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ABSTRACT 

ESSAYS ON RISK MANAGEMENT IN SUPPLY CHAINS 

By 

Ji Ho Yoon 

Supply Chain Risk management (SCRM) is receiving increased attention recently due 

to the impact of unexpected disruptions (e.g., 2011 Tsunami in Japan, 2011 flooding in 

Thailand, etc.) and delays. However, managing risk in supply chains is a difficult task 

because of the inherent complexity of the global supply chain networks. My dissertation 

focuses on three essays related to risk management in supply chains with emphasis on 

strategic, tactical, and operational levels of decision-making. 
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1 

INTRODUCTION 

 

Supply chain risk management (SCRM) is receiving increased attention recently due 

to the impact of unexpected disruptions (e.g., 2011 Tsunami in Japan, 2011 flooding in 

Thailand, etc.) and delays. Within the broad rubric of SCRM, my research specifically 

focuses on i) supplier and risk mitigation strategy selections, ii) sourcing decisions and 

information sharing under risk, and iii) transportation risk management. The Three essays 

in my dissertation address each of these aforementioned topics with emphasis on strategic, 

tactical, and operational decision making. The following paragraphs discuss each of these 

essays. 

The first essay focuses on supplier selection and risk mitigation strategies. Specifical-

ly, with the growing emphasis on supply risk, consideration of risk aspects in supplier 

selection decisions and risk mitigation are important issues faced by companies. While 

extant literature has proposed a variety of tools and techniques for effective supplier se-

lection, few approaches are proposed in incorporating risk factors in supplier selection 

and mitigation decisions. I address the issue of simultaneously considering supplier selec-

tion and risk mitigation during a given planning horizon in a supply chain. I also argue 

that risk mitigation should be considered at the supplier selection phase with a mixture of 

upstream and downstream risk mitigation strategies rather than separately applying a 

sole strategy. In this essay, the results demonstrate that the simultaneous consideration of 

upstream and downstream risk mitigation strategies (at the supplier selection phase) has 

the potential for better performance than separately using individual strategies. However, 

the mixed strategies do not always guarantee that they outperform individual strategies, 
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which means that the alignment between the strategies is critical for improved perfor-

mance. 

The second essay of my dissertation focuses on sourcing decisions under conditions 

of risk and information sharing among supply chain partners. Specifically, this essay con-

siders a manufacturer's sourcing decisions in a supply chain with three players (manufac-

turer, first-tier supplier, and second-tier supplier). In this scenario, the manufacturer 

sources identical and critical components from a single first-tier supplier (FT). The FT in 

turn sources raw materials from a single second-tier supplier (ST). The suppliers in both 

tiers are unreliable, i.e., prone to disruption risk, and there are no viable alternative 

sources. In such a setting, increase in supply chain visibility through information sharing 

could be an effective disruption management strategy for the manufacturer. However, the 

FT may not be willing to share the ST’s disruption risk with the manufacturer due to 

competitive issues. Given such circumstances, I demonstrate the conditions under which 

information sharing between the manufacturer and the FT results in improved profits for 

both parties, i.e., information sharing of upstream (ST) disruption risk by FT and down-

stream demand risk by the manufacturer. In addition, the sourcing decisions of the manu-

facturer under the absence and presence of information sharing are investigated. Finally, I 

identify effective ways to induce the FT in sharing information regarding the ST’s disrup-

tion risk, i.e., the efficacy of information swap between FT and the manufacturer based 

on the value of information and in deriving optimal pricing strategies.  

The third essay in my dissertation focuses on risks faced in transportation decisions. 

In recent years, access to freight transportation capacity has become a constant issue in 

the minds of logistics managers due to record capacity shortages. In a buyer-seller rela-
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tionship, reliable, timely, and cost-effective access to transportation is critical to the suc-

cess of such partnerships. Given these circumstances, shippers are in search for guaran-

teed capacity contracts with 3PLs to increase their access to capacity and respond effec-

tively to customer requirements. With this new opportunity, 3PL providers must focus on 

approaches that can assist them in analyzing their options as they promise guaranteed ca-

pacity to shippers when faced with uncertain demand and related risks in transportation. 

In this essay, I analytically analyze three capacity-based risk mitigation strategies and 

their combinations using industry based data in providing insights on which strategy is 

preferable to the 3PL provider and under what conditions. I posit that the selection of a 

strategy is contingent on several conditions faced by both the shipper and the carrier. My 

approach has a high degree of practical utility in that a 3PL provider can utilize our deci-

sion models to effectively analyze and visualize the trade-offs between the different strat-

egies by considering appropriate cost and demand data.  
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Abstract 

With growing emphasis on supply risk, consideration of risk aspects in supplier selec-

tion is an important issue faced by firms. While extant literature has proposed a variety of 

tools and techniques for effective supplier selection, few approaches, if any, are proposed 

in incorporating risk mitigation strategies in supplier selection decisions. To this end, this 

paper fills this gap, by considering a variety of risk factors in supplier selection, which 

are both quantitative and qualitative in nature, and tests the efficacy of alternative risk 

mitigation strategies in this context. Moreover, we argue that both upstream and down-

stream risk mitigation strategies should be used simultaneous rather than focusing on a 

sole strategy, i.e., alignment between upstream and downstream risk mitigation is critical. 

We utilize multi-objective optimization based simulation in building a decision model in 

the context of this problem setting. We consider data from an automotive parts manufac-

turer in demonstrating the application of our approach.   
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1. Introduction 

Supplier selection is one of the most important issues in supply chain management 

(SCM) for maintaining a competitive advantage. Traditionally, the cost aspect was solely 

emphasized, but recent emphasis has also been on other important factors such as quality, 

delivery, and flexibility in supplier selection (Sarkis and Talluri, 2002; Amid et al., 2011; 

Lin, 2012). As a supply chain becomes more complex, extended, and globalized, firms 

become more and more dependent on their suppliers. This also entails a number of unex-

pected negative events, which makes supplier selection more critical and difficult task 

compared to the past. Thus, in supplier section, it is necessary to consider factors above 

and beyond cost from a risk management perspective. 

Recently, supply chain risk management (SCRM) has been receiving increasing at-

tention in both academic and practitioner circles. Literature in this area has primarily fo-

cused on: i) identifying and categorizing risk drivers
1
 (Chopra and Sodhi, 2004; Kull and 

Talluri, 2008); ii) developing risk assessment techniques (Zsidisin et al., 2004; Wang et 

al., 2012; Aqlan and Lam, 2015); iii) defining risk mitigation strategies (Chopra and So-

dhi, 2004; Faisal et al., 2006); and iv) evaluating risk management strategies (Talluri et al, 

2014; Yoon et al., 2015). It is not uncommon for companies in the same industry to face 

different types of risks, which leads them to emphasize and recognize that adapting tai-

lored risk mitigation strategies is a key aspect for their success in a turbulent environment 

(Hauser, 2003; Chopra and Sodhi, 2004). Various risk mitigation strategies (including 

upstream and downstream risk mitigation strategies) have already been developed by 

several researchers to address specific needs of companies. Among such risk mitigation 

                                                           
1
 risk drivers: factors such as events and conditions, which might increase the level of risk in supply chain 

(Chopra and Sodhi, 2004; Jüttner et al., 2003) 
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strategies, companies are more interested in efficient strategies that reduce risk without 

eroding profits (Talluri et al., 2013). 

In this article, we address the issue of supplier selection and risk mitigation strategy 

selection in a simultaneous manner during a given planning horizon in a supply chain. 

We also argue that risk mitigation should be considered at the supplier selection phase 

with a mixture of upstream and downstream risk mitigation strategies rather than sepa-

rately focusing on applying a sole strategy. Some literature studied the risk mitigation 

strategies and their effectiveness (e.g., Chopra and Sodhi, 2004; Schmitt, 2011; Chopra 

and Sodhi, 2013). Not surprisingly, several of these strategies are closely related to the 

supplier selection issue for mitigating upstream risk such as having redundant suppliers. 

However, there is no previous work that addresses the potential synergy between mitiga-

tion strategies related to downstream risk and supplier selection based mitigation strate-

gies focusing on upstream risk. We conjecture that an alignment between upstream and 

downstream risk mitigation at the supplier selection stage can result in more effective 

mitigation of risk.   

To this end, the contribution of this paper is two-fold. First, we propose models that 

integrate two important SCM issues: i) supplier selection and ii) risk mitigation strategy 

selection. The models demonstrate the reasons for the two aspects to be considered simul-

taneously rather than separately. Second, from a methodological perspective, we develop 

decision models, that utilize a combination of multi objective optimization and simulation 

approaches, for simultaneous consideration of a broad range of risk drivers, objectives, 

company's risk attitude, and order allocation factors. The multi objective optimization 
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allows the simultaneous consideration of cost and risk (Yildiz et al., 2015)
2
 and simula-

tion enables us to achieve efficiency and effectiveness in deriving solutions under a given 

parameter set over a multi-period planning horizon (Jung et al., 2008). Thus, we expect 

that this combination of methodologies to provide a holistic solution to this problem envi-

ronment.   

The remainder of the paper is organized as follows. The next section reviews the re-

lated literature in the areas of supplier selection and risk mitigation. We then describe the 

problem and introduce representative risk mitigation strategies that are selected from the 

extant literature. The following section presents the mathematical models for supplier se-

lection with the consideration of risk mitigation strategy selection and related analysis. 

Finally, we discuss the limitations of our approach and present future research directions. 

2. Literature Review  

Supplier selection is a very important issue in SCM, since poor judgment in supplier 

selection can lead to various supply base problems such as late deliveries and/or high de-

fects rates (Smeltzer and Siferd, 1998). Gonzalesz and Quesada (2004) also found that 

supplier selection was the most influential factor for achieving long-term competitive ad-

vantage. Moreover, as supply chains become global, a firm’s supply chain risks begin to 

be influenced more by outside factors in addition to internal forces. Thus, supplier selec-

tion and its associated factors are viewed from a SCRM perspective. 

                                                           
2
 The analytical hierarchy process (AHP) approach supports managers in prioritizing the supply chain ob-

jectives, identifying risk indicators, assessing the likelihood & potential impact of negative events, and de-

riving risk coverage scores logically and rationally (Gaudenzi and Borghesi, 2006; Wu et al., 2006; Kull 

and Talluri, 2008). The risk coverage score of an entity is defined as the degree of how well the entity can 

handle risks. Thus, the higher the risk coverage score (AHP score), the more reliable the entity is. Our re-

search utilizes the AHP score in estimating risk. 
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Some scholars simplify the risks into two groups in supplier selection, recurrent risks 

and disruption risks. Tomlin (2006) considers two suppliers for a single product: one un-

reliable and the other reliable but more expensive. He demonstrates that supplier diversi-

fication strategy is favored over an inventory reserve approach if unfavorable events are 

rare but long (disruption risk), whereas an inventory mitigation approach is preferred if 

unfavorable events are frequent but short (recurrent risk). He finds that the features of 

suppliers such as reliability and flexibility and the nature of risk (disruption or recurrent) 

are keys for success in supplier selection. Chopra et al. (2007) also present similar find-

ings and also emphasize the importance of decoupling recurrent risks and disruption risks, 

and the importance of supplier's features such as reliability when managers are selecting 

suppliers. However, there also have been more detailed traditional dimensions in supplier 

selection: cost, quality, delivery, service and innovation (Lee et al., 2001; Krause, 2001). 

Gaonkar and Viswanadham (2004) develop a conceptual and analytical framework for 

forming supply base that minimizes potential losses caused by supply chain risk. They 

incorporate the traditional dimensions into categorizing recurrent risk and disruption risk. 

Kull and Talluri (2008) propose a more feasible and meaningful decision tool for supplier 

selection in risk management context by relaxing the categorization process. Based on the 

traditional dimensions, they develop a framework for risk assessment and effectively in-

tegrate the risk issues into supplier evaluation using AHP.  

The relationship between investment and its expected returns is a fundamental issue 

in businesses. We know that a set of actions, which provide higher returns and/or im-

proved risk coverage abilities require a certain amount of upfront investment costs. In the 

same vein, Hendricks and Singhal (2005) state that investments in increasing reliability 
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and responsiveness of supply chains could be viewed as buying insurance against the 

economic loss from disruption. However, investment in changes or development is itself 

inherently risky (Hallikas et al., 2004). Therefore, careful consideration for investment 

decisions is a necessary part of SCRM. Kleindorfer and Saad (2005) chart a conceptual 

framework that trades off risk mitigation investments, including the cost of management 

systems, against potential losses caused by supply chain risks arising from disruptions. 

This investment evaluation approach for risk management may supplement the supplier 

selection approach. However, the extant investment evaluation approaches only focus on 

disruptions. Risk assessment process is generally composed of two dimensions, assessing 

the likelihood and impact of a potential problem, i.e., likelihood⨂impact. Based on this 

assessment process, even though recurrent risks have low impact, they have high likeli-

hood, which makes recurrent risks equally important as disruptions. Thus, we also need 

to take recurrent risks into consideration while making investment decisions. 

The extensive supply chain risk sources and the broad range of risk management ap-

proaches result in various risk mitigating strategies in supply chains. Some recent studies 

have sought to define risk-mitigating strategies by considering the strategic "fit" concept 

(Jüttner et al., 2003; Chopra and Sodhi, 2004). Jüttner et al. (2003) note four types of risk 

mitigation strategies that can be adapted to supply chain contexts from five generic strat-

egies introduced by Miller (1992): (i) avoidance; (ii) control; (iii) cooperation; and (iv) 

flexibility. They roughly explain the suitability of each strategy with emphasis on the 

concept of "fit". The strategies are composed of different set of enablers that interact with 

each other (Faisal et al., 2006). Each enabler covers its own set of risk drivers and the in-

teraction of enablers leads the coverage of each risk driver to interact with each other, 
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which can be restated that the risk mitigation strategies are eventually composed of the 

coverage of not only individual risk drivers but also their interactions. In that sense, Cho-

pra and Sodhi (2004) have categorized risk drivers and make a list of possible risk miti-

gation strategies based on the interaction of individual risks: (i) add capacity; (ii) add in-

ventory; (iii) have redundant suppliers; (iv) increase responsiveness; (v) increase flexibil-

ity; (vi) aggregate or pool demand; (vii) increase capacity; and (viii) have more customer 

accounts.  

The supplier selection literature in risk management generally does not address how 

the supply base formation might differ if buyers focus tactical or strategic level planning 

(i.e., medium to long term planning). Some recent research studies have examined long-

term factors such as product life cycle issues in the supply chain risk context (Kull and 

Talluri, 2008), but have not specifically investigated the effect of inventory level and its 

dynamic nature of the relationship between periods during the planning horizon that are 

critical in practice. Moreover, only a few previous articles have examined the impact of a 

company's risk attitude on SCRM practices. We conjecture that differences in risk atti-

tude may affect the selection of risk mitigation strategies. Furthermore, there is no sys-

tematic tool for selecting the best-fit risk mitigation strategy under the consideration of 

supplier selection. In this study, we propose a highly flexible and extendible decision-

making methodology that takes these issues into account under the dyad of a focal com-

pany and its supply base. 

3. Problem Description 

We consider a three-tier supply chain composed of a focal company, potential suppli-

ers and customers. We assume that there are multiple customers but one of these custom-
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ers is more important than the rest and designated as the “main customers” (see Figure 

E1-1).  

 
Figure E1-1: Three-tier supply chain setting 

There are two conflicting goals that the focal company is trying to achieve simultane-

ously: One is cost minimization. The other is having a reliable flow of supplies from the 

supply base (upstream risk mitigation) and dealing with customer’s demand uncertainty 

(downstream risk mitigation), i.e., risk minimization or reliability maximization. We as-

sume that each of the various potential suppliers have different levels of reliability. Thus, 

sourcing more from a reliable supplier decreases upstream risk and increases sourcing 

reliability. Similarly, in order to reduce downstream risk, the focal company might store 

and/or deliver redundant units of finished goods to the customer to reduce (or avoid) the 

shortage from defects among the delivered goods. Within this context, we consider four 

risk mitigation strategies, which have been also studied in the existing literature: two 

strategies related to supplier selection, thus mitigating upstream risk, and two strategies 

related internal capabilities, mitigating downstream risk. Table E1-1 summarizes the 

strategies from the focal company’s perspective. 

The first two strategies (ARS and HFS) inherently contain the supplier selection issue. 

However, the other two strategies (IC and IV) can be applied without modifying the ex-

isting supply base. In the following section, we first test if the strategies in Table E1-1 

can reduce risk (increase reliability) and, at the same time, reduce cost (compared to base 
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case, i.e., without applying any mitigation strategies). In addition, we will investigate if 

the downstream risk mitigation strategies (IC and IV) should be considered at the suppli-

er selection stage with upstream risk mitigation strategies (ARS and HFS) for better re-

sults. 

Table E1-1: Risk mitigation strategies (Chopra and Sodhi, 2004; Tomlin, 2006; Talluri et al., 2013) 
 

 

 

Mitigation Strategy 
 

 

Approach/ 

Classification 
 

 

 

Description 
 

 

Acquire redundant 

supplier(s) (ARS) 
 

 

Upstream risk mitigation/ 

Redundancy 
 

 

Increase the number of supplier, i.e., modify existing 

supply base from single to dual/multiple sourcing 
 

 

Have more flexible 

supplier(s) (HFS) 
 

 

Upstream risk mitigation/ 

Flexibility 
 

 

Replace existing supplier(s) with new supplier(s) 

that offers more flexibility in volume  

 

Increase capacity 

(IC) 
 

 

Downstream risk mitigation/ 

Redundancy 
 

 

Increase internal production/manufacturing capacity 

by 20% of existing capacity 
 

 

Increase inventory 

capacity (IV) 
 

 

Downstream risk mitigation/ 

Redundancy 
 

 

Increase inventory carrying capacity by 20% of 

existing capacity 
 

4. Model 

Supplier selection and risk mitigation strategy selection is a medium term tactical lev-

el planning problem (Cheaitou and Khan, 2015). Thus, we consider a one year planning 

model with weekly demand and supply replenishment. We develop a multi-period sto-

chastic optimization problem with fifty two periods, by utilizing multi-objective mixed 

integer programming (MOMIP), which is a suitable approach for considering two con-

flicting objectives. 

We assume that the focal company produces one type of product. Without loss of 

generality, we further assume that the focal company requires one unit of raw material to 

produce one unit of finished product (Zimmer, 2002). 

4.1. Base Model 



 

14 

 

The problem is inherently a stochastic multi-stage decision problem in the operating 

variables and involving several sets of operating and structural constraints. Each decision 

stage corresponds to a planning period (denoted by 𝑡). 

 Objective Functions: 

Min∑𝑐𝑖𝑥𝑖1
𝑖

+ E𝜃1 [Min  (ℎ𝐼1 + 𝑙(Υ1 + 𝑂1) + 𝑝𝑆1) +∑𝑐𝑖𝑥𝑖2
𝑖

+ E𝜃2 [Min  (ℎ𝐼2 + 𝑙(Υ2 + 𝑂2) + 𝑝𝑆2) +∑𝑐𝑖𝑥𝑖3
𝑖

+ E𝜃3 [⋯+ E𝜃𝑇[Min  (ℎ𝐼𝑇 + 𝑙(Υ𝑇 + 𝑂𝑇) + 𝑝𝑆𝑇)]]]] + 𝑓𝑖𝑧𝑖 

(1) cost 

Max∑𝑟𝑖𝑥𝑖1
𝑖

+ E𝜃1 [Max  𝑟𝑓(𝐼1 + Υ1) +∑𝑟𝑖𝑥𝑖2
𝑖

+ E𝜃2 [Max  𝑟𝑓(𝐼2 + Υ2) +∑𝑟𝑖𝑥𝑖3
𝑖

+ E𝜃3 [⋯+ E𝜃𝑇[Max  𝑟𝑓Υ𝑇]]]] 

(1) reliability 

Subject to 

𝑥𝑖𝑡 ≤ 𝐶𝐴𝑖𝑧𝑖 for ∀𝑖 and 𝑡  (2) 

𝑥𝑖𝑡 ≥ 𝑀𝐼𝑖𝑧𝑖 for ∀𝑖 and 𝑡 (3)  

(1− 𝛼𝑖)𝑥𝑖𝑡−1 ≤ 𝑥𝑖𝑡 ≤ (1+ 𝛼𝑖)𝑥𝑖𝑡−1 for ∀𝑖 and 𝑡 (4) 

𝐼𝑡 = 𝐼𝑡−1 −Υ𝑡 +∑𝑥𝑖𝑡
𝑖

 for ∀𝑡, 𝐼0 = 0 (5) 

𝐼𝐿 ≤ 𝐼𝑡 ≤ 𝐼𝑈 for ∀𝑡 < 𝑇, 𝐼𝑇 can be less than 𝐼𝐿 (6) 

𝐼𝑡−1 +∑𝑥𝑖𝑡
𝑖

− Υ𝑡 ≤ 𝐼𝑈 for ∀𝑡 (7) 

Υ𝑡 ≤ 𝐶𝐴𝑓 for ∀𝑡 (8) 

𝑆𝑡 ≥ 𝐷𝑡 − Υ𝑡 for ∀𝑡 (9) 
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𝑂𝑡 ≥ Υ𝑡 − 𝐷𝑡 for ∀𝑡 (10) 

∑𝑧𝑖
𝑖

= 𝑁  (11) 

𝑥𝑖𝑡, Υ𝑡, 𝐼𝑡, 𝑆𝑡, 𝑂𝑡 ≥ 0 and integer and 𝑧𝑖 
is binary 

for ∀𝑖 and 𝑡 (12) 

, where  

 Decision variables: 

𝑥𝑖𝑡 : order quantity from supplier 𝑖 in period 𝑡. 

Υ𝑡 : supply quantity to customer in period 𝑡. 

𝑧𝑖 : binary variable that is 1 if supplier 𝑖 is selected, 0 otherwise. 

𝐼𝑡 : focal company’s ending inventory level in period 𝑡. 

𝑆𝑡 : amount of shortage in period 𝑡. 

𝑂𝑡 : over-delivered amount in period 𝑡. 

 Parameters: 

𝑐𝑡 : unit purchasing price for supplier 𝑖. 

𝑓𝑖 : fixed cost for supplier 𝑖 

ℎ : unit inventory holding cost. 

𝑝 : unit penalty cost for shortage. (= 𝑐𝑖̅ ∙ 1.5 ∙ 1.5) 

𝑙 : unit transportation cost. (= 𝑐𝑖̅ ∙ 1.5 ∙ 0.18) 

𝐶𝐴𝑖 : capacity of supplier 𝑖. 

𝐶𝐴𝑓 : capacity of focal company. 

𝑀𝐼𝑖 : minimum order quantity of supplier 𝑖. 

𝛼𝑖 : volume flexibility of supplier 𝑖, 0 ≤ 𝛼𝑖 ≤ 1. 

𝐷𝑡 : random demand of period 𝑡 with distribution parameter 𝜃𝑡. 

𝐼𝐿 : inventory lower bound (safety stock level of the focal company). 

𝐼𝑈 : inventory upper bound (inventory holding capacity of the focal company). 

𝑁 : number of supplier(s) utilized. 

𝑟𝑖 : AHP score (reliability) of supplier 𝑖. 

𝑟𝑓 : relative reliability of focal company. (= 𝑟𝑖̅) 
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The first term in cost objective function, Eq. (1) cost, is sourcing cost in the first 

planning period. The second term represents the total cost of the 𝑇-stage decisions (in-

volving the wait and see inventory, delivered/over delivered, and shortage variables) at 

each planning period and the here-and-now sourcing variables of the adjacent planning 

period. It also includes a fixed cost for selected supplier 𝑖 at the end of the cost objective 

function. Similarly, in the reliability objective function, Eq. (1) reliability, the first term 

represent reliability from the sourcing in the first period. The second term represents the 

total reliability of the 𝑇-stage decisions (involving the wait and see inventory and supply 

amount (to customer) variables) at each planning period and the here-and-now sourcing 

variables of the adjacent planning period. For the last period, i.e., period 𝑇, inventory is 

of no use, thus it is not included in the calculation of total reliability of the focal company. 

The nested expectations of E𝜃1 [E𝜃2[⋯E𝜃𝑇[ ] ]] denotes that the expectation is com-

puted over the probability distribution of the cumulative demand, 𝐷𝑡, with parameter set 

𝜃𝑡 up to each planning period 𝑡 where the inner expectation is conditioned on the realiza-

tion of the uncertain demand of the outer expectation. Thus, the sourcing variables, 𝑥𝑖𝑡, 

are determined after the demand requirements up to period 𝑡 − 1 have been realized but 

before the demand outcomes for period 𝑡 and subsequent periods are known. Consequent-

ly, the decision on the sourcing variables for period 𝑡 should take into account the state at 

the beginning of planning period 𝑡 and the possible demand outcomes in later periods. 

This is formalized through constraint (5) which links the decisions of two adjacent plan-

ning periods. The supply variables, Y𝑡, take into account the demand outcomes for plan-

ning period 𝑡 and serve to constrain the state variable 𝐼𝑡, 𝑂𝑡, and 𝑆𝑡. 
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The constraints, Eq. (2) - (11), are generated for each demand sample path (scenario) 

at each planning period in the deterministic equivalent formulation. Eq. (2) limits sourc-

ing amount up to each supplier's capacity. Eq. (3) constrains the minimum sourcing 

amount for suppliers. Eq. (4) sets upper and lower bounds of sourcing amount based on 

the volume flexibility offered by suppliers. Eq. (5) is a typical inventory balance equation 

between adjacent periods. Note that 𝐼𝑡 is determined based on demand realization up to 

planning period 𝑡. Eq. (6) limits upper bound of inventory level due to inventory carrying 

capacity of the focal company and its lower bound of inventory level due to the safety 

stock set by the focal company. Eq. (7) constrains the focal company's production capaci-

ty. This constraint is redundant, since Eq. (5) and (6) can take care of this. Eq. (8) limits 

focal company’s supply amount to the customer. Eq. (9) and (10) represent shortage and 

over delivered constraints, respectively. Eq. (11) restricts the number of selected suppli-

ers. 

If the demand distribution were a discrete function, the evolution of random demands 

over time can be represented by the tree structure. However, the total number of scenarios 

will be extremely large. For example, if there are Σ possible next-period demand realiza-

tions at each node, the total number of scenarios over 𝑇 periods is Σ𝑇. Thus, for computa-

tional efficiency, we employ an approximation strategy through simulation (Jung et al., 

2004) rather than applying discrete time Markov decision processes using a dynamic pro-

gramming strategy. 

4.2. Base MOMIP with Deterministic Model 

The deterministic models are required for their execution within the simulation. The 

models are derived from the original stochastic program formulation developed in the 
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previous section. In addition, the deterministic models are transformed to the MOMIP so 

that it can address cost and reliability simultaneously. 

 Deterministic Objective Functions: 

Min∑∑𝑐𝑖𝑥𝑖𝑡
𝑡𝑖

+∑[ℎ𝐼𝑡 + 𝑙(Υ𝑡 + 𝑂𝑡) + 𝑝𝑆𝑡]

𝑡

+ 𝑓𝑖𝑧𝑖 (13) cost 

Max∑∑𝑟𝑖𝑥𝑖𝑡
𝑡𝑖

+∑[𝑟𝑓(𝐼𝑡 + Υ𝑡)]

𝑡

− 𝑟𝑓𝐼𝑇 (13) reliability 

Subject to 

Eq. (2)… Eq. (8), Eq. (11), and Eq. (12) 

𝑆𝑡 ≥ 𝐸[𝐷𝑡] − Υ𝑡 for ∀𝑡 (14) 

𝑂𝑡 ≥ Υ𝑡 − 𝐸[𝐷𝑡] for ∀𝑡 (15) 

The first term of Eq. (13) cost (Eq. (13) reliability) represents total procurement cost 

(total reliability from sourcing) over planning horizon. The second term of Eq. (13) - cost 

(Eq. (13) - rel.) represents total inventory carrying, delivery, and penalty costs (total reli-

ability from inventory and supply to the customer) over planning horizon. The last tern of 

Eq. (13) cost (Eq. (13) reliability) implies fixed cost for supplier selection (deduction of 

reliability of last period’s inventory). Most of all the constraints (used in the model in 

section 4.1) are maintained, but Eq. (9) and (10) are modified by applying expected de-

mand, 𝐸[𝐷𝑡], instead of stochastic demand, 𝐷𝑡, for the purpose of simulation. The details 

of simulation will be discussed in section 5. 

As noted earlier, the problem we are considering is a multi-objective optimization 

problem with two conflicting objective functions. We try to balance the two objectives 

using a min-max strategy to obtain near Pareto optimal solutions. The min-max strategy 
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compares relative deviations from the separately attainable optimum solutions by solving 

the optimization problems for each objective separately, i.e., solve the optimization prob-

lem with all constraints for Eq. (13) cost and Eq. (13) reliability separately in order to de-

rive the best possible cost (lowest cost) and best possible reliability (highest reliability). 

Once we have the best possible values, the two models are combined as one MOMIP 

with three additional variables and two additional constraints. We use the following mas-

ter formulation to perform this: 

 Deterministic MOMIP for base model: 

Min𝑄 (16) 

Subject to 

Eq. (2)… Eq. (8), Eq. (11), Eq. (12), Eq. (14), and Eq. (15) 

−
𝜔𝑅(𝑅𝐾 − 𝐵𝑅)

𝐵𝑅
≤ 𝑄  (17) 

𝜔𝐶(𝐶𝑆 − 𝐵𝐶)

𝐵𝐶
≤ 𝑄  (18) 

, where 𝑄 is a variable to balance the two objectives, 𝑄 ≥ 0 and 𝐶𝑆 and  𝑅𝐾 are corre-

sponding value of the cost objective function (Eq. (13) reliability) and reliability function 

(Eq. (13) cost.), respectively. 

 Additional parameters: 

𝜔𝐶 : weight for cost. 

𝜔𝑅 : weight for reliability. 

𝐵𝐶 : cost achieved when cost objective function (Eq. (13) - cost) is optimized in isola-

tion 

𝐵𝑅 : reliability achieved when reliability objective function (Eq. (13) - rel.) is optimized 

in isolation 
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Note that the weights project the risk attitude of a focal company; the higher (lower) 

𝜔𝐶 compared to 𝜔𝑅, the more risk taking (risk averse) the company is. The changes in the 

weights enable us to perform the Pareto analysis.  

4.3. Models for Sole Strategy Selection 

We expect that the Pareto analysis might have a monotone increasing shape curve, i.e., 

total reliability is increasing in total cost, i.e., as 
𝜔𝑅

𝜔𝐶
 increases the curves move from the 

lower left to the upper right (see Figure E1-2). However, each risk mitigation strategy has 

its own parameter set, which implies that each strategy’s 𝐵𝐶 and 𝐵𝑅 will be different so 

that comparing 𝑄 values of the strategies at a certain weights, 𝜔𝐶 and 𝜔𝑅, is meaningless. 

Thus, separately estimating cost/reliability curves of the strategies first, and then compar-

ing them at a certain total cost or total reliability level will derive meaningful results. 

 
Figure E1-2: Depiction of anticipated comparison between two different strategies 

As we can see the Figure E1-2, at a certain total cost level (the vertical dotted-line) 

the grey curve shows better performance compared to the black curve on the left side, 

while the black curve presents better result on the right side, since higher reliability level 

can be achieved at a certain cost. Each risk mitigation strategy’s curve (sole strategy) can 

be separately drawn by the following models.  

Based on the supplier(s) selected in the base MOMIP, i.e., 𝑧𝑖
∗’s become parameters in 

strategy selection, we modify Eq. (1) - (18) with several additional decision variables and 
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parameters and related constraints. Script 𝜅  denotes risk mitigation strategy, i.e., 𝜅 ∈

{ARS, HFS, IC, IV}. 

 Deterministic MOMIP for each strategy: 

Min𝑄𝜅 (19) 

Subject to 

Eq. (2)… Eq. (8), Eq. (11), Eq. (12), Eq. (14), Eq. (15), and Eq. (17) with addition of su-

perscript 𝜅 on all decision variables and some of focal company’s parameters 

Table E1-2: Modifications for sole strategy selection 
 

  

Mitigation 

Strategy 
 

 

Decision variables 

(As is/To be) 

 

Parameters 

(As is/To be) 
 

 

Modified and additional Constraints 

(As is/To be) 
 

 

 

 
 

 

ARS 
 

 

 

𝑥𝑖𝑡  / 𝑥𝑖𝑡
ARS; Υ𝑡 / Υ𝑡

ARS;  𝐼𝑡 / 𝐼𝑡
ARS 

 

𝑆𝑡 / 𝑆𝑡
ARS  ;  𝑂𝑡 / 𝑂𝑡

ARS 

 

 

 

𝑅𝐾 / 𝑅𝐾ARS 

𝐶𝑆 / 𝐶𝑆ARS 
 

 

  

∑ 𝑧𝑖𝑖 = 𝑁/ ∑ 𝑧𝑖
ARS

𝑖 = 𝑁ARS, where 𝑁ARS > 𝑁 
 

𝑧𝑖
ARS ≥ 𝑧𝑖

∗ 
 

 

 

 

 

HFS 
 

 

𝑥𝑖𝑡  / 𝑥𝑖𝑡
HFS; Υ𝑡 / Υ𝑡

HFS ;  𝐼𝑡 / 𝐼𝑡
HFS 

 

𝑆𝑡 / 𝑆𝑡
HFS  ;  𝑂𝑡 / 𝑂𝑡

HFS 
 

 

 

𝑅𝐾 / 𝑅𝐾HFS 

𝐶𝑆 / 𝐶𝑆HFS 
 

 

 

 

∑ 𝛼𝑖𝑧𝑖
HFS

𝑖 ≥ ∑ 𝛼𝑖𝑧𝑖
∗

𝑖   
 

 
 

 

 

 
 

IC 
 

 
 

 

𝑥𝑖𝑡  / 𝑥𝑖𝑡
IC  ;  Υ𝑡 / Υ𝑡

IC  ;  𝐼𝑡 / 𝐼𝑡
IC  

 

𝑆𝑡 / 𝑆𝑡
IC  ;  𝑂𝑡 / 𝑂𝑡

IC 
 

 
 

𝑅𝐾 / 𝑅𝐾IC 

𝐶𝑆 / 𝐶𝑆IC 

𝐶𝐴𝑓 / 𝐶𝐴𝑓
IC 

 
 

 
 

 

 

 

𝑧𝑖
IC = 𝑧𝑖

∗ 
 

 

 

 

 
 

IV 
 

 

 

 

𝑥𝑖𝑡  / 𝑥𝑖𝑡
IV  ;  Υ𝑡 / Υ𝑡

IV  ;  𝐼𝑡 / 𝐼𝑡
IV  

 

𝑆𝑡 / 𝑆𝑡
IV  ;  𝑂𝑡 / 𝑂𝑡

IV 
 

 

 

𝑅𝐾 / 𝑅𝐾IV 

𝐶𝑆 / 𝐶𝑆IV 

𝐼𝑈 / 𝐼𝑈IV 
 

   

 

 

 

𝑧𝑖
IV = 𝑧𝑖

∗ 
 

 

Modified cost objective function 
 

 

Min∑ ∑ 𝑐𝑖𝑥𝑖𝑡
𝜅

𝑡𝑖 + ∑ [ℎ𝐼𝑡
𝜅 + 𝑙(Υ𝑡

𝜅 + 𝑂𝑡
𝜅) + 𝑝𝑆𝑡

𝜅]𝑡 + 𝑓𝑖𝑧𝑖
𝜅 + 𝐼𝑆𝜅, where 𝐼𝑆𝜅 is investment cost for strategy 

𝜅 ∈ {IC, IV}. 𝐵𝐶𝜅 and 𝐵𝑅𝜅  are corresponding best possible cost and reliability when solving the prob-

lem of strategy 𝜅 in isolation of cost and reliability objective function, respectively. 
 

In addition, cost objective function and its corresponding 𝐵𝐶𝜅 need to be modified 

and several additional constraints are required to be added. The modifications are sum-

marized in the Table E1-2 above. 

4.4. Models for Simultaneous Selection for Strategies 
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Based on our sample strategies, we can derive four different mixture of upstream and 

downstream risk mitigation strategies; ARS + IC, ARS + IV, HFS + IC, and HFS + IV. 

Similar to the sole strategy selection, the models are modified based on the base MOMIP. 

Each mixture model take upstream strategy’s supplier related constraints, while taking 

downstream strategy’s modified parameters. For example, the mixture of ARS + IC can 

have ARS’s modified and additional constraints rather than having IC’s additional con-

straint appeared in Table E1-2, i.e., ∑ 𝑧𝑖
ARS + IC

𝑖 = 𝑁ARS = 𝑁ARS + IC  and 𝑧𝑖
ARS + IC ≥ 𝑧𝑖

∗. 

However, this mixture will apply the modified focal company’s capacity, i.e., 

𝐶𝐴𝑓
ARS + IC = 𝐶𝐴𝑓

IC. Moreover, the investment costs are the same as downstream risk miti-

gation strategies’ investment costs, i.e., 𝐼𝑆ARS + IC = 𝐼𝑆IC. 

5. Numerical Experiments and Results 

The models (including reference, sole strategy selection, and simultaneous selection 

of strategies) are initially solved with deterministic MOMIP under expected demand. 

Then, the repeated simulation of the supply chain operation will be applied based on the 

initial solutions over the planning horizon, each with a given Monte-Carlo sample of the 

demands. Within each simulation, a series of planning problems are solved under the roll-

ing horizon scheme and solutions are updated. The following summarizes the procedure 

for executing a timeline. 

Step 0: run the deterministic base MOMIP with given state (based on the forecasted de-

mand) to obtain the sourcing decision 𝑥𝑖𝑡 for period 𝑡. (at the first iteration, 𝑡 = 1) 

Step 1: run the discrete event simulation with demand outcomes (realized demand from 

the Monte-Carlo sampling) for the planning period 𝑡, i.e., revise Y𝑡, 𝑆𝑡, 𝑂𝑡, and  𝐼𝑡. 

Note that the demand outcomes are recorded for future steps. 
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Step 2: update and record 𝐼𝑡 at the end of planning period 𝑡 and parameterize 𝑧𝑖’s, i.e., 

fixing 𝑧𝑖 = 𝑧𝑖
∗. 

Step 3: set 𝑡 = 𝑡 + 1 and go to step 0 until 𝑡 = 𝑇. 

Step 4: set 𝑡 = 1 and initialize 𝑧𝑖
𝜅 = 𝑧𝑖

∗. 

Step 5: separately run the deterministic MOMIP models (including four sole strategies 

and four simultaneous selection of strategies) with given state (based on the rec-

orded forecasted demand at Step 1) to obtain the sourcing decision 𝑥𝑖𝑡
𝜅  for period 𝑡. 

Step 6: separately run the discrete event simulations for all eight models with demand 

outcomes (recorded at Step 1) for the planning period 𝑡, i.e., revise Y𝑡
𝜅, 𝑆𝑡

𝜅 , 𝑂𝑡
𝜅 , 

and  𝐼𝑡
𝜅. 

Step 7: update and record 𝐼𝑡
𝜅 at the end of planning period 𝑡 and parameterize 𝑧𝑖

𝜅’s, i.e., 

fix 𝑧𝑖
𝜅 = 𝑧𝑖

𝜅∗. 

Step 8: set 𝑡 = 𝑡 + 1 and go to step 5 until 𝑡 = 𝑇. 

By repeating the above procedure for a sufficient number times, we measure the per-

formance of each individual mitigation strategy as well as each mixed strategy. We run 

the models with the input parameters used in Kull and Talluri (2008) including infor-

mation related to suppliers, focal company and customer demand. For investment cost, 

𝐼𝑆IC and 𝐼𝑆IV, we employ the estimation approach used in Talluri et al. (2013). Table E1-

3 indicates all the parameters used in the analysis with corresponding sources and as-

sumptions. 

By applying Monte-Carlo sampling approach, we generate one hundred sets of nor-

mally distributed synthetic demand data. We assume stationary demand 𝐷𝑡 over planning 

horizon (52 weeks), i.e., 𝜃1 = 𝜃2 = ⋯𝜃52  with 𝜇𝐷 =2,000,000/52 and 𝜎𝐷
2 = 0.2 ∙ 𝜇𝐷 . 
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Figure E1-3 summarizes our data sets (100 sets) from the Monte-Carlo sampling. Based 

on the demand data and simulation model, we initially run the base MOMIP model. 

Table E1-3: Input parameters 
 

 

Input Parameters 
 

Supplier A Supplier B Supplier C 

 

Monthly Capacity
a 

 

2,000,000/52 2,000,000/52 2,000,000/52 
 

Minimum Order Quan-

tity 
 

40,000/52 40,000/52 40,000/52 

 

Unit Price 
 

$0.3925 $0.3850 $0. 3850 
 

Fixed Cost 
 

$2,000 $2,000 $2,000 
 

Flexibility
b 

 

𝜉 × 0.63 𝜉 × 0.11 𝜉 × 0.26 
 

Reliability
c 

 

0.36 0.33 0.31 
 

a. We assume that focal company’s capacity is also 2,000,000/52 

b. 𝜉 is an arbitrary constant with range 0 ≤ 𝜉 × 0.63 ≤ 1. Analysis is done over various 𝜉 = 1.0. 

c. We assume that focal company’s reliability is equal to the average reliability of suppliers 
 

 

 IC 
 

IV 
 

 

Investment Cost
d 

 

4052.50 
 

973.08 
 

 

Penalty Cost
e 

 

Average Unit Cost × 1.5 × 1.5 
 

 Inventory Holding Cost
f 

 

Average Unit Cost × 0.2 
 

 Delivery Cost
g 

 

Average Unit Cost × 1.5 × 0.18 

 

Inventory Carrying  

Capacity
h 

 

Maximum = 2,000,000/52 

Minimum (Safety Stock) = Maxi-

mum × 0.2 

Maximum = Maximum of IC 

× 120% 
Minimum = Minimum of IC 

 

d. Talluri et al. (2013) 

e. We assume that material cost is 60-65% of the cost of finished goods; Penalty cost is 150% of unit rev-

enue (unit revenue = 150% × Unit cost) 

f. Inventory holding cost is calculated based on the value of raw material 

g. http://www.smartgrowthamerica.org/complete-streets/complete-streets-

fundamentals/factsheets/transportation-costs 

h. We assume that initial maximum capacity is weekly production quantity and minimum capacity is one 

day production quantity under assumption that operating days per week is five days. 
 

For expressing focal company’s risk attitude, we run the model over a variety of 

weight sets (Table E1-4). The result shows that total reliability is increasing with a de-

creasing rate in total cost, i.e., a concave shaped curve. This result is consistent to the 

findings in Yildiz et al. (2015). The figure on the left in the Figure E1-4 is normalized 

results of all the 100 demand sets, while the figure on the right is averaged result of the 
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100 demand sets. The left one more clearly shows that the concave shape is still main-

tained at highly emphasized reliability cases. However, we utilize the right one in further 

analysis, since it illustrates the results more simply. 

 
Figure E1-3: Simulated demand information over planning period 
 

  
Figure E1-4: Base MOMIP results (Reference) 

Table E1-4: Weight sets 
 

 
Cost 

Only 
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 

Rel. 

Only 

𝝎𝑪 

 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 

𝝎𝑹 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

The result indicates that even a small emphasis placed on supply chain reliability (Set 

1 in Table E1-4) makes a big difference in the solution compared to the case that only 

considers cost (Cost Only in Table E1-4). In this range, a large improvement in reliability 

is achieved with a relatively low increase in total cost. However, the effectiveness (on 
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reliability improvement) of the spending is decreasing (the slope of the curve is decreas-

ing as the ratio of 𝜔𝐶 to 𝜔𝑅 decreases. The base model is constrained by single sourcing, 

which means that this model reduces risk (increase reliability) only through changing 

sourcing quantity, supply amount to the customer, and inventory level. The next set of 

figures show the effects of risk mitigation strategies with sole strategy selection.  

 
Figure E1-5.1: Upstream risk mitigations 

 
Figure E1-5.2: Downstream risk mitigations 

With the parameter set and demand data used, upstream risk mitigation strategies do 

not seem to result in much improvement over the reference results with no mitigation 

strategy used (Figure E1-5.1), while downstream risk mitigation strategies improve the 

focal company’s performance in both cost and risk. It is because the focal company’s 

(manufacturing) capacity is tight (i.e., manufacturing capacity is equal to the expected 

demand). Thus, increase sourcing ability from the dual sourcing (ARS) does not increase 

focal company’s performance over all the weight sets. Moreover, the tight capacity en-

forces the focal company sources redundant quantities, which means that volume flexibil-

ity (HFS) can increase a little bit of performance when the focal company’s risk attitude 

is risk taking, but it does not increase the performance significantly as the attitude be-

comes more risk averse.  
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In Figure E1-5.2, we can initially confirm our first conjecture that the best strategy 

can vary depending on focal company’s risk attitude. The IC is better strategy when the 

focal company’s risk attitude is risk taking and risk neutral. However, IV becomes the 

better strategy when the focal company’s risk attitude is risk averse. It is also because of 

the tight capacity. The increased (manufacturing) capacity (IC) enables the focal compa-

ny can reduce lost sales (increase demand satisfaction). This can reduce cost and at the 

same time increase reliability, when focal company’s risk attitude is not risk averse. 

However, this positive effect is attenuated as the risk attitude becomes more risk averse, 

since the focal company will source more quantity and deliver more quantity under this 

attitude even in the base (reference) case. This behavior in the reference can be strength-

ened with IV so that the performance under the attitude of high risk averse can be in-

creased. 

Figure E1-6.1 shows that the mixed strategy (ARS + IC) results in superior perfor-

mance compared to the individual strategies (ARS only and IC only). This result can be 

interpreted as an indicator of the importance of alignment between the individual strate-

gies in a mixed strategy in the following way: Since the capacity of the focal company is 

tight (i.e., expected demand is equal to capacity), the capacity increase (IC) allows the 

company to utilize the increased sourcing amount achieved from the dual sourcing (ARS). 

In Figure E1-6.2, the mixed strategy does not result in a similar improvement over the 

individual strategies since there is not an alignment between these strategies: With the 

increased inventory capacity (IV) and increased sourcing capability (ARS), although the 

focal company can store more inventory, it cannot increase its delivery of finished prod-
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ucts at the same level due to constrained production capacity, which limits its ability to 

increase the total reliability.  

 
Figure E1-6.1: ARS + IC 

 
Figure E1-6.2: ARS + IV 

 

 
Figure E1-6.3: HFS + IC 

 

 
Figure E1-6.4: HFS + IV 

Similar results are obtained in Figures E1-6.3 and E1-6.4, which show that the com-

binations of HFS and downstream risk mitigation strategies (IC and IV) do not improve 

the risk mitigation performance compared to the better performance achieved among the 

sole strategies. In other words, the mixture of HFS and IC does not significantly outper-

form IC only strategy (the better strategy among HFS only and IC only). The increased 

focal company capacity (IC) increases the total reliability by increasing supply amount to 

the customer and avoids shortage costs. To achieve this effect, the focal company sources 

some redundant amount from the supplier. Thus, the flexibility in supply side does not 

improve the performance of IC only. Similarly, IV mitigates risk by increasing inventory 

level. Thus, this strategy leads the focal company to source some redundant amount from 



 

29 

 

the supplier. Therefore, the increased flexibility (HFS) does not significantly increase the 

efficiency of the use of IV only. 

6. Conclusions and Extensions 

In this article, we initially expected that different risk attitudes will select different 

risk mitigation strategies. Regarding this expectation, we applied multi objective concept 

in our analysis. The results confirm this expectation. Moreover, we simultaneously ad-

dress the issue of supplier selection during a given planning horizon in a supply chain and 

a consideration of risk mitigation strategy selection with the argument that risk mitigation 

should be considered at the supplier selection phase with the mixture of upstream and 

downstream risk mitigation strategies rather than separately applying a sole strategy. 

The results show that the simultaneous consideration of upstream and downstream risk 

mitigation strategies has the potential for better performance than separately using each 

strategy. However, the mixed strategies do not guarantee that they outperform individual 

strategies, which means that the alignment between the strategies in a mixture is critical 

for better performance. 

We consider only four different strategies including two upstream and two down-

stream strategies. However, there are other risk mitigation strategies developed in litera-

ture. Therefore, an extension of this study could be deriving more well-aligned mixed 

strategies by considering combinations of more mitigation strategies. 
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Abstract 

This paper considers a manufacturer's sourcing decision in a three-tier supply chain 

under disruption risk.  The manufacturer sources identical and critical components from a 

single first-tier supplier (FT). The FT in turn sources identical and critical raw materials 

from a single second-tier supplier (ST). The suppliers in both tiers are unreliable, i.e., 

prone to disruption risk, and supplier diversification is not an available option. In this sit-

uation, increasing supply chain visibility through information sharing is a potential dis-

ruption management strategy for the manufacturer. While the manufacturer can easily 

obtain disruption-risk information for the FT, disruption risk information for the ST is not 

easily accessible to the manufacturer. Instead, the manufacturer must gather ST disrup-

tion risk information via the FT (i.e., sequential information sharing). However, the FT 

may not be willing to share ST information. We study different mechanisms under which 

the manufacturer can obtain ST information, and how this information impacts not only 

manufacturer's but also FT’s decisions and potential profits. We show that information 

sharing makes the manufacturer's sourcing decision more conservative but the FT’s 

sourcing decision more proactive. We demonstrate that there are three ways to induce the 

FT to share its information, and numerically show that their effectiveness is contingent on 

multiple factors including FT and ST reliabilities and information sharing costs. 
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1. Introduction 

A massive Tsunami hit Tōhoku, Japan, on March 11, 2011. As a result, many compa-

nies, particularly in the automotive industry, faced supply chain disruptions. Toyota Mo-

tor Corporation (hereafter referred to as Toyota) was one of the companies affected by 

the recent Tsunami. Before the Tsunami, Toyota had a diverse pool of first-tier suppliers 

(FT) for most of the parts and components which it purchased hedging against supply 

chain disruptions. However, for some components, Toyota had to heavily rely on either 

one or very few FTs because of geographical and/or technological restrictions (McVeigh, 

2011
3
). Given these restrictions in the automotive industry, it is not uncommon for FT 

suppliers to rely on a very limited number of ST suppliers. The Japan Tsunami disrupted 

the operations of some of Toyota’s FTs as well as STs, and, as a result, inhibited Toyo-

ta’s ability to respond to the resulting supply chain disruption (Toyota Annual Report 

2011
4
). 

“Before the disaster, we knew about our FTs but we didn’t know about our second, 

third or fourth tier suppliers,” said Masami Doi, Head of the Public Affairs Division at 

Toyota (Novotny, 2012
5
). Prior to the disaster, Toyota had focused mostly on its FTs. 

The 2011 disaster highlighted the importance of managing higher tiers in the supply 

chain in order to reduce the risk and impact of supply chain disruptions. One way compa-

nies can reduce the risk and impact of disruptions is by increasing information sharing 

among the different tiers in the supply chain. Masami Doi mentioned that “Since the 

quake, we are trying to be able to visualize everything, including these third and fourth 

                                                           
3
 http://europe.autonews.com/article/20110701/ANE/110709998/single-sourcing-risks-highlighted-after-

japan-earthquake 
4
 http://www.toyota-global.com/investors/ir_library/annual/pdf/2011/p35_37.pdf 

5
 http://www.industryweek.com/planning-amp-forecasting/japan-manufacturers-post-tsunami-rethink 
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tiers” (Novotny, 2012). Nevertheless, the process of sharing information is not always 

easy. In the case of Toyota, approximately 50% of FTs were unwilling to share infor-

mation regarding STs with Toyota (Ang et al., 2014).  

Motivated by this and other similar events such as the 2011 Thailand floods that 

caused major disruptions to the electronic manufacturing industry, in this paper, we con-

sider the problem of optimal sourcing decisions when disruptions may occur not only in 

the FT, but also in the ST. Specifically, we examine a stylized model in which a manu-

facturer sources a critical component from a single FT. The FT in turn sources a critical 

raw material from a single ST. We consider a two-period model where disruptions can 

occur in period 2. We assume that the manufacturer and FT can directly estimate the like-

lihood of disruption, or disruption risk, of its immediate supplier. Therefore, the manufac-

turer can estimate the FT disruption risk, while the FT can estimate the ST disruption risk. 

The manufacturer can gather ST disruption risk information only through its FT, i.e., se-

quential information sharing. The manufacturer is interested in obtaining information on 

ST reliability and the inventory level of FT. ST reliability is critical for the manufactur-

er’s optimal sourcing decisions, since FT reliability may be overestimated if information 

related to ST is not considered. In addition, FT’s inventory level information is critical 

for the manufacturer, since inventory can mitigate the negative impact of ST disruption 

on FT reliability.  

 However, the immediate supplier (FT) may not be willing to share ST information. 

FT suppliers may experience concern that sharing ST information with manufacturer may 

affect the strength of the relationship between FT and ST if the manufacturer decides to 

get involved in sourcing decisions (Ang et al., 2014). This is particularly prevalent in in-
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dustries where power asymmetry is common and powerful manufacturers typically influ-

ence FT purchasing practices (Maloni and Benton, 2000).  In such a situation, we test 

three different mechanisms through which the manufacturer can provide the FT with in-

centives to obtain information. The three mechanisms considered are information buying 

(IB), semi-information swapping (SIS), and full information swapping (FIS).  

Using our stylized model and the three incentive mechanisms tested (IB, SIS, and 

FIS), we seek to answer the following questions:  

 How should the manufacturer’s sourcing decisions be modified in the presence of ST 

disruption risk? Furthermore, how are these sourcing decisions different under the 

different information sharing mechanisms considered?  

 What is the effect of information sharing on the FT’s sourcing decisions? 

 Can the different information sharing mechanisms considered increase not only the 

manufacturer’s but also the FT’s profits? If so, what conditions make one mechanism 

better than the others, and why?  

In our model, we characterize the manufacturer’s sourcing behavior when disruption 

risk is considered in both FT and ST. We show that the manufacturer’s optimal sourcing 

decision becomes more conservative when gathering upstream information, i.e., the man-

ufacturer will be more likely to purchase more in the first period, while the FT’s sourcing 

strategy becomes more proactive, i.e., the FT will reduce inventory levels under infor-

mation sharing. In addition, we numerically demonstrate that the benefits of information 

sharing for the manufacturer and FT are contingent on multiple factors especially FT and 

ST reliabilities and information sharing costs.  
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The rest of the paper is structured as follows.  In Section 2, a review of current litera-

ture is presented. Section 3 focuses on the general model description. Section 3.1 de-

scribes the optimal manufacturer’s sourcing decisions considering only FT disruption risk 

and Section 3.2 depicts both FT and ST disruption risk, using different information shar-

ing mechanisms. In Section 3.3, we study the FT’s behavior under information sharing as 

well as non-information sharing. In Section 4, we numerically experiment the effective-

ness of the three information sharing mechanisms explored. Finally, Section 5 presents a 

summary of the main contributions and future extensions of the paper. 

2. Literature Review 

Supply chain risk management (SCRM) is a relatively new area of study. Neverthe-

less, it has attracted significant attention as can be seen by the growing number of re-

search articles published in recent years (Tang, 2006). In the past, most businesses did 

not consider disruption risk when planning their operations, nevertheless, this trend is 

changing. In the early stages of SCRM literature, risk was addressed mainly in the con-

text of manufacturing processes experiencing risk through demand uncertainty, lead-time 

uncertainties, and random yields in production or procurement (e.g., Zipkin, 2000). Vast 

literature considers safety stocks and warehouses between manufacturers and retailers as 

a means to reduce the effect of demand and lead-time uncertainties (Diks et al., 1996; 

Van Houtum et al., 1996; Schwarz and Weng, 2000). Research that explores the impact 

of random yields in production or procurement, where the level of production or supply is 

determined by a random function of the input level, includes the work of Yano and Lee 

(1995), Gurnani et al. (2000), Grosfeld-Nir and Gerchak (2004), and  He and Zhang 

(2008). In addition, an increased interest in how companies should prepare in the case of 
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catastrophic events led to the work by Martha and Vratimos (2002), Simchi-Levi et al. 

(2004), and Chopra and Sodhi (2004) among others.  

As the academic interest began to grow in the area of SCRM, the importance of con-

sidering external providers and their impact on supply chain vulnerability was studied by 

several authors. Klibi et al. (2010) emphasizes the criticality of disruption risk of up-

stream supply chain members in a supply chain. Davis (1993) argues that suppliers’ per-

formance plays a prominent role in the efficiency of a supply chain. Li and Cheng (2010) 

also point out that upstream disruption risk is the most severe factor that threatens supply 

chain continuity. Recent unexpected tragic events, (e.g., 911 terror attacks in 2001, 2011 

Tōhoku earthquake and tsunami, and 2011 Thailand floods) have stimulated both aca-

demia and practitioners to pay attention to disruption management in the supply chain 

(e.g., Snyder et al., 2010). 

The existing disruption management literature has focused on supplier diversification 

as a possible means to mitigate risk. Sheffi (2001) introduces dual supply arrangements in 

strategic supply chain design and provides illustrative analytical formulations for network 

design under disruption risk. The work of Tomlin and Wang (2005) examines the effect 

of single versus dual sourcing on supply chain performance under disruption risk. They 

demonstrate that the preference of dual sourcing increases as supply chain reliability de-

creases. Bernstein et al. (2013) also consider single versus multiple sourcing under dis-

ruption risk and show that diversification is not always the best strategy in risk manage-

ment. Tomlin (2006) analytically presents a generalized supply chain design model by 

focusing on sourcing strategies (i.e., single, dual, or back-up sourcing) with consideration 

of disruptions under two different supplier settings: one is perfectly reliable but expensive 
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and the second being unreliable but cheaper. Chopra et al. (2007) study back-up supply. 

They utilize the same dual supplier setting (reliable and unreliable) and provide an ana-

lytical model while considering disruption risks as well as recurrent risks that cause ran-

dom yield. Hu and Kostamis (2015) study a manufacturer’s optimal sourcing strategy 

when some suppliers may face disruption risk. Using an approximate model the authors 

show that the optimal orders placed to unreliable suppliers are ranked based on a cost-

advantage-to-risk ratio. Yildiz et al. (2015) consider reliable supply chain network design 

problem and demonstrate that dual sourcing can be an effective strategy for improving 

reliability.   

In addition to the literature exploring different sourcing strategies when faced with FT 

disruption risk as discussed above, recent research has also shown the importance of con-

sidering ST disruption risk (e.g., Zsidisin, 2003; Kull and Closs, 2007). Although the im-

portance of considering ST disruption risk is recognized in both academia and practice, 

the related literature in this domain is sparse. To the best of our knowledge, Ang et al. 

(2014) is the only paper that explores disruption management in a multi-tier supply chain 

setting. They consider ST disruption risk in examining a manufacturer's sourcing decision. 

However, they assume a reliable FT and ignore FT disruption risk. They emphasize the 

supply correlation between FTs through their common STs, when diversification strategy 

is available.  

However, in practice, the diversification strategy is not always feasible due to factors 

such as quality requirements, technological needs, or geographical restrictions. Under this 

setting, increasing supply chain visibility through information sharing can be an alterna-

tive strategy. While a vast amount of research has emphasized the importance of infor-
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mation sharing in the supply chain (e.g., Lee et al., 1997; Lee, 2000; Lee et al., 2000; Yu 

et al., 2001), to the best of our knowledge, there is no research that considers supplier’s 

information sharing beyond the FT.  

Our work differs from current literature as we simultaneously explore FT and ST dis-

ruption risk. In addition, our paper is the first to examine the value of higher-tier supplier 

information and consider its impact on both manufacturer's and FT’s sourcing decisions. 

Furthermore, we investigate the effect of information sharing on profits by defining three 

different information sharing mechanisms.  

3. Model 

We consider a three-tier supply chain consisting of a single ST providing a critical 

raw material to a single FT. The FT transforms the raw materials and sells them as criti-

cal components to a single manufacturer who then produces finished products that are 

sold to the end customers as depicted in Figure E2-1. Without loss of generality, we as-

sume that the FT and the manufacturer require one unit of raw material and one unit of 

the component to produce one unit of finished product (Zimmer, 2002). The manufactur-

er purchases components from the FT at price 𝑝, and sells finished products at price 𝑣. 

We assume there are no alternative FT and ST in this setting (Arreola-Risa and De Croix, 

1998). We further assume that any excess inventories will be salvaged at their respective 

locations (at manufacturer or FT).  

We consider a two-period model. Demand for finished products occurs only at the 

lowest echelon (final customer in Figure E2-1) in the supply chain. In anticipation of fu-

ture demand, and in order to hedge against supply uncertainty in period 2, the manufac-

turer and the FT may carry inventory from one period to the next. 
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Figure E2-1: Basic supply chain setting 

The manufacturer can sell at most 𝑑1 and 𝐷2 units of finished product to its customers 

in period 1 and 2, respectively, (we assume that the manufacturer knows 𝑑1, while 𝐷2 is 

unknown and normally distributed with mean 𝜇 and variance 𝜎M
2 ) but may purchase more 

than 𝑑1 units of component from the FT (i.e., 𝑑1 + 𝐼M = 𝑞1 ≥ 𝑑1) in period 1 (note that 

subscript M represents the manufacturer). We assume the FT's capacity is high enough to 

cover the manufacturer’s total ordering quantity (𝑞1) in period 1, 𝑑1 + 𝐼M, where 𝐼M is 

manufacturer’s inventory level. In period 2, however, the FT may experience a disruption 

with probability (1− 𝛼); hence the FT delivers either the full quantity the manufacturer 

orders with probability 𝛼, or zero with probability (1− 𝛼) (Yano and Lee, 1995; Aydin 

et al., 2010; Ang et al., 2014). As is common in the supply chain literature (Snyder et al., 

2010), a supplier's status is either "UP" or "DOWN". Where "UP" means orders are ful-

filled in full and on time, and "DOWN" means orders cannot be fulfilled. In anticipation 

of a supply chain disruption, the manufacturer has the option of preordering 𝐼M units of 

inventory in period 1 to satisfy demand for period 2. Nevertheless, any inventory carried 

from period 1 to period 2 incurs a unit holding cost 𝑝 ∙ ℎM, where 𝑝 is the FT’s selling 

price of the component and ℎM is the inventory holding cost rate, 0 < ℎM < 1. Note that 
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𝑄2 is the manufacturer’s order quantity in period 2. We assume that there is no initial in-

ventory and no backorders, and any unmet demand is lost. 

In addition to potential disruptions at the FT level, the ST may also experience a dis-

ruption with probability (1− 𝛽). In order to hedge against ST disruption risk, FT may 

hold inventory (as raw material). In case ST is disrupted, FT will try to satisfy the manu-

facturer’s demand using available inventory.  

3.1. Manufacturer's Optimal Behavior without Upstream Information 

The manufacturer will have an incentive to purchase components from FT whenever 

profitable, i.e. 𝑣 ≥ 𝑝. Given the possibility of FT’s disruption in period 2, the manufac-

turer will have an incentive to preorder certain amount of inventory in period 1, 𝐼M , 

whenever the expected profit from preordering inventory exceeds the inventory holding 

cost. 

We can estimate the manufacturer’s profit 𝜋M as: 

𝜋M = {
𝜋M

up
, if  FT is not disrupted (Up)

𝜋M
dn, if  FT is disrupted  (Down)

 (1) 

, where  

𝜋M
up
= 𝑣(𝑑1 + 𝐷2) − 𝑝(𝑑1 + 𝐼M) − 𝑝ℎM𝐼M − 𝑝(𝐷2 − 𝐼M)

+ + 𝑠(𝐼M − 𝐷2)
+ 

𝜋M
dn = 𝑣(𝑑1 + 𝐷2) − 𝑝(𝑑1 + 𝐼M) − 𝑝ℎM𝐼M − 𝑣(𝐷2 − 𝐼M)

+ + 𝑝(𝐼M − 𝐷2)
+ 

This yields an expected profit for the manufacturer over two periods of 

E[𝜋M] = (𝑣 − 𝑝)𝑑1 − (𝑣 − (𝛼𝑠 + (1− 𝛼)𝑝))𝜇

− ((1+ ℎM)𝑝 − (𝛼𝑠 + (1− 𝛼)𝑝))𝐼M

− (𝛼(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝))∫ (𝑡 − 𝐼M)
∞

𝐼M

𝑑𝐹(𝑡) 

(2) 
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 Notation: 

𝑣 : Manufacturer's unit selling price of finished good 

𝑝 : 
FT's unit selling price of component (manufacturer’s unit buying price of 

component) 

𝑠 : Manufacturer’s unit salvage value 

ℎM : Manufacturer’s unit inventory holding cost rate  

𝛼 : FT reliability (estimated by the manufacturer) 

𝑑1 : Deterministic demand of period 1 

𝐷2 : Stochastic demand of period 2, 𝐷2~𝑁(𝜇,𝜎M
2 ) 

𝐼M : Manufacturer’s preorder quantity (manufacturer’s inventory level) 

The manufacturer’s optimal order size in period one when FT disruption risk is con-

sidered is described in Proposition 1. 

Proposition 1. In the presence of FT disruption risk, the preorder quantity 𝐼M
∗   placed in 

period 1 (ignoring ST disruption) is given by 

𝐼M
∗ = max (0,𝜎M𝐺

−1 (1 −
(ℎM+𝛼)𝑝−𝛼𝑠

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) + 𝜇) . (3) 

, where 𝐺(𝑧) is the standard normal cumulative distribution. Proof for Proposition 1 is 

included in Appendix A. Proposition 1 indicates that when the manufacturer's unit selling 

price 𝑣 becomes high relative to the FT’s unit selling price 𝑝, the manufacturer will pre-

order more for hedging against disruption risk. Moreover, as the upstream disruption like-

lihood, (1− 𝛼), increases the preorder quantity also increases in order to mitigate the 

negative impact of upstream disruption. This proposition further tells us that when the 

ratio of manufacturer’s unit selling price to FT’s unit selling price, 𝑣
𝑝
 , is low, the manu-

facturer will not carry inventory, i.e., 𝑣
𝑝
< 1+ℎM−𝛼

1−𝛼
 (refer to proof in Appendix A). In addi-

tion, this ratio determines the manufacturer’s behavior in the presence of increased de-
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mand variability. As shown in Appendix A, if  𝑣
𝑝
< (>)2(1+ℎM)−𝛼

1−𝛼
 the manufacturer will 

order less (more) inventory as the demand variability increases. 

3.2. Manufacturer’s Optimal Behavior under Information Sharing Contract 

In Section 3.1, ST disruption risk is ignored, i.e., the model assumes that FT can al-

ways satisfy the manufacturer’s demand if FT is UP. However, if the ST is DOWN in 

period 2, then FT may not be able to satisfy the manufacturer’s full demand in period 2, 

even though FT is UP. In this case, FT can only satisfy the manufacturer’s demand from 

available inventory. Thus, the manufacturer’s demand in period 2 may not be fully satis-

fied. 

Table E2-1: Different information sharing contract mechanisms 
 

 

Mechanism Type 
 

 

Info. Flow 
 

 

Description 
 

Type 1 

Information  

Buying  (IB) 

Uni-directional 

Info. Sharing 

The manufacturer buys upstream information including ST’s 

disruption likelihood and FT’s inventory level from the FT at 

higher cost 

 

Type 2 

Semi-information 

Sharing (SIS) 

Bi-directional 

Info. Sharing 

The manufacturer buys the upstream information from the FT at 

lower cost but provides a part of downstream information (final 

demand) to the FT 

 

Type 3 

Full-information 

Sharing (FIS) 

Bi-directional 

Info. Sharing 

 

The manufacturer and the FT share upstream information (ST’s 

disruption likelihood and FT’s inventory level) and downstream 

information (final demand and the manufacturer’s inventory 

level) at very low cost 
 

 

The manufacturer can estimate its new profit function if information on both ST dis-

ruption likelihood and FT’s inventory level are accessible. Nevertheless as mentioned 

earlier, FT may not be willing to share information regarding ST disruption risk or inven-

tory levels. The manufacturer therefore needs to provide the FT incentives in order to ob-

tain the desired information. We test three different incentive mechanisms: information 
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buying (IB), semi-information sharing (SIS), and full-information sharing (FIS) (see Ta-

ble E2-1 above). 

Under the information buying mechanism (IB), the manufacturer offers an infor-

mation sharing contract with high rewards in exchange for ST disruption information. 

The reward offered by the manufacturer is proportional to the amount of inventory the FT 

keeps at the end of period 1. The manufacturer offers to reward the FT in full for its in-

ventory holding costs. However, if the FT finds the contract conditions to be favorable, it 

may opt to keep too much inventory; thus, the manufacturer will impose an upper bound 

(UB) on the amount of inventory that it is willing to compensate for. While the manufac-

turer may or may not purchase the entire inventory held by FT, in case of ST disruption, 

FT is expected to satisfy the manufacturer’s order of components up to UB. In case FT 

fails to supply the manufacturer’s demand in period 2, it should compensate the manufac-

turer’s loss from supply shortage up to UB. 

From FT’s perspective, final demand information is critical (Lee et al., 1997). Thus, 

in the semi-information sharing mechanism (SIS), the manufacturer offers an information 

sharing contract with relatively lower rewards (compared to the rewards in IB corre-

sponding to full reward of inventory holding costs) for the manufacturer’s desired FT’s 

inventory level and upstream information (ST’s disruption likelihood), but provides final 

demand information to FT. The obligations and advantages of the SIS contract are similar 

to those of IB contract. Additionally, manufacturer’s inventory level plays a critical role 

in FT’s sourcing decisions. Under the full-information sharing mechanism (FIS), the 

manufacturer offers a very low reward (compared to the reward under IB and SIS), but 
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exchanges final demand and inventory level information with the FT. The obligations and 

advantages of the FIS contract are similar to those of the IB contract.   

We now derive profit expressions for the manufacturer under the different infor-

mation sharing contracts considered.  

We use (𝐼MF)𝑛 and 𝒞𝑛 = 𝑝ST(𝑘𝑛 ∙ ℎFT)(𝐼MF)𝑛 to denote respectively, the manufactur-

er’s desired ending inventory of raw material at FT in period 1, and the upstream infor-

mation sharing cost paid by the manufacturer under information sharing mechanism 𝑛, 

𝑛 = {1, 2, 3}. Where 1, 2, and 3 represent IB, SIS, and FIS, contracts, respectively; 𝑘𝑛 

represents the portion of FT inventory holding cost paid by manufacturer under mecha-

nism 𝑛, and ℎFT represents the unit inventory holding cost rate on FT. By slightly modi-

fying expression (1), the profit when the FT is down can be expressed as (𝜋M
dn)

𝑛
= 𝜋M

dn −

𝒞𝑛; the profit when the FT is up is denoted as (𝜋M
up
)
𝑛 

, 

(𝜋M

up
)
𝑛
=

{
 

 
𝑣(𝑑1 + 𝐷2) − 𝑝(𝑑1 + (𝐼M)𝑛) − 𝑝ℎM(𝐼M)𝑛 − 𝑝(𝐷2 − (𝐼M)𝑛)

+                   

       +𝑠((𝐼M)𝑛 − 𝐷2)
+ − 𝒞𝑛  ,                                          if the ST is Up  

𝑣(𝑑1 + 𝐷2) − 𝑝(𝑑1 + (𝐼M)𝑛) − 𝑝ℎM(𝐼M)𝑛 − 𝑣(𝐷2 − (𝐼M)𝑛 − (𝐼MF)𝑛)
+ 

          −𝑝((𝐼MF)𝑛 + (𝐷2 − (𝐼M)𝑛 − (𝐼MF)𝑛)
−) − 𝒞𝑛  , if the ST is Down

 (4) 

𝑝ST : ST’s unit selling price of raw material (FT’s unit buying price of raw material) 

ℎFT : Unit inventory holding cost rate on FT 

𝛽 : ST reliability (estimated by FT) 

(𝐼M)𝑛 : Manufacturer’s inventory under mechanism 𝑛 

(𝐼MF)𝑛 : Manufacture’s desired FT inventory under mechanism 𝑛 

𝑘𝑛 : 
Portion of FT inventory holding cost paid by manufacturer under mechanism 

𝑛, 𝑘1 = 1 and 𝑘1 > 𝑘2 > 𝑘3 > 0 

Based on the different contract mechanisms considered, IB, SIS, and FIS; the ex-

pected profit for the manufacturer is given by: 
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E[(𝜋M)𝑛] = 𝑣(𝑑1 + 𝜇) − 𝑝(𝑑1 + (𝐼M)𝑛) − 𝑝ℎM(𝐼M)𝑛

− (𝛼(1− 𝛽)𝑝 + (1− 𝛼)𝑝 + 𝛼𝛽𝑠)(𝜇 − (𝐼M)𝑛)

− (𝛼𝛽𝑝 + (1− 𝛼)𝑣 − (1− 𝛼)𝑝 − 𝛼𝛽𝑠)∫ (𝑡 − (𝐼M)𝑛)
∞

(𝐼M)𝑛

𝑑𝐹(𝑡)

− 𝛼(1− 𝛽)(𝑣 − 𝑝)∫ (𝑡 − ((𝐼M)𝑛 + (𝐼MF)𝑛))
∞

(𝐼M)𝑛+(𝐼MF)𝑛

𝑑𝐹(𝑡)

− 𝒞𝑛 

(5) 

 

, where 𝒞𝑛 = 𝑝ST(𝑘𝑛 ∙ ℎFT)(𝐼MF)𝑛. We assume that the unit inventory cost of raw materi-

als is lower than that of the components, i.e., 𝑝STℎFT ≤ 𝑝ℎM. 

Proposition 2. When the manufacturer pays upstream information sharing cost to FT, the 

manufacturer’s optimal preorder quantity (𝐼M
∗ )𝑛 and the manufacturer’s desired inventory 

level, (𝐼MF
∗ )𝑛, at FT in period 1 under mechanism 𝑛 are given by: 

(𝐼M
∗ )𝑛 = max (0,𝜎M𝐺

−1 (1 −
(ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠−𝑝ST(𝑘𝑛∙ℎFT)

𝛼𝛽(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) + 𝜇)  and  

(𝐼MF
∗ )𝑛 = 𝜎M𝐺

−1 (1− 𝑝ST(𝑘𝑛∙ℎFT)

𝛼(1−𝛽)(𝑣−𝑝)
) + 𝜇 − (𝐼M

∗ )𝑛, respectively. 

(6-1) 

These expressions hold if (𝐼M
∗ )𝑛 > 0  and   𝑝ST(𝑘𝑛 ∙ ℎFT) < 𝛿((ℎM + 𝛼𝛽)𝑝 −

𝛼𝛽𝑠)(𝛾 + 𝛿)−1, or if (𝐼M
∗ )𝑛 = 0 and  𝑝ST(𝑘𝑛 ∙ ℎFT) < 𝛿; where 𝛿 = 𝛼(1− 𝛽)(𝑣 − 𝑝) (>

0) and 𝛾 = 𝛼𝛽(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝) (> 0).  

Otherwise, the optimal solutions are given by: 

(𝐼M
∗ )𝑛 = max (0,𝜎M𝐺

−1 (1−
(ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠

𝛼𝛽(𝑝−𝑠)+(1−𝛼𝛽)(𝑣−𝑝)
) + 𝜇)  and  (𝐼MF

∗ )𝑛

= 0, respectively, 

(6-2) 

Proof for Proposition 2 is included in Appendix B. 
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Propositions 1 and 2 enable us to examine the manufacturer’s optimal sourcing deci-

sion with and without information sharing mechanisms. Figures E2-2 and E2-3 show how 

the manufacturer’s decisions under an IB contract (𝑛 = 1), compare to those without in-

formation sharing. Note that from the manufacturer’s perspective, the only factor that 

makes a difference in the its optimal sourcing decision among the three different mecha-

nisms is 𝑘𝑛, the portion of FT inventory holding cost paid for by the manufacturer under 

mechanism n. The overall shapes of  (𝐼M
∗ )𝑛  and (𝐼MF

∗ )𝑛  curves will not change with 

𝑛 = 1, 2, or 3. However, (𝐼M
∗ )1 > (𝐼M

∗ )2 > (𝐼M
∗ )3  and   (𝐼MF

∗ )1 < (𝐼MF
∗ )2 < (𝐼MF

∗ )3 , since, 

by definition, 𝑘1 > 𝑘2 > 𝑘3 and  𝐺−1(∙) is monotone increasing. 

 
Figure E2-2: Inventory levels vs. FT reliability at 

𝜷 = 0.7 

 
Figure E2-3: Inventory levels vs. ST reliability at 

𝜶 = 0.7 

Proposition 3. For a given set of parameters, the manufacturer preorders more compo-

nent units under upstream information sharing, i.e., (𝐼M
∗ )𝑛 ≥ 𝐼M 

∗ . 

Proof for Proposition 3 is included in Appendix C. 

Proposition 3 indicates that considering ST disruption makes the manufacturer's 

sourcing decision more conservative because 𝛽 ≤ 1. Therefore, FT reliability 𝛼 does not 

fully determine the likelihood of demand satisfaction in period 2; the likelihood that FT 

will be able to satisfy demand fully in period 2 is less than 𝛼. If FT is absolutely unrelia-
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ble, i.e., 𝛼 = 0, the manufacturer will preorder all the units required for the following pe-

riod in period 1 regardless of ST disruption risk. Moreover, if ST is perfectly reliable, i.e., 

𝛽 = 1, the impact of ST disruption becomes zero. Thus, Figures E2-2 and E2-3 show that 

as 𝛼 → 0 or 𝛽 → 1; (𝐼M
∗ )𝑛 → 𝐼M 

∗ ; (𝐼M
∗ )1 converges to 𝐼M

∗  as 𝛼 decreases to zero in Figure 

E2-2 and as 𝛽 increases to one in Figure E2-3. Moreover, in both figures, (𝐼M
∗ )1 is never 

less than 𝐼M
∗  over all the ranges of 𝛼 and 𝛽. 

Proposition 4. For a given set of parameters, i) the manufacturer increases component 

inventory level (𝐼M
∗ )𝑛 as the FT (ST) disruption likelihood 1− 𝛼 (1− 𝛽) increases. ii) It 

is guaranteed that (𝐼MF
∗ )𝑛 is always decreasing as 1 − 𝛼 increases, but (𝐼MF

∗ )𝑛 can be in-

creasing or decreasing as 1 − 𝛽 increases. Moreover, the joint inventory, i.e., (𝐼M
∗ )𝑛 +

(𝐼MF
∗ )𝑛 is increasing (decreasing) as 1− 𝛼 increases when (𝐼MF

∗ )𝑛 = 0 ((𝐼MF
∗ )𝑛 > 0)  but 

is always increasing in 1− 𝛽. 

Proof for Proposition 4 is included in Appendix D. Proposition 4 implies that as the 

FT becomes more reliable, the manufacturer will try to reduce total inventory holding 

costs (the sum of inventory costs at the manufacturer’s and FT’s facilities) by stocking 

more raw materials at FT and stocking less components at its own site, since unit invento-

ry holding cost of raw materials is cheaper than the unit inventory holding cost of com-

ponents. Moreover, the high reliability of FT provides the manufacturer with more oppor-

tunities to utilize the raw material inventory carried at FT when the ST is disrupted. 

However, the sum of component and raw material inventory increases as FT reliability 

increases. The amount of inventory at FT increases by taking advantage of low inventory 

holding cost and ordering postponement. On the other hand, an increase in ST reliability 
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leads to lower levels of component but higher or lower raw material inventory at FT. It is 

interesting to note the impact of ST disruption risk on (𝐼MF
∗ )𝑛. Figure E2-3 illustrates that 

(𝐼MF
∗ )𝑛 has an inverted u- shaped relationship with ST reliability, i.e., initially increases 

and then decreases. The reason for this behavior is the following: when ST reliability is 

very low, the chance to use the inventory at FT level is highly dependent on FT reliability, 

i.e., 𝛼(1− 𝛽) is decreasing in 𝛽. Therefore, when FT reliability is not high enough, the 

manufacturer will prefer to stock more inventory at its own site rather than at FT. Thus, 

(𝐼MF
∗ )𝑛 increases at very low 𝛽 range. However, it decreases from a certain 𝛽, since the 

increment of 𝛽 (i.e., the decreased likelihood of ST disruption) represents that the chance 

to use the inventory at FT will decrease. 

3.3. FT’s Optimal Behavior in the Absence and Presence of Information Sharing 

Contracts 

FT can sell 𝑞1 = 𝑑1 + 𝐼M
∗  units to the manufacturer in period 1, but may purchase 

more than this amount of raw material from ST (i.e., 𝑑1 + 𝐼M
∗ + 𝐼FT) in period 1. Each 

unit of unsold component has a unit holding cost, ℎFT ∙ 𝑝ST, at the FT level. We assume 

that the ST's capacity is high enough to cover FT’s total ordering quantity in period 1, 

𝑑1 + 𝐼M
∗ + 𝐼FT. In period 2, however, FT's demand may not be satisfied due to ST disrup-

tion risk. We use 1− 𝛽 to denote FT's anticipation of ST disruption likelihood in period 2. 

We assume that the FT can forecast the final demand but has less accurate final de-

mand information than the manufacturer, i.e., 𝑄2~𝑁(𝜇,𝜎FT
2), where 𝜎FT > 𝜎M. Based on 

these assumptions, FT’s profit function, 𝜋FT, before the use of information sharing con-

tracts is as follows: 

𝜋FT = {
𝜋FT

up
, if ST is not disrupted (Up)

𝜋FT
dn , if ST  is disrupted (Down)

 (7) 
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, where  

𝜋FT
up
= 𝑝(𝑑1 + 𝐼M

∗ + 𝑄2) − 𝑝ST(𝑑1 + 𝐼M
∗ + 𝐼FT) − 𝑝STℎFT𝐼FT − 𝑝ST(𝑄2 − 𝐼FT)

+

+ 𝑠FT(𝐼FT − 𝑄2)
+ 

𝜋FT
dn = 𝑝(𝑑1 + 𝐼M

∗ +𝑄2) − 𝑝ST(𝑑1 + 𝐼M
∗ + 𝐼FT) − 𝑝STℎFT𝐼FT − 𝑝(𝑄2 − 𝐼FT)

+ 

+ 𝑝ST(𝐼FT − 𝑄2)
+ 

Similar to the manufacturer’s case, FT’s optimal inventory level 𝐼FT
∗  is defined as fol-

lows. 

Proposition 5. In the presence of ST disruption, the preorder quantity under non-

information sharing 𝐼FT
∗   (raw material inventory level at FT) in period 1 is given by 

𝐼FT
∗ = max (0,𝜎FT𝐺

−1 (1−
(ℎFT+𝛽)𝑝ST−𝛽𝑠FT

𝛽(𝑝ST−𝑠FT)+(1−𝛽)(𝑝−𝑝ST)
) + 𝜇) . (8) 

Proof for Proposition 5 is included in Appendix E. 

FT’s optimal inventory level changes under the different information sharing con-

tracts. FT is interested in the manufacturer’s demand rather than the final demand. Thus, 

once FT receives the manufacturer’s order for components and requests for raw material 

inventory holding, it obtains information that will affect its inventory level decision in 

period 2. Recall that under an information sharing contract FT is held accountable for 

keeping a maximum inventory level UB. This inventory becomes available to the manu-

facturer in case of ST disruption. Nevertheless in case ST is UP in period 2, then FT is 

not required to maintain any inventory on site. Thus, we can derive the FT’s optimal in-

ventory level under an information sharing contract with the following profit structure 

using demand distribution (𝑄2)𝑛~𝑁(𝜇𝑛, (𝜎FT)𝑛
2
). 
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(𝜋FT)𝑛

=

{
 
 
 
 
 

 
 
 
 
 
𝑝(𝑑1 + (𝐼M

∗ )𝑛 + (𝑄2)𝑛) − 𝑝ST(𝑑1 + (𝐼M
∗ )𝑛 + (𝐼MF

∗ )𝑛 − (𝐼D)𝑛)                        

     −𝑝STℎFT((𝐼MF
∗ )𝑛 − (𝐼D)𝑛) + 𝒞𝑛                                                         

     −𝑝ST((𝑄2)𝑛 − ((𝐼MF
∗ )𝑛 − (𝐼D)𝑛))

+
                                                   

             +𝑠FT(((𝐼MF
∗ )𝑛 − (𝐼D)𝑛) − (𝑄2)𝑛)

+
, if the ST is not disrupted (Up)

𝑝(𝑑1 + (𝐼M
∗ )𝑛 + (𝑄2)𝑛) − 𝑝ST(𝑑1 + (𝐼M

∗ )𝑛 + (𝐼MF
∗ )𝑛 − (𝐼D)𝑛)                        

     −𝑝STℎFT((𝐼MF
∗ )𝑛 − (𝐼D)𝑛) + 𝒞𝑛                                                         

     −(𝑝 + (𝑣 − 𝑝))((𝑄2)𝑛 − ((𝐼MF
∗ )𝑛 − (𝐼D)𝑛))

+
                               

     +𝑝ST(((𝐼MF
∗ )𝑛 − (𝐼D)𝑛) − (𝑄2)𝑛)

+
                                                   

           + (𝑣 − 𝑝)((𝑄2)𝑛 − (𝐼MF
∗ )𝑛)

+,            if the ST is disrupted (Down)  

 

(9) 

, where 𝑝ST is raw material salvage value and (𝐼D)𝑛 is FT’s deducted amount from the 

UB inventory level under ST’s disruption, (𝐼MF
∗ )𝑛. Note that (𝐼MF

∗ )𝑛 − (𝐼D)𝑛 is FT’s in-

ventory level under mechanism type 𝑛, (𝐼FT
∗ )𝑛, i.e., (𝐼MF

∗ )𝑛 − (𝐼D)𝑛 = (𝐼FT
∗ )𝑛; ST might 

be disrupted with only probability (1− 𝛽), thus carrying all of manufacturer’s request 

(𝐼MF
∗ )𝑛 can be waste of cost from the FT’s perspective In addition, note that by definition 

𝜎FT = (𝜎FT)1 > (𝜎FT)2 = 𝜎M and 𝜇1 = 𝜇2 = 𝜇. However, when the FT gathers the man-

ufacturer’s inventory level information, it can further revise its demand distribution 

as  (𝑄2)3~𝑁
𝐶(𝜇𝐶, (𝜎FT)3

2
) , where 𝜇𝐶 = 𝜇 − (𝐼M

∗ )3 , (𝜎FT)3 = 𝜎M  and 𝐹3(𝑡)  is corre-

sponding c.d.f. Where 𝑁𝐶  denotes a normal distribution with mean 𝜇𝐶 and standard devi-

ation (𝜎FT)3  truncated at zero (i.e., 𝐺3(𝑧) = 𝐺(𝑧), if 𝑧 >
−(𝜇−(𝐼M

∗ )
3
)

𝜎M
, otherwise 𝐺3(𝑧) =

0). Thus, 𝜇3 = 𝜇𝐶 − ∫ (𝑡 − (𝐼M
∗ )3)𝑑𝐹(𝑡)

(𝐼M
∗ )3

0
= 𝜇𝐶 − ∫ 𝑡𝑑𝐹𝐶(𝑡)

0

−(𝐼M
∗ )

3

, where 𝐹𝐶(𝑡)  is a 

normal c.d.f. with mean 𝜇𝐶  and standard deviation 𝜎M . Therefore, under information 

sharing, we assume that 𝐹3(𝑡) is 𝐹𝐶(𝑡) censored at zero. The corresponding expected 

profit for FT is: 
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E[(𝜋FT)𝑛] = 𝑝(𝑑1 + (𝐼M
∗ )𝑛 + 𝜇𝑛) − 𝑝ST(𝑑1 + (𝐼M

∗ )𝑛 + (𝐼MF
∗ )𝑛 − (𝐼D)𝑛)

− 𝑝STℎFT((𝐼MF
∗ )𝑛 − (𝐼D)𝑛)

− (𝛽𝑠FT + (1− 𝛽)𝑝ST)(𝜇𝑛 − ((𝐼MF
∗ )𝑛 − (𝐼D)𝑛)) + 𝒞𝑛

− (𝛽(𝑝ST − 𝑠FT)

+ (1− 𝛽)(𝑣 − 𝑝ST))∫ (𝑡 − ((𝐼MF
∗ )𝑛 − (𝐼D)𝑛))

∞

(𝐼MF
∗ )

𝑛
−(𝐼D)𝑛

𝑑𝐹𝑛(𝑡)

+ (1− 𝛽)(𝑣 − 𝑝)∫ (𝑡 − (𝐼MF
∗ )𝑛)𝑑𝐹𝑛(𝑡)

∞

(𝐼MF
∗ )

𝑛

 

(10) 

 

 
Figure E2-4: FT inventory level vs. ST reliability at 

𝜶 = 0.7 

 
Figure E2-5: Manufacturer’s requested FT inventory 

at 𝜶 = 0.7 

Proposition 6. When FT is paid for upstream information sharing by the manufacturer, 

its optimal preorder quantity (𝐼FT
∗ )𝑛 in period 1 under information sharing contract 𝑛 is 

given by: 

(𝐼FT
∗ )𝑛 = max(0,(𝐼MF

∗ )𝑛 − (𝐼D
∗)𝑛) 

, where  

(𝐼D
∗)𝑛 = max (0,(𝐼MF

∗ )𝑛 − ((𝜎FT)𝑛𝐺𝑛
−1 (1 −

(ℎFT+𝛽)𝑝ST−𝛽𝑠FT

𝛽(𝑝ST−𝑠FT)+(1−𝛽)(𝑣−𝑝ST)
) + 𝜇𝑛)

+

) 

(11) 

Proof for Proposition 6 is included in Appendix F. 



 

56 

 

Proposition 7. For a given set of parameters, FT’s optimal inventory levels,  𝐼FT
∗  and 

(𝐼FT
∗ )𝑛, increase as ST disruption likelihood 1− 𝛽 increases, if (𝐼D

∗)𝑛 > 0. Otherwise, the 

changes in optimal inventory levels depend on the values of (𝐼MF
∗ )𝑛. 

Proof for Proposition 7 is included in Appendix G. 

As we can see in Figure E2-4, under information sharing contract, FT can dramatical-

ly reduce its inventory level. It is interesting to note that even though FT does not directly 

receive final demand information from the manufacturer, the manufacturer’s request 

(𝐼MF
∗ )𝑛 indirectly provides final demand information. However, this indirectly gathered 

demand information is incomplete. Thus, FT will try to stock an amount of inventory that 

is very close or equal to the manufacturer’s requested amount. However, under the FIS 

information sharing mechanism, the demand information becomes complete so that FT 

can maintain lower inventory levels than those requested by the manufacturer. 

4. Numerical Experiments 

In this section, we numerically investigate the impact of using the different infor-

mation sharing contracts on the manufacturer’s and FT’s profits. 

4.1. Value of Information from Manufacturer’s Perspective 

We showed previously that the manufacturer’s expected profits as well as optimal de-

cisions such as how much inventory to stock at the manufacturer and FT tend to show 

similar behavior under the different contracts considered. Thus, we mainly focus our 

analysis on the IB information sharing contract. 

Figure E2-6 shows that the effect of the information sharing contract (on the manu-

facturer’s profit) is contingent not only on FT’s reliability (𝛼) but also on ST’s reliability 

(𝛽). 
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Figure E2-6: Manufacturer’s profit comparison 1, i.e., Non-information sharing vs. Information sharing 

with IB with the same parameters used in section 3, i.e., 𝒗 = 2.0 , 𝒑 = 1.2 , 𝒑ST = 0.9 , 𝒔 = 0.1 , and 

𝒉M = 𝒉FT = 0.16; The two plots on the bottom are the sectional views of the plot on the top at 𝜶 = 0.7 and 

𝜷 = 0.7. 

When both FT and ST reliabilities are very high (region 2 of the top plot), (𝐼M
∗ )1 =

𝐼M 
∗ = 0 and (𝐼MF

∗ )1 = 0 (by proposition 3), the manufacturer will not invest in holding 

inventory at FT’s site. This implies that E[𝜋M] = E[(𝜋M)1]. When FT reliability is very 

high but ST reliability is very low (lower right region 3 of the top plot), using an infor-

mation sharing contract adversely affects manufacturer’s profit. FT will maintain very 

high inventory levels, when the ST is very unreliable even under non-information sharing. 

Thus, paying for holding inventory at the FT’s site is not an effective strategy from the 

manufacturer’s perspective. Similar results can be observed at the right side of the lower 

left region 3 of the top plot. However, in this region, the loss decreases as FT’s reliability 

decreases, as shown in Figure E2-2, by proposition 3, (𝐼M
∗ )1 → 𝐼M 

∗  and (𝐼MF
∗ )1 → 0 as 

𝛼 → 0. The area denoted as region 1 represents positive profits for the manufacturer.   
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Under non-information sharing, the manufacturer’s decision for its own inventory 

level is not affected by ST’s reliability, but it is affected under information sharing con-

tract (refer to Figure E2-3). Therefore, the discrepancy in manufacturer’s own inventory 

levels (i.e., between (𝐼M
∗ )1 and 𝐼M 

∗ ) and positive (𝐼MF
∗ )1  make the discrepancy between 

E[(𝜋M)1] and E[𝜋M]. It is positive when the FT reliability is relatively high and ST relia-

bility is relatively low (lower right side of Figure E2-7.1 and E2-7.2). However, 𝛼 → 0 or 

𝛽 → 1 leads (𝐼M
∗ )𝑛 → 𝐼M 

∗  and (𝐼MF
∗ )𝑛 → 0. Thus, the positive effect will diminish as FT’s 

reliability decreases or ST’s reliability increases. Similar results are derived from the SIS 

and FIS mechanism. 

 
Figure E2-7.1: Manufacturer’s profit comparison 2, 

i.e., IB vs. SIS (Manufacturer’s profit in IB − manu-

facturer’s profit in SIS) 

 
Figure E2-7.2: Manufacturer’s profit comparison 3, 

i.e., SIS vs. FIS (Manufacturer’s profit in SIS − 

manufacturer’s profit in FIS) 

By definition, information sharing costs are different under the three mechanisms 

considered, i.e., 𝑘1 > 𝑘2 > 𝑘3 . Thus, greater benefits can be obtained for information 

sharing contracts type 2 and 3. From Figure E2-7.1 and E2-7.2, we can conclude that the 

FIS information sharing contract is the preferred information sharing mechanism by the 

manufacturer, since anywhere in Figures E2-7.1 and E2-7.2 does not have negative value. 

4.2. Value of Information from FT’s Perspective 
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We assume that FT’s demand forecast is less accurate than the manufacturer’s under 

non-information sharing and that FT’s revised forecast is incomplete under IB and SIS 

sharing contracts. The basic assumption is that the most accurate demand forecasting in 

period 2 is the manufacturer’s, i.e., 𝐷2~𝑁(𝜇, 𝜎M
2 ). Thus, the manufacturer’s order size in 

period 2 is 𝐷2~𝑁
𝐶(𝜇 − 𝐼M, 𝜎M

2 ). However, FT can know 𝐼M only under FIS. Therefore, 

the inventory level decisions of FT under non-information sharing and IB and SIS con-

tracts are the optimal solution based on incomplete demand information. This implies that 

the expected profit with these solutions might not be the best profit. This further implies 

that the solution under FIS is the optimal with complete demand information (Note that it 

does not mean FIS is the best mechanism for the FT in terms of profits.) 

 
 

Figure E2-8: FT’s profit comparison 1, i.e., Non-

Information sharing vs. Information sharing with IB at  

𝒗 = 2.0 , 𝒑 = 1.2 , 𝒑ST = 0.9 , 𝒔 = 0.1 , 𝒔FT = 0.05  and 

𝒉M = 𝒉FT = 0.16; The two plots on the right are the 

sectional views of the plot on the left at 𝜶 = 0.7 and 

𝜷 = 0.7. 

 

 

From the left plot of Figure E2-8, it is evident that the IB contract does not adversely 

impact FT’s profit for a given set of parameters. Similar to the manufacturer’s case, when 

ST’s reliability and the manufacturer’s evaluation of FT’s reliability are very high, FT’s 

profit will not change compared to the non-information sharing case (region 2). When the 

manufacturer’s evaluation of FT’s reliability is not very high but ST’s reliability is rela-
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tively high, i.e., upper-left part of region 1, the manufacturer will require very low inven-

tory levels. In this case, FT will carry very low levels of inventory or no inventory at all 

as indicated in Figure E2-4 under both information sharing and non-information sharing 

contracts. Consequently, the difference between information sharing and non-information 

sharing is very small. This implies that the improvement in FT’s profit is not significant. 

The lower left part of region 1 shows a very high positive effect on FT’s profit. In this 

region, because of low ST reliability, FT will be more likely to carry very high levels of 

inventory (Figure E2-4) under non-information sharing. However, in this region, the in-

formation sharing contract will provide a chance to revise the demand forecast, since the 

manufacturer will increase its own inventory level rather than asking the FT to carry 

more inventories because of low reliability of FT. This revised demand enables FT to re-

duce unnecessary inventory dramatically, reducing inventory holding costs. When the 

manufacturer’s evaluation of FT reliability is high enough but ST reliability is not very 

high (right side of region 1), FT can receive high reward for inventory holding from the 

manufacturer (Figure E2-2 and E2-3). This increases FT’s profit. In this case, FT can in-

crease profits by receiving financial support from the manufacturer rather than decreasing 

inventory levels. 

Table E2-2: FT’s profit of Information sharing mechanisms – FT’s profit of Non-information sharing 
 

Mechanism 

Type 
Reward  

Max 

 

Region 1 

Positive Profit 

Area 
 

 

Region 2 

Indifference 

Area 
 

 

Region 3 

Negative Profit 

Area 
 

Min 

IB 𝑘1 = 1.00 
 23.17 

97.31% 2.69% -- 
   0.00 

      

SIS 𝑘2 = 0.50 
 23.17 

79.54% 2.07% 18.39% 
-  4.41 

      

FIS 𝑘3 = 0.25 
 23.17 

66.53% 1.45% 30.02% 
-  6.63 

 

For a specific set of parameters the manufacturer’s as well as FT’s profits tend to 

change in similar ways under the three information sharing mechanisms considered, but 
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the level of impact on profits is different. Table E2-2 shows FT’s profit obtained with the 

different information sharing mechanisms relative to the non-information sharing case. 

By setting 𝑘1, 𝑘2, and 𝑘3 to 1.0, 0.5, and 0.25, respectively. IB generates the broadest 

positive profit area, i.e., the area of E[(𝜋FT)1] − E[𝜋FT] > 0, with the narrowest range of 

profit values (from 23.17 to 0.00). On the other hand, FIS generates the narrowest posi-

tive profit area with the widest profit values (from 23.17 to - 6.63). 

Table E2-3: Performance of information sharing mechanisms under 𝒌𝟏 = 𝒌𝟐 = 𝒌𝟑 
 

Mechanism 

Type 
Reward  

Max 

 

Region 1 

Positive Profit 

Area 
 

 

Region 2 

Indifference 

Area 
 

 

Region 3 

Negative Profit 

Area 
 

Min 

SIS 𝑘2 = 1.00 
 23.17 

97.31% 2.69% -- 
   0.00 

      

FIS 𝑘3 = 1.00 
 23.17 

97.31% 2.69% -- 
   0.00 

IB 𝑘1 = 0.50 
23.17 

79.54% 2.07% 18.39% 
-  4.41 

      

FIS 𝑘2 = 0.50 
 23.17 

81.40% 2.07% 16.53% 
- 2.78 

IB 𝑘1 = 0.25 
23.17 

62.60% 1.45% 35.95% 
-11.98 

      

SIS 𝑘2 = 0.25 
23.17 

63.43% 1.45% 35.12% 
-11.98 

 

By setting  𝑘2 = 𝑘3 = 𝑘1 = 1.00, the results in Table E2-3 show that additional in-

formation under SIS and FIS does not improve the FT’s profit compared to the profit un-

der IB (SIS and FIS become identical to IB). Under this setting, by proposition 2, 

(𝐼MF
∗ )1 = (𝐼MF

∗ )2 = (𝐼MF
∗ )3, and (𝐼D

∗)1 = (𝐼D
∗)2 = (𝐼D

∗)3 = 0 (by proposition 6) for a given 

set of parameters. Thus, all the mechanisms become identical. Moreover, by setting 𝑘2 =

𝑘3 = 𝑘1 = 0.25 and 𝑘2 = 𝑘3 = 𝑘1 = 0.50, FIS becomes the best mechanism but the dif-

ference in the profit improvement is not significant. The results in Tables E2-2 and E2-3 

imply that FT prefers IB to the other mechanisms, since IB can indirectly provide down-



 

62 

 

stream information with high rewards and the added value of complete information does 

not play a significant role in profit improvement from FT’s perspective. 

5. Concluding Remarks 

A number of articles in the literature recognize the importance of information sharing. 

However, estimating the value of information so that appropriate incentives for infor-

mation sharing are implemented can be challenging. In this paper, we first characterize 

the manufacturer’s and FT’s sourcing behaviors under non-information sharing and then 

compare it to three different information sharing contracts. We show that the manufactur-

er becomes more conservative, while the FT becomes more proactive under an infor-

mation sharing contract. With these findings, we analyze the effectiveness of three differ-

ent information sharing mechanisms.  

The results show that the benefits of information sharing are contingent on the level 

of FT and ST reliabilities from the manufacturer’s and FT’s perspective. However, we 

show that the manufacturer and FT tend to prefer different types of information sharing 

contracts, since information does not provide equal benefits to both parties. The manufac-

turer prefers to reduce information sharing costs by providing downstream information to 

the FT, i.e., FIS information sharing contract is preferred. On the other hand, the FT pre-

fers the IB information sharing contract because it can indirectly provide downstream in-

formation as well as high rewards. Therefore, appropriate selection of information shar-

ing mechanisms is a key factor for each player in the supply chain. 

It is important to point out that in our analysis the ST is not the main decision maker. 

Addition of the ST as a decision maker could be an interesting extension of this paper in 

order to examine the different dynamics among all parties in the supply chain. 
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In this paper, we did not investigate the supply chain coordination issue because we as-

sume that each entity (manufacturer and FT) believes that only its upstream entity(s) will 

be likely to be disrupted but the downstream entity(s) will not be disrupted in the future. 

However, it would be interesting to examine the value of information sharing from the 

supply chain coordination perspective by applying the assumption that all the upstream 

and downstream members can be disrupted. For this future direction, simulation can be 

an appropriate approach by applying random disruption on every entity in the supply 

chain. 
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Appendix A: Proof of Proposition 1 

Proof 1. Given variable 𝑡 with mean 𝜇𝑡, standard deviation 𝜎𝑡, and cumulative distribu-

tion 𝐹(𝑡), we define the standardized variable 𝑧 to be 𝑧 = 𝑡−𝜇𝑡
𝜎𝑡

. 𝑧 has cumulative distribu-

tion 𝐺(𝑧) with mean 0 and standard deviation 1. Given a value 𝑅 of 𝑡, we define (𝑅)𝑧 =

𝑅−𝜇𝑡
𝜎𝑡

. The standardized loss function is defined as 𝐿(𝑡,(𝑅)𝑧) = ∫ (1− 𝐺(𝑧))
∞

(𝑅)𝑧
𝑑𝑧. Equa-

tion (2) can be modified as follows by applying 𝜇𝑡 = 𝜇 and 𝜎𝑡 = 𝜎M. 

E[𝜋M] = (𝑣 − 𝑝)𝑑1 − (𝑣 − (𝛼𝑠 + (1− 𝛼)𝑝))𝜇                                                                

−((1+ ℎM)𝑝 − (𝛼𝑠 + (1− 𝛼)𝑝))𝐼M                          

−(𝛼(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝))∫ (𝑡 − 𝐼M)
∞

𝐼M

𝑑𝐹(𝑡) 

= (𝑣 − 𝑝)𝑑1 − (𝑣 − (𝛼𝑠 + (1− 𝛼)𝑝))𝜇 − ((1+ ℎM)𝑝 − (𝛼𝑠 + (1− 𝛼)𝑝))𝐼M

− (𝛼(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝))𝜎M∫ (1− 𝐺(𝑧))
∞

(𝐼M)𝑧

𝑑𝑧 

(𝐴1) 

By definition of the standardized loss function, 𝐿(𝑡,(𝑅)𝑧), (𝐴1) can be expressed as 

E[𝜋M] = (𝑣 − 𝑝)𝑑1 − (𝑣 − (𝛼𝑠 + (1− 𝛼)𝑝))𝜇 − ((1+ ℎM)𝑝 − (𝛼𝑠 + (1− 𝛼)𝑝))𝐼M

− (𝛼(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝))𝜎M𝐿(𝑡,(𝐼M)𝑧) 

We can observe that   
𝜕𝐿(𝑡,(𝐼M)𝑧)

𝜕𝐼M
= − 1

𝜎M
(1− 𝐺 (𝐼M−𝜇

𝜎M
)) and 

𝜕2𝐿(𝑡,(𝐼M)𝑧)

𝜕2𝐼M
= 1

𝜎M
2𝑔 (

𝐼M−𝜇

𝜎M
) ≥ 0, 

which implies that the standardized loss function is convex. Thus, we further can observe 

that 
𝜕E[𝜋M]

𝜕𝐼M
= −((1+ ℎM)𝑝 − (𝛼𝑠 + (1− 𝛼)𝑝)) − 𝜎M(𝛼(𝑝 − 𝑠) + (1− 𝛼)(𝑣 −

𝑝))
𝜕𝐿(𝑡,(𝐼M)𝑧)

𝜕𝐼M
 and 

𝜕2E[𝜋M]

𝜕2𝐼M
= −𝜎M(𝛼(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝))

𝜕2𝐿(𝑡,(𝐼M)𝑧)

𝜕2𝐼M
 implying that 

E[𝜋M] is concave since (𝛼(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝)) > 0. Therefore, 𝐼M
∗  is obtained by 

setting 
𝜕E[𝜋M]

𝜕𝐼M
= 0 , which gives ((1+ ℎM)𝑝 − (𝛼𝑠 + (1− 𝛼)𝑝)) + (𝛼(𝑝 − 𝑠) +
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(1− 𝛼)(𝑣 − 𝑝)) (1 − 𝐺 (𝐼M−𝜇

𝜎M
)) = 0. By solving for 𝐼M, The optimal inventory level is 

given by 𝐼M
∗ = max (0,𝜎M𝐺

−1 (1 − (1+ℎM)𝑝−(𝛼𝑠+(1−𝛼)𝑝)

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) + 𝜇). However, since 𝐼M ≥ 0, we 

obtain the optimal 𝐼M
∗  as following. 

𝐼M
∗ = max (0,𝜎M𝐺

−1 (1−
(1+ℎM)𝑝−(𝛼𝑠+(1−𝛼)𝑝)

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) + 𝜇) 

If 𝐼M
∗ > 0 , i.e., 𝜎M𝐺

−1 (1− (1+ℎM)𝑝−(𝛼𝑠+(1−𝛼)𝑝)

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) > −𝜇 , this implies that 

1− (1+ℎM)𝑝−(𝛼𝑠+(1−𝛼)𝑝)

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
> 𝐺 (− 𝜇

𝜎M
) = 𝐹(0) = 0, by assumption of non-negative demand. 

By simple algebra, this can be rearranged as 𝑣
𝑝
> 1−𝛼+ℎM

1−𝛼
, which implies that only when the 

ratio 𝑣
𝑝
 exceeds 1−𝛼+ℎM

1−𝛼
, the manufacturer will carry positive inventory. The properties of 

𝐼M
∗  are as follows. When 𝐼M

∗ > 0, 𝐼M
∗  is increasing (decreasing) in 𝑣 (𝑝). Since 𝐺−1(∙) is 

monotone increasing function, but 𝜕
𝜕𝑣
(1− (1+ℎM)𝑝−(𝛼𝑠+(1−𝛼)𝑝)

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) =

(1−𝛼)((ℎM+𝛼)𝑝−𝛼𝑠)

((2𝛼−1)𝑝+(1−𝛼)𝑣−𝛼𝑠)
2 > 0 and 

𝜕

𝜕𝑝
(1− (1+ℎM)𝑝−(𝛼𝑠+(1−𝛼)𝑝)

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) = (1−𝛼+ℎM)𝛼𝑠−(𝛼+ℎM)(1−𝛼)𝑣

((2𝛼−1)𝑝+(1−𝛼)𝑣−𝛼𝑠)
2 < 0 (because 𝑣

𝑝
> 1−𝛼+ℎM

1−𝛼
 when 𝐼M

∗ > 0, 

but 𝑣
𝑝
< (𝛼+ℎM)𝑣

𝛼𝑠
 so that numerator is negative), which imply that 𝐼M

∗  increases (decreases) 

in 𝑣  (𝑝 ) (similarly, we can prove that 𝐼M
∗  increases in  𝑠 , when 𝐼M

∗ > 0 ). Moreover, 

𝜕

𝜕𝛼
(1− (1+ℎM)𝑝−(𝛼𝑠+(1−𝛼)𝑝)

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) = (1−𝛼+ℎM)𝛼𝑠−(𝛼+ℎM)(1−𝛼)𝑣

((2𝛼−1)𝑝+(1−𝛼)𝑣−𝛼𝑠)
2 < 0 , since 𝑣

𝑝
> 1−𝛼+ℎM

1−𝛼
 when 𝐼M

∗ > 0 

(thus numerator is negative).  Therefore, as 𝛼 increases, 𝐼M
∗  decreases. By definition of the 

normal inverse c.d.f., 𝐹𝑠
−1(0.5) = 0 , implying that if 1− (1+ℎM)𝑝−(𝛼𝑠+(1−𝛼)𝑝)

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
< 0.5 ⟺

𝑣+𝑠𝛼(1−𝛼)−1

𝑝
< 1+2ℎM

1−𝛼
, 𝐼M
∗  is decreasing in 𝜎M, otherwise 𝐼M

∗  is increasing in 𝜎M. ∎ 
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Appendix B: Proof of Proposition 2 

Proof 2. Similar to the base case, we can derive Equation (4) as follows. 

E[(𝜋M)𝑛] = 𝑣(𝑑1 + 𝜇) − 𝑝(𝑑1 + (𝐼M)𝑛) − 𝑝ℎM(𝐼M)𝑛

− (𝛼(1− 𝛽)𝑝 + (1− 𝛼)𝑝 + 𝛼𝛽𝑠)(𝜇 − (𝐼M)𝑛) − 𝒞𝑛

− (𝛼𝛽𝑝 + (1− 𝛼)𝑣 − (1− 𝛼)𝑝 − 𝛼𝛽𝑠)∫ (𝑡 − (𝐼M)𝑛)
∞

(𝐼M)𝑛

𝑑𝐹(𝑡)

− 𝛼(1− 𝛽)(𝑣 − 𝑝)∫ (𝑡 − ((𝐼M)𝑛 + (𝐼MF)𝑛))
∞

(𝐼M)𝑛+(𝐼MF)𝑛

𝑑𝐹(𝑡) 

Observe that  

∫ (𝑡 − (𝐼M)𝑛)
∞

(𝐼M)𝑛

𝑑𝐹(𝑡) = 𝜎M𝐿(𝑡,((𝐼M)𝑛)𝑧) and  

∫ (𝑡 − ((𝐼M)𝑛 + (𝐼MF)𝑛))
∞

(𝐼M)𝑛+(𝐼MF)𝑛

𝑑𝐹(𝑡) = 𝜎M𝐿(𝑡,((𝐼M)𝑛 + (𝐼MF)𝑛)𝑧) 

Thus, we have 

E[(𝜋M)𝑛] = 𝑣(𝑑1 + 𝜇) − 𝑝(𝑑1 + (𝐼M)𝑛) − 𝑝ℎM(𝐼M)𝑛

− (𝛼(1− 𝛽)𝑝 + (1− 𝛼)𝑝 + 𝛼𝛽𝑠)(𝜇 − (𝐼M)𝑛) − 𝒞𝑛

− (𝛼𝛽𝑝 + (1− 𝛼)𝑣 − (1− 𝛼)𝑝 − 𝛼𝛽𝑠)𝜎M𝐿(𝑡,((𝐼M)𝑛)𝑧)

− 𝛼(1− 𝛽)(𝑣 − 𝑝)𝜎M𝐿(𝑡,((𝐼M)𝑛 + (𝐼MF)𝑛)𝑧). 

We further observe that 

𝜕𝐿(𝑡,((𝐼M)𝑛+(𝐼MF)𝑛)𝑧)

𝜕(𝐼M)𝑛
=

𝜕𝐿(𝑡,((𝐼M)𝑛+(𝐼MF)𝑛)𝑧)

𝜕(𝐼MF)𝑛
= −

1

𝜎M
(1− 𝐺 (

(𝐼M)𝑛+(𝐼MF)𝑛−𝜇

𝜎M
)) 

𝜕𝐿(𝑡,((𝐼M)𝑛)𝑧)

𝜕(𝐼M)𝑛
= −

1

𝜎M
(1− 𝐺 (

(𝐼M)𝑛−𝜇

𝜎M
)) 

By applying 𝒞𝑛 = 𝑝ST(𝑘𝑛 ∙ ℎFT)(𝐼MF)𝑛, we can derive the following results. 
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𝜕E[(𝜋M)𝑛]

𝜕(𝐼MF)𝑛
= −𝑝ST(𝑘𝑛 ∙ ℎFT) − 𝛼(1− 𝛽)(𝑣 − 𝑝)𝜎M

𝜕𝐿(𝑡,((𝐼M)𝑛+(𝐼MF)𝑛)𝑧)

𝜕(𝐼MF)𝑛
 

(𝐵1) 

𝜕E[(𝜋M)𝑛]

𝜕(𝐼M)𝑛
= −ℎM𝑝 − 𝛼𝛽(𝑝 − 𝑠)

− (𝛼𝛽(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝))𝜎M
𝜕𝐿(𝑡,((𝐼M)𝑛)𝑧)

𝜕(𝐼M)𝑛

− 𝛼(1− 𝛽)(𝑣 − 𝑝)𝜎M
𝜕𝐿(𝑡,((𝐼M)𝑛+(𝐼MF)𝑛)𝑧)

𝜕(𝐼M)𝑛
 

(𝐵2) 

Given that 
𝜕E[(𝜋M)𝑛]

𝜕(𝐼MF)𝑛
= 0 at optimality, by substituting (𝐵1), we obtain (𝐵2) as follows. 

𝜕E[(𝜋M)𝑛]

𝜕(𝐼M)𝑛
= −ℎM𝑝 − 𝛼𝛽(𝑝 − 𝑠) − (𝛼𝛽(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝))𝜎M

𝜕𝐿(𝑡,((𝐼M)𝑛)𝑧)

𝜕(𝐼M)𝑛

+ 𝑝ST(𝑘𝑛 ∙ ℎFT) 

By setting 
𝜕E[(𝜋M)𝑛]

𝜕(𝐼M)𝑛
= 0 and 

𝜕E[(𝜋M)𝑛]

𝜕(𝐼MF)𝑛
= 0, we obtain the optimal manufacturer’s and FT’s 

inventory levels. 

(𝐼M
∗ )𝑛 = max (0,𝜎M𝐺

−1 (1 −
(ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠−𝑝ST(𝑘𝑛∙ℎFT)

𝛼𝛽(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) + 𝜇)  and 

(𝐵3) 

(𝐼MF
∗ )𝑛 = 𝜎M𝐺

−1 (1 −
𝑝ST(𝑘𝑛∙ℎFT)

𝛼(1−𝛽)(𝑣−𝑝)
) + 𝜇 − (𝐼M

∗ )𝑛  respectively. 
(𝐵4) 

CASE 1) We know that 𝐼MF should be non-negative as well. This implies that this optimal 

relationship holds only when 𝜎M𝐺
−1 (1− 𝑝ST(𝑘𝑛∙ℎFT)

𝛼(1−𝛽)(𝑣−𝑝)
) + 𝜇 − (𝐼M

∗ )𝑛 > 0.  

i) When(𝐼M
∗ )𝑛 > 0, the following should hold.  

𝐺−1 (1 −
𝑝ST(𝑘𝑛∙ℎFT)

𝛼(1−𝛽)(𝑣−𝑝)
) − 𝐺−1 (1−

(ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠−𝑝ST(𝑘𝑛∙ℎFT)

𝛼𝛽(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) > 0 ⟺

𝑝ST(𝑘𝑛∙ℎFT)

𝛼(1−𝛽)(𝑣−𝑝)

<
(ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠−𝑝ST(𝑘𝑛∙ℎFT)

𝛼𝛽(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
⟺ 𝑝ST(𝑘𝑛 ∙ ℎFT)

< 𝛿((ℎM + 𝛼𝛽)𝑝 − 𝛼𝛽𝑠)(𝛾 + 𝛿)
−1 

ii) When (𝐼M
∗ )𝑛 = 0, the following should hold. 

𝐺−1 (1−
𝑝ST(𝑘𝑛∙ℎFT)

𝛼(1−𝛽)(𝑣−𝑝)
) > −

𝜇

𝜎M
⟺ 𝑝2(𝑘𝑛 ∙ ℎF) < 𝛿 
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, where 𝛿 = 𝛼(1− 𝛽)(𝑣 − 𝑝) (> 0) and 𝛾 = 𝛼𝛽(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝) (> 0). 

Thus, in this case, i.e., 𝐼MF ≥ 0, the optimal solution is given by (𝐵3) and (𝐵4). 

CASE 2) When this condition does not hold, i.e., (𝐼MF)𝑛 < 0, by fixing (𝐼MF)𝑛
∗ = 0 and 

plugging this to equation (5), we can find optimal the solution of 𝐼M as in Proposition 1. 

The optimal solution for this case is given by 

(𝐼M
∗ )𝑛 = max (0,𝜎M𝐺

−1 (1−
(ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠

𝛼𝛽(𝑝−𝑠)+(1−𝛼𝛽)(𝑣−𝑝)
) + 𝜇)  and  (𝐼MF

∗ )𝑛 = 0 respectively. 

 ∎  
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Appendix C: Proof of Proposition 3 

Proof 3. 𝐺−1(∙) and 𝐺(∙) are monotone increasing with support from 0 to 1. First, we con-

sider the case of (𝐼MF
∗ )𝑛 > 0 . 𝐼M

∗ > 0  means  (ℎM+𝛼)𝑝−𝛼𝑠

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
< 1 , since 𝜎M𝐺

−1(1−

(1+ℎM)𝑝−(𝛼𝑠+(1−𝛼)𝑝)

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) + 𝜇 > 0 ⟺ 1 − (1+ℎM)𝑝−(𝛼𝑠+(1−𝛼)𝑝)

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
> 𝐺 (− 𝜇

𝜎M
) ≥ 0 ⟹ 1 ≥

(ℎM+𝛼)𝑝−𝛼𝑠

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
 (Let (ℎM + 𝛼)𝑝 − 𝛼𝑠 = 𝒜and 𝛼(𝑝 − 𝑠) + (1− 𝛼)(𝑣 − 𝑝) = ℬ ). In this 

case, we claim that (𝐼M
∗ )𝑛 > 𝐼M

∗ ⟺𝐺−1 (1− (ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠−𝑝ST(𝑘𝑛∙ℎFT)

𝛼𝛽(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
) > 𝐺−1(1−

(ℎM+𝛼)𝑝−𝛼𝑠

𝛼(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
). But, 0 ≤ (ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠−𝑝ST(𝑘𝑛∙ℎFT)

𝛼𝛽(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
= 𝒜−𝛼(1−𝛽)(𝑝−𝑠)−𝑝ST(𝑘𝑛∙ℎFT)

ℬ−𝛼(1−𝛽)(𝑝−𝑠)
< 𝒜

ℬ
≤ 1, which 

implies that (𝐼M
∗ )𝑛 > 𝐼M

∗ . Second, we consider the case of (𝐼MF
∗ )𝑛 = 0. In this case, when 

𝐼M
∗ > 0 , (𝐼M

∗ )𝑛 > 𝐼M
∗   means 

(ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠

𝛼𝛽(𝑝−𝑠)+(1−𝛼𝛽)(𝑣−𝑝)
≤ 𝒜

ℬ
. But, 0 ≤ (ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠

𝛼𝛽(𝑝−𝑠)+(1−𝛼𝛽)(𝑣−𝑝)
=

𝒜−𝛼(1−𝛽)(𝑝−𝑠)

ℬ−𝛼(1−𝛽)(𝑝−𝑠)+𝛼(1−𝛽)(𝑣−𝑝)
≤ 𝒜

ℬ
≤ 1. Therefore, (𝐼M

∗ )𝑛  cannot be less than 𝐼M
∗  in either case. 

(We can ignore the case of 𝐼M
∗ = 0, since (𝐼M

∗ )𝑛 cannot be negative by definition). ∎ 
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Appendix D: Proof of Proposition 4 

Proof 4. Let 𝒢M
+ = 1 − (ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠−𝑝ST(𝑘𝑛∙ℎFT)

𝛼𝛽(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝)
, 𝒢M

𝑜 = 1− (ℎM+𝛼𝛽)𝑝−𝛼𝛽𝑠

𝛼𝛽(𝑝−𝑠)+(1−𝛼𝛽)(𝑣−𝑝)
, and ℋM = 1−

𝑝ST(𝑘𝑛∙ℎFT)

𝛼(1−𝛽)(𝑣−𝑝)
. When (𝐼MF

∗ )𝑛 > 0, if 𝒢M
+ is decreasing as 𝛼 increases, (𝐼M

∗ )𝑛 is decreasing as 𝛼 

increases, since 𝐺−1(∙)  is monotone increasing function. But, 

 𝜕𝒢M
+

𝜕𝛼
=

𝛽(𝑝−𝑠)((𝑝ℎM−𝑝ST(𝑘𝑛∙ℎFT))−(𝑣−𝑝))−(𝑣−𝑝)(𝑝ℎM−𝑝ST(𝑘𝑛∙ℎFT))

(𝛼𝛽(𝑝−𝑠)+(1−𝛼)(𝑣−𝑝))
2 < 0, since 𝑝ℎM − 𝑝ST(𝑘𝑛 ∙ ℎFT) >

0 and (𝑝ℎM − 𝑝ST(𝑘𝑛 ∙ ℎFT)) − (𝑣 − 𝑝) < 𝑝ℎM − (𝑣 − 𝑝) < 0 (note that if 𝑣 − 𝑝 < 𝑝ℎM, 

the manufacturer will not carry any inventory). Similarly, when (𝐼MF
∗ )𝑛 = 0, this property 

still holds, since 𝜕𝒢M
𝑜

𝜕𝛼
≤ 0. We can further show that (𝐼M

∗ )𝑛 is always decreasing as 𝛽, since 

𝜕𝒢M
+

𝜕𝛽
, 
𝜕𝒢M
𝑜

𝜕𝛽
< 0 . On the other hand, (𝐼MF

∗ )𝑛  is increasing as  𝛼  increases, since 𝜕ℋM
𝜕𝛼

=

𝑝ST(𝑘𝑛∙ℎFT)

𝛼2(1−𝛽)(𝑣−𝑝)
> 0 (when (𝐼MF

∗ )𝑛 > 0). However, we cannot guarantee the property of (𝐼MF
∗ )𝑛 

associated with 𝛽, since both 𝐺−1(ℋM) and (𝐼M
∗ )𝑛 are decreasing in 𝛽. This result further 

implies that the joint inventory, i.e., (𝐼M
∗ )𝑛 + (𝐼MF

∗ )𝑛, is increasing (decreasing) as 𝛼 (𝛽) 

increases, since (𝐼M
∗ )𝑛 + (𝐼MF

∗ )𝑛 = 𝜎M𝐺
−1(ℋM) + 𝜇 , when (𝐼MF

∗ )𝑛 > 0 .  But, when 

(𝐼MF
∗ )𝑛 = 0 , (𝐼M

∗ )𝑛 + (𝐼MF
∗ )𝑛 = (𝐼M

∗ )𝑛 = 𝜎M𝐺
−1(𝒢M

𝑜 ) + 𝜇 . Thus, (𝐼M
∗ )𝑛 + (𝐼MF

∗ )𝑛  is de-

creasing as 𝛼 and/or 𝛽 increases. Therefore, the joint inventory is increasing or decreas-

ing as 𝛼 increases but decreasing as 𝛽 increases. ∎ 
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Appendix E: Proof of Proposition 5 

Proof 5. Replication of Proof 1 (by replacing 𝐼M, 𝜎M, ℎM, 𝑝, 𝑠, and 𝑣 with 𝐼FT, 𝜎FT, ℎFT, 

𝑝ST, and 𝑝, respectively) quite easily derives 𝐼FT
∗ . ∎ 
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Appendix F: Proof of Proposition 6 

Proof 6. 𝐿𝑛(𝑡,((𝐼FT)𝑛)𝑧) = ∫ (1 − 𝐺𝑛(𝑧))
∞

((𝐼FT)𝑛)𝑧
𝑑𝑧, where 𝐺1and 𝐺2 are standard normal 

c.d.f. and  𝐺3 is left truncated standard normal c.d.f. at 
−(𝜇−(𝐼M

∗ )
3
)

𝜎M
.  

For 𝑛 = 1 and 2 , 𝐿𝑛(𝑡,(𝑅)𝑧) = 𝑔((𝑅)𝑧) −
𝑅−(𝜇𝑛)

(𝜎FT)𝑛
[1 − 𝐺((𝑅)𝑧)] . And, for 𝑛 = 3 , 

𝐿𝑛(𝑡,(𝑅)𝑧) =
𝜎M

(𝜎FT)3
[𝑔((𝑅)𝑧)] −

𝑅−(𝜇−(𝐼M
∗ )3)

(𝜎FT)3
[1− 𝐺((𝑅)𝑧)] . However, by definition of 

truncated distribution, 𝐺1(𝑧) = 𝐺2(𝑧) = 𝐺3(𝑧), if 𝑧 >
−(𝜇−(𝐼M

∗ )
3
)

𝜎M
. Thus, the property of the 

standardized loss function still holds for 𝑛 = 3 . Moreover,  
𝜕𝐿(𝑡,((𝐼MF

∗ )
𝑛
−(𝐼D)𝑛)𝑧

)

𝜕(𝐼D)𝑛
=

1

(𝜎FT)𝑛
(1 − 𝐺𝑛 (

(𝐼MF
∗ )

𝑛
−(𝐼D)𝑛−𝜇𝑛

𝜎M
))  and   

𝜕2𝐿(𝑡,((𝐼MF
∗ )

𝑛
−(𝐼D)𝑛)𝑧

)

𝜕2(𝐼D)𝑛
= 1

(𝜎FT)𝑛
2𝑔𝑛 (

(𝐼MF
∗ )

𝑛
−(𝐼D)𝑛−𝜇𝑛

𝜎M
) ≥ 0 . 

Therefore, F.O.C of E[(𝜋FT)𝑛]  w.r.t. (𝐼D)𝑛  gives (𝐼D
∗)𝑛 = (𝐼MF

∗ )𝑛 − ((𝜎FT)𝑛𝐺𝑛
−1 (1−

(ℎFT+𝛽)𝑝ST−𝛽𝑠FT

𝛽(𝑝ST−𝑠FT)+(1−𝛽)(𝑣−𝑝ST)
) + 𝜇𝑛) . By definition, 0 ≤ (𝐼D)𝑛 ≤ (𝐼MF

∗ )𝑛 . Thus, (𝐼D
∗)𝑛 =

max (0,(𝐼MF
∗ )𝑛 − ((𝜎FT)𝑛𝐺𝑛

−1 (1 − (ℎFT+𝛽)𝑝ST−𝛽𝑠FT

𝛽(𝑝ST−𝑠FT)+(1−𝛽)(𝑣−𝑝ST)
) + 𝜇𝑛)

+

). Therefore, FT’s opti-

mal inventory level under mechanism 𝑛 is given by  

(𝐼FT
∗ )𝑛 = max(0,(𝐼MF

∗ )𝑛 − (𝐼D
∗)𝑛) 

 ∎ 
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Appendix G: Proof of Proposition 7 

Proof 7. When 𝐼FT
∗ > 0, for 𝐼FT

∗ , 

𝜕

𝜕𝛽
(1 − (ℎFT+𝛽)𝑝ST−𝛽𝑠FT

𝛽(𝑝ST−𝑠FT)+(1−𝛽)(𝑝−𝑝ST)
) =

(1−𝛽+ℎFT)𝛽𝑠FT−(𝛽+ℎFT)(1−𝛽)𝑝

(𝛽(𝑝ST−𝑠FT)+(1−𝛽)(𝑝−𝑝ST))
2
< 0 

, since 𝑝

𝑝ST
> 1−𝛽+ℎFT

1−𝛽
 and 𝑝ST > 𝑠FT  (thus numerator is negative). For (𝐼FT

∗ )𝑛 , if (𝐼D
∗)𝑛 ≥

0 ⟺ (𝐼FT
∗ )𝑛 = (𝐼MF

∗ )𝑛 − (𝜎FT)𝑛𝐺𝑛
−1 (1− (ℎFT+𝛽)𝑝ST−𝛽𝑠FT

𝛽(𝑝ST−𝑠FT)+(1−𝛽)(𝑣−𝑝ST)
) + 𝜇𝑛 ≥ 0 , (𝐼FT

∗ )𝑛 =

(𝜎FT)𝑛𝐺𝑛
−1 (1− (ℎFT+𝛽)𝑝ST−𝛽𝑠FT

𝛽(𝑝ST−𝑠FT)+(1−𝛽)(𝑣−𝑝ST)
) + 𝜇𝑛. But,  

𝜕

𝜕𝛽
(1 − (ℎFT+𝛽)𝑝ST−𝛽𝑠FT

𝛽(𝑝ST−𝑠FT)+(1−𝛽)(𝑣−𝑝ST)
) =

−(𝑣−𝑝)(𝛽(𝑝−𝑠)+𝑝STℎFT+(1−𝛽))

(𝛽(𝑝ST−𝑠FT)+(1−𝛽)(𝑣−𝑝ST))
2
< 0 

, since 𝑣 > 𝑝. Therefore, 𝐼FT
∗  and (𝐼FT

∗ )𝑛 as the ST disruption likelihood 1− 𝛽 increases, 

when 𝐼FT
∗ > 0 and (𝐼D

∗)𝑛 ≥ 0, respectively. However, if (𝐼D
∗)𝑛 = 0 ⟺ (𝐼FT

∗ )𝑛 = (𝐼MF
∗ )𝑛 , 

by Proposition 4, (𝐼FT
∗ )𝑛 could increase or decrease as the ST disruption likelihood 1− 𝛽 

increases.   ∎ 
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Abstract 

In recent years, access to freight transportation capacity has become a constant issue 

in the minds of logistics managers due to capacity shortages. In a buyer-seller relation-

ship, reliable, timely, and cost-effective access to transportation is critical to the success 

of such partnerships. Given this, guaranteed capacity contracts with 3PLs may be appeal-

ing to shippers to increase their access to capacity and respond effectively to customer 

requirements. With this new opportunity, 3PLs must focus on approaches that can assist 

them in analyzing their options as they promise guaranteed capacity to shippers when 

faced with uncertain demand and related risks in transportation. In this paper, we analyti-

cally analyze three capacity-based risk mitigation strategies and the mixed use of these 

individual strategies using industry based data to provide insights on which strategy is 

preferable to the 3PL and under what conditions. We posit that the selection of a strategy 

is contingent on several conditions faced by both the shipper and the carrier. Although 

our approach is analytical in nature, it has a high degree of practical utility in that a 3PL 

can utilize our decision models to effectively analyze and visualize the trade-offs between 

the different strategies by considering appropriate cost and demand data.   
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1. Introduction 

Supply chain risk management (SCRM) is receiving increased attention in recent 

years. Much of the literature in this area focuses on manufacturers and retailers (Tang, 

2006; Snyder et al., 2010; Ho et al., 2015). However, several recent trends justify the 

need for SCRM research focusing on transportation services in a supply chain context 

due to the emphasis on maintaining strong buyer-supplier relationships. In the context of 

the current paper, we specifically focus on risk management strategies for transportation 

capacity management, which may have a significant impact on buyer-supplier relation-

ships as transportation capacity shortage can result in increased costs and reduced level of 

on-time deliveries. Sourcing for transportation services in this setting has important im-

plications to the literature in the domain of buyer-supplier relationships, where the buyer 

is the shipper and the seller is either a 3PL/4PL acting as an intermediary. In such a con-

text, risk management strategies for transportation capacity management used by the 

3PLs, as sellers, become critical in building sustained relationships with their buyers.  

The risk management strategies presented in this paper are applicable, for the most part, 

to both shippers who are operating or considering operating a private fleet and third party 

logistics providers (3PLs) that  provide transportation services to shippers.. This is espe-

cially critical for buyer-supplier relationships that operate in a just-in-time environment 

where shipments have to be received in a timely manner and any unexpected delays can 

cause severe disruptions in effectively meeting customer demands.    

Recent industry studies and data demonstrate that demand for trucking is increasing 

more rapidly than the capacity increase. Morgan Stanley’s dry van truckload freight in-
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dex indicates a market that has recently experienced record capacity tightness as seen in 

Figure E3-1
6
.  

 
Figure E3-1: Morgan Stanley’s dry van truckload freight index 

According to the Transplace’s CEO Blog on March 28, 2014, this capacity tightness 

can be attributed to prolonged extreme winter weather, shortage of intermodal capacity, 

stricter Hours-of-Service regulations, and the economic recovery. From a shipper’s per-

spective, the potential cost of not having access to transportation capacity can be very 

high. For example, an auto assembly plant maintains two to four hours’ worth of materi-

als in general. If the delivery of a certain material used in the assembly line delays and 

does not arrive until the safety stock is depleted, the assembly line will be shut down. Ac-

                                                           
6
 Please note that materials that are referenced comprise excerpts from research reports and should not be 

relied on as investment advice. This material (Figure E4-1) is only as current as the publication date of the 

underlying Morgan Stanley (MS) research. Additionally, MS has provided their materials here as a courte-

sy. Therefore, MS and the authors do not undertake to advise you of changes in the opinions or information 

set forth in these materials. 
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cording to Business Forward Foundation 2014
7
, each hour of down time of an auto as-

sembly plant costs approximately $1.25 million.  

Although the capacity shortage has taken a downturn, the recent upswing may not 

completely fade as some of the aforementioned reasons may continue placing pressure on 

trucking capacity moving forward. This issue was predicted in September 2013 by Bob 

Costello, chief economist of the American Trucking Associations, while he was speaking 

at TMW Systems’ Transforum 2013 user conference, where he said “we are headed for a 

capacity problem. The industry is not adding much capacity today.”8  

3PLs are one of major components of today’s supply chains. Companies in various 

industries have been outsourcing their logistics activities to achieve more effective and 

efficient supply chains. There is a tendency for more shippers to outsource some portion 

of their transportation and logistics to 3PLs. The 2010 Global 3PL & Logistics Outsourc-

ing Strategy survey by Eye-for-Transport presents the finding that 97% of shippers intend 

to increase their use of 3PLs in the future. As a result, the 3PL market becomes one of 

continuously growing industry segments. Over the last 20 years, outsourcing to 3PLs has 

grown about three times faster than the GDP, and in 2012, 3PLs’ gross revenue in US 

was $141.8 billion (Armstrong & Associates, Inc., 2013
9
).  

Among the logistics activities outsourced, the majority are the transportation activi-

ties (Power et al., 2007). About 73% of total 3PLs’ gross revenue ($103 billion out of 

$141.8 billion) in US is contributed by transportation activities (Armstrong & Associates, 

Inc., 2013). Thus, in today’s volatile supply chain environment, one of the major chal-

                                                           
7
  http://www.businessfwd.org/SevereWeatherAndManafacturingInAmerica.pdf 

8
  http://www.truckinginfo.com/channel/fleet-management/news/story/2013/09/ata-economist-industry-

faces-capacity-crunch.aspx?prestitial=1 
9
 http://www.3plogistics.com/3PLmarketGlobal.htm 
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lenges 3PLs face is risk management due to demand uncertainty. In majority of the man-

ufacturing and service industries, there is inherent demand uncertainty, which creates the 

same level of uncertainty in the demand for transportation services. Moreover, because of 

the increased capacity shortage in transportation industry, transportation costs can be very 

high and the availability of capacity options may be a major problem for shippers. Given 

this, shippers are constantly looking for ways to mitigate the risk of high transportation 

costs in the face of demand variability and capacity shortage.  

Traditionally, there are three types of relationships between transportation carriers 

and shippers. The first type is “dedicated”, where a shipper charters trucks from a carrier 

for long-term and becomes the only user of these trucks. The second type is “contract” 

arrangement, where shipper and carrier agree on a price list for the services but there is 

no capacity guarantee. The third type is the “spot” market, where capacity availability 

and rates are determined by the supply-demand dynamics in the transportation market-

place at any point in time. A fourth type that has been discussed in a few studies is the 

use of transportation options (Tsai et al., 2009; Tibben-Lembke and Rogers, 2006), simi-

lar to the real options in stock and commodity markets, where a shipper would buy a 

transportation option from a carrier, which would give the shipper the right but not the 

obligation to send a shipment in a particular freight lane at a specified future time for a 

specified future cost. This new type of contracting guarantees capacity in exchange for 

higher rates and/or upfront reservation payment for the transportation option.  

In our recent discussions with two shippers, one manufacturer and one service pro-

vider, we learned that both firms have had an interest in engaging in a transportation op-

tion contract with their preferred carriers. The manufacturer firm is currently piloting 
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such a contract arrangement with a truckload carrier, where the carrier guarantees capaci-

ty for a number of trucks in exchange for rates higher than regular contracts. Similarly, 

SGA Production Services, which provides seating and staging solutions for entertainment 

events, has explored considering such an agreement with their preferred carrier to have 

access to guaranteed capacity due to carrier’s high quality service. As a shipper in ser-

vices industry, the transportation service quality and access to capacity in a timely man-

ner is essential to their business. Recently, their preferred carrier has sub-contracted their 

shipments to other carriers more often than usual, which can be interpreted as a shortage 

of capacity in the premium transportation services SGA uses. These examples demon-

strate that there are shippers, both in manufacturing and services, which are in search for 

new ways of contracting in the face of the transportation capacity crunch, which creates 

higher and more volatile rates in the marketplace. In that context, we study the transporta-

tion capacity and risk management strategies from a 3PL’s perspective, when such a car-

rier is contracting with a shipper with guaranteed capacity. We build an analytical 

framework and related decision models to understand the effectiveness of 3PLs’ transpor-

tation capacity management strategies (TCMS) in the face of demand uncertainty while 

providing guaranteed capacity. 

This study is mostly tailored towards small to medium size 3PLs providing truckload 

services due to several reasons. First, for small carriers, even the addition of a single, suf-

ficiently large customer may require the carrier to make capacity management decisions. 

This makes the problem not a rare but a recurring issue for such carriers. Second, capaci-

ty management decisions can have a bigger impact on the financial health of a small car-

rier compared to a large carrier. Third, capacity decisions of truckload carriers in contrast 
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to less-then-truckload carriers, such as buying new equipment or outsourcing, can be 

made in near-isolation without much impact on the use of existing equipment. Fourth, 

less-than-truckload carriers, given their business model, serve multiple customers with 

small loads on the same trucks through a series of consolidation and deconsolidation ac-

tivities performed at multiple terminals and the use of multiple trucks. Thus, addition of a 

new customer usually has a less drastic effect. In case of a major impact, the capacity de-

cisions are much more complicated than the truckload case as it involves a multitude of 

linked terminals, trucks traveling between these terminals on schedules, etc. Fifth, in 

United States, most of the carriers can be considered small and medium size since 97% of 

all truckload carriers operate 20 or fewer trucks
10

, which accounts for about 20% of total 

revenue
11

, thus making this very relevant to a significant portion of the industry that do 

not have the capability of developing this type of scientific methods for analysis.  

We consider three risk mitigation strategies, where the 3PLs take some actions in ad-

vance of the demand realization, as presented in Table E3-1. Reserving a portion of 

3PL’s available internal capacity (RIC) for the customer is the first strategy. The fixed 

cost of RIC is the lost profit that was sacrificed by reserving this capacity for this new 

customer. The variable costs (fuel, maintenance etc.) are proportional to the use of the 

equipment. Increasing 3PL’s own internal transportation capacity (IIC) is the second mit-

igation strategy and this incurs a fixed upfront capital cost as well as some other costs 

(insurance etc.) regardless of what level of demand is realized. The variable costs (fuel, 

maintenance etc.) of IIC are proportional to the use of the equipment. The last strategy is 

paying a reservation fee in return for guaranteed capacity (REC), which is also known as 

                                                           
10

 http://web.archive.org/web/20080409065529/  

http://www.whitehouse.gov/OMB/inforeg/2003iq/175.pdf 
11

 http://www.ops.fhwa.dot.gov/Freight/publications/eval_mc_industry/index.htm 

http://web.archive.org/web/20080409065529/
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transportation options (Tsai et al., 2009; Tibben-Lembke and Rogers, 2006). This reser-

vation cost is an upfront fixed cost that is proportional to the reserved capacity and incurs 

an additional exercise cost proportional to the use of the reserved capacity after demand 

realization.  

Table E3-1: TCMS for 3PLs 
 

 

Strategy 
 

Description 

Reserving Internal Capacity (RIC) Dedicate some of the equipment to the customer 

Increasing Internal Capacity (IIC) Buy or lease transportation equipment 

Reserving External Capacity (REC) Reserve guaranteed external capacity through subcontracting 

It is easy to see that two of these strategies can also be used by a shipper facing a 

transportation capacity shortage and/or increased level of volatility in transportation rates 

in the spot market. In that context, a shipper may consider investing in a private fleet 

(IIC), or contracting with a 3PL for guaranteed capacity (REC).  Since all shippers are 

competing for the shrinking transportation capacity, this type of analysis becomes very 

relevant to shippers as well as carriers. 

The rest of the paper is organized as follows. In section 2, we review the related liter-

ature in the areas of SCRM, capacity planning, transportation planning, and 3PLs. Fol-

lowing which we develop an analytical model for representing 3PL’s TCMSs and present 

related analyses. Finally, we address the managerial implications of our research, limita-

tions of our approach, and directions for future research.   

2. Literature Review 
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The proposed research is closely related to four streams of literature: SCRM, capacity 

planning, transportation planning and 3PL. In the following sections we briefly review 

the key literature in each of these streams by highlighting the associated gaps. 

2.1. Supply Chain Risk Management 

SCRM is defined as “the management of supply chain risk through coordination or 

collaboration among the supply chain partners so as to ensure profitability and continuity” 

(Tang, 2006). In supply chain management (SCM) literature, risk has been addressed 

mainly on manufacturing processes and demand uncertainty (e.g., Zipkin, 2000). Naylor 

et al. (1999) show that the combination of agile and lean manufacturing can postpone the 

decoupling point and reduce the risk of being out of stock under demand uncertainty. 

Gupta and Maranas (2003) propose a stochastic programming based bi-level optimization 

model for manufacturing and distribution timing decisions in order to achieve cost reduc-

tion under demand uncertainty. Moreover, vast literature considers safety stocks and 

warehouses between manufacturers and retailers as the means to reduce the effect of de-

mand and lead-time uncertainties (Axsäter, 1993; Federgruen, 1993; Inderfurth, 1994, 

van Houtum et al., 1996; Diks et al., 1996; Schwarz, 1989; Schwarz and Weng, 2000). 

In addition, more recently, supply uncertainty has become another main issue in 

SCRM. The studies of supply uncertainty mainly consist of two approaches: i) supply 

disruption model and ii) random-yield model. In the supply disruption model (e.g., 

Snyder et al., 2010), a supplier’s status is either “up” or “down”: “up” means that the or-

ders are fulfilled in full and on time, and “down” means no order can be fulfilled. Parlar 

and Perry (1995) and Parlar (1997) consider random supply disruptions by applying Mar-

kov Chain models with stochastic demand and lead-times under different inventory poli-
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cies. Tomlin (2006) also applies a Markovian approach to present supplier’s availability 

with consideration of disruptions characteristics: high impact but short and low impact 

but long. In a random-yield model, it is assumed that the supply level is a random func-

tion of the input level (e.g., Yano and Lee, 1995; Grosfeld-Nir and Gerchak, 2004). 

Graves (1987) provides a survey of many analytical models of determining production 

and inventory policies under this assumption with emphasis on random demand. He and 

Zhang (2008) focus on the random yield effects on the performance of all parties in a 

supply chain in a single supplier and single retailer context. Gurnani et al. (2000) consid-

er random yields of supply in order to minimize costs and derive bounds for the cost 

function values. 

To the best of our knowledge most of the existing publications on SCRM are ad-

dressed from a manufacturers’ standpoint and thus focus on production processes and 

functions. However, as Tang (2006) points out, transportation planning in terms of when 

and which type of transportation model to utilize needs to be examined in designing sup-

ply chains to mitigate risks. Moreover, several researchers argue that demand uncertainty 

combined with information distortion in a supply chain can cause many serious problems 

such as insufficient transportation capacity (Lee et al., 1997; Tang, 2006). While the im-

portance of transportation decisions from the standpoint of managing risks is addressed in 

the literature, formal decision models that allow companies to appease risks in this con-

text need further development.   

2.2. Capacity Planning 

The issue of capacity planning is well researched and has been dealt with in various 

settings. In capacity planning literature, capacity expansion and its allocation is the main 
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focus (e.g., Singh et al., 2012; Liu and Papageorgiou, 2013). Birge (2000) considers the 

capacity planning models in order to assess the allocation of newly installed capacity in 

an environment characterized by limited resources and demand uncertainty. He considers 

a decision regarding whether to install additional capacity at the manufacturing plant lev-

el. Huh et al. (2006) determine the sequence and timing for purchasing and retiring ma-

chines in a manufacturing environment under demand uncertainty. Okubo (1996) studied 

capacity reservation in manufacturing with consideration of inventory. Serel et al. (2001) 

and Serel (2007) also considered capacity reservation combined with inventory issue 

from a real options perspective in manufacturing. They characterized supplier’s own ca-

pacity reservation with single period newsvendor problem. While inventory can play a 

prominent role in capacity planning in manufacturing, it is not possible to hold inventory 

in a transportation capacity planning setting. This makes the capacity planning problem 

considered in this paper different from manufacturing capacity planning. 

Other service industries have also shared the infeasibility of keeping inventory as an 

option. From such a perspective, human resource planning focuses on the assignment of 

the right number of staff at the right place and time for a given demand. Agnihothri and 

Taylor (1991) use a queuing model to find the optimal staffing levels at a hospital call-

center. Mason and Ryan (1998) apply heuristic algorithms and simulation for the Cus-

toms staffing problem at an airport. Duder and Rosenwein (2001) consider the staffing 

problem in call-centers and show that by using simple formulas it is possible to increase 

service metrics. Adenso-Diaz et al. (2002) develop a model that permits the calculation of 

the minimum staff needed to carry out all the functions correctly within a service while 

guaranteeing an expected level of quality.  
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Physical capacity planning is also an area of research for service industries such as 

healthcare and entertainment. Green and Nguyen (2001) apply a queueing model ap-

proach to the hospital bed planning problem to gain insights on the potential impact of 

cost-cutting strategies on patients' delays for beds. Zhang et al. (2012) integrate demo-

graphic and survival analysis, discrete event simulation, and optimization for setting 

long-term care capacity levels over a multiyear planning horizon to achieve target wait 

time service levels. To estimate the required number of rides in a theme park, Wanhill 

(2003) provides a closed-form solution integrating the market population, demand fluctu-

ations, and average ride throughput. Using aggregate operation statistics of hotels, Gu 

(2003) employs a single-period inventory model to estimate the optimal room capacity 

for hotels. 

While each of the aforementioned methods have their own relative advantages and 

disadvantages from the standpoint of capacity planning and management, the area of 

transportation capacity management as evident from above has received very little atten-

tion.  It is also important to note that the above discussed methods do not specifically ad-

dress the risk management issues related to capacity planning, which is the focus of our 

approach.  In this context, we evaluate the expected profit of alterative capacity manage-

ment options and compare the closed form solutions over different levels of demand vari-

ability from a risk mitigation standpoint. This type of an analysis allows us to pinpoint 

the effectiveness of each alternative under certain conditions, which to our knowledge 

has not been addressed in this domain.  We also consider a real options approach that 

lends itself to this type of an analysis.  

2.3. Transportation Planning 
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A number of supply chain researchers recognize the importance of transportation is-

sues since manufacturers in practice increasingly try to integrate production and transpor-

tation planning in order to optimize both processes simultaneously. Jung et al. (2008) de-

velops linear programming models that consider production and transportation planning 

in a study of external environmental contingency effect. Park (2005) suggests a mixed 

integer linear programming model composed of multi-site, multi-retailer, multi-product, 

and multi-period environment. He integrates production and transportation planning by 

presenting production planning sub-model whose outputs become the input to another 

sub-model focusing on transportation planning. Ekşioğlu et al. (2007) also present a 

mixed integer linear programming model that integrates production and transportation 

planning with consideration of multi-period, multi-product, and multi-site environment. 

However, in most of these cases, transportation is considered as a product distribution 

resource (i.e., supplement to production planning).  

There are a few papers that indirectly show that the transportation issues need to be 

addressed at the same level as production. Chen and Lee (2004) consider transportation in 

part with production by employing a multi-objective mixed integer nonlinear program-

ming model for optimizing supply chain networks. Yildiz et al. (2014) treat transportation 

as strategically interrelated but physically separated entity in reliable supply chain net-

work design. They assume that the transportation entities can make their own decisions 

on capacity. However, the focus of these studies is still primarily manufacturing oriented. 

As stated earlier, companies in various industries have been outsourcing their trans-

portation activities to 3PL for achieving more effective and efficient supply chains. In 

addition, given that 3PL market represents a large portion of nation’s economy, studies 

http://www.sciencedirect.com.proxy2.cl.msu.edu/science/article/pii/S0377221709005694?np=y#bib17
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that focus on transportation issues from a 3PL’s perspective (beyond manufacturing fo-

cused view) are essential. 

2.4. Third Party Logistics Services 

Based on Leuschner et al. (2014), 3PL research can be characterized as consisting of 

three eras. The first era is comprised of descriptive works that capture the logistics out-

sourcing phenomenon. The research in this era examines the motives for outsourcing and 

challenges/opportunities for improved logistics outsourcing (e.g., Lieb, 1992; Lieb and 

Bentz, 2005a; Sink et al., 1996). The second era is composed of the refinement of key 

concepts, the establishment of hypothesis testing, and a stronger orientation toward ex-

planation and normative prescription. The works in the second era explore the character-

istics of successful outsourcing arrangements (e.g., Daugherty et al., 1996; Sink and 

Langley, 1997) and the outcomes from logistics outsourcing (e.g., Stank et al., 1996). The 

third era focuses on the implementation and replication of logistics outsourcing studies 

conducted in North America to Western Europe, Asia, and Australia. Related  research in 

this area not only focuses on common practices across countries but also strives to under-

stand differences in practices based on cross-national studies (e.g., Bookbonder and Tan, 

2003; Wang et al., 2008). 

However, as Ellram and Copper (1990) define, 3PL is “outside parties who provide 

shippers with functions not performed by the firm”, which implies that 3PL needs to be 

studied from its own standpoint. Lieb and Randall’s (1996) and Lieb and Bentz’s (2005b) 

research address issues from a 3PLs perspective but these studies are limited to descrip-

tive analysis. Ü lkü and Bookbinder (2012) consider 3PL operations but their study focus-
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es on order consolidation which is highly dependent on capacity decisions and can only 

be performed after capacity level is decided (they assume that the capacity is unlimited).  

3. Models for 3PL’s Risk Mitigation Strategies 

We consider a single period problem where the 3PL faces symmetric random demand 

𝐷 for guaranteed capacity service over the coming period with probability density func-

tion 𝑓(𝐷) with mean 𝜇𝐷 and standard deviation 𝜎𝐷. In this setting, each strategy 𝑘 has a 

unit fixed cost (𝑐ST𝑘)  and a unit variable cost (𝑐V𝑘), where ST𝑘  is the 𝑘th  strategy in 

𝑆𝑇 = {IIC, REC, RIC}. Notice that both of these costs are unit costs that are based on in-

dustry averages, which are calculated on a per mile basis. Thus, the fixed cost of capacity 

expansion practically becomes a variable cost in our analysis since (𝑐ST𝑘)  is calculated 

based on the industry-wide annual usage of these assets and the actual fixed cost of the 

assets over their lifetime. This justifies our use of a single period model, which involves 

the selection of capacity related risk mitigation strategies that naturally have multi-period 

implications.  

The fixed cost of strategy 𝑘 is 𝑐ST𝑘𝐼ST𝑘 , where 𝐼ST𝑘 is the capacity allocation for guar-

anteed capacity service in strategy 𝑘  and it is incurred irrespective of the realized 

mand 𝐷. If 𝐷 < 𝐼ST𝑘, the 3PL can satisfy shipper’s order by using the capacity prepared 

by strategy 𝑘. On the other hand, if 𝐷 > 𝐼ST𝑘, the 3PL cannot fully satisfy shipper’s de-

mand. Because of this, the quantity that is actually shipped is min{𝐷,𝐼ST𝑘}. For every unit 

shipped, the 3PL currently spends unit variable cost 𝑐V𝑘  and earns 𝑟𝑆 of unit revenue with 

its existing contractual non-guaranteed capacity customers. In comparison, the 3PL will 

charge 𝑟𝐺 > 𝑟𝑆 of unit revenue for the guaranteed capacity service. Although the 3PL 

guarantees capacity in this arrangement, there is always a positive probability that the 
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3PL will be unable to ship all the demand of the shipper. In that case, we assume that the 

3PL pays a unit penalty cost to the shipper for every unshipped unit. This penalty cost 

can be a fixed contractual penalty. It can also be the high cost of subcontracting the 

shipment to a carrier via spot market. We assume that, the upfront investment needed for 

the IIC and REC strategies may be restricted by a budget.   

With the aforementioned assumptions, the expected profit of the 3PL using strategy 𝑘 

is given by 

𝐸[𝜋ST𝑘] = −𝑐ST𝑘𝐼ST𝑘 + (𝑟𝐺 − 𝑐V𝑘)∫ min(𝑥,𝐼ST𝑘)
∞

0

𝑑𝐹(𝑥)

− 𝑐penalty∫ (𝑥 − 𝐼ST𝑘)
∞

𝐼ST𝑘

𝑑𝐹(𝑥) 

where 𝐹(𝑥)  is cumulative density function of demand 𝑥. In this function, the first term is 

the fixed cost of using strategy 𝑘. The second term is the revenue minus the variable cost 

for the amount shipped. The last term is the penalty cost for the unshipped demand. Un-

der a budget constraint, the 3PL wants to maximize its expected profit using a risk miti-

gation strategy 𝑘 (ST𝑘): 

max  𝐸[𝜋ST𝑘] 

subject to      𝑐ST𝑘𝐼ST𝑘𝑦𝑘 ≤ 𝐵 

where      𝑦𝑘 = {
1,  for IIC and REC

0,         for RIC         
 

where 𝐵 is the budget amount. Notice that the budget constraint is not relevant for RIC as 

there is no initial investment for that strategy and variable 𝑦𝑘 is used to as an indicator for 

that. 

Using this expected profit, we can find the optimum level of capacity allocation by 

taking the derivative of this function. The following proposition provides this result. 
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Proposition 1. With given cost and price parameters for strategy 𝑘, the optimal capacity 

level allocated for the shipper is given by 

𝐼ST𝑘
∗
= max(0,min (

𝐵

𝑦𝑘𝑐ST𝑘
,𝜎𝑥𝐹𝑆

−1 (1−
𝑐ST𝑘

𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty
) + 𝜇𝑥)) 

Proof is provided in Appendix A. 

Proposition 1 indicates to us that the optimal capacity is highly affected by costs, 

prices, and demand uncertainty. However, it does not imply that strategy 𝑘 at 𝐼ST𝑘
∗
 al-

ways increases expected profit, i.e., strategy 𝑘 can also reduce expected profit. Intuitively, 

when 𝐼ST𝑘
∗
= 0, strategy 𝑘 for guaranteed delivery contract will reduce expected profit of 

carrier due to penalty cost. When budget 𝐵 is not sufficient to acquire the optimum ca-

pacity level that maximizes the expected profit, the 3PL acquires the most capacity that’s 

allowed by 𝐵. We next analyze the profitability of strategy 𝑘 when 𝐼ST𝑘
∗
> 0.  

Theorem 1. With given cost and price parameters for strategy 𝑘, the strategy increases 

profit if 

a) 
𝑟𝐺−𝑐V𝑘−𝑐ST𝑘

𝜔ST𝑘(𝑓𝑆(𝐼𝑆
ST𝑘

∗
))

≥
𝜎𝑥

𝜇𝑥
, when 𝐼ST𝑘

∗
= 𝜎𝑥𝐹𝑆

−1 (1−
𝑐ST𝑘

𝜔ST𝑘
) + 𝜇𝑥 

b) 
𝑟𝐺−𝑐V𝑘

𝜔ST𝑘𝜎𝑥𝑙(𝑥,𝐼𝑆
ST𝑘

∗
)
≥

𝜎𝑥

𝜇𝑥
, when 𝐼ST𝑘

∗
=

𝐵

𝑦𝑘𝑐
ST𝑘

 

where 𝜔ST𝑘 = 𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty 

Proof is provided in Appendix A. 

Theorem 1 shows that the budget plays a critical role in strategy 𝑘’s profitability as 

well as cost and price parameters under demand uncertainty. We use Proposition 1 and 

Theorem 1 in the upcoming subsections as we analyze the different mitigation strategies. 

3.1. Reserve Internal Capacity 
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Reserving the internal capacity strategy has the advantage that the 3PL does not need 

to make any additional investment. Thus, essentially the budget for investment (𝐵) is ze-

ro. But, this does not mean that there is no fixed cost of this strategy. When the 3PL de-

cides to reserve some of its existing capacity as part of the guaranteed capacity contract, 

it no longer earns its standard revenue 𝑟𝑆 from those reserved units. Thus, there is an op-

portunity cost, which is incurred regardless of whether the reserved capacity is used for 

the new contract or not. However, since the variable cost (𝑐O-variable ) is incurred only 

when the service is provided, the true opportunity cost of this reservation is 𝑟𝑆 −

𝑐O-variable, which we treat as the unit fixed cost (𝑐RIC) of the RIC strategy. To investigate 

how the expected cost function behaves, we chose the cost parameters using industry-

based estimates. Based on the data from a report publish by American Transportation Re-

search Institute in 2012
12

, the fixed cost of a trucking company is about 17% of its total 

cost and the remaining 83% is the variable costs. According to a recent Forbes article
13

 

the average profit margin of trucking companies is about 6%, which implies that the total 

cost is 94% of the revenue. Using these industry statistics, we derive the following rela-

tionships for the costs of RIC strategy: 

𝑐O-variable = 0.94 ∙ 0.83 ∙ 𝑟𝑆 = 0.78 ∙ 𝑟𝑆 and 𝑐RIC = 𝑟𝑆 − 𝑐O-variable =  0.22 ∙ 𝑟𝑆 

Since the 3PL guarantees capacity to the shipper, we stipulate a very high penalty 

cost for illustrative purposes, where 𝑐penalty = 1.5 ∙ 𝑟𝐺 . Thus, the penalty cost is 50% 

more than the service price. For ease of presentation, we set 𝑟𝑆 = 1, as we plot the ex-

pected profit and capacity allocation functions in the graphs. Using these parameters, in 

Figure E3-2, we see how the expected profit function for the RIC strategy behaves as 

                                                           
12

 http://www.glostone.com/wp-content/uploads/2012/09/ATRI-Operational-Costs-of-Trucking-2012.pdf 
13

 http://www.forbes.com/sites/sageworks/2014/02/20/sales-profit-trends-trucking-companies/ 
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both demand variability and service rate parameters change. The demand variability is 

captured by the coefficient of variation (𝑐𝑣), which is a more robust measure compared to 

standard deviation. At 𝑐𝑣 = 0, mean demand (𝜇𝑥) = 10 and standard deviation (𝜎𝑥) = 0, 

thus there is no variability. The 𝑐𝑣 value is increased to investigate the behavior of the 

total profit functions under increased demand variability. Each of the lines represent a 

different guaranteed capacity service rate 𝑟𝐺 . In all three rates, as demand uncertainty 

increases the expected profit decreases at a decreasing rate. When guaranteed capacity 

rate is only 10% more than the standard contractual rate (𝑟𝐺 = 1.1), the expected profit 

function takes negative values beyond the slightest demand variability (at 𝑐𝑣 ~ 0.22). 

Whereas, with a 50% difference in the rates (𝑟𝐺 = 1.5), the expected profit always stays 

positive, although it approaches zero at high demand variability (at 𝑐𝑣 > 0.8). This type 

of an analysis is useful in understanding the relationship between expected profits, de-

mand uncertainty (𝑐𝑣), and service price (𝑟𝐺). 

 
Figure E3-2: RIC strategy expected profit at different risk levels and service prices 

From a managerial standpoint, the above analysis allows the 3PL decision-makers to 

set service price in an effective manner given the level of uncertainty that is faced in 

maximizing expected profits. A series of such experiments can be run in understanding 

the threshold values for service rates that can be effectively employed in shipper-carrier 
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negotiations in setting appropriate contractual parameters. To the best of our knowledge, 

such an analysis has not been undertaken in this context in the extant literature.   

 
Figure E3-3: RIC strategy capacity allocation at different risk levels and service prices 

Similarly, we can see how the optimum capacity allocation value (𝐼ST𝑘
∗
), derived in 

Proposition 1 behaves, as both demand variability and price parameters change in Figure 

E3-3. In this graph, as demand variability increases, the capacity allocation level decreas-

es at a decreasing rate. When there is no uncertainty, 𝑐𝑣 = 0, 𝐼RIC∗ = 𝜇𝑥 = 10. As we 

decrease the service price, the graph shifts downwards, resulting in lower 𝐼RIC∗ levels.  

Proposition 2.  

a) 𝐼ST𝑘
∗
 is decreasing in 𝑐ST𝑘 but not affected by 𝑐V𝑘 , when budget is not sufficient. 

b)  𝐼ST𝑘
∗
 is decreasing in both 𝑐ST𝑘 and 𝑐V𝑘 , when budget is sufficient and 𝐼ST𝑘

∗
> 0. The 

impact of 𝑐ST𝑘 is greater than 𝑐V𝑘 . 

Proof is provided in Appendix A. 

Figure E3-4 & E3-5 illustrate how the optimum internal capacity reservation amount 

behaves as both demand variability and cost parameters change. In both graphs, as we 

increase the cost parameters, the graph shifts downwards, resulting in lower 𝐼ST𝑘
∗
 levels. 

This is more visible in Figure E3-4, which shows that significant changes in the fixed cost 

have higher impact than changes in variable costs. This is due to the fact that the fixed 



 

101 

 

costs are incurred regardless of whether the reserved capacity is used or not, whereas the 

variable costs are incurred only when the capacity is used.  

 
Figure E3-4: Impact of fixed cost changes 

 
Figure E3-5: Impact of variable cost changes 

The main takeaway from these analyses and the results in Figure E3-3, E3-4, and E3-

5 is that, from a managerial perspective it sheds light on the optimal capacity allocation 

that the 3PL should consider under conditions of risk, service rates, fixed and variable 

costs. Given a certain environment, the decision-maker can utilize our approach in solv-

ing for the optimal capacity allocation that maximizes profits. In addition, the general di-

rection of the relationships depicted above allows the decision-maker to set service prices 

and capacity allocations in an effective manner.  

3.2. Increase Internal Capacity 

When the 3PL is willing to make an upfront investment with a positive budget 𝐵, then 

it faces a capacity expansion problem. In order to meet the demand of the shipper for 

guaranteed capacity, the 3PL can use its existing assets by reserving some of it for the 

shipper (the RIC strategy), as analyzed in the previous section. Alternatively, the 3PL can 

also expand its capacity by acquiring new assets (the IIC strategy), which has a fixed cost 

of new equipment acquisition. With the new equipment, we assume 5% efficiency gain in 
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variable costs
14

. Thus, the variable cost of IIC is slightly lower than RIC. The fixed cost 

of IIC is calculated using the same industry statistics, which indicates that 17% of the 

costs are attributed to fixed costs. With these assumptions we have the following variable 

and fixed costs for IIC strategy. 

𝑐𝑁-variable = 0.94 ∙ 0.83 ∙ 0.95 ∙ 𝑟𝑆 = 0.74 ∙ 𝑟𝑆 and 𝑐IIC = 0.94 ∙ 0.17 ∙ 𝑟𝑆 =  0.16 ∙ 𝑟𝑆 

3.3. Reserve External Capacity 

In the context of guaranteed transportation capacity contracts, we also include the use 

of transportation put options, where the 3PL pays an upfront reservation price (𝑐REC ) to 

another carrier in return for a guaranteed capacity at a certain exercise price (𝑐exercise ) in 

the future. Similar to the IIC strategy, this strategy also requires an upfront investment. 

Thus, it is only applicable when the budget 𝐵 is positive. While there is no such transpor-

tation option market in reality, it is certainly a possibility for future options developments 

in the industry. Since there is no industry data that can be used for this phase of the anal-

ysis, we use hypothetical parameters for this strategy for illustrative purposes. The pa-

rameters are chosen so that the REC strategy has a low fixed cost and high variable cost. 

3.4. Selecting the Best Risk Mitigation Strategy 

Comparing two strategies when there is a budget constraint is not trivial. The follow-

ing theorem provides a parametric comparison between two strategies. 

Theorem 2. Under given parameters, strategy 𝑖 is better than strategy 𝑗 

a) When budget is sufficient for both strategies, 

                                                           
14

 We assume that a new truck can gain cost efficiency compared to an old truck from higher fuel economy, 

new tires, etc. 

https://www.ceres.org/trucksavings 

http://www.goodyeartrucktires.com/pdf/resources/publications/Factors%20Affecting%20Truck%20Fuel%2

0Economy.pdf 
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i. If 
𝜔ST𝑖−𝜔

ST𝑗+𝑐
ST𝑗−𝑐ST𝑖

𝜔ST𝑖∙𝑓𝑆(𝐼𝑆
ST𝑖

∗
)−𝜔

ST𝑗 ∙𝑓𝑆(𝐼𝑆
ST𝑗

∗

)

>
𝜎𝑥

𝜇𝑥
 when 𝜔ST𝑖 ∙ 𝑓𝑆 (𝐼𝑆

ST𝑖
∗
) > 𝜔ST𝑗 ∙ 𝑓𝑆 (𝐼𝑆

ST𝑗
∗

) 

ii. If 
𝜔ST𝑖−𝜔

ST𝑗+𝑐
ST𝑗−𝑐ST𝑖

𝜔ST𝑖∙𝑓𝑆(𝐼𝑆
ST𝑖

∗
)−𝜔

ST𝑗 ∙𝑓𝑆(𝐼𝑆
ST𝑗

∗

)

<
𝜎𝑥

𝜇𝑥
 when 𝜔ST𝑖 ∙ 𝑓𝑆 (𝐼𝑆

ST𝑖
∗
) < 𝜔ST𝑗 ∙ 𝑓𝑆 (𝐼𝑆

ST𝑗
∗

) 

b) When budget is not sufficient for both strategies, 

i. If 
𝜔ST𝑖−𝜔

ST𝑗

𝜔ST𝑖∙𝑙(𝑥,𝐼𝑆
ST𝑖

∗
)−𝜔

ST𝑗 ∙𝑙(𝑥,𝐼𝑆
ST𝑗

∗

)

>
𝜎𝑥

𝜇𝑥
 when 𝜔ST𝑖 ∙ 𝑙 (𝑥,𝐼𝑆

ST𝑖
∗
) > 𝜔ST𝑗 ∙ 𝑙 (𝑥,𝐼𝑆

ST𝑗
∗

) 

ii. If 
𝜔ST𝑖−𝜔

ST𝑗

𝜔ST𝑖∙𝑙(𝑥,𝐼𝑆
ST𝑖

∗
)−𝜔

ST𝑗 ∙𝑙(𝑥,𝐼𝑆
ST𝑗

∗

)

<
𝜎𝑥

𝜇𝑥
 when 𝜔ST𝑖 ∙ 𝑙 (𝑥,𝐼𝑆

ST𝑖
∗
) < 𝜔ST𝑗 ∙ 𝑙 (𝑥,𝐼𝑆

ST𝑗
∗

) 

c) When budget is sufficient for strategy 𝑖 but not sufficient for strategy 𝑗, 

i. If 
𝑐

V𝑗−𝑐V𝑖−𝑐ST𝑖

𝜔ST𝑖∙𝑓𝑆(𝐼𝑆
ST𝑖

∗
)−𝜔

ST𝑗 ∙𝑙(𝑥,𝐼𝑆
ST𝑗

∗

)

>
𝜎𝑥

𝜇𝑥
 when 𝜔ST𝑖 ∙ 𝑓𝑆 (𝐼𝑆

ST𝑖
∗
) > 𝜔ST𝑗 ∙ 𝑙 (𝑥,𝐼𝑆

ST𝑗
∗

) 

ii. If 
𝑐

V𝑗−𝑐V𝑖−𝑐ST𝑖

𝜔ST𝑖∙𝑓𝑆(𝐼𝑆
ST𝑖

∗
)−𝜔

ST𝑗 ∙𝑙(𝑥,𝐼𝑆
ST𝑗

∗

)

<
𝜎𝑥

𝜇𝑥
 when 𝜔ST𝑖 ∙ 𝑓𝑆 (𝐼𝑆

ST𝑖
∗
) < 𝜔ST𝑗 ∙ 𝑙 (𝑥,𝐼𝑆

ST𝑗
∗

) 

where      𝜔ST𝑘 = 𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty 

Theorem 2 shows the contingency of the efficiency of the three risk mitigation strate-

gies. The efficiency is highly affected not only by costs, prices, and budget but also by 

demand uncertainty. Figure E3-6 illustrates the performance of the three strategies under 

various demand uncertainty levels. In this figure, the profit curves for the IIC and REC 

strategies can take two shapes depending on the budget constraints. The gray lines that 

continue towards the upper left corner of the graph are for the case where budget 𝐵 is suf-

ficient. In that case, when demand uncertainty is low (Regions 1&2), IIC strategy domi-

nates. This is intuitive since a predictable and more profitable business warrants the 3PL 

investing in new capacity. When demand uncertainty increases (Region 3), the REC strat-
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egy becomes the best option. This means, if there are transportation options at the right 

prices, using them as a risk mitigation strategy may make sense for the 3PL. We can also 

see that all the three strategies become irrelevant after a certain uncertainty threshold 

(Region 4). This means that the guaranteed capacity contract is not profitable for the 3PL 

beyond that threshold under any particular strategy.  

When budget becomes restrictive for the IIC and REC strategies, the expected profit 

graphs for these two strategies become the black curves that have negative profits at low 

demand uncertainty. In this case, the RIC strategy is the best option in Region 1. Since 

there is no upfront investment needed for RIC, it is the only strategy that can meet the 

shipper’s demand at low uncertainty with insufficient investment budget  𝐵 . With in-

creased demand uncertainty, the optimum capacity allocation levels decrease for all strat-

egies (as illustrated in Figure E3-3), which make the budget problem for IIC and REC 

less significant. Thus, in Region 2, REC becomes the most profitable strategy. With fur-

ther increase in demand uncertainty, in Region 3, IIC becomes the most profitable strate-

gy. 

 
Figure E3-6: Strategy comparisons 
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In conducting the analysis in Figure E3-6, we made certain assumptions for the values 

of various parameters, which are based on industry averages and deduced from previous 

literature. To test the validity of our findings for other values of these parameters, we per-

formed extensive sensitivity analysis, which is provided in Appendix B. The analysis 

shows that the overall findings are not impacted by the changes in parameter values, 

which ensures the robustness of the approach and the findings. 

3.5. Using Multiple Strategies  

In this section, we analyze the sequential use of multiple strategies. We first consider 

the case where the shipper has sufficient (unlimited) budget by extending our expected 

profit function for a single strategy to a mixed strategy that considers two different strate-

gies sequentially. We define ST𝑖,𝑗 as the mixed strategy composed of first using strategy 𝑖 

followed by strategy 𝑗. 𝐼ST𝑘(𝑖𝑗)  represents the capacity allocation for strategy 𝑘 ∈ {𝑖,𝑗} un-

der strategy ST𝑖,𝑗. The expected profit of the 3PL in this case is composed of two parts: 

one from strategy 𝑖 and the other from strategy 𝑗. The expected profit for the mixed strat-

egy ST𝑖,𝑗 is given by:  

𝐸[𝜋ST𝑖,𝑗] = −𝑐ST𝑖𝐼ST𝑖(𝑖𝑗) − 𝑐ST𝑗𝐼ST𝑗(𝑖𝑗) + (𝑟𝐺 − 𝑐V𝑖)∫ min(𝑥,𝐼ST𝑖(𝑖𝑗))
∞

0

𝑑𝐹(𝑥)

+ (𝑟𝐺 − 𝑐V𝑗)∫ min(𝑥 − 𝐼ST𝑖(𝑖𝑗) ,𝐼ST𝑗(𝑖𝑗))
∞

𝐼
ST𝑖(𝑖𝑗)

𝑑𝐹(𝑥)

− 𝑐penalty∫ (𝑥 − 𝐼ST𝑖(𝑖𝑗) − 𝐼ST𝑗(𝑖𝑗))
∞

𝐼
ST𝑖(𝑖𝑗)+𝐼

ST𝑗(𝑖𝑗)
𝑑𝐹(𝑥) 

The following theorem identifies the shipper’s optimal decision for capacity alloca-

tions when strategies 𝑖 and 𝑗 are both used. 
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Theorem 3.  Mixed strategy ST𝑖,𝑗 is better than the sole strategies ST𝑖 and ST𝑗 if all of the 

following conditions are satisfied: i) 𝑐V𝑖 < 𝑐V𝑗 , ii) 1−
𝑐

ST𝑗−𝑐ST𝑖

𝑐V𝑖−𝑐
V𝑗
> 𝐹𝑆 (−

𝜇𝑥

𝜎𝑥
)  and iii) 

𝑐ST𝑖

𝑐
ST𝑗
>

𝑟𝐺−𝑐V𝑖+𝑐penalty

𝑟𝐺−𝑐
V𝑗+𝑐penalty

. Moreover, the optimal capacity allocation levels for strategy 𝑖 fol-

lowed by strategy 𝑗 under unlimited budget are given by:  

𝐼ST𝑖(𝑖𝑗)
∗
= 𝜎𝑥𝐹𝑆

−1 (1 −
𝑐ST𝑗 − 𝑐ST𝑖

𝑐V𝑖 − 𝑐V𝑗
) + 𝜇𝑥 and 

𝐼ST𝑗(𝑖𝑗)
∗
= 𝜎𝑥 [𝐹𝑆

−1 (1−
𝑐ST𝑗

𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty
) − 𝐹𝑆

−1 (1 −
𝑐ST𝑗 − 𝑐ST𝑖

𝑐V𝑖 − 𝑐V𝑗
)] 

, respectively. 

Proof is provided in Appendix A. 

 
Figure E3-7: Mixed strategy with IIC and REC under unlimited budget              

To illustrate the performance of a mixed strategy, in comparison to sole strategies, we 

use the mixed strategy (ST𝐼𝐼𝐶,𝑅𝐸𝐶) as an example since the cost data used for IIC and 

REC strategies satisfies the three conditions of Theorem 3. The graph on the left side of 

Figure E3-7 illustrates the expected profit of the mixed strategy compared to the sole 

strategies as the demand variability changes. Similarly, the graph on the right illustrates 
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the capacity allocation levels for the mixed and sole strategies. By Theorem 3, at the 

starting point of the mixed strategy (i.e., when 𝜎𝑥 = 0), the optimal capacity allocation 

level for the first used strategy equals to 𝜇𝑥, which is equals to 10,  and the capacity allo-

cation level for the second used strategy is equal to zero. However, as the demand varia-

bility increases, the amount of capacity allocated for the first used strategy (𝐼IIC (IIC,REC)∗) 

begins to decrease and the amount of capacity allocated for the second used strategy 

(𝐼REC (IIC,REC)∗)  begins to increase. Interestingly, the summation of these two amounts is 

always equal to the optimal capacity allocation level (𝐼REC ∗)  in sole strategy REC.  

In the expected profit graph on the left in Figure E3-7, we see that the expected profit 

curve of the mixed strategy begins to dominate the expected profit curves of both of the 

sole strategies (IIC and REC), thus providing a higher expected profit for all levels of 

demand variability. This case clearly shows that a mixed strategy may provide better 

profits than sole strategies under certain cost conditions when there is no budget con-

straint. One interpretation of the expected profit curves in Figure E3-7 can be as follows: 

in the mixed strategy, the first used strategy dictates the starting point of the mixed strat-

egy’s expected profit curve, while the second used strategy dictates the shape of the curve. 

Therefore, in the case of the mixed strategy with IIC and REC, first using IIC allows be-

ginning at a good starting point and then using REC allows reducing the speed of profit 

decrease as demand variability increases. 

For the case of limited budget (subscript 𝐵 denotes budget 𝐵), we consider the possi-

bility of using RIC strategy as a secondary strategy within a mixed strategy (IIC, RIC). 

When the primary strategy (IIC) is constrained by the budget limit in the mixed strategy, 



 

108 

 

RIC may be utilized since the fixed cost of RIC is only an opportunity cost by definition 

and not constrained by the fixed budget.  

 
Figure E3-8: Mixed strategy with IIC and RIC under limited budget 

In the expected profit graph on the left in Figure E3-8, the mixed strategy’s expected 

profit curve (𝐸𝐵[𝜋
IIC,RIC

∗
])  dominates the expected profit of the sole strategies 

(𝐸𝐵[𝜋
IIC

∗
], 𝐸𝐵[𝜋

RIC
∗
] ) until demand variability reaches a threshold value of 𝑐𝑣~0.35. 

After this value, the mixed strategy and the IIC sole strategy produce the same level of 

expected profit. This case clearly shows that a mixed strategy may provide better profits 

than sole strategies under certain cost and demand conditions when there is a limited 

budget for the upfront investments. In the graph on the right of Figure E3-8, we see that 

the optimal capacity allocation level (𝐼𝐵
IIC∗) is restricted by the limited budget for a range 

of demand variability. Within this range, the amount of capacity allocated for the second-

ary strategy (𝐼𝐵
RIC(IIC,RIC)∗)  begins at a high level and gradually decreases and becomes 

zero. Similar to the observation made for the unlimited budget case in Figure E3-7, we 

again observe here that the summation of the capacity allocation for the primary strategy 



 

109 

 

(𝐼𝐵
IIC(IIC,RIC)∗)  and the secondary strategy (𝐼𝐵

RIC(IIC,RIC)∗) is always equal to the optimal 

capacity allocation level (𝐼𝐵
RIC∗)  in sole strategy RIC.  

4. Managerial Implications 

Transportation is an important activity in a relationship between a buyer and a seller, 

especially if they are significantly distant from each other. A guaranteed transportation 

capacity would be very helpful in maintaining a healthy relationship between the buyer 

and the supplier. The challenge is how would the transportation service stay profitable 

and yet the guaranteed capacity can be provided. Many economic indicators such as Pur-

chasing Managers’ Indexes (PMI) are showing signs of a surge of new freight
15

. However, 

the carriers hesitate to expand their capacity because of the cost of new equipment
16

. Our 

analysis can assist the 3PLs as well as firms with private fleets who are considering ca-

pacity expansion, but constrained with budget issues, to make reliable decisions. For ex-

ample, if we assume that the standard revenue for a truckload service is $1000 for a given 

lane and if we assume a relatively predictable demand (when 𝑐𝑣 = 0.21), investing in 

additional capacity (IIC) can result in an increase in expected profit of $230.28, which is 

higher than the expected profit of $104.57 that would be earned without capacity expan-

sion (RIC). With this type of analysis performed, the first insight that we provide is that 

with the right set of cost, price and demand parameters, guaranteed capacity contracts 

may be a viable option. This can help appease some of the capacity crunch that a shipper 

is currently facing. 

                                                           
15

 http://www.industryweek.com/global-economy/manufacturing-expands-february-ism-reports 
16

 http://www.joc.com/trucking-logistics/truckload-freight/truckload-capacity-rises-remains-near-historic-

low_20140814.html 
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The second main insight is regarding the demand uncertainty. Our analysis shows that, 

as demand uncertainty increases, the profitability of guaranteed capacity arrangement de-

creases rapidly for the 3PL. Although demand certainty is not required and perhaps not 

feasible in many instances, low to medium demand uncertainty is very desirable from the 

3PL’s perspective in planning capacity options. Our analysis clearly demonstrates that 

within this range 3PLs can operate in an effective manner that would be profitable for 

both the buyer and the supplier.  

As a third insight, we demonstrate that, depending on the budget constraints of the 

3PL, choosing a mitigation strategy that provides the highest profit can be characterized 

based on the demand characterizations and cost parameters.  As discussed in our results, 

under conditions of risk and uncertainty, there is no one-size-fits all type of a strategy. 

The response of the 3PLs is contingent on the environment that they are subjected to. 

As a fourth insight, we demonstrate that mixed use of strategies can produce higher 

expected profits under certain demand and cost parameter settings, which are explicitly 

characterized for the unlimited budget case. For the limited budget case, we also provide 

a sample case on how a mixed strategy can be very useful even with a restriction on the 

upfront investment. 

From an application standpoint of the methods developed in this paper, while we un-

derstand that such an analysis and related technical expertise is often not readily available 

in the industry, it certainly helps decision-makers in developing a decision support sys-

tem (DSS) that can be applied in a variety of settings. Given the availability of a number 

of advanced planning and scheduling (APS) systems with decision making capabilities, 

our approach and models can fit into such an environment where the user does not really 
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need to develop these capabilities from scratch but can readily utilize them in making ef-

fective decisions.   

5. Conclusions and Extensions 

Transportation is an essential logistical activity that bridges the geographic gap be-

tween a buyer and a seller. Without effective and efficient transportation service, it is not 

possible to achieve complete supply chain integration. Transportation capacity shortage 

has been an important issue for the shippers for the past few years. Inability to access af-

fordable transportation capacity in a timely manner can result in increased costs and re-

duced level of on-time deliveries, which in turn can create serious problems between 

buyers and sellers of products and services. This issue becomes relevant for firms that 

focus on lean operations by eliminating inventory in their system and by adopting just-in-

time manufacturing. Similarly, as the US economy continues its transformation towards 

service, more service oriented firms are also facing a similar issue as these firms cannot 

tolerate any delay in transportation, which can cause problems for buyers that rely on 

timely deliveries. In this context, this study evaluates the behavior of three alternative 

risk mitigation strategies and the mixed use of these strategies that can be utilized by a 

3PL or a shipper with a private fleet, which faces a capacity management decision, by 

considering a variety of factors such as budget, cost, price, and demand. We demonstrat-

ed that the effectiveness of these alternative risk mitigation strategies is contingent on a 

variety of settings and show that there is no one strategy that is considered superior to 

others under all conditions.   

While research in risk management has extensively focused on manufacturing pro-

cesses, the consideration of risk aspects in transportation and logistics operations is rela-
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tively sparse. To this end, our paper is first of its kind that has effectively demonstrated 

the treatment of risk aspects in a transportation setting under the broad rubric of buyer-

supplier relationships. We expect that our work will act as a catalyst in further investigat-

ing this important research domain that has been receiving significant exposure in practi-

tioner circles.  

Although this paper focuses on trucking, the analysis can be extended to other forms 

of transportation (air, rail, intermodal, etc.). However, the practical applicability of the 

analysis would be most appropriate to trucking since the capacity of other modes is very 

high compared to trucking and requires a large enough customer base to generate a sig-

nificant demand increase for the carrier to justify considering capacity decisions.   

Finally, our approach is not devoid of limitations. There are several possible exten-

sions for this study. First, while we have made an effort to anchor the problem in practice 

through two case examples and relevant data from industry, a more detailed implementa-

tion of our framework would add significant value. Second, our paper considers a single 

period problem, which does not seem appropriate at first for capacity related decisions 

since such decisions involve high upfront fixed costs and relatively low but recurring var-

iable costs during the lifetime of the assets. However, notice that all the costs, including 

fixed costs, used in this paper are per mile average industry-level costs, and not total ac-

tual costs spent. Thus, by making the analysis on per-mile costs, our results based on sin-

gle period analyses implicitly takes into account the multi-period repetitive nature of the 

problem, since these averages are calculated based on the lifetime costs of transportation 

equipment.  However, we also recognize that a more comprehensive scenario would be to 

consider the arrival of multiple customers at multiple future periods that would require an 
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explicit multi-period capacity management analysis using actual cost figures. Similar to 

the evolution of inventory models, going from single-period to multiple-period, we con-

duct our analysis on a single period while deferring the explicit multi-period analysis to a 

future study. Finally, the underlying reasons for guaranteed demand (cyclical weather 

patterns, economic conditions, etc.) are not explicitly handled in our models, which is a 

possible extension that can be handled by a simulation study. 
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Appendix A: Poof of Proposition 1 

Proof 1. Given the variable 𝑥 with mean 𝜇𝑥, standard deviation 𝜎𝑥, and cumulative distri-

bution 𝐹(𝑥), we define the standardized variable 𝑧 to be 𝑧 =
𝑥−𝜇𝑥

𝜎𝑥
. 𝑧 has the cumulative 

distribution 𝐹𝑆(𝑧) with mean 0 and standard deviation 1. Given a value 𝑅 of 𝑥, we define 

𝑅𝑆 =
𝑅−𝜇𝑥

𝜎𝑥
. The standardized loss function is defined as 

𝑙(𝑥,𝑅𝑆) = ∫ (1− 𝐹𝑆(𝑧))
∞

𝑅𝑠

𝑑𝑧 

The expected profit function can be modified as follows. 

𝐸[𝜋ST𝑘] = −𝑐ST𝑘𝐼ST𝑘 + (𝑟𝐺 − 𝑐V𝑘)∫ min(𝑥,𝐼ST𝑘)
∞

0

𝑑𝐹(𝑥)

− 𝑐penalty∫ (𝑥 − 𝐼ST𝑘)
∞

𝐼ST𝑘

𝑑𝐹(𝑥) 

= −𝑐ST𝑘𝐼ST𝑘 + (𝑟𝐺 − 𝑐V𝑘)∫ 𝑥
𝐼ST𝑘

0

𝑑𝐹(𝑥) + (𝑟𝐺 − 𝑐V𝑘)∫ 𝐼ST𝑘

∞

𝐼ST𝑘

𝑑𝐹(𝑥)

− 𝑐penalty∫ (𝑥 − 𝐼ST𝑘)
∞

𝐼ST𝑘

𝑑𝐹(𝑥) 

= −𝑐ST𝑘𝐼ST𝑘 + (𝑟𝐺 − 𝑐V𝑘)∫ 𝑥
𝐼ST𝑘

0

𝑑𝐹(𝑥) + (𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty)∫ 𝐼ST𝑘

∞

𝐼ST𝑘

𝑑𝐹(𝑥)

− 𝑐penalty∫ 𝑥
∞

𝐼ST𝑘

𝑑𝐹(𝑥) 

= −𝑐ST𝑘𝐼ST𝑘 + (𝑟𝐺 − 𝑐V𝑘)∫ 𝑥
∞

0

𝑑𝐹(𝑥) − (𝑟𝐺 − 𝑐V𝑘)∫ 𝑥
∞

𝐼ST𝑘

𝑑𝐹(𝑥)

+ (𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty)∫ 𝐼ST𝑘

∞

𝐼ST𝑘

𝑑𝐹(𝑥) − 𝑐penalty∫ 𝑥
∞

𝐼ST𝑘

𝑑𝐹(𝑥) 

= −𝑐ST𝑘𝐼ST𝑘 + (𝑟𝐺 − 𝑐V𝑘)∫ 𝑥
∞

0

𝑑𝐹(𝑥) − (𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty)∫ (𝑥 − 𝐼ST𝑘)
∞

𝐼ST𝑘

𝑑𝐹(𝑥) 
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= −𝑐ST𝑘𝐼ST𝑘 + (𝑟𝐺 − 𝑐V𝑘)𝜇𝑥 − (𝑟
𝐺 − 𝑐V𝑘 + 𝑐penalty)∫ (𝑥 − 𝐼ST𝑘)

∞

𝐼ST𝑘

𝑑𝐹(𝑥) 

Observe that 

∫ (𝑥 − 𝐼ST𝑘)
∞

𝐼ST𝑘

𝑑𝐹(𝑥) = ∫ (𝑥 − 𝐼ST𝑘)𝑑𝐹𝑆(𝑧)
∞

𝐼𝑆
ST𝑘

= ∫ (𝜎𝑥𝑧 + 𝜇𝑥 − 𝐼
ST𝑘)𝑑𝐹𝑆(𝑧)

∞

𝐼𝑆
ST𝑘

= ∫ (𝜎𝑥𝑧 + 𝜇𝑥 − (𝜎𝑥𝐼𝑆
ST𝑘 + 𝜇𝑥)) 𝑑𝐹𝑆(𝑧)

∞

𝐼𝑆
ST𝑘

= ∫ 𝜎𝑥(𝑧 − 𝐼𝑆
ST𝑘)𝑑𝐹𝑆(𝑧)

∞

𝐼𝑆
ST𝑘

= 𝜎𝑥∫ (𝑧 − 𝐼𝑆
ST𝑘)𝑑𝐹𝑆(𝑧)

∞

𝐼𝑆
ST𝑘

= 𝜎𝑥∫ (1− 𝐹𝑆(𝑧))𝑑𝑧
∞

𝐼𝑆
ST𝑘

= 𝜎𝑥𝑙(𝑥,𝐼𝑆
ST𝑘) 

So,  

𝐸[𝜋ST𝑘] = −𝑐ST𝑘𝐼ST𝑘 + (𝑟𝐺 − 𝑐V𝑘)𝜇𝑥 − (𝑟
𝐺 − 𝑐V𝑘 + 𝑐penalty)𝜎𝑥𝑙(𝑥,𝐼𝑆

ST𝑘) 

The standardized loss function 𝑙(𝑥,𝐼𝑆
ST𝑘) = ∫ (1− 𝐹𝑆(𝑧))𝑑𝑧

∞

𝐼𝑆
ST𝑘 , where 𝐼𝑆

ST𝑘 =
𝐼ST𝑘−𝜇𝑥

𝜎𝑥
. 

Observe that 

𝜕

𝜕𝐼ST𝑘
𝑙(𝑥,𝐼𝑆

ST𝑘) = −
1

𝜎𝑥
(1− 𝐹𝑆 (

𝐼ST𝑘 − 𝜇𝑥
𝜎𝑥

)) 

𝜕2

𝜕(𝐼ST𝑘)2
𝑙(𝑥,𝐼𝑆

ST𝑘) =
1

𝜎𝑥2
𝑓𝑆 (

𝐼ST𝑘 − 𝜇𝑥
𝜎𝑥

) ≥ 0 

, which means the standardized loss function is convex. 

Observe that 

𝜕

𝜕𝐼ST𝑘
𝐸[𝜋ST𝑘] = −𝑐ST𝑘 − (𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty)𝜎𝑥

𝜕

𝜕𝐼ST𝑘
𝑙(𝑥,𝐼𝑆

ST𝑘) 

𝜕2

𝜕(𝐼ST𝑘)2
𝐸[𝜋ST𝑘] = −(𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty)𝜎𝑥

𝜕2

𝜕(𝐼ST𝑘)2
𝑙(𝑥,𝐼𝑆

ST𝑘) 

implying that if 𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty > 0, 𝐸[𝜋ST𝑘] is concave. But, by assumption that var-

iable cost is always lower than revenue, 𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty cannot be negative so that 
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𝐸[𝜋ST𝑘] cannot be convex. Thus, 𝐼ST𝑘
∗
 is obtained by setting 

𝜕

𝜕𝐼ST𝑘
𝐸[𝜋ST𝑘] = 0, which 

gives 

𝐼ST𝑘 = 𝜎𝑥𝐹𝑆
−1 (1 −

𝑐ST𝑘

𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty
) + 𝜇𝑥 

Since 𝐼ST𝑘 ≥ 0, we obtain 

𝐼ST𝑘 = max(0,𝜎𝑥𝐹𝑆
−1 (1 −

𝑐ST𝑘

𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty
) + 𝜇𝑥) 

If 𝑐ST𝑘𝐼ST𝑘  is greater than 𝐵, 𝐼ST𝑘 = 𝐵(𝑦𝑘𝑐
ST𝑘)−1, since 𝐸[𝜋ST𝑘] is concave in 𝐼ST𝑘 , i.e., 

𝐸[𝜋ST𝑘] is increasing in 𝐼ST𝑘  when 0 ≤ 𝐼ST𝑘 ≤ max (0,𝜎𝑥𝐹𝑆
−1 (1−

𝑐ST𝑘

𝑟𝐺−𝑐V𝑘+𝑐penalty
) + 𝜇𝑥). 

Therefore, 𝐼ST𝑘
∗
= max (0,min (𝐵(𝑦𝑘𝑐

ST𝑘)−1,𝜎𝑥𝐹𝑆
−1 (1 −

𝑐ST𝑘

𝑟𝐺−𝑐V𝑘+𝑐penalty
) + 𝜇𝑥)). ∎ 
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Appendix B: Proof of Theorem 1 

Proof 2. The loss function can be expressed as follows 

𝑙(𝑥,𝑅𝑆) = ∫ (1− 𝐹𝑆(𝑧))𝑑𝑧
∞

𝑅𝑆

= ∫ (𝑧 − 𝑅𝑆)𝑑𝐹𝑆(𝑧)
∞

𝑅𝑆

= ∫ (𝑧 − 𝑅𝑆)𝑓𝑆(𝑧)𝑑𝑧
∞

𝑉𝑆

= ∫ 𝑧𝑓𝑆(𝑧)𝑑𝑧
∞

𝑅𝑆

− 𝑅𝑆(1− 𝐹𝑆(𝑅𝑆)) = [−
𝑒−

1
2
𝑧2

√2𝜋
]

𝑅𝑆

∞

− 𝑅𝑆(1− 𝐹𝑆(𝑅𝑆))

= 0+
𝑒−

1
2
𝑅𝑆

2

√2𝜋
− 𝑅𝑆(1 − 𝐹𝑆(𝑅𝑆)) = 𝑓𝑆(𝑅𝑆) − 𝑅𝑆(1− 𝐹𝑆(𝑅𝑆)) 

When 𝐼ST𝑘
∗
= 𝜎𝑥𝐹𝑆

−1 (1−
𝑐ST𝑘

𝑟𝐺−𝑐V𝑘+𝑐penalty
) + 𝜇𝑥, by substituting this revised form of loss 

function and 𝐼ST𝑘
∗
 into 𝐸[𝜋ST𝑘], we can derive optimal expected profit function as fol-

lowing. 

𝐸[𝜋ST𝑘
∗
] = −𝜎𝑥 (𝑐

ST𝑘𝐹𝑆
−1 (1 −

𝑐ST𝑘

𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty
)) + (𝑟𝐺 − 𝑐V𝑘 − 𝑐ST𝑘)𝜇𝑥

− 𝜎𝑥(𝑟
𝐺 − 𝑐V𝑘 + 𝑐penalty)(𝑓𝑆 (𝐹𝑆

−1 (1 −
𝑐ST𝑘

𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty
))

− 𝐹𝑆
−1 (1 −

𝑐ST𝑘

𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty
)(

𝑐ST𝑘

𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty
)) 

Now, let 𝜔ST𝑘 = 𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty. Then, by simple algebra, we have 

𝐸[𝜋ST𝑘
∗
] = (𝑟𝐺 − 𝑐V𝑘 − 𝑐ST𝑘)𝜇𝑥 − 𝜎𝑥𝜔

ST𝑘 (𝑓𝑆 (𝐹𝑆
−1 (1−

𝑐ST𝑘

𝜔ST𝑘
))) 

Observe that 𝐹𝑆
−1 (1−

𝑐ST𝑘

𝜔ST𝑘
) = 𝐼𝑆

ST𝑘
∗
. So, by substituting the observation and simple al-

gebra, we can conclude that when 
𝑟𝐺−𝑐V𝑘−𝑐ST𝑘

𝜔ST𝑘(𝑓𝑆(𝐼𝑆
ST𝑘

∗
))

≥
𝜎𝑥

𝜇𝑥
, strategy 𝑘 will give better profit, 
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since 𝜔ST𝑘 > 0 (by assumption) and 𝑓𝑆 (𝐼𝑆
ST𝑘

∗
) > 0 (𝑓𝑆(∙) is p.d.f. of standard normal). 

Similarly, when 𝐼ST𝑘
∗
=

𝐵

𝑦𝑘𝑐
ST𝑘

, 𝐸[𝜋ST𝑘
∗
] = (𝑟𝐺 − 𝑐V𝑘)𝜇𝑥 − 𝜔

ST𝑘𝜎𝑥𝑙 (𝑥,𝐼𝑆
ST𝑘

∗
). This im-

plies that if 
𝑟𝐺−𝑐V𝑘

𝜔ST𝑘𝜎𝑥𝑙(𝑥,𝐼𝑆
ST𝑘

∗
)
≥

𝜎𝑥

𝜇𝑥
, strategy 𝑘 will give better profit.∎ 
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Appendix C: Proof of Proposition 2 

Proof 3. When budget constraint is activated, 𝐼ST𝑘
∗
= 𝐵(𝑦𝑘𝑐

ST𝑘)−1. Then, 
𝜕

𝜕𝑐ST𝑘
𝐼ST𝑘

∗
=

−𝐵(𝑦𝑘𝑐
ST𝑘)−2 < 0. But, when budget constraint is not activated and 𝐼ST𝑘

∗
> 0, 

𝜕

𝜕𝑐ST𝑘
𝐼ST𝑘

∗
= −

𝜎𝑥
𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty

𝐹𝑆
−1′ (1 −

𝑐ST𝑘

𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty
) ≤ 0 

and 
𝜕

𝜕𝑐V𝑘
𝐼ST𝑘

∗
= −

𝜎𝑥𝑐
ST𝑘

(𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty)2
𝐹𝑆
−1′ (1−

𝑐ST𝑘

𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty
) ≤ 0 

, since 𝐹𝑆
−1′(∙), i.e., first derivative of inverse standard normal c.d.f., is non-negative and 

𝜎𝑥

𝑟𝐺−𝑐V𝑘+𝑐penalty
≥ 0. This implies that 𝐼ST𝑘

∗
 is decreasing in 𝑐ST𝑘  and 𝑐V𝑘 . Moreover, if 

𝜕

𝜕𝑐ST𝑘
𝐼ST𝑘

∗
<

𝜕

𝜕𝑐V𝑘
𝐼ST𝑘

∗
, the negative impact of 𝑐ST𝑘  is greater than 𝑐V𝑘 . But, 

−
𝜎𝑥

𝑟𝐺−𝑐V𝑘+𝑐penalty
𝐹𝑆
−1′ (1−

𝑐ST𝑘

𝑟𝐺−𝑐V𝑘+𝑐penalty
) <

−
𝜎𝑥𝑐

ST𝑘

(𝑟𝐺−𝑐V𝑘+𝑐penalty)
2 𝐹𝑆

−1′ (1 −
𝑐ST𝑘

𝑟𝐺−𝑐V𝑘+𝑐penalty
) ⟺ 𝑟𝐺 − 𝑐V𝑘 + 𝑐penalty > 𝑐ST𝑘 , which is al-

ways true by definition. Therefore, the argument holds.∎ 
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Appendix D: Proof of Theorem 2 

Proof 4. From the proof of Theorem 1,  

𝐸[𝜋ST𝑖
∗
] = (𝑟𝐺 − 𝑐V𝑖 − 𝑐ST𝑖)𝜇𝑥 − 𝜎𝑥𝜔

ST𝑖 (𝑓𝑆 (𝐼𝑆
ST𝑖

∗
)) 

Similarly, 

𝐸[𝜋ST𝑗
∗
] = (𝑟𝐺 − 𝑐V𝑗 − 𝑐ST𝑗)𝜇𝑥 − 𝜎𝑥𝜔

ST𝑗 (𝑓𝑆 (𝐼𝑆
ST𝑗

∗

)) 

So, 𝐸[𝜋ST𝑖
∗
] − 𝐸[𝜋ST𝑗

∗
] = (𝜔ST𝑖 − 𝜔ST𝑗 + 𝑐ST𝑗 − 𝑐ST𝑖)𝜇𝑥 − 𝜎𝑥 [𝜔

ST𝑖 ∙ 𝑓𝑆 (𝐼𝑆
ST𝑖

∗
) − 𝜔ST𝑗 ∙

𝑓𝑆 (𝐼𝑆
ST𝑗

∗

)]. This implies that if it is greater than zero, ST𝑖 is better than ST𝑗. Thus, when 

𝜔ST𝑖 ∙ 𝑓𝑆 (𝐼𝑆
ST𝑖

∗
) > 𝜔ST𝑗 ∙ 𝑓𝑆 (𝐼𝑆

ST𝑗
∗

) , ST𝑖  is better if 
𝜔ST𝑖−𝜔

ST𝑗+𝑐
ST𝑗−𝑐ST𝑖

𝜔ST𝑖∙𝑓𝑆(𝐼𝑆
ST𝑖

∗
)−𝜔

ST𝑗∙𝑓𝑆(𝐼𝑆
ST𝑗

∗

)

>
𝜎𝑥

𝜇𝑥
 but 

when 𝜔ST𝑖 ∙ 𝑓𝑆 (𝐼𝑆
ST𝑖

∗
) < 𝜔ST𝑗 ∙ 𝑓𝑆 (𝐼𝑆

ST𝑗
∗

), ST𝑖  is better if 
𝜔ST𝑖−𝜔

ST𝑗+𝑐
ST𝑗−𝑐ST𝑖

𝜔ST𝑖∙𝑓𝑆(𝐼𝑆
ST𝑖

∗
)−𝜔

ST𝑗 ∙𝑓𝑆(𝐼𝑆
ST𝑗

∗

)

<
𝜎𝑥

𝜇𝑥
. 

When budget constraint is activated 𝐼ST𝑘
∗
= 𝐵𝑐ST𝑘

−1
. By substituting this optimal value 

into expected profit function, we can similarly derive the determinants for part b and c.∎ 
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Appendix E: Proof of Theorem 3 

Proof 5. 𝜋ST𝑖,𝑗  denotes the profit of a mixed strategy that uses strategy 𝑖 first and then 

strategy 𝑗.  

𝐸[𝜋ST𝑖,𝑗] = −𝑐ST𝑖𝐼ST𝑖(𝑖𝑗) − 𝑐ST𝑗𝐼ST𝑗(𝑖𝑗) + (𝑟𝐺 − 𝑐V𝑖)∫ min(𝑥,𝐼ST𝑖(𝑖𝑗))
∞

0

𝑑𝐹(𝑥)

+ (𝑟𝐺 − 𝑐V𝑗)∫ min(𝑥 − 𝐼ST𝑖(𝑖𝑗),𝐼ST𝑗(𝑖𝑗))
∞

𝐼
ST𝑖(𝑖𝑗)

𝑑𝐹(𝑥)

− 𝑐penalty∫ (𝑥 − 𝐼ST𝑖(𝑖𝑗) − 𝐼ST𝑗(𝑖𝑗))
∞

𝐼
ST𝑖(𝑖𝑗)+𝐼

ST𝑗(𝑖𝑗)
𝑑𝐹(𝑥) 

= −𝑐ST𝑖𝐼ST𝑖(𝑖𝑗) − 𝑐ST𝑗𝐼ST𝑗(𝑖𝑗) + (𝑟𝐺 − 𝑐V𝑖)∫ 𝑥
∞

0

𝑑𝐹(𝑥)

+ (𝑐V𝑖 − 𝑐V𝑗)∫ (𝑥 − 𝐼ST𝑖(𝑖𝑗))
∞

𝐼
ST𝑖(𝑖𝑗)

𝑑𝐹(𝑥)

− (𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty)∫ (𝑥 − 𝐼ST𝑖(𝑖𝑗) − 𝐼ST𝑗(𝑖𝑗))
∞

𝐼
ST𝑖(𝑖𝑗)+𝐼

ST𝑗(𝑖𝑗)
𝑑𝐹(𝑥) 

= −𝑐ST𝑖𝐼ST𝑖(𝑖𝑗) − 𝑐ST𝑗𝐼ST𝑗(𝑖𝑗) + (𝑟𝐺 − 𝑐V𝑖)𝜇𝑥 + (𝑐
V𝑖 − 𝑐V𝑗)∫ (𝑥 − 𝐼ST𝑖(𝑖𝑗))

∞

𝐼
ST𝑖(𝑖𝑗)

𝑑𝐹(𝑥)

− (𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty)∫ (𝑥 − (𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗)))
∞

𝐼
ST𝑖(𝑖𝑗)+𝐼

ST𝑗(𝑖𝑗)
𝑑𝐹(𝑥) 

Note that if 𝐼ST𝑗(𝑖𝑗) = 0 (𝐼ST𝑖(𝑖𝑗) = 0), it can be shown that 𝐸[𝜋ST𝑖,𝑗] = 𝐸[𝜋ST𝑖] (𝐸[𝜋ST𝑖,𝑗] =

𝐸[𝜋ST𝑗]) by simple algebra. As observed before in proposition 1, we again observe that 

∫ (𝑥 − 𝐼ST𝑖(𝑖𝑗))
∞

𝐼
ST𝑖(𝑖𝑗) 𝑑𝐹(𝑥) = 𝜎𝑥𝑙 (𝑥,𝐼𝑆

ST𝑖(𝑖𝑗))  and similarly, ∫ (𝑥 −
∞

𝐼
ST𝑖(𝑖𝑗)+𝐼

ST𝑗(𝑖𝑗)

(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗))) 𝑑𝐹(𝑥) = 𝜎𝑥𝑙 (𝑥,(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗))
𝑆
) . So, we can simplify the ex-

pected profit of ST𝑖,𝑗 as follows: 
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𝐸[𝜋ST𝑖,𝑗] = −𝑐ST𝑖𝐼ST𝑖(𝑖𝑗) − 𝑐ST𝑗𝐼ST𝑗(𝑖𝑗) + (𝑟𝐺 − 𝑐V𝑖)𝜇𝑥 + (𝑐
V𝑖 − 𝑐V𝑗)𝜎𝑥𝑙 (𝑥,𝐼𝑆

ST𝑖(𝑖𝑗))

− (𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty)𝜎𝑥𝑙 (𝑥,(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗))
𝑆
) 

Observe that 

𝜕

𝜕𝐼ST𝑖(𝑖𝑗)
𝑙 (𝑥,𝐼𝑆

ST𝑖(𝑖𝑗)) = −
1

𝜎𝑥
(1− 𝐹𝑆 (

𝐼ST𝑖(𝑖𝑗) − 𝜇𝑥
𝜎𝑥

)) 

𝜕2

𝜕𝐼ST𝑖(𝑖𝑗)
2
𝑙 (𝑥,𝐼𝑆

ST𝑖(𝑖𝑗)) =
1

𝜎𝑥2
𝑓𝑆 (

𝐼ST𝑖(𝑖𝑗) − 𝜇𝑥
𝜎𝑥

) ≥ 0 A(1) 

, which means the standardized loss function is convex. Similarly, 

𝜕

𝜕𝐼ST𝑖(𝑖𝑗)
𝑙 (𝑥,(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗))

𝑆
) =

𝜕

𝜕𝐼ST𝑗(𝑖𝑗)
𝑙 (𝑥,(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗))

𝑆
)

= −
1

𝜎𝑥
(1 − 𝐹𝑆 (

(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗)) − 𝜇𝑥
𝜎𝑥

)) 

A(2) 

𝜕2

𝜕𝐼ST𝑖(𝑖𝑗)
2
𝑙 (𝑥,(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗))

𝑆
) =

𝜕2

𝜕𝐼ST𝑗(𝑖𝑗)
2
𝑙 (𝑥,(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗))

𝑆
)

=
1

𝜎𝑥2
𝑓𝑆 (

(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗)) − 𝜇𝑥
𝜎𝑥

) ≥ 0 

A(3) 

But, observe that 

𝜕

𝜕𝐼ST𝑖(𝑖𝑗)
𝐸[𝜋ST𝑖,𝑗]

= −𝑐ST𝑖 + (𝑐V𝑖 − 𝑐V𝑗)𝜎𝑥
𝜕

𝜕𝐼ST𝑖(𝑖𝑗)
𝑙 (𝑥,𝐼𝑆

ST𝑖(𝑖𝑗))

− (𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty)𝜎𝑥
𝜕

𝜕𝐼ST𝑖(𝑖𝑗)
𝑙 (𝑥,(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗))

𝑆
)  and 

A(4) 
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𝜕

𝜕𝐼ST𝑗(𝑖𝑗)
𝐸[𝜋ST𝑖,𝑗]

= −𝑐ST𝑗

− (𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty)𝜎𝑥
𝜕

𝜕𝐼ST𝑗(𝑖𝑗)
𝑙 (𝑥,(𝐼ST𝑖(𝑖𝑗) + 𝐼ST𝑗(𝑖𝑗))

𝑆
) 

A(5) 

Thus, by using A(2) and A(5), we rearrange Eq. A(4) as follows:  

𝜕

𝜕𝐼ST𝑖(𝑖𝑗)
𝐸[𝜋ST𝑖,𝑗] = −𝑐ST𝑖 + (𝑐V𝑖 − 𝑐V𝑗)𝜎𝑥

𝜕

𝜕𝐼ST𝑖(𝑖𝑗)
𝑙 (𝑥,𝐼𝑆

ST𝑖(𝑖𝑗)) +
𝜕

𝜕𝐼ST𝑗(𝑖𝑗)
𝐸[𝜋ST𝑖,𝑗] + 𝑐ST𝑗  

Since the expected profit is concave w.r.t. 𝐼ST𝑗(𝑖𝑗) by Eq. A(3) and the fact that unit reve-

nue for the guaranteed capacity service is always assumed to be higher than unit variable 

cost under strategy 𝑗, i.e., 𝑟𝐺 > 𝑐V𝑗, then  
𝜕

𝜕𝐼
ST𝑗(𝑖𝑗)

𝐸[𝜋ST𝑖,𝑗] = 0 at optimality. Using these 

observations, we obtain 

𝜕

𝜕𝐼ST𝑖(𝑖𝑗)
𝐸[𝜋ST𝑖,𝑗] = −𝑐ST𝑖 + (𝑐V𝑖 − 𝑐V𝑗)𝜎𝑥

𝜕

𝜕𝐼ST𝑖(𝑖𝑗)
𝑙 (𝑥,𝐼𝑆

ST𝑖(𝑖𝑗)) + 𝑐ST𝑗

= 𝑐ST𝑗 − 𝑐ST𝑖 − (𝑐V𝑖 − 𝑐V𝑗) (1− 𝐹𝑆 (
𝐼ST𝑖(𝑖𝑗) − 𝜇𝑥

𝜎𝑥
))  and 

𝜕2

𝜕𝐼ST𝑖(𝑖𝑗)
2
𝐸[𝜋ST𝑖,𝑗] = (𝑐V𝑖 − 𝑐V𝑗)𝜎𝑥

𝜕2

𝜕𝐼ST𝑖(𝑖𝑗)
2
𝑙 (𝑥,𝐼𝑆

ST𝑖(𝑖𝑗)) 

, which means that 𝐸[𝜋ST𝑖,𝑗] can be either i) concave or ii) convex w.r.t. 𝐼ST𝑖(𝑖𝑗)  

i) If 𝑐V𝑖 − 𝑐V𝑗 < 0, 𝐸[𝜋ST𝑖,𝑗] is concave w.r.t. 𝐼ST𝑖(𝑖𝑗)  by Eq. A(1).  

So, when 𝑐V𝑖 − 𝑐V𝑗 < 0, setting 
𝜕

𝜕𝐼
ST𝑖(𝑖𝑗)

𝐸[𝜋ST𝑖,𝑗] = 0 gives 

𝐹𝑆 (
𝐼ST𝑖(𝑖𝑗) − 𝜇𝑥

𝜎𝑥
) = 1−

𝑐ST𝑗 − 𝑐ST𝑖

𝑐V𝑖 − 𝑐V𝑗
 

Solving for 𝐼ST𝑖(𝑖𝑗)  gives optimal capacity allocation for guaranteed capacity service of 

strategy 𝑖 in ST𝑖,𝑗. 
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𝐼ST𝑖(𝑖𝑗)
∗
= max(0,𝜎𝑥𝐹𝑆

−1 (1−
𝑐ST𝑗 − 𝑐ST𝑖

𝑐V𝑖 − 𝑐V𝑗
) + 𝜇𝑥) 

𝐼ST𝑗(𝑖𝑗)
∗
 is obtained by setting 

𝜕

𝜕𝐼
ST𝑗(𝑖𝑗)

𝐸[𝜋ST𝑖,𝑗] = 0 with 𝐼ST𝑖(𝑖𝑗) = 𝐼ST𝑖(𝑖𝑗)
∗
, which gives 

−𝑐ST𝑗 + (𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty)(1 − 𝐹𝑆 (
(𝐼ST𝑖(𝑖𝑗)

∗
+ 𝐼ST𝑗(𝑖𝑗)) − 𝜇𝑥
𝜎𝑥

)) = 0 

By solving this for 𝐼ST𝑗(𝑖𝑗), we obtain 

𝐼ST𝑗(𝑖𝑗)
∗
= 𝜎𝑥𝐹𝑆

−1 (1−
𝑐ST𝑗

𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty
) + 𝜇𝑥 − 𝐼

ST𝑖(𝑖𝑗)
∗
 A(6) 

ii) On the other hand, if 𝑐V𝑖 − 𝑐V𝑗 ≥ 0, 𝐸[𝜋ST𝑖,𝑗] is convex w.r.t. 𝐼ST𝑖(𝑖𝑗)  by Eq. A(1).  

When 
𝜕

𝜕𝐼
ST𝑖(𝑖𝑗)

𝐸[𝜋ST𝑖,𝑗] < 0, i.e.,  

𝜕

𝜕𝐼ST𝑖(𝑖𝑗)
𝐸[𝜋ST𝑖,𝑗] = 𝑐ST𝑗 − 𝑐ST𝑖 − (𝑐V𝑖 − 𝑐V𝑗) (1− 𝐹𝑆 (

𝐼ST𝑖(𝑖𝑗) − 𝜇𝑥
𝜎𝑥

)) < 0

⟺
𝑐ST𝑗 − 𝑐ST𝑖

𝑐V𝑖 − 𝑐V𝑗
< 1− 𝐹𝑆 (

𝐼ST𝑖(𝑖𝑗) − 𝜇𝑥
𝜎𝑥

) ⟺ 𝐼ST𝑖(𝑖𝑗)

< 𝜎𝑥𝐹𝑆
−1 (1 −

𝑐ST𝑗 − 𝑐ST𝑖

𝑐V𝑖 − 𝑐V𝑗
) + 𝜇𝑥 

, the minimum value for 𝐼ST𝑖(𝑖𝑗)  is the best, i.e., 𝐼ST𝑖(𝑖𝑗) = 0 (lower bound) so that 𝐼ST𝑗(𝑖𝑗) =

𝜎𝑥𝐹𝑆
−1 (1 −

𝑐
ST𝑗

𝑟𝐺−𝑐
V𝑗+𝑐penalty

) + 𝜇𝑥 = 𝐼
ST𝑗

∗
. Thus, the mixed strategy is the same as the sole 

strategy j and does not generate a better expected profit.  Similarly, when 

𝜕

𝜕𝐼
ST𝑖(𝑖𝑗)

𝐸[𝜋ST𝑖,𝑗] ≥ 0, i.e., 𝐼ST𝑖(𝑖𝑗) > 𝜎𝑥𝐹𝑆
−1 (1 −

𝑐
ST𝑗−𝑐ST𝑖

𝑐V𝑖−𝑐
V𝑗
) + 𝜇𝑥 . The maximum 𝐼ST𝑖(𝑖𝑗)  is 

the best, which implies that 𝐼ST𝑖(𝑖𝑗)
∗
 can be increased up to 𝜎𝑥𝐹𝑆

−1 (1 −
𝑐

ST𝑗

𝑟𝐺−𝑐
V𝑗+𝑐penalty

) +

𝜇𝑥 (upper bound). Thus,  
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𝜎𝑥𝐹𝑆
−1 (1 −

𝑐ST𝑗 − 𝑐ST𝑖

𝑐V𝑖 − 𝑐V𝑗
) + 𝜇𝑥 < 𝜎𝑥𝐹𝑆

−1 (1 −
𝑐ST𝑗

𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty
) + 𝜇𝑥 

⟺
𝑐ST𝑖

𝑐ST𝑗
<
𝑟𝐺 − 𝑐V𝑖 + 𝑐penalty

𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty
< 1 

A(7) 

At the upper bound, 𝐼ST𝑖(𝑖𝑗) = 𝜎𝑥𝐹𝑆
−1 (1 −

𝑐
ST𝑗

𝑟𝐺−𝑐
V𝑗+𝑐penalty

) + 𝜇𝑥 and 𝐼ST𝑗(𝑖𝑗) = 0 due to A(6). 

If 𝐼ST𝑖(𝑖𝑗) > 𝐼ST𝑖 , 𝜋ST𝑖,𝑗  can be greater than 𝜋ST𝑖  . However, 𝐼ST𝑖(𝑖𝑗) > 𝐼ST𝑖 ⟺
𝑐ST𝑖

𝑐
ST𝑗
>

𝑟𝐺−𝑐V𝑖+𝑐penalty

𝑟𝐺−𝑐
V𝑗+𝑐penalty

, which contradicts Eq. A(7). This implies that ST𝑖,𝑗 is not better than sole 

strategy ST𝑖 in this case either.  

Therefore, under unlimited budget, combination of 𝑖 and 𝑗 can be a viable option for 

the mixed strategy only when 𝑐V𝑖 − 𝑐V𝑗 < 0 and when 𝐼ST𝑖(𝑖𝑗)
∗
 and 𝐼ST𝑗(𝑖𝑗)

∗
 are both posi-

tive, i.e., 𝜎𝑥𝐹𝑆
−1 (1 −

𝑐
ST𝑗−𝑐ST𝑖

𝑐V𝑖−𝑐
V𝑗
) + 𝜇𝑥 > 0 ⟺ 1−

𝑐
ST𝑗−𝑐ST𝑖

𝑐V𝑖−𝑐
V𝑗
> 𝐹𝑆 (−

𝜇𝑥

𝜎𝑥
)  and 𝜎𝑥 [𝐹𝑆

−1 (1−

𝑐
ST𝑗

𝑟𝐺−𝑐
V𝑗+𝑐penalty

) − 𝐹𝑆
−1 (1 −

𝑐
ST𝑗−𝑐ST𝑖

𝑐V𝑖−𝑐
V𝑗
)] > 0 ⟺

𝑐ST𝑖

𝑐
ST𝑗
>

𝑟𝐺−𝑐V𝑖+𝑐penalty

𝑟𝐺−𝑐
V𝑗+𝑐penalty

. Therefore, when these 

conditions are satisfied, the optimal solution is given by 

𝐼ST𝑖(𝑖𝑗)
∗
= 𝜎𝑥𝐹𝑆

−1 (1−
𝑐ST𝑗 − 𝑐ST𝑖

𝑐V𝑖 − 𝑐V𝑗
) + 𝜇𝑥 and 

𝐼ST𝑗(𝑖𝑗)
∗
= 𝜎𝑥 [𝐹𝑆

−1 (1−
𝑐ST𝑗

𝑟𝐺 − 𝑐V𝑗 + 𝑐penalty
) − 𝐹𝑆

−1 (1 −
𝑐ST𝑗 − 𝑐ST𝑖

𝑐V𝑖 − 𝑐V𝑗
)]  respectively.  ∎ 
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Appendix F: Sensitivity Analysis 

We provide sensitivity analysis on the parameters to illustrate the robustness of our 

findings. The analysis is performed by changing the values of four key parameters:  

The proportion of total cost within the revenue- The default value used is 94%. The val-

ues tested are 95%, 96% and 97%. The corresponding graphs are shown in Figure E3-7 – 

E3-9. As this value increases, the profitability of REC and IIC decreases, whereas profit-

ability of RIC is not impacted much. Thus, RIC becomes the best strategy for a larger 

spectrum of 𝑐𝑣 values, but the overall results are still consistent. 

The proportion of variable cost within the total cost- If this value increases, the pro-

portion of fixed cost within the total cost decreases as the sum of the two is 100%. The 

default value is 83%. The values tested are 84%, 85% and 86%. The corresponding 

graphs are shown in Figure E3-10 – E3-12. As this parameter value increases, IIC be-

comes relatively more profitable. This is because, with the same budget, we can invest in 

more new capacity. The overall results do not change in this case as well. 

The budget.- This impacts only REC and IIC. The initial budget is increased by 5%, 

10%, 15% and 20%. The corresponding graphs are shown in Figure E3-13 – E3-15. As 

the budget increases, RIC becomes less attractive compared to other strategies as they are 

less restricted by the budget. The general relationships still remain valid. 

The penalty cost.- As penalty cost decreases, the profit for all the strategies increases, 

however, the main structure of the three functions does not change. Thus, the findings are 

not impacted. The default value is 1.5𝑟𝐺. The penalty cost is decreased to 1.4𝑟𝐺, 1.3𝑟𝐺, 

1.2𝑟𝐺, and 1.1𝑟𝐺. The corresponding graphs are shown in Figure E3-17 – E3-20.   
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 Sensitivity Analysis of Total Cost (TC) and Variable Cost for Sole Strategies 

 
Figure E3-A1: TC is 95% of revenue 

 
Figure E3-A2: var. cost is 84% of TC 

 
Figure E3-A3: TC is 96% of revenue  

 
Figure E3-A4: var. cost is 85% of TC 

 
Figure E3-A5: TC is 97% of revenue  

 
Figure E3-A6: var. cost is 86% of TC 
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 Sensitivity Analysis of the Budget for Sole Strategies 
 

 
Figure E3-A7: 5% Increase 

 
Figure E3-A8: 10% Increase 

 
Figure E3-A9: 15% Increase 

 
Figure E3-A10: 20% Increase 
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 Sensitivity Analysis for the Penalty Cost for Sole Strategies 
 

 
Figure E3-A11:  𝒄penalty = 1.4𝒓𝑮 

 
Figure E3-A12:  𝒄penalty = 1.3𝒓𝑮 

 
Figure E3-A13:  𝒄penalty = 1.2𝒓𝑮 

 
Figure E3-A14:  𝒄penalty = 1.1𝒓𝑮 
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