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LAMINAR FLOW OVER A SPINNING

PROJECTILE AT AN ANGLE OF ATTACK

By
Fouad Ahmed Youssef

The study of forces and mohents on a spinning pointed body at an
angle of attack is extremely important in ballistics. Previous work has
been mostly experimental. This is because the governing Navier-Stokes
equations are nonlinear and fully three dimensional, making analysis
impossible and direct numerical solutions impractical.

The most promising theoretical technique is the unsteady cross flow
analogy. Considering the axial direction as timelike, the pressure and
the flow field can be obtained from the impulsive starting of a two-
dimensional cylinder. Although the analogy is heuristic, the results do
correlate well with experimental data on slender bodies for subsonic
through supersonic free stream speeds.

In this study we investigate the impulsive starting of expanding,
rotating cylinders. The results are used to calculate the force and
moment coefficients for projectiles by means of the unsteady cross-flow
analogy. We solve the unsteady Navier-Stokes equations using matched
asympototic inner-outer perturbation method and comparing these results
with the solution obtained using numerical methods. Excellent agreement
between the two methods has been established in the region where both
solutions are valid.

The results obtained are consistent with existing experimental work.

For example, a pair of secondary recirculating zones has been predicted,



in addition to the well-known primary pair for high Reynolds numbers.
The numerical scheme used showed stability and robustness in the

integration of the full Navier-Stokes equations.
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R = Stretched radial coordinate,Reynolds number and half the
Reynolds number,depending on the subscript
t,T= Time

z = Axial direction in cylinderical system of coordinate

a = Angle of attack
B = Half-cone angle
tan(fB)/tan(a)

<
]

§ = Gauge function in e

>
]

Laplacian

viii



€¢ = Small number

¢ = Transformed meridian coordinate 4
n = Stretched radial coordinate
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o = Free-stream
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CHAPTER 1

INTRODUCTION

1-1 Scope and Objective

In 1951 Allen and Perkins[]'](see[2]) remarked upon a certain analogy
between the cross flow at various stations along a cylindrical body of
revolution and the development with time of the flow about a circular
cylinder starting from rest. They considered conditions in a plane of
fluid which is perpendicular to the body axis and moving with the free

stream velocity Vﬂ° times cos(a) (a 1s the angle of attack). The trace

of the body is a circle, whose size expand and contract as the plane
moves along the body. They proposed that the change of the cross
sectional area be ignored for slender bodies, because the cross-flow is
only aware of the circle suddenly appearing in it, and is thus similar
to a flow that would be observed for a fixed-diameter circular cylinder

suddenly introduced in a stream with velocity VQ sin(a).

Although the problem of impulsively-started cylinder has attracted
the attention of many investigators, the analogy established by Allen
and Perkins (now known as cross-flow analogy) did accelerate research on
the important problem of projectiles at various angles of attack. The
approximation of the three-dimensional steady state problem by its
equivalent cross-flow problem (two-dimensional time-dependent) has
certain advantages. The characteristics of the equations that govern
problems in the two-dimensional unsteady state are easier to handle,
using analytical or numerical integration techniques, than the original

three dimensional problem.
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The reduction in the number of space variables directly decreases
the number of assigned memory locations required. It also reduces
programing complexity and run time. Although it is possible
theoretically to derive solutions for the three dimensional problems,
there are few computers available that are able to carry out the
numerical experiment with the same number of grid points in each space

direction; memory limitations quickly become significant.

In the present study we investigate the flow field surrounding a
cylindrical body of revolution at an angle of attack. Different
projectile shapes are investigated. Using the cross-flow analogy
hypothesis, our objective is to go one step further than previous
studies, by taking into consideration the effect of diameter change and

rotation in the cross-flow plane.

1-2 Literature Survey

There are many research articles in the open literature dealing with
this problem. These can be categorized as analytical or theoretical
work, numerical work and laboratory or experimental work, and are

briefly reviewed here.

Previous theoretical investigations of the initial flow field over
an impulsively-started circular cylinder may be separated into three
different approaches, namely
1- Boundary-layer solutions,

2- Matched-asymptotic expansion of the time-dependent Navier-Stokes
equations, and

3- Potential flow models.
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The growth of the boundary layer on a circular cylinder started
impulsively from rest was first studied by Blasius[3] (1908).
Tollmien[al (1924) studied the impulsively started rotating cylinder.
Goldstein and Rosenhead[s](1936) extended the Blasius solution to third

order. Gortler[6’7] (1936) and Vatson[8] (1955) conducted further

investigations of the series expansions, but no more terms were added.
Shuhtg] (1953) studied this problem using the momentum integral method.
Wundt[lol (1955) carried out a detailed study, and showed that Goldstein
and Rosenhead’s [slsolution is in error; he gave the solution in terms

of tabulated coefficients. Wang[ll’ 12} (1966, 1967) was the first to
employ the method of matched-asympototic expansions to solve the time
dependent Navier-Stokes equations to second order. He carried out a
successful attempt to extend the boundary-layer theory for large

Reynolds numbers. His solution was the first to be valid even after

separation occurred. Wang[13] (1968) then extended the validity of his

solution to include small Reynolds numbers.

Collins and Dennis[]'a] (1973a) extended Wang’'s analysis by expanding

the stream function and vorticity in powers of time. They improved

their results later [15](1973b). By expressing the stream function and
vorticity in boundary-layer coordinates, and using unsteady boundary-
layer theory to obtain solution for small time, they were able to push
the solution further in time by continuing the integration numerically,
using the implicit Crank-Nicolson numerical integration scheme. However
they did not match with the "Outer Solution" which means that the entire

solution is of the boundary layer kind.
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Bar-Lev and Bar-Lev and Yang[16'17] (1974,1975) improved Wang's

solution by extending it to third order, using the method of matched

asymptotic expansions. Chien (18] (1977) carried out a study including
both numerical and analytical solutions. His analytical solution agrees

with that of Bar-Lev and Yang. He used what is known as the Hopscotch

method[lglfor the solution of the vorticity equation, and the method of

successive overrelaxation for Poisson equation.

Thomlzo] (1933) carried out the first successful attempt to

integrate the equations of motion numerically for a viscous fluid.

Later Kawagutilzl] (1953) obtained a solution for Reynolds number of 40.

(

Payne 22] (1958) was the first to use the electronic computer to

obtain a solution for the problem. He used an explicit time difference
formula for the vorticity equation. Proudman and Johnson[23] (1962)
solved the Navier-Stokes equations in the neighborhood of the rear

stagnation point of an impulsively started circular cylinder. Kawaguti

and Ja:ln[za] (1966) considered the same problem and extended the
(21]

solution previously obtained by Kawaguti to include other Reynolds

numbers. Ingham[25] (1968) improved Payne’s work by using a finer grid,

enlarging the computational domain and extending the computation to

longer time. Thoman and Szewczyk[zslused a hybrid mesh cell structure
in the vicinity of the cylinder surface and computed the non-linear

convection term by a directional differential scheme. Jain and Rao[27]

(1969) obtained the steady state solution up to a Reynolds number of 60

and found that for higher Reynolds numbers the drag coefficient



decreases monotonically with time. Son and Hanratty[28] (1969)
attempted unsuccessfully to arrive a steady state solution for larger
Reynolds numbers by integrating the time-dependent Navier-Stokes
equations from rest. Nevertheless, aside from the primary separation

bubble pair, they found a secondary bubble near separation for Rd = 500.

Chorin[29] (1973) used computer-generated pseudo-random numbers to

solve the two dimensional time dependent Navier-Stokes equations at high
Reynolds numbers and studied the case Rd-IOOO. Loc[3o] (1980), using a

compact fourth-order accurate scheme, utilized the A.D.I. method to
solve the problem. His results agree with the previously known results.
Loc claims that his solution is fourth order accurate although he uses a

second-order formula for the surface vorticity.

The most recently published work is that of Ece and Walker[31]

(1985) for the impulsive start of a rotating and translating cylinder.
They used two different methods to solve the problem. Their results are
obtained either by an expansion of the solution in a power series in

time, or by a fully numerical technique.

H111(32]) (1954), and Bryson(33] (1959) and others have used an
inviscid mathematical model with point vortices for longer times.
However, their results do not agree with the available experimental
work, probably because the separation phenomenon is primarily viscous.

Although theoretical and numerical techniques have been used

extensively to investigate this problem, experimental work on the same

problem is scarce. Schwabe [34](1935) measured the variation from



vortex pictures and computed the pressure distribution. Sarpkaya[35]

(1966) measured the cross-flow drag and normal-force coefficient as a

function of relative displacement of the fluid in a time-dependent and

two-dimensional flow. Honji and Taneda[36] (1969) determined the
variation of the length of vortices with time photographically. They

also found the second bubble at the upstream side of the main bubble at

Reynolds numbers greater than 550. Lamont and Hunt[37] (1976) measured
the out-of-plane force (i.e. , the "Magnus" side force if the body is at
incidence). The experimental model consisted of an extensively
pressure-tapped cylinder to which four different noses were fitted. The
general nature of the out-of-plane force is found to be consistent with

the cross-flow analogy. The Reynolds number was found to have an

important influence at inclinations above 55 degree. However, it was
also found that the range of Reynolds numbers over which this effect

occurs can depend on the scale of the model.

The present work is concerned with the study of the flow field,
forces and moment for a projectile at an angle of attack. We intend to
use the cross-flow analogy as a practical means to study the problem.
Analytically, we use the method of matched inner-outer expansions to
obtain the progressive events of the flow field and the forms necessary
to evaluate the forces and moments in a closed form to second order.
Numerically, we use the forward-in-time centered-space explicit scheme
to solve the vorticity equation in plane-polar coordinates. We also use
the Fast Fourier Transform to solve Poisson equation for the same
purpose stated above. Comparison of solutions obtained by the numerical
and analytical methods shows excellent agreement in the overlaping

region of validity.



CHAPTER II1

PROBLEM FORMULATION

2-1 The Cross-Flow Analogy

The obvious need for accurate information about the forces and
moments acting on lifting bodies moving at an angle of attack in the
subsonic to supersonic-velocity range is reflected in the fluid
mechanics literature. Extensive discussion exists concerning ti\e
normal- force distribution and the wake-vortex characteristics of bodies
of revolution and the cross-flow analogy. Thirty five years ago a

method for calculating the flow over cylindrical bodies at large angles

of attack was proposeo:l[]':I . The method bypasses the difficulties arising
in three-dimensional problems, which are usually unsolvable
analytically. However, even to solve such a problem numerically is at
the present time beyond most computers capabilities because of the

excess memory required.

The proposed method attempts to approximate the difficult three
dimensional steady state problem by a two-dimensional unsteady flow (see
Refs. [1] to [38]). The model (Figure II-1) employs an observer in a
plane perpendicular to the direction of motion of the body and recording
the development of flow as the body moves in space, crossing the fixed
plane of the observer. A furthur simplification, used by previous
authors, is to neglect the variation in the diameter of the body as it
moves in the fixed plane. The flow is thus assumed to be that of an

impulsively started circular cylinder. This is known as the cross-flow
analogy.
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In the present study we attempt to investigate the unsteady two-
dimensional flow field of an incompressible fluid, with constant
properties, arising from the sudden appearance of an expanding, rotating
cylinder. The main objective is to take into consideration the effect

of the previously neglected diameter change by using cross-flow analogy.

2-2 The Governing Equations

We seek to determine the flow field and to predict the forces and
the moment on a three-dimensional projectile in a steady uniform flow
with velocity V, at an angle of attack a. The component of the free-
stream velocity, V, in the cross-flow plane is

U, = V sin(a) (2.1)

which defines the cross-flow upstream velocity, and

vV, =V cos(a) (2.2)

is the component of the free-stream velocity in a direction parallel to
the projectile axis (relative velocity between the body and the fixed
observer plane).

Hence

v, = u, cot(a) (2.3)

The body shape is given by the radial distribution r, as a function

of the axial distance z (in cylinderical coordinates) from the body tip
(see Figure II-1). Thus the relation between the cross-sectional radius

and the axial distance for a pointed cone is

ro, = z tan(p) (2.4)

where B is the half cone angle, and, for a truncated cone

r, = a, + z tan(pB) (2.5)
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where a, is the initial radius (radius at z = 0). Lastly, for a

paraboloidal body we have

2
o = a z (2.6)

where a is a constant.

The essence of the cross-flow analogy becomes clear when we

introduce the transformation

(r,0,2) = (r,0,zo+ V_ t) (2.7)
and consider the plane where z, = 0 (observer plane). In that plane the

flow field is that induced by a circular cylinder of varying radius

re(z) = 3 (X t). Information available from the relatively simpler

two-dimensional unsteady flow can now be applied to the

three-dimensional steady flow field.

Thus, since z =t V°° , one finds

For a pointed right cone. Here

7 = tan(B) / tan(a) (2.9)

For a truncated right cone, one finds

ro=a, +tU_v |, (2.10)

and for a paraboloidal body,

1,2
Iy = [ at U°° cot(a) ] . (2.11)
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Figure II-1 The Spinning Projectile at an Angle of Attack
is Studied Through the Impulsive Start of
Expanding,Rotating Circular Cylinder
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The following formulation was used for the case of a truncated right

cope. Similar relations for other cases can be easily derived. The
continuity equation is satisfied identically if[2]

Ve vx¥ (2.12)
where ¥ is a vector function of position. In two-dimensional flow, two

components of ¥ may be taken to be zero; therefor, ¥ reduces to the

scaler function

¥=(0,0, %), (2.13)

where ¥ is the scaler stream function. Also,

V= Vo, Ve V), (2.14)

where V is the velocity vector, vr'is the radial velocity, and Vo is the

meridian velocity in polar coordinates. However since we are working in

plane polar coordinates v, = 0. The above relationships imply

v_(r,0,t) = - -ir-gf<r"’t), (2.15)
and
v, (r,0,t) = gf(r'a't) . (2.16)

We now define the vorticity vector ® as

w=(,0, w =-Vxv, (2.17)

where w is the scaler vorticity function.

From (2.10) it is obvious that the following relationship holds at

the cylinder surface, where r = r, ,

dr,
— . - _ . 1 3u¥(x,.6,t)
ac U_ v vr(ro,a,t) r, 36 . (2.18)
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Integration of equation (2.18) with respect to #, implies

¥(ro,0,t) = - roU y6 + £,(t).

Since ¥ cannot be uniquely determined and can only be obtained to within

a constant,we take f,(t) to be zero, whereby
¥(re,0,t) = - reU vyl =-U_ 760 (ap +U_ v ¢t). (2.19)

The (upstream) stream function, before the appearance of the
cylinder, is that due to the uniform flow, viz.,

¥(r,0,t) = r sin(4) , £t <0 . (2.20)

By superposition, conservation of mass requires
Y = r sin(4) - U_ v0(ay + u_ Tt) , =+ o (2.21)
On the surface of the cylinder
,0,t
v, (ro ,0,t) = 28(To e xy = 0ap + U, 7 8), (2.22)
where Q is the angular velocity. By Normalizing the variables as

A

b= /U a . tet U,/ a

A

r-r/ao N O-an

and then dropping the superscripts, the Navier-Stokes equation in

conservative form become

do 1 [ 4. M| 2 EP) S N
at r ar [ © a6 ] EY) [ “ ar ]} R Vo, (2.23)
2a, U
where Rd -2 X Re- » is the initial Reynolds number based

on the initial diameter. Also by (2.12) and (2.16) we have
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Vy =" w (2.24)
where
2
2
L B Ny S Wy
ar r dr r dJ6
Equations (2.22) and (2.23) are to be solved subject to the

following initial conditions:

¥(r,0,0t ) = r sin(d) - v6 , T, , (2.25)
¥(r,0,00 ) = r sin(9), (2.25b)
w(r,0,0") =0 T w1y, (2.26)

and the boundary conditions

¢(r0100t) - ‘79(1""7(:). (2.27)
¢r(r010'c) - Q(1+ 7t)v (228)

where for a truncated right cone,

ro (8) =1+t , (2.29)

and
Y = r sin(d) - y8(1l+yt) as r + o , (2.30)

w=0 as r + o, (2.31)



CHAPTER III

ANALYTICAL SOLUTION

The available theory for the analytical solution of non-linear
partial differential equations is inadequate for the exact analytical
solution of such equations. Perturbation methods have been used
frequently to obtain approximate solutions with a high degree of
accuracy. Among these is the method of matched asymptotic expansions,
which can be systematically used for such problems provided a
perturbation parameter exists. The main difficulty of the method lies
in the complexity one faces as he proceeds to higher order solutions.
In this thesis the method of matched asymptotic expansions is employed
to solve the Navier-Stokes equations in order to obtain the fluid

behavior in the initial stages of motion.

3-1 Formulation
The governing equations, initial and boundary conditions are (2.23)

- (2.30). By substituting % for w ( from Eq. (2.24) into (2.33) ) we

find

L [ o 2 ] - —%; v } Ve =0.  (3.1)

The initial conditions are
$(r,0,0") = r sin(8) - v6 , (3.2)
and w(r,0,07) =0 AR (3.3)

The boundary conditions are
¥(re,0,t) = - vy 6 (1 +vy¢t), (3.4)
and P(ro,0,8) _ g (1441t ). (3.5)

ar
14
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where,

and
Y =1 sin(d) - v 8 (l+vyt) as r - o, (3.6)
w=0 as r -+ o, (3.7)

The boundary condition (3.4) and (3.6) imply that the solution is
not periodic in 4. This is because of the expansion of the surface,
which acts as a source located at the origin. In order to simplify the
manipulation, it is advantageous to subtract this nonperiodicity a

priori. Therefore we redefine ¥ as

B(r,0,€) = - v0(leyt) + Q(l+yt) Lnlr/(leye)] + $(r.8,t). (3.8)

Substituting in equation (3.1) to (3.7), and dropping the astrisk yields

2

a . 1 ad+yt) | 3% (3 | 4

ae ¥ x [[ - + or ]ao - [ - Y1) + 5y ] ar
; —%— v } vy =0, (3.9)

e
subjected to
¥(r,,0 ) = r sin(4) - Q An(x), (3.10)
w(r,,0 ) =0 , T % Ty = l+yt, (3.11)
Y(l+yt,0,t) = 0, (3.12)
d¥(1+yt,0,t)

py =0, (3.13)

¥ = r sin(4) - 0(1+7t)22n[r/(1+7t)] as r -+ o, (3.14)
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w=20 as r -+ o, (3.15)

Note that the initial condition (3.10) is now periodic in #, replacing
(3.2), which is not periodic.

To obtain the viscous layer growth for the initial flow, we employ

the following transformation[lzl;

. -;: ;: , (3.16)
or

e 9ef -EE:ES— «< 1. (3.17)

Here T, is a reference time representing the time for the cylinder to
travel a small fraction of its radius, and ¢ is the ratio of the two

*
times t and t .

Because we shall focus our attention on small times, we assume the

Reynolds number is large, viz.,

U_ a,
p def = 2% _ 1 (3.18)
e v € a
where a is a nondimensional constant of order unity.

The Navier-Stokes equations become, after dropping the astrisk on g,

2
., <« || QQ+eyt) | ¥ |2 0% | 4
{ ac ¥ x [ r * or ]aa - [ - Y1+ ere)ty, ] ar

2 2 2
-aeV}V:/J-O, (3.19)

subjected to the initial conditions

$(r,0,0") = r sin(d) - O £n(r), (3.20)
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w(r,8,0%) =0 r=r,, (3.21)

¥(l+eyt,8,t) = 0, (3.22)

g_f(1+¢1t,0,t) -0, (3.23)

¥ = r sin(8) - Q(l+eyt) Ln(r/(l+evt)], as r -+ @, (3.24)
w =0 as r + o,  (3.25)

3-2 First Order Solution

3-2-1 First-Order Outer Solution

Assume an expansion of the form

=) 60 Hox.0,), (3.26)
n=1

where Sn(e) are gauge functions in e¢. The boundary conditions as
r - « imply that
6§:(e) = 1

Thus, upon substituting the outer expansion in Eq.(3.19) and

equating like powers of ¢, we obtain

2 0
avy
—E_E-n =0, ,m=1,23.....
which imply
2 L]
v ¢n = constant ,n=1,23,.....

However, since the flow is initially irrotational at infinity, by

Kelvin’s theorem it will remain irrotational, whereby
2 o
v ¢n =0 ,n =1,2,3, (3.27)
For n = 1 we have, expanding (3.22) and (3.24),

$i(l,6,t) =0, (3.28)
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¥ = r sin(d) - O In(r) as r -+ =. (3.29)
The solution is for potential flow over a cylinder, plus a vortex, viz.,
$:(r.0,8) = (- =) sin(d) - Q@ fn(x) (3.30)

3-2-2 First-Order Inmner Solution

For the inner expansion we stretch the radial variable as

o k- (Q+eyt)

R X)) , (3.31)
where A(e) is to be determined. We assume an inner expansion of the
form

i
Y- }: a (e) ¥ (R,6,¢). (3.32)
m=1

Since the tangential velocity at the edge of the boundary layer is to be

matched, i.e.,

3% 0¥ B (e) ayt
dr ~ 38r ~ A(e) OR '

(3.33)

we find

Ay (€) = X(e). (3.34)

By substituting the inner expansion into the vorticity equation and
letting ¢ vanish, keeping in mind that we need to retain the highest
power of e, one obtains

2

€ _a

i i
¥1rre - 439 [ A2(e)] ¥1RRRR = O
1

which implies that

A (e) = ¢ (3.395)

By substituting transformation (3.31) in (3.19), Eq.(3.19) becomes
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(% L+4_HMhm£+J_ﬂB7

at ~ T R 7 R, R, ¢ AR
M_ _l_i_ 2 2 2
] [ - AL+ eqe)edd ] L 2 ] -ae v, } Vi =0, (3.36)
where
Ry =1+ ¢ (R+ qt),
and

2 2
Vz-—l—L-p—l— L+J—3—
1 2 2 2 2 -
e JR € R; 3R R, a4

The equation governing the first order inner expansion is now

i i
¢1RRt - a ¢1RRRR = 0. (3.37)

Integrating once with respect to R yields

i i
¢1Rt - a $1RRR - f(4,t). (3.38)

The no-slip boundary conditions are, from (3.22) and (3.23)

$100,0,8) = 0, (3.39)

¢iR(0.0,t) - 0. (3.40)

The matching condition is that the tangential velocity at the edge
of the the inner region (R + =) approaches that in the outer region as
. [38]
r - 1. Employing the asympototic matching principle , we obtain
i )
¢1R(o,0,t) - ¢lr(1,0,t) = 2 sin(9) - Q. (3.41)
Applying the matching condition (3.41) to equation (3.38) we obtain
f(6,t)

(1,8,t) - a € (1,6,t) = 0. (3.42)

0 2 o
= 1l’lrt wlrrr
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The problem is now equivalent to what is widely known as the

(39]

Rayleigh problem for impulsive start of a flat plate The solution

is thus,

“’in - (2 sin(d) - Q) erf(n), (3.43)

or, after carrying one more integration,

2
-2/ 5 [11 erf(n) + —— (e - 1)] [2 sin(f) -o], (3.44)
I =
where
n-—LR— (3.45)
2/ at

Formulas (3.30) and (3.44) are available in the literature

[11’12’16'17’18], without the omega term. The quantity n is defined in

a way that accounts for the expanding boundary.

3-3 Second-Order Solution

3-3-1 Second-Order Outer Solution

(38]

Applying the asymptotic matching principle again, withm = 1 in

(3.32), n = 2 in (3.26) and matching ¥ itself, we obtain

§2(€) = ¢, (3.46)
and
o 12
$a(1,60,t) = - [2 sin(f) - 0][’1t + 2 [9‘"4] ] . (3.47)
we also have from (3.24)
¢: - ﬂyt[l -2 In(r)] as r + o , (3.48)

Now, since

2 0
Vi, =0, (3.49)
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the solution is

en - 2o (e[ 52]7) oo (s [25]7)

r

- 20yt An(x). (3.50)
3-3-2 Second-Order Inner Solution

To obtain the second-order inner solution, we first match the

meridian velocity ( *r ). Thus we set m = 2 in (3.32) and n = 2 in
0
(3.26), with ¥, given by (3.50), to obtain

Ap(e) = 52 s (3.51)

and

g

1/2
tﬁ;R(O.o.t) -2 [2 ["—‘] - R] sin(4) + Q [R - 7c] . (3.52)

Substituting (3.32) into (3.36) yield the second order inner

expansion equation, viz.,
i i i i i i
"’2RRc'°"’2RRRR‘[°‘+"R+"’1o]¢1RRR' [“*”’m]"’lmw

- { a+2vJat n + 4 Jat cos(ﬁ)[q erf(n)
2 2

+}l_;(e-" -1)]}[i—“(0-2sin(0))ne-" ]

2
- [n + ( 2 sin(8) - Q) erf(n)][ —2 cos(9) e " ] (3.53)

wat

The no slip boundary conditions are

$3(0,0,8) = 0, (3.54)

¢%R(0,0,t) -0 . (3.55)
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Integrating (3.53) once with respect to R, we find

"’;nc - a “’%mm -9 [ v erf(n) -

s

- 2 sin(8) [ yerf(n) - —2—y e - [—q"]l/2 " ]

,/T rt t

2 2 2 2 2

+20Q cos(a)[ erf(n) - erf(n) + —3— [ e . e ] - 22— 4 erf(me" ]
x
2 2 2 2 2
- 4 sin(d) cos(a)[ erf(n) - —— n erf(n) e’ + — [e"’ cetm ]]
s "
+ £,(0,t) . (3.56)

To evaluate f,(6,t), we make use of the matching condition (3.52)

which implies

1/2

t.f,Rt@.a,c) -2 [;L:] sin(8) - Oy , (3.57)
also,
¥ (=,0,t) =0 (3.58)
2RRR‘7* 7" : :
Substituting in (3.56) we find
1/2
£,(0,t) = 2 [1 + [;ﬂ-t-] ] sin(f) + &4 sin(8) cos(d) - 2 Q vy . (3.59)

Thus

'l’;Rt - a "’;RRR =0 [ v erf(n) -

2

+ 2 sin(4) [ v erfe(n) + ;E: yne 4+ [_g_]l/z [ e ]]

Tt
x

2 2

2
2 -n -2n 2
+2Q cos(ﬂ)[ [ e - e ] - erfe(n)erf(n) - n
x J ©

2 2 2
-4 sin(0)cos(6)[ erf%q) 1 -2 p e erf(n) + 2 [ e | m ]].

T
s
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To solve this equation we make use of the linearity of ¥,.

purpose, we assume a solution of the form

i 1/2 1/2
¢2R -t G,(n) + t Ga(n) + t Gg(n) sin(d) + ¢t G,(n) sin(4

+ t Gg(n) cos(8) + t Gg(n) sin(d) cos(F).

By comparing the right hand side of equation (3.60) with

recognize that

2
dG, (n) d G,(n) 2
G1(’7) R/ _1 - _l_ ; -Q [erf(n) - _2_ "e°" -
2 dn 4 dng S
dG, dzcz(n) 1/2 2
']"Gz(n)-J'-n—-—L 2 --0[‘:‘] e,
2 2 dn 4 dng
2
dGs(n) d Gg(n) 2
Gs(n) - ‘12'- n d"— - "i" d— - 21[erfc(',) + =2 n e
n ©
2
dG,(n) d G.(n) - 1/2
_l_G‘(")__l_"_‘ __l_ ; _2_q_] [1+e'ﬂ
2 2 dn 4 dn L 7
g, g 4G (n) (2 [ o0 2
Go(m) - == — - L — T za [e - e
n n I

2
- erf(n) erfc(n) - 2 nem erf(n) ]

©

2
1, dGe(m 4 dGe(m
2 dn

2
4 dn

Ge(n) - - a[ erfin) - 1 - ——

x
2
[« -

The boundary conditions, (3.52) and (3.55), imply that

2
2 e on

©

+

G1(0) = G2(0) = G3(0) = G,(0) = G5(0) = Gg(0) = O,

Gl(w) - - 0,

)

(3.60)

; For this

)
(3.61)

(3.61), we

2],(3.62)

(3.63)

], (3.64)

2

], (3.65)

2

"]
, (3.66)

2
n e erf(n)

(3.67)

(3.68)

(3.69a)



Go(=) = 2 /& @, (3.69b)
Gy(w) = 0, (3.69¢c)
Ge() =4 Ja | = - n |, (3.69d)
‘ [ [ ]

Gg(=) = 0, (3.69e)
Gg () = O. (3.69f)

The homogeneous part of the equations are clearly of the general form

€' +20& (M - 20 =0, (3.70)
where the prime indicate differentiation with respect to n, and n is an
integer.

In general the solutions are expressible in terms of error

(40]

functionsand Hermite polynomials The solution is thus

£(n) = c,ilerfc(n) + c,H () , (3.71)

where inerfc(n) is the n;h repeated integral of the complementary error

function, defined[AI] by

i® erfc(n) = r 1L erfen) |
n

with

(1]
17 erfe(n) 9€f erfe(n) .

and Hn(n) is the Hermite polynomial, defined[allby

2
2 n -n
H (n) = (-1)7 7 &= ¢ ) (3.72)
n d',l’l

In particular :

For n = 1 the solution is ;
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£(n) = cyn + c, ilerfc(n)

2
- cyn + ¢y [—L e - q erfc(n)], (3.73)

g

and for n = 2 we have

2

£(n) = AI[ 1+29 ] + A,[( 1+2n ) erfe(n) - —/2_—_— n e ] (3.74)

x

using the boundary conditions, we obtain

2 2
G(n)-ﬂ1{[1+4q]erfc(q)-—j— ne" -1}, (3.75)
' /=
G,(n) =0 Ja [ 2 - erfc(n) ] ", (3.76)
3 ’ 2
Gs(n) = 2 v [ ne -2n erfc(n) ] : (3.77)
3 '
2
Ge(m) =2 /a [—L[l-e'”]+3qerfc(q)-2q], (3.78)
I =

The solution of (3.66) and (3.67) is a slightly modified version for

that obtained by Goldstein and Rosenhead[azl (page 184). Thus,

Gg(n) = 0 { 2 [ 1+ —sf- ] "2 erfc(n) + [ 1 -2 nz ] erfcz(q)

- [ 1 - & ] erfc(n) - /_f [ 1+ & ] ne T

In x In
5 ’ 8 ’ 4 2
- n =_ _-n = _- "
+ n e erfc(n) + e - e }, (3.79)
./—; 3n n
2
2 2 -
Gg(n) = 4 {[ n - -%— ] erfc (n) - 3 n e 1 erfc(n)
n
2
s oF B - aegth | ertern
4 e 2 4 2 ) ,.2
- =N = _ _-n < _ _-°n
+/_”_[1+31r]qe -31re +1re }, (3.80)

The total solution is therefore



26

2

L 2 S .n
Yo = Q v t {[ 1+409 ] erfc(n) - ne -1 }
2R /—

x

+

a/at { 2 - erfe(n) } n

+

2 2
2yt { = e .24y erfe(n) } sin(d)
I =

2

+2 [at {72__- (1-e" )+3r;erfc(r;)-2r)}sin(0)
x

+

nc{z [1+§£—] n erfc(q)+[1-21)2:| erfe. (n)

2

-[1-—“— erfc(n)-L[1+—2—]qe'"
3x J= 3x
2 2 2.2
+ £ ne n erfc(n) + £ e~ M . A e~ " } cos(#8)
/—; 3x ”

2
+4 ¢t { ( 02 - -%— ) erfcz(n) - ;E: n e erfe(n)

x
+[<—1— =y -3+ ]erfC(rl)

2 2 2

4 _]._ 4 - 2 _-?n
+ /_; (1 + ) n e -3, + . } sin(d) cos(8) ,

(3.81)

Integrating once more, we find

"
¥ =2 fat [ ¥y on

1/2
-210[at3] {(1+Lr’2)qerfc(q)+—l—— (e - 1)
6

©

4 2 g 2 1 2
-n - n e } +2at { n -— (2n -1) erfc(n)
I

2 —_— 2
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2 3 - }
- n erfc(n) + sin(4)
3 6/ x

2
2 2
+ 4at { 2. n + -3—(27, + —l-)erfc(n) L2 ne ™ - g - L1 sincs)
/= 4 3 2/ = 4 }

+ 2/ at {-i—[laf—‘*—]q’erfc(q) -—2—[1+—‘*-]q2 e"

3/ = 3x
2 2 2
+ b [7 ] —8—] e 4+ nerfc (n) - = e erfc(n)
3/ 3x 3/«
2
—16 2 3 2 4 2 -9
+ erfe(/ 2 n) - n erfc (n) + n e erfc(n)
3/ 2x 3 3/
2
2 -2 [ 4 ]
- n e - 1 - n erfc(n) - erfc(n)
3n 3= 3 =
= v-2]}
+ 1+ - ./_2 cos(4)
3./-_1' Ix
hd 2
2 3 2
+8/a ¢t { -l e erfc(n) - - erfc(/ 2 n) + 1 n erfc (n)
6/ = 3/ 2= 3
2 2
- =2 )P e erfem) + g e L Ay erfc’ ()
3/ = 3 2
2 2
1,4 3 | -n 1 4 2 -9 4 s
+ ( - Ye + 1+ Yn e - (1 + ) n erfc(n)
./_1r In 2 ./_1r In 9n

+ —2— erfe(n) + (2 - 2 ) 5 erfe(n)
3/ n 2 3n

1 8 4
+ ( - -1) } sin(f) cos(8) . (3.82)
J 3/ 2 9~
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3-4 Composite Solution

Until now we been developing two different solutions, each of which
is valid in its separate time domain. Although the solutions are
matched in an overlapping region, our goal now is to form a single

uniformly-valid composite solution. We construct the composite solution

by the method of additive composition[38], i.e., by adding the inner
solution to the outer solution, and then subtracting the common part.
The common part is the matched quantity in each of the matching

processes. Thus, we have,

Common part = 2 (-ﬁ-)l/2 (n - 1 Y( 2 sin(8) - Q)
e n

1/2
v [ [0 )
+ —l%— [;EE]I/z v sin(4) + éﬁf [ ;&5 n-n - 'i‘ ] sin(6)
+;1§:[1+;1;-/—2] [—;{EI/QOCOS(G)

+ -8 [ 8 4 | 1] [—T—] sin(8) cos(f) ,
J= L3 9 x

(3.83)

where T = ¢ t = UQ : / a,, and g is the dimensional time. Also,

1/2 1,2
c@ey/ =Ry
By using the inverse of transformation (3.8), the composite solution

valid to second order is given by
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2 1
¥ = - 71 T8 + 8L +4T) &n(x/(1 +9T)) + (r - =) sin(d)

1/2

- 0 n(x) + [0-2—%3“1][1T+2[—;T§] ] - 20yTfn(r)

2
+2 (-';{—)1/2 [-1- e’m - erfe(n) ][ 2 sin(f) - 9]
e [

3,12 2
—1  _-n
+2 v 0[ ] {( 1+ L n ) n erfc(n) + e
6 J

x

2

R S ’e-n }
3/«

+2—9—I{ A (1-295" ) erfe(n) + —— p " }
R e 4

2/ =
s 12 2
+4 [ ] { — (& n -5)e - —i— na erfc(n) } sin(4)
2
41T (3 ., % 1 3 -
+ (2n + Yerfc(n) - ne sin(9)
Re{ 4 3 2 = }

12
B (R (1o e - [ ]
e 3 3x 3/—; In
2 2
_L_[ _L] -n 2 AL -
+ 7 - e + n erfc (n) - e erfc(n)
3/ = 3x 3/«

2

+ —k& erfc(/ 2 n) - -2 na erfcz(q).+ ~4 n2 e " erfc(n)

3/ 2x 3 /=
2
2 % [ b ] }
- n e - 1 - n erfc(n) - erfc(n) cos(8)
In 3n 3=
M A S VI 8 Iy o+ pterte]
+ 8[ ] e ! erfec(n) - erfe(/ 2 n) + n erfc (n)
Re 6/ % 3/ 2x 3
2 2
J— q2 e’ erfc(n) + L n e'2” g n erfcz(n)

3J—; In 2
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2
+_l_(.£'__J..)e'"+_L(1+.A_)’12e

2

- s
L

/_; Ix 2 ./_x 9x 9x

)n erfc(n)

+ —2— erfc(n)+ (== - —&=)y erfc(n) } sin(d) cos(f) + O(Ce’) . (3.84)
/= 2 3x

where n is now

R 1/2
n - (r % YT ) [—EL] . (3.85)

3-5 Vorticity Distribution On The Cylinder

The vorticity is defined by equation (2.5). On the surface, the
value of the vorticity is of major interest because it describes the
development of the flow field as time advance. It also indicates, in
most cases, the shear resistance to the motion, and the point at which
separation is likely to occur. 1In our case, however, this is not true

because of the moving boundary. The shear stress is given by

S W A T B
rf R ar r r a8 !

which reduces on the cylinder surface to

a v
, -—1—[—1- ;ﬂ] (3.86)

rd R ar
e

2
where r - : / pU_, t are the nondimensional and the dimensional
rf ré © rf

shear stress in the r-§ plane. On the cylinder surface we have,



4,4 (3.87)

Thus only when the meridian velocity is zero the two expressions for o

and w are proportional.
By making use of (3.87), and substituting from (3.43) and (3.81), and

performing the necessary manipulations we obtain

_RL /2 4 TR q1/2
i surface ) [ 2[" T ] * 1] sin(8)+ 4(1 + 3 x)[ Lg ] sin(d)cos(8)
- Rg 1/2 7 T R 1/2 s T R
+{ 2 [«T] "2 '1[——-1-,r ] . P [_,,Q']COS(O)}Q
TR 12
+ 3‘7[—"1'" ] sin(d) , 3.88)
and
R 1/2
- . Ra
i surface B Ry { [ 2[' T ] + 1] sin(4)
TR 1,2

+ A+ 3 [—"—L] sin(8)cos(f)

- [ —g— + [—i%—] & + —ZL -y[ r I:e ]1/2 + % [ T“Re] 7 cos(&)] Q

T R 1/2
+ 31[%] sin(d) } . (3.89)
It is clear that

T

-20]/Re

- w
rf [ |
surface surface
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3-6 Pressure Distribution On The Cylinder

The pressure distribution on the cylinder surface is of principal
interest. It provides the necessary information on the forces acting on
the cylinder, i.e., the 1lift and the drag forces. The conventional way
of expressing the pressure is by means of a dimensionless pressure

coefficient, which is defined as

Here, p, is a reference pressure, usually the pressure at a predefined
location. For convenience, we take the value p, at the forward

stagnation point, i.e., at § = n = 0.

The equation of motion ( in cylindrical polar coordinates ) in the
meridian direction, for an incompressible fluid with constant

properties, is given by

av av v, av v_vVv 1 ap 2 av v
- + v, g + g 4 + 9 - 4+ vy [V \f + -2; —£ . -% ]
at ar r a4 r p xr 86 r 46 r

Nondimensionalizing, as before (chapter II), together with

- -
P 2
p U,

one obtain after dropping the bars



P

5

“r



av av v av v._ Vv
_0 + v, [ + [ [ + r 0 _
aT ar r aé r
1 dp 1 2 2 av v
) + [vVa — —=. 4 ] (3.90)
T ad Re r a4 r

By integrating this equation on the cylinder surface from § = 0 to

§ = §, the needed pressure coefficient is obtained, viz.,

8
1 dw
c, =1+ fr)J'o [ -2 + ar] as . (3.91)

substituting and after some work

1

TR 1%
c, - [21 (144T) + 1[—L]2 .~ —1—][ cos(8) - 1]

L4

I x
(e [1e )] ) (emean - 1)
)

i [52] e (.92)

3-7 Drag, Lift and Moment

The drag on the cylinder has two parts, the form (or pressure drag)
and the skin-friction drag. However, because of the moving boundary,
the form drag is no longer arises from pressure effects alone. However
we still refer to it here as pressure drag, since the contribution of

the moving boundary drops out of the equations. Thus:

- = -
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D
c -—
D 2
P p U, a,

2%
- (1+1t)I° - O cos(§) dé ,

where - is the normal stress, whereby

Q| @
72

2x
c, - (1+1c)J' ] [ - p+ Ez_ ] cos(f) df
0
P e
2%
= (1l+yt) I C cos(f) dé
0 P

where Cp is the pressure coefficient, given by (3.92). The above

definition gives positive CD in the flow direction. Integrating, we

obtain

sin(8) dé . (3.93a)
r=1+yT

Substituting for w and integrating we obtain,

1/2
C. =n( 1+7T){-21(1+‘1T) b —l— 4 —I—] -—1—}.(3.931:)
Dp JxTR [ n Re Re

The frictional contribution to the drag coefficient is definied as

D

C. - —t
D¢ 2
p U, a,
2% av v av
- ﬂfi!&lj'o [ar" . r” + aor] sin(8)dé
e

2x
- ﬂf'&lj'o w sin(d) df , (3.94a)
e
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where we again define CD such that it will be positive in the flow
£

direction. Substituting and integrating, we find

R 1/2 TR 1/2
¢, -I—QR—*—’LD-{z[—L] +1+31[—*’=] } (3.94b)
f e T

The total drag coefficient is the sum of (3.94b) and (3.93b), viz.,
- C + C
Dp Df

1/2
-«(1+1T){-21(1+1T)+—L—+-,—T— —1-}
J =T Re [ n R ] R

St G - RAEERERY o B RS

Similarly, the pressure lift is

2%
CL = (1 + v4t) I C sin(4) dé , (3.96a)
P o P

and the skin-friction lift is

2x
c,_ - QRL”-‘-)-J‘ w cos(8) df .
£ e o

The 1ift force is positive in the direction normal to flow. By

substituting and integrating, we obtain

¢ --z,ou“c){g?[;_x-_u][_r.]‘/’ }.

L 2 n R
P e
(3.96b)
2%
CL - £l§1£l I (- r 0) cos(9) dé (3.97a)
3 e o r

1/2
8 I
- T3 (1+7T)["Re] a |, (3.97b)
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where, CL is defined to be positive downward. The total lift is

£
therefore
C, =C, +C
L Lp L,
1 4 5 T 1'7/°
--2«0(1+~,c){2k+[3”- 2’][’”{] }
e e
1/2
4 aemE] e

e

In order to maintain rotation of the cylinder, torque must be
applied to overcome the dissipation of energy by viscous effects. This

torque is defined through the torque coefficient as

C. - —i—
T 2 2
pUO a
_a I]’ 2% 2:2 ) vz
R ar r a4
e o r=(1l+yt)
2 2x
- ﬂ};ﬁ-ﬂ— j [w - 20] de (3.99a)
e o r=(1l+yt)

b’ (4 (3 (27
(3.99b)
3-8 Results

The results presented in the following pages are for the following
parameter values;

R, = 2R =100 and 500,
d e

Q =0.0 and 1.0 ,

v =0.05 and 0.1
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These parameter values are chosen as representative for the problem
under investigation, to explore the various physical effects. Note that
although the solution is valid only for small T, the graphs were plotted
for values of T up to 1.0, in order to show the behavior for large

times.

3-8-1 Stream Lines

The composite solution given by equation (3.84) is used to plot the
stream lines, using a specially coded subroutine written by the author
for this specific purpose. No smoothing of any kind is carried out;
only linear interpolation was used. We plotted equally-incremented
instantaneous stream lines ( a total 25 ) in the region enclosed by a
circular domain which is triple the cylinder radius. However, since we
have a moving boundary ( in the radial and tangential direction ), the
separation region is small in size; the plotting routine could not
detect this effects for small times. For this reason we include a
detailed sample plot of the stream lines for early times (see figures

III-1 and III-18).

3-8-2 Pressure Coefficient

The pressure coefficient, given by equation (3.92) indicate the
singular behavior of the flow. We note from the plotted figures that as
the Reynolds number increases the pressure coefficient decreases, after
the short adjustment period for the impulsive start. This occurs until
T = 1.0. The effect of increasing y is to reduce the average pressure
coefficient ( although it might increase the value of the pressure ).

It appears that higher-order solution should be derived, since the
present secoﬁd-order solution does not fully indicate the rotation

effect, as expected. The results obtained do not show any reasonable
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asymmetry of the pressure coefficient; furthermore equation (3.92) still
has some nonperiodic terms ( although of smaller order ). Those short-

comings are expected to be rectified with higher approximations.

3-8-3 Drag

In the first stage of motion, the cylinder displaces the fluid on
the surface with infinite acceleration. The cylinder thus experiences
infinite resistance of the fluid because of its impulsive motion. There
is also a discontinuity in the tangential velocity at the cylinder
surface. This discontinuity gives rise to infinite friction drag as
indicated by the graphs ( figures I1I1I-3, 7, 11, 15, 20, 26, 32, 38).

Thus, the general features are the singular behavior of the drag

coefficients at t = 0+, the sharp drop in the beginning and the gradual

drop for larger T. The effect of increasing the Reynolds number is to

increase the ratio [ ¢ / CD ] , which means a greater contribution
P f

from the pressure drag. The effect of increasing vy is to increase the
drag. This is expected, since high y will tend to push the fluid away
from the surface more rapidly, causing more resistance. Although
rotation tends to decrease the drag in most cases, this decrease is more
than offset by the effect of the expanding surface, which increases the

drag.

3-8-4 Lift

The lift starts from a value of zero, since the pressure and the
friction are initially uniform. The main contribution to the lift is
initially from the pressure. Then friction lift eventually becomes
dominant. Increasing the Reynolds number shows two effects. First, it

reduces the total 1lift, and second, it shortens the period for which the
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friction 1ift is dominant. The 1ift coefficients are presented in

figures II1I-21, 27, 33 and 39.

3-8-5 Moment
The moment coefficient also reflects the initial singularity of
impulsive rotation. It rapidly decreases until it become nearly

constant. As expected, the moment increases with increasing Rd’ vy and

8. The moment coefficient is presented in figures III-22, 28, 34 and
40,

3-8-6 Surface Vorticity

A vortex sheet, represented by the singular terms in equation

(3.88), forms on the cylinder surface at t = 0+. The vorticity
subsequently diffuses out into the fluid. The non-linearity of the
solution is indicated in the surface vorticity plots (figures III-4, 8,
12, 16, 23, 29, 35 and 41). The larger the Reynolds number, the larger
the initial surface vorticity, which produces a larger diffusion rate.
As time advances the maximum surface vorticity decreases. The effect of
¥ ( with the values used here ) on the surface vorticity is not clear in
the figures. However from equation (3.88) we can see that it increases
the surface vorticity. The value of the surface vorticity is affected
by rotation in a different way; it appears that the surface vorticity is
decreased early by the ( dominant ) singular Q term, which leads to the

very early separation.

3-8-7 Separation Progression
As described before, we predict separation by identifying the points
on the cylinder surface at which the shear stress vanish. The vorticity

graphs are helpful in following the progression of the separation
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points, keeping in mind the difference in magnitude (-2Q) between the
two values, vorticity and shear stress.
In general two recirculating zones appear at T = 0.4 for the non-
rotating cases. These zones gradually become larger. With rotation,
the situation is different; one recirculating region starts at once, and

another region appears later. The first region shrinks gradually, while

the second enlarges.
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Figure III-1 Typical flow Development with y = 0.05 , @ = 0.0

and Rd = 100 ,at T equal (a) 0.25 ,(b) 0.50 ,(c) 0.75 and (d) 1.0.
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Figure III-2 Development of Pressure
Coefficient G' .for Flow With

7=0.05,0=0.0 and R, - 100.

Ao 28 i
/ k I!-l'&
\ ./;-a.u
o {0 qo 1{H{eAo l\{\l{llﬂll/.l.

s
g
<

Figure III-3 Development of the Drag
Coefficients .Gy .Gy for Flow With
“n_ %%

1-0.05,0—0.0ndld—lﬂo.

Pigure III-4 Development of Surface
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Figure III-5 Separation Points
History Por Flow With
7=0.05, 0=0.0 and Ry - 100.
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Figure III-18 Typical flow Development with y = 0.05 , @ = 1.0
and Ry = 100 ,at T equal (a) 0.25 ,(b) 0.50 ,(c) 0.75 and (d) 1.0.
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CHAPTER IV

NUMERTCAL SOLUTION

The analytical solution obtained in chapter III by the method of
matched asympototic expansions to the second order is valid only for
small t. For large t we integrate the Navier-Stokes equations
numerically.

The choice of a suitable numerical scheme is dependent on the
nature of the problem to be solved, together with the required accuracy,
the time available on the computer, and the type of computer available.
It seems that most frequently-used schemes are first-order accurate in
time and second-order accurate in space. This is mainly because of the
complexity of higher-order schemes, and the extra time and memory
required in most cases. In fluid mechanics, there are two basic
methods, namely, the method of primitive variables, and the
vorticity-stream function method.

We preferred to use the latter method because there are fewer
dependent variables, requiring less memory; also, the speed of
computation is faster than for the first method. Although there are
many algorithms for the second method, we select the explicit forward-
in-time, centered-space for the vorticity equation and the Fast Fourier
Transform (FFT) for the Poisson equation. Although it has previously

been reported that[az]

this scheme often fails, even with a factor of
safety, it did worked very well for the present problem, because we
took advantage of the expanding boundary to obtain a much less

restrictive stability criteria.

51



52
4-1 Grid Structure
Due to the curved boundary on the surface of the cylinder,
rectangular grids are unsuitable for computation. The most common
coordinate system used in the study of flow over a circular cylinder is
the modified polar coordinate system. It transform the circular arc

into a flat boundary by
¢ = L (/. (e)) or r = r,(t)exp(nf) ,

0 = x¢ . (4.1)

Here we have generalized r, (the cylinder radius) to be a function

of t. Thus, for constant A{, meshes are finer near the surface of the

cylinder and coarser far from the cylinder.

As usual, the infinite outer boundary is simulated by a circle of
large diameter. This circle is chosen to be 30 to 50 times (depending

on the mesh size) the instantaneous diameter. Tests on numerical

accuracy show that this ratio is adequate. For the numerical
computations the mesh size most often used is A = —%'2'- 0.03125;

for reasons to be shown later, the denominator is chosen to be multiple

powers of 2, with A§ = 0.025. This gives us a total number of meshes
(memory storage) per variable of 41x64. Tests have been carried out to
determine the effect of changing these numbers; the results will be

presented later.

4-2 Formulation

The equations to be solved are

dw 1 [ 3 Lol a_ 1) 12
it " r 8r[“’aa]'ao[“’ar]}' Rve (2.23)

and
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2
Viyy=uw
where

2
ar r Jr r ad6

subjected to the initial conditions

¥(r,0,0%) = r sin(d) - v , rw=r, ,

¥(r,0,07) = r sin(4),

w(r,8,0") =0, r=r, ,
where from (2.29), for a truncated right cone,

rog (t) =1 + 4 t.
the boundary conditions are
¥(ro,0,t) = - v 6 (l+yt),
¥, (To,8,£) = A(l+ 7t),

and

Y = r sin(f) - y6(1l+yt), as r + o ,

w=20, as r - o ,

(2.

(2.

(2.

(2.

(2.

(2

(2.

(2.
(2.

As in chapter III we subtract the non-periodicity in 4§ a priori by

the following transformation

p= -9 (1L +t) + 9

Thus, dropping the superscript and making use of (4.1) yields

%o % wo k] R lev])

_1 2
- Vow,

R, 8(£,©)

and

2
Vy=g(f,t) wi§,(,t),

(4.

(4.

(4.

24)

25)

25b)

26)

29)

.27)

28)

30)
31)

using

2)

3)

4)
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where
2 2 2
a¢ ac
with
u-n(1+1t)-§§, (4.5)
v-g'? , (4.6)
and the Jacobian
g6,t) =mx (L+yt) o™ 4.7)
The boundary and initial conditions are now
¥(€,¢,0%) = ™ sin(xr), (4.8)
w(€,¢,0") =0, Ew0, (4.9
¥(0,5,t ) =0, (4.10)
$(0,5,6) =% (147t ' a, (4.11)
$=(1+qt) e™ sin(n), as r » o , (4.12)
w=0, as r -+ o , (4.13)

4-2-1 Finite Difference Scheme for The Vorticity Equation

As mentioned earlier,the algorithm used for the vorticity equation
is the explicit forward-in-time, centered-space finite difference

scheme, i.e.,

n+l _ At y [ n o, . 1
“13 7L T e yae LM T 3T -7 g ]
_ _AE_; [ (wu)™ . - ()™ . ]
AE gy i+ 7] i- 7.



Ay g 1,3+ 7 1,3- 7
o [y - 2 ]
+ w - 2w - w
A£2 8? Re i+1,] i,] i-1,j
—At n n n ]
+ w - 2w + w . (4.14)
AS'2 82 Re l i,j+1 i,] i,j-1

This scheme is of order ( At , A ? , AC 2) and is consistent with
equation (4.3).

The governing equations are quasi-linear with wvariable
coefficients, for which the stability criterion is difficult to apply.

Practical experience shows [44]

that instability usually begins as a local
phenomenon. We are thus considering stability as related to small
perturbations, such that second-order effects become negligibly small.
The assumption is that perturbations to the true solution will normally

be sufficiently small in magnitude that damping will result with use of

the proper stability criterion. While the Kreiss matrix theorem[43]

forms the basis for treatment of variable-coefficient problems, in
practice the Von Neumann condition is found to be a useful tool in
judging a difference scheme. Reference [43] stated that when a
difference scheme is found to be conditionally stable, the Von Neumann
condition nearly always gives the correct stability range, and that it
is only at the limits of the range that the analysis may need to be
supplemented. Thus we assume that the given problem is properly posed

and we make use of Von Neumann’s analysis of stability theory on the
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basis of Fourier analysis. We therefore assume a typical Fourier

component solution to equation (4.14) in the form

(1k,+ixs) J
w? j - W, W oe ! z . (4.15)

Here the wave number x, refers to the {-component variation, x, refers
to the wave number for the {-component, and j 1is the complex number

J -1 . The reference amplitude is modified by w" where w is the growth
rate factor and n is the index of time advancement.
Note that we must have
|lwl =1
if the component solution is to remain bounded as n becomes large.

We assume a first order velocity variation of the form

n n n
“i,J =u, (1 + 51,3)' ‘1,1 << 1,
n n n
Vi,J =-v, (1 + Ai,j)’ Ai,j << 1,

and we further simplify by assuming

nl-xz-n

substituting equation (4.15) into equation (4.14) we obtain

w=1+ 2.4t [ -l; + -13 [ cos(x) -1 ]

n
gy R, “ 88 A
A U, Vo
G Bt Brecvl ENETER
g AE a¢ 7 (l+yt)ag

or,

w-1+2a(cos(n)-1)-3/_2ﬂsin(§,c),

where
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_As_[_l_+_12_

a = n 2 ’
81 Re Aé AT
and
p__l_[_AL [_“_+"_] At + ]
J2 g R, b a¢ x (Leyt™)ag
Thus,
2 2 2
|wj = [ l1+2a (cos(e) -1) ] + B [ 1 - cos(x) ] , (4.16)
and,
l lz
d(cos(x)) 4 a [ 1+ 2a (cos(e) - 1) ] - 52 (4.17)
2 2 )
2 =8a . (4.18)
d(cos(x))

2
Since a is always positive, |w| has no maximum in (-1,1). After

2
some manipulation on (4.17), we also find that |w| has no minimum in

(-1,1). The only possibilities for an extremum is therefore at the end

points.

2
For cos(x) =1 , |w| = 1 and the stability condition is

identically satisfied. When cos(x) = - 1 we obtain

2 2 2
|w] =(l1-4a) +28 ,

which implies that

or
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2 2
x (1l+t?) Ry

At = .
IR s I =)
M s S lgw —=

Y Af
(4.19)
At each time step we evaluate At from (4.19), allowing for At to
be within a certain percentage (90%) of the calculated value. Because
the allowable At always increases as we advance in time, At was limited

here to a maximum value (usually At=0.01), in order to attain the
desired level of accuracy. In the above formula we use the value of g?
which gives the minimum At. This is the value at the surface or

2 2
g?—x (1 + «t)

4-2-2 Finite Difference Scheme for Poisson Equation
For Poisson equation, we used the standard second-order

discretization, which gives, for equation (4.4),

A¥% -3, (4.20)
where
FATIO000 . . . .]

IAIOO

0O0IATIO

>
]

| I A JM-2xM-2

and



where,
2 2
a=(p +1)/p ,
2 2 2
p = A& / AT
and
3 - (wz ,Ws N L ] L ] L] L ]
where
Wi - (¢i,l '¢i,2 ’ ’¢1,N)
Also,
B - (B,,By, -
with
B;= (By 1.B4 2 By W

and
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(<221 1 00
1 -22a1 00
0 1-2210 -

0 1)
0 0

01 -2a1

00 1 -2a

NxN



and

In all cases,

It is easy to see that we have M-2xN unknowns in M-2xN coupled
equations. A large class of modern methods for obtaining fast solutions
for elliptic equations are available. Because those methods require
complex coding, we decided to use the simplest and most common method in
use today, known as the Fast Fourier Transform (FFT). Although there
are many articles dealing with this important topic, we feel that they
overemphasize the final step, which is the economical evaluation of the

transform itself. We present here the necessary steps before using the

FFT.
Let us redefine the matrix A as
A-pz[P-2aI]NxN,
where
01000 . .. .001)
10100. .. .00
01010. .. .00
P=-]1001010...00
00....01010
(L10....00101 JNxN
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(45]

It is known that any matrix of the form

v 8 & & *° °  C a1 -
is called a circulant matrix. The matrix P is therefore a circulant

matrix. The eigenvalues for a general circulant C are

N
-1
- oyl
j=1
where
r, - cos(—zﬁk-) + 3 sin(—zﬁk-) . k=1,2,3,..... N
G A S
-e y 3=/ -1.
The corresponding eigenvectors are
-12 2 N-2 _N-1
Qk =N (1, Lo o T veveeens T o Ty ),
k=1,2,3,......... ,N

We thus conclude that the matrix A has eigenvalues equal to

A = 2 p2[ cos ( zﬁk y -1 ] , 4.21)
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and the resulting matrix of eigenvectors is

1 1 1 1 1
1 w wN-2 wN-l
1 w2 . . . . . wz(N'l)
1 w3 . w3(N-1)
Q = .. . . , (4.22)
1
1 B2
| 1 wN'l . . . . . w(N'l)(N'l) ]
where
2xa 3 .
N
w=e v ij=J -1
with
a=-1.
Now we define
¥; = Q 31 . (4.23)

For each i we have now

Q 31-1 +AQ zi + Qb =By

To diagonalize A we multiply by Q'l, which has the same structure as Q,
but with

a=+1.
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The process of evaluating Q'l B, is widely known as the FFT.Here

i

we used the original version of the scheme as proposed by Cooly and

Tukey[asl. known as Radix-2(which utilize having N = 2n, where n is an

integer). After solving the resulting tri-diagonal systems the same

algorithm is applied to evaluate the inverse transform( here ¢iis

evaluated from definition(4.21)).

4-2-3 Numerical Boundary and Initial Conditions
4-2-3a Boundary conditions

From (4.10) to (4.13) we have

¥(0,¢,t ) =0, (4.10)
$e(0.6,6) = x(L+78) @, (6.11)
P = (1 + qt) e”€ sin(x¢) , as r - o , (4.12)
w=0, as r -+ o (4.13)

It should be clear that we can not make explicit use of all of these
boundary conditions. We can only make use of them by relating them
implicitly. The boundary conditions (4.10), (4.12) and (4.13) do not
need differencing, so we use them as they are. Differentiating (4.10)
with respect to ¢ and substituting in (4.4), we obtain

3

9% _ dew) at € = 0 , (4.24)

¢ 3 ¢
and we have, by a Taylor series expansion about £ = O,

2 2 3 3
+ae s M2 s 0008 +0eae’) . (4.25)

Y -
i1 1 a¢ le=0 21 3¢ le=0 31 a¢ le=0

By substituting the Taylor expansion for the right hand side of (4.24)

in (4.25) we obtain
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2 2 3 [(g), - (gw)
¥y = b, +AER(L+ vt 0+ -gf— g Wi+ 'A§T [ W*kf ¥l,0¢ae'y.

In the above formula, subscript w indicates the surface of the cylinder,
or £ =0; we also made use of (4.10). Thus, we arrive at the boundary

condition for the surface vorticity:

a_ 3 %) 3aa e a™s | e Y
wn = — - = - 2L L s.26)
Aé g, &¢ g, 2 g,

4-2-3b Initial conditions and flow initialization

The initial conditions as given by (4.8) and (4.9) are unsuitable
for initializing the flow field. Since we are dealing with an

impulsivly-started circular cylinder, the flow will initially be

potential[zl. The potential flow is just the first-order outer solution
obtained in the previous chapter analytically (see Eq.(4.27)).
By making the necessary modifications due to different coordinates

used here, we have

¥(,5,t) = [ (l+yt)e = . :I—l—;—;z ] sin(nx¢) . (4.27)
+yt)e

When t = 0 the above formula yields the initial flow field. However
this same formula is used to determine the flow far away from the
surface of the cylinder at any time (for i = M, or £ = A§(M-1)). Use of
the initial condition (4.9) will not 1initialize the computation

process. To initialize the computation we use (4.27) in (4.26) with

1

W
w+1l

= 0. Although the results are initially in error,

experiements[47’48] have shown that slightly later the scheme (any

numerical scheme) will correct itself. That means that the very early
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numerical results are unreliable. This 1is still an unsolved problem

which require further research.
4-2-4 Scheme implementation

When using a finite difference method, the objective is to
calculate the values of ¥ and w at the intersections of the mesh lines
shown in Figure 4.1, for each discrete time step. We use (4.14) to

n

compute w?+} from known values of ¢? j Uy % j v? jx % ,g? and w? j

or w for all (i,j), in turn. Values for $?+} are obtained by

1
ix37 .3

using the advanced time value of w?+} in the poisson equation(4.20). We

use

n n
$i9+41 " Y3
(4.28)

u?,j+% =y (1 + 1tn ) - [ a¢

Then, by using suitable permutation we obtain

14 " 14l

-—l— un 1 +
i+ 7,3 4 i+l,j+ 3 i+l,j- 7

un
i-1,j+ 7 i-1,j3-

| -
[E—

Similar relationships can easily be obtained for other values.
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O=9P , w
U=u
Veav

Figure IV-1 Location of the Points of Definition of

‘the Variables Relative to the Mesh

4-3 Pressure Distribution and Pressure Coefficient

As in chapter III, upon integrating Navier-Stokes equation in the

§ direction, we obtain
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9
- (1 + qt) Io [ -24a + é: %f ] s

r=r,

changing to the £-and ¢ system of coordinats, this becomes

- ——h do
C, = 7(1 + 7t) JZ[ =(Tr0) R, 0 270 ]f- I (4.29)

Because "the trapizoidal rule for integrating periodic functions is

remarkably accurat"[agl

, we use it to integrate the above equation, and
for all other numerical integration in this study. Special care is
required for the integration of equation (4.29); and this will be

discussed later.

4-4 Drag, Lift and Moment

Following the same steps as in chapter III we obtain

2%
¢, - - <1+1c)2I [ —%— gf ] sin(8) dé .
P 0 r=r,

When using £-{ system of coordinates, this becomes

2 T w
Cy = - (l+yt) I [ T ] sin(x¢) d¢ . (4.30)
P 0 §=0

For the skin-friction drag we obtain

2
C. = Eilﬁlﬁl I w sin(x¢) d¢ . (4.30b)
e 0

Pg
The above definitions give positive drag in the flow direction. The

total drag coefficient is thus
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2
- x (1+9t) I { [—1- + 7(1l4+yt) ] 0 - —— sin(xc) dt .
0 R "R, 8¢ J,

(4.31)

The pressure lift is

22 1 g
‘L '(1+7°)I0[ R_ ar

] cos(f§) dd .
P e r=r,

The 1lift is positive downward. Adjusting to the £-{ system of

coordinates, CL becomes

P

C, = -(-1-;;:-‘1‘[2 [gfg] cos(x) df . (4.32)

L
P §=0

The skin-friction lift is given by
2(1+yt) 2
CL - R I -w cos(x{) d¢ , (4.33)
£ e 0
and the total lift is thus

C. =C;, +C (4.34)

Finally, the moment coefficient is given by

2 9
Cp = Xltae) J w | d¢ (4.35)
e 0 £=0

4-5 RESULTS
The numerical calculations were computed on the Albert Case Center

for Computer-Aided Design Prime Computer, at Michigan State University.

The calculations were carried out using a mesh system of M = 41 nodes in
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the ¢ (radial) direction, and N=64 nodes in the { (meridian) direction,

with A¢=0.025 and AC = 35~ = 0.03125 . 1In all of the figures T-t U/ a,

is defined as the nondimensional time, for consistency with the previous

chapters.

Although Ece and Walker (31] found it impossible to advance in
time beyond certain value (typically T = 1.125 for @ = 0.6), we had no
difficulty in pushing the calculation to larger T. The computation was
terminated at a value of T deemed sufficient for understanding the

phenomena.
4-5-1 Stream Lines

For the non-rotating case all of the computed results show the
formation of two primary bubbles. Although we could not predict the
exact time of their appearance from the graphs of the stream lines, the
separation-point plots (figures IV-6, 11, 16 and 21) indicate very
clearly the appearance of bubbles between T=0.4 and T = 0.5, for all

the Reynolds numbers studied. Secondary bubbles did not appear at Rd -

100, but at higher Reynolds number their existence is certain. The
higher the Reynolds number, the earlier their appearance. The size of
the primary bubbles increases with Rd' However the increase of vy not
only delays separation but also decreases the bubble size.

With rotation (0 = 1.0), primary separation takes place in the

o
upper portion of the cylinder, somewhere between § = 30 and 120. A

secondary separation bubble appears with increasing Rd’ but it

disappears at some later time. With rotation, separation begins right
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away after the motion has stared. Both primary and secondary bubbles
decay with time. A solid rotation of the fluid with the cylinder will

eventually be.
4-5-2 Pressure Coefficient

In order to integrate equation (4.29), which gives the pressure

coefficient as a function of both # and T, the trapezoidal rulelaa] is
used, since it is integrate periodic function with sufficient accuracy.
Accumulation of round-off error, in addition to numerical error, makes
it difficult to achieve perfect periodicity when we evaluating the
integral at different point on the circle. To overcome this difficulty,
we subtract the value of the error for a full period, divided into equal
factors for each integration step. We believe that the above non
periodicity due to integration is one of the main reasons that the
pressure coefficient is seldom presented in published (numerical ) work.

The acceleration for impulsive starting makes the pressure
extremely high in the beginning of motion, however, the pressure rapidly
decreases as time increases. Without rotation, the pressure has nearly
attained a steady state value at T = 10 (when the integration is
terminated). However, with rotation the pressure is unable to reach a
steady state at T = 10.

The effect of the separated flow region is reflected in the
pressure distribution, since in this region the pressure tends to be
constant. Increasing the Reynolds number decreases the average pressure

coefficient. Increasing y has the same effect as that of increasing Rd

since the fluid is pushed by the moving boundary at a higher rate. The
well known effect of shifting the stagnation point due to rotation is

clear in the pressure-coefficient figures.
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4-5-3 Drag

After the singular behavior at T = O+, arising from the impulsive
start, the drag coefficient decreases dramatically to a reasonable
value. It then increases continuously with time, but the rate of
increase is very slow. The latter increase in drag seems to be mainly
the consequence of the increase in size of the recirculating zone. For

the same reason, increasing Rd has exactly the same effect on the drag,

since it increases the separation-zone size.

4-5-4 Lifc

The fact that the lift coefficient starts from zero and increases
almost suddenly to a large value, may be caused by the rapid diffusion
of the vorticity into the fluid. The subsequent sharp drop in the 1lift
coefficient may be due to the interaction with the newly established-

flow condition, such as the appearance of the secondary bubble.

4-5-5 Moment
The singular behavior arising from the sudden rotation is clearly
indicated in the moment-coefficient figures. It increases with Reynolds

number, or <y, as expected. However, increasing vy sharply increases C T

after the initial adjustment period. Looking at both the moment-
coefficient and the separation figures, it seems that the change in the
separation region has an effect on the pressure coefficient as related

to the fluid pressure.

4-5-6 Surface Vorticity

The vorticity at the surface increases with the Reynolds number,

although it is singular at T = o*. This quantity might help understand
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some complex events, such as separation in the case of the non-rotating
cylinder. The diagrams (figures IV-5, 10, 15, 20, 27, 34, 41, 48, 53,
58, 65 and 72) explain the appearance of the secondary bubbles, in both
rotating and non-rotating cases.

In the rotating cases the vorticity on the rearward side of the

cylinder (150. to 240.) tends to be constant as we advance in time. By
comparing the rotating cases with the non-rotating cases, it seems that
the value of the vorticity is lowered by a constant in the former cases.
The maximum value of the vorticity increases with increasing Reynolds

number and 7.

4-5-7 Effect of Outer Numerical Boundary

For external flow the boundary condition at infinitely is placed
at a reasonably far distance from the body. It is clear that we must
check whether any appreciable error is incurred by the finiteness of the
domain.

Before introducing the results of such a test, it is appropriate
to note that two coordinate system are used in this work. The first is
the system that has the moving boundary, which is difficult to use for

numerical computation. Instead, we use the system defined by (4.1)

which allows us to move in physical space a distance [ (l+y(t+ALt)) -

(1+9t) e § away (in the radial direction) from the previous time-
y

space node. Since we are using an explicit scheme which transfers
signals to the next node at next time step, the signals will not be
restricted to a fixed computational domain.

Figures IV-74 to IV-83 indicate that the outer boundary may has no

effect on the computations. Comparing figures IV-74 to IV-77 with
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figures IV-3 to IV-6 and figures IV-78 to IV-83 with IV-23 to IV-28 it

shows that our choice of the outer limit is satisfactory.

4-6 Transforming to the Steady-State Three-Dimensional Case
In order to recover the original problem of three-dimensional
steady flow over a projectile at an angle of attack, we use the

definition of the forces and moment, and relation (2.7), thereby

2 z
c -p U ag I C, dz
Dtotal ® 0 D

2 z
- » U_ a I Cp(t(z)) dz .
0

similar expression may be obtained for the lift and moment coefficients

,1.e.,
2 z
CLtotal -p U, a I 0 CL(t(z)) dz ,
and
CT =-p U: a: I i CT(t(z)) dz .
total 0

for a truncated right cone, however different projectile shapes may be
substituted into this formula to obtain corresponding force and moment

coefficient.
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Figure IV-2 Streamlines Development with y = 0.05 , @ = 0.0
and Rd = 100 ,at T equal (a) 2.50 ,(b) 5.0 ,(c) 7.50 and (d) 10.0.
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Figure IV-7 Streamlines Development with y = 0.05 , Q@ = 0.0

and Rd = 500 ,at T equal (a) 2.50 ,(b) 5.0 ,(c) 7.50 and (d) 10.0.



77

1.0
c, 0.54 ;. 30.0
0.0 . v r . v £ 25.0
1] 120 180 240 300 340
-0.54 & 200
-1.04 oa‘ 15.0
-1.54
r-1.5 T -10.0 %
‘o 10.0 £ cn c°’
B 5.0 / |
-2.94
\ 01' Ll v Ll V'
-3.0- 0.0 2.0 4.0 60 8.0 00T
3090 + 25 T=35.0 _
-3.5 Figure IV-9 Development of the Drag

Coefficients Cn .cn ,co for Flow With
Figure IV-8 Development of Pressure P f 4

Coefficient c’ ,for Flow With 7~-=0.05,0=0.0 and .‘d - S00.

1-0.05.0-0.0uﬂld-5m.

“ _360.0
r-7.5 '
30 & 300.0-
2 i~ 240.0
10 T~ 2.5 KZ
. | ] 180.0
o o 140 2{0 240 X}o 340 330 R0 o —
-10 120.0
-20 \
s0.04
-3
T-5.0
-40 L1 0.0 T T v

0.0 2.0 4.0 6.0 8.0 10.0T

Figure IV-10 Development of Surface

Figure IV-11 Separation Points
Vorticity o for Flow With

History For Flow With
4 =0.05, 0= 0.0 and Ry = 500. 4 =0.05 , O =0.0 and Ry = 500.



78

Figure IV-12 Streamlines Development with y = 0.10 , @ = 0.0
and Rd = 100 ,at T equal (a) 2.50 ,(b) 5.0 ,(c) 7.50 and (d) 10.0.
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Figure IV-17 Streamlines Development with y = 0.10 , Q@ = 0.0

and Rd = 500 ,at T equal (a) 2.50 ,(b) 5.0 ,(c) 7.50 and (d) 10.0.
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Figure IV-67 Streamlines Development with y = 0.10 , @ = 1.0

and Rd = 300 ,at T equal (a) 2.50 ,(b) 5.0 ,(c) 7.50 and (d) 10.0.
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CHAPTER V

CONCLUSION AND DISCUSSION

We shall compare the numerical and the analytical solution, and
then make some general conclusions. Because of the initialization
error, the numerical solution for the small time after the start of
motion is not valid. Hence, good agreement is not expected in this time
interval. There is subsequently a time interval of overlap during which
both the analytical and numerical solutions are valid. Figures V-1 to
V-14 are shown for this purpose. The lack of agreement is obvious in
the early stage of motion. The numerical results subsequently becomes
independent of the initial effects, and agreement is excellent,
especlally for the cases without rotation. The surface vorticity, which
is the major variable used in the computations, shows excellent
agreement of analytically and numerically calculated values. The
numerical values for the pressure distribution show the expected shift
of the stagnation point, while the analytical solution did not. This
discrepancy may be reduced and perhaps

eliminated, by including the necessary higher-order terms in the
analytical solution.

The process of using quantities obtained from the numerical
solution as input to compute derivatives or integrals adds additional
error. This arises when we integrate the vorticity at the mesh points
in order to obtain the drag and the lift. This error can be recognized
by comparing the drag ( lift ) figures for the analytical and numerical

solutions and the moment coefficient CT for the above solutions.
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The main objective of the present work has been to compute and
understand the nature of the forces and the moment acting on a spinning
projectile at angle of attack. The Navier-Stokes equations were solved
using the method of matched asymptotic expansions for the initial stage
of motion, and the forward-in-time centered-space explicit numerical
scheme for (the vorticity equation) and the Fast Fourier Transform (for
Poisson equation) were used for the later stage of motion. From this
study the following major conclusions can be drawn:

1- The cross-flow analogy is a powerful tool for solving complex
three-dimensional problems such as the present problem one. Our results
show that both solutions (Numerical and Analytical) successfully predict
the flow characteristics.

2- The increase of the surface expansion speed y (or equivalently, the
lowering of the angle of attack, a ) has a direct effect on separation.
Separation is delayed when y increased. This effect is opposite to that
of the Reynolds number, which delays separation when decreased.

3- A pair of secondary bubbles appears at higher Reynolds numbers. The
symmetry is destroyed by rotation.

4- The drag is nearly constant after the singular start.

Although satisfactory results have been obtained, we recommend
investigating the effect of the higher-order analytic solution in the
case when there is rotation. We expect that the present results for the
case of the rotating cylinder can be improved when higher-order terms
are added. On the other hand extending the current numerical solution
to a higher order of accuracy probably will not improve the results
significantly. We recommend the trial use of alternative numerical
schemes to investigate this problem. We note that numerical schemes
that have been adapted for moving boundaries in problems arising in

fluid mechanics are few.
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