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ABSTRACT

RATES OF CONVERGENCE

IN EMPIRICAI.BAXES TWO-ACTION AND ESTIMATION PROBLEMS

AND IN EXTENDED SEQUENCE-COMPOUND ESTIMATION PROBLEMS

BY

Benito Ong Yu

Throughout, our component problems concern exponential

families of distributions of x conditional on the parameter 9.

In Part I we consider exponential families determined by

a measure with Lebesgue density h, where h(x) > 0 if and only

if x > a, and assume the parameter 9 has a distribution G.

Based on a sequence of observations x1,x2,...,xn, iid according

to the marginal distribution of x, estimates of the posterior

mean are used to define estimates for the Bayes test in the linear

loss two-action problem. Rates of convergence of the excess risk

are obtained under certain integrability conditions. The scale

parameter exponential and the location parameter Normal densities

are given as examples where the finiteness of certain moments of

G is sufficient for these integrability conditions.

These results,proved under weaker hypotheses than those

of Johns and Van Ryzin (1967), are obtained under the assumption

h(r) exists for some r 2 2. Analogous results are also obtained

without any differentiability assumption on h.

In the squared error loss estimation problem, a truncation

of the previous estimates for the posterior mean are used to estimate
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6. By a different method of proof, rates of convergence of the

excess risk are established.

It is shown that the excess risk of the linear loss two-

action problem is exceeded by the squared root of that of the

estimation problem and, consequently, certain improved rates in

the location parameter Normal two-action problem can be obtained

as a corollary to those obtained in the estimation problem.

In Part II we consider certain discrete exponential and

the location parameter Normal families, and assume that the parameter

9 is bounded. Based on all past observations x1,x2,...,xn, with

the x1 conditional on 6i being independently distributed

according to P , squared error loss estimation of an is con-

91

sidered with the aim that the average risk across the first n

problems approach the extended Bayes envelope Rk(G:) evaluated

k

at Gn’ the empirical distribution function of the k-vectors

(91.....ek). (92,...,ek+1).-..,(e ....,en).
n-k+l

Swain (1965) obtained rates of 0(n-% logk n) and 0(1)

for the discrete exponential and the Normal families, reSpectively.

Gilliland (1966 and 1968) considered the unextended (k = l)

%
versions of these problems and obtained improved rates of 0(n-

/

)

and 0(n"1 5), reSpectively. In Chapters 3 and 4, the same order

of improved rates, namely, O(n-%) and O(n k+4 ), are obtained

in these families, respectively.
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PART I

EMPIRICAL BAYES IN EXPONENTIAL FAMILIES



INTRODUCTION

Johns and Van Ryzin (1967) studied the empirical Bayes two-

action problem in the exponential family. They used kernel estimates

for the marginal density f and its derivative g to define tests

¢n’ and showed, in their Theorem 3, that under certain conditions,

including (C) and (D) of Theorem 1.1, the risk Rn(¢n,G) converges

to the Bayes risk R*. Furthermore, a rate was obtained. They

gave the scale exponential and the Normal densities as examples

where the existence of certain moments of the prior G is

sufficient for the conditions (C) and (D).

Lin (1968) considered the multivariate estimation problem

with Squared error loss. A multivariate version of Theorem 2.1

was considered.

Chapter 1 considers the same empirical Bayes two-action

problem that Johns and Van Ryzin studied. Theorem 1.1 improves

upon their Theorem 3 by deleting assumption (B) in §l.4 and by

relaxing (A). The scale exponential and the Normal densities are

given to show that in each case their moment assumptions on G

can be relaxed.

Chapter 2 considers the squared error loss estimation

problem. Using a truncation different from that of Lin, Theorem

2.1 establishes a certain rate of convergence. Lemma 2.4 shows

that for certain natural tests derivable from estimates the excess



risk in the two-action problem is bounded by the square root of

the correSponding excess risk in the estimation problem. Corollary

2.3 utilizes this fact to obtain better rates for the Normal two-

action problem (Corollary 1.2) from those obtained in the Normal

estimation problem (Corollary 2.2). The improved rates are exactly

those correSponding to priors not having finite (3 +n/§§)/10 - Ch

absolute moment.

Notational Conventions.

Sets and their corresponding indicator functions will be

used interchangeably. The same symbols will be used to denote

distribution functions and their induced Lebesgue-Stieltje measures.

For any measure u, the n-integral of Y will be denoted by uY,

u[Y] or u{Y}. Dependence on arguments will be suppressed for

simplicity and dummy variables of integration will not be displayed

except for emphasis.



CHAPTER 1

LINEAR IDSS TWO-ACTION PROBLEM

1.1. Introduction.
 

Let us consider the following hypotheses testing problem.

Let 9 ~ G. We test

9 s c against H : e > c

based on an observation X, with XIe being distributed according

to some FS with Lebesgue density f9. Let A1 and A2 respectively

denote the actions of deciding on H1 and H2, and

L1(9) 2 0: L2(9) 2 0

denote the losses of A1 and A2 when 9 is the true parameter.

Let P denote the p-measure on (X,e). A randomized

test ¢ in the Bayes problem above incurs a risk given below by

(1.1) R(¢,G) = 11.,ny1 + (1-¢)L2'I.

Let R* or R*(G) denote the Bayes risk.versus G. (We tacitly

assume that P'x(L1 - L2) is well-defined. This will be the case

for the application of the theory to the two-action problem in

exponential families with linear losses.)

Since a test is Bayes if and only if it minimizes the

expected loss given x,



(1.2) ¢C(x) = [PX(L1 - L2) 5 O]

is Bayes versus G. Johns (1957) considered the linear losses

+ -

(1.3) L1(9) = (e - c) . L2(e) = (e - c) .

and intended, as a consequence, that PX(L1 - L be expressible2)

in terms of the posterior mean; that is,

(1.4) P (L
x 1 ° L2) = Pi<9 ' C) '

Hereafter, unless stated otherwise, we will assume that L1 and

L2 are as defined in (1.3).

We remark that, although the losses in (1.3) are unbounded,

*

the Bayes risk R (C) may be uniformly bounded on the class of

all priors; for example, let x ~ N(e,l) and consider the natural

test ¢'(X) = [x s c]. Taking conditional expectation given 9,

Pe{¢'L1 + (l-¢')L2} . \e - c\s(-|e - cI) is less than (211)"25

by the Normal tail bound (Feller (1962), p. 166). Therefore, the

s
Bayes risk in the Normal two-action problem is less than (2n)—

whatever be G.

1.2. The Empirical Bayes Problem.

In this chapter we shall consider the case when a sequence

of past observations x1,X2,...,Xn' is available, with each of the

X's i.i.d. according to the ,marginal distribution of x.

At the (n+1)8t prdblem, the decision rule ¢n is allowed to

depend on all the past observations as well as the (n+1)8t. Hence,

¢n is a measurable function of X1,X2,...,Xn and X = X

n+1

With P extended to denote the product measure on (X,e),



X1,X2,...,Xn, we can express the risk of ¢n by

(1.5) Rn(¢n,G) = P[¢n L1 + (1-¢n)L2} .

We note that since Pk X{g(e)} = Px{g(e)} for any function g(e),

1’

it follows that ®G continues to be Bayes in the empirical Bayes

problem. This motivates the use of the excess risk (regret)

n

(1.6) R - R* = KIQDH’G) - R*

as a measure of goodness of a test ¢n' Restricting G to those

with finite Bayes risk, the excess risk satisfies

(1.7) o s Rn - R* = PI(¢n - Pc)(Px e - e)} .

Note that the integrand (¢n - ¢G)(PR e - c) is non-negative since

¢G continues to be Bayes.

1.3. Exponential Families.

Let h be a non-negative measurable function defined on

the real line, and

fl = {-m < 6 < m : I e"ex h dx < w} .

For each 9 in the natural parameter Space 0, let

1

8(9)

 

(1.8) fe(x) = 5(9) h(x) e‘ex , where = I e"ex h(x) dx.

The following lemma, due to Professor J. Hannan, yields

a choice hg of h such that on the set of x for which ha

is positive, the function

(1.9) we =I ace) e‘e“ dG(e)



is infinitely differentiable and its derivatives can be computed

by repeated differentiation under the integral sign.

Lemma 1.1. let .9 = {G : G is a distribution on O} and

CG = {x : J(x) < w}, for each C €.£. Then there exists a deter-

mination N9 within the Lebesgue equivalence class of h

(independent of G 6.3), for which [hg > O] C int(CG), what-

ever be G.

Proof. The fact that hJ is a density implies that [h > 0] 5 CG a.e.

for each C €.&. The closed convex set C; =I7{Cé : G E.&} is

also the countable intersection HIE; : rational r {LES} where

r

CG is any one of the CG that excludes r. The above con-

r

siderations, together with the fact that a countable union of null

sets is null, imply that [h > 0] s C; a.e. and, therefore, also

[h > 0] s int(§z) a.e. Hence, by defining h& = 0 off int(C£)

and ha = h on int(C9), it follows that [h > 0] C int(C&) c

int(C§) C int(CG), whatever be G.

tenses

Since J is well known to be infinitely differentiable on

int(CG) and its derivatives can be computed by repeated differentia-

tion under the integral sign, it follows that the same hold true

on the subset [ha > 0]. Therefore, with

(1.10) f =I‘ fe dG(e)

denoting the marginal density, the existence of hér) on [hg > 0]

will imply the existence of f(r) via the Leibniz's rule of dif-

ferentiation for the product f = J hfif We shall make use of this

fact immediately after the following summary.



1.4. Summary and Some Useful Results.

Johns and Van Ryzin (1967) considered the two-action

empirical Bayes problem in exponential families with densities

(1.8) under the additional assumption that there is an a 2 -m

such that

(1.11) h(x) > 0 if and only if x > a.

For each integer r 2 2, they exhibited procedures ¢n such that

under the assumptions:

(A) h<r> exists and is continuous for x > a

and

r

(B) GIeI <°° 9

together with the conditions (C) and (D) of Theorem 1.1, the regret

can be shown to converge to zero at a rate no worse than n-Y,

where y = (r-1)6/(2r+1) and 0 s 6 s 2. Moreover, they gave

the Normal (-e,l) and the scale exponential families as examples

where conditions (C) and (D) hold for some 0 s 6 S 1 when-

ever the prior G has certain moments finite.

We shall show in Theorem 1.1 that only the existence of

h(r) together with (C) and (D) are required for the regret con-

vergence of 0(n-y). The Normal and the scale exponential examples

will be discussed in Corollaries 1.1 and 1.2; and we will show that

in each case their moment assumptions can be relaxed.

We will further show in Theorem 1.2 that analysis similar

to that in Theorem 1.1 can be carried out in exponential families

(1.8) where h is not assumed to have any derivatives.



In the remainder of Part 1,.& is assumed to be the class

of priors G for which the Bayes risk is finite, and only exponential

families as defined in (1.8) and (1.11) will be considered; moreover,

since [x s a] is aP-null set, all statements are assumed to be

quantified by x > a unless stated otherwise.

We note that since [x > a] is an open set, the h in

(1.11) is already its own he determination. By the remark follow-

(r) for
Lemma 1.1, the existence of h implies the existence of

This improves upon Lemmas 2, 3 and 4 of Johns and Van Ryzin in that

their respective moment assumptions GIeI < m, GIeIr < m and

GIlog e‘r < a are deleted.

For the exponential family in (1.8) and (1.11),

Ja)
(1.12) Px(9) = - 3——— (for x > a).

Hence, the quantity P’X(L1 - L2) = Px(e - c) and, therefore, also

the Bayes test $6 in (1.2),are well defined without any assumption

on G. In addition, if h(1) exists then, with

(1)

(1.13) v = %-- , g = f(1) and o = f PX(e - c),

we have

(1.14) gx(e) = v - % and a = (v-c)f - g .

We note that the Bayes test in (1.2) becomes

(1.15) ¢G(x) = [a(x) s 0] .



When a sequence of i.i.d. observations X1,...,Xn and

X is available, it is the Special form of $6 in (1.15) that

we will exploit in defining reasonable extimates ¢n by estimating

the density f and its derivative g by the kernel method so

successfully employed by Johns and Van Ryzin.

To conclude this section, we state and prove Lemma 1 of

Johns and Van Ryzin (1967) as a consequence of (1.7).

lemma 1.2. Let an be any measurable function of X ..,Xn
1"

and X. Then the excess risk of

(1.16) ¢n = [an S 0]

satisfies

(1.17) 0 S Rn - R* S ‘LIQIIPXEIQIII " (XI 2 IQIJdX.

Proof. From (1.7) and (1.13),

* m

(1.18) o s Rn - R = IIQIPXI 93m - Re Idx ,

The reSult follows from (1.18) since I¢n - ¢CI 3 [Ion - GI 2 IaI].

1.5. Main Result and Examples.

In view of (1.14) and (1.17), the excess risk Rn - R*

can be made small if f and g can be adequately estimated. The

appendix provides kernel estimates fn and gn for which the bias

terms Pxfn - f and ngn - g are small. These estimates will be

used in the obvious way to define an and ¢n in (1.19).

Theorem 1.1 below is an improvement of Theorem 3 of Johns

and Van Ryzin (1967) in that their assumptions GIeIr < m and



lO

h(r) is continuous are deleted. Their proof is reproduced below

for completeness.

For each integer r 2 2, let

(1.19) (on = [an s 03 , where an = (v-c)fn - gn

with

-1 n o o -1
fn(x) = n jilem) , wjm) = A K0((Xj - x)/A)

and

n

(nm'IL .2: «In» - wJIum. wImg (X)
n 1:1

'1

A K1((Xj-x)/A)

being the type of kernel estimates of f and g given in (A.8)

of the appendix. We note that r 2 2 is required in (A.l).

 

Theorem 1.1. LBt ¢n be as in (1.19) with A = n-l/(2r+l), If h(r)

exists (for x > a), and if there is some 6 > 0 such that

‘° 1- o

(a) I IoI 6(1 + \v\>6<q( I)“2 dx < ..., q(°)<x> = sup f<x + en)
a e e 0<u<l

(D) I \eIH’a +IvI>5<c1§“’))‘5 dx < ..., q‘r)<x> = sup Irma + eU)I
a e 0<u<1

then,

 0 s R ( G) - 11* = 0(n'Y) where = r'1 6
n ¢n’ ’ Y 2r+l

Proof. Lemma 1.2, followed by the Markov inequality, yields

(1.20) o s R ( .c) - 11* s]? IaI1’5P Io - oIédx
n (”In a x n '

Since (1.14), (1.19) together with the Cr-inequality (Loéve p. 155)

imply



ll

6 6

Ion - oI 3 CO {Iv - CI Ifn - fI6 + Ign - gIfi} ,

we have, by (1.20),

*

0 s Rn(¢n,G) - R s (35 {A +~B}

where

A =TIsI1'5Iv «45 lefn - s5 ax

and

B = T IoIl-é P’XIgn - gI6 dx .

Thus, the rate at which the regret converges to zero is no worse

than that of max(A,B). Let us first consider A. For 6 > O,

the Cr-inequality yields

- 5 _ 5 _ 5
(1.21) If“ f\ 5 Ce {\fn Exnt + \prn fI }

and for 0 < 6 < 2, Holder's inequality yields

_ 6 5/2

BXIfn Pan‘ S (Varxfn) °

Since the above inequality trivially holds for 6 = O and 2, it

follows from (1.21) that

6/26 e
(1.22) kafn - fI 3 C5 {(Varxfn) + IPan - fI } .

Thus by (A.9) and (A.lO) of the appendix,

_ 6 -1 (0) 6/2 r (r) 6
Pk‘fn fI s const X {[(nA) qe ] + [A qt 1 I

-l/(2r+l)
so that by (C), (D), and the choice A = n , one has

/2) +_O(Ars) g 0(n-r6/(2r+l)

A = cans)"6 >



12

Similarly, for O s 6 s 2,

Rngn - sI6 s Ce {(Varxgn)6/2 + Ingn - gIé}

= const X {L(nA3)-1q:0)]5/2 + [Ar-lqér)]61

so that by (C) and (D),

B = 0((n13)'6/2) +-0(A(r’1)6) = 0(n'Y)

The proof is completed by this weaker rate of B.

For the remainder of this section, the scale exponential and the

location Normal families will be given as examples to illustrate

how conditions (C) and (D) relate to the moments of G.

Example 1. (Scale Exponential)

Consider the exponential density in (1.8) with h = [x > 0]

and 3(9) = e; i.e., for each 8 > 0

e e-OX , x > 0

(1.23) fe(x) B o , otherwise.

The density f satisfies the following facts:

(1.24a) fe is monotonically decreasing, and so is f.

(1.24b) Since h(r) = O for x > O, f(r) exists (for

x >10) by Lemma 1.1; moreover, v = 0 so that conditions (C) and

(D) simplify.

(r) r . . .
(1.24c) If I = I e fedG(9) is monotonically decrea31ng

andstherefore,

(1.24d) qér) = If(r)I .
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Corollary 1.1 is an improvement over Corollary 3.1 of

John84Van Ryzin (1967). They proved the sane result under the

assumptions Ger+1 < a and (1.26) below.

Corollary 1.1. For the scale exponential in (1.23), the hypothesis

of Theorem 1.1 holds for each 0 s 6 s 1 if

(1.25) G[9r] < e ,

(1.26) G[e-n < m, where n = (1+t)6/(2-6) for some t > 0.
1

Proof. Since v = 0, condition (D) simplifies and is implied by

r

the integrability of a and q: ), subsequently illustrated. By

Tonelli's theorem (Royden (1965), p. 234),

IIaIdx s IIIe - cIfedG dx = GIe - cI.

By (1.24c) and (1.24s),

(r) _ r _ r

I qe dx - If e fedG dx - GL9 ] .

Hence, we have shown that G[er}< m is sufficient for condition (D).

Let us next verify condition (C). Since a is bounded

(0)
by GIe(e - c)‘, v = O, and q6 = IfI s G[e], it follows that,

under (1.25), condition (C) is implied by

to

(1.27) I \sI1'6 fb/de < s .

1

Since 9 5 e9, If< )(x)I 3 f(x - l) for x > 1; consequently,

Io(x)I - Icf + £(1)| s (c+l)f(x-1) for x > 1. Thus, by the

Holder inequality,

an

(1.28) I IaIl'6 fG/z dx s (e+1)1'5(1/t)5/2{p[1+x]“}1'5/2.
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The proof is completed by the equality PIX“) = G{9-n}F(1+fl).

Remark. Corollary 1.1 shows that procedures ¢n exist, for

which the regret convergence rate can be arbitrarily close to

-’5
n provided 5 = 1 and r is sufficiently large, i.e., G has finite

(-1)- as well as arbitrarily high moments.

Example 2. (Normal (-e,1)).

2

Consider the exponential family in (1.3) with h(x) = e“x /2

2

and 5(9) = (211)“!5 e'9 /2; that is, for each -m < e < a,

2
e e-(9+x) /2

fe(x) = (2n)- , where -m < x < m .

We have shown earlier (§1.3) that for this family the Bayes risk

* -

R (G) < (2n) I whatever be G.

2 2

- - +eY/2+e()’e) /2
Since the function is symmetric with

respect to y I -e/2, and has a unique minimum there with value

2

2e-e ,8, it follows that

fe(x + t) s fe(x) + fe(x + e),

(1.29) for 0 S t S e s,/8 log 2 .

q:°)(x) s £00 + for + e).

By repeated differentiation under the integral sign,

f(r)(x) = (-1)r Ihr(x +-e)fe(x)dc(e) .

where Hr is the r-th Hermite polynomial. Thus, for e s,/8 log 2,

(r) r 1
If (x>I s z IajI le + e\ fe(x) dc(e) .

o

(1.30) (r) r j j

q‘3 (x) $53 Iajch I<Ix+eI + e )(feoc) + fe(x+e)>dc<e>.
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where the second inequality follows from the first via (1.29) and

the Cr-inequality. Lastly,

% t
is s (2n)' , f 5 (Zn)-

(1.31) IaI S.II9 - cIf.e do(e) s (211)';5 GIe - cI.

qéo) s (2n)'3 , qér)~ is bounded.

Remark. Corollary 1.2 below is an improvement of Corollary 3.2 of

Johns-Van Ryzin. They proved the corollary under the stronger

1+(3+t)6/(2-6) <
assumption GIeI m, and GIeIr < m.

Corollary 1.2. Consider the Normal (-9,1) family. For each

0 s 6 s 1, if

GIeI1-+-(2-+-t)s/(2-e) < m
(1.32) for some t > 0 ,

then the hypothesis of Theorem 1.1 holds for each r 2 2.

Proof. Condition (D) is implied by the integrability of a and

r

IxI q: ), since 1 + IvI = 1 +-IxI is bounded by 2IxI for

IxI > 1. By (1.31), if GIeI < m then

(1.33) IIaIdx s GIG - cI < m .

. 2

Denote by b the constant (2n)-% IIzIJ e.z /2dz. Since

1

PeIx +'te = b , it follows, by the triangle inequality, that

.1

PeLIXIIx + eI-I] s Pe[(Ix+ 9| + I9I)Ix + 9I11= sjfl + Ierj.

Hence, GIeI < m implies P(IxI Ix + te) < m for each j and

therefore IxI qér) is integrable by (1.30). This completes

the verification of (D) under GIeI < a.
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Let us next consider condition (C) for 6 = 0, 6 = l, and

O < 6 < 1.

Case 1 (6 0). (1.33) proves this case.

Case 2 (6 = 1). Since IvI = IxI and q(0) 3 (2n)-%, we need

only to verify the integrability of [IxI> l] Ix I(q(0)) I. By

Holder's inequality,

3+t O

I IxI(q:O)x)35d s (—> (“XI q()dax}

IXI>1

where the last integral is bounded by

I IxI3+t(f(x) + f(x+€))dx

s P[Ix+9I +I9I33+t +-P[Ix+BI + Ie+eI]3+t

via (1.29) and the triangle inequality. Again by the fact that

(x+e) given 9 is standard Normal, GIeI3+t < m implies Case 2.

Case3 (0 < 6 < 1). Let 0 s g s 1,0 < t. With 0 < l/p= 6/2 < l,

l- 0 2 -
0 < 1/q .—2—6< 1 X = I I( §)5(q : ))5/ and Y =IXI§5IUI16

in the Holder inequality, it follows that (C) is implied by the

integrability of Xp and Yq. By (1.29),

I Xpdx S P x2(1-§) +~2 PIX'6I2(1-§)

so that GI9I2(1-E) < m implies the integrability of Xp.

If GIeI < a, then a is bounded by (1.31), and Y is

bounded on IxI s 1. Therefore, the integrability of Yq is

implied by that of [IxI > 1]Yq. By Holder's inequality,

ILIXI>11qu
xS (.95/(2-6) X{IIquIoIdXI

2(1-6)/(2-6)
,
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where u = %(1 +-t +-2§)6/(1-6). By Tonelli's theorem,

IIquIaIdx s IIe - cIPeIqudG(e). Since (x+9) given 9 is

standard Normal, PeIqu is bounded by

rem“ s on x {Pelx + e\“ + W} .

l

by the Cr-inequality. Thus, GIBI +u < m implies that Yq is

integrable. Balancing between l+u and 2(l-§), we get

m8x(l+u, 2(1-§)) is minimized when 1-2§ = 6(2+t)/(2-6), so that

2(1-§) = 1+6(2+t)/(2-6). Therefore, (1.32) implies Case 3.

Remark. Corollary 1.2 shows that for the Normal (-9,1) family

there exist procedures for which the regret convergence to zero

is of a rate no worse than n-Y, provided that the prior has finite

1+6(2+t)/(2-6)&1absolute moment , where O s 6 s 1. In the case

where 6 = l and r is sufficiently large, a rate close to

n")5 can be achieved provided the prior G has 3+ absolute

moments. However, for 6 = 0, the finiteness of the first moment

of G guarantees only the boundedness of the excess risk. This

lack of rate will be removed in Corollary 2.4.

1.6. Result Without Differentiability of h.

In Section 1.5 we discussed the exponential family in (1.11)

(r)
and (1.8). We took advantage of the existence of h and obtained

the result in Theorem 1.1. In this section we shall not assume h

to have any derivative. We recall from (1.9) the definition

-ex

(1.34) J(x) = I e 5(e)dc(e) .

It was shown in Lemma 1.1 that J is infinitely differentiable on
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[h&> 0] and, therefore, also on [x > a]. Since f = Jh, it

follows from (1.12), (1.13) that

(1.35) a = -(J(1> + cJ)h.

In view of the method of attack exhibited in Sections 1.4 and

1.5 , we shall estimate $6 through J and J(1)

For each r 2 2, let

0
n

Jn<x> =n 1 2 wjm/ij)
i=1

(1.36)

J'(X) = (HA)-1 ; {W1(2A) ' W1(A)}/h(x )
n j=1 j J j

where W? and W} are as defined in (A.8) of the appendix. Let

(1.37) 6n = [an s 0], where an = ~(J; + an)h .

Theorem 1.2. Let ¢n be as in (1.37). Consider the exponential

family in (1.11) and (1.8). For each 0 s 6 s 2, if there exists

some a > 0 such that

(Cl) ‘I‘ IaI1-6(T% h)6 dX < a ’ Te(x) = SD M

a

e 0031 h(x+eU)

(D') ‘II IQI1-6(S(r)h)6 dX < ‘0 ’ S(r) (X) = Sup IJ (r) (X+eu) I 9

a e e 0<u<1

-l/(2r+1)
then, with A = n , we have

(1.38) 0 S Rn(¢n,G) - R* = 0(n-Y), where y = (r-1)6/(2r+1).

Proof. From (1.20), it follows by the Cr-inequality that the

excess risk is bounded above by C6 X (A +-B) where
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A = I46]: IOIIl-é PXI(Jn - J)hI6 dx

and

Q

1-5 (1) 6
B = I IaI PkI(J; - J )hI dx .

With Jn and J replacing fn and f in (1.22) we have,

6 6/2 6
PXIJn - JI s C6{(VarxJn) + IPxJn - JI }, for o s 5 s 2.

Under (0') and (D') and Lemmas A.S and A.6 of the appendix and the

choice A = n-1/(2r+1), then

A = “(um-M2) + 0(AI‘6) = 0(n-r6/(2r+l))

Similarly, for 0 s 6 S 2,

(1) 6 6/2 . (1) 6
PXIJr'l - J I s C6{(Varth:) + Iprn - J I }.

Invoking (C'), (D') and Lemmas A.5 and A.6 of the appendix,

B = 0((nA3)'5/2) + 0010.4)6 ) = 0(n'Y>

The proof is completed by the weaker rate of B.

Example 3. Consider the exponential family with

(1.39) h = [0 < x s 1] +-2[1 < x < m] .

Then 0 = (0,m) and 3(9) = e/(l + e-e). We note that

(1.40a) h is non-decreasing while J is strictly decreasing.

(1.40b) IJ(r)I -.f 9r 8(9) e'exdc(e> -

(1.40.) s“) = INN and T = l.
6 e h
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Corollary 1.3. Consider the exponential family with h in (1.39).

The hypothesis of Theorem 1.2 holds provided (1.25) and (1.26) hold.

Proof. The proof of Corollary 1.1 works with

O
(1.41) qér), q: ), f, IaI s.c[eIe - cI] and f s Gie]

respectively replaced by

(1.42) 5“), T , J, IaI s zciele - cI] and f s ZG[e].
e e



CHAPTER 2

SQUARED ERROR lDSS ESTIMATION PROBLEM

2.1. Introduction.
 

Suppose e is distributed according to some prior G, and

one is to estimate 9 based on an observation X with XIe dis-

tributed according to the exponential family given in (1.8) and

(1.11); that is, for some a 2 an,

(2.1) £e(x) = 5(9) h<x> e‘ex ,

where

(2.2) h > 0 if and only if x > a .

Let P denote the joint p-measure on (x,e) as in Chapter 1.

Let the loss function be the squared error loss. The risk of an

estimate ¢ is then given by R(¢,G) = P(¢ - e)2 with Bayes risk

(2.3) R*(G) = inf P(¢ - e)2 .

¢

We note that R and R* denote different quantities in Chapter 1.

In order that the problem not be totally uninteresting, we

restrict G to those with finite Bayes risk" We note that the

Bayes risk R*(G) can be uniformly bounded in G. For

example, let X ~ N(e,1). Then the natural estimate ¢'(X) = X

21
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*

has risk P(¢' - e)2 = 1. Therefore, R (G) s l whatever be G.

Extend P to denote the product p-measure on (X,e),

X1,X2,..., and Xn. Let In be any measurable function of

x1,...,Xn and X. The risk of In is then given by

_ 2
Rn(¢n,c) - P(q;n - e) .

Let WC be a Bayes estimate versus G. If In - WC 6 L2(P) then

POIn - WG)(¢G - e) = 0, and the excess risk satisfies

(2.4) o s Rn(¢n,G) - R*(G) = P(wn - 1&2.

We recall the following definitions from Chapter 1.

(1)h -

(2.5) v = 5—— . f -—- we) .3 = f”) . and J<x> =fe %B(e)dc(e)-

It is well known that a Bayes estimate under squared error loss

is the posterior mean PRG' Hence, by (1.12), the Bayes estimate

VG is well defined without any assumption on the prior G. Further-

more, (1.14) remains valid with Pie replaced by WG’ i.e.,

(2.6) WG=V-%.

In view of (2.4), it is now a matter of estimating I; by estimating

the density f and its derivative g.

2.2. Estimation of WC = PXG-

We shall exploit the expression in (2.6) in estimating WC

when a sequence of observations X ,...,X , i.i.d. according to
l n

the common density f, is available.
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Let fn and gn reSpectively be any estimates of f and

g. Let n > O. Truncate fn away from 0 by

' =

(2 7) fn fn v n .

and define

gn

(2-8) , in = V - f: -

Lemma 2.1. For each fl > O, the estimate In in (2.8) satisfies

(2.9) P(In - IG)2s 3m"2 A + n'2 B +10) ,

2

where A = P(gn - g) , B = P(g/f)2(fn - f)2, and

c - P(g/f)2[f < n].

Proof. From (2.7) and (2.8), simple algebraic manipulation followed

by the triangle inequality will yield

n

- .Ee a. fi- '(2.10) nIIn - IGI “If; ‘ fI 5 ‘gn ' f f I

5 Is, - 8l + I§| lf - fgi .

Since If - féI s “[f < H] + If - nt, the proof follows from

(2.10) and the inequality (a +‘b +~c)2 s 3(a2 +b2 + c2).

Lemma 2.1 shows that for any estimate In of the form

in (2.8), the regret can be bounded in terms of A, B and C in

2

(2.9). The first two terms, namely A and B, involve P - f)
X(£n

and Bx(gn - g)2. The appendix gives kernel estimates fn and

gn, for which these quantities are small. Therefore, hereafter,

we shall consider fn and gn to be the kernel estimates given

in (A.8) and that In in (2.8) is to be defined in terms of these

estimates.
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2.3. Summary.

Theorem 2.1 below is a l-dimensional specialization of a

result considered by Lin (1968). The scale exponential and the

Normal densities again will serve as examples to show that the

existence of certain moments of G is sufficient for the hypothesis

of Theorem 2.1. In Corollary 2.4, better rates are obtained for

the Normal two-action problem from those obtained in the Normal

estimation problem.

2.4 Main Results and Examples.

Theorem 2.1. Let In be of the form in (2.8) with fn and gn

being kernel estimates of f and g as given in (A.8) of the

appendix. If h(r) exists and if for some 0 < e

(2.13) P{ <1 + (g/f>2>q:°’} < e ,

(2.14) P{ <1 + <g/f>2><q§">2) < .. .

and if 6 2 0 such that

 

 

(2.15) P{(g/f)2[f < m} 5 c1 115 ,

l 2(r-1)

then, with A = n'1/(2r+1) and n = n 2+6 2r+1

(2.16) 0 s Rn(In,G) - R* = 0(n'Y') ,

l 2 ‘
where Y = 236 25:11) .

Proof. Let A, B and C be as in (2.9). With A = n-l/(2r+1),

Lemmas A.3 and A.4 of the appendix followed by (2.13) and (2.14)

will yield



25

A 3 c5 x (nA3)‘1 + c; x A2(r-1) S C2 X n-2(r-l)/(2r+l) ’

and

B 5 c5 X (nA)-1 + c" X A2r s c n-2r/(2r+l)3 X
3

3

with the rate on A being the smaller of the two. The choice

_ 1 2(rfill

2+6 2r+l
_ _ I

balances the rates of C and n 2A to n Y .B = n

The proof is completed by Lemma 2.1.

Example 1 (Scale exponential).

Consider the scale exponential with Lebesgue densities

given by (1.23), i.e.,

e e , for x > 0

(2.17) fe(x) =

O , otherwise.

Consider the extreme case where G is degenerate at

e = 1 with all moments finite. The quantity

c = P(g/f)2[f < n] in (2.9) can be computed to be exactly n.

This motivates the bound in the following lemma.

Lemma 2.2. For the scale exponential in (2.17) if 0 < n s f(l),

then for each p > 1 and l/p + 1/q = 1,

2 1 l

(2.18) P(g/f) [f < n] s <r(1+2q>> ”(n/(21> - 1)) /" .

Proof. The inequality (g/f)2 = (-Pxe)2 s Px(92) followed by

Holder's inequality yields
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P(g/f)2 [f < n] [
A P(ex)2 x-2[f < n]

(2.19) I
A

- l

(Precex>2q>1/q(p x Zpif < n3) /p

<r<1+2q))1/q(P x'ZPIf < n1>1/p .

where the last equality follows from the fact that conditioned on

9, ex is standard scale exponential. For 0 < n s f(l),

[f < n] s [x > 1] so that

P x-2p[f‘< n] S n I x-2p dx = n/(Zp - l) .

This completes the proof.

Lemma 2.2 shows that (2.15) holds with 6 = l/p and

/p
c1 = r1/q(1 + 2q)/(2p - 1)1 without any assumption on the prior

1

1xa
shown that f(x) = x-( +a) g zae-zdz ~ x-(1+a)F(l+a) and

G. (For priors with densities ea-1[0 < 9 < l], a > 0, it can be

Ig(x)I ~ x'(2+a)r(2+e) as x .. 00. Hence, (g/f)2 ~ (1+a)2x"2 as

x a,¢, and' C s clfl(2+a)/(1+a). Here we see that the bound on

1
C deteriorates as a, the number of finite moments of e- ,

increases.

Corollary 2.1. For the scale exponential family in (2.17), the

hypothesis of Theorem 2.1 holds for each r 2 2 and 6 < 1, pro-

vided

+

(2.20) c er a < c. .

2 2 -

Proof. Since (g/f) s §{(9 ) and qér) = C(er+1 e ex), it

suffices to note that with ei ~ G1 = G, i = 1,2,
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2 -elx
G1 G Fe[(1+e )91 e 3

2 -

P[(1+2x<e >)c(e e 9x)3

2
c1 c[(1+e )e1 e/(e+el>]

c<e)<1+c<ez>) .I
A

and furthermore, by the Arithmetic-Mean-Geometric-Mean inequality

(Beckenback-Bellman (1961), p. 54 ),

2 -

P(1+Px(e ))G2(er+1 e 9")

'8 x '9 x

2 r+l 1 r+l 2
c1 62 CF9[(1+9 >91 e 92 e 1

r+l r+l 2

- G1 e2 e1 92 G[(1+e )e/(e+el+92>1

r+k r

s a G1 62 61 92

r+k

“5 Ci (1+ez) 935]

= a cz<e )G[9,(1+Gz)] -

The proof is complete.

Example 2 (Normal).

let us consider the Normal (-e,l) family with Lebesgue

densities

c -(x+e)2/2
e(2.21) £e(x) = (2n)-

For each 0 S u and 1 s v, we note that

(2.22) bu = PeIx + eIu

u -z2/2 %

is the finite constant I IzI e dz/(Zn) and by Jensen's

inequality,

(2.23) Ig/fIv = IPk(x +9)Iv s Pka +eIV .

Remark. Consider again the extreme case when G degenerates at

e I 0. Then the quantity C = P(g/f)2[f < n] ~ 2Ln as n a O
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with L2 = -1og(2n “2) = o(n-t) for any t > 0.

2322;. Since f(L) = n and [f < n] = [IxI > L], we have

C = 2 ixzf dx which, upon integration by parts, yields

C = ZLM +-2P[x > L]. By the Normal tail bound (Feller (1962),

p. 166), it follows that 2Lf(L) + 2f(L)(% - 15) < C < 2Lf(L) +

2f(L)/L. Consequently, C ~ ZLm. The proof i: completed by the

fact that L = o(n-t) for any t > 0.

The above remark motivates the bound in the next lemma.

Lemma 2.3. Consider the Normal (-e,1) in (2.21). For each

0 s a < 1, (2.15) holds if

(2.24) cIeI(1+t)5/(1‘5) < e for some t > 0.

Proof. By the Holder inequality,

P(g/f)2[f < n] s 11/p Ill/q ,

where

I = PIg/fI2p s PPxIx + eIZP = PPeIx + 9I2p = b2p

by (2.23) and (2.22), and

s l-s

II = P[f < n3 3 n I f dx, for any 0 s s < 1.

Since the density 'f is bounded by (2n)-%, the integrability

1- 1-

of f 8 is implied by that of [IxI > l]f S. Temporarily, let

6(3)=(1+a)s/(1-s)for each a >.o. The Holder inequality followed

by the Cr-inequality yields

I [IxI > 1]f1-sdx s (2/a)S P1-8(IxIv)

_<. We)" {cbv + PIeIVme‘S .
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Hence, GIBIV(S)<#»implies that fl”8 is integrable and, therefore,

(2.15) holds with the rate s/q. Since (2.24) implies that there

exists some 0 < a«< t for which GIGIv<6+> < m with

6+-> 6, the proof above shows that (2.15) holds with rate 6+/q. The

proof is completed by the choice 6+/q = 6. Such a choice is possible

since 1 < q is a free parameter.

Corollary 2.2. Consider the Normal (-e,l) family. For each

0 s 6 < 1, if (2.24) holds, then the hypothesis of Theorem 2.1

holds for any r 2 2.

35295 “with“ (2-13) and (2-14) are satisfied because qéo)

(r) 2 .
s are bounded functions, and (g/f) is P-1ntegrable byand q

(2.23). The proof is completed by Lemma 2.3.

Remark. For 6 close to 1, Corollary 2.2 shows that a rate of

0(n-Y'),with y' arbitrarily close to 1/3, can be attained, pro-

vided GIeIul< a for sufficiently large at On the other hand,

for 6 close to zero, lower convergence rates are attained. This

last result is completely absent in the two-action problem (Cf.

the remark following Corollary 1.2). We shall presently remedy

the situation by obtaining better rates in the Normal two-action

problem as a corollary of the estimation problem.

Let In be the estimate prescribed in Theorem 2.1. Con-

sider the test ¢; = [In - c s O] in the two-action problem in

Theorem 1.1.

"P >2 1( x9 In . Consequent y,lama 2.4. P{(Pxe - c)(¢r'l - ‘30)} s P

the excess risk of ¢é in the two-action problem is bounded by

the square root of the excess risk of In in the estimation problem.
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Proof. Since

- ’f
Pxe c 1 In 5 c < PXG

- 7 - =

(PXG °)(¢n 66)

c-Pxe 1f PXGSc<In,

it follows that

35
(2.25) P{(Pxe - cm);1 - 66)} s PIPxe - In\ S P (PXG - In)2 .

where the second inequality follows by the Liapounov inequality.

The proof is completed by (1.7) and (2.3).

We note that (2.25) is a statement about the excess risk

in the two-action problem being bounded by the Ll-norm of I - In,

which in turn is bounded by the Lz-norm of I - In.

Applying Lemma 2.4 to the Normal two-action problem, a

rate of- 0(n-k Y') is possible provided G has finite

((1+t)6/(1-6))-th moment. If we let m denote the number of

finite moments of G and v the obtained rate, we have the para-

metric equation in 6

= r-l

2r+l '

 

6
(2.26) m = (1+t) 1:6 , v = q 323-, where q

Similarly, we obtain the parametric equation

(2.27) m=1+(2+t)'2-§_z,v=q6,

from Corollary 1.2. The two parametric equations have a solution

at m = .3(1-t) + [.0911-t)2+.80(1+t)]35. For t = 0, m = m0 = .3 + (.89)?

Therefore, for priors not having finite mo-th moment, v‘< ky'.

We have thus proved the following corollary.
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Corollary 2.3. Consider the Normal two-action problem. Let In

be as in Theorem 2.1, and ¢; = [In - c s 0]. Then the excess

risk in the two-action problem satisfies

0 S Rn(¢:1,G) - R* = 0(n'Y'/2)

3

provided (2.24) is satisfied.



PART II

EXTENDED SEQUENCE-COMPOUND ESTIMATION

INTRODUCTION

Let ‘Q = (61,...,en,...) be a sequence of parameters.

Let Gn denote the empirical distribution of 91,92,...,9n. The

usual standard in compound decision problems is R(Gn), the Bayes

envelope of the component problem evaluated at cm.

k

Let k 2 1. Let Gn denote the empirical distribution

k k

of the k-vectors fik (61,...,ek),_gk+1 - (92""’ek+1)"'°’

k . . .
fin (en_k+1,...,6n). Gllliland and Hannan (1969) con31dered

k

the following extended game. Player I picks 9k = (w1,...,wk) E 0

and Player II, after observing xk ~ P x...x P , picks an action

- 0"1 wk

a 6‘7 according to some randomized decision rule m(§k). With

1&w,a) denoting the loss, the risk Player II incurs is given by

k ) = L( a) ( ) da d P x x P )New: If wk. as“) (m1 wk

k

The Bayes risk versus a p-measure G on n is

k k

R (GNP) =I R (.3 (p)dG °

Swain (1965) used Rk(G:) as standards for compound prob-

lems, and called the resulting versions the extended compound

decision problems. He considered squared error loss estimation

problems in the discrete exponential and the Normal families and

32
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- k

obtained rates of 0(n % log n) and 0(1), reSpectively, uniformly

in 3, Samuel (1965) and Gilliland (1966 and 1968) considered the

unextended (k = 1) versions of these same problems with Gilliland

obtaining the improved rates of 0(n-k) and 0(n-1/5), reSpectively.

It is the purpose of this work to re-instate the k in

Gilliland's results.

Chapter 3 considers the discrete exponential families.

Lemma 3.2, a corollary of a theorem of Bikelis (1966), is used

in (3.31) to bound certain probabilities involving kddependent

random variables. Without Lemma 3.2, the knowledge of a lower

bound for the variances r: in (3.28) seems to be necessary.

Theorem 3.2, an improvement of Theorem 3.5 of Gilliland (1968),

*

gives a rate of 0(n-%), uniformly in g, for the estimates m

that sub8ume those of Gilliland's.

Chapter 4 considers the Normal family. Here there is

auch.in common with the estimation problem in the k-multivariate

Normal considered by Susarla (1970). Nest of the results in his

§l.2 are applicable to our extended problem. Theorem 4.1 gives a

-1/(k+4))
rate of 0(n uniformly in g, We note that the rate

deteriorates as k increases.



CHAPTER 3

ESTIMATION IN DISCRETE EXPONENTIAL FAMILIES

UNDER SQUARED ERROR 1088

3.1 Introduction.

We shall consider a sequence of statistical decision prob-

lems each of which is structurally identical to the component prob-

lem described below.

A component problem consists of a family of probability

measures {Pe : e 6 0} on a measurable Space (1J3), a measurable

apace (4,0), and a loss function 0 s L defined on 0 x a. A

randomized decision rule ¢ 6 6 is a function defined on I x C,

such that for each x 6 I, ¢(x,-) is a probability measure on

cg and for each C 6 Cg ¢(-,C) iSIB-measurable. The risk of a

procedure ¢ is defined by

(3.1) R<e,¢) = If L<e.A)¢<x.dA>Pe(dx> .

A sequence (non-Bayes) compound problem is one in which

the decision rule ¢n for the n-th problem is allowed to depend

on all past observations in = (x1,x2,...,xn) and the loss is

taken to be the average of the component losses. We require that

¢n(§n,-) be a probability measure on Co for each x“; and that

¢n(-,C) be.5p-measurable, for each C 6 Ck

34
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Let m_= (¢1,¢2,...) be a procedure in a sequence-compound

problem. The average risk of using ‘m against g_ in the first n

problems is given by

-1 n

(3.2) Rn(§.m) = n 121““ L(ei,A)¢i(£i,dA)§i(d§i) .

where P, denotes the product measure P X P X...X P .

-1 6 e 9.

l 2 1

A compound procedure Q. is simple if ¢,(-,C) is x,-

1 1

measurable for each C 6 CL If, in addition, all $1 are identical,

say $1 = ¢, it is simple symmetric. For every simple symmetric

procedure m. and any g,

-l

l
i
r
a
:

Rump) = n R(eim) = j‘ R(-.¢>dcn .

1 1

where Gn denotes the empirical distribution of the first n

9's; i.e.,

(3.3) Gn puts mass l/n on each of 91, 92,...,en .

With R(G,¢) denoting I R(°,¢)dG and

(3.4) R(G) = inf{R(G,¢) : ¢ 6 Q}

denoting the Bayes risk versus the distribution C, it is obvious

that for any simple symmetric procedure m'= (¢,¢,...)

(3-5) Rn(_e,d) = R(Gn.¢) 2 R(Gn).

This motivates the use of the modified regret

(3.6) Dn(Q,m) = Rn(.9.:m) - R(Gn)

as a measure of goodness for compound procedures.
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Swain (1965) considered the following extended version of

R(Gn)-

k

Let k 2 1 be an integer. Let §_E mm and Gn be the

k-th order empirical distribution of the first n 9's which puts

equal mass l/(n-k+1) on each of the k-vectors:

k

QR: (91,62"°°,ek) ,

k

3H1 7 (92’93’°°"9k+1) ’

31 = (91-k+1"”’ei) ’

k -

9.. - (en-k+1"°"9n) -

CorreSpondingly, an extension of a simple symmetric procedure is

k k k

a k-simple symmetric procedure m. for which ¢i(-,C) is Ei-

k k ,

measurable for each C E c“ ¢i<§i’.) is a p-measure on C, and

k

all ¢§ are identical to some ¢ . The risk of any k-simple

symmetric procedure against 6.6 0” in the first n problems,

not counting the first k-l, is given by

k - n k

(3.7) Rama) = <n-k+1> 1 z Rk<ai.¢k)
i=k

_ R(Gk k
" R na¢ ) 9

where

(3.8) Rk<a‘;.ck> = If L(61:A)¢k(£l;adA)§l:(d§.l;) ,

i
k

311‘ = n P9 and Rk(G:,¢k) = I‘ 11kg ,mk)dG:(gk).

i-k+l j
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It follows from (3.7) that for any k-simple symmetric procedure

k k k

m, ' (p .6 .---).

k _ k k k k k

(3.9) Rn(§,m) " R (Gn:¢ ) 2 R (Gn) :

where

(3.10) Rk(Gk) = inf Rk(ck.¢k) -
n k n

d

k

Swain (1965) used the k—th order Bayes envelopes R (-)

in (3.10), or effectively

k _ k k

(3.11) Dn(§,¢0 - Rn(§J¢D R (an) .

as standards in defining goodness of compound procedures @, and

called the resulting problem the extended compound decision problem.

Gilliland and Hannan (1969), in an improvement of a result

of Swain, showed that for each 1 s k s n and g,

k+k+1 G l

(3.12) (n-k) R ( n ) s (n-k+l) Rk(G:) -

‘-- k+1 k+1 k+1k k

In special cases, lim {R (C ) - R (G )} < 0, so that R

new n n k

is truly asymptotically more stringent than R .

Swain exhibited procedures, for the discrete exponential

and the Normal families, that attained regret convergence of rates

- k

no worse than 0(n % log n) and 0(1) reapectively. Gilliland

(1968) considered the (k=l) unextended versions of these problems

and was able to exhibit procedures that possessed regret convergence

6 1/5
of rates no worse than 0(n- ) and 0(n- ) for the discrete

exponential and the Normal families, respectively.
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It is the purpose of the remainder of this thesis to re-

instate the k in Gilliland's results and to show that the same

5
improved rates of 0(n- ) and 0(n-1/(k+a)) hold. In the course

of doing so, several of Gilliland's lemmas and theorems will be

extended and, in some cases, strengthened.

3.2. A Bound for the Modified Regret D: .

It is well known that under squared error loss, the posterior

. . k . .
mean 18 Bayes. With reSpect to cm, a verS1on of the posterior mean

of the k-th component of fik is given by

k n

(3.13) Inez.) = [an > 0] 321.93 rrj/pIn

k n

,nj = II p._k+c(yé) and pn= 2n. .where p. = p

91

Under squared error loss, a non-randomized estimate Q

has a modified regret

k -1 n 2 k k

Dummy = <n-k+1> pk 2,6, - 91> - R (an) ,
l:

i

where ‘21 = U Pe . Thus, by Theorem 2 of Gilliland and Hannan

1 3

(1969) (i.e.,

n n
k k k k k k k k

2 R (3MB 5 (n-k+1) R (Gn) s 2 R (91,114) .

i=k i=k

where Ital is arbitrary), one can show that D: is bounded

above and below by

(3 14) (n-k+l)-1 n P (( ' k)( + k - 29 ))
' E—i $1 *1 ‘91 *1 i

and
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(3 15) (n-k+1)-1; P (( ‘ k)( + Wk " 29 ))
' k-i ‘51 1'1 91 i i

l- n k k

+ <n-k+1> 2 213011: - w,_1><w:+¢,-1 - 291)) .
k

reapectively, where the argument of It, I:_1 is x: .

If we assume 0 = a7= [-a,a], then the bounds (3.14) and

(3.15) yield the following bound on-the modified regret:

k -1 n k
(3.16) IDn(§_,m)I 5 4a (n-k+1) z PiIImi - H +IA1H ,

k

k

where Ai = I: - Ii_1 for i 2 k. Let us show that following

extended version of Theorem 2.1 of Gilliland (1968).

Theorem 3.1. Let n = [-a,a]. For each P9, let pe

Radon-Nikodym derivative with reapect to some c-finite measure

be its

u. If M B supIpe : e E O} is u-integrable, then

-1n k -1
(3.17) (n-k+1) 2.21IA1I = O(n log n) uniformly in §_.

k

Proof. From the form of I: in (3.13), it is easily verified

by simple algebra that

IAiI s 2a [pi-1 > O'Irri/pi + a[pi_1 = 0, pi > O]

from.which

n n

(3.18) 12231; IAiI 5 2a I z [(ni/wZ/(pi/MHM dpk

k

n

k

+ aI‘ E[p1_1 = 0, p1 > 0] (ni/1~_4)b_d dp, ,

k

where M_= H M(yL). The first term on rhs of (3.18), according

6‘1

to lemma 3.1 below, is bounded by
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“ k k
2a.I( z 1/i)M_dn = O(log n) I M'dn ,

i=k

and the second term is bounded by a I M duk. But since

k k

I! dp. = (I M dp.) < co, the result follows.

We state without proof lemma 2.1 of Gilliland (1968).

Lema3.1. Forall Osaisl,ksi_<.n,

n 2 i n

s = 2 a1 / z a. s 2 l/i .

i=k j=k J i=k

Combining (3.16) and (3.17), we have

Corollary 3.1. If n = d" [-a,a] and the hypothesis of Theorem

3.1 is satisfied, then

(3 19) I0k(g )I s 4a (n-Ic+1)'1 2 P I - IkI +-0(n"1 log n)
‘ n ’9- k -i ¢i i

uniformly in Q, for any compound procedure m’.

3.3 Estimation in Discrete Exponential Families Under Squared

Error Loss.
 

Consider the family of probability measures on the non-

negative integers having densities

x

(3.20) 9900 = 6 Me) g<x> . x = 0,1,2.....

with respect to counting measure 6, where g > O, and let

(A1) 0=d=[0,a], 0<a<co.

For this family, the Bayes estimate in (3.13) takes the form

k e N
(3.21) 111(1) = [pi > 01(g/g><p,/pi> ,

where for each y_= (y1"°°’yk) 9
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g=g(yk) . §=g(1+yk) ,

k-l

fi..

3 c=13 j
k J

I
I
M
H
-

In view of (3.21), when a sequence of past observations

is available, a natural estimate for I: (xk) is

-1

(3.22) fig?) = {[s > O]((g/§)(S +v1)/(S +v2))} /\ a , 2k 3 i,

where f(l) = f(y1,...,yk_1,1 + yk) for any f,

i-k k 1 if §k=§1§ i-k

S=26..6=5.(x.) = .§=z'c'.

and 0 3 v1, v2 5 k. We note that ¢: depends on the last k

k

observatiOns Ki taken as a kevector, and is essentially a ratio

. k
between the number of times the kdvectors g. equals

J

k k
I O O 1 .(Xi-k+1’ ,Xi_1, +xi) and the number of times Zj equals Ei’

except for the perturbations v1 and v2 in the numerator and

denominator. It will be shown that these perturbations are

*

negligible by comparing $1 to the unattainable procedure

(3.23) 9:05-13:13 > O](g/§)(§ + s')/(s + s')} /\ a .

i

where ratios 010 are taken to be 0, S' 8 2 6f , 6'(§§) =

s u c
j-k+l’°'.’xi-k’xi-k+l"°"xj)’ £1) with Xj independently

distributed according to P9 and independent of gj.

6((X

It will also be shown that ¢i possesses a certain rate

of the regret convergence. To be more Specific, we will show that

under suitable conditions, with E1 denoting the product measure

on (K; 3 Kl-k) 3
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O(n ) uniformly in ‘6

-1n k

<n-k+1> ii'fiEiIas; - IiI

(Proposition 3.1) and

0(n-%) uniformly in Q(n-k+1) 2:13:11 I<z>i - ¢I

(Pr0position 3. 2), so that, by the triangle inequality,

(n-k+1)-1 2‘, £1“): - IEI = 001-35) uniformly in g

:
3

“
1

(Theorem 3.2).

A Useful Result of Bikelis (1966).

Let Yi’ i = l,2,...,n be a sequence of independent random

variables that possess finite 2 + 6 (O < 6 s l) moments. Let

Fn denote the distribution function of the normalized sum

n

2

Sn ‘ 2 (Y1 - EYi)/Sn’ where sn - Z Var Yi' There exists a

181 1

2+6)

universal constant c such that IFn (x) -n6(x)I s c L2+6n/(1+Ix I

where is the Liapounov quotient z EIYi -EYWIZ+6I2+6

L2+6,n

X

and Q(X) a (2n)kl”e ‘t2/2d

The lemma below is an immediate corollary of the Bikelis

theorem. ‘We will use the lemma in bounding the error term in the

Normal approximation.

Lemma 3.2. Let Y1, i = 1,...,n be a sequence of independent

bounded random variables with IYi - EYiI s B < m for each 1.

Then

— 1+6B 6
(3.24) IFn(x/sn) - o(x/sn)I s c 2 /(sn +-Ix I)6

Proof. By the Bikelis theorem, we have

2+6)
IF-n(x) - @(x)I s c L /(1 +I I

2+”6
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where ,

2+ 1
L2+6,n 5 36/8: and 1 + IxI 6 2 (1 + IxI)2+6/2 +6

by the Cr-inequality. Hence,

1+ 26 B6 +6
IE;(x/sn) - 6(x/sn)I s c 2 srzl/(sn + IxI)

1

S c 2 +6 36 /(sn +-IxI)6.

The proof is completed.

Henceforth until (3.34), we will let 3: = x: be fixed

k k k .
and abbreviate ¢i(§1) and ¢£(§i) to I rand ¢', respectively.

Let E abbreviate Ei' Since 0 S o'. I 5 a by (A1):

it follows that

a 0

(3.25) EI¢' - II eg E[¢' - I 2 63cm +I‘ EI_¢' - I s u]du .

-I

We shall next place bounds on the two integrands by the

use of Lemma 3.2.

For each i and IuI s a, put

q = (g/g)(II +11) 3

(3.26) {6' -q 6., for ksj s i-k,

Y = j J

3 S-q6I,for i-k<j

. .w = (g/g) pi/k .

1 1

Since 2 BY. = 2 (fi ~qn.)=-kwu,

R J kj J

1

[¢' -I2u'_I s[ij 20]

k

i

(3.27) = [Z (Y - BY.) 2 k w u] ,

k .1 J

S 2'13"“ka - EYL'Idk) 2 w u]

where 2' denotes summation over L from 1 to k and 2" denotes
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summation over d for which k s L+dk s i. For each 1 s L s k

and i 2 k, we let

r2 = 2" Var Y

L L+dk

(3.28) 2 i .

r = E Var Y.

k J

Then, with c' = 21+6c, it follows from (3.27), (3.24) and the

fact that IYj - EYJI S 1+§ .

(3.28) E[¢' - I 2 u] s £'{6(-w u/rL) + c'(1+q)6/(w u)6} ,

where l+q playes the role of B in Lemma 3.2. We shall next

bound the terms on the rhs of (3.29) by a quantity not involving

the index L. Let Q = 2a g/g and T2 ==Q(1+Q), then, for each

IuI s a, (A1) yields

(3.308) q S Q 9

3.306 ” s . ,( ) nj 6 Q “I

2 2 1 .. 2 2
(3.30c) rL S r S E(nj +'q fij) s T pi .

Thus, (3.29) yields

(3.31) E[¢' - I 2 u] s k{6(-w u/(T p:)) + c'(l+Q)6/(w u)6} .

Upon setting 6 = k and integrating u between 0 and a, we

a

obtain,,via the inequality g Q(-bt)dt 5 b-1(2n)-%

a

(3.32) I E[¢' - I 2 u]du S BlprI/w +-(1+Q)%/w%} ,

0

where B1 is a constant independent of i, 5% and Q, We shall
i

next bound the second term in the rhs of (3.25).
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1'.

Since [¢' - I s u] $.[Z - Yj 2 O], the arguments in (3.27)

k

through (3.29) hold with Yj replaced by éYj; consequently, by

(3.30) and the arguments leading to (3.32), it follows that

a a a a
(3.33) I E[¢I - Ii 5 0160 s BZITpi/w +-(1+Q) /w I ,

i

. . . k
where B2 13 a constant independent of 1, £1 and g.

Combining (3.25), (3.32), (3.33) and (3.30), we have

(3.34) EI¢I - IiI s B3IT pE/w + (1 +-Q)%/w%)

s 34[(1 + era/pi]k .

Before we prove the next pr0position, we quote Lemma 3.1

of Gilliland (1968), i.e.,

n i n

5
(3.35) 2 a (2 a )- 3 2(2 a.)%, for all a. 2 0, k s i s n .

k i k 3 k 1 1

Let pa denote pe=a°

Proposition 3.1. Under the assumptions

(Al) d=n=[0,a], O<a<co,

6

(AZ) E Pa < m

and

~ 6

(A3) 2 [(s/s)pa] < a .

x

'In I k _ '% . .

(3.36) (n-k+1) 2 PSEI¢1 ‘ IiI - 0(n ) unlformly in Q'.

k

Proof. Let M = supIpe : 6 G 0}. Since h(e) is a decreasing

function, it follows from (A.l) that
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(3.37) M s pa(x) h(0)/h(a) and M is u-integrable.

From (3.34) and (3.35), we have

n , .. 1:
€31 I91 - III s 2134 i [(1 + g/g)pn]

(3.38) k

s 2134 2 [<1 + yawn/191*“ ii" .

1k

k k

where M’= H M(y ) is bounded by H p (y )[h(O)/h(a)]k via

{1:1 L {1:1 a {I

(3.37), and pn/M. is bounded trivially by n-k+l. Hence,

“ a a k a
zpkglcg - III s B,<n-k+1) 2 <1 + g/E) in pa(y )3

k"1 1k l L

k-l

= ass-MINI: 13:60] 2 [<1 + gene? .
X

The result follows from (A2) and (A3).

Remark. Proposition 3.2 of Gilliland (1968) proved (3.36) under

the stronger assumption (Al+), (A2) and (A3)Ifllth k=1. The Bikelis bound

on the error term in the Normal approximation enabled us to weaken

the assumption (Al+) to (Al). Gilliland used the Berry—Esseen

bound to prove his Proposition 3.2.

k *

Bounds for Dn(§,m_).

Proposition 3.1 shows that mf and IF are not more than

’5
0(n- ) apart in a Cesaro sense. In view of (3.19), it remains

*

to be shown that ‘fi and .Q' are close in order to show that

* k

‘m and I» are not far apart.

Henceforth until (3.41), let x: = gi’ be fixed and abbreviate

* k d ,( k b * d ' 1

61(51) 8n $1 51) y ¢ an ¢ , respective y.
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Lemma 3.3. I¢* - ¢'I s k(a + g/§)[S > 0]/S .

Proof. Let I = [(g/§)(§/(k+5)) < a]. On [3 > 011,

I0* - o'I S (s/§)I(§ + k)/3 - §/(k +-S)I s k(a + g/§)/s. Since

I¢* ' O'I = 0 on {[S > O]I}C, the result follows.

Remark. Lemma 3.3 is an analogue of (3.28) of Gilliland (1968).

The truncation of mf in (3.23) results in the better bound in

lemma 3.3.

Lemma 3.4.

(3.39) Ei-k([s > 01/3) < (k+2)/pi

Proof. If S > 0, then the inequality S+k+1 s S(k+2) implies

i

[s-> 03/3 s (k+2)/(S+k+1) s (k+2)/(S +- z 65 + 1). By the

i-k+l

convexity of l/(1+z), Hoeffding's Theorem 3 (1956) applies to

yield

1 _1 1

131.158 + z 5! + 1) s 20<j>p <1 - p) j/<1+j> ,
i-k+l 3 3:0

where p = pi/(i-k+l). The rhs of the last inequality is bounded

by

i 1+i '-

20(1+j>91+j(1- p)1 j/<(1+i)p)

1%

s (1 - (1-p)1+i)/((1+i)p) s 1/((1+i)p)

Since (l+i)p = (1+i)pi/(i-k+l) > pi, the result follows.

Lemma 3.4 with k Specialized to l improves upon Lemma

3.3 of Gilliland (1968).

The next lemma is suggested by the proof of Lemma 3.5 of

Gilliland (1968).
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Lemma 3.5. Under (Al),

n k

- k k
(3.40) E'"i'£i-k([s > 03/3) < b(n k+1) (Lglpa(xi_k+t))

%
where b = 2(k+2) (h(O)/h(a))k/2.

Proof. Since [S > 03/8 5 l, [S > 0]/S s ([S > Oj/S)%. Con-

sequently, Jensen's inequality applies to give

P ([3 > 03/3) s (P [3 > 03/3)!5 < ((k+2)/p )15
‘i-k ‘i-k i

where the last inequality follows from (3.39). Thus, by (3.35),

% %
(3.41) Ei-RU‘S > 03/8) < 2(k+2) pn .

W
M
'
J

:
I

1

Under (Al), (3.37) holds. Hence it follows from (3.41) that

n 5 k/2 a k kE nrgi_k([3>03/3) < 2(k+2) (h(0)/h(a)) (pm/fl) LE pa(Xi-k+L))

s b(n-k+l)%( g p (x ))15
L=1 a i-k+c °

The proof if completed.

Proposition 3.2. If the family of distributions satisfies the

assumptions

(A1) n=d=[09a]s 0<a<°°2

(A2) 21:3”,
x

and

. ~ %

(A3) 2 (8/3) pa<m :

x

then
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-1 n * -g

(3.42) (n-k+l) 2P¥E3¢i - ®i‘ = 0(n ) uniformly in g'.

k").

Proof. From Lemma 3.3,

n n

(3.43) 23f33¢3 - ¢:\ 3 k 2‘gi((a + g/§)[s > 03/3) .

k 1 k

Via the equality 'gi((a + g/§)[s > 03/3) = z (a + g/§)n__13i k([3 > 03/3),
1 -

1k

(3.43) and (3.40) yield

n k

(3.44) 23%; - 53 < box-k+1);5 z (a + g/§>( r1 pa<yL>>i .
k =111. L

Since

1‘ a
2 (a + g/§)(H pa)!5 = (2 pa)(k-l)/2 z (a + 3/§)p

1k l x x

the proof is completed by (A2) and (A3').

a ,

Theorem 3.2. Under (Al), (A2) and (A3'),
 

(3.45) \D:(Q, mf)‘ = 0(n-a) uniformly in g .

Proof. Under (A1), (A2), (A3') and (A3), Corollary 3.1 together

with (3.36) and (3.42) implies (3.45). Since (A2) and (A3') imply

(A3) via the Cauchy-Schwarz inequality

2 ((g/§)pa)$5 s (2(3/§)p:)%(z p3)35 .

the result follows.

Remark. Theorem 3.5 of Gilliland (1968) proved (3.45) under the

stronger assumption (A2+) together with (Al) and (A3'). The pro-

cedure mf in (3.45) extends and includes that of if and Qf*

in Gilliland. For examples of distribution satisfying these

assumptions see Gilliland (1968).



CHAPTER 4

SQUARED ERROR IDSS ESTIMATION IN THE NORMAL FAMILY

4.1 Introduction.

Consider the Normal (9,1) family

2

% -(x-e /2
e ,-oo<x<m(4-1) 99(X) = (20)-

with ‘9‘ s a. The Bayes estimate in (3.13) takes the form

k k

(4.2) ¢n(z) = y + U“, for each y_= (y1,...,yk) E R ,

n

where y = yk, un = g; log(z nj). In View of (3.19), let us

k

consider estimating wk. The method of estimation is contained

n

in §l.2 of Susarla (1970).

k k

Let ‘2 denote the product measure on E3 and

_. - R

Q = (nu-k+1) 1 Z P o For each a = }_(_ in Rk, 18C

k 'j k

k

[j = X 1 , where I = [x , x + e] for L = 1,...,k,

L‘1 L L L L

and

R

[]k = X 1;, where I; = IL for L # k and I; = [xk+fi, xk+fi+e].

L=1

and

R

EV - x I" where I" = I for L # k and I" = [x x +fl+e].

k L=1 L , L (1
k k, R

For any distribution F on Rk let t(F)(x) denote the

function “-1 log(F Dk/F [1) where FE] and Ffjk represent the

50
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measures of [j and [3k under F and undefined ratios are taken

to be 1. We abbreviate t(O-)()£) = n‘1 1og(6 Elk/5 a) by tog.

*

Let Q be the k-order empiric distribution of X1,...,Xn

* -1 * * *

and abbreviate t(Q )(x) = T3 log(Q Dk/Q C1) by t (x_).

, k

Let X abbreV1ate xn+k’ §_ abbreviate §n+k and

* * *3? ' *

(4.3) ¢n+k = tr(x + t ()_()) , ¢n+k = tr (X + '1 (>9)

where tr and tr' stand for retraction to the intervals

['(a+fl+€): a + R + e] and [-a,a] reSpectively.

k
With W abbreviating wn and suppressing the subscripts

, * ** ** ' *

in ¢n+k and ¢n+k , we have ‘3‘ s a , W = tr V and there-

** *

fore ‘3 - 3‘ s ‘w - W‘. Consequently, by the triangle in-

equality,

** * k

(4.4) guikw - M s 3.41.11 - (x + m +1134.” + t - M

We state without proof Lemma 3 of Susarla with 02 = l,

and F =Q-.

k

Lemma 4.1 (Susarla). For each x. in R

(1) x + mini) e [-a - £1 - e. a]

(2) 6 Bk 2 F J exp(- manna“ + W)} .

<3) Eogsc'iokflffiexpmnxlx \ +a+n+e>3

where x = xk , n = E nj/(n-k+1) and HE“ = Lil‘xé‘ .
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*

4.2 Bounding 32n+klw - (X + t)‘

Fix §_= 5' until (4.10). Since x + t, by (1) of Lemma

4.1, is in [-a -'9 - e, a] it follows from the definition of

3* that ‘w* - (X + t)‘ is bounded by the quantity

a' = 2a4-gfl +'23, and at the same time bounded by \t* - t‘.

Therefore, for each x. in Rk,

a 0

(4.5) p M" - (x+t)| s3 A du +3 B du

-n 0 -a'

* *

where A = P [t - t > u] and B = P [t - t < u]. We shall
-n -n

first bound A and B by the Bikelis theorem.

Put

k k

Si=[§iéflk]. 6i=D£iEEUb

(4.6) rim) a Si - bi amt“) , for |u\ s a' , k s i .

2 n

r = 2 Var Yi

k

-— +a+'
Let w = (n-kfil) QC]k n/k, R = en(‘x\ a ), 2 denote

summation over i from k to n, 2' denote summation over L

from 1 to k and, 2" denote summation over d for which

R s L + dk s n, for each L.

lemma 4.2. For some constant c1,

A s k §(-wu/r) + Cl 155/3qu , o s u ,

and, for n a' s l ,

B S k §(wu/2r) +c1 R%/\wu/2‘% , -a' s u s O .
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= ' " ..Proof. Note that A gnu Y1 2 03 s 2 3:13; (YL+dk 3n YL-l-dk)

2 -2, gm Yi/k] and, similarly, B = §n[2(-Yi) 2 03

I

s }::_1_>,a\'_2"-(it‘dk - 3n YLMR) 2 2 33“ Yi/k] . By (4.6),

(4.7) 2 P Yi = (n-k+1) Egka ' ell“) .
'11

For OSU,1-enus-T3u. For -a's.us0,'na'sl implies

l - e'nu > J; 'nu. Thus, by (4.7),

I II _
ASE-En[2(YL-+dk PY£+dk)2wu], OSU

-n

(4.8)

I H _ - p .. - 'B5): an (YL-i-dk 11393411192 wu/23, a guso .

Since ‘Yi - EYi‘ s 2R, we have, by Lemma 3.2

I ’5 35
A s: {QC-Wu/rL) + c R /\wu| 3 , 0 Su

(4.9)

B S 2'{{>(wu/2rL) + c Rkl‘wu/les} , -a' S u s O

2

where rL = Var 2" YL-i-dk° The proof is completed by the bound

25 Va Y = 2

rL 2 r i r .

We note that

2 2 _ 2" I
(4.10) r SEEnYiS(nk+1)RQDk°

With (4.10), we prove an analogue of lemma 4 of Susarla.

Lemma 4.3. For O< e s T] s l/(6 +2a),

(4.11) gnficlf - (x + t)| s 31(n- k+1)'35{(3711;h)% + 9-1—1933 ,

T) 6 Us

where B1 is independent of n and Q .
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an

Proof. Since £ §(-bt)dt s (2n)-%/b, for b > 0, it follows

from (4.5) and Lemma 4.2 that, for na' 5 1

*5

(4.12) LIN" - (x-i-t)‘ 5 c2 5+ C3 R—g .

w

By (4.10) and the definitions of w and R, the above inequality

yields

(4.13) En‘¢* - (X+t)‘ S 32(n'k+1)-%{(2LJ_k+1))CHDkR + (“a_]T)%D!5R%}a

“26

J—QBk k

where and D = 5—— . By (2) and (3) of Lemma 4.1,

"n+3Q Elk Q Elk

C 3 exp{ (n+e)(‘x ‘ + a + T3 + (5)} and D s (n)1exp('n+e) (“12“ + 551.3)

Hence, it follows from (4.13), the definition of R and

OsesnsI/(6+2a) that

(4.14) £1333” - (x + t)\ s B3(h-k+1)'%{(32ik+9—1)25 + (—1—k)353 x

n e “e

X exp{(2‘x‘ +-\\§_u)'n}(;)-35 .

k

To complete the proof, we shall show that the P -integral of
-n+k

the function g = exp{(2|x\ +'“§“)}(;)-% is uniformly bounded

$5
in n. Let c = (2n). Since c pe(y) s exp{-33y‘ - a)+32/2}

and cgpe(y) 2 exp{-[\y| + a]2/2}, we have (F)-% s

ckfih exp[z'(‘xL‘ +-a)2/4], and "n+k s c-k/zexp[-£'[(flx£3 - a)+j2/2}.

Consequently, the Pfi+k-integral of g is exceeded by the constant

-k 2 + 2

I c /4exp{(2‘x‘ +-H§M) +'Z'(‘XL\ +‘a) /4 ' 2'[(‘XL‘ - a) ] /2}d§ .

The proof is completed.

We state without proof 8 special case of Lemma 6 of Susarla.



55

2 2
lemma4.4. ‘x-i-t-H s'fl(l+a)+e(l+ka)

The next lemma, suggested by Professor Gilliland, is an

analogue of Theorem 3.1.

Lemma 4.5. Consider the Normal (6,1) family in (4.1). For any

1 s b, b + k s n

(4.15) Pkwk - ¢:_b| = 0(n'1)
-n n

uniformly in ‘Q .

k

Proof. Let 1 s k, k s n-b. Since for each fixed x“

n

2 “j

k k n-b+l

Hn - wn-b‘ S 2a n

3%
n _2 n _

and, by Jensen's inequality, 1/2 "3 S (n-k+l) z “j

k k

n n

33k - Wk bl s 2a(n-k-I-1).2 2 fl 2 “:1 . But for any x_€ Rk,

n n- n-b+l j k 1

, we have

"j n;1(x) s eZaHxfl’ therefore,

31133335) - WIS-Mi” s2.—ib(n-k+1)'1 3 eZaHaH "n dx

By the monotone likelihood ratio property of the Normals,

3 2 m

Peeza‘x‘ s 2e‘ /2 e2ax pa(x)dx = c(a) is a finite constant.

Consequently, I eZaHEM fin d£.S ck(a), uniformly in n; therefore,

the result follows.

With lemma 4.5, it follows from (3.19), via the triangle

inequality, that for the Normal family in (4.1)
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k -1 n k -1
(4.16) ‘Dn(_Q,m)‘ _<. 4a(h-k+1) Egi‘d’i - ¢i_k| + O(n log n),

uniformly in 3 .

 

Theorem 4.1. With = n-I/(k+4) and n = be for l < b, then

** k -1 kfl4

(4.17) Emit” - ¢n\ = 0(n /( ))

and

k ** -1 k

(4.18) Dn(§,y_ ) = 0(n /( +4)).

Proof. Lemmas 4.3 and 4.4 imply (4.17), via (4.4). The result

follows from (4.16) and (4.17).
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APPENDIX

SOME KERNEL ESTIMATES OF DENSITIES AND THEIR DERIVATIVES

Estimation of Lebesgue density f and its derivative

(1)
g = f will be discussed in Section 1. Estimation of a density

J(1) will beJ with reSpect to dn = h dx and its derivative

discussed in Section 2. Estimates for the above quantities are

based on the kernel method that Johns and Van Ryzin (1967) used.

We shall first discuss briefly the existence of some of

the kernels. Let r be an integer 2 2 and let K0 and K1

be L2(0,l) functions vanishing off (0,1) with f‘ur Kj\du

= r! cjr’ j = 0,1 such that

t 1 if t = O

(A°1) I u K0(u) du = 0 if 0 < t s r-l

and LlK satisfies (A.l) with r replaced by r-l. For
1

O and K1 can be the first two elements of the dual

basis for the subSpace of L2(O,l) with basis {l,u,...,u

example, K

r-l}.

As the intended result of these conditions on K0 and

K1, if S has its rth derivative bounded by M on (0,1), then

th
substitution of the r order Taylor expansion with Lagrange's

remainder shows

(A.2) U‘sxo du-S(O)‘ sMcor

and, if in addition S(O) = O,

59
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(A.3) \f 3 K1 du - S(l)(0)‘ s M c1r .

Let X1,X2,... be a sequence of random variables i.i.d.

according to some Lebesgue density f. Let E denote the

product measure on X1,X2,...,Xn-

1. Lebesgue Density

In this section kernel estimates fn and gn for f and

g = fa)
, respectively, will be discussed. Johns and Van Ryzin

(1967) prOposed these estimates and it appears that they showed

0A.9) below under the extra assumption that f(r) is continuous

for x > a. The bounds on the bias terms in (A.9) improve as the

number of derivatives of f increases.

Lemma A.1. (Approximation of f and g). For each x and each

A > 0, let

f(x) = jxo(u) f(x+Au)du

(A.4) Ekx) = I A.1 f]:::fiu K1(u)du .

If f(r) exists on [x, x +-2A], then

(A.5) \E'- f‘ s Ar qér) e0r

. (A.6) IE - gl s or'lcqf’ + 2r qéZbck .

where

(A.7) qgr)(x) = Sup {\f(r)(x+Au)‘ : o < u < 1} .

.grggf. Since f(r)(x+n.) is bounded by Arqgr)(x), (A.5) follows

from (1.2). With so» = £33123“ in (A.3), the fact 3(0) = o
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together with ‘S(r)\ s Ar(q§r) + 2r qéz)) implies (A.6).

lemma A.2. (Unbiased estimation of f. and E), For each x

and A > 0, let

n n

(A.8) fn(x) = n-1 2 W2(A) and gn(x) = n.-1 2 A-1(W;(2A) - W;(A))

i=1 i=1

where wow) = A-1 x ((x - x)/A) and W1(A) = 1'1 K ((x - X)/A)-
J 0 J j 1 1

Then fn(x) and gn(x) are unbiased for f(x) and gkx),

respectively.

Proof. Since the Xj are i.i.d., the proof follows readily from

(A.8) and the transformation theorem.

Combining Lemmas A.1 and A.2, we have

Lemma A.3. (Johns and Van Ryzin). Let A > 0. If f(r) exists

on [x, x + 2A], then

(r)
‘E fn(x) - f(x)‘ 5 Ar qA (x) cor ,

(A.9)

-1 (r) (r)r r

\E gn(X) - g(X)l s A (qA (x) + 2 qzn (X))c1r .

Lemma A.4. (Johns and Van Ryzin). Under the hypothesis of Lemma

A.3,

va. fn(x) s (no)'1 q§°)<x>nxon§ ,

(A.lO)

3 -

Var gn(x) s 3(nA ) 1 q§2)(X)HK1H: :

where Var denotes the variance taken with respect to the measure

E, and “.H2 denotes the L2-norm with reSpect to Lebesgue.
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2

Proof. Since the xj are i.i.d., the inequality Var X s E(X )

followed by the transformation theorem, and with the Cr-inequality

applied at the proper place, yields (A.lO).

2. Density with ResPect to du = h dx.
 

Let f be a Lebesgue density of the form f = h J, where

h > 0 if and only if x > a. Then J is a density with reSpect

(1)
to du = h dx. The estimation of J and its derivative J

will be discussed next.

Let A > 0. For each x, let

_ -1 n o

Jn(x> — n zwjmwhcxj) ,

i=1

(A.ll) n

J'<x) = n‘1 z b‘lcwlam - W1(A))/h(x.)
n j=1 J j J

Lemma A.5. If J(r) exists on [x, x + 2A], then

r (r)

\E Jn - J‘ s A 3A e0r ,

(A.12)

\E J; - J(1)\ s Ar'1 (Sgt) +’2r $52))c1r .

where Sir)(x) = Sup{‘J(r)(x+Au)‘ : 0 < u < 1} .

Proof. The proof is the same as that of Lemma A.3 with. W2, w;

1

and qgr) replaced by W?/h(xj), Wj/h(Xj) and Sir), reSpectively.

Lemma A.6. Under the hypothesis of Lemma A.5,

Vee in e (nd)‘1 i, uxoni
(A.13)

, 3 -l 2
Var Jn S 3(nA ) TA HK1H2 ’
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= M2. .
where TA(X) sup {h(x+Au) . 0 < u < l} .

Proof. The proof is the same as that of Lemma A.4 with W2, w;

1/h(Xj) and TA’ reSpectively.and qéo) replaced by WO/h(Xj), Wj

J
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