportion of noisy links in network 1
0.05 0.10 0.15 0.20 0.25

Joint (ME)
Ncut

0

0.1

0.3

0.5

0.7

0.9

Figure 4.2 Effect of varying the between-cluster link probabilities (P12) on G1
1. Bottom: NMI on G2

.
Top: Accuracy on G

learning performs much better. This result suggests that the explicit community information

(from variable X) in G2 helps to discern between the classes in G1, whereas LCG is unable

to use such information. Notice the inter quartile range for the box plot of accuracy values

is very small, suggesting the robustness of the classification problem against the random

initializations.

Surprisingly, as the noise level in G1 increases, the NMI of the Ncut algorithm also

increases in G2. This is because of difference in the link densities between the two networks.

(See Section 4.2.2). When P11 = 0.3 and P12 = 0.05, G1 has four distinct clusters, while

in comparison, the network G2 with high link density (with P21=0.20, P22=0.10) by itself

appears as a single community in the multi-network. The Ncut algorithm tries to identify

four communities in the multi network. Due the difference in the link density between the

two networks, the Ncut algorithm assign the entire G2 as one community and partitioned the

network G1 into three communities. This results in lower NMI value on G2. The increase in

the noise level in G1 increases the link density in the network resulting in identifying better

cuts by the Ncut algorithm on the multi-network. When the noise parameter is P12 = 0.15,

the link densities in both the network becomes comparable and the proposed Joint algorithm

still performs better than Ncut.

Clustering on G1 For the same ”Noisy Network” configuration , we performed com-

munity detection G1 and classification accuracy in G2. The results are shown in Figure 4.3.

In both the cases, the Joint performs better than the respective baseline algorithms. As

explained earlier, when the noise level is low the Ncut on multigraph identifies three com-

munities on network G1 and the whole of G2 as fourth community. This resulted in NMI

of 0.75. As the noise exceeded certain threshold (P12 > 0.15), the Ncut on multi-graph

identified cuts in network G2 instead of G1. This resulted in decrease of NMI value in G1.

55

Joint (ME)
LGC

Joint (ME)
Ncut

Since the parameters for G2 are not varied, the classification results on G2 from LCG remains

almost constant at 0.85 while the classification accuracy from Joint also remains pretty

much constant at 0.98.

4.3.2.2 Varying Noisy Links Between Networks

We use the ”Noisy Bipartite” configuration and vary q2 from 0.05 to 0.25 in step size of 0.05.

Varying the noise between the network will have no bearing on the independent clustering

56

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 in

 n
et

w
or

k
2

 Proportion of noisy links in network 1
 0.05 0.10 0.15 0.20 0.25

0.82

0.94

0.98

0.86

0.90

0
 0.05 0.10 0.15 0.20 0.25

C
lu

st
er

in
g

N
M

I i
n

ne
tw

or
k

1

Proportion of noisy links in network 1

0.1

0.3

0.5

0.7

0.9

Figure 4.3 Effect of varying the between-cluster link probabilities (P12) on G1.
Top: accuracy on G2. Bottom: NMI on G1

and classification tasks on either network. Here again, we performed both clustering and

classification on the multi-relational network G given by (4.8). We then recorded the classifi-

cation accuracy on subgraph G1 and clustering NMI on subgraph G2. The results are shown

in Figure 4.4. At lower noise levels, the Joint classification outperforms both LGC and Ncut.

For higher noise levels in G12, the learned class information from G1 are not successfully

transferred to G2 for community detection and vice versa. In terms of the objective function,

the adjacency matrix C influences both the cluster membership(X) and class membership(Y)

factors. As C becomes noisier, it propagates noise into factors X and Y, thus bringing down

both accuracy and NMI.

4.3.2.3 Effect of Unequal Number of Clusters and Classes

We use the ”Uneven” configuration by varying q2 from 0.05 to 0.25 in step size of 0.05. We

apply LGC to the entire multi-network G (with number of classes equal to 3) and Ncut to G

(with number of clusters equal to 5). We compare their performance against the classification

accuracy of Joint on G1 and NMI of Joint on G2. The results are shown in Figure 4.5.

Here again, the proposed Joint learning algorithm outperforms LGC and Ncut at lower noise

levels. The performance of the Joint is comparable to LGC and Ncut at higher noise levels.

4.3.3 Wikipedia Data

In this experiment, we perform classification task on the article network and the community

detection task on the editor network. As mentioned earlier, there are four large communities

in the editor network and 12 sub-topics in the article network. Here we perform four sets of

experiments:

1. Apply LGC on article network only (with k1 = 12) and Ncut on editor network only

57

Joint (ME)
LGC

Joint (ME)
Ncut

58

Proportion of noisy links between networks

0.4

0.5

0.6

0.7

0.8

0.9

1
C

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

 in
 n

et
w

or
k

1

0.3

 0.05 0.10 0.15 0.20 0.25

Proportion of noisy links between networks
 0.05 0.10 0.15 0.20 0.25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

st
er

in
g

N
M

I i
n

ne
tw

or
k

2

Figure 4.4 Effect of varying the between-cluster link probabilities (q2) of bipar-
tite network G12 with same number of clusters/classes in both G1 and
G2. Top: accuracy on G1. Bottom: NMI on G2

Joint (ME)
LGC

Joint (ME)
Ncut

59

0.6

0.5

0.4

0.3

0.2

0.1

Proportion of noisy links between networks

 0.05 0.10 0.15 0.20 0.25

1

0.9

0.8

0.7

0.6

0.5

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 in

 n
et

w
or

k
1

C
lu

st
er

in
g

N
M

I i
n

ne
tw

or
k

2

 0.05 0.10 0.15 0.20 0.25

 Proportion of noisy links between networks

Figure 4.5 Effect of varying between-cluster Link probabilities (q2) of bipartite
network G12 with uneven number of clusters/classes. Top: Accuracy
on G1. Bottom: NMI on G2

Table 4.4: Clustering results of Wikipedia editors. Here (ME) refers to the run with minimum
error.

User network 4 clusters (NMI)
Ncut on editor network only 0.07
Ncut to entire multi-network 0.02
Joint(ME) without prior 0.32

Joint without prior 0.30 ± 0.0389
Joint(ME) with Prior 0.39

Joint with Prior 0.36 ± 0.0215

Table 4.5: Classification results of Wikipedia articles. Here (ME) refers to the run with minimum
error.

Article network 12 classes (accuracy)
LGC on article network only 0.87
LGC on entire multi-network 0.85
Joint without prior (ME) 0.84

Joint without prior 0.80 ± 0.054
Joint with Prior (ME) 0.88

Joint with Prior 0.85 ± 0.021

(with k = 4).

2. Apply LGC (with 12 classes) and Ncut (with 4 clusters) to the entire multi-network G.

3. Apply Joint to the article network (with k1 = 12) and editor network (with k2 = 4)

without using prior information.

4. Apply Joint to the article network (with k1 = 12) and editor network (with k2 = 4)

with using prior information.

The results are shown in Tables 4.4 and 4.5. As shown in Table 4.4, the independent

clustering of user network gives very bad results compared to the Joint approach. The

cluster NMI increases from 0.07 to 0.32. Using the prior information further boosts NMI to

0.39. However, this additional gain comes at the expense of slightly reduced classification

accuracy on the article network. Applying LGC on article network alone gives an accuracy

60

2

of 0.87 which reduces to 0.85, when applied to the entire multi-network. This is because

the class information provided by the article network is more useful than the “coarse-level”

cluster information provided by the editor network. Furthermore, a user typically contributes

to articles across different categories which makes it difficult to decide his/her actual class

label. We currently assigned the user to the category to which he/she has made the most

contributions. In fact, it is because of this problem, it is difficult to acquire the label

information in user network, and thus, clustering becomes a necessary task.

The Joint approach gives an accuracy of 0.84 on the article network. The loss in accuracy

in the article classification can also be explained by examining the resulting confusion matrix,

as shown in Table 4.6. The Joint approach identifies four communities in the editor network.

Each of these four communities have major correspondence with three article sub-categories.

Therefore, the Joint approach settles for a local minimum solution in such a way that the

resulting confusion matrix is block diagonal instead of pure diagonal. That is to say, the

identification of four communities in the editor network would propagate coarse-level cluster

information from the editor network to article network. This makes it harder to discern the

sub-categories in the article network and hence the drop in accuracy However, using the

right prior information improves the accuracy to 0.88.

4.3.3.1 Number of Iterations

In this section ,we discuss the effect of number of iterations on the proposed joint factorization

algorithm. Figure 4.6 shows the variation of the Wikipedia article network accuracy and the

editor network NMI with every 10 iterations. Both the values tend to stabilize in long run.

It should be noted that they do not necessarily exhibit a monotone property with respect to

the number of iterations. It is not easy to determine the exact number of iterations required

61

Table 4.6: Confusion Matrix - Article Network using Joint algorithm

Political Science Natural Science Computer Science Biology
753 21 29 9 27 3 215 1 1 6 1 2
14 1064 27 32 38 11 96 1 8 29 2 0
1 6 622 7 0 3 25 9 0 4 7 4
0 4 2 680 1 17 1 0 3 1 0 0
11 2 0 41 514 4 16 5 0 13 0 1
1 7 0 16 0 747 1 0 1 7 0 0
0 0 0 2 0 2 22 102 5 1 1 0
0 1 0 3 0 2 27 420 1 0 0 0
3 80 0 8 0 6 7 3 769 0 0 13
1 4 14 1 0 4 4 0 0 345 32 24
0 0 2 2 0 2 1 0 0 17 870 37
1 7 11 1 0 3 5 1 0 139 49 589

for convergence. We run the algorithm until the error between two successive iterations is

less than a specified threshold or maximum of 1500 steps.

4.3.4 Digg Data

Here, we linked the Digg users with Wikipedia editors based on the similarity between the

words in the bookmarked URLs and words in the edited Wikipedia articles. There are three

clusters in each network. The adjacency plot for these two networks is shown in Figure 4.7.

We first performed Ncut on the Digg data alone and Ncut on the overall network (Digg

+ Wikipedia + links between them). The confusion matrix is given in Table 4.7. As can be

seen in the adjacency matrix plot, the first two clusters are noisy and heavily interlinked.

So we obtain only two predominant clusters.

We apply the LGC algorithm to propagate labels in the Wikipedia data set. The results

are summarized in Table 4.8. The noisy Digg data has degraded the performance of LGC on

the Wikipedia network. Propagating labels only on Wikipedia data set gives an accuracy of

0.71, which reduces to 0.66 when applied to the multi-network.

62

The presence of noise on the Digg user network combined with noisy links between the

Wikipedia and Digg networks resulted in poor performance of the joint learning algorithm.

The number of clusters obtained is less than the number we expect. However, by incorpo-

rating the prior matrix P = I3, this ensures that we obtain three clusters on each network.

The results are shown in table below. Clearly, the Joint + Prior results are significantly

better than both Ncut and LGC.

63

E
di

to
r

ne
tw

or
k

N
M

I

A
rt

ic
le

 n
et

w
or

k
ac

cu
ra

cy
Purity

NMI

0

0 10 20 30 40 50

0.75

0.8

0.85

0.9

0.1

0.2

0.3

0.4

Figure 4.6: Plot showing the variation of classification accuracy and clustering NMI for
every 10iterations (best viewed in color).

Figure 4.7: Adjacency matrix plot for Digg users (right) and Wikipedia editors (left)
networks(best viewed in color).

Iterations (x 10)

Table 4.7: Confusion matrix for Digg clustering. The top panel shows the result of Ncut on Digg
user network. The bottom panel shows the clustering result on the multi graph consists of both
Digg users and Wikipedia editors. Only two dominant clusters were found on both.

Ncut on Digg Ncut on Digg + Wikipedia
1171 3 474 167 1481 0
1149 0 486 997 638 0
392 0 1995 1952 435 0
NMI - 0.143 NMI - 0.185

Table 4.8: Confusion matrix for Wikipedia classification. The left panel gives the confusion
matrix on applying LGC on Wikipedia editor network and the bottom panel gives the confusion
matrix on applying LGC on multi graph consisting of both Digg user network and Wikipedia editor
network.

LGC on Wikipedia LGC on Digg + Wikipedia
1463 203 150 1688 78 50
350 690 159 710 416 73
232 100 859 450 56 685
Accuracy - 0.71 Accuracy - 0.66

Table 4.9: Confusion matrix for Joint with prior information for the run with minimum error.

Digg - Cluster Wiki - Classify
1246 280 122 1710 84 22
136 1278 221 298 770 131
227 103 2057 55 118 1018

NMI = 0.44 Accuracy - 0.83

64

4.4 Summary

In this chapter, we have given a framework to perform mutual learning on multiple related

networks. Through various set of experiments, we infer that on a collection of noisy networks,

multi task learning performs better than independent task learning on individual networks.

We have also introduced the idea of using a prior to guide the clustering process. We have

demonstrated a practical use of our algorithm by identifying similar communities on different

network domains namely Digg and Wikipedia. Recently, researchers have used Wikipedia as

knowledge source or auxiliary information source to perform several data mining operations

like document clustering, web page classification, tagging and semantic relationship mining

etc. [6, 38, 44, 101, 102]. In this thesis, we show yet another novel use of Wikipedia where

in we use the link information between the Wikipedia articles to perform clustering of users

in other networks. In particular, we use the link information in Wikipedia to cluster users

in Digg network. Incorporating nodal attributes and improving scalability of the algorithm

to networks having millions of nodes are two potential directions for future research.

65

Chapter 5

Joint Community Detection and Link

Prediction

The ability to predict the formation of links in a network is an important task in network

analysis. A reliable link prediction model is useful for uncovering missing links in a static

network or for projecting the formation of new links in a dynamic network. The level of

link prediction accuracy sought often varies depending on the context of its application.

For example, despite its poor accuracy, the FOF (Friend of Friend) algorithm has been

extensively used in predicting future links between users in large social networks. However,

in critical applications such as bio-surveillance and terrorist network monitoring, predictions

are cost sensitive in that there is a severe penalty factor associated with different incorrect

predictions made by algorithm.

The low accuracies of link prediction algorithms can be attributed to the inherent skew-

ness of network data. In this regards, there are two types of skewness to be considered. The

obvious one is class skewness, which refers to the lopsided ratio of non-linked (the negative

class) to linked (the positive class) node pairs in a network. Typically the ratio is of the

order of O(1/N). Such high skewness would result in a biased decision boundary and re-

quires inclusion of skew correction approaches into the link prediction framework. Another

type of skewness, which has received little attention in the link prediction literature, is in

66

the degree distribution of the nodes. Since many networks exhibit a scale-free behavior, this

results in the (few) high degree nodes exerting the most influence on the prediction for the

positive class. As a result, most link prediction models tend to fail in their prediction for

the majority of the low-degree nodes. To avoid this, we need to develop a loss function for

link prediction that considers both type of skewness in the data.

In addition, existing link prediction methods are either global or local in nature. The

former (e.g., common neighbors [54]) simply utilizes information from the immediate neigh-

borhood of the nodes to make its prediction. Though such an approach tends to perform

poorly especially on large networks, it is computationally efficient. The latter (e.g., based on

supervised learning [43, 85]) often achieves better performance but at the expense of higher

computation time. Moving away from these two extremes is the method of finding links at

the community (cluster) level. The intuition here is that links are more likely to be formed

between nodes in the same community rather than those in different communities. However,

identifying the right set of communities is itself a challenging problem. One of the most

well-known community finding algorithms is based on the network modularity measure [72].

However, to the best of our knowledge, none of the existing link prediction algorithms are

designed to optimize the measure.

The main contributions of this chapter are as follows:

• We propose a variable-cost loss function for supervised link prediction that considers

both the imbalanced class distribution (of linked and non-linked node pairs) as well

as skewness in the degree distribution. The variable-cost loss function addresses the

bias in degree distribution by penalizing the misclassification of low-degree linked node

pairs more than misclassification of high-degree linked node pairs.

67

• We show the intimate relationship between the proposed loss function and the mod-

ularity measure used to identify communities in a network. As a consequence, a link

prediction algorithm that optimizes the proposed loss function is inherently biased to-

wards finding links within communities without explicitly identifying the communities.

• We design a boosting algorithm for link prediction called LinkBoost that optimizes

the cost-sensitive loss function. We also provide weak learners that utilize the nodal

attributes to estimate the link potentials between the node pairs.

• We present an approach for scaling up the LinkBoost framework by first decomposing

the network into smaller, potentially overlapping partitions and then combining the

predictions made by the weak learners constructed from the different partitions.

To the best of our knowledge, the degree dependent cost sensitive link prediction al-

gorithm is the first of its kind. Through the design of our loss function, the chapter also

highlights the connection between community-based link prediction, modularity measure,

and the boosting algorithm. Finally, experimental results show that our proposed Link-

Boost algorithm consistently performs as good as or better than many existing methods

when evaluated on 4 real-world network datasets.

5.1 Approaches for Link Prediction

Link prediction algorithms can be categorized in many ways. First, the algorithms can be

supervised or unsupervised. Second, they can be based on the observed link structure only

or may incorporate nodal attributes. Third, the algorithms may utilize the link structure in-

formation from immediate neighborhoods (local methods), entire network (global methods),

68

or at community levels.

The simplest unsupervised link prediction algorithm is based on computing the similarity

scores between a pair of nodes using the nodal attributes or their local network topology.

Examples of such local methods include common neighbors, Salton index [82], preferential

attachment [7, 105], and Adamic-Adar index [2]. The performance of the different local

measures were compared in [54, 116]. The results suggest that simple common neighbors

approach performs better than other local measures. A theoretical justification for the better

performance of common neighbors approach was presented in [78].

Unsupervised global methods for link prediction typically consider the weighted paths

between node pairs. Examples include the Katz measure [49], random walk with restart

[99], average commute time, and matrix forest index [15]. Measures based on paths, in

general offer higher prediction accuracy compared to the local similarity measures. However,

they require the entire network link structure and their computations are generally time

consuming.

Link prediction using supervised learning has been investigated by many authors [43,

46, 85, 97]. Al Hasan et al. [43] derived several nodal and topological features for link

prediction and applied a variety of classifiers such as support vector machines and decision

tree to predict links in bibliographic databases. Kashima and Abe [46] proposed a parame-

terized probability model for the link structure and developed an expectation maximization

algorithm to estimate the model parameters. Scripps et al. [85] employed a regularized

matrix factorization approach for link prediction. Taskar et al. [97] used a relational Markov

network to jointly model the nodal attributes and links. However, one of the main chal-

lenges in link prediction is the extremely large class skew, which leads to poor detection

rate. Rattigan and Jensen [80] suggested an alternative problem known as anomalous link

69

discovery to identify the most interesting links in the network. Recently, there have been

attempts to develop a semi-supervised approach for link prediction [48] as well as combining

link prediction with other tasks such as collective classification [11].

More recently, there have been attempts to develop link prediction algorithms using

generative models that account for the clustering (community) structure in the network.

Guimera et al. [39], used the likelihood based methods for estimating the reliability of a

link between any node pair, given the observed link structure. The reliability score is then

used to predict both missing and spurious links. Clauset et al. [18] have proposed maximum

likelihood based methods that represent the clusters in the network as a hierarchy, which in

turn are represented as a dendrogram. Each dendrogram has an associated likelihood value

indicating the strength of community structure represented by the dendrogram. The missing

links are predicted by first sampling large a number of dendrograms proportional to their

likelihood and for each unconnected node pairs i and j, the expected connecting probability is

computed by averaging the corresponding probability over all sampled dendrograms. Finally,

the node pairs are sorted according the connecting probability and highest ranked ones are

declared as potential links.

Both the reliability and hierarchical cluster model try to estimate the link potentials

between the node pairs at cluster level. They in fact, average over all possible partitions

of communities present in given network which makes it is very costly to implement even

on small sized networks. In this chapter, we suggest an alternative to these two algorithms

which strive to identify more links with in a community. We do this by defining loss function

whose associated risk when minimized, leans towards giving higher rating for the with in

community node pairs. We also show the relationship between the proposed cost sensitive

loss function and the well known modularity measure used for clustering networks.

70

5.2 Loss Function and Risk

We consider the link prediction task as a binary classification problem, in which a node pair

is assigned to the positive class if there is a link between them, or to the negative class

otherwise. Let V = {1, 2, · · · , n} denote the set of nodes in the network and E = V × V

denote the set of all node-pairs. We represent the adjacency matrix of the network as A,

where Aij = {+1,−1} indicating the presence or absence of links. Each node i ∈ V is

associated with a set of d-dimensional nodal attributes xi = {xi1, xi2, ..., xid}. Our objective

is to learn a target function f : V × V → ℜ that maps each node pair to its link potential.

The function is optimal if it minimizes the expected risk R = EE ,A[L(f(e), a)] for any given

node-pair e ∈ E , where L[f(e), a] is the loss function. The loss function usually takes the

form of

L[f(eij), Aij] =



0, if sgn(f(eij)) = Aij

C1, if sgn(f(eij)) ̸= Aij = 1

C2, if sgn(f(eij)) ̸= Aij = −1

(5.1)

where sgn(·) is the sign function, whose value is equal to +1 if its argument is non-negative

and −1 otherwise. When C1 = C2 = 1, this corresponds to the 0-1 loss function. Many

supervised link prediction algorithms are designed to yield a classifier that minimizes the

following 0-1 empirical loss function, which is given by

R̂0-1 =
1

n2

n∑
i,j=1

I

[
Aijsgn(f(eij)) ≤ 0

]
(5.2)

71

where I(·) is an indicator function, which is equal to 1 if its argument is true and zero

otherwise.

A major hinderance in this binary classification task is the class imbalance problem.

In the social network data, negative examples (non-linked node pairs) tend to outnumber

the positive examples by a significantly large proportion. The literature for classification

on imbalanced data suggests two approaches to tackle this problem, namely, sampling and

cost-sensitive learning. In the first approach, a balanced training set is obtained by un-

dersampling the negative examples or oversampling the positive examples. This approach

has several drawbacks. Firstly, undersampling the negative examples reduces the amount of

data available for training an accurate model. Furthermore, one has to do the undersam-

pling repeatedly to remove the sampling bias. On the other hand, oversampling the positive

examples in the social network data increases the training set size significantly, which in

turn, makes the training time considerably longer.

The cost sensitive learning approach is based on the premise that different classes of

examples (positives or negatives) incur different penalties for misclassification. The loss

function defined in (5.1) is cost sensitive if C1 ̸= C2, where C1 is the cost for misclassifying

linked node pairs as non-linked node pairs and C2 is the cost of misclassifying the non-linked

node pairs as linked node pairs.

The loss function defined in (5.1) and the associated risk functions are not differentiable,

hence does not offer mathematical dexterity in designing classifiers. The risk associlated

with exponential loss can be used as an alternative:

R̂exp =
1

n2

∑
ij

exp

[
− Aijf(eij)

]
(5.3)

72

The exponential risk is a continuous and differentiable function and it bounds the risk for 0-1

loss from above. It can be shown that an equivalent expression bounding the cost sensitive

loss function defined in (5.1) is

R̂cost-sens =
1

n2

∑
ij

[
I(Aij = 1) exp(−C1f(eij))

+ I(Aij = −1) exp(C2f(eij))

]
(5.4)

By simply changing the class labels for presence and absence of links from {+1,−1} to

{C1,−C2} the cost sensitive risk in Equation (5.4) can be transformed to the empirical risk

of (5.3). Generally the cost parameters C1 and C2 are chosen in such a way that they correct

for the classification bias that arises due to skewness in the class distribution. If n+ and

n− represent the number of positive and negative examples in the data, then C1 and C2 are

often chosen such that
C1
C2

=
n−
n+

. For large sparse networks, the fraction
n−
n+

= O(n), thus if

we fix C1 = 1, then the value of C2 ∼ n−1 which results in working with extreme penalties

that are easily polluted by the limitations of the machine precision. To avoid this, we need

to scale the cost of both positive and negative labels such that the desired penalty ratio is

maintained. Another significance of the cost ratio
C1
C2

is its role in determining the optimal

cost sensitive decision surface. The optimal decision surface for the cost sensitive learning

f∗ = arg minfEE ,A[L(e, a)]

is given by the Bayes Decision Rule [66]

f∗(e) = log
PA|E (a = 1|e)C1

PA|E (a = −1|e)C2
(5.5)

73

Hence for any cost structure (C1, C2), cost sensitive optimality differs from cost insensitive

optimality only through the threshold T = log
C1
C2

.

The preceding formulation assumes that C1 and C2 are constants. We argue that it may

not desirable to treat the misclassification cost for all the linked (and non-linked) node pairs

by the same yard stick. In the next section, we present a variable cost loss function, such that

misclassification of low degree linked node pairs incurs more penalty than misclassification

of high degree linked node pairs. We also show that such modification leads to a link

prediction algorithm that leans towards predicting more links within the same community

than otherwise.

5.3 Variable Cost Loss Function for Link Prediction

This section describes our rationale for introducing a variable cost loss function for link

prediction. It is generally observed that the degree distribution of real-world networks tends

to follow a power law distribution, where there are few high degree nodes and a large number

of low degree nodes. Consequently, a supervised learning algorithm for link prediction not

only faces the bias from the large number of non-linked node pairs (negative class) but

also from the small number of high degree nodes. Specifically, among the linked node pairs

(positive class), the high degree nodes contribute more in determining the decision surface.

Since we want to build models that can explain the observed links between any node pairs

and not strongly influenced by the links formed for a few of the high degree nodes, we need

to design a loss function that removes this bias within the positive class.

One way to do this would be to make the misclassification penalty dependent on the

degree of the nodes. Let ki be the degree of node i. Then the cost of misclassifying the

74

linked node pair eij is given by

C1(eij) = 1− βkikj ,

where β is user defined parameter, typically chosen to keep the cost function non-negative.

Notice that C1 monotonically decreases with increasing degrees of ki or kj , thus penalizing

more for misclassification of links between low degree nodes compared to misclassification of

links between the high degree nodes.

Analogously, the same reasoning can be made about the non-linked node pairs. The low

degree node pairs exert a higher influence on the negative class than the high degree node

pairs. To remove this bias among the negative examples, we define the cost for misclassifying

non-linked node pairs as

C2(eij) = γkikj ,

which increases when the node degrees are higher. We now need to account for the overall

bias between the positive and negative examples, this is done by choosing the value of β and

γ such that C2 < C1. Putting it all together, we obtain the following loss function

L(f(eij), Aij) =



1− βkikj , if sgn(f(eij)) ̸= Aij = 1

γkikj , if sgn(f(eij)) ̸= Aij = −1

0, otherwise

(5.6)

The distinguishing aspect of the above loss function is that it assigns variable misclassifi-

cation cost for different node pairs. When β = 1∑
i ki

the term βkikj represents the expected

75

number of links between the node pair i and j [72]. We will show in the next section that

for this specific value of β, lowering the risk associated with the variable cost loss function

is same as maximizing the modularity measure. This results in the learning algorithm being

biased more towards learning links between the node pairs in same community than learning

the links that lie between the communities.

5.4 Modularity

A well accepted conjecture in the network mining literature is that link densities are expected

to be higher within a community than between communities. This suggests the possibility

of an intimate connection between link prediction and community finding tasks. A popular

method to identify communities in a network is using the well known modularity measure

[72]. Here the possible existence of a community in a given network is revealed by comparing

the actual link density in the subgraph induced by the community and the density one

would expect to have if the nodes of the subgraph were linked irrespective of the community

structure. The modularity measure can be mathematically quantified as follows.

Q =
∑
ij

[
I(Aij > 0)− Pij

]
I(ci = cj), (5.7)

where Pij is the expected number of links between the nodes i and j under a null model

(or reference network). The variables ci and cj represent the community membership of

nodes i and j respectively. Modularity-based community finding algorithms are designed to

assign the nodes to different communities such that the overall modularity measure, Q, is

maximized. The null model used often corresponds to that of a random graph with the same

76

degree distribution as the given network. This leads to [17]

Q =
1

n2

∑
ij

[
I(Aij > 0)−

kikj
2m

]
I(ci = cj) (5.8)

where m =
∑

i ki/2 is the number of links in the network.

The following theorem shows the equivalence between maximizing (5.8) and minimiz-

ing the risk associated with a special case of the loss function given in (5.6). Consider

a community-based link prediction model that predicts the existence of a link between a

node-pair based on whether the nodes are in the same community, i.e.,

sgn(fcomm(eij)) =


+1, if I(ci = cj);

−1, otherwise.

(5.9)

Theorem 2 For the variable cost loss function given in (5.6), minimizing the risk associated

with the community-based link prediction model fcomm(eij) with β = γ = 1∑
i ki

is equivalent

to maximizing the modularity function in (5.8)

Proof 1 The empirical risk associated with the variable cost loss function given in (5.6) for

the community-based link prediction model is

R̂mod =
1

n2

[∑
ij:Aij=1

I(sgn(fcomm(eij)) = −1)(1− βkikj)

+
∑

ij:Aij=−1
I(sgn(fcomm(eij)) = 1)(γkikj)

]

=
1

n2

[∑
ij:Aij=1

(1− δij)(1−
1

2m
kikj)

+
∑

ij:Aij=−1
(δij

1

2m
kikj)

]
(5.10)

77

where we have replaced I(sgn(fcomm(eij)) = 1) = δij and β = γ = 1/2m. Now minimizing

the empirical risk with respect to δ is equivalent to maximizing the following

min
f

R̂mod

= max
δ

1

n2

[∑
ij:Aij=1

δij(1−
kikj
2m

)−
∑

ij:Aij=−1
δij

1

2m
kikj

]

= max
δ

1

n2

∑
ij

δij

[
I(Aij > 0)−

kikj
2m

]
(5.11)

Since δij = I(sgn(fcomm(eij)) = 1) = I(ci = cj), this completes the proof.

The preceding theorem suggests that maximizing the modularity measure is equivalent

to minimizing a special case of the loss function using the clustering solution, fcomm(eij) as

the link prediction model. The clustering solution uses only the network topology to explain

the link potential between node pairs. In contrast, our proposed variable cost loss function

provides a framework that allows us to estimate the link potential using other information

including the nodal attributes. We design the fcomm(eij) as function of nodal attributes xi

and xj . Our experimental results have demonstrated the effectiveness of using an exponential

loss compared to modularity function (5.24) for link prediction.

5.5 Boosting Approach for Link Prediction

This section presents our method for optimizing the variable-cost loss function given in

Section 5.3. The risk associated with the loss function given in (5.6) is non-differentiable, so

78

we employ the following variable-cost empirical risk function:

R̂mod =
1

n2

∑
ij

[
I(Aij = 1) exp[−(1− βkikj)f(eij)]

+ I(Aij = −1) exp[γkikjf(eij)]
]

(5.12)

If we set β = γ then the above loss function reduces to

R̂mod =
1

n2

∑
ij

exp

[
(I(Aij > 0)− βkikj)f(eij)

]
(5.13)

This form of loss function is well studied in the machine learning community using ad-

ditive modeling or boosting techniques [19]. Specifically, an additive model takes the form

of

fα(x) = sgn

[∑
t

αtft(x)

]
.

For boosting, each fi corresponds to a weak learner and the goal is to identify a sequence of

constants α1, ..αk such that a linear combination of the weak learners performs better than

any of the individual learners.

5.5.1 Estimating αt

Our aim is to design a boosting algorithm that minimizes the variable-cost empirical risk

function R̂mod. To do this, we need to induce a sequence of weak learners that help in

reducing the risk as optimally as possible. Let F =
∑t−1

i=1 αif
i be the previous solution of

the boosting algorithm at step (t−1) and f t is the currently induced weak learner. We need

to identify an appropriate αt that would lead to an improvement in R̂mod. The optimization

79

problem at step t is given by

min
αt,f

t

∑
ij

exp

[
−

(
I(Aij > 0)−

kikj
2m

)(
Fij + αtf

t(eij)

)]
(5.14)

To highlight the effect of current weak learner we need to isolate the effect of past weak

learners from the equation. Let

Dij = exp

[
−
(
I(Aij > 0)−

kikj
2m

)
Fij

]
Mij =

(
I(Aij > 0)−

kikj
2m

)
f t(eij)

sij = sgn(Mij)

W+ =
∑

ij∈Mij>0

Dij |Mij |

W− =
∑

ij∈Mij<0

Dij |Mij | (5.15)

It can be shown that the objective function given in (5.14) is bounded as follows:

∑
ij

exp

[
−

(
I(Aij > 0)−

kikj
2m

)(
Fij + αtf

t(eij)

)]
=

∑
ij

Dij exp(−αtsij |Mij |)

≤
∑
ij

Dij |Mij |(exp(−αtsij)− 1)

≤ (W+ exp(−αt) +W− exp(αt)−W+ −W−) (5.16)

where the inequality follows from applying Jensen’s inequality and the assumption that

80

|Mij | ≤ 1. For a given f t taking its partial derivative with respect to αt gives

αt =
1

2
log

W+

W−
(5.17)

The formula for αt is similar in spirit to regular AdaBoost in which αt =
1
2 log

1−e
e , where e

is the error rate for the weak classifier. In our case, the W+ and W− represent the weighted

sum of the correctly classified and incorrectly classified node pairs.

5.5.2 Weak Learners

This section describes the construction of the weak learners used in our boosting framework.

Similar to traditional boosting, we could apply any simple classifier as long as it takes

into consideration the weight matrix D associated with the node-pairs. The weak learner

considered in this study is computed based on the nodal attributes and can be computed in

closed form.

Let X represent the n × d nodal attribute matrix. Given the current weight matrix D

between the node pairs, the goal of weak learner is to estimate the n×n link potential matrix

L(X) where Lij = f t(eij) indicates the strength of link between the nodes i and j. Large

positive values of Lij indicate greater potential for link between the nodes and large negative

values indicate greater repulsion for link formation between the nodes. We model L(X) as

simple weighted correlation of the nodal features. Let L(X) = XWXT . Here the weight

matrix W is a d × d matrix that needs to be estimated by solving the following objective

function.

Q = max
W

∑
ij

(DijBij)[XWXT]ij)−
λ

2
∥ W ∥22 (5.18)

81

where Bij = [I(Aij > 0)−
kikj
2m] is the coefficient term of the modularity measure or the cost

associated with each node pair. Differentiating the objective function we get,

∂L
Wpq

= −
∑
ij

DijBij(XipX
T
qj) + λWpq = 0 (5.19)

We get,

Wpq =
1

λ

∑
ij

XipDijBijX
T
qj

=
1

λ

∑
ij

XT
piDijBijXjq (5.20)

Let • denote the element wise matrix multiplication, then W can be written as

W =
1

λ
XT (B •D)X (5.21)

Thus the link potential function L(X) = XWXT for the given weight matrix D is given by

L =
1

λ
XXT (B •D)XXT (5.22)

A crude interpretation of the above solution is that it aligns the correlation between the

nodal attributes with the modularity matrix. λ is chosen as a normalization constant such

that the estimated link potentials are mapped between [−1, 1]. A distinct aspect of above

definition of weak learners is that it does not require explicit conversion of nodal features

to edge features. Traditional classifiers like support vector machine or logistic regression

requires one to construct feature for each node pair from the nodal features, which itself is

a time consuming process.

82

5.5.3 Scalability

Link prediction algorithms such as Preferential Attachment and Common Neighbors, though

often have poor performance, are still considered attractive for many practical applications

as they are easy to implement and scalable to large sized networks. Scalability is one of the

important aspects of the proposed link prediction algorithm. Even though the number of

links in large sparse networks is small, the supervised link prediction algorithm must examine

all possible node pairs thereby increasing the size of data to be dealt with. In addition to

the number of node pairs, the number of features associated with each node may add severe

constraints on the performance of the model with respect to speed, memory requirement,

and accuracy.

In this section, we describe an approach to scale up our proposed algorithm by decom-

posing the network into smaller, potentially overlapping partitions and using the boosting

approach to systematically combine the weak learners constructed from each partition. This

divide-and-conquer strategy is well suited both for the link prediction problem and the boost-

ing framework since link formation is typically a local phenomenon, in the sense that there

are several small communities in the network and the links are formed more inside that

community. Thus it is beneficial to construct a local (weak) learner from a small segment of

the network at a time and aggregate them in a principled way to form the global model via

the boosting formulation.

There are many strategies to create subgraph partitions from a large network. Our

requirements are that (1) the partitions must be distinctive enough from each other to

induce a diverse (uncorrelated) set of weak learners and (2) the partitioning approach must

be efficient to implement especially for large-scale networks. We tried several partitioning

83

strategies (e.g., applying random walk starting from randomly chosen seed nodes) but found

that they often fail to satisfy one of the two requirements. This led us to consider the domain

partitioning strategy, which is inexpensive to implement and often produces a diverse set of

partitions.

The proposed scalable LinkBoost algorithm is summarized in Algorithm 2. The function

GetFeaturePartition(η) returns a feature partition where each partition set contains η%

of the features. For each partition, we create a subgraph containing only those nodes that

have at least one non-zero value with respect to the selected set of features. We then build a

local model on the subgraph by invoking the GetBaseLearner subroutine. The subroutine

takes the following parameters as input: (1) Av, the adjacency matrix associated with the

subgraph induced by the feature partition P, (2) Xp, subset of the nodal attributes in the

subgraph, (3) Dv, weights on node pairs in the subgraph, and (4) kv, global degree of the

nodes in the subgraph. The weight returned by the GetBaseLearner subroutine is used to

update the estimated link potential matrix. This process is repeated T times on all subgraphs

obtained by different feature partitions.

In addition to its efficient implementation and diversity of its induced weak learners,

another advantage of the domain partitioning strategy is that the final hypothesis has a

nonlinear decision surface. It can be easily seen that the weak learner XWXT described

in Section 5.5.2 yields a linear decision surface separating the linked and non-linked node

pairs. Since the boosting algorithm combines the weak learners also in a linear fashion, it

will not be able to significantly alter the decision surface. However, by employing domain

partitioning in the weak learner construction, we will work with a distinct subgraph at a

time. The weight matrix W returned by GetBaseLearner function is applied only to the

current subgraph V and not to the entire network. This results in inducing a non-linear

84

Algorithm 2 LinkBoost

Input: A: n× n adjacency matrix with {+1,−1} entries
X: n× d nodal attribute matrix
η: threshold for feature partitioning

Output: F: n× n link potential matrix
Initialize:
F = [0]n×n; D(0) = [1]n×n;
k: n× 1 column vector of node degrees

for t = 1 to T do
P ← GetFeaturePartition(η)
for Xp ∈ P do

V ← GetSubGraphNodes(Xp)
W ← GetBaseLearner(Xp, Dv,kv, Av)

Compute fv = XpWXT
p

Compute α using (5.17)
Fv ← Fv + αfv
Dv = Dv exp(−αAv • LV)

end for
end for
return F

decision surface (clipped line) in the feature space (a line with respect to node pairs in

current partition and value zero for node pairs outside the partition). Finally the boosting

algorithm combines the collection of clipped lines to produce a final classifier with non-linear

decision surface.

5.6 Experimental Evaluations

This section reports the results of experiments conducted on the proposed LinkBoost algo-

rithm. Since link prediction is cost sensitive in nature, we compare the algorithm against

other baseline methods using the receiver operating characteristic (ROC) curve. The curve

is obtained by calculating the true positives and false positives by varying the threshold on

the estimated link potentials between the node pairs. The link prediction model is built on

the training set while the ROC curves are plotted for the node pairs in the test set.

85

5.6.1 Baseline Algorithms

We compared the performance of LinkBoost against the following link prediction algorithms

discussed in the related work section.

Link-Based: We used three link based algorithm for link prediction. These are Preferen-

tial Attachment, Katz and Modularity. Preferential attachment estimates the link potential

between a node pair as product of their degrees. The Katz measure is defined as

score(x, y) =
∞∑
l=1

βl | path(l)ij | (5.23)

where | path(l)ij | is set of all path of length l from node i to node j and 0 < β < 1 is a user

parameter. A special variant of Katz is the truncated Katz in which only finite number of

terms in the summation are considered. The number of terms to consider is again a user

given parameter. The Katz measure is sensitive to both these parameters. The modularity

measure for link prediction is computed as follows. Let Sir to be 1 if vertex i belongs to

group r and zero otherwise. Then modularity maximization involves identifying a n × k

matrix S with elements Sij such that following equation is maximized.

max
S

tr STBS (5.24)

The problem (5.24) is NP hard and is relaxed by letting S to be any real matrix such that

STS = I. We then define fcomm(eij) =
∑

r SirSjr.

Attribute Based: Here we use the well known Fixed Cost Adaboost where the cost

parameters are set to C1 = 1 and C2 = 0.01. It is not possible to make the cost more

than 1 as the derivation of α assumes that |Mij | ≤ 1. Furthermore, only the cost ratio
C1
C2

86

matters and not their absolute magnitudes. Similarly, the modularity matrix B is multiplied

by constant factor so that the magnitude of entries are less than 1. For LinkBoost, we set

η == 0.05. The base learners used for both LinkBoost and Fixed Cost Adaboost are the

same (see Section 5.5.2).

5.6.2 Data Sets for Inferring Missing Links

Here we consider the problem of inferring missing links from an incomplete network. We use

two well-known citation networks 1 [89]—citeseer and cora data sets—for this experiment.

In both the data sets, we first make the graph undirected and randomly suppress 30% of the

links from the network and use them as the test set for predicting missing links.

Cora Data Set contains publications from the machine learning area, which include

the following 7 subcategories: Case-based reasoning, Genetic Algorithms, Neural Networks,

Probabilistic Methods, Reinforcement Learning, Rule Learning and Theory. The data set we

use contains 2708 nodes, 5429 directed links, and 1433 unique words. Each node corresponds

to a paper and is characterized by a 0/1-valued vector indicating the absence/presence of

the corresponding word from the title of the paper.

Citeseer Data Set consists of data from 3312 scientific publications. Each publication

is labeled as one of 6 classes. The data set we have created contains 4732 links and 3703

unique words.

5.6.3 Data Sets for Predicting Future Links

Here, we are given the network link structure and the nodal attributes at a particular time

period. Our task is to predict the link formed between the given nodes at a future time.

1http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html

87

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cora Dataset

Katz
PA
Modularity
LinkBoost
AdaCost

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Citeseer Dataset

Katz
PA
Modularity
LinkBoost
AdaCost

Table 5.1: Link Prediction: The table shows the AUC of predicted missing links and future links
in each of the four data sets.

AUC (% improvement compared to LinkBoost)

Data Method Cora Citeseer DBLP Wiki

Link Only Katz 0.72 (-16.70%) 0.63 (-41.30%) 0.61 (-17.50%) 0.86 (-2.20%)
PA 0.63(-14.20%) 0.59(-33.70%) 0.71(-4.00%) 0.90(+2.20%)

Modularity 0.67(-20.00%) 0.60(-32.50%) 0.63(-14.86%) 0.64(-27.27%)

Link+ AdaCost 0.53 ± 0.09(-36.90%) 0.54 ±0.12 (-39.32%) 0.56 ± 0.2 (-24.32%) <.50
Content LinkBoost .84± 0.025 .89±0.063 .74± 0.18 .88± 0.14

88

topK

P
ro

ba
bi

lit
y

of
 G

oo
d

Li
nk

s

0 1 2 3 4 5

x 10

P
ro

ba
bi

lit
y

of
 G

oo
d

Li
nk

s

5

5
0 1 2 3 4 5

 x 10topK

Figure 5.1: Proportion of within community links (good links) as function of topK values

DBLP Data Set contains all the computer science articles 2 from the proceedings of 28

conferences related to machine learning, data mining and databases from 1997 to 2006. The

train set consists of all publications from 1997-2000 and test set contains all publications

from 2001-2004. There are 9252 nodes in the train set with 9136 nodal attributes. There

are 21, 107 links in the train set and only 6679 links in the test set.

Wikipedia Data Set is a web page network which was crawled from Wikipedia web

site by Kossinets3. The data set contains edit history of all the pages in Wikipedia from

its inception until January 2008. We examined the user-user interaction network (user talk

pages). The user interactions in the first 6 months of 2004 is taken as train set and the next

6 months is taken as test set. There are 8178 users and 24891 features for each user.

5.6.4 Links Within Community

First, we evaluated the performance of the LinkBoost algorithm in terms of its ability to

predict links within community. For both cora and citeseer data sets we use the ground truth

community label to verify the proportions of links formed within community for each of the

link prediction algorithms. We sort the link potentials and declare the top-K largest link

potentials as the possible missing or future links. Figure 5.1 shows the plot of the proportion

of within community links or good links as function of top-K values. Clearly, the LinkBoost

algorithm outperforms both modularity and Katz measures, thus validating the claim that

our algorithm indeed strives to identify links within a community. The proportion of good

links identified by modularity and Katz are quite high for smaller values of topK, but falls

significantly for larger topK values.

2http://dblp.uni-trier.de/
3G. Kossinets. Processed Wikipedia Edit History. Stanford large network dataset collec-

tion.

89

Katz
PA
Modularity
LinkBoost
FC−Ada

Katz
PA
Modularity
LinkBoost

90

DBLP Dataset
T

ru
e

P
os

iti
ve

False Positive

0
0 0.2 0.4 0.6 0.8 1

0.4

0.2

0.6

0.8

1

0
 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

WIKI Dataset
1

T
ru

e
P

os
iti

ve

False Positive

Figure 5.2: ROC curves comparing performances of different link prediction algorithms.

0.2

0.4

0.6

0.8

1
CORA Dataset

Katz
PA
Modularity
LinkBoost
FC−Ada

CITESEER Dataset

Katz
PA
Modularity
LinkBoost
FC−Ada

91

False Positive

T
ru

e
P

os
iti

ve

0
 0 0.2 0.4 0.6 0.8 1

0
 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve

False Positive

Figure 5.3: ROC curves comparing performances of different link prediction algorithms.

5.6.5 Missing and Future Links

Next we evaluate the performance of LinkBoost for the missing and future link prediction

problems. The ROC curves are shown in Figure 5.2 and 5.3. Firstly, notice that the AUC of

LinkBoost is consistently higher than modularity measure. As mentioned earlier, modularity

utilizes only the network link structure whereas boosting makes use of both the link and the

content information thus resulting in superior performance. The LinkBoost consistently

outperforms the fixed cost Adaboost as well, highlighting the importance of the proposed

variable cost structure.

LinkBoost outperforms the Katz measure on both cora and citeseer citation networks.

The Katz measure performs better than the fixed cost Adaboost on the DBLP network and

as good as LinkBoost on Wikipedia network. However it is sensitive to choice of parameter

setting. In this chapter, we report the results based on the parameters that best fits the test

set.

Finally, LinkBoost outperforms the preferential attachment measure on both the citation

networks. However it is performance is comparable to preferential attachment on DBLP and

Wiki networks. Specifically, LinkBoost is slightly better than preferential attachment on

DBLP network and is slightly worse on Wikipedia network. This is because the preferential

attachment algorithm is based on the premise that the rich gets richer. We suspect that

the user network in Wikipedia exhibit the preferential attachment characteristics where few

authoritative users communicate with large number of other users. The average AUC for

LinkBoost is 0.88 and for preferential attachment is 0.90.

92

5.6.6 Low Degree Nodes

In this section, we demonstrate the ability of the proposed method to identify the links

formed between low degree nodes in the citation networks. A node with degree less than

2 is considered to be a low degree node. We compute the models on the training set and

estimate the ROC curves for the subgraph consisting of low degree nodes. The results are

plotted in Figure 5.4. As expected, the preferential attachment measure under performs as

it ranks the high degree nodes ahead of the low degree nodes. The proposed LinkBoost with

effective degree sensitive loss function overcomes this problem.

5.7 Summary

In this chapter, we have given a new direction for the supervised link prediction problem

in large sparse networks. We have proposed a new degree dependent cost function and

has shown that minimization of the associated risk leads to modular link prediction where

more links are predicted within community. Such a cost function addresses the skewness

in class distribution and skewness in nodal degrees. The proposed algorithm is scalable

and easy to implement. Experimental evaluations show the superior performance of the

proposed method over existing supervised and unsupervised methods. The proposed method

is specially effective in predicting the missing links for the low degree nodes. For future work,

we plan to investigate methods for estimating optimal cost parameters and alternate ways

for creating the weak learners used in LinkBoost formulation.

93

0.2

0.4

0.6

0.8

1

Katz
PA
Modularity
LinkBoost
FC−Ada

0.2

0.4

0.6

0.8

1

Katz
PA
Modularity
LinkBoost
FC−Ada

94

False Positive

T
ru

e
P

os
iti

ve
T

ru
e

P
os

iti
ve

False Positive
Citeseer Dataset

Cora Dataset

0
 0 0.2 0.4 0.6 0.8 1

0
 0 0.2 0.4 0.6 0.8 1

Figure 5.4: ROC curves comparing performances of different missing link prediction
algorithmson the subgraph induced by the low degree nodes in the citation networks.

Chapter 6

Crowdsourcing for Network Mining

In the previous chapters, we have presented multi-source and multi-task network mining

frameworks for both supervised and unsupervised learning tasks. A key requirement for

developing supervised learning algorithms is the availability of trustworthy label information

for the given mining task. The quality of the labeled data often affects the performance of

the learning algorithm. In this chapter, we present a framework that engages the services

of crowdsourcing technology in order to acquire (or augment) the label information for the

network data. First, we briefly discuss the role of crowdsourcing in aiding the label acquisition

process. Next, we highlight the challenges that are present in acquiring label information

for network data. Finally, we present a novel approach which transforms the given network

data into an image corpus for labeling by the crowd.

Crowdsourcing [23] is an emerging technology where a group of human workers, some of

whom might be unskilled, are employed to solve a certain task that cannot be automatically

and/or reliably solved by computers. For example, image annotation is a task that involves

categorizing individual images in a corpus into certain pre-defined categories. It is not always

possible to automate this task using computers and often times, humans can perform the task

more accurately than computers. The key challenge for harnessing the power of the crowd

lies in converting the problem at hand into a simpler task that can be handled by humans

with great ease and speed. Such tasks are called Human Intelligence Tasks or HITs. For

example, in the image annotation problem, the individual images constitute a HIT, which

95

are displayed to workers in order to elicit their label information. In the past, researchers

have successfully employed the crowd to annotate data for search and retrieval problems

[3, 67, 81, 93]. In addition, the power of the crowd has been harnessed to perform machine

learning tasks such as clustering and classification [37, 45, 113].

One advantage of utilizing the services of crowdsourcing is that once the HITs are de-

signed, they can be solved even by low skilled human workers (without any domain knowledge

or expertise) for a menial payment. Therefore, the valuable time of domain experts can be

spared from performing cumbersome data labeling task and focused on analyzing the data

instead. The goal of this chapter is to design simple and easy to use HITs that can be pre-

sented to the crowd for acquiring label information in the network data. Unlike the image

annotation problem, designing HITs for network data is more challenging as the raw net-

work data does not easily lend itself to be presented to the crowd. Also, there are inherent

privacy concerns when presenting social network data to third party workers. Therefore one

has to design HITs that are simple and intuitive for average humans to act upon and at the

same time do not disclose the original data in any way to the workers. To overcome this

challenge, we present a data transformation approach whereby the network data is initially

transformed into images so that it can visualized and subsequently classified by the crowd.

6.1 Transforming Network Data into Images

Data transformation is a preprocessing procedure for converting an input pattern into a

suitable representation before we apply supervised and unsupervised learning algorithms.

Traditional approaches are mostly designed for in-domain data transformation, which means

they simply manipulate the input space in such a way that the transformed space is more

96

aligned with the requirements of the learning algorithm. Such approaches would typically

project the data into a low dimensional manifold (in order to remove noise as well as to

eliminate redundant and irrelevant features) or map the data into a higher dimensional

space (to extend the feature representation and enable the use of linear classifiers to discern

patterns that belong to different classes). The in-domain transformation approaches do not

bring any new information that was not already present in the original data.

Unlike previous research, this work investigates an out-of-domain data transformation

approach that enables the use of crowdsourcing technology for network mining problems.

Specifically, the transformation involves two unrelated domains (source and target), each

having a unique set of attributes, classes, and probability distributions. The target is the

domain in which the desired classification task is to be performed but has limited labeled

data, whereas the source serves as an auxiliary data source for which labels are already avail-

able or can be easily acquired even from non-experts. For this study, the source corresponds

to a collection of labeled images whereas the target is a social network. Since the domains

97

Figure 6.1: A toy example consisting of target network data (A) and source handwritten digit data
(B). We map each distinct labeled target node to a unique source image and learn the transformation
between target and source data. When this transformation is applied on all the target nodes, we
get the transformed target data (C). The blurry images are interpreted in Section 6.1.

are unrelated, a key challenge is to learn a proper transformation function that maps each

labeled example in the target domain to its corresponding “surrogate” in the source domain.

To illustrate the proposed approach, consider the toy example shown in Figure 6.1. Here

the source domain is a collection of hand written digit images corresponding to digits 1, 2, 3

and 4 (see Figure 6.1B). The target domain, is a network data with four distinct commu-

nities denoted as A,B,C and D, as shown in Figure 6.1A. The circles and lines are the

nodes and links, respectively. Solid circles correspond to labeled nodes, whereas unfilled

circles represent the unlabeled ones. The solid and dotted lines represent within community

and between community links, respectively. We map each distinct labeled node to one of

the labeled images and learn their corresponding transformation matrix. The mapping is

done in such a way that nodes from communities A,B,C and D are mapped to distinct

images corresponding to digits 1, 2, 3 and 4, respectively. The transformation is then ap-

plied to the unlabeled examples in the target domain to generate their corresponding images

transformed node representation in the image space. A good transformation may help reveal

certain aspects of the underlying network. For example, the node C2 in community C has

links to nodes outside of its community. After the transformation, even though the majority

of the images associated with the nodes in community C are mapped to the digit 3, the

image for node C2 is harder to discern because it lies at the border with other communi-

ties. Furthermore, the node D1, which has more links to nodes in community B than to

those in its own community, is transformed into an image that resembles digit 2 more than

digit 4. This example suggests that, although the feature space has completely changed, the

transformed images should still retain useful information that helps provide insights into the

latent structure of the network data.

98

for subsequent labeling by the crowd. Figure 6.1C gives a pictorial representation of the

A key question that remains to be answered is whether it is always possible to find a

proper transformation that effectively maps nodes in a social network to images that can

be easily discerned by humans. To help answer this question, we analyze the reconstruction

error of the transformation and examine its relationship to the ranks of data matrices in

the source and target domains. An alternating least square method is presented to learn

a transformation matrix that minimizes the reconstruction error. Using network data from

two real-world domains, we empirically showed the effectiveness of the framework in pro-

viding labels to solve a variety of network learning tasks including link prediction and node

classification.

The remainder of this chapter is organized as follows. Section 6.2 presents the notations

used in this chapter and defines the data transformation problem for crowdsourcing social

networks. In Section 6.3, we introduce our proposed framework for augmenting training data

in the target domain with newly acquired labeled data from the source domain. Section 6.4

describes the detailed methodology for learning the transformation. We also discuss the

conditions under which an exact transformation can be found. Experimental results are

given in Section 6.5. Finally, we conclude with a summary of the work and suggestions for

future research.

6.2 Preliminaries

Let S and T denote the source and target domains. Throughout this chapter, we assume

the source is an image corpus for which labels can be easily acquired from the crowd (human

workers) whereas the target is a social network for which obtaining reliable labels is expensive.

Both domains are assumed to have their own training examples. We further assume that

99

the classifier in the target domain can be improved if more labeled examples are augmented

into the training set.

Let X(s) be an ns× ds data matrix for the source domain and Y(s) be its corresponding

ns × cs class membership matrix, where ns is the number of labeled examples, ds is the

number of attributes, and cs is the number of classes. Each element ysij in the matrix Y(s)

is equal to 1 if the labeled example x
(s)
i belongs to class j and zero otherwise. Similarly,

let X(t) = [X(tl);X(tu)] denote an (nt + r)× dt data matrix for the target domain and Y(t)

be its corresponding nt × ct class membership matrix, where nt is the number of labeled

examples, r is the number of unlabeled examples, dt is the number of attributes, and ct is

the number of classes in the target domain. For brevity, we assume cs = ct = c and ns ≫ nt.

Our goal is to learn a dt×ds transformation matrix U that effectively maps each labeled

target example to a surrogate example in the source domain in such a way that preserves

the distance and label information of the two data sets as much as possible. For example, in

Figure 6.1, we seek a transformation matrix U that maps all the nodes from community A

to images containing the handwritten digit 1, those from community B to images containing

the digit 2, and so on. After learning the transformation, any unlabeled node can be mapped

to its corresponding image by applying the matrix U to its node attributes. The transformed

images can be labeled by human workers and the newly acquired labels can be combined

with the original labeled data to train a better classifier.

6.3 Proposed Framework

This section presents an overview of our proposed framework for augmenting training data in

the target domain with labeled examples acquired from the source domain. The framework

100

consists of the following tasks:

1. Surrogate Mapping. Given the labeled examples in the source and target domains,

(X(s),Y(s)) and (X(tl),Y(tl)), we need to learn a transformation matrix U that maps

each x
(tl)
i ∈ X(tl) to its surrogate x

(s)
j ∈ X(s). The mapping should be done in such a

way that instances of a particular label in the target domain are mapped to instances

of a fixed label in the source domain.

2. Surrogate Labeling. The transformation matrix U will be applied to unlabeled data

in the target domain X(tu) to generate new surrogates X̂(su) for labeling by human

workers. Since each surrogate can be labeled by more than one workers, a consensus on

the class label must be made for each target instance (e.g., by taking a majority vote

on the class labels). Let Y(tu) denote the consensus labels obtained for the unlabeled

target instances.

3. Model Building. The newly labeled target examples (Xtu,Ytu) are merged with the

original training data. A classifier will be trained on the extended training data to

generate a new predictive model for the target domain.

The key challenge is to develop an effective and efficient algorithm for learning the trans-

formation matrix U. We describe the details of the algorithm in the next section.

6.4 Surrogate Mapping

We cast the surrogate mapping task into a constrained optimization problem. First, we need

to design an objective function that assigns each target example to a unique source example

satisfying the label consistency requirement as well as minimizing the reconstruction error.

101

In order to do this, we define an nt × ns surrogate selection matrix P, such that Pij = 1

indicates that the source example x
(s)
j is the surrogate for target example x

(t)
i . The objective

function for the surrogate mapping task is given below:

min
U,P,Q

∥ PX(s) −X(tl)U ∥2F + ∥ PY(s)QT −Y(tl) ∥2F

s.t. ∀i, j : Pij ∈ {0, 1}, P1ns = 1nt ,

∀i, j : Qij ∈ {0, 1}, Q1cs = 1ct ,

where ∥ · ∥F denote the Frobenius norm and 1d is a d-dimensional column vector of all

ones. The constraints ensure that the elements of the matrix P are binary-valued and

that each target example is mapped to exactly one source example. The first term in the

objective function is a measure of reconstruction error when mapping the target examples

into instances of the source domain. The second term in the objective function ensures

consistency of the class labels, i.e., labeled examples of a particular class in the target

domain are mapped only to source examples of the same class. The label matching matrix

Q is a cs × ct binary-valued matrix that represents the mapping between the class labels

of the source and target domains. Assuming cs = ct = c and since the classes in the

source and target domains are often unrelated, we found it is sufficient to assign Q to be

an identity matrix when performing our experiments. A more careful selection of Q would

require considerations of the within-class and between-class variability of the source and

target examples. We plan to pursue this as part of our future work.

The constraint on matrix P allows a many-to-one assignment between the target and the

source domains. This is essential because, for any two target examples that are located close

to each other and belong to same class, the surrogate selection matrix should map them to

102

source examples that are close to each other as well. If no such corresponding pair of source

examples can be found, it would be better to map the two target examples to the same

surrogate, as long as they are both from the same class.

6.4.1 Reconstruction Error Analysis

Our proposed framework considers a linear transformation approach for mapping the target

examples into their corresponding surrogates in the source domain. In the case where the

source domain corresponds to an image corpus, one concern is whether the transformation

can produce images that can be easily discerned by humans. One way to measure the quality

of the transformation is to evaluate the reconstruction error of the surrogates selected for the

target examples. Let X̂(s) = X(tl)U be the transformed images of the target examples and

Z(s) = PX(s) be the selected surrogates. Given U and P, we consider the transformation to

be ϵ-proper if the reconstruction error ∥Z(s) − X̂(s)∥2F ≤ ϵ and exact if ∥Z(s) − X̂(s)∥2F = 0.

The transformed images of the target examples are expected to be as easily discernable as

the original source images themselves if ϵ is small. A key question is whether it is possible

to construct a transformation matrix U with low reconstruction error given the source and

target data matrices X(s) and X(tl).

To determine the condition under which a low reconstruction error can be obtained,

assume the surrogate selection matrix P is known. The reconstruction error can be written

as follows

∥Z−X(tl)U∥2F (6.1)

103

whose minimum solution is given by

U =

(
X(tl)TX(tl)

)−1
X(tl)TZ (6.2)

A unique solution exists only if the covariance matrix X(tl)TX(tl) is of full column rank.

Otherwise we need to obtain a rank reduced approximation of X(tl) using techniques such

as singular value decomposition (SVD).

More importantly, the reconstruction error of the transformation can be assessed in terms

of the rank of the data matrices.

Proposition 1 Let A be an m × n matrix and B be an n × k matrix. If r(A), r(B), and

r(AB) denote the ranks of matrices A, B, and AB, respectively, then it can be shown that

[79],

r(AB) ≤ min[r(A), r(B)] (6.3)

Since X̂(s) = X(tl)U, according to this proposition, r(X̂(s)) ≤ r(X(tl)). Thus, if the rank of

the target data matrix is considerably lower than that for the original source data matrix,

then the transformed images will have a lower rank than the original source images, which

in turn, may lead to large reconstruction errors. In other words, an exact or low ϵ-proper

transformation is infeasible if r(X(tl))≪ r(X(s)).

We illustrate this with an example in Figure 6.2. Here we consider the well known Iris

data consisting of 150 labeled examples belonging to 3 distinct categories (Iris versicolor, Iris

virginica, and Iris setosa) as our target domain. Each category contains 50 examples, which

are matched against 50 handwritten images of 28 × 28 dimensions containing the digits 1,

2, or 3. The rank of the data matrix for the handwritten images is 150 (which is equivalent

104

to its number of rows), which is much higher than the rank of Iris data, which is equal

to 4 (i.e., its number of columns). According to Proposition 1, the rank of the transformed

images for the Iris data is at most 4, which is considerably lower than the rank of the original

handwritten images. This suggests that the reconstruction error for the Iris data using the

handwritten images is likely to be high. The top right column of the Figure 6.2 shows the

transformed images for 30 selected examples from the Iris data. Even though all the target

examples in the Iris versicolor class were mapped to surrogate images containing the digit 2,

the transformed images look noisy and do not resemble the digit 2. Instead, they looked like

a mixture of digits 2 and 3 because it is hard to distinguish target examples belonging to the

Iris versicolor class from those belonging to the Iris virginica class. However, if we increase

the dimensionality of the Iris data from 4 to 12 (by adding quadratic and cubic terms for

each of the 4 original features), the reconstruction error reduces significantly, especially for

those images that correspond to the Iris versicolor class (see bottom right column of Figure

6.2). In particular, if we project the target data to a 150-dimensional feature space (using

higher degree polynomials), an exact transformation matrix U can be obtained.

Proposition 2 If Z(s) ∈ ℜns×ds, X(tl) ∈ ℜnt×dt, and r(X(tl)) ≥ r(X(s)) (where X(tl) is

a full column rank matrix), then there exists a transformation matrix U such that Z(s) =

X(tl)U.

The key lesson here is that it is preferable to have a source data whose rank is smaller than

that of the target data. There are two ways to achieve this. First, we can reduce the rank of

the source data by applying SVD. The drawback here is that the source data is typically an

image whose contents are manually evaluated by humans (crowds). The rank reduction may

damage the visual clarity of the source images. Alternatively, we can increase the rank of

105

the target data by adding features that correspond to higher order polynomials of the target

attributes. In fact, the objective function of our proposed surrogate matching framework can

be extended to a nonlinear transformation using the kernel trick (see supplemental material

for derivation). This allows us to project the target data to a high-dimensional (possibly

infinite-dimensional) space, thereby making it compatible with the source data of higher

rank.

6.4.2 Parameter Estimation

This section presents our approach for estimating the parametersP andU for the constrained

optimization problem stated in Section 6.4. We also provide proof of convergence of the

proposed algorithm. First, note that the objective function is non-convex with respect to

both P and U. However, for a fixed P, it is convex with respect to minimizing U, and

vice-versa. Thus, we employ the well-known alternating least square method to solve the

106

Figure 6.2: Left panel shows the distribution of three classes (in three colors) with respect to
first and second principal components. The top and bottom right panel gives the transformed data
using 4 and 12 features respectively. The blurry images are formed because of poor transformation
quality. This is discussed in detail in section 6.4.1

optimization problem.

We begin with an initial surrogate selection matrix P0 satisfying the label compatibility

criterion, namely P0YsQ = Yl (assuming Q = I as previously discussed). We then estimate

the transformation matrix U0 using (6.2). At iteration k, we estimate Pk based on the

previous estimate for Uk−1 as follows. For each target example x
(tl)
i , we compute its trans-

formed image x̂
(tl)
i = x

(tl)T
i Uk−1 and match it to the surrogate example x

(s)
ki

that minimizes

its reconstruction error:

ki = argmin
j:y

(s)
j =y

(tl)
i

∥ x(s)j − x̂
(tl)
i ∥2 (6.4)

We then set Pk
i,ki

= 1 and Pk
i,j = 0 (∀j ̸= ki) . The condition y

(s)
j = y

(tl)
i imposes the label

compatibility requirement on the selected surrogate.

Lemma 1 Let X(tl) be a full column rank matrix. Then, the objective function (6.1) is

monotonically non-increasing as the number of iterations k increases in Algorithm 3.

Proof 1 To prove the result, we need to show the following inequality:

E [Pk,Uk] ≤ E [Pk,Uk−1] ≤ E [Pk−1,Uk−1], (6.5)

where E [Pk,Uk] is the reconstruction error after the k-th iteration. Given Uk−1, the new

selection matrix Pk satisfies the condition that ∀i, Pk
i,ki

= 1 implies,

∥xski − x
(tl)T

i Uk−1∥ ≤ ∥xsj − x
(tl)T

i Uk−1∥ : ∀j ̸= ki (6.6)

The preceding inequality follows from the algorithm step given in Equation (6.4). Now sup-

107

Algorithm 3 Surrogate Mapping Algorithm

1: Input: Source and Target data Xm, Xl
2: Output: Transformation Matrix U
3: Initialize:
4: k = 0;
5: Initialize P0, satisfying P0Ys = Yl
6:
7: repeat
8: k = k + 1
9: Learn the transformation Uk−1

10: Uk−1 = argminU ∥ Pk−1X(s) −X(tl)U ∥2
11: Compute the transformed image as follows

12: x̂
(tl)
i = x

(tl)T
i Uk−1 ∀i = 1, 2, . . . , n

13: Estimate the Pk matrix
14: Set Pk =0
15: for i = 1→ n do
16: ki = argmin

j:y
(s)
j =y

(tl)
i

∥ xsj − x̂i ∥2

17: Pk
i,ki

= 1

18: end for
19: until Pk−1 = Pk

20: return Uk−1

pose we assume that E [Pk,Uk−1] > E [Pk−1,Uk−1]. Then by definition of re-construction

error given in (6.1),

∥PkX(s) −X(tl)Uk−1∥2F > ∥Pk−1X(s) −X(tl)Uk−1∥2F

⇒
∑
i

[xski
− x

(tl)T
i Uk−1]2 >

∑
i

[xs(k−1)i
− x

(tl)T
i Uk−1]2 (6.7)

Since each term in the sum is non-negative, there must exist an index i such that

[xski
− x

(tl)
i Uk−1]2 > [xs(k−1)i

− x
(tl)
i Uk−1]2 (6.8)

which contradicts the condition given in (6.6). Thus, the original assumption must be false,

which means E [Pk,Uk−1] ≤ E [Pk−1,Uk−1].

108

The next inequality E [Pt,Ut] ≤ E [Pt,Ut−1] can be inferred from line 10 of Algorithm 3

(see Equation (6.2)). Since X(tl) is a full rank matrix, therefore Uk must exist for every k

and is unique.

Theorem 3 Let X(tl) be a full column rank matrix. Then the Algorithm 3 terminates after

finitely number of iterations.

Proof 2 Lemma 1 shows the monotonically non-increasing nature of the objective function

(6.1) when applying Algorithm 3. At each iteration, the algorithm re-estimates the selection

matrix P and subsequently finds a corresponding optimal transformation matrix U. Since

there are only finitely many permutations available for matrix P, in the worse-case scenario,

the algorithm should converge after considering all the permutations.

We need to show is that the Algorithm does not enter infinite loop. For this, it is sufficient

to show that the algorithm will not produce the same selection matrix P again and again

except in the last iteration. If this is not true, then let Pt,Ut be the permutation matrix and

transformation matrix obtained at the end of iteration t and let Pt+1 be the new permutation

matrix estimated using Ut such that Pt+1 = Pi for some i < t and i ̸= t. Since the linear

transformation U is unique for a given permutation matrix, we have

Ut+1 = argminU ∥ Pt+1X(s) −X(tl)U ∥2

= argminU ∥ PiX(s) −X(tl)U ∥2

= Ui (6.9)

However, this results in following contradiction.

E [PiUi] < E [Pt,Ut] ≤ E [Pt+1,Ut+1] = E [PiUi] (6.10)

109

Therefore, our assumption i ̸= t is wrong. In other words Pt+1 = Pi can only happen when

i = t or in the last iteration, at which the algorithm is said to have terminated.

6.5 Experimental Evaluations

We performed experiments using both synthetic and real world data to demonstrate the effec-

tiveness of the proposed data transformation technique in enabling the use of crowdsourcing

technology for labeling the network data. For this purpose, we have selected the grey scale

image corpus of handwritten digits [51], as source data domain. This source domain consists

of roughly 5000 images for each of the digits from 0 through 9. Each image is of size 28× 28

and is represented as one dimensional vector of length 784. We used two sparse data as

target domains namely, a social network of Wikipedia editors and a sample collection of

Wikipedia articles. A detailed description of these two data sets are given below.

• Wikipedia Editor Interactions: Here, we sampled articles from Wikipedia on two

topics namely, computer science and natural science. We then took all the editors who

worked on at least 20 of the sampled articles and recorded the interactions between

them from their respective Wikipedia User::Talk pages. We created two editor networks

one for each of the two topics. In each network, the set of editor interactions (linked

node pairs) and non-interactions(non-link node pairs) were equi-partitioned to create

TRAIN and TEST set. Therefore, each unique editor-pair is present in either TRAIN

or TEST set. The goal is to learn the presence/absence of interactions between editor

pairs from the TRAIN set and predict the interactions between the editors on the

TEST set.

• Biology Article Corpus: We sampled Wikipedia articles belonging to 4 related

110

topics in biology namely - genetics, zoology, anatomy and cell-biology. Here, instead

of the network link information, we have used the text data (words in the article) to

classify the articles into one of the four categories. The TRAIN set consists of 2000

articles with 500 article in each topic and TEST set consists of 800 articles with 200

articles from each topic. There are totally 6040 words in the TRAIN set, which were

used as features. The goal is to obtain correct labels for the TEST articles, without

exposing the article content to the crowd.

6.5.1 Evaluation Methodology and Baseline

Our goal is to learn the labels for the TEST data points as accurately as possible. As a

baseline, we have trained a support vector machine (SVM) on the TRAIN set and used it to

predict the labels for the points in the TEST set. In the proposed approach, we first learn

the transformation matrix U between the labeled TRAIN set and the source domain (set of

digit images). We then apply the transformation on the unlabeled points in the TEST set.

The transformed TEST data now resides in the source domain (as handwritten digit images).

We have utilized the services of crowd(non-domain expert human workers) to manually label

these surrogate digit images (transformed test data) into appropriate digit category. If the

image is not well formed or appears visually cluttered then the worker flags the data point

(image) as noise. We combine the evaluations of all the workers (individual members in

crowd) by taking a simple majority vote.

The crowd based approach has the flexibility of rejecting a data point as noise. This

approach uniquely partitions the TEST set into two groups viz. good images (TEST G) and

noisy images (TEST N). Their performance can only be reported on the respective TEST G

set. Therefore, it is not fair to compare their performance against the baseline. In order

111

to address this problem, we performed additional model building step that would generate

label for the entire TEST data. It is a semi supervised approach where we trained a SVM on

both TRAIN and TEST G set and used it to predict labels for entire TEST set. TEST G

is subset of TEST where every data point is assigned a unique label by the crowd (majority

vote). We denote this approach by Crowd + SVM.

6.5.2 Synthetic Data

We used synthetic data to understand the ability of the proposed out-of-domain mapping

algorithm in revealing the latent structure present in the target data. In particular, we

examined the ability of the proposed approach in distinguishing boundary points from non

boundary points in a simple binary classification problem. In order to study this, we have

generated 100 random samples each from two normal distributions namely N (µ = 1, σ = 1)

and N (µ = 3, σ = 1). We converted the one dimensional data to 50 dimension data by

appending polynomials of the feature from degree 1 through 50. Samples from the former

are mapped to images corresponding to digit 0 and samples from the later are mapped to

images corresponding to digit 1.

Figure 6.3 depicts the two normal distribution from which we sampled 200 points. Figure

6.4 shows the transformed data (image representation) for all the 200 sample points. The

target domain consists of real numbers from the interval [−3 5]. For individual data point,

the actual sample value is printed on top of each image. The data points belonging to

class 0 (N (µ = 1, σ = 1)) are marked by ∗ sign. For the samples from this distribution,

all the sample points in the interval [−2 1.5] got mapped to digit image zero without any

clutter or noise. Similarly, for the samples from class 1 (N (µ = 3, σ = 1)), all the sample

points in the interval [2.5 5] got mapped to the digit image 1 without any noise. However,

112

the sample points from the interval [1.5 2.4] got mapped to image which contains both

digit 0 and digit 1. In fact, this interval marks the overlapping region or boundary region

between the two distributions and the transformed target images for points from this region

looks like alphabet Φ. This effect remains same for higher data dimensions where the visual

representation of data points in the boundary region encapsulates the characteristics of all

the respective classes that share the boundary. This is further illustrated in the next section

on a real world example.

6.5.3 Biology Article Corpus

On this data corpus, we have experimentally validated the Theorem 3 and other propositions.

Here we have mapped the articles belonging to four categories namely, genetics, zoology,

anatomy and cell-biology to digit images 1, 2, 3 and 4 respectively. There are 500 articles

in each article category and we have randomly matched each article against a unique image

from appropriate digit category. This is done by the initial permutation matrix P0. Since,

the final surrogate mapping depends on the initial permutation matrix P0, we performed

113

X

0
−2 −1 0 1 2 3 4 5 6

0.05

0.15

0.25

0.45

0.35

Figure 6.3: Plot of two normal distributions used in generating synthetic data.

U584825
Typewritten text
Class 0

U584825
Typewritten text
Class 1

Figure 6.4: The transformed Data from two normal distributions. The text above each image is
not meant to be readable but for visual reference only. The number above each image is the actual
sample value. The interpretation of images is illustrated in section 6.5.2.

114

the experiment for 10 different random initializations of P0 and chose the transformation

that gave the minimum reconstruction error.

On this data set, we have experimentally validated the Propositions, Lemma and theorem

proved in this chapter. In order to validate Lemma 1, we plot the reconstruction error

obtained at each iteration. This is shown in Figure 6.5(left) for each of the 10 random

initializations. As proved in Lemma 1, the reconstruction error monotonically decreases

with each iteration for all the 10 random initializations of P0. It was also observed that

for each random initialization, the reconstruction error converged to a local minima albeit

different ones for each random initialization thus validating Theorem 3. As mentioned earlier,

the re-construction can be analyzed with respect to the rank of the source and the target

data matrices. Figure 6.5(right), shows the decreasing trend of the rank of the re-sampled

source matrix with each iteration. It should be noted that the rank of PtXs does not always

decrease monotonically with each iteration. The overall decrease in rank can be attributed

to the fact that at each iteration, the algorithm performs a one-to-many mapping, effectively

reducing the row rank of the matrix PtXs. Notice that the minimum error across all the

10 random runs is obtained when the rank of PTXs falls below the rank of target data.

However, that alone is not sufficient condition for decreasing the re-construction error. In

Figure 6.5, errorcurve denoted by legends ◦,♢ and � correspond to the condition where the

rank of PtXshas fallen below rank of the target data.

The surrogate images generated by the transformation with minimum re-construction

error is then presented to a crowd of three workers. On this dataset, each of the three

workers manually labeled all the 800 TEST images. Each worker categorized an image into

one of the four digit (1−4) category. If the surrogate image was cluttered, dark or contained

more than one digit, then it was labeled as noise. On an average, each worker has labeled

115

0 10 20 30 40

20.9

21

21.1

21.2

21.3

21.4

21.5

0 10 20 30 40
300

400

450

500

550

600

t X
s Target Rank

90 TEST data points or 11% of the TEST set as noise. The classification accuracy of three

independent workers on the entire TEST set was found to be 74%, 72% and 73%. For the

baseline, we trained a SVM on the TRAIN set using radial basis kernel with sigma value of

0.1. The SVM gave an over all accuracy of 63.5% on the TEST set. Table 6.1 records the

F measure for each class as given by SVM and each of the three individual workers in the

crowd.

An important distinguishing aspect of the crowdsourcing approach from the SVM is that

the latter was directly trained and tested on target domain whereas in the former, workers

manually assign label by looking at the transformed data (digit images) residing on the

source domain. In addition, the performance of the SVM directly depends on the data

points in the sample TRAIN set, the choice of kernel and kernel parameters. On contrary,

the performance of the crowd depends on the quality of the transformation, the user interface

116

Iterations

lo
g

(e
rr

or
)

Iterations
ra

nk
 P

350

Figure 6.5: Wikipedia article corpus: The left result shows the decreasing error

with eachiteration for 10 random initializations. The right figure shows the rank of the
source data almostdecreases with successive iterations. Lowest error is achieved when

the rank of the source fallsbelow the target rank.

Table 6.1: This table shows the F measure for each of the four article categories. Here Wi denotes
the ith worker in the crowd. Each independent worker performs better than SVM with rbf kernel
(σ = 0.1). The Crowd + SVM performed better than individual workers in the crowd.

Class SVM W1 W2 W3 Crowd+SVM

AUC
Zoology 0.5639 0.6977 0.6667 0.7178 0.7079

Cell Biology 0.7250 0.8677 0.8571 0.8673 0.8756
Anatomy 0.6267 0.7436 0.7512 0.7350 0.7400
Genetics 0.6285 0.7866 0.7798 0.7803 0.8104
Accuracy 63.50 74.75 % 72.12 % 72.88% 78.25%

for labeling, worker skills and fatigue. In this experiment, the workers were not given any

special training or instruction for labeling. They were not exposed to the images formed on

the TRAIN set and they used the basic human intelligence in categorizing the images into

one of the four digits or noise.

Finally in order to obtain a unique label for each TEST data point, we have used a simple

majority vote strategy to combine the results of individual workers in the crowd. Here a

TEST data point is assigned to a category which was favored by majority of workers in the

crowd (atleast two out of three workers). This approach labels only a portion of TEST set.

We generalize this crowd generated label on entire TEST set as follows. We train a SVM on

the combined TRAIN set and crowd labeled portion of TEST set and use it to predict the

label for entire TEST set. This approach is denoted as Crowd + SVM and it gave an accuracy

of 78.25 as reported in the Table 6.1.

6.5.4 Wiki Editor Networks

In this section, we analyze the performance of the proposed approach for label acquisition

on the Wikipedia editor networks. Each Wikipedia article is composed and edited by several

editors and each editor works on several articles. Sometimes, the editors interact with each

117

other through their respective USER::Talk pages to improve the content of articles. In our

sample, we observed that a large pool of editors have worked on a common set of articles

without interacting with each other. Therefore merely editing a common set of article does

not imply interaction. For each editor, we use a binary vector indicating whether or not

the editor worked on a article as attribute vector. For each editor pair, the sum of their

corresponding attributes is used as feature vector. Here again, we used the SVM as baseline

algorithm to predict the interactions between the editors. We trained the SVM using linear

kernel and rbf kernels with different σ parameters. The best result was obtained with the

linear kernel.

The editor networks data is similar to the Biology article corpus data in that both are

sparse, high dimensional data and require strong domain expertise to label them. However

learning on the editor network data poses a significant challenge owning to the label skewness.

In our sample, the number of non-interacting editors are 2 − 10 times than the number of

interacting editor pairs. In addition, the attributes or features used for predicting interactions

has limited discerning capability. This results in generating images containing multiple digits

or undecipherable characters which cannot be easily labeled by humans.

Another distinguishing aspect between the experiments on Biology article corpus and

Editor network is that on the former there were three workers who labeled the entire TEST

set. However, on the later there were 27 workers who labeled only a portion of TEST set

(on each network, 800 TEST images were labeled). Therefore we do report the performance

of individual workers rather, we report the overall performance of the Crowd+SVM approach.

We mapped the data points corresponding to the interactions(links) to digit 1 and the

data belonging to non-interaction(no-links) group were mapped to digit 2. For each surrogate

image, a worker chose one of the following five options: A) Clearly digit 1 B) Clearly digit

118

Table 6.2: This table gives the AUC values of SVM and Crowd + SVM approach for link pre-
diction problem on two different Wikipedia editor networks. Here the proposed Crowd approach
outperforms the baseline SVM by 8% on Computer science network and fares slightly better than
SVM on Natural science editor network.

AUC
Network Pos/Neg in TEST SVM Crowd + SVM

Nat.Sc. 489/1003 0.7507 0.7701
Comp. Sc. 155/1500 0.7287 0.7950

2, C)Prominent 1, with little 2, D) Prominent 2 with little 1 and E) Noise. The surrogate

images assigned to category A and B were assigned label +1 and −1 respectively. The

surrogate images assigned to category C and D were assigned label 0.5 and −0.5 respectively.

The images assigned to category E were discarded as noise. We then generalized the label

over entire TEST set by training SVM on the TRAIN and TEST G. On an average only 130

images (roughly 10%) of the TEST images in each network were assigned to single category

by the crowd. In Table 6.2, we report the area under the curve (AUC) values for SVM and

Crowd on each of the two networks. The SVM model trained on the TRAIN set gave an AUC

of 75% and 72% respectively on the natural science and computer science editor networks.

However, the Crowd + SVM approach further lifted the AUC to 77% and 79% respectively.

This shows that the partial label information generated by the crowd offers new insight to

the SVM model to change the decision surface which inturn results in higher performance.

From the above experiments, we have demonstrated the capability of proposed framework

in mapping the complex high dimensional sparse network data into a human comprehensible

visual data that can be manually labeled by the crowd. The results suggest that learning

approach on the surrogate data with assistance from the crowd outperforms (at the very least

as good as) learning on the raw data. Throughout this work, we have used a simple majority

vote among the workers to determine the best label for each surrogate image. Sophisticated

119

algorithms [37, 45, 113] can be used to combine the label information from different workers

to generate a final reliable label for the given surrogate image and the corresponding network

data point.

6.6 Conclusions

In this chapter, we propose a transformation learning technique that learns a point trans-

formation between any two data domains. We highlight the challenges associated with this

problem and analyze the data requirements for learning the point mapping. We list two ap-

plication of such transformation namely data obfuscation for performing privacy preserving

data mining and visual representation of data. In this work, we apply the proposed tech-

nique to transform sparse, high dimensional social network data into a set of digit images

that are labeled by a non domain experts. This way we perform network mining tasks like

link prediction and node classification using crowd-sourcing technology.

120

Chapter 7

Future Work

In this thesis, we have presented three learning frameworks for combining data from multiple

sources to perform common network mining tasks. Firstly, we have presented a framework to

jointly perform clustering and/or classification on two related network domains. Secondly,

we have presented a framework to simultaneously perform related learning tasks namely,

community detection and link prediction. Finally, we have presented a generic framework to

leverage label information from unrelated non-network data domain to perform supervised

learning on networks. We have demonstrated the performance of all the proposed framework

on real world networks like citation network, co-authorship network and user networks. In

this chapter, we highlight the directions for future research on two novel problems that

are unique to this thesis, namely, the multi-task learning on networks and out-of-domain

transformation for label augmentation.

1. Multi-task Learning: In Chapter 5, we have presented a unique loss function for

jointly performing the link prediction and community detection tasks on the network

data. We have showed the relationship between the proposed loss function and the

well known modularity measure for community detection. We demonstrated its appli-

cability on a single network and in future, this could be extended to multiple related

networks as well. To give an example, the framework can be employed to predict the

missing citation links between relevant Wikipedia articles and at the same time identify

121

communities between corresponding authors or editors. In other words, the framework

can be easily extended to perform link prediction on one network and community

detection on another network.

Another important problem in network mining is identification of influential nodes in

the network. These are minimum set of nodes that influences the diffusion of infor-

mation in a network. Clearly, each community has its own set of influential nodes [4].

Once the communities are deciphered, the search for influential nodes can be narrowed

to high degree nodes inside communities and bridge nodes between communities. Con-

versely, knowing the influential nodes in the network could expedite the process of

community detection in a network, as each community has its own popular or influ-

ential nodes [107]. Therefore it is beneficial to perform these two tasks jointly. The

proposed degree dependent loss function can be suitably altered to accomplish this

task.

2. Surrogate Mapping: In Chapter 6, we have presented a novel data transformation

framework in order to augment the label information for the given network mining task.

This framework allows us to transform a large, sparse, high dimensional network data

into a image format. We sincerely hope that the proposed approach of representing

network data in a visual format for crowd labeling would be a trend setter for future

research in this field. This offers several different directions for future research as listed

below

• Extend the proposed linear framework for surrogate mapping to a non-linear

framework in order to minimize the transformation error. In addition, algorithmic

approach should be designed to automatically perform label matching (estimating

122

Q matrix in equation (6.1)) between the domains.

• Currently, we use a simple majority voting to decide the final label for data points

labeled by the crowd. However, sophisticated learning algorithms like boosting

can be utilized to combine the labels generated by the individual workers in order

to enhance the overall crowd performance.

• In this thesis, we have demonstrated the usefulness of the surrogate mapping

algorithm for solving link prediction problem. It can be extended to solve multi-

task learning problems on related networks like the ones we described in Chapter

3 and 4.

123

APPENDIX

124

Proof of Convergence

In this section we provide the formal proofs that show the update formula (3.5) - (3.9) mono-

tonically decrease the objective function (3.3). The proofs shown here has been reproduced

from our previous work [20] of joint community detection across multiple networks.

Definition 2 G(w, ẃ) is an auxiliary function for F(w) if following two conditions are sat-

isfied

G(w, ẃ) ≥ F (w), G(w,w) = F (w) (A.1)

Lemma 2 If G1(w, ẃ) and G2(w, ẃ) are auxiliary functions for F1(w) and F2(w) respec-

tively, then G = G1 + G2 is the auxiliary function for F = F1 + F2. Further, F is non

decreasing under the update formula

wt+1 = argmin
w

G(w,wt) (A.2)

Proof 3 The proof for G as an auxiliary function for F follows directly from definition.

125

Appendix

Below, we give the proof for second part.

F (wt+1) = F1(w
t+1) + F2(w

t+1)

≤ G1(w
t+1, wt) +G2(w

t+1, wt)

≤ G1(w
t, wt) +G2(w

t, wt)

= F (wt)

The third line follows from the fact that wt+1 minimizes the auxiliary function G. Thus,

G(wt+1, wt) ≤ G(wt, wt) and F (wt+1) ≤ F (wt), which completes the proof.

The Equation (3.3) involves a summation of three distance functions D(·∥·), Lemma 2 sug-

gests that it is sufficient to show that minimizing the auxiliary function that bounds (3.3)

would decrease the overall objective function. First, we give the auxiliary function for the

term D(A∥XUXT) and the auxiliary function for other terms can be similarly derived. The

update formula for X which minimizes D(A∥XUXT) is given by

Xij = Xij(

∑N
a=1(

Aia[XUT]aj

[XUXT]ia
+

Aai[XU]aj

[XUXT]ai
)

(
∑N

a=1[XU +XUT]aj)
) (A.3)

The objective function can be written as

F1 =
∑
i,j

Aij log
Aij∑

kl XikUklX
T
lj

− Aij +
∑

kl XikUklX
T
lj (A.4)

Now define

αk,l =
X
(t)
ik

UklX
(t)T
lj∑

rs X
(t)
ir UksX

(t)T
sj

(A.5)

126

Clearly,
∑

rs αrs = 1. Using Jensens inequality we get

− log
∑

kl XikUklX
T
lj ≤ −

∑
kl

αkl
XikUklX

T
lj

αkl
(A.6)

Substituting (A.6) in (A.4) we get D(A ∥ XUXT) ≤

∑
ij

[
Aij logAij − Aij − Aij

∑
kl

αkl log
XikUklX

T
lj

αkl

+
∑
kl

XikUklX
T
lj

]
(A.7)

plugging in αkl in above equation gives the following bound on the objective function

∑
ij

[
Aij logAij−Aij−Aij

∑
kl

X
(t)
ik

UklX
(t)T
lj∑

rs X
(t)
ir UrsX

(t)T
sj

(
logXikUklX

T
lj

− log
X
(t)
ik

UklX
(t)T
lj∑

rs X
(t)
ir UrsX

(t)T
sj

)
+
∑
kl

XikUklX
T
lj

]

which is the auxiliary function for F1. We denote it as G1(X,X(t)). Now taking derivative

of G1 with respect to Xpq we get,

∂G

∂Xpq
= −

∑
jl

Apj

X
(t)
pq UqlX

(t)T
lj∑

rs X
(t)
pr UrsX

(t)T
sj Xpq

+
∑
jl

UqlX
(t)T
lj

−
∑
ik

Aip
X

(t)
ik UkqX

(t)T
qp∑

rs X
(t)
ir UrsX

(t)T
sp Xpq

+
∑
ik

X
(t)
ik Ukq = 0

127

We get

Xpq = X
(t)
pq

[∑j
Apj [UX(t)T]qj

[X(t)UX(t)T]pj
+
∑

i
Aip[X

(t)U]iq

[X(t)UX(t)T]ip∑N
j=1[UX(t)T]qj+

∑N
i=1[X

(t)U]iq

]
(A.8)

which is same as (A.3). Similarly, the term D(C ∥ XV Y T) can be written as

F2 =
∑
ij

Cij log
Cij∑

kl XikVklY
T
lj

− Cik +
∑
kl

XikVklY
T
lj

Now define

βkl =
X
(t)
ik

VklY
(t)T
lj∑

rs X
(t)
ir VrsY

(t)T
sj

(A.9)

Once again
∑

kl βkl = 1 and following the same procedure as above, we get the auxiliary

function for D(C ∥ XV Y T) to be G2(X,X(t)) =

∑
ij

[
Cij logCij−Cij−Cij

∑
kl

X
(t)
ik

VklY
(t)T
lj∑

rs X
(t)
ir VrsY

(t)T
sj

logXikVklY
T
lj

− log
X
(t)
ik

VklY
(t)T
lj∑

rs X
(t)
ir VrsY

(t)T
sj

+
∑
kl

XikVklY
T
lj

]

Taking derivative of this with respect to Xpq and equating it to zero, we get

Xpq = X
(t)
pq (

∑M
i=1

Cpi[Y V T]iq

[XV Y T]pi

(
∑M

i=1 [Y V T]iq)
) (A.10)

128

Minimizing the original objective function (3.3) with respect to X, we have

min
X
J (X) = min

X
F1(X) + F2(X)

≤ min
X

G1(X,X(t)) +G2(X,X(t)) (A.11)

Taking derivative of G1(X,X(t))+G2(X,X(t)) with respect to X and equating it to zero we

get update formulae (3.5).

In all we have shown that G1(X,X(t)) +G2(X,X(t)) is auxiliary function for (3.3) with

respect to variable X and (3.5) decreases this auxiliary function and hence the objective

function. Therefore, we have proved Theorem 1

It should be noted that Theorem 1 states that the update formula monotonically decreases

the objective function (3.3). However, it does not guarantee convergence to local minima

or any stationary point. We stop the algorithm when the error between two consecutive

iterations lies below a specified threshold or after certain maximum number of iterations.

The work by Finesso & Sperji [29], has shown the existence of solution for the problem

D(A ∥ WH). First, they argue that the minima exists in the interior of the domain. Then

they show that by normalizing the A matrix (such that
∑

ij Aij = 1 and adding stochastic

constraint on H (
∑

j Hij = 1) results in a update formula that converges to local minima in

the interior of the domain (strictly positive quadrant).

129

BIBLIOGRAPHY

130

[1] Z. Abraham and P.-N. Tan. A semi-supervised framework for simultaneous classifica-
tion and regression of zero-inflated time series data with application to precipitation
prediction. In Proceedings of the 2009 IEEE International Conference on Data Mining
Workshops, ICDMW ’09, pages 644–649, 2009.

[2] L. Adamic and E. Adar. Abstract how to search a social network, 2005.

[3] O. Alonso, C. Carson, D. Gerster, X. Ji, and S. U. Nabar. Detecting Uninteresting
Content in Text Streams. In M. Lease, V. Carvalho, and E. Yilmaz, editors, Proceedings
of the ACM SIGIR 2010 Workshop on Crowdsourcing for Search Evaluation (CSE
2010), pages 39–42, Geneva, Switzerland, July 2010.

[4] M. Anjerani and A. Moeini. Selecting influential nodes for detected communities in
real-world social networks. In Electrical Engineering (ICEE), 2011 19th Iranian Con-
ference on, pages 1 –6, may 2011.

[5] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and X. Lan. Group formation
in large social networks: membership, growth, and evolution. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’06), pages 44–54, Philadelphia, PA, USA, August 2006.

[6] S. Banerjee, K. Ramanathan, and A. G. 0005. Clustering short texts using wikipedia.
In SIGIR, pages 787–788, 2007.

[7] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. In Science,
volume 286, 1999.

[8] A.-L. Barabsi and R. Albert. Emergence of scaling in random networks. Science, 286
(5439):509–512, 1999.

[9] S. Basu, A. Banjeree, E. Mooney, A. Banerjee, and R. J. Mooney. Active semi-
supervision for pairwise constrained clustering. In In Proceedings of the 2004 SIAM
International Conference on Data Mining (SDM-04, pages 333–344, 2004.

[10] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised
clustering. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’04, pages 59–68, New York, NY, USA,
2004. ACM. ISBN 1-58113-888-1. doi: 10.1145/1014052.1014062. URL http://doi.

acm.org/10.1145/1014052.1014062.

131

BIBLIOGRAPHY

[11] M. Bilgic, G. Namata, and L. Getoor. Combining collective classification and link
prediction. In Proceedings of the ICDM Workshop on Mining Graphs and Complex
Structures, pages 381–386, Omaha, NE, USA, 2007.

[12] D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Community mining from multi-relational
networks. In Proceedings of the 9th European Conference on Principles and Practice
of Knowledge Discovery in Databases, 2005.

[13] R. Caruana. Multitask learning. Mach. Learn., 28:41–75, 1997.

[14] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using
hyperlinks. SIGMOD International Conference on Management of Data, pages 307–
318, 1998.

[15] Chebotarev and S. E. V. The matrix-forest theorem and measuring relations in small
social groups. In Automation and Remote Control, page 1505, 1997.

[16] F. Chen, P. N. Tan, and A. K. Jain. A co-classification framework for detecting web
spam and spammers in social media web sites. In CIKM, 2009.

[17] A. Clauset, M. Newman, and C. Moore. Finding community structure in very large
networks. In Phys. Rev. E, number 6, page 066111, 2004.

[18] A. Clauset, C. Moore, and M. Newman. Structural inference of hierarchies in networks.
In Intl. Conf. on Machine Learning, ICML, 2006.

[19] M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, adaboost and bregman
distances. Machine Learning, 48(1-3), 2002.

[20] P. M. Comar, P.-N. Tan, and A. Jain. Identifying cohesive subgroups and their corre-
spondences in multiple related networks. In Proc of the 2010 IEEE/WIC/ACM Int’l
Conf on Web Intelligence (WI-2010), Toronto, Canada, 2010.

[21] P. M. Comar, P.-n. Tan, and A. K. Jain. Multi task learning on multiple related
networks. In Proceedings of the 19th ACM international conference on Information
and knowledge management, CIKM ’10, pages 1737–1740, 2010.

[22] P. M. Comar, P.-N. Tan, and A. K. Jain. Linkboost: A novel cost-sensitive boosting
framework for community-level network link prediction. In ICDM, pages 131–140,
2011.

[23] R. Das and M. Vukovic. Emerging theories and models of human computation sys-
tems: a brief survey. In Proceedings of the 2nd international workshop on Ubiquitous
crowdsouring, UbiCrowd ’11, pages 1–4, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0927-1. doi: 10.1145/2030100.2030102. URL http://doi.acm.org/10.1145/

2030100.2030102.

[24] I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the
k-means algorithm. In SDM, 2005.

132

[25] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In
Proceedings of the 9th ACM SIGKDD Int’l Conf on Knowledge Discovery and Data
Mining, pages 89–98. ACM, 2003.

[26] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix tri-factorizations
for clustering. In Proceedings of the 12th ACM SIGKDD, pages 126–135. ACM, 2006.

[27] E.Airoldi, D. Blei, S. Feinberg, A. Goldenberg, E. Xing, and A. Zheng. Social Network
Analysis: Models, Issues, and New Directions, volume 4503 of LNCS. Springer, 2007.

[28] T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. J. Mach. Learn. Res., 6:615–637, 2005.

[29] L. Finesso and P. Spreij. Nonnegative matrix factorization and i-divergence alternating
minimization. Linear Algebra and its Applications, 416(23):270 – 287, 2006.

[30] G. Flake, K. Tsioutsiouliklis, and R. Tarjan. Graph clustering techniques based on
minimum cut trees. Technical Report, 2002.

[31] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web communities.
In Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 150–160. ACM Press, 2000.

[32] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee. Self-organization and
identification of web communities. IEEE Computer, 35:66–71, 2002.

[33] L. Ford and D. Fulkerson. Maximal flow through a network. 8:399–404, 1956.

[34] B. Gallagher, H. Tong, T. Eliassi-Rad, and C. Faloutsos. Using ghost edges for clas-
sification in sparsely labeled networks. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’08, pages
256–264, 2008.

[35] L. Getoor and C. P. Diehl. Link mining: A survey. ACM SIGKDD Explorations, 7(2):
3–12, December 2005.

[36] D. Gibson, J. M. Kleinberg, and P. Raghavan. Inferring web communities from link
topology. In Proceedings of the Ninth ACM Conference on Hypertext and Hypermedia:
Links, Objects, Time and Space - Structure in Hypermedia Systems, pages 225–234,
Pittsburgh, PA, USA, June 1998.

[37] R. Gomes, P. Welinder, A. Krause, and P. Perona. Crowdclustering. In NIPS, pages
558–566, 2011.

[38] M. Grineva, M. Grinev, D. Turdakov, and P. Velikhov. Harnessing wikipedia for smart
tags clustering. In Proceedings of the International Workshop on Knowledge Acquisition
from the Social Web (KASW2008), 2008.

[39] R. Guimera and M. Sales-Pardo. Missing and spurious interactions and the reconstruc-
tion of complex networks. In Proc. Natl. Acad. Sci. U.S.A., 2009.

133

[40] R. Guimerà, M. Sales-Pardo, and L. Amaral. Classes of complex networks defined by
role-to-role connectivity profiles. Nature Physics, 2007.

[41] F. Harary. Graph Theory. Westview Press, 1994.

[42] M. Hasan, V. Chaoji, S. Salem, and M. J. Zaki. Link prediction using supervised
learning. In Workshop on Link analysis, Counter-terrorism, and Security, Bethesda,
MD, USA, April 2006.

[43] M. A. Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using supervised
learning. In In Proc. of SDM 06 workshop on Link Analysis, Counterterrorism and
Security, 2006.

[44] X. Hu, X. Zhang, C. Lu, E. K. Park, and X. Zhou. Exploiting wikipedia as external
knowledge for document clustering. In Proc. of Int. Conf. on Knowledge Discovery
and Data Mining (KDD), 2009.

[45] A. K. J. Jinfeng Yi, Rong Jin and S. Jain. Semi-Crowdsourced Clustering: Generalizing
Crowd Labeling by Robust Distance Metric Learning. In NIPS, 2012.

[46] H. Kashima and N. Abe. A parameterized probabilistic model of network evolution
for supervised link prediction. In Proceedings of the ICDM, pages 556–559, New York,
NY, USA, 2006. ACM. doi: http://doi.acm.org/10.1145/956863.956972.

[47] H. Kashima and N. Abe. A parameterized probabilistic model of network evolution
for supervised link prediction. In Proceedings of the IEEE International Conference
on Data Mining (ICDM 2006), 2006.

[48] H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, and K. Tsuda. Link propagation:
A fast semi-supervised learning algorithm for link prediction. In Proceedings of the
SIAM intl conf on Data Mining, pages 1099–1110, Sparks, NV, USA, 2009.

[49] L. Katz. A new status index derived from sociometric analysis. Psychometrika, VOL.
18, NO. 1:39– 43, 1953.

[50] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[51] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[52] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS,
volume 13, pages 556–562, 2001.

[53] R. Lempel and S. Moran. Salsa: The stochastic approach for link-structure analysis.
ACM Transactions on Information Systems, 2001.

134

[54] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks.
In CIKM ’03: Proceedings of the twelfth international conference on Information and
knowledge management, pages 556–559, New York, NY, USA, 2003. ACM. ISBN 1-
58113-723-0. doi: http://doi.acm.org/10.1145/956863.956972.

[55] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks.
In Proceedings of the Twelfth International Conference on Information and Knowledge
Management (CIKM’03), New Orleans, LA, USA, November 2003.

[56] Y.-R. Lin, J. Sun, P. Castro, R. Konuru, H. Sundaram, and A. Kelliher. MetaFac:
community discovery via relational hypergraph factorization. In Proceedings of the 15th
ACM SIGKDD Int’l Conf on Knowledge Discovery and Data Mining, pages 527–536,
2009.

[57] Y. Liu, R. Jin, and A. K. Jain. Boostcluster: boosting clustering by pairwise
constraints. In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’07, pages 450–459, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-609-7. doi: 10.1145/1281192.1281242. URL
http://doi.acm.org/10.1145/1281192.1281242.

[58] B. Long, Z. M. Zhang, and P. S. Yu. Co-clustering by block value decomposition. In
Proceedings of the 11th ACM SIGKDD Int’l Conf on Knowledge Discovery and Data
Mining, pages 635–640. ACM, 2005.

[59] B. Long, Z. M. Zhang, and P. S. Yu. A probabilistic framework for relational cluster-
ing. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 470–479, 2007.

[60] B. Long, P. S. Yu, and Z. Zhang. A General Model for Multiple View Unsupervised
Learning. In Proceedings of the 2008 SIAM International Conference on Data Mining,
2008.

[61] Q. Lu and L. Getoor. Link-based classification. In International Conference on Ma-
chine Learning, 2003.

[62] P. K. Mallapragada, R. Jin, A. K. Jain, and Y. Liu. Semiboost: Boosting for semi-
supervised learning. IEEE Trans. Pattern Anal. Mach. Intell., 31(11):2000–2014, Nov.
2009. ISSN 0162-8828. doi: 10.1109/TPAMI.2008.235. URL http://dx.doi.org/10.

1109/TPAMI.2008.235.

[63] P. Mandayam Comar, P.-N. Tan, and A. K. Jain. Identifying cohesive subgroups
and their correspondences in multiple related networks. In Proceedings of the 2010
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology - Volume 01, pages 476–483, 2010.

[64] P. Mandayam Comar, P.-N. Tan, and A. K. Jain. A framework for joint community
detection across multiple related networks. Neurocomputing, 2011.

135

[65] P. Mandayam Comar, P.-N. Tan, and A. K. Jain. Simultaneous classification and
community detection on heterogeneous network data. In To appear, Data Mining and
Knowledge Discovery(DMKD), 2012.

[66] H. Masnadi-Shirazi and N. Vasconcelos. Cost-sensitive boosting. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33:294–309, 2011. ISSN 0162-8828. doi:
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.71.

[67] R. McCreadie, C. Macdonald, and I. Ounis. Crowdsourcing Blog Track Top News
Judgments at TREC. In M. Lease, V. Carvalho, and E. Yilmaz, editors, Proceedings
of the Workshop on Crowdsourcing for Search and Data Mining (CSDM) at the Fourth
ACM International Conference on Web Search and Data Mining (WSDM), pages 23–
26, Hong Kong, China, February 2011.

[68] M. Meyerhoff. Introducing sociolinguistics. Routledge;, 1 edition, 2006.

[69] M. Narayanan, A. Vetta, E. E. Schadt, and J. Zhu. Simultaneous clustering of multiple
gene expression and physical interaction datasets. PLoS Computational Biology, 6(4),
2010.

[70] J. Neville and D. Jensen. Leveraging relational autocorrelation with latent group mod-
els. In Proceedings of the IEEE International Conference on Data Mining (ICDM’05),
pages 322–329, Houston, TX, USA, November 2005.

[71] M. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69, Feb 2004.

[72] M. E. J. Newman. Clustering and preferential attachment in growing networks. Phys.
Rev. E, 64, 2001.

[73] M. E. J. Newman. The structure and function of complex networks. SIAM Review,
(45):167–256, 2003.

[74] S. Ozawa, A. Roy, and D. Roussinov. A multitask learning model for online pattern
recognition. IEEE Transactions Neural Networks, 20:430–445, March 2009. ISSN
1045-9227.

[75] L. Page, S. Brin, R. Motwani, and T. Winograd. Pagerank citation ranking: Bringing
order to the web. Technical report, Stanford University, 1998.

[76] S. J. Pan and Q. Yang. A survey on transfer learning. Knowledge and Data Engineering,
IEEE Transactions on, 22(10):1345 –1359, 2010.

[77] A. Popescul and L. Ungar. Statistical relational learning for link prediction. In Proc.
of IJCAI Workshop on Learning Statistical Models from Relational Data, 2003.

[78] S. Purnamrita, C. Deepayan, and M. Andrew. Theoretical justification of popular link
prediction heuristics. In COLT, 2010.

136

[79] M. J. R and N. Heinz. New York: John Wiley, 2nd edition, 1999.

[80] M. Rattigan and D. Jensen. The case for anomalous link discovery. SIGKDD Explo-
rations, 7(2):41–47, 2005.

[81] C. M. Richard M. C. McCreadie and I. Ounis. Crowdsourcing a News Query Clas-
sification Dataset. In M. Lease, V. Carvalho, and E. Yilmaz, editors, Proceedings of
the ACM SIGIR 2010 Workshop on Crowdsourcing for Search Evaluation (CSE 2010),
pages 31–38, Geneva, Switzerland, July 2010.

[82] G. Salton and M. J. McGill. Introduction to modern information retrieval. InMcGraw-
Hill, Auckland, 1983.

[83] J. Scripps and P.-N. Tan. Clustering in the presence of bridge-nodes. In Proceedings of
the SIAM International Conference on Data Mining (SDM’06), Bethesda, MD, USA,
April 2006.

[84] J. Scripps, P. N. Tan, and A.-H. Esfahanian. Exploration of link structure and
community-based node roles in network analysis. In Proceedings of the Seveth IEEE
International Conference on Data Mining, 2007.

[85] J. Scripps, P. Tan, F. Chen, and A.-H. Esfahanian. A matrix alignment approach
for link prediction. In Proceedings of the 19th International Conference on Pattern
Recognition, pages 1–4, 2008.

[86] J. Scripps, P.-N. Tan, and A.-H. Esfahanian. A matrix alignment approach for col-
lective classification. In Proc of the 2009 Int’l Conf on Advances in Social Networks
Analysis and Mining, Athens, Greece, 2009.

[87] J. Scripps, R. Nussbaum, P. Tan, and A. Esfahanian. Link-based network mining. In
M. Dehmer, editor, Structural Analysis of Complex Networks. Birkhauser, 2010.

[88] D. Sculley. Combined regression and ranking. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’10, 2010.

[89] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Col-
lective classification in network data. AI Magazine, 29(3):93–106, 2008.

[90] T. E. Senator. Link mining applications: progress and challenges. SIGKDD Explo-
rations, 7(2):76–83, 2005.

[91] J. Shi and J. Malik. Normalized cuts and image segmentation. In Proceedings of
CVPR, 1997.

[92] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

137

[93] M. Soleymani and M. Larson. Crowdsourcing for Affective Annotation of Video: De-
velopment of a Viewer-reported Boredom Corpus. In M. Lease, V. Carvalho, and
E. Yilmaz, editors, Proceedings of the ACM SIGIR 2010 Workshop on Crowdsourcing
for Search Evaluation (CSE 2010), pages 4–8, Geneva, Switzerland, July 2010.

[94] W. Tang, Z. Lu, and I. Dhillon. Clustering with multiple graphs. In ICDM, pages
1016–1021, Miami, FL, 2009.

[95] C. Tantipathananandh, T. Y. Berger-Wolf, and D. Kempe. A framework for commu-
nity identification in dynamic social networks. In Proceedings of the Thirteenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007.

[96] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for rela-
tional data. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence (UAI02), 2002.

[97] B. Taskar, M. Wong, P. Abbeel, and D. Koller. Link prediction in relational data. In
In Advances in Neural Information Processing Systems 16, 2003.

[98] B. Taskar, M. Wong, P. Abbeel, and D. Koller. Link prediction in relational data. In
Proceedings of the Neural Information Processing Systems (NIPS 2003), 2003.

[99] H. Tong, C. Faloutsos, and J. Y. Pan. Fast random walk with restart and its ap-
plications. In ICDM ’06: Proceedings of the Sixth International Conference on Data
Mining, pages 613–622, 2006. URL http://dx.doi.org/10.1109/ICDM.2006.70.

[100] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means clustering with
background knowledge. In Proceedings of the Eighteenth International Conference on
Machine Learning, ICML ’01, pages 577–584, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-778-1. URL http://dl.acm.org/citation.

cfm?id=645530.655669.

[101] P. Wang and C. Domeniconi. Building semantic kernels for text classification us-
ing wikipedia. In Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’08, 2008.

[102] P. Wang, C. Domeniconi, and J. Hu. Using wikipedia for co-clustering based cross-
domain text classification. In Proceedings of the 2008 Eighth IEEE International Con-
ference on Data Mining, pages 1085–1090, 2008. ISBN 978-0-7695-3502-9.

[103] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications
(Structural Analysis in the Social Sciences). Cambridge University Press, 1994.

[104] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393(6684):440–442, 1998.

[105] Y.-B. Xie, T. Zhou, and B.-H. Wang. Scale-free networks without growth. In Physica,
volume 387, 2008.

138

[106] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification
with dirichlet process priors. J. Mach. Learn. Res., 8:35–63, 2007.

[107] T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for com-
munity detection: a discriminative approach. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’09, pages 927–936, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-495-9. doi:
10.1145/1557019.1557120. URL http://doi.acm.org/10.1145/1557019.1557120.

[108] T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community
detection: a discriminative approach. In Proc. of the 15th ACM SIGKDD International
Conference on Data Mining, pages 927–936, Paris, France, 2009.

[109] T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community de-
tection: a discriminative approach. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’09), pages 927–936, 2009.

[110] Y. Yang, S. Slattery, and R. Ghani. A study of approaches to hypertext categorization.
Journal of Intelligent Information Systems, 18, March 2002.

[111] D. Zhang and D. Shen. Multi-modal multi-task learning for joint prediction of multiple
regression and classification variables in alzheimer’s disease. NeuroImage, 59(2):895 –
907, 2012.

[112] Z. Zhang, T. Li, C. Ding, and X. Zhang. Binary matrix factorization with applications.
In Proceedings of the IEEE Int’l Conf on Data Mining, pages 391–400, 2007.

[113] L. Zhao, G. Sukthankar, and R. Sukthankar. Robust active learning using crowd-
sourced annotations for activity recognition. In AAAI workshop on Human Computa-
tion, 2011.

[114] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and
global consistency. In Advances in Neural Information Processing Systems 16, 2004.

[115] D. Zhou, S. Zhu, K. Yu, X. Song, B. L. Tseng, H. Zha, and C. L. Giles. Learning
multiple graphs for document recommendations. In WWW ’08, pages 141–150, 2008.

[116] T. Zhou, L. Lu, and Y.-C. Zhang. Predicting missing links via local information. In
Eur. Phys. J., 2009.

[117] S. Zhu, K. Yu, Y. Chi, and Y. Gong. Combining content and link for classification
using matrix factorization. In Proceedings of the 30th Annual Int’l ACM SIGIR Conf
on Research and development in information retrieval, pages 487–494. ACM, 2007.

[118] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label
propagation. 2002.

139

	Button1:

