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ABSTRACT

0N SUBORDINATION, SAMPLING THEOREM AND

"PAST AND FUTURE" OF SOME

CLASSES 0F SECOND-ORDER PROCESSES

By

Mohsen Pourahmadi S.A.

In this thesis, three independent problems (subordination,

sampling theorem and "Past and Future") concerning harmonizable and

stationary processes are studied.

Chapter I contains some well-known results about such processes

along with a necessary and sufficientconditions for strong subordination

of q-variate stationary processes which are stationarily cross-

correlated.

The problem of finding analytic conditions for subordination

of harmonizable and periodically correlated sequences is studied

in Chapter II. Sufficient conditions for subordination of harmonizable

sequences and a simple counter-example showing that these conditions

are not necessary are given. In the case of periodically correlated

sequences, which is a subclass of harmonizable sequences, necessary

and sufficientconditions for Subordination, mutual subordination of

such processes in terms of their associated multi—variate stationary

sequences are derived.



In Chapter III, the problem of admittance of sampling theorem

of a q-variate stationary process and its relation with the admittance

of sampling theorem of its components is considered. It is shown

that if the components of a q-variate process (not necessarily

stationary) admits a sampling theorem with the same sample spacing

h > 0, then the process itself admits a sampling theorem with the same

h. A sampling theorem for q-variate stationary process, under a

periodicity condition on the range of the spectral measure of the

process, is proved in the spirit of Lloyd's work. This sampling

theorem is used to show that if a q-variate stationary process admits

a sampling theorem, then each of its components will do so. In

Section 5, by using Abreu's theorem, the well-known sampling theorems

for harmonizable processes is proved in an easier way with more

explicit coefficients for the sampling series.

In Chapter IV, Helson—Sarason Theorem on ”Past and Future”

is generalized from the disk algebra to a Dirichlet algebra setting

by using function-algebraic method. Advantages of our method as

compared to Ohno-Yabuta's method [32] on the same problem is discussed.

This theorem is used to answer a question of M. Rosenblatt on the

strong mixing of multi-parameter Gaussian stationary processes.
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INTRODUCTION

The concept of subordination was introduced, studied and used

in prediction of univariate stationary sequences by A.N. Kolmogorov

[18]. Analytic necessary and sufficient conditions for subordination

of such processes were derived in [18]. Analogous analytic conditions

for the subordination of q-variate and infinite-dimensional stationary

sequences were derived by M. Rosenberg, Yu. Rosanov and others in

[39], [41], [38], [23] and [22]. In [12], the notion and analytic

characterization of subordination of stationary sequences have been

used for optimal filtering of stationary signals.

The problem of finding such an analytic characterization

for the subordination of harmonizable sequences which are harmonizably

cross-correlated in studied in Chapter II. The study is carried

out in such a way that when specialized to stationary sequences,

the results will reduce to the corresponding results of Kolmogorov

[18]. In Section 2, necessary and sufficient conditions for sub-

ordination, mutual subordination and necessary condition for strong

subordination of periodically correlated sequences in terms of their

associated multi-variate stationary sequences are derived. It is

well-known that the class of periodically correlated sequences is

a natural extension of stationary sequences but a subclass of har-

monizable sequences. Because of the 1-1 correspondence between

periodically correlated sequences and q-variate stationary sequences

V
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and the existence of a shift operator for the latter sequences, we

have been able to find necessary and sufficient conditions for sub-

ordination of the former sequences. Sufficient conditions for the

subordination of harmonizable sequences and a simple counter-example

showing that these conditionsare not necessary is given in Section

3. It seems that, the fact that these conditions are not necessary

can be atributed to the failure of existence of a shift operator

for the harmonizable sequences.

In Chapter III, the problem of sampling theorem for q-variate

stationary and univariate harmonizable processes is considered.

Sections 2 and 3 contain some well-known results as well

as some new results which play a crucial role in the proof of our

sampling theorem for q-variate stationary processes. In Section 4,

a sampling theorem for a q-variate stationary process, similar to

that of Lloyd's [21], is proved under the condition that the range

of the spectral measure of the process considered as a linear operator-

valued function from Cq to Cq is periodic. Then, this sampling

theorem is used to prove that if a q-variate stationary process

admits a sampling theorem,then each of its components will do so.

In Section 5, by using Abreu's theorem [1], we prove in an easier

way as compared to [36] and [20], sampling theorems known for har-

monizable process, with the advantage that in our proof the coefficients

in the sampling series for such processes are exactly the coefficients

of the sampling series of its associated stationary process.

The problem of strong mixing of multi-parameter Gaussian
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stationary sequences was first studied by M. Rosenblatt [43]. In

[43], some sufficient conditions for strong mixing of such process

along the work of Kolmogorov and Rosanov [19] weregiven. The problem

of strong mixing of such processes is yet open. In Chapter IV,

first we generalize Helson-Sarason theorem on ”Past and Future"

from the disk algebra to a Dirichlet algebra setting and then specialize

this theorem to the torus to obtain a necessary and sufficient condition

for strong mixing of multi-parameter Gaussian stationary sequences.

The Appendix explains some of the terminalogies related to a Dirichlet

algebra used in Chapter IV.



CHAPTER I

NOTATIONS AND PRELIMINARIES

Let (n.3,P) be a probability space. H = L2(D,B,P) denotes

the Hilbert space of all complex-valued random variables on D with

zero expectation and finite variance. The inner product in H is

defined by W,y) fx(w))yr'1r( dw) , x,y e H.

In the following we introduce some basic terminologies and

concepts in the spirit of the work of N. Wiener and P. Masani [50],

P. Masani [23. These are used in the study of q-variate stationary

processes.

For q 1 1 , Hq denotes the Cartesian product of H with

itself q-times, i.e. the set of all column vectors X = (x1,x2,...,xq)T

with x1 6 H,for i = 1,2,...q. As usual we endow the space Hq with

a Gramian structure: For X and Y in Hq their Gramian (X,Y) is

defined to be the qxq matrix (X, )= [(x,yj)]q

1,J=-1

One can easily verify that,

(1.1) (X.X) :0. (X.X) = 0 <=> X = 0;

(i E ) "21 i < )AX, BY = AX,Y£B:,

k=1kki=1H k=1£=1kk

for any X,Xk, YREHq and any qxq matrices Ak,B£. We say that X is

orthogonal to Y in Hq if (X,Y) = 0.

It is well-known that Hq is a Hilbert space under the following



inner product,

(1.2) ((X,Y)) = trace (X,Y) = E (x‘j,yj).

j=1

A closed subset H of Hq is called a subspace of Hq if

it is a manifold, i.e. AX + BY 6 H whenever X,Y 6 H and A,B are

9 x 9 matrices. It is known [50] that H is a subspace of Hq if and

only if there exists a subspace H of H such that H = Hq. Thus,

we obtain a structure for Hq which differes from but also closely

resembles that of a Hilbert space, and which we shall call Hilbertian

[23]. For any x e H, its orthogonal projection on a subspace H of

l,...,xq)T E Hq, itsH is denoted by (x|H). Given a vector X = (x

projection on a subspace H = Hq is the vector (XIH) whose i-th

component is (xilH) for each i = l,...,q.

1.1 Definition: A sequence xn,n 6 Z (Xn,n E Z) of elements of

H(Hq) is called a univariate (q-varjate) stochastic seguence. 

For convenience we may abbreviate xn,n 6 Z (Xn,n e Z) by

xn(Xn) or simply by x(X). Also, throughout we use small x,y,... to

denote univariate and capital X,Y,... for q-variate sequences.

For random variables {xj} in H we denote by o{Xj; J Ed}

is:

the subspace spanned by xj. for all j in the indexed set J. Similarly

for random vectors {Xj} in Hq, o{Xj3 j 6 J} is the subspace of

jed

Hq spanned by all Xj. J E J with matrix coefficient.

1.2 Convention: Since the class of univariate stochastic sequences is

a subclass of q-variate stochastic sequences (q = 1), here, we only

introduce notations and known results about q-variate sequences. The
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corresponding notations and results for univariate sequences can be

obtained by obvious specialization.

1.3 Definition: To every q-variate sequence X we associate the

present and past subspaces H(X,n), n E 2, defined by,

(La Ram)=dq;kin)gfl,

and the terminal subspace H(X), defined by,

(1.4) H(X) = H(x,m) = o{Xk; all k}.

Also, we define H(X,n), n 6 Z, and H(X) by,

(1.5) MM) = “”11" k :n, 11191194,

(1.6) W) = H(Xa) = olxl; an k. 1:19}-

It is easy to check that,

(1.7) H(X,n) = Hq(X,n), n e z.

In simultaneous treatment of two q-variate stochastic sequences,

the concept of subordination plays an important role. Here, we define

subordination and some related notions for two q-variate sequences X and Y.

1.4 Definition: Suppose X and Y are q-variate stochastic sequences.

We say that,

(i) Y is subordinate to X if and only if H(Y) c H(X).

(ii) Y is strongly subordinate to X if and only if

H(Y,n) cH(X,n), n E Z.



(iii) Y and X are mutually subordinate or equivalent if and only

if H(Y) = H(X).

In the following, we assume that our q-variate stochastic sequence

is stationary in the sense defined below.

1.5 Definition: A q-variate stochastic sequence X is said to be

stationary if the covariance function R(m,n) = (Xm,Xn) depends on

m-n alone.

1.6 Definition: Two q-variate stationary sequences X and Y are

said to be stationarily cross-correlated if the qxq Gram matrix 

(Xm,Yn) depends on m-n alone.

We note that a q—variate stationary sequence can be considered

as a set of q univariate stationary and stationarily cross-correlated

sequences.

To introduce the known results about spectral analysis of

q-variate stationary sequences, and for later use, we need the following

concepts.

Let B be a c-algebra of subsets of a space 9. M is said

to be a gxg matrix—valued signed measure on (9.8) if for each

A 6 B, M(A) is a qxq matrix, with finite complex entries and

M(A) = E M(Ak)’ whenever A1,A2,... is a sequence of disjoint sets

in B k.13hose union is A.

1.7 Definition: A qxq matrix-valued signed measure M is called a

gxg matrix-valued measure if M(A) is a nonnegative hermitian matrix

for each A E B.



1.8 Definition: Let 0 = (qij) be a matrix-valued function on Q and

u a nonnegative real-valued measure on B.

(i) We say that o is B-measurable if each function ¢ij is

B-measurable.

(ii) L1,u is the class of all o such that each Qij is intergrable

with respect to u.

(iii) For o E L . we define [a du = (fa..du).

1.9 Definition: We say that the qxq matrix—valued signed measure M

is absolutely continuous (a.c.) with respect to (w.r.t.) a o-finite

nonnegative real-valued measure u on (9,8) if the entries of M,

dM

i.e. Mij's are a.c. w.r.t. u. We write Mu = g! = ’-—il) for

the Radon-Nikodym derivative of M w.r.t. u.

Now, using Definition 1.8 (iii) we define integrals of the form

f¢(A)M(dX)w(A), where M is any matrix-valued signed measure and o

n

and v are suitable functions, by

(1.8) fo(>.)M(d>.) in): mi)%(A)Y(A)u(d)\)

where u is some nonnegative real-valued o-finite measure on (9,3)

such that M is a.c. w.r.t. u. It can be shown that the definition of

the integral does note depend on the choice of u. Nhen M is a qxq

matrix-valued measure it is customary to choose u to be 1M = trace M.

In this case, we denote 3%“ = M; by MI.

In the following, we take 9 = [0,2n) = T, B the o-algebra of

Borel subsets of T = [0,2n) and as usual identify T with the unit

circle {2 E t; lzl = 1} in the complex-plane.



It is known that (cf.[18, Theorem 1], [38, page 14]) if Xn and

Yn are q-variate stationary and stationarily cross-correlated sequences,

then there exists a unitary operator u on the subspace oixl, y;; all

. . i i i i
n = =, 1 §_1 §_q}c:H onto 1tself such that uxn xn+1 and uyn yn+1,

1 §_i §_q. This operator u has a spectral resolution;

(1.9) u = 4e-nE(dX)

where E is a projection-valued measure over (T,B). The operator U

may be extended to a unitary operator on H onto H in many ways, we

denote this extension again by u. The inflation of u denoted by U

is defined by,

(1.10) 0(X) = (Ux1,...UXq), x = (mile Hq.

By taking the inflation E of E analogously, we can define

the following qxq matrix-valued signed measures.

1.10 Definition: With each pair of stationary and stationarily

cross-correlated sequences Xn and Yn we associate the qxq matrix-

valued cross-measure MXY’ not necessarilly hermitian-valued, and

qxq cross-spectral distribution F defined by,
XY

(1.11) MXY(A) = (E(A)X0, E(A)Y0), A E B,

(1.12) FXY(A) = ZnMXY(0,A] , 1 E T.

*

It 15 clear that MYX(A) = MXY(A)’ A E B, and



(1.13) va<") = (xn.v0)=4e""*MXY(dx) = érie‘inidFXY(A).
"T

where these integrals are defined as in (1.8) with o (A) = e'inAI

and Y(A) = I and I is the qxq identity matrix.

In the special case, when X = Y, from (1.11) it is obvious

that M(-) = MXX(-) is a qxq matrix-valued measure (cf, Definition 1.7).

1.11 ngipjtjpp; The qxq nonnegative hermitian matrix-valued function

F defined by,

(1.14) F(1) = 21M(0,A] , A E T,

is called the spectral distribution of the stationary sequence X.

1.12 Definition: By the §pectral representation of the stationary

sequence Xn and its covariance R(n) we mean

(1.15) xn = 4e'i"*E(d1)xo = {e‘i"*g(d1)

(1.15) R(n) = (xn,x0) = {e‘inAM(dX) = égye‘i"*dr(1),

where in (1.15), 5(A) = E(A)X0, A e B, is an Hq-valued countably

additive, orthogonally scattered (c.a.o.s.) measure, so-called be-

cause of its decisive property, A,B e B and A,B disjoint implies

€(A) 1 5(8). The last integral in (1.15) is difined as

(Ie'mshqu .
T j=1



With the definition of integral for matrix-valued functions

as in (1.8), we define the L2 class of such functions with respect

to amatrix-valued masure M associated to a q-variate stationary

sequence by,

(1.17) L2,F = L2,M = {a ; Io(A)M(dA)o *(1) exists}.

We put the following natural norm on L2 F;

(1.18) ”illr = [trace (1(1)M(d1)1*(1)1’2.

T

It is known that L2 F is complete under this norm (cf. [40],

E38,page 30]).

We can introduce in L2 F a matricial and scalar-valued inner

products by,

(1.19) (1,1))F = (¢,v)M = {D(A)M(dA)Y (1), ¢,v 6 L2 F,

(1.20) ((453))F = ((o,v))M = trace (¢,v)F.

Thus, the norm introduced in (1.18) can then be written as

(1.21) 11111,. = E((¢.¢))FJ%

The following theorem of [40] connects L2 F and H(X) : Hq.

The integral appearing in the theorem is defined in [40].



1.13 Tpgppgm. For a q-variate stationary sequence Xn’ the correspondence

o + fo(X)E(dA)XO is an isomorphism on the space H(X) gLHq.

T The following theorem is an extension of Kolmogorov's Theorems

8, 9 and 10 DB] in a form which is given in EB]. Actually, this theorem

gives analytical necessary and sufficient conditions for subordination

and mutual subordination in terms of the spectral measures of two q-variate

stationary and stationarily cross-correlated sequences.

1.14 Theorem. Suppose Xn and Yn are stationary and stationarily

cross-correlated sequences, then

(i) Yn is subordinate to Xn if and only if there exists a

o E L such that
2,FXX

(1.22) dFYY(X) = 1(1)drxx(1)¢*(1),

(1.23) dFYx(>.) = ¢(A)dF X).
XX(

In the sense that for any A E B,

FYY(A) = £1(1)drxx(1)1*(1) and FYX(A) = £¢(X)dFXX(A).

(ii) Let Yn be subordinate to Xn and o as in (i). Then Xn

and Yn are mutually subordinate if and only if,

dex * _ dFXX F )

(1.24) rank{¢(x) 3;F;;(1)¢ (A)} - rank{3;:;;(x)} a.e(r XX .
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Condition forstrongsubordination of stationary and stationarily

cross-correlated sequences is not available in the literature. In the

following, by using Theorem 1.14, we give necessary and sufficient

conditions for strong subordination of such sequences.

For F the gectral distribution of a q-variate stationary

-inXI
sequence we define H2 F = oie ; n1: 0} in L2,F‘ In the special

case, when dF(A) = Idx, H2,F is the usual matricial Hardy class of

functions denoted by Hz.

1.15 Theorem. Suppose Xn and Yn are stationary and stationarily

cross-correlated sequences, then Yn is strongly subordinated to Xn

if and only if there exists a function e 6 H2 F such that

’ X

(1.25) dFYY(X) = 1(1)dFXX(1:1(1)*

(1.26) dFYX(X) = o(x)dFXX(A).

Proof. Suppose Yn is strongly subordinate to Xn’ then Y e H(X,0)
0

and since H(X,0) and H2 F are isomorphic, there exists a function

’ XX

o 6 H2 F such that Yn = f éi" o(A)E(dX)XO, for every n (c.f. Theorem

’ XX T

1.13). Thus for all integers m and n we have;

1 -i(m-n)X = _.l_ -i(m-n)X *
2F 4 e dFYY(X) (Ym,Yn) — 2" 4 e ¢(A)dFXX(A)¢(A) ,

§F¥ él(m‘“)*dFYX(1) = (vm,xn) = %F 4 él(m'")*1(1)drxx(1).

Which implies (1.25) and (1.26) respectively.
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Conversely, suppose that there exists a function a 6 H2 F

’ XX

satisfying (1.25) and (1.26). Then by Theorem 1.14 (1') Yn is

subordinate to X". Define Zn =fe'1"A¢ fi(dX)X0, then it is easy

to check that,

dFZZ(X) = dFYY(A) and dFXZ(X) = dFXY(A).

Thus by Lemm 8.1 [38, page 35], it follows that;

Yn = 2n = 48-1nA¢(A)E(dA)X0, for all integers n, which shows that

Yn E H(X,n) for all n thus Yn is strongly subordinate to Xn

by (1.7) and Definition 1.4 (ii). Q.E.D.

Using Theorem 1.15, we note Ehat if FXXX is a.c. w.r.t. the

d

Lebesgue measure dX and FXX = HIKE = 11* a.e. (d1), where w 6

H2, then (1.25) implies that FYY(A) = oww*o* =(owX¢W)* a.e. (dA),

i.e. if Yn is strongly subordinate to Xn and Xn is purely

nondeterministic (cf.[23], Theorem 9.7), then knowledge of a and v

facilitates the task of finding an optimal factor of FYY' It is

known that this type of analytic factorization plays a major role

in prediction theory of stationary sequences, (cf. [23], section 13).

Next, we define a class of H-valued stochastic sequences, which

are a natural generalization of univariate stationary sequences and

closely related to q-variate stationary sequences.

1.16 Definition. A stochastic sequence xn is said to be periodically

correlated of period q if the function R(m,n) = ) = R(m+n,n)
(xm+n’xm

is periodic in m of period q (we note that when q = 1 the sequence
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is stationary). Since R(m,n) is periodic in m of period q, one

Znikm)
q . 

~ q

can write R(m,n) = X Rk(n)exp(

k=1

For convenience we extend the definition of these functions

Rk(n). k = 1,2...,q, to all integers by Rk(n) = Rk+q(")‘

It is shown in 001 that each R (n) has the representation
k

(1.27) R n) = %fe"'"*ark(1),
"T

where each Fk(-) is a complex-valued measure on T. Let F(-) be

the qxq matrix-valued measure, given on intervals by

 
A1+2nj X2+2nj)]q-1

T: q . k—O, A1_ A2.(1.28) F(11.121= [Fk_J-( J _

It is proved in Balthat F(-) is a matrix-valued measure.

It is also shown that

1 -i(m+n)).1+im).2

(1.29) R(m,n) = 4—fge dF(>.1,A2).

11'

where the spectral measure F(-,-) is given by

q-1

(1.30) F(A,B) = X f dF (1).

k=~q+1 Anus-33$) "

In other words the spectral measure F(-,-) is concentrated

on 2q -1 straight line segments 11 - 12 = g%£, k = -q + l,...,q - 1,

contained inside the square T2, and the measures Fk(-) give

the mass of F(-,-) on these lines according to (1.30).
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With any H-valued sequence xn we associate the Hq- valued

sequence Xn whose i-th coordinate x; is given by an+i’ i = 0,1,2,...q -1.

This correspondence establishes a one-to-one linear transformation from

the H-valued sequences onto the Hq-valued sequences and we have,

_ T
Xn - (an, an+1""an+q-1)

1.17 Lemma. xn is periodically correlated with period q if and

only if Xn is a q-variate stationary sequence.

By Definition 1.12, this associated q-variate stationary sequence

has a spectral measure F which is a qxq nonnegative definite matrix-

valued measure such that R(n) = (X , X ) = l— Ie'1nxdF(1).
n 0 211T

The following theorem which gives the relation between this

measure F and the measure F given in (1.28) can be found in [10]

and [27].

1.18 Theorem. With the notations as above, we have;

F(A)= £qu*(x)dF(x)u(1), A 63.

Where U is a unitary matrix-valued function whose (j,k) - th

entry is given by qJ5 expEzn1.:+ikA].



CHAPTER II

SUBORDINATION 0F HARMONIZABLE SEQUENCES

2.1 Introduction: The concept of subordination was introduced,

studied and used in prediction of univariate stationary sequences by

A.N. Kolmogorov ENE. Conditions for subordination in terms of the

spectral measures of the sequences were derived in [18]. Analogous

conditions for the subordination of q-variate stationary sequences

were derived by M. Rosenberg BQAIh Yu. A. Rosanov [38] and P.

Masani [23] and for infinite-dimensional stationary sequences by

V. Mandrekar and H. Salehi [22]. In [41] and [22] the notion of

subordination have been used to gain some new insight into some

problems in analysis.

T.N. Siraya [4m gives conditions for subordination and strong

subordination (cf. Definition 1.4) of second-order (not necessarily

stationary) processes in terms of their covariances and corresponding

reproducing kernel Hilbert spaces. In [49] conditions for subordination

and strong subordination of one second-order process to another such

process with orthogonal increments, in terms of the structural measure

of the latter has been derived.

In [12], the notion and analytic characterization of subordination

of stationary sequences have been used for optimal filtering of

stationary signals. In [3 I it is shown that under some general

conditions the output of a linear system is a harmonizable stochastic

process.

14
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In this chapter we give analytic conditions for subordination

of periodically correlated and harmonizable sequences in the spirit of

Kolmogorov [18,section 4], see also Theorems 1.14 and 1.15.

In section 2, necessary and sufficient conditions for

subordination, mutual subordination and necessary conditions for strong

subordination of periodically correlated sequences in terms of their

associated multi-variate stationary sequences (cf. Leann 1.17) is

studied. Sufficient conditions for subordination of harmonizable

sequences and a counter-example showing that these conditions are not

necessary along with the problem of linear transformation of har-

monizable sequences is discussed in section 3.

2.2 Subordination of Periodically Correlated Sequences: Throughout

this section we assume that xn and yn are periodically correlated

sequences with period q and that they are periodically cross-

correlated i.e. the function ny(n,k) = (xn+k’ yn) is periodic

in n of period q.

2.2.1 Remark. If xn and yn are periodically cross-correlated with

x

period q, then [y:], n 6 Z, is a two-dimensional periodically

correlated sequence. Thus by [10], ny(-,-) has an spectral

representation similar to the spectral representation of the covariance

of xn (cf. 1.29).

2.2.2 Lenna. If xn and yn are periodically cross-correlated with

period q and xn’Yn are their associated q-variate stationary

sequences. Then Xn and Yn are stationarily cross-correlated.
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Proof. It is easy to check that, for all integers m,n;

q-1

(Xm’Yn) ‘ [(x(m-n)q+i’ yJ)]1',j=o

which depends on m-n alone. Q.E.D.

For xn a periodically correlated sequence and Xn its

assocaited q-variate stationary sequence we have for all integers n,

(1) H(X,n)=c{ ;m:n.0:i:q-1}
xmq+i

oixk; kinq +q - 1} =H(x; nq+q -1).

Thus, letting n + m, we get the following important equality,

(2) H(X) = H(x).

In the following theorem we give necessary and sufficient

conditions for subordination and mutual subordination of periodically

correlated sequences in terms of their associated q-variate stationary

sequences.

Necessary and sufficient conditions in terms of matricial

spectral measures for subordination and mutual subordination of

periodically correlated sequences can be obtained by using Theorems

1.14 and 1.18.

22.3 Theorem. Suppose xn and yn are periodically cross-correlated

sequences of period q and X", Yn their associated q-variate

stationary sequences, then
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(i) yn is subordinate to xn if and only if Yn is subordinate

to Xn‘

(ii) yn and xn are mutually subordinate if and only if Yn and

Xn are mutually subordinate.

Proof: (i) and (ii) are obvious because of Lemma 2.2.2 and relation

(2). Q.E.D.

2.2.4 Remppgz If yn is strongly subordinate to X", then by relation

(1), Yn is also strongly subordinate to Xn‘ But, the converse is

not necessarily true. For an example, let an be a periodically

correlated sequence of period q = 2 with an i o{€k; k 5_n -1}.

Define x11 and yn by X2n = g2n-1’ x2n+1 = 52n’ y2n = E2n and

y2n+1 = €2n-1’ then it is clear that Yn is strongly subordinate to

X", but H(y, 2n) 3 H(x,2n) i.e. yn is not strongly subordinate to

X .

n

2.3 Subordination of Harmonizable Sequences: In this section we study

the problem of subordination of harmonizable sequences and its relation

with linear transformation of such sequences. First we develop a

few concepts which are essential in this study.

2.3.1 Definition: A stochastic sequence xn is said to be harmonizable

1r xn =4e'1m‘n(d>.) “d

-‘imA +inA

(1) R(m,n) = fiffe 1 2U(dl

T2

dA
1’ 2):
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where n is a countably additive H-valued measure (not necessarily

orthogonally scattered) on T and for A,B 6 B, u(A,B) = (n(A), n(B))

extends to a complex-valued measure of bounded variation on T2. u

is called the spectral measure of the sequence.

2.3.2 figmapk. Comparison of (1) and (1.29) reveals that the class of

periodically correlated sequences is a special subclass of harmonizable

sequences.

2.3.3 The Hilbert Spgge 12(gg). For p, v measurable functions on

T, m o v will denote the tensor product of o and w i.e.

(P 9 Y) (A1112) = m(11)w(12), for 11, 12 e T.

Let S be the class of all step functions on T, it is clear

that S is a linear space and for all e, v E S, the double integrals

Ié e o i du = I; ¢(Al)§(12)u(dxl,d12) is defined in the obvious way (u

T

is a measure satisfying (1)).

Two step functions o and V will be considered identical if,

I] (<1 -1) «1 (op—Juan = 0.

T2

If we define for o, v e S, <¢1Y> = ff o e T du, then(S, <-,.>)

2T

is an inner product space. In fact, it is obvious that <o,v> has the

ordinary bilinear and conjugate symmetric properties and further

<¢, ¢> 3 0(this follows from property of u).and <¢, ¢> = 0 only when

If p o m du = 0 i.e. when p is identical with 0. Also, it follows

from <m,¢> 3 0, that we have the Cauchy-Schwartz inequality i.e.

|<¢,y>|2 f <¢,¢> <v,w>.

Let A2(du) be the completion of (S, <-,->) so that it is a

Hilbert space with an inner product denoted again by <.,.>.
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Elements in A2(du) may no longer be functions on T. A typical

element in A2(du) can be realized as a Cauchy sequence of step functions.

However, we treat elements in A2(du) as ”formal" functions on T and

use the improper but suggestive notation I; m e E du for the inner

T

product <m,v> with p, Y e A2(du).

Of course, [g p o D du = l;m jg on e indp, where on and

T

Yn are Cauchy sequences of step functions from S converging to o

and v, respectively, in the norm of A2(du).

Let A(du) = {all measurable functions m on T; [flu o $[dlul < w

2T

and fjleld|u| < m}, where Iul denotes the total variation measure

2

of u and the double integrals are in the sense of Lebesgue.

We say that the function e in A(du) represents an element in

A2(du) if there exists a o'eA2(du) such that for all N e S,

<cp‘, 11> = jgcp(>.1)v(12)u(dxl, dxz).

T

We note that if such m' exists, it is unique, since S is dense

in A2(du). Then, we denote a' by a and write 9 e A2(du). With

this convention and Theorem 1.1 of C 4],A(du) is a dense subset of

2 . .
A (du) and 1f cpl, cpz e A(du) Wlth fg lcp1(>11) (p2(A2)| lul(d}11,d}12) < co, .

T

then

< $1, $2 > = If o1 (A1) o2 (A2)u(d11.dx ).
2

T2

where the double integral is in the sense of Lebesgue. For n, as in

the Definition 2.4.1, we define H(n) = o{n(A); A e B} in H.
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It is shown in [5 I that {en(1) = e-inA; n e Z} forms a basis in

A2(du), H(h) = H(x) and further that there exists an isomorphism between

112(1111) and H(n) defined by cp+f<p(A)n(d1), for a e 12(da).

2.3.4 The RKHS For R. In the study of problems related to harmonizable

sequences, it is useful to have an explicit representation of the

elements of the corresponding reproducing kernel Hilbert space (RKHS).

Siraya [49] gives such a representation with no proof, in the case

when u is absolutely continuous with respect to Lebesgue measure on

12. In the following we give an explicit representation of the elements

of the RKHS corresponding to a harmonizable sequence with covariance

R and spectral measure u (cf. Definition 2.3.1).

2.3.5 Lgmma. The RKHS corresponding to the covariance R is given by

H(R) = {f e ¢Z; f(n) = If g o Eh du, o e A2(du)}, with inner product

(f,g)R = I; P o J'du, for g e H(R) with g(n =ff w 9 en du.

3592:. First we show that H(R) is complete. )Lelz fk e H(R) be a

Cauchy sequence, then there exists a sequence wk in A2 (du) such

that fk(n) = [g ¢k o 35 du. Since {fk} is Cauchy in H(R) and

T

“Qk - FEHA2(du) = “fk - fguR’ we conclude that {ok} is Cauchy in

A2(du). But A2(du) is complete, so there exists a e A2(du) such

that “a - o“ + 0 as k + w . Now, let f(n) = {I W e E du,

k 42(du) T2 n

then f e H(R) and {[fk - fHR = “‘Pk' (pH 2 + o as k I... i.e. fk + f

A (du)

in H(R), so H(R) is complete.

The fact that R(m,.) = R(m,n) = [{ em 6 en du e H(R) and for f e H(R)

with f(m) = ff e e Eh du, P e A2(du)m we have (f, R(m,. ))R

_ 12
jg w o em du = f(m), provesthe Lemma.

T



21

Careful scrutiny of Kolmogorov and Siraya's work and results in

section 2.2 reveal that, in problems of subordination, a major role

is played by cross-correlation of the sequences under study. In the

following we assume that xn and yn are harmonizable sequences with

covariances,

B(m,n) = (y ,y ) = 1%7-fé em a e dF

T

2.3.6 Definition. We say that xn and yn are harmonizably cross-

correlated if there exists a complex measure ny(.,-) on T2 such that,

- — L -
C(mm) - (xm.yn) - 4112 I; em a en dey.

T

2.3.7 Definition. We say that the harmonizable sequence yn is obtained

from xn by means of a linear transformation, if there exists a function

o c A(dex) such that

yn = f éInA¢(A) n(d1), for all integers n.
T

2.3.8 Remark. From definitions 1.4(i) and 2.3.7, it is easy to

see that when yn is obtained from xn by means of a linear

transformation then yn is subordinate to X".

By using this remark and the following Theorem which is the

analog of Theorem 8.1 for stationary sequences [38, page 36]. we

obtain sufficient conditons for subordination of harmonizable

sequences which are harmonizably cross-correlated.
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2.3.9 Theorem. Suppose x and yn are harmonizable and harmonizably
n

cross-correlated, then yn is obtainable from xn by means of a linear

transformation, if and only if there exists a function o e A(dFXX) such that.

dF =<pocdexx ,

~(2) _
dF - n dex

2.3.10 Remark. By (2) we mean, for any A, B e B,

Fyy(AaB) =AIIB(P(A1) (Pllzj dFXX(A1,>\2)’

(2')

ny(AaB) ' If CP(A25 dex(A1:A2)c

A B

Proof. Suppose there exists o e A(dex) such that,

yn =1 é‘mw) 1. (d1) . n e z.
T

Since yn is harmonizable, it has its own spectral representation, i.e.

there exists an H-valued measure (cf. Definition 2.3.1) g(-) such that

yn = IT 6mm).

Thus, for all integers m and n we have;

[gem o endey = (xm,yn) = If em 0 en r dex

T

[gem o endFyy = (ym,yn) = [gem 9 en cp a (p dex ,

T

which implies (2).
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Conversely, suppose that there exists a o e A(dex) such that

(2) holds. We define 2n = f éinlm (A) n (d1), then it is easy to check
T

that,

(xm,yn) = (xm.Zn)

(ym.yn) = (Zm.Zn).

Thus, by a slight extension of Lemma 8.1 [38, page 35], we get

-inX . . .
yn = €_ e o (X) n (d1), 1.e. yn 1s obta1nable from xn by means of a

linear transformation. Q.E.D.

2.3.11 Theorem. Suppose x and yn are harmonizable and harmonizably
n

cross-correlated. If there exists a function a e A(dex) such that

dFyy = o e m dex

dey 3 (P dFXX’

then yn is subordinate to X".

Proof of this theorem is an easy consequence of Theorem 2.3.9 and Remark

2.3.8.

2.3.12 A counter example. Here we give an example which shows that,

unlike the stationary and periodically correlated sequences, the

conditions of Theorem 2.3.11 are not necessary for subordination of

harmonizable sequences.
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Let a be a random variable on some probability space with

E g = 0 and E lgl2 = 1. Let f,g e L1(T,dX) where f is not

identically zero. Define the following stochastic sequences

. . . 2n .

xn = f(n): and y = g(n)a, where f(n) =-l; f e’1nAf(A) d1.
n 2110

It is easy to check that xn and yn are harmonizable and

harmonizably cross-correlated with dFXX = f e‘f dm, dFyy = 9 5‘5 dm

2
and de = f o 5 dm, where m is Lebesgue measure on T .

y

For any choice of such functions f and 9 we have H(y) §_H(x)

i.e. yn is subordinate to X". But, in the following, we show that

it is possible to choose f and g in such a way that none of the

relations in (2) (or (2')) can hold.

Suppose, there exists a a e A(dex) such that conditions in

Theorem 2.3.11 are satisfied, then, for A = B we have;

2 _ 12

<3) 0‘90)de - Womb. , A a a.

For A = [0,H] choose 9 e L1(T,dX) such that Ig(A)dX # 0. Then

with f = x[n,2n] we have i o(A)f(A)dA = 0, whiéh contradicts (3).

2.3.13 Bgmgpk. Theorem 2.3.11 can also be proved by using Theorem

1 of [48] and Lemma 2.3.5.

2.3.14 339355. In Definition 2.3.1, if u is a measure which is

concentrated on the main diagonal of the equare T2, then the cor-

responding process xn is stationary. In this case, we can think

of u as a nonnegative measure on T, then it is easy to see that

A(du) (as defined in 2.3.3) is the same as the space of measurable

functions on T which are square integrable with respect to u i.e.

J
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A(du) = L2(du). Thus Theorems 2.3.9 and 2.3.11 specialized to the

case when xn and yn are stationary and stationarilly cross-

correlated will reduce to Theorem 8.1 of [38, page 36] and sufficient

part of Theorem 9 of [18], respectively.

2.3.15 Bgmgpk. We note that for stationary sequences, the property that

yn is obtainable from xn is equivalent to the subordination of yn

to xn [38, Theorem 8.1] and Theorem 1.14. But, this is not the case for

harmonizable sequences, as counter example 2.3.12 shows.

2.3.16 An Open Problem. It is conjectured that the assertions of Theorems

2.3.9 and 2.3.11 are true even when p e A2(dex) instead of belonging

to A(dex). Although this can be estiablished formally, we have been

unable to prove it rigorously. It seems that a rigorous proof of these

assertions in this new setting hinges on giving a proper meaning to the

relation (2) in Theorem 2.3.9.
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CHAPTER III

SAMPLING THEOREM FOR q-VARIATE

STATIONARY AND UNIVARIATE HARMONIZABLE

PROCESSES

3.1 Introduction. It is well-known that a stationary stochastic process

x(t) e H, t e R, has the sampling series

(D ' _1

x(t) = Z x(nh) §lfl_flfl:TiE;flflT

n=-m nh (t-nh

if the spectral measure u of x(t) is supported by the interval

h'1 h'1 . .
(--§ ,~§ ). Th1s so called ”sampl1ng theorem” dates back to Cauchy and

is of considerable importance in communication and information theory [117

and [29]. Such processes with bounded spectra are called ”band limited”.

This sampling series, which converges in mean-square and also

almost surely, enablesa band-limited process to be exactly reconstructed

from its sample {x(nh); n e Z}.

Of course, a process need not be band-limited to admit an error-

free reconstruction from its samples. S.P. Lloyd [21] gave a necessary

and sufficient oonditionon the spectral measure for a stationary process

to admit such a reconstruction.

More precisely, a process x(t) e H (not necessarily stationary)

can in principle be exactly reconstructed from its samples {x(nh); n e Z}

if H(x) = Hs(x), where Hs(x) = o{x(nh); n e Z} in H.

3.1.1 Definition. For a fixed h > 0, we say that the process x(t), t e R,

admits a sampling theorem if H(x) = Hs(x).

Lloyd uses the terminology that “x is linearly determined by its

samples" when H(x) = H (x). We will refer to the fixed positive h as
s

26

Ft
:
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"sample spacing" and to the set {tn} = {nhg n e 2} as "sample times".

In [21], Lloyd proved the following remarkable resuts for a

stationary stochastic process.

3.1.2 Theorem. Let x(t), t e R, be a stationary process with spectral

measure u. then

(i) x admits a sampling theorem if and only if u has a support A

'1 i.e.{A + nh'l; n e Z} aresuch that the translates of A by nh

i mutually disjoint.

(ii) If the measure n has an open support A whose translates

{A + nh'l; n e Z} are mutually disjoint, then we have

i a
x(t) = l.i.m. ) (1 - ifil) x(nh)K(t-nh), t e R,

N+oo =-N

where K(t) = h f Enixt dA, t e R, and l.i.m. stands for limit in mean

A

square.

T (iii) If the A from (ii) is a finite union of intervals, or, more generally

if sup [tK(t)| < m, then

t

N

x(t) .m. X x(nh)K(t - nh), t e R.= 1.1

N + n=—N

For more information on sampling theorems and its applications in different fields, as well as a complete bibliography of this subject,

[17] may be consulted. The extension of sampling theorem for multi-

parameter stationary processes have been studied by Parzen [23],

Miyakawa [28] and others [17].

For q-variate stationary processes no sampling theorem is available

in the literature. Due to the importance of such processes in application,

it is important to have theorems similar to 3.1.2 for q-variate stationary
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processes. Also, it is important to know whether anything is gained by

studying sampling theorem and sampling series for q-variate stationary

processes. It is useful to know whether there is any connection between

admittance of a sampling theorem for a q-variate process and its components.

If it is so, then it is desirable to know something about the rate of

convergence of the q-variate sampling series and its relation with the

rate of convergence of its individual component's sampling series.

In sections 2 and 3, using the ideas of Lloyd, we develop the

necessary machinery which is needed to prove a sampling theorem for a

q~variate stationary stochastic process. Also, we show that if the com-

ponents of a q-variate process (not necessarily stationary) admits a

sampling theorem with the same sample spacing h > 0, then the process it-

self admits a sampling theorem with the same h. In section 4 we prove

a sampling theorem for q-variate stationary process and use this sampling

theorem to show that if a q-variate stationary process admits a sampling

theorem then each of its components will admit a sampling theorem. In

section 5, by using Theorem 3.1.2 and Abreu's Theorem [ 1] we obtain a

sampling theorem and a sampling series with explicit coefficients for

harmonizable stochastic processes.

3.2 Preliminaries. In the study of sampling theorem for q-variate stationary

stochastic processes the notion of absolute continuity of a matrix-valued

sgined measure (defined in Chapter I) with respect to another such measure

plays an important role. The problem of defining a "proper" notion of

absolute continuity for such measures was first posed by P. Masani [23].

Later J. B. Robertson and M. Rosenberg [37] dealt with this question

and obtained a satisfactory solution to it.
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Here, we will briefly review some of their results and some other

concepts which are needed for the proof of our sampling theorem.

Throughout this Chapter 9 = R and B is the o-algebra of

Borel subsets of R. The customary definition of absolute continuity

for matrix-valued signed measures does not guarantee the existence of a

Radon-Nikodym derivative.

3.2.1 Definition. Let M1 and H2 be q x q matrix-valued signed

measures on (0,3) respectively, let u be any o-finite nonnegative

real-valued measure on (9,8) such that M1 and M2 are a.c. w.r.t

u. We say that M2 is strongly absolutely continuous (s.a.c) w.r.t.

M1 1f,

N(M'1,u(>\))c M(Ml2911()‘)) 3.8. (L1),

where for each matrix M, N(M) = (X; MX = 0}.

It can be shown that this definition is indpendent of u. Hence,

we supress the dependence of Mi,“ and Mé,u on u i.e. we only write

M; for M; u’ i = 1,2.

The following theorem is proved in [37].

3.2.2 Theorem (Robertson-Rosenberg). Let M1 and M2 be q x q matrix-

valued signed measures on (9.8) then,

(i) M2 is s.a.c. w.r.t M1 if and only if there exists a measurable

q x q matrix-valued function e on 9 such that for all A e B

M2(A) = {a dMl'

(ii) Let a and u be measurable q x q matrix-valued functions on

n. Then for each A e B, It dM1 = [v dM1 if and only if ed = id a.e. (u).

A A
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where J is the orthogonal projection matrix-valued function onto the

range of Mi and u is any o-finite nonnegative real-valued measure

on (9,8) w.r.t. which M1 is a.c..

Thus, if M2 is s.a.c. w.r.t. M1, then by Theorem 3.2.2 (1)

there exists a measurable matrix-valued function a such that for each

A e B, M2(A) = it dMl' o is called the Radon-Nikodym derivative of M2

w.r.t M1 and will be denoted by EM; . To make this notation more clear

1

and for later use we need to introduce the concept of generalized inverse

of matrices due to R. Penrose [34].

3.2.3 Theorem (Penrose). Let A be any q x q matrix, then there exists

a unigue q x q matrix X such that,

A = AXA, x = XAX, (Ax)* = Ax and (XA)* = XA.

3.2.4 Definiton. The matrix X in Theorem 3.2.3 is called the generalized

inverse of A, and will be denoted by A‘.

It can be shown that the generalized inverse of a matrix A has

the following important properties:

AA = PR(A) = PN(A*).L,

”A = P12W) = PM(A)i

Where R(A) stands for the range of the matrix A considered as an

operator from ¢q to ¢q and P denotes orthogonal projection.

From Theorem 3.2.3 and Definiton 3.2.4, if M2 is s.a.c. w.r.t.

dM

M we define the Radon-Nikodym derivative -—31 = dM .dM' by
I dM1 2 1
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22% (A) = Mé (A).Mi' (A) a.e. (u), where p is any nonnegative measure

such tat M1 is a.c. w.r.t. u.

Next, we introduce some basic notions about continuous time

q-variate stationary processes. We note that all definitions and results

of Chapter I are still valid for continuous time stationary processes,

if n is replaced by t and the region of integration by R = (-w, w),

[38. Chapter I].

To be consistent with the literature on sampling theorem, through-

out this chapter, we replace é'it by é2n1At
contrary to our standard

notation of earlier chapters.

Let X(t), t e R, be a q-variate mean continuous stationary

stochastic process with the spectral distribution, q x q matrix-valued

function, F defined on n. Then, X(t) has the spectral representation

X(t) = ? ‘5"‘At E (dA) X(0), (c.f. Definition 1.12). By Theorem 1.13,

+ éZTTIAt

under the map X(t) I, t e R. where I is the q x q identity

matrix, H(X) is isometric to L2 F.

For fixed h > 0, by the samples of the procg§s X(t) , we mean 

the collection {X(nh); n e Z} of random vectors. The samples

(x(nh); n e Z} span a closed subspace of H(X). We denote this subspace

by Hg(X). The random vectors in H;(X) are those determined linearly

by the samples with matrix coefficients.

3.2.5 Definition. We say that the q-variate stochastic process X(t)

admits a sampling theorem if H(X) = H;(X).

Now, we prove the following important but simple theorem.

3.2.6 Theorem. If the components of X(t) i.e. xi(t), 1 f i 5 q admits
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a sampling theorem with the same h, then X(t) admits a sampling theorem

with the same h.

Eppgf: From Definitions 3.2.5 and 1.3 it follows that X(t) admits a

sampling theorem if and only if H(X) = HS(X), where HS(X) =

oixi(nh); 1 f i

I
A q, n e Z} in H. From this observation and the fact

H(x‘) = Hs(x1), 1 f i f q, it follows that H(X) = o{H(xi); 1 f i f q} =

0{H5(X1), 1 f 1

I
A q} = HS(X) i.e. X(t) admits a sampling theorem. Q.E.D.

We note that this theorem holds for any second-order q-variate

process. The converse of this theorem is not that easy. In the case

of q-variate stationary processes we get that as a corollary of our main

theorem.

We denote by L2 F s the image in L2 F of fig(x) under the

isomorphism. According to this isomorphism to X(nh) e Hg(X) corresponds

éZNlnhA -2nlnhA

I 6 L2 F s’ n e Z. Since for each n e Z, e I is periodic

with period h'1 in A, it is tempting to characterize L2 F s as equivalent

classes of all matrix-valued functions in L2 F which are periodic with

period h'1 . But, this is not true in general.

Next, we put enough conditions on F which gaurantees that

L2,F,s is the equivalent classes of matrix-valued functions which are

periodic with period 11'1 .

3.2.7 Assumption. Throughout this chapter we assume that the spectral

distribution F is such that R(F'(A)) is periodic in A a.e. (r)

with period h.1 (i.e. R(F'(A)) = R(F'(X+nh-1)) if A, A + nh"1 e

support of 1) where r = trace F and F' = gg-a.e. (1).
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It is obvious that when F' is of full-rank or F' has constant

range or F' has periodic entries, on the support of 1, then Assumption

3.2.7 is satisfied.

Now, we show that under Assumption 3.2.7, L2 F s can be identified

as equivalent classes of functions in L2 F which are periodic with period

h'1 .

3.2.8 Lemma. Under Assumption 3.2.7, L2 F 5 consists of equivalent

classes of matrix-valued functions in L2 F which are periodic with

period h‘1 .

Proof. First we note that L2,F,s = a1e2"'"“* I; n e Z} in L2,F .

Thus, for o 8 L2 F 5 there exists a sequence on of matrix-valued

1
functions which are periodic with period h- such that on + o in

L2 F or what is the same on/E“+ o /F7 in L2 11’ This implies that there

exists a subsequence on such that

1

On. 1417+ 4 14:7 a.e. (T).

1

Thus, a F' + o F' a.e. (1) ,

"i

which implies that

therefore,

(1) o + o a.e. (I) on R(F').

Now, we show that o, as a function in L2 F, is periodic with period h'1 .

From (1), we have for almost all A,
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(2) on. (A) + ¢(A) on R(F'(A))

l

(3). a (1) = on (A + nh'l) . ¢(A + nh‘l) on R(F'(A + nh'1)) = R(F'(A))

n1 1

(by Assumption 3.2.7).

Thus, (2) and (3) implies that for almost all A

1(1 + nh‘l) = a(1) on R(F'(A)).

Thus, L2 F s is contained in the collection of all equivalent classes

of matrix-valued functions in L2 F which are periodic with period h'l.

Next, suppose that 0 t b e L2 F is periodic with period h‘1

such that,

(4) j é2"i""*dF(A)o(A) = o , for all integers n.

By periodicity of a, (4) is the same as

h'1 . e

j ez"‘"“*( I dF(A+mh‘1))o(A) = o, for all n, which implies

o m=-m

that o e 0 in L2 F. This contradiction proves that L2 F 5 contains

all equivalent classes of matrix-valued functions in L2 F which are

periodic with period h'l. Q.E.D.

3.3 Projection on L2 F S’ For the proof of our main result, Theorem

 

3.4.1, we need to have an explicit form for the operator P projecting

L2 F onto L2 F S(Lemma 3.3.5). In this section we find such a form

for P along the line of Lloyd's Lemma [21].

Let Bb denote the family of all bounded sets in B. For

A e B and given a e L2 F we define the following countably additive

b

and o-finite set functions on 8b:
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M(A) = E f dF (A) and M¢(A) f¢n(A) an(A),I
n=-m A

o(A + nh-l), n e Z, A e R arewhere Fn(A) = F(A + nh‘l) and ¢n(A)

1.translates of F and b. We note that M¢ is equal to M, when a

the q x q constant matrix. These functions are determined by their

values for sets in 8b. Let A e 3b have diameter less than h'l, so

1
that its translates {An = A - nh- ; n e Z} are mutually disjoint.

Then, M¢(A) = f a dF, and the countable-additivity and o-finiteness of

UA
[111

M¢ follows from this and the fact that each set in 8b can be written

1
as finite union of Borel sets with diameter less than h' . Due to this

latter fact, without loss of generality, we assume throughout this chapter

that A e B has diameter less than h'l.

3.3.1 Bgmppg, Here, we note that although H and M¢ are not (necessarily)

defined on the o-algebra B, neverthless, the assertions of Theorem

3.2.2, concerning s.a.c. and Radon-Nikodym derivative and its uniqueness,

are still valid when M1, M2 and B are replaced by M,M¢ and 8b,

respectively. This can be proved by applying Theorem 3.2.2 to each bounded

Borel set and the o-algebra of its Borel subsets.

3.3.2 Lgppg. M¢ is s.a.c. w.r.t. M.

Eppgf, We must find a o-finite nonnegative measure H such that

M¢ << p and M << u and then show that:

N(M'(A))<;.N(M; (A)) a.e. (u).

 Let u = X 1 r , where T = rF (IF = trace F ), then it

n n n n

is clear that Fn << Tn << p . Thus, we can define
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M(A) = A(§F8)dp, M¢(A) = {(gonFa)du,

which implies M' = {F6 a.c. (p) and M’ = In F' a.e. (u).
n p a n n

Let X e N(M'), then (XF6)X = O which implies:

Since FT'1 is nonnegative definite [40,Lemma 2.3], we get

*

x* F; x = o for every n. But, x* Fax==(/f; X) . (/f; x) = 0, which

implies that /F; X = 0, for every n. Thus,

M; x = (XanFa) x = { (o/F;) 7F; x = o i.e. x e N(M$). Q.E.D.

[I n

By Lemma 3.3.2, Theorem 3.2.2 and Remark 3.3.1 the Radon-Nikodym

dM

derivative HMQ-exists. So we can define the operator P on L2 F into

9

the space of matrix-valued functions by,

dM

(M(A) = 21112“) a.e. (.1), <1) e 12 F.

It is clear that P is matricial linear, also since for each

fixed o e L2,F’ A and integer k, M¢(A) = Z f¢n an = f o dF :

n A UA

n n

dM

1)f o dF = M¢(A + kh' , it follows that ani' can be chosen to be

NAn+k

periodic with period h.1 , this fact plays a key role in the proof of

boundedness of P.
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dM

To show that ENE is in L2 F, it is enough to prove that P is

norm bounded in L2 F. For this, we need to prove the following matricial

Cauchy-Schawrtz inequality for matricial inner product in L2 F'

3.3.3 Lemma. For ¢,v e L2 F with matricial inner product

°° *

($11)?)F: f iI’dF ‘i’ 9

-oo

we have,

(o,v)F (nap); (u,o)F 5 (o.o)F .

Proof. For every q x q constant matrix A we have, c.f. (1.1),

(i + At, a + Ap)F 3 0

'k*

or, (¢,®)F + A (u,w)F A + A (w.¢)F + (t,b)F A > 0 .

For choice of A = - (oaw)F (W9W); and using the defining

properties of the generalized inverse of matrices, (c.f. Theorem 3.2.3),

we get the result. Q.E.D.

3.3.3 Lemma. P is a contraction on L2,F into L2,F,S’
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Proof. For o e L2 F we have;

.. dM dM .. dM * (1'1
,2 - __q>_ ___4>_ - e -

“PM'F T [mdM dF (dM ) T [0°(dM ) d—M— dF -

-1
h dM dH

1 z] (m2 (A + nh1))* mi (A + nh'l) dF (A + nh'l)

n 0

= If ('dM (m T (A) Z(“En“) = If dM dM d”
O n 0

-1 * -1
h dM dM h

if A dM —-9: - if dM dM dM dn‘ dM =
dM d”

0 0

h'].

T f dM dM dn

0 ¢

dH

In this chain of equalities we have used the fact that 3M3 can be chosen

to be periodic with period h'l.

Since M (A) = f o(A) dF(A) I with diameter of A less than

¢ UA
[111

-1
h , by letting bl = ongn and v = IXUAn we get (o1,v)F = H¢(A),

n

*

(r,v)F = f dF = M(A) and (o1,o1)F = 6A ¢(A) dF(A) o (A) = N(A).

in
_ *

Thus, from Lemma 3.3.3 we get M¢(A) M (A) M¢(A) f N(A), therefore;

-1
h

.2 * .2
IIPMIF 5 Tfo dN = 1 Z I Andi;1 on = llbliF.

Which shows that P is a contraction on L2 F into L2 F . But, since

di

3M2 can be chosen to be periodic with period h"1 , it follows that the

range of P is inside L2 F S . Q.E.D.

In the following, a bounded matricial linear operator P on

L2 F is said to be a projection if P2 = P. In this case P is the
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identity operator on its range.

3.3.5 Lgpmg. The operator P is a projection onto L2,F,S .

3599:. By Lemma 3.3.4 it is enough to show that P is (equivalent to)

the identity operator on L2,F,S . Since any a e L2,F,S is equivalent

to some t e L2,F,S which is periodic with period h‘1,(c.i. Lemma 3.2.8),

thus by definition of M¢, Lemma 3.3.2, Theorem 3.2.2 (1) and Remark 3.3.1:

1 . dM

M¢(A) = E A on(A) an(A) = T o dn = g afii- dM.

Hence, by Theorem 3.2.2 (ii) we get;

where J(A) is the orthogonal projection matrix onto the range of M'(A)

dM

a.e. (u). Since 3M2 5 L2 F’ (c.f. Lemma 3.3.4) and R(F')g; R(M'), it

dM ’

follows that, HM$'= a a.e. (F).

Thus, for o e L2,F,S we have Po = o a.e. (F). Since range

of P is contained in L2,F,S it follows that P is the projection

onto L2,F,S° dM

Next, we find a version of HMQ' which will play a major role

in the proof of our main theorem. For each n, let Fn denotes the

Lebesgue-Stieltjes matrix-valued measure induced by the functions

Fn(A) = F(A + nh'l), A e R, n e Z. Each of these measures may be decomposed,

by Crdmer-Lebesgue theorem [37], into a TF-continuous part and a

TF-singular part;

Fn(A) = A fn(A)dr(A) + FnU-U) Sn) , A 88,, n e Z,
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where fn, a q x q nonnegative definite matrix-valued function, is the

Radon-Nikodym derivative of the rF-continuous part of Fn with respect

to if, and the tF-singular part of Fn is supported on the Sn i.e.

1(Sn)= 0 (F(Sn) = 0).

Let S = p5", then 1(5) = 0 and

Fn(A) = A fn(A)dT(A) + Fn(A H S), A e B, n e Z.

thus, the measures M and Mo will have the form,

(A))dr(A) + M(A n s)

M¢(A) = A (E ¢n(A)fn(A))dT(A) + M¢(A n 5).

Hence, we arrive at the following important result.

dM -
3.3.6 Lemma. (Po)(A) = 5M9 (A) = (Z ¢n(A)fn(A)) (E fn(A)) on R\S.

n n

which is a.e.(r).

We note that this version of the projection is no longer formally

periodic, but it plays a major role in the proof of Theorem 3.4.1.

3.4 A SamplinggTheorem. From Definition 3.2.5, it easily follows that

the statement that, for all values of t e R not of the form nh, the

random vector X(t) can be obtained by linear combination of the sample

random vectors {X(nh); n e Z} with matrix coefficients. In this section

we find necessary and sufficient conditons on the support of the spectral

measure F or equivalently the trace measure of F so that the process

admits a sampling theorem. By a support of a measure I we mean any set

A e 3 whose complement has T measure zero i.e. t(R \ A) = 0.

Here is our main theorem which is stated and proved in the spirit

of Theorem 1 of [21].
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3.4.1 Theorem. Under Assumption 3.2.7 the following properties of a

q-variate stationary stochastic process X(t) continuous in mean are

equivalent.

(1) Each random vector X(t), t c R, of the process is determined

linearly by the samples {X(nh); n e Z}.

(ii) For some irrational number a, X(ah) is determined linearly by

the samples.

(iii) There exists a support A of the trace measure I of the spectral

distribution of the process whose translates {A + nh'l, n e Z} are

mutually disjoint.

Pppgfi. That (1) implies (ii) is clear. We show that (ii) implies (iii)

and then (iii) implies (i).

Suppoese X(gh) is determined linearly by the samples i.e.

ZWIAEhI

X(gh) e H; (x), then e which is the isomorph of X(gh) in

L2,F belongs to L2,F,S so is equal to its projection on L2,F,S .

Thus, by Lemmas 3.3.5 and 3.3.6 we have;

1

)5“ I)f 1-1
éZflTAEh I 3 P éZNTnEh I = [2(é2N1(A + "h n

n 3
M

-
h

3

L
.
.
l

O
)

m

f
"
\

a V

Which implies,

- o - o + '

eZWIAgh (Z fn) = (Z e2fl1<A "h

n n
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and this implies that,

éZNIAE E Z (1 _ éZDIng)

nfO fnJPR(an) = 0,
n

from which (since a is irrational) we get;

fn PR(ka) = O a.e. (T) , V n f 0 .

k

For X e R(Efk) we have;

k

nX = fn PR(ka) X = 0 .

k

And for x e R(zik)l N(sz) c N(f) we get; f x = o . So, f = o
n

a.e. (T), V n f 0, i.e. Fn's are rF-singular, n f 0 or what is the

same In = TFn is tF-singular, n f 0. Thus there exists complementary

supports for T and Tn, n f 0. Let Mn be a support of r such taht

Tn(Mn) = 0, n f 0. The 1ntersect1on N =nQO Mn of these is a support

of T which has the property Tn(N) = 0, n f 0. From the nature of the

1
tn(translates of r) we see that Nn = N + nh' is a support of T

n

which has the property (Nn) = 0, r f n, n, r e Z, in particular,‘1' r

t(Nn) = 0, n f 0. Finally, the set A = N H (n90 R\Nn) is a support of

1 which is disjoint from each of its translates A + nh'l, n f 0.

To show that (iii) implies (i), suppose A is a support of T

1 1
which is disjoint from each of its A + nh' , n f 0. Clearly A + nh‘

is a support of Tn, so that F and Fn have disjoint supports, n f 0,

i.e. fn(A) = 0 a.e. (T) , n f 0. Thus, by Lemma 3.3.6 for a e L2 F

we have;

Q.E.D.
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3.4.2 339335, Here we note that Assumption 3.2.7 or an assumption similar

to that is essential for Theorem 3.4.1. For an example, consider the case

q = 2, X(t) = (x1(t), x2(t)), where the spectral measures of x1(t)

and x2(t) are supported on [0,1] and [1,2], respectively. By Theorem

3.1.2, x1(t) and x2(t) admit sampling theorem with h = 1, thus by

Theorem 3.2.6, X(t) admits sampling theorem with h = 1, but this con-

tradicts Theorem 3.4.1 (iii) as traslates of A = [0,2] i.e.

A + n = [0,2] + n, n e Z, are not mutually disjoint.

3.4.3 Corollary. If a q-variate stationary process, X(t) = (x1(t),...,xq(t))T,

admits a sampling theorem with sample spacing h, then xi(t), i = l,...,q.

admits a sampling theorem with the same sample spacing.

Ppppfi. Since X(t) admits a sampling theorem, by Theorem 3.4.1, there

exists a support A for T whose translates A + nh-1 are mutually

disjoint. If AT is a support of the spectral measure of xi(t), then

1
clearly A15; A. Hence A1 + nh' , n e Z, are mutually disjoint, therefore

by Theorem 3.1.2 (1), xi(t) admits a sampling theorem with the same sample

spacing h. Q.E.D.

3.4.4 Open Problems. Here we have not studied the problem of reconstuction
 

of the q-variate process from its samples. Sampling series similar to

(ii) and (iii) in Theorem 3.1.2 with non-diagonal matrix coefficients

are of considerable importance in application. In this case, for re-

construction of a particular components of a q-variate process, samples

of other components of the process is used. So it is natural to ask,

whether these samples from other (related) components will help the

series for the reconstruction of that component to converge faster compared

to the case when only samples of that particular component is used in its
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reconstruction. At this time, we have no answer to these problems.

Answer to these problems will be very useful in application and theory

of sampling theorem for q-variate stationary processes.

3.5 Sampling Theorems for Harmonizable Processes.

The problem of sampling theorem for harmonizable processes have been

studied, independently around 1967, by Z.A. Piranashivli [35] and

M.M. Rao [36]. In [35] a sampling series for harmonizable processes

with bounded spectra is given. Rao has extended Lloyd's theorem to the

case of harmonizable processes, but Rao‘s condition is not necessary,

as A.J. Lee [20] has shown by a counter-example that no condition on

the translates of a support of the spectral measure, in this case, is

necessary.

In [20], A.J. Lee obtains sampling theorem and sampling series for

non-stationary second-order processes under some integrability condition

on the covariance of the process along the work of Lloyd [21]. In parti-

cular, he has a sampling theorem and a sampling series for harmonizable

process. But, in Lee's result the coefficients for the reconstruction

of the process from its samples are not explicit as he uses the theory

of distributions.

In this section, we use Abreu's theorem to obtain sampling theorems

and sampling series for harmonizable processes similar to the work of

Lloyd [21], Buetler [2 ] and Rao [36]. In our case, the coefficients

in the sampling series are exactly the same as those appearing in Theorem

3.1.2.

First, we need to introduce some notions and notations. Consider the

harmonizable stochastic process; (c.fz Definition 2.3.1],
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= fe-2W1tA n(dA) 5R1, with the covariance function

_ l(SA1 - tAz) . . .

R(s,t) - fje dp(A1,A2) , where n lS a countably additive

2

R

1 such that for A,B e B, p(A,B) = (n(A),n(B))H-valued measure on R

extends to a complex-valued measure of bounded variation on R2. Here,

we refer to u as the spectral measure of the process.

Let lu) denote the total variation measure of u, then lpl is a

2
positive, finite and symmetric measure on R . Now, we define no a

finite positive measure on R1, as the marginal measure of |p| by

pO(A) = |p|(A x R). Since “0 is a finite positive measure on R1,

it can be considered as the spectral measure of a stationary process

z(t) taking values in a Hilbert K. The following remarkable theorem

of J. Abreu E 1] and [263 shows that the harmonizable process x(t)

can be obtained by projecting z(t) onto H(x).

3.5.1 Theorem. If x(t) e H is a harmonizable process with spectral

measure u. then there exists a Hilbert space K containing H(x) as

a subspace and a stationary process z(t) e K such that if P: K + H(x)

is the orthogonal projection, then x(t) = Pz(t), t e R . Furthermore,

no the spectral measure of z(t) is given by p0(A) = |p|(A x R), A e 8.

3.5.2 Definition. We call the stationary process z(t) of Theorem
 

3.5.1, the associated stationary process of x(t).

Abreu's theorem had been used to obtain sufficient conditions for

certain properties of a harmonizable process in terms of its associated

stationary process z(t) i.e. in terms of the measure do. Here, we use

this theorem to obtain sufficient condition for a harmonizable process

to admit a sampling theorem.
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In this section we introduce a more general notion of sample times

than that which was used in earlier sections of this chapter. We refer

to any set {tnlcz R which is not dense in R as sample times. In this

case, if H(x) = Hs(x) = o{x(tn); n e Z} we say that the process admits

a sampling theorem. If tn = nh , then we say that the process admits

 

a (periodjg) sampling. If {tn; n e Z} is a bounded subset of R, then

it is said that the process admits a non-periodic sampling theorem.

3.5.3 Theorem. A harmonizable process x(t), t e R admits a sampling

theorem if its associated stationary process z(t) admits a sampling

theorem.

3599:. Suppose z(t) admits a sampling theorem for a given sample times

{tn}, then we have H(z) = Hs(z) = o{z(tn); n e Z}. By Theorem 3.5.1,

we know that x(t) = P z(t) for all t e R, thus by continuity of P

and the fact that H(z):3 H(x) we get;

); n e 2})H (X) = o{X(tn); n e Z} = o{Pz(tn); n e leD P(o{z(tn
S

But, since Hs(x)<: H(x), we have H(x) = ”5(X) i.e. x admits a sampling

theorem with the same sample times. Q.E.D.

By combining Theorems 3.1.2, 3.5.1 and 3.5.3 we get the following

sampling theorem and sampling series for a harmonizable process.

3.5.4 Theorem. Suppose x(t) is a harmonizable process with the spectral

measure u and “0 the spectral measure of its associated stationary

process (that is p0(A) = lpl (A x R), A e B).
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1
(i) If “0 has a support A whose translates by nh- i.e. {A + nh'1;neZ}

are mutually disjoint, then H(x) = Hs(x) i.e. x(t) admits a sampling

theorem.

(ii) If no has an open support A whose tranlates {A + nh'l; n e Z}

are mutually disjoint, then we have;

N

x(t) = l.i.m. ) (1 - 1%) x(nh)K(t - nh) , t e R.

N + m n=-N

(iii) If the A, from (ii), is a finite union of intervals, or, more

generally, if suplt K(t)] <<s then

t N

x(t) = l.i.m X x(nh)K(t - nh), t e R.

n=-N

We note that K(t) appearing in (ii) and (iii) are the same one

which appears in Theorem 3.1.2.

Non-periodic sampling theorem and sampling series for stationary

stochastic processes was first given by F.J. Buetler [2 ]. Theorem

3 in [2 ] gives sufficient condition for a stationary process to admit

a sampling theorem, and a.fbrmulafbr the reconsturction of the process

from its samples.

Here, again by combining Theorem 3 of [2 J and Theorems 3.5.1 and

3.5.3 we obtain such a sufficient condition for a harmonizable process

to admit a sampling theorem along with a formula for the reconstruction

of the process.

3.5.5 Theorem. Suppose x(t) is a harmonizable process with the spectral

measure p and no the spectral measure of its associated stationary

process. Let tn be a bounded subset of R with a limit point to.
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m c A

It “0 has the property I eI I110(dA) < w, for every c < m, then

(i) H(x) = Hs(x) , i.e. x admits a non-periodic sampling theorem.

(ii) x(t) has derivatives of all orders in the sense that

1.1.m. X(n-1)(t') ' X(n-1)(t)

t+t' t'-t

 

with x(o)(t) = x(t).

(iii) For each t e R,

x(t) =



CHAPTER IV

HELSON-SARASON THEOREM FOR DIRICHLET

ALGEBRAS AND STRONG MIXING OF MULIT-

PARAMETERGAUSSIAN STATIONARY PROCESSES

4.1 Introduction. Let u be a finite nonnegative Borel measure on the

1}, let P0 = 0(152', 22,...} in L2(dp)

o{z", zn+1,...}. Let on be the supremum

 

unit circle T = {z 5 ¢ ; lzl

and for n = 1,2,..., let Fn

of l(f,g)| as f and 9 range over the unit balls of P0 and En,

respectively (the inner product being taken in the Hilbert space L2(du)).

The quantity on is a measure of the angle between the subspaces

P0 and Fn' P0 and Fn are said to be at positive angle if p < 1.
n

They are said to be asymptotically orthogonal if on + 0 as n + m.
 

H. Helson and G. Szego [16], H. Helson and D. Sarason [15]

studied the following important problems concerning on.

Problem 1. For given integer n, find the necessary and sufficient conditions

on the measure u such that on < 1.

Problem 1 is of considerable importance in harmonic analysis

:47], as well as probability theory' [:8]. Complete solution to this

problem is given in [15) and [16].

Problem 2. Find the necessary and sufficient conditions on the measure

u such that pn + 0 as n + w.

Problem 2, was first raised in connection with the problem of

strong mixing of Gaussian stationary sequences (cf. [42], [19] and [517).

In fact, on + 0 is equivalent to the strong mixing of a Gaussian stationary

49
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sequence with spectral measure u.

The following theorem provides an answer to Problem 2, [15]

and [16].

4.1.1 Theorem (Helson-Sarason). Lim on = 0 if and only if dp is

”#0)

 

absolutely continuous with respect to dm(normalized Lebesgue measure on T),

such that du = w dm with w e L1(dm) and w has the form w = |F|2er+Cs’

where P is an analytic polynomial, r and s are real continuous functions

on the unit circle and Cs denotes the harmonic conjugute function of s.

M. Rosenblatt [44] calls attention to the importance of results

similar to Theorem 4.1.1 for continuous time parameter and mulit-parameter

Gaussian stationary processes. Analog of Theorem 4.1.1 for one-parameter

coninuous time Gaussian stationary processes has been studied by E. Hayashi

[13].

For n = 1, A. Devinatz [ 7,'8.], Y. Ohno [303 and S. Merrill

[24] and for an arbitrary integer n, Y. Ohno [31] have studied Problem

1 in a Dirichlet algebra setting.

In section 2, we introduce some notations and preliminary results.

In section 3, it is shown that analog of Theorem 4.1.1 is valid for a

Dirichlet algebra setting and in section 4 we discuss its application

to the problem of strong mixing of discrete time mulit-parameter Gaussian

stationary processes.

Our work is heavily based on Y. Ohno [31]. While doing this work,

we were unaware of Y. Ohno and K. Yabuta's work on the same problem [323,

but Lemma 3 of [32] is used to improve our Theorem 4.3.3 in the form

given in Theorem 4.3.7. We wish to asknowledge our gratitude to Professor



51

Y. Ohno for sending us his papers and some of his unpublished work in

this area.

Our proof of Theorem 4.3.3 has the following advantages as compared

to Ohno-Yabuta's approach:

(1) Our approach gives a purely function-algebraic proof to the extension

of Helson-Sarason theorem for Dirichlet algebras. Ohno-Yabuta's approach

does not give such a proof as they reduce the problem to the unit circle

and then use results of [15] including a lemma on analytic continuation.

(2) Our approach provides an essentially unified proof for Problems 1
 

and 2 (this can be seen by comparing proofs of Theorem 6 of [31] and

Theorem 4.3.3 in this chapter). It is expected that such a unification

will be of great help in other similar situations.

(3) Our proof of Theorem 4.3.3 specialized to the unit circle gives a

relatively simple and short proof to Helson-Sarason's Theorem, in this

case, as compared to the one given in [15].

4.2 Notations and Preliminaries.
 

Let X be a compact Hausdorff space and let A be a Dirichlet

algebra on X i.e. A is a uniform algebra on X such that the real

parts of the functions in A are uniformly dense in the real continuous

functions on X. Let m be the unique representing measure on X for

a complex homomorphism of A. Let G(m) be the Gleason part of m,

that is, G(m) is the set of all complex homomorphisms o of A such

that norm of o-m, as a linear functional on A, is strictly smaller than

2. If 0 < p<°°, Hp denotes the closure of A in Lp(dm) and H°° de-

notes the weak*-closure of A in Lm(dm). We put A0 = {f e A; f fdm = 0}
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and H8 = {f e Hp;j'fdm = O} (1 5 p f m). We denote by (H3)n (resp. A3)

the ideal generated by products of n elements in H3 (resp. A0). We

co

say that H0 is simply invariant if [A0 H3]*c: H3, where [B], denotes

r
*

the weak -closure of 0. With notations as above the following conditions

are equivalent:

(i) H3 is simply invariant.

C!)

(ii) There exists an inner function Z such that H0 Z H0° (this

function Z is determined uniquely up to multiplication of constants

of modulus 1 and is called ”Wermer's embedding function").

(ill) G(m) f {m}.

Let u be a positive finite measure on X, on account of pro-

position 2 of Y. Ohno [31] it suffices to assume that dp is absolutely

continuous with respect to dm i.e. do = w dm and log w e L1(dm). The

measure of the angle between the two linear manifolds A'= {f ; f e A}

and A3 in L2(dp) is 9n = suplff 9 w dml, n = 1,2,..., where f and

9 range over the elemnts of A and A3 respectively, subject to the

restriction,

2 2
(1) f|f| w d m 5 1 and f|g| w dm 5 1.

It is easy to show that on = supijf 9 w dml, where f and 9

range over the elements of H” and (H3)", respectively, subject to

2
(1). Since log w e L1(dm), then w = Ihlz, where h e H is an outer

function [9 , Theorem 6]. Let a = Argh, then w = h2 621¢ and

pn = sup|f(fh)(9h) éZi¢dm| ,
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where the supremum is taken over all f e H” and g e(H°5)n such that

flfhlzdm g 1 and [Ighlzdm f 1.

Throughout this section we assume that G(m) f {m} i.e. the

Gleason part of m is nontrivial. Thus, there exists an inner function

z in H” such that H3 = 2 H”, so (H°°)n = 2" H” and we have

(2) an = sup|f(fh)(gh) zn €2i¢dm|

where f and 9 range over the elemnts of H"0 subject to the respective

restriction ((th2 dm 5 1 and flghl2 dm 5 1. Since h is outer in

2
H , {fh; f e Hm} is dense in H2 and more specifically {fh; f e H”,

flfh|2 dm 5 11 is dense in the unit ball of H2. Thus {fg ha; f, g c H”,

flfhiz dm 5 1, flghl2 dm 5 1} is dense in the unit ball of H1

[7 , Lemma 6]. Therefore (2) can be written in the form

(3) = supgff z” €12Won dm

1
where f ranges over the functions in H such that f |f|dm < 1. It

is clear that (3) expresses on as the norm of the linear functional

on H1 defined by jrz" 52'¢ dm for f e H1, thus 2" 521a e(H1)*.

By the Hahn-Banach theorem we have

(4) an = infuz" éZAA - on, = infnl - 21'" iii F “.-

98H0° FeH0°

o

4.3 Main results. In this section by using (4) we get necessary and
 

sufficient condition on u such that on + 0 as n + w, when G(m) f {m}.

Complete characterization of u when G(m) = {m} i.e. when the Gleason

part of m is trivial is given in [32‘].
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First, we prove the following theorem, which is an analog of Theorem

3 of [15], and plays a major role in the proof of our main theorem.

From definition of on it is clear that on is non-increasing in n,

so that Tim on exists.

"+00

4.3.1 Theorem. Lim on = 0 if and only if for each 5 > 0 there exists

n-mo

F e H” and a positive integer n such that |Arg(Fh2Z1'n)( < e and

|log|F|| < e a.e. (m) on X.

Proof. Lim on = lim in i (ll-21.n 31¢Fum = 0, if and only if for every

n-wo n...» FEH

e > 0 there exists a positive integer n such that;

inf; Hl-zl‘” 51 ¢ Fljm < c .

FeH

This holds if and only if, there exists an F e H00 such that

nl-zl‘" 31¢ rum < 6. And this in turn holds if and only if,

lArg(Fh2Z1'n)| < e and |log|F|| < e a.e. (m) on X (In this proof

5 may not be the same throughout).

Next, we quote the following result from [25]. Let Hp denote

the closure in Lp(dm) of the set of polynomials in Z and Lp the

closure in Lp(dm) of the set of polynomials in Z and ‘Z . For

1 g p f m, we put

P P ‘k
I = {f e H ; [f2 dm = 0, k = O,1,2,,,,}.

4.3.2 Lemma [25]. If 1 f p g m, then
 

Hp Hp o Ip

Lp Lp e Np
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where 0 denotes the algebraic direct sum and Np denotes the closure

of ID + 1p in Lp(dm).

Here is our main theorem, whose proof is essentially the same as

that of Theorem 6 in [31]. For the sake of completeness and comparison

we present its proof in detail.

4.3.3 Theorem. Lim p = 0 if and only if, for every positive e <«%
n

n+oo

there exist real functions r, s e Lm(dm) with lirllco < 5.th00 < e such

that w = TPIZ E+CS, where P is a function in H” so that P 1 A3

in L2(dm) for some n and Cs denotes the conjugate function of s.

Proof. Assume lim p = 0, then by Theorem 4.3.1,for each 0 < e <-%

n—rco n

there exists a positive integer n and F e H°o such that lLoglFil < e

and |Arg(Fh2Z1'n)i < 5

Let s be the real function bounded by e such that;

(5) s + Arg(Fh221‘") = 0.

From here on we proceed as the proof of Theorem 6 of [31]. We put,

(6) s = thzl‘" eCSI'S .

Then by (5) S 3 0. From Theorem 10 of [7 ], we conclude that

éCS+iseH1 is outer. By proposition 4 of [31] and the fact that

2 1-n 2
|Arg(Fh Z )1 < e < %-, we may write Fh = ZmB, where B e H1, dem f 0

and 0 f m f n-1. Therefore

(7) s = Bz'k eCS+ls > o

and so
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(8) zks = B eC5+AS c 111/2

where k = n-m-l. Furthermore, by Jensen's inequality,

(9) flogllkSIdm = flongldm + flog|éCS+iSIdm

3 log|dem| + logif éCS+isdm| > -m .

Using Theorem 2 of [9 ], it follows from (8) and (9) that there

exists an outer function P in H1 and an inner function g in H”

such that

(10) zks = q P2.

Since S = |S| and |S| = |P|2, we have from (10) that

(11) qP2= zklpiz.

Since P is outer, it follows that P is not zero. Thus we may divide

(11) by P and obtain

(12) q P = ZkP‘.

By Lemma 4.3.2, we can write

P = E a.Zj + a e H1 e I1

i=0 3 I

where a1 belongs to 11. Now

(13) ZkP = 302k + Elzk'1+ ....+ Ek_lz + 3k +

§k+lZ+ 310.272 +. + Zk 011.
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1 —k 1 1
Because ak+1Z + ak+2 +... 6 H0 and Z 61 e I c: H0, we have

9 = ak+1Z + ak+2Z2 + ... + ZkoI e H3 . By (12) and ZkP e H1 we

conclude g'e H1 by (13). Hence 9 e H'1 n H5. Since A'+ A0 is weak*-

dense in L”(dm), we have 9 = 0 and

k _-— k -— k-l -— -—
Z‘P — aOZ + all + ... + ak_1Z + ak .

Thus P has the form

k
P = + a Z + + Z30 1 ... ak

where 0 f k 5 n-1. Therefore P e H00 and P 1 A3 in L2(dm). Indeed,

Q

if G e A3<: (H0)n, then G = ZnK for some K e H” and we have;

k . k .

(p,c) [(2 a.zJ)‘z’"T<'am= ) ajfin‘Jram
.= J '=0

3 0

k .

I ajdemJZn'J'lem = o,

3:0

since m is multiplicative on H” and n-1 3 k. Now by (10) and (6)

we have;

IP = 5 = |5| = lFllhl

and since w = |h|2,

w =|PI2lF|'135 = 1212 5"“

where r = -log|F|, Hr!)0° < c and (isl)co < 5 .

Conversely, suppose w satisfies conditions of the theorem.

2
Let s = {Pl . “)"0 for f e I”, we haveSince zn‘lp f e (H
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oo

(14) fzn‘ls f dm = (z"'1P f, P) = o , f c I

If f e I”, then it is easy to see that. Z (n-1) f is also in I .

Therefore, by (14)

f 7”"13 f dm = fzn'1572(“'1)f dm = o , f e I” .

since S = S,

(15) [2”‘15 T'dm = o , f e I“ .

It follows from (14) and (15) that

jzn'ls f dm = o , f e I e 1

I
"-15 c L .By Lemma 4.3.2, Z Furthermore, we have

(z"’1‘kP,P) = o (n-l-k 3 n, i.e., k = -1,-2,...)

fzn'lsik dm =

k+1-n
(P,Z P) = O (k + l—n 3 n, i.e., k = 2n-1,2n...).

n-I
We conclude that Z S has the form

n-l _ 2n-2
Z S - a0 + all + ... + a2n_22

We put, k = max{m; 0 f m f n-l, am+n-1 f 0}. Since S f 0 and S'= S,

such k exists. Then ZkS c H"0 and kaS dm # 0, therefore by Theorem

2 of :9 1, zks has the factoring

zks = do2

where q is inner and G is outer in H”. If we take an outer function

F in H0° such that [PI = Er, then
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(16) zkas Es'is = th ,

up to constant factors of modulus 1. Indeed, by Theorem 10 of [7 ],

85-15 k G2 is also outer in H”, so that

the left hand side of (16) is outer in H1.

is outer in H1, and Z 55

Furthermore, since F is

m 2 . . .

outer in H and h is outer in H , the right hand s1de of (16) 15

also outer in H1. Now by the assumption on w

._ Cs-is Cs Cs _

)quS e | = S e = [PI2 e = wer = |h|2|F| = |Fh2|.

Since an outer function is determined up to a constant factor by its

modulus, (16) follows. From (16), s = thz‘kq ecsiis and s 3 o, it

follows that

ZZ-k éCs+is) = 0.
Arg(Fh q

Hence [Arg(FhZZ‘k q)| = [s] 5 lislico < e and [loglFll = [rl f “rum < e.

n-I-k
If we put B = F q Z , then B e H” and

lArg(Bh221‘")l = (Arg(fhzz‘k q)| < c ,

llongll = lloglfll < e -

Thus the assertion follows from Theorem 4.3.1. Q.E.D.

4.3.4 Corollary. :1: pn = 0 if and only if, for every 0 < e < %3

there exists real-valued functions r, s e L”(dm) with “rum < c,

“5“,, < E: and w = lplz eT‘i-CS
,where P is a polynomial in Z of arbitrary

degree and Cs is the conjugate function of 5.

4.3.5 Example. Let X = T, A be the disc algebra on T i.e.

A = {f a C(T); f(n) =f:fléinAf(A) %%-= o, n = -1,-2, ... and m

normalized Lebesgue measure on T. Then A is a Dirichlet algebra on
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T and it is well-known that the Gleason part of m is non-trivial.

Wermer's embedding function, in this case, is Z = eAA. Thus, by Sarason's

Lemma [46], Corollary 4.3.4 reduces to Theorem 4.1.1.

4.3.6 Example. Let x = T x T and s = {(m,n) e 22; m > O}U{(O,n)e 22;

n 3 0}. Let A = A(S) be the Dirichlet algebra of continuous functions

on T x T which are uniform limits of polynomials in 3(mx+ny), (m,n) c S.

Let m be the normalized Lebesgue measure on T x T (torus). Then the

Gleason part of m can be identified with {(0,6) e ¢2; la) < 1} which

is non-trivial, the Wermer's embedding function is given by Z(eix,eiy) =

eiy and P of corollary 4.3.4 is a polynomial in eiy [31].

Corollary 4.3.4 is similar to Theorem 5 of [15] and its form

resembles that of Theorem 1 of [13]. Example 4.3.5 shows that when X

is the unit circle, the characterization of u does not depend on e.

Actually, this is the case when X is any compact Hausdorff space as

is shown in 532;. Let C(Z) = {f(Z); f c C(T)}, then H” + C(Z) is

closed in L”(dm) [32, Lemma 3]. Thus, by using an extension of Sarason's

Lemma [46]; Corollary 4.3.4 can be restated as:

4.3.7 Theorem. Lim p = 0 if and only if w has the form

n-mn

2 er(Z) + CS(Z), where Z is the Wermer's embedding function,w = |P(Z)|

P is an analytic polynomial, r and s are real valued continuous

functions on the unit circle T and Cs is the usual harmonic conjugate

function of s.

4.4 StronggMixing of Multi:parameter Gaussian Stationary Processes.
 

Unlike the prediction theory for stationary stochastic processes

with one parameter, prediction theory for multi-parameter stationary

stochastic processes is more diversified. Because there is no natural
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distinction between "past" and ”future” in the latter case as compared

to the former one. Here, for simplicity, we only consider the two-

parameter or doubly stationary stochastic processes with discrete parameters.

2(Let (9,8,P) be a probability space and x e L n,B,P)
m,n

2
such that [xm n(w)dP(w) = 0, (m,n) e Z . We say that {xm n} is a two-

parameter stationary stochastic process if for all integers m,n,k,l

we have = (xk,l’x0,0)' In this case, we call C(k,l) =
(xm+k,n+l’xm,n)

(xk,T,x0’0) the covariance of the process. It is easy to see that

C(-,-) is a positive definite function on Z2. Thus, by Herglotz-

Bochner-Weil Theorem [45, Page 19] on positive definite functions,

there exists a finite non-negative measure u on Borel sets of the tours

such that C(k,l) = ff ei(kX+IY)du(x,y), (k.l) e 22. a is called the

spectral measure of the process.

H. Helson and D. Lowdenslager [14] developed the theory for pre-

dicting x0,0 by linear combination of elements xm,n with (m,n) e S,

where S is a half-plane of lattice points. The fact that the proofs

and some of the results of [14] are independent of the particular

choice of S have been crucial hithe development of abstract Hardy

spaces. Also, this fact is very useful in theory and applications of

two-parameter stationary stochastic processes as will be seen in this

section.

Here, we adopt the following definition of half-plane of lattice

2
points. A set S of lattice points of Z is called a half-plane if;

1) (0.0) e S,

2) (m,n) e S if and only if (-m,-n) t S unless m=n=0,

3) (m,n) e S and (m',n') e S imply (m+m', n+n') c S.
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For X = T2 and S a fixed half-plane of lattice points, it

. 2 2 .

is easy to show that A = A(S) = {f e C(X); f(m,n) = “lg-ff é1(mx+ny)

4H 0 O

f(x,y)dxdy = 0, (m,n) t S} is a Dirichlet algebra on the torus.

Let Sk = {(m,n)e 221‘3(mx*"Y)e Ag} and B(Sk) the o-algebra

generated by the collection of random variables {xm n; (m,n) e Sk}.

We say that the process is strongly mixing if,
 

Sup|P(AnB) - P(A)P(B)|= a(n) s o

A,B

as n + m, where A and B range over 8(5) and B(Sn), respectively.

BY using a remarkable result of Kolmogorov and Rosanov [19] it can

be shown that a Gaussian stationary process {xm,n; (m,n) e Z2} is

strongly mixing if and only if A'= {T; f c A} and A3 are asymptotically

orthogonal in L2(du), that is, if and only if pn + 0 as n + m.

Therefore, necessary and sufficient conditons for strong mixing

of such processes is obtained by specializing Theorem 4.3.7 to the case

when X is the torus and S is any half-plane of lattice points. Thus,

the problem of strong mixing of two-parameter Gaussian stationary processes

is solved in the spirit of [14].

A slightly different notion of strong mixing and a sufficient

condition for strong mixing of such processes is given in [43].

2
4.4.1 An Open Problem. In this special case i.e. when X = T , S a
 

fixed half-plane and m a complex homomorphism of A(S) whose Gleason

part G(m) is non-trivial, it is important to know whether there exists

a complex homomorphism in G(m) such that its corresponding Wermer's

. . . . iimx+nyl
embedd1ng funct1on Z shifts the exponent1als e , (m,n)cS,

"properly". To make this problem more clear, in Example 4.3.6, the
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Wermer's embedding function Z(eix,eiy) = eiy corresponding to m (the

normalized Lebesgue measure on the torus) shifts the desired exponentials

along the y-axis, in this case from viewpoint of application to strong

mixing problem, it would be more meaningfull if we could find a complex

homomorphism in G(m) such that its corresponding Wermer's embedding

function would shift exponentials along the x-axis or along the line

y = x.
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Here, we explain in more detail some of the terminologies

related to a Dirichlet algebra.

Throughout this appendix, X will denote a compact Hausdorff

space, C(X) will denote the linear space of all continuous complex-

valued functions on X. It is well-known that this linear space is

a Banach space (Banach algebra) under the sup norm Hf“ = sup|f(x)

XeX

By a measure on X we mean a finite complex measure on X.

 

A uniform algebra on X is a complex linear subalgebra

A of C(X) which satisfies:

(i) A is uniformly closed;

(ii) The constant functions are in A;

(iii) A separates the points of X, i.e. if x and y are distinct

points of X, there is an f in A with f(x) f f(y).

If A is a uniform algebra on X, then a complex homomorphism
 

of A is an algebra homomorphism from A onto the field of complex

numbers. Since the uniform algebra A is closed, it is a Banach

space (Banach algebra) under the sup norm, it can be shown that each

complex homomorphism 4 is a bounded linear functional on that

Banach space.

A representing measure for o is a positive measure m on

X such that

<1>(f) = ff dm, f e A.

x

64
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Since 4(l) = 1, we have fdm = 1, therefore a representing

measure for o is a probability méasure on X.

For a uniform algebra A, we denote by M(A) the set of all

complex homomorphisms of A. With each f in A we associate a

complex-valued function f (called Gelfand transform of f) on

M(A) by

f(1) = <l>(f) , a e M(A).

If we topologize M(A) with the weakest topology which makes

all these functions f continuous, then it can be shown that M(A)

is a compact Hausdorff space. This space M(A) is known as the

the space of complex homomorphisms of A or the maximal ideal space
 

of A or the space of multiplicative linear functionals on A.

By Riesz representation theorem, it can be shown that for

each complex homomorphism of A, there exists at least one representing

measure m on X. To show that this measure m is unique it is

necessary to impose more restrictions on A.

A uniform algebra A is called a Dirichlet algebra on X
 

if the real parts of the functions in A are uniformly dense in the

space of real continuous functions on X. It can be shown that A

is a Dirichlet algebra on X if, and only if A + A' is uniformly

dense in C(X), or, if, and only if, there is no non-zero real measure

on X which is orthogonal to A.

For a Dirichlet algebra A, it can be shown that the relation

41 ~ 42 defined by Hal - 42“ < 2 is an equivalence relation on
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M(A). The equivalence classes for this relation is called the Gleason

parts of M(A). For 4 a complex homomorphism of A with the unique

representing measure m, G(m) the Gleason part of o is defined by

G(m) = {P e M(A); 9 ~ 4}.

For more information on this subject and proof of the state-

ments made earlier the following paper of K. Hoffman may be consulted

(Analytic functions and logmodular Banach algebras, Acta Math.,

108 (1962), 271-317).
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