
 

 

MSU
LIBRARIES

.——.
\—

  

RETURNING MATERIALS:

PIace in,book drop to

remove this checkout from

your record. FINES wiII

be charged if book is

returned after the date

stamped beIow.

 

 

 

  



WMMASPINNING

WHMMOFM

Found Ah-ed Youssef

A DISSERTATION

submitted to

Hichigan State university

in partial fulfilment of the require-ants

for the degree of

W 0F PHIIDSOPHY

Departnent of Mechanical Engineering

1987



WMMASPIMING

MWATANANGIIOPM

By

Pound Ahmed Youasef

The study of forces and moments on a spinning pointed body at an

angle of attack is extremely important in ballistics. Previous work has

been mostly experimental. This is because the governing Navier-Stokes

equations are nonlinear and fully three dimensional, making analysis

impossible and direct numerical solutions impractical.

The most promising theoretical technique is the unsteady cross flow

analogy. Considering the axial direction as timelike, the pressure and

the flow field can be obtained from the impulsive starting of a two-

dimensional cylinder. Although the analogy is heuristic, the results do

correlate well with experimental data on slender bodies for subsonic

through supersonic free stream speeds.

In this study we investigate the impulsive starting of expanding,

rotating cylinders. The results are used to calculate the force and

moment coefficients for projectiles by means of the unsteady cross-flow

analogy. We solve the unsteady Navier-Stokes equations using matched

asympototic inner-outer perturbation method and comparing these results

with the solution obtained using numerical methods. Excellent agreement

between the two methods has been established in the region where both

solutions are valid.

The results obtained are consistent with existing experimental work.

For example, a pair of secondary recirculating zones has been predicted,



in addition to the well-known primary pair for high Reynolds numbers.

The numerical scheme used showed stability and robustness in.the

integration of the full Navier-Stokes equations.
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- Stretched radial coordinate,Reynolds number and half the

Reynolds number,depending on the subscript

T- Time

- Axial direction in cylinderical system of coordinate

- Angle of attack

- Half-cone angle
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Gauge function in e

Laplacian
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INTRODUCTION

l-l Scope and Objective

In 1951 Allen and Perkins[1](see[2]) remarked upon a certain analogy

between the cross flow at various stations along a cylindrical body of

revolution and the development with time of the flow about a circular

cylinder starting from rest. They considered conditions in a plane of

fluid which is perpendicular to the body axis and moving with the free

stream velocity V” times cos(a) (a is the angle of attack). The trace

of the body is a circle, whose size expand and contract as the plane

moves along the body. They proposed that the change of the cross

sectional area be ignored for slender bodies, because the cross-flow is

only aware of the circle suddenly appearing in it, and is thus similar

to a flow that would be observed for a fixed-diameter circular cylinder

suddenly introduced in a stream with velocity V” sin(a) .

Although the problem of impulsively-started cylinder has attracted

the attention of many investigators, the analogy established by Allen

and Perkins (now known as cross-flow analogy) did accelerate research on

the important problem of projectiles at various angles of attack. The

approximation of the three-dimensional steady state problem by its

equivalent cross-flow problem (two-dimensional time-dependent) has

certain advantages. The characteristics of the equations that govern

problems in the two-dimensional unsteady state are easier to handle,

using analytical or numerical integration techniques, than the original

three dimensional problem.
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The reduction in the number of space variables directly decreases

the number of assigned memory locations required. It also reduces

programing complexity and run time. Although it is possible

theoretically to derive solutions for the three dimensional problems,

there are few computers available that are able to carry out the

numerical experiment with the same number of grid points in each space

direction; memory limitations quickly become significant.

In the present study we investigate the flow field surrounding a

cylindrical body of revolution at an angle of attack. Different

projectile shapes are investigated. Using the cross-flow analogy

hypothesis, our objective is to go one step further than previous

studies, by taking into consideration the effect of diameter change and

rotation in the cross-flow plane.

1-2 Literature Survey

There are many research articles in the open literature dealing with

this problem. These can be categorized as analytical or theoretical

work, numerical work and laboratory or experimental work, and are

briefly reviewed here.

Previous theoretical investigations of the initial flow field over

an impulsively-started circular cylinder may be separated into three

different approaches, namely

1- Boundary-layer solutions,

2- Matched-asymptotic expansion of the time-dependent Navier-Stokes

equations, and

3- Potential flow models.
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The growth of the boundary layer on a circular cylinder started

impulsively from rest was first studied by Blasius[3] (1908).

TollmienM] (1924) studied the impulsively started rotating cylinder.

Goldstein and Rosenhead[s](l936) extended the Blasius solution to third

order. Gortler[6’7] (1936) and Watson[8] (1955) conducted further

investigations of the series expansions, but no more terms were added.

Shuh[9] (1953) studied this problem using the momentum integral method.

Wundtuo] (1955) carried out a detailed study, and showed that Goldstein

and Rosenhead's [Slsolution is in error; he gave the solution in terms

of tabulated coefficients. Wangul’ 12] (1966, 1967) was the first to

employ the method of matched-asympototic expansions to solve the time

dependent Navier-Stokes equations to second order. He carried out a

successful attempt to extend the boundary-layer theory for large

Reynolds numbers. His solution was the first to be valid even after

separation occurred. Wang[131 (1968) then extended the validity of his

solution to include small Reynolds numbers.

Collins and Dennislla] (1973a) extended Wang's analysis by expanding

the stream function and vorticity in powers of time. They improved

their results later [151(1973b). By expressing the stream function and

vorticity in boundary-layer coordinates, and using unsteady boundary-

1ayer theory to obtain solution for small time, they were able to push

the solution further in time by continuing the integration numerically,

using the implicit Crank-Nicolson numerical integration scheme. However

they did not match with the "Outer Solution" which means that the entire

solution is of the boundary layer kind.
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Bar-Lev and Bar-Lev and Yang[16’17] (1974,1975) improved Wang's

solution by extending it to third order, using the method of matched

asymptotic expansions. Chien [18] (1977) carried out a study including

both numerical and analytical solutions. His analytical solution agrees

with that of Bar-Lev and Yang. He used what is known as the Hopscotch

methoduglfor the solution of the vorticity equation, and the method of

successive overrelaxation for Poisson equation.

Thommo] (1933) carried out the first successful attempt to

integrate the equations of motion numerically for a viscous fluid.

Later Kawagutilzl] (1953) obtained a solution for Reynolds number of 40.

Paynelzz] (1958) was the first to use the electronic computer to

obtain a solution for the problem. He used an explicit time difference

formula for the vorticity equation. Proudman and Johnson[23] (1962)

solved the Navier-Stokes equations in the neighborhood of the rear

stagnation point of an impulsively started circular cylinder. Kawaguti

and Jainml‘] (1966) considered the same problem and extended the

[21]
solution previously obtained by Kawaguti to include other Reynolds

numbers. Inghamlzs] (1968) improved Payne's work by using a finer grid,

enlarging the computational domain and extending the computation to

longer time. Thoman and Szewczyknélused a hybrid mesh cell structure

in the vicinity of the cylinder surface and computed the non-linear

convection term by a directional differential scheme. Jain and Rao[27]

(1969) obtained the steady state solution up to a Reynolds number of 60

and found that for higher Reynolds numbers the drag coefficient



decreases monotonically with time. Son and Hanratty[28] (1969)

attempted unsuccessfully to arrive a steady state solution for larger

Reynolds numbers by integrating the time-dependent Navier-Stokes

equations from rest. Nevertheless, aside from the primary separation

bubble pair, they found a secondary bubble near separation for Rd - 500.

Chorin[29] (1973) used computer-generated pseudo-random numbers to

solve the two dimensional time dependent Navier-Stokes equations at high

Reynolds numbers and studied the case Rd-1000. Locl3o] (1980) , using a

compact fourth-order accurate scheme, utilized the A.D.I. method to

solve the problem. His results agree with the previously known results.

Loc claims that his solution is fourth order accurate although he uses a

second-order formula for the surface vorticity.

The most recently published work is that of Ece and Walker[31]

(1985) for the impulsive start of a rotating and translating cylinder.

They used two different methods to solve the problem. Their results are

obtained either by an expansion of the solution in a power series in

time, or by a fully numerical technique.

Hill[32] (1954), and Bryson[33] (1959) and others have used an

inviscid mathematical model with point vortices for longer times.

However, their results do not agree with the available experimental

work, probably because the separation phenomenon is primarily viscous.

Although theoretical and numerical techniques have been used

extensively to investigate this problem, experimental work on the same

problem is scarce. Schwabe [341(1935) measured the variation from



vortex pictures and computed the pressure distribution. Sarpkaya[35]

(1966) measured the cross-flow drag and normal-force coefficient as a

function of relative displacement of the fluid in a time-dependent and

two-dimensional flow. Honji and Taneda[36] (1969) determined the

variation of the length of vortices with time photographically. They

also found the second bubble at the upstream side of the main bubble at

Reynolds numbers greater than 550. Lamont and Hunt[37] (1976) measured

the out-of-plane force (i.e. , the "Magnus" side force if the body is at

incidence). The experimental model consisted of an extensively

pressure-tapped cylinder to which four different noses were fitted. The

general nature of the out-of-plane force is found to be consistent with

the cross-flow analogy. The Reynolds number was found to have an

important influence at inclinations above 55 degree. However, it was

also found that the range of Reynolds numbers over which this effect

occurs can depend on the scale of the model.

The present work is concerned with the study of the flow field,

forces and moment for a projectile at an angle of attack. We intend to

use the cross-flow analogy as a practical means to study the problem.

Analytically, we use the method of matched inner-outer expansions to

obtain the progressive events of the flow field and the forms necessary

to evaluate the forces and moments in a closed form to second order.

Numerically, we use the forward-in-time centered-space explicit scheme

to solve the vorticity equation in plane-polar coordinates. We also use

the Fast Fourier Transform to solve Poisson equation for the same

purpose stated above. Comparison of solutions obtained by the numerical

and analytical methods shows excellent agreement in the overlaping

region of validity .



CHAPTERII

PROBLEM WIDE

2-1 The Cross-Plow Analogy

The obvious need for accurate information about the forces and

moments acting on lifting bodies moving at an angle of attack in the

subsonic to supersonic-velocity range is reflected in the fluid

mechanics literature. Extensive discussion exists concerning the

normal- force distribution and the wake-vortex characteristics of bodies

of revolution and the cross-flow analogy. Thirty five years ago a

method for calculating the flow over cylindrical bodies at large angles

of attack was proposed[1] . The method bypasses the difficulties arising

in three-dimensional problems, which are usually unsolvable

analytically. However, even to solve such a problem numerically is at

the present time beyond most computers capabilities because of the

excess memory required .

The proposed method attempts to approximate the difficult three

dimensional steady state problem by a two-dimensional unsteady flow (see

Refs. [1] to [38]). The model (Figure 11-1) employs an observer in a

planeWto the direction of motion of the body and recording

the development of flow as the body moves in space, crossing the fixed

plane of the observer. A furthur simplification, used by previous

authors, is to neglect the variation in the diameter of the body as it

moves in the fixed plane. The flow is thus assumed to be that of an

impulsively started circular cylinder. This is known as the cross-flow

analogy.
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In the present study we attempt to investigate the unsteady two-

dimensional flow field of an incompressible fluid, with constant

properties, arising from the sudden appearance of an expanding, rotating

cylinder. The main objective is to take into consideration the effect

of the previously neglected diameter change by using cross-flow analogy.

2-2 The Governing Equation

We seek to determine the flow field and to predict the forces and

the moment on a three-dimensional projectile in a steady uniform flow

with velocity V, at an angle of attack a. The component of the free-

stream velocity, V, in the cross-flow plane is

U - V sin(a) (2.1)

which defines the cross-flow upstream velocity, and

Va - V cos(a) (2-2)

is the component of the free-stream velocity in a direction parallel to

the projectile axis (relative velocity between the body and the fixed

observer plane).

Hence

V... - U... cot(a) (2.3)

The body shape is given by the radial distribution ro as a function

of the axial distance 2 (in cylinderical coordinates) from the body tip

(see Figure II-l). Thus the relation between the cross-sectional radius

and the axial distance for a pointed cone is

ro - z tan(fl) (2.4)

where 6 is the half cone angle, and, for a truncated cone

r0 - a0 + z tan(fi) (2.5)
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where a0 is the initial radius (radius at z-<)). Lastly, for a

paraboloidal body we have

2

r0 - a z (2.6)

where a is a constant.

The essence of the cross-flow analogy becomes clear when we

introduce the transformation

(r,0,z) - (r,0,zo+ Vco t) (2.7)

and consider the plane where 20 - 0 (observer plane). In that plane the

flow field is that induced by a circular cylinder of varying radius

ro(z) - 5 (X t). Information available from the relatively simpler

two-dimensional unsteady flow can now be applied to the

three-dimensional steady flow field.

Thus, since 2 - t Vco , one finds

ro - t Uco 1 (2.8)

For a pointed right cone. Here

‘1 - tan“) / 128110!) (2.9)

For a truncated right cone, one finds

and for a paraboloidal body,

1/2

ro - [ a t U“D cot(a) ] . (2.11)
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Figure 11-1 The Spinning Projectile at an Angle of Attack

is Studied Through the Impulsive Start of

Expanding,Rotating Circular Cylinder
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The following formulation was used for the case of a t;gg§g§gd_;1gg§

mg. Similar relations for other cases can be easily derived. The

continuity equation is satisfied identically if[2]

V - v x I (2.12)

where 3 is a vector function of position. In.two-dimensional flow, two

components of N may be taken to be zero; therefor, 3 reduces to the

scaler function

VII-(0.0.17). (2.13)

where ¢ is the scaler stream function. Also,

V - ( vr, v9, v2), (2.14)

where V is the velocity vector, vr is the radial velocity, and Va is the

meridian velocity in polar coordinates. However since we are working in

plane polar coordinates vz - 0. The above relationships imply

vr(r,0,t) - - J-r— g—f(r'9't), (2.15)

and

vo(r,9,t) -%f(r'9’t) . (2.16)

.5

We now define the vorticity vector w as

25-(0,o,w)--Vx§r’, (2.17)

where w is the scaler vorticity function.

From (2.10) it is obvious that the following relationship holds at

the cylinder surface, where r - ro ,

dro

_ _ _ _ _ L M<ro.9.t)
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Integration of equation (2.18) with respect to 0, implies

¢(ro,0,t) - - roUo10 + £,(c).

Since e cannot be uniquely determined and can only be obtained to within

a constant,we take f1(t) to be zero, whereby

$(ro,9,t) - - roU§10 - - Uco 1 0 (so + Uco 1 t). (2.19)

The (upstream) stream function, before the appearance of the

cylinder, is that due to the uniform flow, viz.,

¢(r,0,t) - r sin(0) , t < O . (2.20)

By superposition, conservation of mass requires

¢ - r sin(0) - Udo 10(ao + Um 1t) , r e m. (2.21)

On the surface of the cylinder

,0,t
v0 (ro ,0,t) - gf‘ro )- s ro - o(ao + Uco 1 t), (2.22)

where 0 is the angular velocity. By Normalizing the variables as

A

8 - ¢ / Udo ao , t -t U“D / so

A

r-r/ao , 0-080

>
8

and then dropping the superscripts, the Navier-Stokes equation in

conservative form become

is _ _.1_ L 12 , L 1312 _ _1._ 2

at r 8r [ ” ao ] as [ ” ar Re V “' (2'23)

2 so ‘0

where Rd - 2 x Re- 9 is the initial Reynolds number based

on the initial diameter. Also by (2.12) and (2.16) we have
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V ¢ - w (2.24)

where

2

2

6r r a: r 60

Equations (2.22) and (2.23) are to be solved subject to the

following initial conditions:

¢(r,o,o+ ) - r sin(0) - 10 , r u r. , (2.25)

¢(r,o,o‘ ) - r sin(0), (2.25b)

w(r,0,0+) - o ,r u re , (2.26)

and the boundary conditions

$(ro.0.t) - - 19(1+7t). (2.27)

¢r(ro,0,t) - 0(1+ 7:), (2.28)

where for a truncated right cone,

r0 (c) - 1 + 1 c , (2.29)

and

¢ - r sin(6) - 10(l+1t) as r e w , (2.30)

w - 0 as r 4 m. (2.31)



CHAPTER III

ANALYTICAL SOLUTION

The available theory for the analytical solution of non-linear

partial differential equations is inadequate for the exact analytical

solution of such equations. Perturbation methods have been used

frequently to obtain approximate solutions with a high degree of

accuracy. Among these is the method of matched asymptotic expansions,

which can be systematically used for such problems provided a

perturbation parameter exists. The main difficulty of the method lies

in the complexity one faces as he proceeds to higher order solutions.

In this thesis the method of matched asymptotic expansions is employed

to solve the Navier-Stokes equations in order to obtain the fluid

behavior in the initial stages of motion.

3-1 For-nation

The governing equations, initial and boundary conditions are (2.23)

- (2.30). By substituting V’ for w ( from Eq. (2.24) into (2.33) ) we

find

3; 1 .1. [ 3% g; - g? g; ] - —%; v2 } V2¢ - o. (3.1)

The initial conditions are

¢(r,6,0+) - r sin(9) - 10 , (3.2)

and w(r,0,0+) - o , r s ro . (3.3)

The boundary conditions are

¢(r0305t) - ' 7 o (1 + 7 t )5 (3'4)

and %¥(ro,0,t) - o ( 1 + 7 c ). (3.5)

14
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where,

and

¢ - r sin(0) - 1 0 (1+1t) as r v w, (3.6)

w - O as r e m. (3.7)

The boundary condition (3.4) and (3.6) imply that the solution is

not periodic in 0. This is because of the expansion of the surface,

which acts as a source located at the origin. In order to simplify the

tmuflpulation, it is advantageous to subtract this nonperiodicity a

priori. Therefore we redefine u as

¢<r.o.t> - - 70(1+7t) + 0(1+1t)2£n[r/(1+7t)] + $<r.o.t>. (3.8)

substituting in equation (3.1) to (3.7), and dropping the astrisk yields

§:+%[[“‘imfi+%¥]§7- [mam

- fi—vaflp-o, (3.9)

e

subjected to

¢(r,0,0 ) - r sin(0) - 0 £n(r), (3.10)

w(r,0,0 ) - 0 , r # r0 - 1+1t, (3.11)

¢(1+7t!09t) - 09 (3.12)

222(1fit.0.t) _ o (3.13)
8r

¢ - r sin(0) - 0(1+1t)2£n[r/(1+1t)] as r 4 m, (3.14)
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w-O as redo. (3.15)

Note that the initial condition (3.10) is now periodic in 0, replacing

(3.2), which is not periodic.

To obtain the viscous layer growth for the initial flow, we employ

 

the following transformationuzl;

t a _;z 3: ’
(3.16)

or

e 42f -E§:EE- << 1. (3.17)

Here To is a reference time representing the time for the cylinder to

travel a small fraction of its radius, and e is the ratio of the two

*

times t and t .

Because we shall focus our attention on small times, we assume the

Reynolds number is large, viz. ,

R - --—-- - -1— , (3.18)
e u e a

where a ‘is a nondimensional constant of order unity.

The Navier-Stokes equations become, after dropping the astrisk on E,

2

LLQfliutLaiL 11123.

at + r [[ r + ar ]ao ’ [ ' 7(1 + ‘7‘)+ao ] ar ]

22 2

-aeV}V1/:-0, (3.19)

subjected to the initial conditions

¢(r,0,0+) - r sin(0) - a 2n(r), (3.20)
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w(r,0,0+) - o r n to, (3.21)

$(1+€‘1t.0.t) - 0. (3.22)

g¥(1+¢1t,o,t) _ 0’ (3.23)

¢ - r sin(0) - 0(l+¢1t)2£n[r/(l+e7t)], as r » m, (3.24)

w _ 0 as r e m. (3.25)

3-2 First Order Solution

3-2-1 First-Order Outer Solution

Assume an expansion of the form

w - E: 6n<e> ¢;(r.o.t>. (3.26)

npl

where 6n(c) are gauge functions in e. The boundary conditions as

r e m imply that

61(6) - 1

Thus, upon substituting the outer expansion in Eq. (3.19) and

equating like powers of e, we obtain

2 o

a V p

‘5—E-n - 0, ,n - 1,2,3, .....

which imply

2 0

V pm - constant ,n - 1,2,3, .....

However, since the flow is initially irrotational at infinity, by

Kelvin's theorem it will remain irrotational, whereby

2 0

V ¢n - O ,n - 1,2,3. (3.27)

For n - l we have, expanding (3.22) and (3.24),

¢3<1.o.t) - o, (3.28)
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p: - r sin(0) - 0 £n(r) as r 4 m. (3.29)

The solution is for potential flow over a cylinder, plus a vortex, viz.,

¢:(r,0,t) - ( r - fi— ) sin(0) - o £n(r) (3.30)

3-2-2 First-Order Inner Solution

For the inner expansion we stretch the radial variable as

_ I - (1+EIEI

R A(e) , (3.31)

where A(e) is to be determined. We assume an inner expansion of the

form

i

v - E Amm ¢m<R.o.t). (3.32)

m—l

Since the tangential velocity at the edge of the boundary layer is to be

matched, i.e.,

:22 w: A1<e> w}

6r “a—r" A(e) aR'

 

(3.33)

we find

A1(e) - A(e). (3.34)

By substituting the inner expansion into the vorticity equation and

Letting e vanish, keeping in mind that we need to retain the highest

power of 6, one obtains

2

e a1 1

“’11:th ' £319 [112(5)] 'l’lRRRR ' 0'
1

 

which implies that

A1(e) - e 4 (3-35)

By substituting transformation (3.31) in (3.19), Eq.(3.l9) becomes



19

{L, L+_L[[M+_l.§1é]§_

at 7 3R R1 R1 6 an 30

ii. _1_ fi_
2 2 2

-[-7(1+e1t)+ao] e aRJ'a‘ V1}v1¢-o’ (3.36)

where

R1 ' 1 + 6 (R + 1t).

and

2 2

Vz-J-L+-l-L+J-L1 2 2 2 2 -

6 3R 6 R, ER R1 30

The equation governing the first order inner expansion is now

i i
wlRRt - a ¢1RRRR - O. (3.37)

Integrating once with respect to R yields

1 i
¢lRt - a filRRR - f(0,t). (3.38)

The no-slip boundary conditions are, from (3.22) and (3.23)

¢§<0.o.t) - o . (3.39)

¢iR(0.0.t) - o. (3.40)

The matching condition is that the tangential velocity at the edge

of the the inner region (R -' on) approaches that in the outer region as

r + l. Employing the asympototic matching principle[38], we obtain

1 o

¢1R(m,0,t) - ¢1r(1,0,t) - 2 sin(0) - O. (3.41)

Applying the matching condition (3.41) to equation (3.38) we obtain

(1,0,t) - a e (1,0,t) - O. (3.42)

O

f(o.t> - ¢1rt
2 o

¢lrrr
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The problem is now equivalent to what is widely known as the

Rayleigh problem for impulsive start of a flat plate[39]. The solution

is thus,

4%,, - < 2 mm - o ) erfm. (3.43)

or, after carrying one more integration,

2

¢§ - 2/ a c [n erf(n) + —1— (e'" - 1)][2 sin(0) -o], (3.44)

/_;

where

n - --JL-- . (3.45)

ZJ a t

Formulas (3.30) and (3.44) are available in the literature

[11’12’16'17’18], without the omega term. The quantity 9) is defined in

a way that accounts for the expanding boundary.

3-3 Second-Order Solution

3-3-1 Second-Order Outer Solution

[38]
Applying the asymptotic matching principle again, with m - 1 in

(3.32), n - 2 in (3.26) and matching 36 itself, we obtain

62(6) - e, (3.46)

and

o 1/2

¢2(1,0,t) - - [2 sin(0) - 0] [1t + 2 [517;] ] . (3.47)

we also have from (3.24)

w: - 01t[l - 2 £n(r)] as r 4 w . (3.48)

Now, since

2 0

V $2 - 0 . (3.49)
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the solution is

¢3<r'9't>--W“-[~t+2[35]”’1+0[m[35]”)

- 201t £n(r). (3.50)

3-3—2 SecondsOrder Inner Solution

To obtain the second-order inner solution, we first match the

meridian velocity ( (or ). Thus we set m - 2 in (3.32) and n - 2 in

o

(3.26), with $2 given by (3.50), to obtain

A2(e) - £2 , (3.51)

and

1’

1/2

¢§R(~.o.t) - 2 [ 2 [ “-3 ] - R ] sin(0) + o [ R - 1t ] . (3.52)

Substituting (3.32) into (3.36) yield the second order inner

expansion equation, viz.,

i i i i i i

¢2RRt ' a ¢2RRRR ' [ a + 7 R + $19 ] 1”1mm ' [ o + $12 ] ¢1RRO

- { a + 2 1 /3E n + 4 JZE cos(0)[n erf(n)

2 2

( e'" - 1 )]}[ ;:E———— ( o - 2 sin(0) ) n e’" ]

D
I
“

n at

2

- [ 0 + ( 2 sin(0) - 0 ) erf(n)][ __Z___ cos(0) e”7 ]. (3.53)

«at

The no slip boundary conditions are

¢%(O,6,t) - o , (3.54)

¢§R(0.9.t) - 0 . (3.55)
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Integrating (3.53) once with respect to R, we find

2 1/2

¢2Rt - a ¢§RRR - O [ 1 erfO’) " .2— 1ne-" - [L]
e-q ]

K x t

2 1/2 2

- 2 5111(0) [‘7 erf(n) ' f— 1 n e-" - [“42] e'" ]

2
2 2 2 2

+ 2 0 c08(0)[ erf<n> - erf(n) + 1- [e"’ - e' "] - L r) erf(n)e"’ ]
K n

2 2 2 2 2

- 4 sin(0) cos(o)[ 31-15(11) - -z— 1: erf(n) e'" + -2— [33"? - e' '1 D

I"? “

+ f1(0,t) . (3.56)

To evaluate f1(0,t), we make use of the matching condition (3.52)

which implies

1/2

¢§Rt(a,o,t) - 2 [fl-é] sin(0) - m , (3.57)

also,

1111 (coon-o (3 58)
2mm ’ ’ ' °

Substituting in (3.56) we find

1/2

f,(o,c) - 2 [1 + [:92] ] sin(0) + 4 sin(0) cos(0) - 2 o 7 . (3.59)

Thus

2 1/2

m1,4, 1:31 «1
 

2 1/2

.23... 1m +—?— ~ ,, + 13:1 1M1]
fl

2 2 2

+ 2 o cos(o)[ -2- [e"’ - e‘z" ] - erfc(n)erf(n) -
I

2 2 2

- - _2

n e U erf(q) + “i“ [ e n - e 0 ]].
2 2

-4 sin(0)cos(9)[ erf(n) - 1 -

J r
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(3.60)

To solve this equation we make use of the linearity of $3. For this

purpose, we assume a solution of the form

1 1/2 1/2

$22 - t 61(0) + t G2(n) + t Gs(n) sin(0) + t G.(n) sin<0)

+ t G5(n) cos(0) + t G.(n) sin(6) cos(0). (3.61)

By comparing the right hand side of equation (3.60) with (3.61), we

recognize that

 

 

 

2

d6 (n) d c (n) ’

6.1») - -n- -1 - -1- § - o 1 [erf(n) - -3- ne'" - 2].<3.62)
2 an 4 d n 1’;

.1. .1. dc? .1. d2G2("’ 1’2 - 2
G21») - n — - 2 - - 0 [if] e ". (3.63)

2 2 dn 4 d n

2

dc,(n) d 6.1») - 2

6.1») - -1- n -- - -1- a - 21[erfC(n) + -3- n e " ]. (3.64)
2 dn 4 d n t

2

2

dc (n) d G (n) 1/2

-l—'G‘(n) - -1- n -—1 - —1— ; - 2[—%—] [ 1 + e'" ], (3.65)

2 2 dn 4 d n

 

2 2

d C (n) d G (n) 2 2
65(0) _ .1. 5 .J.. .__: _ 2 0 [ .2. [ e-n _ e-Zn ]

1l’

n _ u-

2 d n 4 d n

2 2

- erf(n) erfc(n) - -—— n e‘" erf(n) ], (3.66)

Jr;

2

1 d 66(0) d G8('I) 2 2 _,,2

cm) - — n — - —2 - - 4[ erfm - 1 - — n e erf(n)
2 d n 4 d n /_;

2 2 2

+ -§— [ e'" - e' " ]]. (3.67)

The boundary conditions, (3.52) and (3.55), imply that

G110) - 62(0) - 63(0) - 6.10) - 65(0) - 6.10) - o, (3.68)

c,(w) - - 7 a, (3.69s)



c,(o) - 2 J a o q, (3.69b)

63(m) - 0, (3.69c)

c (a) - a J a -1— - n , (3.69d)

‘ [ n ]

G5(O) - O, (3.698)

c,(o) - o. (3.69f)

The homogeneous part of the equations are clearly of the general form

6"<n) + 2 n e'<n> - 2 n 6(a) - 0. (3.70)

where the prime indicate differentiation with respect to n, and n is an

integer.

In.general the solutions are expressible in terms of error

[401.
functionsand Hermite polynomials The solution is thus

5(a) - 6,1“er£c(q) + czfln(n) , (3.71)

where inerfcm) is the n‘":11 repeated integral of the complementary error

function, defined[41] by

in erfc(n) - r in'1 erfcm) .

q

with

o

i erfc(n) def erfc(n) ,

and Hn(q) is the Hermite polynomial, defined[41]by

2 n _"2

a (n) - (-1)n e" ‘9—- e . (3.72)

In particular :

For n - 1 the solution is ;
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6(2) - cln + c2 ierfC(n)

2

- c171 + c2 {-1- e'" - n erfc(n)], (3.73)

j”;

and for n - 2 we have

2

5(a) - A1[ 1 + 2 "2] + A,[( 1 + 2 n2 ) erfc(n) - f-E— n e'" ](3.74)

I’

using the boundary conditions, we obtain

2 2

G (n) - 0 1 {[ l + 4 n ] erfc(n) - -—2— we-" - l } , (3.75)
1 Jr??-

czm - o f; [2 - erfc(n) ] n , (3.76)

_3_ 2 2
G (n) - 2 1 [ n e-" - 2 n erfc{n) ] . (3 77)

a J x

2

G4(fl) - 2 J a [ '2' [ l - e-" ] + 3 n erfc(n) - 2 n J , (3.78)

J_;

The solution of (3.66) and (3.67) is a slightly modified version for

that obtained by Goldstein and Rosenhead[42] (page 184). Thus,

4 2 2 2

65(0) - 0 { 2 [ 1 + 3' ] n erfc(n) + [ l - 2 n ] erfc (n)
 

 

- [ l - ‘3‘ ] erfc(n) - /_fi [ 1 + ‘2‘ ] n e- 0

3x « 3n

2 2 2 2

+ ‘Q‘ n e' " erfc(n) + -§- e' " - -3- e' " }, (3.79)

/_; 3n . n

 

2 2 -

G607) - 4 {[ n - -12'-]erfc<n) - 3 n e ’7 erfc<n>

:l

2

+[(‘%_‘-§2;)-(3+3—4;)n ]erfc(n)

2 2 2

- - -2

4[1+——31]qe"-—3‘* e" +—: e ’7 }, (3.80)
("'aT' 1r 11'

The total solution is therefore

+
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2

1 2 .5. '0
¢ - 0 1 t {[ l + 4 n ] erfc(n) - n e - 1 }

I

+ o J'Z‘E { 2 - erfc(n) } n

2

L -n 2
+ 2 1 t { n e - 2 n erfc(n) } sin(9)

J—«

2

+ 2 J at { -Z- ( 1 - e'” ) + 3 n erfc(n) - 2 n } sin(0)

J?

4 2 2 2

+ 0 t { 2 [ 1 + 3;' ] q erfc(n) + [ l - 2 q ] erfc (n)

- [ 1 - -5-'] erfc(n) - 3%: [ 1 + -2— ] n e' 2

3x a 3x

2 2 2

- _ - 2

+ _6_ n e U erfc(n) + _§_ e n - -E- e n } cos(0)

JP; 3« x

(3.81)

Integrating once more, we find

0

12-2/5] aka»
0

 

3 1/2 4 2 1 ,
- 2 1 0[ a t ] { ( l + —§- n ) n erfc(n) + ( e 0 - 1 )

6 J";

 

2 _ 2 2

- n - 4 n e " } + 2 a o t { n - -l— ( 2 n - 1 ) erfc(n)

2 ———. 2

- 2 2 -

+ 1 n e n - ‘l- } + 4 J a 1 t { 1 ( 4 fl ' 5 > e n
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.2. 3 _L}
- a erfc(n) + sin(0)

3 6f;

2 2 2

+ 4at { ‘2' n + —;-(20 + '1‘0erfc(n) - ‘—§—- fie-" - n - ‘l—} sin(0)

f7 4 3 2f? 4

+ 2/_; 0t 2 { '2' [ 1 + “A"] "2 erfc(n) - ._Z__ [ l + -E— ] n2 e-"

3 3x 3/—; 3x

2 2

- 2 -

e n + n erfc (n) - -11- e " erfc(n)+J—[7-i] 3]—

3J'? 3x

2

+_ -l§- erfc(J_2 n) - -2- "a erfc2(n) + -&- "2 e-" erfc(n)

 

 

3J 21v 3 3f?

2

.2. -2n [ J. ]
- n e - l - n erfc(n) - erfc(n)

3. 3" 3J7

‘2— [ 2 ] }
+ 1 + - J—2 cos(0)

3/_; 3x

1 2
2 s 2

+ 8J a t { '11- e-" erfc(n) - -—§—' erfc(/_2 n) + -l- q erfc (n)

6/? 3J 211' 3

2 2

- "-2" n2 e-" erfc(n) + ‘1' q e-2" - ‘1‘ n erfc2(n)

3J7 31r 2

2 2

.1. .3. .3. -n .1. .11. 2 -17 _4_ 3
+ ( - )e + (1 + ) n e - ( 1 + ) n erfc(n)

/_;' 9x 2 /_; 9x 9x

+ -Z- erfc(n) + ( -l— - -2- ) n erfc(n)

3f"; 2 3n

1 8 4
+ -- ( - -—— - 1 ) } sin(0) cos(6) . (3.82)

/_; 3/_2 9x
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3-4 Composite Solution

Until now we been developing two different solutions, each of which

is valid in its separate time domain. Although the solutions are

matched in an overlapping region, our goal now is to form a single

uniformly-valid composite solution. We construct the composite solution

by the method of additive compositionl38], i.e., by adding the inner

solution to the outer solution, and then subtracting the common part.

The common part is the matched quantity in each of the matching

processes. Thus, we have,

Common part - 2(-1],E—)1/2 (q - -1— )( 2 sin(0) - o)

e R

1/2

-2~o[-:j [jg+~]+2§f[v”- :1

+ -l%— [;§:]1/2 1 sin(9) + Ag: [ IE; 0 ' 02 ' 'i' ] sin(0)

3

+;1§;[1+-1--/7][-§—]1/20c08(0)

_L

K

{-8— - L - 1] [i] sin(0) cos(0) .

(3.83)

* *

where T - 6 t - Uco t / a., and t is the dimensional time. Also,

1 2 1 2

e (a t) / - ( T/Re) / .

By using the inverse of transformation (3.8), the composite solution

valid to second order is given by
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2 .L
w - - 7(1 +1T)0 + 0(1 + 11) 2n(r/(1 + 71)) + ( r - r ) sin(0)

1/2

-0£n(r)+[0-2Jénm][1T+2[—;1R—] ]- 2011mm

8

2

+2 (-§—)1/2 [J- e'" - erfc(n) ][ 2 sin(0) - a]

e /_;

2

+2 1 0[%:]V2{( 1 + "‘3n: ) n erfc(n) +‘-——l—' e-"

6/?

_._4__,722e-n}

3J7

2

2_Q_I{_L 2 _1._ 47}
+ ( l - 2 n ) erfc(n) + n e

R e 4 21—;

3 1/2 02 3

+ 4 1 [%e] {z-l—— ( 4 12- 5 ) e - .2. q erfc(n) } sin(0)

3

2

+ “—2.1{J—(2'72 + '1')erfc(n) - —3— we-" } 3111(0)

e 4 3 2J7

+2n[-§;]1/2 i— [1+—‘3*:] nzerfcfip) :ZE[1+_:;] qze'fl

2 2

+ .L [ 7 _ i] e-" + " erfc2(n) - "ll— 8-" erfC(n)

BJF; 3n 3/—;

2

15 2 3 2 g 2 -fl

+ erfc(J 2 n) - q erfc (n) + n e erfc(n)

3J 2r 3 SJ «

2

,2

- -Z- n e 0 - [ l - -%; ] n erfc(n) -

3x

 

erfc(n) } c08(9)

3J7

 

3 1/2 2 3 2

+ 8[—§%] -ll— e'" erfc(n) - 8 erfc(/—2 n) + -%- n erfc (n)

e 6/? 3J 2x

2 2 2 2

- -2- n e-" erfc(n) + -l— n e'zfl - -l- n erfc (n)

3J7 311' 2
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22

.1. .2. .3. -n .1. 4 2 -n .4». 3
+ ( - )e + (1 + *‘r ) n e -( l + )n erfc(n)

1‘; 9x 2 1‘; 9x 9x

+ -3— erfc(n)+ (J— - .2.” erfcm }s1n(o) cos(0) + 0(3) , (3.84)

3f? 2 Bar

where n is now

 

c 1 '1‘) R 1/2
71- r'z’" [7.1-] . (3.35)

3-5 Vorticity Distribution On The Cylinder

The vorticity is defined by equation (2.5). On the surface, the

value of the vorticity is of major interest because it describes the

development of the flow field as time advance. It also indicates, in

most cases, the shear resistance to the motion, and the point at which

separation is likely to occur. In our case, however, this is not true

because of the moving boundary. The shear stress is given by

, _.1._ 311. 32+}. 1‘3.
:0 Re 6r r r 60 ’

which reduces on the cylinder surface to

a v

, __L[_fl- :1] (3.86)
r0 R ar

e

2

where r - ’r" / p U , i are the nondimensional and the dimensional

r0 r0 an r0

shear stress in the r-0 plane. On the cylinder surface we have,



J+—L. (3.87)

Thus only when the meridian velocity is zero the two expressions for fro

and w are proportional.

By making use of (3.87), and substituting from (3.43) and (3.81), and

performing the necessary manipulations we obtain

R 1/2 4 T R 1/2

w - [ 2[;—%—] + l] sin(9)+ 4(1 + §-;)[-;—£—] sin(fl)cos(0)

surface

  

R 1/2 T R 1/2 T R

+{-%-- {—31 -—.L 4+] --2— [Te]-.. .
T R 1/2

+ 31[—“—§—] sin(0) , (3.88)

and

R 1/2

fro - -11i—{ [47%] + 1] sin(9)

surface e

4 T R 1/2

+ 4(1 + n) [—"—L] sin(0)cos(0)

R 1/2 T R 1/2 T R 1/2

-[-3-+ [fr] +-2Lv[ .3] +3-3-[ .6] cos<6>] 0

T R 1/2

+ 37[-—"—¢—] sin(0) } . (3.89)

It is clear that

fro

-20]/Re

'[wl
surface surface
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3-6 Pressure Distribution On The Cylinder

The pressure distribution on the cylinder surface is of principal

interest. It provides the necessary information on the forces acting on

the cylinder, i.e. , the lift and the drag forces. The conventional way

of expressing the pressure is by means of a dimensionless pressure

coefficient, which is defined as

Here, p. is a reference pressure, usually the pressure at a predefined

location. For convenience, we take the value p. at the forward

stagnation point, i.e., at 0 - n - 0.

The equation of motion ( in cylindrical polar coordinates ) in the

meridian direction, for an incompressible fluid with constant

properties, is given by

c
:

< o
:

< < o
:

<
2

d < lap

 

3v v
2

J+vr +—fl J2+ I a --——+u[Vvo+-2?—I'—g]

at ar r 80 r prao r 60 r

Nondimensionalizing, as before (chapter II), together with

_..JL_
P 2

pUc,

one obtain after dropping the bars



O
)

r
'



 

a a Z Z 2_v£+v_\:£+v av +vv -

8T ‘ 8: r 80 r

1 8p 1 2 2 av v

.— +——[vVo ——, —I- -%] (3.90)
r 80 Re r 80 r

By integrating this equation on the cylinder surface from 9 - O to

0 - 0, the needed pressure coefficient is obtained, viz. ,

0

.1. is
Cp - (l + 1T)Io I: -210 + R 8r] d0 . (3.91)

substituting and after some work

1

TR -

Cp - [21(14-1'1‘) + 7[——£-]2 +-t - J'][ cos(0) - l]
I

J «Tue Re

TR 1/2

+ [ 1 + 1T - [ 1 + .§;.][__;_2_] ][ cos(2o) - 1 ]

TR 1/2

.l._ .3. .___JL.

+[ ZRe - 2 [ 1t )00

8 TR 1/2

-37 [—J—,r] Osin(0). (3.92)

3-7 Drag, Lift and Mount

The drag on the cylinder has two parts, the form (or pressure drag)

and the skin-friction drag. However, because of the moving boundary,

the form drag is no longer arises from pressure effects alone. However

we still refer to it here as pressure drag, since the contribution of

the moving boundary drops out of the equations. Thus:

._/—1
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D

C _ ____2___

D 2

P 9 Um 8.

2x

- (1+1t)Io - arr cos(0) d0 ,

where arr is the normal stress, whereby

0
)

2s v

L4

CDP - (1+1t)Io - [ - p + Re 8r ] cos(0) d0

2«

- (1+1t) I C cos(0) d0

0 P

where Cp is the pressure coefficient, given by (3.92). The above

definition gives positive C in the flow direction. Integrating, we
D

obtain

 

sin(0) d0 . (3.93s)

r-l+1T

Substituting for w and integrating we obtain,

1/2

.__Z___ ._1L_. .1.
c - x ( 1 + 7T ) { -21(l+1T) + + y - }.(3.93b)

Dp J x T R [ a Re] Re

The frictional contribution to the drag coefficient is definied as

D

C _ .__I___
D 2

f p Uco a.

Zn av v av

_ 111251 ..2 - ..i ..r
Re 0 [ 6r r + 69 ] sin(0)d0

2w

— .LlfilEl w sin(0) d9 , (3-943)

0
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where we again define C such that it will be positive in the flow

Df

direction. Substituting and integrating, we find

R 1/2 T R 1/2

cD -1'-—Q§+—7-n{2[—L] +1+31[——9] }. (3.941))
f e x T

The total drag coefficient is the sum of (3.94b) and (3.93b), viz.,

CD - CD + CD

p f

1/2

'R(1+‘1T){-21(1+7T)+-—2—+1[—-I—]
-J—}

RJ x T Re R R6 e

R 1/2 T R 1/2

+uL—1n+ 2—9— +1+31——3 . (3.95)
Re R T 1

Similarly, the pressure lift is

21

C - (l + 1t) I C sin(0) d0 , (3.96a)

L o P
P

and the skin-friction lift is

2«

c -M w cos(o) do

Lf Re °

The lift force is positive in the direction normal to flow. 3y

substituting and integrating, we obtain

1/2

J.— i _§._’1 .1.

CLP"2"0(1+7t){2Re+[3n' 2][«Re] }

(3.96b)

2w

0 - 5-3351]; (- rro) cos(0) do (3.97a)

1/2

- -§— (1+7T)[—«Ifi-—] 0 , (3.97b)

e
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where, C is defined to be positive downward. The total lift is

Lf

therefore

L Lp Lf

1/2

--2«0(1+1t){§1R-+[fi'
2 M53] }e

e

1/2

+-g- (1+7T)[—xrf]
0 '

(3.98)

In order to maintain rotation of the cylinder, torque must be

applied to overcome the dissipation of energy by viscous effects. This

torque is defined through the torque coefficient as

C _ ._I__

T 2 2

pUco a

2
- I] I] 2x av! - v2

R Br r do

e ° r-(l+1t)

2 2t

- “film—J [w - 20] d9 (3.99a)

e ° r-(l+1t)

LL93”’{++[—‘:81"’+—2Lv[-%1"‘}o

(3.99b)

3-8 Results

The results presented in the following pages are for the following

parameter values;

R - 2 R - 100 and 500,

d e

0 - 0.0 and 1.0 ,

7 - 0.05 and 0.1
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These parameter values are chosen as representative for the problem

under investigation, to explore the various physical effects. Note that

although the solution is valid only for small T, the graphs were plotted

for values of T up to 1.0, in order to show the behavior for large

times .

3-8-1 Strea- Lines

The composite solution given by equation (3.84) is used to plot the

stream lines, using a specially coded subroutine written by the author

for this specific purpose. No smoothing of any kind is carried out;

only linear interpolation was used. We plotted equally-incremented

instantaneous stream lines ( a total 25 ) in the region enclosed by a

circular domain which is triple the cylinder radius. However, since we

have a moving boundary ( in the radial and tangential direction ), the

separation region is small in size; the plotting routine could not

detect this effects for small times. For this reason we include a

detailed sample plot of the stream lines for early times (see figures

111-1 and III-18) .

3-8-2 Pressure Coefficient

The pressure coefficient, given by equation (3.92) indicate the

singular behavior of the flow. We note from the plotted figures that as

the Reynolds number increases the pressure coefficient decreases, after

the short adjustment period for the impulsive start. This occurs until

T - 1.0. The effect of increasing 1 is to reduce the average pressure

coefficient ( although it might increase the value of the pressure ).

It appears that higher-order solution should be derived, since the

present second-order solution does not fully indicate the rotation

effect, as expected. The results obtained do not show any reasonable
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asymmetry of the pressure coefficient; furthermore equation (3.92) still

has some nonperiodic terms ( although of smaller order ). Those short-

comings are expected to be rectified with higher approximations.

3-8-3 Drag

In the first stage of motion, the cylinder displaces the fluid on

the surface with infinite acceleration. The cylinder thus experiences

infinite resistance of the fluid because of its impulsive motion. There

is also a discontinuity in the tangential velocity at the cylinder

surface. This discontinuity gives rise to infinite friction drag as

indicated by the graphs ( figures III-3, 7, ll, 15, 20, 26, 32, 38).

Thus, the general features are the singular behavior of the drag

coefficients at t - 0+, the sharp drop in the beginning and the gradual

drop for larger T. The effect of increasing the Reynolds number is to

increase the ratio [ CD / CD ] , which means a greater contribution

p f

from the pressure drag. The effect of increasing 1 is to increase the

drag. This is expected, since high 1 will tend to push the fluid away

from the surface more rapidly, causing more resistance. Although

rotation tends to decrease the drag in most cases, this decrease is more

than offset by the effect of the expanding surface, which increases the

drag.

3-8-4 Lift

The lift starts from a value of zero, since the pressure and the

friction are initially uniform. The main contribution to the lift is

initially from the pressure. Then friction lift eventually becomes

dominant. Increasing the Reynolds number shows two effects. First, it

reduces the total lift, and second, it shortens the period for which the
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friction lift is dominant. The lift coefficients are presented in

figures III-21, 27, 33 and 39.

3-8-5 but

The moment coefficient also reflects the initial singularity of

impulsive rotation. It rapidly decreases until it become nearly

constant. As expected, the moment increases with increasing R 1 and
d!

0. The moment coefficient is presented in figures III-22, 28, 34 and

40.

3-8-6 Surface Vorticity

A vortex sheet, represented by the singular terms in equation

(3.88), forms on the cylinder surface at t - 0+. The vorticity

subsequently diffuses out into the fluid. The non-linearity of the

solution is indicated in the surface vorticity plots (figures III-4, 8,

12, 16, 23, 29, 35 and 41). The larger the Reynolds number, the larger

the initial surface vorticity, which produces a larger diffusion rate.

As time advances the maximum surface vorticity decreases. The effect of

1 ( with the values used here ) on the surface vorticity is not clear in

the figures. However from equation (3.88) we can see that it increases

the surface vorticity. The value of the surface vorticity is affected

by rotation in a different way; it appears that the surface vorticity is

decreased early by the ( dominant ) singular 0 term, which leads to the

very early separation .

3-8-7 Separation Progression

As described before, we predict separation by identifying the points

on the cylinder surface at which the shear stress vanish. The vorticity

graphs are helpful in following the progression of the separation
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points, keeping in mind the difference in magnitude (-20) between the

two values, vorticity and shear stress.

In general two recirculating zones appear at T a 0.4 for the non-

rotating cases. These zones gradually become larger. With rotation,

the situation is different; one recirculating region starts at once, and

another region appears later. The first region shrinks gradually, while

the second enlarges.
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MICAL SOLUTION

The analytical solution obtained in chapter III by the method of

matched asympototic expansions to the second order is valid only for

small t. For large t we integrate the Navier-Stokes equations

numerically.

The choice of a suitable numerical scheme is dependent on the

nature of the problem to be solved, together with the required accuracy,

the time available on the computer, and the type of computer available.

It seems that most frequently-used schemes are first-order accurate in

time and second-order accurate in space. This is mainly because of the

complexity of higher-order schemes, and the extra time and memory

required in most cases. In fluid mechanics, there are two basic

methods, namely; the method of primitive variables, and the

vorticity-stream function method. I

We preferred to use the latter method because there are fewer

dependent variables, requiring less memory; also, the speed of

computation is faster than for the first method. Although there are

many algorithms for the second method, we select the explicit forward-

in-tine, centered-space for the vorticity equation and the Fast Fourier

Transforn (PET) for the Poisson equation. Although it has previously

[42] this scheme often fails, even with a factor ofbeen reported that

safety, it did worked very well for the present problem, because we

took advantage of the expanding boundary to obtain a much less

restrictive stability criteria.
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4-1 Grid Structure

Due to the curved boundary on the surface of the cylinder,

rectangular grids are unsuitable for computation. The most common

coordinate system used in the study of flow over a circular cylinder is

the modified polar coordinate system. It transform the circular are

into a flat boundary by

e - j];- 2n<r/r.<t>> or r - r.<c)exp<«e) .

0 - 1r§’ . (4.1)

Here we have generalized r0 (the cylinder radius) to be a function

of t. Thus, for constant A5, meshes are finer near the surface of the

cylinder and coarser far from the cylinder.

As usual, the infinite outer boundary is simulated by a circle of

large diameter. This circle is chosen to be 30 to 50 times (depending

on the mesh size) the instantaneous diameter. Tests on numerical

accuracy show that this ratio is adequate. For the numerical

computations the mesh size most often used is A; - fi- 0.03125;

for reasons to be shown later, the denominator is chosen to be multiple

powers of 2, with A5 - 0.025. This gives us a total number of meshes

(memory storage) per variable of 41x64. Tests have been carried out to

determine the effect of changing these numbers; the results will be

presented later.

4-2 Fornllation

The equations to be solved are

22 ._1_ L 22 .3— 232 _1- 2

at“ r ar[“’ao]‘ao[°’ ]}' Rev” (2'23)

and
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2

V ¢ - w

2

V’_L2+J_L+_523

8r r ar r 60

subjected to the initial conditions

¢<r.o.0*> - r s1n<o) - 70 .

where from (2.29), for a truncated right cone,

the boundary conditions are

and

r e r. ,

¢(r.0.0') - r sin(0).

w(t,0,o+) - o 0 r # r0 0

$(ro.0,t) - - 1 9 (1+1t).

¢r(r00o0t) - “(1+ 1:),

u - r sin(0) - 10(1+1t), as r 1 m ,

asr-v'n.w - 0,

(2.

(2.

(2.

(2

(2.

(2.

(2.

(2.

(2.

As in chapter III we subtract the non-periodicity in 0 a priori by

the following transformation

¢ - -70 ( 1 + 1t ) + ¢

Thus, dropping the superscript and making use of (4.1) yields

and

at ' «(1+1t) as +

22 ._.1____ 22 ___1__ 2. [ w u ] + 2.

3§

1 Vzw

Re 8(€.t)

8(€.t) 36

2

V P ' g(€.t) w(€,§,t),

[va

(4.

(4.

(4.

24)

25)

25b)

.26)

29)

27)

28)

30)

31)

using
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where

2 2 2

V _ 2.2 + 2.2 ’

as a:

with

u-n(1+7t)-g-§, (4.5)

_ 212
v BE , (4.6)

and the Jacobian

8(€.t) - «2 < 1 + 1t )2 .’*5 (4.7)

The boundary and initial conditions are now

¢(e.:.0*> - .‘5 s1n<«:>. (4.3)

mahf)-m 840. we)

¢(0.§.t ) - 0. (4.10)

¢€<O.c.t) - w < 1 + 1: >2 o . (4.11)

4: - ( 1 + 7c ) J‘s sin(1r§’). as r 4 .. , (4.12)

w - 0 , as r 1 w . (4.13)

4-2-1 Finite Difference Scheme for The vorticity Equation

As mentioned earlier,the algorithm used for the vorticity equation

is the explicit forward-in-time, centered-space finite difference

scheme, i.e.,

 

wn+l _ wn + At 1 [ wn 1 _ wn 1 ]

i,j i,j “(1+7tn )Af i+ 3 ,j i- 3 ,J

_ _A£_; [ (wu)n 1 _ (wu)n 1 ]

A6 g1 1+ 2’j 1‘ 21.1



A: 81 191+ 7 ivj' 2

4‘— [ “ " 1
+ 2 «.0 2w - w _

A, 32113 i+l.J 1.1 1 1.3

_AS__ n n n ]

+ w - 2w +w . (4.14)
Ag: 82118 |_ i,j-+1 i,j i,j-1

2 2

This scheme is of order ( At , AE , A; ) and is consistent with

equation (4.3).

The governing equations are quasiolinear with variable

coefficients, for which the stability criterion is difficult to apply.

[44]
Practical experience shows that instability usually begins as a local

phenomenon. We are thus considering stability as related to small

perturbations, such that second-order effects become negligibly small.

The assumption is that perturbations to the true solution will normally

be sufficiently small in magnitude that damping will result with use of

the proper stability criterion. While the Kreiss matrix theoremMB]

forms the basis for treatment of variable-coefficient problems, in

practice the Von Neumann condition is found to be a useful tool in

judging a difference scheme. Reference [43] stated that when a

difference scheme is found to be conditionally stable, the Von Neumann

condition nearly always gives the correct stability range, and that it

is only at the limits of the range that the analysis may need to be

supplemented. Thus we assume that the given problem is properly posed

and we make use of Von Neumann's analysis of stability theory on the
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basis of Fourier analysis. We therefore assume a typical Fourier

component solution to equation (4.14) in the form

n (in1+jn2) j

w: j - w. w e . (4.15)

Here the wave number n1 refers to the f-component variation, It: refers

to the wave number for the {-component, and j is the complex number

JFTT . The reference amplitude is modified by wn where w is the growth

rate factor and n is the index of time advancement.

Note that we must have

|w| s 1

if the component solution is to remain bounded as n becomes large.

We assume a first order velocity variation of the form

  

n n n

“i,j - u° (l + 81,3), Si,j << 1 ,

n n n
vi’J-v. (1+Ai,j)’ Ai,j<<1 ,

and we further simplify by assuming

substituting equation (4.15) into equation (4.14) we obtain

w — 1 + ‘2;A§- [ -13 + -13 ][ cos(n) - 1 ]

g1 Re A5 A§

A no Vo
1

- j [ Afi [ + -— ] - At 1n ] sin( 3 n ) ,

gi A5 AC « (1+1t )A6

or,

w-1+2a(cos(rc)-1)-3./—2fisin(3x),

where
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and

p__l_[_AL [311+ v°]_ Atw ]

f7 3’; Re A5 A: at (1+1tn)A€

Thus,

2 2 2

|w| - [ l + 2 a ( cos(n) - l ) ] + fl [ l - cos(n) ] , (4.16)

and,

2

2

W-4a[l+2a(cos(n)-l)]-fi (4.17)

2 2 2

Ll—V—l—2 - 8 a . (4.18)

d(cos(n))

2

Since a is always positive, [W] has no maximum in (-l,l). After

2

some manipulation on (4.17), we also find that [w] has no minimum in

(-1,1).. The only possibilities for an extremum is therefore at the end

points.

2

For cos(:c) - l , |w| - 1 and the stability condition is

identically satisfied. When cos(n) - - l we obtain

2 2 2

[WI -(1-4a) +23,

which implies that

or



w

2 2

«(1+1c“) R

MS
.1. _L _L_ 1 n 2 '

2 + + u v «(Ii-qt )R

[Mzmfl 8{PLK%H°+J-———fl}

 

 

A52 X? A: As

(4.19)

At each time step we evaluate At from (4.19), allowing for At to

be within a certain percentage (90%) of the calculated value. Because

the allowable At always increases as we advance in time, At was limited

here to a maximum value (usually At-0.0l), in order to attain the

desired level of accuracy. In the above formula we use the value of g?

which gives the minimum At. This is the value at the surface or

2 2

g? - n (1 + 1t)

4-2-2 Finite Difference Scheme for Poisson Equation

For Poisson equation, we used the standard second-order

discretization, which gives, for equation (4.4),

2.3 - fi , (4.20)

where

’AIooo....‘

IAIoo----

OIAIO-o-o

3..

IAI

, I A ‘M-2xM-2  
and
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r-2a l l 0 O O l ‘

1 -2a 1 0 O 0 O

O l ~2a l 0 o o o 0 O

  

2

A- p v

0 O 0 1 -2a 1

1 1 o o o 1 2:,an

where,

2 2

a - (p + 1)/p .

2 2 2

p - A6 / A: .

and

-+ A A
A T

.- (W2 "1'3 , o o o o o o "I'M-1) ,

where

W1 - ($1 1 ’¢i 2 , ,wi’N) , i - 2,3, ....... ,M-l

Also,

B - (329332- 'BM'I) 9

with

Bi (Bi,l’Bi,2’ "Bi,N) , 1 - 2,3, ....... ,M-l



n

1‘52,; ' '11)“ 82 ”2,3'

n n

BM-1,j "611,1 + g11-1 ”ta-1,3 '

and

n n

Bi’j - 31.1 (01,1 ,1—3,4, ........ ,M-2 .

In all cases,

j- 1,2,3, .......... ,N

It is easy to see that we have M-2xN unknowns in M-ZxN coupled

equations. A large class of modern methods for obtaining fast solutions

for elliptic equations are available. Because those methods require

complex coding, we decided to use the simplest and most common method in

use today, known as the Fast Fourier Transform (EFT). Although there

are many articles dealing with this important topic, we feel that they

overemphasize the final step, which is the economical evaluation of the

transform itself. We present here the necessary steps before using the

PET.

Let us redefine the matrix A as

A-p2[P-2aI]NxN,

where

'01000....01‘

10100....00

01010....00

P- 001010...00

00....01010

L10....OOlOlJNxN  
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[45]
It is known that any matrix of the form

  L 32 33 AN 0 0 0 al J

is called a circulant matrix. The matrix P is therefore a circulant

matrix. The eigenvalues for a general circulant c are

N

-1
vk- Z .1 .3,

3'1

where

rk - cos(-zfik—) + j sin(-zfik-) , k - 1,2,3, ..... ,N

(3:315): .
- e , j - J - 1 .

The corresponding eigenvectors are

-1/2 2 N-2 N-l
Qk - N ( l, rk , rk , ....... ,rk , rk ) ,

k -l,2,3, ......... ,N

We thus conclude that the matrix A has eigenvalues equal to

2

Ak - 2 p [ cos( 2&3 ) - l ] , (4.21)
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and the resulting matrix of eigenvectors is

  

l l l l 1

1 w wN-Z wN-l

1 w2 w2(N-l)

1 w3 w3(N-1)

Q _
, (4.22)

l

1 wN-2 .

. 1 wN-l . w(N-l)(N-1) .

where

2_«e "

N 3 “
w - e , j - J - 1

with

a - - 1.

Now we define

11>, M23, (4.23)

For each i we have now

Q 31-1 + A Q $1 + Q Ei+l ' Bi'

'To diagonalize A we multiply by Q'l, which has the same structure as Q,

but with

a - + 1.
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The process of evaluating Q'1 B is widely known as the FFT.Here
i

we used the original version of the scheme as proposed by Cooly and

TukeyMG], known as Radix-2(which utilize having N - 2“, where n is an

integer). After solving the resulting tri-diagonal systems the same

algorithm is applied to evaluate the inverse transform( here wiis

evaluated from definition(4. 21)) .

4-2-3 Numerical Boundary and Initial Conditions

4-2-3a Boundary conditions

From (4.10) to (4.13) we have

¢<O.:.t ) - o . (4.10)

¢€<O.c.c> - «(1 + 1t)2 0 . (4.11)

¢ - (1 + 1:) e”5 sin(NC) . as r 4 o , (4.12)

(9-0, asr-rco. (4.13)

It should be clear that we can not make explicit use of all of these

boundary conditions. We can only make use of them by relating them

implicitly. The boundary conditions (4.10), (4.12) and (4.13) do not

need differencing, so we use them as they are. Differentiating (4.10)

with respect to f and substituting in (4.4), we obtain

a

a—‘g-m, até-O, (4-24)

66 a 6

and we have, by a Taylor series expansion about 6 - O,

2 2 3 3

+1 - ¢i + As 3* + 45- 9—? + 95— Q—% +0(A5‘) . (4.25)

as 5-0 2: ag 5-0 3: as 5-0

1b.
1

By substituting the Taylor expansion for the right hand side of (4.24)

in (4.25) we obtain
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2 2 3 (34)“ - (gw)

¢w+1 - ¢w + A€«(1 + 1t“) 0 + -§f— g3 w3+ -A§T ¥+ke E +O(A£‘).

In the above formula, subscript w indicates the surface of the cylinder,

or 5 -O; we also made use of (4.10). Thus, we arrive at the boundary

condition for the surface vorticity:

n 3W2”. ' 'I’w) 3 3;], + 1;“) 2;; finfi, ”2+1
ww - 2 n - n - n . (4.26)

A6 gw A5 3w 2 gw

4-2-3b Initial conditions and flow initialization

The initial conditions as given by (4.8) and (4.9) are unsuitable

for initializing the flow field. Since we are dealing with an

impulsivly-started circular cylinder, the flow will initially be

potential”) . The potential flow is just the first-order outer solution

obtained in the previous chapter analytically (see Eq.(4.27)).

By making the necessary modifications due to different coordinates

used here, we have

¢(€.§'.t) - [ (1+1t)e "5 - (Tl—>75] sin(vrc) . (4.27)

+11: e

When t - 0 the above formula yields the initial flow field. However

this same formula is used to determine the flow far away from the

surface of the cylinder at any time (for i - M, or 6 - A£(M-1)). Use of

the initial condition (4.9) will not initialize the computation

process. To initialize the computation we use (4.27) in (4.26) with

1

ww+l- 0. Although the results are initially in error ,

experiementsM-l’ag] have shown that slightly later the scheme (any

numerical scheme) will correct itself. That means that the very early
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numerical results are unreliable. This is still an unsolved problem

which require further research.

4-2-4 Scheme implementation

When using a finite difference method, the objective is to

calculate the values of p and 4: at the intersections of the mesh lines

shown in Figure 4.1, for each discrete time step. We use (4.14) to

n 1
compute wrf'l from known values of 11>? J , u1+

.J

vn 1 gn andwn
’ i,ji; ’ i i,j

or w for all (i,j), in turn. Values for 412+; are obtained by

”
|
w
-

ii .3

n+1

using the advanced time value of (01 j in the poisson equation(4.20). We

use

 

n n

¢i,j+l ' l61,3

(4.28)u?,J+%-1r1(1+1tn)-[ AC

Then, by using suitable permutation we obtain

n1 __J,_[n 1+un
1

u11-1-3 ,j 4 +

1 n n 1

ui+1,j+ 3 i+l,j- 3 + ui-1.j+ 3 ui'lJ' 3]

Similar relationships can easily be obtained for other values.
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I I | I I I
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I I | l I I

j+1 9----U----O----U----@----U----O----U----O----U----0

l | I | | |

V V V V V V

I I I I I |

j @----U----®----U----O----U----@----U----O----U----@

l I l l I l

V V V V V V

I | I I I I

j-l o----U----0----U----O----U----@----U----O----U----@

i-2 1-1 1 1+1 1+2 1+3

0 - ¢ , w

U - u

V - v

Figure IV-l Location of the Points of Definition of

'the Variables Relative to the Mesh

4-3 Pressure Distribution.and Pressure Coefficient

As in chapter III, upon integrating Navier-Stokes equation in the

0 direction, we obtain
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o

- (1 + 1:) Jo [ -210 + i; g? ] do

r-r.

changing to the f-and g system of coordinats, this becomes

 1 is:
Cp - «(l + 1t) I:[ «(1+1t) Re 36 - 270 ]€- Od§ . (4.29)

Because "the trapizoidal rule for integrating periodic functions is

remarkably accurat"[49], we use it to integrate the above equatixn1, and

for all other numerical integration in this study. Special care is

required for the integration of equation (4.29); and this will be

discussed later.

4-4 Drag, Lift and lament

Following the same steps as in chapter III we obtain

22" 4.24
CD - - (1+1t) I [ R 6r ] sin(o) d0

p 0 e r-ro

When using 5-: system of coordinates, this becomes

2 24
CD - - (1+1t) I [ 36 ] sin(«§) d; . (4.30)

P 0 6-0

For the skin-friction drag we obtain

2

c - lililgl I w sin(n§) d; . (4.30b)

e 0Df

The above definitions give positive drag in the flow direction. The

total drag coefficient is thus
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2

- r (1+1t) I { [ 'é‘ + 1(l+7t) ] w - ‘;l§' 3? sin(«() d; .

0 e e 5-0

(4.31)

The pressure lift is

22" 4.2m
] cos(0) d0 . E

P e r—ro a

The lift is positive downward. Adjusting to the 5-5 system of

 coordinates, CL becomes

P

2

c - 11i151 I [ a” ] cos(x§) a; . (4.32)
Re 0 asL

p 5-0

The skin-friction lift is given by

1112151 2
CL - R I -w cos(xg) d§ , (4.33)

f e 0

and the total lift is thus

c - c + c (4.34)

Finally, the moment coefficient is given by

2 2

CT - 511§?51— I w I as (4.35)

e 0 5-0

4-5 RESUETS

The numerical calculations were computed on the Albert Case Center

for Computer-Aided.Design Prime Computer, at Michigan State University.

The calculations were carried out using a mesh system of M - 41 nodes in
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the 5 (radial) direction, and N-64 nodes in the C (meridian) direction,

with A6-0.025 and Ag’ - 3%— - 0.03125 . In all of the figures T-t UQ/ a0

is defined as the nondimensional time, for consistency with the previous

chapters.

Although Ece and Walker [31] found it impossible to advance in

time beyond certain value (typically T - 1.125 for 0 - 0.6) , we had no

difficulty in pushing the calculation to larger T. The computation was

terminated at a value of T deemed sufficient for understanding the

phenomena .

4-5—1 Stream Lines

For the non-rotating case all of the computed results show the

formation of two primary bubbles. Although we could not predict the

exact time of their appearance from the graphs of the stream lines, the

separation-point plots (figures IV-6, ll, 16 and 21) indicate very

clearly the appearance of bubbles between T-O.4 and T - 0.5, for all

the Reynolds numbers studied. Secondary bubbles did not appear at Rd -

100, but at higher Reynolds number their existence is certain. The

higher the Reynolds number, the earlier their appearance. The size of

the primary bubbles increases with Rd. However the increase of 1 not

only delays separation but also decreases the bubble size.

With rotation (0 - 1.0), primary separation takes place in the

0

upper portion of the cylinder, somewhere between 0 - 30 and 120. A

secondary separation bubble appears with increasing Rd, but it

disappears at some later time. With rotation, separation begins right
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away after the motion has stared. Both primary and secondary bubbles

decay with time. A solid rotation of the fluid with the cylinder will

eventually be.

4-5-2 Pressure Coefficient

In order to integrate equation (4.29), which gives the pressure

coefficient as a function of both 0 and T, the trapezoidal rule[48] is

used, since it is integrate periodic function with sufficient accuracy.

Accumulation of round-off error, in addition to numerical error, makes

it difficult to achieve perfect periodicity when we evaluating the

integral at different point on the circle. To overcome this difficulty,

we subtract the value of the error for a full period, divided into equal

factors for each integration step. We believe that the above non

periodicity due to integration is one of the main reasons that the

pressure coefficient is seldom presented in published (numerical ) work.

The acceleration for impulsive starting makes the pressure

extremely high in the beginning of motion, however, the pressure rapidly

decreases as time increases. Without rotation, the pressure has nearly

attained a steady state value at T - 10 (when the integration is

terminated). However, with rotation the pressure is unable to reach a

steady state at T - 10.

The effect of the separated flow region is reflected in the

pressure distribution, since in this region the pressure tends to be

constant. Increasing the Reynolds number decreases the average pressure

coefficient. Increasing 1 has the same effect as that of increasing R(1

since the fluid is pushed by the moving boundary at a higher rate. The

well known effect of shifting the stagnation point due to rotation is

clear in the pressure-coefficient figures.



71

4-5-3 Drag

After the singular behavior at T - 0+, arising from the impulsive

start, the drag coefficient decreases dramatically to a reasonable

value. It then increases continuously with time, but the rate of

increase is very slow. The latter increase in drag seems to be mainly

the consequence of the increase in size of the recirculating zone. For

the same reason, increasing Rd has exactly the same effect on the drag,

since it increases the separation-zone size.

4-5-4 Lift

The fact that the lift coefficient starts from zero and increases

almost suddenly to a large value, may be caused by the rapid diffusion

of the vorticity into the fluid. The subsequent sharp drop in the lift

coefficient may be due to the interaction with the newly established-

flow condition, such as the appearance of the secondary bubble.

4-5-5 Moment

The singular behavior arising from the sudden rotation is clearly

indicated in the moment-coefficient figures. It increases with Reynolds

number, or '1, as expected. However, increasing 1 sharply increases C T

after the initial adjustment period. Looking at both the moment-

coefficient and the separation figures, it seems that the change in the

separation region has an effect on the pressure coefficient as related

to the fluid pressure.

4-5-6 Surface Vorticity

The vorticity at the surface increases with the Reynolds number,

although it is singular at T - 0+. This quantity might help understand
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some complex events, such as separation in the case of the non-rotating

cylinder. The diagrams (figures IV-S, 10, 15, 20, 27, 34, 41, 48, 53,

58, 65 and 72) explain the appearance of the secondary bubbles, in both

rotating and non-rotating cases.

In the rotating cases the vorticity on the rearward side of the

cylinder (150. to 240.) tends to be constant as we advance in time. By

comparing the rotating cases with the non-rotating cases, it seems that

the value of the vorticity is lowered by a constant in the former cases.

The maximum value of the vorticity increases with increasing Reynolds

number and 1 .

4-5-7 Effect of Outer Nt-erical Boundary

For external flow the boundary condition at infinitely is placed

at a reasonably far distance from the body. It is clear that we must

check whether any appreciable error is incurred by the finiteness of the

domain.

Before introducing the results of such a test, it is appropriate

to note that two coordinate system are used in this work. The first is

the system that has the moving boundary, which is difficult to use for

numerical computation. Instead, we use the system defined by (4.1)

which allows us to move in physical space a distance [ (1+1(t+At)) -

(1+1t) H e we away (in the radial direction) from the previous time-

space node. Since we are using an explicit scheme which transfers

signals to the next node at next time step, the signals will not be

restricted to a fixed computational domain.

Figures IV-74 to IV-83 indicate that the outer boundary may has no

effect on the computations. Comparing figures IV-74 to IV-77 with
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figures IV-3 to IV-6 and figures IV—78 to IV-83 with IV-23 to IV-28 it

shows that our choice of the outer limit is satisfactory.

4-6 Transforming to the Steady-State Three-Dimensional Case

In order to recover the original problem of three-dimensional

steady flow over a projectile at an angle of attack, we use the

definition of the forces and moment, and relation (2.7), thereby

2 z

Dtotal a 0 D

2 Z

- p U... a0 I CD(t(z)) dz .

0

similar expression may be obtained for the lift and moment coefficients

,i.e.,

2 2

CL - p U"D so I 0 CL(t(z)) dz ,

and

C U.2 2I2C(())dz-p 80 tz .

Ttotal a O T

for a truncated right cone, however different projectile shapes may be

substituted into this formula to obtain corresponding force and moment

coefficient.
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Figure IV-2 Streamlines Development with 1 - 0.05 , 0 - 0.0

and Rd - 100 ,at T equal (a) 2.50 ,(b) 5.0 ,(c) 7.50 and (d) 10.0.



10

I0

 

 

  
 

 

 

 

  
 
  
   
 

         
 

Figure “-5 Develop-n1: of Surface

Vorticity e for Plow With

1-o.os ,0-0.0end Id - 100.

.0

.1J

-. v v I v V '

_ 1 . 00 120 100 100 300 IIO

.04

.0d

.I-I

'°‘ r-7.s t-10.0

.z-I

0.

.04

,u. r-2.5
1-5.o

0

Figure “-3 Development of Pressure

Coefficient C’ ,for now With

1-0.05 . o-o.omad-1oo.

T- 10.01

1

112.5

30100010 02102 ‘0: 031m 0 o'

I

T - S.

l

| l

T - 7.

1 L

75

 

 
 

 

 

 

 

 

 

   

70.0

9.9 «.04

on“ 00.0-

. «.0unfl- 1 an

30.0.?

20.0... E

10.0 6"! °o 6..

P

0.0 ‘

0.0 1.0 4.0 0.0 0.0 I0.0 1'

Figure “-4 Develop-mt of the Drag

Coefficients CD .6” .CD for now With

p f

1-0.05 . 0-0.0endl‘-100.

300.0

300.0~

240.0. (7

100.0 L

120.04

00.0-

0.0 I I W I

0.0 1.0 0.0 0.0 0.0 I0.0 1'

Figure IV-0 Separation Points

History For now With

1 - 0.05 , 0- 0.0 and Id - 100.



76

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Vii/f %

g/flxm

W

Figure IV-7 Streamlines Development with 1 - 0.05 , 0 - 0.0

and Rd - 500 ,at T equal (a) 2.50 ,(b) 5.0 ,(c) 7.50 and (d) 10.0.
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Figure IV-12 Streamlines Development with 1 - 0.10 , 0 - 0.0

and Rd - 100 ,at T equal (a) 2.50 ,(b) 5.0 ,(c) 7.50 and (d) 10.0.
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Figure IV-17 Streamlines Development with 7 - 0.10 , 0 - 0.0

and Rd - 500 ,at T equal (a) 2.50 ,(b) 5.0 ,(c) 7.50 and (d) 10.0.
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Figure IV-67 Streamlines Development with 7 - 0.10 , 0 - 1.0
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CHAPTERV

CONCLUSION AND DISCUSSION

We shall compare the numerical and the analytical solution, and

then make some general conclusions. Because of the initialization

error, the numerical solution for the small time after the start of

motion is not valid. Hence, good agreement is not expected in this time

interval. There is subsequently a time interval of overlap during which

both the analytical and numerical solutions are valid. Figures V-l to

V-10 are shown for this purpose. The lack of agreement is obvious in

the early stage of motion. The numerical results subsequently becomes

independent of the initial effects, and agreement is excellent,

especially for the cases without rotation. The surface vorticity, which

is the major variable used in the computations, shows excellent

agreement of analytically and numerically calculated values. The

numerical values for the pressure distribution show the expected shift

of the stagnation point, while the analytical solution did not. This

discrepancy may be reduced and perhaps

eliminated, by including the necessary higher-order terms in the

analytical solution.

The process of using quantities obtained from the numerical

solution as input to compute derivatives or integrals adds additional

error. This arises when we integrate the vorticity at the mesh points

in order to obtain the drag and the lift. This error can be recognized

by comparing the drag ( lift ) figures for the analytical and numerical

solutions and the moment coefficient CT for the above solutions.
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The main objective of the present work has been to compute and

understand the nature of the forces and the moment acting on a spinning

projectile at angle of attack. The Navier-Stokes equations were solved

using the method.of matched.asymptotic expansions for the initial stage

of motion, and the forward-in-time centered-space explicit numerical

scheme for (the vorticity equation) and the Fast Fourier Transform (for

Poisson equation) were used for the later stage of motion. From this

study the following major conclusions can be drawn:

1- The cross-flow analogy is a powerful tool for solving complex

three-dimensional problems such as the present problem one. Our results

show that both solutions (Numerical and Analytical) successfully predict

the flow characteristics.

2- The increase of the surface expansion speed 7 (or equivalently, the

lowering of the angle of attack,1a ) has a direct effect on separation”

Separation is delayed when 1 increased. This effect is opposite to that

of the Reynolds number, which delays separation when decreased.

3-.A pair of secondary bubbles appears at higher Reynolds numbers. The

symmetry is destroyed by rotation.

0- The drag is nearly constant after the singular start.

Although satisfactory results have been obtained, we recommend

investigating the effect of the higher-order analytic solution in the

case when there is rotation. We expect that the present results for the

case of the rotating cylinder can be improved when higher-order terms

are added. On the other hand extending the current numerical solution

to a higher order of accuracy probably will not improve the results

significantly. We recommend the trial use of alternative numerical

schemes to investigate this problem. We note that numerical schemes

that have been adapted for moving boundaries in problems arising in

fluid mechanics are few.
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