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ABSTRACT

DEVELOPMENT OF PSEUDOCRITICAL MIXTURE RULES APPLICABLE

TO THERMODYNAMIC CALCULATIONS IN THE CRITICAL REGION

by John Douglas Stevens

Phase equilibria and other properties of fluid mixtures in the criti-

cal region may be computed thermodynamically if equations of state appli-

cable to this region are available. Such equations of state usually have

generalized forms involving two or more constants and are used in con-

Junction with mixture rules which express these constants as functions of

composition. The eight constant Benedict-Webb-Rubin equation of state1

has yielded reasonably satisfactory computations of this type.

This research work was directed toward establishing satisfactory

mixture rules which may be used with a two constant reduced equation of

state. The derived reduced equation of state was based on the Benedict-

Webb—Rubin equation for propane. Pseudocritical mixture rules express

these quantities as a function of composition. The criterion used to

evaluate a mixture rule was its ability to predict conditions along the

critical envelope curve. This is the boundary of the two phase region,

and also represents the pressure at which the equilibrium ratios converge

to unity.

Eecause of the complexity of the relations involved, computations

were prOgrammed on a CDC 3600 computer. Among the programswritten and

tested were the following: (a) Computation of compressibility factor and

reduced pressure from reduced temperature and density using the correspond.

ing states principle with propane, butane, and other hydrocarbons as

reference materials. (b) Computation of derived thermodynamx:properties
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John Douglas Stevens

including the second and third partial derivatives of free energy with

respect to mole fraction at constant temperature and pressure. (c) Com-

putation of critical envelope curves by simultaneously converging the

second and third free energy derivatives to zero.

The eight constant Benedict-Webb-Rubin equation of state gave values

of critical pressure, temperature, and compressibility factor for the

ethane-n-heptane system which were in good agreement with Kay'32 experi-

mental data. With the two constant reduced equation of state, good

agreement was obtained for a binary mixture using the following mixture

rules:

2 2
1/2 2

Pcm I [1E1x1(Tc/Pc )1/151x1(T6/Pc)1]

2 2

Tcm - [iflxi(Tc/Pol/2)112/1£131(Tc/Pc)1

where Tc1 and Pc1 are the critical temperature and pressure, respectively,

of pure component i, and Tcm and Pcm are the pseudocritical temperature

and pressure, respectively, of the mixture. x1 is the mole fraction of

component i in the mixture.

Attempts were made to develop programs for generating pseudocritical

pressures and temperatures from experimental data on true critical tQMh

perature, pressure, and density. All approaches used the critical prOper-

ties of the pure components as known conditions. Using an approach which

assumed cubic forms for the pseudocritical curves, it was possible to gen-

erate pairs of points on these curves. The generated points were in good

agreement with the mixture rule suggested above.

1Benedict, M., G. B. Webb, and L. C. Rubin, J. Chem. Phys., Q, 33“ (l9h0).

2qu, w. 3., Ind. Eng. Chem., 29, h59 (1938).
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INTRODUCTION

The chemical engineer often performs calculations requiring a know-

ledge of the values of thermodynamic quantities. This is especially true

with mass transfer processes such as distillation and absorption where

successful design of equipment is dependent on accurate vapor-liquid

equilibrium data. Because vapor-liquid equilibrium properties are one of

the most important thermodynamic quantities to a chemical engineer, this

thesis is oriented towards obtaining a mixture rule which could be used

to compute more accurate vapor-liquid equilibria in the most sensitive

region, the critical region.

In the critical region, the equilibrium ratio (vapor mole fraction

divided by liquid mole fraction) approaches one at the critical envelope

curve (convergence pressure curve). This curve, which represents the

border of the two phase regiOn, is the locus of true critical temperatures

and pressures for a multicomponent system. In order for a method of com-

putation to be satisfactory in the critical region, it must predict the

equilibrium ratio to be one, at temperatures and pressures corresponding

to the critical envelope curve. Or conversely, if the equilibrium ratio

is equal to one, the method must give the temperature and pressure to be

equal to the critical temperature and pressure.

There are two methods currently favored for calculating vapor-liquid

equilibria at high pressures. One of these methods, the convergence pres-

sure method, involves estimation of the shape of the critical envelope

curve. This is generally done for the system under consideration on the

basis of data for other systems. Equilibrium ratios are then obtained

from empirical equilibrium ratio charts (K-charts) using convergence pres-

sure as a parameter. The second method, the equation of state method, is

l
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based on equations of state for the pure components plus a mixture rule.

Equations of state are approximations of actual physical behavior and have

generalized forms involving pressure, temperature, and volume (or density)

plus two or more constants. Mixture rules express these constants as

functions of composition. An equation of state used in conjunction with

a mixture rule provides a means of computing thermodynamic quantities,

including equilibrium relationships, for mixtures.

The convergence pressure method has its greatest accuracy in the

critical region, but this is because it is based on experimental data in

that region. However, the convergence pressure method becomes less accu-

rate at lower pressures; it is not amenable to the calculation of other

thermodynamic properties, and if extended very far from the region of the

experimental data, it can lead to results which are thermodynamically im-

possible. The equation of state method has all of the advantages of ther-

modynamic consistency. The equilibrium ratios computed at low and moderate

pressures are very satisfactory, but considerable errors are often encoun-

tered at high pressures near'the critical region.

If a more accurate equation of state could be developed for mixtures,

through the development of better mixture rules, then the equation of

state method would be a much more satisfactory method for calculating

equilibria. This method would then permit the calculation of other ther-

modynamic data, and it would require less specific experimental data than

the convergence pressure technique.

The objective of this research was to obtain a better equation of

state for mixtures at high pressures. The method used was to derive a

reduced equation of state and then to attempt to find or develop pseudo-

critical mixture rules which when used with the reduced equation of state,

would yield accurate thermodynamic predictions in the critical region.
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A reduced equation of state has only two constants; in this work these

were pseudocritical temperature and pressure. Pseudocritical mixture

rules express pseudocritical temperature and pressure as a function of

composition. The criterion used for evaluating mixture rules was to use

them in conjunction with an equation of state to predict the critical

-envelope curve (convergence pressure curve) for a particular multicomp

ponent system and compare these predictions with experimental data.
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BACKGROUND

Accurate methods for predicting vapor-liquid equilibria have always

been a prime requisite of the design chemical engineer. However, most

methods developed to date have limitations which greatly restrict their

use, and the engineer often must use a combination of methods or may even

not have any acceptable method at his disposal.

General Equilibrium Theory

A system is said to be in equilibrium if there is no apparent change

in the intensive properties with respect to time. However, the intensive

properties themselves, such as concentration, partial molal enthalpy, den-

sity, refractive index, etc., may be different in different phases of the

system. The only requirement for equilibrium is that all potentials

which cause changes should be in a well balanced state. Therefore, the

equilibrium state requires that the temperature (thermal potential) and

pressure (mechanical potential) be the same everywhere. In addition, a

third potential, the chemical potential, should also be in a balanced

state. This is equivalent to stating that the partial molal free energy

be the same in all phases for all components.

The balance of the above three potentials is often referred to as the

conditions for equilibrium and they may be written symbolically as

TV - TL (1)

PV 8 PL (2)

Fiv - Ru (3)

where TV, T 8 temperature in the vapor and liquid
L

phases, respectively.

P P 8 pressure in the vapor and liquid
V’ L

phases, respectively.

b



FiV’ FiL I free energy/mole for component i in the

vapor and liquid phases, respectively.

Condition (3) may also be written

fiv ' f1L (h)

where f I fugacity of component i in the vapor and

iV’ fiL

liquid phases, respectively.

The most practical means of expressing vapor-liquid equilibria is in

terms of the equilibrium ratio or K-factor which is defined for component

i as

Ki ' yi/xi
(S)

where yi I mole fraction of componenti in the vapor phase.

x1 I mole fraction of component i in the liquid phase.

Another constant called the vaporization equilibrium constant is

sometimes used. This is defined as

Kv ’ aiV/aiL ' (YiVyi)/(Yiin) (6)

where a I the activities of component i in the vapor
iV’ aiL

and liquid phases, respectively.

YiV’ YiL I the activity coefficients of component i in

the vapor and liquid phases, respectively.

If ideal solutions are formed in the two phases, then both activity

coefficients are unity, and equation (6) reduces to equation (5). Other-

wise, the relationship between the two equilibrium constants is

Ki ‘ (YiL/Viv)xv ' (7)

The discussion which follows refers to the equilibrium state in terms of

the K-factor.

Corresponding States Principle

A3
Van der Waals first defined the term "reduced condition" and
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presented the corresponding states theorem for all pure gases in 1873.

Young extended this concept to liquids in 18990

The theorem of corresponding states claims that all pure gases, when

compared at the same reduced temperature and reduced pressure, will have

the same compressibility factor or, in other words, deviate from perfect

gas behavior to the same degree. Reduced temperature and reduced pressure

are defined as

Tr I T/Tc (8)

Pr I P/Pc (9)

where T temperature of the fluid

P I pressure of the fluid

Tc I critical temperature of the fluid

Tr I reduced temperature of the fluid

Pc I critical pressure of the fluid

Pr I reduced pressure of the fluid?

The compressibility factor may be written symbolically as

z - PV/R'r (10)

where Z I compressibility factor

V I volume/mole

R I gas constant

Graphs of compressibility factor as a function of reduced terperature and

reduced pressure are found in most thermodynamic textsoflo

When the corresponding states concept is extended to rixiwres, the

reduced preperties of mixtures based on the true critical p? ,2rties of

the mixture do not give the same functional relations for czc~wessibility

factors as for the pure components. In order that compressinility factors

for mixtures will follow the same functional relationships as do pure
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components, it is necessary to use hypothetical values for the critical

properties of the mixture. These hypothetical critical properties are

called pseudocritical properties. The pseudocritical temperature and

pseudocritical pressure are denoted by Tom and Pcm, respectively. Any

preperty which is put into reduced form by using the pseudocritical prep-

erty ;s said to be in the pseudoreduced condition.

Low and Moderate Pressure Vapor-Liquid Equilibria

If two pure substances, originally at their respective vapor pressures,

are isothermally changed to pressure P and then mixed to form a two phase

mixture, the thermodynamic expression for the equilibrium ratio is

(Appendix I)

yA/XA = PAVPvAVPYAL/(PVAPYAV) L . (11)

, P

where L I exp[(l/RT) I VLdP]

' PAVP

PAVP I vapor pressure of pure component A

P I total pressure of mixture

VAVP I fugacity coefficient of pure component A at its

vapor pressure I f /P
AVP AVP

VAP I fugaCity coefficient of pure component A at

total pressure P I fAP/P

YAL I activity coefficient of component A in the liquid

phase of the mixture

YAV I activity coefficient of component A in the vapor

phase of the mixture

V; I molal liquid volume of pure component A.

A similar expression may be written for component B.
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Relationship (11) involves the use of experimental vapor pressures

and correction for deviations from ideal behavior. It is this relation-

ship which is the basis for many methods of vapor-liquid equilibrium

prediction.

If there are no deviations from ideal behavior in either the liquid

or vapor phase and if the liquid correction factor (L) may be neglected,

equation (11) reduces to Raoult's Law:

yA/xA = PAVP/P (12)

Raoult's Law is limited to the case of a mixture of perfect gases in

equilibrium with a liquid phase which is an ideal solution. That is,

Raoult's Law is valid when molecules of each component are of approximate-

ly the same size and when the pure components mix in both the liquid and

gas phases without the complicating effects of molecular association,

chemical combination, and the like. Raoult's Law neglects the effect of

composition and to some extent, the effect of pressure on the behavior of

a component in the vapor and liquid phases.

Fugacity coefficients vAVP and ”AP are corrections for imperfect gas

behavior due to the effect of volume of and the attraction between the

molecules of the vapor. Fugacity coefficient values may be read from the

fugacity charts. These are charts of f/P as a function of reduced pres-

sure and reduced temperature. They were constructed using compressibility

factor charts and should be valid as long as the corresponding states

principle holds.

38 used the fugacity charts to constructSouders, Selheimer, and Brown

a plot of K-factor as a function of temperature and pressure. They

assumed that the liquid and vapor mixtures were ideal solutions, thereby

reducing equation (11) to
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P v

yA/XA :sM L (13)

AP

Since v I f/P, equation (13) becomes

yA/xA ' fAVPL/fAP ‘ fAL/fAv (1”)

where fAv I fugacity of pure vapor A at the pressure and

temperature of the system.

fAL I fAVPL I fugacity of pure liquid A at the pressure

and temperature of the system.

Kecharts were constructed for several of the hydrocarbons.

The quantities YAL and YAV are called activity coefficients and are

corrections for deviations from Amagat's Law in the liquid and vapor

phases, respectively. Because of the dense nature of liquid solutions,

YAL is much more important than YAV at low and moderate pressures. At

pressures near the critical where both phases are quite similar, YAV

becomes a factor. The deviations from Amagat's Law behavior are due to

the fact that attractions between similar molecules are different than

attractions between dissimilar molecules.

Activity coefficients are composition dependent and hence, whenever

they are equal to anything except unity, the K-factor is composition de-

pendent. The methods that have been used for predicting activity coef-

ficients are either empirical or semitheoretical, the theoretical part

being the use of thermodynamic equations to direct the development of

empirical rules. Many rules have been proposed, but more commonly the

activity coefficients are estimated by such equations as the Wohl,

Margules, van Laar, or Redlich and Kister equations.20

37
It should be noted that some authors express activity coefficients

as a product of two activity coefficients, each of which corrects for
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different types of deviations. This could be expressed

Y . dw'

where y I overall activity coefficient

7' I activity coefficient expressing deviations from

Amagat's Law as a result of chemical dissimilarity

¢ I activity coefficient expressing deviations from

Amagat's Law as a result of molecular size or

volatility.

If a system is composed of a homologous series, then 7' I l.

The liquid volume correction term (L) in equation (11) is a correc-

tion for the difference between the fugacity of the liquid at the system

pressure and the fugacity at the pure component's vapor pressure. This

term is generally not important at low and moderate pressures although

it may be calculated any time the liquid molal volume is known or an

equation of state is available.

By introducing additional parameters into the correSponding states

30 hasprinciple, more accurate fugacity predictions can be made. Pitzer

extended the correSponding states principle by using a third parameter.

Although others had previously suggested a third parameter, none of the

methods prOposed were as successful as Pitzer's. He called the new param-

eter the acentric factor, which is supposedly a measure of the deviation

of the intermolecular potential function from that of simple spherical

molecules. The compressibility factor Z may then be written

Z I Z(Pr, Tr,w)

where w I acentric factor.

Hougen, Watson, and Ragatzao also used a three parameter approach.

They calculated equilibrium ratios as a function of the critical
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compressibility factor, reduced temperature, and reduced pressure. A

value of 0.27 was used for the critical compressibility factor in con-

struction of a table and a chart, but corrections were given for values

of critical compressibility factor other than 0.27. The table and chart

are not accurate at high pressure and temperature because the assumption

of ideal solutions in the liquid and vapor phase is no longer valid.

Also, both the Pitzer and Hougen methods are limited by the accuracy of

the rules used to calculate the pseudocritical properties.

Bloomer and Peck7 also modified the corresponding states principle

by introducing a third parameter S. This parameter takes into account

the aspherical factor for nonpolar molecules. 8 is determined from P-V-T

data and can be expressed in a simple relationship to the critical com-

pressibility factor.

High Pressure Vapor-Liquid Equilibria

Two basically different approaches can be used for prediction of

vapor-liquid equilibria near the critical region. These are (l) equilibria

from an equation of state and (2) convergence pressure methods.

The most commonly used equation of state for prediction of high pres-

3
sure equilibria is the Benedict-Webb-Rubin equation. This equation uses

eight constants to describe the vapor and liquid phase behavior of a given

compound. The authors published a set of constants for each of twelve

light hydrocarbons. They alSo Suggested mixture rules for combining the

eight constants to extend the eduation of state to mixtures.h However,

32
Price 23 2.}, indicate substantial deviations between experimental K-

factors and those predicted by the Benedict-Webb-Rubin mixture equation.

17
Hester has shown that the Benedict-Webb-Rubin mixture equation also may

yield highly improbable values for the pseudocritical compressibility
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factor.

Benedict, Webb, Rubin, and Friend6 recorded K-values of twelve

hydrocarbons in a series of 32h charts called the Kellogg charts. In

order to reduce the number of composition variables, these authors ex-

pressed all vapor and liquid compositions in terms of two variables, the

molal average boiling points of the vapor and liquid, respectively. Each

chart refers to a particular'compohent at a particular pressure.

The Kellogg charts are reliable for many applications, but they re-

quire successive corrections for the compositions of both phases. Another

disadvantage is the necessity for interpolation between charts with respect

to pressure.

These 32h charts have been reduced and.made easier to apply by

DePriesterll and Edmister and Ruby.13 The DePriester charts include two

for each hydrocarbon, one giving the fugacity ratio for the vapor phase,

and the second, the fugacity'ratio for the liquid phase. Each chart

represents the relation between pressure, temperature, and composition,

and thus eliminates the necessity of interpolation between charts with

respect to pressure, as with the Kellogg charts. DePriester's consolida-

tion of the information on the Kellogg charts into twenty-four charts was

with little loss of accuracy. However, the charts only cover the pressure

range up to 1000 psia while the Kellogg charts include pressures up to

3600 psia.

Edmister and Ruby used only six charts plus one table of vapor pres-

sure data to cover the same range of pressure, temperature, and composi-

tion as the Kellogg charts. 'The Edmister and Ruby charts were derived

from the Kellogg charts by correlating fugacity coefficients in terms of

four reduced parameters. They are in considerably greater error than the
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Kellogg and DePriester charts.

Gamson and Watson1h developed equations for activity coefficients

based on generalized fugacity coefficients and the pseudocritical con-

37 empirically modified the Gamson and Watsoncept. Smith and Watson

relationships and constructed a graphical correlation of activity coeffi-

cients as functions of the pseudocritical temperatures and pressures of

the phases. These generalized correlations are applicable to systems of

components of no chemical dissimilarity. On the basis of these correla-

tions, Smith and Smith36 published a set of K-charts for hydrocarbons.

The generalization of the Smith and Smith charts causes some loss of

accuracy for Specific data. However, this generalization does allow the

charts to be used for many more hydrocarbons than the Kellogg charts.

Recently Mehra and Thodos27 have developed an approach which is

fundamentally different from existing methods for the development of

equilibrium correlations from experimental data. They predict beactors

for binary hydrocarbon systems in the critical region by using the normal

boiling point ratio, the reduced vapor pressure, and the pseudoreduced

vapor pressure. Good accuracy is obtained with the correlations, but the

limitations to a binary hydrocarbon system limit the practicality of the

method.

All of the methods presented above may be classified as theoretical.

Correlations of K-factors based on experimental data were developed about

the same time as the Kellogg charts and modifications thereof. These

empirical correlations have the advantage of being based on experimental

data and are, therefore, very accurate in the region where the experi-

mental data was obtained. However, the experimental correlations are not

amenable to the calculation of other thermodynamic properties, and the
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correlations are only valid in the range of the experimental data.

The most prominent of the empirical approaches is the convergence

pressure method. The standard procedure is to predict convergence pres-

sure based on experimental data for various binary systems and then ex-

tend the method to multicomponent systems by treating the mixture as a

26 developed an improvedfictitious binary system.3h’h5 Lenoir and White

method using effective boiling points for predicting the convergence pres-

sure. Once the convergence pressure is known, the K-factor is found from

empirical correlations between equilibrium ratios and the estimated con-

vergence pressure. The NCAA (Natural Gasoline Association of America)

charts28 were prepared for prediction of K-factors using the convergence

pressure technique. The convergence pressure method is relatively con-

venient to use and gives acceptable results in the critical region.

Comparison of Vapor-Liquid Equilibrium Prediction Methods

The methods discussed above for predicting vapor-liquid equilibria

are compared in Table l. The construction of such a table is a matter

of judgement and should be taken only as a general indication of the

strong and weak points of the methods discussed above. Question marks

mean that it is difficult to determine if the method is thermodynamically

consistent. One of the aims of this research was to devise a method

which would exhibit all of the prOperties listed in the table.
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TABLE 1. Comparison of vapor-liquid equilibrium prediction methods

 

 

 

 

Method General- Composition Accuracy Thermo.

ized Dependent Low Moderate High Critical Consist.

P P P Region

Raoult's Law Yes No Yes No No No Yes

Souders at 31;. No No " Yes Yes No No Yes

Hougen-Watson Yes No Yes Yes No No Yes

B-WIR Eqn. No Yes Yes Yes Yes Yes Yes

Kellogg charts No Yes Yes Yes Yes No ?

DePriester No Yes ' Yes Yes Yes No 7

Edmister-Ruby Yes’ Yes Yes Yes No No No

Smith-Smith Yes Yes Yes Yes No No Yes

Convergence No Yes Yes Yes No , Yes No

Pressure

 

*Separate charts are needed for methane

Mixture Rules

Success with the equation of state method for calculation of vapor-

liquid equilibria is dependent on the accuracy of the mixture rules used.

A mixture rule is some arbitrary procedure for converting an equation of

state for pure compounds into an equation of state for a mixture of those

compounds.

Equations of state for pure compounds are generally converted to

equations of state for mixtures by some method of combining the equation

of state constants. Amagat's, Dalton's, and Bartlett's ruleshh are

simple mixture rules, but they are not applicable in the critical region.

h

Examples of more sophisticated mixture rules are those of Benedict at 9;.

They converted their equation of state to mixtures by specifying rules for
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combining the eight constants (A0, Bo’ Co’ a, b, c, o, v) for the pure com-

ponents into corresponding constants for the mixture.

A reduced equation of state only has two constants. When the reduced

equation is used for a pure compound these constants are the critical

temperature and pressure of that compound. (For mixtures the two equation

constants are the pseudocritical temperature and pressure of the mixture.

These pseudocritical quantities are generally expressed as a function of

the critical properties of the pure components and the composition of the

mixture. Such relationships are called pseudocritical mixture rules.

Pseudocritical Mixture Rules

Kay22 defined the pseudocriticals for a mixture of n components as ;

n

rem =- 2 xiTci (15)

i=1

n

Pc I Z x Pc (15)
m i=1 i i

For binary mixtures, Tangho found that a simple additive relationship

was a fair approximation for critical temperature, but the pseudocritical

pressure usually deviated widely from linearity. Case and Weber9 also eb-

served large deviations from Kay's rule.

Van der Waals20 suggested the following pseudocritical mixture rules

for use in the reduced form of his equation of state.

. n n

p.m . [iilxi(Tc/Pcl/2)1/1:1xi(Tc/Pc)112 (17)

D i A n

Tcm . [1:1x1(Tc/Pc1/2)1]2/1:lxi(Tc/Pc)1 (18)

Joffe21 used the van der Waals equation of state to show that the

assignment of a pseudocritical temperature and pressure to a mixture is
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entirely consistent with the method of combination of equation of state

constants. As a result, Joffe prOposed the following relations for com-

puting pseudocritical constants of a gas mixture:

n

(Tc/Pcl/e)m I i£1x1(Tc/Pcl/2)1 (19)

n n 1/3 1/3 3
(Tc/Po) I (1/8) X 2 x x [(Tc/Pc) + (Tc/Pc) ] (20)

m 1'1 3'1 .1 j 1 J

where the double summation centains one term for each possible permutation

in pairs of like and unlike components of the mixture. Joffe claimed that

for five different binary gas mixtures, his proposed mixture rules yielded

more accurate rules than Kay's rules. However, although Kay's rule and

Joffe's rule are effective for non polar gaseous mixtures, they are in

error for saturated vapors and liquids.

Leland, Chappelear, and Gamsonzh proposed the following mixture rules.

-'n n mile

2 Z x x a a

. . 131:
T..l_1_ll (21)

m n n 3

z z x x (b + b )

i=1 jIl 1 J 1 J  ‘

n 1

Tom 151 xi(Zc)i

Pc I *: (22)

m n n , 3

t- 2 x x (b + b )

iIl 5-1 1 3 1 3

L 4.

I (ZcTc]".'a/Pc)';ll'/2

  

9.1

b1 I (l/2)(ZcTc/Pc)1/3

The parameter a is an empirically determined function of pressure and the

pseudocritical pressure as determined by Kay's rule. This mixture rule is

applicable to liquids which may be approximated by simple spherical
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molecules.

Stewart, Burkhart, and V0039 simplified equation (20) to

1/2 2
n n

(Tc/Po)m I l/3 2 x1 (Tc/Pc)i + 2/3[1£ x1(Tc/Pc)

, 131 .1

which is used in conjunction with (19) to compute pseudocritical tempera-

ture and pressure. Hougen 53.2%,20 claim that the Stewart method reduces

the average deviations by over fifty percent as compared to the results

obtained with Kay's rule.

15
Guggenheim and.McG1ashan 'used the reduced second virial coefficient

to propose mixture rules for the pseudocritical temperature and volume.

However, because use of the second virial coefficient is sufficient only

where deviations from ideality are small, these mixture rules are of

little use in vapor-liquid equilihrium calculations.

31
Prausnitz and Gunn adjusted the mixture rules suggested by Guggen-

heim and McGlashan to fit experimental data for the second virial coeffi-

cient. They suggested the following rules for calculating pseudocritical

temperature and pressure.

Tom I [B + (82 + ermyI/2]/(23ch) (2h)

Pcm - [RTcm/chht yizc (25)
1 i

where B I E y (VcTc)y

1,313 13

Y I 2 yiyJ(VcTc2)

13., i:

ch 2 yiijcij

1:

y1 I composition of component i

ch I pseudocritical volume of mixture
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r,s I parameters which are read from a table published by

Prausnitz and Gunn.

The quantities Tcij and VciJ are called the characteristic critical tame

P9313119 and volume, respectively, and are computed from

1/2 - ATcTc I (TciTcJ) 13

id

Vcid I 0.5(VcchJ) ~ AVc

where ATc

1:

13, Men I corrections to the characteristic temperature

and volume, respectively.



THEORY

An equation of state, such as the eight constant Benedict-Webb-Rubin

equation,3 can be used to predict thermodynamic properties in the critical

region if accurate mixture rules are available for converting the equation

of state to mixtures. The factor which prohibits extensive use of such an

equation is the fact that values for the eight constants must be known for

each of the components in the mixture. Because these values are difficult

to determine,they have been found for only a very limited number of com-

pounds. Thus, although the equation may be very accurate for systems

where all the constants are known, the equation is not completely satis-

factory because it can not be generalized to mixtures of other compounds.

If an equation of state for pure compounds is put into a reduced form,

it is changed to an equation with two constants, for example, critical

temperature and pressure. If this reduced equation of state is applied

to mixtures, the constants become the pseudocritical temperature and pres-

sure since the true critical temperature and pressure of mixtures are

known to give inaccurate reduced relationships. Pseudocritical tempera-

ture and pressure are.usually expressed as a function of the critical

properties of the pure components and the composition of the mixture.

These relationships, called pseudocritical mixture rules, are difficult to

derive because pseudocritical temperature and pressure have no actual phys-

ical significance. However, if a reduced equation of state and pseudo-

critical mixture rules could be found which together would give accurate

thermodynamic predictions in the critical region, one could apply the re-

duced equation of state to many systems with only knowledge about the

critical prOperties of the pure components. This research concerned the

derivation of pseudocritical mixture rules for light hydrocarbon systems,

20
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but most likely such derived mixture rules could be used for many other

classes of compounds.

A big advantage of making thermodynamic calculations with a reduced

equation of state is that the calculations only need to be performed once

for a given reduced temperature and pressure.* Any other mixture with the

same reduced temperature and pressure will have the same value for the

thermodynamic quantity. Thus generalized tables or graphs can be pre-

pared with reduced temperature and pressure as parameters.

Vapor-liquid equilibrium calculations can be made with a reduced

(generalized) equation of state if the equation is applicable in both the

liquid and vapor phases. A plot of the quantity, fugacity divided by mole

fraction, as a function of reduced temperature and pressure can be made by

using the reduced equation of State to express the fugacity quantity as a

function of reduced temperature and pressure. To calculate equilibrium

ratios with such a chart, the unknown quantities, temperature, pressure,

or compositions, are adjusted by trial and error until the sum of composi-

tions in the vapor and liquid phases are each unity, and the condition,

fiv ' 1‘11.

is satisfied for all components in the mixture. The equilibrium ratio is

then computed from

Ki ‘ yi/xi

Although the construction of generalized charts has been possible for some

time, such charts are of little ude without accurate pseudocritical mixture

rules.

e

If a variable is put into a reduced form using a pseudocritical quantity,

then it is more proper to speak of the variable as being in a pseudore-

duced form. However, the more common practice of denoting pseudoreduced

variables as simply reduced variables is used throughout this thesis.
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One approach to obtaining a more accurate method for making thermo-

dynamic calculations in the critical region would be to derive a reduced

equation of state and then to find or develop accurate pseudocritical

mixture rules for use with the reduced equation of state. The reduced

equation of state could be derived using the eight constant Benedict-

Webb-Rubin equation for a particular compound, for example, prOpane. If

the corresponding states principle is valid, the derived reduced equation

of state should be the same no matter what reference compound is used.

Currently available mixture rules could be evaluated by using them

with the reduced equation of state to predict vapor-liquid equilibria

(convergence pressure curve) in the critical region and then comparing

the results with experimental data. Or conversely, pseudocritical mixture

rules could be derived by beginning with experimental critical region

vapor-liquid equilibrium data (i.e. an experimental convergence pressure

curve) and then computing pseudocritical temperature and pressure.

Definitions of Critical Point and Convergence Pressure

The critical point of a binary mixture is defined as the temperature

and pressure at which the vapor and liquid phases of the mixture become

indistinguishable. Or, in other words, the temperature and pressure at which

the K-factor equals one. If the critical points are measured for several

different mixture compositions, and these points are plotted on a pressure-

temperature diagram, the curve which passes through all of the critical

points is called the critical envelope curve° Such a curve is illustrat-

ed in Figure 1. Points A and B represent the critical points for the two

pure components, while the intermediate points represent critical points

of mixtures. Curve AB, which connects all of the points, is the critical

envelope curve .
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Pressure
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Temperature

Figure 1. Illustration of.a critical.envelope curve

Convergence pressure is defined as the critical pressure at the temp-

erature of the system. Thus, in Figure l, the convergence pressure of any

Therefore, curve AB is alsosystem at temperature T is the pressure P

1 1°

called the convergence pressure curve.

Thermodynamic Relations at the Critical Point

Because prediction of the critical enve10pe curve (convergence pres-

sure curve) is equivalent to predicting the points where the K-factors

equal one, it would be very desirable to have a means of calculating the

critical envelope curve. This would be possible if there were thermody-

namic conditions which held only at the critical point and in fact, pro-

vided a basis of definition of the true critical point. Such relationships

do exist,12 and they are:

2 2 _
(a F/ax )T,P - O (l)

(33F/3x o (2)
3

)T,P a
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when T and P are the true critical temperature (Tk) and

pressure (Pk), respectively.

Relations (1) and (2) can be illustrated with a F-composition curve.
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Figure 2. Free energy at constant pressure and temperature as a

function of composition

In Figure 2, the F-curve at T1(T1>Tk) is concave upwards everywhere.

That is,

(32F/3x2)T P > o

. 1 ’

thus, all honogenous phases on curve EG are stable. On curve AB (T3<Tk),

segments AI and JB are concave upwards; these phases are also stable.

Between I and J, the curve is convex upwards:

(32F/3x2)T P < 0

3e

and these phases are unstable.

Points I and J are inflection points, for which

(32F/3x2) = O
T3,P
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and therefore, represent the limits of stability. If the temperature is

varied in the direction of the critical point, the phases H, I, J, and K

approach each other, and, at the critical temperature, become identical.

If CD is the F-curve at the critical temperature Tk, the point L, repre-

senting the critical phase where the points H, I, J, and K coalesce, is

a point of undulation at which conditions (1) and (2) hold.

By dividing the free energy F'by the gas constant R and temperature

T, dimensionless free energy G is defined. That is,

G . FVRT (3)

Relationships (1) and (2) can now be written:

(326/3x2)m,p = o (h)

('a3c;/ax3),r’P = o (5)

when T - Tk

P - Pk

Because the temperature is Tk and the pressure is Pk on a convergence

pressure curve, conditions (h) and (5) hold at any interior point on that

curve. It should be realized that the derivatives in (h) and (5) are equal

to zero because of a physical condition of free energy at the true critical

point and not because of a mathematical definition. Therefore, fourth and

higher order derivatives of free energy are not necessarily equal to zero

at the critical point.

EXpression for Free Energy

A general expression for computing dimensionless free energy G can be

derived for a binary mixture at temperature T and pressure P by using the

path in Figure 3. Note that the free energy expression need only be de-

rived for one of the phases, since the amount of free energy is the same
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in both the liquid and vapor phases. The path shown in Fiugre 3 is for

p the vapor phase.

 

 

   

 

   
 

Std. State Temperature T

Pure A Pure A

y : f=l P
A o

l 2 Ideal Real

Mixture ————>b Mixture

Std. State / po P

Pure B Pure B 5 6

(l-yA): r=1 3' P

     

 

 

 

      

3 h

Figure 3. Path for calculation of the free energy of a binary

mixture at temperature T and pressure P-

Using the path in Figure 3, it is shown in Appendix II that the expression

for G is

G = In P + yA ln yA + (l - yA)ln(l - yA) + Z - l - 1n Z

D 2

+ I [(P/RT - D)/D lab (6)

0

where D a density.‘

The first three terms represent the free energy of a mixture of perfect

gases at pressure P. The last four terms are a measure of the non-ideality

of the imperfect gas mixture. It should be observed that by following the

path of Figure 3, it is not necessary to be concerned with nonideal solu-

tions since the gases are.in the perfect gas state when they are mixed.

Corresponding States Theorem for Mixtures

One of the basic assumptions made in this work was that the corre-

sponding states theorem was applicable to mixtures. That is, it was assmn-

ed that two parameters (reduced temperature and pressure) were sufficient
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to represent the state of the mixture. The following discussion concerns

the theoretical support available for applying this theory to pure com-

pounds and to mixtures.

After van der Waalsh3 prOposed the corresponding states principle in

the late nineteenth century, many years elapsed before enough knowledge

was gained about molecular behavior to support the hypothesis theoretically.

During this period, the belief that the state of a system could be repre-

sented by Just two parameters had only empirical Justification. With the

advent of classical statistical mechanics, a means was obtained to give

the proposal theoretical support.

Hirschfelder, Curtiss, and Bird18 applied classical mechanics to

spherical nonpolar gases to show that reduced pressure is a unique func-

29 showed a similar resulttion of reduced temperature and volume. Pitzer

for liquids while Guggenheim and McGlashan15 extended the treatment to

mixtures of slightly imperfect gases. In these three works the primary

assumption was that the energy of interaction between any two molecules

was representable by the same general function of two parameters. That

is, the expression for the potential energy was of the form

v(r) - ef(r/0)

where s and a are characteristic of the molecular species and f is the

same general function for all molecules. The Lennard-Jones potential is

of this two parameter form and represents an approximation to this general

function. In each of the works mentioned above the authors were able to

show that reduced temperature was a function of c and reduced volume a

function of a.

By establishing that the reduced pressure of a mixture of slightly

imperfect gases was representable by a single reduced temperature and
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15 provided support to the hypothesis thatvolume, Guggenheim and McGlashan

the corresponding states principle could be extended to mixtures by treat-

ing a mixture as if it were a pure compound. Rules which use critical pro-

perties of the pure components of a mixture to compute values of reduced

temperature and volume (or any other pair of the variables, pressure,

temperature, volume) for a mixture are called pseudocritical mixture

rules. The development of pseudocritical mixture rules for pressure and

temperature was one of the primary goals of this research.

The theoretical support for the corresponding states theorem is very

limited. However, it is reasonable to assume that certain classes of

compounds (e.g. hydrocarbons) will have a common function f. If this is

the case, the corresponding states theorem appears to have reasonable

theoretical Justification for its use with mixtures within that class of

compounds. A third parameter approach as discussed under Background is

one method of extending the corresponding states principle to a variety of

classes of compounds. This third parameter serves to make adJustments for

differences in the function f between classes of compounds.

For mixtures, the expressions for reduced temperature, density, and

pressure become:

Tr I T/Tc

m

Dr I D/Dc

m

Pr I P/Pc

m

where Ten, Dem, Pcm I pseudocritical temperature, density,

and pressure, respectively.

Equation of State

The need for an equation of state is apparent from the last term in

3
equation (6). The Benedict-Webb-Rubin equation of state gives excellent
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representation of the critical prOperties of pure light hydrocarbons.

This equation is applicable to both the liquid and vapor phases with the

same set of equation constants. The form of the Benedict-Webb-Rubin

equation for pure components is

2 3
P e RTD + (BORT - A0 - Co/T2)D + (bRT - a)D + aoD6 + (cD3/T2)

(l + yD2)exp(-1D2) (7)

where A0, B0’ C , a, b, c, a, y = Benedict-Webb-Rubin equation constants

0

which are dependent on the substance the equation is to describe.

Benedict gt_2l,3 suggested that Co be expressed as a function of temp

perature,:tf it was hoped that the equation of state would represent vapor

pressures at the subatmospheric level. In this way the equation of state

was made extremely accurate at very low pressure as well as in the criti-

cal pressure region. The importance of this prOperty to this research was

that any mixture rule which was devised could be used at lower pressures

if the equation of state was also applicable in that region. Therefore,

Co was expressed as a function of temperature. This expression is equa-

tion (1) on page 115.

Assuming the corresponding states theorem is valid, the expressions

for reduced temperature, density and pressure can be substituted into

equation (7) to give a reduced equation of state. Similarly, equation

(7) can be substituted into equation (6) and the resulting expression put

into reduced form by the reduced relationships listed above. The analyt-

and (336/3x3)ical expressions for (32G/3x2) in terms of reduced
T,P T,P’

parameters, can then be used to evaluate or derive pseudocritical mixture

rules in the critical region by using the thermodynamic conditions that

2

(3 G/axz)T P and (33G/3x3)T P equal zero at the critical point.

D ’
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Experimental critical point data can be used as a check on the results

computed from available mixture rules or it can be used as the basis for

deriving pseudocritical mixture rules.



STATEMENT OF THE MATHEMATICAL PROBLEM

This chapter summarizes, in mathematical form, relationships used in

this thesis. The discussion is divided into four sections: (1) the search

for an equation of state on which to base the derivation of a reduced equa-

tion of state, (2) evaluation of published pseudocritical mixture rules,

(3) generation of pseudocritical temperature and pressure values on which

a new pseudocritical mixture rule could be based, and (h) a numerical

method for checking analytically derived derivatives. The method of solu-

tion, as attempted in this research, is also discussed.

Evaluation of Equations of State

In this section two equations of state were evaluated for their ability

to predict convergence pressure curves. Each equation was used to compute

critical temperature, pressure, and density values for a particular binary

system. These computed values were then compared with experimental data.

The equation which made the best predictions was used as the basis for the

derivation of the reduced equation of state.

h3 and Benedict-Webb-Rubin3 equations of state wereThe van der Waals

combined with mixture rules recommended by van der Waals and Benedict 33.5%,

to form equations of state for mixtures. That is,

 

van der Waals: Equation of state

for pure compounds

P I P(T,D,a,b)    

 

Equation of state

+ -————+> for mixtures

P = P(T,D,x)
    
Mixture rules

a I a(x)

b I b(x)   

31
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B-W-R: Equation of state

for pure compounds

P I P(T,D,a,b,c,A

B C a y o
090’!

  
 

 

Equation of state

+ -————> for mixtures

P I P(T,D,x)  
 

 

Mixture rules

a I a(x)

O O

 ; I y(x)  

The general expression for dimensionless-free.energy G is (page 26):

D

G = In P + x In x + (l-x)ln(l-x) + z - 1 - ln 2 + [ [(P/RT - DyDZJdD (1)

o

By noting that P I P(T,D,x)

Z I Z(P,T,D,x)

then G = G(T,D,x) (2)

for both equations of state.

From the expression for G, the derivatives (aQG/ax2)T.P and

(336/3x3)T.P may be derived analytically. This gives equations of the

form

0" = G°°(T,D,x) (3)

G'99 = G°'"(T,D,x) (h)

where G"‘ I (326/8x2)T’P

3 3

It has been shown that at the critical point, GH and G"' equal zero.

Since the obJective in this part of the thesis was to calculate the criti-

cal temperature, pressure, and density, equations (3) and (h) were solved

simultaneously for the value of T and D which made G" and G"' equal zero

for a given composition (x). Because the computed values were the
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critical temperature and density, T and D were actually Tk and Dk, respec-

tively. The critical pressure was then computed from

Pk = Pk(Tk,Dk,x)

This procedure was repeated for several values of x and the results were

compared with the experimental critical point data.

Because equations (3) and (h) were complex expressions, computer pro-

grams were written which used the NewtonuRaphsonh2 convergence method to

find a value of T and D which made G“' and G"° equal to zero. The partial

derivatives required in the Newton-Raphson method were estimated numerically.

Evaluation of Published Pseudocritical Mixture Rules

This section of the research used a reduced equation of state in

conJunction with available pseudocritical mixture rules to compute criti-

cal temperature, pressure, and density values for a particular binary sys-

tem. The mixture rules were evaluated on the basis of how well their

critical point predictions compared with experimental data.

The Benedict-Webb-Rubin equation of state for propane (i.e. the con-

stants a, b, ..., V were those for propane) was used as the basis for the

reduced equation of state. By making the substitutions

T I TcTr

P I PcPr

D I DcDr

where Tc, Pc, Dc I critical temperature, pressure, and density

of the reference compound (prOpane).

Tr, Pr, Dr I reduced temperature, pressure, and density,

respectively,

the equation of state becomes

Pr I Pr(Tr,Dr) (5)
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By the corresponding states theorem, the function which expresses Pr

in terms of Tr and Dr is the same general function for all pure compounds

and mixtures of those compounds. Thus, although equation (5) was derived

using the Benedict-Webb-Rubin constants and the critical constants for

prOpane, this equation is valid for other compounds as well.

When equation (5) is applied to mixtures the reduced pressure, temp

perature, and density are computed from

Pr I P/Pcm

Tr I T/Tc

m

Dr I D/Dcm

where Pcm, Tcm, Dcm I pseudocritical pressure, temperature,

and density, respectively.

Therefore, equation (5) written for mixtures is

P/Pcm = Pr(T/Tcm, D/Dcm) (6)

If the Benedict-Webb-Rubin equation of state is substituted into

equation (1) and the resulting expression put into reduced form, the

expression for computing G of a mixture becomes:

G I G(T/Tcm, D/Dcm, x) "I

from which G”' I G"°(T/Tcm, D/Dcm, x) (T)

G"'0 I G'°°(T/Tcm, D/Dcm, x) - (8)

Equations (6), (T), and (8) are now equations with only Tom and Pcm as

constants since

De I Pc /RTc Zc
m m m

where Zc I critical compressibility factor (equal to the same

value for all compounds).

Pseudocritical mixture rules generally express Tom and Pcm as func-

tions of composition and the critical prOperties of the pure components.



35

Using published expressions for Pcm and Tcm, equations (7) and (8) were

solved simultaneously for the values of T (i.e. Tk) and D (i.e. Dk) which

made G" and G"' equal to zero. The method of computation and evaluation

of results was the same as used.in the evaluation of equations of state.

Generation of a Pseudocritical Mixture Rule

This part of the research concerns the attempt to generate curves of

Pcm as a function of x and Tom as a function of x from experimental Tk,

Pk, and Zr data. Three different approaches were used.

I. This approach used expressions for Tk(x), Zr(x), and Pk(x)

where, for the pure components, (x I O, 1.0), the following was true

Tk I Tc

Pk I Pc

Zk I Zc

In addition, the fact that G" equals zero at the critical

point was also used.

The use of experimental data and the free energy condition to

compute Tcm, Pen, and Dr is illustrated by the flow diagram of Figure A.

For all of the flow diagrams in this chapter, it is assumed that Tc and

Pc are known for the pure components (x I O, 1.0), but this fact is not

shown on the diagrams. Also, Tk, Pk, and Zr are known functions of x.

The diagrams illustrate only the general overall calculation procedure,

excluding many of the minor details. Linear interpolation or extrapola-

tion was used to adJust the variables in Figure h.
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Use Tk, Pk to compute Tcm, Pen.

1 ..

At x I Ax No At x I Ax -

Is calculated Zr I AdJust Dr

experimental Zr?

Ye“ At x . 2Ax

- ‘ Ad ust Dr

At x 2Ax ]N°

Use reduced eqn. of state to _At x I 2Ax

compute Pr; Zr. Is calculated Zr I

Use Tk, Pk to compute Tom, Pcm. experimental Zr?

I» (I Yes

At x’I 2Ax No Is At x I Ax

AdJust Tr G" I 0? Calculate first and second

derivaties of Tcm and Pen.

Yes Compute G".  

 
 

Repeat 1 through 2

for x I 3Ax, ..., 1.0
 
 

 

    
 

 

Yes t x I 1.0 No At x I Ax

St°P ‘ Is To - Tk? AdJnu'at'T'r”
      

Figure A. Flow diagram for calculation of Ten, Pen, and Dr using experi-

mental Tk, Pk, and Zr data

II. In this approach the experimental Zr data was not used. In-

stead, the second free energy condition at the critical point, that

(a3G/ax3)T P is equal to zero, was employed. Figure 5 shows a flow

0

diagram for the calculations in this approach.
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experimental Zr curves. and Pa I Pk?

AdJust Dr at x I Ax

until a fairly good

 

Compute Zr as a function’s,” At x I 1.0 Repeat®through®for

 

 

   
 

  
    

corresponding curve is No AdJust Tr at x I 2Ax,

obtained. 5 Dr at x I Ax.

StOp

Figure 5. Flow diagram for calculation of Tcm and Pcm using experimental

Tk and Pk data



38

The maJor problem with this approach was in finding a convergence

method which would find values of Tr and Dr that would make G "
x+Ax x+Ax x

and Gx"' equal to zero. The two methods which were used were the Newtone

Raphson method!)2 and a method which assumed G" and G"' to be linear func-

tions of Tr and Dr. The linear method is described in detail on page 107.

III. In this part of the research, the form of the Tcm and Pcm curves

was assumed to be cubic. Using the values of Tc and Po for the pure com.

pounds, values of Tom and Pcm were computed at two intermediate values of

x. The calculation flow diagram appears in Figure 6. The method used to

adJust Tr and Dr was the Newton-Raphson method.
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Figure 6. Flow diagram for calculation of To and Po assuming the form

m m

of these curves to be cubic.

Numerical Check on Analytical Derivatives

Because of the complexity of the equations for G" and G"', a pro-

gram.was written which numerically checked the analytical expressions.

For a function P(T,D,x), the derivative with respect to x at constant T
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and P can be derived as follows:

(3F/3‘)T,P . (aF/ax)T’D + (3F/3D)T,x(3D/aX)T,P

(39/31)T’P . '(3P/3‘)T,n/(3P/3D)T,x e - (aw/3:0,“;zap/31>)...x

(arr/3:0,.P - (3F/ax)T’D - (3F/3P)T,x(3P/3‘)T,D (9)

where F can be 0, G', or G".

The flow diagram used to compute these derivatives numerically is

shown in Figure 7.
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Figure 7. Flow diagram for calculations in the program for checking

analytical derivatives
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EXPERIMENTAL WORK

Experimental Procedure

This research involved extensive use of automatic digital computers.

During the course of the work two computers were used.

For the first year of work, the Michigan State University MISTIC

computer was used. Input and output for this computer was by means of

paper tape. Printed copies of the tapes were obtained from a teletype

machine.

After the first year of work on this problem, Michigan State Univer-

sity purchased a Control Data Corporation 3600 Computer. This computer

used Fortran programming language and was approximately eighty times

faster than the MISTIC computer. The procedure for running a program.on

this machine was (1) to construct the Fortran program, (2) to punch the

program.on IBM cards using a card punch, and (3) to submit the program at

the Computer Center for running.

For both computers, the basic steps which eventually led to a cor-

rectly Operating program were the same. The first step was to decide

what the program was to accomplish. Next, the mathematical fermulas and

techniques which were needed to obtain this goal were derived. The pro-

gram.was written in such a way that the computer would perform exactly

the desired mathematical Operations. The computer program was then run,

and results were obtained. If these results were correct, or at least

appeared correct, this whole process was a relatively simple one. However,

if the program did not work properly, the process of removing errors was

often very time consuming, especially if the program was long. For long

programs, the procedure was to construct the program by parts. This

hO
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allowed a constant check on each part of the program as it was constructed.

With programs such as were written for this proJect, another element

was involved in the correction process. Because many of the convergence

methods were derived specifically for this proJect, there was always the

chance that the basic equations had been derived incorrectly, or that even

the method was not applicable to this research.

If a method did fail to work, considerable time was spent trying to

evaluate why the method failed, and whether there were any changes which

could be made to correct the method. Often it was possible to alter the

method to obtain a working program, but often no usable results were

obtained.

Experimental Critical Point Vapor-Liquid Equilibrium Data

W. B. Kay's data for the ethane-n-heptane system23 were the specific

experimental equilibrium data used. These data appear in Table 2. Values

for critical compressibility factor (Zk) were computed from Zk I Pk/RTka.

The pseudocritical compressiblity factor (Zcm) was assumed to be a straight

line between the critical compressibility factor of the two pure components.

Prausnitz and Gunn31 made a similar assumption for the acentric factor a

and obtained results that were in good agreement with experimental data.

Because Zcm is a linear function of w, the straight line assumption for

Zcm has some Justification. Reduced compressibility (Zr) at the true

critical point was then calculated from

Zr 3 Zk/ZC o

m

Because the MISTIC library routine for a least squares fit of the

data did not yield satisfactory results, a special program was written

for fitting the data. In this program the method of least squares was
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TABLE 2. Experimental data for ethane-n-heptane system at the true

critical point (232h63)

 

 

Weight Percent Mole Percent Tk Pk Dk

3
02 c7 c2 07 0F psi lbs./ft.

o 100 0 100 513.3 396 1h.653

9.78 90.22 26.5h 73.h6 h68.2 682 16.22

29.91 70.09 58.71 h1.29 373.9 1106 16.62

50.2h h9.76 77.09 22.91 276.8 1263 17.h3

70.22 29.78 88.71 11.29 189.8 1132 16.97

90.22 9.78 96.83 3.15 120.3 850 15.h8

100 0 100 0 90.1 712 13.736

 

modified in order that the curve would exactly fit the data for pure

ethane and n-heptane. This exact fit for the properties of the pure com-

ponents was desirable because, by definition, the reduced temperature and

pressure are unity at the critical point. That is,

Tr I Tk/Tc I l

Pr I Pk/Pc I 1

All degrees of polynomials up to six were fitted to the data and

then evaluated on the basis of how well they predicted the data points.

In all cases the fourth degree polynomials gave the best fit. The tem-

Peramre curve was expressed as a function of mole fraction ethane. How-

ever, the pressure and reduced compressibility factor curves were expressed

as a function of weight fraction ethane because better fits were obtained

using this variable. A computer program was written which computed Tk,

Pk, and Zr for any value of x.

Evaluation of Equations of State

Because of their well known capabilities in both the vapor and liquid

phases, the van der Waalsh3 and Benedict-Webb-Rubin3 equations of state

were selected to be evaluated for their ability to predict vapor-liquid
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equilibria in the critical region. The form of the van der Waals equation

for a binary system (ethane-n-heptane) is:

P = RTD/(l - bD) - aD2 (1)

1/2 al/2]2

1 + (l - x) 2 I van der Waals constant awhere a I [xa

for the mixture,

0
' ll xb1 + (1 - x)b2 I van der Waals constant b for the

mixture,

1’ b1 I van der Waals constants for pure ethane,

a2, b2 I van der Waals constants for pure n-heptane,

x I mole fraction ethane.

a

The Benedict-Webb-Rubin mixture equation is the same as equation (7)

on page 29 except that the constants for the mixture are found by the

following mixture rules:

B I xB + (1 - x)B
o o

1 °2

A a [xAl/2 + (l - x)Al/2]2
O 01 02

and likewise for Co and 7.

1/3 + (1 a1/3]3
1 - x) 2a I [xa

and likewise for b, c, and o.

where subscript 1 represents ethane

subscript 2 represents n-heptane.

Each equation of state was substituted into the general expression

for dimensionless free energy G (equation (6), page 26). The derivatives

(32G/ax2)T P and (330/3: were analytically derived for both equations

9

3

)T,P

of state. Computer programs were written which simultaneously solved the

G" and G"' equations for the value of T and D which made the expressions
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equal to zero. The Newton-Raphson convergence method".2 was used in the

calculations.

These values of T and D were actually Tk and Dk because 0" and G"'

are equal to zero only at the critical point. The critical pressure Pk

was computed from the equation of state. These data from the two equations

were compared with Kay's experimental data for the ethane-n-heptane sys-

tem.2§‘ As a result of this comparison, the Benedict-Webb-Rubin equation

of state was selected as the basis for the reduced equation of state.

Derivation of the Reduced Equation of State

The reduced equation of state was derived using the Benedict-Webb-

Rubin3 equation of state for propane. This equation would be equation (7)

on page 29 with the constants (a, b, ..., y) those for propane. By making

the following substitutions:

T I TcTr

D I DcDr

P I PcPr

where Tc, Dc, Pc I critical temperature, density, and pressure

of propane,

an equation with only two constants can be derived. If Tom and Pcm are

selected to be those two constants, then Dcm can be computed from

DcIn I Pen/RTcch where Zc has the same value for all compounds, according

to the corresponding states principle. Thus, the reduced equation of

state expresses reduced pressure as a function of reduced temperature and

density and has only pseudocritical temperature and pressure as constants.

Computer programs were written which computed Pr and Zr given Tr, Dr, and

the Benedict-Webb-Rubin equation constants and the critical constants for

the reference compound (e.g. prepane).
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Derivation of the Analytical Expressions for the Critical Point Free

Energy Relationships

Using the general expression for dimensionless free energy G (equa-

tion (6), page 26), the equation for G, when P is expressed by the

Benedict-Webb-Rubin equation of state, was derived. The expression for

G was then put into reduced form (i.e. made a function of two constants)

by making the above listed substitutions for T, D, and P. The analytical

equations for (320/3x2)T P and (330/3x were then derived. Computer

’

3

)T,P

programs were written in order that G" and G"' could be calculated on

a digital computer.

Evaluation of Available Pseudocritical Mixture Rules

Three available pseudocritical mixture rules were evaluated by using

them in conJunction with the reduced equation of state to compute the

temperature, pressure, and compressibility factor of the ethane-n-heptane

system at the point where the K-factor was unity (convergence pressure

curve). The mixture rules tested were:

1. Kay's rule22

Tom I xTc + (l - x)Tc2
l

Pcm I xPcl + (l - x)Pc2

where x I mole fraction ethane

subscript 1 represents ethane

subscript 2 represents n-heptane

2. Van der Waals' combinations”3

(Tc/Pc)In I x(Tc/Pc)1 + (l - x)(Tc/Pc)2

(Tc/Pcl/2)m . x(Tc/Pc1/2) + (1 - x)(Tc/Pcl/2)
1 2

3. Joffe's rule?1
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1/2) 1/2) 1/2)
(Tc/Pc m I x(Tc/Pc + (l - x)(Tc/Pc

1 2

(Tc/Pc)m = x2(Tc/Pc)l + (1 - x)2(Tc/Pc)2

+ l/lt[(Tc/Pc)i/3 + (Tc/Pc):/3]3 x (1 - x)

The procedure for each x was to use the expressions for Tcm and Pcm

in the generalized equations for G" and G"' and then solve G" and G"'

simultaneously for the value of T (i.e. Tk) and D (i.e. Dk) which made

0" and G"' equal zero. Pk was computed from the reduced equation of

state. The mixture rules were evaluated on the basis of how well the

values of Tk, Pk, and Dk, for several values of x, compared with Kay's

experimental data.23

Computer programs were written for the evaluation of the three mix-

ture rules. The Newton-Raphson convergence methodh2 was used in the three

programs.

Generation of Pseudocritical Mixture Rules

Three different approaches were used in an attempt to generate curves

of Tcm as a function of x and Pcm as a function of x.

I. In this approach Kay's experimental critical point data23 were

used along with the condition that 0" equals zero at the critical point,

to compute curves of Tom and Pcm as a function of composition. A computer

program was written for use on the MISTIC computer, and it followed the

calculation flow diagram.in Figure h, page 36. In addition, several varia-

tions of this approach were tried. The size of the increment Ax was varied,

although 0.05 was the most commonly used value. Also, the computer program

was changed to begin at the other end of the composition range (i.e. pure
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n-heptane). Finally, butane was used as a reference compound instead of

propane. This meant that the Benedict-Webb-Rubin constants were those

for butane.

To aid in obtaining convergence, expressions for the maximum possible

values of Dr, given Trmax and Zr, were used to put some bound on new

guesses of Tr and Dr.

A check program was written by another person for checking results

from this approach.

II. In this part of the research the experimental reduced compress-

ibility factor data for the true critical point were not used. Instead,

the condition used was that the third partial derivative of free energy

with respect to composition, at constant temperature and pressure, was

equal to zero at the critical point. This part was begun on the MISTIC

computer, but the arrival of the Control Data 3600 Computer made it

necessary to rewrite all programs in Fortran programming language. Fol-

lowing the flow diagram in Figure 5, page 37, computer programs were

written for computing Tcm and Pcm at successive values of composition.

The Fortran program was called Program LINEAR and is listed and described

in Appendix VI.

Because the equations for G" and G"' are functions of both Tr and

Dr, the generation of values for Tr and Dr required a simultaneous con-

vergence process for the two variables. The maJor problem connected with

this part of the research was the development of such a convergence

jprOcess.

The first convergence scheme used was a process which assumed that

G" and G"' were linear functions of Tr and Dr. The details of this

convergence scheme are discussed in the description of subroutine CONVERG
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in Appendix VI.

A variation of the linear convergence method was also used. Since

three sets of guesses for (Tr,Dr) were needed to predict a new set of

guesses, the convergence scheme was changed so that the three sets of

guesses included the last set and the best two previous sets. Before,

the immediate past three sets had been used.

Since the programs written for this approach had failed because of

lack of convergence, two methods were used to obtain better initial

s

guesses for Tr and Dr at x2, x and x, , for use in Program LINEAR. The
3.

as

first method changed six variables (Trz, Tr3, Trh, Dre, Dr3, Drh)

simultaneously until 0" was equal to zero at x and x and G"' was

2 3’

equal to zero at x These six variables were changed to meet these3.

three conditions by a method of steepest descent.

The method of steepest descent involved calculating the partial

derivative of a function e (defined as the sum of the squares of G2",

03", and 03"') with respect to each variable while the other variables

were held constant. These slopes were used to compute the estimated

changes in each of the six variables necessary to make 0 equal to zero.

The equations used were

a . -¢/[(a¢/axx1)2 + (8¢/axx2)2 + ... + (a¢/axx6)21 (1)

AXXl I (at/axx1)p , etc.

where XXl represents a dummy variable used for interpolation and

“Subscripts on x represent a numbering system on successive values of x

beginning with x1 I 0, x2 I Ax, etc.

as

Subscripts on variables other than x represent the values of these

variables at the value of x which has the same subscript.
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extraplation instead of Tr or Dr. There is one XX variable for each of

Tr, Tr3,Trh, Dr2 Dru. p is a proportionality factor.,Dr3,

To speed convergence, a minimization procedure was used. This pro-

cedure used the slope of the p versus ¢ curve at p I O and the value of

¢ at some other p value to fit a quadratic equation to these data points.

The calculated minimum of this equation was used to compute the next

values of 0. Except for a variation in the minimization procedure, the

above convergence method is approximately the same as one described by

Booth8. Because the speed of convergence was extremely slow with this

method, several programs were prepared in an attempt to find the reason

for this slowness. These included (1) programs for learning more about

the ¢ versus 9 curve and (2) a program for determining the best increment

of XX to use in the numerical differentiation calculations.

The second method used an approach similar to the Newton-Raphson

h2
method to simultaneously vary the variables (Tr, Tr3 ,Trh, Dr2 ,Dr3,

Dru) until 0" and G"' were zero at x2 and x3. Since the fact that

Tr I l and Pr I 1 at x I O I x1 was also used, four points were available

to compute up to third derivatives of Tr and Pr. Because the six

variables (Tre, Tr Trh, Dr2, Dr3, Drh) were varied to satisfy only
3’

four requirements (0" I O and G"' I 0 at x and x3), an infinite number
2

of solutions was possible. This permitted other requirements, such as

non-negativity and well behaved curves, to be satisfied.

The computed sets of starting data were then used as initial values

in Program LINEAR.

III. The third approach assumed a cubic form for the Tom and Pcm

curves as a function of x. The computer program written for this section

follows the calculation flow diagram in Figure 6, page 38. This program
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was called Program TOTRANGE and is listed in Appendix VII. The Newton-

Raphson convergence methodhz was used for solving a system of four equa-

tions and four unknowns in the program.

Check for the Analytical Derivatives

A check program.was written to check the equations for G" and G"'.

This program, called Program CHECK, follows the flow diagram in Figure 7

on page 39. It is listed and described in Appendix VIII.

Chronological Order of the Research Work

To provide greater continuity to the description of the research work,

the discussion does not necessarily follow the same chronological pattern

in which the work was done. The work was actually performed in the fol-

lowing order:

1. Generation of pseudocritical mixture rules.

2. Evaluation of published pseudocritical mixture rules.

3. Evaluation of equations of state.

Also, the placing of the computer programs in the appendices should not

detract from the fact that they constituted the bulk of the research work.

They have been included in the appendices to give continuity to the re-

mainder of the report.



RESULTS AND DISCUSSION

Fitting of Curves to Experimental Data

Early in the research work it was necessary to fit polynomials to the

23 to adapt this data for use on aexperimental critical point data of Kay

digital computer. Critical temperatures were expressed as a function of

mole fraction, but critical pressures and reduced compressibility factors

were expressed as functions of weight fraction because this variable

yielded better fits. The polynomials which resulted are:

Tk = (973.0 — 186.h392126r + 200.h13825x2 - 558.370h113x3

+ 121.195736xh)/1.8 (1)

Pk a (396. + 3051.927387w - 1199.7h6006w2 - 1.263.827785W3

+ 2727.6h6362wh)/1h.696 (2)

Zr 2 1.0 + h.03061128hw - 6.695218637w2 + 1.855922080w3

I

+ 0.808685291swh (3)

where x I mole fraction ethane

W weight fraction ethane I 30.06x/[30.06x + 100.17(l-x)]

Tk critical temperature, °K

Pk I critical pressure, atm.

Zr critical reduced compressibility factor.

Table 3 lists computed values of Tk, Pk, Zk, and Zr at .05 increments of

mole fraction ethane. One-half weight fraction ethane is approximately

0.769 mole fraction ethane.
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Critical temperature, pressure, compressibility factor, and

reduced compressibility factor as computed from a least

squares fit of Kay's data

 

 

.00

.05

.10

.15

.20

.70

.75

.80

.85

.90

.95

1.00

Tk (°K)

5h0.53888

535.60000

530.9910?

526.h9h58

521.90313

517.019h0

511.65618

505.63639

h98.79300

h90.96911

h82.01792

h71.80272

h60.19689

hh7.08393

h32.357h2

h15.92108

397.6886?

377.58h10

355.5h13h

331.50h50

305.h2776

Pk (Atm.)

26.9h6107

30.15h282

33.552553

37.1h8395

no.9h6990

uu.9u9aeu

h9.152915

53.5h3590

58.096802

62.76911h

67.h903h8

72.151619

’76.588316

80.556178

83.698999

85.507h51

85.275775

82.08393h

7h.900183

63.1088h5

h8.hh8557

Zk

.25919000

.27526831

.2916h371

.30825131

.3250022h

.3h177661

.358h1h01

.37h7016h

.39035853

.h0501526

.h1818773

.h292hh55

.h3736661

.hh150205

.hh032381

.h3221376

.h153365h

.38796h87

.3h9h7786

.30315790

.26395000

Zr

1.0000000

1.0610586

1.1231h9h

1.1860199

1.2h93263

1.3126070

1.3752h66

1.h36h310

1.h950881

1.5h98112

1.5987603

1.6395395

1.6690h52

1.6832977

1.6772835

1.6hh899h

1.579238h

1.h738291

1.326h226

1.1h95795

1.0000000
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Equations of State for Mixtures

3 equations of state forThe van der Waalsh3 and Benedict-Webb-Rubin

mixtures were evaluated on the basis of their ability to predict conver-

gence pressure curves and critical compressibility factors. Prediction of

these quantities was used as a basis for evaluation because good predic-

tion indicates computational accuracy in the critical region.

The prediction of convergence pressure curves is of particular inter-

est because the curves are used in the convergence pressure method of pre-

dicting vapor-liquid equilibria. Because of a shortage of critical point

data, the shape of convergence pressure curves is generally estimated from

data for other systems. This is illustrated in Figure 8 which is a typical

convergence pressure diagram published by Hadden.16 In this diagram only

three of the curves are substantiated by experimental data.
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The convergence pressure curves shown in Figure 8 are plots of pres-

sure as a function of temperature. Throughout the remainder of this dis-

cussion, convergence pressure data will be plotted on two separate graphs.

These graphs will be temperature and pressure as a function of composition.

Because composition is a common parameter, the two separate plots are

equivalent to a single plot such as in Figure 8.

Using the van der Waals equation plus the rules recommended by van

der Waals for computing equation constants for a mixture, the critical

state properties shown in Table h were obtained. Table 5 lists similar

results obtained by using the Benedict-Webb-Rubin equation of state with

the combination rules recommended by Benedict £3.2l9 for mixtures.

Figures 9, 10, and 11 are plots of the critical temperature, pressure,

and compressibility factors, respectively, as a function of composition.

The critical temperatures predicted by both equations of state agree very

well with Kay's data (Table 2, page A2). The van der Waals equation was in

considerably greater error in predicting pressures than the Benedict-Webb-

Rubin equation. Table h shows the maximum percent pressure deviation for

the van der Waals equation to be over 3h percent. The Benedict-Webb-Rubin

equation was also in good agreement with known compressibility factors

while the van der Waals agreement was relatively poor.

Overall, the Benedict-Webb-Rubin equation of state for mixtures was

in good agreement with Kay's experimental data. However, it should be

realized that Kay's data were probably used in the empirical derivation

of the Benedict-Webb-Rubin equation of state, and this could account for

the excellent agreement. Nevertheless, the excellent results obtained

with the Benedict-Webb-Rubin equation indicate that this equation of state

is capable of being applied to pure compounds and mixtures with
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Values of critical density, temperature, pressure, and

compressibility factor as predicted by the van der Waals

equation of state for mixtures

 

0.05

0.10

0.15

0.20

0.25

0.30

0.35

O.hO

0.h5

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Dk

(moles/liter)

1.682h28h

1.7h8709h

1.8202682

1.8977382

1.9818530

2.073h668

2.1735777

2.2833569

2.h0h1839

2.5376893

2.6858055

2.850825h

3.035h679

3.2h29h07

3.h769817

3.7h182h5

h.0h19h09

h.381llh8

b.7592177

Tk

(°K)

535.07767

529.26780

523.07300

516.h5669

509.37809

501.79175

h93.6h71h

h8h.88813

h75.h5271

A65.27276

h5h.27h19

hh2.37753

A29.h9938

h15.55h8h

h00.h6158

38h.1h5h7

366.5%679

3h?.62230

327.32166

Dev. From

Data (5)

-0.10

-0.32

-0.65

-1.0h

-1.h8

—l.93

-2.37

-2.79

-3.16

-3.h7

-3.72

-3.87

-3.93

-3.89

-3.72

-3.h1

-2.92

-2.23

-1526

Pk

(fitne)

28.771692

30.6h2235

32.575061

3h.567900

36.616655

38.71h76h

h0.852363

h3.015181

h5.18308h

h7.328168

h9.h1228h

51.3838h0

53.173772

5h.690577

55.81hhh3

56.390708

56.223212

55.067867

52.623hh5

Dev 0 From

Data (1)

_ h.59

- 8.67

-12.31

~15.58

-18.5h

-21.2h

-23.70

-25.96

-28.02

-29.87

-31.52

-32.91

-33.99

-3h.66

-3h.73

-33.87

-31.51

-26.h8

-16.6l

Zk

0.389h2833

0.h03h0651

o.h1687237

Ooh29752h5

o.hh195956

0.h5338962

0.h639177l

0.h733931h

0.h816332o

0.h88h1521

0.h93h6673

0.h96h5332

0.h9696389

0.h9hh9366

o.h88h2613

0.h7801771

0.h6239363

0.hh05767h

0.h1160868
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TABLE h. Values of critical density, temperature, pressure, and

compressibility factor as predicted by the van der Waals

equation of state for mixtures

x Dk Tk Dev. From Pk Dev. From Zk

(moles/liter) (°K) Data (1) (atm.) Data (1)

0.05 1.682h28h 535.07767 -0.10 28.771692 - h.59 0.389h2833

0.10 1.7h8709h 529.26780 -0.32 30.6h2235 - 8.67 o.ho3h0651

0.15 1.8202682 523.07300 -0.65 32.575061 -12.31 0.h1687237

0.20 1.8977382 516.h5669 -1.0h 3h.567900 -15.58 0.h29752h5

0.25 1.9818530 509.37809 -1.h8 36.616655 -18.5h 0.hh195956

0.30 2.073h668 501.79175 -1.93 38.71h76h -21.2h 0.h5338962

0.35 2.1735777 h93.6h71h -2.37 h0.852363 -23.70 0.h6391771

0.h0 2.2833569 h8h.88813 -2.79 h3.015181 -25.96 0.9733931h

0.h5 2.h0h1839 h75.h5271 -3.16 h5.18308h -28.02 0.h8163320

0.50 2.5376893 h65.27276 -3.h7 h7.328168 -29.87 0.h88h1521

0.55 2.6858055 h5h.27h19 -3.72 h9.h1228h -31.52 0.h93h6673

0.60 2.850825h hh2.37753 -3.87 51.3838h0 -32.91 0.h96h5332

0.65 3.035h679 h29.h9938 -3.93 53.173772 -33.99 0.h9696389

0.70 3.2h29h07 h15.55h8h -3.89 5h.690577 -3h.66 0.h9hh9366

0.75 3.h769817 h00.h6158 -3.72 55.81uhh3 -3h.73 o.h88h2613

0.80 3.7h182h5 389.1h5h7 -3.h1 56.390708 —33.87 0.h7801771

0.85 h.0h19h09 366.5h679 -2.92 56.223212 -31.51 0.h6239363

0.90 h.38111h8 3h7.62230 -2.23 55.067867 -26.h8 0.hh05767h

0.95 h.7592177 327.32166 -1.26 52.623hh5 -16.61 0.h1160868
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TABLE 5. Values of critical density, temperature, pressure, and

compressibility factor as predicted by the Benedict-Webb-

Rubin equation of state for mixtures

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.h0

0.h5

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Dk

(moles/liter)

2.198882h

2.3lh9502

2.h500561

2.6163878

2.8679907

3.3h78922

3.6516231

3.9338281

h.22h0173

n.5331285

h.868h388

5.2362520

5.6h25121

6.092%091

6.588h252

7.12h3169

7.6667710

8.0986986

8.0519223

A

Tk

(°K)

537.15117

532.15117

528.36886

523.1931h

516.98032

508.h5078

500.59817

992.32922

h83.37107

h73.5680h

h62.77669

h50.8h712

h37.61983

122.93209

h06.63972

388.67510

369.19h15

3h8.88235

328.97295

Dev. From

Data (2)

+0.29

+0.37

+0.36

+0.25

-0.0l

-0.63

-1.00

-l.30

-l.55

-1.75

-1.91

-2.03

-2.12

-2.18

-2.23

-2.27

-2.22

-1.87

-O.76

Pk

(atm.)

30.070395

33.15158h

36.h81h3h

10.1h0257

hh.hh5773

50.h2855h

55.910509

61.h27057

67.009787

72.55h512

77.91885h

82.860h62

87.03h909

89.953776

90.9h53au

89.1hh539

83.63009h

7h.057359

61.997280

Dev. From

Data (1)

-0.28

-l.20

-l.80

-l.97

-1.12

+2.60

+h.h2

.+5.73

+6.75

+7.50

+7.99

+8.19

+8.0h

+7.h7

+6.36

+h.5h

+1.88

-l.13

-1076

Zk

0.3102102?

0.3273938?

0.3h338080

0.35729879

0.365253h1

0.360970h9

0.3726780h

0.386h5976

0.3998665h

0.h1181255

0.h21h0233

0.h2767h23

0.h29h766h

0.h2537825

0.h1362313

0.39226573

0.36000691

0.3193666h

0.28518659
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approximately the same accuracy.

Generalized Equation of State

A generalized equation of state expressing reduced pressure in terms

of reduced temperature and density was derived. The form of the equation

was based on the Benedict-Webb-Rubin equation of state. The resulting

reduced equation is

Pr I fTrDr + (gTr - h - i/Tr2)Dr2 + (JTr- k)Dr3 + lDr6

+ (mDr3/Tr2)(l. + nDr2)exp(-nDr2) (h)

where constants f through n are the reduced equation of state constants '

and are defined in Appendix III. According to the corresponding states

principles, these constants should be the same for all compounds. How-

ever, in reality, these constants do vary slightly depending on the refer-

ence compound used to compute them. In this research propane was used as

the reference compound unless otherwise noted.

Generalized Equations for Free Energy and its First Three Derivatives

Because the second and third derivatives of free energy (G) with

respect to composition, are equal to zero at the critical point, it was

desirable to have generalized expressions for these quantities. The

generalized expression for G was found to be

G I 1n PcmPr + x 1n x + (1. - x)ln(l. - x) + Z - l. - ln Z

+-[(g - h/Tr - i/Tr3)Dr + (J - k/Tr)Dr2/2 + (l/Tr)Dr5/5

2

+ (mDr /2Tr3)[(2 - 2exp(-nDr2))/nDr2 - exp(-nDr2)]]/f (5)

Details of the above generalization appears in Appendix III. The equations

for G" and G"' and the procedure for obtaining them are shown in

Appendices III, IV, and V.
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Evaluation of Published Mixture Rules

Using the derived generalized equation of state and generalized ex-

22 van der Waals',“3 and Joffe's21 mix-pressions for GM and G'°', Kay’s,

ture rules were evaluated for their ability to predict critical state

properties. Tables 6, 7, and 8 list the predicted values of critical

temperature, pressure, and compressibility factor obtained with each of

the three mixture rules. These results are plotted as functions of comp

position in Figures 12, 13, and lb. The critical temperature agreement

was very good in all cases. The maximum temperature percent deviation

was h.67 percent; this occurred with Kay's rule. The predicted critical

pressures were best with van der Waals0 mixture rule and poorest with

Kay's rule. Joffe's rule, although slightly poorer than van der Waals'

combinations, was nevertheless in good agreement with Kay's data. Figure

1h shows only fair agreement with the experimental compressibility factors.

Van der Waals9 and Joffe"s rules are approximately equivalent in their

ability to match the experimental compressibility factors.

Overall, the van der Waals9 mixture rule appears to be the best of

the three mixture rules evaluated. In fact, the critical temperature and

pressure predictions made by using the van der Waals mixture rule in the

generalized equation of state were about as good as the predictions made

from the Benedict-Webb-Rubin equation of state for mixtures. The average

critical temperature error was 1.16 percent using the van der Waals rule

with the generalized equation and 1.32 percent using the Benedict-Webb-

Rubin equation for mixtures. The average critical pressure error was 5.hl

percent with the reduced equation of state plus van der Waals' rule and

h.25 percent with the eight constant Benedict-Webb-Rubin equation.

The relatively good temperature and pressure agreement obtained with
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Critical temperatures, pressures, and compressibility factors

and critical reduced densities obtained from the generalized

equation of state using Kay’s mixture rule

 

 

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.h0

0.h5

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0°95

Dr

0.9231651

0.8836010

0.8713950

0.8769hh2

0.89h6219

0.9206883

0.952hh9h

0.9878553

1.02529h5

1.063h892

1.101h103

1.1381hh7

1.1726882

1.2036582

1.22892h1

1.2h51693

1.2h73h05

1.2277h00

1.17153h5

Tk

(°K)

5h0.881h6

5h1.739h2

5h2.17612

5h1.5h189

539.36397

535.32072

529.2332h

521.03687

510.75hh9

h98.h6689

h8h.29001

h68.36h58

h50.8620h

h32.00hh6

A12.08810

391.h8666

370.59239

3A9.6h951

328.A573h

Dev. From

Data (%)

+0.99

+2.02

+2.98

+3.76

+h.32

+h.63

+h.67

+h.h6

+h.03

+3.hl

+2.65

+1.77

+0.85

-0.08

-0.92

-1.56

n1.85

-1.66

-0.92

Pk

(atm.)

32.081979

37.h29280

h3.160219

h9.3h8115

55.981h93

62.97501A

70.179159

77.385910

8h.331900

90.701008

96.126566

100.19h502

102.h5hhh3

102.h51997

99.7975h8

9h.2750h3

85.955295

75.221599

62.618319

Dev. From

Data (%)

+6.39

+1l.55

+16.18

+20.52

+2h.5h

+28.12

+3l.O7

+33.20

+3h.35

+3h.39

+33.23

+30.82

+27.18

+22.h1

+16.71

+10.55

+ h.72

+ 0.h3

- 0.78

Zk

0.32837705

0.37630737

0.h1h3h263

o.hhhh9636

0.h683h217

0.h8701h30

0.50125h31

0.5111635h

0.5177h698

0.5199h559

0.51766700

0.51032823

0.99722998

0.h776917h

0.h512833h

0.h1815902

0.379h0017

0.33717536

0.29508380
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TABLE 7. Critical temperatures, pressures, and compressibility factors

and critical reduced densities obtained from the generalized

equation of state using van der Waals' combinations

x Dr Tk Dev. From Pk Dev. From Zk

(°K) Data (1) (atm.) Data (5)

0.05 0.9768298 537.h5599 +0.35 30.6hhhh0 +1.63 0.3062h680

0.10 0.963326h 531.3691h +0.6h 3h.h88729 +2.79 0.33903h93

0.15 0.958102h 531.05083 +0.87 38.532570 +3.73 0.36912509

0.20 0.9595236 527.30369 +1.03 h2.815067 +h.h6 0.39668929

0.25 0.966ho8h 522.9536h +1.15 17.359121 +5.36 0.h218h106

0.30 0.9779152 517.78913 +1.20 52.168630 +6.1h 0.hhh59261

0.35 0.9933872 511.65693 +1.19 57.221872 +6.87 0.h6h8hhhs

0.h0 0.0122h75 50h.36183 +1.12 62.h61h97 ,+7.51 0.h8236720

0.95 1.0339289 “95.71973 +0.97 67.781h20 +7.99 0.h9677399

0.50 1.0578205 h85.55h37 +0.73 73.011208 +8.18 0.50798858

0.55 1.0832113 h73.7093h +o.h0 77.899690 +7.97 0.51371798

0.60 1.1092170 h60.06761 -0.03 82.102129 +7.20 0.51hhh616

0.65 1.13h6673 hhh.58183 -0.56 85.179809 +5.7h 0.508h7929

0.70 1.1579352 h27.31567 -1.17 86.62713h +3.50 0.19h59062

0.75 1.1766970 h08.h8h2 -1.79 85.9hh862 +0.51 0.h7181998

0.80 1.1876393 388.h9618 -2.31 82.766929 -2.9h 0.h3993903

0.85 1.1861305 367.86hhh -2.57 77.0082h8 -6.18 0.39996076

0.90 1.1656h61 3h7.09781 -2.37 68.9h9631 -7.9h 0.35hh5651

0.95 1.1152699 326.h5019 -1.52 59.191060 -6.21 0.30786518
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TABLE 8. Critical temperatures, pressures, and compressibility factors

and critical reduced densities obtained from the generalized

equation of state using Joffe°s mixture rule

x Dr Tk Dev. From Pk Dev. From Zk

(°K) Data (5) (atm.) Data (1)

0.05 0.9727908 537.69519 +0.39 29.889297 -0.88 0.29790306

0.10 0.951h1h3 539.8h787 +0.73 32.996h63 -1.66 0.32h03773

0.15 0.9362h28 531.88385 +1.02 36.302932 -2.28 0.3h880851

0.20 0.9265177 528.69177 +1.30 39.8h3636 -2.69 0.372176h8

0.25 0.921h978 525.16053 +1.57 h3.650313 -2.89 0.39h17022

0.30 0.9206871 521.17216 +1.86 h7.7515h7 -2.85 0.h1h7793h

0.35 0.9238190 516.59h9h +2.17 52.171h67 -2.56 0.h3393137

0.h0 0.9308000 511.277h2 +2.50 56.926158 .-2.01 0.h51h83h3

0.h5 0.9h166h7 505.08261 +2.87 62.016929 -1.20 0.h67208h8

0.50 0.9565h50 h97.68220 +3.25 67.h18917 -0.11V 0.h80769hh

0.55 0.9756h09 h88.95109 +3.63 73.062511 +1.26 0.h9167708

0.60 0.9991835 A78.56353 +3.99 78.803787 +2.89 0.h992258h

0.65 1.0273678 h66.19395 +8.27 89.379008 +8.75 0.502h0232

0.70 1.060217h h51.h8901 +h.h2 89.338656 +6.7h 0.h9976h37

0.75 1.0973090 h3h.1025h +h.37 92.96265h +8.72 0.h8930956

0.80 1.1371929 h13.77168 +1.01 98.17901 +10.hh 0.h68h1056

0.85 1.176119h 390.h5139 +3.h1 91.567138 +11.25 0.h3hoh523

0.90 1.20h89h2 36h.h8h66 +2.52 83.5881h3 +11.60 0.38386639

0.95 1.198557% 336.58129 +1.53 69.258505 +9.7h 0.31938622
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the van der Waals' combinations indicates that this mixture rule may be

very satisfactory for vapor-liquid equilibrium calculations. However,

the poorer compressibility factor agreement indicates that the predicted

densities are in error from the experimental densities. This lack of

agreement means that the mixture rule probably would not be entirely

satisfactory for predicting other thermodynamic quantities from a gen-

eralized equation of state.

Generation of Pseudocritical Mixture Rules

The results from the first two approaches which were used to compute

Tcm and Pcm values were not completely satisfactory. They are listed

along with a discussion of the data in Appendix IX..

By assuming the curves of Tcm and Pcm to be cubic (Program TOTRANGE),

values of Tom and Pcm were computed at two intermediate values of composi-

tion. Table 9 lists the results from program TOTRANGE for two pairs of x

values. The pairs used were x I 0.6215, 0.8723 (approximately symmetrical

with respect to weight fraction) and x I 0.333, 0.667 (symmetrical with

respect to mole fraction).

TABLE 9. Values of pseudocritical temperature and pressure as computed

by program TOTRANGE

 

 

x Tc Pc Graph

Symbol

0.333 h5h.11823 °K 28.10.5853 atm. A

0.667 378.39011 35.058287 11

0.6215 39h.77h62 35.821393 0

0.8723 336.30273 h3.01032o D

 

Figures 15 and 16 are plots of pseudocritical temperatures and
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pressures as a function of composition. Figure 15 shows the Tcm curves

from program TOTRANGE and van der Waals9 mixture rule to be nearly linear.

The generated pseudocritical pressure curve (Figure 16) is reasonably

close to the curve predicted by the van der Waals' mixture rule, but both

of these curves deviate considerably from linearity (Kay's rule).

Using the computed reduced compressibility factors from program

TOTRANGE, the values of critical compressibility factor were calculated

and plotted in Figure 17. The agreement with Kay°s data is only fair but

it is better than the agreement obtained using van der Waals' mixture rule

in the generalized equation of state. Errors were undoubtedly introduced

because the computations in program TOTRANGE involved fitting a third degree

polynomial to only four points and then taking up to third derivatives of

this polynomial. This numerical procedure would explain the variation of

the values at x I 0.6215 and x I 0.667 in Figures 15, 16, and 17.

If more accurate pseudocritical curves could be generated by using

smaller increments of composition then, theoretically, the computed curve

should come closer to the data curve in Figure 17.

Differentiation Check

The results of a program written to numerically check the expressions

for GM and G“9 are shown in Table 10. Agreement to at least three sig-

nificant figures was obtained between the numerical and mathematical cal-

culations of the derivatives.
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TABLE 10. Results

x I 0.10

Numerical

Analytical

x I 0.50

Numerical

Analytical

x I 0.90

Numerical

Analytical

73

from program CHECK for three values of composition

GP

-6.h31077905

-6.h3153h010

1.101609680

1.101h93811

7.0h033666h

7.0h005173h

GVO

7.709937921

7.705581635

6.9hhh23760

6.9hhh51h00

3.936850926

3.937199652

G!!!

-30798h0h175

'30798h55510

2.118565989

2.1h8572376

h.29077h979

n.289h05663
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CONCLUSIONS

Using the eight constant Benedict-Webb-Rubin equation of state for a

reference compound, an expression for reduced pressure in terms of reduced

temperature and density was derived. This expressed, in equation form,

relationships which usually appear only in tables and charts. Reduced

expressions were also derived for the second and third partial derivatives

of free energy with respect to mole fraction at constant termperature and

-«pressure.

Computer programs were written and tested for use on the Control Data

Corporation 3600 digital computer.+ Included were programs which performed

the following: (1) Calculation of reduced pressure and compressibility

factor using the reduced equation of state. (2) Calculation of derived

thermodynamic quantities including the second and third partial derivatives

of free energy. (3) Computation of critical envelope curves by simultane-

ously converging the second and third partial derivatives of free energy

to zero. (b) Computation of pseudocritical temperature and pressure curves

using free energy conditions at the critical point and experimental criti-

cal envelope curve data. (5) Numerical calculation for checking analytical-

ly derived expressions for the second and third free energy derivatives.

A method was devised to compute convergence pressure curves which

previously had been available only from experimental data. The eight con-

stant Benedict-Webb-Rubin equation of state made excellent predictions of

the critical envelope curve for the ethane-n-heptane system. However,

using the following mixture rules

n n

Pcm I [1&1 xi(Tc/Pcl/2)1/1:1 xi(Tc/Pc)i]?

7h
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n 1/2 2n
Tcm = [1:1 x1(Tc/Pc )1] /1:1 x1(Tc/Pc.)1

in conJunction with the two constant reduced equation of state, results

were obtained that were about as good as those from the eight constant

Benedict-Webb-Rubin equation.

Using experimental critical envelope curve data, cubic curves of

pseudocritical temperature and pressure were generated which were in good

agreement with the above mixture rules. When the critical compressibility

factor curves were computed from the generated pseudocritical curves, the

results were closer to the experimental data than those computed using the

above mixture rules...



SUGGESTIONS FOR FURTHER STUDY

The excellent convergence pressure curve agreement obtained with the

van der Waals mixture rule, when used with the generalized equation of

state, reveals a slightly different approach which may yield more success

with computational methods which progress across the composition range in

small increments. This new approach would require changing the experi-

mental critical temperature and pressure data to fit the convergence pres-

sure curve predicted by the van der Waals combinations (Figures 12, 13)

when used with the generalized equation. Equations for G" and 0"' could

be used, as in program LINEAR, to generate pseudocritical temperature and

pressure‘Curves. These generated curves should be approximately the same

as the pseudocritical curves predicted by the van der Waals mixture rule.

As the calculation proceeded across the composition range, at least three

possibilities might occur:

1. The generated curves could begin to deviate greatly from the

pseudocritical curves computed from the van der Waals combinations. This

would indicate the magnification of an error. This might be corrected by

beginning in the middle of the composition range and progressing towards

the two ends.

2. The generated curves may be very close to the van der Waals mix-

ture rule curve, yet at some point the calculations might not converge.

This would indicate that a better convergence method was needed.

3. The computations may proceed across the entire composition range.

In this case, relaxation techniques may be applicable to change the ex-

perimental data back to Kay's data.

A study should also be made to determine how accurately the

76



77

generalized equation of state with van der Waals' mixture rule will pre-

dict vapor-liquid equilibria. This computation would require fugacity

and vapor pressure calculations. The results could then be compared with

experimental vapor-liquid equilibrium data.
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NOMENCLATURE

Activity

Constants in Benedict-Webb-Rubin equation of state

Differential operator

Molal density, moles/unit volume

Critical molal density of a pure component, moles/

unit volume

Pseudocritical molal density of a mixture, moles/

unit volume

Critical molal density of a binary mixture, moles/

unit volume

Reduced molal density

Fugacity

Constants in the reduced Benedict-Webb-Rubin equation

of state

Gibbs'free‘energy

Free energy/mole

FYRT of a binary mixture of two gases, referred to

standard states of unit fugacity for the pure

components, which have been mixed in a perfect gas

state at the temperature of the system

Equilibrium ratio or K-factor, y/x

Vaporization equilibrium ratio, av/aL

Liquid volume correction term

Total pressure, atm.

Critical pressure of pure component, atm.

Pseudocritical pressure of a mixture, atm.

A low pressure such that gases exhibit perfect gas

behavior, atm.

Reduced pressure
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Tc

Tc

m

7
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3

Zc

Zc

m

Zk

Zr
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Gas constant, (liter0atm.)/(g-moleoK°)

Temperature, °K

Critical temperature of pure component, K°

Pseudocritical temperature of a mixture, °K

Critical temperature of a binary mixture, °K

Reduced temperature

Volume

Unit volume/mole

Unit volume/mole under perfect gas conditions

Mole fraction ethane

Mole fraction in the liquid phase

Mole fraction in the vapor phase

Compressibility factor, PVYRT

Critical compressibility factor of pure component

Pseudocritical compressibility factor of a binary

mixture

Critical compressibility factor of a binary mixture

Reduced compressibility factor

GREEK SYMBOLS

Finite change of a property; a positive value

indicates an increase

Partial differential operator

Overall activity coefficient

Activity coefficient of component A in vapor phase

at a mole fraction of y

Activity coefficient of component A in liquid phase

at a mole fraction of x

Fugacity coefficient



VPA

VPB
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SUBSCRIPTS

Component A

Component B

Component 1

Component J

Liquid phase

Total pressure

Vapor phase

Vapor pressure of pure component A

Vapor pressure of pure component B

SUPERSCRIPTS

First derivative with respect to mole fraction ethane

at constant temperature and pressure

Second derivative with respect to mole fraction ethane

at constant temperature and pressure

Third derivative.with respect to mole fraction ethane

at constant temperature and pressure

Standard state
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APPENDIX I

Derivation of an Equilibrium Ratio Expression for a Two Phase

Mixture

Temperature _T_

 
Figure 18. Formation of a two phase mixture at temperature T and

pressure P

For component A in Figure 18:

F1 ' F3

and F5 8 F10

Subtracting (2) from (1)

Fl - F5 8 F3 - F10

Letting A i-J represent'fi; - F3, (3) can be written

AF1-5 ' AF3-10

or AF1_2 + AF2_5 8 FB-h + AFh-lo

8h

(1)

(2)

(3)

(h)



n
?

n
\
u

D
.

Q
.
»



Step 1-2

Step 2-5

Step 3-h

Step h-lO
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By definition dF'a RT d In r

Afii_2 = RT ln (fa/f1) a RT 1n(£AP/rAVP) (S)

A§é_5 a RT ln(f5/f2) a RT 1n[(f5/f°)/(f2/f°)]

where f° represents the fugacity in the standard state. Let

0 O

f 8 f2

Since a a f/f°

then AF2_S a RT 1n aS

By definition a5 = YAVyA

Therefore A 2-5 = RT 1n(yAVyA) (6)

By definition 6.? =- deP - 'é'dT

or [dfi's

V dP (7)

Using an argument similar to that used to derive equation (6)

AFh_lo a RT 1n(YALxA) (8)

Inserting (S), (6), (7), and (8) into (h):

P

RT 1n(rAP/rAVP) + RT ln(yAvyA) = j dep + RT ln(yALxA)

P
AVP

0r yA/xA = [PAVPvAVPYAL/(PVAPYAV)]L (9)

P -

where L a exp[(l/RT)[ VLdP]

PAVP

v = f/P



APPENDIX II

Derivation of Relationships for Calculating Free Energy of a

Binary Mixture at Temperature T and Pressure P

Let the standard states be the vapor of the pure components at unit

fugacity at the temperature of the system. For purposes of this calcula-

tion assume the following path.

Std. State Temperature T

wF—_-_ '-

  

 

  

  

     

Pure A,

yA: f-l

1 Real

Mixture

Std. State P

Pure B Pure B 5 6

y L f=1 P ,

B o

3 b

Figure 19. Path for calculation of the free energy of a binary mixture

at temperature T and pressure P

- (Fmix at T and P) - (yAFA + yBFB )

TOT yA(A 1-2 + AF2_S) + yB(AF3_h + AFh_S) + AFS_6 (1)D ’
1
1

I

D ’
1
1

I RT ln(f2/fl) = RT ln(Po/l) = RT 1n Po

likewise, AT" 1. RT 1n Po

D a
;

I RT 1n yA

D 1
"

g
r

I

I RT 1n yB

Integrating by parts,
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AFS_6 = VP Po - am

where 70 = molal volume at pressure Po

The Benedict-Webb-Rubin equation of state may be written

P = RT/V + A

where A = f(T,V) and represents the balance of the equation of state.

v

AFS_6 - VP - VOPO - V (RT/V + A)dV

O

- - - - - V -

AF5_6 - VP - VOPO - RT ln(V/Vo) - ‘ijdV

0

But, A . P - RT/V

V _ V _ _

Therefore L Adv - L (P - RT/V)dV

v V

V . l/D

dV - (-1/D2)dD

V _ D 2

LAdv - - [[(P — RTD)/D ]dD

V o
0

Let

D 2
I a [[(P - RTD)/D ]dD

0

Thus,

AF5-6 I VP - voPo - RT 1n(V/Vo) + I

From the perfect gas law, VOPO a RT

Asé-Vp-RT-RT1nV+RT1n(RT)-RTinPO4-I

Substituting into (1)

'
‘
"
-
1
.
“

 I
r
'

.
.

.
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AFTOT = yART ln PC + yBRT ln PC + yART ln yA + yBRT 1n yB

+ VP - RT - RT ln V'+ RT ln(RT) - RT 1n R0 + I

Since yA + yB = 1

4.yART ln Po yBRT 1n P0 a RT 1n Po

- -- - - +

AFTOT - yART 1n yA + yBRT 1n yB + VP RT RT ln(V/RT) I

Adding and subtracting RT 1n P

d?
Tom ' RT ln P + y RT 1n yA + yBRT In yB + RT(z - I - 1n 2) + I

A

By definition

G . PVRT

But using the above stated standard states

AFTOT - (Fmix at T and P)

Therefore G - AFTOT/RT

or G 8 In P + yA ln yA + (1 - yA)1n(l - yA) + Z - l - 1n 2

D

+ (l/RT) I[(P - RTD)/D2]dD (2)
0



APPENDIX III

Derivation of the Equations for G" and G"'

Benedict-Webb-Rubin equation of state:

P = RDT + (BORT - Ao - Co/T2)D2 + (bRT - a)D3 + aaD6

+ (cD3/T2)(l + yD2)exp(-yD2) (1)

Making the following substitutions into (1):

P I PcPr, T = TcTr, D I DcDr,

PcPr a RTrTcDrDc + (BORTcTr — A0 — Co/TreTc2)Dr2Dc2

+ (bRTcTr - a)Dr3Dc3 + aaDr6Dc6 + (cDr3Dc3/Tr2Tc2)

(l + yDr2Dc2)exp(—yDr2Dc2) (2)

Let

f I RTch/Pc

g I BORTchz/Pc

h I AoDcQ/Pc

i I CoDc2/Tc2Pc

J I bRTch3/Pc

k I aDc3/Pc

l I aaDc6/Pc

m I ch3/Tc2Pc

n I yDc2

Therefore

Pr I fTrDr + (gTr - h - i/Tr2)Dr2 + (JTr - k)Dr3 + 1Dr6

+ (mDr3/Tr2)(l. + nDr2)exp(-nDr2) (3)

This is the reduced form of the Benedict-Webb-Rubin equation of state.

From the discussion of free energy (Appendix II), it was shown that
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G . In P + yA In yA + (1 - yA)ln(l - yA) + z - l - 1n 2

D 2
+ (l/RT) [[(P - RTD)D ]dD (h)

o

Letting yA = x - mole fraction ethane and substituting (1) into (k)

G . 1n P + x In x + (I — x)ln(l - x) 4 z - I - ln 2 + (1/RT)

[(BORT - A0 - Co/T2)D + (bRT - a)D2/2 + aaDS/S +

(cue/2T2><2/Yn2 - [2 exp<~yn2)1/Yn2 - exp<-yn2))1 (5)

Putting (5) into reduced form

G I 1n PcmPr + x 1n x + (l - x)ln(l - x) + Z - l - 1n Z +

3
(Bo - Ao/RTcTr - Co/RTr Tc3)DcDr + (b - a/RTcTr)Dc2Dr2/2

+ aaDcSDrS/SRTcTr + (cDr2Dc2/2RTc3Tr3)[(2-2exp(-yDc2Dr2))/

yDceDrZ - exp(-yDc2Dr2)] (5)

Note:

BoDc I g/f

AoDc/RTC I h/f

C Dc/RTc3
O

I i/f

2

ch /2 I J/2f

aDc2/2RTc -JR/2r

aoDcs/SRTc I l/Sf

3
ch2/2RTc I m/2f

c/ZYRTC3 I m/2nf

yDc2 I n

Then,

G I In PcmPr + x In x + (l. - x)ln(l. - x) + Z - 1. - ln 2

+[(g - h/Tr - i/Tr3)Dr + (J - k/Tr)Dr2/2 + (1/Tr)Dr5/S

+(mDr2/2Tr3)[(2-2exp(-nDr2))/nDr2 - exp(-nDr2)]]/f (7)
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TO ' ls/Tr (8)

To' I -Tr'/Tr2 (9)

To" I 2(Tr')2/Tr3 - Tr"/Tr2 (10)

To"' . -To[3(To'Tr" + To"Tr’) + ToTr"'] (II) E

T . I./Tr3 = T 3 (12) V
n O .J

2 .

Tn' . 3To To' (13) :

2 2
7

Tn” . 6T°(T°') + 3T0 To“
(1") :.

T "' - 3[2T ' + 6T T 'T v' + T 2T m] (15) g
n O O O O O O -

G I x 1n x + (l.-x)1n(l.-x) + Z - 1. - ln Z + 1n PcmPr

2 S
+[(g - nTo - iTn)Dr + (J - kTo)Dr /2 + lToDr /5

+ an/n + (m/2n)Tnexp(-nDr2)(-2 - nDr2)]/f (16)

G' . (%%.T,P = 1n[x/(1, - x)] + 2' - Z'/Z+[(g - hTo - iTn)Dr'

2 h
-(hT°' + iTn')Dr + (J - kTo)DrDr' - kTO'Dr /2 + lTODr Dr'

+ lTO'DrS/S + an'/n + (m/2n)°exp(-nDr2)

(~2Tn' - nDreTn' + 2nDrDr'Tn + 2n2Dr3Dr'Tn)][f (17)

2

G" ’ (%)T p = 1./(x - x2) + z“ - z"/z + (z'lz)2 + [gDr"

3x ’

-h(T Dr°° + T "Dr + 2T 'Dr') - i(T Dr" + T "Dr + 2T 'Dr')
0 O O n n n

+ J[DrDr" + (Dr')2] - k[ToDrDr" +'T°"Dr2/2 + 2To'DrDr'

+ T°(Dr')2] + l[2To'Dthr' + To"Dr5/5 + hTODr3(Dr')2

h

+ ToDr Dr") + an"/n + (m/2n)exp(-nDr2)(-2Tn" - nDr2
TO!

11

+ hnDrDr'Tn' + 2nDrDr"Tn + 2n(Dr')2Tn + hnaDrBDr'Tn'

3
+ 2n2Dr Dr"Tn + 2n2Dr2(Dr')2Tn - hn3Drh'(Dr')2Tn]/f (l8)
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Gun ,(___,

3x3 T,P

= (2x - l.)/(x - x2)2 + Z9“ - Z°"/Z + 3Z°Z"/Z2

- 2(Z°/Z)3 + [gDr"' - h(ToDr'°' + To"'Dr + 3Dr'T°"

+

H O _ '90 '9? + t it... it I

3Dr To ) i(TnDr + Tn Dr 3Tn Dr 3Tn Dr )

+ J(DrDrHo + 3Dr°Dr°°) - k(TODrDr"' + To"'Dr2/2

+ 3T0Dr°Dr" + 3To'DrDr'° + 3To°°DrDr' + 3To'(Dr')2)

l(3To"Dthr' + 12T0'Dr3(Dr')2 + 3To'Dthr"

3

+
+

12 ToDr2(Dr')3 + 12 ToDr Dr°DrH + ToDthr"'

To°'°DrS/S + an°"/n + (m/2n)exp(-nDr2)(-2Tn"'+

nDr2Tn "9 + 6nDrDr°Tn V” + 6nDrDr“Tn ' + 6n(Dr')2Tn'

3
+ 2nDrDr"'Tn + 6nDr°Dr"Tn + 6n2Dr Dr'Tn" + 6n2'

3
Dr3Dr'°Tn° + 6n2Dr2(Dr9) 2Tn° + 2n2Dr Dr"'Tn

3 h
2Dr°Dr"Tn - 12 n3Dr"(DrV)2Tn ° - 12 n Dr .+ 6n2Dr

Dr'Dr°°Tn n20n3Dr3(Dr"3') Tn + 8nhDr5(Dr° )3Tn )]/f (19)

See Appendix IV for derivation of equations for Dr', Dr", and Dr"'.

See Appendix V for derivation of equations for Z, Z', Z'“, and Z"'.



APPENDIX IV

Derivation of Equations for Dr', Dr°°, and Dr'°'

Taking the derivative with respect to x of equation III-3:

Pr' I [fDr + (g + 2i/Tr3(Dr2 + JDr3 - (2mDr3/Tr3)(1. + nDr2)

exp(-nDr2)]oTr° + [fTr + (gTr - h - i/Tr2)2Dr + (JTr - k)3Dr2

+ 6(1)Dr5 + (3mDr2/Tr2)(l. + nDr2)Oxp(-nDr2)

+ (mDr3/Tr2)(2nDr)exp(-nDr2) + (mDrB/Tr2)(l. + nDr2)

(-2nDr)exp(-nDr2)]Dr'

Let

U I Pr' -[fDr + gDr2 + 2iDr2/Tr3 + JDr3 - 2mDr3 (l. + nDr2)

exp(-nDr2)/Tr3]Tr° (1)

V I fTr + 2gTrDr - 2hDr - 2iDr/Tr2 + 3JTrDr2 - 3kDr2 + 6(1) DrS

+ (m/Tr2)exp(-nDr2)(3Dr2 + 3nDrh - 2n2Dr6) (2)

therefore,

Dr' 2 U/V . (3)

also,

Dr°° = U°/V - UVV/Vz a (0° - Dr°V°)/V (R)

Dr“0 = (UM - Dr'VH - Dr°“V')/V - (Uo - Dr'V')V°/V2

I (U°° - Dr°V°° - Dr°°V°)/V - Dr'°V'/V

- (U°° - V°"Dr° - 2V°Dr°°)/V (5)

Let

Tt a Tr'/Tr3 a TrVTn (6)

v 3 to v o
Tt Tr Tn + Tr TD (7)

T '9 I Tr°°'T + Tr"T ° + Tr'VT ' + Tr'T '°

t n n n n

= Tr'°°T + Tr'T 0° + 2Tr"T ° (8)
n n n

Therefore
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U I Pr0 - fDrTro - gDrzTr' - 2iDr2TnTr" - JDr

9h

3Tr' + 2nDr3(1. + nDr2)

exp(-nDr2)TnTr'

U' I Pr" - fDrTr'° - fDr'Tr' - gDr2Tr" - 2gDrDr'Tr' - 2iDr2TnTr"

U9

v9

- 2iDr2Tn'Tr° - hiDrDr'Tt - JDr3Tr" - 3JDr2Dr'Tr' + 2mDr30

(l. + nDr2)exp(-nDr2)Tt° + 2mDr3(l. + nDr2)(-2nDr)Dr'exp(-nDr2)Tt

+ 2mDr3(2nDrDr")exp(-nDr2)Tt + 6mDr2Dr'(l. + nDr2)exp(-nnr2)Tt

Pr'° - fDrTr°° - fDr°Tr' - gDr2Tr°° - 2gDrDr'Tr' - 2iDr2Tt'

- hiDrDr°Tt - JDr3TrH - 3JDr2DrVTr° + 2nDr3(1. + nDr2)

2 2 h
exp(-nDr2)oT ' + 2moexp(-nDr2)Tt(3 + 3nDr - 2n Dr )Dr2Dr'

t

(9)

fTr' + 2gDr'Tr + 2gDrTr' - 2hDr' - 2iDr'/Tr2 + hiDrT

t

+ 6JTrDr'Dr+3JTr°Dr2 - 6kDrDr° + 30(l)Dthr' + moexp(-nDr2)

(6DrDr9/Tr2 + 6nDr3Dr9/Tr2 - 18n2DrSDr'/Tr2 + hn3Dr7Dr'/Tr2

2 h 2 6 .

- 6Dr Tt - 6nDr Tt + hn Dr Tt) (10)

UN I Pr°°' - fDrTr°'° - 2fDr°Tr°° - fDr"Tr° - gDrzTr"'

thrDr'Trflo - 2gDrDr°°Tr' - 23(Dr°)2Tr9 - 21Dr2Tt"

81DrDr°Tt° - hiDrDrWTt - hi(Dr°)2Tt - JDrBTr"'

6JDr2Dr°Tr°° - 3JDr2Dr'VTr° - 6JDr(Dr')2Tr'

. + [2m°eXP(-nDr2)(Dr3Tt°' + nDrsTt'° + 6Dr2Dr'Tt'

+ 6DrhnDr°Tt' - hnzDr6Dr°Tt' + 3Dr2Dr"Tt + 3nDthr"Tt

2 6
2n Dr Drvat + 6nDr3(nrv')2Tt + 6Dr(Dr')2Tt

18n2Dr5(Dr°)2Tt + hn3Dr7(Dr°)2Tt] (II)
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V99 I fTrH + 2gDr°°Tr + thr°Tr° + 2gDrTr°° - 2hDr" - 2iDr"/Tr2

+ 81Dr'Tt + hiDth' + 12JTr°DrDr' + 6JTr(Dr')2 + 6JDrDr"Tr

+ 3JTr°'Dr2 - 6k(Dr°)2 - 6kDrDr" + 30(1)Dthr'{.

2

+ l20(l)Dr3o(Dr°)2 + 2moexp(-nDr2)(3DrDr"/Tr2 + 3nDr3Dr"/Tr

9n2Dr5Dr°°/Tr2 + 2n3Dr7Dr”/Tr2 + 3(Dr')2/Tr2

+ 3nDr2(Dr°)2/Tr2 - SlneDrh(Dr')2/Tr2 + 32n3Dr6(Dr')2/Tr2

hnhDr8(Dr°)2/Tr2 - 3Dr2T ' - 3nDrhT ° + 2n2Dr6T '
t t t

. 3 7
l2DrDr Tt - 12nDr tDr°T + 36n2DrSDr°Tt - 8n3Dr Dr'Tt)

(12)



Let

Then

APPENDIX V

Derivation of Equations for Z, Z', 29', and Z"'

Z I P/RTD I PrPc/RTrTcDrDc I (Pr/TrDr)(Pc/RTch) I Pr/fTrDr

Y I Pr/fTr

Y' :- (Pr' - fYTr°)/(fTr)

Y" I (Pr" - fYTr°' - 2fY°Tr°)/(fTr)

Y°°' = (Prm - fYTr“9 - 3fY'Tr°° - 3fY°°Tr°)/(fTr)

Z I Y/Dr

Z' I (Y' - ZDr')/Dr

Z" I (Y" - ZDrH - 22'Dr')/Dr

zone = (Yooo _ ZDr°'° _ 3Z°Dr'° _ BZ'°Dr°)/Dr
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(1)

(2)

(3)

(h)

(S)

(6)

(7)

(8)



APPENDIX VI

Program LINEAR

The objective of program LINEAR is'to vary simultaneously the value

of reduced temperature (Tr) and reduced density (Dr) at successive values

of composition (x) until the second and third derivatives of the free

energy, 6" and G"'“, become equal to zero. This program follows the

flow diagram in Figure 5, page 37.

Starting at one end of the composition range (x1 I O), the boundary

conditions Tr I l and Pr I l are used. The value of composition is incre-

mented twice and guesses are made for Tr and Dr at these compositions

(x2, x3). Then by simple linear interpolation the value of Dr3 (Dre,

".is equal toTr2,or Tr could also have been chosen) is changed until G

3 2

zero.

Guesses for Tr and Dr are then made for the next composition (xh).

These guesses (Dru, Trh) are changed simultaneously by a linear convergence

method until 63" and 63"" become equal to zero. This process is repeated

until the entire composition range has been covered.

The only restriction on the values of Tr and Dr which are selected

is that they be positive since negative values have no physical signifi-

cance.

The main divisions of program LINEAR are:

1. Program LINEAR-Main Body

2. Subroutine CONVERG

3. Subroutine POLY

h. Subroutine WBKAY

5. Subroutine PRCALC

6. subroutine G2CALC

7. Subroutine G3CALC

86 Data
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PROGRAM LINEAR

DIMENSION X(25)s W(25)9 PC‘ZS). TC‘ES). PK(25)9 TK‘25)9 pR‘ZS).

1 TR(25)0 DR(25)0 ZR‘Z5). 2(5). FUNC(5)9 DELTAD(4). DELTAT‘4).G(6)

2 CRZRWRPR(25)

COMMON I QDCBQ TCB oAC.BC .CC tDC .EC . C .Cl 9C2 .ij .C 1+ , Cli- . CO .C')’ . C93 -, C'F' .053 o.

1 DR 1 DER o DRZDER 0 TR 9 TR 1 DER o TRBDER 9 TRIJDER v PR o PR 1 DER .PHZDER , Fifi-{ij/‘Fii? ,

2 pCQpKOTCOTKOQQCTOQTOIDEROTOZDER9TNQTNIDERQTNEDERQTT'TTIDERQVQ

3 VIDEROYQYIDEROYZDEROZKOZKIDEROZKZDERQZRQZQXOW§GZDEROGBDERQFUNC

4 QRZRWRPR

1 FORMAT (513.11) '-

2 FORMAT (ZSXQZSHDOUBLE LINEAR CONVERGENCEv4(/))

3 FORMAT (12)

16 FORMAT (6X05E21010)

4O FORMAT(20H NO OF ITERATIONS I 9129/)

41 FORMAT(IH1)

42 FORMAT (2/915X98HFUNCTION013X09HFIRST DEROIIXOIOHSECOND DEROIZXO

1 9HTHIRD DERo/93H TC93X04E210100/93H RC03X04E21elOs/s3H TRQSXo

2 4E210100/03H PR03X04E21010)

43 FORMAT (lsllelHXoIBXOZHTRslBXoZHRRslBXoZHDRo18X92H2R015X9

l 7HPZRWRPRs/06E200109/06E20010)

44 FORMAT (9H GZDER I .51801003X98H63DER I sElBelO)

45 FORMAT (25H DOES NOT CONVERGE AFTER QIZOIIH ITERATIONS)

46 FORMAT(/20H CALCULATION AT X I 0F5039//17X92HTR919X02HDR917X0

l SHGZDER916X05HG3DER)

50 FORMAT (4H PK(91294H) I 9E1801004X03HTK(01204H) I 0E18010004X0

1 4H PC‘OIZQ4H) I sElBelOs4XoBHTC‘OIao4H) = oElBelO)

51 FORMAT (11H INPUT DATAo/ng TR(2) x oEIBolOsSXsBHTR(3) 8 9E18.100

l 5X08HTR(4) I sElBelOs/09H DR(2) I 0E1801005X08H0R(3) I oElBelO!

Z 5X08HDR(4) 3 OEIBeIOsl)

PRINT 2

READ lo DCBOTCBOPCBIRQBOOAOQCOQBOAQCOALPHAQGAMMAOACQBCQCCQDC'EC

PRELIMINARY CALCULATIONS

C! I (DCBITCB*R)/PCB

C2 I C1*80*DCB

C3 I (AO*DCB**2)/PCB

C5 I C1*DCB§*2*B

C6 I (DCB**3/PCB)*A

C? I C6*DCB**3*ALPHA

C8 I (Cé/(AiTCB**2))*C

C9 I DCB**2*GAMMA

C13F9 C2369 C3IH0 C4310 C5=Jo C6=Ks C7=Lo C8=Mo C9=N

TOL I leE‘lZ

X(l) = O

X(2) I 00025

X(3) = 0005

TRCI) I 100

DR‘I) ' 100

PRC!) 3 100

ZRil) I 100

DELTAX 3 0005

NUM I (la - X(3))/DELTAX + 3.

DO 6 II4ONUM

6 X(I) 3 X(l-1) + DELTAX

DO 5 IIIONUM
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5 CALL WBKAY

I = l

PC(I) I PK(I)/PR(I)

TCCI) I TK(I)/TR(I)

READ 39 NUMDATA

DO 25 NN=1¢NUMDATA

4 READ lo (TR(I)oI I 204). (DR(I)9 I =294)

PRINT 510 (TR(I)01:294)9(DR(I)9I=204)

PRINT 500 Is PKCI)9 Io TK(I)9 Io PC(I)o Is TCCI)

104 I I 2

CALL PRCALC

TC(I) I TK(I)/TR(I)

PC(I) I PK(l)/PR(I)

C THIS PROGRAM USES DR(3) T0 CONVERSE G£DER(2)

DELTADR = 0.02

GZDERI I 0

DO 8 LIlo4O

I I I + 1

DR(I) I DR(I) + DELTADR

CALL PRCALC

TC(!) I TK(I)/TR(I)

PC(!) I PK(I)/PR(I)

I I I-1

DELTAX I X(I+1) - X(I)

TCIDER I (TC(I+1) - TC(I-l))/(2.*DELTAX)

TCZDER = (TC(I+1) - 2.*TC(I) + TC(I-1))/DELTAX**Z

TRIDER I -TR(I)*TCIDER/TC(I)

TRzDER I -2.*TRIDER*TCIDER/TC(I) ~ TR(I)*TCZDER/TC(I)

PCIDER I (PC(I+l)-PC(I~1))/(2e*DELTAX)

PCZDER I (PC(I+1) - 2o*PC(I) + PC(I-l))/DELTAX**2

PRIDER I -PR(I)*PCIDER/PC(I)

PRzDER I -2.*PRIDER*PCIDER/PC(I) - PR(I)*PCZDER/PC(I)

CALL GZCALC

IF (ABSF(DELTADR) - TOL)90907

7 DELTADR I -GZDER*DELTADR/(GZDER - GZDERI)

8 GZDERI 3 GZDER

STOP 0007

9 PRINT 420 TC‘I)! TCIDERQ TCZDER. X(l)oPC(I)s PCIDEROPCZDERQ X(1)0

1 TR‘I)s TRIDER. TRZDER. X(l)s PR(I)9 PRIDERs PREDERQ X(1)

PRINT 430X(1)0TR(I)9PR(I)ODR(I)QZR(I)0PZRWRPR(I)9X(I+1)OTR(1+1).

1 PR(I+1)ODR(I+1)OZR(I+1)9PZRWRPR(1+1)

I = I + l

29 NUMBER 3 0

PRINT 469 X(I)

(3 TO STATEMENT 31-12 SETS UP 3 SETS OF GUESSES (TRODR) AND

C CALCULATES GZDER AND G3DER

DELTAT‘I) I 0.1

DELTAT(2) = O

DELTAD(1) I O

DELTAD(2) = 0.1

M = 1

GO TO 10

28 M = M + 1

TR(I+1) = TR(I+1) + DELTAT(M-1)
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DR(I+I) I DR(I+I) + DELTAD(M-I)

10 I I I + I

CALL PRCALC

PC(I) I PK(I)/PR(II

TC(I) I TK(I)/TR(I)

DO 30 KIIO4

Z(K) I X(I“4+K)

30 FUNC(K) I TC(I-4+K)

CALL POLY (TCIDERQTCZDERoTC3DER)

DO 31 K 21.4

31 FUNC(K) I PC(I‘4+K)

CALL POLY (PCIDERoPCZDERvPCBDER)

I I I - 1

TRIDER : -TRII)*TCIDER/TC(I)

TRZDER I ~2o*TRlDER*TClDER/TC(I) - TR(I)*TCZDER/TC(I)

TRBDER I 6o*TK(I)*TCIDER*TCZDER/TC(I)**3-6.*TK(I)*TCIDER**3/TC(I)

I **4 - TK(I)*TC30ER/TC(I)**2

PRIDER -PR(I)*PCIDER/PC(I)

PR2DER = -2.*PRIDER*PCIDER/PC(I) - PR(I)*PC2DER/PC(I)

PR3DER = 6.*PK(I)*PCIDER*PCZDER/PC(I)**3-6.*PK(I)*PCIDER**3/PC(I)

I **4 - PK(I)*PC3DER/PC(I)**2

CALL GBCALC

G(M) I GEDER

G(M+3) I GSDER

IF'IM-BIZBcSZoBS

32 IF (G(3)**2 + G(6)**2 - TOL)15qISoI4

THIS CONVERGENCE PROCEDURE USES A LINEAR INTERPOLATION

14 CALL CONVERG (DELTAT(I)0 DELTAT(2)0 DELTAT(3)9 DELTADCI)9 DELTAD

1 (2)0 DELTAD(3)9 G(l)o 6(2). G(3)o 6(4). 6(5). G(6))

I7 IF(DR(I+I) + DELTAD(3))180180750

750 IF(DR(I+1)+DELTAD(3)-2.)I9018v18

18 DELTAD(3) I DELTAD(3)/Zo

GO TO 17

I9 IF(TR(I+1) + DELTAT(3))ZOo20v751

751 IF(TR(I+I)+DELTAT(3)I4.)21.20.20

20 DELTAT(3) I DELTAT(3)/Zo

GO TO 19

21 DO 23 LIIQZ

DELTAT(L) I DELTAT(L+1)

DELTAD(L) I DELTAD(L+1)

G(L) I G(L+I)

23 G(L+3) I G(L+4)

PRINT l6. TR(I+I)0 DR(I+I)9 GZDER. GBDER

TR(I+I) I TR(I+I) + DELTAT(3)

DR(I+I) I DR(I+1) + DELTAD(3)

NUMBER I NUMBER + 1

IF (NUMBER-30)10910024

15 PRINT 42.TC(I)¢ TCIDER. TCZDER. TC30ER9PC(I)9 pCIDEROPCZDERO

I PCBDERO TR(I)9 TRIDER. TRZPERo TRBDERo PR(I)0 PRIDERQ PRZDERc

2 PRBDER

NNN I I+I

PRINT 439 (X(J)0TR(J);PR(J)oDR(J)oZRIJ)oPZRURPR(J)9 J-IONNN)

PRINT 44o GZDERQ GSDER

PRINT 409 NUMBER
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Program LINEAR-Main Bogl

Purpose:

Input:

Details:

To generate values of Tr and Dr at x (1 equal to or greater
1+1

than 2) such that 61'“ and G1°°' equals zero.

P-V-T data on a reference compound (in this case, prOpane). This

data includes the critical properties, the gas constant R, eight

Benedict-Webb-Rubin constants, and five constants for computing

Co as a function of temperature° Also input are the first

2 and x30

Using the values of Tr and Dr at x1, x

guesses of Tr and Dr at x

2, and x3 (Tr I l and

Dr I l at x1 I 0), this program changes Dr3 until the second

derivative of free energy, G 9°, is equal to zero at x For
2 2°

x1+1 (1 equal to or greater than 3) the guesses of Tr1+1 and

Dr1+1 are adjusted until Gi

process is repeated until the entire composition range has been

9' and Gi'°' equal zero. This latter

coveredo

A linear convergence scheme is employed to adjust Dr3

until G2" equals zeroo Two guesses are made for Dr

then a new guess is calculated from:

3, and

(new Dr - present Dr3)/(present Dr - previous Dr3) I(desired

3

62°" - present G

3

'°)/(present G 0° - previous G2")
2

Since desired 62°“ I O,

2

new Dr I pres Dr + [-pres G2°°/(pres G “I - prev 62")]
3 3 2

(pres Dr3 - prev Dr3)o (1)

Calculation of 62"“ requires first and second derivatives

of Tr and Pr at :20 These derivatives are computed by fitting

a quadratic equation through the values of Tc and Fe at :1, :2,

and x and then computing Tc ' and Tc "' from:

3’ 2 2
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9 g -

Tc2 (Tc3 Tcl)/(2Ax) (2)

2
09 a -Tc2 (Tc3 2Tc2 + Tc1)/(Ax) (3)

Similar equations may be written for Pea9 and Pc2"o

First and second derivatives of Tr and Pr are computed from:

Tr" = [a(T/Tc)/3x] = -T°Tc°/Tc2 a -Tr-Tc'/Tc (u)
T,P

Tr°' I [32(T/Tc)/3x2] I —2Tr°°Tc°/Tc - TroTc'°/Tc (5)
T,P

Values of Tr and Dr at x1+1 (i equal to or greater than 3)

are computed using a convergence process which assumes G" and

G"'9 to be linear functions of Tr and Dre The values of Tr and

Dr at x1, x , and x must be known because third derivatives

i-l i-2

are needed to calculate Gi°"°o Three sets of guesses for

(T D ) are needed before the linear interpolation
r1+1

method can be appliedo Subroutine CONVERG is called to compute

r1+1’

the next increment of Tr“l and Dr1+1 from the previous three

sets of guesses for Tr1+1 and Dr1+1, and the values of 61" and

61"“ calculated from those sets of guesses.

Whenever the double linear convergence process is used, all

derivatives of Tc and Pc are computed using subroutine POLYs

This subroutine fits a third degree polynomial to the values of

Te and Fe at x , and x Subscript i is necessari-
1+1' ‘1' x1.1 1-2°

1y at least 3. The value of Tri000 is calculated from:

Tr'V' . [33(T/Tc)/3x3]T9P= 6T°Tc°°Tc°°/Tc3 - 6T(Tc')3/Tch

- T°Tc°"°/Tc2 (6)

and similarly for Pr’Igo

The only restrictions imposed on the calculated values of

Tr and Dr are that they must remain positive since negative

values do not have physical significanceo This program also
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limits the number of iterations to thirty before the convergence

process is interruped because of lack of convergenceo

Since the primary function of the main body of this program is

to provide convergence, the program must work prOperly if such

convergence is obtainedo

AC, BC, CC, DC, EC I five constants to compute Co as a function

of temperature

A0, B0, CO9 A, B, C, ALPHA, GAMMA I the eight Benedict-Webb-

Rubin constants Bo, A

59 b0 cs asY

C

o’ o’

0
0
0
0

\
a
n
H

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

0
0
0
0

\
0
0
3
4
0
\

f

8

h

J

k

l

m

n

TDCB, CB, PCB, I critical density, temperature and pressure

of propane

DELTAD I variable used to represent differences in Dr

DELTADR I difference between the most recent value of Dr

DELTAT I variable used to represent differences in Tr

DELTAX I increment of x after x

DR I reduced density (Dr) 3

NUM I highest value of the subscript on x

NUMBER - a variable used to count iterations

NUMDATA I a variable used to represent the total number of sets

3

of data

PCI pseudocritical pressure (Pc)

PClDER I Pc“

PCQDER I PcH

PC3DER I Pc°°°

PK I critical pressuve of mixture (Pk)

PR I reduced pressure (Pr)

PRIDER I Pr'

PRZDER I Pr°°

PR3DER I Pr°°°

R I gas constant (literoatmo)/(8-moleo°K)

TC I pseudocritical temperature (Tc)

TClDER I ch

TCZDER I Tc°°

TC3DER I TC°"

TX I critical temperature of mixture (Tk)

TR I reduced temperature (Tr)
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TRlDER I Tr0

TRZDER I Tr°°

TRBDER I Tr'M

X I mole fraction ethane

ZR I reduced compressibility factor (Zr)



l

SUBROUTINE CONVERG (DELTAXIs DELTAXZQ DELTAXQ DELTAYIQ

DELTAYO

DENOMI

COEFFI

COEFFZ

COEFF3

COEFF4

DENOMZ

DELTAX

DELTAY

END

I
l
l
fl
fl
fl
fl
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F19 F20 F39 CI. 629 G3)

DELTAXI*DELTAY2 - DELTAX2*DELTAYI

((FZ”FI)*DELTAY2 I (F3-F2)*DELTAYII/DENOMI

((F3‘F2)*DELTAXI ‘ (F2-FI)*DELTAX2)/DENOMI

((GZ‘GII*DELTAY2 ‘ (GB‘GZ)*DELTAYI)/DENOMI

((63-GZI*DELTAXI ‘ (GZ‘GI)*DELTAX2I/DENOMI

COEFFI*COEFF4 ’ COEFF2*COEFF3

(53*COEFF2 ‘ F3*COEFF4)/DENOM2

(F3*COEFF3 “ G3*COEFFI)/DENOM2

DELTAYZQ
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Subroutine CONVERG

Purpose:

Input:

Details:

To compute the estimated increment for each of two variables

which will make two functions of those two variables equal

zero.

The differences between the previous three guesses of both

variables and the previous three values of both functions

computed from those variables.

The equations for a double linear convergence process are

developed for two general functions, F(X,Y) and G(X,Y). This

procedure is called a double linear convergence process

because two functions, F(X,Y) and G(X,Y) are assumed to be

linear functions of the two variables, X and Y.

Required initially are three different sets of guesses

for X and Y [(X1,Y1), (X2,Y2), (X3.Y3)] and the values of P

and G for each set of X and Y. Values of X1‘ and Yh are de-

sired such that FA I 0, GA I 0.

Letting AX1 I X2 - X1, 2 3 2

and six unknowns (a, b, c, d, Xh, Y“) can be written:

aAX + bAY I AF
1 1 l

8AX2 + bAY2 I AF2

an3 + bAY3 AFB - -F3

\
cAXl + dAYl I AGl

cAX2 + dAY2 I AG2

cAX3 + dAY3 I AG3 I -G3

AX I X - X , etc., six equations

(1)

(2)

(3)

(h)

(5)

(6)

Equations (1) and (2) are solved for a and b, equations (A) and

(5) for c and d, and equations (3) and (6) for AX3 and AY3.

The expressions for AX3 and AY3 are:
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AX3 a x,4 - x . (G3b - F3d)/(ad - bc) (7)
3

AY3 I Yh - Y3

The last two mathematical statements of the subroutine are

I (F3c - 63a)/(ad - bc) (8)

equivalent to equations.(7) and (8).

This subroutine was checked by using it on a system of two

linear functions of two unknowns. Three sets of guesses were

made for the two unknowns, and the subroutine was employed to

compute the increments necessary to make the functions equal

to zero. Only one step was needed which indicated that the

subroutine was extrapolating properly.

COEFFl I coefficient a in equations (1) to (3)

COEFF2 I coefficient b in equations (1) to (3)

COEFF3 I coefficient c in equations (h) to (6)

COEFFh I coefficient d in equations (h) to (6)

DELTAXl 3 X2 - X1

DELTAX2 = X3 - X2

DELTAX I Xh - X3 I difference between the next value of X and

the most recent value of X

DELTAYl 3 Y2 - Y1

DELTAYZ I Y3 - Y2

DELTKY I Yh - Y3 I difference between the next value of Y and

the most recent value of Y

DENOMl - (Y3 - Y2)(X2 - x1) - (Y2 - Y1)(X3 - x2)

DENOM2 I ad - bc
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DIMENSION X(25)9 W(25)9 PC‘ZS).

2(5).1 TR(25)¢

DEN(1)

DEN(2)

DEN(3)

DEN(4)

S I 2(3)

FSTDER =

U
l
b
U
N
I
‘

SECDER

u
m
.
-

+
+
+
u

THRDER I

END

DR(25)0 ZR(25)9

(FSTDERoSECDERqTHRDER)

TC(25)§ PK(25)9 TK(25)e PR(25)0

FUNC(5)O DEN(5)O PZRWRPR(25)

COMMON IeDCBoTCBeACeBCQCCoDCoECOCOCI9C20C3QC49C59C61C79C89C990Re

1 DRIDERODRZDERoTRoTRlDERvTRaDERsTRBDERQPRePRlDERePRZDERepflaDERs

2 PCoPKeTCeTKoQQeTOeTOlDERsTOZDEReTNeTNlDERQTNZDERQTTQTTIDER9V0

3 VIDERQY'YIDEROYZDEROZKOZKIDERQZKaoEROZRIZ!XOWOGZDERIGSDEROFUNC

4 OPZRWRPR

(Z(l)“Z(2))*(Z(1)‘Z(3))*(Z(l)‘Z(4)’

(2(2)‘Z(1))*(Z(2)'Z(3))*(Z(2)‘Z(4))

(Z(3)‘Z(1))*(Z(3)‘Z(2))*(Z(3)‘Z(4))

(Z(4)‘Z(1))*(Z(4)‘Z(2))*(Z(4)’Z(3)’

((30*S**2-20*S*(Z(2)+Z(3) 2(4))+Z(3)*(Z(2)+Z(4))+Z(2)*

(6o0*$ -2o*(Z(4)

(600*5 -2.*(Z(l)

(6.0*$ -2.*(Z(1)

(6cO*S -2.*(Z(1)

+

+

+

+

2(2)

2(3)

2(2)

2(2)

+

+

+

+

2(4))*FUNC(1))/DEN(1’+((3e*5**2“20*$*(2(1)+Z‘3)+Z(4))+Z(l)*

(Z(3)+Z(4))+Z(3)*Z(4))*FUNC(2))/DEN(2)+((3.*S**2-20*$*(Z(1)+

Z(2)+Z(4))+Z(1)*(Z(2)+Z(4))+Z(2)*Z(4))*FUNC(3))/DEN(3)+((3.*S**2

-2.*S*(Z(1)+Z(2)+Z(3))+Z(1)*(Z(2)+Z(3))+Z(2)*Z(3))*FUNC(4))

/DEN(4)

Z(3)!)*FUNC(1)/DEN(1)

Z(4)))*FUNC(2)/DEN(2)

Z(4)))*FUNC(3)/DEN(3)

Z(3)))*FUNC(4)/DEN(4)

6o*(FUNC(1)/DEN(1)) + 6o*(FUNC(2)/DEN(2))

1 + 60*(FUNC(3)/DEN(3)) + 6o*(FUNC¢4)/DEN(4))
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Subroutine POLY

Purpose: To calculate numerically first, second and third derivatives of

a function at a given value of the independent variable.

Input: Four values of the function, r<zl), f(22), f(23), and f(Zh),

and four values of the independent variable, 21, 22. 23, and 2h

are placed in memory prior to the calling of the subroutine.

Details: A third degree polynomial (four points) may be writtenhl:

r(z) — a23 + bz2 + cZ + d (1)

or

(z-zz)(z-z )(z-zh) (z-z1)(z-z )(zazh)

“2’ ' T7477 “21’ * r—T'Lr—J “22’

* (Z-Zl)(Z-22)(Z-Zh) r(z ) + (Z-Zl)(Z-22)(Z-Z ) {(2 )

W> a W.m ..-z. ..

2 (2)

32 - 2(22+z +zh)z + z z + zazh + 2 Zn

21-22 Zl-Z3 zlfzh 1

+ see (3)

f"(Z) IWf(Z1)+ u. (h)

3

:vv 3 6 I
f (Z) TEI:E-IT§::§;TTE;:ZI7‘f(Zl) + 00° ' (5)

Equations (3). (h), and (5) can be used to calculate numerically

first, second, and third derivatives, respectively, at any value

Z. 'The value of Z is called S in the Fortran program. In this

particular program, the derivatives are computed at 23.

Method of

Checking: A third degree polynomial was constructed and values of {(z) cal—

culated at four arbitrary values of Z. These results were then
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input into the subroutine to see if the generated values agreed

with the original polynomial and its derivatives, for specific

values of Z.

DEN I the denominators_of the terms_in equations.(2), (3), (h),

and (5). DEN(l) represents the denominator of the first

term,.etc.

FSTDER I calculated value of the first derivative

FUNC I value of the function .

S I the value of 2 at which the derivatives are being calculated

SECDER I calculated.value of the second derivative

THRDER I calculated value of the third derivative

2 I specific values of the independent variable (2) for which

the values of the function are known
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SUBROUTINE WBKAY

DIMENSION X(25)v W(25)9 PC‘ZS’Q TC‘25)9 PK(25)0 TK(25)0 PR‘ZS).

1 TR(25)9 DR‘ZS)! ZR(25)O 2(5)s FUNC(5)QPZRWRPR¢25)

COMMON IODCBOTCBeACeBCeCCeDCsEGsCsCl9C29C39C49C59C69C79C80C990Rs

l DRIDERODRZDERoTReTRlDEReTRZDERoTRBDERQPRQPRIDERQPRZDERQPR3DERQ

2 PCQPKQTCeTKQQQeTOeTOlDEReTOZDEReTNsTNlDEReTNaDERsTTeTTIDERQVQ

3 VIDERQYeYlDERsYEDERoZKoZKlDERsZKZDERoZReZeXoWeGZDEReGBDERoFUNC

4 QPZRWRPR

W‘I) = 3O.06*X(I)/(30006*X(11+(10‘X(I))*100e17)

TKCI) = (51303-18604392126*X(I)+20 e413825*X(I)**2-558e3704113*

1 X(I)**3+12101957936*X(I)**4+459e67)/1e8

PK(I) = (396e+3051e927387*W(I)-1199e746006*W(I)**2-4263e827785*

1 W(I)**3+2727.646362*W(I)**4)/14e696

END
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Subroutine WBKAY

Purpose: To calculate Tk and Pk at a given composition.

Input: The value of composition (x1) and the value of subscript i

must be placed in memory before this subroutine is called.

Details: The experimental Tk and Pk values for the ethane-n-heptane

system, as published by W. B. Kay,23 were fitted to a fourth

degree polynomial by a modification of the method of least

squares. This modification was necessary in order to obtain

an exact fit for pure ethane and pure n-heptane.

The critical temperature envelope curve is expressed as a

function of mole fraction ethane. However, the critical pres-

sure envelope curve is expressed as a function of weight frac-

tion ethane because a better fit of the pressure data was ob-

tained using this variable.

Method of ,

Checking: The compositions as recorded in the published article were

input, and the results were compared with the published values

at these compositions.

Fortran

Nomen-

clature: I I subscript i on composition (x)

PK I true critical pressure of mixture (Pk), atm.

TX I true critical temperature of mixture (Tk), °K

W I weight fraction ethane

X I mole fraction ethane (x)
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SUBROUTINE PRCALC

DIMENSION X(25)9 W(25)0 PC‘ES). TC‘ZS)! PK(25)0 TK(25)0 PR‘25)9

1 TR(25)9 DR(25)e ZR‘25)0 2(5)! FUNC‘S)OPZRWRPR(25)QSAVE(4)

COMMON IQDCBOTCBQACQBCQCCeOCoECeCeCX9C20C31C49C59C69C79C89C990R.

DRIDERQDRZDEReTReTRlDEReTRBDER9TR3DERQPR9PRIDER9PRZDER0PR3DER9

PCQPKQTCQTKeQQeTOeTOlDERoTOZDEReTNeTNIDEReTNzDEReTTeTTIDERQVQ

VIDEReYeYlDEReYZDEReZKeZKiDEReZKZDEReZReZeXsWeGZDEReGSDEReFUNC

QPZRWRPR

Q = (TR(I)*TCB)/looe

«
b
U
N
H

ox = (10.*Q**6)**4

co = (EC/(Q**2*Ql) + DC/G/Ol + BC/Ol + AC)/(CC/Ol + 1.)

C4 = (cos/C)*c0)/oca

DO 5 K=192

DR(I) = loE-05*(-le)**K + DR(I)

00 = EXPF(-C9*DR(I)**2)

PR(I) I CI*DR(I)*TR(I)+C2*TR(I)*DR(I)**2-C3*DR(I)**2-C4*DR(I)**2

1 /TR(I)**2+C5*TR(I)*DR(I)**3-C6*DR(I)**3+C7*DR(I)**6+(le+C9*DR(I)

2 **2)*QQ*C8*DR(I)**3/TR(I)**2

29(1) I PR(I)/TR(I)/DR(I)

SAVE(K) = PR(I)

5 SAVE(K+2) 3 ZR(I)

PZRWRPR(I) = (SAVE(4)-SAVE(3))/(SAVE(2)“SAVE(1))

END
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Subroutine PRCALC

Purpose:

Input:

Details:

Method of

To calculate Pr and Zr at a given composition.

Values for constants f, g, h, J, k, 1, m, n, c, aco, bCO, cCo,

dCo, eCO, critical temperature (TCB), critical density (DCB),

Tri, Dri, and the value of the subscript i must be placed in

memory before this subroutine is called.

The expression for the Benedict-Webb-Rubin constant Co as a

function of temperature is:

co - [ICC/Qz-Ql) + dC°/(Q-Ql) + bCo/Ql + acol/(cco/Ql + 1) (1)

where

Q I Tr-TCB/lOO

Q1 ' (10°Q6)h

From the value of Co the constant 1 is computed from:

1 - m-Colc/DCB (2)

For use in the subroutine and subroutines GZCALC and

G3CALC, a quantity called QQ is defined:

QQ . exP(-n-Dr12) (3)

Pri is calculated according to equation (3), Appendix III.

Zr1 is computed from:

Zr1 I Pr1/(Tr1 Dri) f (h)

As added information, the slope of the reduced compressibi-

lity factor curve as a function of reduced pressure at constant

temperature is computed numerically. This quantity is called

PZRWRPR.

Checking: This expression for reduced pressure was used to calculate

fugacities. These calculated fugacities checked very well
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with known fugacities.

Fortran

Nomen-

clature: AC I aCO

BC I b0

0

O r
:
-

I Benedict-Webb-Rubin reduced equation of state constant i

DC I dCo

EC I eCo

I I subscript i

PZRWRPR - (azr/aPr)Tr
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Subroutine 62CALC

Purpose:

Input:

Details:

Method of

Checking:

Fortran

Nomen-

clature:

To calculate G".

Derivatives Tr', Tr", Pr', and Pr" at x must be in memory
1

when GZCALC is called. In addition, the input requirements

for subroutine PRCALC must be satisfied because PRCALC is

called in this subroutine.

Subroutine PRCALC is called to compute the constant 1 and the

quantity QQ.

The derivations of all equations used in this subroutine

are in Appendices III, IV, and V. The equations in the order

used are:

III 9, 10, 11

III - 12, 13. 1h

IV-6,7

IV - l, 2, 3

IV - 9, 10

:
4
0
.
»
e
r

N
U
)

III -

Program CHECK was used to check the equations used in this

subroutine.

DR I reduced density (Dr)

DRlDER I Dr'

DRZDER I Dr"

GZDER I G"

PR I reduced pressure (Pr)

PRIDER I Pr'

PR2DER I Pr"

TN I Tn

TNlDER I Tn'

TN2DER I Tn"
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TO I To

TOIDER I To.

TOZDER I To"

TR I reduced temperature (Tr)

TRlDER I Tr'

TRZDER I Tr"

TT I Tt.

TTlDER I Tt'

U I U

UlDER I U'

V I V

VlDER I V'

X I.mole fraction ethane (x)

Y I Y

YlDER I Y':

Y2DER I Y"

ZK I compressibility factor (Z)

ZKlDER I Z'

ZKZDER I Z"
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Subroutine G§CALC

Purpose:

Input:

Details:

Method of

Checking:

Fortran

Nomen-

clature:

To calculate G"'.

Tr"' and Pr"' at x1. Also, the input requirements of sub-

routine G2CALC must be satisfied because GZCALC is called in

this subroutine.

Subroutine GZCALC is called to make preliminary calculations.

The derivations of the equations used in this subroutine

are found in Appendices III, IV, and V. The equations in the

order used are:

III

III

IV - 8

IV

IV - 5

V - h

V - 8

III 19

I
I

P
'
F
'

\
n
0
4

I P H
.

O

..
.n

N

Program CHECK was used to check the equations used in this

subroutine.

DRBDER I Dr"'

GBDER I G"'

PRBDER I Pr"'

TN3DER I Tn...

TO3DER I To...

TR3DER I Tr"'

TT2DER I Tt"

U2DER I U" I

V2DER I V"

ZKBDER . 2'”
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DATA

50153462298

370e0505321

42e38841074

008207

e097313

6e87225

508256e

e0225

e9477

129000e

e000607l75

0022

508256.1345

103884570335-06

2e84456914lE‘12

.0

e0

1

1.005

leOlO

1e017

1.002

1.004

1.007
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Data

The data represents the following:

5.153h62298 I the critical density of propane as computed from

the Benedict-Webb-Rubin equation of state,

g-moles/liter ,

370.0505321 I the critical temperature of propane as computed

from the Benedict-Webb-Rubin equation of state, °K

h2.388h107h I the critical pressure of propane as computed from

the Benedict-Webb-Rubin equation of state, atmt

0.08207 I gas constant B, (liter-atm.)/(8Imo1e-K°)

0.097313 I Benedict-Webb-Rubin constant B

6.87225 - Benedict-Webb-Rubin constant A °

508256. I Benedict-Webb-Rubin constant C0

0.0225 - Benedict-Webb-Rubin constant b

0.9h77 I Benedict-Webb-Rubin constant a

129000. I Benedict Webb-Rubin constant c

0.000607175 I Benedict-Webb—Rubin constant c

0.022 I Benedict-webb-Rubin constant 7

508256.13h5 I aCo

1.388h57o33x10‘6 - bc°

2.8hh5691h1x10'12 - cco

0 I dC
o

0 I eCo

l I number of sets of guesses of Tr2, Tr3, Trh, Dre, Dr3, Drh

1.005 I first guess of Tr2

1.010 I first guess of Tr3

1.017 I first guess of Trh

1.002 I first guess of Dr2

I.ooh 3

1.007 I first guess of Drh

first guess of Dr
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1101

ab
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APPENDIX VII

Program TOTRANGE

The objective of program TOTRANGE is to vary simultaneously the

values of reduced temperature (Tr) and reduced density (Dr) at x and x3
2

until G ", G ", G2"', and 03"' become equal to zero. The composition
2 3

range is split into only three intervals. Therefore, possible values of

x2, x3, and xh could be 0.33, 0.67, and 1.0, respectively. This program

follows the flow diagram in Figure 6, page 38.

Program TOTRANGE makes use of the known values of Tr and Pr for both

pure components. Because four variables (Trz, Tr3, Dr2, Dr3) are changed

simultaneously to satisfy four known conditions, it should be possible to

converge to a solution. Negative values of Tr and Dr are not permitted.

The convergence method used is similar to Newton's convergence method for

systems of equations.he

The main body and subroutine PHICALC are listed for reference. The

nomenclature is identical to that listed on page 10h except for the vari-

able PHI which is defined as the sum of the squares of the four above

listed G quantities.

The main divisions of program TOTRANGE are:

1. Program TOTRANGE-Main Body

2. Subroutine PHICALC

3. Subroutine WBKAY

h. Subroutine POLY

5. Subroutine PRCALC

6. Subroutine G2CALC

7. Subroutine G3CALC

8 a Data
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PROGRAM TOTRANGE

DIMENSION XIZS)! W(25)s PC‘25Ie TCI25)9 PK(25)9 TK(25’9 FRIES).

1 TR(25)0 DR(25)9 ZR(25)9 Z(5)9 FUNC(5)O 6(4). XX(7)9 TINCI(4)9

2 DINCI(4)0TINC(4)ODINC(4)0PHIN(7)ODELXX(7)o PXCIO)OD(794)O

3 PPDXC7IO DELTAXX(6)9 DA(5e4)e PDX(7)e BB(5¢4)9 RZRWRPR(25)

COMMON IODCBQTCBOCOACOBCOCCQDCOECOCIOC20C30C40C50C60C70C80C90XOWQ

I ORQDRIDEReORZDERoTReTRIDERoTRZDERQTR3DER9PR0PRIDER0PRZDER0PR3DER

2 oTCePCeTKePKeQOoTOQTOIDERQTOZDERQTNQTNIDEReTNZDEReTTeTTlDER

3 CVQVIDERQYOYIDEROvaoERQZKOZKIDER9ZKZDERQZRQZOSQFUNCOGZDEROGBDERO

4 GePHIePZRWRPR

I FORMAT (518.11)

2 FORMAT (/913H CALCULATION .12./)

3 FORMAT (/03H Xs4EZIeIOe/93H TRe4EZlelOe/03H DR04E219109/03H PR.

1 4E21e109/93H ZRs4EZIe109/98H PZRWRPRsIGXQZEZIeIO)

4 FORMAT (1H1)

6 FORMAT (I2)

7 FORMAT (8H RESULTSoBXeéHPHI = QEIBeIO)

8 FORMAT (10H GZOERZ = 0518.1003X09HG3DER2 = sElBelOe3X99HGZDER3 3 e

1 €18.10e3X99HG3DER3 = eElBelOs/)

9 FORMAT (9H TR(2) = 9518.1094X98HTR(3) = oElBelOe4X98HTR(4) 3 e

1 ElBelOe/ogH DR(2) = 9E18e1004X98HDRIS) = eElBelOs4X98HDR(4) = o

2 518.10)

11 FORMAT (25Xo34HFOUR VARIABLES AND FOUR CONDITIONSc4(/))

PRINT 11

READ 19 DCBQTCBQPCBQRQBOQAOeCOeBOAeCOALPHAOGAMMAQACQBCQCCODCOEC

PRELIMINARY CALCULATIONS

C1 = (DCB*TCB*R)/PCB

C2 = C1*BO*DCB

C3 I (AO*DCB**2)/PCB

C5 = CI*DCB**2*B

C6 I (DCB**3/PCB)*A

C7 = C6*DCB**3*ALPHA

C8 = (C6/(A*TCB**2))*C

C9 = DCB**2*GAMMA

C1=Fo C2=Go C3=Ho C4=Io C5=Jo C6=Ko C7=Lo C8=Mo C9=N

READ 69 NUMDATA

DO 39 NN=19NUMDATA

200 READ Iv (TRII)91=293)0(DR(I)QI=293)

DELTA = loE-OS

X(l) = OeO

X(2) = 0e6215

X(3) 3 0e8723

X(4) = 1.0

TRII) 3 leO

DR(1) 8 100

PR(I) = leO

ZR(1) 3 leO

TR(4) 3 100

DRI4) 3 leO

pR(4) 3 leO

ZR(4) 3 leO

DO 201 I = 194

201 CALL WBKAY

PCII) I PK(1)/PR(1)



10

15

20

66

69

7O

71

77

72

73

74

75

41

43

42
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TC(1) TK(1)/TR(1)

PC(4) PKIQI/PR(4)

TC(4) I TKI41/TR(4)

CALL PHICALC

PHIN‘II 3 PHI

PRINT 7. PHI

PRINT 9. (TR(1191:294)0(DR(1)91=204)

PRINT 89 (G(I).1=194)

DO 37 M = 1050

PRINT 20 M

DO 18 L=194

DI59L) = ’G(L)

DO 10 13192

XX(1) = TR(I+1)

XX(I+2) = DR(1+1)

DO 20 J3104

XX(J) = XX(J) + DELTA

DO 15 1:102

TR(1+1) = XX(1)

DR(1+1) = XX(1+2)

CALL PHICALC

XX(J) = XX(J) - DELTA

DO 20 1:104

D(J91) = (6(1) + D(591))/DELTA

DO 66 1:195

DO 66 J=le4

DA(19J) = DIIeJ)

DO 74 13194

DO 71 J=194

DIVISOR = DA‘IQJ)

1F (DA(10J))69971969

DO 70 K = 195

DA(KoJ) = DA(KgJ)/DIVISOR

88(Ko1) = DA(KoJ)

CONTINUE

DO 74 J=194

1F (DA(19J))72974072

DO 73 K=105

DA(KQJ) = DA(K9J) - BB(K91)

CONTINUE

PDX(5) = -10

DO 75 MA = 194

1 = 5 - MA

PDX(1) 3 De

L = I + 1

DO 75 K=Lo5

PDX(1) = PDX(I) - BB(KoI)*pDX(K)

DO 41 N=194

DELTAXX(N) = PDX(N)

XX(N) = XX(N) + DELTAXX(N)

DO 88 KK=1015

DO 42 1:192

TR(1+1) = XX(1)

DR(1+1) = XX(1+2)



87

88

79

34

37

38

1

39

CALL PHICALC

PRINT 7. PHI

PRINT 99 (TR(1191=2s4)o(DR(1)oI=2941

IF (PHIN(1)-PH1187987079

DO 88 N = 104

DELTAXX(N) I DELTAXXIN)/2o

XXIN) I XX(N) - DELTAXXIN)

GO TO 38

PHIN(1) = PHI

PRINT 8. (G(I)91=194)

1F (PHI - loE-IO)38938¢37

CONTINUE

PRINT 39 (X(1)9I=le4)e (TR(1)OI=194)9

(ZRI1)OI=1'4)O (PZRWRPR(1)91=203)

PRINT 4

END

(DR(I).I=1.4)e(PR(1191=194)9
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SUBROUTINE PHICALC .

DIMENSION X(25)9 W(25)0 PC‘ZS)! TC‘ZS). PK(25)0 TK(25)9 PRIZS).

1 TR(25)9 DR(25)v ZR(25)¢ 2(5). FUNG(5)9 6(4). PZRWRPRIZS)

COMMON IQDCBQTCBoCoACoBCoCCoDCQEC¢Cl9C29C39G4QC50C60C79C89C90X9W9

l DRoDRIDERoDRZDERoTRQTRIDERvTRZDER¢TR3DERQPR9PRIDERQPRBDEROPRBDER

2 qTCoPCoTKcPKoOO‘TOoTOIDERsTOEDERoTNQTNIDEROTNBDERQTTQTTIDER

3 9V!VIDERQYQYIDEROYZDEROZKOZKIDEROZKZDEROZRQZ.SQFUNCQGZDEROGaoERQ

4 GoPHIoPZRWRPR

DO 10 I=293

CALL PRCALC

TC(I) = TK(I)/TR(I)

PC(I) = PK(I)/PR(I)

DO 14 1:203

DO 11 K=194

Z(K) = XIK)

FUNC(K) a TC(K)

S = 2(1)

CALL POLY (TCIDERQTCZDEROTCBDER)

DO 12 K3194

FUNC(K) = PC(K)

CALL POLY (PCIDERQPCZDERoPCBDER)

TRIDER = “TR(I)*TCIDER/TC(I)

TRZDER *2.*TRIDER*TCIDER/TC(I) - TR(I)*TCZDER/TC(I)

TRBDER 60*TK(I)*TCIDER*TCZDER/TC(I)**3‘60*TK(I)*TCIDER**3/TC(I)

l **4 - TKII)*TC3DER/TC(I)**2

PRIDER = -PR(I)*PCIDER/PC(I)

PRZDER = -2.*PRIDER*PCIDER/PC(I) - PR(I)*PCZDER/PC(I)

PR3DER = 60*PK(1)*PC1DER*PC2DER/PC(I)**3-6.*PK(I)*PCIDER**3/PC(I)

1 **4 - PKCI)*PCBDER/PC(I)**2

CALL G2CALC

CALL G3CALC

G(2*I-3) = GZDER

G(2*I-2) = G3DER

PHI = G(I)**2 + G(Z)**2 + G(3)**2 G(4)**2

END
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SUBROUTINE PHICALC '

DIMENSION X(25)0 W‘ZS). PC‘ZS)! TCIZSIQ pK<25)0 TKI25)Q FR‘25)9

1 TR€25I9 DR(25}9 ZR(25)9 2(5). FUNC(5)9 6(4). P2RWRPR‘25)

COMMON IODCBOTCBOCQACOBCoCCQDCoECOCI9C29C3oG40C59C60C70C89C9QX0W9

1 DRODRIDERODRZDERQTRQTRIDER‘TREDEROTR3DEROPR‘PRIDEROPRBDER.PRBDER

2 OTCQPCQTKoPKoOQoTOoTOlDERoTOZDER.TNQTNIDERCTNZDEROTTOTTIDER

3 9V0VIDERQYOYIDEROY2DEROZKOZKIDEROZKaoEROZRQZOSOFUNCOGZDERQGBDERQ

4 GQPHIQPZRWRPR

DO 10 1:293

CALL PRCALC

TC(I) = TKII)/TR(I)

pC(I) : pK(I)/pR(I)

DO 14 1:293

DO 11 K=194

Z(K) = XIK)

FUNC(K) ‘ TC(K)

S = 2(1)

CALL POLY (TCIDERoTCZDERoTCBDER)

DO 12 K3194

FUNC(K) = PCIK)

CALL POLY (PCIDERQPCEDER¢PCBDER)

TRIDER 8 ”TR(I)*TCIDER/TC(I)

TREDER “20*TRIDER*TCIDER/TC(I) - TR(I)*TCZDER/TC(I)

TR3DER 6o*TK(I)*TCIDER*TCZDER/TC(I)**3‘60*TK(I)*TCIDER**3/TC(I)

l **4 - TK(I)*TCBDER/TC(I)**2

PRIDER = -PR(I)*PCIDER/PC(I)

PRZDER = -2.*PRIDER*PCIDER/PC(I) - PR(I)*PCEDER/PC(I)

PR3DER = 6.*PK(I)*PC1DER*PCZDER/PC(I)**3-6.*PK(I)*PCIDER**3/PC(I)

1 **4 - PKII)*PCBDER/PC(I)**2

CALL GZCALC

CALL G3CALC

G(2*I'3) = GZDER

G(2*I-2) = GBDER

PHI = G(I)**2 + 6(2)**2 + G(3)**2 G(4)**2

END
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APPENDIX VIII

Program CHECK

The purpose of program CHECK was to check the equations for G" and

G"' and their supporting equations in subroutine GZCALC and GBCALC.

Beginning with the expression for G, the derivatives were calculated by

numerical differentiation and from the mathematical expressions for the

derivatives. These two answers were then compared, and if they were

nearly identical, the mathematical equations for the G quantity were

assumed to be correct. This program follows the flow diagram in Figure 7.

page 39.

The main division of program CHECK are:

1. Program CHECK-Main Body

2. Subroutine PRCALC

3. Subroutine 62CALC

h. Subroutine GSCALC

5 0 Data
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PROGRAM CHECK

DIMENSION X(25)s W(25)s PC(25)0 TC‘BS)! PK(25)I TK(25)9 PR(25)9

TR(25)9 DR(25)0 ZR(25)9 2(5)! FUNC(5)O 6(4). XX(7)O TINCI‘4).

DINCI(4)97INC(4)ODINC(4)9PHIN(7)ODELXX(7)e PX‘IO)OD(703)O

PPDX(7)0 DELTAXX(6)Q DA(493)0 PDX(7)9 88(493)

QDCC(ZO)Q DK(20)

COMMON IQDCBOTCBQPCBORQBOQAOeCOeBsAsCeALPHAeGAMMAsACQBCsCCeDCeECe

CI9C20C39C41C5eC6oC7oC81C99XeWQDR9DRIDERooREDERoTReTRIDER.TRZDERs

TR3DERePRsPRIDERsPRZDERsPRBDEReTCQPCQTKsPKeQQeTOeTOIDEROTOZDERQ

TN.TNIDER.TN20ER.TT.TTIDER.VcVIDER.Y.YIDER.YZDER.ZK.ZKIDER.

ZKEDEROZReZeSQFUNCQFSTDEROSECDERQTHRDERecaDERsGBDEROGePHI

OGGQGIDER

FORMAT (518.11)

FORMAT (12)

FORMAT(25X913HCHECK PROGRAMe4(/))

FORMAT (3EZOOIO)

FORMAT (/96H CHECK03EZOeIO!/eéX03E20elOO3(/))

PRINT 3

READ 19 DCBQTCBsPCBsReBOeAOeCOeBeAQCeALPHAQGAMMAQACOBCQCCQDCOEC

PRELIMINARY CALCULATIONS

CI = (DC8*TCB*R)/PCB

C2 = CI*BO*DCB

C3 = (AO*DCB**2)/PC8

C5 = CI*DC8**2*8

C6 = (DCB**3/PCB)*A

C7 = C6*DCB**3*ALPHA

C8 = (C6/(A*TCB**2))*C

C9 = DCB**2*GAMMA

Cl=Fc C2=Go C3=Hc C4=Io C5=Js C6=Ke C7=Lo C8=Me C9=N

59

58

l

I

DELTA = 0.00001

READ 29 NUMDATA

DO 64 NN=IoNUMDATA

READ ls X(I)

ASSIGN 60 TO JOHN

I = 1

TK(I) = (513-3-186o4392126*X(I)+20 0413825*X(I)**2-558.3704113*

X(I)**3+12101957936*X(I)**4+459o67)/1o8

DKII) = 2.3 + 20*X(I) + 30*X(I)**2

TC(I) = 530. + 200.*X(I) - 400.*X(I)**3

TCIDER 2 +200. ~1200.*X(I)**2

TC2DER = ~2400o*X(I)

TC3DER = ~2400.

PC(I) = 25. + 1400*X(I) - 120o*X(I)**3

PCIDER 3 I40. - 360.*X(I)**2

PCZDER = -720.*X(I)

PC3DER = ~720e

DCC(I) = CI*PC(I)/TC(I)/R

TR(I) = TK(I)/TC(I)

DR(I) 8 DK(I)/DCC(I)

CALL PRCALC

PK(I) = PC(I)*PR(I)

PRINT 109 TC(II9TK(I)OTR(I)QDCC(I)CDK(I)ODR‘I)OPC(I)OPK(I)OPR(I)9

X(I)

TRIDER = -TR(I)*TCIDER/TC(I)
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TRZDER = -2.*TR1DER*TCIDER/TC(I) - TRII)*TCEDER/TCII)

TR3DER = 60*TKII)*TCIDER*TCZDER/TC(I)**3*6.*TK(I)*TCIDER**3/TCII)

I **4 - TKII)*TC3DER/TC(I)**2

PRIDER = *PRII)*PCIDER/PC(I)

PRZDER ~20*PRIDER*PCIDER/PCII) ~ PRII)*PC2DER/PCII)

PR3DER = 6o*PK(I)*PCIDER*PC2DER/PC(I)**3“6o*PKII)*PCIDER**3/PC(II

1 **4 - PKII)*PC3DER/PC(I)**2

CALL GZCALC

CALL G3CALC

GO TO JOHN

XII) = XII) + DELTA

PRINT 109 G6. GlDERc G2DER¢ G3DER

PKI = PKII)

661 = 66

Gll GIDER

621 = GEDER

G31 = GBDER

ASSIGN 61 TO JOHN

GO TO 59

XII) = X(I) ' DELTA

fl

PGWRXDT = (GG - GGl)/DELTA

PIWRXDT = IGIDER - GII)/DELTA

PFWRXDT = (GZDER - GZI)/DELTA

PPWRXDT = IPKII) - PKI)/DELTA

PRINT 109 PGWRXDT. PIWRXDT. PFWRXDTQ PPWRXDT

ASSIGN 62 TO JOHN

GO TO 59

DKII) = DKII) + DELTA

ASSIGN 63 TO JOHN

GO TO 58

PFWRPXT = IGZDER - G21)/IPKII) “ PKI)

PGWRPXT = (GG - GGI)/IPK(I) ‘ PKI)

PIWRPXT = (GIDER - GII)/(PK(I) . PKI)

PRINT 10o PGWRPXT. PlWRPXTo PFWRPXT

GIDERN = PGWRXDT - PGWRPXT*PPWRXDT

GZDERN = PIWRXDT - PIWRPXT*PPWRXDT

G3DERN = PFWRXDT - PFWRPXT*PPWRXDT

PRINT 119 Gllo 621. G310 GIDERN. GZDERN. G3DERN

END
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Program CHECKAMain Bog:

Purpose:

Input:

Details:

To check the equations for G" and G"' and all of the support-

ing equations in subroutine GZCALC and G3CALC.

P-V-T data on a reference compound (in this case propane). This

data includes the critical properties, the gas constant R, eight

Benedict-Webb-Rubin constants, and five constants for computing

Co as a function of temperature. Also, the value of composition

(x1) at which the derivatives are to be calculated.

This program computes derivatives 6', G", and G"' from the

mathematical expressions for these derivatives, and also by

numerical differentiation. If each pair of results are nearly

identical, the equations are assumed to be correct.

The expression for the derivative of'a function F(T,D,P,x)

with respect to x at constant T and P was shown on page 39 to

be: 2+ '

(as/ax)T.P - (av/anonD - (aF/aP)T.x(aP/ax)T’D (1)

where F can equal G, G', or 6".

[Up to third derivatives are needed for To and Pc. For this

program it is sufficient to use simple, arbitrary functions for

these variables. The functions were selected such that they

approximated the Tc and Pc values for pure ethane and pure

n-heptane. The expressions used were:

Tc I 530 + 200x - hOOx3 (2)

Pc - 25 + 1&0: - 120x3 (3)

Equations (2) and (3) are readily differentiable with respect to

x. This differentiation was done by hand and the resulting

formulas put into the program.



Method of

Checking:

Fortran

Nomen-

clature:

13h

For the sake of accuracy, an expression was devised for Dk

which approximated the experimental data of Kay23. For purposes

of this check program, a constant value of Dk could also have

been used. The expression for Dk is:

Dk - 2.3 + 2x + 3::2 (h)

The expression used for Tk is the same one which is used in sub-

routine WBKAY.

Extensive use is made of subscripted variables in this pro-

gram, although this is unnecessary. This is done for two rea-

sons. IFirst, program CHECK was prepared from other programs

which were already written, and these had subscripted variables

in them. Second, since the equations in this project actually

use subscripted variables it is better to check those specific

equations. The specific subscript used throughout this program

18 ls

A second person checked over this program.

DCC I pseudocritical density, moles/liter

CC I G

GlDER ' G'

G2DER I G"A

G3DER ' G"'

GlDERN I numerical value of G' I (aG/ax)T P

9

GQDERN I numerical value of G" I (aG'/ax)T P

G3DERN I numerical value of G"' I (36"/3xIT P

’

Gll I name of variable which is used to save the first value

of G' »

621 I name of variable which is used to save the first value

of 6"

G31 I name of variable which is used to save the first value

or G!!!

PKl I name of variable which is used to save the first value

of Pk

PGWRXDT I (EC/ax)T D

O

3 c
lenan (as /ax)T’D
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PFWRXDT I (36"/8x)T’D

PPWRXDT I (aP/ax),1..D

PGWRPXT . (ac/3PM.x

PlWRPXT - (ac‘.'/al=).1.’x

PFWRPXT - (MN/313),“x
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Subroutine PRCALC - Same as for program LINEAR

Subroutine GZCALC - Same as for program LINEAR except that G and G' are

also computed. G is calculated from equation III-18

and G' is calculated from equation III-l9.

Subroutine G3CALC - Same as for program LINEAR.

Data - Same as for program LINEAR except that no values for Dr and Tr are

put in the data. Instead, after the data card for eCO, values are

read for NUMDATA and the compositions at which a check is to be

made. The number of values of x must be equal to the value of

NUMDATA.

 



APPENDIX IX

Generated Pseudocritical Curve Results - Approaches I and II

Approach I

Using as known conditions, experimental critical temperatures, pres-

sures, and compressibility factors and the fact that 6" equals zero at

the critical point, an attempt was made to generate pseudocritical tem-

parature and pressure curves. Representative data points are listed in

Tables 11 and 12. Table 11 contains the generated values of pseudocriti-

cal temperature as a function of composition, while Table 12 contains the

generated values of pseudocritical pressure as a function of composition.

Figure 20 is a plot of the pseudocritical temperature data.

The temperature data in Figure 20 show a large amount of instability.

The stability of each curve was directly dependent on the original guess

made for Tc. * (shown as Tr in Figure 20). In general, Figure 20
OS 05

contains two shapes of curves. The S-shaped curves (Tr I 1.02. 1.0202)

05

exhibit the greatest irregularity. Reference to a typical diagram20 of

compressibility factor as a function of reduced pressure and temperature

indicates that there are two values of reduced pressure which give the

same compressibility factor at the same reduced temperature. Because

reduced pressure is a function of reduced density and temperature, there

must also be two values of reduced density for a given compressibility

factor. If the computer used the high and low values of reduced density

in an irregular manner, as the composition range was crossed, erratic

results such as the S-shaped curves in Figure 20 could occur.

*Tc 05 represents Tc at x I 0.05.
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TABLE 11. Generated values of pseudocritical temperature.(9K) in

 

 

 

 

Approach I

Tr.05 Tc.05 Tc.10 Tc.15 Tc.2o To.25 Tc.3O

1.035 '

1.032 518.99 508.52*

1.031875 519.06 508.65*

1.03175 519.12 508.78 h99.82 h91.53 h8h.6h h85.55*

1.0315 519.2h 509.06 500.h0 h93.1o h90.92*

1.031 519.50 509.69 $02.05*”

1.0305 519.75 510.h2 50h.h6 512.17**

1.03 520.00 511.2h 507.76 5h0.67**

1.0298125 520.10 511.56 509.25* '

1.02925 520.38 512.62 51h.63*

1.0285 520.78 51h.19 52h.11*

1.025 522.5h 523.56*

1.0202 525.00 5h0.11 51h.h2*

1.02 v525.10 5h0.86 516.83*

0.99 5&1.01 $32.57*

Note: Tc for pure n-heptane I Sh0.5h °K

“Indicates that G" did not converge to zero at that value of x.

"Indicates that G" did not converge to a single value, but that it

was near zero.
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TABLE 12. Generated values of pseudocritical pressure (atm.) in

 

 

 

Approach I

Tr.05 Pc.05 Pc.10 Pc.lS Pc»20 Pc.25 Pc.3o

1.035 '

1.032 23.28 23.35“

1.031875 23.32 23.h5*

1.03175 23.35 23.56 2u.h5 26.03 28.95 36.58*

1.0315 23.h2 23.77 2h.96 27.26 32.72“

1.031 23.56 2h.10*

1.0305 23.69 2h.65 27.h5 36.88**

1.03 23.82 25.12 29.15 .9.37..

1.0298125 23.86 25.30 29.8h* 7

1.02925 2h.01 25.85 32.21*

1.0285 2h.19 26.62 32.21.!I

1.025 25.02 30.62%

1.0202 26.07 37.06 32.25“

1.02 26.12 37.3h 33.31*

0.99 32.12 3h.15*

 

Note: Pc for pure n-heptane I 26.9h6 atm.

”Indicates that 0" did not converge to zero at that value of x.

”*Indicates that 0" did not converge to a single value, but that it

was near zero.

 



lhO

Figure 20. Pseudocritical temperature as a function of composition

(Curve parameters are Tr at x
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Figure 20. Pseudocritical temperature as a function of composition

(Curve parameters are Tr at x I 0.05)
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The second type of curve in Figure 20 is parabolic. The reason for

this shaped curve is not as obvious as that for the S-shaped curves.

Although a thorough mathematical analysis is not possible, it could be

speculated that errors in the numerical differentiation eventually became

magnified enough to cause unreasonable results. Each of the curves in

Figure 20 was terminated before the entire composition range had been

traversed because no further convergence could be obtained. All values

of Tr which showed any promise of yielding satisfactory results were

05

thoroughly investigated. This was especially true of the transition area

between the parabolic and S-shaped curves shown in Figure 20.

The programs which began at the pure ethane end of the composition

range instead of at the pure n-heptane end, showed no improvement in

behavior. The same instability was still indicated. Likewise, the chang-

ing of the increment size of x was not an improvement. When butane was

used as a reference compound instead of propane, the curves were similar

in shape to those of Figure 20, but the butane curve; were offset slightly

from the propane curves.

This approach was eventually abandoned because the condition that

0"' also equals zero at the critical point was not being satisfied by

the results.

Approach II

The approach used here was to generate pseudocritical temperature

and pressure curves using as known conditions, experimental critical tem-

peratures and pressures and the fact that G" and G"' equal zero at the

critical point. A mathematical convergence method was required for the

calculations.

The first convergence method used, the double linear process, was not
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completely satisfactory. This method sometimes diverged if the quantities

(AX1.AY2) and (AxaoAYl) [See page 107 for definitions of these quantities.]

became nearly equal. These quantities being nearly equal meant that the

process was near an unstable region and thus, behaved inconsistently.

The usefulness of this convergence method was limited by its tendency ’

to diverge in certain cases. If only one or some small number of conver-

gences are required, then this procedure may be of some use. However, the

percentage of failures is too high to use this method without some dis-

 cretion. Of course, the more linear the equations, the better the method E

will work.

The success achieved in this project from using the double linear con-

vergence process appeared highly dependent on the starting values for the

variables Tr and Dr at x2 and x3. This pointed upagain the possibility

of an error becoming magnified in the system.

At its best, the program using linear convergence did not proceed

higher than x I 0.35 before lack of convergence caused termination of the

program. Program LINEAR is listed in Appendix VI in lieu of specific

results which are meaningful.

Another convergence method which was used to solve systems of two

equations and two unknowns was Newton's method for systems of equations

(also known as the Newton-Raphson method).h2 This procedure extrapolated

using the partial derivatives at a single point. In cases where both the

linear method and Newton's method worked, Newton's method always required

less iterations. However, the linear method often gave convergence when

Newton's method did not. For this reason the linear method was considered

the better method for use in this research.

For solving systems with more variables than conditions, the method
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of steepest descent as defined in this thesis, was not a good convergence

method. There appeared to be two reasons for the difficulties with this

method. First, the assumption that d¢/ dz I Aele was not always a good

one to make. Even for the simplest of the linear cases, d¢/ dx is twice

as large as A¢/Ax. ’This means that the value calculated for p was not

always as good as it could have been. Second, the amount of interplay

between the quantities (0")2, G3")2, and (G3'”)2 in the expression for

0, required the method to make many more iterations than would have been

necessary if the method did not use a function such as 0.

The convergence method which used an approach similar to the Newton-

Raphson methodl‘2 to simultaneously vary the variables (Tr2, Tr3, Tr ,

Dr2, Dr3, Dru) until 0" and G"' were zero at x2. 33. and 1h gave 8005 303‘

vergence. The program using this convergence method gave results for

almost all sets of input tried. The objective was to obtain what appeared

to be a good set of starting values (i.e. Tr and Dr at x2, x3.and xh) and

then use these values as starting values in program LINEAR.

Table 13 lists a typical set of results from this procedure. The

generated values are reasonable until x I 0.35. At this point large

changes take place in Tc and Pc. Using double linear convergence, no set

and Pcof values was found for Tc which made 0" and 0"' equal

0.h0 o.ho

to zero at x I 0.35. These large changes in Tc and Pc at x I 0.35 could

once again have been caused by the magnification of an error. The values

of (BZr/aPr)Tr are quite regular which indicates that the computer did

not use the low and high values of reduced pressure in an arbitrary

manner 0
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Table 13. Generated Tcm and.Pcmvalues from program LINEAR using a set

of starting values from program DECLINE '

 

x Pc Tc (3Zr/3Pr)Tr

0 26.95 atm. 5h0.5h °K --

0.025 26.77 533.06 -10.73

0.050 26.6h 525.80 -5.12

0.100 26.h0 511.55 -2.27

0.150 25.91 h96.3h -1.27

0.200 2h.60 h77.33 -0.70

0.250 21.79 h51.15 -0.29

0.300 16.97 h1h.6h +0.03

0.350 h1.63 338.62 - +0.26
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