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ABSTRACT
EXPLOITING MULTIPLE DATA SOURCES FOR NETWORK MINING
By

Prakash Mandayam Comar

Network mining is an active research area with application to diverse fields including
computer science, social science, and biological sciences. However, previous studies have
focused mostly on developing algorithms for mining data from a single network. Such al-
gorithms are susceptible to imperfections in the network data such as noisy links and node
attribute values. The focus of this thesis is on exploiting multiple data sources to enhance
the performance of network mining algorithms for community detection, node classification
and link prediction tasks.

The first contribution of this thesis is the development of a joint matrix factorization
framework for mining multiple networks. The framework offers a principled way to per-
form community detection simultaneously across multiple related networks. It is also highly
flexible, allowing the link structure, node attributes, and any prior knowledge about the
relationship between communities in different networks to be seamlessly integrated under a
unified formulation. The framework is then extended to a multi-task learning setting where
one could perform community detection on one network and node classification on the other.

Multi-task learning is natural for networks considering the intimate relation between the
link structure and node attributes of the networks. However, designing a framework for
multi-task network learning requires a joint objective function that can be used for various
network mining tasks while accommodating some of the existing objective functions (such

as the well-known modularity measure for community detection). As second contribution,



this thesis presents a novel cost-sensitive loss function that enables the joint learning for link
prediction and community detection on one or more networks. The loss function addresses
the class skewness and degree skewness problems inherent in most link prediction tasks.
A formal proof is provided to show the equivalence between the proposed loss function
and the modularity measure used in community detection. To enhance the scalability of
the approach, a divide and conquer scheme was developed where the learning algorithm is
applied to smaller partitions of a network and their results are systematically combined using
the boosting framework.

Acquiring reliable labels is crucial for network learning tasks such as link prediction and
node classification. While for the most part the labels can be gleaned from the network itself,
they are often incomplete and noisy, thus requiring alternative mechanism to solicit more
label information. This thesis explores the viability of using crowdsourcing technology as an
external source for obtaining additional labeled data for network mining tasks. Adopting
crowdsourcing for network data is non-trivial due to the difficulty in designing a human
intelligence task (HIT) that can be easily handled by non-experts (i.e., the crowd). To
overcome this problem, this thesis proposes an approach for transforming network data into
a set of images that can be easily labeled by non-experts. The conditions under which the
transformation preserves the original network data was also examined. To the best of our
knowledge, this is the first study to examine the use of crowdsourcing for acquiring labels in
network learning tasks.

This thesis is a step forward towards resolving some of the fundamental challenges in
performing multi-source network mining. Though the methods described in this thesis were
designed for network mining, some of them (e.g., methodology to transform network data

into image data) are applicable to non-network learning problems.
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Chapter 1

Introduction

The rapid growth of online social media services such as Facebook , Twitter and Wikipedia
has triggered a wave of interest in applying data mining and machine learning techniques to
the study of complex networks. The field of social network analysis (SNA) has focused on a
variety of issues, from inferring the formation of links in a social network to understanding
how social phenomena such as homophily, social influence, and communities emerge from
the interactions between individuals in a network. Significant progress was achieved in
the 1990s following the seminal works of Watts et al. [104] and Barabasi et al. [8], who
showed that the structural properties of many social, biological, and physical networks can
be characterized by the same mathematical principles. This has led to increasing research
into the development and application of network mining techniques to other areas beyond
social science, including systems biology (e.g., for modeling proteins and gene interaction
networks) and geo-sciences (e.g., for modeling teleconnections among climate variables and
ecological processes).

A great deal of research in network mining has focused on the development of algorithms
for mining data from a single network. This includes algorithms for solving network link
prediction, node classification, and community detection tasks. As more diverse sources of
network data becomes available, the need for multi-source network mining has grown in
recent years. However, developing a robust algorithm that can effectively combine informa-

tion from other networks is a challenge. The algorithm needs to be applied not only to one



network, but also simultaneously to other related networks. This requires a flexible com-
putational framework that can utilize potentially noisy information from other sources and
produce consistent solutions across all networks. Furthermore, the learning tasks applied
to the multiple networks may not be the same. For example, one might be interested in
predicting the formation of links in a network based on the community structure found in
another network. Previous works, which are mostly limited to performing the same task on
one or more networks, must therefore be extended to deal with multi-task network mining
problems. Finally, acquiring labeled data for network analysis is an important but under-
studied problem. Although most networks already contain some label information (e.g.,
the partial links in a network can be used to train a link prediction model), the labels are
usually incomplete and noisy. This raises an interesting question whether it is possible to
design an approach for acquiring additional labeled data from alternative sources to enhance
performance of network learning algorithms. These are the key issues investigated in this

thesis.

1.1 Thesis Statement

This thesis focuses on multi-source and multi-task network mining problems. The techniques
developed in this thesis are based on the following two conjectures. First, augmenting data
from alternative sources (e.g., from crowdsourcing and other related networks) is expected
to improve the performance of network mining algorithms. Second, given the inherent inter-
dependencies between the link structure and node attributes, network learning tasks such
as link prediction, community detection, and node classification are mutually related, which

makes multi-task learning a natural fit for analyzing network data.



1.2 Why Multi-Source Network Mining?

The need for multi-source network mining has grown in recent years due to the following
reasons. First, network data from the target domain alone may not be sufficient to yield
high-quality results. In particular, any imperfections in the network data such as noisy
links or missing node attribute values can have an adverse effect on the performance of the
network learning algorithm. Second, network data has become more diverse. For exam-
ple, it has become increasingly common for individuals to create user profiles on multiple
social media Web sites. According to a recent report by the Pew Internet and American
Life Project, about 51% of social network users have two or more online profiles. Each of
the social media sites often maintains different aspects of information about the users. For
example, Twitter provides information about user opinions and other personal communica-

1 contains a trove of user mobility information. The users may also

tions while FourSquare
have a LinkedIn 2 profile containing information about their professional networks. Many of
these Web sites provide easy-to-use application programming interface (APIs) to facilitate
access to their public data. Similarly, advances in high throughput genomic technologies
have enabled the modeling of complex biological systems using diverse types of networks,
including protein interaction networks, metabolic networks, gene interaction networks, or
gene regulatory networks. There has also been increasing interest in analyzing climate net-
works, which can be constructed using climate variables such as temperature, precipitation,
and atmospheric pressure measured at different heights.

Despite the availability of the diverse sources of network data, there are very few studies

that consider integrating the diverse sources of network data to improve the analysis of

Lwww.foursquare.com
2www.linkedin.com



complex networks. This thesis aims to develop new learning formulations that can effectively

harness network data from multiple sources.

1.3 Why Multi-Task Network Mining?

A network consists of an inter-connected set of nodes, whose properties are represented by
the node attributes. There is often a tight coupling between the link structure of a network
and some of the attributes of the nodes. For example, individuals are more likely to befriend
others who work in the same organization or attend the same school compared to those
who work or attend different schools. Due to their inter-dependent relationships, many
of the network learning tasks are mutually related to each other. For example, consider
the product recommendation problem at an online retail store such as Amazon. Here, a
“link” can be established between customers if they had bought similar products in the
past. The product recommendation problem can be cast as a link prediction task on the
user-product bipartite graph. It would be natural for the recommendation algorithm to
first identify segments of customers who share similar purchasing behavior before making its
recommendations. Identifying different customer segments can be modeled as a clustering
or community detection problem. There is a close relationship between the network link
prediction and community detection tasks. A good link prediction algorithm should take
into consideration the community structure present in the network. Conversely, the link
prediction algorithm could be used as a pre-processing step to enhance the within community
links before applying a community detection algorithm [34]. This example illustrates the need
to design network learning algorithms that can simultaneously solve a collection of learning

tasks on one or more networks, instead of performing only a single task.



A key challenge in performing multi-task network learning is in designing a joint objective
function that simultaneously performs all the related learning tasks. The shared objective
function should be designed in such a way that each learning task is aided by the partial
solutions obtained from other related learning tasks and the partial solutions must be intel-
ligently combined in order to attain an optimal solution. Despite its promise, to the best of

our knowledge, there has been no significant research work on multi-task network learning.

1.4 Label Acquisition for Network Mining

Adequate labeled data is the key requirement for training supervised learning algorithms
for link prediction or node classification tasks. Even unsupervised learning tasks such as
community detection and anomaly detection can benefit from utilizing partially labeled
data (via the semi-supervised learning paradigm). In both cases, domain experts are often
needed to manually peruse the data and categorize them into different labels. This is both a
tedious and time consuming process, and may not always generate enough labeled data for
the effective mining of large-scale networks. Annotating network data is cumbersome as the
label information depends not only on the attributes of a node, but also, on the attributes
and labels of its neighboring nodes. Labeling a non-network data instance is easier as its
label does not depend on the label assignment for other instances. In fact, there is a subset
of labeling problems known as human intelligence tasks (HITs), where it is easy (or cheap)
to train non-experts to provide their reasonably accurate labels on the given data. Typical
examples of HITs include digit, letter, or text recognition, image classification, and object
identification in image, and video streams. It would be useful to develop a framework for

exploiting labeled data (especially from HITs or other non-related domains) in order to



generate additional labeled examples for the network mining problem.

1.5 Thesis Contributions

As mentioned earlier, the focus of the thesis is in developing network mining algorithms
that can exploit data from multiple sources. This is akin to network learning with side-
information [57, 62]. However, previous studies on learning with side information (also
known as semi-supervised learning) have focused primarily on independent and identically
distributed (i.i.d.) data or network data obtained from a single source. These approaches
assume there is a target data for which a learning algorithm is designed to solve with auxiliary
information provided by the alternative sources (e.g., in the form of must-link and cannot-
link constraints for clustering). In contrast, our approach for learning from multiple networks
assumes each network is equally important and has its own learning task to be solved. In
fact, the networks may have different learning parameters (e.g., number of communities in
the different networks may not be the same) or learning tasks (node classification on one
network and link prediction in another).

The main contributions of this thesis are as follows. In Chapter 3, we provide a ma-
trix factorization based framework to perform joint community detection across multiple
related networks, [63, 64]. In Chapter 4, we further extend the above framework to perform
multi-task learning where we simultaneously perform clustering and classification on the dif-
ferent networks, [21, 65]. We found that the matrix factorization approach has a significant
advantage over graph partitioning methods such as normalized cut especially when com-
bining networks with different link densities. Another advantage of the framework is that

it can systematically combine both content and link information from the multiple related



networks. Finally, prior information about the relationships between communities in the
different networks can also be incorporated into the framework.

In Chapter 5, we present a framework to perform joint learning for link prediction and
community detection [22]. Here, we have designed a novel cost-sensitive loss function that
addresses both class skewness and degree skewness problems that are prevalent in most link
prediction tasks. With a proper choice of the cost parameters, the proposed loss function
can be theoretically shown to be equivalent to the well-known modularity measure used in
community detection. We have employed a divide and conquer scheme for constructing the
model, where the learning algorithm is initially applied to smaller partitions of the given
network and the results obtained from each partition are systematically combined using the
boosting framework.

In Chapter 6, we consider the problem of acquiring additional labeled data for supervised
network mining tasks such as link prediction and node classification using crowdsourcing
technology. Due to the difficulty in designing a HIT that can be easily solved, even by non-
experts, we present a generic framework that transforms the network data into an image set,
thereby giving a distinct visual representation of the network data for non-experts to label.
Such an approach is shown to produce reliable labeled data that can be augmented to boost

the performance of network mining algorithms.



Chapter 2

Background and Related Work

The study of complex networks has leaped to the forefront of data mining research spurred
by the rapid proliferation of relational data generated from various physical, biological, and
socio-information systems. Substantial progress has been made over the past decade to
address fundamental questions such as: How are links established in a network? How do
communities formed and sustained over time? What are the most influential nodes in the
network? and How to infer missing attributes or links in a network? To provide answers to
these and many other questions, innovative computational solutions have been developed to
mine the rapidly growing repositories of network data. In this chapter we present a detailed
review of advances in mining network data.

Ever since Euler first applied graph-theoretic principles to solve the Konigsberg Bridge
Problem [41], the study of networks has become increasingly popular, from the analysis of
social and biological systems to the modeling of disease outbreaks, supply chains, power grids,
and transportation networks. A network is typically represented as a graph of interconnected
nodes, where each node represents an entity that is characterized by a set of attributes.
Formally, let N’ = (V, E, X) be a network, where V' is the vertex (node) set, E CV x V is

the edge (link) set, and X is a matrix of nodal attributes.



2.1 Categorization of Network Types

Networks can be characterized based on the types of nodes and links they contain. A
network is homogeneous if all the nodes in the network are of the same type. Otherwise,
it is called a heterogeneous network. Furthermore, a network is mono-relational or uniplex
if all the links are of the same type and multi-relational or multiplex if it contains links of
different types [68]. For example, a co-authorship network is a uniplex network since each
link indicates a pair of authors have written an article together. An online social network
can often be treated as a multiplex network because two people who are linked together
could be friends, relatives, fans (followers), or even complete strangers. Networks can also
be characterized as static or dynamic, depending on the temporal properties of its link
structure. The former is represented by a graph with fixed connectivity whereas the latter
is represented by a sequence of network snapshots, each indexed by its corresponding time
stamp, i.e., Np = {(V4, Et,Xt)}z;l.

In this thesis we present algorithms for mining multiple networks. Here we assume the
availability of a collection of homogeneous networks, {N7,Na,--- N}, each of which is
obtained from a different data source. As used herein, the term “data source” broadly refers
to any repository that houses the network data or a specific approach used to generate
the data for constructing the network. For example, there are many data sources available
for studying online social networks, including Facebook, Twitter, Digg, and YouTube, each
of which has its own application programming interface (API) to facilitate searching and
downloading data in a standardized format such as XML or JSON. Furthermore, the nodes
in different networks may be connected by a set of inter-network links. In this thesis, we

refer to the collection of such multiple networks along with their links as a multi-network.



Definition 1 A multi-network N is a collection of of homogeneous networks {N1,Na,--- N},
where each homogeneous network Nj is an attributed graph (V;, E;, X;) and the different net-

works are connected by a set of inter-network links, € = {(vp,vq) | vp € Vi, vg € Vj, i # j}.

With this definition, it is easy to verify that multiplex networks and heterogeneous k-partite
graphs are special cases of multi-networks. For example, a multi-network with homogeneous
nodes and no inter-network links (i.e., Vi: V; =V and £ = @) is equivalent to a multiplex
network whereas a multi-network with disjoint node sets (¥4, j : V; NV; = () and no within-

network links (i.e., Vi : F; = @ but £ # @) is a heterogeneous k-partite graph.

2.2 Learning Tasks on Networks

Network mining research can be broadly divided into the following tasks—network genera-
tion and characterization, link prediction, node classification, community finding, and rank
analysis. We briefly review these tasks below. A more detailed exposition can be found in
the following books and survey articles [35, 87, 90].

Link Prediction: Link prediction attempts to uncover previously unknown relation-
ships in a network. It can be used, for example, to identify covert ties in an adversarial
network or to predict regulatory interactions in a biological network. There are two common
approaches to solve the link prediction problem: (1) by using a generative modeling ap-
proach [70, 77, 98, 103] to learn a joint probability model of the network components (node
attributes and link structure) and marginalize the distribution to make a prediction, or (2)
by using a discriminative approach to learn a target function that directly maps an input
pair to its corresponding class [42, 47, 55]. Discriminative approaches are often preferred

for several reasons. First, generative approaches require specifications of the dependence
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relationships among the network components via a graphical model and assumptions about
the parametric forms of the probability distributions. Second, estimation of the model pa-
rameters can be very expensive, thus requiring approximation techniques such as Markov
Chain Monte Carlo (MCMC) and variational methods [27].

Node Classification:  The node classification problem attempts to assign a class label
to all the nodes in a network using the partial class information available on a few selected
nodes in the network. This is similar to conventional pattern classification problem with
the difference being that the objects to be classified are not independent and identically dis-
tributed (i.i.d.). Instead, the label of each node is dependent on the labels of its neighboring
nodes. Due to such dependency, any node classification method should take into consider-
ation the link structure as well as node attribute values when assigning class labels to the
nodes. It has been previously shown that augmenting the nodal attributes of the neighbors
may yield poor classification performance [14]. However, if the labels of the neighboring
nodes are incorporated into the feature vector, this will improve the overall classification
accuracy [14, 61]. Another important consideration for node classification is the presence
of different types of regularities in the networks [110]. Here, nodes of a similar class label
tend to form more links among themselves than with the rest of the network. Researchers
in the past have also used probabilistic models [96] and matrix factorization [86] methods to
perform the node classification task.

Rank analysis: Ranking is the process of assigning an ordering among the nodes
in a network. The rank of a node reflects the measurement of some particular structural
property of the network, which conveys a semantic meaning such as importance, popularity,
authority, etc. As an end in itself, rankings can also be used to look for well-connected or

central nodes in a network. In network mining, ranking is often performed using centrality
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measures [103] such as degree, closeness, and betweenness. A popular ranking method for
large directed networks such as the World Wide Web is the PageRank algorithm [75], which
employs a random walk with restart approach to compute the dominant eigenvector of a
matrix. Other eigenvector-based algorithms, similar to PageRank, include HITS [50] and
SALSA [53]. Recently, there has been considerable interest in assigning rank values to
nodes based on their community belongingness. Guimera et al. [40] introduced a metric
called participation coefficient, which measures to what degree a node participates in other
communities. Scripps et al. [84] introduced an alternative metric called rawComm for
assigning ranks and roles to nodes without applying a community finding algoruthm.
Community Finding:  Identifying communities in a network is closely related to
the data clustering problem. Traditional clustering methods seek to find groups of objects
with highly similar attribute values. In contrast, the technique of community finding places
nodes in a network into cohesive subgroups in such a way that the nodes within a group
are highly connected to each other and disconnected from nodes in other groups [63, 108].
Community finding is an ill-posed problem; there is no agreed-upon metric for evaluation.
A popular graph-based metric from Newman and Girvan [71], called modularity, is based on
the fraction of links within a community to those between communities. Some community
finding methods do not try to completely cluster the entire network. Instead they form
communities from a given seed set of nodes [30, 36]. More recently, progress in community
finding has focused along finding communities in dynamic networks, where the nodes, links,
and attributes change over time. Backstrom et al. [5] studied how the structural features
of communities affect how nodes join and leave communities. Tantipathananadth et al. [95]
proposed a new framework for tracking community changes in dynamic networks by modeling

it as a graph coloring problem. Communities are then identified by approximately solving a
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combinatorial optimization problem using dynamic programming.

2.3 Multi-Network Mining

As mentioned in Section 2.1, a multi-network consists of a collection of networks that are
inter-connected with each other. Previous works have focused mostly on mining special
cases of such networks, either as multiplex networks or heterogeneous k-partite graphs. For
example, a multiplex network of articles (or documents) can be constructed by defining
different types of links between the articles (e.g., based on their co-citations, similarity of
keywords in abstracts or titles, and similarity of authors). There have been recent efforts
to identify communities in multiplex networks [12]. Zhou et al. [115] has used the different
link types to create similarity matrices between nodes which are then used to cluster the
multiplex network. Researchers have also customized the well known matrix factorization
techniques to cluster the multiplex networks. For example, Tang et al. [94] has proposed a
linked matrix factorization approach for fusing information from multiple graphs. Lin et al.
[56] also investigated a similar problem using a relational hypergraph factorization approach
to detect communities of users based on various social contexts and interactions.

Another type of multi-network is a heterogeneous k-partite network, where links exist
only between nodes of different types. This type of graphs has been successfully used to
model relationships such as documents-words, products-users, blogs-bloggers, etc. Clustering
bipartite and k-partite graphs are often referred to as co-clustering or multi-way clustering
in the literature. Long et al. [58] investigated the problem of co-clustering as a matrix
factorization problem and derived multiplicative update formulas for identifying the clusters.

Dhillon et al. [25] presented a framework for co-clustering that minimizes the loss in mutual
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information between the original joint distribution of related data and the corresponding joint
distribution of the clustered data. Long et al. [59, 60] also provided a unified framework for
attributes-based clustering, semi-supervised clustering, co-clustering, and graph clustering
using a probabilistic framework.

The focus of this thesis is on mining multi-network data that can be conceived as a
fusion of multiplex network and a heterogeneous k-partite network. Research on mining
such type of networks has flourished recently. Narayanan et al. [69] propose simultaneous
clustering of multiple networks as a framework to integrate large-scale datasets on the in-
teractions among and activities of cellular components. They present an algorithm called
JointCluster that finds sets of genes that cluster well in multiple networks of interest, such as
co-expression networks summarizing correlations among the expression profiles of genes and
physical networks describing protein-protein and protein-DNA interactions among genes or
gene-products. Chen et al. [16] recently presented a co-classification approach for detecting
Web spam and spammers in social media applications. They formalized the joint detection
tasks as a constraint optimization problem, in which the relationships between users and
their submitted Web content are represented as constraints in the form graph regulariza-
tion. A pair of classifiers for detecting Web spam (url nodes) and spammers (user nodes)
is simultaneously trained taking into consideration the url-url and user-user links. They
demonstrated that the co-classification strategy is more effective than training the pair of

classifiers independently.
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2.4 Multi-task Learning on Networks

Multi-task learning is a machine learning paradigm that simultaneously learns a collection
of related problems using a shared problem representation. Such an approach is desirable
when the solution to one of the learning tasks can be used in learning other related tasks. It
leads to a better model for each learning task, because it allows the learner to harness the
commonality between the learning tasks. The merits of multi task learning over single-task
learning has been discussed in detail by Caruana [13]. As mentioned in [13], if the tasks
can share what they learn, the learner may find it easier to learn them together than in
isolation. Thus, if we simultaneously train a classifier to recognize object outlines, shapes,
edges, regions, subregions, textures, reflections, highlights, shadows, text, orientation, size,
distance, etc., it may learn better to recognize complex objects in the real world, compared
to learning them independently.

Multi-task learning can be considered a form of transfer learning [76]. Given a source
domain Dg and learning task T'g, a target domain Dp and learning task 77 , transfer learning
aims to help improve the learning of the target predictive function fp(.) in Dy using the
knowledge in Dg and Tq, where Dg # Dp,or Tg # Tp. Typically, in a multi-task learning
the domains are identical (Dg = D) but the learning tasks are different. One such example
is in identifying the hair color and eye color of a given face image. These are two separate
tasks applied to the same data (image corpus). Most of the previous works on multi-task
learning have focused on learning multiple, related classification tasks [28, 74, 106]. There
has been some recent efforts to extend the formulation to learning different tasks such as
classification and regression [1, 111] or regression and ranking [88]. However, none of these

previous works are designed for relational data, which is the focus of this thesis.
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Definition 1 (Multi-task Multi-network Learning) Given a multi-network N, the multi-
task multi-network learning problem is to solve k learning tasks, where a learning task s

associated with a subnetwork Ny = (V;, E;, X;) of N.

The learning tasks stated in the preceding definition may correspond to the same class of
learning problem or different classes of problems (e.g., classification, community detection, or
link prediction). For example, one might be interested in classifying the nodes in one network
while detecting communities in another. Furthermore, we only consider learning tasks that
are mutually related; i.e., the classes or communities in one network are dependent on the

classes or communities in another.

2.5 Summary

This section reviews the previous works on network mining. The past research has mostly
focused on learning from a single network, temporal networks, k-partite graphs or multiplex
networks. There has been very little work on combining multiple related networks nor multi-

task learning on on multi-networks, which is the focus of this thesis.
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Chapter 3

Joint Community Detection Across

Multiple Networks

Community detection in networks is an algorithmic approach to partition the nodes in a
network into cohesive groups (known as communities) in such a way that the nodes within a
group are highly related (connected) with each other and are mostly unrelated (disconnected)
from nodes in other groups. Most of the previous work has focused on finding communities in
a single network or in a bipartite graph formed on heterogeneous nodes (e.g., co-clustering of
articles and authors in a bibliographic network) [73, 83, 109, 112]. This chapter investigates
the problem of combining link information from more than one network to improve the
efficiency of community detection task.

Our work on clustering multiple networks of heterogenous nodes is motivated by its
many potential applications. For example, it can be used to simultaneously find clusters of
scientific papers and clusters of authors working in the same research areas. Similarly, it can
also be used to perform joint clustering on Wikipedia articles and editors of the Wikipedia
pages. The multiple networks may also represent relational data from different domains.
For example, one could perform joint clustering of Wikipedia editors and Digg! users, where

the links between Wikipedia editors and Digg users are established based on the content

IDigg.com is a social networking web site that allows users to share news stories with
other users.
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similarity between the edited Wikipedia pages and the submitted news stories in Digg. The

advantages of multi-network clustering are that

e Attribute set of nodes in individual networks may not be rich enough for the purpose

of clustering.

e An individual network may have noisy or partially observed links. In such a case
the link structure may be enhanced by considering information from other associated

networks.

A naive approach for multi-network clustering is to partition each network separately.
Such an approach is useful when the link structure and subgroup information in different
networks are independent of each other. However if the networks are related to each other,
then the link structures in the individual networks are not only characteristic of the re-
spective networks but often contains implicit information about the underlying clusters of
other related networks. In such a scenario, we expect a joint clustering would enhance the
performance of the clustering algorithm.

The proposed framework is equally applicable to clustering multiple networks created
from heterogeneous nodes of the same source (e.g., Wikipedia articles and editors) or nodes
from different sources (e.g., Wikipedia editors and Digg users) as long as the correspond-
ing links between nodes in different networks can be established. One possible motivation
for jointly identifying communities across different network domains is that it allows us to
compare the characteristics of the similar communities present across different domains. For
example, the political science community in Wikipedia may consists of lot of academic pro-
fessionals and university students where as a similar community in digg.com may consist of

tech savy netizens with political interests. Another motivation is that the joint clustering
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Graph G1

BiPartite Graph Graph G2

Figure 3.1  Multi Network Clustering: Graph G = (V1, E1), graph Go = (V3, E»)
and the bipartite graph capturing the relationship between the nodes
of the networks G; and G5. For interpretation of the references to
color in this and all other figures, the reader is referred to the elec-
tronic version of this dissertation.

allows us to incorporate the auxiliary information from multiple data sources that are related

to a given network.

3.1 Preliminaries

In this thesis, we formulate the multi-network clustering problem on a pair of related net-
works. Our formulation can be extended to more than two networks. Let Gy(V7, Eq) and
Go(Va, E9) be a pair of graphs associated with two networks. The objective of multi-network
clustering is to create sets of partitions {Plj}fil and {7’23'};21 such that Vj = U;ﬂ:l P1j
and Vo = U;Zl Po;. We seek a pair of functions g1 : Vi — [0, 1]k1 and g9 : Vo — [0, 1]k2
such that g;(v;) = (c1,co, .., cki)’ where each ¢; € [0, 1] is the degree of membership node v,
belongs to cluster partition P;;. Figure 3.1 depicts the different graphs and their relation-
ships.

In the independent clustering approach, the cluster membership functions g1 and go are
learnt separately using their corresponding adjacency matrices. To simplify the notation,

let A be the adjacency matrix associated with graph Gy, where A;; = 1 if (v;,v;) € Ep.
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Similarly, B is the adjacency matrix for graph Go, where B;; = 1 if (v;,v;) € Ey. In
addition, we assume there is a third set of edges F3 C V] x V5 connecting the nodes between
G1 and Go. We denote the adjacency matrix for these edges as C, i.e., C;; = 1if (v;,v;) € E3.

In this study, the cluster partitions are obtained by decomposing the adjacency matrix
representation of a graph into a product of its latent factors. In particular, we seek to
minimize the distance function D(A||B) between the adjacency matrix A and the product

of latent factors B, where:
D(A||B) =) Ajjlog ) = Aij + By (3.1)
.. 1]
ij

Note that if Zij Ajj = Zij B;; = 1, the distance function reduces to Kullback-Leibler
divergence measure.

Depending on the application domain, the adjacency matrix C' is either readily avail-
able as part of the data or needs to be estimated from the data. For example, consider
the document-document network (A) and author-author network (B). Both networks are
naturally linked by a document-author bipartite graph C'. In another example, consider two
networks constructed from Wikipedia editors and Digg users. Suppose we want to simulta-
neously cluster these two user networks such that each cluster represent users with interest
in certain topics like science, sports, entertainment, etc. Here there is no natural link matrix
C that is readily available to perform joint clustering. Nevertheless, it can be estimated from
the data. Two users from different networks are linked if the Wikipedia pages one of them

have edited has high similarity value to the news stories submitted by the Digg user.
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3.2 Joint Clustering Framework

This section outlines our proposed framework for identifying cohesive subgroups in multiple
networks. Our framework uses the non-negative matrix factorization technique given in
26, 52]. Let A € RI)*" and B € RI’*™ be the adjacency matrices of the graphs G and Go,
respectively, whereas C' € Rixm be the adjacency matrix for the links between nodes in Gy
and Go. Here R4 represents set of non negative real numbers. Note that our framework is

applicable to both directed and undirected graphs.

3.2.1 Joint Clustering of Multiple Networks

To simultaneously cluster the networks, we minimize the following objective function with

respect to X, Y, U,V and W.

J=DA| XUXTY+ DB | YwWyT)y+D(C || xvyT) (3.2)
where X € %th and Y € 3‘%ka2 are the corresponding cluster membership matrices

for the two networks. The decomposition of A into a 3-factor XU X' instead of a 2-factor
X X! enables the framework to deal with directed links [26, 117]. For each node i in graph
G1 , Xj; indicates the cluster membership of node 4 to cluster j. The cluster membership
values are not necessarily probabilities. Large values of X;; indicates greater affinity for the
node i to be a member of the cluster j. Similarly, we can interpret Y;;. The matrix V reflects

the correspondence between the subgroups derived from the two networks.

21



The objective function can be written as follows:

A
= i Ajilog ——2— — A+ [XUXT],;
T = el 2 B g A U
Ci
+ Zczk 08— XVYT] — Cig + [XVY T
By T
+ ZBkslog YWYT] — B+ YWY, (3.3)

Taking the partial derivatives of 7 with respect to X and Y yield the following( the partial

derivatives with respect to U, V and W can be similarly derived)

o - L [P+ - g
+ [YW]QJ} + gj h%l/[ﬁij] [XV]aj] (3.4)

Given the objective function (3.3) and its partial derivatives, one can solve for X, Y, U,V
and W using a gradient descent approach. Here, we give a converging iterative matrix
factorization based update formulas for the unknown factors:

Aia[XUT}aj Aai[XU]aj M Cia[YVT}aj

2a=1 XUXT);, [XUXT]aZ-) a=1"1xvyT),,
(S0 XU + XUT] g+ S0 [y vT,))

Xij = Xij
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Z ( JYW ] Bai[YW]aj) N Cai[XV]aj
a=1 waT] [YWYT]M' a=1 [XVYT]ai

Yij =Yij

J J N
(Za:l [YW + YWT]aj + Zazl [Xv]aj>
N M C
a=12_b=1 ﬁ){aiybj
Vij = Vij [ } (3.7)
Z IZb lXasz]
N oSN Ay oy
da=12 b=l XXty YaiXb;
Uij = U@'j [ N N “ ] (3.8)
> a—1 2 b1 XaiXbj
By,
S myazybj
Wij = Wij [ } (3.9)
S YaiYy

Theorem 1 For a fited Y,U V and W the update formula for X, given in Equation (3.5)

monotonically decreases the objective function of the objective function defined in (3.3).

The proof of theorem is given in the Appendix.

3.2.2 Incorporating Prior Information

Many times, we may have additional information about the correspondence between clus-
ters in multiple networks. In what follows we give a motivation to incorporate this prior

information into the objective function.

Example 1 Consider a citation network between research articles and a co-authorship net-
work between researchers. Suppose the articles are grouped into the following topics: Algo-

rithms, Artificial Intelligence, Databases, Cell Biology, and Genetics. Typically,
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an author may work on multiple related topics, therefore the article partitions are not re-
flected as it is in the author network, rather they are further grouped into coarser clusters,
namely, Computer Science and Biotechnology. The author cluster (Computer Sci-
ence) is related to the first three article clusters, while Biotechnology is related to Cell
Biology and Genetics. We expect such prior information will enhance the joint clustering

results. This information can be encoded in a 5 X 2 prior matriz:

where the rows are the article clusters and the columns are the author clusters.

To incorporate prior, we first need to interpret the role of the V' matrix in the objective
function. As mentioned earlier, V is the ’between network’ cluster correspondence matrix.
The elements of V matrix reflect the relationship between the clusters between the two
networks. If we have the prior knowledge about the proportion P of links between the
clusters in both the networks, then it can be incorporated into the objective function (3.3)

as follows

J = DA|XUXT)+ DB | ywyT)

+ DIC | XV +(1-1P)YT) (3.10)
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Algorithm 1 Multi-network Clustering Algorithm

Input: Matrices A, B, C, and maximum iteration 7.
Output: Matrices X, Y, and V.

Initialize X0 yold grold yold nq Wwold ¢ random matrices.
fori=1toT do

update XY using (3.5)

update Y% using (3.6) with X"¢%

update V" using (3.7) with X" and YV

update U™ using (3.8) with X"V

update W% using (3.9) with Y%

set xold . Xnew;Yold + ynew. pold ynew.

Wold « Wnew gnd Vold < Jnew

end for

where )\ is a parameter provided by the user. We call V/ = AV + (1 —\) P as the adjusted
correspondence matrix. The A parameter in V/ controls the tradeoff between fitting V'
directly to the data and fitting V'’ to the prior matrix P. If A = 0, then the correspondence
between clusters is given by the prior matrix. If A = 1, then the formulation reduces to the
joint clustering framework given in Equation (3.3). In situations where the proportion of data
scattered between the clusters in two networks is unknown, we can use a non-informative
prior where P;; is 0 or 1 indicating whether the ith article cluster is related to jth author

cluster (see Example 1).

3.2.3 Computational Complexity

This section presents analysis of the computational complexity of our algorithm. To begin
with, consider the clustering of a single network. The objective function for this would be
D(A || XUXT) and the update formula for the cluster membership matrix X is given by

N AaXUT 0 AyIXU,,
“Za:1( (XUXT],, [XUXT]az')

=X
1) 1)
(N XU + xUT),)

(3.11)
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Let k be the number of clusters we wish to identify. Each X;; is multiplied by an update
factor, that involves several matrix multiplications. The product XU and XU T can be
computed in O(nk?) while XUXT requires an additional computation of order O(n?k).
Since A is a sparse matrix, the element-by-element division between the matrices A and

XUXT can be computed in O(|e|4), where |e|4 is the number of edges in matrix A. This

A
XuXxT

reduces the computation of term to O(|e|4k). Note that the update factor needs to
be computed only once at each iteration and then applied, element-by-element, to each X;;.
Thus, the overall complexity for clustering a single network into k clusters is O(T'|e|4k)),
where 7' is the total number of iterations.

Next we consider the case of two networks of comparable sizes and having the same num-
ber of clusters. The joint optimization is given by Equation (3.3) and the update formula
for X is given by Equation (3.5). This differs from the update formula for a single network
with an additional term that represents the relation between the two networks. If both net-
works are of comparable link densities, then this additional term incurs additional overhead
of O(|e| 4kT). By similar argument, each of the five update formulas given in Algorithm 1
requires a time complexity of O(ekT’), where e denotes the average number of links in a net-

work. Putting it altogether, this implies the proposed algorithm has an overall complexity

of O(5ekT) where T is the maximum number of iterations.

3.2.4 Semi-Supervised Learning

Before we end this section, we discuss the similarity between the proposed joint commu-
nity detection problem with well known semi-supervised learning models. The paradigm of
learning from multiple related networks can be modeled as semi-supervised network learning,

where the additional data from related network is used as side information in order to per-
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form supervised or unsupervised learning. One way to incorporate the side-information from
related networks would be to add additional knowledge derived from the side-information
as constraints to the original learning problem. For example, depending on the nature and
quality of the side information, a set of must-link and cannot-link constraints on the node
pairs can be extracted from the side information and included in the objective function
[9, 10, 57, 62, 100]. A drawback here is that it requires a good heuristic to extract the
must-link, cannot-link constraints which may not be readily available. Also, it may not be
possible to get a feasible clustering solution that satisfy all the constraints extracted from
the side information [24].

One way to avoid using heuristics to extract constraints from the side-information is to
directly use all the available information and let the algorithm extract the best suitable
information from the data. In context of multiple related networks, we combine all the
networks to form one giant multi-network. This is accomplished by constructing a single

adjacency matrix G for the entire network as follows
(

Al] i,j = 1,2,....77,,
Cij 1=12,.nandj=n+1,.m

Cji j=n+l,.n+mandi=1,..n

B
\

We then apply any manifold learning algorithms like label propagation or normalized cut

ij t=n+l,.n+mandj=n+1,.n+m.

[92] algorithms on the entire multi-network G. It should be noted that the proposed joint
factorization framework can be thought of as novel approach to incorporate side information
as well as prior knowledge into the learning framework for performing clustering on networks.

In the next section, we present the results comparing the performance of the proposed
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algorithm against its manifold learning counterpart.

3.3 Experimental Evaluation

We have evaluated the effectiveness of the proposed algorithm on both synthetic and real
world network data. The details of the real world network and synthetic networks are given

below.

3.3.1 Baseline Algorithms and Evaluation Metrics

As a baseline, we used three clustering algorithms. The first one is the normalized cut (Ncut)
algorithm by [92]. The other two algorithms are part of the objective function given in (3.3).
The first term in the objective function (3.3) refers to independent clustering of a single
network. The first two terms corresponds to the co-clustering of a single network using the
bi-partite graph between two networks. We compare our joint clustering algorithm against
the independent clustering (denoted by Ind) of single network and co-clustering (denoted by
CoC). We denote our proposed framework as Joint or Joint + Prior in the remainder of
this section. For a fair comparison, we applied the normalized cut algorithm on the entire
multi-network G described above (instead of G; and Go separately).

We use the normalized mutual information (NMI) measure to evaluate clustering results.
It is defined as follows. Let C = {C1,Co,...C};} denote the true set of clusters. Let C =
{C’l, Co, C’k} denote the cluster obtained from the algorithm. Then mutual information

between them is defined as



and the normalized mutual information is given by

where H(C) and H(C) denote the entropies of partition C and C respectively.

3.3.2 Synthetic Data set

Our synthetic data set is generated as follows. First, the number of nodes and number of
clusters (k) in each network are given. In our experiment, the number of clusters in each
network is fixed to be 4 with 400 data points in each cluster. Within each cluster ¢, a link
is created between any two nodes with probability p;. On the other hand, an inter-cluster
link is created between a node in cluster ¢ and nodes in other clusters in the network with
probability po. In addition, links are also created between nodes from different networks.
We create links between networks G1 and Go with probabilities ¢; and g9, where the former
is the probability of link between corresponding clusters and the latter is the probability of
noisy link between non-corresponding clusters. For example, if networks §; and Go have 4
clusters each, ¢ is probability of link between cluster; in network G; and cluster; in network

Go. qo is the probability of link between cluster; in Gy and cluster; in Gy with i # j.

3.3.3 Complexity Verification

In this section, we use the synthetic network to verify the theoritical computational complex-
ity derived in section 3.2.3. Here we computed the time for factorization of single network
with £ = 4 clusters. We set the inter-cluster link probability to be 0.01 and intra-cluster link

probability to be 0.001. We then varied the number of nodes in the network from 400 to 4400
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in step size of 800 nodes. For each network we computed the factorization D(A || XUXT)
and plot the computation time as function of number of links in the network. This is shown
in Figure 3.2. Clearly, the computation time is seen to be linear in the number of links in

the network as derived in section 3.2.3.
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Figure 3.2 This plot shows the variation of computation time with increase in
number of links in the network (due to increase in nodes).

3.3.3.1 Effect of noise in one network

We created two networks namely, Network A and Network B using the above mentioned
parameters. Network A was generated with p; = 0.4 and py = 0.35. The links between the

network was generated with ¢ = 0.6 and g2 = 0.45. Network B was generated with p; = 0.5
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and we varied the inter cluster link probability for Network B from 0.1 to 0.4 in step size of
0.1. These are the noisy link in the Network B. We studied the effect of varying noisy links
in Network B on the cluster NMI on network A. The results are plotted in Figure 3.3. As
expected, low level of noise in network B helped in identifying the clusters in Network A with
higher accuracy. As the noise level increases in Network B, the NMI of clusters obtained in
Network A decreases. This reflects our belief that if one of the networks is less noisy then
it helps in improving the clustering accuracy of the other network. Ncut-M and Ncut-I in
the figures 3.3 and 3.4, refers to normalized cut algorithm applied on the Multi graph and

Individual network respectively.
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Figure 3.3  Effect of Noisy links in Network B on clustering performance of Net-

work A (p; = 0.4 and py = 0.35)
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3.3.3.2 Effect of noise in between the networks

Here, we tested the effect of noise between the networks on the clustering accuracy. To do
this we created two networks with following parameters. Network A with p; = 0.4 and
p2 = 0.35 and Network B with p; = 0.5 and po = 0.45. We created the links between them
with g1 = 0.6. We varied the noise between the networks by varying ¢o from 0.1 to 0.5 in step
size of 0.1. The results of clustering accuracy on Network A is shown in Figure 3.4. When
the link between the networks are less noisy, the CoC algorithm gives good result. The Joint
algorithm gives better results. This is because the information flow between the networks
is more reliable and the link structure in Network B helps in improving the performance of

Joint clustering over the CoC clustering.
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Figure 3.4  Effect of Noisy links between networks on the clustering performance
of Network A (p; = 0.4 and ps = 0.35)
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3.3.4 Wikipedia Dataset

We use the Wikipedia dump from Oct-09-2009 for our experiments. We have chosen four
topics as the ground truth clusters—Biology, Natural Science, Computer Science and Social
Science. Each of the four topics are further divided into subtopics which are shown in Table
3.1. We collected roughly 20K articles, with 5K articles in each category. After removing
stubs and other smaller articles we were left with 10K articles and 53K editors (who have
edited the articles). We removed articles/editors that do not have sufficient links (less than
3 links) with other articles/editors in our corpus. Our final data set contains 6403 articles
and 5361 editors. A visual representation of the adjacency matrices of the article and editor
networks is shown in Figure 3.5. Our goal of clustering is to identify the 12 sub-categories in
the article network and relate them to 4 categories in the editor network. Such a clustering
is useful in other real world application, where in, low level label information like sub topics
are assigned to each article in the article corpus and high level label information are assigned
to authors based on their research interests. Joint clustering can then used to identify and
associate the related communities between these networks and propagate the high level labels

from authors networks to more refined low level labels in the article clusters.

FIGURE 3.5: Spy plot for Article (Left) and User (Right) networks in Wikipedia

The Wikipedia data set is particularly challenging. Firstly, the editors do not seem to
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TABLE 3.1: Data Category and Sub Category

Category
User clusters

Sub-Categories
Article clusters

Political Science

Civil-Rights Liberties(878); Imperialism(601);

Nationalism(368);

Natural Science

Physics(568); Earth Sciences(513);
Astronomy(613)

Computer Science

Algorithms(112); Operating Systems(395);
Computer Architecture(350)

Biology

Zoology(392); Anatomy(897);
Cell-Biology(716);

TABLE 3.2: The link distribution between different author clusters in Wikipedia data set

Political Natural Computer Biology
Science  Science Science
Political Science 8313 1113 749 844
Natural Science 1113 3398 657 592
Computer Science 749 657 5337 516
Biology 844 592 516 4806

have a fixed domain of interest. As seen in the spy plot in Figure 3.5, a good proportion of
editors have edited articles in all the four categories. We assign a ground truth label to each
user based on the category for which the user has made the most number of contributions.
Secondly, although each editor has his/her own Wikipedia page, many of these pages do not
contain enough useful features that can be used to identify the cluster of an editor. Thirdly,
the links between articles tend to be noisy. The article-article spy plot in Figure 3.5 shows
9 visually distinct groups even though there are 12 article clusters. This is because, in our
sample, the articles in some of the sub categories are highly connected to other realted sub
categories. It is therefore not visually discernable.

We first clustered the article network and user network independently and used them as
our baseline result. As shown in Table 3.3, independent clustering of article gives a NMI of
0.30 and co-clustering of article network using the article-editor bipartite graph increases the

NMI to 0.38. However, the joint clustering gave a slightly higher NMI of 0.41, highlighting
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the importance of information flowing from the other network. Joint clustering with prior
information increases the NMI further to 0.45. The normalized cut algorithm produced
the highest NMI of 0.55 on the article network. The confusion matrix of Ncut and Joint

algorithms on article network is given in Table 3.5 and Table 3.4.

TABLE 3.3: Average Cluster NMI on Wikipedia dataset

Experiment Article | Editor
Normalized Cut on Multi Graph 0.550 -
(12 clusters)

Normalized Cut on Multi Graph - 0.010
(4 clusters)

Independent clustering 0.304 | 0.080

Co-clustering 0.381 | 0.208

Joint clustering without Prior (A =1) | 0.405 | 0.213
Joint clustering with Prior (A =0.5) | 0.454 | 0.259

As seen in the Table 3.4, the Ncut algorithm on the multi graph G has found 4 predom-
inant clusters in the article network, one for each category. For example, clusters 1,6,9,11
in the confusion matrix of Ncut algorithm represent predominantly represent the underlying
major four categories and rest of the columns are very sparse. However, the Joint clustering
algorithm has found the fine sub categories in the article network. For example, the clusters
1 — 3 predominantly represent the sub categories of political science, clusters 4 — 6 predomi-
nantly represent natural science subcategories and clusters 10 — 12 predominantly represent
the subcategories of biology. The algorithm has found only two predominant subcategories
(columns 7 — 8)for the computer science category.

In the editor network, the Joint + Prior has out performed all other approaches. The
Ncut on multi graph could not identify any of the major four categories. Both Joint and CoC
algorithms has shown similar performance with NMI of 0.21. A simple Joint algorithm did

not give any additional benefit compared to the CoC. However, adding the non-informative
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TABLE 3.4: Confusion matrix of article network using the Ncut algorithms on the multi graph
G gave NMI 0.55. The columns 1,6,9 and 11 are the dominant clusters identified by the Ncut
algorithm. These four dominant clusters correspond to the four major categories and the algorithm
has failed to identify the sub categories.

1 2 3[4 5 6]7 8 9]10 11 12

Ground Truth Clusters Output by Ncut Algorithm
Civil rights | 536 286 42 0 1 3 2 4 1 0 3 0
Imperialism | 331 0 222 | 2 1 6 21 2 0 1 15 0
Nationalism | 286 2 17 1 0 0 3 1 11 2 45 0
Physics 3 0 270 1| 0 1 21 (247 O 3 0 23 0
Earth Sc 17 21 16 | 161 234 27 | 26 2 8 0 1 0
Astronomy 49 0 10 0 0 347| 20 179 2 1 5 0
Algo 0 0 0 0 0 1 7 0 104 O 0 O
OS 1 0 0 0 0 20 2 1 371 0 0 0
Architecture | 19 1 101 | 0 0 2 1213 O 0 0 0 14
Zoology 25 0 18 0 0 1 1 0 0 1 346 0
Anatomy 1 0 0 0 0 2 1 1 0 0 892 0
Cell Biology 1 11 0 0 2 0 1 5 200 491 0

TABLE 3.5: Confusion matrix of article network using the Joint clustering method gave NMI 0.40.
Unlike the Ncut algorithm, the Joint clustering is able to identify the finer sub categories. For
example, columns 1,2,3 predominantly identifies the sub categories of political science category.
Similarly, columns 10,11 and 12 relates to sub categories of the biology category.

1 2 3[4 5 6|7 8 9[]10 11 12
Ground Truth Clusters Output by Joint Algorithm
Civil rights 21 416 14 1 2 266 | O 2 0 112 34 11
Imperialism | 208 177 110 | 0 15 54 | 1 0 0] 3 4 1
Nationalism 14 261 14 0 36 7 3 7 0] 18 6 2
Physics 8 1 9 4 295 245 | 1 0 3] 0 2 0
Earth Sc 18 4 25 248 171 13 | O 7 5| 6 9 7
Astronomy |[120 1 96 | 78 13 130|162 12 0 | O 0 1
Algorithm 0 0 0 2 0 0 [ 62 48 0| O 0 0
0OS 2 0 0 1 0 0 | 122 251 O 0 12 7
Architecture | 32 9 26 | 195 13 55 | 11 0 O 1 3 5
Zoology 23 13 20| 0 19 38 1 2 8| 4 17 88
Anatomy 0 1 0 0O 47 54 |11 0 11172 393 208
Cell Biology bt 9 4 0 32 12 1 30 4 |[187 286 146
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prior boosted the performance of the joint clustering algorithm.

3.3.5 Digg Data Set

The web site www.digg.com is a popular social bookmarking web site where each individual
users bookmark URL’s and share them publicly with other users. The goal is to identify
different user community based on the topics of the bookmarked URL’s. As mentioned in the
abstract and introduction, the objective of this work is to investigate whether it is possible to
combine information from several networks to improve community detection. However, one
of the challenges in demonstrating this effect empirically is the lack of ground truth informa-
tion about the true clusters of various domains. So, the main reason we choose Wikipedia
and Digg data sets for our experiments is the availability of the ground truth class labels
that can be used to evaluate the performance of our joint community detection framework.
Furthermore, though there may not be a direct correspondence between Wikipedia editors
and Digg users, their community structures are often defined based on the topics of the
articles they have edited or posted. Since there exists common topics among articles in
both networks, this information that can be harnessed to improve their community detec-
tion tasks. The idea of using Wikipedia as an auxiliary data source for improving clustering
has also been investigated before (see for example, the works by [6]), though none of the
previous works consider the Wikipedia as source of auxiliary network data for user commu-
nity detection. Our experiment suggests that Wikipedia is a potentially useful source to
improve clustering of users in a domain such as Digg.com as well. The exact data collection
mechanism is described below.

We first sampled 5670 digg users who have bookmarked URLs on the following three

topics: Politics, Computer Science, and Natural Science. We formed a user-user connectivity
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matrix from the user-URL matrix. Two users are linked if they have at least 7 =5 URLs in
common. We sampled 4206 Wikipedia editors that belong to aforementioned 3 categories.
We established the links between the digg users and the Wikipedia editors by first establishing
a similarity between the bookmarked URLs and the edited articles. Each URL bookmarked
at digg.com has a title and a short description about the content of the web site. The digg
url-word matrix and Wikipedia article-word matrix are used to establish a “weighted link”
between a digg url and a Wikipedia article. Specifically, the weight of the link corresponds to
the cosine similarity between the words in the title and description of a URL and the words
that appear in the content of a Wikipedia article. We finally establish the link between a
digg user and Wikipedia editor if there is high similarity between the contents of bookmarked
URL and edited article. Here again, we assign a ground truth label to each editor (user)
based on the category for which the editor has made the most number of contributions.
Figure 3.6 shows the adjacency spy plot for two networks. In both these networks a good
proportion of editors/users have contributed articles in all three categories. However, notice
that the there is large number of links between the first two user communities in the digg
network. These two communities refer to the politics and computer science. It indicated that
in our sample, the users who have bookmarked politics related URL have also bookmarked

technology related URLs.

FIGURE 3.6: Adjacency matrix plot for Digg user and Wikipedia editor networks.
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TABLE 3.6: Confusion matrix on digg user and wiki editor network using Ncut on Multigraph

Ncut on Digg+ Wiki MultiGraph

Digg User Network Wiki Editor Network
167 1481 0 108 1708 0
997 638 0 707 492 0
1952 435 0 1113 71

NMI:0.185 NMI:0.307

TABLE 3.7: Confusion matrix of Digg users and Wikipedia editors using the proposed joint clus-
tering method.

Joint on Digg+ Wiki MultiGraph
Digg User Network Wiki Editor Network
1242 63 343 102 70 1644
169 220 1246 631 270 298
338 1889 160 122 1023 46
NMI:0.387 NMI:0.418

We first applied the Ncut algorithm on the multi graph containing both digg and wiki
networks. Both the networks contain three corresponding clusters. The confusion matrix
is shown in Table 3.6. Clearly, the Ncut algorithm identified only two clusters on each
network. This is because, the digg network had predominantly two clusters. Table 3.7 gives
the confusion matrix of digg and Wikipedia network using the proposed Joint approach. It
has identified the three dominant community on each network. Since there was a natural
correspondence between the three clusters on both the networks, adding prior information

(identity matrix of size 3) did not give any additional improvements.

3.4 Summary

In this chapter we have discussed the problem of learning cohesive subgroups and their cor-
respondences in multiple related networks. Our experiments reveal that the joint clustering

of multiple networks gives better results in terms of normalized mutual information between
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the actual clusters and the clusters identified by algorithm. We have also introduced the
idea of using a prior to guide the clustering process. We have performed a through analysis
of the convergence of the proposed algorithm and we have also given heuristics for faster
convergence. The proposed algorithm is of order O(nQT ) in complexity where n is number
of nodes on either network and T is number of iterations. The scalability of the proposed

algorithm for networks with millions of nodes will be pursed in future.
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Chapter 4

Joint Clustering and Classification on

Multiple Networks

In the previous chapter, we focused on learning a single task (community detection) simul-
taneously on a two related networks. In this chapter we extend the framework for multi-task
learning on two related network data. Specifically, we present a novel framework that enables
one to perform classification on one network and community detection in another related
network. Multi-task learning is accomplished by introducing a joint objective function that
must be optimized to ensure the classes in one network are consistent with the link struc-
ture, nodal attributes, as well as the communities detected in another network. Experiments
performed on both real-world and synthetic data sets demonstrate the effectiveness of the
joint framework compared to applying classification and community detection algorithms on
each network separately.

The motivation for this study is two-fold. First, the rapid proliferation of online social and
information networks raises the question whether we can leverage network data from known
information sources (say, Wikipedia) to enhance the network learning tasks. In a previous
chapter, we have demonstrated the advantages of combining data from multiple related
networks to improve community detection. However, the approach presented in Chapter 3

considers the same learning task—community detection—on all networks. Here, we extend
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the analysis to the case when a different learning task is performed on each network. For
example, one might be interested in leveraging the knowledge about the classes of Wikipedia
editors (based on the articles they have edited) to identify the communities of users at
Digg.com, a social news Web site. Though the correspondence between the identities of Digg
users and Wikipedia editors may not be known, their community structures and classes are
potentially well-aligned as they are based on the topics of articles posted or edited by the
users.

Second, by comparing the classes and communities across different networks, one could
potentially explain the identified communities in one network in terms of the known classes
defined in another network, especially when there is high connectivity between nodes that
belong to a community and its associated class. Furthermore, it is also possible to perform
a comparative network analysis to identify the classes (clusters) found in one network but
not the other. For example, given the known classes of users at Facebook, can we identify
groups of MySpace users whose link structure and nodal behavior do not correspond to any
known groups in Facebook?

One approach to solve this multi-task multi-network learning problem is to combine all the
networks into one giant graph and apply the classification or community finding algorithms
to the combined graph. However such an approach has many limitations. First, by applying
a single algorithm to the combined graph, we have no control over the number of clusters
or classes that will be found in each of its underlying networks. In particular, as will be
shown in our experiments, this approach does not work well when the number of classes in
one network is different than the number of communities in another network. Furthermore,
it may lead to a suboptimal solution as it attempts to fit a global model to a graph that

contains local networks with their own distinctive properties.
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The main contributions of this chapter are as follows. First, we extend the framework
in Chapter 3, for joint classification and community detection in heterogeneous network
data. The framework is applicable even when the number of classes in one network differs
from the number of communities in another network. In addition, we have drawn parallels
between the update formula and the label propagation algorithm [114, 118]. We have also
included extensive experiments using synthetic data sets to assess the performance of our
proposed framework under different multi-network parameter settings. In particular, these
experiments help to shed light into fundamental questions such as (1) Can clustering on
one network help to improve classification on another network, and vice-versa? (2) Does
combining multiple related networks help in solving a task better than solving the same task
independently on individual networks? (3) How does the presence of noisy links in different

networks affect performance of each learning task?

4.1 Joint Learning Framework

The notations used in this chapter are similar to the ones used in chapter. We summarize
these notions in Table 4.1.

The objective function for joint clustering and classification is very similar to the objective
function (3.2) defined in Chapter 3 with an additional term for aligning the label information
present in the network.

L= min DA || XUxT)y+ D || xvyT)
XUVYW

+ DB| YWY+ D@L | V) (4.1)
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TABLE 4.1: Summary of notations used in the chapter.

’ Symbol ‘ Description

g1 A homogeneous network for detecting communities
Go A homogeneous network for classification
G12 A bipartite graph connecting nodes between G; and Go
vij € Vi | A node in network G; (i = 1 or 2)
The set of links in network G;
The set of links in the bipartite graph Gi9
number of communities in G;
number of classes in Go
number of labeled nodes in Go
An n x n adjacency matrix for network G;
An m x m adjacency matrix for network Go
An n x m adjacency matrix for bipartite graph Gjo
An n x kj pseudo-label matrix for community membership of the nodes in G;
An m x k9 pseudo-label matrix for class membership of the nodes in G
A k1 X k9 community-class correspondence matrix
An [ x k9 true class membership matrix for the labeled nodes in Go

N QOTE T T,

The first term in the objective function deals with the clustering of nodes in G by factorizing
the adjacency matrix A into a product involving the pseudo label matrix X. The last two
terms deal with the classification of nodes in G9 by estimating the pseudo label matrix Y,
taking into account both the link structure (B) and class information (L). Thus, Y} is an [ x kg
sub-matrix of Y consisting on rows of Y corresponding to the labeled data points. Thus, the
last term in the objective function, D(L || Y;), does not apply to unlabeled nodes in network
Gs. Meanwhile, the second term in the objective function is used to learn the relationship
between the clusters found in network G; and the classes obtained for network Go. The
association between the clusters and classes are encoded by the cluster-class correspondence
matrix V. The constant f indicates the factor by which ¥; would be fit to the ground truth
label L. Since L is fixed binary label matrix, the constant factor g can be absorbed into it.
That is, L;; = (5 if the node vy; € Vo belongs to class j and zero otherwise. In what follows

we would not explicitly mention the label factor S.
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Here again, the optimization problem is solved using an alternating minimization scheme.
The update formula for matrices X, U, W, and V are same as (3.5),(3.8), (3.9) and (3.7)

respectively. The update formula for Y;; depends on whether the node is labeled or not. Tt

is given by
)
- (Bm[YWTlaj Bl Wlaj, o Cail¥Vlaj
v T ywy T, ywy T, = xvy T, e
K 5 Bil W gy Bl Wlaj o CailXVej | ~Lij
v T vy Ty, ywy Ty = xvy Ty Yoo
LY (Ca YWAHYWT 5450 [XV] ) +1 Lo

We highlight the advantages of our proposed multi-task learning technique compared to
single-task learning with label propagation and cut-based graph partitioning algorithms in

the next section.

4.2 Joint Learning vs Independent Learning

In this section, we will give an insight into the exact mechanism by which the proposed
framework performs the iterative clustering and classification between the networks until
the community structure and classes crystalize in each of the network. We explain this
from the point of view of classification problem, though similar explanation can be made
for the clustering problem. We also compared our joint learning approach to independent
learning using the well-known label propagation (for classification) and graph partitioning

(for clustering) algorithms.
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4.2.1 Joint Factorization vs Label Propagation

Consider a binary classification problem in a network where each node belongs to either
class 1 or class 2. Suppose the class information is encoded in a two dimensional row vector,
where [1,O]T represents a node assigned to class 1 and |0, 1]T represents a node assigned
to class 2. Unlabeled nodes are assigned a vector [0, O]T. A node classification algorithm
can be designed to propagate a fraction of the class information from a labeled node to its
neighbors at each iteration. An unlabeled node will sum up the label vector it receives from
each of its neighbor. After a sufficient number of iterations, an unlabeled node in the network
whose label vector is denoted by [lzl, l?] will be assigned to class 1 if lZ-1 > l% and to class
2 otherwise. This is the learning strategy employed by a broad class of label propagation
algorithms [114, 118].

Two important parameters that govern the propagation of labels between nodes in a
network are (1) propagation structure and (2) rate of propagation. The former refers to the
link structure that defines the neighborhood structure of each node in the network while the
latter determines the fraction of amount by which the label information is propagated to
neighboring nodes at each iteration. The rate of propagation is usually modeled as a function
of the weight associated with the link between an adjacent pair of nodes. More formally, the

update formula for the label propagation algorithm is given by

Y®  aPY®D 4 (1 - a)L, (4.3)
or equivalently,
v =aY P Y 4 (1 )Ly (4.4)
1] a=ay L) :
a
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where P is the propagation matrix constructed from the adjacency matrix of the network.
There are several forms of label propagation matrices proposed in the literature, including
P = D 'B [118] and P = D_%BD_% [114], where B is the adjacency matrix and D
is a diagonal matrix who diagonal entries are D;; = Zj B;;. Next, we show that the
multiplicative update formula given by our matrix factorization framework have similar
mathematical form, which suggests that our multiplicative update formula can be viewed as
a form of multi-task multi-network label propagation.

Consider the problem of classification on a single network Gs without using the infor-
mation from the bipartite graph Gi9. The objective function involves minimizing the terms
DB | YWYT)+D(L | Y;). The update formula for Y can be obtained by considering only

the relevant terms in Equation (4.2). Assuming the links in the network are undirected, this
B. .
imposes symmetry restriction on the matrices B and WW. Furthermore, let M;; = —UT’
ywyTy;,
which represents a weighted adjacency matrix, whose large weights are associated with links
that were incorrectly predicted by YWY7T in the previous iteration. Hence, the update

formula Y for labeled nodes can be re-written as

5 (Bia[YWT]aj Bai[Y W]y
v. " ywyTy, = ywyT]y,
" S YW+ YWT) 41

L. .
Yo Mia[YW]aj + ﬁj
pu— Y' -
YY) 1

Ly;
J
)+Yij

j =

(4.5)

Notice that the denominator term approximately normalizes the columns of the matrix
YW. Let D be the diagonal matrix with diagonal entries consisting of the column sums of
YW matrix. That is, Dy; = > ,[Y W], + 1. Then the column normalized label matrix is

given by Y = YWD™L. Let Y7 represent the j column of Y (that is, the label information
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of jth class), then the above update formula can be written as

(4.6)
Dj;

Yij = Yij ) MiaVaj +
a

Comparing the equations (4.4) and (4.6), we notice that the multiplicative update formula
has the same mathematical form as the label propagation algorithm. The key difference
between them is that the multiplicative updates have a varying propagation matrix M,
instead of a fixed propagation matrix P. The role of v in (4.4), is to establish consistency
between the actual and predicted labels on the labeled data set. This is done by the factor
B in (4.6). Recall that 8 is absorbed into L, i.e L;; = 8 if the node vo; € V5 belongs to class
7 and zero otherwise.

The update formula for unlabeled nodes can be similarly shown to have same mathe-
matical form as (4.4) albeit with different propagation matrix. This aspect makes it very
adaptive in that, the propagation matrix can be updated at each iteration to accommodate
more information from the other network. At each iteration, the partial cluster informa-
tion from network G; and the partial label information from G9 determines the propagation
structure and the propagation rate for the classification problem. The label information thus
propagated would minimize the class ambiguity among the unlabeled nodes. The enriched

class information is again propagated back for performing the clustering in Gy.

4.2.2 Joint Factorization vs Graph Cuts

The earliest algorithms on identifying communities in a given network were borrowed from

the graph theory literature, where, subset of the edges were removed to induce partition on
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Figure 4.1  Sample multi-network to illustrate the functioning of graph cut based
partitioning techniques. Left: The link density in the bipartite graph
G1o is sparse. As as result, the graph cut based algorithm would
first disintegrate the multi-network into individual networks and then
continue to split individual networks based on their link densities.
Right:: The link density is very different between network G; from
Gs, as a result, one of them may get split many times while the other
remain intact. Such problem wont arise in proposed joint factorization.

the vertex set. Given a graph G = (V,E), a cut <M,N> is a partitioning of the vertex
set V.= M |J N of graph by removing edges between the vertex sets M and N. The size of
the cut is defined as number of edges removed from the edge set E. Let A be the adjacency

matrix of the graph G.

veM,ueN

A min-cut of the graph is a cut that has a smallest cut size. The well known algorithm
for solving min-cut problem is based on the maz-flow min-cut theorem by Ford and Fulk-
erson [33]. The flow based algorithm for identifying graph cuts has been used to solve the
community detection problem in large World Wide Web graphs [31, 32].

A key hinderance in applying the cut based algorithm for community detection in a multi-
relational heterogeneous network setting is that the link density in different networks (data
sources) are different. As a result one may get trivial partitions or suboptimal partitions.

For example, consider a multi-relational heterogeneous network G, whose adjacency matrix
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is constructed as follows

Aij 4,5 =1,2,..n,
Cij 1=12.nandj=n+1,.m
Cji j=n+l,.n+mandi=1,.n

Bij i=n+1l,.n+mandj=n+1,.n+m.

If the link density in bipartite graph Gp9 is very low, then the cut based algorithm would
chop the multi-network into individual networks and subsequently split each of the individual
networks independently, thus ignoring the valuable information given in the bipartite graph
G19. On the other hand, if the link density within one of the two networks is much higher
than the other (including the bipartite graph), then the cut based algorithm would treat it
as a dense community and split the other network repeatedly. This is illustrated graphically
in Figure 4.1. Such problems would not arise in the joint learning framework as the proposed
objective function factorizes each network separately into their respective communities (and
classes) and these latent factor variables in turn induce partition on the bipartite graph that
link the two networks. Nevertheless, the link density does affect the working of the update
formula in two ways. If the link density in one of the network is higher than the other, then
it contributes more to the objective function than the other network. For example, in the
objective function (4.1), if the matrix A is denser than the other two matrices, then more
weights would be given in minimizing the first term making the algorithm more focussed
in determining a better estimate of value X than for Y. This problem can be addressed by

appropriately weighting the terms in the objective function or scaling the adjacency matrices.
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4.3 Experimental Evaluation

This section presents the results of applying the proposed framework to the multi-task learn-
ing problem on both synthetic and real-world network data. We have designed a multi-
network simulator to generate the synthetic data for our experiments. In addition, the
Wikipedia and Digg data discussed in Chapter 3, are used to evaluate the performance of

the proposed multi-task learning framework.

4.3.1 Baseline Algorithms and Evaluation Metrics

As a baseline, we use the normalized cut (Ncut) algorithm by Shi and Malik [91] for clustering
and the label propagation algorithm with local and global consistency (LGC) by Zhou et al.
[114] for classification. For a fair comparison, we applied each baseline algorithm on the entire
multi-network G (instead of G and Gy separately). This is accomplished by constructing a
single adjacency matrix G for the entire network using (4.8). In each experiment, we set the
proportion of labeled nodes for the classification problem in one of the two network to be
0.2. The label factor g is set to 0.5 for synthetic data and set to 50 for Wikipedia, Digg data.
We use the normalized mutual information (NMI) measure to evaluate clustering results and
accuracy to evaluate classification results. Since we perform the classification task as semi
supervised clustering, the accuracy measure is computed differently. Here , each estimated
cluster is assigned to the ground truth class to which is most frequent in the cluster. If
rows of the confusion matrix represents the ground truth class and columns represent the
estimated clusters, then we sum the maximum values across each column and divide by total
number of points. Note that if the confusion matrix is diagonal heavy (maximum of each

row/column occurs in diagonal) then this measure is same as regular accuracy measure.
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We denote our proposed multi-task, multi-network learning framework as Joint or Joint
+ Prior in the remainder of this section. Since the iterative update formula converges to a
locally optimal solution, the Joint and Joint + Prior algorithms were run several times,
each with different random initialization values for the pseudo-label matrices. We report
the results produced by the run which minimizes the objective function (4.1) (instead of
choosing the run that maximizes the accuracy of inferring the class and cluster membership
of the nodes). For the synthetic data, we show the scatter plot of all the values from 15
different runs and highlight the values of the run with minimum error. We denote this run

as Joint (ME)

4.3.2 Synthetic Data

Our multi-network simulator constructs two networks, G1 and Go. The parameters for con-

structing each network is summarized in Table 4.2 below. We assume there is a correspon-

TABLE 4.2: Parameters of multi-network generator

Parameter | Explanation

k1 Number of clusters/classes in G;

Py Probability of within cluster link in Gy

Pro Probability of between cluster link in
g1

ko Number of clusters/classes in Gy

Py Probability of within cluster link in Go

Py Probability of between cluster link in
G2

Q1 Probability of link between nodes in
two corresponding clusters in Gio

Q9 Probability of link between nodes in
two non-corresponding clusters in Gy

dence between the clusters/classes in Gy and the clusters/classes in Go. A bipartite graph

G192 is also constructed by linking the nodes in Gy to those in Go. By default, each cluster
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TABLE 4.3: Configurations of various synthetic data

Configuration Network Gy Network Go
ki Pn Pyo ko Por P
Noisy Network | 4 0.30 0.05-0.25| 4 0.20 0.10
Noisy Bipartite | 4 0.20 0.12 4 020 0.15
Uneven 3 0.20 0.12 5 020 0.15
Configuration | Links in bipartite network Gi9
Q1 Q2
Noisy Network | 0.12 0.03
Noisy Bipartite | 0.30 0.05 - 0.25
Uneven 0.30 0.05 - 0.25

contains 100 nodes (so a network with 4 clusters will contain 400 nodes).

In this thesis we investigate three main configurations of the network parameter settings.
The configurations are given in Table 4.3. The “Noisy Network” configuration varies the
proportion of noisy links (i.e., Pj2) in Gy while fixing all other parameters. The ”Noisy
Bipartite” configuration varies the proportion of noisy links (i.e., J2) in the bipartite graph.
In both configurations, there is a one-to-one correspondence between the clusters/classes in
the two networks. For the ”Uneven” configuration, the networks contain different number
of clusters/classes. We have 5 clusters in G; and 3 clusters in Go. Thus, a many-to-one
correspondence is established between clusters/classes in Gy to those in Gs.

We evaluate the performance of our algorithm on the synthetic data set under four
configurations that are listed in Table 4.3. These four configurations evaluate different

aspects of learning multiple related networks.

4.3.2.1 Varying Noisy Links Within a Network

We use the ”Noisy Network” configuration in which we vary the inter cluster noise (Pj2) in

network G from 0.05 to 0.25 (with a step size of 0.05). we the performed clustering on G;
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Figure 4.2  Effect of varying the between-cluster link probabilities (Py2) on Gj.
Top: Accuracy on Gi. Bottom: NMI on G9

(classification on Go) and classification on Gy (clustering on Go) to study the effect of noise
on both the learning task.

Classification on G Figure 4.2 compares the results for Joint learning against the LGC
and Ncut on multi-graph. The top panel shows classification accuracy on G and the bottom
panel shows the NMI of clusters obtained from Gs.

When the noise level is low, the LGC algorithm performs slightly better than Joint.

However, at higher noise levels, the performance of LGC drops significantly and the joint
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learning performs much better. This result suggests that the explicit community information
(from variable X) in Gy helps to discern between the classes in G, whereas LCG is unable
to use such information. Notice the inter quartile range for the box plot of accuracy values
is very small, suggesting the robustness of the classification problem against the random
initializations.

Surprisingly, as the noise level in G; increases, the NMI of the Ncut algorithm also
increases in Go. This is because of difference in the link densities between the two networks.
(See Section 4.2.2). When Pj; = 0.3 and Pjo = 0.05, G has four distinct clusters, while
in comparison, the network Go with high link density (with P1=0.20, P22=0.10) by itself
appears as a single community in the multi-network. The Ncut algorithm tries to identify
four communities in the multi network. Due the difference in the link density between the
two networks, the Ncut algorithm assign the entire Go as one community and partitioned the
network G into three communities. This results in lower NMI value on Go. The increase in
the noise level in Gy increases the link density in the network resulting in identifying better
cuts by the Ncut algorithm on the multi-network. When the noise parameter is Pjo = 0.15,
the link densities in both the network becomes comparable and the proposed Joint algorithm
still performs better than Ncut.

Clustering on G; For the same "Noisy Network” configuration , we performed com-
munity detection G; and classification accuracy in Go. The results are shown in Figure 4.3.
In both the cases, the Joint performs better than the respective baseline algorithms. As
explained earlier, when the noise level is low the Ncut on multigraph identifies three com-
munities on network G and the whole of Go as fourth community. This resulted in NMI
of 0.75. As the noise exceeded certain threshold (Pjs > 0.15), the Ncut on multi-graph

identified cuts in network Go instead of G;. This resulted in decrease of NMI value in Gj.
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Since the parameters for Go are not varied, the classification results on G9 from LCG remains

almost constant at 0.85 while the classification accuracy from Joint also remains pretty

much constant at 0.98.

4.3.2.2 Varying Noisy Links Between Networks

We use the ”Noisy Bipartite” configuration and vary g9 from 0.05 to 0.25 in step size of 0.05.

Varying the noise between the network will have no bearing on the independent clustering
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and classification tasks on either network. Here again, we performed both clustering and
classification on the multi-relational network G given by (4.8). We then recorded the classifi-
cation accuracy on subgraph Gy and clustering NMI on subgraph Go. The results are shown
in Figure 4.4. At lower noise levels, the Joint classification outperforms both LGC and Ncut.
For higher noise levels in G9, the learned class information from G; are not successfully
transferred to Go for community detection and vice versa. In terms of the objective function,
the adjacency matrix C influences both the cluster membership(X) and class membership(Y)
factors. As C' becomes noisier, it propagates noise into factors X and Y, thus bringing down

both accuracy and NMI.

4.3.2.3 Effect of Unequal Number of Clusters and Classes

We use the "Uneven” configuration by varying go from 0.05 to 0.25 in step size of 0.05. We
apply LGC to the entire multi-network G (with number of classes equal to 3) and Ncut to G
(with number of clusters equal to 5). We compare their performance against the classification
accuracy of Joint on G| and NMI of Joint on Gy. The results are shown in Figure 4.5.
Here again, the proposed Joint learning algorithm outperforms LGC and Ncut at lower noise

levels. The performance of the Joint is comparable to LGC and Ncut at higher noise levels.

4.3.3 Wikipedia Data

In this experiment, we perform classification task on the article network and the community
detection task on the editor network. As mentioned earlier, there are four large communities
in the editor network and 12 sub-topics in the article network. Here we perform four sets of

experiments:

1. Apply LGC on article network only (with £ = 12) and Ncut on editor network only
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TABLE 4.4: Clustering results of Wikipedia editors. Here (ME) refers to the run with minimum
€eITor.

User network 4 clusters (NMI)
Ncut on editor network only 0.07
Ncut to entire multi-network 0.02
Joint(ME) without prior 0.32
Joint without prior 0.30 4 0.0389
Joint(ME) with Prior 0.39
Joint with Prior 0.36 £ 0.0215

TABLE 4.5: Classification results of Wikipedia articles. Here (ME) refers to the run with minimum
€rror.

Article network 12 classes (accuracy)
LGC on article network only 0.87
LGC on entire multi-network 0.85
Joint without prior (ME) 0.84
Joint without prior 0.80 4+ 0.054
Joint with Prior (ME) 0.88
Joint with Prior 0.85 £ 0.021

(with ko = 4).

2. Apply LGC (with 12 classes) and Ncut (with 4 clusters) to the entire multi-network G.

3. Apply Joint to the article network (with k1 = 12) and editor network (with ko = 4)

without using prior information.

4. Apply Joint to the article network (with k1 = 12) and editor network (with ko = 4)

with using prior information.

The results are shown in Tables 4.4 and 4.5. As shown in Table 4.4, the independent
clustering of user network gives very bad results compared to the Joint approach. The
cluster NMI increases from 0.07 to 0.32. Using the prior information further boosts NMI to
0.39. However, this additional gain comes at the expense of slightly reduced classification

accuracy on the article network. Applying LGC on article network alone gives an accuracy
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of 0.87 which reduces to 0.85, when applied to the entire multi-network. This is because
the class information provided by the article network is more useful than the “coarse-level”
cluster information provided by the editor network. Furthermore, a user typically contributes
to articles across different categories which makes it difficult to decide his/her actual class
label. We currently assigned the user to the category to which he/she has made the most
contributions. In fact, it is because of this problem, it is difficult to acquire the label
information in user network, and thus, clustering becomes a necessary task.

The Joint approach gives an accuracy of 0.84 on the article network. The loss in accuracy
in the article classification can also be explained by examining the resulting confusion matrix,
as shown in Table 4.6. The Joint approach identifies four communities in the editor network.
Each of these four communities have major correspondence with three article sub-categories.
Therefore, the Joint approach settles for a local minimum solution in such a way that the
resulting confusion matrix is block diagonal instead of pure diagonal. That is to say, the
identification of four communities in the editor network would propagate coarse-level cluster
information from the editor network to article network. This makes it harder to discern the
sub-categories in the article network and hence the drop in accuracy However, using the

right prior information improves the accuracy to 0.88.

4.3.3.1 Number of Iterations

In this section ,we discuss the effect of number of iterations on the proposed joint factorization
algorithm. Figure 4.6 shows the variation of the Wikipedia article network accuracy and the
editor network NMI with every 10 iterations. Both the values tend to stabilize in long run.
It should be noted that they do not necessarily exhibit a monotone property with respect to

the number of iterations. It is not easy to determine the exact number of iterations required
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TABLE 4.6: Confusion Matrix - Article Network using Joint algorithm

Political Science | Natural Science | Computer Science Biology
73 21 29 9 27 3 1215 1 1 6 1 2
14 1064 27 | 32 38 11 | 96 1 8 29 2 0
1 6 622 7 0 3 25 9 0 4 7 4
0 4 2 680 1 17 1 0 3 1 0 0
11 2 0 | 41 514 4 16 5 0 13 0 1
1 7 0 16 0 747 | 1 0 1 7 0 0
0 0 0 2 0 2 22 102 5 1 1 0
0 1 0 3 0 2 27 420 1 0 0 0
3 80 0 8 0 6 7 3 769 0 0 13
1 4 14 1 0 4 4 0 0 345 32 24
0 0 2 2 0 2 1 0 0 17 870 37
1 7 11 1 0 3 5 1 0 139 49 589

for convergence. We run the algorithm until the error between two successive iterations is

less than a specified threshold or maximum of 1500 steps.

4.3.4 Digg Data

Here, we linked the Digg users with Wikipedia editors based on the similarity between the
words in the bookmarked URLs and words in the edited Wikipedia articles. There are three
clusters in each network. The adjacency plot for these two networks is shown in Figure 4.7.

We first performed Ncut on the Digg data alone and Ncut on the overall network (Digg
+ Wikipedia + links between them). The confusion matrix is given in Table 4.7. As can be
seen in the adjacency matrix plot, the first two clusters are noisy and heavily interlinked.
So we obtain only two predominant clusters.

We apply the LGC algorithm to propagate labels in the Wikipedia data set. The results
are summarized in Table 4.8. The noisy Digg data has degraded the performance of LGC on
the Wikipedia network. Propagating labels only on Wikipedia data set gives an accuracy of

0.71, which reduces to 0.66 when applied to the multi-network.
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FIGURE 4.6: Plot showing the variation of classification accuracy and clustering NMI for
every 10iterations (best viewed in color).

FIGURE 4.7: Adjacency matrix plot for Digg users (right) and Wikipedia editors (left)
networks (best viewed in color).

The presence of noise on the Digg user network combined with noisy links between the
Wikipedia and Digg networks resulted in poor performance of the joint learning algorithm.
The number of clusters obtained is less than the number we expect. However, by incorpo-
rating the prior matrix P = I3, this ensures that we obtain three clusters on each network.
The results are shown in table below. Clearly, the Joint + Prior results are significantly

better than both Ncut and LGC.
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TABLE 4.7: Confusion matrix for Digg clustering. The top panel shows the result of Ncut on Digg
user network. The bottom panel shows the clustering result on the multi graph consists of both
Digg users and Wikipedia editors. Only two dominant clusters were found on both.

Ncut on Digg Ncut on Digg + Wikipedia
1171 3 474 167 1481 0
1149 0 486 997 638 0
392 0 1995 1952 435 0
NMI - 0.143 NMI - 0.185

TABLE 4.8: Confusion matrix for Wikipedia classification. The left panel gives the confusion
matrix on applying LGC on Wikipedia editor network and the bottom panel gives the confusion
matrix on applying LGC on multi graph consisting of both Digg user network and Wikipedia editor
network.

LGC on Wikipedia LGC on Digg + Wikipedia

1463 203 150 1688 78 50

350 690 159 710 416 73

232 100 859 450 56 685
Accuracy - 0.71 Accuracy - 0.66

TABLE 4.9: Confusion matrix for Joint with prior information for the run with minimum error.

Digg - Cluster Wiki - Classify
1246 280 122 1710 84 22
136 1278 221 298 770 131
227 103 2057 55 118 1018

NMI = 0.44 Accuracy - 0.83
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4.4 Summary

In this chapter, we have given a framework to perform mutual learning on multiple related
networks. Through various set of experiments, we infer that on a collection of noisy networks,
multi task learning performs better than independent task learning on individual networks.
We have also introduced the idea of using a prior to guide the clustering process. We have
demonstrated a practical use of our algorithm by identifying similar communities on different
network domains namely Digg and Wikipedia. Recently, researchers have used Wikipedia as
knowledge source or auxiliary information source to perform several data mining operations
like document clustering, web page classification, tagging and semantic relationship mining
etc. [6, 38, 44, 101, 102]. In this thesis, we show yet another novel use of Wikipedia where
in we use the link information between the Wikipedia articles to perform clustering of users
in other networks. In particular, we use the link information in Wikipedia to cluster users
in Digg network. Incorporating nodal attributes and improving scalability of the algorithm

to networks having millions of nodes are two potential directions for future research.

65



Chapter 5

Joint Community Detection and Link

Prediction

The ability to predict the formation of links in a network is an important task in network
analysis. A reliable link prediction model is useful for uncovering missing links in a static
network or for projecting the formation of new links in a dynamic network. The level of
link prediction accuracy sought often varies depending on the context of its application.
For example, despite its poor accuracy, the FOF (Friend of Friend) algorithm has been
extensively used in predicting future links between users in large social networks. However,
in critical applications such as bio-surveillance and terrorist network monitoring, predictions
are cost sensitive in that there is a severe penalty factor associated with different incorrect
predictions made by algorithm.

The low accuracies of link prediction algorithms can be attributed to the inherent skew-
ness of network data. In this regards, there are two types of skewness to be considered. The
obvious one is class skewness, which refers to the lopsided ratio of non-linked (the negative
class) to linked (the positive class) node pairs in a network. Typically the ratio is of the
order of O(1/N). Such high skewness would result in a biased decision boundary and re-
quires inclusion of skew correction approaches into the link prediction framework. Another

type of skewness, which has received little attention in the link prediction literature, is in
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the degree distribution of the nodes. Since many networks exhibit a scale-free behavior, this
results in the (few) high degree nodes exerting the most influence on the prediction for the
positive class. As a result, most link prediction models tend to fail in their prediction for
the majority of the low-degree nodes. To avoid this, we need to develop a loss function for
link prediction that considers both type of skewness in the data.

In addition, existing link prediction methods are either global or local in nature. The
former (e.g., common neighbors[54]) simply utilizes information from the immediate neigh-
borhood of the nodes to make its prediction. Though such an approach tends to perform
poorly especially on large networks, it is computationally efficient. The latter (e.g., based on
supervised learning [43, 85]) often achieves better performance but at the expense of higher
computation time. Moving away from these two extremes is the method of finding links at
the community (cluster) level. The intuition here is that links are more likely to be formed
between nodes in the same community rather than those in different communities. However,
identifying the right set of communities is itself a challenging problem. One of the most
well-known community finding algorithms is based on the network modularity measure [72].
However, to the best of our knowledge, none of the existing link prediction algorithms are
designed to optimize the measure.

The main contributions of this chapter are as follows:

e We propose a variable-cost loss function for supervised link prediction that considers
both the imbalanced class distribution (of linked and non-linked node pairs) as well
as skewness in the degree distribution. The variable-cost loss function addresses the
bias in degree distribution by penalizing the misclassification of low-degree linked node

pairs more than misclassification of high-degree linked node pairs.
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e We show the intimate relationship between the proposed loss function and the mod-
ularity measure used to identify communities in a network. As a consequence, a link
prediction algorithm that optimizes the proposed loss function is inherently biased to-

wards finding links within communities without explicitly identifying the communities.

e We design a boosting algorithm for link prediction called LinkBoost that optimizes
the cost-sensitive loss function. We also provide weak learners that utilize the nodal

attributes to estimate the link potentials between the node pairs.

e We present an approach for scaling up the LinkBoost framework by first decomposing
the network into smaller, potentially overlapping partitions and then combining the

predictions made by the weak learners constructed from the different partitions.

To the best of our knowledge, the degree dependent cost sensitive link prediction al-
gorithm is the first of its kind. Through the design of our loss function, the chapter also
highlights the connection between community-based link prediction, modularity measure,
and the boosting algorithm. Finally, experimental results show that our proposed Link-
Boost algorithm consistently performs as good as or better than many existing methods

when evaluated on 4 real-world network datasets.

5.1 Approaches for Link Prediction

Link prediction algorithms can be categorized in many ways. First, the algorithms can be
supervised or unsupervised. Second, they can be based on the observed link structure only
or may incorporate nodal attributes. Third, the algorithms may utilize the link structure in-

formation from immediate neighborhoods (local methods), entire network (global methods),
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or at community levels.

The simplest unsupervised link prediction algorithm is based on computing the similarity
scores between a pair of nodes using the nodal attributes or their local network topology.
Examples of such local methods include common neighbors, Salton index [82], preferential
attachment [7, 105], and Adamic-Adar index [2]. The performance of the different local
measures were compared in [54, 116]. The results suggest that simple common neighbors
approach performs better than other local measures. A theoretical justification for the better
performance of common neighbors approach was presented in [78].

Unsupervised global methods for link prediction typically consider the weighted paths
between node pairs. Examples include the Katz measure [49], random walk with restart
[99], average commute time, and matrix forest index [15]. Measures based on paths, in
general offer higher prediction accuracy compared to the local similarity measures. However,
they require the entire network link structure and their computations are generally time
consuming.

Link prediction using supervised learning has been investigated by many authors [43,
46, 85, 97]. Al Hasan et al. [43] derived several nodal and topological features for link
prediction and applied a variety of classifiers such as support vector machines and decision
tree to predict links in bibliographic databases. Kashima and Abe [46] proposed a parame-
terized probability model for the link structure and developed an expectation maximization
algorithm to estimate the model parameters. Scripps et al. [85] employed a regularized
matrix factorization approach for link prediction. Taskar et al. [97] used a relational Markov
network to jointly model the nodal attributes and links. However, one of the main chal-
lenges in link prediction is the extremely large class skew, which leads to poor detection

rate. Rattigan and Jensen [80] suggested an alternative problem known as anomalous link
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discovery to identify the most interesting links in the network. Recently, there have been
attempts to develop a semi-supervised approach for link prediction [48] as well as combining
link prediction with other tasks such as collective classification [11].

More recently, there have been attempts to develop link prediction algorithms using
generative models that account for the clustering (community) structure in the network.
Guimera et al. [39], used the likelihood based methods for estimating the reliability of a
link between any node pair, given the observed link structure. The reliability score is then
used to predict both missing and spurious links. Clauset et al. [18] have proposed maximum
likelihood based methods that represent the clusters in the network as a hierarchy, which in
turn are represented as a dendrogram. Each dendrogram has an associated likelihood value
indicating the strength of community structure represented by the dendrogram. The missing
links are predicted by first sampling large a number of dendrograms proportional to their
likelihood and for each unconnected node pairs ¢ and 7, the expected connecting probability is
computed by averaging the corresponding probability over all sampled dendrograms. Finally,
the node pairs are sorted according the connecting probability and highest ranked ones are
declared as potential links.

Both the reliability and hierarchical cluster model try to estimate the link potentials
between the node pairs at cluster level. They in fact, average over all possible partitions
of communities present in given network which makes it is very costly to implement even
on small sized networks. In this chapter, we suggest an alternative to these two algorithms
which strive to identify more links with in a community. We do this by defining loss function
whose associated risk when minimized, leans towards giving higher rating for the with in
community node pairs. We also show the relationship between the proposed cost sensitive

loss function and the well known modularity measure used for clustering networks.
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5.2 Loss Function and Risk

We consider the link prediction task as a binary classification problem, in which a node pair
is assigned to the positive class if there is a link between them, or to the negative class
otherwise. Let V = {1,2,--- ,n} denote the set of nodes in the network and &€ =V x V
denote the set of all node-pairs. We represent the adjacency matrix of the network as A,
where A;; = {+1,—1} indicating the presence or absence of links. Each node i € V is
associated with a set of d-dimensional nodal attributes x; = {z;1, zj2, ..., z;4}. Our objective
is to learn a target function f : )V x V — R that maps each node pair to its link potential.
The function is optimal if it minimizes the expected risk R = Eg 4[L(f(e),a)] for any given
node-pair e € £, where L[f(e),a] is the loss function. The loss function usually takes the
form of

;

0, if sgn(f(e;;)) = Ajj

Llf(eij), Aijl = { €y, it sgn(f(ei;)) # Ay = 1 (5.1)

Cy, if sgn(f(ei;)) # Aijj = —1

\

where sgn(-) is the sign function, whose value is equal to 41 if its argument is non-negative
and —1 otherwise. When C] = (C9 = 1, this corresponds to the 0-1 loss function. Many
supervised link prediction algorithms are designed to yield a classifier that minimizes the

following 0-1 empirical loss function, which is given by

oa= 5 30 1{Agsen(r(e) <0 5:2)
i,j=
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where I(-) is an indicator function, which is equal to 1 if its argument is true and zero
otherwise.

A major hinderance in this binary classification task is the class imbalance problem.
In the social network data, negative examples (non-linked node pairs) tend to outnumber
the positive examples by a significantly large proportion. The literature for classification
on imbalanced data suggests two approaches to tackle this problem, namely, sampling and
cost-sensitive learning. In the first approach, a balanced training set is obtained by un-
dersampling the negative examples or oversampling the positive examples. This approach
has several drawbacks. Firstly, undersampling the negative examples reduces the amount of
data available for training an accurate model. Furthermore, one has to do the undersam-
pling repeatedly to remove the sampling bias. On the other hand, oversampling the positive
examples in the social network data increases the training set size significantly, which in
turn, makes the training time considerably longer.

The cost sensitive learning approach is based on the premise that different classes of
examples (positives or negatives) incur different penalties for misclassification. The loss
function defined in (5.1) is cost sensitive if C # Cy, where C is the cost for misclassifying
linked node pairs as non-linked node pairs and C' is the cost of misclassifying the non-linked
node pairs as linked node pairs.

The loss function defined in (5.1) and the associated risk functions are not differentiable,
hence does not offer mathematical dexterity in designing classifiers. The risk associlated

with exponential loss can be used as an alternative:

Rexp = % ZeXp {— Aijf(eiﬂ} (5.3)

L
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The exponential risk is a continuous and differentiable function and it bounds the risk for 0-1
loss from above. It can be shown that an equivalent expression bounding the cost sensitive

loss function defined in (5.1) is

Rcost—sens = ") Z { ij = = 1) exp(— le(ez'j))

+ I(A4;; = —1) exp(Ca2 f(e;5)) (5.4)

By simply changing the class labels for presence and absence of links from {+1,—1} to
{C1, —Cs} the cost sensitive risk in Equation (5.4) can be transformed to the empirical risk
of (5.3). Generally the cost parameters C; and Cy are chosen in such a way that they correct
for the classification bias that arises due to skewness in the class distribution. If n4 and
n_ represent the number of positive and negative examples in the data, then C7 and Cs are
often chosen such that % = Z—I_ For large sparse networks, the fraction Z—; = O(n), thus if
we fix C] = 1, then the value of Cy ~ n~1 which results in working with extreme penalties
that are easily polluted by the limitations of the machine precision. To avoid this, we need
to scale the cost of both positive and negative labels such that the desired penalty ratio is
maintained. Another significance of the cost ratio % is its role in determining the optimal

cost sensitive decision surface. The optimal decision surface for the cost sensitive learning

f*=arg mingEg 4[L(e,a)]

is given by the Bayes Decision Rule [66]

(5.5)



Hence for any cost structure (C,Cy), cost sensitive optimality differs from cost insensitive
optimality only through the threshold 7" = log %

The preceding formulation assumes that C'y and C9 are constants. We argue that it may
not desirable to treat the misclassification cost for all the linked (and non-linked) node pairs
by the same yard stick. In the next section, we present a variable cost loss function, such that
misclassification of low degree linked node pairs incurs more penalty than misclassification
of high degree linked node pairs. We also show that such modification leads to a link
prediction algorithm that leans towards predicting more links within the same community

than otherwise.

5.3 Variable Cost Loss Function for Link Prediction

This section describes our rationale for introducing a variable cost loss function for link
prediction. It is generally observed that the degree distribution of real-world networks tends
to follow a power law distribution, where there are few high degree nodes and a large number
of low degree nodes. Consequently, a supervised learning algorithm for link prediction not
only faces the bias from the large number of non-linked node pairs (negative class) but
also from the small number of high degree nodes. Specifically, among the linked node pairs
(positive class), the high degree nodes contribute more in determining the decision surface.
Since we want to build models that can explain the observed links between any node pairs
and not strongly influenced by the links formed for a few of the high degree nodes, we need
to design a loss function that removes this bias within the positive class.

One way to do this would be to make the misclassification penalty dependent on the

degree of the nodes. Let k; be the degree of node i. Then the cost of misclassifying the
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linked node pair e;; is given by
Ci(ejj) =1 — Bkik;,

where 3 is user defined parameter, typically chosen to keep the cost function non-negative.
Notice that C'| monotonically decreases with increasing degrees of k; or k;, thus penalizing
more for misclassification of links between low degree nodes compared to misclassification of
links between the high degree nodes.

Analogously, the same reasoning can be made about the non-linked node pairs. The low
degree node pairs exert a higher influence on the negative class than the high degree node
pairs. To remove this bias among the negative examples, we define the cost for misclassifying
non-linked node pairs as

Caleij) = vkikj,

which increases when the node degrees are higher. We now need to account for the overall
bias between the positive and negative examples, this is done by choosing the value of g and

~ such that C9 < (. Putting it all together, we obtain the following loss function

(

1 — Bkik;, if sgn(f(e;;)) # Ajj = 1
L(f(eij), Aij) =  vk;k;, if sgn(f(eij)) # Ajj = —1 (5.6)

0, otherwise

\

The distinguishing aspect of the above loss function is that it assigns variable misclassifi-

cation cost for different node pairs. When [ = Zl' T the term Sk;k; represents the expected
17
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number of links between the node pair 7 and j [72]. We will show in the next section that
for this specific value of 3, lowering the risk associated with the variable cost loss function
is same as maximizing the modularity measure. This results in the learning algorithm being
biased more towards learning links between the node pairs in same community than learning

the links that lie between the communities.

5.4 Modularity

A well accepted conjecture in the network mining literature is that link densities are expected
to be higher within a community than between communities. This suggests the possibility
of an intimate connection between link prediction and community finding tasks. A popular
method to identify communities in a network is using the well known modularity measure
[72]. Here the possible existence of a community in a given network is revealed by comparing
the actual link density in the subgraph induced by the community and the density one
would expect to have if the nodes of the subgraph were linked irrespective of the community

structure. The modularity measure can be mathematically quantified as follows.

Q= Z{ 1(45 > 0) PJ}I(CZ':CJ')’ (5.7)

where P;; is the expected number of links between the nodes ¢ and j under a null model
(or reference network). The variables ¢; and c¢; represent the community membership of
nodes ¢ and j respectively. Modularity-based community finding algorithms are designed to
assign the nodes to different communities such that the overall modularity measure, Q, is

maximized. The null model used often corresponds to that of a random graph with the same
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degree distribution as the given network. This leads to [17]

Q= % Z [I(Aij > 0) — % I(c; = c;) (5.8)
ij
where m = ), k;/2 is the number of links in the network.

The following theorem shows the equivalence between maximizing (5.8) and minimiz-
ing the risk associated with a special case of the loss function given in (5.6). Consider
a community-based link prediction model that predicts the existence of a link between a
node-pair based on whether the nodes are in the same community, i.e.,

+1, if I(¢; = ¢;);
sgn( foomm (€i;)) = ’ (5.9)

—1, otherwise.

Theorem 2 For the variable cost loss function given in (5.6), minimizing the risk associated

with the community-based link prediction model feomm(€;;) with = = 21, s equivalent
771

to mazximizing the modularity function in (5.8)

Proof 1 The empirical risk associated with the variable cost loss function given in (5.6) for

the community-based link prediction model is

A 1

Ruot = 75| 30 Tsonlfeomnlei) = ~1)(1 = Bhit)
ij: Ay =1

+ Z I(Sgn<fcomm(eij)) = 1)(7kikj)
ijiAg=—1
1 1
= m[ >, (1=di- 3 kikj)

iji Ay =1

+ Y6 21 kikj)] (5.10)

i—
m
ij:Aj=—1
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where we have replaced 1(sgn(feomm(e€;j)) = 1) = 6;; and 8 =y = 1/2m. Now minimizing

the empirical risk with respect to 0 is equivalent to maximizing the following

m}n émod
1 /{Zikj 1
— méaxp Z 5@'(1 — om ) — Z 52'3'%]6@'/{]}
Zj'Aijzl Z].Aij:—l
1 kik;
= nl(?X ﬁ Z 6ij {I(Aij > 0) — %1 (5.11)
)

Since 6;j = I(sgn(feomm(eij)) = 1) = I(c; = ¢;), this completes the proof.

The preceding theorem suggests that maximizing the modularity measure is equivalent
to minimizing a special case of the loss function using the clustering solution, feomm(e;;) as
the link prediction model. The clustering solution uses only the network topology to explain
the link potential between node pairs. In contrast, our proposed variable cost loss function
provides a framework that allows us to estimate the link potential using other information
including the nodal attributes. We design the fcomm(e;j) as function of nodal attributes z;
and x;. Our experimental results have demonstrated the effectiveness of using an exponential

loss compared to modularity function (5.24) for link prediction.

5.5 Boosting Approach for Link Prediction

This section presents our method for optimizing the variable-cost loss function given in

Section 5.3. The risk associated with the loss function given in (5.6) is non-differentiable, so
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we employ the following variable-cost empirical risk function:

mod -2 Z { iy = = 1) exp[—(1 — /Bklkj)f(elj)]

+I(A;; = —1) eXphkik’jf(eij)]} (5.12)

If we set 8 =~ then the above loss function reduces to

Rinod = QZGXP[ I(A;; >0) — Bkikﬂf(eij)} (5.13)

This form of loss function is well studied in the machine learning community using ad-

ditive modeling or boosting techniques [19]. Specifically, an additive model takes the form

of

x) = Sgn[zt: Oztft(X)] :

For boosting, each f; corresponds to a weak learner and the goal is to identify a sequence of
constants o, ..ap such that a linear combination of the weak learners performs better than

any of the individual learners.

5.5.1 Estimating oy

Our aim is to design a boosting algorithm that minimizes the variable-cost empirical risk
function Rmod- To do this, we need to induce a sequence of weak learners that help in
reducing the risk as optimally as possible. Let F' = Zf;i o, f% be the previous solution of
the boosting algorithm at step (¢ —1) and ft is the currently induced weak learner. We need

to identify an appropriate o that would lead to an improvement in Rmod' The optimization
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problem at step t is given by

kik;
mi}thexp {— (I(AZ] > 0) QmJ) (Fj +atft<ez-j>)} (5.14)

To highlight the effect of current weak learner we need to isolate the effect of past weak

learners from the equation. Let

kik;
DZ] = exp| — I(AZ]>0)— om FZ]

ik
M;; = (I(Aij >0) — 2mj>ft(eij)

sij = sgn(Mj)

Wt = Z ’Lj|MZ |
ijEMij>0

U S T (5.15)
ijEMij<0

It can be shown that the objective function given in (5.14) is bounded as follows:

kik;
a0 5)e )
ij
= ZDijeXP(_atsij|Mij|)
< ZDZJ| jl(exp(—agsi;) — 1)

< (W+ exp(—ay) + W~ exp(ay) — WH —W7) (5.16)

where the inequality follows from applying Jensen’s inequality and the assumption that
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|M;;| < 1. For a given f! taking its partial derivative with respect to a; gives

1wt
= —log — 5.17
ap = 5 log 77— (5.17)
The formula for ay is similar in spirit to regular AdaBoost in which ay = %log %, where e

is the error rate for the weak classifier. In our case, the W and W_ represent the weighted

sum of the correctly classified and incorrectly classified node pairs.

5.5.2 Weak Learners

This section describes the construction of the weak learners used in our boosting framework.
Similar to traditional boosting, we could apply any simple classifier as long as it takes
into consideration the weight matrix D associated with the node-pairs. The weak learner
considered in this study is computed based on the nodal attributes and can be computed in
closed form.

Let X represent the n x d nodal attribute matrix. Given the current weight matrix D
between the node pairs, the goal of weak learner is to estimate the n xn link potential matrix
L(X) where L;; = f'(e;;) indicates the strength of link between the nodes i and j. Large
positive values of L;; indicate greater potential for link between the nodes and large negative
values indicate greater repulsion for link formation between the nodes. We model L(X) as
simple weighted correlation of the nodal features. Let L(X) = XWXT. Here the weight
matrix W is a d X d matrix that needs to be estimated by solving the following objective

function.
A
T 2
Q= mV[E}XZ(DijBij)[XWX lij) — B | W |5 (5.18)
ij
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k k
where B;j = [I(4;; > 0) — 54] is the coefficient term of the modularity measure or the cost

associated with each node pair. Differentiating the objective function we get,

W =— Z D;jBij(XipX L) + AWpg = 0 (5.19)
pq

We get,

1 T
Wy = XZX D;i;BijX,;

= %ZXTD B Xjq (5.20)

Let o denote the element wise matrix multiplication, then W can be written as
W = %XT(B e D)X (5.21)
Thus the link potential function L(X) = XWX for the given weight matrix D is given by

1
L= XXXT(B o D)XXT (5.22)

A crude interpretation of the above solution is that it aligns the correlation between the
nodal attributes with the modularity matrix. A is chosen as a normalization constant such
that the estimated link potentials are mapped between [—1,1]. A distinct aspect of above
definition of weak learners is that it does not require explicit conversion of nodal features
to edge features. Traditional classifiers like support vector machine or logistic regression
requires one to construct feature for each node pair from the nodal features, which itself is

a time consuming process.
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5.5.3 Scalability

Link prediction algorithms such as Preferential Attachment and Common Neighbors, though
often have poor performance, are still considered attractive for many practical applications
as they are easy to implement and scalable to large sized networks. Scalability is one of the
important aspects of the proposed link prediction algorithm. Even though the number of
links in large sparse networks is small, the supervised link prediction algorithm must examine
all possible node pairs thereby increasing the size of data to be dealt with. In addition to
the number of node pairs, the number of features associated with each node may add severe
constraints on the performance of the model with respect to speed, memory requirement,
and accuracy.

In this section, we describe an approach to scale up our proposed algorithm by decom-
posing the network into smaller, potentially overlapping partitions and using the boosting
approach to systematically combine the weak learners constructed from each partition. This
divide-and-conquer strategy is well suited both for the link prediction problem and the boost-
ing framework since link formation is typically a local phenomenon, in the sense that there
are several small communities in the network and the links are formed more inside that
community. Thus it is beneficial to construct a local (weak) learner from a small segment of
the network at a time and aggregate them in a principled way to form the global model via
the boosting formulation.

There are many strategies to create subgraph partitions from a large network. Our
requirements are that (1) the partitions must be distinctive enough from each other to
induce a diverse (uncorrelated) set of weak learners and (2) the partitioning approach must

be efficient to implement especially for large-scale networks. We tried several partitioning
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strategies (e.g., applying random walk starting from randomly chosen seed nodes) but found
that they often fail to satisfy one of the two requirements. This led us to consider the domain
partitioning strategy, which is inexpensive to implement and often produces a diverse set of
partitions.

The proposed scalable LinkBoost algorithm is summarized in Algorithm 2. The function
GetFeaturePartition(n) returns a feature partition where each partition set contains n%
of the features. For each partition, we create a subgraph containing only those nodes that
have at least one non-zero value with respect to the selected set of features. We then build a
local model on the subgraph by invoking the GetBaseLearner subroutine. The subroutine
takes the following parameters as input: (1) Ay, the adjacency matrix associated with the
subgraph induced by the feature partition P, (2) X, subset of the nodal attributes in the
subgraph, (3) D,, weights on node pairs in the subgraph, and (4) k,, global degree of the
nodes in the subgraph. The weight returned by the GetBaseLearner subroutine is used to
update the estimated link potential matrix. This process is repeated T times on all subgraphs
obtained by different feature partitions.

In addition to its efficient implementation and diversity of its induced weak learners,
another advantage of the domain partitioning strategy is that the final hypothesis has a
nonlinear decision surface. It can be easily seen that the weak learner XW X7 described
in Section 5.5.2 yields a linear decision surface separating the linked and non-linked node
pairs. Since the boosting algorithm combines the weak learners also in a linear fashion, it
will not be able to significantly alter the decision surface. However, by employing domain
partitioning in the weak learner construction, we will work with a distinct subgraph at a
time. The weight matrix W returned by GetBaseLearner function is applied only to the

current subgraph V' and not to the entire network. This results in inducing a non-linear
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Algorithm 2 LinkBoost

Input: A: n x n adjacency matrix with {+1, —1} entries
X: n x d nodal attribute matrix
7n: threshold for feature partitioning
Output: F: n x n link potential matrix
Initialize:
F = [O]nxn; D(O) = Mnxm
k: n x 1 column vector of node degrees
fort=1to T do
P < GetFeaturePartition(n)
for X), € P do
V' < GetSubGraphNodes(X))
W < GetBaseLearner(Xp, Dy, ky, Ay)
Compute f, = XpWXg
Compute « using (5.17)
F, < Fy,+afy,
Dy = Dyexp(—aA, e Ly)
end for
end for
return F

decision surface (clipped line) in the feature space (a line with respect to node pairs in
current partition and value zero for node pairs outside the partition). Finally the boosting
algorithm combines the collection of clipped lines to produce a final classifier with non-linear

decision surface.

5.6 Experimental Evaluations

This section reports the results of experiments conducted on the proposed LinkBoost algo-
rithm. Since link prediction is cost sensitive in nature, we compare the algorithm against
other baseline methods using the receiver operating characteristic (ROC) curve. The curve
is obtained by calculating the true positives and false positives by varying the threshold on
the estimated link potentials between the node pairs. The link prediction model is built on

the training set while the ROC curves are plotted for the node pairs in the test set.

85



5.6.1 Baseline Algorithms

We compared the performance of LinkBoost against the following link prediction algorithms
discussed in the related work section.

Link-Based: We used three link based algorithm for link prediction. These are Preferen-
tial Attachment, Katz and Modularity. Preferential attachment estimates the link potential

between a node pair as product of their degrees. The Katz measure is defined as
. l
score(z,y) = Zﬂl | pathl(-j) | (5.23)
=1

where | pathl(-? | is set of all path of length [ from node i to node j and 0 < 8 < 1 is a user
parameter. A special variant of Katz is the truncated Katz in which only finite number of
terms in the summation are considered. The number of terms to consider is again a user
given parameter. The Katz measure is sensitive to both these parameters. The modularity
measure for link prediction is computed as follows. Let S;. to be 1 if vertex i belongs to
group 7 and zero otherwise. Then modularity maximization involves identifying a n x k

matrix S with elements S;; such that following equation is maximized.
msaxtr s”BS (5.24)

The problem (5.24) is NP hard and is relaxed by letting S to be any real matrix such that
ST'S = I. We then define feomm(€ij) = > SirSir-

Attribute Based: Here we use the well known Fized Cost Adaboost where the cost
parameters are set to C1 = 1 and C9 = 0.01. It is not possible to make the cost more

than 1 as the derivation of a assumes that [M;;| < 1. Furthermore, only the cost ratio %
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matters and not their absolute magnitudes. Similarly, the modularity matrix B is multiplied
by constant factor so that the magnitude of entries are less than 1. For LinkBoost, we set
1n == 0.05. The base learners used for both LinkBoost and Fized Cost Adaboost are the

same (see Section 5.5.2).

5.6.2 Data Sets for Inferring Missing Links

Here we consider the problem of inferring missing links from an incomplete network. We use
two well-known citation networks ! [89] —citeseer and cora data sets—for this experiment.
In both the data sets, we first make the graph undirected and randomly suppress 30% of the
links from the network and use them as the test set for predicting missing links.

Cora Data Set contains publications from the machine learning area, which include
the following 7 subcategories: Case-based reasoning, Genetic Algorithms, Neural Networks,
Probabilistic Methods, Reinforcement Learning, Rule Learning and Theory. The data set we
use contains 2708 nodes, 5429 directed links, and 1433 unique words. Each node corresponds
to a paper and is characterized by a 0/1-valued vector indicating the absence/presence of
the corresponding word from the title of the paper.

Citeseer Data Set consists of data from 3312 scientific publications. Each publication
is labeled as one of 6 classes. The data set we have created contains 4732 links and 3703

unique words.

5.6.3 Data Sets for Predicting Future Links

Here, we are given the network link structure and the nodal attributes at a particular time

period. Our task is to predict the link formed between the given nodes at a future time.

Thttp:/ /www.cs.umd.edu/projects/lings/projects/Ibc /index.html
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FIGURE 5.1: Proportion of within community links (good links) as function of topK values

TABLE 5.1: Link Prediction: The table shows the AUC of predicted missing links and future links
in each of the four data sets.

AUC (% improvement compared to LinkBoost)

Data Method Cora Citeseer DBLP Wiki
Link Only| Katz 0.72 (-16.70%) 0.63 (-41.30%) 0.61 (-17.50%)  |0.86 (-2.20%)
PA 0.63(-14.20%) 0.59(-33.70%) 0.71(-4.00%) 0.90(+42.20%)
Modularity 0.67(-20.00%) 0.60(-32.50%) 0.63(-14.86%) 0.64(-27.27%)
Link+ | AdaCost [0.53 £ 0.09(-36.90%)|0.54 £0.12 (-39.32%)|0.56 + 0.2 (-24.32%) <.50
Content |LinkBoost .84+ 0.025 .8940.063 .74+ 0.18 .88+ 0.14
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DBLP Data Set contains all the computer science articles 2 from the proceedings of 28
conferences related to machine learning, data mining and databases from 1997 to 2006. The
train set consists of all publications from 1997-2000 and test set contains all publications
from 2001-2004. There are 9252 nodes in the train set with 9136 nodal attributes. There
are 21,107 links in the train set and only 6679 links in the test set.

Wikipedia Data Set is a web page network which was crawled from Wikipedia web
site by Kossinets®. The data set contains edit history of all the pages in Wikipedia from
its inception until January 2008. We examined the user-user interaction network (user talk
pages). The user interactions in the first 6 months of 2004 is taken as train set and the next

6 months is taken as test set. There are 8178 users and 24891 features for each user.

5.6.4 Links Within Community

First, we evaluated the performance of the LinkBoost algorithm in terms of its ability to
predict links within community. For both cora and citeseer data sets we use the ground truth
community label to verify the proportions of links formed within community for each of the
link prediction algorithms. We sort the link potentials and declare the top-K largest link
potentials as the possible missing or future links. Figure 5.1 shows the plot of the proportion
of within community links or good links as function of top-K values. Clearly, the LinkBoost
algorithm outperforms both modularity and Katz measures, thus validating the claim that
our algorithm indeed strives to identify links within a community. The proportion of good
links identified by modularity and Katz are quite high for smaller values of topK, but falls

significantly for larger topK values.

http://dblp.uni-trier.de/
3G. Kossinets. Processed Wikipedia Edit History. Stanford large network dataset collec-
tion.

89



DBLP Dataset

1,
0.8f
2
= 0.6r
(%2
o
o
S
= 0.4
- == Katz
I PA
o2rgp, ~ e = Modularity
—e— LinkBoost
—A—[C-Ada
0 0.2 0.4 0.6 0.8 1
False Positive
WIKI Dataset
ol Hm\\\\\\HllllllH\\HHHH\H!H_\\_\I\UW””““‘ .
0.8
e
= 0.6
(%2
o
o
g
= 0.4
- == Katz
0.2 i PA
----- - Modularity

—e— LinkBoost

0.2 0.4 0.6 0.8 1
False Positive

FIGURE 5.2: ROC curves comparing performances of different link prediction algorithms.
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5.6.5 Missing and Future Links

Next we evaluate the performance of LinkBoost for the missing and future link prediction
problems. The ROC curves are shown in Figure 5.2 and 5.3. Firstly, notice that the AUC of
LinkBoost is consistently higher than modularity measure. As mentioned earlier, modularity
utilizes only the network link structure whereas boosting makes use of both the link and the
content information thus resulting in superior performance. The LinkBoost consistently
outperforms the fixed cost Adaboost as well, highlighting the importance of the proposed
variable cost structure.

LinkBoost outperforms the Katz measure on both cora and citeseer citation networks.
The Katz measure performs better than the fixed cost Adaboost on the DBLP network and
as good as LinkBoost on Wikipedia network. However it is sensitive to choice of parameter
setting. In this chapter, we report the results based on the parameters that best fits the test
set.

Finally, LinkBoost outperforms the preferential attachment measure on both the citation
networks. However it is performance is comparable to preferential attachment on DBLP and
Wiki networks. Specifically, LinkBoost is slightly better than preferential attachment on
DBLP network and is slightly worse on Wikipedia network. This is because the preferential
attachment algorithm is based on the premise that the rich gets richer. We suspect that
the user network in Wikipedia exhibit the preferential attachment characteristics where few
authoritative users communicate with large number of other users. The average AUC for

LinkBoost is 0.88 and for preferential attachment is 0.90.
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5.6.6 Low Degree Nodes

In this section, we demonstrate the ability of the proposed method to identify the links
formed between low degree nodes in the citation networks. A node with degree less than
2 is considered to be a low degree node. We compute the models on the training set and
estimate the ROC curves for the subgraph consisting of low degree nodes. The results are
plotted in Figure 5.4. As expected, the preferential attachment measure under performs as
it ranks the high degree nodes ahead of the low degree nodes. The proposed LinkBoost with

effective degree sensitive loss function overcomes this problem.

5.7 Summary

In this chapter, we have given a new direction for the supervised link prediction problem
in large sparse networks. We have proposed a new degree dependent cost function and
has shown that minimization of the associated risk leads to modular link prediction where
more links are predicted within community. Such a cost function addresses the skewness
in class distribution and skewness in nodal degrees. The proposed algorithm is scalable
and easy to implement. Experimental evaluations show the superior performance of the
proposed method over existing supervised and unsupervised methods. The proposed method
is specially effective in predicting the missing links for the low degree nodes. For future work,
we plan to investigate methods for estimating optimal cost parameters and alternate ways

for creating the weak learners used in LinkBoost formulation.
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Chapter 6

Crowdsourcing for Network Mining

In the previous chapters, we have presented multi-source and multi-task network mining
frameworks for both supervised and unsupervised learning tasks. A key requirement for
developing supervised learning algorithms is the availability of trustworthy label information
for the given mining task. The quality of the labeled data often affects the performance of
the learning algorithm. In this chapter, we present a framework that engages the services
of crowdsourcing technology in order to acquire (or augment) the label information for the
network data. First, we briefly discuss the role of crowdsourcing in aiding the label acquisition
process. Next, we highlight the challenges that are present in acquiring label information
for network data. Finally, we present a novel approach which transforms the given network
data into an image corpus for labeling by the crowd.

Crowdsourcing [23] is an emerging technology where a group of human workers, some of
whom might be unskilled, are employed to solve a certain task that cannot be automatically
and /or reliably solved by computers. For example, image annotation is a task that involves
categorizing individual images in a corpus into certain pre-defined categories. It is not always
possible to automate this task using computers and often times, humans can perform the task
more accurately than computers. The key challenge for harnessing the power of the crowd
lies in converting the problem at hand into a simpler task that can be handled by humans
with great ease and speed. Such tasks are called Human Intelligence Tasks or HITs. For

example, in the image annotation problem, the individual images constitute a HIT, which
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are displayed to workers in order to elicit their label information. In the past, researchers
have successfully employed the crowd to annotate data for search and retrieval problems
[3, 67, 81, 93]. In addition, the power of the crowd has been harnessed to perform machine
learning tasks such as clustering and classification [37, 45, 113].

One advantage of utilizing the services of crowdsourcing is that once the HITs are de-
signed, they can be solved even by low skilled human workers (without any domain knowledge
or expertise) for a menial payment. Therefore, the valuable time of domain experts can be
spared from performing cumbersome data labeling task and focused on analyzing the data
instead. The goal of this chapter is to design simple and easy to use HITs that can be pre-
sented to the crowd for acquiring label information in the network data. Unlike the image
annotation problem, designing HITs for network data is more challenging as the raw net-
work data does not easily lend itself to be presented to the crowd. Also, there are inherent
privacy concerns when presenting social network data to third party workers. Therefore one
has to design HITs that are simple and intuitive for average humans to act upon and at the
same time do not disclose the original data in any way to the workers. To overcome this
challenge, we present a data transformation approach whereby the network data is initially

transformed into images so that it can visualized and subsequently classified by the crowd.

6.1 Transforming Network Data into Images

Data transformation is a preprocessing procedure for converting an input pattern into a
suitable representation before we apply supervised and unsupervised learning algorithms.
Traditional approaches are mostly designed for in-domain data transformation, which means

they simply manipulate the input space in such a way that the transformed space is more
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aligned with the requirements of the learning algorithm. Such approaches would typically
project the data into a low dimensional manifold (in order to remove noise as well as to
eliminate redundant and irrelevant features) or map the data into a higher dimensional
space (to extend the feature representation and enable the use of linear classifiers to discern
patterns that belong to different classes). The in-domain transformation approaches do not

bring any new information that was not already present in the original data.
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A. Target data B. Source data C. Transformed data

FIGURE 6.1: A toy example consisting of target network data (A) and source handwritten digit data
(B). We map each distinct labeled target node to a unique source image and learn the transformation
between target and source data. When this transformation is applied on all the target nodes, we
get the transformed target data (C). The blurry images are interpreted in Section 6.1.

Unlike previous research, this work investigates an out-of-domain data transformation
approach that enables the use of crowdsourcing technology for network mining problems.
Specifically, the transformation involves two unrelated domains (source and target), each
having a unique set of attributes, classes, and probability distributions. The target is the
domain in which the desired classification task is to be performed but has limited labeled
data, whereas the source serves as an auxiliary data source for which labels are already avail-
able or can be easily acquired even from non-experts. For this study, the source corresponds

to a collection of labeled images whereas the target is a social network. Since the domains
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are unrelated, a key challenge is to learn a proper transformation function that maps each
labeled example in the target domain to its corresponding “surrogate” in the source domain.

To illustrate the proposed approach, consider the toy example shown in Figure 6.1. Here
the source domain is a collection of hand written digit images corresponding to digits 1,2, 3
and 4 (see Figure 6.1B). The target domain, is a network data with four distinct commu-
nities denoted as A, B,C and D, as shown in Figure 6.1A. The circles and lines are the
nodes and links, respectively. Solid circles correspond to labeled nodes, whereas unfilled
circles represent the unlabeled ones. The solid and dotted lines represent within community
and between community links, respectively. We map each distinct labeled node to one of
the labeled images and learn their corresponding transformation matrix. The mapping is
done in such a way that nodes from communities A, B,C' and D are mapped to distinct
images corresponding to digits 1,2,3 and 4, respectively. The transformation is then ap-
plied to the unlabeled examples in the target domain to generate their corresponding images
for subsequent labeling by the crowd. Figure 6.1C gives a pictorial representation of the
transformed node representation in the image space. A good transformation may help reveal
certain aspects of the underlying network. For example, the node C2 in community C' has
links to nodes outside of its community. After the transformation, even though the majority
of the images associated with the nodes in community C' are mapped to the digit 3, the
image for node C?2 is harder to discern because it lies at the border with other communi-
ties. Furthermore, the node D1, which has more links to nodes in community B than to
those in its own community, is transformed into an image that resembles digit 2 more than
digit 4. This example suggests that, although the feature space has completely changed, the
transformed images should still retain useful information that helps provide insights into the

latent structure of the network data.
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A key question that remains to be answered is whether it is always possible to find a
proper transformation that effectively maps nodes in a social network to images that can
be easily discerned by humans. To help answer this question, we analyze the reconstruction
error of the transformation and examine its relationship to the ranks of data matrices in
the source and target domains. An alternating least square method is presented to learn
a transformation matrix that minimizes the reconstruction error. Using network data from
two real-world domains, we empirically showed the effectiveness of the framework in pro-
viding labels to solve a variety of network learning tasks including link prediction and node
classification.

The remainder of this chapter is organized as follows. Section 6.2 presents the notations
used in this chapter and defines the data transformation problem for crowdsourcing social
networks. In Section 6.3, we introduce our proposed framework for augmenting training data
in the target domain with newly acquired labeled data from the source domain. Section 6.4
describes the detailed methodology for learning the transformation. We also discuss the
conditions under which an exact transformation can be found. Experimental results are
given in Section 6.5. Finally, we conclude with a summary of the work and suggestions for

future research.

6.2 Preliminaries

Let & and T denote the source and target domains. Throughout this chapter, we assume
the source is an image corpus for which labels can be easily acquired from the crowd (human
workers) whereas the target is a social network for which obtaining reliable labels is expensive.

Both domains are assumed to have their own training examples. We further assume that
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the classifier in the target domain can be improved if more labeled examples are augmented
into the training set.

Let X() be an ns X ds data matrix for the source domain and Y () be its corresponding
ns X cg class membership matrix, where ng is the number of labeled examples, dg is the

number of attributes, and cg is the number of classes. Each element yfj in the matrix Y

(s)

is equal to 1 if the labeled example x,;” belongs to class j and zero otherwise. Similarly,
let X(1) = [X(tl); X(w)] denote an (ny + r) X d¢ data matrix for the target domain and Y®)
be its corresponding ny X ¢t class membership matrix, where n; is the number of labeled
examples, r is the number of unlabeled examples, d; is the number of attributes, and ¢; is
the number of classes in the target domain. For brevity, we assume cg = ¢4 = ¢ and ng > ny.

Our goal is to learn a dy x dg transformation matrix U that effectively maps each labeled
target example to a surrogate example in the source domain in such a way that preserves
the distance and label information of the two data sets as much as possible. For example, in
Figure 6.1, we seek a transformation matrix U that maps all the nodes from community A
to images containing the handwritten digit 1, those from community B to images containing
the digit 2, and so on. After learning the transformation, any unlabeled node can be mapped
to its corresponding image by applying the matrix U to its node attributes. The transformed

images can be labeled by human workers and the newly acquired labels can be combined

with the original labeled data to train a better classifier.

6.3 Proposed Framework

This section presents an overview of our proposed framework for augmenting training data in

the target domain with labeled examples acquired from the source domain. The framework
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consists of the following tasks:

1. Surrogate Mapping. Given the labeled examples in the source and target domains,

(X(S), Y(S)) and (X(tl),Y(tl)), we need to learn a transformation matrix U that maps
(t)

each x; " € X () to its surrogate XE»S) € X)), The mapping should be done in such a
way that instances of a particular label in the target domain are mapped to instances

of a fixed label in the source domain.

2. Surrogate Labeling. The transformation matrix U will be applied to unlabeled data
in the target domain X (tu) to generate new surrogates X (51) for labeling by human
workers. Since each surrogate can be labeled by more than one workers, a consensus on
the class label must be made for each target instance (e.g., by taking a majority vote
on the class labels). Let Y (#) denote the consensus labels obtained for the unlabeled

target instances.

3. Model Building. The newly labeled target examples (X!, Y*%) are merged with the
original training data. A classifier will be trained on the extended training data to

generate a new predictive model for the target domain.

The key challenge is to develop an effective and efficient algorithm for learning the trans-

formation matrix U. We describe the details of the algorithm in the next section.

6.4 Surrogate Mapping

We cast the surrogate mapping task into a constrained optimization problem. First, we need
to design an objective function that assigns each target example to a unique source example

satisfying the label consistency requirement as well as minimizing the reconstruction error.
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In order to do this, we define an n¢ X ng surrogate selection matrix P, such that P;; =1

(s) (t)

indicates that the source example x ; is the surrogate for target example x; . The objective
function for the surrogate mapping task is given below:
min_ || PX®) - XWU |12 + || pYE)QT — Y |3,
U.P.Q
V’l,j : sz € {07 1}7 Q]-Cg = 1Ct’
where || - || denote the Frobenius norm and 1, is a d-dimensional column vector of all

ones. The constraints ensure that the elements of the matrix P are binary-valued and
that each target example is mapped to exactly one source example. The first term in the
objective function is a measure of reconstruction error when mapping the target examples
into instances of the source domain. The second term in the objective function ensures
consistency of the class labels, i.e., labeled examples of a particular class in the target
domain are mapped only to source examples of the same class. The label matching matrix
Q is a cg X ¢t binary-valued matrix that represents the mapping between the class labels
of the source and target domains. Assuming cs = ¢ = ¢ and since the classes in the
source and target domains are often unrelated, we found it is sufficient to assign Q to be
an identity matrix when performing our experiments. A more careful selection of Q would
require considerations of the within-class and between-class variability of the source and
target examples. We plan to pursue this as part of our future work.

The constraint on matrix P allows a many-to-one assignment between the target and the
source domains. This is essential because, for any two target examples that are located close

to each other and belong to same class, the surrogate selection matrix should map them to
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source examples that are close to each other as well. If no such corresponding pair of source
examples can be found, it would be better to map the two target examples to the same

surrogate, as long as they are both from the same class.

6.4.1 Reconstruction Error Analysis

Our proposed framework considers a linear transformation approach for mapping the target
examples into their corresponding surrogates in the source domain. In the case where the
source domain corresponds to an image corpus, one concern is whether the transformation
can produce images that can be easily discerned by humans. One way to measure the quality
of the transformation is to evaluate the reconstruction error of the surrogates selected for the
target examples. Let X(5) = X(EDU be the transformed images of the target examples and
Z(3) = PX(%) be the selected surrogates. Given U and P, we consider the transformation to
be e-proper if the reconstruction error [|Z() — X (%) H% < € and exact if || Z(8) — X() H% = 0.
The transformed images of the target examples are expected to be as easily discernable as
the original source images themselves if € is small. A key question is whether it is possible
to construct a transformation matrix U with low reconstruction error given the source and
target data matrices X(5) and X,

To determine the condition under which a low reconstruction error can be obtained,
assume the surrogate selection matrix P is known. The reconstruction error can be written

as follows

1z - xWu|Z (6.1)
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whose minimum solution is given by

U= (X(tl)TX(tl)) ()T 6.2)

A unique solution exists only if the covariance matrix XX () ig of full column rank.
Otherwise we need to obtain a rank reduced approximation of X (1) using techniques such
as singular value decomposition (SVD).

More importantly, the reconstruction error of the transformation can be assessed in terms

of the rank of the data matrices.

Proposition 1 Let A be an m x n matriz and B be an n x k matriz. If r(A), r(B), and
r(AB) denote the ranks of matrices A, B, and AB, respectively, then it can be shown that

/79/)
r(AB) < min[r(A), r(B)] (6.3)

Since X(8) = X()U, according to this proposition, r(X(8)) < (X)), Thus, if the rank of
the target data matrix is considerably lower than that for the original source data matrix,
then the transformed images will have a lower rank than the original source images, which
in turn, may lead to large reconstruction errors. In other words, an exact or low e-proper
transformation is infeasible if T(X(tl)) < r(X(S)).

We illustrate this with an example in Figure 6.2. Here we consider the well known Iris
data consisting of 150 labeled examples belonging to 3 distinct categories (Iris versicolor, Iris
virginica, and Iris setosa) as our target domain. Each category contains 50 examples, which
are matched against 50 handwritten images of 28 x 28 dimensions containing the digits 1,

2, or 3. The rank of the data matrix for the handwritten images is 150 (which is equivalent
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to its number of rows), which is much higher than the rank of Iris data, which is equal
to 4 (i.e., its number of columns). According to Proposition 1, the rank of the transformed
images for the Iris data is at most 4, which is considerably lower than the rank of the original
handwritten images. This suggests that the reconstruction error for the Iris data using the
handwritten images is likely to be high. The top right column of the Figure 6.2 shows the
transformed images for 30 selected examples from the Iris data. Even though all the target
examples in the Iris versicolor class were mapped to surrogate images containing the digit 2,
the transformed images look noisy and do not resemble the digit 2. Instead, they looked like
a mixture of digits 2 and 3 because it is hard to distinguish target examples belonging to the
Iris versicolor class from those belonging to the Iris virginica class. However, if we increase
the dimensionality of the Iris data from 4 to 12 (by adding quadratic and cubic terms for
each of the 4 original features), the reconstruction error reduces significantly, especially for
those images that correspond to the Iris versicolor class (see bottom right column of Figure
6.2). In particular, if we project the target data to a 150-dimensional feature space (using

higher degree polynomials), an exact transformation matrix U can be obtained.

Proposition 2 If Z(8) ¢ Rnsxds Xt ¢ pnexdr - gng (X)) > (X)) (where X i
a full column rank matriz), then there exists a transformation matriz U such that Z(s) =

Xy,

The key lesson here is that it is preferable to have a source data whose rank is smaller than
that of the target data. There are two ways to achieve this. First, we can reduce the rank of
the source data by applying SVD. The drawback here is that the source data is typically an
image whose contents are manually evaluated by humans (crowds). The rank reduction may

damage the visual clarity of the source images. Alternatively, we can increase the rank of
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FIGURE 6.2: Left panel shows the distribution of three classes (in three colors) with respect to
first and second principal components. The top and bottom right panel gives the transformed data
using 4 and 12 features respectively. The blurry images are formed because of poor transformation
quality. This is discussed in detail in section 6.4.1

the target data by adding features that correspond to higher order polynomials of the target
attributes. In fact, the objective function of our proposed surrogate matching framework can
be extended to a nonlinear transformation using the kernel trick (see supplemental material
for derivation). This allows us to project the target data to a high-dimensional (possibly
infinite-dimensional) space, thereby making it compatible with the source data of higher

rank.

6.4.2 Parameter Estimation

This section presents our approach for estimating the parameters P and U for the constrained
optimization problem stated in Section 6.4. We also provide proof of convergence of the
proposed algorithm. First, note that the objective function is non-convex with respect to
both P and U. However, for a fixed P, it is convex with respect to minimizing U, and

vice-versa. Thus, we employ the well-known alternating least square method to solve the
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optimization problem.
We begin with an initial surrogate selection matrix pY satisfying the label compatibility
criterion, namely PY;Q = Y; (assuming Q = I as previously discussed). We then estimate

the transformation matrix U using (6.2). At iteration k, we estimate P” based on the

(t)

previous estimate for U1 as follows. For each target example x;

formed image ﬁgtl) = thl)

, We compute its trans-

(s)

TUk_1 and match it to the surrogate example x; " that minimizes
(3

its reconstruction error:

Bi=argmin (o | <0 22 (6.4)
yj =Y;

We then set Pfk. =1 and Pfj =0 (Vj # k;) . The condition y§s) = ygtl) imposes the label
sivg P

compatibility requirement on the selected surrogate.

Lemma 1 Let X pe a full column rank matriz. Then, the objective function (6.1) is

monotonically non-increasing as the number of iterations k increases in Algorithm 3.

Proof 1 To prove the result, we need to show the following inequality:
E[PE, UY) < g[PF, UF 1 < g[PF1, UF 1, (6.5)

where <€'[P"77 Uk] is the reconstruction error after the k-th iteration. Given U~ the new

selection matriz PF satisfies the condition that Vi, P?k- =1 wmplies,
vy

T T
T R Vi [ e e Vil IRV Y (6.6)

The preceding inequality follows from the algorithm step given in Equation (6.4). Now sup-
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Algorithm 3 Surrogate Mapping Algorithm

1: Input: Source and Target data Xy, X;
2: Output: Transformation Matrix U
3: Initialize:

4. k=0;

5: Initialize PO, satisfying POV = Y

6:

7: repeat

8: k=k+1

9: Learn the transformation UF—1

10: U1 = argming || PF1X06) — XU |2
11: Compute the transformed image as follows
12: i —xWTyk=1 yi—12. . n
13: Estimate the P¥ matrix

14: Set P =0

15: fori=1—ndo

16: ki = argmin‘. (5)7 () H x? - ii H2

J~yj =Y;

17: Pl =1

18: end for

19: until P11 = pk
20: return UF—!

pose we assume that S[Pk, Uk_l] > S[Pk_l, Uk_l]. Then by definition of re-construction

error given in (6.1),

s ()T —1472 S ()T —172
= Db, xS Y gy, — X UM (6.7)
1 1
Since each term in the sum is non-negative, there must exist an index v such that

g XTI s x — x O (6.8)

7 7

which contradicts the condition given in (6.6). Thus, the original assumption must be false,

which means E[PF, UF~1] < [PF1, UF1).
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The neat inequality E[P!, U] < E[P!, U™Y can be inferred from line 10 of Algorithm 3
(see Equation (6.2)). Since Xt s q full rank matriz, therefore UF must exist for every k

and is unique.

Theorem 3 Let X)) pe o full column rank matriz. Then the Algorithm 3 terminates after

finitely number of iterations.

Proof 2 Lemma 1 shows the monotonically non-increasing nature of the objective function
(6.1) when applying Algorithm 3. At each iteration, the algorithm re-estimates the selection
matriz P and subsequently finds a corresponding optimal transformation matriz U. Since
there are only finitely many permutations available for matriz P, in the worse-case scenario,
the algorithm should converge after considering all the permutations.

We need to show is that the Algorithm does not enter infinite loop. For this, it is sufficient
to show that the algorithm will not produce the same selection matrix P again and again
except in the last iteration. If this is not true, then let Pt, Ut be the permutation matriz and
transformation matriz obtained at the end of iteration t and let P be the new permutation
matriz estimated using Ut such that Pt = P for some i < t and i # t. Since the linear

transformation U is unique for a given permutation matrix, we have

Ut = argming || pHixts) _ x(t) 12
= argming | PPX® — x® U2

= U (6.9)

However, this results in following contradiction.

E[P U < E[P!, U] < [P, U] = €[P UY) (6.10)
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Therefore, our assumption i # t is wrong. In other words Pt = P' can only happen when

1 =1 or in the last iteration, at which the algorithm is said to have terminated.

6.5 Experimental Evaluations

We performed experiments using both synthetic and real world data to demonstrate the effec-
tiveness of the proposed data transformation technique in enabling the use of crowdsourcing
technology for labeling the network data. For this purpose, we have selected the grey scale
image corpus of handwritten digits [51], as source data domain. This source domain consists
of roughly 5000 images for each of the digits from 0 through 9. Each image is of size 28 x 28
and is represented as one dimensional vector of length 784. We used two sparse data as
target domains namely, a social network of Wikipedia editors and a sample collection of

Wikipedia articles. A detailed description of these two data sets are given below.

e Wikipedia Editor Interactions: Here, we sampled articles from Wikipedia on two
topics namely, computer science and natural science. We then took all the editors who
worked on at least 20 of the sampled articles and recorded the interactions between
them from their respective Wikipedia User::Talk pages. We created two editor networks
one for each of the two topics. In each network, the set of editor interactions (linked
node pairs) and non-interactions(non-link node pairs) were equi-partitioned to create
TRAIN and TEST set. Therefore, each unique editor-pair is present in either TRAIN
or TEST set. The goal is to learn the presence/absence of interactions between editor
pairs from the TRAIN set and predict the interactions between the editors on the

TEST set.

e Biology Article Corpus: We sampled Wikipedia articles belonging to 4 related
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topics in biology namely - genetics, zoology, anatomy and cell-biology. Here, instead
of the network link information, we have used the text data (words in the article) to
classify the articles into one of the four categories. The TRAIN set consists of 2000
articles with 500 article in each topic and TEST set consists of 800 articles with 200
articles from each topic. There are totally 6040 words in the TRAIN set, which were
used as features. The goal is to obtain correct labels for the TEST articles, without

exposing the article content to the crowd.

6.5.1 Evaluation Methodology and Baseline

Our goal is to learn the labels for the TEST data points as accurately as possible. As a
baseline, we have trained a support vector machine (SVM) on the TRAIN set and used it to
predict the labels for the points in the TEST set. In the proposed approach, we first learn
the transformation matrix U between the labeled TRAIN set and the source domain (set of
digit images). We then apply the transformation on the unlabeled points in the TEST set.
The transformed TEST data now resides in the source domain (as handwritten digit images).
We have utilized the services of crowd(non-domain expert human workers) to manually label
these surrogate digit images (transformed test data) into appropriate digit category. If the
image is not well formed or appears visually cluttered then the worker flags the data point
(image) as noise. We combine the evaluations of all the workers (individual members in
crowd) by taking a simple majority vote.

The crowd based approach has the flexibility of rejecting a data point as noise. This
approach uniquely partitions the TEST set into two groups viz. good images (TEST_G) and
noisy images (TEST_N). Their performance can only be reported on the respective TEST_G

set. Therefore, it is not fair to compare their performance against the baseline. In order
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to address this problem, we performed additional model building step that would generate
label for the entire TEST data. It is a semi supervised approach where we trained a SVM on
both TRAIN and TEST_G set and used it to predict labels for entire TEST set. TEST_G
is subset of TEST where every data point is assigned a unique label by the crowd (majority

vote). We denote this approach by Crowd + SVM.

6.5.2 Synthetic Data

We used synthetic data to understand the ability of the proposed out-of-domain mapping
algorithm in revealing the latent structure present in the target data. In particular, we
examined the ability of the proposed approach in distinguishing boundary points from non
boundary points in a simple binary classification problem. In order to study this, we have
generated 100 random samples each from two normal distributions namely N (u = 1,0 = 1)
and N(u = 3,0 = 1). We converted the one dimensional data to 50 dimension data by
appending polynomials of the feature from degree 1 through 50. Samples from the former
are mapped to images corresponding to digit 0 and samples from the later are mapped to
images corresponding to digit 1.

Figure 6.3 depicts the two normal distribution from which we sampled 200 points. Figure
6.4 shows the transformed data (image representation) for all the 200 sample points. The
target domain consists of real numbers from the interval [—-3 5|. For individual data point,
the actual sample value is printed on top of each image. The data points belonging to
class 0 (M(px = 1,0 = 1)) are marked by * sign. For the samples from this distribution,
all the sample points in the interval [—2 1.5] got mapped to digit image zero without any
clutter or noise. Similarly, for the samples from class 1 (NM(u = 3,0 = 1)), all the sample

points in the interval [2.5 5] got mapped to the digit image 1 without any noise. However,
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FIGURE 6.3: Plot of two normal distributions used in generating synthetic data.

the sample points from the interval [1.5 2.4] got mapped to image which contains both
digit 0 and digit 1. In fact, this interval marks the overlapping region or boundary region
between the two distributions and the transformed target images for points from this region
looks like alphabet ®. This effect remains same for higher data dimensions where the visual
representation of data points in the boundary region encapsulates the characteristics of all
the respective classes that share the boundary. This is further illustrated in the next section

on a real world example.

6.5.3 Biology Article Corpus

On this data corpus, we have experimentally validated the Theorem 3 and other propositions.
Here we have mapped the articles belonging to four categories namely, genetics, zoology,
anatomy and cell-biology to digit images 1,2,3 and 4 respectively. There are 500 articles
in each article category and we have randomly matched each article against a unique image
from appropriate digit category. This is done by the initial permutation matrix PY. Since,

the final surrogate mapping depends on the initial permutation matrix P, we performed
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FI1GURE 6.4: The transformed Data from two normal distributions. The text above each image is
not meant to be readable but for visual reference only. The number above each image is the actual
sample value. The interpretation of images is illustrated in section 6.5.2.
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the experiment for 10 different random initializations of PY and chose the transformation
that gave the minimum reconstruction error.

On this data set, we have experimentally validated the Propositions, Lemma and theorem
proved in this chapter. In order to validate Lemma 1, we plot the reconstruction error
obtained at each iteration. This is shown in Figure 6.5(left) for each of the 10 random
initializations. As proved in Lemma 1, the reconstruction error monotonically decreases
with each iteration for all the 10 random initializations of PY. It was also observed that
for each random initialization, the reconstruction error converged to a local minima albeit
different ones for each random initialization thus validating Theorem 3. As mentioned earlier,
the re-construction can be analyzed with respect to the rank of the source and the target
data matrices. Figure 6.5(right), shows the decreasing trend of the rank of the re-sampled
source matrix with each iteration. It should be noted that the rank of P!X does not always
decrease monotonically with each iteration. The overall decrease in rank can be attributed
to the fact that at each iteration, the algorithm performs a one-to-many mapping, effectively
reducing the row rank of the matrix P*X. Notice that the minimum error across all the
10 random runs is obtained when the rank of PTXj falls below the rank of target data.
However, that alone is not sufficient condition for decreasing the re-construction error. In
Figure 6.5, errorcurve denoted by legends o, ¢ and [ correspond to the condition where the
rank of P!Xhas fallen below rank of the target data.

The surrogate images generated by the transformation with minimum re-construction
error is then presented to a crowd of three workers. On this dataset, each of the three
workers manually labeled all the 800 TEST images. Each worker categorized an image into
one of the four digit (1 —4) category. If the surrogate image was cluttered, dark or contained

more than one digit, then it was labeled as noise. On an average, each worker has labeled
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FIGURE 6.5: Wikipedia article corpus: The left result shows the decreasing error

with eachiteration for 10 random initializations. The right figure shows the rank of the
source data almostdecreases with successive iterations. Lowest error is achieved when

the rank of the source fallsbelow the target rank.

90 TEST data points or 11% of the TEST set as noise. The classification accuracy of three
independent workers on the entire TEST set was found to be 74%, 72% and 73%. For the
baseline, we trained a SVM on the TRAIN set using radial basis kernel with sigma value of
0.1. The SVM gave an over all accuracy of 63.5% on the TEST set. Table 6.1 records the
F measure for each class as given by SVM and each of the three individual workers in the
crowd.

An important distinguishing aspect of the crowdsourcing approach from the SVM is that
the latter was directly trained and tested on target domain whereas in the former, workers
manually assign label by looking at the transformed data (digit images) residing on the
source domain. In addition, the performance of the SVM directly depends on the data
points in the sample TRAIN set, the choice of kernel and kernel parameters. On contrary,

the performance of the crowd depends on the quality of the transformation, the user interface
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TABLE 6.1: This table shows the F measure for each of the four article categories. Here W; denotes
the i*" worker in the crowd. Each independent worker performs better than SVM with rbf kernel
(0 =0.1). The Crowd + SVM performed better than individual workers in the crowd.

Class SVM | Wi W2 W3 | Crowd+SVM
AUC
Zoology 0.5639 | 0.6977  0.6667  0.7178 0.7079
Cell Biology | 0.7250 | 0.8677  0.8571  0.8673 0.8756
Anatomy | 0.6267 | 0.7436  0.7512  0.7350 0.7400
Genetics | 0.6285 | 0.7866 ~ 0.7798  0.7803 0.8104
Accuracy 63.50 | 74.75 % 7212 % 72.88% 78.25%

for labeling, worker skills and fatigue. In this experiment, the workers were not given any
special training or instruction for labeling. They were not exposed to the images formed on
the TRAIN set and they used the basic human intelligence in categorizing the images into
one of the four digits or noise.

Finally in order to obtain a unique label for each TEST data point, we have used a simple
majority vote strategy to combine the results of individual workers in the crowd. Here a
TEST data point is assigned to a category which was favored by majority of workers in the
crowd (atleast two out of three workers). This approach labels only a portion of TEST set.
We generalize this crowd generated label on entire TEST set as follows. We train a SVM on
the combined TRAIN set and crowd labeled portion of TEST set and use it to predict the
label for entire TEST set. This approach is denoted as Crowd + SVM and it gave an accuracy

of 78.25 as reported in the Table 6.1.

6.5.4 Wiki Editor Networks

In this section, we analyze the performance of the proposed approach for label acquisition
on the Wikipedia editor networks. Each Wikipedia article is composed and edited by several

editors and each editor works on several articles. Sometimes, the editors interact with each
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other through their respective USER::Talk pages to improve the content of articles. In our
sample, we observed that a large pool of editors have worked on a common set of articles
without interacting with each other. Therefore merely editing a common set of article does
not imply interaction. For each editor, we use a binary vector indicating whether or not
the editor worked on a article as attribute vector. For each editor pair, the sum of their
corresponding attributes is used as feature vector. Here again, we used the SVM as baseline
algorithm to predict the interactions between the editors. We trained the SVM using linear
kernel and rbf kernels with different ¢ parameters. The best result was obtained with the
linear kernel.

The editor networks data is similar to the Biology article corpus data in that both are
sparse, high dimensional data and require strong domain expertise to label them. However
learning on the editor network data poses a significant challenge owning to the label skewness.
In our sample, the number of non-interacting editors are 2 — 10 times than the number of
interacting editor pairs. In addition, the attributes or features used for predicting interactions
has limited discerning capability. This results in generating images containing multiple digits
or undecipherable characters which cannot be easily labeled by humans.

Another distinguishing aspect between the experiments on Biology article corpus and
Editor network is that on the former there were three workers who labeled the entire TEST
set. However, on the later there were 27 workers who labeled only a portion of TEST set
(on each network, 800 TEST images were labeled). Therefore we do report the performance
of individual workers rather, we report the overall performance of the Crowd+SVM approach.

We mapped the data points corresponding to the interactions(links) to digit 1 and the
data belonging to non-interaction(no-links) group were mapped to digit 2. For each surrogate

image, a worker chose one of the following five options: A) Clearly digit 1 B) Clearly digit
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TABLE 6.2: This table gives the AUC values of SVM and Crowd + SVM approach for link pre-
diction problem on two different Wikipedia editor networks. Here the proposed Crowd approach
outperforms the baseline SVM by 8% on Computer science network and fares slightly better than
SVM on Natural science editor network.

AUC
Network | Pos/Negin TEST | SVM | Crowd + SVM
Nat.Sc. 489/1003 0.7507 0.7701
Comp. Sc. 155/1500 0.7287 0.7950

2, C)Prominent 1, with little 2, D) Prominent 2 with little 1 and E) Noise. The surrogate
images assigned to category A and B were assigned label +1 and —1 respectively. The
surrogate images assigned to category C and D were assigned label 0.5 and —0.5 respectively.
The images assigned to category E were discarded as noise. We then generalized the label
over entire TEST set by training SVM on the TRAIN and TEST_G. On an average only 130
images ( roughly 10% ) of the TEST images in each network were assigned to single category
by the crowd. In Table 6.2, we report the area under the curve (AUC) values for SVM and
Crowd on each of the two networks. The SVM model trained on the TRAIN set gave an AUC
of 75% and 72% respectively on the natural science and computer science editor networks.
However, the Crowd + SVM approach further lifted the AUC to 77% and 79% respectively.
This shows that the partial label information generated by the crowd offers new insight to
the SVM model to change the decision surface which inturn results in higher performance.
From the above experiments, we have demonstrated the capability of proposed framework
in mapping the complex high dimensional sparse network data into a human comprehensible
visual data that can be manually labeled by the crowd. The results suggest that learning
approach on the surrogate data with assistance from the crowd outperforms (at the very least
as good as) learning on the raw data. Throughout this work, we have used a simple majority

vote among the workers to determine the best label for each surrogate image. Sophisticated
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algorithms [37, 45, 113] can be used to combine the label information from different workers
to generate a final reliable label for the given surrogate image and the corresponding network

data point.

6.6 Conclusions

In this chapter, we propose a transformation learning technique that learns a point trans-
formation between any two data domains. We highlight the challenges associated with this
problem and analyze the data requirements for learning the point mapping. We list two ap-
plication of such transformation namely data obfuscation for performing privacy preserving
data mining and visual representation of data. In this work, we apply the proposed tech-
nique to transform sparse, high dimensional social network data into a set of digit images
that are labeled by a non domain experts. This way we perform network mining tasks like

link prediction and node classification using crowd-sourcing technology.
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Chapter 7

Future Work

In this thesis, we have presented three learning frameworks for combining data from multiple
sources to perform common network mining tasks. Firstly, we have presented a framework to
jointly perform clustering and/or classification on two related network domains. Secondly,
we have presented a framework to simultaneously perform related learning tasks namely,
community detection and link prediction. Finally, we have presented a generic framework to
leverage label information from unrelated non-network data domain to perform supervised
learning on networks. We have demonstrated the performance of all the proposed framework
on real world networks like citation network, co-authorship network and user networks. In
this chapter, we highlight the directions for future research on two novel problems that
are unique to this thesis, namely, the multi-task learning on networks and out-of-domain

transformation for label augmentation.

1. Multi-task Learning: In Chapter 5, we have presented a unique loss function for
jointly performing the link prediction and community detection tasks on the network
data. We have showed the relationship between the proposed loss function and the
well known modularity measure for community detection. We demonstrated its appli-
cability on a single network and in future, this could be extended to multiple related
networks as well. To give an example, the framework can be employed to predict the

missing citation links between relevant Wikipedia articles and at the same time identify
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communities between corresponding authors or editors. In other words, the framework
can be easily extended to perform link prediction on one network and community

detection on another network.

Another important problem in network mining is identification of influential nodes in
the network. These are minimum set of nodes that influences the diffusion of infor-
mation in a network. Clearly, each community has its own set of influential nodes [4].
Once the communities are deciphered, the search for influential nodes can be narrowed
to high degree nodes inside communities and bridge nodes between communities. Con-
versely, knowing the influential nodes in the network could expedite the process of
community detection in a network, as each community has its own popular or influ-
ential nodes [107]. Therefore it is beneficial to perform these two tasks jointly. The
proposed degree dependent loss function can be suitably altered to accomplish this

task.

. Surrogate Mapping: In Chapter 6, we have presented a novel data transformation
framework in order to augment the label information for the given network mining task.
This framework allows us to transform a large, sparse, high dimensional network data
into a image format. We sincerely hope that the proposed approach of representing
network data in a visual format for crowd labeling would be a trend setter for future
research in this field. This offers several different directions for future research as listed

below

e Extend the proposed linear framework for surrogate mapping to a non-linear
framework in order to minimize the transformation error. In addition, algorithmic

approach should be designed to automatically perform label matching (estimating
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Q matrix in equation (6.1)) between the domains.

e Currently, we use a simple majority voting to decide the final label for data points
labeled by the crowd. However, sophisticated learning algorithms like boosting
can be utilized to combine the labels generated by the individual workers in order

to enhance the overall crowd performance.

e In this thesis, we have demonstrated the usefulness of the surrogate mapping
algorithm for solving link prediction problem. It can be extended to solve multi-
task learning problems on related networks like the ones we described in Chapter

3 and 4.
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Appendix

Proof of Convergence

In this section we provide the formal proofs that show the update formula (3.5) - (3.9) mono-
tonically decrease the objective function (3.3). The proofs shown here has been reproduced

from our previous work [20] of joint community detection across multiple networks.

Definition 2 G(w,w) is an auziliary function for F(w) if following two conditions are sat-
isfied

G(w,w) > F(w), G(w,w) = F(w) (A.1)

Lemma 2 If Gi(w,w) and Go(w,w) are auxiliary functions for Fi(w) and Fy(w) respec-
tively, then G = G1 + G9 s the auxiliary function for F = Fy + Fy. Further, F is non

decreasing under the update formula
t+1

w' = arg quli)n G(w, wh) (A.2)

Proof 3 The proof for G as an auziliary function for F follows directly from definition.
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Below, we give the proof for second part.

F(wt—i—l) _ Fl(wt+l)+F2(wt+l)

IN

Gl (wt—Fl’ wt) + GQ(U)H_I, wt)

IN

Gi(w',w') + Ga(w!, w)

= Fu')

The third line follows from the fact that w'*! minimizes the auziliary function G. Thus,

G wh) < Gw!, wh) and F(w'™h) < F(wh), which completes the proof.

The Equation (3.3) involves a summation of three distance functions D(-||-), Lemma 2 sug-

gests that it is sufficient to show that minimizing the auxiliary function that bounds (3.3)

would decrease the overall objective function. First, we give the auxiliary function for the

term D(A|XUXT) and the auxiliary function for other terms can be similarly derived. The

update formula for X which minimizes D(A||XUXT) is given by

Aia[XUT]aj AgilXUlg;
ot Uiy, poxT,;)
(SN XU + XUT],;)

)

Xij = Xij(

The objective function can be written as

A
Alj log AZ] —f—zle'kUleT
Z Skl szUlez ! lJ
Now define
OT
N z(k:)Ulel< )
L= B, O

2rs X, ir UpsX sj
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Clearly, ), . ars = 1. Using Jensens inequality we get

T
XipUp1 X

I
—log 3 XU X5 < — > W / (A.6)
ki

Substituting (A.6) in (A.4) we get D(A || XUXT) <

kUlez
> {Aij log Ajj — Ajj — Ajj Z ayy log ———2

ij

+> XikUkzXﬂ (A7)
K

plugging in «ay; in above equation gives the following bound on the objective function

)Ukl x0T
Z |:AU log Ai z] Z (t)T (log XikUleg
ij Kl s Xy UrsX,
0y X( T
kl
o U >T> * ZX““U“X%}
er Xz‘r UTSXSj kl

which is the auxiliary function for F;. We denote it as G1(X, X (t)). Now taking derivative

of G with respect to X, we get,

xiu, xOT

QQZ] Z

2rs X, p?" U7"5X qu

X( )quXé?T

Z Aip Zk T Z X'(I?qu =0
drsX U7“5X( T qu ik Z

A
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We get

t t
Z p] UX( ) CIJ + Z AP[X< )U]Zq
Y X(){ J X(tT th)U)(() Jip (A3)
= .8
pq
ML sV wx T 1qj+zi: x®ul,
which is same as (A.3). Similarly, the term D(C' || XVYT) can be written as
Fy =) Cjjlog LT —Cip + ZXikalYgJT
y 2k Xik Vi Yy il
Now define
(t) )T
K VY
514:[ - () )T (AQ)
ZT‘S XZT VTSYSj

Once again ) ;; fr; = 1 and following the same procedure as above, we get the auxiliary

function for D(C' || XVYT) to be Go(X, X1) =

(t)T

x(®)
Z[C log Cj;~Cij~Cij Y Vkl

(t
ij Kl s Xjy VrsY; 0T

()V ()T
a +ZszVkl ]

T
IOg Xikvk‘lylj

zk:
er V7“5Y

— log

Taking derivative of this with respect to X, and equating it to zero, we get

M Gl Vi
X, _X(t)< =1 [XVYT] ; ) (A 10)
TP M v Ty |
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Minimizing the original objective function (3.3) with respect to X, we have

min J(X) = minFy(X)+ Fp(X)

< min G1(X, XW) 4 Go(x, x 1)) (A.11)

Taking derivative of G (X, X(t)) + Go(X, X(t)) with respect to X and equating it to zero we
get update formulae (3.5).

In all we have shown that G (X, X)) + Go(X, X)) is auxiliary function for (3.3) with
respect to variable X and (3.5) decreases this auxiliary function and hence the objective
function. Therefore, we have proved Theorem 1

It should be noted that Theorem 1 states that the update formula monotonically decreases
the objective function (3.3). However, it does not guarantee convergence to local minima
or any stationary point. We stop the algorithm when the error between two consecutive
iterations lies below a specified threshold or after certain maximum number of iterations.

The work by Finesso & Sperji [29], has shown the existence of solution for the problem
D(A || WH). First, they argue that the minima exists in the interior of the domain. Then
they show that by normalizing the A matrix (such that Zz’j A;j = 1 and adding stochastic
constraint on H () H;; = 1) results in a update formula that converges to local minima in

J

the interior of the domain (strictly positive quadrant).
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