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ABSTRACT

CONTRIBUTIONS TO THE THEORY OF FUNCTIONAL

DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

BY

Harlan West Stech

Let p: (—o,O] 4 (0,») be nondecreasing and integrable

on (-u»O]. Assume also that p(u + v)‘g p(u)p(v) for

all u,v g,o. Let r > 0.

Functional differential equations are discussed in

the context of the phase space X = (¢:(-a»0] 4 nf‘l

mI[_r'0] 18 continuous, ¢l(—¢,-r) is measurable and

T'IIcMu) Ip<u)du < .}.

The adjoint theory for linear autonomous equations is

considered from the point of view of adjoint semi-group

theory. The adjoint equation is derived and the space

decomposition at characteristic values is given in terms

of an extension of the classic bilinear form.known for

finite delay equations.
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General linear systems and their adjoints are

discussed in a manner similar to that for finite delay

equations. Let

B = ianc 6 Iilfo ecsp(s)ds < a}.

It is shown that the spectrum of the usual solution Operator

T(t,s), t > s consists entirely of normal eigenvalues

outside the circle of radius efi(s—t).

In the case of linear periodic systems, an extension

of the Floquet theory known for finite delay FDE's is made

to the space X. Under the assumption that B < 0. the

usual criterion (in the context of characteristic exponents)

for the stability of the zero solution is shown to be true.

Also, the Fredholm Alternative is proved for nonhomogeneous

systems. The projections associated with the space decomy

positions at characteristic multipliers are calculated in

terms of an adjoint equation and bilinear form.

The behavior of solutions near periodic solutions to

C1 nonlinear FDE's is considered. Conditions are given

under which the Poincare map can be defined about nondegenerate

periodic orbits. The Poincaré map is then used to discuss

the stability of the periodic orbit.
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CHAPTER I

PRELIMINARIES

§l. Introduction
 

In many biological and physical modeling problems the

rate of change of a system can not be assumed to depend

only upon the current state of the system. Rather, it

depends also upon the past states or "history" of the system.

The incorporation of past history into differential models

leads to a class of equations that are now referred to as

functional differential equations (FDE).

For example, the scalar equation

>2(t) = -a[x(t) + l]x(t - T)

where a,T > O. has been used by Hutchinson [19] to describe

the growth of a single species p0pulation with a self-

regulating mechanism that affects the birth rate after T

units of time. Note that the historical effect occurs in

the term "x(t - T)" and requires the assumption that all

historic effects on the rate of change "x(t)" of the

system be concentrated at T units of time previous to the

current time "t". AS a relaxation of this assumption, May

[27] has suggested that



x(t) = —a[x(t) + 1H"0 x(t + s)n(s)ds

"fl

is a more realistic model of that biological system. Here,

n is a positive weight function integrable on (-a,O).

The term

"f0 x(t + s)n(s)ds"

encorporates the past history into the system since as s

varies over (-a.O), the values of x on (-a,t) are used

in evaluating the integral.

Hans-Otto walther [39] has studied the similar model

§(t) = -a[x(t) + 11f° x(t + s)dn(s)

-r

where r > O and n is a real-valued, nondecreasing function

defined on [—r,O].

Volterra [38] proposed the system

N1(t) = [81 _ le2(t) - ff“ F1(s)N2(t + s)ds]N1(t)

11120:) [-e + y2N1(t) + f:- F2(s)N1(t + s)ds]N2 (t)

to study the interactions between predator and prey popula-

tions N1 and N2. respectively. The weight functions F1

and F are assumed to be integrable on (-aeo).
2



May [27] has considered a similar model

H(t) [r - cH(t - T) - OLP(t)]H(t)

P(t) [-b + BH(t)]P(t)

in describing (among other things) the wolf-moose relationship

on Isle Royale, Michigan.

The scalar equation

x(t) = «II-1 sin(x(t + s))p(s)ds

was investigated by Israelsson and Jehnsson [20] as a model

of autonomous plant oscillations. The weight function,- p,

was assumed again to be integrable on (-a,—l) and

"exponential" in form. See Klein [22] for further discussions.

For nonbiological examples, see Coleman and Mizel [ 6]

for models arising in the theory of mechanics and thermo-

dynamics of materials.

The models of Hutchinson, Walther and the wolf-moose

model of May are said to be of "finite delay" type since

the right hand Sides of these equations rely only on a

finite past history of the respective systems. The remaining

examples are functional differential equations with infinite

delay. Although these models can incorporate the entire past

history into determining the rate of change of the systems,

the "distant" past behavior has slight influence on the



equation since the weight functions involved are assumed

to be integrable on (-a,O). Such FDE's are said to have

a "fading memory". The finite delay situations are, of

course, special cases in which the history past a fixed

amount of time is completely "forgotten" and thus cannot

influence the behavior in the future.

Functional differential equations with finite delay

have received extensive study over the past half century.

It is an area that is currently undergoing a rapid develop-

ment. The monograph of Hale [11] serves as the best

exposition on the qualitative theory of finite delay FDE's.

In 1974, Hale [12] initiated the study of a class of

FDE's with infinite delays. The class includes as a prOper

subset all FDE's with finite delay and (with various

assumptions on the respective weight functions) each of the

infinite delay models mentioned above. In particular, FDE's

were considered in which weighted averages of "distant"

past effects were used in calculating the rate of change of

the system While more precise effects of the "not-so-distant"

past were allowed. This will be clarified in the next

section. However, as an example of such an equation we might

consider

' O

x(t) = —a[x(t) + 1][I x(t + s)dn(s)

-r

+ j‘r x(t + s)n(s)p(s)ds]



which generalizes the first three examples of this section.

Here, n is assumed on [-r,O] to be as in walther's

model and essentially bounded on (-o,-r), while p is

integrable on (-a,-r) and (in some sense) "exponential"

«Isln,
in form. (e.g., p(s) = e c,n > O.)

A paper of Naito [29] has investigated linear autonomous

equations of this type and generalized to this class some

of the results known for FDE's with finite delay.

In this thesis we have continued the study of this class

of functional differential equations with infinite delay.

Using the theory of finite delay equations as a guide,

topics have been chosen whose counterparts in the theory of

FDE's with finite delay have proved fundamental to that

theory. The bulk of our study concerns the qualitative be-

havior of linear systems. However, a nonlinear t0pic is

discussed in the final chapter.

In Chapter II we continue the study of autonomous linear

FDE's initiated by Hale [12] and Naito [29]. we are most

concerned with the adjoint theory and a function analytic

derivation of the adjoint to a given FDE. The study of the

adjoint prdblem makes heavy use of semi-group theory. The

chapter includes a complete description of the adjoint semi-

group, its infinitesimal generator and a discussion of the

associated adjoint space. The final section concerns the



calculation of the projections onto the eigenspaces associated

with roots of the characteristic equations. An expliCit des-

cription of these projections is important from an applications

point of view since, for example, such information is used

in the finite delay case in showing the existence of nonconstant

periodic solutions to Hutchinson's model. See Grafton [lo]

and Chow and Hale [ 5] fer related t0pics. In addition, we

are able to present a new explanation (in function analytic

terms) of the classic bilinear form‘known to the theory of

finite delay equations.

Chapter III considers general linear systems. After a

brief look at the existence, uniqueness and continuous

dependence properties of these equations, the solution

operator associated to such equations is discussed. Once

again the adjoint equation is derived by function analytic

techniques. Fortunately, many of the technical aspects of

this chapter may be proved in a manner similar to the

analogous results from the theory of FDE's with finite delay.

Where possible, proofs have been omitted and replaced with

references. The chapter ends with a discussion of the spectral

properties of the solution operator and the strengthening of

a result of Hale [12].



Chapter IV investigates the special case in which the

linear system of the previous chapter is assumed to be

periodic. The chapter starts with the definition and study

of periodic families of bounded linear Operators. These

families play a role analogous to that of semi-groups of

bounded linear operators associated with autonomous systems.

The section makes no reliance on the theory of FDE's and is

so presented to stress the fact that many of the general

properties of periodic FDE's are valid in a much larger

context. The chapter includes some of the first dividends

of our function analytic approach. In particular, we are

able to derive the Fredholm Alternative for forced periodic

systems. we also discuss the classic criterion for the

stability of linear periodic systems (in the context of

characteristic exponents) and calculate the projection

operators onto the invariant subspaces associated to the

characteristic multipliers.

The last chapter concerns a brief study of the behavior

near periodic solutions to smooth (Cl) nonlinear autonomous

equations. By imposing a technical assumption on the equa-

tions under study, we are able to define the Poincare Map

about periodic orbits. The standard criterion concerning

the stability of the periodic orbits is shown to generalize

to this class of FDE's.



There are many justifications for the work that is to

follow. In terms of modeling with FDE's, it is a first step

towards removing the assumption that only a finite past

history can influence the behavior of the system. In some

instances, the mathematical analysis of models is greatly

simplified if one includes the entire past history into the

model. AS was pointed out by May [27]. the stability of the

zero solutions of

S

R(t) dsa[x(t) + 1]]0 x(t + s)sec

-k

and

{<(t) a[x(t) + 1]IO x(t + s)seCS ds

"Q

for c > O relies on the location of the solutions, 2, of

the complex equations

afo se(z+c)S ds

-k

Z

-2 e-(z+c)k
+ a[k(z + c)-1-

Zoe-(z+c)k]

-a(z + c)

+ (z + c)-

and

z = GIG sew-HZ)S ds = -a(z + c)-2,

-0

respectively. The infinite delay case is decidedly the

friendlier Of the two.

From a mathematical standpoint there are other reasons

for such a study. Certainly, it can be viewed as a step



towards creating a qualitative theory for general integro-

differential equations. (In many situations proofs have

been supplied that lend themselves to immediate generaliza-

tion.) However, this work also sheds new light on the

theory of finite delay FDE's. We mention the results con-

cerning the classical bilinear forms (Chapter II, §8 and

Chapter IV, §3,4) as specific situations where finite delay

results become more meaningful when seen as special cases

of results true for infinite delay equations.

It should also be mentioned that the work of Levin

and Shea [24.25.26] also indicates the importance of the

topic under consideration. They have shown, for example,

that for a class of measures, A(t,s), satisfying a

periodicity assumption in t, the asymptotic behavior of

bounded solutions to

R(t) = [0 x(t + s)dA(t,s)

is describable in terms of the solutions Of the "limit

equation"

x(t) = [0 x(t + s)dA(t.s).

‘.

Linear periodic systems of this type are discussed in Chapter

IV.
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§2. Notation

An effort has been made to use the basic notations

from the theory of FDE's with finite delays.

If n is a positive integer, EU} will denote

Euclidean n-space. Elements of 151 'will be viewed as

column vectors and I-I will denote the Euclidean norm.

If g 6 ICE then gT will denote the same vector viewed

as a row vector in the usual manner. If n is a row

vector, then n5 will denote the usual inner product be-

tween n and 5.

Let p:(-a,O] 4 (O,m) be continuous, nondecreasing

and satisfy

(1.1) p(u+v)Sp(u)p(v) for u,v_<0

(1.2) f0 p(u)du < a.

For r >.O we define X = [m:(-o,0] 4 nf‘Im is continuous

on [—r,O], measurable on (~o,-r) and

.IPr I‘M“) IP(u)du < a}.

We endow the set X with the norm

ImI = SUP Im(u)l + ['r Im(u)lp(u)du.
-r,0] —¢

The use of I-l to also denote the norm on X should cause

no confusion. With this norm X becomes a Banach Space.
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T
*

The dual space, X , is given by {w:(-a,0] 4 IN} IT is

essentially bounded and measurable on (-o,-r), of bounded

variation on [-r,O], left continuous on [-r,0), and

satisfies ¢(O) = O}. For I 6 X* we define ¢(u) = 0

if u > 0. If ¢:(—o,O] 4 anT is essentially bounded

and measurable on (-a,-r), of bounded variation on

[—r,O] and left continuous on f-r,O] we define the

0 *

element at E X by

0 o, u=O

1)(u)= {

Mu). u<0-

*

The duality pairing between I 6 X and m e X will be

denoted by <¢,m> and is given by

(1.3) <I.m> = f'r i(u)m(u)p(u)du + ]0 [d¢(u)]¢(u).
-a —r

The integral on [-r,O] is of Lebesgue-Stieltjes type

(see [17] or [34]). we will write

Ib'=i and i"=i
a [a.b) a [a.b]°

'I:

The dual norm on X associated with (1.3) is given by

III =maxiess supI¢(u)I. var IwuHI.
u<-r [-r,0]

The symbol I will denote the n x n identity matrix

or the identity operator on a Banach space. We shall make

specific comments whenever confusion might arise.
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*

§3. The ~ Representation of II 6 X

In the sections to follow, we shall see that it is

convenient to write the pairing (1.3) as

(1.4) , (w.cp>= jo [d'iT(u)]cp(U)

where T is defined by

(Mu), -rSugO

Tm) = .

¢(-r) - f-r I(S)P(8)ds. u < -r.

u

For example, if I is the n x n identity matrix and ”i

denotes its ith row we define Vi by

vim) =

O, u<-r.

Then

u-o -rgu<0

vgm) ={ 1

O, u < -r or u=O

and

no [“1' u < 0
Vi (11) =

O, u = 0.

We have <v2.cp> = -q3i(O), the ith co—ordinate of -cp(O), for

l _<_ i __<_ n. If we define the n x n matrix valued function

*

by 5 = row(vg,vg,...,vg) then

(1.5) <5*.cp> = -cp(0)-

5

*
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The following may be shown by elementary methods.

 

. *

Lemma 1.1. (i) If Tl'Iz 6 X and c1, c2 are

N

scalars then [c1]:1 + czwz] = c1¢1«+ czWé.

*

(ii) If {hm} c:X converges to W 6 X*, then

~

Tm 4 T' uniformly on compact subsets 0f (‘fio0]~

Finally, if m E X has a continuous extension to

(-a,a) for some a > O we may define the element wt 6 X

for Ostga by cpt(U)=cp(t+U), ugO.



CHAPTER II

LINEAR AUTONOMOUS SYSTEMS

§1. The Solution Semi-group

Let L:X 4 If] be bounded and linear. we can

represent L in terms of an n x n matrix valued

*

function, n, whose rows are elements Of X . That is,

LE'p = <n.c'p> fr n(s)'qs(s)ds + f0 [dn(s)]?p(s)
'1'

f0 [6175(5) Hus)

we consider the system

(2.1) R(t) Lx t >0ti

(2.2) xO cpEX.

As shown in Naito [29], we may associate with (2.1)-(2.2)

a strongly continuous semi-group of bounded linear operators,

T(t), t.2 0, defined on X by T(t)m = xt(m), where

x(¢)(-) denotes the solution to (2.1)-(2.2). Define

S

B = ianc E HKIIO ec p(s)ds < a}.

14
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Theorem 2.1 [29]. The infinitesimal generator, A,

of T(t), t.2 O is given by Am = E ‘with the domain

.B(A) = [cp e xlcb e x and {9(0) = ch}.

Furthermore, the point spectrum of A is contained in the

half plane {x e clRe xlg B}. Any 1 with real part larger

than B is in the point spectrum of A if it satisfies

(2.3) det[x1 - L(eA' 1)] = 0.

Otherwise, A is in the resolvent set Of A.

It follows from Theorem 16.7.2 of Hille and Phillips

[18] that H # O is in the point spectrum of T(t) for

t >»O if u = ekt where A is in the point spectrum of

A. Define

(2.4) y(t) = sup Bl§_:_EL, t > o.
s<-r P (S

The following theorem may be found in Hale [12].

Theorem 2.2. Let t > O. For any 6 > 0 there is
 

only a finite number of points u = u(t) in the spectrum

of T(t) with modulus > y(t) + 6. Each such u is in the

point spectrum of T(t) and must be of the form u.= ekt

for some A satisfying (2.3). Also, the generalized

eigenspace of x is finite dimensional and there is an

integer, k, such that
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k

(2.5) x = 71(A - u) e m. - AI)k

'where 8. fl denote the range and null spaces, respectively.

Define MA on X by

= Ms-u)
(2.6) [wa](s) I: e ¢(u)du

= f0 MIS.U:).)cp(u)p(u)du
-0

for s 30, where

O. u < 3

(2‘7) MISAJUM =

- leA(s 11) Pm) I, sSugO 

From Naito [29] we have that MA is a bounded linear

operator from X into X and RAIA) E [AI - A].1 is

defined for all A in the resolvent set of A by

e‘51’1(>.){e(0) + 1.04er + [chp] (s)(2-8) [RA(AIO](S)

for m 6 X, s g_o. Here, A(A) is the n x n matrix

defined by

(2.9) A0.) = u - me)" 1),

with I the n x n identity matrix.

* *

§2. Calculation of IHA.) and A .

In this section we turn our attention towards the

9:

A , Of the infinitesimal

1:20.

calculation of the adjoint,

generator A associated with the semi-group T(t),
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'k

A representation of A is essential to our study of the

adjoint equation and semi—group.

By Phillips [31], RA(A*) = RA(A)* whenever I is in

the resolvent set of A. It follows easily that RAIA)*

maps XI onto fi%A*). Thus, the prOblem of characterizing

fi(A*) is equivalent to that of determining the range of

*

R1(A) . For this reason, we first calculate the adjoint of

[xi -.A]'1.

For any I 6 X* and m E X, it follows from (2.8)

that

<w.e"'b> + <).Mxe>

<w.e"'>b + <M;Iocp>

(2.10) ($.RX(A)cp>

where M: is the adjoint of M

(2.11) b

k,

a‘lmtem) + L(M)‘(cp))} = a'l(>.)(e(o) + (“MW”)

{10.) i-<5* . cp> + @1714»)

*

and 6 is defined by (1.5). Now (2.10) and (2.11) imply

A
(2.12) RX(A)*¢ = <(ne '> [10.) {14:11 - 5*} + MAI"

*

Thus. we consider the calculation Of MA'

Lemma 2.3. If I 6 X*, then
 

*

(i) wa

bounded variation, left continuous derivative,

is absolutely continuous on [-r,O) with
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*

(ii) PMXI

(---, -r) with

is locally absolutely continuous on

Eegy-gg.<p<s>[m;I1<s>>

essentially bounded on (-a,-r), and

(iii) p(—r')[M;w](-r‘) = [M:¢](-r).

*

Proof: For I 6 X and m e X

<¢.Mxop> f: (:(s)[Mxop](s)p(s)ds + f: [d¢(8)][M)\cp] (s)

I + I
l 2'

Applying (2.6). (2.7) and Fubini's Theorem [34] to 11'

I1 = f-r ¢(S)p(s)fo M(s.u;A)m(u)p(u)duds

= f0 [f‘r i<s)p(s)M(s.u;x)ds]e(u)p(u)du

= III [In w(3)ex(S-u) p(s)ds]m(u)du

o

+ I_r []:: ((s)ex(s‘“’ p(s)ds]¢(u)du.

To the integral 12 we apply integration by parts [17].

12 ¢(s)f: eO(S-u) T(uIduler

- IO W(s)[Afo ex(S-u) ¢(u)du - m(s)]ds

-r S

-¢(-r)J‘O e’J-r-u) cp(u)du + I0 tit(U)cp(UIdI-1

-r -r

- AID ¢(s)fo eX(S-u) ¢(u)duds.

-r s



 

Con

Sta

hol
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Integration of the last integral by parts yields

I 2 To [T(u) - i(-r)e*“r'“’]¢(u)du
-r

_ x[fs ii:(v)e.)‘V dv . [0 e-)‘u cp(u)duI8r

—r s

+ ffrffr ¢(V)exv dv - en)‘u ¢(u)du]

[0 [t(u) - ¢(-r)ex(’r'u) — if“ ¢(v)eA(V'u) dv]¢(u)du.
-r

—r

Combining the expressions for I1 and 12, we obtain

(2.13) <M;¢.e> = j:: [IE. ¢(s)ex(S-u) g§§%-ds]¢(u)p(u)du

+ [0 [i(u) - ¢(-r)e“‘r'“’
-r

_ x‘fu ¢(S)eX(s-U) as

-r

+ I_r ¢(s)p(s)ex(S-u) ds]¢(u)du.

Statement (i) follows from (2.13) since this equation must

hold for every m E X. As for (ii), (2.13) shows

A(s-u)
[Mitt] (u) = b—(lu—f If“ ¢(s)e p(s)ds

for u < -r. It is an easy computation to show that

5f%7-§%-[p(u)[M:i](ux1= )(u> - XIM;1(U>

for a.e. u < -r. Thus, (ii) follows immediately. Statement

(iii) follows upon inspection of (2.13) also. r)
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Corollary 2.4. If I e X*; then

(i) RAIA)*I is absolutely continuous on [-r,O)

with bounded variation, left continuous derivative,

(ii) pr(A)*¢ is locally absolutely continuous on

(-a,-r) with

flags: [P(s)[Rx(A)*¢](s)]

essentially bounded on (-o,—r), and

(iii) p(-r‘)[Rx(A)*(](-r') = [Rx<A>*i]<-r)-

Proof: All three statements follow from (2.12), the

*

corresponding statements of Lemma 2.3 and the form of 5

given by (1.5). CI

*

Theorem 2.5. Let A be as in §1. The adjoint, A ,

of A is given by

r

O, s = O

(2.14) (AW) (s) = I -i(s) - ¢(O—)n(s), —rg s <0

 
C ETIETEE' [p(s)1i((s)] _ (HO-HMS). s < -r

'with 3%A*) consisting of exactly those I 6 X* satisfying

r (i) I is absolutely continuous on [-r,O) with

bounded variation, left continuous derivative,

(2.15) (ii) p¢ is locally absolutely continuous on (-o,-r)

with p-l(o$) essentially bounded on (-o.-r).

and

 
L(iii) P(-r-)W(-r-) = T(-r).
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I E fi(A*), then I = RX(A)*E for some

*

I 6 X . From Corollary 2.4 we see that I must satisfy

On the other hand, if N satisfies (2.15) and

cp E .8(A). then for any k > r

(WIACP> = I.

e ka

i(u)p(u)e(u)du + [0 [d¢(u)]¢(u)

-r

¢(u)p(u)é(u)du + I-: ¢(u)p(u)$(u)du

+ [0 )(u)O(U)du - TIC-ITIOI
-r

since I has a jump at u = 0. Integrating by parts, one

Obtains

ka IIU)P(u)O(u)du + ¢(-r')p(-r')¢(_r)

- ((-k)p(-k)e(-k) - (”I (i(u)b(u))e(u)au

+ i(o+)e(0) - i(-r)e(-r) - (0 [di(u)]e(u)
-r

- )(0')<n.e>

j’k ¢(u)P(UIOIU)du - )(-k)p(-k)e(-k)

_ f’: (¢(u)b(u))e(u)du - (0 [di(u)]w(u>
-r

— <¢(o')n.e>

using the properties (2.15) of W- By elementary arguments

it follows that we may let k 4 -¢ in (2.16) to obtain
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(2.17) <¢.Ae> = - fr [(i(u)'p(u)) + ((0')n(u)p(u)]e(u)du

- 1° [d(i(u) + ((0')n(u))]e(u)
—r

Since (2.17) holds for every cp € .8(A), we conclude that

I E fi(A*) and A*¢ is given as in (2.14). [3

§3. The Adjoint Semi—group - General Theory

Before we continue, we briefly compile some relevant

facts from the theory of function analytic semi—groups.

As general references, we mention Phillips [31] and Hille

and Phillips [18].

If T(t), t'2 O is a strongly continuous semi-group

of bounded linear Operators on a Banach space E. then

its infinitesimal generator, 4, is closed and densely

defined. However, the adjoint 4* of a need not be

densely defined. In general, .0(«*) may be characterized

* .-

as [I e X Ilim t 1<T*(t)(: - ¢,m> exists for all m E E}.

t40+ *

The limit is given by (a va>-

*

Although T (t). t'2 0 defines a semi-group of bounded

* . . .

linear operators on E 1t 13. in general. not strongly

*

continuous in t on all of E . In fact, it is known that

 

* . * . *

3(4 I is the largest subspace of E on which T (t), t _>_ O

is strongly continuous.
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*

Definition 2.6. The space .DM ) is called the
 

adjoint space associated to the semi—group T(t), t.2g0
 

and will be denoted by 13*.

*

If we define T+(t) = T (t)] +. then T+(t). t 2 o

E

is a strongly continuous semi-group of bounded linear

operators on E+. The infinitesimal generator 4+

associated with T+(t), t.2 O is closed and densely defined

*

in E+. In fact, 4+ = a I where

Ma”)

em”) = Ii) 6 19(«*)Ia*ir e E+}.

§4. Calculation of X+

We now give characterizations of .B(A*) and X+

derived from the semi-group associated with (2.1)-(2.2).

Note that jNA*), as described in Theorem 2.5 is independent

of the Operator L in (2.1). Thus, it suffices to consider

the trivial FDE x(t) = O. The associated semi-group will

be denoted by S(t) and is given by

T(t + u), u < -t

(2.18) [S(t)(cp)](U) = {

cp(0) , -t g u g o.

The adjoint 8*(t) is easily calculated. In fact, if

t>0,4(eX1«r and sex. then

<w.5(t)cp> (0 [dT(u)][S(t)e](u)

= J": [dT(U)]cp(t + u) + (1+ (dhuncpm)
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(‘0 [dT(s - t) ]cp(s) + [T(O) - T(-t+)]o(o)

I“ [d{T_t]°(s)]o(s) + [tn-t") - T(-t+)].p(o).

Thus

f—;—--’ O, u = O

(2.19) [s (t)w](u) {:

T(u - t) + ITI—t+) - T(—t)]1. u < o.

This is also true when t = O. For u < -r, (2.19) implies

(2-20) [8*(t)I](u) = RAB—(HQ ““ " t"

If we denote the associated infinitesimal generator as A0.

then A* follows from (2.14) upon setting n = o.

 

0

Theorem 2.7. Let AO be the infinitesimal generator

*

associated with S(t): t.2 O and A its adjoint. Let
0

A be as in Theorem 2.5. Then

, * * * . _1

(1) MA ) = MAO) = II) e x I 11:333. t <S(t)¢ - I...»

exists for all m 6 X). X+ is the largest

subspace of X* on which 8*(t) is strongly

continuous.

(ii) If t e x*, then i e x+ if and only if W

is absolutely continuous on [-r,O) and the

map associating t 6 [0,.) to the restriction

1
p_t¢_t to (-a,-r) is continuous asof p-

a function from [O,«) into L°(-a,-r).
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ggggf: Only (ii) requires further argument. The

characterization of I on [—r,0) may be found in the

finite delay case in Henry [16] or derived from Theorem

1.4.9 of Butzer and Berens [(4]. The characterization of

I on (-a,—r) is simply a restatement of the later portion

of (i) taking (2.20) into account. I]

'k

We remark at this point that if II' E .B(A ) then, as

indicated in §3,

. -1 * *
llm+ t (S (t)W - w.¢> = (AO¢.O>-

t4O

Note also that if I E X+, the norm of I is given by

IWI = maXIess supITIu)I. [0 II(u)Idu + ITIO')|}.

u<-r -r

While X+ does not depend on L, it does vary with p.

The following examples illustrate the dependence.

Example 2.8. Let k >|0 and p(u) = eku. If

w 6 3(A*), the requirement that p-1(O¢) 'be essentially

bounded on (-a,-r) becomes that T + kw be essentially

bounded on (-o,-r). Thus T is essentially bounded on

(-o,-r) and elementary arguments show X+ = {I 6 X*Iw is

uniformly continuous on (-a,-r) and absolutely continuous

on [-r,O). The same result is true if p-lp is essentially

bounded.
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2

Example 2.9. Let k >.O and p(u) = e.ku . If
 

I) 6 .0(A*), then T(u) = 2ku¢(u) must be essentially

bounded on (-a,—r). Since fi(A*) clearly contains all

continuously differentiable functions with compact support,

X+ contains [w €,X*I¢ is absolutely continuous on

[—r,O), uniformly continuous on (-u,-r) and W(u) 4 O

as u 4 —¢}. In fact, XI is precisely equal to this set.

To see this, we define

l d

“(11) = P ('u) a"; (P (u) I”(11) )

for u < -r and I e fi(A*). Thus u is essentially

bounded on (-a,—r). Since

__ 1 u

Wu) — W I“: P(5)u(5)ds

for u < -r, it follows that

II(u)I g 03%;? [u p(s)ds) ' constant

= ([0 e-k(2u+s)S ds) - constant.

-0

which tends to zero as u 4 -a. The same is true if

1

(2.21) W I: p(s + u)ds -. o

as u '+ -o.

§5. The Second Adjointhpace - General Theopy

Let T(t). t.2 0 be the strongly continuous semi-group

on E discussed in §3. If T+(t), t.2 O is the strongly

continuous semi-group defined on E+, then its adjoint space
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will be a subspace of (E+)* and will be denoted by E++.

Although our representation of X+ is not exact enough

to give a precise representation of (X+)* we can Show

that in some cases "X = X++". To make this statement more

precise we must introduce a new topology on X.

Definition 2.10 [18]. For cp e E define

+

ImI"= SUPII<w.o>ll¢ e E . ITI g 1}.

By Theorem 14.2.1, Hille and Phillips [18], l-l’

is a norm on E equivalent to I-[ if E+ is total.

Definition 2.11 [18]. The (+)~weak tOpology on E

is defined by a neighborhood basis of the form

N(cpo7¢1.....¢m7€) = [C0 6 E‘I<¢kl¢ " Cpo>l < e

for k = l,...,m}

where [wl,...,wm} is any finite subset of E+ and e

is an arbitrary positive number.

A sequence {mi} c:E converges to m 6 E in the

(+)-weak topology if and only if <¢,m - mi) 4 0 as i 4 a

for every I E E+.

It is well known that there is a natural imbedding Of

. H H . . .
E into E and that T (t) defines a contlnuous exten31on

** . + *

of T(t) from E to E . Since E c E 'we have

* **

(E+) 3 E and therefore E (by the natural injection)
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*

+) . By "E = E++" it

will be meant that the natural imbedding of E into (E+)*

may be viewed as a subset Of (E

is an isometric isomorphism of E onto E++. It is known

that E = E++ whenever E is reflexive. More generally,

Theorem 2.12 [18]. Let the norm Of E be given by

|-|’. Then E = E++ if and only if Rx(A) is (+)-weakly

 

compact. That is, RA(A) takes bounded subsets of E

into (+)aweakly compact subsets of E.

This section considers the prOblem of determining when

X = X++ for our function spaces. For reflexive spaces of

initial functions this equality is always valid. The

arguments of the following theorem show also that the

equality holds in those initial function spaces similar to

X in which the term

f‘r lm(u)lp(u)du
-.

in the expression for [ml is replaced by

[I-r IquIIp PIuIduil/p

with p > 1.

Theorem 2.13. Let X be given the norm I-I’. If

condition (2.21) holds, then x = xTT.
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Proof: We shall apply Theorem 2.12.

Let A be an element of the resolvent set of A.

From (2.8), RA(A) is a one—dimensional perturbation of

M defined by (2.6). Thus, it suffices to Show that M

A

is (+)4weakly compact. Following Theorem 2.9.6 of Hille

A

and Phillips [18], we need only show that for every bounded

sequence {mi} c:X the set {Mxmi} has a subsequence

that converges (+)4weakly to some element of X. To this

end, we assume k > O and that [mil g.k for i_2 1.

Let N > o and C([-N,O],nfh denote the Banach

space of continuous, ngi-valued functions on [-N,O] with

the supremum norm. It is well known that the mapping

A? to [~N,0]

is a compact map from X into C([-N,O],DUU.. Thus, by

associating m e X to the restriction of M

a standard diagonalization argument. [Mx¢i} has a sub-

sequence “j = M - j = 1,2,... that converges uniformly

kmij'

on compact subsets of (-a.O] to a continuous function, u-

Claim. ”, 6 X.

Proof of claim: Assume N > r. Then
 

I‘r Iu(s)lp(s)ds + sup Iu(s)I
-N [-r,O]

S. r In (S) - u(s)IP(s)ds + SUP Iu (s) - u(s)l

J:N 3 [-r,O] J

-r
+ In (s) P(S)ds + sup Iu.(s) l + M ..I_N 3 I [no] 3 I s I (.le
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for all j sufficiently large (uj 4 u uniformly on

'k and N > r
  

[-N,0] as j4 an). Since lchpij g HMk

was arbitrary we see that [u] < a. The claim is verified.

Finally, to show “j 4 u (+)-weak1y in X, 'we choose

I 6 X+, N > r and e > 0. Then

I<I.uj — u>I.s I'N lI(s)|Iuj<s) - u<s)lp(s)ds

+ I" II(s)IIuj(s) - u(s)Ip(s)ds
-N

+ Sup lu.(S) ‘ “(S)l . IwI

[-r.0] 3

g_sup IIun I- [Ital + Iul]
ung

+ I‘; I(s)Inj(s) - p(SIIP(SIds

+ sup ILL-(S) - uISII ' I‘I'I

i-r.0] 3

By Example 2.9, condition (2.21) implies I¢(u)| 4 0 as

u 4 -c. Since Iujl g “MxH-k, the first term may be

made arbitrarily small (for all j) by choosing N large

enough. The last two terms tend to O as j 4 c since

“j 4 u uniformly on compact subsets of (—a,0]. (3

Example 2.14. There are situations in which the space
 

of initial functions is not reflexive in the semi—group

sense. Consider the special case when n = l, r = % and

p(u) = a“. By Theorem 2.12 it suffices to Show that

RA(A) is not (+)~weakly compact. Without loss of generality
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we may assume that A = O is in the resolvent set of A.

The argument of the previous theorem shows that we need

only show that MO is not (+)aweakly compact. To this end,

define

em, u < -m

cpm(u) =

0 , —m‘g ulg O

for m = l,2,°". Then [mm] = 1 for all m and

—(m + u)em, u < -m

[MocpmHnI =

0, -m g_u 3.0.

Claim. 0 is the only possible (+)4weak limit

point Of [Mbmmi-

Proof of claim: Let H be a (+)-weak limit point of
 

{Mbmmi and N > 1 be arbitrary. Assume {ui} c:{Mogm]

and “i 4 u (+)4weakly. Then for any I E XI ‘with support

in [-N,O], <w,ui - u) = <w.-u> for all i >-N. Because

(I’ui - u) 4 O (by hypothesis) as i 4 c 'we must conclude

that (I'H> = 0. It follows easily that H = O on [-N,O].

Since N > 1 was arbitrary, the claim is verified.

Finally, we note that O is not a (+)4weak limit

1 6 X+ ‘we havep01nt of {Mogm} since for I

<¢.Mbmm> firm(m+lngmudu

".

= -[0 seS ds > O.
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§7. Representation of T+(t)

In this section we seek a representation of the

adjoint semi-group. This result will be reproved (by more

complicated means) in the context of linear non-autonomous

systems. However, the theory Of semi-groups affords us

a more direct proof in the autonomous case.

Our calculations become less tedious if the ~

representation in X+ is used. Thus, as preparation, we

phrase some of the facts known about the adjoint semi-

group in terms of that representation.

*

Lemma 2.15. Assume I) 6 .D(A ). Then

* d N .. N

(i) [A II](u) = - 313' [$01)] - IHO )n(u)

for u < 0. If also I) E .O(A+), then

(ii) é%-(T+(t)w) exists for t.2 0 and

d/d—Tg d +

[at (T (t)I)] ='5; [T (tIII.

Proof: For -r g_u < O, (i) follows from (2.14).

If u < -r, (2.14) gives

[A*I](u) = 1 d Ip(u)I(u)] - I(o‘)n(u).
- P(u) 53

Thus, using (2.14) and (2.15),
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1

9(3)

 

IA*I](u) IA*w](-r) - I;r (- gE-[p(s)I(s)]

- ¢(0-)n(s)}P(s)ds

= —I(-r) - I(o')n(-r) + I;r (p(s)I(s))ds

+ Inch];r n(s)p(s)ds

= -I(-r) + p(-r)w(-r) - p(u)I(u) - w(o‘)fi(u)

= -p(u)¢(u) - MOI-INN)

- §%-[TTu)] - I(0-)h(uI-

As for (ii), the existence of

é%-T+(t)w = lim+ h‘1[T+(t + h)¢ - T+(t)¢]

h4O

for I e fi(A+) may be found in Hille and Phillips [18]

and is a consequence of the general theory of strongly

continuous semi-groups. In fact,

(2.22) g%-T+(t)¢ = A+T+(t)¢ = T+(t)A+¢

for t'z 0. Finally, Lemma 1.1 implies that for t.2 O

 

and u g_o,

d N /—+_\._.» W

a;~[T*(t)II(u) = 11ml (T (t + h)i](:) - [T (t)II(u)

h4O

N

lim+ [h'1(T+(t + h)¢ - T+(t)I)](u)

h4O
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[11in+ h'1(T+(t + h)( - T+(t)III) ] (u)

40

m

[gt T+(t)I](u). (3

*

For I 6 X , we consider the prOblem

(2.23) y(t) + It y(u)fi(u - t)du = T(-t). t > o
0

(2.24) y(0) = ((0').

As shown in the finite delay case, (2.23)-(2.24) has a unique

solution, y, defined for t.2 O, that is of bounded

variation on compact subsets of [0,a). These solutions

vary continuously with changes in the initial data in the

sense that if hm 4 I in XI, then the corresponding

solutions, ym, of (2.23)-(2.24) with "initial data" wm

converge to the solution of (2.23)-(2.24) uniformly on compact

subsets of [0,o). See Hale [11].

we now state the principal result of this section.

The argument follows closely that of Burns and Herdman.[ 3]

in their study of a semi-group associated with a linear

integro-differential equation in a different function space

setting.

Theorem 2.16. For I E X+, T+(t)¢ is defined for

t‘2 O by

W

(2.25) [T+(t)¢](s) = T(s - t) - It y(u)'fi(u + s - t)du

O

for s < 0, where
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(2.26) y(t) = [T+(t)I](o"). t 2 0

satisfies the adjoint equation

(2.27) y(t) = T(-t) - It y(u)?{(u — t)du
0

for t > 0 and

(2.28) y(0) = ((0') .

Proof: By Lemma 1.1 and the continuous dependence Of
 

solutions to (2.27)-(2.28) on initial data, it suffices to

show (2.25)-(2.28) for I e .0((A+)2), which is dense in

X+ by Butzer and Berens [(4]. The map associating t.2 O

to T+(t)¢ is differentiable with Lipschitz continuous

derivative.

For 5 < O, t.2 O and ulg 0 define G(u) =

/:*\./

[T (u)¢](u + s - t). By Lemmas 2.15 and 1.1, G is

differentiable and, in fact,

a; G(u) = [3'5 (T (11) VIII“ + S “ t) + “(7 [T (u)¢](v) Iv=u+s+t

/_..—4-“\\/
d q/\_./

= [A+T+(u)¢](u + s - t) + a;’LT+(u)W](V)IV=u+S_t

by Lemma 2.15 and (2.22). Thus

d
..__ G(u) = — 3g;- [T+(U)W](V)I

du v=u+s—t

— [T+(u)I](o')?i(u + s - t)

d -";\/ ~

+ a; [T (U)¢](V) lV=u+S-t = -Y(u)n(u + S _ t)
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where y is given by (2.26). Integrating over [0,t],

G(t) - G(O) = -ft y(u)fi(u + s — t)du.

0

Therefore, for s < 0,

K;\/ N t N

[T (t)¢](s) - y(s — t) = -f y(u)n(u + s - t)du.

0

Equation (2.28) follows from (2.27) by letting s 4 0 . D

§8. The Adjoint Equation and Bilinear Form
 

In this section we will study a "differential" form Of

the adjoint equation and show that for a special class of

I 6 X+ the solution of the adjoint equation actually solves

a delay differential equation whose form is quite similar

to (2.1). For this class of y the duality pairing <w,m>

will be seen to reduce to the classic bilinear form that

has played such a prominent role in the theory Of FDE's with

finite delay, see Hale [11].

Lemma 2.17. If I e x+, the solution to (2.27)-(2.28)

is locally absolutely continuous and solves

(2.29) y(t) = [0 y(t + u)dfi(u) - T(—t)

-t

for t > O with the initial value, y(O), given by (2.28).

Proof: If w e x+, Theorem 2.7 implies that T is

locally absolutely continuous on (-c,O). The prOblem (2.28)-

(2.29). viewed as a finite delay system of Caratheodory type,
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has a unique continuous solution on [0,c) which is

locally absolutely continuous on (O,c). Integration by

parts in (2.29) shows y to solve

T(t) -Y(0)n(-t) - I0 9(t + s)?i(s)ds + 5%; (T(-t))
-t

g% [-I?t y(t + s)fi(s)ds + T(-t)]

for t > 0. Therefore, for t > O

y(t) = -[0 y(t + s)fi(s)ds + T(-t) + constant.

-t

Letting t 4 0+ and using (2.28) we see that the constant

is zero. Equation (2.27) is seen to be satisfied upon setting

u = t + s in the above integral. Thus, the solution to

(2.28)-(2.29) is the unique solution to the adjoint equations

(2.27)-(2.28). D

Consider the prOblem

(2.30) 2(t) = f0 z(t + u)d'fi(u)

for t > O with initial condition given by

(2.31) 20 = a

where OT 6 X. Note that if I 6 X+ then (loosely speaking)

T(—t) 4 O as t 4 n. Thus (2.30) is the "limit equation"

associated with (2.29), see Levin and Shea [24,25,26].
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Theorem 2.18. If 2 solves (2.30)-(2.31), then
 

there is a I 6 X+ for which 2 solves (2.28)-(2.29).

Proof: Clearly, (2.30)—(2.31) has a solution since

(2.1)-(2.2) enjoys this property. From (2.30),

[z(t) = I0 z(t + u)dfi'(u) + I’t- z(t + u)d?{(u)
-t a

for t > 0. Define, for s < 0

(MS) = I5 z(u — s)d’fi(u) IO o(u)d?{(u + 3).

Claim. w in integrable on [-r,O] and p-lw is

essentially bounded on (-o,-r).

Proof of claim: Clearly, w is measurable. For

-r‘g s < 0,

 

Iw(s)I g_I° Id(u)I-Idfi(u + s)I

_<_ I-r-S ION“) IP(u + 8) In(u + 8) Idu

+ I0 Ia(u) I Id'fi(u + s) I

-r—s

gI" Ia(u)lp(u)du - p(s) - IILII +max ] |a(u)|~|ILII
-Q

-rl

T
g_constant - Ia I

using (1.1) and (1.2). For 5 < -r,

p'1(s)|m(s)| = p'1(s)If° o(u)p(u + s)n(u + s)dsI

-1 0
_<. P (SII IOLIIJ) IP(u)p(s) In(u + s) Ids

-.

gIO Ia(u)lp(u>du- ML“-

The claim has been verified.
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*

Thus, we can define an element I E X by

(2.32) T(s) = -]o a(u)d'fi'(u + s)

for s < 0 and

(2.33) ¢(0-) = 0(0).

The function 2 is easily seen to solve (2.28)-(2.29) with

I so defined.

To see that I E X+, we use Theorem 2.7. The fact

that I is absolutely continuous on [-r,O) was shown by

the claim. Arguing in a manner similar to the claim one

can show that for t < T and s < -r

lp’1(s)p(t - s)((t - s) — p’1(s)p(r - s)I(T - s)I

“g I-T Ia(t + u) - a(T + u)Ip(u)du - ”L“

+max Ia(u)l - It - TI ~ ”LII-9(1).

[-r,O]

The conditions of Theorem 2.7 follow immediately. D

We remark that the proof of the previous theorem shows

that the map that associates a to the element it defines

via equations (2.32)-(2.33) is continuous when viewed as a

function from X into X*. In the future, we shall say

"a defines I" or "I is defined by a" if I is

given in terms of a by way of equations (2.32)-(2.33).
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Lemma 2.19. Let 0T 6 X and I be defined by a.
 

Then, for any m E X,

(2.34) -<I,m> = a(0)m(0) + I0 I0 G(V - s)d?(v)¢(s)ds.

-aV

Proof: For I above, T is locally absolutely

continuous on (-u,O) and has a jump discontinuity at 0.

Thus,

-<¢.cp> = -I‘0 T(s)cp(s)ds + lII(O-)cp(O)

d(0)¢(0) + I0 I0 a(u)[dfi(u + s)]¢(s)ds

by (2.32)-(2.33). Define

0, v]; 0

v(v) = {'

a(v), v < 0.

Then, using Fubini's Theorem [34],

a(0)¢(0) + I0 IS d(u - s)[dfi(u)]¢(s)ds’(III CD)

a(o>o(0) + I0 (I0 v(u - s)[d?i(u)]}cp(s)ds

G(O)cp(0) + f0 [I0 v(u - s)[d'?f(u)]cp(s)ds}

a(0)cp(0) + I0 I0 o(u - s)[d'fi'(u)]cp(s)ds

-ou

since v(u - s) = 0 if s g,u. [3

we define the bilinear pairing (a,¢) 'between T E X

T
and a E X by

(2.35) (a,cp) = C1(O)cp(0) + I0 I0 0((u - s)[d17f(u)]cp(s)ds.

-au
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In the finite delay case, z(u) = n(—r) for u‘g -r and

(a,m) reduces to the classic bilinear form

a(0)¢(0) + I0 I0 G(u - s)[dfi(u)]m(s)ds.

-r u

For the problem (2.30)-(2.31) we can define the

solution semi—group analogous to that for (2.1)-(2.2).

That is, T°(t)c = zt(d), t.2 0, where z(o)(-) denotes

the solution to (2.30)-(2.31). The connection between T0(t)

and T+(t) is given by

Theorem 2.20. Let OT 6 X, m 6 X and I E X+ be
 

defined by d. Then, for any t'2 O, T0(t)a defines

T+(t)¢ and

(2.36) -<T+(t)¢.e> = (T°(t)o.o).

Proof: Let 2 solve (2.30)-(2.31). By Theorem 2.18

and Lemma 2.17, z solves the adjoint equations (2.27)-

(2.28) and by Theorem 2.16

{I‘tv’
[T (t) I] (s) T(s - t) - It z(v)fi(v + s — t)dv

O

T(s — t) — Is+t z(u — s)fi(u — t)du

s

. + +
for s < O, t > 0. Since I: T (t)w E X , we may

differentiate with respect to s to find

d ”:7\\'/ 5 ~ ~
a—S-[T (tI‘IIIIS) =1I((S - t) - [z(t)n(s) - ZIOITIIS - 11)]

+ Is+t z(u - s)fiIu - t)du

s
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= TITS — t) - Z(t)fi(S) + z(O)TI(S " t)

+ z(t)fi(s+) - z(0)’fi(s - t)

- Is+t z(u - s)dfi(u - t)

s

using the Lebesgue-Stieltjes integration by parts formula.

Thus,

d '<:\\"’ L + 'a; [T (UNIS) = (y(s - t) + z(t)[fi(s ) - fiIS )]

- It z(u)dfiIu - t + s)

O

0

~

w(s — t) - It- z(u)dfi(u - t + s)

0

-IO- a(u)dfi(u + s - t)

t- ~

—I z(u)dn(u - t + s)

O

by (2.32). Therefore, using the definition of z(-),

/’,\—/ _-

% [T+(t)¢](5) = '11.?” zt(u)dfi(u + s)

for s < 0. Now, by (2.26), [T+(t)I](0') = z(t). Thus.

zt(u) is seen to define T+(t)¢ and, using Lemma 2.19,

+

-<T (tIIII2Cp> = (Zt.cp)

for any cp E X. C]

Define A0 to be the infinitesimal generator

associated with To(t), t'2 0. It follows from Theorem 2.1
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that fiiAo) = {OTIO 6 fitA)}. The connection between A+

and A0 is similar to that relating T+(t) to To(t)

in the previous theorem.

Theorem 2.21. If a 6 ETAO) and w is defined by

a, then I E fi1A+). In addition, Ape defines A+¢ and

+ 0

(2.37) -<A III,cp> = (A amp)

for all cp E X.

‘ggggf: It can be shown exactly as in Hale [11], page

105, that if c e fi(Ao) and cp e .D(A) then (Aoa,cp) =

(a,A¢). Thus, if v 6 X+ is defined by Ace, then

<v,¢> = <¢,A¢> for every p 6 DTA). By definition of A*

‘we must conclude that I E fiTA*) and A*I = 0. Because

(I,A*II E X+ we see that (I: e ,D(A+). Thus I! E .b(A+) and

A+¢ is defined by Age. The last assertion follows

immediately from Lemma 2.19. [3

§9. Decomposition of X and X*

Let Y(t) be defined by (2.4). By Theorem 2.2, if

A solves (2.3) and IeOtI > Y(t), then the generalized

eigenspace n(A - x1)k is finite dimensional and

x = 7m: — wk (9 ma - ink.

In this section we consider the prOblem of computing a

;projection of X onto N(A - AI)k. we make use of the
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bilinear form given by equation (2.35). Since the arguments

closely parallel those of Hale [11], Section 21, we omit

the proofs whenever possible. See Naito [28] for a different

approach to calculating the projections.

As in Hale [12] and Naito [29] we define the (nk) x (nk)

matrix Ak by

pl 92 . Pk

0 P1 Pk_1

Ak = :

0 . 0 P1

where, for j = O,l,2,...,

1 dj
---.---. 40.).

3+1 3- de

The first assertion of the following lemma was shown in Naito

[29]. The characterization Of 72(AO - XI)k follows by

similar arguments.

 

Lemma 2.22. (i) m E n(A - x1)k if and only if m

is of the form

k-l uj XU

T(u) = jib aj+1 ET'e

where a = col(al....,ak) satisfies Aka = 0.

(ii) a 6 72(AO - AI)k if and only if a is of the form

k-l j

a(u) = Z) bj+1 %T-exu

i=0 °

where b = row(bk,bk_l,...,b1) satisfies bAk = 0.
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k

Lemma 2.23. m 6 8(A - AI) if and only if (a,¢) = O
 

for every a e 72(AO - x1)k.

Proof: See Lemma 21.2 of Hale [11]. The necessary

modifications are Obvious. U

Theorem 2.24. For A E 0(A) satisfying IextI > Y(t),

one has dim n(A - AI)k = dim 72(AO - x1)k. If @x =

= col(a1,...,ap) are basis "vectors"

 

(mlI-oopgp) and fix

for N(A - x1)k and 72(AO - x1)k, respectively, then

(QA'QX) = [(di,¢j)] is nonsingular and thus may be taken

as the identity. The projection H :X 4 T(A - x1)k is

A

given by

Proof: See Lemma 21.4 Of Hale [ll]. [3

Corollaryg2.25. Let 9 0k be as in Theorem 2.24.XI

Let Ii be defined by ~01; i = 1,2,...,p, and YA =

col(Il,...,¢P). The projection HA is given by

nxm = §A<YA'¢>.

Proof: This is an immediate consequence of Lemma 2.19

and the previous theorem. [3

Corollary 2.26. Let éx, 0 , Y be as in Corollary

A A

2.25. Then dim n(A* — AI)k is equal to dim N(A - AI)k
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*

and Y)‘ defines a basis for 72(A - AI)k. The projection

k*

H;:X* 4 72(A - AI) is onto and is given by

'k

3125: Let 1 S i g p and -ai define IIIi. It is an

easy consequence of Theorem 2.21 that (A* - AI)mIIIi 6 ,B(A*)

for m = O,l,...,k-l and <(A* — infirm) =

_(—(A0 — XI)kai,¢) = O for every m 6 X. Thus,

* k
Ii 6 72(A - AI) . Because

{1, i = j

<III'0CP'>=

1 3 0, i a! j,

it follows that {I1,I2,...,Ip} is a linearly independent

set.

To show that 72(A* - AI)k is spanned by Wl'H'HIIp}

it suffices to Show that for any III 6 92(A* - AI)k and cp e X,

(Yx.cp> = 0 implies <(I,cp> = 0. However, since (Ych) =

-(Qx.cp), we may apply Lemma 2.23 to conclude that any cp

satisfying (Ych) = 0 must lie in R(A - Ink. Thus,

(p = (A - u)kv for some v E X and <¢,cp> =

<I. (A - AIIkv> = <(A* - mkhw = 0.

Finally, if cp E X and III E X*,

*

A

<<II. §A>YA'CD>'
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*

*

flux) = 72(A - ).I)k. a

A. Clearly,



CHAPTER III

GENERAL LINEAR SYSTEMS

§l. Existence, Uniqueness and Continuous Dependence

Consider the linear nonhomogeneous system

(3.1) $.(t) = L(t,xt) + h(t)

for t > 0, ‘with initial data given by

(3.2) x0 = m E X.

The associated homogeneous system is

(3.3) $.(t) = L(t,xt).

Throughout this chapter it will be assumed that

L:IR x X 4 1Rn is continuous in each variable and linear

in the second, while h ‘will be locally integrable. These

hypotheses are by no means minimal but suffice for our

subsequent applications. It can be easily shown that

L(t,$) is continuous in (t,$).

As in the autonomous case, L(t,~) may be represented

in integral form. In particular, there exists for each t

an n x n matrix valued function n(t, -) :IR4 mnxn satisfying

48
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(i) L(t.6) = I0 [dun(t.u)]&3(U) + I-r n(t.u)$(U)p(U)du

for every 5 E X,

(ii) each row of n(t,u) is of bounded variation

in u on [-r,O] and left continuous in u

on [-r,0).

(iii) n(t,u) = O for u 2 O, and

(iv) n(t,u) is measurable in u and essentially

bounded on (-o,-r).

As in the previous chapters, we define

~ n(t,u), u'2 -r

n(t.u) =

n(t,-r) - I-r n(t,s)p(s)ds, u < -r

u

and therefore represent L by

L(t.'€p) = <n(t.-).Ea> = [0 [dufi(t.u)]$(u).
“'0

It follows from Kato [21] that fi(t,u) is measurable in

(t,u).

Theorem 3.1. Under the above assumptions on L and

h, the initial value prOblem (3.1)-(3.2) has a unique

solution x(-) = x(0,¢,h)(') defined on (o,c). The

solution depends continuously on m and h in the sense

that if T > 0, ¢(n) 4 m in X and h(n) 4 h in L1[U,T].

then x(0,¢(n),h(n)) 4 x(0,¢,h) uniformly on [0,7].
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Proof: First, consider the prOblem of solving (3.1)-
 

(3.2) on the interval [0,0 + r]. Any solution of (3.1)-

(3.2) on this interval corresponds to a solution of the

finite delay equation

(3.4) $.(t) = I0 [dun(t.u)]xt(u) + g(t)

-r

where

(3.5) g(t) = fr [dufi(t,u)]¢t_o(u) + h(t)

and x0 6 C([-r,O],I¥U is defined by

(3.6) x0 = mI[-r,0]'

Note that g is clearly an element of L1[0,0 + r]. By

the assumptions on L and h, Theorems 16.1 and 5.1 of

Hale [ll] apply to (3.4)-(3.6) and the conclusions of this

theorem are therefore valid for 04g,¢ g.0 + r.

The argument may now be repeated on successive intervals

[0 + r, 0 + 2r], [0 + 2r, 0 + 3r],... to Obtain the full

conclusion of the theorem. [3

By the theorem just proved. we may define for t.2 0

a linear map T(t,0):X 4 X tar T(t,0)¢ = xt(0,¢,0). In fact,

the following lemmas Show that this operator is continuous.

Lemma 3.2. Assume °.S t and x:(-a,t] 4 191 is

continuous on [0,t] and satisfies x0 6 X. Then there
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exists a constant c > 0 (dependent only on p) such that

IxtI _<_ chCI + c Est Ix(u) I.

gggggg IxtI = max Ixt(u)I + I'r Ix(t + u)Ip(u)du

[-r,0] -.

= [“320] Ixt(u)I + E: Ix0(s) Ip(s + 0 - t)ds

+ IZbr Ixt(u) Ip(u)du s Til-:0] Ixt(u)I

+ 9(0 - t)I‘r Ixo(s)IP(s)ds

+ fr Ix(t + u) lp(u)du

o-t-r

by property (1.1) of p. If 0 < t 3.0 + r, then

max Ix(t + u)I + I-r Ix(t + u)Ip(u)du

[-r,0] 0-t-r

max x(u) + [1 + r p(u)du] .max Ix (u) .

‘3 [0,t] I I JZ-t-r [-r,0] O I

If 0 + r < t, then

max Ix(t + u)I + I-r Ix(t + u)Ip(u)du

[-r,O] o-t-r

'3 max Ix0(u)I - IO p(0 - t + s)ds

[—r,O] -r

+ [l + I-r p(u)du] - max Ix(u)I.

o-t [0,t

In either case the conclusion of the lemma follows from

(1.2) with

c = max[p(l),l + I0 p(u)du}. [j



52

By the Uhiform Boundedness Principle it follows that

for any fixed 0 E I! and 7.2 0, supIHL(s,-)HIO S 3.3 T}

is finite. Define m to be a real, locally bounded,

continuous function such that HL(s,-)H g_m(s) for s 6 IL

Lemma 3.3. Let c be as in the previous lemma. If
 

x = x(0,¢,0) is the solution to (3.2)-(3.3) on [O,c),

then for any t.2 0,

(3.7) IxtI S.IXOI . 2c Exp[cI: m(s)ds].

Proof: For any u 6 [0,t]

x(u) = x(o) + In L(s,xs)ds.

0

Therefore

Ix(u)I g Ix(0)I + In m(s)IxSIds

0

S.IXOI + I: m(s)IxSIds

and, consequently,

t

ma x(u) x + m( ) x d .[OrtI I_<.|CI I. slsls

The previous lemma implies

t

IxtI g 2chOI + cIO m(s)Istds

and (3.7) now follows from Gronwall's Inequality. See

COppel [7], page 19. D
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Corollary 3.4. T(t,0) is a bounded linear operator

on X with

HT(t,0)H g_2c - Exp[cIt m(s)ds].

0

§2. Representation of Solutions

In this section we will generalize the representation

theorem of Banks [1] known for FDE's with finite delay.

Fortunately, many of the results of this section can be

derived directly from the theory of finite delay equations.

Consider the prOblem

(3.8) z(s,t) + It z(u,t)fi(u,s - u)du = T(t - s)

s

for s < t.

(3.9) z(s,t) = O

for s > t, and

(3.10) z(t.t) = I(o‘).

*

where I E X .

Lemma 3.5. For any I E X* there exists a unique

solution, 2, of (3.8)-(3.10) that is locally of bounded

variation in s.

Proof: See Theorem 32.1 of Hale [ll]. [3
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The assertions of the following lemma are verified

in the proof of Theorem 32.2 of Hale [11].

Lemma 3.6. There exists a unique n x n matrix

function Y(s,t) satisfying

(3.11) Y(s,t) + It Y(u,t)fi(u,s — u)du = I

S

for s g_t, and

(3.12) Y(s,t) = 0

for s > t, where I is the n x n identity matrix. In

addition, Y(s,t) is locally absolutely continuous in t

(except at t = s) and locally of bounded variation in 3.

Theorem 3.7 (Representation Theorem). If x solves

(3.1)-(3.2) on (O,a), then for any t'2 0

(3.13) x(t) = Y(s,t) + IC- [duIIt‘Y(S.t)fi(s.u - s)ds}]x(u)

0

+ It Y(u,t)h(u)du

0

where Y satisfies (3.11)-(3.12).

Proof: Assume first that m E X is continuous on

(-c,0] and choose R > t - 0 + r. Then x corresponds

to the solution of

(3.14) i(t) = I0 [dsfi(t,s)]xt(s) + I:: n(t,s)P(s)xt(s)ds

+ h(t)

with initial value
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(3.15) X0l[-R,O] = CpI[-R,O]°

The assumptions on n and h allow us to apply Theorem

32.2, Hale [11], to (3.14)—(3.15) and conclude

(3.16) x(t) = Y(0,t)x(0) + I“- [dUIIt Y(s,t)fi’(s,u — s)ds}]x(u)

O- 0'R

+ It Y(u.t)h(u)du

O'

+ It Y(u,t)[I-R fi(u.s)P(s)x(u + s)ds]du

0 -an

where Y is given in the previous lemma. Using property

(1.2) of P.

II—R n(u,s)p(s)x(u + SIdSI S m(u)rR+u-O p(v + 0 - u) Ixo(v) Idv

.<_. m(u)p(0 _ u) Jv-R-I-t-O'

p (v) Ixo (v) Idv

I

since dig u'g t. Thus, the last integral in (3.16) is seen

to tend to O as R 4 +o. Equation (3.14) is verified.

Since the continuous elements of X are dense in X,

the full assertion of the theorem will be proved once

x0 4 It? “in”: Y(s,t)?{(s,u -’ s)ds}x(u)

= IO-r [It Y(s,t)n(s,u - s)p(u - s)ds}x(u)du

-a 0

is shown to be continuous from X into INA, By linearity,

it suffices to show continuity at x0 = 0. However,
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IIU-r {It Y(s.t)n(s,u - s)p(u - SIds}x(u)duI

-o 0

.S IG—r [It IY(Sot)Im(SIP(O - s)dS]p(u - 0)Ix(u)Idu

-¢ 0

.S [_r P(V)IXG(V)Idv - It IY(s,t)Im(s)p(0 — s)ds

-¢ 0

'g IxGI ° constant

since Y(s,t), m(s) and p(o - s) are bounded for

0.3 S‘s t. [3

Define the Operator K(t,0):L1[0,t] 4 X by

0. t + u < 0

(3.17) [K(t,0)h](u) = t+

0’

u Y(s,t + u)h(s)ds, 0.3 t + u.g t.

By the previous theorem, the solution xt(0,m,h) may be

written as

xt(0,cp,h) = T(t,0)cp + K(t,U)h = Xt(0,m,0) + xt(0,0,h).

The continuous dependence assertions of Theorem 3.1 imply

that K(t,0) is a bounded Operator from L1(0,t) into X.

§3. The Adjoint PrOblem
 

Since T(t,0):X 4 X and K(t,0):L1[U,t] 4 X have

been shown to be bounded and linear, their adjoints

T*(t.0):X* 4 X* and K*(t,0):Xf 4 L°[0,t] are bounded

and linear. In this section we will Obtain representations

for these operators.
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Theorem 3.8. For I 6 X , T (t,u)I is defined by

/:\\‘“’ ~ t ~

(3.18) [T (t,0)I](u) = I(u + 0 - t) - I y(s,t)n(s,0 + u - s)ds

0

 

for u < 0, where

(3.19) y(s,t) = [T*(t,s)I](0-) solves the "adjoint

equation"

(3.20) y(s,t) = -It y(u,t)fi(u,s - u)du + I(s - t)

s

for s < t and

(3.21) y(t,t) = I(0').

Proof: The theorem may be proved in a manner similar

to the proof of Theorem 33.1 of Hale [11]. 0

Also similar in proof to its counterpart from the

theory of FDE's with finite delay is

Corollapy_3.9. For any I 6 X*, K*(t,0)I E L'[0,t]

is defined by

(3.22) [K*(t,O)I](s) -[T*(t,s)I](0')

-I° [dI(u)]Y(s,t + u)

for almost every 3 6 [0,t]. .

It should be remarked that since [T*(t,s)I](O-) is

the solution to the adjoint equation (3.20) for s < t,
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[K*(0,t)I](s) is actually Of bounded variation in s on

[0,t].

Corollary 3.10. Let I denote the n x n identity

matrix and define

O, u < O

6(u) =

I, u = O

and

* I: -I'SU<O

6 (u) =

O. u = O or u < -r.

Then

(3.23) [T(t.0)6](u) = Y(0.t + u) = [T*(t + u.o)a*](o’)

for gig t and u g_0.

Proof: Clearly, the solution operator T(t,0)¢ is
 

defined for such m as are only piecewise continuous on [-r,O]

(but otherwise satisfy the requirements needed in order

to belong to X). Thus, T(t,o)5 makes sense. Fer any

Iex”

IO [dI(u)]Y(0,t + u)<¢0Y(Oot + ')>

<T*(t.o)I.5>

by (3.22). Therefore, <I,Y(0,t + -)> = <I,T(t,0)5> for

*

every I 6 X . It follows that for almost every u g_O,
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Y(0,t + u) = [T(t,0)5](u). Since both sides of this

equality are continuous for t + u < 0 (where

both are 0) and t.2 t + u‘z 0, the equality holds

pointwise.

The final assertion follows from Lemma 3.6 and

Theorem 3.8 applied to 5*. In fact, [T*(t + u,o)5*](0‘)

solves (by equations (3.20)-(3.21)) equations (3.11)-

* _

(3.12) and, therefore, [T*(t + u,o)6 ](0 ) = Y(t + u,0). [3

In light of (3.13). (3.17) and the previous corollary,

the solution xt(0,¢;h) of (3.1)-(3.2) may be expressed

in "Variation of Constants" form

(3.24) xt = T(t,o) + It T(t,u)6h(u)du

C

‘where for 3.3 0,

(3.25) [It T(t.u)5h(u)du](s) = It [T(t,u)5](s)h(u)du.

O 0

Finally, we remark in the autonomous case that

T(t,0) = T(t - 0), while the solution y(s,t) of the

adjoint equations (3.20)-(3.21) satisfies y(s,t) = y(t - 5).

Without loss of generality we may set s = O and T(t),

t.2 0 now corresponds to the strongly continuous semi-

group studied in the previous chapter. For the nonhomogeneous

autonomous case (3.24) reduces to

(3.26) xt = T(t)e + It T(t - u)6h(u)du.

0
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Comparing Theorems 2.16 and 3.8 we see that the representa-

tion of the adjoint semi-group operators T+(t), t.2 0

extends in an unaltered form to the representation of

* n

the adjoint Operators T (t). t 2:0 defined on X .

§4. Normal Eigenvalues Of the Solution Operator

In this section we will discuss some of the spectral

pr0perties of T(t,s). For example, we will show that

there is a real number rp(t - s), 0.S rp‘g 1, such that

for any 6 >0. 0(T(t.s)) n I). e cllil 2r + c} is
p

finite and consists (if it is not empty) entirely of

normal eigenvalues of T(t,s).

Definition 3.11 [9]. A complex number, A, is said

to be a normal eigenvalue of a bounded, linear operator,

T, on a Banach space, E, provided it is an eigenvalue

of T ‘with finite dimensional generalized eigenspace,

7m - wk. and

E = 72(T - mk om: - wk

where 8(T - AI)k is invariant under T. A point. A.

is called a normal point of T if it is either a normal
 

eigenvalue of T or in the resolvent set of T.

Definition 3.12 [2]. The essential spectrum, ess(T),
 

is defined to be the set of all A in the spectrum of T,

0(T), for which at least one of the following holds:
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(i) E(T - AI) is not closed;

 

(ii) ). e 0(T) \ ()3:

(iii) u 72(T - mk is infinite dimensional.

1:21

we define the essential radius, re(T), of T as

re(T) = supIIAIIA E ess(T)].

The following result of Gohberg and KreIn [9] shows

that the normal points Of T are precisely those points

not in ess(T).

Lemma 3.13. A necessary and sufficient condition]
 

that A be a normal eigenvalue of T is that

(i) 8(T - AI) is closed,

(ii) A is an isolated point of 0(T), and

(iii) the generalized eigenspace associated with

A is finite dimensional.

Also in Gohberg and Krein [9] may be found this

result concerning the behavior of the set of normal points

when the operator is perturbed by a completely continuous

Operator.

Lemma 3.14. Let -/:E 4 E be bounded and linear
 

and U:E 4 E be completely continuous and linear. Any

unbounded connected component of normal points of 0’ is

a connected component of normal points for .’+ U.
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Definition 3.15 [8,33]. Kuratowski's measure of
 

 

noncompactness, a(B), of a bounded subset, B, of a
 

Banach space, E, is defined as

a(B) = iand > OIB has a finite cover of

diameter < d].

For any continuous T:E 4 E we define

a(T) = iankIa(TB) 3 ka (B) for all bounded

subsets B c: E}.

The map, T, is said to be an a-contraction of order k

if a(T) g k.

The Operator, T, is compact if and only if o(T) = O.

The connection between the Kuratowski measure and the

essential radius of a bounded, linear .J:E 4 E is given

by the following result of Nussbaum [30].

Lemma 3.16. If' J:E 4 E is bounded and linear,

then re(.’) = lim n./a(o’n).

n49

 

we now consider the solution Operator, T(t,s) defined

in §1 of this chapter. The study of the normal points of

T(t,s) was initiated by Hale [12]. As in that paper

‘we decompose T(t,s) as T(t,s)m =.I(t - s)m + U(t,s)m

where .J(T):X 4 X, 1.2 O and U(t,s):X 4 X, t.2 s are

defined by
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{:O, T + u > 0

(3-27) [J(T)cp](u) =

cp(T+u) -cp(0). T+u<0

and

t+u

cp(0) +I L(v,T(v,s)cp)dv. 'r + u 2 O

S

(3.28) [U(t,s)cp](u) -_-

m(O).
., + u < o

for u‘g O. The following result is a special case of what

may be found in Hale [12].

Lemma 3.17. For .J(T) and U(t,s) as above, we
 

have 0(JWT)) S Y(T), where Y is defined by (2.4), and

U(t,s) is completely continuous.

Armed with these lemmas, we are now able to state

the principal result of this section.

Theorem 3.18. Define

 

(3.29) r (t - s) = I'i'fi l3/Y(n(t - s)).

P n40

Then 1.2 rp(t - 3).; re(T(t,s)). That is, for any 6 > O,

0(T(t,s)) n I). e 011).] 2 rp(t — s) + c} is finite and

consists entirely of normal eigenvalues.

Proof: By Lemma 3.16 and (3.27)

 

 

lim Mun“: - s)) = lim {‘/.r(n(t - 5))

n4: n4a

 

gm WY(n(t - s)) = rp(t - s).

n4:
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Thus, for any 6 > 0. U(JIt - s)) n IAIIAI.2 IPIt - S) + 6}

consists entirely of normal eigenvalues for .J(t - s).

Therefore, [AIIAI.2 rp(t - s) + e) is contained in an

unbounded, connected component of normal points of

.J(t — 3). By Lemma 3.14 and the compactness of U(t,s).

any A satisfying IAI > rp(t - s) must be a normal

point of’ J(t - s) + U(t,s) = T(t,s). Lemma 3.13 assures

us that {AIIAI.2 rp(t - s) + e} n 0(T(t,s)) is finite.

Finally, (2.4) and the monotonicity of p imply

Y(t - s)‘g 1 for all s < t. Thus rp(t - s).g 1

follows immediately. I]

There is a very close relationship between the

quantities rp(t) and

e = ianc 6 1R [IO ecsp(s)ds < a}.

-0

Recall that the latter was used by Naito in his study of

the linear autonomous systems Of Chapter II. It follows

by elementary means that under the assumptions (1.1)-(1.2)

on p,

0.2 B = ianc 6 filIeCSp(s) 4 0 as s 4 -o}.

Lemma 3.19. For t > O,

(3.30) rp(t) = eBt

where the right hand side of (3.30) is interpreted to mean

0 should B = -c.
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Proof: It suffices to Show for real numbers, k,

that ekt > rp(t) if and only if k > B. The only non-

trivial case is when k‘g 0.

Assume there exists some 6 > 0 such that ekt >

rp(t) + e. We must show that

I0 ekup (u)du < on.

Note that for j = 0,1,2,...

I”: l)t ekuP(u)du = jot ek‘s'jt’ms - jt)ds
_. 3+ ..

g_Y(jt)e-ktho eksp(s)ds.

-t

Therefore

I0 ekup(u)du =

-a j

C o

g_ E; Y(jt)e-thIot eksp(s)ds

J _-

D
4
8

I-jt ekup(u)du

-(j+l)tO

which converges since ekt - e > rp(t) implies

(l - g e-kt)J > en‘kjt Y(jt) for all sufficiently large

(since 5 > 0 may be taken < 2ekt).

Conversely, if k >.5 we may choose an e >IO

such that

I0 e(k-e)u p(u)du < a.
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Since p is monotone increasing, we conclude that

lim e-JtIk-E) p(-jt) = O for any t >(O. By property

3‘9

(1.1) of p, we have Y(jt) g p(-jt). Thus

e-'(k-e)3t Y(jt) < l for all j sufficiently large. It

- at ekt kt

follows that rp(t) g e < e . [:1

Corollary 3.20. If p tends to zero "faster than
 

every exponential" in the sense that B = -o, then

0(T(t,s)) is at most countable and 0(T(t,s))‘\{0} con-

sists entirely of normal eigenvalues of T(t,s).

If we now apply the results of this section to the'

semi-group Operator, T(t), arising in the autonomous case,

‘we can Obtain a significant improvement in some of the

results of Chapter II. we refer the reader to that chapter

for the needed definitions.

Theorem 3.21. The conclusions of Theorems 2.2 and 2.24
 

remain valid if Y(t) is replaced by rp(t).

Proof: See Theorem 1 of Hale [12] and Lemma 21.4

of Hale [11]. The necessary modifications to this situation

are Obvious once one Observes (from Lemma 3.19) that

IextI > rp(t) implies Re A > B. [3

we conclude this section by returning to the general

situation discussed earlier of a bounded linear Operator, T,
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defined on E and compute the projection of E onto the

generalized eigenspace, T(T - AI)k, associated with any

A e 0(T)‘\ess(T). First, one final lemma is required.

As usual, let E* denote the dual of E and <I,¢>

describe the duality pairing between T E E and I E E*.

Lemma 3.22. If T:E 4 E is bounded and linear and

A 6 C(T)\.ess(T), then the dimensions Of the spaces

T(T - AI) and fl(T* - AI) are the same, as are the

dimensions of the associated generalized eigenspaces

72(T - wk and nor” - m". In addition, £(T - u)I“

and 8(T* - AI)k are closed.

Proof: See Theorems 2.3 and 5.4 of Schechter [35]. [3

Assume now that T:E 4 E is as above with

A E 0(T)\.ess(T). By the previous lemma and Lemma 3.13,

we may choose bases ($1,...,¢a} and {I1,...,Id} for

h(T - AI)k and m(T* - AI)k, respectively. we define

the basis vectors 2 = (ml....,¢a) and Y = col(I1,...,Id).

Claim. The d x d matrix <Y.§> is nonsingular.

Proof of claim: If c is a d-vector such that

<Y.§>c = 0, then <Y.§c> = 0. By the closedness of

P(T - AI)k (shown in the previous lemma), we see that 9c
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is an element of 8(T - AI)k. Since clearly Tc 6 T(T - AI)k

also, we must conclude that To = 0. The linear independence

Of the mi imply that c = 0. The claim has been verified.

I, the d x d identityThus, we may assume <Y.Q>

matrix. The vector Y is easily seen to now be uniquely

defined for each chosen basis for W(T — AI)k. The desired

projections

U:E * fl(T - AI)k

and

* ‘k 'k

H :E 4 W(T - AI)k

*

are given by Up = §<Y.w> and H I = <I.9>Y.

By Theorem 3.18, this space decomposition is directly

applicable to the solution operator T(t,s) at any point

A e 0(T(t,s)) satisfying IAI > rp(t - s).



CHAPTER IV

LINEAR PERIODIC SYSTEMS

§l. Periodic Families of Bounded Linear Operators

Throughout this section E ‘will denote a (complex

or real) Banach space. The duality pairing between T

in E and I in the dual, 2:" of E will be again

denoted by <I.m>-

Definition 4.1. Let T(t,s):E 4 E be a family of

bounded linear operators for t'Z s, satisfying:

(i) T(s,s) = I, the identity, for all s 6 IL

(ii) T(t,u)T(u,s) = T(t,s) for all t _>_ u _>_ 3,

(iii) there exists an m > 0 such that for any

t.2 s, T(t + w,s + w) = T(t,s), and

(iv) there exists a 9 > 0 such that

IT(t,s)I'g e for all 0.3 s'g w and

s gIt g s + w-

The family T(t,s), tug s 'will be called an weperiodic

family of bounded linear pperators, or, an.uhperiodic

family.

69
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Note that property (iv) is easily seen to be valid

(by the uniform Boundedness Principle) if T(t,s) is

assumed to be strongly continuous in (t,s). For any

s 6 IL ‘we define the period map, P(s):E 4 E, by
 

P(s) = T(s + w,s). From prOperties (ii) and (iii) it

follows that for any t'2 s and k = 1,2,...

(4.1) T(t,s)Pk(s) = Pk(t)T(t,s).

Note that Pk(s) = T(s + kw,s).

Before we continue, let us first make some basic

observations concerning the point spectrum of P(s). In

particular, if p # 0 is an eigenvalue of P(s) with

associated eivenvector, m, then (4.1) implies

(4.2) [P(t) — pI]T(t.s)cp = T(t.s)[P(s) - (1116

for any t‘2 s. Note that T(t,s)m # O for all t.2 3

since if T(T,s)m = O ‘we may choose m so that s + mmIZ T

and show 0 = T(s + mw,T)T(T,s)¢ = T(s + mw,s)¢ = Pm(s)m

= umm. This contradicts the facts that both u and T

are nonzero. Thus, if t.2 s, T(t,s) maps eigenvectors

Of P(s) into eigenvectors of P(t). In addition, any

eigenvalue of P(t) is also an eigenvalue of P(s) since

(as shown above), H is an eigenvalue of P(s + mm) = P(s)

for all m such that s + mm > t. Thus, the nonzero
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point spectrum of P(s) is seen to be independent of s,

with the null spaces, T(P(s) - uI), s 6 IL all of the

same (perhaps infinite) dimension.

Definition 4.2. The point p # O is said to be a
 

characteristic multiplier of the w-periodic family T(t,s),
 

t.2 5 provided it is a normal eigenvalue of P(s) for

Aw
all 3. Any A E C for which u = e will be called a

characteristic exponent of T(t,s); t.2 s.
 

From section 4 of the last chapter, it follows that

u is a characteristic multiplier if IuI > re(P(s)) for

0.3 s‘g w. Should some iterate of P(s) be compact (for

some 5) then it would follow that re(P(t)) = O for all

t and, therefore, any nonzero element of 0(P(t)) is a

characteristic multiplier.

Let u be a characteristic multiplier and

($1,...,¢d} be a basis for the generalized eigenspace

T(P(O) — uI)k. Define the basis "vector" 9 = ($1,...,¢a).

Theorem 4.3. Let u and Q be as above. Then

there exist d x d matrices B and @(t) such that

GIeB‘”) = {u}. 2(0) = 9 and 4(t + m) = fit) for t e IR.

If b is any d-vector, then T(t,0)§b is defined for all

t e T: by

(4.3) T(t,0)§b = o(t)eBtb.
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ggggf: The argument is essentially that of Stokes

[36]. For convenience, we write P = P(O). Since u

is a normal eigenvalue of P, we may write E =

N(P - uI)k e)E(P - (11)k (with G(Plfl) = [p] and G(PIE) =

0(P)\\Iu}. Because P is invariant on N(P - uI)k,

there is a d x d matrix, M, such that PQ = 6M. The

spectrum of M is exactly (“I since 0(PIn) = [u].

Thus, there exists a d x d matrix, B, such that M,= eBw.

Define h(t) = T(t,0)§e-Bt. Then

i(t + w) = T(t +'uh0)§e-B(t+w) = T(t.0)T(uh0)ie’B@e'Bt

= T(t,0)eeBI’I’eTBI’IIe'Bt = @(t).

Therefore, T(t) is seen to be wrperiodic for t 2;O.

we extend the meaning of §(t) for t < O by defining

T(t) = §(t + mu» for any m such that mm + t > O. The

remainder of the theorem is clear. [3

Lemma 4.4. Let H be a characteristic multiplier.
 

The dimension Of the generalized eigenspace associated

with P(s) is independent of s. If T(t) is defined as

in Theorem 4.3, then, for any t. T(t) defines a basis

of the generalized eigenspace associated with P(t) and u.

Proof: The proof follows the lines of discussion

directly before Definition 4.2. One uses the facts that
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(P(t) - uI)kT(t,s) = T(t,s)(P(s) - uI)k and that if

T(t,0)§b = O for some t'2 0 then b = O. D

For any t'2 s, we have that

(4.4) T(t.s)i(s) = i(t)eB(t’S)

. -Bs -Bs

Since T(t,s)§(s) = T(t,s)T(s,O)§e = T(t,O)§e =

§(t)eB(t—S). As in the proof of Theorem 4.3, we may

define T(t,s)§(s) for t < 3 once it is Observed that

—B(t-s)
T(t,s)§(s)e = Q(t) is urperiodic in t. Thus,

(4.4) holds for all t,s.

If u is a characteristic multiplier, we may choOse

abasis, [I1(t),...,Id(t)}. for 72(P*(t) - uI)k.

Define Y(t) = col(I1(t),...,Id(t)). This basis vector

is uniquely defined if we require, in addition, that

<Y(t).§(t)> = I, the d x d identity matrix. See section

4 of the previous chapter.

Theorem 4.5. Let Y(t), T(t) and B be defined as
 

above. Then

eB(t—s)Y

(4.5) T*(t.s)v(t) = (s)

for all t'Z s.

Proof: Let t‘z s. From property (ii) it follows

that [9*(s) - uI]kT*(t,s) = T*(t,s)[p*(t) - uIIk. Thus
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* * k . * k

T (t,s) maps n(P (t) - uI) into T(P (s) - HI) . NOte

that

I = (Y(t).9(t)> = <I(t).T(t.s)i(s)e‘BIt’S’>

= <T*(t.s)I(t).i(s)>e'3(t'3).

Therefore.

I = e'BIt‘S’<T*(t.s)I(t).i(s)>

= <e-B(t-S)T* (t,s) Y(t) . 9 (s) >.

= e-B(t-s)
This implies that Y(s) T*(t,s)Y(t). Equation

(4.5) follows immediately. D

By considerations similar to those applied to (4.4),

‘we can define T*(t,s)Y(t) for all t,s so that (4.5)

is satisfied.

Having computed a precise description Of T*(t,s)m

and T*(t,s)I for m 6 fi(P(s) - uIIk and I E N(P*(t) - uIIR.

we now turn our attention towards estimating the growth of

T(t,s)m: t'2 s for O 6 8(P(s) - u1)k. From Lemma 3.13

it follows that the characteristic multipliers of T(t,s);

t'2 s are at most countable in number. we assume them

ordered by decreasing modulus: IH1I.2 IuZI.2---. If we

consider the first m characteristic multipliers, we may

decompose E as

k k
1 2

E = 72(P(s) - (111) @72(P(s) — I121) (9...

m

k

@7?(P(S) - umI) @Fm(s).
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Let §i(s) and Yi(s) denote the basis vectors associated

k. k.
. i * i .

'With n(P(s) - uiI) and m(P (s) - uiI) : respectively.

Then, the projection of E onto Fm(s) is given by

.m

IL;(S)cp = cp - 1:31 ii(s)<vi(s).op>.

Theorem 4.6. Let a >|O be chosen such that a
 

finite number of characteristic multipliers. (ul....,um},

satisfy IuiI‘2:a, while any other multiplier, u,

satisfies IuI < d. Then there exist constants M.=

M(0I.) > 0 and v = v(a) >0 such that

(4.6) IT(t.s)cpI g M(a)e(°‘"’(a)) (t'S) ICPI

for any 6 E Fm(s) and all t‘2 s.

Proof: The argument follows closely the presentation

in Hale [11]. Let s be fixed. For convenience, we

write P = P(s) IF (3).

m

Because C(P) = 0(P(s)) (ul,...,um}, P has spectral

radius, r’, strictly smaller than IumI (and equal to

lum+ll should there me m + l multipliers). Choose

v = v(a) >(0 such that v(a) < a - 5 where 5 E It

satisfies em, = r’. As j 4 +o we have IPJ I1/3 4 em”.

Thus, for some 6 >'0 sufficiently small, IPJII/JeIV'a)“’<

l - e for all sufficiently large j. Therefore,

IPjIe(v_a)jw 4 0 as 3'4 u-
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Let s g_t and choose j 2;0 such that jw + SIS

t.S (j + 1)w + s. Then

T(t,s) = T(t,qu + s)T(ju) + 3,3) = T(t,ju) + s)Pj(s)

= T(t - jm.s)1>3(s).

By prOperty (iv) and the above, we have

(4.7) IT(t.s)cpI S eIPJIICpI

S ee(c1.-\J) wj max IIPnIeW—amwiICPI

n20

for m E Fm(s). If a - v >v0, then wj < t — 3 implies

(a-v)ng(a—v)(t-s). If a—VSO, then

t—sgw(j+l) implies (d-v)(j+l)wg(a-v)(t'- s).

In either case, it follows that

(4.8) aid-Wm _<. eIa-vlw e(a-v) (t—s).

From (4.7) and (4.8) we have

(OI-v) (t-S)
(4.9) [T(t,s)cpI S M(a)e (ep)

for t.2 s and m E Fm(s). I]

§2. Floqpet Theory

we now apply the results of the previous section to the

study of

(4.10) Sat) = L(t,xt) + h(t); t > s

(4.11) x = cp e x

under the assumptions on L and h found in Chapter III.
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In addition, we make the periodicity assumption that there

exists an m > 0 such that L(t,-) = L(t + m.-) and

h(t) = h(t + w) for all t. As in Chapter III, we define

T(t,s)m = xt(s,m,0) for t.2 5. By the uniqueness

assertion of Theorem 3.1 and Corollary 3.4 we see that

T(t,s); t.2 s satisfies the axioms of an w—periodic

family of bounded linear Operators on X. In Chapter III,

§4 it was shown that any u E O(T(uh0)) n IAIIAI > rp(w)I

is a normal eigenvalue of T(s + m,s) = P(s) for all 3.

Thus, any u e 0(P(0)) satisfying IuI > rp(w) is a

characteristic multiplier for the homogeneous analogue of

(4.10)-(4.11).

The three theorems of the previous section each have

an interpretation in the context of (4.10)—(4.11). The

implications of Theorem 4.3 are considered in this section

and given by

Theorem 4.7. Assume IuI > rp(w). Then U = exw is
 

a characteristic multiplier if and only if there is a nonzero

solution of (4.10) (with h = O) of the form x(t) =

At
p(t)e where p(t) = p(t + m).

Proof: If H is a characteristic multiplier, define

i = (m1....,¢a), where ($1,...,¢a} is a basis for the

generalized null space associated with T(m,0) - “I. For
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s = O, a solution of (4.10) with x E fl(T(w.O) - pl)k
O

has the form xt = T(t,0)§b = T(t)eBtb, where §(t) =

T(t,0)§e-Bt, B is the d x d matrix chosen such that

Bu)

T(w.0)§ = 9e and b is a d-vector. Therefore, for

u.g 0 and t'2 0,

(4.12) xt(u) = [i(t)](u)eBtb.

In fact, for “.2 —t ‘we have xt(u) = xt+u(0) =

[T(t + u)](0)eB(t+u)b. Therefore, [T(t)](u) =

[§(t + u)](0)eBu for —t g_u $10. Replacing t by

t + jw; j a positive integer, yields [§(t + jw)](u) =

[T(t + jw + u)](0)eBu for -jw - t g u.g 0. Since §(t)

is periodic in t, we obtain

(4.13) [T(t)](u) = T(t + u)eBu

for t'Z 0 and u g_0, where P(T) = [9(T)](O) for

T 6 it

It is immediate from (4.12) that for t'Z O

(4.14) x(t) = T(t)eBtb.

Equation (4.13) shows that (4.14) is also valid for t < 0.

Note that Y(t) is periodic in t and, therefore,

At
P(t)eBtb takes the form of e times a polynomial, p(t),

in t with urperiodic coefficients.

The converse is trivial. U
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Corollary 4.8. If u is a characteristic multiplier

of (4.10)-(4.11), the basis vector §(t) associated with

”(P(t) - u1)k is given by

[i(t)](u) = 1"(t + n)eBu

for u‘g 0, where B and T are as in Theorem 4.7.

§3. The Adjoint Equation for Periodic Systems

If u is a characteristic multiplier of an urperiodic

family, Theorem 4.5 provides US‘With a description Of

T*(t,s)I when I is a generalized eigenvector for

T*(t + m,t) — u1 = P*(t) — “I. This information, along

‘with the representation of T*(t,s) given by Theorem 3.8,

can be used to Obtain a precise description of the basis

elements of n(P*(t) - uI)k. Our efforts here will be

preparatory to that description to be given in §4. we will

study here a "limit adjoint equation" and bilinear form

analogous to (2.30) and (-,-) in the autonomous situation.

To motivate the discussions of this section we first

apply Theorem 4.5 to equation (4.10). Let B be as in

Theorem 4.7 and Y(t) be the usual basis vector associated

to 72(P*(t) - uI)k.

Lemma 4.9. Let H 'be a characteristic multiplier and
 

Y(t), B be as above. Define A(t) = [Y(t)](0-). Then the

solution Q(s,t) = [T*(t,s)Y(t)](0-) of the adjoint equations
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(4.15) 0(t,t) = [Y(t)](O-)

(4.16) 0(s,t) + It 0(u,t)fi(u,s - u)du = [Y(t)](s - t): s < t

S

is locally of bounded variation in s and given by

eB(t-s)
(4.17) Q(s,t) = h(s).

Proof: This follows immediately from (4.5) and

Theorem 3.8. I]

Although 0(s,t) solves (4.15)-(4.16) Only for S‘s t,

we will consider it defined for all s and t by equation

(4.17). Note that if Q(s,t) is known, then (4.16) can

be viewed as a representation for Y(t) which then could

be used to perform the space decompositions described in §1.

Therefore, it is important for 0(S,t) to be characterized

in a manner independent Of Y(t). In deriving this

characterization, we first need

Lemma 4.10. Let H be a characteristic multiplier
 

‘with IuI > rp(w) and 0(S,t) be as above. For 3 < t,

z(s) = m(s,t) solves

(4.18) é%-[z(s) + Ir z(s + u)n(s + u,-u)du]

O

- z(s + r)n(s + r,-r)

+ I“ z(s + u)n (8 + U.-u)P(-u)du = 0

r

where z(t + u) = 0(t + u,t) for u.2 0.
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Proof: Let s < t and j be a positive integer.

The previous lemma shows Q(s,jw + t) to solve

Q(S.ju.) + t) + It’s+3”’ ms + u,t + jm)?{(s + u,-u)du

O

/”‘\_/

= [Y(t + jw)](8 - t - jw)

for s < t. Equation (4.17) and the periodicity of Y(t)

in t immediately show

t-s+jw

O

(4.19) 0(s,t) +I‘ ms + u,t)?{(s + u,-u)du

= e'ij[T(t)](s - t - jw)

for s < t. For j such that t - s + jw > r, the

integral may be written as

t+jw

3+1.

Ir 0(s + u,t)n(s + u,-u)du + I G(u,t)fi(u,s - u)du

0

and (4.19) may be differentiated with respect to s to

yield

(4.20) g%-[0(s.t) + Ir 0(s + u,t)n(s + u,—u)du]

O

- Q(s + r,t)n(s + r,-r)

+ It-s+jw 0(s + u,t)n(s + u,-u)p(-u)du

r

_B (”j

=8 p(s-t-jw)[Y(t)](s-t—jw)

for s < t. Note that

ess supIp(s - t - ije-ij[Y(t)](s - t - jw)I

SS:

_<_ y(jw) le'ijI -ess supI[‘f(t)](s - t - jw)p(s - t)I

Sgt

[g y(jw)Ie—ijl - constant
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which tends to O as j 4 a since IuI > rp(w) and

0(e—Bw) = [i]. Also, for all j sufficiently large,

t-s+jw
II 0(s + u,t)n(s + u,-u)p(-u)duI

r

t-s+jw leB(t-s-u)l.

-S I IA(S + u)I°ITI(S + u.-u)Ip(-u)du

r

S.It—S+jw Ie-BuIP(-u)du - constant

-r

S.Ia Ie-BuIP(-U)du . constant < a

-r

Iby the properties of 0 and n. Therefore, we are

justified in taking the limit as j 4 a in (4.20) to find

(4.21) é%'[0(s.t) + Ir 0(s + u,t)n(s + u,-u)du]

O

- (T(s + r,t)n(s + r,-r)

+ I” 0(s + u,t)n(s + u,-u)p(-u)du = 0

r

for s < t. (3

This result motivates the consideration of the "limit

adjoint equation"

(4.22) g%~[z(s) + Ir z(s + u)n(s + u,-u)du] - z(s + r)n(s + r,-r)

O

+ I" z(s + u)h(s + u.-u)p(-u)du = o: s < t,

r

‘with initial condition z(t + u); u 2:0 being defined by

an element of X9 = [measurable a:[O,-) 4 If! I var (a) +

[O,r]

I” Ia(u)Ip(-u)du < a}. To the set X9 we give the norm

r
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IOI = I0L(O)I + var ((1) + I I0I(u) Ip(-u)du
O

O,r] r

and thereby make X? a Banach space.

Lemma 4.11. Equation (4.22). with initial date defined
 

by

(4.23) z(t + u) = a(u), u'2 0

where a 6 X0, has a unique solution defined for all

s < t which is locally of bounded variation in s.

Proof: This result can be derived from Theorem 32.1

of Hale [11] since for t - r.g s < t equation (4.22)

reduces upon integration to the form

z(s) + It z(u)n(u,s - u)du = X(u)

s

'where X is of bounded variation on [t - r,t]. The

argument can then be repeated on [t - 2r,t - r], [t - 3r,

t - 2r], etc. D

If 2 solves (4.22)—(4.23) we define for s‘g t the

function 2S 6 X9 by zs(u) = z(s + u) for u]; 0. The

map T0(t,s)zt = 25 can easily be seen to be a linear

Operator defined on X0. In fact, following arguments in

Hale [11] and Hale [12] one can show

Lemma 4.12. The map To(t,s):Xp 4 X9 is a bounded
 

linear Operator with re(TO(t,s)) g rp(t - 3). Thus, any

u E U(To(t.s)) n [AIIAI > rp(t — 5)} is a normal eigenvalue

for To(t,s) .
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The connection between solutions of (4.22)-(4.23)

and the solutions Of the adjoint equations (3.20)-(3.21)

is given by

Lemma 4.13. If y solves (4.22)-(4.23) then there is
 

'k

a unique I E X defined by a for which y solves (3.20)-

(3.21).

Proof: Assume t - r.g s < t. we may integrate the

equation

0 = é%-[y(u) + I:_u y(v + u)n(v + u,-v)dv

+ Ir a(v + u - t)n(v + u,-v)dv]

t-u

- a(u - t + r)n(u + r,-r)

+ I. a(v + u - t)n(v + u,-v)dv

r

from s to t to find that

y(s) + It_s y(s + v)n(s + v,—v)dv = I(s - t)

0

where I(u); -r g,u g,0 is defined by I(O) = 0 and

(4.24) I(u) = 0(0) + Ir a(v)n(t + v,-v)dv

0

— IrIu d(v)n(t + v.u - v)dv

+ It [IG'G(W'+ v - t)n(v +‘w,4w)p(4w)dw

t+u r

- a(v - t + r)n(v + r,-r)]dv.
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For u < -r, we define

(4.25) I(u) = —p-1(u)I'(z(v)n(t + v,u — V)P(u - v)dv.

O

As in the autonomous case (see Theorem 2.18), I is left

continuous on [-r,0), of bounded variation on [-r,0] and

essentially bounded on (-o,-r). Differentiation of

(3.20) for s — t < -r with I defined by (4.25) reveals

that y solves this "differentiated" form of (3.20) for

s < t — r, with

y(t - r) = -Ir y(t - r + u)n(t — r + u,-u)du

0

-+ I(-r).

By the uniqueness of solutions to (3.21)-(3.22), the

lemma is proved. D

Note that if I is given in terms of a 6 X9 by

equations (4.24)-(4.25), then I(0-) = 0(0). we shall say

that I is "defined by a at t" or "a defines I

at t" provided a defines I via equations (4.24) and

(4.25).

At this point, we introduce a bilinear form (0L,qp)t

defined for a 6 X0 and m E X which plays a role analogous

to that of (a,m) in the autonomous case. In that situa-

tion, OT 6 X. For a 6 X9 and m 6 X define
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~O

(amp)t = d(0)e(0) + . [dsI:+S G(u)n(t + u,s - u)du]e(s)

-r

+ I0 [‘I“' a(u)n(t + u,s - u)p(s - u)du

-r r+s

- a(s + r)n(t + s + r,-r)]¢(s)ds

+ I-r [I”(3(u)n(t + u,s - u)p(s - u)du]m(s)ds.

-m 0

In the special case of finite delay, n(t + u,s) = 0 for

s < -r and 3.2 O. The last two integrals reduce to

-I0 a(s + r)n(t + s + r,—r)¢(s)ds

-r

and (a,cp)t becomes the classical bilinear form of Hale

[11]. Clearly, (-,-)t = (-,-)t+w for all t.

Lemma 4.14. If 0 defines I at t, then for all
 

m 6 XI <¢ICO> = “(alm)to

Proof: This is simply a matter of substituting

the expressions (4.24)-(4.25) into the bilinear form (-,-)t

and noting I(O-) = 0(0).

See the proof Of Lemma 2.19. D

Theorem 4.15. If a defines I at t then
 

O . *

T (t,s)a defines T (t,s)I at s.

Proof: The proof is similar to that of Theorem 2.20.
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'k _

Let y(s,t) = [T (t,s)I](0 ). By the uniqueness

of solutions to the adjoint equation and Lemma 4.13,

y(s,t) = y(s), where y(s) is the solution of (4.22)

with yt = a. By equation (3.18),

[T (t,s)I](u) = I(u + s - t) +I y(s + v)n(s + v,u - v)dv

O

for u < 0. For u < -r, this may be differentiated

with respect to u to find

*

P(u)[T (t.s)I] (u)

= p(u + s - t)I(u + s - t)

_ $6-8 y(s + v)n(s + v,u - v)p(u - v)dv

= -I; a(v)n(t + v,u + s - t - v)p(u + s - t - v)dv

- Iz-S y(s + v)n(s + v,u — v)p(u - v)dv

= —I; y(s + v)n(s + v,u — v)p(u - v)dv

by (4.25). Comparing with (4.25), we see that

'k

[T (t,s)I](u) is defined by yS at s for u < -r.

Similar Eht more complicated calculations for -r g,u g,0

*

show that [T (t,s)I](u): u g.o is indeed defined at s

by ys. U

Corollary 4.16. If I is defined at t by a,

then for all s S,t and m E X,
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-<WIT(toS)Cp> = ”(T* (tos) IIICD>(aIT(to 8) Cp)t

(T0 (1:. em...) 5.

Proof: This is immediate from Lemma 4.14 and the

previous theorem. [3

§4. The Dual Basis and Sppce Decomposition

‘We are now able to apply the results of the previous

section to the calculation of the "dual" basis associated

*

to the generalized eigenspace Of P (t) - uI.

Theorem 4.17. Let u be a characteristic multiplier

with IuI >rp(w). Define B, Y(t) and (\(t) as in

Lemma 4.9. Then Y(t) is defined at t by 0t(-,t),

which is a basis vector for the generalized eigenspace

of T°(t + (u,t) — (E = p°(t) - (.1.

Proof: The fact that Y(t) is defined at t by

Qt(-,t) follows immediately from Lemmas 4.10 and 4.13.

The calculations of Lemma 4.10 show that the rows of

0t(-,t) are elements of X9.

To Show the remainder of the theorem, first assume

a 6 X0 and (P0(t) - uI)ma = O for some mi; 1. If I

is defined at t by a, then Theorem 4.15 and Corollary

0 m * m

4.16 ShOW’ O = ((P (t) - uI) I.cp)t = ((P (t) - ul) I.m>

for all cp e x. Thus. I e 72(p*(t) - ulIk and there
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exists a d-vector, b, such that I = bY(t). (we

*

assume d = dim n(P (t) - uI)k.) Therefore, I is seen

to be defined at t ‘by ‘bnt(-,t).

Claim. :bnt( ,t) e n(99(t) - ui)k.

Proof of claim: From (4.17) it follows that
 

flt+w(-.t + w) = Ot(°,t). Using the definition of

To(t + w,t) and (4.17) we have

T0(t + w.t)0t('.t) T°(t + m.t)0t+w('.t + w)

Ot(°ot + L”) = eBth+m(°lt + 0))

eBwnt(-.t).

Thus. (P°(t) - u1)knF(-.t) = (eBw - uIIkflt('.t) = o

Bw _ k

since (e HI) = O. The claim is verified.

Claim. 0. = th(°,t).

Proof of claim: Define v = a - th(-,t). Then v

is an element of the generalized null space of Po(t) - uI

and defines at t the element 0 E X*. The solution of

the adjoint equation (3.20) associated with O is O for

s < t. Thus, the solution of (4.32) with initial value v

is 0 for s < t.

By Lemma 4.12, H is a normal eigenvalue for Po(t).

Arguing as in §1, the dimension of the generalized null
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space of Po(t) — uI is finite (say, equal to q) and

invariant under P0(t). Let (cl....,aq} be a basis

for the generalized eigenspace fl(Pp(t) - (II)k and

X.= (cl....,dq) be the associated basis vector.

There exists a q x q matrix, D, such that P0(t)X.= DX

and 0(D) = {u}. If h is the q-vector such that

a = bx, then for mug l,

0 0 mb m
T (t + mw,t)bX.= [P (t)] X.= bD x.

Considering the definition of T0(t,s), we must conclude

that a is zero on [O,m]. However, since m‘2 1 was

arbitrary, the claim holds true.

Thus, we have shown that T(P*(t) - (II)k is spanned

by linear combinations of the elements defined at t by

the basis elements of n(P0(t) - pI)k. Finally, we note

that the rows of Qt(-,t) are linearly independent since

if b0t(-,t) = O for some d-vector, b, then

0 = (b0t(°.t).9(t))t = <bY(t).§(t)> = b. D

The following may be "added in proof".

Corollapy 4.18. If u is as above, dim n(P*(t) - u1)k
 

= dim n(PO(t) - p1)k. In fact, the linear mapping that

associates to each a E W(Pp(t) - pl)k the element of

'1:

N(P (t) - u1)k it defines at t is a 1-1, onto map.
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We are now able to give a complete description of the

projection Operator U(t):X 4 H(P(t) - “1)k for p a

characteristic multiplier with IuI > rp(w). we will

assume, as before, that d = dim fi(P(t) - III)k and

@(t), Y(t) are the usual basis vectors.

As in the general setting of §1, H(t)¢ = 9(t)<Y(t),¢>.

For the FDE (4.10), Corollary 4.8 gives the general form

for T(t). By the previous theorem, we may find a basis

vector Qt(-,t) for n(PO(t) - uI)k that defines

Y(t) at t. The general form of 0#(-,t) follows from

(4.17). Applying Lemma 4.14, we see

(4.26) H(t)m

a _r£(-)eB(°)(e-B(.)At(°).m)t-

Similarly. nT(t)I = <I.rt(-)eB(">e‘B(')At(o) for I e x*

_B(.)At

-(G.T£(-)eB(.))te

defined by a E X0 at t.

and u*(t)I (-) if I is

We close this section with the associated decomposition

of the variation of constants formula (3.24) at a character-

istic multiplier u. As in Chapter III, §3, we define

O, u < O

6(u) =

I, u = 0

where I is the n x n identity matrix.
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Theorem 4.19. If x is a solution of (4.10)-(4.11)
 

for t.2 s and u is a characteristic multiplier of

(4.10) with [“1 > rp(w), then x = n(t)xt + fl’(t)xt
t

with II(t)xt and TI'(t)xt = [I - H(t)]xt satisfying the

integral equations

(4.27) H(t)Xt = T(t,s)n(s)xS + It T(t,u)n(u)5h(u)du

S

(4.28) n'(t)xt = T(t,s)n'(s)xs + It T(t,u)n’(u)ah(u)du.
S

respectively.

Proof: The fact that T(t,s)fl(s)6 is actually

well defined follows by an argument similar to that of

Section 36 of Hale [11].

Now, if x is as described, then by Chapter III, §2,

xt = T(t,s)m + K(t,s)h. Therefore,

r1(t)xt T1(t)T(t,s)xs + TI(t)K(t.s)h

T(t) (Y(t) .T(t. s)xs> + 9 (t)<‘1’(t) .K(t.S)h>

* *

T(t—KT (t.s)‘f(t).xs> + T(t)<K (t.S)Y(t).h>

T(t.s)i(s)e'B‘t'5)<eB(t'S’ Y(3).xs>

+ 6(t)It [T*(t.u)I(t)](o')h(u)du
S

by equations (4.4), (4.5), (3.24) and Corollary 3.10.

Consequently,
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B(t-u)

n(t)xt T(t.S)9(S)<Y(s).XS> + It t(t)<e Y(u).6>h(u)du
O

-B(t-u).

T(t.s)II(8)xs + It T(t.u)§(u)e

S

eB(t-u)

< Y(u) I O>h (u) all

T(t.s)Ii(s)xS + It T(t.u)T1(u) 6h(u)du.

5

Equation (4.28) follows since H’(t) = I - m(t). I]

As in the finite delay case. equation (4.27) is equiva-

lent to an ordinary differential equation. That is, if

y(t) is the d-vector such that T(t)y(t) = H(t)xt, then

6(t)y(t) = T(t.s)§(8)<Y(s).xs>

+ 6(t)I: [T*(t,u)Y(t)](O-)h(u)du

= T(tIeBIt—S)Y(s) + (“t)I't 0(u.t)h(u)du.

s

Therefore,

y(t) = eB(t-S)y(s) + It eB(t-u)A(u)h(u)du

s

which may be differentiated with respect to t for t > s

to yield

{((t) = By(t) + A(t)h(t).
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§5. Stability Of Linear Periodic Systems
 

Theorem 4.6, when applied to (4.10)-(4.11) can be

used to derive a generalization of the usual criteria for

the stability of linear periodic ordinary differential

equations. (See YOshizawa [40].) Throughout this section

it will be assumed that h _ O in (4.10).

Definition 4.20. (i) The zero solution of (4.10)
 

is called stable if for every 8 > 0 and s 6 I! there

is a 6 = 6(c.s) > 0 such that ImI < 6 implies

Ixt(s,¢)I < e for all t'2 3.

(ii) The zero solution of (4.10) is called

asymptotically stable if it is stable and there exists

an H = H(s) > 0 such that ITI < H implies

lim Ixt(s,¢)I = 0.

t4a

(iii) The zero solution of (4.10) is called uniformly
 

stable provided it is stable and the 6 in (i) is inde-

pendent of s.

(iv) The zero solution of (4.10) is called uniformly

asymptotically stable if it is uniformly stable and for all

v > O and s 6 I! there exists a T = T(v) > O (inde-

pendent of s) and K > 0 (independent of s and v)

such that ImI < K implies Ixt(s,m)I < v for all

t > s + T(V).
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From the linearity and periodicity of (4.10) we

have

Lemma 4.21. The zero so1ution of (4.10) is uniformly
 

stable if it is stable. The zero solution of (4.10) is

uniformly asymptotically stable if it is asymptotically

stable.

The proof is the same as for the analogous result for

ordinary differential equations. See YOshizawa [40].

As in Chapter II, §1 and Chapter III. §4 we define

B = infic 6 Tzlfo ecsp(s)ds < a].

Theorem 4.22. Assume B < O. (i) The zero solution
 

of (4.10) is uniformly asymptotically stable if and only

if all characteristic multipliers of (4.10) have moduli

less than 1.

(ii) The zero solution of (4.10) is uniformly stable

if and only if all characteristic multipliers of (4.10) have

moduli less than or equal to l and if u is a character—

istic multiplier with Iul = 1 then all solutions of

(4.10)-(4.11) with initial value in m(T(w.0) - (.1)k are

bounded.

Proof: By Lemma 3.19, rp(w) < 1. Thus, there

exists a v > 0 such that any u 6 0(T(w,0)) with
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IuI > 1 - v is a characteristic multiplier of (4.10).

The remainder of the argument follows along the lines of

the proofs of Corallaries 35.1 and 35.2 of Hale [11]. [3

Similar also to its counterpart in Hale [11] is

Theorem 4.23. Assume IulI _>_ [(12] 2...2 IUiI 2...

are the characteristic multipliers of (4.10) with

IuiI > rp(w) for i = 1.2.---. Let Hi be the projection

of X onto m(T(w.O) - ui) 1. If Zinim converges and

l

E = T - ZDHim, then Ixt(0,E'p)Ieat 4 0 as t 4 a for all

i

a >.5,

Proof: This is immediate from Lemma 3.19 and
 

k.

Theorem 4.6 Since the projection of 8 onto N(T(w.0) - ui) 1

is zero for any characteristic multiplier ”i ‘with

IuiI > rp(w)- L3

The analogue of the previous theorem for the autonomous

system (2.1)-(2.2) is given by

Theorem 4.24. Define A(A) by (2.9) and HA as in

Theorem 2.24. Let S = {A E CIRe A >’5 and A(A) = O}.

 

If 2) “Am converges and E = T - Z) film. then the

AES _ AES _

solution xt(m) of (2.1)-(2.2) with initial value x0 = T

satisfies Ixt($)IeOLt 4 0 as t 4 +o for every a > B.
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3522:: Let T(t); t 2:0 be the strongly continuous

semi-group and A be the infinitesimal generator associated

with (2.1)-(2.2). By Lemma 22.1 of Hale [11] and Theorem

3.21. if x e s. then fl(T(l) - ail)k is the closed

linear extension of the linearly independent eigenspaces

k.

n(A - AiI) 1, where the Ai are those elements in S

A-

satisfying e l = ex.

We define a l-periodic family on X by T(t,s) =

T(t — s), t‘2 s. It follows that the collection of

characteristic multipliers, u, Of T(t,s), t:2 s ‘with

IuI > rp(1) is given by Ln = eA‘I). 6 S}.

By Theorem 4.6, it suffices to show that E has no

nonzero projection onto any of the eigenspaces

fl(T(l,0) - eI‘I)k = m(TIl) - exl)k for A 6 s. However.

this follows easily from the aforementioned lemma of Hale.

§6. The Fredholm Alternative for Forced Periodic Systems

As an application of the previous sections we derive

a generalization of the classical Fredholm Alternative

known for linear periodic systems of ordinary differential

equations. (See Hale [13].) Throughout this section, the

B previously defined will be assumed negative. One lemma

is needed in preparation.
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*

Lemma 4.25. T (w,0)I = I if, and only if I, is

defined at u) by an urperiodic solution to (4.22)-(4.23).

That is, there exists a zw E X0 which defines I at w

and Tp(uh0)zw = zw.

Proof: Assume I is defined at u) by zw 6 X9

and Tp(uh0)zw = zw. Theorem 4.15 shows T*(uLO)I = I.

Conversely, if 0 #'I E fl(T*(uh0) - I), Lemma 3.22

and Theorem 3.18 show 1 to be a normal eigenvalue for

T(w,0). Because n(T(w,O) - I) c:n(T(w,O) - I)k, I is

defined at 0 by some a €‘fl(To(w,0) - I)k. Theorem 4.15

shows To(m,0)a to also define I at 0. By Corollary

4.18 we must conclude that Tp(uh0)a = a. The solution,

2, of (4.22)-(4.23) with zw = o is the desired periodic

solution which defines I at w. [3

Without loss Of generality, we may assume 3 = 0 in

(4.10)-(4.11).

Theorem 4.26. Assume B < 0. The problem (4.10)-

(4.11) has an urperiodic solution if. and only if,

(4.29) Iw z(u)h(u)du = o

0

for every urperiodic solution to (4.22)-(4.23).
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2599;: Since the solution of (4.10)-(4.11) is

given by xt = T(t,0)¢ + K(t,0)h, (4.10)-(4.11) has an

urperiodic solution if, and only if, K(w,0)h 6.8(T(w,0) - I).

Under the assumption B < O, 1 will either be a normal

eigenvalue for T(w.0) or in the resolvent set of T(w,0).

In either case, E(T(w,0) - I) is closed. Thus (4.10)

has an urperiodic solution if and only if <I,K(w,0)h> = O

for all I e 72(T*(m.0) - 1).

*

Assume I 6 fi(T (w,0) - I). Recall from Corollary

3.9 that

U) 'k .—

(4.30) <I.K((l).0)h> -I ['r (w.u)I](O )h(u)du

0

-Iw z(u)h(u)du

0

where z solves the adjoint equation (3.21) associated

to I for s < w. Since I 6 W(T*(w,0) - I)k, Lemma 4.10

shows 2 to solve (4.22), and the previous lemma shows

2 to be urperiodic. Conversely, if z is an urperiodic

solution to (4.22) and 2m defines I at m. then the

*

previous lemma shows I e‘fl(T (w.0) - I).

In light of (4.30), we conclude that <I.KKuh0)h> = 0

for all I e 72(T*(w.0) - I) if. and only if, (42.9) holds

for all urperiodic solutions to (4.22)-(4.23). D
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In some applications it is the case that the measure

defining L(t,-) takes a special form from which it can

be shown that the limit adjoint equation actually has

absolutely continuous solutions. Fer example, consider

the situation when

m

(4.31) L(t,cp) = kzl Ak(t)cp(-rk) + I0 B(t.s)P(s)cp(s)ds

where O g:rl g,..g rm = r and the n x n matrices Ak(t)

are continuous and.urperiodic in t. we assume also that

B(t,-) is essentially bounded on (-cu0] for each t

and B(t,s) is continuous and urperiodic for almost every

fixed 3 g_0. Then fi(t,s) takes the form

I“

(4.32) "(t,s) = - Z (t))( (s) — ° B(t,u)p(u)du

n k=l A" I"°°"rk] Is

for s < 0, where X (-) is the characteristic

('"o’rkJ

function for the interval (-a,-.k]. The system (4.10)

becomes

. m

(4.33) x(t) = 23 Ak(t)x(t - rk) + I0 B(t,s)P(S)x(t + s)ds
k=1 —a

+ h(t)

and (by computations similar to those in Hale [11]). the

adjoint system (4.22) becomes

, m

(4.34) z(s) = - Z) z(s + r ) (s + r )
k=1 k Ak k

- I” z(s + u)B(s + u,-u)p(—u)du.

0
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The initial value for the adjoint system may be assumed

continuous on [O,r] and integrable with respect to

P(-UI on [r,c).



CHAPTER V

BEHAVIOR NEAR PERIODIC ORBITS

§l. Differentiability of the Solution Map
 

In this chapter we shall apply the results Of the

previous chapters to the study of the behavior near

periodic solutions to autonomous non-linear FDE's. In

particular, we consider

(5.1) g(t) = f(xt). t > o

where

(5.2) x0 = m 6 X

where f:X 4 151 is continuously Frechét differentiable

(C1). The derivative of f at $0 6 X will be denoted

by Df(¢0) or f(¢). It can be shown by standardD

¢=¢b

techniques that (5.l)-(5.2) always has a unique solution,

x(m), *which depends continuously on its initial data. That

is, if m(m) 4 m in X, then x(m(m)) 4 x(m) uniformly

on compact subsets of its domain of definition.

If x = x(mo) solves (5.l)-(5.2) with x0 = 90 e X,

we define L(t,°):X 4 If} by L(t,m) = Df(xt(wo))m for

102
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t:2 0. Under the assumption that f is C1, t 4 L(t,-)

defines a continuous map of [0, as) into £(X,1Rn), the

Banach space of all bounded linear Operators from X into

n
It. This clearly implies L(t,¢) is continuous in t

and m. Thus, Theorem 3.1 assures us that the "linearized"

system

(5.3) 2(t) = L(t,zt), t > s _>_ 0

(5.4) z = cp 6 x
s

has a uniquely defined solution on (s,«). For (5.3)-(5.4)

we define the associated (linear) solution map by

T(m07t,s)m = zt(S.¢)

for t:2 s, where z(s,¢) is the solution of (5.3)-(5.4).

As usual, we represent L(t,-) by the n x n matrix

valued function n(t,-) described in Chapter III. We

remark that under the assumptions on L(t,-), fi(t,u) can

be shown to be continuous in t for fixed u. See Kato

[21] and Riesz and Sz.-Nagy [32] for related matters.

1

Theorem 5.1. Let f be C and x(m)‘ solve (5.1)-

(5.2). For all t:2 O, the map m 4 xt(¢) is C1 and,

 

in fact,

(5.5) Dw:¢0 Xt(m) = T(mo7t,O).





104

Proof: Since the assertion is trivial for t = O,

we will assume t >:O. For m0 6 X and m E X define

y(O) = x(m + To) - x(mo). Then yo T and for t > O

T(t) = *(¢b + u)(t) - £(uo)(t) = f(xt(cp0 + 6))

— f(xt(mb)) = D f(v)[yt(o)] + N(t.yt(m))
v=xt(¢b)

where

(5.6) N(t.\)) = f(v + xt(cpo)) - f(xt(cp0)) - Df(xt(cpo))v.

Note that Dv=0 N(t,v) = N(t,0) = 0 for all t >:O and

that N(s,ys(¢)) is continuous in s for 0.S s:g t.

Therefore, (writing T(t,0) for T(go;t,0)),

(5.7) yt(m) T(t.o)m + K(t.0)N('.Y.(O))

T(t.o)e +I’t T(t.u)5N(u.yu(u))du
0

'where for s:g 0,

[It T(t,u)6N(u.yu(m))du](s) = It [T(t.u)6](s)N(u.yu(¢))du.

O 0

It suffices to show

IcpI-1 ° SUP IIt [T(t.u)6](s)N(u.yu(m))duI 4 0

sgo 0

as m 4 0. However, for any 3 3:0,

lit [T(t.u)51(s)N(u.yu(m))du| g It IT(t,u)I°IN(u,yu(¢))Idu
O O

s. It I'r(t.u)ldu . 6(6) - I6!
0
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with the constant c(O) 4 0 as O 4 0 because of the

continuous dependence of yu(O) on O at O = O and

the prOperties of N. [3

Corollary 5.2. Let To > 0 and consider the system
 

(5.8) S(t) = f(xt.v). t > o

(5.9) X0 = O 6 X

IyI < IO' where f(O,y) is Frechét differentiable

in (O.Y). The map (O.Y) * XtITrY) is C1 for IYI < to

for

and (p 6 X.

Proof: The above follows immediately from Theorem 5.1

if we consider the n + 1 dimensional system

y 0

_d_ I I = [ I . t>o

dt x(t) f(xt.y)

with the initial data defined at t = O by

[g]. D

§2. The Poincare Map

Assume now that (5.l)-(5.2) has an urperiodic solution,

p(t). That is, for all t 6 JR,

(5.10) PM = fIPt)

and

(5-11) P(t + w) = P(t)-
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In order to study the behavior of (5.l)-(5.2) for initial

values, m, near p0, we consider y(t) = x(t) - p(t),

where x = x(m) solves (5.l)-(5.2). Then for t > 0,

(5.12) y(t) flfl-fifi)=flfi)-fl%)=fl%+yg-f®9

Df(pt)yt + N(t.yt)

and

(5.13) Yo = cp e x.

Here, N is defined as in (5.6) and is urperiodic in t.

Let 2 be the solution of the associated "linearized"

(periodic) system

(5.14) z(t) = Df(pt)zt. t > s

(5.15) zS = m 6 X.

The solution map associated with (S.l4)—(S.15) will be

denoted by T(t,s) (the dependence upon pO ‘will be

suppressed). Since (5.14)-(5.15) is a linear periodic system

we will have the associated space decomposition at character-

istic multipliers of the periodic family T(t,s), t > s.

In fact, from the differentiability of f, (5.10) and

(5.11) it follows that fit is an w-periodic solution to

(5.14) with s = o and 20 = 150. In what follows, we will

assume that the periodic solution. p(t), of (5.1) is

nonconstant. In addition, it will be assumed throughout

the remainder of the chapter that
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B = inf[c E fillfo ecsp(s)ds < a)

-a

is negative. Therefore, pb 6 fl(T(uhO) - I) is non-zero

and (by Theorem 3.18 and Lemma 3.19) l is seen to be a

characteristic multiplier for (5.14)-(5.15). Following

Chapter IV, we have

k k

X = N(T(w.0) - I) ®(€(T(w.0) — I)

with fl(T(w,O) - I)k the generalized eigenspace associated

‘with l. we will write

F = lemme) - 1)k.

Recall that T(w,0) is invariant on F and U(T(w.0)lF) =

CT('I‘(u).0))\ [1}.

Definition 5.3. The periodic orbit O’= Llipt} is

t

said to be nondegenerate provided dim.n(T(w.0) - I)k = 1.

Because dim n(T(t + w,t) - I)k is constant in t,

we see that nondegeneracy does not depend on the particular

element from 0 ‘we refer to as p0. ‘We will choose p0

as the basis vector for n(T(w.O) - I) and denote by w

* *

the unique element from X that spans n(T (w.0) - I)

and satisfies <¢,po> = 1.

Lemma 5.4. There exists an Open neighborhood, U,
 

of po in X satisfying: for any m e U there exists a

t E (0,2m) such that xt(¢) E F + p0 = {5 + pOIE E F}.
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Proof: For 5 > -w and m E X define the function

H(s.m) = <¢,xs+u#m) - p0), where W is as above. Clearly,

H(s,po) is differentiable in s and DS=OH(s,pO) =

<¢.ku}p0)> = <¢.po> = 1. Thus, for s sufficiently small,

(5.16) H(s.po) = H(o.p0) + n ) + R(s)
s=0H(S'pO

=O+s+R(s),

where Isl.1 - IR(s)I * O as s 4 0.

Recall from Chapter III, §4 that the projection

H:x 4 fl(T(uhO) - I) is given by Hm = po<w.m>. By the

closedness of F, the assertion will follow if we can

find, for Io — pol sufficiently small, an s 6 (-w.w)

for which H(s.¢) = O. In light of (5.16), this is equiva-

lent to finding an s 6 (-w.w) satisfying

5 = H(S.p0) - R(s) - H(s.cp).

That is, for [m - pol sufficiently small we must find a

fixed point of the real valued map

6(8) = ((1.): (p0) - xs+w(cp)> - R(S).
S+w

Choose 30 < 1 from (O.w) sufficiently small so

that lR(s)| g_% sols] fOr Isl S so. By continuous

dependence, we may choose [m - pol small enough so that

1

l<¢"’<s+w(po) — xs+w(o)>l S 5 S0

for -m.g 3.3 -w + so. Thus,
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1

|G(s)l g,§ sO + % 30's 30

for any Isl g 50' By the continuity of G. there is a

fixed point of G in [—so.so]. [3

we now proceed to the definition of the Poincare,

Map under the assumptions that B < O and w > r. As in

§4 of Chapter II, let g(t), t'g 0 denote the solution

semi-group associated with the trivial system x = 0.

*

Again, AO will denote the adjoint of the infinitesimal

generator of S(t), t‘2 0. See Chapter II, §4.

Lemma 5.5. Let W be as above, and assume that

'k * . .

S (th) 6 MAO) for all t in a neighborhood of (1)- Then

the map H:X x (0.a) 4 n! defined by

H(cp.t) = <¢.xt(cp) - p0>

is C1 in a neighborhood of (p0,w).

H(cp.t) = <W.Xt(cp) - p0) = <).s(t)cp> + <¢.xt(op) - S(t)cp>

<s*<t>).cp> + Jot [dwuntxtm (u) - own

= <S*(t) (up) + J": “u)p(u) [xt(cp) (u) - cp(0) ]du

+ I: [d)(u)][xt<cp)(u) - MOH-

Since 5*(t)( e .D(A:;) for all t in a neighborhood of w,

the first term is differentiable. In fact, if to < w

* 'k

and S (tOH' E 3(AO) then
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d * * * * * *
a? (3 (t) w-cp> = (hos (t))).cp> = (A03 (1: - to)s (to) ).cp>

* 'k *

<s (t - tomos (to)(«.cp>

**

(AOS (to)¢.S(t - to)w>

for all t > to. By Theorem 2.5 and (2.19), pw is left

continuous and of bounded variation in a neighborhood of

-w- It follows that the remaining terms are C1 in t

near (0- C]

Before we continue, we should comment on the condition

"S*(t)(( 6 g(AS)" that appears in the previous lemma. Our

work in §3 and §4 of the previous chapter is in some cases

helpful in verifying this hypothesis. Recall from (4.25)

that for s < -r,

¢(s)p(s) = -j'° a(u)n(u,s - u)p(s - u)du,

0

where a is the element of n(To(w,0) - I) that defines

w at 0. Thus, from (2.19), if t > r it follows that

W .1.

[S (t))](s) [1)](8- 1:) =P(s -t)\)(s-t)

= -I°a(u)n(u,s - t - u)p(s - t — u)du

0

*

for s < 0. Since S (t)w is absolutely continuous on

[—r,o), the three conditions of Theorem 2.5 reduce to that

w(s) = I"a(u)n(u,s - t - u)p(s - t - u)du

0
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is (i’) of bounded variation and left continuous on

[-r,0), and (ii’) locally absolutely continuous on

(-¢,-r) ‘with p.1 essentially bounded on (-a,-r).

These hypotheses are trivially satisfied for the finite

delay case since n(t,v) = 0 for all v < -r.

FDr an infinite delay example we consider a model

from mathematical biology. The scalar equation

(5.17) h(t) = -a[x(t) + ljj'l x(t + s)beb‘3+1)ds

where a,b > O arises in the description of population

oscillations observed in single species communities. (See

May [27].) For this equation, the obvious choice for p

bs
is p(s) = e and r = 1. Clearly B = -b < 0 and

(5.17) takes the form (5.1) for

1 b
f(m) = -a[m(0) + 1]IP ¢(s)be p(s)ds.

-u

If p(t) is a periodic solution to (5.1), then it is

easily verified that

eb (5+1)

naptm = -a[p(t) + 1])‘1 b m(s)ds

(3+1)
- a[J‘-1 p(t + s)beb ds]¢(0).

Thus, n(t,u) = -a[p(t) + 1]eb for u < -1. Conditions

(i’) and (ii’) hold trivially since

w(s) I"<3(u)[a(p(u) + 1)eb]eb(S-t_u)du

0

= constant - ebs.
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Corollary 5.6. For v0 > 0, consider the system

(5.8)-(5.9) under the additional assumption that f(-,O) =

f(-). For W as above, if 8*(t)¢ 6 fi1Ag) for all t

in a neighborhood of w, the map G:X x (-yb,yb) x (0,») 4

JR defined by G(cp,y,t) = <),xt(cp,y) - p0> is c1 in

a neighborhood of (p0,0,w).

The proof, which will be omitted, follows very

closely that of Lemma 5.5 and makes use of Corollary

5.2.

Lemma 5.7. Assume 5, w and w are as above.

Assume also that S*(t)w 6 B(Ag) for all t in a neighbor—

hood of w and the orbit, 0, is nondegenerate. There

exists a neighborhood, U’, of 0 in X and a Cl real

valued function, T, defined on U’ such that T(O) = w

and

for all m e U’. If U’ is chosen sufficiently small,

T is positive, bounded and unique.

Proof: Consider G:X x (O,¢)‘4 3! defined by

G(¢,t) = <¢,xt(¢ + p0) - p0>. Lemma 5.5 shows G to be

C1 in a neighborhood of (O,w). Note that G(O.u9 =

<u).xw(0 + p0) - po> = ((npw - p0> = o and
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Dt=w G(poot) = <¢wa(o + PO)> = (erw> = <¢0p0> = 10

By the Implicit Function Theorem [23], there exists a

neighborhood U’ of O E X and a C1 function T for

which T(O) = u) and G(cp,T(q))) = 0. That is,

(W’XT(CP) (CD + PC) "' P0) = 0.

As remarked in Lemma 5.4, this is equivalent to saying

XT(¢)(m + p0) - pO 6 F.

The uniqueness of T follows from the statement of the

Implicit Function Theorem. The other properties of T

follow from its smoothness near 0. I]

we are now able to define the Poincare Map in the

neighborhood U F n U’, ‘where U’ is given in the
F

previous lemma. 'We define 0:UF 4 F by

9(0) = XT<CP) (CD + p0) - po’

Then 9 is a C1 function on UF and 0(0) = O. NOte

also that

D9(O) = Dcp=0 xflo) (cp + p0) + XT(0) (0 + PC) ° Dcp=0 T(cp)

mEF ¢€F

- Dcp=0 xw(¢ + p0) + pm ° Dcp6F T(O)

mEF

T(w.0)lF + pO ° DCPEF T(O)

by Theorem 5.1. Because D910):F 4 F and p0 E P ‘we must

conclude that DCPEF T(O) = 0. Therefore, D9(O) = T(u»0)|F.
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Under the assumption of nondegeneracy,

G(D9(O)) = 0(T(w.0) 1F) = G(T(WIO))\ {1}°

§3. Nondegenerate Periodic orbits

In this section we apply the Poincare Map to the study

of the behavior of solutions near a nondegenerate periodic

orbit, o»: L)[pt}. As in the previous section, we shall

assume throughout that B < 0 and w 6 X5 is the unique

*

element spanning n(T (w,0) - I) that satisfies

<¢0é0> = 10

we first extend to our class of FDE's the Poincare)

criteria for the "stability" of 0. See Coppel [7] for

the analogous ODE result and Stokes [37] for the extension

to finite delay equations.

Definition 5.8. (i) A periodic orbit, O, is said
 

to be orbitally stable provided: for any a > 0 there
 

exists an open neighborhood V of or in X such that

if cp€V then

dist(xt(m).0) = max{lxt(¢) - pelie E [0.m]} < 6

for t.2 0.

(ii) A periodic orbit, O, is said to be orbitally

asymptotically stable provided it is stable and

dist(xt(m),0) 4 0

as t 4 a for any m €_V (given in (i)).
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Lemma 5.9. Assume p(t) is a nonconstant ur
 

periodic solution to (5.1) with w > r. Assume also that

the periodic orbit, 0, is nondegenerate and 8*(t)¢ E

MAS) for all t in a neighborhood of. u). If all

characteristic multipliers (other than 1) of (5.14) have

moduli strictly less than 1, then 0- is orbitally

asymptotically stable.

'ggggf: Note that 0' is compact. Thus, it suffices

to show there is an open neighborhood of p0 such that

if m is taken from that neighborhood, xt(m) satisfies

the criteria for orbital asymptotic stability. Analogous

neighborhoods may then be constructed at a finite number

of p E 0- to construct the neighborhood V.

9

By Lemma 5.4, there exists an Open neighborhood, U,

of pO ln X such that 1f m 6 U, then xt(¢) 6 F + po

for some t 6 (0,2w). Therefore, it suffices to find an

open neighborhood, B, of po in F + po such that

the elements of B all satisfy the criteria for orbital

asymptotic stability.

we choose U’ to be that neighborhood given in

Lemma 5.7 and UP = F n U’. Recall that for m 6 UF’

0(m) = xT(m)(m + p0) - pb where T is defined on U :>UF

and D640) = T(w,0)lF. Note that 02(m) = 9(0(m)) =
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xT(2;m)(m + p0) - pO where 7(2;¢) = T(@) + T(9(¢))-

Mbre generally,

4km?) = XT(k7CP) (CD + p0) - p0

where

T(k:m) = Z) T(O (¢)).

i=0

It follows that Dék(0) = T(kw.O)IF- Applying Theorem 4.6

to this urperiodic family we see that there exists v >10

and M > 0 such that

[T(ku),0) [Fl 3 Me’Vk‘”.

Let j denote the smallest positive integer such that

Me-ij < 1. By the differentiability of 6* at O, ‘we

may find a, perhaps smaller, neighborhood (also to be called

UF) and a c E (0,1 - Me-ij) such that

19%»! S (Me-Vj‘” + c) IT!

for (p e UF. We define E = Me'VJ‘” + c.

0

may be assumed finite. The differentiability of xt(¢)

Now, let T = sup[T(j:m)Im E U’]. By Lemma 5.7, To

near po implies the existence of a constant K (inde-

pendent of t for 0 g t g To) such that lxt(cp + p0) -

xt(po)[ g K)¢l for m E UF' Thus, if 3 >10 is given

and w is an element of

m%={m€Nwlg$.
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then Ixt(¢ + p0) - pt) < e for oug t'g To. Since (for

all a sufficiently small) B(fi) is contained in UP.

'we have that

93.03959) cB(§° )E
K

and, therefore,

Ixt+T(j:cp)(cP + p0) - Xt(Po)| < § ° 6

for 0.3 t.g To. More generally,

ixt+T(mj:Cp) (‘9 + P0) ' P1:l < gm ° 6

for 0.S t'g T, m.2 0 since g 6 (0,1).

The orbital and orbital asymptotic stability of 0

follow immediately since 5 6 (0,1) and e > 0 ‘was

arbitrary. D

The hypotheses of the previous lemma are by no

means minimal. First, the assumption that w > r may

be removed since we may view p(t) as an turperiodic

solution to (5.1), where L is a positive integer chosen

large enough so that Lw > r. It must then be assumed

that 8*(t)¢ E P(Ag) for all t in a neighborhood of

Lu). However, it is known [18] that 8*(to)¢ E 3(A3)

implies 8*(t)¢ 6 ‘MALE) for all t > to.

Since the characteristic multipliers of (5.14)

correspond to normal eigenvalues of T(m.0), the
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Spectral Mapping Theorem shows the assumption that

o(T(w,0))‘\(13 lies strictly within the unit circle

implies that o(T(zw,0))\{1} = o('r(w,0))‘\{l} also

lies strictly within the unit circle. Since B < O, 1

is a normal eigenvalue for T(Lm,0).

Finally, if 0 is nondegenerate as an.urperiodic

orbit, it is also nondegenerate as an turperiodic orbit.

k
In fact, if cp 6 72(T(Lu),0) - I) but is not an element

of manna) - nk = fl(T(w.0) - I), then E = (T(uwo) - I)

satisfies [T‘dmm +...+ T2(w,0) + No.0) + 11"; = 0.

Thus, 0 e o(['r"'1(m,o) +...+ T(u),0) + 11") and, by the

Spectral Mapping Theorem, there is some l 6 G(T(w,0))

14+
for which 0 = [k ...+ 12 + k + l]k = 0. Therefore,

1-1
0 = [x +...+ l2 + k + 1] and (since all roots

of this equation have moduli equal to l) we conclude that

x = 1. This contradiction shows that dim n(T(tw,O) - I)k

= 1.

Combining these remarks, we have proved under the

ever-present assumption: 5 < 0

Theorem 5.10. Assume p(t) is a nonconstant ur

periodic solution to (5.1) and 0' is nondegenerate.

* *

Assume also that S (thy e 3(AO) for some t 2 0. If

all characteristic multipliers (other than 1) of (5.14)
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have moduli strictly less than 1, then 0’ is orbitally

asymptotically stable.

we next generalize a result of Hale [14] to the

present class of equations.

Lemma 5.11. If 0' is nondegenerate there exists

an Open neighborhood V of 0 such that V \G contains

no urperiodic solutions to (5.1).

Proof: As argued in Lemma 5.9, the compactness
 

of 0, implies it suffices to find a neighborhood of pO

that contains no w—periodic solutions other than the '

elements of 0.

Assume the Opposite. Then there exists a sequence

of urperiodic solutions to (5.1) that approach p0, yet

are not elements of 03 By Lemma 5.4 and the continuous

dependence of solutions on initial data, there exists a

sequence {m(m)};;1 of elements of F that approach 0

(m) cp (m)
and xw(¢

4. p0) = + pO for each m 2 0.

Consider the function G:F 4 F defined by G(m) =

n’[xw(m + p0) - (m + po)] where H’ is the projection

of X onto F. Then, for m.2 l, G(mcm)) = O. NOte,

however, that G(O) = 0 that DG(0) = II’[T(()),0) IF - I] =

T(u).0)lF - I which is an isomorphism under the assumptions
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that 0 is nondegenerate and B < 0. Thus, in a neighbor-

hood of O in F, G is an isomorphism and, therefore,

(m) = 0 for all mone-to-one. We must conclude that w

sufficiently large. This contradicts the fact that the

associated urperiodic solutions to (5.1) were assumed

not tO be elements of 03 D

Along the same lines as the previous lemma, we have

Lemma 5.12. Let W E X* be as above, and assume as

in Theorem 5.10 that s*(t)(y E .D(A;) for some t _>_ 0. If

0' is nondegenerate then for e > O sufficiently small

there exists an Open neighborhood ‘w of 0- such that

W‘\o- contains no Epperiodic solutions with Iw - El < s.

Proof: As argued after Lemma 5.9, we may assume

* *

‘without losing generality that w > r and S (t)¢ E 3(AO)

for all t in a neighborhood of w. Thus, we may define

the Poincare'Map on the neighborhood U given in §2.
F

That 13. 0(m) = xT(m)(¢ + p0) - po ‘where T:UF 4 (O,m)

is C1 and satisfies T(O) = w- By further restricting

UF' ‘we may assume [T(m) - ml < e for all m e UF'

By arguments similar to those in the previous lemma,

it suffices to show that for no $ 6 UF is x_(¢ + p0) =

w

m + po for some E)E (u)- e,u)+~e). It follows from the

construction of T (see Lemma 5.7) and the uniqueness
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assertion of the Implicit Function Theorem that if

m E UF and xm(¢ + p0) = m + p0 for some E satisfying

lw — E] < c, then 3 = T(w). Thus, periodic solutions

to (5.1) with periods near m correspond to fixed points

of 0.

To show that m = O is the only fixed point of 9,

we define Gl:UF 4 F by Gl(¢) = 9(m) - m. Clearly,

G1(0) = o and 961(0) = T(w,0) IF - I, which is an

isomorphism since 5 < O and 0' is nondegenerate. The

Inverse Function Theorem shows G1 to be an isomorphism

in a neighborhood of 0. The result follows immediately. [3

Our final theorem is related to a result of Hale [14].

where an analogue was shown for the finite delay situation

by a different technique.

 

Theorem 5.13. For ‘0 > 0 consider the system

(5.8)-(5.9) under the assumption that f(-,0) = f(-).

Let (5.1) have a nondegenerate periodic orbit, 0,

whose period, m, is larger than r. Let w 6 X* be

as usual, and assume 8*(t)w E .D(A;) for all t in a

neighborhood of m. Then, there exists a neighborhood

V of 0, such that for all y sufficiently close to 0,

(5.8)-(5.9) has a unique periodic orbit, OV' in V of

period w(y). The period, w(y), is C1 in y and
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w(O) = w- Furthermore, OY varies continuously in y

and ob = O-

ggggf: Define G: (0.0) x (-YO.YO) x F 4 IR by

G(t,y,¢) = (w,xt(¢ + po,y) - po>. Corollary 5.6 shows

G to be C1 in a neighborhood of (w,0,0). NOte

that G(uh0,0) = <¢,xw(0 + po,0) - p0) = O and

Dt=w(t,0,0) = <¢,:’<w(o + p0).o> = <)).i>w> = l. The Implicit

Function Theorem implies the existence of a neighborhood,

U, of (0,0) in (-yb,yo) x F and a unique C1 function

T(y,¢) defined on U such that T(0,0) = w and

G(T(y,m),y,m) = O for all (y,¢) e U. The uniqueness

assertion of the Implicit Function Theorem shows that

T(O,m) = T(m) for [ml sufficiently small, where T(m)

is defined in Lemma 5.7.

1
Since T is C in U, we may define the C1

function H:U 4 F by

H(v.cp)=x_ (cp+p.v)-P -cp

T(YICD) 0 0

Then H(0,0) = x_, (F’,O) - p = x (p ) - p = O and

o, = ,o — —

D¢P=° 1“ cp) D€P=°[x7r(o.co)(m+p° ) q) P0]

= Dcp=0 XT(cp) (m + p0) - I = T(u),0) IF - I.

Since 6 < O and 0’ is nondegenerate, this is an

isomorphism. By the Implicit Function Theorem there exists
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a Y1 > O and a C1 function w(Y) E F defined for

lvl < v1 satisfying mm) = o and H(‘(.CP(Y)) = o. We

define m(y) = $(Y:¢(Y)). Then, considering the definition

of H,

xw(Y)(m(v) + po.v) - m(y) - p0 = 0.

Thus, m(y) + pO defines a w(y)-periodic solution to

(5.8)-(5.9). Clearly m(y) and (p(y) are c1 in y,

= 0. By the continuous dependencew(O) = w and m(o)

of xt(m,y) in (¢.y). we see that OY = %’{Xt(m(Y) + Poov)}

varies continuously in y and 00 = O.

The fact that OY is the only periodic orbit of

(5.8) in V follows from the uniqueness assertion of

the Implicit Function Theorem and the form of H. I]
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