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ABSTRACT

DEVELOPMENT OF PSEUDOCRITICAL MIXTURE RULES APPLICABLE
TO THERMODYNAMIC CALCULATIONS IN THE CRITICAL REGION

by John Douglas Stevens

Phase equilibria and other properties of fluid mixtures in the criti-
cal region may be computed thermodynamically if equations of state applie-
cable to this region are available, Such equations of state usually have
generalized forms involving two or more constants and are used in cone-
Junction with mixture rules which express these constants as functions of
composition. The eight constant Benedict-Webb-Rubin equation of stttel
has yielded reasonably satisfactory computations of this type.

This research work was directed toward establishing satisfactory
mixture rules which may be used with a two constapt reduced equation of
state. The derived reduced equation of state was based on the Benedict-
Webb-Rubin equation for propane. Pseudocritical mixture rules express
these quantities as a function of composition. The criterion used to
evaluate a mixture rule was its ability to predict conditions along the
critical envelope curve, This is the boundary of the two phase regiomn,
and also represents the pressure at wvhich the equilibrium ratios converge
to unity.

ﬁecause of the complexity of the relations involved, computations
were programmed on a CDC 3600 computer, Among the programswritten and
tested were the following: (a) Computation of compressibility factor and
reduced pressure from reduced temperature and density using the correspond=-
ing states principle with propane, butane, and other hydrocarbons as

reference materials. (b) Computation of derived thermodynami properties
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John Douglas Stevens
including the second and third partial derivatives of free energy with
respect to mole fraction at constant temperature and pressure. (¢) Com-
putation of critical envelope curves by simultaneously converging the
second and third free energy derivatives to zero.

The eight constant Benedict-Webb-Rubin equation of state gave values
of critical pressure, temperature, and compressibility factor for the
ethane-n-heptane system which were in good agreement with Kay'l2 experi-
mental data, With the two constant reduced equation of state, good

agreement was obtained for a binary mixture using the following mixture

rules:
2 2
Pe_ = [ I x (Te/pc*/?) / 1 x,(Te/Pe), )?
i=1 i=1
2 2
Te, = [Z xi(Tc/Pcl/2)1]2/ b xi(Tc/Pc)i
i=1 i=1 :
where Tci and Pc1 are the critical temperature and pressure, respectively,

of pure component i, and Tcm and Pcm are the pseudocritical temperature
and pressure, respectively, of the mixture, x is the mole fraction of
component i in the mixture,

Attempts were made to develop programs for generating pseudocritical
pressures and temperatures from experimental data on true critical tem-
perature, pressure, and density., All approaches used the critical proper-
ties of the pure components as known conditions, Using an approach which
assumed cubic forms for the pseudocritical curves, it was possible to gen-

erate pairs of points on these curves. The generated points were in good

agreement with the mixture rule suggested above.
lpenedict, M., G. B, Webb, and L. C. Rubin, J. Chem. Phys., 8, 334 (1940).

2K&y, W. B., Ind. Eng, Chem.. -3_0.. h59 (1938)l
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INTRODUCTION

The chemical engineer often performs calculations requiring a know=-
ledge of the values of thermodynamic quantities, This is especially true
with mass transfer processes such as distillation and absorption where
successful design of equipment is dependent on accurate vapor-liquid
equilibrium data. Because vapor-liquid equilibrium properties are one of
the most important thermodynamic quantities to a chemical engineer, this
thesis is oriented towards obtaining a mixture rule which could be used
to compute more accurate vapor-liquid equilibria in the most sensitive
region, the critical region.

In the critical region, the equilibrium ratio (vapor mole fraction
divided by liquid mole fraction) approaches one at the critical envelope
curve (convergence pressure curve), This curve, which represents the
border of the two phase region, is the locus of true critical temperatures
and pressures for a multicomponent system. In order for a method of com=
putation to be satisfactory in the critical region, it must predict the
equilibrium ratio to be one, at temperatures and pressures corresponding
to the critical envelope curve, Or conversely, if the equilibrium ratio
is equal to one, the method must give the temperature and pressure to be
equal to the critical temperature and pressure.

There are two methods currently favored for calculating vapor-liquid
equilibria at high pressures. One of these methods, the convergence pres-
sure method, involves estimation of the shape of the critical envelope
curve, This is generally done for the system under consideration on the
basis of data for other systems., Equilibrium ratios are then obtained
from empirical equilibrium ratio charts (K-charts) using convergence pres-
sure as a parameter., The second method, the equation of state method, is

1
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2
based on equations of state for the pure components plus a mixture rule.
Equations of state are approximations of actual physical behavior and have
generalized forms involving pressure, temperature, and volume (or density)
plus two or more constants., Mixture rules express these constants as
functions of composition. An equation of state used in conjunction with
a mixture rule provides a means of computing thermodynamic quantities,
including equilibrium relationships, for mixtures,

The convergence pressure method has its greatest accuracy in the
critical region, but this is because it is based on experimental data in
that region. However, the convergence pressure method becomes less accue
rate at lower pressures; it is not amenable to the calculation of other
thermodynamic properties, and if extended very far from the region of the
experimental data, it can lead to results which are thermodynamically im-
possible., The equation of state method has all of the advantages of ther-
modynamic consistency. The equilibrium ratios computed at low and moderate
pressures are very satisfactory, but considerable errors are often encoun-
tered at high pressures near the critical region.

If a more accurate equation of state could be developed for mixtures,
through the development of better mixture rules, then the equation of
state method would be a much more satisfactory method for calculating
equilibria. This method would then permit the calculation of other ther-
modynamic data, and it would require less specific experimental data than
the convergence pressure technique.

The objective of this research was to obtain a better equation of
state for mixtures at high pressures. The method used was to derive a
reduced equation of state and then to attempt to find or develop pseudo-
critical mixture rules which when used with the reduced equation of state,

would yield accurate thermodynamic predictions in the critical region,
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3
A reduced equation of state has only two constants; in this work these
were pseudocritical temperature and pressure. Pseudocritical mixture
rules express pseudocritical temperature and pressure as a function of
composition, The criterion used for evaluating mixture rules was to use
them in conjunction with an equation of state to predict the critical
-envelope curve (convergence pressure curve) for a particular multicom-

ponent system and compare these predictions with experimental data.
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BACKGROUND
Accurate methods for predicting vapor-liquid equilibria have always
been a prime requisite of the design chemical engineer. However, most
methods developed to date have limitations which greatly restrict their
use, and the engineer often must use a combination of methods or may even

not have any acceptable method at his disposal.

General Equilibrium Theory

A system is said to be in equilibrium if there is no apparent change
in the intensive properties with respect to time. However, the intensive
properties themselves, such as concentration, partial molal enthalpy, den-
sity, refractive index, etc., may be different in different phases of the
system, The only requirement for equilibrium is that all potentials
which cause changes should be in a well balanced state. Therefore, the
equilibrium state requires that the temperature (thermal potential) and
pressure (mechanical potential) be the same everywhere. In addition, a
third potential, the chemical potential, should also be in a balanced
state, This is equivalent t¢ stating that the partial molal free energy
be the same in all phases for all components.

The balance of the above three potentials is often referred to as the

conditions for equilibrium and they may be written symbolically as

T, = T, (1)
Pv s PL (2)
Foy = Fyp (3)

vhere TV’ TL = temperature in the vapor and liquid
phases, respectively.

PV’ PL = pressure in the vapor and liquid

phases, respectively.
N



FiV’ F;L = free energy/mole for component i in the

vapor and liquid phases, respectively.
Condition (3) may also be written

fov ™ fir (&)

where fiv' f,. = fugacity of component i in the vapor and

iL
liquid phases, respectively,
The most practical means of expressing vapor-liquid equilibria is in
terms of the equilibrium ratio or K-factor which is defined for component

i as

Ky = yy/xg (5)

where Yy = mole fraction of component i in the vapor phase.

xi = mole fraction of component i in the liquid phase.

Another constant called the vaporization equilibrium constant is
sometimes used., This is defined as

K, = agy/agp = (rggyy )/ (vypxy) (6)

wvhere a the activities of component i in the vapor

ive 4L "

and liquid phases, respectively.
Yiys Y41 = the activity coefficients of component i in

the vapor and liquid phases, respectively.
If ideal solutions are formed in the two phases, then both activity
coefficients are unity, and equation (6) reduces to equation (5), Other-
wise, the relationship between the two equilibrium constants is
Ky = (vgp /vy, ()

The discussion which follows refers to the equilibrium state in terms of

the K-factor,

Corresponding States Principle

43

Van der Waals - first defined the term "reduced condition" and
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presented the corresponding states theorem for all pure gases in 1873,
Young extended this concept to liquids in 1899.

The theorem of .corresponding states claims that all pure gases, when
compared at the same reduced temperature and reduced pressure, will have
the same compressibility factor or, in other words, deviate from perfect
gas behavior to the same degree. Reduced temperature and reduced pressure
are defined as

Tr = T/Tc (8)

Pr = P/Pc (9)

where T temperdture of the fluid
P = pressure of the fluid

Tec

critical temperature of the fluid
Tr = reduced temperature of the fluid
Pc = critical pressure of the fluid
Pr = reduced pressure of the fluid.
The compressibility factor may be written symbolically as
Z = PV/RT (10)
vhere Z = compressibility factor
V = volume/mole
R = gas constant

Graphs of compressibility factor as a function of reduvced terperature and

reduced pressure are found in most thermodynamic texts‘,a‘O

When the corresponding states concept is extended to riw:-res,; the
reduced properties of mixtures based on the true critical pr.,:.rties of
the mixture do not give the same functional relations for c.- -essibility

factors as for the pure components. In order that compressiuv:lity factors

for mixtures will follow the same functional relationships a¢ do pure



T

components, it is necessary to use hypothetical values for the critical
properties of the mixture., These hypothetical critical prcperties are
called pseudocritical properties. The pseudocritical temperature and
pseudocritical pressure are denoted by Tcm and Pcm. respectively. Any
property which is put into reduced form by using the pseudocritical prop-

erty _s said to be in the pseudoreduced condition,

Low and Moderate Pressure Vapor-=Liquid Equilibria

If two pure substances, originally at their respective vapor pressures,
are isothermally changed to pressure P and then mixed to form a two phase
mixture, the thermodynamic expression for the equilibrium ratio is
(Appendix I)

Ya/%y = PaypVaveYar/ (PVaptay) T (11)

P
exp[(1/RT) [ V. daP]

where L =
P L
AVP
PAVP = vapor pressure of pure component A
P = total pressure of mixture
Vavp * fugacity coefficient of pure component A at its
vapor pressure = fAVP/PAvp
Vap fugacity coefficient of pure component A at
total pressure P = fAP/P
Yo, = activity coefficient of component A in the liquid

phase of the mixture

Yoy = activity coefficient of component A in the vapor
phase of the mixture

VL = molal liquid volume of pure component A,

A similar expression may be written for component B,
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Relationship (11) involves the use of experimental vapor pressures
and correction for deviations from ideal behavior, It is this relation-
ship which is the basis for many methods of vapor-liquid equilibrium
prediction.

If there are no deviations from ideal behavior in either the liquid
or vapor phase and if the liquid correction factor (L) may be neglected,
equation (11) reduces to Raoult's Law:

Ypa/*p = Ppyp/P (12)

Raoult's Law is limited to the case of a mixture of perfect gases in
equilibrium with a liquid phase which is an ideal solution. That is,
Raoult's Law is valid when molecules of each component are of approximate-
ly the same size and when the pure components mix in both the liquid and
gas phases without the complicating effects of molecular association,
chemical combination, and the like, Raoult's Law neglects the effect of
composition and to some extent, the effect of pressure on the behavior of
a component in the vapor and liquid phases,

Fugacity coefficients VavP and Vap are corrections for imperfect gas
behavior due to the effect of volume of and the attraction between the
molecules of the vapor. Fugacity coefficient values may be read from the
fugacity charts. These are charts of f/P as a function of reduced pres-
sure and reduced temperature., They were constructed using compressibility
factor charts and should be valid as long as the corresponding states
principle holds.,

Souders, Selheimer, and Brown38

used the fugacity charts to construct
a plot of K-factor as a function of temperature and pressure, They
assumed that the liquid and vapor mixtures were ideal solutions, thereby

reducing equation (11) to
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) Y
AVP
AP

Since v = f/P, equation (13) becomes

/ f£._/f (14)

fap = Tar/fav
where fAV = fugacity of pure vapor A at the pressure and

Yp/%y = Lpypl

temperature of the system.

TaL = Tay

and temperature of the system.

PL = fugacity of pure liquid A at the pressure

K-charts were constructed for several of the hydrocarbons.

The quantities YaL and Yoy &Fe called activity coefficients and are
corrections for deviations from Amagat's Law in the liquid and vapor
phases, respectively., Because of the dense nature of liquid solutions,
YaL is much more important than YAV at low and moderate pressures, At
pressures near the critical where both phases are quite similar, Yav
becomes a factor. The deviations from Amagat's Law behavior are due to
the fact that attractions between similar molecules are different than
attractions between dissimilar molecules,

Activity coefficients are composition dependent and hence, whenever
they are equal to anything except unity, the K-factor is composition de-
pendent. The methods that have been used for predicting activity coef-
ficients are either empirical or semitheoretical, the theoretical part
being the use of thermodynamic equations to direct the development of
empirical rules. Many rules have been proposed, but more commonly the
activity coefficients are estimatéd by such equations as the Wohl,
Margules, van Laar, or Redlich and Kister equations.zo

37

It should be noted that some authors™ express activity coefficients

as a product of two activity coefficients, each of which corrects for
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10
different types of deviations, This could be expressed
Y = ¢y’
where y = overall activity coefficient

y' = activity coefficient expressing deviations from
Amagat's Law as a result of chemical dissimilarity

¢ = activity coefficient expreasing deviations from
Amagat's Law as a result of molecular size or
volatility.

If a system is composed of a homologous series, then y' = 1,

The liquid volume correction term (L) in equation (11) is a correc-
tion for the differenée between the fugacity of the liquid at the system
pressure and the fugacity at the pure component's vapor pressure. This
term is generally not important at low and moderate pressures although
it may be calculated any time the 1i§u;d molal volume is known or an
equation of state is available,

By introducing additional parameters into the corresponding states

30 has

principle, more accurate fugacity predictions can be made. Pitzer
extended the corresponding states principle by using a third parameter,
Although others had previously suggested a third parameter, none of the
methods proposed were as successful as Pitzer's., He called the new param-
eter the acentric factor, which is supposedly a measure of the deviation
of the intermolecular potential function from that of simple spherical
molecules, The compressibility factor Z may then be written
Z = Z(Pr, Tr,w)
vhere w = acentric factor.
2

Hougen, Watson, and Ragatz 0 also used a three parameter approach,

They calculated equilibrium ratios as a function of the critical
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compressibility factor, reduced temperature, and reduced pressure. A
value of 0,27 was used for the critical compressibility factor in con-
struction of a table and a chart, but corrections were given for values
of critical compressibility factor other than 0,27, The table and chart
are not accurate at high pressure and temperature because the assumption
of ideal solutions in the liquid and vapor phase is no longer valid,
Also, both the Pitzer and Hougen methods are limited by the accuracy of
the rules used to calculate the pseudocritical properties.

Bloomer and Peck7 also modified the corresponding states principle
by introducing a third parameter S. This parameter takes into account
the aspherical factor for nonpolar molecules, S is determined from P-V-T
data and can be expressed in a simple relationship to the critical éon-

pressibility factor.

High Pressure Vapor-Liquid Equilibria

Two basically different approaches can be used for prediction of
vapor-liquid equilibria near the éritical region. These are (1) equilibria
from an equation of state and (2) convergence pressure methods.

The most commonly used equéation of state for prediction of high pres-
sure equilibria is the Benedict-Webb-Rubin equation.3 This equation uses
eight constants to describe the vapor an liquid phase behavior of a given
compound. The authors published a set of constants for each of twelve
light hydrocarbons. They also suggested mixture rules for combining the
eight constants to extend the equdtion of state to mixtures.h However,

32

Price et al’ indicate substantial deviations between experimental K-

factors and those predicted by the Benedict-Webb-Rubin mixture equation.
17

Hester™' has shown that the Benedict-Webb-Rubin mixture equation also may

yield highly improbable values for the pseudocritical compressibility
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factor.

Benedict, Webb, Rubin, and Friend6 recorded K-values of twelve
hydrocarbons in a series of 324 charts called the Kellogg charts. In
order to reduce the number of composition variables, these authors ex-
pressed all vapor and liquid compositions in terms of two variables, the
molal average boiling points of the vapor and liquid, respectively. Each
chart refers to a particular cémpohent at a particular pressure.

The Kellogg charts are reliable for many applications, but they re=-
quire successive corrections for the compositions of both phases, Another
disadvantage is the necessity for interpolation between charts with respect
to pressure,

These 324 charts have been reduced and made easier to apply by

DePriesterll

and Edmister and Ruby.13 The DePriester charts include two
for each hydrocarbon, one giving the fugacity ratio for the vapor phase,
and the second, the fugacity ratio for the liquid phase., Each chart
represents the relation between pressure, temperature, and composition,
and thus eliminates the necessity of interpolation between charts with
respect to pressure, as with the Kellogg charts, DePriester's consolida-
tion of the information on the Kellogg charts into twenty-four charts was
with little loss of accuracy, However, the charts only cover the pressure
range up to 1000 psia while the Kellogg charts include pressures up to
3600 psia.

Edmister and Ruby used only six charts plus one table of vapor pres=-
sure data to cover the same range of pressure, temperature, and composi-
tion as the Kellogg charts., The Edmister and Ruby charts were derived
from the Kellogg charts by correlating fugacity coefficients in terms of

four reduced parameters. They are in considerably greater error than the
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Kellogg and DePriester charts,
Gamson and Watson1h developed equations for activity coefficients
based on generalized fugacity coefficients and the pseudocritical con-

cept. Smith and Watson37

empirically modified the Gamson and Watson
relationships and constructed a graphical correlation of activity coeffi-
cients as functions of the pseudocritical temperatures and pressures of
the phases., These generalizéd correlations are applicable to systems of
components of no chemical dissimilarity. On the basis of these correla-

tions, Smith and Smith3®

published a set of K-charts for hydrocarbons.
The generalization of the Smith and Smith charts causes some loss of
accuracy for specific data., However, this generalization does allow the
charts to be used for many more hydrocarbons than the Kellogg charts.,

Recently Mehra and Thodonz7 have developed an approach which is
fundamentally different from existing methods for the development of
equilibrium correlations from experimental data. They predict K-factors
for binary hydrocarbon systems in the critical region by using the normal
boiling point ratio, the reduced vapor pressure, and the pseudoreduced
vapor pressure, Good accuracy is obtained with the correlations, but the
limitations to a binary hydrocarbon system limit the practicality of the
method.

All of the methods presented above may be classified as theoretical.
Correlations of K=factors based on experimental data were developed about
the same time as the Kellogg charts and modifications thereof. These
empirical correlations have the advantage of being based on experimental
data and are, therefore, very accurate in the region where the experi-

mental data was obtained, However, the experimental correlations are not

amenable to the calculation of other thermodynamic properties, and the
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correlations are only valid in the range of the experimental data.

The most prominent of the empirical approaches is the convergence
pressure method., The standard procedure is to predict convergence pres-
sure based on experimental data for various binary systems and then ex-
tend the method to multicomponent systems by treating the mixture as a
fictitious binary system.3h'h5 Lenoir and White26 developed an improved
method using effective boiling points for predicting the convergence pres-
sure, Once the convergence pressure is known, the K-factor is found from
empirical correlations between equilibrium ratios and the estimated con=-
vergence pressure, The NGAA (Natural Gasoline Association of America)
charts28 wvere prepared for prediction of K-factors using the convergence
pressure technique., The convergence pressure method is relgtively con-

venient to use and gives acceptable results in the critical region.,

Comparison of Vapor-Liquid Equilibrium Prediction Methods

The methods discussed above for predicting vapor-liquid equilidbria
are compared in Table 1. The construction of such a table is a matter
of judgement and should be taken only as a general indication of the
strong and weak points of the methods discussed above, Question marks
mean that it is difficult to determine if the method is thermodynamically
consistent, One of the aims of this research was to devise a method

vhich would exhibit all of the properties listed in the table.
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TABLE 1., Comparison of vapor-liquid equilibrium prediction methods

Method General- Composition Accuracy Thermo.
ized Dependent Low Moderate High Critical Consist.,
P P P Region

Raoult's Law Yes No Yes No No No Yes
Souders et al. No No Yes Yes No No Yes
Hougen-Watson Yes No Yes Yes No No Yes
B~W-R Eqn. No Yes Yes Yes Yes Yes Yes
Kellogg charts No Yes Yes Yes Yes No ?
DePriester No Yeés " Yes Yes Yes No ?
Edmister-Ruby Yes® Yes Yes Yes No No No
Smith-Smith Yes Yés Yes Yes No No Yes
Convergence No Yes Yes Yes No Yes No
Pressure

#Separate charts are needed for methane

Mixture Rules

Success with the equation of state method for calculation of vapor=-
liquid equilibria is dependent on the accuracy of the mixture rules used.
A mixture rule is some arbitrary procedure for converting an equation of
state for pure compounds into an equation of state for a mixture of those
compounds,

Equations of state for pure compounds are generally converted to
equations of state for mixtures by some method of combining the equation
of state constants., Amagat's, Dalton's, and Bartlett's ruleshh are
simple mixture rules, but they are not applicable in the critical region.

Examples of more sophisticated mixture rules are those of Benedict g&_gg.h

They converted their equation of state to mixtures by specifying rules for
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combining the eight constants (Ao’ By Cos 8y Dy € 0, y) for the pure com-
ponents into corresponding constants for the mixture,

A reduced equation of state only has two constants., When the reduced
equation is used for a pure compound these constants are the critical
temperature and pfessure of that compound. For mixtures the two equatioﬁ
constants are the pseudocritical temperature and pressure of the mixture.
These pseudocritical quantities are generally expressed as a function of
the critical éroporties of the pure components and the composition of the

mixture, Such relationships are called pseudocritical mixture rules,

Pseudocritical Mixture Rules

Kay22 defined the pseudocriticals for a mixture of n components as

n

Te = I x,Tc (15)
m =1 i1

n
Pc. = I x,Pc (16)
m {=1 i 71
For binary mixtures, Tangho found that a simple additive relationship
wvas a fair approximation for critical temperature, but the pseudocritical

9 also oOb-

pressure usually deviated widely from linearity. Case and Weber
served large deviations from Kay's rule.
Van der Waalsao suggested the following pseudocritical mixture rules

for use in the reduced form of his equation of state,

n n

Pe_ = [iilxi(Tc/Pcl/z)iliilxi(Tc/Pc)i]2 (17)
n V n

Tc_ = [1£lxi(Tc/Pc1/2)i]2/i£lxi(Tc/Pc)i (18)

Joffe21 used the van der Waals equation of state to show that the

assignment of a pseudocritical temperature and pressure to a mixture is
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entirely consistent with the method of combination of equation of state
constants, As a result, Joffe proposed the following relations for com-

puting pseudocritical constants of a gas mixture:

n
(Tc/l’cl/a)m = iflxi(Tc/Pcl/z)i (19)
n n 1/3 1/3,3
(Te/Pe) = (1/8) ¢ I x,x, [(Te/Pc) + (Te/Pe),’”] (20)
m R 1 3

vhere the double summation contains one term for each possible permutation
in pairs of like and unlike ¢onmponents of the mixture., Joffe claimed that
for five different binary gas mixtures, his proposed mixture rules yielded
more accurate rules than Kay's rules, However, although Kay's rule and
Joffe's rule are effective for non polar gaseous mixtures, they are in
error for saturated vapors and liquids.

Leland, Chappelear, and Gamsonah proposed the following mixture rules.

— ﬁl/ﬂ
n n
I I x,x,a,a
-] 1m1 1 J 373
Te = |d=il=l (21)
m n n 3
I I x,x, (b, +b,)
ju1 gmy +41
_ . -
Tcm 151 xi(Zc)i
Pc = o (22)
I I x,x,(b, +b,)
1] =1 +J°1 0
n J
a, = (Zc:'.l?cl'.'“/Pcz)3_'/2

b, = (1/2)(ZcTc/Pc)i/3

The parameter a is an empirically determined function of pressure and the
pseudocritical pressure as determined by Kay's rule, This mixture rule is

applicable to liquids which may be approximated by simple spherical
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molecules,

Stewart, Burkhart, and Voo3? simplified equation (20) to

1/2,2
12 (23)

n n
(Te/Pe) =1/3 T x, (Tc/Pc), + 2/3[ £ x,(Tec/Pc)
m i i i
. i=1 i=l
which is used in conjunction with (19) to compute pseudocritical tempera-
ture and pressure. Hougen 22.2&320 claim that the Stewart method reduces
the average deviations by over fifty percent as compared to the results
obtained with Kay's rule,

ls‘used the reduced second virial coefficient

Guggenheim and McGlashan
to propose mixture rules for the pseudocritical temperature and volume.
However, because use of the second virial coefficient is sufficient onmnly
vhere deviations from ideality are small, these mixture rules are of
little use in vapor-liquid equilibrium calculations.

Prausnitz and Gunn3l

adjusted the mixture rules suggested by Guggen=-
heim and McGlashan to fit experimental data for the second virial coeffi-
cient., They suggested the following rules for calculating pseudocritical

temperature and pressure,

Te, = (B + (82 + ermY}/Q]/(achm) (2k)

Pe = [RTcm/ch]t ¥, e (25)

" i

vhere B=TL vy
i)

2
I y.y.(VeTc)
TR

1yJ(Vc'I‘c)iJ

<
"

i

ch z yivaciJ

i

composition of component i

«
[
"

ch = pseudocritical volume of mixture
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r,s = parameters which are read from a table published by
Prausnitz and Gunn,
The quantities Tcij and vciJ

perature and volume, respectively, and are computed from

are called the characteristic critical tem-

1/2 - ATe

Te,, = (TciTcJ) 1

1

VciJ = O.S(VcchJ) - AVe

where ATc

i
13 AVciJ = corrections to the characteristic temperature

and volume, respectively.



THEORY
An equation of state, such as the eight constant Benedict-Webb-=Rubin

equation,3

can be used to predict thermodynamic properties in the critical
region if accurate mixture rules are available for converting the equation
of state to mixtures. The factor which prohibits extensive use of such an
equation is the fact that values for the eight constants must be known for
each of the components in the mixture, Because these values are difficult
to determine, they have been found for only a very limited number of come-
pounds. Thus, although the equation may be very accurate for systems
vhere all the constants are known, the equation is not completely satis-
factory because it can not be generalized to mixtures of other compounds.
If an equation of state for pure compounds is put into a reduced form,
it is changed to an equation with two constants, for example, critical
temperature and pressﬁre, If this reduced equation of state is applied
to mixtures, the constants become the pseudocritical temperature and pres-
sure since the true critical temperature and pressure of mixtures are
known to give inaccurate reduced relationships. Pseudocritical tempera-
ture and pressure are usually expressed as a function of the critical
properties of the pure components and the composition of the mixture,
These relationships, called pseudocritical mixture rules, are difficult to
derive because pseudocritical temperature and pressure have no actual phys-
ical significance, However, if a reduced equation of state and pseudo-
critical mixture rules could be found which together would give accurate
thermodynamic predictions in the critical region, one could apply the re-
duced equation of state to many systems with only knowledge about the
critical properties of the pure components. This research concerned the

derivation of pseudocritical mixture rules for light hydrocarbon systems,

20
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but most likely such derived mixture rules could be used for many other
classes of compounds.

A big advantage of making thermodynamic calculations with a reduced
equation of state is that the calculations only need to be performed once
for a given reduced temperature and pressure.. Any other mixture with the
same reduced temperature and pressure will have the same value for the
thermodynamic quantity. Thus genéralized tables or graphs can be pre-
pared with reduced temperature and pressure as parameters,

Vapor-=liquid equilibrium calculations can be made with a reduced
(generalized) equation of state if the equation is applicable in both the
liquid and vapor phases. A plot of the quantity, fugacity divided by mole
fraction, as a function of reduced temperature and pressure can be made by
using the reduced equation of state to express the fugacity quantity as a
function of reduced temperature and pressure. To calculate equilibrium
ratios with such a chart, the unknown quantities, temperature, pressure,
or compositions, are adjusted by trial and error until the sum of composi-
tions in the vapor and liquid phases are each unity, and the condition,

Tiv ™ i1
is satisfied for all components in the mixture. The equilibrium ratio is
then computed from

Ky = vy/%
Although the construction of generalized charts has been possible for some
time, such charts are of little use without accurate pseudocritical mixture
rules,
.If a variable is put into & reduced form using a pseudocritical quantity,
then it is more proper to speak of the variable as being in a pseudore-

duced form, However, the more common practice of denoting pseudoreduced
variables as simply reduced variables is used throughout this thesis,
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One approach to obtaining a more accurate method for making thermo-
dynamic calculations in the critical region would be to derive a reduced
equation of state and then to find or develop accurate pseudocritical
mixture rules for use with the reduced equation of state. The reduced
equation of state could be derived using the eight constant Benedict-
Webb-Rubin equation for a particular compound, for example, propane, If
the corresponding states principle is valid, the derived reduced equation
of state should be the same no matter what reference compound is used.

Currently available mixture rules could be evaluated by using them
with the reduced equation of state to predict vapor-liquid equilibria
(convergence pressure curve) in the critical region and then comparing
the results with experimental data. Or conversely, pseudocritical mixture
rules could be derived by beginning with experimental critical region
vapor-liquid equilibrium data (i.e. an experimental convergence pressure

curve) and then computing pseudocritical temperature and pressure.

Definitions of Critical Point and Convergence Pressure

The critical point of a binary mixture is defined as the temperature
and pressure at which the vapor and liquid phases of the mixture become
indistinguishable., Or, in other words, the temperature and pressure at which
the K-factor equals one, If the critical points are measured for several
different mixture compositions, and these points are plotted on a pressure-
temperature diagram, the curve which passes through all of the critical
points 1is called the critical envelope curve, Such a curve is illustrat-
ed in Figure 1. Points A and B represent the critical points for the two
pure components, while the intermediate points represent critical points
of mixtures. Curve AB, which connects all of the points, is the critical

envelope curve,
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Pressure

Temperature

Figure 1, Illustration of a critical. envelope curve

'
Convergence pressure is defined as the critical pressure at the temp-
erature of the system, Thus, in Figure 1, the convergence pressure of any

system at temperature T. is the pressure P Therefore, curve AB is also

1l

called the convergence pressure curve,

lo

Thermodynamic Relations at the Critical Point

Because prediction of the critical envelope curve (convergence pres-
sure curve) is equivalent to predicting the points where the K-factors
equal one, it would be very desirable to have a means of calculating the
critical envelope curve, This would be possible if there were thermody=-
namic conditions which held only at the critical point and in fact, pro-
vided a basis of definition of the true critical point. Such relationships

do exist,12 and they are:
2 2 _
(3°F/ax )T’P =0 (1)

(3314‘/31:3),]_,,P =0 (2)
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vwhen T and P are the true critical temperature (Tk) and
pressure (Pk), respectively.

Relations (1) and (2) can be illustrated with a F-composition curve,

Figure 2. Free energy at constant pressure and temperature as a
function of composition

In Figure 2, the F-curve at Tl(Tl>Tk) is concave upwards everywhere,
That is,

7P °

(3%F/3x°)
thus, all homogenous phases on curve EG are stable., On curve AB (T3<Tk),
segments AI and JB are concave upwards; these phases are also stable,

Between I and J, the curve is convex upwards:

and these phases are unstable,
Points I and J are inflection points, for which

(82F/812)
3’
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and therefore, represent the limits of stability. If the temperature is
varied in the direction of the critical point, the phases H, I, J, and K
approach each other, and, at the critical temperature, become identical,
If CD is the F-curve at the critical temperature Tk, the point L, repre-
senting the critical phase where the points H, I, J, and K coalesce, is
a point of undulation at which conditions (1) and (2) hold.

By dividing the free energy F'by the gas constant R and temperature
T, dimensionless free energy G is defined. That is,

G = F/RT (3)

Relationships (1) and (2) can now be written:

2 2
(3%G/ax )T.P =0 (4)
3 3
(a”G/3x )T,P =0 (5)
wvhen T = Tk
P = Pk

Because the temperature is Tk and the pressure is Pk on a convergence
pressure curve, conditions (4) and (5) hold at any interior point on that
curve, It should be realized that the derivatives in (l4) and (5) are equal
to zero because of a physical condition of free energy at the true critical
point and not because of a mathematical definition. Therefore, fourth and
higher order derivatives of free energy are not necessarily equal to zero

at the critical point.

Expression for Free Energy

A general expression for computing dimensionless free energy G can be
derived for a binary mixture at temperature T and pressure P by using the
path in Figure 3., Note that the free energy expression need only be de=-

rived for one of the phases, since the amount of free energy is the same
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in both the liquid and vapor phases. The path shown in Fiugre 3 is for

the vapor phase.

Std. State Temperature T
Pure A Pure A
Yyt =1 E P°
1l 2 Ideal Real
Mixture |—— Mixture
Std, State Po P
Pure B Pure B 6
(l-yA): f=1 P
3 N

Figure 3. Path for calculation of the free energy of a binary
mixture at temperature T and pressure P.

Using the path in Figure 3, it is shown in Appendix II that the expression
for G is
G=1lnP+y, lny, + (1 - yA)ln(l - yA) +2-1-1n7%2
D 2
+ [ [(P/RT - D)/D"]dD (6)
0
vhere D = density.’

The first three terms represent the free energy of a mixture of perfect
gases at pressure P, The last four terms are a measure of the non-ideality
of the imperfect gas mixture, It should be observed that by following the
path of Figure 3, it is not necessary to be concerned with nonideal solu-

tions since the gases are in the perfect gas state when they are mixed,

Corresponding States Theorem for Mixtures
One of the basic assumptions made in this work was that the corre-
sponding states theorem was applicable to mixtures., That is, it was assum-

ed that two parameters (reduced temperature and pressure) were sufficient
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to represent the state of the mixture, The following discussion concerns
the theoretical support available for applying this theory to pure com-
pounds and to mixtures,

After van der Waalsh3 proposed the corresponding states principle in
the late nineteenth century, many years elapsed before enough knowledge
vas gained about molecular behavior to support the hypothesis theoretically.
During this period, the belief that the state of a system could be repre-
sented by just two parameters had only empirical justification. With the
advent of classical statistical mechanics, a means was obtained to give
the proposal theoretical support.

Hirschfelder, Curtiss, and Bird18 applied classical mechanics to
spherical nonpolar gases to show that reduced pressure is a unique func=-
tion of reduced temperature and volume., Pitzcr29 showved a similar result
for liquids while Guggenheim and McGlasha.n15 extended the treatment to
mixtures of slightly imperfect gases. In these three works the primary
assumption was that the energy of interaction between any two molecules
was representable by the same general function of two parameters. That
is, the expression for the potential energy was of the form

¥(r) = ef(r/o)

vhere ¢ and o are characteristic of the molecular species and f is the
same general function for all molecules, The Lennard-Jones potential is
of this two parameter form and represents an approximation to this general
function. In each of the works mentioned above the authors were able to
show that reduced temperature was a function of ¢ and reduced volume a
function of o,

By establishing that the reduced pressure of a mixture of slightly

imperfect gases was representable by a single reduced temperature and
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15 provided support to the hypothesis that

volume, Guggenheim and McGlashan
the corresponding states principle could be extended to mixtures by treatw
ing a mixture as if it were a pure compound, Rules which use critical pro=-
perties of the pure components of a mixture to compute values of reduced
temperature and volume (or any other pair of the variables, pressure,
temperature, volume) for a mixture are called pseudocritical mixture

rules. The development of pseudocritical mixture rules for pressure and
temperature was one of the primary goals of this research.

The theoretical support for the corresponding states theorem is very
limited. However, it is reasonable to assume that certain classes of
compounds (e.g. hydrocarbons) will have a common function f. If this is
the case, the corresponding states theorem appears to have reasonable
theoretical justification for its use with mixtures within that class of
compounds. A third parameter approach as discussed under Background is
one method of extending the corresponding states principle to a variety of
classes of compounds, This third parameter serves to make adjustments for
differences in the function f between classes of compounds.

For mixtures, the expressions for reduced temperature, density, and
pressure become:

Tr = 'I‘/'I‘cm
Dr = D/Dcm
Pr = P/Pcm
vhere Tcm. Dcm, Pcm = pseudocritical temperature, density,

and pressure, respectively.

Equation of State

The need for an equation of state is apparent from the last term in

3

equation (6). The Benedict-Webb-Rubin equation of state” gives excellent
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representation of the critical properties of pure light hydrocarbons.
This equation is applicable to both the liquid and vapor phases with the
same set of equation constants, The form of the Benedict-Webb-Rubin

equation for pure components is
P=RTD + (BRT - A - CO/T2)D2 + (bRT - a)D3 + sa® + (eD3/1%)

(1 + yDz)exp(-YDz) (1)
where Ao, Bo’ Co, a, b, ¢, a, Y = Benedict-Webb=Rubin equation constants
which are dependent on the substance the equation is to describe,

Benedict 33_2£.3 suggested that C° be expressed as a function of tem-
perature, if it was hoped that the equation of state would represent vapor
pressures at the subatmospheric level., In this way the equation of state
was made extremely accurate at very low pressure as well as in the criti-
cal pressure region., The importance of this property to this research was
that any mixture rule which was devised could be used at lower pressures
if the equation of state was also applicable in that region. Therefore,
C° wvas expressed as a function of temperature. This expression is equa=-
tion (1) on page 115,

Assuming the corresponding states theorem is valid, the expressioms
for reduced temperature, density and pressure can be substituted into
equation (7) to give a reduced equation of state, Similarly, equation
(7) can be substituted into equation (6) and the resulting expression put
into reduced form by the reduced relationships listed above. The analyt-
ical expressions for (azc/axz)T’P and (a3c/ax3)T’P, in terms of reduced
parameters, can then be used to evaluate or derive pseudocritical mixture
rules in the critical region by using the thermodynamic conditions that

(326/3x2)T p and (a3G/3x3)T p equal zero at the critical point.
1 ]
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Experimental critical point data can be used as a check on the results
computed from available mixture rules or it can be used as the basis for

deriving pseudocritical mixture rules,



STATEMENT OF THE MATHEMATICAL PROBLEM

This chapter summarizes, in mathematical form, relationships used in
this thesis. The discussion is divided into four sections: (1) the search
for an equation of state on which to base the derivation of a reduced equa-
tion of state, (2) evaluation of published pseudocritical mixture rules,
(3) generation of pseudocritical temperature and pressure values on which
a new pseudocritical mixture rule could be based, and (4) a numerical
method for checking analytically derived derivatives. The method of solu=-

tion, as attempted in this research, is also discussed.

Evaluation of Equations of State

In this section two equations of state were evaluated for their ability
to predict convergence pressure curves. Each equation was used to compute
critical temperature, pressure, and density values for a particular binary
system, These computed values were then compared with experimental data.
The equation which made the best predictions was used as the basis for the
derivation of the reduced equation of state.

43 and Benedict-Webb-Rubin3 equations of state were

The van der Waals
combined with mixture rules recommended by van der Waals and Benedict et al.

to form equations of state for mixtures, That is,

van der Waals: Equation of state
for pure compounds
P = P(T,D,a,b)

Equation of state
+ —_— for mixtures
P = P(T,D,x)

Mixture rules
a = a(x)
b = b(x)

31
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B-W~R: Equation of state

for pure compounds

P = P(T,D,a,b,c,A

B 4C_,a,Y °
o’’o

Equation of state
+ —_ for mixtures
P = P(T,D,x)

Mixture rules
= a(x)

)

o

a = y(x)

The general expression for dimensionless free energy G is (page 26):

D
G=1nP+x1n x + (1-x)ln(lex) + 2 =1 = 1n Z + [ [(P/RT = D)baldD (1)

0
By noting that P = P(T,D,x)
Z = zZ(P,T,D,x)
then G = G(T,D,x) (2)

for both equations of state,

From the expression for G, the derivatives (aac/axz)T’P and
(836/33:3),1,'P may be derived analytically, This gives equations of the
form

G'" = G'*(T,D,x) (3)

G''" = Gg*'*(T,D,x) (L)
where G'° = (azc/axa)T’P
Grot = (a3c/ax3)T.P

It has been shown that at the critical point, G'' and G''' equal zero.
Since the objective in this part of the thesis was to calculate the criti-
cal temperature, pressure, and demnsity, equations (3) and (l4) were solved

simultaneously for the value of T and D which made G'' and G''' equal zero

for a given composition (x). Because the computed values were the
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critical temperature and density, T and D were actually Tk and Dk, respec-
tively. The critical pressure was then computed from
Pk = Pk(Tk,Dk,x)

This procedure was repeated for several values of x and the results were
compared with the experimental critical point data,

Because equations (3) and (4) were complex expressions, computer pro=-
grams were written which used the Newton-Raphsonhz convergence method to
find a value of T and D which made G'' and G''’' equal to zero. The partial

derivatives required in the Newton-Raphson method were estimated numerically.

Evaluation of Published Pseudocritical Mixture Rules

This section of the research used a reduced equation of state in
conjunction with available pseudocritical mixture rules to compute criti-
cal temperature, pressure, and density values for a particular binary sys-
tem, The mixture rules were evaluated on the basis of how well their
critical point predictions compared with experimental data.

The Benedict-Webb-Rubin equation of state for propane (i.e., the con-
stants a, b, ..., Y were those for propane) was used as the basis for the
reduced equation of state, By making the substitutions

T = TeTr
P = PcPr
D = DcDr

where Tc, Pc, Dc = critical temperature, pressure, and density
of the reference compound (propane).

Tr, Pr, Dr = reduced temperature, pressure, and density,
respectively,
the equation of state becomes

Pr = Pr(Tr,Dr) (5)
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By the corresponding states theorem, the function which expresses Pr
in terms of Tr and Dr is the same general function for all pure compounds
and mixtures of those compounds. Thus, although equation (5) was derived
using the Benedict-Webb-Rubin constants and the critical constants for
propane, this equation is valid for other compounds as well.
When equation (5) is applied to mixtures the reduced pressure, tem=
perature, and density are computed from
Pr = P/Pcm
Tr = T/Tcm
Dr = D/Dcm
where Pcm, Tcm’ Dcm = pseudocritical pressure, temperature,
and density, respectively.
Therefore, equation (5) written for mixtures is
P/Pe_ = Pr(T/Te_, D/De_) (6)
If the Benedict-Webb-Rubin equation of state is substituted into
equation (1) and the resulting expression put into reduced form, the

expression for computing G of a mixture becomes:

G = G(T/Tcm, D/Dcm, x) R
from which G'' = G"'(T/Te_, D/Dc_, x) (1)
G''® = G'*'(T/Te_, D/Dc_, x) : (8)

Equations (6), (7), and (8) are now equations with only Tc and Pc as
constants since
Dec_ = Pc_/RTc_Zc
m m m
where Zc = critical compressibility factor (equal to the same
value for all compounds).,
Pseudocritical mixture rules generally express Tcm and Pcm as funce-

tions of composition and the critical properties of the pure components,
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Using published expressions for Pc and Tc , equations (7) and (8) were
solved simultaneously for the values of T (i.e. Tk) and D (i,e. Dk) which
made G'' and G''' equal to zero. The method of computation and evaluation

of results was the same as used in the evaluation of equations of state,

Generation of a Pseudocritical Mixture Rule
This part of the research concerns the attempt to generate curves of
Pcm as a function of x and Tcln as a function of x from experimental Tk,
Pk, and Zr data. Three different approaches were used.
I. This approach used expressions for Tk(x), Zr(x), and Pk(x)
where, for the pure components, (x = 0, 1.0), the following was true
Tk = Tc
Pk = Pc
Zk = Zc
In addition, the fact that G'' equals zero at the critical
point was also used.,
The use of experimental data and the free energy condition to
compute Te , Pc_, and Dr is illustrated by the flow diagram of Figure L,
For all of the flow diagrams in this chapter, it is assumed that Tc and
Pc are known for the pure components (x = 0, 1,0), but this fact is not
shown on the diagrams. Also, Tk, Pk, and Zr are known functions of x.
The diegrams illustrate only the general overall calculation procedure,
excluding many of the minor details., Linear interpolation or extrapola=-

tion was used to adjust the variables in Figure 4,
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Assume values for Tr, Dr

At x = Ax
Use reduced eqn. of state to

compute Pr, Zr,
Use Tk, Pk to compute Tcm, Pcm.

J

At x = Ax No

At x ':ﬁi

Is calculated Zr =
experimental Zr?

Adjust Dr

Yes At x = 2Ax
N Adjust Dr
v

At x = 2Ax No

Use reduced eqn. of state to
compute Pr, Zr, '
Use Tk,.Pk to compute Tcm, Pcm.

At x = 28x
Is calculated Zr =
experimental Zr?

T ' Yes
At x = 2Ax No Is At x = Ax
Adjust Tr G'' = 07 Calculate first and second
derivaties of Tcm and Pcm.
Yes Compute G'',
Repeat 1 through 2
for x = 34X, ocecy 1.0
Stop < Yes At x = 1.0 No At x = Ax
P< Ts Tc = Tk? Adjust Tr

Figure 4. Flow diagram for calculation of Tcm, Pcm, and Dr using experi-

mental Tk, Pk, and Zr data

II.

In this approach the experimental Zr data was not used,

stead, the second free energy condition at the critical point, that

3 3
(3°G/ax )'r,

P is equal to zero, was employed.

Figure 5 shows a flow

diagram for the calculations in this approach.
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At x = Ax

Use the reduced eqn. of

state to compute Pr, #————-—-—-
Use Tk, Pk to compute
Te_, Pc_.

. m m

y

At x = Ax

Calculate first and second

Use the reduced eqn. of

derivatives of Tcm and Pc_, state to compute Pr.
. |Compute G'', n Use Tk, Pk to compute Tcm,
Pc .
m
L—-ﬂ No At x = 2Ax
L] )
e = o] Rreg

Yes

At x = 3Ax
Use the reduced eqn.
@ |state to compute Pr,

TC.PCo
m m

Use Tk, Pk to compute

of

At x = 2Ax
Calculate first, second,
and third derivatives of

T

At x = an

Adjust Tr, Drk

Tc_ and Pc_, Compute G''
m m ‘

and G''',

No Are G'' and G'''

Compute Zr as a function
of x and compare with
experimental Zr curves.
Adjust Dr at x = Ax
until a fairly good
corresponding curve is

equal zero?

Yes

#&s__

At x = 1,0 Repeat (1) through (2) for
Are Tc = Tk X = l‘Ax.o,oo’ 1.0 @

obtained,

Stop

and Pc = Pk?

No Adjust Tr at x = 24x,

Dr at x = Ax,

Figure 5, Flow diagram for calculation of Tc’n and Pcm using experimental

Tk and.Pk dat
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The major problem with this approach was in finding a convergence
method which would find values of Trx+Ax and Drx+Ax that would make Gx"
and Gx"' equal to zero., The two methods which were used were the Newton-
Raphson methodh2 and a method which assumed G'' and G''' to be linear func=
tions of Tr and Dr. The linear method is described in detail on page 107.

III. In this part of the research, the form of the Tcm and Pcm curves
vas assumed to be cubic, Using the values of Tc and Pc for the pure com-
pounds, values of Tcm and Pcm were computed at two intermediate values of

x, The calculation flow diagram appears in Figure 6. The method used to

adjust Tr and Dr was the Newton-Raphson method.

Start
At x = Ax, 24x At x = Ax, 24x At x = Ax, 24x
Assume values of ——— Compute Pr, —— Compute first, second,
Dr, Tr. Use Tk, Pk to and third derivatives
compute Tcm, Pcm° of Tcm, Pcm.

Compute G'', G''’',

|

At x = Ax, 24x No At x = Ax, 2Ax
Adjust Tr, Dr | Are G'', G", equal

zero?
j?ca

Stop

Figure 6, Flow diagram for calculation of Tc and Pcm assuming the form
of these curves to be cubic, n

Numerical Check on Analytical Derivatives
Because of the complexity of the equations for G'' and G''', a pro=-
gram was written which numerically checked the analytical expressions.

For a function F(T,D,x), the derivative with respect to x at constant T



and ?
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and P can be derived as follows:

(aF/ax)T’P = (:;1?/3::)T’D + (aF/aD)T.x(anlax),l,’P

(aD/ax)T’P = -(aP/ax)T.D/(aP/:sD)T’x Z - (aP/ax),I.’D(aD/aP)T.x

(M‘/ax),r'P = (:;F/ax),l,’D - (aF/aP)T'x(aP/ax)T’D

where F can be G, G', or G'',

(9)

The flow diagram used to compute these derivatives numerically is

shown in Figure 7.

Start

At constant T, D
compute F and P,

Then increase x and
compute F and P again,

Calculate (9F/3x)
and compare with ~°
analytical G'.

T,P

Calculate numerical
Al values for (3F/3x)q
and (aP/ax),r D ’

9

|

Calculate

T—-—' numerical values
for ( BF/BP)T °
oX

G' and G''

Repeat all steps for

> Stop

Figure 7.

analytical derivatives

At constant T,x
 compute F and P,
Increment D and
compute F and P

_5§ain.

Flow diagram for calculations in the program for checking
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EXPERIMENTAL WORK

Experimental Procedure

This research involved extensive use of automatic digital computers.
During the course of the work two computers were used.

For the first year of work, the Michigan State University MISTIC
computer was used, Input and output for this computer was by means of
paper tape. Printed copies of the tapes were obtained from a teletype
machine,

After the first year of work on this problem, Michigan State Univer=-
sity purchased a Control Data Corporation 3600 Computer. This computer
used Fortran programming language and was approximately eighty times
faster than the MISTIC computer., The procedure for running a program on
this machine was (1) to construct the Fortran program, (2) to punch the
program on IBM cards using a card punch, and (3) to submit the program at
the Computer Center for running.

For both computers, the basic steps which eventually led to a cor-
rectly operating program were the same. The first step was to decide
vhat the program was to accomplish, Next, the mathematical formulas and
techniques which were needed to obtain this goal were derived. The pro=-
gram was written in such a way that the computer would perform exactly
the desired mathematical operations. The cqmputor program was then run,
and results were obt@;ncd. If these results were correct, or at least
appeared correct, this whole process was a relatively simple one. However,
if the program did not work properly, the process of removing errors was
often very time consuming, especially if the program was long. For long

programs, the procedure was to construct the program by parts., This

Lo
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allowed a constant check on each part of the program as it was constructed.

With programs such as were written for this project, another element
wvas involved in the correction process. Because many of the convergence
methods were derived specifically for this project, there was always the
chance that the basic equations had been derived incorrectly, or that even
the method was not applicable to this research,

If a method did fail to work, considerable time was spent trying to
evaluate vhy the method failed, and whether there were any changes which
could be made to correct the method, Often it was possible to alter the
method to obtain a working program, but often no usable results were

obtained.

Experimental Critical Point Vapor-Liquid Equilibrium Data

W, B, Kay's data for the ethane-n-heptane system23 were the specific
experimental equilibrium data used., These data appear in Table 2., Values
for critical compressibility factor (Zk) were computed from Zk = Pk/RTkDk.
The pseudocritical compressiblity factor (Zcm) was assumed to be a straight
line between the critical compressibility factor of the two pure components.

Prausnitz and Gunn31

made a similar assumption for the acentric factor w
and obtained results that were in good agreement with experimental data.
Because Zcm is a linear function of w, the straight line assumption for
ch has some justification, Reduced compressibility (Zr) at the true
critical point was then calculated from

Zr = Zk/Zc o
o

Because the MISTIC library routine for a least squares fit of the
data did not yield satisfactory results, a special program was written

for fitting the data, In this program the method of least squares was
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TABLE 2. Experimental data for ethane-n-heptane system at the true
eritical point (23:L463)

Weight Percent Mole Percent Tk Pk Dk
3

C, 07 C, cT op psi lbs,./ft.

0 100 0 100 513.3 396 14,653
9.78 90.22 26,54  T3.46 L4682 682 16.22
29.91 T70.09 58,71 L1.29 373.9 1106 16.62
50,24 49,76 T7.09 22,91 276,.8 1263 17,43
70.22 29.78 88.71 11,29 189.8 1132 16.97
90,22 9,78 96,83 3.15 120.3 850 15,48

100 0 100 0 90,1 712 13.736

modified in order that the curve would exactly fit the data for pure
ethane and n-heptane, This exact fit for the properties of the pure com-
ponents was desirable because, by definition, the reduced temperature and
pressure are unity at the critical point., That is,

Tr = Tk/Tc = 1

Pr = Pk/Pc = 1

All degrees of polynomials up to six were fitted to the data and

then evaluated on the basis of how well they predicted the data points,
In all cases the fourth degree polynomials gave the best fit., The tem=-
perature curve was expressed as a function of mole fraction ethane, How=
ever, the pressure and reduced compressibility factor curves were expressed
as a function of weiéht fraction ethane because better fits were obtained

using this variable. A computer program was written which computed Tk,

Pk, and Zr for any value of x.

Evaluation of Equations of State

Because of their well known capabilities in both the vapor and liquid

43

phases, the van der Waals - and Benedict-Webb-Rubin3 equations of state

vere selected to be evaluated for their ability to predict vapor-liquid
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equilibria in the critical region. The form of the van der Waals equation

for a binary system (ethane-n-heptane) is:

P = RTD/(1 - bD) - aD° (1)

1/2 a1/2]2

1 * (1 - x) > = van der Waals constant a

vhere a = [xa

for the mixture,

o’
"

xb; + (1 - x)b, = van der Waals constant b for the

mixture,

19 bl = van der Waals constants for pure ethane,

32. b2 = van der Waals constants for pure n-heptane,

a

X = mole fraction ethane,

The Benedict-Webb-Rubin mixture equation is the same as equation (7)
on page 29 except that the constants for the mixture are found by the
following mixture rules:

B, = xB  + (1 - x)B

1 2

A = [xA1/2 + (1 - x)Al/2]2
o o, o,

and likewise for Co and v,

a= [xai/3 + (1 - x)a;/3]3

and likewise for b, c, and a,
where subscript 1 represents ethane
subscript 2 represents n-heptane,
Each eqﬁ;tion of state was substituted into the general expression
for dimensionless free energy G (equation (6), page 26). The derivatives

(azc/axa)T p and (33G/3x wvere analytically derived for both equations
1

3
T,P
of state, Computer programs were written which simultaneously solved the

G'' and G''' equations for the value of T and D which made the expressions






Ly
equal to zero. The Newton-Raphson convergence methodh2 wvas used in the
calculations,

These values of T and D were actually Tk and Dk because G'* and G''!
are equal to zero only at the critical point. The critical pressure Pk
was computed from the equation of state, These data from the two equations
were compared with Kay's experimental data for the ethane-n-heptane sys=-
ten.as' As a result of this comparison, the Benedict-Webb-Rubin equation

of state was selected as the basis for the reduced equation of state.

Derivation of the Reduced Equation of State
The reduced equation of state was derived using the Benedict-Webb-

Rubin3

equation of state for propane. This equation would be equation (7)
on page 29 with the constants (a, b, ..., Y) those for propane, By making
the following substitutions:

T = TeTr

D = DeDr

P = PcPr

vhere Tc, Dc, Pc = critical temperature, density, and pressure
of propane,

an equation with only two constants can be derived, If Tcn and Pcn are
selected to be those two constants, then Dcm can be computed from
Dcm = Pcn/RTcch vhere Zc has the same value for all compounds, according
to the corresponding states principle. Thus, the reduced equation of
state expresses reduced pressure as a function of reduced temperature and
density and has only pseudocritical temperature and pressure as constants.
Computer programs were written which computed Pr and Zr given Tr, Dr, and
the Benedict-Webb=Rubin equation constants and the critical constants for

the reference compound (e.g. propane),
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Derivation of the Analytical Expressions for the Critical Point Free
Energy Relationships

Using the general expression for dimensionless free energy G (equa=
tion (6), page 26), the equation for G, when P is expressed by the
Benedict-Webb-Rubin equation of state, was derived., The expression for
G was then put into reduced form (i.e, made a function of two constants)
by making the above listed substitutions for T, D, and P, The analytical

equations for (aac/axa)T p and (a3c/ax were then derived, Computer
1 ]

3
)T,P
programs were written in order that G'' and G''' could be calculated on

a digital computer,

Evaluation of Available Pseudocritical Mixture Rules

Three available pseudocritical mixture rules were evaluated by using
them in conjunction with the reduced equation of state to compute the
temperature, pressure, and compressibility factor of the ethane=-n-heptane
system at the point where the K-factor was unity (convergence pressure

curve). The mixture rules tested were:

1. Kay's rule22

Tcm = xTe, + (1 - x)'l‘c2

1l

Pcm = xPcl + (1 - x)Pc2

vhere x = mole fraction ethane
subscript 1 represents ethane

subscript 2 represents n-heptane

2. Van der Vaals' conmbinationah3

(Tc/Pc)m = x(Tc/Pc)l + (1 - x)(Tc/Pc)2

(Tc/Pclla)m = x(Tc/Pcl/a)l + (1 - x)(Tc/Pcl/z)

2
3. Joffe's rule21
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1/2) 1/2) 1/2)

(Tc/Pc n = x(Tec/Pe + (1 = x)(Te/Pc

1l 2

(Te/Pe) = x2(Tc/Pc)l +Q - x)2(Tc/Pc)2

+ l/h[(Tc/Pc)i/3 + (Tc/Pc);/3]3 x (1= x)

The procedure for each x was to use the expressions for Tcm and Pcm
in the generalized equations for G'' and G''' and then solve G'' and G'''
simultaneously for the value of T (i.e, Tk) and D (i,e, Dk) which made
G'' and G''' equal zero., Pk was computed from the reduced equation of
state, The mixture rules were evaluated on the basis of how well the
values of Tk, Pk, and Dk, for several values of x, compared with Kay's
experimental data.23
Computer programs were written for the evaluation of the three mix-

ture rules. The Newton-Raphson convergence methodh2 was used in the three

programs.

Generation of Pseudocritical Mixture Rules

Three different approaches were used in an attempt to generate curves
of 'I‘cm as a function of x and Pcm as a function of x.

I, In this approach Kay's experimental critical point dat323 were

used along with the condition that G'' equals zero at the critical point,
to compute curves of 'J.‘cm and Pcm as a function of composition., A computer
program was written for use on the MIS&IC computer, and it followed the
calculation flow diagram in Figure L, éage 36, In addition, several varia-
tions of this approach were tried. The size of the increment Ax was varied,

although 0.05 was the most commonly used value, Also, the computer program

vas changed to begin at the other end of the composition range (i.e. pure
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n-heptane), Finally, butane was used as a reference compound instead of
propane., This meant that the Benedict-Webb=Rubin constants were those
for butane,

To aid in obtaining convergence, expressions for the maximum possible
values of Dr, given Trmax and Zr, were used to put some bound on new
guesses of Tr and Dr.

A check program was written by another person for checking results
from this approach.

II, In this part of the research the experimental reduced compress-
ibility factor data for the true critical point were not used., Instead,
the condition used was that the third partial derivative of free energy
with respect to composition, at constant temperature and pressure, was
equal to zero at the critical point. This part was begun on the MISTIC
computer, but the arrival of the Control Data 3600 Computer made it
necessary to rewrite all programs in Fortran programming language, Fol=-
lowing the flow diagram in Figure 5, page 37, computer programs were
written for computing Tcm and Pcn at successive values of composition.
The Fortran program was called Program LINEAR and is listed and described
in Appendix VI,

Because the equations for G'' and G''' are functions of both Tr and
Dr, the generation of values for Tr and Dr required a simultaneous con=-
vergence process for the two variables., The major problem connected with
this part of the research vas the development of such a convergence
_brbcess.

The first convergence scheme used was a process which assumed that
G'' and G''' were linear functions of Tr and Dr. The details of this

convergence scheme are discussed in the description of subroutine CONVERG
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in Appendix VI,

A variation of the linear convergence method was also used, Since
three sets of guesses for (Tr,Dr) were needed to predict a new set of
guesses, the convergence scheme was changed so that the three sets of
guesses included the last set and the best two previous sets., Before,
the immediate past three sets had been used,

Since the programs written for this approach had failed because of
lack of convergence, two methods were used to obtain better initial
guesses for Tr and Dr at X5 Xg9 and xh*, for use in Program LINEAR, The

1)

first method changed six variables (Tra, Trys Try, Drp, Drg, Drh)

simultaneously until G'' was equal to zero at x., and x., and G''' was

2 3°

equal to zero at x These six variables were changed to meet these

3*
three conditions by a method of steepest descent.

The method of steepest descent involved calculating the partial
derivative of a function ¢ (defined as the sum of the squares of 02",
G3", and G3"') with respect to each variable while the other variables
were held constant, These slopes were used to compute the estimated

changes in each of the six variables necessary to make ¢ equal to zero.

The equations used were

p = -¢/[(a¢/axxl)2 + (3¢/axx2)2 + aoe *+ (a¢/axx6)2] (1)
AXX, = (a¢/axxl)p s etc,

vhere xxl represents a dummy variable used for interpolation and

#Subscripts on x represent a numbering system on successive values of x
beginning with x, = o, x, = Ax, etc,

L 1)
Subscripts on variables other than x represent the values of these
variables at the value of x which has the same subscript,
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extraplation instead of Tr or Dr. There is one XX variable for each of
Tra, Tr3, Trh, Dr2, Dr3, Drho p is a proportionality factor.

To speed convergence, a minimization procedure was used. This pro=-
cedure used the slope of the p versus ¢ curve at p = 0 and the value of
¢ at some other p value to fit a quadratic equation to these data points.
The calculated minimum of this equation was used to compute the next
values of p. Except for a variation in the minimization procedure, the
above convergence method is approximately the same as one described by
Bootha. Because the speed of convergence was extremely slow with this
method, several programs were prepared in an attempt to find the reason
for this slowness, These included (1) programs for learning more about
the ¢ versus p curve and (2) a program for determining the best increment
of XX to use in the numerical differentiation calculations.

The second method used an approach similar to the Newton-Raphson

k2

method ~ to simultaneocusly vary the variables (Tre. Tr3, Trh, Dr2, Dr

3‘

> and x3. Since the fact that

Tr=1land Pr =1 at x=0= x, vas also used, four points were available

to compute up to third derivatives of Tr and Pr. Because the six

Drb) until G'' and G''' were zero at x

variables (Tr2, Trys Try, Dry, Drg, Drh) were varied to satisfy only

four requirements (G'' = 0 and G''' = 0 at x, and x3), an infinite number

2
of solutions was possible. This permitted other requirements, such as
non-negativity and well behaved curves, to be satisfied.

The computed sets of starting data were then used as initial values
in Program LINEAR.

III, The third approach assumed a cubic form for the Tcm and Pcm

curves as a function of x. The computer program written for this section

follows the calculation flaw diagram in Figure 6, page 38, This program
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was called Program TOTRANGE and is listed in Appendix VII. The Newton-
Raphson convergence methodh2 wvas used for solving a system of four equa=-

tions and four unknowns in the program,

Check for the Analytical Derivatives
A check program was written to check the equations for G'' and G''',
This program, called Program CHECK, follows the flow diagram in Figure T

on page 39, It is listed and described in Appendix VIII,

Chronological Order of the Research Work
To provide greater continuity to the description of the research work,

the discussion does not necessarily follow the same chronological pattern
in which the work was done, The work was actually performed in the fol-
lowing order:

l. Generation of pseudocritical mixture rules.

2. Evaluation of published pseudocritical mixture rules.

3. Evaluation of equations of state.
Also, the placing of the computer programs in the appendices should not
detract from the fact that they constituted the bulk of the research work,
They have been included in the appendices to give continuity to the re-

mainder of the report.



RESULTS AND DISCUSSION

Fitting of Curves to Experimental Data
Early in the research work it was necessary to fit polynomials to the

experimental critical point data of Kay23

to adapt this data for use on a
digital computer, Critical temperatures were expressed as a function of
mole fraction, but critical pressures and reduced compressibility factors
were expressed as functions of weight fraction because this variable

yielded better fits. The polynomials which resulted are:
Tk = (973.0 - 186,4392126x + 200,413825x° - 558,3704113x>
+ 121,195736xh)/1,8 (1)
Pk = (396. + 3051,927387W - 1199,746006W> - 4263,827785W>

+ 2727.6L6362W") /1L 696 (2)

Zr = 1.0 + 4.030611284W = 6.69521863TW° + 1.855922080W>

)
+ o.8086852915wh (3)

where x = mole fraction ethane

W = weight fraction ethane = 30,06x/[30.06x + 100,17(1l=x)]

Tk

critical temperature, °K

Pk = critical pressure, atm,

Zr = critical reduced compressibility factor,
Table 3 lists computed values of Tk, Pk, Zk, and Zr at ,05 increments of
mole fraction ethane. One-half weight fraction ethane is approximately

0,769 mole fraction ethane,
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Critical temperature, pressure, compressibility factor, and
reduced compressibility factor as computed from a least
squares fit of Kay's data

.00
«05
.10
15
«20
«25
30

35

45
+50
#55
.60
.65
.70
o T5
+80
.85
290
95
1,00

Tk (°K)
540,53888
535,60000
530,99107
526,49458
521,90313
517.01940
511,65618
505.63639
498,79300
490.96911
482,01792
k71.80272
460,19689
L47,08393
432,357k42
415,92108
397.68867
377.58410
355.5413L
331,50450
305.42776

Pk (Atm.)
26,946107
30,154282
33.552553
37.148395
40,946990
Lk ,949864
49.152915
53,543590
58,096802
62,76911k
67.490348
72,151619

"76,588316

80,556178
83.698999
85,50T451
85.275T75
82,083934
Tk4,900183
63,1088k45
L8,4L4855T

Zk
+25919000
27526831
+291643T1
30825131
3250022
234177661
+35841401
+37LT7016L
+39035853
140501526
41818773
14292k k55
+43736661
- 44150205
» 44032381
43221376
+4153365
38796487
34947786
+30315790
26395000

Zr
1,0000000
1.0610586
1.123149k
1.1860199
1.,2493263
1.3126070
1.3752466
1,4364310
1,4950881
1,5498112
1,5987603
1.6395395
1,6690u452
1,6832977
1.6772835
1,6L448994
1.579238U4
1,k738291
1.326L226
1.1495795

1.0000000
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Equations of State for Mixtures

b3 and Bemeclit:1:-Wem.7-Rubin3 equations of state for

The van der Waals
mixtures were evaluated on the basis of their ability to predict conver-
gence pressure curves and critical compressibility factors. Prediction of
these quantities was used as a basis for evaluation because good predic-
tion indicates computational accuracy in the critical region.

The prediction of convergence pressure curves is of particular inter-
est because the curves are used in the convergence pressure method of pre-
dicting vapor-liquid equilibria. Because of a shortage of critical point
data, the shape of convergence pressure curves is generally estimated from
data for other systems., This is illustrated in Figure 8 which is a typical
16

convergence pressure diagram published by Hadden. In this diagram only

three of the curves are substantiated by experimental data.

Figure 8. Convergence pressure data - ethane lightest component
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The convergence pressure curves shown in Figure 8 are plots of pres-
sure as a function of temperature. Throughout the remainder of this dis-
cussion, convergence pressure data will be plotted on two separate graphs,
These graphs will be temperature and pressure as a function of composition.,
Because composition is a common parameter, the two separate plots are
equivalent to a single plot such as in Figure 8.

Using the van der Waals equation plus the rules recommended by van
der Waals for computing equation constants for a mixture, the critical
state properties shown in Table L were obtained. Table 5 lists similar
results obtained by using the Benedict-Webb-Rubin equation of state with
the combination rules recommended by Benedict et al. for mixtures,

Figures 9, 10, and 11 are plots of the critical temperature, pressure,
and compressibility factors, respectively, as a function of composition.
The critical temperatures predicted by both equations of state agree very
well with Kay's data (Table 2, page 42), The van der Waals equation was in
considerably greater error in predicting pressures than the Benedict-Webb-
Rubin equation, Table 4 shows the maximum percent pressure deviation for
the van der Waals equation to be over 3L percent., The Benedict-Webb-Rubin
equation was also in good agreement with known compressibility factors
vhile the van der Waals agreementwas relatively poor.,

Overall, the Benedict-Webb-Rubin equation of state for mixtures was
in good agreement with Kay's experimental data, However, it should be
realized that Kay's data were probably used in the empirical derivation
of the Benedict-Webb-Rubin equation of state, and this could account for
the excellent agreement., Nevertheless, the excellent results obtained
with the Benedict-Webb-Rubin equation indicate that this equation of state

is capable of being applied to pure compounds and mixtures with
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Values of critical density, temperature, pressure, and

compressibility factor as predicted by the van der Waals

equation of state for mixtures

0,05
0,10
0.15
0.20
0.25
0,30
0.35
0.k0
0.45
0.50
0,55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

0.95

Dk

(moles/liter)

1.6824284
1.748TO9k
1,8202682
1.8977382
1,9818530
2,0734668
2.17357TT
2.2833569
2.4041839
2,5376893
2,6858055
2.8508254
3.0354679
3.2L2940T
3,4769817
3.7h1824s5
b ,0419409
4,3811148
L.7592177

Tk
(°K)

535.07T6T
529,26780
523,07300
516,45669
509.37809
501.T79175
493,6L4T1h
484 ,88813
L75.45271
465,27276
Lsk,27k19
L42,37753
429,49938
b15,55484
400, 46158
38L,1L454T
366,54679
347,62230
327.32166

Dev, From
Data (%)

-0,10
-0,32
-0,65
-1,0L
-1,48
=1,93
-2,37
-2,79
-3,16
-3.47
=3,72
-3.87
-3,93
-3.89
-3,72
-3.41
-2,92
-2,23

-1.26

Pk
(atmo )

28.7T1692
30.6L42235
32.575061
34,567900
36,616655
38, 71476k
40.852363
43,015181
45,183084
47.328168
L9, 41228k
51.383840
53,173772
54 ,6905TT
550814443
56.390708
56,223212
55,06786T
52,623445

Dev. From
Data (%)

- k.59
- 8.67
-12.31
=15,58
-18.54
-21,24
-23,70
-25.96
-28.02
-29.87
-31,52
-32,91
-33.99
-3k .66
-3k.73
-33.87
=31.51
-26.48

Zk

0.38942833
0,40340651
0.41687237
0,429752k45
0,44195956
0.45338962
0.463917T1
0.47339314
0.48163320
0.48841521
0,49346673
0.49645332
0.49696389
0,49L449366
0.48842613
0,478017T71
0,46239363
0,L440576Th4
0.41160868
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TABLE 4, Values of critical density, temperature, pressure, and
compressibility factor as predicted by the van der. Waals
equation of state for mixtures

x Dk Tk Dev, From Pk Dev., From Zk
(moles/liter) (°K) Data (%) (atm,) Data (%)

0.05 1.6824284  535,07767 -0.10  28,771692 = 4,59  0,38942833

0.10 1,Tk87094  529,26780 -0,32  30,642235 - 8,67  0.40340651

0.15 1.8202682  523,07300 =0.,65  32,575061 =12,31  0.41687237

0.20 1.8977382 516,45669  =1,0L4 34,567900 15,58  0.,429752L45

0.25 1.9818530  509.37809 -1.48  36,616655 -18.54  0,44195956

0.30 2.0734668 501,79175 =1.93 38,714764  -21.2k 0,45338962

0.35 2.17357TT7 493,671k  -2,37 40,852363 -23.T0 0,46391771

0.b0 2,2833569  L84,.88813 -2,79 43,015181 -25.96  0.4733931k

O.45  2,4041839 L75.45271  -3,16 45,183084 -28,02 0.48163320

0.50 2.5376893 465,27276  =3.47 47,328168 -29.87 0.L48841521

0,55 2.6858055 bsh,27419 -3,72 k9,412284 -31.52  0.49346673

0.60 2,850825k L42,37753 -3.87 51,383840 =32,91 0.496L45332

0.65 3.0354679 429,49938 -3.93 53.173772 =33.99 0,49696389

0.70  3,2429407  415.55484 -3.89  54.690577 -34.66  0.49LLI366

0,75 3.4769817 40046158 3,72 55.814443  -3L4,T3 0,488L42613

0.80  3,74182k5 38L4,14547  -3,41 56,390708 =33.87 0,478017T1

0,85 bL.0oL19k09 366,54679 =2.92 56,223212 =31,51 0,46239363

0,90 4,.38111L48 347.62230 -2,23 55,06T86T7 =26,48 0,440STETY

0.95 L4.7592177T  327.32166 =1.,26  52,623445 -16.61  0.41160868
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TABLE 5. Values of critical density, temperature, pressure, and
compressibility factor as predicted by the Benedict-Webb-
Rubin equation of state for mixtures

0,05
0.10
0.15
0.20
0.25
0.30
0.35
0.ko0
0.L5
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

0.95

Dk

(moles/liter)

2.1988824
2,3149502
2,4500561
2,6163878
2,8679907
3.3478922
3.6516231
3.9338281
4,2240173
L,5331285
4.8684388
5,2362520
5.6425121
6,0924091
6.5884252
7.1243169
T.6667T10
8.0986986
8.0519223

Tk
(°K)

537.15117
532,15117
528.36886
523,1931L
516,98032
508,45078
500,59817
492,32922
483,37107
473,5680L
462, 77669
450,84T12
h37°61983
422,93209
406,63972
388,67510
369.19415
348,.88235
328.972k45

Dev, From
Data (%)

+0,29
+0.37
+0,36
+0.25
-0,01
-0.63
-1,00
-1,30
-1.55
-1.75
-1.91
-2,03
-2,12
-2,18
-2,23
=227
-2,22
-1.87
-0,76

Pk
(atmo )

30,070395
33.15158k
36,481L34
40,140257
L LL5TT3
50,L42855U
55.,910509
61.427057
67.004787
T2,554512
T7.918854
82,860L62
87.034909
89.953776
90,945384
89.,144539
83,63009L4
T4, 057359
61.997280

Dev. From
Data (%)

-0,28
-1,20
-1.80
-1.97
-1,12
+2,60
+U4, 42
+5.T3
+6.75
+7,50
+7.99
+8.19
+8.0L
+T. 47
+6,36
+4,5h
+1,88
-1,13

-1.76

Zk

0,31021027
0.32739387
0.34338080
0,35729879
0.36525341
0,36097049
0.37267804
0,38645976
0.,39986654
0.41181255
0,42140233
0.42767423
0.4294766k
0,42537825
0,41362313
0,39226573
0.36000691
0.31936664
0.28518659
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approximately the same accuracy.

Generalized Equation of State

A generalized equation of state expressing reduced pressure in terms
of reduced temperature and density was derived, The form of the equation
vas based on the Benedict-Webb-Rubin equation of state. The resulting

reduced equation is

Pr = fTrDr + (gTr = h = i/Trz)Drz + (JTr - k)Dr3 + lDr6

+ (mDr3/Tr2)(1° + nDrz)exp(-nDre) ()
vhere constants f through n are the reduced equation of state constants
and are defined in Appendix III, According to the corresponding states
principles, these congtants should be the same for all compounds. How=
ever, in reality, these constants do vary slightly depending on the refer-
ence compound used to compute them., In this research propane was used as

the reference compound unless otherwise noted.

Generalized Equations for Free Energy and its First Three Derivatives

Because the second and third derivatives of free energy (G) with
respect to composition, are equal to zero at the critical point, it was
desirable to have generalized expressions for these quantities; éhe
generalized expression for G was found to be

G = 1n PcmPr +x1lnx+ (1, = x)ln(l, = x) +Z =1, = 1n Z
+ [(g = b/Tr = 1/Tr3)Dr + (3 - k/Tr)Dr/2 + (1/Tr)Dr’/5

+ (ubr?/2rr3)[ (2 - 2exp(-nDr?))/nDr’ - exp(-nDr2)]]/s (5)
Details of the above generalization appears in Appendix III, The equations
for G'' and G''' and the procedure for obtaining them are shown in

Appendices III, IV, and V,
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Evaluation of Published Mixture Rules
Using the derived generalized equation of state and generalized ex-

22 van der Waals',h3 and Joffe'321 mix-

pressions for G°' and G''', Kay's,
ture rules were evaluated for their ability to predict criticel state
properties, Tables 6, 7, and 8 list the predicted values of critical
temperature, pressure, and compressibility factor obtained with each of
the three mixture rules. These results are plotted as functions of com=-
position in Figures 12, 13, and 14, The critical temperature agreement
was very good in all cases, The maximum temperature percent deviation

was 4,67 percent; this occurred with Kay's rule. The predicted critical
pressures were best with van der Waals' mixture rule and poorest with
Kay's rule, Joffe's rule, although slightly poorer than van der Waals'
combinations, was nevertheless in good agreement with Kay's data., Figure
1k shows only fair agreement with the experimental compressibility factors.
Van der Waals’ and Joffe’s rules are approximately equivalent in their
ability to match the experimental compressibility factors,

Overall, the van der Waals®’ mixture rule appears to be the best of
the three mixture rules evaluated. In fact, the critical temperature and
pressure predictions made by using the van der Waals mixture rule in the
generalized equation of state were about as good as the predictions made
from the Benedict«Webb-Rubin equation of state for mixtures., The average
critical temperature error was 1,16 percent using the van der Waals rule
with the generalized equation and 1,32 percent using the Benedict-Webb-
Rubin equation for mixtures. The average critical pressure error was 5.41
percent with the reduced equation of state plus van der Waals' rule and
4,25 percent with the eight constant Benedict-Webb-Rubin equation.

The relatively good temperature and pressure agreement obtained with
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62

Critical temperatures, pressures, and compressibility factors

and critical reduced densities obtained from the generalized

equation of state using Kay’s mixture rule

0.05
0,10
0,15
0,20
0.25
0,30
0.35
0.ko
0.45
0.50
0.55
0.60
0.65
0,70
0.75
0.80
0,85
0.90

0.95

Dr

0.9231651
0,8836010
0.8713950
0.8769L4k42
0.8946219
0.9206883
0,952k4Lgk
0,9878553
1,0252945
1,0634892
1,1014103
1,1381k447
1,1726882
1.2036582
1,22892k41
1,2451643
1.2L473405
1,2277400

1,17153L5

Tk
(°K)

540.881L46
541.739L42
54L2,17612
541,54189
539,36347
535.32072
529.23324
521,03687
510,754L49
L98,L46689
L84 ,29001
468,36458
450,86204
L32,004L6
412,08810
391, 48666
370.,59239
349,6L4951
328,45734

Dev, From
Data (%)

+0.99
+2,02
+2,98
+3.76
+L.32
+4.63
+4,67
+4 .46
+4,03
+3.L1
+2,65
+1.77
+0,85
-0,08
=0,92
-1,56
=1,85
-1.66

-0.92

Pk
(atm.,)

32,081979
37.429280
43,160219
49,348115
55.981493
62.97501k
T0,179159
T7.385910
8l ,331900
90,701008
96,126566
100,194502
102, 454443
102,451997
99,T97548
94.275043
85,955295
75.221599
62,618319

Dev, From
Data (%)

+6,39
+11,55
+16,18
+20,52
+2b .54
+28,12
+31,.07
+33,.20
+3L.35
+34,39
+33,.23
+30.82
+27.18
+22,L41
+16,T1
+10.55
+ 4,72
+ 0.L43

- 0,78

Zk

0,32837705
0,37630737
0,41L434263
0.44449636
0,46834217
0,48701430
0,50125431
0,51146354
0.51TTL698
0,51994559
0.51766700
0.51032823
0,49722998
0.47T7691Tk
0,4512833h
0,41815902
0,3T940017
0,33717536
0,29508380
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TABLE T, Critical temperatures, pressures, and compressibility factors
and critical reduced densities obtained from the generalized
equation of state using van der Waals' combinations

x Dr Tk Dev, From Pk Dev, From Zk
(°K) Data (%) (atm,) Data (%)

0,05 0,9768298 537,45599  +0.35 30,6L4LL0 41,63 0.30624680

0.10 0,963326L 534,36914 40,64 34,488729 +2.79 0,33903493

0.15 0.958102k4 531,05083  +0.87 38,532570  +3,73 0.36912509

0,20 0,9595236 527.30369  +1.03 42,815067  +L.Lu6 0,39668929

0.25 0.9664084 522,95364  +1.15 47,359121  +5,36 0,42184106

0.30 0.9779152 517.78913 41,20 52,168630 +6.1L 0,4LL59261

0,35 0.9933872 511.65693  +1.19 57.221872  +6.87 0.46LBLLLS

0.40 0.0122475 504,36183 +1.12 62,L61497  +7.51 0.48236720

0,45 1.0339289 495,71973  +0,97 6T7.781420 +7.99 0.49677399

0,50 1,0578205  485.55437 +0.73  T73.011208 +8.18 0.50748858

0,55 1.0832113 473,7093% 40,40 T77.899690  +7.97 0.51371798

0.60 1,1092170 460,06761 =0,03 82,102129  +7.20 0.51LLL616

0.65 1.1346673 4u4k,58183 -0,56 85,179809  +5.TL 0,508L47929

0.70 1.1579352 427.31567 =1,17 86.627134  +3.50 0.49459062

0.75 1.17669T0 408,L48k42 -1.79 85.9u4862 +0,51 0,47181998

0,80 1.1876393 388,49618 -2,31 82,766929  =2,94 0.43993903

0.85 1,1861305 367.,864L4  -2,57  77.008248 -6,18 0,39996076

0.90 1,1656461  34T7,09784 -2.37  68.949631  =T.9L 0.354L45651

0,95 1,1152699 326,45019 -1,52 59,191060 =6,21 0,30786518
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TABLE 8, Critical temperatures, pressures, and compressibility factors
and critical reduced densities obtained from the generalized
equation of state using Joffe’s mixture rule

x Dr Tk Dev, From Pk Dev., From Zk
(°K) Data (%) (atm,) Data (%)

0.05 0.9727908 537.69519  +0,39 29,889297 -0.88 0.29790306

0,10 0.95141k3 534,84787 +0.73 32,996463  -1.66 0,32403773

0.15 0,9362428 531.88385 +1,02 36,302932 -2,28 0,34880851

0,20 0.9265177 528,69177 +1.30 39,843636 -2.69 0,372176L48

0.25 0.9214978 525,16053  +1,.57 43,650313 -2.89 0.39417022

0.30 0,9206871 521,17216 +1,86 L7,751547 =2.85 0. L1LTTI3L

0.35 0.9238190 516,59L94  +2.17 52,1T146T7 =2,56 0,43393137

0.40 0.9308000 511,27Thk2  +2.50 56,926158 =2,01 0,45148343

0.45  0,94166LT 505.04261 42,87 62.016929 -1,20 0.46720848

0,50 0.,9565L450 497.68220 +3.25 67.418917 -0.11 0,480T69LY

0.55 0.9756L09  L88,95109 +3.63  T3.062511  +1.26 0.49167708

0,60 0.9991835  L478,56353 +3.99  T8,803787 +2.89 0.49922584

0,65 1.0273678 466,19395  +4.27 84,379008  +4,75 0,502k0232

0,70 1.06021Th  451.48901 +4, k2  89,338656 +6.Th 0,L99T6L3T

0,75 1.0973090  L434.10254 +4,37  92,962654 48,72 0.48930956

0.80 1.1371929 413,77168  +L.0k4 94,17901  +10,k4k 0,46841056

0.85 1.176119%  390.45139 +3.41  91,567138 +11.25 0,4340L4523

0,90 1.20489k2 36L,48LE6  +2,52 83,588143 +11,60 0.38386639

0.95 1.,19855T4  336.58129 +1.53  69,258505 +9,Th 0,31938622
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the van der Waals®' combinations indicates that this mixture rule may be
very satisfactory for vapor-liquid equilibrium calculations. However,
the poorer compressibility factor agreement indicates that the predicted
densities are in error from the experimental densities. This lack of
agreement means that the mixture rule probably would not be entirely
satisfactory for predicting other thermodynamic quantities from a gen-

eralized equation of state.

Generation of Pseudocritical Mixture Rules

The results from the first two approaches which were used to compute
Tcm and Pcm values were not completely satisfactory. They are listed
along with a discussion of the data in Appendix IX,

By assuming the curves of 'l‘cm and Pcm to be cubic (Program TOTRANGE),
values of Tcm and Pcm were computed at two intermediate values of composi-
tion. Table 9 lists the results from program TOTRANGE for two pairs of x
values, The pairs used were x = 0,6215, 0,8723 (approximately symmetrical
with respect to weight fraction) and x = 0,333, 0,667 (symmetrical with
respect to mole fraction),

TABLE 9. Values of pseudocritical temperature and pressure as computed
by program TOTRANGE

x Tec Pc Graph
Symbol
0,333 Lsk,11823 °K 28,445853 atm, A
0,667 378,39011 35,058287 A
0.6215 394, 77462 35,821393 a]
0.8723 336,30273 43,010320 o

Figures 15 and 16 are plots of pseudocritical temperatures and
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pressures as a function of composition. Figure 15 shows the Tcm curves
from program TOTRANGE and van der Waals’ mixture rule to be nearly linear,
The geﬁerated pseudocritical pressure curve (Figure 16) is reasonably
close to the curve predicted by the van der Waals' mixture rule, but both
of these curves deviate considerably from linearity (Kay's rule).

Using the computed reduced compressibility factors from program
TOTRANGE, the values of critical compressibility factor were calculated
and plotted in Figure 17. The agreement with Kay’s data is only fair but
it is better than the agreement obtained using van der Waals' mixture rule
in the generalized equation of state, Errors were undoubtedly introduced
because the computations in program TOTRANGE involved fitting a third degree
polynomial to only four points and then taking up to third derivatives of
this polynomial, This numerical procedure would explain the variation of
the values at x = 0,6215 and x = 0,667 in Figures 15, 16, and 17,

If more accurate pseudocritical curves could be generated by using
smaller increments of composition then, theoretically, the computed curve

should come closer to the data curve in Figure 17,

Differentiation Check

The results of a program written to numerically check the expressions
for G'' and G''" are shown in Table 10, Agreement to at least three sig-
nificant figures was obtained between the numerical and mathematical cal-

culations of the derivatives,
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TABLE 10, Results from program CHECK for three values of compeosition

x = 0,10

Numerical
Analytical

x = 0,50

Numerical
Analytical

x = 0,90

Numerical
Analytical

GV

-6,431077905
-6,431534010

1,101609680
1,101493811

T.0L0336664
T.04005173k

Gt

7,T04937921
T.705581635

6,94L4423760
6,9LLL51L00

3,936850926
3.,937199652

G'l'

-3,798L40417S
=3,798L455510

2,148565989
2,148572376

4,290T7TLIT9
L ,289405663
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CONCLUSIONS

Using the eight constant Benedict-Webb-Rubin equation of syate for a
reference compound, an expression for reduced pressure in terms of reduced
temperature and density'waa derived. This expressed, in equation form,
relationships which usually appear only in tables and charts. Reduced
expressions were also derived for the second and third partial derivatives
of free energy with respect to mole fraction at constant termperature and
- pressure,

Computer programs were written and tested for use on the Control Data
Corpor#tion 3600 digital computer.. Included were prograns wvhich performed
the following: (1) Calculation of reduced pressure and compressibility
factor using the reduced equation of state, (2) Calculation of derived
thermodynamic quantities including the second and third partial derivatives
of free energy. (3) Computation of critical envelope curves by simultane-
ously converging the second and third partial derivatives of free energy
to zero., (U) Computation of pseudocritical temperature and pressure curves
using free energy conditions at the critical point and experimental criti-
cal envelope curve data, (5) Numerical calculation for checking analytical-
ly derived expressions for the second and third free energy derivatives.

A method was devised to compute convergence pressure curves which
previously had been available only from experimental data. The eight con-
stant Benedict-Webb-Rubin equation of state made excellent predictions of
the critical envelope curve for the ethane-n-heptane system, However,
using the following mixture rules

n n
Pc_ = [121 xi(Tc/Pcl/Q)i/ii1 xi(Tc/Pc)i]?

Th
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'I'cm = [ ; xi(Tc/Pcl/z)i]Q/ g xi(Tc/Pc)i
i=1 i=1
in conjunction with the two constant reduced equation of state, results
vere obtained that were about as good as those from the eight constant
Benedict«Webb-Rubin equation.,

Using experimental critical envelope curve data, cubic curves of
pseudocritical temperature and pressure were generated which were in good
agreement with the above mixture rules. When the critical compressibility
factor curves were computed from the generated pseudocritical curves, the
results were closer to the experimental data than'those computed using the

above mixture rules,



SUGGESTIONS FOR FURTHER STUDY

The excellent convergence pressure curve agreement obtained with the
van der Waals mixture rule, wvhen used with the generalized equation of
state, reveals a slightly different approach which may yield more success
with computational methods which progress across the composition range in
small increments., This new approach would require changing the experi-
mental critical temperature and pressure data to fit the convergence pres-
sure curve predicted by the van der Waals combinations (Figures 12, 13)
vhen used with the generalized equation. Equations for G'' and G''' could
be used, as in program LINEAR, to generate pseudocritical temperature and
pressure curves, These generated curves should be approximately the same
as the pseudocritical curves predicted by the van der Waals mixture rule.
As the calculation proceeded across the composition range, at least three
possibilities might occur:

1. The generated curves could begin to deviate greatly from the
pseudocritical curves computed from the van der Waals combinations. This
would indicate the magnification of an error., This might be corrected by
beginning in the middle of the composition range and progressing towards
the two ends,

2., The generated curves may be very close to the van der Waals mix-
ture rule curve, yet at some point the calculations might not converge.,
This would indicate that a better convergence method was needed.

3. The computations may proceed across the entire composition range.
In this case, relaxation techniques may be applicable to change the ex=-
perimental data back to Kay's data.,

A study should also be made to determine how accurately the
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generalized equation of state with van der Waals' mixture rule will pre-
dict vapor=liquid equilibria., This computation would require fugacity
and vapor pressure calculations. The results could then be compared with

experimental vapor-liquid equilibrium data.



NOMENCLATURE
a = Activity

Aon Boo coo &,

b, ¢, a, Y = Constants in Benedict-Webb-Rubin equation of state

d = Differential operator

D = Molal density, moles/unit volume

De = Critical molal density of a pure component, moles/
unit volume

Dcm = Pgeudocritical molal density of a mixture, moles/
unit volume

Dk = Critical molal density of a binary mixture, moles/
unit volume

Dr = Reduced molal density

f = Fugacity

f, g hy 1, J,

k, 1, my n = Constants in the reduced Benedict-Webb-Rubin equation
of state

F = Gibbs'ffee.enorgy

F = Free energy/mole

G = FVRT of a binary mixture of two gases, referred to
standard states of unit fugacity for the pure
components, which have been mixed in a perfect gas
state at the temperature of the system

K = Equilibrium ratio or K-factor, y/x

Kv = Vaporization equilibrium ratio, av/aL

L = Liquid volume correction term

P = Total pressure, atm,

Pe = Critical pressure of pure component, atm.

Pcm = Pgeudocritical pressure of a mixture, atm,

Po = A low pressure such that gases exhibit perfect gas

behavior, atm,
Pr = Reduced pressure
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<l

Zc

Zc
m

Zr

T9
Gas constant, (liter.atm.)/(g-molesK°)
Temperature, °K
Critical temperature of pure component, K°
Pseudocritical temperature of a mixture, °K
Critical temperature of a binary mixture, °K
Reduced temperature
Volume
Unit volume/mole
Unit volume/mole under perfect gas conditions
Mole fraction ethane
Mole fraction in the liquid phase
Mole fraction in the vapor phase
Compressibility factor, PV/RT
Critical compressibility factor of pure component

Pseudocritical compressibility factor of a binary
mixture

Critical éomprelsibility factor of a binary mixture

Reduced compressibility factor

GREEK SYMBOLS

Finite change of a property; a positive value
indicates an increase

Partial differential operator
Overall activity coefficient

Activity coefficient of component A in vapor phase
at a mole fraction of y

Activity coefficient of component A in liquid phase
at a mole fraction of x

Fugacity coefficient



VPA

VPB
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SUBSCRIPTS
Component A
Component B
Component i
Component J
Liquid phase
Total pressure
Vapor phase
Vapor pressure of pure component A

Vapor pressure of pure component B

SUPERSCRIPTS

First derivative with respect to mole fraction ethane
at constant temperature and. pressure

Second derivative with respect to mole fraction ethane
at constant temperature. and pressure

Third derivative with respect to mole fraction ethane
at constant temperature and pressure

Standard state
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APPENDIX I

Derivation of an Equilibrium Ratio Expression for a Two Phase

Mixture
Temgerature 2
PVPA P
Vap
1ia
Liq
3 A h1 P
5 Vapor
A+ B
Liquidl
103 A+ B
PVPB P
Vap 7|
6 B

Figure 18, Formation of a two phase mixture at temperature T and
pressure P

For component A in Figure 18:

and F_=F

Fi = Fg=F3=TFp

Letting A 1 represent Fi - F&, (3) can be written
F 5 = 8F3.00
or AF1_2 + AF2_5 = AFB-h + AFh-lO

8u

(1)
(2)

(3)

(%)
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Step 1-2 By definition dF = RT d 1n f

OF, , = RT In (fz/fl) = RT 1n(f, /f,0) (5)
Step 2-5 Afé_s = RT 1n(f5/f2) = RT 1n[(r5/f°)/(f2/f°)]

where f° represents the fugacity in the standard state, Let
° L]

f° = f2

Since a = f/f°

then AF2_S = RT 1ln as

By definition as = YawWa

Therefore A 2.5 = RT ln(yAvyA) (6)

Step 3=k By definition dF = VLdP - 54T

or [dF =

V._ap (1)

Step 4L-10 Using an argument similar to that used to derive equation (6)

OF), ., = RT ln(YALxA) (8)

Inserting (5), (6), (7), and (8) into (k4):

P
RT ln(fAP/fAVP) + RT ln(yAvyA) = [ V dP + RT ln(yALxA)
P
AVP
P -
where L = exp[(1/RT)/ v, ap]
Pave

v =f/P



APPENDIX II

Derivation of Relationships for Calculating Free Energy of a
Binary Mixture at Temperature T and Pressure P

Let the standard states be the vapor of the pure components at unit
fugacity at the temperature of the system. For purposes of this calculaw

tion assume the following path.

Std. State Temgerature '_r_
Pure A| : 4 Pure A
Ypt =1 Po
1 2 Real
—3 Mixture
Std, State P
Pure B Pure B 6
yBL =1 P .
o
3 I

Figure 19. Path for calculation of the free energy of a binary mixture
at temperature T and pressure P

AFpop ™ (15'mix at T and P) - (:,",,‘FA + yFp°)

OFpop = Ya(8F) 5 + 8F, ) + y(AF, \ + AF) o) + &Fg ¢ (1)

>
)
[ ]

RT 1n(f2/fl) = RT 1n(1>°/1) = RT 1n 1>o

likewise, AF. y = BT 1o P

[t
&)
]

RT 1n Ya

=
=)
&
1
"

RT 1n yg

Integrating by parts,
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AF = VP - [ Pav
5-6 P v
(o] o

vhere Vo = molal volume at pressure P_
The Benedict=Webb-Rubin equation of state may be written
P=RT/V+A

vwhere A = £(T,V) and represents the balance of the equation of state,

v
AF'S_6 =VP-VP - é (RT/V + A)aV
[o]
- - - - aa» V -
AF5_6 = VP -VP -RT 1n(v/v°) - “[,_Adv

o
But, A = P - RT/V
V - v R -
Therefore [ AdV = [ (P - RT/V)aV
v v
V=1/D

aV = (-1/D%)aD

v _ »
[ AdV = - [[(P - RTD)/D]aD
v 0
o}
Let
D 2
I = [[(P - RID)/D"]dD
0
Thus,
A'F-"S-6 =VP -VP -RIIn(V/V) +1

From the perfect gas law, Vopo = RT

A'iss-VP-RT-RTan+RT1n(RT)-R'rlnpo+1

Substituting into (1)

e
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AFpor = ¥,RT 1n P_ + y RT 1n P_ + y,RT ln y, + ypRT 1n y,

+VP-RT-RT1nV+RT1n(RT).-RT1nP°+I

Since Yyt Yg = 1

yART 1n P° + yBRT 1n Po = RT 1n P°

AFpop = ¥,RT 1oy, + y RT 1n y, + VP - RT = RT In(V/RT) + I

Adding and subtracting RT 1ln P

AFTOT

-RTlnP+yARTlnyA+yBRT1nyB+RT(Z-l-an)+I
By definition
G = F/RT

But using the above stated standard states

AFTOT = (Fmix at T and P)
Therefore G = AFTOT/RT
or G=1lnP+y, lny, + (1 - yA)ln(l - yA) +Z=1=1n2%

D
+ (1/RT) [[(P - RTD)/D°]aD (2)
0



APPENDIX III
Derivation of the Equations for G'' and G'''
Benedict-Webb-Rubin equation of state:
P = RDT + (BORT - A - CO/T2)D2 + (bRT - a)p> + aaD6
+ (cD3/T2)(1 + yDz)exp(-yDe) (1)
Making the following substitutions into (1):
P = PcPr, T = TeTr, D = DeDr,
PcPr = RTrTcDrDc + (BORTcTr - A, - Co/TraTc2)Dr2Dca

34 anDr6Dc6 + (cDr3Dc3/Tr2Tc2)

+ (bRTeTr - a)Dr3Dc
(1 + yDrchz)exp(-yDrcha) (2)
Let
f = RTcDe/Pc
g = BORTchQ/Pc
h = AODcz/Pc
is= CODc2/Tc2Pc
J = bRTch3/Pc
k = aDc3/Pc
l= aaDc6/Pc
m= ch3/Tc2Pc
ns= yDc2
Therefore
Pr = fTrDr + (gTr - h = i/Tra)Dr2 + (3Tr - k)Dr3 + 1Dr6
+ (mDr3/Tr2)(1° + nDra)exp(-nDrz) (3)
This is the reduced form of the Benedict-Webb-Rubin equation of state,

From the discussion of free energy (Appendix II), it was shown that
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G=1lnP+y, lny, + (1 - yA)ln(l - yA) +Z«1l=1n2
D 2
+ (1/RT) [[(P - RTD)D)aD
0
Letting y, = x = mole fraction ethane and substituting (1) into (k)

G=InP+xlnx+ (1l -x)ln(l =x)+2Z«1=1n2Z+ (1/RT)
[(BORT - Ao - CO/T2)D + (bRT - a)D2/2 + aaDs/S +
(CD2/2T2)(2/YD2 - (2 exp(-vDe)]/YD2 - exp(-YDa))]

Putting (5) into reduced form

G = 1n PcmPr +xlnx+(1=-x)ln(ll =x)+Z=1=1n2Z¢+

(B° - AO/RTcTr - CO/RTr3Tc3)DcDr + (b - a/RTcTr)DcaDr2/2

5

+ aaDe Drs/sRTcTr + (cDr2Dc2/2RTc3Tr3)[(2—2exp(-yDc2Dr2))/

yDcaDr2 - exp(-yDczDrg)]

Note:

BoDc = g/f

A Dc/RTe = h/f

CODc/R'I'c3 = i/f

vDe?/2 = 3/2f

aDc2/2RTc = k/2f

aaDcs/sRTc = 1/5¢

¢Dc2/2RTe3

3

= m/2f

¢/2yRT¢” = m/2nf

yDc2 =n
Then,
G=1n Pc Pr + x ln x + (1, = x)In(l, = x) +2 =1, =1n Z
+[(g = b/Tr = 1/Tr3)Dr + (J - k/Tr)Dr°/2 + (1/Tr)Dr’/5

+(mDr2/2Tr3)[(2-2exp(-nDr2))/nDr2 - exp(-nDr2)]]/f

(4)

(5)

(6)

(1)
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T, = 1./r (8)
To' = -Tr'/Tr2 (9)
T = 2(Tr*)2/Te3 - Tror /e (10)
T''' o= =T [3(T 'Tr'' + T ''Tr') + T Tr'''] (11) 5
T =116 =13 (12)
T ' =31 °r ! (13) :
T ' = 6T°(T°')2 + 3T°2To" (14)
T ' = 3[2T°' + 6T T 'T '+ T°2T°"'] (15) ;

G=x1lnx+ (le=x)ln(le=x) + Z = 1, = 1ln Z + 1n PcmPr

G'

GF'

2 5
+[(g - hTo - iTn)Dr + () - kTo)Dr /2 + 1T°Dr /5

+ ol /n + (m/2n)Tnexp(-nDr2)(-2 - nDr?) )/t (16)
= (%%JT’P = 1n[x/(1, = x)] + 2' = 2'/2+[(g = hTo - 1Tn)Drc

2 L
- '+ ' + - LI ' + '
(hT iT _*)Dr + (3 - kT )DrDr kT 'Dr~/2 + 1T Dr Dr

+ 1T°'Dr5/5 + an'/n + (m/2n)°exp(-nDr2)

(<21 ' - nDrzTn' + 2nDrDr'T 4+ 2n2Dr3Dr'Tn)][f (i7) -
2
= (XD = 1./(x-x7) ¢z - 2/2 + (2/2) + [gDr"

ox2 ToP

~h(T Dr** + T "'Dr + 2T 'Dr') = 4(T Dr'' + T ''Dr + 2T _'Dr')
o o o n n n

+ j[DrDr'* + (Dr')?) - k[T_DrDr'* +'T°"Dr2/2 + 2T_'DrDr’

+ To(Dr')z] + 1[2T°'Dthr' + To"DrS/S + hTODr3(Dr')2

+ ToDthr"] + an"/n + (m/2n)exp(-nDr2)(-2Tn" - nDraTn"

+ hnDrDr'Tn' + 2nDrDr"‘I‘n + 2n(Dr')2'1‘n + hnzDr3Dr'Tn'

3

+ 2n2Dr Dr'"rn + 2n2Dr2(Dr')2Tn - hnBDrh°(Dr')2Tn]/f (18)
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G''' = (
- 3 T,P

= (2x = 1.)/(x = x2)2 + 2% 22/ + 3Z°Z"/Z2

- 2(2'/2)3 + [gDr''" - B(T_Dr'** + T _'''Dr + 30r'T '’

+

0 [} - to0Q Tt ] e e ]
3Dr To ) i(TnDr + Tn Dr + 3Tn Dr'' + 3'1'n Dr')

+

J(DrDr’?" + 3Dr°Dr°') - k(TODrDr"' + To"'Dr2/2

+ 3T°Dr°Dr" + 3T°'DrDr'" + 3T°°°DrDr’ + 3T°'(Dr')2)

1(3T°"Dthr' + 12T°'Dr3(Dr')2 + 3T°'Dthr"

3

+

+

12 ToDrz(Dr')3 + 12 ToDr Dr'Dr'' + ToDthr"'

To"°Dr5/5 + an"'/n + (m/2n)exp(-nDr2)(-2Tn"'

+

nDr2T 1V 4 6nDrDr°T LA 6nDrDr"T "+ 6n(Dr')2Tn'

+ 2nDrDr"'T + 6nDr°Dr"T + 6n Dr3

)2

Dr'T ' + 6n2°
n

Dr3Dr°°Tn° + 6n Dr2(Dr' Tn' + 2n2Dr3Dr"'Tn

2 3 )2 . 3. b

+ 6n Dr Dr°Dr"T -12n Drh(Dr° - 12 n’Dr

Dr'Dr°°T 20n3Dr3(Dr ") T + 8n Drs(Dr )3T )1/t (19)

See Appendix IV for derivation of equations for Dr‘, Dr'', and Dr''',

See Appendix V for derivation of equations for Z, Z', Z'°, and 2''"',



APPENDIX IV
Derivation of Equations for Dr‘, Dr'’, and Dr'‘’
Taking the derivative with respect to x of equation III-3:

Pr' = [£Dr + (g + 24/Tr3(Dr° + JDr> - (2mDr3/Tr3)(1. + nDro)
exp(-nDr2)]oTr° 4+ [fTr + (gTr = h = i/Tr2)2Dr + (JTr - k)3Dr2
+ 6(1)Dr5 + (3mDr2/Tr2)(l° + nDrz)Oxp(-nDra)

+ (mDr3/Tr?)(2nDr)exp(-nDr2) + (mDr3/Tr2)(1, + nDro)

(-2nDr)exp(-nDr2)]Dr'

Let
U = Pr' -[fDr + gDr2 + 2iDr2/Tr3 + JDr3 - 2mDr3 (1, + nDr2)
exp(-nDr2)/Tr3]Tr° (1)
V = fTr + 2gTrDr - 2hDr - 2iDr/Tr° + 3JTrDr? - 3kDre + 6(1) Dr’
+ (m/Tr2)exp(-nDr2)(3Dr2 + 3nDrh - 2n2Dr6) (2)
therefore,
Dr' = U/V . (3)
also,
Dr'' = U'/V = UV'/V® = (U' = Dr've)/v (4)
Dri' = (U'' = Dr'V'® - Dr''V')/V = (U' = Dr'V')Vt/v2
= (U?? = Dr'V'® = Dr?'V')/V - Dr''V*/V
= (U'? = V''Dr® - 2V'Dr®")/V (5)
Let
T, = Tr'/Tr> = Tr'T (6)
T,' = Tr''T_+ Tr'T ° (1)
T'' = Tri®'T + Tr''T_ ' 4 Tr''T ' + Tr'T '
= Tr'''T 4 Tr'T °' + 2Tr''T ° (8)
Therefore
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U= Pr' - fDrTr' - gDrQTr' - 21Dr2TnTr° - JDrsTr' + 2mDr3(1. + nDr2)
exp(-nDrz)TnTr'
U' = Pr'' = fDrTr*’ -« fDr'Tr' - gDr2Tr" - 2gDrDr'Tr' - 21Dr2TnTr"

- 2iDr2Tn'Tr' - hiDrDr'Tt - JDrBTr" - 3JDr2Dr'Tr' + 2mDr3t

(1. + nDr2)exp(-nDr2)Tt' + 2mDr3(l° + nDr2)(-2nDr)Dr'exp(-nDr2)Tt

+ 2mDr3(2nDrDr°)exp(-nDrz)Tt + 6mDr2Dr'(l° + nDrz)exp(-nDr2)Tt

U' = Pr'' = fDrTr'® - £Dr'Tr' - gDr-Tr'' - 2gDrDr'Tr' - 2iDr2Tt'

- hiDrDr"Tt - jDr3Tr‘" - 3jDr2DrVTr' + 2mDr3(l. + nDr2)

exp(-nDrz)oTt' + 2moexp(-nDr2)Tt(3 + 3nDr2 - 2n2Drh)Dr2Dr'

(9)
V! = fTr' + 2gDr'Tr + 2gDrTr' - 2hDr' - 2iDr'/Tr2 + hiDth

+ 63TrDr'Dr*3JTr°Dr2 - 6kDrDr® + 30(1)Dthr' + maexp(-nDrz)

(6DrDr"/Tr2 + 6nDr3Dr°/Tr2 - 18n2DrsDr'/‘1‘r2 + hnBDrTDr'/Tr2
- 6Dror. - 6nDrhT + thDr6T ) (10)°
t t t
U'? = Pr?'' o fDrTr''’ - 2fDr'Tr’' - fDr''Tr’ - gDrzTr"'

- LgDrDr'Tr'’ - 2gDrDr’’'Tr'® - 2g(Dr°)2Tr' - 21Dr2Tt"

81DrDr°Tt° - hiDrDr‘”Tt - hi(Dr')zTt - JDraTr"'

6JDr2Dr°Tr"° - 3JDr2Dr'VTr° - GJDr(Dr')zTr'

o [2moexp(-nDr2)(Dr3Tt"' + nDrsTt'° + 6Dr2Dr'Tt'

+

6DrhnDr°Tt' - hn2Dr6Dr°Tt' + 3Dr2Dr”Tt + 3nDthr"Tt
2. 6

2n“Dr Dr"Tt + 6nDr3(Dr")2Tt + 6Dr(Dr')2Tt

18n°Dr? (Dr* )art + hnsDrT(Dr°)2Tt] (11)
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V'® = fTr'’ + 2gDr*'Tr + LgDr°Tr’ + 2gDrTr’’ - 2hDr'' - 21Dr"/'1‘r2

+ 81Dr°'rt + hiDth' + 12)Tr'DrDr' + 63Tr(Dr')2 + 63DrDr''Tr

+ 33Tr"Dr2 - 6k(Dr°)2 - 6kDrDr'' + 30(1)Dthr't
2

+

120(1)Dr3o(Dr’)2 + 2moexp(-nDr2)(3DrDr"/Tr2 + 3nDr3Dr"/Tr

9n2Dr5Dr°°/Tr2 + 2n3Dr7Dr”/Tr2 + 3(Dr')2/‘1'r2

3nDr2(Dr°)2/Tr2 - SlnzDrh(Dr')z/Tr2 + 3233Dr6(Dr’)2/Tr2

L L 2. 6

prd(or*)2/1r2 - 3Dr2Tt' - 3uDr'T, ' + 20°Dr T,

- l2DrDr'Tt - l2nDr3Dr°Tt + 36n2DrsDr“Tt - 8n3Dr7Dr'Tt)

+

- bn

(12)



Let

Then

APPENDIX V
Derivation of Equations for Z, Z', Z2'', and Z2'""'

Z = P/RTD = PrPc/RTrTcDrDc = (Pr/TrDr)(Pc/RTcDc) = Pr/fTrDr

Y = Pr/fTr
Y' = (Pr' - £YTr')/(fTr)
Y'' = (Pr'' = £YTr'' - 2£Y'Tr')/(£Tr)

YOO' = (Pr''Y -« £YTP""' o 3FY'Tr'" = 3F£Y''Tr?)/(fTr)

Z = Y/Dr
Z' = (Y' - ZDr')/Dr
Z'' = (Y'' = ZDr'' - 2Z'Dr')/Dr

7900 = (vav - ZDr''" - 3Z'Dr*’ - 3Z'°Dr')/Dr
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(1)
(2)
(3)
(k)

(5)
(6)
(1)
(8)



APPENDIX VI
Program LINEAR
The objective of program LINEAR is ‘to vary simultaneously the value
of reduced temperature (Tr) and reduced density (Dr) at successive values
of composition (x) until the second and third derivatives of the free
energy, G'' and G''’, become equal to zero, This program follows the
flow diagram in Figure 5, page‘BT°
Starting at one end of the composition range (xl = 0), the boundary
conditions Tr = 1 and Pr = 1 are used, The value of composition is incre-
mented twice and guesses are made for Tr and Dr at these compositions
(x2, x3)° Then by simple linear interpolation the value of Dr3 (Dra,
'" is equal to

Tra,or Tr_ could also have been choaen) is changed until G

3 2

zero.

Guesses for Tr and Dr are then made for the next composition (xh).
These guesses (Drh, Trh) are changed simultaneously by a linear convergence
method until G_*' and G3"' become equal to zero. This process is repeated

3
until the entire composition range has been covered.

The only restriction on the values of Tr and Dr which are selected
is that they be positive since negative values have no physical signifi-
cance,

The main divisions of program LINEAR are:

l, Program LINEAR-Main Body
2. Subroutine CONVERG

3. Subroutine POLY

4, Subroutine WBKAY

5. Subroutine PRCALC

6, Subroutine G2CALC

T, Subroutine G3CALC

8 0 Data

97



98
PROGRAM L INEAR
DIMENSION X(25)s W(25)s PC(25)s TC(25)s PK(25)e TK(25)s PR(25) s
1 TR(25)s DR(25)s ZR(25)y Z(5)s FUNC(S5)4s DEIL.TAD(4)s DELTAT(4) G(6)
2 +PZRWRPR(25)
COMMON 1 ¢DCB+TCBWACBCWCCWyOCIECIC4Cl 4 ClsCh40Ca s TS COGC T ¢T3,
1 DRIDERDR2DER+TR«TRIDER TQEDERQTRJOFRqPQqPRlDFR.PHdULh'rHpu R
2 PCPKsTCosTKeQQsTO«TOIDERITO2DER TN+ TNIDER+TN2DERsTT+TTIDER WV,
3 VIDERWYYIDERIY2DER+ZK +ZK1DER ¢ ZK2DER s ZR s Z+ X e W ¢ G2DER ¢ G3DER « FUNC
4 +PZRWRPR
1 FORMAT (E18.11)
2 FORMAT (25X +25HDOUBLE LINEAR CONVEQGENCE.4(/)’
3 FORMAT (12)
16 FORMAT (6X+5E21.10)
40 FORMAT(20H NO OF ITERATIONS = 4124/)
41 FORMAT(1H1)
42 FORMAT (2/+15X+8BHFUNCTION 13X +9HF IRST DER+11Xes10HSECOND DER 12X
1 GHTHIRD DER/+¢3H TCe3X14E21e¢10¢/¢3H PCe3Xe14E21610s7¢3H TRe¢3X,
2 4E21410¢/¢3H PRy3X44E21,10)
43 FORMAT (/411 Xel1HXe18Xe2HTR118Xe2HPR»18X+2HDR 118X +2HZR ¢ 15X
1 7HPZRWRPR ¢/ 6E20610¢/+6E20410)
44 FORMAT (9H G2DER = +E18¢10¢3X+8HG3DER = +E18,10)
45 FORMAT (25H DOES NOT CONVERGE AFTER +12+¢11H ITERATIONS)
46 FORMAT(/720H CALCULATION AT X = ¢sF543¢//17Xe2HTRW 19X 2HDR+17X»
1 SHG2DER 16X +SHG3DER)
SO FORMAT (AH PK(e]2+4H) m +E18¢1064Xs3HTK(9129¢8H) = +E184¢10904X,
1 4H PC(+12+4H) = +E18610+4X+3HTC(s124¢4H) = +E18,10)
51 FORMAT (11H INPUT DATA+/+9H TR(2) = +E18es10s5X+8HTR(3) = +E18,10:
1 SXeBHTR(A) = (E18¢10¢/7¢9H DR(2) = 1E18¢10:¢S5X+8HDR(3) = +E18¢100
2 SX¢8HDR(4) = 4E18.104/)
PRINT 2
READ 1+ DCB¢TCB+PCBsRe¢BOAO+CO+B1A+C+ALPHAGAMMA ,AC+BC+CC+DCEC
PRELIMINARY CALCWUWLATIONS
Cl = (DCB#TCB#R)/PCB

C2 = C1#BO*DCB

C3 = (AO*DCB*#2)/PCB
CS = C1#DCB#%2%#B

C6 = (DCB##3/PCB)#A

C7 = CO6#DCBE#3I#ALPHA
C8 = (C6/(ARTCB#*%2))*C

c9o DCB##2 #GAMMA

Cl=F, CZ'GQ C3=H,y C4=]14y CS=Js C6H=Ks C7=Ls CB=M, C9=N
TOL = j.E~-12
X(1) =0
X(2) = 0025
X(3) = 005
TR(1) = 1,60
DR(1) = 1,0
PR(1) = 140
ZR(1) = 1.0
DELTAX = 005
NUM = (1, - X(3))/DELTAX + 3.
DO 6 1=x=4NUM

6 X(1) = X(I-1) + DELTAX

DO 5 1=1 +NUM
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S5 CALL WBKAY

104

I =1

PC(I) = PK(I)/7PR(1)

TC(I) = TK(I)Y/TR(1)

READ 3+ NUMDATA

DO 25 NN=1+NUMDATA

READ 19 (TR(I)sI = 244)s (DR(I)ese I =244)
PRINT Sle (TR(1)11=244)e(DR(1)s1=244)
PRINT 50+ Ie PK(I)e Ie TK(I)se T4 PC(I)s I+ TC(I])
1 =2

CALL PRCALC

TC(I) = TK(I)/TR(1)

PC(1) = PK(1)/PR(1)

C THIS PROGRAM USES DR(3) TO CONVERGE G2DER(2)

DELTADR = 0,02

G2DER1 = O

DO 8 L=1,40

I =1 +1

DR(1) = DR(1) + DELTADR
CALL PRCALC

TC(1) = TK(I)»/TR(1)
PC(I) = PK(I)/PR(1])

1 = I-1

DELTAX = X(I+1) - X(I)

TCIDER = (TC(]l+1) - TC(I-1))/(2.%DELTAX)

TC2DER = (TC(I+1) = 2*TC(I) + TC(I-1))/DELTAX®#%#2
TRIDER = ~TR(I)¥TCIDER/TC(1)

TR2DER = =2*TRI1DER*TCIDER/TC(I) - TR(I)*TC2DER/TCI(1)
PCIDER = (PC(I+1)=PC(I1-1))/(2+%DELTAX)

PC2DER = (PC(I+41) — 2%PC(I) + PC(1-1))/DELTAX*%#2
PRIDER = -PR(I1)#PCIDER/PC(1)

PR2DER = -2.%PRI1DER#PCIDER/PC(1) - PR(1)#PC2DER/PC(1])
CALL G2CALC
IF (ABSF (DELTADR) = TOL)9e947

7 DELTADR = -—-G2DER*DELTADR/ (G2DER - G2DERI1)

8

9 PRINT 42+ TC(I)s TCIDERs TC2DERs X(1)+PC(1)s PCIDERPC2DER

1

1

G2DER1 = G2DER
STOP 0007

TR(1)s TRIDERs TR2DERs X(1)s PR(1)s PRIDER+ PR2DER,

X(1)

X(1)o

PRINT 43+X(I)esTR(I)sPR(II)DR(T1)4ZR(I)+PZRWRPR(I)eX(I+1) s TR(I+1)

PR(I+1)DRUI+1)+ZR(I+41)PZRWRPR(]+1)
1 =1 +1

29 NUMBER = 0

28

PRINT 46+ X(I)

TO STATEMENT 31-12 SETS UP 3 SETS OF GUESSES (TRWDR) AND
CALCULATES G2DER AND G3DER

DELTAT(1) = Q.1

DELTAT(2) = O
DELTAD(1) = O
DELTAD(2) = Ol
M =1

GO TO 10

M =M+ 1

TR(I+1) = TR(I+1) + DELTAT(M-1)
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DR(I+1) = DR(I+1) + DELTAD(M-1)
101 =1 + 1

CALL PRCALC

PC(1) = PK(I)rPR(])

TC(1) = TK(I)/TR(1])

DO 30 K=144

Z(K) = X(1«4+K)
30 FUNC(K) = TC(]-4+4K)

CALL POLY (TCIDER+TC2DER+TC3DER)

DO 31 K =144
31 FUNC(K) = PC(1-4+K)

CALL POLY (PCI1DERJ+PC2DER+PC3DER)

I =1 -1

TRIDER = ~TR(1)*TCIDER/TC(1)

TR2DER = =2+%TRIDER®*TCIDER/TC(]) - TR(I1)®#TC2DER/TC(1)

TR3DER = 6¢#TK(I)#TCIDER*TC2DER/TC(1)*¥%3-6*TK(1)*TCIDER*#*3/TC (1)

1 #%#4 — TK(I)®TCI3DER/TC(1)#%2

PRIDER = =PR(1)#PC1DER/PC(1)
PR2DER = —2+.*PRIDER#PCIDER/PC(1) - PR(1)#PC2DER/PC(1)
PR3DER = 6¢#PK(])¥PCIDER®PC2DER/PC(1)¥#3-6,%PK(]1)*PCIDER**3/PC(1])

1 *#%4 — PK(I)¥PC3DER/PC(1)%#%2
CALL G3CALC
G(M) = G2DER
G(M+3) = G3DER
1F- (M=3)2843235
32 IF (G(3)%%2 + G(6)#%#2 - TOL)I1S+15+14
TH1IS CONVERGENCE PROCEDURE USES A LINEAR INTERPOLATION
14 CALL CONVERG (DELTAT(1)e DELTAT(2)¢ DELTAT(3)s DELTAD(1)s DELTAD
1 (2)e DELTAD(3)es G(1)s G(2)9 G(3)e G(4)s G(S)e G(6))
17 1IF(DR(1+1) + DELTAD(3))18+184+750
750 IF(DR(I+1)+DELTAD(3)-2.)19+18,18
18 DELTAD(3) = DELTAD(3)/2.
GO TO 17
19 IF(TR(1+1) + DELTAT(3))20+¢20+751
751 IF(TR(1+1)4DELTAT(3)~4.)21+20+20
20 DELTAT(3) = DELTAT(3)/2.
GO TO 19
21 DO 23 L=1.2
DELTAT(L) = DELTAT(L+1)
DELTAD(L)Y = DELTAD(L+1)
G(L) = G(L+1)
23 G(L+3) = G(L+4)
PRINT 16+ TR(I+1)s DR(I+1)e¢ G2DERs G3DER
TR(I+1) = TR(I+1) + DELTAT(3)
DR(I+1) = DR(1+1) + DELTAD(3)
NUMBER = NUMBER + 1
IF (NUMBER-30)10+10+24
1S PRINT 42+TC(1)s TCIDERs TC2DERs TC3DERPC(1)s PCIDERPC2DER
1 PC3DERs TR(I)s TRIDERe TR2DERs TR3DERs PR(1)s PRIDERs PR2DER.,
2 PR3DER
NNN = [+1
PRINT 43+ (X(J)sTR(J)IsPR(J) sDR(J)+ZR(J) +PZRWRPR(J)s J=] +NNN)
PRINT 44, G2DER+ G3DER
PRINT 40+ NUMBER
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1 = I+1
DR(I+1) = 1+1#DR(1I)
TR(I+1) = 11%#TR(I)
IF(1-NUM) 29435435
24 PRINT 45 NUMBER
25 PRINT a1
35 STOP 5555
END
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Program LINEAR-Main Bogx

Purpose: To generate values of Tr and Dr at x (i equal to or greater

i+l

than 2) such that G,'°’ and Gi"°' equals zero.

i

Input: P-V-T data on a reference compound (in this case, propane), This
data includes the critical properties, the gas constant R, eight
Benedict-Webb-Rubin constants, and five constants for computing
Co as a function of temperature, Also input are the first

> and x3°

Details: Using the values of Tr and Dr at X1 X

guesses of Tr and Dr at x

p» 80d x5 (Tr = 1 and

Dr = 1 at x, = 0), this program changes Dr3 until the second

derivative of free energy, G.'’, is equal to zero at x For

2 2°

X1 (1 equal to or greater than 3) the guesses of Try 4 and

Dr1+1 are adjusted until Gi

process is repeated until the entire composition range has been

"7 and Gi'°' equal zero. This latter

covered,

A linear convergence scheme is employed to adjust Dr3
until 62'° equals zero. Two guesses are made for Dr3, and
then a new guess is calculated from:

(new Dr

- present Dr3)/(present Dr. - previous Dr3) = (desired

3
Gz°° - present 02'°)/(present G

3

00 X
5 previous G2 )

Since desired G2°° = 0,

new Dr_ = pres Dr_ + [-pres 02°°/(prea G,'" - prev G2")]

3 3 2
(pres Dr3 - prev Dr3)° (1)
Calculation of G2°° requires first and second derivatives
of Tr and Pr at X5 These derivatives are computed by fitting

a quadratic equation through the values of Tc and Pc at X1 X5

and X3 and then computing Tc2' and Tc2°' from:
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Tc2' = (Tc3 - Tcl)/(2Ax) (2)

T02“° = (Tc3 - 2Tc, + Tcl)/(Ax)2 (3)
Similar equations may be written for Pc2° and Pca"e

First and second derivatives of Tr and Pr are computed from:

Tr' = [3(T/Te)/3x]y | = ~T+Te'/Te® = -TreTe'/Te ()

Trot = [32(T/Tc)/3x2]T’P= -2Tr'eTc'/Te = TreTc''/Te  (5)

Values of Tr and Dr at x, ., (1 equal to or greater than 3)
are computed using a convergence process which assumes G'' and
G''? to be linear functions of Tr and Dr., The values of Tr and

Dr at X9 X » &nd x must be known because third derivatives

i-1 i-2

are needed to calculate Gi"“0 Three sets of guesses for

(T ) are needed before the linear interpolation

Tiare Dy
method can be applied, Subroutine CONVERG is called to compute

the next increment of Tri+l and Dri+l

, and the values of Gi" and

from the previous three

sets of guesses for Tr and Dr

i+l i+l
Gi"° calculated from those sets of guesses.

Whenever the double linear convergence process is used, all
derivatives of Tc and Pc are computed using subroutine POLY,
This subroutine fits a third degree polynomial to the values of
Tc and Pc at x

, and x Subscript i is necessari-

1410 *10 *31 1-2°
ly at least 3., The value of Tri°“° is calculated frbm:
Tr'l = [33(T/Tc)/3x3]T°P= 6ToTeteTe 1 /T3 - 61(Te?)3/Te"
- TeTe 1 /Tc? (6)
and similarly for Pr''’,
The only restrictions imposed on the calculated values of

Tr and Dr are that they must remain positive since negative

values do not have physical significance, This program also
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limits the number of iterations to thirty before the convergence

process is interruped because of lack of convergence,

Since the primary function of the main body of this program is
to provide convergence, the program must work properly if such

convergence is obtained.

AC, BC, CC, DC, EC = five constants to compute C as a function
of temperature
A0, BO, CO, A, B, C, ALPHA; GAMMA = the eight Benedict-Webb-
Rubin constants B 0! s C
o (<)
a, b, ¢, a, v

QOO0
(e BN o NV, UV VN o
o nuwnan

f
g
h
J
k
1
m
C9=n
DCB, TCB, PCB, = critical density, temperature and pressure
of propane
DELTAD = variable used to represent differences in Dr
DELTADR = difference between the most recent value of Dr
DELTAT = variable used to represent differences in Tr
DELTAX = increment of x after x
DR = reduced density (Dr) 3
NUM = highest value of the subscript on x
NUMBER = a variable used to count iterations

NUMDATA = a variable used to represent the total number of sets

3

of data
PC = pseudocritical pressure (Pc)
PC1DER = Pc’

PC2DER = Pc’°

PC3DER = Pc???

PK = critical pressuve of mixture (Pk)

PR = reduced pressure (Pr)

PR1DER = Pr’

PR2DER = Pr'’

PR3DER = Pr???

R = gas constant (litercatm.)/(g-mole:°K)
TC = pseudocritical temperature (Tc)
TC1DER = Tc?

TC2DER = Te'?

TC3DER = Tc''?

TK = critical temperature of mixture (Tk)
TR = reduced temperature (Tr)
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TR1DER = Tr?

TR2DER = Tr'?

TR3DER = Tr*'’

X = mole fraction ethane

ZR = reduced compressibility factor (Zr)
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SUBROUTINE CONVERG (DELTAX1s DELTAX2s DELTAXs DELTAY1,

DELTAY

DENOM1
COEFF1
COEFF2
COEFF3
COEFF4
DENOM2
DELTAX
DELTAY
END

Fle F2¢ F34 Glse G2s G3)
DELTAX1*DELTAYZ2 - DELTAXZ2#DELTAY]
((F2-F1)*DELTAY2 - (F3-F2)*DELTAY1 )/DENOM|

((F3-F2)*DELTAX]1 -~ (F2~F1)*DELTAX2)/DENOM]
((G2-G1)*DELTAY2 -~ (G3-G2)*DELTAY1)/DENOM]1
((G3-G2)#DELTAX]1 - (G2-G1)*DELTAX2)/DENOM]

COEFF1%COEFF4 - COEFF2#COEFF3
(G3*COEFF2 - F3#COEFF4)/DENOM2
(F3®*COEFF3 ~ G3*COEFF1)/DENOM2

DELTAY2,
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Subroutine CONVERG

Purpose:

Input:

Details:

To compute the estimated increment for each of two variables
which will make two functions of those two variables equal
zero.,
The differences between the previous three guesses of both
variables and the previous three values of both functions
computed from tpose variables.
The equations for a double linear convergence process are
developed for two general functions, F(X,Y) and G(X,Y). This
procedure is called a double linear convergence process
because two functions, F(X,Y) and G(X,Y) are assumed to be
linear functions of the two variables, X and Y.

Required initially are three different sets of guesses
for X and Y [(X,,Y,), (X,,Y,), (X3.Y5)] and the values of F
and G for each set of X and Y, Values of Xh and Yh are de=-
sired such that Fh = 0, Gh = 0,

Letting X, = X, = X

AX, = X

1 2 1° 2
and six unknowns (a, b, ¢, 4, Xy Yh) can be written:

aAXl + bAYl = AFl

aAXz + bAY2 = AF2

aAXa + bAY AF3 = -F3

= A(}l )

cAX1 + dAY

cAX2 + dAY2 = A02

cAX3 + dAY3 = AG3 = -03

3
1

3" x2. etc,, 8ix equations

(1)
(2)
(3)
(k)
(5)
(6)

Equations (1) and (2) are solved for a and b, equations (ki) and

(5) for ¢ and 4, and equations (3) and (6) for Ax3 and AY3.

and AY. are:

The expressions for Ax3 3
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0Xy = X) = Xy = (G3b - F3d)/(ad - be) (7)

MYy =Y - Y, = (F3c - G3a)/(ad - be)
The last two mathematical statements of the subroutine are

equivalent to equations . (7) and (8).

This subroutine was checked by using it on a system of two
linear functions of two unknowns. Three sets of guesses vere
made for the two unknowns, and the subroutine was employed to
compute the increments necessary to make the functions equal
to zero. Only one step was needed which indicated that the

subroutine was extrapolating properly.

COEFFl = coefficient a in equations (1) to (3)
COEFF2 = coefficient b in equations (1) to (3)
COEFF3 = coefficient ¢ in equations (4) to (6)
COEFF4 = coefficient d in equations (L) to (6)
DELTAX]1l = X2 - Xl
DELTAX2 = X3 - X2

DELTAX = Xh - x3 = difference between the next value of X and
the most recent value of X

DELTAY1 = Y2 - Yl

DELTAY2 = Y3 - Y2

DELTAY = Yh - Y3 = difference between the next value of Y and
the most recent value of Y

DENOM]1 = (Y3 - Ye)(x2 - Xl) - (Y2 - Yl)(x3 - X2)

DENOM2 = ad = be

(8)
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SUBROUTINE POLY (FSTDERSECDER, THRDER)

DIMENSION X(25)s W(25)e PC(25)s TC(25)¢ PK(25)s TK(25)¢ PR(25)
1 TR(25)4 DR(2S)es ZR(25)s Z(5)e FUNG(S) e DEN(S) ¢ PZRWRPR(25)
COMMON 1 ¢DCBeTCBsACIBCICCIDCHIECICeC14C24C34C44C54C64CT74CBICI DR
1 DRI1DERJDR2DER+TR+TRIDER+TR2DER + TR3DERPR+PR1DER «PRZDER +PR3DER »
2 PCPKeTCeTK+QQsTO+TOIDER+TO2DER TN« TNIDER«TN2DERs TTo TTIDER V4
3 VIDERs+Y+YIDER'Y2DERZK +ZK1DER ¢ ZK2DER+ZR +Z + X+ W ¢G2DER ¢ G3DER ¢+ FUNC
4 +PZRWRPR

DENC(1) = (Z(1)=Z(2))%¥(Z(1)=Z(3))%(Z(1)~2(4))
DEN(2) = (Z(2)=Z(1))¥(Z(2)-2Z(3))*(Z(2)-2Z2(4))
DEN(3) = (Z(3)=Z(1))*¥(Z(3)~Z(2))*(Z(3)-2Z(4))
DEN(4) = (Z(4)-Z(1))¥(Z(4)~Z(2))*(Z(4)-2Z(3))
S = Z(3)

FSTDER = ((3e#SHH2-2,#SH(Z(2)4+2Z2(3) Z(4)Y+Z(3)YH¥(Z(2)+Z(4))+Z(2)*
Z(4))®FUNC(1))/DEN(1)+( (3 ¥SHR2-2,#SH(Z(1)+Z(3)+Z(4))+Z(1)*
(Z(3)+Z(4))+Z(3)*Z(4)IXFUNC(2))/DEN(2)4+( (I 4 ¥SHN2-2,%SH(Z(1)+
Z(2)+Z(4))Y+Z(1)H)R(Z(2)4+Z(4))1+Z(2)%Z(4) )RFUNC(3))/DEN(3)+( (3 #SH*2
—2¢¥SH(Z(1)4+2Z(2)4Z(3))+Z(1)R(Z(2)+Z(3))I+Z(2)RZ(3))XFUNC(4))
sDEN(4)

SECDER = (6.0%S =2.%(Z(4) + Z(2) + Z(3)))I®FUNCI(1)/DEN(1)

+ (6e0%S —2.%(Z(1) + Z(3) + Z(4)))*¥FUNC(2)/DEN(2)
+ (6e0%S —24%(Z(1) + Z(2) + Z(4)))*¥FUNC(3)/DEN(3)
+ (640%S —=2.%(Z(1) + Z(2) + Z(3)))¥FUNC(4)/DEN(4)

THRDER = 6% (FUNC(1)/DEN(1)) + 6% (FUNC(2)/DEN(2))

1 4+ 6e#(FUNC(3)/DEN(3)) + 6% (FUNC(4)/DEN(4))

END

unewmn -

wWn -
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Subroutine POLY

Purpose:

Input:

Details:

Method of
Checking:

To calculate numerically first, second and third derivatives of
a function at a given value of the independent variable.,

Four values of the function, r(zl), £(2,), f(23), and r(zh),
and four values of the independent variable, Zl, 22. 23, and zh

are placed in memory prior to the calling of the subroutine,

A third degree polynomial (four points) may be written'l:
£(2) - az3 + v22 + cz + a (1)
or
(2-2,)(2-2,)(2-2,) (2-2,)(2-2,)(2-2))
" ) () T Ty )

(Z-Zl)(Z-Z2)(Z-Zh) (z-2 )(Z-Za)(Z-Z )

2972 (25°2,)(24-2,) 7773 y=2y N (2=2,) (2 =25) ~ 7

2 (2)
32° - 2(22+z +Zu)z + 2.2 + zazh + 2 zh

Zl-Z2 Zl-ZB Zleh 1
+ oo (3)

) = Ty 1) w

6 B
f”'(Z) = f(Z ) + oo (S)
LT NICT R ~

Equations (3), (4), and (5) can be used to calculate numerically
first, second, and third derivatives, respectively, at any value
Z. The value of Z is called S in the Fortran program. In this

partiqular program, the derivatives are computed at 23.

A third degree polynomial was constructed and values of f(Z) cal-

culated at four arbitrary values of Z, These results were then
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input into the subroutine to see if the generated values agreed
with the original polynomial and its derivatives, for specific
values of Z,

Fortran
Nomen-
clature: DEN = the denominators of the terms in equations (2), (3), (k),
and (5). DEN(1) represents the dencminator of the first
tern, etc.
FSTDER = calculated value of the first derivative
FUNC = value of the function .
S = the value of Z at which the derivatives are being calculated
SECDER = calculated value of the second derivative
THRDER = calculated value of the third derivative
Z = specific values of the independent variable (Z) for which
the values of the function are known
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SUBROUTINE WBKAY
DIMENSION X(25)sy W(25)s PC(25)s TC(25)s PK(25)s TK(25)¢ PR(25)

1 TR(25)e DR(25)s ZR(25)s Z2(5)s FUNQG(5) sPZRWRPR (25)

COMMON [ +DCBesTCBsACIBCsCCIDCHIECICoC19C24C34C4+9C5+¢CHE4CT74¢CBeCP+DR
1 DRIDER'DR2DERsTR+TRIDER+TR2DER + TR3DER+PR+PRI1DER +PR2DER+PR3DER ¢
2 PCsPKesTCoTK+sQQsTOsTOIDERITO2DERsTNs TNIDERTN2DERs TTeTTIDER WV »
3 VIDERY«YIDERY2DER¢ZK+ZK1DER +ZK2DER ¢ZR +Z+ X s W +sG2DER ¢ G3DER ¢ FUNC

4 +PZRWRPR
W(I) = 30606%*¥X(1)/(30606%¥X(1)+(1e=X(1))*100e17)
TK(I) = (513e¢3-186+4392126%X(1)+20 +413825#¥X([)*#%2-558,3704113%

1 X(I)¥%#3+121e1957936%X(1)¥%#4+459,67)/1.8
PK(I) = (396e+3051927387¥W(1)-1199¢746006%W(])*¥%2-4263.827785*%

1 W(I)*¥%342727e646362*W (] )%#%4) /144696
END
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Subroutine WBKAY

Purpose: To calculate Tk and Pk at a given composition,

Input: The value of composition (xi) and the value of subscript i
must be placed in memory before this subroutine is called.

Details: The experimental Tk and Pk values for the ethane-n-heptane
system, as published by W. B, qu,23 wvere fitted to a fourth
degree polynomial by a modification of the method of least
squares, This modification was necessary in order to obtain
an exact fit for pure ethane and pure n-heptane,

The critical temperature envelope curve is expressed as a
function of mole fraction ethane, However, the critical pres-
sure envelope curve is expressed as a function of weight frac-
tion ethane because a better fit of the pressure data was ob=-
tained using this variable.

Method of
Checking: The compositions as recorded in the published article were

input, and the results were compared with the published values
at these compositions.

Fortran

Nomen-

clature: I = subscript i on composition (x)
PK = true critical pressure of mixture (Pk), atm,
TK = true critical temperature of mixture (Tk), °K
W = weight fraction ethane
X = mole fraction ethane (x)
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SUBROUTINE PRCALC

DIMENSION X(25)s W(25)s PC(25)s TC(25)s PK(25)s TK(25)4¢ PR(25)

1 TR(25)s DR(25)s ZR(25)s Z(5)s FUNC(5) +PZRWRPR(25) +SAVE (4)

COMMON [ +DCBsTCBsACBCsCCIDCIECICsC19C2¢C34C4+C59CHEWCT7¢CB¢CI DRy
DR1DER+DR2DER+ TR+ TRIDER s TR2DER ¢+ TR3DER+PR+PR1DER+PR2DER +PR3DER
PCoPKsTCoTK+sQQsTO+TOIDERTO2DER«TNs TNIDERsTN2DERyTT+s TTIDER WV »
VIDER+Y+sYIDER+Y2DER +ZK + ZK1DER ¢+ ZK2DER sZR ¢ Z + X s W ¢+ G2DER ¢« G3DER ¢ FUNC
+PZRWRPR

Q = (TR(I)Y*TCB)/100¢

> WM~

Ql = (10 %QR%G)X%4
CO = (EC/(Q*%#2%Q1) + DC/Q/Q1 + BC/Q1 + AC)/(CC/Q1 + 1)
C4 = ((C8B/C)%*CO)/DCB

DO S K=1.2

DR(I) = 1E-O0S5%#(-1+)%%#¥K + DRI(I)

QQ = EXPF(-CO¥DR(])%%2)

PR(I) = CI1¥DR(II*TR(I)+C2¥TR(I1)*¥DR(1)*¥%¥2-C3%¥DR(])*%#2-C4*¥DR(])*%*2
1 /TR(I)*%¥2+CS*¥TR(I)*DR(1)#*¥3-CE%*DR( 1) ¥ %¥3+CTHDR(]1)# %6+ (1 ¢+COXDR (1)
2 #X2)XQAXRCBADR(II*%#3/TR(1)%¥%2

ZR(1) = PR(I)Y/TR(1)/DR(I)

SAVE(K) = PR(I)

S SAVE(K+2) = ZR(1)
PZRWRPR(I) = (SAVE(4)-SAVE(3))/(SAVE(2)~SAVE(1))
END
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Subroutine PRCALC
Purpose: To calculate Pr and Zr at a given composition.
Input: Values for constants f, g, b, J, k, 1, my n, ¢, nco, bco. cCo,
dc_, eC_, critical temperature (TCB), critical density (DCB),

Tri, Dr,, and the value of the subscript i must be placed in

1!
memory before this subroutine is called.
Details: The expression for the Benedict-Webb-Rubin constant C° as &
function of temperature is:
c, = [ec_/q%.q1) + dC_/(Q:Q1) + bC_/Ql + aC_)/(cC_/qd + 1) (1)
where
Q = Tr.TCB/100
Q = (10.5)"
From the value of C° the constant 1 is computed from:
i = mC_/c/DCB (2)

For use in the subroutine and subroutines G2CALC and

G3CALC, a quantity called QQ is defined:

Q = exp(-neDr,?) (3)
Pr, is calculated according to equation (3), Appendix III,
Zri is computed from:

Zri = Pri/(Tri Dri) (L)

As added information, the slope of the reduced compressibi-
lity factor curve as a function of reduced pressure at constant
temperature is computed numerically. This quantity is called
PZRWRPR,

Method of
Checking: This expression for reduced pressure was used to calculate

fugacities. These calculated fugacities checked very well
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with known fugacities,
Fortran
Nomen-
clature: AC = aco
BC = bC
o
C=c¢
CC = cC°
CO=¢C
o
Ch = Benedict-Webb-Rubin reduced equation of state constant i
IC = dC°
EC = eCo
I = subscript 1

PZRWRPFR = (az:-/apr),rr
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SUBROUTINE G2CALC

DIMENSION X(25)s W(25)e PC(25)s TC(25)e PK(25)s TK(25)s PR(2S)

1 TR(25) s DR(25)s ZR(25)e Z2(5)e FUNG(5) +PZRWRPR(25)

COMMON [4+DCBsTCB+AC+BC+CCIDCIECIC1C14C24C34CA+4C5¢CH+C74CB4CI4DR
1 ODR1DER+DR2DER+TR+TRIDER+ TR2DER s TR3DER PR PR1DER +PR2DER ¢PR3DER s
2 PCPKITCeTK+sQQ4TOsTOIDER«TO2DER+TNs TNIDERTN2DERsTT4TTIDER WV o
3 VIDERWYSYIDERIY2DERIZK ¢ ZK1DER ¢ ZK2DER +ZR ¢+ Z e+ X+ W ¢G2DER ¢« G3DER ¢+ FUNC
q +PZRWRPR

CALL PRCALC

TO = 14/TR(1)

TOIDER = —-TOX*¥2*#TR1DER

TO2DER = (2¢%TRIDER#%#2/TR(1) - TRZ2DER)/TR(1)*%2

TN = TO®*#3

TNIDER = 3.,#TOX#%¥2#TO1DER

TN2DER = 6¢#TOIDERX#2%TO + 3+ #TO®¥2*¥TO2DER

TT = TRI1DER*TN

TTIDER = TRZ2DER*#TN + TRIDER#TN1DER

U = PRIDER=(C1#DR(I1)+C2%¥DR(I1)* %242, #¥C4¥DR(I)*#*¥2/TR(1)*#%3)*#TR1DER
1 + (—CSH¥DR(I)H%I+2, ¥CBXDR(I)¥%3% (1 +COXDR(I)*#%¥2)%¥QQ/TR (] )*%3)*

2 TRIDER

V = C1¥TR(1)+2%¥C2¥DR(1)*¥TR(I1)=2¢%¥C3H¥DR(1)-2+%#C4*¥DR(I1)/TR(] )*%2
1 +3eX¥CSRTR(IINDR(1 ) XU2—-3¥COHEXDR(I)#X24+6#CT7THDR(] )X %XS5+(C8/TR (1) #%2)
2 HQAX (3¢ XDR(I ) X2+ 34 X¥COUDR( 1) XHJ-2 ¥CORA2EXDR(]) %%6)

DR1DER = U/V

UIDER = PR2DER-C1#DR(])%#TR2DER-C1*DR1DER*#TR1DER-C2%DR(] ) ##2*%#TR2DER
1 —2¢#C2%¥DR(1)*¥DRIDER*TRIDER=2¢#C4*¥DR(1)*#%2%#TTI1DER-Q+#¥C4*¥DR(])#*

2 DRIDER®TT-CS*¥DR(] ) #%#3%TR2DER-3.#C5*¥DR (1 )#*¥2¥#¥DR1DER*TR]DER

3 +2.%#C8XDR(I) XXX (] ¢+COXDR(1)#%#2)¥QQX¥TTIDER+2#C8RTTHQQH*

4 (3e+3¢H#COUDR([)HR2-24%¥CONX2ADR(])*%4)%XDR(])#¥2#DR1DER

VIDER = C1%#TRIDER+2+*C2*¥DRI1DER#®TR(1)42+*#C2%#DR(])*¥TRIDER=2.%#C3#%

1 DRIDER-2+%#CA4*DRIDER/TR(1)¥%2+4 ¢ %¥CH4X*DR(I )X TT+6+#CSHTR(I)IXDR (] ) *

2 DRIDER+3+*#CS*TRIDER¥DR (1) ¥%2-6,#C6*DR (] )*DRIDER+30¢#C7#DR (] ) #%4%*

3DR1DER+C8*QQ* (64 ¥DR(1)*¥DRIDER/TR (] ) ¥%24+6+#COX¥DR (1) *##3#DRIDER/TR(1I])

4 XHAD—- 18 ONCORA2XDR (] ) #X¥SX¥DRIDER/TR(1) *¥%2+4 ¢ ¥CORXIXDR(] ) ##7¥DR1DER

5 /TR(1)¥%2-6e¥DR(I )UK T TG e ¥COUDR( ) ¥ ¥4 ATT+4HCORN2ADR ()X HE6XTT)

DR2DER = (UIDER -~ VIDER#*DRIDER)/V

Y = PR(1IY/(CL%*TR(1))

ZK = Y/DR(1)

YIDER = (PRIDER -~ Y¥C1*#TRIDER)/(C1*TR(]))

Y2DER = (PR2DER = Y#C1#TR2DER = 2*YI1DER*¥C1#TRIDER)/(C1*TR(1))

ZKI1DER = (Y1DER - ZK*DRIDER)/DR(1)

ZK2DER = (Y2DER-ZK#DR2DER-2.#ZK]1DER*DR1DER)/DR (1)

G2DER = 140/(X(1)=X(1)%*%2)+ZK2DER-ZK2DER/ZK+ (ZK]1DER/ZK) *#2 +
(C2*¥DR2DER-C3%# (TO¥DR2DER+TO2DER*DR (1 )+2+#TO1DER*DRIDER)=C4q*
(TN#DR2DER+TN2DER*¥DR (I )+2 ¢ ¥*TNIDER¥DRIDER) 4+ (24 %#C5/2¢ ) # (DR( 1) %
DR2DER+DRIDER®%#2 )= (C6/2¢ ) # (2 #TOXDR (1) *DR2DER+TO2DER¥DR (1 ) #%#2+
4o #*TOIDER®DR(1 ) #DRIDER+2 ¢ #¥TOXDRI1DER¥ %2 )+ CT7# (2, *#*TOIDER¥DR( ] ) %#%#4%

DRI1DER+TO2DER¥DR( [ ) *¥%#5/5¢+4 ¢ #TOXDR (] ) #%#3XDRIDERXX2+TO#DR(] ) ¥ #4*

DR2DER)+C8/(2¢%#CO)# (2 ¥ TN2DER+QQ¥* (—2 ¢ *TN2DER-CO¥DR (] ) ##2#TN2DER+

4o X#CORDR (1) *¥DRIDER®*TNIDER+2¢ #CO¥DR (I ) ¥DR2DER¥ TN+2 ¢ ¥*COXDRIDER##2 %

TN+4 ¢ #CORR2XDR (] ) #¥#3XDRIDER¥TNIDER+2 ¢ #CO#X2RDR (I ) ##3%¥DR2DER*#TN+2 e

KCORXDRDR(] ) ¥ U2 *¥DRIDER¥¥2¥TN=-Q ¢ ¥COX X3 ¥DR ([ ) ¥ #4%XDR 1 DER#®##2%#TN) ) ) /C1
END

VONOUPWN -~
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Subroutine G2CALC

Purpose:
Input:

Details:

Method of
Checking:

Fortran
Romen-
clature:

To calculate G'',

Derivatives Tr', Tr'', Pr', and Pr'' at x, must be in memory

i
vhen G2CALC is called. In addition, the input requirements
for subroutine PRCALC must be satisfied because PRCALC is
called in this subroutine.

Subroutine PRCALC is called to compute the constant i and the
quantity QQ.

The derivations of all equations used in this subroutine

are in Appendices III, IV, and V. The equations in the order

used are:
III - 9, 10, 11
III - 12, 13, 1k
IV-6,T7
IV-1,2,3
IV -9, 10
IV - &
V-1
V-5
V-2,3
V-6,7
III - 18

Program CHECK was used to check the equations used in this

subroutine.

DR = reduced density (Dr)
DR1DER = Dr!

DR2DER = Dr''

G2DER = G''

PR = reduced pressure (Pr)
PR1DER = Pr!'

PR2DER = Pr''

TN = Tn

TN1DER = Tn’
TN2DER = Tn"
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TO = To
TO1DER = To'
TO2DER = To"

TR = reduced temperature (Tr)
TR1DER = Tr'
TR2DER = Tr''

T = 'I't

TT1DER = Tt'

U=1U

UlDER = U'

V=Y

V1DER = V'

X = mole fraction ethane (x)
Y=Y

Y1DER = Y!

Y2DER = Y'!

ZK = compressibility factor (Z)
ZK1DER = 2!

ZK2DER = Z'!
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SUBROUTINE G3CALC
DIMENSION X(25)s W(25)s PC(25)s TC(25) ¢ PK(25)s TK(25)e PR(2S)
1 TR(2S)s DR(2S)s ZR(25)s Z(5S)e FUNQC(5) +sPZRWRPR(25)
COMMON [ +4DCB+TCB+ACIBCsCCIDCHIECICICI4C21C34CE94C54CEH4C74CB81CI94DRy
1 DR1DER+DR2DER+TR s TRIDER s TR2DER + TR3DER PR PR 1DER +PR2DER +PR3DER s
2 PCsPKeTCeTKsQQeTO+TOIDERITO2DER+TNs TNIDER+TN2DER+TT+sTTIDER Vs
3 VIDER«YsYIDERIY2DER+ZK ¢ ZK1DER +ZK2DER +ZR ¢ Z+ X s W 4 G2DER + G3DER s FUNC
4 +PZRWRPR
CALL G2CALC
TO3DER ==TO¥(3.,%¥(TO1DER*TR2DER+TO2DER#TRI1DER )+ TO*TR3DER)
TN3DER = 3¢*#(2¢*¥TOIDER*%¥3+6¢*#¥TO*¥TOIDER*TO2DER+TO3DER*TO*%#2)
TT2DER = TR3DER*TN+TRI1DER*¥TN2DER+2* TR2DER*#TN1DER
U2DER = PR3DER-C1#(DR(1)*#TR3DER+2*DR1DER*¥TR2DER+DR2DER*TR1DER)
1 —C2%¥(DR(1)**¥2%#TR3DER+4+%¥DR(1)*DRIDER*TR2DER+2+#DR (] )#DR2DER#*
2 TRIDER+2¢¥*¥DRIDER¥%¥2*¥TRIDER)-C4* (2 ¥DR (1) *%¥2*¥TT2DER+8+*DR (] ) #*
3 DRIDER*TTIDER+G+%¥DR (1) *DR2DER¥TT+4 ¢ ¥*DRIDER¥%#2%TT ) ~=CS* (DR(] ) ##3
4 RTR3DER+6+*DR([)*#%#¥2¥DRIDER*¥TR2DER 3+%DR (1) ##2*DR2DER#TR1DER+
S 6¢¥DR(I)¥DRIDER*¥¥*¥2%¥TRIDER)+2.*#C8*QQ* (DR () ¥#3*¥TT2DER+CO#DR (1) ¥#5
6 *TT2DER+6#¥DR (1) ¥ *¥2¥DRIDER*TTIDER 6¢*DR (1) #%¥4%#COXDRIDER*TT 1DER
T=4 ¢ RCORX2XDR (] ) ¥ X6 XDRIDER*¥TTIDER+I ¢ ¥DR (1 ) ¥ A2 HDR2DER¥¥TT+I3 ¢ #CONDR( 1)
8 #XQ4HDR2DER#¥TT—24#CO¥#2¥DR(]) ¥ ¥ ¥DR2DERXTT+6¢*¥COXDR (] ) ##3¥DR1DER*#*
9 2%#TT+6¢*DR (1) ¥DRIDER¥#2#TT—18+#CO¥X¥2#DR (1) ##S*#DR1DER##2#TT)
U2DER = U2DER+2+#CB8%¥QQ%*4 ¢ #*COX X3 XDR( 1) #*7#¥DR1DER*#2*TT
V2DER = C1%*TR2DER+4C2%#2 %¥DR2DER*#TR(1)+4+4 *C2¥DRI1DER*TRIDER +
2eXC2#¥DR (1) ¥ TR2DER=-2¢¥C3*DR2DER+C4Q* (-2 ¢ ¥DR2DER/TR(1)#%#2+8,#*DR1DER
X¥TT+4e¥DR(II*¥TTIDER)+CS*#¥ (12 *TRIDER¥DR(1)#DR1IDER+6%*TR(1)#DR1DER
XU+ 6 ¥DR( 1) #¥DR2DER*¥TR(I ) +3 ¢ *#¥TR2DER¥DR( ) ¥ %#2 )~ #¥CE* (DRIDER* %2+
DR(1)*DR2DER) 430+ #C7*# (DR( 1) ¥%#4%DR2DER+4 « ¥DR (1 ) ¥ %#3#DR]1DER#*%2)
42 #CB8XQAX ( (3¢ ¥DR (] ) ¥DR2DER+3 ¢ #CORDR (] ) ## 3 XDR2DER=G ¢ HCORX2XDR (1)
¥ ASHDR2DER+2 ¢ ¥COXXIADR (] ) ¥ ¥ 7HDR2DER) /TR (1) # %24 (3¢ #DRI1DER##2+
B3e#COXDR(] ) ¥ A2XDRIDER®¥2-51 ¢ ¥CORKDHDR (| ) ¥ %4 XDRIDER* #2432, #COH#3#
ODR(I1)%®#6X¥DRIDER*%#2-q ( ¥CO¥X4HDR (] ) ¥ *¥BXDRIDER®%2) /TR(I ) #%#2=34#DR(1])
*¥U2RTTIDER-3 ¢ #COXDR(T ) ¥ ¥4 ¥TT]IDER+2+#COXX2%¥DR (] ) #*¥6*¥TT1DER)
V2DER = V2DER + 2.#C8%QQ*#(—12+*DR(I)*DRIDER*¥TT=12+#CO¥DR(]) ##3%
1 DRIDER*¥TT+36¢*¥COXX2HDR(] ) ¥ *¥SADRIDER*¥TT~8¢#COX%X3AXDR (] ) ##7#DR1DER
2 *TT)
DR3DER = (U2DER-(2%V1DER*DR2DER+V2DER*DR1DER) )/V
Y3DER = (PR3DER-Y#C]*TR3DER-3.#Y]1DER¥C]1*TR2DER~3¢*Y2DER#C1#TR1DER)
1 Z/(C1*TR(I))
ZK3DER = (Y3DER-ZK¥#DR3DER-3%*ZK1DER*DR2DER~3 ¢+ #ZK2DER#DR1DER)/DR (1)
11 G3DER = (2e¢%#X(I)—1e)/((X(I)=X(])%%2)%%#2)4+ZKIDER~-ZKIDER/ZK+3*
ZK2DER®ZKI1DER/ZK#%#2=2 ¢ ¥ (ZK1DER/ZK ) #%#3+ (C2%#DR3DER~-C3%# ( TO®DR3DER+
TO3DER*DR(1)+3«%DRIDER¥TO2DER+3 ¢ *DR2DER*TO1DER)=C4#* ( TN#DR3IDER+
TN3DER*DR(1)+3«%DRI1DER¥TN2DER+3 ¢ *DR2DER*TNI1DER)+C5# (DR (] ) #*DR3DER
+3 ¢ #DRI1IDER®DR2DER) = (C6E/24 ) # (2% TO#DR (1) #*DR3DER+TO3IDER¥DR(] ) #%#2)
~(C6/72e )X (6 *#TORDRIDER¥DRZ2DER+6¢*TOI1DER*DR (1) #DR2DER+6 ¢ #*TO2DER*
ODR(1)%DRIDER+6¢*TOIDER*DRIDER*#2) C7%#(3.%#TO2DER*DR (1) *#*#4%¥DR1DER+
12 *TOIDER#DR(I ) #%#3%¥DRIDER*%#2+3 ¥ TOI1DER*DR ([ ) # %4 %¥DR2DER+12¢%TO
¥DR( 1) ¥ %2%¥DRIDER%¥ #3412 #TOXDR (1) ¥#3*#¥DR]1 DERX*DR2DER+TO¥DR (1) #%#4q %
DR3DER+TO3DER*DR(1)%¥#5/5,)+C8/C9*TN3DER)/C1
G3DER = G3DER+((C8/(2+%C9) ) #QQ* (-2 ¢ *TN3DER-CO*DR (1) #¥2%TNIDER+6 ¢ *
1 COXDR(1)¥DRIDER*TN2DER+6¢*CO¥DR () ¥DR2DER*¥*TNIDER+6¢ #¥CO*¥DR1IDER##24%
2 TNIDER+2¢%CO9%DR (1) ¥DRIDER*TN+6¢ #¥CO*¥DR1DER*¥DR2DER¥TN+6 ¢ #CO* %2 %
3 DRIII*®%X3IX¥DRIDER*TN2DER+6 ¢ ¥COX %2 #DR (1 ) # %3 ¥DRZDER*TNIDER+ G e ¥COXX2 *

VONOU WM~

VOENOU PN~
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DR(I)®#¥2%¥DRI1DER*¥2%#TN | DER+2¢ #¥CO¥¥2#¥DR (] ) X *¥3¥DRIDER¥XTN+E ¢ ¥CO* %2 %
DR(1)#%¥2*¥DRIDER¥DR2DER¥TN=12 ¢ ¥CO*¥*#3%¥DR(] ) ¥ ¥4 *¥DRIDER¥*#2¥TN]1 DER~-12.
*¥CORRIXDR(] ) ¥ ¥4 *¥DRI1DER*¥DR2DER*¥ TN-20, ¥CO*¥3ADR( ] ) *¥*¥3¥DR]DER ¥ *¥3 ¥ TN+
B ¥COXRRL4XDR (] ) ¥ XSXDRIDER*¥%#3*¥TN) ) /C1

END
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Subroutine G}CALC

Purpose:
Input:

Details:

Method of
Checking:

Fortran
Nomen-
clature:

To calculate G''',

Tr''' and Pr''' at X4 Also, the input requirements of sube

routine G2CALC must be satisfied because G2CALC is called in

this subroutine,

Subroutine G2CALC is called to make preliminary calculations,
The derivations of the equations used in this subroutine

are found in Appendices III, IV, and V. The equations in the

order used are:

III - 11
III - 15
IV - 8
IV - 11, 12
Va5
Vel
V-3_8
III - 19

Program CHECK was used to check the equations used in this

subroutine.

DR3DER = Dr'!'!
G3Dm = G"'

PR3DER = Pr'''
TN3DER = Tn"'

TO3DER = To"'

TR3DER = Tp''!
TT2DER = Tt"

U2DER = U*! -
V2DER = V'!
ZK3DER = Z''!



DATA
56153462298
37040505321
42438841074

« 08207

«097313
687225
508256,

¢ 0225
«9477
129000
¢« 000607175
e 022

50825641345

1 +388457033E-06
2.844569141E~-12

0

0
1
1005
1010
1017
1002
1004
1007



Data

12h

The data represents the following:

5.153462298 = the critical density of propane as computed from
the Benedict-Webb-Rubin equation of state,
g=moles/liter

370.0505321 = the critical temperature of propane as computed
from the Benedict-Webb-Rubin equation of state, °K

42,3884107k = the critical pressure of propane as computed from
the Benedict-Webb-Rubin equation of state, atm,

0.08207 = gas constant R, (liter-atm,)/(g-mole-K°)

0.097313 = Benedict-Webb=Rubin constant B

6.87225 = Benedict-Webb-Rubin constant A °

508256, = Benedict-Webb-Rubin constant C°

0.0225 - Benedict-Webb-Rubin constant b

0.94T7 = Benedict-Webb-Rubin constant a

129000, = Benedict Webb-Rubin constant ¢

0.000607175 = Benedict-Webb-Rubin constant a

0,022 = Benedict-Webb-Rubin constant y

508256.1345 = aC

1.388&57033:10‘6 = bC
2.84b5691b1x1071% = oC_
0 = dC

o
0= eC°
1l = number of sets of guesses of Trz, Tr3, Trh, Dra, Dr3, Drh
1.005 = first guess of Tr2
1.010 = first guess of Tr3
1,017 = first guess of Trh
1.002 = first guess of Dr2
1,00k = first guess of Dr3

1.007 = first guess of Drh




va
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APPENDIX VII
Program TOTRANGE
The objective of program TOTRANGE is to vary simultaneously the
values of reduced temperature (Tr) and reduced density (Dr) at xa and xs
until G.'', G

2
range is split into only three intervals, Therefore, possible values of

3". Gz"'. and G3"' become equal to zero., The composition

X3e X34 and x) could be 0,33, 0.67, and 1,0, respectively., This program
follows the flow diagram in Figure 6, page 38.

Program TOTRANGE makes use of the known values of Tr and Pr for both
pure components., Because four variables (Trz, Trs, Dr2, Dr3) are changed
simultaneously to satisfy four known conditions, it should be possible to
converge to a solution, Negative values of Tr and Dr are not permitted,
The convergence method used is similar to Newton's convergence method for
systems of equations.h2

The main body and subroutine PHICALC are listed for reference., The
nomenclature is identical to that listed on page 104 except for the vari-
able PHI which is defined as the sum of the squares of the four above
listed G quantities,

The main divisions of program TOTRANGE are:

1., Program TOTRANGE-Main Body
2. Subroutine PHICALC

3. Subroutine WBKAY

4, Subroutine POLY

5« Subroutine PRCALC

6. Subroutine G2CALC

T. Subroutine G3CALC
8 . Data
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PROGRAM TOTRANGE
DIMENSION X(25)s W(25)e PC(25)s TC(25)s PK(25)s TK(25)¢ PR(2S5)
1 TR(25)e DR(25)s ZR(25)e Z(S5)e FUNC(S)e G(4)s XX(T7)s TINC1(4),
2 DINC1(4) s TINC(4)sDINC(G)sPHIN(7)DELXX(T7)Yes PX(10)sD(T7esa)
3 PPDX(7)e DELTAXX(6)s DA(S5e4)s PDX(7)s BB(5+4)s PZRWRPR(25)
COMMON 1 +DCBsTCB+sCsACIBCsCCoDCIECICL1sC24C34C4+CS5+COHICT74CB8esCOeX oW
1 DR+DRIDERDR2DER+TR¢TRI1DERsTR2DER ¢+ TR3DER+PR+PR1DER +PR2DER +PR3DER
2 +TCPCeTKIiPKsQQesTO+sTOIDERTO2DER« TN TNIDER+TN2DERTT+TTIDER
3 sVVIDERY 1 YIDERsY2DER+ZK+ZK1DER ¢ ZK2DER¢ZR +¢Z ¢ S+FUNC 4 G2ZDER ¢« G3DER »
4 GsPHI +sPZRWRPR
1 FORMAT (E18.11)
2 FORMAT (/+13H CALCULATION +124/)
3 FORMAT (/+3H X+4E21¢103/¢3H TR14E21,10¢/¢3H DR+4E21.10+/¢3H PR
1 A4E21610+/93H ZR14E21410¢/+8H PZRWRPR 16X +2E21,10)
4 FORMAT (1H1)
6 FORMAT (12)
7 FORMAT (8H RESULTS+8X+s6HPHI = +E18.10)
8 FORMAT (10H G2DERZ2 = +E18¢103s3X+9HG3DER2 = +E18¢10:¢3X+9HG2DER3 =
1 E18¢10¢3X+9HG3DER3 = +E18¢104+/)

9 FORMAT (9H TR(2) = +E18¢10+4X+BHTR(3) = +E18e610+44X+s8HTR(4) =
1 E18¢109/+9H DR(2) = +E18¢10+4X¢8HDR(3) = +E18¢10:4X+8HDR(4) =
2 E18.10)

11 FORMAT (25X+34HFOUR VARIABLES AND FOUR CONDITIONS.4(/))
PRINT 11

READ 1¢ DCBsTCB+PCBIRsBOAOsCOWBsAsCoALPHA GAMMA ,AC «BC,+CC+DCEC

PRELIMINARY CALCULATIONS

Cl = (DCB*TCB*R)/PCB
C2 = C1%BO*#DCB

C3 = (AOXDCB**2)/PCB
CS = C1*¥DCB**#2%B

C6 = (DCB*%#3/PCB)*A

C7 = COE6EXDCB¥*%¥3*ALPHA
C8 = (COE/(AXTCBX%2) ) *C
C9 = DCB*®#2%GAMMA

Cl=Fs C2=Gs C3=H,y C4=1+ CS5=Js C6=Ks C7=L,y CB=M, C9=N
READ 6+ NUMDATA
DO 39 NN=1,NUMDATA

200 READ 1ls¢ (TR(I)sI=2+¢3)e(DR(I)sI=2:3)

DELTA = 1,E-05
X(1) = 0.0
X(2) = 066215
X(3) = 08723
X(4) = 1.0

TR(1) = 1.0
DR(1) = 1.0
PR(1) = 1.0
ZR(1) = 140
TR(4) = 140
DR(4) = 140
PR(4) = 1.0
ZR(4) = 140

DO 201 I = 1+4

201 CALL WBKAY

PC(1) = PK(1)/PR(1)
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15

20

66

69
70
71
77
72

73
74

75

41

43

42

TC(1)
PC(4a)
TC(4)

T
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K(1)/TR(1)

PK(4)/PR(4)

T

K(4)/7TR(4)

CALL PHICALC
PHIN(1) = PHI

PRINT 74 PHI

PRINT 9¢ (TR(I)e1=2+4)+(DR(1)s1=244)
PRINT 8¢ (G(I)sel=144)

DO 37 M = 1,50

PRINT 2+ M

DO 18 L=1+4

D(SsL) = =G(L)

DO 10 I=1.2

XX(I) = TR(I+1)

XX(1+42) = DR(I+1)

DO 20 J=1.44
XX(J) + DELTA
DO 15 I=1.+2

XX(J) =

TR(I+1)
DR(1+1)

XX(1)
XX(1+2)

CALL PHICALC
XX(J) - DELTA
DO 20 I=1.4

XX(J) =

D(Jel) =

(G(I) + D(5+1))/DELTA

DO 66 1=145
DO 66 JU=1.4

DA(I+Y)

D(IsJ)

DO 74 I=1.4
DO 71 JU=1.4

DIVISOR = DA(14J)

IF (DA(I14J))69471469

DO 70 K = 145

DA(KesJ) = DA(KsJ)/DIVISOR
BB(KsI) = DA(KIJ)

CONT INUE

DO 74 JU=1.+4
IF (DA(14J))72474472
DO 73 K=145

DA (K« )

CONTINUE
PDX(5) =
DO 75 MA

DA(KsJ) — BB(Ks1)

~1le

= 144

I = 5 - MA

PDX (1) =

L =1+

1

Oe

DO 75 K=L 5

PDX(1) =

PDX(1) - BB(K+1)*PDX(K)

DO 41 N=1+4

DELTAXX(N) = PDX(N)

XX(N) = XX(N) + DELTAXX(N)
DO 88 KK=1415

DO 42 [=1,2

TR(I+1)
DR(I+1)

XXC1)
XX(1+2)
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88

79
34

37
38

1
39

CALL PHICALC
PRINT 7. PHI

PRINT 9¢ (TR(I)+1=24¢4)+(DR(I)sI=2v4)

IF (PHIN(1)-PHI)B787479
DO 88 N = 144

DELTAXX(N) = DELTAXX(N)/2.
XX(N) = XX(N) - DELTAXX(N)
GO TO 38

PHIN(1) = PHI

PRINT 8+ (G(I1)sI=144)

IF (PHI = 1¢E-10)38+38+37
CONT INUE

PRINT 3¢ (X(I)el=164)s (TR(I)sI=194)>
(ZR(I)elI=194)e (PZRWRPR(I)esI=243)

PRINT 4
END

(DR(I)esI=144)+(PR(I)eI=14+4),
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SUBROUTINE PHICALC .

DIMENSION X(25)¢ W(25)s PC(25)s TCi25)e PK(25)s TK(25)sy PR(25)

1 TR(25)s DR(25)s ZR(25)s Z(5)e FUNG(5)s G(4)es PZRWRPR(25)

COMMON 1 +DCBsTCB4CoACIBCsCCyDCIECICI 9C29C39C44CS54CHICTiCBICIeX oWy
1 DRWDRIDERJDR2DERsTRsTRIDERsTR2DER ¢TR3DER+PR«PR1DER+PR2ZDER ¢+PR3DER
2 +TCePCeTKIPK4QQ+sTOsTOIDERsTO2DER+TNs TNIDER+TN2DERsTT s TTIDER
3 WVeVIDERY 1 YIDERWY2DER+ZK+ZK1DER +ZK2DER +ZR +Z 4 S+FUNC + G2DER ¢+ G3DER »
4 GsPHI +PZRWRPR

DO 10 I=2.3

CALL PRCALC

TC(l) = TK(I)/TR(1)

PC(l) = PK(I)/PR(1)

DO 14 1=2+3

DO 11 K=14+4

Z(K) = X(K)
FUNC(K) = TC(K)
S = Z(1)

CALL POLY (TCI1DERsTC2DER,+TC3DER)

DO 12 K=1+4

FUNC(K) = PC(K)

CALL POLY (PC1DER+PC2DER+PC3DER)

TRIDER = ~TR(I)*TCI1DER/TC(1)

TR2DER = =2+*TRIDER¥TCIDER/TC(1) - TR(I1)%*TC2DER/TC(I)

TR3DER = 6¢%¥TK(I)*TCIDER*TC2DER/TC(1)*¥%#3—-6*¥TK([)*TCIDER®##3/TC(])
1 ¥%4 - TK(I)¥TC3DER/TC(1)*%*2

PRIDER = =PR(I1)¥PCIDER/PC(I)

PR2DER = -2+*PRI1DER¥PCIDER/PC(1) - PR(I1)#PC2DER/PC(I])

PR3DER = 6¢%PK(1)X*PCIDER*PC2DER/PC(1)%#%X3-6,%PK(])#PCIDER**3/PC (1)
1 *¥%4 — PK(])®PC3DER/PC(]1)%*%2

CALL G2CALC

CALL G3CALC

G(2*1-3) = G2DER
G(2*%1-2) = G3DER
PHI = G(1)¥%2 + G(2)%%2 + G(3)**2 G(4)%%2

END
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SUBROUTINE PHICALC .

DIMENSION X(25)¢ W(25)s PC(25)s TC(25)s PK(25)s TK(25)s PR(2S5)

1 TR(2S)e DR(2S) s ZR(25)s Z(S)e FUNQ(S) e G(4)s PZRWRPR(25)

COMMON [ +DCBsTCB4sCsACIBC4CCIDCIECIEL1C24C3+¢CEeCS54CHICT+CBICIeX oW
1 DRDRIDERJWDRZDER TR TRIDERTR2DER ¢ TR3DER+PR+PRIDER+PRZDER +PR3DER
2 sTCoPCsTKPKsQQ+TO+TOIDER s TO2DERs TNs TNIDER s TN2DERTT s TTIDER
3 WVeVIDERWY1YIDERY2DER+ZK+ZK1DER ¢ ZK2DER +ZR ¢ Z 4 S+FUNC s G2ZDER +G3DER»
4 GsPHI ¢sPZRWRPR

DO 10 I=2.3

CALL PRCALC

TC(l) = TK(I)/TR(1])

PC(l) = PK(I)Y/PRI(I])

DO 14 1=2+3

DO 11 K=14+4

Z(K) = X(K)
FUNC(K) = TC(K)
S = Z(1)

CALL POLY (TCI1DER+TC2DER,TC3DER)
DO 12 K=1.+4

FUNC(K) = PC(K)

CALL POLY (PC1DER+PC2DER+PC3DER)

TRIDER = ~TR(I)*TCI1DER/TC(1)

TR2DER = —=2+*TRIDER¥TCIDER/TC(I) - TR(I1)%*TC2DER/TC(1)

TR3DER = 6¢*TK(I)*TCIDER*TC2DER/TC(1)*¥%#3-6*TK(J)*TCI1DER®*#3/TC(1)
1 *¥%4 — TK(I)*TC3DER/TC(1)*¥%2

PRIDER = =PR(I)*PCIDER/PC(I)

PR2DER = -2+*PRIDER*¥PCIDER/PC(1) - PR(I)¥PC2DER/PC(1])

PR3DER = 6¢%PK(1)*PCIDER¥PC2DER/PC(1)%*¥%¥3-6,%PK(])#*PCIDER*¥*3/PC (1)

1 *¥%4 - PK(]1)*PC3DER/PC(1)%*¥%2
CALL G2CALC
CALL G3CALC

G(2*[1-3) = G2DER
G(2%1-2) = G3DER
PHI = G(1)%%2 + G(2)%%2 + G(3)*%2 G(4)*¥2

END
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APPENDIX VIII
Program CHECK
The purpose of program CHECK was to check the equations for G'' and
G''' and their supporting equations in subroutine G2CALC and G3CALC,
Beginning with the expression for G, the derivatives were calculated by
numerical differentiation and from the mathematical expressions for the
derivatives, These two answers were then compared, and if they vere
nearly identical, the mathematical equations for the G quantity were
assumed to be correct. This program follows the flow diagram in Figure 7T,
page 39.
The main division of program CHECK are:
l, Program CHECK-Main Body
2. Subroutine PRCALC
3. Subroutine G2CALC

4, Subroutine G3CALC
S« Data
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PROGRAM CHECK
DIMENSION X(295)s W(25)s PC(25)s TC(25)es PK(25)s TK(25)s PR(25)

1 TR(25)es DR(25)s ZR(25)s Z(5)s FUNC(S5)e G(4)e XX(T7)e TINC1(4),

2 DINCI1(4)sTINC(4)sDINC(4)+PHIN(7)sDELXX(7)9s PXC10)eD(T7e3)0
3 PPDX(7)e DELTAXX(6)s DA(G443)e PDX(7)s BB(44+3)
4 +DCC(20)s DK (20)

oL wh~-—

- O WwiMNn-

COMMON 1 +DCB+TCB+PCBsR+«BOsAOsCOsBsAsCosALPHA GAMMA ,ACBC+CC+DCLEC»
Cl19C2¢C34C49CS5+CHE1CT74CBsCIO9eXesWsDRIDRIDERDRZ2DERTRsTR1DER s TR2DER»
TR3DER PR ¢«PRIDER+PR2DER +PR3DER«TCsPC o TKsPK+sQQs TO+ TOIDER ¢+ TO2DER
TN+ TNIDER+TN2DER+TT+ TTIDER«VVIDERsYsY1IDER s Y2DER+ZK s ZK1DER
ZK2DER$ZR+Z+sS+FUNC+FSTDER+SECDER + THRDER + G2DER + GBDER G +PH1
+GG+G1DER

FORMAT (E18.11)

FORMAT (12)

FORMAT (25X + 1 3HCHECK PROGRAM4(/))

FORMAT (3E2010)

FORMAT (/:6H CHECK+3E20e¢10¢/+6Xs3E20410¢3(/))

PRINT 3

READ 14 DCBsTCB+PCBsRsBOsAOICO+BsAyCoALPHA GAMMA ,AC+BC+CCsDCEC

PRELIMINARY CALCULATIONS

Cl = (DCB*TCB*R)/PCB
C2 = C1*BO*DCB

C3 = (AOXDCB**2)/PCB
C5 = C1*DCB®¥2xB

C6 = (DCB*%3/PCB)*A

C7 = CE6EXDCB**¥3*ALPHA
C8 = (C6/(AXTCB¥*%2))*C
C9 = DCB®*¥2*%GAMMA

Cl=Fs C2=Gs C3=H, Ca4=1, C5=Jy C6=Ks C7=L,4 CB=M, C9=N

59

58

DELTA = 000001

READ 2+ NUMDATA

DO 64 NN=1+NUMDATA

READ 1+ X(1)

ASSIGN 60 TO JOHN

I =1

TK(I) = (513e3-186.4392126%X(1)+20 ¢413825#X(]1)#%2-558,3704113%
1 X(I)¥%3+412161957936%X (] )%%44+4459,67)/18

DK(I) = 23 + 2e%X (1) + 3e%¥X(])%%2

TC(I) = S5S30e + 200e*X(1) — 400e%#X(])%%3

TCIDER = +200e¢ =1200e%X(])%*%2

TC2DER = -2400+%X(1])

TC3DER = =2400.

PC(1) = 25e + 140e¢%*X(1) = 120e%*X(1)%%3
PCIDER = 140e¢ = 360e%X(])%*%2

PC2DER = =720%X(1])

PC3DER = =720

DCC(I) = C1¥PC(I)/TC(1)/R

TR(1) = TK(I)/TC(1)

DR(1) = DK(I)/DCC(1)

CALL PRCALC

PK(I) = PC(I)*PR(1)

PRINT 10s TC(I)eTK(I)sTR(I)+DCC(I)4DK(I)DR(IIsPC(I)ePK(1)sPR(1)
1 X))

TRIDER = =-TR(I)*¥TCIDER/TC(I)
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TR2DER = =-2+*TRIDER*TCIDER/TC(1) - TR(1)*TC2DER/TC(I)

TR3DER = 6e*TK(I)*TCIDER*¥TC2DER/TC(1)X%3-6%¥TK()*¥TCIDER**3/TC (1)
1 #¥%4 - TK(I)*TC3DER/TC(1)%#2

PR1DER = —PR(1)*PCIDER/PC(1)

PR2DER = —2+*PRIDER#PCIDER/PC(1) - PR(1)*PC2DER/PC(1)

PR3DER = 6¢%#PK(])*PCI1DER¥PC2DER/PC( 1) %#%#3-6,%*PK(])*PCIDER**3/PC(])

1 ¥%4 - PK(])*PC3DER/PC(1)*%2
CALL G2CALC

CALL G3CALC

GO TO JOHN

X(l) = X(I) + DELTA

PRINT 10+ GG+ GIDERs G2DER+ G3DER
PK1 = PK(I)

GG1 = GG

Gl1 G1DER

G21 = G2DER

G331 = G3DER

ASSIGN 61 TO JOHN

GO TO S9

X(I1) = X(1) - DELTA

PGWRXDT = (GG - GG1)/DELTA
P1WRXDT = (GIDER - G11)/DELTA
PFWRXDT = (G2DER - G21)/DELTA

PPWRXDT = (PK(1) - PK1)/DELTA
PRINT 10+ PGWRXDTe PIWRXDTe PFWRXDTes PPWRXDT
ASSIGN 62 TO JOHN

GO TO 59

DK(1) = DK(I) + DELTA

ASSIGN 63 TO JOHN

GO TO 58

PFWRPXT = (G2DER - G21)/(PK(I) - PK1)
PGWRPXT = (GG = GG1)/(PK(]1) - PK1)
P1WRPXT = (GIDER - G11)/(PK(l) - PK1)

PRINT 10+ PGWRPXTes PIWRPXTes PFWRPXT

GIDERN = PGWRXDT — PGWRPXT*PPWRXDT
G2DERN = PI1WRXDT - P1WRPXT®*PPWRXDT
G3DERN = PFWRXDT - PFWRPXT*PPWRXDT

PRINT 11+ G114 G214+ G31s GIDERNs G2DERNs G3DERN
END
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Program CHECK-=Main Body

Purpose: To check the equations for G'' and G''' and all of the supporte

Input:

Details:

ing equations in subroutine G2CALC and G3CALC,

P-V-T data on a reference compound (in this case propane). This
data intludes the critical properties, the gas constant R, eight
Benedict-~Webb=Rubin constants, and five constants for computing
Co as a function of temperature. Also, the value of composition
(xl) at which the derivatives are to be calculated.

This program computes derivatives G', G'', and G''' from the
mathematical expressions for these derivatives, and also by
numerical differentiation, If each pair of results are nearly
identical, the equations are assumed to be correct,

The expression for the derivative of a function F(T,D,P,x)
with respect to x at constant T and P was shown on page 39 to
be: * '

(:nv'/ax)T.P = (3F/3x)T’D - (3F/8P)T.x(aP/3x)T.D (1)
vhere F can equal G, G', or G'',

’Up to third derivatives are needed for Tc and Pc., For this
program it is sufficient to use simple, arbitrary functions for
these variables, The functions were selected such that they

approximated the Tc and Pc values for pure ethane and pure

n-heptane, The expressions used were:

Tc = 530 + 200x - hoox> (2)

Pe = 25 + 140x - 120x° (3)
Equations (2) and (3) are readily differentiable with respect to
x. This differentiation was done by hand and the resulting

formulas put into the program.,



Method of
Checking:

Fortran
Nomen-
clature:

13k

For the sake of accuracy, an expression was devised for Dk
vhich approximated the experimental data of Kay23. For purposes
of this check program, a constant value of Dk could also have
been used, The expression for Dk is:

Dk = 2,3 + 2x + 3x° (%)
The expression used for Tk is the same one which is used in sub-
routine WBKAY,

Extensive use is made of subscripted variables in this pro-
gram, although this is unnecessary. This is done for two rea=-
sons, .First, program CHECK was prepared from other programs
vhich were already written, and these had subscripted variables
in them, Second, since the equations in this project actually
use subscripted variables it is better to check those specific
equations, The specific subscript used throughout this program

is 1.

A second person checked over this. program.

DCC = pseudocritical density, moles/liter
GG = G

G1DER = G'

G2DER = G'!

G3DER = G''!

G1DERN = numerical value of G' = (3G/ax)T P

G2DERN = numerical value of G'' = (3G’ /ax)
G3DERN = numerical value of G''' = (SG"/axs

Gll = namc'of variable which is used to save the first value
G2l = z:mg'?r variable which is used to save the first value
G3l = zims'?f variable which is used to save the first value
PKl = ::mg of variable which is used to save the first value
Pcwamgf-P%ac/ 3%)m

1 ]
P1WRXDT = (ao'/ax)T D
]
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PFWRXDT = (ac;"/ax),r’D
PPWRXDT = (aP/ax),r D

1 )
PGWRPXT = (ac/aP)T x

]
P1WRPXT = (3G'/3P)T’x
PFWRPXT =

(3G’ '/aP)T,x
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Subroutine PRCALC - Same as for program LINEAR
Subroutine G2CALC - Same as for program LINEAR except that G and G' are
also computed, G is calculated from equation III-18
and G' is calculated from equation III-19,

Subroutine G3CALC - Same as for program LINEAR,

Data - Same as for program LINEAR except that no values for Dr and Tr are
put in the data, Instead, after the data card for eCo. values are
read for NUMDATA and the compositions at which a check is to be
made. The number of values of x must be equal to the value of

NUMDATA.,




APPENDIX IX

Generated Pseudocritical Curve Results - Approaches I and II
Approach I

Using as known conditions, experimental critical temperatures, pres-
sures, and compressibility factors and the fact that G'' equals zero at
the critical point, an attempt was made to generate pseudocritical tem-
perature and pressure curves, Representative data points are listed in
Tables 11 and 12, Table 11 contains the generated values of pseudocriti-
cal temperature as a function of composition, while Table 12 contains the
generated values of pseudocritical pressure as a function of composition.
Figure 20 is a plot of the pseudocritical temperature data.

The temperature data in Figure 20 show a large amount of instability.
The stability of each curve was directly dependent on the original guess
in Figure 20), In general, Figure 20

made for Tc ._* (shown as Tr
[} [ ]

05 05
contains two shapes of curves, The S-shaped curves (Tr = 1,02, 1,0202)

20

05
exhibit the greatest irregularity. Reference to a typical diagram

of
compressibility factor as a function of reduced pressure and temperature
indicates that there are two values of reduced pressure wvhich give the
same compressibility factor at the same reduced temperature., Because
reduced pressure is a function of reduced density and temperature, there
must also be two values of reduced density for a given compressibility
factor, If the computer used the high and low values of reduced density

in an irregular manner, as the composition range was crossed, erratic

results such as the S-shaped curves in Figure 20 could occur,

*Tc 05 represents Tc at x = 0,05,
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TABLE 11, Generated values of pseudocritical temperature (°K) in

Approach I

= 05 Te, 05 Te,10 Teas  Te20 Teos T30
1,035 .
1.032 518,99 508,52%
1.031875 519.06 508,65%
1.03175 519,12 508,78 k99,82  L491,53 484,64  L485,55%
1.0315 519,24 509,06 500,40  1493.10 490,92%
1,031 519,50 509,69 502,05%%*
1,0305 519475 510,42 504,46  512,17%*
1,03 520,00 511,2k 50776 54O, 6TH*
1,0298125 520,10 511,56 509,25%
1.02925 520,38 512,62 51k ,63%
1.0285 520,78 51k4,19 52l ,11%
1.025 - 522,5k 523,56%
1,0202 525,00 540,11 51k, k2%
1,02 525,10 540,86 516,83*%
0.99 541,01 532,5T*

Note: Tc for pure n-heptane = 540,54 °K
#Indicates that G'' did not converge to zero at that value of x.

#%Indicates that G'' did not converge to a single value, but that it
was near zero.
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TABLE 12. Generated values of pseudocritical pressure (atm.) in

Approach I

T 05 Pe o5 Pe 10 Peis  Fel20 Peos P30
1,035 *
1,032 23,28 23,35%
1,031875 23.32 23.k5*
1.03175 23.35 23,56 2L, L5 26,03 28,95 36,58¢%
1.0315 23,42 23,77 2k ,96 27.26 32,72%
1.031 23.56 2k ,10%
1.0305 23.69 24,65 27.45 36.88%%
1.03 23.82 25,12 29,16 49, 3T#
1.0298125 23.86 25,30 29,84%
1.02925 24,01 25,85 32,21%
1.0285 24,19 26,62 32,24#%
1.025 25,02 30,62¢%
1,0202 26,07 37.06 32,25%
1.02 26,12 37.34 33,31
0.99 32,12 34,15%

Note: Pc for pure n-heptane = 26,946 atm,
#Indicates that G'' did not converge to zero at that value of x.

##Indicates that G'' did not converge to a single value, but that it
vas near zero.
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Figure 20. Pseudocritical temperature as a function of composition
(Curve parameters are Tr at x = 0,05)
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The second type of curve in Figure 20 is parabolic. The reason for
this shaped curve is not as obvious as that for the S-shaped curves,
Although a thorough mathematical analysis is not possible, it could be
speculated that errors in the numerical differentiation eventually became
magnified enough to cause unreasonable results., Each of the curves in
Figure 20 was terminated before the entire composition range had been
traversed because no further convergence could be obtained., All values

of Tr vhich showed any promise of yielding satisfactory results wvere

05
thoroughly investigated. This was especially true of the transition area
between the parabolic a&nd S-shaped curves shown in Figure 20,

The programs which began at the pure ethane end of the composition
range instead of at the pure n-heptane end, showed no improvement in
behavior. The same instability was still indicated, Likewise, the chang-
ing of the increment size of x was not an improvement, When butane was
used as a reference compound instead of propane, the curves were similar
in ahapoAto those of Figure 20, but the butane curve; wvere offset slightly
from the propane curves,

This approach was eventually abandoned because the condition that

G''' also equals zero at the critical point was not being satisfied by

the results.

Approach II

The approach used here was to generate pseudocritical temperature
and pressure curves using as known conditions, experimental critical teme
peratures and pressures and the fact that G'' and G''' equal zero at the
critical point. A mathematical convergence method was required for the
calculations,

The first convergence method used, the double linear process, was not
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completely satisfactory, This method sometimes diverged if the quantities
(Axl.Ayz) and (Axa'AYl) [See page 10T for definitions of these quantities.)
became nearly equal, These quantities being nearly equal meant that the

process was near an unstable region and thus, behaved inconsistently.

The usefulness of this convergence method was limited by its tendency i
to diverge in certain cases, If only one or some small number of conver-
gences are required, then this procedure may be of some use, However, the

percentage of failures is too high to use this method without some dis-

cretion. Of course, the more linear the equations, the better the method ,
will work.,

The success achieved in this project from using the double linear con-
vergence process appeared highly dependent on the starting values for the
variables Tr and Dr at x, and X3e This pointed up again the possibility
of an error becoming magnified in the system.

At its best, the program using linear convergence did not proceed
higher than x = 0,35 before lack of convergence caused termination of the
program, Program LINEAR is listed in Appendix VI in lieu of specific
results which are meaningful,

Another convergence method which was used to solve systems of two
equations and two unknowns was Newton's method for systems of equations
(also known as the Newton-Raphson method).h2 This procedure extrapolated
using the partial derivatives at a single point., In cases where both the
linear method and Newton's method worked, Newton's method always required
less iterations, However, the linear method often gave convergence when
Newton's method did not. For this reason the linear method was considered

the better method for use in this research,

For solving systems with more variables than conditions, the method
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of steepest descent as defined in this thesis, was not a good convergence
method. There appeared to be two reasons for the difficulties with this
method, First, the assumption that d¢/ dz = A¢/Ax vas not always & good
one to make, Even for the simplest of the linear cases, d¢/ dx is twice
as large as A¢/Ax, This means that the value calculated for p was not
always as good as it could hqve been, Seéond, the amount of ;ntorplay
between the quantities (G")z, G3")2, and (G3"')2 in the expression for
¢, required the method to make many more iterations than would have been
necessary if the method did not use a function such as ¢,

The convergence method which used an approach similar to the Newton-
Raphson met‘.hocl.l‘2 to simultaneously vary the variables (Tr2, Tr3, Tr) ,

Dry, Dray Drh) until G'' and G''' were zero at x,» X4, and x, gave good con-
vergence, The program using this convergence method gave results for

almost all sets of input tried. The objective was to obtain what appeared
to be a good set of starting values (i.e. Tr and Dr at X, x3.and xh) and
then use these values as starting values in program LINEAR,

Table 13 lists a typical set of results from this procedure. The
generated values are reasonable until x = 0,35, At this point large
changes take place in Tc and Pc. Using double linear convergence, no set
and Pc

of values was found for Tc vhich made G'' and G''' equal

0.%0 0,40
to zero at x = 0,35, These large changes in Tc and Pc at x = 0,35 could
once again have been caused by the magnification of an error. The values
of (QZr/aPr)Tr are quite regular which indicates that the computer did

not use the low and high values of reduced pressure in an arbitrary

manner,
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Table 13. Generated Tcln and. Pcm values. from program LINEAR using a set
of starting values from program DECLINE

x Pc Te (3zr/ 3Pr),rr

0 26,95 atm, sLo.54 °K oo

0,025 26,77 533.06 -10,73
0.050 26,64 525480 -5.12
0.100 26.k0 511,55 -2,27
0,150 25,91 496,34 -1,27
0,200 2k,60 477.33 -0,T0
0.250 21.79 451,15 -0,29
0,300 16,97 L1k, 64 +0,03

0.350 41,63 338.62 +0,26










