MW!) ..... 33333333135333333333 3 3 I3 33 3. I ' .7123" 33.3 3W3 . I . ; -.~:“".-:c:. - A. on ‘~ o I. “ ~—-. A a o“ _ .1 ‘ - s v - o ‘ ~- '3 A '--_ —‘~ - 23% ' ' ~ ‘ 2: —~«-_ ," ' .- -. - 7‘ A Q 0‘ .’_ -A- a :3? §,..“~ ht“ ‘3 '_ .'. .— ...—‘ ‘ _ \ " ”31'3"“ f4??? "f 33333 ‘3 ' {i313 7:31:33? i333 3W t [I ‘ ‘ ‘331' ‘ ‘ . "I'f ‘IF #1:)! ’R“ £3323}: fiiatt 1:3 ‘1 .‘ 3 ' '7" -" i3 3-‘3' 33 2'” ‘ . {"333 313' .. 3 MP3} ‘3‘ u 3J343iz'i‘. 3‘ 3 “ :33 33 .3." ,": 3:3; 0' 3 :.z_v': " (.3 x 3,10! 73;; I m“; ' . If‘wlg‘hwf ”3351'” “33-37;;1712677“ “W $333 33333" as. ‘ ‘ 3 I: 3 .3.3‘:3 .333 .3 33338333333333; #3331": 3333.37 {in 33331333333 5‘33?“ .333) 333333!) 3:3.- 333333 " " a. . ":33; 333333373333: 'H-sr- .. 3 ' ' ‘ "'73,":9352: in: 5" . it: ‘ 1 ‘ In ' ' ‘ '5 . I , o .‘; ' I . ‘ 3' ' .,‘_ 3' ‘ I . ‘ It ‘ J 3| 3 t ': I :‘ ‘3 ' I :1 a 3‘”, I. .u g n‘ ., ;.":!'I‘$_ ’, 3, v 'H u 0 . 5.“, tr L < 3 .37 3 A. 33 231:: 5(3(!,‘p;33;3;:!" ‘ - ‘. "a 7 ' n ' .. r u: , . M 3'“ . '. M 3 “ .3334] 33‘"! “ 7:" :- Y ‘ - . v u ‘ . . I H. V ‘l v' . a 3 . 3: 3‘ l U .‘3 0’ $1 ' 3113,3333- ‘ .z 3 ?33Cu IE3: I -:.' 3 1331.. ,333 3'3'\ 0' .'. , .‘3.’ a :33-3 “1‘ ‘3' .3.“ 3"!" . ' 3 “‘4‘ o ,‘p ' “a '3 n 3 3 I" '7: "I ' :1 v“ ’ .v' u‘ :- ' :v :': - 3 ' “ "- g It??? ‘ ‘ - z“! 1-1 I; n w' '7 . ,. ., {If} " 35335333 ”15:”; 3&1) ‘ . ' , ‘. ‘5 ‘ ' 3': 'Z- $jl .3 , . 5,: ' I 1’} . ,'. ~. :, .M :‘ hf “4L . . . '1 7 .’-' W t 3 ' " 3' 3 ‘3 . Q 3 u ‘ 3%" 03331:“ . ‘3 A . .' _ 3., .4; ~ 3»! . . “5.! v '1‘ . 343E 37:23 IN“??? = 3;! . . -.v.v-.'u Mm}!- .. I333: J.“ |‘- “.7; ‘ [.1 '3 5 55V . ,1; 3H7? ' A. ‘1 «p'. 3 . 3313'. ’33.' ‘k 3’10 v {’4 .' ‘9. i3 > . I. . . h: I“ 33333;? ,. ,r" {'31:} H.343 [3,. {W713 3) ('3’! “(333333IF 14. J"I.“ 33.3!“ I. 3333::{3f 0: 3 ‘53 ”75537:“ ' " . 3}}3‘ “Mi 34zr’33“ (“"3393 .f- 3.93%: 3 3g; 337%")? 133 3%3‘3’3 (533 333533 1 4» 33333 Jig-‘33“? ‘V . . f ’ - ' A: I.“ ~3‘3.7")”J.1A7‘A::2z 3." ‘3." m up: -- err 33': ’ :j 3.: 7‘. .6" ”‘53.. v. :RV‘Y': ‘ .I“; 9::V-‘3 ‘ W {3 333’“! ..' t' - I :77). 13. 1.37; “I 7353251333 1 : :I. J. I. "37- 73333337! 513;}: uppigmrflqfh ul.’ I3 .. . is. ‘3 I“ 345(5); W ’Pfi'».'3f.‘g. 5':ng In, 33333313!” % ° ii . ' 3 .. 3 “Silage -3;33:3' id ’45,; 7 Ci“). 1";ng I! Ifimf 3.3%“ ‘11“.(3 3,3333); -- “ '5 I» ' {3; 33333333342143.“ (“IF [13‘3u . J4 “‘33,; j,“ r kl? I‘ :4... 5.3'13‘3'3fiyl :13 I337“; ‘ '3“ w33¢1£ 333-37}; 3:3)3’,’ ljaflidt' 3" 3:03-33:31 1:55, ‘1)” g3}; 4‘”. fly FER; ;n.. 3533219" u L. ‘ % . ’ “I‘d? *1 3i . ¥ "7;"? '1" L110 3th _ « Em‘afjfiu - _ ‘ 3| (1;. 33333333 ’33333 ' n - ’ '3 . V w . .731103fi7. MN "UM" 337‘} «1' .7 7‘ . ‘ .fi 33; ’3‘33333'339'24;37313~g"3' 3 3:313.” ‘ " ' ' | 33%;, “Jay-3 3 33 ' 3 3' ' 3 31.3%.: )13'3333‘53 “4135:3575 , 3’33 ”W . . ‘ 3.] u u ”3333.3! . .' ‘ _‘ est‘hvjch .-'. '13- ) ‘ ‘ ’3 33333, 3| * .3 '3 ' II. 5 33 3‘» -3-3 ‘ 3 ’ 3'3 31'}3£‘n’!l.'".’33"3fih3f3 ML IMWMU ”‘12)?” m 3‘ ‘ . . -‘ ' : 3 ‘-~ 3 "3 333333 33 " "h firnf. f”): 9231;133'3113IJ. 'n..l’1'.}. “ .- an». it Jam-w: at I an .~ 9“ t. - .4; 9 '\ '. . I. t. W. \ . ‘- ‘ ..' 'J ’ «a (”.0 _i . _ __ -- .. .- ... -_ H II I n I ‘ 0'. ..-.- -_ _ '~' - it .1 . i . e ‘ " "" ‘0'” ""‘ ._ 'IV-V H ‘- ——r; j ‘1 . 9 -a E -‘ ~-."‘-—.~—-* "n, . . “w—quva‘..~w’ ; This is to certify that the thesis entitled A Wind Erosion Model to Predict Average Soil Loss For Single Events. presented by William Presson has been accepted towards fulfillment of the requirements for M. S . degree in Agricultural Engineering m / . \ filajor professor Date aw ///L/Zj/6 0-7639 MSU is an Affirmative Action/Equal Opportunity Institution RETURNING MATERIALS: 1V1531_J Place in book drop to LlBRARlES remove this checkout from w your record. FINES will V be charged if book is returned after the date stamped below. A Hind Erosion Hod-l To Prodict Avorago Boil Laas For Sinql. Evnnts By “1111a. A. Proason A THESIS Sub-ittod to Michigan Stat. Univ-raity in partial fulfillaont 0* th- rnquirnonts ior tho dugrol of MASTER OF SCIENCE Dopartnont 04 Agricultural Enginucring 1986 (/03 74023,? ABSTRACT A HIND EROSION MODEL TO PREDICT AVERAGE SOIL L088 FOR SINGLE EVENTS. By Nilliao A. Prosson A oodol to prodict avorago soil loss tor singlo ovonts was dovolopod. Tho oodol is basod upon Brogory's oquation for soil flux across an oroding fiold. Input data nocossary for uso of tho oquation aro oodolod through a Michigan wind orosion soason (Docoobor - Juno). Rosiduo docooposition is oodolod using a rosiduo docay oquation with tho appropriato paraootors. Crop covor is lioitod to corn. Tho CERES oodol #or corn dovolopoont and corn growth data froo Michigan aro usod to oodol canopy dovolopoont. Data froo Bay City, Michigan for tho 1984-55 wind orosion soason is usod for nodol vorification. Rosulto aro favorablo but not conclusivo, duo to insufficiont data. Wm. flay/5 Mm Major Profossor Approvod: W54 l‘a’é/z’z/a/QQ/ Dopartoont Chairoan ACKNOWLEDGMENTS I would liko to thank my major profossor Dr. Boorgo Morva for his oncouragomont, oxportiso, and friondship throughout my graduato studios. His dodication to tho profossion is an inspiration to all who havo had tho privilogo to work with~ him. I would liko to thank Dr. Tod Loudon for his council and oxportiso on my rosoarch committoo and crodit him for inspiring my intorost in graduato studios. I would also liko to oxtond rocognition to Dr. Fran Piorco {or his rolo as a mombor of my rosoarch committoo. In addition, I would liko to oxpross my graditudo to tho oxomplary cooporation oxtondod by Lynn Sampson and Jim Cianok who ondurod tho woathor to colloct data for this projoct. Thanks can not oxpross onough tho support and pationco my family has givon ovor tho yoars to mako this rosoarch oifort possiblo. I ospocially want to thank my wifo who strugglod as hard as I havo to achiovo this goal. ii TABLE OF CONTENTS I. Introduction . . . . . . . . . . . . . II. Litoraturo Roviow A. Summary of wind orosion rosoarch 1. Tho procoss of wind orosion . a. Intiation of soil movomont b. Soil transport . . . . . . c. Sorting and doposition . . 2. Factors affocting wind orosion 3. Hind orosion control . . . . . B. Tho wind volocity profilo . . . . C. Modoling soil orosion by wind 1. Tho wind orosion oquation . . 2. Srogory's wind orosion oquation D. Modoling rosiduo lossos 1. Modoling rosiduo docay . . . 2. Rosiduo mass to rosiduo covor rolationship 3. Rosiduo lossos duo to tillago III. Modol Dovolopmont 1. Rosiduo broakdown . . . . . . 2. Fiold oriontation and Layout 3. Crop dovolopoont (corn) . . . iii ‘1 0‘ uauu 12 13 17 21 #8 IV. VI. VII. VIII. IX. 4. Avorago mass movomont por unit aroa por ovont calculation ”.1 8m.itiv1ty I I I I I I I I I Data Colloction . . . . . . . . . . Exporimontal Vorification Rosults . . Discussions . . . . . . . . . . . . Conclusions . . . . . . . . . . . . Rocommondations . . . . . . . . . . . APPENDICES Data Usod For Modol Vorification II 2. 3. 4I 5. 6. 7. Sito doscription . . . . . . . Soil movomont data . . . . . . Dry siovo analysis of samplos Tomporaturo data . . . . Rain data . . . . . . Hoathor data . . . . . Samplor ofticioncy . . Procooduros For Fitting Tho Hind Volocity Protilo . . . . . . . . . Documontation And Sourco Codo of I. 2. SI 4. List of Litoraturo Citod . . . . . Subroutinos . . . . . . . . . Variablo list . . . . . . . . Input ‘11.. I I I I I I I I I Hind orosion program sourco codo Indox of Authors . . . . . . . . iv Avorago mass loss por unit aroa. Modol 30 51 61 76 77 3383823 '0 \l 100 101 104 114 119 2. 3. 4. 10. 11. 12. 13. LIST OF TABLES Particlo sizo rango vorsos typo of transport Soil orodibility valuos ior various toxtural classos o4 dry, baro soil Fraction of covor producod by various amounts of crop rosiduos Rocommondod valuos ¥or u/R for uso in . . . Brogory's rosiduo docay oquation Rocommondod carbon nitrogon ratios for . . . Srogory's rosiduo docay oquation Rocommondod valuos for Am constant in . . . Srogory's rosiduo mass to covor convorsion oquation Typical porcontagos of rosiduo loit for . . various tillago soquoncos tor corn in Michligan Intializod paramotors #or sonsitivity tosts . Intializod paramotors for fiold runs . . . . Colloctor and modol ostimato data . . . . . Comparison of noutral vorsos hoat flux fittod volocity distributions . . . . . . . . Particlo ofticioncy 04 tho Modifiod Bagnold M1" I I I I I.I I I I I I I I I I I I I Fittod wind volocity profilos . . . . . . . . 15 16 20 20 22 24 67 96 1. 2. 10. 11. 12. 13. 14. 15. 16. LIST OF FIGURES Input and output paramotors . . . . “.1 d“. I I I I I I I I I I I I I I Modol paramotors through an orosion soason Erosion modoling flow chart . . . . Data input and calculation . . . . Sonsitivity o+ avorago mass movomont rosiduo covor . . . . . . . . . . . Sonsitivity of avorago mass movomont carbon nitrogon ratio of corn . . . Sonsitivity o§ avorago mass movomont wind diroction . . . . . . . . . . Sonsitivity o§ avorago mass movomont rosiduo hoight . . . . . . . . . . Sonsitivity ot avorago mass movomont windbroak hoight . . . . . . . . . . Sonsitivity oi avorago mass movomont .th dur.t1 m I I I I I I I I I I Sonsitivity o4 avorago mass movomont volocity difforonco . . . . . . . . Sonsitivity of avorago mass movomont days sinco omorgonco . . . . . . . . Sonsitivity of avorago mass movomont non-orodiblo fraction . . . . . . . Sonsitivity o‘ avorago mass movomont tho crusting ‘actor . . . . . . . . Sonsitivity of avorago mass movomont rosiduo roduction duo to tillago . . vi to fall to to to to to to to to to to 31 3‘38} 39 40 41 42 43 44 45 47 48 49 17. Sonsitivity of avorago mass movomont to #iold roughnoss . . . . . . . . . . . . . 18. Colloctod mass vorsos ostimatod mass tor original modol . . . . . . . . . . . . . . 19. Colloctod mass vorsos ostimatod mass for roducod orodibility modol . . . . . . . . 20. Colloctod mass vorsos ostimatod mass for orginal modol run with samplor corroctions 21. Colloctod mass vorsos ostimatod mass for roducod orodibility modol with samplo cwrnti m. I I I I I I I I I I I I I I I 22. Roughnoss paramotor vorsos throshold volocity . . . . . . . . . . . 23. Hind volocity during 5/31/85 "1 nd "mt I I I I I I I I I I I I I I 24. Hind diroction during 5/31/85 "1 "d .vmt I I I I I I I I I I I I I I I 25. *tt" pl at I I I I I I I I I I I I I I I 26I 31 "k p1 at I I I I I I I I I I I I I I I 27 I at kmi .k pl at I I I I I I I I I I I I I 28o KlprIIIII" plat o o o o o o o o o o o o o vii I. Introduction Tho modoling of wind orosion, duo to its immonso comploxity, is still in an infancy stago. Until rocontly, tho only tool availablo to prodict wind orosion to any oxtont was tho Hind Erosion Equation dovolopod at tho USDA, ARS wind orosion laboratory at Manhattan Kansas. Tho Hind Erosion Equation (HEE) prodicts potontial soil loss on an annual basis. Potontial soil loss on an annual basis is usod to provido critoria for tho implomontation of practicos to roduco annual soil lossos. Howovor, tho HEE doos nothing to prodict soil loss ovor a particular wind ovont. To modol soil loss ovor tho duration of a wind ovont an ouprossion for mass flow por unit timo must bo incorporatod. Two approachos havo boon proposod, Colo (1984) and Srogory (1984a). Colo and Brogory both agroo that a mass flux can bo incorporatod in a wind orosion prodiction oquation. Brogory‘s prodiction oquation was choson for modoling uso duo to its simplicity and bocauso it has boon vorifiod with oxporimontal data (Brogory, 1984a; Pfost, McCarty, and Srogory, 1985). Prodicting soil movomont with any mass flux oquation is only tho start of a wind orosion modol. Various othor contributing factors must bo accountod for and quantifiod. Somo of thoso factors includo: 1) moisturo conditions; 2) wind volocity profilos; 3) covor (both organic rosiduo and 2 groon plant); and 4) fiold foaturos and oriontation. Each of thoso factors prosont a uniquo difficulty in modoling. Additional modols and oquations must bo usod to prodict unknown factors. Somo of thoso modols aro: 1) CERES modol for corn dovolopmont (Jonos, 1985) 2) Swinbanks oquation for prodicting wind volocity profilos (Swinbank, 1964) 3) Srogory's oquation for rosiduo docay (Srogory ot al., 1985) 4) Srogory's oquation for rosiduo mass to covor convorsion (Brogory, 1982) 5) Colo's oxprossion for fiold longth on a roctangular fiold (Colo, Lylo, and Hagan, 1983) Ono advantago of an ovont prodiction modal is tho possiblo addition of wind storm probability to obtain a yoarly potontial soil .loss modol. In Michigan, tho Hind Erosion Equation has not provon to bo adoquato ( Sampson, 1984; Duissonborry, 1935)*. In tho futuro, 1+ ovont modoling can bo mado roliablo, this approach may provido an altornativo to tho HEE for aroas with climato variability and vogotation similar to that oxporioncod in Michigan. Tho objoctivo of this study is to dovolop an ovont basod modol that incorporatos and modols tho ossontial factors nocossary to ostimato soil movomont causod by a singlo wind orosion ovont. * - porsonal communication II. Litoraturo Roviow A. Summary of wind orosion rosoarch 1. Tho Procoss of Hind Erosion Tho procoss by which soil movos is charactorizod by throo stops: a) Initiation of soil movomont; b) Soil transport; c) Sorting and doposition (Malina, 1941 as roforoncod by Chopil, 1945b). 'a. Intiation of 9°11 Movomont Particlo movomont will occur whon tho prossuro of tho wind oxcoods tho gravitational and/or cohosivo forcos holding tho particlo in placo (Chopil, 1959). Tho wind spood roquirod to oxcood tho gravitational forco and initiato soil particlo movomont is callod tho throshold volocity. Tho throshold volocity varios according to soil, crop and onvironmontal conditions (Chopil, 1945b; Sillotto, 1978). A fluid, o.g. wind in motion, ouorts throo typos of prossuros on a particlo (Chopil, 1959; Chopil and Hoodruff, 1963). Thoso prossuros aro as follows: 1) Volocity or impact prossuro - a positivo prossuro oxortod on tho windward sido of tho particlo, a function of wind spood. 4 2) Viscosity prossuro - a nogativo prossuro on tho looward sido of tho particlo, a function of air donsity, volocity, and viscosity. 3) Static, isotopic, or intornal prossuro - a nogativo prossuro on tho top of tho particlo, a function of tho volocity difforoncos botwoon tho top and bottom surfacos. Tho static prossuro can bo ouplainod by tho Sornoulli offoct which causos an upward lift on tho particlo (Chopil, 1945a). Tho sum of tho impact and viscosity prossuros aro callod drag. Thus, tho forcos acting on a particlo during initial particlo movomont aro lift, drag, and gravity. Tho throshold drag and lift roquirod to initiato particlo movomont aro functions of particlo diamotor, shapo, donsity, closonoss of packing and tho anglo of ropooo of tho particlo with rospoct to tho avorago drag of tho wind (Chopil, 1959; Chopil and Hoodruff, 1963). b. Soil transport Aftor tho initiation of particlo movomont, tho particlo is transportod in ono of throo typos of soil transportation. Thoy aro as follows (Chopil, 1945a; Lylos, 1977): 1) Saltation - soil particlos movo in a sorios of short Jumps. Approximatoly 50-80 porcont of soil movomont is transportod this way (Chopil and Milno, 1939 as roforoncod by Stono, 1980; Lylos, 1977). 2) Susponsion - soil particlos bocomo airborno aftor movomont is initiatod by saltating particlos (Hsioh and Hildung, 1969; Sillotto and Halkor, 1977; Lylos, 1977). 3) Surfaco Croop - soil particlos roll or slido across tho surfaco (Potorson, 1986). Tho typo of transport is Iargoly a function of particlo sizo. A gonoral guidlino can bo soon in tablo 1. TABLE 1 Particlo Sizo Rango vorsos Typo Of Transport (Chopil, 1945.). .Eaciislo_siaoe Txno_ni_lrananncs______ < 0.1 mm Susponsion 0.5 - 1.0 mm Surfaco croop c. Sorting and doposition Sorting and doposition is tho final procoss of wind orosion (Malina, 1941). Tho varying mobility of particlos 6 rosults in tho sorting of soil particlos across a fiold (Chopil and Hoodruff, 1963). Doposition of soil particlos takos placo whon tho gravitational forco oxcoods tho wind's forco on tho particlo (Chopil and Milno, 1941b as roforoncod by Stono, 1980). This so callod “fanning mill" procoss causos tho fiold to bocooo progrossivoly coarsor in toxturo with timo (Chopil, 1946; Zingg and Chopil, 1950), a phonomonon which can mako tho romaing soil moro orodiblo (Zingg and Chopil, 1950). 2. Factors affocting wind orosion Tho primary factors affocting wind orosion for a givon fiold aro: soil cloddinoss, surfaco roughnoss, wind, soil moisturo, fiold longth, and vogotativo covor (Hoodruff ot al., 1977). Of tho abovo, Hoodruff and Chopil (1956) attributod up to 75 porcont of wind orosion variability to soil cloddinoss, surfaco roughnoss, and vogotativo covor with soil cloddinoss boing tho most significant of tho throo factors. Soil cloddinoss absorbs tho wind's drag thus sholtoring moro orodablo particlos (Chopil and Hoodruff, 1963; Hoodruff ot a1, 1977) and thoroforo, it can bo considorod as covor (Fryroar, 1983; Srogory, 1984b). Surfaco roughnoss also roducos wind orosion by absorbing drag (Lylos, 1977). Howovor, thoro is an optimum ridgo hoight boyond which surfaco roughnoss loosos its' offoctivonoss bocauso groator orosion can occur off tho crosts (Chopil and Milno 1941a). Tho optimum ridgo hoight 7 is from 3 to 7.5 cm (2 to 5 inchos) (Hoodruff ot al, 1977). Vogotation and vogotativo rosiduo havo two offocts on wind orosion 1) absorbing wind drag (Zingg, 1951; Lylos, 1977; Skidmoro and Hagan, 1977) and 2) ontrapping soil particlos (Chopil, 1944 as roforoncod by Stono, 1980). Tho intonsity of wind orosion varios by tho cubo of wind volocity and invorsoly by tho squaro of offoctivo procipitation (Chopil, Siddoway, and Armbrust, 1963). Moisturo has a two fold offoct on wind orosion. Moisturo in tho air roducos its donsity and thoroforo roducos tho wind's orosivo forco (Chopil, 1945c). Moisturo in tho soil producos wator films that croato cohosivo forcos which rosist orosivo winds (Chopil, 1956). Tho last primary affoct is fiold longth. Incroasing fiold longth allows incroasod soil particlo intoraction which producos moro particlo movomont. c. Hind orosion control Hoodruff and Siddoway (1973 as roforoncod by Stono, 1980) stato that wind orosion is causod by “... a strong turbulont wind blowing across an unprotoctod soil surfaco that is smooth, baro, dry, and finoly granulatod“. Tho control thoroforo is tho manipulation of tho factors discussod in tho provious soction. Thoso manipualtions aro (Hoodruff ot al., 1977): 1) Promoting a cloddy soil surfaco. 2) Ridging tho soil surfaco porpondicular to tho diroction of tho provailing wind. 3) Roducing fiold longth with barriors or crop strips oriontod porpondicualr to tho diroction of tho provailing wind. 4) Establishing and maintaining a covor of vogotation or vogotativo rosiduo. Soil clods aro formod during tillago and aro a function of soil toxturo, donsity, and moisturo (Lylos and Hoodruff, 1961). Sonorally if tho soil surfaco is covorod with at loast two-thirds of particlos and clods groator than 0.84 mm in diamotor, adoquato covor is providod for most winds (Hoodruff and Siddoway, 1973 as roforoncod by Stono, 1980). Ridging tho soil surfaco can provido protoction from wind orosion if tho soil toxturo is suitablo to rosist abrasion (Chopil and Hoodruff, 1963). Sarriors or crop strips can bo constructod at right anglos to tho provailing winds (Chopil and Hoodruff, 1963). Tho barriors or crop strips oxort a drag and roduco tho orosivo forco of tho wind. Tho offoctivo distanco from tho barrior for wind orosion protoction is about 10 timos its hoight (Hoodruff, 1956). Tho barrior or crop strip also roducos avalanching by ontraping saltating particlos (Chopil and Milno, 1941b as roforoncod by Stono, 1980). Crops and crop rosiduos raiso tho zoro volocity lovol of tho wind (Chopil and Hoodruff, 1963), docroaso wind volocity at tho 9 surfaco, and ontrap oroding particlos (Chopil, 1944 as roforoncod by Stono, 1980). Minimum tillago practicos that maintain crop rosiduo whilo incroasing wator infiltration and storago can roduco wind orosion (Fonstor and Hicks, 1977). For an indopth roviow of litoraturo on Hind Erosion Rosoarch soo Stono (1980). B. Tho wind volocity profilo Tho wind volocity profilo first usod in wind orosion rosoarch was adaptod from Von Karman's ouprossion for fluid flow in pipos. Tho oquation is as follows: u 1 z -—I--ln-+C (1) u* K0 K whoro: u I volocity at hoight z u*- (t/pl1/2 z I hoight obovo a surfaco C I constant KOI constant, Von Karman constant K I hoight of surfaco roughnoss t I shoar stross at tho boundary p I fluid donsity Prandtl suggostod that oquation (2) could bo oxtondod to tho atmosphoro (Brunt, 1944 as roforoncod by Zingg and 10 Chopil, 1950). Nikuradso conductod oxporimonts and dotorminod tho constants to bo K0I0.4 and CI8.5 (Zingg and Chopil, 1950). Substituting thoso constants and convorting oquation (2) to logarithmic baso 10 yiolds tho following oquation. U 2 u. K To simplify tho oquation furthor, sotting kIK/30 will satisfy tho oquation so that tho constant 8.5 can bo oliminatod (Zingg and Chopil, 1950). Tho oquation thon has tho following form: x u I 5.75 uo log - (3) k This oquation with sovoral modifications was usod by Bagnold and Chopil (Zingg and Chopil, 1950). Tho oquation usod for moro rocont wind orosion work today is tho following: u! :-d u(z) I - In [--J (4) K 20 Hhoro: u(z)I volocity as a function of hoight (2) K I Von Karman constant, 0.4 d I offoctivo surfaco roughnoss hoight so I roughnoss paramotor 11 Equation (4) (Schwab ot al., 1981) assumos noutral atmosphoric conditions. This assumption is probabaly not tho caso for most wind orosion ovonts. Harrington (1965) concludos that tho most appropriato oxprossion for tho wind profilo noar tho ground is Swinbank's oxprossion (Swinbank, 1964). Tho oquation is as follows: uo oxp((z-d)/L) - 1 u(z) I -- Int J (5) K oxp(z°/L) - 1 Hhoro: -u§3 L I ,m (6) (kgH/pcp) g I accoloration of gravity, m s-2 2 -1 H I sonsiblo surfaco hoat flux, J m- s p I ambiont air donsity, g .—3 CPI spocific hoat of air, J 9'1 ”K-1 Tho offoctivo surfaco roughnoss hoight (d) and tho roughnoss paramotor (so) can bo rolatod to crop hoight (h) by tho following oquations whoro tho units aro in motors. log d I log h - 0.15 (Stanhill, 1969) (7) log 20- log h - 0.09 (Tannor and Polton, 1960) (8) For a moro indopth roviow of litoraturo rogarding wind volocity profilos soo Harrington (1965). 12 C. Modoling soil orosion by wind 1. Tho wind orosion oquation Tho HEE was dovolopod from work porformod and data takon in tho Sroat Plains (Chopil and Hoodruff, 1954; 1959; Chopil, 1960). Tho HEE ostimatos potontial soil loss on an annual basis for a givon agricultural fiold. Tho oquation is as follows (Hoodruff and Siddoway, 1965): EI f( I , K , c , L , v ) (9) whoro: E I potontial avorago soil loss, Tons acro"1 71* I - soil orodibility indox, Tons acro" y..r‘1* I soil ridgo roughnoss factor, climatic factor, I" O K I I fiold longth along tho provailing wind diroction, foot V I oquivolont of quantity of vogatativo covor, lbs acro'1* Uso of tho HEE, duo to it's comploxity, (Chopil and Hoodruff, 1963) roquiros look up charts and tablos and graphical solution tochniquos. A computor program was dovolopod by Skidmoro, Fishor, and Hoodruff (1970) to solvo * noto tho HEE is not usod with SI units 13 tho HEE. Tho computor program was of littlo holp howovor for uso in tho fiold. Tho Soil Consorvation Sorvico, tho Agricultural Rosoarch Sorvico and tho Graphics Calculator Company dovolopod a slido rulo to improvo oaso of uso of tho HEE (Possolius, 1983). Possolius dovolopod a program for uso on a Howlott Packard 41 CV handhold calculator. For furthor background rogarding tho HEE soo Stono (1980). For furthor information rogarding tho oquation's uso in Michigan rofor to Duisonborry (1984). 2. Srogory's wind orosion oquation An altornativo to tho Hind orosion Equation's yoarly avorago soil loss is Srogory's wind orosion oquation for singlo ovonts (Brogory, 1984a). Pfost, McCarty, and Srogory (1985) appliod tho oquation with furthor modifications. Tho oquation is as follows: 2- "s‘c 9 V ‘V Vc3)ri-oxp(-z A L K/V)J (10) whoro: I -1 MSI mass flux por unit width of blowing soil, Kgm' s c - 0.0000244 Kg s2 n“ S I Rolativo soil dotachmont factor ( a function of crop canopy, rosiduo, and soil roughnoss), calculatod by oquation (13) v - Hind volocity, m s-1 (at 15.2 motors abovo tho surfaco) 14 VcI critical throshold volocity roquirod to initiato orosion of dry soil, assumod to bo 13.0 m/s 0 15.2 m hoight (oquivolont to 6.7 m/s 0 0.15 m hoight (Fryroar and Downos, 1975)) 2 - 0.003 ha t-1 s‘1 A I a dimonsionloss soil abrasion adjustmont factor I 0.77 t1-oxp(-0.072 oxp(4.67 Z L K/V))] f 0.23 (11) L I unprotoctod longth of fiold in diroction of wind, m I L; - (17(Vc)/VI H (12) L‘I longth of fiold in diroction of wind, m H I hoigth of windbroak (on windward sido of fiold), m K - soil orodibility, t/ha (from tablo 2) Tho rolativo soil dotachmont factor (8) was dovolopod by Brogory (1984b) for wator orosion as woll as wind orosion. For uso in tho abovo oquation (S) can bo calculatod from tho following oquation: (1-Fc) (1-Fr) (13) Feb: Frhr + (1-Fc) + (1-Fc) (1-Fr)32 h s whoro: S I rolativo soil dotachmont (SI1 for a smooth, baro soil) FcI fraction of canopy covor duo to a growing crop FrI fraction of covor duo to rosiduo or stablo soil clods (can bo prodictod by oquation 19, or soo Tablo 3 for typical valuos) 15 th hoight of canopy, mm ( or samo units as h. or hr) h'I hoight of soil roughnoss, mm hrI hoight of rosiduo, mm Tablo 2 Soil Erodibility valuos For Various Toxtural Classos Df Dry, Saro Soil (Chopil , 1957). Soil Class Soil Erodibility M M Sand 370 165 Loamy Sand 220 98 Sandy Loam , 40 18 Loam 16 7 Silt Loam 13 6 Clay Loam 11 5 Silty Clay Loam 9 4 Silty Clay 27 12 Clay (subjoct to granulation) 52 23 *K - 2.24 timos I. 16 no.0 05.0 0h.0 00.0 00.0 «0.0 00.0 00.0 0h.0 ”0.0 ”0.0 D”.0 ”0.0 00.0 00.0 ””.0 0N.0 0n.0 ”0.0 ”0.0 00.0 ””.0 0N.0 0u.0 50.0 ¢o.0 00.0 05.0 00.0 00.0 0”.0 ””.0 0N.0 0«.0 ¢«.0 0«.0 00.0 00.0 05.0 00.0 n¢.0 ””.0 0N.0 «u.0 u«.0 ¢”.0 00.0 «0.0 0u.0 #0.0 #0.0 ”q.0 No.0 00.0 .azxux. senate cauauoc h¢mI3 003040230 mtmhm 2000>00 z¢mm>00 mtmhm ZOPFDU 2000 mama .nmo. >Lounco ac. .>ucaou: .u-owm. ” Innflb ooaoaoom QOLU *0 ouc304¢ odoaLo> >0 nonsuOLm Lo>ou 40 coauUILu 17 D. Modoling rosiduo lossos 1. -Modoling rosiduo docay Prodicting rosiduo covor is ossontial to tho modoling of wind orosion ovonts. At any timo during tho wind orosion soason, rosiduo covor must bo known or prodictod within roasonablo tolorancos. Tho first attompts at modoling rosiduo docay assumod that docay follows a first ordor roaction with timo. Tho oquations that woro dovolopod thon havo oxponontial forms (Parnas, 1975; Hunt, 1977; Silmour, 1977; Roddy, Khalool, and Ovorcash, 1980). Silmour, Broadbont, and Bock (1977) and Hunt (1977) usod first ordor kinotics to doscribo rosiduo docay in two to throo difforont stagos doponding on oaso of docomposition. Tho oquation is as follows: -dC,/dtI kic, (14) whoro: C I organic carbon substrato kiI first ordor rato constant at phaso (i) i I phasos I,II, and III and by intograting oquation (14). whoro: Ct-I romaining organic substrato at timo (t), at I. phaso (i) c. 1 I initial organic substrato at phaso (i) 18 k- 1 I first ordor rato constant at phaso (i) t I timo Throo difficultios ariso from thoso oquations: 1) two or throo phasos of docomposition must bo considorod; 2) tho first ordor rato constant varios ovor timo; and 3) an oxponontial rolationship roquiros infinito timo to roach total docay. Roddy, Khalool, and Dvorrcash (1980) dovolopod procoduros to modify oquation (15), but thoso modifications roquiro data not oasily moasurod or ostimatod. Srogory ot.al. (1985) dorivod a simplifiod modol that could bo usod with oasily moasurod or ostimatod data. Tho modol is dorivod from fivo basic concopts. Thoy aro as follows: 1) A simplo modol should modol tho intogratod offocts of all microorganisms at work in rosiduo docomposition. 2) As tomporaturo incroasos abovo zoro dogroos colcius, rosiduo docay incroasos also. 3) Tho rosiduo docay rato is invorsoly proportional to tho carbon to nitrogon ratio (CIN) of tho undocayod part of tho rosiduo at harvost timo. 4) Rosiduo moisturo lovol affocts tho rato of rosiduo docay. 5) Docay occurs on tho surfaco of tho rosiduo and thoroforo doponds on tho surfaco aroa of tho rosiduo. Tho modol is as follows: n- M°(1-ut/Ro)2 (16) 19 whoro: M I Mass at timo (t), Kg Mo I Mass at timo (tIO), Kg u I constant R0 I radius of ono stom, mm t I a woightod timo variablo adjustod for tomporaturo, moisturo, and intial C/N ratio. I TtA./(C/N) (17) T I tomporaturo, (dogroos Colcius abovo zoro) t I timo, days C/NI intial C/N ratio A‘. I moisturo indox, mm summation of (Ii/i) for iI1-5 ‘ (18) I I dopth of a rainfall on a givon day,mm i I tho numborod day, with tho prosont day boing 1, tho provious day 2, oct. All of tho abovo paramotors can bo oasily moasurod or ostimatod oxcopt for tho valuos u and R0. Thoso valuos woro dotorminod oxporimontally as ono variablo u/Ro for various crops (Srogory ot al., 1985; Shidoy ot al., 1985). Rocommondod valuos aro listod in tablo 4. Tho C/N ratio can bo ostimatod with data, roportod by Shidoy ot al.(1985), tablo 5. Tho moisturo indox is not allowod to oxcood tho indox basod on tho avorago potontial ovaporation rato. Thoroforo A. is not allowod to oxcood 10 mm (soo Brogory ot.al. (1985) for a moro indopth oxplanation). 20 Tablo 4 Rocommondod valuos for u/Ro for uso in Srogory's rosiduo docay oquation (Srogory ot al., 1985). Crop u/Ro whoat 0.00210 corn 0.00118 sunflowor 0.00119 soyboans 0.00137 Tablo 5 Rocommondod Carbon Nitrogon ratios for Srogory's rosiduo docay oquation (Shidoy ot al., 1985). Crop C/N whoat 108 corn 57 sunflowors 40 8 soyboans 21 2. Rosiduo mass to covor rolationship Modoling rosiduo docay has boon porformod in torms of mass. Mass of rosiduo howovor is not tho input paramotor noodod for Srogory's wind orosion oquation. A rosiduo covor i.o. docimal fraction of covor, input is nocossary. Slonokor and Moldonhauor (1977) and Hischmoior and Smith (1978) rolatod tho fraction of tho surfaco covorod to tho mass of dry matorial on tho surfaco. Srogory (1982) dorivod an oquation to diroctly prodict soil covor from tho mass of dry matorial on tho surfaco. Tho oquation was vorifiod using roportod data of Srogory (1982) as woll as Slonokor and Moldonhauor (1977) and Hischmoior and Smith (1978). Tho oqution has tho following form: Fan—(M (19) Hhoro: FcIfraction of soil covorod, docimal AmIcrop dopondant constant, ha/Kg M IMass of rosiduo por unit aroa, Kg/ha Rocommondod valuos for Am aro listod in Tablo 6. 22 Tablo 6 Rocommondod valuos for Am constant in Srogory's rosiduo mass to covor convorsion oquation (Brogory, 1982). Rosiduo Am(ha/Kg) Soyboan 0.0004-0.0007 whoat 0.0005 corn 0.0004 sunflowor 0.0002 soyboan stoms 0.0002 cotton stoms 0.0001 3. Rosiduo lossos duo to tillago Fonstor at al. (1965) obsorvod rosiduo roduction from individual passos of implomonts ovor stubblo mulch systoms. Fonstor ot al. (1965) moasurod roductions of up to 45% of rosiduo mass with primary tillago and gains of up to 4X rosiduo mass with socondary tillago. Rosoarchors sinco thon o.g. Andorson (1968), Sloanokor and Moldonhauor (1977) and Colvin, Laflon, and Erbach (1980), havo roportod rosiduo roductions from tillago, but nono havo triad to modol rosiduo roduction causod by tillago. Srogory ot al. (1982) dorivod an oquation to prodict rosiduo roduction by tillago. This oquation is as follows: 23 -(1-F5+F8HB/HT)(MUIMT)(SD)Kd t-(1- -) o (20) “n Hhoro: t Iratio of tho now fraction of covor to tho old fraction of covor, HB/HDIratio of tool width to width disturbod, HB/HTIratio 04 tool width to width tillod, MU/MTIratio of mass of soil movod abovo untillod top of soil to total (HT) movod by tho tool, d Ioffoctivo or avorago dopth of tillago, cm F8 Ifraction of stablo rosiduo covor, SD Idry bulk donsity, g cm""3 K Iclod sizo coofficiont,(aroa/mass) Koohostani and Srogory (1985) furthor dovolopod tho input paramotors for tho abovo oquation. Rosiduo roduction by tillago is quantifiod in tablo 7 for uso in Michigan for corn (Ouisonborry, 1981). 24 Tablo 7 Typical porcontagos of rosiduo loft for various tillago soquoncos for corn in Michigan (Duisonborry, 1981). Systom Rosiduo romaining moldboard plow-offsot disk-plantor offsot disk-plantor chisol plow (twistod shovol)-plantor chisol plow (straight shovol)-plantor till plantor with cultivator no till plantor with cultivator 0% 100% III. Modol Dovolopmont Tho modol is dosignod to follow as roasonably as possiblo tho dovolopmont of tho conditions procooding a wind orosion ovont. Tho modol thon ovaluatos tho avorago mass loss during tho ovont. Tho assumptions usod for tho modol aro as follows: 1) Evont basis analysis ; 2) Dry soil conditions; 3) Short duration wind ovonts; 4) Roctangular fiolds;5) Homogonoous soil touturo for tho fiold; and 6) Ho soil particlo input from outsido tho fiold boundry. Tho input and output variablos aro outlinod in figuros 1 and 2 (pagos 31-32). Basic modol flow is illustratod in figuro 3 (pago 33). Thoso woro tho basic aroas rocognizod as boing important in a wind orosion modol. Tho actual flow of tho modol is illustratod in figuros 4 and 5 (pp.34-35). Tho main foaturos accountod for in tho modol aro as follows: 1) Rosiduo broakdown 2) Fiold oriontation and layout 3) Crop dovolopmont (corn) 4) Avorago mass movomont por unit aroa dotormination 5) Avorago mass loss por unit aroa dotormination 1. Rosiduo broakdown Rosiduo covor is a major variablo of intorost in ’Srogory's Hind Erosion Equation and thoroforo must bo known 25 26 within a roasonablo toloronco. In Michigan, on tho plots usod for data colloction, tho usual tillago soquonco is fall plow (chisol or moldboard), spring socondary tillago (disking or combination implomont) and planting. Initial rosiduo input into tho modol is aftor fall tillago and is inputtod as a docimal fraction of covor. Rosiduo docay is thon modolod throughout tho fall up until tho dosirod wind ovont calculation. Equation (16) soction D, is usod to ovaluato rosiduo docay in fivo day incromonts (Srogory ot.al., 1985). Avorago monthly tomporaturos and rain amounts aro usod through tho docay poriod. Tho rosiduo docay oquation roquiros .an input of mass por unit aroa. Thoroforo oquation (19) is usod to mako this convorsion. This convorsion is roquirod intially, as woll as for tho rosiduo covor input paramotor in Srogory's Hind Erosion Equation (10). If an ovont occurs aftor planting, rosiduo loss duo to tillago is dotorminod by a factor takon from tablo 7. 2. Fiold oriontation and layout Fiold oriontation is important to dotormino tho unprotoctod fiold longth in tho diroction of tho wind. Tho modol is sot up to handlo a roctangular fiold that has all sidos oithor parallol or porpondicular to tho compass diroctions, i.o., ‘north, south, oast and wost. Hindbroak hoights aro inputtod for oach sido of tho fiold. To 27 calculato tho offoctivo longth of fiold in tho diroction of tho wind, Colo, Lylo, and Hagan (1983) proposod an axprossion usod in tho modal. Tho oquation is as follows: I w w/cos B/fl/sin Bl Hhoro: L; I offoctivo fiold longth, m l I longth of fiold, m width of fiold, m B I anglo botwoon wind diroction and oast-wost axis of tho fiold, dogroos Tho offoctivo fiold longth (L‘) is substitutod for tho fiold longth (Lg) input paramotor for oquation (12). Tho offoctivo fiold longth is also usod to convort mass flux par ‘unit width to avorago mass rato par unit aroa. 3. Crop dovolopmont Corn is tho only crop for which tho modal is dosignod at this stago of dovolopmont. For corn, two crop paramotors aro noccosary if an ovont occurs aftor plant omorgonco. Tho two paramotors aro crop canopy covor and crop canopy hoight. Both of thoso paramotors oxhibit a linaar rolationship with sum of dogroo days (8°C baso for dogroo ,day). To prodict crop canopy covor, tho Coros corn growth 2S modal (Jonas, 1985) was usod to prodict loaf aroa indox dovolopmont. Tho loaf aroa indox than was convortod to crop canopy covor using sorghum data from Richio and Burnott (1971). Tho difforoncos botwoon tho loaf aroa indox vorsos tho canopy covor rolationship botwoon corn and sorghum woro considorod nogligablo for this typo of ostimato (Richio, 1985)’. Crop canopy hoight is ostimatod with corn growth data takon from southorn Michigan during tho samo poriod and rolatod to tho sum of dogroo days. 4. Avorago mass movomont par unit aroa por ovont calculation Srogory's Hind Erosion oquation prodicts a mass flux par unit width par socond (pg. 13, oq. 10). To obtain tho mass movomont par socond ovor tho fiold, tho following oquation can ba usod. L4 f MiI g Ms(L) H dL (22) J O whoro: Mi - mass movomont por socond ovor tho fiold, Kg s-1 M. - mass flux par unit width, Kg ”-1.-1 L‘ - longth of fiold in tho diroction of tho wind, m o Porsonal Communication 29 dL - difforontial longth along tho fiold, m H - fiold width, m Tho modal approximatas oquation (22) by avaluating tho mass flux par unit width at incromonts of 3 motors along tho windward sido of tha fiold until tha mass flux raachos its' maximum. Tho mass fluxas aro than avaragad ovor tho rogion and woightod with tho romaining maximum flux across tho rast of tho fiold. Tho rosulting woightod mass flux por unit aroa width M.“ is than substitutod back into oquation (22). Evaluating oquation 22 and dividing by tho aroa, tho mass flux par unit araa is found. To find tho mass movomont par unit aroa par ovont, intogration ovor tha duration of tho avant can ba porformod. Equation (23) is tha rosulting oquation. f (H Hsu)dL]/ Lf H] dt (23) 3 I O Hum-s M' n n 0 \mu-n I" whoro: M - total mass movomont par unit aroa, Kg m-2 M - woightod mass flux ovor tho fiold, Kg s""m"'1 dt - difforontial timo incromont, s 3O 5. Avorago soil loss par unit aroa Total soil movomont doos not by itsalf datarmina soil loss from a fiold. A soil particlo is not considard lost until is passos across tha fiold boundry. Thoroforo, givon a sat of paramotors that will produca wind orosion and assumimg tho fiold is sufficiantly largo so that tho maximum mass flux is raachod, tho amount of orosion is a function of tha fiold looward boundary oxposura for short duration wind ovonts. Tha oquation usod to calculato avorago soil loss por unit araa is as follows: MaI n.4d/L, (24) M - avorago soil loss par unit aroa, Kg a"2 n - mass flux at distanco Lf, Kg s“.‘1 L; - longth of fiold in tha diroction of tho wind, m d - duration of tho ovont, s :51 Input and Output Paramatars 1 covor rain data taco data Rosiduo Ell ratio vvvv (soo figuro 2) wind diroction fiold siz: windbroak: Oriontation of Fiold V V V v aoaoooaauaouo oriontation cultivar info. uaathar fiold cond. > Coros data roughnoss Hass Hovad . Snows )' Erosion --) rosiduo loss Tillaga > (flqlfla) i i x : ' Equation ‘ 3 i tutor: Soil Paraaotars - credibility uind spood duration uind diroction Evont Paraaotars - VVVVV c Constant: l . Granary's Equation - vv Figura 1 2312 N atdmau OOooooooaoooo “ A an” .hzflah-m-.“ _ “M cling. .... _._.._ A cw>oo o5 wow-“A l . widow-wean A coon. z\u .N.L.>ou u=.>. “ eomwco>oou .uxcwwao ~woao Codaoo - “one. “A _ i.o. ..w.o_wc l l. wooauuawwmmota Z oaoaaooooooao . . “INI‘. MEIIIBUEM A a...-~c=. °¢\= “00ooooooo0000“ _ A . an... o. coooomA “ .w=\ux. co>oo m oo_.cw>oou . .u.c.>oo oaowuom 2325 “55:55 =o55._=o~wu ” aLdmuu Coo-oo_o>oa >ooewu " “5555 wcoaowwewo. uoo>u august-wow oocu sou; __wu zomcmm nonmemm coooom canoOLm c¢ c030L£h nLouoeome mount n ooawocm ”2..--“ uooom mA------ >wooa osoowoa -------- eoaowuewaca 3.: £322... .mom 253:: o=u_w.¢ 34 Erosion Hod-ling Flow Chart Data‘1nput (s9315953$5°fl) >5 g Day Clock 2 8 3 :.ICIOIOOCCCCICO: 3 .'Stop . --...!!'.....> .'Banopi. .1" '. Clock .' ' 5 i :EMRHUI g :.OIIOOIOIOOIOO: if 55 Conversion g Manda... I Emnfiul 5 . ......... a: R.“ d“. 8 S Abrasion Ajustlont finwrs «58%:Ezat» : O 0 g C . n O = ..---->...§:::a.-. iYfi Ravi: 59r355 I .'°uataat°°":' -- ---------t __________!g__ .Ruidui. .'Canop°y. --.!!!..-----) gm” '.Count|r.' '. Hoight.’ 5 Equation fi.’ fi.‘ 3 . Yes 5 lo 3‘ i 5 5 : : .'In{orlation.' ------- Figur. 4 2525 Data Input and Calculation E i : Menu 5 i s §OOOOIOIOOOOOOIIOIOO§ .""?B§§i§“'?°' Fit Vllocity g bistribution : Intializl Tina Convonion Covgg'ldHSss .00. iIaCCCDO:. .' Er aéiiiiti° Hind Evunt Date Sat .OICRaaOCOOO: .' Rain Data .' Fiold Orientation Hind Direction Figurl 5 IV. Modol Sonsitivity A oodol sonsitivity analysis was porforood for tho oajor paraootors which dotornino avorago soil loss ratos por unit aroa. Figuros 6 - 17 show tho offoct of individual paraootors on avorago soil loss por unit aroa for a givon sot of paraootors. Tablo 8 givos a dotailod list of tho data sot usod to dovolop tho sonsitivity rolationships. Tooporaturo and rainfall data that woro usod aro tho samo as in Appondix A. Sono major foaturos that can bo cloarly soon in thoso plots aro as follows: 1) Figuros 6 and 16 show a flat portion on thoir curvos. Tho flat portion rosults froo tho fact that a baro soil's covor is oqual to tho porcont of non-orodiblo particlos in tho soil. A non-orodiblo particlo is dofinod as any particlo that will not pass through a 0.84 on scroon. Thoroforo, it is unlikoly that a soil is ovor cooplotoly void of any covor. Tho soil's non-orodiblo fraction doos not allow tho curvos to approch thoir limits and a flat portion on tho curvo rosults. 2) Figuro 14 appoars to havo a chango of slopo in tho oid rogion of tho curvo. Tho curvo shown is actually cooposod of two soparato curvos. Tho right sido of tho curvo is a function of tho non-orodiblo fraction. Tho loft sido of tho curvo is a function of rosiduo covor sinco tho 'oodol doos not considor tho non-orodiblo fraction as covor 36 37 unloss it is groator than rosiduo covor. 3) Figuro B nay appoar intially to bo opposito of that oxpoctod. Howovor, soil loss is a function of tho looward fiold oxposuro (pg. 30, soction 5) and, thoroforo, tho rolationship shown is corroct. A largo fiold will havo ooro soil oovonont than a snail fiold, but tho loss of soil nay bo groator on tho soallor fiold. Soil loss has not takon placo until tho soil actually passos across tho fiold's odgo which, for short duration wind ovonts is a function of tho looward fiold oxposuro. A) Figuro 17 indicatos that as fiold roughnoss incroasos, so doos avorago oass loss por hoctaro. Two rolationships aro oxpoctod froo publishod litoraturo on fiold roughnoss vorsos soil novooont. Tho first occurs whon tho fiold surfaco roughnoss doviatos froo a soooth surfaco. Tho incroaso in soil roughnoss imparts groator drag on tho wind, thus roducing tho wind volocity and in turn roducing soil oovooont. Tho socond rolationship, was obsorvod by Chopil and Milno (1941a). Boil novooont will incroaso if soil roughnoss bocooos to groat. Erosion will occur off tho crosts of tho ridgos. Thoroforo, tho curvo should consist of a nogativo slopo until tho optiouo ridgo hoight is roachod and thon a positivo slopo should occur thoraftor. Tho curvo in figuro 17 lacks tho intial nogativo slopo and prosonts an unrosolvod probloo within tho oodol. 38 Tablo 8 Intializod Paraootors For Sonsitivity Tost January Tooporaturo (c) Fobruary Tonporaturo (c) March Tooporaturo (c) April Tonporaturo (c) flay Tonporaturo (c) Juno Tooporaturo (c) July Tooporaturo (c) August Tooporaturo (c) Soptoobor Tonporaturo (c) Dctobor Tonporaturo (c) Novoobor Tooporaturo (c) Doconbor Tooporaturo (c) Fall rosiduo Covor (docioal) Rosiduo lncrooont (days) u/rO Ratio CIN Ratio Intial Tillago Dato Evont Dato Evont Hour North Fiold Longth (o) East Fiold Longth (o) Hind Diroction (dog) Rosiduo Hoight (co) Rosiduo Constant Hindbroak North (o) Hindbroak East (o) Hindbroak South (o) Hindbroak Host (o) Evont Duration (oin) Critical Volocity (o/s) Hind Volocity (o/s) Volocity Hoight (o) Planting Dato Eoorgonco Dato Non-orodiblo Fraction(%) Crusting Factor Factor Spring Tillago (rosiduo) Spring Tillago Dato Fiold Roughnoss (cn) Days to Borninato (days) -8.4 -5.5 2.7 11.4 16.1 11.0 17.0 19.0 16.0 12.0 8.0 -1.5 0.38 0.0018 111584 051685 13.0 17.0 15.2 051685 0.17 0.30 051085 10 39 c860 movwmmm mg 3 33 man: mmmuw>¢ Hoxfififimomm m whomfi QmEMomE mm>ou mDBmmm an and a 3.0 2% _ p omd 3.0 00.0 ooSouE mom oBBouolooz (Bu/5w) SSO'I ssvw asvazmv 40 500 “0 05mm 26 7.55 3 mmoq mmmz mmmcmzq. Mo. Morpgmnmm N. 3de A988 05mm 26 code 8.8 code oofim 09mm oodm 00:3 _ . h . _ . _ . _ + L L . on m land :33 land land (Eu/3w) SSO'I SSVIN HOVHSIAV 41 #830me 35.. 3 mmoq mmmE mmmumtq no Strfiwmomw m 8de . 303 ZoEomEQ 9755 2mm . own _ 0mm . 3mm . 0mm i owm E «.35 n cos “mom 8 mam“. u 03» 5.82 bamfiomm Boa Qamnfloom SN com 0mg 02 r . c . _ . on; Ink.“ loo.m Inmfi [and unfim load unmd (EH/3N) SSVW SDVHEIAV SSO’I . Emmi 2.23m 3 mmS mmmz $983. mo mugflwmnmw m Emma mas emUHmm mDmem m m v. N o . _ . b . _ . _ . OO.H 42 noo.m wood -8... 160.0 100.0 loos. load load (EH/3N) SSO'I ssvw EIDVHEIAV 43 Emma flange. 3 33 mmmz mmmumfiq «o SFEmomm 3 muomfi 9: anm mémmng w w v m L _ . _ . Ll . _ . (EH/3N) SSO'I ssvw asvaazw 44 omfl 00H oosgsa admpm 3 $3 mam: mmmumfiw mo bufifiomm 3 whom?» 2E 222mg SEE om cm 3» om o o C! o O O O O Q IQ Q to. N H H o o “3. m rVVI'UIjU—l'jUU'Vfifi'UU'T"U'I l O C! m (EH/5w) SS 0'] SSVW HDVHEIAV 45 0.0 _ momenta 53035 3 mmoq mmmz 09...."mb Ho 3353mm NH momma bf 0.x. 3.5 mozmmméa $83.3 0.0 Town . 0w. . 0M0 . Wm p cm 0.0 B an“ on 3623 Basic uo> 8 Nina an .3823 u > ”amok o> I > u 35.8.30 .382: 00.0 .004 :00.N ...00.m 1006 100.0 W000 1008 100.0 H.8... (PH/3N) SSVN HDVHEAV SSO'I moommcofim 35m 980 3 mmoq mmmz mmmumg. Ho 3333mm 2 2de Amxmnv mvzmommzm mosz 920 0 IQ 1". H 46 0 If) 0 m 0 0 l‘: to o; 0 on N N N N no ‘3! co 1",FV'UUIFIUIIUII'UIl'rUUIUUUI I U I O ‘0. ('3 (PH/aw) SSO’I SSVW HDVHHAV 47 ooSomE mfiwwoumlooz 3 mmog mmmz mmmumg. Ho SFSwmomm 3 2de Aozmummmv 225$: EmaommuzOz am .3 0H 0 m _ . _ . _ . _ _ _ . mung—«5 I ooflomuh «Sm—vapolooz I III moouozfl magnum III v-I 'II'U'I'I'I'VUT'I'IIIVTT'IU'IT'T'I' 0 a? N 0 0 co 0 '1 co 0 N. m 0 m. m 0 ‘3 co 0 ‘9. co 0 ‘9. or) (EH/3w) SSO'I ssvw asvamw 48 .8300 maflmao v5. 3 33 mam: mmmum>¢ no 3323mm 2 Pamwm 3225 mos; uzamamo 004 00.0 00.0 0J0 . 0m.0 r 00.0 IW‘UVT'I'IUITYTI'UIUT'IIVUIUVUT 0 0°. (0 10 “-3 co 0 ‘5! 00 IO ‘1 co 0 ‘0. 0') IO “2 co 0 ‘0. co (EH/fin) SSO’I SSVW HDVHEIAV 49 mama“. 3 «:0 ”8526mm 266mm 3 33 mam: ammumpd. Ho .3336an m: 8de 3238 5.3: 2. E5 moss. 2288mm mpemmm co." and 00.0 ovd omd cod _ . c . c . . . _ . OO.N .000 .00.”. Icon :86 -8... 7-..: . oofiogh . " fiflvouolooz“ .. . -30 ) (EH/3N HDVHHAV SSVN SSO’I 50 . mmmfimzom 30E 3 $3 mam: mwmumfi. mo mufigmomm .2 whomfi A83 mmmzmwbom 040E 93.0.“:.owo..o.wfo._mfio.w_. ohm . one . ow. . ow . od 00.“ (EH/3w) SSO’I SSVN HSVHEIAV V. Data Colloction Data colloction was conductod for this study fron Docoobor, 1984 to July 1985 and was fundod by tho Soil Consorvation Sorvico. Tho study was intiatod to cooparo various tillago practicos and tall whoatgrass strips for offoctivo control of wind orosion. Data was colloctod in Bay County, Hichigan whoro a divorso varioty of agricultural crops aro producod. "any of thoso crops produco littlo rosiduo for wind orosion control. Thoso crops includo dry boans, sugar boots, and vogatablo crops as woll as tho naJor stato crops, corn, soyboans, and whoat. Tho county Soil Consorvationist diroctod tho suporvision of a tochnician to oaintain tho saoplors and woathor station. Four sitos woro choson for thoir tillago practico and/or tho prosonco of tall whoatgrass strips, as woll as thoir likoly sucoptibility to wind orosion. Tho four sitos aro as follows: 1. Satkowiak plot - crop (sugar boots) Holdboard plowod, loaoy sand 2. Kipfoillor plot - crop (tooatoos) Holdboard plowod, tall whoatgrass strips, sand 3. Block plot - crop (half corn, half soyboans) Chisol plowod, sand 4. Hottors plot - crop (sugar boots) 51 52 Chisol plowod, tall whoatgrass strips, sandy loao (ridgos - loaoy sand) Hodifiod Bagnold sanplors (Morva and Potorson, 1983) woro usod for on sito soil colloction. Thirtoon saoplors woro installod on tho four sitos. Two ovonts woro rocordod during tho saopling poriod. Duo to a woathor station oalfunction tho ono ovont was not usod for nodol vorification. Tho woathor station was not oroctod on any of tho saoplor sitos (approximatoly 3 oilos froo tho plots) sinco tho woathor station was not portablo onough to allow oovooont during spring tillago. AC powor is also roquirod during froozing woathor to boat tho instruoont box and this was not availablo on any of tho saoplo sitos. Tho woathor station is instruoontod with two anoooootors, a wind diroction indicator, a tomporaturo probo, a huoidity sonsor and a pyrononotor. Data is loggod on a Caopboll Sciontific CR-21 data loggor and storod on cassotto tapos. Tho tapo is road through an intorprotor box and storod on floppy disks. Two anooonotors aro roquirod sinco throshold volocitios aro dofinod at low hoights (30 co or loss). Tho two volocitios at difforont hoights allow a lognoroal distribution to bo fittod and oxtrapolatod down to tho dofinod throshold volocity hoight. Rofor to appondix A for furthor inforoation rogarding tho woathor station. Appondix A also contains tho data for tho sanplor sitos and data usod to "vorify tho modol. VI. Exporioontal Vorification Rosults Tho oodol was adjustod to ostioato tho oass flux at a point. Tho saoplor sanplos a 6.4 on width of fiold. This, whon conparod to tho width of tho fiold can bo considorod a point ostioato. Thoroforo, a point ostioato is usod to sinulato tho oodifiod Bagnold saoplor as it is usod in tho fiold. Tho data in Tablo 9 was usod along with all tho appropriato input data nocossary for tho oodol to sioulato tho wind ovont (all non-corn plots woro baro oucopt ono, i.o. sugar boots, tho crop covor was considord to bo that of corn). Tablo 10 lists tho saoplor colloctod oass, corroctod oass, original oodol ostioatos, and tho roducod K oodol ostimatos. Tablo 9 lists tho input paraootors that woro changod from tablo 8 to run tho oodol for oach saoplor. Tho oodol was oodifiod to run through tho ovont in 5 oinuto incrooonts bocauso tho data was takon at that tioo incrooont. A oodification (variablo offoctivo fiold longth, constant wind diroction) is also nocossary to sioultato tho fiold as soon by tho oodifiod Bagnold saoplor. Tho roducod K oodol ostioatos woro conductod bocauso tho soil orodibility valuos usod woro basod upon an annual basis, whilo this nodol is basod on an ovont. Thoroforo, a oodol run for all tho colloctors was nado with tho K valuo roducod by 90 porcont. Figuro 18 givos a graphical plot of ( tho colloctod mass to tho ostimatod mass. Figuro 19 givos a 53 54 graphical plot of tho colloctod oass to tho roducod oass froo tho roduction of tho K valuos. A particlo sizo analysis was porformod on tho plot soils and colloctod saoplor nassos. A sanplor officioncy was ostioatod froo this data (appondix A). Tho officioncy was dotoroinod to bo approximatoly 80 porcont. Thoroforo, Figuros 20 and 21 show tho rosults of both oodol runs with tho corroctod saoplor oassos. Tho data prosontod aro only for tho May 31, 1985 wind orosion ovont. 55 Inco.oc noon Local 09 also. on: unawac cLou .«uca uoaa.:a.cae stewotocu Io: ouou acquaint Ina .ouoon Lanai c. noucann on: voud xa.30xuam I .m 0.50» c. on lean on» It. no.0.uooo uoc oaana> .Ha I one: 0.n 0.» 0.5 0.5 0.5 .00. 00005030: 0.0.0 .0n 0.. nn.0 0.. 0.. 0.. ..000. ....5 .00m Louuau .5n 5.0 5.0 5.0 5.0 5.0 00.000 00.00000 .0n 0.» 0.» 0.0 ..m 0.. .x.co.uuatu 0.0.0000Icoz .mn IIII nonono IIII no .00 IIII 0000 0ucumt0em .0n 0.n. 0.n. 0.n. 0.0. 0.n. .mxe. >a.uo.0> .0u...00 .0n n n n n n .c.e. 00.00000 000>m .05 0 0 0 0 0 .0. .003 3000000.: .05 0 0 0.5 0 0 .0. c0000 3000000.: .55 0 0 0 0.0 5.5. .0. .00m 3000000.: .05 0 0 0 0 5.0. .0. c0002 0000000.: .nm 0 0.n 0 0 0 .00. 000.0: 000.00: .nm 00m 00m n5n 500 000 .0. 000004 0.0.0 uuam ..u n05 n05 .5n 5mm n5n .0. 000004 0.0.0 0.002 .05 no.nno nm.nn0 um.nn0 nm.nno nm.nno 0000 uc0>m .m. 05.0 mn.0 0 0 5..0 L0>ou 000.000 ..00 .n. cuon cLou 300.0 L0...000.x 30.30.000 000.03 ocom u...u Lou oLouoeoLIm now..a.acu o 0.005 56 0.0.5 «.00.. n.000 «.000 0. 0.0.0 0.0500 0.00. 5.00 5. 0.000 0.0000 «.500 0.0.0 .. 0.00. 5.0000 0.00 0.00 0. 0.0.0 0.0000 0.00 0.50 0 «.000 0.0000 0.000 5.000 0 0.50. 0.0005 ..0. 0.0. 5 0.000. «.0000 ..000u ..000u 0 0.00.. 0.0500 ...uo. 0.000 0 0.0.5 0.05.. 0..0m 0.50. 0 0.0050 0.0000 0.00.. 0.000 0 0.000 5.5.0. 0.000 «.050 m 0.000 5.000. 0.000. 0.000. . .0. .0. .0. .0. data: x nouzuom donut ulcnoito Ina: noun-LL00 unauounou Inc: #LDHUInHOU .uco>l concato no.3 000. ..n >It. Cyan ouituuom nono: no. Lovuonnou On Innflh 57 mom .0002 0.30.00 ..00 0002 0308500 00000.. 0002 00.00200 0. 0.503... .0. meE 00000200 00.00 00.05. 00.00 00.00 00.0.. 00.00 00.00 00.0. 00.... 0.. I numwfih Eco 025.000 I 0.0.5.500 9.00 I 0.005 ..0.... 0.. I 505.3009 XDOO .VN..O "NOHHO Ukflvaflum fihmdflmm 0002 00.50002 0 00.0 H0 02 030.50% 0 (3) sseux pammnsa .000... 0.3080 0833. ..0.. 0002 00005300 00000., 0002 00000200 02 0.30.0 00 0008 “00000000 000“~ 0000 0000 000.. 0 .y n L— b b n .— h o 00.8 on I 000.303 F30 0085000 I 200300200 0.80 I 02020 00.8 on I 005.525— X000 mmdflhohg 030n0uw 00¢.0flmm 0002 00.50002 .. 00.0u0 02 0000530m 10000 ..0000 PGIBWI'ISE (3) SSQIII 59 _ 0003000000 003800 5.0.3 mam .0002 20500.0 000 0002 00005200' 00000.0 0002 00000000 00 0.503 .0. 0008 00000000 00.00 00.05 00.00 00.00 00.00 00.00 00.00 00.02 0 0000 on I 000303 0 s 0 F80 008.9000 I 0.038300 0 . 9.00 I 0.00.0 n. 10002 09.0 on I 000.830. x . s 0000 x 0000 I0000 .0000 00.0 "000mm. 00000000 . . 000 oumm 10000 0002 00.30002 0 00.0 "0 02 000080“ . 1000.... (5) ssem paqemnsa 60 000300.08 fl... .0002 3230080 00 0002 00000030m 00000., 0002 00000200 00 0.00th 0 00000.00 0000M .80 3 0005 00000000 00.00 00.00 00.00 00.0.. r 00.8 00 I 000303 0 0.80 00000000 I #030500 0 0.80 I 3005 0 o 00.8 00 I 800089 x o n 00.0"..on 0.0000000 3.0.0" 000: 00.30002 _. 00.0u0 0 mm: 0308...... I02: 3 S n . m )w -800 5% . m 2 S -800 s VII. Discussion In tho dovolopooont of an ovont basod oodol, ono oust considor tho actual nood and advantago o§ this rosoarch. Tho Hind Erosion Equation (HEE) has accouplishod tho nood €or an indicator of potontial soil loss by wind for a agriculturally cultivatod fiiold. Tho HEE has supportod tho obvious fact that soil covor must bo incroasod to docroaso soil oovooont. Tho concorn that has boon raisod with tho IIEE is, tho oquation is accurato quantitativoly only in Kansas whoro it was dovolopod. A moro far roaching probloo is that tho NEE doos not givo any inforoation as to tho occuronco of a singlo wind orosion ovont. Evont basod oodoling providos tho ability to ostioato tho soil oovooont off a particular fiold with a particular covor ovor a short duration of tioo, i.o. singlo wind ovont. Tho analysis howovor is ouch ooro cooplox and roquiros substantial cooputor uso. Tho ovontual advantago of this typo of oodoling will bo tho ability to includo probablistic woathor gonorators (wind spood, wind diroction, tooporaturo, and ooisturo). .Hoathor gonorators will givo tho ability to ostimato potontial annual soil loss which tho HEE has providod in tho past whilo boing ablo to prodict soil novooont {or a singlo orosion ovont. 61 62 Tho assuoptions that tho oodol has boon basod upon aro again listod bolou. l. Evont basod IIIodol 2. Dry soil conditions 3. Roctangular fiold 4. Short duration wind ovonts 5. Hooogonoous soil toxturo 6. No particlo ‘lux onto tho §iold Tho first ossuoption has boon discussod proviously and assuoption two will bo discussod in dopth lator. Tho assuoption oi a roctangular fiold is ioportant bocauso of tho lioitation oi tho qooootry boing considord in tho oodol. 'Tho quostion that is raisod horo is, what is tho longth of tho fiold as soon by tho wind? In tho ovont that tho wind intorsocts tho fiold at anglos parallol or porpondicular to tho windward fiold boundry thon tho offoctivo fiold longth is straight forward (i.o. tho longth or width of tho iiold). A problon oxists whon tho wind intorsocts tho #iold boundry at any anglo groator than zoro or loss than 90 dogroos. It is possiblo that any two linos aro drawn across tho fiold in tho diroction of tho wind will bo of difforing longths. Tho subsoquont probloo bocooos, what is tho offoctivo fiold width at difforing wind diroctions? In tho oodol, a olipso was fittod in tho intorior o4 tho fiold and usod as a boundry for dotoroination of offoctivo longth of fiold (Colo, Lylos, and Haqon, i983). Sinco tho aroa of tho fiold 63 is constant rogardloss of wind diroction, tho offoctivo fiold width is ‘ound by dividing tho fiold aroa by tho o§§octivo fiold longth. Thoro is no thoorotical basis for using an olipso to doiino offoctivo #iold longth but for a lack o4 a bottor approach this mothod is usod in tho nodol. Assuoption four, short duration wind ovonts, aro important bocauso if a wind ovont occurs long onough, tho windward sido o0 tho fiold can bocooo baro of orodiblo particlos. This donuding oi orodiblo particlos would chango tho charactoristic oass flux along tho longth of tho fiold. In Michigan, wind ovonts usually occur ovor timo poriods of loss than 4 hours and of wind volocitios slightly groator than tho particlo throshold volocity. Thoro‘oro, short duration wind ovonts aro considorod a roasonablo assumption for wind ovont modoling in tho huoid statos such as Michigan. Assuoption iivo will bo discussod in dopth lator in tho discussion soction. Assumption six, no particlo flux onto tho iiold is assuood so that tho oass flux at tho looward boundry can bo sot oqual to zoro. Undor actual fiold conditions this boundry condition is not always accoptablo. A significant probloo oxists whon two crops aro grown on tho saoo fiold or whon ionco rows do not provido onough covor to stop particlo novooont. Tho oodol howovor assuoos ono crop por fiold and that fonco rows produco onough offoctivo covor to oliminato particlo flux onto tho fiold. 64 Many iactors contributo to tho lack oi cooplotonoss oi this nodol. Tho iollowing is a partial list: i. Inability to oodol variablo toxtural changos in a fiold. 2. Unroliability oi soil orodibility valuos. 3. Probloos in dotoroing tho wind proiilo ior an ovont stoooing iroo an inability to: a) ostioato tho roughnoss paraootor (to) b) ostioato tho roughnoss hoight (d) c) ostioato tho duration oi an ovont d) dotoroino tho oiioct oi hoat ilux on tho volocity proiilo 4. Uncortainty oi tho throshold volocity ior a givon soil toxturo and typo. 5. Lack oi a oodol to account ior ooisturo and its oiioct on soil oovonont at tho soil suriaco. 6. Lack oi ability to quantiiy tho oiioct oi suriaco crusting on soil oovooont. Anothor uncortainty is tho data itsoli. Tho iollowing is a list oi sooo oi tho aroas oi concorn whon considoring saopling data. 1. Saoplor oiiicioncy ior saltation is not 100% 2. Low oiiicioncy in saopling croop 3. No susponsion saopling Soil orodibility valuos woro takon iron Chopil (1957) . and Skidmoro and floodruii (1968). Soil orodibility is doiinod as tho potontial soil loss in tons por acro por 65 annuo iroo a wido, unsholtorod, isolatod iiold with a baro, soooth, noncrustod suriaco (Hoodruii and Siddoway, i965). Tho valuos woro originally dotoroinod on an annual basis and, thoroioro, aro not applicablo to ovont basod oodoling in thoir prosont ioro. High soil orodibility valuos soon to bo tho caso whon considoring tho original oodol rosults in tablo 10 (pogo 56). Tho Kipinillor plot, saoplors 5 and 6, havo vory siniliar rosults. Tho Kipioillor plot can bo considorod toxturaly hooogonoous. Howovor, saoplor 6 is down wind oi saoplor 5 and has approxioatoly twico tho unprotoctod iiold longth. Both saoplors would bo oupoctod to bo collocting at a rato ouch loss than tho oaxiouo ilux rato ior tho iiold. This is voriiiod by tho saoplo rosults prosontod in tablo 10. Baoplor 6 colloctod approximatoly 3 tioos ooro oass than saoplor 5. In tablo 10, tho iourth coluon givos tho rosults ior tho oodol whon tho soil orodibility valuos woro docroasod by a iactor oi ton. Baoplor 5 is approxioatoly ono third loss. This is ooro in lino with what is oxpoctod whon tho avalanching aiioct is considord. Ono oi tho bost ioaturos oi Grogory's oquation is tho ability to ostioato tho incroaso oi soil oovooont as ono oovos downwind in an oroding iiold. Much oi tho variability in tho iiold data takon can bo oxplainod by tho non-hooogonoous toxtural naturo oi tho saoplod plots. This prosonts a particularly diiiicult probloo ior modoling wind orosion in such statos as Michigan ~ whoro two or moro toxtural groups aro quito coonon in 66 agricultural iiolds. Tho bost oxaoplo oi this can bo soon in tho Nottor plot. Sanplors 7-12 in tablo 10 (pago 56) aro on tho Hottor plot. Saoplors 7, 9, 10, and 12 aro on a sandy loao whilo B and 11 aro on loamy sand. Froo tablo 10, saaplos colloctod in 8 and 11 aro iron 5 to 50 tioos largor than tho othor sanplors. whilo this is not all duo to soil toxtural diiioroncos, a largo aoount oi tho diiioronco can bo attributod to toxtural non-hooogonoity. Corroctly modoling tho volocity proiilo appoars to bo tho oost ioportant variablo in a wind orosion oodol. Soil oovooont is a iunction oi tho cubo oi tho wind volocity. Tho volocity dotoroinou anothor ioportant paramotor noccosary in ovont modoling soil novooont, i.o. tho duration oi tho orosion ovont. Sovoral probloos oxist in tho oodoling oi wind volocity proiilos. In tho past as woll as prosontly, volocity proiilos aro oodolod assuoing noutral atnosphoric conditons ior wind orosion work (Hogan, 1986; Brogory, 1986)’. Tho assuoption is that tho turbulonco is woll onough ostablishod at winds high onough to causo wind orosion to nogato tho iniluonco causod by hoat ilux iron tho soil suriaco. Nogating tho oiioct oi hoat ilux was quostionod in this study and an altornativo nothod ior dotoroining tho wind volocity proiilo, Swinbank (1964), was usod to cooparo with tho noutral volocity proiilo oquation. Roiorring to Tablo 11 (pago 67), it doos appoar that at tho 0 Porsonal cooounication Tablo 11 67 Cooparison oi Noutral vorsos Hoot ilux Fittod Volocity Distributions Hoight (o) Tioo Data typo 0.15 2.3 6.7 15.2 1635 NS ... 7.58 13.58 ... ' HBH ... 7.56 13.47 17.87 ' HBN ... 6.26 13.58 18.67 1720 HS ... 8.30 16.72 ... “ "8H ... 8.30 16.71 23.14 " USN ... 7.70 16.73 22.98 1920 88 ... 7.06 12.64 ... " "SH ... 7.05 12.61 16.82 “ USN ... 5.82 12.65 17.38 88 - woathor station data MSH - woathor station data iit accounting ior hoat ilux USN - woathor station data iit using noutral conditions 68 lowor olovation (2.6a) hoat ilux doos oiioct tho proiilo. For that roason, hoat ilux oiiocts woro usod to dotoroino tho wind volocity proiilo ior input into tho oodol. Tho lowor olovation wind volocity is critical sinco throshold volocitios aro doiinod at hoights oi 30 cm or loss. Anothor diiiiculty arisos in ostioating tho roughnoss paraootor (2°) and roughnoss hoight (d). Thoso valuos havo boon dotorminod oopirically ior woll ostablishod crop covors (pago 9) howovor, thoy aro not woll doiinod ior baro soil suriacos or nowly ostablishod vogotativo covors. Tho ioportanco oi thoso paraootors can bo shown by tho chango in throshold volocitios (Figuro 22). Dotoroining tho volocity proiilo diroctly dotoroinos tho duration oi tho ovont. Tho ovont duration is tho amount oi tioo tho wind oxcoods tho throshold volocity. Thoroioro, tho volocity distribtion providos an ostimato oi tho boginning and tho ond oi tho ovont. Roiorring Figuro 23, tho oxtont oi this probloo boconos noro ovidont. Figuro 23 shows that tho wind volocity is not stoady stato and that tho wind oxhibits spikos oi highor intonsitios. Figuro 24 indicatos iurthor tho unstoady wind volocity conditions by tracing tho wind diroction during a wind ovont. In this study it was dotorninod that orosion occurs on tho uppor portion oi thoso spikos. Tho problom oi dotoroining tho ovont duration thon bocooos quito apparont. Tho ostimatod duration oi tho storm is much loss, ii small incromont timo ' noasurononts oi tho wind volocity aro usod, vorsos, using a 69 3.8.... 32.03.... 00000.. 00.00.0000 000000000 00 000m... A... 800 00.00.0000 00000000m ... . H 08... 000... 08... 0.0.0 0...... 08.0 8.. o a _ b _ _ _ _ NH mum S . H m -... a 0 u A3 30.0... 00000003. . IA... 0\... ...0 u 2 0.... ...... E08”... 300000.... -0. W )0 .. W1 A. -0. GV . 1. TV -00 .9 8 . w . :00 H a .. ..l. D H Im 380 05.5 00\S\0 05.80 .3820» 05.: 00 080.. Ammaomv SEE hm . wm am 3 2 N“ m 70 ,_ ,_ , (Sm) SHJ.L¢IW Z. 9 .LV AlIOO'IflA (INIM N“ 3320., 333.5... 0. ON 71 pm 0030 00E 0300\0 05.90 020088 05.0 00 0.8000 @505 020.00 dm Hm ma a. Na _ _ p _ b 7({KJJ!I§\1}J-ovm -00 -00 N000 N00. loom Iowa Iowa loom ($333930) MOI-1.33810 CINIM 72 largor ostioatod tioo incrooont avorago (Figuro 27 data was takon at 10 socond intorvals and avoragod ovor 5 oinuto incromonts for plotting). Uind data roportod across tho Unitod Btatos doos not includo wind volocity at two difforont hoights. Thoroforo, for gonoral uso of tho oodol a gonoralizod volocity profilo oust bo dovolopod for uso in ovont basod oodoling. Tho gonoralizod volocity profilo would havo to utilzo tho standard 6.7a (22 ft) hoight wind volocity, ostioatod paramotors 2° and d, and sooo how account for tho high intonsity spikos roforrod to abovo. Tho duration thon could also bo roasonably ostioatod for a givon‘hind storo. Throshold volocitios woro considord to bo constant for tho soils considord in this study. Thoro is no dofinitivo data availablo for dotoroining tho throshold volocity for a givon soil toxturo and typo. Valuos that aro availblo aro ovor wido rangos and tako only soil toxturo into account. Dthor factors such as organic oattor and aoisturo contont aro not considorod. Thoso oissing factors causo largo gaps in oodoling wind blown soil oovooont. ln oany casos, a wind ovont will bo procoodod by a rain storm in humid statos such as Michigan. Tho influonco of moisturo upon soil oovooont has boon notod by tho soil lconsorvationist and tho tochnician working on tho data gathoring proJoct. Duo to tho lack of information on soil moisturo at tho surfaco, no attoopt was mado in this oodol to account for tho ooisturo offoct on soil movomont by wind and thoroforo dry soil 73 conditions woro assuood. Somo data is availablo on soil oovooont vorsos ooisturo contont rolativo to a liaitod nuabor of soil toxturos. Howovor, littlo work has boon dono to oodol soil aoisturo at tho soil surfaco (approxioatoly 1 co dopth). Boil ooisturo profilos havo boon obsorvod in tho litoraturo but oodoling attoopts havo not boon succossful. During tho spring oonths, in huoid rogions such as Michigan, oany tioos a low prossuro front will bo followod by a high prossuro front. Tho low prossuro front will produco rain and tho largo prossuro gradiont botwoon tho fronts causo a wind ovont. with a high probability of rain storos procooding wind ovonts, crusting bocooos incroasingly ooro important as an input paraootor for oodoling wind orosion ovonts in huaid rogions. Tho biggost probloo occurs whon a soil has boon finoly tillod for sood bod proparation and thon rocoivos an intonso rainfall that soals tho ground surfaco. How to quantify a particular crust's offoct on orodibility has not boon addrossod adoquatoly. Skid-aro and Hoodruff (i968), stato that for a fully crustod soil, tho soil orodibility valuos should bo roducod to ono-sixth of tho tablo valuo rogardloss of soil toxturo. This is tho only guidolino at this point to ostioato tho offoct of a crust on soil orodibility. Obsorvations ovor tho courso of tho proJoct tond to indicato that crusting may croato tho bost covor for orosion. Tho crusting obsorvod to givo tho bost covor is not that rosulting froo a singlo rain storm on a rocontly 74 tillod fiold, but rathor from crust dovolopmont ovor tho courso of tho wintor. This typo of crusting sooas to bo oarkodly bottor in roducing orosion. Tho foroation of this crust sooos to bo rosponsiblo for tho soall aoount of orosion occuring boforo spring tillago. Tho poriod boforo spring tillago tonds to bo quito windy in Nichigan but soil oovooont tonds to bo rolativoly ainor whon cooparod to aftor tillago ovonts ovon on tho oost orodiblo and barost of fiolds. To validato tho oodol, adoquato data oust bo availablo. Tho oodol is justifiod with only ono docuoontod wind ovont. This is not uncoooon in wind orosion work sinco data is difficult and oxponsivo to obtain. Duo to tho non-hooogonoous 'soil conditions, noisy data is to bo oxpoctod. Howovor, noisy data croatos poor rogrossion fits with oodol prodiction ostioatos. Noisy data will occur until non-hooogonoous conditions can bo roasonably oodolod. Roforring to Figuros 18 and 19 (pagos 57 and 58), tho corrolation coofficiont valuo is vory low duo to tho noiso causod by non-hooogonoous soil conditions. Many ovonts aro noodod to adoquatoly validato tho wind orosion oodol until non-hooogonoous soil conditions can bo accountod for. Uncortainty of tho data also oxists in tho ovorall officioncy of tho sanplor usod to colloct data. Tho sanplor is not dosignod to colloct suspondod particlos and its officioncy for collocting croop is low . Tho total ovorall officioncy was dotorminod to bo approximatoly 80 porcont 75 (actual particlo sizo groupings can bo soon in appondix A). For thoso roasons, it is cortain that fiold oassos colloctod aro lowor than tho actual amount saving in tho fiold. Figuros 20 and 21 (pagos 59 and 60) show that accounting for tho officioncy doos improvo colloctod vorsos ostioatod oodol rosults. VIII. Conclusions A wind orosion oodol to prodict soil oovooont on an ovont basis has boon dovolopod. Many facots of wind orosion oochanics rooain untouchod for uso in huoid rogions. howovor conclusions can bo oado froo this oodol dovolopoont. 1) No wind orosion oodol will bo accurato until tho volocity profilo can bo adoquatoly aodolod. 2) Hotorogonoous soil conditions must bo includod in a wind orosion oodol to roduco data vorsos oodol standard orror. 3) Surfaco soil ooisturo was obsorvod to roduco soil novooont, but no attonpt was aado in this oodol to account for it. 4) Soil orodibility as dofinod and usod in tho Hind Erosion Equation is not adoquato for ovont basod wind orosion modoling. 5) Tho crusting affoct on soil orodibility is not dofinod woll onough for ovont basod wind orosion aodoling. 6) Tho assumption of hooogonoous soil conditions roquiro a largo data baso to vorify ovont basod oodol dovolopmont on hotorogonoous soils. 76 IX. Rocoooondations 1) Hind volocity profilo paraootors nood to bo bottor dofinod for baro and spring fiold conditions. 2) Tho offoct of hoat flux off tho soil surfaco should bo furthor dovolopod. 3) Tho addition of tho offoct of changing soil orodibility across tho fiold noods to includod in futuro ovont oodoling attoopts. 4) Modoling surfaco ooisturo and its affoct on soil oovooont is badly noodod for huoid rogion wind orosion sodoling. 5) Tho data baso is vory liaitod for propor oodol vorification. In tho futuro, ooro and bottor quality fiold data will bo roquirod. 6) Tho dovolopoont of a woathor gonorator would provido tho link to oako cooparisons with tho wind Erosion Equation. 77 APPEND I X A A. Data Usod For Hodol Vorification 1. Sito doscription Tho sitos will bo roforrod to by tho ownors naoo, thoy aro as follows: 1) Hottor 2) Block 3) 8atkowiak 4) Kipfoillor Hottor plots Tillago practico - chisol plowod Crop provious yoar - soy boans Drop prosont yoar - sugar boots Soil typo - Tappan, Ridgos - Hixoo Erosion structuros - tall whoat grass strips Rosiduo provious yoar - 17 Z Rosiduo prosont yoar - nono Acroago - 30 Samplors - singlo strip: 3 saoplors 7,8,9 - doublo strip; 3 sanplors 10.11.12 windbroak north sido - 10.7 n windbroak south sido - 0.0 windbroak oast sido - 12.2 o windbroak wost sido - 0.0 lntial tillago dato - 12/1/84 Rosiduo hoigth - 0.0 Non-orodiblo fraction - ridgosl 1.42 low groundi23.1% Block plot: Tillago practico - chisol plowod Crop provious yoar - corn(oast sido),boans(wost sido) Crop prosont yoar - saao Soil typo - Hixoo Erosion structuros - nono Rosiduo provious yoar - corn 38 X, boans 28 X Rosiduo prosont yoar - corn 22 X, boans 0 X Acroago - 80 Samplors - corn rosiduo: 2 sanplors 4,13 - boan rosiduo: 1 sanplor 3 Nindbroak north sido - 0.0 78 79 Hindbroak south sido - oast ondl 9.1 o wost ond80.0o Hindbroak oast sido - north ondi3.0o south ond|9.la windbroak wost sido - 0.0 lntial tillago dato - 11/20/84 Non-orodiblo fraction - 2.95% Satkowiak plots Tillago practico - ooldboard plowod Crop provious yoar - corn Crop prosont yoar - sugar boots Boil typo - Posyvillo Erosion structuros - nono Rosiduo provious yoar - nono Rosiduo prosont yoar - nono Acroago -65 Baoplors - 2 saoplorss 1,2 flindbroak north sido - 0.0 o windbroak south sido - 0.0 o Hindbroak oast sido - north ondl 0.0. south ondl 6 a Hindbroak wost sido - 0.0 o lntial tillago dato - 11/20/84 Rosiduo hoigth - 0.0 Non-orodiblo fraction - 8.1% Kipfnillor plots Tillago practicos - ooldboard plowod Crop provious yoar - tooatoos Crop prosont yoar - tooatoos Boil typo - Posyvillo Erosion structuros - tall whoat grass strips Rosiduo provious yoar - nono Rosiduo prosont yoar - nono Acroago - 40 acros Samplors - 2 sanplorsi 5,6 Hindbroak north sido - 0.0 a windbroak south sido - 7.6 o Hindbroak oast sido - 0.0 a Hindbroak wost sido - 0.0 n lntial tillago dato - 11/20/84 Rosiduo hoigth - 0.0 Non-orodiblo fraction - 4.64% noto - fall rosiduo noasurooont nado 12/1/84 - spring rosiduo ooasurooont mado 5/23/85 80' uon muwuumz mo Emummwo mm mmauHm .- - /// 0 W ”Hun” - Wm HH :0“ mm c / ...--.o-uo r4 9. fl . . H- m. ..--H n- . . mMMMm . 01w mfluum mmmumumosz 0.09 y by» /./// NM///// // /A-. 000.3 k NH 0:. .HH.0H.0.0.0 .000.0200 - o mumuma ca mafia: Ham ma * cofiuomm 20\5 00 n 00000 mflnmczoa caaxzmxzmx A cmuwnowz .aucoou hum sham muuuuuz 81 uon xowam mo EMHOMHQ m N mmDOHm. .10 a 0.000 11¢||-_a n.00~n|||¢v+ // //// //////MVV/m >- 0/ > . / «ft 000.3 A, fi 1 "n .L , ”a ,0 I .V w» v A. w n .u-nY:Au1 mY- . F u a .¢V¢..m. " .3 .AIII- 0.:~.||.Y+A|I 108-ll! m . n 0090: H.000 _ -w1 cuou momma . < m a cowuuwm 0.000300 cfiaxzmxsax cmowcowz .aucsoo hum Baum xuuam NH nod .v.m .mHmHmEMm I o mumuma cw mafia: Ham so}. .00 n 300m 82 030 0.338300 00 50003 ..~ 0000: ..A .a 0.3... N can A .mu0amemm I o mu0ums :0 mafia: HH0 T0093 08>: mm n 0.30m . u .0 +4.03 < M 1.0.00 Wm H z 0 z 7. .IIIIIIII. .9 .u 7.. T. m. 0090: .7 < :-. ::11 « we a coauu0m awnmc3os cwaxzmx30x cmanUfix .aucaou >00 sham xduaoxumm 83 0 0:0 m .mu0amamm u o mu0u0a cw mafia: Ham 50\a 0m.u 0Hmom ma cowuu0m mfinmczoa umoacmxcuum savanna: .auooou >00 630 “0200003. m SL8 030 00.3503. Mo 53008 0 m 000on I 8 0mm 1 w- A- 0085 +1. Yuma-"um 0000000050 H.109 in . 0. ~00 84 2. Soil movomont data Colloctor OOVO‘IIJHNI" Colloctor ODVOG¥UNfl 5/18/85 - 5/20/85 Mass colloctod Soil oovonont (dry woight,g) Hg/Ha(tlac) 224.30 1.06 (0.39) 54.85 0.27 (0.10) 6.86 0.03 (0.01) 12.59 0.08 (0.03) 192.92 0.71 (0.26) 194.20 0.87 (0.32) traco 19.83 0.11 (0.04) 17.25 0.05 (0.02) 5.15 0.11 (0.04) 9.05 0.05 (0.02) 24.30 0.11 (0.04) 19.37 0.11 (0.04) 5/31/85 Mass colloctod Soil (dry woight,g) oovooont Hg/Ha(t/ac) 1536.90 16.48 (6.05) 278.19 3.19 (1.17) 953.51 11.44 (4.20) 167.88 2.04 (0.75) 850.87 22.80 (8.37) 2465.12 33.48 (12.29) 12.60 0.52 (0.19) 566.73 4.66 (1.71) 27.53 0.26 (0.09) 45.78 1.93 (0.71) 214.29 2.91 (1.07) 90.71 0.79 (0.29) 333.24 4.09 (1.50) 3. (Porcont by sizo) Samplo (0.053 OGVOU#HNH 2.34 5.19 0.88 0.99 1.55 2.58 O 1.03 3.68 O 6.25 2.12 0.93 >0.053 48.64 48.33 37.30 30.37 9.47 9.54 O 23.59 28.66 0 32.55 22.41 39.92 noto - saoplor 47 did Samplo (0.053 0000:1301»..- 0.79 1.61 1.61 3.25 2.33 0.95 8.67- 1.18 1.14 1.77 2.25 1.96 1.66 - saoplo 010 was tosting lab >0.053 27.03 27.95 38.87 40.48 11.68 3.75 41.49 16.74 28.47 21.95 29.17 17.02 31.49 >O.147 47.64 44.34 59.38 66.33 88.43 86.39 0 73.82 65.80 0 56.54 62.90 57.79 >0.147 71.51 68.44 59.12 55.06 85.16 93.48 42.54 72.16 68. 49 59.89 64.45 80.34 66.08 Siovo sizo Dry siovo analysis of sanplos May 19th blow (on)‘ >O.589 0.53 1.29 0.88 1.49 0.23 0.71 83808580 0'00 .0- Hay 31st Blow Siovo sizo (on) >O.589 0.40 0.94 0.30 0.26 0.46 1.34 3.72 3.01 1.25 5.94 1.95 0.47 0.34 >0.84O 0.22 0.80 0.05 0.36 0.29 0.41 2.83 3.36 0.44 6.21 1.43 0.15 0.30 0.15 0.07 0.22 0.09 0.02 0.13 0 0.05 O O 0.87 0.85 0.11 not colloct a ooasurablo saoplo nisplacod at tho phosphorus >1.168 0.02 0.23 0.02 0.57 0.05 0.02 0.48 0.84 0.03 1.96 0.48 0.03 0.10 >1.168 >1.141 0.30 0.40 0.88 0.39 noto - particlos >0.84 an aro not suscoptiblo to saltation, 8011 Unfit/INF. I‘ - largost fraction consists largaly of clods (0.053 1.51 5.32 4.14 2.95 3.62 >0.053 28.97 18.24 30.18 27.34 6.96 Plot Soils >0.147 >0.589 >0.840 >1.168 >1.141 66.23 46.09 54.52 65.49 81.57 1.84 7.26 2.97 1.24 3.17 0.74 6.68 2.77 0.60 1.63 as - larqost fraction consists of gravol “$00M“ Boil - Block plot Kipioillor Soil Typo Hottor plot (light) - Hottor plot (dark) Batkowiak plot NNNHN 0.16 1.90 0.71 0.17 0.36 wind Erosion Group 0.51% 14.48. 4.66% 2.18% 2.65** 4. Tsoporaturo data Avorago sonthly taspsraturss: m Doc-obsr January Fobruary March April My Juno Daily avorago taspsraturss for crop dovolopmont W an: 051285 051385 051485 051585 051685 051785 051896 051985 052085 052185 052285 052385 052485 052585 052685 052785 052885 052985 053085 053185 060185 060285 060385 060485 060585 060685 060785 060885 060985 061085 061185 061285 87 for rosiduo docay W -1.5 -8.4 -5.5 2.7 11.4 16.1 11.0 21.67 19.72 16.11 21.92 15.00 13.61 10.28 15.00 14.72 13.06 13. M 15.28 18.61 21.39 20.56 14.44 11.39 13.61 19.44 20.83 18.89 20.00 16.11 15.28 19.17 15.28 18.06 22.78 21.11 16.39 12.78 10.00 061385 061485 061585 061685 061785 061885 061985 062085 062185 062285 062385 062485 062585 062685 062785 062885 062985 Rain data m: 120284 120384 120684 121284 121484 121984 122184 122384 122484 122684 122884 122984 123184 010185 010785 011085 011185 011489 011685 011785 011885 011985 012085 012185 012485 013185 020585 12.50 14.72 16.39 14.44 17.78 15.00 15.56 15.56 18.61 20.56 21.39 17.78 18.33 17.50 17.78 18.06 19.17 20.83 7.4 1.3 0.8 15.7 2.5 020685 020785 021085 021185 021285 021385 021485 021585 021685 021785 022285 022385 022485 030185 030485 031185 031285 031685 032385 032485 032785 032885 032985 040285 040385 040485 040585 040785 041085 041485 041785 041985 042485 042885 050585 051285 051585 051655 052085 052685 052885 053185 060985 061185 061285 061385 061585 061685 061785 062285 -** - rain data through 7/1/85 M» “(I uflNOUVONF‘flNOOO-‘OOOGHHOONU‘ uu-uaamomubuuopouuuuuumuuu O n O l H» mooouoonmnhuuunuu ”NgflflflthNQEOOVH.“ 90 6. woathor data 5/19/85 Blow 991m mm mm 1 tin. Military 2 volocity (6.1 n) n/s 3 avorago diroction dogroos 4 tomporaturo colcius 5 rolativo humidity porcont ._l 4 § 4 L. 1450 10.29 250 26.7 34 1550 12.86 240 26.7 30 1653 12.35 250 26.1 29 1750 11.32 250 26.1 31 1854 10.29 250 25.6 32 9* - national woathor station data 5131/85 Blow $9.11!: W mu: 1 tins Hilitary 2 volocity (6.7 s) 01s 3 avorago diroction dogroos 4 standard doviation of 3 dogroos 5 volocity (2.3 o) n/s 6 maximum diroction dogroos 7 tomporaturo colcius 8 rolativo humidity porcont 9 solar radiation watts/a2 ..L___2____§ 4 J—__.§ 7 B '2 0855 5.89 237.4 3.333 2.28 244.0 25.15 77.44 0.225 0900 7.01 234.5 2.586 3.16 241.0 24.78 77.45 0.132 0905 7.56 228.9 19.09 4.13 342.9 24.00 77.23 0.218 0910 8.79 223.9 3.945 5.02 236.4 23.20 72.13 0.329 ‘ 0915 8.44 224.1 17.54 3.96 324.5 23.13 69.77 0.569 0920 8.46 222.7 3.609 4.19 230.7 23.48 68.76 0.583 1145 8.43 7.04 7.26 9.12 8.46 7.20 7.04 6.72 5.99 7.12 7.07 6.56 8.00 7.77 8.46 7.54 7.45 7.76 8.96 9.45 9.86 9.12 10.3 9.94 9.61 10.3 12.0 9.70 11.1 10.4 10.9 11.1 11.6 10.6 9.29 11.3 12.2 12.0 12.2 11.0 8.46 10.1 10.4 10.7 11.6 '10.3 12.4 12.1 12.0 13.0 14.3 12.7 11.3 224.2 224.4 224.3 222.6 224.1 226.5 225.5 226.1 226.8 226.4 228.3 228.8 230.1 231.1 233.5 231.6 233.7 231.8 234.0 232.5 232.7 233.1 232.2 231.9 231.5 231.5 232.5 231.7 232.3 233.0 230.5 231.2 231.3 232.1 231.3 230.1 230.5 231.0 230.8 229.9 232.9 235.1 235.6 233.0 233.5 232.1 232.8 230.2 230.3 232.6 232.8 232.8 230.8 91 252.3 230.5 232.3 228.1 230.7 231.3 234.7 231.9 234.3 235.8 237.6 236.8 240.6 240.0 246.9 238.6 241.6 238.6 242.8 239.4 239.2 238.2 239.0 241.0 241.6 238.4 240.0 241.4 242.0 238.8 238.2 237.4 239.6 239.8 343.7 240.0 235.8 242.0 241.4 238.0 239.4 241.2 242.2 241.4 240.4 243.0 239.4 236.4 235.8 243.2 239.0 242.6 238.6 2 23.72 24.05 24.32 24.26 24.18 23.97 24.02 24.47 24.89 25.36 25.61 25.70 25.78 25.71 25.81 26.04 26.25 26.21 25.89 25.87 26.07 25.76 25.51 25.22 25.41 25.49 25.67 25.91 25.91 25.78 25.54 25.40 25.26 25.39 25.35 25.04 24.82 24.65 24.58 24.62 24.77 24.77 24.8! 24.72 24.72 24.51 24.36 24.13 24.03 23.86 23.86 23.89 B 66.45 65.44 63.69 61.23 60.12 59.36 59.85 60.27 59.46 58.61 56.75 57.74 57.46 57.35 56.88 57.94 58.71 59.37 60.32 61.49 62.89 62.87 60.55 60.25 59.67 59.72 58.55 59.54 58.16 56.50 52.32 48.53 45.01 43.46 44.02 41.61 39.32 39.79 38.26 38.98 39.75 39.15 38.75 37.79 36.50 37.38 36.10 36.68 36.42 36.22 35.01 35.57 36.42 9 0.593 0.615 0.580 0.565 0.528 0.463 0.645 0.672 0.659 0.701 0.707 0.710 0.718 0.736 0.742 0.751 0.756 0.704 0.703 0.618 0.781 0.611 0.614 0.532 0.675 0.810 0.792 0.799 0.819 0.783 0.773 0.784 0.760 0.732 0.683 0.736 0.685 0.653 0.735 0.686 0.671 0.700 0.761 0.769 0.730 0.583 0.580 0.475 0.499 0.468 0.533 0.499 0.428 1350 1355 1400 1405 1410 1415 1420 1425 1430 1440 1445 1450 1455 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1800 ‘1805 1810 13.0 11.5 13.6 13.7 13.4 13.7 15.8 16.5 15.9 14.9 14.1 14.7 14.1 16.5 14.4 16.2 15.3 15.7 15.2 12.7 13.8 16.4 15.4 14.5 14.7 14.1 16.1 16.5 13.8 15.3 16.4 17.4 15.4 13.6 14.6 13.6 16.9 16.1 13.6 14.6 14.3 16.8 16.7 13.6 14.7 13.2 12.8 16.1 13.4 12.9 13.8 14.4 12.7 230.0 232.9 233.4 231.1 229.6 252.3 171.4 164.2 108.3 112.1 110.9 149.1 163.3 165.4 165.6 170.8 184.7 198.0 199.7 200.3 203.1 191.5 92.9 93.2 92.5 “.8 104.8 129.7 138.0 137.3 135.6 189.0 183.2 189.9 157.6 159.0 155.5 189.5 166.4 172.8 159.1 200.2 213.1 246.1 246.0 233.5 229.2 234.3 253.4 233.5 240.1 242.8 242.1 4 4.247 4.073 14.69 19.12 6.400 41.87 49.11 17.59 7.070 8.900 16.02 17.89 17.90 4.712 4.452 30.66 21.66 15.80 6.245 4.960 16.81 17.84 31.94 6.024 17.32 24.16 46.51 31.34 24.90 39.68 56.15 34.58 8.740 22.23 46.47 34.20 55.48 41.27 50.68 33.71 29.63 40.11 19.49 9.670 11.48 13.96 19.67 21.85 34.67 31.26 27.78 34.06 34.77 0 N «mommmqouqoq 8888385838d8 7.72 [ §§§§§S “a?“ N 0 8 ......5.‘ ......‘8 §§§E§§§§§§ 338 a?“ NOFOF‘ONVNVVDVO-FNVUOUNwONO N0 :‘rfé. («Hal 7 23.93 23.80 23.70 23.70 23.74 23.67 23.67 23.78 23.79 23.77 23.48 22.93 883838 338388 .9 36.14 35.98 35.67 36.14 36.69 36.08 35.60 35.01 35.29 35.41 36.16 36. 13 36.59 36.01 36.48 36.27 36.49 36.60 36.92 37.69 38.51 38.69 38.73 39.15 39.60 40.61 41.01 41.23 41.95 42.58 43.36 43.90 44.64 45.55 46.42 47.92 49.29 52.85 54.64 54.83 55.02 a.“ 70.89 78.59 80.80 80.20 78.78 76.23 75.01 74.40 72.56 70.32 69.65 9 0.500 0.322 0.405 0.385 0.383 0.359 0.354 0.450 0.398 0.377 0.335 0.232 0.187 0.176 0.177 0.190 0.194 0.268 0.257 0.233 0.190 0.151 0.216 0.251 0.237 0.196 0.258 0.336 0.298 0.255 0.196 0.188 0.232 0.252 0.217 0.134 0.092 0.164 0.192 0.201 0.119 0.047 0.064 0.060 0.095 0.156 0.092 0.123 0.155 0.118 0.174 0.204 0.114 1815 1820 1825 1830 1835 1840 1845 1850 1855 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2200 2205 2210 2215 2225 2230 2235 14.1 13.8 15.9 14.8 13.4 11.9 13.7 14.9 14.9 14.9 14.2 13.8 14.1 12.6 10.0 9.78 11.8 9.70 9.20 8.96 9.61 9.70 9.20 9.94 9.94 9.61 9.45 7.63 8.55 8.46 8.44 8.79 8.63 9.04 8.55 7.73 7.80 8.13 8.14 9.04 8.34 9.12 9.45 8.96 9.61 9.86 9.53 9.53 10.6 9.29 8.63 8.79 8.32 '0 (A 4 j___é 7 9 9 242.7 27.19 7.57 310.4 17.06 68.76 0.180 243.6 31.72 7.60 329.2 17.16 67.35 0.182 233.7 29.37 7.85 305.9 16.85 65.10 0.079 220.5 29.08 7.68 299.2 16.58 65.33 0.060 229.2 35.38 7.34 289.7 16.41 65.44 0.047 228.6 43.27 6.89 318.3 16.24 65.50 0.039 204.0 24.93 7.56 290.6 16.08 65.59 0.035 245.3 35.76 7.93 320.9 15.96 65.49 0.031 230.6 36.11 8.08 306.9 15.83 65.42 0.023 246.8 38.15 7.66 314.6 15.70 65.78 0.014 255.7 38.99 7.46 315.4 15.55 66.02 0.010 235.8 37.91 7.64 323.7 15.39 66.08 0.007 248.7 25.83 7.44 282.5 15.28 66.27 0.029 282.0 34.55 7.06 325.1 15.34 66.07 0.076 308.5 14.45 6.30 329.0 15.23 65.67 0.047 308.3 26.96 5.91 329.4 15.04 65.53 0.036 288.8 37.90 7.32 320.5 14.85 65.13 0.031 310.0 28.75 5.82 333.2 14.69 65.23 0.022 313.2 23.21 5.59 328.4 14.56 65.79 0.015 308.8 29.71 5.23 329.0 14.54 65.86 0.010 312.2 14.90 5.62 330.6 14.55 65.60 0.007 287.9 41.05 5.73 325.5 14.55 65.62 0.004 289.3 43.53 5.53 332.0 14.54 65.88 0.003 284.0 37.00 5.85 327.4 14.55 65.86 0.001 244.1 35.68 5.82 325.7 14.53 66.09 0.001 242.3 36.42 5.85 314.6 14.47 66.36 0.001 252.8 35.21 5.63 321.7 14.49 66.39 0 250.6 34.88 4.03 316.4 14.45 66.95 0 243.7 48.75 4.62 327.0 14.42 67.25 0 228.0 36.60 4.95 308.8 14.45 67.04 0 229.9 33.10 4.76 317.6 14.45 67.29 0 243.8 38.29 4.87 319.7 14.50 67.26 0 268.2 46.44 5.05 331.0 14.54 67.35 0 263.8 48.42 5.69 330.2 14.59 67.20 0 269.0 35.04 4.83 323.5 14.61 67.30 0 248.0 32.86 4.49 327.4 14.63 67.42 0 246.0 35.41 4.47 326.5 14.62 67.60 0 253.0 35.75 4.38 324.3 14.63 67.62 0 248.3 42.06 4.64 316.6 14.66 67.68 0 253.4 38.05 5.11 320.1 14.69 67.57 0 243.0 41.51 4.64 311.0 14.76 67.50 0 264.9 40.45 5.49 337.3 14.78 67.57 0 249.9 41.06 5.20 333.0 14.87 67.19 0 271.8 40.50 5.48 328.2 14.89 67.36 0 276.4 37.21 5.44 334.6 14.94 67.27 0 274.6 31.64 5.67 342.1 14.97 67.21 0 297.9 35.72 5.69 340.5 14.99 67.24 0 313.3 33.49 5.68 346.2 14.99 67.18 0 317.0 30.11 6.68 339.3 15.04 66.81 0 309.1 35.67 5.52 341.3 15.05 66.68 0 321.4 23.50 5.68 343.9 15.04 66.17 0 316.8 23.89 5.47 338.7 15.01 65.97 0 313.4 22.03 5.10 332.8 14.94 66.02 0 2240 2245 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2400 0010 0015 0020 0025 0030 0035 0040 0045 0050 0055 0100 0105 0110 0115 0120 0125 0130 8.79 8.36 8.71 8.55 8.71 8.08 9.20 8.71 8.96 8.79 10.2 9.04 8.96 9.70 9.04 9.29 9.70 9.12 8.63 8.23 8.71 9.04 8.55 8.46 8.19 7.45 7.67 9.12 9.12 8.18 7.86 8.41 7.54 9.04 9.45 4 fi§______§ ‘Z 41, 11 318.9 25.39 5.12 340.9 14.93 65.45 0 315.9 29.79 4.92 335.2 14.91 65.32 0 323.8 20.15 5.34 341.7 14.87 65.30 0 318.6 21.94 5.44 335.0 14.82 65.28 0 322.5 30.30 5.51 341.9 14.78 65.36 0 312.1 27.80 5.09 343.9 14.76 65.49 0 326.4 19.55 5.50 334.8 14.67 65.50 0 325.3 10.33 5.29 337.1 14.68 65.23 0 323.9 20.33 5.20 342.9 14.65 65.37 0 328.9 16.84 5.52 340.1 14.66 64.89 0 331.8 4.425 6.30 339.1 14.68 64.36 0 330.9 10.84 5.82 346.4 14.62 64.34 0 334.6 12.84 6.12 343.3 14.59 64.28 0 337.2 9.760 6.11 346.8 14.61 63.92 0 324.6 29.95 5.55 345.1 14.55 64.08 0 335.3 19.54 5.86 347.8 14.49 63.82 0 338.8 18.74 5.80 349.2 14.37 63.92 0 342.6 7.542 5.94 351.0 14.32 63.97 0 341.7 5.179 5.14 349.2 14.32 63.98 0 335.2 24.42 4.70 346.8 14.21 64.22 0 342.8 14.98 5.21 351.4 14.06 64.22 0 343.6 25.44 5.30 353.0 13.96 64.15 0 341.4 16.07 5.40 349.8 13.86 64.28 0 340.9 17.96 5.11 349.4 13.81 64.19 0 332.9 25.15 4.44 347.2 13.68 64.59 0 342.3 10.77 4.01 348.6 13.55 64.88 0 340.6 15.63 4.20 350.0 13.44 65.13 0 343.1 10.66 5.53 349.0 13.46 64.80 0 347.3 3.718 5.52 353.2 13.54 64.40 0 347.0 3.599 5.02 354.9 13.48 64.68 0 345.2 3.804 4.50 352.4 13.42 64.93 0 344.8 13.23 5.19 351.0 13.44 64.88 0 346.6 3.108 4.28 351.2 13.41 65.20 0 345.1 5.192 5.63 351.2 13.53 64.84 0 344.5 3.347 5.54 350.0 13.66 64.40 0 95 7. Sanplor Efficioncy Tablo 12 shows tho rosults of fiold particlo sizo vorsos sanplor colloctod particlo sizo officioncy. .All tho valuos soon rosonablo oxcopt for tho groator than 0.589 on particlo sizo rango. This particlo sizo is in tho top rango for saltating particlo sizos and this may indicato a sorting action occuring at tho inlot of tho saoplor. Howovor, ovorall, tho officioncy can bo ostimatod in tho following oannor. Estioato tho total orosion mass to bo distributod as 10% susponsion, 80% saltation, and 102 croop. Tho particlo sizo groups will bo brokon into (0.053 (susponsion), >0.053-(0.840 (saltation), and >0.840 (croop). Tho following oquation is usod to ostimato tho ovorall of4icioncy o4 tho Hodifiod Bagnold sanplor. EFF- ax + bY + c2 (26) whoro: a - fraction of soil movomont in susponsion, b 8 fraction of soil movomont in saltation, c - fraction of soil movomont in croop, X 8 o+focioncy of colloctor +or susponsion, Y 8 officioncy of colloctor for saltation, 2 I oificioncy o4 colloctor for croop, Using tho abovo oquation rosults in an ovorall -officioncy of 80 porcont for tho samplor. 96 .unouw on» aIOLus Iuwo onufluLaa cw oaucoLawwau uauLm any *0 aunmuun Dam: yo: so: must uo—u Luann: on» can .pan: 0L0: nucu>o DOULOUUL cuon I auoc * 0 n0 mm h” «on mflu cm 440 N mou.«A «¢«.«A, o¢m.oA omn.oA h¢«.oA n00.0A nno.0v es. Iago InumaLso Lonoeom unocoom oogwnooz 03¢ 40 >uco«u.$$o onunuLaa Nu Bunch APPEND I X B B. Procoduros for Fitting Tho Hind Volocity Profilo Tho 'usual lognormal profilo (it was not usod in tho oodol bocauso tho hoat ilux o‘foct on tho wind profilo was considorod substantial. Somo solar radiation data was takon to ostimato tho hoat flux of‘ tho tost fiolds. Tho major unknown in any pro‘ilo ostimation for this study is tho roughnoss paramotor (2°) and tho roughnoss hoight (D). A major problom in tho study was tho lack of wind volocity data on tho #iold tost sitos. This did not allow (20+D) to bo intorpolatod from tho data for oach tost plot. To ostimato thoso paramotors an oquation dovolopod by Brogory (41986) was usod. Tho oquation is as follows: 20. 0.13(H—D) (25) whoro: 2° - roughnoss paramotor, m H - maximum fiold olomont hoight, m D - roughnoss hoight, m D-I 0.7 H - for most crops (26) D- 0.5 H — for fiold roughnoss (27) Tho following procoduro was usod to iit tho volocity distribution (or modol uso. * - Porsonal communication 97 98 1) lntorpolato 2° (assuming D-O) from tho volocity data. 2) Estimato tho hoat {lux by multipling tho total radiation by tho albodo for tho sur£aco conditions. 3) Substituto in tho abovo valuos and tho volocity at 2.3 motors in oquation (5) and solvo for tho shoar volocity (U.). 4) Using tho ostimatod U, solvo for tho volocity profilo at tho critical hoights of 0.15, 2.3, 6.7, and 15.2 motors. 5) Estimato 20 and D with oquations (25) - (27) (or a tost plot. 6) Add 20 and D to got tho y - intorcopt for tho tost plot. 7) Tako tho volocity at 15.2 m (ound in stop 4 and volocity oqual to zoro at tho y - intorcopt. Substituto thoso into oquation (4) and solvo for U*lk. 8) Using tho data {rom stops 6 and 7 solvo oquation (4) at various hoights to obtain tho volocity distribution for tho fiold plot. Somo profilo fits from tho May 31, 1985 wind ovont aro shown in tablo 13. 99 Tablo 13 Fittod Uind Volocity Proiilos (m/s) (20- 0.002, D-O) Hoight (m) Timo Data typo 0.15 2.3 6.7 15.2 1635 w ... 7.$ 13.” ... “ USH ... 7.56 13.47 17.87 “ USN ... 6.26 13.58 18.67 ' F 8.63 14.09 16.23 17.87 1720 US ... 8.30 16.72 ... ” USH ... 8.30 16.71 23.14 ” USN ... 7.70 16.73 22.98 “ F 11.18 18.25 21.02 23.14 1920 US ... 7.06 12.64 ... “ USH ... 7.05 12.61 16.82 “ USN ... 5.82 12.65 17.38 “ F 8.12 13.26 15.27 16.82 US woathor station data USH woathor station data fit accounting for hoat flux USN woathor station data (it using noutral conditions F volocity profilo {or a fiold having tho proscribod data, tho provious fits aro not a function of tho 30 and d valuos listod obovo. APPEND I X C C. Documontation And Sourco Codo Of Hodol 1. Subroutinos Nonu - Rosot monu - Print out - lntializo timo - Extract timo - Accumulato day - Rain data - Rosiduo countor- Rain dato match- Rosiduo convor - Timo stop - Oriontation - Erosion Eq - Uind diroction - Erod factor - Volocity dist - Canopy t-mp - Sum dogroo day - Canopy covor - Crop hoight - Output - displays prosot variablos rosots any variblo from tho monu variablos from tho monu aro printod out intializos numbor of days in oach month, oxtracts tillago dato oxtracts wind ovont timo accumulatos timo in days roads in rain data from anothor filo contains tho rosiduo oquation matchos rain ovonts with rosiduo oquation convorts rosiduo covor to mass basis matchos wind ovont day to tho clock dotorminos fiold longth, givon wind diroction actual uso of Brogory's oquation dotorminos tho sido for wind broak inputs roads in an array for orodibility sots a volocity variablo roads in tomporaturo data to bo ontorod matchos tho day and sums dogroo days dotorminos LA! and crop covor dotorminos crop hoigth by sum of dogroo days intializod array varialblos 100 Output2 101 - program output Extract tillago- oxtracts tillago datos Tillago dato Avorago mass Fiold Longth Longth offoct - chocks clock for tillago datos - usod to find woightod mass flux Flux - dotorminod fiold longth in tho diroction of tho wind - dotorminos longth of fiold to approach maximum flux rato 2. Variablo 11st ‘AE ALPHA A18 A1" BETA CHECK CTDAT3 DIR D1 D13 D2 D3 D33 D63 D7 d73 D93 ‘ FC FR longth of half of tho north sido - Soil abrasion adjustmont factor anglo botwoon north and northoast cornor - rain indox coifficiont for rosiduo oquation valuo chock for AE - intormodiato valuo for AM lonth of half tho oast sido - anglo botwoon oast and northoast cornor constant - flag for loop with EVDAT3 cultivation dato - wind diroction in radians flag to ond program - dato days (intial tillago dato) string d1 - dato sot I to d1 usod for flag dato days (wind ovont) - string d3 dato days (rain datos) - string d5 dato day for tomporaturo, crop canopy - dato(string) day for tomporaturo, crop canopy - pro-planting tillago dato, day string D7 - planting dato, day string D8 - cultivation dato, day string D9 - countor canopy covor - rosiduo or clod covor ms PADAT3 PEDAT3 PNUMBER pp - PTDAT3 n 102 1-FC 1-FR FRGHR/HS FCoHC/HS countor crop hoigth hour of day soil roughnoss hoighth (cm) wind broak hoighth (m) countor string of V(17) soil orodibility (Mg/ha) loaf aroa indox unprotoctod fiold longth, (m) longth of fiold at tho proscribod wind diroction longth of fiold, diroction of wind (m) longth of fiold to roach A-1 intormodiato valuo of L1F longth of fiold that is at A-1 non-loop countor total soil movomont, Kg/ha/ovont mass/aroa movod (Mg/ha) oxp(MlS) mass of rosiduo, intorval valuo (Mg/Ha) valuo chock on MS array of days in oach month woightod mass flux mass of rosiduo, intormodiato valuo mass flux I unit width of blowing soil(Kg/m.s) sum of fluxos across tho fiold to L whoro A-i dato month (intial tillago dato) string M1 dato month (wind ovont) string M3 dato month (rain datos) string M5 dato month for tomporaturo, crop canopy dato(string) month for tomporaturo, crop canopy pro-planting tillago dato, month string M7 planting dato, month string M8 cultivation dato, month string M9 planting dato string omorgonco dato string numbor for variablo changos in tho monu roal numbor for SEPS pro-planting tillago dato non-loop countor RAIN(I) RD REEHEI 883(1) RN(I) S SDD SEPS SIDE TAU TD3(x) THETA TH(X) VE V3(I) V(l) U X YEAR YEAR3 Y3 Y33 Y5 Y53 Y6 Y63 Y7 Y73 vs Y83 Y9 y93 2 IE 3. Input filos Tomp data Rain data2 103 array of amounts of rain (mm) half of LF rosiduo roduction duo to tillago array dato of rain ovonts array of amounts of rain, usod for comparison rolativo soil dotachmont (dim) sum of dogroo days numbor of 3 motor stops to A-1 variablo for A or B for final calculation intormodiat valuo in tho rosiduo oquation datos for tomporaturos, crop covor wind diroction transformod,first quadrant avorago tomporaturo for tho day, crop canopy wind volocity at 15.2 m (m/s) array of all monu variablo discriptions array of all monu valuos countor, sub canopy tomp countor, sub sum dogroo days dato yoar (intial tillago dato) string yoar dato yoar (wind ovont dato) string dato dato yoar (rain datos) string yoar dato yoar for tomporaturo. crop canopy dato(string) yoar for tomporaturo, crop canopy pro-planting tillago dato, yoar string Y7 planting dato, yoar string Y8 cultivation dato, yoar string Y9 countor in tho main program constant (ha/Mg.s) - data: dato, tomp avorago(c) - data: dato, rain(mm) 4. 104 Uind orosion program sourco codo 100 Ran ***** PROGRAM - MODEL UIND EROSION ********* 105 REM 4/26/86 110 M-1:SDD-0:X-1:RESRED-1 120 DIM RE$(80) ,RA1N(80) ,M5(80) ,D5(80) ,Y5(80) ,RN(80) , KE(80),TH(55),TL(55) DIM TD$(55) ,06(55) ,M6(55) ,Y6(55) 440:REM SUB MENU 130 140 150 170 180 190 200 205 210 220 230 240 250 255 260 270 280 290 300 310 320 330 340 350 370 380 390 400 405 410 415 416 418 420 430 440 490 SOSUB SOSUB BOSUB BOSUB OOSUB BOSUB BOSUB SOSUB BOSUB BOSUB CISUB BOSUB SOSUB 3010:REM 2870:REM 1380:REM 2220:REM 2770:REM 5000:REM 15503REM 4100:REM 1740:REM 23403REM 2710:REM 7000:REM FOR 281 TO 5 SOSUB BOSUB SOSUB BOSUB BOSUB 1640:REM 3170:REM 43308REM 2310:REM 19208REM SUB SUB SUB CANOPY COVER TEMP INPUT VELOCITY DISTRIBUTION INTIALIZE TIME SUB RESIDUE COVER TO MASS CONVERSION SUB EXTRACT TIME, SUB SUB SUB SUB SUB SUB SUB SUB ERODIBILITY FACTOR IMMERSENCE EXTRACT TIME, UINDEVENT RESIDUE REDUCTION DATE CHECK RAIN DATA INPUT ORIENTATION UIND DIRECTION FIELD LENBTH ACCUMULATE TIME (DAYS) SUM OF DEBREE DAYS TILLABE RESIDUE CHECK SUB SUB STOP TIME RESIDUE COUNTER IF 285 THEN BOSUB 1990:REM SUB RESIDUE IF DOI1 THEN EITO 380 NEXT 2 PRINT M1,D1,YEAR SOTO 260 ensue 3250:REM sun CANOPY COVER:PRINT“BOSUB 3010- SOSUB 33203REM sun CANOPY HEIOHT BOSUB 2280:REM sun RESIDUE CONVERSION MASS TO COVER oosua 6500:REM sun LENGTH EFFECT FOR ABRASION SOSUB 66OOIREM sun AVERAGE MASS FLUX CLOSE4 OPEN15,8,15:OLOSE15 OPEN4, 4 BOSUB 3880:REM SUB OUTPUT 2 RE" oooo-l-m SUB "Em *“*“**I'***“*****§*****”§”"** nomoofimo A 450 PRINT““ 460 DIM v<50>,vstso) 47o DATA -8.4,-5.5,2.7,11.4,16.1,11.0,17.0,19.0,16.0, 12.0,a.o,-1.5 480 V(13)-0.38:V(15)-0.0018:V(14)-5:V(16)-57 FOR I-1 TO 12:READ V(I):NEXT ‘ 500 PRINT”" 510 PRINT"******** RESIDUE INFORMATIONoooooooooo" 105 520 PRINT” AVERAGE I'DNTl-I.Y TEMPERATURE (CELCIUS) " 530 PRINT”1. JANUARY ”;V(1):V3(1)I"JAN TEI‘IP'I 540 PRINT"2. FEBRUARY ":V(2):V3(2)-”FEB TEN’" 550 PRINT'3. MARCH “:V(3):V3(3)-“MAR TEMP" 560 PRINT“4. APRIL ”;V(4):V3(4)-”APR TEI'P" 570 PRINT'5. MAY ”:V(5):V3(5)-"MAY TEMP“ 580 PRINT'6. JIJNE “:V(6):V3(6)-"JUN TEMP" 590 PRINT”7. JLLY “:V(7):V3(7)-“Jl.l. TEI'P" 610 PRINT"8. AUGUST ”:V(8):V3(8)-“AUB TEMP“ 620 PRINT'9. SEPTEMBER “;V(9):V3(9)-“SEP TEMP“ 630 PRINT'10. OCTOBER ”:V(10):V3(10)="OCT TEMP“ e40 PRINT“11. NOVEMBER “;V(11):V3(11)=“NOV TEMP“ 550 PRINT”12. DECEMBER ":V(12):V3(12)-“DEC TEMP“ 660 PRINT'13. COVER RESIDUE ”:V(13):V3(13)-”RES COVER” 670 PRINT“14. INCREMENT (DAYS) - '3V(14):V3(14)-"RES INC“ 680 PRINT'15. U/RO CONSTANT - “:V(15):V3(15)-“U/R0 CONST' 590 PRINT“16. INTIAL C/N RATIO - “;V(16):V3(16)-“C/N RATIO- 700 PRINT- u 710 INPUT'ENTER PARAMETER NUMBER TO BE CHANGED (0 TO CONTINUE) “:PNUMBER 720 IF PNUMBER-o THEN GOTO 740 730 GOSUB 1270:OOTO500 740 PRINT'" 750 V(17)I111584:V(18)-051685:V(19)-14:V(20)-795.5: V(21)-346.2:V( 22)-197.1 760 V(25)-10:V(26)I5:V(27)-5:V(28)-15:V(30)-13.0: V(29)-150:V(31)- 17:V(32)-15.2 77o 9(23)I5:V(24)-0.000451685:V(19)-14:V(20)-795.5: V(21)-346.2:V( 22)-197.1 780 PRINT"17. INTIAL TILLAGE DATE“:V(17):V3(17)-'INTIAL TILLASE“ 79o PRINT'18. DATE OF EVENT “:V(18):V3(18)-“EVENT DATE“ 800 PRINT“ (MONTH,DAY,YEAR) ~ 810 PRINT- - 920 PRINT-i9. HOUR OF EVENT ';V(19):V3(19)-"EVENT HOUR” 830 PRINT“20. FIELD LENGTH NORTH SIDE (M) “:V(20):V3(20)-" NORTH FIELD LENGTH- 840 PRINT"21. FIELD LENGTH EAST SIDE (M) ”:V(21):V3(21)=“EAST FIELD LENGTH“ 850 PRINT“22. DIRECTION OF UIND (DEG) ":V(22):V3(22)-”UIND DIRECTION“ 860 PRINT'23. COVER HEIGHT (CM) - “:V(23):V3(23)-"RES HEIGHT” 870 PRINT'24. RESIDUE CONVERSION CONSTANT(AM) “;V(24):V3(24)-"RESIDUE CONSTANT“ 880 PRINT“25. HEIGHT UINDBREAK NORTH SIDE(M)":V(25):V3(25)-“ UINDBREAK NORTH- 890 PRINT”26. HEIGHT UINDBREAK EAST SIDE(M)”:V(26):V3(26)-" UINDBREAK EAST" 900 PRINT“27. HEIGHT UINDBREAK SOUTH SIDE(M)”:V(27):V3(27)-“ UINDBREAK SOUTH“ 910 PRINT“ 29. HEIGHT UINDBREAK UEST SIDE(M)':V(28):V3(28)-“ UINDBREAK UEST' 920 PRINT'29. 106 DURATION OF EVENT (MIN)“;V(29):V3(29)-”EVENT DURATION (MIN)' 930 PRINT'30. CRITICAL UIND VELOCITY (M/S)”;V(30):V3(30)-' CRITICAL VELOCITY“ 940 PRINT'31. UIND VELOCITY (M/S)”;V(31):V3(31)-“UIND VELOCITY“ 950 PRINT'32. HEIGHT UIND VELOCITY TAKEN(M)":V(32):V3(32)-" VELOCITY HEIGHT“ 960 INPUT“ENTER PARAMETER NUMBER TO BE CHANGED (0 TO CONTINUE) ~;PNUMBER 970 IF PNUMBER-O THEN GOTO 990 980 GOSUB 1270:GOTO 780 990 PRINT“” 1000 1010 1020 1030 1040 1050 1060 V(33)-50585:V(34)-51685:V(35)88 V(36)-0.17:V(37)30.3:V(38)-51085:V(39)-2:V(40)-10 PR I NT w "*"**“***** COVER PMNETERS ***m* PRINT” ' PRINT‘33 PLANTING DATE “;V(33):V3(33)-“PLANTIN8 DATE “ PRINT”34 IMERGENCE DATE“3V(34):V3(34)-”EMER8ENCE DATE ' PRINT'35. NON-ERODIBLE FRACTION (X) “:V(35):V3(35)-“ NON-ERODIBLE FRACTION” 1070 PRINT"36. FACTOR FOR CRUSTING (0.17-1)“;V(36):V3(36)-“ FACTOR FOR CRUSTING“ 1080 PRINT”37. FACTOR SPRING TILLAGE(RESIDUE)”:V(37):V3(37)-“ FACTOR SPRING TIL” 1100 PRINT"38 SPRING TILLAGE DATE “;V(38):V3(38)8'SPRING TILLAGE DATE ' 1110 PRINT“39 FIELD ROUGHNESS¢CM)';V(39):V3(39)-”FIELD ROUGHNESG ~ 1120 PRINT'40 DAYS TO GERMINATE '3V(40):V3(40)-'DAYS TO GERMINATE ' 1130 1140 CONTINUE) 1150 1160 1170 1180 1190 1200 PRINT“ - INPUT'ENTER PARAMETER NUMBER TO BE CHANGED (0 TO "gPNUMBER IF PNUMBER-o THEN GOTO 1180 PRINT“' GOSUB 1270:5GTO 1020 PRINT" PRINT'TO PRINT OUT THE INPUT ARRAY ENTER (2)- INPUT”TO PRINT OUT VARIABLE LIST ENTER (1), TO CONTINUE ENTER (0).“:PNUMBER 1210 1220 1230 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 IF PNUMBER=1 THEN GOSUB 3420 IF PNUMBER-z THEN GOSUB 1310 PRINT”' RETURN REM a... RESET MENU - CF MENU .... PRINT V3(PNUMBER)“ I ”:V(PNUMBER):” INPUT“ 7 “;V(PNUMBER) PRINT”“ RETURN - REM .... SUB TO PRINT OUT VARIABLE ARRAYI— CF MENUE*** OPEN4,4 FOR I-i TO so PRINT04,I,V3(I),V(I) J“ 1350 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650 1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1780 1800 1810 1820 1830 1840 1850 1860 1870 1890 1900 1910 107 NEXT I CLOSE4 RETURN REM ******* INTIALIZE TIME ....... REM - -- SET MONTH DIM MO(12) DATA 31.29.31,30,31,30,31,31,3o,31,so,31 FOR 1-1 TO 12 READ MO(I) NEXT I REM ---—- EXTRACT TIME - TILLAGE DATE--- ITDAT3-STR3(V(17)) M13-LEFT3(ITDATE3,3) M1-VAL(M13) D13-MID3(ITDATE3,4,2) Di-VAL(D13) D2-Di YEAR3-RIGHT3(ITDATE3,2) YEAR-VAL(YEAR3) RETURN REM *GUG SUB EXTRACT TIME - UIND EVENT a... EVDATSISTR3(V(18)) M33-LEFT3(EVDAT3,2) M3-VAL(M33) D33-MID3(EVDAT3,3,2) D3-VAL(D33) Y33-RIBHT3(EVDAT3,2) Y3-VAL(Y33) RETURN REM ...... ACCUMULATE TIME (DAYS) IF Dl-MO(M1) THEN M1-M1+1:D1-0 IF M1-13 THEN Mi-isYEAR-YEAR+1 D1-D1+1 RETURN REM «a. ACCUMULATE TIME IF D1>D2 THEN HOUR-1 HOUR-HOUR+1 D2-Di RETURN REM {*‘I'i'l'fl'fl'l'l SUB RAIN DATA (DID-DI".- OPEN 2,8,2,"O:RAIN DATA2,S,R“ FOR F-i TO 30 INPUTX2,RE:(F),RAIN(F) CHECK=VAL(RE3(F)) IF CHECK--i THEN GOTO 1900 M53-LEFT3(RE3(F),2) D53-MID3(RE3(F),3,2) Y53-RIGHT3(RE3(F),2) M5(F)-VAL(M53) D5(F)=VAL(D53) Y5(F)-VAL(Y53) NEXT F CLOSE2 RETURN {IMMUNE}! (HOURS) 5* 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2090 2100 2110 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2410 2420 2430 108 REM ******** SUB RESIDUE COUNTER **** O-6-M RN(O)-0 GOSUB 2170 M-M+1 IF M-6 THEN M-I RETURN . REM ***** SUB RESIDUE **** AM-O FOR O-V(14) TO 1 STEP -1 A1M-RN(O)/O AM-A1M+AM REM PRINT“*§*AM- ”3AM IF AM>10 THEN AM-io NEXT 8 TAO-V (M1 ) *V ( 14) *AM/V ( 16) IF V(M1)(0 THEN TAO-0 MF-((1-(V(15)oTAU))3)*MR*RESRED MR-MF RESRED-i RETURN REM *o** SUB RAIN DATE MATCH - CF RESIDUE COUNTER *** FOR 8-1 TO 80 IF D5(8)-D1 AND M5(8)=M1 THEN RN(O)-RAIN(8) NEXT 8 RETURN REM aaooo SUB RESIDUE COVER TO MASS CONVERSION oaoo MR=LO8(1-V(13))I(-V(24)) GOSUB 41003REM SUB EXTRACT TIME, TILLLASE REM MR- MSIHA REM TON/ACIO.4462*MB/HA RETURN REM *§§*** SUB RESIDUE CONVERSION MASS TO COVER V(13)-1-(EXP(-V(24)*MR)) RETURN REM ***** SUB TIME STOP ****§*** IF D1>nD3 AND M1-M3 THEN DOai RETURN REM ****** SUB ORIENTATION ******* A-V(20)/2:REM PRINT'A- “3A B-V(21)/2:REM PRINT”B- “:B DIR =V(22)*/180:REM PRINT DIR ALPHA-ATN(A/B):REM PRINT'ALPHA- “:ALPHA BETA-lz-ALPHAIREM PRINT BETA IF DIR>-(/2+BETA) AND DIR(- THEN THETAI-DIRISIDE-B IF DIR<-(+ALPHA) AND DIR>- THEN THETA-DIR-:SIDE-B IF DIR<=2R AND DIR->((3*ALPHA)+(4*BETA)) THEN THETA-2fi-DIRISIDE-B 2440 2450 2460 2470 ’ 2485 IF DIR>=ALPHA AND DIR-(l2 THEN THETA-l2-DIRISIDE-A IF DIR=II2 THEN THETA-DIR-I2ISIDE'A IF DIR>=+ALPHA AND DIR-(1.5% THEN THETA=1.5§-DIR:SIDE-A IF DIR->1.5* AND DIR-<2i-ALPHA THEN DIR-1.5!:SIDE-A LF8(V(20)*V(21))/((V(21)*ABS(COS(THETA)))+(V(20)* ABS(SIN(THET A)))) 2500 2510 2520 2525 2530 2532 2535 2536 2540 2545 2550 2555 2560 2570 2580 2590 2610 2615 2630 2640 2650 109 RETURN REM ******* SUB EROSION EQUATION ****** ZE'0.003:REM HA/T.S HSIV(39) CI0.0000244:REM KG/SJ/Ma IF J)1 THEN GOTO 2610 V(23)-V(23)+V(39) HCIHC+V(39) F1-1-FC VP-V(35)/100 IF V(13)>-VP THEN FR=V(13) IF V(13)(VP THEN FR-VP F2-1-FR F3-FR*V(23)/HS F4-FC*HC/HS:REM PRINT“F4I “;F4 S-(F1GF2)/((F4+(F1§F3)+(F1*F2))3) LE-L2F-(17*V(30)IVE)*HU*BDIR IF LE(0 THEN LEIO A1E=4.67*ZE*KE(V(35))GLE/VE IF A1E>LOG(1.7E38) THEN AE'1:GOTO2660 AE-0.77*(1-EXP(-0.072*EXP(4.67*ZE*LE*KE(V(35))IVE))) +0.23 2660 2670 2675 2680 2700 2710 2720 MISI-ZENAENKE(V(35))RLE/VE IF MIS-(3§/2+BETA) THEN HU-V(25):BDIR-C@§(BETA):GOTO 2760 2730 GOTO 2740 2750 2760 2770 2780 2790 2800 2810 2820 IF DIR(-(/2+BETA) THEN HUCV(26):BDIR-COS(ALPHA): 2760 IF DIR<-(+ALPHA) THEN HH-V(27):BDIR-COS(BETA):GOTO 2760 IF DIR<-(3*/2+BETA) THEN HUIV¢28):BDIR-COS(ALPHA) RETURN REM 4444* SUB ERODIBILITY FACTOR *********** FOR I231 TO 80 READ KE ( I2) KE(I2)-KE(I2)*2.24*V(36) NEXT I2 DATA 310,250,220,195,180,170,160,150,140,134,131,128,125, 121,117,1 13,109 2830 DATA 106,102,98,95,92,90,88,86,83,81,79,76,74,72,71,69,67, 65,63,62 ,oo,sa 2840 DATA 56,54,52,51,50,48,47,45,43,41,38,36,33,31,29,27,25,24, 23,22,2 1.20.19 2850 2860 2870 2880 DATA 18,17,16,16,15,14,13,12,11,10,8,7,6,4,3,3,2,2 RETURN REM oooooo SUB VELOCITY DISTRIBUTION ************ VE-V(31):REM *(LOS(15.2)/L®8(V(32))) 110 2960 IF VE(V(30) THEN PRINT“UIND VELOCITY TOO SMALL“:SOTO 430 2970 RETURN 3010 REM #444 SUB CANOPY COVER TEMP INPUT** 3020 OPEN6,8,6,"O:TEMP DATA,S,R“ 3030 FOR U81 TO 55 3040 REM PRINT"TEMP DATA” 3050 IDPUT“,TD3(U) ,TH(U) 3060 IF TH(U)--1 THEN SOTO 3150 3070 M63=LEFT3(TD3(U),2) 3080 D63-MID3(TD3(U),3,2) 3090 Y63=RISHT3(TD3(U),2) 3100 M6(U)-VAL(M63) 3110 D6(U)-VAL(D63) 3120 Y6(U)-VAL(Y63) 3140 NEXT U 3150 CLOSE6 3160 RETURN - 3170 REM 4444444 SUB - SUM OF DESREE DAYS ********** 3180 IF D1-(D8+1) AND M1-M8 THEN SOTO 3200 3185 IF X>1 THEN SOTO 3200 3190 SOTO3240 3200 SDD-SDD+(TH(X)-8):REM PRINTU4,”DI- ”:DI,“M1- “:M1,“DS- “:D8,"M8- “:MB 3210 X-X+1 3240 RETURN 3250 REM 44444435 SUB CANOPY COVER ***§****** 3260 LAIa(0.00346*SDD)+(-0.225) 3270 FCI(33.252*LAI)+0.5078 3280 FC-FC/IOO 3290 IF LAI(0 THEN FCIO 3310 RETURN 3320 REM ******* SUB CROP HEISHT 444* 3330 HCI(0.0340*(SDD))+(-0.908):C0-HC 3340 RETURN 3420 REM 4435544 SUB OUTPUT4944454454444445944594oi 3430 OPEN4,4 3440 PRINTQ4,“ INTIALIZED PARAMETERS" 3450 PRINTU4,“ “ 3460 PRINT#4,“ " 3470 PRINT44,-i. JANUARY TEMP (C) “:V(1) 3480 PRINT44,~2. FEBRUARY TEMP (C) “:V(2) 3490 PRINT44,-3. MARCH TEMP (C) “:V(3) 3500 PRINT44,~4. APRIL TEMP (C) “:V(4) 3510 PRINT44,~5. MAY TEMP (C) “:V(5) 3520 PRINTX4,"A. JUNE TEMP (C) “:V(6) 3530 PRINT44,~7. JULY TEMP (C) ";V(7) 3540 PRINT44,"B. AUGUST TEMP (C) “:V(8) 3550 PRINT44,'9. SEPTEMBER TEMP (C) ";V(9) 3560 PRINT44,"10. OCTOBER TEMP (C) ”:V(10) 3570 PRINT44,~11. NOVEMBER TEMP (C) “:V(11) 3580 PRINT04,”12. DECEMBER TEMP (C) ":V(12) 3590 PRINT44,~13. RESIDUE COVER (X) ”:V(13) 3500 PRINT44,"14. RESIDUE INCREMENT(DAYS) ";V(14) 111 3610 PRINT04,"15. U/RO RATIO “:V(15) 3620 PRINT44,'16. C/N RATIO '3V(16) 3630 PRINT44,“17. INTIAL TILLAGE DATE “;V(17) 3640 PRINT44,"18. EVENT DATE DATE “;V(18) 3650 PRINTU4,“19. EVENT HOUR “:V(19) 3660 PRINTU4,'20. NORTH FIELD LENSTH (M) “;V(20) 3670 PRINT44,"21. EAST FIELD LENGTH (M) “;V(21) 3680 PRINT44,‘22. UIND DIRECTION (DES) ”:V(22) 3690 PRINT44,"23. RESIDUE HEISHT (CM) “:V(23) 3700 PRINT44,“24. RESIDUE CONSTANT ”:V(24) 3710 PRINT44,"25. UINDBREAK NORTH (M) “:V(25) 3720 PRINT44,”26. UINDBREAK EAST (M) ”:V(26) 3730 PRINT44,“27. UINDBREAK SOUTH (M) “:V(27) 3740 PRINTQ4,"28. UINDBREAK UEST (M) “;V(28) 3750 PRINT44,'29. EVENT DURATION (MIN) “:V(29) 3760 PRINT44,'30. CRITICAL VELOCITY (M/S) “:V(30) 3770 PRINT44,“31. UIND VELOCITY (M/S) ”:V(31) 3780 PRINT44,“32. VELOCITY HEIGHT (M) ';V(32) 3790 PRINT44,“33. PLANTINS DATE “;V(33) 3800 PRINT44,“34. EMERSENCE DATE ”:V(34) 3810 PRINT44,“35. NON-ERODIBLE FRACTION(%) “:V(35) 3820 PRINT44,“36. CRUSTINS FACTOR “;V(36) 3830 PRINT44,"37. FACTOR SPRING TILLAGE ”:V(37) 3840 PRINT44,”38. SPRING TILLAGE DATE “:V(38) 3842 PRINT44,'39. FIELD ROUSHNESS “:V(39) 3844 PRINT44,“40. DAYS TO GERMINATE “:V(40) 3850 PRINTU4,'-' 3870 RETURN 3880 REM 54544344 BUB OUTPUT 2 {4554444944554 3900 PRINTU4,” OUTPUT PARAMETERS“ 3910 PRINT04,' ' 3920 PRINT44,“ ” 3930 PRINTO4,“13. RESIDUE COVER ”:V(13) 3940 PRINTU4,”RESIDUE MASS (KS) ”:MRg" (“:MRR2.205;' )“ 3950 PRINT$4,'UIND FIELD LENGTH (M) ”:LF:“ (“:LF43.28:“ )“ 3960 PRINT44,'CROP COVER ”:FC 3970 PRINT04,'CROP HEIGHT (CM) “:CO:" (“ISO/2.54:“ )“ 3980 PRINT04,”LEAF AREA INDEX ”:LAI 3990 PRINT44,“SUM OF DEGREE DAYS “:SDng“ ('ySDD*1.8+32;“ )“ 4000 PRINT44,“RELATIVE SOIL DETACHMENT (S) “:S 4010 PRINT04,“UNPROTECTED LENSTH (M) "LE3" (“:LE43.281:“ )“ 4015 PRINT44,'UIND BREAK HEIGHT (M) ”:HUs” ("3HU*3.281:“ )“ 4020 PRINT84,”VELOCITY AT 15.2 M “:VE:“ (”:VEN2.237;“ )' 4030 PRINTQ4,“VELOCITY DIFFERENCE (M/S) ”:VE-V(30) 4040 PRINTU4,“SOIL ERODIBILITY (MG/HA) (”yKE(V(35))/2.24:” )“ 4045 PRINTU4,“SOIL ERODIBLE FRACTION ":KE(V(35)):” ”:V(35) 4050 4052 4055 4058 (~gMP4.o72;" 4060 112 PRINTU4,“SOIL ABRASION ADJUST FACTOR PRINTO4,'LENGTH OF UIND EVENT (MIN) PRINT44,“MIS PRINTU4,“UEIGHTED MASS FLUX (KG/M.S) )"IREM LB/FT.S PRINT04,“MASS FLUX (KG/M.S) a,“ “:V(29) ":MIS “IN?" (”:MS4.672:" )“:REM LB/FT.S 4065 PRINT34,'MA88 MOVEMENT PER EVENT (MG/HA) ":MAy' (“:MA/2.2416;“ )~ 4070 PRINT44,~MASS LOSS PER EVENT (MG/HA) ”aMEa' (“:ME/2.2416:' )~ 4090 4100 RETURN REM 4444 SUB EXTRACT TIME - TILLAGE RESIDUE REDUCTION ”*flf'l' 4110 4140 4170 4200 4230 4260 4290 4320 4330 4340 4370 5000 5110 5115 5140 5170 5200 5230 5260 5290 5295 5300 6000 DATE 6110 6140 6170 6200 6230 6260 6290 6295 6296 6297 6320 6500 6510 6520 6530 6540 PTDAT3-STR3(V(38)) M73-LEFT3(PTDAT3,2) M7-VAL(M73) D73-MIDt(PTDAT3,3,2) D7-VAL(D73) Y73-RISHT3(PTDAT3,2) Y7-VAL(Y73) RETURN REM 4444444 SUB TILLAGE DATE CHECK 444444 IF DI-D7 AND M1-M7 THEN RESRED-i-V(37) RETURN REM 4444444SUB EXTRACT TIME - EMERSENCE DATE PEDATt-STR3(V(34)) IF V(34)-0 THEN GOTO 6000 M83-LEFT3(PEDAT3,2) MG-VAL (M83) DBt-MID3(PEDAT3,3,2) D8-VAL(D83) Y83-RIGHT3(PEDAT3,2) Y8-VAL(Y83) PRINT“EMERSENCE DATE":MG:D8:Y8 GOTO 6320 REM PLANTINS DATE TO TRIGGER PLANT DATE IF EMERSENCE NOT KNOUN PADATSISTR3(V(33)) M83-LEFT3(PADAT3,2) M8-VAL(M88) D83-MIDt(PADAT3,3,2) DB-VAL(D83) Y83-RIGHT$(PADAT3,2) Y8-VAL(Y83) D8-D8+V(40) IF D8>MO(M8) THEN M83M8+1 IF D8>MO(M8) THEN D8-DS-MO(MB-1) RETURN REM 444444 LENGTH EFFECT FOR ABRASION 4444 LE-3524VE/KE(V(35)) L1F=LE+<174V(30)/VE4HU):REM LF AT A-1 PP-LIF/3:SEPSIINT(PP) RETURN 6600 6630 6650 6660 6670 6680 6690 6700 6710 6720 6730 6740 6742 6750 6780 7000 7010 7020 7030 7040 7050 7060 7070 113 REM 444444444 AVERAGE MASS FLUX 4444444444 MTSIO FOR J-1 TO SEPS L2F=34J GOSUB 2510 MTS=MS+MTS NEXT J MTSuMTS/SEPS L2F-LF GOSUB 2510 L3F-LF-L1F MA-((MTS4L1F)+(MS4L3F))lLF:MP-MA MA-MA46004V(29) ME-MS/LF4104V(29)460:REM MS/HA.EVENT RETURN REM 4444444 FIELD LENSTH 44444444 A-V(20)/2:REM PRINT'V(20)- “:V(20),A B-V(21)/2:REM PRINT“V(21)- “:V(21),B DIR-((-V(22))4/180)+/2:REM PRINT“DIR- ":DIR RD-SOR(((A3)4(B3))/((A34(SIN(DIR)3))+(BJ4(CG8(DIR)3)))) LF-24RD REM PRINT'LF- “:LF RETURN . APPEND I X D D. List of Litoraturo Citod Andorson, D.T. 1968. Somo Oualitativo offocts of tillago machinos on plant rosiduos usod for orosion control. Canada Agric. Eng. 10:53-56. Chopil, U.S. 1944. Utilization of crop rosiduos for wind orosion control. Sci. Agri. 21:488-507. Chopil, U.S. 1945a. Dynamics of wind orosion: I. Tho naturo of movomont of soil by wind. Soil Sci. 60:305-320. Chopil, U.S. 1945b. Dynamics of wind orosion: II. Intiation of soil movomont. Soil Sci. 60:397-411. Chopil, U.S. 1945c. Dynamics of wind orosion: III. Transport capacity of tho wind. Soil Sci. 60:475-480. Chopil, U.S. 1946. Dynamics of wind orosion: VI. Sorting of soil matorial by tho wind. Soil Sci. 61:331-340. Chopil, U.S. 1956. Influonco of moisturo on orodibility of soil by wind. Soil Sci. Soc. Amor. Proc. 20:-288-292. 4Chopil, U.S. 1957. Uidth of fiold strips to control wind orosion. Kansas Agr. Exp. Station Toch. Bul. 92. Chopil, U.S. 1959. Equilibrium of soil grains at tho throshold of movomont by wind. Soil Sci. Soc. Amor. Proc. 23:422-428. Chopil, U.S. 1960. Convorsion of rolativo fiold orodibility to annual soil loss by wind. Soil Sci. Amor. Proc. 24(2):143-145. Chopil, U.S. and N.P. Uoodruff. 1954. Estimations of wind orodibility of farm fiolds. Jour. Soil and Uator Consorv. 9:257-266. 4Chopil, U.S. and N.P. Uoodruff. 1959. Estimations of wind orodibility of farm fiolds. Prod. Ros. Ropt. No. 25, USDA. Chopil, U.S. and N.P. Uoodruff. 1963. Tho physics of wind orosion and its control. Adv. Agron. 15:211-302. 114 115 Chopil, U.S. and R.A. Milno. 1939. Comparativo study of soil drifting in tho fiold and in a wind tunnol. Sci. Agri. 19:249-257. Chopil, U.S. and R.A. Milno. 1941a. Uind orosion of soil in rolation to roughnoss of surfaco. Soil Sci. 52:417-431. Chopil, U.S. and R.A. Milno. 1941b. Uind orosion of soil in rolation to sizo and naturo of oxposod aroa. Sci. Agric. 21:479-487. Chopil, U.S., F.H. Siddoway, and D.V. Armbrust. 1963. Climatic indox of wind orosion conditions in tho Groat Plains. Soil Sci. Soc. Amor. Proc. 27:449-452. Colo, Goorgo U. 1984. A mothod for dotormining fiold wind orosion ratos from wind-tunnol-dorivod functions. Trans. ASAE 27(1):110-116. Colo, Goorgo U., Loon Lylos, and Laworonco Hagan. 1983. A simulation modol of daily wind orosion loss. Trans. ASAE 26(6):1758-1765. 4Colvin, T.S., J.M. Laflon and D.C. Erbach. 1980. A rovoiw of rosiduo roduction by individual tillago implomonts. Crop production with consorvation for tho 1980's. ASAE Conforonco. Chicago, II, pp. 102-110. Fonstor, C.R. and S.A. Uicks. 1977. Minimum tillago fallow systoms for roducing wind orosion. Trans. ASAE 20:906-910. Fonstor, C.R., N.P. Uoodruff, U.S. Chopil and F.H. Siddoway . 1965. Porformanco of tillago implomonts in a stubblo mulch systom: III. Effocts of tillago soquoncos on rosiduos, soil cloddinoss, wood control and whoat yiold. Agron. Jour. 57:52-55. 4Fryroar, D.U. 1983. Ridgos-Clods and wind orosion. ASAE Fryroar, D.U. and J. D. Downos. 1975. Estimating soodling survival from wind orosion paramotors. Trans. ASAE. 18(5):888-891. Shidoy, Fossohaio, J. M. Srogory, T. R. McCarty, and E. E. Alborts. 1985. Rosiduo docay ovaluation and prodiction. Trans. Amor. Soc. Agr. Engin. 28(1):102-105. Sillotto, D.A. 1978. Tosts with a portablo wind tunnol for dotorming wind orosion throshold volocitios. Atm. Env. 12:2309-2313. 116 Gillotto, D.A. and T.R. Ualkor. 1977. Charactoristics of airborno particlos producod by wind orosion of sandy soil, high plains of Uost Toxas. Soil Sci. 123:97-110. Gilmoro, C.M., E.F. Broadbont and S.M. Bock. 1977. Effocts of wasto application on soil carbon and nitrogon cyclos. IN. L.F. Elliot and F.J. Stovonson (od.) Soils for managomont of organic wasto and wasto wators. Soil Sci. Soc. of Amor., Madison UI. pg.173-194. Srogory, Jamos M. 1982. Soil covor prodiction with various amounts ans typos of crop rosiduo. Trans. Amor. Soc. Agri. Engin. 25(5):1333-1337. 4Srogory, J. M. 1984a. Analysis of longth offoct for soil orosion by wind. ASAE Papor No. 84-2540. Srogory, J. M. 1984b. Prodiction of soil orosion by wator and wind for various fractions of covor. Trans. Amor. Soc. Agri. Engin. 27(5):1345-1350. Srogory, J. M., McCarty, T. R., Shidoy, F. and Alborts, E.E. . 1985. Dorivation and ovaluation of a rosiduo docay oquation. Trans. Amor. Soc. Agr. Engin. 28(1):98-101, 105. iGrogory, J.M., T.M. McCarty, F. Shidoy, and D.L. Pfost. 1982. Tillago oquation for rosiduo managomont. ASAE Papor No. 82-1513. ASAE, ST. Josoph, MI. Hsioh J.J.C. and R.E. Uildhung. 1969. Bontonito stabilization of soil to rosist wind orosion. Soil Sci. Soc. Amor. Proc. 33:637-638. 4Harrington, J.B., Jr. 1965. Final roport atmosphoric pollution by Aoroallorgons: Motoorological phaso (1 March 1962 to 2G Fobruary 1965) Vol. II. Atmosphoric diffusion of ragwood pollon in Urban Aroas: Tost ORA projoct 06342, Univorsity of Michigan, Ann Arbor. Hunt, H.U. 1977. A simulation modol for docomposition in grasslands. Ecology 58:469-484. 4Koohostani, M., and J. M. Grogory. 1985. Moasuromont of tilllago paramotors that affoct rosiduo covor. Prosontation 1985 summmor mooting, Michigan Stato Univorsity. Papor Numbor 85-2045. Jonos, C.A. (oditor). 1985. CERES-Maizo: A simulation modol of maizo growth and dovolopmont. In pross. Lylos, L. 1977. Uind orosion: procossos and offoct on soil prductivity. Trans. ASAE. 20:880-884. 117 Lylos, L. and N.P. Uoodruff. 1961. Surfaco soil cloddinoss in rolation to soil moisturo at timo of tillago. Soil Sci. 91:178-182. Malina, F.J. 1941. Rocont dovolopmonts in tho dynamics of wind orosion. Trans. Am. Soophys. Union. 1941:262-284. *Morva, Goorgo, E. and Gary Potorson. 1983. Uind orosion sampling in tho North Contral Rogion. ASAE Papor No. 83-2133, ASAE, 8T. Josoph, MI. Parnas, Hanna. 1975. Modol for docomposition of organic matorial by microorganisms. Soil Biol. Biochom. 7:161-169. Potorson, Ivars. 1986. Rolling rocks and tumbling dico. Scionco Nows 129(18):282-283. 4Pfost, D.L., T.R. McCarty, and J.M. Grogory. 1985. Uind orosion oquation for singlo ovonts. ASAE Papor No. MCR 85-136, Mid- Contral mooting ASAE April 12-13. 4Possolius, John H. 1983. Tho availability of crop rosiduo and its potontial as a fuol. Unpublishod Mastor's Thosis. Michigan Stato Univorsity. Ouisonborry, Dwight. 1981. Consorvation Tillago. Tochnical Notos, USDA-8C8, Michigan, Agronomy No. 17, July. Ouisonborry, Dwight. 1984. Uind orosion control. Tochnical Guido: USDA-SCS-Michigan. Roddy, K.R., R. Khalool and M.R. Ovorcash. 1980. Carbon transformation in tho land aroas rocoivingorganic wastos in rolation to nonpoint sourco polution. A concoptual modol. Jour. Environ. Oual. 9:434-442. Ritchio, Joo T. and Burnott, Earl. 1971. Dryland ovaporativo flux in subhumid climato. II. Plant Influoncos. Agron. Jour. 63(1):56-62. Schwab, S.O., R.K. Frovort, T.U. Edministor, and K.K. Barnos. 1981. SOIL AND UATER CONSERVATION ENGINEERING. John Uiloy & Sons, Inc. Now York. Skidmoro, E.L. and N.P. Uoodruff. 1968. Uind orosion forcos and thoir uso in prodicting soil loss. USDA Agric. Handbook 346. Skidmoro E.L. and L.J. Hagan. 1977. Roducing wind orosion with barriors. Trans. ASAE 20:911-915. 118 Skidmoro, E.L., P.S. Fishor, and N.P. Uoodruff. 1970. Uind orosion oquation: computor solution and application. Soil Sci. Soc. Amor. Proc. 34:931-935. Slonokor, L.L., and U.C. Moldonhauor. 1977. Moasuring tho amounts of crop rosiduo romaining aftor tilllago. Jour. Soil and Uator Consorvation. 32:231-236. Stanhill, G. 1969. A simplo instrumontfor fiold moasuromont of turbulont diffusion flux. Jour. Appl. Motoor. 8:509-513. 4Stono, Janico R. 1980. Suscoptibility of somo Michigan soils to wind orosion. Unpublishod Mastor's Thosis, Michigan Stato Univorsity. Swinbank, U.C. 1964. Tho oxponotial wind profilo. Ouart. Jour. Roy. Motoor. Soc. 90(384):119-135. Discussion on “Tho oxponotial wind profilo papor“. Ouart. Jour. Roy. Motoor. Soc. 92(393):416-426. Tannor, C.B. and U.L. Polton. 1960. Potontial Evapotraspiration ostimatos by tho approximato onorgy balanco mothod of Ponman. Jour. Soophys. Ros. 65:3391-3413. Uischmoior, U.H. and D.D. Smith. 1978. Prodicting rainfall orosion lossos- a to consorvation planning. Agricultural Handbook No. 537. Uoodruff, N.P. 1956. Tho spacing intorval for supplomontal sholtorbolts. J. Forostry 54:115-122. Uoodruff, N.P. and F.H. Siddoway. 1965. A wind orosion oquation. Soil Sci. Soc. Amor. Proc. 29:602-608. *Uoodruff, N.P. and F.H. Siddoway. 1973. Uind orosion control. Proc. National Tillago Conf. Dos Moinos, Iowa. Soil Cons. Soc. Am., Ankony, Iowa, pp. 156-162. Uoodruff, N.P. and U.S. Chopil. 1956. Implomonts for wind orosion control. Agric. Eng. 373751-754, 758. *Uoodruff, N.P., L. Lylos, F.H. Siddoway, and D.U. Fryroar. 1977. How to control wind orosion. Agric. Inf. Bull. No. 354. ARS, USDA. Zingg, A.U. 1951. Evaluation of tho orodibility of fiold surfacos with a portablo wind tunnol. Soil Sci. Soc. Amor. Proc. 15:11-17. Zingg, A.U. and U.S. Chopil. 1950. Aorodynamics of wind orosion. Agri. Eng. 31:279-282. 4 - donotos unroforood roforonco or porsonal communication APPEND I X E E. Indox of Authors A Andorson, 1968, 22 C Chopil, 1945a, 4, 5 Chopil, 1945b, 3 Chopil, 1945c, 7 Chopil , 1946, 6 Chopil, 1956, 7 Chopil, 1957, 15, 64 Chopil, 1959, 3,4 Chopil, 1960, 12 Chopil and Uoodruff, 1954, 12 Chopil and Uoodruff, 1959, 12 Chopil and Uoodruff, 1963, 3, 4, 6, 8, 12 Chopil and Milno, 1939, 4 Chopil and Milno, 1941a, 6, 37 Chopil, Siddoway, and Armbrust, 1963, 7 Colo 1984, 1 Colo Lylos, and Hagan, 1983, 2, 26, 62 Colvin, Laflon and Erbach, 1980, 22 F Fonstor and Uicks, 1977, 9 Fonstor, ot al 1965, 22 Fryroar, 1983, 6 Fryroar and Downos, 1975, 14 G Shidoy, ot al., 1985, 19, 20 Gillotto, 1978, 3 Gillotto and Ualkor, 1977, 5 Gilmoro, Broadbont and Bock, 1977, 17 Srogory, 1982, 2, 21, 22 Srogory, 1984a 1, 13 Grogory. 1984b 6, 14 Srogory, ot al., 1985, 2, 18, 19, 20 Srogory, ot al. 1982, 22 H Hsioh and Uildhung, 1969, 5 Harrrington, 1965, 11 Hunt, 1977, 17 K Koohostani and Srogory, 1985, 23 119 120 J Jonos, 1985, 2, 27 L Lylos, 1977, 4, 5, 6, 7 Lylos, and Uoodruff, 1961, 8 M Malina, 1941, 3, 5 Morva and Potorson, 1983, 51 p Parnas, 1975, 17 Potorson, 1986, 5 Pfost, McCarty, and Srogory, 1985, 1, 13, 16 Possolius, 1983, 13 O Ouisonborry, 1981, 24 Ouisonborry, 1984, 13 R Roddy, Khalool and Ovorcash, 1980, 17, 18 Richio and Burnott, 1971, 27 S Schwab, ot al., 1981, 10 Skidmoro and Uoodruff,1968, 59, 64, 73 Skidmoro and Hagan, 1977, 7 Skidmoro, Fishor, and Uoodruff, 1970, 12 Slonokor and Moldonhauor, 1977, 21, 22 Stanhill, 1969, 11 Stono, 1980, 5, 6, 7, G, 9, 13 Swinbank, 1964, 2, 11 T Tannor and Polton, 1960, 11 U Uischmoior and Smith, 1978, 21 Uoodruff 1956, 8 Uoodruff and Siddoway, 1965, 12, 65 Uoodruff and Chopil, 1956, 6 ’ Uoodruff, ot al., 1977, 6, 7 Z Zingg, 1951, 7 Zingg and Chopil, 1950, 6, 9, 10 75 5923 R" "I " llll I": I" u " Ellll 93 03 114 IIIIINMIUU