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ABSTRACT
RATES OF CONVERGENCE

IN EMPIRICAL BAYES TWO-ACTION AND ESTIMATION PROBLEMS
AND IN EXTENDED SEQUENCE-COMPOUND ESTIMATION PROBLEMS

By

Benito Ong Yu

Throughout, our component problems concern exponential
families of distributions of x conditional on the parameter @.

In Part I we consider exponential families determined by
a measure with Lebesgue density h, where h(x) > 0 if and only
if x > a, and assume the parameter @ has a distribution G.
Based on a sequence of observations X1sXgseeesX s iid according
to the marginal distribution of x, estimates of the posterior
mean are used to define estimates for the Bayes test in the linear
loss two-action problem. Rates of convergence of the excess risk
are obtained under certain integrability conditions. The scale
parameter exponential and the location parameter Normal densities
are given as examples where the finiteness of certain moments of
G 1is sufficient for these integrability conditions.

These results, proved under weaker hypotheses than those
of Johns and Van Ryzin (1967), are obtained under the assumption
h(r) exists for some r 2 2. Analogous results are also obtained
without any differentiability assumption on h.

In the squared error loss estimation problem, a truncation

of the previous estimates for the posterior mean are used to estimate



Benito Ong Yu

0. By a different method of proof, rates of convergence of the
excess risk are established.

It is shown that the excess risk of the linear loss two-
action problem is exceeded by the squared root of that of the
estimation problem and, consequently, certain improved rates in
the location parameter Normal two-action problem can be obtained
as a corollary to those obtained in the estimation problem.

In Part II we consider certain discrete exponential and
the location parameter Normal families, and assume that the parameter
9 1is bounded. Based on all past observations xl,xz,...,xn, with
the X, conditional on ei being independently distributed
according to PG.’ squared error loss estimation of Bn is con-
sidered with thelaim that the average risk across the first n
problems approach the extended Bayes envelope Rk(c:) evaluated
at GS, the empirical distribution function of the k-vectors
(85 ++98) s (Bypeves® 1)seves(B g0 e28)-

Swain (1965) obtained rates of O(n-% logk n) and o(l)
for the discrete exponential and the Normal families, respectively.
Gilliland (1966 and 1968) considered the unextended (k = 1)

%

versions of these problems and obtained improved rates of O(n °)

and O(n-lls), respectively. 1In Chapters 3 anq 4, the same order
% T k+s

of improved rates, namely, o(n~ ) and O(n ), are obtained

in these families, respectively.
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PART 1

EMPIRICAL BAYES IN EXPONENTIAL FAMILIES



INTRODUCTION

Johns and Van Ryzin (1967) studied the empirical Bayes two-
action problem in the exponential family. They used kernel estimates
for the marginal density f and its derivative g to define tests
¢ and showed, in their Theorem 3, that under certain conditions,
including (C) and (D) of Theorem 1.1, the risk Rn(¢n,G) converges
to the Bayes risk R*. Furthermore, a rate was obtained. They
gave the scale exponential and the Normal densities as examples
where the existence of certain moments of the prior G is
sufficient for the conditions (C) and (D).

Lin (1968) considered the multivariate estimation problem
with squared error loss. A multivariate version of Theorem 2.1
was considered.

Chapter 1 considers the same empirical Bayes two-action
problem that Johns and Van Ryzin studied. Theorem 1.1 improves
upon their Theorem 3 by deleting assumption (B) in §l.4 and by
relaxing (A). The scale exponential and the Normal densities are
given to show that in each case their moment assumptions on G
can be relaxed.

Chapter 2 considers the squared error loss estimation
problem. Using a truncation different from that of Lin, Theorem
2.1 establishes a certain rate of convergence. Lemma 2.4 shows

that for certain natural tests derivable from estimates the excess



risk in the two-action problem is bounded by the square root of

the corresponding excess risk in the estimation problem. Corollary
2.3 utilizes this fact to obtain better rates for the Normal two-
action problem (Corollary 1.2) from those obtained in the Normal
estimation problem (Corollary 2.2). The improved rates are exactly
those corresponding to priors not having finite (3 +/89)/10 - th

absolute moment.

Notational Conventions.

Sets and their corresponding indicator functions will be
used interchangeably. The same symbols will be used to denote
distribution functions and their induced Lebesgue-Stieltje measures.
For any measure u, the p-integral of Y will be denoted by Y,
w(¥] or u{Y}. Dependence on arguments will be suppressed for
simplicity and dummy variables of integration will not be displayed

except for emphasis.



CHAPTER 1

LINEAR 10SS TWO-ACTION PROBLEM

1.1. Introduction.

Let us consider the following hypotheses testing problem.

let 6 ~ G. We test
: 8 <c against H, : 6 > c

based on an observation X, with X\e being distributed according
to some Fe with Lebesgue density fe. Let A1 and A2 respectively

denote the actions of deciding on Hy and Hy, and
L,(8) 2 0, L,(e) 2 0

denote the losses of A1 and A2 when @ 1is the true parameter.
Let P denote the p-measure on (X,8). A randomized

test @ in the Bayes problem above incurs a risk given below by
1.1) R(g,G) = P{aL; + (1-¢)L,}.

Let R* or R*(G) denote the Bayes risk versus G. (We tacitly
assume that PX(Ll - Lz) is well-defined. This will be the case
for the application of the theory to the two-action problem in
exponential families with linear losses.)

Since a test is Bayes if and only if it minimizes the

expected loss given x,



(1.2) ¢G(x) = [PX(LI - LZ) < 0]

is Bayes versus G. Johns (1957) considered the linear losses
+ -

(1.3) Ll(e) =(®-¢c , L?_(e) =(®-¢),

and intended, as a consequence, that Px(L1 - L be expressible

2)

in terms of the posterior mean; that is,

(1.4) PX(Ll - L2) = Px(e -c) .

Hereafter, unless stated otherwise, we will assume that L1 and

L, are as defined in (1.3).

2
We remark that, although the losses in (l1.3) are unbounded,
the Bayes risk R*(G) may be uniformly bounded on the class of
all priors; for example, let X ~ N(8,1) and consider the natural
test ¢'(X) = [X < ¢]. Taking conditional expectation given o,
Pe{¢'L1 + (1-¢')L2} =10 - c|g(-|o - c|) is less than (Zn)-%
by the Normal tail bound (Feller (1962), p. 166). Therefore, the
%

Bayes risk in the Normal two-action problem is less than (Zﬁ)-

whatever be G.

1.2, The Empirical Bayes Problem.

In this chapter we shall consider the case when a sequence
of past observations xl,xz,...,xn' is available, with each of the
X's 1i.i.d. according to the marginal distribution of x.

At the (n+1)st problem, the decision rule ¢y is allowed to
depend on all the past observations as well as the (n+1)St. Hence,
P is a measurable function of xl,xz,...,xn and X =X

n+l’
With P extended to denote the product measure on (X,0),



xl,xz,...,xn, we can express the risk of 30 by
(1.5) Rn(¢n,G) = P{¢n L1 + (1-¢n)L2} .

We note that since Pxn’x{g(e)} = Px{g(e)} for any function g(g),
it follows that g continues to be Bayes in the empirical Bayes

problem. This motivates the use of the excess risk (regret)
* *
(1.6) R, - R =R (p,,6) - R

as a measure of goodness of a test b * Restricting G to those

with finite Bayes risk, the excess risk satisfies

1.7) OsRn-R*=P{(¢n-¢G)(PXG'C)} .

Note that the integrand (¢n - ¢G)(Px ® - ¢) 1is non-negative since

g continues to be Bayes.

1.3, Exponential Families.

Let h be a non-negative measurable function defined on

the real line, and
Q={»o<0<o: f e ™ hoax < ®} .

For each @ 1in the natural parameter space (1, let

1
B(e®)

(1.8) £,G) = B(8) h(x) e™® | here = [ e hex) ax.

The following lemma, due to Professor J. Hannan, yields
a choice ﬁ& of h such that on the set of x for which F&

is positive, the function

1.9) Jx) = [ B(e) e ™ da(o)



is infinitely differentiable and its derivatives can be computed

by repeated differentiation under the integral sign.

Lemma 1.1. Ilet 4 ={G : G 1is a distribution on Q} and
CG = {x : J(x) < »}, for each G € %. Then there exists a deter-

mination E& within the Lebesgue equivalence class of h
(independent of G € &), for which [ﬁg >0] < int(CG), what -
ever be G.

Proof. The fact that hJ is a density implies that [h > 0] < C, @-e-
for each G € 4. The closed convex set 5& = n{E& : G €4} is
also the countable intersection n{E& : rational r ¢ E&} where

- r

CG is any one of the Eé that excludes r. The above con-
r

siderations, together with the fact that a countable union of null
sets is null, imply that [h > 0] < E& a.e., and, therefore, also
(h>0] < int(?é) a.e. Hence, by defining E& =0 off int(?})
and Q& =h on int(qg), it follows that [h > 0] < int(q&) c

int(Eé) c int(CG), whatever be G.

Remark.

Since J 1is well known to be infinitely differentiable on
int(CG) and its derivatives can be computed by repeated differentia-
tion under the integral sign, it follows that the same hold true

on the subset [ﬁg > 0]. Therefore, with
(1.10) £ =J‘ £ dG (8)

denoting the marginal density, the existence of ﬁéf) on [5& > 0]
will imply the existence of f(r) via the lLeibniz's rule of dif-
ferentiation for the product £ =J h&' We shall make use of this

fact immediately after the following summary.



1.4, Summary and Some Useful Results.

Johns and Van Ryzin (1967) considered the two-action
empirical Bayes problem in exponential families with demsities
(1.8) under the additional assumption that there is an a 2 -e

such that
(1.11) h(x) >0 if and only if x > a.

For each integer r = 2, they exhibited procedures P such that

under the assumptions:

) h(r) exists and is continuous for x > a
and

r
(B) G‘e\ < @,

together with the conditions (C) and (D) of Theorem 1.1, the regret
can be shown to converge to zero at a rate no worse than n-Y,
where vy = (r-1)8/(2r+l) and 0 < § < 2. Moreover, they gave
the Normal (-9,1) and the scale exponential families as examples
where conditions (C) and (D) hold for some 0 < § <1 when-~
ever the prior G has certain moments finite.

We shall show in Theorem 1.1 that only the existence of
h(r) together with (C) and (D) are required for the regret con-
vergence of O(n-Y). The Normal and the scale exponential examples
will be discussed in Corollaries 1.1 and 1.2; and we will show that
in each case their moment assumptions can be relaxed.

We will further show in Theorem 1.2 that analysis similar

to that in Theorem 1.1 can be carried out in exponential families

(1.8) where h is not assumed to have any derivatives.



In the remainder of Part 1, & 1is assumed to be the class
of priors G for which the Bayes risk is finite, and only exponential
families as defined in (1.8) and (1.11) will be considered; moreover,
since [x < a] is a P-null set, all statements are assumed to be
quantified by x > a unless stated otherwise.

We note that since [x > a] is an open set, the h in
(1.11) is already its own Q& determination. By the remark follow-

(r)

Lemma 1.1, the existence of h implies the existence of f(r).
This improves upon Lemmas 2, 3 and 4 of Johns and Van Ryzin in that
their respective moment assumptions G\el < o, G\e\r < o and

G|log e\r < » are deleted.

For the exponential family in (1.8) and (1.11),

S

(1.12) Px(e) = - T (for x > a).

Hence, the quantity PX(LI - L2) = Px(e - ¢) and, therefore, also
the Bayes test ¢ in (1.2), are well defined without any assumption

on G. In addition, if h(l) exists then, with

1
(1.13) v = E sy B = f(l) and o = f P (8 - ¢),
X
we have
(1.14) P (8) = v -% and o = (v-c)f - g .

We note that the Bayes test in (1.2) becomes

(1.15) ¢G(x) = (a(x) < 0] .



When a sequence of i.i.d. observations Xl,...,xn and
X 1is available, it is the special form of o in (1.15) that
we will exploit in defining reasonable extimates ¢, by estimating
the density f and its derivative g by the kernel method so
successfully employed by Johns and Van Ryzin.

To conclude this section, we state and prove Lemma 1 of

Johns and Van Ryzin (1967) as a consequence of (1.7).

Lemma 1.2. Let o be any measurable function of Xl,...,Xn

and X. Then the excess risk of

(1.16) ¢n = Ean < 0]
satisfies
* @®
1.17) 0O<R -R < §a|Px[\an - a| 2 |a|]dx.

Proof. From (1.7) and (1.13),
%* (-]
(1.18) 0OsR -R = £\Q‘Px\ B, - 9 ldx .
The result follows from (1.18) since \®n - ¢bl < [‘an - a| 2 |ef].

1.5. Main Result and Examples.

In view of (1.14) and (1.17), the excess risk Rn - R*
can be made small if f and g can be adequately estimated. The
apbendix provides kernel estimates fn and g, for which the bias
terms Pxfn - f and P,g - g are small. These estimates will be
used in the obvious way to define o and ¢ in (1.19).

Theorem 1.1 below is an improvement of Theorem 3 of Johns

and Van Ryzin (1967) in that their assumptions G\e|r < o and
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L ()

is continuous are deleted. Their proof is reproduced below

for completeness.

For each integer r = 2, let

(1.19) ¢, = [an < 0] , where o = (v-c)fn -8
with
-1 2.0 0 -1
£ (x) =n jzlyj(a) , wj(A) =4 KO((xj - x)/b)
and
n
g, ) = @) £ @) - Wi, Wi = a7tk (& ) /b)
j=1 3 ] i i

being the type of kernel estimates of f and g given in (A.8)

of the appendix. We note that r 2 2 1is required in (A.1l).

Theorem 1.1. lLet b be as in (1.19) with A = n-1/(2r+1). If h(r)
exists (for x > a), and if there is some ¢ > 0 such that
@ 1- 0
© [ o 6(1 + \V\)a(q( ))6/2 dx < o, q(o) (x) = sup f(x + eu)
a € € O<u<l
® [l @+ vpPa@)® e <, a0 = sup |EP x4 e
a € O<u<l
then,

r-1
T 2r+l 8

* -
0 < Rn(¢n,G) =R =0 Y), where vy
Proof. Lemma 1.2, followed by the Markov inequality, yields
* T 1-8 5
(1.20) 0<R (p6) ~R = { || Px\an - | dx .

Since (1.14), (1.19) together with the Cr-inequality (Loeve p. 155)

imply
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6 6 ) &
lo, - ol® = (lv - el®le, - £)® + (g, -8l
we have, by (1.20),
*
0 < Rn(¢n,G) -R < c6 {A + B}
where
©
1-5 ) )
A= £ lo| "0 - | px\fn - £]° dx
and
B =] |af* b g - 8|® ax
4 o x8y ~ 8 :
Thus, the rate at which the regret converges to zero is no worse

than that of max(A,B). Let us first consider A. For § > O,

the Cr-inequality yields
.21) l£, - £1% < c, (1g, - BE® + IR - €]
and for 0 < § < 2, Holder's inequality yields
Px\fn ) Pxfn‘6 = (Varxfn)6/2 :
Since the above inequality trivially holds for § = 0 and 2, it

follows from (1.21) that

6/2

6 5
1.22) Pk\fn - £|° < Cy {(Varyf ) + \prn - £|°) .

Thus by (A.9) and (A.10) of the appendix,

_ £15 -1 (0).8/2 r (r),b
Px\fn f\ < const X {[(na) qe ] + (A a, 17}

n-l/(2r+1)

so that by (C), (D), and the choice A = , one has

A= 0((nA)'5/2) + O(Arﬁ) = o(n-ré/(2r+1))
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Similarly, for 0 < § < 2,

?x‘gn - 3\6 < Cg {(Varxgn)&/2 + \ngn - g\6]

3.-1 (O -
= const X {{(nA") qi )]6/2 + [Ar lqir)]6}

so that by (C) and (D),

/ (r-1)

3 - -
B =o0(ma) %) + 00TV = 0n™)

The proof is completed by this weaker rate of B.
For the remainder of this section, the scale exponential and the
location Normal families will be given as examples to illustrate

how conditions (C) and (D) relate to the moments of G.

Example 1. (Scale Exponential)
Consider the exponential density in (1.8) with h = [x > 0]

and g(g) = 0; i.e., for each 9 >0

2 e-ex , x>0
(1.23) fo(x) = {

0 , otherwise,

The density f satisfies the following facts:
(1.24a) fe is monotonically decreasing, and so is f.

(1.24b) Since h(r) =0 for x >0, f(r) exists (for

x > 0) by Lemma 1.1; moreover, v = 0 so that conditions (C) and
(D) simplify.

(1.24¢) \f(r)\ = f erfedc(e) is monotonically decreasing

and, therefore,

(1.24d) qér) =1£M) .
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Corollary 1.1 is an improvement over Corollary 3.l of
Johns-Van Ryzin (1967). They proved the same result under the

assumptions Ger+1 < o and (1.26) below.

Corollary 1l.1. For the scale exponential in (1.23), the hypothesis

of Theorem 1.1 holds for each 0 £ § <1 if

(1.25) Glo']< =,

(1.26) G[e-n] < o, where T = (14+)6/(2-8) for some t > 0.

Proof. Since v = 0, condition (D) simplifies and is implied by
the integrability of o and qir), subsequently illustrated. By

Tonelli's theorem (Royden (1965), p. 234),

I‘a\dx < Ij\e - c\fedG dx = G\e - c\.

By (1.24c) and (L.24d),
(r), _ r _ r
J 4P = [ 6Feggo ox = L]

Hence, we have shown that G[er}< o 1is sufficient for condition (D).

Let us next verify condition (C). Since ¢ is bounded

(0)

by Gle(e - ¢)|, v =0, and a,

= |£| s cle], it follows that,
under (1.25), condition (C) is implied by

(1.27) { \a\1'6 2% ¢ w .
Since 9§ < ee, \f(l)(x)‘ < f(x - 1) for x > 1; consequently,
\a(x)‘ = |cf + f(1)| < (c+)f(x-1) for x > 1. Thus, by the

Holder inequality,

-}

(1.28) { 1ol }78 €872 ax < (41T @/e) 2 ppraamy 02
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The proof is completed by the equality P{xn} = G{e-n}r(1+n).

Remark. Corollary 1.1 shows that procedures , exist, for

which the regret convergence rate can be arbitrarily close to

-%

n provided § =1 and r 1is sufficiently large, i.e., G has finite

(-1) - as well as arbitrarily high moments.

Example 2. (Normal (-6,1)).

2

Consider the exponential family in (1.8) with h(x) = e~ /2

2
and B(@) = (2n)-% e"e /2; that is, for each -« < g < &,

2
X o~ (6%) /2

fe(x) = (Zn)- , Wwhere o< X< o,

We have shown earlier (§1.3) that for this family the Bayes risk

* -
R (G) < (2m) ¥ whatever be G.

2 2
- -(y+
Since the function e > /2 +e Gte) /2 is symmetric with

respect to y = -¢/2, and has a unique minimum there with value
2
2e"¢€ /8, it follows that
fe(x +t) < fe(x) + fe(x + ¢),
(1.29) for 0 <t s<¢</8 log 2 .
0
V@ st +ix+ 0,

By repeated differentiation under the integral sign,
f(r)(x) = (-1)r fﬂr(x + e)fe(x)dG(e) s

where Hr is the r-th Hermite polynomial. Thus, for ¢ < /8 log 2,

(r) r 3
|f (x)l <¥ |aj\ jlx + 9\ fe(x) daGc(e) ,
0

(1.30) (x) r 3 3
q, " (x) = z lajley [Uxte]" + e (£ 60 + £, (xHe))dG (o),
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where the second inequality follows from the first via (1.29) and

the Cr-inequality. lastly,

-% %
fe < (2m) >

(1.31) lo| < [le - c|f, do(o) < @m %cle - c|.

f < (2n)

q§0) < (2n)-% , qir)_ is bounded.

Remark. Corollary 1.2 below is an improvement of Corollary 3.2 of

Jolms-Van Ryzin. They proved the corollary under the stronger

14+(3+4t)6/(2-5) <

assumption G|o| ®, and G\e\r < .

Corollary 1.2. Consider the Normal (-9,1l) family. For each

0<é6 <1, if

1+(2+t)8/(2-5) <o

(1.32) G|e| for some t >0 ,

then the hypothesis of Theorem 1.1 holds for each r = 2.
Proof. Condition (D) is implied by the integrability of ¢ and
|x| q:r), since 1 + |v| =1 + |x| is bounded by 2|x| for

\x‘ > 1. By (1.31), if G\e\ < o then
(1.33) j‘a\dx <Gle-c|l <=

. 2
Denote by b, the constant (Zn)-% I‘z\J e ? /Zdz. Since

]

Pe\x + e‘j =b,, it follows, by the triangle inequality, that

]
Pe[lX\lx + e\j] < Pe[(\x+ o + |o])|x + ]3] = biyr * le|b, .
Hence, G\e‘ < o implies P(\x\ \x + e\j) < o for each j and
therefore |x| qér) is integrable by (1.30). This completes

the verification of (D) under G\e\ < o,
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Let us next consider condition (C) for § =0, § = 1, and

0<§<l,
case 1 (8§ =0). (1.33) proves this case.

Case 2 (8§ = 1). Since \v‘ = \x\ and q(o) < (Zn)-%, we need

only to verify the integrability of [l \ > 1] \ \(q( ) % By
Holder's inequality,
3 0
[ @i < A x> a Oeny®

|x|>1

where the last integral is bounded by

f \xl3+t(f(X) + f (x+¢))dx
< P[\x+e‘ + \9‘13*{ + P[‘x+9\ + le+€\]3+t

via (1.29) and the triangle inequality. Again by the fact that
(x+9) given ¢ is standard Normal, G‘e‘3+t < o 1implies Case 2.
case 3 (0<§<1l). Let 0<E <1, 0<t. With 0<1l/p=58/2<1,

2- 1- 0 2 1-
0 < 1/q = Té< 1, x = |x‘( g)é(q: ))6/ and Y = \x‘gé‘a‘ 1
in the Holder inequality, it follows that (C) is implied by the

integrability of xP and Y9. By (1.29),

f Xpdx <P x2(1-§) + 2 P\x-e‘z(l-g)

so that G|e|2(1-§) < o 1implies the integrability of xp.
1f G|leo| < =, then o is bounded by (1.31), and Y is
bounded on ‘x\ < 1. Therefore, the integrability of Yq is

implied by that of [|x| > 13v%. By Holder's inequality,

f[\ x| > 1]qu < (_)6/(2 8) {j\x\ula\dx}z(l'é)/(z'é),
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where u = %5(1 + t + 2€)8/(L-8). By Tonelli's theorem,
I‘x\ula‘dx < I\e - c\Pe\xludG(e). Since (x+8) given 9 is

standard Normal, Pe|x‘u is bounded by

Polx|® < ¢, X {Zlx + 6]" + |o|"}

by the Cr—inequality. Thus, G\e\1+u < » 1implies that Yq is
integrable. Balancing between 1l4+u and 2(l1-E), we get
max (l4u, 2(1-E)) is minimized when 1-2§ = §(2+t)/(2-8), so that

2(1-g) = 145(2+t)/(2-8). Therefore, (1.32) implies Case 3.

Remark. Corollary 1.2 shows that for the Normal (-¢,1) family
there exist procedures for which the regret convergence to zero

is of a rate no worse than n-Y, provided that the prior has finite
146 (24t) /(2-6)th absolute moment , where O < § < 1. In the case
where § =1 and r is sufficiently large, a rate close to

n-a can be achieved provided the prior G has 3+ absolute
moments. However, for § = 0, the finiteness of the first moment

of G guarantees only the boundedness of the excess risk. This

lack of rate will be removed 1in Corollary 2.4.

1.6. Result Without Differentiability of h.

In Section 1.5 we discussed the exponential family in (1.1l1)

(r)

and (1.8). We took advantage of the existence of h and obtained

the result in Theorem 1.1. In this section we shall not assume h

to have any derivative. We recall from (1.9) the definition

(1.34) 3@ = [ e g(ordc(e) -

It was shown in Lemma 1.1 that J is infinitely differentiable on
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[E&> 0] and, therefore, also on [x > a]. Since f = Jh, it

follows from (1.12), (1.13) that
(1.35) a = -(J(l) + cJ)h.

In view of the method of attack exhibited in Sections 1.4 and
1.5 , we shall estimate oG through J and J(l).

For each r 2 2, let

- n
3 =nTt g W)/

)
o1 3
(1.36) n
J(x) = (nA)-l {w (28) - W (A)}/h(x )
j=1
where wg and w} are as defined in (A.8) of the appendix. Let
(1.37) 0, = [an < 0], where o = -(J; + an)h .

Theorem 1.2. Let b0 be as in (1.37). Consider the exponential
family in (1.11) and (1.8). For each 0 < § £ 2, if there exists
some ¢ > 0 such that

+
) j o't a¥m e <o, T 00 = P

sup
Ocucl h (x+eu)

") I ‘d‘l-é (x )h)6 dx < » , ( )(x) = sup \J( )(x+eu)\
a © O<u<l

-1/(2r+1)

then, with A =n , we have

(1.38) 0 < Rn(¢n,G) - R* = O(n-Y), where vy = (r-1)8/(2r+l).

Proof. From (1.20), it follows by the Cr-inequality that the

excess risk is bounded above by Ce X (A + B) where
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A=|c|® [ ‘a\l'é el (I, - Hh|® ax
a
and

[- -]
= 1-5 vo_ (1)1 6
B £ || B3 - 37| ax .
With Jn and J replacing fn and f in (1.22) we have,
) 8/2 6
Pela, - 31° < c { (Var, 3 ™' + |pg_ - 3|7}, for 0<8 s 2.

Under (C') and (D') and Lemmas A.5 and A.6 of the appendix and the

-1/(2r+1)

choice A =n then

/ n-ré/(2r+1)

A =0(m)%% +0w™) = o(

) .
Similarly, for 0 < § < 2,

1),6 6/2 (1) s
J( )‘ ‘

Pelug - S C{(Var,d DT + | R - I

X

}'
Invoking (C'), (D') and Lemmas A.5 and A.6 of the appendix,

3.-8/2 (r-1)8

B=o0(m) %) +0(a ) =0 )

The proof is completed by the weaker rate of B.

Example 3. Consider the exponential family with
(1.39) h=[0<x<s1]+2[l<x<o].
Then Q = (0,») and () = 6/(l + e ®). We note that

(1.40a) h 1is non-decreasing while J 1is strictly decreasing.

(1.40b) 15® - [ 6" 8(e) e ™ac(o) .

(1.40¢) s:r) = 13| and T, = % .
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Corollary 1.3. Consider the exponential family with h in (1.39).

The hypothesis of Theorem 1.2 holds provided (1.25) and (1.26) hold.

Proof. The proof of Corollary 1.1 works with

(1.41) qér), qéo), £, |a| scle|le - c|] and £ < cle]

respectively replaced by

@.42) s 1,3, |o| s 2el6 - c|] and £ s 20[e].
€ €



CHAPTER 2

SQUARED ERROR LOSS ESTIMATION PROBLEM

2.1. Introduction.

Suppose @ is distributed according to some prior G, and
one is to estimate @ based on an observation X with X|¢ dis-
tributed according to the exponential family given in (1.8) and

(1.11); that is, for some a 2 -,

(2.1) £,) = B(®) h(x) ™™
where
(2.2) h>0 if and only if x > a .

Let P denote the joint p-measure on (X,8) as in Chapter 1.
Let the loss function be the squared error loss. The risk of an
estimate @ 1is then given by R(¢,G) = P(p - e)2 with Bayes risk

(2.3) R*(G) = inf P(p - 0)° .
¢

We note that R and R* denote different quantities in Chapter 1.

In order that the problem not be totally uninteresting, we
restrict G to those with finite Bayes risk. We note that the
Bayes risk R*(G) can be uniformly bounded in G. For

example, let X ~ N(6,1). Then the natural estimate ¢'(X) =X

21
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*
L. 1. Therefore, R (G) < 1 whatever be G.

has risk P(p' - @)
Extend P to denote the product p-measure on (X,0),
XI,XZ,..., and Xn' Let *n be any measurable function of

xl,...,xn and X. The risk of ¢n is then given by

_ Y
R (4,,6) = PGy - 0)° .

let ¢G be a Bayes estimate versus G. If ¢n - WG € LZ(P) then

P(¢n - #G)(WG - f) = 0, and the excess risk satisfies

(2.4) 0 <R (¥ ,6) - R () = PQy, - wG)z.

We recall the following definitions from Chapter 1.

W i
@5 vep—,f=ct) ,g=£tD , amd 360 = [ ™p(0)d0(0).

It is well known that a Bayes estimate under squared error loss
is the posterior mean Pxe. Hence, by (1.12), the Bayes estimate

*G is well defined without any assumption on the prior G. Further-

more, (1.14) remains valid with Pxe replaced by ¢G’ i.e.,

(2.6) ¢G=v-%.

In view of (2.4), it is now a matter of estimating %; by estimating

the density f and its derivative g.

2.2. Estimation of Vo = Pxe-

We shall exploit the expression in (2.6) in estimating wG
when a sequence of observations xl,...,xn, i.41.d. according to

the common density f, is available.
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Let fn and g, respectively be any estimates of f and

g. Let T > 0. Truncate fn away from 0 by

' =
2.7) fn fn VT,
and define
gn
(2.8) wn =v - ?I .

Lemma 2.1. For each 1T > 0, the estimate y, in (2.8) satisfies

(2.9) Py, - ¢G)25 s Za+n B +0) ,

2
where A = P(g - g) , B = P(g/f)z(fn - f)z, and

2
c = P(g/f) [f <M.
Proof. From (2.7) and (2.8), simple algebraic manipulation followed
by the triangle 1inequality will yield

=qin .2 ¥
(2.10) n\¢n - ¢G| ﬂ|f; - f\ < \Sn -¢f |

<lg -8l + 18 |£-g.

Since ‘f - f;‘ <sTNE<m+|f - fnl, the proof follows from
(2.10) and the inequality (a + b + c)2 < 3(a2 + b2 + c2).

Lemma 2.1 shows that for any estimate ¥, of the form
in (2.8), the regret can be bounded in terms of A, B and C in

2

(2.9). The first two terms, namely A and B, involve P - f)

X(fn
and Px(gn - 3)2. The appendix gives kernel estimates fn and
Byt for which these quantities are small. Therefore, hereafter,
we shall consider £ and g, to be the kernel estimates given

in (A.8) and that *n in (2.8) is to be defined in terms of these

estimates.
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Theorem 2.1 below is a l-dimensional specialization of a
result considered by Lin (1968). The scale exponential and the
Normal densities again will serve as examples to show that the
existence of certain moments of G is sufficient for the hypothesis
of Theorem 2.1. In Corollary 2.4, better rates are obtained for
the Normal two-action problem from those obtained in the Normal

estimation problem.

2.4 Main Results and Examples.

Theorem 2.1. Let wn be of the form in (2.8) with fn and g,
being kernel estimates of f and g as given in (A.8) of the

appendix. If h(r) exists and if for some 0 < ¢
(2.13) P{(L + (g/f)z)q§°)} <o,
(2.14) A+ e/HH @ cw,

and if § =2 0 such that

(2.15) P{e/D(f<m)sec, 1,
L 2(r-1)
then, with A = n-1/(2r+1) and 1 = n'2+6 2r+l
* L
(2.16) 0<R (§y ,G) -R =0 YY),
n'n
' o 8 2(c-1)
where vy 245 2ot

Proof. Let A, B and C be as in (2.9). With A = n'l/(2f+1)’

Lemmas A.3 and A.4 of the appendix followed by (2.13) and (2.14)
will yield
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n-2(r-1)/(2r+1)

Asc! x @y l4erx a2 o« ,
2 2 2
and

B < cé X (nA)-1 + c! x AZr < c n-2r/(2r+1)

3 X

’

3

with the rate on A being the smaller of the two. The choice

_ Ll 2¢-)
245 2r+1

NM=n balances the rates of C and n-zA to n Y.

The proof is completed by Lemma 2.1.

Example 1 (Scale exponential).
Consider the scale exponential with Lebesgue densities

given by (1.23), i.e.,

g e , for x>0

(2.17) £, () =

0 , otherwise.

Consider the extreme case where G 1is degenerate at
© =1 with all moments finite. The quantity
C= P(g/f)z[f <M] 1in (2.9) can be computed to be exactly 1.

This motivates the bound in the following lemma.

Lemma 2.2. For the scale exponential in (2.17) if 0 < T < £f(1),

then for each p>1 and 1/p +1/q =1,

2 1 1
@.18) pe/H’[£<m < caranmar - 1P .

Proof. The inequality (g/f)2 = (-Pxe)2 < Px(ez) followed by

Holder's inequality yields
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p(g/f)2 [f<T) P(ex)2 x'z[f <M

n

(2.19)

)}

2By (o0 °H M 7P < 1P

T a+20) 9 x"2Ps < 1P,

where the last equality follows from the fact that conditioned on
0, 6x 1s standard scale exponential. For 0 < T < f(1),

[f <M <[x>1] so that
Px2Plfc M) <1 { x P ax =m/(2p - 1) .

This completes the proof.

Lemma 2.2 shows that (2.15) holds with § = 1/p and

/p

< = rllq(l + 2q)/(2p - 1)1 without any assumption on the prior

G. For priors with densities % ea’l[o <6<1], a>0, it can be
X
shown that f(x) = x-(1+a) g 2% %4z ~ x-(1+a)r(l+a) and

lex)| ~ x'(2+a)r(2+a) as x - ». Hence, (g/f)2 ~ (1+ﬂ)2x-2 as

n(2+a)/(1+a)
1 .

X »o, and C < ¢ Here we see that the bound on

1

C deteriorates as a, the number of finite moments of 6- s

increases.

Corollary 2.1. For the scale exponential family in (2.17), the

hypothesis of Theorem 2.1 holds for each r 22 and § < 1, pro-

vided
+
(2.20) c oo,
2 -
Proof. Since (g/f)2 < %((6 ) and q:t) = G(er+1 e ex), it

suffices to note that with 8; ~G; = G, 1 =1,2,

i
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2 “9x
G, 6 Fl(+e7)e, e ° ]

2 -
B[ (1+R, (67))6 (8 %)

2
G, GL(1+e7)e, 6/(6+8)]

G (8) (146(%))

A

and furthermore, by the Arithmetic-Mean-Geometric-Mean inequality
(Beckenback-Bellman (1961), p. 54 ),

P(1+P, (67))G2 (o7 ! &8,

-e X -e X
- 2. r+l 1 r+l 2
G, G, GFe[(1+e )8, T e 8, e ]

r+1 2
=G, 6,8, "8, G[(+e)e/(ete,+0,)]
r+%s rt+% 2. %
<%¥G; 6,8, "0, Gl(1+6)e6")

= 5 2" Hale%1+0D)] .
The proof is complete.

Example 2 (Normal).
Let us consider the Normal (-9,1l) family with Lebesgue

densities

2
(2.21) £,() = (2my "% & KO 7/2

For each 0 < u and 1 < v, we note that

(2.22) by = Bolx + o|"
u -22/2 %
is the finite constant I |z]| " e dz/(2n) ° and by Jensen's
inequality,
(2.23) le/£|” = |p x + )|" s Belx +0]" .

Remark. Consider again the extreme case when G degenerates at

® = 0. Then the quantity C = P(g/f)z[f <TM]~2Ln as T -0
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with 1 = -log(2m ﬂz) =o(M' %) for any t > 0.

Proof. Since f(L) =1 and [f<T] = [|x\ > L], we have
c=2 I x2f dx which, upon integration by parts, yields

C = 2LT + 2P{x > L]. By the Normal tail bound (Feller (1962),
p. 166), it follows that 2Lf(L) + 2f(L)(% - 13) < C< 2Lf(L) +
2£(L)/L. Consequently, C ~ 2LT. The proof ig completed by the
fact that L = o(n-t) for any t > 0.

The above remark motivates the bound in the next lemma.

lemma 2.3. Consider the Normal (-6,1) 1in (2.21). For each

0<5 <1, (2.15) holds if

\(1*t)6/(1-6) <

(2.24) G\G o for some t > 0.

Proof. By the Holder inequality,

P(e/£)°[f < 1] < /Pt

where

1 = p|g/£| %P < PR |x + 6| P = PP |x + 8| *P = by

by (2.23) and (2.22), and
[ 1-s
II=Pf< M) <0 j f° “dx, for any 0 < s < 1.

Since the density £ is bounded by (2n)-%, the integrability

l- 1-
of £ ° is implied by that of [\x\ > 11f S. Temporarily, let
v(s) =(1+a)s/(1-s) for each a > 0. The Holder inequality followed

by the ct-inequality yields

[ Ux| > 116 ek < 2/0)° B0 (|x|")

< 2/2)° (@, + 1>\e\")cv}1‘s :
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Hence, G\elv(s)<a implies that fl-s is integrable and, therefore,
(2.15) holds with the rate s/q. Since (2.24) implies that there
exists some 0 < a<t for which G|o|V®P <& with

6+ > 8, the proof above shows that (2.15) holds with rate &+/q. The

proof is completed by the choice 64/q = §. Such a choice is possible

since 1 < q 1is a free parameter.

Corollary 2.2. Consider the Normal (-¢,1) family. For each

0<8§< 1, if (2.24) holds, then the hypothesis of Theorem 2.1

holds for any r 2 2.

Proof. Conditions (2.13) and (2.14) are satisfied because in)
(r)

2
¢ are bounded functions, and (g/f) 1is P-integrable by

and q

(2.23). The proof is completed by Lemma 2.3.

Remark. For § close to 1, Corollary 2.2 shows that a rate of
O(n-Y'),with v' arbitrarjly close to 1/3, can be attained, pro-
vided G|e\m‘< o for sufficiently large m. On the other hand,
for § close to zero, lower convergence rates are attained. This
last result is completely absent in the two-action problem (Cf.
the remark following Corollary 1.2). We shall presently remedy
the situation by obtaining better rates in the Normal two-action
problem as a corollary of the estimation problem.

let ¥ be the estimate prescribed in Theorem 2.1l. Con-
sider the test ¢; = [y, - ¢ <0] in the two-action problem in

Theorem 1.1.

2
s‘;(PXO - #n) . Consequently,

Lemma 2.4. P{(Pxe - c)(qgr'l - ¢G)} <P
the excess risk of ¢; in the two-action problem is bounded by

the square root of the excess risk of y, in the estimation problem.
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Proof. Since

PXe -c if ¢n < c< Pxe
- ' - =
(PXe ©) (¢n ¢G)

c-Ro if ROsc<y .,

it follows that

%

2
(2.25) P{(B8 - c)(gy - ¢.)} < P\Pxe -y | <P (Be® - ¥ )"

where the second inequality follows by the Liapounov inequality.
The proof is completed by (1.7) and (2.3).
We note that (2.25) is a statement about the excess risk

in the two-action problem being bounded by the L. -norm of § - wn’

1
which in turn is bounded by the L,-norm of § - y .

Applying Lemma 2.4 to the Normal two-action problem, a
rate of O(n-% Y') is possible provided G has finite
((14t)6/(1-8)) -th moment. If we let m denote the number of

finite moments of G and v the obtained rate, we have the para-

metric equation in §

- 5 - g = t-1
(2.26) m = (1+t) 75 » vV =4q 5= » Where q = =5

Similarly, we obtain the parametric equation
(2.27) m=1+(2+c)2—f6-,v=qa,

from Corollary 1.2. The two parametric equations have a solution

at m = .3(1-t) + [.09-(1-t)2+.80(1+c)135. For t =0, m=m, = .3 + (-89)%.

0

There fore, for priors not having finite mo-th moment, y < ¥vy'.

We have thus proved the following corollary.
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Corollary 2.3. Consider the Normal two-action problem. Let v,

be as in Theorem 2.1, and ¢; = [yn - ¢ £ 0]. Then the excess

risk in the two-action problem satisfies

0 <R (g.:6) - RY = o(n'Y'/Z)

s

provided (2.24) is satisfied.



PART II

EXTENDED SEQUENCE-COMPOUND ESTIMATION
INTRODUCTION

Let @ = (el,...,en,...) be a sequence of parameters.
let Gn denote the empirical distribution of el,ez,...,en. The
usual standard in compound decision problems is R(Gn), the Bayes

envelope of the component problem evaluated at Gn'

k
Let k = 1. Let Gn denote the empirical distribution
k k
of the k-vectors ﬁk (el,...,ek), gk+1 = (62""’ek+1)""’
k iqqs .
8 = (en-k+1""’en)' Gilliland and Hannan (1969) considered

k
the following extended game. Player I picks ..,wk) €N

@ = @

and Player 1I, after observing X, ~ P X...X P , picks an action
ke Yk
a € ¢ according to some randomized decision rule @(Ek). With
L(w,a) denoting the loss, the risk Player II incurs is given by
k ) = L(w, ,a)op(x,)(da) d(P X...Xx P )
) = [ L0t @) der, Keoxp,

k
The Bayes risk versus a p-measure G on {} is
k k
R G,9) =[ R (+, ¢)dG .

Swain (1965) used Rk(G:) as standards for compound prob-
lems, and called the resulting versions the extended compound
decision problems. He considered squared error loss estimation
problems in the discrete exponential and the Normal families and

32
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- k
obtained rates of O(n % log n) and o(l), respectively, uniformly
in g. Samuel (1965) and Gilliland (1966 and 1968) considered the
unextended (k = 1) versions of these same problems with Gilliland

1/5

obtaining the improved rates of O(n-%) and O(n_ ), respectively.

It is the purpose of this work to re-instate the k in

Gilliland's results.

Chapter 3 considers the discrete exponential families.
Lemma 3.2, a corollary of a theorem of Bikelis (1966), is used
in (3.31) to bound certain probabilities involving k-dependent
random variables. Without Lemma 3.2, the knowledge of a lower
bound for the variances ri in (3.28) seems to be necessary.
Theorem 3.2, an improvement of Theorem 3.5 of Gilliland (1968),
*

glves a rate of O(n-%), uniformly in @, for the estimates g

that subsume those of Gilliland's.

Chapter 4 considers the Normal family. Here there is
much in common with the estimation problem in the k-multivariate
Normal considered by Susarla (1970). Most of the results in his
§1.2 are applicable to our extended problem. Theorem 4.1 gives a

-1/(k+4))

rate of O(n uniformly in §. We note that the rate

deteriorates as k 1increases.



CHAPTER 3

ESTIMATION IN DISCRETE EXPONENTIAL FAMILIES
UNDER SQUARED ERROR LOSS

3.1 1Introduction.

We shall consider a sequence of statistical decision prob-
lems each of which is structurally identical to the component prob-

lem described below.

A component problem consists of a family of probability
measures {Pe : 6 € ﬂ] on a measurable space (),8), a measurable
space (d,), and a loss function 0 < L. defined on Q X @. A
randomized decision rule ¢ € ¢ is a function defined on Y X C
such that for each x € X, ¢(x,*) 1is a probability measure on
C, and for each C € C, ¢(+,C) 1is B-measurable. The risk of a

procedure ¢ 1is defined by

(3.1) R(05¢) = [ L(8,A)¢(x,dA) P (dx)

A sequence (non-Bayes) compound problem is one in which
the decision rule ¢n for the n-th problem is allowed to depend
on all past observations X = (xl,xz,...,xn) and the loss is
taken to be the average of the component losses. We require that
¢n(3_t_n,-) be a probability measure on (€, for each X and that

¢n(-,c) be @n-measurable, for each C € C.

34
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let g = (¢1,¢2,...) be a procedure in a sequence-compound
problem. The average risk of using g against @ 1in the first n

problems is given by
-1 n
(3.2) R (& =n iilfj L(0;,A) ¢, (x.,dA)P (dx ) ,

where P, denotes the product measure P X P X...X P_.
=1 0 8 9.
1 2 i
A compound procedure ¢ is simple if ¢i(-,C) is X, -
measurable for each C € ¢ 1f, in addition, all ¢; are identical,

say ®; = ¢, it is simple symmetric. For every simple symmetric

procedure g and any g,

1

™M

R_(8,¢) =10 R(8;50) = [ R(*,0)dG_

1

i
where Gn denotes the empirical distribution of the first n
o's; i.e.,

(3.3) Gn puts mass 1/n on each of 91’ 92,...,en
With R(G,p) denoting j R(*,3)dG and

(3.4) R(G) = inf{R(G,¢) : ¢ € &}

denoting the Bayes risk versus the distribution G, it is obvious

that for any simple symmetric procedure g = (g,¢se+--)
(3.5) Rn(g_,g)_) = R(Gn,¢) 2 R(Gn).

This motivates the use of the modified regret

(3.6) D (9@ =R (&, - RE)

as a measure of goodness for compound procedures.
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Swain (1965) considered the following extended version of
k
Let k21 be an integer. Let g € nm and Gn be the
k-th order empirical distribution of the first n @'s which puts

equal mass 1/(n-k+1l) on each of the k-vectors:
k
Qk = (91392"0"ek) ’

k
Bie1 T (82030 005814)

k
8; = (O j412e0+098;) »

e o 9
k =
Qn (Sn_k+1,---,9n) .

Correspondingly, an extension of a simple symmetric procedure is
a k-simple symmetric procedure mk for which ¢:(.,C) is E:'
measurable for each C € C, ¢t(§:,-) is a p-measure on C and
all ¢§ are identical to some ¢k. The risk of any k-simple
symmetric procedure against § € Qm in the first n problems,
not counting the first k-1, is given by
3.7) Rn(ﬁ:ﬁk) = (n-k+1)- ;k Rk(§:,¢k)

i=

R
"R n,¢) F)

where
k, k k, _ k, k k
(3.8) R8¢ = [[ L(e;5A)p (ai,dA)El;(dii) ,
i
k
2: = 1 Pe and Rk(G:)¢k) = I Rk(g ,mk)dG:(Qk)o

i-k+l 7]
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It follows from (3.7) that for any k-simple symmetric procedure

k k k
a4 = (¢ Y0) seee)s

k k, k k k, k
(3.9) R (809 = RG99 2 R°ED ,
where
(3.10) Rk(G:) = inf Rk(G:,¢k) .

k
)

k
Swain (1965) used the k-th order Bayes envelopes R (*)

in (3.10), or effectively
k _ k k
(3.11) D (&.®) =R (8,0 -R () >

as standards in defining goodness of compound procedures ¢, and
called the resulting problem the extended compound decision problem.
Gilliland and Hannan (1969), in an improvement of a result

of Swain, showed that for each 1 <k < n and g,

(3.12) (n-k) R""'(c k+1) < (n-k+1) RX @, ko

k+1, k+l1 k+1

In special cases, lim {R G, ) - R (G )} < 0, so that R
n—o K
is truly asymptotically more stringent than R .

Swain exhibited procedures, for the discrete exponential

and the Normal families, that attained regret convergence of rates

- k
no worse than O(n ¥ log n) and o(l) respectively. Gilliland

(1968) considered the (k=1) unextended versions of these problems
and was able to exhibit procedures that possessed regret convergence

-% -1/5

of rates no worse than O(n ) and O(n ) for the discrete

exponential and the Normal families, respectively.
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It is the purpose of the remainder of this thesis to re-
instate the k 1in Gilliland's results and to show that the same

%) and O(n-ll(k+4)) hold. 1In the course

improved rates of O(n-
of doing so, several of Gilliland's lemmas and theorems will be

extended and, in some cases, strengthened.

3.2. A Bound for the Modified Regret DE .

It is well known that under squared error loss, the posterior
k
mean is Bayes. With respect to Gn’ a version of the posterior mean

of the k-th component of Qk is given by

k n
(3.13) @ =lp, >0) T oy mlp,
j=k
k n
where p. =p, , m, = I p._, . (y,) and p = ¢ m, .
J ej J 1=1 j-kt L B ek A

Under squared error loss, a non-randomized estimate g
has a modified regret
k -1 2 2 k, k
D (@) = (kD) T RBi(g; - 0 - R (G »
i=k

i
where P. =T P, . Thus, by Theorem 2 of Gilliland and Hannan

1

(1969) (i.e.,

n n
k k k k_ k k k k

where vthl is arbitrary), one can show that D: is bounded

above and below by

(3.14) (n-let1) "1 z P (@, - ¥, +v5 - 20.))
. 'ﬁ—i 8; - ¥ (o ¥y i

and



39

(3.15) (n’k+1)-1 ; P.((p; - Wk)( + ¢k - 28.))
: i S SIS ¢; T ¥y i

1

10k, ko k k
+ el "l E B - v D e - 200
k

k

respectively, where the argument of wi’ W?-l is k

2(.1’
I1f we assume () = ¢ = [-a,a], then the bounds (3.14) and

(3.15) yield the following bound on.the modified regret:
3.1 k 4a (n-kt1) ! g k
(3.16) |D_(Q,0)| = 4a (n-k+l) iﬁi{‘% AR
= k k f i k. Le h h follow]
where Ai ¢i - wi-l or i 2= k. t us show that following
extended version of Theorem 2.1 of Gilliland (1968).
Theorem 3.1. let Q = [-a,a]. For each P_, let

0 Po
Radon-Nikodym derivative with respect to some g-finite measure

be its

we If M= sup{pe : 9 €Q} 1is p-integrable, then
-10 ok -1
(3.17) (n-k+l) " g Ei\At\ =0(n ~ log n) uniformly in 8 .
k

Proof. From the form of wt in (3.13), it is easily verified

by simple algebra that

‘Ai‘ < 2a [pi-l > o]ﬂi/pi + a[pi_1 =0, p; >0]

from which
oy n 2 k
(3.18) Ezi la;| < 2a 3:( L@, M/ (e /MM du

n
k
+ a I E tpi-l = 0, Py > Oj(nifﬂ)g du  ,

k
where M = ]I M(yb)' The first term on rhs of (3.18), according
=1
to Lemma 3.1 below, is bounded by
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no k k
2a J‘( £ 1/i)M du = 0(log n) j Mdu ,
i=k

and the second term is bounded by a I M duk. But since
k k
I Md, = Qf M du) < «, the result follows.

We state without proof Lemma 2.1 of Gilliland (1968).

Lemma 3.1. For all 0 < a s 1, k <i<n,

2 i n
S = ¢ a7/ T a,< ¥ 1/i.
i=k j=k I i=k

Combining (3.16) and (3.17), we have

Corollary 3.1. If Q =g =[-a,a] and the hypothesis of Theorem

3.1 is satisfied, then

(3.19) ‘Dk(_Q )| < 4a (n-1<+1)'1 ; Plg, - q;k\ + O(n“1 log n)
. n'&:0 L =i ?i i g

uniformly in g, for any compound procedure g .

3.3 Estimation in Discrete Exponential Families Under Squared
Error Loss.

Consider the family of probability measures on the non-

negative integers having densities
X
(3.20) Pe(x) =6 h(e gkx) , x =0,1,2,...,
with respect to counting measure p, where g > 0, and let
Al Q=aqd=[(0,2],, 0<aco.
For this family, the Bayes estimate in (3.13) takes the form
k I~ ~
(3.21) Vi@ =[p; > 01/BYG/p)) »

where for each y = (yl,...,yk) s
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g =8ly) » 8=l +y)),

k-1

ﬁ .
t=1

j=k 3

[ e BE=E

In view of (3.21), when a sequence of past observations

is available, a natural estimate for t? (xg) is
=i

(3.22) ¢:(§:) = (5> 0)(@/BE +v)/ES +v, )} Aa, 2k s 4,

where f(y) = f(yl,...,yk_l,l + yk) for any f,

i-k I 1 if )_(_;( = 5‘: i-k
S= %8, , 6, =6,(X.) = » S =g 8,
k j ] J 1 0 if }-(;< ¢ .&1: k ]

2

k
observations Ki taken as a k-vector, and is essentially a ratio

*
and 0 < vl, v. < k. We note that ¢i depends on the last k

between the number of times the k-vectors KF equals

]

x 1+xi) and the number of times g? equals X.,

i-k+1""’xi-1’

except for the perturbations vy and v, in the numerator and

denominator. It will be shown that these perturbations are

*

negligible by comparing ¢; to the unattainable procedure
k — o

(3.23) ¢; X)) = {[s >0)/8)E +8")/(s +s"H}Aa,

i
where ratios 0/0 are taken to be 0, S' = § §! , 6'(5?) =
K i-k+1 i
§-kH 1-k’x;-k+1""’x3)’ Ki) with Xi independent ly

distributed according to Pe and independent of Kj'

It will also be shown that ¢; possesses a certain rate

6 ((X seeesX

of the regret convergence. To be more specific, we will show that
under suitable conditions, with Ei denoting the product measure

]
on (Ki’ Ki"k) ?
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-n -
(n-k+1) 1§2§E1|¢i - k\ O(n %) uniformly in §

(Proposition 3.1) and

O(n-%) uniformly in @

(n-kt1)” zPE\¢ - ol
(Proposition 3, 2), so that, by the triangle inequality,
-%

-1 " * Ky , ,
(n-k+1) ﬁ gi\¢i - wi‘ =0(Mm ) uniformly in §

(Theorem 3,2).

A Useful Result of Bikelis (1966).

Let Yi’ i=1,2,...,n be a sequence of independent random

variables that possess finite 2 + § (0 < § < 1) moments. Let

F denote the distribution function of the normalized sum
n
2

5, = 2 (Y - EYi)/sn, where s = T Var Y .. There exists a
i=1 1
2+6
universal constant c¢ such that \F x) - Q(x)\ S c Ly /(1+\ | ,
where L, is the Liapounov quotient E Ely, - Ey, |2+6/ 248
+H,n 1 i

X 2
and $(x) = (2n)';“[‘ et /2 4 .

The lemma below is an immediate corollary of the Bikelis
theorem. We will use the lemma in bounding the error term in the

Normal approximation.

Lemma 3.2. Let Y =1,...,n be a sequence of independent

g0 1

bounded random variables with |Yi - EYi‘ < B < o for each i.

Then
(3.24) |Fn(x/sn) - Q(x/sn)l < ¢ 21 6/(s + |x \)

Proof. By the Bikelis theorem, we have

IFt0 - 80| ser, . /a+|x | 2%y,
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where ’

6,8 246 246 ,, 148
Lytg,n SB /s, and 1+ x]°7° 2 @ + |x])°7°/2

by the Cr-inequality. Hence,
- 1+ § 2 245
|F Ge/s ) - 8(x/s )| <c 2" B s /(s + %)
<e 2 06+ x|
n L]

The proof is completed.

Henceforth until (3.34), we will let g: = §t

be fixed
k k [] k ] 3
and abbreviate *i(ii) and ¢i(§i) to § and ¢, respectively.
Let E abbreviate E,. Since 0 s ¢'s ¥ S a by (Al),
it follows that

a 0
(3.25) Elg' - v| =£ E[¢' - ¥ 2uldu + [ E[g' - y <uldu .
-y

We shall next place bounds on the two integrands by the

use of Lemma 3.2.

For each i and |u| < a, put

q =G/ +u) ,

(3.26) {3 -q6,, for k< j<i-k,
Y = j j
] ' - q 6{, for i-k < j
. W= (8/g) p;/k .
i i
Since T EY, =%f ({, - qm.,) = -kwu,
k 3 x 3
i
(¢p' =¥ 2u) s [gY, 20]
Kk 3
i
(3.27) =[z (Y, - EY.,) 2 kwu],
K ] J
< ETE"(YL-}-dk - EY,{;Pdk) 2w uj

where ¥' denotes summation over { from 1 to k and %" denotes
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summation over d for which k < g+dk < i. For each 1 <4 <k

and 1 2 k, we let

r2 =g" Var Y
1 L+dk
(3.28) 2 i .
r =gvary
Kk h|
1+

Then, with c¢' = 2" "¢, it follows from (3.27), (3.24) and the

fact that \Yj - Ele <14,
(3.29) E(g' -y 2u] <sg'{8(-w u/rL) + c'(1+q)6/(w u)6} R

where 14q playes the role of B in Lemma 3.2. We shall next
bound the terms on the rhs of (3.29) by a quantity not involving
the index . Let Q = 2a g/g and T2 = Q(14Q), then, for each

lul < a, (A1) yields

(3.30a) qQ=sQ,
3.30b i, < s 9
( ) i % Q ﬂq
2 _ 2 C.. 2 2
(3.30¢) T, <r < i(ﬂj +4q nj) <sT p; -

Thus, (3.29) yields
(3.31) E(¢' - ¥ 2 u] < k{3(-w u/(T p?)) + c'(1+Q)6/(w u)6} .

Upon setting & = % and integrating u between O and a, we
a
obtain,,via the inequality g d(-bt)dt < b-l(zn)'%

’

a

(3.32) I E[¢' - y 2 u]du < Bl{Tp?/w + (1+Q)%/w%} R
0

where Bl is a constant independent of i, 5:

next bound the second term in the rhs of (3.25).

and §. We shall



45

i
Since [g¢' - ¢ su] g (L - Yj 2 0], the arguments in (3.27)
k

through (3.29) hold with Yj replaced by -Y,; consequently, by

h|
(3.30) and the arguments leading to (3.32), it follows that

a
% X 0%
(3.33) j E(g] - ¥, Suldu < Bz{Tpi/w + (14Q) /7Y,
“¥i
where Bz is a constant independent of i, §§ and §g.

Combining (3.25), (3.32), (3.33) and (3.30), we have

%

i

(3.34) E\¢; - ¢i| < 53{T pi/w + (1 +Q)%/w%}

sB,[(L+8/®/p)" .

Before we prove the next proposition, we quote Lemma 3.1

of Gilliland (1968), i.e.,

n i -3 n !
(3.35) g a,( a,) <2( a,)’, for all a, 20, k<i<n.
k Ly d Kk * 1

Let p, denote pe=a'

Proposition 3.1. Under the assumptions

(Al) a=0=1[(0,a], 0<a<ow,

%
(A2) E Pa < @
and

- L
(43) L [@/®p] <=,
X

-1 n ' ky _ -% . .

(3.36) (n-k+1) T EEE\¢1 - Wi‘ =0(m *) wuniformly in § .
k

Proof. let M = sup{pe : 9 €Q}. Since h(g) 1is a decreasing

function, it follows from (A.1l) that
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3.37) M < p,(x) h(0)/h(a) and M is p-integrable.

From (3.34) and (3.35), we have

n o %
Egi lo} - v¥l <28, = [ +g/B)p]
Ly
(3.38)
<28, £ [0 +e/® G M1 N,
Xy
k k "
where M = 1[I M(y,) 1is bounded by 1I P, (¥ )[(h(0)/h(a)]" wvia
=1t p=1 27t

(3.37), and pnlg is bounded trivially by n-k+l. Hence,

g .
T d+e/®)np0,)]
Y 1t

= Bs(n-k+1>%[§ p:f(x)]k'1 £ [ +g/@p,]" -
X

n
- yk RWSTE
EEEE\¢; X < Bg(n-k+1)

The result follows from (A2) and (A3).

Remark. Proposition 3.2 of Gilliland (1968) proved (3.36) under

the stronger assumption (A1+), (A2) and (A3) with k=1. The Bikelis bound
on the error term in the Normal approximation enabled us to weaken

the assumption (A1+) to (Al). Gilliland used the Berry-Esseen

bound to prove his Proposition 3.2,

k *
Bounds for D (8,3 )-

k
Proposition 3.1 shows that ' and y are not more than

%

O(n- ) apart in a Cesaro sense. In view of (3.19), it remains

*
to be shown that 4 and @' are close in order to show that
* k
¢ @and y are not far apart.

Henceforth until (3.41), let g: = 55 be fixed and abbreviate

*x5) and ¢'(x) by o and g 1
¢i(§i) an ¢i(§i) y ¢ and ¢', respectively.
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Lemma 3.3. |¢* - ¢'| < k(a +g/g)[s >0]/s .

Proof. let I = [(g/8)(S/(k+5)) < a]. On [S > O]1,
\¢* - ¢" < (g/§)|(§ +k)/S - S/(k + S)| < k(a + g/g)/s. Since

l6" - ¢'| =0 on {[s > 0]1}°, the result follows.

Remark. Lemma 3.3 is an analogue of (3.28) of Gilliland (1968).
The truncation of ' in (3.23) results in the better bound in

Lemma 3.3.

Lemma 3.4.

(3.39) B, ((58>01/8) < (k#2)/p, .

Proof. If S > 0, then the inequality S+k+l1 < S(k+2) 1implies

i
[s-> 0]/s < (k+2)/(S+k+1l) < (k+2)/(S + T &, + 1). By the
f-k+l 9

convexity of 1/(l4z), Hoeffding's Theorem 3 (1956) applies to
yield
L a1 i-3
P, G+ I 65 +1) < ¢ (j)p 1 -p) /),
1-k+1 =0

where =p. -k+l). The rhs of the last inequality is bounde
h p = p;/(i-k+1) he rhs of the 1 1 bounded

by
o1 149 i-j
L Gude @ -p) T/((+i)p)
15014
< @ - A-pp™hy/a+dp) s /() -

Since (l+i)p = (1+i)pi/(i-k+1) > p;» the result follows.

Lemma 3.4 with k specialized to 1 improves upon Lemma
3.3 of Gilliland (1968).

The next lemma is suggested by the proof of Lemma 3.5 of

Gilliland (1968).
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lemma 3.5. Under (Al),

n k
“k+1) % 5
(3.40) fcni gi_k([s > 0]/S) < b(n-k+1) (L21pa(xi°kﬂ’))

%

where b = 2(k+2)2(h(0)/h(a)) /2.

Proof. Since [S >0]/s <1, [s >0]/s < ([s > O]/S)%. Con-

sequently, Jensen's inequality applies to give
P, . ([s >0]/s) < (p, ,[S> 01/5)}5 < ((k+2)/p )}i
Si-k =i-k i

where the last inequality follows from (3.39). Thus, by (3.35),

(3.41) E pf .

~MB3

T gi_k([s > 0]/8) < 2(k+2)

Under (Al), (3.37) holds. Hence it follows from (3.41) that

o 5 k/2 y X %
lztﬂi_13i_k([s>01/S) < 2(k+2) *(h(0) /n(a)) " (p /1D Lglpa(xi_kﬂ))
y K ¥
< b(n-k+1) (Lr=11pa (xi_kﬂ))

The proof if completed.

Proposition 3.2. If the family of distributions satisfies the

assumpt ions
(Al) Q=ag=1[0,a], 0<a<w,
(A2) ZP%<°°,
a

X

and
[} ~ %

(43" L @/F P, <=,

x

then
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1" * -%
(3.42) (m-k+1) " £PEle) - 0| =0@™) uniformly in @ .
k 1

Proof. From Lemma 3.3,

n n
(3.43)  £Ple) - o] < kK P (@@ + /D) > 01/5) .
K k

Via the equality P.((a + g/g)(s >0]/s) =T (a + g/g)n.gi k([s > 0]/s),
{~i-

Yy
(3.43) and (3.40) yield
n k
3.8y zPE[g! - 4] < ba-kt)® £ (a + /D (T Pa%))% .
k zk 1=1
Since
k% (k-1) /2 5
LT (@+g/R)Mp) = (p) L (@ +8g/B)p,; »
Yy 1 X X
the proof is completed by (A2) and (A3').
Theorem 3.2. Under (Al), (A2) and (A3'),
(3.45) \DE(Q, mf)\ = O(n-%) uniformly in 9 .

Proof. Under (Al), (A2), (A3') and (A3), Corollary 3.1 together
with (3.36) and (3.42) implies (3.45). Since (A2) and (A3') imply

(A3) via the Cauchy-Schwarz inequality

z ((g/‘é)pa,)!5 < (Z(g/é)Pz)%(Z pz)!5 ,

the result follows.

Remark. Theorem 3.5 of Gilliland (1968) proved (3.45) under the

stronger assumption (A2+) together with (Al) and (A3'). The pro-
cedure mf in (3.45) extends and includes that of Qf and Qf*

in Gilliland. For examples of distribution satisfying these

assumptions see Gilliland (1968).



CHAPTER 4

SQUARED ERROR LOSS ESTIMATION IN THE NORMAL FAMILY

4.1 Introduction.

Consider the Normal (g,1) family

5 -G-8 /2

(4.1) Pe(x) = (2m) " , <X < ®

with \e\ < a. The Bayes estimate in (3.13) takes the form
(4.2) ¢k(z) =y +u , for each = (y ...y)eRk
' n n’ L5 Gpoeeeady ’

n
= = a— i
where y Y Y 3y log(i nj). In view of (3.19), let us

consider estimating wk. The method of estimation is contained
n

in §1.2 of Susarla (1970).

k k
Let P, denote the product measure on Kj and

- -1 k _ . k
Q = (n-k+l) £ P,. For each x =x in R, let

K 3 Tk

k
0= {;II'{" where I& = [xL, xL +¢] for 1t =1,...,k,
and

k

= ' ' = -

O, LXIIL’ where IL IL for ¢ # k and I [xk-l"ﬂ, xk+'ﬂ+e]-
and

k
[j]'c = Lillz » Where IE = Il, for 4 # k and Ii(' = [xk, xk-l-’n+e].

k

For any distribution F on R let t(F)(x) denote the
function T\-l log (F Dk/F 0O) where F ([ and F[]k represent the

50
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measures of [J and C& under F and undefined ratios are taken

to be 1. We abbreviate t@Q)(x) =M ' log@ 0RD by t).
*
Let Q be the k-order empiric distribution of Xl,...,Xn
* -1 * * *
and abbreviate t(Q )(x) =T = log@Q Dk/Q ) by t (x).

. k
Let X abbreviate X 0 X abbreviate X and

* * *% *
4.3) ¢n+k =trX+t (X)) , ¢n+k =tr'X +t (X))

where tr and tr' stand for retraction to the intervals

[-(atNte), a + |+ ¢] and [-a,a] respectively.

k
With ¢ abbreviating ¥, and suppressing the subscripts
, * Fok %k *
in ¥ 4 and Voax * Ve have \w\ <a,y =tr'y and there-
%k *
fore |¢ - ¢\ < ‘W - W‘. Consequently, by the triangle in-

equality,
k% * k
Gy Boalv -l sElv - @+l +E X+ -yl

We state without proof Lemma 3 of Susarla with 02 =1,

and F = 6:

lemma 4.1 (Susarla). For each in R

|

1) x+tQ & € [-a -

= € a]

=

@ QO 27~ exp(- (o) (] + 25Dy,

3 QO Q0 T exp((M+ (x| +a+1+0)

where x =x, , m= E nj/(n-k+1) and ||x|| = LEI\*L\ .
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4.2 Bounding 2n+k\¢* - X+ t)‘

Fix X = x until (4.10). Since x +t, by (1) of Lemma
4.1, is in [-a - g - e, @] it follows from the definition of
¢* that \v* - X+ t)\ is bounded by the quantity
a' = 2a+-%ﬂ +2¢, and at the same time bounded by \t* - t].

Therefore, for each x in Rk,

0
Adl.l'l"j B du

a
*
4.5) %\w - (x+t) | sg [,

* *
where A =P [t -t >u] and B =P [t =-t <u]. We shall
- -

first bound A and B by the Bikelis theorem.

Put
k k
5, =X, €00, 8, =X, e,
(4.6) Yi(u) = gi - éi e“(t+u) , for ‘u\ <a',k<i.
2 n
r =Y Var Yi
k

-_— ]
let w = (n-k+l) Q [& ﬂ/k, R = eﬂ(|x\+a+a ), § denote
summation over i from k to n, §' denote summation over £
from 1 to k and, £'" denote summation over d for which
k < ¢4 +dk < n, for each .
lemma 4.2. For some constant cl’
A <k §(-wu/r) + °; R}‘i/‘wu‘!5 , 0<su,

and, for T a's< 1,

B <k §(wu/2r) + ¢y Rgs/‘Wu/Z‘!5 , -a'<u<0.
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= ! " -
Proof. Note that A gn[z Y, 2 0]sz gn[z (YL+dk P YL+dk)
2 -L P Yi/k'_\ and, similarly, B = _gn[z(-yi) 2 0]

]
sz'p [z" - Oypyak = Bn Yy4ar) 2 T By Yi/k] . By (4.6),

“4.7) LR Y = (n-ktl) EUk(l - en“) .

-n

For 0 gu, 1l - enu < -Tu . For -a'<u=<0, Ma' <1 implies

1 - eT\u > -% Tu. Thus, by (4.7),

' " -
A<y _lfn[}: (YL+dk _PnYL_*_dk)ZWU] , 0<u

(4.8)

1] " o_ - - -al! .
B<¢Y %[2 (Y{,+dk %Y{;l-dk)z wu/2], -a' <u <0

Since |Yi - EYi\ < 2R, we have, by Lemma 3.2

A s 2'{@('WU/YL) + c R%/lwul%} , 0<u
4.9
B < 2'{§(Wu/2rL) + c R%/|WU/2‘%} , =a'<su<o0

2— ”" .
where rL var ¢ YL+dk° The proof is completed by the bound

2'5 Var Y, = 2
rL T r i r .
We note that

2 2

2 =
(4.10) r sz_gnYis (n-k+1) R Q[:Lk .

With (4.10), we prove an analogue of lLemma 4 of Susarla.

Lemma 4.3. For O < ¢ s T < 1l/(6 + 2a),

(4.11) -’}H—kl** - X +¢t)| <B(n- k+1)"5{(31ﬁ-§;f)3"‘ + (—1—1‘)}5} ,
T e Te

where B1 is independent of n and g .
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e -%

Proof. Since l[;ep(-bt)dc < (2m) °/b, for b > 0, it follows

from (4.5) and Lemma 4.2 that, for Ta' <1

%
(4.12) BV - )| s ey D4y B
w

By (4.10) and the definitions of w and R, the above inequality

yields

(4.13) gn|¢* - (x+t)| = Bz(n-k+1) {( k+1) C%D%R + (—lE)kD%R%},
MNe

Q E& k
where C = and D =%— | By (2) and (3) of lemma 4.1,
T, aq,
_ﬁﬂ
C < exp{(n+e)(‘ | +a+M+¢)} and D < (n) exp(ﬂ+e)(nx“ + ).

Hence, it follows from (4.13), the definition of R and

0<e¢<T<1/(6+ 2a) that

(4.14) gnw* - (x +t)| SBy(n-ktl)” {( e 5D Dten?+ (Lk)%} X
Me

x exp{ (2|x| + \\:;u)n}(ﬁ)-%

k
To complete the proof, we shall show that the En -integral of

+k
the function g = exp{(2|x| + Hg“)}(;)-% is uniformly bounded

%

in n. Let c = (2m). Since c’p (y) < exp{-[(|y| - a)+]2/2}

and c%pe(y) 2 exp{-[|y| + a]z/z}, we have (F)-% <

M explz! (x| + 07/, and e < < Pepln L, | - 9M7/2).

Consequently, the g§+k-integra1 of g 1is exceeded by the constant

exp{alx] + ) + 2 (x| + 276 - £'T(lx,| - ™1 /23

[ e

The proof is completed.

We state without proof a special case of Lemma 6 of Susarla.
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2 2
lemma 4.4. |x +t -y| =M@ +a") +e(l +ka’) .

The next lemma, suggested by Professor Gilliland, is an

analogue of Theorem 3.1.

Lemma 4.5. Consider the Normal (9,1) family in (4.1). For any

l1<b,b+ks<sn

1

ek - vk | =oa@™h

(4.15) Py

-n

uniformly in g .

k
Proof. Let 1 < k, k < n-b. Since for each fixed X

n
by nj
k k n-b+1l
DETMRELE
rmw
k 3
n -2t a1
and, by Jensen's inequality, 1/g¢ nj < (n-k+l) " ¢ ﬂj , we have
k k

, D no, K
‘Vg = V:_b| < 2a(n-k+l)~ £ w,Zmw, . But for any x €R,

n-b+1 J k 1

"j ﬂ;1(§) < eZaHEM’ therefore,

l’nW:(i) - w‘;_bwl <2ab (n-k+1) "L [ 22l n dx

By the monotone likelihood ratio property of the Normals,

.2 )
Peezalx\ < 262 /2 G23x p,(x)dx = c(a) is a finite constant.
Consequently, I ezaﬂiﬂ U dx < ck(a), uniformly in n; therefore,

the result follows.

With Lemma 4.5, it follows from (3.19), via the triangle

inequality, that for the Normal family in (4.1)
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k -1 ! k -1
(4-16) |D (g, 0)| < 4a(n-ktl) Egi\% - ¢i_kl +0(n" "log n),

uniformly in g .

Theorem 4.1. With = n-ll(k+4) and T =be for 1 < b, then
%k k -1/ (k+4
(4.17) Balv -y | =o@ /¢ )
and
k *k -1
(4.18) D (8¢ ) =0 /(k*a)).

Proof. Lemmas 4.3 and 4.4 imply (4.17), via (4.4). The result

follows from (4.16) and (4.17).
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SOME KERNEL ESTIMATES OF DENSITIES AND THEIR DERIVATIVES

Estimation of Lebesgue density f and its derivative

g = f(l) will be discussed in Section 1. Estimation of a density

J(l) will be

J with respect to dyu = h dx and its derivative
discussed in Section 2. Estimates for the above quantities are

based on the kernel method that Johns and Van Ryzin (1967) used.

We shall first discuss briefly the existence of some of

the kernels. ILet r be an integer =2 2 and let KO and K1

be L,(0,1) functions vanishing off (0,1) with I‘ur Kj‘du

=r! cjr’ j = 0,1 such that
¢ 1 if t=0
(a.1) Ju Ry du= <tsr-1
and uK, satisfies (A.l) with r replaced by r-1l. For

1
example, KO and K1 can be the first two elements of the dual
basis for the subspace of L2(0,1) with basis {l,u,...,ur-l}.
As the intended result of these conditions on KO and
Kl’ if S has its rth derivative bounded by M on (0,1), then

th

substitution of the r = order Taylor expansion with Lagrange's

remainder shows

(A.2) |j S K, du - S| s M o

and, if in addition S(0) = 0,

59
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1
(A.3) |j S K, du - s¢ )(0)| <Mc, .

Let xl,xz,... be a sequence of random variables i.i.d.
according to some Lebesgue density f. Let E denote the

product measure on xl,xz,...,xn-

1. Lebesgue Density

In this section kernel estimates fn and g, for f and

g = f(l), respectively, will be discussed. Johns and Van Ryzin
(1967) proposed these estimates and it appears that they showed
(A.9) below under the extra assumption that f(r) is continuous
for x > a. The bounds on the bias terms in (A.9) improve as the

number of derivatives of f increases.

Lemma A.l. (Approximation of f and g). For each x and each

A >0, let
f(x) = Ko (u) £Getau)du

(A.4) T6) = I a1 fl::fﬁu R, (Wdu .

1f £ exists on [x, x + 247, then

(A.5) |£ - £] < A" qir) Cor
(4.6 le - gl < Ar-l(qér) + 2" gy, s
where

(A.7) qzr)(x) = sup {| £ xbau)| : 0<u< 1},

£ (©

Proof. Since (x+A.) is bounded by Arqér)(x), (A.5) follows

from (A.2). With S(u) = f]:jiﬁ“ in (A.3), the fact S(0) =0
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together with ‘S(r)\ < Ar(qgr) +2° qéz)) implies (A.6).
Lemma A.2. (Unbiased estimation of f and g), For each x

and A > 0, let

n n
(4.8) £ (x) = n'1 zw?(a) and g (x) = n'l p) A'l(w}(za) - w;(A))
j=1 j=1
where wO(A) = A'1 K. (X, - x)/8) and wl(A) = A'l K, (X, - x)/b).
k| 0" ] 1]

Then f (x) and g (x) are unbiased for f(x) and g(x),
respectively.
Proof. Since the Xj are i.i.d., the proof follows readily from

(A.8) and the transformation theorem.

Combining Lemmas A.l and A.2, we have

Lemma A.3. (Johns and Van Ryzin). Let A > 0. If f(r) exists

on [x, x + 2A], then
|E £,(x) - £x)| s A" qér)(x) Cor °
(A.9)

|E ga00) - 8] < 87 @iV o + 27 agy) @)ey, -

Lemma A.4. (Johns and Van Ryzin). Under the hypothesis of Lemma

A.3’

va. f (x) < (na) 7 qéo)(X)HKOHE ’

(A.10)

3. -
var g (x) < 3(nd") ! qég) (X)HKl\\z ’

where Var denotes the variance taken with respect to the measure

E, and "-Hz denotes the L,-norm with respect to Lebesgue.
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Proof. Since the Xj are i.i.d., the inequality Var X < E(Xz)
followed by the transformation theorem, and with the Cr-inequality

applied at the proper place, yields (A.l1l0).

2. Density with Respect to du = h dx.

Let f be a lLebesgue density of the form f = h J, where
h >0 if and only if x > a., Then J 1is a density with respect
to du =h dx. The estimation of J and its derivative J(l)

will be discussed next.

let A > 0. For each x, let

_ -1 % o
Ja) =n " TW,@)/hE,) ,
i=1

(A.11) o

3y =n"t g atlelcs - wien/me,) .

n i1 i j j
Lemma A.5. 1If J(r) exists on [x, x + 2A], thea

r (v)

|E g, -3l sa 8,7 e s

(A.12)

|E 3} - J(l)\ < a7l (Sér) + 2" s§§’>c1, ,

where Sgr)(x) = Sup{\J(r)(x+Au)| :0<uc1}.

Proof. The proof is the same as that of Lemma A.3 with wo L

b R
() replaced by WO/h(X.), Wllh(x ) and S(r), respectively.
A R R MO R )

, W

and q
Lemma A.6. Under the hypothesis of Lemma A.5,
-1 2
var 3 < (md) T, |[Kll;

(A.13)
3.-1 2
Var J! < 3(np”) T, HKIHZ s
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= J (x+Au)
where TA(X) sup {h(x+Au) : O<ucl}.

Proof. The proof is the same as that of lLemma A.4 with W?, W}

and ng) replaced by Wo/h(Xj), W;

/h(X. d espectively.
3 ( J) an TA’ respectively






