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ABSTRACT

ANALYSIS OF COOPERATIVE TRANSCRIPTION FACTOR BINDING AT
THE SEQUENCE LEVEL

By

Jacob Clifford

Transcription Factor binding to DNA binding sites is one of the primary causes of gene

regulation. A common representation of transcription factor binding sites is at the DNA

sequence level, partly due to reoccurring patterns at the sequence level that occur throughout

the genome for a given factor. The first chapter of this dissertation introduces gene regulation

from the perspective of development. In addition the mathematical-physics foundation for

performing calculations and for representations of the transcription factor binding sites at

the sequence level is discussed in Chapter 1. In Chapter 2 I explore the possibility that

two distinct sub-types of binding sites may co-exist within a population of functional sites.

This leads to a model that can be used for prediction of transcription factor binding sites.

In Chapter 3 I explore modelling of Dorsal Ventral early development Gene Regulatory

Network, using the tools built up in Chapter 1 and 2, namely ’Position Weight Matrices’

that allow for prediction of binding energies for genomic segments of DNA.
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Chapter 1

1.1 Mathematical Physics Introduction

This dissertation is a description of transcription factor binding that allows for prediction of

the behavior of the Dorsal Ventral patterning gene regulatory network of Drosophila early

development. Although Drosophila, the fruit fly, is much simpler than human, its molecular

biology contains many similar to almost identical mechanisms for controlling genes, and

hence is in the premiere league of modeling systems for understanding how human genes are

molecularly controlled.

Genes, in a broad sense, are the particles that are passed on from parents to progeny that

contain the information about the characteristics of the parent. The characteristics of the

parents are their ’traits’, like eye color, susceptibility to diabetes II, or fecundity (a proxy

for ’fitness’). Hence knowledge of one’s genes, or a population of people’s genes, a gene pool,

allows one to make predictions about what traits will exist in future generations.

The ’traits’ of interest in this dissertation are not at the level of the adult, or even at the

level of a recognizable animal. They are at the cellular level, where ’development’ builds an

adult by ’developing’ different cell types that are arranged together to form an adult body

plan. The initial steps of turning a totipotent cell (the zygote) into a ball of thousands of

cells, the embryo, where each cell has its very own genome that becomes fated to be the

brain, the heart, etc.. of the fly through gene regulation.

The aspect of gene regulation that I focus on is at the level of transcription. The first

step in the ’central dogma’, where DNA is copied to an RNA sequence. It is the control
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of this that we will consider ’regulation’, where control is in the sense of how many RNA

’transcipts’ should be produced.

The reason we focus on transcription and on development is because ’development’ pro-

duces in tandem with the production of RNA a set of controlled experiments. For example,

the fly embryo produces sets of cells at gross anatomical positions, ’regions’, where at each

region the cells are all under the same conditions. Gross positions are like a binary north and

south, top and back, or dorsal and ventral. Each of these regions provides a controlled experi-

ment, allowing us to take advantage of the trusted reproducibility of animal development[55].

Hence each region in the embryo is under a strict set of controls, namely the physiological

environment unique to that region (e.g. high or low doses of proteins and other factors);

just as a scientist would set up a pitri dish full of cells under similar conditions in order to

reliably cause gene expression. In a sense a colony of bacteria in a petri dish behave similar

to the embryonic regions that fate certain tissue types. The effect of transcription allows for

us to observe the emitted particles from a cell or from the genome, the transcripts or the

proteins. It is these particles that allow for deciphering the mechanism of control of genes.

Maternally controlled molecules, controlled in the sense of being positioned at different

locations of the embryonic shell, diffuse or are actively transported to the different regions of

the embryo to eventually control specific genes in the genomes (in the cells) that will or does

reside in that region. In early fly development the cells of the embryo, each with their own

genome, form a monolayer around a spherical yoke, like corn on the cob. By observing both

the ’morphogens’ (transcription factors) and the emitted particles from the transcription

factor’s target genes, the mRNA and their translated proteins, we can decipher what is

occurring at the gene regulatory level. The obvious inference is that the input molecules

must somehow pass a message to the gene that is being controlled. The mechanism that I
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study for gene regulation is where the input molecule ’binds’ to a location specific segment

of DNA, such as the DNA sequence 5’-GGAAAATCC, and thereby passing a message to the

flanking sequence of the DNA ’binding site’.

Chemically, the message may begin by the bound protein adding a chemical motif to a

protein that already was bound or wrapped up in the DNA like a ’histone’. This additional

chemical motif may set a motion a cascade of further steps that ultimately lead to a clear

modification of transcription levels.

The easiest message to observe is ’turn on’ or ’turn off’, which is seen through tran-

scription, because we can easily observe proteins and RNA through common lab techniques.

But broadly, regulation of genes by the ’binding’ process means controlling the inheritable

flanking sequences of the docking site 1.

How the morphogen binds to a location specific position of the genome, i.e. it finds

the gene of interest, seems to be a complicated process. For example, random binding or

sampling sites in the genome, in the time allocated during development, would not allow

the morphogen sufficient time to find the target, even with the mass action of multiple

morphogens.

To help understand how the binding process works, a central problem is understanding

how the protein recognizes a specific location in the genome. By better understanding of

how proteins or the morphogens recognize specific binding sites within the genome, problems

such as the diffusion of maternal molecules or the active transport of the morphogens to a

specific location in the genome may be better understood. In a broader sense, any cellular

message that requires the modulation of transcription levels, will be better elucidated by a

1The controlled flanking sequence may not be a dogmatic ’gene’ that encodes for a protein, it could be
anything that is useful for the organism fitness, and is therefore selected by evolution. In this sense, the
binding site itself is like a gene if it is under selection. Hence the molecular phenotype ’to bind’ is expressed
by the binding site sequence, the genotype.
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well formulated understanding of the protein-DNA interactions, the recognition problem.

A central assumption in this work is that the recognition is encoded in the DNA. Hence

the binding sites are more than just a surface upon which the protein deposits. Just as

vapor deposition can be controlled by placing specific types of high affinity surfaces mixed

with low affinity surfaces, so too, one could imagine the protein binding to regions of the

genome solely due to high affinity surfaces that consist of material that is not DNA, such

as binding to a histone or histone tails (histones are proteins always present that occupy a

large fraction of the genome), or binding to other proteins that are already bound to the

genome. I am solely interested in protein-DNA binding, and hence the differential affinity

of the surface is only of interest for regions of the genome that have the DNA exposed and

specifically protein-DNA binding that are under selection (i.e. it is functional DNA).

The natural mathematical physic’s framework to discuss this problem, is through depo-

sition of particles to a one dimensional lattice, a representation of the genome (see T.Hill’s

chapter on lattices for a general introduction to lattice statistics [63]). Hence, I will intro-

duce the mathematical physics necessary for performing calculations of binding energies and

occupation numbers of lattice sites. This machinery is very general, and is not specific to

the recognition problem.

Once I have presented how ’binding’ is represented I will introduce k-mers and the recog-

nition problem, where we will account for the specific binding to ordered arrays of bases,

sequences of DNA. This leads to applications in bioinformatic sequence alignment, where

known binding energies to specific sequence of DNA can be used as a computational search

for potential discovery of unannotated binding sites (i.e. not in a database) within a se-

quenced genome, and the inverse problem where known sequences of binding sites can be

used to infer the binding energy. In particular, the first chapter of this dissertation will
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introduce a ’mixture model’, where a mix of binding sites for the same factor, Dorsal, are

used for prediction of unknown sites. This is also used to explore the possibility of epistasis

and physical cooperativity between Dorsal and cooccurring Twist binding sites. This inter-

action is encoded in Dorsal binding sites, where the cooperatively encoded binding sites form

one component of the ’mixture model’. Given the foundation of protein-DNA recognition

Chapter 3 then considers further the prediction of unknown sites for the trio Dorsal, Twist,

Snail; three of the dominant ’morphogens’ or transcription factors in Dorsal Ventral pat-

terning in early development of Drosophila. Here I explore the possibility that recognition

is a function not only of the preferred k-mer sequence for a given factor, but also depend on

different locations of the embryo (such as the neuroectoderm, or mesoderm) which contain

different concentrations of these factors and therefore their recognition to specific sequences

of DNA in those regions of the embryo is modulated, which is manifested by the differential

expression of their target genes. Here I also explore the prediction of unknown sites as a

function of the spacer between co-occurring k-mer sites. This is important in Drosophila,

where it has been extensively documented as the primary mechanism of ’repression’ utilized

by Snail, a so-called short range repressor factor that turns genes off that would otherwise

be activated by the activator transcription factor Dorsal that is in high concentrations in

the ventral location of the embryo. Furthermore, this function that predicts binding sites as

a function of the spacer also is explored in terms of the cooperativity between Dorsal and

Twist factors, both known activators, that are known to act synergistically when their k-mer

binding sites co-occur with a specific ’window’ of spacer values (e.g. the sites must be about

2 to 30 base-pairs from each other).

The DV network of enhancer’s occupancy for these factors is calculated as a subproblem

in the optimization of a gene expression model for the DV network of genes that is location
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specific within the embryo (thereby accounting for location specific concentrations). The

input to the model is a two-dimensional profile of the concentration of the transcription

factors along the Dorsal-Ventral position axis of the fly embryo, along with the corresponding

profiles for the target genes whose mRNA expression is modulated due to regulation by the

factor binding. The binding is accounted for by additionally inputting the cis-Regulatory

Modules, or flanking sequence of DNA near the target genes where the factors are known to

bind. The model contains unknown constants that are fit using root mean square error for

the objective function F, where F =
∑
i

∑
j(Mij −Oij)2 , here M is the model output for a

given evaluation of the objective function (i.e. for a given values of the parameters) and the

observed data O, where i runs over the positions of the Dorsal Ventral axis, and each j is a

particular gene in the network. In addition, the objective function has an option of running

a multi-objective that will add an additional objective to fit the occupancies of the factors

to Chip-Seq or Chip-Chip data for the trans-factors, hence in the multiobjective case one

has F =
∑
i

∑
j(Mij −Oij)2 +

∑
k

∑
l(< Nkl > −Ikl)2, where the new term calculates the

model occupancy < Nkl > for the genomic segment k for transcription factor l, which was

observed with intensity Ikl.

1.1.1 Phase space, a real vector space

Classically one can calculate the statistical properties of many body systems, such as a gas

with Avogodro’s number of particles, by transforming Newton’s second order differential

equation for each particle to two first order differential equations for each particle, and

then, upon solving the equations of motion, one can calculate time averages of quantities of

interest. Another approach is through Hamilton’s principle, which is a principle of parsimony,

dictating that motion follows a path of ’least action’ (the shortest path, where ’shortest’ has
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a special formulation). This approach also consists of two first order differential equations

for each positional degree of freedom, and consist of constructing the ’Hamiltonian’ of the

system, which is effectively the total energy of the system (at least for systems that we are

interested in). For example, for an isolated one dimensional system (such as a stretched out

genome) of M particles (or M genomic units) one has:

H =
M∑
i

P 2
i

2 ∗mi
+ U(X1, X2, . . . , XM ) (1.1)

H is the Hamiltonian, i indicates the particle label, and P is the momentum2, and U is the

potential energy of the system due to the interactions of the particles, which is a function of

each particle’s location X.

The 2M random variable joint distribution for the isolated system describes the occupancy

of one point in phase space at any particular instant (X1 = x1, X2 = x2 . . . XM = xM , P1 =

p1, P2 = p2 . . . PM = pM , t = 0). Given some time t has elapsed, the distribution will

be found to occupy some other point, (X1 = x1(t), X2 = x2(t) . . . XM = xM (t), P1 =

p1(t), P2 = p2(t) . . . PM = pM (t)), this is a Dirac delta distribution for each particle’s

position and momentum[123]. Hence this is a real vector space in R2M . This construction

is an example of the microcanonical ensemble. By loosening the isolation constraint (i.e.

allowing energy of the system to vary), we have the canonical ensemble which has nonzero

variance for many of the random variables.

If we label our phase space points with an index i, then the occupation of point i in phase

space, ni, could be normalized by the occupation of all states (points in phase space), we

2We use capital letters for the momenta and coordinates, since we will think of those as random variables,
where we can translate Hamilton’s deterministic equations to the Kolmogorov-Chapman equations leading
to a deterministic equation of motion for the joint distribution, a master equation, for example see page 10
of Van Kampen[123].
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would find:

ni
n

=
exp

−Hi
kT

Q
(1.2)

Here Hi, is the Hamiltonian evaluated at the phase space point i (just plug in the corre-

sponding positions and momentum of each particle for that state into the Hamiltonian).

The number of phase space points is determined by how well we can resolve our subspaces

for each particle. For example, the configuration space, the vector space over the position

coordinates X, would be meshed no finer than our ability to resolve different distances. Here,

Q is the partition function, which can be shown by the maximum entropy principle to equal:

Q =
∑
i

exp−Hi
kT

=
∑
i

exp−

∑2M
j

Pj(i)2

2∗mj
+ U(X1(i), X2(i) . . . XM (i))

kT
(1.3)

By using the size of a unit of the genomic biopolymer as the unit of our length scale for

each particle’s position subspace, we can mesh out phase space’s ’configuration space’ such

that each base at each position along the polymer chain occupies a given location (mesh

point) in ’configuration space’. The method to mesh out momentum space is irrelevant,

since we are about to ’project out’ or ’marginalize out’ that portion of phase space.

By asserting that the biopolymer is stretched out, and its length and hence number of

’unit’s is fixed, we can reduce configuration space to contain M mesh points (one for each

unit of the polymer). This is a ’one dimensional’ lattice, where the dimensionality is now

in reference to the fact that each unit of the polymer lies along a linear array, like a thin

spaghetti noodle that was still solid and was notched for each unit of the polymer.

We are interested in ’binding’, where a distinct specie like a type of transcription factor

’binds’ to the lattice. This requires more complexity, as we now must introduce more particles
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than the original M units of the polymer. Before we introduce more particles, we will first

get rid of the momenta. We define a reference system with no interactions (U=0), which

has a corresponding partition function Qo, then we would expect that for small interactions

(U is small) the velocity distribution (Maxwell Boltzmann distribution), would effectively

remain invariant. Hence we have an effective partition function, q, defined as:

q ≡ Q

Qo
≈
∑
i

exp−U(X1(i), X2(i) . . . Xn(i))

kT
(1.4)

classically this is called the configuration integral. This is effectively a ’projection’ or

marginalization over the momentum coordinates.

1.1.2 Thermodynamics

Our interest is not in isolated physical systems, as the M particle system above, rather we are

interested in closed (energy is exchangeable, but particles are not exchangeable) and open

(energy is exchangeable, and particles are exchangeable) systems. The Victorian founders of

the field of open and closed systems, of thermodynamics, were contemporaries with Charles

Darwin, which is very fitting seeing that their insights into heat and particle exchange (a

form of work) supplies the essential mechanics to describe biological systems.

Conservation of energy for isolated systems is a consequence of Newton’s second law.

A more interesting statement is that the energy of a closed system in equilibrium can not

spontaneously change, this is the statement of the first law of thermodynamics. Hence we

must do work or heat the system to change its internal energy3.

3The Clausius convention for the form of the first law: dU = q − w = heat supplied to the system (q) -
work done by the system (w)
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dU = q − w (1.5)

dU = TdS + PdV

Here U is the internal energy, the internal energy of the system is the Hamiltonian, H, hence

H = U . In (1.5) q is the heat (q has nothing to do with the partition function, which uses the

same symbol), and w is the work (the work also accounts for particle exchange processes).

The system above only has one type of particle, for systems that allow transcription

factor to bind to DNA segments it is necessary to introduce multiple particle species (the

protein and DNA). By Gibbs’ phase rule, we know that for a binary system we will need

four independent variables, one of which is intensive. Hence we have many options available

for constructing binary particle ensembles. For the species that can vary particle number

the natural variable is the chemical potential, while for systems that are closed the natural

variable is just the particle number. Hence, for a binary system, composed of M components

of S′ (sequences) and N components of P ′ (protein ), we could define the open open sys-

tem with the following coordinates (µS′ , µP ′ , V, T ); while the closed-closed system has the

following form:

dU = TdS + µS′dM + µP ′dN + PdV (1.6)

We will think of binding sites interacting with proteins as solute solute interactions that

are occurring in a solvent. The nucleoplasm represents a very complicated solvent, a mixture
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in the liquid phase of all sorts of complicated biopolymers and water molecules and the many

other inorganic substances in a biological nucleus. Of course, the protein that must find a

specific binding site within the genome, must compete with all the other molecules in the

nucleus for occupying any point in the spatial grid of the nucleus. However, again, my aim

is to represent and describe the recognition of a particular binding site by a protein, hence I

would like to make progress specifically on the recognition problem, without being hampered

by the solvent properties. Hence, I will introduce an argument in Hill’s text[62], and also

discussed by Landua[75], the so-called ’dilute limit’. This will allow us to rigorously account

for the fact that the protein and DNA are embedded in a phyiological solvent, while, to a

large degree, hides the solvent molecular details and the solvent-solute details by introducing

an effective molecular partition function q, which will be similar to Eq. 1.4 in two ways: first

because the momentum will not be of interest and second because we will be taking ratio of

two types of well-defined systems to define the ’effective’ partition function. However, q is

different than Eq. 1.4 in that a molecular partition function is about one type of particle (one

molecule), where for large systems like a gas of n identical and distinguishable molecules,

one commonly denotes the partition function as Q = qn, hence lowercase is to denote ’one

molecule’, and capital case to denote large systems. By defining the effective partition

function we will then proceed to the relevant problem of the solute-solute (protein-binding

site) interaction, where the physiological environment (solvent) will be accounted for in both

the DNA and protein by defining an effective partition funtion for each solute (e.g. qDNA

and qpro).

Solvent Solute, dilute limit. The solvent-solute system is just a binary system. Here we

will follow Hill’s approach (see chapter 1 [62]), which is to start off by organizing the liquidey
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solution with the two component grand canonical system4

exp
PV
kT = Ξ(µS , µP , V, T ) =

∑
N1

∑
N2

Q(N1, N2, V, T ) exp
(N1µ1 +N2µ2)

kT
(1.7)

Here we have relabelled S as 1 and P as 2, and denoted the two-component canonical

ensemble as Q(N1, N2, V, T )5. Now we know the average solute particle number:

< N2 >=
∑
n2

n2P (n2) = λ2
∂ log Ξ

∂λ2
(1.8)

By taking the derivative with respect to the absolute activity of the solute, λ2 = exp
N2µ2
kT ,

we can calculate the average number of solute particles. To take this derivative, first notice

that in the dilute limit of solute, the summation over the solute may as well be neglected,

since the solute activity approaches zero. If we define the pure solvent grand partition

function as Ψo =
∑
N1

Q(N1, 0, V, T )λ
N1
1 , and the solvent grand partition function Ψ1 =∑

N1
Q(N1, 1, V, T )λ

N1
1 as the grand for the solvent with one solute embedded in it6. Then

the derivative will appear as:

λ2
∂ log Ξ

∂λ2
= λ2

Ψ1 + 2 ∗Ψ2λ2 + 3 ∗Ψ3λ
2
2 . . .

Ψ0 + Ψ1λ2 + Ψ2λ
2
2 + Ψ3λ

3
2 . . .

(1.9)

4The grand canonical ensemble is related to the thermodynamic grand potential, by the legendre transform
of Eq.1.1.2, the transform leads to: dU = TdS+ < M > dµS′+ < N > dµP ′ + PdV

5In the case of noninteracting solvent and solute Q(N1, N2, V, T ) factorizes into two ’ideal gas’ ensembles,

namely: Q(N1, N2, V, T ) =
Q(N1,V,T )N1

N1!
Q(N2,V,T )N2

N2!
, while for interacting solvent and solute the inter-

action energy is contained in the potential energy of of the Hamiltonian, and hence Q(N1, N2, V, T ) can not
be factorized. Regardless of this interaction we can proceed to the ’recognition problem’ and construction
of an effective partition function being aware that explicit representation of the solvent solute interaction
will require writing a potential between the solvent-solute in the Hamiltonian of Eq.1.3, which are details we
wish to hide.

6Note that Ψ1 will posses a solute solvent interaction inside of Q(N1, 1, V, T ) only if the solute interacts

with the solvent, otherwise Q(N1, 1, V, T ) is simply Q(1, 0, V, T )N1Q(0, 1, V, T ) for the case that the solvent
particles are identical and distinguishable.
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As limλ2→+0, we find that:

< N2 >=
Ψ1

Ψ0
λ2 (1.10)

Hence, just as in Eq. 1.4 where we defined the effective partition function, q, the configuration

integral, here again we will define an effective partition function for a solution system. Hence,

for a solute immersed in a solvent we will define the effective partition function for the solute

as:

q(N, V, T ) ≡ Ψ1(µ1, N2 = 1, V, T )

Ψ0(µ1, N2 = 0, V, T )
(1.11)

We can approximate the grand canonical ensemble partition functions on the right hand side

of the above equation by using the maximum term of the partition function:

q =
Ψ1(µ1, N2 = 1, V, T )

Ψ0(µ1, N2 = 0, V, T )
≈ Qm(< N1 >, 1, V, T )

Qm(< N1 >′, 0, V, T )
λ−(<N1>−<N1>

′) (1.12)

here, Qm(N1, 1, V, T ) is the canonical partition function for one solute in a box of size V

of solvent particles, where the subscript m indicates we have taken the largest term of the

grand canonical ensemble. The maximum term’s particle number is occurs at the expected

particle number < N1 > due to the Gaussian property that the maximum occurs at the

expected value (where < N1 >
′ is a slightly different maximum for the constant volume case

of no solute molecules (because the now evacuated space leaves more room for solvent to

fill). The average solvent particle numbers are nuisance variables that we can, in a sense,

transform out of the effective partition function. Hence instead of using the two component

grand canonical system we will use the two component system with fixed pressure and fixed
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solvent particle number7. Hence the new partition function is

Ξ′(N1, µ2, p, T ) =
∑
N2

∑
V

Q(N1, N2, V, T ) exp
−pV
kT

exp
N2µ2

kT
, (1.13)

where the summation over the volume only works for discrete physical spaces, such as lattices

(see Eq.2.23 of Hill[62]). Now if we repeat the exact steps above from Eq.1.8 to Eq.1.12 using

the new partition function (Ξ′), we will arrive at:

q =
Qm(N1, 1, Vm, T )

Qm(N1, 0, V ′m, T )
λ−p(Vm−V

′
m), (1.14)

where again we have used the maximum term method isolating the canonical ensembles that

have the largest probability in the partition functions of Ψ′o and Ψ′1, where, for example the

pure solvent grand partition function in this case is Ψ′o =
∑
V Q(N1, 0, V, T )epV/kT , where

we denote the volume from the maximum term in this summation as Vm, and similarly Vm’

is the maximum term in the partition function (which sums over volumes) of solvent with

one solute particle present8.

1.1.2.1 Derivation of the chemical potential: µ = µo + ln (c)

On page 6 of T.Hill’s text[62], he derives the dilute limit formula for the chemical potential

µ = µo + ln (c) using a vacuum as a solvent. After his argument he points out that the

7For example, imagine a beaker filled with a fixed number of liquid water molecules, then if we drop a
rock (one solute molecule) inside the beaker the water will rise - i.e. the volume will change); this is unlike
the grand canonical case, where we have to dispose of the excess water molecules displaced by the rock (those
that don’t fit in the volume V), since we must keep the volume fixed (albeit this could be done by allowing
the volume of interest to be the beaker filled to the brim, then any excess water molecules will simply flow
over the rim; but we’re interested in a simple mathematical tool, not an experimental design.

8We can think of −p(Vm−V ′m) as the mechanical work w done by inserting a solute into a solvent, namely:
w = P∆V , for example see figure 1.1 of Hill [62]. Furthermore, noting that the Helmoholtz (A) is the free
energy of the canonical partition function Q = exp (−A/kT ), we see that q = exp (∆A+ p∆V ) = exp (∆G).
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derivation he presented could and does take different forms (depending on the text and

purposes9 however, he states that for a solute solvent system (biological system), that this

approach (which I’ll now recapitulate) is necessary (if you want to keep things simple)).

In Eq. 1.10 we have the absolute activity of the solute, which by definition is λ2 = exp
µ2
kT ,

hence using the definition of the activity and along with Eq. 1.10, the average solute particle

number, we can derive the standard formula for the thermodynamic chemical potential. First

we must define the concentration c (particle density) as:

c =
< N2 >

V
, (1.15)

Now dividing both sides of Eq. 1.10 by V , we can rewrite Eq. 1.10 in terms of the

density, which results in:

c =
< N2 >

V
=
λ2

V

Ψ1

Ψ0
. (1.16)

Now plugging in exp
µ2
kT for λ2, and taking the logarithm of both sides of Eq. 1.19 results

in:

log c = log
exp

µ2
kT

V

Ψ1

Ψ0
. (1.17)

Now let us define q based on the right side of Eq.1.14, then if we rewrite the right side

of Eq.1.17 as two terms we have: log c = log
µ2
kT + log q

V . Upon rearranging terms, and

multiplying through by the thermal energy kT , and by writing kT log q
V = µo (which acts

9For example, given that dG = V dp + SdT , then for a constant temperature ideal gas system (solvent-

solute system with vacuum as the solvent) we have G = Go +
∫
V dp = Go +

∫ RT
p dp, where we have used

the gas constant R in the ideal gas law in the last expression. This results in G = Go + ln
p
po , where po

is the reference (standard state) of one bar, which is usually omitted, furthermore using G = µN , we can
divide the equation for dG through by N , now after integration this results in µ = µo + ln p, but using the
ideal gas law (p = ckT ) and keeping in mind that we omitted the reference pressure) we can rewrite this in
terms of a reference concentration of one particle per unit volume, resulting in: µ = µo + ln c.
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as a reference or a standard state)10, we have our desired result:

µ = µo + kT ln (c), (1.18)

1.1.2.2 Nucleoplasm genome ligand binding problem

The binding site is the main component of our physical system, we will let the number

of binding sites be fixed in the genome (i.e. the system is closed with respect to number

of binding sites). Let M be the number of binding sites in the genome, each site being

of the same energy. Let the system be open with respect to factor binding. Hence, each

particular locus (each site) is not just either bound or not bound, rather it will have an

occupancy. In equilibrium, we can define the equilibrium binding constant as a function of

the concentrations of the components of the system.

The change in free energy per particle, ∆µ, of the binding process is zero in equilibrium,

recall each species in each phase has its own chemical potential:

µ = µo + ln c, (1.19)

here µo is the reference energy (standard state), and c is the concentration or density of the

chemical species relative to standard concentration of ’1’ in the units of interest, hence we

also have:

µSP − µS − µP = 0 (1.20)

10This statistical mechanics approach is in contrast to the thermodynamic approach of the footnote above,
where one integrates dG = V dp from some standard state (an arbitrary reference) to a desired point (in
thermodynamic space, with dimensions like pressure). Here the point we reference is, in a sense, a point in
phase space (a finer level of detail than the coarse grained thermodynamic variables.
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now if we group common standard states and concentrations, and rearrange:

µoSP − µ
o
S − µ

o
P = ln(

[SP ]e
[S]e[P ]e

) (1.21)

Here the subscript e on the concentrations is to remind us that the concentrations are no

longer a variable, but fixed by the equilibrium constraint, and we assume units of kT = 1.

Our chemical potentials are linked to the molecular energies through the logarithm of the

dilute limit partition function of Eq. 1.14 (if the system is in equilibrium, hence we also have:

µoSP − µ
o
S − µ

o
P = ln(

qSP
qSqP

) (1.22)

Here we will assume that p∆V factors from Eq.1.14 that arise from the effective molecular

partition functions from the righ side expression of Eq.1.22 all cancel. This is because the

pressure is constant, and we will assume the volume of the complex SP is roufly the additive

volume of the molecules S and P in isolation in the solvent. Now we see that the binding

energy emerges from the ratio of partition functions, hence, we define a new partition function

as:

q =
qSP
qS

= qP e
(−Eb). (1.23)

Here, the binding energy, Eb is equal to the work done to separate the bound complex

protein and DNA (denoted as the SP particle). It is the solute-solute interaction. It can

also be thought of as the energy to lift an adsorbate out of the potential well of depth Eb

that describes the influence of the sequence on the adsorbate, or it could be thought of as

the parameter σ in the pairwise potential of a Lennard Jones potential (the depth of the

LJ potential). It also determines the potential energy term U(XS , XP ) that we would have
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added to our Hamiltonian in equation (1.1). The emergence of Eb by taking the ratio of the

effective partition functions is a consequence of the assumption that the molecular degrees

of freedom, such as rotation and vibration are unperturbed by the binding process. For

example, for the molecule S, we have qS ≈ qSr q
S
v , similarly for the molecule P. The complex

SP contains all of these molecular states too, however the complex also contains an additional

factor due to the interaction (such as an LJ potential). Assuming the complex is stable, then

we can assume we are at the minima of the pair-wise potential, which we call the binding

energy11

Linking the statistical mechanic’s partition functions to the thermodynamic binding con-

stant we have:

K = e(−Eb), (1.24)

where the binding constant is defined by:

K =
[SP ]e

[S]e[P ]e
. (1.25)

Experimentally this can be determined by binding titration curves, which allow one to trans-

11An example of the cancellations of the partition functions: Let qSr be the rotational partition function

over the eigenvalues of the Hamiltonian for the rotational degrees of freedom, e.g. qSr =
∑
i exp(HSi ), where

i runs over the eigenvalues of the Hamiltonian for the S molecule, similarly for the other degrees of freedom
(all the variables are assumed classical, hence we can work in a real vector space, as opposed to a complex

vector space). Then
qPS
qP qS

=
qPr
∏
d q
P
d q

S
r
∏
f q
S
f exp(−U)

qPr
∏
d q
P
d
qSr
∏
f q
S
f

, where d and f run over all remaining ’degrees of

freedom’ for the molecules S and P, where the form of each degree of freedom’s Hamiltonian will determine the
eigenvalues and hence the partition functions (the ’momenta’ and ’position’ random variables of the Eq.1.1
are seen as ’degrees of freedom’[64] in this context, hence the variables of Eq.1.1 can be seen as generalized
coordinates in phase space, where the random variable X, for example, may represent a rotation). Whatever
the form of these Hamiltonians, all of these partition functions cancel if they are unperturbed when P and
S form a complex or ’bind’, and all that remains is the interaction between S and P denoted as U, which at
equilibrium has a value Eb.
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form the binding constant as a function of the fractional occupancy. As a consistency check,

we see that if the binding energy is zero (no interaction between sequence and protein, then

the concentration of the bound complex is just as likely as the unbound complex, while

complete binding requires the binding energy to be negative infinity, and for particles that

repel such that the bound complex never forms the binding energy must be plus infinity),

then we have:

qSP = qSqP . (1.26)

Hence, we find that partition functions behave almost identically as joint distributions. The

beauty of partition functions, is that we maintain the molecular link to the Hamiltonian,

and a link to thermodynamics.

The above analysis lays the foundation for understanding the behavior of a transcription

factor (protein) that binds in a solution with identical sequences (DNA oligos for example).

One can imagine the solvent as the oligos, and use standard partition functions, or one can

work in a frame where the oligos themselves are another solute particle (like the protein),

where both solutes are bathed in a solvent like water or milk. I now extend the analysis to

the case of a protein binding to a single site within the genome. First, we will make the

observation that for a genome that contains an array of identical binding sites, the problem

then effectively reduces to a protein binding to a solution of oligos.

For now we will assume that the n sites are independent of one another, hence, we can

work with a system of just one site, and realize that to extend the system to all n sites,

simply requires scaling the free energy by n, and raising the partition function to the power

of n. Hence, although each individual site will have fluctuations between being bound and

unbound, we can use the n sites as effective data to increase the power of our statistics for
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learning about the binding energy.

1.1.2.3 One binding site

For the case that the genome can be modeled as n identical binding sites, we can construct a

system with n fixed sites where the binding protein number is allowed to vary, (open closed

system):

Ξ =
ξno
n!

(1.27)

Here, Ξ is the grand canonical partition function for the n sites. The independence of the

sites means we can simply work with just the grand canonical partition function for a single

binding site ξo, where the factorial is due to the indistinguishably of the n sites. Hence, we

can work with a single site system, and simply note that extensive quantities (such as the

binding energy) will simply be multiplies of the single site system (e.g. the binding energy

of 10 bound proteins is simply ten times larger than the binding energy of single protein,

and the one dimensional volume of one site simply increases by a factor of 10 for ten sites

(i.e. length, which is n in units of the binding site length)).

The single binding site is fixed (closed) while the adsorbate is open, hence single site

partition function is:

ξo = qP + qSPλ (1.28)

here the q’s are effective partition functions for solutes in solvent (the dilute limit). We can

renormalize the partition function:

ξ = 1 + qλ (1.29)

Here q is the effective partition function of the bound complex, q = qSP /qP . Clearly ξo
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and ξ are different numerically. However, for relative probabilities the forms are irrelevant.

Hence the occupancy (relative probability between bound to unbound) is:

Pb =
qλ

ξo
=

qλ

1 + qλ
. (1.30)

The absolute activity (λ = exp(µ/kT )) contains the chemical potential that is equal to the

potential of both the free protein (the protein floating around in the nucleoplasm) and the

protein that is bound on the site (i.e. that is in our system). This is because in equilibrium,

the chemical potential of the reservoir of particles (free protein) must equal the chemical

potential of the bound protein. This is simply the definition of equilibrium. If the potentials

are unequal, which certainly occurs in development, then there will be a net flux into or out

of our system (the binding site), until the potentials equilibrate. Utilizing the fact that the

chemical potentials of the reservoir and system are equal gives us two potential equations,

one in the form of the a controllable parameter (the free protein with concentration cP that

is related to the potential of Eq. 1.19) and another in the form of partition function of the

grand canonical ensemble (i.e. solve for the potential in Eq. 1.30), relating these allows for

us to rewrite the occupancy as:

Pb =
cpK

1 + cpK
=

cPS
cP + cPS

, (1.31)

which is utilized extensively in chapter 3 of my dissertation for calculations of the occupancy

of factors on multiple heterogeneous DNA binding sites of cis regulatory modules. For

further details on this topic see also chapter 2 of Hill[62].
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1.1.2.4 Two dependent binding sites

For a system with two identical independent binding sites we have:

ξ = 1 + 2qc+ q2c2 (1.32)

We will be interested in cooperativity between the two bound adsorbates, a dependency,

which will modify the above function to:

ξ = 1 + 2qc+ yq2c2 (1.33)

Here y is the exponential of the work required to perform the following reaction 10 + 01

= 11 + 00, where 00 is the unbound unbound configuration etc.. This process requires no

energy unless there is an interaction between the adsorbates. Using Hill’s formalism we have

in general:

ξ = y00 + qc(y10 + y01) + y11q
2c2 (1.34)

For example, y11 = y, and contains cooperativity for bound protein-protein interactions,

while y00 refers to an interaction that occurs between the two binding sites (an interaction

that occurs in the configuration 00).

Furthermore, to compute the probability of any configuration occurring we simply extract

the corresponding term from the partition function and compute the relative probability. For

example, the probability of configuration 11 where both proteins are bound is:

P =
yq2c2

ξ
. (1.35)
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1.1.2.5 A genome of n dependent binding sites

For n binding sites, where the bound proteins interact, there are a total of 2n different types

of possible interactions that may be accounted for. For the case that only nearest neighbors

interact, we have Ξ = ξn

n! , where ξ = 1 + yqc such that y contains the interaction energy.

For the case that all n sites are different, yet there are still nearest neighbor interactions of

bound factors we have: Ξ =
∏n
i ξi, where ξi = 1 + yiqic.

1.1.2.6 Highly correlated systems, the k-mer sequence and recognition problem

We’ve been treating sequences S, as if they were simply particles. DNA sequences consist

of units of bases: A,C,G,T. Proteins, like transcription factors, may prefer one base over

another, and in general may prefer a specific ordering of specific bases, for example 5’-

AAAT may not be equivalent to 5’-TAAA Notice these are not genetic complements (e.g.

5’-AAAT complements 5’-ATTT, where I will always write DNA sequences in the 5’ to 3’

direction).

Rather they are mathematical permutations of one another. For the case that one con-

siders a k-mer, a binding site that contains k consecutive component sites that are all bound

or all unbound, the k component sites can be aggregated into just one binding site (since

they’re completely correlated). This is the form I use for the representation of transcription

factor binding sites, where each component of the k internal sites represents a DNA base

12, where base really means base-pair, since proteins bind to the double-stranded DNA-but

we only use one strand for the representation of the binding site to keep notation simple.

For example, a specific 3-mer of DNA, is 5’-AAA, where the protein is really binding to the

12This is a form widely accepted possibly due to natural selection acting at the units of the bases (which
are roughly the chemical functional groups)
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complex of 5’-AAA and 5’-TTT. And rather than constructing a closed open system for the

DNA and adsorbate for each component of the sequence, we instead construct a closed open

system for the aggregate. Hence the configurations for the closed open system would simply

be bound or unbound; identical to the problem of a single binding site with variable number

of adsorbate. Another example is two dimers. For example, 5’-AA and 5’-AA, which consist

of the sequence 5’-AAAA. This is simply considered as two binding sites, and hence has four

configurations 00,10,01,11, where the 01 configuration indicates the first two bases of AA

are unbound, while the last dimer is bound by the adsorbate. Hence this can be treated

identically to how two binding sites were treated above.

An additional complexity will be to not only introduce each base as having a specific

binding energy (so 4 distinct binding energies), but each base within the k-mer as having a

specific binding energy. Hence the binding energy will be based on a function of 4*k possible

energies. This means that for a lattice of k sites, we treat each site independently in terms

of their binding energies, yet in terms of the binding to the k-sites, the sites are completely

correlated. Hence the binding energy of a k-mer S to a specific adsorbate is:

Eb = E(S) =
k∑
i

E(Si), (1.36)

and the binding constant for the k-mer to the adsorbate is:

K(S) =
k∏
i

K(Si). (1.37)

This complexity can be increased by considering a hierarchy of possible internal inter-

actions, or cooperativity within the binding site, such that the top of the hierarchy has 4k
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possible energies. This hierarchy is explored commonly in the interdisciplinary literature

through different probabilistic models of sequences.

In 1987, Berg and von-Hippel (BvH) introduce their evolutionary selection model of

protein DNA regulatory sequences, which effectively unites the idea of the highly correlated

binding problem to Multiple Sequence Alignment. Staden, three years earlier, had introduced

the idea of making a table to organize the count data from a MSA. At the time, Multiple

Sequence Alignment was an emerging field (Smith-Waterman’s local pairwise alignment was

only invented 3 years earlier), Blast does not appear until 1990, and the first named Hidden

Markov Model applied to sequences, according to Durbin, is 1994[38]. The k-mer binding

sites in the 1987 BvH paper[16], were modeled by what are called a Position Weight Matrices,

PWMs, which would eventually be recognized as a HMM in Durbin’s text[38], see chapter

5, where the PWMs are called Position Specific Scoring Matrices, PSSMs.

1.1.2.7 K-mers and PWM binding constants

We know that we can treat the binding of a protein to a k-mer (a sequence S) using standard

thermodynamics, for example, in units of the thermal energy, we have:

K(S) =
[PS]

[P ][S]
= e(−E(S)), (1.38)

where E(S) is the binding energy that we will assume obeys Eq. 1.1.2.6. We would like to

know the binding constant of the adsorbate to all possible 4k sequences S. This is tedious

and possibly experimentally infeasible. We can use the binding to the highest affinity binding

sequence (the ’concensus’ sequence (So)) as a reference point. Then we can define (redefine)

E(S) as the perturbation energy or the amount the binding energy increases when one
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perturbs the system from So to sequence S. Hence we define a reference energy or zero of

energy as E(So) = 0 which is an arbitrary choice of reference13.

From the perspective of Hill’s perturbation theory (see page 29 of Hill[62]), we see that

we could model perturbations from a reference system by:

K(S) = Koe
−E(S) (1.39)

Here we have generalized the binding constant of a protein to any sequence S of length

k. Physically this is hard to imagine experimentally in real time for a bound protein-DNA

system, as we’re talking about changing just part of the genetic material (a base or two)

bound to the protein while keeping in tack the bulk of the binding site. However, since the

end result of the process is ’path independent’, it is irrelevant the method used to cause the

perturbation, hence the perturbation may even be an evolutionary mutation of a binding

site.

Assuming that each position within the binding site is independent, we can then construct

a table of all the single mutation perturbations away from the concensus, thereby allowing us

to estimate binding energy for all possible k-mers. This table contains the matrix elements

of the so-called energy Position Weight Matrix, discussed in more detail in Chapter 2, which

is used in computational algorithms that ’search’ for binding sites for transcription factors.

13Note, we are not saying K(So) =
[PSo]
[P ][So]

= e(−E(So)) = 1. Rather, in a sense, we are redefining the

’binding energy’ to be a perturbation energy, defined by E(S) = ln
K(S)
K(So)

, where it is clear that to compute

the work to separate S bound by P would require a priori knowledge of K(So), which must be experimentally
determined, in addition to the experimental determination of K(S). Hereafter, unless explicity stated, this
perturbation energy E will simply be called the binding energy. Furthermore, in chapter 2, we denote E(S)
as a bioinformatic binding energy that is inferred from sequence data, and G(S) (a Gibbs free energy). In
this chapter, it is best to think of E(S) = G(S), namely as a biochemical energy.
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1.1.2.8 Single binding site protein systems in distinct environments

We can further imagine perturbations to the binding energy due to the environment of the

binding site. For example, if we have two distinct environments, c and u, which will become

useful ideas in Chapter 2. we could construct two distinct binding constant tables, where

the binding constant for any given sequence in environment c would be:

K(S)c = Kc
oe(−E(S)c), (1.40)

and similarly in environment u:

K(S)u = Ku
o e

(−E(S)u) (1.41)

In environment c, we imagine all 4k sequences S (all DNA k-mers) binding constants being

measure to be K(S)c. Similarly, in environment u, we imagine all 4k sequences S binding

constants being measured to be K(S)u. Statistically we are assuming P (S|c) 6= P (S), and

similarly for environment u, where P (S) is the probability that sequence S is bound by the

adsorbate when all possible 4k k-mer sequences compete for binding with the adsorbate.

Hence P (S) is the occupancy of sequence S and the adsorbate normalized by the sum over

all possible occupancies of the 4k k-mer sequences, where the occupancy is calculated for all

k-mer sequences under the same concentration of the adsorbate.

These environments could be considered at the cis-level, that is at the level of the genome.

Hence, the environments c and u, could be determined by whether or not a cooccurring bind-

ing site is near the sequence S or not near. For example, one could imagine the environment

c is due to cooperative interactions that have evolved between the cooccurring binding sites,
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while environment u is due to uncooperative or just plain independent binding to the cooc-

curring binding sites. We explore this problem in detail in chapter 2, where we consider the

possibility that Dorsal binding sites have evolved as a mixture of distinct motifs due to a

’c’ and ’u’ cis-environment acting as a selective force to maintain to the component motifs.

This is an example of ’epistasis’ where multiple genes (i.e. the cooccurring binding sites) are

selected for jointly (i.e. the sites are not evolutionarily independent.)

1.1.2.9 An example of two k-mer binding sites system using a mixture

Now we can imagine two k-mer binding sites adjacent on a lattice (there may be intervening

nonspecific lattice sites between the two k-mer sites that act as ’spacers’), the important

point is that we label two disinct locations (each of length k) on the lattice to be sites.

For example two dimers separated by a spacer: S’= AANNNNCC, where AA is the first

dimer, and CC is the second dimer, and NNNN is a spacer of DNA that the adsorbate

does not recognize as a binding site. The two k-mer sites each bind distinct adsorbates, for

example the adsorbate Dorsal binds AA and the adsorbate Twist binds CC. We can explicitly

account for lateral interactions between the sites using the ’y’ factors previously introduced.

The lateral interaction can be adsorbate-adsorbate or sequence-sequence.

For example, there may be a sequence-sequence interaction between the particles AA and

TT. This can be accounted for by:

y11 = exp(w(S′)) = exp(E(S)c − E(S)u) = E(AA)c − E(AA)u, (1.42)

where we have introduced the energy terms from above that were from the environments, c
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and u. Here y11 is an exponential factor that contains the cooperative energy w(S′) that is

function of the underlying sequence S’, and is defined by our equation (1.35), and is further

defined on page 100 of Hill[62] for generalized binding site systems. If there is a sequence-

sequence interaction, then the binding energies E(S)c, E(S)u may be different, although it is

not a necessary condition for a sequence-sequence interaction to manifest itself in this form.

An implicit form of cooperativity at the sequence-sequence level is to just use E(S)c for

the case that Dorsal binding site k-mer cooccurs with a Twist binding site k-mer. This form

contains the binding energy to the sequence along with a shift in the binding site energy due

to the interaction with its cis-environment. The shift being modeled as a Kullback Leibler

divergence between the cis-specific environment relative to the case that the case that the

binding site is independent of its environment.

1.2 Biological Introduction

1.2.1 Tree of Life and the Theory of Life

The tree of life is both the organizing structure of life sciences (like its predecessor- Linnean

classification) and is a representation of the theory of life - evolution. On a short time-scale

it is a picture of biological reproduction - or unfaithful cloning - a pedigree. On long time-

scales, the tree is a representation of the process of species evolution, which in many ways

can be thought of as a pedigree of species, where each node represents a population of a

particular specie, and descent down the branches represents time, and division of a node

into two nodes (reproduction in a standard pedigree - parents having children..) represents

speciation events from a common ancestor (reproduction at a population level on geological

time-scales).
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1.2.1.1 Comparative Anatomy and Physiology

Previously,in the eighteenth century, Linnean by brute force clustering techniques organized

life according to anatomical similarities, leading to a classification system for life. This orga-

nization was not just a database that organized collections of living objects by comparative

anatomy; the organization explained why the objects were different or why they were similar

because comparative anatomy begs the question of ’function’, of physiology, and physiology

is a theory of life. In this sense, Linnaen systematic organization of life was a simple theory

of life, in that it did explain life, as does all physiology, because it explained the purpose

(function) of each anatomical feature14. For example, the purpose of a leg is locomotion,

of a jaw is to bite, of a root is to stabilize a standing plant (among other functions), of a

circulatory system (heart) is to circulate nutrients throughout the organism, of a stamen is

for sexual reproduction etc.; and Linnaeus knew these trivial relationships between struc-

ture and function, which undoubtedly helped in his grouping of organisms. Interpreting the

organization of life through a theory of structure and function is very powerful, as a theory

intentionally simplifies complex patterns so that they can be understood and comprehended.

Hence the theory of ’structure and function’ has one of the most important aspects of biolog-

ical theory, and that is to simplify life in a way that we can comprehend its rich diversity. It

also has an obvious predictive power, for example if an animal loses its legs you can predict

that it will lose locomotion. Although many of Linnean groups are based on reproductive

anatomical features, a ’structure and function’ theory is very short-sighted in terms of how

life reproduces, as it can only explain how to maintain existing population of species (by

14In biology the ’function’ of a trait or anatomical structure is what the trait does or accomplishes, hence
the word ’purpose’ seems to be a synonym to function. However, this may be confusing seeing that evolution
has no ’purpose’, hence ’purpose’ should not be interpreted as if the population or lineage that evolved the
trait had foresight and intended its creation.
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having the reproductive structures do what they do). What’s clearly missing is the origin

of life, how to make life from basic physical chemical principles; and the origin of all the

different kinds or species once basic life forms (i.e. specie meaning a group that can form

viable offspring).

The theory of evolution by Charles Darwin, which I’ll summarize in two pieces ’descent’

and ’modification’ added more structure to the theory of life. Darwin recognized (hypothe-

sized) that common anatomical structures were due to common ’descent’, indicating common

features need not be derived anew possibly using different ingredients each time, the entire

structure was passed on during reproduction. He also recognized that different structures

between two groups of animals was due to ’modification’ from a common ancestor between

the two groups of animals.

1.2.1.2 Classical evolution

Darwin’s theory in the late 1800s united life through one common lineage. However the

biological mechanisms of how to produce life from molecules (e.g. how are completely novel

and complex features derived in the first place) was not possible during Darwin’s time, as

the observational tools such as Leeuwenhoek’s microscope seemed to be insufficient. Further-

more to show that one specie of organism could be related to another (through the common

ancestor) would require an evolution experiment that takes longer than one’s lifetime (usu-

ally). Albeit, as suggested by Darwin’s book’s title, The Origin of Species, showing that one

species could be related to another was precisely his point.

In parallel with Darwin’s work, Mendel’s evolution experiment with peas would set in

motion the molecular basis of evolution, and set the stage for two contributions from molec-

ular biology that explain the molecular basis of inheritance. Before the advent of molecular
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biology, from a reductionist point of view, the proof (evidence) of the evolutionary tree

of multicellular organisms can be thought of as a hierarchy of conservation of features or

modules. The importance of conservation can not be stated enough, as Darwin’s central

tenant is ’descent’, meaning common features between our ancestors and ourselves are due

to conservation from descent: inheritance. At the highest level of modularity (and by far

the most useful for a big picture resolution of the tree of life for multicellular organisms) is

the anatomical structures (e.g. leg, eye, heart, nervous system). Comparative embryology

during Darwin’s time elucidated that all these anatomical structures from organs to gross

features like a leg (containing multiple organs, like skin) are derived from possibly just three

tissue types (germ layers). For example, the heart is derived from the mesoderm tissue, and

all multicellular organisms without a mesoderm in their embryonic stage do not develop a

heart. These three tissue types are composed of largely undifferentiated cells and during

development they work together and sometimes work independently to fate the array of dif-

ferent cell types that make up the anatomical features that make up multicellular organisms

(such as epidermal cells, hematopoietic cells, blood cells). Hence, before molecular biology

(before the ’gene’ picture), there was at least three basic conserved traits that could be used

for evidence on resolving tree branching in multicellular organisms (anatomical features,

germ layers, cell types).

1.2.1.3 Modern Synthesis of evolution

Molecular genetics, the first contribution from molecular biology, would show animals

posses genes that are contained in chromatin and that those genes were passed on from

parents to children during reproduction, this culminated in the ’modern synthesis’ of evo-

lutionary biology in the early 1900s. This would gain further support by R. Franklin’s
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crystallization of a chunk of chromatin, DNA. DNA was found to be a polymer strand that

would complement with another self assembling strand, which Francis and Crick saw could

serve as a ’copy’ for a replicating cell’s progeny cell. The ’modern synthesis’ is largely about

the molecular dynamics of populations, ’population genetics’, a population of organism’s

genomes (the frequency of genotypes) and how those change in time (in units of genera-

tions), and how they can be influenced by natural selection, mutation, gene flow, migration

and isolation (E. Mayer type speciation-allopatry). Most significantly, the gene centred

picture that had arisen in evolution now had given a fourth feature or module that was

conserved: the gene, which encodes for a protein.

1.2.1.4 Comparative genomics

With the advent of fast ’sequencing’ technology that can determine the genetic sequence of

whole genomes, genetic conservation (by simply comparing genomes) has become a powerful

tool in helping resolve the various branches of the evolutionary tree. With the knowledge

of the vast array of processes of genome evolution (how genome’s changes in time) we infer

the enormous genomes of complex organisms like humans that share genes in common with

the much smaller bacterial genomes, share these in common due to inheritance, through the

process of natural selection that balances the randomizing forces of mutation, as generation of

genes de novo (by random mutation) is far less likely (probabilistically) than the probability

of inheriting these modules (genes) (e.g. a gene of length 1000 nucleotide (hence about 333

amino acids) has 41000 = 22000 > 10300 possible sequences, which means an organism that

reproduces 1000 times per year would still require vastly more time than the time available

since the Big Bang to generate one gene (see Maynard Smith’s chapter one[88]).). The cause

of the genetic inheritance through natural selection can be due to standard reproduction
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along a lineage (i.e. meiosis and sexual reproduction), such as the human lineage, or it

can be due to more exotic forms of homology (inheritance), where viruses or transposable

elements can insert genetic material in host genomes resulting in genome expansion, where

the newly inserted genetic material may, over time, become a beneficial resource to the

host. Perhaps, the most significant source of genome evolution is gene duplication and

whole genome duplication (the human lineage is thought to have had two whole genome

duplications since the evolution of the deuterostomes - the 2 rounds (2R) hypothesis15)

that can have enormous effects such as those seen in the mustard family of plants. These

duplication events cause each original gene to have a copy whose purpose is in a sense

unfated, and hence is free to evolve a new function. Hence although humans have about

25,000 genes, many of these are just slight variants of one another -a gene family - inherited

through duplication events. Hence, the archibacteria that originated about four billion years

ago, evolved gene templates (a basic design) of some of the gene families through natural

selection for genes necessary to process the oxygen depleted environment, similarly their

descendent cyanobacteria evolved process necessary for photosynthesis, thereby transforming

the atmosphere to be amenable for evolution of gene networks in aerobic respiration found in

bacteria. It can then be interpreted that most of our genes (the genes found in eukaryotes)

that we share in common with bacteria are inherited from the bacteria. Hence gene phylogeny

has become the standard technique to resolve (determining the branching order) of the tree

of life. Of course, it has been shown that a gene phylogeny almost always agrees with an

anatomical grouping (such as Linnaeus groupings), because genes encode the anatomical

structures16.

15This 2R hypothesis is supported by whole genome analysis between vertebrates and invertebrates. In
particular the HOX genes as seen on four chromosomes occur on just one chromosome in the fly.

16One must still be careful using just anatomical features for determining the topology of the tree, as
’mimics’ commonly seen in the insect world in predator prey interactions to deceive their opponent clearly
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An obvious question about gene templates (gene families) is how does one infer that a

particular gene locus in human (for example) correspond to the same locus in say a fish. The

gene of interest in the two organisms may be the direct descendent in each lineage since the

most recent common ancestor of the organisms, or it may be the indirect descendent in each

lineage due to gene and genome duplications or viral and transposable element insertions

- this is the distinction of orthologs and paralogs18. Of course if the genomes are from

a recent common ancestor, like chimp and human, it’s relatively easy, since the ’order’ of

the genes is preserved (synteny), hence the genomes (chromosome) roughly match or align

from start to end (barring the five largescale inversions and the famous fusion of two of the

chimp’s 24 chromosomes forming chromosome ’number 2’ in human that has two centromeres

and two additional telomeres at the fusion site of the chromosomes, hence humans have 23

chromosomes.). However, for more distantly related organisms, such as fish and human, this

is more difficult due to chromosome inversions and the many indels since the most recent

common ancestor.

1.2.1.5 Expression patterns

The answer is that we need to know where in the body (where in the anatomy) is the gene

being expressed. If we are interested in a protein in the brain (say chordin), we would expect

that the homolog (here i use homolog to mean direct common ancestry - so i mean ortholog)

of that gene be expressed in the insect brain (say dpp). This expectation is in a sense obvious,

demonstrate that anatomical features can be evolved independently17. However, internal anatomy structures
like the central nervous system are much stronger anatomical features for determining evolution, since these
internal features are very complex and much harder to evolve de novo, and harder to co-opt due to high
levels of epistasis and pleiotropy.

18Convergence indicates the organism generated the feature anew, which is of course a possibility for
any material being obeying the laws of physics, but is so much less likely than inheritance that whenever
inheritance can be demonstrated possible this is the most probabilistic origin.
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as you may know through your own experience with food and taste that different organs and

tissue of an animal or plant ’body plan’ taste different due to the different proteins in those

organs (of course some tissues are full of sugars and lipids possibly overwhelming any taste

from the proteins). If the genes are indeed coexpressed in the same tissue, we next need

to know if the gene functions the same way, is its protein being used for the same purpose.

Given that the gene is coexpressed in the same tissue and functions the same, this, by

parsimony, would suggest the genes are orthologs rather than paralogs.

How do we see ’where’ a gene is expressed in a body (like is it expressed in the brain,

heart or muscle etc.)? This question could be answered partly by classical genetics (breeding

using Mendel’s laws) by determining if a known genotype resulted in embryonic lethality

(or when in development the fetus or larva died, or what environmental pressures would

’induce’ death -presumably because of the mutant gene). However, using classical genetics

alone to determine where a gene is expressed in a body is extremely tedious and indirect

and has major limitations and requires a lot of interpretation. A much faster technique

would be a visual tag on the gene’s protein or mRNA (such as a fluorescent marker or dye),

albeit classical genetics is still required to control for the correct allelic version of the gene

of interest among other reasons (like genomic background). This microscopic technology

became available in the 1980s and revolutionized are understanding of evolution by using

the technology coupled with time-shots of development, thereby also telling us ’when’ a gene

is expressed during an embryo’s development.

1.2.1.6 The generalization of the theory of evolution; developmental genetics

Prior to the 1980s, embryologist and developmental biologist had carefully observed the

different stages of development of many multicellular organisms. Maps were made of the
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different cell types that would be produced from the single fertilized egg, a cell lineage, as

was mapped in detail for the first time in the development of the nematode. These cell

lineages that were derived from the fertilized egg, and then germ layers, would mark the

differentiation of cells (or cell specification). By determining ’where’ a gene was expressed

in a developing animal embryo it became evident that the process of cell differentiation, was

linked with co-expression of whole sets of genes, where at each step of differentiation new

sets of genes were being expressed (and other turned off)19. Hence development in animals,

in a large part, can be seen as a result of ’gene regulation’.

The second part of molecular biology that supports macroevolution is developmental

genetics. Developmental genetics would show that master genes ( transcription factors)

when their regulatory targets or binding sites evolved, then whole developmental networks

(i.e. the genes necessary to build an anatomical structure) could be redeployed to a different

position of a developing body (e.g. the position that expressed the activator master gene),

or lead to modifications of current body parts20.

19Plant development is different than animals. Plants ubiquitously display ’phenotypic plasticity’, which in
development is called ’developmental plasticity’. Plant development is not a reproducible if the environment
of the plant changes (e.g. change the temperature or light and the plant will respond). Plants respond to
their environment, while animals do not, as Gilbert puts it: some organisms (like animal development) are
ruled by a tyrant genome, where the phenotype plays the passive permissive role of the ruled while other
organisms (like plants) are ruled by the environment, where now the genotype plays the passive role of the
ruled(see chapter 22 Gilbert[51]). Animals have largely evolved plasticity as part of their development, this
is a little different than homeostasis. Hence, ’developmental plasticity’ seen in plants is incorporated into
animal development. Animals have stably generated the internal environmental cues to turn genes on and
off at different anatomical positions of varying molecular environments, where a plant may develop roots if
cued by low light levels or various chemical triggers, an animal has put the cues for development as part of
its internal system. For example, animals always develops say a neuroectoderm and mesoderm because the
environmental cues that are a part of the embryonic environment are stable (such as in mother’s womb that
sets up concentration gradients of key transcription factors, which lead to the Dorsal gradient, or the egg
casing of fly or chicken) and are processed by components of the genome (e.g. CRMs)[52]

20As suggested by the phrase, ’developmental genetics’, this would seem to be a sub-discipline of ’molecular
genetics’ and hence not an extension or an enriching of the modern synthesis, but rather a refining. However,
the modern synthesis was a gene centred theory; it was about gene’s that encode for proteins. Developmental
genetics is a gene ’regulatory’ theory, it is about the parts of the genome that turn traditional genes on and
off; and gene regulatory elements (transcription factor binding sites) are not really apart of the modern idea
of a gene. A gene encodes for a protein. A genetic regulatory element encodes for something altogether
different.
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Developmental genetics to large degree is the field of study that shows at a molecular

level how whole anatomical features evolve, and how the diversity of anatomical features

and their arrangement (body plans) has evolved. This is because the detailed molecular

mechanisms of how animals develop has revealed the simplicity of anatomical scale evolution

(sometimes crudely called ’macroevolution’). Developmental mechanisms are observed in

the field of developmental genetics through powerful experiments such as transplantation

experiments, and gain and loss of functions experiments, along with the powerful tools of

genetics and microscopy techniques. In a sense developmental genetics, elucidates the ’Gene

Reulatory Networks’ that form the causal coarse grained molecular basis of self assembling

anatomical features.

1.2.2 Development

1.2.2.1 The origin of multicellularity; the evolution of development

About two billion years ago, single-celled algae started to cooperate by developing cell-cell

interactions, forming the first eukaryotic multicellular organisms, like algal mats. Such con-

structs eventually lead to the important innovation of multicellular organisms that is found

in animals (and other kingdoms): sexual reproduction through meiosis and fertilization. Like

endosymbiosis, which is possibly the origin of eukaryotes from bacteria, where two cells would

merge and partner to share their particular genes and hence traits (which may be different

traits), in sexual reproduction cells not only merge, or fertilize (merging of two gametes into

a zygote), but they first go through meiosis, which is significantly different from the results

of endosymbiosis (which replicate through mitosis of each fused component) significantly

different due to the ’recombination’ of traits, or crossing over, leading to great diversity in
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progeny, thereby leading to faster evolution (by Fisher’s Fundamental Theorem) and pre-

venting Muller’s ratchet (by creating gamete’s free of detrimental mutations). Furthermore,

the fusion of two genomes (e.g. the two gamete genomes) is a form of ’gene duplication’.

Genetic duplication events of genes is a source of ’gene families’, where the copied gene

(paralog) can extend the diversity in function of a particular template gene, which leads to a

whole family of genes(a paralog phylogeny, see for example chapter 7 of Durbin et al.[38])21.

These early sexual reproducing algae are the origin of eukaryotic early development

(which I define as eukaryotic cellular interactions that lead to a multicellular structure,

such as an algal mat (a plain of cells), or a ’blastula, like the protistan volvox’ (a ball of

cells)[126]). These primitive organisms are modern representatives and typical examples of

the evolution of multicellularity.

In the diverse domain of eukaryote the most famous groups are multicellular organisms

due to their gross anatomical features that capture our attention from due to their beauty

and diverse functions. In the multicellular organisms there is a remarkably conserved early

development, yet there is also marked differences in development suggesting that multicel-

lularity has independently evolved in plants, animals, and fungus.

Examples of multicellular precursors to multicellularity can be even seen in bacteria in

quorum sensing (chemical communication/signalling) and the primitive fungus yeast through

their form of sex using ’mating types’ (mating ’types’ are analogs of males and females)[126].

An array of protists (eukaryotes that are not animals, plants, or fungus) show multicellularity,

21Two bacterial cells could fuse leading to a n→ 2n genotype, similar to diploidy, and allowing for greater
genomic diversity as one of the duplicate copies of the gene are now free to serve a new function. However,
this genome duplication event is distinct from sexual reproduction (and hence is not diploidy, in my opinion),
as the new bacteria with 2n genes, can be said to now have simply n’ genes (a haploid with n’ genes), when
the n’ genes are replicated (through mitosis), the progeny are clones (if mutation rate is slow enough), which
distinguishes it from sex, in sexual reproduction the progeny are not clones due to recombination (assuming
the mutation rate is high enough that there exists some genetic polymorphisms in the population, such that
the cross over pieces are not identical).
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notably volvox and slime molds. All these ’primitive’ organisms are good starting points for

the study of multicellularity.

Development, to a large degree, focuses on multi-cell types - cellular differentiation (a

skin cell ’functions’ differently than a germ cell and functions different than a stomach cell

that is a digestive cell that can ’eat’ absorbed surroundings ). That is the division of labor

through specialized cells, which is not seen in many primitive organisms, rather these simple

organisms are displaying ’colonies’, which are the aggregates of cells due to mitosis resulting

in progeny cells being proximal to one another (which is physically important in development,

but it doesn’t display the division of the aggregate into different cell types).

The starting point of development is the innovation of meiosis, invented by the protists,

and passed on to its progeny lineages of plants, animals, and fungus. Hence, plants and

animals don’t derive sex anew for themselves, they were the benefactors of it from a protistan

ancestor. By the union of meiosis with fertilization (the opposite of meiosis, in a sense) the

ability to always have an extra copy of a gene, and therefore the ability of a gene to evolve a

new function becomes a stable component of life forms (regardless of whether some life forms

display a ’haploid dominant’ life form, like bryophytes in plants (e.g. moss and liverwort),

where the plant one normally sees is the haploid, because most of the bryophytes’ life cycle

exist in the haploid stage).

The great lineages of animals, fungus, and plants all develop from the fertilized ’egg’

(the fusion of the two gametes). ’Egg’ means oocyte here (one of the gametes) while in

the development literature, egg may also mean the structure that encases a baby, like a

chicken egg. Initially in evolution, possibly, there was no distinction between gametes, egg

and sperm (technically plants were first so egg and pollen): both gametes were equal in form,

just haploid cells, like in yeasts. Regardless of the controversial origin of meiosis, we see here

40



a clear case of different cell types and an abstract case of the division of labor at the cell level,

the emergence of multi-cell types (which, again, is different than simply cell aggregation).

The division of cell types for the first multi-cell type organisms is speculative, but it seems

the haploid cell’s role in the life cycle of the first meiotic cells was to provide a means to

generate unique progeny that were not clones of the parents (through recombination).

Cell aggregation in the form of colonies or even in the form of complex structures (the

rudiments of a body plan) such as seen in the protist volvox or the ’transitional form’ between

fungus and animals in the choanoflagellates possibly evolved independently of meiosis (which

I consider the origin of different cell types). Cell aggregation is caused by gene products that

connect cells together such as cadherins, actin, and microtubles. Hence one would suspect

that the cell adhesion genes would be conserved among the multicellular lineages, however

these great multicellular lineages of plants animals and fungus do not conserve some of these

genes, such as one of the largest gene families the ”receptor tyrosine kinase”, and hence

they have each evolved development ’from scratch’ (by convergence), which suggests that

the origin of development can not simply be tied into the origin and evolution of body

plans (plants have body plans in the form of features like roots, shoots, and leaves; which

can be laid out in many ways. Are plant body plans related to the layout of animal body

plans (like head, thorax, and tail)? For an excellent developmental comparative anatomy

between plants and animals see Alberts[4], who shows there is a similarity of germ layers

to the fundamental tissues in plants: epidermal cells, ground tissue cells, vascular tissue

cells. Independent evolution of body plans between plants and animals and fungus does

not mean we should not bother comparing their different life cycles and body plans or

compare their anatomies and physiology. The potential fact that these great lineages are

all independent simply means that the powerful inferences (predictions) that can be made

41



based on common ancestry are not valid (since their common ancestry is irrelevant if each one

independently evolved their anatomical structures, hence the only thing constraining their

differences would be basic physics and chemistry and the constraints imposed by descending

from their common protistan ancestor). However, their potential multicellular independence

is not as independent as some may suggest, there is still the deep homology in that they

all still use meiosis and they both must deal with the complexities of transcription in the

face of chromatin. Albeit, homology in meiosis may be of limited help in understanding

their origins because plants have a ’cell wall’ that is rigid, unlike animal’s permeable and

agile cell membrane, suggesting that the production of gametes, and the form of the gametes

themselves is vastly different between plants and animals (and indeed pollen and how it

’grows’ into the female stamen leading to the ovum is very different than sperm fertilizing

an egg in animals).

1.2.2.2 Fly Development

The coarse-grained (in space and time) molecular dynamics of how a fly is self assembled

from a maternally laid egg, a single cell, is coarsely understood at the molecular level thanks

to developmental genetics. This does not explain or prove anatomical evolution, however if

gain or loss or modification of a master genes (which encode transcription factors acting in

early development) or of gene regulatory binding sites that interact with the master genes

did result in modification or gain of loss of anatomical features, then this would convincingly

explain the evolutionary mechanism of anatomical features22

22This type of mechanism that has huge leaps in modification of an organism was observed in the fossil
record by John Conway (among others), a palaeontologist, which he called the Cambrian Explosion, and is
in contrast (contrast does not mean conflict or contradictory) to the ubiquitously accepted ’gradual accu-
mulation’ of beneficial mutations that results in adaptations between particular species of organisms (this
was even known by plant and animal breeders before Darwin’s theory). The idea of saltation was called
’punctuated equilibrium’ by Steven Jay Gould, where periods of gradual accumulation are punctuated by
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In the 1960s J. Monod, F. Jacob, and others working with the bacteria E coli discovered

that transcription factors can influence gene expression by activating or repressing a gene,

where the transcription factor itself was activated by environmental cues (such as sugar)[68].

This would mark the start of the field of gene regulation, by identifying certain types of pro-

teins, and hence genes, that are not enzymes or structural in nature. Rather, these regulatory

proteins, in a sense encoded in master genes, act as factors that modulate transcription and

hence gene expression. This would be the central theme in developmental genetics, which

was quickly recognized after Monod’s discovery by E. Davidson the developmental biologist

working in collaboration with a nuclear physicist R. Britain[23].

In Drosophila development it is known that after fertilization of the egg and after cleavage

(mitosis without a G phase (cells do not Grow bigger)) within the blastocyst maternally laid

transcription factors (such as Bicoid) zygotically regulate other transcription factors (such

as gap genes (which are transcription factors) which in turn regulate pair-rule genes (which

are transcription factors) which in turn regulate effector genes (like HOX genes, some of

which are transcription factors) that ultimately feed in to signalling networks and paracrine

factors that lead to the construction of anatomical features.

The initial maternally laid transcription factors are not ubiquitously expressed through-

out the egg chamber, rather, like a Fourier series, the first maternal transcription factor

protein forms a coarse pattern across the embryo, where the protein concentration is like a

square wave of concentration as a function of space that forms a term in a Fourier series (I

mean discrete summation of a few signals). This transcription factor protein may act alone

to activate a gap gene (like hunchback) or may act with another maternally laid transcription

factor whose pattern is also like a square wave (with a phase shift), thereby adding another

bursts of major anatomical feature novelty.
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term to the series. The addition of the two input signals results after a bit of time in an

additional new pattern across the embryo in the form a gap gene’s protein concentration.

Hence as time progresses more complex patterns appear as the gap gene’s interact (primarily

like addition of waves in a Fourier series) resulting in patterns like a sine wave (where, again,

the amplitude is the amount of protein at a particular time and the horizontal axis is a

spatial axis of the embryo (the wave is in space not time), where the embryo’s axis length

is fixed in time). Hence, after cleavage in development, the totipotent cells of the blastocyst

are in a sense transforming into more specialized cell types, where the cell is defined by

the amount of each specific gene product’s protein concentration at a particular position

of the embryo, where position is emphasized to stress that the concentration patterns are

over space (the location of the embryo). These differentiated cells will divide further and

differentiate further as the embryo starts to take the form of an adult segmented fly. The

chain reaction of gene interactions that begins with the maternal transcription factors that

activate other transcription factors, which in turn activate other factors, gives a molecular

dynamics description of early development, and hence answers the question of how to build

’from scratch’ a body plan (the arrangement of anatomical features).

’From scratch’ is misleading and ambiguous when discussing body plans of animals.

There are two issues the phrase needs to invoke, ontogeny (development) and phylogeny

(evolution). Disentangling the ambiguity we see first, how an adult arises from a single

fertilized egg using the model system Drosophila. Second, how did single celled organisms

evolve as the diversity of all multicellular organisms. It is in phylogeny and evolution that

the question of how to evolve from scratch an animal is misleading. Evolution rarely builds

from scratch (i.e. independent evolution such as convergence or parallelisms), body plans are

thought to derive through the reconstructions of a set of modules (developmental networks of
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genes) that each encode for anatomical features (hence all eyes, for example, are homologies

at a developmental level through the master gene (transcription factor) pax6 that binds to

a set of genes that set a ’totipotent’ or partially programmed cell to start to ’develop’ the

eye imaginal disc (the set of cells that form the basic outline of an eye, which when induced,

will form an eye. This induction event can occur at any part of a body (even in the tail if

so induced)[51].

The ideas of a totipotent cell and cell specification are necessary to explain development,

and hence necessary component of an extension to the modern synthesis. I will briefly discuss

cell differentiation and cell lineages below in the origin of multicellularity. Of course, the

initial body with many of the modules (urbilateria, the ancestor of all animals) or its fungal

ancestor, still needs to be explained as how one builds it from scratch ( this is being done

using choanoflagellites and brine shrimp -artemia), but most people are satisfied making

inferences with a hypothetical urbilateria that can explain the diversity of animals by the

evolution of gene regulatory networks. Furthermore, the statement that anatomical features

are modular at the genetic level is not obvious, as many believe complex features (anatomical

structures) contain highly correlated genetic networks, such that any genetic mutation would

be deleterious and probably lethal. The discovery of the extent of modularity (or the extent

of nonmodularity through ’induction’ by signalling and paracrine factors) I will discuss briefly

in the section below on ’modularity’.

1.2.2.3 The crowning jewel of Evo-Devo: the HOX genes

The work of Ed Lewis (a PhD student of Alfred Sturtevant) on body-transformative genes

that were ’saltationary’23 helped provide evidence and a theoretical framework (extending

23Saltation is the idea that within just one generation major evolutionary transformations could occur,
possibly even speciation, taking the idea to its fictional extreme would be like an ape having a baby human, a
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evolution theory) for the statement that diversity in the animal kingdom (in particular the

segmented insects) is due to evolution of gene reguatory networks. The ”Hox” genes were a

group of genes that caused ’Homeotic transformations’, which means a transformation in a

body part of an animal ’into’ another part, like changing a pair of legs into a pair of antennae.

These mutant transformations that were known to some biologist such as Bateson (who also

coined the word ’genetics’) as early as the late nineteenth century, who had catalogued

these in various animal groups such as crabs and flys etc.. An exemplary gene in the HOX

group is ’bithorax’, which was discovered in Thomas Hunt Morgan’s fly lab around 1915,

and a lineage of these mutants has been preserved since then. The gene is named after its

mutation that lead to a mutant fly with two (bi) thoraxes (like an abdomen). Lewis found

that further crosses with other mutant lineages lead to double the number of wings of the fly

(since the thorax is where the wing’s developmental source (or pool of cells that each have the

right genes turned on and off- a form of programming - leads to the developmental source

of cells of the wing, these ’programmed’ cells during early development are the so-called

’imaginal disc’, and in this case, the wing imaginal disk24 occurs, and hence is a homeotic

transformation. The Morgan lab didn’t know the molecular genetic basis behind bithorax

(what DNA sequence had changed (or possibly networks of DNA sequences) from the wild

type fly to the mutant), but they did know the mutation was inheritable, and hence was

genetic. They also were able to ’map’ the location of these genes (before they even knew

genes were made of DNA) to locations on the chromosome due to a technique developed

by Morgan’s undergrad student (Sturtevant), who had inferred that genes must be linearly

’hopeful monster’, hence in one generation a speciation event occurred. Of course this example uses the least
derived (the organism with the fewest features) as the poster child for the ancestor (e.g. algea for protist,
sponge for monoblasts, jellyfish for dipoblasts, worms (like nematode) for tripoblasts, ape for Hominoidea...)

24place a ’wing imaginal disc’ in the location of the head, and you get wings growing out of the head, or
place a ’leg imaginal disc’ - the cells ’programmed’ to build a leg where a wing is supposed to occur and
you’ll see leg’s ’grow’ or further develop where the wing’s were supposed to be.
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arrayed along the chromosome, which would suggest ’linked’ genes (or linearly close genes

along the chromosome) would not recombine that frequently during meiosis[120].

Armed with the knowledge of the location of the genes that contributed to the so-called

bithorax complex (due to Sturtevant’s mapping technology), Lewis created a model of how

the bithorax HOX genes evolved from an ancestral gene through tandem gene duplications

(which is largely thought correct) which culminated in his theoretical paper in 1978[82].

Lewis knew through his own genetic gain and loss of function assays the behavior of HOX

genes when crossed with various mutant fly lineages (due to classical genetics Lewis could

create hybrid flies due to recombination during meiosis to create crosses of known mutant

HOX lineages of flies, such as bithorax line). From these experiments he constructed a

Wolpert-like gradient model (e g. French Flag Model) of how the HOX genes would interact

like a Fourier series, one HOX gene would be coarsly expressed, thereby turning on another

HOX gene in the complex, then the two of these would work in tandem to turn on a third

HOX gene, then the three would all work in unison to turn on the fourth HOX gene. Central

to his hypothesis was not just the consecutive combinations of the HOX gene products

activate new HOX genes in the complex, but also that each new actively generated HOX

gene would repress the most recent in time activated gene, thereby creating fine patterns

of gene expressions within the cells of the embryo. These unique gene products across the

embryo were isolated in segments in space (he could literally see the segments, as these were

gross anatomical features each containing 1000’s of cells in early development).

Hence, Lewis had proposed a developmental mechanism for how each segment contained

different sets of gene products, and thereby explained how each segment would set in mo-

tion the signalling and paracrine factors that would eventually cause the segment to form

an anatomical feature like a leg, wing, head, or tail. The HOX genes are transcription fac-
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tors (master genes) that target the genes necessary in signalling pathways and paracrine

induction. In short, Lewis had a hypothesis for how anatomical features were built from

the segmented larva, but more importantly, he saw an evolutionary mechanism for saltation

or macroevolution by his model of the HOX genes; as the basis of HOX genes is that if

you mutate them, then the segments of the fly would change in such a way to suggest that

the anatomical features that decorate the segments (antennae, wings, legs, eye, abdomen

etc..) were all just one ancestral anatomical feature like a leg for locomotion, that could be

adapted or modified for further purposes, like an antennae for sensing the environment, or

a mandible or claw for killing prey.

It is now known that there are just three HOX genes in the bithorax complex. While,

Lewis had proposed more than this because of various mutations in different locations of

the same gene. The HOX genes display various splice sites, and various gene regulatory

elements, where mutations in a particular exon or particular transcription factor binding

site would cause different phenotypes. Although Lewis didn’t get everything right, to a

large degree he had proposed correctly one of the greatest theories of biology, how genes

’regulate’ development (by master genes turning on other genes necessary for building the

anatomical features), and how these genes, when mutated, can lead to major rearrangements

of anatomical features.

The question of how the segmented larva developed from the fertilized egg was being

elucidated in parallel with Lewis’ work through experiments of early development to identify

genes involved in forming the fly’s body structure. Partly through the extensive genetic

mutation experiments of Christiane Nullsein Volhard and Eric Wieschous that identified

embryonic lethal mutants (and therefore gene’s active in development) it became clearer

that there were maternal laid and zygotic genes (transcription factors) that caused Anterior
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Posterior segmentation in the larva from the humble beginning of the fertilized egg, these

genes are known as the gap genes and the pair-rule genes due to the mutant patterns that

the would cause in the early embryo and larva[97].

Although a genetic description was emerging of how the fly develops, it was not possible

to isolate the gene products of flies at tissue specific locations at the time of Wieschaus,

Nusslein Volhard, and Lewis due to the gene’s protein being inside of a multicellular envi-

ronment25. However, primitive techniques for isolating genes was becoming developed due

to recombinant technology being produced thanks largely to the discovery of bacterial en-

zymes that could cut and paste genes from chromosome segments (which is part of bacteria’s

primitive immune system). Allowing for foreign DNA to be designed and inserted in bac-

teria to create vast amounts by simply allowing the bacteria to divide (to grow colonies) -

genetic cloning. In addition FISH, flourescent in situ hybridization was being recognized as

a method to isolate genes through cDNA.

Work by McGinnis and Levine in Walter Gehring’s lab and work by others, in the early

1980s, possibly motivated by Lewis’s hypothesis that all the HOX genes are paralogs, lead

to the development of a molecular optical in situ hybridization technique that allowed one

to visually confirm and isolate the region (tissue specific) of expression of each HOX gene

in specific segments of the fly, where they wanted to know whether a HOX gene like anten-

napedia was really just expressed in the head (where the antennae appear)[89]. As Lewis

had hypothesized, every HOX gene were almost identical (they were paralogs), all of which

contained a DNA binding domain called the homeobox, a stretch of about 60 amino acids

that encodes the binding domain.

25For example, Lewis knew the locations on the chromosome of what gene’s caused homeotic mutations,
and what segments of a larva were effected by the mutation; but Lewis simply didn’t know to what extent
that gene’s product caused the mutation (it obviously could have been through some convoluted web of
interactions).
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A combination of the new microscopic technique, along with genomic sequencing, and

bioinformatic pattern recognition techniques has now allowed for developmental biology to

quickly advance by elucidating each gene expressed in each cell, and if that gene’s product

is a transcription factor, where that gene binds within the genome to determine the targets

of the factor.

1.2.2.4 Evolution of body plans in animals

The diversity of the animal kingdom cannot be explained by standard gene molecular evo-

lution (evolution of gene’s encoding proteins); the differences between proteins in animals

is not sufficient to explain the diversity in animal phenotypes[73]. It is thought there is

about 25,000 proteins, and these proteins (for example, hemoglobin) are largely conserved

across the entire kingdom. The diversity is now thought, to a large extent, to be due to

the way these proteins are used in different amounts and in different combinations in dif-

ferent cells and body parts of different multicellular organism. To change the amount or

create combinations of various proteins in a particular cell in an organism is accomplished

by gene regulation, along with expansion of genome sizes (from the early bacterial and pro-

tist) through gene duplication allowing the roughly same protein to adapt to a new niche in

the organism. Hence, in short, the diversity is due to the evolution of the elements of gene

regulatory networks, where the transcription factor binding site is THE fundamental unit.
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1.2.3 Gene regulation

1.2.3.1 Conserved Gene Regulatory Networks

A major aim of biology is to understand what elements of biological systems are conserved

between distantly related organisms. Similar to the predictive power of theoretical physics,

where general theory describes matter through a consistent web of rules and laws that can

be combined in various ways to derive new law with new predictions; in theoretical biology

the general theory is evolution that has various rules (statements) that can be consistently

combined to arrive at various conclusions and predictions. Unfortunately, evolution’s pre-

dictive power (in terms of comparison) is limited, to a large degree, to cases where genetic

inheritance governs a particular group of species. This is why modern biologists are cladist.

It is because genetic inheritance allows one to interpolate that all the unobserved organisms

since the last common ancestor of a data set of organisms have these features in common.

Therein lies the powerful predictions found in biology. The prediction that not only are the

few sparse observations descriptive of the data, but that it also provides information about

all of the unobserved organisms since the last common ancestor of the data. A theory of life

could have been such that each organism (species) has no relationship between each other

species. Imagine life forms independently forming in parallel; a many roots hypothesis. Such

a world has no tree of life, but a disparate graph of life. In this fictitious world every species

originated by self assembling following the laws of physics. Such a world would be very hard

to analyze how each of the complex life forms work, as each organism would possibly have

vastly different sets of physical and chemical processes governing its dynamics. Such mind

boggling complexity is not the world we live in. Rather, the evolutionary theory of life that

governs our world is inheritance through genetic material, which results in conserved features
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that are encoded in the genes.

Hence, in development a major aim is to understand what gene regulatory networks are

conserved, thereby providing laws and rules of regulatory networks that are not just confined

to a particular model organism, but entire clades. A number of gene regulatory networks have

been shown to be conserved, along with particular strategies in terms of circuit types (e.g.

feed forward circuit). Briefly, I will review two major themes in gene regulatory networks

(axis polarity and patterning) and their extent of conservation.

1.2.3.2 Anterior Posterior (AP) axis formation

AP HOX genes are conserved. However the maternal element Bicoid is derived, which seems

contradictory to the idea that for master genes the earlier they are turned on in development

the more effect they will have on downstream components of developmental pathways. The

Bicoid protein gradient is formed during oogenesis (the maternal process of producing the

unfertilized egg), where maternally laid mRNA becomes localized to the anterior portion of

the egg casing. The egg casing is a multicellular structure that upon completion of oogenesis

all of its cells but one (the egg) dissipate and form part of the yolk surrounding the egg’s

nuclei, all of which is inside the egg casing26.

Master genes such as Bicoid are usually thought to be highly pleiotropic and epistatic

(form network hubs) in that they causally interact with many target genes (which in turn

will interact with further genes). The fact that Bicoid is not a conserved element of develop-

ment across the animal kingdom suggests that even the upstream elements of developmental

pathways are modular (can be substituted) or that there are multiple ways (paths) that lead

to the same developmental outcome.

26I’m considering the ’nurse’ and ’follicle’ cells as a part of what I’m calling the ’egg casing’.
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Although Bicoid is not conserved, some of the downstream elements of AP developmental

pathway are conserved most notably the HOX genes ,which have been shown to be present

even in chordates (which includes the vertebrates, and some weird invertebrates like echino-

derms). The conservation of the HOX genes in mammals and insects was confirmed not only

by sequence similarity (i.e., homeobox sequence conservation), but also in that the HOX

genes expression patterns are similar during development and play the same functional role

in laying out the location of the anatomical features such as head and tail. Indicating that

the genetic instructions for how the embryo ’knows’ where to form the body structures is an

ancient conserved network that has been so useful to the animal kingdom that it has been

preserved since the Cambrian explosion27. One of the seminal experiment that confirmed the

genetic role of the genes that shape body plans in the animal kingdom was with eyeless and

pax6 in 1994 in Walter Gehring’s lab[105], where an insect’s gene early in development that

is known to cause loss of compound eye formation (eyeless) was replaced by a similar gene

found in mouse (which controls where the mouse eye forms, which is a different form than

the fly’s compound eye). Using molecular biology techniques the endogenous insect gene

was replaced with the mouse gene, where it was found that the fly still formed compound

eyes using the mouse gene, suggesting that the eyeless gene is ancient gene that instructs

the embryo to form an eye. What kind of eye? That is not a question answered in body plan

genes. The developmental genes necessary to instruct the embryo where each anatomical

feature goes (the master genes) are fundamentally distinct from the genes that actually are

critical components of the actually anatomical structure. For example, the gene eyeless is

found (expressed) during the development of the eye (i.e., it is expressed during development

27Using the construction of a home from a master builder (maybe an architect) as a metaphor, the master
genes (i.e. the HOX genes) don’t tell the developmental program ’how’ to build a wing, it tells the program
’where’ to put the wing in the home. Hence ’master builder’ is a bit misleading of a metaphor, they don’t
build anything, they simply give crude locational cues of where certain features should begin to be built.
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in locations of the embryo where an eye will form), but it is not found (not expressed) in the

fully functional eye (the adult structure). Hence, the body plan genes are similar to bankers

or stock brokers in a financial system, who don’t actually produce any tangible products like

music or a cup of coffee, rather they help set in motion the complicated web of interactions

that can bring these commodities together in a harmonious manner28.

Further evidence of this significance was corroborated by modifying the expression pat-

tern of this gene (ectopic expression), which would cause eyes to form at different locations of

the body[48]. Hence, the HOX genes are all examples of master genes (transcription factors)

whose role is in regulating how the animal is to build itself into the fixed arrangement of

body parts that help define each animal specie.

1.2.3.3 Dorsal Ventral (DV) axis formation

The early steps necessary in forming the Dorsal Ventral axis of the fly embryo, much like

the AP network, are set in motion during oogenesis, where in the case of DV, at the same

time the Bicoid mRNA is producing a gradient in the unfertilized egg (oocyte), in parallel a

gene called gurken29polarizes the DV axis of the encasing egg by localizing to one side of the

future embryo. The side that has the localized mRNA becomes the ’end’ of the Dorsal axis,

and directly opposite of this side becomes the Ventral side of the future embryo. Shortly

after Gurken localization and DV axis polarization, a maternal gradient of Spatzel is created

from a series of protein complex degradations or splits induces the ’Toll pathway’, where

Spatzel binds to the Toll transmembrane receptors that signal to a maternal complex of

28Some HOX genes, like dpp, are master genes that play the role of putting disparate object together in
harmony, but they also play other roles latter in development, such as in the literal construction of body
parts (such as the nervous system for dpp).

29The mRNA of gurken is transcribed from the egg’s nucleus, unlike Bicoid, where the mRNA was maternal
mRNA.
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Cactus and Dorsal protein that in turn causes the complex to split and the protein Dorsal

now displays a nuclear localization signal, that allows it passage into nuclei, where Dorsal

acts as a transcription factor. Hence the more Spatzel the more Dorsal that is unlocked from

the complex, leading to a Dorsal nuclear concentration gradient that mirrors the Spatzel

gradient.

In early development Dorsal targets a number of genes actively turned on and turned

off in the neurogenic ectoderm as shown in figure 1.1. Unlike most master genes, Dorsal in

turn is activated by a signalling network (not other upstream master genes). Furthermore,

Dorsal interacts in early development with cactus a ’maternal effect genes’, a set of genes

discovered by Nusslein-Volhard and Anderson in 1984, where the initial egg’s Cactus protein

is transcribed from maternally laid mRNA cactus maternal genes.

Dorsal acts as a coarse grained regulator of the DV axis by forming roughly three different

cell types from the totipotent blastula.

These three cell types are components of the ’germ layers’ or territories of transient tissue

(three primitive tissues seen in all ’tripoblasts’ - the animals with bilateral symmetry that

have both a mouth and anus (i.e. go through gastrulation or gut formation)). Dorsal helps

form the mesoderm, neuro-ectoderm and dorsal-ectoderm; where the endoderm is partly

constructed by AP genes. The endoderm is the first evolved germ layer that distinguished

inside from outside of primitive ’diploblastic’ organisms; animals with radial symmetry like

cnidarians that only have one hole (no full formation of a gut) that serves as both a mouth

and an anus (like jellyfish)), where the ectoderm served as the ’outside’ of these primitive

organisms (hence the mesoderm and the ’triploblast’ clade are a more recent evolutionary

invention than the ’diploblasts’).

Just as Bicoid is a derived feature in flys (arthropods), similarly Dorsal’s use as master
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Figure 1.1: Circuit diagram of Dorsal gene regulatory network in the neuroectoderm tissue of
early development designed using Strathopolis’ template[116] provided at the Marine Biology
Laboratory’s Gene Regulatory Networks summer course directed by Eric Davidson and Mike
Levine.
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gene in fly is a derived feature, where neither of these patterning mechanisms is utilized as

a component of developmental pathways of other organisms such as chordates. The seminal

experiment of germ layer creation in chordates was through experiments by Spemann and

Mangold that revealed the source of the germ layers was localized to one side of the vertebrate

embryo (they used translucent newt embryos), which was discovered by a transplantation

experiment that revealed that the analog of the fly’s germ layers constructed from the Dor-

sal transcription factor’s gradient, where Dorsal binds to CRMs of DV target genes, was

occurring in a small localized region of the newt embryo (completely different than insects).

Spemann called this region the ’organizer’. What Spemann and Mangold had discovered was

that to a large degree, vertebrate embryos form germ layers through a developmental process

called induction (tissue-tissue interactions). Previous work by Spemann using an artificial

contractile ring to split the embryo in half had revealed that embryo’s almost unobservable

(at that time) internals had an asymmetric feature. This feature was the localization of the

mesoderm, the only defined germ layer early on in chordate development. The mesoderm

cells secrete a ligand that are recieved and recognized by the adjacent totipotent cells, ’in-

ducing’ these cells to become the endoderm. Hence induction, at a cellular level, is simply

signalling (i.e. cell-cell interactions, where one cell synthesizes and secretes a molecule that

is received by the other cell wherein it triggers a transcription factor to target specific genetic

loci). Hence in chordates (and basically in everything but arthropods), the germ layers are

built from cell-cell signalling.

Although, I believe it is still unknown whether a homolog of Dorsal is active in early

vertebrate development, the targets of Dorsal transcription factor are also found active in

vertebrates[122]. Twist and Snail are found active in the mesoderm (the Spemann Orga-

nizer) and most famous is dpp and sog, where their homologs form an antagonistic gradient
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in vertebrates that patterns the notochord (albeit in chordates there has been an ’inversion’,

which, for example, leads to hearts being ventral in vertebrates while dorsal in most inverte-

brates). The notochord is a derived vertebrate feature that forms just below the neural tube

( the future brain and central nervous system that becomes decorated by the vertebra)30.

The fact that Dorsal is not found to be the master gene that patterns the vertebrate

organizer (the germ layers) is very perplexing, just as confusing as why Bicoid is not found

upstream of the developmental pathway that leads to activation of the HOX genes in ver-

tebrates. Furthermore, vertebrate development, to a large degree, seems very different than

the localization of transcription factors to specific regions of the embryo (protein gradients),

where the different germ layers emerge at specific locations in space due to the various

interactions of the protein (morphogen) gradients. Vertebrates use ’induction’ (cell-cell in-

teractions) early on in development as a patterning mechanism, to induce the formation of

various tissue types. Hence, unlike in flys, where all three layers form somewhat simulta-

neously, in vertebrates the mesoderm forms first, which in turn induces the development of

the endoderm (albeit, the mesoderm targets of Dorsal in fruit fly are activated first, where

Snail’s expression border helps differentiate neuroectoderm tissue from mesodermal tissue).

The resolution of the mysterious fact that the earliest events in embryogenesis for flys

is not conserved among other animals (i.e. Bicoid and Dorsal are believed to be derived)

comes from the observation that ’eggs’ (oocytes) are under high selection pressure. Hence

evolution has acted on eggs such that they can take advantage of their particular niche or

environment (see page 90 Davidson that discusses ’Maternal Anistropy and External Cues

for Axial Polarity’[35]). Of course sperm is also susceptible and exposed to evolutionary

30Tunicates develop a gelatinous notochord in early development, suggesting these primitive sea organisms
are closer to humans than flys are, showing not all paths of evolution lead to complexity.
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forces, however, the strategies found in animals is that one of gametes is much larger (and

hence much more important based on quantitative/numerical reasons) than the other gamete.

Within almost all eggs, before fertilization by the sperm, the egg has a cytoplasmic structure

that localizes various molecules. Hence the polarity of the embryo in many cases is simply

inherited to it through the egg. The cytoplasmic structure of the egg affects how it (the egg

cell) will divide once fertilized. These early cell divisions (cleavage) in turn causes various

types of strategies for cells to divide while avoiding the thick viscous yolk of the cytoplasm,

these different strategies can affect the early events that lead up to gastrulation. Hence, as

Davidson points out, before gastrulation, many gene regulatory networks are not expected

to be conserved, and indeed are not.

Drosophila’s early nuclear cleavages in the syncitium is a unique construction of the blas-

toderm (pre gastrulation structure). It is in immediate contrast to almost all other animal’s

strategy for building a blastoderm. Almost all animals form a blastoderm by cell divisions,

where the cell-cell juxtapositions are frequently leading to signalling and inducing events

before gastrulation. This makes Drosophila, in a sense, a terrible model for understanding

pregastrulation development (since it is unrepresentative of animals at this point of devel-

opment). However, by pushing Drosophila embryogenesis back to the oogenesis stage, then

more resemblance can occur between Drosophila development with the other animals. For

example, Dorsal becomes nuclearly active due to Spatzel that is a signalling molecule. Spatzel

is synthesized and secreted by nurse and follicle cells. By thinking of the mother’s follicle

and nurse cell’s as simply a tissue, we see that Dorsal activation is simply an ’induction’

event, where one tissue induces another ’tissue’ (the egg). Induction is typical of vertebrate

development (see page 175 of Davidson’s text[35]). The reason that cell-cell signalling has

in a sense, been pushed back to oogenesis in Drosophila for axis specification, I believe is
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unknown, however it’s conceivable that ancestral arthropods were insulted frequently dur-

ing laying their eggs, leading to innate immunity activation (which utilizes rel proteins, like

Dorsal), then the frequent coexpression of Dorsal in early development was coopted to be

incorporated in patterning the germ layers (what Davidson calls ’territories’). However,

rel pathways importance in early development has been shown to have some conserved el-

ements between Drosophila and Xenopus (African frog, a vertebrate model system), where

rel knockouts of Xenopus became dorsalized[6] in the frog’s early development. Suggesting

that Dorsal’s use as a master gene in arthropod development is not derived from scratch

(divergence). It is indeed not that easy for evolutionary forces to modify the very first steps

(early master genes) in development of animals.

1.2.3.4 Modularity in gene regulatory networks

The time point of development where Dorsal begins to act like a master gene (a transcription

factor) is the same point in time when Bicoid is causing its targets to become expressed. How

is it that each developmental pathway for axis specification (DV and AP) is simultaneously

operating in a given cell of the embryo? The modularity of the transcription factor binding

sites allows for AP target genes to only have DNA binding sites for Bicoid, and similarly

DV target genes to only have DNA binding sites for Dorsal. Similarly as Bicoid works

in tandem with some of the genes that it activated in the first place (such as Hunchback

and Giant) in feedforward circuits, where these AP transcription factors combinatorial act

together by binding to their target DNA binding sites that co-occur in short segments of

DNA (about 300 bp the cis regulatory modules (CRMs)) that are near the target gene. By

excluding Dorsal and other DV master transcription factor binding sites from these CRMs,

AP developmental pathway can proceed in a particular cell in the embryo independently of

60



the DV developmental pathway that is also operating in that same cell. Hence, these circuits,

or components of the developmental pathways that are ’patterning’ the embryo (fating the

cells through cellular differentiation) are modular. Late in development, once the nervous

system has grown, the modularity seen in laying out the body plan that has organized the

anatomical features largely disappears, as the body becomes an integrated system highly

interdependent and controlled by the nervous system.

1.2.3.5 Transcription factor binding sites

Gene regulation occurs at various temporal and spatial levels. Within a cell, the amount of a

particular protein can be regulated at ’translation’ level by regulating the amount of mRNA

transcripts that are translated. However, transcription is the process that is predominantly

regulated during development.

At the finest spatial level, transcription factor binding sites provide the docking area

for transcription factors to temporarily bind and in various ways modify the transcription

of nearby genes. The binding process physically depends on the concentration of the tran-

scription factor and the number of binding sites that reside within a CRM. The flanking

sequence of a CRM acts as a competing location for the binding of the transcription factor,

hence knowing the size of a genome (i.e. the number of flanking binding sites) is equivalent

to knowing the chemical potential. Thermodynamically a transcription factor follows the

chemical potential gradient, hence unoccupied sites in the genome compete for binding of a

given transcription factor.

CRMs have evolved strategies to recruit transcription factors by creating highly specific

binding sites that reside within the CRM. These very specific binding sites provide a po-

tential energy ’well’ that captures transcription factor due to the very low binding energy
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of the well (compared to the high energy of docking at the flanking sequence of the CRM).

Furthermore ’binding cooperativity’ also provides a further drop of the potential well for a

given transcription factor if a particular cooperating factor is bound nearby.
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Chapter 2

2.1 Introduction

The ’particle’ abstraction of classical mechanics reduces the many degrees of freedom of an

extended material into a single point in space and time [75]. A similar abstraction is useful

for treating the process of regulation by transcription factor proteins of gene regulatory

networks. In such a model, the entire genome is seen as a one-dimensional lattice where each

lattice ’site’ is like a type of static particle with a coordinate along the genome, and where

the site is a short sequence of DNA, ranging from a single base-pair to a coarse-grained

extended sequence of DNA. Each such site can be defined by its specific logic given by the

interactions that are relevant for regulating transcription [33, 7, 76]. This logic, encoded in

the type of site, is an inheritable trait. Furthermore, evolution of regulatory sites changes

the logic, which is known to cause major transformations on animal body plans [30, 127].

Understanding this logic, at a sequence level, has produced state of the art phylogenetic

models for classification at the phylum level that allows us to better understand our deepest

homologies with the rest of the kingdom.

2.1.1 Position Weight Matrices

Commonly, estimating the nucleotide frequencies of functional transcription factor binding

sites is achieved by aligning experimentally confirmed functional sites of length s, and count-

ing the frequency of each nucleotide at each position. These counts can then be used to infer

the distribution of functional binding site sequences. The inferred distribution of functional
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sequences is called a Position Weight Matrix [118]. For example, for a length s binding site,

the probability that the binding site has the sequence S is:

P (S) =

s,3∏
ij

P
Sij
ij , (2.1)

where the sequence S is represented by the matrix of indicator variables Sij ∈ {0, 1} (Boolean

variables), and Pij is the probability (maximum likelihood estimate from the frequencies)

to find base j at position i, with i ∈ {1, 2, . . . , s} and j ∈ {0, 1, 2, 3}, such that each integer

represents a letter from the alphabet A,C,G,T.

Information theoretic and classification methods can then be used to relate these prob-

abilities to linear (additive) logarithmic models or a discrimination function. For example,

the energy PWM gives a bioinformatic score E(S), for any sequence S. The energy of the

sequence can be decomposed into a sum over each internal position of the sequence:

E(S) =
s∑
i

3∑
j

EijSij , (2.2)

where the binding site sequence S is again represented by the indicator variable Sij for

each position i in the sequence and base-pair j, which selects the appropriate transcription

factor-DNA interaction energies Eij . We define the interaction energies Eij mathematically

in Equation (2.10) below.

2.1.2 In-vitro Biophysical PWMs

The energy weight matrix elements used in Equation (2.2) can be determined for each of the

4s matrix elements using an affinity assay. This assay is purely based on physical principles,
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completely blind to notions of “functional” (meaning adapted) binding sequences. The key

measurement is the relative change in affinity to the transcription factor for all possible single

mutation sequences from the highest affinity sequence [118, 45, 62, 119, 44]. Such an assay

assumes that the highest affinity sequence (which we denote as S0), is known. By choosing

the highest affinity sequence as the reference DNA-transcription factor interaction, one can

then construct the full set of relative affinities for full sequences (all 4s affinities). Just as a

key assumption of the PWM model was linearity in sequence, so too in this experiment we

must assume that the binding energy is a linear function of the sequence. This assumption

enables each of the three possible DNA mutations from the reference sequence at a particular

position within the DNA binding site to be tested independent of the genetic background of

the remaining positions within the binding site.

The theoretical justification that the binding energy is a linear function of the sequence is

that the binding affinity constant K(S) is equal to the exponential of the binding energy in

units of kT, where k is Boltzmann’s constant and T is temperature. The free energy, being

a state function (i.e., exact differential), then would result in the following displacement

reaction: logK(S) = logK(S0) −∆G, where the transcription factor was originally bound

to sequence S0 (the reference sequence) and then (by any physical process) is displaced and

binds to sequence S. If we set the energy scale such that the highest affinity sequence bound

to the protein has zero energy, then all other bound complexes have higher energies G(S),

hence ∆G = G(S)−G(S0) = G(S).

Using the physical approach above, one can treat each mutation of a base from the

reference sequence (highest affinity sequence) as a perturbation of the reference sequence S0.
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By expanding the free energy in sequence space, we have

G(S) =
∑s,3
ik ∆GikSik +

∑s
i,j=1

∑3
k,l wijklSikSjl + . . . (2.3)

≈
∑s,3
ik GikSik. (2.4)

The pairwise interaction term, wijkl, is a function of four indices, where indices i and j run

over the positions of the sequence S, and the indices k and l run over the nucleotide bases.

The indicator variables Sik and Sjl select the appropriate pairwise interaction term w. The

expansion in sequence space has a total of 2s interactions, the final approximation assumes

all these are negligible except the first order terms.

2.1.3 Evolutionary PWMs

Just as a phylogenetic analysis of genes can reveal subsequences that are important for the

function or enzymatic activity of the protein, so too can phylogenetic analysis of binding

sites reveal subsequences that are important for the binding function (affinity) of the se-

quence. Unlike cladistics, where a binding site alignment would only include a monophyletic

group (sequences evolved from a common ancestor), and hence be hampered by patterns

of conservation that are due to inheritance as opposed to adaptations, here we use a phe-

netic approach to alignment, based on Berg and von Hippel’s phenetic approach [16], where

both convergent sites, paralogs, and orthologs are used in the alignment to reveal conserved

patterns in the DNA binding sites that are a consequence of the molecular properties that

provide the binding phenotype.

A basic molecular evolution principle initially formulated by Zukerlandyl and Pauli and

latter utilized by Dayhoff and refined by Kimura is that neutral DNA accumulates sub-
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stitutions with a reliable rate, such that neutral DNA can be used as a molecular clock.

However, functional DNA’s mutation rate (what Berg and von Hippel called the “base-pair

choices”) are correlated with the functionality of a site [16]. Hence, functional DNA under

purifying selection evolves slower (if at all) than neutral DNA, enabling a comparative anal-

ysis of regulatory sequences by screening conserved blocks of sequences, or “phylogenetic

footprints” [115].

Berg and von Hippel used these assumptions in 1987 to relate the empirical nucleotide

counts from an alignment to theoretical binding site sequences under mutation-selection bal-

ance [16]. Theoretically, they assumed a binding site was constrained by the binding affinity

necessary for binding (i.e., binding that influences gene expression) [18]. This constraint

allowed them to use Jaynes’s principle to derive a theoretical distribution known in physics

as the Boltzmann distribution, which they then could equate to the empirical normalized

counts from Equation (2.1). In this context, Jaynes principle states that the information

content of the set of binding site sequences (i.e., binding site sequence data in the form of

Equation (2.1) and knowledge of the genome-wide frequencies–the prior, or GC content of

the genome–should be minimized subject to the binding energy constraint [64].

For a simple example, consider a binding site of just one base-pair1. The “Lagrangian”

for the constrained minimization problem can be written as (the sum is over the nucleotides

that base B can take on)

∑
B

P (B) log
P (B)

P0(B)
− λ0(

∑
B

P (B)− 1)− λ1(
∑
B

P (B)G(B)− 〈G〉). (2.5)

1Binding sites are frequently about 10 base-pairs long. A binding site of length one base-pair is not
realistic for transcription factors, as most proteins would cover more space than one base-pair (about 1
nanometer). For an evolutionary argument for why binding sites are about 10bp in length see [117], and for
a diffusion argument see [111]
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The first term is the information content of the steady state probabilities P (B) relative to the

genome-wide frequencies P0(B), the prior. The second term represents the normalization

constraint over the probabilities (where the prior is assumed fixed) and the last term is

the constraint that the average binding energy be fixed. Minimizing the Lagrangian leads

to the theoretical estimate of the steady state distribution, P (B), which takes the form

of a Boltzmann distribution (e.g., see Equation (2.9) for a definition of the Boltzmann

distribution).

The equilibrium frequencies, P0(B), are those expected of neutral DNA (e g., the frequen-

cies estimated from the Jukes Cantor substitution model. Sites under selection are forced

away from equilibrium, and form a steady state distribution P (B). For a physical example,

the relative frequency of a particular base B is like a concentration, which when in thermo-

dynamic equilibrium will be equal to the concentration of this molecule in the background.

Assuming the background can be modeled as chemically random bases (A,C,G,T) [124], then

in thermodynamic equilibrium the base Bs concentration will equal the background concen-

tration of the respective base. In a steady state, however, the base frequency is forced to to

concentration unequal to the background. Similarly, in an evolutionary steady state, there

is a flux of mutations driving the population of binding sites to the random frequencies, but

this flux is balanced predominantly by the flux from the selective pressure. In the population

genetics sense, the steady state frequencies are the result of mutation selection balance.

2.1.4 Relation between biophysical PWMs and evolutionary PWMs

As a consequence of Berg and von Hippel’s hypothesis that the normalized frequencies from

an alignment of binding sites could be equated to the theoretical distribution of sequences

under mutation-selection balance (the Boltzmann-like distribution) [16]; Berg and von Hippel
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were able to derive a simple relation between their information theoretic logarithmic score

E(S) from Equation (2.2), and the known binding energies G(S) of the binding sites to the

transcription factor from Equation (2.3). Using the standard statistical mechanics relation:

log
K(S)
K(S0)

= log
P (S)
P (S0)

, where K(S) is the binding constant, and P (S) is the Boltzmann-like

distribution (see Equation (2.9) for details), and observing that log
P (S)
P (S0)

can be replaced by

the normalized frequencies from the alignment, and defining the information theoretic score

from Equation (2.2) as E(S) = log
P (S)
P (S0)

2; one then obtains:

logK(S) = logK(S0)− ∆(E(S))

λ1
, (2.6)

where E(S) is estimated from an alignment. (E(S) is fully explained in our Methods section,

where ∆E(S) = E(S), and similarly ∆G(S) = G(S) by choosing S0 to be a reference.) The

linear relation above is of the same form as the first-order thermodynamic perturbationEqua-

tion (2.3):

logK(S) ≈ logK(S0)−∆G. (2.7)

This gives us a linear relation between the evolutionary substitution pattern (data from an

alignment), E, and the free energy, G (in units of kT ).

2.1.5 Shortcomings of PWMs

Analyzing typical functional binding site sequences for a particular transcription factor re-

veals signs of a conserved pattern of nucleotides at specific positions within the binding

2Here we our conflating our notation for P (S), which in one case is the empirical normalized frequencies
from the alignment (which Berg and von Hippel denoted as f(S)), while in the other case of statistical
mechanics P (S) is a theoretical distribution parameterized by the Lagrange Multipliers (which can be shown
to be the thermodyanmic temperature for systems like an ideal gas[8]). Here we do keep the derived variables
E(S) and G(S) separate, in order to clearly see the relation between the bioninformatic score E(S) and the
free energy ∆G.
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site. However, because the sequences are short, false-positive matches to the pattern are

expected to occur frequently in large genomes, too frequently than time available for the

protein to find all the sites. This kinetic search problem was also analyzed by Berg and von

Hippel using one- and three-dimensional diffusion models [17], which has since been reinter-

preted several times. In particular, Sela et al. showed that symmetries in DNA sequences

flanking functional binding site loci can dramatically affect binding [111], later verified ex-

perimentally [3]. In the same manner, bioinformatic searches for binding sites using only the

conserved patterns in order to discover new binding sites often results in poor predictions

on a genomic scale [24].

Another limitation of the model is that in development, heterotypic clusters of bind-

ing sites (rather than isolated sites) govern gene expression. Hence, binding site sequence

matches to a motif, if occurring in an isolated locus within a genome (i.e., not occurring

within a cluster of other binding sites) are incapable of recruiting the complexes necessary

for transcription, and hence these isolated loci are unlikely functional. Hence the functional

sequence distribution simply does not contain enough information to make a one-to-one map

to the functional loci [107]. Furthermore, in eukaryotes, binding is modulated by the chro-

matin state of a locus and the cellular state that the genome resides in. These epigenetic

cues and other external variables that influence binding are not usually encoded into the

binding site sequences, and gives rise to departures from the linear assumption inherent the

PWM model.

Evolution in development has repeatedly evolved new combinations of binding sites pro-

ducing new types of logic regulating gene expression [49, 34, 35]. Traditional bioinformatic

sequence tools to discover binding sites in developmental systems can discover the low reso-

lution segments (500 bp) of regulatory DNA that contain clusters of coevolving binding sites,
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CRMs, by simply using clusters of motifs [25]. However, determining what sequences within

the CRM are functional is difficult. For example: is the spacing between sites functional,

is the ordering of sites functional, what about ’half sites’ or sites with mismatches, what is

the number of mismatches allowable before a sequence is not functional? Tedious genetic

experiments must be conducted in order to discover what sites significantly contribute to

gene expression [35].

For example, the in vivo binding site contribution to gene expression can be understood

by comparing the expression of a target gene driven by a wild-type CRM with a knock out of

a putative binding site. However, this is complicated for a number of reasons: first, binding

site turnover within CRMs leaves remnants of functional sites such as “half sites” that have

partial matches to motifs [31], second the multiple half sites (that are easier to evolve) may

be able to compensate for a strong full site. Therefore, even with a confirmed functional

CRM, functional binding site discovery is a daunting task, due to vestigial sites that have

fuzzy or poor matches to bioinformatic motifs.

2.1.6 Physical Shortcomings of PWMs

2.1.7 Dependencies within transcription factor bindings sites

The linear relation in Equation (2.6) becomes nonlinear if there are cooperative interac-

tions between positions within a binding site (or if there are context dependent base-pair

dependencies). For example, cooperativity at the biochemical level tends to cause the linear

relationship between the first order Gibbs free energy and the binding constants to become

nonlinear as a function of sequence, thereby decreasing the ability of linear models (or first

order thermodynamic perturbations) to capture the relationship [62, 20]. Furthermore, some
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DNA-protein interactions require specific nucleotides at various positions to jointly occur,

such that the additive sum of the interactions of each nucleotide to the protein is not what

would be expected under the linear model. In such cases it becomes important to con-

sider higher-order interactions, such as via dinucleotides or other various joint occurring

nucleotides [114, 112].

2.1.8 Dependencies between transcription factor binding sites

If the base-pair preferences for a particular transcription factor are contingent on a cooper-

ating factor, then evolution will have filtered the co-occurring sites jointly. For example, the

transcription factor NfκB is known to have a specificity that is dependent on co-occurring

binding sites [79], and similarly the binding sites of the Glucocorticoid Receptor are specific

to their context [90]. The NfκB homolog Dorsal’s binding sites have also been shown to en-

code differences when active in different innate immunity pathways [28], or to signal Dorsal’s

role as an activator or a repressor [94].

2.1.9 Conditional PWMs based on co-occurring factor binding

sites

Here we present a model that incorporates locus-specific information into PWMs that we call

“conditional” PWMs, that improve binding site discovery within CRMs by incorporating

flanking information of each binding site locus into the functional binding site sequence

distribution. This is useful for transcription factors that display specialized behavior based

on their cis-environment. Our PWM approach accounts for DNA-DNA epistasis (hard-

wired cooperativity) that is a function of the DNA spacer between target binding site and a
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putative cooperating transcription factor’s site. The hypothesis is that base-pair preferences

between known cooperating proteins will be a function of the spacer between the known sites

(assuming that sites that are separated by large spacers are effectively non-interacting). If

the base-pair preferences change as the spacer changes, then evolution will have filtered the

co-occurring sites jointly rather than independently. As a consequence, we expect different

PWMs for binding sites separated from a putative interacting site as a function of spacer

size. This model is similar to the cooperative nucleotide model in Ref. [16], but now we

effectively have a spacer model between binding sites.

Furthermore, Berg and von Hippel in Ref. [16] introduce a spacer dependent interaction

energy, which similarly addresses that spacing between co-occurring transcription factor

binding sites affects the total binding energy between the two separated sites. However, in

their spacer dependent interaction energy, these authors kept the PWM for each binding site

a constant, regardless of its interaction with co-occurring binding sites, and only focused on

the spacing between the co-occurring binding site. Our model, in a sense, encodes the spacer

dependent interaction energy into the different conditional PWMs constructed for different

spacer windows.

2.2 Materials

2.2.1 Data for known Dorsal binding sites in D. melanogaster

Dorsal-Ventral network

The initial development of the fruit fly is partly based on maternally laid morphogens that

form a gradient across the blastoderm thereby causing differential target gene expression [78,
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65, 80]. The Dorsal-Ventral (DV) network of genes active in the Drosophila embryo is

largely conserved across the Drosophila genus, furthermore their coarse-grained expression

patterns in terms of percent egg length along the DV axis are also largely conserved [103].

The transcription factor Dorsal regulates the genes responsible for patterning the DV axis

of embryogenesis leading to gastrulation [93, 116, 128]. Hence Dorsal transcription factor

binding sites within and across Drosophila species represent a large set of binding sites that

are amenable to constructing a PWM.

We collected Dorsal binding sites active in the Drosophila melanogaster neuroectoderm

region of the DV axis that cooperate with a bHLH (basic helix-loop-helix) dimer with Twist.

These sites are the Dβ sites of Table S2 of Crocker et.al. [31], the Dorsal sites from figure 2

of Crocker et al. [32], as well as the “specialized” NEE (Neurogenic Ectoderm Enhancers)

and NEE-like Dorsal binding sites of Erives et al. and Crocker et al. [42, 32]). Those sites

are specialized in the sense that they have been shown to evolve slower than flanking Dorsal

binding sites in homotypic clusters of Dorsal binding sites in the NEE [31], and possibly

specialized to the cooperative interaction with Twist (which we aim to characterize through

information techniques).

There is ample evidence and a long-standing history in the literature for Dorsal sites

cooperating with a bHLH dimer, see [87, 74, 129, 121, 71, 67] and references therein. In

those cases, the bHLH dimer is likely a Twist:Daughterless heterodimer. Daughterless is a

ubiquitously expressed and obligate partner in tissue-specific bHLH dimers, such as Twist.

The ’specialized’ Dorsal data set is labelled as DDCmel, where D represents a data set, and

the subscript DC means ’Dorsal Cooperative’ and mel stands for the species melanogaster.

We also collected Dorsal binding sites from the REDFLY footprinting database [46] for

target sites active in embryogenesis. This data set is labeled as DDUmel, where DU means
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’Dorsal Uncooperative’. We did not find Dorsal footprinted sites from REDFLY for the

Dorsal target gene snail in the CRM of snail, hence these Dorsal binding sites were omitted

from our data set (our CRM data are described below). The DDUmel is a subset of the

full REDFLY Dorsal binding sites, where we filtered out any sites that had already been

collected in our DDCmel data set, or sites that were not active in the DV network, or binding

site loci that overlapped.

2.2.2 DNA sequence context of binding sites

Our aim is to characterize the Dorsal sites based on patterns in the loci’s flanking sequence.

The regulatory regions (the cis-regulatory modules) of DNA that contain the DDCmel and

DDUmel binding sites consisted of the following melanogaster CRMs: rho, brk, sog, sogS,

vn, vnd, twi, zen, dpp, tld. In that list the CRM is labeled by the gene it targets, and the

sog gene had its Dorsal binding sites in two distinct CRMs labeled sog and sogS (where sogS

is a ‘Shadow’ enhancer).

These CRMs have been collected in a centralized file by Papatsenko et al. [100]. Addi-

tionally, these authors collected known melanogaster modules from the literature and using a

BLAST approach predicted the remaining 11 Drosophila orthologs of the known melanogaster

regulatory regions (at that time there we 12 sequenced genomes for Drosophila). The or-

thologs were not ‘known’ with same certainty as the melanogaster data, however we will still

classify these as known for our purposes, as conservation of synteny (order of sites) along

with each module containing multiple conserved blocks where sequence matches to binding

sites reside renders these predictions accurate. These modules are usually minimal modules

that are on average about 300 base pairs in length.

We aligned the 12 orthologs of each CRM, and only extracted the aligned blocks that
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contained our DDCmel and DDUmel binding sites, see Supplement section 2.9.1 for details.

The enlarged set of combined data we call DCB = DDC∪DDU, where the removed subscript

mel on DC and DU, denotes that all 12 orthologs of a given binding site sequence are in the

data set, and CB stands for combined.

2.3 Methods

2.3.1 Clustering Dorsal target loci based on co-occurring binding

sites

Given the locations of the Dorsal binding sites within a given CRM (see Supplement section

2.9.5 for details) and the predicted sites of another factor (a putative cooperating factor), we

are able to construct a distance matrix where each row ‘i ’ is a known Dorsal locus (base-pair

coordinate), and each column represents a predicted co-occurring factor’s locus ‘j ’ within the

CRM. The matrix elements of the distance matrix are the spacer length (denoted as d(i, j)

) in base-pairs between any row i (Dorsal binding site locus) and column j (co-occurring

binding site locus), a difference of the coordinates z of the loci:

d(i, j) = zi − zj − wi, (2.8)

where we assume that the ith Dorsal site appears upstream from the j th co-occurring site,

and that both sites are annotated as on the positive strand of the CRM, where wi is the width

(length) of the ith site, and zi and zj are the CRM coordinates of site i and j respectively.

Here we define the spacer as the base-pair distance of neutral DNA between two binding

sites (hence the internal positions within either site are not counted as part of the spacer).
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For cases where the Twist and Dorsal site overlap, the spacer is valued at 0 bp regardless

of the amount of overlap. For cases that a CRM did not contain a predicted co-occurring

site, we set the spacer to a maximum value such that the corresponding Dorsal site for the

spacer was guaranteed to be classified as ”Uncooperative”.

2.3.2 Classifying binding sites based on spacer window

We define a partitioning of the flanking sequence of any given Dorsal locus, hence we use

the reference frame of the Dorsal locus with both upstream and downstream sequence. We

partition the upstream flanking sequence by the minimum distance dmin and a maximum

distance dmax away from the locus using Equation (2.8). Similarly, we define a symmetric

partition of the downstream flanking sequence by the minimum distance -dmin and a max-

imum distance -dmax away from the locus. We then define a coarse-grained binning of all

the flanking sequence into just two bins, where a ‘spacer window’ represents the bin that

contains the interval [dmin, dmax] ∪ [−dmin,−dmax], and the other bin contains all the rest

of the flanking sequence. Once the bin borders have been defined by the spacer window,

we then define a Boolean class variable C, which classifies each Dorsal locus as C = 1 if

the co-occurring binding site of interest is present in the spacer window, and C = 0 if the

co-occurring binding site sequence of interest is absent in the spacer window. Hence, the

class variable is entirely based on the patterns that occur within the spacer window, as the

class value of each class is determined solely on co-occurring sites in the spacer window.

Using Equation (2.8) we classify the Dorsal loci that fall within a defined window. Once

each Dorsal binding site’s locus is assigned a class, we then can align the loci of a class and

estimate the conditional PWM.
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2.3.3 Energy estimation of a base

The theoretical steady-state Boltzmann-like distribution is the solution to minimizing the

Lagrangian with respect to P (B) in Equation (2.5). The Boltzmann-like distribution in

units of the second Lagrange multiplier is:

P (B) =
P0(B) exp−E(B)

Z
, (2.9)

where the normalization Z is related to the Lagrange multiplier λ0, and we have assumed

calibration of the energy E(B) by estimating the shift and scaling factors from Equation

(2.6). Assuming our frequencies from Equation (2.1) is governed by the Boltzmann-like

distribution, we then can construct an energy PWM by inverting the distribution, arbitrarily

choosing the consensus base B0 to be the zero of the interaction energy between transcription

factor and bases. The consensus base is the base at a position with the most counts from

the alignment, hence this choice of reference leads to all other bases contributing a higher

energy (or zero for degenerate cases). We then can calculate the interaction energy of the

remaining bases B as:

E(B) ≈ − log
P (B0)

P (B)
= − log

nB0
+ β

nB + β
. (2.10)

Here we have made the approximation that the degeneracy factors P0(B) = g(B)/L are

negligible (this is the prior or background DNA frequency), where g(B) is the multiplicity

or number of times that base B occurs in a genome of length L [15], nB0
are the counts

of the reference base B0 and similarly nB are the counts of base B from the contingency

table estimated from the alignment of n known sites, and β is a pseudocount β > 0. The
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joint energy of a given base B with co-occurring flanking sequence S’ (that may or may

not contain a co-occurring binding site of another factor) is defined as E(B, S′) = E(B) +

E(S′) + w(B, S′). By setting a spacer threshold (spacer window) and an energy threshold

on the potential cooperating factor we effectively create a Bernoulli variable for the flanking

sequence, such that S’ is aggregated into the class variable C. Hence, we have E(B,C) =

E(B) +E(C) + w(B,C), where w(B,C) is an interaction energy that is shared between the

systems B and C. Once we have determined what class a Dorsal locus belongs to, we are

then uninterested in the energy of the co-occurring site in sequence S ’. Hence we define a

conditional energy that is the standard PWM energy from Equation (2.2) for a particular

position and base plus the interaction term:

E(B|C) = E(B) + w(B,C). (2.11)

The interaction term shifts the standard energy of a sequence if P (B|C) 6= P (B). We define

our context C for Dorsal sites B based on proximity to Twist (the spacer window), thereby

placing a class tag C, on each of Dorsal binding site bases B. We calculate the shift w as:

w(B,C) = − log
P (B,C)

P (B)P (C)
= − log

P (B|C)

P (B)
. (2.12)

The shift w is simply the Kullback-Leibler divergence of the conditional distribution P (B|C)

and the marginal distribution P (B).
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2.3.4 Energy estimation of a sequence of bases

We now extend the model from a single site to a binding site sequence. The total shift for a

particular binding site sequence S and its flanking sequence is: w(S, S′) = E(S, S′)−E(S)−

E(S′), where the shift is calculated as:

w(S, S′) = − log
P (S, S′)
P (S)P (S′)

. (2.13)

The sequence S is the Dorsal binding site at a particular locus, and is a sequence of bases B,

while the sequence S’ is effectively a Bernoulli variable C, which means the flanking sequence

S ’ of the Dorsal site either has a Twist site (in which case C =proximal) or not, in which

case C =distal. Hence, w(S,S’)= w(S,C), which we define as:

w(S,C) =
s∑
i

w(Bi, C) (2.14)

where we have defined S as the sequence {Bi}, where i ∈ {1, 2, 3 . . . s}, and s is the length

of the binding site sequence S. Equation (2.14) uses a standard PWM to calculate P(S) (as

opposed to using the marginal of S over C ), because the marginal distribution is a “mixture

model” that cannot be factorized into a product of base specific probability factors [13].

Computationally, for energy PWMs there is a matrix w for each class value of C. By adding

the w matrix to the energy matrix E (matrix elements defined by Equation (2.10)) we obtain

a conditional energy. We define a conditional detector, or a conditional energy PWM, which

we use for bioinformatic predictions and annotations of binding site sequences. The detector
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trained from sequences of class C then will score each sequence S as:

E(S|C) = E(S) + w(S,C) . (2.15)

Here E(S) is from Equation (2.2), where the matrix elements Eij are equal to E(B(j)i)

from Equation (2.10). The function B(j) is a map between base B ’s alphabet A,C,G,T and

the values of the matrix index j : 0,1,2,3; where we define the 0 index to be the consensus

base and therefore reference energy level (the ground state). The matrix index i denotes the

position of the base, which we previously denoted as Bi in Equation (2.14), where it was clear

which particular base B resided at position i of sequence S. Hence the conditional energy is

E(B|C) = − log
P (B0)
P (B|C)

, where B0 is the consensus base of the position independent PWM

from Equation (2.9).

2.4 Model detectors

We define two types of Dorsal binding site sequence models (“detectors”) that we use for

detection and classification. The first detector is conditioned on flanking sequence motifs,

and hence potentially can better resolve functional loci. The second detector is simply a

standard (unconditional) PWM model, which we use as a baseline for model comparison.

First we define the detector that incorporates flanking sequence information. As we will

see,the detector acts like a logic-like gate that we call the “OR gate”, due to its similar-

ity with a standard digital OR gate used in electronics. The input to the gate is a k-mer,

and the output is a decision on whether the k-mer is a Dorsal binding site or just random

background DNA. The detector’s decision is based on the conditional energy PWM scores
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from Equation (2.15) described above, that is, its output depends on the output of two

distinct “subdetectors”, which we call DC (“Dorsal Cooperative”) and DU (“Dorsal Unco-

operative”). The DC component of the OR gate scores all incoming k-mers based on the

conditional energy for a sequence with class type ‘proximal’, while the DU component scores

all incoming k-mers based on the conditional energy for the class type ‘distal’. The “OR

gate” detector fires (that is, predicts a Dorsal site), if either the DC or the DU detector (or

both) fire. In general, any energy PWM model (and hence our conditional energy PWMs)

can be used as a linear classifier for binding site sequences. This classification is based on

the following linear equation for any given k-mer:

y(S) = Ec − E • S, (2.16)

Here E and S are vectors from a 4k dimensional real vector space, where we elevated the

matrix of indicator variables from Equation (2.10) to be a bona fide vector. Ec acts as

bias that shifts the hyperplane that separates putative functional sites from non-functional

sites. The Euclidean dot product between the two vectors, E • S, is defined as the sum over

element-wise multiplications, where the energy E is now another vector in the space that

projects each k-mer S onto a line of length E(S) (i.e., Equation (2.2)). The so-called bias

or energy threshold is a positive real number (Ec), and represents a partitioning of the line

defined by y into positive and negative real numbers. Here all k-mers with a positive value

of y have energy less than Ec, and are classified as a binding site. All k-mers with a negative

value of y have energy greater than Ec, and are classified as random DNA sequence.

The OR Gate detector is partially defined once the flanking sequence feature (the co-

occurring binding site motif) and the spacer window have been set (or optimized), as de-
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scribed in the Methods section above. These settings allow us to estimate the conditional

probabilities. Hence, using only Dorsal binding site sequences from the data set DCB we are

able to train and define an OR Gate that is not mixed with binding sites based on purely

bioinformatic matches. The second model is the standard PWM, which we call the CB de-

tector, where CB stands for the “combined” set (meaning the conditional and unconditional

data sets combined), which we denote by DCB ). The CB model assigns an energy score

E(S) to each sequence S as in Equation (2.2), which has a corresponding probability P (S)

as in Equation (2.1).

2.5 Results

2.5.1 Optimal spacer window for the OR Gate detector

In order to calibrate our conditional detectors we must define an optimal interval of the

spacer window by calculating the mutual information between the known Dorsal binding

sites and the potential cooperator’s binding site (eg., co-occurring Twist sites). The spacer

window that leads to the maximum mutual information determines an optimal clustering of

the Dorsal loci into two classes, which we then can use to build the OR gate.

We predict 5’-CAYATG loci (putative Twist sites) within the CRMs by scoring the CRMs

with an energy PWM and threshold that corresponds to exact matches of the Twist motif 5’-

CAYATG, which we found to have the highest mutual information with Dorsal binding site

sequences. In the Supplemental section 2.10 we show a similar analysis with the alternative

Twist motif 5’-CACATG, and some results for the motif’s restricted form 5’-CACATGT.

Upon construction of the spacer distance matrix we are able to classify all annotated

Dorsal sites as ‘Cooperative’ or ‘Uncooperative’, based on whether any of the spacers for a
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given Dorsal locus was within the bin border defined by dmin and dmax. For example, a CRM

annotated with one Dorsal site and three Twist sites will have three spacers. If any of those

spacers are within the spacer window, then the Dorsal site is classified as ‘Cooperative’. We

define the spacer window as a 30 base-pair closed interval, which starts at [0,30]bp relative

to each Dorsal coordinate within the CRM (not counting the body of the binding site as a

part of the spacer).

All known Dorsal loci of a given class are then aligned (see Supplement section 2.9.9 for

details) to construct the conditional Dorsal binding site sequence distribution (conditional

PWM). Given the class labels on the Dorsal sites, we are able to estimate the probability

of a given class as simply the fraction of Dorsal sites that belong to each class C. With

these distributions we are then able to calculate the mutual information, I(S;C) between the

Dorsal site sequence variable S and the class C as

I(S;C) =
∑
S

∑
C

P (S|C)P (C) log
P (S|C)

P (S)
(2.17)

where P (S|C) is the conditional PWM, and P (S) =
∑
C

∏
i P (C)P (Si|C) is the marginal-

ized distribution of sequence over class labels C (note this is not the same as the CB detector’s

probability). As stated above, the initial dmin was set at zero and dmax at 30bp, and then

both parameters are incremented by 30bp to shift the window to a new position. For each

shift of the spacer window we classify all Dorsal loci, align each class to a length 9 motif, and

then calculate the mutual information. The result is shown in Table 2.1 and implies that

the information between sequence and class label is highest if the spacer is between 0 and

30 bps, as expected for binding sites that interact via molecular interactions. Furthermore

we appended one nucleotide of flanking sequence on each binding site sequence to see if we
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Figure 2.1: Logos generated for known Dorsal sites (the DCB data) tested for adjacency to
5’-CAYATG used as the cooperative class if in the [0,30]bp distance. Logo A corresponds
to the cooperative class, and displays the known 5’-AAATT core, with total information
content 13.5 bits. Logo D is the exact same logo as A but with a single base-pair of flanking
sequence at the start and end of the site (hence, this logo starts at position -1). Position 9
of this logo shows about two decibits of information relative to the background sequence in
the nucleotide base ‘C’ (2 out of 10 functional DC sites have a ‘C’ at this position). Logo
B is the ‘uncooperative’ class for the [0,30]bp window, which we calculated to have 9.1 bits
information relative to the background (uniform distribution of bases), and logo E has the
added flanking sites to the ‘uncooperative’ class. Logo C is the CB motif with 9.6 bits of
information relative to the background, which looks similar to the ’uncooperative’ class at
position 6 due to there being many more sites that prefer A to a T at this position amongst
all the Dorsal sites in the network. Logo F is the CB motif with the flanking sequence
appended.

were missing flanking parts of the conditional binding sites.

spacer [0,30]bp (31,60]bp (61,90]bp
Mutual Information, Equation (2.17) 0.49 0.29 0.04

Table 2.1: Mutual Information between functional Dorsal binding site sequences and putative
Twist sites that match 5’-CAYATG using a sliding spacer window scheme.

We show the conditional Dorsal binding site sequence logos for functional binding sites

generated for this first spacer window in Figure 2.1. The information content of each posi-

tion of the binding site corresponds to the height of the logo, where we used a symmetric

hyperparameter value of β = 0.1 as discussed in the Supplement section 2.9.11 and section

2.11.7.
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2.5.2 The conditional and unconditional PWMs are significantly

different

Here we test the optimal DC and DU detector’s training data energy scores to see if the

median energy of DC is significantly different than the median energy of DU. The optimal

detectors were based on the 5’-CAYAGT Twist motif and the [0,30]bp window. The rank

sum test rejected the null hypothesis that the median energies are equal with p = 10−26.

The median energy of the DC PWM was 0.27, while the median energy of the DU PWM

was 2.7.

It is possible that any random partitioning of a set of binding sites that are used to

build detectors using our technique would produce p-values consistent with significance. We

used our original data set of Dorsal sites DCB to construct a sampling distribution of p-

values for the rank sum test To calibrate the p-value we created a sampling distribution of

the p-value from 1000 repetitions, where at each repetition the combined data DCB were

randomly partitioned into two data sets. PWMs were constructed for each partition. The

energy of each sequence within a partition was calculated as E(S) +w(S, P ), where P is the

partition, S is a sequence in the partition, and E(S) is the CB energy. We then determined

the corresponding rank sum p-value between the random sets. We found that the p-value

of the rank sum test between the DC and DU model fell well beyond the right tail of the

random sampling distribution (shown in Figure 2.2), indicating that the median energies of

DC data set and the DU data set are significantly different from any random partitioning of

the combined data set. More details are in the Supplement section 2.10.1.
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Figure 2.2: Histogram of p-values of a rank sum test of random partitions of the combined
data set DCB. The binning is in units −10 × log10 of the p-value, rounded to the nearest
integer. The p-value of the rank sum test between DC and DU energy data sets based on
their energy PWMs was 260 in log base ten units (scaled by 10), which is indicated by the
red bar of arbitrary height.
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2.6 Performance of optimal classifiers (detectors)

All detectors were built from length 9 alignments (see Supplement section 2.9.9for details of

the alignment procedure). The OR gate is based on the DC detector built from the data

set DDC , which contains Dorsal loci from DCB that were tagged with class labels from

the optimal spacer window of [0,30]bp with the 5’-CAYATG motif, and similarly, the DU

detector is built from the data set DDU , which contains the remaining Dorsal loci from

DCB that did not have the Twist sites in the spacer window. . The unbolded subscripts DC

and DU on the data sets denote that these sets of Dorsal sites were based on our clustering

scheme (not based on literature annotation).

We now present three experiments that tests the performance of our OR gate detector

and the conditional detectors using the CB PWM as a benchmark.

2.6.1 The DC detector predicts sites proximal to 5’-CAYATG

with better odds than the DU detector.

We expect that DC should predict Dorsal binding site sequences that are adjacent to Twist

more precisely than DU (since we showed earlier that the Dorsal site sequences contain in-

formation about adjacency to Twist). In Table 2.2 we collected all the hits (all the positives)

of the detectors. We test whether the DC conditional energy PWM is actually predicting

Dorsal sites within the CRMs that have the correct flanking sequence feature (presence or

absence of Twist motif) with better odds than the DU detector. The odds of DC for pre-

dicting binding site sequences that belong to the proximal class was 61
39 = 1.6. The odds

of DU for predicting sequences of the proximal class is 280
345 = 0.81, hence the odds ratio is

2.0. The one-sided p-value for this table’s log odds ratio test is p = 0.001 for the chances of
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seeing a DC detector with better odds relative to DU at predicting correct flanking sequence

features. Increasing the energy cutoff Ec increases the total counts of the table, and we

obtain similarly significant tables up until about Ec = 5.

proximal distal
DC 61 39
DU 280 345

Table 2.2: Contingency table with the conditional detectors DC and DU represented along
the rows and the class type distal and proximal represented along the columns. Each table
element represents the number of sites predicted from each detector of each class type based
on Twist sites (5’-CAYATG) and a CB energy cutoff E(S) = Ec = 2.1.

2.6.2 Both OR gate and CB detectors show high sensitivity with

known sites as positives and CRM sequences as negatives

In order to test the sensitivity and the specificity of the detectors we used the Receiver

Operator Characteristics (ROC), which displays the tradeoff between optimizing predictive

performance for ‘positives’, while also optimizing for not detecting known ‘negatives’. The

True Positive Rate (TPR) is defined as TPR = TP
(TP+FN)

, where the denominator is the

total counts of True Positives (TP )and False Negatives (FN)). The False Positive Rate

(FPR) is defined as FPR = FP
(FP+TN)

, where the denominator is the total counts of True

Negatives (TN) and False Positives (FP ).

We use the data set DCB as our training set of ‘positives’ (TP + FN) for both the CB

detector and the OR gate. The ‘negative’ data set (TN + FP ) is the set of all CRMs that

contained a known binding site (i.e., the CRMs associated with DCB), where the bona fide

sites (the functionally confirmed sites) are masked out. Furthermore, within the CRMs we

also mask out overlapping predicted binding sites based on the algorithm in the Supplement

section 2.9.6, hence the negative data (the CRMs with known sites masked and overlapping

89



hits masked) is at least nine fold smaller than the concatenated length of the CRMs due the

binding sites being nine base pairs in length.

For a given energy threshold, Ec = E(S), set by the CB energy PWM for both the OR

gate and the CB detector, each detector ‘scans’ the CRM using a sliding window approach,

where each ‘hit’ of the detector is classified as a TP if the hit overlaps a known binding

site locus in DCB, and as a FP if the detector ‘misfired’ in the background of the CRM.

Similarly, known sites (loci) from DCB that were not called hits by the detector are classified

as FN , while TN are the k-mers from the CRM background sequence that the detector did

not call a hit.

The ROC of the OR gate (shown in Figure 2.3A) tends to perform better than the

CB detector at low energies up until the energy reaches about E(S) < 8 (the last point

(FPR, TPR) displayed in the figure), after which the CB detector tends to do better. The

OR gate in the region of ROC space displayed shows better performance than the traditional

CB detector (This is clearer quantitatively, where we found the OR gate had a higher area

under the curve (AUC) integrated from the minimum energy to CB’s energy cutoff of E(S) <

8 (which is the last point displayed in ROC space)). The OR gate and CB detector both

perform well for strong sites (low energy sites), which is indicated by their good TPR (almost

80% before a noticeable fraction of negatives start to be detected as positive.

2.6.3 The OR gate performs better than CB at predicting known

sites at lower energies

Another metric of performance of the classifiers is the mutual information between the type

of k-mer (Dorsal or not Dorsal) and the classification by the detector. For example, if the
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Figure 2.3: ROC and Information. (A) False positive rate (FPR) vs. True Positive Rate
(TPR) when varying the energy cutoff Ec. (B) shows the mutual information I(I;O)
Eq. (2.6.3) between the input and output of the detectors as a function of the cutoff en-
ergy.

input is not a Dorsal binding site, the detector should stay silent, while it should fire if it is

a Dorsal site (either adjacent to Twist or not). We can write this mutual information as

I(I;O) = H(I)−H(I|O), (2.18)

where I is the binary random variable holding the true identity of the ‘Input’ k-mer received

by the detector, while the ’Output’ variable O is the binary variable given by the detector’s

decision. The entropy H(I) is in principle given by the relative likelihood to find Dorsal

binding sites within the ensemble of CRMs, which is of course heavily biased towards neg-

atives (non-Dorsal sites). However, this Bayesian prior is not available to the transcription

factor, in other words, for each decision to bind, the factor has its own Bayesian prior p,

which we will set to p = 1/2 (maximum entropy Bayesian prior) below.

The conditional entropy H(I|O) = −
∑1
i,o=0 p(i)p(i|o) log p(i|o) quantifies the remaining

uncertainty about the identity of the k-mer given the decision of the detector, and can be
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calculated using the false positive and true positive rates introduced earlier. In particular,

the conditional probability p(i|0) is obtained as

p(1|1) = p(I = 1|O = 1) = TPR (2.19)

p(1|0) = p(I = 1|O = 0) = 1− TPR (2.20)

p(0|1) = p(I = 0|O = 1) = FPR (2.21)

p(0|0) = p(I = 0|O = 0) = 1− FPR , (2.22)

while p(i) is the Bayesian prior (density of Dorsals/non-Dorsals in the CRM). Using an

arbitrary prior p, we can rewrite the mutual information from Equation (2.18) as:

I(I;O) = H[p]− pH[TPR]− (1− p)H[FPR] , (2.23)

where H[∗] is the usual binary entropy function of a Bernoulli distribution characterized by

*, so for example

H[TPR] = − FN

TP + FN
log

FN

TP + FN
− TP

TP + FN
log

TP

TP + FN
, (2.24)

with a similar expression for H[FPR]. We show the mutual information I(I;O) in Fig-

ure 2.3B using the maximum entropy Bayesian prior p = 1/2. Compared to the information

the CB detector has about Dorsal sites, the OR gate’s information is shifted to lower energies,

implying that at fixed energy cutoff it knows Dorsal sites better than CB.
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DC conditional detector is able to predict that Twist is nearby

The conditional detectors are expected to make predictions not only about what is a Dorsal

site relative to the background, but also whether Dorsal is in the vicinity of Twist. By

partitioning all the known sites into the two class types (e.g., ‘distal’ and ‘proximal’) as

determined from the spacer window of [0,30]bp and Twist motif 5’-CAYATG, we can test

how well each detector can resolve the class type of a Dorsal site (Dorsal with Twist or

without).

For a given energy threshold we scanned the combined data set DCB with the DC as

well as the DU detector, and asked how much the detector knows about the class variable C

(further details of this experiment are in Supplement section 2.10.3). We show this mutual

information I(C;P) in Figure 2.4 , where P is the binary random variable encoding the

detector’s decision about the context. We see that the DC detector has up to 0.3 bits of

information about the proximity of Twist in any particular Dorsal site, while the DU detector

has virtually no information about this variable.

2.7 Discussion

2.7.1 DC and DU Information logos and previous evidence

The binding site sequence logos display the information content of our binding site data

relative to a uniform distribution. By inspection of the DC logo the consensus sequence

(highest information scoring sequence) is partially consistent with Table S2 of Crocker et

al. [31]. The 5’-AAATT core is reproduced as our DC consensus sequence, while the flanking

sequence for the length 11 binding sites are not enriched with G at the start of the site and
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detector’s conditional energy Equation (2.15).
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a C at the end of the site. Similarly we can see that our DU also conforms roughly to A-

tract Dorsal binding sites, which are Dorsal binding sites that have four or more contiguous

Adenines. Mrinal pointed out that A-tract binding sites have certain physical chemical

properties not seen in 5’-AAATT core Dorsal sites [94], namely that A-tract Dorsal binding

sites encode a mechanism (like an extra hydrogen bond between the protein and DNA) for

Dorsal to switch roles from an activator of gene expression to a repressor of expression based

on the binding site Dorsal was occupying. Of course, as mentioned by Mrinal, these sites are

still context dependent, namely the context of a site may override any preference a binding

site sequence has for causing activator or repressor roles[99]. Inspection of our DU detector’s

data set shows that it is more than 50% enriched with Dorsal sites that are known to be

from repression cis-regulatory elements (zen, tld, dpp), hence the DU logo with a 5’-AAAAT

core is not surprising.

Our known binding sites, to a degree, come with the class labels already attached. The

DDCmel data is the known Dorsal binding site data set based on the definition of Dβ or

’specialized’ sites, or NEE-like Dorsal binding sites (neuroectoderm Dorsal sites that were

linked to Twist sites, but were not linked to the canonical 5’-CACATGT Twist sites) [31, 42].

However, our DC detector is different than a detector built strictly from the DDC data set

(the set of all 12 orthologs for each melanogaster locus), since we included additional ortholog

CRMs of the NEEs.

Furthermore, within the NEEs one could imagine that the spacer has diverged in species

that we analyzed that were not analyzed previously, and our choice of the spacer window is an

interval not the same as previous choices. For example, Papatsenko et al. [101, 100] showed

that binning the spacers between Dorsal and Twist that there were various optimal bins

(namely 14bp, 20bp, and 53bp). It is also possible that the spacer defining the distance of
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Dorsal and Twist in D. melanogaster has further diverged in its ortholog species, in particular

those not previously analyzed and annotated.

Szymanski et al.[121] used DU-like Dorsal sites in his systematic study of the role spacing

has between Dorsal and Twist site, suggesting that Dorsal Twist still cooperate if one uses

a DU-like binding site, which is further corroborated by systematic studies from Fakhouri et

al.[43] that also used A-track Dorsal sites for the primary Dorsal sites. These studies suggest

evolution could have fixed either a DC or a DU type site at an NEE locus utilizing Dorsal

Twist linked sites for synergy, which would deteriorate our claim that DC and DU are really

different types of Dorsal sites. However, it is highly unlikely that all these sites would have

fixed with the same sequence unless they were functional or else if the CRMs containing

them were duplications.

2.7.2 The OR gate and the CB detector

The OR gate scores any input k-mer with both conditional detectors DC and DU, and

then outputs simply the lowest energy score. Similar detectors have been represented in the

literature as a Hidden Markov Model or as a mixture model [95, 59]. Each component of

the mixture is simply a conditional PWM, where the mixing frequencies are estimated as

the fraction of training data that is associated with a particular component (or class) of the

mixture. The mixture is defined as:

P (S) =
∑
c

exp−E(S|C = c)

Zc
P (C = c), (2.25)

where E(S|C) is in units of λ1 (which is further assumed to have been calibrated to thermal

energy units), and Zc =
∑
S∈S expE(S|C = c), where S is the set all possible k-mers,
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|S| = 4k.

The CB detector is the traditional position independent probability model (PWM) of

binding sites, where the PWM is constructed by aligning all of the sites in the DCB data

simultaneously. Recall from Equation (2.1)

P (S) =
∏
i

P (Si). (2.26)

where, as a consequence of Bayes’ Theorem P (Si) =
∑
c P (Si|C = c)P (C = c). However,

for a sequence of bases,
∏
i P (Si) =

∏
i

∑
c P (Si|C = c)P (C = c) 6=

∑
c

∏
i P (Si|C =

c)P (C = c), where the last expression is the mixture of Equation (2.25), and is equivalent to

a marginalization of the sequence over the classes. The mixture distribution of the sequence

over classes can only be factorized as a product of position distributions given the class. We

justify our approximation of the marginal sequence distribution over classes as a PWM (the

CB PWM) in the Supplement section 2.10.3.

The mixture model was used by Hannenhali et al. [59] in a similar form as the OR gate,

where a given transcription factor’s binding preference was described by two PWMs. There

the authors scanned a given CRM or promoter with both PWMs and selected the highest

scoring sites as hits, where the threshold for a hit was determined by the mixing frequencies–

the proportion of known sites that are used in constructing each PWM. Upon scoring all

the sites within their promoters, the scores were ranked for a given PWM, and then the

fraction of sites equal to the mixing frequency were considered positives. This method is

different than the OR gate presented here in that we do not use the mixing frequencies in

discriminating Dorsal binding sites from background DNA. The OR gate discriminates sites

from non-sites by checking if the minimum (i.e., best) score of the component detectors is
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below the energy threshold. By always choosing the lowest energy score among the given

components as the detector’s overall energy score, the benefit of an increased True Positive

Rate of the detector is partially cancelled by the cost of an increased False Positive Rate.

However, this cost is only in effect at high energies (non-specific sites), where it is unlikely

that evolution or physical binding is having any functional effect on the organism. Hence,

the OR gate is a useful model for increased sensitivity in the low energy regime.

2.7.3 The CB data set, merging and dividing clusters of binding

sites

The mixture distribution of equation of Equation (2.25) implies the data set DCB over all

loci can not be aligned simultaneously to form an estimate of P (S), as that only makes sense

if one is constructing the CB PWM, which assumes no mixture. However, a priori, one may

not know whether their set of binding site loci is a mixture of different types. To determine

if there is a mixture in the data one must decide on how one will align the mixture model,

and whether that alignment should be related to the case that one combines all the data

indiscriminately to form an alignment for the CB PWM. Will all the training data over all

classes be lumped together to estimate P (S) for CB, and then the conditional probabilities

estimated by partitioning their respective set of aligned sites? This technique is commonly

used in the case that one is given a set of aligned data, and one wishes to find mixtures

within the aligned data. Alternatively, will the training data be partitioned into the classes,

and then each class aligned individually, and then these class-specific alignments simply be

’merged’ to form an estimate of P (S) for CB?

This additional complexity is analogous to the decision made in clustering motifs as to
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whether one wants a top-down approach (start from the root and partition), or a bottom-

up approach (start from the leaves of the tree and merge (i.e. combine)), see for example

[57][36][69]. We presented results for a bottom-up approach that aligns the training data

DDC and DDU separately to estimate each conditional PWM DC and DU, then CB was

based on merging the count matrices of the DC and DU data sets.

The top-down approach aligns all the sites together, then partitions out the classes, and

from those partitions builds (without further alignment) the conditional probability PWMs,

P (S|C). The bottom-up method is guaranteed to achieve higher Mutual Information than

the top-down approach. This is because the DC alignment will not necessarily be ’in register’

with the independent DU alignment, for example the DU alignment may tend to have the first

character with more than 0.5 bits of information shifted relative to the DC alignment (i.e. the

binding start site of these two set are shifted). This in turn causes their marginalization to

have an increased entropy due to mixing alignments out of register, which in turn causes the

mutual information to be boosted, since the conditionals are both now substantially different

than the marginal due to registration of the start sites. Based on results not presented, we

found that the top-down approach still preserves the overall trend in Mutual Information

verse spacer window, although the signal in the [0,30]bp window for distances of known

Dorsal sites from the 5’-CAYAGT motif is reduced by about 40%.

From a model comparison viewpoint, one may assume the strategy should be to align DC,

DU and CB all separately, neither taking a top-down or bottom-up approach. This strategy

does not bias either the mixture model (OR gate) or the CB PWM model. However, from

results not presented, we found this has little effect on the logos for a length 9bp alignment.

Albeit, some alignments (in an ensemble of alignments derived from gibbs sampling) do

choose a ’T’ rich motif, as opposed to an ’A’ rich motif. For our logos, in the case that
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a ’T’ rich motif was found, we presented the logo derived from the reverse complement of

each aligned sequence within the training data set so that all logos would be easily visually

comparable by inspecting the logos. For longer than 9bp length alignments of Dorsal binding

sites, we found that the Conditional Dorsal motifs frequently were not in ’register’, where

registration of the start sites of motifs is based on a motif-motif alignment program like

STAMP[86], but can also be seen by inspection of the logos (sometimes). For example, by

inspection, the DC motif for a length 11bp alignment may have had the first position in the

alignment with greater than 0.25 bits of information content at position one (in a zero based

coordinate system), while DU would have its first position in the logo with more than 0.25

bits at position zero (the start of the logo).

From a physical standpoint, it may be that the conditional binding sites do tend to

have a shift in their binding start site positions. For example, Dorsal may bind to : 5’-

AAGGAAATTCC in a DC favored environment, while in the DU favored environment it

binds: 5’-GGAAATTCCAA. If the flanking A’s really are a signal, then one must conclude

the best representation for CB would be: 5’-AAAGGAAATTCCAAA, which is a motif that

is 3 nucleotides longer than either conditional. The bottom up approach to clustering would

miss this signal, since it would merge the two classes such that the CB PWM would contain a

fraction of ‘A’s at the first position based on the proportion of the DC data relative to the CB

data, and another fraction of ‘G’s at the first position due to the DU motif; thereby not only

missing some of the signal, but also interfering with the captured portions of the signal. This

particular case shows that trying to compare motifs based on having the starting position of

the motif being in register, will potentially truncate a signal for the CB model. The logos in

Figure 2.1 are in register (the start of the binding sites are the same), which is based on our

findings that length 9 alignments are the most reproducible in terms of registration. Once

100



we had aligned the length 9 binding sites, we then appended the flanking sequence to each

already aligned locus, thereby having greater assurance that the CB PWM would not have

this type of interference effects.

However, if one starts with an alignment that has flanking sequence to begin with, (such

as an alignment of length 15bp;) then one could try and discover if the aligned sites do

contain a mixture of motifs without having to worry about the problems associated with

choosing a strand (such as the ‘A’ rich strand), or whether the start sites are in register.

Such an approach was used in Figure 2 of Barasch et. al. [13]. However, we found that

setting the Gibbs sampler alignment’s length parameter highly influences the alignment.

For example, for a length 9bp alignment, the starting position of the alignment may contain

maximum information (2 bits), however if one creates a length 15 alignment this signal (the

information) is at least conserved, but may spread into the flanking sequence. This spreading

changes the DNA makeup of the logo of various positions. This is partly due to there being

so many more ways to spread out information among the positions of the alignment when one

is using an objective function that runs over 15 positions as opposed to 9bp. For example, a

subsequence of 5’-AAA that is completely conserved in a length 3bp alignment, when allowed

to be length 5bp alignment may converge on 5’-AAAAA with the same information content

as the 3bp alignment (or slightly larger information content than the length 3bp alignment,

while having a smaller per position information content). This is due to a mixture over loci

of the form: 5’-NAAAN, 5’-AAANN, 5’-NNAAA.

2.7.4 Mixtures of asymmetric PWMs

In the case that one’s data set of binding sites is primarily asymmetric, yet completely

conserved at each position; then one can construct a two component mixture of PWMs
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that are significantly different by simply choosing each component PWM to represent each

concensus of the two asymmetric motifs. For example if one’s data set is simply a collection

of loci from a database where the sequences from the database were all identical of the

form 5’-GGAAACC, then one could take half the loci to be 5’-GGTTTCC, and the other

half 5’-GGAAACC. We found that when training the mixture model where one has no

knowledge about what strand to use in the component PWMs (i.e. DC and DU) that DC

and DU frequently would converge on motifs that appeared to be reverse complements of one

another. To resolve this problem one can symmatrize the PWM by using both strands in the

construction of the PWM (see for example the paper by Bailey et.al.[11] and the discussion

of MNT operator sites by Fields et.al.[44]).

A hypothetical DC concensus 5’-GGAATTTCC may seem to be a problem for sym-

metrization if the ’T’ at position 4 (where the start site is position zero) would lose some of

its signal by symmetrization. However, in a sense, this loss would be compensated by a gain

in its complement’s ’A’ signal if one considers the symmetrical PWM to contain a smaller

alphabet of symbols. 3 Even for highly non-palindromic sites such as the ’A-rich’ core in the

Dorsal DU sites, one could still symmatrize the motif and hence not have to deal with issues

of strandedness of sites when forming mixtures of PWMs. However, there are a number

of reasons why mixtures of asymmetric PWMs is important, assuming one can deal with

the potential artefacts such as a loss of the signal due to choosing opposite strands (such

as in the 5’-GGAAACC data set example above which would artificially boost the mutual

3This compensation may seem to be violated due to the loss of information content when one symmatrizes
a pure ’T’ signal at position 4 of the DC motif. However, the source of this apparent violation is due to
comparing signals from two different sample spaces. For example, the original alphabet of ’A,C,G,T’ has at
most 2 bits of information. However, when one uses a symmetric PWM the alphabet size is no longer over
4 characters, but simply over 2 characters, hence the most the information can be is now 1 bit. Hence if one
compares normalized information contents (normalized by alphabet size), then the normalized information
contents are preserved. From another perspective the choice to symmatrize is an additional bit of information
gained that compensates the bit of information lost by the original 2 bit ’T’ signal.

102



information).

Our decision to treat the component PWMs as ’asymmetric’ PWMs was based on the as-

sumption that the orientation of a site relative to cooccurring sites may be important, hence

by using asymmetric PWMs we would allow ourselves the potential to decode any orientation

information if it were encoded in the PWM(see Shutzaberger et.al. for more ideas on this

topic of strand[113]). The potential to decode context information based on the strandedness,

is equivalent to making predictions that a particular type of cooccurring binding site would

be either 5’ or in the 3’ direction of the annotated binding site. This decodable information

would also be physically related to cooperative or antagonistic interactions that are contin-

gent on the binding site sequence. An example of this is the asymmetric extended Twist site

5’-CACATGT (extended from the E-box sequence CACATG, where a ’T’ is concatenated

to the 5’ end of E-box), this site has evidence that the ’T’ at the 5’ end must cooccur with

a Dorsal site downstream of it (i.e. where downstream means in the 5’ to 3’ direction)[129].

For example, one would always find evolution selected 5’-CACATGTNNNNGGAATTTCC

and never find 5’-GGAATTTCCNNNNCACATGT. Furthermore, one could imagine that

the Dorsal site that cooccurs on the same strand in this case is 5’-GGAATTTCC, as op-

posed to 5’-GGAAATTCC, where position 4 is strand dependent. In this case, had one

symmatrized the DC PWM they would have lost the information at position 4. Hence the

higher information content of the asymmetric PWM is not an artefact of the asymmetric

PWM 4, it’s rather telling us that this is physically due to the preference of the ’A’ at po-

sition 4 of the DC motif cooccurrring on the same strand as the annotated Twist site (i.e.

5’-CACATGT). Similarly the DU concensus’ core ’5-AAAAT’ may be cooccurring on the

4This may be an artefact in that asymmetric PWM’s always have greater (or at least equal) information
content then symmetric PWMs
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same strand as other coregulating trans factors, and hence cooccurring with other motifs on

the same strand.

2.7.5 Comparing models with unequal parameters

For optimization and model comparison, models that have more parameters may be guar-

anteed to have a higher likelihood value for a given data set, just as a Taylor expansion

approximations of a function improves when one includes higher order terms. Assuming one

has sufficient data to stay clear of fitting parameters to noise, and that the more complicated

models are a more accurate description, a more complicated model may be useful. However,

it is not true that the OR gate, must perform better than CB due to the increased number

of free parameters.

In detection, ensemble classifiers (such as the OR gate) can be used to increase the de-

tection performance[22]. However, it is not true that ensemble detectors will always perform

better than a single detector. The OR gate is a form of the more general ensemble detector

that is a machine that produces a decision based on component detector decisions, where

the component detector’s decisions are pooled and processed in order to come to one overall

decision of the ensemble detector. Examples of processing the individual detector’s decisions

are ’majority vote’, where the most frequent decision of the collection among the component

detectors is used as a the final machine’s decision, similarly the OR gate is an example of an

ensemble detector. Ensemble classifiers have a necessary condition to perform better than a

single classifier: the component classifiers (e.g. DC and DU) should be independent of each

other[22].

DC and DU are independent if we use a conditional independence model for the joint

distribution of an extended sequence S, where we now think of the extended sequence S as a
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dyad (which can be decomposed into three variables that denote two bindings sites separated

by a variable spacer, like in the framework of BioProspector). In this probability model over

the joint we partition an extended sequence S (like a CRM) into two parts, S’ and C, where

S’ is the k-mer sequence to be tested as a Dorsal site or background, and C is the class

determined by the spacer window, which either contains Twist or it doesn’t.

Given that we observe the class C, then we can factorize the joint distribution of the

sequence S’ being tested as a Dorsal site (i.e. S’ is no longer a position dependent distri-

bution). Without the above assumption DC and DU are dependent, hence the OR gate,

which does not observe the class C, does not have independent component detectors. A

consequence of this dependency is that the component detector’s errors are correlated (i.e.

misclassification errors are correlated). For example, each component classifier’s probability

of a base ’G’ at a given position in a binding site should be just as likely to be above the

true value of the probability of G, P(G), as it is below the true value; while for correlated

detectors this does not occur.

Hence, it is not always true that increased complexity of a model will increase its perfor-

mance on training data. Mixture models of binding sites are more complex than a standard

PWM, and are best at capturing broad dependencies among the component classes. To a

large extent, the difference of DC and DU is a localized dependency at particular position

(which can be seen as the difference of their cores ’5’-AAATT’ and ’5’-AAAAT’), and a

differences in the ’strength’ of the sites (or the energy level spacing). The OR gate seems

to perform better than CB for the low energy regime, where the localalized difference be-

tween the cores of DC and DU is significant in distinguishing the energies of the concensus

sequence of each conditional PWM. However, for the entire energy spectrum, where AUC

can be used as a measure of performance, it seems the OR gate behaves about the same
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as CB, suggesting that DC and DU are not independent models. This is not surprising,

as nonlinear models (like a mixture) are sensitive to certain regimes over their input, and

similarly insensitive to certain values of their input (for example see Section 3.5.2.

2.7.6 Information that detectors have about Dorsal binding sites

In a physical NVE ensemble (fixed particle number N , fixed volume V , fixed energy E)

the information content of the distribution of momentum and positions (the distribution

function) is conserved. This means the number of bits necessary to store the position and

momentum information is conserved in time relative to the maximum storage capacity de-

fined by a lattice over phase space (the space of coordinates). For example, if the distribution

function is a uniform distribution over phase space, it has zero information content.

Similarly, evolutionary systems under adaptive maintenance (purifying selection) con-

serve information stored in their genes [1]. The inheritance of information implies that

parents pass a fixed number of bits to their progeny. And just as in the NVE ensemble

where coordinates and momentum are not conserved, similarly in evolution sequences are

variable, but the sequence’s information content is conserved. However, when the fixed

energy constraint of the NVE system is relaxed and the system exchanges energy with a

much larger environment, the system’s original information content may deteriorate until

the system equilibrates with its surroundings. Biological systems harness energy from their

environment to maintain their information content in the never-ending fight against the

second law [2, 29].

The mutual information between sequences and the OR gate’s predictions in Figure 2.3

suggests that the conditional distributions of functional Dorsal binding sites have encoded

synergistic and antagonistic information about flanking sequence features (presence of Twist)
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that causes the likelihood to correctly predict the presence of Dorsal to shift downwards

in energy (as observed by the shift of the mutual information of the OR gate relative to

CB in Figure 2.3). This shift may have been a necessary adaptation in the way Dorsal

regulates its targets. For example it is possible that at the phylum level, possibly before the

neuroectoderm evolved, Dorsal only needed to regulate the mesoderm and ectoderm. When

the neuroectoderm evolved, Dorsal evolved the ability to recognize two subtypes of binding

site ensembles, a function that would help to resolve the neuroectoderm Dorsal targets from

the more ancient germ layers (mesoderm and ectoderm). In this sense, Dorsal’s adaptation

to its local environment is seen as the shifted mutual information relative to the CB detector

(which just treats all binding loci identically). Dorsal could then use this information to its

advantage, in Dorsal real time so to speak, to make better decisions about binding.

The shift in the mutual information plot in Figure 2.3B is not as visible in the ROC

curves in Figure 2.3A, in which we used the same TPR and FPR for the detectors. This

is because, in general, energy level spacing is not accounted for in an ROC curve, implying

that detectors with similarly ranked sequences may actually have different spacings between

their energy levels, and the minimum energies of the scales may be shifted relative to one

another. For example, DC’s ground state is below CB’s ground state, which is why the OR

gate contains some information at negative energy (as DC’s ground state is at about -0.8 in

energy units as seen from the horizontal axis of Figure 2.3).

The degree to which the OR gate’s ROC does appear shifted relative to CB’s ROC in

Figure 2.3A is partly due to the fact that the ranking of sequences of the DC detector

and DU detector is very similar; it is the energy level spacing that is dramatically different

between the conditional detectors. For example, using a substitution model that penalizes

all mismatches from the consensus sequence with the same energy score (see the Appendix
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of Ref. [16] for details) leads to the elegant formula that a consensus base occurs with

probability 1− m
3k , and that an error or substitution occurs with probability m

3k , where k is

the length of the sequence and m is the number of mismatches from the consensus (the 3 in

the denominator is due to the three ways a mismatch from a consensus DNA nucleotide can

occur). Weak sites will be seen to have large m, which to a degree can be seen as the DU

training data. Similarly, strong sites will have small m, which can be seen as the DC data.

Hence in this substitution model, the difference between DC and DU is not in the ordering

of their ranked sequences, rather the difference lies in their energy level spacings (which can

be seen by changing m which affects the energy spacing formula Equation (2.10)).

This picture of DC functional sequences being a strong version of DU’s sequences is con-

sistent with our findings that their median energies differed by almost two units, and with

Papatsenko et al.’s findings [101] that Dorsal binding sites necessary in limiting concentra-

tions of Dorsal protein (such as in the neuroectoderm) tend to have higher information scores

(lower energy scores), than other Dorsal sites such as sites active in the mesoderm [101]. It is

also consistent with the mathematical definition of “specialized” sites from Erives et al.[42]

and the Dβ sites of Crocker et al. [31] who defined these sites based on how they were de-

tected (similar to MEME’s One Occurrence Per Sequence setting (OOPS)[11], the specialized

sites were one site per NEE CRM sequence, where each discovered site shared the highest

sequence similarity between the selected sites between the CRMs), which in a sense, is the

Dorsal site that had the slowest mutation rate (i.e., under the strongest purifying selection).

2.7.7 Conditional detectors

In Figure 2.4 we see that the DC detector can resolve whether a Twist site is in the spacer

window or not if the detector fires when E(S|C) < 3 (see Equation (2.15)). The resolution
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is not perfect in this regime: the DC detector still has an error rate, which we define as

1− 2−H(C|P), where the conditional entropy is defined as:

H(C|P) = H(C)− I(C;P). (2.27)

The conditional entropy, H(C|P), is simply the uncertainty of C given P . But what does

this mean for a DC detector? We interpreted this conditional uncertainty as a measure of

the detector’s uncertainty about the underlying Dorsal binding site sequence given how well

it predicted its context. For example, if we assume H(C) = 1 bit while DC’s information is

I(C;P) = 0.3, then plugging into Equation (2.27) we have

H(C|P) = 1− 0.3 = 0.7 bits, (2.28)

and hence Dorsal has decreased its uncertainty about its context.

If the mutual information I(C;P) was maximal (1 bit), then Dorsal could predict with

perfect accuracy whether Twist was proximal or distal. At the opposite extreme where

the Dorsal detector does no better than random guessing, we see that it would take about

two guesses on average to predict if Twist will be near a binding site sequence. From an

evolutionary point of view, the information I(C;P) encoded in Dorsal binding sites can be

seen as a message passed from an ancestral population of flies to its descendants. Here,

the message instructs Dorsal to interact with Twist, and is encoded in the DNA of Dorsal

binding sites.
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2.7.8 Forms Of Conditional Detector’s score

We have defined the conditional energy as the CB energy plus a shift depending on the

cis-context of the binding site locus. A similar bioinformatic measure is to solely use the

conditional probability distribution over sequences to construct a bioinformatic scoring func-

tion as: log
P (SoC |C)

P (S|C)
, where SoC is the consensus sequence under condition C. This form of

the discriminant function can be transformed to our form E(S|C) = log
P (So)
P (S)

−log
P (S,C)

P (S)P (C)

by a simple additive term to the bioinformatic score log
P (SoC |C)

P (So)
, where So is the concensus

sequence of the CB distribution. The advantage of our technique is that mixture of data

sets of different sub-types of binding sites that are heavily weighted by the consensus sites

of the mixture component distributions can be shifted relative to the consensus site of the

lumped data set, such as DCB. Hence, we are able to resolve quantitatively the amount

of energetic shift, while a purely conditional based scoring functions will set each detector’s

consensus score to zero. Information scores I(S) = log
P (S)
Po(S)

, or log likelihood ratios, are

also commonly used for bioinformatic detection, which can be transformed to our score by

adding an additional conversion term that cancels the logarithm of the background distri-

bution. Information scores have the advantage over purely conditional energy scores in that

they allow all bioinformatic scores to be based on a common scale (the background), which

is equivalent to an energy score with a common reference point in the case that one uses a

uniform distribution as the background. This is because in sequence space5 one can imagine

a point that represents a uniform linear combination of all sequences, then the information

scores can be seen as hamming distances away from that point; just as energy scores are

5In this context each position of a sequence can be thought of as a 4 dimensional real vector space. Then
the length k sequence is 4k dimensional real vector space, where each point simply determines the scaling
along each dimension (such as the counts that a particular nucleotide base is observed in an alignment at a
given position, or the energy score at for that base at a given position).
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basically hamming distances measured from a reference point in sequence space. Our aim

was more than just discriminating Dorsal sites from random k-mers, we wanted to resolve

differences within Dorsal binding sites. Our score has the advantage of allowing one to re-

solve the most important region of that scale (shifts away from the CB ground state), which

can not be done with the pure information score that uses a uniform background.

2.8 Conclusion

Position Weight Matrices represent a linear coarse-grained physical lattice model of DNA-

transcription factor binding. At the DNA sequence level and at the level of Darwinian

selection PWMs represent one of simplest possible linear models. In the case that each

position within a binding site is independently interacting with the protein binding domain,

it makes sense to use a simple model for binding since the affinity (the phenotype) is linear,

and hence natural selection may behave as if a linear model. However, binding site sequences

may be dependent, and hence linear models will miss important information. By conditioning

PWMs based on the variables that are causing the dependency structure within binding

sites it is possible to resolve the binding sites into independent classes that can then each be

modeled as conditionally independent PWMs.

The necessity of introducing nonlinear sequence models into binding site sequence mod-

els is known to help improve binding site sequence detection, and to give a more realistic

perspective to binding site models. A number of groups have introduced similar models for

discovery of co-occuring motifs [84, 12, 50, 27, 13, 58, 102, 56, 83, 92]. In addition, others

have looked at the influence of symmetries in the flanking sequence of binding sites [111, 3].

Here we placed our analysis in the context of Berg and von Hippel’s population genetics

111



model that is related to thermodynamics, and hence the interaction term could be placed

inside of thermodynamics occupancy models of transcription factors.

Our conditional PWMs account for epistatic interactions between Dorsal binding sites and

their cis-context. We showed that Dorsal binding sites contain on average around 0.5 bits of

information about the presence of Twist in the flanking sequence of each Dorsal site (see Table

1), thereby contributing to disentangling the dependency structure of Dorsal binding sites

active in fly development. In the future, our model can be incorporated in the annotation

of binding sites of regulatory regions, and could be used for modeling cooperativity and

antagonistic interactions directly from the sequence level. Such models could be used by

occupancy models of transcription factors that predict gene expression, such as those in

Refs. [61, 43].

2.9 Methods Supplement

2.9.1 Alignment of cis-regulatory modules and collection of DCB

We used the sequence editor SEAVIEW’s default MUSCLE multiple sequence alignment

settings [47] to align a given gene’s 12 orhthologous CRMs[38]. Given the alignment we then

manually extracted the blocks that contained the known D. mel binding sites, which allowed

for flanking sequence to be extracted (these blocks on average spanned about 15bp with no

gaps across the 12 species). The data set of all 12 extracted orthologs (sometimes less than

12 if a binding site was not in the block) for all the D. mel Dorsal binding site loci is la-

belled as DCB. The DCB data set is available at: https://github.com/jacobclifford/MIBBS,

and the raw CRM data (the fasta of each of the 12 orthologous CRMs) is available at:

https://github.com/jacobclifford/CRMalignment.
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2.9.2 CRM alignment using MUSCLE

MUSCLE (multiple sequence comparison by log-expectation) is an alignment tool for protein

sequences, which we co-opted for alignment of cis-regulatory modules. MUSCLE uses a

similar algorithm to CLUSTALW, both of which use the ’sum of pairs’ (SP) objective function

to determine the best multiple sequence alignment (MSA). I will briefly outline the SP score,

and then discuss how MUSCLE is different than CLUSTALW.

Fundamentally sequence alignment for strings of amino acid symbols or strings of DNA

symbols rewards symbol matches and penalizes mismatches. A scoring system is designed

to determine the rewards and penalties based on the goals and purpose of the alignment,

where the Altshult (the BLAST cofounder) and Karlin system is commonly adopted due to

it having an analytic solution for calculation of the p-value for hypothesis testing (where the

null hypothesis is that the sequences are evolutionarily independent (random)).

Regardless of whether one has a sequence of amino acids or DNA the match and mismatch

score is based on a ’similarity matrices’ such as a Dayhoff matrix (a 20x20 matrix for amino

acids) or a Henikoff matrix, BLOSUM, which is essentially a look-up table that determines

the score for aligning any two symbols (the table treats all positions of the sequences the

same, unlike PWMs). For example, Dayhoff estimated her similarity matrix partially based

on recently diverged proteins from a number of known protein families (gene families) that

were available at the time of construction (around 1970) with sequences that had a known

alignment, then counting the frequency of alignment between any two symbols and hence

substitutions between symbols, the joint probability, p(x, y), of seeing symbol x at some

arbitrary time and symbol y at some different time could be determined. Hence the score

is simply s(x, y) = log
p(x,y)
p(x)p(y)

, where p(x) is the probability of symbol x in any protein
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sequence (similarly for p(y)).

For pairwise alignment (two sequences being aligned), given a scoring system, there are

two exhaustive methods of alignment (i.e. that look at all possible ways to align the two

sequences). These two methods are distinguished based on their ’boundary conditions’,

and are called global and local. Global alignment means all they symbols of the sequences

must be aligned and the score across all the aligned symbols must be accounted for in the

pairwise alignment score, where the best pairwise alignment (the optimum) is a function

over all possible alignments) . While local alignment does not require all the symbols of

the sequences be aligned, and the best subsequence pairwise alignment is considered to be

the alignment, where now the pairwise alignment score simply accounts for the length of

the subsequences, while again the best scoring aligned sequences is taken as the optimum.

Both methods, global and local, assume that no transpositions (or crossing over) occur (e.g.

one must align consecutive characters of a sequence to consecutive characters of the other

sequence or to a so-called indel character (gap or insertion) ). In short, global alignment

means all characters between the two sequences must be aligned (with the possibility of gaps

and insertions), while local alignment means only a subset of the character between the two

sequences must be aligned.

The pairwise alignment score of two sequences x and y that are clones of one another is

d(x, y) =
∑L
i s(xi, yi) where i is the internal position of each sequence, and L is the length

of the sequence. If we now allow gaps between these sequences there are a total of
(2n
n

)
possible scores (many of which are degenerate). The gap penalty is usually of the form

of a constant (independent of nucleotide or amino acid symbol aigned to the gap). For

example, for a simple scoring system where s is ’one’ for a match, and ’zero’ for a mismatch

(the identity matrix), and we only have a constant gap penalty, we see that there is simply
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L + 1 possible pairwise alignment scores from the
(2n
n

)
possible alignments. In general, the

computation of the d(x, y) is accomplished through dynamic programming, where one has a

progressively computes the global optimal d(x, y) alignment by using the recursion relation

S(xi, yi) = max(S(xi−1, yi−1) + s(xi, yi), S(xi−1, yi)− g, S(xi, yj−1)− g), where S(xi, yi) is

the partial sum of scores up to position i for sequences x and y, and g is the gap penalty.

Once one has chosen what type (global or local) of pairwise alignment (i.e. d(x, y) score)

then to estimate a MSA for n sequences using a SP objective function one must create a

n x n distance matrix (same idea as in 2.9.5), where the elements of the matrix are the

pairwise alignment scores between any two sequences (d(x, y)). Once one has a distance

matrix any number of clustering algorithms can be used to begin to group sequences based

on similarity, in particular a minimum spanning tree must be built. Upon construction of the

minimum spanning tree a pairwise alignment is arbitrarily chosen and sets the foundation of

the MSA (a pair of leaves in the tree), then additional sequences are systematically ’added’

to this foundation, where upon each addition the MSA grows until all n sequences have been

’added’ to the MSA. The addition of sequences to the initial foundation is not arbitrary,

the entire point of computing the minimum spanning tree was to guide precisely when each

sequence should be added to the growing MSA (see figure 1 of Edgar[39]). Hence MSA grows

(is built) by following the branching of the tree, where at each branch point an alignment

occurs. This is called progressive alignment, and is the basic idea behind CLUSTALW.

For example, given the minimum spanning tree (suggestively called a guide tree) the first

alignment is simply the pairwise alignment already calculated; the rest of the alignments are

’profile-sequence’-alignments - where a profile is an existing alignment (it is like a PWM with

the possibility of gaps as a symbol), or a ’profile-profile’-alignment (where the columns of a

profile are now regarded as a symbol, and standard global or local alignment is performed on
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these symbols, similar to STAMP for PWM-PWM alignments, where the ’match’ function

between two columns is called the profile function (which is called the log expectation score

in MUSCLE).

A novelty of MUSCLE, as suggested by the LE in MUSCLE, is the log expectation score

used for profile-profile alignment (see Eq. 1 from Edgar[40]). Furthermore, MUSCLE also

uses a k-mer counting scheme to determine the matrix elements of the distance matrix (as

opposed to the global or local pairwise alignment score), where it is thought that k-mer

co-occurrences correlate well with sequence similarity (see Eq. 1 of Edgar[39]). The k-mer

counting scheme is similar in spirit to the BLAST algorithm (local alignment between a

short and long sequence), which is popular for its speed and high throughput (time and

space computational complexity). It appears MUSCLE looks at all possible 6-mers when

constructing the similarity measure (and doesn’t count overlaps).

The MUSCLE algorithm coarsly is shown in Figure 1 of Edgar[]. The initial step is

identical to CLUSTALW with the exception that MUSCLE uses k-mer counting to define

it’s distance matrix elements. And MUSCLE uses UPGMA clustering to build the guide

tree, while CLUSTAL (CLUSTer ALignment) uses neighbor-joining, for reasons discussed

by Edgar[]. The initial guide tree is then used to progressively align the data based on the

branch ordering of the tree, where MUSCLE uses the LE score while CLUSTAL uses a LA

score that is slightly different score (the difference between LE and LA is the same difference

as our using a CB PWM to define P(S) and the true mixture to define P(S), where a true

mixture can not be ’additive’ when the logarithm is used for scoring).

Upon construction of the MSA based on the guide tree, MUSCLE repeats the entire pro-

cedure using the Kimura distance to build a distance matrix (the Kimura distance requires

an alignment, which is possible, since the initial iteration in MUSCLE constructs an align-
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ment). Clustering is again performed on the distance matrix (with matrix elements based on

the Kimura distance between any two sequences), and again the guide tree (representation

of clustering) is used to progressively build the new MSA.

A third type of ’iteration’ occurs in the MUSCLE algorithm (after the newly generated

MSA from Kimura distance), where the guide tree is randomly partitioned into two subtrees,

where a profile (MSA) is built using each subtree as a guide (the profile is progressively

built, and hence an MSA). Then profile-profile alignment is performed (similar to STAMP

PWM-PWM alignment). The number of random partitions of the guide tree, and hence

profile-profile alignments is a parameter the user can adjust, or will automatically halt once

the partitions fail to improve the alignment.

2.9.3 MUSCLE is both fast and accurate

There is almost always a tradeoff between speed and accuracy in computation. According to

the online MUSCLE documentation at http://www.drive5.com/muscle/manual/accurate.html:

”The default settings in MUSCLE were chosen for best accuracy rather than making any

compromises for speed, so if you want the best accuracy you should probably stick with the

defaults unless you have a new and better parameter tuning method.” This suggests that

our use of default parameter settings for CRM MSA would result in best possible alignments

from the MUSCLE tool. However, MUSCLE was designed for protein alignments, and even

for protein alignments, the use of limited availability of high quality benchmark datasets

means the MUSCLE parameters were tuned to fit a small subset of protein familys and

their peculiarities, hence the generality of the MUSCLE parameter settings beyond these

few protein familys in the benchmark datasets is questionable.

The speed and accuracy of MUSCLE for a given data set is determined by the number
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of ’iterations’. Faster alignments are achieved by simply reducing the number of iterations,

and more accurate alignments are achieved by simply increasing the number of iterations.

The ’iterations’ that can be adjusted (as a parameter) are the ’refinement’ iterations, which

randomly deletes a branch of the guide tree, and then does a profile-profile alignment on

the two subtrees (i.e. the two data sets of sequences resulting from the partition (branch

deletion)).

2.9.4 MUSCLE parameter sensitivity

A possible parameter that our CRM alignments, and hence our CB data set DtextbfCB , are

sensitive to are the choice of substitution matrix (especially seeing an amino acid ’substitu-

tion’ doesn’t even make any sense for CRMs, albeit using a substitution matrix for aligning

regulatory sequences is unlikely to do harm, seeing that in all cases a substitution matrix

rewards exact matches, the problem is it will also reward certain cases of mismatches or

at least fail to penalize the mismatch.). However, by default, if a DNA sequence is given

to MUSCLE the substitution matrix is not used (presumably, because the reading frame

is not known, albeit some MSA tools (unlike MUSCLE) will generate all possible reading

frames automatically (there’s only three of them)). Furthermore, although MUSCLE leaves

the option of using BLOSUM or PAM matrices for constructing distance matrices, as I

understand, the default of MUSCLE uses k-mer counting as the distance measure, which

I see no apriori reason why that can not be used for CRMs. An exhaustive list of pa-

rameters (options) for MUSCLE are described in the Command Line Reference section at:

http://www.drive5.com/muscle/manual/valueopts.html. The Seaview editor allows these

options (parameters) to be varied by setting them in the ’Alignment Options’ tab available

from the ’Align’ pulldown menu available through Seaview’s toolbar at the top of Seaview’s
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GUI window.

MUSCLE uses an ’affine’ gap score (penalty) that penalizes for opening, extending, and

closing a gap. This is the same scoring technique as CLUSTAW, and like in CLUSTALW,

by increasing the gap score by a factor of ten will usually have visible effects by causing less

’blocks’ to appear in the finished alignment, where the blocks that do appear are commen-

surately longer. The default gap open score was 10, and this value I found, in some cases

could be possibly be increased by an order of magnitude, as some known binding sites that

have had indels will likely have a gap inserted in the final alignment (which creates more

work for me, as I prefer to have the binding site block to have no gaps, which allows for

faster ’sites’ creation where we extract the block of putative sites and the known mel site.

This is done by exact search in the seaview editor for a known mel site in the CRMs. Once

found the site and everything it had aligned with/to are extracted and placed in their own

fasta file; which is done in seaview by using the ’site’ pulldown menu, and selecting ’create

set’ that allows for highlighting blocks (subsegments of an MSA) of aligned sequence, which

can then be automatically saved as new fasta files. ).

The 12 CRMs that are associated with each target gene along with shadow enhancers (a

distinct set of 12 CRMs associated with some target genes, such as vndV (vnd Ventral) and

sogS and brkS (brk Shadow) - where many of the shadows we did not use, such as vndV and

brkS ) are available at: https://github.com/jacobclifford/CRMalignment.

2.9.5 GEMSTAT modifications for locus annotation of CRMs

Given the known sites, DCB, with their flanking sequence from the block alignments we

then created an exact search algorithm that allowed us to estimate the coordinate of the

known site within the regulatory region for data structures used by GEMSTAT, a platform
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developed in the Sinha lab [61]. This program has a various inputs, which are irrelevant

for our current purposes, the relevant input is a set of PWMs that represent transcription

factors, and the set of CRMs regulated by these factor’s motifs (PWMs). We extended

the GEMSTAT input to allow for a raw Fasta set of variable length binding sites (namely

our Fasta file for the data set DCB). Each of these sites and its reverse complement was

transformed to a probability PWM ’singleton’ representation ( the probability is equal to

one for the observed nucleotide and zero for the other nucleotides). The longest binding site

of length n in the Fasta file determined the length of all the singletons. Binding sites in the

Fasta file that were of length k, where k < n, then had d = n− k columns of zeros ’padding’

the last d columns of their singleton PWM.

We then constructed a distance matrix from the singletons, where each singleton is rep-

resented by a row and column in the matrix. The matrix elements of the distance matrix

were defined as a normalized euclidean dot product between the singletons (where corre-

sponding components of each singleton multiple each other). The normalized dot product

between the singleton Sx in row x and singleton Sy in column y is defined as sum over all

the element-wise multiplications:

Sx • Sy =

∑nn
ij S

x
ijS

y
ij∑nn

ij S
x
ijS

x
ij

. (2.29)

The row singletons are used for normalization, and hence for a given row x, by iterating over

all columns we can filter out any identical singletons.

For example, if we have 400 positive strand binding sites in our Fasta file, we will have a

800x800 distance matrix (400 of the rows corresponding to positive stranded sites, and an-

other 400 rows for the negative strands); where the matrix elements are normalized Euclidean
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dot products between any two singletons. By screening the distance matrix for elements that

were equal to ’one’ (which stands for a duplicate sequence or possible symmetric sites) we

are able to determine which singletons are unique. Asymmetric sites contain an instance for

each strand (which means they are not unique), which is accounted for in our ’overlapping’

sites processing step.

Collecting all the unique singletons, we then annotate (scan) the CRMs with each unique

singleton using exact match (e.g., zero ’energy’ singleton PWM threshold). This step allows

us to map each binding site in our Fasta file to a unique locus within the CRMs, thereby

attaining the coordinates of all our known binding sites within the CRM coordinate system,

which is an essential step in the spacer calculation of Equation (2.8).

Each unique singleton has a personal factor identification (a name), which we mutate to

the name ’Dorsal’ for every singleton. Associating the name ’Dorsal’ to the annotated sites

within the CRMs is a necessary step in order to compute the spacer between each of the

annotated ’Dorsal’ sites and any predicted motifs sites within each CRM. The coordinate

defines the start or end of a binding site depending on what strand of the CRM was annotated

as a positive hit. For asymmetric known sites that match the bottom strand, the coordinate

defines the end of the binding site, while matches on the positive (or ’top’) strand of the

CRM indicate the start of the site. The asymmetric sites are further processed to cull out

any sites that overlap at a specific locus, where the process is described below.

2.9.6 Overlapping site processing

In order to create independent loci, we wanted to have only one hit per binding site, so

we culled all overlapping sites and overlapping footprints. In the singleton construction of

known binding sites our set of unique singletons frequently contains asymmetric binding

121



sequences which means both the top and bottom strand sequence at a particular locus will

have an associated singleton (overlapping binding sites). We are able to choose just one

representative for a given locus by an algorithm explained in the ’Best Predictions’ section

below.

2.9.7 Error In estimating the spacer length between known Dorsal

loci and Twist sites

The spacer between two annotated binding sites is determined by the coordinates of the start

site of each binding site using the CRM coordinate system. However, ’known’ Dorsal sites

were annotated in the CRMs using Euclidean dot product search algorithm (discussed above

in ’GEMSTAT Modifications For Locus Annotation Of CRMs’), which has an uncertainty

in start site of a binding site due to the searching singleton PWM being longer than the

actual binding site (due to the flanking sequence). We have about a 6 base-pair error in the

exact spacer length for our length 9 binding sites of Dorsal (assuming the Twist site or other

potential cooperating site annotation uses a correct length PWM). This is due to the actual

Dorsal binding site not being 15 bps (which is the typical length of a site used in our exact

search algorithm). However, in practice, many of the loci had smaller appended flanking

sequence, which would reduce the error in the spacer length calculation. Furthermore, for

binding sites that were centered (which they usually are) in the extracted block from MSA,

the spacer length error would be reduced in half. Here we call this spacer length error

and not bias, because we simply don’t know exactly where the site resides within the blocks

extracted from the MSA. Given the coordinates of the known Dorsal binding sites within the

cis-regulatory module we then defined a PWM for putative cooperating factor with Dorsal
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(such as a Twist PWM) and set a threshold on this factor’s energy to annotate its predicted

sites (where we assume this factor’s annotation uses a correct length PWM).

2.9.8 PWM Best predictions of binding site loci

By scanning or scoring each possible subsequence of length k within a CRM with the PWM

one can filter out all the subsequences that do not match the PWM, where a match is defined

as having an energy score below a defined threshold. The coordinates of the subsequences

that match the PWM relative to the CRM coordinate system can then be used to determine

the locus of the predicted binding site.

Scanning CRMs with a PWM frequently results in multiple overlapping binding sites

due to symmetry (positive and negative strand being called a hit) and due to re-occurring

patterns in motifs (such as repeated bases like AAAA). In order to have non-overlapping

binding sites we processed the set of match sites from the CRM scan to construct a list of

non-overlapping sites.

We treated each position within a CRM as the start site of a binding site of length k that

was scored by the PWM using Eq. (2.2) (or Eq. (2.15) depending on the model being used

for predictions). The reverse complement of each potential binding site was also scored by

the PWM. Each length k sequence (potential binding site) was stored in a data structure, a

k-mer, which contained attributes of the potential binding site like the coordinate and strand

(relative to the CRM) and the energy score. The k-mers below the energy threshold were

selected as a hit, and temporarily stored in a hit list. In order to have no overlapping hits we

sorted the k-mer list according to energy scores. The coordinate attribute of the k-mer with

the minimum energy, the best site, was used to mask out any overlapping hits. This best

k-mer site was passed to a storage vector, which would ultimately contain the annotated
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k-mer binding sites of the CRM. Upon deleting the minimum energy k-mer site along with

the masked out k-mers from the hit list, we iterated the above procedure until the hit list

was empty, thereby creating a storage vector of non-overlapping predicted k-mer sites that

corresponded to maximum scoring binding sites within the CRM.

2.9.9 Expectation Maximization Alignment

In this paper EM alignment means Expectation Maximization alignment of binding sites.

We use a one site per sequence setting that resembles the MEME [11] EM one site per

sequence algorithm [10]. A Fasta list of sites is passed to the tool, and for each sequence in

the list one internal position of the sequence is defined as the starting position of the inferred

binding site. Only one binding site is allowed per sequence from the list passed to the tool,

however, for any given sequence both strands are scored by the current value of the PWM,

where the highest scoring site’s position, regardless of strand, is saved in order to make the

alignment. The output of the alignment is a PWM. The tool requires setting the length of

the desired PWM and the number of iterations of the Expectation Maximization algorithm

and the number of iterations of a sampler. Recall, the MEME EM simplest form of the

algorithm, scores each internal position with a current definition of a PWM. Then upon

scoring all sequences and all internal positions of each sequence within the Fasta list, the

Maximum score for each sequence, and hence a corresponding position, is determined for the

new starting positions of sequences to be are extracted and used to construct a new PWM,

this new PWM is the Expected PWM, in the sense that the Maximum Likelihood values

of the expected counts are just the counts themselves. This new PWM is then reiterated

upon all the sequences and all their internal positions, thereby iterating through the EM

algorithm. In addition at each step of the EM iteration, the stored position of the start site
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of each site in each sequence is shifted by one base pair and then the PWM is recalculated

to check for phase shifts. The shifts are check for both forward and backward shifts up to

shifts of half the length of the site [77]. The EM is wrapped inside of a sampler, which

allows for a naive global optimization by random starting positions within each binding

site sequence being used as the initial conditions that are past to the EM program. A

global variable stores the best PWM, upon each iteration of the sampler, if the EM output

PWM has smaller Kullback-Leibler divergence (i.e. information content) then that PWM is

thrown out, otherwise global variable of the best PWM is redefined by the current iteration’s

PWM, and the sampler continues until the specified number of iterations are exhausted. The

Kullback-Leibler divergence (i.e. information content) of the distribution (the probability

PWM) was estimated from the uniform distribution or from a distribution set by a GC

content value. In addition we implemented an option to weight each homologous sequence

in the alignment based on the divergence time estimated from Obbard et al.[98]. However,

we have not fully explored the effects of this weighting scheme, and no results were presented

with this option.

2.9.10 CB was designed to be an approximation to a mixture

By choosing ’A-rich’ strands for representations of DC and DU, we were able to create

mixture of PWMs that was not an artefact of the strands when it came to calculating the

marginal in the mutual information, and when it came to constructing the CB PWM. To

determine just how similar the CB PWM is to the mixture distribution, we can use the fact

that the entropy of a mixture distribution has the property:

H(P (S)mix) ≥ fDCH(P (S)DC) + fDUH(P (S)DU ), (2.30)
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where H(P (S)mix) is the entropy of the mixture model of Eq. 2.25, and fDC is the fraction

of loci in the population that were assigned to class DC and P (S)DC is the probability of S

calculated from the DC probability PWM, and fDU is the fraction of loci in the population

assigned to class DU and P (S)DU is the probability of sequence S calculated from the

DU PWM. Now if H(P (S)CB) is similar in magnitude to H(P (S)mix) then it would be

reasonable to suggest that E(S|C) = E(S) +w(S,C), where E(S) is estimated from the CB

energy PWM.6. We found the entropy of the mixture for the spacer window of [0,30]bp was

8.2 bits while the entropy of CB was 8.4 bits (note the entropy of a probability PWM is

2 ∗ k − IC, where k is the length of the motif and IC is its Information Content calculated

using a uniform background distribution over sequences(e.g. see the first term, IC, in the

Lagrangian in the main text)7. Given that the entropies of these distributions are within a

couple decibits and inspection of the logos from figure 2.1 suggests the ranking of sequences

by the PWMs is preserved between DC, DU, and CB (and hence by the mixture distribution)-

the preservation of sequece, of course, breaks down for the 5’-AAATT and 5’-AAAAT cores

of DC and DU, notwithstanding, it seems reasonable, for the Dorsal OR gate, to simply

use CB as a proxy for the marginal mixture model in the calculation of E(S). Without this

approximation one would have to use a more complicated data structure in order to calculate

E(S), such as a look-up table that stores the probability of all 4k sequences.

6For a physical mixture, the correct form of the marginalized energy is:

E(S) = log (
Pref∑

c
∏
i P (Si|C = c)P (C = c)

), (2.31)

where Pref is the probability of the most probable sequence from the mixture model (i.e. in the mixture
model joint distribution P (S) takes the form:

∑
c
∏
i P (Si|C = c)P (C = c) = P (S).

7The information content of any distribution p is: IC = Hmax−H(p). In a sense, it’s a measure of how
far the distribution p is from the uniform distribution, which, in the context of detectors, tells us about the
predictive ability of a detector, since IC = 0 is just random detection, no better than guessing.
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2.9.11 Conditional Distributions

The above count table provides the basic elements to estimate the marginal probability of

the bases over the two classes. The maximum likelihood (ML) estimate of the counts from

the table are the counts themselves. Furthermore, any function of a ML estimate is itself the

ML estimate. The ML estimate of the marginal counts of B over C is nB = nB1 +nB0. The

ML estimate of the marginal probability of B is
nB
n , where n is sum over all elements of the

table (n =
∑
B nB). ML estimates of the counts and the probabilities enjoy the property

that the estimates are unbiased. However, the ML estimates of the functionals energy and

entropy are biased, where the ML estimate of entropy always underestimates the value of

the entropy[96]. The bias in the ML estimate of the energy is more complex to analyze, since

the energy (as defined in Eq. 2.10) is equal to the entropy plus an additional extreme value

variable (where this extreme value variable is from a Gumbell like distribution). The bias

in these estimators could affect our bioinformatic searches based on a cutoff of the energy,

and could affect our calculations of information content and mutual information. Hence we

chose a Bayesian approach that uses a hyperparameter β to correct for the small sample

bias in entropy and energy. This approach leads to an estimate of the discrete marginal

probability of B over C with a Dirichlet prior with a symmetric hyperparameter β, defined

as P (B) =
nB+β
n+4∗β . We used the same β for all positions of a PWM[81]. Similarly, the

conditional distribution of B given C is defined as P (B|C) =
nBC+β∑
B nBC+4∗β , where we use

the same β for all positions of the conditional probability PWM for our estimates of the

conditional distribution of B given C.

To estimate the uncertainty in our count estimates, a frequentist may assume a Poisson

counting-like process, which has a well-known property that the expected counts for a set

127



number of trials is equal to the variance of the distribution of counts, which is supported

up to the set number of trials. One can then estimate the confidence interval of their

estimates of the expected counts and hence the standard error on P (B). However, from a

Bayesian perspective, the normalized counts are simply samples from a probability simplex

(the distribution of distributions)[22]. Here one doesn’t estimate standard errors on P (B),

rather the variance of the distribution over the probability simplex is a measure of the

expected spread of P (B) (i.e. how much do we expect P(B) to vary from one alignment

(sample) to another, in other words, how reliable is our estimate of P (B)). Thinking of each

B as a category, then we can use the Dirichlet as our prior distribution over the categorical

distribution P (B) (choosing the Dirichlet as the prior preserves the form of the categorical

distribution when new information becomes available that we use to update our estimate of

P (B)). The Dirichlet has an elegant formula for its variance, which we reproduce here for

convenience:

σ2
P (B) =< P (B)2 > − < P (B) >2=

αB(α0 − αB)

α2
0(α0 + 1)

, (2.32)

where αB are the concentrations (hyperparameters) for B = A,C,G, T , and α0 =
∑
B αB .

After we observe the sample (the alignment), the variance changes because we’ve gained new

information. We can (as a consequence of ’conjugacy’) simply recycle the formula above with

a change of variables α′B = αB + nB . . . α
′
o = αo + n, this leads to the posterior variance:

σ2
P (B)post

=
(αB + nB)(α0 + n− αB − nB)

(αo + n)2(αo + n+ nB + 1)
. (2.33)

We chose to use a symmetric hyperparameter, β, where αB = β ∀ B, which can be thought of

as a ’pseudocount’. Berg and von Hippel used the same analysis with the standard maximum

entropy prior, which they detail in their appendix[16].

128



2.9.12 Detector energy thresholds, Ec

From a bioinformatic perspective, a detector’s conditional PWMs or the CB PWM must test

each potential 9-mer in a CRM by making a prediction as to whether the 9-mer is a binding

site or random background DNA. Hence the prediction is a binary classification that labels

each 9-mer as positive or negative. The positive sites indicate the 9-mer’s energy is below an

energy threshold, Ec (critical energy), while negative sites have 9-mer sequences with energy

above the energy threshold.

We define the bioinformatic specificity, ν, as the cardinality of the number n of se-

quences of length 9 bp that are considered a positive binding site due to their energy

being below the critical energy, divided by the cardinality of the total number N of pos-

sible sequences of length 9 bp, where N = 49. Hence the bioinformatic specificity is

ν = n
N =

∑
S∈S P (S)θ(E(S) − Ec), where S is the set of all possible sequences (i.e. the

set of cardinality N), and θ is the step function, which acts as an indicator variable that

has a value of ’one’ when E(S) is below the threshold energy of Ec and theta has a value

of ’zero’ otherwise. Once a bioinformatic specificity is set, we use the estimated cumulative

distribution function, cdf, of the CB energy over the 49 sequences to calculate the energy

threshold that matches a particular value ν of the cdf, ( where we assume these 49 sequences

occur based on the background probability).

We naively build the cdf by nested iterations, which allows us to iterate over all possible

9-mers, N. At each iteration we determine the unique 9-mer sequence S’s CB energy E(S)

(position independent model), and increment the bin of the energy histogram that corre-

sponds to E(S), where the bin widths were 0.1 in arbitrary units. To map an energy E

to a bin, we map each energy to a bin number (bin identification), where the bin number
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is d10 ∗ E(S)e for a 0.1 precision bin width, or simply dE(S)e for a bin width of 1. For

example, for ν = 10−6 we expect n = νN possible sequences to be below the energy cutoff,

we then can rank each sequence in the set of N unique 9-mers based on their energy score,

where the nth sequence’s energy is Ec.

For a given energy PWM each 9-mer, S, in a crm is scored as E(S) +w(S,C), where the

shift is determined by the PWM that was trained from class specific data (w = 0 for CB).

For example, if the spacer window is set at [0, 30]bp then the DC detector always expects that

there is a cooperating site proximal to it, and hence adds w(S,proximal) to the energy E(S)

for a given sequence S. All 9-mers that satisfy the constraint E(S)+w(S, proximal) < Ec are

considered a positive hit (where overlapping 9-mers that satisfy this constraint are screened

so that the best scoring 9-mer is considered the positive site).

2.10 Results Supplement

2.10.1 Description of rank sum sampling distribution construction

It’s possible that any random data set of binding sites that are used to build detectors using

our technique would produce p-value’s similar to those found between DC and DU detectors.

Hence, our original data set of Dorsal sites DCB was randomly partitioned such that half

of the sites from it are placed in D1 and the other half of sequences into D2. Then we

build a detector (a model) with PWMs trained from the D1 sequences, and similarly we

build another detector from the D2 data. Then using our formula for conditional energy

we compute the conditional energy for each of the D1 sequences. For example, let D1 =

S1, S2, ..Sn, where the cardinality of DCB is 2n. Then we compute the energy of these

sequences: D1E = [E(S1|1), E(S2|1), ..E(Sn|1)]. Similarly the data set D2E will be based

130



on the conditional energies for the corresponding sequences in D2. Once we have the lists of

conditional energies, we compute the median energies between D1E and D2E , and use the

ranksum test to obtain a p-value.

We repeat this procedure 1000 times and bin the pvalue. Hence we create a distribution

of pvalues for the ranksum test, which can be used to test if our detector’s DC and DU have

a significant ranksum pvalue against the background of pvalues from ranksums of random

partitions of the data.

2.10.2 Logodds ratio test of DC and DU positive hits

For a given detector, defined by the class value C =c, each 9-mer, S, in a crm is scored as

E(S)+w(S,C = c). For example, the DC detector always expects that there is a cooperating

site nearby, and hence adds w(S,c=1) to the energy E(S) for any given sequence S. All 9-mers

that satisfy the constraint E(S) + w(S, c = 1) < Ec are considered a positive hit (where

overlapping 9-mers that satisfy this constraint are screened so that the best scoring 9-mer is

considered the positive site).

All positive hits for a detector are then classified using the same spacer window scheme

that was used in constructing the detector itself (i.e.[0,30]bp). All positive hits that contain

a Twist site in the spacing window are classified with class tag ‘proximal’, and the Dorsal

sites without a Twist site in the spacing window are classified as ‘distal’.

We constructed a 2x2 contingency table with table elements nM,C that represent the

number of predicted Dorsal loci from detector M that match the properties of class C (e.g.

C =p indicates the predicted Dorsal locus had a cooccurring Twist site in the spacer window

‘proximal’). The detector M can be considered a random variable with outcome m=DC

and m=DU, and the class, C, another random variable. The table elements for the DC
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detector are nDC,p, nDC,d, for the number of predicted sites n from the DC detector that were

proximal p to Twist’s motif, and similarly the number distal d from Twist. We calculated

the logodds ratio of the proximal sites of the DC predictions verse the proximal sites of the

DU predictions.

proximal distal
DC nDC,p nDC,d
DU nDU,p nDU,d

Table 2.3: Contingency table of DC and DU detector versus the class type distal and prox-
imal. Elements of the table are the counts from predictions of each detector for a given
energy cutoff and spacer cutoff in a given set of CRMs.

The logodds ratio is the ratio of two odds; odds of DC proximal, labelled as ODCp=

P (np|DC)
P (nd|DC

and odds of DU proximal labelled as ODUp =
P (np|DU)
P (nd|DU)

, where the conditional

probabilities (such as P (np|DC)) are estimated from the 2x2 contingency table in Table 2.3

with a pseudocount of value one. The logodds ratio is : ln(ODCpODUp). The sampling distribution

of the logodds ratio is a normal distribution with mean zero and width equal to the standard

error of the mean. We are interested in the one-sided test, hence, our p-value estimate is the

integral of the sampling distribution from the given logodds ratio to positive infinity (the

chances of seeing the value found from the test or a larger value).

2.10.3 Mutual Information between known class tags and the con-

ditional detector’s predictions of class tags

We use the mutual information between the binary class variable C (’proximal’ and ’distal’,

defined by the spacer window) from our known binding sites and the detector’s binary

prediction P of the class to determine the detector’s performance at resolving class types of

’proximal’ or ’distal’. Here a prediction still means that the detector is testing whether a
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k-mer is a Dorsal binding site, however, we are additionally checking to see if the binding

site locus of the k-mer being tested has the correct flanking sequence feature.

We use the information identity to transform mutual information into an entropic form:

I(C;P) = H(P)−H(P|C). (2.34)

However, this quantity can only be calculated given a model M (a conditional detector and

it’s corresponding energy threshold), hence, in our own notation we will write this mutual

information as I(C;P ,M = m) = H(P ,M = m)−H(P|C,M = m), where we make explicit

that we know the detector M .

The variables C,P ,M are all bernoulli-like. The value C = 0 indicates class type ’distal’

for a given binding site, and C = 1 indicates class type ’proximal’ for a given binding site.

The value P = 0 indicates the detector predicted the class of a given binding site as ’distal’,

and the value P = 1 indicates the detector predicted the class of a given binding site as

’proximal’. The variable M ’s domain is M=DC and M=DU.

The entropy H(P ,M = m) is the entropy of the predicted class distribution, where we

estimate the predicted class distribution based on marginalizing the predictions over the

classes. For example, the outcome P = 1 is computed as:

P (P = 1,M = m) = P (P = 1|C = 1,M = m)P (C = 1)

+ P (P = 1|C = 0,M = m)P (C = 0) , (2.35)

where P (C = 1,M = m) = P (C = 1), and P (C = 0,M = m) = P (C = 0), and we estimate

the conditional probabilities for a given detector based on the detector’s energy cutoff, since
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its predictions are based on the energy threshold.

The conditional entropy is defined as:

H(P|C,M = m) =
∑
p

P (p)
∑
c

P (p|c,M = m) logP (p|c,M = m), (2.36)

where the conditional probability P (p|c,M = m) is a function of the TPR and FPR that is

determined by the conditional detector, for example if M = DC we have:

P (1|1) = P (P = 1|C = 1,M = DC) = TPR (2.37)

P (1|0) = P (P = 1|C = 0,M = DC) = FPR

P (0|1) = P (P = 0|C = 1,M = DC) = 1− TPR

P (0|0) = P (P = 0|C = 0,M = DC) = 1− FPR .

The TPR and FPR are a function of the conditional detector. For the DC detector we

defined the positives as the known ’proximal’ sites, previously denoted as DDC , and the

negatives are the known ’distal’ sites, DDU .

Two equations in Equation (2.37) are based on the FPR, and defined as: P (p = 0|c =

0, DC) is the fraction of known ’distal’ binding sites whose energy is above the energy

threshold (true negatives divided by negatives), and P (p = 1|c = 0, DC) is the fraction

of known ’distal’ binding sites whose energy is below the energy threshold (false positives

divided by negatives). Two equations are based on the TPR, P (p = 1|c = 1, DC) is the

fraction of known ’proximal’ binding sites whose energy is below the energy threshold, and

of course P (p = 0|c = 1, DC) = 1 − P (p = 1|c = 1, DC), which is the fraction of known

’proximal’ binding sites whose energy is above the energy threshold (false negative divided
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by positives).

For the DU detector, the DU positives are what DC call a negative, hence DU’s positive

data are the known ’distal’ sites, and its negatives are the known ’proximal’ sites. This is

because DU should be firing when Twist is ’distal’. For example, the TPR now determines

P (P = 0|C = 0, DU), which is defined as the fraction of known ’distal’ binding sites whose

DU’s energy score is below the energy threshold (true positives divided by positives), and

P (P = 0|C = 1, DU) is simply 1 − P (P = 0|C = 0, DU). The FPR now determines

P (p = 0|c = 1, DC), which is the fraction of known ’proximal’ binding sites whose energy is

below the energy threshold (false positive divided by negatives), and P (p = 1|c = 0, DC) =

1− P (p = 0|c = 1, DC).

2.11 Additional Experiment Supplement, Rerunning

Model on CACATG Twist Motif

We repeated our analysis of the known Dorsal sites with a different Twist motif (5’-CACATG).

We used the same sliding window as in the main text of 30 base pair shifts starting at [0,30]bp,

and then incrementing to [31,60]bp etc... We also used the same spacer window as in the

main text ([0,30]bp) for the DC detector for making predictions of known Dorsal loci in the

CRMs.

spacer [0,30]bp (31,60]bp (61,90]bp
Mutual Information Equation (2.17) 0.38 0.28 0.04

Logodds ratio test -log(p value) 4.8 0.17 0.66

Table 2.4: Mutual Information and Logodds ratio test for all known Dorsal sites with the
Twist motif 5’-CACATG based on the spacer windows denoted by the columns of the table.

The table 2.4 second row corresponds to the log odds ratio test based on CB’s specificity
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Figure 2.5: Logos generated for known Dorsal sites tested for adjacency to 5’-CACATG
used as ’cooperative’ class (DC) if in the [0,30]bp distance. Logo A corresponds to the
’Dorsal Cooperative’ class, it’s total information content we calculated at 13.4bits. Logo
D is the exact same logo as A but we’ve appended one base-pair of flanking sequence onto
the start and end of the site (hence, this logo starts at position -1). Position 9 of this logo
shows about a couple decibits of information relative to the background sequence and the
position -1 contains a half bit of information. Logo B is the ’Dorsal Uncooperative’ class
for the [0,30]bp window, which we calculated to have 9.4 bits information relative to the
background (uniform distribution of bases), and logo E has added the flanking sites to the
’Dorsal Uncooperative’ class. Logo C is the CB motif with 9.7 bits of information relative
to the background, which looks similar to the ’Dorsal Uncooperative’ class at position 6 due
to there being many more sites that prefer A to a T at this position amongst all the Dorsal
sites in the network. Logo F is the CB motif with the flanking sequence appended.

set at 10−4, which corresponds to a CB energy of 2.5, as in the main text. The DC detector

did show better performance for this spacer window and corresponding energy cutoff. We

additionally ananlyzed the mutual information for the case that 5’-CACATGT was used as

a motif for Twist, which would correspond to a subset of the sites found for 5’-CACATG.

For the 5’-CACATGT motif we found the mutual information was 0.3, 0.17, 0.0 for the three

possible cases of the sliding window.
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2.11.1 ROC curve

The ROC curve for the OR gate and the CB detector for 5’-CACATG Twist motif are

displayed in Figure 2.11.1. The detectors behave similar to the results presented in the main

paper for the 5’-CAYATG motif.
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Figure 2.6: ROC curves display the False positive rate (FPR) vs. True Positive Rate (TPR).
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2.11.2 Mutual Information between loci classes C and detector

predictions of classes P

The mutual information I(C;P) for both conditional detectors based on a 5’-CACATG

Twist motifs in Figure 2.11.2 shows similar behavior as the results in the main paper for the

5’-CAYATG Twist motif.
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Figure 2.7: The mutual information I(C;P) between the conditional detector’s prediction’s
of class types (distal or proximal) and the known class types, as a function of the detection
energy threshold is varied. DC shows about .3 bits of information at about an energy cutoff
of 4. DU does performance suggests not much better than random guessing for its predicting
class types.
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2.11.3 Permutation test using ranksum statistic

The median energy of DC was 0.4, and the median energy of DU was 2.9. The plot of the

ranksum sampling distribution generated from random partitions of these data sets of size

66 and 356 respectively is below.
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Figure 2.8: Histogram of p-values of random partitions of the combined data set DCB, where
the histogram bins were in units of 10*log(p value). The p-value of the ranksum test for DC
and DU median energies was about 205 in the scaled log units, which is the bar at the far
left of the sampling distribution.
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2.11.4 Propagation of error for estimating error in Entropy esti-

mates

Initially we conflated our notation of the frequency of events i from an alignment with the

theoretical probability of the event i. Here we must distinguish these two ideas. Let the

frequency of the event i (for example the occurrence of the symbol or nucleotide ’A’) be

fi, and the probability be pi (previously denoted as P (Bi), which we will abandon since

it is too cumbersome here). What is the standard deviation of an entropy estimate? One

way to estimate this is resampling (bootstrap). Another, much simpler technique is to treat

the entropy as a function of a variable, and then simply see how much a variation of the

variable (of some specified size) causes variation in the function. Here the idea is to treat

the input variation as ”error” and see how much this affects the output. Here ”error” means

uncertainty which is reliably estimated as the statistical standard deviation of the variable

(if this is known), or can be estimated by any justifiable means (e.g. the error in a measuring

device, is reasonably estimated by the resolution of the device, which is the distance between

tick marks on a ruler).

Let the true entropy be H(p), which we estimate by H(f) = −
∑
i fi log(fi) =

∑
i h(fi),

where h(fi) = −fi log fi. We wish to estimate the error in this estimate (the standard

deviation of H(f)), which can be estimated using the formula:

σH(f) =
∑
i

∂h(fi)

∂fi
σfi , (2.38)

This formula assumes that our estimate of uncertainty in fi is ∂fi, which is equivalent to

the standard deviation of fi, where, for example8, the expected standard deviation of fi for

8Recall for Poisson processes the variance is equal to the mean for the counts. Hence, < (ni−Npi) >=<
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a Poisson process is
√
pi/N .

∂h(fi)

∂fi
= −(log fi + 1), (2.39)

where we know the derivative of log(x) with respect to x is −1/x, and we used the product

rule of differentiation on the term fi log fi. Using the above computation we can now see

how a variation in magnitude equal to a standard deviation of the frequency of event i will

contribute to the error (the standard deviation) in the entropy9.

Now the propagated error to the entropy is:

σH(f) = |
∑
i

∂h(fi)

∂fi
|σfi , (2.40)

σH(f) = |
∑
i

−(log fi + 1)|σfi , (2.41)

Now we simply must declare the type of measurement process on fi. If we assume a poisson

process, then plugging in to the above formula for the standard deviation σfi we have10:

σH(f) = |
∑
i

−(log fi + 1)|
√
pi
N
, (2.42)

ni >= Npi. Also recall that the variance of a random variable scaled by a constant, for example 1/N , is

var(X/N) = var(X)/N2. Therefore the variance in the frequencies fi is σ2
fi

=
pi
N

9What is the point of doing propagation of errors? Well, it’s reasonable to assume a repeated counting
experiment will arrive at a different value of f for each experiment; hence, within the statistical estimate
of the standard deviation, which is f(f − f) for a Bernoulli process, we would like to know how much this
variation will cause variation in the entropy.

10Any information theoretic quantity can be converted to an entropy using standard identities. Hence,
for example, the information content of a binding site logo is IC = Hmax − H(P (S)), where P(S) is the
PWM estimate of the binding site sequence distribution. The error in this estimate is approximately just
the additive error in the two entropy terms. The maximum entropy is known with certainty and hence has
error zero. Hence, the information content error of a PWM is simply the error estimate of the binding site
sequence distribution’s entropy.
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Figure 2.9: The estimate of the error, dh(fi) = σh(fi)
is plotted on the vertical axis, when

the number of counts of event i occur at their expected value, where the horizontal axis is
the expected number of counts observed for event i, < ni >= pN .
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2.11.5 Determining if differences in Information are significant

From figure 2.11.4 we see that we need, in the worst case scenario, about 4 decibits (about

4*.1 bits, which was the maximum value in the graph) of information content to biologically

distinguish two alignments each of 100 binding sites of DNA (i.e. in order to distinguish two

columns of a PWM). However, the standard error of the entropy requires dividing the esti-

mated variance by N, in which case, two alignments are statistically resolvable (’significantly

different’) if they are different by .4 centibits, which may or may not be biologically signif-

icant. What is biologically significant? For example, can natural selection resolve binding

sites that have differences in information scores of .4 centibits? Depends on the selection

pressure, and how big it is. Certainly selection can resolve .4 centibits, given drift doesn’t

cause the variation in the population to disappear. What is physically different? For exam-

ple, can Dorsal protein resolve binding sites that are different by .4 centibits? Well, given

that Dorsal can sample binding sites, then given 2H(P (S)) binding events, we would expect

a Dorsal to correctly identify a binding site relative to the background of the genome (where

P (S)) is the PWM probability). So in a statistical sense, yes it seems to be physically signifi-

cant, since .4 centibits can reduce the amount of sampling required. In fact, any information

that Dorsal has about its binding site sequences is physically significant due to this idea11

2.11.6 Entropy bias from Maximum Likelihood estimation

The estimate of the error (standard deviation12) in the entropy in the above section was

based on estimates of the frequencies f . The estimates of the frequencies were based on

Maximum Likelihood Principle, which is unbiased for frequency estimates.

11This doesn’t mean all binding site sequences with information scores greater than zero are functional
(adaptations) in Eukaryotes, as Schneider found for prokaryotes[108].

12this is not a ’standard error’
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Functions of known unbiased estimates (such as the frequencies) are not necessarily un-

biased (such as the entropy). It is known that the entropy estimate is biased if one uses ML

estimates for their frequencies. To see this we can Taylor expand the above estimator H(f)

about the expected value of f , which is p (there’s no bias in the expected value of f). Using

the same notation as Bialek (see page 547[20], we will first add and subtract the expected

frequencies from each factor:

H(f) = −
4∑
i=1

(pi + δfi) log(pi + δfi) (2.43)

where δfi ≈ σfi in my notation above, and since we’re expanding about the ’expected

value’ we have δfi = (fi−pi) (plugging that into the equation you see we’ve just written the

definition of the entropy). Now Taylor expanding (where recall, the expansion of log(1+x) =

−x) we have:

H(f) = −
∑
i pi log pi −

∑
i(log pi + 1

ln(2)
δfi)) (2.44)

−1
2

∑4
i=1

1
ln(2)pi

(∂fi)
2 + ε (2.45)

(2.46)

equation here the last term in the expansion is the error term (capturing higher order terms),

and expression (∂fi)
2 acts as the variance (∂fi)

2 = σ2
fi

in my notation in the section of

entropy propagation of errors. The variance term is the average squared fluctuation, the

standard deviation squared, which is a positive number (even if any given fluctuation is

negative). Now, we can take the expectation value of the Taylor expansion, and of course,

the fluctuations are just as likely positive as negative, and they’ll cancel (or just recall that
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fi = pi). The first term in the expansion above is a constant (it’s the true entropy). Hence

we find something a bit odd, the expected entropy is not the true entropy! This is a bias.

The expected entropy, to second order is:

H(f) = −
∑
i pi log pi − 1

2

∑4
i=1

1
ln(2)pi

(∂fi)
2 + ... (2.47)

(2.48)

Maximum likelihood estimates of the entropy underestimate the true entropy. Why?

Well mathematically, the second term on the right side of the equal sign is assumed to be

dominant over other higher order terms (where we’re assuming this expansion converges).

The second term contains the variance (a positive quantity). The true entropy (first term on

the right side) is always positive or zero, hence subtracting the smaller variance term from

the true entropy leads to an underestimate of the true entropy (always).

To estimate the bias in the entropy we must compute < H(f) > −H(p), which as

seen above can be estimated by 1
2

∑4
i=1

1
ln(2)pi

(∂fi)
2 = 1

2

∑4
i=1

1
ln(2)pi

σ2
fi

, where we have

substituted in the standard variance symbol for the squared fluctuation. Now we know

the variance of a poisson process, hence plugging into the term in the last sentence for

the variance we have 1
2

∑4
i=1

1
ln (2)pi

√
pi/N = 1

2

∑4
i=1

1
ln (2)

√
1/N . Hence, we see for DNA

nucleotide counts, the entropy at a given site is biased by 2
ln (2)

ln (2)N
. For small sample size

(small N) this can have a large effect, even larger than the estimate of the variance itself

σ2
Hf

.
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2.11.7 Entropy Bias

Changing notation, we now will simply conflate the estimates of frequencies f with the true

probability P . The Bayesian estimate of the probability of B with a Dirichlet prior using

symmetric hyperparameter β is P (B) =
nB+β
N+4∗β [81]. Unlike the ML estimate of entropy

(which underestimated the entropy) this particular choice of hyperparameter is known to

be an overestimate of the true entropy. Hence, in Beyesian estimation, it is possible for the

small sample bias to be either over or under the true value. For example, the Baysesian

estimate approaches the ML estimate as we let β approach zero, which can be seen in figure

2.10. This is expected since if β is zero we then have: P (B) =
nB+β
N+4∗β =

nB
N .

To minimize the bias in the entropy we selected the value of β that gave the smallest

bias for the small sample regime. Of course, we do not know the true entropy a-priori of the

binding site distribution. However, for the length 9 bp CB distribution of Dorsal binding site

sequences we could initially estimate a ’known’ PWM that could then be used to randomly

generate synthetic binding sites. Hence, using our best estimate of the CB PWM, we used

the PWM to generate data sets of N binding sites. For each synthetic data we estimated

a PWM with a predefined value of β, and thereby estimated the entropy as a function of

N . For each value of N , we generated n replicate data sets, building a PWM for each set,

thereby obtaining n estimates of the entropy for each value of N . We estimated the entropy

based on a data sets of size N=[1,50], and n = 20. By repeating this experiment for values

of β in the domain [10−5, 0.1, 0.2, 0.25, 0.5, 1] we found an empirical value of β that best

estimated the ’known’ entropy and energy. We similarly repeated this for energy estimates,

and found the least biased vale of β = 0.1 for entropy and energy estimates.
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Figure 2.10: The probability distribution denoted as p was estimated from N random de-
viates of a ’known’ length 9 PWM that was built from DCB data. The entropy of p,
H[p] = −

∏9
i=1

∑
B p(i, B) log p(i, B) , where i runs over the nine positions of the aligned

N sequence deviates, and B runs over the bases, was computed for twenty replicates for
each value of N and plotted the average entropy over the twenty replicates as a function
of N . We computed the functional H as a function of N for values of β in the domain
[10−5, 0.1, 0.2, 0.25, 0.5, 1]. The ’known’ CB PWM had an entropy of 5.6 bits as observed by
the green horizontal line, and found an empirical value of β that best estimated this ’known’
entropy to be β = 0.1 as shown by the red plot of the functional H as a function of N . We
similarly repeated this for the functional energy estimates, and found the least biased value
of β = 0.1 for entropy and energy estimates.
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Chapter 3

3.1 Model Background

3.1.1 Fractional Occupancy of Morphogen Binding to DNA bind-

ing Site

The binding process is modeled using a first order rate law, where M is morphogen and B is

the Binding site of DNA, and MB is the complex:

d[MB)]

dt
= kon[M ][B]− koff [MB], (3.1)

where the brackets [ ] denote concentrations, and kon is diffusion limited on rate, and koff

is the off rate that is determined by the electrostatic interactions and will vary between

morphogens. Using chemical reaction notation, we can write the above rate law as:

[M ] + [B]⇔ [MB]. (3.2)

In equilibrium we have:

Ka =
[MB]

[M ][B]
=
kon

koff
, (3.3)
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where the Ka is the association constant (binding constant). The Binding site is either

occupied (o) or unoccupied (u) hence the total (t) amount of B is conserved :

Bt = Bu +Bo (3.4)

From this equation one is able to construct a Binomial probability space2 3. The fraction of

occupied binding site B determines the distribution’s parameter P :

P =
Bo
Bt

(3.5)

which can be rearranged in terms of the concentrations (i.e. [MB] and [B]):

Bo
Bt

=
[MB]

[MB] + [B]
(3.6)

P =
[MB]

[MB] + [B]
=

Ka[M ]

1 +Ka[M ]
. (3.7)

Again, Ka is the association constant of the morphogen, M , to the binding site B. Previously

we have denoted this constant as K(S), where S is a DNA sequence that functions as a

binding site for the morphogen.

2If we encode the bound state and unbound state in the Bernoulli Random variable (i.e. 1,0) we have:
E(X) = µ =

∑
i XiPi = 1P + 0(1− P )

3σ2(X) =
∑
i(Xi − µ)2Pi = (1− P )2P + (0− P )2(1− P ) = (1− P )P
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3.1.2 Fractional occupancy of CRMs containing multiple binding

sites

Given that most regulatory sequences have multiple binding sites for multiple different mor-

phogens one has a master equation governing the binding process, a set of coupled differential

equations. Here, again, we will assume the binding process has equilibrated, and hence we

simply must enumerate the states (configurations of bound and unbound sites) of the many-

binding site system. For independent binding this is simply multinomial process (where the

’multi’ aspect accounts for the different types of transcription factors binding to the CRM).

For example, for a single type of transcription factor binding, to n binding sites within a

CRM, one has a binomial process governed by the partition function (1 + q)n, as discussed

in the introduction of the dissertation. Hence, the probability of k bound factors is simply

P (k) =
(n
k

)
pk(1 − p)n−k, where p is a Boltzmann probability for a single bound site, and

pk(1−p)n−k is joint probability of a particular binding configuration (which configuration is

irrelevant for the case of identical sites binding the same morphogen). However, for the case

of dependencies between the sites, we can not factorize the joint distribution over binding

sites (i.e. (1 + q)n is a factorization of the partition function, and hence factorization of the

joint distribution). Furthermore, for the case where the sites are not identical, such as in

CRMs that have heterogenous binding sites due to each transcription factor’s DNA sequence

specificity, we do not simply have one Boltzmann probability p for all the sites. Hence, each

site will need a distinguishing notation. Furthermore, the number of sites n is not always

known. Hence, in some cases, one must discover n sites, by ’annotating’ the CRM which

defines the coordinates of each transcription factor’s sites and their corresponding energy.

In the next three sections we will describe a notation that is a mixture of notations used
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for Hidden Markov Models (HMM) and Lattice Gases (Ising Models) that is hybridization

of the notations from Segal et al.[109] (HMM notation) and the notation used by both Xin

He et.al.[61][60]. Hereafter these notations will simply be referred to as Segal’s notation or

Xin’s notation. The reason for the hybridization is because our model was originally based

on the Segal’s paper, which latter was merged with work from Xin He (who collaborated

with others in Sinha’s lab and Zhong’s lab), by usng Xin’s GEMSTAT and STAP C++

programs as libraries for implementation of our model.

3.1.3 Segal’s Hidden Markov Model

If one does not know the binding sites a priori of a CRM then one could take all possible

positions within the sequence as the start of a new binding site as in figure 3.1, where

the PWM (see chapter 2) scores each position of the sequence as a potential binding site,

thereby creating a list of binding energies ordered according to the position within the CRM.

Repeating this for each morphogen’s PWM, and by stacking the lists on top of each other,

results in a matrix of energy scores that is useful for computation of the partition function

through the forward algorithm from Hidden Markov Models (HMMs).

The partition function of the many body system requires the addition of the statistical

weight (see the Boltzmann factor in equation 3.9) from each possible ’path’ through the

matrix. Each ’path’ through the matrix represents a ’configuration’ as in figure 3.2. The

partition function can be calculated by recursively moving through the matrix elements, in a

way that is similar in spirit to standard algorithms of multiple sequence alignment[38], where

we can think of each configuration as a possible way to ’align’ each motif (PWM) to the

CRM. The variant of HMM’s forward algorithm approach used by Segal for computing the

partition function of all paths (configurations) is discussed in his supplementary material.
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Figure 3.1: Widom, Segal Nature Review Genetics; ”motif” denotes path through the
PWM[110]

3.1.4 Enumerating the configurations of a CRM sequence

Here we will introduce a notation for the weights of many-binding site systems. First, let

P (c), be the probability of a particular configuration (c) occurring

P (c) =
W (c)

ΣcW (c)
, (3.8)

where W (c) is the boltzmann factor or weight of the binding configuration, which is a list of

occupations for each binding site locus within the CRM, where the occupation is either bound

or unbound. Using the notation of Xin, ( which was using Buchler’s model as a guide[61][26],
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a notation used by T. Hill that I followed in the Introduction of the Dissertation), we have:

W (c) = [
N∏
i

q(x)tf(i)][
N−1∏
j

ωtf(i),tf(j)(d)] (3.9)

Here we have N bound transcription factors, where q(x)tf(i) is the weight of the transcription

factor for the ith binding site (tf(i)) that is bound at position x of the sequence,

q(x)tf(i) = K
tf(i)
s(x)

[tf(i)] (3.10)

Here K
tfi
s(x)

is the equilibrium constant Ka from equation (3.3) for the binding site sequence s

binding by transcription factor i. And ωi,j is the interaction between the two bound factors

tf(i), tf(j), where we have one less nearest neighbor interaction than the number of bound

factors. And d is the distance separating factor tf(i) from factor tf(j) in units of base pairs

( d = x(tf(i))− x(tf(j)) where x(tf(i)) is the sequence coordinate of factor tf(i)).

3.1.5 The configuration vector nomenclature

Here we have used ’c’ to denote the binding configuration of bound and unbound factors on

the CRM following the symbol Segal used to denote the configuration, and we have used a

map tf(i) to link each binding site i to a transcription factor. This map is similar to notation

used by Segal, where he explicitly denotes the type of transcription factor at each bound

site.

Xin used a configuration vector, σ, which had indicator variables σi for ith componenet of

their configuration vector, where the ith component was the ith binding ’site’. Xin’s notation

is elegant, in that every ’site’ in their model is clearly represented in their configuration vector
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by the occupancy of the ith component of the vector.

Segal’s notation does not display all the possible bound and unbound positions in the

configuration (since there is a background occupancy in his model that causes unbound

sequence to have a Boltzmann weight of 1.). I have tried to stick to Segal’s notation for a

configuration by only displaying bound factors in the Boltzmann weight of a configuration,

and by denoting explicitly the type of transcription factor at each bound site. However,

Segal’s notation is based only on the CRM sequence, he does not actually have a ’site’

notation, since every possible position in the CRM is considered a binding site for each

transcription factor, and he simply looks at all the possible ways that coordinately regulating

transcription factors could form monolayers on the CRM, without overlapping one another.

Hence, in Segal’s notation, there really is no notion of a ’functional’ site, as each possible

position within the CRM is a place for the factor to ’plant’ itself (a place for the transcription

factor to bind), where possible is distinct from probable by the use of PWMs.

Seeing that binding sites are ’functional’ (adaptations), or at least vestigals or exapta-

tions, the notation of Xin for defining a ’site’ we have tried to hybrid with Segal’s notation.

Xin’s notation is fundamentally based on binding ’sites’ (adaptations). For example, by

either setting a threshold on a PWM to discover sites, or by knowing a priori what are the

binding ’sites’ (regulatory adaptations), Xin starts the configuration problem (the notation)

with N binding sites. The indicator variables of the configuration vector are equivalent to

occupancy of each site, hence σi is either 0 or 1 for each component of the configuration

154



vector. For example:

W (c) = W (σ) = W (σ1, ..., σN , σ1,1, .., σN,N ) (3.11)

= exp (−
N∑
i

ln (qi)σi −
N∑
j

ln (ωij)σij) (3.12)

Here, ln(qi), is the free energy of binding to the ith site, and σi, denotes the occupancy of the

ith ’site’, and σij denotes the pairwise energetic interaction ln(ωij) between site i and site j1.

But what type of transcription factor is binding to the ith site? In Xin’s notation, this is not

decipherable. Rather, in their notation, each ’site’ corresponds to a particular factor. But we

simply don’t know which factor. Hence in Xin’s notation it’s possible that two distinct ’sites’

occupy the exact same locus. Hence we don’t know if two sites are overlapping. Overlapping

sites can not both be bound, since all thermodynamic model’s for occupancy of transcription

factors use ’hard sphere potentials’, there’s steric hinderance prohibiting two transcription

factors to occupy the same space along the CRM.). Hence, in Xin’s notation, one is supposed

to be cognizant that bound overlapping sites will set that configuration’s weight to zero.

We have used a hybrid notation in Eq. 3.9, where it’s not that our CRM has N fixed

binding sites (like in Xin’s notation) that are each bound or unbound. Rather, the weight

W (c) displays N bound sites from a configuration c. Hence, in our notation N is a variable

in the binding configuration space, while in Xin’s notation, N is the fixed number of sites.

In Xin’s notation, advantageously, they can put a bound on configuration space as 2N , this

is an upper bound because overlapping sites will reduce the total number of configurations,

1Recall for the canonical ensemble, where H is the Hamiltonian of a configuration we would have W (c) =
exp−H(c)/kT being a simple Boltzmann factor, where kT is the thermal energy. We are working in a grand
canonical ensemble, which allows for particle energy as well as energy exchange, hence, the total energy of
the configuration is a function of the Hamiltonian and the chemical potential of the factors, which causes
concentration of the transcription factors to influence the total energy of a configuration, hence the energy
is a thermodynamic free energy
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furthermore this overcounts the number of unbound states, since a loci’s sequence that match

for multiple factors - say m factors- would consider 2m/2− 1 too many configurations, since

the loci is actually only unbound in one possible way2.

3.1.6 An example of the hybrid configuration notation

For an example of the hybrid notation, consider all possible positions of the CRM as a

binding site, as Segal would, and multiple morphogens binding to the same site ( same

position within the sequence, same locus ); then the configuration vector (c) can be written

in terms of Xin’s indicator variables (similar to Ising models).

For a length L CRM and for 3 transcription factor types (like Dorsal,Twist, and Snail)

we have in Xin’s notation N = 4 ∗ L, where the factor of four is due to the four types of

transcription factors at each locus - namely: bound by Dorsal, Twist, or Snail or ’background’

(background is a type of pseudoparticle that fills the unbound state)).3

In this case, the vector of indicator variables is written as a matrix of size 4xL. For

example, for the toy CRM sequence ’acggt’, we would have a configuration vector of size 20.

If we add another ’state’ to the configuration vector denoted as ’silent’ to represent steric

effects, where the type of transcription factor indicator variable now only indicates the ’start’

of a binding site, we would then have a indicator matrix of size 25, as indicated in Figure

3.2, where the Dorsal transcription factor occupies positions 2 and 3 of the CRM (in this

toy case Dorsal occupies a site just of length 2), and the rest of the CRM is occupied by

2Xin’s GEMSTAT computes the correct weights and partition function, it’s just the estimate on the
configuration space that is a bound.

3As pointed out by Segal in his supplement, this problem may seem computationally infeasible, since the

number of configurations for L=500 is of size 24∗500, but due to the forward algorithm it is possible. Here the
number of binding sites, N , neglects edge effects of k-mers requiring length k binding site sequences. Hence,
the calculation of the number of configurations is only a bound on the cardinaility of the set of configurations,
where the bound is further affected by the neglect of overlapping sites that cause many configurations to be
unaccessible (against the rules).
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the background factor. Hence the configuration vector (a value of the matrix of indicator

variables) is of size N+5 (the 5 due to the ’silent’ states) assuming no interactions between

bound factors. If there are interactions, for example nearest neighbors, then there are an

additional 16N2

2 components to the configuration vector, which we will not display.

Now that we have defined our configuration notation, and described the weight of a given

configuration, we will explain in the next section our novel form of the pairwise interaction

ω between bound factors.

3.1.7 The pairwise interaction ω between bound factors

Transcription factors often interact with each other, causing certain configurations to be

more likely by decreasing the total energy of the configurations where interacting factors are

jointly bound, thereby increasing the weight of those configurations. This observation, was

the physical basis behind A. Hill’s famous Hemoglobin Oxygen binding model.

In the work of Xin a number forms of distance dependent pairwise interactions between

bound factors was tested, such as sinusoidal functions over space that account for ’phasing’

where one bound factor interacts with the nearest neighbor that is in phase (by using the

major groove distance) with the factor of interest. Similarly, gaussian decays from the

center of the planted factor, and square functions were attemted and implemented. Hence,

GEMSTAT has a small database of pariwise interaction forms. All the forms, as ours too,

only allow for interactions between nearest neighbor bound proteins.

For the the DV network interactions between Dorsal and Twist have been experimentally

shown to be distance dependent, hence we use an interaction that is a function of the DNA

basepair distance separating the nearest neighbors. For the network that we are modeling

this distance dependent interaction has been shown to be dominant force driving the Dorsal
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Figure 3.2: The toy CRM sequence acggt is annotated at each of its loci ( positions ) to
denote the configuration vector in row major ordering (1st five bits are dorsal’s row, second
five bits are twist’s row etc...). In the language of HMMs, the value of a configuration vector
reveals the hidden state of the sequence. Here there are 5 states, where the ’silent’ state
indicates a transcription factor is bound to an upstream position of the sequence, causing
the loci to be covered by an internal position of the planted factor.
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Figure 3.3: Changing the spacing between motifs in modules change the span of cells that are
expressed. In this Figure the spacing between two sites was adjusted by Natural Selection
in orthologs of the rhomboid gene’s CRM. When the ortholog CRMs were transgenically
inserted into mel species the width of the expression pattern changes relative to the en-
dogenous pattern width, suggesting that coopertivity between the sites is a function of the
distance between sites that can be used by evolution to ’fine tune’ the epression patterns in
development. When each sequence or module is expressed in its respective specie (lineage),
then the relative widths (w/L where L is the lengths of the major axis of the specie’s em-
bryo, w is the width of the tissue in nanometers that express the gene) of the tissues are
the same. Different specie’s embryos have different sizes hence there is a scaling law - how a
characteristic (such as gene expression) changes with body size. This Figure is from Erives
Crocker et.al 2008 ”Evolution acts on enhancer organization to fine-tune gradient threshold
readouts. PLoS Biology”

border of neuroectoderm expressed genes. For the neuroectoderm network2 Crocker et.al.

and Szymanski et.al. [121],[32]have shown that the spacing between sites plays a dominant

role in defining the number of cells that are turned on in this region (width or span of cells).

For both the DV and AP (Anterior Posterior) network short range antagonistic interac-

tions have been show to dominate the action of repressor transcription factors[43]. The Snail

transcription factor is a short range repressor acting to regulate the DV axis, which we also

model using a distance dependent interaction, commonly called ’Quenching’[43].

Furthermore, since we do not know the exact form of the function, we bin the distance

2neuroectoderm network are the set of genes coordinately expressed in the lateral regions of the developing
embryo, this developing tissue spans about 10 cells at the time point under consideration
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separating the proteins, and for each bin a free parameter is fit. One may look for a coarse

binning of the separation distance in bins of 10bp, or as fine as bins of 1bp. If we choose

the former option than an example of our protein-protein interaction parameter would be as

follows:

−−→
ω(d) = [ω1, ω2, . . . , ωb, . . . , ωn] (3.13)

where the subscripts of the components of the ω vector (coopertivity or synergistic protein-

protein interactions) represent the corresponding bin ,b, ( in this case there are n bins),

hence they define a bin vector,
−→
B , where its components corresspond to the interval of base

pair distances.

−→
B = [B1, B2, . . . , b, . . . , Bn]

= [(0− 10), (11− 20), . . . , (41− 50), . . . , (x− L)]

(3.14)

Here bin b is all interactions where two bound sites are separated by 41-50 basepairs, and

x represents the last bin border, and L represents the Length of the module (sequence).

This representation of cooperativity vector, is really only useful for programming purposes,

mathematically the cooperativity is simply a piecewise defined function:

ω(d) =



ω1 if d ∈ (0, 10)

ω2 if d ∈ (11, 20)

...

ωn if d ≥ x
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Our aim is to fit the biochemcial parameters that tune the probability of configurations

that occur in live embryos. However, we simply don’t have such detailed biochemical exper-

iments. Hence, we use the mRNA of the target genes regulated by Dorsal Twist and Snail

as a readout of what binding configurations are likely occurring, and wheter certain config-

urations have strong linkage (pairwise interactions) between certain bound factors. Hence,

we must infer from mRNA data, what is occuring at the DNA binding level; an expression

to sequence model. In the next section will describe a ubiquitous and obvious assumption,

mRNA is caused by PolII, hence PolII binding is a proxy for gene expression.

3.1.8 Relating the number of mRNA transcripts to fractional oc-

cupancy of PolII

The amount of transcription that occurs at a gene locus is encoded in two segments of DNA

sequence; first, the basal promoter that binds the Basal Transcription Apparatus (BTA),

which is a massive complex of many proteins including PolII; second, and most important,

the CRM that binds the morphogens or distal transcription factors (such as Dorsal) that

modify and remodel the chromatin state and possibly have direct linkage with the BTA.

Hence the number of mRNA transcripts can be modeled as simply a linear relationship

between the number of mRNA and the fractional occupancy of a promoter sequence (which

we assume includes the CRM sequence).

〈NmRNA〉 ∝ fBTA. (3.15)

Of course, the occupancy of the BTA, fBTA, is a fraction this is at most one, hence 〈NmRNA〉

is the average number of mRNA molecules produced per nuclear cycle normalized by the
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Figure 3.4: Diagram of the components of fractional occupancy model, along with the pa-
rameters to bit through expression data (estimates of the mRNA output of the gene bound
by the BTA and estimates of input morphogen concentrations).

maximum production rate over a cycle.

3.1.9 Fractional occupancy of BTA

We can gain more physical insight into the problem by thinking of mechanisms of how BTA’s

occupancy is a function of the morphogen occupancy. In Figure 3.4 we see that when the

morphogen’s are bound they have an activation or repression domain, which communicates

with the BTA, for our case this communication may be thought of as the complex process

of changing the epigenitic state of the chromosome, by coactivators (histone modifiers, nu-

cleosome remodelers) binding to the morphogen. The binding energy of this domain (wm)

on the mophogen can be related to the binding energy of the BTA:

∆G = w0 +
∑
m

nm(c)wm (3.16)
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Here c is a particular configuration of the morphogens on the promoter, w0 is the binding

energy contribution from the basal promoter, wm is the binding energy contribution from

each morphogen, and nm(c) is the number of bound morphogen of species m to state c (for

example see [60]). For this configuration we could model the occupancy of the BTA as:

fBTA =
1

1 + e−(w0+
∑
mnm(c)wm)

(3.17)

The fast pace timing of morphogen binding relative to transcription time (e.g. the time

for PolII to clear the promoter, and a new (or preloaded on the enhancer) PolII binds),

would suggest that the BTA is not sampling or cognizant of each CRM configuration of

bound proteins, rather the BTA sees an average occupancy of the morphogens. This can be

modeled as:

fBTA = 1/(1 + exp−(w0 +
∑
m

〈nm〉 |c wm)), (3.18)

where the occupancy of the BTA is related to the theoretical model of average morphogen m

occupancy over the CRM configurations 〈nm〉 |c4. The average morphogen occupancy over

configurations is:

〈nm〉 |c =
∑
c

nm(c)
W (c)∑′
cW (c′)

, (3.19)

where we the normalized weights of each configuration are from Equation3.8, and nm(c),

is the number of morphogen of type m (such as m =Dorsal) bound to the configuration

c. The expectation value is computed using GEMSTAP software from Sinha’s lab, see the

following reference for further details[60]. Here after, we simply use 〈nm〉 to denote 〈nm〉 |c
4This can also be shown, under certain conditions, to be an approximation of the much more computation-

ally intense model of Segal et al.[109] where they compute
〈
fBTA

〉
|c =

〈
1

1+e−(w0+
∑
mnm(c)wm)

〉
|c.

However, as stated above, this is not an approximation of Segal’s model, it’s a different model of the inter-
action of the BTA with the CRM.
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with the understanding that the expectation value is taken over the binding configurations

of the CRM.

3.1.10 Fractional occupancy of BTA from a binding reaction per-

spective

Let P = PolII concentration(this is the best known protein in the Basal Transcription Appa-

ratus, but technically P is the concentration of the BTA), D = DNA (or basal promoter, i.e.

TATA box, and binding sites for TF2B etc..), C = complex (PD). We assume the binding

process is in equilibrium (different timescale than morphogen binding).

P +D ⇔ C (3.20)

Using fractional occupancy we have:

C

C +D
=

1
D
C + 1

(3.21)

C = P ∗D ∗Ka (3.22)

C

C +D
=

1
D

PDKa
+ 1

=
1

1
PKa

+ 1
(3.23)

now assuming concentrations of unbound PolII is unaffected by our DNA D,we can say free

PolII is a constant like 1000, and absorb the constant into the Ka,

1
1

PKa
+ 1

=
1

1
K′a

+ 1
=

1

e
−∆G
kbT + 1

(3.24)

164



Now ∆G is the free energy that is released during morphogen binding, so we can equate ∆G

to equation (3.16), however we will not say PolII ’sees’ a particular configuration, rather we

will assume PolII sees the average configuration (i.e. < nm > the average number of bound

morphogen, m)

∆G = w0 +
∑
m

< nm > wm (3.25)

< nm >=
∑
c

nm(c)P (c) (3.26)

plugging in the energy in units of kbT from equation (3.25) into equation (3.24) we arrive

again arrive at equation (3.18):

1
1

PKa
+ 1

=
1

e−(w0+
∑
m<nm>wm) + 1

(3.27)

This yields a range of NmRNA ∈ [0, 1].

3.1.11 Fractional occupancy of BTA in Cooperative Binding (CB)

model in Xin He’s GEMSTAT

The fractional occupancy in Xin He’s Cooperative Binding model (CB) is closely analogous

to our form of the model5. This can be seen by taking the simple system of one morphogen

binding site with one basal promoter site for the BTA. Hence, the BTA is treated as if it

were simply another morphogen. In this case the partition function of the two site system

(Ξ) for the case that the two sites are independent is: Ξ = (1 + q)(1 + qBTA), where q

is the canonical partition function of the morphogen bound to its site and qBTA is the

5This CB is not our related to our CB PWM model from chapter 2.
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canonical partition function of the BTA bound to its promoter. Now if we assume the sites

are dependent, then we can not factorize the joint partition function6 and we then have

Ξ = (1 + q+ qBTA+ qBTA q wtf ) = Zoff +Zon, where we have collected similar terms in the

expansion, where Zoff = 1 + q is the term that does not include BTA binding, and Zoff is

the collection of the remaining terms (where BTA is bound)7. In their CB model they have

fBTA = Zon
Zoff+Zon

= 1
Zoff/Zon+1

. By equating this to our form of the occupancy (Eq.3.27)

we have:

Zoff/Zon = exp−wo +
∑
tf

wtf < n >tf . (3.28)

The above equation is the odds for BTA binding, hence the log odds is:

lnZoff/Zon = −wo +
∑
tf

wtf < n >tf . (3.29)

Now, if we assume there is only one morphogen binding site, then the denominator of < n >tf

is Zoff , and its numerator is q. Hence we have:

ln
(1 + q)

(qBTA + qBTA q w′tf )
= −wo + wtf

q

1 + q
, (3.30)

where we have replaced the Z’s with their original q’s and the w′tf denotes Xin’s form of the

cooperativity between BTA and morphogen (in order to distinguish from our cooperativity’s

symbol wtf . Using the properties of logarithms we can isolate (1 + qw′tf ) from the left side

6As always, we can organize the states over our many-body system by systematically building the con-
figurations, even in the case of dependencies, through a polynomial expansion over binding sites, which is
presented in Xin He’s Supplementary Material and T.Hill’s text[62].

7In Xin’s Supplement, wtf is denoted as α (which is a different parameter than our α that approximates

the morphogen binding constant, where we choose the symbol α to mimic Segal’s choice of parameters) wtf
is the cooperative binding between the morphogen and the BTA
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of the equation, which leads to:

ln (1 + q)− ln qBTA − ln (1 + qw′tf ) = −wo + wtf
q

1 + q
, (3.31)

where wo is ln qBTA leaving the result:

ln (1 + q)− ln (1 + qw′tf ) = wtf
q

1 + q
(3.32)

rearranging we have:

(1 + q) ln (1 + q)− (1 + q) ln (1 + qw′tf ) = wtf q (3.33)

if q is less than one (morphogen has low concentration, for example), then the first term

on the left is approximately zero, and if w′tf is not too large then to first order the Taylor

expansion of ln(1+ qw′tf ) is -qw′tf . Hence it appears under this regime that Xin’s CB model,

with free parameters α are equivalent to our w factors.

3.1.12 Fractional occupancy of BTA in Ay’s model

The fractional occupancy model in Fakhouri et al.[43], which we’ll call Ay’s model is similar

to Segal’s model, and hence similar to our form of the BTA occupancy8. In Ay’s model

8A distinguishing characteristic between Segal and Ay’s work was that Ay’s model contained high quality
expression data (with error bars)[], while the input expression data to Segal’s model was a boolean based
’on’ ’off’ data, which was smoothed (for example by using cubic splines). Furthermore Segal’s CRM input
was just the sequences and PWMs of the morphogens regulating the CRMs (where the binding sites were
to be ’discovered’ using a PWM annotation model), while Ay’s model knew exactly where the binding sites
were within the CRMs, thereby not being hampered by false postive binding sites from PWM prediction of
sites such as in Segal’s arpproach. Once Segal’s model had annotated a CRM with the morphogen binding
sites, his model and Ay’s model, we aim to show in this section, were identical (assuming the annotation
had no false negatives and false positives).
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the probability of each configuration is an element in a vector of probabilities, where the

vector is labeled F (where
∑
c Fc = 1, where c encodes the binding configurations as the

component index to the vector.). Similar to Segal’s model, each configuration causes a

particular occupancy of the BTA, where the occupancy of the BTA for each configuration

is a component of a vector T. Hence T • F =
∑

c FcTc (which given one knows all the

configurations, this is then very similar in form to Segal’s model < 1

1+ef(c)
>≈< Tc >,

where the expectation is taken over the binding configurations and f(c) is Segal’s function

of each configuration.

A departure from Ay’s model and our model is the quenching function that he denotes

as q(d), where d is the spacer distance in base pairs between the repressor and the activator.

Their model, like ours, bins the spacer distances to form the queching function (q is a

piecewise defined function over the different intervals of spacing between the repressor and

activator)9. In his model each interval has a free parameter to be trained, which is analogous

to our form of the pairwise potential for repression, for example ωSn,Dl(d) (the repression

pair-wise potential between Snail and Dorsal), which is also a binned pair-wise potential

in the same form. However, the parameters depart in that our ω’s occur in the partition

function just as in Segal’s model, while Ay’s quenching parameters do not. His quenching

parameter goes back to a model form from Reinitz([106]), where quenching modulates the

probability of configurations bound by the repressing transcription factors. In this model

modulate means that the p = 1 norm of their probability vector ||F || =
∑
c F

p
c =

∑
c Fc is

a function of the amount of repression.

For example, a module responding to activators under high concentrations, but with very

9(In the case of multiple repressor types, one would have a notation such as: q(d)tf , where each repressor

type has its own quenching function, or possibly just one universal quenching function, if all repressors ended
up behaving the same. What a discovery that would be!)

168



low concentrations of repressor (making the Boltzmann weights of repression configurations

zero) has the usual norm
∑
c Tc = 1, while if the conditions are favorable for repression,

(such as both high concentrations of repressors and activators AND a very strong repression

pairwise potential), then if the q(d) function is large (its largest value is ’one’) for the spacer

distances d that occur between the activators and the repressors, then configurations with

bound repressors have their probabilities modulated by factors of (1− q(d)) for each bound

repressor, where d is the spacer between each repressor and its nearest neighbor (while there

were other forms, or schemes, tested for this function rather than just nearest neighbors).

For example, for a module with 5 activator binding sites and 5 repressor binding sites

(with no sites overlapping), then for the configuration with all binding sites bound, and

each activator had a nearest neighbor bound repressor with a spacer at d=10 bp, then the

Boltzmann probability of the all bound configuration is modulated by a factor (1 − q(d =

10))5, and the result of this is: F ′c(1− q(d = 10))5, where c’ is the configuration with all 10

sites bound10

The difference between Ay’s model of quenching and ours is due to the quenching pa-

rameters (function) not occurring in the partition function. Here we see if it is possible to

equate Ay’s model form
∑
c FcTc to Segal’s model. First let the occupancy function of the

BTA, which is a function of the configuration, be denoted as:

T (x) =
1− q

1 + exp(−x)
(3.34)

10In Ay’s model, the configuration vector c takes a similar form to our configuration vector, for example,
Ay’s representation of the example configuratin with 10 bound sites is c′ = [ARARARARAR], where A is
for activator and R is for repressor. This is a compact representation of our configuration vector in Figure3.2,
compact in the sense that our configuration vector also displays information about the spacers and internal
positions of a binding site (a ’silent’ state)).
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where q is the quenching efficiency from Ay’s model, and x is a function of the binding

configuration. Ay’s exact form was:

T ′(x) =
1

1 + exp (5− x)
, (3.35)

which we wish to adorn with the factors (1−q) (the probability modulation factors that con-

tain the quenching parameter q), which will then allow the BTA occupancy to be modulated,

thereby keeping the Boltzmann distribution over the binding configurations unperturbed by

repressor morphogen binding. Now, make a change of variables, let (1 − q) = e+w, where

the symbol w has no particular meaning other than to capture the change of form in the

expression. Now we have:

T (x) =
exp +w

1 + exp (−x)
, (3.36)

whereupon bringing the numerator’s factor into the denominator we have:

T (x) =
1

exp (−w) + exp (−x) exp (−w)
, (3.37)

Now we simply want this denominator to be of the form 1 + exp (−x′), which would allow

Ay’s model to be expressed exactly in the same form as Segals. Hence we again make the

change of variables:

exp (−w) + exp (−x) exp (−w) = 1 + exp (−x′), (3.38)

which leads to:

−x′ = ln(exp (−x) + q)− ln (1− q) (3.39)
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Hence we have:

T (x) =
1

1 +
exp (−x)+q

1−q
(3.40)

Now, it appears that the odds for BTA occupancy from Ay’s model:
exp (−x)+q

(1−q) must be

equal to the odds for BTA occupancy from Segal’s model: ef(c). Setting the log odds equal

to each other may allow for some deduction on what certain parameters ’mean’ in terms of

the two models, which would then be able to be traced to our model.

3.2 Data set

We would like to know the key biochemical parameters that are utilized by Dorsal, Twist,

and Snail as they regulate the genes that pattern the Dorsal Ventral axis of early devel-

opment by producing expression profiles, a list of mRNA counts for each position along

the DV axis. Under standard nonlinear regression, one could imagine an experiment where

one measures the response (the dependent variable) to systematic variations of the inputs

(independent variables), these measurements can then be used to fit a nonlinear regression

model, where the fit parameters are our biochemical parameters (such as the binding con-

stants). Here the response, is the gene expression levels, and the inputs are the morphogen

and CRM information (described further in the data section). This is a massive amount of

experimentation in order to fit a nonlinear model. However, following the interpretation of

Segal et.al.[109], which in a sense, is a reinterpretation of Ed Lewis’ model of homeogenes,

and further refined by Zinzen et al.[129], we can treat coordinately regulated genes as if they

were the same gene, just under different inputs.

What are the different inputs? The CRMs and positional information of the embryo (in
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terms of morphogen concentrations).

How is this possible? During development morphogens work together to coordinately

regulate a set of genes.

What about replicates, as a well designed experiment has statistical power? The number

of degrees of freedom, which determines the statistical power, can be assumed infinite, as

across a population of embryos, each with thousands of nuclei that each have a genome, we

know the genome’s are identical (neglecting short term evolution and segregation of SNPs

during sex, where, SNPs in inbreed lab lineages is irrelevant.). Each embryo is effectively a

clone of one another.

So, for the regulatory regions of genes, a modeler only effectively needs one sample to

have complete knowledge about the DNA sequence, but what about the trans enviroment,

the numbers of each molecules in each embryo, doesn’t that vary across embryos? All

embryo’s are the same within limits of diffusion processes. Each embryo across a population

of embryo’s is producing mRNA at each coordinately regulated gene with a high degree of

precision. Morphogen concentration gradients and the gene’s expression response (mRNA

levels) are highly reproducible across different embryos, within the physical limits set by

diffusion processes[55]. So yes, the internal molecular environment from one embryo to the

next does vary due to random walks of molecules. However, our error in assuming that a

population of embryos are all the same will be no bigger that
√
n, where n is absolute number

of a molecule type in each cell of an embryo. Furthermore, n(t), where t is time, varies on a

time scale much slower than the processes we will study. Hence the diffusing concentraition

function across the embryo n(z, t) where z is space (the DV axis), we assume is frozen. For

large n, the fractional error that we incur in our model is quite small. Hence, variation in

molecule in absolute concentration from one embryo to the next (or even within an embryo
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from one cell to the next cell - at the same position along the DV axis) is negligible.

Hence, we will treat an entire network of regulatory sequences as if they are each just a

different measurement, a different input to our model. This is a reasonable interpretation,

however, nonlinear models are notorious to being sensitive in certain intervals of the input

variables, and hence if the network has not just happened to evolve to coordiantely expressed

gene’s in the input regions where our model is sensitive, the model will fail, and one must

resort to the tedious work such as Fukouri et.al.[43] to assure that all necessary data points are

being collected (e.g. if one wants to measure distance dependent quenching, then one, under

Segal’s interpretation, should hope that evolution has selected a range of different spacers

that coordinate quenching within the CRMs, otherwise the model fitting will be insensitive to

this parameter. Why? Because there simply is no input data that varies the spacing, which

is a prerequisite for fitting distance dependent interactions.). However, the key biochemical

parameters we are interested in was motivated by previous experiments of endogenous CRMs

that have pointed to our parameters of interest of being the major contributing factors. The

model requires three main pieces of data denoted as D. First, the CRM sequences and

PWMs of the morphogen’s targeting the sequences. Second, the morphogen concentrations

along the DV axis at a particular point in time in development. Third, the response of the

CRM’s to the morphogens (also in the form of ’expression’ concentrations along the DV axis

at a particular point in time in development).

D = {Scrmt , Et, Etf ,PWMtf} (3.41)
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Scrmt =



srho(1) . . . srho(Lrho)

svnd(1) . . . svnd(Lvnd)

...
. . .

...

sn(1) . . . sn(Ln)


=



Srho

Svnd

...

Sn



Et =



Erho(1) . . . Erho(m)

Evnd(1) . . . Evnd(m)

...
. . .

...

En(1) . . . En(m)


=



Erho

Evnd

...

En



Etf =


EDorsal(1) . . . EDorsal(m)

ETwist(1) . . . ETwist(m)

ESnail(1) . . . ESnail(m)

 =


EDorsal

ETwist

ESnail



PWMtf =


PWMDorsalDC

, PWMDorsalDU

PWMTwist

PWMSnail



3.2.1 Sequence Part of the data

The most important input of the model are just the the CRM sequences. The model is the

response of the CRM across the entire DV axis, and hence, each CRM will will have response

values across all the positions of the DV axis. Each row in Scrmt is a DNA sequence of the

module that drives the target expression (concentration) of the same row in Et as a function

of concentrations of the morphogens and the morphogens’ PWMs’ annotations on the crm
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Scrmt (through binding site discovery). The CRMs are usually about 500bp that control a

given gene in the DV network, or the CRM was an engineered construct that was tested in

vivo. The columns of Scrmt are the ordered nucleotides of the DNA of length L, where each

base of the sequence St is represented as s(i), and the subcripts on the CRM indicate the

label for the target gene it controls.

3.2.2 Positional-dependent target gene response data Et

The response of CRM to morphogen regulation is the data Et which is the CRM’s target

gene’s expression. The target expression is controlled in cis by a given CRM, hence each

row of Et, denoted as Et, corresponds to the same row in Scrmt . The target expression is

controlled in trans by the morphogen conentrations at a position, z, along the embryo. Each

column of Et represents the position z along the embryo.

3.2.3 Positional-dependent morphogen data

The transcription factors Dorsal, Twist and Snail also each have an expression profile along

the DV axis, which is stored in the table Etf , where tf is the particular factor, and where

each factor’s profile must be the same length vector as the target gene profiles. There are

about forty cells (nuclei) along the DV axis at the time point in development under study (in

Foe’s time table the time of development is ’stage 4’), hence each nuclei has just one locus

containing the CRM of interest (technically, Drosophila is ’diploid’ (containing two genomes

in each nucleus, but we don’t model this), hence it is natural to demaracate the positions

along the DV axes into about forty bins.

Hence the columns of Etf and Et represent the concentrations at a given position along
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the DV axis of the input morphogens (tf), and output target response t. However, the

independent variable data Etf is not necessarily collected jointly with the dependent variable,

Et, much of the expression data is coming from different embryos, and different labs, so we

actually do not have the exact known amount of input morphogen and output gene product

for a given position along the axis. However, tedious experiments along the DV axis by a

number of labs have already shown that the explanatory variable causing variation in Et

are the morphogen’s we use as inputs, furthermore, fly embryos are believed to be very

’reproducible’, in their patterning expression profiles, hence it is reasonable to collect the

input and output profiles from different embryos.

3.2.4 Collection of data from DV network of Dorsal, Twist, and

Snail targets in Neuroectoderm and Mesoderm, and PWMs

The target gene profiles and corresponding regulatory sequences were collected from the

following (references)[72][71][70]. The profiles were based on the number of cells that span

the mesoderm and neuroectoderm (about 40) at the time point under consideration. The

positional information was extracted from the corresponding references results section. For

example, the results may say ”twistPE enhancer border at cells 12-14”, where the mesoderm

proper is known to be 18-20 cells wide at the time point under study ( at this point an entire

cross sectional slice of the Dorsal Ventral axis is 100 cells wide (reference) at the minor axis

of the ellipsoid). Furthermore the ventral neuroectoderm is known to span 6-10 cells past

the mesoderm boundary, given a bound on dorsal-most border of neuroectoderm genes, and

the dorsal border is cited by the author with the uncertainty in its cellular position. The

amplitudes were classified according to the comparative analysis in the results section of the
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references, each class was then assigned a numeric range, for example the class that was

regarded as the strongest staining was arbitrarily assigned the range [.9,1]. It should be

noted that the amplitudes for Segal’s 2008 paper were binary, hence his border classification

,where to assign the 0,1 transition, has uncertainty.

The expression profiles of Dorsal was based on Zinzen’s confocal microscopy results in

the Devex database (no longer available online). The Twist expression profile was also from

this database. The Snail profile, is known to be uniform in the mesoderm, and ’off’ in regions

of the embryo dorsal of the mesoderm, the profile is a step function. Hence, Snail is simply

’on’ in the mesoderm, and ’off’ in the regions dorsal of the mesoderm.

The Dorsal, Twist, and Snail profiles were coordinated with the target gene profiles by the

standard assumption that the sharp Snail border demarcates that mesoderm neuroectoderm

border, which I will call the Snail step. Hence, all NEE genes, or synthetic constructs of

functional NEEs were registered with the position of the step in the Snail profile. Similarly,

all mesoderm target genes were scaled such that they were less than or equal to the step

position of the Snail profile.

The Dorsal PWM is the DC and DU form chapter 2 of this dissertation. The Twist

motif used was 5’-CAYATG, and the Snail motif used was 5’-CACCTG. The Twist and

Snail motifs were transformed to energy PWMs too. Hence, the energy levels of the TWist

and Snail are not accurate, but, due to the threshold free algorithm for annotation, the

accuracy is not as central a question as it would be for a threshold based approach.
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3.3 Nonlinear regression model

3.3.1 Putting the data parts and free parameters together to form

the nonlinear model of BTA occupancy

Our nonlinear regression model is simply the fractional occupancy of the BTA, which is a

function over the high dimensional space of input CRMS and position along the DV axis of

the embryo:

f(S, z) =
1

1 + exp−(w0 +
∑
m 〈nm(z)〉 wm)

, (3.42)

where the morphogen m’s occupancy on the CRM 〈nm(z)〉 is now a function of the position,

z, along the DV axis of measurement. Hence, z is the index of our expression and morphogen

profiles.

3.3.2 Free parameters to be fit

The nonlinear model has set of biochemical constants that we optimize. Hence these param-

eters are unknown, and trained based on the data. The parameters we denote as:

β = {−→α ,−→ωd,−→w }. (3.43)

The alpha vector, −→α , is related to the protein DNA binding interaction. Recall qi =

K(S)[tf(i)] = K0 exp (−(E(S))[tf(i)], where K0 is the maximum binding constant in k-mer

space, and E(S) is the the energy score from the PWM, and [tf(i)] is the concentration

of the transcription factor that corresponds to the PWM. We do not know the absolute

concentration of the factor tf(i), rather we have normalized laser intensities of florescent
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markers for the protein in ’stained’ embryos (which we assume is proportional to the absolute

affinity). We have denoted this intensity data as Etf . Hence, for example, for the kth bin

(or kth cell) along the z axis (DV axis) we have qi = K(S)[tf(i)] = exp (−E(S))Etf (k)αtf .

An interaction energy,
−−→
ω(d), is defined for nearest neighbor interactions for each type

of interaction between species, homotypic and heterotypic (this represents a form of ’coop-

erativity’ and a form of ’quenching’). These constants depend on binning the separation

distance between interacting factors (which factors are interacting must be prespecified).

For example if we assume detectable variations on the scale of 10bps for protein-protein

interactions, the function would be defined as follows:

−−→
ω(d) = [ω1, ω2, . . . , ωb, . . . , ωn] (3.44)

where the subscripts of the components of the ω vector represent the corresponding bin ,b,

( in this case there are n bins), hence they define a bin vector,
−→
B , where its components

correspond to the interval of base pair distances.

−→
B = [B1, B2, . . . , b, . . . , Bn]

= [(0− 10), (11− 20), . . . , (41− 50), . . . , (x− L)]

(3.45)

Here bin b contains all interactions where two bound sites are separated by 41-50 basepairs,

and x represents the last bin border, and L represents the Length of the enhancer (sequence).

For repressors (like Snail) that have ’quenching’ interaction, ω is in the range [.01, 1],

while for binding cooperativity ω is in the range [1, 100].
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Lastly, −→w , contains a post binding constant for each transcription factor. These pa-

rameters represent the interaction of the bound transcription factor with the BTA. Each

transcription factor has an associated wtf factor, for example, see figure. These factors, in

a sense, represent the domain of the transcription factor that interacts with the BTA. How-

ever, this interpretation is a controversial; as transcription factors recruit histone modifiers

and remodelers, which change the epigenetic state of the chromatin, and in this way they

affect transcription, and hence BTA binding, so the interaction isn’t necessarily due to the

protein ’touching’ or binding to the BTA.

3.4 Annotation model of binding sites

3.4.1 Discovering the binding sites within the CRM

The CRM sequence space of all possible CRMs of length 500 is of dimension 4500. Segal

only had about 40 sequences available to train his model, which seems small with respect to

a possibly ideal data set that would contain all 4500 CRM sequences S of length 500 along

with each CRM’s response E at each position along the DV axis. Of course, most of those S

sequences do not respond to Dorsal Twist and Snail morphogens, and hence, a MSE (Mean

Square Error) objective function under an ideal data set would be overwhelmed by negative

data, visible by the ’reduced Chi square’, which is the SE (Squared Error) divided by the

number of degrees of freedom 4500 ∗m − p (where m is the number of positions along the

axis, and p is the number of parameters to be fit). In reality, what I have called an ideal data

set is NOT ideal at all. Nor is a random sampling of the 4500 sequences, since the prevalence

of functional (CRMS that form a usable pattern by the organism) is very rare. Hence, an

approach that concentrates on known Positive CRMs seems to make sense (endogenous or
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human designed).

Experts in CRMs have spent decades trying to decipher what sites are functional (adap-

tations). This has lead to additional functional sites and functional CRMs that are not

naturally evolved but arguably just as useful for fitting the biochemical parameters (human

designed CRMs or binding sites that work to recapitulate the work of evolution- such as

recapitulating the expression pattern etc.). The result of this tedious work, is that the Segal

idea of using all possible positions within a CRM as a possible site to plant the protein is

simply not biological. Transcription factors have evolved to recognize a few specific sites

within CRMs. Hence, a ’site’ based approach is more biological. Even Segal’s approach,

really did not use all possible positions as a site, as mathematically one can set a threshold

on PWM energy scores due to high energy sites having negligible effects on the model11.

Hence, before we fit the parameters of the nonlinear model, we will explain a novel

annotation model, an algorithm, to transform from the CRM sequence to a binding site

space (much like Xin’s configuration space) of much smaller dimension than the sequence

space. This algorithm will actually use the model parameters, however, a full analysis

of model fitting and parameter uncertainties, requires refitting the parameters, which we

describe after our annotation algorithm.

Traditionally ’annotation’ of binding sites is accomplished by ’scanning’ PWMs over the

CRM, setting a threshold, and calling a positive site any site below the threshold. Of course,

this algorithm begs the question of how to set the threshold on the PWM. Cutting a true

functional site from the list of sites to be used for modeling (the sites used in the configuration

vector) would cause severe overfitting, or cutting a site that is a known positive (at least

11Segal noted in his Supplement that he did not use all possible positions as a site for all possible mor-
phogens. Furthermore, in his Supplement he pointed out that his computations of the configurations ul-
timately relied on MCMC (Markov Chain Monte Carlo) sampling of configurations more than the HMM
recursion algorithm to compute the weight of a configuration.
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’known’ by evolution as a positive). Furthermore, PWMs are notorious for false positives.

Very weak sites are not a concern for our nonlinear model (since the Boltzmann factor of

a very weak site will will exclude that configuration from making a detectable contribution

to the partition function). However, ’weak’ sites that are at the border of being functional

or non-functional can have enormous effects. A weak site that cooperates with a strong site

may have functional interaction, functional cooperativity or quenching, but a conservative

threshold may cut the weak site, which in turn will cause the cooperativity to be missed in

the configuration space, which in turn will cause the fit to compensate for the cooperativity

by tuning other parameters. Similar observations were made through sensitivity analysis by

Dresch [37].

3.4.2 Annotation Model of Binding Sites without a PWM thresh-

old

Standard bioinformatic annotation of the binding sites uses a threshold on the PWWs energy,

here we define an alternative approach for identifying binding sites within the CRMs. Instead

of using a threshold for the PWM energies of all the possible sites within a CRM we use a

threshold of the CRM’s response, its gene’s expression, to set a minimal constraint on the

occupancy of Dorsal transcription factor at the position along the DV axis where the gene

is first turned ’on’. Hence, the annotation model assumes Dorsal occupancy must reach a

critical value before a gene switches ’on’. This assumption is analogous to the assumption

that the mRNA counts are proportional to the BTA occupancy, here we are just pushing

the assumption closer to an occupation that we can explicitly compute, in the sense that the

BTA occupancy is caused by Dorsal occupancy, but we don’t use basal promoters (like TATA
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boxes) in our sequence analysis and hence can’t compute their occupancy. Furthermore,

BTA occupancy, in terms of different occupancy across the genome is a function primarily

of CRMs, as all genes have TATA boxes (TATA boxes do not differentially regulate BTA

occupancy).

The occupancy of Dorsal is entangled with the parameters that we aim to fit, hence this

annotation step requires setting these parameters to a specific value (all parameters must

be set, since they are utilized in this annotation algorithm). For example, if a Dorsal site

is adjacent to a Twist site, and Twist is bound at this site, and if the Dorsal site is within

the range of influence of the cooperativity parameter between Twist and Dorsal ωDl,Tw(d),

where d is the distance separating Dorsal and Twist, then the odds of Dorsal being bound

will increase. In fact, as pointed out by A. Hill, if the cooperativity is strong enough, then

the only configuration vectors that will contribute to the partition function are those that

contain these bound Dorsal and Twist sites.

The annotation model assumes a conserved quantity governs all the enhancers at the

point along the DV axis where their target gene becomes activated. Based on previous

literature it seems Dorsal alone is sufficient and necessary, while Twist is neither. Hence,

the assumption is that Dorsal’s occupancy within the enhancer must reach a critical value,

a conserved value, after which the gene expresses.

Only two points along the DV axis are used for the annotation model. The first point

of activation when veiwed in the direction from Dorsal to Ventral represents one point. For

example neurectoderm genes, the expression profile E is searched or scanned starting with the

dorsal-most position for differential expression that is greater than 0.5, which occurs at the

dorsal border of the neurectoderm genes. For genes that are only activated in the mesoderm,

this search will similarly find the gene is activated at the mesoderm-neuroectoderm border,

183



or at least the dorsal border of the mesoderm gene’s expression. For gene’s only expressed

in the mesoderm, this is the only point which is used to estimate Dorsal occupancy within

the target CRM (a mesoderm CRM).

The second point of activation, is actually a point of repression of the gene, where Snail

turns off the expression of the neurectoderm genes. Hence, the second point, for neuroec-

toderm genes is the Snail border, which demarcates the ventral border of neurectoderm

expressed genes.

I assume Snail is not present in the neuroectoderm. This gives a classification scheme,

which is used to divide the enhancers into two categories (mesoderm, neuroectoderm). Hence

the first step, is to scan the expression profile, starting from the dorsal ectoderm and find

the position where the gene is activated. If activation is first detected in mesoderm, then an

algorithm to calculate Dorsal occupancy is used which allows for snail binding.

However, neuroectoderm classified genes are solely annotated with Dorsal and Twist sites.

Here annotation means sufficient Dorsal and Twist sites are annotated such that the Dorsal

occupancy reaches a value of one unit (which is like one Dorsal bound, but this could be, for

example, because there are 5 Dorsal sites along with 2 Twist sites all working together such

that the average occupancy of Dorsal in the promoter is 1 unit).

If the neuroectoderm expressed genes indicate repression by Snail in the mesoderm, we

assume that the mesoderm neuroectoderm border is a zero sum game, that is, enough Snail

sites must be found to cancel the gene activation based on the activator sites that were

annotated in the neuroectoderm. Hence the two points used for the expression profiles are

usually the ’dorsal ectoderm - neuroectoderm border’ that is determined by a search of the

target gene’s profile, and the other point is the ’mesoderm-neuroectoderm’ border that is

determined by the border of Snail’s profile (i.e. the mesoderm is defined by Snail expression).
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Once a gene is classified as a neuroectoderm expressor (i.e. it shows expression in the

neuroectoderm above a fixed value I have set at 0.5), then the occupancy of Dorsal for the

gene’s CRM must be ’one’. The location that the gene first achieves expression of 0.5 is

determined by a profile search starting from the Dorsal ectoderm. Once that position along

the profile is found, then we extract the vector of transcription factor concentrations at that

exact same point, which are needed for the computation of the occupancy. Hence, given

the network parameter’s values, and the concentrations of the transcription factors where

the gene ’switches’ on (its expression is 0.5), I then ’select’ the best Dorsal site from the

annotated list of Dorsal’s PWM scores for the given CRM. This selected site’s occupancy is

calculated, and if it is below the value one, I select the next best Dorsal site. If its occupancy

is above or equal to one, then I stop searching for Dorsal sites in the CRM UNLESS there

happens to be Dorsal sites with the exact same energy, in which case these sites are annotated

too. This is because a number of the Jiang and Szymanski constructs (CRMs in the training

data) had multiple replicates of Dorsal sites in the same enhancer.

In the case that one Dorsal site is annotated and the CRM’s occupancy of Dorsal is

below a value of one, then the best Twist site is annotated from the list of occupancy scores

of Twist in the CRM (note I did not say PWM scores, which are agnostic to the free

parameters, while occupancy is highly sensitive to the free parameters such as Dorsal-Twist

cooperativity). With the newly annotated Twist site, Dorsal’s occupancy is recalculated,

and checked to see if it is above a value of one. If the Dorsal occupancy is still below the

critical occupancy, then the list of PWM scores is processed such that the original Dorsal

annotated site is masked out along with all overlapping sites. Then the new list (i.e. the list

post-masking) of Dorsal PWM scores is transformed to a list of occupancy scores, where each

occupancy is calculated with the original Dorsal and Twist annotated site along with the
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Dorsal site from the list of PWM scores (these scores can be thought of as a data structure

that contains the energy and coordinate of the binding site in the CRM). The Dorsal site

that achieves the highest occupancy is then selected as the next annotated Dorsal site. If

the occupancy achieves a value of one unit then the annotation process halts. If the Dorsal

occupancy does not achieve a value of one unit, then these steps are repeated until the the

occupancy reaches the critical value, or the CRMs are ’filled’ or ’covered’ with binding sites

(where no overlaps are allowed), the CRM is literally jam packed at this point.

Once the sites have been annotated, then they are stored in a vector. This process is

repeated for all neuroectoderm expressed genes in the network (all CRMs). Once all the

neuroectoder CRMs have been annotated at their specific ’switch’ points, the vectors of

sites for each CRM is passed to another annotator that builds a list of Snail sites at the

mesoderm-neuroectoderm border of the DV axis, where the snail site’s are to ’repress’ the

gene (if the gene shows repression in the mesoderm). This annotator first selects the best

scored Snail site from the list of PWM scores of the Snail PWM, and then calculates the

target gene’s expression. If the expression reaches below 0.5 then the annotator halts. If the

expression is above 0.5, then the the annotated Snail site is masked from the list of Snail

PWM scores, and the next best Snail site is selected. This annotation process is continued

until the critical expression is reached, at which point the annotator halts.

Lastly, for genes not expressed in the neuroectoderm, such as twist, the annotation process

is similar to the neuroectoderm genes with the exception that Snail is allowed to be annotated

for functional sites.

We do not know a priori what the ’true’ parameter values are, hence we start with a

best guess point in parameter space, and then optimize the algorithm by gradient descent
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using the objective function:

n∑
i

∑
j(i)

[( < n
i,j(i)
Dorsal > −1 ) ]2 (3.46)

Here i is the target gene label and since we are only using 2 of the m points along the profiles,

j represents those two points or positions (which are target gene dependent). Hereafter, we

call this annotation method or model the Maximum Parsimony Annotator, MPA, since, in

a sense, it is aiming to predict the minimal set of binding sites that are consistent with the

nonlinear regression model -BTA occupancy and morphogen occupancy- model parameters.

3.5 Model fitting

Once we have annotated each CRM in our data with the Dorsal, Twist and Snail binding

sites we wish to fit (refit in some sense) our nonlinear model Equation 3.27 and equivalently

Equation 3.42, using standard nonlinear regression.

A simple nonlinear model, is ’logistic regression’, which is used frequently for classification

and is of the form:

Y = f(X1, X2, X3, ..XN ) =
1

1 + exp (β ∗X)
, (3.47)

This model’s objective function’s surface in parameter space has a unique optimum due to

the objective function (the cross entropy) being convex. However, logistic regression requires

boolean response variables, while our response is of a continuous form, ideally suited for

regression.

To fit any regression model, one has a table of data, where the first column (for example)

contains the values of the responses y (dependent variable Y ) from the measurements, and
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the next N columns contain the values of the explanatory variable x (independent variables

X1, X2.., which taken together we will call the ordered columns of independent variables the

design matrix denoted as X or A). Given this data, one can then adjust the free parameters

β to ’fit’ the model to the data.

Here we will assume there is random error in our expression profiles (albeit small, such

that the trans environment between embryos is almost the same). Hence the deviations of

our model from each data point (yi, X1(i), X2(i), ..) will take the form of a random variable,

called the error:

f(X(i)|β)− yi = εi, (3.48)

which we assume is normally distributed with zero mean. Hence, the probability of the entire

data set is a multivariate normal:

P (D|β) =
1

2π|Σ−1|
exp

1

2
(y − f(β)T )Σ−1(y − f(β)) (3.49)

Here Σ−1 is the data’s covariance matrix. We assume the errors are independent with unit

variance, hence, the covariance matrix is simply the identity matrix. In this picture, each data

point i occurs with probability
exp (−ε2i )

2π , and the multivariate normal can be factorized as a

product of independent univariate gaussians, which can be written as P (D|β) = e(−1/2χ2).

Hence maximizing the probability of the data given the parameters (maximum likelihood

principle) is equivalent to minimizing the squared errors from the multivariate distribution,

which we call ’chi squared’, denoted as χ2 (that’s not a squaring operation!). In this picture

we see the ith row of the data matrix contains the information needed for the ith element
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of χ2, where the model parameters are fit by minimizing the squared errors, χ2:

χ2 =
∑
i

(yi − f(X1(i), X2(i), X3(i), ..XN (i)|β))2 (3.50)

In general, χ2 is not a convex function, and therefore is susceptible to getting stuck in

local minimas. Hence, nonlinear regression is a bit of an art[104], unlike its linear counterpart

(linear regression), which has a global optimum at β = (XXT )−1XT b, where X is the ’design

matrix’ and b denotes the column of data y for the dependent variable Y 12.

Both Segal and He’s method of optimization of their thermodynamic models used gradient

descent and simplex, where the best fit parameters of gradient descent were passed to simplex

method, where its best fit parameters were passed back to gradient descent, until a fixed

set of alternations between the algorithms were exhausted. This was repeated for different

starting points in parameter space, (by randomly selecting a point in parameter space),

which was an attempt to evade getting stuck in local minima. We have implemented the

Levenberg Marquardt algorithm in GSL (Gnu Scientific Library) which is similar to gradient

descent, upon completion of the alternations between gradient descent and simplex, the best

parameter vector is passed to the Levenberg Marquardt algorithm (this was purely for the

advantage that GSL has implemented a number of routines for parameter error estimates

using Levenberg Marquardt not found in their general ’optimization’ algorithms).

3.5.1 Covariance matrix of fitted parameters

In linear regression, with no estimate on the error in the data, a standard estimate of the

error in the fitted parameters is simply the χ2 divided by the degrees of freedom (the number

12In linear regression we’re simply solving the linear equation commonly denoted as Ax = b, which I’m
denoting as Xβ = b, to follow common statistics nomenclature.
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of data points minus the number of fit parameters), or more conservatively just χ2. In linear

regression with known errors (the covariance matrix of the data, Σ), one is better able to

estimate the error in the fit parameters by (ATΣA)−1, where A is the design matrix.

In nonlinear regression, with no estimate on the error in the data, again an estimate

of the error in the fitted parameters is simply the χ2 at the minima. Another estimate is

(JTJ)−1, and an even better estimate is to invert 1/2 the Hessian matrix of the χ2 over the

parameters. To better understand our model’s fitting behavior we will briefly discuss the

derivation of the covariance matrix of fitted parameters.

The estimate of the covariance matrix of the best estimated parameters is based on the

following Taylor expansion of the χ2 about the best fit point in parameter space:

1/2χ2 = 1/2χ2
0 + 1/2(β − β0)T

∂2χ2

∂β∂β
(β − β0) + ... (3.51)

where the Hessian matrix, denoted as ∂2χ2

∂β∂β is a ’two form’ (i.e. The i j element of the Hessian

matrix is: ∂2χ2

∂βi∂βj
). In the expansion the first derivatives of the chi square with respect to

each parameter are zero (we’re at a minima of the chi square surface). The first term in the

expansion is simply the χ2 value at the minima. As we obtain more data, the higher order

terms will go to zero (assuming (β − β0) is less than one, then using Taylor’s theorem, we

know (β−β0) approach zero faster than the derivatives). Using a Bayesian argument, we can

now show that at the minima of the χ2, our best estimate of the free parameters are gaussian

distributed. In a Bayesian setting, we wish to estimate the distribution of parameters (not

a just a point in parameter space). Hence, using Bayes theorem we have:

P (β|D) =
P (D|β)P (β)

P (D)
. (3.52)
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In this picture we still wish to optimize the likelihood, however we now have the prior over the

parameters and the prior over the data to deal with. Assuming the prior over the parameters

is uniformly distributed (uninformative) then maximizing the likelihood P (D|β) is equivalent

to maximizing the posterior of the parameters given the data (the parameter prior and data

prior simply don’t play a role), as the prior probability of the data P (D) is a constant (not a

function of the parameters). Hence we see the maximum likelihood estimate (the minimum

of the χ2) is equivalent to inferring the maximum aposteriori (MAP) estimate. Furthermore,

we now have extended the point estimate of maximum likelihood to a full range of possible

values, to the posterior distribution over parameters. Hence, we have:

P (β|D) ∝ P (D|β) ∝ P (1/2χ2) ∝ P (1/2(β − β0)T
∂2χ2

∂β∂β
(β − β0)). (3.53)

where in the last expression we have replaced the χ2 with its Taylor expansion. Upon

plugging in the Taylor expansion we see that our posterior distribution has the form of a

multivariate Gaussian distribution with mean β0 and covariance matrix ∂2χ2

∂β∂β

−1
, which we

will denote as Σβ . Hence the standard errors of the parameters are estimated simply as

the square root of the diagonal elements of the inverted matrix of ( 1/2 the Hessian matrix

), where the Hessian was evaluated at the fitted parameters (see for similar analysis the

’Laplace Approximation’ on page 213 of Bishop[22], and Press’ model fitting section[104],

and the text by Beck[14]).

What if Hessian is not full rank? Then the Hessian can not be inverted. This can be

traced to either poor experimental design (e.g. too little data, which usually can’t be helped),

or to poor model design (which can be improved).

Non invertible Hessians and non full column rank Jacobians have influenced my estima-
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tion of parameters. Hence, I will briefly discuss these issues, in order to better determine

what parameters will be fit.

3.5.2 The overdetermined and underdetermined problem

In linear regression one simply needs to ensure their design matrix is full column rank in

order to fit their data. For a two parameter linear model f = Y = mX + b, where one

has (X, Y ) paired data, for example: (5,10) (10 ,15) (1,5). One has a Design matrix of the

following form:

A =


1 10

1 15

1 5


where we have rewritten the linear model as Ax = b since the form Xβ = b clashes notation

of the 3x2 design matrix X and what I’ve denoted as the single independent variable X.

Hence in the Ax = b notation, x is 2x1 vector:

x =

m
b

 (3.54)

and b is a 3x1 vector that contains the values of the dependent variable Y . Here the design

matrix represents two 3 dimensional vectors (two vectors that live in the column space) do

these vectors span the column space? If the two vectors do not span the column space, then

this design matrix results in an underdetermined problem (not enough independent equations

to solve for the unknowns). Oddly, this matrix in the context of systems of linear equations

is also a so-called overdetermined problem (more equations than unknowns) when the design

matrix is not full column rank. Hence, for design matrices that are not full column rank the
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problem is simultaneously overdetermined and underdetermined. A quick test for this type

of scenario (in statistics) is simply to check if detATA is zero, where det is the determinant.

The nonlinear regression follows the linear problem in almost every detail. The design

matrix is generalized to the ’Jacobian’ matrix J , where the i j element of J is the partial

derivative ∂f(Xi)βj where f is our nonlinear model evaluated at data point i and the deriva-

tive of f is taken with respect to the jth parameter. A quick test to see if the Jacobian is

full column rank is to check if det JTJ is zero.

An example of non full column rank Jacobian, or a singular JTJ matrix is the following

model f = exp ((β1 + β2)X)[14]. Regardless of how much data one collects for (Y,X), the

chi square surface at the minima is a ’trough’ over the two dimensional plane of β1 and β2.

This trough is parametrized by the equation β1 + β2 = β, which is an infinite line through

the β1, β2 plane (it is a one dimensional subspace, the null space of the transpose of our

Jacobian matrix). Hence one can at best estimate one parameter (not two). In this example

it is clear the problem with a singular Hessian, or not full column rank Jacobian, the problem

is that the optimal solution (minimum chi square) is not a point, it’s an infinite line or infinite

surface or hyper surface in parameter space, depending on the number of dependent columns

in the Jacobian matrix. This is the consequence of a Jacobian matrix that is not full column

rank. This means some of the parameters are dependent, hence some of the columns of the

Jacobian matrix are linear combinations of other columns of the matrix. Hence the column

space of the Jacobian spans a subspace of a dimension smaller than the number of desired

parameters, which can not be remedied by more data in the case of poor model design.

For example imagine one knows with certainty two independent data points (y1, x1), (y2, x2)

for this model, constructing a linear model for the above equation one arrives at the following
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system of equations

x1 x1

x2 x2


β1

β2

 =

ln y1

ln y2

, which is just a line in the β1, β2 plane

(the parameter vector space), where a unit vector along this line is: 1√
2

1

1

, we add another

free parameter α to denote any point along this line, hence α parametrizes the null space of

the Jacobian transpose). This can be seen analytically since the analytic Jacobian is:

∂f(x, β1 + β2)

∂β1
= x exp(β1+β2)x (3.55)

∂f(x, β1 + β2)

∂β2
= x exp(β1+β2)x (3.56)

These two equations should span parameter space, but the two equations are not indepen-

dent, they are identical, hence they (or one of them (which ever one you like)) spans a one

dimensional line in parameter space.

3.6 Results

3.6.1 Best fit of parameters for data from Section3.2.4, Experi-

ment 1

We fit the data from 3.2.4 using the model from Equation 3.42, where the χ2 was defined

as:

χ2 =
∑
z

∑
t

(f(St, z)− Et(z))2, (3.57)

where f(St, z) is equation 3.42, where St is a CRM from our data set, and z is a position

along the DV axis, and Et(z) is the the target expression driven by the CRM’s corresponding
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gene denoted by t at position z along the DV axis.

The annotation model MPA was originally fit to a best set of parameters, and those

parameters were then used as the initial point in parameter space for the nonlinear regression

model 3.42, and for minimizing the objective function3.57. HOWEVER, due to the χ2

surface of 3.46 being flat at the minima, we decided not to try and fit parameters using the

MPA model. Rather we decided to just set w0 = 5 and set all other model parameters to

’one’, the default values of the nonlinear regression model parameters from Equation 3.43

and allowed the annotation model MPA to make predictions of binding sites within the

CRMS using these default parameters. Given, the MPA annotated CRMs, we then were

able to fit the nonlinear regression model3.42, where the fitted profiles are in Figure 3.7.

In the profiles in Figure 3.7 we set the model parameter w0 = 5 (as in Ay’s model) and we

estimated the following parameters: ωDl,Tw(d1) = 5±2, ωDl,Tw(d2) = 64±37, ωDl,Sn(d1) =

.1± 25, ωDl,Sn(d2) = .7± 12, wDl = 7± .05, wSn = 39± 687, where d1 represents the spacer

bin of [0, 30]bp, and d2 represents the spacer bin of [30, 60]bp. The errors were estimated as

the square root of the diagonal of (JTJ)−1. The χ2 = 41, where we had 1200 data points

(each position along the z axis for each gene). The Hessian, had a high condition number

(104) where the largest eigenvalue was 1.4, and the two smallest eigenvalues were 0.0002

and 0.001, suggesting that χ2 surface was close to flat along those eigenvector directions of

parameter space.

The correlation coefficient between the observed pattern and the predicted pattern is

denoted as CC for each gene (which is at most ’one’), and also the squared error between

the observed pattern and predicted pattern is denoted as SE for each gene (where each gene

had 40 positions, z, along the DV axis (i.e. SE is at most 40). The Snail profile is uniform

from positions 0 to 8, where it is ’on’ (at a value of ’one’) and Snail is off from positions 9

195



Figure 3.5: the legend is in the upper right corner of the table, denoting the Observed
profiles ( Et(z) ) as red, the model predictions as green along with the header above each
figure denoting the CRM (gene target) in green, and the Dorsal morphogen profile ( EDl(z)
) as dotted blue curve.
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to 40 along the axis, and the Twist gradient (profile) was replicated as the Dorsal gradient.
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3.6.2 Redesigning the parameters to be fit

The results above suggest poor nonlinear regression model design or insufficient data, where

the free parameters to be fit from 3.43 were based off Segal’s thermodynamic model, which

was similarly used by Xin in GEMSTAT and Fukhouri et.al.[43]. In general, the more

parameters we add to the nonlinear regression model will either decrease the χ2 statistic

(albeit, the reduced chi-squared that accounts for the degrees of freedom may increase) or it

will maintain the χ2 statistic at a particular value (i.e. the statistic becomes insensitive to

additional parameters); but the χ2 will not increase. This assumes one’s fitting algorithm is

allowed to ’find’ the point along the newly added parameter’s line in parameter space that

improves the fit or at least does not spoil the smaller parameter set’s fit. Spoiling a previous

fit with a newly added parameter can be avoided, for example, by simply setting the new

parameter to a value where the model is insensitive (and hence χ2 will not be disturbed). For

model’s with extensive dependencies between parameters this may not be possible. However,

by inspection, the parameters of our nonlinear model can all be set to values such that they

have no contribution to the χ2. For example, all the parameters in our nonlinear model,

when set to numerically one, have the effect of not influencing the form of the model, in a

sense, this is the parameter free form of the model. I will call these values of the parameters

the default values (i.e. the default values have the odd property that it appears we are

not fitting the parameters at all; and, in another sense, one could imagine fitting all the

parameters and all the parameters being fit to the default values.). While setting the values

to be zero have the effect of ’knocking out’ all binding sites of a factor (in the case of α) or

’knocking out’ pairs of interacting binding sites (in the case of ω).

Fitting subsets of the parameters in Eq. 3.43 (such as a parameter subset without our
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novel pairwise potential ω) leads to good fits, by eye, of the data, such as RMSE’s of 0.05.

However, upon implementation of a Hessian matrix using a two point finite difference, we

found that the Hessian matrix was not full rank for the parameter set even without the pair-

wise interactions ω, our novel form of the potential. Without pairwise interactions, one still

has six free parameters to fit for the CRM’s responses to Dorsal Twist and Snail morphogens.

Based on expert knowledge of the DV network, certain choices of two of the parameters were

selected to fit the data, which occasionally lead to a Hessian with a condition number of

about 100 (the condition number is a numerical technique to determine if a matrix is singu-

lar13), while many of the choices of parameters lead to Hessians with condition numbers on

the order of 104. Furthermore, the Hessian should be positive definite for a unique solution,

while we found the eigenvalues were frequently mixed in sign (indicating saddle points) -

of course the gradient (the derivative of the χ2 with respect to each parameter, a different

object from the Jacobian) was zero (on the order of 10−10 for each component) at all of our

estimates of the minima of the χ2 surface14.

In order to better estimate the errors of the parameters for our model we aimed to

obtain a full column rank Hessian (regardless of whether the Hessian was positive definite).

We analysed the analytic derivative of our nonlinear model with respect to each parameter

βi, and checked if other parameters occur in the result (indicating dependencies between

parameters). If possible, parameters that do depend on one another were grouped to form

13In a computer, in a numerical representation, a matrix is rarely actually singular, it just has some
eigenvalues that are much smaller than the largest eigenvalue of the matrix. The number of eigenvalues of
Hessian is the number of parameters to be fit, and if some of these eigenvalues are close to zero, this suggest
a zero determinant Hessian.

14These results lead to the implementation of the Levenberg Marquardt that has a number of GSL built
in functions to help diagnose pathological nonlinear models (unlike the gradient descent and simplex im-
plementations). If Levenberg Marquardt revealed the same types of errors in our parameter estimates then
we could be more confident that there was not an error in our implementation of the Hessian. (i.e. a zero
determinant Hessian, means our parameter error bars are infinite in extent - unless one decides to use a
different method to estimate their error bars).
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just one parameter[14]. Furthermore, certain regions of the Data space (such as certain

positions in the embryo (like the dorsal ectoderm, where none of our genes are active) may

be very insensitive to our parameters (causing small values of the Jacobian for these data

points, however this does not appear to affect the Hessian of the χ2, since the analytic

Hessian, H of the χ2 is exactly equal to JTJ +G, where G is a matrix of second derivatives

over the model15.

3.6.3 Analytic Jacobian

A simple function is f(z) = 1/(1 + exp(−βz)), where β is a constant, where the domain and

range of z and f are: z ∈ [− inf, inf] f(z) ∈ [0, 1]. Now if we imagine that β was a free

parameter, then we could ask how sensitive this function is to variations of β as a function

of particular positions along the domain of z. Hence the derivative is:

∂f(β, z)

∂β
=

β exp (−βz)

(1 + exp (−βz))
≈ βf(z, β)(1− f(z, β)) (3.58)

The above equation, in a sense, is an analytic representation of the Jacobian matrix elements

for the nonlinear model (e.g. BTA occupancy) as a function of data (all possible data, which

is represented by the domain of z).

We do not need to analyze our more complicated BTA occupancy function to understand

15The analytic Hesssian in exact form is H =
∂2χ2

∂β∂β
= JT J+

∂2f
∂β∂β

= JT J+G, where G is a matrix with

second derivative elements of the nonlinear model f (the fractional occupancy of the BTA) over the model
parameters (for example, see equation A.4c page 482 of Beck[14]). In the case that G’s Frobenius norm is

nearly zero (the elements of G are nearly zero), then we have H = JT J , which is why with certain data sets
and experiments, it is possible to estimate the covariance matrix of parameters based on Jacobian alone.

JT J for the case of one free parameter is just a dot product (i.e. the Jacobian is just a vector of size n x 1,
where n is the number of data points), which will be insensitive to data points that were uninformative for
parameter estimation (they are just adding a term zero to the dot product). Hence, it seems reasonable that
uninformative data (data where the model is insensitive, such as Dorsal ectoderm regions of the embryo,
where none of our CRMs are active) will not cause harm to model fitting.
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the behavior of the Jacobian matrix elements, rather we can simply use the above equation as

a phenomenological parametrization of our model of CRM response to morphogen gradients

(which are encoded in the spatial position z). For example, imagine one wished to analyze

phenomenologically the response of rhomboid expression pattern just in the positions of the

embryo of the neuroectoderm and the dorsal ectoderm (in our binning of the DV axis this

would be equivalent to the z interval of [9,40], where the interval [1,8] contains the mesoderm,

which we are uninterested in for the moment). We can model the rhomboid expression as a

function of DV axis using the above equation, where we set β to be negative since we must

reflect the function about the ’switch’ point where the gene is turned ’on (the point in space

where rho turns ’on’ is at the neuroectoderm-ectoderm border).16 We must also offset the

position where the logistic function reaches 1/2 max (which in the above equation is position

z = 0). Hence we must add a constant to the argument of the exponential

f(z) = 1/(1 + exp(βz − β0)),

where β0 will define the 1/2 max of the logistic function when zβ = β0.

The analytic Jacobian for these two parameters (as a function of data z):

∂f

∂β
=
−z exp (βz − β0)

(1 + exp (βz − β0))2
= −zf(1− f) (3.59)

16If we modeled the ’switch’ point where the gene is turned ’off’ (the point in space where rho turns ’off’
is at the mesoderm-neurectoderm border) we would not have to reflect our graph about the switch.
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17

∂f

∂β0
=

exp (βz − β0)

(1 + exp (βz − β0))2
= f(1− f) (3.60)

18

Now we can see some simple relations. First of all JTJ =0 if one only collected data in

the dorsal ectoderm region of the embryo (where the logistic is nearly ’1’, meaning we can not

invert that matrix (so J is not full column rank). Similarly, if one just has Boolean data for

the expression pattern of rho along the z axis, say 00000001111111100000000=Erho, the only

possible point where J is nonzero is at the borders where the gene switches from off to on or

vice versa. Now imagine for an NEE gene that we have an expression pattern over space like

0000000101010100000000 where the switching behavior (10101010) is in the neurectoderm

17The logistic function when evaluated at a particular point z′ can be thought of as a Bernoulli distribution,
hence, the last expression is the variance of the Bernoulli distribution, where the function f(x′) at each point
x′ happens to be the ’parameter’ that describes a Bernoulli distribution (normally this parameter is denoted
as ’p’ for probability, where the mean of Bernoulli random variable is also p, and the variance of a Bernoulli
random variable is p(1−p). This is effectively how the BTA occupancy is described along the DV axis where
x′ now denotes the position along the DV axis, and β is a free parameter.

18Do these two two equations span parameter space? Recall previously we analyzed exp (β1 + β2)z for
its behavior in the context of nonlinear regression. Similarly for the logistic nonlinear model we would like
to analyze 1/(exp (β0 + βz). For example, and if one knows with certainty two independent data points
(y1, x1), (y2, x2), then we can transform to a simple linear model for the above equation, where one arrives

at the following system of equations

(
1 x1
1 x2

)(
β0
β

)
=

ln
y1

1−y1
ln

y2
1−y2

. Does this span the β, β0 plane (the

parameter vector space)? The determinant of the design matrix is x2 − x1, which suggest as long as the
experimental design was such that the data points x1 and x2 are not too close together we could actually
’fit’ β0 and β. However, one must be careful here, since data collected in regions of very large or very small
x1 and x2, will cause the original response y to become close ’one’ or ’zero’ causing the logarithm’s value to
be very large, possibly causing numerical issues. This can be seen by symbolically solving for the eigenvalues
of the design matrix, where we must solve for the roots of (1−λ)(x2−λ)−x1 = det(X−λI) = 0), where X

is design matrix, and λ is the eigenvalues of the design matrix. This yields the quadratic λ2 +x2λ+x2−x1.
If λ is zero (which means we would have a singular design matrix) we see that indeed x2 = x1, which makes
sense, we can’t expect repeated measurements of the same position in space to tell us anything about the
global behavior of the sigmoid (as defined by the β parameters). Solving the for the roots of the polynomial
using the quadratic formula we have:

λ = −
x2 ±

√
x2

2 − 4x1

2
, (3.61)

here we know constraints on the data due to the embryo size, where the DV portion of the embryo constrains
[x1, x2] to reside in the interval [0, 40], since there are only 40 cells along that axis. Given the constraint on
embryo size it seems we can at least say

√
4x1 < x2.
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region of the embryo, while the other two regions are the mesoderm and ectoderm. Using

a mathematical metaphor, it is as if there exist the factorization JTJmeso + JTJneuro +

JTJecto = JTJ = JTJneuro, since the regions in data space of meso, ecto are insensitive to

parameter variations (e.g. JTJecto = 0) , hence these regions in data space (the row space of

J), act as labels to the null space of JTJ that is a subspace of parameter space (the column

space of J), however, this factorization, I believe is not correct, hence if the metaphor is not

obvious don’t concern yourself.

3.6.4 Analysis of binding energy effects on occupancy

For one binding site, we can compute the average occupancy, it is just the probability of the

bound configuration P (c = 1) where c = 1 is the configuration vector in the bound state (c

takes on only two values 1 or 0 ).

∂P (c)

∂E(S)
= P (c)(1− P (c)) (3.62)

This function’s maximum is 0.25, which occurs at P (c) = 0.5. Hence the greatest effect of

energy on the occupancy of one site is at half max occupancy. Assuming the differentials

are standard deviations we have:

σP (C) = |P (c)(1− P (c))|σE(S). (3.63)
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3.6.5 Balanced data sets of mesoderm and neurectoder enhancers,

Experiment 2

The parameters of the thermodynamic model are all contingent on the free parameters that

correspond to Snail (such as it α for its protein-DNA interaction, and its quenching strength,

and its wSN for Snail’s strength of repressing BTA binding). Hence, to disentangle the

cooperativity of Twist and Dorsal (if it exist) from the other free parameters, an experiment

was conducted with no Snail protein (no Snail in the network). Hence, the MPA simply

annotates for Twist and Dorsal (where again the MPA was not ’fit’ rather default parameters

were set for annotation). All NEE modules are known to be repressed by Snail in the

mesoderm. However, the cooperativity of Dorsal and Twist is known to be important when

there are limiting concentrations of Dorsal in the neuroectoderm (where Snail protein does

not exist). Furthermore, the modules that are not NEE’s (such as mesoderm targets of

Dorsal), are know to have no Snail binding sites in their module (at least this will be

hypothesis). Here we used four CRMs to fit two parameter, the Dorsal binding strength

and Dorsal-Twist cooperativity. We found a χ2 = 8.9 for 80 data points19. We removed the

constraint on the parameter ranges, and set w0 = 5, wDl = −5, wTw = 0. We set wDl = 5

because we wanted one unit of Dorsal occupancy to correspond to half max BTA occupancy

(which means the target gene is at half max). We set αTw = 1, the default value. We

found αDl = 0.3 + / − 0.03, and ωDl,Tw = 3980 + / − 982, where the standard deviations

were estimated from the square root of the corresponding parameter’s diagonal element of

(JTJ)−1. The

19The goodness of fit can be tested here, with 78 degrees of freedom, we can assume our fit is a deviate

from the χ2 distribution. If the value of our squared error is a reasonable deviate from the χ2 distribution
then we can accept the fit. I computed the p-value as nearly one, suggesting the fit is good (the cdf of our

the χ2 distribution to the value we found was 10−28.
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These results are as expected from the modules shown. For example, the construct 6xdl

was a Szymanski construct that was shown that even with 6 Dorsal binding sites, the CRM

does not respond to Dorsal in the neuroectoderm (see profile in Figure). Hence, if these

were zero energy Dorsal sites, then we know for what was defined as the minimum value of

αmin = 1 that Dorsal occupancy would reach half max at the position z and a concentration

EDl(z), hence we have: EDl(z)/(1 +EDl(z)) =< nDl >= 1/2, hence EDl(z) = 1. However,

the CRM 6xdl had 6 Dorsal binding sites, hence one unit of occupancy could be reach at

1/6 this concentration (since the sites are all independent, by assumption).

Another construct that was used was the double knock out of Twist sites by Ip, which re-

ported catastrophic loss of expression in the neuroectoderm, the construct labelled rho2216t1t2s4a.

Hence the Ip construct along with the 6xdlPLZ acted as a control group. The treatment

group (in a sense) were two constructs that are known to have Twist sites the rho CRM

(from mel specie), and the vn CRM (from vir specie).

The Snail protein was not used in this model, , and the Twist gradient (profile) was

replicated as the Dorsal gradient. The 6xtwPLZ was also left in the training set, but this

has negligible effect (due to model assumptions (i.e. default parameter values of Twist),

and the reported expression profile by Szymanski for a this construct was roughly zero (i.e.

Twist binding sites alone are not sufficient) - see Data set section for references on data).

3.6.6 Robustness analysis, Experiment 3

We increased the Dorsal expression by 0.15 in each position along the DV axis to see if the

annotated binding sites were the same when using the annotation model MPA. The data set

was four NEE modules rhomel, rhovir, vnmel, vnvir.

The Twist gene’s free parameters were all set to ’one’ for α, and ωTw,Dl was set to
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Figure 3.6: the legend is in the upper right corner of the table, denoting the Observed
profiles ( Et(z) ) as red, the model predictions as green along with the header above each
figure denoting the CRM (gene target) in green, and the Dorsal morphogen profile ( EDl(z)
) as dotted blue curve. The correlation coefficient between the observed pattern and the
predicted pattern is denoted as CC for each gene (which is at most ’one’), and also the
squared error between the observed pattern and predicted pattern is denoted as SE for each
gene. Each gene had 20 positions, z, along the DV axis, which as always (in DV literature),
is plotted such that ventral is at the zero position.
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Figure 3.7: The CRMs and predicting binding sites from MPA for default parameters on
all proteins. Dorsal annotated blue, Twist green. The column d+ denotes added noise to
Dorsal concentration profile (which was zero in this case, hence d+ should not be there). A
bug in the printing code caused one of the vnvir sites to not appear in the CRM sequence
highlighting.
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’one’ for all bins except B = [0, 20]bp, and wTw parameter was set to zero. Furthermore,

the Twist’s morphogen concentration gradient ETw was set equal to Dorsal’s gradient to

assure their differential gradients were not influencing the result. Snail’s quenching was set

for wSn,Dl for only one bin B = [0, 50]bp (quenching means ω is in the range [0,1], while

cooperativity means ω is in the range [1,100]. Hence, we only allowed the Dorsal and Snail

parameters to be tuned by the fitting routine.

The results of annotation with the wild-type Dorsal expression (no perturbation of the

profile) are in figure3.8. The results of the perturbed Dorsal profile are in figure 3.9. The

annotations are the identical. This possibly is an artefact of the way the Dorsal profile was

perturbed (by simply adding .15 to each cell). Due to the sigmoidal nature of the Dorsal

profile this has little effect. A better designed experiment would shift the half max of the

Dorsal profile by a fixed number of positions along the z axis.
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Figure 3.8: Here the target gene is denoted in the left column, and the cell along the DV
axis is denoted in the second column. Twist site’s are annotated green, Dorsal blue, Snail
red, and brown denotes overlaps. The sites annotated at the mesoderm bottom border were
used to annotate the sequence. For example, the first gene is rhomel, for rhomboid in the
species melanogaster.
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aatgggaaaacatgcggtgggaaaaacacacatcgcgaaacatttggcgcaacttgcggaagacaagtgcggctgcaacaaaaagtcgcg
aaacgaaactctgggaagcggaaaaaggacaccttgctgtgcggcgggaagcgcaagtggcgggcggaatttcctgattcgcgatgccat
gaggcactcgcatatgttgagcacatgttttgggggaaattcccgggcgacgggccaggaatcaacgtcctgtcctgcgtgggaaaagc

ccacgtcctacccacgcccactcggttac

rhomelm1 d+ cell 6 eeeeeeeeeeeeeeeeeeeeedeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeedeeeeseeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeetseeeeeeeeeeedeeeeeeteeeeeeeteeeeeeeeeeeeeeeeteeeeeeeeeeeeeeedeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeee
aaaacacacgcacgcacacggcgatagaaattaacacgtagtttagcggaactttgtggcaagtgcaacaaaagtcgaagtcgcggacga
ttcaaatgaaaatctgcaatgctgcggaaggagcaaggacaacccacctgtctatgagtgtgcgagtgtgcgagtgtgtgtgtgtgtgtg
cgagtgtgtgtgcgtgcgtgtgtgtgcaacaagtgcggaaattcctgaatcgcacatgtggcacgcacatgtcgagcgggaaaaaaccgc
tcgatgctcggtccaaggaattccccgagccaagggaagtccgcccaaaacacgcccaaaaggcggcaattatgattac

rhovirm1 d+ cell 6 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeedeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeedeeeeseeeeeeeeeeteeeeeeeeeeeteeeeeeeeeeeeeeeeeeteeeee
eeeeeeeeeeeeeeseedeeeeeeteeeeeeseedeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
tattgaaagtgccgaagttagcgggcatttcacttacctgcgtgggaaaatcgactaatctgcgaccgccccgaggagtcagtttttgtt
tttagagcggtaaaggacaggtaacgggccacatgtctggccggaaattccccgttgacccctgaccccgtgtccttatgacgaattcgt

cacttggcgtgagcacacctggatttcccaccgcttagccagcggaaattccaaaacacctccggcccactggccctcaaaattgttata
tgctctgctacgatgaagcagaagcagaagcagcagtgttttattggcggaagcatccgccaaattgcacccaatctgcagtttgaagtg
ctcaaaacccccaccgctcccctgtgaatttccgccggccggcaaggtgaccgtgtgctaaaacaaaatttttatatcgaaattgccgcc
ggtcaacgcgcgcgcctgcccaatggccactttaaccacgtttcag

vnmelm1 d+ cell 6 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeedeeeeeeeteeeeeeeeeeeeeteeeeeeeeeeeeeeeeeeeeeeee
eteeeeeeeeeeeeeeseeeedeeeeeeeeeeeeeeeeeeseeedeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeseeedeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
gtcaagggctgcacacacaccctacctgcgtgggaaaatgtccattgcgctctcgggctaagctgttttggttggcgggcacaggtaaca
ggcggtagggcaacgttgcaaccggcaaatgtggctgtgccacatgtttgtgccggaaattccccgtgcacgccttaccgcctgcctttt
tatgttgaaatttttcctatcacttggcgggtttttccgggccactggcggaaattccacaatgtcgccactggccacaggcagaaagt

gcaaccaaacgcgcttacaaaaattattataaaatgtgtattattaaatgccaaattgcgtccaatcatccgcagttctctgccggccggc
aagctgaccgtgtgctaaacaaaaatcaaaaaaaaaaaaaaacagccaaaattgccgctggctgctgcacaaacatgcgagcgcgcgcgc
gggctccaactggccactggggcaagctg

vnvirm1 d+ cell 6 eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeetseeeeeeeeeeeedeeeeeetseeeeeeeteeeeeeeteeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeesdeeeeeeeeeeeeeeeseeeedeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeedeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
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Figure 3.9: Here the target gene is denoted in the left column, where, where the second
column contains d+ to denote an in increase (+) in the Dorsal (d) gradient along the DV
axis, and the cell along the DV axis used for extracting concentrations for the annotation
model MAP is denoted in the third column. Twist site’s are annotated green, Dorsal blue,
Snail red, and brown denotes overlaps.
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3.7 Discussion and Background on Robustness

3.7.1 Morphogen Gradients and Developmental Robustness

Given a morphogen distribution over one spatial dimension, one can determine how sensitive

the thresholds of the target genes are to perturbations of the morphogen distribution. This

is discussed in Alon’s text in chapter 8 ”Robust Patterning in Development” [5]. Here we

will reproduce Alon’s derivations for producing a morphogen profile ( distribution ) and his

analysis of whether this profile is robust, but we will do so in the context of the morphogen

Bicoid (Bc) and its robustness probe Hunchback (Hb), where similar analysis was done by

Gregor and Houchmandzadeh [55][66]. Our analysis starts with a transport equation for the

morphogen.

∂M

∂t
= D

∂2M

∂x2
− F (M) (3.64)

Here F (M) is a function of the morphogen concentration and represents the degradation of

the morphogen. Notably missing from the equation is the production rate of the morphogen,

as assumed from Gregor and in Alon’s text the morphogen is assumed to be in steady

state[5]. Hence the time derivative is zero, and one can determine, or declare, the morphogen

concentration by the boundary conditions: M(x = 0) = M0 and M(x = ∞) = 0 It is

important to conceptually see what these conditions mean, since thermodynamic equilibrium

in diffusion processes would lead to a morphogen distribution that is uniform over space,

which we’re about to see is not the case for our problem because a uniform profile occurs

only if the system does not have sources and sinks. Here we’re assuming some source,

a constant source such as ribosomes translating Bc mRNA at position x=0, and we are
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assuming a sink by the proteasome degradation of the Bc protein at x =∞. 1 The Diffusion

constant D determines the absolute length scale of the problem, which creates a problem for

patterning mechanisms if the embryos have large variations in their size, since an intricate

scaling mechanism would be required, as diffusion is based on absolute length scales, this is

discussed by Gregor and by Crocker [54]. Assuming the variation of the embryos length is

negligible we need to see how the scale of the problem is established. Alon’s analysis starts

with a linear degradation mechanism F (M) = αM , where upon solving the PDE given the

morphogen is in steady state, one arrives at:

M(x) = M0e
−x
λ (3.65)

where λ =
√

D
α , clearly when x = λ the morphogen has reached a concentration of

M0
e ,

which is only about 33% of its max, and after 2λ, the morphogen has reached a concentration

of
M0
e2

in general:

x = λ, 2λ, ..nλ (3.66)

then

M =
M0

e
,
M0

e2
, ..
M0

en
(3.67)

Using ’units’ of λ is not only useful for seeing how the morphogen decays as a function of

absolute length, it is in fact the units the morphogen uses to create patterns, as when one

anthropomorphizes the morphogen, they realize that the morphogen can not reproducible

make patterns on any scale other than λ, where reproducible means comparing the patterns

1the idea that Bc mRNA is localized at x=0 was recently shown false, it was shown that Bc mRNA is also
diffusing and closely follows the Bc protein profile, but for our discussion we’ll assume that Bc is translated
into protein at x=0 and then diffuses, and all of this is captured by our boundary condition.
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between embryos.

3.7.2 Fine patterns

Let’s see if the morphogen can create a fine pattern on the scale of 1µm = when λ = 10µm.

Now the morphogen creates the pattern by binding to the Hb promoter and stimulating Hb

expression, so the Hb expression as a function of space is the pattern. This is denoted by

figure 3.10. In drosophila the x axis (the Anterior Posterior axis, major axis of the elliposdal

embryo) is about 500 µm and each nucleus is separated by about 10 µm, since the pattern

here is referring to the expression of Hb as a function of nuclear position, we see that 1µm

doesn’t even make sense, since the smallest unit of our problem is 10µm, So let’s fix our

ill-posed question to the morphogen trying to make a pattern over 10µm where λ = 100µm.

Now to determine if a pattern can be created all we need to know is if the Hb promoter can

detect (distinguish) Bc concentrations that are separated by 10µm (two neighboring nuclei).

Well the answer is simple, yes, if we use the Hill model (3.68), to represent Hb’s detection

mechanism, then clearly the promoter can detect any concentration of Bicoid, and clearly

any desired pattern could be produced (To determine the pattern one simply defines a Bicoid

concentration as the start of the pattern (i.e. a ’threshold concentration’, M(x)) and and

then inverts the Hill equation to find the Bc concentration and position, which come from

equation (3.65)).

[Hb]

[Hbmax]
=

1

1 + e−(w0+〈nBc〉wBc)
(3.68)

But, we want to explore this problem from the perspective of robustness, that is if the

Bc concentration deviates from its ideal profile for whatever reason (e.g. the mother laid

less functional bc mRNA because only one of her bc alleles is functional (i.e. she is a
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heterozygote), or a slight variant of mRNA are laid in the oocyte etc. see for example[9] for

a case of microscopy analysis of heterozygotes and homozygotes), then what would happen

to our Hb profile. In this sense, one may loosely say that we are interested in knowing if a

nonrobust input can still be transformed into a robust output 2.

A formal measure of this (robustness) is defined by Alon as the ’positional shift’ that

is by how many microns δ does our pattern shift. To determine the function δ we need to

perturb the production rate M (i.e. the boundary condition at x = 0) from M to M ′, then

one can see δ from the graph in figure 3.10. When analyzing these equations, keep in mind

that the Hb concentration is captured by the concentration of the morphogen [M ], so M(x)

and M(x′) represent the same Hb concentration.

dx =
dx

dM
dM (3.69)

dx = δ = x− x′ (3.70)

inverting equation (3.65) we can isolate the position, hence solving for x:

x = λ log
M

M(x)
(3.71)

now if we change the boundary condition to M ’, and solve for x’, which represent the new

2for thermodynamic modeling (fractional occupancy) this question is approximately answered by taking
the derivative of the model < NmRNA > with respect to the input concentration that is varying, one will
see that the effect is only at the border due to the form of the model
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,

Figure 3.10: the green gradient represents the concentration of Bicoid and the orange nuclei
denote Hb expression, while blue nuclei represent no Hb expression. This figure was modified
from figure 1 of [125], and Alon’s text[5].

border position of Hb expression:

x′ = λ log
M ′

M(x′)
(3.72)

now we have the pieces to calculate δ,

δ = λ log
M

M(x)
− λ log

M ′

M(x′)
(3.73)

since M(x) = M(x′), we arrive at:

δ = λ log
M ′

M
(3.74)

Now that we know δ we can analyze why λ is the effective length scale. For example, let
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M ′ = M
2 , then δ = λlog(1

2) ≈ .7λ. Recall, we wanted to find if the morphogen can create a

pattern over 10µm, which was effectively the finest pattern since 10µm is the spacing between

two cells or nuclei, but .7λ is a shift of 7 nuclei! Clearly, for our problem, if the production

rate varies by a 50% reduction (as seen for classical heterozygote experiments,where one

allele is lost), a precision on the order of the spacing between nuclei is not possible.

Hence, the idea, of ’relevant length scale’ for our problem can be understood from the

perspective of what happens due to natural variations in morphogen gradient.

Determining if a pattern is ’robust’ to the morphogen’s gradient (nearly independent

of the morphogen’s production rate) or if the pattern is ’fine-tuned’ (extremely sensitive

to any variation of the production rate) is an important problem in studying morphogen

gradients - the parenthetical definitions both come from Alon’s chapter 7 ’Robustness of

Protein Circuits’.

From our analysis, we see that the two goals of attaining ’robust’ outputs, while main-

taining a ’fine’ pattern for the output are at odds with one another, there is a tradeoff. The

more robust we make our output to variations of the input then the less the module will

be able to distinguish concentration differences of the input, and hence will not be able to

produce a ’fine’ pattern. However, great attention has been given to ’combinatorial’ regu-

latory mechanisms, in this sense one can imagine that noisy inputs do allow for robust and

fine tuning, but the robustness is with respect to ’redundant’ inputs 1. This can for example

be achieved through cooperativity, or rather than robustness from combinatorial inputs, the

promoter may have redundant binding sites for a key activator, thereby reaching the minimal

number of morphogen to be bound for maximum expression.

1For example, if two activators are both sufficient for transcription and both bind to the module that
determines the output then random noise in one activator can clearly be compensated for by the other input
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For example Let us model the border of rhomboid expression as a function of cooperativ-

ity. Then we can ask how robust is the border with respect to variations of the concentrations

of Tw and Dl 2.

If we apply the analysis of Alon to the rhomboid gene3, which is in this case activated

by two morphogens Mdl,Mtw we see that if we wish to apply ’thermodynamic modeling’ it

doesn’t matter what the actual profiles of the Dl and Tw look like, all we need to do is vary

these two concentrations simultaneously and analyze its effect on the model < NmRNA >.

Using the fact that < (δnm)2 >=
∂2 ln(Ξ)

∂n2
m

, where Ξ is the partition function for the CRM

and morphogen system, one can check by simulation that < (δnm)2 >=
√
< nm >. For

example, the Rhomboid expression at the dorsal border:

< Nrho >=
1

1 + e−<ndl>wdl+<nsn>wsn−<ntw>wtw
(3.75)

the w’s are the parameters to be fit, and the n’s represent the average occupancy of each

protein on the promoter. It is known that twist alone is not sufficient for transcription, so we

can set wtw = 0, furthermore the dorsal border of rhomboid is well beyond snail’s expression

pattern, hence there will be no snail occupancy there, so < nsn >= 0. Leaving:

< Nrho >=
1

1 + e−<ndl>wdl
(3.76)

Therefore the variance in < Nrho >, which we’ll label as σrho will be roughly the range of

2here we should be careful as Tw concentration is a function of Dl concentration, hence their noise is
correlated, although less so at the dorsal border of the neuroectoderm, for simplicity we’ll assume the noise
in uncorrelated

3Tissues can be defined by their gene expression, so our analysis is simply to find the threshold T , (the
border concentration) of rhomboid.
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expression:

σrho =
1

1 + e−(<ndl>+δnm)wdl
− 1

1 + e−(<ndl>−δnm)wdl
(3.77)

Once sigma is known one can then determine by how far the threshold concentration of

Rhomboid (M(x) = T ) has shifted in terms of cells, in the sense that < Nx
rho > ±σ

x
rho

yields the two new expected values of Rhomboid, and one can simply compare these with

the expected Rhomboid profile. (i.e. < Nx
rho > −σ

x
rho =< Nx′

rho > and x− x′ = δ the shift.

Since < ndl > is related to the occupancy of twist, < ntw >, this implies that the variance

in dorsal occupancy δndl captures how both dorsal and twist variations cause shifts in the

dorsal border of rhomboid. Another way is to simply look at that matrix element within the

Hessian:

∂2 < Nrho >

∂Mtw∂Mdl
(3.78)

3.7.3 Definition of Border and Production Rate

Alon defines a transcription network as a set of nodes (target genes) and set of edges ( inputs

to Hill function ). The inputs to each each node are the three parameters that define the

Hill function ( n, K ,β ), where n is the Hill coefficient, K is the equilibrium constant of the

transcription factor activating or repressing the node 1, and β is the production rate of the

gene. Hence for a particular gene, which has mRNA concentration Y , one would have the

following equation defining the gene’s dynamics:

dY

dt
=

βY
1 +X/K

− α (3.79)

1β is the production rate (Vmax) in Michelis Menten kinetics, that is maximum expression level
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Here X is the concentration of an activator transcription factor and K is the equilibrium

constant for the the factor X to its binding site, (for a repressor input simply inverse X/K),

and α is the degradation rate of the mRNA or (protein product depending on what Y

represents).

Clearly for any gene (node) β is constrained by processtivity (the maximum translocation

rate, Vmax, of POLII along the gene, which is doubled with 10◦ increase in temperature (ref

Davidson), hence β ∈ [0, Vmax], furthermore since each gene, g, will have its own production

rate, we can say βg ∈ [0, βmax].

Now from this description all of the information about the max production rate for our

thermodynamic model (i.e. for a specific gene ) is encoded inside of the sigmoidal function

of the w’s because the max production rate of the entire network is βmax, and because the

model < N > is divided by βmax ( similar to Gregor’s [Hb]/[Hbmax]) 1 This means the

maximum expression, in our thermodynamic model is 1, and is at α/βmax (assuming steady

state of mRNA expression). Now as we vary the genes in the network, if we assume α is

fixed2 then for different steady state levels, it follows that β must be varying (i.e. decreasing

from βmax), hence there is a rule, which maps our sigmoidal function of the w’s to β, (the

operation is not one to one due to saturation of the sigmoidal function, assuming we don’t

have infinite precision).

In our description of the profiles we have assumed that some profiles are not producing

at βmax, that is we have lowered the level of gene expression because the level is lower then

1Sinha’s lab noted that the correlation coefficient (one possible form of the objective function use to fit
the parameters of the network) is scale invariant, hence they create a model where β is a free parameter for
EACH gene. This is exactly the way Alon describes the network (where each gene gets its own β, however
I prefer to not do that because that changes the meaning of the ’border’, and hence the meaning of the w’s
in the sigmoidal.

2since our reporter for each gene (or module) is LacZ, it is safe to assume the degradation rate of LacZ
mRNA and protein is roughly the same
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a reference gene which give βmax (that is all genes whose expression level is at 1).

In assigning different expression levels (β), one is not affecting the border of the expres-

sion (i.e. the parameter K ), as in this model the parameters (β and K) are biochemically

independent. Hence some profiles which have their max expression levels below 1/2, do not

have a border. However, as pointed out by others, one could imagine a step wise (ladder)

function, where there are multiple borders (i.e. the level =1 is not the max anymore). For

example we could assume an expression level of 2 as the max:

f(Yss) = β1θ(K1) + β2θ(K2) (3.80)

Here Yss is the steady state concentration, and theta is the step function, hence once X is

above K1, the level jumps to β1, then it stays at that level until X reaches K2, at which

point the level jumps to β1 +β2. Actually this equation isn’t properly written as one should

start from the dynamic equation (with degradation) and solve, but the idea still holds, the

borders are (K1 and K2), which allows for lower expressing modules to have a well defined

border (K).

If we assume our set of target genes G = g1, g2, ..gn (i.e. regulatory modules or sequences

Scrm in our Data set D), follow the production rate relation: βg ∈ (0, βmax), then using the

Segal or Hill equation (equation 3.18,

< Ng >=
1

1 + exp−(wo +
∑
i < ni > wi)

(3.81)
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we can linearize it to solve for the w’s:

log
< Ng1 >

1− < Ng1 >
= wo +

∑
i

< ni > wi =odds (3.82)

if we assume the factors i govern all n genes then we have a matrix equation:



log
<Ng1>

1−<Ng1>

log
<Ng2>

1−<Ng2>
...

log
<Ngn>

1−<Ngn>


=



1 < n
g1
X1 > < n

g1
X2 > < n

g1
X3 >

1 < n
g2
X1 > < n

g2
X2 > < n

g2
X3 >

...
...

...

1 < n
gn
X1 > < n

gn
X2 > < n

gn
X3 >





w0

w1

w2

w3


Here we can use all (infinite if continuous) possible points along the profiles (< N(z) >

where z is cellular position 1

to solve for the w’s, furthermore we also see that the points corresponding to

< Ng >=


0

1

1Recall that the occupancies are function of concentration: < nX >, and hence are a function of position
along the tissue. If we have 40 cells that we measure Y,X1, X2, X3, then and if we n genes, then we’ll have
n*40 equations, and hence n*40 rows in our matrix. Many of those equations will have the same value for
Y , and hence can be set equal to each other, this is a consequence that there are many possible occupancies
that lead to the same value of odds (Equation 3.82), however if we fix the odds to be say 4,5,6,7 then we
have a system of 4 equations, if we select one gene that has all these values reached at some point along its
profile we’ll have: 

4
5
6
7

 =


1 < nX1(z1) > < nX2(z1) > < nX3(z1) >

...
...

...
1 < nX1(z4) > < nX2(z4) > < nX3(z4) >



w0
w1
w2
w3


where z is variable position along the profile, evaluated at 4 different positions, z1,.z4. In this case it is
reasonable and in fact mandatory that the occupancy change from one equation to another. However, what
if we collected 4 positions, that all had identical values of the odds?
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lead to singularities, which is not surprising as there are infinite combinations of w’s that in

the limit give 0 or 1 for the sigmoidal function (another way to think of the 1,0 solutions,

is that they have lost information, as there are multiple inputs that lead to 1 or 0, hence

knowledge of these saturated outputs is uninformative of the exact input occupancy.).

However if < Ng >∈ (.1, .9), then our matrix equation is well defined. (Here there may

be multiple ways to to yield these solutions too, as are may ways to generate a fixed number

from a sum of 3 integers). In particular if we collect all the genes that have a border (i.e.

< Ng >= .5, which is analogous to X = K in the above discussion, and for our case it is like

saying the gene’s activator occupancy < n >= K) we then will have a subset of G, which

yields a homogeneous system of equations:



0

0

...

0


=



1 < n
g1
X1 > < n

g1
X2 > < n

g1
X3 >

1 < n
g2
X1 > < n

g2
X2 > < n

g2
X3 >

...
...

...

1 < n
gm
X1 > < n

gm
X2 > < n

gm
X3 >





w0

w1

w2

w3


Now if we imagine m = 3, we can make some important analysis (for m > 3, we can

use least squares to solve w 1). If m = 3, we have a system of 3 homogeneous equations,

with 3 unknowns (w’s). If our system is linearly independent, then the w’s must be zero, as

that is the unique solution for a homogeneous system that is linearly independent ( if this is

true for m = 3, it obviously holds for m > 3, which means adding more genes doesn’t help

us find nontrivial w’s, rather we must identify informative constructs (target genes) under

particular conditions).

1Least Squares gives an analytic solution to the minima, and this minima for a linear equation can be
shown to be the global minima, for the situation with error in both inputs and outputs, I believe one finds
that there are multiple roots and hence multiple minima, but the number of minima are small, hence one
can exhaustively look at all the minima and simply find the smallest (the global)
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Furthermore, if the variables are linearly independent for each gene (so we no longer have

a system of equations for the w’s) then this indicates a method to see if the idea of putting

multiple genes in the network (the system of equations) makes sense (i.e. does each gene

have its own set of w’s, or are the w’s governing the entire network). Adding more genes

(which will increase m) will then cause the matrix equation to stay consistent or the system

of equations will become inconsistent.

Clearly the idea of ’Least Squares’ already indicates the system of equations is incon-

sistent, and hence one is to maximize the projection (parallel component) of the vector Ax

onto the data set y (a vector of odds), thereby minimizing the perpendicular component (i.e.

the deviation (
∑
Aijxj − yi). However, one could imagine creating a statistical test, like a

t-test, where the average error component is the max of measurement and biological noise,

then one can add a new gene to the matrix calculate the error and then could calculate, then

one has a statistic which they can use to calculate the p value.

This is consistent with the idea of the network being completely governed by the occu-

pancies. This is basically telling us that there is only one typical target gene (that’s why

there is only one w vector), and that that typical gene always expresses when the activator

occupancy goes from j to j + 1 (this was an observation pointed out by W. Wedemeyer in

a discussion on the pseudoinverse).

So if the factor’s occupancies are linearly dependent2, then least squares will not work,

2the < n >’s, I believe, would be linearly dependent because the idea that the occupancy goes from j
to j + 1 for activation (when crossing the border), means there is an equation relating the occupancies, a
constraint, namely

∑
i < ni > wi = j + 1, where j + 1 is playing the role of K
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as the design matrix, A, multiplied on its left by AT (i.e. ATA) doesn’t have an inverse if

the factor’s occupancies are linearly dependent (i.e. the design matrix is underdetermined),

however, the method of svd allows for finding a best solution by using the pseudo inverse

(this is also known as the Moore Penrose inverse). Regardless, it is algebra, one inverts the/a

matrix, which can be done by almost all linear algebra packages20 If we have m > 3 and

assume our system is undetermined, then we our left with finding a nontrivial solution in the

null space (as we obviously don’t want all the w’s zero). This means that there are infinite

solutions to the w’s (well, there would be only one normalized solution in the null space).

3.7.4 Uniform Shifts and Scale Invariance

Scaling laws are relations between an attribute of a system and the size of the system (the size

is the scale like length, mass, volume). Power laws (e.g. polynomical equations relating the

attribute to the size), are important in biology, because they indicate scale invariance. That

is the system is able to preserve the form of the relation as the scale varies. In this sense scale

invariance is a bit of a misnomer, it would have been better to say the equation is invariant,

but such is tradition. Work by Erives lab has shown that patterns are scale invariant (so

the pattern width gets wider as the length of the embryo gets longer according to some

law, possibly a power law). This was achieved by looking at different sized eggs (different

because they were different species of flies under different selection pressures). Interestingly

they noted the pattern’s cis regulatory module’s grammar is NOT invariant. That is the

module changes (evolves by genetic mutations that eventually fix for adaptive sized embryos)

20In the case that ATA is zero determinant, we would like to still ’solve’ for the w’s, or combina-
tions of them, that our informative in a subspace of the parameter space (the w space), this is the
point of svd (singular value decomposition), which has been implemented by me in GSL for Chip-chip
data as a component of a multiobjective function for occupancies and expression data (available at:
https://github.com/jacobclifford/ConservedOccupancy, see the function compOccMat inside ExprPredic-
tor.cpp file.
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to compensate for scaling. Scaling laws are by nature very coarse grain, scaling laws do not

tell one anything about the detailed mechanism within a object. However, Erives work (or

his student Crocker’s work) in some sense linked the coarse with the fine details.

3.7.5 Molecular basis for Robustness of Morphogen gradients

Alon and Eldar’s work show that a robust profile would require a degradation rate that is

a nonlinear implicit function of space, F (M) = −kM2, a power law for the degradation is

worked out in Eldar’s paper that shows robustness[41]. Furthermore Gregor showed that

among different Dipterian species that have different sized embryos the domain on the Bi-

coid protein that is targeted for degradation has been fine tuned by evolutionary mutations

thereby allowing for a scaling mechanism between the different sized embryos that leads to a

robust profile for Bicoid. Gregor also analyzed the possibilty that target gene’s cis regulatory

modules may be fine tuning the Bicoid binding sites to achieve a mechanism to scale the

patterns in larger embryos[53][53]. Crocker analyzed cis regulatory modules of Dorsal and

Twist targets and found that the spacing between Twist and Dorsal binding sites had varied,

by testing the effects of this variation in a in vivo study they showed that changing the spac-

ing (the number of base pairs between Dorsal and Twist sites) changed the target profile’s

anatomical positional border (the neuroectoderm- dorsal ectoderm border of the embryo),

hence explaining the scaling mechanism for different sized embryos by the architecture of

the enhancer.1

1Crocker’s assumptions assume same number of nuclei at nc14 = 214 ' 16000, however there has been
indications that the number of nuclei scale with size of embryo, indicating nuclear cycles may not be completey
synchronized, or there are more maternal nuclei in the syncitium (the chamber that holds the egg) than the
initial mother’s egg (haploid nucleus).[91] seeing that there is variation in the number of nuclei, that indicates
that for target genes making decisions at nc9, then by nc14 the width, w, of the expression pattern will not

minimally be w ≈≈ 214

29 = 5 nuclei as indicated by Bialek in his response to Sven Bergman’s paper on

pre-steady state decoding[21][19].
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3.8 Conclusion

The MPA annotation model developed here was used in conjunction with the OR gate for

Dorsal binding sites ( DC and DU PWMs). The OR gate was designed to be sensitive (it is

more likely to call a positive hit than its component PWMs), while disregarding the pitfalls

of specificity (a false positive picked up by just one component detector will be declared

a positive for the OR gate, even if the majority of component detectors declare the site

a negative.). The high sensitivity of the OR gate used in conjunction with the the MPA

annotator (which is designed for high specificity), yields a highly effective bioinformatic

tool for discovery of binding sites. Annotation of CRMs at half max occupancy of the

Basal Transcription Apparatus (the transition from the boolean 0 to 1 expression), reduces

the likelihood of picking up binding sites that are nonfunctional and hence misclassified as a

’hit’ in the annotation process, since high occupancy of BTA could result from many binding

sites that are not critical to get the initial switch.

The occupancy model generalizes over binding sites, in that the input to the model is

an enhancer sequence, not a list of binding sites. So a priori one does not know what

binding sites will be selected, rather the physical control parameters (concentration, binding

energy, protein-protein interactions) determine what is a binding site. In this sense the MPA

annotation model could be thought of as generating a fixed number of binding sites as part

of its output. This is a contribution to the field, which i point out Segal said specifically

their model could not address at this level of detail, they could only make statements about

the numerical values of cooperativity quenching. With this being said one could judiciously

choose parameter values to reconstruct the exact engineered enhancers (which in a sense we

did for our last experiment), but of course, we wish to find parameters which are consistent
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with not just one construct but the entire GRN.

Much of the analysis is about experimental design, as experiments are not only necessary

to test theory, but they are necessary to tune parameters for well known theories. Binding

of morphogens to CRMs is not a theory under dispute, nor is the theoretical calculation of

the occupation of the morphogen’s to the CRM, that’s been known for many years. What

is not known is the strength and importance of the parameters controlling the occupation

of morphogens on the promoter, and how much each of these in turn affect BTA binding.

This requires model design, to infer what the value of these parameters. However, this data

is not always available, hence I have shown an alternative technique, where I have tried to

use low quality data from the literature to tune the parameters. As was seen from Experi-

ment 2, it is possible to mathematically arrive at certain conclusions reached by Szymanski

(that cooperativity is necessary in the NEEs). However, Szymanski’s 6xdl construct is not

consistent with reported parameter ranges of thermodynamic models collected by Buchler

et.al.[26]. Hence, it was necessary to adjust the thermodynamic model parameter ranges.

Possibly one could argue that one can not adjust the parameter ranges found by Buchler

since they cover a broad spectrum of proteins. Indeed, the values of the cooperativity we

found in Experiment 2 are so high that is unlikely Dorsal and Twist would ever unbind

once bound; albeit it is possible Dorsal-Twist dimers do occur in the nucleoplasm. Further-

more, Szymanski and others have reported ’uniform’ expression profiles in certain constructs

(CRMs) that are not fully ’on’ (the staining of the target gene was weak). Such reports are

not consistent with the thermodynamic model for Dorsal occupancy, since Dorsal occupancy

is never ’uniform’ it is a gradient, like Lewis Wolpert’s French Flag model of morphogens.

Hence, reconstruction of basic assumptions I have made here may be necessary to accurately

represent Dorsal targeted genes in DV.
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C code was written and tested for a multiobjective function with a term for expres-

sion and a term for Chip-chip data, where Chip-chip data from Zeitlinger and MacArthur

was used for Dorsal, Twist, and Snail[128][85]. However, this work is still in progress as

to how the data sets (expression and occupancy data (i.e. Chip-chip)) should be bal-

anced, and how the parameter error should be determined, hence no results were pre-

sented for this work. However, the necessary components of the model can be found at

https://github.com/jacobclifford/ConservedOccupancy (see the objective functions in Ex-

prPredictor.cpp), which also contains the code for the results from chapter 3, such as the

MPA model for annotating binding sites as a function of expression data.

Lastly, the idea that one should search for the ideal positive definite Hessian at the best

estimates of the parameters is incorrect for the DV network. The elusive positive definite

Hessian is only for independent parameters. The biochemical parameters that control the

logic (gene switches) governing early development have coevolved to work together to jointly

regulate the DV axis, hence it is wrong to state that the parameters must be indepen-

dent. Of course, biochemcial experiments could be designed to independently measure these

parameters, however, such experiments would unlikely be representative of the ecological

environment of the internals of the fly in early development.
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