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ABSTRACT
ON SUBORDINATION, SAMPLING THEOREM AND
"PAST AND FUTURE" OF SOME
CLASSES OF SECOND-ORDER PROCESSES
By
Mohsen Pourahmadi S.A.

In this thesis, three independent problems (subordination,
sampling theorem and "Past and Future") concerning harmonizable and
stationary processes are studied.

Chapter I contains some well-known results about such processes
along with a necessary and sufficient conditions for strong subordination
of g-variate stationary processes which are stationarily cross-
correlated.

The problem of finding analytic conditions for subordination
of harmonizable and periodically correlated sequences is studied
in Chapter I1I. Sufficient conditions for subordination of harmonizable
sequences and a simple counter-example showing that these conditions
are not necessary are given. In the case of periodically correlated
sequences, which is a subclass of harmonizable sequences, necessary
and sufficient conditions for subordination, mutual subordination of
such processes in terms of their associated multi-variate stationary

sequences are derived.



In Chapter III, the problem of admittance of sampling theorem
of a g-variate stationary process and its relation with the admittance
of sampling theorem of its components is considered. It is shown
that if the components of a g-variate process (not necessarily
stationary) admits a sampling theorem with the same sample spacing
h > 0, then the process itself admits a sampling theorem with the same
h. A sampling theorem for gq-variate stationary process, under a
periodicity condition on the range of the spectral measure of the
process, is proved in the spirit of Lloyd's work. This sampling
theorem is used to show that if a g-variate stationary process admits
a sampling theorem, then each of its components will do so. In
Section 5, by using Abreu's theorem, the well-known sampling theorems
for harmonizable processes is proved in an easier way with more
explicit coefficients for the sampling series.

In Chapter IV, Helson-Sarason Theorem on "Past and Future"
is generalized from the disk algebra to a Dirichlet algebra setting
by using function-algebraic method. Advantages of our method as
compared to Ohno-Yabuta's method [32] on the same problem is discussed.
This theorem is used to answer a question of M. Rosenblatt on the

strong mixing of multi-parameter Gaussian stationary processes.
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INTRODUCTION

The concept of subordination was introduced, studied and used
in prediction of univariate stationary sequences by A.N. Kolmogorov
[18]. Analytic necessary and sufficient conditions for subordination
of such processes were derived in [18]. Analogous analytic conditions
for the subordination of g-variate and infinite-dimensional stationary
sequences were derived by M. Rosenberg, Yu. Rosanov and others in
[391, [41]1, [38], [23] and [22]. In [12], the notion and analytic
characterization of subordination of stationary sequences have been
used for optimal filtering of stationary signals.

The problem of finding such an analytic characterization
for the subordination of harmonizable sequences which are harmonizably
cross-correlated in studied in Chapter II. The study is carried
out in such a way that when specialized to stationary sequences,
the results will reduce to the corresponding results of Kolmogorov
[18]1. In Section 2, necessary and sufficient conditions for sub-
ordination, mutual subordination and necessary condition for strong
subordination of periodically correlated sequences in terms of their
associated multi-variate stationary sequences are derived. It is
well-known that the class of periodically correlated sequences is
a natural extension of stationary sequences but a subclass of har-
monizable sequences. Because of the 1-1 correspondence between
periodically correlated sequences and g-variate stationary sequences

¥
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and the existence of a shift operator for the latter sequences, we
have been able to find necessary and sufficient conditions for sub-
ordination of the former sequences. Sufficient conditions for the
subordination of harmonizable sequences and a simple counter-example
showing that these conditions are not necessary is given in Section
3. It seems that, the fact that these conditions are not necessary
can be atributed to the failure of existence of a shift operator
for the harmonizable sequences.

In Chapter III, the problem of sampling theorem for g-variate
stationary and univariate harmonizable processes is considered.

Sections 2 and 3 contain some well-known results as well
as some new results which play a crucial role in the proof of our
sampling theorem for g-variate stationary processes. In Section 4,
a sampling theorem for a g-variate stationary process, similar to
that of Lloyd's [21], is proved under the condition that the range
of the spectral measure of the process considered as a lTinear operator-
valued function from % to c9 is periodic. Then, this sampling
theorem is used to prove that if a g-variate stationary process
admits a sampling theorem, then each of its components will do so.
In Section 5, by using Abreu's theorem [1], we prove in an easier
way as compared to [36] and [20], sampling theorems known for har-
monizable process, with the advantage that in our proof the coefficients
in the sampling series for such processes are exactly the coefficients
of the sampling series of its associated stationary process.

The problem of strong mixing of multi-parameter Gaussian
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stationary sequences was first studied by M. Rosenblatt [43]. In

[431, some sufficient conditions for strong mixing of such process
along the work of Kolmogorov and Rosanov [19] weregiven. The problem
of strong mixing of such processes is yet open. In Chapter IV,

first we generalize Helson-Sarason theorem on "Past and Future"

from the disk algebra to a Dirichlet algebra setting and then specialize
this theorem to the torus to obtain a necessary and sufficient condition
for strong mixing of multi-parameter Gaussian stationary sequences.

The Appendix explains some of the terminalogies related to a Dirichlet

algebra used in Chapter IV.



CHAPTER I
NOTATIONS AND PRELIMINARIES

Let (2,B,P) be a probability space. H = LZ(Q,B,P) denotes
the Hilbert space of all complex-valued random variables on o with
zero expectation and finite variance. The inner product in H is
defined by (x,y) = [x(w)y(wJP(dw) , x,y € H.

In the fol]owning we introduce some basic terminologies and
concepts in the spirit of the work of N. Wiener and P. Masani [501],
P. Masani [23]. These are used in the study of g-variate stationary
processes.

For q > 15, Ha denotes the Cartesian product of H with
itself gq-times, i.e. the set of all column vectors X = (xl,xz,...,xq)T
with x.i €H, for i=1,2,...q. As usual we endow the space H with
a Gramian structure: For X and Y in HJ their Gramian (X5Y) s
defined to be the gxq matrix (X,Y) = ((xi.y‘j)]q 5
i,j=1
One can easily verify that,

/s B (X,X) >0, (X,X) =0 <=>X =03
(1 I e )8,
ATX SRR Al(seY, )B) »
RE T A ST I (W (K IRIRL 2
for any X,)('(.Y,lEHq and any qxg matrices “k’Bn' We say that X is

orthogonal to Y in H® if (X,Y) = 0.

It is well-known that H3 is a Hilbert space under the following



inner product,

(1.2) ((X.,Y)) = trace (X.Y) = § (x3,99).

A closed subset A of #% is called a subspace of Hoif

it is a manifold, i.e. AX + BY € i whenever X,Y € A and A,B are

q x q matrices. It is known [50] that A is a subspace of HY if and
only if there exists a subspace H of H such that H = HY.  Thus,

we obtain a structure for H9 which differes from but also closely
resembles that of a Hilbert space, and which we shall call Hilbertian
[23]. For any x € H, its orthogonal projection on a subspace H of
H is denoted by (x|H). Given a vector X = (xl,...,xq)T e, its
projection on a subspace f = H9 is the vector (X|A) whose i-th
component is (xiiH) for each i = 1,...,q.

1.1 Definition: A sequence X0 € 7. (Xn,n € Z) of elements of

H(HY) is called a univariate (g-variate) stochastic sequence.

For convenience we may abbreviate X o0 (324 (X",n € Z) by
x"(Xn) or simply by x(X). Also, throughout we use small X,y,... to
denote univariate and capital X,Y,... for g-variate sequences.

For random variables {x.} in H we denote by o{x;; Jj €J}
Ve J

the subspace spanned by xJ., for all j in the indexed set J. Similarly
for random vectors (Xj) in Hq, a{xj; j € J} is the subspace of
jed
H3 spanned by all Xj' j € J with matrix coefficient.
1.2 Convention: Since the class of univariate stochastic sequences is

a subclass of g-variate stochastic sequences (q = 1), here, we only

introduce notations and known results about gq-variate sequences. The
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corresponding notations and results for univariate sequences can be

obtained by obvious specialization.

1.3 Definition: To every g-variate sequence X we associate the

present and past subspaces A(X,n), n € Z, defined by,

(1.3) A(X.n) = olX, s k < n} = H9,

and the terminal subspace FA(X), defined by,

(1.4) A(X) = A(X,=) = ofX,s all k}.

Also, we define H(X,n), n €Z, and H(X) by,

(1.5) H(X,n) = o{xi; ki<ihaulo<1'%eiqY cHi
(1.6) H(X) = H(G=) = olxls all k, 1< < ).

It is easy to check that,
(1.7) A(x,n) = HI(X,n), n € Z.

In simultaneous treatment of two g-variate stochastic sequences,
the concept of subordination plays an important role. Here, we define

subordination and some related notions for two g-variate sequences X and
1.4 Definition: Suppose X and Y are g-variate stochastic sequences.
We say that,

(i) Y is subordinate to X if and only if H(Y) < H(X).

(ii) Y 1ds strongly subordinate to X if and only if
H(Y,n) = H(X,n), n € Z.



(iii) Y and X are mutually subordinate or equivalent if and only

if H(Y) = H(X).

In the following, we assume that our g-variate stochastic sequence
is stationary in the sense defined below.
1.5 Definition: A g-variate stochastic sequence X is said to be

stationary if the covariance function R(m,n) = (Xm’xn) depends on

m-n alone.

1.6 Definition: Two g-variate stationary sequences X and Y are

said to be stationarily cross-correlated if the qxq Gram matrix

(Xm,Vn) depends on m-n alone.

We note that a g-variate stationary sequence can be considered
as a set of q univariate stationary and stationarily cross-correlated
sequences.

To introduce the known results about spectral analysis of
g-variate stationary sequences, and for later use, we need the following
concepts.

Let B be a o-algebra of subsets of a space 2. M is said

to be a gxq matrix-valued signed measure on (2,8) if for each

A € B, M(A) is a qxq matrix, with finite complex entries and

M(A) = | M(Ak), whenever Al’AZ"" is a sequence of disjoint sets
k=1

in B whose union is A.

1.7 Definition: A qxq matrix-valued signed measure M is called a

gxq matrix-valued measure if M(A) s a nonnegative hermitian matrix
for each A € B.



1.8 Definition: Let ¢ = (wij) be a matrix-valued function on 2 and

u a nonnegative real-valued measure on B.

(i) We say that ¢ 1is B-measurable if each function tp_ij is
B-measurable.

(i1) Lysu is the class of all ¢ such that each o4 is intergrable
with respect to u.

(iii) For ¢ ELl,u’ we define gb dy = (éq}i\jdu).

1.9 Definition: We say that the qxq matrix-valued signed measure M
is absolutely continuous (a.c.) with respect to (w.r.t.) a o-finite

nonnegative real-valued measure u on (2,B) if the entries of M,

o e Oy
i.e. Mij‘s are a.c. w.r.t. u, We write Mu R e ‘Tfl for
the Radon-Nikodym derivative of M w.r.t. u.

Now, using Definition 1.8 (iii) we define integrals of the form
£@(A)M(dx)w(x), where M is any matrix-valued signed measure and o

and ¥ are suitable functions, by

(1.8) [o(M(A)¥(2) = [T ¥(M)u(d)
Q Q

where u is some nonnegative real-valued o-finite measure on (2,B)
such that M is a.c. w.r.t. u. It can be shown that the definition of
the integral does note depend on the choice of u. When M 1is a qgxq
matrix-valued measure it is customary to choose u to be <M = trace M.
In this case, we denote % = M; by M'.

In the following, we take o = [0,27) = T, B the c-algebra of
Borel subsets of T = [0,2r) and as usual identify T with the unit

circle {z € ¢; |z| = 1} in the complex-plane.



It is known that (cf.[18, Theorem 1], [38, page 141) if Xn and
Vr| are g-variate stationary and stationarily cross-correlated sequences,
then there exists a unitary operator U on the subspace a'(x:‘, y:‘; all
¥ . B wik i ,°N
n, 1 <i<qlcH onto itself such that UX) = Xngp and Wy = Y12

1 <1 <q. This operator y has a spectral resolution;

(1.9) U= {e'“E(dA)

where E 1is a projection-valued measure over (T,B). The operator U
may be extended to a unitary operator on H onto H in many ways, we
denote this extension again by U. The inflation of U denoted by U

is defined by,
(1.10) U = (ud,.wd), x = ()F e Hd
By taking the inflation E of E analogously, we can define
the following qxq matrix-valued signed measures.

1.10 Definition: With each pair of stationary and stationarily
cross-correlated sequences Xn and Yn we associate the qxq matrix-
valued cross-measure MXY’ not necessarilly hermitian-valued, and

qxq cross-spectral distribution FXY defined by,
(1.11) Myy(A) = (E(R)X;5 E(A)Yq), A €8,

(1.12) va()\) = ZvrMXY(O,A] P EREETS

*

It is clear that MVX(A) = MXV(A)’ A €B, and



=1 1 -inx
(113 Ryln) = (X1 M,y (dr) = z—w{e Pt drs ()

where these integrals are defined as in (1.8) with & (1) = e iy
and ¥(2) =1 and I 1is the qxq identity matrix.
In the special case, when X =Y, from (1.11) it is obvious
that M(:) = MXX(') is a qxq matrix-valued measure (cf. Definition 1.7).
1.11 Definition: The qxq nonnegative hermitian matrix-valued function

F defined by,
(1.14) F(A) = 21M(0,A1 , A €T,
is called the spectral distribution of the stationary sequence X.

1.12 Definition: By the spectral representation of the stationary

sequence Xn and its covariance R(n) we mean

(1.15) X, = {e"'“‘i(dx)xo = {e'i"‘s(dx)
= U R [N
(1.16) R = (x2%) = Je M) = gefeT MR (2),

where in (1.15), &(A) = E(A)XO, A€B, 1‘_s an H9-valued countably
additive, orthogonally scattered (c.a.o.s.) measure, so-called be-
cause of its decisive property, A,B € B and A,B disjoint implies
£(A) 1 £(B). The last integral in (1.15) is difined as 3

(fe~T™eI(ar))d
T j=1



With the definition of integral for matrix-valued functions
as in (1.8), we define the L2 class of such functions with respect

to amatrix-valued masure M associated to a g-variate stationary

sequence by,
(1.17) Lp=lam=1es Jo(AM(dr)e *(1) exists}.
We put the following natural norm on L2 FS
(1.18) loflp = Ctrace [s(x)M(dr)S" (1)T%
T

It is known that L2 F is complete under this norm (cf. [401,
s

(38, page 301).
We can introduce in L2 F @ matricial and scalar-valued inner
B

products by,
(1.19) (0,¥)p = (2,4)y = 40(A)M(d)\)‘?*(k), o €Ly b,
(1.20) ((2,¥))p = ((e,¥))y = trace (o,¥)p.
Thus, the norm introduced in (1.18) can then be written as

ollp = C((6,0))1%

{1.21)

The following theorem of [40] connects L2 F and A(X) = Ha.
s

The integral appearing in the theorem is defined in [40].



1.13 Theorem. For a g-variate stationary sequence Xn, the correspondence
? J'o(x)ﬁ(dx)xo is an isomorphism on the space A(X) < Ha.

& The following theorem is an extension of Kolmogorov's Theorems
8, 9 and 10 18] in a form which is given in 23]. Actually, this theorem
gives analytical necessary and sufficient conditions for subordination
and mutual subordination in terms of the spectral measures of two g-variate

stationary and stationarily cross-correlated sequences.

1.14 Theorem. Suppose Xn and Vn are stationary and stationarily

cross-correlated sequences, then

(i) Vn is subordinate to Xn if and only if there exists a

¢ € LZ‘FXX such that
(1.22) dFyy (1) = 0()dFy, (1)67(A),
(1.23) dFyy(2) = a(1)dFyy(2).

In the sense that for any A €3B,

Fyy(A) = A’¢>(A)dFXX(x)o*(A) and Fyy(A) = [o(3)dFyy(3).

(ii) Let Y be subordinate to X, and ¢ as in (i). Then X

and Yn are mutually subordinate if and only if,

dFXX ¥ . dFXX
(1.24) rank{s(r) W”q’ (A)} = rank(drTxx(x)) a.e(rFXX).
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Condition forstrong subordination of stationary and stationarily
cross-correlated sequences is not available in the literature. In the
following, by using Theorem 1.14, we give necessary and sufficient
conditions for strong subordination of such sequences.

For F the spectral distribution of a g-variate stationary
-inAI

sequence we define Hz B ofe 3 n< 0} in L2 F In the special

case, when dF(x) = Ida, HZ,F is the usual matricial Hardy class of
functions denoted by H2'

1.15 Theorem. Suppose Xn and Yn are stationary and stationarily
cross-correlated sequences, then Yn is strongly subordinated to Xn

if and only if there exists a function ¢ € H2 F such that
XX

(1.25) dFyy(3) = o(A)dFyy (110(1)"
(1.26) dFyy(3) = o(x)dFyy ().

Proof. Suppose Yn is strongly subordinate to X", then VO € fi(x,0)
and since A(X,0) and H2 F are isomorphic, there exists a function
2TXX
o €H such that Y = [ &'" o(A)E(dA)X,, for every n (c.f. Theorem
2Fyx SR & 0

1.13). Thus for all integers m and n we have;

21745”"“")*dpw(n = (gety) = 5 [T hetar, (e,

%?{ gl mnhge (1) = (v x) = % & M (a)aF,, (1),

Which implies (1.25) and (1.26) respectively.
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Conversely, suppose that there exists a function ¢ € H2 F
Rl ¢ ¢
satisfying (1.25) and (1.26). Then by Theorem 1.14 (i) V’1 is

subordinate to Xp- Define Z" =/ é‘"*@(A)E(dA)XO, then it is easy
i

to check that,

dFZZ(A) = dFvv(x) and dFXZ(A) = dey(A).

Thus by Lemm 8.1 [38, page 351, it follows that;

VA {e'm)‘«b()‘)ﬁ(dx)xo, for all integers n, which shows that

V" € A(x,n) for all n thus Y" is strongly subordinate to X"

by (1.7) and Definition 1.4 (ii). Q.E.D.
Using Theorem 1.15, we note that if FXX is a.c. w.r.t. the
' dl
Lebesgue measure dA and Fy, = d_xx‘x‘ = yy* a.e. (dr), where Y €

Hy, then (1.25) implies that Fy (1) = everex =(sxov)* a.e. (d1),

i.e. if Vn is strongly subordinate to Xn and Xn is purely

nondeterministic (cf.(23]1, Theorem 9.7), then knowledge of ¢ and ¥

facilitates the task of finding an optimal factor of F;Y. It is

known that this type of analytic factorization plays a major role

in prediction theory of stationary sequences, (cf. [23], section 13).
Next, we define a class of H-valued stochastic sequences, which

are a natural generalization of univariate stationary sequences and

closely related to g-variate stationary sequences.
1.16 Definition. A stochastic sequence Xn is said to be periodically
correlated of period q if the function R(m,n) = (xm+n,xm) = R(m#n,n)

is periodic in m of period q (we note that when q = 1 the sequence
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is stationary). Since ‘ﬁ(m,n) is periodic in m of period q, one

2mikm
q ).

- q

can write R(m,n) = ] R (n)exp(
k=1

For convenience we extend the definition of these functions
Rk(n), k=1,2...,9, to all integers by Rk(n) = Rk+q(")'

It is shown in (0] that each Rk(n) has the representation

(1.27) R (n) = %ﬂ%e'imdFk(x),

where each Fk(') is a complex-valued measure on T. Let F(-) be

the gxq matrix-valued measure, given on intervals by

A1+2wj A2+2ﬂj) ]q-l

(1.28) Flda oo T sSEER( s B
1102 k-3 q q 3,k=0 B

It is proved in (0] that F(-) is a matrix-valued measure.

It is also shown that

( ) Ry i / -i(mn)a +imy, )
1.29 R(m,n) = e dE(AT:A0),
4212 L2
where the spectral measure F(.,.) is given by
q-1
(1.30) F(A,B) = § TR dF () -

k=-q+1 An(B-22%)

In other words the spectral measure F(-,-) is concentrated
on 29 -1 straight line segments ASsihs = Zg—k, k = =g. 1,5 s qERady
contained inside the square TZ, and the measures Fk(-) give

the mass of F(-,-) on these lines according to (1.30).
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With any H-valued sequence x = we associate the H9- valued
: ; RN - .
sequence X" whose i-th coordinate x, 1s given by an+i’ 1 #0§1:25..59 =43
This correspondence establishes a one-to-one linear transformation from
the H-valued sequences onto the H9-valued sequences and we have,
)T

X (o

n S

ng> *ng+1"****ng+q-1
1.17 Lemma. X, is periodically correlated with period q if and
only if Xn is a g-variate stationary sequence.

By Definition 1.12, this associated g-variate stationary sequence
has a spectral measure F which is a qxq nonnegative definite matrix-
valued measure such that R(n) = (X , X ) = 1—J'e'"”‘dF()\).

ne &0 2m T
The following theorem which gives the relation between this

measure F and the measure F given in (1.28) can be found in [10]

and [27].

1.18 Theorem. With the notations as above, we have;

F(A) = {qu*(x)dr(x)u(x), A €B.

Where U is a unitary matrix-valued function whose (j,k) - th
entry is given by q'}i exp[z"i‘gﬂk)‘].



CHAPTER II
SUBORDINATION OF HARMONIZABLE SEQUENCES

2.1 Introduction: The concept of subordination was introduced,
studied and used in prediction of univariate stationary sequences by
A.N. Kolmogorov [18]. Conditions for subordination in terms of the
spectral measures of the sequences were derived in [18]. Analogous
conditions for the subordination of g-variate stationary sequences
were derived by M. Rosenberg (3940, Yu. A. Rosanov [38] and P.
Masani [23] and for infinite-dimensional stationary sequences by

V. Mandrekar and H. Salehi [22]. In [41] and [22] the notion of
subordination have been used to gain some new insight into some
problems in analysis.

T.N. Siraya [48 gives conditions for subordination and strong
subordination (cf. Definition 1.4) of second-order (not necessarily
stationary) processes in terms of their covariances and corresponding
reproducing kernel Hilbert spaces. In [49] conditions for subordination
and strong subordination of one second-order process to another such
process with orthogonal increments, in terms of the structural measure
of the latter has been derived.

In [121, the notion and analytic characterization of subordination
of stationary sequences have been used for optimal filtering of
stationary signals. In [3 ] it is shown that under some general
conditions the output of a linear system is a harmonizable stochastic
process.

14



15

In this chapter we give analytic conditions for subordination
of periodically correlated and harmonizable sequences in the spirit of
Kolmogorov [18,section 41, see also Theorems 1.14 and 1.15.

In section 2, necessary and sufficient conditions for
subordination, mutual subordination and necessary conditions for strong
subordination of periodically correlated sequences in terms of their
associated multi-variate stationary sequences (cf. Lemma 1.17) is
studied. Sufficient conditions for subordination of harmonizable
sequences and a counter-example showing that these conditions are not
necessary along with the problem of linear transformation of har-

monizable sequences is discussed in section 3.

2.2 Subordination of Periodically Correlated Sequences: Throughout

this section we assume that o and y, are periodically correlated
sequences with period q and that they are periodically cross-
correlated i.e. the function ny(n,k) = (x"+k, yn) is periodic

in n of period gq.

2.2.1 Remark. If Xn and y, are periodically cross-correlated with

X
period q, then [y:]’ n € Z, 1is a two-dimensional periodically

correlated sequence. Thus by [10], ny(-,- has an spectral
representation similar to the spectral representation of the covariance

of X, (eT41e29)5

2.2.2 Lemma. If Xn and y, are periodically cross-correlated with

period q and Xn‘Yn are their associated g-variate stationary

sequences. Then Xn and Vn are stationarily cross-correlated.
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Proof. It is easy to check that, for all integers m,n;

q-1

(X Yo )= Dt 1 cadondig)d
m’'n (m-n)g+i’ 7j %590
which depends on m-n alone. Q.E.D:

For X, @ periodically correlated sequence and )(n its

assocaited g-variate stationary sequence we have for all integers n,

(1) HOXGn) = olxpo3men, 04 <q-1)

ofx s k < nq +q -1} = H(x; ng +q -1).

Thus, letting n + =, we get the following important equality,
(2) H(X) = H(x).

In the following theorem we give necessary and sufficient
conditions for subordination and mutual subordination of periodically
correlated sequences in terms of their associated g-variate stationary
sequences.

Necessary and sufficient conditions in terms of matricial
spectral measures for subordination and mutual subordination of
periodically correlated sequences can be obtained by using Theorems

1.14 and 1.18.
22.3 Theorem. Suppose Xy and Y, are periodically cross-correlated
sequences of period q and Xn‘ Y'1 their associated g-variate

stationary sequences, then
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(1) i is subordinate to X if and only if Y" is subordinate
to Xn.
(ii) Vi and x, are mutually subordinate if and only if Yn and

Xn are mutually subordinate.

Proof: (i) and (ii) are obvious because of Lemma 2.2.2 and relation

(2). Q.E.D.

2.2.4 Remark: If ¥q is strongly subordinate to X0 then by relation
2 V'_l is also strongly subordinate to X". But, the converse is
not necessarily true. For an example, let €n be a periodically
correlated sequence of period q = 2 with €y ¢ c(Ek; k <n -1},

Define Xn and Y by Xon = E2no1® Xone1 T E2n Yon Eon and

Bt 52n-1’ then it is clear that Vn is strongly subordinate to
X", but H(y, 2n) 2 H(x,2n) 1i.e. % is not strongly subordinate to

Xn.

2.3 Subordination of Harmonizable Sequences: In this section we study
the problem of subordination of harmonizable sequences and its relation
with linear transformation of such sequences. First we develop a

few concepts which are essential in this study.
2.3.1 Definition: A stochastic sequence X, is said to be harmonizable

if x = {e““‘n(dx) art

-imA,+inA
1 e, i

(1) R(m,n) 4w2f£e u(drg, da,),
T
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where n is a countably additive H-valued measure (not necessarily
orthogonally scattered) on T and for A,B € B, u(A,B) = (n(A), n(B))
extends to a complex-valued measure of bounded variation on T2. u
is called the spectral measure of the sequence.
2.3.2 Remark. Comparison of (1) and (1.29) reveals that the class of
periodically correlated sequences is a special subclass of harmonizable
sequences.
2.3.3 The Hilbert Space /\ng . For ¢, v measurable functions on
T, g @ ¥ will denote the tensor product of ¢ and v i.e.
(2 @ ¥) (A11p) = @(r)¥(2,), for Ap, 2, €T

Let S be the class of all step functions on T, it is clear
that S is a linear space and for all ¢, ¥ € S, the double integrals

f£ ¢e v dy= f£ g(xl)?(xz)u(dxl,dxz) is defined in the obvious way (u
T
is a measure satisfying (1)).

Two step functions ¢ and ¥ will be considered identical if,

I£ (¢ -¥) e (9 -¥)du = 0.
T
If we define for @, ¥ e S, <g,¥> = [£ ¢ ® ¥ du, then(S, <-,->)

T
is an inner product space. In fact, it is obvious that <g,¥> has the

ordinary bilinear and conjugate symmetric properties and further
<@, §> > 0(this follows from property of u),and <g, > = 0 only when
[[oe ¢du=0 i.e. when ¢ is identical with 0. Also, it follows
from <¢,p> > 0, that we have the Cauchy-Schwartz inequality i.e.
i<q>,\?>]2 < <> <Y, ¥,

Let Az(du) be the completion of (S, <.,->) so that it is a

Hilbert space with an inner product denoted again by <-,.>.
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Elements in Az(du) may no longer be functions on T. A typical
element in Az(du) can be realized as a Cauchy sequence of step functions.
However, we treat elements in Az(du) as "formal" functions on T and

use the improper but suggestive notation j£ ¢ ® ¥ du for the inner

T
product <g,¥> with ¢, ¥ ¢ Az(du).

0f course, f£ ¢ e ¥ du=lim [[ ¥ © @ndu, vhere ¢ and
T noq2
¥, are Cauchy sequences of step functions from S converging to ¢

and ¥, respectively, in the norm of Az(du).

Let A(du) = {all measurable functions ¢ on T; j%'\cp @ ldu| <=
and [g!ﬂd{ul < =}, where |u| denotes the total variatiln measure
of uT and the double integrals are in the sense of Lebesgue.

We say that the function ¢ in A(du) represents an element in

Az(du) if there exists a tp'sAz(du) such that for all v e S,

<@, ¥> = f£ q;(xl)w(xz)u(dxl, day).
T

We note that if such o' exists, it is unique, since S is dense
in Az(du). Then, we denote ¢' by ¢ and write o e Az(du). With
this convention and Theorem 1.1 of © 4 ],A(du) is a dense subset of

12(dy) and if oy, @, ¢ Aldu) with ] Torg) o) ul(e1y.hg) < =,
&

then
<91 9y > ff “’1 )U(d)\ dxz).

where the double integral is in the sense of Lebesgue. For n, as in

the Definition 2.4.1, we define H(n) = o{n(A); A ¢ B} in H.
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It is shown in [5] that (en(>.) = e_im‘; n e Z} forms a basis in
Az(du), H(n) = H(x) and further that there exists an isomorphism between
Az(du) and H(n) defined by o ~[op(A)n(d)), for ¢ ¢ Az(du).

2.3.4 The RKHS For R. In the study of problems related to harmonizable
sequences, it is useful to have an explicit representation of the
elements of the corresponding reproducing kernel Hilbert space (RKHS).
Siraya [49] gives such a representation with no proof, in the case
when y is absolutely continuous with respect to Lebesgue measure on

<.

In the following we give an explicit representation of the elements
of the RKHS corresponding to a harmonizable sequence with covariance
R and spectral measure y (cf. Definition 2.3.1).
2.3.5 Lemma. The RKHS corresponding to the covariance R is given by
H(R) = {f ¢ ¢Z‘, f(n)=[foer duoe 42(du)}, with inner product
(f9)p = }'£ @ ® § du, for g e H(R) with g(n) = )’j v e e dy.
Proof. F.1rrst we show that H(R) 1is complete. Let f e H(R) be a
Cauchy sequence, then there exists a sequence @ in l\ (du) such
that fk(n) = ]£ P oe_" du. Since ({f,} is Cauchy in H(R) and

T

llep - @ |l = |[f, - f llp» we conclude that {p } is Cauchy in
Pk 2 Az(du) I k 2“R Py Y

I\Z(du). But /\z(du) is complete, so there exists € Az(du) such
[}
that o, - ¢l > O0ask>«. Now, let f(n) = [[ o ® e du,
k Az(du) 2 n

i
then f e H(R) and [f, - fllp = o}~ w[IAZ(d“)» Oas k+=i.e f +f

in H(R), so H(R) is complete.
The fact that R(m,.) = R(m,n) = ff e, @ e du € H(R) and for f ¢ H(R)
with f(m) = [[o® Em du, @ € A }-du) we have (f,R(m,.)), =

£ T
j£ v ee du = f(m), provesthe Lemma.
T
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Careful scrutiny of Kolmogorov and Siraya's work and results in
section 2.2 reveal that, in problems of subordination, a major role
is played by cross-correlation of the sequences under study. In the
following we assume that X and y, are harmonizable sequences with

covariances,

R(m) = (xgxy) = 757 1] e @ & e
T

B(mn) = (y¥y) = 357 I} n ® % oy
i

2.3.6 Definition. We say that Xn and Y, are harmonizably cross-

correlated if there exists a complex measure ny(-,~ on T2 such that,

Cmn) = (xyoyy) = 377 1] e © &
1,

2.3.7 Definition. We say that the harmonizable sequence v is obtained
from X by means of a linear transformation, if there exists a function

g e A(dF,,) such that
=inmA :
Vst [T & ""g(r) n(dr), for all integers n.

2.3.8 Remark. From definitions 1.4(i) and 2.3.7, it is easy to
see that when Yn is obtained from X, by means of a linear
transformation then h is subordinate to X

By using this remark and the following Theorem which is the
analog of Theorem 8.1 for stationary sequences [38, page 361, we
obtain sufficient conditons for subordination of harmonizable

sequences which are harmonizably cross-correlated.
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2.3.9 Theorem. Suppose Xn and y, are harmonizable and harmonizably

cross-correlated, then " is obtainable from Xy by means of a linear

transformation, if and only if there exists a function ¢ ¢ l\(dex) such that,
dF, =g eq dex £,

(2) =t
dF, =% dF

2.3.10 Remark. By (2) we mean, for any A, B ¢ B,

Fyy(A,B) =Afj;;q:(xl) o) dF  (A152),
(2')
ny(A,B) = [ o(ig) dF (aparp).
AB

Proof. Suppose there exists ¢ ¢ A(dF ) such that,
Y= 1 EMe() n () , nez
T

Since Ui is harmonizable, it has its own spectral representation, i.e.

there exists an H-valued measure (cf. Definition 2.3.1) &(:) such that
zina
Y/ e E(dY) s
T

Thus, for all integers m and n we have;

jéem ® e"dey = (xm,yn) = )’é e, €@ dex

T

j£em ® & dF, = (yosyali= f£em °e 9o ¢df,, ,

4 I

which implies (2).
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Conversely, suppose that there exists a ¢ e A(dex) such that
(2) holds. We define Z'1 = [ Ei’“:p (2) n (dr), then it is easy to check
T

that,
(xp¥g) = (x20)
(Yo¥g) = (Zp2))-

Thus, by a slight extension of Lemma 8.1 [38, page 351, we get

=inx : 5
¥ IT e g (1) n(dr), i.e. Y, s obtainable from x = by means of a

linear transformation. @7ED.
2.3.11 Theorem. Suppose Xn and y, are harmonizable and harmonizably

cross-correlated. If there exists a function ¢ ¢ A(dex) such that

dF, =g o g dF

yy XX

dF,, = % dF
then v is subordinate to X

Proof of this theorem is an easy consequence of Theorem 2.3.9 and Remark

2.3.8.

2.3.12 A counter example. Here we give an example which shows that,
unlike the stationary and periodically correlated sequences, the
conditions of Theorem 2.3.11 are not necessary-for subordination of

harmonizable sequences.
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Let £ be a random variable on some probability space with
Eg=0 and E ]gl2 = 1. Let f.g-¢c LI(T,dA) where f is not
identically zero. Define the following stochastic sequences
= ;(n)a and y = {;(n)z, where f(n) = ZL" ZW e'i")‘f(x) dx.

It is easy to check that Xn and y, are harmonizable and
harmonizably cross-correlated with dF = f o F dm, dFyy = g ® g dm
and dey = f e g dm, where m is Lebesgue measure on Tz.

For any choice of such functions f and g we have H(y) < H(x)
i.e. v is subordinate to X But, in the following, we show that
it is possible to choose f and g 1in such a way that none of the
relations in (2) (or (2')) can hold.

Suppose, there exists a ¢ e A(dF, ) such that conditions in

Theorem 2.3.11 are satisfied, then, for A = B we have;
28 12
(3) [/{g(x)du = ‘A’(p()\)f()\)d)\‘ - A e B.

For A =[0,1] choose g e Ll(T,dA) such that [g(x)dA # 0. Then
with f = Xn,om) We have [ @(A)f(A)dr = 0, whif:\h contradicts (3).
2.3.13 Remark. Theorem 2.3.11 can also be proved by using Theorem
1 of (48] and Lemma 2.3.5.

2.3.14 Remark. In Definition 2.3.1, if u is a measure which is
concentrated on the main diagonal of the equare TZ, then the cor-
responding process Xp is stationary. In this case, we can think
of u as a nonnegative measure on T, then it is easy to see that
A(du) (as defined in 2.3.3) is the same as the space of measurable

functions on T which are square integrable with respect to u i.e.
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A(du) = Lz(du). Thus Theorems 2.3.9 and 2.3.11 specialized to the

case when X, and y, are stationary and stationarilly cross-
correlated will reduce to Theorem 8.1 of [38, page 361 and sufficient
part of Theorem 9 of [18], respectively.

2.3.15 Remark. We note that for stationary sequences, the property that
Y is obtainable from X is equivalent to the subordination of Y5

to x, [38, Theorem 8.1] and Theorem 1,14, But, this is not the case for
harmonizable sequences, as counter example 2.3.12 shows.

2.3.16 An Open Problem. It is conjectured that the assertions of Theorems
2.3.9 and 2.3.11 are true even when ¢ ¢ Az(dFXX) instead of belonging
to A(dex). Although this can be estiabl)’shed formally, we have been
unable to prove it rigorously. It seems that a rigorous proof of these
assertions in this new setting hinges on giving a proper meaning to the

relation (2) in Theorem 2.3.9.



CHAPTER III
SAMPLING THEOREM FOR g-VARIATE
STATIONARY AND UNIVARIATE HARMONIZABLE
PROCESSES

3.1 Introduction. It is well-known that a stationary stochastic process
x(t) € H, t ¢ R, has the sampling series

© : -1
x(t) = | x(nh) Sin *rh- t-nh
n=-=

wh™*(t-nh)

if the spectral measure u of x(t) 1is supported by the interval
s -1
h h

s 7 ).

is of considerable importance in communication and information theory [11°

This so called "sampling theorem" dates back to Cauchy and

and [29]. Such processes with bounded spectra are called "band limited”.

This sampling series, which converges in mean-square and also
almost surely, enablesa band-limited process to be exactly reconstructed
from its sample {x(nh); n ¢ Z}.

0f course, a process need not be band-limited to admit an error-
free reconstruction from its samples. S.P. Lloyd [21] gave a necessary
and sufficient condition on the spectral measure for a stationary process
to admit such a reconstruction.

More precisely, a process x(t) e H (not necessarily stationary)
can in principle be exactly reconstructed from its samples {(x(nh); n ¢ Z}
if H(x) = Hs(x), where Hs(x) = o{x(nh); ne Z} in H.
3.1.1 Definition. For a fixed h > 0, we say that the process x(t), t ¢ R,
admits a sampling theorem if H(x) = Hs(x).

Lloyd uses the terminology that "x is linearly determined by its
samples" when H(x) = Hs(x). We will refer to the fixed positive h as

26
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“sample spacing" and to the set (tn) = {nh; n e Z} as "sample times".
In [21], Lloyd proved the following remarkable resuts for a

stationary stochastic process.

3.1.2 Theorem. Let x(t), t e R, be a stationary process with spectral

measure u, then

(i) x admits a sampling theorem if and only if u has a support A

1 i.e A+ nh'l; nelZ} are

such that the translates of A by nh~
mutually disjoint.
(ii) If the measure . has an open support A whose translates

{n+ nh'l; n e Z} are mutually disjoint, then we have

N
x(t) = Tim T (1- 18y x(on)k(tonh), ¢t < R,
N+ n==N
where K(t) = h /ez"“t dx, t e R, and 1.i.m. stands for limit in mean
A
square.
(iii) If the A from (ii) is a finite union of intervals, or, more generally

if sup [tK(t)| < =, then
t

N
x(t) = 1.i.m. [ x(nh)K(t - nh), teR.
N> n=N

For more information on sampling theorems and its applications in
different fields, as well as a complete bibliography of this subject,
[17] may be consulted. The extension of sampling theorem for multi-
parameter stationary processes have been studied by Parzen [23],
Miyakawa (28] and others [17].

For g-variate stationary processes no sampling theorem is available
in the literature. Due to the importance of such processes in application,

it is important to have theorems similar to 3.1.2 for g-variate stationary
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processes. Also, it is important to know whether anything is gained by
studying sampling theorem and sampling series for g-variate stationary
processes. It is useful to know whether there is any connection between
admittance of a sampling theorem for a g-variate process and its components.
If it is so, then it is desirable to know something about the rate of
convergence of the g-variate sampling series and its relation with the

rate of convergence of its individual component's sampling series.

In sections 2 and 3, using the ideas of Lloyd, we develop the
necessary machinery which is needed to prove a sampling theorem for a
g-variate stationary stochastic process. Also, we show that if the com-
ponents of a g-variate process (not necessarily stationary) admits a

sampling theorem with the same sample spacing h > 0, then the process it-

self admits a sampling theorem with the same h. In section 4 we prove

a sampling theorem for g-variate stationary process and use this sampling
theorem to show that if a g-variate stationary process admits a sampling
theorem then each of its components will admit a sampling theorem. In
section 5, by using Theorem 3.1.2 and Abreu's Theorem [ 1] we obtain a
sampling theorem and a sampling series with explicit coefficients for
harmonizable stochastic processes.

3.2 Preliminaries. In the study of sampling theorem for g-variate stationary
stochastic processes the notion of absolute continuity of a matrix-valued
sgined measure (defined in Chapter I) with respect to another such measure
plays an important role. The problem of defining a "proper" notion of
absolute continuity for such measures was first posed by P. Masani [23].
Later J. B. Robertson and M. Rosenberg [37] dealt with this question

and obtained a satisfactory solution to it.
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Here, we will briefly review some of their results and some other
concepts which are needed for the proof of our sampling theorem.

Throughout this Chapter o =R and B 1is the o-algebra of
Borel subsets of R. The customary definition of absolute continuity
for matrix-valued signed measures does not guarantee the existence of a
Radon-Nikodym derivative.
3.2.1 Definition. Let M1 and I‘!2 be q x q matrix-valued signed
measures on (Q,B) respectively, let u be any o-finite nonnegative
real-valued measure on (Q,8) such that Ml and M2 are a:C. WPt
u. We say that I\‘I2 is strongly absolutely continuous (s.a.c) w.r.t.

Ml if,

Nty () e N, (4)) a.e. (),

where for each matrix M, N(M) = {X; MX = 0}.
It can be shown that this definition is indpendent of .. Hence,
we supress the dependence of Mi and Mé 4 on u i.e. we only write
B

s

M

H foricM}n., i = 1,2,
isu

The following theorem is proved in ([37].
3.2.2 Theorem (Robertson-Rosenberg). Let Ml and M2 be q x q matrix-
valued signed measures on (o,B) then,
(i) M2 is s.a.c. w.r.t M1 if and only if there exists a measurable
g x q matrix-valued function ¢ on @ such that for all Ae B
MZ(A) = £° dMl'
(ii) Let & and v be measurable q x g matrix-valued functions on

Q. Then for each A e B, [¢ dl‘l1 = [y dM, if and only if ¢J = wJ a.e. ().
A A
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where J is the orthogonal projection matrix-valued function onto the
range of Mi and p is any o-finite nonnegative real-valued measure
on (2,B) w.r.t. which Ml AR 8565

Thus, if M2 $8cgsasc. wir.t. Ml’ then by Theorem 3.2.2 (i)
there exists a measurable matrix-valued function ¢ such that for each
Afe B, MZ(A) = Ao dMIA ¢ 1is called the Radon-Nikodym derivative of I"!2

w.r.t M1 and will be denoted by # . To make this notation more clear
1

and for Tater use we need to introduce the concept of generalized inverse
of matrices due to R. Penrose [34].

3.2.3 Theorem (Penrose). Let A be any g x q matrix, then there exists
a unique q x q matrix X such that,

A = AXA, X = XAX, (AX)* = AX and (XA)* = XA

3.2.4 Definiton. The matrix X 1in Theorem 3.2.3 is called the generalized
inverse of A, and will be denoted by A~.

It can be shown that the generalized inverse of a matrix A has
the following important properties:

AR = PE(A) = PN(A*)J.,

AA = PR(A*) = PN(A)J'

Where R(A) stands for the range of the matrix A considered as an
operator from ¢q to ¢q and P denotes orthogonal projection,
From Theorem 3.2.3 and Definiton 3.2. 4, 2 i My is s.a.c, w.r.t.

M1 we define the Radon-Nikodym derivative dﬂ" » sz dM by
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;-;—i— (a) = Mé (A).Mi' (») a.e. (u), where yu is any nonnegative measure
such tat M, TRYaLC W te

Next, we introduce some basic notions about continuous time
g-variate stationary processes. We note that all definitions and results
of Chapter I are still valid for continuous time stationary processes,
if n is replaced by t and the region of integration by R = (-=, =),
38, Chapter IJ.

To be consistent with the Titerature on sampling theorem, through-
out this chapter, we replace giat by gZriat contrary to our standard
notation of earlier chapters.

Let X(t), t ¢ R, be a q-variate mean continuous stationary
stochastic process with the spectral distribution, q x q matrix-valued
function, F defined on . Then, X(t) has the spectral representation
X(t) = ? ‘S""“ E (dr) X(0), (c.f. Definition 1.12). By Theorem 1.13,

EZW’I At I,

under the map X(t)- t e R, where I 1is the g x q identity

matrix, H(X) 1is isometric to Ly g

For fixed h > 0, by the samples of the process X(t) , we mean

the collection {X(nh); n e Z} of random vectors. The samples
®(nh); n e Z} span a closed subspace of H(X). We denote this subspace
by ﬁs(x). The random vectors in FTS(X) are those determined linearly
by the samples with matrix coefficients.
3.2.5 Definition. We say that the g-variate stochastic process X(t)
admits a sampling theorem if H(X) = FS(X).

Now, we prove the following important but simple theorem.

3.2.6 Theorem. If the components of X(t) i.e. xi(t), 1<i<q admits
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a sampling theorem with the same h, then X(t) admits a sampling theorem
with the same h.
Proof: From Definitions 3.2.5 and 1.3 it follows that X(t) admits a
sampling theorem if and only if H(X) = HS(X), where HS(X) =
c{xi(nh); l1<i<g,nel} in H. From this observation and the fact
H(x') = Ho(x'), 1< 1 <q, it follows that H(X) = ofH(x'); 1< i < q} =
o{Hs(xi), l1<ic<qls= HS(X) i.e. X(t) admits a sampling theorem. Q.E.D.
We note that this theorem holds for any second-order g-variate
process. The converse of this theorem is not that easy. In the case
of gq-variate stationary processes we get that as a corollary of our main
theorem.
We denote by L2,F,s the image in Ly ¢ of ﬁg(x) under the
isomorphism. According to this isomorphism to X(nh) ¢ ﬁ;(x) corresponds

éZWinhA -2minhX

I e L2 Fgo NE Z. Since for each ne Z, e I 1is periodic

with period h'I in A, it is tempting to characterize L2,F,s as equivalent
classes of all matrix-valued functions in LZ,F which are periodic with
period hl . But, this is not true in general.

Next, we put enough conditions on F which gaurantees that
L2,F,s is the equivalent classes of matrix-valued functions which are
periodic with period hl
3.2.7 Assumption. Throughout this chapter we assume that the spectral
distribution F s such that R(F'(x)) 1is periodic in A a.e. (1)
with period h™ (i.e. R(F'(2)) = R(F'(nh™l)) if A, 2 +nnle

support of t) where <t = trace F and F' = %5 a.e. (1).
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It is obvious that when F' s of full-rank or F' has constant
range or F' has periodic entries, on the support of <, then Assumption

3.2.7 is satisfied.

Now, we show that under Assumption 3.2.7, L2 F.g Can be identified

as equivalent classes of functions in L2 £ which are periodic with period

h1 .

3.2.8 Leimma. Under Assumption 3.2.7, L2 F.s consists of equivalent
classes of matrix-valued functions in L2 F which are periodic with
period h™l .

. _ _,=2minhx .. .
Proof. First we note that LZ,F,s = o{e I; ne 2} in L2,F .
Thus, for ¢ ¢ L2 F.s there exists a sequence o of matrix-valued

1

functions which are periodic with period h™ " such that o, > ¢ in

L, p oOr what is the same ¢n/F'+ ¢ VF" in L, ;- This implies that there

exists a subsequence o such that
i

Qn. Fr> 9 FT a.e. (t).
1

Thus, ¢  F' > o F' a.e. (1) ,
i
which implies that

therefore,

(1) o, + ¢ a.e. (1) on R(F').

Now, we show that ¢, as a function in L2 F is periodic with period h'l.

From (1), we have for almost all 1A,
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(2) o (A) > o(}) on R(F' (1))
1

(3) o (\) =0 (x+nh7h) > s(x + 1) on R(F'(x + nh™1)) = R(F'(X))

i i
(by Assumption 3.2.7).

Thus, (2) and (3) implies that for almost all A

o(x + nh'l) = ¢(A) on R(F'(x)).

Thus, L2 F.s is contained in the collection of all equivalent classes

of matrix-valued functions in L2 F which are periodic with period h'l.

Next, suppose that 0 % ¢ ¢ L2 F is periodic with period h'1
such that,

(4) / éz"inhAdF(A)¢(A) = 0, for all integers n.
By periodicity of ¢, (4) is the same as
1, . =
[ &I r gr(emhtl))e() = 0, for all n, which implies
0

Mm==-co

that ¢ =0 1in L2 £ This contradiction proves that L2 F.s contains

all equivalent classes of matrix-valued functions in L2 F which are

periodic with period h~l. Q.E.D.

3.3 Projection on L2 F s For the proof of our main result, Theorem

3.4.1, we need to have an explicit form for the operator P projecting

L2 F onto L2 F S(Lemma 3.3.5). In this section we find such a form

for P along the line of Lloyd's Lemma [211.

Let Bb denote the family of all bounded sets in B. For

A e B. and given ¢ ¢ L2 g we define the following countably additive

b
and o-finite set functions on Bb:
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M(A) = Z / an(A) and M¢(A)

[}
e~ 8

{on(x) an(A),

- 00

n

o(x + nh'l)

where Fn(A) = F(x + nh'l) and ¢n(A) ,nel, e R are

translates of F and ¢. We note that M¢ is equal to M, when ¢ =1,
the g x q constant matrix. These functions are determined by their
values for sets in B,. Let A B, have diameter less than h'l, S0

1

that its translates {An =A-nh "; nel} are mutually disjoint.

Then, M¢(A) = [ o dF, and the countable-additivity and o-finiteness of

UA

nhn
M¢ follows from this and the fact that each set in Bb can be written
as finite union of Borel sets with diameter less than h'l. Due to this

latter fact, without loss of generality, we assume throughout this chapter
that A ¢ B has diameter less than h 1.

3.3.1 Remark. Here, we note that althouéh "M and M¢ are not (necessarily)
defined on the c-algebra B, neverthless, the assertions of Theorem

3.2.2, concerning s.a.c. and Radon-Nikodym derivative and its uniqueness,
are still valid when Ml, M2 and B are replaced by M,M¢ and Bb,
respectively. This can be proved by applying Theorem 3.2.2 to each bounded
Borel set and the c-algebra of its Borel subsets.

3.3.2 Lemma. H¢ is s.a.c. w.r.t. M.

Proof. We must find a o-finite nonnegative measure u such that

M¢ << u and M << u and then show that:

N(M'(A)) N(M; (1)) a.e. (u).

= 1 = = 7
Let u g t,» Where t_ an(an trace F ), then it

is clear that Fn << T << w . Thus, we can define



36

[ .
Fn i a.e. (u), and we have:

M(A) = ,{(%F;])du, M¢(A) = A’(%%Fr‘])du,

which implies M' = EFA a.e. (y) and M$ = §¢nFﬁ a.e. (u).

Let X e N(M'), then (ZF&)X = 0 which implies:
n

* ' = o =
X (an) X = % X Fn X =0.

Since Fﬁ is nonnegative definite [40,Lemma 2.3], we get
%*
X* F, X =0 for every n. But, X* Frx=(FrX) . (/F7 X) =0, which
implies that /F: X = 0, for every n. Thus,

M; X = ()¢

FU)X=1 (oF) FrX=01i.e XeNM). Q.E.D.
n n 0

nn

By Lemma 3.3.2, Theorem 3.2.2 and Remark 3.3.1 the Radon-Nikodym
dM

derivative Eﬁi exists. So we can define the operator P on L2 F into

the space of matrix-valued functions by,

dM
(Pe)(a) = —ﬁi (A) a.e. (u), ¢ ¢ L2,F'

It is clear that P s matricial linear, also since for each
fixed ¢ L, , A and integer k, M¢(A) =] Jo, dF = [ odF =
n A LA
nn
-1 dM¢
[ o dF = M¢(A + kh 7), it follows that -~ can be chosen to be

dH
RAn+k
periodic with period h"1 , this fact plays a key role in the proof of

boundedness of P.
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dM
To show that Eﬁi is in L2 F it is enough to prove that P is
norm bounded in L2 F For this, we need to prove the following matricial
Cauchy-Schawrtz inequality for matricial inner product in L2 F

3.3.3 Lerma. For o,v¥ ¢ L2 F with matricial inner product

it *
((bs‘{")F = f ¢ dF vy ’

-

we have,
(e,9)p (vavdp  (vs0)p < (0,0)p -
Proof. For every q x q constant matrix A we have, c.f. (1.1),

(¢ + Ay, o+ Ap)p >0

*

*
or, (e,0)p + A (wsw)p A+ A (y,0) * (e5u)p A >0,

For choice of A = - (2,y)r (y,y)c and using the defining
properties of the generalized inverse of matrices, (c.f. Theorem 3.2.3),
we get the result. Q.E.D.

3.3.3 Lemma. P 1is a contraction on L2 F into L2 F s

3 LA
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Proof. For ¢ ¢ L2 F we have;

o dM dM o [dM Y dM
2 _ ¢ 3 = _¢ ? =
WPele =« [ ¢~ dF (dM ) T _Q(dM ar 9F
-1
h dM dM
v I (g Gem )T 2 Gemh) dF e )
n 0
=t/ (g W) g () L) =+f a | a9
0 n 0
-1 * -1
h = dM dM h
) ¢ = - =
I ( 37 of dM dMT dM dMT dM
0 0
h-1 .
T fo dM, dMT -dM,
dn
In this chain of equalities we have used the fact that Eﬁg can be chosen

to be periodic with period hl,

Since M¢(A) = [ o(x) dF(x) I with diameter of A less than
nn

, by letting o) = ¢X%An and v = IXUAn we get (¢1,w)F = H¢(A),
n

h-l

*

(w,w)F = [ dF = M(A) and (cpl,qal)F = gA o(x) dF(x) & (A) = N(A).

*

Thus, from Lemma 3.3.3 we get M¢(A) M"(A) M (A) < N(A), therefore;

¢
2 h‘l h-l . | '2
”P¢HF < f dN = ¢ Z f ond% ¢n = h¢hF.
0 n 0

Which shows that P 1is a contraction on L2 E into L2 F But, since
dM

Eﬁi can be chosen to be periodic with period h"l, it follows that the
range of P is inside L2 F.§ Q.E.D.

In the following, a bounded matricial linear operator P on

L2 F is said to be a projection if P2 = P, In this case P is the
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identity operator on its range.

3.3.5 Lemma. The operator P 1is a projection onto L2,F,S .

Proof. By Lemma 3.3.4 it is enough to show that P is (equivalent to)

the identity operator on LZ,F,S . Since any ¢ ¢ L2,F,S is equivalent

to some oL, o which is periodic with period hl,(c.f. Lemma 3.2.8),

thus by definition of M Lemma 3.3.2, Theorem 3.2.2 (i) and Remark 3.3.1:

Q| o
Zl_el’

M (R) =] [ & (x) dF (A) = [ ¢dh= /{ dM.

¢ n A A

Hence, by Theorem 3.2.2 (ii) we get;

dMm
Eﬁi J=0¢ J a.e. (u),
where J()) 1is the orthogonal projection matrix onto the range of M'(a)
dM
a.e. (u). Since qmte L, (c.f. Lemma 3.3.4) and R(F') g R(M'), it
dM ’
follows that, Hﬁi ¢ a.e. (F).

Thus, for ¢ ¢ LZ,F,S we have Po = ¢ a.e. (F). Since range
of P 1is contained in LZ,F,S it follows that P 1is the projection
onto LZ,F,S' ”

Next, we find a version of Eﬁg which will play a major role
in the proof of our main theorem. For each n, let Fn denotes the
Lebesgue-Stieltjes matrix-valued measure induced by the functions
Fn(x) = F(\ + nh'l), A e R, ne Z. Each of these measures may be decomposed,

by Cramer-Lebesgue theorem [371. into a tF-continuous part and a

tF-singular part;

£f drA)+F(A Sn),AeB,neZ,
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where fn’ a g x q nonnegative definite matrix-valued function, is the
Radon-Nikodym derivative of the tF-continuous part of Fn with respect
to <tF, and the tF-singular part of Fn is supported on the Sn i.e.
T(Sn)= 0 (F(Sn) = 0).

Let S = %Sn, then <(S) = 0 and

Fn(A) = £ fn(x)dr(x) + Fn(A ns), Ae B, neZ

thus, the measures M and M¢ will have the form,

M(A) = £ (1 f . (X))dc(x) + M(A N 'S)
n

M¢(A) = £ (g ¢n(A)fn(A))dt(A) + M¢(A ns).

Hence, we arrive at the following important result.
3.3.6 Lemma. (P¢)(A) = ;;1 (n) = () ¢n(x)fn(x)) (y fn(x))' on R\S,
which is a.e.(t). " "

We note that this version of the projection is no longer formally
periodic, but it plays a major role in the proof of Theorem 3.4.1.

3.4 A Sampling Theorem. From Definition 3.2.5, it easily follows that

the statement that, for all values of t ¢ R not of the form nh, the
random vector X(t) can be obtained by linear combination of the sample
random vectors {X(nh); n ¢ Z} with matrix coefficients. In this section
we find necessary and sufficient conditons on the support of the spectral
measure F or equivalently the trace measure of F so that the process
admits a sampling theorem. By a support of a measure +t we mean any set
A € B whose complement has +t measure zero i.e. t(R\ A) = 0.

Here is our main theorem which is stated and proved in the spirit

of Theorem 1 of (21.
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3.4.1 Theorem. Under Assumption 3.2.7 the following properties of a
g-variate stationary stochastic process X(t) continuous in mean are

equivalent.

(i) Each random vector X(t), t € R, of the process is determined

linearly by the samples {X(nh); n e Z}.

(ii) For some irrational number ¢, X(ch) 1is determined linearly by

the samples.

(iii) There exists a support A of the trace measure 1 of the spectral
distribution of the process whose translates {A + nh'l, nel} are
mutually disjoint.
Proof. That (i) implies (ii) is clear. We show that (ii) implies (iii)
and then (iii) implies (i).

Suppoese X(th) is determined linearly by the samples i.e.

X(ch) € ﬁ; (x), then e which is the isomorph of X(gh) in

LZ,F belongs to L2,F,S so is equal to its projection on LZ,F,S .
Thus, by Lermas 3.3.5 and 3.3.6 we have;

1
)eh I)f 7.7) fnl  a.e. {(t).
n

EZNiAEh [ =p 62n1n£h [ = l:)‘-((-_321\'1()\ + nh ]
n

Which implies,
1
SR SRS S

éanxgh (3 fn) = ( 52w1(x + nh
n n n n

: -1
-ri(x + nh *)¢h
(; e fn) PR(Z fn)’
n

or

-2miXEh -2miizh -2miXgh -2miXgh -2ning

e f,+ e 7 f =e f, P +e (] e f )P

0 n#0 n 0 R(% fn) nZ0 n R(gfn),
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and this implies that,

-2miAg - -27ing -
e cY(1-e )f 1P =0,
n#0 n R(gfn)

from which (since g 1is irrational) we get;
f PR(ka) =0 a.e. (t) , VYn#0.
k

For X ¢ R(ka) we have;
k

an = fn PR(ka) X=0.
k

And for X ¢ R(Efk)L = N(Efk) c N(f) weget; fX=0. So, f =0
a.e. (1), Yn#0, i.e. Fn's are tF-singular, n # 0 or what is the
same 1 = an is +tF-singular, n # 0. Thus there exists corplementary
supports for t and L # 0. Let Mn be a support of <t such taht
rn(Hn) =0, n# 0. The intersection N =n9b Mn of these is a support

of 1t which has the property rn(N) =0, n#0. From the nature of the
rn(translates of 1) we see that Nn = N+ nh'1 is a support of T
which has the property rr(Nn) =0, r#n,n, rel, in particular,
r(Nn) =0, n#0. Finally, the set A = N (i (nQO R\Nn) is a support of
1 which is disjoint from each of its translates A + nh'l, n# 0.

To show that (iii) implies (i), suppose A is a support of =
which is disjoint from each of its A + nh'l, n# 0. Clearly A+ nh'1
is a support of T, SO that F and Fn have disjoint supports, n # 0,
i.e. fn(x) =0 a.e. (t) ,n#0. Thus, by Lemma 3.3.6 for ¢ ¢ LZ,F

we have;

¢ a.e. (F) i.e.

—
~
©

~
—
>
~
n
©
—
o
—
o
]
©
O
p e
—
—
]

Q.E.D.
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3.4.2 Remark. Here we note that Assumption 3.2.7 or an assumption similar
to that is essential for Theorem 3.4.1. For an example, consider the case
qg=2, Xt) = (xl(t), xz(t)), where the spectral measures of xl(t)

and xz(t) are supported on (0,11 and [1,2], respectively. By Theorem
3.1.2, x}t) and x%(t) admit sampling theorem with h = 1, thus by
Theorem 3.2.6, X(t) admits sampling theorem with h = 1, but this con-
tradicts Theorem 3.4.1 (iii) as traslates of A = 70,2] i.e.

A+n=1{0,2] +n,nel, are not mutually disjoint.

3.4.3 Corollary. If a g-variate stationary process, X(t) = (xl(t),...,xq(t)ﬂl
admits a sampling theorem with sample spacing h, then xi(t), i=1,...,q,
admits a sampling theorem with the same sample spacing.

Proof. Since X(t) admits a sampling theorem, by Theorem 3.4.1, there
exists a support A for 1 whose translates A + nh'1 are mutually
disjoint. If A; is a support of the spectral measure of xi(t), then

clearly A, c A. Hence A, + nh~ 1

,» N e Z, are mutually disjoint, therefore
by Theorem 3.1.2 (i), x'(t) admits a sampling theorem with the same sample
spacing h. Q.E.D.

3.4.4 Open Problems. Here we have not studied the problem of reconstuction

of the g-variate process from its samples. Sampling series similar to

(f1) and (ii1) in Theorem 3.1.2 with non-diagonal matrix coefficients

are of considerable importance in application. In this case, for re-
construction of a particular components of a gq-variate process, samples

of other components of the process is used. So it is natural to ask,
whether these samples from other (related) components will help the

series for the reconstruction of that component to converge faster comparec

to the case when only samples of that particular component is used in its
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reconstruction. At this time, we have no answer to these problems.
Answer to these problems will be very useful in application and theory
of sampling theorem for g-variate stationary processes.

3.5 Sampling Theorems for Harmonizable Processes.

The problem of sampling theorem for harmonizable processes have been
studied, independently around 1967, by Z.A. Piranashivli [35] and
M.M. Rao [36]. In [35] a sampling series for harmonizable processes
with bounded spectra is given. Rao has extended Lloyd's theorem to the
case of harmonizable processes, but Rao's condition is not necessary,
as A.J. Lee [20] has shown by a counter-example that no condition on
the translates of a support of the spectral measure, in this case, is
necessary.

In [20], A.J. Lee obtains sampling theorem and sampling series for
non-stationary second-order processes under some integrability condition
on the covariance of the process along the work of Lloyd [21;. In parti-
cular, he has a sampling theorem and a sampling series for harmonizable
process. But, in Lee's result the coefficients for the reconstruction
of the process from its samples are not explicit as he uses the theory
of distributions.

In this section, we use Abreu's theorem to obtain sampling theorems
and sampling series for harmonizable processes similar to the work of
Lloyd [21], Buetler [2 ] and Rao ([36]. In our case, the coefficients
in the sampling series are exactly the same as those appearing in Theorem
3.1.2.

First, we need to introduce some notions and notations, Consider the

harmonizable stochastic process; (c.f.Definition 2.3.121,
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x(t) = [ g2mit n(dr) , t e Rl, with the covariance function
R

2ni(SA1 - tkz)

R(s,t) = j£ e du(Al,Az) , where n 1is a countably additive
R

H-valued measure on R! such that for A,B ¢ B, wu(A,B) = (n(A),n(B))
extends to a complex-valued measure of bounded variation on R2. Here,
we refer to u as the spectral measure of the process.

Let [u| denote the total variation measure of u, then |u| is a
positive, finite and symmetric measure on R2. Now, we define Mg a
finite positive measure on Rl, as the marginal measure of |u| by
“O(A) = |u|(A x R). Since ug Ts a finite positive measure on Rl,
it can be considered as the spectral measure of a stationary process
z(t) taking values in a Hilbert K. The following remarkable theorem
of J. Abreu [ 1] and [263 shows that the harmonizable process x(t)
can be obtained by projecting z(t) onto H(x).

3.5.1 Theorem. If x(t) ¢ H 1is a harmonizable process with spectral
measure u, then there exists a Hilbert space K containing H(x) as

a subspace and a stationary process z(t) € K such that if P: K -+ H(x)
is the orthogonal projection, then x(t) = Pz(t), t € R . Furthermore,

Mg the spectral measure of 2z(t) 1is given by uO(A) = |u|(A x R), A e B.

3.5.2 Definition. We call the stationary process z(t) of Theorem

3.5.1, the associated stationary process of x(t).

Abreu's theorem had been used to obtain sufficient conditions for
certain properties of a harmonizable process in terms of its associated
stationary process z(t) i.e. in terms of the measure Hg- Here, we use
this theorem to obtain sufficient condition for a harmonizable process

to admit a sampling theorem.
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In this section we introduce a more general notion of sample times
than that which was used in earlier sections of this chapter. e refer
to any set {tn}<: R which is not dense in R as sample times. In this
case, if H(x) = Hs(x) = o{x(tn); ne Z} we say that the process admits
a sampling theorem. If tn = nh , then we say that the process admits

a (periodic) sampling. If {tn; ne Z} 1is a bounded subset of R, then

it is said that the process admits a non-periodic sampling theorem.

3.5.3 Theorem. A harmonizable process x(t), t e R admits a sampling
theorem if its associated stationary process z(t) admits a sampling
theorem.

Proof. Suppose z(t) admits a sampling theorem for a given sample times
{t,} then we have H(z) = Hs(z) = c{z(tn); nelZl. By Theorem 3.5.1,

we know that x(t) = P z(t) for all t e R, thus by continuity of P

and the fact that H(z) o H(x) we get;

Ho(x) = o{x(t )s n e Z} = ofPz(t ); ne 7} 2 P(o{z(t,); n e Z})

But, since Hs(x)<: H(x), we have H(x) = H_(x) i.e. x admits a sampling

s

theorem with the same sample times. Q.E.D.
By combining Theorems 3.1.2, 3.5.1 and 3.5.3 we get the following

sampling theorem and sampling series for a harmonizable process.

3.5.4 Theorem. Suppose x(t) 1is a harmonizable process with the spectral

measure u and Mo the spectral measure of its associated stationary

process (that is “O(A) = |u] (A xR), Ac B).
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(i) If My has a support A whose translates by nh~l e, {n+ nh'l; nel}

are mutually disjoint, then H(x) = Hs(x) i.e. x(t) admits a sampling
theorem.
(ii) If ug has an open support A whose tranlates {A + nh'l; nelt}
are mutually disjoint, then we have;

N

x(t) = Tim J (-0l x(mn)k(t - nh) L t e R
N-+>o n==N

(iii) If the A, from (ii), is a finite union of intervals, or, more
generally, if sup|t K(t)| <« then
' N
x(t) = 1.i.m § x(nh)K(t - nh), t e R.
n=-N

We note that K(t) appearing in (ii) and (iii) are the same one
which appears in Theorem 3.1.2.

Non-periodic sampling theorem and sampling series for stationary
stochastic processes was first given by F.J. Buetler [ 2 j. Theorem
3in [21 gives sufficient condition for a stationary process to admit
a sampling theorem, and a formula for the reconsturction of the process
from its samples.

Here, again by combining Theorem 3 of {2 ] and Theorems 3.5.1 and
3.5.3 we obtain such a sufficient condition for a harmonizable process
to admit a sampling theorem along with a formula for the reconstruction
of the process.

3.5.5 Theorem. Suppose x(t) 1is a harmonizable process with the spectral

measure u and Mg the spectral measure of its associated stationary

process. Let tn be a bounded subset of R with a Timit point to.
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2]

® ¢
It uy has the property [ e

-0

uo(dx) < », for every c < =, then

(i) H(x) = Hs(x) , i.e. x admits a non-periodic sampling theorem.

(ii) x(t) has derivatives of all orders in the sense that

1.9.m. AU ORI
t -t th -t

with x(0)(t) = x(t).

(iii) For each t ¢ R,

Nt - )" x(Me
x(t) = 1.i.m. (£ - t) X7 (t) .
N+e n=0 n



CHAPTER IV
HELSON-SARASON THEOREM FOR DIRICHLET
ALGEBRAS AND STRONG MIXING OF MULIT-

PARAMETER GAUSSIAN STATIONARY PROCESSES

4.1 Introduction. Let . be a finite nonnegative Borel measure on the

1}, let Py = ofl,Z, 2.1 in L3(dy)

o{z", z"+1,...}. Let o

unit circle T={z e ¢ ; |z]

and for n = 1,2,..., let Fn be the supremum

n
of |[(f,g)| as f and g range over the unit balls of Pg and F,
respectively (the inner product being taken in the Hilbert space Lz(du)).

The quantity Py is a measure of the angle between the subspaces

PO and Fn. PO and Fn are said to be at positive angle if oy < 1.

They are said to be asymptotically orthogonal if Py 0 as n » =,

H. Helson and G. Szego [16], H. Helson and D. Sarason [15]
studied the following important problems concerning Ppe
Problem 1. For given integer n, find the necessary and sufficient conditions
on the measure u such that Py < 1.

Problem 1 is of considerable importance in harmonic analysis
~477, as well as probability theory [ 83]. Complete solution to this
problem is given in [15] and [16].

Problem 2. Find the necessary and sufficient conditions on the measure
u such that o - 0 as n » =,

Problem 2, was first raised in connection with the problem of

strong mixing of Gaussian stationary sequences (cf. [42;, 719] and [517).

In fact, oy ™ 0 1is equivalent to the strong mixing of a Gaussian stationary

49
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sequence with spectral measure ..

The following theorem provides an answer to Problem 2, [15]
and [ 16].
4.1.1 Theorem (Helson-Sarason). Lim Py = 0 if and only if du is

n->

absolutely continuous with respect to dm(normalized Lebesgue measure on T),

such that du = w dn with w ¢ Ll(dm) and w has the form w = |P|2er+cs,
where P is an analytic polynomial, r and s are real gontinuous functions
on the unit circle and Cs denotes the harmonic conjugute function of s.

M. Rosenblatt [44] calls attention to the importance of results
similar to Theorem 4.1.1 for continuous time parameter and mulit-parameter
Gaussian stationary processes. Analog of Theorem 4.1.1 for one-parameter
coninuous time Gaussian stationary processes has been studied by E. Hayashi
C137.

For n =1, A. Devinatz {7,813, Y. Ohno [301 and S. Merrill
f24; and for an arbitrary integer n, Y. Ohno [31] have studied Problem
1 in a Dirichlet algebra setting.

In section 2, we introduce some notations and preliminary results.
In section 3, it is shown that analog of Theorem 4.1.1 is valid for a
Dirichlet algebra setting and in section 4 we discuss its application
to the problem of strong mixing of discrete time mulit-parameter Gaussian
stationary processes.

Our work is heavily based on Y. Ohno (31]. W4hile doing this work,
we were unaware of Y. Ohno and K. Yabuta's work on the same problem [323,
but Lemma 3 of [32] 1is used to improve our Theorem 4.3.3 in the form

given in Theorem 4.3.7. We wish to asknowledge our gratitude to Professor
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Y. Ohno for sending us his papers and some of his unpublished work in
this area.

Our proof of Theorem 4.3.3 has the following advantages as compared
to Ohno-Yabuta's approach:

(1) Our approach gives a purely function-algebraic proof to the extension

of Helson-Sarason theorem for Dirichlet algebras. Ohno-Yabuta's approach
does not give such a proof as they reduce the problem to the unit circle

and then use results of [15] including a lemma on analytic continuation.

(2) Our approach provides an essentially unified proof for Problems 1

and 2 (this can be seen by comparing proofs of Theorem 6 of [31] and
Theorem 4.3.3 in this chapter). It is expected that such a unification

will be of great help in other similar situations.

(3) Our proof of Theorem 4.3.3 specialized to the unit circle gives a

relatively simple and short proof to Helson-Sarason's Theorem, in this

case, as compared to the one given in [ 15].

4.2 Notations and Preliminaries.

Let X be a compact Hausdorff space and let A be a Dirichlet
algebra on X i.e. A is a uniform algebra on X such that the real
parts of the functions in A are uniformly dense in the real continuous
functions on X. Let m be the unique representing measure on X for
a complex homomorphism of A. Let G(m) be the Gleason part of m,
that is, G(m) is the set of all complex homomorphisms o of A such
that norm of o-m, as a linear functional on A, is strictly smaller than
2. If 0 <p<=, H denotes the closure of A in LP(dm) and H" de-

notes the weak*-closure of A in L"(dm). We put AO = {f ¢ A; [ fdm = 0}
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and Hg = (fe HP; [fdm = 0} (1 <p <=). We denote by (Hp)" (resp. Ag)
the ideal generated by products of n elements in H; (resp. Ao). We

say that Hg is simply invariant if (A, HSJ*‘; HS, where [B!, denotes
the weak*-closure of B. With notations as above the following conditions

are equivalent:
(i) HS is simply invariant.

(i) There exists an inner function Z such that HB = ZH (this
function Z is determined uniquely up to multiplication of constants

of modulus 1 and is called "Wermer's embedding function").
(iii) G(m) # {m}.

Let u be a positive finite measure on X, on account of pro-

position 2 of Y. Ohno {31] it suffices to assume that du is absolutely

continuous with respect to dm i.e. du = w dm and log w ¢ Ll(dm). The

measure of the angle between the two linear manifolds A = {f ; f ¢ A}
and AS in L2(

g range over the elemnts of A and Ag respectively, subject to the

du) is o, =sup|[[f gwdm|, n=1,2,..., where f and

restriction,
2 2
(1) [If]wdm<1 and f|g|® wdm < 1.

It is easy to show that o = sup|/f g w dm|, where f and g
range over the elements of H™ and (Hg)", respectively, subject to
(1). Since logw e Ll(dm), then w = lhlz, where h ¢ H® is an outer
2 621¢

function [9 , Theorem 6. Let ¢ = Argh, thenw = h and

oy = sup|f(fh)(gh) éZi¢dm[ ,
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n

where the supremum is taken over all f e H and g e(HS) such that

fIfh]%m < 1 and [|gh|%dm < 1.
Throughout this section we assume that G(m) # {m} i.e. the

Gleason part of m is nontrivial. Thus, there exists an inner function

-]

0)n = 2" H® and we have

Z in H~ such that HS =ZH®, so (H

(2) o, = sup|[(fh)(gh) 2" & %n|

where f and g range over the elemnts of H~ subject to the respective

restriction j'lfhl2 dm <1 and ]|gh|2 dm < 1. Since h is outer in
2

HS, {fh; f ¢ H"} is dense in H2  and more specifically {fh; fe H",
j|fh|2 dm < 1} is dense in the unit ball of H2.  Thus {fg hz; f, geH,
[1£01% dm < 1, [|gh|? dm < 1} is dense in the unit ball of H?

r7 , Lemma 6. Therefore (2) can be written in the form

(3) on = suplff 2" &% 4n

1

where f ranges over the functions in H® such that [ |fldm < 1. It

is clear that (3) expresses P, as the norm of the linear functional
1 1)*

on H! defined by [fz" &%'% dm for f e H, thus Z" &2%¢ c(u

By the Hahn-Banach theorem we have

(4) o = infhz" &1 - gl = infl1 - 21" B F .
geH™ FeH”
0

4.3 Main results. In this section by using (4) we get necessary and
sufficient condition on u such that Py > 0 as n -~ », when G(m) # {m}.
Complete characterization of u when G(m) = {m} 1i.e. when the Gleason

part of m is trivial is given in [32.
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First, we prove the following theorem, which is an analog of Theorem
3 of (151, and plays a major role in the proof of our main theorem.
From definition of °n it is clear that o is non-increasing in n,

so that 1im Pn exists.
N0

4.3.1 Theorem. Lim Py = 0 if and only if for each ¢ > 0 there exists

N>

Fe H and a positive integer n such that |Arg(Fh221'")| < ¢ and
[log|F|| < e a.e. (m) on X.

Proof. Lim Py = Tim in f lll-Zl'n gi¢FH°° = 0, if and only if for every
N n+ FeH

e >0 there exists a positive integer n such that;

inf_ [11-22" &1 Ff_ < .
FeH

This holds if and only if, there exists an F ¢ H  such that
11-22"" &7 Fli_ < c. And this in turn holds if and only if,
[Arg(Fh221°n)| <e¢ and |log|F|| < e a.e. (m) on X (In this proof
e may not be the same throughout).

Next, we quote the following result from 725]. Let H?  denote
the closure in Lp(dm) of the set of polynomials in Z and P the
closure in Lp(dm) of the set of polynomials in Z and Z . For

1 <p <=, we put
IF = (f e H; [fZdm=0, k =0,1,2,,,,}.

4.3.2 Lemma__[25). If 1 <p <=, then

Hp Hp ® Ip

LP = (PenP
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where o denotes the algebraic direct sum and NP denotes the closure
of TP+ 1P in LP(dm).

Here is our main theorem, whose proof is essentially the same as
that of Theorem 6 in [31]. For the sake of completeness and comparison
we present its proof in detail.

4.3.3 Theorem. Lim oy = 0 if and only if, for every positive ¢ < %
there exist realn;znctions r,se L (dm) with lirli, < e,lisll, < € such
that w = |P|° E*CS, where P is a function in H° so that P . AS
in Lz(dm) for some n and Cs denotes the conjugate function of s.
Proof. Assume liz pp = 0, then by Theorem 4.3.1,for each 0 < e < %
there exists a positive integer n and F ¢ H~ such that |Log|F|| < ¢
and |Arg(Fh221'n)| < e.

Let s be the real function bounded by ¢ such that;

(5) s + Arg(Fhzl™™) = 0.

From here on we proceed as the proof of Theorem 6 of [31]. We put,
(6) s = Fhezi™n glstis |

Then by (5) S > 0. From Theorem 10 of [7 ], we conclude that

as*is yl s outer. By proposition 4 of [31] and the fact that

2

Arg(Fh?Z"™) | < ¢ < 1, we may write Fh® = "B, where B ¢ ki, fBdm # 0

and O <m< n-1. Therefore

(7) s = gz k &lstis | g

and so
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(8) z¢s = B aCSHTS ¢
where k = n-m-1. Furthermore, by Jensen's inequality,
(9) f]og[ZkS[dm = [1og|B|dm + f]og[éCS+iS]dm
> log|/Bdm| + log|f §C5+isdm| > -,

Using Theorem 2 of [9 1, it follows from (8) and (9) that there

exists an outer function P in H1 and an inner function q inH
such that
(10) X5 = q P2 ,

Since S = |S| and |S| = |P|%, we have from (10) that
(11) qP2= P2 .

Since P is outer, it follows that P is not zero. Thus we may divide

(11) by P and obtain
(12) qP= 7P,

By Lemma 4.3.2, we can write

p=] atd o cnlorl
=0
where oy belongs to Il. Now
ks _ = K . = k-1 - -
(13) 7°P = aOZ + aIZ + ...t ak_lz ta +
a, z a, 72+...+ZkCCI
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Because ak+12 + ak+2 +... € Hé and 7kaI € Il(: Hé, we have
9= a L+ a,,lt+ .+ T e HY . By (12) and 7P e W we

conclude g e n by (13). Hence g ¢ il n Hé. Since A+ Ay s weak*-

dense in L%(dm), we have g = 0 and

kg . = Kk . = ok-1 - -
IP=agl” +a;77 "+ ... ta  I+a .

Thus P has the form

P=ay+al+.. +all

0" e T e Ty

where 0 < k < n-1. Therefore P ¢ H and P L AS in Lz(dm). Indeed,

if G A3<: (Hg)", then G = Z"K for some K ¢ H® and we have;

k . k .
(P,6) = [( T a,29)7"Kdm = § ajjfn'*]fdm
j=0 J B

k .
) ajﬁdmﬁ“‘J‘IEdm = 0,
j=0

since m is multiplicative on H” and n-1 > k. Now by (10) and (6)

we have;
2 2 -Cs
[P|= =S =S| = [F[|h]" e

and since w = [h]z,
we= PI?FITHE = ppy? BT

where r = -Tog|F|, lirli_ < e and lisli_ < ¢ .

Conversely, suppose w satisfies conditions of the theorem.

2

Let S = |P|°. Since "1 fe (HE)" for f e I, we have
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©o

(14) [ fam= (" P =0 L fel

52(n-1) P

If fe I, then it is easy to see that. Z is also in 1",

Therefore, by (14)

[T fdm= ("2 Degn=0, fer1”.

since S =8,
(15) s Fam=0 , fel
It follows from (14) and (15) that

s fam=0 , fel®e1

1

"‘ls e L°. Furthermore, we have

By Lemma 4.3.2, Z

(. n-1-k
(2" 1*pp) = 0 (n1ok 2, deen, ko= <1,02,.00)

(2" 1s7% dm = §

L(P,Zk+1'nP) =0 (k + 1-n > n, i.e., k = 2n-1,2n...).

n-1

We conclude that Z S has the form

1 2n-2

n-
I S=ag+agl+ ... +ay oL

We put, k = max{m; 0 <m<n-1,a. ,#0}. Since S#0 and S=35,

k

such k exists. Then Z'S ¢ H~ and kaS dm # 0, therefore by Theorem

k

2 of [91, Z°S has the factoring

7Xs = q62

where q is inner and G s outer in H”. If we take an outer function

r

F in H such that |[F| = &', then
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(16) 7kgs &5°7S < 2 |

up to constant factors of modulus 1. Indeed, by Theorem 10 of (7 1],

gs-1s k 2 s also outer in H”, so that

the left hand side of (16) is outer in Hl.

G

is outer in Hl, and Z°gS

Furthermore, since F is
outer in H® and h is outer in H%, the right hand side of (16) is

also outer in Hl. Now by the assumption on w

_  Cs-is Cs Cs -
G e |=se =plfe = wa = |nd(F| = |F.

Since an outer function is determined up to a constant factor by its

2 -kq éCs+is

modulus, (16) follows. From (16), S = Fh“Z and S > 0, it

follows that

Ar‘g(FhZZ'k q éCS+iS) = 0.

Hence |Arg(Fh?Z™® q)| = |s| < lisl_ < < and [log|F|| = [r| < firli_ < e.
If we put B = F q 2" 17K, then B ¢ H® and
|Arg(8n2Z1") | = |Arg(Fh?Z K q)| < ¢,
|Tog[B|| = [Tog|F[| < ¢ .
Thus the assertion follows from Theorem 4.3.1. Q.E.D.

. - . . n
4.3.4 Corollary. ;lz Pn 0 if and only if, for every 0 < ¢ < 7
there exists real-valued functions r, s ¢ L™(dm) with lirli, < e,

2 er+cs,where P 1is a polynomial in Z of arbitrary

lisli_ < e and w = |P]
degree and Cs 1is the conjugate function of s.

4.3.5 Example. Let X =T, A be the disc algebra on T i.e,

A= (F e c(T); £(n) =j§"é‘"*f(x) $-0,n=-1,-2, ... and m

normalized Lebesgue measure on T. Then A 1is a Dirichlet algebra on
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T and it is well-known that the Gleason part of m is non-trivial.
Wermer's embedding function, in this case, is Z = e'’. Thus, by Sarason's

Lemma [46], Corollary 4.3.4 reduces to Theorem 4.1,1.

2 2

4.3.6 Example. Let X=Tx T and S = {(m,n) ¢ Z° m > 0}u{(0,n)e Z%;
n>0}. Let A =A(S) be the Dirichlet algebra of continuous functions
on T x T which are uniform limits of polynomials in 3(mx+ny), (myn) € S.
Let m be the normalized Lebesgue measure on T x T (torus). Then the
Gleason part of m can be identified with {(0,a) ¢ ¢2; la|] < 1} which
is non-trivial, the Wermer's embedding function is given by Z(eix,eiy) =
eiy and P of corollary 4.3.4 is a polynomial in eiy 315,

Corollary 4.3.4 is similar to Theorem 5 of [153 and its form
resembles that of Theorem 1 of [13). Example 4.3.5 shows that when X
is the unit circle, the characterization of . does not depend on «.
Actually, this is the case when X 1is any compact Hausdorff space as
is shown in r32;. Let C(Z) = {f(Z); f e C(T)}, then H + C(Z) is
closed in L%(dm) r32, Lemma 3j. Thus, by using an extension of Sarason's
Lemma [46]; Corollary 4.3.4 can be restated as:

4.3.7 Theorem. Lim oy = 0 if and only if w has the form

N>

W= |P(Z)|2 er(Z) * CS(Z), where Z is the Wermer's embedding function,
P is an analytic polynomial, r and s are real valued continuous
functions on the unit circle T and Cs 1is the usual harmonic conjugate
function of s.

4.4 Strong Mixing of Multi-parameter Gaussian Stationary Processes.

Unlike the prediction theory for stationary stochastic processes
with one parameter, prediction theory for multi-parameter stationary

stochastic processes is more diversified. Because there is no natural
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distinction between "past" and “future" in the latter case as compared

to the former one. Here, for simplicity, we only consider the two-

parameter or doubly stationary stochastic processes with discrete parameters.
Let (@,3,P) be a probability space and Xn.n € LZ(Q,B,P)

(w)dP(w) = 0, (m,yn) ¢ ZZ. We say that {x_ _} is a two-

such that [x mn

m,Nn
parameter stationary stochastic process if for all integers m,n,k,]

we have (x = (xk’],xo’o). In this case, we call C(k,1) =

m+k,n+1’xm,n)
(xk’],xo,o) the covariance of the process. It is easy to see that
C(-,+) 1is a positive definite function on 22. Thus, by Herglotz-
Bochner-Weil Theorem (45, page 191 on positive definite functions,
there exists a finite non-negative measure u on Borel sets of the tours

§i<kX+]Y)du(x,y), (k.1) ¢ 2. u is called the

such that C(k,1) = [f
spectral measure of the process.

H. Helson and D. Lowdenslager [14] developed the theory for pre-
dicting X9.0 by linear combination of elements Xm.n with (m,n) ¢ S,
where S 1is a half-plane of lattice points. The fact that the proofs
and some of the results of {141 are independent of the particular
choice of S have been crucial inthe development of abstract Hardy
spaces. Also, this fact is very useful in theory and applications of
two-parameter stationary stochastic processes as will be seen in this
section.

Here, we adopt the following definition of half-plane of lattice

2

points. A set S of lattice points of Z~ 1is called a half-plane if;

1) (0’0) eSS,
2) (myn) ¢ S if and only if (-m,-n) ¢ S unless m=n=0,

3) (myn) ¢S and (m',n') € S 1imply (m+m', n+n') e S.
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2

For X =T and S a fixed half-plane of lattice points, it

R 22 .
is easy to show that A = A(S) = {f ¢ C(X); f(m,n) = —lz [/ 51(mx+ny)
4n- 00
f(x,y)dxdy = 0, (m,n) ¢ S} is a Dirichlet algebra on the torus.

Let Sk = {(m,n)e 22;-3(mx+ny)€ Ag} and B(Sk) the o-algebra
generated by the collection of random variables {xm n (m,n) € Sk}.

9

We say that the process is strongly mixing if,

Sup [P(AMB) - P(A)P(B)|= a(n) » 0

as n > =, where A and B range over B(S) and B(Sn), respectively.

BY using a remarkable result of Kolmogorov and Rosanov [19] it can

be shown that a Gaussian stationary process {Xm,n; (m,n) € ZZ} is

strongly mixing if and only if A ={f; f ¢ A} and AS are asymptotically

orthogonal in L2(du), that is, if and only if S 0 as n » =,
Therefore, necessary and sufficient conditons for strong mixing

of such processes is obtained by specializing Theorem 4.3.7 to the case

when X 1is the torus and S 1is any half-plane of lattice points. Thus,

the problem of strong mixing of two-parameter Gaussian stationary processes

is solved in the spirit of [14,].

A slightly different notion of strong mixing and a sufficient

condition for strong mixing of such processes is given in [43].

2

4.4.1 An Open Problem. In this special case i.e. when X =T, S a

fixed half-plane and m a complex homomorphism of A(S) whose Gleason
part G(m) is non-trivial, it is important to know whether there exists
a complex homomorphism in G(m) such that its corresponding Wermer's

. . i . i(mx+ny)
embedding function Z shifts the exponentials e , (myn)eS,

"properly". To make this problem more clear, in Example 4.3.6, the



63

Wermer's embedding function Z(eix,eiy) = eiy corresponding to m (the
normalized Lebesgue measure on the torus) shifts the desired exponentials
along the y-axis, in this case from viewpoint of application to strong
mixing problem, it would be more meaningfull if we could find a complex
homomorphism in G(m) such that its corresponding Wermer's embedding
function would shift exponentials along the x-axis or along the line

y = Xx.
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Here, we explain in more detail some of the terminologies
related to a Dirichlet algebra.

Throughout this appendix, X will denote a compact Hausdorff
space, C(X) will denote the linear space of all continuous complex-
valued functions on X. It is well-known that this linear space is
a Banach space (Banach algebra) under the sup norm [f| = suglf(x)|.

Xe

By a measure on X we mean a finite complex measure on X.

A uniform algebra on X 1is a complex linear subalgebra

A of C(X) which satisfies:

(i) A is uniformly closed;

(ii) The constant functions are in A;

(ii1) A separates the points of X, i.e. if x and y are distinct
points of X, there is an f in A with f(x) # f(y).

If A 1is a uniform algebra on X, then a complex homomorphism

of A is an algebra homomorphism from A onto the field of complex
numbers. Since the uniform algebra A is closed, it is a Banach
space (Banach algebra) under the sup norm, it can be shown that each
complex homomorphism ¢ is a bounded linear functional on that
Banach space.

A representing measure for ¢ 1is a positive measure m on

X such that

o(f) = [f dm, f e A.
X

64
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Since ¢(1) = 1, we have [dm = 1, therefore a representing
measure for ¢ 1is a probability méasure on X.

For a uniform algebra A, we denote by M(A) the set of all
complex homomorphisms of A. With each f in A we associate a
complex-valued function F (called Gelfand transform of f) on

M(A) by
£(o) = o(F) , & ¢ M(A).

If we topologize M(A) with the weakest topology which makes
all these functions % continuous, then it can be shown that M(A)
is a compact Hausdorff space. This space M(A) 1is known as the

the space of complex homomorphisms of A or the maximal ideal space

of A or the space of multiplicative linear functionals on A.

By Riesz representation theorem, it can be shown that for
each complex homomorphism of A, there exists at least one representing
measure m on X. To show that this measure m is unique it is
necessary to impose more restrictions on A.

A uniform algebra A is called a Dirichlet algebra on X

if the real parts of the functions in A are uniformly dense in the
space of real continuous functions on X. It can be shown that A
is a Dirichlet algebra on X if, and only if A+ K is uniformly
dense in C(X), or, if, and only if, there is no non-zero real measure
on X which is orthogonal to A.

For a Dirichlet algebra A, it can be shown that the relation

& ~ o defined by H@l - ¢2H < 2 1is an equivalence relation on
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M(A). The equivalence classes for this relation is called the Gleason
parts of M(A). For ¢ a complex homomorphism of A with the unique

representing measure m, G(m) the Gleason part of ¢ 1is defined by
G(m) = {v e M(A); v ~ o}.

For more information on this subject and proof of the state-
ments made earlier the following paper of K. Hoffman may be consulted
(Analytic functions and logmodular Banach algebras, Acta Math.,

108 (1962), 271-317).
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