THE PREPARATION ANDSTRUCTURAL? . CHARACTERIZATION or momUM __i _j .~T ~. 5 5 AND IANTALUMCOMPLEXES '1. .5, WITH DIPIVALOYtMIET-HAME ‘ Thesis for the Degree of Ph. D, MICHIGAN STATE UNIVERSITY GEORGE PODOLSKY 1972 LIBRARY Michigan State University This is to certify that the thesis entitled THE PREPARATION AND STRUCTURAL CHARACTERIZATION OF NIOBIUM AND TANTALUM COMPLEXES WITH DIPIVALOYLMETHANE presented by George Podolsky has been accepted towards fulfillment of the requirements for Ph .D . degree in 121191111311!- § I 735 ZZ§%{mmhmmr 0-7639 F" magma av ‘5 "MG & SflNS' 300K BINDERY INC. LIBRARY BINDERS ”[33:33, 21mm“! I ¥ I L - ABSTRACT THE PREPARATION AND STRUCTURAL CHARACTERIZATION OF NIOBIUM AND TANTALUM COMPLEXES WITH DIPIVALOYLMETHANE By George Podolsky A new series of Nb(V) and Ta(V) dipivaloylmethanate (DPM) complexes have been prepared and characterized. Complexes of the type M(DPM)C14 and M(DPM)éC13 were obtained by allowing the metal pentahalide to react with neat H(DPM) (M 3 Ta) and with H(DPM) in the presence of dichloromethane as a solvent (M - Nb). The complexes of the M(DP'M)C14 series exhibit similar infrared and nmr spectra, but the Nb derivative appears to be much less stable in solution in the absence of free ligand. The spectral similarities and differences in stability for the Nb and Ta derivatives also hold true for the M(DPM)2013 complexes. Conductivity data indicate that Ta(DPM)2C13 is highly dissociated in nitrobenzene and in nitro- methane solution; a dissociation equilibrium involving Ta(DPM)4+ and TaCl6- is suggested. The constitution of the M(DPM)ZC complexes in 13 the solid state may correspond to an eight-coordinate cationic salt, [M(DPM)4][MC16]. Evidence to support this formulation is based primarily on the presence of a band in the ir spectrum near that expected for TaCl6-. The inability to obtain a higher substitution product in the presence of a large excess of ligand or in the presence of a base also suggests the ionic constitution of the complex. An attempt to prepare the Nb(DPM)4+ cation by reaction of Nb(DPM)4 and anhydrous, oxygen~free Cl in CC14 led to abstraction of ligand 2 oxygen by the metal and the formation of a polymeric oxo-complex, [NbOClz(DPM)]x. A new, stable Nb(IV) complex Nb(DPM)4 was also discovered. This unusual eight-coordinate (11 metal ion complex was amenable to characteri- zation by various forms of spectroscopy, both in the solid state and in solution. An X—ray structure determination of the complex showed that the coordination polyhedron of the molecule is best described by the D4 square antiprism, a previously unreported stereoisomer for eight- coordination chemistry. Further studies including electronic absorption and esr SpectroscOpy indicate that the Nb(DPM)4 molecule retains its square antiprismatic stereochemistry in solution. THE PREPARATION AND STRUCTURAL CHARACTERIZATION OF NIOBIUM AND TANTALUM COMPLEXES WITH DIPIVALOYLMETHANE By George Podolsky A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1972 To Rita ii ACKNOWLEDGEMENTS The author wishes to thank Professor Thomas J. Pinnavaia for his motivation and assistance during this study. Gratitude is also due to Professor Alexander Tulinsky and his group, especially Dr. Pene10pe W. Codding and Mr. Richard L. Vandlen for their aid in the crystal structure determination. The author is also deeply grateful to his wife, Rita, for her patience and unrelenting encouragement and to his parents and his wife's parents for their aid. iii II. III. IV. VI. TABLE OF CONTENTS Statement of Purpose . . . . . . . . . . . . . . . Survey of Niobium and Tantalum Beta-Diketonate Chanistry O I O O O O O O O O O O O O O O O O O O 0 Experimental Section . . . . . . . . . . . . . . . A. Reagents . . . . . . . . . . . . . . . . . . . B. General Techniques Used in the Reactions of Metal Halides. . . . . . . . . . . . . . . . . C. Purification of Niobium Pentachloride. . . . . D. Syntheses. . . . . . . . . . . . . . . . . . . E. Physical Methods of Characterization . . . . . Results and Discussion . . . . . . . . . . . . . . A. Tantalum(V) and Niobium(V) Derivatives of Dipivaloylmethane. . . . . . . . . . . . . . . B. Preparation and Characterization of Tetrakis(dipivaloylmethanato)niobium(IV) . . . C. The X-Ray Structure Determination of Nb(DPM)4. D. The Stereochemistry of Nb(DPM)4 in Solution. . Bibliography 0 O O O O O O O O O O O O O O O O O O Appendices . . . . . . . . . . . . . . . . . . . . A. Diketonate Ligand Abbreviations . . . . . . . . B. The Observed and Calculated Structure Factors (Multiplied by 10 and Using a Scale Factor of 0.9453). . . . . . . . . . . . . . . . . . . C. Interior Angles of the Planes Comprising th D Square Antiprismatic Polyhedron of Nb(DPM)4 . . iv Page . l . A . ll . ll . 12 . 16 . l6 . 24 . 32 , 32 , 68 , 72 , 119 . 146 i . i . ii .xxvii Table IIA. IIB. III. IV. VI. VII. VIII. IX. XI. XII. XIII. XIV. LIST OF TABLES Chemical Analyses for Products Obtained From the Reactions of TaClS and NbC15 With Dipivaloylmethane Final Atomic Coordinates and Thermal Parameters for Nb(DPM)4o o o o o o o o o o o o o o o o o o o 0 Electron Densities (p) for Atoms Comprising the Chelate Rings in Nb(DPM)4 . . . . . . . . . . . . . Nb—O and 0-0 Distances (A) in Nb(DPM)4. . . . . . . DPM Ligand Bond Distances (A) in Nb(DPM)4 . . . . . O-Nb-O Angles in Nb(DPM)4 . . . . . . . . . . . . . Chelate Ring Interior Angles in Nb(DPM)4. . . . . . Average Bond Distances and Angles in the Nb-DPM Chelate Ring 0 O I O I O O O I O O O O O O 0 O I O O Polyhedral Edge Lengths (A) When Nb(DPM)4 is Viewed as a D2(aabb) Dodecahedron. . . . . . . . . . . . . Polyhedral Edge Lengths (3) When Nb(DPM)4 is Viewed a D2(gggg) Dodecahedron . . . . . . . . . . . . . . Polyhedral Edge Lengths (A) When Nb(DPM)4 is Viewed 3 D4(£222) Square Antiprism . . . . . . . . . . . . Deviations (A) of Oxygen Atoms from Best Trapezoidal Planes and Angles of Intersection (oT) of the Planes When Nb(DPM)4 is Viewed as a D2(aabb) Dodecahedron. Deviations (A) of Oxygen Atoms from Best Trapezoidal Planes and Angles of Intersection (oT) of the Planes When Nb(DPM)4 is Viewed as a D2(gggg) Dodecahedron. 88 88 0 Deviations (A) of Oxygen Atoms from Best Square Planes, Angles of Intersection (as) of the Planes, and the Shape Parameter Angles (6) When Nb(DPM)4 is Viewed as 8 D4(£2’2£) square Antiprism o o o o o o o o o o o 0 Experimental and Most Favorable Polyhedron Shape Parameters When Nb(DPM)4 is Viewed as a D2(aabb) and D2(gggg) Dodecahedron and a D4(££££) Square Antiprism V Page 34 74 79 80 82 83 84 85 103 104 105 106 107 108 109 Table XVII. XVIII. XIX. LIST OF TABLES (cont'd) Experimental and Idealized Plane Deviations (A) and Angles of Intersection for Nb(DPM)4 Viewed as a D4 Square Antiprism and a D2(aabb) and D2(gggg) Dodecahedron . . . . . . . . . . . . . . . . . . . . UV-Visible Bands of Nb(DPM)4 In Dichloromethane (2.83 x 1.0-4 H) O O I O C C C C O O O O O I C O O 0 Second Order Correction Equations for Calculation of g values 0 O C I O O O O O O O O O O O O O O O O O ESR Parameters for Nb(DPM)4. . . . . . . . . . . . . X-Ray Powder Patterns for Nb(DPM)4 and Zr(DPM)4. . vi Page . 110 . 122 LIST OF FIGURES Figure 1. The 9 possible stereoisomers for an eight-coordinate tetrakis chelate . . . . . . . . . . . . . . . . . . 2. Apparatus assembly for handling anhydrous solutions during syntheses . . . . . . . . . . . . . . . . . . 3. NMR tube assembly for Evans magnetic susceptibility measurment O O O O O O O O O O O O O O O O O O O O 0 4. Infrared spectrum of Ta(DPM)C14 in a Nujol mull. 5. Room temperature nmr spectra of Ta(DPM)C14 in diChlorome thane O O O O O O O O O O O I I O I O O O O 6. Room temperature nmr spectra of a dichloromethane solution of the product isolated from the mother liquor of the Ta(DPM)Cla synthesis . . . . . . . . . 7. Infrared spectrum of Ta(DPM)2C13 in a Nujol mull . . 8. Room temperature nmr spectra of Ta(DPM)2C13 in dichloromethane. . . . . . . . . . . . . . . . . . 9. Infrared spectrum of Nb(DPM)Cl4 in a Nujol mull. . . 10. Room temperature nmr spectra of Nb(DPM)C14 in diChloromethane O O O O O I O O O I O O O O O O O O O 11. Room temperature nmr spectra of Nb(DPM)C1 in dichloromethane after the compound has been allowed to hydrolyze in the solid state. . . . . . . . . . . 12. Infrared spectrum of Nb(DPM)2C13 in a Nujol mull 13. Room temperature nmr spectra of Nb(DPM)2Cl3 in dichloromethane. . . . . . . . . . . . . . . . . . 14. Infrared spectrum of [NbOC12(DPM)]x in a Nujol mull. 15. Infrared spectrum of Nb(DPM)4 in a Nujol mull. . . 16a. The composite electron density along the b axis for Nb(DPM)4, Mblecule A, showing the half of the molecule containing ligands L1 and L2 . . . . . . . 16b. The composite electron density along the b axis showing the half of Molecule A containing ligands L3 and L4 0 O O I O O O O O O O O O O O O O O O O O 0 vii Page 14 27 36 39 41 46 48 52 54 57 60 62 66 71 87 89 LIST OF FIGURES (cont'd) Figure 17a. 17b. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28a. 28b. 29. The composite electron density along the b axis for Nb(DPM)4, Molecule B, showing the half of the molecule containing ligands L1 and L2 . . . . . . . . . The composite electron density along the b axis showing the half of Molecule B containing ligands L3 and L4 0 O I O O O O O C O O O O I I I I O O O O O O O O The motions associated with the transformation of a cube to a D2d dodecahedron and D4d square antiprism. . . A view of the "idealized" D4 square antiprismatic coordination polyhedron down the "pseudo" C4 axis including the numbering scheme for the ligands, oxygen atoms and carbon atoms for Nb(DPM)4 . . . . . . . The Board and Silverton polyhedral shape parameter notation for the DZd dodecahedron and D4d square antiprism. . . . . . . . . . . . . . . . . . . . . . . . The average°(over Molecules A and B) chelate ring bond distances (A) and their standard deviation of the mean in Nb(DPM)4 . . . . . . . . . . . . . . . . . . . . The average (over Molecules A and B) interior angles of the chelate ring in Nb(DPM)4. . . . . . . . . . . . . The visible region of the electronic absorption spectrum of Nb(DPM)4 in dichloromethane (2.83 x 10‘4 M). The crystal field splitting diagram for the d orbital energy levels for a D2d dodecahedron and a D4d square antiprism . . . . . . . . . . . . . . . . The magnetic circular dichroism spectrum of Nb(DPM)4 . . The room temperature esr spectrum of Nb(DPM)4 in hexane O O O I O O I O O O O O O O O O O O O O O O O O O The esr spectrum (77°K) of Nb(DPM)4 in a hexane glass. . The room temperature esr spectrum of Nb(DPM)4 powder . . The esr spectrum of Nb(DPM)4 powder at 77°K. . . . . . . The powder esr spectrum at 77°K of Nb(DPM)4 doped in Zr (DPM) 4 O O O O O O O O O O O O O O O O O O O O O O 0 viii Page 91 93 95 97 100 114 116 121 . 125 129 131 133 139 141 143 I. Statement of Purpose Although the number of Species exhibiting discrete eight-coordination1 has grown rapidly, the observed stereochemistry is still dominated by two coordination polyhedra: the square antiprism and dodecahedron.1—4 In the case of tetrakis chelate complexes, M(chel)4, these two polyhedra can give rise to nine stereoisomers (Figure 1). Among the various M(che1)4 complexes investigated, only the D antiprism and the DZd’ D2(gggg), and 2 S4 dodecahedron have yet been observed in the solid state. Very little stereochemical information is available for such complexes in solution. Previous attempts to deduce their stereochemistry by nmr SpectroscOpy have been thwarted by their rather remarkable stereochemical lability.5 The initial object of the research was to investigate the reactions of Nb(V) and Ta(V) pentachlorides and beta-diketones* in solution, with the hOpe of preparing eight-coordinate M(dik)4+ cations suitable for stereochemical studies by nmr spectrosc0py. Diketonate ligands were selected for two important reasons: (1) they are known to form higher coordination number complexes with transition metal elements to the left of the periodic table,6 and (2) the terminal R groups on the ligand provide a convenient means of deducing stereochemistry and possible isomer distributions by conventional F19 and H1 nmr spectroscopy. These synthetic studies led to the discovery of several new Ta(V) + and Nb(V) complexes, including one possibly containing the M(dik)4 ion. Despite the positive charge on the ion, which was expected to provide a * A beta-diketonate anion may be represented as (R'COCHCOR)- where R may be identical to R'. See Appendix A for a list of ligand abbreviations. .oumaoco mwxmuuou mumaweuooolunwwo am How muoaomaoououm mHnHmmoa m use .H ouswfim Figure l substantial barrier of activation for stereochemical rearrangement yi§_ intramolecular bond-rupture pathways, the lifetime of the complex in its stereochemical ground state was much too short on the nmr time scale to obtain the desired information. A new, stable Nb(IV) complex of the type, Nb(dik)4 was also discovered. This unusual eight-coordinate d1 metal ion complex was amenable to characterization by various forms of Spectrosc0py, both in the solid state and in solution. Therefore, an X-ray structure determination of the complex was undertaken, and its spectroscopic prOperties in the solid state and in solution were correlated with its stereochemistry in the two phases. II. Survey of Niobium and Tantalum Beta-Diketonate Chemistry A review of the chemistry of niobium and tantalum beta-diketonates reveals that a variety of species have been reported. There are two general classes of complexes for the elements in the +5 oxidation state: (1) Oxo complexes of the type, [MOX2(dik)]x, [M0X(dik)2]x, and [MX3(dik)]20, where X - halogen and dik - beta-diketonate ligand. (2) Mixed alkoxo and/or halo complexes of the type, MX2(OR)2(dik), M(OR)S_x(dik)x (x 8 1,2, or 3) and MX4(dik). The +4 oxidation state also exhibits two classes of complexes: (1) Mixed complexes containing halides of the type, MX4_x(dik)x where x - 2 or 3. (2) Tetrakis diketonates, M(dik)4. 5 The first class of the M(V) group includes [NbOC12(acac)]x,7-9 0 DBM]20.11b Rosenheim and Roehrich reported 3 still another oxo complex of the type, NbO(C5H602)33-.12 This complex [NbOBr (ACAC) le ,1 and [TaCl was the first example of a Nb beta-diketonate. Hydrated Nb(V) oxide (niobic acidl3) was allowed to react with a basic solution of acetylacetone to obtain the salt, K2H[NbO(C5H602)3].1.5(C5H802). The guanidinium salt, (CN3H6)H2[NbO(CSH602)3], was also prepared. In these compounds the acetylacetonate anion was formulated as a dinegative Species based on elemental analyses, but the formulation has yet to be verified. The compound, [(NbOC12(ACAC))]x, was prepared by the reaction of NbOCl3 with acetylacetone. The analogous reaction with NbOBr3 yielded the disubstituted derivative, [NbOBr(ACAC)2]x, which also retained the Nb—O-Nb linkage. The only Ta example in this class is a dibenzoylmethanate derivative, [TaCl DBM]20, which was prepared by heating a mixture of TaCl4 3 and HDBM in refluxing acetonitrile for five minutes. It was suggested that the diketone acts as the oxidizing agent in the reaction. No MO(dik)3 complexes are known with beta-diketonates but the related ligand, trOpolone does form NbO(Tp)3.l4a’14b The MX2(OR)2(dik) complexes where M - Nb(V) and Ta(V), X = Cl and Br, R s CH3 and CZHS’ and dik - ACAC or BZAC, were first prepared by allowing the metal pentachloride and diketone to react in the apprOpriate alcohol.15 This synthetic method has been used more recently to prepare related derivatives with salicylaldehyde, acetoacetanilide, benzoylacetanilide, 2-hydroxyacetophenone, and o-hydroxybenzophenone in place of the diketones.16 NbX2(OR)2ACAC can also be prepared from the 10 oxychloride8 and oxybromide of Nb(V) by solvolysis of the Nb-O-Nb bond with the appr0priate alcohol. 6 The mixed alkoxide-diketonates, M(OR)5_x(dik)x where x = 1,2, and 3, M 8 Nb(V) and Ta(V), R 8 CH3,.£rC H and C H5, and dik = ACAC, BZAC, 4 9 2 and DBM, represent the most extensive series of complexes yet prepared.17-19 Beta-ketoester derivatives have also been prepared.20-22 The ethoxide and methoxide complexes were isolated from the reaction of the metal pentalkoxide and corresponding beta-diketone in benzene solution. The ‘57C4H9 derivatives were prepared by metathesis reaction of the ethoxide complex and tfbutanol in benzene. The methoxy-acetylacetonate derivatives, MC1(OMe)3ACAC, were prepared from the reaction of M(0Me)4ACAC with 19 b MC12(OMe)2ACAC. The only example of a Mx4(dik) complex is TaC14(DBM).11 It was isolated from a mixture of TaCla and dibenzoylmethane in acetonitrile. No complexes of the type, M.Cl(dik)4 are known with beta-diketonates, 14a,14b but again, trapolone forms both the Nb and Ta derivatives. The Nb complex was obtained by adding a dichloromethane solution of the ligand to NbCl5 in dichloromethane and ether. The Ta species was isolated after heating a mixture of TaCl and trOpolone in refluxing acidic 5 methanol for fifteen minutes. Examples of Nb(IV) chelates of the type, MX4_x(dik)x are NbC12(DBM)2 lb and NbCl(Tp)3.1 NbC12(DBM)2 was prepared by heating a mixture of the free ligand and NbCl in refluxing acetonitrile. As noted above, the 4 analogous reaction with TaCl4 led to oxidation of the metal to give TaC14(DBM) or [TaCl3(DBM)]20 depending on the reaction time. NbCl('I'p)3 was prepared by heating NbCl and trOpolone in refluxing acetonitrile. 4 Five tetrakis (beta-diketonato)niobium(IV) complexes are known with ACAC, TTFA, BTFA, BZAC’ and DBM.1la,llb 11a,llb The tropolone derivative lb also exists. The only Ta(IV) species is Ta(DBM)4.1 With the exception of Nb(ACAC)4, the complexes were prepared from NbCl and the 4 diketone by using triethylamine to help drive the reaction to completion. Nb(ACAC)4 was prepared by heating a mixture of NbCl and T1(ACAC) in 4 acetonitrile at reflux temperatures for five minutes. When dioxane was used as the solvent, Nb(ACAC)4°Dioxane was obtained. Two methods were successful in preparing the TTFA derivative. In the first case, acetonitrile was the solvent and the reflux time was five minutes. In the second method, the reflux time was reduced to one minute and the reaction was conducted in dioxane. The BTFA, BZAC, and DBM chelates were all similarly prepared with toluene, dioxane, and acetonitrile used, respectively, as solvents. The reflux times varied from one to five minutes. The complexes are readily hydrolyzed in solution. Nb(TTFA)4 and Nb(BTFA)4 in the crystalline state are stable toward atmospheric oxygen and water. The remaining derivatives, however, are decomposed by atmospheric oxygen and water at room temperature. In general, the constitution and structure of the complexes described above in both the solid and solution state are poorly defined. The presence of Nb—O-Nb bridging in the polymeric [NbOC12(A.CAC)]x and [NbOBr(A.CAC)2]x Species has been indicated by strong, broad infrared bands near 820 cm"1 and 825 cm-1, respectively.10 These frequencies lie closer to the corresponding Nb—O-Nb vibrational mode observed at 770 cm_1 for NbOCl than to the Nb = 0 stretching modes at 945, 935 cm"1 3 and 910, 890 cm-1 in NbOBr3 and NbOC12(OCZH5)Bipy, respectively.10 A crystal structure of the latter compound has shown it to be six-coordinate, thus verifying the Nb - 0 formulation.23 [TaC13(DBM)]20 is apparently a discrete oxo-bridged dimer as supported by the presence of a fairly strong Ta-O-Ta band at 809 cm-l.11b As in the case of the Nb = 0 stretching frequency, the Ta = 0 stretch exhibits strong doublets at 935 and 919 cm"1 in TaOC13(Dioxane)2.11b Metal-oxygen (ligand) and metal-halogen frequencies have also been assigned, but they have not contributed to additional structural insight.8’9 Powder diffraction data have been obtained for [NbOClZACAC]x but no new information beyond the conclusion that the complex is not isomorphous with NbOCl was gained.10 3 Monomeric formulations have been suggested for the members of the MX2(OR)2(dik), M(OR)5_x(dik)x, and MX4(dik) families. However, possible solvolysis and/or dissociation in solution leave the question of solution state stereochemistry unanswered. Ebulloscopic molecular weight studies of the MX2(OR)2ACAC series in the parent alcohols led Djordjevic, g£_al., to suggest that solvolysis may occur to form neutral and ionic species: ROH (1) NbX2(OR)2ACAC v—‘A NbX2(OR)3 + 3+ + ACAC- 1/2 Nb2X4(OR)6 ROH (2) NbX2(OR)2ACAC .—-—‘" NbX(OR)3ACAC + 11+ + x" II + Nb(OR)4ACAC + H + x" Thus, the low molecular weight values observed could represent an average of the above dissociation products. Acidity of the alcoholic solutions has been cited as further supporting evidence for the dissociations. However, conductivity measurements by Syamal, g£_§1.,16 are consistent with a 2:1 electrolyte and suggest the existence of M(OR)2(HOR)2(dik)2+ ions in solution. Quantitative precipitation of silver chloride further substantiates halogen dissociation in methanol. In acetonitrile, the molar conductance values are between those expected for a 1:1 and a non-electrolyte, implying that the weaker donor solvent replaces fewer halogen atoms. Vapor pressure osmometric data measured in both chloroform and benzene solutions16 gave high molecular weight values which increased as a function of time. This time dependence is believed to be due to polymerization of the molecule in the less polar solvents. Evidence that the MX2(OR)2(dik) complexes undergo diketonate ligand dissociation and decomposition in solution also exists.16 Optical spectra in methanol and aged benzene and acetonitrile resemble free ligand Spectra. The presence of acetone in carbon tetrachloride and methanol solutions of the complexes has been detected by gas chromatography. Ligand decomposition is further indicated by nmr spectra of the aged solutions which resemble neither fresh solution nor free ligand spectra. Other nmr studies indicate diketone and alkoxide exchange is Slow on the nmr time scale since the Spectra of the complex and free ligand are identical to the sum of the component Spectra. Attempts were made to deduce the stereochemistry of the neutral monomeric molecule in solution by studying a derivative with an asymmetric diketonate ligand.16 Although a definitive assignment was not possible, a.£52§§rdichloro arrangement was favored. Further investigations of solution state equilibria have been conducted by titration of Nb(V) and Ta(V) alkoxides in methanol solution.19 2+, M(OR)3ACAC+, and M(0R)4ACAC were found to exist, with the M(OR)2ACAC Nb Species being more stable than the Ta analogs. Infrared assignments have been made for many of the complexes but no Structural information was deduced.8’9 Powder diffraction data on the MX2(OR)2ACAC system indicate that the methoxy-chloro and -bromo derivatives are isomorphous, 10 whereas the ethoxy complexes form a separate isomorphous group.8 Aside from ebullosc0pic molecular weight measurements and elemental analyses, no other meaningful data are available on the M(OR)S_x(dik)x series. Molecular weights of these oils in benzene indicate monomeric species. They may be six, seven, and eight-coordinate, reSpectively, 17,18 when x - 1,2, and 3. The Nb derivatives are more volatile than the Ta analogs. Also, alkoxide ligand exchange is faster in the niobium complexes than in the tantalum derivatives.17 Very little structural information is available for the two known Nb(IV) complexes in the NbX4_x(dilc)x Class. A low effective magnetic moment (0.40 B.M.) at room temperature for NbCI(Tp)3 has been interpreted in terms of a polymeric structure.11b The value of 1.58 B.M.for NbC12(DBM)2, however, is typical for Six-coordinate monomeric Nb(IV) complexes.11b The tetrakis chelates, M(dik)4, are eight-coordinate monomers, with the possible exception of the tropolone derivatives being polymeric.11b In the dioxane adduct, Nb(ACAC)4'(Dioxane), the coordination number of Nb may be nine. This complex exhibits an infrared Spectrum similar to oxygen-coordinated dioxane complexes, and the visible Spectrum is Significantly different from Nb(ACAC)4.11b Ultraviolet and visible spectral data are also reported for the other tetrakis Species and are interpreted in terms of possible metal d-d transitions, intraligand singlet to triplet transitions, and charge transfer transitions.11b Attempts at making a specific stereochemical assignment in this class of compounds are based on non-documented X-ray powder diffraction data and Sketchy esr data. Deutscher and Kepert11b report that Nb(TTFA)4 is not isomorphous with M(TTFA)4 where M - Zr, Hf, Th, Ce, U, and Pu, but the structure of this latter isomorphous series of compounds has not yet been reported. Nb(DBM)4 is not isomorphous with Th(DBM)4 (a D2d dodecahedron24), and Nb(ACAC)4 is not isomorphous with Zr(ACAC)4 (a D2 Square antiprism3b). The authors also describe the esr spectra at room temperature of Nb(ACAC)4 and Nb(DBM)4 as consisting of a broad asymmetric signal showing the shape predicted for a signal with gi greater than g' . The values for gl are 1.95 and 1.98, respectively, but gll values were not reported. Thus, on the basis of these data, they conclude that a dodecahedral, rather than square antiprismatic stereochemistry, is indicated. III. EXperimental Section A. Reagents The following commercially available reagents were used without further purification unless otherwise indicated. (1) Aquasorb, P - Mallinkrodt Analytical Reagent 205 (2) Chlorine gas, Cl - Matheson Co. 2 (3) Cupric Acetate, Cu02H302 - Fischer Scientific Reagent (4) ‘Methyl pivalate, C6H1202 - Aldrich Chemical Company (5) Niobium pentachloride, NbCl Chemicals, 99.52 5 - Research Organic/Inorganic (6) Niobium shot, Nb - Alfa Organics, m2n8—t2n7 (7) Pinacolone, C6H120 - Aldrich Chemical Company (8) Sodium amide, NaNH - K and K Laboratories 2 (9) 2,2,6,6-tetramethy1-3,5-heptanedione, Chemicals C11H2002-Eastman (10) Triethylamine, (CZHS)3N - Eastman Chemicals (ll) Tetramethylsilane, (CH3)ASi - Aldrich Chemical Company 11 12 B. General Techniques Used in the Reactions of Metal Halides In view of the air sensitivity of the Nb and Ta halides and of most of the products they form upon reaction with beta-diketones, Special procedures were necessary to maintain anhydrous conditions in the preparative reactions. A11 glassware contained sidearm stopcocks to allow entry of dry nitrogen or argon gas. This included erlenmeyer and round bottom flasks, filter frits, and dropping funnels. Prior to use,the apparatus was cleaned in a ROM - EtOH bath (except for fritted glassware) followed by a soaking in a KZCrZO7 - H2304 bath and rinsing with distilled water. After drying for at least 24 hrs. at £3, 180°C, the glassware was cooled in a CaCl desiccator and flushed with dry 2 nitrogen. It was then transferred to a nitrogen-filled glove bag (obtained from Instruments for Research and Industry, Model X-l7-l7) which contained a beaker of Aquasorb to help maintain a dry atmosphere. All transfers of hygroscOpic reagents were performed in the glove bag, although in a few cases, a dry box was used. Most reactions were conducted in a small erlenmeyer flask (50-250 ml) equipped with a gas inlet tube to admit dry nitrogen. A gentle flow of dry nitrogen or argon served to both insure anhydrous reaction conditions and to help remove product gases (e.g. HCl) that formed during the reaction. To filter the reaction mixture, a medium porosity (10-20 u) sidearm filter frit, attached to a sidearm erlenmeyer receiving flask, was attached to the reaction flask. The sidearm stapcock on the filter frit enabled a flow of nitrogen to be passed through the frit as well as the reaction flask while the apparatus was being assembled (see Figure 2). 13 .xmmaw wafl>fimooula .mpwmaH non wcauufium uwuoawma suaa uwum nouafim zuamouoa Ensues oq\q~ mlo .uaHOH onmeImHmEom oq\em mum .uco>aom nmma Lugs Henson mafiaaouml< ANV mxmmaw wca>fioomu|o .uaum nouflfim muamouoa enemas oq\¢~ mum .xmmam coauomou Hmafiwfiu01< Aav "mommnuawm wafiusw macausaom msouvmnam wcaavcm: wow mHnEommm woumumao< .N muswfim l4 Figure 2 15 DevelOpment of excessive pressure was avoided by use of a mineral oil-filled nitrogen bubbling tower included in the nitrogen line. Once the filtration apparatus was inverted, rapid filtration could be assured by either passing nitrogen into the reaction flask through the sidearm and/or attaching a periodic vacuum to the sidearm of the receiving flask. Washing of the solid residue was accomplished by replacing the reaction flask with a drapping funnel containing the apprOpriate amount of nitrogen-flushed wash solvent. The solvent was flushed at least fifteen minutes before use. The wash solvent was flushed through the frit in a manner analogous to the filtration procedure by using the three-way stopcock on the drapping funnel to attach the nitrogen line. After the washing was complete, the drapping funnel and receiving flask were replaced by adapters (see Figure 2) and the product was dried $2 2&222- Recrystallization of the product was conducted in a Similar manner. The recrystallizing solvent or solvent mixture was added by means of the drapping funnel to the solid residue contained in the filter frit. Heat was applied, as necessary, with the aid of a heat gun while the desired product solution was being flushed into the receiving flask with nitrogen. An alternative method of recrystallization involved transferring a pre-weighed portion of the crude product to a sidearm erlenmeyer and adding the appropriate solvent(s) in the glove bag. The mixture was heated and Stirred magnetically while passing nitrogen over the solution surface. Filtration was achieved as in the original filtration process, and the flask was set aside in the refrigerator or at room temperature, as desired. 16 All solvents were dried at least several days and usually, several weeks, over drying agents prior to use. Calcium hydride was used to dry dichloromethane, chloroform, acetonitrile and carbon tetrachloride. Molecular sieves were used to dry nitrobenzene, which was pre-purified according to the procedure outlined by Taylor and Kraus.25 Triethylamine was freshly-distilled over barium sulfate at 84°C. All other solvents were refluxed over lithium aluminum hydride. C. Purification of Niobium Pentachloride Niobium pentachloride was purified by sublimation iguygggg. A pre-dried pyrex glass tube, equipped with a ground glass joint and vacuum stapcock, was loaded with 6-8 grams of yellow NbCl powder in a 5 dry box. It was Slowly evacuated and placed into a tube furnace so that the end containing the NbCl was near the middle of the heating coils. 5 A small piece of aluminum foil wrapped around the end of the tube kept an iron-constantan thermocouple in place. The furnace was placed on an incline (93, 30°) with the loaded end of the tube slanting downward. The temperature was Slowly increased over a three day period to 125°C. The first trace of sublimate was visible after approximately 24 hours and a temperature of 64°C. A very crystalline (plate-like prisms and feathery, needle-like networks) yellow product had sublimed into the cold end of the tube after three days. The reaction tube was dismantled in a dry box, and the product was scraped out with the aid of a bent spatula. Tantalum pentachloride was sublimed in an analogous manner. D. Syntheses 1. Preparation of:giobiumgtggrachloride. NbCl was prepared by reaction of Nb and NbCl at elevated 4 5 temperatures:26 Nb + 4NbC15 8 5NbC14 17 Freshly-sublimed NbCl5 (27.6 g, 0.102 moles) and niobium shot (2.37 g, 0.0256 moles) were loaded into a dry 45 cm (30 mm o.d.) pyrex tube in a dry box. The tube was evacuated to a pressure of 10‘5 torr and carefully sealed with a flame. The tube was placed into a two-zone tube furnace with the temperature of each 30 cm zone individually controlled by Variacs. The entire tube was wrapped in aluminum foil to help secure the two iron constantan thermocouples and help improve the uniformity of the temperature gradient along the reaction tube. The zone containing the loaded end of the tube was warmed to 70° before activating the second zone. The temperature of the loaded end was then increased to 400-410° while increasing the temperature of the second zone to 250-260°. After a reaction time of five days, a Special shutdown procedure was followed. During the cooling period, the temperature of the "hot" zone was kept approximately 50°C above the "cool" zone to prevent dispropor- tionation of the product. Approximately 23 grams of a dark purple, finely-crystalline product was obtained in the "cool" zone. The NbCl4 was purified by sublimation iggygggg_at 150°. Approximately 2 days were required to complete the sublimation. The product was placed in a Schlenk tube and Stored in a dry box. 2. Preparation of 2,2,6,6-tetramethy1-3.S-heptanedione. The synthesis was patterned after the method reported by Adams and Hauser.27 The following reactions are used in the synthesis: +NH CH cocH(DPM) reaction mixture, the reaction was repeated at 100° in order to obtain higher yields of the compound. The carbon, hydrogen, and tantalum analyses (see Table I) are in agreement with the formulation Ta(DPM)2C1 The product is a pale yellow powder 3. and exhibits a greater degree of solubility in dichloromethane than Ta(DPM)C14. This is consistent with a higher degree of substitution on the metal atom. As in the case of Ta(DPM)C14, the compound forms a white powder upon its exposure in the solid state or in solution to atmospheric moisture. The molar conductivity at 26° of Ta(DPM)2Cl3 is 54 ohmmlcmzmoleu1 in nitromethane at a concentration of 3.30 x 10"4 M and 12.4 ohmmlcmzmole-1 in nitrobenzene at a concentration of 1.08 x 10”3 M, The 1:1 electrolyte tetraethylammonium iodide exhibits a molar conductivity of 97 ohm-1cm2mole-1 5 x IO-A‘M,37 The electrolyte [Ti(acac)3)][SbCl6] in nitrobenzene is at 20° in nitromethane at a concentration of reported to have a molar conductance of 26.2 ohmmlcmzmole'.1 at infinite dilution.5 Thus Ta(DPM)2Cl appears to be pg, 50% dissociated in 3 nitrobenzene and nitromethane. This should be regarded as a minimum 43 value, Since independent evidence suggests that the compound undergoes decomposition upon aging in solution at room temperature (see below). AS the decomposition proceeds, the conductivity.decreases. For example, after the solution of TaCDPM)2C1 in nitromethane had aged for 5 days, the 3 molar conductance decreased from 54 to 16 ohm-1cm2mole-1. In nitrobenzene solution, the molecular weight of Ta(DPM)2C13 corresponds to that expected for a monomer. However, the freezing point depression of the nitrobenzene solution decreased as a function of time. This is consistent with a decrease in the number of dissociated species in solution as decomposition proceeds. The following equilibrium is suggested to account for the conducti- vity and molecular weight data: 2 Ta(DPM)2C1 : Ta(DPM)4+ + "16016 3 Heckley and Holah38 have reported complexes of the type, M(dtc)2X3, where M is Ta(V) and Nb(V), X is C1 and Br and dtc is the N,N-diethyl- dithiocarbamate anion. The authors state that on the basis of preliminary conductivity, infrared, and nmr data, the compounds are probably ionic and could possibly be formulated as [M(dtc)4][MX6]. No conductivity or nmr data were reported but a strong band at 320 cm_1 was assigned to the Ta-Cl stretching mode. Other examples of previously reported eight- coordinate cations of the type M(chel)4+ are reported by Muetterties and Wright.39 The ligand, tropolone, was found to form this cation with both Nb(V) and Ta(V). Although another equilibrium involving the dissociation of a chloride ion to form a six-coordinate cation, Ta(DPM)2C1£+, may also be present, there is no evidence in the 44 literature for the existence of such a cation for beta-diketonate ligands. The solid State infrared spectrum of Ta(DPM)2C13 is Shown in Figure 7. Complete chelation is again indicated by carbonyl stretching bands at 1578 and 1568 cm-1. A Strong broad absorption, at 338 cm-1, similar to the band in the Ta(DPM)C14 spectrum (see Figure 4), is again assigned to Ta-O and Ta-Cl stretching modes. Earlier infrared studies of a series of hexachlorotantalate salts have led to the assignment of a strong, broad absorption with maxima ranging from 307 to 333 cm.1 to 40,41 the v Ta-Cl stretching mode. The shift of the Ta-Cl band from 3 350 cm"1 for Ta(DPM)Cl4 to 338 cm.1 for Ta(DPM)2C1 brings the absorption 3 in the vicinity of the above 0 range and may suggest the existence of 3 [Ta(DPM)4][TaCl6] in the solid state. However, the low energy Shift of 12 cm.1 is also consistent with an increase in coordination number of Ta from six to seven. Figure 8 shows the nmr spectrum of Ta(DPM)2C13 at room temperature. One pfbutyl resonance at T 8.84 and one gamma proton resonance at r 3.80 are present. The Efbutyl resonance occurs 33, 0.1 ppm upfield of the Efbutyl resonance for Ta(DPM)Cl4 (see Figure 5). If equal amounts of neutral seven-coordinate species and the eight- coordinate cation were present, as described in the equilibrium on p. 43, at least two Efbutyl and gamma proton resonances would be predicted to occur. Furthermore, the positive charge on the cation would effect a downfield shift relative to the neutral Ta(DPM)Cl4 species. The observed upfield Shift suggests that the equilibrium favors the seven- coordinate species in dichloromethane. In view of the lower polarity of dichloromethane compared to nitrobenzene, the solvent in which both conductivity and molecular weight data were obtained, this result would 45 .Sea Hofiez e 5 m HomAzmava mo Eouuomam consumaH .m muswam owe omm 5.0 com. OONF cow— 000— a 46 con cow n musmwm. 47 .eupwsooosu oaoao can no mooemcomou Aem.w av Hausnmw was Aow.m es «no: Amy A; we ”osmnuoaouoacoav OH HO Snooze macho om um mommaomou amnesia AHV «Azmnvee mo muuoonm use eunumuoaeSO soon .m ouswwm 48 O— w Opswfim 49 be expected. Based on all possible sevenrcoordinate stereoisomers aris- ing from a pentagonal bipyramid, capped octahedron, capped trigonal prism, and tetragonal base-trigonal base, only the C trigonal prism, 2v with a chlorine capping, a rectangular face and the three ligands spanning equivalent rectangular edges, would account for the observation of one Efbutyl line, in the absence of ligand exchange. The dichloromethane solution was cooled to -60°C, but no new resonance or line-broadening was observed. Consequently, there are two possible explanations for the nmr Spectrum of the complex in dichloromethane, if one assumes that the fortuitous existence of only the C isomer is unlikely. First, an 2v intramolecular ligand exchange process may be invoked which would average the pfbutyl environments of the seven-coordinate isomer. This explanation would apply if an appreciable amount of eight-coordinate cation was not present in solution. However, if one does assume the presence of an appreciable amount of the cation, then an intermolecular exchange process must be invoked to explain the presence of only one Efbutyl line. In this case, the line would represent an average of the ‘EbetYI environments of both seven— and eight-coordinate Species. In either case, the spectrum at -60°C indicates a rapid exchange process. Appreciable decomposition of Ta(DPM)2C1 complex in dichloromethane 3 was Observed in the course of the nmr Studies. After 40 minutes of aging, free ligand peaks at r 8.85 and 4.23 begin to appear, and after 4 months, they grow to an intensity equivalent to that of the original ‘EbetYI and gamma proton resonances. An identification of the Ta decomposition product was not attempted. 50 2. The Reactions of NbCl: and H(DPM). NbClS and neat H(DPM) react very vigorously with evolution of HCl at room temperature. In order to control the reaction at a convenient rate, the reagents were mixed in the presence of a solvent, dichloromethane. At a molar ratio of NbCl5 to H(DPM) of 1:1.1, an orange solution was obtained after a 30 minute reaction period. Addition of hexane to the solution afforded a red-orange powder. The C, H, and Nb analyses for the product were in acceptable agreement with Nb(DPM)C14 (see Table I), but as in the case of the analogous Ta derivative, the chlorine analysis was anomalously low. The infrared spectrum of Nb(DPM)C14 in solid state is shown in Figure 9. The features of the Spectrum are qualitatively similar to the Spectrum of the Ta derivative (see Figure 5). The diketonate ligand is chelated, as evidenced by the positions of the C80 stretching modes. The band due to overlapping frequencies for Nb-Cl and Nb-O vibrations is positioned 22, 10 cm.1 higher in energy than the analogous band for the Ta derivative. Nb(DPM)ClA in the solid State rapidly hydrolyzes, upon exposure to atmospheric moisture, to form HCl and a pale yellow residue. The residue, however, contains coordinated DPM as indicated by infrared spectroscopy. The intensity of the 360 cm.-1 band is markedly decreased on hydrolysis, as expected for the loss of chlorine. The nmr Spectrum of Nb(DPM)C14 in dichloromethane is Shown in Figure 10. Two Efbutyl resonances are clearly resolved at T 8.72 and 8.69, and the presence of a third line is suggested by a shoulder on the low-field side of the'r8.72 line. Two -CH- lines are present at r3.38 51 .HH58 acnsz Q Ca «HUAZmovnz mo Esuuooam coumuwsH .m madman 52 con a cow q 000 4 com . .20 coop - CON— a comp 4 coop d m ouowam 53 .mp5 em now some we: aofiuaaom Ora nouns nuvaaaooam mauxo om um mwucmoommu qusan.vom I:UI Amv unuofiaeoo3m Odomo com um mmoomoomou Amn.m .ao.w ev Hauonhw cam Anc.m .mm.m pv «mo: ANV “nupaaeom3m maomo on up mmoomcomou Am.N I ovauaaaam aduuooemv HausnLW woo Am.~H I ovsuaaeaw anuuooamv axon Aav "oomnuoaouoaroav ca «HUAZmnvnz mo ouuooam was eunumuoeawu Eoom .OH seamen eeeeeeee OE CE 11" 55 and 3.47. The lines at T 8.72 and 3.47 are assigned to the complex; the remaining lines are probably due to decomposition products. For example, allowing the solution to age at room temperature for 24 hours causes the line at 1 8.69 to increase in intensity. The decomposition observed by nmr spectroscopy is consistent with the fact that Nb(DPM)C14 cannot be recrystallized from dichloromethane. Shown in Figure 11 is the nmr spectrum of Nb(DPM)Cl4 after it had been allowed to hydrolyze in the solid state by exposure at room temperature to atmospheric moisture. The lines at T 8.84 and 3.80 are identical in position to those observed for Ta(DPM)2Cl3, and the lines at T 8.85 and 4.23 are those expected for free ligand. Thus it appears that the hydrolysis of Nb(DPM)Cl4 leads in part to formation of H(DPM) and the higher substitution product Nb(DPM)2C13, whereas the hydrolysis of Ta(DPM)C14 forms an oxide or oxychloride not containing DPM. The existence of a higher substitution complex of the type, Nb(DPM)2C13, was also suggested by the appearance of lines at r 8.84 and 3.80 in the nmr spectrum of a Solution of Nb(DPM)C14 and free H(DPM) in dichloromethane after it had been allowed to age 13 days at room temperature. As noted above, these chemical shifts are identical to those observed for Ta(DPM)2013. The reaction of NbCl5 and H(DPM) at a molar ratio of l to 5 in dichloromethane at room temperature afforded an orange- red crystalline product with a carbon and hydrogen content near that expected for Nb(DPM)2013 (see Table I). The chlorine analysis is characteristically low, and the Nb content is somewhat high. The presence of an oxo impurity is indicated by a band at 807 cm"1 in the infrared 56 .auvwaaoo3m masks on m um wo>ummno mm: om.m e um OOHH nmou ecu “nauseaooam oaomo com um eeeeeeoeee Amm.e .ee.m .Ne.e ev Heeeehm.eee Aoemm to use- Ame “consensuam oaoao on up mooomoomou ahuonnu AHV "oumum oHHom men ca oquouvsn ou cmaoaam some mm: vasoaeoo wen noumm oemnuoaouoaeuwe ea «Hofizmnvpz mo muuooem was eunumuoeamu Boom .HH meshes 57 ”DC—o".-. cu- . 40 ..-.——_.~.—-.-n—-——-—--.g—- “ I o-“ ”an: nhe,\/ nun KC Eiliei a E HA mhnwfim spectil (825 1 Nb-O-Y I produ the 6' | previ I oxide spec: assi. in t [3 I the IUIE re [1) f D 58 spectrum of the product shown in Figure 12. A band in this region (825 cm-1) for NbO(ACAC)2Br has been assigned by Djordjevic10 to a Nb-O—Nb stretching mode. The oxo impurity probably is a decomposition product of Nb(DPM)2C13, perhaps formed by abstraction of oxygen from the diketonate ligand. Oxygen abstraction by Nb and Ta has been observed previously with various solvents and donor ligands such as phosphine 42,43 oxides, sulphoxides,44 and beta-diketonates.11b The infrared spectrum also contains a strong, broad band at 339 cm”1 which is assignable to overlapping Nb-Cl and Nb—O stretching frequencies. AS in the case of Ta(DPM)2Cl3, the possibility of the ionic formulation, [Nb(DPM)4][NbC16], is suggested as the Nb-Cl stretch lies just outside the range of 331-335 cm"1 for the v3 vibration of the NbCl6- ion.40’41 The reaction of NbCl5 and H(DPM) in dichloromethane at room tempera- ture was also investigated at molar ratios of 1:3 and 1:10. The 1:3 reaction mixture, after a reaction time of 4 hours, afforded a mixture of Nb(DPM)C14 and Nb(DPM)2C1 as indicated by elemental analyses and 3 nmr Spectroscopy. After a reaction of 26 hours, the 1:3 mixture afforded primarily Nb(DPM)2C13: 6.77% H; nmr in CH2C12, T 8.84 and 3.80 with relative intensities of 18:1. The nmr spectrum of the 1:10 reaction mixture indicated the Found; 46.60% C, 7.06% H; Calc'd, 46.70% C, presence of only Nb(DPM)Cl4 after a 20 minute reaction time, approximately equal amounts of Nb(DPM)C14 and Nb(DPM)2C1 after 3 hours, and only 3 Nb(DPM)2013 after 21 hours. The presence of excess free ligand in the reaction mixture apparently retards the decomposition of Nb(DPM)2Cl3, as well as Nb(DPM)C14. Figure 13 illustrates the rapid decomposition of Nb(DPM)2C1 in dichloromethane in the absence of free ligand. After 3 59 .HHSE aohaz m ca m HUNAZmQVnz mo asuuommm woumumoH .NH seamen 60 Ts. 0 com— oom— coo— H 0mm oow 0&0 om» oom— NH enemas ,.III 61 .mxmv m you memo was coausaom ecu noumm sunfisaoosm oaomo com um movemeomou Anacuue he woumovaa um mm.¢ .om.m .no.m ev nmol new sundaeooam afloao on no Amw.m .3ouum an nanosecoa umeaaonm vHOHm 30H cues em. m .Hn. m av Hausan Amy .nuwfisemosu maowo com um moooedomou Aew. w .Hn. w pv Hmuonlu was Aowl m av anon ANV “numfi3m003u macho on ad mooomcomou Hausnnu AHV “unusumBOHOHLOHoa HUN Azmnvnz mo muuoomm was ounumuoaBOO Boom .mH enemas 6? . L . -.———-»—-—-- - ~----—.—----.__—__.--——_¢—---—_..—-_--. A: .3 ma Ouswwm 63 the solution has aged only 10 minutes an impurity line appears at T 8.71 and another appears as a low field shoulder on the r 8.84 line. After three days both lines increase significantly in intensity and 3 —CH= lines can be observed at T 4.23 and T 3.67 and r 3.80. The T 8.85 and 4.23 lines are characteristic of free H(DPM) and the T 8.84 and 3.80 lines may be due to Nb(DPM)ZCl3. The reaction of NbCI5 with H(DPM) was also conducted in the presence of triethylamine at room temperature at a metal to ligand molar ratio of 1:4.1 for 20 hours. In addition to the by-product triethylamine- hydrochloride, a product, whose infrared and nmr spectrum was identical to the Nb(DPM)2C13 complex above, was isolated. Thus, in spite of the presence of base and a long reaction time, further substitution of ligand for chlorine was not achieved. 3. The Reaction of Nb(DPM)4 and C12. In an effort to prepare the chloride salt of the eight- coordinate cation, Nb(DPM)4+, and verify the possible existence Of the cation in the above syntheses, Nb(DPM)4 was oxidized by means of anhydrous, oxygen-free chlorine. However, instead of the desired salt, a compound with the stoichiometry, [NbOC12(DPM)]x, was prepared. The progress of the preparation of this oxo-complex was monitored by ear Spectroscopy. Immediately upon addition of the first aliquot of chlorine solution, the deep purple (almost black) solution became blue- green and remained this color when a sample was removed 40 minutes later. The presence of Nb(IV) was still indicated by a 10 line esr spectrum, and only after the solution became orange in color (3 hours later), was the complete absence of the Signal observed. The golden yellow solid that was isolated from the reaction mixture was sparingly soluble in 64 benzene (pg. 0.001 g/ml) and dichloromethane, and insoluble in either, acetone, and carbon tetrachloride. The poor solubility properties of the compound are, of course, consistent with a polymeric formulation. The elemental analysis was also in agreement with the suggested formula— tion. The infrared spectrum of the solid is shown in Figure 14. The striking feature of the spectrum is the presence of a very strong, broad band at 802 cm-1. This is assigned to a Nb-O-Nb stretching mode. The two strong, broad bands at 350 cm"1 and 380 cm—1 are assigned to the Nb-Cl stretching mode (the former band likely overlaps a Nb—O (ligand) stretching mode). Both assignments are consistent with those made by 2 3.10 In the ACAC complex, a strong, broad band at 820 cm-1, and a strong broad doublet at Djordjevic for NbOCl ACAC which was prepared from NbOCl 355 cm.1 and 379 cm.1 were assigned to the Nb-O—Nb and Nb-Cl modes, respectively. It is interesting to note that even the lower energy band at 350 cm.1 for the DPM complex is still at a higher energy than the band at 338 cm-1 assigned to the Nb-Cl stretching mode for Nb(DPM)2C13. A weak nmr spectrum (due to low solubility) was obtained in dichloro— methane. A multiplet of broad resonances was observed in the Efbutyl region with at least 5 peaks resolvable at T 8.82, 8.77, 8.73, 8.72 and 8.70. This result is not unexpected since numerous isomers are possible even when x is only 2. The nmr solution was too dilute to observe -CH= resonances. The preparation of this compound appears to be yet another example of the tendency of niobium to abstract oxygen from a ligand (see p. 58). 65 g z 66 con cow coo com 720 coop coup cov— coop - «a ousmwm 67 4. Summary. The preparation and characterization of a series of new Nb(V) and Ta(V) complexes containing the beta-diketonate ligand, H(DPM), have been described. Complexes of the type,.M(DPM)Cl4 and M(DPM)2C13, were obtained by allowing the metal pentahalide to react with neat H(DPM) (for M - Ta) and with H(DPM) in presence of dichloromethane as a solvent (for M 8 Nb). The complexes of the M(DPM)ClA series exhibit similar infrared and nmr Spectra, but the Nb derivative appears to be much less stable in solution in the absence of free ligand. The above spectral similarities and solution behavior also hold true for the M(DPM)2C1 3 series. Conductivity data indicate that Ta(DPM)2C1 is highly dissociated 3 in nitrobenzene and nitromethane solution: a dissociation equilibrium involving Ta(DPM)4+ and TaCl6_ is suggested. The constitution of the M(DPM)2C13 complexes in the solid state may correspond to an eight- coordinate cationic salt, [M(DPM)4][MC16]. Evidence to support this formulation is based primarily on the presence of a band in the ir spectrum near that expected for TaCl6-. The inability to obtain a higher substitution product in the presence of a large excess of ligand (ligand to metal ratio of 10 to l) or in the presence of base also suggests the ionic constitution of the complex. An attempt to prepare the Nb(DPMM+ cation by reaction of Nb(DPM)4 and anhydrous, oxygen-free C12 in CClA, led to abstraction of ligand oxygen by the metal and the formulation of a polymeric oxo complex, [NbOC12(DPM)]x. 68 B. Preparation and Characterization of Tetrakis(dipivaloyl- methanato)nlobium(IV) The reaction of NbCl4 and H(DPM) was conducted in acetonitrile in the presence of triethylamine. The procedure is analogous to that used by Deutcher and Kepert118 in their preparation of other niobium(IV) diketonates. Based on melting point, infrared, and ear data, the same product was obtained upon varying the ligand to metal ratio from 10:1 (reaction time = 46 hours) to 4:1 (reaction time = 3 hours). In both cases, the yield was between 50 and 60%. An nmr spectrum of a dichloromethane solution of the dark purple (almost black) solid Showed no free ligand resonances and elemental analyses were obtained without prior recrystallization. The compound, however, does form opaque, dark purple needles when recrystallized in benzene-acetonitrile. In the solid state, Nb(DPM)4 apparently does not undergo any decomposition when Stored under anhydrous, oxygen-free conditions, as judged by comparison of the ir spectrum of a fresh sample and one which had aged over 1 year. However, after several months of exposure to air, the solid becomes coated with a white film, suggesting that oxidation and/or hydrolysis occurs. The compound is extemely soluble in most nonpolar organic solvents. Deep purple solutions are formed which become yellow upon exposure to air for several days. The infrared spectrum of a yellow dichloromethane solution shows a Strong broad band at 800 cm"1 as well as bands at 1700 and 1730 cm-1. The same Spectrum is obtained when oxygen is bubbled into a dichloromethane solution of Nb(DPM)4. The band at 800 cm"1 suggests an oxidation to some type of bridging oxoniobium(V) species (see 69 SE=<:tion II). The bands at 1700 and 1730 cm"1 suggest..a Nb by-product tlnuat has a free carbonyl function or, perhaps, the by-product is free I"I‘IDPM. Deutscher and Kepert11b report that Nb(ACAC)4 also decomposes in ‘Vaet solvents. NO mention iS made of the behavior in anhydrous solvents, laut one must infer that the complex is stable, since solution spectral (flats in toluene are reported. It is interesting to note that the .authors report that Nb(ACAC)4 in the solid state decomposes rapidly in air, in contrast to Nb(DPM)4. Thus with the successful synthesis of such an unusually stable Nb(IV) beta-diketonate, a stereochemical investigation was eagerly undertaken. The infrared spectrum of Nb(DPIM)4 is shown in Figure 15. Since no absorptions are observed in the carbonyl region (1600-1720 cm-l) of the free ligand, chelation by the beta-diketonate ligand is indicated. The 1 carbonyl stretching modes are assigned at 1585 cm" , 1562 cm-1, and 1410 cm.1 which is consistent with previously reported assignments for transition metal beta-diketonates.35’36 The low energy portion of the Spectrum shows two absorptions at 352 cm-1, and 285 cm”1 which are aissigned to Nb-O (ligand) Stretching modes. These assignments are (:onsistent with the analysis of the low energy portion of the infrared sspectra for the niobium(V) complexes described in section IV-A.2. The molecular weight was determined in benzene because the hydrolysis 10f Nb(DPM)4 appeared to occur less rapidly in this solvent than in other solvents. The observed value of 777 g/mole is in agreement with the “value expected for a monomer (826). The molar conductance 1 3 (0.0901 ohm-1cm2mole- , 2.93 x 10- M) is consistent with a non-electrO* 1yte in dichloromethane. Fay and Lowryl‘5 report A to be 0.092 7O .Hasa Hemsz m as «AZmonz mo enuuooom commuon .mH mesmem 71 5.0 coop con cow cmo omo comp com— 1 DOV— q ma musmfim 72 3 (5 x 10—3 M) for the non-electrolyte, Ti(ACAC)C12, and 40 (5 x 10- M) for the 1:1 electrolyte, ISiCACAC)3JBr, in the same solvent. A time dependence is observed for the conductivity of Nb(DPM)4 in dichloro- methane. The initial value ofll reported above was observed 7 minutes after the preparation of the solution. After aging for 15 minutes, A increased to 0.169 ohmfllcmzmole-l, after 50 minutes to 0.326, and after 9 days the deep purple solution had changed to a yellow-brown color,and A had increased to 13.3. After 10 days of aging, the color became yellow, and A bad leveled off, as indicated by a value of 13.2. Thus, the time dependence was due to oxidation,and poSsibly hydrolysis,upon aging in the conductivity cell (see ir data above). The value of 6.88 (1.11 x 10-4 M) reported for Nb(DPM)4 in nitrobenzene was Observed after the solution had aged for 60 minutes and hydrolysis had likely already occurred to a Significant extent. The room temperature effective magnetic moment of Nb(DPM)4 was determined by both the Evans and Faraday technique. In view of the comparable magnitudes of the paramagnetic and diamagnetic molar susceptibilities (see Section III), the observed values of 2.1 B.M. (Evans) and 1.9 B.M. (Faraday) are consistent with one unpaired electron. Consequently, all of the above preliminary experiments (infrared, molecular weight, conductance, and magnetic susceptibility) are consistent with a discrete molecular eight-coordinate formulation for Nb(DPM)4 and a +4 oxidation state for the Nb atom. C. The.X-Ray Structure Determination of Nb(DPM)4 Nb(DPM)4 crystallizes in the space group, Pc, with four molecules in the unit cell and two molecules in the asymmetric unit. 73 The experimental density is 1.123 cm.-3 (p = 1.12g cm-3) and the calc. unit cell dimensions are as follows: a - 22.30 i 0.05 I b - 11.86 i 0.02 A c - 19.58 i 0.05 3. B - 107.46 : o.05° Table IIA and B lists the final atomic coordinates, thermal parameters, and electron density of the 106 atoms comprising the two molecules in the asymmetric unit. The Observed and calculated structure factors are listed in Appendix B. Tables III-VII list the bond distances and angles of both molecules. The interior angles of planes of the Nb(DPM)4 polyhedron are listed in Appendix C. Figures 16a and b and 17a and b illustrate the electron density contour maps of the two molecules obtained from the observed Fourier map with an R factor of 0.086. The motions associated with the transformation of a cube into a D4d square antiprism or a D2d dodecahedron are shown in Figure 18. The structure of Nb(DPM)4 appears to approximate the square antiprismatic geometry. A convenient perspective for viewing the square antiprism is along the fourfold rotation axis (C4). This view of the two molecules comprising the asymmetric unit of the unit cell (molecules A and B) is shown in Figure 19. It is clear from this representation that the structure may be visualized as a "propeller" or "pinwheel" with idealized D4 symmetry. However, because the dodecahedron is so closely related to a square antiprisml—Ba’4 (a square antiprism with puckered square planes may be viewed as a dodecahedron), it is necessary to consider the Nb(DPM)4 Structure in terms of the most closely related dodecahedral isomer(s) to unambiguously establish it as an idealized D4 square 74 oqm.o mHoHNH.I mmmmom. ommomH.I Nico qm¢.m wmnomc.l mccmam. HmoMNH.I Nlmo woo.c mecmoo.l «Nuamm. ooamoa.l Nlmo Hmm.m somemo. mmcmnm. qnwaoc.l NIHo N¢©.HH oonwma. Nooaao. mmmqmm. HIHHo soa.m ooNoou. mHoHHm. «momma. HIoHo mew.m wmmmqa. Nomwce. mwmwmm. Humo no~.o ecoama. encomm. HNonH. Hlmo uqc.oa mnnmwo.l omcmmn. omoaoa. also mmn.m N¢H¢NH.I Honmom. quomc. alco com.m encoHH.I commas. oNHmHo.I Huno Hm~.m mmcmoH.I cnonmc. eunmmo. cho neo.n nmomqo.l NHHmwm. mommoo. Himo moH.o NHmoHc. Hocown. moomHH. Hluo «No.e mmmocc. cmomom. Hommua. .IHIHU momaoo.l enmooo. mmmcco. mommoo. Homcao. mmHHoo. Hoommo.l mommam. Homoeo. o co Hoqocc.| mmmcoo. nmeooo. «ammoo. mmwwoo. HwHNco. oomomo.l moommm. Nocaeo.l no mouoco.u omHooc. «caocc. mHmNco. wmwooo. owouoo. wmmomo.l ommeq. «Nuaoo.l co mnmaoo. mmmooo.t nomaoo. mmnmoo. wooaao. moumoo. mmquc.l emwmon. ceocao. mo wmmooc. Humoco. memooo. mommoc. qococo. wmnmco. mmcmwc. «acnmu. Rococo. so cNcho.I ochoc.l ooooco. ooomco. mHHmco. «Hmmco. mwmooo. anch. “monmo.l mo mmccco. chaoc. mmmoco. mwamoo. ooHnoo. mnmwcc. HmNoco. Hmwccm. mwowao.l No «quco. monooo. mcwcoo. onaeoo. Rococo. omomoo. odomwo. Hummus. mwcomo. Ho smoooo.l Hmaooo. hmcooc. mocqoo. cmHooo. Nmmmoo. ommmco. acumen. meHcco.I nz Hopafiz m mmm mam Nam mmm mmm Ham N % x aou< < oaoooaoz «AZmovnz pow muouoamumm Hmauona use Mmoumcacuooo OHEou< Hmafim so: «See 75 emm.e wHeRMH. memeeo. eemmmo. sumo Hum.e Nmeweo.u OMHNNM. omHNeH. eueu one.oa meoeefi.u «mmeflu. memmmo. eueo oem.a Neeomo.u omewma. memmme. sumo ew~.e maemmo.u emmoem. mmmmefi. eueo eHm.e meemmo.u HeHmmN. emmeoa. eumo Hoo.e memaeo. sesame. mmmeea. euuo RNH.e meemno. mmeema. mmeeeo. euflo ~ee.m emmmme. Nemomw. mmmeeo.u muses mme.e mNNeHH. neeHoH. Nomeea.u muoeu aeo.oe Roscoe. aemnmm. eeeema.u mumo mum.m Hmmnoa. meemHN. mosemfl.u nuwo mm~.e meeeHH.u mHeoHo. Nemmmo.u muse eww.w memoefl.u enmeea. emeeoa.u mueu nam.~H HemmOH.u «RNHeo. eonmmfl.u mumu owm.e memmHH.u mmeflno. Hemwoa.u mueo oeH.m ommemo.u eehuea. eoewho.u mumu eHm.a mmemoo.u seamed. mneNHH.u mumo moo.“ memmeo. oHemNN. mnemoa.u muse mme.e omeemfl. muwoee. eoemao. Nudes Nn~.HH seemed. mnH~He. mmeamo.u ~uoHo Nam.e eflmemo. meoeme. emmsmo.u «use eee.e ammmHH. «mmeee. eomomo. Numu e-.a Numema.u Hmamee. memeea.u Nuho eee.e mewoee.u mumeee. nmeeo~.u Nueo eee.w memeoa.u osueme. Nommm~.u Numo H0 £552 m mmm mam Nee mmm mme as N s x eee< < oasooao: Au.ucouV Aflwm mam wumom 0:9 .oN magmas 100 om muswwm u N 101 distinguishing dodecahedral and square antiprismatic stereochemistry in cases where the criteria of Hoard and Silverton may not provide an unambiguous choice. Lippard and Russ point out that one of the draw- backs of the Hoard and Silverton criteria is that the 8 axis of the D4d square antiprism and the 4 axis of the D d dodecahedron are mutually 2 orthogonal and thus, direct comparisons of the 6 angles are not mean- ingful. Furthermore, although calculations of edge lengths are normalized by the metal-ligand atom bond distance, ambiguities arise since the dodecahedron does not possess a single value for this distance as does the antiprism. Further problems arise due to the presence of four non-equivalent edges (a, b, m, g) in the dodecahedron and only two (1, s) in the antiprism. Consequently, to complement the polyhedral selection, the authors suggest trapezoidal planes, whose line of intersection contains the central metal atom (as described by Board and SilvertonBa) and coincides with the 4 axis. Once the best planes corresponding to the two trapezoids have been calculated, the angle of intersection of these planes may also be calculated and compared to the theoretical values of 90° and 77.4° for the perfect dodecahedron and square antiprism, respectively. This procedure, however, also has its disadvantages since the angle of intersection of the trapezoidal planes is only theoretical, i.e., it is a result of two nonexistant planes when the polyhedron is actually a square antiprism. It would seem that the most definitive test would be to calculate both the trapezoidal planes of the polyhedron viewed as a dodecahedron and the square planes of the polyhedron viewed as a square antiprism, and then to compare the deviations from these beat planes. In addition, the deviation of the angle of intersection of the square planes from 0° would provide a good 102 criterion for the prOper choice. Tables VIII-X list the edge lengths used to calculate shape para- meters for the three polyhedra being considered. It is obvious that for each polydron, both molecules (A and B) must be considered, and in the case of the dodecahedral stereoisomers, there are two sets of trapezoidal planes (Sets I and II) which can be defined. Tables XI and XII list the deviations of the oxygen atoms comprising the possible dodecahedral planes from the best plane and also the angles of inter- section of these planes. Table XIII lists the deviations of the oxygen atoms comprising the two square planes of the square antiprism, the angles of intersection of these planes, and the shape parameter, 8, as defined above. Tables XIV and XV summarize the results of these data and compare them to the idealized polyhedron shape parameters.3a’46 The average Nb-O bond lengths which were identical (2.128 A) in molecules A and B were used to normalize the shape parameters. An analysis of the results of the above calculations clearly establishes the structure of Nb(DPM)4 to be most closely approximated by the D4 square antiprism. The overall agreement between the experi- mental and "MP?" shape parameters for a square antiprism is good. However, the most striking evidence to support the choice of the square antiprism lies in the plane calculations. The maximum average deviation from planarity for four oxygen atoms comprising a square plane is 0.058 A, whereas the minimum average deviation from planarity for four oxygen defining a trapezoidal plane is 0.26 A. Furthermore, the square planes are parallel in molecule A(a8 - 0°) and very nearly parallel in molecule B (018 = 0.7°). Among the various dodecahedral views of the molecule, the best trapezoidal planes, which should be orthogonal, intersect at a 103 .cmos mnu mo coauma>oc wumvcmum was 09Hm> ommpo>m mmuoamv A V .mH ouswwm ou wofivuooom :OHuMuoz UI 3 .mm monoummou ou wcfivuooom cofiumuoz.m Aoeo. + mmm.NV Aema. + Nem.~v flame. + mem.~v Ammo. + mac.mv w eme.~ eem.~ mus mmn.~ Hee.~ ens mm eon.~ oen.~ mum omm.~ Hee.~ mum em eem.~ amm.~ hue mmm.~ HNc.~ eta mm bom.N eme.~ ~-H oee.m mec.~ cum aw ~me.~ NHA.N ens Nme.~ NHA.~ and mm ewc.~ eee.~ Ana emc.~ aeb.~ nus Ne Nec.~ Nec.~ cum Nae.~ Nee.~ bum Hm Hmb.~ Nec.~ m-~ |.Hme.~ ch.~ m-~ m fibeo. amm.~v Ammo. ~em.~V Ammo. + eom.Nv AmHH. ace.mv e mmm.~ HNe.N mun ewe.~ eem.~ “no me cmm.~ Hee.N mum eon.m eme.~ ~-H Na mum.~ Hee.~ cue eam.~ emm.~ mus Ha oee.~ mec.~ bum 1.80m.~ oem.~ sum 8 Amee. Nea.mv abmm. oma.mv Amen. + moH.mV Anna. NmH.mv a m~c.m eea.m m-e aam.m wme.m mus ma owm.m nae.m elm Hee.n Nac.m sum up ewe.~ eme.~ mus hom.~ ema.~ hum Ha mee.~ mae.~ bum ..ewe.~ ..ebe.~ mus a Aeao. nec.~v Aeao. eee.~v Acme. + eme.~v .wheno.+ cec.~v N hoe.~ eme.~ e-m eme.~ emb.~ eta Ha Awe.~ eee.~ m-H whe.~ mam.~ cum 6 m oasomaoz < masomaoz mumnEdz m masomaoz 4 masuoao: Mmuonaaz HH umm Hmwfioummmua acu< cmwmxo H umm Hmmfioummdua aou< sow%xo mmwmm aoumonmomwon Annmmvmn m mm woBmH> ma «Asmnvpz :05: A maamH 104 .HHH> mHQmH mom | o .m.am Rama. + eNc.NV AeNH. + emc.~v Acme. + emc.~v Aace. + eac.uv m Hme.~ omn.~ mum mam.~ emm.~ eum em Hee.~ mmm.~ ens com.~ eme.N mus cw eem.~ eme.~ hub mmm.~ Hme.~ wue mm oem.~ eom.~ mum oee.~ mec.~ cum em eme.~ ame.~ m-e awe.~ emc.~ mue mm eme.~ ace.~ hum Ace.m emm.~ hum N» mee.~ mee.~ mum wee.m wae.~ c-~ Hm ee~.~ emc.~ mne n.eme.~ |.eem.~ mus w Anna. eom.Nv Aemo. ham.mv Aeao. NHm.NV Aaeo. + amm.~v e emm.~ eam.~ aum eme.~ eem.~ sue me mec.~ oee.~ btm mum.~ Hme.~ eta Na Hmc.~ mmm.~ mne omm.~ Hae.~ mum Ha eme.~ com.~ N-H a.com.~ u.oem.N mum a Aehm. eeo.mv Amom. eeo.mv Ammm. w~a.mv Aemm. + wNH.mV e eme.u Nea.m sum m~e.m eas.m muc ma owm.m ~H6.m e-m nem.m mme.m mus Na Hee.m emc.~ hue Nee.u Nee.m cum Ha eec.~ Hmc.~ m-~ .n ~me.~ .I NHA.~ m-H a Aeeo. eac.~v Ammo. Nec.~v AmNo. ebc.~3.mfiaoo. + mec.mv N Nec.~ Nee.N bum mmc.~ ehc.~ hue Ha ~HA.~ Nnc.~ w-H Hnb.N Nec.~ mum n m manomaoz < masomaoz muonssz m manumaoz < maaooaoz mononesz HH uom Hmwfionmmmua acu< comaxo H umm Hmvfioummmua Eou< Gowhxo mommm NH mHan cosmosmommon Awwmwvmn m mm mo30a> ma «Aimnvnz 60:3 A¢V unawaoq mmmm Hmumozaaom O 105 Table X 0 Polyhedral Edge Lengths (A) when Nb(DPM)4 is Viewed as a D4(1111) Square Antiprism Edge2 Oxygen Atom Molecule A Molecule B Numbers— 11 1-5 2.769 2.687 12 2-6 2.718 2.778 13 4-8 2.634 2.789 14 3-7 2.789 2.707 15 1-8 2.712 2.652 16 2-5 2.672 2.651 17 3-6 2.642 2.692 18 4-7 2.674 2.687 (2.728 i .069)2 (2.740 1 .051) 31 1-2 2.437 2.506 52 2-3 2.491 2.530 33 3-4 2.324 2.519 34 1-4 2.490 2.525 35 5-6 2.643 2.490 86 6-7 2.574 2.487 37 7-8 2.621 2.553 38 5-8 2.540 2.506 (2.514 :1; .104) (2.514 : .021) 2’ 2’ E-See Table VIII 106 .m.wcm.m mouoauoom .HHH> magma mom .H .o: woman HmvwonomuH UI m..m 8N.mm ow.mm oe.mm mo.mN wannabe .Ha mNNNo.o NNmNo.o omHNo.o maemo.o an can 888. H 38.8 :20. H 28.8 :80. H 39:8 388. H 38.8 8 NNMN.o NmNN.o e NeeN.ou mNNN.o: m seem.ou oNNe.o- m eNem.o eNmm.o a Nmem.o ONee.o N eacm.o: econ.ou N NNNN.o- meom.o- e NNeN.o eHaN.o m 2N8. H 83.8 888. H 88.8 380. H 83.8 Macao. H 82.8 .618 mmeN.o Neom.o- N onN.o- mmeN.on N Nemm.ou Neme.o m oNNm.o ecom.o e Namm.o ONNe.o- N NmNm.o: NNNm.ou N NNaN.ou mNNN.o N NmmN.o NNON.o H m manomaoz < masomaoz umnasz m manomaoz d oHaomHoz m.umne:z HH umm Hmmfionmmoua a0u< amw%xo H umm Hmwfloummmue Bou< amwxxo convmfimomwoa Annmmvma m mm mmsmfi> ma «Azanvnz cm£3 nonmam mnu mo AHsv coauommumucH mo moawc< mom mocmam HmmwoumomuH umom Boom mEou< amwkxo mo Aon O Hx manmh 107 .Hx nanny anm.u U .m.vcm.m mmuoouoom .HHH> 0Hnma 00m I..I couv0smo0voa Awmwmvma 0 mm m030a> ma «Asmnvnz 60:3 00amam 0Lu mo Aaev coauu0mu0uoH mo m0ch< mam 00:0Hm Hmmwon0omue um0m Eoum maou< a0wmxo mo A0o 0 HH% 0Han a .n NN.NN NN.NN oo.NN NN.NN nNNNNee .Na ONNN.N- NNNN.o- NNNNo.o NNeNo.o He men 5.8. H 0388 A88. H NNNN.8 88. H N388 GNNN. H 88.8 8 NNNN.o- NNNN.o- a NNNN.N- NNNN.o: N NNNe.o NNNe.o N oeNe.o NNNe.o N NNNe.on N4NN.N- N Nose.ou Neoe.on N NNNN.o NNNN.o N eNNN.o NNNN.o N ENo. H 32.8 GNNN. H NNNN.8 fiNNNo. H 83.8 mSNNo. H $2.8 m3 eNNN.ou NNeN.ou N NeNN.o NNNN.o N NNoa.o Noem.o N NNNe.ou NNNa.ou N NNNe.o: NNNe.ou N eNHe.o eNNe.o e NNNN.o NNNN.o N eNNN.ou NNNN.on N m 0H500Hoz < 0H300Hoz u0nadz m 0H500Hoz. < 0H900Hoz mu0nasz HH u0m Hmwfion0m0ue aou< :0whxo H u0m Hmmfiou0m0uw Ecu¢ c0w%xo 108 Table XIII Deviations (A) of Oxygen Atoms From Best Square Planes, Angles of Intersection (as) of the Planes, and the Shape Parameter Angles (6) when Nb(DPM)4 is Viewed as a D4(1111) Square Antiprism Oxygen Agom Molecule A Molecule B Number- 1 0.04566 -0.01690 2 -0.04565 0.01686 3 0.04789 -0.01678 4 -0.04790 b 0.01681 (1)2. (0.04678 i;.00130)— (0.01684 i;.00005) 5 -0.0S807 0.01501 6 0.05730 -0.01511 7 -0.05777 0.01474 8 0.05854 -0.0l464 (2) (0.05792 3: .00052) (0.01488 1 .00068) cos as 1.0000 0.9999 08, degrees 0 0.6836 Oxygen 6,2-Molecule A 6, Molecule B 1 52.73 56.66 2 54.63 55.83 3 54.33 55.76 4 56.70 55.60 5 58.80 57.18 6 60.69 57.16 7 55.62 57.18 8 60.50 58.07 (56.75 :_2.97) (56.68 1:0.77) 8! IG-IO Square plane (1). See Table VIII, Footnotes b_and 2, Defined according to reference 33; the C4 axis was the best least squares line passing through the centroids of the two square planes and the Nb atom. 109 .mfixm w Iovs0mo 0£u boomeaxouoom .A3ou ccoo0mv coum0£000vov Amwmwvwo 0Hnwmwoo vcou0m 0nu pom .«onmo mam .monuo .maoum a0whxo ha v0afim0v m0aHH 0su mo muawoovaa msu was Boom pz onu was Asou oouv couw0nmo0vom Awwwwvmn 0Hpammoo umuwm 050 now .ooumo woo .wonao .msoum o0mxxo an b0cfiw0v m0cHH 0cm mo mongoovfie ocu wow Boom 32 man nwsousu wafimmmo 0aHH m0umsvm um00H um0n 0nu “A3ou vaoommv couv0nmomvom Annamvma manflmmoo vaoo0m 0£u pom .mOImo mam .mOIHo .maoum :0whxo vow Aaou mouv nouv0amo0vom Annmmvmn manfimmoo umuww 0:» How .oonuo bum .moueo .msoum a0mhxo wcfiacmom mvamwfia 0£u mo Amuv Boom conumo moan Hmuuc0o 0nu swoonnu wofimmma 0GHH m0umsum umm0a um0n 0£u ha woumafixouoom 003 mwxu .aoaumuawfimaou afiumamfiuofiuc< q Iomsmmo 0:9.fl .3oa0n mauo0ufiv m0umHH ma u0u080n0o m.u0m maoo0m 0:9 «a m aoum m0>fiu0v 0n coo scans mu0m Hmuw0zmo0vom 0Hnwmmoo osu mo 0ao now v0umasuamo u0u0amu0o madam mmz.m NNN.N Nee.o eem.o No.N .Nae No.N No.H Ho.N No.N mNm.o muz\ we «AEmnvnz c053 0m mu0u0amumm 0o0£m coum0shaom 0Hnmuo>0m umoz mam Hmua0awu0axm >Hx 0H30H 110 Table XV Experimental and Idealized Plane Deviations (A) and Angles of Intersection for Nb(DPM)4 Viewed as a D Square Antiprism 4 and a D2(aabb) and D2(gggg) Dodecahedron Molecule A Molecule B Idealized fi‘fi‘ . in. j ' _ fl _ 1, e}_, . ‘ - Polyhedron D4(llll) ds(1) 9- 0.058 0.015 0 63(2) 0.047 0.017 0 as 0.00° 0.68° 0 D2(aabb) dT(1) 9- 0.26 0.32 0(0.4)-E . 0.37 0.32 dT(2) 0.26 0.31 0(0.4) 0.36 0.30 6T 85.0° 86.0° 90.0(77.4)9 85.8° 85.2° D2(gggg) dT(1) 0.35 0.34 0(0.4)g 0.33 0.33 dT(2) 0.34 0.35 0(0.4) 0.33 0.34 ‘ 6T 85.2° 85.0° 90.0(77.4)Si 85.5° 85.9° -2 Average deviation of the 4 oxygen atoms (A) comprising the square plane as defined in Table XIII. 2-Average deviation of the oxygen atoms comprising the trapezoidal plane defined in Tables XI and XII: the two rows per plane correspond to the two possible dodecahedral sets which can be derived from a D4 antipris- matic configuration. £-( ) represents deviation from planarity of the theoretical trapezoidal plane derived from a perfect antiprism. é-(_) represents the angle of intersection of the two theoretical trape— zoidal planes derived from a perfect square antiprism. 111 maximum angle of 86.0°. The chviation of this angle from the perfect antiprism value of 77.4° exemplifies the caution which should be exercised when one chooses to use QT as a criterion to aid a polyhedral selection. As discussed above, a is an angle based on theoretical T planes when the isomer is a square antiprism and consequently, would be expected to deviate significantly from ideality as minor distortions are introduced into the square antiprismatic polyhedron. The structure of the bis (4-picoline) adduct of tris (2,2,6,6-tetramethyl—3,5-heptane- dionato)ho1mium(III)47 is another example where the utility of this angle is found to be secondary to the planarity criteria in aiding a stereochemical assignment. The structure was determined to be a square antiprism with the theoretical trapezoidal planes intersecting at an angle of 85.8°. The average deviation from planarity for the square planes was only 0.06 A, however, whereas the deviations of the best trapezoidal planes ranged from 0.29 to 0.47 A. It is strikingly obvious from the electron density contour maps (see Figures 16 and 17 and Table IIb, that as one leaves the inner coordination sphere of the Nb(DPM)4 molecule, the electron density falls off significantly for the carbon atoms. For example, Figure 17a shows a density for a t-butyl carbon, C3-l, of three electrons per cubic Angstrom. However, the density of one of the methyl carbon atoms, C6-1, belonging to the same ligand has fallen to one electron. With the exception of the Nb atoms, in fact, the electron densities of all the atoms are lower than expected. This phenomenon may be attributed to a significant degree of disorder introduced into the molecule by the abundance of tfbutyl groups. No previous structure with four DPM ligands per molecule has been reported, but seven-coordinate monomeric 112 and dimeric lanthanide metal-DPM structures have been reported with unusually high thermal parameters for the t-butyl carbon atoms.48_50 Erasmus and Boyens48 suggest that for the Dy(DPM)3H20 structure, the high thermal parameters may be symptomatic of static disorder rather than thermal vibrations. To support this hypothesis, the authors cite the noticeably lower thermal parameters for several methyl carbon atoms of the t-butyl groups. Bennet, E£_élr?1 also report a similar effect for the CF3 groups in Cs[Y(HFA)4]. Although the thermal parameters of the methyl carbon atoms of the t-butyl groups in the Nb(DPM)4 structure were also high, no unusually low values were observed. Thus, it is not clear whether the disorder is static or due to thermal vibrations. The effect of the disorder is evidenced by the large standard deviation for the carbon-carbon single bond distance which is shown, along with the other average bond distances and angles, in Table III-VII and Figures 21 and 22. Despite the large standard deviation of the mean Q: 0.15 X) for the methyl carbon single bond distance, the average bond distances and angles are in satisfactory agreement with previously reported DPM-chelate structures.47-So’52’53 Furthermore, since the question of which polyhedron best describes the structure is dependent primarily on the accuracy with which the inner coordination sphere has been determined (i.e., the oxygen positions), the inability to precisely determine the carbon atom positions was only a minor disappointment. As Tables III and IV indicate, the Nb-O bond length has been determined to a much greater degree of precision than the C-C single bond length. Since this is the first crystal structure of a Nb beta- diketonate, a direct comparison of Nb-O bond lengths is not possible. 113 .¢A2mnvnz Ga :008 0£u mo coau0fi>0c mammamum ufi0£u mam Amv 000cmumav moon moan 0umH0£o Am mam < 00H900Hoa u0>ov 0mmu0>0 0:9 .HN anaNNm 114 NN magmas 115 .qAZmovaz CH moan mumfimsu 0cm «0 m0awam uoau0uca Am cam < m0H=o0Hoz u0>0v 0wmu0>m 0:9 .NN answam 116 mm one»: odHodm Ewe-N. 6 m0 ‘ _.U Wmfimfi N — a 6 6 6 117 However, the structures of several niobates containing the oxalate ligand show Nb-O bond distances ranging from 2.07 to 2.16 4.55’56 The structure of [NbOC12(OC2H5)(bipyridyl)] reveals a suprisingly short Nb-O (ethoxy) bond length of 1.87 3.54 To account for this, the authors suggest the presence of considerable double bond character for this bond. The niobyl, Nb=0 distance is 1.71 X in the molecule and varies from 1.66 to 1.71 A in other Nb=0 containing structures.55’56 The average Nb-O distance of 2.13 A for Nb(DPM)4 compares favorably with the above Nb-O single bond distances. It is of interest to consider the possible reasons why Nb(DPM)4 adopts a D4 square antiprismatic configuration rather than one of the two D2 dodecahedral molecular arrangements. Qualitatively, one might predict that the D2(aabb) stereoisomer would be least likely to be the coordination polyhedron for Nb(DPM)4. Such a configuration would require the four identical bidentate DPM ligands to span polyhedral edges differing by 252 (see Table XIV). Hoard and Silverton,3a in fact, rule out the D2(aabb), C1(abmg), C2(mmgg) dodecahedra and the C2(llss) square antiprism from consideration as possible stereoisomers for neutral tetrakis bidentate chelates on the basis that the related isomers with equivalent edges can better simultaneously minimize the effects of both closed-shell repulsions and ring constraints. However, as mentioned above, the polyhedron which best describes the structure of Ho(DPM)3(4-Pic)247 is based on a C2(llss) square antiprism in which a diketonate ligand spanningau11.edge is substituted by four picoline ligands. Although this is not a tetrakis chelate, two of the DPM ligands span 3 edges and one apans an 1 edge. To add further insight into the prediction of eight-coordinate stereochemistries, Kepert57 118 extended Hoard and Silverton's38 ligand-ligand repulsion energy calculations for eight monodentate ligands and showed that the potential energy minima corresponding to the square antiprism and the dodecahedron are very similar and that these stereochemistries are easy to distort. Further calculations by Blight and Kepert58 showed that a potential energy barrier between these stereochemistries does not exist, as 2’4’59 and therefore, in the absence of other stereo- earlier assumed, chemically-directing forces, there may be a continuous ligand movement, creating a fluxional structure. More recently, Blight and Kepert have extended their ligand-ligand repulsion energy calculations to eight- coordinate complexes with four bidentate ligands.60 The relative stabilities of the various stereoisomers were calculated as a function of the "normalized" ligand bite i.e., the distance between the two oxygens of the ligand divided by the metal-oxygen bond length. For bites of 1.20 and 1.25, separate minima on the calculated potential energy surfaces occur for the D and D4 square antiprisms. The D 2 2 dodecahedron appears as a saddle between these two stereoisomers with a slightly higher energy. Consequently, the authors note that the similar energies of these three stereochemistries make a prediction of a given isomer impossible. Additional energy terms such as crystal field stabilization, covalent o bonding, D bonding, and crystal packing or solvation forces become important in determining the stereo- chemistry. It is relevant to note that the ACAC bite in the Zr(ACAC)4 structure3b is 1.22 and the observed D2(ssss) stereochemistry is consistent with the above predictions. As the bite of the ligand is increased to 1.30, a single minimum corresponding to a D4 antiprism appears on the potential energy surface. The authors state that ligands 119 with such a large bite would not be expected to form discrete eight- coordinate chelates since the ligand-ligand repulsion would be lowered if the ligands bridged different metal atoms to form a polymeric structure. This is the reason, the authors summarize, that molecules with this stereochemistry have not been observed. The bite of both molecules in the asymmetric unit of the Nb(DPM)4 structure is 1.28. Consequently, the observed D4 stereochemistry is again consistent with Blight and Kepert's theoretical prediction. However, the ligand-ligand repulsion does not appear sufficiently important to cause the compound to adOpt a polymeric structure. D. The Stereochemistry of Nb(DPM)4 in Solution The stereochemistry of Nb(DPM)4 in solution was investigated by means of electronic absorption spectrophotometry and ear spectroscOpy. In both cases the same stereochemical assignment was implied. The electronic absorption spectrum of Nb(DPM)4 in dichloromethane solution is shown in Figure 23. Table XVI lists the absorption maxima and the corresponding molar absorptivities. The qualitative features of the spectrum include a broad absorption at 17.8 kK with a broad shoulder at 15.4 kK and a sharper asymmetric band at 24.0 kK. The band which appears off scale in Figure 23 is one of two bands in the ultra- violet region at 32.0 (shoulder) and 35.0 kK. Deconvolution of the spectrum results in two sets of bands containing either 4 or 5 bands between 33.3 and 12.5 kK. Upon aging, the solution becomes pale yellow (almost colorless due to dilution), and a concomitant decay of the spectrum in the 33.3 to 12.5 kK region occurs until only the two bands at 32.0 and 35.0 kK remain. This time dependence parallels the 120 .Esuuo0om 0:u mo wooausao>coo0m N uo0m0uo0u m0oHH v0uuow one vmzmmv 0:9 .Am «loa x mw.mv 0C05u06ouoafiofim 5H «Atmavnz mo Eduuo0om coauouomom oficouu00H0 0nu mo aoww0u 0Hnfimfi> 0:9 .NN aaaNNe 121 NN maaNNe 2:: 235.083 oom o.— eoueqiosqv 122 Table XVI UV-Visible Bands of Nb(DPM)4 in Dichloromethane (2.83 x 10'85) Experimental: Resolved: (dashed lines)§ Resolved: (dotted lines)§ Charge transfer: 650 561 416 680 550 415 387 705 655 545 415 387 312 286 Esz 15.4 17.8 24.0 -M-1 x 10-2 é-Dotted and dashed lines of resolved spectrum shown in Figure 23. 123 conductivity observations discussed above (see p. 69) and again is believed to be due to oxidation, possibly accompanied by hydrolysis. Thus, the bands in the visible region may be due to transitions involving the single d electron of the Nb in the +4 oxidation state, but the two bands in the ultraviolet region are due to ligand charge transfer. The validity of the latter assignment was confirmed by observing the identical bands at 32.0 and 35.0 kK for a dichloromethane solution of Zr(DPM)4. There are three possibilities for assigning the bands in the visible region: the bands may be due to (1) d-d transitions, (2) metal to ligand charge transfer, and, (3) ligand to metal charge transfer. In view of the large difference in intensities between the two bands at 14.2 and 15.3 kK (e = 280 and 636 cm7¥Mfl, respectively) as estimated from the "dashed lines" in Figure 23 and the three bands at 18.4, 24.1, and 25.8 kK (e = 2000, 1890, and 1620, respectively) as judged from the deconvoluted spectrum in Figure 23, it is tempting to assign the two low energy bands to d-d transitions. Figure 24 shows the crystal 61’62 As the eight field splitting diagram for a D4d square antiprism. monodentate ligands of D4d square antiprism are replaced by four bidentate ligands, the symmetry is lowered to D and the degeneracy 4 of the E2 level is removed. Consequently, three d-d transitions would be predicted. The observation of only two bands may be due to spectral deconvolution inaccuracies or to a non-detectable energy difference between the B2 and B1 energy levels. Deutscher and Kepert11b were unable to assign any of the observed bands in the UV-visihle spectra of several tetrakis diketonates to d-d transitions. However, the above authors do make d-d assignments for three weak bands at 9.8, 12.8 124 Nemm c.60HuoHuam 0umswm own 0 com couo0zmu0ooo own 0 How 0H0>0H u0:0 Hmufiouo o 0:u How Emummfio wcauuaaom oa0aw Hmummuo 0L9 .NN magmas 125 «N 0uawam xlx nu N v p m Nab. _ < Nx Nx 3 1m u xx _6 N m on D «no — < xx xlx n N N o [1|le Nx nx .u v mm tV 126 (shoulder at 14.7), and 17.5 kK for the dodecahedral NbC14(C2H5 diars)2 in toluene. Agreement with the theoretically predicted number of transitions for a dodecahedron (see Figure 24) is cited but the appearance of shoulders at 14.7 and 23 kK is not explained. The bands of lowest intensity in Nb(DPM)4 at 14.2 kK and 15.3 appear to be the most reasonable candidates for assignment as d-d transitions, even though the molar absorptivities are unusually high. However, bands of unusually high intensity for d-d transitions have been assigned previously for several tetrakis(8-quinolinolato)tungsten(IV) chelates in benzene 63,64 solution. Bands at 9.9 (e = 500) and 11.2 RX (6 = 450), for example, have been assigned for both W(QCl and W(QBr (halogen 2)4 substitution at the 5,7 positions of the 8-quinolinol). 2’4 The remaining bands in Nb(DPM)4 at 18.4, 24.1, and 25.8 kK are presumed to be charge transfer bands on the basis of intensity. An attempt to make a specific assignment in terms of direction of the transfer was hampered by the absence of consistent data on analogous Nb(IV) chelates. It is probable that the transitions are due to ligand to metal charge transfer in view of the electron-rich ligand N orbitals and the high positive charge on the metal atom. An experiment that may confirm this assignment would be to prepare, if possible, the trifluoro- and hexafluoro acelylacetonate analogs of the DPM complex and look for the expected high energy shift in the transitions as a function of increasing fluorination. Deutscher and Kepert11b assign a band at 24.0 kK (e = 1200) to a d to N * l; a n3 to d transition for Nb(ACAC)4 in toluene. However, the band at transition and a band at 19.4 kK (e = 890) to 24 kK is assigned to a N3 to d transition in a subsequent discussion in the publication. In spite of this confusion, the assignment of the 127 three bands between 18.4 and 25.8 kK in Nb(DPM)4 to charge transfer transitions involving the Nb atom and the DPM ligands is reasonable. The magnetic circular dichroism spectrum shown in Figure 25 was recorded in an effort to confirm the deconvolution of the electronic * With the exception of a shoulder at 23.6 kK, absorption spectrum. no new additional bands were observed. Thus it appears that the deconvoluted spectrum represented by the dashed lines is the appropriate choice, as was assumed in the above discussion (see Figure 23). In an attempt to correlate the solid state stereochemistry with the stereochemistry in solution, an electronic absorption spectrum of a mull of Nb(DPM)4 was recorded. The spectrum is identical to the solution spectrum both in terms of relative band intensities and band energies. Thus, this evidence suggests that the complex retains a square anti- prismatic stereochemistry in solution. To test this hypothesis, an esr study of Nb(DPM)4 was undertaken. The room temperature esr spectrum of the complex in hexane is shown in Figure 26. Ten well-resolved nuclear hyperfine components are 93Nb). The anisotropic components observed, as expected (I = 9/2, 100% are observed in the hexane glass spectrum shown in Figure 27. The isotropic and anisotropic g values (, gll, gi) and the coupling constants (, All, and Al) were calculated with the aid of second order corrections, since the high field approximation for determination # The author wishes to acknowledge Professor C. Djerassi, Stanford University, for recording the spectrum. 128 .asuuo0om n02 0nu 30H0o Q3050 ma asuuo0om coauouomom ofiaouuo0a0 0nu mo coaw0u 0HoN0H> 0£u quZmovoz mo Eouuu0om amfiousofio umasouwo 0Hu0owma 059 .NN naaNNm 129 #:5532083 oom b h NN maaNNm 0.7.. :01 AH» arm 130 .0cmx0n CH «AZmnvpz mo Bouuo0am um0 0nsumu0m50u Boon 05H .NN masNNN 132 .000Hw 0:0x0£ CH «Azmmvnz mo Axcxxv asuuooo0 H00 0£H .xu 0uswwm 133 mm 0uswfim Ooom. 0—0 00—0 0—0 «3-4 134 of g values was precluded by the rather large magnitude of the hyperfine splittings6S (see Table XVII and XVIII). The room temperature spectrum yielded and ,and g1, gll, Al, and All were obtained from the hexane glass spectrum. Only five of the ten possible parallel compo- nents were resolved. Consequently, the positions of the third and eighth, and fifth and sixth lines were used to determine All and gll. The experimentally-observed parameters are tabulated and compared to "calculated" parallel g and A values which were obtained by substituting the experimental perpendicular and isotropic values into the following equations: a 3 — 2 8 I I <8) 8 I A '-'-' - 2 II 3 Al The experimental anisotropic values were substituted into the above equations to obtain the "calculated" and parameters. Theoretical calculations of ear parameters for a D2d dodecahedron and D4d square antiprism have shown that gll < gl and AII >.Ai for a dodecahedron and $1.< gll = 2.0023 and All < Al for a square antiprism.61’67 The anisotrOpic parameters for Nb(DPM)4 show that g1 = 1.928 < 8" = 1.997 and All - $2.70 < Al.= 141.16. It is evident, therefore, that a square antiprismatic configuration is the correct choice for the stereochemistry in hexane solution. The identical spectrum.was obtained in dichloromethane at room temperature but the parallel components were not resolvable from the glass spectrum due to a solvent line-broadening effect which apparently has decreased the spin-lattice relaxation time.66 135 Table XVII Second Order Correction Equations For Calculation of g Values65 For resonance, hv = gBHo 2 For , Ho = Hm + mI-+ 2H0 [ I(I+1) - mI ] 2 Al 2 For g“, H0=Hm+AIImI+-2-fi—[I(I+l)-ml] 0 A1? + AIIZ 2 For gi, Ho = Hm +AlmI + 4H [ I(I+1) - mI ] 0 Where Hm = the magnetic field position of the ESR line due to the nuclear spin quantum number, m , v is the klystron frequency I and , All, and Al are the hyperfine coupling constants. 136 Table XVIII ESR Parameters For Nb(DPM)4 - 1.95073 (calc ) = 1.9508 = 109.9 83 (calc ) = 111.6 0 = —b— = gll 1.9967 gll g1 is consistent with a square antiprismatic geometry and not a dodecahedral structure. Powder diffraction data were compared for Zr(DPM)4 and Nb(DPM)4 as shown in Table XIX. The two patterns look very similar, but small differences in the powder patterns make an unequivocal statement regarding isomorphism impossible. The important point, however, is that the doped powder and solution esr spectra were identical and, therefore, consistent with the theoretical predictions for a square antiprism, even though the symmetry in 138 .u0oaoo «ASvanz mo Bauuomom H00 0u900u0os0u Boon 0:9 .mmm 0H=wfim 139 0mm 0uswam To 8N. .—J 140 .xcxx um u0oBoo «Aimavpz mo Enuuo0o0 N00 0:9 .:wm 0H=wam 141 :wN 0uswam 0 com 142 .qAZmQVuN ca omooo «AZmQV:z mo xcxx um Eouuo0o0 N00 umozoo 0:9 .mm 0uswwm 143 NN maaNNN PseoN. p1 144 Table XIX X-Ray Powder Patterns for Nb(DPM)4 and Zr(DPM)4 Zr (DPM)4 Nb(DPM)4 10.97-4- v.s.b‘ 10.43 v.s., bt 10.14 - v.8. 9.57 - v.3. 9.43 v.s., br 8.56 - s. 8.44 8., br 7. 3 - . 7.53 s. 6.59 _ 6.51 m. 6.40 6.17 w. 5.81 - v.w. 5.72 w. 5.51 - v.w. 5.38 v.w. 5.12 - v.w. 5.05 m. 4.95 - w.m. 4.81 - v.w. 4.87 w. 4.67 - m. 4.71 m. 4.52 - m. 4.58 v.w. 4.44 m. 4.27 - s. 4.29 m. 4.01 - w. 4.06 w. 3.76 - w. 3.86 w. 3.72 w. 3.41 - v.w. 3.51 v.w. 3.29 - v.w. 3.30 v.w. 3.18 - w. 3.15 - w. 3.16 v.w. 3.05 v.w. 2.95 v.w. 2.86 v.w. 2.32 - w. 0 a d-spacing in A units. b Visual estimates of intensity with the following abbreviations used: v.s. = very strong, s. = strong, m. = medium, w. = weak, v.w. = very weak, br. = broad. 145 solution may be D2 or C2 rather than D4. The question of retention of the solid state stereochemistry in solution has been a widely-studied aspect of the chemistry of many complexes and in particular, the Mo(V) and W(V) octacyano 2,58,61,67-69 system. Emission spectral data from frozen powders and solutions of lanthanide metal beta-diketonates has been presented as evidence for the presence of the D4 antiprism.7O However, in both of the above systems, the nature of the influence of cations and solvents on the stereochemistry in solution is unclear and consequently, the interpretation of the experimental observations is surrounded by controversy.68’69’71 On the other hand, as described above, the square antiprismatic polyhedral framework of Nb(DPM)4 .18 retained in solution. BIBLIOGRAPHY 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. S. J. Lippard, Prog. Inorg. Chem., 8, 109(1967). E. L. Muetterties and C. M. Wright, Quart. Rev. Chem. Soc., 21, 109(1967). (a) J. L. Hoard and J. V. Silverton, Inorg. Chem., 2, 235(1963); (b) J. V. Silverton and J. L. Hoard, Inorg. Chem., 3, 243(1963). R. V. Parish, Coord. Chem. Rev., 1, 439(1966). R. C. Fay and T. J. Pinnavaia, Inorg. Chem., 2, 502(1968). J. P. Fackler, Jr., Frog. Inorg. Chem., 1, 361(1966). C. Djordjevic and V. Katovic, Chem. and Ind., 411(1963). Ibid., J. Inorg. Nucl. Chem., 25, 1099(1963). C. Djordjevic, Spect. Acta., 21, 301(1965). N. Brnicevic and C. Djordjevic, J. Less Com. Met., 13, 470(1967). (a) R. L. Deutscher and D. L. Kepert, J. Chem. Soc. D., 121(1969); (b) Ibid., Inorg. Chim. Acta., 4, 645(1970). A. Rosenheim and E. Roehrich, Z. Anorg. Chem., 204, 342(1932). F. Fairbrother, "The Chemistry of Niobium and Tantalum", Elsevier Publishing Co., New York, N. Y., 1967, p. 33. (a) E. L. Muetterties and C. M. wright, J. Am. Chem. Soc., 81, 21(1965); (b) Ibid., 4706(1965). H. Funk, Chem. Ber., 61, 1801(1934). A. Syamal, D. H. Fricks, D. C. Pantaleo, P. C. King, and R. C. Johnson, J. Less Com. Met., 12, 141(1969). P. N. Kapoor and R. C. Mehrotra, J. Less Com. Met., 8, 339(1965). R. N. Kapoor, S. Prakash, and P. N. Kapoor, Bull. Chem. Soc. Jap., 49, 1384(1967). R. Gut, H. Buser, and E. Schmid, Helv. Chim. Acta., 48, 878(1965). R. C. Mehrotra and It N. Kapoor, J. Less Com. Met., 1, 176(1964). Ibid., 453(1964). R. C. Mehrotra, P. N. Kapoor, S. Prakash, and P. N. Kapoor, Aust. J. Chem., 12, 2079(1966). 146 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 147 B. Kamenar and C. K. Prout, J. Chem. Soc., (A), 2379(1970). Von LeOpold Wolf and Hartmut Barnighausen, Acta.Cryst., 22, 778(1960). E. C. Taylor and (l A. Kraus, J. Am. Chem. Soc., 62, 1731(1947). R. E. McCarley and B. A. Torp, Inorg. Chem., 2, 540(1963). J. T. Adams and C. R. Hauser, J. Am. Chem. Soc., 66, 1220(1944). D. F. Evans, J. Chem. Soc., 2003(1959). A. Earnshaw, "Introduction to Magnetochemistry", Academic Press London, 1968, p. 6. "Handbook of Chemistry and Physics", 47th Edition, The Chemical Rubber Company, Cleveland, 1966. N. F. M. Henry, H. Lipson, and W. A. Wooster, "The Interpretation of X-Ray Diffraction Photographs", MacMillan and Company, Ltd.: London, 1961. H. Lipson and W. Cochran, "The Determination of Crystal Structures", Cornell University Press, New York, 1966. G. H. Stout and L. H. Jensen, "X-Ray Structure Determination", The MacMillan Company, New York, 1968. R. L. Vandlen and A. Tulinsky, Acta. Cryst., B27, 437(1971). T. J. Pinnavaia and R. C. Fay, Inorg. Chem., 1, 508(1968). K. Nakamoto, C. Udovich, and J. Takemoto, J. Am. Chem. Soc., 22, 3937(1970). N. S. Gill and R. S. Nyholm, J. Chem. Soc., 3997(1959). P. R. Heckley and D. G. Holah, Inorg. Nucl. Chem. Letters, 6, 865(1970). E. L. Muetterties and C. M. Wright, J. Am. Chem. Soc., 61, 21(1965); ibid., 61, 4706(1965). S. M. Horner, R. J. H. Clark, D. Crociani, D. B. Copley, W. W. Horner, F. N. Collier, and S. Y. Tyree, Jr., Inorg, Chem., 2, 1859(1968). D. M. Adams, J. Chatt, J. M. Davidson, and J. Gerratt, J. Chem. Soc., 2189(1963). D. Brown, J. F. Easey and J. G. H. Du Preez, J. Chem. Soc. (A), 258(1966). 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 148 D. B. Copley, F. Fairbrother, and A. Thompson, J. Less. Com. Met., 6, 256(1965). D. B. Capley, F. Fairbrother, K. H. Grundy, and A. Thompson, J. Less. Com. Met., 6, 407(1964). R. C. Fay and R. N. Lowry, Inorg. Chem., 2, 2048(1970). S. J. Lippard and 11 J. Russ, Inorg. Chem., 1, 1686(1968). W. DeW. Horrocks, Jr., J. P. Sipe, III, and J. R. Luber, J. Am. Chem. Soc., 22, 5258(1971). C. S. Erasmus and J. C. A. Boeyens, J. Cryst. Mol. Struct., 2, 83(1971). C. S. Erasmus and .L C. A. Boeyens, Acta. Cryst., B26, 1843(1970). J. P. R. DeVilliers and J. C. A. Boeyens, Acta. Cryst., B27, 692(1971). M. J. Bennet, F. A. Cotton, P. Legzdins, and S. J. Lippard, Inorg. Chem., 2, 1770(1968). F. A. Cotton and J. S. Wood, Inorg. Chem., 2, 245(1964). F. A. Cotton and J. J. Wise, Inorg. Chem., 5, 1200(1966). N. Galesic, B. Matkovic, M. Herceg, and M. Sljukic, J. Less. Com. Met., 22, 234(1971). G. Mathern and R. Weiss, Acta. Cryst., B27, 1610(1971). G. Mathern and R. Weiss, ibid., Acta. Cryst., B27, 1572(1971). D. L. Kepert, J. Chem. Soc., 4736(1965). D. G. Blight and IL L. Kepert, Theor. Chim. Acta., 22, 51(1968). J. L. Hoard, T. A. Hamor, and M. D. Click, J. Am. Chem. Soc., 22, 3177(1968). D. G. Blight and D. L. Kepert, Inorg. Chem., 22, 1556(1972). B. R. McGarvey, Inorg. Chem., 2, 476(1966). R. V. Parish and P. G. Perkins, J. Chem. Soc.,(A), 345(1967). W. D. Bonds, Jr., and R. D. Archer, Inorg, Chem., 26, 2057(1971). R. A. Pribush, University of Massachusetts, private communication. 65. 66. 67. 68. 69. 70. 71. 149 D. P. Johnson and R. D. Bereman, J. Inorg, Nucl. Chem., 26, 679(1972). J. E. Wertz and J. R. Bolton, "Electron Spin Resonance", McGraw—Hill, Inc-: New York, 1972, Chapter 9. R. G. Hayes, J. Chem. Phys., 66, 2210(1966). B. J. Corden, J. A. Cunningham and R. Eisenberg, Inorg, Chem., 2, 536(1970). T. V. Long, 11, and G. A. Vernon, J. Am. Chem. Soc., 22, 1919(1971). See also references therein. (a) H. Samelson, V. A. BrOphy, C. Breecher, and A. Lempicki, J. Chem. Phys., 62, 3998(1964). (b) Von E. Butter and W. Seifert, Z. Anorg. Allg. Chem., 61, 384(1971). M. O. Workman and J. H. Burns, Inorg. Chem., 2, 1542(1969). APPENDIX A Diketonate Ligand Abbreviations APPENDIX A Diketonate Ligand Abbreviations Abbreviation Trivial Name R COCHCO R R1 R2 1 2 ACAC acetylacetonate CH3 CH3 BZAC benzoylacetonate C6HS CH3 BTFA benzoyltrifluoroacetonate C6H5 CF3 DBM dibenzoylmethanate C6HS C6H5 DPM dipivaloylmethanate _E-CAH9 2-C4H9 S TTFA thenoyltrifluoroacetonate H il CF3 Tp tropolonate ——-—— APPENDIX B Observed and Calculated Structure Factors (multiplied by 10 and using a scale factor of 0.9453) APPmflHX B Observed and Calculated Structure Factors (multiplied by 10 and using a scale factor of 0.9453) H K FOBS FCAL H K FOBS FCAL H K F085 FCAL 9* L = 0 0% 0 2 335 358 4 3 1213 1184 8 4 521 551 0 3 131 62 4 4 556 514 8 5 106 149 0 4 425 395 4 5 159 188 8 6 388 317 0 5 104 49 4 6 270 307 8 7 610 577 0 6 181 253 4 7 717 709 8 8 171 162 0 7' 787 706 4 8 200 198 8 9 72 80 0 8 142 128 4 9 103 92 9 0 86 130 0 9 83 68 4 10 81 109 9 1 656 546 0 11 113 168 4 11 320 320 9 2 124 143 1 0 49 52 S 0 172 218 9 3 314 303 1 1 2649 2682 5 1 983 769 9 4 53 78 1 2 202 159 S 2 439 385 9 5 685 689 1 3 84 79 5 3 677 647 9 6 293 256 1 4 118 99 S 4 264 348 9 7 S8 85 1 5 bag 577 S 5 111 115 9 8 331 312 1 6 439 513 S 6 861 779 9 9 334 322 l 7 74 27 5 8 567 492 9 lo 134 143 1 8 459 499 5 9 153 137 10 0 1260 1207 1 9 53 117 5 10 95 89 10 1 62 135 1 10 67 31 6 0 206 257 10 3 326 250 2 0 3415 3602 6 1 176 257 10 4 701 694 2 1 113 175 6 2 198 221 10 5 143 142 2 2 193 168 6 3 141 133 10 6 311 285 2 3 930 944 6 4 102 133 10 7 422 389 2 4 72 221 6 5 260 325 10 8 186 157 2 5 123 131 6 6 150 49 11 0 61 75 2 6 519 522 6 7 890 863 11 1 741 742 2 7 683 617 6 8 244 248 11 3 488 468 2 8 74 75 6 9 101 106 11 4 138 144 2 9 135 141 6 10 120 118 11 5 306 274 2 11 96 90 6 11 318 287 11 6 328 320 3 0 263 274 7 0 52 151 11 8 186 184 3 1 332 411 7 l 239 227 11 9 168 186 3 2 1237 1060 7 P 515 406 11 10 91 97 3 3 330 421 7 3 226 213 12 0 709 7?3 3 4 287 285 7 4 150 100 12 1 115 108 3 5 724 630 7 S 190 185 12 2 237 2?4 3 6 667 617 7 6 607 603 12 3 100 116 3 7 73 53 7 8 604 564 12 4 606 598 3 3 340 342 7 9 219 211 12 9 149 l?l 3 9 55 70 7 10 144 141 12 6 142 144 3 10 138 124 8 0 679 687 12 7 202 179 4 0 640 677 8 1 141 80 12 8 95 90 4 1 1145 1001 8 2 71 50 13 1 ‘5“3 69’ 4 2 497 475 8 3 280 269 l3 2 173 198 ii *APPENDIX B (Cont'd) H K F085 FCAL H K FOBS FCAL H K Fons FCAL 13 3 440 402 0 2 548 507 -3 7 343 304 13 4 172 140 o 3 89 104 3 7 241 284 13 5 435 389 0 4 212 155 -3 R 265 P70 13 6 137 163 0 5 663 630 3 R 351 361 13 8 148 133 o 6 325 377 -3 10 335 310 13 9 81 108 0 8 167 192 3 10 228 243 14 0 336 332 o 9 331 356 3 11 85 104 14 2 133 146 -1 1 2083 2101 -4 1 192 164 14 3 371 383 1 1 1626 1787 4 1 2007 1942 14 4 453 442 -1 2 382 309 -4 2 2131 1903 14 5 64 90 1 2 444 406 4 2 1343 1342 14 6 67 109 -1 3 630 487 -4 3 357 319 14 7 278 251 1 3 88 70 4 3 342 385 15 1 457 454 1 4 574 571 -4 4 508 469 15 2 177 165 -1 5 114 76 4 4 136 175 15 3 226 220 1 5 173 141 -4 5 389 352 15 4 319 334 -1 6 402 412 4 5 398 426 15 5 166 163 l 6 364 328 -4 6 53? 499 15 6 360 335 -1 7 420 416 4 6 142 183 15 7 93 81 1 7 345 319 -4 7 122 123 15 8 167 181 -1 8 293 278 —4 8 164 141 16 0 570 572 1 8 320 372 4 8 334 338 16 2 87 79 -1 10 197 160 —4 9 444 382 16 3 265 290 1 10 210 180 4 9 332 280 16 4 111 143 -2 1 291 312 -4 11 151 150 16 5 95 76 2 1 103 77 4 11 130 138 16 7 283 290 -2 2 839 647 -5 1 1130 903 17 0 66 111 2 2 266 262 5 1 861 781 17 1 482 447 -2 3 142 166 -S 2 97 100 17 3 115 125 2 3 625 661 5 2 136 126 17 4 225 246 -2 4 299 334 -5 3 1672 1379 17 5 151 145 2 4 48 91 5 3 718 676 17 6 215 237 -2 5 716 661 -5 4 440 427 18 0 538 543 2 5 447 444 S 4 718 673 18 3 277 275 -2 6 529 468 5 5 103 133 18 4 234 229 2 6 543 530 -S 6 707 724 18 6 119 109 -2 8 171 188 S 6 816 699 19 1 214 241 2 8 82 85 -S 7 461 462 19 2 191 184 -2 9 422 377 9 7 438 420 19 3 124 123 2 9 470 457 -S 8 517 483 19 4 109 135 -3 1 251 311 9 H 399 3RR l9 9 218 232 3 1 925 886 -5 10 170 156 20 0 291 340 3 2 477 505 5 10 224 225 20 1 99 104 -3 3 1568 1577 -6 1 153 140 20 3 175 168 3 3 271 303 6 1 136 255 21 0 84 99 -3 4 252 343 -6 2 1234 1246 21 1 199 214 3 4 444 438 6 2 1170 1161 -3 5 169 157 —6 3 138 144 *8 L = 1 8* 3 5 140 155 6 3 89 117 -3 6 569 524 —6 4 93 142 0 1 478 461 3 6 483 419 6 4 272 285 iii #— 0:313D~JNCDJMfl£‘bLJuJV~*~*~—iO~OJJmJFJ7fl X 334x133.nm»uwm~—ooacx3~a~tnmbw«\1m~ FOIS 567 1297 482 343 242 447 331 170 132 182 456 308 321 930 148 554 120 739 538 612 453 550 317 251 292 332 771 896 56 588 558 498 580 346 232 213 478 281 590 897 128 647 728 93 257 164 211 340 276 309 34? FCAL 586 1273 400 297 239 433 350 15? 126 258 492 354 189 951 132 561 110 739 525 566 388 520 307 218 104 243 751 858 65 580 511 480 460 289 207 216 502 315 504 837 136 705 699 92 231 172 235 329 288 301 340 APPENDIX B (Cont'd) H q 9 K g q ~9 10 9 10 ~10 10 ~10 10 ~10 10 ~10 10 ~10 10 ~10 10 ~10 10 ~11 11 11 ~11 11 ~11 ll 11 ~11 11 ~11 11 ~11 ll 11 ~11 12 ~12 12 ~12 12 ~12 12 ~12 12 ~12 12 ~12 12 ~12 12 ~13 13 fl wwcommoommbtwwmmv-vo000:1:~1~1oombbuwm~—~o~orma~o~mmt~buwmm iv F035 FCAL 228 217 95 H2 280 247 273 254 768 703 878 866 103 104 382 331 288 29? 209 P38 613 50? 566 493 236 218 285 P39 197 194 284 257 331 341 309 291 539 577 627 642 113 125 928 856 799 755 426 377 230 217 136 125 216 200 245 228 178 175 203 206 198 192 192 184 67 72 222 213 137 152 908 907 1061 995 78 60 84 65 278 262 259 260 472 465 429 395 179 172 137 125 135 117 213 188 210 191 248 233 420 416 392 411 H 13 ~13 13 ~13 13 13 ~13 13 13 ~13 13 ~14 14 ~14 14 ~14 14 ~14 14 14 14 ~15 15 15 15 15 l5 15 ~16 16 ~16 ~16 ~16 16 16 ~17 17 ~17 17 ~17 17 17 ~17 17 ~15} 18 ~18 18 ~18 1R ~18 K UT?4‘UUNNO‘O‘U’IJ-‘4‘UUHHO‘U'IU'YDUNNmflc‘waF-‘CDO‘WUTbPUUNNQQNO‘O‘U'IDbUMN FOIS FCAL 97 106 847 823 734 684 333 283 311 301 90 78 152 154 175 185 165 155 136 111 229 195 722 734 807 676 105 154 133 124 283 260 93 60 298 339 451 421 91 98 174 167 284 283 362 353 163 135 299 299 277 241 151 116 211 205 409 411 481 411 88 99 117 114 489 526 437 407 142 108 251 270 340 319 177 216 193 175 304 321 360 312 76 61 183 214 120 104 226 245 254 225 119 141 115 104 161 187 128 116 229 265 18 ~18 ~19 19 ~19 19 ~19 19 ~20 20 ~20 ~21 {1%} I I I I I I I m,\),\)\).\,V1V—--——~H1—-—~Hr—HI—'~oCOocoooao K HJ-‘NNJ-‘J-‘UUH—‘O‘JI '— UNVHHCOOOOWGDO‘O‘WU'TbDUWNNF‘HOOGENO‘mbUNh-‘O F085 FCAL 202 191 99 115 135 155 202 217 211 259 235 211 211 216 226 183 170 203 302 290 116 151 128 159 : 2 an» 3515 4147 315 359 58 179 160 209 513 587 237 204 318 349 488 471 94 100 73 S2 64 74 116 148 2069 2223 1709 1921 1669 1508 2504 2261 401 396 86 42 98 63 390 339 896 847 810 794 480 493 463 495 296 308 380 454 260 310 134 133 106 110 2957 3103 2052 2102 45 43 63 149 468 409 287 303 789 879 APPENDIX B (Cont'd) H K FOBS'FCAL 2 3 854 983 -2 4 503 439 2 4 205 335 ~2 5 125 174 2 5 161 190 -2 6 270 241 2 6 351 384 ~2 7 555 564 2 7 660 635 -2 8 176 231 2 8 62 13 2 9 152 150 2 11 156 171 -3 O 366 338 3 0 135 131 ~3 l 613 599 3 1 2126 1992 ~3 2 887 723 3 2 1122 1063 -3 3 659 662 3 3 225 154 -3 4 110 178 3 4 282 268 -3 5 286 329 3 5 426 421 ~3 6 670 623 3 6 524 544 -3 8 422 403 3 8 511 550 ~3 9 200 164 3 9 67 40 ~3 10 128 140 3 10 81 86 ~4 0 507 484 4 0 1376 1182 ~4 1 1594 1254 4 l 1010 964 -4 2 484 473 4 2 543 502 4 3 751 773 -4 4 638 616 4 4 84 156 -4 5 121 180 4 5 166 166 ~4 6 606 513 ~4 7 586 618 4 7 922 880 4 8 204 170 ~4 9 111 117 4 9 131 12? 4 10 137 121 V H -4 4 -5 5 -5 5 -5 -5 5 -5 5 -5 5 -5 5 -5 -5 5 5 5 ~6 6 -6 6 6 ~6 6 ~6 6 -6 6 -6 ~6 6 -6 6 6 6 -6 6 7 -7 7 -7 7 -7 7 -7 7 -7 7 K 11 11 0 \OCDGNNO‘UWU‘FOUUNI-‘HOOOO@GNO‘O‘U'IWF6‘wwNI-‘HO h—I-II-i mun$~bcguunHv-—-o~——-o F085 FCAL 296 282 251 279 162 112 58 71 572 354 550 575 1194 1155 655 574 194 271 155 169 579 547 578 570 217 189 450 409 812 780 87 100 609 509 425 438 186 231 152 140 254 282 131 151 333 315 189 277 512 468 609 466 495 540 86 94 526 526 156 161 241 238 794 737 982 941 681 667 194 175 173 168 85 60 171 174 326 287 245 250 67 76 257 375 933 810 484 460 633 546 250 172 294 359 69 141 479 504 589 579 214 228 H -7 ~7 -7 -7 ~8 ~8 -8 -8 ~8 ~8 ~8 ~8 -9 -9 -9 -9 -9 -9 -9 -9 ~10 10 ~10 10 ~10 10 ~10 K pat—a UNNHHOOOOOOWCDO‘O‘UTUWUUNNHI-OOWCDNNO‘O‘Lnt‘J-‘LJUNHHOOOOCOCDZDO‘O‘ - F085 FCAL 757 691 353 377 706 681 260 239 107 89 327 328 119 120 161 166 982 815 1653 1596 99 82 212 204 223 234 91 104 407 398 200 119 977 898 73 71 386 424 192 190 711 666 578 538 168 163 250 241 72 58 264 256 733 706 1076 1028 211 244 832 735 341 329 304 327 718 602 403 453 397 359 424 388 436 430 195 215 121 107 288 282 100 118 119 93 1620 1699 795 749 94 144 62 37 154 125 165 194 304 338 APPENDIX B (Cont'd) H 10 ~10 10 ~10 10 ~10 10 ~10 10 ~10 10 10 ~11 11 ~11 11 ~11 11 ~11 ~11 11 ~11 11 ~11 11 ~11 11 ~12 12 ~12 ~12 12 ~12 12 ~12 12 12 ~12 12 ~12 12 12 ~13 ~13 13 ~13 13 ~13 13 K wUNN—‘HOCDNI‘IU‘O‘U'I‘P«L‘WUNNHOOOOCnmo‘O‘UTU‘bUUNNF‘HOWQNNO‘O‘U'I'JI“{PU FOBS'FCAL H 501 869 559 120 87 180 281 329 380 95 218 102 647 599 240 68 657 297 346 442 574 249 355 166 225 107 94 750 328 90 111 219 199 119 648 694 80 186 163 222 294 154 101 555 406 137 113 554 296 v1 525 ~13 834 13 558 ~13 96 13 92 ~13 197 13 228 13 286 ~14 382 14 111 ~14 230 14 103 ~14 651 l“ 559 ~14 272 14 149 14 615 14 322 14 350 ~15 401 15 512 ~15 236 15 337 ~15 163 15 211 ~15 116 15 102 ~15 718 15 327 ~15 112 ~15 136 15 217 ~16 229 16 109 16 624 ~16 623 16 84 ~16 194 16 183 16 214 ~16 304 16 133 -17 96 17 592 -17 366 17 256 ~17 135 17 592 ~17 244 17 K .b£>ucgnHv-—-‘gq:hg~p.gLgn39<33~ogn¢nbggwrvn1~r~c>OCD~IOI>s‘wtdn;NwcrO‘anc‘b F085 FCAL 219 202 102 144 322 337 282 237 201 211 302 327 296 275 654 623 354 354 165 196 108 84 399 375 67 82 671 655 79 106 126 139 528 500 80 96 95 123 68 36 400 423 437 383 263 262 107 113 288 301 145 134 249 251 166 174 274 299 196 192 377 363 426 485 694 634 111 88 380 386 120 144 347 383 77 96 144 115 132 131 341 326 294 290 432 390 99 156 125 128 93 120 131 126 150 188 211 182 ~17 17 ~17 17 ~18 18 18 18 ~18 18 ~18 18 ~18 19 ~19 19 ~19 19 19 19 ~19 ~20 20 ~20 20 ~20 ~20 ~21 ~21 ~21 ~—-—u—-—a.——1—OODOOOOOO K N-‘Owa—‘OOU‘§UNNHHOO4§¢UUV~OOOOWUT r UT§JQVN-~03®J1PJNH F085 FCAL 157 170 276 240 188 192 175 166 388 364 540 554 140 143 107 98 186 223 276 243 163 198 254 224 95 102 76 118 174 185 354 367 148 186 152 138 123 123 130 125 209 218 156 175 507 496 98 93 81 113 189 220 181 208 80 109 118 160 160 186 = 3 {H} 296 323 1945 1799 30 78 178 266 1016 1028 350 328 94 76 476 492 88 82 1301 1332 1231 1204 252 297 320 296 183 257 68 74 1032 1022 221 236 APPENDIX B (Cont'd) H K u—u—ou—I -aoaow~1~zo~a~u1 oquuommbbwwmm-~oommowmmbbuuvm— v11 F085 FCAL 90 116 382 417 362 383 267 308 109 100 224 222 299 313 237 248 248 273 64 92 279 299 169 213 2086 1888 1080 1055 171 260 120 242 400 392 305 321 574 530 985 1080 340 328 186 293 290 322 127 106 287 279 429 401 95 97 862 783 1157 1078 145 183 188 249 849 861 562 543 66 100 1123 981 58 113 302 356 399 361 573 588 326 354 336 332 352 331 98 71 229 226 185 185 122 148 87 104 2489 2248 454 461 1364 1233 H 7 K ~— ~000333‘3‘J‘1‘J196‘UN gm ~ ~ _o HWWOOJD$©WW1§§UQNN~HOOommflfla‘mbbduwm—fl Fons FCAL 1418 1315 445 437 344 312 40 49 267 234 844 827 659 604 150 204 141 134 182 193 374 366 211 207 73 93 123 130 123 158 735 611 202 172 292 282 90 109 1200 1114 864 912 120 64 877 829 303 316 408 395 564 550 333 263 484 442 158 113 59 55 259 251 344 347 529 534 194 269 704 691 1392 1358 287 216 361 366 209 204 251 201 452 445 752 755 798 730 228 205 118 134 411 426 178 206 158 151 177 243 1064 994 H -7 7 -7 7 -7 7 -7 -7 7 -7 7 -7 7 7 -7 7 -8 8 ~8 8 -8 -8 8 ~8 8 ~8 ~8 8 -8 8 -9 9 9 -9 9 -9 9 -9 -9 9 -9 9 -9 9 9 —9 9 -10 10 -10 K 2 2 3 3 4 4 S 6 6 1 1 7 7 8 8 9 0 0 1 1 2 2 3 4 4 5 S 6 8 8 9 9 1 1 2 3 3 4 4 5 6 6 7 7 8 8 9 10 10 1 1 2 F085 FCAL 126 131 354 334 194 169 1122 1111 162 106 671 641 137 201 428 397 343 329 440 425 186 168 484 465 81 95 82 82 263 239 306 297 130 153 388 351 536 616 713 733 161 206 188 179 580 538 593 527 527 566 352 345 243 229 269 280 507 521 257 241 406 360 769 690 84 86 351 429 606 541 489 458 207 210 82 72 363 349 456 397 238 225 324 290 357 354 139 173 71 88 268 254 251 249 173 217 191 232 801 747 APPENDIX B (Cont'd) H 10 ~10 10 ~10 10 ~10 10 ~10 10 10 ~10 10 ~11 11 11 ~11 11 ~11 11 11 ~11 11 ~11 11 ~11 11 11 ~11 ~12 ~12 12 ~12 ~12 12 ~12 12 ~12 12 12 ~12 12 ~13 13 13 ~13 13 ~13 13 13 ~13 K 0019¢UUN~H~D~OGO‘O‘U'IUWbJ-‘UNNI-‘OOOENNO‘O‘UTDDUUNI-‘F'OOCDO‘O‘UTUTPéUUN FOBS'FCAL 580 594 404 384 85 97 349 316 383 341 551 536 348 303 173 142 280 264 253 242 383 378 337 305 380 375 368 355 203 185 792 837 587 590 568 532 57 32 244 231 183 192 185 192 168 160 277 281 175 178 190 172 66 52 222 224 85 115 771 747 737 707 346 351 373 340 132 64 313 301 198 205 203 189 151 174 223 213 197 165 223 228 472 494 329 297 91 101 825 823 455 380 401 392 148 143 112 113 195 174 viii H 13 13 13 -14 14 -14 -14 14 -14 14 -14 14 14 -14 -15 15 -15 15 -15 15 ~15 15 15 16 ~16 16 ~16 16 ~16 ~16 16 16 -17 17 -17 17 -17 17 17 -17 -17 18 ~18 18 18 ~18 ~18 ~18 -19 19 K "HomwaN—‘flomékwwwwO‘U'IUIkUUNNU-I‘NOOfibUUHfiomOOU‘W6‘4‘UNNQNO‘ F085 FCAL 300 312 299 280 235 233 688 768 581 567 193 221 321 313 118 116 283 295 444 428 99 144 92 103 170 175 149 110 418 470 347 332 746 745 255 265 396 444 291 280 177 182 253 250 202 190 70 119 380 375 422 384 118 101 167 150 242 288 377 421 220 245 170 157 244 242 350 342 282 295 223 199 247 267 260 245 78 78 181 207 98 91 103 98 252 245 313 315 70 82 121 151 254 267 125 107 155 152 318 327 H ~19 19 ~19 ~20 ~20 ~21 # # wh—wHHc—IHD—ic—u—dwr—u—t—t—voocccooOOOO I I I I NfUhJN--~*~ ~2 K hJ¢FU£‘ULJ r n-H $6nc~§(gn}-—hvo<3c>o‘003®~dO‘OLDUW&(AUJNIU~'HCDC>-OGDNCfiU1bLJHJHCD FOBS FCAL 180 205 143 133 135 156 192 225 96 115 235 277 : 4 fl” 1748 1523 155 129 190 219 97 115 902 903 286 338 277 280 170 188 72 103 112 161 184 206 511 496 588 551 1378 1304 1418 1274 61 168 572 565 125 103 70 189 528 496 1152 1234 722 673 347 304 400 455 86 104 283 261 397 404 226 239 108 148 131 148 1369 1439 1714 1572 179 123 268 275 412 398 214 239 435 521 1334 1248 603 548 308 259 289 309 APPENDIX B (Cont'd) H X pup—p9 ~038—hvo\OlDN‘QO‘OLHC‘b(JUJNWUF‘FH3CDCIO~OGDG‘QO‘OLHU1kflthNFUMHHCDOfiflh'O\Oaim'd~d3 ’— Fwy—l F085 115 371 546 161 53 91 85 143 201 111 266 1854 958 203 326 341 349 470 788 204 322 429 54 499 453 221 57 96 1709 218 1159 172 468 356 152 859 770 145 232 490 215 722 789 92 64 148 225 212 118 639 ix FCAL 159 487 559 202 92 96 70 136 211 175 253 1694 965 227 313 345 305 421 821 161 258 456 88 486 452 171 47 96 1541 192 1055 263 447 354 264 948 704 71 186 463 273 793 769 114 65 147 217 236 134 571 X (>Q~Q~JOW3LHU1¢H§CJLJRHVI‘F'Gbo<3€>£>®£bd~0hflu1#‘btdLJfilfl O‘OLflU1b-thUfUhJ~W~C>O FOIS FCAL 323 408 857 916 362 377 394 388 197 198 591 586 845 812 116 126 173 173 510 544 523 500 244 272 172 193 125 141 158 151 204 152 1218 1205 375 487 704 657 304 256 410 395 313 356 389 402 838 885 622 564 127 127 165 162 711 725 60 83 740 704 535 436 74 104 73 64 99 129 140 140 276 276 182 212 75 67 319 294 1279 1224 1064 947 795 712 142 155 445 440 382 322 377 342 1004 946 212 220 374 299 451 465 I I I I I ccocccocooocooooommmmmmmmmmmmmmmmququu I pug—o K F085 FCAL 8 459 420 8 78 78 9 300 299 0 150 162 O 123 126 0 522 532 0 2043 1834 1 253 175 1 171 174 2 238 248 3 707 757 3 205 257 4 419 435 4 799 757 5 123 122 6 350 377 7 662 624 7 210 169 8 90 86 8 285 285 9 76 54 0 75 33 0 163 163 1 632 601 1 712 715 2 448 449 2 89 113 3 232 272 3 218 281 4 343 337 4 80 127 5 524 487 5 507 515 6 495 484 6 387 348 7 70 91 8 419 415 8 138 156 9 105 114 9 98 124 0 142 133 0 1352 1340 0 665 716 1 120 163 1 177 245 2 192 204 3 632 560 3 153 212 4 502 463 4 665 658 5 148 113 APPENDIX B (Cont'd) H -10 10 -10 10 -10 10 10 10 -11 11 -11 ll -11 11 -11 ll -11 -11 11 -11 11 '11 ll -12 12 ‘12 12 -12 12 '12 12 12 '12 12 '12 12 12 ~13 13 '13 13 ~13 ~13 13 ~13 -13 '13 13 l3 -14 14 K 0933‘OUI¢UUNH~OOZDNN3QU1b¢UUNNOO-rmO‘O‘U'IU1$‘WUNNHHOOOGJNNO‘O‘O‘O‘ F085 115 169 115 169 356 170 189 94 126 134 638 530 268 251 308 148 103 611 559 215 291 222 306 735 646 74 199 660 230 593 347 74 185 124 241 578 127 73 98 482 438 323 403 86 209 338 233 495 339 728 465 X FCAL 91 179 91 179 341 221 171 102 146 116 615 525 232 226 29? 185 98 567 503 183 296 206 284 748 588 85 199 613 191 520 248 79 195 157 234 584 125 109 60 447 426 309 433 118 210 347 218 485 349 705 454 H -14 -14 14 -14 -14 -14 14 14 15 -15 15 -15 -15 15 -15 -15 15 15 --16 16 -16 ~16 -16 16 -16 16 -16 16 17 ~17 17 -17 17 17 ~17 -17 17 -17 -18 18 -18 -18 18 -18 -19 19 -19 -19 -19 ~20 -20 K U'UO‘U‘NHHU‘Jv‘bUOOO‘U‘IJIl-‘UNNHHOO‘O‘6‘bUUNHOOO‘U‘U‘bMUNF-‘HONO‘O‘vI-‘UNNF‘ FOIS FCAL 161 197 139 138 220 204 360 365 604 590 145 142 194 184 S72 S68 76 81 382 363 356 34? 196 190 289 281 142 144 158 147 345 381 134 127 25? 277 481 544 482 459 76 85 117 99 230 269 154 136 448 474 290 251 169 138 177 161 86 106 189 189 291 315 89 97 134 104 165 151 113 131 313 329 256 242 117 106 258 251 516 561 109 148 186 250 179 190 109 116 169 166 394 391 81 111 224 235 135 161 111 143 140 172 APPENDIX B (Cont'd) H K FOIS FCAL H K F085 FCAL H K P085 FCAL -20 4 209 227 2 11 143 145 5 9 89 81 -21 2 117 131 -3 1 1067 1063 -5 10 335 336 ~21 3 102 118 3 1 381 434 5 10 259 240 3 2 197 231 -6 1 240 331 68 L = 5 44 —3 3 808 767 6 1 556 503 3 3 989 1024 -6 2 1078 972 0 1 156 168 -3 4 166 171 6 2 1173 1193 0 2 292 447 3 4 1333 1332 6 3 74 02 o 3 85 131 -3 5 264 270 -6 4 609 604 o 4 469 453 3 5 129 158 6 4 350 309 0 5 748 740 -3 6 211 267 -6 5 240 238 0 6 255 268 3 6 281 282 6 5 541 598 0 8 138 141 -3 7 501 528 -6 6 564 566 0 9 599 607 3 7 238 199 6 6 140 137 0 11 134 159 -3 8 289 302 -6 8 94 81 -1 1 884 833 3 8 268 276 6 8 162 183 1 1 832 729 -3 10 205 214 -6 9 295 302 1 2 186 154 3 10 272 273 6 9 201 167 -1 3 131 260 -3 11 110 127 6 10 66 72 1 3 251 332 -4 1 537 497 -6 11 112 139 -1 4 495 486 4 1 283 408 -7 1 566 599 1 4 1310 1194 —4 2 1260 1150 7 1 1031 963 -1 5 271 296 4 2 1541 1442 -7 2 470 422 1 5 168 214 4 3 344 366 7 2 150 116 -1 6 236 273 -4 4 359 341 -7 3 793 904 1 6 222 280 4 4 79 82 7 3 992 939 -1 7 160 208 4 S 687 670 -7 4 457 467 1 7 98 89 -4 6 473 485 7 4 541 523 -l 8 281 313 4 6 370 374 -7 5 162 143 1 8 310 319 -4 8 244 247 7 5 119 124 1 9 82 98 4 8 84 103 -7 6 110 88 -l 10 295 375 —4 9 214 213 7 6 304 274 1 10 29? 349 4 9 243 228 -7 7 337 334 -? l 170 137 -4 11 111 131 -7 8 296 293 2 l 270 207 -5 1 127 126 7 8 62 22 -? 2 943 979 5 1 217 299 -7 10 329 327 2 2 923 1030 -5 2 228 268 7 10 206 171 -2 3 186 100 5 2 47 92 -8 1 519 426 2 ‘3 322 363 -5 3 963 1015 8 1 187 154 -2 4 550 S61 5 3 1160 1159 -8 2 286 295 2 4 256 261 -5 4 316 350 8 2 683 719 -2 5 436 372 5 4 753 724 -8 3 266 210 2 5 692 667 -5 5 205 185 8 3 119 102 —2 6 252 293 5 5 53 43 —8 4 425 446 2 6 331 296 -5 6 102 165 8 4 501 494 -2 7 81 105 5 6 180 220 -8 5 399 383 -2 8 249 274 -5 7 545 541 8 5 773 783 -2 9 375 396 5 7 103 155 -8 6 191 218 2 9 389 373 -5 8 235 188 8 7 103 103 -2 11 122 146 5 8 84 72 -8 8 92, 124 xi H I II I I 0101001010106me III I I III II I I I I I I I I wawwwwwuwwwwv—n—at—IHHHHI—nwwu~11-ao—v—ot-at-vt-‘HI I I I mmwr-o—Ht—u—u—o—nwwo—Ho—vv-HOOOOOOOOCOO00000000101000 oquqoombbuumwv—oom p—a H Nwommuwoombwumut—ocmuoomm59wwmmww FOBS FCAL 212 196 383 398 325 304 763 713 540 559 71 176 98 49 646 680 720 709 340 341 71 92 372 337 318 317 306 245 169 131 284 299 65 67 260 248 210 287 127 97 554 560 456 488 516 494 251 234 132 151 551 507 345 381 226 218 267 270 206 233 109 111 130 130 375 352 310 292 632 664 408 376 77 109 286 261 390 351 406 396 140 149 223 220 250 275 182 158 356 339 206 200 225 208 206 212 136 171 710 724 H 12 -12 -12 12 -12 12 -12 12 12 -12 -13 13 -13 13 -13 13 -13 13 -13 13 13 -14 -14 14 ~14 -14 -14 14 -14 14 -14 -15 15 -15 15 -15 15 15 15 -16 ~16 16 ~16 16 ~16 -16 16 -16 -17 17 Ho—ommeuumm—omabwwwwomommbwmm-loa~m¢uumm-omoommkbum xii APPENDIX B (Cont'd) F085 FCAL H 366 358 ~17 474 450 17 309 297 ~17 63 62 17 231 187 -17 94 105 -18 178 178 -18 304 311 18 157 183 -18 239 216 -18 384 404 -18 189 174 —19 121 150 -19 84 96 -19 643 629 -19 221 182 -20 441 47S -20 75 90 -20 127 123 -21 277 272 383 398 *9 182 220 698 691 0 342 342 o 277 286 0 326 317 o 309 272 0 138 144 o 146 146 o 242 219 0 154 138 0 336 342 0 203 197 0 723 730 0 342 329 -1 385 422 1 109 108 _1 118 144 l 137 162 -1 143 143 1 417 401 -l 340 334 l 95 101 -1 102 83 1 286 307 -1 156 173 1 125 147 '1 167 169 l 237 235 -1 294 299 1 U'J'II-‘Nibwh-‘O‘GJ-‘NNF‘O‘J-‘I-‘QU I" hunt-i (1)000me¢UUNNHHOO~O¢J®NOW¢UN~O 93 53 69 474 1290 77 271 273 79 139 61 305 223 213 538 259 167 229 483 481 231 345 613 623 337 274 296 300 F085 FCAL 345 358 211 220 159 193 108 123 120 125 78 99 241 256 301 318 110 130 209 227 101 106 164 153 202 228 120 129 89 104 252 282 97 93 165 201 261 301 6 #8 179 123 177 458 1119 164 281 307 117 181 86 333 281 162 401 255 352 261 568 536 228 329 646 737 362 266 326 264 K ~— UUNNV-‘HOOOOOOQmO‘O‘mU‘4‘PUUNNHF'OHOOW‘INO‘O‘U'IU'I“bww'VNI-‘HOOOOOO F085 FCAL 96 73 146 178 126 166 136 165 897 780 228 390 239 252 45 127 106 156 85 125 192 185 1208 1203 1532 1454 452‘ 533 161 231 182 225 188 194 330 324 292 309 435 458 167 160 102 108 81 122 219 256 140 186 737 732 392 357 406 493 381 357 312 395 269 302 89 71 405 402 796 794 323 315 389 420 305 293 260 309 304 293 138 122 63 44 101 113 107 121 220 367 890 1013 282 301 272 248 315 301 400 338 282 312 698 705 APPENDIX B (Cont'd) H K #fi NHHOOONNG‘3‘UIPbUUNN—‘HOOOOWOO‘O‘U’IW“#‘UUNN—‘HOOHOOCDWNNO‘O‘U‘b? FOBS'FCAL 1027 1033 167 231 135 166 282 276 282 285 581 571 451 454 177 165 99 69 71 97 74 98 191 204 87 95 127 104 181 322 1356 1287 634 607 46 49 552 572 297 256 216 219 299 246 758 720 416 372 301 337 292 290 243 257 232 269 92 70 151 145 98 171 1944 1721 534 545 136 106 309 291 403 366 341 332 133 127 892 851 636 613 134 133 263 271 64 99 452 397 179 119 91 103 227 192 78 168 778 756 922 880 1004 1039 xiii H K I *1 0—0 -9 I 0000 II I I I 00101010000 Dd OOOGO‘O‘U'IUI“(PUNN—‘HOOO‘OOQNNO‘O‘mlb‘bUUNNHt—OOOOOOWQO‘O‘mmbbUUN F085 FCAL 61 106 363 395 352 330 124 136 239 222 626 627 555 550 84 89 450 395 70 58 221 201 82 110 217 213 90 134 149 158 1532 1521 722 827 521 531 69 95 93 87 203 190 879 787 333 358 793 774 671 696 228 210 357 354 78 72 467 434 126 116 87 106 70 83 93 54 85 77 178 228 108 99 798 791 432 478 1061 1063 372 332 263 233 442 504 206 191 457 472 634 596 330 266 211 201 331 326 178 157 151 129 134 121 ill..- I. l l H -10 10 -10 ~10 10 ~10 10 -10 10 ~10 10 -10 10 -10 10 10 ~10 -1l '11 11 -11 11 11 -11 11 -11 11 -11 11 11 -11 11 -12 12 -12 12 -12 12 -12 12 -12 12 12 -12 12 -12 12 12 -13 -13 K Homqqo3mb¢uumm—~oommqoammbbummw—tcomqqaammbbuammwoo F085 FCAL 913 801 846 861 221 251 96 130 105 99 811 746 309 321 275 239 491 437 132 107 184 166 288 252 96 88 423 422 181 230 100 100 108 113 92 138 612 626 463 411 593 612 138 136 124 143 86 98 77 71 533 522 187 213 253 204 214 237 140 126 304 284 330 319 607 622 549 528 78 76 85 117 200 220 69 60 652 652 144 175 478 436 67 60 105 97 124 122 146 149 210 234 562 591 78 100 124 110 495 529 APPENDIX B (Cont'd) H 13 -13 13 -13 -13 -13 13 -13 13 -13 -14 14 -14 14 --14 14 -14 14 -14 14 -14 14 -14 -15 -15 15 -15 15 -15 15 -15 15 -15 -16 16 -16 16 --16 16 ~16 -16 17 -17 17 -17 --17 17 -17 ~18 18 K oomuwwwwo~10~54~m~aommmuum-~o~103~bbwumw-ooma~o~mmbwmm~ FOBS'FCAL 340 324 374 325 204 215 228 229 156 164 377 373 70 77 157 163 344 324 215 175 410 410 402 432 161 198 72 83 137 150 166 157 240 227 219 218 459 435 172 172 152 160 196 173 152 140 87 39 372 389 377 376 123 159 183 183 251 264 123 96 403 423 246 207 117 104 373 390 419 467 134 165 104 107 382 415 262 276 216 225 107 93 79 89 223 213 314 339 77 67 126 158 102 114 420 448 329 310 437 471 xiv H -18 -18 ~19 -19 -19 -19 -20 -20 -20 -20 -21 t 4 I mmmmmmmmu—wt—IH—o—u-v—oI—Iu—r-Iu—oc—tr-Iu-oh-noccocccc -2 K I. UUI¢NOO~JID~U1¥> Hfl OfiO‘O‘WUIkl-‘UNNHOOQa‘INO‘O‘JIbkaNHF’OQO‘mI-‘NN— F085 FCAL 257 267 121 138 165 165 81 109 188 205 161 190 91 50 103 139 191 175 82 87 83 90 z 7 OI» 92 104 66 175 492 486 555 542 387 471 305 311 105 117 396 418 272 307 121 134 165 145 1270 1225 1147 1116 707 690 927 779 110 110 345 416 286 295 194 194 202 180 237 241 230 259 359 436 358 424 179 176 492 540 1054 1025 631 561 474 435 205 276 516 649 276 284 180 204 324 377 176 167 407 426 Fit-l m-ooommuuoommbauu-~—o X v—nv—o HOOQVNO‘O‘UIUI6‘4‘UUNH1O1OGJO‘O‘JIUI6‘6‘UN F085 FCAL 348 346 477 484 410 359 158 170 41 96 1446 1526 905 921 227 151 564 581 226 237 111 129 333 316 212 208 315 315 181 198 176 218 230 238 64 85 308 295 283 288 256 367 490 480 1359 1301 1072 1040 257 247 426 431 255 279 153 192 405 434 235 247 220 219 283 320 230 223 323 271 757 744 108 103 1194 1188 702 699 266 287 322 360 128 106 174 212 275 266 172 181 444 436 126 188 190 214 294 279 111 100 561 566 APPENDIX B (Cont'd) H -6 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -8 -8 -8 —8 -8 -8 -8 -8 -9 -9 -9 -9 K 2 2 3 3 4 4 5 5 6 6 7 8 9 9 1 1 2 2 3 3 4 4 5 5 6 7 8 8 0 1 1 2 2 3 3 4 4 S 5 6 6 8 9 9 1 1 2 2 3 3 b 528 XV FOBS FCAL 981 1009 822 853 220 254 48 S4 511 446 238 245 135 220 495 460 366 436 302 256 97 107 168 159 237 232 246 223 522 577 443 437 395 398 68 89 836 821 511 478 445 376 326 345 131 150 301 305 141 115 319 267 113 138 97 102 289 290 726 700 127 109 213 333 627 584 236 228 72 52 500 503 235 217 123 119 593 530 339 386 215 204 86 93 316 326 277 282 783 777 274 292 291 288 60 59 104 210 541 532 516 H -9 -9 -9 ~10 -10 10 -10 10 ~10 10 -1O 10 ~10 10 10 -10 -11 11 -ll 11 ~11 11 -11 11 ~11 11 -11 11 -11 11 12 -12 12 -12 12 '12 12 -12 12 -12 12 12 -12 ~13 13 -13 K Fons FCAL 447 437 66 85 174 122 93 127 189 157 275 293 100 73 233 238 108 137 204 211 421 409 265 255 182 201 82 63 332 321 349 333 340 356 312 322 201 225 161 132 319 307 469 471 306 264 168 149 339 307 443 474 365 333 118 108 133 127 255 206 269 284 105 121 268 252 229 215 172 181 196 209 690 732 368 341 297 310 154 153 124 127 181 192 449 415 198 183 163 178 313 293 84 89 222 225 318 316 208 238 525 494 H l3 -l3 ~13 13 '13 -13 ’14 14 ~14 14 '14 '14 14 -14 '14 14 -15 15 '15 15 -15 15 -15 -15 ~16 '16 16 ~16 ~16 ~16 -17 17 ~17 “17 '17 -18 -18 '18 ~18 -18 -19 -19 ~19 -20 -20 -21 *1} K (a)bNfiUHO‘UIJ-‘NHNO‘UHHO‘kwm'V—‘mslmkUUHHOOW¢¢JNNHHO~JQO¢W I" O FOBS FCAL 235 246 419 420 130 150 168 165 126 138 182 172 105 131 73 131 684 659 383 341 192 188 224 238 132 132 274 275 158 173 248 245 222 203 205 203 391 368 262 277 140 113 120 129 198 181 102 92 185 231 418 413 262 282 99 111 247 278 278 289 205 205 143 186 302 338 83 87 111 117 164 198 231 263 179 187 142 153 89 147 148 154 264 287 115 120 251 297 101 109 248 286 = 8 {H} 249 178 APPENDIX B (Cont'd) H 1 1 1 1 1 1 1 1 uuuuwmmmmmmmmmmmmmmmmm----------°°°°°°°°° K 1—1— HHOOOONNO‘O‘UIU‘IJP#UUNNHHOOOOOQQNO‘O‘U‘IU‘I-‘bUUNNI-‘HOO omuombum—v FOBS'FCAL 119 56 241 220 690 660 891 881 77 111 289 307 370 394 74 65 84 55 126 195 133 222 326 337 291 265 352 333 154 90 837 803 587 582 305 356 98 106 354 477 433 553 415 396 396 306 56 67 209 228 210 204 96 112 144 193 157 197 341 264 367 324 301 324 237 256 157 127 66 89 276 314 457 392 944 848 666 645 98 110 110 191 234 207 244 209 341 309 270 273 119 123 79 98 190 160 532 486 168 206 374» 351 xvi H K pup- NWF‘OOOwG‘O‘mWUUNNHF‘OOOGQNQO‘O‘U’I“?UUNNF‘F‘OOOOOOQO‘O‘WLJ'I8‘UUNN F085 FCAL 494 419 271 340 734 700 434 418 76 117 342 364 421 408 371 420 285 296 114 121 252 237 59 50 118 127 106 131 419 500 926 899 65 70 98 161 238 262 176 188 129 163 278 300 687 714 707 668 133 176 153 193 189 166 333 317 191 192 179 180 99 120 74 71 173 144 315 261 850 838 978 967 529 513 577 539 270 240 245 252 483 508 555 569 362 361 176 157 173 217 203 173 1459 1433 1061 1024 454 436 401 394 384 408 H 6 -6 6 -6 6 -6 -6 6 -6 6 -6 6 -7 K -oaooo~1~10~o~mbbyummu—u—ooommwoammbbuumm—u—acooqdwombbuum F085 FCAL 228 209 577 605 285 300 655 605 505 518 115 139 124 149 243 269 230 210 103' 115 124 109 76 91 188 195 83 58 974 934 722 728 973 988 684 626 304 306 189 228 143 153 196 189 566 631 655 635 171 192 176 142 62 58 187 226 175 159 107 137 1853 1706 778 849 620 525 288 260 123 165 265 224 676 664 434 453 696 676 530 513 142 130 332 351 215 219 159 91 82 93 163 162 85 97 68 119 720 719 613 579 APPENDIX B (Cont'd) H K F085 FCAL -9 9 -9 9 -9 95 -9 9 -9 9 -9 -9 9 -9 ~10 10 10 '10 10 -10 10 ‘10 10 10 ~10 10 '10 10 -10 ~10 -11 11 -11 ll -11 11 11 -11 11 '11 11 -ll 11 ~11 -12 12 12 '12 12 '12 QNNJHOOJDO‘O‘UI'JIb#UNNHHOOOCDNNO‘OW¢¢JUNNF‘OOOZDQNIO‘J‘UIUIbbb-JUNN 545 287 145 133 374 209 566 461 152 97 118 217 228 97 747 682 164 159 167 465 268 276 245 238 357 116 310 275 88 104 152 92 509 260 284 207 82 269 88 298 137 277 169 296 299 169 87 260 65 323 xwii 521 323 161 111 380 187 592 430 120 135 146 182 214 95 762 612 171 149 170 485 292 266 230 191 364 120 308 272 92 100 215 70 540 299 278 227 72 318 130 225 167 272 213 270 290 230 77 270 93 338 H 12 -12 ~12 '12 12 ‘12 13 ’13 13 '13 13 '13 13 '13 13 -13 13 -13 -14 14 ~14 -14 14 -14 14 -14 14 -14 '14 ~14 -15 15 -15 15 -15 -15 -15 '15 -15 -16 16 -16 16 ~16 -l6 -16 -17 ~17 -17 -17 K mum—INJ‘bN—‘OOIOmbUNNHF‘NO‘mbbUUNNI-‘OOOO‘0".”U'I'JUN'Vl—HOQO‘O‘UTbu F085 FCAL 189 199 270 274 204 227 124 137 182 187 277 289 105 99 351 337 290 274 313 331 229 241 151 158 110 97 304 297 248 224 113 123 111 151 310 296 215 243 342 330 119 109 101 82 74 93 193 183 105 93 270 252 202 198 79 84 192 193 295 285 329 361 298 321 265 306 156 175 160 171 98 105 379 376 132 148 200 217 428 427 287 348 134 143 107 126 266 262 175 188 201 200 365 366 167 185 110 110 351 349 H '17 '18 '18 '18 '19 '19 ‘19 -20 '20 -21 -21 I 8 o<:c>3:5c>o 8 I I I I I I I I I I I I NNNNNNNNNNNNt—H—o—I—t—v—rut—www.—1—r-I1—ov—Io K 83—-b<531u-3~bc>o 1" H1— O‘O‘U'IU'IJ-‘bwUNN—‘HOOCDCDN‘JJ‘O‘mmbbuUNHHOQO‘Lflbwm-l FOBS FCAL 138 151 447 437 309 333 81 93 197 190 142 172 130 149 197 210 159 152 120 142 83 103 = 9 *6 39 16 429 483 227 191 474 510 427 442 254 206 104 99 297 316 178 179 59 92 130 131 1126 1068 1054 1021 519 561 168 238 81 100 48 39 259 248 231 202 148 185 235 252 192 223 195 175 306 380 303 359 64 70 134 164 504 549 773 780 222 261 175 171 265 259 414 414 403 437 351 350 300 265 186 225 APPENDIX B (Cont'd) H K F085 FCAL -2 8 121 2 8 132 -2 9 317 2 9 296 2 10 78 -3 1 106 3 1 363 -3 2 120 3 2 146 -3 3 972 3 3 818 -3 4 404 3 4 66 -3 5 83 -3 6 242 3 6 189 -3 7 142 3 7 263 -3 8 191 3 8 169 -3 10 290 -4 1 320 4 1 133 -4 2 1015 4 2 933 -4 3 85 4 3 251 -4 4 207 4 4 287 -4 5 311 4 5 183 -4 6 173 4 6 195 -4 8 165 4 8 171 -4 9 287 4 9 206 -5 1 560 5 1 843 —5 2 109 -5 3 720 5 3 S45 -5 4 251 5 4 159 5 5 153 -5 6 226 5 6 186 -5 7 173 5 7 207 -5 8 166 5 8 213 awiii 114 135 318 287 64 74 370 150 168 922 760 397 83 122 240 205 169 276 198 144 320 288 108 961 920 193 246 240 303 324 176 175 197 177 196 249 209 593 826 121 776 546 262 178 159 227 235 201 207 202 211 #9011114NNHF‘OQO‘O‘UIWD‘L‘UWNNF‘WOWNWUI“puwNNF-‘HOO‘IO‘O‘UIUIkaUNnH-‘H F085 146 409 322 745 672 237 269 291 144 400 247 184 225 70 255 198 514 366 103 84 588 291 402 334 159 169 81 196 153 461 353 507 249 302 163 356 160 313 274 403 241 90 271 474 226 109 156 470 315 468 515 FCAL 137 426 325 726 630 201 247 263 156 438 226 192 247 78 216 236 550 326 158 120 559 336 329 375 192 169 86 176 142 406 362 550 262 358 188 367 144 320 246 348 272 143 273 504 199 177 169 494 297 526 474 H -9 9 -9 -9 10 -1o 10 10 -1o 10 ~10 10 -10 10 ~10 «-11 11 11 -11 11 -11 11 -11 11 -11 -12 12 ~12 12 12 -12 12 -12 12 -12 -13 13 -13 13 --13 13 -13 -13 --13 14 -14 14 ~14 14 14 K ¢wuNNH3N0&¢UUHH~OO‘O‘UIU1$‘UUNNWO‘O‘&#UUNHF‘OO‘O‘WU'I'L‘6‘UNNWOO‘UTUW F085 121 195 87 119 136 408 315 113 279 87 506 323 216 216 280 298 200 85 387 273 543 341 175 142 222 513 451 126 112 182 381 155 203 145 203 253 297 377 288 273 92 122 257 223 74 438 360 80 107 158 FCAL 158 199 54 119 162 365 314 116 299 97 509 343 171 216 262 318 222 95 418 261 554 320 174 151 194 518 446 114 120 180 373 199 222 175 199 224 289 352 317 216 95 145 276 219 99 415 376 90 112 168 APPENDIX B (Cont'd) H K F085 FCAL -14 -14 -15 15 -15 ~15 -15 --15 --15 -16 ~16 -16 -16 -17 ~17 -17 -18 ~18 -18 -18 -19 -19 -19 -2o -20 -21 8 t HHHHhfiHI—It—IHHHHOOOOOOOOO mgn¢~kcauamrunvnwac>m-qow838wruuua r 1—ambuwombmow~a~¢-m~o~bw-mo 293 97 227 172 112 115 118 281 173 82 270 128 218 234 220 103 213 204 162 86 149 303 105 234 103 142 10 530 100 64 254 523 143 140 232 56 188 326 80 257 184 248 158 293 307 83 500 511 xix 324 91 246 179 88 159 140 305 187 91 306 122 229 265 243 92 258 236 155 103 160 322 123 241 125 159 8'8 492 143 50 263 648 149 142 247 62 193 301 88 301 170 .306 135 307 325 70 488 497 H K omflflo3m¢¢hflw--coommoa~m m8cuu--~o~1woa~mbcuummoommoo‘ F085 FCAL 261 235 165 185 236 236 246 260 149 171 184 198 226 191 196 220 568 605 126 140 326 400 703 675 98 79 189 208 146 158 323 359 244 256 88 92 173 242 454 468 363 302 238 261 413 449 379 382 307 304 65 57 367 354 472 483 237 241 229 256 237 234 211 200 113 126 326 334 421 436 331 373 96 105 211 237 141 181 384 351 169 154 400 424 625 610 86 79 156 184 227 240 267 273 298 289 97 98 581 554 H 5 -5 5 K m4~bwwm~aommammbbduwrvu—oqqaombbwwm—n—camrwommbuwmm-o FOHS FCAL 72 89 870 820 390 389 175 160 364 363 334 307 305 350 196 170 294 300 415 399 203 178 220 203 218 204 131 96 1411 1381 671 667 138 151 270 273 233 216 281 321 248 259 416 418 541 527 218 220 134 112 294 279 170 176 229 234 78 68 869 784 410 393 136 134 454 463 129 86 159 184 117 133 120 119 532 533 487 459 288 274 188 194 169 164 818 792 813 761 196 190 223 227 246 279 367 352 489 505 462 429 220 233 APPENDIX B (Cont'd) H K bwwmxh-oaoxqiommbbump—~04;ambbuumwuooomoommbwa—~Gama-J1 FOBS'FCAL 69 77 135 88 172 190 244 238 137 103 408 401 346 358 281 304 229 210 168 150 82 95 624 630 288 308 164 149 138 158 125 116 96 79 589 682 344 391 69 88 122 122 109 116 177 740 326 328 377 406 119 150 91 107 192 207 140 138 123 109 71 96 400 415 295 298 193 219 216 244 355 375 147 154 167 125 209 212 237 271 150 166 141 146 246 212 591 596 289 252 81 134 118 117 130 145 116 78 215 228 172 163 XX H -12 -12 -l3 l3 -13 13 13 ’13 ‘13 -13 ~14 l4 -l4 14 ~14 l4 -l4 -l4 -l4 -14 '14 '15 ‘15 '15 -15 '15 -l6 -l6 -l6 -16 -16 -17 '17 -I7 -17 '17 '18 -18 ~19 -l9 '19 '20 -20 -21 *4} COCO K whomuv-aoomum—uobwcombmt—wombummv—u—comomwNNF-‘HNO‘ l— éUNH FORS FCAL 210 224 439 460 350 365 244 258 190 224 155 176 68 84 I31 114 251 287 319 330 335 336 224 225 78 79 71 83 I79 225 77 102 185 197 90 63 107 124 214 216 453 490 267 262 297 327 109 149 273 263 I92 166 450 478 153 157 250 262 116 133 240 264 325 319 128 123 152 147 208 I96 180 171 424 445 277 306 218 223 112 86 126 133 280 307 131 167 177 189 :11 .4} 83 78 526 557 84 98 390 385 H I I I IVIV nJh)NJ—'~'~'--—'-—-‘~'—'—'c>c>c>c> I I I I I I I I I UNNNNNNNNN UUUUUUWUUUUU II II I ¢9¢99k¢ K O‘LflbJ-‘UNNQQNIOO'L‘9UUNN~H~O~O®mGJU1LnJ>¢wNNHQCDNJ‘O‘J-‘I‘UJUNHHOQO‘W FOBS FCAL 429 376 101 144 118 96 266 306 382 390 226 214 74 48 496 534 904 523 382 378 125 128 138 127 130 156 200 228 186 183 161 138 88 104 S60 543 526 516 245 223 292 287 359 377 446 437 133 95 93 92 269 261 101 89 176 205 240 260 207 223 169 112 382 414 90 125 123 172 S46 539 496 515 672 643 S6 107 147 174 155 157 271 310 171 147 176 172 731 743 626 586 286 305 140 150 116 112 416 406 152 189 APPENDIX B (Cont'd) H a 4 -4 -s 5 -5 5 -5 5 -5 5 5 -5 5 6 -6 6 6 -6 6 -6 6 -6 6 -6 -7 7 -7 7 -7 7 7 -7 7 7 -7 8 -8 8 -8 8 -8 8 -8 8 -8 8 -8 -9 9 K ~‘~'02h3\mgflknbLduHVPu—am'dO‘O£n$‘¢WJLJ-H~O3‘3LflLflt‘ktdfiderabm-dc‘$Ln¢‘uLJ—vwwo333 248 xxi FOBS FCAL 267 P64 135 149 192 190 598 670 441 392 514 527 401 430 590 620 138 144 200 279 108 122 226 242 221 212 193 172 325 345 920 839 246 251 221 227 100 126 124 147 489 480 121 12% 92 47 160 214 170 153 622 615 215 200 420 372 322 319 339 344 347 321 104 105 233 268 86 124 129 139 135 96 203 201 752 735 150 167 126 114 274 271 242 244 141 153 511 513 168 187 127 115 185 180 187 185 246 281 259 H -10 -12 -13 13 -13 ~13 -13 ~13 -13 -14 -14 -14 -15 -15 ~15 ou~o~mmm~1omu-mo~ms~ummm~1mbbuwmwwomommbbuummoammbauwm FOIS FCAL 120 128 563 584 190 153 362 380 339 333 118 16h 97 92 103 94 119 123 462 446 347 321 91 121 87 89 335 333 72 87 408 406 209 228 105 84 138 123 226 220 311 319 247 263 97 172 390 368 239 263 254 225 195 217 94 147 108 130 165 165 288 298 356 401 93 87 146 157 103 116 173 185 158 169 207 186 220 239 190 169 88 97 96 125 282 318 199 212 220 239 90 179 268 282 116 116 203 231 163 182 H K -15 ~16 -16 ~16 -l7 -17 -17 ~17 -18 -18 -18 -19 ~19 -19 ~20 -21 a a F-‘F-‘I-‘O-‘I-‘OOOOOOOO II I --- I I pin—twp -¢w~ms~mo~t~w~o~mm~1 r t‘©UNNHOOQQO‘OLflml-‘UwNN—‘HOO‘IO‘UII‘UNHO 12 368 57 53 146 437 93 113 208 92 130 322 450 94 267 123 134 215 403 427 120 87 191 193 393 619 70 97 190 270 263 320 F085 FCAL 217 260 238 228 128 129 115 117 212 246 204 211 83 68 131 160 248 260 102 126 171 183 190 227 193 189 96 106 195 192 179 207 {’4} 315 42 53 140 434 77 98 158 157 171 328 464 96 286 96 158 1954 407 427 137 146 183 204 390 665 101 100 212 275 255 328 APPENDIX B (Cont'd) H K --o<:anmo~mancnbuJurumw—nvocas1qcranbs~unu—-<>c>man0‘9xflULbUJUFURH"*'°CD‘V*O‘0 xxii FOBS'FCAL 122 146 177 200 286 264 330 309 109 105 123 165 430 418 527 483 84 74 160 188 87 106 238 242 325 343 194 149 327 303 292 266 191 183 271 276 154 168 304 364 615 565 225 250 281 306 278 280 323 314 146 124 366 364 141 179 226 252 363 369 332 337 127 134 77 82 446 457 291 278 217 225 337 327 261 280 338 326 178 178 126 130 121 95 310 289 288 258 193 190 200 180 551 539 429 382 136 98 183 151 H K uwNOOQOWWUUNNHHmOW¢bUNNF‘GO0&03‘fl‘flJ-‘QJJNNF‘F‘OQQT’J‘flbl-‘LAUJN F085 FCAL 74 93 181 207 271 283 281 258 481 454 156 168 133 139 191 189 246 261 263 261 126 173 510 519 261 277 124 161 299 307 257 263 128 132 69 70 281 251 293 309 218 213 171 175 98 75 106 146 635 702 394 430 153 163 140 148 87 86 267 264 410 414 244 268 220 229 131 126 109 113 S47 560 282 278 88 121 133 174 122 131 93 130 399 368 182 225 195 209 91 82 689 676 311 335 200 210 100 129 229 261 H -10 10 '10 -10 ~11 11 ll '11 ll -11 '11 -11 -ll ’11 -12 12 '12 -12 '12 ‘12 ‘12 ‘13 '13 “13 ‘13 '13 -13 '14 -14 '14 -14 -15 -15 -15 ~16 '16 '16 -16 -16 ~17 '17 '17 '18 ‘18 -19 -20 {-8 U 0 K owbomu—mbwmo3m-ta~moqa~mbwwqomt~uoaw~3mtuum-umbb Mt“!— FOBS FCAL 497 494 177 208 97 133 103 55 359 319 247 239 114 135 129 144 122 130 160 169 273 292 228 237 151 187 168 154 487 441 266 283 98 91 170 127 98 137 215 251 396 394 275 299 92 116 85 95 9O 60 325 333 109 119 316 377 122 150 157 158 421 473 254 243 79 55 241 236 326 313 99 117 87 110 167 170 87 103 202 210 136 143 118 140 344 362 165 175 232 262 363 384 = 1‘3 4H!- 66 105 564 522 APPENDIX B (Cont'd) H wwwaNNNNNNNNN—‘HH—F‘HH-iF‘HI-‘I-‘COOOD I II WUUQU II I I I I II fiflwbbt‘l‘bbt‘bt‘bu K UWHU‘O‘LflWkUNNF‘I-‘m\INO‘O‘J-‘UUNHF‘GDO‘UWUWJ‘PUNMWNNG‘U‘DrI-‘IJUNt-‘HDO‘W9U F085 FCAL 72 50 249 238 257 282 126 154 81 79 290 300 408 439 52 43 387 351 408 407 278 247 143 154 121 98 169 180 118 80 110 119 67 86 568 525 529 492 111 102 182 191 226 258 355 356 136 147 142 149 117 143 336 372 433 428 98 86 299 247 328 352 322 330 165 167 187 174 172 149 200 236 174 187 109 113 193 193 533 510 355 366 216 210 113 120 331 349 100 55 90 121 187 219 424 438 350 309 274 252 xxitl H -10 10 -10 -10 -10 -11 K Hambmmfia‘k-PUUHHCDU‘UW9UNNF'QNO‘O‘UT9PUUF‘I—O‘O‘U14PJ-‘UUNNH'—mNNO‘O‘L‘ F085 FCAL 427 420 191 198 83 78 144 123 200 217 169 154 86 102 207 180 604 546 204 202 178 179 169 148 105 117 73 79 324 278 104 113 218 200 475 438 125 130 350 340 182 156 363 403 110 106 98 105 258 268 103 100 97 78 145 130 243 254 448 418 262 238 101 9? 170 165 446 434 155 180 145 156 276 314 182 186 375 376 134 140 241 220 103 144 185 165 119 109 317 337 246 264 168 161 264 266 151 156 217 208 '_ ‘- ,1.v ‘- __ cy,‘ A' 2 3. i1 ! APPENDIX B (Cont'd) H K F085 FCAL H K FOBS'FCAL H K F095 FCAL 11 1 172 200 2 1 202 230 6 3 150 132 -11 3 328 310 -2 2 160 181 -6 4 150 120 ~11 5 127 148 1-2 3 293 272 6 4 142 157 -11 6 83 82 2 3 124 99 -6 5 ‘ 97 98 -ll 7 166 160 1-2 4 194 199 -6 7 291 310 -12 2 297 291 2 4 187 165 -7 o 85 78 -12 4 92 102 -2 6 155 152 -7 1 307 282 -12 6 92 105» 2 6 150. 145 7 1 265 255 -l3 l 185 205 .-2 7 212 195 -7 2 144 155 -13 3 192 181 2 7 219 232 7 2 106 118 -13 6 145 166 -3 o 190 204 —7 3 269 277 ~13 7 184 221 3 o 206 212 7 3 86 106 —l4 2 312 342 -3 1 506 473 -7 5 124 81 ~14 9 111 108 3 1 262 251 —7 6 195 215 -14 6 89 96 -3 2 229 234 -8 o 638 562 -15 1 138 121 3 2 109 114 3 0 P64 268 -15 3 262 272 3 3 269 227 a 3 102 122 ~15 4 131 144' -3 4 224 239 -8 4 428 396 -15 6 119 147 1-3 5 148 155 8 4 133 161 -16 2 250 234 3 5 203 206 -8 5 114 115 -16 3 91 82 -3 6 216 183 -8 7 183 189 -16 5 151 134 3 6 130 127 -9 o 91 63 ~17 l 142 131 -3 7 111 121 -9 1 385 363 -l7 3 170 168 -3 8 183 199 9 1 228 234 -17 4 135 145 .4, O 620 628 -9 2 159 173 -18 2 204 212 4 o 262 246 -9 3 201 228 -19 1 197 211 4 1 257 240 -9 5 213 176 46 L = 14 #§ -4 3 299 295 -9 6 185 195 4 4 210 179 -10 o 544 534 0 o 587 630 -4 6 174 164 -10 2 138 152 o 2 231 252 4 6 171 173 -10 4 465 433 0 3 68 81 -4 7 336 356 '10 5 150 159 0 4 226 223 -5 0 120 169 '10 7 132 129 0 5 101 113 -5 1 361 352 -11 o 121 152 0 6 107 88 5 l 213 212 ~11 1 244 271 0 7 198 157 -5 2 89 80 '11 5 269 268 -1 0 98 104 5 2 254 243 '11 6 191 202 -1 1 514 547 -5 3 138 175 '12 0 142 157 1 1 458 446 s 3 197 139 -12 2 121 134 -1 2 182 176 -5 4 101 119 -12 4 248 238 1 3 55 56 5 5 239 242 ~12 6 122 115 -1 4 95 90 -S 6 280 274 -l? 7 181 70% —1 5 343 233 S 6 143 149 -13 l 190 193 1 5 .93 204 -5 8 165 160 -13 3 119 135 -1 6 202 185 -6 o 438 373 ~13 5 114 101 1 6 223 214 6 o 182 197 -13 6 198 188 -2 o 624 650 -6 1 97 146 -14 o 203 196 2 o 647 671 6 2 113 105 -14 6 85 98 -2 1 195 148 -6 3 139 140 -15 1 241 250 xxh: H ~16 ‘17 ‘18 ‘18 ‘18 ‘19 ‘19 t t I I I I I I I I I I QUwVNNNNNNNNN--~——30000 J'lJIJ-‘8bbbJ-‘k4‘wgddulul K “OUFOI‘Q -J1Jlbuumm~qa~¢buuwumammbb-uummabbuu—~ambum I'- FOBS FCAL 251 251 195 226 288 311 90 124 84 102 103 128 206 240 z: 15 III! 289 252 87 112 100 82 178 186 130 120 347 340 416 408 178 170 223 230 123 124 100 122 130 134 291 266 371 385 103 121 58 77 96 84 117 133 148 131 214 201 172 148 78 79 456 436 213 213 133 131 288 276 154 139 139 100 130 126 138 144 70 104 376 376 138 353 201 212 121 109 152 133 197 203 114 146 333 301 101 136 APPENDIX B (Cont'd) H -5 5 -5 5 -5 -5 -6 -6 6 -6 6 -6 -6 -7 7 -7 7 -7 -7 -7 -8 -8 -8 -8 -9 -9 -9 -9 -9 ~10 -10 -11 -11 -11 -11 -12 -12 -12 -13 ~13 -13 -14 -14 -14 -15 —15 -15 -16 -17 -17 K UflmbwflmbNO‘U-‘mbma‘w\IF‘U'INNO‘bU—‘UIkNF"13‘kww-‘h‘J'IbUUNN-‘NO‘4‘50U F085 FCAL 187 165 208 194 267 213 96 88 191 204 124 138 177 190 353 371 296 277 225 238 68 63 158 141 237 231 156 130 175 152 339 351 104 111 375 344 166 167 102 101 163 148 223 193 183 148 285 267 200 238 309 277 185 149 129 157 126 135 271 246 186 178 183 209 104 115 267 261 109 107 343 305 117 146 124 116 179 197 253 254 107 122 354 367 99 101 182 178 182 175 162 168 121 103 224 237 100 69 98 97. XXV H ‘18 III! I NNNN'UNh‘I-‘HH—I-‘HF'OOOOO I MN II (JUN -3 K N combat-numb6‘91)UNflOOOWUNNflWOOO‘PbUUNHOO3"J1msz-‘U-‘Ome-‘O f’ FOIS FCAL 119 130 = 16 II. 904 883 181 163 121 124 153 143 60 55 391 379 550 529 396 393 116 87 101 110 162 175 130 135 159 160 814 789 414 407 194 187 170 174 177 135 102 90 154 150 157 149 97 104 199 248 170 169 317 292 193 200 238 214 88 98 84 76 229 204 134 128 389 363 118 121 127 149 83 92 227 225 101 90 112 113 72 63 140 136 169 162 158 157 144 174 136 96 165 166 235 193 H 6 -6 -6 -6 -7 -7 -7 -7 -7 -8 -8 -8 -9 -9 -9 -9 -10 --10 -10 -11 -11 -11 ~12 -12 -12 --13 -13 -13 -14 -14 ~15 -15 -16 ~16 -17 99 0 0 l l 1 l 1 2 2 ‘2 -2 -3 K H2308"OOWN~¢NOWUHO¢OOU1U~UIéOO‘UN—‘D3‘3?th “WUNN‘FUNH'I'JPN I. F085 FCAL 164 167 134 116 113 95 101 84 107 118 247 246 108 100 221 198 209 226 318 312 202 170 94 118 223 222 164 125 127 135 196 179 305 319 225 216 103 95 204 208 97 87 158 176 195 221 94 107 173 190 189 161 78 92 107 114 187 130 85 119 146 183 75 107 163 146 80 81 156 186 :17 {HI 135 135 58 73 330 334 197 205 86 97 96 111 128 105 180 169 213 224 122 114 101 103 333 303 APPENDIX B (Cont'd) H 3 -3 -3 -3 -4 -4 -4 -4 -5 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -9 -10 --10 -11 -—11 -12 -12 -13 ~13 -13 ~14 --15 GO t—t—u—u—oa -3 -3 -4 -4 -5 -6 -6 -7 K “N900HbNUHWN‘PUHU’NémeL‘U-‘JI¢UN&UN“ —ua P FOBS'FCAL 111 116 120 144 200 202 112 107 290 288 143 139 101 88 126 128 164 164 222 199 99 108 303 329 182 174 209 157 105 89 238 200 127 120 103 102 173 137 85 96 228 185 107 108 129 123 202 210 250 258 114 122 141 156 247 260 119 114 253 254 142 167 = 18 III!» 510 540 108 89 194 222 298 299 257 282 74 70 492 519 213 255 210 225 181 217 145 137 131 128 93 86 108 92 91 95 91 107 xxvi H -7 -7 —8 -8 -9 ‘10 ~11 -12 ~13 -14 fl. -3 -4 -6 -7 -8 K cpcch—Iu—‘ONI" r N-‘NNI" F085 FCAL 130 166 103 92 154 105 100 96 103 102 200 190 176 135 214 192 129 109 145 125 z: 19 .8 122 117 195 184 204 200 116 103 185 181 APPENDIX C Interior Angles of the Planes Comprising the D Square Antiprismatic Polyhedron of Nb(DPM)4 4 2.:.§4- .- '6 (5" APPENDIX C Interior Angles of the Planes Comprising the D4 Square Antiprismatic Polyhedron of Nb(DPM)4 Molecule A Molecule B Oxygen Atom Angle, Angle, Numbers deg. deg. 04—01-02 88.8 90.7 01-02-03 88.5 89.6 02-03—04 91.4 90.3 03—04-01 91.1 89.4 08-05-06 91.7 93.0 05-06-07 87.6 88.4 06-07-08 91.4 91.9 07-08-05 88.8 86.6 08-01-05 55.2 56.0 01-05-08 61.3 61.3 05-08-01 63.5 62.7 05-01-02 61.4 61.3 01-02-05 65.4 62.7 02-05-01 53.2 56.0 05-02-06 58.7 54.5 02-06—05 59.8 60.1 06-05—02 61.5 65.3 03-02-06 60.8 60.7 02—06-03 55.4 55.1 06-03-02 63.9 64.2 07-03-06 56.5 54.9 03-06-07 64.6 62.9 06-07-03 58.8 62.3 04-03-07 62.3 61.8 03-07-04 50.3 55.7 07-04-03 67.4 62.6 07—04—08 59.2 55.6 04-08-07 61.2 60.2 08-07-04 59.6 64.2 08-04-01 63.8 59.6 04-01-08 60.6 65.1 01-08-04 55.5 55.2 '1