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ABSTRACT

THE TEMPERATURE DEPENDENCE OF THE RESISTIVITY OF
THE NOBLE METALS FROM 0.03 T0 9 K

by

STEVEN DALE STEENWYK

We present here a thorough investigation of the temperature

dependent resistivity P(T) of the noble metals for temperatures from

0.3 K -9 K. We experimentally determine the magnitude of electron-
electron scattering contributions as well as the magnitude and mathe-
matical form of the phonon contribution and its variation with strain
and impurity content. We review the basics of the relevant theory
including some of the recent calculations of the contribution from
various scattering mechanisms, specifically, scattering of electrons

by other electrons and by phonons. We consider at length the fundamental
effects of the dominant contributors to the residual resistivity,
impurity and dislocation scattering, in light of the anisotropy in
k-space of the relaxation time determined by these mechanisms. We
performed measurements of the resistivity to a precision of one ppm on
_samples ranging from extremely pure single crystals of Cu and Ag to
dilute polycrystalline alloys of Cu with Ag. The techniques required
to prepare such samples and to make very high precision measurements
are discussed. In particular, treatment is given to some of the unique
problems faced in using a SQUID based measuring system on samples of
nano-ohm resistance with special attention paid to the use of super-

conducting chokes and transformers to control the electrical response



time of the circuit. The results of our measurements give substantial
verification of the calculations of the e-e scattering contribution to
p(T). Of special interest is the serendipitious verification of the
theory of Bermann, Kaveh and wiser+ explaining the origin of the T4
behavior we had observed in the earliest work. This theory reproduces

4 behavior by a combination of electron-electron and electron-

anearly T
phonon scattering. Our data fit their equations very well. While we
expected to find,and indeed did find, the effect of dislocation to be

a reduction in the phonon scattering, we did not anticipate their pre-
diction that dislocations would increase the electron-electron contribu-
tion. Our measurements provide convincing verification of this prediction.
Finally, we believe we have succeeded in isolating the e-e contribution

to copper at very low temperatures (T < 1 K), but have also uncovered

some peculiar behavior at the very lowest temperatures. This includes a

shoulder in the resistivity of very pure Ag and a very low temperature

resistance minimum in Cu.

TA. Bermann, M. Kaveh and N. Wiser, J. Phys. F 10, L71 (1980).
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CHAPTER I

BACKGROUND AND THEORY

The resistivity of the noble metals, copper, silver and gold,
continues to be of interest to theoretical and experimental physicists
who study electron transport properties in metals. The earliest work
was partly due to the fact that as a group they are the best electrical
conductors known at ordinary temperatures. More recently they have been
of interest because their band structures and Fermi surfaces are now
well known allowing realistic calculations of the contribution to the
resistivity due to various scattering mechanisms.

The major goal of the work presented in this dissertation was the
direct observation of the minuscule T2 contribution of electron-electron
scattering to the resistivity of the noble metals. The magnitude of this
term has been calculated by several authors]’z and its observation was-
felt to be within reach of our highly sensitive techniques. In the
process, interesting new results were obtained. A resistivity which

4 over a significant temperature range (roughly

varied quite strictly as T
2-7 K) was observed for all three metals. The constant of proportionality
showed a high degree of variation between different samples of the same
metal leading to a systematic study of the effects of impurities and
dislocations. Extensive computer analysis of these results was stimu-

lated by recent theoretical work3 which attempts to show the T4

1



behavior is due to the combination of electron-electron and electron-
phonon scattering with dislocation scattering having a crucial role in

their relative magnitudes.

A. Some General Aspects

In this section we will try to touch all of the key aspects of the
theory which bear on understanding our results. While it is not within
the scope of this dissertation to consider the problem of electrical
resistivity in general, we will try to set forth the framework of
assumptions and basic concepts underlying the theory. It is assumed
that the reader is already familiar with such fundamental concepts as
the reciprocal lattice and k-space, the Fermi surface, and basic
quantum mechanics including the Born approximation in scattering theory.
The validity of the Boltzmann equation and the so called relaxation time

approximation will be assumed without further discussion.

At the simplest level one can state that electrical conductivity
arises from the freedom of electrons or other charged carriers to move
in response to an applied field. In metals this freedom is due to the
availability of states, almost infinitesimally separated in energy, into
which an electron can move allowing it to gain kinetic energy from the
field. These states may be available because the electrons do not
entirely fill a band of energy states or, if there are enough electrons
to fill a single band, there may be overlapping bands such that the
electrons are distributed among several partially filled bands. In any
case, at absolute zero the electrons fill all the lowest energy states
and the Fermi surface is the surface in k-space which defines the bound-

ary between occupied and unoccupied states. At any temperature where



the metal remains a solid and particularly at the low temperatures of
concern here, the slight fuzziness at the boundary between the occupied
and unoccupied states due to thermal excitations above the Fermi sur-
face does not detract from the validity of the concept. This is

because the Fermi energy, Ef, is roughly ten-thousand times greater than
the thermal energy, kBT, at room temperature. At thermal equilibrium
the probability that a state of energy E is occupied is given by the

Fermi-Dirac distribution function:

- 1
fo expllE-Ef7FBi| + 1 (1.1)
which rapidly approaches one for E-Ef < -kBT and zero for E-Ef > kBT.
In simple free electron models where the k dependence of an
electron's energy is given by
2.2
STk
E S (1.2)

the Fermi surface is obviously a sphere. Electron velocities are normal

to the Fermi surface and are given by

v=%vks (1.3)

In the case of a spherical Fermi surface the velocities are in the same
direction as the wave vectors. Although this simple geometry is often
used to simplify calculations and may even be quite correct for the
alkali metals, it is, in general, a rather gross simplification. Real
Fermi surfaces, especially in polyvalent metals, may be extremely com-

plex and v(K) will not generally be in the direction of kK. However,
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all Fermi surfaces have the basic symmetry of the reciprocal lattice.
Thus, at the very least, they have inversion symmetry. So, the fact
that Eq.(1.1) depends only on energy implies that at equilibrium every
electron moving in one direction has a counterpart moving in the
opposite direction, so the net current is zero.

Figure 1.1 shows the Fermi surface of the noble metals. While the
largest fraction of the surface, comprising the so called belly regions,
is nearly spherical, the regions in the <111> directions, called the
necks, protrude from the sphere to intersect the Brillouin zone bound-
aries. As we shall see, the different character of these two regions
is crucial in understanding the details of their conductivity.

Now we must consider the effect of applying an electric field e to
a metal. Momentarily neglecting the effect of collisions, the electrons'

wavevectors will increase with time according to the law of motion:

aja
=N

=xet (1.4)

Thus all the occupied states are uniformly displaced in a direction
parallel to the applied field. In a time &t the amount of displacement

will be given by

st (1.5)

The net effect on the full electron distribution function is a shift
of origin

f = fo(Tz-aTE) (1.6)



Fig. 1.1(a) A noble metal Fermi surface within the first Brillouin

zone.
Copper
\ Silver
K
Gold
K

Fig. 1.1(b) Cross section of the individual Fermi surface of each
meta1.4



For small displacements we can expand this to first order

->
f=f -9f -%"’:st (1.7)
Using EQ.(1.3) we then obtain
df
df 0 > =
= - evee (1.8)
dt field dE

The amount of displacement that occurs is limited by scattering
processes which restore the equilibrium distribution when the field is
removed. Clearly, the greater the rate of scattering the smaller will
be the displacement from equilibrium for a given field and the more
rapidly the distribution function will relax when the field is removed.
Thus we are lead to the concept of a relaxation time, T, which is
inversely proportional to the scattering rate. For the moment assume
that a scattering event completely randomizes the electron's wavevector
and velocity and that the distribution function, f(K), will return
exponentially, with a characteristic time t(k) to the equilibrium dis-
tribution fo(f) when the perturbing field is removed. This implies the

rate of change of f due to collisions is
-> ->

a5 (i £, (k)

df

(1.9)
collisions (k)

We assume a unique value of t can be defined at each point in k-space.
Under steady state conditions the rate of change of f due to collisions

must be equal and opposite to that due to the electric field. Thus,



af - 9f (1.10)

dt collisions dt fields

This is simply a statement of the steady state Boltzmann equation which
is much more general than implied here, where we are only considering
electric fields. The right hand term may generally be due to the simul-
taneous action of several generalized fields; electric, magnetic,
thermal gradients etc. While f may be a function of ; as well as I, we
will assume that the material is homogeneous and that no other fields

are present. Substituting into Eq.(1.10) we obtain:

af, ., F(R)-f (K)
e 2Vt —0— (1.11)
(k)

Because fo contributes no current we are only interested in the distribu-
tion difference

df

g(z) = - e ——9-1(E)V(E)- €

I (1.12)

From now on we will call this the electron distribution function or e.d.f.
We will call f the full e.d.f. To calculate the current we must evaluate
the integral

e
3

J=- —[ a3k V(K)g(k) (1.13)
4n

where the (4w3)'] comes from the electron density of states in k-space.
The -dfo/dE term in g is essentially a delta function, G(E-Ef), especially
at low temperatures. This reduces the integral to a surface integral

over the Fermi surface, if we make the following change of variables:



3 dE___ _ dSdE
d“k -+ dS IvkE W (].]4)
resulting in
2 > >,
- e v(k)v(k -+
J= dS t(k) . € (1.15)
4R JF.S. [vik)]

The quantity in brackets is just the conductivity tensor‘;?which appears
in Ohm's law

>
g

.2 (1.16)

M
J=

In isotropic or cubic crystalline materials such as the face-centered-

cubic noble metals the conductivity is just a scalar and we have

2 2
=—3—° ds t(k)v(k = S ds A(k 1.17
° 4nA JF.S. A 4R [F.S. (*) (-17)

where A(f) is the electron mean free path.

The meaning of EQ.(1.13) is easily visualized in Fig. 1.2 which
shows the response of the electrons on a simplified noble metal Fermi
surface to an electric field. Part (a) shows the simplest case where T
is a constant over the Ferm; surface. As we shall see, this approxi-v
mation may be quite realistic for many types of impurity scattering.
Part (b) shows the e.d.f. for an anisotropic t(k). In the case shown
the relaxation time on the necks is much less than on the bellies
(Tn <«< rb). We shall see that this case is appropriate to scattering
by dislocations or low temperature phonons. We shall also find that
the differences in relaxation time anisotropy between two scattering

mechanisms play a crucial role when both mechanisms are operating

concurrently.



Fig. 1.2 A simplified noble metal Fermi surface (solid line) displaced
from its equilibrium position (dotted line) by an electric
field. The region between the dotted and dashed lines is the
schematic form of the electron distribution function for (a)

an isotropic relaxation time and (b) an anisotropic relaxation
time.
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The magnitude of the e.d.f. in the direction of the field is very

small being only about 10710

densities of 100 Acm 2.

of the Fermi radius at typical current
This helps explain why Ohm's law, which requires
an expansion of g which is linear in the electric field, works so well.
It is obvious that t(f) plays a crucial role in any real calcula-
tions of electrical conductivity. Thus, we must be able to determine
7(K) from a knowledge of the fundamental scattering processes. Let us
assume that we can calculate the transition probability P(k,k') from
state k into state k' in the range dk'. Then the conductivity relaxa-

tion time is defined as

_ . [ P(RK")(1 - cos AV )dk’ (1.18)
T(k) JF.s. v
where A:'of the angle between the velocities v and v' of the two states.5
Without the (1 - cosA) weighting factor this integral would just yield
the total inverse scattering rate. The (1 - cosA) term is included to
properly weight the scattering events since small angles are much less
effective than large angles in reducing an electron's contribution to
the current. The origin of this term can only be rigorously shown on a
spherical Fermi surface for elastic scattering with a probability
depending only on energy and the angle between k and k'.6 However,
something like this term must be included to properly weight the
angular changes in an electron's velocity on any Fermi surface.

Not only is an electron's velocity randomized by scattering
but, on the average, it also loses the kinetic energy it gained from
the field. This lost energy exhibits itself as Joule heat. However,

one can still treat some types of scattering events as elastic because



1

this energy loss per electron is extremely small, being on the order of
10'10 of the Fermi energy. Yet it must be emphasized that it is the
randomization of the electron's momentum that produces the resistivity.
To summarize these fundamental ideas: conductivity arises when
electrons are able to coherently acquire momentum in the direction of an
applied electric field. Resistivity is due to the random redistribution
of these momenta by incoherent scattering. It is the mechanism by which

these two processes are held in dynamic balance that is the subject of

the rest of this dissertation.

B. Specific Scattering Mechanisms

1) Impurity Scattering

Scattering by impurities and lattice defects produces the major part
of the electrical resistivity in a metal at low temperatures. This
resistivity is generally independent of temperature and at low tempera-
tures contributes a constant background resistivity usually called the
residual resistivity o, (One important exception to be briefly consid-
ered later is the so called Kondo effect due to magnetic impurities.)

If a lattice were perfect with no impurities or defects, then the:
resistivity would go to zero as the temperature approaches zero. The
introduction of impurities in a random way produces perturbations in
the periodic lattice potential which cause electrons to scatter. The
probability P(F,E') of scattering between states K and k' depends on
the exact form of the scattering potential, and the initial and final
states. In the simple case of a spherical Fermi surface, which implies
single plane-wave states, the scattering probability is only a function

of scattering angle 6 for any spherically symmetric potential.
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Scattering calculations yield a relaxation time independent of E, i.e.

isotropic, given by

1- vfld—géﬂ (1 - cos8)dn (1.19)
where dQ is the differential element of solid angle and do(9)/dQ is the
differential scattering cross section related to the scattering probabil-
ity by P(8) = v %% . Note again the presence of (1 - cos8) weighting
factor.

Although treatingtas a constant is a fair approximation for many
impurities, it may be important to consider the effect of differences
in character of states at different points on the Fermi surface of real
metals to get a more realistic picture of how t, and thereby, g(f),
depends on E. In the noble metals, the nearly spherical belly portions
of the Fermi surface (see Fig. 1.1) can be treated'very well by single
plane wave states. These states are said to be s-like, that is, they
exhibit essentially no angular momentum with respect to the ion cores.
Hence, there is no centrifugal potential to reduce their wave functions
at the core of an impurity ion. The highly non-spherical neck states,:
on the other hand, must be represented by at least two OPWs. These
states have an angular momentum character that is essentially p-h‘ke.7
Hence, they are prevented from significant overlap with the ion cores
and remain largely in the interstitial regions. This implies that neck
electrons would be much less scattered by short range potentials largely
restricted to the core regions. Homovalent impurities such as Ag in Cu
are not charged and therefore, have such a short range potential . Such

impurities would be expected to exhibit an anisotropy in 1 such that

> T,
Tn Th
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Now we will briefly consider the temperature dependent resistivity
due to magnetic impurities, the so called Kondo effect.8 It is well
known that free magnetic ions such as iron can produce temperature
dependent effects at low temperatures resulting in a minimum in the
resistivity versus temperature curve. One of the most common examples
is gold with dilute iron impurities; another is manganese in copper.

It would take us too far afield to consider the theory of the Kondo
effect. The essential point here is that extreme care is necessary to
avoid any magnetic contaminants when doing measurements on the low tem-
perature resistivity in the noble metals. If such contamination exists
it may be difficult or impossible to subtract its effects from the data.
What is worse, the effect may not produce an obvious minimum making it
virtually undetectable by resistivity measurements alone. However, one
can use thermoelectric data to help detect its presence.

For our purposes the important facts about impurity scattering are:
First, it is ordinarily dominant at low temperatures. Second, it can
produce large angle scattering. Third, it is tharacterized by an essen-
tially isotropic (constant) relaxation time over the Fermi surface

except as mentioned.

2) Phonon Scattering

In a perfect crystal the electron states of definite E are sta-
tionary states of the system. However, at finite temperatures, the
vibrations of the crystal lattice produce density fluctuations and thus
disturb the lattice periodicity so that transitions occur among the k
states. Although not stationary, these k states are still relatively

long lived and thus still provide an appropriate and particularly
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convenient basis for describing the electrons. This convenience is in
no small part due to the fact that the lattice vibrations themselves
occur as quanta, called phonons, which are also states of definite E.
Any interaction between electrons and phonons must conserve the total
crystal momentum to within a reciprocal lattice vector 8 so that

E] -'|Z2= 5q + 8 (1.20)

where f] and fz are the initial and final electron wave vector and E is
a phonon wave vector (we use q's to distinguish phonon from electron
wave vectors). The plus sign represents emission and the minus sign
absorption of a phonon. Events in which G is zero are called normal or
N processes while nonzero G's are called Umklapp or U processes. With
a multiply connected Fermi surface, as in the noble metals, the dis-
tinction is somewhat academic especially at low temperatures since a U
process can usually be represented as N process in an extended zone
scheme.

Electron-phonon scattering also involves the gain or loss of the
phonon's energy by the electron and is thus inelastic which means, in
the context of transport theory, that electron energy changes are of
order kBIQ These energy changes are so small (kBT << Ef) especially at
low temperatures that the electron remains essentially on the Fermi sur-
face. (This is just restating what was said in Section A about dfo/dE
being essentially a delta function.)

At low temperatures the only phonon modes which can be excited are
those of low frequency (i.e. long wavelength). In the Debye model,
which is usually appropriate at low temperatures, the number of phonons

in the range of frequencies dw is proportional to
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2
w_dw
exptha/kgT) - 1 (1.21)
This has a maximum when
Hw =‘ﬁm.r = 1.6 kBT (1.22)

Thus we can define a dominant wavevector at a given temperature

wr 1.6 kBT
z- —~ 5 (1.23)

where Vg is the speed of sound which we assume is isotropic but may
depend on polarization. This is roughly a maximum value of q because
the Bose Einstein function rapidly cuts off phonons of higher energy.
Thus at low temperatures where gq's are small compared with the Fermi
radius, the maximum scattering angle e.l.::q.r/kF increases as T. This is
illustrated on the spherical portion of Fig. 1.3. We have seen that
small angle scattering is not effective in producing electrical resis-
tance. This was taken into account by using the (1 - cosA) weighting
factor in the relaxation time formula (1.18). Thus for small angle

scattering the inverse relaxation time for phonon scattering must

acquire a T2 factor.

2
) Q)2 1.6 k
1 . - B
T (1 - coser) = 2 sinl -g—= -‘2- [—1] . 32- {-—— 72 (1.24)

It also seems clear that the inverse scattering time, the scattering
rate, must increase as the number of phonons increases. In isotropic

media the number of phonon modes is essentially the volume of a sphere
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Fig. 1.3 A simplified Fermi surface showing variation of angular change
in velocity for a fixed IqTI.
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of radius 9t Thus the number of phonons increases roughly as T3. How-

ever, the constraints of momentum and energy conservation require that
the initial and final electron states remain essentially on the Fermi
surface. Thus a given state may only be scattered into states which lie
on the surface of intersection of the Fermi surface with this phonon

sphere with its origin at the original electron k vector (see Fig. 1.4).

Hence, the number of phonons available for scattering increases as q%

2

i.e. as TZ. This means that 1/t has another factor of T-.

honon
Now, as Dugdaléu)points out? the actual calculation of the magnitude
of phonon resistivity is a very difficult problem. However, it can be
shown that the square of the scattering matrix element which goes into
the scattering probability is proportional to q and hence to T. (A
very nice demonstration of this can be found in Ashcroft and Mermin.s)
Thus we have deduced that in the case of low temperature small angle

scattering the phonon resistivity should vary as T5. One factor of T2

2 factor is from the

is from the small angle weighting factor, another T
number of phonons available and a factor or T from the square of the
scattering matrix element. This behavior, first described by Bloch
is often called the Bloch T5 law. While there are reports of such

11,12

behavior at low temperatures, the basis for this law is rather

idealized and the many reported deviations from it should not be
unexpected.w-]8

One source of trouble for the T5 law may be seen by considering the
neck regions in Fig. 1.3 and 1.4. These regions may violate the small
angle scattering criterion due to their high curvatures. Thus, electrons

on the neck would experience a resistivity going as some lower and

probably temperature dependent power of T while the belly electrons are
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locus of possible final states which grows as TZ.
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in the T5 regime. Figure 1.3 shows that the same value of a7 which
produces small angle scattering on the belly can produce large angle
scattering, including complete velocity reversal, on the necks. Rumbo15
points out that in Cu near 4 K the <111> transverse acoustic mode has
aqp of about 0.3 R' which is comparable to the neck radius of 0.26 3'1.
Thus large angle scattering would surely occur at this temperature.
Presumably at Tow enough temperatures 9t will become small even on the
scale of the neck radius in which case the T5 law would again apply.

Another assumption behind the Ts

law is that the phonon population is
in thermal equilibrium. This assumption may be invalid at low tempera-
tures. The electron current may drag the phonon distribution out of
equilibrium because the equilibrium restoring mechanisms are quite
weak--long wavelength phonons are not strongly scattered by impurities.
In any case, it is clear that significant anisotropy of the electron
relaxation time due to phonons rp should exist at low temperatures due
to the high degree of curvature at the necks.

This is not the only source of anisotropy, however. Ziman5

points
out that neck electrons should be much more sensitive than belly
electrons to transverse phonons. He also notes that the density-of-
states factor in the scattering probability is larger on the necks.
Thus, since the scattering produces transitions to nearby states on

the Fermi surface, there are more states available into which an elec-
tron can scatter, enhancing the scattering rate. Finally he notes

that the two-OPW states necessary to describe the neck wave functions
can also lead to an enhanced scattering rate.

So, we have four sources which can produce a shortened relaxation

time on the necks: high curvature, greater sensitivity to transverse
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phonons, higher density of states, and differing character of the
wave functions. It is this type of anisotropy which we shall see also

applies to dislocation scattering.

3) Scattering by Dislocations

Dislocations are extended crystal defects of which an edge
dislocation is shown in Fig. 1.5. One can imagine that an initially
perfect crystal has a half plane of atoms displaced, as shown, leaving
a half plane on the end and effectively inserting a half plane in the
center. The idealized defect shown here extends along an infinite line
perpendicular to the paper. Actual dislocations often do extend almost
to infinity on an atomic length scale and thus they are essentially two-
dimensional as far as their scattering properties are concerned.

The theory of the electrical resistivity of dislocations is still
not complete. Many attempts to explain the experimental data have been
made with varying degrees of success. At present, the two most success-

19 and of Brown.20 The emphasis

ful are the theories of Basinski et al.
of Basinski et al. is on the strain field of the dislocation. They
argue that one can use the ideal resistivity to the thermal energy
ratio, which is roughly constant, to relate the dislocation strain field
energy to the dislocation resistivity. Because the core has only about
one-fifth of the total strain energy, they suggest the strain field
rather than the core is the main contributor to the resistivity. The
theory of Brown assumes a resonance in the s-wave scattering of Fermi
electrons from the dislocation core. The existence of this resonance

is fundamentally connected with the extended line nature of the dis-

location.
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Fig. 1.5 Cross section of an edge dislocation with dislocation line
normal to the page.

Fig. 1.6 Scattering from extended strain field around dislocation core
showing predominance of small angle events.
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We shall not enter the debate here but simply point out that both
approaches have more or less equal success in explaining experimental
data although the physical models are quite different. Especially
important in the present context is that both are compatible with
observed large scattering cross sections for small angle scattering
and both attribute this to the strained regions away from the core.
These large, small angle cross sections are seen in investigations of

the radio frequency size effeth] 22

and the deHaas-van Alphen effect.
The importance of this fact here is that small angle scattering is
characteristic of phonons at low temperatures. Thus, we might expect

a relaxation time anisotropy over the Fermi surface similar to that for
phonons. Intuitively this propensity for small angle scattering seems
reasonable because,while the highly localized core of the dislocation
is severely distorted and capable of large angle scattering, the broad
strain field axially surrounding the core is much larger in volume and
would intercept the paths of many more electrons. However, the dis-
tortions in this strain field,which fall off rather slowly away from
the core, are not so severe. Therefore, the electrons are deflected
only through small angles (see Fig. 1.6). In fact, this portion of the
dislocation problem has been modeled by using superpositions of frozen
phonons of long wavelength to build up the strain fie]d.23 This phonon

like behavior will have important consequences when we consider the

temperature dependent resistivity of strained copper.

4) Electron-Electron Scattering
Electron-electron scattering in simple metals such as the noble

and alkali metals is expected to be an extremely small contribution to
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the total resistivity at low temperatures. This may at first be sur-
prising when one considers the large electron densities and velocities
in a metal. However, a moment's consideration will show why.

First, the electrons screen one another so that the potential of
an electron extends for only about an interatomic distance. Second, we
shall see shortly the Pauli exclusion principle allows only those
electrons within ~kBT of the Fermi surface to interact and even those
are limited by the constraints of energy and momentum conservation.
Third, large portions of the Fermi surface for the noble metals are
essentially spherical with plane-wave-like functions. Thus their velo-
cities are parallel to the wavevectors of these states. Any collision,
which must conserve the total crystal momentum, will also conserve the
center of mass velocity provided the initial and final states are on
the spherical portions of the Fermi surface. It is clear that most
scattering events will have 1ittle effect on the current carried by the
pair. Now it also becomes clear that the neck portions of the Fermi
surface are essential for producing significant changes in the velocity
of the center of mass while still satisfying k-vector conservation.
This is because in these regions the velocity is not parallel to the
k-vector nor does it have the same magnitude as the velocity of belly
electrons.

In transition metals the electron-electron contribution to the
resistivity is greatly enhanced due to the presence of the sluggish
d electrons of large effective mass. The highly conducting s electrons
can scatter off the heavy d electrons and undergo large changes c¢f direc-
tion. The d bands of the noble metals are filled and not available for

such processes.
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The temperature dependence of such scattering is expected to go as
T2 quite independent of the exact mechanism by which it is able to
contribute to the resistivity. The reason for this dependence is quite
simple.

The Fermi distribution ensures that state below about ZkBT of the
Fermi surface are filled and states above ZkBT are virtually devoid of
electrons which could engage in scattering (see Fig. 1.7). This defines
a shell of thickness ~4kBT about the Fermi surface which we will call the
thermal shell. Figure 1.8 shows an electron well below the thermal shell
at point A. It is prevented from scattering with an electron in the
thermal shell, say at point B, because one or both of the final states
allowed by energy conservation, points C and D, for example, are those
below the thermal shell which, the Pauli principle will not allow. It
is clear from Fig. 1.7 that the number of occupied and unoccupied states
(which are respectively proportional to the areas below and above the
curve) are linear in T. Thus the number of electrons with which a given
electron can scatter increases as T. The number of final states avail-
able for one of the electrons also increases as T. The final state of
the second electron is then fixed by energy and wavevector conservation.
Thus the scattering rate of the original electron goes as Tz. Because
there are no resfrictions on scattering angle, the resistivity is pro-
portional to the scattering rate and thus shows a T2 variation. The
smallness of the effect is due to a dominant factor of (kBT/eF)2 as

24

shown by Ziman.”"~ However, this term is 100 times larger in the transi-

tion metals where € is measured from the top of the d band. This is

the reason that only recently has evidence for its existence been

14 25,26

obtained in metals such as Cu, ~ in the present work, and Al.
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Fig. 1.7 Fermi distribution function with EF set to zero.

Fig. 1.8 Schematic representation of the thermal shell about a spherical
Fermi surface (see text for discussion).
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There is also evidence for potassium but the matter is not entirely

sett]ed.27'30

C) Concurrent Scattering Mechanisms

When several mechanisms are scattering electrons simultaneously,
the assumption that their contributions to the total resistivity are
independent can be quite incorrect. This is the assumption that under-

lies Matthiessan's Rule which can be stated as follows:

Ptotal ~ Po * pﬁzit (1.25)
where Peotal is the resistivity of a dilute alloy, fo is the residual
resistivity of the alloy measured at a temperature low enough to neglect
the phonon contribution, p(T) 1is the temperature dependent part of the
resistivity of the pure hoggs;etal. While Eq.(1.25) does fit a lot of
experimental data quite well, deviations from Matthiessan's Rule (DMR)

31

are well known and have been given extensive reviews by Bass”' and

Cimberle et a1.32

While the DMR have many possible causes such as
shifts in the phonon spectrum and shifts in the band structure to name .
two, the most likely cause with the temperatures and metals of our con-
cern is that due to differences in relaxation time anisotropy among
various scattering mechanisms. Our chief concern will be with concurrent
impurity, phonon and dislocation scattering. We shall also consider
concurrent impurity, electron-electron and dislocation scattering.

To understand the competition and interference between scattering

mechanisms due to anisotropy we must consider the influence of each on

g(f) (the electron distribution function) and in return the effect g(f)
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has on the resistivity due to each mechanism. No matter what juxta-
position of mechanisms is present, there exists a unique g(f) which
satisfies the Boltzmann equation (1.10). (g(k) and f(k) are inter-
changeable in this equation because fo is independent of time by
definition.)

It can be shown33 that the correct solution to the Boltzmann
equation is the one which minimizes the total resistivity. This is
known as the variational principle for resistivity and is often used in
theoretical calculations. Herein lies the heart of the matter. Although
the correct g(f) may minimize the total resistivity, the individual con-
tributions of different mechanisms may not be minimized. In fact, one
or another may be significantly enhanced.

Let us call gi(F) the characteristic e.d.f. for impurity scattering
and compare it to gp(f),characteristic e.d.f. for phonon scattering. In
this discussion we are not concerned with the absolute magnitude of g(k)
because that depends on the strength of the applied field (Eq.(1.12)).

We are interested in the relative shape of the distribution around the
Fermi surface. If the relaxation times for two different scattering
mechanisms are such that their ratio is independent of f, then we say
their characteristic e.d.f.'s are of the same form.

gi(t) and gp(f) can be qualitatively compared in Fig. 1.2. Part (a)
shows the uniform nature of gi(k) over the Fermi surface. Part (b) shows
the form of gp(k). The small value of gp(k) on the necks relative to the
bellies is due to the shorter electron-phonon relaxation time, rp, on
the necks for the reasons previously discussed. Any form of g(?) other
than gp(f) will increase the resistivity due to phonons. Now, in real

samples, impurities are always present. If they dominate the scattering,
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which must be true at low enough temperatures, then the actual form of g
will be closer to 9; than to gp causing an increase in the resistivity due
to phonons. The main contribution to this increase is due to the fact
that the population of current carrying electrons is enhanced at the

necks relative to the bellies. But, Tp is much smaller on the necks.

Thus the relative importance of the necks in determining the phonon
resistivity is enhanced. The temperature dependent resistivity (often

called the ideal resistivity) of a pure metal is usually determined by

subtracting the residual resistivity from the total resistivity

p(T,i) = pTota] - P (1.26)

ideal 0

where the i reminds us that it was measured in the presence of some
impurities. This is called the ideal resistivity because it is supposed
to be the resistivity of a perfectly pure metal in which phonons are the
only scattering mechanism. This so called ideal resisitivity may in
reality be rather far from the true pgT) because at low enough tem-
peratures we get into the so called d}gisllimit where impurity scattering
is dominant, even for nominally pure metals. However, p(T,i) is often

ideal
used to determine the DMR, Ap(T), of dilute alloys by

4p(T) = p(alloy) - p (alloy) - o(T,i) (1.27)
Total ideal
In the dirty limit the addition of more impurities may have little
effect on p(T) since g(k) is already dominated by impurity scattering.
Thus Matthiesan's rule may work quite well in this regime. At somewhat

higher temperatures, where the scattering may no longer be dominated by
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residual impurities in the “pure" metal, g(f) may have a form intermediate
between gp(f) and gi(f). The addition of more impurities may then cause
a significant shift of g(k) toward the impurity dominated form. At still
higher temperatures, when phonons can scatter through large angles, the
intrinsic differences between gi(f) and gp(F) may not be very great and
s0 again, the addition of more impurities would not strongly affect the
form of g(f). These facts are one reason why the observed DMR are often
greatest between the high and low temperature regions we have described.
Another consequence of the fact g(f) is not the "ideal" gp(f) at
low temperatures is the possibility of apparent negative DMR if some
type of scattering mechanism is introduced which can shift g(f) in the

d34’35 and were the

direction of gp(f). Such effects have been observe
object of much of the work to be reported in Chapter 3. We shall later
see that dislocations can produce just such effects.

A highly simplified model of these ideas is the so called two-band
model. In this model, the electrons are divided into two groups ("bands")
composed of the neck electrons and the belly electrons. The properties
of all electrons within a group are assumed to be the same. To organize
our notation, we will use labels (n) or (b) to specify a particular
group (necks or bellies). We will use subscripts p, i, and d to denote
phonon, impurity or dislocation scattering. The absence of labels and/or
subscripts implies that the quantity applies to the combination of all
groups and/or mechanisms respectively. For example p is the total
is the total phonon resistivity, p_(n) is the phonon

P P
resistivity of the neck. What follows is essentially along the lines of

resistivity, p

Dugdale's treatment.]0 We assume these two groups are conducting in

parallel. Thus, for pure phonon scattering we have
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oy = op(n) + op(b) (1.28)
or
1 1 1
_— + (].29)
Pp pp(hT op(b)

In this simple picture we can relate the conductivities to the relaxation

times by

cp(n) = Nrp(n) and op(b) = BTp(b) (1.30)

where the factors N and B involve the areas and Fermi velocities of
their respective parts of the Fermi surface (see Eq.(1.17)). We saw
earlier that rp(n) << rp(b). Because the area of the necks is much less

than the bellies, N << B. Thus cp(n) << op(b) and p(n) > p(b).

Therefore
p.(n)p_(b) ]
O$Zéa1 =Py T QLS = pp(b) = E;E(Ey (1.31)

So it is the bellies which determine the temperature dependent resistivity.
For impurity scattering we will assume a single relaxation time

T = ri(n) = ri(b), for both the necks and the bellies. Thus for

only impurity scattering

Q
"

oi(n) + °i(b) = (N+B)ri (1.32)

and
pi(")pi(b) 1

P17 oi(n)*; (6] ~ TN+B]x;

(1.33)
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Within a group we assume the scattering probabilities of separate

mechanisms add. Hence, if we combine phonon and impurity scattering

1 _ 1 1
t(n) ~ tp(n) ?? (1.34)
and
1 1 1
N I (1.35)
t(b) rp(n) T

Thus, within a group the mechanisms add 1ike resistances in series. The
equivalent circuit is shown in Fig. 1.9.
For now, we assume impurity scattering strongly dominates on the

bellies but is comparable on the necks to phonon scattering. That is

Ty ~ Tp(n) << Tp(b) . (1.36)

The total conductivity is

o = Bt(b) + Nt(n) (1.37)

or

8 __, !
I/TPTE) + ]/Ti 1/Tp(n) + ]/Ti

(1.38)

But we can neglect 1/rp(b) compared with ]/Ti so that

Nt,T (n)

g = B‘t_i + T_:;L(EY (1.39)

1P
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Current

Fig. 1.9 Schematic representation of the two-band model for impurity
and phonon scattering. The height of resistors in a branch
is inversely related to the Fermi surface area times Fermi
velocity for that band. The length of a resistor is inversely
related to the relaxation time for the represented mechanism.

pd(") pi(n)

op(n)

pd(b) fi(b) Dp(b)

g

Fig. 1.10 Schematic representation of two-band model including dis-
location scattering. Conventions are the same as for
Fig. 1.9.
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we can write this as

g = (B+N)ri - NTi{?T;;irif] (1.40)
ip

By Eq.(1.32) this becomes

_ N Ty
g = Gi[] - mw} (].4])
But N/B+N is small thus
o = 041 + g TT| * P * ey ) (1.42)
Ti p n 1 (B+N) Ti P n

We see this is just the residual resistance P; plus a temperature
dependent part. Comparison with the result for a perfectly pure metal
(Eq.(1.31)) shows that the effect of adding impurities is to shift the
temperature dependent resistivity from dependence on the belly relaxation
time to the neck relaxation time.

Let us define the effective phonon conductivity in the presence of
impurities as though the neck phonon relaxation time tp(n) were appli-

cable to the bellies as well.

05 = (B+N)rp(p) : (1.43)

Then we can write Eq.(1.42) as

_ N 1 N Pif
PP *EwNgr P Y m—grp.w (1.44)
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This equation represents the parallel combination of 05 and 06 in series
with Py- If the impurity concentration is large enough to dominate the
scattering even on the necks, i.e. T << rp(n) then o, >> pé. In that

case, Eq.(1.43) becomes
= p, +p'(7) (1.45)

Although 05 >> pp the weighting factor N/(B+N) tends to offset this
effect. In fact, if N/(B+N) is small enough one may wonder if p'(T)

could be less than pideal(T)' Such a result would invalidate this model
since it would violate the variational principle. However, one can use
the equivalent circuit of Fig. 1.9 to calculate exactly the total resis-
tance in terms of Pidea
After a bit of algebra one obtains

1(T) and p; as defined in Eqs.(1.31) and (1.33).

P =05 * Pigear(™

(Di(n)pp(b) - pi(b)pp(n))z
+ (Dp(h)+0p(b))(pi(n)+pi(b))(pi(n)+pi(5)+ °p(")+°p(b)) (1.46)

The first two terms on the right are just the terms from Matthiessan's
rule and the last term is the DMR which is seen to be greater or equal

to zero. It is zero only if

op(n) ) p;(n)
op(b7 " 0;(b)

(1.47)

which means the ratio of the conductivities of the necks and bellies is

the same for each mechanism. This would require the ratio of the neck
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and belly relaxation times to be the same for each mechanism. Since
this is certainly not the case for phonons and impurities the DMR is
non-zero. Hence, p'(T) > p(T). |

We have seen that dislocations have certain similarities to low
temperature phonons and hence produce much more small than large angle
scattering. Because of this, one might expect the characteristic e.d.f.
due to pure dislocation scattering, gd(f), to have a form similar to gp.
If this is so, introducing dislocations into a sample where the impuri-
ties are dominant would tend to drive g back toward the low temperature
form of 9 This would result in a lower pp(T) because the variational
principle for pure phonon scattering would be more nearly satisfied. The
mechanisms of this process are again revealed in the anisotropy of the
relaxation time. The value of g is reduced in the necks because of the
small relaxation time for dislocation scattering in this region.

Finally, let us consider whether this picture has implications for
the functional form of the temperature dependence. In the ideal case of
no impurities where gp(f) obtains, the belly regions would carry the
bulk of the current since they have a much higher conductivity than the
highly scattered necks. Another way to view this is that the volume of
gp(f) over the bellies is much greater than over the necks. Thus, with
the bellies shorting out the necks, the overall temperature dependent
behavior would be dominated by the bellies. So, we would expect a T5
behavior. The enhancement of the necks' contribution to pp(T) by impurity
scattering should cause the temperature exponent to be less than five
due to the larger angle character of the velocity changes on the necks
as discussed earlier. However, the re-emphasis of the bellies over the
necks when dislocations are introduced might cause the temperature

dependence to again follow the Bloch T5 law.
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Let us briefly examine the influence of dislocations in the same

two band model. We assume dislocations scatter much more strongly on

the necks than on the bellies and that we have added enough dislocations

to dominate the neck scattering while being roughly equivalent to the

impurities on the bellies. Symbd]ical]y this means

Tp(n) ~ Ty > rd(n) (1

Tp(b) > T~ td(b) (1

Adding the scattering probabilities within each group we have

| IS RS I B (1

T(n) rp(n) T, t4(n) 14(n)
(IS NS NP R SO R (1

1(b) Tp(Bi Ti rdeS - Ti rd(bs
Hence
1
p(n) = p (n) = (1
d Ntdlns
p(b) = p;(b) + p4(b) = gi— * g5y (1
i d

Adding the two groups in parallel we get

BTde(b)
= N'rd(n) +W (1

1

o |—

.48)

.49)

.50)

.51)

.52)

.53)

.54)
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Since N << B and Eq.(1.48) applies, we can neglect Nrd(n) yielding

) Ti+Td(b)

p = w)— (].55)

Thus, the belly regions again dominate the resistivity. In terms of the
equivalent circuit of Fig. 1.10, the neck branch is being shorted out by
the belly branch. The temperature dependence of the belly branch is
thereby emphasized.

We will now briefly consider the interplay of electron-electron
scattering with impurity and dislocation scattering. As mentioned
previously, a perfectly spherical Fermi surface with no anisotropy in
r(f) would exhibit no resistivity Pee due to e-e scattering. Since
zero resistivity is certainly the minimum possible resistivity, an
isotropic r(f) must give the form of the e.d.f. which satisfies the
variational principle. Thus gee(i) x gi(ﬁ) since ri(f) is isotropic.
Here gee(f) represents the form of g(k) characteristic of e-e scat-
tering alone. The introduction of any scattering mechanism which
introduces anisotropy into r(?) would therefore cause an increase of
Pee from its zero value.

Dislocations, being line defects, are anisotropic scatterers in real
space. The question is, how can we produce an anisotropic (k) on a
spherical Fermi surface by introducing an array of randomly oriented

dislocations. Kaveh and wiser36

state that the anisotropic scattering
by dislocations can produce the necessary k-space anisotropy of t(K) to
yield a non-zero Pee for a spherical Fermi surface. However, they do
not make clear the distinction between anisotropy in real space and

in k-space.
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If we suppose that we can define a local Fermi surface in the
vicinity of a dislocation (which seems justified due to its great length
and long range strain field) then this local Fermi surface will reflect
the non-spherical symmetry introduced by the dislocation. In addition,
since the k-vectors are still essentially parallel with the velocities,
the fact that dislocations only alter velocity components perpendicular
to the dislocation line will introduce a corresponding anisotropy in
t(f). This will then be sufficient to produce a non-zero Pae €VEN for
an ideal spherical Fermi surface. For the noble metals we saw that even
if e-e scattering were the only mechanism operating, Pee would be non-
zero because of the non-sphericity of the Fermi surface. Since both
electrons and charged impurities engaged in large angle scattering via
a screened coulomb potential it is still reasonable to assume that
(k) is more or less proportional to gi(f). Thus, in the presence of

9ee
impurities, Pee should be near its minimum value. The introduction of
dislocations with their associated anisotropic relaxation time should
therefore cause an increase in Pee”

While most of the foregoing has been qualitative, we shall see that
it is consistent with the experimental and theoretical literature.
Reference to the latter will provide the interested reader with a

considerably more rigorous development of these concepts.

D. A Review of Experimental and Theoretical Literature

Any attempt to bring order to the experimental data of low tempera-
ture resistivity measurements of the noble metals must confront the
problem that each author tends to analyze his data with respect to the

prevailing theory. Conversely, a single experiment often generates one
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or more new theories to explain it. This procedure often makes comparison
with other theories difficult or impossible. In addition, we must some-
times make guesses about information not included in the original arti-
cle in order to reconcile conflicting results. Nevertheless, we shall
try to give a coherent account of experimental results obtained since
1966 and theoretical developments since 1960. Of course, our own bias

in reinterpreting these past results is obvious, namely, that we believe
the data can be accounted for primarily on the basis of the scattering
mechanisms and the anisotropy model discussed heretofore. In particular,
we will be looking for evidence that: 1) Phonon resistivity is increased
by impurities and will have a temperature dependence substantially dif-

5

ferent than the simple Bloch T° law. 2) Dislocations should decrease

the phonon resistivity. 3) Electron-electron scattering should contribute
a characteristic T2 term which may be observable at low enough temperature
in sufficiently precise measurements. 4) This e-e term will probably

exhibit an increase when dislocations are introduced.

1) Some Experimental Results
The Bloch T5 law is broken by so many metals at low temperatures .
that the high esteem it is given in the literature hardly seems warranted.

37 state flatly "The Bloch T5 does not describe

In fact Kaveh and Wiser
the low-temperature electrical resistivity of any metal." We shall see
that, generally, the noble metal data supports this conclusion. Before
considering the individual publications, some of the results of their
analyses are presented as a group to facilitate intercomparisons and

provide some numerical values not included in the discussion. These

results are summarized in Tables 1.1, 1.2, and 1.3. These tables are
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for Ag, Au and Cu respectively. In order to understand the information

in the table, the following explanation and code-key is necessary.

Guide to Interpretation of Table 1.1, 1.2, and 1.3_

The general data fitting equation used can be expressed as

.

N

o =p, + at™ + BT (1.56)

For a given case, some of the five parameters on the right side were
fixed while the other were allowed to vary to produce the best fit. Any
parameters which were held constant have their values underlined in the
tables. If a single power fit was used, the coefficient of the remain-
ing term is set to zero. Each quantity is expressed with the error

in parenthesis if known. The least significant digit of the error is to
be ascribed to the last (rightmost) digit of the expressed quantity.

For example, .73291(12) means .73291+.00012 (note that to save space
nonsignificant zeros left of the decimal point are suppressed). The

following is a column by column explanation:

Author (Ref): Only the surname of the first author is given along
with the reference number.

Samp: Author's sample identification label.

po(chm): The residual resistivity which is a fitting para-
meter unless underlined.

A(fQcm): The goefficient A of the lower power of T given in
10-15 ohm cm. Normally goes with power of three or
less.

M: The lower of the two powers, M, generally three or
less.

B(fQcm) : The goefficient B of the larger power of T given in
10-1° ohm cm. Normally goes with powers greater

than three.
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N: The larger exponent, N, generally greater than three.

Range(K): The temperature range over which the fit was made
in degrees Kelvin.

RRR(]03): The residual resistance ratio, RRR = R(room tempera-
ture/R(4.2 K), expressed in units of 1,000.

Cry: Crystalline state s = single crystal, p = poly-
crystalline.

Imp: The added impurity in a dilute alloy.

Str: If a sample is known to have been strained either by

choice or accident, it will be marked with an X. If
a set of samples can be sequenced by the amount of
strain each has suffered, they will be marked in
increasing order of strain by Roman numerals. If

a sample has probably been strained, it will be
marked with a P. A sample known to be relatively
strain free will be marked with a 0 (zero).

Adat(fﬂcm): The estimated error of measurement in fQcm.

Afit(fﬂcm): The estimated error of the fit. Should be of the same
order as Aga¢ for a good fit. If too small, indicates
overfit or mistake in published error.

Comments: This is a catch-all for other bits of information
with the following code: BE = best equation of
several; NBE = not best equation; d = diameter or
thickness in the smallest dimension in mm. For
example, d = .50. VA = vacuum annealed; NA = not
annealed; OA = oxygen annealed; Gen = generated from
results given in different form.

Before we consider the violations of the Bloch T5 law we will first
mention two claims in support of it. Recall from Eq.(1.17) that the con-
ductivity can be expressed as an integral of the mean free path over the
Fermi surface. A T'5 temperature dependence of electron mean free paths
is deduced from high-field and open orbit ultrasonic attenuation data in
Cu by Cox and Gavenda.38 However, they assumed the mean free paths, £,

could be expressed according to Matthiessen's rule

2 =2, + L (1.57)
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where i and p again represent impurity and phonon scattering. They

further assume

-1, (176" (1.58)

QP
where N is a constant. In this case the best fit is for N = 5. We have
seen that these assumptions may be very poor for an anisotropic Fermi
surface. It should be noted, however, that the copper sample used was
extremely pure (RRR = 35,000) and consequently may well have been
dominated by scattering from dislocations which are always present at
some concentration. We have seen that dislocations may bring out the
presumably T5 behavior of the belly electrons. Of course, these are not
resistivity measurements per se and they are made in a magnetic field.
The validity of making a direct transfer of this temperature dependence
to the electrical resistivity of a metal with a complicated Fermi surface
is not obvious.

Ehrlich and Schriempf” measured very high purity single crystal
silver (RRR = 10,000) between 2 and 20 K. They find an approximate T5
temperature dependence below 10.5 K and a slightly higher exponent above
this temperature. These exponents were determined by the slopes of 1o§-
Tog plots of p(T) vs. T and hence, are not very precise. 10.5 K is the
temperature at which p(T) = A the residual resistivity. A close look
at their log-log graph reveals that between 5 and 10 K many of the points
lie above the line drawn through the data and the total number of points,
especially at the lower temperatures, is rather small with appreciable
scatter. Thus, the exact power dependence is somewhat uncertain particu-
larly at the lower temperatures. However, in light of the anisotropy

model, a nearly T5 behavior at temperatures where p(T) ~ % is not too
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surprising since the neck conductivity should be dominated by phonon
scattering and thus be quite low relative to the bellies. The now
dominant bellies might be expected to give a T5 dependence.

We now turn to results which show definite departures from the
Bloch T5 law.

J. F. Kos39 measured the electrical resistivity of long silver
wires (0.25-1.0 mm diameter) from 1.4-4.2 K using a nanovolt potentiometer
and galvoamplifier obtaining a precision of about 4 in 105. The silver
was rather pure having an RRR (residual resistivity ratio) value of about
2,000. Still, this data is well within the dirty 1imit and therefore it
should not exhibit a simple T5 temperature dependence. This is indeed

the case. Kos could best fit the data with the following equation

o=y + AT + B]Ts (1.59)

with m = 3. He interpreted this as support for a since discredited theory
invoking phonon drag. However he got nearly as good a fit with a T2
rather than a T3 term in Eq.(1.59). In fact, if the published fitting
errors are correct, both equations would seem to over-fit his data since
the fitting errors claimed are on the order of 2 in 106. This may be due
to the fact that only nine points were fit with three parameters, Po
being adjustable. In that case, it is hardly justified to say that the
one fit is really better than the other. The coefficients of the T2 term
are included in Table 1.1 for comparison. He notes that the larger dia-
meter samples probably had more strain introduced by winding them on the
sample holder causing larger residual resistivities. However, he notes

that the more strained samples had lower p(T) values (where p(T), as
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before, refers to just the temperature dependent part of the resistivity).
This is indicated by a systematic downward shift of the T5 coefficient
and is consistent with our expectations. In a second paper40 dealing
with similar samples from 1.4-295 K, Kos claims to have determined the
true ideal resistivity p(T) by extrapolating data to zero residual
resistivity from samplesigga;iffering purity at a set of fixed tempera-
tures. The procedure used is of dubious validity at the lowest tempera-
tures since it involved a linear extrapolation from various samples which

were all in the dirty limit. The value of p 1 S° determined is likely

idea
to be simply proportional to the p(T) of his actual samples. Thus, the
4,56 temperature exponent of Pideal which he finds between 2 and 9 K
still corresponds to the dirty limit.

Barber and CapHn]7 measured the resistivity of pure Ag and its
dilute alloys with Au, Pd and Pt from 2-20 K. Using a galvanometer
amplifier of nanovolt sensitivity with sufficiently large geometrical
factors (length/cross section) they could make meaningful measurements
down to 4.2 K and even below in a few cases. While there was appreciable
uncertainty in the temperature determination, the resistivity of most
samples could be fit well between 4 and 10 K by

_ 4
p= oyt BT

where Py Was quite well known from the lowest temperature measurement.
Other fitting equations appreciably different than this did not fit as
well. Significantly, the equation used by Kos (Eq.(1.59)) did not fit
well. While at the lower temperatures these results are not precise
enough to provide a very meaningful appraisal of a possible T2 con-

4

tribution, the higher temperature deviation from the T  behavior is

quite interesting. In the nominally pure silver samples,
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the purest of which had an RRR = 1,400, the resistivity began to increase

more rapidly than T4 at temperatures above 10 K. This is consistent

with the T°

behavior of the much purer sample of Ehrlich and Schriempf
because at the higher temperatures the phonon scattering is becoming
strong enough to influence the form of the distribution function; shift-
ing it toward the ideal gp(k). Again, the corresponding increase in the
bellies' contributions to the conductivity causes a trend toward T5
behavior. Conversely, they found the samples alloyed with Au and Pt to
deviate downward from the T4 behavior above 10 K. In fact, given the
scatter of the data, the graphs for these alloys do not really appear

to favor T4 over any part of the temperature range from 4 to 20 K with
the possible exception of the most dilute AgPt alloy. It would apbear
that a power somewhat less than four would produce a better fit. Unfor-
tunately, they did not try this possibility. The AgPd alloys, on the
other hand, did not show any systematic deviations from the T4 behavior
over the entire temperature range. While a detailed calculation using
appropriate scattering potentials for each type of impurity might reveal
the origin of these differences and actually determine the temperature
exponent in a particular temperature range, there is little we can say.
on the qualitative level of the present analysis. We can only suppose
that each type of impurity contributes a characteristic anisotropy of its
own to the relaxation time and this may in turn have an effect on the
temperature exponent. However, these data show no systematic differences
between the homovalent impurity Au and the impurities Pt and Pd which
both 1ie in the same column of the periodic table just to the left of Ag.
Measurements and calculations of such impurity relaxation time aniso-

tropies are reviewed by Bass.31
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One final note of interest is that whatever the temperature exponent,
the values of p(T) all show monotonic increase with impurity content,
increasing roughly as log fo and showing no clear signs of saturation
for large impurity concentrations. If we define these increases in p(T)
in terms of the usual equation for DMR (Eq.(1.27)) we find these DMR can
be very large. For example, if we obtain p(i,T) from the purest sample

ideal

of Ehrlich and Schriempf we find the DMR to be about 40 Pideal

most concentrated alloy at 4.2 K. These authors indicate that the fact

for the

that the DMR do not saturate over three orders of magnitude of Py May be
more than the anisotropy model can handle and other mechanisms may be
necessary. While other mechanisms may indeed be necessary, only realistic
calculations of the DMR based on the anisotropy of neck and belly relaxa-
tion times can determine at what point it fails if at all. Bergman et a1¥l
performed such calculations to explain the DMR observed in Al by Caplin

and Rizzuto.42’43

These calculations fit the DMR at 14 K very well
showing that,using the more realistic 2-OPW electron wave functions
rather than 1-OPW functions, the anisotropy model can account for the
two orders of magnitude change in Po required to produce saturation of
the DMR in Al. The anisotropy of phonon scattering in the noble metals
is such that even though the belly electrons may be well within the dirty
limit at a given temperature, the neck electrons may require much higher
impurity concentrations before they are completely dominated by impurity
scattering at the same temperature. Thus, three orders of magnitude
change in Py May not be entirely unreasonable before DMR saturation
occurs.44 In any case, even if the anisotropy model fails to entirely
account for the DMR of metals with rather large impurity content (~lat%)

it should be applicable to the rather pure metals.
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Rumba]5

achieved much greater sensitivity than the aforementioned
authors at temperatures below 8.5 K by using a type of Josephson junction
device called a SLUG. This allowed use of shorter and thicker samples
whose purity is more easily controlled and which can be grown as single
crystals. The mechanical strength of such thicker samples makes it

less 1ikely they will be strained during handling. Four samples were
prepared. Two were single crystal and two were polycrystalline. They
had RRR values from 1,100 to 3,300 with the highest values belonging to
the single crystals. They all exhibited a region of approximately T3‘5
dependence above 3.5 K. From 1 to 3 K their resistivities were prepor-
tional to about T2-3°2-8,

The effect of strain on the temperature dependent resistivity p(T)

35 at a

in Ag as well as Pd and Al was measured by Rowlands and Woods
series of fixed temperatures starting at 10 K for the Ag sample and

going up to 49 K. They observed a decrease in p(T=10 K) with strain for
deformations which were not too severe. This decrease was still apparent
within their resolution at 13 K but at 20 K and above it could no longer
be resolved. However, at these ﬁigher temperatures p(T) remained constant
which is not what is observed with the addition of chemical impurities.
They interpreted this behavior, as well as the more marked decrease of
p(T) in Al and Pd in terms of the anisotropy model as presented here.
Because of their limited resolution the effect is just resolvable at 10 K
and its detailed behavior cannot be determined. Unfortunately, they did
not possess sufficient sensitivity to make useful measurements at lower
temperatures.

Now we turn to work in Ag more directly relevant to this dissertation,

i.e. high precision measurements at liquid helium temperatures. Barnard
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and Caplan16 performed very high precision measurements (up to 1 ppm) on
large single crystals of Ag and on Ag 0.02% Au alloy from 1.2 to 9 K.
They achieved the necessary sensitivity by using a SQUID null detector
circuit similar to that described in Chapter 2. These measurements could
be fit with great fidelity in the temperature range of 1.2-4.2 K using
the equation

p=p, + BT (1.60)
However, above this temperature the points of all the pure Ag samples
drop below this line. When they plot p(T)/T4 vs. T on a log-log plot
they get a level line which remains very constant at the value of B in
Eq.(1.60) to about 4 K. Above this temperature the curves bend downward
with increasingly negative slopes, up to their highest temperatures,
~9 K, with no clear sign of stopping. Since the slope of this log-log
plot is proportional to the effective temperature exponent N(T), it is
clear that N(T) is decreasing with increasing temperature. If one calcu-
lates the effective temperature exponents from these plots they are found
to range downward from the constant value of 4 to values in the vicinity
of 3.45 to 3.25 at the highest temperatures measured. The data wou]d'
seem to indicate that they will drop still lower although one would hardly
expect them to drop below 3, the value obtained from phonon scattering at
low temperatures if the small angle restriction is dropped. These values
are significantly lower than the temperature exponent of 3.5 found by
Rumbo. This downward trend has been rather well reproduced in calculations
by Bergman et a1.% Unfortunately, they do not include specific details
of the calculation for Ag although they show a similar calculation for

aluminum. The calculation includes the effects of dislocations within
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the anisotropy model. It is interesting to note that the pure polycrystal-
line samples of Barbar and Caplin went to values of N larger than 4 for‘

T > 10 K. However, the values of N for two of the dilute Ag alloy sys-
tems deviated below the value 4.

Similar high precision measurements on Ag by Koshnevisan et al.]3 in
which this author was involved also observed a rather strict T4 dependence
between 2 K and 8 K. These samples, although polycrystalline, were of
higher purity, having RRR values between 4,700 and 11,000. The coef-

ficient of the T4

term was as much as a factor of four lower than the
values obtained by Barnard and Caplin. Again, this variation is con-
sistent with the enhancement of p(T) by impurities and the fact that these
purer samples may have had a larger fraction of their residual resistivity
attributable to dislocations which would further reduce p(T). This com-
parison will be made in greater detail in Chapter 3.

These measurements were done on a dilution refrigerator where the
high precision of about 1-2 parts in 10S along with the low temperatures
allowed meaningful fits to be made to data below 1.5 K. Details of
these results are also given in Chapter 3.

There were no high precision measurements of the resistivity of gold

at liquid helium temperatures prior to the work of Koshnevisan et a1.14

in which this author was also a participant. The work of Damon et a1.46
on DMR in gold alloys are not precise enough at liquid helium temperatures
to say anything about the details of their temperature dependence. Above
10 K, they show increasing DMR with impurity concentration. They attribute
part of the the effect to the anisotropy model and part to "phonon-assisted

impurity scattering," or "inelastic impurity scattering as it is more

commonly designated. Koshnevisan et al. observed the same rigorous T4
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dependence in Au as seen by Barnard and Caplin and Koshnevisan et al. in
Ag between ~1.5 and ~7 K. The two samples measured were pure single

¢rystals with RRR values of 5600 and 2800. Again, the sample of lower

purity had a larger coefficient of T4. Neither sample showed any clear

T2 dependence at lower temperatures. When fit by a single power, TN, the
exponents were 3.28 and 3.47. Further analysis is included in Chapter 3.

In the same paper, Koshnevisan et al. gave the results of similar
high precision measurements on copper between 0.06 K and 7.5 K. Again
between ~3 and ~7 K a very strict T4 dependence is observed in these
polycrystalline samples with RRR values of 2,600 and 5,420. The largest
deviation from a perfect power of four was an exponent of 3.93 for the
sample of lowest purity. Again, the coefficients increased with increas-
ing impurity content. The magnitude of the T4 coefficient was on the
order of ten times less than in gold and about four times smaller than
in silver.

Because Cu of the three noble metals was the highest Debye tempera-
ture (eD = 315 K) and thus, has the smallest phonon contribution at a

2 term from electron-

given T, there may be a better chance of seeing the T
electron scattering. In only one run were the experimental problems suf-
ficiently subdued, including the elimination of the Kondo effect due to
magnetic impurities, that the low temperature data could be fit with a
high degree of confidence. In this case, the fit produced an exponent

of 2.03 providing the best evidence published to date for e-e scattering
in one of the noble metals. The coefficient was in excellent ajreement
with theoretical predictions which will be considered shortly.

15,47

These results are somewhat at odds with those of Rumbo which

preceded them. In the earlier of these publications he fit data from
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a extremely pure (RRR = 13,500) single crystal of Cu to an equation of
the form used for Ag by Kos (Eq.(1.59)) which he found to give the best

fit over the full temperature range from 1-8.5 K. Like Kos, he found

2 for the T3 term. However, while

5

the next best fit when substituting T

other variants of this term were tried, the T° term was never varied,

again showing the faith which most experimentors had that low tempera-

ture results should contain a additive T5

T5

term in keeping with the Bloch
law. He found a single power fit from 5 to 8.5 K to work quite well
with an exponent of 3.5. In the later publication he expanded his studies
to more Cu single crystals, with resistance ratios between 13,690 and
5,850, as well as the Ag samples already discussed. While using Eq.(1.59)
to extrapolate to Po? he then plotted log(p-po) vs. log T to obtain single
temperature exponents. He found an exponent of 3.5 above 4 K and about
2.8 below. However, with the SLUG type null-detector circuit his preci-

sion was 1 or 2 parts in 104

on his best runs. Thus his low temperature
data cannot be pushed for much detail.

While the values of p(T) systematically increased with fo for his
Ag samples, his Cu camples showed the lowest p(T) for the second most
pure specimen. He guessed that it might be due to size effect. However,
in the light of what has already been said, it is more likely that the
residual resistivity of this sample contained a larger ratio of dis-

locations to impurities than the purer sample, thus producing a lower

o(T). We shall see there is strong evidence for this view in Chapter 3.

2) Theoretical Developments
Having already discussed the general theory, in which several

references were given, we now will consider some specific calculations
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for phonon and electron-electron contributions to o(T) and the effects
of dislocations and impurities.

Dosdale and Mor'gan]8 have calculated the dirty limit resistivity of
Cu between 5 and 30 K. This calculation used a pseudopotential which
gave reasonable values for the band gap at %%% . By using two plane
wave states the neck and belly radii were given reasonable values. They
performed the calculation in a manner similar to that used for A1.48
The calculation 1ncofporated the electron-phonon relaxation time aniso-
tropy but assumed isotropic impurity scattering. Although the calculated
p(T) was too large by about a factor of 2.5, the temperature dependence
agreed quite well on a log-log graph with experimental results showing
an average exponent of about 4.7 from 5 to 10 K and 3.8 from 10 to 30 K.
We shall see that this behavior is in good agreement with our own experi-
mental results.

Brett and Black™?

performed variational calculations of the phonon
electrical resistivity in copper below 20 K. They used 2-OPW electron
states to determine the electron-phonon scattering matrix element where
the phonon frequencies and eigenvectors were determined by the Born-
Karman method. A rather realistic analytical representation of the

5 In

Fermi surface was used--the so called "eight cone model" of Ziman.
this model the Fermi surface is approximated by eight identical surfaces,
each bounded by a cone whose axis lies in one of the eight [1,1,1]
direction. The shape of the surface is determined in the model by
specifying a neck radius and the Fourier component of the lattice pseudo-
potential in the [1,1,1] direction. The variational trial function was

proportional to V(f)-E, where V(k) is the group velocity, rather than the

simpler k€ which is correct for 1-OPW states. The anisotropy of the
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phonon relaxation time was also explored and used to calculate the resis-
tivity using a total relaxation time which is constant, i.e. an impurity
dominated distribution function g(?). The ratio of these relaxation
times is included in Table 1.5.

They claim to find a T5 behavior of the resistivity below 20 K,
although examination of their published figures shows the exponent to
actually be about 4.9. A value so close to 5 is a little surprising for
a dirty limit calculation and is at variance with Dosdale and Morgan's
calculation. They state that it is unlikely that the precise temperature
dependence will be revealed by any of the OPW calculations to date. How-
ever, they believe that the lower powers of T seen by Rumbo and Kos may
be due to a change from dirty limit behavior at low temperatures to clean
limit behavior at higher temperatures, say 20 K. The magnitude of their
calculated p(T) is too large compared with experimental values at most
temperatures but the experimental results tend toward their calculated
values as impurity content increases and come to within a factor of 2
at 20 K. At 3.5 K the experimental results for the less pure samples
agree quite well with the calculation although at 2 K the experimental
values are actually larger. The better agreement at 3.5 K may be due to
the fact that the true dirty limit has been reached while the larger
experimental values at 2 K may be due to a significant electron-electron
contribution which was not included in the calculation.

They also performed a rough calculation for the clean limit phonon
resisitivity and find values which are slightly lower than the purest
published values between 5 and 10 K. The experimental values are seen
to approach their calculated ones as purity increases. They also calcu-

lated the phonon-electron relaxation times in the clean 1imit for various
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points on the Fermi surface at various temperatures. These results are
listed with others in Table 1.5.
We now turn to calculations of the electron-electron term in the

1 used a 2-0PW model which is somewhat

noble metals. W. E. Lawrence
similar to the eight-cone noble metal Fermi surface of Ziman mentioned
above. He starts by factoring po,_, into a term due to the characteristics
of the translationally invariant electron gas and a term he calls the
“"fractional umklapp scattering" A. This term represents the essential
effect of the ionic medium and is a measure of the effectiveness of scat-

tering events (f],fz) - (f3,ﬁh) in degrading the current.

L R
Pa-e ~ 2 {[7"(kgT) /12 ELITIA (1.61)
A= <|'\7]+“\72-'\73-'\74|2w><|2V[2w51 (1.62)

where Vi is the velocity of the state Ei' The angular brackets denote
the Fermi surface integrals over all quartets of crystal-momentum-con-
serving states with scattering probability W. The values of Vi and W
are determined from the 2-OPW model. He estimates A to be ~3/4 for the
noble metals with the value for Cu slightly greater and Ag slightly less.
The quantity in curly brackets is the basic e-e scattering rate; T is

a dimensionless number representing the Fermi surface average of the

-2 are included in

scattering probability. The calculated values °e-eT
Table 1.4.

Lawrence also determined "crossover" temperatures below which his
values of p,_ . exceed Py values which he also calculated. These cross-

over temperatures are 2.4 K, 2.2 K, and 3.6 K for Ag, Au, and Cu
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Table 1.4. Theoretical estimates of the e-e contribution to
the resistivity.

I

(10713 qem/k?)
A+30% -2 A+30% -2
peeT (Lawrence) peeT (Black)
Ag 0.73 140
Au 0.77 140

Cu 0.79 76 0.28-0.41 27-39
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3 term in the fit to Rumbo's data

respectively. Lawrence attributes the T
as the result of being in this crossover temperature regime. In light of
the success of including a Pe-e term in fitting our results which will be
demonstrated in Chapter 3 it seems Lawrence may be correct.

J.E. Black2 attempted to improve the calculation of Lawrence by remov-
ing some of the approximations. The improvements were applied to the calcu-
lation of the fractional umklapp parameter A for Cu. One improvement was
the explicit use of the eight-cone model of the Fermi surface. A second
was the inclusion of a number of neglected terms. The third improvement
was the inclusion of exchange effects. Because, by and large, these
improvements caused an increase in the denominator of Eq.(1.62) their
calculated values were lower than those of Lawrence by 30-50%. The
range of values results from uncertainties of the effects of the Fermi
surface. Their values are also included in Table 1.4 They point out
that their use of the Born approximation (also used by Lawrence) may
produce values as much as two to five times larger than a proper phase
shift calculation would yield. This could make e-e scattering very dif-
ficult to detect in silver and gold. However, the low temperature data

~2.2-2.6 dependence below 1.5 K in Ag

of Koshnevisan et al. show a T
suggesting the term is not as small as the worst case estimate and the
factor of two reduction49 seems about right.

Recent theoretical work by Berman, Kaveh and wiser3 specifically
addresses the experimental findings of Barnard and Caplin and Koshnevisan

4 behavior of the resistivity in Ag. Their explana-

et al. regarding the T
tion of the origin of the T4 dependence and the sample dependence of its
coefficient is based on the concurrent interaction of all four scattering

mechanisms under discussion; impurity, dislocation, phonon, and
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electron-electron scattering. The basis of the interaction is via the
anisotropy model we have set forth. They show graphically that despite
its apparent rigor, the T4 term can be represented within experimental

error by a fortuitous juxtaposition of a T2 electron-electron term and a

T4'5 electron phonon term between about 2 and 5 K. That is

2 4.5

P =p,* AT® + CT ' (1.63)

Since the samples in question can be regarded as being in the dirty limit
50,51
? f

0 pp

T < 5. Below 2 K the exponent is ~5.

below 5 K they refer to previous parameter free calculations
to obtain the 4.5 exponent for 2

coefficient B was experimentally

<
To fit a typical case where the T4
4

determined to be about 30 fQcm K ', they find a T2 coefficient A of

30 faem K2

is required. This value is a factor of ~4 lower than the
value predicted by Lawrence. This factor of 4 is easily accounted for
if one assumes that the 30-50% reduction Black found for his refined
calculations for Cu can be applied to Ag and the remaining reduction is
attributed to phase shift corrections. To account for the variation of
B they invoked dislocation scattering and the anisotropy of rd(F).

In the dirty limit, if only impurities are contributing to the residuai
resistivity (i.e. Po = pi)’ the value oprT) should be independent of
Oo~
exhibited by the reported variations of B are due to the fact that in

Bergmann et al. argue that the observed sample dependence of pp(T)

any high purity sample the residual resistivity is actually composed of

contributions from impurities and dislocations so that

Py = P5 * Py (1.64)

0"
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The variations of the ratio of pi/pd between samples of the same P, can
then account for the sample dependence. In Chapter 3 we shall provide
ample experimental justification for this conjecture.

In an earlier paper45 these same authors have performed calculations
of p(T) which indeed account for the discrepancy in B between two dif-
ferent samples of Barnard and Caplin by assuming different relative
amounts of Py and Pq-

To demonstrate the strong dominance of the dislocation scattering

in the neck regions they schematically express the phonon resistivity as

op(T) = [ [as(R) s (R)a(kp)-a(k) TP Pk kyiT) (1.65)

where ﬂ;flfz;T) is the phonon scattering probability between states E]
and fz. This double Fermi surface integral contains the electron dis-
tribution functions g(?) which are solutions to the Boltzmann equation

in the presence of a unit electric field €.
9(k) = -et(K)V(K)-¢ (1.66)

By assuming a constant, impurity dominated t = T they domonstrate that
scattering through angles such that both initial and final states remain
in the neck region can enhance the factor in square brackets in (1.65)

by as much as two orders of magnitude. This is due to the fact that both
states require a 2-OPW description. The neck region is large enough so
that both states can be within an angle of ~2°-5°. Thus, both dislocation
scattering, dominated by angles <1°, and small angle phonon scattering at
low temperatures would be strongly enhanced in the neck regions for an

isotropic (k). They also show that the anisotropic relaxation time
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which would result if a small but significant dislocation density were
present say 0.01 < pd/pi £ 0.10 would be sufficient to account for the
observed 35% variations in B. This is because even a small value of P4
can imply complete domination of the total relaxation time in the neck
regions. They note that the phonon anisotropy is even greater than the
dislocation anisotropy at the temperatures under consideration. (We
might speculate therefore, that even a dislocation dominated e.d.f.

might not result in the true pideal(T))' They stress however that if
even one of the electron states involved in the scattering is in a belly
region so that it can be described by a single OPW state this enhancement
does not occur. Small angle scattering mechanisms produce, therefore,
precisely the type of scattering which is least resistive in the belly
regions but strongly resistive in the necks because it satisfies the
necessary condition that both initial and final states remain in the neck
region. This leads to the high degree of anisotropy in the electron-

phonon and electron- dislocation transport relaxation times.

3) Determinations of Relaxation Time Anisotrophy

We have based our arguments on the anisotropy of the conductivity
relaxation times over the Fermi surface for phonon and dislocation scat-
tering. In this section we shall show experimental and theoretical
evidence obtained by other methods to substantiate the anisotropy and
to show that it is of similar character for phonons and dislocations.
These values can then be compared with estimates obtained from resis-
tivity measurements. We shall use the ratio of belly to neck relaxation

times t(b)/t(n) as a measure of the anisotropy.
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There are a number of methods which can be used to probe the
relaxation time for scattering by impurities dislocations and
phonons at various points on the Fermi surface. These methods all
involve the use of magnetic fields at low temperatures and all rely on
the fact that an electron follows a cyclic trajectory in real space and
k-space if allowed by the geometry of the Fermi surface in planes normal
to field direction. It is not within our scope to describe the details
and theory of each experimental procedure. We shall merely give the
relevant results and refer to the references for more details. The
importance of these techniques is that they allow one to obtain direct
measurements for the rate of scattering or, its inverse, the relaxation
time unweighted by the (1-cos8) factor. Indeed, t(T) is observed to

3 rather than -7, The only requirement is that the

vary as ~T~
scattering be through an angle sufficient to destroy the phase coherence
of the electron orbits to which a given technique is sensitive. The
deHaas van Alphen effect (dHvA), for example is sensitive to scattering
through angles as small as ~0.01° while the radio frequency size effect
(RFSE) can only detect scattering by roughly 1° or more.

Tables 1.5 and 1.6 give t(b)/t(n) for phonon and dislocation scat-
tering respectively. Because many results exhibited a range of relaxa-
tion times on the bellies, we have chosen the maximum ratios in such
cases. We have included ratios determined from conductivities for
comparison but one must remember these are weighted according to scat-
tering angle by roughly (1-cos6). Because of the different temperatures,
measuring techniques and calculating methods, the discrepancies in the
table should not be of great concern. The essential point is that there

is definite anisotropy even at 63 K and it is of similar form for



65

phonons and dislocations. One interesting point not shown in the tables
is that the magnitude of t determined by de Haas-van Alphen techniques
is on the order of 100 times smaller than t determined by the radio-
frequency size effect indicating 100 times more scattering at angles
less than about 1°. Comparison with actual dislocation resistivities
shows that the conductivity relaxation time is on the order of 100 times
longer still. While the anisotropies of the non-transport relaxation
times in Tables 1.5, 1.6 are not as great as the anisotropy implied by
Bergman et al. it must be remembered that their relaxation times are
conductivity relaxation times whose anisotropy is greatly enhanced for

small angle scattering.
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Table 1.6. Relaxation time ratio for dislocation scattering in cu.t

rd(b)/rd(n) Method Reference
21
~2 RFSE Gantmakker et al.
~4 dHvA Chang and Higgins22
Terwilliger and Higgins58
5* 2BR Dugdale and Basinsk157
8.3* 2BR Lengeler et a1.56

*Interpret with the key for Table 1.5.



CHAPTER II
EXPERIMENTAL METHOD AND APPARATUS

A1l of the measurements described herein were performed using
either a liquid He4 cryostat or a He3-He4 dilution refrigerator. The
He4 cryostat, designed by the author, was used for measurements in the
temperature range of 1 to 9 K. It has the advantage of being relatively
quick and inexpensive to operate. Details of its design are given
later.  For lower temperatures, the dilution refrigerator, designed by
professor William P. Pratt, Jr., was used. Details of its design and
construction can be found in references 59 and 60. Also see Lounasmaas].

for more general discussion.

A. The SQUID Null Detector System

The real heart of the measuring system is the SQUID (Superconducting
Quantum Interference Device) used as an ultra sensitive null detector in
a potentiometric voltmeter circuit similar to those described in refer-
ences 60 and 62. Because of its essential role in obtaining the precision
and sensitivity necessary for these measurements, we shall review the
basic circuit and consider some modifications used for some of the

experiments.

68



69

Figure 2.1a+ shows the basic experimental arrangement used in all

4

the measurements on strained copper samples done in the He  cryostat

and the earlier runs on silver, copper and gold using the dilution

lr-efr'iger-atonr'.]3’14

While the sample geometry shown is close to the
actual shape used, the reference resistor generally had a geometry
substantially different, being closer to a thin disk for the lowest
values of resistance. The basic method of measuring resistance is very
simple in principle. The rf SQUID electronics at room temperature (not
shown) puts out a voltage proportional to the current Is through the
SQUID coil, Ls (which produces a magnetic flux to which the SQUID itself
is sensitive). When no current is present in either Rx or Rr the SQUID
output voltage registers null. When a current Ix is passed through the
unknown resistance, Rx’ the SQUID output deviates from null. It can be
balanced back to its null value by passing an appropriate current Ir
through the known reference resistor Rr' The value of the unknown

resistance is then simply

I

RX=I—rRr (2.1)
X

13,14 were made by meas-

The earlier dilution refrigerator measurements
uring Ir and Ix separately with precision digital voltmeters which
looked at the voltages these currents generated across General Radioda
standard resistors. The maximum precision obtainable was about 2
parts in 105. Most other measurements were made using a modified and

locally adapted commercial d.c. current comparator from Guildline

*Note, although the figure schematically shows a large loop area for the
circuit, in practice one must minimize this area to avoid noise pickup.
Hence, all wires are varnished together in pairs.
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Instruments, Ltd.* This device is capable of providing two electri-
cally isolated currents up to about 50 mA, whose ratio can be set to

a precision of 1 part in 107. Details of this device can be found in

Edmunds et a1.63

Now that the necessary precision in the current ratio was avail-
able, the stage was set to try to measure the resistivity of even purer
samples than heretofore and to make meaningful measurements well below
1 K where the temperature dependence is extremely small. To do this

requires minimizing any noise in the system. The main source of noise

is Johnson noise, which expressed as a voltage, is given by

kBTR

<V >rMs = 4kBTBR =\ (2.2)
where B is the noise bandwidth and T is the averaging time employed in
detection. To make use of the full precision of the current comparator,
we require Rr = Rx' To ensure that the Johnson noise from the reference
does not dominate the total noise, we require Tr < Tx'

One approach is to maintain Rr at the lowest temperature at which
measurements are to be made, say 50 mK, subsequently raising the sample,
Rx’ to higher temperatures. This is done by mounting the sample on the
end of a thermal resistance such as a length of nonsuperconducting wire
(Fig. 2.1b). The heater, H], can then raise the sample temperature by
any desired amount. The resistance should be Tow enough to allow suf-
ficient thermal anchoring to the temperature reservoir (in this case the

mixing chamber of the dilution refrigerator) and yet allow the

qui]d]ine Instruments, Ltd., Smith Falls, Ontario, Canada K7A 459.
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temperature of the sample to be raised to any desired temperature with-
out changing the temperature of the mixing chamber and Rr' This last
condition is quite difficult to meet if very large temperature gradients
are required across the thermal resistance. A rather ingenious solu-
tion, which has been used successfully on the latest dilution refrig-

1.

erator runs, was proposed by Dr. John Rowlands' while at MSU as a

research associate. Although the details can be found in Edmunds et
a].,63 the method will be reviewed here. The essence of this set-up is
also shown in Fig. 2.1b. One of the two heaters H] or H2 is always on
during a measurement so that the heat load to the mixing chamber is
constant. The use of H2 is probably not required if an automatic tem-
perature controller is used to maintain the mixing chamber at a constant
temperature. The procedure is as follows: The current comparator set-
ting C which balances the SQUID when H1 is off is determined. If the
sample is connected to the primary (or master) and the reference to the
secondary (or slave) side of the comparator, then

I. R
C=-L=2 (2.3)

Ix Rr
H] is turned on to raise the sample temperature by roughly 10% at lowest
temperatures, somewhat less at higher temperatures. An uncalibrated
resistance thermometer, Tr’ may be used to monitor the reference resis-
tor's temperature to be sure it hasn't changed. The change in the

sample's resistance, ARX, due to this temperature increment, AT, requires

a change, AC, in the value of C needed to balance the SQUID. The change

*Present address: Radiological Research Laboratories, Room 5267, Medical
Sciences Building, University of Toronto, Toronto
M5S.1A8, Canada.
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in C gives the change in Rx relative to Rr‘ Definition (2.3) then leads

to the result

Q.

1 dp
i = (2.4)

a

T=

—
x

where T is the average temperature of the samp]e.*

Because the total resistivity will vary by less than 1% over the
entire temperature range of interest, one will introduce less than 1%
error in the temperature dependence of the resistivity if the 1/p factor
in Eq.(2.4) is treated as a constant 1/00 (the same holds for 1/C).

The advantages of this method are: The elimination of the exact
value of the residual resistance from consideration and elimination of
the need for a calibrated standard resistor because the reference drops
out of the equation. A bonus is that one can actually use a second sam-
ple for the reference and measure it in the same run by interchanging
the roles of sample and reference. This sort of double run was actually
done in the last two dilution refrigerator runs using copper and silver
as the pair of samples.

The error introduced by approximating the temperature derivative |
at T with finite differences is rather small, in general, for the type of
smoothly varying resistivities usually encountered at ultra low tempera-

tures. The error has a leading term second order in AT and given by

@)-2- ¢’ (2.5)

1'If’ the current leads from the comparator to the sample and reference
wer? sw;tched so that C = I,/I,, then one must replace AC by -AC in
Eq.(2.4).
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For example, if the temperature dependent resistivity were given by

the equation (which will be shown to be typical in Chapter III)

P%L =105712+108 15 (2.6)
0 N

Then the relative error, i.e., the ratio of Eq.(2.5) to the derivative

of Eq.(2.6), for AT/T = 0.1, is given by

2 4
1 (AT T
Syl @

Thus at 1 K the relative error due to the finite difference approxi-
mation is only 0.1% and is completely negligible below 1 K. At higher
temperatures the relative error approaches a limiting value of 3%, being
0.48% at 4 K, for example. At low temperatures other errors such as the
error in AT certainly dominate. At higher temperatures one can always
reduce AT a little if necessary.

Because of the thermal resistance between the sample and the mixing
chamber this method of mounting the sample is not as well suited to
measuring the thermo-electric ratio, G (= leﬁx). 6x is a heat currenf
which generates a thermal e.m.f. in the sample. Ix is the electrical
current necessary to cancel this thermal e.m.f. with an ordinary resis-
tive voltage drop. The usual experimental arrangement is shown in
Fig. 2.1a where the heater at the end of the sample generates the heat
current. Some thermo-electric ratio measurements were done in the early
dilution refrigerator runs. These results can be found in Koshenevisan
4

et al.]3’]4 G was also measured in the strained copper runs on the He

cryostat. These results are given in Appendix A.
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B. Special Problems with Very Low Resistance Samples

1) Contact Resistance

The elimination of contact resistance at all junctions in the SQUID
measuring circuits of Fig. 2.1 is paramount to successful measurements.
Any contact resistance of greater magnitude than the series combination
of the sample and reference would make the dominant contribution to the
Johnson noise given by Eq.(2.2), thus reducing the signal to noise below
its optimum. In addition any such resistance would reduce the current
through the SQUID signal coil per unit voltage induced across the sample
thus reducing the sensitivity of the SQUID.

Niobium titanium superconducting wire with copper-nickel cladding
is very suitable for making junctions with ordinary lead tin solder (or
Rose's or Wood's metal if lower melting point solders are desired).

Both single and multi-filament wires have been used successfully. The
single filament variety has the advantage of being of smaller diameter and
more flexible; it is also easy to etch off the copper-nickel cladding
with nitric acid if one wishes to make pressure contact with a block of
superconductor such as niobium. The disadvantage is that it seems to

be somewhat more difficult to reproducibly achieve true superconducting
contacts with critical currents greater than 50 mA. The multifilament

t in two diameters,

typed used by the author is made by IMI Titanium
0.05 mm and 0.1 mm. The filaments are embedded in a Cu-Ni matrix which,
when dissolved in acid, leaves a bundle of very fine superconducting

wires which are difficult to use in making superconducting pressure contacts.

For soldered contacts however this type of wire was found superior, reliably

+The wire is called Niomax-CN made by IMI Titanium, P.0. Box 216, Kynoch
Works, Witton, Biringham, England B67BA.
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producing junctions with critical currents in excess of 200 mA. The
smaller of the two diameters seemed to produce the most reliable super-
conducting junctions.

To prepare both single and multifilament wires one should strip off
the insulation either by abrasion or with a solvent such as x-var and
immerse the end of the wire in molten lead-tin solder after treating it
with soldering flux. The tip should be held in the molten solder for
about a minute then withdrawn while the solder is cooling to the point
that a heavy layer of solder will coat the wire. When subsequently
soldering these wires to the sample or other places it is important that
the very tip of the wire be fully embedded in solder.

Before actually mounting the sample in the cryostat it is generally
worthwhile to measure the contact resistance of the potential leads in
1iquid helium (or at least set an upper limit on this resistance) by a
four-wire technique as shown in Fig. 2.2. Of course one must use cur-
rents of the same magnitude as will be used in the actual measurements
because larger currents may exceed the critical current of one of the
junctions. This sets a lower limit of about 0.1 micro-ohm on the
measurable contact resistance if one uses an instrument such as the
Keithley 160 nanovoltmeter with 0.01 microvolt sensitivity using a 100 mA
reversible measuring current. When extremely low contact resistances
are needed, if no resistance is detectable by this method, one must
either assume that the true resistance is essentially zero--not too bad
an assumption from the author's experience--or use a more sophisticated
measuring technique. One relatively simple way to make such a measure-
ment which has been used on the lowest resistance copper and silver

samples is to simply connect the potential leads to the signal coil of
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a SQUID in a simple cryostat. Then by sending a constant current
through the sample and measuring the time constant of the SQUID system
output voltage, one can obtain the total resistance by dividing the

self inductance of the SQUID coil by the time constant.

2) Response Time Control with Superconducting Transformers and
Chokes

Another problem associated with measuring resistances below 10'8

ohms is the response time of the SQUID measuring circuit of Fig. 2.1.

This time constant is given by
T =L /Ry (2.8)

where RT is the total circuit resistance due to sample, reference and
contact resistances and LS is the inductance of the SQUID signal coil in
place within the SQUID body. In the measuring systems used the value of
Ls is about 2 uH. The response time for RT = 10'8 ohms would be about
200 seconds if no special measures were taken.

During the measuring process one typically sweeps the currents Ix
and Ir from positive to negative at a rate sufficiently slow that the |
SQUID feedback voltage does not exceed its maximum value of 10 volts.
This in itself would require many minutes. Then one would have to wait
another 9 time constants, about 30 min., before the value of the SQUID
feedback voltage had reached its zero to within the noise level of
roughly 1 mV. Since a single measurement generally requires several

current reversals it is clear that several hours would be required for

a single point. During this time the zero of the SQUID would have
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to undergo no flux jumps. These requirements along with the
nearly geological times necessary to complete an entire run clearly
make such measurements impossible. The obvious solution of increasing
the sample resistance by making longer and thinner samples does not work
because boundary scattering would become a problem--the electron mean
free paths are on the order of 1 mm. The introduction of additional
resistance in the circuit is ruled out because it would increase Johnson
noise and lower sensitivity. The only answer is to reduce the effective
inductance.

The ideal way to lower the inductance is the SQUID circuit would
be to reduce the number of turns on the sensing coil of the SQUID.
Although this would lower the current sensitivity it would lower the
inductance even more because the former goes as N while the latter goes
as Nz. However, this is not very practical in a multipurpose cryostat
such as the dilution refrigerator because once a SQUID is in operating
condition it is very risky to tamper with it. There remain two methods
of lowering the inductance: either put a superconducting choke, Lp, in
parallel with the SQUID sensing coil (Fig. 2.3a) or use a superconduct-
ing transformer (Fig. 2.3b).

The effective inductance of the two parallel inductors in Fig. 2.3a

is simply
L = .__S_L (2.9)

It is easy to show (see Appendix B) the effective inductance of the
superconducting transformer (Fig. 2.1d) is given by
2,2
k L2 ]

L =Ly |1 - 4m————
e 1 [ LS + L2

(2.10)
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where k is the coefficient of coupling for the transformer and is
given by

K = e (2.11)

=

where L] and L2 are the primary and secondary self inductances and M is
their mutual inductance.

We now consider what effect these changes will have on the sensi-
tivity and precision of the measurements. First let us define the true
signal current, IT, as the loop current which would flow if no balancing
potential were being supplied by Rr' This should not be confused with
the net loop current, In’ which actually flows when balancing the SQUID.
In is zero at balance. Although for both methods only a fraction of the
true §igna1 current, IT, passes through the SQUID coil, this alone does
not affect the signal to noise ratio because both signal and noise are
reduced by the séme fraction, provided we are well within the regime
where the primary noise is Johnson noise®® In the regime where intrinsic
device noise is important or if the additional superconducting current
loop picks up noise, there will be a reduction of the signal to noise ‘
ratio. The real problem is due to requiring the time constant to
remain fixed. Previously no one had been forced to fix the time con-
stant. In such cases the maximum precision, i.e. the inverse of the
signal to noise ratio, is independent of sample resistance. This is
easily seen as follows: In the absence of a choke or transformer, the

mean square Johnson noise current is given by

" =-— (2.12)
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This is seen to be independent of the source resistance. The true

signal current is given by

I; = 1 X (2.13)

x
e/

where Rx and Ix are respectively the resistance of the sample and the
current through it and RT is the total circuit resistance, i.e. the sum
of the sample, reference and contact resistances. Keeping in mind the
fact that in these measurements the sample, reference and contact resis-

tance are roughly equivalent, we can write

R

7= AR, 2<a<1l0 (2.14)

The signal to noise current ratio, which defines the absolute limit of

precision, is then given by

I L I
<] >T = kgl' 35' (2.15)
n RMS B

Thus the ultimate precision, independent of the sample resistance, is
limited only by the available measuring current which is about 50 mA for
the current comparator. This gives a signal to noise of about 4x106 at
1 K for LS =2 uH and a = 5. In terms of voltages this result can be
viewed as a consequence of the fact that although the signal voltage
decreases linearly with Rx’ the Johnson noise voltage does also

because it goes as

! |
koTaR kT
= ’ B " x _ B
<V >oms = - \ﬁ-s aR, (2.16)
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In other words, the decrease in the noise bandwidth, (41)'], provides
the necessary compensation to allow the signal to noise ratio to remain
independent of Rx‘ This is no longer the case wﬁen we fix the value of
T to some value Ty» SAY 10 sec. To fix T we must change the effective
inductance of the circuit with each experiment on a sample of different
resistance. Now, we must replace LS by Le = aero in Eq.(2.12) yielding
T fo (2.17)

This has a value of 1.3x106 for T = 10 sec., Rx = 5x10'9

ohms , Ix = 50 mA
and a = 5 at 1 K. Compared with the results of Eq.(2.15) we find the
signal to noise ratio has been reduced by about a factor of 3. Because
of the simultaneous reduction of signal and noise current through the
sensing coil it would not seem that there is any advantage to using a
superconducting transformer rather than a simple shunting inductor in

an attempt to tailor the effective inductance. However, if noise were
being coupled in to the SQUID due to pick-up in the superconducting loop
formed by the two inductors or from the room temperature SQUID elec-
tronics there might be reason to try to maximize the amount of signal
passing through the SQUID coil. While in the simple parallel inductance
circuit of Fig. 2.3a the current, IS, through the SQUID branch is fixed,
the circuit of Fig. 2.3b can be optimized within the limits of practical
transformer design to perform better than the simple parallel inductance.
However, as outlined below, significant advantage may be rather dif-

ficult to achieve because it may require very strong coupling between

the primary and secondary coils.
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The following expression (whose derivation can be found in Appen-
dix B) gives the ratio of the current through the squid coil using a
transformer to that using a superconducting choke, assuming that the
two would yield the same effective inductance and that the transformer
design maximizes its output current for a given coefficient of coupling

k. The minimum criterion for choosing a transformer would be

Is(transformer) ,LS K
=N > 1 (2.18)
Is(choke) Le 14+ m

where Le is the desired effective inductance. At this stage it might

appear that for any sizable ratio of LS to Le the requirements on k are
not too severe. For example Eq.(2.18) can be satisfied by k > 0.6 for
LS/Le = 10. However, the degradation factor k/1+/q:73r increases

rather slowly for k < 0.9 being only 0.63 at k = 0.9. Hence, to actu-
ally make the extra effort of winding and using the transformer worth-
while may require large values of k in turn increasing the effort rquired.
In our example even if k were 0.9 we would only gain a factor of two and

in the limit of perfect coupling only a factor of three. Hence we con-
clude that, unless the need is very great or the ratio of LS/Le is very

large, the simpler choke circuit of Fig. 2.3a is to be preferred.

3) Enhanced Noise Pickup

Finally, a somewhat unexpected problem we had in trying to measure
such lTow resistance was a greatly enhanced susceptibility to noise
pulses from any equipment, particularly current comparator. These
pulses would cause the SQUID zero to shift by an integer number of flux

quanta despite the heavy filtering used on the all input lines. The
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problem was solved by wrapping the samples and the terminal connections
to the SQUID with superconducting foil to shield these regions of rela-
tively large loop area from magnetic flux pulses. The reason for this
enhanced sensitivity is probably due to the fact that as the resistance
in the SQUID circuit goes down it becomes more and more effective in
generating shielding currents to minimize the change in magnetic flux
through the entire circuit from magnetic noise pulses, approaching the
limit of perfect shielding in a loop of zero resistance. The shielding
currents respond almost instantaneously and, passingAthrough the SQUID
coil, cause flux jumps in the SQUID because the slewing rate of the
SQUID feedback circuit is too slow to compensate.

4

C. Design and Construction of a He  Cryostat

A liquid He4 cryostat employing two SQUID measuring systems was
designed and constructed. The basic objective of the design was to
provide a versatile and efficient means to measure nonmagnetic transport
properties in metals and alloys in the temperature range from 1-9 K.

It was constructed to allow two samples to be mounted and measured in

the same run.

1) Mechanical Construction

The room temperature end or head of the cryostat consists of a
brass flange which mates with a brass collar on the top of the liquid
helium dewar. A1l electrical connections to the SQUID's, samples,
thermometers and heaters are made through various electrical connectors
attached to this flange. The Tow temperature end or tail of the cryo-

stat is suspended below this flange by a number of stainless steel
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conduits and pumping tubes. The tail consists of a brass vacuum can
which houses all of the paraphernalia necessary to make the measure-
ments. Figure 2.4 shows the exterior appearance and dimensions of the
cryostat and dewar. The lower portion of the brass can mates with a
brass flange. These are held tightly together, with a lead 0-ring
between them, by twelve brass screws. Steel screws were found unsatis-
factory because they contract less than brass during cooling causing a
loss of the vacuum seal. The inside of the can is tinned to provide a
superconducting shield against external magnetic flux changes which
would affect the SQUIDs. Within the brass can is a copper canister
called the pot into which liquid helium can be admitted via a valve
operated by a shaft from the cryostat head (see Fig. 2.5). The pot is
suspended by a 1/2" stainless steel tube which acts as a vacuum pumping
line and provides thermal isolation. The top surface of the pot has
various holes and protrusions which allow one a variety of ways to
attach samples and thermometers. A 1/2" copper stud has been attached
to the bottom of the pot with cerrolow 1]7* low temperature solder to
allow a Tow field superconducting magnet to be mounted in the eight

inch space below the pot. There is therefore ample space both above and
below the pot for mounting samples and auxillary apparatus.

The pot will hold about 80 cc of 1liquid helium. It is divided by a
diaphragm into an upper region of about 30 cc and a lower region of
about 50 cc. The diaphragm contains a special device which allows the
insertion of a polished orifice to suppress the flow of superfluid He4

film below the A transition. This provision was included to allow

+Cerro Copper and Brass Company, Stanford Works, Rolling Place,
Stanford, Connecticut.
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Fig. 2.4 Semi-schematic drawing of cryostat and dewar assembly.
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achieving the lowest possible temperatures, possibly slightly below 1 K.
Although the polished orifice has not yet been installed, the small

hole presently in the diaphragm probably helped achieve the 1.03 K al-
ready obtained in this cryostat. The pot is soldered with Wood's metal
to a copper bushing on the pumping tube. Protruding from the top center
is a copper post used to thermally lag various wires to the pot. This
post can be pried out of the pot if one wishes to remove the pot.

To prevent the development of vacuum leaks from thermal cycling,
all joints between dissimilar metals are made so that the material which
contracts more during cooling surrounds the lesser contracting material.
Such joints will be under compression when cooled. Thus brass always
surrounds copper and either of these may surround stainless steel.
Joints to stainless steel were made with hard silver solder whenever
possible. Otherwise soft silver solder was used. All stainless tubes
were soldered to bushings both at the head and tail of the cryostat to
provide strength and facilitate repair. In particular, the 1/4" stain-
less tubes which house the miniature coaxial cable going to the SQUIDs
were made to be easily changed because we thought the flexible coax

might have to be replaced with rigid coaxial conductors.

2) SQUIDs and Standard Resistors

The SQUIDs themselves are mounted in copper holders which extend
through the brass flange to become the bushings to Which the 1/4" stain-
less tubes are soldered. These provide the heat sinking of the SQUIDs
and the coaxial r.f. leads to the helium bath (see Fig. 2.6). The two
SQUIDs are shielded from magnetic flux changes inside the vacuum can

and from mutual interaction by a tinned copper box with a partition
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down the middle. The tinned copper 1id to this box is attached with
Cerrolow 117 solder. The box is attached to the underside of the brass
flange with two screws. The standard resistors are also kept within
separate'partitions in this box.

There are two standard resistors made of brass associated with each
SQUID. Those with the left SQUID have values of 8.75x10'7
1.79x1074

8.89x10°8

+0.5% and
+0.1% ohms while those on the right side have values of
+1.5% and 5.27x10°%:0.2%. A1l were measured by a four probe
technique in liquid helium with currents between 1 and 8 A. The exact
ratio between these last two was measured with a SQUID to be 0.017240.
While this is not exactly the ratio obtained from the original values it
differs by only 2% which is consistant with the original error. By

this ratio the lower resistance can be recalibrated against the higher

one to obtain a value of 9.085x10™8

+0.3% ohms.

Because of the way the standard resistors are wired to the SQUIDs
and terminal strips, when the larger valued resistor is desired it is
actually the series combination of the two which is used as the refer-
ence resistor in actual measurements.

The terminal strips just mentioned provide a convenient way to con-
nect samples to the SQUID circuit. They are, in fact, used to make all
connections between wires going to the cryostat head and anything inside
the vacuum can with the exception of a set of four (more could be added)
thermocouple grade chromel wires. These run continuously from the tail
through a feed-through at the head. This allows one to make direct
voltage measurements on high resistance samples with a digital voltmeter

without large thermal e.m.f.s which might be caused by inhomogeneities

in the leads.
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A1l other electrical connections at the cryostat head are made
through a pair of 17 pin hermetically sealed connectors, one for each
"side." One of pins (pin A) is not used. There are filter boxes
available to attach at the cryostat head to reduce electromagnetic pick-
up above 3,000 Hz on all sixteen lines. However, these have generally
not been necessary. The sixteen wires on each side are brought down to
the tail through 1/4" stainless steel conduits which mate with copper
bushings. These bushings protrude through the tail flange into the
vacuum space to provide heat sink posts around which the wires are
wrapped before being soldered to the terminal strip (see Fig. 2.5).

The temperature of the sample can be controlled in two ways. In
the traditional method, for temperatures below 4.2 K, the vapor pressure
of the liquid helium in the pot is regulated. While this method can be
used it is much more cumbersome and less stable than the second method
which involves an arrangement in which the sample is mounted at the end
of a thermal resistance as depicted on the left side of Fig. 2.1b. A
temperature gradient along the thermal resistor produced by a heater
allows one to vary the sample temperature very easily by controlling the
heater current. The pot can be at 4.2 K for temperatures above 4.2 and
it can be pumped to the lowest temperatures by a vacuum pump for lower
temperature measurements. The thermal resistors used were made from
brass cut to about 3/4" long by 1/8" diameter. A heat flux of about

4 mW was sufficient to raise the temperature from 4.2 to 6.2.
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3) Thermometry

The primary method of measuring temperatures is by the use of
germanium resistance thermometers. There are four Cryocal*'CRlOOO
thermometers, one of which (serial number 2844) was originally cali-
brated by Cryocal Inc. between 1.5 and 100 K. Unfortunately, although
they provided some information about the accuracy of their calibrations,
they did not indicate which sources of error are probably systematic and
which are statistical. Treating all errors as though statistical and
including our own errors in measuring the resistances with the prescibed
currents (10 pA above 3 K, 1 uA below 3 K) using digital voltmeters with
1 uV sensitivity the following formula gives a reasonable estimate of
error:

Ar = 0.002 T + 0.001 K (2.19)

where T is the measured temperature. It should be remembered that a
large component of this error is systematic. Thus small temperature
differences can probably be measured to about 0.005 T.

The Cryocal company provided a computer generated table of resis-

tance versus temperature from the fitting equation

N .
_ i
]og]o R = _Z Ai(1og]0T) (2.20)
i=0
where N is that which produces the best fit and the Ai are fitting para-
meters. Because the use of a table during the course of an experiment
is a bit cumbersome, the author programmed an HP67 calculator to calcu-

late the temperatures based on Eq.(2.20). Because the equation is in

1'Cr'yo Cal, Inc., 1371 Avenue "E", Riveria Beach, Florida 33404.
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the inverse form of what usually is desired, i.e. finding T given R,
an iterative Newton Raphson procedure was used to find the solution.
Appendix C contains further details including the actual calculator
program.

The temperature of the pot can also be measured by helium vapor
pressure thermometry. There is a 1/8" stainless steel tube which
terminates inside the pot just below the opening to the pumping tube.
The tube passes up the interior of the pumping tube until it reaches the
vacuum can flange. From there it exits the pumping tube and passes
through the helium bath. It is terminated with a valve atop the head
which can be connected to a manometer. This manometer tube contains a
wire connected to a sealed feedthrough at the head and to a carbon
resistor mounted on the end of the manometer tube inside the pot. The
other end of the resistor is grounded. The purpose of this resistor is
to determine when the pot is full of liquid by registering a change in
resistance caused by the greater rate of Joule heat dissipation due to
liquid rather than gaseous helium. So far it has not been found neces-
sary to use this level detector. Rather, the needle valve is simply

opened for about a minute.

D. Sample Preparation

Our chief goal for much of this work was to prepare samples of
noble metals with purities as high as possible. The reason was first
to reduce the residual resistance Ro so that the small temperature
dependent effects would constitute a larger fraction of the total resis-
tance. Secondly, it was essential to eliminate magnetic impurities,

iron being the most common, so that the Kondo effect would not
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complicate our results. A handy if somewhat imprecise gauge of sample

purity is given by the residual resistance ratio RRR defined to be the

resistance at room temperature divided by the resistance at liquid

helium temperatures. Our goal for silver and copper was an RRR greater

than 10,000, preferably about 20,000. Although difficult, such ratios

have been achieved by others.ls’65
The starting materials are listed in Table 2.1. These materials

were then melted in various types of crucibles by an r.f. induction

furnace and then cast into sample form, cut or otherwise formed

directly from the ingot made in the crucible. The crucible material

which gave the best results was made from pyrolytic graphite. Ordinary

graphite never produced RRR values better than 5,000. Boron nitride

was also disappointing although it was only tried once, on copper.

Alumina was found unsuitable because the copper adhered to its surface.

Both single crystal and large grained polycrystalline samples were

prepared. The only exceptions were several silver samples which were

prepared in quartz tubes. The procedure was to seal silver pellets under

vacuum in a quartz tube of roughly 10 mm diameter which had previously

been fused to a 2 mm ID quartz tube sealed on the opposite end. Then,.

the silver was melted by gas torch. When all the silver was melted, it

was forced into the smaller tube with a single swift shake. The sample was

removed by very carefully slicing the tubing lengthwise on opposite sides

using a diamond saw being careful not to actually cut through to the

silver. Then the tube could easily be split away from the sample.

While this technique produced samples with RRR values of 10,000, the

samples had a number of dimples on their surfaces as well as some

internal voids revealed by careful density measurements.
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Table 2.1

and purity of sample materials

Major impurities

Material Source Purity (in PPM) Physical form

Copper ASARCO 99,999+ Sb=1, Fe<0.5, Mg<1 extruded rod
Si<1, Ag<0.1 or plate
Se<1, S<I

Gold COMINCO  99.9999 Ca<01, Cu<0.5, Fe<0.1 pellets
Mg<0.1, Si<0.1, Ag<0.3

Silver COMINCO  99.9999 Ca<0.1, Cu<0.1, Fe=0.4 pellets

Pb=0.1, Mg<0.1, Si=0.1
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A1l samples were given an annealing treatment in oxygen or air at

a pressure of from 1 to 8x10”%

torr at a temperature 50 to 100 C below
their melting points. The purpose of this treatment was to improve the
RRR value and eliminate the magnetic effects of iron impurity by forming

66). There is evidence at least

iron oxide (see the review by Fickett
in copper that besides being oxidized the iron oxide tends to aggregate
to form small precipitate particles which would contribute much less

to the residual resistance than individual iron oxide molecules.67
Presumably due to this mechanism as well as the reduction of lattice
defects and grain boundaries we found our RRR values to increase by
factors of two to ten. It is not clear what effects this treatment
might have on other magnetic impurities such as manganese although

nickel and cobalt probably are oxidized 1ike iron. Table 2.2 contains
information on the preparation of various samples.

A way was needed to attach current and potential leads to avoid
spurious temperature and current dependent effects. We found it neces-
sary to attach our current and potential leads to arms of the sample
material which protruded at least five times the arm thickness from the
actual region to be measured. Sometimes these arms were spot welded on.
In other cases the sample was cut or cast into a form having suitable
arms. In the case of spot welded arms (only used for connection to
potential leads) the arms were made from the same material as the sample
rolled or drawn to a smaller size and annealed after spot welding.
Because copper, silver and gold are easily soldered with lead tin solders
it was then easy to solder the CuNi clad NbTi superconducting wires to

the arms.
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Table 2.2

Sample Information

Purity or
Sample  Composition  Crucible Anneal’ RRR Geom. #
AgA 99.9999 quartz 0.5u 0, 850C 3d. 4700 a
AgB 99.9999 quartz 0.54 0, 850C 3d 8000 a
AgC2 99.9999 quartz 0.5u 02 850C 3d 11000 a
Agc3 from Agc2 quartz reannealed in 02 5600 a
AgD from AgA quartz reannealed in 02 7100 a
Ao 99.9999 pyrolytic 0.5s 0, 900C 2d 20000 c
graphite
Aul 99.9999 graphite 1 atm air 950C 2d 5600 a
Au3 99.9999 graphite -1 atm 0, 950C 2d 2800 a
Cul none 0.5u 0z 960C 3d 2600 a*
Cus none 0.5u 02 960C 3d 5420 ar
Cub none 0.5u 0z 960C 3d 4190 ax®
Culo none 0.5u air 960C 3d 5300 b
Cull graphite Tu afr 950C, 1.5d 4300 a
Cull pyrolytic 0.8u air 1000C, 3d 13000 c
graphite

CuAgl 0.1 at % Ag Tu air 950C, 3d = ==--- a
CuAg2 0.025at % Ag 6u air 950C, 1d R a

+ annealing treatment 1ists pressure in microns or atmospheres

++ see Figure 2.7



99

During the process of cutting and shaping the samples their sur-
faces would become contaminated. For example spark cutting, which is
carried on in a kerosine bath, always left the surface dark with carbon
and hydrocarbon deposits. Also one had to thoroughly clean the surface
with acetone to remove the graphite impregnated plastic cement used to
mount the sample to the spark cutter. Samples which were machined
probably had iron contamination on the surface. Removal of these and
other contaminants prior to annealing was accomplished by etching the
surface.

Copper and silver can both be etched with nitric acid. Another
excellent etch for silver is prepared by mixing 1:1 concentrated
ammonium hydroxide with concentrated hydrogen peroxide. While many
surface impurities may be removed from gold by nitric acid alone, aqua
regia which actually dissolves some of the gold is probably a better
choice. Before using acid etches, any o0il residues were removed with
detergent or solvent. After etching the samples were thoroughly washed
in doubly distilled water after which they were usually rinsed in
ethanol to speed drying.

The quartz tubes in which the samples were annealed were also
thoroughly cleaned with nitric acid, doubly distilled water and occa-
sionally with hydrofluoric acid to remove residues which seemed to be
baked into the inner surface of the tube. Care was also taken to never
use the same tube with different materials.

Figure 2.7 shows some of the sample geometries used and referred
to in Table 2.2. The tuning fork geometry was used to reduce thermo-
electric noise which might be generated by heat pulses passing along

the length of the specimen due to small temperature fluctuations in the
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i

(a) (b) (c)

Fig. 2.7 Various sample geometries: (a) linear geometry, circular
cross section with spot welded arms; (b) linear geometry,
rectangular cross section with milled arms; (c) tuning
fork geometry, semi-circular cross section cuts made with
spark cutter from cylindrical ingot.



101

cryostat. In all geometries, but especially the tuning fork geometry, the
easiest way to measure the effective geometrical factor was to measure
the room temperature resistance and divide by published values of the
room temperature resistivity. In samples of uniform cross section and
simple linear geometry actual measurements were carried out and found
to agree to within a few percent--consistent with the estimated error.
Although the accuracy of our resistivity measurements was thus 1limited
to several percent, this did not compromise the validity of our high
precision results since we were concerned with the precise form of the
temperature dependence and not with an absolute measure of the
resistivity itself.

An attempt was made to purify copper by electrolytic techniques.
Pure copper was dissolved in nitric acid. The solution was then used as
an electrolyte in an electrochemical deposition of Cu from a very pure
copper anode to a very pure, thin copper cathode. The deposited
material was very dark and full of coral like modules and did not appear
to be entirely metalic. A solution of copper sulphate with an excess of
sulfuric acid was also tried. Though it produced much more uniform
copper on the cathode, the results were disappointing in that after
annealing in oxygen, samples produced from this copper had low RRR values.

Further attempts at this technique were abandoned.



CHAPTER III
RESULTS

Qur study of the noble metals' resistivity was originally motivated
by a desire to unambiguously observe the electron-electron T2 term at
temperatures only accessible in the dilution refrigerator. However, the

discovery of the strict T4 dependence over a significant temperature

range for all three metalsm’14

and the initially puzzling behavior of

its coefﬁ'cient]3 lead to more detailed investigations of this behavior

in Cu and Cu alloyed with small amounts of Ag. Believing this T4 behavior
was due to phonon scattering, we set out to systematically study the
effects of dislocations and impurities because we suspected they were
influencing the magnitude of its coefficient B. Because ultra-low tem-
peratures were not required, these measurements were carried out in a
cryostat of the author's design as described in Chapter 2.

In what follows, we shall first describe the results of the purely
empirical study of the sample dependence of B and then move on to an
analysis of the data in terms of the theory of Bergman et a1.’ (already
discussed in Chapter 1) which appeared soon after the completion of our
study. Because their theory includes a significant electron-electron
contribution we shall be lead finally to a consideration of this term
and our attempts to complete our original goal on the dilution

refrigerator.

102
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A) A Study of the Sample Dependence of BT4

13,14 hereafter

In the original publications of Koshnevisan et al.,
referred to collectively as K, we established to high precision the

validity of the empirical fit

4

p=p,* BT (3.1)

where Po is also a variable parameter and thus not exactly the residual
resistivity. This fit is valid for temperatures roughly within the fol-
lowing ranges: 2<T<7.5 for Ag; 1.5<T<7.1 K for Au; 2.5<T7<7.5K
for Cu. The power of four was found to be correct to within +0.02 and
-0.11 for all samples of all three metals when the best single power
fits were obtained on the computer. Two examples from K. of the fidelity
of such fits are shown in Fig. 3.1. Thus it is clear that one could
obtain meaningful values of B for comparison if a series of samples were
fit to Eq.(3.1). This comparison is motivated by considering the sample
dependence of B for the same metal shown in Tables 1.1, 1.2 and 1.3 for
samples of K. and Barnard and Caplin, hereafter known as B.C.

Copper was chosen to be the test material for the study of the B
sample dependence. The preparation of the pure Cu, samples Cu 10 and
Cu 11, and the dilute Cu 0.1 at.% Ag and 0.025 at.% Ag alloys, called
CuAg 1 and CuAg 2 respectively, is detailed in Chapter 2. These samples
were initially measured in the annealed state and then repeatedly in
increasing states of strain. After each straining (which was done by
simple stretching except in Cu 10) the geometrical factor was redeter-
mined with an overall accuracy of better than 2%. Most runs were made
using the current comparator described in Chapter 2 but several were done

with less precise current sources. Due to this and other experimental
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variables, the data do not all have the same precision. However,

Fig. 3.2 shows the T4 plots of data from one of the least as well as one
of the most precise runs to show that B was a well defined quantity in
each case. This figure displays a pure and an impure sample each in a
strained and unstrained state to show how the slopes of the graphs, B,
vary with the introduction of impurities and dislocations. For consis-
tency in comparing B from the various runs, the fit to Eq.(3.1) was made
over roughly the same range of T4 for all runs even though some runs were
made to higher and/or lower temperatures than the fitting range of

4 and fit with-

3<T<7.2K. The data were taken in even intervals in T
out weights by least squares to Eq.(3.1). The results of these measure-
ments are given in Fig. 3.3 which shows the values of B vs. Po for the
annealed and the strained samples. To understand this figure it is
helpful to identify several special values of o and B. We define Pa

and Ba to be the values of Po and B pertaining to the annealed state and
shown on the figure by the open symbols. The solid symbols refer to
samples in various states of strain. The amount of strain is given in
percent next to each point and is determined by summing the values
(Lj+]-Lj)/Lj from each successive strain, where the Lj are the lengths

of the samples after each strain. Because the values of B seem to be
leveling off for large strains it is helpful to estimate a limiting

value Bz for each sample which is assumed to be approached asymptotically.
As expected, the values of Ba exhibit a behavior similar to a Caplin-
Rizzuto plot as shown by the straight line of large dashes. This
behavior is generally understood in terms of the anisotropy model as
discussed previously. A more striking feature of Fig. 3.3 is the

behavior of B vs. 0 for the strained samples. The decrease in B due to
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straining is in keeping with the findings of Rowlands and Woods (1978)
for several other metals (Al, Pd, and Ag at higher temperatures). Again,
this is explicable in terms of the anisotropy model.

The initial rapid drop in B due to the introduction of dislocations
provides evidence of a rather large effect on the distribution function.
This implies that by introducing dislocations one produces a large
increase in the ratio of small to large angle scattering which, we have
seen in Chapter 1, produces a much smaller relaxation time on the necks
compared to the bellies. The saturation of B for larger strains indicates
the distribution function is no longer changing. However, it is uncer-
tain how closely the dislocation dominated distribution function mimics
the ideal phonon dominated distribution function in a perfect pure metal.
The line of short dashes going through the points (pa’Bz) indicated by
the set of small coordinate axes has a small slope implying that the
dislocation dominated distribution function is only weakly dependent on
initial impurity.

The small sets of axes suggest an alternative way to plot the data.
It seems reasonable that the more impurity a sample has initially, the
more dislocations must be added to effect the same change in the electron
distribution function. Thus, we might define a more meaningful parameter
X = po/pa which scales the residual resistivity obtained after adding
dislocations by the initial resistivity. We can also define a parameter
ys= B'leBa'Bn which essentially shifts the zero of B to Ba and scales
it by the total change in B. When this is done one finds that the data

for the two alloys fit a simple equation with only one free parameter

y=x" (3.2)



109

For both alloys v = 4.020.1 produced the best fit. The degree of fit
can be seen in Fig. 3.3 where the solid lines were drawn according to
this equation.

At this stage it is unclear why the value of v should be the same
for both samples. Nor do we understand why it has the value four.
However, the existence of such a simple function is at least intriguing.

Unfortunately the pure samples Cu 10 and Cu 11 were given initial
strains which were too large to allow this equation to be checked for
them. However, the values of Ba and Bz are known so the dotted curves
were drawn according to Eq.(3.2), assuming v = 4.

The sample dependence of the values of B for Cu and Au published in
K. and Ag published in B.C. and K. are now explicable from Fig. 3.3 on
an empirical level. Figure 3.4 shows published results for Au and Ag.
The results for Au include some unpublished values (open circles). These
samples had significant Kondo minima which adds some uncertainty to these
values. In addition, they were polycrystalline and of much smaller dia-
meter. Therefore they probably had been given more unintentional strain
during handling especially since they were measured before the effects
of strain on p(T) were appreciated. Nevertheless, as a group they shaw
the same upward trend with Po First we notice the general upward trend
for increased impurity level (i.e. increased po). However, the Ag data
of K. (dots) and B.C. (triangles) show marked deviations from this
general trend. Due to the strong sensitivity of B to small amounts of
strain, it seems likely that the very pure samples of K. and B.C. all
had significant but variable ratios of pd/pi even in samples with nearly
identical values of Po = Pyq + Py For example, one sample of B.C. was

measured a second time after having its potential leads reattached.



*6y 404 up|de) pue paeudeg j0 (v) eiep paysiiqnd .E:.. n) pug by 404
ﬁ.mp._u 19 uestAauysoy jo ejep (o) paystigndun pue (e) paystiqnd 404 "d ‘SA g
(wopu) %

] 0°¢ S0 20

p¢ by

T T T T T T T T T

110

I Ll g

J
(, wows) 8



111

When measured again, even though its Py had increased slightly (2.7%) its
value of B decreased noticeably (15%). On the basis of our results it
seems highly probable that it was strained slightly in the handling
between runs. The three samples of B.C. having nearly the same Po would
seem to lie very well on the steep portion of curves similar to those for
strained Cu in Fig. 3.3. The purer samples of K, on the other hand, show
a more or less constant B and would seem to 1ie well on the asymptotic
tail of such a curve. This is reasonable because the purer the sample
the greater the relative contribution of the unavoidable residual dis-
locations to the total Po Of course, quite apart from their effects

on the magnitude of phonon scattering, the introduction of dis]ocgtions
increases the total residual resistivity. The variation of fo with
strain is shown in Fig. 3.5. It is seen to increase more rapidly with
samples of lower purity. To the maximum strain introduced each curve

is roughly linear. These increases in slope with impurity content may
not be related to the anisotropy model. If the cores make the major con-
tribution to Py it is not obvious why Pq should increase more rapidly with
strain in impure samples. If the strain fields make a major contribution
one might expect this would only occur when the e.d.f. is impurity domi-
nated because only then is small angle scattering important. In that
case, for the larger strains, Fig. 3.3 implies the e.d.f. is already
dominated on the necks by the dislocations so as to reduce the effects

of small angle scattering. Thus, one would expect to see a decrease in
slope in the Py Vs- strain graphs corresponding to a reduction of the
strain field contribution of Pq- Since no sign of saturation occurs there
seems to be support for the calculations of Lukhvich and Karo]ick68 which

suggest the major contribution to P, comes from the strongly scattering



112

*(A) | B6yR) pue () g BYA) (0) L ND 404 uLea3s % "SA °0 g'g ‘Biy

uLeays g
mp wp vl ¢l 0l

8 o v 2z 0
-ttt rrrr

(movu)od



113

core regions of the dislocations. The problem of accounting for the
differing slopes remains. Possibly the impurities cause a larger number
of dislocations to form per unit strain by preventing dislocations from

moving out of the system.

B. Analysis in Terms of the Theory of Bergmann, Kaveh and Wiser

1) Reanalysis of Published Data

Just when the results of the preceding section were ready for pub-
lication Bergmann et al.3 published a theoretical justification for the
fourth power behavior. From now on we call this theory B.K.W. Recall
from Chapter 1 that it is based on a fortuitous combination of T2 e-e

2

scattering and T"a'5 phonon scattering. The inclusion of a T~ term was

attempted by both B.C. and K. but always in addition to a T4 term. A
fit to the form suggested by Bergmann et al. Eq.(1.63) was never attempted

nor was its generalization

2 N

P =0, % AT™ + CT (3.3)

A fit with two variable exponents was attempted but not published in K.
because it did not give a better fit than a single exponent. In light
of B.K.W. it seemed appropriate to reanalyze some of the data we pub-
lished previously in K. to see if we could fit the entire temperature
range rather than dividing it into two regimes as had been done.

We digress briefly to describe some aspects of the curve fitting
program used in this analysis. The data were fit using a general non-
linear curve fitting program called KINFIT 4 developed by J. L. Dye and
V. A. Nicely in the M.S.U. department of chemistry. This program weights

each data point in the fit according to the user's estimates of error in
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both the independent and the dependent variable. The weighting takes
into account the sensitivity of the user defined residual function (whose
weighted and summed squares are to be minimized) to the estimated error
of each variable at each point. This function F has a value F1 at the

1th point which, in this case, is just the difference of the measured

resistivity and the fitting curve at the ith temperature. The weighting

of each point is given by

- 2
where
2 2
2 _ [aF] 2 [aF] 2
o = [3=| of + |&=| o (3.5)
Fi X j X5 oy j yi

where X and 02 are the independent variable and its variance at the

X

i
ith point and similarly for the dependent variable y. The program uses

an iteration procedure to find the best fit. During each iteration, the
computer uses the most recent form of the fitting function to calculate
the next set of weights wi. This program was superior to that used in
K. in that it supplied more information. Besides the "best fit" para-
meters and their standard deviations, it provided the following infor-.

mation: The sum of the residuals squared, the multiple correlation

coefficient, Ri’ and a matrix of pairwise partial correlation coefficients,

pijlk . Ri is a measure of the total correlation of a given parameter,

that is, to what extent variations of this parameter can be compensated
by the simultaneous variations of the other parameters and still main-
tain a good fit within the scatter of the data. The pijlk are a measure

h

of how strongly the it and jth parameters are correlated such that one

can compensate for variations in the other while the other parameters
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k... are held constant. The program also supplies a complete list and
plot of the residuals at each point. These are useful in detecting
systematic deviations of the data from the curve.

‘ The standard deviations of the parameters (called the marginal
standard deviations) include the correlation effects so they represent
the span of values a parameter can take while allowing the others to
compensate so as to retain the same goodness of fit. Thus, even though
the parameters in these fits show sizeable correlation, the data are
sufficiently precise that the standard deviations remain small allowing
us to be confident regarding the validity of the fit. Of course, large
standard deviations coupled with large correlations would make the
result meaningless. It should be no surprise that the highest pairwise
correlations between parameters in an equation like (3.3) are the vari-
able exponent and its coefficient. If o is allowed to vary, it generally
shows the least correlation with other parameters.

The data were fit (where applicable) to the following equations:

o=op)+ BT + 6 (3.6)

B and § adjustable

o =pl+ B'TN + 6 (3.7)

B', N, and & adjustable

2, 8.5,

pé + AT™ + CT ™ S (3.8)

p
A, C, and § adjustable

o= ol + AT+ oV 4+ s (3.9)

A', C', N and § adjustable
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In these equations we have written the true residual resistivity
Po = pé + 6. For 06 we use the resistivity measured at 40 mK for the
unstrained pure metals. We then expect the adjustable parameter § to be
less than the experimental error in determining 96' For each of the fits

to Eqs.(3.6) to (3.9), the quantity S defined by

2

S™ = Sum of residuals squared/number of degrees of freedom

was calculated to give a measure of the goodness of fit. Note that in
their original publication Khoshnevisan et a1.13’]4 performed a variety
of analyses but always kept N = 4. Equations (3.8) and (3.9), therefore,
represent analyses not previously presented. However, even Egs.(3.6) and
(3.7) represent new fits because they are now being used over the entire
temperature range.

Of the pure metal samples studied in K. we choose the following for
further analysis. Au 3 is chosen because Fig. 1 of Khoshnevisan et a1.14
indicates that its temperature dependence can be represented to a very
good approximation by a single power law from 2 to 7°. We have not
included the results of Au 1 because they show a resistance minimum at
~0.3 K (note that reference 11 is in error in that the Kondo minimum
ascribed to Au 3 actually applies to Au 1) and we are aware from other
unpublished data on Au we have measured that the effect of the Kondo
term extends to temperatures ~5 times the Kondo temperature. For the
same reason we choose Cu 6 rather than Cu 1. From Khoshnevisan et a1.13
we choose AgC3 which represents our best low temperature data, but which
unfortunately extends only up to 4.16 K. We also analyze AgD with data
ranging from 30 mK to 6.17 K. The results for the unstrained pure metal

samples Cu 6, Au 3, AgC3, and AgD are given in Table 3.1. The §'s
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marked with an asterisk represent values which lie outside the error

bars for Py

only for fits to Eqs.(3.8) and (3.9). For these same samples, S is

For Cu 6, AgC3 and AgD satisfactory values of § occur but

reduced significantly in going from fits to Eqs.(3.6) to (3.9). For Au 3
there is not much to choose between Eqs.(3.8) and (3.9) because for this
sample N =~ 4, and any attempt to raise it to 4.5 (Eq.(3.8)) for example
results in a bad fit. None of the Au 3 fits give acceptable & values.
We believe this is due to some remnant Kondo resistance in this sample--
despite the fact that there is no minimum.

The prime significance of Table 3.1 is to compare the fits to the
various equations. It is becoming very clear that the constants A, A',
and C, C' are sample and history dependent, and that one should not put
too much faith in the individual values. For example, when we come to
study the strained samples it will become evident that A' and C' are
strongly strain dependent, and very careful experiments on well char-
acterized samples are still very necessary to assign precise values of
A' and C' to these materials. However we believe the trends are signi-
ficant. As we go from Cu to Ag to Au, A and B both increase. B in
particular is much larger for Au than for Cu and Ag, and all the analysis
bear out that N is very close to four for Au.

The analyses in terms of Eq.(3.9) for Cu and Ag clearly show this
to give the best fits. S is appreciably smaller and the &§'s are accept-

able.

2) Analysis of New Data for Strained Cu
We now present our attempts to fit our strained Cu data to the less

empirical forms--especially Eq.(3.9). The results for a typical sample
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Cu 11a are shown in Table 3.2. For this particular sample,
2.1 < T<6.91 K and pé = 0.392769+0.000002 nQcm. § alters the
fifth digit--a not unreasonable but quite unverifiable amount. Not sur-
prisingly, the goodness of fit parameter S becomes smaller as the number
of adjustable parameters increases, but for a constant number of para-
meters as in Eqs.(3.7) and (3.8) there is a significantly better fit
when the AT2 term is introduced, and this is significantly improved
again by letting N be an adjustable parameter in Eq.(3.9).

The results for another sample CuAgZu are shown in Table 3.3 for
the two best fitting equations. This sample had data in the range
1.5 K< T<7.96 K. This allowed us to test the effects of cutting off
the points at low temperatures where some of the other samples were not
measured. The effects of cutting off the lowest six points (all points
below 3.7K) of the total 26 points for equation 9 are seen to be notice-
able but not severe. The change in § is the largest relative change
but the changes in the other three parameters of interest are 6% or
less. The effect on A of Eq.(3.8) was large but this equation was not
the best fit. The effect of dropping the highest six points in Eq.(3.9)
(T >7.0K) was of roughly the same magnitude except, of course, in &
which changed very little due to the presence of the low temperature
points. The residual resistivity can be eliminated all together if
the temperature derivative is fit. To test the results of such a fit
the data were differentiated by simply taking differences between
successive points. This process tends to increase the scatter so the
error estimates were increased appropriately. The results of these fits
to the derivatives of Eqs.(3.8) and (3.9) yielded the values in

Table 3.3 labeled as 8-d and 9-d. Each of these cases was also fit
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Table 3.2

Typical fits to various equations for Cu 1la

Equation S A, A' 8, B' c, C' N §
(10-%aem) (107 %aem k) (107" 5aem k™N) (107 5aem kM) (10" %aem)
3.66*

36 2.5 3.75 + .03 -5.84 + .72

3.7 1.2 5.06 + .22 3.83 -8.28 + .52
+.025

3.8 .49 3.35 + .05 1.17 + .01 -1.85 + .03

3.9 M 2,76+ .19 1.62 + .16 4.35  -1.66 + .01
+.05

* Slope of o vs. T4
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Table 3.3
Fitting parameters for Cul\g2 u (po = 3.49534 nqcm)

Equation S A, A’ c, C' N’ § Range
(facm)  (facmk™2)  (facmk™) (facm)

3.8 18 3.2+ .9 1.009 + .009 1+ 7 1.5<T<7.9
3.8 - 26.5 +1.2 1.077 + .007 94 +17 3.7 <T<1.9
3.&d -- 34.5+2.0 1.014 + .015 1.5 <T <7.9%
3.8d - 29.3+2.6 1.049 + .017 3.7<T<7.9
3.9 7.2 4.5+ .9 480+ .033 4.84+ .03 -10.7+ .4 1.5<T <7.9
3.9 43.3+3.2 .5144+ .070 4.82+ .06 -6.3+3.0 3.7<T<7.9
3.9 45,4 +1.3 536+ .059 4.79+ .05 -10.3+ .5 1.5<T<7.0
3.9d 47.5 + 3.0  .497 + .077 4.82 + .08 1.5 <T <7.96
3.9d 47.6 + 7.2 481 + .14 4.82 + .14 3.7 <T<7.96
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with and without the lowest six points. Again the values of the para-
meters A', C' and N agree quite well with the fits which included the
residual resistivity adjustment term §.

In Table 3.4 we show the results for several samples, for fits to
Eqs.(3.8) and (3.9). In terms of Eq.(3.8) B.K.W. would say that A should
increase and C decrease as the dislocation content or strain is increased.
We observe, however, that with one or two exceptions both A and C de-
crease with increasing strain. However, this is probably an artifact
of the fact that 4.5 is not the correct exponent for the phonon term.
This is shown by the increase in N with strain in Eq.(3.9) which gives
a much better fit. Thus, the fitting program must compensate for the
incorrect exponent by decreasing A in Eq.(3.8). We might add that B.K.W.
suggest that 4.5 is only an approximate value obtained from a dirty limit
calculation without dislocations. We see that the exponent is actually
about 4.3 for all three annealed samples. The analysis using Eq.(3.9)
gives A' and N which increase with strain and C' which decreases. But
now it is not sufficient to consider C' alone since N is also varying.

We therefore consider what happens to C'TN at a constant temperature, as
the strain is increased. The general trend in C' is to decrease as
strain increases, where as N increases. These two observations mean that

N

at 1 KC'T will exactly follow C'; for T < 1 K C'TN will decrease with

strain at a faster rate; for T > 1 K, there will be some T at which C'TN
will increase with strain. This comes out to be ~36 K for sample CuAg la.
However, at such a temperature we have no reason to believe N is the same.

For illustration we give C'SN in Table 3.4. Again with a minor exception

it decreases with strain as. predicted.
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The overall conclusion is that analyses according to Eq.(3.9) give
a superior fit to the data and the results from it are consistent with
Kaveh and Wiser's predictions. The other point of some significance is
that N - 5 as the strain increases. As discussed in Chapter 1, this may
well be expected because the e.d.f. is dominated by dislocation scattering
on the necks and thus becomes highly anisotropic, resulting in a decrease
in the importance of the neck contribution to the phonon resistivity.
Thus, the spherical bellies now determine the temperature dependence

5

which is expected to obey the Bloch T~ law.

C. Electron-Electron Scattering

The superior fits to the data obtained by adding a T2 term as out-
lined above make it now possible to extract meaningful values of the T2
coefficient and, assuming the T2 term to be more than just a term in a
polynomial fit, identify this term with the long sought electron-electron
scattering contribution to the resistivity. This identification is

given some support by the fact that the coefficients agree rather well
with their predicted magnitudes. This is seen by comparing Table 1.4
with the values of A' in Tables 3.1 and 3.4.

The average values of A' show only about a factor of two variation
among the three noble metals whereas the phonon resistivity coefficients
show very different magnitudes getting progressively larger as their
atomic mass increases. This is consistent with the fact that the usual
expressions for electron-phonon resistivity at low temperatures contain
(T/eD)5 Js(w) where 8 is the Debye temperature and Js(w) = 124.4 is
the low temperature limit of the Js Debye integral. The vaules of C

in the given units for Cu 6, AgC3 and Au 3 respectively are roughly
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0.91, 5.7 and 16.3. The values of eD in order are 315 K, 215 K and
170 K thus the values of ceg in appropriate units are 2.8, 2.6 and 2.3--

all roughly the same magnitude. The e-e term on the other hand is roughly

5/3

proportional to n~ where n is the electron density. This comes from

the usual formulas for the e-e resistivity which contain a factor (nEF)’]

2/3).

where EF is the Fermi energy (EF <N The values of n for Cu, Ag

-3).

and Au respectively are 8.47, 5.86 and 5.9 (1022 cm We find the e-e

coefficients A' for the same three samples to be roughly 27, 44 and 52

5/3

in the appropriate units. We find the magnitudes of A'n to be 9.5,

8.4 and 10 which, again, are seen to be about the same, demonstrating

the rough validity of the ns/3

scaling factor.
We must consider what factors may influence the coefficient A'.

That is, although it seems reasonable to say

P(T) = pge(T) + 0p(T) | (3.10)

We must exercise a bit of care in making an exact identification of Pee

with A'T2 and of pp(T) with C'TN.. A' will exhibit some variation if

the other terms in the fit are varied due to a certain amount of cor-
relation between the terms. This was seen to cause the different
responses of A and A' to strain already discussed. By allowing N to
be a variable parameter we feel that the term C'TN provides a much
better representation of the phonon term pp(T). To the extent that

clTN 2

completely represents pp(T) we can probably be assured that A'T
completely represents pee(T). However, it is almost certain that pp(T)
is not exactly given by C'TN over the entire temperature range. Thus,
phonon scattering may have some small effect on the value of A'. Com-

parison of the value A' = 26.8 (fQcm K’z) for Cu 6 with the value from
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the low temperature data of K. is instructive. That value of 34.8

(fQcm K'N) was obtained for a single power fit to data from 0.064 to

2.15 K with an exponent of 2.03. It is likely that this value is higher

because the fit also included a small contribution from pp(T) at the

upper part of the range. This is given support if we consider that the

C‘TN term for Cu 6 has a value of 24.3 fQcm at 2 K which is non-negligible

compared with the value of 107.2 fQcm for the A'T2 term. In addition, it

seems clear on the basis of our evidence and the predictions of B.K.W.

that there is no unique value for the magnitude of Pee since it seems

to depend on the relative amounts of dislocation and impurity scattering.
Having said this, it remains desirable to try to eliminate any

significant phonon contribution by going to the lowest temperatures with

high precision. The experimental methods and difficulties of such

measurements were outlined in Chapter 2 for high purity samples of Ag

and Cu having RRR values of ~20,000 and ~13,000 respectively. We will

call these Ag20 and Cu]3. Figure 3.6 shows the results of these measure-

ments for A920' The solid curve with the solid data points from the

second run on Ag20 (Ag-run 2) was determined by the differential method

previously described and is, therefore, given by

1 dp (3.11)

fo dT

The dashed curve is the integral of the solid curve and is proportional
to p(T). The actual values of p(T) can be obtained by multiplying the

n QcmK. It is obvious that if we

vertical scale with units by 1.5x10°
were in a pure PPy = AT2 regime the solid curve should be a straight
line through the origin. It is also obvious that this is not the case.

The strange behavior at the lowest temperatures (which we will briefly
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consider seperately) destroys any hope of seeing a straight line through
the origin below 0.5 K. Above this temperature the resistivity is
obviously increasing more rapidly than TZ. If we go back to our analysis
of the Ag samples of K., say Agc3, we find the ratio pp/pee = 0.14 at 1 K.
Suppose we require pp/pee < 5%, then we would be restricted to tempera-
tures below 0.65 K. For comparison we have plotted the derivative of the
Eq.(3.9) fit to the Agc3 data which has been divided by the Po of Ag20
for scaling purposes. At our present level of ~1 ppm precision for such

2 coefficient to

samples it appears it would be possible to obtain the T
better than 10% from measurements below ~0.6 K if there were no peculiar
behavior in this region. It is also clear why the fits to the less
precise Ag data published in K. below 1.5 K yielded exponents around

2.5 rather than 2.

Copper provides better hope of isolating the true T2 term because
it has a smaller phonon term at temperatures below 1 K. Indeed Cu]3 has
provided the best evidence of an isolated T2 term in the noble metals.
Figure 3.7 shows the second and probably best run of this sample (Cu--
run 2) when superconducting shields were placed around the sample,
reference and solder terminals as described in Chapter 2. The graph
shows a rather good straight line fit to about 1.1 K. Taking figures
from Table 3.1 for Cu 6 we see that at 1 K we might expect the phonon
contribution to be ~4%. However, because of the extreme purity of this
sample it is likely that the phonon term is a bit smaller due to the
effects of residual dislocations than in the less pure Cu 6. The slope

of this curve is just 2Ap;] where A is the T2

-14 2

coefficient yielding a

value of 4.8x10 Qcm K¢ for A, with an estimated ~10% error due to

uncertainties in Po These uncertanties arise because in the differential
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method of measurement o is not determined and, due to the extremely low
resistance of the sample, the determination of fo for the RRR measurement
by the method described in Chapter 2 is not very precise. Comparison of
this value with the values of A' for strained samples would indicate
support for the assumption of a significant dislocation component to fo
since only the strained samples had values as large as this. To be fair,
however, we must mention the fact that the straight line does not inter-
cept the origin as it should for a pure T2 resisitivity. Although it
comes near the origin one cannot force it through the origin and yet
maintain a good fit. This problem is probably related to the apparent

negative values of dp/dT at the very lowest temperatures.

D. Anomalous Behavior at Ultra-low Temperatures

Due to the very peculiar and unexpected behavior of the ultra-pure
Ag20 sample below 0.6 K when it was run the first time (Ag--run 1) we
suspected possible experimental problems because we were using a new
sample holder. These data are shown by the open circles in Fig. 3.6.
During this run Cu13 was used as a reference but not measured itself.
During Ag--run 2 we qualitatively reproduced the results of the first .run
even though we had improved the sample holder. The points from Ag--run 1
are fewer in number and slightly less precise especially above 0.5 K
due to problems with temperature control. Nevertheless, they seemed
to exhibit differences from the data of Ag--run 2 beyond their error.
(The degree of reproducibility below 0.5 K is indicated by the two points
at about 0.22 K.) The two most marked differences are the apparently
greater height of the peak at ~0.17 K and the small negative values

around 0.5 K. If these negative values are real, the actual resistivity
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for Ag-run 1 would have a slight resistance minimum. The existence of
the peak was again verified by taking several points (not shown) in the
vicinity of the peak during the second run on Cu13 (Cu-run 2)--the run
using superconducting shields. The results of our first run on Cu]3 are
even more strange at lowest temperatures (see Fig. 3.8). Cu-run 1 was
made during Ag-run 2 where, after measuring Ag20 using Cu.|3 as a refer-
ence, the roles were reversed and Cu]3 was measured with Ag20 as reference.
Although the set-up was optimized for measuring the A920 this was more a
matter of convenience and we do not feel it was detrimental to the
results. The negative and positive values shown below 0.2 K were checked
on several successive days of the run and each time the behavior was the
same. Although the errors are rather large due to the necessity of
making small temperature differentials at such low temperatures, there
seems to be no doubt that on cooling below 0.2 K the apparent values of
dp/dT swing rather sharply upward and then abruptly go negative. The
transition occurs between 35 and 28 mK but we have no values within this
range during this run. As seen in Fig. 3.7 when measured on a second

run (Cu-run 2) this sample did not show the same positive peak before
going negative but seems to make a smooth transition to negative values
below ~70 mK. Unfortunately there are not many points in this region.
The first negative point occurs at ~40 mK. At this temperature the
values were positive on the previous run. In Cu-run 2 the Cu]3 and

Ag20 samples had been physically interchanged so that Cu13 used a dif-
ferent thermometer than Cu-run 1. Both had been recently calibrated and
would not be expected to differ by more than 1 or 2 mK. Another possible
source of error is that if dp/dT is actually varying as rapidly indicated

in Fig. 3.8 then the use of finite differentials could cause appreciable
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error. However, the failure to obtain similar qualitative features, save
the fact that dp/dT ultimately goes negative, makes it impossible to say
more at this stage. We have been unable to ascribe these differences to
anything associated with the fact that the samples had been interchanged.
In both positions there did not seem to be any possible thermal path
through the samples to cause thermal electric problems. The only thermal
path was through the potential and current leads whose thermal conducti-
vity is extremely small. However at this point we cannot be completely
confident this low temperature behavior is real in the Cu]3 sample. In
the A920 sample, on the other hand, we have greater confidence that the
peak in dp/dT is real. Up till now no one has so closely scrutinized
the resistivity of such pure samples at these temperatures.

Assuming the Cu data are real, the rather wild behavior_found in
Cu-run 1 and even the somewhat milder behavior of Cu-run 2 do not seem
explicable in terms of the usual Kondo type mechanism because the Kondo
minimum normally relies on the fact that the magnetic scattering con-
tribution decreases with T while the phonon term increases. In this case,
the phonon term is insignificant. The transition from negative to
positive dp/dT and hence, the resistance minimum, is quite sharp. It
would seem the electron-electron term is not strong enough to cause such
a sharp transition unless the magnitude of the negative slope from the
magnetic term were itself decreasing quite rapidly.

Supposing the peak in the Ag data is real it is difficult to say
what might be the cause because the sample is of such high purity that
we don't know what impurities are present. However, taking the liberty
to engage in pure speculation,we might guess this is due to long range

interactions between trace amounts of magnetic impurities. The shoulder
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in the dashed resistivity curve in Fig. 3.5 is qualitatively similar to
resistivity curves of spin glasses at low temperatures. This leads us

to hypothesize the existence of some type of collective behavior of
magnetic impurities. Although such magnetic interactions would be ex-
pected to be extremely weak, the large electron mean free path might
allow the impurities to "see" each other at sufficiently low temperatures.
Consider an impurity concentration of one part per billion. This implies
a mean impurity seperation of ~1,000 atomic diameters or ~4,000 R.

This is much smaller than the ~1 mm mean free paths of the conduction |
electrons. At low enough temperatures the interaction energy may become
greater than kBT. Then some type of collective behavior may be possible.
Excitations of this system might be able to scatter the electrons and
contribute a strong temperature dependence due to the freezing out of

the higher energy excitations as the temperature is lowered in a manner
analogous to the freezing out of the higher excitations of the collective
motion of atoms in the lattice, i.e. the phonons. The shoulder in the
resistivity would indicate a temperature where the longer range inter-
actions were being destroyed by thermal energy leaving the temperature
dependence of p(T) to the traditional mechanisms we have discussed. At
this point all one can say is that this behavior is interesting but
requires much more work before more can be said. We do know that up

till now no one has looked with such precision, at such low temperatures
at samples of such high purity. Perhaps we should not be too surprised

if we find the unexpected when we explore the previously inaccessible.
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Summary and Conclusion

The work we have presented demonstrates with high precision the
interplay of various scattering mechanisms with the temperature dependent
part of the resistivity p(T) at liquid He? temperatures. It is the first
investigation detailing precisely the strong effects of dislocation scat-
tering on p(T) at these temperatures. In addition, we have give sub-
stantial support to the predictions of Bergmann et al.3 concerning the
origins of the T4 behavior of p(T) as being due to the combination of
electron-electron scattering and electron-phonon scattering. Of particu-
lar interest is the agreement of our data with their prediction that
electron-electron scattering will increase with the introduction of dis-

34,35 decrease of the phonon

locations as opposed to the already known
contribution. These predictions are based on the anisotropy of relaxa-
tion times in k-space which our data show plays a crucial role in
determining the form of p(T).

Finally, we have obtained good evidence in very pure copper for

2 electron-electron contribution to p(T)

the isolation of the elusive T
by performing very precise measurements to ultra-low temperatures.
In addition, we have uncovered some tantalizing new behaviors in silver

and copper at the very lowest temperatures.
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APPENDIX A

THERMOELECTRIC RATIO MEASUREMENTS ON STRAINED Cu

When we made the series of measurements of electrical resistivity
in the strained copper samples we also measured the thermoelectric
ratio defined by

6=1
Q
where I is the current necessary to generate a sufficient voltage across
the samples resistance to cancel the thermal voltage generated by the
flow of heat 6 along the sample. G is positive if I and 6 are in the
same direction. Figure A-1 - A-3 contain the data for samples Cull,
CuAg2 and CuAgi respectively, that is, in decreasing order of purity.
Each figure contains all of the strainings. The common feature to all
three samples is seen to be a value of G which increases with strain
while showing a decreasing temperature dependence. Straight lines are
drawn through the points in each case although in the more strained
samples there is noticeable curvature even on the scale of these figures.
Because the graphs do not include T = 0, the linear extrapolations to
zero were calculated and are plotted in Figure A-4 which is a Nordheim-
Gorter type of plot of G(T=0) vs. 1/po. The actual values of p  are
along the top and p;1 along the bottom horizontal axis. Note, the
“zero" intercept is on the right. This intercept determines the so

called characteristic value of G for dislocations at T = 0. This value

137
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T(K)

Fig. A.2 G vs. T for CuAgZa-CuAgzw. Percent strain given with each
line.
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1 69

is ~ +0.7V7" and is in agreement with that calculated from Pearson's
result for the characteristic thermopower S of dislocations in Cu by
using the relation

S = GLOT

where Lo is the Lorentz ratio.
A similar plot (not shown) for the three annealed samples, allows

us to determine the characteristic G for the Ag impurity in Cu and

1

gives a value of ~+0.4 V' at T = 4K. This is in fair agreement with

the value 0.6 V'] calculated from determinations of the characteristic

thermopower of Ag in Cu by Gueﬁault.70



APPENDIX B

DERIVATION OF USEFUL EXPRESSIONS FOR SUPERCONDUCTING
TRANSFORMERS AND PARALLEL INDUCTORS USED IN
SQUID CIRCUITS

The basic equation relating magnetic flux ¢ and current I in an
inductor is

¢ = LI (B.1)

where L is the inductance. We now apply this definition to the super-
conducting transformer connected to the SQUID signal coil (refer back
to Fig. 2.3b for circuit diagram). We use the property of a closed
superconducting circuit that the total magnetic flux enclosed remains
constant. We assume initially it is zero for simplicity but this does
not affect the validity of the derivation. Assuming no flux lines can
link the primary and SQUID coils, the current IT in the primary coil L1
produces a flux through the secondary coil windings given by MIT‘
Where M is the mutual inductance between the primary and secondary
transformer coils. This must be cancelled by flux (LS+L2)IS generated
in both LS and L2 by the induced current IS so that the total flux is

zero. This means

MIT - (LS+L2)I =0 (B.2)

S
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The current IS induces a flux MIS back in L, so that the net flux in Ly
is reduced and given by L]IT - MIS. By Eq.(B.1) we define the effective
inductance Le at the primary terminals to be the net flux through the
primary coil divided by the primary current. That is

L,I,-MI

- _1'T ™S
La = —_—TF—_— (B.3)

The definition of the mutual inductance in terms of a dimensionless
constant called the coupling constant or coefficient of coupling is

M=kY L]L2 (B.4)

Using this definition and solving Eq.(B.2) for IS in terms of IT we
obtain from Eq.(B.3)
KL,
Le = L-l 1 - W (B.S)

We want to maximize the ratio r of the current through the SQUID IS to

the total signal current IT thus from Eqs.(B.2) and (B.4) we have

I kvL,L
r:—s— M = 2] (3.6)

1 Lty Lst,

This can be rewritten to eliminate L] using (B.5)

_ kzLeLz
[Lert, (k5 KLgtLy)

r (B.7)
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We assume the value of Le is fixed by the desired time constant of our

measuring curcuit. LS is also a fixed value. Thus the maximization

con-

dition is dr/dL2 = 0. Evaluating the derivative is straightforward an

yields

de _r (1 __a 1) (B
L, = 7 |[, ~ L¢Hal, LS+L2J

where a = (l-kz). The requirement that Eq.(B.8) be zero implies the
quantity in parethesis vanishes. This allows us to solve for Lé the

value of L2 which will yield maximum r.

Ls

.8)

S
L,y = = (8.9)
2 fx 1
a2 /1
Now we can go back to find the corresponding value of L], we solve
Eq.(B.5) for L]
L (Lo+L,)
S 2
L, = —e_ (B.]O)
1 LS+aL2

Substituting Lé for L2 we get

]
LS(1+—) L L

! = =-£a e
Ly = Le L(T+/a) ~ 7 Py (B.

Substituting Li and Lé into the expression for r we find

-

e k

roe ek (8.

max s 1+/1-k

1)

12)
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Let us determine what the ratio r' = IS/IT is if a shunting inductance
is used to create the desired Le' We refer to the circuit diagram of
Fig. 2.3a. If IT is the total signal current, it must divide into
currents IS through LS and IP. Since the two inductors form a closed
superconducting loop we will require the total flux in the loop to be
zero as before. This implies the magnitude of the flux generated in
each coil must be the same or

LSIS = Lplp (B.13)

Adding LPIS to both sides we obtain

(LP+LS)IS = LPIT (B.14)

since IT = IS+IP. Thus we find

—
o
—

=& | (B.15)

©
(%2 ]
wn

Now we define the ratio of ratios r and r'

Is(transformer)

- r . '
W=yr= IS(Ehoke) (B.16)

If W > 1 the transformer would be mathematically superior to the parallel
inductor although it might not be practically superior unless W >> 1. We

immediately obtain

L

Le 1+ /1-k2



APPENDIX C

THERMOMETRY PROGRAM FOR HP67 PROGRAMMABLE CALCULATOR

Purpose:

Basic Method:

The purpose of this program is to calculate the tempera-
ture given the resistance of a resistance thermometer
(R+T) or to give the resistance corresponding to a given
temperature (T+R). The latter case is simpler if the
manufacturer has already done a calibration and given

coefficients for the equation

lTog R = 2 A;(log )

1

it M3
o

The R-+T conversion requires finding the inverse function.
To do the T-R conversion the given polynomial is simply
evaluated in the part of the program with Label B. Of
course, for a given thermometer the proper coefficients
and the order of the polynomial must be stored in the
memory registers.

To do the R+T conversion (which is the one usually
desired in the laboratory) the program uses the last
temperature calculated (initially it uses 4°) as a start-
ing point to do a Newton-Raphson method of finding the
zero of a function. The function being the difference
between the actual resistance entered by the user and

calculated resistance at the trial point R(TIast)'
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The general formula for the Newton Raphson method is

f(X-)
j . .
iv =% - f'(xi where f is the function whose zero
is to be found, f' is its derivative. In this method
|f(x1+])| < |f(xi)| so by iteration one approaches zero.
t

We define t = log T, r(t) = % Ai i

Memory Allocations for the HP67.
0-9 hold the polynomial coefficients.
A + n the order of the polynomial.

B - log R the value of R entered from keyboard.
df dr

C~» & - T where f = r - log R, t = log T.
D+ r(t) and f = r(t) - log R.
E-+logT=t.
I > current value of index.
Operation
Read in program card and appropriate data card. For cryocal #2844
thermometer the data includes the 10 coefficients and stores n = 9 in
memory A while storing log 4° in memory E.
To use for R+T conversion just enter thermometer resistance in

ohms and push A. To use T-R conversion enter T, push B.
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Below is the actual HP67 program which can be keyed in manually and

stored on a magnetic card for future use.

Step Code Operation Comment

001 312511 f LBL A entry point A

002 3153 L0,

003 3312 STO B

004 312503 LBL 3

005 322211 658 a call subroutine a

006 322212 658 b call subroutine b

007 3413 RCL C

008 3415 RCL E —
009 n X ::
010 3414 RCL D

on 3412 RCL B

012 51 -----

013 3314 STO D

014 51  ==---

015 3413 RCL C

016 81 :

017 3315 STO E

018 83 . this is the test value
019 00 0 for convergence. Can be
020 08 8 changed if necessary




HP67 Program cont'd.
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Step Code Operation Comment
021 3414 RCL D
022 3564 ABS
023 3281 X>Y
024 2203 GTO 3
025 3415 RCL E
026 3253 10%
027 3422 RTN g
028 312512 LBL B Entry point B t
029 3153 10914
030 3315 STO E
[-'4
031 322211 GSB a g
032 3414 RCL D
033 3253 10%
034 3522 RTN i
035 322511 LBL a subroutine entry point a +
036 3411 RCL A _
037 3533 STI -
22
038 00 0 S Z
o <
039 41 " Y ew
2 9
040 312501 LBL 1 priiihe
3 e
041 3424 RCL(i) 5 o
: 22



HP67 Program cont'd.

151

Step Code Operation Comment
042 61 +

043 3415 RCL E

044 n X

045 3133 DSZ

046 2201 GTO 1

047 3400 RCO O

048 61 +

049 3314 STO D

050 3522 RTN v
051 322512 LBL b subroutine entry point b 4
052 3411 RCL A

053 3533 STI

054 00 0

055 4] 4

056 312502 LBL 2

057 3424 RCL(1)

058 61 +

059 3534 RCI

060 41 4

061 41 4

062 01 1




HP67 Program cont'd.
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Step Code Operation Comment

063 3251 X=Y

064 2213 GTO C

065 51 ----

066 81 :

067 A X ?‘%E;

068 3415 RCL E '°m'°

069 7 x z
>

070 3133 0SZ '5

071 2202 GTO 2 z

072 312513 LBL C 3

073 3554 RA 3

074 3313 STO ¢ 3

075 3522 RTN §

076 84 R/S l |
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