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ABSTRACT

ROLE OF THE RATIONALS IN THE MARKOV
AND LAGRANGE SPECTRA

By

Yuan-Chwen You

For each infinite sequence of positive integers ¢ = {xi},

we let
. = l—l ] ]
[xo,xl,xz, .,xn] xo +Ix + " +...+ '
1 2 n
x ]

XpaXyseeesX 1,

[xo;x],xz,x3,. ] =1im [xo;
N>
...]‘

M(E’k) = [xk;xk+l)xk+2""] + [o;xk-]’xk-z’

k-0

M(&) = sup N(E,k)' L(E) = lim M(E,k) .
k
is known as the Markov spectrum and the

The range of M(§)

range of L(&) as the Lagrange spectrum.

is shown how to construct rationals in the

In section 1 it
difference set E2 © E2 and the sum set E2 @ Ez by purely periodic

pairs in E2 @ EZ' Non-denumerably many pairs in E2 ® E2 are found
It is also shown

for each rational so obtained in the difference set.
This shows that

that such rationals are dense in the difference set.
there are infinitely many rational values in the Lagrange spectrum.



Yuan-Chwen You

In sectionll, it is shown how to choose an interval of the
complement of the Lagrange spectrum containing uncountably many
points in the Markov spectrum. In fact a non-denumerable set P of
points in the Markov spectrum and not in the Lagrange spectrum is
found. Moreover, every point in P is a limit point of P.

In section Ill, the dimension of some level sets correspond-

ing to small values of the Lagrange spectrum are shown to be small.
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CHAPTER |

INTRODUCTION

The Markov and Lagrange spectra are defined as follows: For
x € A, the set of all sequences xo,xl,xz,...,xk,... of natural numbers,

we let

, 1], 1
[XO’XI’XZ"°"xn] X, +|;ﬂ + Eﬁ +...+ EJ

n

[xo;xl,xz,x3,...] = Alm [xo;xl,xz,...,xn] .

Let D be the set of doubly infinite sequences of positive integers

Define the shift transformation LJi = {x

{x.}

j ~o<j<x’

3

i+] }-oo< j<x?

jo= 41,42, Ve let

1) M(g,k) = [xk;xk+l’xk+2”"] + [0;x X .J,

k k-2"""

2) M(g) = sup M(g,k), L(g) = Tim M(g,k) .
k k-

The range of M(&) is known as the Markov spectrum, the range
of L(g) is known as the Lagrange spectrum. The first function arises
in the study of the maxima of binary quadratic forms [2], [8], [15],
the second in the approximation of real numbers by rationals. 0. Perron
[2] noted the connection between the two and showed that the lowest
parts of the spectra are a discrete sequence of values approaching 3
from below, and corresponding to the numbers most poorly approximable

by rationals. He also noted that the range where the x. are



restricted to | and 2 is always less than the range where threes
appear in the expansions. Hall [13] showed that the sum and dif-
ference sets of the Cantor sets formed by continued fractions allow-
ing 1,2,3,4 as partial quotients filled an interval, from which he
deduced [19] that the ranges take on all values above 5.

The work of Hall was difficult to extend to more restricted
sets of continued fractions but [18], [14] and [4] showed that the
lower ranges of the spectra are relatively sparse, in fact, the
portion below V10 is of measure zero. |t was recently established
[6] that the Lagrange spectrum is the closure of the range over
periodic sequences. The Markov spectrum was known to include that of
Lagrange and also to be closed. It was only recently established
(113, [5] that the Markov and Lagrange spectra do not coincide.
Kogonija [20] gave a sufficient condition for the two to coincide
above V10, namely that the lengths of the repeated 12 blocks in the
continued fraction expansion be bounded. The sufficient conditions
for the two to not coincide was given in [6] recently. Some of these
conditions are shown [5] to be necessary in certain intervals. Never-
theless, this theorem [5] does not insure the existence of a non-
coincidence in these intervals. Hightower [15] found countably many
gaps above 3.

In section 1 it is shown that the rationals are dense in the
difference set EZ e E2 and sum set E2 ® Ez, where Ez is the Cantor
set of continued fractions with entries 1,2. It is shown how to con-
struct rationals in the sum and difference sets by purely periodic

pairs.



A point w € E2 with continued fraction expansion
[ao;al,az,...] is sald to be purely periodic if there exists a non-

negative integer k such that a; = a for all integers 1. Two

i+k
distinct pairs in E2 ® Ez are found for each rational so obtained

in the difference set. An interleaving technique is developed showing
that the set of pairs in E2 ® E2 whose difference is such a rational
is non-denumerable. A way of finding another rational In the difference
set if one rational in the difference set is known is also given.

Many rationals in the sum set can be obtained from the difference set.
The hope here is to extend the methods of [18], [14], [4], to restrict
the dimension of the spectra in the range [3, 2/3].

In section Il, the non-coincidence of the Markov and Lagrange
spectra is considered. It is shown how to choose an interval with un-
countably many Markov points which does not contain any Lagrange
points. In fact a non-denumerable set of points in the Markov spectrum
with no limit point in the Lagrange spectrum is found.

In section Il level sets of the Lagrange spectrum are dis-

cussed. The dimension of one of those corresponding to small values

of the Lagrange spectrum are shown to be small.



an(W) =

p_y(w) =

pn(W)

CHAPTER |

RAT IONAL APPROX|IMAT ION

If wel[0,]) we define Tw = (i-- [%J if w#0

1
Tn-l

C

] n=1,2,... where
w

I, py(w) =0, q_;(w) =0, q

an(w)pn_l(w) + pn_z(W). qn(W)

[0;a,(w),a,(w),...,a (w)]

if and only if an(w) =1 or

If a and b are the words a,a ERL

define

aob the composition word a

La

n
a

172

a.I to be the inverse word

a
]

the left shift word a2a3..

n times
= aoao...oa .

0 if w=0

[x] is greatest integer < x.

(w) =1

= an(W)qn_](W) + qn_Z(W)

2 n=1,2,..

and blbz"'bm respectively, we

aa ...a.a
n n-1 201

2"'anblb2"‘bm’

.d_ a

n 1’



as= [O;al’az""’an] = [O;a],az,...] where a = a3

and we define b*w = [O;b],b

g2

n+j Jj

,bm,a](w),az(w),...],

If P ,P_,... 1is a sequence of words, we define

1’7 2°

Remark 0.0. al(w),az(w),...

fraction expansion of w.

(0-1) pn_,(W)qn(W) - p,(Wa _(w) = -n" n>

(0-2) M.' = ('T ‘)

K 0
i p._1@ p (a)
(0-3) M, = q (@ aq.(a)
t _ lpn-l
(0-4) Ma-l =M, xpn(a)

since (AB)t = BtAt

|

|

() q__ ()

P ...,Plnl,P2|,P22,...,P2n2,...1

are the partial quotients in the continued-

o

\

qn(5) J

for any matrices A and B

t
and M =M

k k



and y = La ' . Then

W

Lemma 1. Let a be the word alaz...an, X =

a,(y) =g (x)

0 (x), p__y(y) =a (x) - aq

n-1 n-1

a,(y) =p _y(x) +aq (x) and p (y) = p,(x) - an(pn_l(X) - q,.,(x))

Proof. By preceding remarks,

] e (0 a (%)
Lol al LA (v o)\i:(l)x ::(l)x)(? ;n)

x
n
x
x
x

= (-an l)(qn-l(x) pn-l(x) + anqn--l(x))
1 0/\q_(x) P,(x) + a q (x)

) (qn(x) = a,q,.1(x) p,(x) = ap _1(x) + a (q,(x) - anqn-|(X)))

qn_l(X) pn_,(x) +aaq _ (x)

Theorem 1. If x=a is purely periodic in E2 with period

-1 . .
a=aa,...a,n >2 and y=»La , then x -y is a rational and

172
X -y =[pn_l(x) - qn_z(xh/qn_l(x) = [O;a],...,an_l] - [O;an_l....,al],

_B+ /D

Proof: Let ) . By the preceding lemma,

Q=2q

ho1(x), B = P (x) = a (x) + 2a q__,(x)

D= [(p,_y(x) - q (x)) + 2anqn_,(><)]2 +ha _ (x)p (x) - a (p _,(x) -

q,00 +aa ()1 =(a (x) =p (7 + b _ (p (x).

But x =(pn_l(x) - q (x) + /5)/2qn_ (x) .

]



Hence x -y =[2(pn_|(X) - q (x)) + Zanqn_l(x)j/ZQn_](x)

=[pn_|(X) - qn_z(X)]/qn_,(X),
Corollary 1. If X = :E—E—ZE is purely periodic in E2 with period

a=aa,...a where P,Q and D are positive integers, then

1 iff a-= La.l and a

]
N

o|vo

iff a

]
—
.

! -1
2 La and an

ol

Proof: x =[pn_'(x) - qn(x) + /EJ/an_](x) for some positive integer D.

By preceding theorem,

if and only if pn_](x) - qn_z(x) =0 i.e. pn_l(x) - qn(x) = -anqn_l(x)

if and only if x = - iﬂ + /D
Y 2 2qn_le5
Corollary 2. If x = a is purely periodic in E2 with period
= [ : (- '
a alaz...an_]an, n>2, then x a' with a al""’an-lan and
a; =3 - a is purely periodic in E2 such that

x' - La' = x - La



Proof: This result follows from Theorem | since x'—L::z'.I and x-La.l

are independent of a; and a respectively.

p_+ tp _
Lemma 2. [O:al’az"'°’an+t] = aﬁ_;-?a;:T holds for all positive

©

integers n and any number t, where ag = [O;al,az,...,an], q0=l, p0=0.

2
a+ Db, a-Db _ 2(ac - D°bd)
o3 e = 73 for any numbers a,b,c,d,D.

c -Dd

Remark 1.

Lemma 3. If x € E2 and (a](x),az(x)) # (1,2) then 1 - x € EZ’

Proof: I f X = ——J—-—r— where t € E_, then

2
'+ 1

S ) N N S
1 - x=1 - i 1 >+t - ot € EZ .

1+t

Theorem 2. [If P s purely periodic in E2 with period

p = lp2p3...pn_12 and if p = Lp-', then there exist positive integers

/0

m
= - — = . + —
m and D such that P 1+ el Let x =[0;a;,3,,..-5a _» 2 ]

/D

and let y = [O;al,a 2 - ELﬂ where a, = 1 or 2 for all i<n

yeeesd@ 15
2 n-1 /o

and any positive integer n, then x + vy is rational In E2 ® Ez.

Proof: By Corollary 1, P = -1 + £:| for some positive integers m and D.
m ] £
— = T4p - i or some t € E2.
/D 1+ —



m m
So ;% € Ez and by Lemma 3, 1 - —; € E2 and hence x + y € E2 ® EZ'

By Lemma 2
m m
P, * & P-q (%) P, = P,-1(¥)
X = and vy =
9N + = qn-l(x) 9 - — n-l(x)
/o D

where P, = an_](x) + pn_z(x) and q, = an_l(x) + qn_z(x). Also by

Remark 1
m2
2(pn-qn - 5—-pn_|(x)qn_|(x))
xX+y-= 2 .
2.0 g2 (x)
UGN D n-1

Therefore x + y is rational.

Theorem 3. If P is purely periodic in E2 with period

p= 2p2p3...pn_ll and p = Lp-l, then there exist positive integers

D and m such that P = -} +

0
e Let x = [O;al,az,...,an_z,l, 2 + p]

and let y = [O;al,az,...,an_z,l, I-p] for any positive integer n
where a, = lor2VYi<n, then x + y is rational in E2 @ E2'

/D .
Proof: By Corollary 1, P = -} + o for some positive integers D and

| + — where P = L for some

m. Clearly x € E2 and — = 1+s 2+s

1 2+s - ]
1-p  I+s



s € E2 so y = [O;a],...,an_z,z,l + s] € E2.
X = [O;a],az,...,an_z,l, 1 + (%-+ L/‘E)], y = [O;al,az,...,an_z,l,l + (%-- Z:%‘)].
By Lemma 2
o in” G+ ﬁg Pp-y (¥) , = * G- !%5pn-|(X)
a4 * (% * —J%)qr‘_](x) , 9% * (% i} Lr?:)qn-l(x)

where p =p (x) +p (x) =p (y) +p () ,

n-1

0
]
0

() =a _,(x) =q _,(y) +q _,(y)

n-1

—
-

By Remark

2[(pn + %pn_l(x))(qn + iqn_l(x)) - 25 pn-l(x)qn-l(x)]
m

X+y-= 2

n-1

(a, + ifqn_,(X))2 - EE-Q (x)
m

Therefore x + y 1is rational in E2 @ Ez.

Theorem 4. If vy,y' € EZ and x 1is purely periodic in EZ with

period a = aja,-..a, and if y-y'=x- La-l then
-I -~ [ -l
a*y-Lla *y'=x-La .
— p__(x) -q _,(x)
Proof: By Theorem 1, x - La . ool 3 (x? 2 =y-y' ... (A)



Poy(X)y +p_(x)
a * =
Y 9,1 (x)y +q (x) *

-] "I
-1 . p _](La )'Y. + pn(La )

¢ _ N

0 La )yt + g (La)

P-

(x) - (x)
q _Z(X)(Y _ .n-l -2\ %

Y +p (x)-a_(p _;(x)-q__,(x))

Pp-q(¥)=a__,(x)
9,1 () y - T ® ) +p _(x) +aq _ (x)

o (X)y +p (x) - 0———-(—y an)(pn_l(X) = a,_,(x)

A1)y + a9 ,(x) +aq | (x)

q_(x)
a_,(x)y +p_(x) - GﬁfTT;T(pn-l(x) - a__,(x)
a1 (x)y + q_(x) , by Lemmas 1, 2.

ot
w

- La @ * Lb

o1

q_(x) .
(P () = a () (y + En—l(;y)/tqn_l(x)y +q (x)]
n-

i Pn_](x) - q,_,(x) LT
.. (x)
Corollary 3. If x and y are purely periodic in E2
with periods a = aja,...a, and b = blbz"‘bm respectively and

x - La y - Lb-l and if PysPyscesPoseee is a sequence of words

I
o
o
S
o

]

with p; = 1,2,... then



1,

Proof: By the preceding theorem, P, % a3 - Lp; t la = x - La-l. Again,

B e
n-1 Lpn La x - La .

o

by the preceding theorem, Pn-1 © pn % 3 - Lp

Continuing this procedure, we have P * Py *,0.0% P, % a - Lp;] * Lp;] XL

. -1 _ -1
Lpn * La = x La

i.e. (p] ©p,o0...0 pn) * 3 -

| 1 1

(LP;l o Lp; 0...0 Lp;l) *Lla  =x-Lla '. If we go through the whole

procedure one more time, we get

2, - -1 -1 -2, i -
(pl ©p,o0...0 pn) a (Lpl o Lp2 0...0 Lpn ) La x - La .

Using the same procedure, we get

n ., - -1 -1 =1,n - -
3 - % = -
(pl o p, 0...0 pn) * a (Lp| olp, o...0lp ) La x - La

Since P, oP,0...0p = lim (p] ©p,0...00p

n-e

- - - . - - -] . -
Lp]I o Lpzl 0...0 Lpn] = lim (Lpll o LpzI o...0 Lp_ P+ La ,

n>®

Py = Tim p] *

] n->o

p2 I pn % a ,

W= 8




13

and I Lp;' lim Lp;l * Lp2 *,..% Lpn

i=1 n->o

Hence Ppop,o0...0p - Lp;l o} Lp; 0...0 Lpnl = x - La

and

n=28
©
!
=
-
O
(]
x
'
-
[\
'

Theorem 5. If x and y satisfy the hypothesis of the preceding corollary

and a # La-‘ then there exists a non-denumerable set of pairs (,B)

in E2 ® E2 such that g = g8 = x - La-l.

Proof: Without loss of generality, we may assume a # bk for some k.

If we (0,1) has the binary expansion w= I w, .2 i, we let

1 p(wi) where p(0) = a, p(1) = b

@ = plw)) * plw,) * p(w3) *L.= i=l

-1 T
L(p(wi)) . Then a -8 = x La .

= 8

and let Bw = |

If w, w' € (0,1) with w# w' i.e. there exists a first integer

2 such that wﬁ # wk. Then

(p(wz))k # (p(wi))k and thus @, # o

Hence there exists a non-denumerable set of pairs (x,8) in Ez ® E, with

a-B8=x- La_I



14

Notation: Let Q be the set of all rationals obtained from Theorem 1.

Corollary 4. If q € Q, then there exists a non-denumerable set of pairs
(@,8) in Ez 952 such that a - B8 = q.

Proof: Immediate result from Corollary 2 and Theorem 5.

Theorem 6. If x and y are purely periodic in E2 with periods

a-= al...an_ll and b = a...a 2 respectively and k=1 or 2 then

a1 (x) - kq _,(x) - Pn_z(x).
Py (X) + ka__;(x)

=kob-L(kob) =

koa-L(koa)

Proof: By Theorem 1,

-
koa-L(ko a) ! - Kob-L(k ob)

p (ko a) i q._ (ko a)

qn(k o a) qn(k o a)

1 P (X) # q_p(x)
e ™l 0 g )
q X
n-1
q,.(x) Pp(x) + ka _,(x)

Pa-t 09 % kap B0 o T+ ka ()

Q. () = ka _,(x) = p _,(x)
P (X) + ka _,(x) |
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Theorem 7. EZ e EZ = Q.

Proof: If x € E2 o EZ’ then there exist «o,B € Ez such that

If € > 0, there exist positive integers n and m such that

Ia'[0,al(a),az(a),---.an(a)ll < %- and |B-[0:a](8).aZ(B),---,am(B)]l < %

Let w be the word a](a)az(a)...an(a)am(B)am_l(B)...al(B)l

KX - 2
P

let o =w and B =Lw '. Then o -8 €Q and
la =8 = (a" - B“)l i_la - u"| + |8 - B"I < §'+ % =€
which implies the statement of the theorem.

Lemma 4. If x,y € E2 with rational x - y and either

(al(x),az(x)) # (1,2) or (al(y),az(y)) # (1,2) then either
or x -y + 1 1is rational in E2 ® Ez.

Proof:

y - x + 1

I f (a](x),az(x)) # (1,2) then by Lemma 3, 1 - x € Ez. Thus

y - x+ 1 1is a rational in Ez ® EZ' Similarly, (a](y),az(y)) # (1,2)

implies x -y + 1 is a rational in Ez ® EZ'



Examples

Example 1. Let a and b be the words 121 and 122 respectively and let

ot 0TS _ 1 _2x+ 3
x=a=7[0:1,2,1], y=b=10[00;1,2,2]. Then x = - i TER'Y
]
2 + +x
3x2 +2x -3 =0, so x = :l—igfzg-
= ! La !+ 2 72 =
La = = , 3La + 4La  -2=0 so
2 + L .
1+ _ 3la 5
] + La-I
= - - - p,(x) - q,(x)
La ! = _Z_I_ﬁzgi. Thus x - La ! is the rational l-= 2 ! =
3 3 qz(X)
2= 1 i} l 2y 5,02 s - .5+ /85
3 Yy |+ ' -3y+7,3y+5Y 5_0950 Yy = 6 .
|
2 + 2+y
4 | TS =72 = 7 _ -7+ V85
Lb = ] = , 3Lb + 7Lb -3=0, so Lb = ———ir———-.
2 + Lb
—T | pz(y) -aq ) 5,y
Thus y - Lb is also equal to = = = Moreover,
3 qz(y) 3

P, (x) = p,y(y) =2, q,(x) = a,(y) = 3. By Theorem 6,



(os1,1,2,11 - [032,1,1,11]

We observe that there are

= [0;1,1,2,2] - [0;2,1,1,2]

3-1-1
2+ 3

1.
5

two distinct pairs (o,B) with o # B for

both a - B = %- and a - B = %n By Theorem 5, there is a non-denumer-
able set of pairs (a,B) for both o - B = %- and o - B = %, In
fact, by Lemma 4, there is a non-denumerable set of pairs (a,B) for

L 6

+ = — + = — i
both o + B 3 and o + B 5 in Ez @ Ez.
Example 2. Let p be the word 1 2 and p = 5. Then p = Lp- and
—_ | 1 .
p=1[0,1,2] = -1+ V3. Let x = — and y = l Since
2+7§ 2"7;
.1 -0y 1,T,2], x€E,. and
/§ ]+p ’ | IR ] ’ 2
y = b - L— - - L = [031,2,2,T)
|+]‘7§ ]4‘73—— ]+l+l I+|+l
3-1 V3-1 P

4 12 . . .

Thus x +y =——= - is a rational in E @ E,.
1 11 2 2
4-—
3
— -1

Example 3. Let p' be theword 2 1 and P' = p'. Then p' = Lp'
and P = [0;2,1] = %} . let x=1[0;1,2+P'] and y = [0;1,1-P']

2



Then x = ] i = g : 52
1 + /31
2+
2
Clearly x € E2'
1 1+p 1
- | J— - = =
b= ' 2+p  2¢p ]
1+P
y = 1 _ 1 _
1 - T
1 + = 1 + 1 + T:;

x+y="022"=""=_%

Thus there is another pair

18

(x,y)

with

- 1 _3-V3
vy = "5 -3
1 +
N
2
p =[0;1,2]1 so
] EAEZ.
_12
x +y =3 in EZ ® EZ'



CHAPTER 111

NON-COINCIDENCE OF THE MARKOV AND LAGRANGE SPECTRA

For each x = {xk} € A, we define M(x,k) =[ ]+

XXt

[05%, _ysXy_preensX)s%g]- M(x) = s:p M(x,k) and L(x) = le M(x,k).
The ranges of M and L are known as the Markov spectrum and
the Lagrange spectrum respectively. It is known that the Markov spectrum

is closed and contains the Lagrange spectrum.

For each x = {xk} e A, we define

I(x,n) = {y = {y} eA:y =x,k=1,2,...,n}

tet e (n) =L-(1 + VZ) 2" and e, (n) = K+ (

We then state the following two lemmas without proof.
Lemma 1. If y e 1(x,n) n [I(x,n+1)1%, then eg(n) < |M(x,0) - M(y,0)]| < eu(n)

Remark 1. |M(x,0) - M(y,0)| < 1077 if n=19

and n

[M(x,0) - M(y,0)| < 10 if n=29,

Lemma 2. For ¢&,n € E2

[O;XI’XZ"'.’XZD"'l’Z + E] ?_ [o;x]v---ax2n+lrl + n]

[0;x].x2,...,x2n,l + n] z_[O;x],...,xzn,Z + £] .
19
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Let & = {£,} ¢ D be a sequence such that £, = £; 4, i > -b;

'm
(%]
]
LA
|
o
|
Y
'
~
"

2, £ g=liEg=t p=b b2 753"

Eg S 6§27 = 1 b g =2, E g =k 0= 15 & =&, 1 <21,

Let a be the word 112221 2.

M(£,0) = a+ 2+ (0s1,2,2,2,1,1,2,1,2,2,2,2,2,2,2,2,1,2,1,1] ~ 3.2930442654

Let a = M(£,0). Clearly, M(g,k) < M(g,0) if £, = 1, (€k_],5k) =
(2,2) or (gk’€k+l) = (2,2). Without loss of generality, due to the

symmetry £-|2+i = E-l3-i’ i =0,1,2,... we may assume that M(g)

can only occur at Ek for k=7n, n=-1,0,1,2,... . Since

(L-7€)i =&, i > -b, (L‘7£;)__S = 2 and 5_5 = 1 we have, by Lemma 2,
ML 7e,0) <a i.e.
M(E,’?) < a.

Since (L7"g)i =& i> -1,

]

n -
£y, = 2 and (L ey, = 1

n=1,2,... we have, by Lemma 2
M(E,7n) < o n = 1,2,...

Hence M(£) = a.

We define words w' =W LW, i =1,2,..., as follows:
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Wh =2221211221
Vs =122212112222
6

wW=2122212112221
wW=11222121122211
W=111222121122212
W=2112221211222122
Wo0-2211222121122212

W =11211222121122212112

W2-22212112221211222121121
wd=122
w1200

wW2=22121121
Wl -122121122

w=22221211222

Lemma 3. |If a sequence x = {xk} contains the word W' with wL = xj
for some i < 12, where j > 14 for x e A; and k=3 if i=1;
k=i+1 if i=2,3,450r6; k=1 if i=7,80r12 and k=1i -1

if i=29,100r 11, then, M(x,j) > a + 1077,
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Proof: For i =1, for example, we have
M(x,y) > 2 + 2[0;1,2,2,1] = 3.4 > o + 10-7 .

For the remaining 1i's, the inequality is obtained analogously.

Lemma 4. |If a sequence x = {xk} contains the word wi with wL = xj

for some 1, 13 < i <17, where j >8 for xe A and k=1 - 11,

then M(x,j) < a - 1074,

Proof: For 1 =13, for example, we have

M(x,j) <2 +7[0;1,2,1] +[0!2,2,1] =2 + % + %-< 3.18 < a - IO-A .
For remaining 1i's, the inequality is obtained analogously.

I-I
Remark 2. Lemma 3 and Lemma 4 are also true if x contains W in a

similar way.
Lemma 5. If x = {xk} is a sequence such that M(x,j) € (a - 10-7, a + 10-7)

for some j > 14, then for any integer n > 14;

D xj,, =1 and Mx,2) <o+ 107 for j-10<2<j+n implies
xj+l = gz, L =0,1,2,...,n.

2) xj+2 =2 and M(x,2) <a+ 1077 for max(0,j-n) < & < j + 10 implies
X, ., =&, 2=20,1,2,...,min(n,j) .

L
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Proof: The proof is by contradiction.

Clearly, x; = 2 and (xj-l’xj’xj+l) # (2,2,2).

-1

wl} 13

X = X =1 otherwise x or W

j-1 T X+ =154 T

By Lemma 4, M(x,j) < x-lO_h. This is a contradiction. For the remaining
2's, contradictions are obtained analogously according to the following
table.

Case 1. xj =1

= 52 for _10 < &2 < n, otherwise x contains W as

described in Lemma 3 or Lemma &4 which leads to a contradiction.

2 2-2 3-3 4L-4 5-5 6_6 7-7 8.8 910-9-10111213 14
X 1 2 2 22 221 11 22111222221 2

i 4 2 31516 417 5 6 7 8 910 1 211 312 4 5 7

If n > 18, by repeating the last seven columns, we have

X = 2 =18,19,...,n.

[TV TY

Case 2. xj+2 = 2.
We repeat the same argument as above, after replacing %2 by -2,

and interchanging column 1 and column 2 in the table. The rest of

the columns remain unchanged, i.e.
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Then xj-l = £, 2=0,1,2,...,min(n,j).

Let p = {pi} be a doubly infinite sequence such that o; = Ei’ i> -,

oy = p_13 =1, oy = 2, Py = i < -15. Then

O“_Z'

M(p,0) = £2,1,1,2,2,2,11 + [0;1,2,2,2,1,1,2,1,2,2,2,1,1,2] .

=11

Let € = a - M(p,0). Then 10 < g < 10-7 .

Lemma 6. If x = {xk} is a sequence with x. , =¢&  for some j,

j+e L

£ =0,1,2,... then M(x,n) < M(p,0) for all n > j + 14,
Proof: Clearly M(x,n) < M(p,0) if x = 1 or (xn_',xn) = (2,2) or

2,3,...

(xn’xn+l) = (2,2). It remains to prove M(x,j + 7i) < M(p,0), i

M(x,j + 7i) = a+ 2+ [021,2,2,2,1,1,2,1,2,2,2,1,1,2,...7 , i = 2,3,...

W) =6, k> -16, (Lj+7i")-l7 TEoend ey s by

Since K

Lemma 2, we have M(x,j + 7i) < M(p,0) for all i > 2. Hence
M(x,n) < M(p,0) for all n > j + 14,

Theorem 1. The interval (a - €, a + €) does not contain a point of the

Lagrange spectrum.
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Proof: Suppose there is a sequence n = {ni} such that L(n) € (a-e,a+e).
Then there exists an integer k > 14 such that M(n,i) < a + ¢ for all
i > k, and there exist infinitely many integers j > k such that

M(n,j) € (0 = €, a + €). By Lemma 1, there exists a smallest "o such

that eu(no) 5_52(16). Let j, be the smallest one of such j's greater

than k + n,. Let

0 be the smallest one of such j's greater than

y)

jl + 21. By Lemma 5, either nj +q = EQ’ L =0,1,2,... which implies,
2

by Lemma 6, M(n,n) < M(p,0) = a - € for all n > jz + 14 or

njz’l = gz, L = 0,],2,...,J2-k, which implies

nj]-l =gy, = 0,1,2,...,n, and M(n,J]) =2+ s+t where
=[0;1,1,2,2,2,1,2,1,1,2,2,2,1,2,...,n, seresNn] = ; .

s =[0 nJl—no o [50’51’52’ ]

~
]

[0;1,2,2,2,1,1,2,1,2,2,2,1,1,2,1,2,2,2,1,1,2,...,n. ,...] = [t;t,,t,,...]
iy o't1vt2

Let v =1[031,2,2,2,1,1,2,1,2,2,2,1,1,2,1,2] = [vyiv ,vy,...]

7€ 1(v,16) NCI(v ,17)1° and s € 1(c, ng)

where T = {tk}, S = {Sk} and V = {vk} .
By Lemma 1, v - t > 61(]6)
s - ac< eu(no) :_52(16) <y=-1t and
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Since M(p,0) =2 +a+ v,
M(n’j') < M(0,0) = Qa - €

Since both cases lead to acontradiction,(a - €, a + €) does not contain

a point of the Lagrange spectrum.

8
>
x

For each X € [0,1] with its binary expansion A =
k

n o™
N
x

we define gx = {g?} to be a doubly infinite sequence as follows:

N W W
gi = gi 16 < i, 5_17 5-18 2 and

A _ LA -
S(zeak) T B-(1842k) T Mk
Let P = {M(&A)IA is an irrational number in [0,1]}.
Theorem 2. P is an uncountable set consisting of points of the Markov

spectrum which are not in the Lagrange spectrum. Every point of P
is a limit point of P.

Proof: For gi with k < -8, 2's occur in paris, so M(gx) can
only occur at ga =2 with k > -8. By an argument exactly the same

as that leading to M(£) = M(£,0), we have M(&A) = M(gA,O). Since

€"). = CI i> -1, 55'2 =2 and = 1 we have by Lemma 2,

i P2

M(gA,O) > M(p,0). Thus M(gx) >a - €. Since (E,)‘)i = £, i > -16,
A

5_17 =

2 and 5_17 = 1 by Lemma 2, we have M(EA,O) < a and hence
a - g < M(gx) < a. By Theorem 1, M(gx) is not in the Lagrange spectrum.

Hence P does not contain a point of the Lagrange spectrum. Let A(k) =
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k A, o J=)
I o— 4+ 1 _—iétl , J = 1,2,... then (k) is irrational in
i=1 2" j=1 2

[0,1] since X is irrational in [0,1], so

m(er (K

) €EP and
(et () = weklo) and A(K) > A as ko

M(gx) = lim M(gk(k)) since M(gA,O) = 1lim M(gk(k),O).

ko koo
- Also gx(k) # gA for all k. Thus M(gx,o) # M(gx(k),O) since
51 = g?(k) for all i >0 i.e. M(g)) # M(gx(k)) for all

k=1,2,..
]

If x# 2" then M(¢2,0) # M(g* ,0) since g? = 5? for

t
all i >0 i.e. M(¢*) # M(c* ). Hence every point of P is a limit

point of P and P is nondenumerable.



CHAPTER IV

FRACTIONAL DIMENSION OF A LEVEL SET

This section provides an estimate of the Hausdorff-Besicovitch dimen-

<n/22|+5/§+ls}
- 10 i

sion of the level set H = {w € E2 NCLo,1) : Lt(w)
The Hausdorff-Besicovitchdimension of a set S, which we will write
dim(S), is defined as follows: let (Ii) be a covering of S by in-

tervals, and let IIil be the length of 1I.; then & = I.u.b.|1i| is

called the norm of the covering;

r(a,s) = lim g.1.b. z]1.|%,
-0 '

where the greatest lower bound is taken over all coverings of norm 3§,
is the a-dimensional Hausdorff measure of S. dim(S) is the number
such that, for every positive ¢,

r(dim(s) - €, S) =
and

r(dim(s) +e, S) =0

28
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Notation
£ =10[032,2,1,1,...,1,1,...]

P, = pn(g), q, = a,(€)

p. (a)
. . i .
If a is the word a) a,...a , we define a?rsy = [O,a],az,...,ai].

i=1,2,...,n and I, = {w€[0,1) : al(w) = a],...,an(w) = an}.

Let En be the word 22 11 ... 1 1 of length 2n.

o
|

n o IIgn o 22"
k= IIg of, o 22! .
’ n ~k
Remark: p2n+l(£n 02) = 2p2n + Pon-1 >

q2n+l(€n 02) = 2q2n + q2n-l’

q2n+2(€n°22) = 2(ZQZn * q2n-l) * q2n = Sq2n * 2q2n-l’

p2n+2(€n°22) Sp2n + 2p2n-l’
P2 (n+k)+1 En0802) = (2P + Py )Py ) + (205 + ay ()p,
9 (n+k)+1 (808 02) = (205, + 0, ay  + (20 + ayy ),

Py (n+k)+2 (608 022) = (5P, + 2P, )Py + (5ay + 24y, \)p,
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9 (nekt1) (En08,022) = (5p,y + 2p, \)ay | + (54, + 23, )4, ,

L = ]
n ]
(qun + 2q2n_])(7q2n *+ 3q, )

JLn,k =

]
[(5p2k+2p2k_,)q2n_|+(5q2k +2q2k_|)q2n][(7p2k+3p2k_,5q2n_,+(7q2k+3q2k_,)QZnJ'

Lemma 1. p_ = IO +7%;)‘n-l + (1 - 7%)6n-l] and q, = (v + _]ls_;))\n-l +

Ly n-1 1 + /5 1 - V5 2
- = = = + .
(1 7§)6 where A > and 6 7 are roots of x x + 1
Proof: Let P, = Axn-l + Ben-I
p, =1=A+8B, p,=2=A\+Bo = AtB (A-B)ii
1 > P2 2 2’

+

2=3%+ (A A-I)l/—zs—,3+/5=2/5A,
- 3 _ __3
so A= 3(1 +75—) and B = (1 7§)

Hence p_ =4[ (1 + 7%9An-‘ + (1 - V%Jen_]].

Similarly, q_ = (1 + Vg)kn-] + (1 - 7151)6n-]

Lemma 2. If 1= % (l_n_,_k_)a as n »> o then .2064 < o < .20641.
k=2 n
o} n-1 n-1
Proof: -=_ =A)‘_2+Ben_2+)\ as n->o since 8 >0 as n >
n-1  A\""“ + Be
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q
= 3 _ _ 3 .. n
where A = 3(1 + 7§) and B = (1 '7§). Similarly, - - A as n
From preceding remark,
2 a2 (5x + 2)(7x + 3)
n,k 5 2n-1
L 2 +
n Q- [A (50,420, | )#5py, +2p), J0A(Tay, +3a), )47y, +3Py, ]
as n > o,
2
_ n,k
Let Gk =1 Then

Srr | OM+ 2 {ay A+ ey ) (T4 + 3 (a2 + by ) 1

L

k(51 + 20 gy 2 by ) (70 + 3047 (g 2+ Byyy) A

(5A + 2) (72 +3) = 3502 + 290 + 6 = 35(A + 1) + 29% + 6 = 64A + 4
p3=3’ pl‘=5’ 95=8»P6=|3: P7=ZI,P8=34,

a3 = 7, 9 = 12, a5 = 19, q¢ = 31, q; = 50, qg = 81.

as

>

Since the terms have nearly constant ratio, we approximate the tails of

the series by the geometric series

mo
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o6 2 (6Ua + H1)*(L(60 + 14)x + 25 + 61 [ (84 + 21)x + 35 + 91 "+
k=2

[ (155+38)A+65+161 [ (217+57)A+91+241 %+

[ (405+100) A+170+421 %[ (567+150)A+238+63]

| - A-ha

}

= (6UA+41)%{[ (752+31) (105x+44) 17%+ [ (1932+81) (274A+115)17% +

a

[ (505A+212) (717x+301)1

| - A'ha

= (6La+41)%[ (142812+9134) "%4(972712+62197) % +

(66609hx+h25897)'“]
- '

™
O
\%

> 1.000061078 when «a .2064

’

.20641

™
O
A

< 0.9999675709 when «a

Hence .2064 < o < .20641.

Let e be the empty word and let e, be the word 1 1 ... 1

0

of length 2n. We define
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T = {e * En

>2, k=1,2,...} U {1}
"0 k=1 "k

>0 and n

: "o k

The following theorem follows immediately from a theorem in Schweiger 24].

2n kya
(I—J—O as n >« then dimT = a.
k=2 n

Theorem 1. If | =

N ™8

Corollary 1. .2064 < dim T < .20641.

Proof: This is an immediate result of the preceding theorem and Lemma 2.
Lemma 3. T c H,

Proof: Let t = 221 +]g/§ * 4 =[2;2,1,1] + [0;1]. Let w be an element

of T.

Case 1. There are infinitely many pairs (ai(w),ai+l(w)) = (2,2).
Clearly, M(w,k) < t when ak(w) =1. |If ak(w) = 2 then either
ak_l(w) =2 or ak+l(w) = 2. Without loss of generality, we may assume

ak+l(w) = 2. Since there exists j < k such that aj(w) =2 and k - j
is even, [O;ak_l(w),ak_z(w),...,a](w)] < [0,1]
ak+2(w) = ak+3(w) =1, since wé€T. |If ak+h(w) = 1 then

[ak(w);a (w),...] <[2;2,1,1]. Otherwise

k+1

(ak+h(w),ak+5(w),ak+6(w),ak+7(w)) = (2,2,1,1). Continuing this argument,
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unless [ak(w);ak+l(w),...] = [232,1,1], there must exist a first i such

that ak+hi(w) = 1, This implies [ak(w);a (w),...1 <[232,1,1]. Thus

k+1

M(w,k) <t and L(w) <t i.e. wE€ H.

Case 2. There exists a positive interger k such that ai(w) = |
for all i > k. Then M(w,i) <t for all i > k. Thus

L(w) <t and w € H. Hence T < H.

Theorem 2. dim H > .2064.

Proof: By preceding lemma, dimH > dim T. By Lemma 3, dim H > .2064.

Alternative method of computing dim H.

We approximate the covering of T which is found to be a gen-

eralized Cantor set, l.e. the set constructed by removing the middle
interval. It is clear that max T = [O;T]. Let b=max T. Let s =
min T =1[0;2,2,1,1]. That is Tc [s,b]. Since

2} 2211 * b

max {w € T: al(w) = az(w)

and

|
—_—
—

-
]

min {w € T: a](w) = az(w) 1} =

we obtain our first stage covering I of T by removing
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(2211 = b, 11 * s) from [(s,b] i.e. ry = [s, 2211 * b]J U [11s,b] o T.

Similarly, we obtain our second stage covering of T.

r, = [s,(2211)%%b] U [(2211)%(11)%s,2211%b] U [11%s, (11)*(2211)#b] U

[(11)2 % s,b] > T.

Continuing this process, we obtain the nth stage covering rn of T for
each positive integer n.
Let m be the length of the middle interval we removed, let 2

be the length of the left hand interval and let r be the length of the

. . . . L r .
—_— —_— remain
I"lght hand interval. Since the ratios ) " and ) "

approximately the same each time we remove a middle interval from the re-
maining intervals, we denote the former by p and the latter by q. We

can easily see, by induction, that at nth stage we have (?) intervals

of size p" Jq?(b-s) in [s,b]. Hence T(a,T) will be approximated by

n .
Fn(a,T) = I (?)[pn-JqJ(b-s)]a = (b-s)a(pa + qa)n.
Jj=0

So the a which makes Fn(a,T) = 1, will be the dimension of T. Hence
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log(pa + qa) _-a log(b-s)
a

pOl +q =1 as n > o«

A short computation shows:

.004481486542 and

.2064 < o < .20644 since p

q = .1463587922

Again we proved dim H > .2064.
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