

ROLE OF THE RATIONALS IN THE MARKOV AND LAGRANGE SPECTRA

Dissertation for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
YUAN - CHWEN YOU
1976

This is to certify that the

thesis entitled

ROLE OF THE RATIONALS IN THE MARKOV AND LAGRANGE SPECTRA

presented by

Yuan-Chwen You

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Mathematics

Major professor

Date August 3, 1976

O-7639

. , . . .

ABSTRACT

ROLE OF THE RATIONALS IN THE MARKOV AND LAGRANGE SPECTRA

By

Yuan-Chwen You

For each infinite sequence of positive integers $\xi = \{x_i\}$, we let

$$[x_{0}; x_{1}, x_{2}, \dots, x_{n}] = x_{0} + \frac{1}{|x_{1}|} + \frac{1}{|x_{2}|} + \dots + \frac{1}{|x_{n}|},$$

$$[x_{0}; x_{1}, x_{2}, x_{3}, \dots] = \lim_{n \to \infty} [x_{0}; x_{1}, x_{2}, \dots, x_{n}],$$

$$M(\xi, k) = [x_{k}; x_{k+1}, x_{k+2}, \dots] + [0; x_{k-1}, x_{k-2}, \dots],$$

$$M(\xi) = \sup_{k} M(\xi, k), L(\xi) = \overline{\lim_{k \to \infty}} M(\xi, k).$$

The range of $M(\xi)$ is known as the Markov spectrum and the range of $L(\xi)$ as the Lagrange spectrum.

In section 1 it is shown how to construct rationals in the difference set $E_2 \oplus E_2$ and the sum set $E_2 \oplus E_2$ by purely periodic pairs in $E_2 \otimes E_2$. Non-denumerably many pairs in $E_2 \otimes E_2$ are found for each rational so obtained in the difference set. It is also shown that such rationals are dense in the difference set. This shows that there are infinitely many rational values in the Lagrange spectrum.

In section II, it is shown how to choose an interval of the complement of the Lagrange spectrum containing uncountably many points in the Markov spectrum. In fact a non-denumerable set P of points in the Markov spectrum and not in the Lagrange spectrum is found. Moreover, every point in P is a limit point of P.

In section III, the dimension of some level sets corresponding to small values of the Lagrange spectrum are shown to be small.

ROLE OF THE RATIONALS IN THE MARKOV AND LAGRANGE SPECTRA

Ву

Yuan-Chwen You

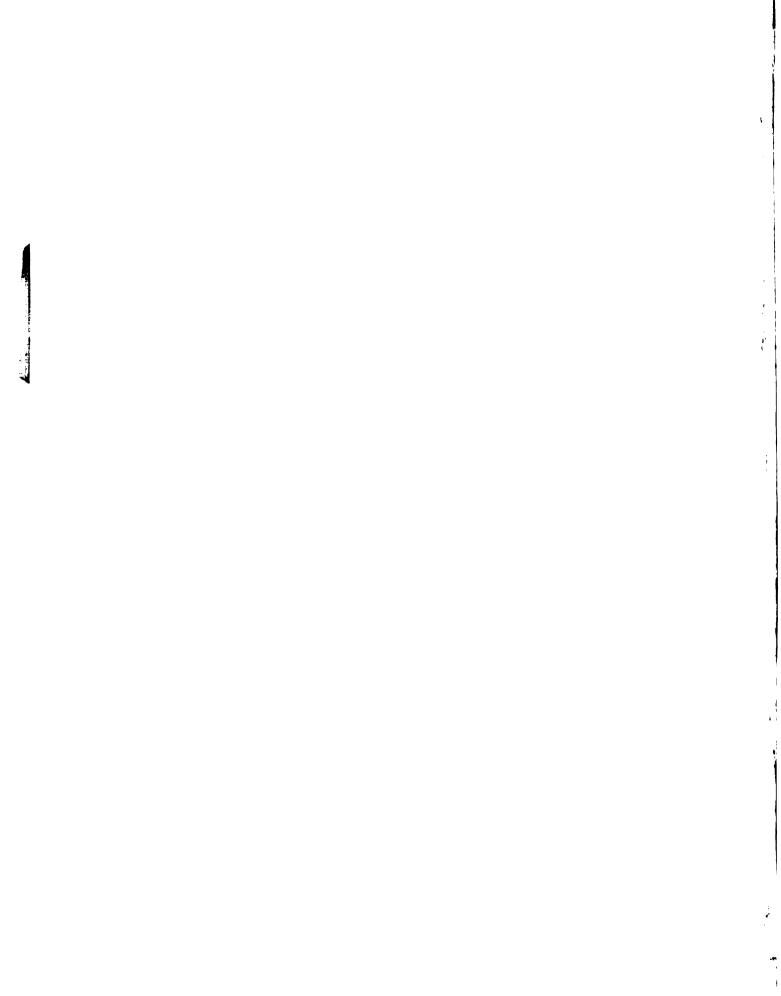
A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1976



Copyright By
YUAN-CHWEN YOU
1976

ACKNOWLEDGEMENTS

I would like to thank my parents for their patience and support during the completion of this work.

I am deeply grateful to Professor John Kinney for his guidance and invaluable assistance in the writing of this thesis. I would also like to thank the Department of Mathematics at Michigan State University for their financial support for my graduate studies.

TABLE OF CONTENTS

Chapter		Page
1.	INTRODUCTION	1
11.	RATIONAL APPROXIMATION	4
111.	NON-COINCIDENCE OF MARKOV AND LAGRANGE SPECTRUM	19
17.	FRACTIONAL DIMENSION OF LEVEL SETS	28
BIBLIOGRA	APHY	37

CHAPTER I

INTRODUCTION

The Markov and Lagrange spectra are defined as follows: For $x \in A$, the set of all sequences $x_0, x_1, x_2, \ldots, x_k, \ldots$ of natural numbers, we let

$$[x_{0}; x_{1}, x_{2}, \dots, x_{n}] = x_{0} + \frac{1}{|x_{1}|} + \frac{1}{|x_{2}|} + \dots + \frac{1}{|x_{n}|}$$
$$[x_{0}; x_{1}, x_{2}, x_{3}, \dots] = \lim_{n \to \infty} [x_{0}; x_{1}, x_{2}, \dots, x_{n}].$$

Let D be the set of doubly infinite sequences of positive integers $\xi = \{x_i\}_{-\infty < i < \infty}.$ Define the shift transformation $L^j \xi = \{x_{i+j}\}_{-\infty < i < \infty},$ $j = \pm 1, \pm 2, \ldots$ We let

1)
$$M(\xi,k) = [x_k; x_{k+1}, x_{k+2}, ...] + [0; x_{k-1}, x_{k-2}, ...],$$

2)
$$M(\xi) = \sup_{k} M(\xi,k), L(\xi) = \overline{\lim_{k \to \infty}} M(\xi,k)$$
.

The range of $M(\xi)$ is known as the Markov spectrum, the range of $L(\xi)$ is known as the Lagrange spectrum. The first function arises in the study of the maxima of binary quadratic forms [2], [8], [15], the second in the approximation of real numbers by rationals. O. Perron [2] noted the connection between the two and showed that the lowest parts of the spectra are a discrete sequence of values approaching 3 from below, and corresponding to the numbers most poorly approximable by rationals. He also noted that the range where the x_i are

restricted to 1 and 2 is always less than the range where threes appear in the expansions. Hall [13] showed that the sum and difference sets of the Cantor sets formed by continued fractions allowing 1,2,3,4 as partial quotients filled an interval, from which he deduced [19] that the ranges take on all values above 5.

The work of Hall was difficult to extend to more restricted sets of continued fractions but [18], [14] and [4] showed that the lower ranges of the spectra are relatively sparse, in fact, the portion below $\sqrt{10}$ is of measure zero. It was recently established [6] that the Lagrange spectrum is the closure of the range over periodic sequences. The Markov spectrum was known to include that of Lagrange and also to be closed. It was only recently established [11], [5] that the Markov and Lagrange spectra do not coincide. Kogonija [20] gave a sufficient condition for the two to coincide above $\sqrt{10}$, namely that the lengths of the repeated 12 blocks in the continued fraction expansion be bounded. The sufficient conditions for the two to not coincide was given in [6] recently. Some of these conditions are shown [5] to be necessary in certain intervals. Nevertheless, this theorem [5] does not insure the existence of a noncoincidence in these intervals. Hightower [15] found countably many gaps above 3.

In section 1 it is shown that the rationals are dense in the difference set $E_2 \oplus E_2$ and sum set $E_2 \oplus E_2$, where E_2 is the Cantor set of continued fractions with entries 1,2. It is shown how to construct rationals in the sum and difference sets by purely periodic pairs.

A point $w \in E_2$ with continued fraction expansion $[a_0;a_1,a_2,\ldots]$ is said to be purely periodic if there exists a nonnegative integer k such that $a_i=a_{i+k}$ for all integers i. Two distinct pairs in $E_2 \otimes E_2$ are found for each rational so obtained in the difference set. An interleaving technique is developed showing that the set of pairs in $E_2 \otimes E_2$ whose difference is such a rational is non-denumerable. A way of finding another rational in the difference set if one rational in the difference set is known is also given. Many rationals in the sum set can be obtained from the difference set. The hope here is to extend the methods of [18], [14], [4], to restrict the dimension of the spectra in the range $[3, 2\sqrt{3}]$.

In section II, the non-coincidence of the Markov and Lagrange spectra is considered. It is shown how to choose an interval with uncountably many Markov points which does not contain any Lagrange points. In fact a non-denumerable set of points in the Markov spectrum with no limit point in the Lagrange spectrum is found.

In section III level sets of the Lagrange spectrum are discussed. The dimension of one of those corresponding to small values of the Lagrange spectrum are shown to be small.

CHAPTER II

RATIONAL APPROXIMATION

If
$$w \in [0,1)$$
 we define $Tw = \begin{cases} \frac{1}{w} - [\frac{1}{w}] & \text{if } w \neq 0 \\ 0 & \text{if } w = 0 \end{cases}$

$$a_n(w) = \begin{bmatrix} \frac{1}{T^{n-1}w} \end{bmatrix}$$
 $n = 1,2,...$ where [x] is greatest integer < x.

$$p_{-1}(w) = 1$$
, $p_{0}(w) = 0$, $q_{-1}(w) = 0$, $q_{0}(w) = 1$

$$p_n(w) = a_n(w)p_{n-1}(w) + p_{n-2}(w), q_n(w) = a_n(w)q_{n-1}(w) + q_{n-2}(w)$$

i.e.

$$\frac{p_{n}(w)}{q_{n}(w)} = [0;a_{1}(w),a_{2}(w),...,a_{n}(w)]$$

 $w \in E_2$ if and only if $a_n(w) = 1$ or 2 n = 1, 2, ...

If a and b are the words $a_1 a_2 \dots a_n$ and $b_1 b_2 \dots b_m$ respectively, we

define a^{-1} to be the inverse word $a_{n-1}^{a} \cdots a_{2}^{a}$,

a o b the composition word $a_1 a_2 \dots a_n b_1 b_2 \dots b_m$,

La the left shift word $a_2 a_3 \dots a_n a_1$,

$$\bar{a} = [0; \bar{a_1}, \bar{a_2}, \dots, \bar{a_n}] = [0; \bar{a_1}, \bar{a_2}, \dots]$$
 where $\bar{a_{n+j}} = \bar{a_j}$,

and we define $b*w = [0;b_1,b_2,...,b_m,a_1(w),a_2(w),...],$

If P_1, P_2, \ldots is a sequence of words, we define

$$\prod_{i=1}^{\infty} P_{i} = P_{1} * P_{2} * \dots = [0, P_{11}, P_{12}, \dots, P_{1n_{1}}, P_{21}, P_{22}, \dots, P_{2n_{2}}, \dots]$$

where $P_i = P_{i1}P_{i2}...P_{in_i}$.

$$M_k = \begin{pmatrix} 0 & 1 \\ 1 & k \end{pmatrix}$$
 where k is an integer

$$M_a = M_{a_1} \cdot M_{a_2} \cdot ... M_{a_n}$$

Remark 0.0. $a_1(w), a_2(w), \ldots$ are the partial quotients in the continued-fraction expansion of w.

$$(0-1) P_{n-1}(w)q_n(w) - P_n(w)q_{n-1}(w) = (-1)^n n \ge 0$$

$$(0-2) \qquad M_{k}^{-1} = \begin{pmatrix} -k & 1 \\ 1 & 0 \end{pmatrix}$$

(0-3)
$$M_a = \begin{pmatrix} p_{n-1}(\bar{a}) & p_n(\bar{a}) \\ q_{n-1}(\bar{a}) & q_n(\bar{a}) \end{pmatrix}$$

(0-4)
$$M_{a-1} = M_{a}^{t} = \begin{pmatrix} p_{n-1}(\bar{a}) & q_{n-1}(\bar{a}) \\ p_{n}(\bar{a}) & q_{n}(\bar{a}) \end{pmatrix}$$

since $(AB)^t = B^t A^t$ for any matrices A and B and $M_k^t = M_k$.

Lemma 1. Let a be the word $a_1 a_2 a_n$, $x = \overline{a}$ and $y = \overline{La^{-1}}$. Then $q_{n-1}(y) = q_{n-1}(x)$, $p_{n-1}(y) = q_n(x) - a_n q_{n-1}(x)$

$$q_n(y) = p_{n-1}(x) + a_n q_{n-1}(x)$$
 and $p_n(y) = p_n(x) - a_n(p_{n-1}(x) - q_{n-2}(x))$

Proof. By preceding remarks,

$$\begin{split} \mathbf{M}_{La^{-1}} &= \mathbf{M}_{a_{n-a}^{-1}}^{-1} \mathbf{M}_{a_{n}} = \binom{-a_{n-1}}{1} \binom{p_{n-1}(x)}{p_{n}(x)} \binom{q_{n-1}(x)}{q_{n}(x)} \binom{0}{1} \binom{1}{1} a_{n} \\ &= \binom{-a_{n-1}}{1} \binom{q_{n-1}(x)}{q_{n}(x)} \binom{p_{n-1}(x)}{p_{n}(x)} + a_{n}q_{n-1}(x) \\ &= \binom{q_{n}(x) - a_{n}q_{n-1}(x)}{q_{n-1}(x)} \binom{p_{n}(x) - a_{n}p_{n-1}(x)}{p_{n-1}(x)} + a_{n}(q_{n}(x) - a_{n}q_{n-1}(x)) \\ &= \binom{q_{n}(x) - a_{n}q_{n-1}(x)}{q_{n-1}(x)} \binom{p_{n}(x) - a_{n}p_{n-1}(x)}{p_{n-1}(x)} + a_{n}q_{n-1}(x) \end{pmatrix}. \end{split}$$

Theorem 1. If $x = \bar{a}$ is purely periodic in E_2 with period $a = a_1 a_2 \dots a_n$, $n \ge 2$ and $y = \overline{La^{-1}}$, then x - y is a rational and $x - y = [p_{n-1}(x) - q_{n-2}(x)]/q_{n-1}(x) = [0;a_1,\dots,a_{n-1}] - [0;a_{n-1},\dots,a_1]$. Proof: Let $y = \frac{-B + \sqrt{D}}{Q}$. By the preceding lemma, $Q = 2q_{n-1}(x), B = p_{n-1}(x) - q_n(x) + 2a_n q_{n-1}(x)$ $D = [(p_{n-1}(x) - q_n(x)) + 2a_n q_{n-1}(x)]^2 + 4q_{n-1}(x)[p_n(x) - a_n(p_{n-1}(x) - q_n(x)]^2 + 4q_{n-1}(x)[p_n(x) - a_n(p_{n-1}(x) - q_n(x)]^2 + 4q_{n-1}(x)[p_n(x) - a_n(p_n(x)]^2 + 4q_{n-1}(x)[p_n(x)]^2 + 4q_{n-1}(x)[p_n($

But $x = (p_{n-1}(x) - q_n(x) + \sqrt{D})/2q_{n-1}(x)$.

Hence
$$x - y = [2(p_{n-1}(x) - q_n(x)) + 2a_nq_{n-1}(x)]/2q_{n-1}(x)$$

= $[p_{n-1}(x) - q_{n-2}(x)]/q_{n-1}(x)$.

Corollary 1. If $X = \frac{-P + \sqrt{D}}{Q}$ is purely periodic in E_2 with period

 $a = a_1 a_2 \dots a_n$ where P,Q and D are positive integers, then

1.
$$\frac{P}{Q} = 1$$
 iff $a = La^{-1}$ and $a_n = 2$

2.
$$\frac{P}{Q} = \frac{1}{2}$$
 iff $a = La^{-1}$ and $a_n = 1$.

Proof: $x = [p_{n-1}(x) - q_n(x) + \sqrt{D}]/2q_{n-1}(x)$ for some positive integer D.

By preceding theorem,

$$a = La^{-1}$$

if and only if $p_{n-1}(x) - q_{n-2}(x) = 0$ i.e. $p_{n-1}(x) - q_n(x) = -a_n q_{n-1}(x)$

if and only if $x = -\frac{a_n}{2} + \frac{\sqrt{D}}{2q_{n-1}(x)}$.

Corollary 2. If $x = \overline{a}$ is purely periodic in E_2 with period

 $a = a_1 a_2 \dots a_{n-1} a_n$, $n \ge 2$, then $x' = \overline{a'}$ with $a' = a_1, \dots, a_{n-1} a_n'$ and

 $a_n' = 3 - a_n$ is purely periodic in E_2 such that

$$x' - La'^{-1} = x - La^{-1}$$
.

Proof: This result follows from Theorem 1 since $x'-La'^{-1}$ and $x-La^{-1}$ are independent of a' and a respectively.

Lemma 2.
$$[0;a_1,a_2,...,a_n+t] = \frac{p_n + tp_{n-1}}{q_n + tq_{n-1}}$$
 holds for all positive

integers n and any number t, where $\frac{P_n}{q_n} = [0; a_1, a_2, \dots, a_n], q_0=1, P_0=0.$

Remark 1. $\frac{a+Db}{c+Dd} + \frac{a-Db}{c-Db} = \frac{2(ac-D^2bd)}{c^2-D^2d^2}$ for any numbers a,b,c,d,D.

Lemma 3. If $x \in E_2$ and $(a_1(x), a_2(x)) \neq (1,2)$ then $1 - x \in E_2$.

Proof: If $x = \frac{1}{1 + \frac{1}{1+t}}$ where $t \in E_2$ then

$$1 - x = 1 - \frac{1}{1 + \frac{1}{1 + t}} = 1 - \frac{1 + t}{2 + t} = \frac{1}{2 + t} \in E_2$$
.

Theorem 2. If P is purely periodic in E_2 with period

 $p = 1p_2p_3...p_{n-1}^2$ and if $p = Lp^{-1}$, then there exist positive integers

m and D such that $P = -1 + \frac{\sqrt{D}}{m}$. Let $x = [0; a_1, a_2, ..., a_{n-1}, 2 + \frac{m}{\sqrt{D}}]$

and let $y = [0; a_1, a_2, ..., a_{n-1}, 2 - \frac{m}{\sqrt{D}}]$ where $a_i = 1$ or 2 for all i<n

and any positive integer n, then x + y is rational in $E_2 \oplus E_2$.

Proof: By Corollary 1, $P = -1 + \frac{\sqrt{D}}{m}$ for some positive integers m and D.

$$\frac{m}{\sqrt{D}} = \frac{1}{1+p} = \frac{1}{1+\frac{1}{1+t}}$$
 for some $t \in E_2$.

So
$$\frac{m}{\sqrt{D}} \in E_2$$
 and by Lemma 3, $1 - \frac{m}{D} \in E_2$ and hence $x + y \in E_2 \oplus E_2$.

By Lemma 2

$$x = \frac{p_n + \frac{m}{\sqrt{D}} p_{n-1}(x)}{q_n + \frac{m}{\sqrt{D}} q_{n-1}(x)} \quad \text{and} \quad y = \frac{p_n - \frac{m}{\sqrt{D}} p_{n-1}(x)}{q_n - \frac{m}{\sqrt{D}} q_{n-1}(x)}$$

where $p_n = 2p_{n-1}(x) + p_{n-2}(x)$ and $q_n = 2q_{n-1}(x) + q_{n-2}(x)$. Also by

Remark 1

$$x + y = \frac{2(p_n \cdot q_n - \frac{m^2}{D} p_{n-1}(x)q_{n-1}(x))}{q_n^2 - \frac{m^2}{D} q_{n-1}^2(x)}.$$

Therefore x + y is rational.

Theorem 3. If P is purely periodic in E_2 with period $p=2p_2p_3...p_{n-1}l \text{ and } p=Lp^{-1}, \text{ then there exist positive integers}$ D and m such that $P=-\frac{1}{2}+\frac{\sqrt{D}}{m}$. Let $x=[0;a_1,a_2,...,a_{n-2},l,\ 2+p]$ and let $y=[0;a_1,a_2,...,a_{n-2},l,\ l-p]$ for any positive integer n where $a_i=l$ or 2 \forall i < n, then x+y is rational in $E_2\oplus E_2$. Proof: By Corollary 1, $P=-\frac{1}{2}+\frac{\sqrt{D}}{m}$ for some positive integers D and

m. Clearly $x \in E_2$ and $\frac{1}{1-p} = \frac{2+s}{1+s} = 1 + \frac{1}{1+s}$ where $P = \frac{1}{2+s}$ for some

$$s \in E_2$$
 so $y = [0; a_1, ..., a_{n-2}, 2, 1 + s] \in E_2$.

$$x = [0; a_1, a_2, \dots, a_{n-2}, 1, 1 + (\frac{1}{2} + \frac{\sqrt{D}}{m})], y = [0; a_1, a_2, \dots, a_{n-2}, 1, 1 + (\frac{1}{2} - \frac{\sqrt{D}}{m})].$$

By Lemma 2

$$x = \frac{p_n + (\frac{1}{2} + \frac{\sqrt{D}}{m})p_{n-1}(x)}{q_n + (\frac{1}{2} + \frac{\sqrt{D}}{m})q_{n-1}(x)}, \quad y = \frac{p_n + (\frac{1}{2} - \frac{\sqrt{D}}{m})p_{n-1}(x)}{q_n + (\frac{1}{2} - \frac{\sqrt{D}}{m})q_{n-1}(x)}$$

where
$$p_n = p_{n-1}(x) + p_{n-2}(x) = p_{n-1}(y) + p_{n-2}(y)$$
, $q_n = q_{n-1}(x) = q_{n-2}(x) = q_{n-1}(y) + q_{n-2}(y)$.

By Remark 1,

$$x + y = \frac{2[(p_n + \frac{1}{2}p_{n-1}(x))(q_n + \frac{1}{2}q_{n-1}(x)) - \frac{D}{m^2}p_{n-1}(x)q_{n-1}(x)]}{(q_n + \frac{1}{2}q_{n-1}(x))^2 - \frac{D}{m^2}q_{n-1}^2(x)}$$

Therefore x + y is rational in $E_2 \oplus E_2$.

Theorem 4. If $y,y' \in E_2$ and x is purely periodic in E_2 with period $a = a_1 a_2 \dots a_n$ and if $y - y' = x - \overline{La^{-1}}$ then $a * y - La^{-1} * y' = x - \overline{La^{-1}}.$

Proof: By Theorem 1,
$$x - \overline{La}^{-1} = \frac{p_{n-1}(x) - q_{n-2}(x)}{q_{n-1}(x)} = y - y' \dots$$
 (A)

$$a * y = \frac{p_{n-1}(x)y + p_n(x)}{q_{n-1}(x)y + q_n(x)},$$

$$La^{-1} * y' = \frac{p_{n-1}(\overline{La^{-1}}) \cdot y' + p_n(\overline{La^{-1}})}{q_{n-1}(\overline{La^{-1}}) \cdot y' + q_n(\overline{La^{-1}})}$$

$$= \frac{q_{n-2}(x)(y - \frac{p_{n-1}(x) - q_{n-2}(x)}{q_{n-1}(x)}) + p_n(x) - a_n(p_{n-1}(x) - q_{n-2}(x))}{q_{n-1}(x)(y - \frac{p_{n-1}(x) - q_{n-2}(x)}{q_{n-1}(x)}) + p_{n-1}(x) + a_nq_{n-1}(x)}$$

$$= \frac{q_{n-2}(x)y + p_n(x) - (\frac{q_{n-2}(x)}{q_{n-1}(x)} + a_n)(p_{n-1}(x) - q_{n-2}(x))}{q_{n-1}(x)y + q_{n-2}(x) + a_nq_{n-1}(x)}$$

$$= \frac{q_{n-2}(x)y + p_n(x) - \frac{q_n(x)}{q_{n-1}(x)}(p_{n-1}(x) - q_{n-2}(x))}{q_{n-1}(x)y + q_n(x)}, \text{ by Lemmas 1, 2.}$$

$$a * \overline{b} - La^{-1} * \overline{Lb^{-1}} = (p_{n-1}(x) - q_{n-2}(x))(y + \frac{q_n(x)}{q_{n-1}(x)})/[q_{n-1}(x)y + q_n(x)]$$

$$= \frac{p_{n-1}(x) - q_{n-2}(x)}{q_{n-1}(x)} = x - \overline{La^{-1}}.$$

Corollary 3. If x and y are purely periodic in E_2 with periods $a = a_1 a_2 \dots a_n$ and $b = b_1 b_2 \dots b_m$ respectively and $x - \overline{La^{-1}} = y - \overline{Lb^{-1}} \text{ and if } p_1, p_2, \dots, p_n, \dots \text{ is a sequence of words}$ with $p_i = a$ or b, $i = 1, 2, \dots$ then

(A)
$$\frac{1}{p_1 \circ p_2 \circ ... \circ p_n} - \frac{1}{Lp_1^{-1} \circ Lp_2^{-1} \circ ... \circ Lp_n^{-1}} = x - \frac{1}{La^{-1}}$$

(B)
$$\prod_{i=1}^{\infty} p_i - \prod_{i=1}^{\infty} Lp_i^{-1} = x - \overline{La^{-1}}$$

Proof: By the preceding theorem, $p_n * \overline{a} - Lp_n^{-1} * \overline{La^{-1}} = x - \overline{La^{-1}}$. Again, by the preceding theorem, $p_{n-1} * p_n * \overline{a} - Lp_{n-1}^{-1} * Lp_n^{-1} * \overline{La^{-1}} = x - \overline{La^{-1}}$. Continuing this procedure, we have $p_1 * p_2 * \dots * p_n * \overline{a} - Lp_1^{-1} * Lp_2^{-1} * \dots * Lp_n^{-1} * \overline{La^{-1}} = x - \overline{La^{-1}}$ i.e. $(p_1 \circ p_2 \circ \dots \circ p_n) * \overline{a} - \overline{La^{-1}} \circ Lp_2^{-1} \circ \dots \circ Lp_n^{-1}) * \overline{La^{-1}} = x - \overline{La^{-1}}$. If we go through the whole

procedure one more time, we get

$$(p_1 \circ p_2 \circ ... \circ p_n)^2 * \bar{a} - (Lp_1^{-1} \circ Lp_2^{-1} \circ ... \circ Lp_n^{-1})^2 * \overline{La^{-1}} = x - \overline{La^{-1}}.$$

Using the same procedure, we get

$$(p_1 \circ p_2 \circ ... \circ p_n)^n * \bar{a} - (Lp_1^{-1} \circ Lp_2^{-1} \circ ... \circ Lp_n^{-1})^n * \bar{La}^{-1} = x - \bar{La}^{-1}$$

Since
$$\overline{p_1 \circ p_2 \circ ... \circ p_n} = \lim_{n \to \infty} (p_1 \circ p_2 \circ ... \circ p_n)^n * \overline{a}$$
,

$$Lp_1^{-1} \circ Lp_2^{-1} \circ ... \circ Lp_n^{-1} = \lim_{n \to \infty} (Lp_1^{-1} \circ Lp_2^{-1} \circ ... \circ Lp_n^{-1})^n * \overline{La^{-1}},$$

$$\Pi \quad p_i = \lim_{n \to \infty} p_1 * p_2 * \dots * p_n * \bar{a},$$

and
$$\prod_{i=1}^{\infty} Lp_i^{-1} = \lim_{n \to \infty} Lp_1^{-1} * Lp_2^{-1} * \dots * Lp_n^{-1} * \overline{La^{-1}}$$
.

Hence
$$\frac{1}{p_1 \circ p_2 \circ ... \circ p_n} - \frac{1}{Lp_1^{-1} \circ Lp_2^{-1} \circ ... \circ Lp_n^{-1}} = x - \frac{1}{La^{-1}}$$

and
$$\prod_{i=1}^{\infty} p_i - \prod_{i=1}^{\infty} Lp_i^{-1} = x - \overline{La^{-1}}$$
.

Theorem 5. If x and y satisfy the hypothesis of the preceding corollary and a \neq La⁻¹ then there exists a non-denumerable set of pairs (α, β) in $E_2 \otimes E_2$ such that $\alpha - \beta = x - La^{-1}$.

Proof: Without loss of generality, we may assume $a_k \neq b_k$ for some k.

If $w \in (0,1)$ has the binary expansion $w = \sum_{i=1}^{\infty} w_i \cdot 2^{-i}$, we let $\alpha_w = p(w_1) * p(w_2) * p(w_3) * \dots = \prod_{i=1}^{\infty} p(w_i)$ where p(0) = a, p(1) = b and let $\beta_w = \prod_{i=1}^{\infty} L(p(w_i))^{-1}$. Then $\alpha_w - \beta_w = x - \overline{La^{-1}}$.

If w, w' \in (0,1) with w \neq w' i.e. there exists a first integer ℓ such that ℓ w'. Then

$$(p(w_{\ell}))_{k} \neq (p(w_{\ell}))_{k}$$
 and thus $\alpha_{w} \neq \alpha_{w'}$.

Hence there exists a non-denumerable set of pairs (α , β) in E $_2$ \otimes E $_2$ with

$$\alpha - \beta = x - \overline{La^{-1}}$$

Notation: Let Q be the set of all rationals obtained from Theorem 1.

Corollary 4. If $q \in Q$, then there exists a non-denumerable set of pairs (α,β) in E_2 such that $\alpha-\beta=q$.

Proof: Immediate result from Corollary 2 and Theorem 5.

Theorem 6. If x and y are purely periodic in E_2 with periods $a = a_1 \dots a_{n-1}$ and $b = a_1 \dots a_{n-1}$ respectively and k = 1 or 2 then

$$\frac{1}{k \circ a} - \frac{1}{L(k \circ a)^{-1}} = \frac{1}{k \circ b} - \frac{1}{L(k \circ b)^{-1}} = \frac{q_{n-1}(x) - kq_{n-2}(x) - p_{n-2}(x)}{p_{n-1}(x) + kq_{n-1}(x)}.$$

Proof: By Theorem 1,

$$\frac{1}{k \circ a} - \frac{1}{L(k \circ a)^{-1}} = \frac{1}{k \circ b} - \frac{1}{L(k \circ b)^{-1}}$$

$$= \frac{p_n(\overline{k \circ a})}{q_n(\overline{k \circ a})} - \frac{q_{n-1}(\overline{k \circ a})}{q_n(\overline{k \circ a})}$$

$$= \frac{1}{k + \frac{p_{n-1}(x)}{q_{n-1}(x)}} - \frac{\frac{1}{k} p_{n-2}(x) + q_{n-2}(x)}{\frac{1}{k} p_{n-1}(x) + q_{n-1}(x)}$$

$$= \frac{q_{n-1}(x)}{p_{n-1}(x) + kq_{n-1}(x)} - \frac{p_{n-2}(x) + kq_{n-2}(x)}{p_{n-1}(x) + kq_{n-1}(x)}$$

$$= \frac{q_{n-1}(x) - kq_{n-2}(x) - p_{n-2}(x)}{p_{n-1}(x) + kq_{n-1}(x)}.$$

Theorem 7. $E_2 \ominus E_2 = \overline{Q}$.

Proof: If $x \in E_2 \ominus E_2$, then there exist $\alpha, \beta \in E_2$ such that $x = \alpha - \beta$.

If $\ensuremath{\epsilon}$ > 0, there exist positive integers n and m such that

$$\left|\alpha\text{-}[0,a_{1}(\alpha),a_{2}(\alpha),\ldots,a_{n}(\alpha)]\right| < \frac{\varepsilon}{2} \text{ and } \left|\beta\text{-}[0;a_{1}(\beta),a_{2}(\beta),\ldots,a_{m}(\beta)]\right| < \frac{\varepsilon}{2}$$

Let w be the word $a_1(\alpha)a_2(\alpha)...a_n(\alpha)a_m(\beta)a_{m-1}(\beta)...a_1(\beta)1$.

Let
$$\alpha^* = \overline{\mathbf{w}}$$
 and $\beta^* = \overline{\mathbf{L}}\overline{\mathbf{w}}^{-1}$. Then $\alpha^* - \beta^* \in \mathbb{Q}$ and

$$|\alpha - \beta - (\alpha^* - \beta^*)| \le |\alpha - \alpha^*| + |\beta - \beta^*| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

which implies the statement of the theorem.

Lemma 4. If $x,y \in E_2$ with rational x-y and either $(a_1(x),a_2(x)) \neq (1,2) \text{ or } (a_1(y),a_2(y)) \neq (1,2) \text{ then either } y-x+1$ or x-y+1 is rational in $E_2 \oplus E_2$.

Proof:

If
$$(a_1(x), a_2(x)) \neq (1,2)$$
 then by Lemma 3, $1 - x \in E_2$. Thus $y - x + 1$ is a rational in $E_2 \oplus E_2$. Similarly, $(a_1(y), a_2(y)) \neq (1,2)$ implies $x - y + 1$ is a rational in $E_2 \oplus E_2$.

Examples

Example 1. Let a and b be the words 121 and 122 respectively and let

$$x = \bar{a} = [0; \overline{1,2,1}], y = \bar{b} = [0; \overline{1,2,2}].$$
 Then $x = \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + x}}} = \frac{2x + 3}{3x + 4}$, so

$$3x^2 + 2x - 3 = 0$$
, so $x = \frac{-1 + \sqrt{10}}{3}$.

$$\overline{La^{-1}} = \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + La^{-1}}}}} = \frac{\overline{La^{-1}} + 2}{3La^{-1}} + \frac{3La^{-1}}{3La^{-1}} + 4La^{-1} - 2 = 0 \text{ so}$$

$$\overline{La^{-1}} = \frac{-2 + \sqrt{10}}{3}$$
. Thus $x - \overline{La^{-1}}$ is the rational $\frac{1}{3} = \frac{p_2(x) - q_1(x)}{q_2(x)} = \frac{1}{3}$

$$\frac{2-\frac{1}{3}}{1+\frac{1}{2+\frac{1}{2+y}}} = \frac{2y+5}{3y+7}, \ 3y^2+5y-5=0, \ \text{so} \ \ y=\frac{-5+\sqrt{85}}{6}.$$

$$\frac{1}{Lb^{-1}} = \frac{1}{2 + \frac{1}{Lb^{-1}}} = \frac{\frac{1}{Lb^{-1} + 3}}{\frac{1}{3Lb^{-1}} + 8}, \quad \frac{1}{3Lb^{-1}} + \frac{1}{7Lb^{-1}} - 3 = 0, \text{ so } \frac{1}{Lb^{-1}} = \frac{-7 + \sqrt{85}}{6}.$$

Thus
$$y - \overline{Lb^{-1}}$$
 is also equal to $\frac{1}{3} = \frac{p_2(y) - q_1(y)}{q_2(y)} = \frac{2 - 1}{3}$. Moreover,

$$p_2(x) = p_2(y) = 2$$
, $q_2(x) = q_2(y) = 3$. By Theorem 6,

$$[0;\overline{1,1,2,1}] - [0;\overline{2,1,1,1}] = [0;\overline{1,1,2,2}] - [0;\overline{2,1,1,2}]$$

$$= \frac{3-1-1}{2+3}$$

$$= \frac{1}{5}.$$

We observe that there are two distinct pairs (α,β) with $\alpha \neq \beta$ for both $\alpha - \beta = \frac{1}{3}$ and $\alpha - \beta = \frac{1}{5}$. By Theorem 5, there is a non-denumerable set of pairs (α,β) for both $\alpha - \beta = \frac{1}{3}$ and $\alpha - \beta = \frac{1}{5}$. In fact, by Lemma 4, there is a non-denumerable set of pairs (α,β) for both $\alpha + \beta = \frac{4}{3}$ and $\alpha + \beta = \frac{6}{5}$ in $E_2 \oplus E_2$.

Example 2. Let p be the word 1 2 and p = \bar{p} . Then p = Lp^{-1} and p = $[0, \overline{1,2}] = -1 + \sqrt{3}$. Let $x = \frac{1}{2 + \frac{1}{\sqrt{3}}}$ and $y = \frac{1}{2 - \frac{1}{\sqrt{3}}}$. Since

$$\frac{1}{\sqrt{3}} = \frac{1}{1+p} = [0; 1, \overline{1,2}], x \in E_2.$$
 and

$$y = \frac{1}{1+1-\frac{1}{\sqrt{3}}} = \frac{1}{1+\frac{1}{\frac{\sqrt{3}}{\sqrt{3}-1}}} = \frac{1}{1+\frac{1}{1+\frac{1}{\sqrt{3}-1}}} = \frac{1}{1+\frac{1}{1+\frac{1}{p}}} = [0;1,2,\overline{2,1}].$$

Thus $x + y = \frac{4}{4 - \frac{1}{3}} = \frac{12}{11}$ is a rational in $E_2 \oplus E_2$.

Example 3. Let p' be the word 2 l and $P' = \overline{p'}$. Then $p' = Lp'^{-1}$

and
$$P' = [0; \overline{2,1}] = \frac{-1 + \sqrt{3}}{2}$$
. Let $x = [0; 1, 2 + P']$ and $y = [0; 1, 1-P']$

Then
$$x = \frac{1}{1 + \frac{1}{2 + \frac{\sqrt{3} - 1}{2}}} = \frac{3 + \sqrt{3}}{5 + \sqrt{5}}$$
 and $y = \frac{1}{1 + \frac{1}{1 - \frac{\sqrt{3} - 1}{2}}} = \frac{3 - \sqrt{3}}{5 - \sqrt{3}}$.

Clearly $x \in E_2$.

$$1 - p' = 1 - \frac{1}{2+p} = \frac{1+p}{2+p} = \frac{1}{1 + \frac{1}{1+p}}$$
 where $p = [0; \overline{1,2}]$ so

$$y = \frac{1}{1 + \frac{1}{1 - p'}} = \frac{1}{1 + 1 + \frac{1}{1 + p}} = [0; 2, 1, \overline{1, 2}] \in \mathcal{E}_2.$$

$$x + y = \frac{2(15-3)}{25-3} = \frac{24}{22} = \frac{12}{11}$$
.

Thus there is another pair (x,y) with $x + y = \frac{12}{11}$ in $E_2 \oplus E_2$.

CHAPTER III

NON-COINCIDENCE OF THE MARKOV AND LAGRANGE SPECTRA

For each $x = \{x_k\} \in A$, we define $M(x,k) = [x_k; x_{k+1},...] + [0; x_{k-1}, x_{k-2},...,x_1,x_0]$. $M(x) = \sup_{k} M(x,k)$ and $L(x) = \overline{\lim_{k}} M(x,k)$.

The ranges of M and L are known as the Markov spectrum and the Lagrange spectrum respectively. It is known that the Markov spectrum is closed and contains the Lagrange spectrum.

For each $x = \{x_k\} \in A$, we define

$$I(x,n) = \{y = \{y_k\} \in A : y_k = x_k, k = 1,2,...,n\}.$$

Let
$$\varepsilon_{\ell}(n) = L \cdot (1 + \sqrt{2})^{-2n}$$
 and $\varepsilon_{\ell}(n) = K \cdot (\frac{1 + \sqrt{5}}{2})^{-2n}$.

We then state the following two lemmas without proof.

Lemma 1. If
$$y \in I(x,n) \cap [I(x,n+1)]^{c}$$
, then $\varepsilon_{\ell}(n) < |M(x,0) - M(y,0)| < \varepsilon_{\ell}(n)$

Remark 1.
$$|M(x,0) - M(y,0)| < 10^{-7}$$
 if $n = 19$

and $|M(x,0) - M(y,0)| < 10^{-11}$ if n = 29,

Lemma 2. For $\xi, \eta \in E_2$

$$[0;x_1,x_2,\ldots,x_{2n+1},2+\xi] \ge [0;x_1,\ldots,x_{2n+1},1+\eta]$$

$$[0;x_1,x_2,\ldots,x_{2n},1+\eta] \ge [0;x_1,\ldots,x_{2n},2+\xi]$$
.

Let $\xi = \{\xi_i\} \in D$ be a sequence such that $\xi_i = \xi_{i-7}$, $i \ge -4$; $\xi_{-5} = \xi_{-6} = 1, \ \xi_{-7} = 2, \ \xi_{-8} = 1, \ \xi_{-9} = \xi_{-10} = \xi_{-11} = \xi_{-12} = \xi_{-13} = \xi_{-14} = \xi_{-15} = \xi_{-16} = \xi_{-17} = 1, \ \xi_{-18} = 2, \ \xi_{-19} = \xi_{-20} = 1 \ ; \ \xi_i = \xi_{i+7}, \ i \le -21.$

Let a be the word 1122212.

Let $\alpha=M(\xi,0)$. Clearly, $M(\xi,k)< M(\xi,0)$ if $\xi_k=1$, $(\xi_{k-1},\xi_k)=(2,2)$ or $(\xi_k,\xi_{k+1})=(2,2)$. Without loss of generality, due to the symmetry $\xi_{-12+i}=\xi_{-13-i}$, $i=0,1,2,\ldots$ we may assume that $M(\xi)$ can only occur at ξ_k for k=7n, $n=-1,0,1,2,\ldots$. Since $(L^{-7}\xi)_i=\xi_i$, $i\geq -4$, $(L^{-7}\xi)_{-5}=2$ and $\xi_{-5}=1$ we have, by Lemma 2, $M(L^{-7}\xi,0)<\alpha$ i.e.

 $M(\xi,-7) < \alpha$.

Since $(L^{7n}\xi)_i = \xi_i$, $i \ge -11$, $\xi_{-12} = 2$ and $(L^{7n}\xi)_{-12} = 1$, $n = 1, 2, \ldots$ we have, by Lemma 2

$$M(\xi,7n) < \alpha, n = 1,2,...$$

Hence $M(\xi) = \alpha$.

We define words $W^{i} = W_{1}^{i}W_{2}^{i}...W_{n_{i}}^{i}$, i = 1,2,..., as follows:

```
W^{1} = 2 1 2 1 2
w^2 = 212112
W^3 = 1212112
W^{4} = 2 2 2 1 2 1 1 2 2 1
W^5 = 1 2 2 2 1 2 1 1 2 2 2 2
w^6 = 2122212112221
w^7 = 1122212112211
w^8 = 111222121122212
w^9 = 2112221211222122
W^{11} = 11211222121122212112
W^{12} = 2 2 2 1 2 1 1 2 2 2 1 2 1 1 2 2 2 1 2 1 1 2 1
w^{13} = 122
W^{14} = 1 1 2 1 1
w^{15} = 22121121
w^{16} = 122121122
w^{17} = 2 2 2 2 1 2 1 1 2 2 2
```

Lemma 3. If a sequence $x = \{x_k\}$ contains the word W^i with $W^i_k = x_j$ for some $i \le 12$, where j > 14 for $x \in A$; and k = 3 if i = 1; k = i + 1 if i = 2,3,4,5 or 6; k = i if i = 7,8 or 12 and k = i - 1 if i = 9,10 or 11, then, $M(x,j) > \alpha + 10^{-7}$.

Proof: For i = 1, for example, we have

$$M(x,y) > 2 + 2[0;1,2,2,1] = 3.4 > \alpha + 10^{-7}$$
.

For the remaining i's, the inequality is obtained analogously.

Lemma 4. If a sequence $x = \{x_k\}$ contains the word w^i with $w_k^i = x_i$

for some i, 13 \leq i \leq 17, where j > 8 for x \in A and k = i - 11,

then $M(x,j) < \alpha - 10^{-4}$.

Proof: For i = 13, for example, we have

$$M(x,j) < 2 + [0;1,2,1] + [0;2,2,1] = 2 + \frac{3}{4} + \frac{3}{7} < 3.18 < \alpha - 10^{-4}$$
.

For remaining i's, the inequality is obtained analogously.

Remark 2. Lemma 3 and Lemma 4 are also true if x contains w^{i-1} in a similar way.

Lemma 5. If $x = \{x_k\}$ is a sequence such that $M(x,j) \in (\alpha - 10^{-7}, \alpha + 10^{-7})$ for some j > 14, then for any integer n > 14;

- 1) $x_{j+2} = 1$ and $M(x,\ell) \le \alpha + 10^{-7}$ for $j 10 \le \ell \le j + n$ implies $x_{j+\ell} = \xi_{\ell}$, $\ell = 0,1,2,\ldots,n$.
- 2) $x_{j+2} = 2$ and $M(x,\ell) \le \alpha + 10^{-7}$ for $max(0,j-n) \le \ell \le j + 10$ implies $x_{j-\ell} = \xi_{\ell}$, $\ell = 0,1,2,\ldots, min(n,j)$.

Proof: The proof is by contradiction.

Clearly,
$$x_j = 2$$
 and $(x_{j-1}, x_j, x_{j+1}) \neq (2,2,2)$.
 $x_{j-1} = x_{j+1} = 1$ otherwise $x_{j-1}x_jx_{j+1} = w^{13}$ or w^{13}

By Lemma 4, $M(x,j) < x-10^{-4}$. This is a contradiction. For the remaining ℓ 's, contradictions are obtained analogously according to the following table.

Case 1.
$$x_{i+2} = 1$$

 $x_{j+l} = \xi_l$ for $-10 \le l < n$, otherwise x contains W^i as described in Lemma 3 or Lemma 4 which leads to a contradiction.

If $n \ge 18$, by repeating the last seven columns, we have

$$x_{j+\ell} = \xi_{\ell}, \ \ell = 18, 19, ..., n.$$

Case 2.
$$x_{i+2} = 2$$
.

We repeat the same argument as above, after replacing ℓ by $-\ell$, and interchanging column 1 and column 2 in the table. The rest of the columns remain unchanged, i.e.

$$-\ell$$
 -2 2 3 -3 $x_{j+\ell}$ 2 1 2 2 ...

Then $x_{j-\ell} = \xi_{\ell}$, $\ell=0,1,2,\ldots,\min(n,j)$.

Let $\rho = {\rho_i}$ be a doubly infinite sequence such that $\rho_i = \xi_i$, $i \ge -11$,

 $\rho_{-12} = \rho_{-13} = 1$, $\rho_{-14} = 2$, $\rho_{i} = \rho_{i+2}$, i < -15. Then

$$M(\rho,0) = [2;1,1,2,2,2,1] + [0;1,2,2,2,1,1,2,1,2,2,2,1,1,2].$$

Let $\varepsilon = \alpha - M(\rho, 0)$. Then $10^{-11} < \varepsilon < 10^{-7}$.

Lemma 6. If $x = \{x_k\}$ is a sequence with $x_{i+\ell} = \xi_{\ell}$ for some j,

 $\ell = 0,1,2,\ldots$ then $M(x,n) \leq M(\rho,0)$ for all n > j + 14.

Proof: Clearly $M(x,n) \leq M(\rho,0)$ if $x_n = 1$ or $(x_{n-1},x_n) = (2,2)$ or

 $(x_n, x_{n+1}) = (2,2)$. It remains to prove $M(x,j+7i) \le M(\rho,0)$, i = 2,3,...

 $M(x,j+7i) = \bar{a} + 2 + [0;1,2,2,2,1,1,2,1,2,2,2,1,1,2,...]$, i = 2,3,...

Since $(L^{j+7i}x)_k = \rho$, $k \ge -16$, $(L^{j+7i}x)_{-17} = 2$ and $\rho_{-17} = 1$ by

Lemma 2, we have $M(x,j + 7i) \leq M(\rho,0)$ for all $i \geq 2$. Hence

 $M(x,n) \le M(\rho,0)$ for all n > j + 14.

Theorem 1. The interval $(\alpha$ - ϵ , α + ϵ) does not contain a point of the

Lagrange spectrum.

Proof: Suppose there is a sequence $\eta = \{\eta_i\}$ such that $L(\eta) \in (\alpha - \epsilon, \alpha + \epsilon)$. Then there exists an integer k > 14 such that $M(\eta,i) < \alpha + \epsilon$ for all $i \ge k$, and there exist infinitely many integers j > k such that $M(\eta,j) \in (\alpha - \epsilon, \alpha + \epsilon)$. By Lemma 1, there exists a smallest n_0 such that $\varepsilon_u(n_0) \leq \varepsilon_{\ell}(16)$. Let j_1 be the smallest one of such j's greater than $k + n_0$. Let j_2 be the smallest one of such j's greater than $j_1 + 21$. By Lemma 5, either $\eta_{j_2+\ell} = \xi_{\ell}$, $\ell = 0,1,2,...$ which implies, by Lemma 6, $M(\eta,n) \leq M(\rho,0) = \alpha - \epsilon$ for all $n > j_2 + 14$ or $\eta_{j_2} = \xi_{\ell}$, $\ell = 0,1,2,...,j_2-k$, which implies $\eta_{j_1-\ell} = \xi_{\ell}, \ell = 0,1,2,...,n_0$ and $M(\eta,j_1) = 2 + s + t$ where $s = [0;1,1,2,2,2,1,2,1,1,2,2,2,1,2,...,n_{j_1-n_0},...,n_0] = [s_0;s_1,s_2,...]$ $t = [0;1,2,2,2,1,1,2,1,2,2,2,1,1,2,1,2,2,2,1,1,2,...,n_{j_2},...] = [t_0;t_1,t_2,...]$ Let $v = [0;1,2,2,2,1,1,2,1,2,2,2,1,1,2,\overline{1,2}] = [v_0;v_1,v_2,...]$ $T \in I(V, 16) \cap [I(V, 17)]^{c}$ and $S \in I(\xi, n_0)$ where $T = \{t_k\}$, $S = \{s_k\}$ and $V = \{v_k\}$. By Lemma 1, $v - t > \epsilon_{\varrho} (16)$ $s - \bar{a} < \epsilon_{\mu}(n_0) \le \epsilon_{\ell}(16) < v - t$ and

 $s + t < v + \bar{a}$.

Since $M(\rho,0) = 2 + \overline{a} + v$,

$$M(\eta,j_1) < M(\rho,0) = \alpha - \epsilon$$

Since both cases lead to a contradiction, $(\alpha - \epsilon, \alpha + \epsilon)$ does not contain a point of the Lagrange spectrum.

For each $\lambda \in [0,1]$ with its binary expansion $\lambda = \sum_{k=1}^{\infty} \frac{\lambda_k}{2^k}$

we define $\xi^{\lambda} = \{\xi_{i}^{\lambda}\}$ to be a doubly infinite sequence as follows:

$$\xi_i^{\lambda} = \xi_i - 16 \le i$$
, $\xi_{-17}^{\lambda} = \xi_{-18}^{\lambda} = 2$ and

$$\xi_{-(17+2k)}^{\lambda} = \xi_{-(18+2k)}^{\lambda} = \lambda_{k} + 1, k = 1,2,...$$

Let $P = \{M(\xi^{\lambda}) | \lambda \text{ is an irrational number in } [0,1]\}.$

Theorem 2. P is an uncountable set consisting of points of the Markov spectrum which are not in the Lagrange spectrum. Every point of P is a limit point of P.

Proof: For ξ_k^{λ} with k < -8, 2's occur in paris, so $M(\xi^{\lambda})$ can only occur at $\xi_k^{\lambda} = 2$ with $k \ge -8$. By an argument exactly the same as that leading to $M(\xi) = M(\xi,0)$, we have $M(\xi^{\lambda}) = M(\xi^{\lambda},0)$. Since $(\xi^{\lambda})_i = \rho_i$, $i \ge -11$, $\xi_{-12}^{\lambda} = 2$ and $\rho_{-12} = 1$ we have by Lemma 2, $M(\xi^{\lambda},0) > M(\rho,0)$. Thus $M(\xi^{\lambda}) > \alpha - \varepsilon$. Since $(\xi^{\lambda})_i = \xi_i$, $i \ge -16$, $\xi_{-17}^{\lambda} = 2$ and $\xi_{-17} = 1$ by Lemma 2, we have $M(\xi^{\lambda},0) < \alpha$ and hence $\alpha - \varepsilon < M(\xi^{\lambda}) < \alpha$. By Theorem 1, $M(\xi^{\lambda})$ is not in the Lagrange spectrum. Hence P does not contain a point of the Lagrange spectrum. Let $\lambda(k) = 0$

 $\sum_{i=1}^{k} \frac{\lambda_{i}}{2^{i}} + \sum_{j=1}^{\infty} \frac{1-\lambda_{k+j}}{2^{k+j}}, j = 1,2,... \text{ then } \lambda(k) \text{ is irrational in } [0,1], \text{ so}$ $[0,1] \text{ since } \lambda \text{ is irrational in } [0,1], \text{ so}$

$$\begin{split} &\mathsf{M}(\xi^{\lambda\,(k)}) \in \mathsf{P} & \text{and} \\ &\mathsf{M}(\xi^{\lambda\,(k)}) = \mathsf{M}(\xi^{\lambda(k)}, 0) & \text{and} & \lambda(k) \to \lambda \quad \text{as} \quad k \to \infty \\ &\mathsf{M}(\xi^{\lambda}) = \lim_{k \to \infty} \mathsf{M}(\xi^{\lambda\,(k)}) & \text{since} \quad \mathsf{M}(\xi^{\lambda}, 0) = \lim_{k \to \infty} \mathsf{M}(\xi^{\lambda\,(k)}, 0) \,. \end{split}$$

Also $\xi^{\lambda(k)} \neq \xi^{\lambda}$ for all k. Thus $M(\xi^{\lambda}, 0) \neq M(\xi^{\lambda(k)}, 0)$ since $\xi_i^{\lambda} = \xi_i^{\lambda(k)}$ for all $i \geq 0$ i.e. $M(\xi^{\lambda}) \neq M(\xi^{\lambda(k)})$ for all k = 1, 2, ...

If $\lambda \neq \lambda'$ then $M(\xi^{\lambda},0) \neq M(\xi^{\lambda'},0)$ since $\xi^{\lambda}_{i} = \xi^{\lambda'}_{i}$ for all $i \geq 0$ i.e. $M(\xi^{\lambda}) \neq M(\xi^{\lambda'})$. Hence every point of P is a limit point of P and P is nondenumerable.

CHAPTER IV

FRACTIONAL DIMENSION OF A LEVEL SET

This section provides an estimate of the Hausdorff-Besicovitch dimension of the level set $H = \{w \in E_2 \cap [0,1) : L(w) \leq \frac{\sqrt{221} + 5\sqrt{5} + 4}{10} \}$. The Hausdorff-Besicovitch dimension of a set S, which we will write $\dim(S)$, is defined as follows: let (I_i) be a covering of S by intervals, and let $|I_i|$ be the length of I_i ; then $\delta = 1.u.b.|I_i|$ is called the norm of the covering;

$$\Gamma(\alpha,S) = \lim_{\delta \to 0} g.l.b. \Sigma |I_i|^{\alpha},$$

where the greatest lower bound is taken over all coverings of norm δ , is the α -dimensional Hausdorff measure of S. dim(S) is the number such that, for every positive ϵ ,

$$\Gamma(\dim(S) - \varepsilon, S) = \infty$$

and

$$\Gamma(\dim(S) + \epsilon, S) = 0$$

Notation

$$\xi = [0;2,2,1,1,...,1,1,...],$$

$$p_{n} = p_{n}(\xi), q_{n} = q_{n}(\xi)$$
.

If a is the word $a_1 a_2 \dots a_n$, we define $\frac{p_i(a)}{q_i(a)} = [0; a_1, a_2, \dots, a_i]$,

$$i = 1, 2, ..., a_n(w) = a_1, ..., a_n(w) = a_n$$

Let ξ_n be the word 2 2 1 1 ... 1 1 of length 2n.

$$\ell_n = |I_{\xi_n \ o \ 22}|,$$

$$\ell_{n,k} = |I_{\xi_n \circ \xi_k} \circ 22|.$$

Remark: $p_{2n+1}(\xi_n \circ 2) = 2p_{2n} + p_{2n-1}$

$$q_{2n+1}(\xi_n \circ 2) = 2q_{2n} + q_{2n-1}$$

$$q_{2n+2}(\xi_n o 22) = 2(2q_{2n} + q_{2n-1}) + q_{2n} = 5q_{2n} + 2q_{2n-1},$$

$$p_{2n+2}(\xi_n o22) = 5p_{2n} + 2p_{2n-1}$$

$$p_{2(n+k)+1}(\xi_n \circ \xi_k \circ 2) = (2p_{2k} + p_{2k-1})p_{2n-1} + (2q_{2k} + q_{2k-1})p_{2n}$$

$$q_{2(n+k)+1}(\xi_{n}\circ\xi_{k}\circ 2) = (2p_{2k} + p_{2k-1})q_{2n-1} + (2q_{2k} + q_{2k-1})q_{2n}$$

$$p_{2(n+k)+2}(\xi_{n}\circ\xi_{k}\circ 22) = (5p_{2k} + 2p_{2k-1})p_{2n-1} + (5q_{2k} + 2q_{2k-1})p_{2n}$$

$$q_{2(n+k+1)}(\xi_{n}\circ\xi_{k}\circ22) = (5p_{2k} + 2p_{2k-1})q_{2n-1} + (5q_{2k} + 2q_{2k-1})q_{2n},$$

$$\ell_{n} = \frac{1}{(5q_{2n} + 2q_{2n-1})(7q_{2n} + 3q_{2n-1})},$$

ln.k =

$$\frac{1}{[(5p_{2k}^{+2p_{2k-1}})q_{2n-1}^{+(5q_{2k}^{+2q_{2k-1}})q_{2n}^{-1}][(7p_{2k}^{+3p_{2k-1}})q_{2n-1}^{+(7q_{2k}^{+3q_{2k-1}})q_{2n}^{-1}]}}$$

Lemma 1.
$$p_n = \frac{1}{2} \left[\left(1 + \frac{3}{\sqrt{5}} \right) \lambda^{n-1} + \left(1 - \frac{3}{\sqrt{5}} \right) \theta^{n-1} \right]$$
 and $q_n = \left(1 + \frac{4}{\sqrt{5}} \right) \lambda^{n-1} + \frac{4}{\sqrt{5}} \left(1 + \frac{4}$

$$(1 - \frac{4}{\sqrt{5}})\theta^{n-1}$$
 where $\lambda = \frac{1 + \sqrt{5}}{2}$ and $\theta = \frac{1 - \sqrt{5}}{2}$ are roots of $x^2 = x + 1$.

Proof: Let $p_n = A\lambda^{n-1} + B\theta^{n-1}$

$$p_1 = 1 = A + B$$
, $p_2 = 2 = A\lambda + B\theta = \frac{A+B}{2} + (A-B)\frac{\sqrt{5}}{2}$,

$$2 = \frac{1}{2} + (A + A - 1)\frac{\sqrt{5}}{2}, \quad 3 + \sqrt{5} = 2\sqrt{5} A,$$

so
$$A = \frac{1}{2}(1 + \frac{3}{\sqrt{5}})$$
 and $B = \frac{1}{2}(1 - \frac{3}{\sqrt{5}})$.

Hence
$$p_n = \frac{1}{2} \left[\left(1 + \frac{3}{\sqrt{5}} \right) \lambda^{n-1} + \left(1 - \frac{3}{\sqrt{5}} \right) \theta^{n-1} \right].$$

Similarly,
$$q_n = (1 + \frac{4}{\sqrt{5}})\lambda^{n-1} + (1 - \frac{4}{\sqrt{5}})\theta^{n-1}$$

Lemma 2. If
$$1 = \sum_{k=2}^{\infty} (\frac{\ell_n, k}{\ell_n})^{\alpha}$$
 as $n \to \infty$ then .2064 < α < .20641.

Proof:
$$\frac{p_n}{p_{n-1}} = \frac{A\lambda^{n-1} + B\theta^{n-1}}{A\lambda^{n-2} + B\theta^{n-2}} \to \lambda \quad \text{as} \quad n \to \infty \quad \text{since} \quad \theta \to 0 \quad \text{as} \quad n \to \infty$$

where
$$A = \frac{1}{2}(1 + \frac{3}{\sqrt{5}})$$
 and $B = \frac{1}{2}(1 - \frac{3}{\sqrt{5}})$. Similarly, $\frac{q_n}{q_{n-1}} \to \lambda$ as $n \to \infty$.

From preceding remark,

$$\frac{{\frac{\ell_{n,k}}{\ell_{n}}}}{{\frac{q_{2n-1}^{2}[\lambda(5q_{2k}+2q_{2k-1})+5p_{2k}+2p_{2k-1}][\lambda(7q_{2k}+3q_{2k-1})+7p_{2k}+3p_{2k-1}]}}}{{\frac{q_{2n-1}^{2}[\lambda(5q_{2k}+2q_{2k-1})+5p_{2k}+2p_{2k-1}][\lambda(7q_{2k}+3q_{2k-1})+7p_{2k}+3p_{2k-1}]}}}{{\frac{q_{2n-1}^{2}[\lambda(5q_{2k}+2q_{2k-1})+5p_{2k}+2p_{2k-1}][\lambda(7q_{2k}+3q_{2k-1})+7p_{2k}+3p_{2k-1}]}}{{\frac{q_{2n-1}^{2}[\lambda(5q_{2k}+2q_{2k-1})+5p_{2k}+2p_{2k-1}][\lambda(7q_{2k}+3q_{2k-1})+7p_{2k}+3p_{2k-1}]}}}}$$

Let
$$\delta_{\mathbf{k}} = \frac{\ell_{n,k}}{\ell_{n}}$$
. Then

$$\frac{\delta_{k+1}}{\delta_{k}} + \frac{(5\lambda + 2)(q_{2k-1}^{\lambda} + p_{2k-1}^{\lambda})(7\lambda + 3)(q_{2k-1}^{\lambda} + p_{2k-1}^{\lambda})}{(5\lambda + 2)\lambda^{2}(q_{2k-1}^{\lambda} + p_{2k-1}^{\lambda})(7\lambda + 3)\lambda^{2}(q_{2k-1}^{\lambda} + p_{2k-1}^{\lambda})} = \frac{1}{\lambda^{4}} \quad \text{as} \quad k \to \infty$$

$$(5\lambda + 2)(7\lambda + 3) = 35\lambda^{2} + 29\lambda + 6 = 35(\lambda + 1) + 29\lambda + 6 = 64\lambda + 41$$

$$p_3 = 3$$
, $p_4 = 5$, $p_5 = 8$, $p_6 = 13$, $p_7 = 21$, $p_8 = 34$,

$$q_3 = 7$$
, $q_4 = 12$, $q_5 = 19$, $q_6 = 31$, $q_7 = 50$, $q_8 = 81$.

Since the terms have nearly constant ratio, we approximate the tails of the series by the geometric series

$$\sum_{k=2}^{\infty} \delta_{k}^{\alpha} \doteq (64\lambda + 41)^{\alpha} \{ [(60 + 14)\lambda + 25 + 6]^{-\alpha} [(84 + 21)\lambda + 35 + 9]^{-\alpha} + (64\lambda + 41)^{\alpha} \}$$

$$[(155+38)\lambda+65+16]^{-\alpha}[(217+57)\lambda+91+24]^{-\alpha}+$$

$$\frac{[(405+100)\lambda+170+42]^{-\alpha}[(567+150)\lambda+238+63]^{-\alpha}}{1-\lambda^{-4\alpha}}$$

=
$$(64\lambda+41)^{\alpha}\{[(74\lambda+31)(105\lambda+44)]^{-\alpha}+[(193\lambda+81)(274\lambda+115)]^{-\alpha}+$$

$$\frac{\left[(505\lambda + 212) (717\lambda + 301) \right]^{-\alpha}}{1 - \lambda^{-4\alpha}}$$

=
$$(64\lambda+41)^{\alpha}[(14281\lambda+9134)^{-\alpha}+(97271\lambda+62197)^{-\alpha}+$$

$$\frac{(666094\lambda + 425897)^{-\alpha}}{1 - \lambda^{-4\alpha}}$$
].

$$\sum_{k=2}^{\infty} \delta_k^{\alpha} \ge 1.000061078$$
 when $\alpha = .2064$,

$$\sum_{k=2}^{\infty} \delta_{k}^{\alpha} \leq 0.9999675709$$
 when $\alpha = .20641$.

Hence $.2064 < \alpha < .20641$.

Let \mathbf{e}_0 be the empty word and let \mathbf{e}_n be the word 11...11 of length 2n. We define

$$T = \{e_{n_0} * \prod_{k=1}^{\infty} \xi_{n_k} : n_0 \ge 0 \text{ and } n_k \ge 2, k = 1,2,...\} \cup \{\overline{1}\}.$$

The following theorem follows immediately from a theorem in Schweiger 24].

Theorem 1. If $1 = \sum_{k=2}^{\infty} \left(\frac{\ell_n, k}{\ell_n}\right)^{\alpha}$ as $n \to \infty$ then dim $T = \alpha$.

Corollary 1. .2064 < dim T < .20641.

Proof: This is an immediate result of the preceding theorem and Lemma 2.

Lemma 3. $T \subseteq H$.

Proof: Let $t = \frac{\sqrt{221} + 5\sqrt{5} + 4}{10} = [\overline{2;2,1,1}] + [0;\overline{1}]$. Let w be an element of T.

Case 1. There are infinitely many pairs $(a_i(w), a_{i+1}(w)) = (2,2)$.

Clearly, M(w,k) < t when $a_k(w) = 1$. If $a_k(w) = 2$ then either

 $a_{k-1}(w) = 2$ or $a_{k+1}(w) = 2$. Without loss of generality, we may assume

 $a_{k+1}(w) = 2$. Since there exists j < k such that $a_j(w) = 2$ and k - j

is even, $[0;a_{k-1}(w),a_{k-2}(w),...,a_{1}(w)] < [0,\overline{1}]$

 $a_{k+2}(w) = a_{k+3}(w) = 1$, since $w \in T$. If $a_{k+4}(w) = 1$ then

 $[a_k(w); a_{k+1}(w), ...] < [\overline{2; 2, 1, 1}].$ Otherwise

 $(a_{k+4}(w), a_{k+5}(w), a_{k+6}(w), a_{k+7}(w)) = (2,2,1,1)$. Continuing this argument,

unless $[a_k(w); a_{k+1}(w), \ldots] = [\overline{2;2,1,1}]$, there must exist a first i such that $a_{k+4i}(w) = 1$. This implies $[a_k(w); a_{k+1}(w), \ldots] < [\overline{2;2,1,1}]$. Thus M(w,k) < t and L(w) < t i.e. $w \in H$.

Case 2. There exists a positive interger k such that $a_i(w) = 1$ for all $i \ge k$. Then M(w,i) < t for all $i \ge k$. Thus L(w) < t and $w \in H$. Hence $T \subseteq H$.

Theorem 2. $\dim H > .2064$.

Alternative method of computing dim H.

Proof: By preceding lemma, dim H \geq dim T. By Lemma 3, dim H > .2064.

We approximate the covering of T which is found to be a generalized Cantor set, i.e. the set constructed by removing the middle interval. It is clear that max $T=[0;\overline{1}]$. Let $b=\max T$. Let $s=\min T=[0;\overline{2,2,1,1}]$. That is $T\subset [s,b]$. Since

$$\max \{ w \in T: a_1(w) = a_2(w) = 2 \} = 2211 * b$$

and

min
$$\{w \in T: a_1(w) = a_2(w) = 1\} = 11 * s$$

we obtain our first stage covering Γ_1 of T by removing

(2211 * b, 11 * s) from [s,b] i.e. $\Gamma_1 = [s, 2211 * b] \cup [11s,b] \supset T$. Similarly, we obtain our second stage covering of T.

$$\Gamma_2 = [s,(2211)^2*b] \cup [(2211)*(11)*s,2211*b] \cup [11*s,(11)*(2211)*b] \cup [(11)^2*s,b] > T.$$

Continuing this process, we obtain the n^{th} stage covering Γ_n of T for each positive integer n.

Let m be the length of the middle interval we removed, let ℓ be the length of the left hand interval and let r be the length of the right hand interval. Since the ratios $\frac{\ell}{\ell+m+r}$ and $\frac{r}{\ell+m+r}$ remain approximately the same each time we remove a middle interval from the remaining intervals, we denote the former by p and the latter by q. We can easily see, by induction, that at n^{th} stage we have $\binom{n}{j}$ intervals of size $p^{n-j}q^j(b-s)$ in [s,b]. Hence $\Gamma(\alpha,T)$ will be approximated by $\Gamma_n(\alpha,T) = \sum\limits_{i=0}^n \binom{n}{j} [p^{n-j}q^j(b-s)]^\alpha = (b-s)^\alpha (p^\alpha+q^\alpha)^n$.

So the α which makes $\Gamma_n(\alpha,T)=1$, will be the dimension of T. Hence

$$\log(p^{\alpha} + q^{\alpha}) = \frac{-\alpha \log(b-s)}{n},$$

$$p^{\alpha} + q^{\alpha} = 1 \quad \text{as } n \to \infty$$

A short computation shows:

.2064 <
$$\alpha$$
 < .20644 since p \doteq .004481486542 and q \doteq .1463587922

Again we proved dim H > .2064.

BIBLIOGRAPHY

BIBLIOGRAPHY

- 1. A.S. Besicovitch. On the sum of digits of real numbers represented in the dyadic system. Math. Ann. 110 (1934) p. 321-329.
- 2. _____. On the rational approximation to real numbers. J. Lond. Math. Soc. 9(1934) p. 196-203.
- 3. P. Billingsley. Hasudorff dimension in probability theory, I, II. III. J. of Math. 4(1960) 187-209, 5(1961) 291-298.
- 4. R.T. Bumby. The Markov spectrum diophantine approximation and its applications. (1973) Academic Press, New York and London.
- 5. A.A. Bernstein. Connections between the Markoff and Lagrange spectra p. 16-49 Number Theory, Kalininsku Gosiedarstoennyi Universitat Moskow 1973.
- 6. T.W. Cusick. The connection between the Lagrange and the Markov spectra. Duke Math. J. 42(1975) p. 507-518.
- 7. _____. The largest gaps in the lower Markoff spectrum. Duke Math. J. 41(1974) p. 453-463.
- 8. Harvey Cohn. Representation of Markoff's binary quadratic forms.

 Acta Arithmetic 18(1971) 125-136.
- 9. N. Davis and J. Kinney. Quadratic irrationals in the lower Lagrange spectrum. Can. J. Math. 23(1973) p. 578-584.
- H.G. Eggleston. Sets of fractional dimesnion which occur in some problems of number theory. Proc. Lond. Math. Soc. 2(54)1953 pp. 42-93.
- 11. G.A. Freiman. Non-coincidence of the Markov and Lagrange spectra. Number theoretic studies in the Markoff spectrum and in the structural theory of set addition. Edited by G.A. Freiman, A.M. Rubinov, E.V. Novoselov. Kalininsksi Gordudarstvenny Universitat Moskow 1973.
- 12. I.J. Good. The fractional dimensional theory of continued fractions. Proc. Comb. Phil. Soc. (37) (1941) 199-228.

- 13. Marshall Hall, Jr. On the sum and product of continued fractions.
 Ann. Math. (2) 48(1947) 966-993.
- 14. _____. The Markoff spectrum. Acta. Arith. 19(1971) 387-399.
- 15. C.J. Hightower. The minima of indefinite binary quadratic forms.
 J. Number Theory 2(1970) 364-377.
- 16. V. Jarnick. Zur metrische Theorie der Diophantische Approximationen. Proc. Math. fiz. 36(1928 91-106
- 17. A.Ya. Khinchine. Continued Fractions. P. Noordhoff Ltd., Netherlands.
- 18. J. Kinney and T. Pitcher. The lower range of Perron's modular function. Canad. J. Math. 21(1969).
- 19. ____. The dimension of level sets of Perron's modular function. T.A.M.S. 124(1966).
- P. Kogonija. On the connection between the spectra of Lagrange and Markov. Tbiliss. Gos. Univ. Trudy Ser. Meh-Mat. Nauk 102(1964) 95-104, (1964) 105-123.
- 21. A.A. Markoff. Sur Les formes binares indefinies. Math. Ann. 15 (1879) pp. 381-409.
- 22. O. Perron, Die Lehre von den Kettenbruche (Leipzig und Berlin, 1913).
- 23. ____. Über die Approximation irrationaler Zahlen durch Rationale, I, II. Sitz. Heidelberg Akad. Wiss. 1921 Abh. 4, 17 pp. Abh. 8, 12 pp.
- 24. F. Schweiger. Billingsley Dimension and Packungsexponent (to appear).

