ABSTRACT

COMPARATIVE STUDY OF PHENOLIC COMPOUNDS IN CHERRY ROOTSTOCKS

By

Kyung Sang Yu

Sweet cherry trees grafted on Mahaleb rootstocks (P. mahaleb) show incompatibility symptoms after several years of growth in the orchard, while those grafted on Mazzard (P. avium) do not show such symptoms. The cause of this incompatibility is not known. Several groups of biochemical compounds have been suggested as causal agents: cyanogenic glucosides, alkaloids, proteins, amino acids, and phenolic compounds. In this study, the phenolic compounds occurring in Mazzard and Mahaleb seedlings were evaluated and compared to determine their role in cherry graft incompatibilities.

Total phenolic compounds of leaves, stem, and root bark were measured at two-week intervals during 5 months of active growth. The levels of phenolic compounds in these tissues increased during the first two months, then stabilized. Mahaleb root tissues, however, showed marked variation during this period. The two rootstocks differed

significantly in total phenolic compounds in all tissues tested in that Mazzard tissues contained 1.5 to 3 times more phenolics than Mahaleb. Both Mazzard and Mahaleb had higher levels of total phenolic compounds in the bark than in the leaves. Greenhouse-grown cherry seedlings of both species contained markedly lower levels of total phenolics than those grown in the field.

Methanol extracts and centrifugal sap of fresh tissues were examined for phenolic composition. The following compounds were identified on the basis of (1) color reactions, (2) Rf's in paper chromatography and thin layer chromatography, (3) retention times in gas chromatography, and (4) ultraviolet spectra. Compounds found in only one of the two species are underlined.

Mazzard

- Leaf . . . o-coumaric acid, p-coumaric acid, caffeic acid, chlorogenic acid, p-coumarylquinic acid, coumarin, kaempferol, quercetin, dihydrowogonin, d-catechin, epi-catechin.
- Stem bark . . . o-coumaric acid, p-coumaric acid, coumarin, chlorogenic acid, p-coumarylquinic acid, dihydrowogonin, d-catechin, epi-catechin, leucoanthocyanidin.
- Root bark . . . o-coumaric acid, p-coumaric acid, coumarin, chlorogenic acid, p-coumarylquinic acid, dihydrowogonin, d-catechin, epicatechin, leucoanthocyanidin.
- Sap . . . coumarin, dihydrowogonin.

Mahaleb

Leaf . . . o-coumaric acid, coumarin, herniarin, kaempferol.

Stem bark . . . o-coumaric acid, coumarin, <u>herniarin</u>, d-catechin, epi-catechin, leucoanthocyanidin.

Root bark . . . o-coumaric acid, coumarin, herniarin, d-catechin, epi-catechin, leucoanthocyanidin.

Sap . . . coumarin, herniarin.

The possible roles of these compounds in incompatibility are discussed.

COMPARATIVE STUDY OF PHENOLIC COMPOUNDS IN CHERRY ROOTSTOCKS

Ву

Kyung Sang Yu

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Horticulture

Dedicated to my father and mother

ACKNOWLEDGMENTS

The author wishes to express his sincere thanks to Dr. Robert F. Carlson for his assistance, guidance, and understanding throughout these studies.

A special expression of gratitude goes to Dr. Frank
G. Dennis for his suggestions and encouragement throughout
the study and the final editing of the manuscript.

Appreciation is also expressed to Drs. Alvin L. Kenworthy, Alan L. Jones, and Matthew J. Zabik for serving on the guidance committee and for the critical review of the manuscript.

Special appreciation is due to his wife, Youngsook, for her encouragement, patience, and sacrifice during the course of graduate study.

TABLE OF CONTENTS

																	Page
LIST	OF	T?	ABLI	ES	•	•	•	•	•	•	•	•	•	•	•	•	vii
LIST	OF	F	IGUI	RES	•	•	•	•	•	•	•	•	•	•	•	•	x
INTRO	DU	CT	ON	•	•	•	•	•	•	•	•	•	•	•	•	•	1
REVIE	W	OF	LIT	rer	ATU	RE	•	•	•	•	•	•	•	•	•	•	3
ı.		Gra	aft	In	com	pat	ibi	lity	y •	•	•	•	•	•	•	•	3
		A. B.					and ili				rry	•	•	•	•	•	3
			1 . 2 . 3 . 4 .	•	Eff Env	iro	ms of nmen	nta:	l e	ffe	cts	•	•	•	•	•	4 5 6 8
		c.	Ca	aus	es ·	of	inco	cmp	ati	bil:	ity	•	•	•	•		8
			1 . 2 . 3 .		Ro1	e o	ica: f v: mica	irus	• ses	•	•	•	•		•	•	8 11 14
					a. b.		ide: eci:		-	mpo	unds	•			•	•	14 16
						am pr cy	kalo ino ote: ano eno.	ac: ins gen:	ids ic	• comp	oour	nds		•	•	•	16 17 17 18 18
II.							ic (nds	in	Gra	ft.	Ind	com	-	18
		A.	Pl				cal s a										18

				Page
	В.	Evidence for the role of phenolic com-		
		pounds in incompatibility		21
	c.	Evidence for translocation		23
	D.	Possible mechanism of action in incom-	•	
		patibility	•	25
III.	Phe	nolic Compounds Identified in Cherry		
		issues	•	29
MATERI	ALS	AND METHODS	•	34
I.	Sea	sonal Variations of Total Phenolic Com-		
	p	ounds	•	34
	A.	Plant material	•	34
	В.	Extraction	•	34
	C.	Quantitative determination	•	35
II.	Tdo	ntification of Phenolic Compounds in		
***		ethanol Extracts of Greenhouse-grown		
		herry Seedlings and Determination of		
		elative Amounts	•	35
	Α.	Plant material	•	35
	В.			36
	c.	Hydrolysis		38
	D.		•	38
		1. Paper chromatography		38
			•	41
			•	41
		3. Gas liquid chromatography	•	
		4. Ultraviolet absorption spectra	•	43
		5. Sources of reference compounds	•	43
	E.	Quantitative determination	•	43
III.	Ide	ntification and Relative Amounts of Phe	_	
	n	olic Compounds in Centrifugal Sap	•	45
	Α.	Plant material	•	45
	в.		•	45
	C.	Fractionation of extract		46

															Page
RESULT	S ANI	DIS	cuss	ION	•	•	•	•	•	•	•	•	•	•	48
I. II.	po	sonal ounds ntifi	in	Fiel	.d-0	row	m (Chei	cry	Se	ed1	ing		•	4.8
	Me Ch	ethan nerry elati	ol E See	xtra dlir	icts igs	of and	Gı	reer	nhoi	use	-Gr	own	•	•	52
	A. B.	Tota Pape								•	•	• •	•		52
	с.	ex	trac	ts	•	•	•	•	•	•	•	•	•	•	54
			rk e	xtra	acts	· .	•	•	•	•	•	•	•	•	66
	D.		erry	roc	ot k	ark	e e	ktra	act	s.	•	•	•	•	72
	Ε.	Gas ph	enol									•	yze •	•	72
III.		ntifi olic											Phe	-	87
	A. B.	Ethe Neut					ethy	/l a	ace	tat	• e f :	rac	tio	ns	87 95
IV.		drol												f,	
		ahale					•	•	•	•	•	•	•	•	101
	A. B. C.	Stem Root Leaf	bar	k ex	tra	cts		•	•	•	•	•	•	•	101 108 111
DISCUS			•		•	•		•	•	•	•	•	•	•	118
SUMMARY			CLUS	IONS	}	•	•	•	•	•	•	•	•	•	124
SUGGESI	CIONS	FOR	FUR	THER	ST	'UDY	OF	r GF	(AF	r RI	ELAT	101	1 –		
SHIPS						•	•	•	•	•	•	•	•	•	126
T.TTPDA1	HIDE	CITE	n .	_	_	_									129

LIST OF TABLES

Table		Page
1.	Phenolic compounds occurring in cherry trees .	33
2.	Weights of tissues used for extraction of phenolic compounds	36
3.	Reagents used for phenolic compounds	40
4.	Sources of reference compounds	44
5.	Total phenolic compounds in Mazzard and Mahaleb tissues from greenhouse-grown cherry seedlings	53
6.	Color reactions of phenolic compounds extracted from Mazzard and Mahaleb leaves, hydrolyzed, and purified by paper chromatography	57
7.	Rf values of phenolic compounds extracted from Mazzard and Mahaleb leaves, hydrolyzed, and separated by two-dimensional paper chromatography. The compounds were rechromatographed together with reference compounds in six different solvent systems	58
8.	Rf values of phenolic compounds extracted from Mazzard and Mahaleb leaves, hydrolyzed, and separated by two-dimensional paper chromatography	59
9.	Spectral characteristics of partially purified, hydrolyzed compounds from Mazzard and Mahaleb leaves, compared with those of reference compounds	60
10.	Relative amounts of phenolic compounds in Mazzard and Mahaleb leaves based on spot size and color intensity on two-dimensional paper chromatograms after application of	62
	FeCl ₃ -K ₃ Fe (CN) reagent	02

Table		Page
11.	Color reactions of phenolic compounds extracted from Mazzard and Mahaleb stem bark, hydrolyzed and chromatographed on a two-dimensional paper chromatogram	. 69
12.	Rf values and relative concentrations of phenolic compounds extracted from Mazzard and Mahaleb stem bark, hydrolyzed and chromatographed on a two-dimensional paper chromatogram	. 70
13.	Color characteristics of phenolic compounds extracted from root bark of Mazzard and Mahaleb, hydrolyzed and chromatographed on a two-dimensional paper chromatogram	. 75
14.	Rf values and relative concentrations of phenolic compounds extracted from Mazzard and Mahaleb root bark, hydrolyzed and chromatographed on two-dimensional paper chromatograms	. 76
15.	Retention times and concentrations (mg/g fresh weight) of phenolic compounds extracted from leaves, stem bark, and root bark of Mazzard and Mahaleb seedlings as determined by gas liquid chromatography	. 86
16.	Comparison of hydrolyzed phenolic compounds in extracts of leaf, stem bark, and root bark of Mazzard and Mahaleb seedlings	. 88
17.	Color reactions of phenolic compounds in the ether fraction of Mazzard and Mahaleb sap extract. The compounds were chromatographed on two-dimensional paper chromatograms and sprayed with phenolic reagents	. 92
18.	Rf values of phenolic compounds in the ether fraction of Mazzard and Mahaleb sap extracts on a two-dimensional paper chromatogram	. 93
19.	Retention times and concentrations of coumarins extracted from centrifugal sap of Mazzard and Mahaleb as determined by gas liquid chroma-	
	tography	. 94

Table			Page
20.	Color reactions of phenolic compounds occurring in neutral and acidic ethyl acetate fractions of Mazzard and Mahaleb sap. Compounds that occurred in the ether fraction were omitted	•	98
21.	Comparison of phenolic compounds in Mazzard and Mahaleb sap extract		102
22.	Color reactions of unhydrolyzed phenolic compounds occurring in Mazzard and Mahaleb root and stem bark extracts	•	105
23.	Rf values of unhydrolyzed phenolic compounds occurring in extracts of Mazzard and Mahaleb root and stem bark. Compounds were chromatographed on a two-dimensional paper chromatogram	•	106
24.	Color reactions and Rf values of unhydrolyzed phenolic compounds occurring in Mazzard and Mahaleb leaf extracts. Spots occurring in stem bark were omitted	•	114
25.	Comparison of unhydrolyzed phenolic compounds in extracts of leaf, stem bark, and root bark of Mazzard and Mahaleb seedlings	•	115
26.	Comparison of known phenolic compounds in extracts of leaf, stem bark, and root bark of Mazzard and Mahaleb seedlings	•	117

LIST OF FIGURES

Figure	e	Page
1.	Procedure for extraction and purification of phenolic compounds	37
2.	Procedure for extraction and purification of centrifugal sap	47
3.	Seasonal variations of total phenolic compounds in field-grown cherry seedlings	50
4.	Paper chromatograms of hydrolyzed phenolic compounds extracted from Mazzard and Mahaleb leaves	56
5.	Paper chromatograms of hydrolyzed phenolic compounds extracted from Mazzard and Mahaleb stem bark	68
6.	Paper chromatograms of hydrolyzed phenolic compounds extracted from Mazzard and Mahaleb root bark	74
7.	Gas liquid chromatogram of a mixture of standard phenolic compounds	79
8.	Gas liquid chromatograms of hydrolyzed phenolic compounds extracted from Mazzard and Mahaleb leaves	81
9.	Gas liquid chromatograms of hydrolyzed phenolic compounds extracted from Mazzard and Mahaleb stem bark	83
10.	Gas liquid chromatograms of hydrolyzed phenolic compounds extracted from Mazzard and Mahaleb root bark	85
11.	Paper chromatograms of phenolic compounds in the ether fraction of Mazzard and Mahaleb sap extracts	90

Figur	e		Page
12.	Paper chromatograms of phenolic compounds in the neutral fraction of Mazzard and Mahaleb sap extracts	•	97
13.	Paper chromatograms of phenolic compounds in the acid fraction of Mazzard and Mahaleb sap extracts	•	100
14.	Paper chromatograms of unhydrolyzed phenolic compounds in Mazzard and Mahaleb stem bark .	•	104
15.	Paper chromatograms of unhydrolyzed phenolic compounds in Mazzard and Mahaleb root bark .	•	110
16.	Paper chromatograms of unhydrolyzed phenolic compounds in Mazzard and Mahaleb leaf tissues		113

INTRODUCTION

Mahaleb (<u>Prunus mahaleb</u>) and Mazzard (<u>P. avium</u>) are the two rootstocks generally used for sweet cherry (<u>P. avium</u>) cultivars. In the nursery Mahaleb seedlings are vigorous, uniform, and easy to bud. Sweet cherry cultivars budded on Mahaleb grow well in the nursery and for the first 4 to 6 years in the orchard. When the trees come into production, however, many show graft-incompatibility. Cultivars budded on Mazzard do not show this abnormality (Argles, 1937).

Several groups of compounds have been suggested as the causal agents of graft-incompatibilities including cyanogenic glucosides (Gur, 1968b), alkaloids (Mothes, 1955), proteins (Crane, 1945), amino acids (Tschiersch, 1963), and phenolic compounds (Thiel, 1954; Gur, 1968b).

Phenolic compounds are ubiquitous and yet specific in higher plants. Many phenolic compounds are phytotoxic (Pridham, 1960), and their inhibitory roles have been shown in germination (Hemberg, 1961; Evenari, 1961), shoot and root growth (Hemberg, 1961; Goodwin and Taves, 1950). The compounds also have been implicated in growth

regulation via the IAA-oxidase system (Galston, 1969).

Preliminary study showed that Mahaleb and Mazzard rootstocks differed in their phenolic composition. The possible role of phenolics as causal agents of graft-incompatibility prompted us to make a detailed comparison of the compounds in Mazzard and Mahaleb seedlings.

REVIEW OF LITERATURE

I. Graft Incompatibility

A. Definition and types

Graft-incompatibility may be defined as an inherent antagonism or discordant association between certain stocks and scions (Amos, 1936). It can be due to either failure of graft unions or factors other than graft unions (Luckwill, 1962).

Two types are generally recognized, which Mosse (1962) has termed localized vs. translocated incompatibility. The first type requires direct contact between the incompatible tissues. Reciprocal grafts of these are also incompatible. Use of compatible interstems eliminates the incompatibility. The second type does not require direct tissue contact, but occurs despite the presence of an intermediate stem piece. Reciprocal grafts may or may not exhibit incompatibility. Examples of "localized" incompatibility are the pear variety C₈ on quince A (Mosse and Herrero, 1951) and Oullin's Gage plum on Myrobalan B (Herrero, 1951). Examples of "translocated" incompatibility include Hale's Early peach on

Myrobalan B (Mosse, 1955) and lemon on sour orange (Calavan et al., 1951). The incompatibility reaction may be immediate, in which case the graft union either does not form or is short lived as in Cox's Orange Pippin on Malus theifera (Luckwill, 1962), and ornamental cherries (P. serrulata) on Mahaleb (Amos et al., 1936). Alternatively, it may be delayed until the plant is several years old, as is the case in certain sweet cherry clones budded on Mahaleb (Grubb, 1938). In fruit trees, decline often occurs when the trees begin to fruit (Garavel, 1954; Jimenez, 1957).

B. Incompatibility in cherry

1. Symptoms. The two principal rootstocks for sweet cherry cultivars are wild seedling types of Prunus avium (Mazzard) and P. mahaleb (Mahaleb). Mahaleb seedlings, which are easily budded and which produce vigorous trees in the nursery, have shown symptoms of incompatibility with sweet cherry cultivars (Grubb, 1938; Simons and Carlson, 1968). The symptoms generally occur only after 8 to 10 years. This fact, together with differences in response in different climates, has raised questions as to the true nature of this incompatibility. However, observations on growth rates and tree losses in many countries confirm that sweet cherry cultivars grafted on Mahaleb are generally shorter lived than those grafted

on Mazzard (Argles, 1937; Garner, 1967; Raptopoulus et al., 1959; Hilkenbaumer, 1952; Howe, 1927; Quinn, 1935).

Symptoms include constriction of the stock immediately below the graft union, premature defoliation, and a decline in vigor. Starch accumulation at the union is a characteristic symptom of incompatibility. However, vascular connections between stock and scion appear to be normal (Herrero, 1951).

2. Effect of scion cultivars. Cultivar effects on graft-incompatibility have not been carefully studied in sweet cherry/Mahaleb combinations. Symptoms do occur in many sweet cherry cultivars budded on Mahaleb. Trees often grow vigorously for a few years, then decline or die in a 5- to 24-year period (Garner, 1967; Howe, 1927; Fowler, 1933; Amos et al., 1936). In Michigan, however, Carlson (unpublished data) observed the different responses among sweet cherry cultivars on Mahaleb. Certain cultivars such as "Emperor Francis," "Hedelfingen," and "Stark's Black Hardy Giant" frequently show incompatibility symptoms, whereas cultivars such as "Vista," "Schmidt," and "Windsor" appear to be more compatible with Mahaleb. Philp (1930) reported a case of complete incompatibility among cherry cultivars. In California the sweet cherry 'Chapman' showed lack of affinity with the sour cherry 'Stockton Morello' but this could be overcome by double working. Ornamental cherry trees

also showed incompatibility on clonal selections of Mahaleb (Amos et al., 1936). Trees on the Mazzard selections grew vigorously but varieties budded on Mahaleb died by the end of the second season. At East Malling, Herrero (1951) noted that trees of the sweet cherry cultivar 'Frogmore' budded on rootstock F250 (sour cherry selection) were dying in four years. No cause could be found, so death was considered due to incompatibility. Grubb (1938) reported three cultivars 'Early Rivers,' 'Governor Wood,' and 'Waterloo,' incompatible with Mahaleb selections, F6/1/2, F8/1/10, and F8/1/12.

3. Environmental effects. Cherry trees are rather exacting with regard to climatic and soil requirements, growing best on light, moist, well-drained loams. Most of the commercial production in the United States is confined to the Great Lakes area and the Pacific Coast where moderate temperatures and humidity occur (Westwood, 1966).

The behavior of sweet cherries on Mahaleb seems to be closely related to environment. Failure of trees budded on Mahaleb has been reported in England (Garner, 1967), New York (Howe, 1927), Tennessee (McClintock, 1930), Virginia (Anthony et al., 1937), Michigan (Simons and Carlson, 1968), Canada (Anonymous, 1945), Germany (Hilkenbaumer, 1952), Greece (Raptopoulos, 1959), and South Australia (Quinn, 1935). Such trees are short lived and unproductive, whereas trees budded on Mazzard are vigorous,

productive, and long lived. However, trees have been successfully grown on Mahaleb in Utah (Coe, 1945) and California (Philp, 1930). In Utah, Coe (1945) found that Mahaleb was definitely superior to Mazzard. In California some growers preferred Mazzard, others Mahaleb (Philp, 1930). Also in California, Brooks (1950) recognized that the best rootstocks for sweet cherries varied according to soil and climatic conditions. There, the percentages of rootstocks used commercially for sweet cherries were Mazzard, 65%; Mahaleb, 30%; and Stockton Morello, 5%.

These striking differences might be related to environmental factors. Soil drainage in particular seemed to be related to tree losses. In Utah, where the orchard soil was a coarse gravelly loam with good drainage and aeration, trees on Mahaleb outgrew and outproduced those on Mazzard (Coe, 1945). Upshall et al. (1950) believed that poor soil drainage was the main cause of tree loss. In the Niagara district of Ontario, the authors found that most tree losses (sweet cherry/Mahaleb) occurred in orchards with poorly drained soils, whereas in well-drained soils, trees on Mahaleb outyielded and grew more than those on Mazzard.

Although the basic causes of graft-incompatibility are genetic, symptom expression may be governed by environmental factors (Chang, 1937). Soil drainage conditions and other environmental factors may thus

accelerate or delay expression of incompatibility in sweet cherry trees on Mahaleb. Possibly there is no true incompatibility between these two species; trees may fail simply because Mahaleb cannot tolerate poor soil drainage. In the same area, however, sour cherry (Prunus cerasus) trees tolerate poor drainage conditions better than sweet cherries. Therefore an inherent factor in sweet cherry accelerates tree decline.

4. Reciprocal grafts. There are a few reports on reciprocal grafting of sweet cherry on Mahaleb. Hedrick (1914) reported that reciprocal grafts of Mahaleb on any cultivated sweet cherry failed at Geneva, New York. However, Cummings et al. (1933) found that Mazzard actually grew better on Mahaleb stock than on its own roots, whereas Mahaleb grew well on both its own roots and on Mazzard during ten years' trial in Vermont.

C. Causes of Incompatibility

1. Anatomical. The underlying causes of graft incompatibility are unknown (Mosse, 1962). Special attention has been paid to anatomical studies on the assumption that the graft union is a mechanical barrier to translocation. Chang (1937), from his studies of compatible and incompatible combinations of pears, plums, peaches, and cherries, noted that incompatible unions

reduced the flow of dyes and water. Starch accumulation occurred at the graft union in incompatible combinations (e.g., 'Durondeau' pear/Ouince F). Starch depletion was also noted in the roots of the incompatible combinations Hale's Early peach/Myrobalan B and 'Frogmore' cherry/F250 sour cherry (Herrero, 1951). In simulated graft union studies using grafting, banding, and scoring techniques, sweet cherry "Napoleon" on Mahaleb was found to contain higher levels of starch than those on Mazzard (Carlson and Yu, 1969). McClintock (1948), from his study of incompatibility between peaches and Mariana plum found that the roots died first and that the phloem tissues of the plum stock and the peach scion failed to unite. Hе concluded that this mechanical obstruction at the union was caused by a lack of translocation to the roots leading to their death. Nitrogenous materials were reported to also accumulate at the graft union in incompatible combinations.

This interference with translocation appears to be due to structural defects at the graft union, including one or more of the following:

 A layer of parenchymatous tissue at the line of union as in 'President' on common plum and some pears on quince rootstocks (Chang, 1937; Proebsting, 1926) rather than normal differentiated tissue.

- 2. Distortion of vascular tissue at the line of union in pear/quince (Herrero, 1951; Proebsting, 1926).
- Gummy masses at the union in certain stone fruits (Proebsting, 1928).
- 4. A cork layer at the union as in 'Reeve's' peach on Myrobalan B (Herrero, 1951).

The initial reaction that leads to vascular discontinuity appears to be related to cambial activity at the point of union. Herrero (1951) noted that primary causes of discontinuity were necrosis of some cells in the cambial region in pear/quince and a slowing down of cambial activity at the line of union in plums. and Scaramuzzi (1956), working with pear/quince grafts, found that the first necrotic symptoms appeared, not in the cambium, but in 1- to 2-year-old phloem tissues. The necrosis then spread to ray and to cambium cells, breaking vascular continuity in the union. The cause of the degeneration of phloem tissues was not clear. However, the fact is noteworthy that these abnormalities occurred most often at the end of the growing season, when the maximum translocation of metabolites was downward. Herrero (1951) and Mosse and Scaramuzzi (1956), from their anatomical studies, considered that the causes leading to necrosis and breaks in cambial continuity were biochemical rather than anatomical, and were related to seasonal metabolic changes in the tree.

Histological differences between two incompatible tissues were suggested as a causal factor in tree decline, but Herrero (1951) could not correlate such differences, such as relative amounts of vessels, fibers, parenchyma cells and rays, or the size of these elements with the degree of compatibility.

Chang (1937) suggested that different growth characteristics of the stock and scion were a cause of incompatibility. His work suggested that differences in periods of cambial activity, seasonal growth patterns, and growth rates between stock and scion might be responsible.

Herrero (1951), however, believed that these characteristics were not directly associated with the primary causes of incompatibility.

2. Role of viruses and mycoplasma. The presence of latent viruses or virus complexes in stone fruits has been demonstrated by Milbrath et al. (1945). Several cases have been reported in which viruses were responsible for incompatibility. Toxopeus (1936) noted that sweet orange (Citrus sinensis) failed on sour orange (Citrus aurantium). Interestingly, failure was limited to Java and South Africa; the same combination was successfully grown elsewhere. Later, the diseases called 'tristeza,' or 'quick decline' was noted in other localities in conjunction with sour orange rootstock. Subsequent study

showed that viruses were responsible for these diseases and for graft failure (Fawcett et al., 1946; Bitters et al., 1953).

A similar case was reported in apples. The clonal stock Spy 227 proved to be incompatible with certain varieties of apples (Shaw and Southwick, 1944). Gardner et al. (1946) pointed out that there was a similarity between this phenomenon and tristeza disease of citrus. Weeks (1948) demonstrated that the toxic principle was viral in nature.

Symptoms of x-disease (buckskin) in sweet cherry on Mahaleb are similar to incompatibility symptoms. Trees infected with this disease, which is caused by a mycoplasm, develop necrotic tissues at the union and distal portions of roots. The trees usually die quickly in late summer after infection. Sweet cherry trees on Mazzard infected with x-disease decline 4 or 5 years before they die.

Tissues at the graft union usually remain normal until the tree dies (Granett and Gilmer, 1971; Parker et al., 1963).

Mosse (1962) has pointed out the similarities between the symptoms of virus diseases and symptoms of incompatibility. The "translocated" type of graft incompatibility, in particular, has many features in common with virusinduced graft-incompatibility including:

- 1. Absence of mechanical weakness of the union;
- 2. Phloem degeneration;

- Accumulation of starch above, and its absence below, the union;
- 4. Reduced bud-take:
- 5. Variability of one-year-old trees;
- 6. Blistering stem tissues.

However, all "translocated" incompatibilities do not appear to be due to virus. In the case of the incompatible combination, 'Hale's Early' peach on Myrobalan B, where the evidence is strong that translocatable factors are responsible, the virus did not seem to be a causal factor. Herrero (1951) tested the possibility of virus infection by grafting scions from incompatible trees to trees of the compatible combination Hale's Early/Brompton. The test was negative. A similar case was found in incompatible trees of Victoria/President/ Myrobalan B. Normally compatible President/Myrobalan B trees can be made incompatible by topworking with Victoria. However, buds taken from these incompatible trees were fully compatible when budded directly on the Myrobalan B rootstock (Mosse, 1961). These transmission studies do not rule out entirely the possibility that some undetected viruses are responsible. If a virus is involved, the specific requirements for certain grafting combinations are difficult to explain.

- Biochemical. Anatomical investigation of the graft union of incompatible stock-scion combinations has revealed several facts (Herrero, 1951; Mosse, 1955, 1962; Mosse and Scaramuzzi, 1956). First, cambial breaks occur suddenly at the end of season. The reaction appears to be correlated with the time of maximum translocation of metabolites from the top. Histological characters such as the size and amount of vessels, fibers, parenchyma cells, and the width of ray initials and distance between rays are not critical factors. The abrupt change in starch content was often noted in the adjacent tissues at the union of incompatible combinations, even if there were no apparent structural defects at the union (Mosse, 1962). These observations suggest that the causes of graft-incompatibility are biochemical rather than anatomical. Thiel (1954) agreed that the underlying causes of pear/quince incompatibility were probably biochemical in nature. Robitaille and Carlson (1970) came to the same conclusion in their study of graft union behavior of certain Malus and Prunus species.
- a. Evidence. De Stigter (1956) studied graftincompatibility using the graft combination, muskmelon
 (Cucumis melo), and malabar gourd (Cucurbita ficifolia).
 The combination of muskmelon as scion and malabar gourd
 as stock failed completely when the stock was defoliated.
 However, when stock leaves were left intact, the graft

union was strong and phloem degeneration did not occur. In a further study, he double-worked the compatible combination cucumber (Cucumis sativus L.) on gourd (Cucurbita ficifolia) using different lengths of melon stem pieces as interstocks. A long intermediate stem caused incompatibility, but when the intermediate was extremely short, the combination remained healthy. The author concluded that either the muskmelon lacks specific substances for malabar gourd or the composition of metabolites was changed during transport through melon tissue. These changes were assumed to be minimized when the intermediate was very short.

Calavan et al. (1951) showed that the graft combination of lemon/sour orange required the presence of sour orange leaves to overcome incompatibility.

Mosse's work (1960a, 1955) with plum and peach suggests that graft transmissible factors or toxins interfere with normal growth. She induced incompatibility between two normally compatible clones by top working with another variety. For example, the compatible combination 'President'/Myrobalan B became incompatible when top worked with the variety 'Victoria' (Mosse, 1961). The peach variety 'Hale's Early' is compatible with the plum rootstock Brompton but incompatible with Myrobalan B. When a ring of bark of Myrobalan B is grafted on the stem of the stock of 'Hale's Early'/Brompton, symptoms of

incompatibility appear on "Hale's Early' scion (Mosse, 1960b). The author suggested that some translocatable factor was responsible for incompatibility.

Relative position affects compatibility of certain graft combinations. 'Conference' pear was compatible with either Quince A or pear C8 when single grafted.

When double grafted using all combinations of three clones as scion/interstock/stock, the combination Conference/Quince A/C8 and all other combinations in which any tissue of Quince A occurred above C8 grew very badly, whereas the combination Conference/C8/Quince A grew well (Mosse and Herrero, 1951). This work also suggests that some substances which cause incompatibility move in a polar manner.

Incompatibility may also be triggered by reproductive process. Jimenez (1957) showed that the graft combination Carica goudotiana (paw paw)/Carica cauliflora was normal until male inflorescences were produced, when both stock and scion declined. However, male trees grew vigorously if the inflorescences were removed. This again suggests that certain biochemical factors are involved in incompatibility.

b. Specific compounds.

Alkaloids: In studies with herbaceous plants, specific substances such as alkaloids are postulated as

causal factors in graft failure. Mockaitis (1969) attributed the graft failure between Ipomoea violacea/
Ipomoea nil to a specific indole alkaloid compound of the scion. Mothes et al. (1955) considered nicotine to be the causal factor in incompatibility in grafts of
Atropa belladona/Nicotiana rustica. The former is free of nicotine while the latter contains much nicotine. However, if Atropa belladona scions were grafted on the low nicotine containing stock, such as Nicotiana glauca, the combinations grew vigorously.

Amino acids: Tschiersch (1963) found a relationship between graft failure and the presence of a particular amino acid in some plants of the Leguminosae. Canavalia ensiformis contains the amino acid, canavanine. The plant cannot be grafted to Phaseolus vulgaris L., which is closely related but free of canavanine. The author suggested that canavanine caused the death of P. vulgaris.

Proteins: In explaining the origin of virus in grafting, Darlington (1944) suggested that a stable and useful protein with one plant genotype can act as a destructive agent with another. Crane (1945) proposed from the observation of apple 'Lord Lambourne' grafted on certain stocks that abnormalities in the scion may be due to the invasion of cells of one variety by the proteins of another, which behave as virus in the scion

tissues. However, there has been no confirmation of these proposals. Sheldrake and Northcote (1968) noted several enzymes in xylem sap and suggested that phloem sap may contain enzymes. When these enzymes are translocated to foreign tissues (stock or scion), they may influence metabolic activity.

Cyanogenic compounds: The cyanogenic glucoside prunasin was suggested as a causal factor in incompatibility of pear/quince grafts (Gur, 1968b). According to Gur's theory, vascular discontinuity at the graft union is due to the accumulation of hydrogen cyanide, a breakdown product of prunasin, which is a natural component in quince, but absent from pear tissues.

Phenolic compounds: Phenolic compounds have been suggested as causal agents of incompatibility (Gur, 1968b; Thiel, 1954; Williams, 1953; Buchloh, 1958). A separate section is devoted to studies dealing with these compounds.

II. Role of Phenolic Compounds in Graft Incompatibility

A. Physiological functions of phenolic compounds and their seasonal variations

The physiological significance of phenolic compounds is uncertain. Some consider them to be end products of metabolic activity, serving only as cell wall materials (Bate-Smith, 1958). One definite role of phenolics is

to furnish plants with diverse color. The complex coloration in flower petals and in fruits is known to aid in fertilization and seed distribution (Harborne, 1967b).

In all vascular plants, the phenolic compounds are essential for structural features such as tracheids, vessels, and fibres. In higher plants, the immediate precursors of phenolic compounds are the aromatic amino acids, phenylalanine, and tyrosine, which are in turn synthesized via the shikimic acid pathway from carbohydrates. The first products of deamination are cinnamic acid and p-coumaric acid, which then serve as precursors of lignin, flavonoids, coumarin, and other types of phenolic compounds (Koukol and Conn, 1961; Neish, 1961). The deposition of lignin in xylem tissues may be one form of cellular excretion of metabolic byproducts. Reznik (1960) pointed out that higher plants, unlike microorganisms or animals, do not have an efficient system for excretion of metabolic by-products. Instead, they practice a type of 'local excretion' into the vacuoles and cell walls.

Phenolic compounds might have a protective function in plant tissues. For example, Perrin and Bottomley (1962) identified a phenolic compound 'pisatin' from pea pods, which inhibits the multiplication of an invading fungus. When cactus tissue was mechanically injured, it responded by formation of lignin, which prevents rotting

of the tissue (Steelink et al., 1967). Feldman and Hanks (1965) reported a quantitative difference in bound phenolic compounds between citrus cultivars, one of which is susceptible to the burrowing nematode (Radopholus similis) and the other tolerant. After infection, the bound phenolics increased 27-300% in the tolerant cultivars while decreasing 16-34% in the susceptible. Koeppe et al. (1969) thought that phenolic compounds may be important in mediating the effects of environmental conditions. Under stress conditions, such as high ultra violet radiation (Lott, 1960; Koeppe et al., 1969), 2, 4, dichlorophenoxy-acetic acid application (Dieterman et al., 1964), lack of boron (Watanabe et al., 1964), or low nitrogen (Harborne, 1964), the concentration of certain phenolic compounds increases.

In more recent years, evidence has been presented that the phenolic constituents play a part in dormancy of buds (Hemberg, 1961; Hendershott and Walker, 1959). The phenolic compounds appear to affect plant growth via the IAA-oxidase system (Hare, 1964; Tomaszewski, 1964; Galston, 1969).

The dynamic status of these compounds has been documented. Hillis and Swain (1959) analyzed leaves of Prunus domestica for total phenols, leucoanthocyanins and flavonols at intervals during the growing season and found that the amounts increased rapidly until the leaves

reached maximum size and then decreased. In a study of seasonal levels of phenolic acids in two ferns, Glass and Bohm (1969) found a rapid increase during the early stages of growth. In apple shoots, Harvey (1925) found that phloridzin was most abundant in the apex of the shoot, where metabolic activity is high. However, the maximum concentration lagged about 2 weeks behind the maximum rate of growth.

B. Evidence for the role of phenolic compounds in incompatibility

Gur (1968b) investigated incompatibility of pear cultivars on quince rootstocks and concluded that certain substances moved from the quince rootstocks and were changed into toxic components in the pear bark. sin, a cyanogenic glucoside, occurs in the quince but not in the pear. According to Gur's theory prunasin diffuses upward across the union and is hydrolyzed in the pear bark. The liberated hydrocyanic acid inhibits cambial activity and prevents vascular continuity. liberation of hydrocyanic acid, however, is dependent on the presence of arbutin, a cofactor for β -glucosidase. The compatibility was quantitative and was inversely correlated with arbutin content of pear cultivars. Gur (1968b) also postulated that in the bark of pear varieties the ratio of free to bound phenolic compounds was related to the degree of incompatibility with Quince A rootstock.

Buchloh (1960) believed that some factors inhibit lignification at the graft union and that these factors are responsible for vascular discontinuity. In the early stage of graft-union formation, cell walls of stock and scion are joined by a common middle lamella consisting of pectic material. The next step is the formation of the secondary cell wall consisting of cellulose and hemi-In further development, the pectic substances cellulose. of the middle lamella disappear and are gradually replaced by lignin. However, in the incompatible graft-combination, after the pectic material decomposes, the middle lamella is not replaced with lignin. Buchloh also noted that adjoining cells, and sometimes cell walls, were discolored in both compatible and incompatible unions. The pigment disappears later in compatible unions, but in incompatible unions, the pigment remains, forming a dark brown precipitate. The pigment appeared to be hydrolysed phenolic compounds which subsequently were polymerized to brown precipitates. In the course of development of the graft union, lignification was markedly inhibited when the brown precipitate formed. Buchloh, therefore, concluded that lignification was inhibited either by reactions which give rise to the formation of the brown colored compounds or by the compounds themselves. Thiel (1954) suggested also that the discoloration of

tissues and death of cells of incompatible pear/quince graft unions were toxic effects of oxidized phenolic compounds liberated from arbutin.

C. Evidence for translocation

In order for phenolic compounds to be effective in inducing incompatibility, they must reach the tissues of the graft partner. Demonstration of graft transmission is therefore a prerequisite for their implication as causal agents, unless one assumes that cell-to-cell contact is sufficient. The evidence for graft transmission varies, depending upon the species under study.

Friedrich (1958) found no evidence for translocation of polyphenols in reciprocal grafts of apple and pear.

Hillis and Swain (1959) could find no direct relationship between phenolics in leaves and those in woody tissues of Prunus domestica. The authors suggested that translocation of phenolic compounds between the tissues was unlikely.

In Eucalyptus wood, polyphenolic compounds were not translocated from one tissue to another but were formed in situ from carbohydrates (Hillis and Carle, 1960, 1963). Bate-Smith (1962) believed that polyphenolic constituents were formed from simple precursors in the particular cells in which they occurred. In the examination of sieve tube exudate, he could find no trace of polyphenolic compounds (leucoanthocyanins and flavonols), although these were abundant in leaf tissues.

There are, however, several reports suggesting the possibility of translocation. For example, Hergert and Goldschmid (1958) suggested that quercetine and taxifolin were synthesized and glucosylated in the leaves, then transported down the phloem and laterally to the bark and heartwood. Many of polyphenolics found in oak bark originate in the leaves, according to Hathaway (1959). author suggested that compounds such as gallocatechin and leucodelphinidin were translocated by the sieve tube system to the cambium and then condensed to tannins which were stored in the bark. In the study of phenolics in the solanaceae, coumarins appeared to be formed in the root from tyrosine and translocated into the shoot (Kala, 1956). Gorz and Haskins (1962) noted movement of coumarins across the graft union in clover, while MacLeod and Pridham (1965) demonstrated the translocation of phenolic compounds which were introduced into the apical leaves of Vicia faba. The general translocation rates for phenolics approximated those for C¹⁴ assimilates. glycosidic derivatives migrated more rapidly than the phenolic aglycones. The authors also showed the presence of phenolic compounds in aphid stylet exudates from the sieve tubes of Salix and Vicia. Favre-Bonvin et al. (1966) studied the effect of grafting on the distribution of coumarin in cherry. Chemical analysis of the interspecific graft combination Prunus mahaleb/P. avium showed

that the normally coumarin-free P. avium roots accumulated coumarin and herniarin. Further study with the phenolic precursors, DL-phenylalanine-C¹⁴ by these authors (1968) showed that coumarin compounds moved readily between the graft partners.

D. Possible mechanism of action in incompatibility

Phenolic compounds may cause incompatibilities either directly as phytotoxins, or indirectly through their effects upon IAA oxidase.

Phenolic compounds as phytotoxins: Many phenolic compounds are phytotoxic (Pridham, 1960). The inhibitory activity of the compounds has been recognized in germination (Evenari, 1949; Van Sumere, 1960; Varga and Köves, 1959; Börner, 1960; Hemberg, 1961), in bud dormancy (Hendershott and Walker, 1959; Lane and Bailey, 1964), in potato tuber dormancy (Hemberg, 1958; Housley and Taylor, 1958), in shoot growth (Thimann and Bonner, 1959; Hancock et al., 1961; Tomaszewski and Thimann, 1966; Galston, 1969), and in root growth (Goodwin and Taves, 1950). Many components of the β -inhibitor complex have been identified as phenolic compounds and hypotheses have been advanced as to their regulatory roles (Hemberg, 1961; Lane and Bailey, 1964; Moreland et al., 1966). Plants are known to excrete chemical inhibitors which control the growth of other plants (allelopathy). Some examples are: Artemisia

absinthium (Bode, 1940), Eucalyptus rostrata (Evenari, 1961), black walnut (Bode, 1958), and Johnson grass (Abdul-Wahab et al., 1967). Some of these inhibitors have been identified as phenolic compounds (Rice, 1965; Abdul-Wahab et al., 1967; Köves and Varga, 1958; Börner, 1957; Bautz, 1953; Grümmer and Beyer, 1960).

These compounds, in the free state, have both lipophilic and hydrophilic properties, and Frey-Wyssling (1942) suggested that they could interfere with the function of cell vacuoles and tonoplast membranes. A few of these compounds are reported to interfere with oxidative phosphorylation (Millerd et al., 1953; Stenlid, 1963) and with mitosis (Steinegger and Leupi, 1955; Cornman, 1957). Others may inhibit enzyme activity. In the study of the inhibitory action of coumarins on plant growth, Thimann and Bonner (1959) concluded that inhibition of growth involved their reacting with enzyme sulfhydryl groups. Mayer and Poljakoff-Mayber (1961) listed several enzymes whose activities were inhibited by coumarin. In germinating lettuce seeds and seedlings, this compound inhibited the activity of proteinase, lipase, and phytase.

Plant tissues, then, need an efficient system to detoxify the phenolic compounds. Pridham (1960) reported that <u>Vicia faba</u> seeds germinated and plants developed to maturity in the presence of relatively large quantities of arbutin. However, the corresponding aglycone, quinol,

inhibited germination. Van Sumere (1960) showed that ferulic acid- β -glucoside had no effect on the germination of wheat rust uredospores whereas free ferulic acid was strongly inhibitory. The glycosylation of applied phenolics has been reported in barley and wheat leaves (Nystrom et al., 1959), in tobacco leaves (Runeckles et al., 1963), leaves of Solanum species, Cestrum newellii, Raphanue sativus, Clematic lawsoniana, Lycopersicum esculentum, and in Datura knightii (Harborne and Corner, 1961). Toweres et al. (1958) have shown that maleic hydrazide, a compound with phenolic properties, is converted to a glucoside by plant tissues, and they suggest that this is the reason why relatively high concentrations of the reagent are needed for effective growth inhibition. Seedlings of the interspecific hybrid Lilium aruatum X Lilium speciosum are tumorous and die at an early stage of development. Asen and Emsweller (1962) found that 60% of total ferulic acid in the seed was present as the aglycone. However, in seedlings from intraspecific crosses, which develop normally, only 6% of the ferulic acid was present as the free acid, the remainder being present as the glucose ester. Thus, if a stock or a scion of a certain graft combination does not have an efficient system of detoxification, any condition which allows the accumulation of the phenolic compounds in the tissue may restrict the normal growth and development of the graft.

Phenolic compounds as cofactors or inhibitors of IAA oxidase: Phenolic compounds may affect the growth of stock or scion via the indole-3-acetic acid (IAA) oxidase IAA oxidase occurs widely in nature, and is believed to regulate the level of IAA by oxidizing it to inactive products (Hare, 1964). Phenolic compounds either inhibit or synergize with the enzyme depending on their structures. Monohydric phenols act as cofactors for the IAA-oxidase system, while dihydric phenols inhibit oxidation (Stenlid, 1963; Hare, 1964; Tomaszewski and Thimann, 1966). All 4' hydroxyflavonoids were cofactors for the oxidation of IAA, whereas 3', 4' dihydroxyflavonoids inhibited the destruction of IAA (Mumford et al., 1961; Stenlid, 1963). Work by Russell et al. (1969) suggested that phytochrome may control growth of pea seedlings by regulating the synthesis of phenolic compounds which act as cofactors in an IAA oxidase system. In pea seedlings Furuya and Galston (1965) identified kaempferol-3-glucoside and its p-coumaric ester as promoters, and quercetin-3glucoside and its p-coumaric ester as inhibitors of IAA oxidase. In addition to flavonoids, other types of phenolic compounds have been shown to interact with IAA oxidase. Compounds which promote the enzyme are p-coumaric acid and p-hydroxy benzoic acid (Engelsma, 1964; Tomaszewski and Thimann, 1966; Lee and Skoog, 1965). The inhibitors of IAA oxidase are chlorogenic acid, caffeic acid,

ferulic acid, sinapic acid, scopoletin, scopolin, and 3, 4 dihydroxy benzoic acid (Gortner and Kent, 1958; Henderson and Nitsch, 1962; Tomaszewski and Thimann, 1966; Sacher, 1963; Schaeffer, 1967; Varga and Köves, 1962; Gelinas and Postlethwait, 1969; Sequeira, 1964; and Lee and Skoog, 1965).

There is strong evidence that cambial activity and the differentiation of secondary xylem and phloem are controlled by metabolites and growth hormones, especially endogenous auxin, from the developing buds and leaves (Wareing et al., 1964; Larson, 1964; Evert and Kozlowski, 1967; Torrey and Loomis, 1967; Wilson, 1968; Reinders-Gouwentak, 1965). Thus, the radial growth of the stocks of certain graft combinations may be dependent upon the supply of auxins and metabolites from the scions. Phenolic compounds may play a role in incompatibility by regulating the auxin supply to the rootstock via the activation or inhibition of IAA oxidase (Gur and Samish, 1968a).

III. Phenolic Compounds Identified in Cherry Tissues

The fact that plant species contain specific phenolic constituents allows taxonomists and biochemists to detect relationships between plants and groups of plants (Bate-Smith, 1961a). Much research has been done on phenolic compounds in woody tissues of cherry.

Hergert (1962) has reviewed the economic importance of flavonoid compounds occurring in the genus Prunus.

Flavonoid compounds in cherry wood have been studied in some detail by chemists in France and Japan. In the woody tissues of P. yedonensis, Hasagawa et al. (1952) identified 4 flavonoid compounds: prunin, genkwanin, naringenin, and d-catechin. They (1954, 1957) also studied tissues of several other Prunus species. In the heartwood of P. avium 11 flavonoid compounds were identified by elementary analysis, boiling point, and chromatographic technique. These were d-catechin, naringenin, prunin, aromadendrin, eriodictyol, taxifolin, chrysin, aequinocitin, genistein, prunetin, and genistin.

Mentzer et al. (1954) found 12 flavonoid compounds while examining ether extracts of wild cherry heartwood. These compounds were identified as chrysin, dihydrochrysin, sakuranetin, tectochrysin, and dihydrotectochrysin.

Chopin et al. (1957) identified a flavanone from heartwood extract as dihydrowogonin. The glucoside of dihydrowogonin was also detected in pedicels of P. cerasus (Wagner et al., 1969).

Two water soluble compounds from the heartwood of cherry trees were identified by Pacheco et al. (1957) as d-catechin and aromadendrin. These compounds were found to accumulate in the heartwood as the tree increased in

age. Chopin and Pacheco (1958) isolated the flavanonol 7-methylaromadendrin from an ether extract of the heartwood of P. avium.

In the woody tissue of P. mahaleb, Pacheco (1959) identified four flavonoid compounds: naringenin, aromadendrin, genistein, and prunetin. A year later the same author reported that he found a glucoside of aromadendrin in Mahaleb heartwood. Pacheco et al. (1960) reported on more flavonoid compounds present in the woody tissue of P. mahaleb. These were: a flavanone glucoside prunin, glucosides of aromadendrin, and taxifolin.

Geissman (1956) studied the phenolic composition of normal and virus-infected cherry leaves. Using paper chromatographic methods, he found that the leaf tissue contained glucosides of kaempferol and quercetin, and esters of p-coumaric acid and caffeic acid.

In discussing the taxononomic significance of phenolic compounds in the Rosaceae, Bate-Smith (1961b) noted certain common features in the distribution of phenolic compounds among genera and subgenera. For example, in the genus Prunus leucoanthocyanidins, flavonols, and hydroxycinnamic acids were found. The sub-genus 'cerasus' contained a 'cherry factor' which was identified as o-coumaric acid. Mahaleb leaves were shown to have the specific 'mahaleb factor,' herniarin (7 methoxy coumarin).

Favre-Bonvin et al. (1966, 1968) studied the site of synthesis of coumarins by interspecific grafting between Mazzard and Mahaleb. Using the radioactive precursor phenylalanin-3-C¹⁴, they demonstrated that leaves, fruits, and root-wood synthesized both coumarin and herniarin. The stem wood could also synthesize herniarin. For convenience certain of these findings are summarized in Table 1.

Table 1. Phenolic compounds occurring in charry trees.

		P. avium	P. mahaleb	
COMMON NAME	Chemical Structure	Leaf Bark Wood	Leaf Bark Wood	Nex exerces
Flavonoids Catechin	d-catechin	*		Hasagawa (1957), Pacheco (1957)
Pinocembrin (Dihydrochrysin)	5,7 dihydroxy flavanone	•		Mentzer (1954)
Pinostrobin (Dihydrotectochrysin) Naringenin	5 hydroxy 7 methoxy flavamone 4.5.7 trihydroxy flavamone	• * *•	~+	Mentzer (1954) 1. Hasaqawa (1957)
Prunin	Naringenin 7 glucoside	₹,	8+	
Sakurapetin	4'.5 dihudroxy 7 methoxy flavanone	•		2. Pacheco (1959) Mentrer (1954)
Dihydrowogonin	5,7 dihydroxy 8 methoxy flavanone	•		Chopin (1957) Wagner (1969)
Eriodictyol	3',4',5,7 tetrahydroxy flavanone 4' 5,7 trihydroxy flavanone	1,	e,	Hasagawa (1957)
				2. Pacheco (1957) Hasagawa (1957) 3. Pacheco (1959)
Pinobanskin	5,7 dihydroxy flavanonol	· -		
Taxifolin (Dihydroquercetin)	3',4',5,7 tetrahydroxy flavanonol		•	1. 2. Hasagawa (1957)
Chrysin	5,7 dihydroxy flavone	•		 Pacheco (1960) Hasagawa (1957) Mentzer (1954)
Tectochrysin		•		Mentzer (1954)
Genkwanin Genistein	4',5 dihydroxy 7 methoxy flavone 4',5,7 trihydroxy isoflavone	•	•	1. Hasaqawa (1957)
				2. Pacheco (1960)
Genistin		•	•	Hasagawa (1957)
Frunetin	4',5 dinydroxy / methoxy isollavone	•	•	1. Hasagawa (1957) 2. Pacheco (1960)
Kaempferol	4',5,7 trihydroxy flavonol	+1,2	~+	1. Bate-Smith (1961)
		1.2	-	2. Geissman (1956)
Quercetin	3',4',5,7 tetrahydroxy flavonol	1	'+	1. Bate-Smith (1961)
Cyanidin	3,5,7,3',4' pentahydroxy flavylium	+1		1. Bate-Smith (1961)
Coumarin			+1,2 +1	1. Pavre Bonvin (1966)
Herniarin	7 methomy coumarin		+1,2 +1	 Bate-Smith (1961) Favre Bonvin (1966) Bate-Smith (1961)
Cinnamic acids o-Coumaric acid	2 hydroxy cinnamic acid 4 hydroxy cinnamic acid	1,2	+ •	Bate-Smith (1961)
	the state of the s	,	•	
caffeic acid	3,4 dihydroxy cinnamic acid	7 17+		1. Bate-Smith (1961)

MATERIALS AND METHODS

I. Seasonal Variations of Total Phenolic Compounds

A. Plant material

One-year-old Mahaleb and Mazzard seedlings were planted in the field in May, 1969. Uniform nursery-grown seedlings were obtained from Hilltop Nursery, Hartford, Michigan. At two-week intervals three trees of each species were harvested and fresh weights of leaves, roots, and stems recorded. Leaves, stem bark, and root bark were put immediately in the oven and dried overnight at 85°C. The dried tissue was ground to pass through a number 4 mesh screen and stored in closed bottles until extraction.

B. Extraction

One gram of ground tissue was shaken for 3 hours with 50 ml 80% aqueous methanol. The solvent was then decanted and the same procedure repeated twice for a total of 150 ml solvent. The extract was filtered through Whatman No. 1 filter paper and made up to final volume of 200 ml.

C. Quantitative determination

The method used for measurement of total phenolic compounds (Swain and Hillis, 1959) involves the reduction of compounds containing sexivalent tungsten and molybdenum to colored products. A 0.1 ml aliquot (= 500 ug tissue) of the sample solution was diluted with 6.9 ml distilled water. After mixing, 0.5 ml of 0.25 N Folin-Ciocalteau reagent (Bray and Thorpe, 1954) was added. The samples were shaken for 3 minutes and then 1.0 ml of 1N Na₂CO₃ solution was added. The solution was again thoroughly mixed, made up to 10 ml with distilled water, and stored one hour in the dark before measurement of absorbance in a Klett-Summerson photoelectric colorimeter, using a No. 66 red filter (725 mu). For a standard curve, ferulic acid was used.

II. Identification of Phenolic Compounds in Methanol Extracts, and Determination of Relative Amounts

A. Plant material

Uniform Mazzard and Mahaleb seedlings were planted in the greenhouse May 30, 1969, and grown until October 30, when they were placed at 35°F to satisfy the chilling requirement. At the end of January, 1970, the seedlings were again planted in the greenhouse and grown until May. They were then removed from the pots, washed thoroughly with tap water, and separated into leaves, stems, and

roots. Leaves were harvested with petioles attached.

Bark tissues were obtained by cutting the stems and roots into small segments and peeling the bark from the wood.

The wood was discarded. Both leaves and bark were weighed and frozen in liquid nitrogen. Special care was taken to discard any dead tissues such as the epidermal layer. The samples were kept frozen until used.

B. Extraction

The weighed samples (Table 2) were macerated in 400 ml absolute methanol, and the macerate was filtered through Whatman No. 1 paper. Each sample residue was extracted by shaking for 16 hours successively with five 200 ml portions of methanol on an oscillating shaker. The combined methanol extracts (1400 ml) were filtered through celite and stored in brown bottles (34°F). The detailed extraction procedure is shown in Figure 1.

Table 2. Weights of tissues used for extraction of phenolic compounds.

Species	Tissue	Fresh weight (g)
Mazzard	leaf stem bark root bark	100 77 35
Mahaleb	leaf stem bark root bark	100 100 77

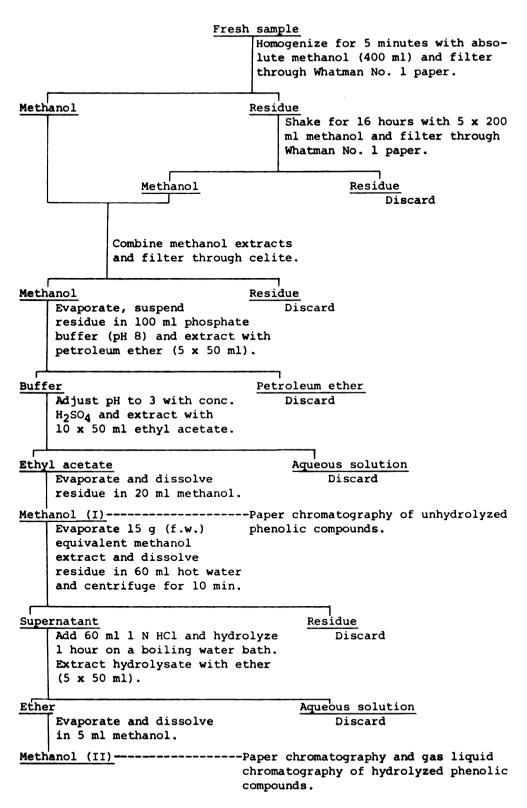


Figure 1. Procedure for extraction and purification of phenolic compounds.

C. Hydrolysis

Aliquots of the crude methanol extract representing 15 g (f.w.) of tissue were evaporated under vacuum, and the residues were dissolved in 60 ml hot water. The water was centrifuged to remove the chlorophyll precipitate, and the supernatant was extracted with chloroform (5 x 20 ml) to eliminate carotenoids, chlorophyll, and lipids. The water phase was transferred to a 300 ml volumetric flask, and 60 ml of 1 N HCl was added. The solution was then heated for one hour on a boiling water bath. After cooling to room temperature the aqueous solution was extracted with ether (5 x 50 ml). The ether extract was evaporated and the residue dissolved in 5 ml methanol (Fig. 1). This methanolic solution was used directly for either paper chromatography or for gas liquid chromatography.

D. Purification and identification

1. Paper chromatography. Twenty to fifty µ1 (60 to 150 mg fresh weight of tissue) of extract was spotted on the upper left-hand corner of Whatman No. 1 papers (46 x 57 cm) for chromatography. The diameter of the spots (less than 1 cm) was minimized by using a 5 µ1 pipette and a stream of air. The first solvent was n-butanol: acetic acid: water, 6:1:2 (BAW) which irrigated the long direction of the paper for 17 to 18 hours at room

temperature. The air-dried paper was then run for 3.5 to 4 hours in 2% acetic acid (HOAc) in the short direction.

The air-dried chromatograms were examined under ultraviolet light before and after exposure to ammonia vapor. Replicate chromatograms were then treated with 4 different reagents (Table 3). One chromatogram was dipped in a freshly prepared solution of equal volumes of 0.5% $FeCl_3$ and 0.5% $K_3Fe(CN)_6$, then rinsed with 2% HCl solution followed by distilled water. The phenolic compounds appeared as blue spots on the chromatogram. A second chromatogram was sprayed with diazotized p-nitroaniline in 2 N HCl, 5% NaNO_{2} , and 20% sodium acetate (w/v) in a ratio of 1:10:30. A third chromatogram was sprayed with freshly prepared Hoepfner's reagent (5% NaNO, plus 5% acetic acid). With this reagent phenolic acids give characteristic colors. A fourth chromatogram was sprayed with 2 N NaOH, and after 3 to 5 minutes it was viewed under ultraviolet light. Coumarins gave a characteristic greenish yellow fluorescence. chromatogram was then sprayed with DPNA, which reacts with coumarins to form distinctively colored products.

In order to prepare enough material for further characterization, the crude methanol extract was applied as a line on Whatman No. 3 paper. Chromatograms were developed with 2% acetic acid for 3.5 hours, then airdried and examined under ultraviolet radiation. The

Table 3. Reagents used for phenolic compounds.

Reagents	Composition	Specificity	Reference
FeCl ₃ -K ₃ Fe(CN) ₆	0.5% Fe Cl ₃ and 0.5% K ₃ Fe(CN) ₆ (1:1,v/v)	All phenolic compounds	Keppler (1957)
Diazotized p- nitroaniline (DPNA)	0.5% p-nitroaniline 5% NaNO ₂ 20% sodium acetate (1:10:30, v/v)	Most phenolic compounds; characteristic colors with phenolic acids	Swain (1953)
Vanillin-HCl	1% vanillin in ethanol, and conc. HCl (1:1, v/v)	Leucoantho- cyanidins Catechins	Swain et al. (1959)
Tetrazotized benzidine	0.5% benzidine in dil. HCl, and 10% NaNO ₂ (1:1, v/v)	Phloroglucinol- resorcinol type compounds	Smith (1960)
NaBH ₄ -HCl	2% NaBH4 in methanol Fume chromatogram with HCl vapor	Flavanones	Horowitz (1957)
Hoepfner	5% $NaNO_2$ and 5% acetic acid (1:1, v/v)	Phenolic acids	Walker (1962)
Folin-Ciocalteau	10 g sodium tungstate and 2.5 g sodium molybdate in 70 ml. Add 5 ml phosphoric acid (85%) and 10 ml conc. HCl. Boil and add 15 g lithium sulphate and 1 drop of bromine. Made up to 100 ml with water (stock solution). 0.25 N Folin-Ciocalteau, then 1 N Na 2CO 3	All phenolic compounds	Swain et al. (1959) Waldi (1965)
2 N NaOH-DPNA	2 N NaOH, then DPNA	Coumarins	Swain (1953)

distinctive color bands were marked with a pencil. A few more bands were detected when the paper was sprayed with FeCl₃-K₃Fe(CN)₆ and DPNA reagents.

Zones from identical unsprayed chromatograms were cut out and eluted by shaking with 3 successive 100 ml portions of 95% ethanol. The eluates were filtered and evaporated in a rotary film evaporator under vacuum. Each fraction was rechromatographed on Whatman No. 1 paper in BAW (first direction) followed by 2% acetic acid (second direction). Bands which fluoresced under ultraviolet light, or which reacted with DPNA and FeCl₃-K₃Fe(CN)₆ on parallel chromatograms, were cut from the chromatograms, and eluted with ethanol (3 x 10 ml). The eluates were filtered through Whatman No. 1 paper and evaporated under vacuum. The residues were dissolved in 0.5 ml ethanol, spotted on Whatman No. 1 paper, and chromatographed one dimensionally in the following solvent systems:

butanol: acetic acid: water, 6:1:2 (BAW)
2% acetic acid (HOAc)

butanol: pyridine: water, 10:3:3 (BPW).

2. Thin layer chromatography. Aliquots (5 µl) of the partially purified compounds were spotted on Eastman thin layer plates (silica gel G) and run in one direction in the following solvent systems:

benzene: methanol: acetic acid, 45:8:4 (BMA), ll% methanol in CHCl3,

toluene: ethyl acetate: formic acid, 5:4:1 (TEF). The chromatographic chamber was lined with filter paper. When the solvent reached 10 cm above the origin, the plates were removed and air-dried. They were then viewed under ultraviolet and visible light before and after the application of phenolic reagents.

3. Gas liquid chromatography. Samples were gas chromatographed on a 6 foot by 2 mm column of 2% QF-1 on Chromosorb W using a Packard gas chromatograph Series 7300 equipped with a hydrogen flame ionization detector. Column temperature was 160°C and those of detector and injection block were 250°C. Nitrogen was used as a carrier at a flow rate of 40 ml per minute.

Methylation was based on the method of Schlenk and Gellerman (1960). The methylation apparatus consisted of three test tubes with side arms. A stream of nitrogen gas was saturated with ether in the first tube and this carried the CH₂N₂ generated in the second tube into the sample tube where esterification took place. The components in the three tubes were as follows:

- Tube 1: ether (20 ml),
- Tube 2: 0.7 ml carbitol (diethylene glycol), 0.7 ml ether, 1.0 ml 60% KOH,
- Tube 3: sample (equivalent of 3 g fresh weight) in 1 ml ethanol, 3.0 ml ether, 0.3 ml methanol.

The reaction was begun by adding a small quantity of N methyl-N-nitroso p-toluene sulfonamide (Diazald) in 0.5 ml ether to tube number 2. The tubes were stoppered and the reaction was allowed to proceed for 3 to 10 minutes until a yellow tinge appeared in tube number 3. After evaporating the solvent, the methylated sample was dissolved in 0.5 ml acetone and 0.6 μ l aliquots were injected into the gas chromatograph.

Flavonoid compounds were silylated by adding 50 µl Tri-Sil (Pierce Chemical Co., a premixed trimethylsilylation reagent containing hexamethyldisilazane and trimethylchlorosilane in pyridine) to a 15 ml conical centrifuge tube which contained l mg of the standard compound. After 15 minutes at room temperature, this solution was injected directly into the column.

- 4. Ultraviolet absorption spectra. Absorption spectra of the purified compounds in 95% ethanol were obtained with a Beckman DB spectrophotometer.
- 5. Sources of reference compounds. The sources of the reference compounds used are given in Table 4.

E. Quantitative determination

In most cases, the compounds were so close to each other on paper chromatograms that it was difficult to elute and quantify them by absorption spectroscopy. The coumarin derivatives did not give responses similar to

Table 4. Sources of reference compounds.

Source	Compounds
S. A. Brown Department of Chemistry Trent University Peterborough, Ontario	Umbelliferone Aesculetin Herniarin
A. Grouiller Institut National des Sciences Appliques de Lyon	Taxifolin Aromadendrin 7 Methyl aromadendrin
J. Favre-Bonvin Museum National d'Histoire Naturelle, Paris	Dihydrowogonin Prunetin Pinocembrin Genistein
H. Erdtman Kungl. Tekniska Högskolan Stockholm, Sweden	Chrysin Tectochrysin
Sigma Chemical Company St. Louis, Missouri	Naringenin Naringin Salicin Chlorogenic acid Rutin Scopoletin Kaempferol Hesperetin
Eastman Organic Chemicals Rochester, N.Y.	o-Coumaric acid Ferulic acid Quercetin
Aldrich Chemical Company	Apigenin Caffeic acid p-Coumaric acid
R. F. Carlson Department of Horticulture	Coumarin

other phenolic compounds when the eluates were treated with common Folin-Ciocalteau reagent or with DPNA, which also complicated the measurement.

Therefore, visual estimation of the relative amounts of phenolic compounds was made. The scale was based on the area and intensity of the individual spots on a two-dimensional paper chromatogram after it was sprayed with FeCl₃-K₃Fe(CN)₆ or with 2 N NaOH plus DPNA. A spot of o-coumaric acid of Mazzard leaf extract was arbitrarily assigned a value of 5, and other spots were rated 1 to 12 in relation to the size of the o-coumaric acid spots.

III. Identification and Relative Amounts of Phenolic Compounds in Centrifugal Sap

A. Plant material

Uniform one-year-old seedlings grown in the green-house for 5 months were used. In the case of Mazzard, 128 gram of fresh weight was used and for Mahaleb, 110 grams.

B. Extraction

The sap was extracted as follows (Goldschmidt and Monselise, 1968). Stems were cut into 5 cm segments and placed in centrifuge tubes with bases down. Twenty per cent methanol was added to cover the basal ends of the stems, and the tubes were centrifuged at 1,500 x g for

20 minutes. The methanol was evaporated and the remaining aqueous solution diluted to 20 ml with water (Fig. 2).

C. Fractionation of extract

The aqueous solution from (B) above was extracted first with ether (3 x 10 ml) and then with ethyl acetate (4 x 10 ml). The remaining aqueous solution was acidified to pH 2 and extracted again with ethyl acetate (4 x 10 ml). Each fraction was evaporated and the residue dissolved in 2 ml methanol. These methanol fractions were used for paper and for gas liquid chromatography as described in Section II above.

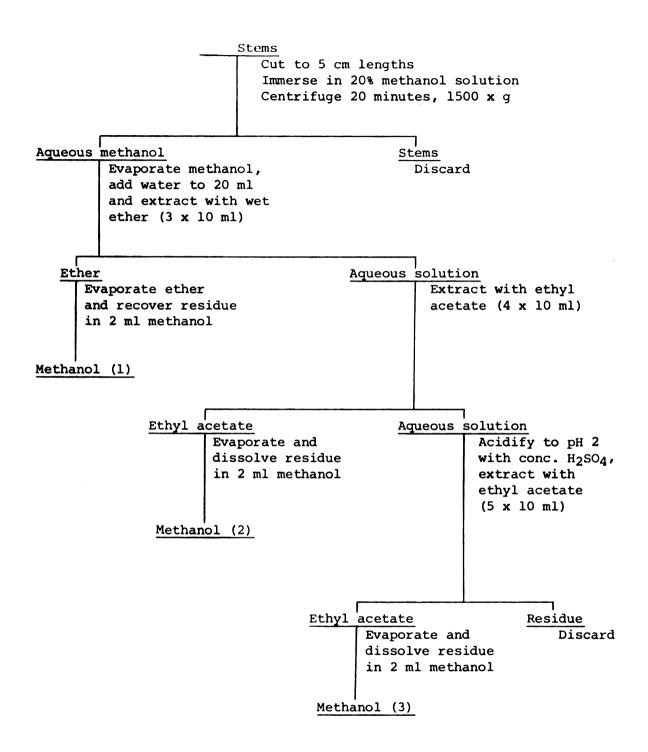
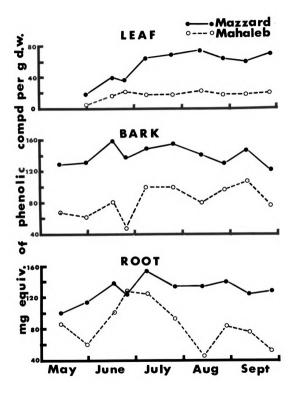


Figure 2. Procedure for extraction and purification of centrifugal sap.

RESULTS AND DISCUSSION

I. Seasonal Variations of Total Phenolic Compounds in Field-Grown Seedlings

Mazzard tissues were found to contain higher levels of phenolic compounds than Mahaleb tissues (Fig. 3).


Average amounts for all sampling dates for leaf, stem bark, and root bark of Mazzard were 55, 141, 129 mg equivalents of ferulic acid per gram dry weight respectively, compared with 17, 82, and 86 mg for Mahaleb.

Leaves. Among the tree tissues sampled, the leaf tissue contained the least amount of methanol extractable phenolic compounds. One week after bud break, the small leaves contained low amounts of phenolic compounds. As the leaves grew, the phenolic compounds increased. In Mahaleb the phenolic level increased slowly until the latter part of June, then remained constant to the end of September. In Mazzard the level of phenolic compounds increased at a more rapid rate until early July and then stabilized (Fig. 3).

Stem bark. Mazzard contained 1.5 to 2 times more phenolics in the bark than Mahaleb. As in the leaf tissue, Phenolics increased slightly to the first part of June, then remained relatively stable after July 1.

Figure 3. Seasonal variations of total phenolic compounds in field-grown cherry seedlings.

Average values of phenolics in leaf, bark, and root were significantly different at 1% level between two rootstocks.

Root bark. Phenolic compounds increased in bark of Mazzard root until late June and then leveled off. Bark of Mahaleb root showed the greatest variation in phenolics of the tissues tested. Two peaks in concentration were found, one in the latter part of June and the other at the end of August. During the first two weeks after planting, the level of phenolics dropped from 86 to 60 mg, then increased rapidly until June 24. The concentration declined in mid-July, reaching a low of 46 mg per gram of tissue in mid-August. A smaller rise was noted in late August through early September.

Seasonal variations of phenolic compounds have been studied in plum (Hillis and Swain, 1959), oak (Feeney, 1968), and fern (Gloss and Bohm, 1969). Phenolics increased rapidly during the early part of the growing season, then declined after the leaf attained its maximum size. The bark and woody tissues in plum showed less variation than the leaf during the growing season.

Transport of some phenolic compounds has been reported (Gorz and Haskins, 1962; Favre-Bonvin, 1968; Macleod and Pridham, 1965). However, it is unlikely that all the phenolic compounds in root or bark were translocated from the leaf tissues, because these tissues contained a high level of phenolic compounds before bud break. In higher plants, the immediate precursors of phenolic compounds are the aromatic amino acids

phenylalanine and tyrosine, which are in turn synthesized via the shikimic acid pathway from carbohydrates (Brown, 1964). In Mahaleb the supply of precursors in the top may affect the concentrations of phenolic compounds in the root tissues. However, in Mazzard, the root tissue may be able to mobilize local storage metabolites for synthesis of phenolics. The sudden drop of phenolics in Mahaleb root in August is difficult to explain. The phenolic compounds may have been transported to other tissues or changed into methanol insoluble forms.

The patterns of lignification could differ in the two species. In Mahaleb active lignification may lag behind growth but be coincident with it in Mazzard.

II. Identification of Phenolic Compounds in Methanol Extracts of GreenhouseGrown Cherry Seedlings, and Determination of Relative Amounts

A. Total phenolic compounds

The total methanol extractable phenolic compounds in fresh leaf, stem bark, and root bark tissues of Mazzard and Mahaleb varied from 200 µg equivalents of ferulic acid per gram fresh weight in Mahaleb leaf to 5667 µg in Mazzard root bark (Table 5). This was based on one sampling in May following 4 months of growth in the greenhouse. Mazzard tissues consistently contained more phenolics than Mahaleb tissues, in agreement with the previous experiment.

Table 5. Total phenolic compounds in Mazzard and Mahaleb tissues from greenhouse-grown seedlings.a

Species	Tiss ues	Total phenolic compounds (µg ferulic acid equivalents/g fresh weight)
Mazzard	Leaf Stem bark Root bark	583 5175 5667
Mahaleb	Leaf Stem bark Root bark	200 2517 2833

Average of 3 determinations based on ferulic acid standard curve.

However, the absolute values were approximately 10% of those obtained in the field study on a dry weight basis.

The difference may be due to differences in sample preparation or in growing conditions. The drying of samples in the first study may have released more 'bound' phenolic compounds. Phenolic compounds in the living tissues usually occur as glucosides, esters, or other bound forms (Harborne, 1964; El-Basyouni et al., 1966). The free phenolic compounds can be released by hydrolysis. Beck (1964), studying isoflavones in clover leaves, found extremely low levels of isoflavones when the tissue was extracted immediately with boiling ethanol. If the crushed leaves were allowed to stand for less than one minute before extraction, high levels of isoflavones were obtained.

Environmental factors might also account for the discrepancy. Light intensity, light quality, and nutritional status are known to affect the synthesis of phenolic compounds in intact plants and tissue slices (Siegelman, 1964). Lott (1960) reported that field-grown tobacco plants contained more phenolic compounds than greenhouse-grown plants. He attributed the differences to the high intensity of ultraviolet light in the field. Ultraviolet light increases the levels of phenolic compounds in tabacco and sunflower (Koeppe et al., 1969). Thus, the high levels of phenolic compounds in field-grown cherry seedlings may be due to higher ultraviolet irradiation in the field.

B. Paper chromatography of hydrolysed leaf extracts

Paper chromatograms of hydrolysed extracts of Mazzard and Mahaleb leaves are illustrated in Figure 4. Most of the compounds moved rapidly in BAW (6:1:2), suggesting that they were aglycones. Fourteen spots were distinguishable on chromatograms of Mazzard leaf extracts after spraying with FeCl₃-K₃Fe(CN)₆ reagent. In Mahaleb extracts 7 spots were noted. All compounds were colorless under visible light; however, some fluoresced under ultraviolet light. The color reactions of phenolic compounds from both species are shown in Table 6. Rf values are given in Tables 7 and 8, and relative quantities in

compounds extracted from Mazzard and Mahaleb leaves. The chromatograms were developed first with BAW (6:1:2) and secondly with 2% Paper chromatograms of hydrolysed phenolic broken lines. Shaded spots were common to both species. Spots restricted to one species are marked with Z (Mazzard) or H HOAC. The spots marked with solid lines were more intense than spots marked with Figure 4.

(Mahaleb). Thirty µl of extracts (equivalent to 90 mg fresh weight) was spotted at

the origin.

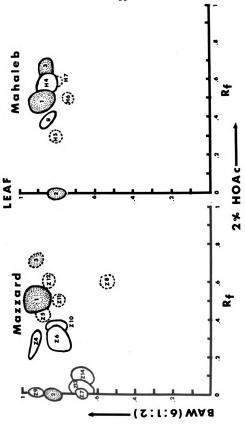


Table 6. Color reactions of phenolic compounds extracted from Mazzard and Mahaleb leaves, hydrolyzed and purified by paper chromatography. Color characteristics were compared with those of authentic compounds.a,b,c

			UV light ^d			Visible	e light	
Spot no.	Tentative identification	-	+NH ₃	2N NaOH	DPNA	FeCl ₃ K ₃ Fe(CN) ₆	2N NaOH DPNA	Hoepfner
Mazz	ard leaf							
1	o-coumaric acid	stW	stYfl	stYGfl	Y+Pu	В	Pu	stY
2	kaempferol	Y	0	Yfl	Y	В	Y	1Br
3	coumarin	(D)	(D)	YGfl	1Pu	В	Pu	р¥
Z4	dihydrowogonin	pн	pD	ly	stY	В	lY	С
Z 5	p-coumaric acid	C	stV	v	lY+Gray	1B	С	С
Z6	caffeic acid	В	В	W	lT+lBr	В	1Br	stT
Z 7	quercetin	Y	0	Yfl	0	В	lY	14
z 8	chlorogenic acid	В	G	G	fBr	В	1Br	Y
Z 9	unknown	pBr	pBr	pBr	Y	В	pBr	1Br
Z 10	unknown	В	c	Ċ	1Br+lY	pВ	ċ	C
Z 11	unknown	v	С	Ċ	С	В	С	Y
Z12	unknown	В	В	С	С	В	С	С
Z 13	unknown	pВ	G	1W	С	В	С	17
Z14	unknown	pВ	G	1W	C	В	рY	14
Maha]	leb leaf							
1	o-commaric acid	stW	stYfl	stYGfl	Y+Pu	В	С	Y
2	kaempferol	Y	0	stY	Y	В	Y	С
3	coumarin	(D)	(D)	stYGfl	1Pu	В	lr v	С
H4	herniarin	v	v	stBfl	Y+Gray	С	stV	С
H5	unknown	В	В	С	1Pu	В	С	С
н6	unknown	С	С	С	С	В	С	pΥ
H7	unknown	С	С	С	С	В	С	С
Refer	rence compounds							
	o-coumaric acid	W	GY	stYGfl	Pu	В	Pu	Y
	kaempferol	Y	stY	Yfl	Y	В	Y	G
	coumarin	(D)	(D)	stYGfl	1Pu	С	Pu	С
	dihydrowogonin	С	С	ly	stY	В	14	С
	p-coumaric acid	С	stV	stV	Y → lGray	В	1V	stY
	caffeic acid	В	В	fWB	lT+1Br	В	1Br	T+Br
		Y Y	Y	Yfl	10	В	fY	14
	quercetin	•				_		
	quercetin chlorogenic acid	В	G	fG	lT → Br	В	l Br	stO
		_	G V	fG stBfl	l T→Br C	B C	1Br stV	sto C

 $^{^{\}mathbf{a}}\mathbf{None}$ of the compounds gave a color reaction with $\mathtt{NaBH}_{\mathbf{a}}\mathbf{-HC1}$ reagent.

bOnly spot H5 gave a color reaction with Vanillin-HCl.

CB, Blue; Br, Brown; C, Colorless; D, Dark; G, Green; O, Orange; Pu, Purple; R, Red; T, Tan; Y, Yellow; W, White; p, Pale; 1, light; br, bright; st, strong; fl, fluorescence.

 $^{^{} extbf{d}}$ Colors under long UV except '()' showing colors under short UV.

Table 7. Rf values of phenolic compounds extracted from Mazzard and Mahaleb leaves, hydrolyzed and separated by two-dimensional paper chromatography. The compounds were rechromatographed together with reference compounds in six different solvent systems.a,b,c

	Tentative	Thi	in laye	er		Paper	
Compound	identification	ВМА	M-C	TEF	BAW	2%HOAc	BPW
Mazzard l	eaf						
1	o-coumaric acid	.39	.50	s	.84	.59	.88
2	kaempferol	.29	.36	.21	.80	.00	.88
3	coumarin	.62	•53	.56	.88	.75	,87
Z4	dihydrowogonin	.60	.57	.56	.86	.042	.90
Z 5	p-coumaric acid	.41	.44	s	.84	.51	.86
z 6	caffeic acid	.27	.27	s	.72	.40	.78
z7	quercetin	.12			.65	.00	
Z8	chlorogenic acid	.02	.00	.01	.48	.65	.25
Mahaleb l	eaf						
1	o-coumaric acid	.43	.47	s	.84	.57	.88
2	kaempferol	.36		.19	.80	.00	.88
3	coumarin	,62	.48	.60	.88	.73	.87
н4	herniarin	.62	.48	.60	.89	.61	.86
Reference	compounds						
	o-coumaric acid	.43	.45	s	.85	.61	.88
	kaempferol	.30	.37	.21	.81	.00	.87
	coumarin	.63	.54	.61	.89	.77	.87
	dihydrowogonin	.61	.57	.57	.87	.042	.90
	p-coumaric acid	.42	.40	s	.85	.54	.86
	caffeic acid	.26	.29	s	.73	.41	.79
	quercetin	.16	.20	.08	.65	.00	.83
	chlorogenic acid	.02	.00	.01	.48	.71	.25
	herniarin	.63	.50	.60	.89	.64	,86
	ferulic acid	.45	.50	s	.82	.59	.78

Chambers were saturated with developing solvents and chromatograms were developed at room temperature $(22 + 1^{\circ}C)$.

bEach value is the average of 3 determinations.

CBMA (benzene:methanol:acetic acid, 45:8:4), M-C (11% methanol in CHCl₃), TEF (toluene:ethyl acetate:formic acid, 5:4:1), BAW (buthanol:acetic acid:water, 6:1:2), 2% HOAc (2% acetic acid), BPW (buthanol:pyridine:water, 10:3:3), s, streak.

Table 8. Rf values of phenolic compounds extracted from Mazzard and Mahaleb leaves, hydrolysed and separated by two dimensional paper chromatograms.

	Solvent s	ystem
Compounds	BAW (6:1:2)	2% HOAc
Mazzard		
1	.86	.45
1 2 3	.82	.00
3	.86	.74
z4 ^a	.90	.25
Z 5	.81	.35
Z 6	.76	.25
z 7	.65	.00
Z 8	.58	.59
Z 9	.89	.00
Z10	.90	.31
Z11	.80	.49
Z12	.81	.54
z13	.66	.05
Z14	.69	.12
Mahaleb		
1	.90	.49
1 2 3	.82	.00
3 _	.91	.75
H4 ^a	.88	.62
Н5	.82	.26
Н6	.78	•50
H7	.82	.60

^aPrefix Z or H means that the compound was present only in Mazzard or Mahaleb respectively.

^bSee Table 7 for notations of chromatographic conditions.

Table 9. Spectral characteristics of partially purified compounds from Mazzard and Mahaleb leaves, compared with those of reference compounds.

Compound	Tentative identification	max (mµ)	min (mμ)
Mazzard leaf			
1 2 3 24 25 26 27 28	o-coumaric acid kaempferol coumarin dihydrowogonin p-coumaric acid caffeic acid quercetin chlorogenic acid	320,271 368,268 276 332,290 270 320,243 370,256	300,244 280,240 252 320,256 248 260,230 286,240 265
Mahaleb leaf	•		
1 2 3 H4	o-coumaric acid kaempferol coumarin herniarin	325,274 368,260 310,275 320	300,246 314, 300,244 260
Reference Compounds			
	o-coumaric acid kaempferol coumarin dihydrowogonin p-coumaric acid caffeic acid quercetin chlorogenic acid herniarin	325,274 369,268 312,276 336,290 310,226 326,243 372,256 332,244 320,	300,243 290,240 298,242 320,254 246 264,230 286,238 268 260

Table 10. Ultraviolet absorption maxima and minima are shown in Table 9. From these data, some of the compounds in the leaf extracts were identified as follows:

Spot 1: This compound, occurring in both species, appeared bright white under ultraviolet light. In the presence of ammonia, it fluoresced bright yellow. The compound reacted with diazotized p-nitro aniline to form a purple color, and turned a bright yellow on treatment with Hoepfner reagent. The Rf values in both thin layer chromatography and paper chromatography were comparable to those of standard o-coumaric acid. The compound had an absorption spectrum similar to that of authentic o-coumaric acid, with maxima at 320 and 271 mµ and minima at 300 and 243 mµ. Thus, compound 1 was tentatively identified as o-coumaric acid.

Spot 2: This compound occurred in both tissues in similar concentrations. It appeared yellow under ultraviolet light, changing to orange on fuming with ammonia. Further tests with other reagents indicated that the compound might be a flavonoid. It moved rapidly in BAW (Rf .80) but not in 2% acetic acid (Rf .00). This is characteristic of planar flavonoid aglycones (flavone and flavonol) (Seikel, 1964). Its Rf values and ultraviolet absorption spectrum were similar to those of kaempferol. Therefore, spot 2 was identified as kaempferol.

Table 10. Relative amounts of phenolic compounds in Mazzard and Mahaleb leaves, based on spot size and color intensity on two dimensional paper chromatography after application of FeCl₃-K₃Fe(CN)₆ reagent.

Compound	Tentative	Rela	tive amount
Compound	identification	Mazzard	Mahaleb
1	o-coumaric acid	++++	+++++
2	kaempferol	++++	+++
3	coumarin	+	+++++
Z4	dihydrowogonin	++++	-
Z 5	p-coumaric acid	++	_
Z 6	caffeic acid	++++	_
27	quercetin	++	-
Z 8	chlorogenic acid	++	_
Z9	unknown	+++	_
Z10	unknown	+	-
Z11	unknown	++	-
Z12	unknown	++	_
Z13	unknown	++	_
Z14	unknown	++	-
H4	herniarin	-	++++++++++
H5	unknown	-	+
н6	unknown	_	+
н7	unknown	-	+

Spot 3: Compound 3 was also common to both leaf tissues. However, the concentration of the compound was higher in Mahaleb than in Mazzard. It was colorless under long and absorbed under short ultraviolet light, with or without ammonia. When the spot was sprayed with 2 N NaOH, it fluoresced a bright yellow-green a typical color reaction of coumarin. Subsequent treatment with DPNA produced the characteristic purple color obtained with coumarin (Swain, 1953). Rf values and spectral characteristics were similar to those of coumarin. The compound was therefore identified as coumarin.

Spot Z4: Compound Z4 occurred only in Mazzard leaf extracts and was colorless under ultraviolet light with or without ammonia. However, a distinctive yellow color was obtained when the compound was sprayed with diazotized p-nitro aniline reagent (DPNA). The Rf values of the compound in both thin layer and paper chromatography were comparable to those of dihydrowogonin (Table 7). Therefore, Z4 was identified as dihydrowogonin.

Spot Z5: Z5, also detected only in Mazzard extracts, showed no color under ultraviolet in the absence of ammonia, but fluoresced bright violet in the presence of ammonia. Although Rf values were comparable with those of standard p-coumaric acid, the ultraviolet absorption spectrum differed. The compound may have

been either contaminated with other compounds or too low in concentration to be detected spectrophotometrically.

Spot Z6: This compound, unique to Mazzard tissues, fluoresced bright blue under ultraviolet with or without ammonia. With Hoepfner reagent it gave a bright tan color, and with DPNA a light tan, later turning to light brown. Rf values of the compound in six different solvent systems were similar to those of standard caffeic acid, as were spectral characteristics, with maxima at 320 and 243 and minima at 260 and 230 mµ. It was thus identified as caffeic acid.

Spot 27: 27 occurred in Mazzard and showed flavonoid characteristics in its color reactions. The compound fluoresced yellow under ultraviolet light with or without ammonia. Rf values were 0.65 in BAW and 0.00 in 2% acetic acid. Maximum absorption occurred at 370 and 256, minimum at 280 and 240 m μ . These characteristics agreed with those of the standard compound quercetin and so it was identified as quercetin.

Spot Z8: Z8, occurring only in Mazzard, fluoresced blue under ultraviolet light. When the chromatogram was fumed with ammonia, the color changed to green, which is typical of chlorogenic acid. The Rf values of the compound corresponded to those of standard chlorogenic acid.

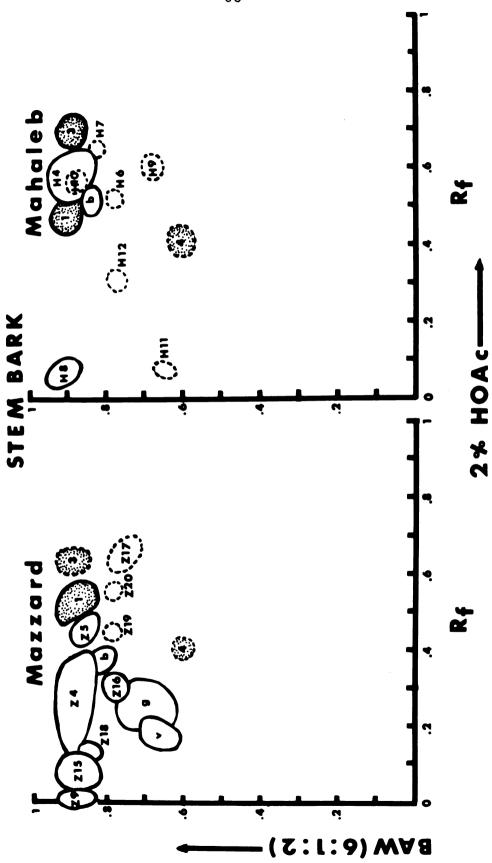
Its spectral characteristics, however, differed from those of chlorogenic acid. The low concentration present in the hydrolyzed extract resulted in poor recovery during purification and the absorption spectrum was poor. However, color reactions and Rf values suggest that Z8 is chlorogenic acid.

Spot H4: H4 was one of the most distinctive compounds in Mahaleb tissue. It fluoresced bright violet under ultraviolet light, changing bright blue after spraying with 2N NaOH. Subsequent treatment with DPNA gave a bright violet color under visible light. These are typical color reactions of herniarin (7 methoxy coumarin) (Swain, 1953). The Rf values of the compound in six different solvent systems were comparable with those of standard herniarin, as was the absorption spectrum (maximum at 320 m μ and minimum at 260 m μ). Therefore, the compound was identified as herniarin.

The results obtained by extracting phenolic compounds from Mazzard and Mahaleb leaves are summarized in Table 10. Relative amounts of each compound are also given.

Three compounds occurred in both Mazzard and Mahaleb tissues: o-coumaric acid, kaempferol, and coumarin. The first two compounds were present in similar concentrations in both Mazzard and Mahaleb leaves. However, the coumarin level was much higher in Mahaleb than in Mazzard. The Mazzard leaves contained several specific phenolic

compounds, including caffeic acid, dihydrowogonin, quercetin, chlorogenic acid, and p-coumaric acid. The first two were most prominent. The Mahaleb leaves contained four major phenolic compounds, three of these being o-coumaric acid, kaempferol, and coumarin. Herniarin, specific to Mahaleb, was the dominant compound that appeared on two-dimensional paper chromatograms.


C. Paper chromatography of hydrolyzed stem bark extracts

Phenolic compounds extracted from living bark tissues were acid hydrolyzed and chromatographed on paper. Among the 13 phenolic compounds that appeared on chromatograms of Mazzard extracts, only three corresponded with those found in Mahaleb bark (Fig. 5). The paper chromatogram of Mahaleb bark showed 11 phenolic spots.

The color reactions of phenolic compounds from Mazzard and Mahaleb bark are shown in Table 11; Rf values and relative concentrations are reported in Table 12. In the previous section some of the spots were identified in leaf extracts on the basis of color reactions and Rf values. On the chromatograms of Mazzard bark extracts, five spots exhibited color reactions and Rf values identical with those of Mazzard leaf phenolic compounds. Those spots were o-coumaric acid, coumarin, dihydrowogonin, p-coumaric acid, and Z9. Mahaleb bark also contained some

sent in larger amounts than those marked with broken lines. Shaded spots were common to compounds extracted from Mazzard and Mahaleb The chromatograms were developed 30 µl of extract (equivalent to 90 mg fresh The spots marked with solid lines were pre-Paper chromatograms of hydrolyzed phenolic stem bark. The chromatograms were develor first with BAW and secondly with 2% HOAC. Species specific spots are both tissues. Species specific spots marked with Z (Mazzard) or H (Mahaleb) 5 Figure

weight) was spotted at the origin.

Color reactions of phenolic compounds extracted from Mazzard and Mahaleb stem bark, hydrolyzed and chromatographed on a two-dimensional paper chromatogram. a,b Table 11.

			UV light			Vis	Visible light		
Spot no.	Tentative identification	ı	+NH ₃	+2N NaOH	FeCl3- K3Fe(CN)6	DPNA	2N NaOH + DPNA	Hoepf- ner	Vanil- lin HCl
Mazzard	ard								
т	o-coumaric acid	3	*	stYGfl	В	Pu	U	υ	υ
m	coumarin	(£D)	U	stYGfl	ပ	Y-Pu	O	11	U
4	catechin	U	U	U	В	0	fY	U	ሷ
24	dihydrowogonin	10	10	17	Д	stY	×	U	U
25	p-commaric acid	U	stBV	stV	Д	Y+Gray	U	*	U
62	unknown	Br	Br	U	Д	×	17	17	ပ
215	unknown	VB	VB	U	ф	0	17	£X	ပ
216	unknown	O	U	Br	Ф	lBr	17	>	ပ
217	unknown	U	U	×	Д	11	ပ	U	O
218	unknown	<u>(a)</u>	(<u>a</u>)	ပ	മ	11	10	U	ပ
219	unknown	O	U	U	Ø	U	ပ	>	ပ
220	unknown	U	U	U	ф	U	υ	ပ	υ
Mahaleb	<u>leb</u>								
ч	o-coumaric acid	X	×	stYGfl	Д	Pu	υ	U	υ
٣	coumarin	U	U	ΥĞ	U	1Pu	1RV	U	£Ъ
H4	herniarin	>	>	stBfl	U	Y+Gray	>	U	ပ
4	catechin	U	U	U	ф	×	ξĭ	17	1P
ЭН	unknown	U	U	U	ф	ပ	ပ	≯	ပ
Н7	unknown	U	ပ	17	ф	U	ပ	17	U
Н8	unknown	<u>(a</u>	(<u>o</u>)	U	ф	⊁	ပ	U	U
6Н	unknown	U	U	U	ф	£	U	U	10
H10	unknown	U	U	ပ	ф	Д	U	£X	ပ
HII	unknown	U	U	ပ	Ø	U	ပ	17	ပ
H12	unknown	U	U	U	ф	*	U	11	υ

bSee Table 6 for notation. a None of the compounds gave a color reaction with ${\tt NaBH}_4-{\tt HCl}$ reagent.

Table 12. Rf values and relative concentrations of phenolic compounds extracted from Mazzard and Mahaleb stem bark, hydrolyzed and chromatographed on a two-dimensional paper chromatogram.

Spot	Tentative		Rf val	.ue	Relative
No.	identification	BAW	(6:1:2)	2% HOAc	concentration
Mazzard					
1	o-coumaric				
	acid		.85	.42	+++
3	coumarin		.89	.65	+
4	catechin		.62	.40	++
Z4	dihydrowogonin		.89	.0039	++++++++++
Z 5	p-coumaric acid		.85	.37	+++
Z 9	unknown		.86	.00	++
Z1 5	unknown		.88	.05	++++
Z16	unknown		.76	.31	+++
Z17	unknown		.75	.65	+
Z18	unknown		.87	.13	+++
Z19	unknown		.78	.42	. +
Z20	unknown		.77	.55	+
Mahaleb					
1	o-coumaric acid		.91	.41	+
3	coumarin		.91	.75	+++
H4	herniarin		.90	.62	+++++++
4	catechin		.62	.40	++
н6	unknown		.79	.48	+
н7	unknown		.81	•55	+
Н8	unknown		.89	.86	+
н9	unknown		.70	.60	+
H10	unknown		.87	.62	++
Hll	unknown		.64	.08	+
H12	unknown		.77	.28	+

^aSee Table 7 for notations and chromatographic conditions.

of the phenolic compounds present in the Mahaleb leaf tissues, namely o-coumaric acid, coumarin, herniarin, and two unknown spots H6 and H7.

Compound 4 was found in both Mazzard and Mahaleb bark. It was colorless under ultraviolet light with or without ammonia, but gave a pink color with vanillin-HCl reagent, which is specific for flavonoids with a phloroglucinol nucleus such as catechin and leucoanthocyanidins (Swain and Hillis, 1959). The absorption spectrum of the compound had the characteristics of d-catechin with maximum absorption at 280 m μ and minimum at 250 m μ (Jurd, 1962). Rf values were comparable with those of catechin reported by Luh et al. (1967). Therefore compound 4 was identified as d-catechin.

The living bark tissues of the rootstocks differed as to type of phenolic compounds. Mazzard bark appeared to be high in cinnamic acids and flavanones (p-coumaric acid, o-coumaric acid, and dihyrowogonin) while Mahaleb bark was exceptionally high in coumarins.

The spots marked v, g, and b in Figure 5 did not appear to be phenolic compounds, for they were negative to FeCl₃-K₃Fe(CN)₆ and DPNA reagents. However, v and g were useful markers for Mazzard bark extracts, since they gave distinctive colors (v, violet; g, green) under ultraviolet light. The two spots were absent from Mazzard leaf extracts.

D. Paper chromatography of hydrolyzed cherry root bark extracts

Phenolic compounds found in root bark were similar to those found in bark of stem tissues (Fig. 6). Color reactions, Rf values and relative concentrations of phenolic compounds from both seedlings are shown in Tables 13 and 14.

Eleven phenolic spots appeared on the paper chromatogram of Mazzard extracts, and ten spots on that from Mahaleb. Root bark tissues of both rootstocks contained the three common phenolic compounds which were found in stem bark of both Mazzard and Mahaleb, namely o-coumaric acid, coumarin, and catechin.

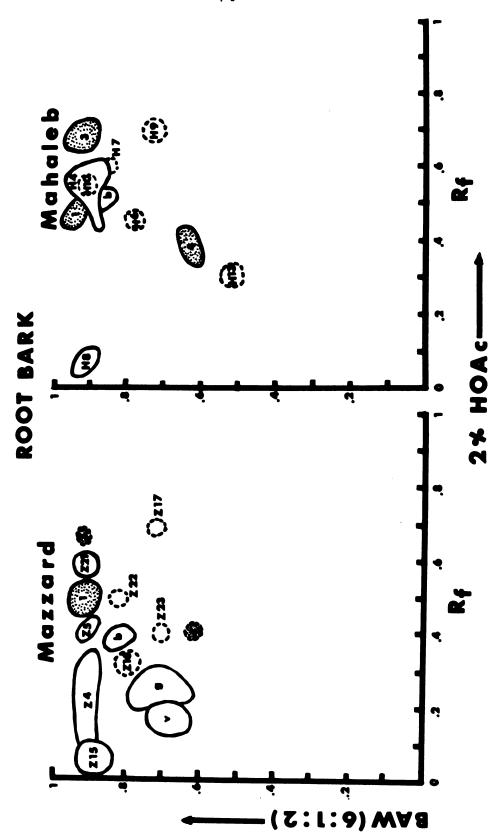
In Mazzard, dihydrowogonin was the dominant compound followed by Z15, o-coumaric acid, and p-coumaric acid.

In Mahaleb, herniarin was the dominant compound but coumarin and catechin were also prominent.

E. Gas liquid chromatography of hydrolyzed phenolic compounds

Gas liquid chromatography was used to confirm and extend the results obtained with paper chromatography.

The standard phenolic compounds and the unknown compounds were methylated with $\mathrm{CH_2N_2}$ (Schlenk et al., 1960). Among the different standard phenolic compounds studied, only the cinnamic acid series was successfully methylated. Since the flavonoid compounds did not respond to


compounds extracted from Mazzard and Mahaleb Paper chromatograms of hydrolyzed phenolic Figure 6.

root bark. The chromatograms were developed first with BAW (6:1:2) and secondly with 2% HOAc. The spots marked with solid lines were present in larger amounts than those marked with broken lines. Shaded spots were common

marked with Z (Mazzard) or \bar{H} (Mahaleb). 30 μl extract (equivalent to 90 mg fresh weight) was

spotted at the origin.

to both species. Species specific spots are

Color reactions of phenolic compounds extracted from root bark of Mazzard and Mahaleb, hydrolyzed and chromatographed on a two-dimensional paper chromatogram. A, b Table 13.

1	E		UV light			Vi	Visible light	ıt	
spor no.	rentative identification	1	+NH ₃	2N NaOH	DPNA	FeCl ₃ K ₃ Fe (CN) ₆	2N NAOH DPNA	Hoepf- ner	Vanil- lin HCl
Mazzard	rd								
Н	o-coumaric acid	3	ζX	YGfl	Pu	ф	U	ပ	ပ
m	coumarin	ပ	U	lYGfl	Pu	fВ	RV	U	U
4	catechin	υ	O	U	*	ф	υ	U	Д
25	p-commaric acid	U	stBV	stBV	Y+Gray	ф	U	U	O
215	unknown	VB	VB	O	st0	ф	10	fв	O
216	unknown	U	U	U	1Br	ф	O	11	υ
217	unknown	U	×	17	U	щ	U	17	U
Z21	unknown	٥	^	ф	ပ	щ	U	ပ	O
222	unknown	O	U	U	U	щ	O	17	U
223	unknown	O	U	ပ	U	Ø	υ	ပ	U
24	dihydrowogonin	U	υ	U	stY	ф	11	ပ	U
Mahaleb	eb								
ч	o-coumaric acid	3	¥	YGfl	Pu	ф	U	ပ	U
ო	coumarin	<u>(a)</u>	<u>(a)</u>	YGf1	1Pu	ပ	1Pu	U	O
4	catechin	U	U	ပ	⊁	ф	×	17	()4 F-1
H4	herniarin	>	>	stB	lBr	U	stV	ပ	υ
9Н	unknown	U	U	U	≯	ф	U	11	υ
Н7	unknown	U	U	U	ပ	щ	ပ	11	υ
Н8	unknown	<u>a</u>	<u>(a)</u>	≯	≯	щ	₩	υ	υ
Н9	unknown	U	U	U	0 + £	щ	U	11	0
H10	unknown	U	U	U	щ	щ	U	11	O
н13	unknown	υ	U	U	Pu	Д	υ	11	O

b See Table 6 for notation. anone of the compounds gave a color reaction with NaBH $_{f 4}$ -HCl.

Table 14. Rf values and relative concentrations of phenolic compounds extracted from Mazzard and Mahaleb root bark, hydrolyzed and chromatographed on two-dimensional paper chromatograms.a

Spot	Tentative	Rf val	.ue	Relative
No.	identification	BAW (6:1:2)	2º HOAc	concentration
Mazzard				
1	o-coumaric			
	acid	.90	.49	+++
3	coumarin	.90	.66	+
4	catechin	.64	.42	+
Z4	dihydrowogonin	.91	.1638	++++++++++
Z 5	p-coumaric			
	acid	.89	.40	++
Z1 5	unknown	.89	.05	++++
Z16	unknown	.77	.32	+
Z17	unknown	.70	.67	+
Z21	unknown	.89	.57	+
Z22	unknown	. 75	.51	+
Z23	unknown	.71	.40	+
Mahaleb				
1	o-coumaric			
	acid	.93	.42	+
3	coumarin	.92	.72	+++
4	catechin	.61	.40	+++
H4	herniarin	.91	.52	++++++++++
н6	unknown	.80	.50	+
н7	unknown	.82	.62	+
Н8	unknown	.89	.06	+
Н9	unknown	.70	.60	+
H10	unknown	.89	.60	+
H13	unknown	.49	.30	+

a See Table 7 for notation and chromatographic conditions.

methylation, silylation was employed. Different columns and a wide range of temperatures were used, but no response could be demonstrated by this method.

Figure 7 shows a trace obtained with the methyl esters of the standard phenolic compounds. Five compounds were chromatographed successfully. Coumarin was eluted first, followed by o-coumaric acid, p-coumaric acid, caffeic acid, and herniarin. Two peaks of different concentration were observed with o-coumaric acid, with p-coumaric acid, and with caffeic acid. This probably was due to impurities or to incomplete methylation.

Typical gas chromatograms for leaf, stem bark, and root bark extracts are shown in Figures 8, 9, and 10.

Retention times and concentrations of phenolic compounds are given in Table 15.

o-Coumaric acid occurred in all tissues of both rootstocks, and similar levels were present in both. Leaves contained higher levels of the compound than did the bark tissues. p-Coumaric acid occurred in all Mazzard tissues tested, but the level of the compound was much higher in the bark than in the leaves. Coumarin was present in all the tissues tested. In stem and root bark, Mahaleb contained 8 to 10 times more coumarin than did Mazzard. Caffeic acid was detectable only in Mazzard leaves. The level was 0.11 mg per gram fresh weight of leaves. Herniarin occurred only in Mahaleb tissues. As in the case

Figure 7. Gas liquid chromatogram of a mixture of standard phenolic compounds. Compounds were methylated before chromatography on 2% QF-1 on Chromasorb W. Column temperature was 160°C. Coum = coumarin; O-C = o-coumaric acid; p-C = p-coumaric acid; Caf = caffeic acid; Her = herniarin.

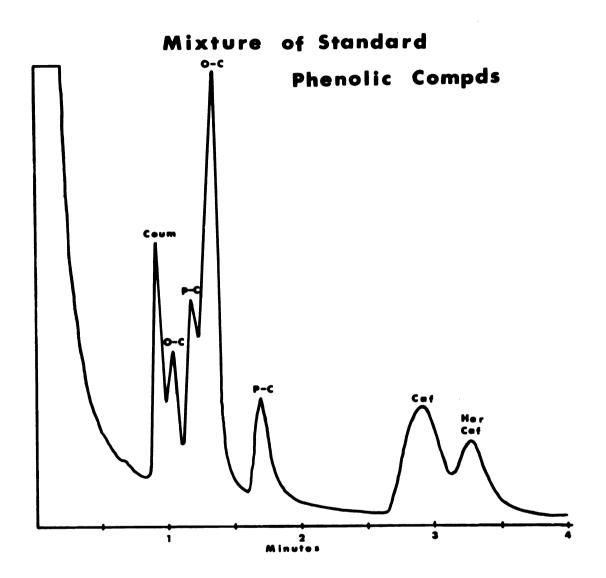


Figure 8. Gas liquid chromatograms of hydrolyzed phenolic compounds extracted from Mazzard and Mahaleb leaves. Compounds were methylated before chromatography on 2% QF-1 on Chromasorb W. Column temperature was 160°C.

1 = coumarin; 2 = o-coumaric acid; 3 = p-coumaric acid; 4 = caffeic acid; 5 = herniarin.

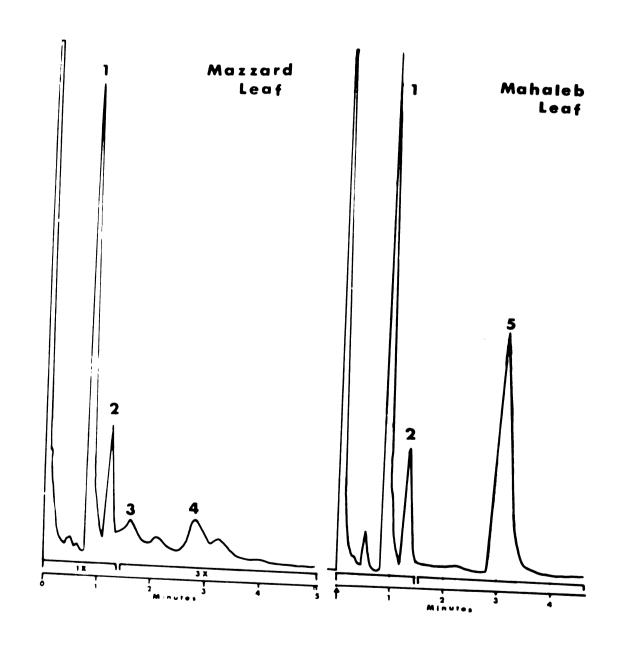


Figure 9. Gas liquid chromatograms of hydrolyzed phenolic compounds extracted from Mazzard and Mahaleb stem bark. Compounds were methylated before chromatography on 2% QF-1 on Chromasorb W. Column temperature was 160°C.

1 = coumarin; 2 = o-coumaric acid; 3 = p-coumaric acid; 4 = caffeic acid; 5 = herniarin.

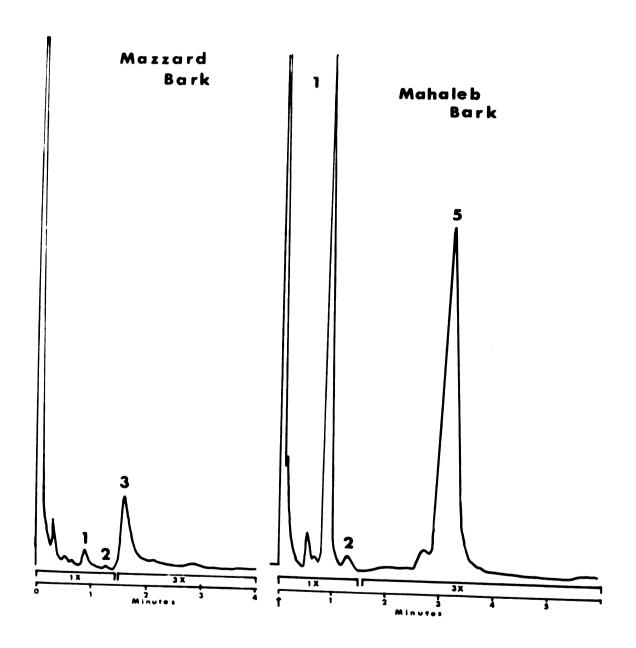


Figure 10. Gas liquid chromatograms of hydrolyzed phenolic compounds extracted from Mazzard and Mahaleb root bark. Compounds were methylated before chromatography on 2% QF-1 on Chromasorb W. Column temperature was 160°C.

1 = coumarin; 2 = o-coumaric acid; 3 = p-coumaric acid; 4 = caffeic acid; 5 = herniarin.

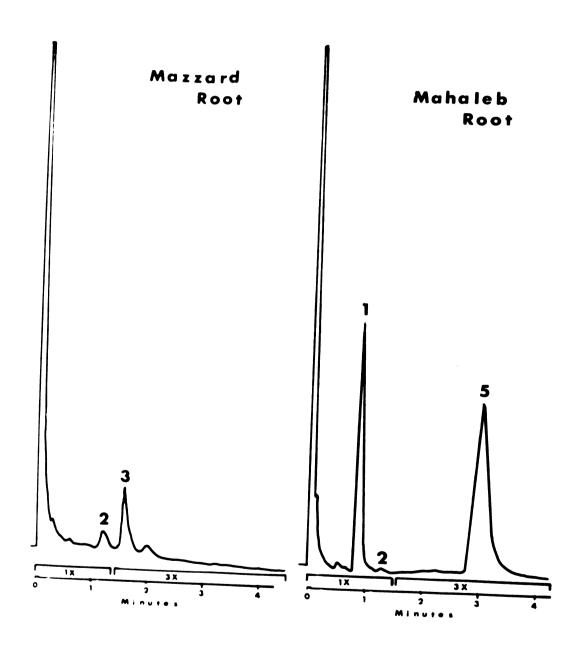


Table 15. Retention times and concentrations (mg/g fresh weight) of phenolic compounds extracted from leaves, bark, and root bark of Mazzard and Mahaleb seedlings as determined by gas liquid chromatography.a,b

Compound ^C	Retention	Le	af	Stem	bark	Root	bark
	time (min)	Maz	Mah	Maz	Mah	Maz	Mah
coumarin	.86	.76	.76	.08	.64	.06	.52
o-coumaric acid	1.24	.21	.22	.06	.08	.08	.06
p-coumaric acid	1.61	.13	-	.28	-	.26	-
caffeic acid	2.80	.11	-	-	_	-	-
herniarin	3.10	-	.44	-	.50	-	.38

^aAverage of two determinations.

 $^{^{\}rm b}$ 2% QF-1 on Chromasorb W, column temperature 160°C and flow rate 40 ml/min.

^CCompounds were methylated before chromatography.

of coumarin, all the tissues tested contained a high level of the compound. Mahaleb stem bark had the highest level with 0.5 mg per gram fresh weight followed by leaves with 0.44 mg and root bark with 0.38 mg. Table 16 summarizes the hydrolyzed phenolic compounds occurring in leaf, bark, and root bark tissues of Mazzard and Mahaleb seedlings.

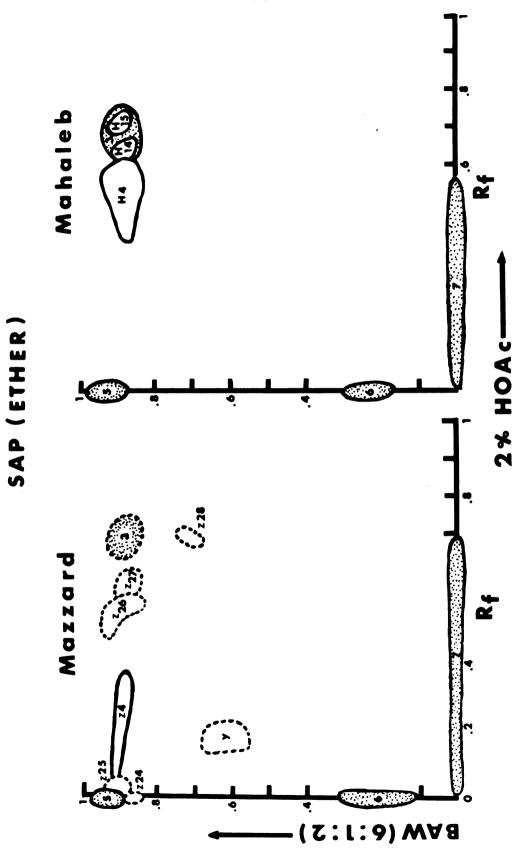
III. Identification and Relative Amounts of Phenolic Compounds in Centrifugal Sap

A. Ether fraction

The ether fraction of the sap showed several phenolic substances (Fig. 11). In Mazzard, ten spots appeared on two-dimensional paper chromatograms. Four of these (3, 5, 6, 7) had the same color characteristics and Rf values as compounds occurring in Mahaleb extracts. Compound 3 was readily identified as coumarin on the basis of color reactions and Rf values. Compounds 5, 6, and 7 gave strong color reactions with FeCl₃-K₃Fe(CN)₆; however, they were not identified.

Spot Z4, which reacted strongly with both DPNA and ${\rm FeCl}_3$ -K $_3$ Fe(CN) $_6$ reagents, had color characteristics and Rf values identical with those of authentic dihydrowogonin.

In Mahaleb, among 7 spots on paper chromatograms, only three spots appeared to be specific to Mahaleb extracts (H4, H14, and H15). Compound H4, one of the prominent spots, had the same color reactions and Rf


Table 16. Comparison of hydrolyzed phenolic compounds in extracts of leaf, stem bark, and root bark of Mazzard and Mahaleb seedlings.

Spot	Commound	L	eaf	Stem	bark	Root	bark
No.	Compound	Maz	Mah	Maz	Mah	Maz	Mah
1	o-coumaric acid	+	+	+	+	+	+
2	kaempferol	+	+	-	-	-	_
3	coumarin	+	+	+	+	+	+
4	catechin	+	_	+	+	+	+
$\mathbf{Z4}$	dihydrowogonin	+	_	+	_	+	-
Z 5	p-coumaric acid	+	_	+	_	+	_
Z 6	caffeic acid	+	_	_	_	-	_
Z 7	quercetin	+	_	_	_	_	_
Z8	chlorogenic acid	+	_	_	_	_	_
Z 9	unknown	+	_	+	_	_	_
Z10	unknown	+	-	-	_	-	_
Z11	unknown	+	_	_	_	-	-
Z12	unknown	+	_	_	_	_	-
z 13	unknown	+	-	-	_	_	_
Z14	unknown	+	_	_	-	_	_
Z15	unknown	-	_	+		+	_
Z 16	unknown	_	_	+	_	+	_
Z17	unknown	_	-	+	-	+	_
Z18	unknown	_	_	+	-	_	_
Z19	unknown	_	_	+	-	-	_
Z20	unknown	-	-	+	_	_	_
Z21	unknown	_	-	_	_	+	_
Z22	unknown	_	-	-	_	+	_
Z23	unknown	_	-	-	_	+	_
H4	unknown	_	+	_	+	_	+
н5	unknown	_	+	_	_	-	
н6	unknown	_	+	-	+	-	+
н7	unknown	_	+	_	+	_	+
Н8	unknown	-	_	-	+	_	+
н9	unknown	_	_	_	+	-	+
H10	unknown	_	_	_	+	-	+
Hll	unknown	_	_	_	+	_	_
H12	unknown	_	_	_	+	_	_
H13	unknown	_	_	_	_	_	+

the ether fraction of Mazzard and Mahaleb sap Paper chromatograms of phenolic compounds in extracts. The chromatograms were developed first with BAW (6:1:2) and secondly with 2% Figure 11.

hold. The spots marked with solid lines were present in larger amounts than spots marked with broken lines. Shaded spots were common to both rootstocks. 100 µl extract (equivalent to 6.4 g. fresh weight in Mazzard and 5.5 g in Mahaleb) was spotted at the origin.

values as herniarin. Compounds H14 and H15 reacted strongly with FeCl₃-K₃Fe(CN)₆, DPNA, and benzidine, but were not identified. The separation of these compounds from coumarin was not possible with two-dimensional paper chromatography. The compounds were differentiated only with the use of diazotized benzidine reagent (Table 17).

The identification of coumarin derivatives in Mahaleb sap was further confirmed by gas liquid chromatography. The sap contained compounds which had retention times identical to those of coumarin and herniarin (Table 19). The concentration of coumarin was 11 μg and of herniarin 24 μg per gram fresh weight. Neither compound was present in Mazzard sap.

Several compounds occurring in the chromatograms of ether extracts appeared to be free aglycones; these included herniarin, coumarin, and spots 5, H14, and H15 in Mahaleb sap, and dihydrowogonin and spot 5 in Mazzard sap. In the living tissues, aglycones rarely occur in the free state but rather as glycosides or esters. If they occur in higher plants, they are present only in storage tissues or dead tissues (Harborne, 1964), for their solubility is usually too low to occur in the cell sap. Therefore the compounds were probably hydrolyzed during the extraction procedure. However, the possibility that they occur naturally cannot be ruled out completely. Free aglycones can originate from autolysis of xylem and

extract. The compounds were chromatographed on two-dimentional paper chromatograms and sprayed with phenolic reagents. Color reactions of phenolic compounds in the ether fraction of Mazzard and Mahaleb sap Table 17.

400	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		UV light			Visible	le light	
no.	identification	ı	+NH3	2N NaOH	FeCl3+ K ₃ Fe (CN) 6	DPNA	2N NAOH +DPNA	Benzidine
Mazzard	άļ							
m	coumarin	U	U	£YG	υ	U	fPu	1
5	unknown	BW	BW	U	stB	£Υ	>	Br
9	unknown	17	≯	υ	Д	ပ	U	U
7	unknown	U	U	U	В	ပ	U	ပ
24	dihydrowogonin	O	U	¥	Д	≯	£X	ı
224	unknown	Ω	U	U	В	ပ	U	1
225	unknown	ტ	U	U	fВ	17	U	ı
226	unknown	O	stB	U	fВ	ပ	U	•
227	unknown	>	>	1B	U	ပ	U	•
Z28	unknown	ပ	U	*	U	ပ	U	υ
Mahaleb	ଣ୍ଡା							
e	coumarin	υ	U	stYG	U	1Pu	1Pu	U
Ŋ	unknown	BW	BW	æ	stB	ξĭ	*	Br
9	unknown	17	>	fBr	Д	ပ	U	ပ
7	unknown	U	U	ပ	Д	ပ	U	U
H4	herniarin	stV	stV	stB	U	£Ι	>	U
H14	unknown	U	0	stYG(?)	ф	>	10	œ
H15	unknown	U	U	stYG(?)	Д	1Pu	1Pu	γo

a See Table 6 for notations.

Table 18. Rf values of phenolic compounds in the ether fraction of Mazzard and Mahaleb sap extracts on a two-dimensional paper chromatogram.a

Spot	Tentative	Solve	ent
No.	identification	BAW (6:1:2)	2% HOAc
Mazzard			
3	coumarin	0.86	0.70
5	unknown	0.93	0.00
6 7	unknown unknown	0.10-0.30 0.00	0.00 0.00-0.70
, 24	dihydrowogonin	0.00	0.00-0.70
Z24	unknown	0.85	0.00
Z25	unknown	0.89	0.04
Z 2 6	unknown	0.88	0.51
227	unknown	0.58	0.87
Z28	unknown	0.70	0.70
Mahaleb			
3	coumarin	0.87	0.68
5	unknown	0.92	0.00
6	unknown	0.22	0.00
7	unknown	0.00	0.00-0.57
H4	herniarin	0.87	0.53
H14	unknown	0.86	0.64
H15	unknown	0.87	0.72

^aSee Table 7 for notations and chromatographic conditions.

Table 19. Retention times and concentrations of coumarins extracted from centrifugal sap of Mazzard and Mahaleb as determined by gas liquid chromatography. a

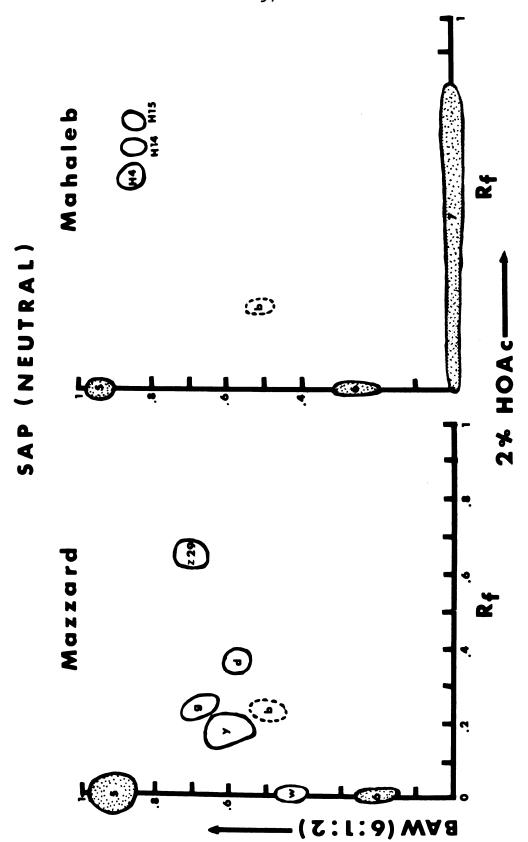
Compound	Retention	n time (min)	Relative
Compound	2% OV-1	1% SE-30	concentration (µg/g f.w.)
Mazzard sap			
Peak 3	3.7	-	-
Mahaleb sap			
Peak 1 Peak 2	0.2 0.5	1.3 3.4	11 24
Standard compound			
Coumarin Herniarin	0.2 0.5	1.3 3.4	
Column temp. (°C) Detector and	220	180	
<pre>injector temp. (°C)</pre>	250	250	
N ₂ flow rate (ml/min)	40	80	

^aAverage of 2 determinations.

phloem tissues. The reported presence of hydrolytic enzymes in xylem sap could result in accumulation of free aglycones (Sheldrake and Northcote, 1968).

B. Neutral and acid ethyl acetate fractions

After extraction with ether, the sap was further extracted with ethyl acetate without changing the pH.

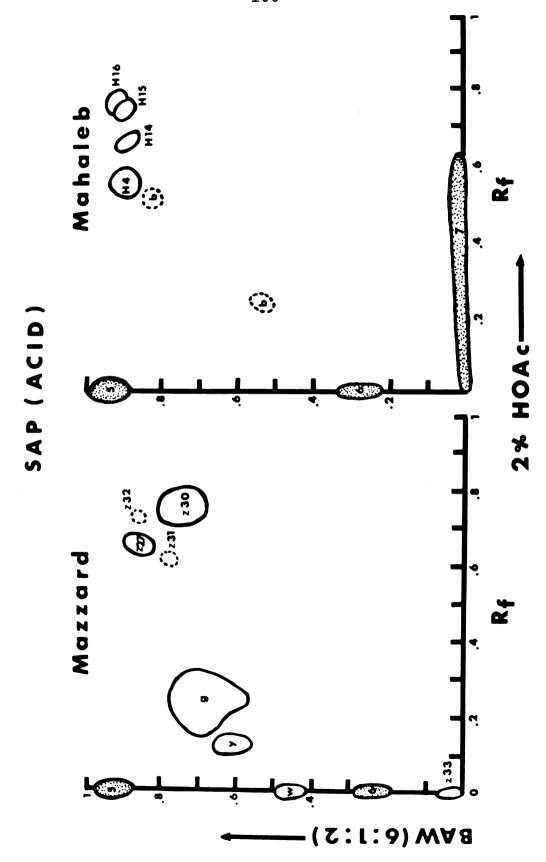

The aqueous layer was then acidified and again extracted with ethyl acetate. The content of phenolic compounds was essentially the same in all 3 fractions. In Mazzard, one additional spot (Z29) appeared in the neutral fraction (Fig. 12, Table 20) and 4 more in the acid fraction (Fig. 13, Table 20). In Mahaleb, spot H16 occurred in the acid fraction (Fig. 13, Table 20). Most of the dihydrowogonin, coumarin, and herniarin appeared in the ether fraction. However, spots 5, 6, 7, H14, H15 occurred in all three fractions.

The occurrence of phenolic compounds in Mazzard and Mahaleb sap supports the theory that they can be translocated. Phenolic compounds are thought to be metabolically inert, non-translocatable secondary metabolites, which are synthesized in situ from non-aromatic precursors such as carbohydrates (Hillis and Cale, 1962; Bate-Smith, 1962). This may be true for certain compounds which are limited to specific tissues. For example, anthocyanin appears in petals and fruit tissues but may

Paper chromatograms of phenolic compounds in the neutral fraction of Mazzard and Mahaleb Figure 12.

sap extracts. The chromatograms were developed first with BAW (6:1:2) and secondly with 2% HOAc. The spots marked with solid lines were present in larger amounts than spots marked with broken lines. Shaded spots were common to both rootstocks. 100 µl extract (equivalent to 6.4 g fresh weight in Mazzard and 5.5 g in Mahaleb) was spotted at the origin.

.


Color reactions of phenolic compounds occurring in neutral and acidic ethyl acetate fractions of Mazzard and Mahaleb sap. Compounds that occurred in Table 20.

the ether fraction were omitted.a	racti	on we	re om	itted.a					
Compound		. VU	UV light			Visi	ble	Visible light	
	1	+NH3	2N	NaOH	FeC13 K ₃ Fe (CN) 6	DPNA	2 N	NaOH	Benzidine
Mazzard (neutral)									
Z29	Ω	Br	ပ		щ	P≯Br	ပ		æ
Mazzard (acid)									
230 231	<u> </u>	ပ ပ	ပ ပ		C fB	LT C	ပပ		1R C
232 233	ပပ	ပပ	ပပ		fB fB	υυ	ပပ		ပပ
Mahaleb (acid)									
H16	ပ	ပ	ပ		В	1T	ပ		ХO

aSee Table 6 for notation.

Paper chromatograms of phenolic compounds in Figure 13.

extracts. The chromatograms were developed first with BAW (6:1:2) and secondly with 2% HOAc. The spots marked with solid lines were to both rootstocks. 100 μl extract (equivalent to 6.4 g fresh weight in Mazzard 5.5 g the acid fraction of Mazzard and Mahaleb sap with broken lines. Shaded spots were common present in larger amounts than spots marked in Mahaleb) was spotted at the origin.

be absent from the adjacent leaves. Polyphenolic compounds in heartwood are different from those found in bark or cambium tissues. The translocation of these compounds appears to be unlikely. However, other kinds of phenolic compounds are translocatable. Aromatic amino acids such as phenylalanine and tyrosine are found in xylem and phloem sap along with sugars (Zimmerman, 1958; Hardy and Possingham, 1969). Cinnamic acids were also reported in sieve tube exudates (Macleod and Pridham, 1965). The accumulation of coumarin in normally coumarin-free tissues when they are grafted to coumarin-rich tissues also strongly suggests translocation (Gorz and Haskins, 1962; Favre-Bonvin et al., 1966). Table 21 summarizes the findings of phenolic compounds in the sap of Mazzard and Mahaleb seedlings.

IV. Unhydrolyzed Phenolic Compounds in the Leaf, Stem Bark, and Root Bark of Mazzard and Mahaleb Seedlings

A. Stem bark extracts

Methanol extractable phenolic compounds were separated by two-dimensional paper chromatography. Figure 14 shows the distribution of phenolic compounds from Mazzard and Mahaleb stem bark. Both bark tissues contained 10 spots which were similar in color characteristics and Rf values (Fig. 14, Tables 22 and 23). Among these components two compounds (spots 6 and 7) were most prominent. Spot 7

Table 21. Comparison of phenolic compounds in Mazzard and Mahaleb sap extract.

Spot No.	Compound	Mazzard	Mahaleb
3	coumarin	+	+
5	unknown	+	+
6	unknown	+	+
7	unknown	+	+
Z24	unknown	+	-
Z25	unknown	+	-
Z26	unknown	+	-
Z27	unknown	+	-
Z28	unknown	+	-
Z29	unknown	+	
Z30	unknown	+	-
Z31	unknown	+	-
Z32	unknown	+	-
Z33	unknown	+	-
Z4	dihydrowogonin	+	-
H4	herniarin	_	+
H14	unknown	-	+
H15	unknown	-	+
H16	unknown	-	+

Paper chromatograms of unhydrolyzed phenolic Figure 14.

compounds in Mazzard and Mahaleb stem bark.
The chromatograms were developed first with

BAW (6:1:2) and secondly with 2% HCAC. The spots marked with solid lines were more

spots marked with solid lines were more intense than spots marked with broken lines. Shaded enote were common to both enecies

Shaded spots were common to both species. Spots restricted to one species are marked with Z (Mazzard) or H (Mahaleb). 10 μ 1

extract of Mazzard stem bark (equivalent to 40 mg fresh weight) was spotted at the origin. In Mahaleb, 15 μl extract (65 mg fresh weight) was applied.

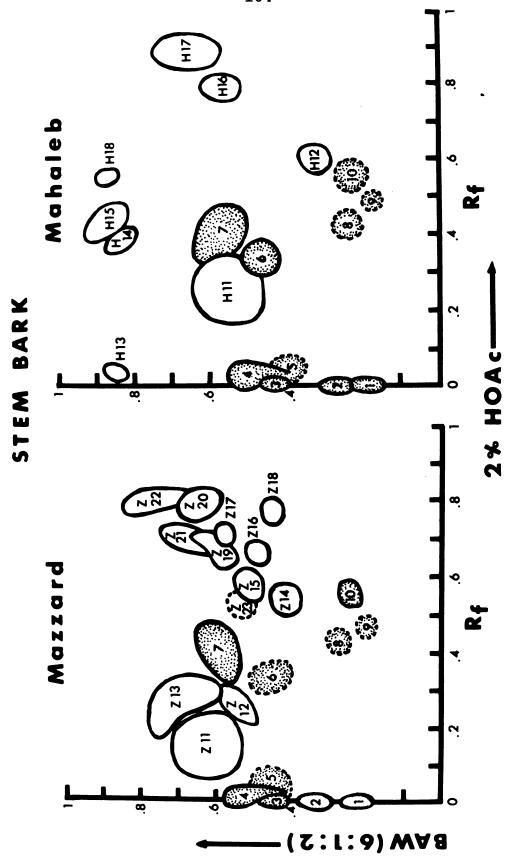


Table 22. Color reactions of unhydrolyzed phenolic compounds occurring in Mazzard and Mahaleb root and stem bark extracts.^a

			UV light			V:	isible lig	ht	
Spot no.	Tentative — identification	-	+NH ₃	+NaOH	FeCl ₃ K ₃ Fe(CN) ₆	DPNA	Vanillin HCl	2N NaOH	2N NaOH
Common	compounds								
1	unknown	Y	0	0	В	pBr	С	С	С
2	unknown	В	Y	Y	В	pBr	С	С	С
3	unknown	Y	Y	С	В	pBr	С	С	С
	unknown	В	В	В	С	Ċ	Y	С	С
5	unknown	D	D	Br	С	Y	С	С	С
5	epi-catechin	С	С	Br	В	Br	pRP	Br	pBr
,	d-cathechin	(D)	(D)	С	stB	Br	P	Br	pBr
3	leucoanthocyanidin	Ċ	Ċ	Ċ	В	Br	pР	Y	c
á	leucoanthocyanidin	c	c	Ċ	В	Br	pP	Y	Ċ
io	leucoanthocyanidin	c	Ċ	c	В	Br	pP	Y	c
Mazzard	1 compounds								
211	unknown	Br	stY	stY	рВ	Br	Y	С	С
12	unknown	С	В	С	С	Br	С	С	С
13	unknown	G	В	W	С	рT	С	С	С
14	chlorogenic acid	pВ	G	С	pВ	c	С	С	С
:15	chlorogenic acid	В	G	С	рB	С	С	С	С
:16	chlorogenic acid	pВ	G	С	pВ	С	С	С	С
17	chlorogenic acid	В	G	С	pВ	С	C	С	С
118	unknown	BV	В	Y	Ċ	С	С	С	С
219	p-coumarylquinic acid	В	stB	stB	pВ	С	С	С	С
220	p-coumarylquinic acid	v	stB	stB	pВ	рT	С	С	С
221	unknown	RBr	YBr	Y	ċ	T	С	С	С
322	unknown	pВ	В	С	С	С	С	С	С
223	unknown	c	c	c	В	0	С	Br	Br
24	unknown	С	С	С	В	Y	С	С	С
225	unknown	С	С	С	В	Y	С	С	С
Mahalek	compounds								
H11	unknown	pG	stB	С	stB	stT	С	С	С
112	leucoanthocyanidin	С	С	С	В	Br	pР	Y	С
:13	unknown	pD	pD	С	В	pBr	С	С	С
114	unknown	₽₩	В	В	С	С	С	С	С
115	herniarin	V	v	В	С	С	С	С	V
116	unknown	pV	С	С	С	С	С	С	С
117	unknown	(D)	v	С	С	С	С	С	С
118	coumarin	С	С	stYGfl	С	С	С	С	pPu
119	unknown	С	С	В	В	Y	С	С	Č

^aSee Table 6 for notations.

Table 23. Rf values of unhydrolyzed phenolic compounds occurring in extracts of Mazzard and Mahaleb root and stem bark. Compounds were chromatographed on a two-dimensional paper chromatogram.^a

Spot No.	Tentative identification	BAW	(6:1:2)	2% HOAc
Common	spots			
1	unknown		.20	.00
2	unknown		. 29	.00
3	unknown		.43	.00
4	unknown		.52	.02
5	unknown		.42	.06
6	epi-catechin		.45	.33
7	d-catechin		.58	.42
8	leucoanthocyanidin		.26	.43
9	leucoanthocyanidin		.19	.48
10	leucoanthocyanidin		.23	• 55
Mazzard	spots			
Z11	unknown		.60	.16
Zl2	unknown		•53	.25
Z13	unknown		.52	•51
Z14	chlorogenic acid		.41	•52
Z15	chlorogenic acid		.50	•55
Z16	chlorogenic acid		.48	.64
Z17	chlorogenic acid		.56	.70
Z18	unknown		. 44	.76
Z19	p-coumarylquinic acid		.57	.64
Z20	p-coumarylquinic acid		.63	.77
Z21	unknown		.67	.68
Z22	unknown		.74	.80
Z23	unknown		•53	•52
Z24	unknown		.43	.33
Z25	unknown		.38	.62
Mahaleb	spots			
H11	unknown		.56	•57
H12	leucoanthocyanidin		.34	•59
H13	unknown		.85	.04
H14	unknown		.85	.41
н15	herniarin		.84	•46
H16	unknown		.57	.80
H17	unknown		.69	.89
H18	coumarin		.88	•55
н19	unknown		.34	.62

 $[\]ensuremath{^{\mathbf{a}}}\mathbf{See}$ Table 7 for notations and chromatographic conditions.

appeared to be d-catechin. The compound gave a pinkish red color with vanillin-HCl reagent, which is characteristic of a flavan-3-ol or a flavan 2, 3 diol (Swain and Hillis, 1959). The Rf values of the compound were comparable to the values reported for catechin (Luh et al., 1967). Spectral characteristics of the compound also were similar to those of catechin with the maximum peak at 280 and minimum at 250 m μ (Jurd, 1962). Spot 6 gave color reactions similar to those of spot 7. According to the Rf values of the compound it is most likely epicatechin (Luh et al., 1967).

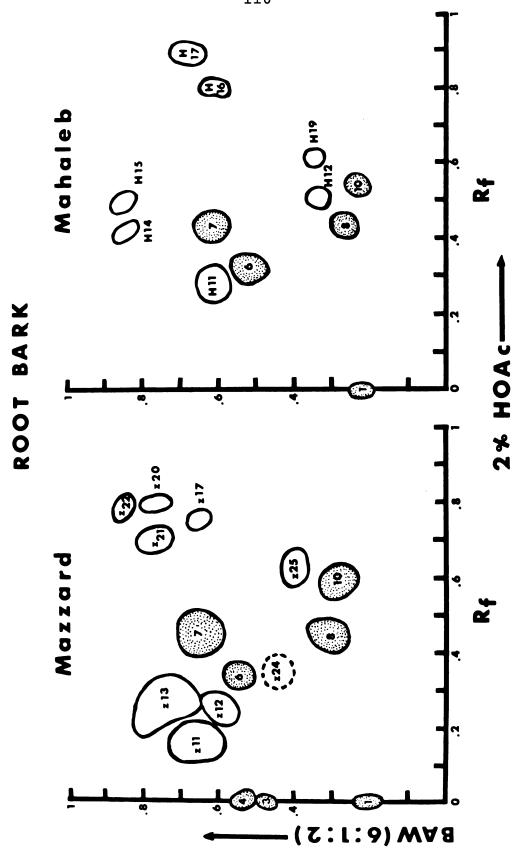
Spots 8, 9, and 10 did not fluoresce under ultraviolet light and did not change color in the presence of ammonia vapor. When sprayed with the vanillin-HCl reagent, they appeared a pinkish-red. The low mobility of the compounds in BAW (Rf 0.19-0.27) and the moderate mobility in 2% acetic acid (Rf 0.42-0.54) indicated that the compounds were not catechins but rather leucoanthocyanidins (Luhetal., 1967). The other common spots (1, 2, 3, 4, and 5) were not identified.

There were 13 species-specific spots in the Mazzard extract and 8 in the Mahaleb extract. Mazzard tissues appeared to contain several cinnamic acid derivatives, which were absent from Mahaleb. Color reactions and Rf values of spots 214, 215, 216, and 217 were comparable to those of the chlorogenic acids (Luh et al., 1967;

Roberts, 1962; Smith, 1960). Compounds Z19 and Z20 gave color reactions and Rf values similar to those of p-coumaryl quinic acid (Luh et al., 1967; Roberts, 1962; Smith, 1960). Other compounds in Mazzard bark extracts (Z11, Z13, Z18, Z21, and Z23) were not identified.

Among the eight Mahaleb-specific spots, only two spots were identified. These were spots H15 and H18, which had the same color characteristics and Rf values as herniarin and coumarin. Spot H12 appeared to be a leucoanthocyanidin on the basis of color reactions and Rf values. Other spots (H11, H13, H14, H16, and H17) were not identified.

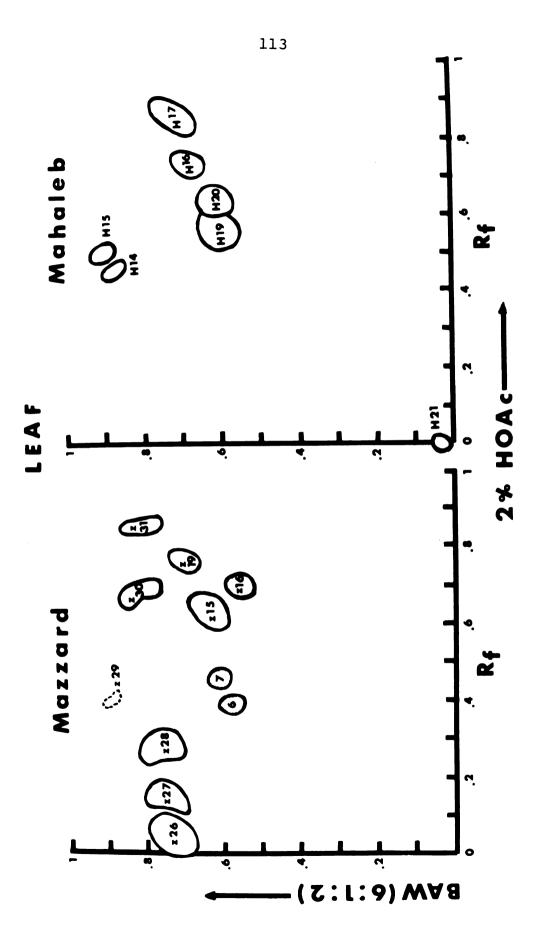
B. Root bark extracts


Extracts from root bark resembled extracts from stem bark. Both Mazzard and Mahaleb root bark extracts contained epi-catechin (spot 6), d-catechin (spot 7), leu-coanthocyanidins (spots 8, 9, 10) and an unknown (spot 1) (Fig. 15 and Tables 22 and 23). The Mazzard root also contained chlorogenic acid (Z17) and p-coumarylquinic acid (Z20). Other spots common to Mazzard stem and root bark were Z11, Z12, Z13, Z21, and Z22. Mazzard root bark extracts contained two additional spots, Z24 and Z25 Mahaleb root bark extracts contained 11 of the phenolic compounds found in stem bark (Fig. 14), and one additional compound (H19).

Paper chromatograms of unhydrolyzed phenolic compounds in Mazzard and Mahaleb root bark. Figure 15.

The chromatograms were developed first with BAW (6:1:2) and secondly with 2% HOAc. Shaded spots were common to both species.

Spots restricted to one species are marked with Z (Mazzard) or H (Mahaleb). 15 μ l extract (equivalent to 26 mg in Mazzard and to 58 mg in Mahaleb) was spotted at the origin.


C. Leaf extracts

Leaf phenolics differed from those of found in stem bark and root bark (Fig. 16, Table 24). First, there were markedly fewer compounds in the leaves. Secondly, no compounds were common to both species. Thirdly, leucoanthocyanidins and catechins were low in concentration or completely lacking (Fig. 16). Mazzard leaf contained epi-catechin (spot 6), catechin (spot 7), chlorogenic acid isomers (215, 216), and p-coumaryl quinic acid (Z19). The Rf values and color reactions of spot Z28 were similar to those of standard caffeic acid. Several other unidentified spots (226, Z27, Z30, and Z31) appeared in the leaf extracts (Fig. 16). Only 7 spots were distinguishable in Mahaleb leaf extracts. Four of these spots (H14, H15, H16, and H17) also occurred in stem and root bark. Three additional spots (H19, H20, and H21) were not identified.

All the phenolic compounds which were observed in unhydrolyzed extracts of leaf, bark, and root bark are listed in Table 25. Within species, bark tissues, whether from root or stem, were similar in their phenolic composition. However, the phenolic composition of leaf tissue differed markedly from that of the bark tissue. Extracts from Mazzard and Mahaleb bark contained several phenolics in common whereas the leaf extracts contained none in common. Certain compounds were

Paper chromatograms of unhydrolyzed phenolic Figure 16.

compounds in Mazzard and Mahaleb leaf tissues. The chromatograms were developed first with BAW (6:1:2) and secondly with 2% ${\rm HOAC}$. 30 ${\rm \mu l}$ extract (equivalent to 3.75 g fresh weight) was spotted at the origin.

Color reactions and Rf values of unhydrolyzed phenolic compounds occurring in Mazzard and Mahaleb leaf extracts. Spots occurring in stem bark were omitted.a Table 24.

			Color re	Color reaction under			
Spot No.	Tentative identification	UV light	ight	Visible light	ight	V	Rf values
		ı	+NH3	FeC13 K ₃ Fe (CN) ₆	DPNA	ВАМ	2% H0Ac
Mazzard leaf	<u>leaf</u>						
226	unknown	Дι	д.	Дι	υ (.75	.05
227		м г	stG D	m t	O E	.76	•16 29
872	carreic acid	a c	ռ + հ	a C	H C	//•	. 78
Z 30	unknown	д <u>с</u>	stB) ပ) ပ	. 82	69.
Z31	unknown	Ω	Ω	υ	ပ	. 80	. 85
Mahaleb leaf	leaf						
H20 H21 H22	unknown unknown unknown	(D)	(D) 1B B	υυυ	υυυ	.61	.63

^aSee Tables 6 and 7 for notations.

Table 25. Comparison of unhydrolyzed phenolic compounds in extracts of leaf, stem bark, and root bark of Mazzard and Mahaleb.

Spot	Compound		Mazzar	d		Mahale	b
No.	Compound	Leaf	Stem bark	Root bark	Leaf	Stem bark	Root bark
1	unknown	_	+	+	_	+	+
2	unknown	-	+	-	-	+	-
3	unknown	-	+	+	_	+	-
4	unknown	-	+	+	-	+	-
5	unknown	-	+	-	-	+	-
6	epi-catechin	+	+	+	-	+	+
7	d-catechin	+	+	+	-	+	+
8	leucoanthocyanidin	-	+	+	-	+	+
9	leucoanthocyanidin	-	+	+	_	+	+
10	leucoanthocyanidin	_	+	+	-	+	+
Z11	unknown	-	+	+	-	_	-
Z12	unknown	_	+	+	_	-	-
Z13	unknown	-	+	+	-	_	-
Z14	chlorogenic acid	-	+	-	-	_	_
Z1 5	chlorogenic acid	+	+	-	_	-	_
Z 16	chlorogenic acid	+	+	-	-	-	-
Z17	chlorogenic acid	_	+	+	-	-	_
Z18	unknown	-	+	-	_	_	-
Z19	p-coumarylquinic						
	acid	+	+	-	_	-	-
Z20	p-coumarylquinic						
	acid	-	+	+	-	-	_
Z21	unknown	-	+	+	-	-	_
Z22	unknown	-	+	+	-	_	_
Z23	unknown	_	+	_	-	-	_
Z24	unknown	-	-	+	-	-	-
Z25	unknown	-	-	+	-	_	-
Z 26	unknown	+	-	_	_	-	-
Z27	unknown	+	_	_	-	-	-
Z28	caffeic acid	+	-	-	-	_	-
Z29	unknown	+	_	_	_	_	-
Z 30	unknown	+	-	-	_	-	-
Z31	unknown	+	_	-	_	-	-
H11	unknown	-	-	-	_	+	+
H12	leucoanthocyanidin	-	-	-	-	+	+
H13	unknown	-	-	-	_	+	+
H14	unknown	-	_	_	+	+	+
H15	herniarin	_	_	-	+	+	+
H16	unknown	-	-	_	+	+	+
H17	unknown	-	-	_	+	+	+
H18	coumarin	-	-	-	?	+	?
H19	unknown	-	-	-	_	-	+
H20	unknown	-	_	_	+	-	-
H21	unknown	-	-	-	+	-	-
H22	unknown	_	_	_	+	_	_

widespread in their occurrence. For example, all Mazzard tissues sampled contained chlorogenic acid, p-coumaryl quinic acid, catechin, and epi-catechin. The Mahaleb tissues shared herniarin and possibly coumarin, and 3 other compounds (H14, H16, H17). The differences noted between leaf and bark tissues indicate that all the phenolic compounds found in bark tissues are not translocated from the leaves. However, some of the phenolic compounds may be translocated, especially coumarin and herniarin, and possibly p-coumarylquinic acid and chlorogenic acid.

Table 26 summarizes the phenolic compounds identified from the studies of sections II, III, and IV.

Comparison of known phenolic compounds in extracts of leaf, stem Table 26.

bark, and root	bark	of Maz	Mazzard a	and Mah	Mahaleb s	seedlings.	ngs.		
Compounds	Leaf	£	Stem bark	bark	Root	Root bark	Sč	Sap	
•	Maza	Maha	Maz	Mah	Maz	Mah	Maz	Mah	
Phenolic acids									1
o-coumaric acid	+	+	+	+	+	+	ı		
p-coumaric acid	+	ı	+	1	+	ı	ı	ı	
caffeic acid	+	ı	1	1	1	1	ı	ı	
p-coumarylquinic acid	+	ı	+	1	+	ı	1	ı	
chlorogenic acid	+	ı	+	ı	+	1	ı	1	
Coumarins									
coumarin	+	+	+	+	+	+	ı	+	
herniarin	ı	+	ı	+	ı	+	1	+	
Flavonoids									
dihydrowogonin	+	ı	+	1	+	ı	+	ı	
kaempferol	+	+	ı	1	ı	ı	ı	ı	
quercetin	+	ı	ı	ı	ı	ı	ı	ı	
d-catechin	+	ı	+	+	+	+	1	ı	
epi-catechin	+	ı	+	+	+	+	ı	ı	
leucoanthocyanidin	1	ı	+	+	+	+	ı	ı	

^aMaz = Mazzard; Mah = Mahaleb.

DISCUSSION

Mahaleb rootstocks, which show graft-incompatibility symptoms with certain sweet cherry cultivars, differ in phenolic composition from Mazzard rootstocks, which are fully compatible with sweet cherries. The former contained lower levels of phenolic compounds in their leaves, root bark, and stem bark (Fig. 3). These differences have implications when sweet cherries are grafted on Mahaleb rootstocks. Mahaleb tissues may not have an efficient system for handling large quantities of phenolics, which could interfere with physiological processes (Mayer et al., 1961; Goodwin and Taves, 1950; Stenlid, 1963; Frey-Wyssling, 1942). Mahaleb roots may be more sensitive to sweet cherry phenolics, which might accumulate in the soil as a result of leaching or decomposition of leaf tissues.

There are also qualitative differences in phenolic compounds in the two rootstocks (Tables 16, 21, 24, 25, and 26). Mazzard tissues contain a greater variety of phenolics. For example, in unhydrolyzed tissues 31 compounds were present in Mazzard as determined by paper

chromatography, but only 22 in Mahaleb. Qualitative differences were particularly noted in phenolic acids, coumarins, and flavonoids (Table 26).

Phenolic acids. Mazzard tissues contained high levels of hydroxy cinnamic acid derivatives, including p-coumaric, o-coumaric, caffeic, p-coumaryl quinic, and chlorogenic acids, whereas Mahaleb tissues contained only o-coumaric acid. In his survey of leaf phenolics in Prunus, Bate-Smith (1961b) found p-coumaric, o-coumaric, and caffeic acids in Mazzard. In Mahaleb, o-coumaric acid was the only phenolic acids identified, although the presence of p-coumaric acid was suspected.

The two rootstocks may have different biosynthetic scheme of phenolic acids by differing in their hydroxylation pattern of cinnamic acid, which is known to be an important precursor of phenolic acids in higher plants (Steck, 1968; Neish, 1964). Mahaleb tissues, which contain large amounts of coumarin and herniarin, apparently hydroxylate only the ortho position of cinnamic acid, hence p-coumaric and caffeic acids are lacking. Mazzard tissues, however, appear to be able to hydroxylate both the ortho and the para position of the benzene ring of cinnamic acid.

The esters of p-coumaric and caffeic acids may regulate levels of IAA in plant tissues by influencing its decarboxylation. Tomaszewski and Thimann (1966)

showed that polyphenols such as chlorogenic acid and caffeic acid reduced the inactivation of IAA, whereas monophenols such as p-hydroxy benzoic acid and p-coumaric acid increased the inactivation. In Mazzard, caffeic acid was mainly located in leaf tissues, whereas p-coumaric acid was high in stem and root bark and low in leaf tissue. Thus, translocation of p-coumaric acid from a sweet cherry scion to a Mahaleb stock could conceivably favor decarboxylation of IAA and thereby reduce the vigor of the rootstock.

Coumarins. The two rootstocks differed markedly in coumarins. All Mahaleb tissues tested contained high levels of both coumarin and herniarin, whereas Mazzard contained no herniarin and showed high coumarin activity only in leaf tissues. Favre-Bonvin et al. (1966) considered that P. avium was incapable of synthesizing coumarin. However, o-coumaric acid can be easily transformed to coumarin in acid solution or on exposure to light (Bate-Smith, 1961b; Edwards and Stoker, 1968). Therefore, the coumarin observed in Mazzard hydrozates may be an artifact.

The inhibitory activity of coumarins in root growth, in germination and in mitosis (Goodwin and Taves, 1950; Thimann and Bonner, 1949; Mayer and Poljakoff-Mayber, 1961) suggest a role for these compounds in the

graft-incompatibility of P. avium/P. mahaleb. This is unlikely, however, for the following reasons. The major sites of synthesis of coumarins are the aerial parts, especially the young leaves (Gorz and Haskins, 1962; Favre-Bonvin et al., 1966, 1968). After the fourth year of grafting of P. avium on P. mahaleb, Favre-Bonvin et al. (1966) noted the complete disappearance of coumarins from the stocks. During this period the trees grow vigorously with no symptoms of incompatibility (Garner, 1967).

At low concentrations, coumarins stimulate plant growth (Mayer and Poljakoff-Mayber, 1961). Instead of being inhibitory, they might be essential for normal growth. Their disappearance from root tissues after several years may be related to the loss of vigor of the tree. Coumarin derivatives such as scopolin and scopoletin are known to inhibit IAA-oxidase (Andreae, 1952; Gortner and Kent, 1958; Schaeffer et al., 1967). Thus, the absence of coumarins in Mahaleb rootstocks may allow the destruction of IAA. Alternatively, their absence may limit lignin synthesis, leading to incompatibility. Kosuge and Conn (1961) reported that labelled coumarin was rapidly transformed into β-glucosides of o-hydroxy cinnamic acids. The latter are known to be incorporated into lignin (Neish, 1964; El-Basyouni et al., 1966).

Flavonoids. Mazzard tissues contain three flavonoids, dihydrowogonin, kaempferol, and quercetin. The latter two are found only in leaf tissues. Kaempferol also occurs in Mahaleb leaf tissues, but quercetin was not found. Bate-Smith (1961b) found both quercetin and kaempferol in hydrolysates of Mahaleb leaves. The concentration of quercetin in leaves of the Mahaleb seedlings used in the present study may have been too low to be detectable, or occurrence may depend upon tree age. Dihydrowogonin occurred in all Mazzard tissues tested, as well as in sap. Mature cherry trees are known to contain various other flavonoids in the heartwood (see Table 1). None of these compounds was noted in the extracts of either bark or leaf tissues of Mazzard and Mahaleb seedlings.

Flavonoids act as synergists or antagonists to IAA in vitro. Kaempferol conjugates promote IAA oxidation while quercetin conjugates inhibit its oxidation (Furuya and Galston, 1965). The relatively high amount of kaempferol in Mahaleb suggests that it may have a higher rate of decarboxylation of IAA than Mazzard. The activity of flavonoids in IAA decarboxylation appears to depend on the hydroxylation pattern in the B ring. The effect of dihydrowogonin on IAA oxidase is difficult to estimate because of the lack of a hydroxyl group in the B ring.

However, the wide occurrence of the compound in Mazzard tissue and its presence in the sap suggest that it may be important in graft-incompatibility.

SUMMARY AND CONCLUSIONS

Phenolic compounds in leaf, bark, and root tissues from Mazzard and Mahaleb seedlings were examined. In field-grown seedlings, Mazzard tissues contained much higher levels of total phenolic compounds than did the Mahaleb seedlings during a five-month growing period.

The phenolic level increased during the first two months, then stabilized for the remaining period. However, the Mahaleb root tissue varied during the season, in that the phenolic content rose rapidly at beginning of growth, then dropped sharply during the latter part of the season. Furthermore, the bark tissues contained higher levels of phenolic compounds than did the leaf tissues.

These facts apparently relate to the imperfect graft of some sweet cherry cultivars on Mahaleb rootstocks.

Since sweet cherry cultivars are closely related to Mazzard, and since Mazzard contained 3 times as much total phenolic compounds than Mahaleb, it can be proposed that (1) the abnormal amounts of phenolics in sweet cherry species are toxic to the Mahaleb, (2) that the phenolics translocate across the graft union from sweet cherry to

the Mahaleb or (3) the phenolic balance between these 2 species interferes with normal growth.

In summary it also should be noted that the levels of phenolic compounds were consistently higher in Mazzard than in Mahaleb tissues when grown under greenhouse conditions. Furthermore, the greenhouse-grown seedlings contained only 10% as much total phenolics as the field-grown seedlings.

Thus, this data strongly indicates that, the climatic conditions under which the trees are grown play an important role in the normal synthesis of phenolic compounds both in the rootstock and in the scion. The so-called incompatibility conditions have been observed to be more prevalent in some fruit-growing areas than in others.

Variable amounts of phenolic compounds were found in the different tissues of Mazzard and Mahaleb. For example, dihydrowogonin was found in all the tissues tested of Mazzard, but not in Mahaleb; herniarin was in all tissues tested of Mahaleb, but none in Mazzard; and caffeic acid was found only in the Mazzard leaf tissue.

As in the application of balanced nutrient requirements of plants, so must there apparently also be an internal balance of phenolic components in the 2 plants which are combined by grafting.

SUGGESTIONS FOR FURTHER STUDY OF GRAFT RELATIONSHIPS IN CHERRY CLONES

- 1. Seasonal levels of phenolic compounds in the phloem sap of sweet cherry/Mahaleb;
- 2. The effect of dihydrowogonin and p-coumaric acid on cambial activity of Mahaleb stem;
- 3. Differences in phenolic compounds of Mahaleb clones, compatible and incompatible;
- 4. The effects of soil accumulated phenolic compounds on the growth of Mahaleb root;
- 5. Nature of metabolites in phloem above and below graft union;
- 6. The effect of reproductive activity on the distribution of metabolites between two compatible and incompatible rootstocks;
- 7. Extensive field survey of the behavior of sweet cherry/Mahaleb in relation to factors such as soil drainage and climactic conditions.

- 8. The relationship between the loss of synthetic ability of coumarins and the vigor of Mahaleb roots;
- 9. The biological effects of dihydrowogonin on IAA oxidase, root growth, germination, and stem growth;
- 10. Graft-incompatibility of sweet cherry/Mahaleb may be due to either lack of metabolites or toxic effects of one of the graft partners:
 - a. Toxic action of scion on stock,
 - b. Toxic action of stock on scion,
 - c. Lack of metabolites in scion for stock,
 - c. Lack of metabolites in stock for scion.

This could be studied with various graft combinations between stock and scion.

LITERATURE CITED

- Abdul-Wahab, A. S. and E. L. Rice. 1967. Plant inhibition by Johnson grass and its possible significance in old field succession. Bull. Torrey Bot. Club. 94:486-497.
- Amos, J., T. N. Hoblyn, R. J. Garner and A. W. Witt. 1936. Studies in incompatibility of stocks and scion. I. Information accumulated during twenty years of testing fruit tree rootstocks with various scion varieties at East Malling. Rep. E. Malling Res. Stat. for 1935, Al9, 81-99.
- Andreae, W. A. 1952. Effect of scopoletin on indoleacetic acid metabolism. Nature 170:83-84.
- Anonymous. 1945. Canada Report of the Minister of Agriculture, Dominion of Canada, for the year ended March 31, 1945. p. 212.
- Anthony, R. D., R. H. Sudds, G. E. Yerkes. 1937. Orchard tests of Mazzard and Mahaleb cherry understocks.

 Proc. Amer. Soc. Hort. Sci. 35:415-418.
- Argles, G. K. 1937. A review of the literature on stockscion incompatibility in fruit trees, with particular reference to pome and stone fruits. Tech. Commun. Imp. Bur. Fruit Prod. No. 9:1-115.
- Asen, S. and S. L. Emsweller. 1962. Hydroxycinnamic acids and their glucose esters in hybrids of Lilium species and their relation to germination. Phyto chem. 1:169-174.
- Bate-Smith, E. C. 1958. Plant phenolics as taxonomic guides. Proc. Linn. Soc. Lond. 169 Session, 1956-1957, December. p. 198-211.
- onomic significance. I. Dicotyledons. J. Linn. Soc. (Bot) 58:95-173.

- Bate-Smith, E. C. 1961b. Chromatography and taxonomy in the Rosaceae, with special reference to Potentilla and Prunus. J. Linn. Soc. (Bot) 58:39-54.
- . 1962. The simple polyphenolic constituents of plants. p. 133-157. In Wood Extractives and Their Significance to the Pulp and Paper Industries, ed. by W. E. Hillis. Academic Press, New York and London.
- Bautz, E. 1953. Einwirkung verschieden Bodentypen und Bodenextrakte auf die Keimung von Picea excelsa. Z. Bot. 41:41-84.
- Beck, A. B. 1964. The oestrogenic isoflavones of subterranean clover. Austr. J. Agric. Res. 15:223-230.
- Bitters, W. P. and E. R. Parker. 1953. Quick decline of citrus as influenced by top-root relationships. Calif. Agr. Exp. Sta. Bull. 733:1-34.
- Bode, H. R. 1940. Uber die Blattausscheidungen des Wermuts und ihre Wirkung auf andere Pflanzen.
 Planta 30:567-589.
- Erscheinungen bei einigen Juglandaceen. Planta 51:440-480.
- Börner, H. 1957. Die Abgabe organischer Verbindungen aus den Karyosen Wurzeln und Enterückständen von Roggen, Weizen, and Gerste und ihre Bedeutung bei der gegenseitigen Beeinflussung der höheren Pflanzen. Beitr. Biol. Pflanz. 33:33-83.
- . 1960. Liberation of organic substances from higher plants and their role in the soil sickness problems. Bot. Rev. 26:393-414.
- Bray, H. G. and W. V. Thorpe. 1954. Analysis of phenolic compounds of interest in metabolism. In Methods of Biochemical Analysis, ed. by D. Glick. Interscience, New York. Vol. 1:27-50.
- Brooks, R. M. 1950. Sweet cherry production problems in California. Proc. Wash. State Hort. Assoc. 46: 136-146.
- Brown, S. A. 1964. Lignin and tannin biosynthesis. p. 361-394. In <u>Biochemistry of Phenolic Compounds</u>, ed. by J. B. Harborne. Academic Press.

- Buchloh, G. 1960. The lignification in stock-scion junctions and its relation to compatibility.
 p. 67-71. In Phenolics in Plants in Health and Disease, ed. by J. B. Pridham. Pergamon Press, London.
- Calavan, E. C., F. A. White, H. Schneider and J. M. Wallace. 1951. Lemon tree collapse and decline. Citrus Leaves. 31(11):6-8, 16-18, 38.
- Carlson, R. F. and K. Yu. 1969. Starch content in cherry stems near loci of graft, banding and scoring. HortScience 4(3):246-248.
- Chang, Wen-Tsai. 1937. Studies in incompatibility between stock and scion, with special reference to certain deciduous fruit trees. J. Pomol. 15:267-325.
- Chopin, J., D. Molho, H. Pacheco, C. Mentzer and G. Grenier. 1957. Structure of a new flavone derivative isolated from cherry wood (Prunus avium). Bull. Soc. Chim. France. p. 192-220. (Chem. Abstr. 52:16343c).
- nation de structure d'un nouveau flavonol extrait du merisier (Prunus avium). Bull. Soc. Chem. Biol. 40:1593-1601.
- Coe, F. M. 1945. Cherry rootstocks. Utah Agric. Exp. Sta. Bull. 319, 42 p.
- Copes, D. 1969. Graft union formation in Douglas-fir. Amer. J. Bot. 56:295-289.
- Cornman, I. 1957. Alteration of mitosis by coumarin and parasorbic acid. Amer. J. Bot. 33:217. (Abstr.).
- Crane, M. B. 1945. Origin of viruses. Nature 155:115-116.
- Cummings, M. B., E. W. Jenkins and R. G. Dunning. 1933.
 Rootstock effects with cherries. Seed and Phyton
 Propagation. Vermont Agric. Exp. Sta. Bull. 352.
 36p.
- Darlington, C. D. 1944. Heredity, development and infection. Nature 154:164-169.

- De Stigter, H. C. M. 1956. Studies on the nature of the incompatibility in a Cucurbitaceous graft. Med. Landbouwhogeschool Wageningen 56(8):1-51.
- Dieterman, L. J., C. Y. Lin, L. M. Rohrbaugh and S. H. Wender. 1964. Accumulation of ayapin and scopolin in sunflower plants treated with 2, 4, dichlorophenoxyacetic acid. Arch. Biochem. Biophys. 106:275-279.
- Edwards, K. G. and J. R. Stoker. 1968. Biosynthesis of herniarin: isomerization stage. Phytochem. 7:73-77.
- El-Basyouni, S. Z. and A. C. Neish. 1966. Occurrence of metabolically active bound forms of cinnamic acid and its phenolic derivatives in acetone powders of wheat and barley plants. Phytochem. 5:683:691.
- Engelsma, G. 1964. Destruction of hydroxy cinnamic acids coupled to oxidation of indole-3-acetic acid by peroxidase as a possible mechanism for adaptive changes of indole-3-acetic acid oxidase activity. Nature 202:88-89.
- Evenari, M. 1949. Germination inhibitors. Bot. Rev. 15:153-194.
- . 1961. Chemical influences of other plants
 (allelopathy) Encyclopedia of Plant Physiology
 Vol. 16:691-736. W. Ruhland ed. Springer Verlag,
 Berlin.
- Evert, R. F. and T. T. Kozlowski. 1967. Effect of isolation of bark on cambial activity and development of xylem and phloem in trembling aspen. Amer. J. Bot. 54:1045-1054.
- Favre-Bonvin, J., M. Massias and C. Mentzer. 1966. Modifications biochimiques consécutives au greffage interspécifique dans le genre "Prunus." Bull. Soc. Chim. Biol. 48:1359-1365.
- and J. Massicat. 1968.

 Sites de biosynthése des coumarines chez Prunus

 mahaleb. Etude par greffage et administration

 d'un précurseur marqué. Phytochem. 7:1555-1560.
- Fawcett, H. S. and J. M. Wallace. 1946. Evidence of the virus nature of citrus quick decline. Calif. Citrogr. 32:50, 88-89.

- Feeney, P. P. and H. Bostock. 1968. Seasonal changes in the tannin content of oak leaves. Phytochem. 7:871-880.
- Felderman, A. W. and R. W. Hanks. 1965. Phenolic content in the roots and leaves of tolerant and susceptible citrus cultivars attacked by <u>Radopholus</u> <u>similis</u>. Phytochem. 17:5-12.
- Fowler, R. 1933. Government Experimental Orchards Blackwood and Fullarton. J. Dept. of Agric. S. Aust. 37:383-390.
- Frey-Wyssling, A. 1942. Zur Physiologie der Pflanzlichen Glukoside. Naturwissenshaften 33:500.
- Friedrich, H. 1958. Untersuchungen über die phenolichen Inhaltsstoffe von Pyrus communis. III. Der Einfluss von Pfropfungen auf den Arbutingehalt der Blatter von Reis und Unterlage. Pharmazie 13:54-57.
- Furuya, M. and A. W. Galston. 1965. Flavonoid complexes in Pisum sativum L. I. Nature and distribution of the major components. Phytochem. 4:285-296.
- Galston, A. W. 1969. Flavonoids and photomorphogenesis in peas. p. 193-204. In Perspectives in Phytochemistry, ed. by J. B. Harborne and T. Swain.

 Academic Press.
- Garavel, L. 1954. Enquête sur le comportement du noyer noir d'Amérique en tant que porte-greffe de variétés de noyers indigènes. Rev. forestiere française. 4:217-224.
- Gardner, F. E., P. C. Marth and J. R. Magness. 1946. Lethal effects of certain apple scions on Spy 227 stock. Proc. Amer. Soc. Hort. Sci. 48:195-199.
- Garner, R. J. 1967. The cherry rootstock position today. Ann. Rep. E. Malling Res. Sta. for 1966. A50:212-215.
- Geissman, T. A. 1956. The flavonoid constituents of normal and virus infected peach and cherry leaves. Archiv. Biochem. and Biophysics 60:21-26.
- Gelinas, D. and S. N. Postlethwait. 1969. IAA oxidase inhibitors from normal and mutant maize plants. Plant Physiol. 44:1553-1559.

- Glass, D. M. and B. A. Bohm. 1969. The accumulation of cinnamic and benzoic acid derivatives in <u>Pteridium aquilinum</u> and <u>Anhyrium feliz-femina</u>. Phytochem. 18:371-377.
- Goldschmidt, E. E. and S. P. Monselise. 1968. Extraction of auxin and other growth regulators from citrus stems by centrifugal force. Physiologia Plantarum 21:754-758.
- Goodwin, R. H. and C. Taves. 1950. The effect of coumarin derivatives on the growth of <u>Avena</u> roots. Amer. J. Bot. 37:224-231.
- Gortner, A. W. and M. J. Kent. 1958. The coenzyme requirement and enzyme inhibitors of pineapple indoleacetic acid oxidase. J. Biol. Chem. 233: 731-735.
- Gorz, H. J. and F. A. Haskins. 1962. Translocation of coumarin across a graft union in sweet clover. Crop Sci. 2:255-257.
- Granett, A. L. and R. L. Gilmer. 1971. Mycoplasmas associated with x-disease in various Prunus species. Phytopathology 61:1036-1037.
- Grubb, N. H. 1938. Resumé of the cherry rootstock investigation. Ann. Rep. E. Malling Res. Sta. Sup. Mis. Pub. A22:41-44.
- Grümmer, G. and H. Beyer. 1960. The influence exerted by species of Camelina on flax by means of toxic substances. p. 153-157. In The Biology of Weeds, ed. by J. L. Harper. Blackwell Scientific Publications, Oxford.
- Gur, A. and R. M. Samish. 1968a. The role of auxin destruction in the vigor effect induced by various apple rootstocks. Beitr. Biol. Pflanzen 45:91-111.
- of the cyanogenic glucoside of the quince rootstocks. Hort. Res. 8(2):113-134.
- Hancock, C. R., H. W. Barlow and H. J. Lacey. 1961.
 The behaviour of phloridzin in the coleoptile straight growth test. J. Exp. Bot. 12:401-408.
- Hanson, K. R. 1966. Chlorogenic acid biosynthesis. Incorporation of ¹⁴C cinnamic acid into the cinnamoyl and hydroxycinnamoyl conjugates of potato tuber. Phytochem. 5:491-499.

- Harborne, J. B. 1964. Phenolic glycosides and their natural distribution. p. 129-166. In <u>Biochemistry of Phenolic Compounds</u>, ed. by J. B. Harborne.

 Academic Press, London and New York.
- . 1967a. Physiology of biosynthesis. p. 271-279. In Comparative Biochemistry of the Flavonoids, by J. B. Harborne. Academic Press, London and New York.
- . 1967b. Function of flavonoids. p. 280-296. In Comparative Biochemistry of the Flavonoids, by J. B. Harborne. Academic Press, London and New York.
- and J. J. Corner. 1961. Plant polyphenols.

 4. Hydroxycinnamic acid-sugar derivatives.
 Biochem. J. 81:242-250.
- Hardy, P. J. and J. V. Possingham. 1969. Studies on translocation of metabolites in the xylem of grapevine shoots. J. Exp. Bot. 20:325-335.
- Hare, R. C. 1964. Indole acetic acid oxidase. Bot. Rev. 30:129-165.
- Harvey, E. M. 1925. Phloridzin. I. The significance of phloridzin in apple and pear tissue. II. The hydrolysis and estimation of phloridzin. Oreg. Agr. Exp. Sta. Bull. 215. 23p.
- Hasagawa, M. 1957. Flavonoids of various <u>Prunus</u> species.

 VI. The flavonoids in the wood of <u>P. aequinoctialis</u>, <u>P. nipponica</u>, <u>P. maximowiczii</u> and <u>P. avium</u>.

 J. Amer. Chem. Soc. 79:1738-1740.
- and T. Shirato. 1952. Flavonoids of various Prunus species. I. The flavonoids in the wood of Prunus yedoensis. J. Amer. Chem. Soc. 74:6114.
- and . 1954. Flavonoids of various

 Prunus species. II. The flavonoids in the wood
 of Prunus speciosa. J. Amer. Chem. Soc. 76:55595560.
- Hathaway, D. E. 1959. Experiments on the origin of oak bark tannin. Biochem. J. 71:533-537.
- Hedrick, U. P. 1914. Stocks for fruit trees. Mon. Bull. Calif. Comm. Hort. 3:449-455.

- Hemberg, T. 1958. The significance of the inhibitor complex in the rest period of the potato tuber. Physiol. Plant. 11:615-626.
- of Plant Physiology, Vol. 14:1162-1184. W. Ruhland, ed. Springer-Verlag, Berlin.
- Hendershott, C. H. and D. R. Walker. 1959. Identification of a growth inhibitor from extracts of dormant peach flower buds. Science 30:798-800.
- Henderson, J. H. M. and J. P. Nitsch. 1962. Effect of certain phenolic acids on the elongation of <u>Avena</u> first internodes in the presence of auxins and tryptophan. Nature 195:780-782.
- Hergert, H. L. 1962. Economic importance of flavonoid compounds: wood and bark. p. 553-586. In The Chemistry of Flavonoid Compounds, ed. by T. A. Geissman. The McMillan Co. New York.
- and O. Goldschmid. 1958. Biogenesis of heart-wood and bark constituents. I. A new taxifolin glucoside. J. Org. Chem. 23:700-704.
- Herrero, J. 1951. Studies of compatible and incompatible graft combinations with special reference to hardy fruit trees. J. Hort. Sci. 26:186-237.
- Hilkenbaumer, F. 1952. Elementary fruit growing. Common practice in German condition (German), Newmann, Radebeul and Berlin. (Hort Abstr. 22:1993).
- Hillis, W. E. and T. Swain. 1959. The phenolic constituents of <u>Prunus</u> domestica. II. The analysis of tissue of the Victoria plum tree. J. Sci. Food Agric. 10:135-144.
- and A. Carle. 1962. The origin of the wood and bark polyphenols of <u>Eucalyptus</u> species. Biochem. J. 82:435-439.
- Horowitz, R. M. 1957. Detection of flavanones by reduction with sodium borohydride. J. Org. Chem. 22:1733.
- Housley, S. and W. C. Taylor. 1958. Studies on plant growth hormones. VI. The nature of the inhibitor in potato. J. Exp. Bot. 9:458-471.

- Howe, G. H. 1927. Mazzard and Mahaleb rootstocks for cherries. Bull. New York State Agr. Exp. Sta. 544. 14p.
- Jimenez, H. 1957. Injertos entre species de <u>Carica</u>.

 Agron. Trop. Venezuela 7:33-37. (cited by Mosse, 1962).
- Jurd, L. 1962. Spectral properties of flavonoid compounds. p. 107-155. In <u>The Chemistry of Flavonoid</u> Compounds, ed. by T. A. Geissman. The McMillan Co. New York.
- Kala, H. 1956. Coumarin in the isolated organs of the Solanaceae. Planta Med. 4:179.
- Keppler, H. H. 1957. The isolation and constitution of mollisacadin, a new leucoanthocyanidin from the heartwood of <u>Acacia mollisima</u> Wild. J. Chem. Soc. (London) pp. <u>2721-2724</u>.
- Koeppe, D. E., L. M. Rohrbaugh and S. H. Wender. 1969. The effect of varying ultraviolet intensities on the concentration of scopolin and caffeoylquinic acids in tobacco and sunflower. Phytochem. 8:889-896.
- Tissue age and caffeoylquinic acid concentration in sunflower. Phytochem. 9:297-301.
- Kosuge, T. and E. E. Conn. 1961. Metabolism of aromatic compounds in higher plants. J. Biol. Chem. 236:1617-1621.
- Koukol, J. and E. E. Conn. 1961. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem. 236:2692-2698.
- Köves, E. and M. Varga. 1958. Growth inhibiting substances in rice straw. Acta Univ. Szegedensis N.S. 4:13-16.
- Lane, F. E. and L. F. Bailey. 1964. Isolation and characterization studies on the β-inhibitor in dormant buds of the silver maple <u>Acer saccharinum</u> L. Physiol. Plant. 17:91-99.

- Larson, P. R. 1964. Some indirect effects of environment on wood formation. p. 345-365. In <u>The Formation of Wood in Forest Trees</u>, ed. by M. H. Zimmermann, Academic Press. London and New York.
- Lee, T. T. and F. Skoog. 1965. Effects of hydoxybenzoic acids on indoleacetic acid inactivation by tobacco callus extracts. Physiol. Plant. 18:577-585.
- Lott, H. V. 1960. Über den Einfluss der kurzwelligen Strahlung auf die Biosynthesis der pflanzlichen Polyphenole. Planta 55:480-495.
- Luckwill, L. C. 1962. New developments in the study of graft-incompatibility in fruit trees. Proc. International Hort. Congress. Nice. 1958. 15 (2):23-27.
- Luh, D. S., E. T. Hsu and K. Stachowicz. 1967. Polyphenolic compounds in canned cling peaches. J. Food Sci. 32:251-258.
- Macleod, J. M. and J. B. Pridham. 1965. Observations on the translocation of phenolic compounds. Phytochem. 5:777-781.
- Martin, G. C. and E. A. Stahly. 1967. Endogeneous growth regulating factors in bark of EM IX and XVI apple trees. Proc. Amer. Soc. Hort. Sci. 91:31-38.
- Mayer, A. M. and A. Poljakoff-Mayber. 1961. Coumarins and their role in growth and germination. p. 735-749. In Plant Growth Regulation. Fourth International Conference on Plant Growth Regulation. The Iowa State University Press, Ames, Iowa.
- McClintock, J. A. 1948. A study of uncongeniality between peaches as scions and the Marianna plum as a stock. J. Agric. Res. 77:253-260.
- Mentzer, C., H. Pacheco and A. Ville. 1954. Indéterminé chimique des extracts de bois. IV. Nouveaux derives flavoniques du coeur de merisier (P. avium). Bull. Chim. Biol. 36:1137-1150.
- Milbrath, J. A. and S. M. Zeller. 1945. Latent viruses in stone fruits. Science 101:114-115.
- Millerd, A., J. Bonner and J. B. Biale. 1953. The climacteric rise in fruit respiration as controlled by phosphorylative coupling. Plant Physiol. 28:521-531.

- Mockaitis, J. M. 1969. Compatibility of certain grafts in the genus <u>Ipomoea</u>. Flora 159:477-483.
- Moreland, D. E., G. H. Egley, A. D. Worsham and J. J. Monaco. 1966. Regulation of plant growth by constituents from higher plants. p. 112-141. In Adv. in Chemistry, No. 53, Natural Pest Control Agents.
- Mosse, B. 1955. Symptoms of incompatibility induced in a peach by ring grafting with an incompatible rootstock variety. Rep. E. Malling Res. Sta. for 1954, 35:260-265.
- vations on a ten year old field trial. J. Hort. Sci. 35:260-265.
- . 1960b. Further observations on the effects of ring grafting peaches with an incompatible rootstock variety. J. Hort. Sci. 35:275-281.
- . 1961. Graft incompatibility in plums; interactions between the varieties Victoria, President and Myrobalan B. Rep. E. Malling Res. Sta. for 1960. A44:57-60.
- . 1962. Graft incompatibility in fruit trees.

 Tech. Comm. No. 28. Commonwealth Bureau of Horticulture and Plantation Crops. E. Malling, Kent,
 England. 36p.
- , and J. Herrero. 1951. Studies on incompatibility between some pear and quince grafts. J. Hort. Sci. 26:238-245.
- , and F. Scaramuzzi. 1956. Observations on the nature and development of structural defects in the unions between pear and quince. J. Hort. Sci. 31:47-54.
- Mothes, K. and A. Romeike. 1955. Nicotin als Ursache der Unverträglichkeit von Pfropfungen. Flora 142: 109-131.
- Mumford, F. E., D. H. Smith and J. E. Castle. 1961. An inhibitor of IAA oxidase from pea tips. Plant Physiol. 36:752-756.
- Neish, A. C. 1961. Formation of m- and p-coumaric acids by enzymatic deamination of the corresponding isomer of tyrosine. Phytochem. 1:1-24.

- Neumann, J. 1959. An auxin-like action of coumarin. Science 129:1675-1676.
- Nystrom, C. W., N. E. Tolbert and S. H. Wender. 1959. Formation of β -phenylglucoside in plant leaves. Plant Physiol. 34:142-143.
- Pacheco, H. 1959. Composés flavoniques des extraits de bois. VI. Sur les composes flavoniques du bois de Prunus mahaleb. Bull. Soc. Chim. Biol. 41:111-117.
- , A. Brachet and M. M. Delépine. 1960. Sur les hétérosides flavoniques du bois de <u>Prunus mahaleb</u>. Comp. Rend. 250:1106-1107.
- , L. Cronenberger and C. Menzer. 1957. Composés flavoniques des extraits de bois. V. Dérives hydrosolubles du coeur de merisier (Prunus avium). Bull. Soc. Chim. Biol. 39:439-443.
- Parker, K. G., D. H. Palmiter, R. M. Gilmer and K. D. Hickey. 1963. X-disease of peach and cherry trees and its control. N.Y. State (Cornell) Ext. Bull. 1100. 12p.
- Perrin, D. R. and W. Bottomley. 1962. Studies on phytoalexins. V. The structure of pisatin from <u>Pisum</u> <u>sativum</u>. J. Amer. Chem. Soc. 84:1919.
- Philp, G. L. 1930. Cherry culture in California. Calif. Agric. Ext. Cir. 46. 42p.
- Pridham, J. B. 1960. The formation and possible function of phenolic glycosides. p. 9-15. In Phenolics in Plants in Health and Disease, ed. by J. B. Pridham. Pergamon Press, Oxford.
- _____. 1965. Low molecular weight phenols in higher plants. Ann. Rev. Plant Physiol. 16:13-36.
- Proebsting, E. L. 1926. Structural weakness in interspecific grafts of Pyrus. Bot. Gaz. 82:336-338.
- . 1928. Further observations on structural defects of the graft union. Bot. Gaz. 86:82-92.
- Quinn, G. 1935. The State Experimental Orchard, Coromondel Valley near Blackwood, South Australia.

 Rootstocks for cherry trees. J. Dept. Agric. S.
 Aust. 38:1373-1391.

- Raptopoulus, T. and N. Kantartzis. 1959. Sweet and sour cherry incompatibility on P. mahaleb stock as measured by their girth increase. Reprint from Yearb. Sch. Agric. For. Aristotelian Univ. Thessal. p. 15. (Hort. Abstr. 30, No. 4864).
- Reinders-Gouwentak, C. A. 1965. Physiology of the cambium and other secondary meristems of the shoot. Encyclopedia of Plant Physiology Vol. 15(1):1077-1101.
- Reznik, H. 1960. Vergleichende Biochemie der Phenylpropane. Ergeben. Biol. 23:14-46.
- Rice, E. L. 1965. Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. II. Characterization and identification of inhibitors. Physiol. Plant. 18:255-268.
- Roberts, E. A. H. 1962. Economic importance of flavonoid substances: Tea formation. p. 469-510. In The Chemistry of Flavonoid Compounds, ed. by T. A. Geissman. The MacMillian Co. New York.
- Robitaille, H. A. and R. F. Carlson. 1970. Graft union behavior of certain species of Malus and Prunus.

 J. Amer. Soc. Hort. Sci. 95:131-134.
- Runeckles, V. C. and K. Woolrich. 1963. Tobacco polyphenols. I. The biosynthesis of o-glucosides and o-glucose esters of hydroxycinnamic acids. Phytochem. 2:1-6.
- Russell, D. W. and A. W. Galston. 1969. Blockage by gibberellic acid of phytochrome effect on growth, auxin response and flavonoid synthesis in etiolated pea internodes. Plant Physiol. 44:1211-1216.
- Sacher, J. A. 1963. Effect of inhibitors on kinetics of indoleacetic acid oxidation. Amer. J. Bot. 50:116-122.
- Schaeffer, G. W., J. G. Buta and F. Sharpe. 1967. Scopoletin and polyphenol induced lag in peroxidase catalyzed oxidation of indole-3-acetic acid. Physiol. Plant. 20:342-347.
- Schlenk, H. and J. L. Gellerman. 1960. Esterification of fatty acids with diazomethane on a small scale.
 Anal. Chem. 32:1412-1414.

- Seikel, M. K. 1964. Isolation and identification of phenolic compounds in biological materials.
 p. 33-72. In <u>Biochemistry of Phenolic Compounds</u>, ed. by J. B. Harborne. Academic Press. London and New York.
- Sequira, L. 1964. Inhibition of IAA oxidase in tobacco plants infected by Pseudomonas solanacearum. Phytopathology 54:1978-1083.
- Shaw, J. K. and L. Southwick. 1944. Certain stock-scion incompatibilities and uncongenialities in the apple. Proc. Amer. Soc. Hort. Sci. 44:239-246.
- Sheldrake, A. R. and D. H. Northcote. 1968. Some constituents of xylem sap and their possible relationship to xylem differentiation. J. Exp. Bot. 19:681-689.
- Siegelman, H. W. 1964. Physiological studies on phenolic biosynthesis. p. 437-456. In Biochemistry of Phenolic Compounds, ed. by J. B. Harborne.

 Academic Press, London and New York.
- Simons, R. K. and R. F. Carlson. 1968. Characteristics and propagation of rootstocks for deciduous fruits in the north central region, 1966-1967.

 HortScience 3:221-224.
- Smith, I. 1960. Plant phenolics and tannins. p. 308-354.

 In Chromatographic and Electrophoretic Techniques, ed. by I. Smith. Interscience Publishers Inc.,

 New York.
- Steck, W. 1968. Metabolism of cinnamic acid in plants: Chlorogenic acid formation. Phytochem. 7:1711-1717.
- Steelink, C., M. Yeung and R. L. Caldwell. 1967. Phenolic constituents of healthy and wound tissues in the giant cactus (<u>Carnegiea giagantea</u>) Phytochem. 6:1435-1440.
- Steiniger, E. and H. Leupi. 1955. The influence of plant substances on the root growth of Allium cepa and germination of Lepidium sativum. Phar. Act. Helv. 30:452-461. (Chem. Abstr. 50:10194d.)
- Stenlid, G. 1963. The effects of flavonoid compounds on oxidative phosphorylation and on the enzymatic destruction of indoleacetic acid. Physiol. Plant. 16:110-120.

- Swain, T. 1953. The identification of coumarins and related compounds by filter paper chromatography. Biochem. J. 53:200-207.
- , and W. E. Hillis. 1959. The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10:63-68.
- Thiel, K. 1954. Untersuchugen zur Frage der Unverträglichkeit bei Birnenedelsorten auf Quitte A
 (Cydonia EMA). Gartenbauwiss. 1:127-159.
- Thimann, K. V. and W. D. Bonner Jr. 1959. Inhibition of plant growth by protoanemonin and coumarin and its prevention by BAL. Proc. Nat. Acad. Sci. 35:272-276.
- Tomaszewski, M. 1964. The mechanism of synergistic effects between auxin and some natural phenolic substances. p. 335-351. In Regulateurs Naturels de la Croissance Végétale. Edition du Centre National de la Recherche Scientifique, Paris.
- _____, and K. V. Thimann. 1966. Interactions of phenolic acids, metallic ions and chelation agents on auxin induced growth. Plant Physiol. 41:1443-1454.
- Torrey, J. G. and R. S. Loomis. 1967. Auxin-cytokinin control of secondary vascular tissue formation in isolated roots of <u>Raphanus</u>. Amer. J. Bot. 54:1098-1106.
- Towers, G. H. N. and A. Hutchinson. 1958. Formation of a glucoside of maleic hydrazide in plants. Nature 181:1535.
- Toxopeus, H. J. 1936. Stock-scion incompatibility in citrus and its cause. J. Pom. and Hort. Sci. 14:360-364.
- Tschiersch, B. 1963. Canavanin als Ursache der Inkompatibilität von Canavalia-Pfropfungen. Flora 153:73-86.
- Upshall, W. H. and G. H. Dickson. 1950. Mahaleb and Mazzard rootstocks for the cherry. Rep. Vineland Hort. Exp. Stat. Ontario for 1949-1950. p. 15-20.

- Van Sumere, C. F. 1960. Germination inhibitors in plant material. p. 25-34. In <u>Phenolics in Plants in Health and Disease</u>, ed. by J. B. Pridham. Pergamon Press. London.
- Varga, M. E. Köves. 1959. Phenolic acids as growth and germination inhibitors in dry fruits. Nature 183:401.
- pounds on the activity of indoleacetic acid oxidase. Acta Biol. 13:273-281.
- Wagner, H., L. Hoerhammer, R. Rueger, E. Khalil, and L.
 Farkas. 1969. Synthesis of 2, 3, dihydrowogonin
 7-mono-β-D-glucoside, a new glucoside from
 P. cerasus. Tetrahedron Lett. 1471:3.
- Waldi, D. 1965. Spray reagents for thin-layer chromatography. p. 498. In Thin Layer Chromatography, a Laboratory Handbook, ed. by E. Stahl.

 Springer-Verlag.
- Walker, J. R. L. 1962. Phenolic acids in cloud and normal tomato fruit wall tissues. J. Sci. Food Agric. 13:363-367.
- Wareing, P. F., C. E. A. Hanney and J. Digby. 1964. The role of endogeneous hormones in cambial activity and xylem differentiation. p. 323-344. In The Formation of Wood in Forest Trees, ed. by M. H. Zimmermann. Academic Press, New York and London.
- growth and Differentiation in Plants. Pergamon Press, Oxford. p. 108-111.
- Watanabe, R., W. Chorney, J. Skok and S. H. Wender. 1964. Effect of boron deficiency on polyphenol production in the sunflower. Phytochem. 3:391-393.
- Weeks, W. D. 1948. Further scion and stock combinations with Spy 227. Proc. Amer. Soc. Hort. Sci. 52:137-140.
- Westwood, M. N. and F. B. Wann. 1966. Cherry nutrition. p. 158-173. In <u>Fruit Nutrition</u>, ed. by N. F. Childers, Horticultural Publications, Rutgers-The State University, New Brunswick, New Jersey.

- Williams, A. H. 1953. The application of chromatographic methods to the study of the biochemistry and nutrition of plants. p. 205-212. In Science and Fruit, ed. by T. Wallace and R. W. Marsh, University Bristol.
- Wilson, B. F. 1968. Effect of girdling on cambial activity in white pine. Can. J. Bot. 46:141-146.
- Zimmerman, M. H. 1958. Translocation of organic substances in the phloem of trees. p. 381-400. In The Physiology of Forest Trees, ed. by K. V. The Ronald Press Co. New York. p. 381-400.

