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ABSTRACT

CONTRIBUTIONS TO THE THEORY OF FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

By

Harlan West Stech

Let p:(-»,0] » (0O,®) be nondecreasing and integrable
on (-e,0]. Assume also that p(u + v) £ p(u)p(v) for

all u,v << 0. Let r > O.

Functional differential equations are discussed in
the context of the phase space X = {¢:(-®,0] =+ Ifll
¢|[_r 0] is continuous, ml(_n _y) 1is measurable and

[Flet Jp(wau < «}.

The adjoint theory for linear autonomous equations is
considered from the point of view of adjoint semi-group
theory. The adjoint equation is derived and the space
decomposition at characteristic values is given in terms
of an extension of the classic bilinear form known for

finite delay equations.



Harlan Stech

General linear systems and their adjoints are
discussed in a manner similar to that for finite delay
equations. Let

B = inf{c € R IJO e®Sp(s)ds < «).

It is shown that the spectrum of the usual solution operator
T(t,s), t > s consists entirely of normal eigenvalues

-t
outside the circle of radius eB(s ).

In the case of linear periodic systems, an extension
of the Floquet theory known for finite delay FDE's is made
to the space X. Under the assumption that B < O, thé
usual criterion (in the context of characteristic exponents)
for the stability of the zero solution is shown to be true.
Also, the Fredholm Alternative is proved for nonhomogeneous
systems. The projections associated with the space decom-
positions at characteristic multipliers are calculated in

terms of an adjoint equation and bilinear form.

The behavior of solutions near periodic solutions to
C1 nonlinear FDE's is considered. Conditions are given
under which the Poincaré map can be defined about nondegenerate
periodic orbits. The Poincaré'map is then used to discuss

the stability of the periodic orbit.
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CHAPTER I

PRELIMINARIES

§1. Introduction

In many biological and physical modeling problems the
rate of change of a system can not be assumed to depend
only upon the current state of the system. Rather, it
depends also upon the past states or "history" of the system.
The incorporation of past history into differential models
leads to a class of equations that are now referred to as

functional differential equations (FDE).

For example, the scalar equation
i(t) = —a[x(t) + 1]x(t - T)

where a,T > O, has been used by Hutchinson [19] to describe
the growth of a single species population with a self-
regulating mechanism that affects the birth rate after T
units of time. Note that the historical effect occurs in

the term "x(t - T)" and requires the assumption that all
historic effects on the rate of change "x(t)" of the
system be concentrated at T wunits of time previous to the
current time "t". As a relaxation of this assumption, May

[27] has suggested that



i(t) = -a[x(t) + l]jo x(t + s)n(s)ds

-
is a more realistic model of that biological system. Here,
n 1is a positive weight function integrable on (-«,0).

The term

"IO x(t + s)n(s)ds”

-

encorporates the past history into the system since as s
varies over (-o,0), the values of x on (-eo,t) are used
in evaluating the integral.

Hans-Otto Walther [39] has studied the similar model

x(£) = —a[x(t) + 11[° x(t + s)an(s)
-r

where r >0 and n 1is a real-valued, nondecreasing function

defined on [-r,0].

Volterra [38] proposed the system

Ny (8) = [e) = yN,(t) - j?- Fy(SIN, (t + s)ds]Ny (t)
N, (t) = [-e + y,Nj(t) + j?. F, (S)N) (t + s)ds]N, (t)

to study the interactions between predator and prey popula-
tions Ny and N2, respectively. The weight functions Fy

and F are assumed to be integrable on (-e,0).

2



May [27] has considered a similar model

H(t) = [r - cH(t = T) - aP(t) JH(t)

P(t) [-b + BH(t) ]P(t)
in describing (among other things) the wolf-moose relationship

on Isle Royale, Michigan.

The scalar equation

x(t) = -aj'l sin(x(t + s))p(s)ds

was investigated by Israelsson and Johnsson [20] as a model
of autonomous plant oscillations. The weight function, p,
was assumed again to be integrable on (-e,-1) and

"exponential” in form. See Klein [22] for further discussions.

For nonbiological examples, see Coleman and Mizel [ 6]
for models arising in the theory of mechanics and thermo-

dynamics of materials.

The models of Hutchinson, Walther and the wolf-moose
model of May are said to be of "finite delay" type since
the right hand sides of these equations rely only on a
finite past history of the respective systems. The remaining
examples are functional differential equations with infinite
delay. Although these models can incorporate the entire past
history into determining the rate of change of the systems,

the "distant" past behavior has slight influence on the



equation since the weight functions involved are assumed
to be integrable on (-e«,0). Such FDE's are said to have
a "fading memory". The finite delay situations are, of
course, special cases in which the history past a fixed
amount of time is completely "forgotten" and thus cannot

influence the behavior in the future.

Functional differential equations with finite delay
have received extensive study over the past half century.
It is an area that is currently undergoing a rapid develop-
ment. The monograph of Hale [ 11] serves as the best

exposition on the qualitative theory of finite delay FDE's.

In 1974, Hale [ 12] initiated the study of a class of
FDE's with infinite delays. The class includes as a proper
subset all FDE's with finite delay and (with various
assumptions on the respective weight functions) each of the
infinite delay models mentioned above. 1In particular, FDE's
were considered in which weighted averages of "distant"
past effects were used in calculating the rate of change of
the system while more precise effects of the "not-so-distant"
past were allowed. This will be clarified in the next
section. However, as an example of such an equation we might

consider
x(£) = —alx(t) + 11[[° x(t + s)an(s)
-

+ I_r x(t + s)n(s)p(s)ds]



which generalizes the first three examples of this section.
Here, n 1is assumed on [-r,0] to be as in Walther's
model and essentially bounded on (-eo,-r), while p is
integrable on (-o,-r) and (in some sense) "exponential"

s,

in form. (e.g., p(s) = e c,n > 0.)

A paper of Naito [29] has investigated linear autonomous
equations of this type and generalized to this class some

of the results known for FDE's with finite delay.

In this thesis we have continued the study of this class
of functional differential equations with infinite delay.
Using the theory of finite delay equations as a guide,
topics have been chosen whose counterparts in the theory of
FDE's with finite delay have proved fundamental to that
theory. The bulk of our study concerns the qualitative be-
havior of linear systems. However, a nonlinear topic is

discussed in the final chapter.

In Chapter II we continue the study of autonomous linear
FDE's initiated by Hale [12] and Naito [29]. We are most
concerned with the adjoint theory and a function analytic
derivation of the adjoint to a given FDE. The study of the
adjoint problem makes heavy use of semi-group theory. The
chapter includes a complete description of the adjoint semi-
group, its infinitesimal generator and a discussion of the

associated adjoint space. The final section concerns the



calculation of the projections onto the eigenspaces associated
with roots of the characteristic equations. An explicit des-
cription of these projections is important from an applications
point of view since, for example, such information is used

in the finite delay case in showing the existence of nonconstant
periodic solutions to Hutchinson's model. See Grafton [10]

and Chow and Hale [ 5] for related topics. 1In addition, we

are able to present a new explanation (in function analytic
terms) of the classic bilinear form known to the theory of

finite delay equations.

Chapter III considers general linear systems. After a
brief look at the existence, uniqueness and continuous
dependence properties of these equations, the solution
operator associated to such equations is discussed. Once
again the adjoint equation is derived by function analytic
techniques. Fortunately, many of the technical aspects of
this chapter may be proved in a manner similar to the
analogous results from the theory of FDE's with finite delay.
Where possible, proofs have been omitted and replaced with
references. The chapter ends with a discussion of the spectral
properties of the solution operator and the strengthening of

a result of Hale [12].



Chapter IV investigates the special case in which the
linear system of the previous chapter is assumed to be
periodic. The chapter starts with the definition and study
of periodic families of bounded linear operators. These
families play a role analogous to that of semi-groups of
bounded linear operators associated with autonomous systems.
The section makes no reliance on the theory of FDE's and is
so presented to stress the fact that many of the general
properties of periodic FDE's are valid in a much larger
context. The chapter includes some of the first dividends
of our function analytic approach. In particular, we are
able to derive the Fredholm Alternative for forced periodic
systems. We also discuss the classic criterion for the
stability of linear periodic systems (in the context of
characteristic exponents) and calculate the projection
operators onto the invariant subspaces associated to the

characteristic multipliers.

The last chapter concerns a brief study of the behavior
near periodic solutions to smooth (Cl) nonlinear autonomous
equations. By imposing a technical assumption on the equa-
tions under study, we are able to define the Poincaré Map
about periodic orbits. The standard criterion concerning
the stability of the periodic orbits is shown to generalize

to this class of FDE's.



There are many justifications for the work that is to
follow. In terms of modeling with FDE's, it is a first step
towards removing the assumption that only a finite past
history can influence the behavior of the system. In some
instances, the mathematical analysis of models is greatly
simplified if one includes the entire past history into the
model. As was pointed out by May [27], the stability of the
zero solutions of

S

Q(t) ds

al[x(t) + l]fo x(t + s)seS
-k
and

a[x(t) + l]j0 x(t + s)secs ds

x (t)

for ¢ > O relies on the location of the solutions, 2z, of

the complex equations

z = afo se(z+c)s ds
-k

—a(z + c) 72 + a[k(z + o) l.e7(2¥C)K

+ (z + o) 2. (B¥e)ky

and

z = QIO se(z+c)s ds = -a(z + c)-2'
~®

respectively. The infinite delay case is decidedly the

friendlier of the two.

From a mathematical standpoint there are other reasons

for such a study. Certainly, it can be viewed as a step



towards creating a qualitative theory for general integro-
differential equations. (In many situations proofs have
been supplied that lend themselves to immediate generaliza-
tion.) However, this work also sheds new light on the
theory of finite delay FDE's. We mention the results con-
cerning the classical bilinear forms (Chapter II, §8 and
Chapter IV, §3,4) as specific situations where finite delay
results become more meaningful when seen as special cases

of results true for infinite delay equations.

It should also be mentioned that the work of Levin
and Shea [ 24, 25, 26] also indicates the importance of the
topic under consideration. They have shown, for example,
that for a class of measures, A(t,s), satisfying a
periodicity assumption in t, the asymptotic behavior of

bounded solutions to

i(t) = Io x(t + s)da(t,s)

is describable in terms of the solutions of the "limit

equation"

i(t) = jo x(t + s)da(t,s).
-

Linear periodic systems of this type are discussed in Chapter

Iv.
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§2. Notation
An effort has been made to use the basic notations

from the theory of FDE's with finite delays.

If n is a positive integer, R” will denote
Euclidean n-space. Elements of R" will be viewed as
column vectors and |+]| will denote the Euclidean norm.
If € € Iﬁ% then §T will denote the same vector viewed
as a row vector in the usual manner. If n 1is a row

vector, then nE will denote the usual inner product be-

tween n and §.

Let p:(-»,0] » (0,») Dbe continuous, nondecreasing

and satisfy
(1.1) p(u+v) <p(u)p(v) for u,v<O0

(1.2) P pwau <

-
For r > 0 we define X = {(¢:(-»,0] =+ Ifllw is continuous

on [-r,0], measurable on (-e,-r) and

77 e lp(wau < o).

We endow the set X with the norm

lol = sup o | + [7° [o(w |p(wau.

-r’o -
The use of |-| to also denote the norm on X should cause

no confusion. With this norm X becomes a Banach Space.
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The dual space, X', is given by {y:(-w,0] -+ ]RnT lv is
essentially bounded and measurable on (-eo,-r), of bounded
variation on [-r,0], 1left continuous on [-r,0), and
satisfies y(0) = 0}. For v € X* we define y(u) =0

if u>O0. If y:(-®,0] =+ m“T is essentially bounded
and measurable on (-e,-r), of bounded variation on

[-xr,0] and left continuous on ;-r,0] we define the

0 *
element { € X Dby

o, u=20
wo(u) = {
y(u), u < o.

The duality pairing between | € X* and ¢ € X will be

denoted by <{,9> and is given by

(1.3) <Voo> = J'_r ¥ (u)e(u)p(u)du + ‘fo [dy(u) Jplu).

—e r
The integral on [-r,0] 1is of Lebesgue-Stieltjes type

(see [17] or [34]). We will write
=y ama Py

a [a,b) a ‘la,b]

*
The dual norm on X associated with (1.3) is given by

|¢| = max{ess sup|y(u)|, var [y(u)]|}.
ul-r [-r,0]

The symbol I will denote the n x n identity matrix
or the identity operator on a Banach space. We shall make

specific comments whenever confusion might arise.
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*
§3. The ~ Representation of V € X

In the sections to follow, we shall see that it ais

convenient to write the pairing (l1.3) as

(1.4) <o = [0 [dF Je(u)

-®
where '\F is defined by

y(u), -r{ug<o
y(u) =
y(-r) - J-r y(s)p(s)ds, u < -r.
u
For example, if I is the n x n identity matrix and My

denotes its ith row we define vy by

) {“i‘ -r <u<o
v; (u) =
. o, u < -r.

Then

o M:» -r <u<o
vi(u)= 1
o, u<-r or u=20

and

~0 uje u<o
v; (u)
o, u = 0.
We have <vci),cp> = -9; (0), the ith co-ordinate of -¢(0), for

1 <idn. Ifwedefine the n x n matrix valued function 5"

*
by & =row(v(i,v(2),...,vg) then

(1.5) <5 o> = -p(0) .
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The following may be shown by elementary methods.

) *
Lemma 1‘1',_£il;ff__fl’¢2 € X and c,, c, are
scalars then [cyy; + c,¥,] = ¢ ¥; + c2$é.

(ii) If {wm} c X* converges to y € x*, then

~

Vy ¥ uniformly on compact subsets of (-,0].

Finally, if ¢ € X has a continuous extension to
(-w,a) for some a > O we may define the element 9 €X

for o<t <a by @t(u) = p(t + u), u<oO0.



CHAPTER II

LINEAR AUTONOMOUS SYSTEMS

§1. The Solution Semi-group

Let L:X + R" be bounded and linear. We can
represent L in terms of an n x n matrix valued

*
function, mn, whose rows are elements of X . That is,

1% = <n.o> = [T n(®)5s)ds + [0 [an(s)]5(s)
o -r

[° [an(s)1e(s)

for o € X.

We consider the system

(2.1) X (t)

Lx t>o0

tl

(2.2) X5

9 € X.

As shown in Naito [29], we may associate with (2.1)-(2.2)
a strongly continuous semi-group of bounded linear operators,
T(t), t >0, defined on X by T(t)yp = xt(w), where

x(¢p) (-) denotes the solution to (2.1)-(2.2). Define

B = inflc € R|[° % p(s)as < o).

14
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Theorem 2.1 [29]. The infinitesimal generator, A,

of T(t), t >0 is given by Agp = ¢ with the domain
H(A) = {(p € X|p € X and (0) = Lo}.

Furthermore, the point spectrum of A is contained in the
half plane {\A € C|Re A > B}. Any A with real part larger

than B is in the point spectrum of A if it satisfies
(2.3) det[AI - L(e* I)] = o.

Otherwise, )\ 1is in the resolvent set of A.

It follows from Theorem 16.7.2 of Hille and Phillips
(18] that u # O is in the point spectrum of T(t) for

t >0 if p= el

where 2\ 1is in the point spectrum of
A. Define

(2.4) y(t) = sup 9i§7:TEl, t > o.
s{-r pis

The following theorem may be found in Hale [12].

Theorem 2.2. Let t > O. For any ¢ > O there is

only a finite number of points = u(t) in the spectrum
of T(t) with modulus > y(t) + e¢. Each such 4y is in the
point spectrum of T(t) and must be of the form y = e>‘t
for some A\ satisfying (2.3). Also, the generalized

eigenspace of )\ is finite dimensional and there is an

integer, k, such that
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(2.5) X=7nA - XI)k @ R(QA - )\I)k

where &, N denote the range and null spaces, respectively.

Define M, on X by

A
IO eX(S-u) @ (u)du
s

(2.6) [wa](s)

fo M(s,u;\) e (u)p (u)du

-®
for s £ O, where

0, u < S
(207) M(slu;k) =

- 1
o M(s-u) ST I, s<u<o

From Naito [29] we have that Mk is a bounded linear

operator from X into X and RX(A) = [AT - A]-1 is

defined for all )\ in the resolvent set of A by
(2.8)  [R,(B)pl(s) = e™aH (N (p(0) + LM @] + [My0](s)

for @ € X, s £ O. Here, A(\) is the n x n matrix

defined by
(2.9) A(N) = AI - L(e* 1),

with I the n x n identity matrix.

§2. Calculation of JKA*) and A*.

In this section we turn our attention towards the
*
calculation of the adjoint, A , of the infinitesimal

generator A associated with the semi-group T(t), t > O.
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*
A representation of A is essential to our study of the

adjoint equation and semi-group.

By Phillips [31], RX(A*) = RX(A)* whenever )\ is in
the resolvent set of A. It follows easily that RX(A)*
maps X* onto ﬁ(A*). Thus, the problem of characterizing
b(A*) is equivalent to that of determining the range of

*
RX(A) . For this reason, we first calculate the adjoint of

(AT - A]’l.

For any | € x" and @ € X, it follows from (2.8)

that

<y eMb> + <¥o M, 0>
<w.e*'>b + <M;¢.m>

(2.10) <¢.RX(A)m>

where M; is the adjoint of M

(2.11) b

k'
AN (p(0) + LM, (@) = 871N (9(0) + <nuM, (@)>)

o) (~<8*, o> + <M;n,w>}

%*

and § is defined by (1.5). Now (2.10) and (2.11) imply

A

(2.12) RX(A)*w = <p.er> A—l(h)[M;n - 8°) + M;w.

*
Thus, we consider the calculation of Mk'

*
Lemma 2.3. If § € X, then
*

(i) wa

bounded variation, left continuous derivative,

is absolutely continuous on [-r,0) with
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*

(ii) prw

(-»,-r) with

is locally absolutely continuous on

ST a5 (P [M¥]1(s))

essentially bounded on (-eo,-r), and

(iid) p(-r')[Miw](-r’) = [MKWJ(-r)-

Proof: For | € X* and ¢ € X

N
=
>F
8
\%
I

I:i ¥(s) [M,0] (s)p (s)ds + j?r [ay(s) 1(M, o] (s)

Applying (2.6), (2.7) and Fubini's Theorem [34] to I,

I, = f'r w(s)p(s)fo M(s,u; M) (u)p (u)duds

= [° [T ¥(s)p(s)M(s,us N ds]p(a)p (u)du

= TP w15 p(s)asip(u)au

* Ii. [j':: w(s)e)‘(s-u) P (s)ds]p(u)du.

To the integral I, we apply integration by parts [17].

1, = 4(s) 2 M5 Grwyaul®

- P v MY guyau - o(s) Jas
-1 s

_¢(-r)jo e M-r-u) p(u)du + IO y(u)e(u)du
-Y -X

A2 ) [° 25 (u)auas.
-X S



Cor

St

ho]
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Integration of the last integral by parts yields

I

, =P v - g0 TV g au

-

- x[fs (e av - fo e M @(u)dulgr
-r s

+ I?rffr ‘#(V)e)‘V dv - e M @ (u)du]

fo [y(u) - w(-r)eX(-r-u) - kju w(v)eX(v-u) dv]ep(u)du.
- -r

and I., we obtain

Combining the expressions for I1 2

(2.13)  <Myy.p> = f:: [ff. y(s)er(s™W) g{§§ ds ] (u) p (u) du

+ 2 v - gt
-r
- )\J‘u W(s)e)‘(s'u) ds
-r
+ [ ys)p(s)e*5™ as)gp(u)au.

Statement (i) follows from (2.13) since this equation must
hold for every ¢ € X. As for (ii), (2.13) shows

1
p (u)

[M;WJ(u) = Iu w(s)ek(s—u) p(s)ds

for u < -r. It is an easy computation to show that

STy e () My 1= (0 - A[M)](w

for a.e. u < -r. Thus, (ii) follows immediately. Statement

(iii) follows upon inspection of (2.13) also. a
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*
Corollary 2.4. If ¢ € X ; then

*
(i) RX(A) ¢y is absolutely continuous on [-r,0)

with bounded variation, left continuous derivative,
(ii) pr(A)*w is locally absolutely continuous on

(—w, —r) with

ST a5 (P8 [R, ()71 ()]

essentially bounded on (-e,-r), and

(iii) p(-r-)[Rx(A)*w](-r-) = [RX(A)*‘H(-—r)-
Proof: All three statements follow from (2.12), the
*

corresponding statements of Lemma 2.3 and the form of §

given by (1.5). O

*
Theorem 2.5. Let A be as in §1. The adjoint, A,

of A 1is given by

'O, s =0
(2.14) @"y) (s) = -y(s) = §(07)n(s), -r { s <0

- P(IS) % [P(s)y(s)] - y(0 )n(s), s < -r

with 3(A*) consisting of exactly those | € X* satisfying
[ (4) ¥ 1is absolutely continuous on [-r,0) with
bounded variation, left continuous derivative,
(2.15)< (ii) py is locally absolutely continuous on (-w,-r)
with p~l(py) essentially bounded on (-w,-r),

and

L(iii) p(-r ) y(-xr ) = @(—r).
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Proof: If ¢ € .B(A*), then ¢y = RX(A)*E for some
- *
y € X . From Corollary 2.4 we see that | must satisfy

(2.15).

Oon the other hand, if | satisfies (2.15) and

® € B(A), then for any k > r

<uap> = [T ywpean + [0 [ay () )
-r

= ka ¥ (Wp (We(uw)du + f’: ¥ (w)p (u) p(u)du

+ [° Jwemau - y(0 )90
-r

since { has a jump at u = O. Integrating by parts, one

obtains

[ ypdu + §(-r7)p(-r7) gl-r)

- W (KPR (k) - [T (y(w)p(u))p(udu

+ 10N 00 - J(-ng-r) - [° [aim Ip@

-r
- YO o>

= ™% ywpemau - ¥(=k) p (k) g(k)

- (y(@p@lpmau - ° [dy(w) o

-r
- <y(O )N, >

using the properties (2.15) of . By elementary arguments

it follows that we may let k # -o» in (2.16) to obtain
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(2.17)  <y.Ap> = - [77 [(y()p(u)) + y(07)n(w)p (u) Jp(u)du

- P [aGi@ + y©O7 ) nw) Jew)
-r

Since (2.17) holds for every ¢ € S(A), we conclude that

Vv € j(A*) and A*¢ is given as in (2.14). O

§3. The Adjoint Semi-group - General Theory

Before we continue, we briefly compile some relevant
facts from the theory of function analytic semi-groups.
As general references, we mention Phillips [ 31l] and Hille

and Phillips [ 18].

If T(t), t >0 1is a strongly continuous semi-group
of bounded linear operators on a Banach space E, then
its infinitesimal generator, &, 1is closed and densely
defined. However, the adjoint d* of & need not be
densely defined. 1In general, 314*) may be characterized
as [y € X |lim, t73er" (£)y - y,9> exists for all g € EJ.
The limit ist;gven by <u*¢,¢>.

Although T*(t), t > 0 defines a semi-group of bounded
linear operators on E* it is, in general, not strongly

*
continuous in t on all of E . In fact, it is known that

%*
B(@ ) 1is the largest subspace of E* on which T*(t), t>o0

is strongly continuous.
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Definition 2.6. The space ﬁ(d*) is called the

adjoint space associated to the semi-group T(t), t > O

and will be denoted by ET.

*
If we define T (t) =T (t)]| ., then T (t), t >0
E
is a strongly continuous semi-group of bounded linear

operators on E'. The infinitesimal generator a*

associated with T (t), t > 0 is closed and densely defined

*
in E'. 1In fact, &' =a | where

(@t
5@ = (y € p@") |a*y € 7).

§4. cCalculation of x+

*
We now give characterizations of B/(A ) and xt
derived from the semi-group associated with (2.1)-(2.2).

*
Note that B(A ), as described in Theorem 2.5 is independent

of the operator L in (2.1). Thus, it suffices to consider
the trivial FDE i(t) = 0. The associated semi-group will

be denoted by S(t) and is given by

p(t +u), u< -t
(2.18) [S(t) () ](u) = {
v (0), -t <u<o0.

*
The adjoint S (t) 1is easily calculated. 1In fact, if

*
t >0, V e€X and ¢ € X, then

P 1aV@ s (t)e] ()

<y, S(t) >

[ e lote +w + j°t+ (4 (u) Jg(0)
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©[a¥(s - B1p(s) + (30 - T(-t1) 1p(0)

= [° a7 %) Jols) + [F(-t7) - F(-tH 1900
-=
Thus
— o, u=0
(2.19) [s (B)y](v) = {:N ~ 4+ ~
ylu - t) + [Y(-t7) - y(-t)]1I, u < oO.

This is also true when t = 0. For u < -r, (2.19) implies

(2.20) [s™ (£) ¥] (u) = U;—(:;;t—) yu - t).

If we denote the associated infinitesimal generator as AO'

then A* follows from (2.14) upon setting n = O.

(0]
Theorem 2.7. Let A, be the infinitesimal generator
*
associated with S(t): t >0 and A_ its adjoint. Let

(0]
A be as in Theorem 2.5. Then
. * * * o -1
(1) »A) = b(ay) = (v €X' | Lim £ 7<S(t)y - ¥, o>
t-+0
exists for all ¢ € X}. X' is the largest
subspace of X* on which S*(t) is strongly
continuous.
%*

(ii) If §y €X, then y € X if and only if y
is absolutely continuous on [-r,0) and the
map associating t € [O,w) to the restriction

1l

of p~ P_g¥_y to (-=-r) is continuous as

a function from [0,e) into L®(-@, -1).



25

Proof: Only (ii) requires further argument. The
characterization of § on [-r,0) may be found in the
finite delay case in Henry [16] or derived from Theorem
1.4.9 of Butzer and Berens [ 4 ]. The characterization of
y on (-e,-r) is simply a restatement of the later portion

of (i) taking (2.20) into account. O

*
We remark at this point that if ¢ € B5(A ) then, as

indicated in §3,

R *
lim, t °<s ()Y = y,p> = <Aow,cp>-
t-+0

Note also that if 1 € x*, the norm of V 1is given by

|y = max{ess sup|y(u) |, Io [V () lau + |y(07) |}.

ul-r -r
while X' does not depend on L, it does vary with p.

The following examples illustrate the dependence.

Example 2.8. Let k >0 and p(u) = eku. If

Vv € ﬁ(A*), the requirement that p-l(dw) be essentially
bounded on (-®,-r) becomes that @ + k§y Dbe essentially
bounded on (-e,-r). Thus ; is essentially bounded on
(-, -r) and elementary arguments show X' = (y € x*lw is
uniformly continuous on (-e,-r) and absolutely continuous

on [-r,0). The same result is true if p-lé is essentially

bounded.
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2
Example 2.9. Let kX >0 and p(u) = KU 1f

V € ﬁ(A*), then @(u) = 2kuy(u) must be essentially

*
bounded on (-w,-r). Since B(A ) clearly contains all

continuously differentiable functions with compact support,

X+

*
contains (¢ € X |y is absolutely continuous on

[-r,0), uniformly continuous on (-e,-r) and VY(u) =+ O

as

u <+ -e}. In fact, xt is precisely equal to this set.

To see this, we define

u(a) = Sa g (P (W y(w)

*
for u< -r and {§ € H(A ). Thus yu is essentially

bounded on (-®,-r). Since

for

y(u) = 5{%7 Iu p(s)u(s)ds
u < -r, it follows that

lW(u)l < (Bf%y Iu p(s)ds) ° constant

= (IO e-k(2u+s)s ds) + constant.,
-

which tends to zero as u @ -o. The same is true if

1l
(2.21) o) I?s p(s + u)ds » O
as u + -o.
§5. The Second Adjoint Space - General Theory

Let T(t), t > O be the strongly continuous semi-group

on E discussed in §3. If T+(t), t >0 is the strongly

continuous semi-group defined on E+. then its adjoint space
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will be a subspace of (E+)* and will be denoted by ETT.
Although our representation of xt  is not exact enough

to give a precise representation of (X+)* we can show
that in some cases "X = X't", To make this statement more

precise we must introduce a new topology on X.

Definition 2.10 [ 18]. For ¢ € E define

lo] * = sup(|<y. o>|lv € EX,  |y] < 1}.

By Theorem 14.2.1, Hille and Phillips [18], |-]|°

is a norm on E equivalent to |+| if E' is total.

Definition 2.11 [18]. The (+)-weak topology on E

is defined by a neighborhood basis of the form

for k =1,...,m}

where [wl,...,wm} is any finite subset of E' and ¢

is an arbitrary positive number.

A sequence {mi] Cc E converges to ¢ € E in the
(+) -weak topology if and only if <y,p - ;> 0 as i4 @

for every | € E'.

It is well known that there is a natural imbedding of
} ** * % . . .
E into E and that T (t) defines a continuous extension
%k . + *
of T(t) from E to E . Since E CE we have

%* * %
(EH” o E and therefore E (by the natural injection)
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*
may be viewed as a subset of (E+) . By "E = ETte it

will be meant that the natural imbedding of E into (E+)*

is an isometric isomorphism of E onto E++. It is known

that E = E'T whenever E is reflexive. More generally,

Theorem 2.12 [18]. Let the norm of E be given by

|-1*. Then E = E't if and only if R,(A) is (+)-weakly

compact. That is, RX(A) takes bounded subsets of E

into (+)-weakly compact subsets of E.

This section considers the problem of determining when
X = X't for our function spaces. For reflexive spaces of
initial functions this equality is always valid. The
arguments of the following theorem show also that the

equality holds in those initial function spaces similar to

X in which the term

I7F et |p(u)au
- %
in the expression for |g| is replaced by
(75 lo [P pwau)/?

with p > 1.

Theorem 2.13. Let X be given the norm |[-]|‘. 1If

condition (2.21) holds, then X = x++.
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Proof: We shall apply Theorem 2.12.

Let )\ Dbe an element of the resolvent set of A.
From (2.8), RX(A) is a one-dimensional perturbation of
M defined by (2.6). Thus, it suffices to show that M

A
is (+)-weakly compact. Following Theorem 2.9.6 of Hille

A

and Phillips [18], we need only show that for every bounded
sequence [mi] c X the set {wai] has a subsequence
that converges (+)-weakly to some element of X. To this

end, we assume Xk > O and that lmil <k for i > 1.

Let N > O and C([-N,O],If” denote the Banach
space of continuous, R" -valued functions on [-N,0] with
the supremum norm. It is well known that the mapping

associating ¢ € X to the restriction of M,9 to (-N,O0]

A
is a compact map from X into C([-N,O],IJ”. Thus, by
a standard diagonalization argument, {Mk¢i} has a sub-

sequence My = M ;7 jJ=1,2,... that converges uniformly

x”ij’
on compact subsets of (-®,0] to a continuous function, .

Claim. o € X.

Proof of claim: Assume N > r. Then

7 lu(s) |p(s)das + sup lu(s) |
-N [-x,0
< r IU'(S) - u(s)lp(s)ds + sup Iu.(S) - u(s)l
I:N ] [-r,0] ]

r
+ |us(s)|p(s)ds + sup  |u.(s)| €1 + |Myq. |
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for all j sufficiently large (uj + u uniformly on

[-N,0] as j =+ = . Since lwai.l < HMkl'k and N >r

was arbitrary we see that |u| < w. The claim is verified.

Finally, to show M3 %+ u (+)-weakly in X, we choose
y €X', N>r and e > 0. Then

I<houy = w>l < J7 Tues) g (s) - uis) p(s)as

+ f-; l¥(s) [luy(s) - u(s)[p(s)as

+ sup [ui(s) = u(s) | - vl
[-r.,0] I
<sup [y | - Cluyl + luld
u<-N

-Pr;WS)hﬂw - u(s)|p(s)as
+ sup lus(s) = uts) ] « J¥]l.
[-r.0]
By Example 2.9, condition (2.21) implies |y(u)| + 0 as
u -+ -w. Since Iujl < HMXH°k, the first term may be
made arbitrarily small (for all j) by choosing N large
enough. The last two terms tend to O as Jj #* e« since

”j #+ 4 uniformly on compact subsets of (-e,0]. O

Example 2.14. There are situations in which the space

of initial functions is not reflexive in the semi-group

sense. Consider the special case when n =1, r = % and

p(u) = el. By Theorem 2.12 it suffices to show that

Rk(A) is not (+)-weakly compact. Without loss of generality
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we may assume that A\ = O 1is in the resolvent set of A.
The argument of the previous theorem shows that we need

only show that Mo is not (+)-weakly compact. To this end,

define
em, u < -m
cpm(u) =
o, -m<u<o0
for m=1,2,-*. Then |®m| =1 for all m and
-(m + u)em, u < -m
My, ) (1) =

o, -m < u < O.

Claim. O 1is the only possible (+)-weak limit

point of {Mowm].

Proof of claim: Let u be a (+)-weak limit point of

[Momm} and N > 1 be arbitrary. Assume {ui] c [MOmm]

and My W (+) -weakly. Then for any ¢ € xt with support
in [-N,0], <yoyy = w> = <y,-p> for all i > N. Because
<¥,u; - w> =0 (by hypothesis) as i + =« we must conclude
that <y,u> = 0. It follows easily that y =0 on [-N,O0].

Since N > 1 was arbitrary, the claim is verified.

Finally, we note that O is not a (+)-weak limit

l € X+ we have

point of {Momm} since for

<¥o Mo >

-rm(m+1némudu
- ®

—Io se® ds > 0.
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§7. Representation of T+(t)

In this section we seek a representation of the
adjoint semi-group. This result will be reproved (by more
complicated means) in the context of linear non-autonomous
systems. However, the theory of semi-groups affords us

a more direct proof in the autonomous case.

Our calculations become less tedious if the ~
representation in xt is used. Thus, as preparation, we
phrase some of the facts known about the adjoint semi-

group in terms of that representation.

Lemma 2.15. Assume y§ € ﬁ(A*). Then
R * d ~ -~
(1) [Ay]() == g5 (V@] - y(0)n(u)
for u < 0. If also § € »(AY), then

(ii) % (T"(t)y) exists for t >0 and
& (v =& [Thwyl.
Proof: For -r < u < O, (i) follows from (2.14).
If u < -r, (2.14) gives
(A"V] (@) = - 55y ag (PO ¥@] = ¥ In(w .

Thus, using (2.14) and (2.15),
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1 d

A"y = (A1) - [T (- 557 & [p(s) ¥(s)]
u

- (07 )n(s)}p(s)ds

r

= —¥(-r) = §©O I n(-1) + [T (p(s)¥(s))ds

u
+ 4(07)[7F n(s)p(s)as
u
= —y(-r) + p(-x)y(-x) - p(u)y(u) = §(0)F(u)

= —p(u) y(u) - y(07)N(u)

- & [T - 47w,

As for (ii), the existence of
Lty = tim, v e+ m)y - TV (D) )
h-0
for | € ﬁ(A+) may be found in Hille and Phillips [18]
and is a consequence of the general theory of strongly
continuous semi-groups. In fact,

(2.22) & tHey = Attty = THoaty

for t > 0. Finally, Lemma l.1 implies that for t > O
and u £ O,

T~ /_'_\4’ /._;\—/
4 Tyl () = lim, T+ D) yI@ - [Tyl
dt h+o" h

/\__/
lim, [h'l(T+(t + h)y - T () ¥) ] ()
h-0
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[%im+ ittt + ny - TR Y ] (W
+0
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& . C

For { € x*, we consider the problem

(2.23) y(t) + j‘t y(u)ﬁ(u - t)du = i"(—t). t >0
o

(2.24) y(0) = §(07).

As shown in the finite delay case, (2.23)-(2.24) has a unique
solution, y, defined for t > O, that is of bounded
variation on compact subsets of [O,®). These solutions

vary continuously with changes in the initial data in the
sense that if Uy ¥ in X*, then the corresponding
solutions, Y ©f (2.23)-(2.24) with "initial data" VY
converge to the solution of (2.23)-(2.24) uniformly on compact

subsets of [O0,®). See Hale [1ll1].

We now state the principal result of this section.
The argument follows closely that of Burns and Herdman [ 3 ]
in their study of a semi-group associated with a linear
integro-differential equation in a different function space

setting.

Theorem 2.16. For y € X', T'(t)y is defined for

t >0 by
T NN
(2.25) [TH () 41(s) = F(s - ©) - [F y@F(u+s - t)du
0

for s < O, where
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(2.26) y(t) = [T (t)y](©7), t >0
satisfies the adjoint equation

(2.27) y(t) = ?(-t) - It y(u)n(u - t)du
(0]

for t > 0 and

(2.28) y(0) = §(07).

Proof: By Lemma l.1 and the continuous dependence of

solutions to (2.27)-(2.28) on initial data, it suffices to
show (2.25)-(2.28) for y € 2((a%)?), which is dense in
xt by Butzer and Berens [ 4 ]. The map associating t > O
to T+(t)v is differentiable with Lipschitz continuous
derivative.

For s <0, t>O0 and u > O define G(u) =
o~
[T (w)§](u +s - t). By Lemmas 2.15 and 1.1, G is

differentiable and, in fact,

3 a /+\./ a /:'_\/
dg W =[5 TT@PI@+s-t) +5- [T @WITO | ,yrent
T —— T~
= [atrt () ylu +s - t) + é% [T+(“)¢](V)|v=u+s-t

by Lemma 2.15 and (2.22). Thus

a N

a5 6w = - £ TPyl | .

- TPyl O)TMu + s - t)

R e o
+ 3y [Tyl | = —y(u)n(u + s - t)

v=u+s-t
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where y 1is given by (2.26). Integrating over [O,t],
G(t) - G(0) = -It y()n(u + s - t)du.
0]

Therefore, for s < O,

/_:\/ ~ t ~
[T (£)y](s) - ¥(s - t) = -[" y(u)n(u + s - t)du.
o)

Equation (2.28) follows from (2.27) by letting s =+ O . O

§8. The Adjoint Equation and Bilinear Form

In this section we will study a "differential" form of
the adjoint equation and show that for a special class of
V € xt the solution of the adjoint equation actually solves
a delay differential equation whose form is quite similar
to (2.1). For this class of ¢ the duality pairing <y,o>
will be seen to reduce to the classic bilinear form that
has played such a prominent role in the theory of FDE's with

finite delay, see Hale [11].

Lemma 2.17. If § € X', the solution to (2.27)-(2.28)

is locally absolutely continuous and solves

(2.29) y(£) = [ y(t + waRw - ¥(-t)
-t

for t > 0 with the initial value, y(0), given by (2.28).

Proof: If | € x*, Theorem 2.7 implies that § is
locally absolutely continuous on (-e,0). The problem (2.28)-

(2.29), viewed as a finite delay system of Caratheodory type,
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has a unique continuous solution on [0O,«) which is
locally absolutely continuous on (0,w®). Integration by

parts in (2.29) shows y to solve

y(t) = -y (@) n(-t) - [© y(t + 5)F(s)ds + & (T(-t))

-t

é% [-I?t y(t + s)%(s)ds + J(-t) ]
for t > O. Therefore, for t > O

y(t) = —Io y(t + s)n(s)ds + V(-t) + constant.

Letting t =~ O+ and using (2.28) we see that the constant

is zero. Equation (2.27) is seen to be satisfied upon setting
u=+t+ s in the above integral. Thus, the solution to
(2.28)-(2.29) is the unique solution to the adjoint equations
(2.27)-(2.28). O

Consider the problem

(2.30) z2(£) = [° z(t + war(u

for t > O with initial condition given by
(2.31) zZ.=Q
where ol € X. Note that if § € xt  then (loosely speaking)

Y(-t) + 0 as t + e Thus (2.30) is the "limit equation"

associated with (2.29) , see Levin and Shea [24,25,26].
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Theorem 2.18. If z solves (2.30)-(2.31), then

there is a § € X+ for which 2z solves (2.28)-(2.29).

Proof: Clearly, (2.30)-(2.31) has a solution since

(2.1)-(2.2) enjoys this property. From (2.30),

z(t) = ° z(t + waF( + f't- z(t + u)dn(u)
-o

for t > 0. Define, for s < O

w(s) = Is z(u - s)df(u) = IO a(u)dn(u + s).
-0 -0
Claim. ® in integrable on [-r,0] and p-lw is

essentially bounded on (-e,-r).

Proof of claim: Clearly, w 1is measurable. For

-r {s <O,

lus) ] < [° latw |- |dF(u + s) |

< f-r-s la ) [p(u + s) [n(u + s) |du

+ [© la(u) |- |aF(u + s) |
-Y-=S

< fo la() |p(u)du - p(s) - |L|l + max : lau) |- |

- —r'

L]
< constant - |aT|

using (1.1) and (1.2). For s < -r,

p-l(s)|w(s)l = p-l(s)lfo a(u)p(u + 8)n(u + s)ds|

< P_l(S)fo la(u) [p(u)p(s) [n(u + s) |ds
-»

<[ Jawlpau - .

The claim has been verified.
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&
Thus, we can define an element | € X Dby

(2.32) %Ys) = -fo a(u)dn(u + s)

for s < O and
(2.33) y(07) = a(o).

The function 2z 1is easily seen to solve (2.28)-(2.29) with

¥ so defined.

To see that | € x+, we use Theorem 2.7. The fact
that § 1is absolutely continuous on [-r,0) was shown by
the claim. Arguing in a manner similar to the claim one

can show that for t < r and s < -r
™ (s)p(t - s)y(t - 8) - p(s)p(r - &)y(r - s)|

< I-T la(t + u) - a(T + u)|p(u)au - |L|
-®

+ max laqu) | « |t = 1] « |L]| - p(1).
[-r,0]

The conditions of Theorem 2.7 follow immediately. O

We remark that the proof of the previous theorem shows
that the map that associates a to the element it defines
via equations (2.32)-(2.33) is continuous when viewed as a
function from X into X . In the future, we shall say
"a defines " or "y 1is defined by a" if y is

given in terms of a by way of equations (2.32)-(2.33).
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Lemma 2.19. Let ar € X and ¢ be defined by a.

Then, for any ¢ € X,

(2.34) ~<hg> = a@oe©) + [° [°av - s)aF(v)g(s)ds.

-o V
Proof: For ¢ above, W is locally absolutely
continuous on (-»,0) and has a jump discontinuity at O.

Thus,
-IO V(s)p(s)ds + ¥(07)p(0)
-

a0 0 + [© [° a(udf(u + s)lp(s)ds

"<w ’ Cp>

by (2.32)-(2.33). Define

o, v>0
v(v) = {
a(v), v < O.

Then, using Fubini's Theorem [34],

“<Ho> = a0 o) + [0 [° a(u - s)[aF(w Jols)ds
= a(0)p(0) + f: ['f(_). v(u - s)[d7(u) ]} p(s)ds
= a(0)p(0) + [° ([° viu - s)[aF(w) Jp(s)ds)
= a(0)p(0) + j? jz a(u - s)[dF(u) Jp(s)ds
since v(u-s) =0 if s<u. O

We define the bilinear pairing (a,¢q) between ¢ € X

T

and a” € X by

(2.35) (@, @) =a@e© + [ [°alu- s)[dF() lp(s)ds.

- U
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In the finite delay case, n(u) = n(-r) for u < -r and

(a,p) reduces to the classic bilinear form

a0 + [° [ a(u - s)[dR(u) p(s)ds.
-r u

For the problem (2.30)-(2.31l) we can define the
solution semi-group analogous to that for (2.1)-(2.2).
That is, To(t)a = zt(a), t > 0, where z(a)(-) denotes
the solution to (2.30)=(2.31). The connection between To(t)

and T+(t) is given by

Theorem 2.20. Let ol € X, o € X and § € X' be

defined by a. Then, for any t > O, To(t)a defines

T (t)y and

(2.36) <t (t) o> = (T°(t)a, ) .

Proof: Let 2z solve (2.30)-(2.31). By Theorem 2.18
and Lemma 2.17, 2z solves the adjoint equations (2.27)-

(2.28) and by Theorem 2.16

et
[T (t)¥](s)

]

;(s - t) - ft z(v)n(v + s - t)dv
(o)

G(S -t) - Is+t z(u - s)n(u - t)du
s

for s <0, t > 0. Since V, T+(t)¢ € x*, we may
differentiate with respect to s to find

! /:T\\‘/ ~ ~ ~
3o [T (B)§1(s) = Y(s - ) - [z(t)n(s) - z(O)n(s - t)]
+ (5t 2 - s)n(u - t)du
S
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= J(s - t) - z(t)n(s) + z(0)F(s - t)

+ z(t)ﬁ(s+) - z(0)n(s - t)

- fs+t z(u - s)dn(u - t)

s
using the Lebesgue-Stieltjes integration by parts formula.

Thus,

d ko % + -
as [T (B y1(s) = ¥(s - t) + z(t)[T(s") = R(sT)]

- ft z(u)dn(u - t + s)
o

%w-—ﬂ -It z(uwdn(u - t + s)
(o)

= -Io a(u)df(u + s - t)

- It- z(u)dn(u - t + s)
o]

by (2.32). Therefore, using the definition of =z(-),

,"-\/ -
L (Tt yis) = -f?“ z_ (WdF(u + s)

for s < 0. Now, by (2.26), [T+(t)¢](o') = z(t). Thus,

zt(u) is seen to define T+(t)w and, using Lemma 2.19,
+
-<T (t) ¢:®> = (Zt' CD)

for any ¢ € X. O

Define AO to be the infinitesimal generator

associated with To(t), t > 0. It follows from Theorem 2.1
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that _&(AO) = {aTla € H(A)}. The connection between at
and Ao is similar to that relating T+(t) to To(t)

in the previous theorem.

Theorem 2.21. If a € B(Ao) and § is defined by

a, then WE.D(A+). In addition, 2% defines A+¢ and
(2.37) -<A+¢,cp> = (Aoa, @)

for all ¢ € X.

Proof: It can be shown exactly as in Hale [1ll], page
105, that if a ¢ .&(Ao) and ¢ € B(A) then (Aoa,cp) =
(a,Ap). Thus, if v € x* is defined by Aoa, then
<vep> = <§,Ap> for every ¢ € BH(A). By definition of ANr
we must conclude that ¢ € .B(A*) and A*w = v. Because
v,A*t € X' we see that v € sa%). Thus Vv € .D(A+) and
A+¢ is defined by Aoa. The last assertion follows

immediately from Lemma 2.19. O

*
§9. Decomposition of X and X

Let Y(t) Dbe defined by (2.4). By Theorem 2.2, if
A solves (2.3) and Ie)‘tl > ¥(t), then the generalized
eigenspace 7N(A - u)k is finite dimensional and

x =704 - X o RA - DX,

In this section we consider the problem of computing a

pProjection of X onto 7N(A - H)k. We make use of the
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bilinear form given by equation (2.35). Since the arguments
closely parallel those of Hale [1ll], Section 21, we omit
the proofs whenever possible. See Naito [28] for a different

approach to calculating the projections.

As in Hale [12] and Naito [29] we define the (nk) x (nk)

matrix Ak by

Pl P2 . Pk
(o] P1 Pk—l
Ay = :
(o] . (0] P1
where, for j =0,1,2,...,
1 dj
P. = = —= A(N).
J+L 37 4,3

The first assertion of the following lemma was shown in Naito

(o)

[29]. The characterization of 7N(A~ - XI)k follows by

similar arguments.

Lemma 2.22. (i) ¢ € N(A - x;[)k if and only if ¢

is of the form

k-1 |
- u au
Cp(u) B ]EO aj+1 je €

where a = col(al,...,ak) satisfies Aka = 0.

(ii) a € '/I(Ao - XI)k if and only if a 1is of the form

k-1 j
a(u) = 2, b. u.—,—e)‘u
j=0 j+1 j!

where b = row(b,,b, _,,....b;) satisfies ba, = O.
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k
Lemma 2.23. ¢ € R(A - A\) if and only if (a,¢) = O

for every a € n(AO - XI)k.

Proof: See Lemma 21.2 of Hale [11]. The necessary

modifications are obvious. O

Theorem 2.24. For A\ € O(A) satisfying Iextl > Y(t),

one has dim (A - AI)k = dim 7Z(A0 - XI)k. If §k =
(¢1""'9p) and Q, = col(al,....ap) are basis "vectors"
for NnA - xl)k and n(Ap - XI)k, respectively, then
(QX'QX) = [(ai,mj)] is nonsingular and thus may be taken
as the identity. The projection HX:X + (A - xI)k is
given by

Proof: See Lemma 21.4 of Hale [1l1]. O

\ Qx be as in Theorem 2.24.

Let wi be defined by -0 i=1,2,...,p, and YX =

corollary 2.25. Let §

col(vl....,wp). The projection Hx is given by

H)‘Cp = Q)‘<‘y>‘i Cp>-

Proof: This is an immediate consequence of Lemma 2.19

and the previous theorem. 0

Corollary 2.26. Let § Q.. Yl be as in Corollary

Y
2.25. Then dim (A" - AD)¥ is equal to dim 7(a - D)X
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*
and Y defines a basis for 7(A - xl)k. The projection

A
* %k * k . . .
HX:X + N(A - \I) is onto and is given by

*
HX‘J] = <¢I §k>‘¥>‘.

Proof: Let 1< i < p and -o; define ¢;. It is an
easy consequence of Theorem 2.21 that (A* - AI)mwi € ﬁ(A*)
for m=0,1,....k-1 and <@ - \D¥y . 0> =
-(—(Ao - kl)kai.w) = 0 for every ¢ € X. Thus,
*
Wi eENA - xI)k. Because
{1, i=3
<Ysopi> =

) o, i # 73,

it follows that [wl,wz,...,wp] is a linearly independent

set.

To show that n(A* - x:[)k is spanned by [Wl,...,wp]
it suffices to show that for any ¢ € n(A* - ).I)k and ¢ € X,
<YX,¢> = 0 implies <Yy,p> = O. However, since <Yk'¢> =
-(Qx,m), we may apply Lemma 2.23 to conclude that any o
satisfying <Yk'm> = 0 must lie in R - XI)k. Thus,
o= (A - xI)kv for some v € X and <{y,p> =

< @ - DXy = <t - DXy = o.

Finally, if ¢ € X and ¢ € X*,

*

<<¢.§k>Yx.w>.



47

*

o) = n@’ - ¥, o

x.

Clearly,



CHAPTER III

GENERAL LINEAR SYSTEMS

§1. Existence, Uniqueness and Continuous Dependence

Consider the linear nonhomogeneous system
(3.1) x(t) = L(t,x,) + h(t)
for t > 0, with initial data given by
(3.2) X, =9 €X
The associated homogeneous system is
(3.3) x(t) = L(t,x.).

Throughout this chapter it will be assumed that

L:R x X + R® is continuous in each variable and linear

in the second, while h will be locally integrable. These
hypotheses are by no means minimal but suffice for our
subsequent applications. It can be easily shown that

L(t,p) is continuous in (t,q).

As in the autonomous case, L(t,°) may be represented
in integral form. In particular, there exists for each t

an n x n matrix valued function n(t,-):R- r"® satisfying

48
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(1) Lt = 2 [antwlpm + [77 nt,0)3wp(w)du

- -®

for every o € X,

(ii) each row of n(t,u) is of bounded variation
in u on [-r,0] and left continuous in u
on [-r,0),

(iii) n(t,u) = 0 for u > 0, and

(iv) n(t,u) is measurable in u and essentially

bounded on (=, -r).

As in the previous chapters, we define

- n(t,ua), u > -r
n(t,u) =

n(t,-r) - f-r n(t,s)p(s)ds, u < -r
u

and therefore represent L by

L(t, 3 = <n(t, )8 = [° (4,7t 5.

-
It follows from Kato [21] that fn(t,u) is measurable in
(t,u).

Theorem 3.1l. Under the above assumptions on L and

h, the initial value problem (3.1)-(3.2) has a unique
solution x(+) = x(0,9,h) (*) defined on (0,«). The
solution depends continuously on ¢ and h in the sense
that if >0, o™ +¢ in x and h™ 4 n in 1l[o, 1],

then x(o,w(n),h(n)) %+ x(0,p,h) uniformly on [O0,T].
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Proof: First, consider the problem of solving (3.1)-

(3.2) on the interval (0,0 + r]. Any solution of (3.1)-
(3.2) on this interval corresponds to a solution of the

finite delay equation

(3.4) x(t) = [ [a n(t,u)]x, (1) +g(t)
-r

where

(3.5) g(t) = [77 [a,n(t,u) lp,_g(u) + h(t)

and X, € C([—r,O],IfU is defined by

(3.6) X, = ¢I[—r,0]’

Note that g is clearly an element of Ll[o,o + r]. By
the assumptions on L and h, Theorems 16.1 and 5.1 of
Hale [11] apply to (3.4)-(3.6) and the conclusions of this

theorem are therefore valid for o0 < 1< 0 + r.

The argument may now be repeated on successive intervals
[c + ¥, 0o+ 2r], [0+ 2r, 0 + 3r],... to obtain the full

conclusion of the theorem. a

By the theorem just proved, we may define for t > o
a linear map T(t,0):X + X by T(t,0)p = xt(o,m.o). In fact,

the following lemmas show that this operator is continuous.

Lemma 3.2. Assume 0 <t and x:(~w, t] - Ifl is

continuous on [0,t] and satisfies X; € X. Then there
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exists a constant ¢ > O (dependent only on p) such that

lx. | < elx | + ¢ ?zft] |x () |.
Proof: lxtl = max lxt(u)] + f'r |x(t + u) |p(u)du
[-r,0] —e
= I[nf:,O] %, () | + J‘:: I (s) |p(s + o - t)ds
+ j'::t_r %, (w) [p(w)au rE\i:;'o] %, (u) |

+p0 -8 [T Ix;(s)|p(s)as

+[* [x(t + u) |p (u)du

o-t-r

by property (1.1) of p. If o< t< o+ r, then

max |x(t + u)| + I-r |x(t + ) |p(u)du
[-r,0] o-t-r
max x| +[1+ [F p(u)du] . max |x _(u)].
S[o,t]l | J:—t-r [-x,0] © |

If o+ r < t, then

max |[x(t + 0| + f-r [x(t + u) |p(u)du
[-r,0] o-t-r
< max lxc(u)l . fo p(c - t + s)ds
[-r,0] -r

+[1+ [T p(wau] - max  [x(u)].
o-t [o,t

In either case the conclusion of the lemma follows from

(1.2) with

c =max{p(1),1 + [° pwau). O
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By the Uniform Boundedness Principle it follows that
for any fixed 0 € R and 71 > 0, sup{|L(s,*)|]o < s < 7}
is finite. Define m to be a real, locally bounded,

continuous function such that |L(s,*)|| < m(s) for s € R.

Lemma 3.3. Let ¢ be as in the previous lemma. If
x = x(0,9,0) is the solution to (3.2)-(3.3) on [0, ),

then for any t > o,
(3.7) lxtl < Ixol . 2c Exp[cj't m(s)ds].
o
Proof: For any u € [0O,t]

x(u) = x(0) + Iu L(s,xs)ds.
o

Therefore

[x() ]| < |x(0) | + Iu m(s)lxslds
o
< |x0| + Iz m(s)lxslds

and, consequently,

t
max x (u) X + m(s) |x_|ds.
max ()| < lxgl + [F ms) Ix,|

The previous lemma implies
t
x| < 2c|x | + cfo m(s)lxslds

and (3.7) now follows from Gronwall's Inequality. See

Coppel [7], page 19. O
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Corollary 3.4. T(t,0) 1is a bounded linear operator

on X with

IT(t, 0 || < 2¢ + Exple[® m(s)ds].
o

§2. Representation of Solutions

In this section we will generalize the representation
theorem of Banks [1l] known for FDE's with finite delay.
Fortunately, many of the results of this section can be
derived directly from the theory of finite delay equations.

Consider the problem

(3.8) z(s,t) + It z(u,t)n(u,s - wdu = J(t - s)
s

for s < t,
(3.9) z(s,t) =0
for s > t, and
(3.10) z(t,t) = §(07),
*
where | € X .
Lemma 3.5. For any | € x* there exists a unique

solution, 2z, of (3.8)-(3.10) that is locally of bounded

variation in s.

Proof: See Theorem 32.1 of Hale [11]. O
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The assertions of the following lemma are verified

in the proof of Theorem 32.2 of Hale [11].
Lemma 3.6. There exists a unique n x n matrix
function Y(s,t) satisfying

(3.11) Y(s,t) + [ Y(u,t)F(u,s - wdu =1
S

for s {t, and
(3.12) Y(s,t) = O

for s > t, where I 1is the n x n identity matrix. 1In
addition, Y(s,t) is locally absolutely continuous in ¢t

(except at t = s) and locally of bounded variation in s.

Theorem 3.7 (Representation Theorem). If Xx solves

(3.1)-(3.2) on (0,®), then for any t > ©

(3.13) x(t) = Y(o,t) + j°—

[du[ft Y(s,t)f(s,u - s)ds}]x(u)
o
+ It Y (u, t)h(u)du
o
where Y satisfies (3.11)-(3.1l2).

Proof: Assume first that ¢ € X is continuous on
(-»,0] and choose R >t - 0 + r. Then x corresponds

to the solution of

(3.14) x(t) = [° [a_F(t 9 1x (s) + [} nit.s)p(s)x,(s)ds

+ h(t)

with initial value
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(3.15) *5l(-r,0] = ol(-r,07"

The assumptions on nm and h allow us to apply Theorem

32.2, Hale [11], to (3.14)-(3.15) and conclude

(3.16) x(t) = Y(0,t)x(0) + Io- [du[‘['t Y(s,t)n(s,u - s)ds} ]x(u)
o- o}

R

+ [ Y(u,)h(uw)au
o

+ It Y(u,t)[_[‘-R n(u,s)p(s)x(u + s)ds]du
o -

where Y 1is given in the previous lemma. Using property

(1.2) of p,

II-R n(u,s)p(s)x(u + s)ds| s.m(u)f-R+u_0 p(v + 0 - u)]xc(v)ldv

-<— m(u)p(d - u) Jv-R+t-O'

p(v) |x (V) |av

[ J
since 0 { u £ t. Thus, the last integral in (3.16) is seen

to tend to O as R + +o. Equation (3.14) is verified.

Since the continuous elements of X are dense in X,

the full assertion of the theorem will be proved once

X, If:r [du{fz Y(s,t)n(s,u - s)ds}x(u)
= Io-r [ft Y(s,t)n(s,u - s)p(u - s)ds}x(u)du
-0 (0}

is shown to be continuous from X into Ifﬂ By linearity,

it suffices to show continuity at X; = O. However,
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!Io-r [ft Y(s,t)n(s,u - s)p(u - s)ds}x(u)du!

- (o}
o-r t

</ [[" l¥(s,t) |m(s)p (o = s)ds]p(u - 0) [x(u) [du
- o

< I-r p(v)lxo(v)ldv . ft |¥(s,t) Im(s)p (o - s)ds
- (o}

< Ix5] + constant

since Y(s,t), m(s) and p(0c - s) are bounded for

c s K t. 0

Define the operator K(t,o):Ll[o,t] + X by

o, t+u<0

(3.17) [K(t,0)h](u) = t+u

[ Y(s,t + u)h(s)ds, o<t +u(t.
o}

By the previous theorem, the solution xt(o,w,h) may be

written as
Xt(g, cp,h) = T(t' G)CD + K(t, U)h = xt(oi@lo) + xt(G,O,h) .
The continuous dependence assertions of Theorem 3.1 imply

that K(t,0) is a bounded operator from Ll(o,t) into X.

§3. The Adjoint Problem

Since T(t,0):X » X and K(t,O):Ll[o,t] + X have
been shown to be bounded and linear, their adjoints
T*(t,O):X* + X" and K*(t,d):x* + L®[0,t] are bounded
and linear. In this section we will obtain representations

for these operators.
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* *
Theorem 3.8. For ¢ €X, T (t,0)y is defined by

T ~— ~ t ~
(3.18) [T (t,o)¢](u) = Yy(u + 0 - t) - I y(s,t)n(s,0 + u - s)ds
o

for u < 0, where

(3.19) y(s,t) = [T*(t,s)w](o-) solves the "adjoint

equation®

(3.20) y(s,t) = -ft y(u,t)ﬁ(u,s - u)du + W(s - t)
s

for s < t and

(3.21) y(t.t) = y(07).

Proof: The theorem may be proved in a manner similar

to the proof of Theorem 33.1 of Hale [1ll1l]. O

Also similar in proof to its counterpart from the

theory of FDE's with finite delay is

Corollary 3.9. For any ¢ € X*, K*(t,c)w € L'[o,t]

is defined by

~[T" (t, ) ¥] (07)

(3.22)  [K (t.0) ] (s)

-° [a¥(w) ]¥(s.t + w)

for almost every s € [o,t]. .

It should be remarked that since [T*(t,s)w](o-) is

the solution to the adjoint equation (3.20) for s < t,
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[K*(o,t)w](s) is actually of bounded variation in s on

[o,t].

Corollary 3.10. Let I denote the n x n identity

matrix and define

0, u<o
§(u) =

I, u=20
and
* I, -rSu<O
8 (u) =
O, u=0 or u< -r.
Then

(3.23)  [T(t,0)8](u) = Y(o,t +u) = [T (t + u,0)6 ](0)

for o<t and u < O.

Proof: Clearly, the solution operator T(t,0)e¢ is

defined for such ¢ as are only piecewise continuous on [-r,0]
(but otherwise satisfy the requirements needed in order
to belong to X). Thus, T(t,0)s makes sense. For any

v €x

<Y(o,t + +)> jo [d¥(u) J¥ (o, t + )

<T (£, 0) . 6>

by (3.22). Therefore, <y,¥(o,t + :)> = <y,T(t,0) 8> for

*
every ¥ € X . It follows that for almost every u < O,
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Y(o,t + u) = [T(t,0)8](u). Since both sides of this
equality are continuous for t + u < 0 (where
both are O0) and t > t + u > 0, the equality holds

pointwise.

The final assertion follows from Lemma 3.6 and
Theorem 3.8 applied to 6*. In fact, [T*(t + u,o)a*](o-)
solves (by equations (3.20)-(3.21)) equations (3.11)-

* -
(3.12) and, therefore, [T*(t + u,0)86 ](O) = Y(t + u,0). O

In light of (3.13), (3.17) and the previous corollary,
the solution xt(0,¢,h) of (3.1)-(3.2) may be expressed

in "variation of Constants" form

(3.24) x, = T(t,0) + [T T(t,u)sh(u)du
g

where for s < O,

(3.25)  [[* T(t,u)eh(waul(s) = [F [T(t,u)6](s)h(u)au.
g o

Finally, we remark in the autonomous case that
T(t,0) = T(t - 0), while the solution y(s,t) of the
adjoint equations (3.20)-(3.21) satisfies y(s,t) = y(t - s).
Without loss of generality we may set s = O and T(t),
t 2 O now corresponds to the strongly continuous semi-
group studied in the previous chapter. For the nonhomogeneous

autonomous case (3.24) reduces to

(3.26) x, = T()o + [° T(t - u)sh(u)au.
0
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Comparing Theorems 2.16 and 3.8 we see that the representa-
tion of the adjoint semi-group operators T+(t), t >0
extends in an unaltered form to the representation of

* *
the adjoint operators T (t), t > O defined on X .

§4. Normal Eigenvalues of the Solution Operator

In this section we will discuss some of the spectral
properties of T(t,s). For example, we will show that
there is a real number rp(t -s8), 0K rp < 1, such that

for any ¢ >0, O(T(t,s)) N{rx € c||A] >Dr_ + €} is

o
finite and consists (if it is not empty) entirely of

normal eigenvalues of T(t,s).

Definition 3.11 [9]. A complex number, )\, is said

to be a normal eigenvalue of a bounded, linear operator,

T, on a Banach space, E, provided it is an eigenvalue
of T with finite dimensional generalized eigenspace,
n(r - XI)k. and

E=n(T - DX @ R(T - )X

where R(T - )\I)k is invariant under T. A point, A\,

is called a normal point of T if it is either a normal

eigenvalue of T or in the resolvent set of T.

Definition 3.12 [2]. The essential spectrum, ess(T),

is defined to be the set of all A in the spectrum of T,

o(T), for which at least one of the following holds:
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(i) R(T - )I) is not closed;

(ii) x € o(T) N(\):

(iii) U 7(T - xD)¥ is infinite dimensional.
K>1

We define the essential radius, re(T), of T as

re(T) = sup{ |\]|\A € ess(T)]}.

The following result of Gohberg and Krein [9] shows
that the normal points of T are precisely those points

not in ess(T).

Lemma 3.13. A necessary and sufficient condition

that )\ be a normal eigenvalue of T 1is that
(i) R2(T - \I) 1is closed,
(ii) A is an isolated point of o(T), and
(iii) the generalized eigenspace associated with

A 1is finite dimensional.

Also in Gohberg and Krein [9] may be found this
result concerning the behavior of the set of normal points
when the operator is perturbed by a completely continuous

operator.

Lemma 3.14. Let o/ :E + E be bounded and linear

and U:E ®* E be completely continuous and linear. Any
unbounded connected component of normal points of # is

a connected component of normal points for J + U.
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Definition 3.15 [8,33]. Kuratowski's measure of

noncompactness, a(B), of a bounded subset, B, of a

Banach space, E, 1is defined as

a(B) = inf{d > O|B has a finite cover of

diameter < d}.
For any continuous T:E -+ E we define

a(T) = inf(k|a(TB) < ka(B) for all bounded

subsets B < EJ}.

The map, T, is said to be an a-contraction of order k

if a(T) < k.

The operator, T, is compact if and only if a(T) = O.
The connection between the Kuratowski measure and the
essential radius of a bounded, linear J:E -+ E 1is given

by the following result of Nussbaum [30].

Lemma 3.16. If #/:E + E is bounded and linear,

then re(-’) = lim n\/a(-’n).

N

We now consider the solution operator, T(t,s) defined
in §1 of this chapter. The study of the normal points of
T(t,s) was initiated by Hale [12]. As in that paper
we decompose T(t,s) as T(t,s)p =/(t - s)o + U(t,8)p
where J(T):X + X, T >0 and U(t,s):X+ X, t >s are

defined by
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0, T+u>0
(3.27)  [L(T) o] (u) = {
o(r +u) - 9O), T+u<o
and
©(0) + It+u L(v,T(v,s)p)dv, T+ u >0
s
(3.28) [U(t,s)e](u) =
e(0)., ~-+u<o0

for u < 0. The following result is a special case of what

may be found in Hale [12].

Lemma 3.17. For (7)) and U(t,s) as above, we

have a(s(T)) < Y(7), where Yy is defined by (2.4), and

U(t,s) 1is completely continuous.

Armed with these lemmas, we are now able to state

the principal result of this section.

Theorem 3.18. Define

(3.29) r,(t - s) = Iim Y¥n(t - s)).

N4
Then 1 > rp(t - s) >2r_(T(t,s)). That is, for any ¢ > O,
o(T(t,s)) n {x € c|[an] > rp(t - s) + ¢} is finite and

consists entirely of normal eigenvalues.

Proof: By Lemma 3.16 and (3.27)

lim YA (t - s)) = lim % (n(t = s))

N9 NV

< lim ?/Y(n(t - 8)) = rp(t - s).
N9
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Thus, for any ¢ > 0, o/ (t - s)) N (A]]r] 2rp(t - 8) + ¢}
consists entirely of normal eigenvalues for J(t - s).
Therefore, (A|[A] > r,(t - s) + ¢} 1is contained in an
unbounded, connected component of normal points of

#(t - s). By Lemma 3.14 and the compactness of U(t,s),

any )\ satisfying |[A] > ro(t - s) must be a normal

point of J(t - s) + U(t,s) = T(t,s). Lemma 3.13 assures
us that {A[|\] > ro(t - s) + €} N o(T(t,s)) is finite.
Finally, (2.4) and the monotonicity of p imply

Y(t - s) 1 for all s < t. Thus rp(t -s) <1

follows immediately. a

There is a very close relationship between the

quantities rp(t) and

B = inflc € R|[O e®p(s)das < «}.

-
Recall that the latter was used by Naito in his study of
the linear autonomous systems of Chapter II. It follows
by elementary means that under the assumptions (1.1)-(1.2)

on p,

0 > P = inf{c € I!lecsp(s) +0 as s 4 -o}.

Lemma 3.19. For t > O,

(3.30) NOR Pt

where the right hand side of (3.30) is interpreted to mean

O should B = -e.
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Proof: It suffices to show for real numbers, Xk,
that ekt > rp(t) if and only if k > 8. The only non-

trivial case is when k < O.

Assume there exists some ¢ > O such that ekt >

rp(t) + ¢. We must show that

ekup(u)du < eo.
-
Note that for j =0,1,2,...
f-jt ekup(u)du = jo ek(s-jt)p(s - jt)ds
-(j+1)t -t
< Y(t)e KT K9 (g)as.
-t

Therefore

fo ekup(u)du = 3 I’jt ekup(u)du
—o j=0 “-(j+1)t
] .
< T YR e™ IO XS (g)as
j=0 -t

kt

which converges since e - e rp(t) implies

(1 - § e-kt)J > kit v(jt) for all sufficiently large

(since € > O may be taken < 2ekt).

Conversely, if k > B we may choose an ¢ > O

such that

JO e (k-elu p(u)du < w.
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Since p 1is monotone increasing, we conclude that

-jt(k-¢)

lim e p(-jt) = 0O for any t > O. By property

jte
(1.1) of p, we have Y(jt) < p(-jt). Thus

e‘(k'e)Jt Y(jt) < 1 for all j sufficiently large. It

-ct ekt kt

follows that rp(t)‘g e < e . O

Corollary 3.20. If p tends to zero "faster than

every exponential" in the sense that fB = -e, then
o(T(t,s)) is at most countable and o(T(t,s)) \ {0} con-

sists entirely of normal eigenvalues of T(t,s).

If we now apply the results of this section to the-
semi-group operator, T(t), arising in the autonomous case,
we can obtain a significant improvement in some of the
results of Chapter II. We refer the reader to that chapter

for the needed definitions.

Theorem 3.21. The conclusions of Theorems 2.2 and 2.24

remain valid if Y(t) is replaced by rp(t).

Proof: See Theorem 1 of Hale [12] and Lemma 21.4
of Hale [11]. The necessary modifications to this situation
are obvious once one observes (from Lemma 3.19) that

]extl > rp(t) implies Re A >B. O

We conclude this section by returning to the general

situation discussed earlier of a bounded linear operator, T,
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defined on E and compute the projection of E onto the
generalized eigenspace, N (T - kI)k, associated with any
A € o(T) \ess(T). First, one final lemma is required.

As usual, let E  denote the dual of E and <y, o>

describe the duality pairing between ¢ € E and ¢ € E*.

Lemma 3.22. If T:E #» E is bounded and linear and

A € 0(T) \ess(T), then the dimensions of the spaces
N(T - AI) and n(T* - AM) are the same, as are the
dimensions of the associated generalized eigenspaces
A(r - AD* ana 2(r" - ¥, 1In addition, (T - ¥

and R(T* - XI)k are closed.
Proof: See Theorems 2.3 and 5.4 of Schechter [35]. O

Assume now that T:E + E 1is as above with
A € 0(T)\ ess(T). By the previous lemma and Lemma 3.13,
we may choose bases {ml,...,ma} and {wl,...,wd] for
n(Tr - ),I)k and n(T* - XI)k, respectively. We define

the basis vectors ¢ = (@1,...,¢H) and Y = col(vl,...,wd).
Claim. The d x d matrix <Y,$> is nonsingular.

Proof of claim: If ¢ 1is a d-vector such that

<Y, %>c = 0, then <Y, ¥> = 0. By the closedness of

R(T - XI)k (shown in the previous lemma), we see that é&c
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is an element of R(T - AI)k. Since clearly éc € N(T - ).I)k
also, we must conclude that &c = O. The linear independence

of the ¢, imply that c = 0. The claim has been verified.

Thus, we may assume <KY¥,%> = I, the d x d identity
matrix. The vector V¥ 1is easily seen to now be uniquely
defined for each chosen basis for (T - XI)k. The desired
projections

[I:E » (T - XI)k
and

* * *
I:E 7T - D) ®
*
are given by Ilp = &Y¥,9p> and 1 § = <y, Y.
By Theorem 3.18, this space decomposition is directly

applicable to the solution operator T(t,s) at any point

A € 0(T(t,s)) satisfying |X| > rp(t - s).



CHAPTER IV

LINEAR PERIODIC SYSTEMS

§1. Periodic Families of Bounded Linear Operators

Throughout this section E will denote a (complex
or real) Banach space. The duality pairing between ¢
%*
in E and ¢ in the dqual, E of E will be again

denoted by <, ¢>.

Definition 4.1. Let T(t,s):E + E be a family of

bounded linear operators for t > s, satisfying:
(i) T(s,s) = I, the identity, for all s € R,
(ii) T(t,u)T(u,s) = T(t,s) for all t > u > s,
(iii) there exists an ¢ > O such that for any
t>s, T(t+ ws+ w =T(t,s), and
(iv) there exists a 6§ > O such that
IT(t,s) | <8 for all 0< s < w and
s <t<s+ w
The family T(t,s), t > s will be called an w-periodic

family of bounded linear operators, or, an w-periodic

family.

69
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Note that property (iv) is easily seen to be valid
(by the Uniform Boundedness Principle) if T(t,s) is
assumed to be strongly continuous in (t,s). For any

s € R, we define the period map, P(s):E = E, by

P(s) = T(s + w,s). From properties (ii) and (iii) it

follows that for any t >s and k =1,2,...
(4.1) T(t,s)PX(s) = PT(t)T(t,s).

Note that Pk(s) = T(s + kw,s) .

Before we continue, let us first make some basic
observations concerning the point spectrum of P(s). 1In
particular, if yu # O is an eigenvalue of P(s) with

associated eivenvector, ¢, then (4.1l) implies
(4.2) [P(t) - pI]T(t,s)p = T(t,s)[P(s) - uIle

for any t > s. Note that T(t,s)p # O for all t > s
since if T(T7,s)p = O we may choose m so that s + mg > T
and show O = T(s + mw, T)T(T,8)p = T(s + mw,s)p = Pm(s)m

= umm. This contradicts the facts that both u and ¢

are nonzero. Thus, if t > s, T(t,s) maps eigenvectors

of P(s) into eigenvectors of P(t). In addition, any
eigenvalue of P(t) is also an eigenvalue of P(s) since
(as shown above), yu 1is an eigenvalue of P(s + mw) = P(s)

for all m such that s + myw > t. Thus, the nonzero
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point spectrum of P(s) 1is seen to be independent of s,
with the null spaces, 7N (P(s) - uI), s € IR, all of the

same (perhaps infinite) dimension.

Definition 4.2. The point y # O is said to be a

characteristic multiplier of the w-periodic family T(t,s),

t > s provided it is a normal eigenvalue of P(s) for
all s. Any X € ¢ for which p = eM will be called a

characteristic exponent of T(t,s): t > s.

From section 4 of the last chapter, it follows that
W is a characteristic multiplier if |u| > r (P(s)) for
0 s < w. Should some iterate of P(s) be compact (for
some s) then it would follow that re(P(t)) = 0 for all
t and, theréfore, any nonzero element of o(P(t)) 1is a

characteristic multiplier.

Let u be a characteristic multiplier and
{wl,...,md} be a basis for the generalized eigenspace

n(P(0) - y)¥. Define the basis "vector" & = (py,...,qg) -

Theorem 4.3. Let u and § be as above. Then

there exist d x d matrices B and §(t) such that
o(eBY) = (u}, ¥(0) =% and §(t + @) = &(t) for t € R.
If b is any d-vector, then T(t,0)%b is defined for all

t €e R by

(4.3) T(t,0)%b = &(t)etb.
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Proof: The argument is essentially that of Stokes
[36]. For convenience, we write P = P(0). Since
is a normal eigenvalue of P, we may write E =
n(e - uD* @ R(P - D)™ with o(pl,) = (4} and o(p|) =
o(P) \ (u}. Because P is invariant on 7N(P - uI)k,
there is a d x d matrix, M, such that P = M. The
spectrum of M is exactly {u]}] since o(Pln) = {u}.

Thus, there exists a d x d matrix, B, such that M = eBw.

t

Define &(t) = T(t,0) de B%. Then
3(t + w = T(t + 0,0) 8 B - (¢, 0)1(y,0) ge B BE
= T (t,0) 3eBP¥e BBt _ 5 (4.

Therefore, §(t) is seen to be w-periodic for t > O.
We extend the meaning of §(t) for t < O by defining
$(t) = 8(t + my) for any m such that wm + t > 0. The

remainder of the theorem is clear. O

Lemma 4.4. Let 4 Dbe a characteristic multiplier.
The dimension of the generalized eigenspace associated
with P(s) is independent of s. If ¢&(t) is defined as
in Theorem 4.3, then, for any t, §(t) defines a basis

of the generalized eigenspace associated with P(t) and .

Proof: The proof follows the lines of discussion

directly before Definition 4.2. One uses the facts that
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(P(t) - uD)¥T(t,s) = T(t,s) (P(s) - uD)* and that if

T(t,0)¢b = 0 for some t >0 then b =0. 0O

For any t > s, we have that

(4.4) T(t,s)a(s) = &(t)el (t™S)

since T(t,s)§(s) = T(t,s)T(s,O)Qe-Bs = T(t,o)sl’e_Bs =
Q(t)eB(t_S). As in the proof of Theorem 4.3, we may
define T(t,s)&(s) for t < s once it is observed that

-B(t-s)

T(t,s) d(s)e = §(t) is w-periodic in t. Thus,

(4.4) holds for all ¢t,s.

If y 1is a characteristic multiplier, we may chodse
a basis, (§,(t),....45(t)}, for n(e"(t) - un)™.
Define Y¥(t) = col(wl(t),...,wd(t)). This basis vector
is uniquely defined if we require, in addition, that
<Y¥(t),d3(t)> =1, the d x d identity matrix. See section

4 of the previous chapter.

Theorem 4.5. Let Y(t), é(t) and B be defined as

above. Then

eB(t—s)Y

(4.5) T (t.s)¥(t) = (s)

for all t > s.

Proof: Let t > s. From property (ii) it follows

that [P (s) - uIl®T"(t,s) = T" (t,s)[P" (t) - uI]¥. Thus



74

T (t,8) maps N(P (t) - uD)¥ into (P (s) - uD)*. Note

that
I = <¥(t),a(t)> = <¥(t),T(t,s)s(s)e B(t=S)y
= <" (t,8) ¥(t), 8(s) >e B (E-S)
Therefore,
1= e B (e, ¥(8), 8(s)>
= <e"BE=8)q* (¢, 5) y(t), 2 (s) >

e-B(t-s)

This implies that ¥(s) = T (t,s)¥(t). Equation

(4.5) follows immediately. O

By considerations similar to those applied to (4.4),
we can define T*(t,s)Y(t) for all t,s so that (4.5)

is satisfied.

Having computed a precise description of T*(t,s)m
and T (t,s)y for o € N(P(s) - yI)¥ and y € (P (t) - %,
we now turn our attention towards estimating the growth of
T(t,s)p: t >s for ¢ € R(P(s) - uI)k. From Lemma 3.13
it follows that the characteristic multipliers of T(t,s):
t > s are at most countable in number. We assume them
ordered by decreasing modulus: Iull‘z |H2|.2°’°- If we
consider the first m characteristic multipliers, we may
decompose E as

k k

1 2

E=7N(P(s) - wI) =~ ®N(R(S) - WwyI) ° @...

k
®N(P(s) - wI) " ®F,(s).
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Let Qi(s) and Yi(s) denote the basis vectors associated
k, . k.
. i i .
with 7(P(s) - u;I) and 7N(P (s) - u;I) 77 respectively.
Then, the projection of E onto Fm(s) is given by
m

Ii(s)g = o - 3__:1 8, ()<Y, (s), o>

Theorem 4.6. Let o > O Dbe chosen such that a

finite number of characteristic multipliers, [ul,...,um},
satisfy Iuil > a, while any other multiplier, u,
satisfies |u| < a. Then there exist constants M =

M(a) >0 and v = v(a) >0 such that
(4.6) |T(t,s)g] < M(a)e(a-V(a))(t-S)|¢l

for any o € Fm(s) and all t > s.

Proof: The argument follows closely the presentation
in Hale [11]. Let s be fixed. For convenience, we

write P = P(s) IF (s) "
m

Because 0(P) = o(P(s)) {ul....,um}, P has spectral
radius, r”, strictly smaller than |u | (and equal to
|| should there me m + 1 multipliers). Choose
v = y(a) >0 such that v(a) <a - § where & € R

satisfies e®¥ =1r"’. as j » +o we have IPJ|1/J + %Y,

Thus, for some ¢ > O sufficiently small, |pJ|1/Je(V'a)w <

1 - ¢ for all sufficiently large Jj. Therefore,

Ilee(v-a)jw 20 as j -+ e
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Let s <t and choose j > O such that Jjw + s <

t<(j +1)ew + s. Then
T(t,s) = T(t,jw + s)T(jw + s,s8) = T(t,jw + s)Pj(s)
= T(t - jws) Pl (s).

By property (iv) and the above, we have

(4.7) [T(t.s)ol < alP? | |o]

< 0e(@ VU oy ([P |e (V-OIRY) |y |

n>0
for o € Fm(s). If o -v>0, then wj <<t - s implies
(@ -Vjw< (@ -v)(t-s). If a-v<O0, then
t-s< w(i+1) implies (a - V)(F + Dw< (@ = v)(t - s).
In either case, it follows that

(4.8) el@vun o lo-v]w  (a-v) (t-3)

From (4.7) and (4.8) we have
(4.9) IT(t,s) o] < M(a)e (@ V) (£-8) ()

for t >s and o EFm(S)- O

§2. Flogquet Theory

We now apply the results of the previous section to the

study of
(4.10) x(t) = L(t,x,) +h(t): t>s
(4.11) X_ =¢ €X

under the assumptions on L and h found in Chapter III.
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In addition, we make the periodicity assumption that there
exists an @ > O such that L(t,+) = L(t + w,*) and

h(t) = h(t + @) for all t. As in Chapter III, we define
T(t,s)op = xt(s,m,o) for t > s. By the uniqueness
assertion of Theorem 3.1 and Corollary 3.4 we see that
T(t,s): t > s satisfies the axioms of an uw-periodic
family of bounded linear operators on X. In Chapter III,
§4 it was shown that any u € o(T(w.0)) N {A]|Ni > rp(w)]
is a normal eigenvalue of T(s + w,s) = P(s) for all s.
Thus, any uy € 0(P(0)) satisfying |u] > rp(w) is a
characteristic multiplier for the homogeneous analogue of

(4.10)-(4.11).

The three theorems of the previous section each have
an interpretation in the context of (4.10)-(4.11). The
implications of Theorem 4.3 are considered in this section

and given by

Theorem 4.7. Assume |u| > rp(w). Then oy = eM g

a characteristic multiplier if and only if there is a nonzero
solution of (4.10) (with h = 0) of the form x(t) =

p(t)e"t where p(t) = p(t + w).

Proof: If  1is a characteristic multiplier, define
¢ = (pyr---+9q), where [ml,...,¢a} is a basis for the

generalized null space associated with T(w,0) - uI. For
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s = 0, a solution of (4.10) with x. € N(T(w,0) - uI)k

(0]
has the form x_ = T(t,0)gb = 3(t)ePtp, where &(t) =
T(t,O)@e_Bt, B 1is the d x d matrix chosen such that

Bw

T(w,0) & = de and b is a d-vector. Therefore, for

u<<O0 and t > O,
(4.12) x, (W) = [2(t)](w)e®D.

In fact, for u > -t we have xt(u) = xt+u(0) =

[8(t + u)](0)eB(t+tWy,

Therefore, [&(t)](u) =

[¢(t + u)](O)eBu for -t < u 0. Replacing t by

t + jw; J a positive integer, yields [&(t + jw)](u) =
[8(t + Juw + u)](O)eBu for -jw - t < u << 0. Since §(t)

is periodic in t, we obtain
(4.13) [8(t)](u) = T(t + u)ePY

for t >0 and u << 0, where TI(T) = [8(7)](0) for

T € IR.

It is immediate from (4.12) that for t > O
(4.14) x(t) = T(t)e .

Equation (4.13) shows that (4.14) is also valid for t < O.
Note that T(t) is periodic in t and, therefore,

At

F(t)eBtb takes the form of e times a polynomial, p(t),

in t with w-periodic coefficients.

The converse is trivial. O
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Corollary 4.8. If gy 1is a characteristic multiplier

of (4.10)-(4.11), the basis vector §(t) associated with

n(e(t) - uI)k is given by
[8(t)](u) = T(t + u)el?

for u < O, where B and T are as in Theorem 4.7.

§3. The Adjoint Equation for Periodic Systems

If 4 1is a characteristic multiplier of an w-periodic
family, Theorem 4.5 provides us with a description of
T*(t,s)t when § is a generalized eigenvector for
T*(t + wt) - uI = P*(t) - wI. This information, along
with the representation of T*(t,s) given by Theorem 3.8,
can be used to obtain a precise description of the basis
elements of n(P*(t) - uI)k. Our efforts here will be
preparatory to that description to be given in §4. We will
study here a "limit adjoint equation" and bilinear form

analogous to (2.30) and (-,+) in the autonomous situation.

To motivate the discussions of this section we first
apply Theorem 4.5 to equation (4.10). Let B be as in
Theorem 4.7 and VY(t) be the usual basis vector associated

to NP (t) - unk.

Lemma 4.9. Let | Dbe a characteristic multiplier and
¥(t), B be as above. Define A(t) = [¥(t)](0 ). Then the

solution Q(s,t) = [T*(t,s)Y(t)](O—) of the adjoint equations
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(4.15) Q(t,t) = [¥(t)](07)

(4.16) als.t) + [T Qe t)F(u,s - wau = [¥(t)](s - £): s < t
S

is locally of bounded variation in s and given by

eB(t—s)

(4.17) Q(s,t) = A(s) .

Proof: This follows immediately from (4.5) and

Theorem 3.8. a

Although (Q(s,t) solves (4.15)-(4.16) only for s < t,
we will consider it defined for all s and t by equation
(4.17). Note that if (Q(s,t) is known, then (4.16) can
be viewed as a representation for Y(t) which then could
be used to perform the space decompositions described in §l.
Therefore, it is important for Q(s,t) to be characterized
in a manner independent of Y(t). In deriving this

characterization, we first need

Lemma 4.10. Let yu be a characteristic multiplier

with |u| > rp(w) and Q(s,t) be as above. For s < t,

z(s) = Q(s,t) solves
(4.18) £ [z(8) + [T z(s + u)n(s + u,-u)du]
(o)
-z(s + r)n(s + r,-r)

+ f' z(s + u)n (s + u,-u)p(-u)du = O
r

where z(t + u) = Q(t + u,t) for u > 0.
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Proof: Let s < t and j be a positive integer.

The previous lemma shows (s,jw + t) to solve

Q(s,jw + t) + jt's+3w Q(s + u,t + jw)ﬁ(s + u,=-u)du
o

—
= [¥(t + Jw](s - t - ju)

for s < t. Equation (4.17) and the periodicity of Y(t)

in t immediately show

(4.19) a(s,t) + [F75FIY q(s 4 w,6)F(s + u,~w)du
0

= e IBYY(t)](s - t - jw)

for s < t. For j such that t - s + jw > r, the
integral may be written as

t+jw
s+r

Ir Q(s + u,t)n(s + u,-u)du + f Q(u,t);(u,s - u)du
(o)

and (4.19) may be differentiated with respect to s to
yield

(4.20) é% [Q(s,t) + Ir Q(s + u,t)n(s + u,-u)du]
o

- Q(s + r,t)n(s + r,-r)
+ j.t-s+jw Q(s + u,t)'n(s + u,—u)p(—“)du
r

= e B 55 -t - SW¥E) (s - t - )

for s < t. Note that

ess suplp(s - t - jw)e'ij[Y(t)](s -t - 3jw|
s<t

< vGw [ . ess sup|[¥(t)](s - t - jwlp(s - ©) ]
s<t

< Y(jw)\e-Ble . constant
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which tends to O as j % » since [u]| > rp(w) and

c(e'Bw) = [%}. Also, for all j sufficiently large,
t-s+jw
lf Q(s + u,t)n(s + u,-u)p(-u)du]
r

< f:-s+jw leB(t-s-u)|°|A(s + u) |- |n(s + u,-u) |p(-u)du

< It—s+3w le-Bulp(-u)du - constant
-r
® -=Bu
< I le |p(-u)du . constant < o
-r
by the properties of (1 and n. Therefore, we are
justified in taking the limit as j #+ e in (4.20) to find

4.21) & [a(s.t) + [T Qs + w,tin(s + u,-u)du]
0

- Q(s + r,t)n(s + r,-r)

+ [® a(s + u,t)n(s + u,-u)p(-u)du = 0
r
for s < t. O

This result motivates the consideration of the "limit

adjoint equation"

(4.22) é% [z(s) + Ir z(s + u)n(s + u,-u)du] - z(s + r)n(s + r,-r)
(o]
+ [®z(s + wn(s + u,-u)p(-u)du = 0; s < t,
r

with initial condition z(t + u); u > O being defined by

o

T
an element of X = (measurable a:[0,w) =+ R" | var (a) +

[0,r]

I“ la(u) |[p(-u)du < »}. To the set L we give the norm
r
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la] = |a(0) | + var (a) + [ |a(u)|p(-u)au
r

’

and thereby make XP a Banach space.

Lemma 4.11. Equation (4.22), with initial date defined

by
(4.23) z(t +u) =a(u), u>o0

where a € XO, has a unique solution defined for all

s < t which is locally of bounded variation in s.

Proof: This result can be derived from Theorem 32.1
of Hale [11] since for t - r { s < t equation (4.22)

reduces upon integration to the form

z(s) + ft z(u)n(u,s - u)du = X(u)
s

where X is of bounded variation on [t - r,t]. The
argument can then be repeated on [t - 2r,t - r], [t - 3r,

t - 2r], etc. O

If 2z solves (4.22)-(4.23) we define for s { t the
function 2z° € x° by z°(u) = z(s + u for u 2 0. The
map To(t.s)zt = z° can easily be seen to be a linear
operator defined on xo. In fact, following arguments in

Hale [11] and Hale [12] one can show

Lemma 4.12. The map T°(t.s):X° + x° is a bounded

linear operator with re(To(t,s)) < rp(t - s8). Thus, any
u € c(Tp(t,s)) n (A > rp(t - s)} 1is a normal eigenvalue

for To(t,s).
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The connection between solutions of (4.22)-(4.23)
and the solutions of the adjoint equations (3.20)-(3.21)

is given by

Lemma 4.13. If y solves (4.22)-(4.23) then there is

a unique § € X defined by a for which y solves (3.20)-

(3 021) .
Proof: Assume t - r { s < t. We may integrate the
equation

0 = é% [y(u) + I;-u y(v + u)n(v + u,-v)dv

+ fr a(v + u - t)n(v + u,=-v)dv]
t-u

-a(u-t+r)n(u+r,-r)

+ [fa(v+u-t)nv +u,-vdv
r

from s to t to find that

y(s) + It-s y(s + v)n(s + v,-v)dv = §(s - t)
(0]

where ¢(u); -r <u <0 is defined by (0) = 0 and

(4.24) y(u) =a(0) + [F a(v)n(t + v,-v)av
o)

- Ir+u a(v)n(t + v,u - v)dv
+‘[’: [f“a(w+v-t)n(v+w,-w)p(-w)dw
+u r

-a(v-t+r)nv+r,-r)]dv.
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For u < -r, we define

(4.25) y(u) = -p-l(u)f' a(v)n(t + v,u - v)p(u - v)dv.
o

As in the autonomous case (see Theorem 2.18), ¢ is left
continuous on [-r,0), of bounded variation on [-r,0] and
essentially bounded on (-e,-r). Differentiation of

(3.20) for s - t < -r with | defined by (4.25) reveals
that y solves this "differentiated" form of (3.20) for

s <t-r, with

y(t - r) = -Ir y(t = r + u)n(t = r + u,-u)du
(o)

+ y(-r).

By the uniqueness of solutions to (3.21)-(3.22), the

lemma is proved. O

Note that if § 1is given in terms of a € x°

by
equations (4.24)-(4.25), then (0 ) = a(0). We shall say
that ¢ is "defined by a at t" or "a defines
at t" provided o defines ¢ via equations (4.24) and

(4.25).

At this point, we introduce a bilinear form (a,cp)t
defined for a € x° and ¢ € X which plays a role analogous
to that of (a,p) in the autonomous case. In that situa-

tion, af € X. For a € Xo and ¢ € X define
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(@, p)y = a(0)p(0) + *©

-

+ fo [I. a(u)n(t + u,s - u)p(s - u)du
-r r+s
- a(s + r)n(t + s + r,-r) Jp(s)ds
+ J»-r [[® a(u)n(t + u,s - wWp(s - u)du]ep(s)ds.
-» o
In the special case of finite delay, n(t + u,s) = 0 for
s < -r and s > O. The last two integrals reduce to

-IO a(s + r)n(t + s + r,-r) p(s)ds
-r

and (a,p), Dbecomes the classical bilinear form of Hale

[11]. Clearly, (-,-)t = (-,-)t+w for all ¢t.

Lemma 4.14. If o defines { at t, then for all

¢ € X, <w:€p> = -(al@)to

Proof: This is simply a matter of substituting
the expressions (4.24)-(4.25) into the bilinear form (-, -

and noting (0 ) = a(0).
See the proof of Lemma 2.19. O

Theorem 4.15. If a defines | at t then

Tp(t,s)a defines T*(t,s)w at s.

Proof: The proof is similar to that of Theorem 2.20.

[dsjg+s a(u)n(t + u,s - u)dujep(s)

)¢
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* -
Let y(s,t) = [T (t,s)y](0O ). By the uniqueness
of solutions to the adjoint equation and Lemma 4.13,
y(s,t) = y(s), where y(s) is the solution of (4.22)

with yt = a. By equation (3.18),
N~

[T*(t,s)w](u) = J(u+s -t) + It_s y(s + v)n(s + v,u - v)dv
o
for u << 0. For u< -r, this may be differentiated

with respect to u to find

p(u) [T (t,s)y](u)

=p(u+s - t)y(u+s - t)

- [ts y(s + v)n(s + v,u - v)p(u - v)dv

o

-I' a(vin(t + vyu+s -t -v)p(u+s -t - v)dv
(o)
- ft-s y(s + v)n(s + v,u - v)p(u - v)dv
o
= -[®y(s + v)n(s + v,u - v)p(u - v)dv
(0]

by (4.25). Comparing with (4.25), we see that
[T*(t,s)w](u) is defined by ys at s for u < -r.
Similar éht more complicated calculations for -r < u <O
show that [T*(t.s)W](u): u < 0 is indeed defined at s

by yv°. O

Corollary 4.16. If | 1is defined at t by a,

then for all s { t and ¢ € X,
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(alT(tls)cp)t -<W.T(t.8)cp> = "<T* (t,s) ¢1C9>

(1° (t, 8)a, ) -

Proof: This is immediate from Lemma 4.14 and the

previous theorem. O

§4. The Dual Basis and Space Decomposition

We are now able to apply the results of the previous
section to the calculation of the "dual" basis associated

*
to the generalized eigenspace of P (t) - uI.

Theorem 4.17. Let yu be a characteristic multiplier

with |u]| > rp(w). Define B, Y¥(t) and A(t) as in
Lemma 4.9. Then Y(t) 1is defined at t by Qt(-,t),
which is a basis vector for the generalized eigenspace

of To(t + wt) - uI = Po(t) - ul.

Proof: The fact that VY(t) is defined at t by
Qt(-,t) follows immediately from Lemmas 4.10 and 4.13.
The calculations of Lemma 4.10 show that the rows of

dt(-,t) are elements of XO.

To show the remainder of the theorem, first assume
a € Xo and (Po(t) - uI)ma =0 for some m > 1. If
is defined at t by a, then Theorem 4.15 and Corollary
4.16 show 0 = ((B°(t) - uD™pe), = <(B (1) - uD) ™y o>
for all ¢ € X. Thus, § € N(P (t) - uI)* and there
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exists a d-vector, b, such that ¢ = by(t). (We
*
assume d4d = dim (P (t) - uI)k.) Therefore, | 1is seen

to be defined at t by bat(-,t).
claim. bat(-.t) € n(°t) - un¥.

Proof of claim: From (4.17) it follows that

Qt+w(-.t + @ = Qt(-,t). Using the definition of
To(t + w,t) and (4.17) we have

t+w

Pt + wt)at(-.t) = Pt + w0t + W

ot (et + o = Y e +

= Bt (., b).

Thus, (B°(t) - wDXat(-.8) = (eB¥ - un¥at(-.t) =0

Bw _ ul)k = 0. The claim is verified.

since (e
. t
Claim. a = bQ (*,t).

Proof of claim: Define v =a - th(-,t). Then v

is an element of the generalized null space of Po(t) - ul
and defines at t the element O € x*. The solution of

the adjoint equation (3.20) associated with O is O for
s < t. Thus, the solution of (4.32) with initial value v

is O for s < t.

By Lemma 4.12, y is a normal eigenvalue for Po(t).

Arguing as in §1l, the dimension of the generalized null
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space of Po(t) - wI is finite (say, equal to gq) and
invariant under Po(t). Let {al,...,aq} be a basis

for the generalized eigenspace n(Po(t) - uI)k and

X = (al,...,aq) be the associated basis vector.

There exists a q x @ matrix, D, such that Po(t)X = DX
and o(D) = (u}. If Db is the g-vector such that

a = b¥X, then for m > 1,
™ (t + mw, t)bX = [P°(t) "bX = bD™X.

Considering the definition of To(t,s), we must conclude
that o is zero on [O,m]. However, since m > 1 was

arbitrary, the claim holds true.

Thus, we have shown that n(P*(t) - uI)k is spanned
by linear combinations of the elements defined at t by
the basis elements of n(Po(t) - pI)k. Finally, we note
that the rows of Qt(-,t) are linearly independent since
if th(-,t) = 0 for some d-vector, b, then

0= (ba"(+,t),8(t))_ = <BY(t),&(t)>=Db. O

The following may be "added in proof".

corollary 4.18. If y is as above, dim n(P*(t) - ul)

= dim n(Po(t) - pI)k. In fact, the linear mapping that
associates to each a € W(Po(t) - pI)k the element of

*
ne (t) - uI)k it defines at t is a 1-1, onto map.

k
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We are now able to give a complete description of the
projection operator I(t):X = N(P(t) - u;[)k for u a
characteristic multiplier with |u| > rp(w). We will
assume, as before, that d = dim 7I(P(t) - uI)k and

§(t), v(t) are the usual basis vectors.

As in the general setting of §1, 1[(t)p = &(t)<¥(t),p>.
For the FDE (4.10), Corollary 4.8 gives the general form
for §(t). By the previous theorem, we may find a basis
vector Qt(-,t) for n(Po(t) - u;[)k that defines
¥(t) at t. The general form of Qt(',t) follows from

(4.17). Applying Lemma 4.14, we see

(4.26) N(t)e = -2(t) (2 (-, &), o)

= T () (@BUNE L g,

similarly, I (t)y = <¢,rt(-)eB")>e‘B(')At(-) for § €X
and T (6)y = -(a, T ()P0 BNty iy is

defined by o ¢ XO at t.

We close this section with the associated decomposition
of the variation of constants formula (3.24) at a character-

istic multiplier u. As in Chapter III, §3, we define

0, u<o
s§(u) =
I, u=20

where I 1is the n x n identity matrix.
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Theorem 4.19. If x 1is a solution of (4.10)-(4.11)

for t >s and yu is a characteristic multiplier of
(4.10) with |ul| > rp(w), then x_ = N(t)x, + 0°(t)x,
with Q(t)x_ and II'(t)xt = [I - 0(t)]x, satisfying the

integral equations

(4.27) [(t)x, = T(t,s) M(s)x, + [° T(t,u) () sh(u)du
S
(4.28) N°(t)x, = T(t,s)N°(s)x_ + [T T(t,u) 1" (u)sh(u)du,
S
respectively.

Proof: The fact that T(t,s)Il(s)é 1is actually
well defined follows by an argument similar to that of

Section 36 of Hale [11].

Now, if x 1is as described, then by Chapter III, §2,

X, = T(t,s)g + K(t,s)h. Therefore,

n(t)xt n(t)T(t,s)xS + N(t)K(t,s)h

§ ()<Y (L), T(t,s)x > + 3 (t)<¥(t),K(t,s)h>

* *
F(E)<T (£,8)¥(£), x> + §(E)<K (t,8)¥(t),h>

T(t:S)Q(s)e-B(t's)<eB(t-S)

Y(S).xs>

+ 2(0) [T [T (,w) ¥(£) ] (0 h(u)du
S

by equations (4.4), (4.5), (3.24) and Corollary 3.10.

Consequently,
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UE kg = TE,0) 8(8)<H() x> + [* 2(0)<e® 5™ y(w), o>n (w
= T(t,s)H(s)xs + It T(t,u)@(u)e—B(t_u)-
s
<e® (5 y (u), 53 (w) au
= T(t,s) I(s)x_ + [C T(t,u)N(u) h(u)du.
S
Equation (4.28) follows since 1M’(t) =1 - M(t). O

As in the finite delay case, equation (4.27) is equiva-
lent to an ordinary differential equation. That is, if

y(t) 1is the d-vector such that ¢§(t)y(t) = H(t)xt, then

¢(t)y(t) = T(t,s)#(s)<¥(s),x_>
+ @(t)f: [T" (t,w) ¥(£) ] (07)h(u)du
= 2028y (5) + 3(0) [* a(u, t)h(w au.
s
Therefore,
y(t) = B8 yig) & B B (yn(uw)au
s

which may be differentiated with respect to t for t > s

to yield

Q(t) = By(t) + A(t)h(t).
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§5. Stability of Linear Periodic Systems

Theorem 4.6, when applied to (4.10)-(4.11l) can be
used to derive a generalization of the usual criteria for
the stability of linear periodic ordinary differential
equations. (See Yoshizawa [40].) Throughout this section

it will be assumed that h = O in (4.10).

Definition 4.20. (i) The zero solution of (4.10)

is called stable if for every ¢ >0 and s € R there
isa 8= 8(e,s) > O such that Iml < & implies
|x, (s.) | < ¢ for all t >s.

(ii) The zero solution of (4.10) is called

asymptotically stable if it is stable and there exists

an H = H(s) >0 such that |p| < H implies
tiﬁ |xt(s,m)| = 0.

(iii) The zero solution of (4.10) is called uniformly
stable provided it is stable and the § in (i) is inde-
pendent of s.

(iv) The zero solution of (4.10) is called uniformly

asymptotically stable if it is uniformly stable and for all

v >0 and s € R there exists a T = T(v) >0 (inde-
pendent of s) and K > O (independent of s and V)
such that [p| < K implies |z, (si) | < v for all

t >s + 1(Vv).
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From the linearity and periodicity of (4.10) we

have

Lemma 4.21. The zero solution of (4.10) is uniformly

stable if it is stable. The zero solution of (4.10) is
uniformly asymptotically stable if it is asymptotically

stable.

The proof is the same as for the analogous result for

ordinary differential equations. See Yoshizawa [40].

As in Chapter II, §1 and Chapter III, §4 we define

B = inf{c € I!|Io ecsp(s)ds < o).

Theorem 4.22. Assume B < O. (i) The zero solution

of (4.10) is uniformly asymptotically stable if and only
if all characteristic multipliers of (4.10) have moduli
less than 1.

(ii) The zero solution of (4.10) is uniformly stable
if and only if all characteristic multipliers of (4.10) have
moduli 1less than or equal to 1 and if 4 is a character-
istic multiplier with [p| = 1 then all solutions of
(4.10)-(4.11) with initial value in % (T(w,0) - uI)X are

bounded.

Proof: By Lemma 3.19, rp(w) < 1. Thus, there

exists a vy > O such that any yu € 0(T(w,0)) with
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[u! > 1 - v is a characteristic multiplier of (4.10).
The remainder of the argument follows along the lines of

the proofs of Corallaries 35.1 and 35.2 of Hale [11]. O

Similar also to its counterpart in Hale [11] is

Theorem 4.23. Assume |y, | > |u2|.2---2 by | 2.

are the characteristic multipliers of (4.10) with

|ui| > rp(w) for i =1,2,---. Let I, be the projection
k.
of X onto 7N(T(w,0) - ui) L. 1f Z)niw converges and
i

®=0- Z)Him. then lxt(O.é)leat + 0 as t + o for all
i
a >B.

Proof: This is immediate from Lemma 3.19 and

k.
Theorem 4.6 since the projection of ¢ onto 7N(T(w,0) - ui) -

is zero for any characteristic multiplier My with

Iy | > ro(w. O

The analogue of the previous theorem for the autonomous

system (2.1)-(2.2) is given by

Theorem 4.24. Define A(\) Dby (2.9) and IIx as in

Theorem 2.24. Let S = (A € C|[Re A > B and A4()\) = 0}.

If - 1N,p converges and ¢ = ¢ - 2 I o then the
xes M res _
solution xt(m) of (2.1)-(2.2) with initial value X = O

satisfies Ixt(a)leo't 40 as t -+ +e for every a > B.
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Proof: Let T(t): t > O be the strongly continuous
semi-group and A be the infinitesimal generator associated
with (2.1)-(2.2). By Lemma 22.1 of Hale [11]] and Theorem
3.21, if % € S, then 7N(T(1) - eM)* is the closed
linear extension of the linearly independent eigenspaces
naAa - in)ki, where the Xi are those elements in S
satisfying e)\i = ex.

We define a l-periodic family on X by T(t,s) =
T(t - s), t>s. It follows that the collection of

characteristic multipliers, yu, of T(t,s), t >s with

lul > (1) is given by (u= eMa € s).

By Theorem 4.6, it suffices to show that ¢ has no
nonzero projection onto any of the eigenspaces
n(r(1,o) - e)‘I)k = N(T(1) - e)‘I)k for )\ € S. However,

this follows easily from the aforementioned lemma of Hale.

§6. The Fredholm Alternative for Forced Periodic Systems

As an application of the previous sections we derive
a generalization of the classical Fredholm Alternative
known for linear periodic systems of ordinary differential
equations. (See Hale [13].) Throughout this section, the
B previously defined will be assumed negative. One lemma

is needed in preparation.
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*
Lemma 4.25. T (w,0)y = ¢y if, and only if ¢, is

defined at w by an w-periodic solution to (4.22)-(4.23).
That is, there exists a z% ¢ x° which defines | at g

and T (w,0)z% = 2%,

Proof: Assume § is defined at o by z¥ ¢ x°

and To(w.o)zw = z%, fTheorem 4.15 shows T*(w,O)w = y.

Conversely, if O # ¢ € n(T*(w,O) - I), Lemma 3.22
and Theorem 3.18 show 1 to be a normal eigenvalue for
T(w,0). Because 7N (T(w,0) - I) < N(T(w,0) - I)k, y 1is
defined at O by some a € ﬂ(To(w,O) - I)k. Theorem 4.15
shows To(w,o)a to also define ¢ at O. By Corollary
4.18 we must conclude that To(w,o)a = a. The solution,
z, of (4.22)-(4.23) with 2z =a is the desired periodic

solution which defines | at w. O

Without loss of generality, we may assume s = 0O 1in

(4.10)-(4.11).

Theorem 4.26. Assume f < O. The problem (4.10)-

(4.11) has an w-periodic solution if, and only if,

(4.29) j‘” z(u)h(u)du = O
o)

for every w-periodic solution to (4.22)-(4.23).
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Proof: Since the solution of (4.10)-(4.11) is

given by x,_ = T(t,0)9 + K(t,0)h, (4.10)-(4.11) has an

t
w-periodic solution if, and only if, K(w,0)h € £(T(w,0) - I).
Under the assumption P < 0, 1 will either be a normal
eigenvalue for T(w,0) or in the resolvent set of T(w,0).
In either case, RAR(T(w,0) - I) 1is closed. Thus (4.10)

has an g-periodic solution if and only if <y,K(w,0)h> =0

for all ¢ € N(T (w,0) - I).

Assume | € ﬂ(T*(w,O) - I). Recall from Corollary

3.9 that

(4.30) <4, K(wO0)h> = =¥ [T (w,u) 4] (07)h(w)du
(o)

-Iw z(u)h (u)du
(o]

where 2z solves the adjoint equation (3.21) associated

to §y for s < w. Since § € n(T*(w,O) - I)k. Lemma 4.10
shows 2z to solve (4.22), and the previous lemma shows

z to be yw-periodic. Conversely, if 2z is an g-periodic
solution to (4.22) and zY defines § at ®, then the

previous lemma shows | € n(T*(w.O) - I).

In light of (4.30), we conclude that <y,K(w,0)h> =0
for all ¢ € N(T (w.0) - I) if, and only if, (42.9) holds

for all gperiodic solutions to (4.22)-(4.23). O
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In some applications it is the case that the measure
defining L(t,°) takes a special form from which it can
be shown that the limit adjoint equation actually has
absolutely continuous solutions. For example, consider

the situation when

m
(4.31) Lito) = T A (Be(r) + [° B(t.s)p(s)g(s)ds

where O {r; <...{r, =r and the n x n matrices A (t)
are continuous and y-periodic in t. We assume also that
B(t,*) 1is essentially bounded on (-e,0] for each t

and B(t,s) is continuous and yw-periodic for almost every

fixed s < 0. Then T(t,s) takes the form

- [ B(t,wp (uwau

m
(4.32) nit,s) = = % (t) X
" k=1 P (- s

®, -I'k] (s)

for s €< 0, where X (-) 1is the characteristic
(“01 "'rk]
function for the interval (-e,- k]. The system (4.10)

becomes

K]

(4.33) x(t) =

. Ak(t)x(t - rk) + f(_)“ B(t,s)p(s)x(t + s)ds

1
+ h(t)

and (by computations similar to those in Hale [1ll]), the

adjoint system (4.22) becomes

. m
(4.34) z(s) =-2 2z(s + r,)A (s + r,)
2 x’ Bk X

- I’ z(s + u)B(s + u,-u)p (-u)du.
(0]
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The initial value for the adjoint system may be assumed
continuous on [O,r] and integrable with respect to

p(=u) on [r,«.



CHAPTER V

BEHAVIOR NEAR PERIODIC ORBITS

§1. Differentiability of the Solution Map

In this chapter we shall apply the results of the
previous chapters to the study of the behavior near
periodic solutions to autonomous non-linear FDE's. In

particular, we consider

(5.1) x(t) = £(x), t >0
where
(5.2) Xo = ©® €X

where f£:X + R" is continuously Frechét differentiable
(Cl). The derivative of f at ¢, € X will be denoted
by Df(p,) or D _ f(p). It can be shown by standard

0 =95
techniques that (5.1)-(5.2) always has a unique solution,
x(p), which depends continuously on its initial data. That

(m)

is, if o + 9o in X, then x(w(m)) -+ x(¢p) uniformly

on compact subsets of its domain of definition.

If x = x(wo) solves (5.1)-(5.2) with X = @g € X,

we define L(t,-):X » R" by L(t,p) = Df(xt(wo))w for

102
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t > 0. Under the assumption that £ is Cl. t +» L(t,")

defines a continuous map of [0,«) into £(X, ]Rn), the
Banach space of all bounded linear operators from X into
R". This clearly implies L(t,qp) is continuous in t

and ¢. Thus, Theorem 3.1 assures us that the "linearized"

system
(5.3) z(t) = L(t,z), t>s>0
(5.4) z_=¢9 €X

s
has a uniquely defined solution on (s,®). For (5.3)-(5.4)
we define the associated (linear) solution map by

T(pgit,s)e = z, (s, o)
for t > s, where 2z(s,p) is the solution of (5.3)-(5.4).
As usual, we represent L(t,*) Dby the n x n matrix
valued function n(t,*) described in Chapter III. We
remark that under the assumptions on L(t,*), ﬁ(t,u) can

be shown to be continuous in t for fixed wu. See Kato

[21] and Riesz and Sz.-Nagy [32] for related matters.

1
Theorem 5.1. Let f be C and x(¢p) solve (5.1)-

(5.2). For all t >0, the map ¢ - xt(¢) is c1 and,

in fact,

(5.5) Dcp=cpo xt(w) = T(mo:t,o).
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Proof: Since the assertion is trivial for t = O,
we will assume t > O. For Py € X and ¢ € X define

y(p) = x(op + wo) - x(mo). Then Yo = @ and for t > 0
y(£) = x(qgy + ©} (£) = x(pg) (£) = £(x, (9, + o))

- £(x,(gy)) =D £V [y, (9)] + N(t,y, ()

v=x, (@)

where
(5.6) N(t,v) = £(v + xt(mb)) - f(xt(mo)) - Df(xt(¢b))v.

Note that Dv=0 N(t,v) = N(t,0) =0 for all t >0 and

that N(S'Ys(@)) is continuous in s for O s < t.

Therefore, (writing T(t,0) for T(g,:t,0)),

(5.7) yt(m) T(t,0)p + K(t,O)N(-,Y.(w))

T(t,0)p + [° T(t,u) N(u,y,_(¢))du
0

" where for s < 0,

[ft T(t,u) 8N(u,y, (p))du](s) = jt [T(t,u) 6] (s)N(u,y, (¢))du.
0 0
It suffices to show
o]+ sup If% [T(t,w 8] (8)N(u, v ())dul » 0
s<O O

as ¢ =+ 0. However, for any s < O,

|ft [T(t,u) 8] (s)N(u,y, (p))du| < ft [T(t,u) | [N(u,y, (o) |du
o) 0

<5 Tt jau - cle) - o!
o
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with the constant c(p) *+ O as ¢ + O because of the

continuous dependence of yu(w) on ¢ at ¢ =0 and

the properties of N. 0O

Corollary 5.2. Let Yo > 0 and consider the system

(5.8) x(t) = £(x ¥, t >0

(5.9) Xy = @ € X

is Frechét differentiable

1

for |vy| < Yo+ Where f(q, )
in (¢, y). The map (9,y) #+ x (9, y) is C~ for [y] < ¥y,

and ¢ € X.

Proof: The above follows immediately from Theorem 5.1

if we consider the n + 1 dimensional system

Y o)
4 [ ] = [- ] ., t>O0
dt x(t) f(xt. Y)

with the initial data defined at t = O by

y
[()- O

§2. The Poincare Map
Assume now that (5.1)-(5.2) has an y-periodic solution,

p(t). That is, for all t € R,

(5.10) P(t) = £(p,)
and

(5.11) p(t + w) = p(t).



106

In order to study the behavior of (5.1)-(5.2) for initial
values, ¢, hnear Py, We consider y(t) = x(t) - p(t),

where x = x(¢p) solves (5.1)-(5.2). Then for t > O,

(5.12) y(t) = x(t) - p(t) = £(x.) - £(p,) = £(p, + y,) - £(p,)

Df(p )y, + N(t,y,)
and
(5.13) Yo = ® € X.

Here, N 1is defined as in (5.6) and is w-periodic in t.

Let 2z Dbe the solution of the associated "linearized"

(periodic) system
(5.14) z(t) = Df(pt)zt, t >s

(5.15) z, = @ €X.

The solution map associated with (5.14)-(5.15) will be
denoted by T(t,s) (the dependence upon Po will be
suppressed). Since (5.14)-(5.15) is a linear periodic system
we will have the associated space decomposition at character-
istic multipliers of the periodic family T(t,s), t > s.

In fact, from the differentiability of £, (5.10) and

(5.11) it follows that bt is an w-periodic solution to

(5.14) with s =0 and =z In what follows, we will

o = Po-
assume that the periodic solution, p(t), of (5.1) is
nonconstant. In addition, it will be assumed throughout

the remainder of the chapter that
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B = inf{c € ]leo e“%p (s)ds < =)

-=
is negative. Therefore, ﬁo € 1(T(w,0) - I) is non-zero
and (by Theorem 3.18 and Lemma 3.19) 1 is seen to be a
characteristic multiplier for (5.14)-(5.15). Following
Chapter 1V, we have

X = N(T(w,0) - I)¥ ® R(T(w,0) - )X

with 7N (T(w,0) - I)k

the generalized eigenspace associated
with 1. We will write

F = R(T(w.0) - D)K.

Recall that T(w,0) is invariant on F and o(T(w,O)]F) =

o(T(w,0))\ (1}.

Definition 5.3. The periodic orbit ¢ = U [Pt} is
t
said to be nondegenerate provided dim 7(T(w,0) - I)k = 1.

Because dim 71(T(t + w,t) - I)k

is constant in t,

we see that nondegeneracy does not depend on the particular
element from (O we refer to as Po* We will choose éo

as the basis vector for 7N(T(w,0) - I) and denote by
the unique element from X* that spans n(T*(m,O) - I)

and satisfies <w,bo> = 1,

Lemma 5.4. There exists an open neighborhood, U,
of Pg in X satisfying: for any ¢ € U there exists a

t € (0,2w) such that x (p) € F + py = (o + pola € F}.
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Proof: For s > -w and ¢ € X define the function
H(s,p) = <¢,xs+w(m) - Py>» where § is as above. Clearly,
H(s,po) is differentiable in s and DS=OH(s,po) =

<¢,iw(po)> = <¢,§O> = 1. Thus, for s sufficiently small,

(5.16) H(s.po) = H(O.po) + DS=0H(s.pO) + R(s)

=0+ s + R(s),

where |s|-1 - |IR(s)| + 0 as s =+ 0.

Recall from Chapter III, §4 that the projection
I:X + N(T(w,0) - I) 1is given by Iy = §o<¢,¢>. By the
closedness of F, the assertion will follow if we can
find, for |o - pol sufficiently small, an s € (-w, w
for which H(s,p) = 0. In light of (5.16), this is equiva-

lent to finding an s € (-w,w) satisfying
s = H(s,py) - R(s) - H(s.q).

That is, for | - pol sufficiently small we must find a

fixed point of the real valued map

G(s) = <y,x () > - R(s).

s+w(p0) - xs+w

Choose S <1 from (0,w) sufficiently small so
that |[R(s)| < % sols| for |[s| < sj. By continuous

dependence, we may choose I@ - pol small enough so that

1
‘<w‘xs+w(po) - xs+w(°p)>l L3 8

for -w < s < -w+ sy. Thus,
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lG(s) | g_% s *+ % So £ 5o

for any |s| < So- By the continuity of G, there is a

fixed point of G 1in [—so,so]. O

We now proceed to the definition of the Poincare
Map under the assumptions that B < O and ®w > r. As in

§4 of Chapter II, let s(t), t > O denote the solution

semi-group associated with the trivial system x = O.

*
Again, AO will denote the adjoint of the infinitesimal

generator of S(t), t > O. See Chapter II, §4.

Lemma 5.5. Let ¢ be as above, and assume that

S*(t)¢ € ﬂ(A;) for all t in a neighborhood of . Then

the map H:X x (0,o) » IR defined by
H(cp:t) = <¢oxt(@) - po>

is C1 in a neighborhood of (po.w).

e

8

¢
I

<s™ () o> + j"t [aF () 1[x, (@) (W) - 5(0)]

<s™ (6) 4o o> + j'-z ¥ (w)p (u) [x, (@) (u) = @(0)]du

+ f‘_’r [ay(u) 1[x, () (W) - @ (0)].

Since S*(t)w € ﬁ%A;) for all t in a neighborhood of ,
the first term is differentiable. In fact, if t0 < w

and s"(t )y € H(A]) then
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! * * % * % *
3 <S (B) g, o> = <A,S (B)v.p> = <Ays (t - to)S (to)¢,¢>

* % %
<S (t - ty)AgS (o) ¥, o>

<A;s*(to)¢,s(t - to)m>

for all t > tj. By Theorem 2.5 and (2.19), py is left
continuous and of bounded variation in a neighborhood of
-w. It follows that the remaining terms are C1 in t

near . O

Before we continue, we should comment on the condition
"S*(t)w € 3(A;)" that appears in the previous lemma. Our
work in §3 and §4 of the previous chapter is in some cases
helpful in verifying this hypothesis. Recall from (4.25)

that for s < -r,
V(s)p(s) = -I” a(u)n(u,s - u)p(s - u)du,
(0]

where o 1is the element of n(To(w.O) - I) that defines

¢y at O. Thus, from (2.19), if t > r it follows that

T S >
[s (v)y](s) [(¥](s = t) =p(s - t)y(s - t)

-J"a(u)n(u,s -t ~-u)p(s - t - u)du
(o)

*
for s < 0. Since S (t)y is absolutely continuous on

[-r,0), the three conditions of Theorem 2.5 reduce to that

w(s) = I“ta(u)n(u,s -t -u)p(s - t - u)du
(0]
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is (i ’°) of bounded variation and left continuous on
[-r,0), and (ii’) locally absolutely continuous on
(@, -r) with p-1 essentially bounded on (-o,-r).
These hypotheses are trivially satisfied for the finite

delay case since n(t,v) = 0 for all v < -r.

For an infinite delay example we consider a model

from mathematical biology. The scalar equation

(5.17) x(t) = -a[x(t) + 11J1 x(t + s)be® (8D gs

where a,b > O arises in the description of population
oscillations observed in single species communities. (See
May [27].) For this equation, the obvious choice for p
is p(s) = ebs and r = 1. Clearly B = -b < 0 and

(5.17) takes the form (5.1) for

£(e) = -a[p(0) + 1]1[7} p(s)be® p(s)ds.

If p(t) is a periodic solution to (5.1), then it is
easily verified that

DE(p ) = -alp(t) + 1][71 peP(s+D)

p(s)ds
- a[.['-1 p(t + s)beb(s+1)ds]¢(0).

Thus, n(t,u) = -a[p(t) + 1]eb for u < -1. Conditions

(1) and (ii’) hold trivially since

I' a(u)[a(p(u) + l)eb]eb(s—t-u)du
(0]

w(s)

= constant - ebs.
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Corollary 5.6. For Yo > O consider the system

(5.8)-(5.9) under the additional assumption that £(-,0) =
f(¢). PFor ¢ as above, if S*(t)¢ € ﬁ(A;) for all t

in a neighborhood of ®, the map G:X x (-Yb,yb) x (0, -
IR defined by G(p,Y,t) = <w,xt(¢,y) - po> is Cl in

a neighborhood of (po.O.w)-

The proof, which will be omitted, follows very
closely that of Lemma 5.5 and makes use of Corollary

5.2.

Lemma 5.7. Assume f, w and { are as above.
Assume also that S*(t)v € ﬁ(A;) for all t in a neighbor-
hood of |y and the orbit, @, is nondegenerate. There
exists a neighborhood, U’ of O in X and a c1 real
valued function, 17, defined on U’ such that 1(0) = g

and

xT(m)(m + po) € F + p,
for all ¢ € U’. If U’ is chosen sufficiently small,

T 1is positive, bounded and unique.

Proof: Consider G:X x (O,®) -+ IR defined by
G(p,t) = <y, x (o + po) - pp>. Lemma 5.5 shows G to be
C1 in a neighborhood of (O,w). Note that G(0,w) =

<¢.xm(0 + po) - P> = <w.pw - po> = 0 and



113

Dt=w G(Po:t) = <¢oxw(o + PO)> = <W'Pw> = <‘l’opo> =1,
By the Implicit Function Theorem [23], there exists a
neighborhood U’ of O € X and a cl function r for
which 1(0) = ¢ and G(p,T(p)) = O. That is,
VX (o) (@ + Pg) = Pg> = 0.
As remarked in Lemma 5.4, this is equivalent to saying
x‘r(cp)(Cp + Py) - Py € F.
The uniqueness of T follows from the statement of the

Implicit Function Theorem. The other properties of T

follow from its smoothness near O. g

We are now able to define the Poincare Map in the

neighborhood U FNU’ where U’ is given in the

F
previous lemma. We define O:UF + F by

O(CQ) = xT(CD) (CP + po) - po‘

Then & 1is a C1 function on UF and &(0) = 0. Note
also that
D¢ (0) = Dcp=o xT(o)(w + py) + xT(o)(O + Pg) © Dcho T(p)
@€EF QEF
= D@:O x, (o + pg) + P, DcpeF 7(0)

@€F

T(w0) | + Py * Dyep T(0)

by Theorem 5.1. Because Dg&(0O):F -+ F and bo £ F we must

conclude that D T(0) = 0. Therefore, Dg(0) = T(w.O)lF.

@€F
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Under the assumption of nondegeneracy,

o (D&(0)) = o(T(w, O) IF) = o(T(w,0))\ {1}.

§3. Nondegenerate Periodic Orbits

In this section we apply the Poincar€ Map to the study
of the behavior of solutions near a nondegenerate periodic
orbit, O = Lj[pt]. As in the previous section, we shall
assume throu;hout that B < 0 and ¢ € X* is the unique
element spanning n(T*(w.O) - I) that satisfies

<¥.py> = 1.

We first extend to our class of FDE's the Poincard
criteria for the "stability" of . See Coppel [7] for
the analogous ODE result and Stokes [37] for the extension

to finite delay equations.

Definition 5.8. (i) A periodic orbit, O, is said

to be orbitally stable provided: for any ¢ > O there

exists an open neighborhood V of @ in X such that
if ¢ € v then
dist (x,(¢9),0) = max[lxt(w) - Pelie € [0,uw]} < ¢

for t > O.
(ii) A periodic orbit, @, 1is said to be orbitally

asymptotically stable provided it is stable and

dist (x, (9),0) + O

as t + « for any o©® €V (given in (i)).
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Lemma 5.9. Assume p(t) is a nonconstant
periodic solution to (5.1) with @ > r. Assume also that
the periodic orbit, @, is nondegenerate and S*(t)w €
p(aj) for all t in a neighborhood of w. If all
characteristic multipliers (other than 1) of (5.14) have
moduli strictly less than 1, then (@ 1is orbitally

asymptotically stable.

Proof: Note that O is compact. Thus, it suffices
to show there is an open neighborhood of Pg such that
if ¢ 1is taken from that neighborhood, xt(m) satisfies
the criteria for orbital asymptotic stability. Analogous
neighborhoods may then be constructed at a finite number

of pe € @ to construct the neighborhood V.

By Lemma 5.4, there exists an open neighborhood, U,
of Po in X such that if ¢ € U, then xt(¢) € F + pg,
for some t € (0,2w). Therefore, it suffices to find an
open neighborhood, B, of Po in F + Po such that
the elements of B all satisfy the criteria for orbital

asymptotic stability.

We choose U’ to be that neighborhood given in

Lemma 5.7 and U, = F N U’. Recall that for ¢ € U

e(p) = xT(m)(m + po) - P, where T is definedon U’ >U

and Dg(0) = T(w,O)IF- Note that 02(m) = ¢(e(p)) =

F



116

ﬁﬂw”m+%)-% where 1T1(2:9) = T(p) + T(&(0)) -

More generally,
Ok(fp) = xT(k?Cp) (CP + po) - po

where
T(kip) = 2 T(€ (9)).
i=0
It follows that Dék(o) = T(km,o)IF- Applying Theorem 4.6
to this w-periodic family we see that there exists v > O

and M > O such that

|7 (kw,0) [ | < MeTVEY,

Let Jj denote the smallest positive integer such that
Me YI¥ ¢ 1. By the differentiability of & at o0, we
may find a, perhaps smaller, neighborhood (also to be called

U)) and a c € (0,1 - Me-ij) such that
1 @) | € M + o) |o]

for ¢ € U,. We define & = Me IV 4 c.

= sup(7(j:p) |¢ € U’}. By Lemma 5.7, T

Now, let 0

o
may be assumed finite. The differentiability of x, (o)
near pg, implies the existence of a constant K (inde-
pendent of t for 0 < t < 7)) such that |[x (o + py) -
x.(Py) | < K|p| for ¢ € U,. Thus, if ¢ >0 is given

and ¢ 1is an element of

B = (v ¢ Fllol < £,
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then |[x (p + py) - Pl < e for 0t < 7. Since (for
all ¢ sufficiently small) B(é) is contained in UF'

we have that
j € €
&) cB(g - 5

and, therefore,

Xtrr (i) @ * Po) = Xe(Rg) [ < & - e
for 0 { t { 7y. More generally,

lx1:+'r(mj:t'p) (@ + Pg) - Pl <& - e

for o t< 1, m>O0 since £ € (0,1).

The orbital and orbital asymptotic stability of o
follow immediately since E € (0,1) and € > O was

arbitrary. O

The hypotheses of the previous lemma are by no
means minimal. First, the assumption that ® > r may
be removed since we may view p(t) as an ftgp-periodic
solution to (5.1), where {4 is a positive integer chosen
large enough so that 4w > r. It must then be assumed
that S*(t)w € 3(A;) for all t in a neighborhood of
lw. However, it is known [18] that S*(toN‘ € .O(A;)

implies S' (t)y € B(Aj) for all t > t,.

Since the characteristic multipliers of (5.14)

correspond to normal eigenvalues of T(w,0), the
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Spectral Mapping Theorem shows the assumption that
o(T(w,0)) \{(1} 1lies strictly within the unit circle
implies that o(T(4w,0)) \{1} = o(T(w0)) %\ (1} also
lies strictly within the unit circle. Since B £ 0, 1

is a normal eigenvalue for T (4w,0).

Finally, if (¢ is nondegenerate as an g-periodic

orbit, it is also nondegenerate as an Lw-periodic orbit.

k

In fact, if ¢ € N(T(Lw,0) - I) but is not an element

of N(T(w0) - I)%

= N(T(w,0) - I), then @ = (T(wO) - I)
satisfies [T¥1(w,0) +...+ T?(0,0) + T(w,0) + I]¥3 = o.
Thus, O € 0([T"-1(w,0) +ee.+ T(w,0) + I]k) and, by the
Spectral Mapping Theorem, there is some A € 0(T(w,0))

41 +...+ xz + A+ 1]k = 0. Therefore,

for which 0 = [\
0= [x“-l +...4 12 + A+ 1] and (since all roots

of this equation have moduli equal to 1) we conclude that
A = 1. This contradiction shows that dim 7{(T(4w,0) - I)k

= 1.

Combining these remarks, we have proved under the

ever-present assumption: B < O

Theorem 5.10. Assume p(t) is a nonconstant g~

periodic solution to (5.1) and (@ is nondegenerate.
* *
Assume also that S (t)y € .&(Ao) for some t > 0. 1If

all characteristic multipliers (other than 1) of (5.14)
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have moduli strictly less than 1, then (¢ is orbitally

asymptotically stable.

We next generalize a result of Hale [14] to the

present class of equations.

Lemma 5.11. If (@ is nondegenerate there exists

an open neighborhood Vv of (@ such that V \@® contains

no w-periodic solutions to (5.1).

Proof: As argued in Lemma 5.9, the compactness
of O implies it suffices to find a neighborhood of Po
that contains no yperiodic solutions other than the

elements of (.

Assume the opposite. Then there exists a sequence
of w-periodic solutions to (5.1) that approach Py’ yet
are not elements of (@. By Lemma 5.4 and the continuous
dependence of solutions on initial data, there exists a
sequence [m(m)};;l of elements of F that approach O

(m) (m)

and xw(m + po) = ¢ + Pg for each m > O.

Consider the function G:F + F defined by G(g) =
n'[xw(w + po) - (o + po)] where 1[I’ is the projection
of X onto F. Then, for m > 1, G(¢(m)) = 0. Note,
however, that G(0) = 0 that DG(O) = N'[T(w0) | - I] =

T(w.O)IF - I which is an isomorphism under the assumptions
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that @ is nondegenerate and B < 0. Thus, in a neighbor-
hood of O in F, G 1is an isomorphism and, therefore,

(m) =0 forall m

one-to-one. We must conclude that ¢
sufficiently large. This contradicts the fact that the
associated yperiodic solutions to (5.1) were assumed

not to be elements of O. 0
Along the same lines as the previous lemma, we have

%
Lemma 5.12. Let ¢ € X Dbe as above, and assume as

* %*
in Theorem 5.10 that S (t)y € ﬁ(Ao) for some t > 0. If
O 1is nondegenerate then for ¢ > O sufficiently small
there exists an open neighborhood W of (@& such that

W\O contains no w-periodic solutions with |w - | < .

Proof: As argued after Lemma 5.9, we may assume
* *
without losing generality that @ >r and S (t)y € 3(Ao)
for all t in a neighborhood of w®w. Thus, we may define

the Poincare Map on the neighborhood U_ given in §2.

F
That is, @&(p) = xT(w)(w + Pg) = Po Where T:U_ 4 (O, uw)
is C1 and satisfies T1(0) = w. By further restricting
UF' we may assume |T(p) - w| < € for all o € UF'

By arguments similar to those in the previous lemma,

it suffices to show that for no ¢ € Up is x_(9 + py) =
w

¢ + Po for some ® € (w - e, w + ¢). It follows from the

construction of T (see Lemma 5.7) and the uniqueness
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assertion of the Implicit Function Theorem that if

@ € U, and x&(m + py) = @ + p, for some w satisfying
|lw - @] < e, then = 7(p). Thus, periodic solutions
to (5.1) with periods near y correspond to fixed points

of ¢.

To show that ¢ = O 1is the only fixed point of ¢,
we define Gy:U, +» F by G,(¢) = @(p) - ¢. Clearly,
G,(0) = 0 and DG, (0) = T(w,O) IF - I, which is an
isomorphism since B < O and (@ is nondegenerate. The
Inverse Function Theorem shows G, to be an isomorphism

in a neighborhood of O. The result follows immediately.

Our final theorem is related to a result of Hale [14],
where an analogue was shown for the finite delay situation

by a different technique.

Theorem 5.13. For Yo ° O consider the system

(5.8)-(5.9) under the assumption that £(-,0) = £(-).

Let (5.1) have a nondegenerate periodic orbit, O,

whose period, ®w, is larger than r. Let | € X* be
as usual, and assume S*(t)w € ﬁ(A;) for all t in a
neighborhood of ®w. Then, there exists a neighborhood

V of (@ such that for all y sufficiently close to O,
(5.8)-(5.9) has a unique periodic orbit, oy' in v of

period w(y). The period, w(y), 1is Cl in y and
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w(0) = w. Furthermore, GY varies continuously in vy

and 00 = 0.

Proof: Define G:(0,® x (=Y5 Yy x F+ R Dby
G(t,¥,0) = <¥rx (@ + PorY) - Py>- Corollary 5.6 shows
G to be C1 in a neighborhood of (w,0,0). Note
that G(w,0,0) = <¢,xw(o + po.o) -~ Pp> =0 and
D,_,(t:0.0) = <¢,>’cw(o + pgy),0> = <§,p,> = 1. The Implicit
Function Theorem implies the existence of a neighborhood,
U, of (0,0) in (-Yb,yo) x F and a unique ct function
;(y,m) defined on U such that 7(0,0) = ¢ and
G(;(y,m),y,@) = 0 for all (y,p) € U. The uniqueness
assertion of the Implicit Function Theorem shows that
T(0,9) = T(¢) for |p| sufficiently small, where (o)

is defined in Lemma 5.7.

Since T is cY in U, we may define the ct
function H:U + F by
H(Y, ) = X_ (p + Prr¥Y) = P~ = @
T(YICD) 0 0
Then H(0,0) = x_ (P~/,0) - p~, =x (p,) - P, =0 and

’ = , 0 - -
D=0 H(O, o) D=0 [x;(o'co) (p + P5:0) = ¢ - Py

= Dcp_:o X () (® + py) = I = T(wO) lF - I.

Since B < O and (@ is nondegenerate, this is an

isomorphism. By the Implicit Function Theorem there exists
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a Yy; >0 anda Cl function ¢(y) € F defined for

Y] < v; satisfying ¢(0) =0 and H(v,@(Y)) = 0. We
Then, considering the definition

define w(y) = T(v,p(vy)).
of H,
xw(Y)(m(Y) + po.v) - oply) - Py = O.
Thus, o(y) + py defines a w(y)-periodic solution to
and ¢(y) are et in Y.

(5.8)=(5.9). Clearly w(y)
w(0) = w and @(0) = 0. By the continuous dependence

of xt(m,y) in (¢p.,y)., we see that OY = %J{xt(¢(y) + po,y)}

varies continuously in Yy and Ob = 0.

The fact that GY is the only periodic orbit of
(5.8) in Vv follows from the uniqueness assertion of

the Implicit Function Theorem and the form of H. O
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