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ABSTRACT

THE TEMPERATURE DEPENDENCE OF THE RESISTIVITY OF

THE NOBLE METALS FROM 0.03 TO 9 K

by

STEVEN DALE STEENNYK

We present here a thorough investigation of the temperature

dependent resistivity 9(T) of the noble metals for temperatures from

0.3 K - 9 K. We experimentally determine the magnitude of electron-

electron scattering contributions as well as the magnitude and mathe-

matical form of the phonon contribution and its variation with strain

and impurity content. We review the basics of the relevant theory

including some of the recent calculations of the contribution from

various scattering mechanisms, specifically, scattering of electrons

by other electrons and by phonons. We consider at length the fundamental

effects of the dominant contributors to the residual resistivity,

impurity and dislocation scattering, in light of the anisotropy in

k-space of the relaxation time determined by these mechanisms. We

performed measurements of the resistivity to a precision of one ppm on

wsamples ranging from extremely pure single crystals of Cu and Ag to

dilute polycrystalline alloys of Cu with A9. The techniques required

to prepare such samples and to make very high precision measurements

are discussed. In particular, treatment is given to some of the unique

problems faced in using a SQUID based measuring system on samples of

nano-ohm resistance with special attention paid to the use of super-

conducting chokes and transformers to control the electrical response



time of the circuit. The results of our measurements give substantial

verification of the calculations of the e-e scattering contribution to

D(T). Of special interest is the serendipitious verification of the

theory of Bermenn, Kaveh and Wiser+ explaining the origin of the T4

behavior we had observed in the earliest work. This theory reproduces

4 behavior by a combination of electron-electron and electron-a nearly T

phonon scattering. Our data fit their equations very well. While we

expected to find.and indeed did find, the effect of dislocation to be

a reduction in the phonon scattering,we did not anticipate their pre-

diction that dislocations would increase the electron-electron contribu-

tion. Our measurements provide convincing verification of this prediction.

Finally, we believe we have succeeded in isolating the e-e contribution

to copper at very low temperatures (T < l K),but have also uncovered

some peculiar behavior at the very lowest temperatures. This includes a

shoulder in the resistivity of very pure Ag and a very low temperature

resistance minimum in Cu.

¥

TA. Bermann, M. Kaveh and N. wiser, J. Phys. F 19, L7l (l980).
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CHAPTER I

BACKGROUND AND THEORY

The resistivity of the noble metals, copper, silver and gold,

continues to be of interest to theoretical and experimental physicists

who study electron transport properties in metals. The earliest work

was partly due to the fact that as a group they are the best electrical

conductors known at ordinary temperatures. More recently they have been

of interest because their band structures and Fermi surfaces are now

well known allowing realistic calculations of the contribution to the

resistivity due to various scattering mechanisms.

The major goal of the work presented in this dissertation was the

direct observation of the minuscule T2 contribution of electron-electron

scattering to the resistivity of the noble metals. The magnitude of this

1,2
term has been calculated by several authors and its observation was»

felt to be within reach of our highly sensitive techniques. In the

process, interesting new results were obtained. A resistivity which

4 over a significant temperature range (roughlyvaried quite strictly as T

2-7 K) was observed for all three metals. The constant of proportionality

showed a high degree of variation between different samples of the same

Inetal leading to a systematic study of the effects of impurities and

dislocations. Extensive computer analysis of these results was stimu-

lated by recent theoretical work3 which attempts to show the T4

1



behavior is due to the combination of electron-electron and electron-

phonon scattering with dislocation scattering having a crucial role in

their relative magnitudes.

A. Some General Aspects

In this section we will try to touch all of the key aspects of the

theory which bear on understanding our results. While it is not within

the scope of this dissertation to consider the problem of electrical

resistivity in general, we will try to set forth the framework of

assumptions and basic concepts underlying the theory. It is assumed

that the reader is already familiar with such fundamental concepts as

the reciprocal lattice and k-space, the Fermi surface, and basic

quantum mechanics including the Born approximation in scattering theory.

The validity of the Boltzmann equation and the so called relaxation time

approximation will be assumed without further discussion.

At the simplest level one can state that electrical conductivity

arises from the freedom of electrons or other charged carriers to move

in response to an applied field. In metals this freedom is due to the

availability of states, almost infinitesimally separated in energy, into

which an electron can move allowing it to gain kinetic energy from the

field. These states may be available because the electrons do not

entirely fill a band of energy states or, if there are enough electrons

to fill a single band,there may be overlapping bands such that the

electrons are distributed among several partially filled bands. In any

case, at absolute zero the electrons fill all the lowest energy states

and the Fermi surface is the surface in k-space which defines the bound-

ary between occupied and unoccupied states. At any temperature where



the metal remains a solid and particularly at the low temperatures of

concern here, the slight fuzziness at the boundary between the occupied

and unoccupied states due to thermal excitations above the Fermi sur-

face does not detract from the validity of the concept. This is

because the Fermi energy, Ef, is roughly ten-thousand times greater than

the thermal energy, kBT, at room temperature. At thermal equilibrium

the probability that a state of energy E is occupied is given by the

Fermi-Dirac distribution function:

 

1

f0 3 exp[(E3Ef7kBT]+ 1 (1'1)

which rapidly approaches one for E—Ef < -kBT and zero for E-Ef > kBT.

In simple free electron models where the k dependence of an

electron's energy is given by

E37"?— (1.2)

the Fermi surface is obviously a sphere. Electron velocities are normal

to the Fermi surface and are given by

V=%vkE (1.3)

In the case of a spherical Fermi surface the velocities are in the same

direction as the wave vectors. Although this simple geometry is often

used to simplify calculations and may even be quite correct for the

alkali metals, it is, in general, a rather gross simplification. Real

Fermi surfaces, especially in polyvalent metals, may be extremely com-

plex and 3(R) will not generally be in the direction of 2. However,



 

n1



all Fermi surfaces have the basic symmetry of the reciprocal lattice.

Thus, at the very least, they have inversion symmetry. So, the fact

that Eq.(l.l) depends only on energy implies that at equilibrium every

electron moving in one direction has a counterpart moving in the

opposite direction, so the net current is zero.

Figure 1.1 shows the Fermi surface of the noble metals. While the

largest fraction of the surface, comprising the so called belly regions,

is nearly spherical, the regions in the <lll> directions, called the

necks, protrude from the sphere to intersect the Brillouin zone bound-

aries. As we shall see, the different character of these two regions

is crucial in understanding the details of their conductivity.

Now we must consider the effect of applying an electric field E to

a metal. Momentarily neglecting the effect of collisions, the electrons

wavevectors will increase with time according to the law of motion:

0
.
0
.

r
J
z
u

=%ez (Ln

Thus all the occupied states are uniformly displaced in a direction

parallel to the applied field. In a time <St the amount of displacement

will be given by

6R=%e E at (1.5)

The net effect on the full electron distribution function is a shift

of origin

f = fo(T-5T) (1 6)



 
Fig. l.l(a) A noble metal Fermi surface within the first Brillouin

zone.
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Fig. l.l(b) Cross section of the individual Fermi surface of each

metal.4



For small displacements we can expand this to first order

q.

f = f0 - kao - $51: (1.7)

Using Eq.(l.3) we then obtain

df

gr:- =-—dE°-eV-E (1.8)

The amount of displacement that occurs is limited by scattering

processes which restore the equilibrium distribution when the field is

removed. Clearly, the greater the rate of scattering the smaller will

be the displacement from equilibrium for a given field and the more

rapidly the distribution function will relax when the field is removed.

Thus we are lead to the concept of a relaxation time, t, which is

inversely proportional to the scattering rate. For the moment assume

that a scattering event completely randomizes the electron's wavevector

and velocity and that the distribution function, f(R), will return

exponentially, with a characteristic time 1(1) to the equilibrium dis-

tribution fo(:) when the perturbing field is removed. This implies the

rate of change of f due to collisions is

d, 3; lam-fan) (1.9)

df collisions T(k)

We assume a unique value of r can be defined at each point in k-space.

Under steady state conditions the rate of change of f due to collisions

must be equal and opposite to that due to the electric field. Thus,



9: = - 9: (1.10)

dt collisions fields

This is simply a statement of the steady state Boltzmann equation which

is much more general than implied here, where we are only considering

electric fields. The right hand term may generally be due to the simul-

taneous action of several generalized fields; electric, magnetic,

thermal gradients etc. While f may be a function of‘F as well as I, we

will assume that the material is homogeneous and that no other fields

are present. Substituting into Eq.(l.10) we obtain:

df f(E)-fo(F)
‘e—QV.E= +

T(k)

dE (1.11)

Because fo contributes no current we are only interested in the distribu-

tion difference

+ df ++ + +

g(k) = - e firuwm - e: (1.12)

From now on we will call this the electron distribution function or e.d.f.

We will call f the full e.d.f. To calculate the current we must evaluate

the integral

3=-£§[8kwmmm an”

4n

where the (41r3)'1 comes from the electron density of states in k-space.

The -dfo/dE term in g is essentially a delta function, 6(E-Ef), especially

at low temperatures. This reduces the integral to a surface integral

river the Fermi surface, if we make the following change of variables:



3 + dE 3 deE
dk dSIVkEl {WWI (1.14)

resulting in

2 -+ ++

”"= 6 d5 k V?” -‘* 1.15

J mLs “FIVE-121% E ( )

The quantity in brackets is just the conductivity tensor Efwhich appears

in Ohm's law

1* H

J = U - E (1.16)

In isotropic or cubic crystalline materials such as the face-centered-

cubic noble metals the conductivity is just a scalar and we have

2 2

= ——3—e d5 (12) (12) = Te dS 1(1’) (1.17)

0 41m [F.S. T v 41% F.S.

where A(E) is the electron mean free path.

The meaning of Eq.(l.13) is easily visualized in Fig. 1.2 which

shows the response of the electrons on a simplified noble metal Fermi

surface to an electric field. Part (a) shows the simplest case where r

is a constant over the Fermi surface. As we shall see, this approxi-'.

mation may be quite realistic for many types of impurity scattering.

Part (b) shows the e.d.f. for an anisotropic 1(k). In the case shown

the relaxation time on the necks is much less than on the bellies

(In << 1b). We shall see that this case is appropriate to scattering

by dislocations or low temperature phonons. We shall also find that

the differences in relaxation time anisotropy between two scattering

mechanisms play a crucial role when both mechanisms are operating

concurrently.



 
Fig. 1.2 A simplified noble metal Fermi surface (solid line) displaced

from its equilibrium position (dotted line) by an electric

field. The region between the dotted and dashed lines is the

schematic form of the electron distribution function for (a)

an isotropic relaxation time and (b) an anisotropic relaxation

time.
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The magnitude of the e.d.f. in the direction of the field is very

small being only about 10"10

densities of 100 Acm’z.

of the Fermi radius at typical current

This helps explain why Ohm's law, which requires

an expansion of g which is linear in the electric field, works so well.

It is obvious that 1(E) plays a crucial role in any real calcula-

tions of electrical conductivity. Thus, we must be able to determine

1(E) from a knowledge of the fundamental scattering processes. Let us

assume that we can calculate the transition probability P(R,k') from

state E into state 2' in the range dk'. Then the conductivity relaxa-

tion time is defined as

l

1112)

 =J p(1€,1E')(1 - cos A‘v")dk' (1.18)
F.S.

where At'of the angle between the velocities v and v' of the two states.5

Without the (l - cosA) weighting factor this integral would just yield

the total inverse scattering rate. The (1 - cosA) term is included to

properly weight the scattering events since small angles are much less

effective than large angles in reducing an electron's contribution to

the current. The origin of this term can only be rigorously shown on a

spherical Fermi surface for elastic scattering with a probability

depending only on energy and the angle between k and k'.6 However,

something like this term must be included to properly weight the

angular changes in an electron's velocity on any Fermi surface.

Not only is an electron's velocity randomized by scattering

but, on the average, it also loses the kinetic energy it gained from

the field. This lost energy exhibits itself as Joule heat. However,

one can still treat some types of scattering events as elastic because



11

this energy loss per electron is extremely small, being on the order of

10'10 of the Fermi energy. Yet it must be emphasized that it is the

randomization (rf the electron's momentum that produces the resistivity.

To summarize these fundamental ideas: conductivity arises when

electrons are able to coherently acquire momentum in the direction of an

applied electric field. Resistivity is due to the random redistribution

of these momenta by incoherent scattering. It is the mechanism by which

these two processes are held in dynamic balance that is the subject of

the rest of this dissertation.

8. Specific Scatterinngechanisms

l) Impurity Scattering

Scattering by impurities and lattice defects produces the major part

of the electrical resistivity in a metal at low temperatures. This

resistivity is generally independent of temperature and at low tempera-

tures contributes a constant background resistivity usually called the

residual resistivity 90‘ (One important exception to be briefly consid-

ered later is the so called Kondo effect due to magnetic impurities.)

If a lattice were perfect with no impurities or defects, then the-

resistivity would go to zero as the temperature approaches zero. The

introduction of impurities in a random way produces perturbations in

the periodic lattice potential which cause electrons to scatter. The

probability P(k,k') of scattering between states I and R' depends on

the exact form of the scattering potential, and the initial and final

states. In the simple case of a spherical Fermi surface, which implies

single plane-wave states, the scattering probability is only a function

of scattering angle 9 for any spherically symmetric potential.
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Scattering calculations yield a relaxation time independent of k, i.e.

isotropic, given by

.1... $0191 -r vf[ dn (1 cose)dS2 (1.19)

where d9 is the differential element of solid angle and do(e)/dfl is the

differential scattering cross section related to the scattering probabil-

ity by P(e) = v %%-. Note again the presence of (l - cose) weighting

factor.

Although treating'tas a constant is a fair approximation for many

impurities, it may be important to consider the effect of differences

in character of states at different points on the Fermi surface of real

metals to get a more realistic picture of how T, and thereby, 9(2),

depends on R. In the noble metals, the nearly spherical belly portions

of the Fermi surface (see Fig. 1.1) can be treated very well by single

plane wave states. These states are said to be s-like, that is, they

exhibit essentially no angular momentum with respect to the ion cores.

Hence, there is no centrifugal potential to reduce their wave functions

at the core of an impurity ion. The highly non-spherical neck states,-

on the other hand, must be represented by at least two OPWs. These

states have an angular momentum character that is essentially p-like.7

Hence, they are prevented from significant overlap with the ion cores

and remain largely in the interstitial regions. This implies that neck

electrons would be much less scattered by short range potentials largely

restricted to the core regions. Homovalent impurities such as Ag in Cu

are not charged and therefore, have such a short range potential . Such

impurities would be expected to exhibit an anisotropy in 1' such that

T > .

n 1"b
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Now we will briefly consider the temperature dependent resistivity

due to magnetic impurities, the so called Kondo effect.8 It is well

known that free magnetic ions such as iron can produce temperature

dependent effects at low temperatures resulting in a minimum in the

resistivity versus temperature curve. One of the most common examples

is gold with dilute iron impurities; another is manganese in copper.

It would take us too far afield to consider the theory of the Kondo

effect. The essential point here is that extreme care is necessary to

avoid any magnetic contaminants when doing measurements on the low tem-

perature resistivity in the noble metals. If such contamination exists

it may be difficult or impossible to subtract its effects from the data.

What is worse, the effect may not produce an obvious minimum making it

virtually undetectable by resistivity measurements alone. However, one

can use thermoelectric data to help detect its presence.

For our purposes the important facts about impurity scattering are:

First, it is ordinarily dominant at low temperatures. Second, it can

produce large angle scattering. Third, it is characterized by an essen-

tially isotropic (constant) relaxation time over the Fermi surface

except as mentioned.

2) Phonon Scattering

In a perfect crystal the electron states of definite I are sta-

tionary states of the system. However, at finite temperatures, the

vibrations of the crystal lattice produce density fluctuations and thus

disturb the lattice periodicity so that transitions occur among the I

states. Although not stationary, these R states are still relatively

long lived and thus still provide an appropriate and particularly
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convenient basis for describing the electrons. This convenience is in

no small part due to the fact that the lattice vibrations themselves

occur as quanta, called phonons, which are also states of definite k.

Any interaction between electrons and phonons must conserve the total

crystal momentum to within a reciprocal lattice vector 0 so that

R] -‘R2 = £3 + B (1.20)

where-IE1 and E2 are the initial and final electron wave vector and a is

a phonon wave vector (we use q's to distinguish phonon from electron

wave vectorsL The plus sign represents emission and the minus sign

absorption of a phonon. Events in which E is zero are called normal or

N processes while nonzero G's are called Umklapp or U processes. With

a multiply connected Fermi surface, as in the noble metals, the dis-

tinction is somewhat academic especially at low temperatures since a U

process can usually be represented as N process in an extended zone

scheme.

Electron-phonon scattering also involves the gain or loss of the

phonon's energy by the electron and is thus inelastic which means, in

the context of transport theory, that electron energy changes are of -

order kétg These energy changes are so small (kBT << Ef) especially at

low temperatures that the electron remains essentially on the Fermi sur-

face. (This is just restating what was said in Section A about dfo/dE

being essentially a delta function.)

At low temperatures the only phonon modes which can be excited are

those of low frequency (i.e. long wavelength). In the Debye model,

which is usually appropriate at low temperatures, the number of phonons

in the range of frequencies dw is proportional to
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2

 

w dw

exp(’hw/kBT) - 1 “'21)

This has a maximum when

411» ”MT 2 1.6 kBT (1.22)

Thus we can define a dominant wavevector at a given temperature

- BI. 1.6 kBT

QT - V T (1.23)

S

where V5 is the speed of sound which we assume is isotropic but may

depend on polarization. This is roughly a maximum value of q because

the Bose Einstein function rapidly cuts off phonons of higher energy.

Thus at low temperatures where q's are small compared with the Fermi

radius, the maximum scattering angle eT==qT/kF increases as T. This is

illustrated on the spherical portion of Fig. 1.3. We have seen that

small angle scattering is not effective in producing electrical resis-

tance. This was taken into account by using the (l - cosA) weighting

factor in the relaxation time formula (1.18). Thus for small angle

scattering the inverse relaxation time for phonon scattering must

acquire a T2 factor.

1::(1 - c059 ) = 2 ' 2.6.1:]. .912: l 1.51:9.sz (1 24)

r T 51" 22 2 2 '
kf

It also seems clear that the inverse scattering time, the scattering

rate, must increase as the number of phonons increases. In isotropic

media the number of phonon modes is essentially the volume of a sphere
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Fig. 1.3 A simplified Fermi surface showing variation of angular change

in velocity for a fixed quI.
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of radius qT. Thus the number of phonons increases roughly as T3. How-

ever, the constraints of momentum and energy conservation require that

the initial and final electron states remain essentially on the Fermi

surface. Thus a given state may only be scattered into states which lie

on the surface of intersection of the Fermi surface with this phonon

sphere with its origin at the original electron k vector (see Fig. 1.4).

Hence, the number of phonons available for scattering increases as q$

2
i.e. as T2. This means that l/r has another factor of T .

phonon

Now, as Dugdaleu3points out, the actual calculation of the magnitude

of phonon resistivity is a very difficult problem. However, it can be

shown that the square of the scattering matrix element which goes into

the scattering probability is proportional to q and hence to T. (A

very nice demonstration of this can be found in Ashcroft and Mermin.6)

Thus we have deduced that in the case of low temperature small angle

scattering the phonon resistivity should vary as T5. One factor of T
2

is from the small angle weighting factor, another T2 factor is from the

number of phonons available and a factor or T from the square of the

scattering matrix element. This behavior, first described by Bloch

5
is often called the Bloch T law. While there are reports of such

11,12
behavior at low temperatures, the basis for this law is rather

idealized and the many reported deviations from it should not be

unexpected.”-18

One source of trouble for the T5 law may be seen by considering the

neck regions in Fig. 1.3 and 1.4. These regions may violate the small

angle scattering criterion due to their high curvatures. Thus, electrons

on the neck would experience a resistivity going as some lower and

probably temperature dependent power of T while the belly electrons are
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Fig. 1.4 Intersection of Debye phonon sphere with Fermi surface showing

locus of possible final states which grows as T2.
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in the T5 regime. Figure 1.3 shows that the same value of qT which

produces small angle scattering on the belly can produce large angle

scattering, including complete velocity reversal, on the necks. Rumbo15

points out that in Cu near 4 K the <lll> transverse acoustic mode has

1
O

a qT of about 0.3 A' which is comparable to the neck radius of 0.26 A'].

Thus large angle scattering would surely occur at this temperature.

Presumably at low enough temperatures qT will become small even on the

scale of the neck radius in which case the T5

5

law would again apply.

Another assumption behind the T law is that the phonon population is

in thermal equilibrium. This assumption may be invalid at low tempera-

tures. The electron current may drag the phonon distribution out of

equilibrium because the equilibrium restoring mechanisms are quite

weak-~long wavelength phonons are not strongly scattered by impurities.

In any case, it is clear that significant anisotropy of the electron

relaxation time due to phonons rp should exist at low temperatures due

to the high degree of curvature at the necks.

This is not the only source of anisotropy, however. Ziman5 points

out that neck electrons should be much more sensitive than belly

electrons to transverse phonons. He also notes that the density-of-

states factor in the scattering probability is larger on the necks.

Thus, since the scattering produces transitions to nearby states on

the Fermi surface, there are more states available into which an elec-

tron can scatter, enhancing the scattering rate. Finally he notes

that the two-OPW states necessary to describe the neck wave functions

can also lead to an enhanced scattering rate.

50, we have four sources which can produce a shortened relaxation

time on the necks: high curvature, greater sensitivity to transverse
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phonons, higher density of states, and differing character of the

wave functions. It is this type of anisotropy which we shall see also

applies to dislocation scattering.

3) Scattering by Dislocations

Dislocations are extended crystal defects of which an edge

dislocation is shown in Fig. 1.5. One can imagine that an initially

perfect crystal has a half plane of atoms displaced, as shown, leaving

a half plane on the end and effectively inserting a half plane in the

center. The idealized defect shown here extends along an infinite line

perpendicular to the paper. Actual dislocations often do extend almost

to infinity on an atomic length scale and thus they are essentially two-

dimensional as far as their scattering properties are concerned.

The theory of the electrical resistivity of dislocations is still

not complete. Many attempts to explain the experimental data have been

made with varying degrees of success. At present, the two most success-

]9 20 The emphasisful are the theories of Basinski et a1. and of Brown.

of Basinski et a1. is on the strain field of the dislocation. They

argue that one can use the ideal resistivity to the thermal energy

ratio, which is roughly constant, to relate the dislocation strain field

energy to the dislocation resistivity. Because the core has only about

one-fifth of the total strain energy, they suggest the strain field

rather than the core is the main contributor to the resistivity. The

theory of Brown assumes a resonance in the s-wave scattering of Fermi

electrons from the dislocation core. The existence of this resonance

is fundamentally connected with the extended line nature of the dis-

location.
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Fig. 1.5 Cross section of an edge dislocation with dislocation line

normal to the page.
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Fig. 1.6 Scattering from extended strain field around dislocation core

showing predominance of small angle events.
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We shall not enter the debate here but simply point out that both

approaches have more or less equal success in explaining experimental

data although the physical models are quite different. Especially

important in the present context is that both are compatible with

observed large scattering cross sections for small angle scattering

and both attribute this to the strained regions away from the core.

These large, small angle cross sections are seen in investigations of

the radio frequency size effect21 22
and the deHaas-van Alphen effect.

The importance of this fact here is that small angle scattering is

characteristic of phonons at low temperatures. Thus, we might expect

a relaxation time anisotropy over the Fermi surface similar to that for

phonons. Intuitively this propensity for small angle scattering seems

reasonable because,while the highly localized core of the dislocation

is severely distorted and capable of large angle scattering, the broad

strain field axially surrounding the core is much larger in volume and

would intercept the paths of many more electrons. However, the dis-

tortions in this strain field,which fall off rather slowly away from

the core, are not so severe. Therefore, the electrons are deflected

only through small angles (see Fig. 1.6). In fact, this portion of the

dislocation problem has been modeled by using superpositions of frozen

phonons of long wavelength to build up the strain field.23 This phonon

like behavior will have important consequences when we consider the

temperature dependent resistivity of strained copper.

4) Electron-Electron Scattering

Electron-electron scattering in simple metals such as the noble

and alkali metals is expected to be an extremely small contribution to
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the total resistivity at low temperatures. This may at first be sur-

prising when one considers the large electron densities and velocities

in a metal. However, a moment's consideration will show why.

First, the electrons screen one another so that the potential of

an electron extends for only about an interatomic distance. Second, we

shall see shortly the Pauli exclusion principle allows only those

electrons within ~kBT of the Fermi surface to interact and even those

are limited by the constraints of energy and momentum conservation.

Third, large portions of the Fermi surface for the noble metals are

essentially spherical with plane-wave-like functions. Thus their velo-

cities are parallel to the wavevectors of these states. Any collision,

which must conserve the total crystal momentum, will also conserve the

center of mass velocity provided the initial and final states are on

the spherical portions of the Fermi surface. It is clear that most

scattering events will have little effect on the current carried by the

pair. Now it also becomes clear that the neck portions of the Fermi

surface are essential for producing significant changes in the velocity

of the center of mass while still satisfying k-vector conservation.

This is because in these regions the velocity is not parallel to the

k-vector nor does it have the same magnitude as the velocity of belly

electrons.

In transition metals the electron-electron contribution to the

resistivity is greatly enhanced due to the presence of the sluggish

d electrons of large effective mass. The highly conducting s electrons

can scatter off the heavy d electrons and undergo large changes of direc-

tion. The d bands of the noble metals are filled and not available for

such processes.
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The temperature dependence of such scattering is expected to go as

T2 quite independent of the exact mechanism by which it is able to

contribute to the resistivity. The reason for this dependence is quite

simple.

The Fermi distribution ensures that state below about ZkBT of the

Fermi surface are filled and states above ZkBT are virtually devoid of

electrons which could engage in scattering (see Fig. 1.7). This defines

a shell of thickness ~4kBT about the Fermi surface which we will call the

thermal shell. Figure 1.8 shows an electron well below the thermal shell

at point A. It is prevented from scattering with an electron in the

thermal shell, say at point B, because one or both of the final states

allowed by energy conservation, points C and D, for example, are those

below the thermal shell which, the Pauli principle will not allow. It

is clear from Fig. 1.7 that the number of occupied and unoccupied states

(which are respectively proportional to the areas below and above the

curve) are linear in T. Thus the number of electrons with which a given

electron can scatter increases as T. The number of final states avail-

able for one of the electrons also increases as T. The final state of

the second electron is then fixed by energy and wavevector conservation.

Thus the scattering rate of the original electron goes as T2. Because

there are no restrictions on scattering angle, the resistivity is pro-

2 variation. The

)2

portional to the scattering rate and thus shows a T

smallness of the effect is due to a dominant factor of (kBT/eF

24

as

shown by Ziman. However, this term is 100 times larger in the transi-

tion metals where 8F is measured from the top of the d band. This is

the reason that only recently has evidence for its existence been

14 25,26
obtained in metals such as Cu, in the present work, and Al.
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Fig. 1.7 Fermi distribution function with EF set to zero.

 
Fig. 1.8 Schematic representation of the thermal shell about a spherical

Fermi surface (see text for discussion).
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There is also evidence for potassium but the matter is not entirely

settled.”-30

C) Concurrent Scattering Mechanisms

When several mechanisms are scattering electrons simultaneously,

the assumption that their contributions to the total resistivity are

independent can be quite incorrect. This is the assumption that under-

lies Matthiessan's Rule which can be stated as follows:

ptotal = 90 + 0(T) (1.25)

host

where ptotal 15 the res1st1v1ty of a dilute alloy, no is the re51dual

resistivity of the alloy measured at a temperature low enough to neglect

the phonon contribution, p(T) is the temperature dependent part of the

host

resistivity of the pure host metal. While Eq.(l.25) does fit a lot of

experimental data quite well, deviations from Matthiessan's Rule (DMR)

3] andare well known and have been given extensive reviews by Bass

Cimberle et a1.32 While the DMR have many possible causes such as

shifts in the phonon spectrum and shifts in the band structure to name.

two, the most likely cause with the temperatures and metals of our con-

cern is that due to differences in relaxation time anisotropy among

various scattering mechanisms. Our chief concern will be with concurrent

impurity, phonon and dislocation scattering. We shall also consider

concurrent impurity, electron-electron and dislocation scattering.

To understand the competition and interference between scattering

mechanisms due to anisotropy we must consider the influence of each on

9(R) (the electron distribution function) and in return the effect 9(2)
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has on the resistivity due to each mechanism. No matter what juxta-

position of mechanisms is present, there exists a unique g(k) which

satisfies the Boltzmann equation (1.10). (g(k) and f(k) are inter-

changeable in this equation because fo is independent of time by

definition.)

It can be shown33 that the correct solution to the Boltzmann

equation is the one which minimizes the total resistivity. This is

known as the variational principle for resistivity and is often used in

theoretical calculations. Herein lies the heart of the matter. Although

the correct 9(R) may minimize the total resistivity, the individual con-

tributions of different mechanisms may not be minimized. In fact, one

or another may be significantly enhanced.

Let us call 91(E) the characteristic e.d.f. for impurity scattering

and compare it to gp(R),characteristic e.d.f. for phonon scattering. In

this discussion we are not concerned with the absolute magnitude of g(?)

because that depends on the strength of the applied field (Eq.(l.12)).

We are interested in the relative shape of the distribution around the

Fermi surface. If the relaxation times for two different scattering

mechanisms are such that their ratio is independent of R, then we say ~

their characteristic e.d.f.'s are of the same form.

91(2) and gp(E) can be qualitatively compared in Fig. 1.2. Part (a)

shows the uniform nature of gi(k) over the Fermi surface. Part (b) shows

the form of gp(k). The small value of gp(k) on the necks relative to the

bellies is due to the shorter electron-phonon relaxation time, Tp’ on

the necks for the reasons previously discussed. Any form of 9(E) other

than gp(E) will increase the resistivity due to phonons. Now, in real

samples, impurities are always present. If they dominate the scattering,
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which must be true at low enough temperatures, then the actual form of 9

will be closer to 91 than to g causing an increase in the resistivity due
p

to phonons. The main contribution to this increase is due to the fact

that the population of current carrying electrons is enhanced at the

necks relative to the bellies. But, Tp is much smaller on the necks.

Thus the relative importance of the necks in determining the phonon

resistivity is enhanced. The temperature dependent resistivity (often

called the ideal resistivity) of a pure metal is usually determined by

subtracting the residual resistivity from the total resistivity

p(Tsi) : pTotal ‘ 0 (1°26)

ideal °

where the i reminds us that it was measured in the presence of some

impurities. This is called the ideal resistivity because it is supposed

to be the resistivity of a perfectly pure metal in which phonons are the

only scattering mechanism. This so called ideal resisitivity may in

reality be rather far from the true p(T) because at low enough tem-

peratures we get into the so called digigllimit where impurity scattering

is dominant, even for nominally pure metals. However, p(T,i) is often.

ideal

used to determine the DMR, Ap(T), of dilute alloys by

Ao(T) = p(alloy) - oo(alloy) - p(T.i) (1 27)

Total ideal

In the dirty limit the addition of more impurities may have little

effect on p(T) since g(k) is already dominated by impurity scattering.

Thus Matthiesan's rule may work quite well in this regime. At somewhat

higher temperatures, where the scattering may no longer be dominated by
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residual impurities in the "pure" metal, g(k) may have a form intermediate

between gp(k) and 91(k). The addition of more impurities may then cause

a significant shift of g(k) toward the impurity dominated form. At still

higher temperatures, when phonons can scatter through large angles, the

intrinsic differences between 91(R) and gp(2) may not be very great and

so again, the addition of more impurities would not strongly affect the

form of g(R). These facts are one reason why the observed DMR are often

greatest between the high and low temperature regions we have described.

Another consequence of the fact g(E) is not the "ideal" gp(E) at

low temperatures is the possibility of apparent negative DMR if some

type of scattering mechanism is introduced which can shift g(R) in the

34’35 and were thedirection of gp(k). Such effects have been observed

object of much of the work to be reported in Chapter 3. We shall later

see that dislocations can produce just such effects.

A highly simplified model of these ideas is the so called two-band

model. In this model, the electrons are divided into two groups ("bands")

composed of the neck electrons and the belly electrons. The properties

of all electrons within a group are assumed to be the same. To organize

our notation, we will use labels (n) or (b) to specify a particular

group (necks or bellies). We will use subscripts p, i, and d to denote

phonon, impurity or dislocation scattering. The absence of labels and/or

subscripts implies that the quantity applies to the combination of all

groups and/or mechanisms respectively. For example 9 is the total

is the total phonon resistivity, p (n) is the phonon

P P

resistivity of the neck. What follows is essentially along the lines of

resistivity, p

Dugdale‘s treatment.10 We assume these two groups are conducting in

parallel. Thus, for pure phonon scattering we have



CD = op(n) + op(b) (1.28)

01‘

1.: 1 + 1 (129)
pp opin) OpIB) '

In this simple picture we can relate the conductivities to the relaxation

times by

op(n) = th(n) and op(b) = BTp(b) (1.30)

where the factors N and B involve the areas and Fermi velocities of

their respective parts of the Fermi surface (see Eq.(l.l7)). We saw

earlier that rp(n) << rp(b). Because the area of the necks is much less

than the bellies, N << 8. Thus op(n) << op(b) and p(n) >> p(b).

 

Therefore

Didgal - pp _ pp(nj+pp(fi) = pp(b) - BTPIb: (1.31)

So it is the bellies which determine the temperature dependent resistiVity.

For impurity scattering we will assume a single relaxation time

Ti = ri(n) = ri(b), for both the necks and the bellies. Thus for

only impurity scattering

Q

l
l

oi(n) + oi(b) = (N+B)ri (1.32)

and

01(n)pi(b) 1

01- : oi(n)+pi(b) = We11. “-331
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,Within a group we assume the scattering probabilities of separate

mechanisms add. Hence, if we combine phonon and impurity scattering

 

 

1 = I + l— (1.34)
t(n) tp(n) Ti

and

1 _ 1 1
“f(b) - Tp(n) + : (1.35)

Thus, within a group the mechanisms add like resistances in series. The

equivalent circuit is shown in Fig. 1.9.

For now, we assume impurity scattering strongly dominates on the

bellies but is comparable on the necks to phonon scattering. That is

Ti ~ tp(n) << Tp(b) . (1.36)

The total conductivity is

o = Bt(b) + Nt(n) (1.37)

or

B N

O = 1/Tp(b) + 1/11 + 1/tp(n) + I/Ti (1°38)

But we can neglect l/rp(b) compared with l/ri so that

NTiT (n)

o = Bri +W (1.39)

1 P
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Current

 

Fig. 1.9 Schematic representation of the two-band model for impurity

and phonon scattering. The height of resistors in a branch

is inversely related to the Fermi surface area times Fermi

velocity for that band. The length of a resistor is inversely

related to the relaxation time for the represented mechanism.

pdin) oi(n) op(n)

od(b) oi(b) op(b)

ewe 

Fig. 1.10 Schematic representation of two—band model including dis-

location scattering. Conventions are the same as for

Fig. 1.9.
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we can write this as

 

T.

_ ‘ 1
o - (B+N)ri NT1[T.+T n ] (1.40)

1 P

By Eq.(l.32) this becomes

_ N Ti

° ' °1[‘ ' B+N Tifip(n)J “'4”

But N/B+N is small thus

N ‘1) N 1
O‘D-Il' =p.+

1[ B+N ri+rp(n)] 1 (B+N)2 Ti+Tp(h)

 

(1.42) 

We see this is just the residual resistance 01 plus a temperature

dependent part. Comparison with the result for a perfectly pure metal

(Eq.(l.3l)) shows that the effect of adding impurities is to shift the

temperature dependent resistivity from dependence on the belly relaxation

time to the neck relaxation time.

Let us define the effective phonon conductivity in the presence of

impurities as though the neck phonon relaxation time tp(n) were appli-

cable to the bellies as well.

06 = (B+N)Tp(n) - (1.43)

Then we can write Eq.(1.42) as

.. __ 19
p.p.+E;-N-——.-q_+Cy -oitm . (1.44)
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This equation represents the parallel combination of pi and DP in series

with pi. If the impurity concentration is large enough to dominate the

scattering even on the necks, i.e. Ti << tp(n) then pi >> p6. In that

case, Eq.(1.43) becomes

- N 1 - .
o-oi+§mop-pi+o(T) (1.45)

Although p; >> pp the weighting factor N/(B+N) tends to offset this

effect. In fact, if N/(B+N) is small enough one may wonder if p'(T)

could be less than pideal(T)' Such a result would invalidate this model

since it would violate the variational principle. However, one can use

the equivalent circuit of Fig. 1.9 to calculate exactly the total resis-

tance in terms of p 1(T) and oi as defined in Eqs.(l.31) and (1.33).
idea

After a bit of algebra one obtains

p = pi + pideal(T)

(pi1n1pp1b) - p.1b1op(n))2

* (bp(n)+op1b))(p,1n1+o,(b111o.1n1+o.(b1+ op(n1+op(b)) ("46)
 

The first two terms on the right are just the terms from Matthiessan's

rule and the last term is the DMR which is seen to be greater or equal

to zero. It is zero only if

p 0)) 01-01)

which means the ratio of the conductivities of the necks and bellies is

the same for each mechanism. This would require the ratio of the neck



35

and belly relaxation times to be the same for each mechanism. Since

this is certainly not the case for phonons and impurities the DMR is

non-zero. Hence, p'(T) > p(T). ‘

We have seen that dislocations have certain similarities to low

temperature phonons and hence produce much more small than large angle

scattering. Because of this, one might expect the characteristic e.d.f.

due to pure dislocation scattering, gd(T), to have a form similar to gp.

If this is so, introducing dislocations into a sample where the impuri-

ties are dominant would tend to drive 9 back toward the low temperature

form of gp. This would result in a lower pp(T) because the variational

principle for pure phonon scattering would be more nearly satisfied. The

mechanisms of this process are again revealed in the anisotropy of the

relaxation time. The value of g is reduced in the necks because of the

small relaxation time for dislocation scattering in this region.

Finally, let us consider whether this picture has implications for

the functional form of the temperature dependence. In the ideal case of

no impurities where gp(E) obtains, the belly regions would carry the

bulk of the current since they have a much higher conductivity than the

highly scattered necks. Another way to view this is that the volume of

gp(k) over the bellies is much greater than over the necks. Thus, with

the bellies shorting out the necks, the overall temperature dependent

behavior would be dominated by the bellies. So, we would expect a T5

behavior. The enhancement of the necks' contribution to pp(T) by impurity

scattering should cause the temperature exponent to be less than five

due to the larger angle character of the velocity changes on the necks

as discussed earlier. However, the re-emphasis of the bellies over the

necks when dislocations are introduced might cause the temperature

5
dependence to again follow the Bloch T law.
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Let us briefly examine the influence of dislocations in the same

two band medel. We assume dislocations scatter much more strongly on

the necks than on the bellies and that we have added enough dislocations

to dominate the neck scattering while being roughly equivalent to the

impurities on the bellies. Symbolically this means

tp(n) ~ Ti >> td(n) (1.48)

rp(b) >> Ti ~ td(b) (1.49)

Adding the scattering probabilities within each group we have

 

 

 

1 _ 1 1 1 ~ 1

r1n1‘ tp(n)+?;+¥d_(71‘)’-‘W
(1.50)

1 1 1 1 1 1

Kb) TPIB)+?;+rdb =;1j'+T-d-(-gy (151)

Hence

_ 1
0(0) 3 Od(n) - NTETDT (1.52)

1 1
(b) - .(b) + (b) + (1 53)

p p1 pd BTi Btd(b)

T.+T b (1.54)
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Since N << 8 and Eq.(l.48) applies, we can neglect Nrd(n) yielding

Ti+Td(b)

p -W (1.55)

Thus, the belly regions again dominate the resistivity. In terms of the

equivalent circuit of Fig. 1.10, the neck branch is being shorted out by

the belly branch. The temperature dependence of the belly branch is

thereby emphasized.

We will now briefly consider the interplay of electron-electron

scattering with impurity and dislocation scattering. As mentioned

previously, a perfectly spherical Fermi surface with no anisotropy in

1(F) would exhibit no resistivity pee due to e-e scattering. Since

zero resistivity is certainly the minimum possible resistivity, an

isotropic 1(2) must give the form of the e.d.f. which satisfies the

variational principle. Thus 9ee(E) x 91(2) since 11(k) is isotropic.

Here gee(F) represents the form of g(R) characteristic of e-e scat-

tering alone. The introduction of any scattering mechanism which

introduces anisotropy into 1(F) would therefore cause an increase of

pee from its zero value.

Dislocations, being line defects, are anisotropic scatterers in real

space. The question is, how can we produce an anisotropic f(k) on a

spherical Fermi surface by introducing an array of randomly oriented

dislocations. Kaveh and Wiser36 state that the anisotropic scattering

by dislocations can produce the necessary k-space anisotropy 0f 1(E) to

yield a non-zero pee for a spherical Fermi surface. However, they do

not make clear the distinction between anisotropy in real space and

in k-space.
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If we suppose that we can define a local Fermi surface in the

vicinity of a dislocation (which seems justified due to its great length

and long range strain field) then this local Fermi surface will reflect

the non-spherical symmetry introduced by the dislocation. In addition,

since the k-vectors are still essentially parallel with the velocities,

the fact that dislocations only alter velocity components perpendicular

to the dislocation line will introduce a corresponding anisotropy in

1(R). This will then be sufficient to produce a non-zero pee even for

an ideal spherical Fermi surface. For the noble metals we saw that even

if e-e scattering were the only mechanism operating, pee would be non-

zero because of the non-sphericity of the Fermi surface. Since both

electrons and charged impurities engaged in large angle scattering via

a screened coulomb potential it is still reasonable to assume that

gee(E) is more or less proportional to gi(F). Thus, in the presence of

impurities, pee should be near its minimum value. The introduction of

dislocations with their associated anisotropic relaxation time should

therefore cause an increase in pee.

While most of the foregoing has been qualitative, we shall see that

it is consistent with the experimental and theoretical literature.

Reference to the latter will provide the interested reader with a

considerably more rigorous development of these concepts.

0. A Review of Experimental and Theoretical Literature

Any attempt to bring order to the experimental data of low tempera-

ture resistivity measurements of the noble metals must confront the

problem that each author tends to analyze his data with respect to the

prevailing theory. Conversely, a single experiment often generates one



39

or more new theories to explain it. This procedure often makes comparison

with other theories difficult or impossible. In addition, we must some-

times make guesses about information not included in the original arti-

cle in order to reconcile conflicting results. Nevertheless, we shall

try to give a coherent account of experimental results obtained since

1966 and theoretical developments since 1960. Of course, our own bias

in reinterpreting these past results is obvious, namely, that we believe

the data can be accounted for primarily on the basis of the scattering

mechanisms and the anisotropy model discussed heretofore. In particular,

we will be looking for evidence that: l) Phonon resistivity is increased

by impurities and will have a temperature dependence substantially dif-

ferent than the simple Bloch T5 law. 2) Dislocations should decrease

the phonon resistivity. 3) Electron-electron scattering should contribute

2 term which may be observable at low enough temperaturea characteristic T

in sufficiently precise measurements. 4) This e-e term will probably

exhibit an increase when dislocations are introduced.

1) Some Experimental Results

The Bloch T5 law is broken by so many metals at low temperatures.

that the high esteem it is given in the literature hardly seems warranted.

37 state flatly “The Bloch T5 does not describeIn fact Kaveh and Wiser

the low-temperature electrical resistivity of any metal." We shall see

that,generally, the noble metal data supports this conclusion. Before

considering the individual publications, some of the results of their

analyses are presented as a group to facilitate intercomparisons and

provide some numerical values not included in the discussion. These

results are summarized in Tables 1.1, 1.2, and 1.3. These tables are
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for Ag, Au and Cu respectively. In order to understand the information

in the table, the following explanation and code-key is necessary.

Guide to Interpretation of Table 1.1, 1.2, and 1.3_

The general data fitting equation used can be expressed as

b

M N
p = pa + AT + BT (1.56)

For a given case, some of the five parameters on the right side were

fixed while the other were allowed to vary to produce the best fit. Any

parameters which were held constant have their values underlined in the
 

tables. If a single power fit was used, the coefficient of the remain-

ing term is set to zero- Each quantity is expressed with the error

in parenthesis if known. The least significant digit of the error is to

be ascribed to the last (rightmost) digit of the expressed quantity.

For example, .7329l(12) means .73291:.00012 (note that to save space

nonsignificant zeros left of the decimal point are suppressed). The

following is a column by column explanation:

Author (Ref): Only the surname of the first author is given along

with the reference number.

Samp: Author's sample identification label.

po(nflcm): The residual resistivity which is a fitting para-

meter unless underlined.

A(f9cm): The goefficient A of the lower power of T given in

10'1 ohm cm. Normally goes with power of three or

less.

M: The lower of the two powers, M, generally three or

less.

8(f0cm): The goefficient B of the larger power of T given in

10') ohm cm. Normally goes with powers greater

than three.
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N: The larger exponent, N, generally greater than three.

Range(K): The temperature range over which the fit was made

in degrees Kelvin.

RRR(1O3): The residual resistance ratio, RRR = R(room tempera-

ture/R(4.2 K), expressed in units of 1,000.

Cry: Crystalline state s = single crystal, p = poly-

crystalline.

Imp: The added impurity in a dilute alloy.

Str: If a sample is known to have been strained either by

choice or accident, it will be marked with an X. If

a set of samples can be sequenced by the amount of

strain each has suffered, they will be marked in

increasing order of strain by Roman numerals. If

a sample has probably been strained, it will be

marked with a P. A sample known to be relatively

strain free will be marked with a 0 (zero).

Adat(f9cm): The estimated error of measurement in chm.

Afit(f0cm): The estimated error of the fit. Should be of the same

order as Adat for a good fit. If too small, indicates

overfit or mistake in published error.

Comments: This is a catch-all for other bits of information

with the following code: BE = best equation of

several; NBE = not best equation; d = diameter or

thickness in the smallest dimension in mm. For

example, d = .50. VA = vacuum annealed; NA = not

annealed; 0A = oxygen annealed; Gen = generated from

results given in different form.

Before we consider the violations of the Bloch T5 law we will first

mention two claims in support of it. Recall from Eq.(l.l7) that the con-

ductivity can be expressed as an integral of the mean free path over the

Fermi surface. A T'5 temperature dependence of electron mean free paths

is deduced from high-field and open orbit ultrasonic attenuation data in

38
Cu by Cox and Gavenda. However, they assumed the mean free paths, 2,

could be expressed according to Matthiessan's rule

1 = 2. + i (1.57)
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where i and p again represent impurity and phonon scattering. They

further assume

-1 N
2p . (7760) (1.58)

where N is a constant. In this case the best fit is for N = 5. We have

seen that these assumptions may be very poor for an anisotropic Fermi

surface. It should be noted, however, that the copper sample used was

extremely pure (RRR = 35,000) and consequently may well have been

dominated by scattering from dislocations which are always present at

some concentration. We have seen that dislocations may bring out the

presumably T5 behavior of the belly electrons. Of course, these are not

resistivity measurements per se and they are made in a magnetic field.

The validity of making a direct transfer of this temperature dependence

to the electrical resistivity of a metal with a complicated Fermi surface

is not obvious.

Ehrlich and Schriempfrlmeasured very high purity single crystal

silver (RRR = 10,000) between 2 and 20 K. They find an approximate T5

temperature dependence below 10.5 K and a slightly higher exponent above

this temperature. These exponents were determined by the slopes of log-

log plots of p(T) vs. T and hence, are not very precise. 10.5 K is the

temperature at which p(T) = 00, the residual resistivity. A close look

at their log-log graph reveals that between 5 and 10 K many of the points

lie above the line drawn through the data and the total number of points,

especially at the lower temperatures, is rather small with appreciable

scatter. Thus, the exact power dependence is somewhat uncertain particu-

larly at the lower temperatures. However, in light of the anisotropy

model, a nearly T5 behavior at temperatures where p(T) ~ po is not too
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surprising since the neck conductivity should be dominated by phonon

scattering and thus be quite low relative to the bellies. The now

dominant bellies might be expected to give a T5 dependence.

He now turn to results which show definite departures from the

Bloch T5 law.

J. F. Kos39 measured the electrical resistivity of long silver

wires (0.25-l.0 mm diameter) from l.4-4.2 K using a nanovolt potentiometer

and galvoamplifier obtaining a precision of about 4 in 105. The silver

was rather pure having an RRR (residual resistivity ratio) value of about

2,000. Still, this data is well within the dirty limit and therefore it

5
should not exhibit a simple T temperature dependence. This is indeed

the case. Kos could best fit the data with the following equation

5
p = 9o + A1Tm + B T (1.59)

1

with m = 3. He interpreted this as support for 0 since discredited theory

invoking phonon drag. However he got nearly as good a fit with a T2

rather than a T3 term in Eq.(l.59). In fact, if the published fitting

errors are correct, both equations would seem to over-fit his data since

the fitting errors claimed are on the order of 2 in 105. This may be due

to the fact that only nine points were fit with three parameters, 00

being adjustable. In that case, it is hardly justified to say that the

one fit is really better than the other. The coefficients of the T2 term

are included in Table l.l for comparison. He notes that the larger dia-

meter samples probably had more strain introduced by winding them on the

sample holder causing larger residual resistivities. However, he notes

that the more strained samples had lower p(T) values (where p(T), as
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before, refers to just the temperature dependent part of the resistivity).

This is indicated by a systematic downward shift of the T5 coefficient

and is consistent with our expectations. In a second paper40 dealing

with similar samples from l.4-295 K, Kos claims to have determined the

true ideal resistivity p(T) by extrapolating data to zero residual

resistivity from samples1g$adiffering purity at a set of fixed tempera-

tures. The procedure used is of dubious validity at the lowest tempera-

tures since it involved a linear extrapolation from various samples which

were all in the dirty limit. The value of p so determined is likely
ideal

to be simply proportional to the p(T) of his actual samples. Thus, the

4.56 temperature exponent of pideal which he finds between 2 and 9 K

still corresponds to the dirty limit.

Barber and Caplin17 measured the resistivity of pure Ag and its

dilute alloys with Au, Pd and Pt from 2-20 K. Using a galvanometer

amplifier of nanovolt sensitivity with sufficiently large geometrical

factors (length/cross section) they could make meaningful measurements

down to 4.2 K and even below in a few cases. While there was appreciable

uncertainty in the temperature determination, the resistivity of most

samples could be fit well between 4 and l0 K by

_ 4

p - 90 + BT

where po was quite well known from the lowest temperature measurement.

Other fitting equations appreciably different than this did not fit as

well. Significantly, the equation used by Kos (Eq.(l.59)) did not fit

well. While at the lower temperatures these results are not precise

enough to provide a very meaningful appraisal of a possible T2 con-

4

tribution, the higher temperature deviation from the T behavior is

quite interesting. In the nominally pure silver samples,
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the purest of which had an RRR = l,400, the resistivity began to increase

more rapidly than T4

5

at temperatures above TO K. This is consistent

with the T behavior of the much purer sample of Ehrlich and Schriempf

because at the higher temperatures the phonon scattering is becoming

strong enough to influence the form of the distribution function; shift-

ing it toward the ideal gp(k). Again, the corresponding increase in the

bellies' contributions to the conductivity causes a trend toward T5

behavior. Conversely, they found the samples alloyed with Au and Pt to

deviate downward from the T4 behavior above l0 K. In fact, given the

scatter of the data, the graphs for these alloys do not really appear

to favor T4 over any part of the temperature range from 4 to 20 K with

the possible exception of the most dilute AgPt alloy. It would appear

that a power somewhat less than four would produce a better fit. Unfor-

tunately, they did not try this possibility. The AQPd alloys, on the

4 behaviorother hand, did not show any systematic deviations from the T

over the entire temperature range. While a detailed calculation using

appropriate scattering potentials for each type of impurity might reveal

the origin of these differences and actually determine the temperature

exponent in a particular temperature range, there is little we can say.

on the qualitative level of the present analysis. We can only suppose

that each type of impurity contributes a characteristic anisotropy of its

own to the relaxation time and this may in turn have an effect on the

temperature exponent. However, these data show no systematic differences

between the homovalent impurity Au and the impurities Pt and Pd which

both lie in the same column of the periodic table just to the left of Ag.

Measurements and calculations of such impurity relaxation time aniso-

tropies are reviewed by Bass.3]
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One final note of interest is that whatever the temperature exponent,

the values of p(T) all show monotonic increase with impurity content,

increasing roughly as log 00 and showing no clear signs of saturation

for large impurity concentrations. If we define these increases in p(T)

in terms of the usual equation for DMR (Eq.(l.27)) we find these DMR can

be very large. For example, if we obtain p(i,T) from the purest sample

ideal

of Ehrlich and Schriempf we find the DMR to be about 40 p for the
ideal

most concentrated alloy at 4.2 K. These authors indicate that the fact

that the DMR do not saturate over three orders of magnitude of po may be

more than the anisotropy model can handle and other mechanisms may be

necessary. While other mechanisms may indeed be necessary, only realistic

calculations of the DMR based on the anisotropy of neck and belly relaxa-

tion times can determine at what point it fails if at all. Bergman et al.41

performed such calculations to explain the DMR observed in Al by Caplin

and Rizzuto.42’43 These calculations fit the DMR at l4 K very well

showing that,using the more realistic 2-0PW electron wave functions

rather than l-OPW functions, the anisotropy model can account for the

two orders of magnitude change in po required to produce saturation of

the DMR in Al. The anisotropy of phonon scattering in the noble metals

is such that even though the belly electrons may be well within the dirty

limit at a given temperature, the neck electrons may require much higher

impurity concentrations before they are completely dominated by impurity

scattering at the same temperature. Thus, three orders of magnitude

change in po may not be entirely unreasonable before DMR saturation

occurs.44 In any case, even if the anisotropy model fails to entirely

account for the DMR of metals with rather large impurity content (~lat%)

it should be applicable to the rather pure metals.
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Rumbo15 achieved much greater sensitivity than the aforementioned

authors at temperatures below 8.5 K by using a type of Josephson junction

device called a SLUG. This allowed use of shorter and thicker samples

whose purity is more easily controlled and which can be grown as single

crystals. The mechanical strength of such thicker samples makes it

less likely they will be strained during handling. Four samples were

prepared. Two were single crystal and two were polycrystalline. They

had RRR values from l,l00 to 3,300 with the highest values belonging to

the single crystals. They all exhibited a region of approximately T3'5

dependence above 3.5 K. From 1 to 3 K their resistivities were prepor-

tional to about T2'5'2'8.

The effect of strain on the temperature dependent resistivity p(T)

35 at ain Ag as well as Pd and Al was measured by Rowlands and Woods

series of fixed temperatures starting at l0 K for the Ag sample and

going up to 49 K. They observed a decrease in p(T=lO K) with strain for

deformations which were not too severe. This decrease was still apparent

within their resolution at l3 K but at 20 K and above it could no longer

be resolved. However, at these higher temperatures p(T) remained constant

which is not what is observed with the addition of chemical impurities;

They interpreted this behavior, as well as the more marked decrease of

p(T) in Al and Pd in terms of the anisotropy model as presented here.

Because of their limited resolution the effect is just resolvable at 10 K

and its detailed behavior cannot be determined. Unfortunately, they did

not possess sufficient sensitivity to make useful measurements at lower

temperatures.

Now we turn to work in Ag more directly relevant to this dissertation,

i.e. high precision measurements at liquid helium temperatures. Barnard
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and Caplan16 performed very high precision measurements (up to 1 ppm) on

large single crystals of Ag and on Ag 0.02% Au alloy from 1.2 to 9 K.

They achieved the necessary sensitivity by using a SQUID null detector

circuit similar to that described in Chapter 2. These measurements could

be fit with great fidelity in the temperature range of l.2-4.2 K using

the equation

9 = 00 + 014 (l.60)

However, above this temperature the points of all the pure Ag samples

drop below this line. When they plot p(T)/T4 vs. T on a log-log plot

they get a level line which remains very constant at the value of B in

Eq.(l.60) to about 4 K. Above this temperature the curves bend downward

with increasingly negative slopes, up to their highest temperatures,

~9 K, with no clear sign of stopping. Since the slope of this log-log

plot is proportional to the effective temperature exponent N(T), it is

clear that N(T) is decreasing with increasing temperature. If one calcu-

lates the effective temperature exponents from these plots they are found

to range downward from the constant value of 4 to values in the vicinity

of 3.45 to 3.25 at the highest temperatures measured. The data would .

seem to indicate that they will drop still lower although one would hardly

expect them to drop below 3, the value obtained from phonon scattering at

low temperatures if the small angle restriction is dropped. These values

are significantly lower than the temperature exponent of 3.5 found by

Rumbo. This downward trend has been rather well reproduced in calculations

by Bergman et al.45 Unfortunately, they do not include specific details

of the calculation for Ag although they show a similar calculation for

aluminum. The calculation includes the effects of dislocations within
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the anisotropy model. It is interesting to note that the pure polycrystal-

line samples of Barbar and Caplin went to values of N larger than 4 for.

T > l0 K. However, the values of N for two of the dilute Ag alloy sys-

tems deviated below the value 4.

Similar high precision measurements on Ag by Koshnevisan et al.13 in

whichiifis author was involved also observed a rather strict T4 dependence

between 2 K and 8 K. These samples, although polycrystalline, were of

higher purity, having RRR values between 4,700 and ll,000. The coef-

ficient of the T4 term was as much as a factor of four lower than the

values obtained by Barnard and Caplin. Again, this variation is con-

sistent with the enhancement of p(T) by impurities and the fact that these

purer samples may have had a larger fraction of their residual resistivity

attributable to dislocations which would further reduce p(T). This com-

parison will be made in greater detail in Chapter 3.

These measurements were done on a dilution refrigerator where the

high precision of about l-2 parts in l05 along with the low temperatures

allowed meaningful fits to be made to data below l.5 K. Details of

these results are also given in Chapter 3.

There were no high precision measurements of the resistivity of gold

at liquid helium temperatures prior to the work of Koshnevisan et al.14

in which this author was also a participant. The work of Damon et al.46

on DMR in gold alloys are not precise enough at liquid helium temperatures

to say anything about the details of their temperature dependence. Above

10 K, they show increasing DMR with impurity concentration. They attribute

part of the the effect to the anisotropy model and part to "phonon-assisted

impurity scattering," or “inelastic impurity scattering as it is more

commonly designated. Koshnevisan et al. observed the same rigorous T4
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dependence in Au as seen by Barnard and Caplin and Koshnevisan et al. in

A9 between “1-5 and "7 K- The two samples measured were pure single

Crystals with RRR values of 5600 and 2800. Again, the sample of lower

purity had a larger coefficient of T4. Neither sample showed any clear

T2 dependence at lower temperatures. When fit by a single power, T“, the

exponents were 3.28 and 3.47. Further analysis is included in Chapter 3.

In the same paper, Koshnevisan et al. gave the results of similar

high precision measurements on copper between 0.06 K and 7.5 K. Again

between ~3 and ~7 K a very strict T4 dependence is observed in these

polycrystalline samples with RRR values of 2,600 and 5,420. The largest

deviation from a perfect power of four was an exponent of 3.93 for the

sample of lowest purity. Again, the coefficients increased with increas-

ing impurity content. The magnitude of the T4 coefficient was on the

order of ten times less than in gold and about four times smaller than

in silver.

Because Cu of the three noble metals was the highest Debye tempera-

ture (00 = 315 K) and thus, has the smallest phonon contribution at a

2 term from electron-given T, there may be a better chance of seeing the T

electron scattering. In only one run were the experimental problems SUf-

ficiently subdued, including the elimination of the Kondo effect due to

magnetic impurities, that the low temperature data could be fit with a

high degree of confidence. In this case, the fit produced an exponent

of 2.03 providing the best evidence published to date for e-e scattering

in one of the noble metals. The coefficient was in excellent agreement

with theoretical predictions which will be considered shortly.

15,47
These results are somewhat at odds with those of Rumbo which

preceded them. In the earlier of these publications he fit data from
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a extremely pure (RRR = 13,500) single crystal of Cu to an equation of

the form used for Ag by Kos (Eq.(l.59)) which he found to give the best

fit over the full temperature range from l-8.5 K. Like Kos, he found

the next best fit when substituting T2 for the T3 term. However, while

other variants of this term were tried, the T5 term was never varied,

again showing the faith which most experimentors had that low tempera-

ture results should contain a additive T5 term in keeping with the Bloch

T5 law. He found a single power fit from 5 to 8.5 K to work quite well

with an exponent of 3.5. In the later publication he expanded his studies

to more Cu single crystals, with resistance ratios between l3,690 and

5,850, as well as the Ag samples already discussed. While using Eq.(l.59)

to extrapolate to po, he then plotted log(p-po) vs. log T to obtain single

temperature exponents. He found an exponent of 3.5 above 4 K and about

2.8 below. However, with the SLUG type null-detector circuit his preci-

sion was 1 or 2 parts in 104 on his best runs. Thus his low temperature

data cannot be pushed for much detail.

While the values of p(T) systematically increased with go for his

Ag samples, his Cu camples showed the lowest p(T) for the sggggg_most

pure specimen. He guessed that it might be due to size effect. However,

in the light of what has already been said, it is more likely that the

residual resistivity of this sample contained a larger ratio of dis-

locations to impurities than the purer sample, thus producing a lower

p(T). We shall see there is strong evidence for this view in Chapter 3.

2) Theoretical Developments

Having already discussed the general theory, in which several

references were given, we now will consider some specific calculations
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for phonon and electron-electron contributions to p(T) and the effects

of dislocations and impurities.

Dosdale and Morgan18 have calculated the dirty limit resistivity of

Cu between 5 and 30 K. This calculation used a pseudopotential which

gave reasonable values for the band gap at 335% . By using two plane

wave states the neck and belly radii were given reasonable values. They

performed the calculation in a manner similar to that used for Al.48

The calculation incorporated the electron-phonon relaxation time aniso-

tropy but assumed isotropic impurity scattering. Although the calculated

p(T) was too large by about a factor of 2.5, the temperature dependence

agreed quite well on a log-log graph with experimental results showing

an average exponent of about 4.7 from 5 to lo K and 3.8 from l0 to 30 K.

We shall see that this behavior is in good agreement with our own experi-

mental results.

Brett and Black44 performed variational calculations of the phonon

electrical resistivity in copper below 20 K. They used 2-0PW electron

states to determine the electron-phonon scattering matrix element where

the phonon frequencies and eigenvectors were determined by the Born-

Karman method. A rather realistic analytical representation of the

Fermi surface was used--the so called "eight cone model" of Ziman.5 In

this model the Fermi surface is approximated by eight identical surfaces,

each bounded by a cone whose axis lies in one of the eight [l,l,l]

direction. The shape of the surface is determined in the model by

specifying a neck radius and the Fourier component of the lattice pseudo-

potential in the [l,l,l] direction. The variational trial function was

proportional to V(k)-E, where 3(k) is the group velocity, rather than the

simpler kFE'which is correct for l-OPW states. The anisotropy of the
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phonon relaxation time was also explored and used to calculate the resis-

tivity using a tgtal_relaxation time which is constant, i.e. an impurity

dominated distribution function g(k). The ratio of these relaxation

times is included in Table l.5.

They claim to find a T5 behavior of the resistivity below 20 K,

although examination of their published figures shows the exponent to

actually be about 4.9. A value so close to 5 is a little surprising for

a dirty limit calculation and is at variance with Dosdale and Morgan's

calculation. They state that it is unlikely that the precise temperature

dependence will be revealed by any of the OPW calculations to date. How-

ever, they believe that the lower powers of T seen by Rumbo and Kos may

be due to a change from dirty limit behavior at low temperatures to clean

limit behavior at higher temperatures, say 20 K. The magnitude of their

calculated p(T) is too large compared with experimental values at most

temperatures but the experimental results tend toward their calculated

values as impurity content increases and come to within a factor of 2

at 20 K. At 3.5 K the experimental results for the less pure samples

agree quite well with the calculation although at 2 K the experimental

values are actually larger. The better agreement at 3.5 K may be due to

the fact that the true dirty limit has been reached while the larger

experimental values at 2 K may be due to a significant electron-electron

contribution which was not included in the calculation.

They also performed a rough calculation for the clean limit phonon

resisitivity and find values which are slightly lower than the purest

published values between 5 and l0 K. The experimental values are seen

to approach their calculated ones as purity increases. They also calcu-

lated the phonon-electron relaxation times in the clean limit for various
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points on the Fermi surface at various temperatures. These results are

listed with others in Table 1.5.

We now turn to calculations of the electron-electron term in the

1 used a 2-0PW model which is somewhatnoble metals. W. E. Lawrence

similar to the eight-cone noble metal Fermi surface of Ziman mentioned

above. He starts by factoring pe-e into a term due to the characteristics

of the translationally invariant electron gas and a term he calls the

"fractional umklapp scattering" A. This term represents the essential

effect of the ionic medium and is a measure of the effectiveness of scat-

tering events ($1,22) + (k3,?4) in degrading the current.

m - 3 2
p _e = :67 - {[n (kBT) /l2'fiEF]I‘}A (1.61)
e

_++++2 +2-1

A - <|v1+v2—v3-v4| W><l2v| W> (1.62)

where Vi is the velocity of the state Ii“ The angular brackets denote

the Fermi surface integrals over all quartets of crystal-momentum-con-

serving states with scattering probability W. The values of Vi and W

are determined from the 2-0PW model. He estimates A to be ~3/4 for the

noble metals with the value for Cu slightly greater and Ag slightly less.

The quantity in curly brackets is the basic e-e scattering rate; I is

a dimensionless number representing the Fermi surface average of the

'2 are included inscattering probability. The calculated values pe-eT

Table 1.4.

Lawrence also determined "crossover" temperatures below which his

values of pe-e exceed pp values which he also calculated. These cross-

over temperatures are 2.4 K, 2.2 K, and 3.6 K for Ag, Au, and Cu
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Table 1.4. Theoretical estimates of the e-e contribution to

the resistivity.

(10“5 hem/k2)

A:30% -2 A:30% -2
peeT (Lawrence) peeT (Black)

Ag 0.73 140

Au 0.77 140

Cu 0.79 76 0.28-0.41 27-39
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respectively. Lawrence attributes the T3 term in the fit to Rumbo's data

as the result of being in this crossover temperature regime. In light of

the success of including a pe-e term in fitting our results which will be

demonstrated in Chapter 3 it seems Lawrence may be correct.

J.E. Black2 attempted to improve the calculation of Lawrence by remov-

ing some of the approximations. The improvements were applied to the calcu-

lation of the fractional umklapp parameter A for Cu. One improvement was

the explicit use of the eight-cone model of the Fermi surface. A second

was the inclusion of a number of neglected terms. The third improvement

was the inclusion of exchange effects. Because, by and large, these

improvements caused an increase in the denominator of Eq.(l.62) their

calculated values were lower than those of Lawrence by 30-50%. The

range of values results from uncertainties of the effects of the Fermi

surface. Their values are also included in Table 1.4 They point out

that their use of the Born approximation (also used by Lawrence) may

produce values as much as two to five times larger than a proper phase

shift calculation would yield. This could make e-e scattering very dif-

ficult to detect in silver and gold. However, the low temperature data

*2-2‘2°6 dependence below 1.5 K in A9of Koshnevisan et al. show a T

suggesting the term is not as small as the worst case estimate and the

factor of two reduction49 seems about right.

Recent theoretical work by Berman, Kaveh and Wiser3 specifically

addresses the experimental findings of Barnard and Caplin and Koshnevisan

4 behavior of the resistivity in Ag. Their explana-et a1. regarding the T

tion of the origin of the T4 dependence and the sample dependence of its

coefficient is based on the concurrent interaction of all four scattering

mechanisms under discussion; impurity, dislocation, phonon, and
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electron-electron scattering. The basis of the interaction is via the

anisotropy model we have set forth. They show graphically that despite

its apparent rigor, the T4 term can be represented within experimental

error by a fortuitous juxtaposition of a T2 electron-electron term and a

4.5
T electron phonon term between about 2 and 5 K. That is

2 4 5
p = po + AT + CT ' (1.63)

Since the samples in question can be regarded as being in the dirty limit

’ f

T S 5. Below 2 K the exponent is ~5.

below 5 K they refer to previous parameter free calculations

to obtain the 4.5 exponent for 2

To fit a typical case where the T coefficient 8 was experimentally

#
4
5
1
A

determined to be about 30 fOcm K' , they find a T2 coefficient A of

30 mm K"2 is required. This value is a factor of ~4 lower than the

value predicted by Lawrence. This factor of 4 is easily accounted for

if one assumes that the 30-50% reduction Black found for his refined

calculations for Cu can be applied to Ag and the remaining reduction is

attributed to phase shift corrections. To account for the variation of

8 they invoked dislocation scattering and the anisotropy of rd(k).

In the dirty limit, if only impurities are contributing to the residual

resistivity (i.e. po = pi), the value of;%(T) should be independent of

Do-

exhibited by the reported variations of B are due to the fact that in

Bergmann et al. argue that the observed sample dependence of pp(T)

any high purity sample the residual resistivity is actually composed of

contributions from impurities and dislocations so that

o = 01. + pd (1.64)0 .
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The variations of the ratio of pi/pd between samples of the same po can

then account for the sample dependence. In Chapter 3 we shall provide

ample experimental justification for this conjecture.

In an earlier paper45 these same authors have performed calculations

of p(T) which indeed account for the discrepancy in 8 between two dif-

ferent samples of Barnard and Caplin by assuming different relative

amounts of pi and pd.

To demonstrate the strong dominance of the dislocation scattering

in the neck regions they schematically express the phonon resistivity as

ppm ~ Uds<1€)ds(l€2)[g(l€) 292] Pp1k1k2; T) (1.65)

where fi§k1k2;T) is the phonon scattering probability between states I]

and 22. This double Fermi surface integral contains the electron dis-

tribution functions g(I) which are solutions to the Boltzmann equation

in the presence of a unit electric field E.

A

9(13) = -er(F)V(‘IE) we (1.66)

By assuming a constant, impurity dominated T = To they domonstrate that

scattering through angles such that both initial and final states remain

in the neck region can enhance the factor in square brackets in (1.65)

by as much as two orders of magnitude. This is due to the fact that both

states require a 2-OPW description. The neck region is large enough so

that both states can be within an angle of ~2°-5°. Thus, both dislocation

scattering, dominated by angles <l°, and small angle phonon scattering at

low temperatures would be strongly enhanced in the neck regions for an

isotrOpic 1(k). They also show that the anisotropic relaxation time
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which would result if a small but significant dislocation density were

present say 0.01 S pd/oi S 0.10 would be sufficient to account for the

observed 35% variations in B. This is because even a small value of pd

can imply complete domination of the total relaxation time in the neck

regions. They note that the phonon anisotropy is even greater than the

dislocation anisotropy at the temperatures under consideration. (We

might speculate therefore, that even a dislocation dominated e.d.f.

might not result in the true pidea1(T))' They stress however that if

even one of the electron states involved in the scattering is in a belly

region so that it can be described by a single OPW state this enhancement

does not occur. Small angle scattering mechanisms produce, therefore,

precisely the type of scattering which is least resistive in the belly

regions but strongly resistive in the necks because it satisfies the

necessary condition that both initial and final states remain in the neck

region. This leads to the high degree of anisotropy in the electron-

phonon and electron- dislocation transport relaxation times.

3) Determinations of Relaxation Time Anisotrophy

We have based our arguments on the anisotropy of the conductivity-

relaxation times over the Fermi surface for phonon and dislocation scat-

tering. In this section we shall show experimental and theoretical

evidence obtained by other methods to substantiate the anisotropy and

to show that it is of similar character for phonons and dislocations.

These values can then be compared with estimates obtained from resis-

tivity measurements. We shall use the ratio of belly to neck relaxation

times t(b)/r(n) as a measure of the anisotropy.
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There are a number of methods which can be used to probe the

relaxation time for scattering by impurities dislocations and

phonons at various points on the Fermi surface. These methods all

involve the use of magnetic fields at low temperatures and all rely on

the fact that an electron follows a cyclic trajectory in real space and

k-space if allowed by the geometry of the Fermi surface in planes normal

to field direction. It is not within our scope to describe the details

and theory of each experimental procedure. We shall merely give the

relevant results and refer to the references for more details. The

importance of these techniques is that they allow one to obtain direct

measurements for the rate of scattering or, its inverse, the relaxation

time unweighted by the (l-cose) factor. Indeed, 1(T) is observed to

3 rather than ~T'5. The only requirement is that thevary as ~T’

scattering be through an angle sufficient to destroy the phase coherence

of the electron orbits to which a given technique is sensitive. The

deHaas van Alphen effect (deA), for example is sensitive to scattering

through angles as small as ~0.0l° while the radio frequency size effect

(RFSE) can only detect scattering by roughly 1° or more.

Tables 1.5 and 1.6 give T(b)/T(n) for phonon and dislocation scat-

tering respectively. Because many results exhibited a range of relaxa-

tion times on the bellies, we have chosen the maximum ratios in such

cases. We have included ratios determined from conductivities for

comparison but one must remember these are weighted according to scat-

tering angle by roughly (1-cosa). Because of the different temperatures,

measuring techniques and calculating methods, the discrepancies in the

table should not be of great concern. The essential point is that there

is definite anisotropy even at 63 K and it is of similar form for
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phonons and dislocations. One interesting point not shown in the tables

is that the magnitude of T determined by de Haas-van Alphen techniques

is on the order of 100 times smaller than T determined by the radio-

frequency size effect indicating 100 times more scattering at angles

less than about 1°. Comparison with actual dislocation resistivities

shows that the conductivity relaxation time is on the order of 100 times

longer still. While the anisotropies of the non-transport relaxation

times in Tables 1.5, 1.6 are not as great as the anisotropy implied by

Bergman et a1. it must be remembered that their relaxation times are

conductivity relaxation times whose anisotropy is greatly enhanced for

small angle scattering.
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Table 1.6. Relaxation time ratio for dislocation scattering in Cu.+

 

 

td(b)/1d(n) Method Reference

21

~2 RFSE Gantmakker et al.

~4 deA Chang and Higgins22

Terwilliger and Higgins58

5* 28R Dugdale and Basinski57

8.3* 28R Lengeler et al.56

 

+Interpret with the key for Table 1.5.



CHAPTER II

EXPERIMENTAL METHOD AND APPARATUS

All of the measurements described herein were performed using

either a liquid He4 cryostat or a He3-He4 dilution refrigerator. The

He4 cryostat, designed by the author, was used for measurements in the

temperature range of 1 to 9 K. It has the advantage of being relatively

quick and inexpensive to operate. Details of its design are given

later. For lower temperatures, the dilution refrigerator, designed by

professor William P. Pratt, Jr., was used. Details of its design and

construction can be found in references 59 and 60. Also see Lounasmaa6],

for more general discussion.

A. The SQUID Null Detector System

The real heart of the measuring system is the SQUID (Superconducting

Quantum Interference Device) used as an ultra sensitive null detector in

a potentiometric voltmeter circuit similar to those described in refer-

ences 60 and 62. Because of its essential role in obtaining the precision

and sensitivity necessary for these measurements, we shall review the

basic circuit and consider some modifications used for some of the

experiments.

68
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Figure 2.1a+ shows the basic experimental arrangement used in all

4
the measurements on strained copper samples done in the He cryostat

and the earlier runs on silver, copper and gold using the dilution

refrigerator.13’]4 While the sample geometry shown is close to the

actual shape used, the reference resistor generally had a geometry

substantially different, being closer to a thin disk for the lowest

values of resistance. The basic method of measuring resistance is very

simple in principle. The rf SQUID electronics at room temperature (not

shown) puts out a voltage proportional to the current IS through the

SQUID coil, Ls (which produces a magnetic flux to which the SQUID itself

is sensitive). When no current is present in either Rx or Rr the SQUID

output voltage registers null. When a current Ix is passed through the

unknown resistance, Rx’ the SQUID output deviates from null. It can be

balanced back to its null value by passing an appropriate current Ir

through the known reference resistor Rr' The value of the unknown

resistance is then simply

R - -—-R (2.1)
x Ix r

The earlier dilution refrigerator measurements1 4 were made by meas-‘

uring Ir and Ix separately with precision digital voltmeters which

looked at the voltages these currents generated across General Radio®

standard resistors. The maximum precision obtainable was about 2‘

parts in 105. Most other measurements were made using a modified and

locally adapted commercial d.c. current comparator from Guildline

 

1'Note, although the figure schematically shows a large loop area for the

circuit, in practice one must minimize this area to avoid noise pickup.

Hence, all wires are varnished together in pairs.
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Instruments, Ltd.+ This device is capable of providing two electri-

cally isolated currents up to about 50 mA, whose ratio can be set to

a precision of 1 part in 107. Details of this device can be found in

Edmunds et al.63 ‘

Now that the necessary precision in the current ratio was avail-

able, the stage was set to try to measure the resistivity of even purer

samples than heretofore and to make meaningful measurements well below

1 K where the temperature dependence is extremely small. To do this

requires minimizing any noise in the system. The main source of noise

is Johnson noise, which expressed as a voltage, is given by

kBTR

<vn>RMS = 4kBTBR = -:F—- (2.2)

where B is the noise bandwidth and T is the averaging time employed in

detection. To make use of the full precision of the current comparator,

we require Rr 2 Rx“ To ensure that the Johnson noise from the reference

does not dominate the total noise, we require Tr 2 Tx‘

One approach is to maintain Rr at the lowest temperature at which

measurements are to be made, say 50 mK, subsequently raising the sample,

Rx’ to higher temperatures. This is done by mounting the sample on the

end of a thermal resistance such as a length of nonsuperconducting wire

(Fig. 2.1b). The heater, H], can then raise the sample temperature by

any desired amount. The resistance should be low enough to allow suf-

ficient thermal anchoring to the temperature reservoir (in this case the

mixing chamber of the dilution refrigerator) and yet allow the

 

1.Guildline Instruments, Ltd., Smith Falls, Ontario, Canada K7A 459.
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temperature of the sample to be raised to any desired temperature with-

out changing the temperature of the mixing chamber and Rr' This last

condition is quite difficult to meet if very large temperature gradients

are required across the thermal resistance. A rather ingenious solu—

tion, which has been used successfully on the latest dilution refrig-

1-

erator runs, was proposed by Dr. John Rowlands while at MSU as a

research associate. Although the details can be found in Edmunds et

al.,63 the method will be reviewed here. The essence of this set-up is

also shown in Fig. 2.lb. One of the two heaters H1 or H2 is always on

during a measurement so that the heat load to the mixing chamber is

constant. The use of H2 is probably not required if an automatic tem-

perature controller is used to maintain the mixing chamber at a constant

temperature. The procedure is as follows: The current comparator set-

ting C which balances the SQUID when H1 is off is determined. If the

sample is connected to the primary (or master) and the reference to the

secondary (or slave) side of the comparator, then

C =-;5 =-55 (2.3)

x r

H1 is turned on to raise the sample temperature by roughly 10% at lowest

temperatures,somewhat less at higher temperatures. An uncalibrated

resistance thermometer, Tr’ may be used to monitor the reference resis-

tor's temperature to be sure it hasn't changed. The change in the

sample's resistance, ARx, due to this temperature increment, AT, requires

a change, AC, in the value of C needed to balance the SQUID. The change

 

+Present address: Radiological Research Laboratories, Room 5267, Medical

Sciences Building, University of Toronto, Toronto

MSS.lA8, Canada.
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in C gives the change in R)( relative to Rr' Definition (2.3) then leads

to the result

0
.

J. _o. = .1. de
p T=T RX dT

 _ (2.4)

T=T

>
|
i
>

-
i
n

n
.

(
3
)
—
4

 

where T is the average temperature of the sample.+

Because the total resistivity will vary by less than 1% over the

entire temperature range of interest, one will introduce less than 1%

error in the temperature dependence of the resistivity if the l/p factor

in Eq.(2.4) is treated as a constant l/pO (the same holds for l/C).

The advantages of this method are: The elimination of the exact

value of the residual resistance from consideration and elimination of

the need for a calibrated standard resistor because the reference drops

out of the equation. A bonus is that one can actually use a second sam-

ple for the reference and measure it in the same run by interchanging

the roles of sample and reference. This sort of double run was actually

done in the last two dilution refrigerator runs using copper and silver

as the pair of samples.

The error introduced by approximating the temperature derivative .

at T with finite differences is rather small,in general,for the type of

smoothly varying resistivities usually encountered at ultra low tempera-

tures. The error has a leading term second order in AT and given by

113—113 “3" (2.5)
3 dT3.

p
p
a

 

+If the current leads from the comparator to the sample and reference

were switched so that C = Ix/Ir, then one must replace AC by -AC in

Eq. 2.4 .
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For example, if the temperature dependent resistivity were given by

the equation (which will be shown to be typical in Chapter III)

EA%?—-= 10‘5 2 + 10‘6 15 (2.6)

0

Then the relative error, i.e., the ratio of Eq.(2.5) to the derivative

of Eq (2 6). for AT/T = 0.1, is given by

2 4

1 911 T (2.7)

311 5:?

Thus at l K the relative error due to the finite difference approxi-

mation is only 0.1% and is completely negligible below 1 K. At higher

temperatures the relative error approaches a limiting value of %%, being

0.48% at 4 K, for example. At low temperatures other errors such as the

error in AT certainly dominate. At higher temperatures one can always

reduce AT a little if necessary.

Because of the thermal resistance between the sample and the mixing

chamber this method of mounting the sample is not as well suited to

measuring the thermo-electric ratio, G (= Ix/Qx). Q is a heat current
x

which generates a thermal e.m.f. in the sample. Ix is the electrical

current necessary to cancel this thermal e.m.f. with an ordinary resis-

tive voltage drop. The usual experimental arrangement is shown in

Fig. 2.16 where the heater at the end of the sample generates the heat

current. Some thermo-electric ratio measurements were done in the early

dilution refrigerator runs. These results can be found in Koshenevisan

et al.13’14 G was also measured in the strained copper runs on the He4

cryostat. These results are given in Appendix A.
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8. Special Problems with Very Low Resistance Samples

1) Contact Resistance

The elimination of contact resistance at all junctions in the SQUID

measuring circuits of Fig. 2.1 is paramount to successful measurements.

Any contact resistance of greater magnitude than the series combination

of the sample and reference would make the dominant contribution to the

Johnson noise given by Eq.(2.2), thus reducing the signal to noise below

its optimum. In addition any such resistance would reduce the current

through the SQUID signal coil per unit voltage induced across the sample

thus reducing the sensitivity of the SQUID.

Niobium titanium superconducting wire with copper-nickel cladding

is very suitable for making junctionsvfith ordinary lead tin solder (or

Rose's or Wood's metal if lower melting point solders are desired).

Both single and multi-filament wires have been used successfully. The

single filament variety has the advantage of being of smaller diameter and

more flexible; it is also easy to etch off the copper-nickel cladding

with nitric acid if one wishes to make pressure contact with a block of

superconductor such as niobium. The disadvantage is that it seems to

be somewhat more difficult to reproducibly achieve true superconducting

contacts with critical currents greater than 50 mA. The multifilament

I in two diameters,typed used by the author is made by IMI Titanium

0.05 mm and 0.1 mm. The filaments are embedded in a Cu-Ni matrix which,

when dissolved in acid, leaves a bundle of very fine superconducting

wires which are difficult to use in making superconducting pressure contacts.

For soldered contacts however this type of wire was found superior, reliably

 

+The wire is called Niomax-CN made by IMI Titanium, 9.0. Box 216, Kynoch

Works, Witton, Biringham, England B67BA.
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producing junctions with critical currents in excess of 200 mA. The

smaller of the two diameters seemed to produce the most reliable super-

conducting junctions.

To prepare both single and multifilament wires one should strip off

the insulation either by abrasion or with a solvent such as x-var and

immerse the end of the wire in molten lead-tin solder after treating it

with soldering flux. The tip should be held in the molten solder for

about a minute then withdrawn while the solder is cooling to the point

that a heavy layer of solder will coat the wire. When subsequently

soldering these wires to the sample or other places it is important that

the very tip of the wire be fully embedded in solder.

Before actually mounting the sample in the cryostat it is generally

worthwhile to measure the contact resistance of the potential leads in

liquid helium (or at least set an upper limit on this resistance) by a

four-wire technique as shown in Fig. 2.2. Of course one must use cur-

rents of the same magnitude as will be used in the actual measurements

because larger currents may exceed the critical current of one.of the

junctions. This sets a lower limit of about 0.1 micro-ohm on the

measurable contact resistance if one uses an instrument such as the

Keithley 160 nanovoltmeter with 0.01 microvolt sensitivity using a 100 mA

reversible measuring current. When extremely low contact resistances

are needed, if no resistance is detectable by this method, one must

either assume that the true resistance is essentially zero--not too bad

an assumption from the author's experience--or use a more sophisticated

measuring technique. One relatively simple way to make such a measure-

ment which has been used on the lowest resistance copper and silver

samples is to simply connect the potential leads to the signal coil of
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a SQUID in a simple cryostat. Then by sending a constant current

through the sample and measuring the time constant of the SQUID system

output voltage, one can obtain the total resistance by dividing the

self inductance of the SQUID coil by the time constant.

2) Response Time Control with Superconducting Transformers and

Chokes

Another problem associated with measuring resistances below 10'8

ohms is the response time of the SQUID measuring circuit of Fig. 2.1.

This time constant is given by

where RT is the total circuit resistance due to sample, reference and

contact resistances and LS is the inductance of the SQUID signal coil in

place within the SQUID body. In the measuring systems used the value of

L5 is about 2 pH. The response time for RT = 10"8 ohms would be about

200 seconds if no special measures were taken.

During the measuring process one typically sweeps the currents Ix

and Ir from positive to negative at a rate sufficiently slow that the '

SQUID feedback voltage does not exceed its maximum value of 10 volts.

This in itself would require many minutes. Then one would have to wait

another 9 time constants, about 30 min., before the value of the SQUID

feedback voltage had reached its zero to within the noise level of

roughly 1 mv. Since a single measurement generally requires several

current reversals it is clear that several hours would be required for

a single point. During this time the zero of the SQUID would have
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to undergo no flux jumps. These requirements along with the

nearly geological times necessary to complete an entire run clearly

make such measurements impossible. The obvious solution of increasing

the sample resistance by making longer and thinner samples does not work

because boundary scattering would become a problem--the electron mean

free paths are on the order of 1 mm. The introduction of additional

resistance in the circuit is ruled out because it would increase Johnson

noise and lower sensitivity. The only answer is to reduce the effective

inductance.

The ideal way to lower the inductance is the SQUID circuit would

be to reduce the number of turns on the sensing coil of the SQUID.

Although this would lower the current sensitivity it would lower the

inductance even more because the former goes as N while the latter goes

as N2. However, this is not very practical in a multipurpose cryostat

such as the dilution refrigerator because once a SQUID is in operating

condition it is very risky to tamper with it. There remain two methods

of lowering the inductance: either put a superconducting choke, Lp, in

parallel with the SQUID sensing coil (Fig. 2.3a) or use a superconduct-

ing transformer (Fig. 2.3b).

The effective inductance of the two parallel inductors in Fig. 2.3a

is simply

L = _E_L
(2.9)

It is easy to show (see Appendix B) the effective inductance of the

superconducting transformer (Fig. 2.1d) is given by

2 2
k L2 1

L = L l - ——-————
e l [ LS + L2

(2.10)
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where 1( is the coefficient of coupling for the transformer and is

given by

k =-—-——- (2.11)

where L1 and L2 are the primary and secondary self inductances and M is

their mutual inductance.

We now consider what effect these changes will have on the sensi-

tivity and precision of the measurements. First let us define the true

signal current, IT, as the loop current which would flow if no balancing

potential were being supplied by Rr' This should not be confused with

the net loop current, In, which actually flows when balancing the SQUID.

In is zero at balance. Although for both methods only a fraction of the

true signal current, IT, passes through the SQUID coil, this alone does

not affect the signal to noise ratio because both signal and noise are

reduced by the same fraction, provided we are well within the regime

where the primary noise is Johnson noise?4 In the regime where intrinsic

device noise is important or if the additional superconducting current

loop picks up noise, there will be a reduction of the signal to noise).

ratio. The real problem is due to requiring the time constant to

remain fixed. Previously no one had been forced to fix the time con-

stant. In such cases the maximum precision, i.e. the inverse of the

signal to noise ratio, is independent of sample resistance. This is

easily seen as follows: In the absence of a choke or transformer, the

mean square Johnson noise current is given by

kBT

I = -——- (2.12)
n LS
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This is seen to be independent of the source resistance. The true

signal current is given by

IT =1 §_x_ (2.13)

where Rx and Ix are respectively the resistance of the sample and the

current through it and RT is the total circuit resistance, i.e. the sum

of the sample, reference and contact resistances. Keeping in mind the

fact that in these measurements the sample,reference and contact resis-

tance are roughly equivalent, we can write

RT = aRx 2 < a < 10 (2.14)

The signal to noise current ratio, which defines the absolute limit of

precision, is then given by

I L I
T s x

<In>RMS ‘(ksi '1

Thus the ultimate precision, independent of the sample resistance, is

limited only by the available measuring current which is about 50 mA for

6 atthe current comparator. This gives a signal to noise of about 4x10

1 K for L5 = 2 pH and a = 5. In terms of voltages this result can be

viewed as a consequence of the fact that although the signal voltage

decreases linearly with Rx’ the Johnson noise voltage does also

because it goes as

’k TaR I k T
_ B x = B
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In other words, the decrease in the noise bandwidth, (4T)-], provides

the necessary compensation to allow the signal to noise ratio to remain

independent of Rx’ This is no longer the case when we fix the value of

T to some value To, say 10 sec. To fix I we must change the effective

inductance of the circuit with each experiment on a sample of different

resistance. Now, we must replace LS by Le = aRXTo in Eq.(2.12) yielding

I
T o x

21—3—- 1 (2.17)

n RMS 8

 

6
This has a value of 1.3xlO for T = 10 sec., Rx = 5x10'9 ohms, Ix = 50 mA

and a = 5 at l K. Compared with the results of Eq.(2.15) we find the

signal to noise ratio has been reduced by about a factor of 3. Because

of the simultaneous reduction of signal and noise current through the

sensing coil it would not seem that there is any advantage to using a

superconducting transformer rather than a simple shunting inductor in

an attempt to tailor the effective inductance. However, if noise were

being coupled in to the SQUID due to pick-up in the superconducting loop

formed by the two inductors or from the room temperature SQUID elec-

tronics there might be reason to try to maximize the amount of signal

passing through the SQUID coil. While in the simple parallel inductance

circuit of Fig. 2.3a the current, IS, through the SQUID branch is fixed,

the circuit of Fig. 2.3b can be optimized within the limits of practical

transformer design to perform better than the simple parallel inductance.

However, as outlined below, significant advantage may be rather dif-

ficult to achieve because it may require very strong coupling between

the primary and secondary coils.
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The following expression (whose derivation can be found in Appen-

dix 8) gives the ratio of the current through the squid coil using a

transformer to that using a superconducting choke, assuming that the

two would yield the same effective inductance and that the transformer

design maximizes its output current for a given coefficient of coupling

k. The minimum criterion for choosing a transformer would be

IS(transformer) (Ls k

1 = - > 1 (2.13)
Is(cho e) Le 1 +_ /q'jj7:§

where Le is the desired effective inductance. At this stage it might

 

appear that for any sizable ratio of LS to Le the requirements on k are

not too severe. For example Eq.(2.18) can be satisfied by k > 0.6 for

Ls/Le = 10. However, the degradation factor k/l+/q:7k§- increases

rather slowly for k < 0.9 being only 0.63 at k = 0.9. Hence, to actu—

ally make the extra effort of winding and using the transformer worth-

while may require large values of k in turn increasing the effort required.

In our example even if k were 0.9 we would only gain a factor of two and

in the limit of perfect coupling only a factor of three. Hence we con-

clude that, unless the need is very great or the ratio of Ls/Le is very

large, the simpler choke circuit of Fig. 2.3a is to be preferred.

3) Enhanced Noise Pickup

Finally, a somewhat unexpected problem we had in trying to measure

such low resistance was a greatly enhanced susceptibility to noise

pulses from any equipment, particularly current comparator. These

pulses would cause the SQUID zero to shift by an integer number of flux

quanta despite the heavy filtering used on the all input lines. The
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problem was solved by wrapping the samples and the terminal connections

to the SQUID with superconducting foil to shield these regions of rela-

tively large loop area from magnetic flux pulses. The reason for this

enhanced sensitivity is probably due to the fact that as the resistance

in the SQUID circuit goes down it becomes more and more effective in

generating shielding currents to minimize the change in magnetic flux

through the entire circuit from magnetic noise pulses, approaching the

limit of perfect shielding in a loop of zero resistance. The shielding

currents respond almost instantaneously and, passing through the SQUID

coil, cause flux jumps in the SQUID because the slewing rate of the

SQUID feedback circuit is too slow to compensate.

4 CryostatC. Design and Construction of a He

A liquid He4 cryostat employing two SQUID measuring systems was

designed and constructed. The basic objective of the design was to

provide a versatile and efficient means to measure nonmagnetic transport

properties in metals and alloys in the temperature range from 1-9 K.

It was constructed to allow two samples to be mounted and measured in

the same run.

1) Mechanical Construction

The room temperature end or head of the cryostat consists of a

brass flange which mates with a brass collar on the top of the liquid

helium dewar. All electrical connections to the SQUID's, samples,

thermometers and heaters are made through various electrical connectors

attached to this flange. The low temperature end or tail of the cryo-

stat is suspended below this flange by a number of stainless steel
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conduits and pumping tubes. The tail consists of a brass vacuum can

which houses all of the paraphernalia necessary to make the measure-

ments. Figure 2.4 shows the exterior appearance and dimensions of the

cryostat and dewar. The lower portion of the brass can mates with a

brass flange. These are held tightly together, with a lead O-ring

between them, by twelve brass screws. Steel screws were found unsatis-

factory because they contract less than brass during cooling causing a

loss of the vacuum seal. The inside of the can is tinned to provide a

superconducting shield against external magnetic flux changes which

would affect the SQUIDs. Within the brass can is a copper canister

called the pot into which liquid helium can be admitted via a valve

operated by a shaft from the cryostat head (see Fig. 2.5). The pot is

suspended by a 1/2" stainless steel tube which acts as a vacuum pumping

line and provides thermal isolation. The top surface of the pot has

various holes and protrusions which allow one a variety of ways to

attach samples and thermometers. A 1/2" copper stud has been attached

to the bottom of the pot with cerrolow 117+ low temperature solder to

allow a low field superconducting magnet to be mounted in the eight

inch space below the pot. There is therefore ample space both above and

below the pot for mounting samples and auxillary apparatus.

The pot will hold about 80 cc of liquid helium. It is divided by a

diaphragm into an upper region of about 30 cc and a lower region of

about 50 cc. The diaphragm contains a special device which allows the

insertion of a polished orifice to suppress the flow of superfluid He4

film below the A transition. This provision was included to allow

 

+Cerro Copper and Brass Company, Stanford Works, Rolling Place,

Stanford, Connecticut.
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Fig. 2.5 Semi-schematic drawing of the tail section of the cryostat.
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achieving the lowest possible temperatures, possibly slightly below 1 K.

Although the polished orifice has not yet been installed, the small

hole presently in the diaphragm probably helped achieve the 1.03 K al-

ready obtained in this cryostat. The pot is soldered with Wood's metal

to a copper bushing on the pumping tube. Protruding from the top center

is a copper post used to thermally lag various wires to the pot. This

post can be pried out of the pot if one wishes to remove the pot.

To prevent the development of vacuum leaks from thermal cycling,

all joints between dissimilar metals are made so that the material which

contracts more during cooling surrounds the lesser contracting material.

Such joints will be under compression when cooled. Thus brass always

surrounds copper and either of these may surround stainless steel.

Joints to stainless steel were made with hard silver solder whenever

possible. Otherwise soft silver solder was used. All stainless tubes

were soldered to bushings both at the head and tail of the cryostat to

provide strength and facilitate repair. In particular, the 1/4" stain-

less tubes which house the miniature coaxial cable going to the SQUIDs

were made to be easily changed because we thought the flexible coax

might have to be replaced with rigid coaxial conductors.

2) SQUIDs and Standard Resistors

The SQUIDs themselves are mounted in copper holders which extend

through the brass flange to become the bushings to which the 1/4" stain-

less tubes are soldered. These provide the heat sinking of the SQUIDs

and the coaxial r.f. leads to the helium bath (see Fig. 2.6). The two

SQUIDs are shielded from magnetic flux changes inside the vacuum can

and from mutual interaction by a tinned copper box with a partition
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down the middle. The tinned copper lid to this box is attached with

Cerrolow 117 solder. The box is attached to the underside of the brass

flange with two screws. The standard resistors are also kept within

separate partitions in this box.

There are two standard resistors made of brass associated with each

SQUID. Those with the left SQUID have values of 0.75x1o'7

1.79x10‘4

8.89x10-

10.5% and

20.1% ohms while those on the right side have values of

8 6
21.5% and 5.27x10‘ 50.2%. All were measured by a four probe

technique in liquid helium with currents between 1 and 8 A. The exact

ratio between these last two was measured with a SQUID to be 0.017240.

While this is not exactly the ratio obtained from the original values it

differs by only 2% which is consistant with the original error. By

this ratio the lower resistance can be recalibrated against the higher

one to obtain a value of 9.085x10'820.3% ohms.

Because of the way the standard resistors are wired to the SQUIDs

and terminal strips, when the larger valued resistor is desired it is

actually the series combination of the two which is used as the refer-

ence resistor in actual measurements.

The terminal strips just mentioned provide a convenient way to con-

nect samples to the SQUID circuit. They are, in fact, used to make all

connections between wires going to the cryostat head and anything inside

the vacuum can with the exception of a set of four (more could be added)

thermocouple grade chromel wires. These run continuously from the tail

through a feed-through at the head. This allows one to make direct

voltage measurements on high resistance samples with a digital voltmeter

without large thermal e.m.f.s which might be caused by inhomogeneities

in the leads.
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All other electrical connections at the cryostat head are made

through a pair of 17 pin hermetically sealed connectors, one for each

"side." One of pins (pin A) is not used. There are filter boxes

available to attach at the cryostat head to reduce electromagnetic pick-

up above 3,000 Hz on all sixteen lines. However, these have generally

not been necessary. The sixteen wires on each side are brought down to

the tail through 1/4" stainless steel conduits which mate with copper

bushings. These bushings protrude through the tail flange into the

vacuum space to provide heat sink posts around which the wires are

wrapped before being soldered to the terminal strip (see Fig. 2.5).

The temperature of the sample can be controlled in two ways. In

the traditional method,for temperatures below 4.2 K, the vapor pressure

of the liquid helium in the pot is regulated. While this method can be

used it is much more cumbersome and less stable than the second method

which involves an arrangement in which the sample is mounted at the end

of a thermal resistance as depicted on the left side of Fig. 2.1b. A

temperature gradient along the thermal resistor produced by a heater

allows one to vary the sample temperature very easily by controlling the

heater current. The pot can be at 4.2 K for temperatures above 4.2 and

it can be pumped to the lowest temperatures by a vacuum pump for lower

temperature measurements. The thermal resistors used were made from

brass cut to about 3/4" long by 1/8" diameter. A heat flux of about

4 mW was sufficient to raise the temperature from 4.2 to 6.2.
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3) Thermometry

The primary method of measuring temperatures is by the use of

germanium resistance thermometers. There are four Cryocal+1CR1000

thermometers, one of which (serial number 2844) was originally cali-

brated by Cryocal Inc. between 1.5 and 100 K. Unfortunately, although

they provided some information about the accuracy of their calibrations,

they did not indicate which sources of error are probably systematic and

which are statistical. Treating all errors as though statistical and

including our own errors in measuring the resistances with the prescibed

currents (10 uA above 3 K, 1 uA below 3 K) using digital voltmeters with

l uV sensitivity the following formula gives a reasonable estimate of

error:

AT = 0.002 T + 0.001 K (2.19)

where T is the measured temperature. It should be remembered that a

large component of this error is systematic. Thus small temperature

differences can probably be measured to about 0.005 T.

The Cryocal company provided a computer generated table of resis-

tance versus temperature from the fitting equation

_ i

log10 R - Ai(]°gloT) (2.20)

I
I
M
Z

i 0

where N is that which produces the best fit and the A1 are fitting para-

meters. Because the use of a table during the course of an experiment

is a bit cumbersome, the author programmed an HP67 calculator to calcu-

late the temperatures based on Eq.(2.20). Because the equation is in

 

1'Cryo Cal, Inc., 1371 Avenue "E", Riveria Beach, Florida 33404.
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the inverse form of what usually is desired, i.e. finding T given R,

an iterative Newton Raphson procedure was used to find the solution.

Appendix C contains further details including the actual calculator

program.

The temperature of the pot can also be measured by helium vapor

pressure thermometry. There is a 1/8" stainless steel tube which

terminates inside the pot just below the opening to the pumping tube.

The tube passes up the interior of the pumping tube until it reaches the

vacuum can flange. From there it exits the pumping tube and passes

through the helium bath. It is terminated with a valve atop the head

which can be connected to a manometer. This manometer tube contains a

wire connected to a sealed feedthrough at the head and to a carbon

resistor mounted on the end of the manometer tube inside the pot. The

other end of the resistor is grounded. The purpose of this resistor is

to determine when the pot is full of liquid by registering a change in

resistance caused by the greater rate of Joule heat dissipation due to

liquid rather than gaseous helium. So far it has not been found neces-

sary to use this level detector. Rather, the needle valve is simply

opened for about a minute.

0. Sample Preparation
 

Our chief goal for much of this work was to prepare samples of

noble metals with purities as high as possible. The reason was first

to reduce the residual resistance Ro so that the small temperature

dependent effects would constitute a larger fraction of the total resis-

tance. Secondly, it was essential to eliminate magnetic impurities,

iron being the most common, so that the Kondo effect would not
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complicate our results. A handy if somewhat imprecise gauge of sample

purity is given by the residual resistance ratio RRR defined to be the

resistance at room temperature divided by the resistance at liquid

helium temperatures. Our goal for silver and copper was an RRR greater

than 10,000, preferably about 20,000. Although difficult, such ratios

have been achieved by others.15’65

The starting materials are listed in Table 2.1. These materials

were then melted in various types of crucibles by an r.f. induction

furnace and then cast into sample form, cut or otherwise formed

directly from the ingot made in the crucible. The crucible material

which gave the best results was made from pyrolytic graphite. Ordinary

graphite never produced RRR values better than 5,000. Boron nitride

was also disappointing although it was only tried once, on copper.

Alumina was found unsuitable because the copper adhered to its surface.

Both single crystal and large grained polycrystalline samples were

prepared. The only exceptions were several silver samples which were

prepared in quartz tubes. The procedure was to seal silver pellets under

vacuum in a quartz tube of roughly 10 mm diameter which had previously

been fused to a 2 mm ID quartz tube sealed on the opposite end. Then,-

the silver was melted by gas torch. When all the silver was melted, it

was forced into the smaller tube with a single swift shake. The sample was

removed by very carefully slicing the tubing lengthwise on opposite sides

using a diamond saw being careful not to actually cut through to the

silver. Then the tube could easily be split away from the sample.

While this technique produced samples with RRR values of 10,000, the

samples had a number of dimples on their surfaces as well as some

internal voids revealed by careful density measurements.
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Table 2.1

Source and purity of sample materials

 

 

Major impurities

 

Material Source Purity (in PPM) Physical form

Copper ASARCO 99.999+ Sb=l, Fe<0.5, Mg<l extruded rod

Si<l, Ag<0.1 or plate

Se<l, S<1

Gold COMINCO 99.9999 Ca<Ol, Cu<0.5, Fe<0.l pellets

Mg<0.l, Si<0.l, Ag<0.3

Silver COMINCO 99.9999 Ca<0.l, Cu<0.l, Fe=0.4 pellets

Pb=0.1, Mg<0.1, Si=0.1
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All samples were given an annealing treatment in oxygen or air at

a pressure of from 1 to 8x10.4 torr at a temperature 50 to 100 C below

their melting points. The purpose of this treatment was to improve the

RRR value and eliminate the magnetic effectscfi’iron impurity by forming

66). There is evidence at leastiron oxide (see the review by Fickett

in copper that besides being oxidized the iron oxide tends to aggregate

to form small precipitate particles which would contribute much less

to the residual resistance than individual iron oxide molecules.67

Presumably due to this mechanism as well as the reduction of lattice

defects and grain boundaries we found our RRR values to increase by

factors of two to ten. It is not clear what effects this treatment

might have on other magnetic impurities such as manganese although

nickel and cobalt probably are oxidized like iron. Table 2.2 contains

information on the preparation of various samples.

A way was needed to attach current and potential leads to avoid

spurious temperature and current dependent effects. We found it neces-

sary to attach our current and potential leads to arms of the sample

material which protruded at least five times the arm thickness from the

actual region to be measured. Sometimes these arms were spot welded on.

In other cases the sample was cut or cast into a form having suitable

arms. In the case of spot welded arms (only used for connection to

potential leads) the arms were made from the same material as the sample

rolled or drawn to a smaller size and annealed after spot welding.

Because copper, silver and gold are easily soldered with lead tin solders

it was then easy to solder the CuNi clad NbTi superconducting wires to

the arms.
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Table 2.2

Sample Information

 

 

 

Purity or

Sample Composition Crucible Anneail RRR Ge0m.#

AgA 99.9999 quartz 0.50 02 8500 3d. 4700 a

AgB 99.9999 quartz 0.50 02 8500 3d 8000 a

AgC2 99.9999 quartz 0.50 02 8500 3d 11000 a

AgC3 from AgCz quartz reannealed in 02 5600 0

A90 from AgA quartz reannealed in 02 7100 a

A920 99.9999 pyrolytic 0.50 02 9000 20 20000 c

graphite

Aul 99.9999 graphite 1 atm air 9500 2d 5600 a

Au3 99.9999 graphite -1 atm '02 9500 2d 2000 a

001 none 0.50 02 9600 -3d 2600 a*

0u5 none 0.50 02 9600 3d 5420 a*

006 none 0.50 02 9600 3d 4190 0*

0010 none 0.50 air 9600 3d 5300 b

Cull graphite 10 air 9500, 1.5d 4300 a

0013 pyrolytic 0.80 air 10000, 3d 13000 c

graphite

CuAgl 0.1 at 2 Ag 113 air 9500, 3d ----- a

CuAgZ 0.025at % Ag 60 air 9500, 10 ----- a

 

 

+ annealing treatment lists pressure in microns or atmospheres

++ see Figure 2.7
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During the process of cutting and shaping the samples their sur-

faces would become contaminated. For example spark cutting, which is

carried on in a kerosine bath, always left the surface dark with carbon

and hydrocarbon deposits. Also one had to thoroughly clean the surface

with acetone to remove the graphite impregnated plastic cement used to

mount the sample to the spark cutter. Samples which were machined

probably had iron contamination on the surface. Removal of these and

other contaminants prior to annealing was accomplished by etching the

surface.

Copper and silver can both be etched with nitric acid. Another

excellent etch for silver is prepared by mixing 1:1 concentrated

ammonium hydroxide with concentrated hydrogen peroxide. While many

surface impurities may be removed from gold by nitric acid alone, aqua

regia which actually dissolves some of the gold is probably a better

choice. Before using acid etches, any oil residues were removed with

detergent or solvent. After etching the samples were thoroughly washed

in doubly distilled water after which they were usually rinsed in

ethanol to speed drying.

The quartz tubes in which the samples were annealed were also

thoroughly cleaned with nitric acid, doubly distilled water and occa-

sionally with hydrofluoric acid to remove residues which seemed to be

baked into the inner surface of the tube. Care was also taken to never

use the same tube with different materials.

Figure 2.7 shows some of the sample geometries used and referred

to in Table 2.2. The tuning fork geometry was used to reduce thermo-

electric noise which might be generated by heat pulses passing along

the length 0f the specimen due to small temperature fluctuations in the
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\
1

 

I

    
 

       1f
(6) (b) (c)

Fig. 2.7 Various sample geometries: (a) linear geometry, circular

cross section with spot welded arms; (b) linear geometry,

rectangular cross section with milled arms; (c) tuning

fork geometry, semi-circular cross section cuts made with

spark cutter from cylindrical ingot.
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cryostat. In all geometries,but especially the tuning fork geometry,the

easiest way to measure the effective geometrical factor was to measure

the room temperature resistance and divide by published values of the

room temperature resistivity. In samples of uniform cross section and

simple linear geometry actual measurements were carried out and found

to agree to within a few percent--consistent with the estimated error.

Although the accuracy of our resistivity measurements was thus limited

to several percent, this did not compromise the validity of our high

precision results since we were concerned with the precise form of the

temperature dependence and not with an absolute measure of the

resistivity itself.

An attempt was made to purify copper by electrolytic techniques.

Pure copper was dissolved in nitric acid. The solution was then used as

an electrolyte in an electrochemical deposition of Cu from a very pure

copper anode to a very pure, thin copper cathode. The deposited

material was very dark and full of coral like modules and did not appear

to be entirely metalic. A solution of copper sulphate with an excess of

sulfuric acid was also tried. Though it produced much more uniform

copper on the cathode, the results were disappointing in that after

annealing in oxygen, samples produced from this copper had low RRR values.

Further attempts at this technique were abandoned.



CHAPTER III

RESULTS

Our study of the noble metals' resistivity was originally motivated

by a desire to unambiguously observe the electron-electron T2 term at

temperatures only accessible in the dilution refrigerator. However, the

discovery of the strict T4 dependence over a significant temperature

13,14
range for all three metals and the initially puzzling behavior of

its coefficient13 lead to more detailed investigations of this behavior

4 behaviorin Cu and Cu alloyed with small amounts of Ag. Believing this T

was due to phonon scattering, we set out to systematically study the

effects of dislocations and impurities because we suspected they were

influencing the magnitude of its coefficient 8. Because ultra-low tem-

peratures were not required, these measurements were carried out in a

cryostat of the author's design as described in Chapter 2.

In what follows, we shall first describe the results of the purely

empirical study of the sample dependence of B and then move on to an

analysis of the data in terms of the theory of Bergman et a1.3 (already

discussed in Chapter 1) which appeared soon after the completion of our

study. Because their theory includes a significant electron-electron

contribution we shall be lead finally to a consideration of this term

and our attempts to complete our original goal on the dilution

refrigerator.

102
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A) A Study of the Sample Dependence of BT4

13’14 hereafterIn the original publications of Koshnevisan et al.,

referred to collectively as K" we established to high precision the

validity of the empirical fit

4

p = 00 + BT (3.1)

where 00 is also a variable parameter and thus not exactly the residual

resistivity. This fit is valid for temperatures roughly within the fol-

lowing ranges: 2<T<7.5 for Ag; 1.5<T< 7.1 K for Au; 2.5<T<7.5 K

for Cu. The power of four was found to be correct to within +0.02 and

-0.11 for all samples of all three metals when the best single power

fits were obtained on the computer. Two examples from K. of the fidelity

of such fits are shown in Fig. 3.1. Thus it is clear that one could

obtain meaningful values of B for comparison if a series of samples were

fit to Eq.(3.l). This comparison is motivated by considering the sample

dependence of B for the same metal shown in Tables 1.1, 1.2 and 1.3 for

samples of K. and Barnard and Caplin, hereafter known as B.C.

Copper was chosen to be the test material for the study of the 8

sample dependence. The preparation of the pure Cu, samples Cu 10 and '

Cu 11, and the dilute Cu 0.1 at.% Ag and 0.025 at.% Ag alloys, called

CgAg l and CuAg 2 respectively, is detailed in Chapter 2. These samples

were initially measured in the annealed state and then repeatedly in

increasing states of strain. After each straining (which was done by

simple stretching except in Cu 10) the geometrical factor was redeter-

mined with an overall accuracy of better than 2%. Most runs were made

using the current comparator described in Chapter 2 but several were done

with less precise current sources. Due to this and other experimental
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variables, the data do not all have the same precision. However,

Fig. 3.2 shows the T4 plots of data from one of the least as well as one

of the most precise runs to show that B was a well defined quantity in

each case. This figure displays a pure and an impure sample each in a

strained and unstrained state to show how the slopes of the graphs, 8,

vary with the introduction of impurities and dislocations. For consis-

tency in comparing 8 from the various runs, the fit to Eq.(3.l) was made

4

over roughly the same range of T for all runs even though some runs were

made to higher and/or lower temperatures than the fitting range of

4 and fit with-3 S T S 7.2 K. The data were taken in even intervals in T

out weights by least squares to Eq.(3.l). The results of these measure-

ments are given in Fig. 3.3 which shows the values of B vs. 00 for the

annealed and the strained samples. To understand this figure it is

helpful to identify several special values of po and B. We define pa

and 8a to be the values of po and B pertaining to the annealed state and

shown on the figure by the open symbols. The solid symbols refer to

samples in various states of strain. The amount of strain is given in

percent next to each point and is determined by summing the values

(Lj+]-Lj)/Lj from each successive strain, where the Li are the lengths-

of the samples after each strain. Because the values of 8 seem to be

leveling off for large strains it is helpful to estimate a limiting

value BA for each sample which is assumed to be approached asymptotically

As expected, the values of Ba exhibit a behavior similar to a Caplin-

Rizzuto plot as shown by the straight line of large dashes. This

behavior is generally understood in terms of the anisotropy model as

discussed previously. A more striking feature of Fig. 3.3 is the

behavior of B vs. 00 for the strained samples. The decrease in 8 due to
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straining is in keeping with the findings of Rowlands and Woods (1978)

for several other metals (Al, Pd, and Ag at higher temperatures). Again,

this is explicable in terms of the anisotropy model.

The initial rapid drop in 8 due to the introduction of dislocations

provides evidence of a rather large effect on the distribution function.

This implies that by introducing dislocations one produces a large

increase in the ratio of small to large angle scattering which, we have

seen in Chapter 1, produces a much smaller relaxation time on the necks

compared to the bellies. The saturation of B for larger strains indicates

the distribution function is no longer changing. However, it is uncer-

tain how closely the dislocation dominated distribution function mimics

the ideal phonon dominated distribution function in a perfect pure metal.

The line of short dashes going through the points (pa,B£) indicated by

the set of small coordinate axes has a small slope implying that the

dislocation dominated distribution function is only weakly dependent on

initial impurity.

The small sets of axes suggest an alternative way to plot the data.

It seems reasonable that the more impurity a sample has initially, the

more dislocations must be added to effect the same change in the electron

distribution function. Thus, we might define a more meaningful parameter

x = po/pa which scales the residual resistivity obtained after adding

dislocations by the initial resistivity. We can also define a parameter

y = B'Bz/Ba'Bz which essentially shifts the zero of B to Ba and scales

it by the total change in B. When this is done one finds that the data

for the two alloys fit a simple equation with only one free parameter

3 = X’V (3.2)
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For both alloys v = 4.0:0.l produced the best fit. The degree of fit

can be seen in Fig. 3.3 where the solid lines were drawn according to

this equation.

At this stage it is unclear why the value of v should be the same

for both samples. Nor do we understand why it has the value four.

However, the existence of such a simple function is at least intriguing.

Unfortunately the pure samples Cu 10 and Cu 11 were given initial

strains which were too large to allow this equation to be checked for

them. However, the values of Ba and BA are known so the dotted curves

were drawn according to Eq.(3.2), assuming v = 4.

The sample dependence of the values of B for Cu and Au published in

K. and Ag published in 8.0. and K. are now explicable from Fig. 3.3 on

an empirical level. Figure 3.4 shows published results for Au and Ag.

The results for Au include some unpublished values (open circles). These

samples had significant Kondo minima which adds some uncertainty to these

values. In addition, they were polycrystalline and of much smaller dia-

meter. Therefore they probably had been given more unintentional strain

during handling especially since they were measured before the effects

of strain on p(T) were appreciated. Nevertheless, as a group they show

the same upward trend with 00. First we notice the general upward trend

for increased impurity level (i.e. increased po). However, the Ag data

of K. (dots) and 8.0. (triangles) show marked deviations from this

general trend. Due to the strong sensitivity of B to small amounts of

strain, it seems likely that the very pure samples of K. and 8.0. all

had significant but variable ratios of pd/pi even in samples with nearly

identical values of po = pd + 91' For example, one sample of 8.0. was

measured a second time after having its potential leads reattached.
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When measured again, even though itsi%)had increased slightly (2.7%) its

value of 8 decreased noticeably (15%). On the basis of our results it

seems highly probable that it was strained slightly in the handling

between runs. The three samples of 8.0. having nearly the same 00 would

seem to lie very well on the steep portion of curves similar to those for

strained Cu in Fig. 3.3. The purer samples of K, on the other hand, show

a more or less constant B and would seem to lie well on the asymptotic

tail of such a curve. This is reasonable because the purer the sample

the greater the relative contribution of the unavoidable residual dis-

locations to the total 90' Of course, quite apart from their effects

on the magnitude of phonon scattering, the introduction of dislocations

increases the total residual resistivity. The variation of 00 with

strain is shown in Fig. 3.5. It is seen to increase more rapidly with

samples of lower purity. To the maximum strain introduced each curve

is roughly linear. These increases in slope with impurity content may

not be related to the anisotropy model. If the cores make the major con-

tribution to pd it is not obvious why pd should increase more rapidly with

strain in impure samples. If the strain fields make a major contribution

one might expect this would only occur when the e.d.f. is impurity domi-

nated because only then is small angle scattering important. In that

case, for the larger strains, Fig. 3.3 implies the e.d.f. is already

dominated on the necks by the dislocations so as to reduce the effects

of small angle scattering. Thus, one would expect to see a decrease in

slope in the 00 vs. strain graphs corresponding to a reduction of the

strain field contribution of pd. Since no sign of saturation occurs there

seems to be support for the calculations of Lukhvich and Karolick68 which

suggest the major contribution to 00 comes from the strongly scattering
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core regions of the dislocations. The problem of accounting for the

differing slopes remains. Possibly the impurities cause a larger number

of dislocations to form per unit strain by preventing dislocations from

moving out of the system.

8. Analysis in Terms of the Theory of Bergmann,Kaveh and Wiser

l) Reanalysis of Published Data

Just when the results of the preceding section were ready for pub-

lication Bergmann et al.3 published a theoretical justification for the

fourth power behavior.From now on we call this theory B.K.W. Recall

from Chapter 1 that it is based on a fortuitous combination of T2 e-e

2
scattering and T"4'5 phonon scattering. The inclusion of a T term was

attempted by both 0.0. and K. but always in addition to a T4 term. A

fit to the form suggested by Bergmann et al. Eq.(l.63) was never attempted

nor was its generalization

2 N
o = 00 + AT + CT (3.3)

A fit with two variable exponents was attempted but not published in K.

because it did not give a better fit than a single exponent. In light

of B.K.W. it seemed appropriate to reanalyze some of the data we pub-

lished previously in K. to see if we could fit the entire temperature

range rather than dividing it into two regimes as had been done.

We digress briefly to describe some aspects of the curve fitting

program used in this analysis. The data were fit using a general non-

linear curve fitting program called KINFIT 4 developed by J. L. Dye and

V. A. Nicely in the M.S.U. department of chemistry. This program weights

each data point in the fit according to the user's estimates of error in
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both the independent and the dependent variable. The weighting takes

into account the sensitivity of the user defined residual function (whose

weighted and summed squares are to be minimized) to the estimated error

of each variable at each point. This function F has a value F1 at the

ith point which, in this case, is just the difference of the measured

resistivity and the fitting curve at the ith temperature. The weighting

of each point is given by

_ 2

where

2 2
2 _ [0F] 2 [BF] 2

o - -- 0 + —- o (3.5)
F1 3x i X. 3y i yi

2
where x1 and Ox.

1

ith point and similarly for the dependent variable y. The program uses

are the independent variable and its variance at the

an iteration procedure to find the best fit. During each iteration, the

computer uses the most recent form of the fitting function to calculate

the next set of weights Wi. This program was superior to that used in

K. in that it supplied more information. Besides the "best fit" para-

meters and their standard deviations, it provided the following infor-.

mation: The sum of the residuals squared, the multiple correlation

coefficient, Ri’ and a matrix of pairwise partial correlation coefficients,

pijlk...‘ Ri is a measure of the total correlation of a given parameter,

that is, to what extent variations of this parameter can be compensated

by the simultaneous variations of the other parameters and still main-

tain a good fit within the scatter of the data. The pijlk are a measure

th
of how strongly the i and jth parameters are correlated such that one

can compensate for variations in the other while the other parameters
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k... are held constant. The program also supplies a complete list and

plot of the residuals at each point. These are useful in detecting

systematic deviations of the data from the curve.

The standard deviations of the parameters (called the marginal

standard deviations) include the correlation effects so they represent

the span of values a parameter can take while allowing the others to

compensate so as to retain the same goodness of fit. Thus, even though

the parameters in these fits show sizeable correlation, the data are

sufficiently precise that the standard deviations remain small allowing

us to be confident regarding the validity of the fit. Of course, large

standard deviations coupled with large correlations would make the

result meaningless. It should be no surprise that the highest pairwise

correlations between parameters in an equation like (3.3) are the vari-

able exponent and its coefficient. If 00 is allowed to vary, it generally

shows the least correlation with other parameters.

The data were fit (where applicable) to the following equations:

_ . 4
o - 00 + BT + 6 (3.6)

B and 6 adjustable

N
+ 6 (3.7)o oO+BT

B', N, and 6 adjustable

2 45+
06 + AT + CT ' 6 (3.8)D

A, 0, and 6 adjustable

2 N
p = 90 + A'T + C'T + 6 (3.9)

A', C', N and 6 adjustable
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In these equations we have written the true residual resistivity

po = 90 + 6. For 03 we use the resistivity measured at 40 mK for the

unstrained pure metals. We then expect the adjustable parameter 6 to be

less than the experimental error in determining 90' For each of the fits

to Eqs.(3.6) to (3.9), the quantity S defined by

2
S = Sum of residuals squared/number of degrees of freedom

was calculated to give a measure of the goodness of fit. Note that in

their original publication Khoshnevisan et al.]3’14 performed a variety

of analyses but always kept N = 4. Equations (3.8) and (3.9), therefore,

represent analyses not previously presented. However,even Eqs.(3.6) and

(3.7) represent new fits because they are now being used over the entire

temperature range.

Of the pure metal samples studied in K. we choose the following for

further analysis. Au 3 is chosen because Fig. l of Khoshnevisan et al.14

indicates that its temperature dependence can be represented to a very

good approximation by a single power law from 2 to 7°. We have not

included the results of Au 1 because they show a resistance minimum at

~0.3 K (note that reference 11 is in error in that the Kondo minimum

ascribed to Au 3 actually applies to Au 1) and we are aware from other

unpublished data on Au we have measured that the effect of the Kondo

term extends to temperatures ~5 times the Kondo temperature. For the

same reason we choose Cu 6 rather than Cu 1. From Khoshnevisan et a1.13

we choose AgC3 which represents our best low temperature data, but which

unfortunately extends only up to 4.16 K. We also analyze AgD with data

ranging from 30 mK to 6.17 K. The results for the unstrained pure metal

samples Cu 6, Au 3, A903, and A90 are given in Table 3.1. The 6's
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marked with an asterisk represent values which lie outside the error

bars for Do. For Cu 6, AgC3 and A90 satisfactory values of 6 occur but

only for fits to Eqs.(3.8) and (3.9). For these same samples, S is

reduced significantly in going from fits to Eqs.(3.6) to (3.9). For Au 3

there is not much to choose between Eqs.(3.8) and (3.9) because for this

sample N z 4, and any attempt to raise it to 4.5 (Eq.(3.8)) for example

results in a bad fit. None of the Au 3 fits give acceptable <5 values.

We believe this is due to some remnant Kondo resistance in this sample--

despite the fact that there is no minimum.

The prime significance of Table 3.1 is to compare the fits to the

various equations. It is becoming very clear that the constants A, A',

and C, C' are sample and history dependent, and that one should not put

too much faith in the individual values. For example, when we come to

study the strained samples it will become evident that A' and C' are

strongly strain dependent, and very careful experiments on well char-

acterized samples are still very necessary to assign precise values of

A' and C' to these materials. However we believe the trends are signi-

ficant. As we go from Cu to Ag to Au, A and B both increase. B in

particular is much larger for Au than for Cu and Ag, and all the analysis

bear out that N is very close to four for Au.

The analyses in terms of Eq.(3.9) for Cu and Ag clearly show this

to give the best fits. S is appreciably smaller and the 6's are accept-

able.

2) Analysis of New Data for Strained Cu

He now present our attempts to fit our strained Cu data to the less

empirical forms--especially Eq.(3.9). The results for a typical sample
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Cu lla are shown in Table 3.2. For this particular sample,

2.1 < T < 6.91 K and 06 = 0.39276910.000002 chm. 6 alters the

fifth digit--a not unreasonable but quite unverifiable amount. Not sur-

prisingly, the goodness of fit parameter S becomes smaller as the number

of adjustable parameters increases, but for a constant number of para-

meters as in Eqs.(3.7) and (3.8) there is a significantly better fit

when the AT2 term is introduced, and this is significantly improved

again by letting N be an adjustable parameter in Eq.(3.9).

The results for another sample CuAgZu are shown in Table 3.3 for

the two best fitting equations. This sample had data in the range

l.5 K s T s 7.96 K. This allowed us to test the effects of cutting off

the points at low temperatures where some of the other samples were not

measured. The effects of cutting off the lowest six points (all points

below 3.7K) of the total 26 points for equation 9 are seen to be notice-

able but not severe. The change in 6 is the largest relative change

but the changes in the other three parameters of interest are 6% or

less. The effect on A of Eq.(3.8) was large but this equation was not

the best fit. The effect of dropping the highest six points in Eq.(3.9)

(T > 7llK) was of roughly the same magnitude except, of course, in 6

which changed very little due to the presence of the low temperature

points. The residual resistivity can be eliminated all together if

the temperature derivative is fit. To test the results of such a fit

the data were differentiated by simply taking differences between

successive points. This process tends to increase the scatter so the

error estimates were increased appropriately. The results of these fits

to the derivatives of Eqs.(3.8) and (3.9) yielded the values in

Table 3.3 labeled as 8-d and 9-d. Each of these cases was also fit
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Table 3.2

Typical fits to vardous equations for Cu lla

 

 

 

Equation S A. A' 8, 8' C, C' N 6

(10"‘acm1 (10“‘acm x'z) (10456611 16") (10456611 16") (10-149611)

3.66*

3.6 2.5 3.75 1 .03 -5.84 1 .72

3.7 1.2 5.06 1 .22 3.33 43.24 1.52

1.025

3.8 .49 3.35 1.05 1.17 1 .01 -l.85 1 .03

3.9 .11 2.76 1.19 1.62 1 .16 4.35 -l.66 1 .01

1.05

 

 

* Slope of 9 vs. T4
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Table 3.3

Fitting parameters for CuAg2 0 (p0 - 3.49534 nncm)

 

 

 

Equation 5 A, A' C, C' N' 6 Range

(fncm) (fach'Z) (foch’N) (fncm)

3.8 18 36.2 1 .9 1.009 1.009 -71 1 7 1.5 1 T 1 7.96

3.8 -- 24.5 11.2 1.077 1.007 94 117 3.7 1 1 1 7.96

3.8d -- 34.512.0 1.0141.015 1.5 1117.96

3.8d -- 29.3 1 2.6 1.049 1.017 3.7 1 1 1 7.96

3.9 7.2 46.5 1 .9 .480 1.033 4.84 1 .03 -10.7 1 .4 1.5 1 T 1 7.96

3.9 43.3 1 3.2 .514 1.070 4.82 1.06 -6.3 1 3.0 3.7 1 T 1 7.96

3.9 45.4 11.3 .536 1.059 4.79 1.05 40.3 1 .5 1.5 1 T 1 7.0

3.96 47.5 1 3.0 .497 1.077 4.82 1.08 1.5 1 1' 1 7.96

3.96 47.6 1 7.2 4811.14 4.82 1.14 3.7 1 T 1 7.96
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with and without the lowest six points. Again the values of the para-

meters A', C' and N agree quite well with the fits which included the

residual resistivity adjustment term 6.

In Table 3.4 we show the results for several samples, for fits to

Eqs.(3.8) and (3.9). In terms of Eq.(3.8) B.K.W. would say that A should

increase and C decrease as the dislocation content or strain is increased.

We observe, however, that with one or two exceptions both A and C de-

crease with increasing strain. However, this is probably an artifact

of the fact that 4.5 is not the correct exponent for the phonon term.

This is shown by the increase in N with strain in Eq.(3.9) which gives

a much better fit. Thus, the fitting program must compensate for the

incorrect exponent by decreasing A in Eq.(3.8). We might add that B.K.W.

suggest that 4.5 is only an approximate value obtained from a dirty limit

calculation without dislocations. We see that the exponent is actually

about 4.3 for all three annealed samples. The analysis using Eq.(3.9)

gives A' and N which increase with strain and C' which decreases. But

now it is not sufficient to consider 6' alone since N is also varying.

N
We therefore consider what happens to C'T at a constant temperature, as

the strain is increased. The general trend in C' is to decrease as

strain increases, where as N increases. These two observations mean that

N N
at l K C'T will exactly follow 6'; for T < l K C'T will decrease with

strain at a faster rate; for T > 1 K, there will be some T at which C'TN

will increase with strain. This comes out to be ~36 K for sample CuAg la.

However, at such a temperature we have no reason to believe N is the same.

For illustration we give C'SN in Table 3.4. Again with a minor exception

it decreases with strain as.predicted.
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The overall conclusion is that analyses according to Eq.(3.9) give

a superior fit to the data and the results from it are consistent with

Kaveh and Wiser's predictions. The other point of some significance is

that N + 5 as the strain increases. As discussed in Chapter 1, this may

well be expected because the e.d.f. is dominated by dislocation scattering

on the necks and thus becomes highly anisotropic, resulting in a decrease

in the importance of the neck contribution to the phonon resistivity.

Thus, the spherical bellies now determine the temperature dependence

5 law.which is expected to obey the Bloch T

C. Electron-Electron Scattering

The superior fits to the data obtained by adding a T2 term as out-

lined above make it now possible to extract meaningful values of the T2

coefficient and, assuming the T2 term to be more than just a term in a

polynomial fit, identify this term with the long sought electron-electron

scattering contribution to the resistivity. This identification is

given some support by the fact that the coefficients agree rather well

with their predicted magnitudes. This is seen by comparing Table l.4

with the values of A' in Tables 3.1 and 3.4.

The average values of A' show only about a factor of two variation

among the three noble metals whereas the phonon resistivity coefficients

show very different magnitudes getting progressively larger as their

atomic mass increases. This is consistent with the fact that the usual

expressions for electron-phonon resistivity at low temperatures contain

(T/eD)5 J5(m) where 6D is the Debye temperature and J5(m) = l24.4 is

the low temperature limit of the JS Debye integral. The vaules of C

in the given units for Cu 6, AgC3 and Au 3 respectively are roughly
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0.91, 5.7 and 16.3. The values of 6D in order are 315 K, 215 K and

170 K thus the values of 663 in appropriate units are 2.8, 2.6 and 2.3--

all roughly the same magnitude. The e-e term on the other hand is roughly

5/3
proportional to n’ where n is the electron density. This comes from

the usual formulas for the e-e resistivity which contain a factor (NSF).1

n2/3).
where EF is the Fermi energy (EF a The values of n for Cu, Ag

-3).

and Au respectively are 8.47, 5.86 and 5.9 (1022 cm we find the e-e

coefficients A' for the same three samples to be roughly 27, 44 and 52

5/3
in the appropriate units. We find the magnitudes of A'n to be 9.5,

8.4 and 10 which, again, are seen to be about the same, demonstrating

the rough validity of the h5/3 scaling factor.

We must consider what factors may influence the coefficient A'.

That is, although it seems reasonable to say

p(T) = oee(T) + op(T) ‘ (3.10)

We must exercise a bit of care in making an exact identification of p

2

ee

with A'T and of pp(T) with C'TN.. A' wi11 exhibit some variation if

the other terms in the fit are varied due to a certain amount of cor-

relation between the terms. This was seen to cause the different

responses of A and A' to strain already discussed. By allowing N to.

N
be a variable parameter we feel that the term C'T provides a much

better representation of the phonon term pp(T). To the extent that

N 2
C'T completely represents op(T) we can probably be assured that A'T

completely represents pee(T). However, it is almost certain that pp(T)

is not exactly given by C'TN over the entire temperature range. Thus,

phonon scattering may have some small effect on the value of A'. Com-

parison of the value A' = 26.8 (chm K'Z) for Cu 6 with the value from
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the low temperature data of K. is instructive. That value of 34.8

(fflcm K'N) was obtained for a single power fit to data from 0.064 to

2.15 K with an exponent of 2.03. It is likely that this value is higher

because the fit also included a small contribution from pp(T) at the

upper part of the range. This is given support if we consider that the

C'TN term for Cu 6 has a value of 24.3 chm at 2 K which is non-negligible

compared with the value of 107.2 chm for the A'T2 term. In addition, it

seems clear on the basis of our evidence and the predictions of B.K.W.

that there is no unique value for the magnitude of pee since it seems

to depend on the relative amounts of dislocation and impurity scattering.

Having said this, it remains desirable to try to eliminate any

significant phonon contribution by going to the lowest temperatures with

high precision. The experimental methods and difficulties of such

measurements were outlined in Chapter 2 for high purity samples of Ag

and Cu having RRR values of ~20,000 and ~13,000 respectively. We will

call these A920 and Cu13. Figure 3.6 shows the results of these measure-

ments for A920. The solid curve with the solid data points from the

second run on A920 (Ag-run 2) was determined by the differential method

previously described and is, therefore, given by

1.9.9.
p dT (3.11)

o

The dashed curve is the integral of the solid curve and is proportional

to p(T). The actual values of p(T) can be obtained by multiplying the

'11 Qch. It is obvious that if wevertical scale with units by 1.5x10

were in a pure p-po = AT2 regime the solid curve should be a straight

line through the origin. It is also obvious that this is not the case..

The strange behavior at the lowest temperatures (which we will briefly
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consider seperately) destroys any hope of seeing a straight line through

the origin below 0.5 K. Above this temperature the resistivity is

obviously increasing more rapidly than T2. If we go back to our analysis

of the Ag samples of K., say AgC3, we find the ratio op/pee z 0.14 at l K.

Suppose we require pp/pee S 5%, then we would be restricted to tempera-

tures below 0.65 K. For comparison we have plotted the derivative of the

Eq.(3.9) fit to the A963 data which has been divided by the p0 of A920

for scaling purposes. At our present level of ~1 ppm precision for such

2 coefficient tosamples it appears it would be possible to obtain the T

better than 10% from measurements below ~0.6 K if there were no peculiar

behavior in this region. It is also clear why the fits to the less

precise Ag data published in K. below 1.5 K yielded exponents around

2.5 rather than 2.

Copper provides better hope of isolating the true 12 term because

it has a smaller phonon term at temperatures below 1 K. Indeed Cu13 has

2 term in the noble metals.provided the best evidence of an isolated T

Figure 3.7 shows the second and probably best run of this sample (Cu--

run 2) when superconducting shields were placed around the sample,

reference and solder terminals as described in Chapter 2. The graph

shows a rather good straight line fit to about 1.1 K. Taking figures

from Table 3.1 for Cu 6 we see that at l K we might expect the phonon

contribution to be ~4%. However, because of the extreme purity of this

sample it is likely that the phonon term is a bit smaller due to the

effects of residual dislocations than in the less pure Cu 6. The slope

of this curve is just 2A0;1 where A is the T2 coefficient yielding a

-14 2
value of 4.8x10 0cm K' for A, with an estimated ~10% error due to

uncertainties in pa. These uncertanties arise because in the differential
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method of measurement be is not determined and, due to the extremely low

resistance of the sample, the determination of 00 for the RRR measurement

by the method described in Chapter 2 is not very precise. Comparison of

this value with the values of A' for strained samples would indicate

support for the assumption of a significant dislocation component to be

since only the strained samples had values as large as this. To be fair,

however, we must mention the fact that the straight line does not inter-

cept the origin as it should for a pure T2 resisitivity. Although it

comes near the origin one cannot force it through the origin and yet

maintain a good fit. This problem is probably related to the apparent

negative values of dp/dT at the very lowest temperatures.

D. Anomalous Behavior at Ultra-low Temperatures

Due to the very peculiar and unexpected behavior of the ultra-pure

A920 sample below 0.6 K when it was run the first time (Ag--run l) we

suspected possible experimental problems because we were using a new

sample holder. These data are shown by the open circles in Fig. 3.6.

During this run Cu13 was used as a reference but not measured itself.

During Ag--run 2 we qualitatively reproduced the results of the first run

even though we had improved the sample holder. The points from Ag--run l

are fewer in number and slightly less precise especially above 0.5 K

due to problems with temperature control. Nevertheless, they seemed

to exhibit differences from the data of Ag--run 2 beyond their error.

(The degree of reproducibility below 0.5 K is indicated by the two points

at about 0.22 K.) The two most marked differences are the apparently

greater height of the peak at ~D.l7 K and the small negative values

around 0.5 K. If these negative values are real, the actual resistivity
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for Ag-run 1 would have a slight resistance minimum. The existence of

the peak was again verified by taking several points (not shown) in the

vicinity of the peak during the second run on Cu13 (Cu-run 2)--the run

using superconducting shields. The results of our first run on Cu13 are

even more strange at lowest temperatures (see Fig. 3.8). Cu-run l was

made during Ag-run 2 where, after measuring A920 using Cu13 as a refer-

ence, the roles were reversed and Cu13 was measured with A920 as reference.

Although the set-up was optimized for measuring the Ag20 this was more a

matter of convenience and we do not feel it was detrimental to the

results. The negative and positive values shown below 0.2 K were checked

on several successive days of the run and each time the behavior was the

same. Although the errors are rather large due to the necessity of

making small temperature differentials at such low temperatures, there

seems to be no doubt that on cooling below 0.2 K the apparent values of

dp/dT swing rather sharply upward and then abruptly go negative. The

transition occurs between 35 and 28 mK but we have no values within this

range during this run. As seen in Fig. 3.7 when measured on a second

run (Cu-run 2) this sample did not show the same positive peak before

going negative but seems to make a smooth transition to negative values

below ~70 mK. Unfortunately there are not many points in this region.

The first negative point occurs at ~40 mK. At this temperature the

values were positive on the previous run. In Cu-run 2 the Cu13 and

Ag20 samples had been physically interchanged so that Cu13 used a dif-

ferent thermometer than Cu-run 1. Both had been recently calibrated and

would not be expected to differ by more than 1 or 2 mK. Another possible

source of error is that if dp/dT is actually varying as rapidly indicated

in Fig. 3.8 then the use of finite differentials could cause appreciable
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error. However,the failure to obtain similar qualitative features, save

the fact that do/dT ultimately goes negative.makes it impossible to say

more at this stage. We have been unable to ascribe these differences to

anything associated with the fact that the samples had been interchanged.

In both positions there did not seem to be any possible thermal path

through the samples to cause thermal electric problems. The only thermal

path was through the potential and current leads whose thermal conducti-

vity is extremely small. However at this point we cannot be completely

confident this low temperature behavior is real in the Cu13 sample. In

the A920 sample, on the other hand, we have greater confidence that the

peak in dp/dT is real. Up till now no one has so closely scrutinized

the resistivity of such pure samples at these temperatures.

Assuming the Cu data are real, the rather wild behavior found in

Cu-run l and even the somewhat milder behavior of Cu-run 2 do not seem

explicable in terms of the usual Kondo type mechanism because the Kondo‘

minimum normally relies on the fact that the magnetic scattering con-

tribution decreases with T while the phonon term increases. In this case,

the phonon term is insignificant. The transition from negative to

positive dp/dT and hence, the resistance minimum, is quite sharp. It .

would seem the electron-electron term is not strong enough to cause such

a sharp transition unless the magnitude of the negative slope from the

magnetic term were itself decreasing quite rapidly.

Supposing the peak in the Ag data is real it is difficult to say

what might be the cause because the sample is of such high purity that

we don't know what impurities are present. However, taking the liberty

to engage in pure speculation,we might guess this is due to long range

interactions between trace amounts of magnetic impurities. The shoulder
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in the dashed resistivity curve in Fig. 3.5 is qualitatively similar to

resistivity curves of spin glasses at low temperatures. This leads us

to hypothesize the existence of some type of collective behavior of

magnetic impurities. Although such magnetic interactions would be ex-

pected to be extremely weak, the large electron mean free path might

allow the impurities to "see" each other at sufficiently low temperatures.

Consider an impurity concentration of one part per billion. This implies

a mean impurity seperation of ~l,000 atomic diameters or ~4,000 4.

This is much smaller than the ~1 mm mean free paths of the conduction I

electrons. At low enough temperatures the interaction energy may become

greater than kBT. Then some type of collective behavior may be possible.

Excitations of this system might be able to scatter the electrons and

contribute a strong temperature dependence due to the freezing out of

the higher energy excitations as the temperature is lowered in a manner

analogous to the freezing out of the higher excitations of the collective

motion of atoms in the lattice, i.e. the phonons. The shoulder in the

resistivity would indicate a temperature where the longer range inter-

actions were being destroyed by thermal energy leaving the temperature

dependence of p(T) to the traditional mechanisms we have discussed. At

this point all one can say is that this behavior is interesting but

requires much more work before more can be said. We do know that up

till now no one has looked with such precision, at such low temperatures

at samples of such high purity. Perhaps we should not be too surprised

if we find the unexpected when we explore the previously inaccessible.
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Summary and Conclusion
 

The work we have presented demonstrates with high precision the

interplay of various scattering mechanisms with the temperature dependent

part of the resistivity p(T) at liquid He4 temperatures. It is the first

investigation detailing precisely the strong effects of dislocation scat-

tering on p(T) at these temperatures. In addition, we have give sub-

stantial support to the predictions of Bergmann et al.3 concerning the

origins of the T4 behavior of p(T) as being due to the combination of

electron-electron scattering and electron-phonon scattering. 0f particu-

lar interest is the agreement of our data with their prediction that

electron-electron scattering will increase with the introduction of dis-

34’35 decrease of the phononlocations as opposed to the already known

contribution. These predictions are based on the anisotropy of relaxa-

tion times in k-space which our data show plays a crucial role in

determining the form of p(T).

Finally, we have obtained good evidence in very pure copper for

the isolation of the elusive T2 electron-electron contribution to p(T)

by performing very precise measurements to ultra-low temperatures.

In addition, we have uncovered some tantalizing new behaviors in silver

and copper at the very lowest temperatures.
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APPENDICES



APPENDIX A

THERMOELECTRIC RATIO MEASUREMENTS 0N STRAINED Cu

When we made the series of measurements of electrical resistivity

in the strained copper samples we also measured the thermoelectric

ratio defined by

6:}-
Q

I where I is the current necessary to generate a sufficient voltage across

the samples resistance to cancel the thermal voltage generated by the

flow of heat 0 along the sample. G is positive if I and 0 are in the

same direction. Figure A-l - A-3 contain the data for samples Cull,

CuAgZ and CuAgl respectively, that is, in decreasing order of purity.

Each figure contains all of the strainings. The common feature to all

three samples is seen to be a value of G which increases with strain

while showing a decreasing temperature dependence. Straight lines are.

drawn through the points in each case although in the more strained

samples there is noticeable curvature even on the scale of these figures.

Because the graphs do not include T = 0, the linear extrapolations to

zero were calculated and are plotted in Figure A-4 which is a Nordheim-

Gorter type of plot of G(T=0) vs. 1/po. The actual values of 90 are

along the top and p31 along the bottom horizontal axis. Note, the

“zero" intercept is on the right. This intercept determines the so

called characteristic value of G for dislocations at T = 0. This value
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1 69
is ~ +0.7V' and is in agreement with that calculated from Pearson's

result for the characteristic thermopower S of dislocations in Cu by

using the relation

S = GLOT

where L0 is the Lorentz ratio.

A similar plot (not shown) for the three annealed samples, allows

us to determine the characteristic G for the Ag impurity in Cu and

1
gives a value of ~ +0.4 V' at T = 4K. This is in fair agreement with

the value 0.6 V'] calculated from determinations of the characteristic

thermOpower of Ag in Cu by Guenault.70



APPENDIX B

DERIVATION OF USEFUL EXPRESSIONS FOR SUPERCONDUCTING

TRANSFORMERS AND PARALLEL INDUCTORS USED IN

SQUID CIRCUITS

The basic equation relating magnetic flux 9 and current I in an

inductor is

¢ = LI (8.1)

where L is the inductance. He now apply this definition to the super-

conducting transformer connected to the SQUID signal coil (refer back

to Fig. 2.3b for circuit diagram). We use the property of a closed

superconducting circuit that the total magnetic flux enclosed remains

constant. We assume initially it is zero for simplicity but this does

not affect the validity of the derivation. Assuming no flux lines can

link the primary and SQUID coils, the current IT in the primary coil L1

produces a flux through the secondary coil windings given by MIT.

Where M is the mutual inductance between the primary and secondary

transformer coils. This must be cancelled by flux (LS+L2)IS generated

in both LS and L2 by the induced current IS so that the total flux is

zero. This means

MIT - (LS+L )I = O (8.2)
S
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The current IS induces a flux MIs back in L1 so that the net flux in L1

is reduced and given by LlIT - MIS. By Eq.(B.l) we define the effective

inductance Le at the primary terminals to be the net flux through the

primary coil divided by the primary current. That is

L I -MI

._l;L__Ji (3.3)
L
e IT

The definition of the mutual inductance in terms of a dimensionless

constant called the coupling constant or coefficient of coupling is

M = k1/L1L2 (8.4)

Using this definition and solving Eq.(B.2) for IS in terms of IT we

obtain from Eq.(B.3)

k2L2

Le = L] I - [Err-E (3.5)

We want to maximize the ratio r of the current through the SQUID IS to

the total signal current IT thus from Eqs.(B.2) and (8.4) we have

 

 

”‘1iflrilrk—L—JLTE-Ll (3'6)
T S 2 S 2

This can be rewritten to eliminate L1 using (8.5)

121912
r (8.7)

g [154211-152 16542)
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We assume the value of Le is fixed by the desired time constant of our

measuring curcuit. LS is also a fixed value. Thus the maximization con-

dition is dr/dL2 = 0. Evaluating the derivative is straightforward an

yields

dr 1 a l
-—=" —- - I (8.8)
dL2 ‘2 L2 LS+aL2 LS+L2J

where a = (l-kz). The requirement that Eq.(B.8) be zero implies the

quantity in parethesis vanishes. This allows us to solve for Lé the

value of L2 which will yield maximum r.

 

L L

Lé -- 5 = S (8.9)

“5 v’1-k2

Now we can go back to find the corresponding value of L], we solve

Eq.(B.5) for L1

_ LeILS+LZIL _
(8.10)

l LS+aL2

Substituting Lé for L2 we get

LS(1+i) L L
I: =_.£= e .L] Lets-(17%,- a /T__kz (3.11)

 

Substituting Li and Lé into the expression for r we find

r

= .2 __....k (8.12)Y‘

"‘3" 5 1+ l-k
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Let us determine what the ratio r' = IS/IT is if a shunting inductance

is used to create the desired Le' We refer to the circuit diagram of

Fig. 2.3a. If IT is the total signal current, it must divide into

currents IS through LS and IP. Since the two inductors form a closed

superconducting loop we will require the total flux in the loop to be

zero as before. This implies the magnitude of the flux generated in

each coil must be the same or

LSIS = LPIP (8.13)

Adding LPIs to both sides we obtain

(LP+ S)IS = LPIT (8.14)

since IT = IS+IP. Thus we find

r

P = —e- I (8.15) 

'
9

U
1

U
1

Now we define the ratio of ratios r and r'

Is(transformer)

-r= '

N "FF Is(choke) (3°16)

 

If w > 1 the transformer would be mathematically superior to the parallel

inductor although it might not be practically superior unless w >> 1. He

immediately obtain

L

Le 11/1-k2



APPENDIX C

THERMOMETRY PROGRAM FOR HP67 PROGRAMMABLE CALCULATOR

Purpose:

Basic Method:

The purpose of this program is to calculate the tempera-

ture given the resistance of a resistance thermometer

(R+T) or to give the resistance corresponding to a given

temperature (T+R). The latter case is simpler if the

manufacturer has already done a calibration and given

coefficients for the equation

log R =. Ai(log T)1

1

1
1
M
3

0

The R+T conversion requires finding the inverse function.

To do the 1+8 conversion the given polynomial is simply

evaluated in the part of the program with Label 8. Of

course, for a given thermometer the proper coefficients

and the order of the polynomial must be stored in the

memory registers.

To do the R+T conversion (which is the one usually

desired in the laboratory) the program uses the last

temperature calculated (initially it uses 4°) as a start-

ing point to do a Newton-Raphson method of finding the

zero of a function. The function being the difference

between the actual resistance entered by the user and

calculated resistance at the trial point R(T1ast)'
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The general formula for the Newton Raphson method is

f(x.)
_ 1 . .

1+] - Xi - f'Ixi where f 15 the function whose zero

is to be found, f' is its derivative. In this method

lf(x1+q)| < lf(xi)l so by iteration one approaches zero.

we define t a log 1, r(t) = 1 Aiti

Memory Allocations for the HP67.

0-9 hold the polynomial coefficients.

A + n the order of the polynomial.

B + log R the value of R entered from keyboard.

df dr
C + 35- Ht' where f = r - log R, t = log T.

D + r(t) and f = r(t) - log R.

E + 109 T E t.

I + current value of index.

ngration

Read in program card and appropriate data card. For cryocal #2844

thermometer the data includes the 10 coefficients and stores n = 9 in

memory A while storing log 4° in memory E.

To use for R+T conversion just enter thermometer resistance in

ohms and push A. To use T+R conversion enter T, push B.
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Below is the actual HP67 prOgram which can be keyed in manually and

stored on a magnetic card for future use.

 

 

 

Step Code Operation Comment

001 312511 f LBL A entry point A T

002 3153 L0610

003 3312 STD B

004 312503 LBL 3

005 322211 658 a call subroutine a

006 322212 658 b call subroutine b

007 3413 RCL C

008 3415 RCL E h_

009 71 X c;

010 3414 RCL D

011 3412 RCL B

012 51 -----

013 3314 STD D

014 51 -----

015 3413 RCL C

016 81 f

017 3315 STO E

018 83 this is the test value

019 00 0 for convergence. Can be

020, 08 8 changed if necessary
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HP67 Program cont'd.

 

 

 

 
 

  

Step Code Operation Comment

021 3414 RCL 0

022 3564 ABS

023 3281 X>Y

024 2203 GTO 3

025 3415 RCL E

026 3253 10x

027 3422 RTN 1

028 312512 LBL 8 Entry point B

029 3153 16910

030 3315 s10 E
a:

031 322211 GSB a .1

032 3414 RCL 0

033 3253 10x

034 3522 RTN 1

035 322511 LBL a subroutine entry point a I

036 3411 RCL A _

037 3533 $11 I:

:3 E?

038 00 0 8 3

o -iF

039 41 1 “at.

2 ‘P

040 312501 LBL 1 t: 1'

8 .2

041 3424 RCL(i) .8 c1

~ 3 .2



HP67 Program cont'd.
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Step Code Operation Comment

042 61 +

043 3415 RCL E

044 71 x

045 3133 DSZ

046 2201 GTO l

047 3400 RCO O

048 61 +

049 3314 STO D

050 3522 RTN

051 322512 LBL b subroutine entry point b

052 3411 RCL A

053 3533 STI

054 00 O

055 41 1

056 312502 LBL 2

057 3424 RCL(i)

058 61 +

059 3534 RCI

060 41 1

061 41 1

062 01 l

 

 



HP67 Program cont'd.
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Step Code Operation Comment

063 3251 x=v

064 2213 GTO c

065 51 ----

066 81 g

33:?

067 71 x 8' 8‘

21::

068 3415 RCL E 11:3

>

069 71 x :5

§

070 3133 052 35

.6

071 2202 GTO 2 d

072 312513 LBL c E§

o

073 3554 RA +j

4.3

074 3313 510 c g

.Q

075 3522 RTN a

076 84 R/S I
 

 

 

 



LIST OF REFERENCES



«
F
O
O
N

10.

11.

12.

13.

14.

15.

REFERENCES

W. E. Lawrence, Phys. Rev. B 1;, 5316 (1976).

J. E. Black, Can. J. Phys. §§, 708 (1978).

A. Bergman, M. Kaveh and N. Wiser, J. Phys. F 19, L71 (1980).

D. Shoenberg and 0. J. Roaf, Phil. Trans. Roy. Soc. ggg, 85

(1962).

J. M. Ziman, Adv. Phys. 10, 1 (1961).

N. W. Ashcroft and N. O. Mermin, Solid State Physics, Holt,
 

Rinehart and Winston, (1976).

J. M. Ziman, Phys. Rev. 111, 1320 (1961).

J. Kondo, Prog. Theor. Phys. gg, 37 (1964).

F. J. Blatt, Physics of Electronic Conduction for Solids, McGraw-

Hill, Inc., (1968).

J. S. Dugdale, The Electrical Properties of Metals and Alloys,
 

Edward Arnold, (1977).

A. C. Ehrlich and J. T. Schriempf, Sol. State Commun. 11, 469 (1974).

W. Royall and J. D. Gavenda. Phys. Rev. 8 g, 3577 (1971).

M. Khoshnevisan, W. P. Pratt, Jr., P. A. Schroeder, S. D. Steenwyk,

and C. Uher, J. Phys. F 2, L1 (1979).

M. Khoshnevisan, W. P. Pratt, Jr., P. A. Schroeder, and S. D.

Steenwyk, Phys. Rev. B 19, 3873 (1979).

E. R. Rumbo, J. Phys. F 6, 85 (1976).

153



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

154

B. Barnard and A. D. Caplin, Commun. Phys. 1, L23 (1977).

A. J. Barber and A. D. Caplin, J. Phys. F g, 679 (1975).

T. Dosdale and G. J. Morgan, J. Phys. F 1, L32 (1974).

Z. S. Basinski, J. S. Dugdale and A. Howie, Phil. Mag. 8, 1989

(1963).

R. A. Brown, J. Phys. F 2, L95 (1977).

Ibid., 1283.

Ibid., 1477.

V. F. Gantmakker, V. A. Gusparov, G. I. Kulesko, and N. N. Matveer,

Sov. Phys. JEPT 11, 925 (1973).

Y. K. Chang and R. J. Higgins, Phys. Rev. B 11, 4261 (1975).

P. G. Klemens, Can. J. Phys. 11, 1212 (1956).

J. M. Ziman, Electrons and Phonons, Oxford University Press, (1960).
 

J.H.J.M. Ribot, J. Bass, H. VanKempen and P. Wyder, J. Phys. F 2,

L117 (1979).

B. Blumenstock, Ph.D. Thesis, Michigan State University (1980)

Appendix.

H. VanKempen, J. S. Lass, J.H.J.M. Ribot and P. Wyder, Phys. Rev.

Lett. 11, 574 (1976).

J. A. Rowlands, C. Durvury, and S. 8. Woods, Phys. Rev. Lett. 19,

1201 (1978).

B. Levy, M. Sinvani and A. J. Greenfield, Phys. Rev. Lett. 5;,

1822 (1979).

C. W. Lee, Ph.D. Thesis, Michigan State University (1980).

J. Bass, Adv. Phys. 11, 431 (1972).

M. R. Cimberle, G. Bobel and C. Rizzuto, Adv. Phys. 1;, 639 (1974).

M. Kohler, Z. Phys. 126, 495 (1949).

 



34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

155

J. A. Rowlands and S. 8. Woods, J. Phys. F (1976).

C
4

. A. Rowlands and S. 8. Woods, J. Phys. F B, 1929 (1978).

. Kaveh and N. Wiser, J. Phys. F 19, L37 (1980).

. Kaveh and N. Wiser, Phys. Rev. Lett. 166, 35 (1971).

M

M

W. R. Cox and J. D. Gavenda, Phys. Rev. 8 g, 3577 (1971).

J. F. Kos, Phys. Stat. Sol. (0) §§, 389 (1972).

J. F. Kos, Can. J. Phys. 51, 1002 (1973).

A. Bergman, M. Kaveh, and N. Wiser, Phys. Rev. Lett. 3;, 606

(1974).

A. D. Caplin and C. Rizzuto, J. Phys. C (London) g, L117 (1970).

A. D. Caplin and C. Rizzuto, Aust. J. Phys. 11, 309 (1971).

M. R. Brett and J. E. Black, Can. J. Phys. 55, 521 (1977).

A. Bergman, M. Kaveh, and N. Wiser, Sol. State Commun. 11, 369

(1979).

D. H. Damon, M. P. Mathur, and P. G. Klemens, Phys. Rev. 116,

867 (1967).

E. R. Rumbo, .1. Phys. F _3_, L9 (1973).

T. Dosdale and G. J. Morgan, J. Phys. F 3, 402 (1974).

. A. Kukkonen and H. Smith, Phys. Rev. 8 g, 4466 (1972).

. E. Lawrence and J. W. Wilkins, Phys. Rev. 8 g, 4466 (1972).

. Kaveh and N. Wiser, Phys. Lett. 515, 89 (1975).

C

W

M

P. Haussler and S. J. Wells, Phys. Rev. 11;, 675 (1966).

J. F. Koch and R. E. Doezema, Phys. Rev. Lett. 11, 507 (1970).

D. Nowak and M.J.G. Lee, Phys. Rev. Lett. 1201 (1972).

H. Schmidt and E. Mann, Phys. Stat. 501. (b) 95, 95 (1979).

B. Lengeler, W. Schilling, and H. Wenzl, J. Low Temp. Phys. 2,

237 (1970).



57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

156

J. S. Dugdale and Z. S. Basinski, Phys. Rev. 151, 552 (1967).

D. W. Terwilliger and R. J. Higgins, Phys. Lett. §1A, 316 (1970).

J. Imes, Ph.D. Thesis, Michigan State University, (1974).

J. L. Imes, G. L. Nieheisel, and W. P. Pratt, Jr., J. Low Temp.

Phys. 11, l (1975).

O. U. Lounasmaa, Experimental Principles and Methods Below 1 K,

Academic Press, Inc. (New York, 1974).

P. A. Schroeder and C. Uher, J. Low Temp. Phys. 12, 487 (1977).

D. L. Edmunds, W. P. Pratt, Jr., and J. A. Rowlands, REVIEW of

Scientific Instruments (in press).

R. P. Gifford, R. A. Webb and J. C. Wheatley, J. Low Temp. Phys.

1, 563 (1972).

R. L Powell, A. F. Clark and R. R. Fickett, Phys. Kondeno Materie

9, 104 (1969).

F. R. Fickett, Mat. Sci. Engr. 13, 119 (1974).

Y. Yaeli and S. G. Lipson, J. Low Temp. Phys. 1;, 53 (1976).

A. A. Lukkvich and A. S. Kovolich, Phys. Met. Metall. 11, 161

(1979).

W. 8. Pearson, Phys. Rev. 119, 549 (1960).

A. N. Guenault, Thermoelectricity in Metallic Conductors, ed.

F. J. Blatt and P. A. Schroeder (Plenum Press, New York, 1978)

p. 39.


