ELECTROSTATICPARTICLEBASEDMODELINGANDSIMULATIONOFULTRA COLDPLASMA By MayurJain ATHESIS Submittedto MichiganStateUniversity inpartialentoftherequirements forthedegreeof ElectricalEngineering-MasterofScience 2015 ABSTRACT ELECTROSTATICPARTICLEBASEDMODELINGANDSIMULATIONOF ULTRACOLDPLASMA By MayurJain Wemodelmoderatelycoupledultracoldplasmabasedonexperimentalsetupsandin- vestigatetheofexternalelectricandmagneticbysimulatingtheinteraction ofthisplasmawithconstantmagneticandradiofrequencyelectricintheformof continuousapplicationandshortpulses.Adensitydependentresonantresponseisobserved throughthesesimulationsandweinferthecausetoberapidenergytransfertoindividual electronsfromelectricthroughthecollectivemotionoftheelectroncloudratherthan acollisionbasedmechanismsincecollisionaltimescalesarefoundtobelargerthanthe responseperiod.ItisalsoobservedthatelectronevaporationncestheUCPexpan- sionbyreducingtheelectrontemperaturetly.Theseargumentsarecorroborated byexperimentalresults.Wereportdiagnosticssuchastemperature,potentialanddensity evolution,electronandionpaircorrelationfunctions,andestimatethesizeoftheUCPwith varyinginitialionizationenergiesfortheultracoldplasmathroughoutcompletesimulation. ACKNOWLEDGMENTS ThisworkwouldnothavebeenpossiblewithoutmyadvisorsDr.JohnVerboncoeurandDr. AndrewChristliebwhohavebeenexcellentmentorsandgrantedmethisgreatopportunity toworkonanexcitingresearchproject.Iamimmenselygratefultobothofthemfortheir guidancethroughoutthecompletionofmywork.Iwouldalsoliketothankmycommittee memberDr.PremChahalforhisvaluablesuggestionsandcommentsonmywork. Iwouldliketoexpressmyappreciationtomyfellowgraduatestudents,GauthamDharu- manforhisintellectualdiscussionsandconstantsupportandGuyParseyforallthetechnical helphehasome.Ithankthemandeverybodyinthegroupforcreatingaveryhealthy researchenvironment. Finally,Iwouldliketothankmyfamilyforbelievinginmeandencouragingmewithall theirloveandmotivation. iii TABLEOFCONTENTS LISTOFFIGURES ................................... v Chapter1Introduction ............................... 1 Chapter2BoundaryIntegralTreecode ..................... 3 2.1Treecodealgorithm................................5 2.2Point-clusterinteractions.............................6 2.3Regularizingthekernel..............................10 Chapter3SimulationParameters ......................... 11 3.1Initialconditions.................................11 3.2EarlyevolutionoftheUCP...........................12 Chapter4Results ................................... 15 4.1ContinuousRFresponse.............................17 4.2ResponsewithRFpulses.............................19 4.3Diagnostics....................................20 Chapter5ConclusionAndFutureWork .................... 27 BIBLIOGRAPHY .................................... 28 iv LISTOFFIGURES Figure2.1:Structureofasampleparentquadtreewithchildrennodes.Empty quadrantsarepossible..........................6 Figure2.2:Illustrationofnodetraversalforclustermonopoleapproximation...7 Figure2.3:Relativeerroronpotentialvaryingwithmultipoleorderforrandomly distributedparticlesinsideacube...................9 Figure2.4:Timingcomparisonfortreecodewithvaryingmultipoleordervs.di- rectsummationforrandomlydistributedparticlesinsideacube..9 Figure3.1:Initialplasmadistribution.......................12 Figure3.2:Scaledtemperaturevsscaledtimedisplayingkineticenergyoscillation12 Figure3.3:Electronpaircorrelationfunctionforearlyevolutioncorresponding to ' 1.................................13 Figure3.4:Ionpaircorrelationfunctionforearlyevolutioncorrespondingto ' 113 Figure3.5:SystemenergyinKforcompletesimulationdisplayingCoulombpo- tentialenergyisgreaterthankineticenergyandmingconser- vationofthetotalenergy........................14 Figure4.1:Typicalelectronescapesignalfromtheultracoldneutralplasma (1 10 5 electron-ionsystem)......................16 Figure4.2:Plasmaresponse E=k B =200 K ,1 10 5 electron-ionsystem, 6 V p p =m )withcontinuousRFapplicationof17 MHz ........17 Figure4.3:Theplasmaresponse E=k B =200 K ,1 10 5 electron-ionsystem, 6 V p p =m )withRFturnedonat5 s(bottom)atanappliedfre- quencyof ˘ 17 MHz ..........................18 Figure4.4:UCPelectroncloudresponse E=k B =200 K ,5 10 5 electron-ion system,8 V p p =m )withasingleRFpulse20 MHz ..........19 v Figure4.5:Plasmaresponsetoa8 V p p =m; 20 MHz ,2cycleRFsignalapplied tothe5 10 5 electron-ionsystem, E=k B =200 K ,showingapeak soonaftertheappliedpulse.......................20 Figure4.6:Desnityevolutionindicatingexpansionoftheplasmafor N =5 10 5 electron-ionUCPsystem........................21 Figure4.7:TemperatureevolutionoftheUCPfordensitydependentresonant response.................................22 Figure4.8:PotentialatthecenterofthecubefortheUCPdensitydependent resonantresponse............................22 Figure4.9:CoulombcollisionfrequencyintheUCPovertimeforthesimulation23 Figure4.10:RMSsizeoftheUCPfortimeofresonanceforerentfrequencies ofcontinuousRF( )andtwocycleRF( )..............24 Figure4.11:UCPresonancetimevariationwithamplitudeofRF......25 Figure4.12:Electronpaircorrelationfunctionattimeofresonantresponse...26 Figure4.13:Ionpaircorrelationfunctionattimeofresonantresponse......26 vi Chapter1 Introduction Ultracoldneutralplasmawereproducedbyrapidlyphoto-ionizingsmalllasercooledclouds ofatoms.Thesenovelplasmapresentinterestingtheoreticalchallenges.Thisworkfocuseson thedevelopmentofnewmodelingandsimulationtoolsforstudyingstronglycoupledplasma astheyfromtraditionalplasmainthatthepotentialenergyislargerthanthekinetic energy.Theseincludedustyionosphericplasma,plasmafromultra-fastlasers/materials interactions,plasmageneratedbyconventionalexplosives,molecularplasmaforchemical investigation,andevenexoticwarmdensematterfoundinhighenergydensityandastro- physicalcontexts.Forexample,considerthecaseofdustintheionosphere.Intheiono- sphere,dustparticlesaretypically100to1000timesmoremassivethanthetypicalions. Thelightmobileelectronsimpactthenon-conductingdust,whichchargesupnegatively. Onaverage,thedielectricdustcarriesordersofmagnitudemorechargethanthechargeof abackgroundion.Withahighenoughdensityofdust,theheavyimmobiledustformsa latticeofstronglyinteractingboundchargethathastheofmodifyingthepermittivity oftheplasma.Astandardquasineutralplasmaapproximationisinadequateinthiscase. Inadditiontothepossibilityofquantumthestandardquasineutralplasmamodel doesnotaccountfortwomajorchangeinthepermittivityformodelingEMwaves andimpactonrelaxationofchargedparticlesundergoingCoulombcollisionsinasystem withweaklyshieldedlongrangeinteractions.Theuniqueaspectofstronglycoupledplasma (SCP)isthatthepotentialenergyexceedsthekineticenergy.Strongcouplingisin 1 termsofthedimensionlessparameter,oftenreferredtoastheCoulombcouplingparameter, = ( Ze ) 2 kTa (1.1) whichistheratioofthepotentialenergytokineticenergy.Intheaboveexpression; Z is thechargenumberoftheionspecies, e istheunitcharge, k isBoltzmann ' sconstant, T isthetemperatureofthespeciesinKelvin, a =[3 = (4 ˇn )] 1 = 3 istheWigner-Seitzradius (meaninter-particledistance),and n isthedensityofthespecies.Couplingparameter elycorrelation.When << 1,thechargedspeciesintheplasmahasno longrangecorrelationandbinarycollisionscharacterizeCoulombscatteringforthatspecies. For ˘ 1,theplasmaspeciesinquestionbeginstoexhibitlongrangecorrelation.As increasesinthesesystems,theplasmaexhibitsacollectivebehavior,givingthesystem propertiesresemblingliquidsandsolids.Collectiveoscillationsareafundamentalfeatureof ultracoldplasma(UCP)andhelpdetermineit'sresponsetoanexternalperturbation.Fora uniformdensityplasma,ifthethermalmotionofelectronsisignored,theplasmafrequency isexpressedas ! p = p e 2 n e =m e 0 ,where e istheelectriccharge, m e istheemass oftheelectron, n e isthechargedensityand 0 isthefreespacepermittivity.SinceUCP cannotbeconsideredtohaveuniformdensities,theresonantfrequencyconditionisnot applicabledirectly,however,it'sresonantresponsetoRFisasubjectofexperimental andtheoreticalwork.UCPexpansionratescouldbemeasuredthroughapplicationofan externalRFeldsinceplasmaoscillationsaredensitydependent.Here,weexplorethis densitydependentresonantresponsebyapplyingRFcontinuouslyandinshortbursts. Ourfocusinthisworkisonthecollectivemotionoftheelectronsintheseresonantresponses. 2 Chapter2 BoundaryIntegralTreecode Thegrid-freeLagrangianapproachstartsbycastingPoisson ' sequationinintegralform, ˚ ( y )= Z G ( x j y ) ˆ ( x ) " 0 d 3 x + I @ ( ˚ ( x ) 5 x G ( x j y ) G ( x j y ) 5 x ˚ ( x )) : b n dS x (2.1) where y 2 n @ and G ( x j y )isthefreespaceGreen ' sfunction.Notethatthevolume integralistheparticularsolution, ˚ P ( y ),ofPoisson ' sequationandtheboundaryintegralis thehomogeneoussolution, ˚ H ( y ),i.e., ˚ ( y )= ˚ P ( y )+ ˚ H ( y ).Dependingontheboundary conditions, ˚ H ( y )canbeeithermodeledas ˚ H = I @ ( x ) G ( x j z ) dS x or˚ H = I @ ( x ) @ n G ( x j z ) dS x (2.2) whichisasinglelayerordoublelayerpotentialrespectivelyand ( x )and ( x )arethe unknowndipolestrengthsthatcanbedeterminedbysolvinganintegralequationforthe Poisson'sequationontheboundaryorsurface.Imposingconsistency,andappropriately handlingthesingularityof @ n G ontheboundary,weusetheaboveboundaryintegralfor ˚ H tonumericallycorrecttheparticularsolution.TheVlasovequationwritteninaLa- grangianreferenceframetransformsthemodelintoanevolutionequationwhichdescribes 3 thedynamicsofphasespacecontours, _ x k = v k _ v k = 5 ˚ P ( x k )+ 5 ˚ H ( x k ) ˚ P ( x k )= X l q l 0 ( ZZ l t G ( x l j x k ) f l ( t; x l ; v l ) d x l d v l ) where( x k ; v k )isthewmapforthephasespacecontoursofspecies k ,thesumisover l speciesand l t isthephasespacevolumeattime t .Eachpointinthewisafunctionof itsinitialphasespacepoint, x k = x k ( t; x k o ; v k o )and v k = v k ( t; x k o ; v k o ).Sincethesolutions ofthissystemarevolumepreserving,itiseasytoshowthatunderachangeofvariables, t ! t 0 ,where t 0 istheinitialphasespacevolume,thefollowingholds, f l ( t; x l ( t; x l o ; v l o ) ; x l ( t; x l o ; v l o )) j J ( x l ; v l ) j = f l ( t; x l o ; v l o )(2.3) where J ( x l ; v l )istheJacobian.Giventhisidentity,theLagrangianwmapmaybewritten as, _ x k ( t; x k o ; v k o )= v k ( t; x k o ; v k o ) _ v k ( t; x k o ; v k o )= 5 ˚ P ( x k ( t; x k o ; v k o ))+ ˚ H ( x k ( t; x k o ; v k o ))(2.4) ˚ P ( x k ( t; x k o ; v k o ))= X l q l 0 ZZ l t 0 G ( x l ( t; x l o ; v l o ) j ( x k ( t; x k o ; v k o )) f l ( t 0 ; x l o ; v l o ) d x l 0 d v l 0 (2.5) Choosing N = N + + N collocationpointsandapplyingsystematiccollocationtoEq.(2.5) givesrisetoasystemof N coupledODEwhichdescribethediscretewmap.Eq.(2.5) 4 takestheform, ˚ P ( y )= N + X j =1 q + w j 0 G ( x j j y )+ N X k =1 q w k 0 G ( x k j y )(2.6) where w j;k arequadratureweightsdeterminedat t 0 2.1Treecodealgorithm EvaluatingthesuminEq.(2.6)isanN-bodyproblemandtheCPUtimeisanimportantissue. Atreecodealgorithmisemployedtoreducetheoperationcountfrom O ( N 2 )to O ( NlogN ). Inthisalgorithm,theparticlesaredividedintoahierarchyofclustersandtheparticle-particle interactionsarereplacedbyparticle-clusterinteractionswhichareevaluatedusingmultipole expansions.TheBarnes-Huttreecodecleverlygroupsnearbybodiesandrecursivelydivides setsofbodiesstoringthemintrees(Fig.2.1).Thetopmostnoderepresentsthewhole spacewhilethechildrenformquadrantsofspace.Particlesarespatiallydividedbasedon theirphysicallocations.Eachexternalnoderepresentsasinglebodywhileeachinternal noderepresentsthegroupofbodiesbeneathit,andstoresthecenter-of-massandthetotal massofallitschildrenbodies.BarnesandHutusedmonopoleapproximationsandadivide- and-conquerevaluationstrategy.Treecodealgorithmshavebeenverysuccessfulinparticle simulationsandthereisongoinginterestinoptimizingtheirperformance. 5 Figure2.1:Structureofasampleparentquadtreewithchildrennodes.Emptyquadrants arepossible. Fig.adaptedfromTheBarnes-HutAlgorithm,TomVentimigliaandKevinWayne 2.2Point-clusterinteractions Thepotential ˚ P ( y )isexpressedas ˚ P ( y )= X C r X j 2 C r w j G ( x j j y )= X C r ˚ i ( y ;C r ) ˚ i ( y ;C r )= X j 2 C r w j G ( x j j y )(2.7) where C r = x j j x j 2 C r and x j 62f[ s C s n C r g denotesaclusterofparticlesand ˚ i ( y ;C r ) isthepotentialatpoint y duetocluster C r .Theprocedureforchoosingtheclusterswill beexplainedbelow;fornowitisenoughtoassumeclustersinEq.(2.7)arenon-overlapping andtheirunionisthewholedistribution.Tocalculatethenetforceonaparticularbody, traversethenodesofthetree,startingfromtheroot(Fig.2.2).Ifthecenter-of-massof aninternalnodeistlyfarfromthebody,approximatethebodiescontainedinthat partofthetreeasasinglebody,whosepositionisthegroup ' scenterofmassandwhose massisthegroup ' stotalmass.Thealgorithmisfastbecausewedon ' tneedtoindividually 6 Figure2.2:Illustrationofnodetraversalforclustermonopoleapproximation. Fig.adaptedfromTheBarnes-HutAlgorithm,TomVentimigliaandKevinWayne examineanyofthebodiesinthegroup.Iftheinternalnodeisnottlyfarfromthe body,recursivelytraverseeachofitssubtrees.Todetermineifanodeistlyfaraway, computethequotient s=d ,where s isthewidthoftheregionrepresentedbytheinternal node,and d isthedistancebetweenthebodyandthenode ' scenter-of-mass.Then,compare thisratioagainstathresholdvalue .If s=d< ,thentheinternalnodeissutlyfar away.Byadjustingthe parameter,wecanchangethespeedandaccuracyofthesimulation. Wealwaysuse =0 : 5,avaluecommonlyusedinpractice.Notethatif =0,thenno internalnodeistreatedasasinglebody,andthealgorithmdegeneratestobruteforce. 7 PerformingaTaylorexpansionoftheGreen ' sfunctionabouttheclustercenter x cr , ˚ i ( y ;C r ) ˇ X j 2 C r p X l =0 1 l ! @ l y G ( x cr j y ) w j ( x j x c ) l = p X l =0 1 l ! @ l x G ( x cr j y ) X j 2 C r w j ( x j x c r ) l = p X l =0 T l ( x cr ; y ) M l ( C r )(2.8) where p istheorderofapproximation, T l ( x cr ; y )isthe l th TaylorcotoftheGreen ' s function,and M l ( C )isthe l th momentofthecluster.NotethatCartesianmulti-index notationisbeingused.Thespeedupoccursbecausetheclustermomentsareindependent ofthepoint y ,whilethe T l ( x cr ;y )areindependentofthenumberofparticlesin C r .This formofthefastsummationissuitedtoaregularizedkernel.The C r haveahierarchicaltree structure.Typically, C r oneachlevelofthetreeareuniformcubesobtainedbybisectingthe previousgenerationofclustersineachcoordinatedirection.Thepotential ˚ i isevaluated usingthetreestructureinarecursivedivide-and-conquerstrategy. Weexaminetheerrorforthetreecodeincomparisonwithdirectsummation(Figure2.3) fortheproblemofcomputingpotential V foratestcaseofrandomlydistributedparticles insideacube.Thesetofrepresentativeparametervaluesusedforthetreecodewere =0 : 5 forthemultipoleacceptancecriterion(MAC), p =1:5fororderofTaylorapproximation andmaximumnumberofparticlesintheleaf N leaf =100. 8 Figure2.3:Relativeerroronpotentialvaryingwithmultipoleorderforrandomlydistributed particlesinsideacube Figure2.4showstheCPUtimeasafunctionofthenumberofparticles N andthe approximationoforder p .TheCPUtimeis O ( N 2 )fordirectsummationandisconsistent with O ( NlogN )forthetreecode.Forasmallernumberofparticles( < 10 3 )and =0 : 5, mostparticle-clusterinteractionsarecomputedbydirectsummationandsincerelatively veryfewTaylorapproximationsareevaluated,theoverheadincreases.However,witha tlylargenumberofparticles N ,thetreecodeoutperformsdirectsummation. Figure2.4:Timingcomparisonfortreecodewithvaryingmultipoleordervs.directsumma- tionforrandomlydistributedparticlesinsideacube 9 2.3Regularizingthekernel Itisimportanttonotethatin2Dand3D,theelectrostaticforce, F j (thegradientofEq. (2.1)),becomessingularasthedistancebetweentheparticlestendstozero.Whenwedis- cretizetheLagrangianformoftheVlasovequation,timesteppingparticlesmaycausetwo particlestoapproachcloserthantheirminimumseparationinthecontinuouscase.Accu- racyconstraintsimposedtoavoidthisissuecanplaceasevererestrictiononthemaximum allowabletimestep.OurapproachtoovercomingthisproblemistoregularizetheGreen ' s function,i.e.inthreedimensionsuse G d 3 D ( x j y )= 1 4 ˇ ( k x y k 2 2 + d 2 ) where d isaparameter,sothatthemaximalforcein3Disproportionalto1 =d 2 .In1D,this issueariseswhentwotestparticlescross,sincetheforcein1Dhasadiscontinuity.Hence, toachievehighorderwithexplicittimestepping,eventhe1DGreen ' sfunctionmustbe regularized. 10 Chapter3 SimulationParameters Thenumberofparametersthatoursimulationsisreducedtoaminimumbyusing lengthscaledbytheWigner-Seitzradius, a andtime, ! 1 p .Withthis,theequationsof motionandinitialconditionsarespby:massratio m i =m e ,electrondensity n e , couplingparameter e andtheCoulombpotentialregularizationparameter . 3.1Initialconditions Themassratio m i =m e istakenas100toensureionshavetimetoparticipateinthesimulation dynamics.Theinitialnumberofelectronsandionsinoursystemisontheorderof ˘ 10 5 , andwearrangetheboundaryconditionstostartwithauniformsphericalGaussianelectron- iondensitydistributiondescribedby n ( r )= n 0 exp ( r 2 = 2 ˙ 2 )(Fig.3.1),where n 0 isthe peakdensityand ˙ characterizesthespatialextentofthestronglycoupledultracoldplasma. Theseplasmatypicallyhasapeakplasmadensityof n i = n e =10 13 10 14 m 3 whichis aboutanorderortwolowerthanmostUCPexperimentsand ˙ ˘ 1mm.Webeginwith T e ' 1Kand T i ' 10 K.Theelectron-electronselfequilibrationtimeinthiscaseismore than1 s.Anexternalelectric( ˘ 2 8V/m)isappliedtopulltheescapingelectrons withtheassistanceofaguidingmagnetic( ˘ 7 9G)whichisaxiallysymmetricwith respecttotheelectrodes. 11 Figure3.1:Initialplasmadistribution 3.2EarlyevolutionoftheUCP WeobtainahistogramofelectronkineticenergiesandmatchthemtoaMaxwellian.Rapid heatinginitiallyraises ' 1.Thelongertermslowerheatingmaybeassociatedwiththree bodyrecombination. Figure3.2:Scaledtemperaturevsscaledtimedisplayingkineticenergyoscillation 12 Theelectron-electronpaircorrelationfunctionistimeaveragedoverabout t! p =3 to 7 andthecorrelationfunctionstartsoutcorrespondingtorandomlydistributedelectrons andrelaxesatalaterstage. Figure3.3:Electronpaircorrelationfunctionforearlyevolutioncorrespondingto ' 1 Theion-ioncorrelationfuntionbehavesinaverysimilarfashionexceptthatitisaveraged over t! p =65 to 70astherelaxationtimeislongerthanthatfortheelectrons.Thecoupling hereisabout ˘ 1 Figure3.4:Ionpaircorrelationfunctionforearlyevolutioncorrespondingto ' 1 13 Fromthesesimulationresults,weseethatintrinsicrapidheatingpreventsdevelopment ofastrongcorrelationevenwheninitialelectronandiontemperaturesare0 i:e; e (0)= i (0) ˘1 .Electronevaporationfromanunboundedcloud,beingacoolingmechanismalso doesnotcompetewiththeheating.Althoughthesesimulationsonlyfollowearlyevolution andplasmaexpansionatalaterstagecanbeastrongcoolingmechanismthatcouldreduce thetemperatureoftheplasma.Lowinitialtemperaturesdonotdirectlyleadtostrong correlationduringearlytimes. Figure3.5:SystemenergyinKforcompletesimulationdisplayingCoulombpotentialenergy isgreaterthankineticenergyandconservationofthetotalenergy 14 Chapter4 Results Allsimulationsinthisworkareobtainedforaonetoonephysicalrepresentationofthe chargedspecies.VelocityforthespeciesissampledfromaMaxwell-Boltzmanndistribution. Therandomnumbersusedforoursimulationsaregeneratedwiththesrandpseudorandom numbergeneratorwhichisseededwiththesystemtime.Timeintegratorforequationsof motionisfourthorderRunge-Kuttamethod.Resultsshowninthissectionaresmoothedby timeaveragingeachpointforover1000runs. Collectiveoscillationsareoneofthefundamentalfeaturesinanultracoldplasmaand canhelpcharacterizeit'sdensityastheyfreelyexpand.WeapplyexternalRFelectric toexcitetheoscillationstomeasuretheUCPexpansionratealsoallowingustoinfer earlytimetemperatureandit'ssubsequentevolution.Inthissection,resultsfromprevious experimentalUCPworkarealsodiscussedasabasisforcomparison.Welookatthe evolutionofaneutralultracoldplasma. 15 Figure4.1:Typicalelectronescapesignalfromtheultracoldneutralplasma(1 10 5 electron-ionsystem) Fig.4.1showstheplasmaevolutionandexpansionprocess.Webeginwithaninitially neutralultracoldplasmaandthereforeweseeabunchofelectronsescapeat t =0dueto theenergyofelectronsandnonettduetoabsenceofexternalThe resultingexcesspositivechargecreatesaCoulombpotentialwellgreaterthantheaverage electrontemperature,trappingtheremainingelectrons.Electronsmusthaveanenergy higherthantheinitialformationenergytoescapetheUCPandelectronsnowbeginto thermalize.Thiscreatesanenergydistributionwhereonlythehighestenergyelectronsare abletoescapetheUCPloweringtheoveralltemperatureofelectrons.Greatertemperature ofelectronscomparedtoionswillcausetheelectrondensitytodecreaseinspaceslightly relativetotheions.Thisdecreaseinelectrondensityproduceselectricthat theelectronsbutnowdrivetheionexpansion.AstheUCPsizeincreases,thepotentialwell shallowsallowingmoreelectronstoescape. 16 4.1ContinuousRFresponse Electronsfromtheultracoldplasmaescapeimmediatelydirectedbytheexternalelectric sincethereisnonett,andproducethepeakinthesignalresultingin anexcessofpositivechargeintheplasma,therebycreatingaCoulombpotentialwellwhich trapstheremainingelectrons.HighenergyelectronsbegintoescapetheUCP. Figure4.2:Plasmaresponse E=k B =200 K ,1 10 5 electron-ionsystem,6 V p p =m )with continuousRFapplicationof17 MHz InthepresenceofanexternalRFinadditiontotheresponseasseeninFig.4.1, anadditionalpeakappearsintheelectronescapesignal(Fig.4.2).TheappliedRFexcites plasmaoscillationsattheresonantfrequencyastheUCPexpandsanddecreasesindensity. Theamplitudeoftheseoscillationsismuchlessthan ˙ .Previousworkimpliedthattheac- quiredenergyiscollisionallyredistributedbutthisdoesnotoccurinstantaneouslyasthetime scaleisassociatedwiththeelectronself-equilibrationtime,whichscaleswithbothdensity andtemperatureoftheplasmaandisapproximatelyproportionalto T 3 = 2 e =n e .Theescaping 17 electronshaveahigherenergythantheaverageelectronenergy,sotheenergytransferwould infactbeslower.ItwasalsoassumedthattheappliedRFwasonlyresonantwithinregions ofplasmawheredensitiessatisfytheresonancecondition f =(1 = 2 ˇ ) p e 2 n e =m e 0 where f istheappliedRFfrequency.Weobservecollectiveoscillationstobethephenomenon. Figure4.3:Theplasmaresponse E=k B =200 K ,1 10 5 electron-ionsystem,6 V p p =m ) withRFturnedonat5 s(bottom)atanappliedfrequencyof ˘ 17 MHz WealsoapplyRFnearresonanceataparticulartimebydelayingtheapplicationuntil afteracertainpoint(5 s)(Fig.4.3)intheplasmaevolutionandmeasurethetimedelay associatedwiththecollisions,butthisproducesarapidresponseofelectronescapewithno realdependenceontemperatureordensity.Theresponsetimehereismuchshorterthan thecollisionaltimescaleimplyingatmechanismotherthancollisionalredistribution ofenergyamongtheelectrons.Theresonantresponseisalsoshiftedtolaterintime.The initialpeaksmaychangeinheightasafunctionoftheappliedfrequency.Thisrapidresponse canalsobeseenbyexcitingtheplasmawithafewcyclesofRFpulses. 18 4.2ResponsewithRFpulses WeapplyatwocyclepulsetotheUCP,generatingapeakintheresponseindicatingreso- nanceattheparticulartimefortheappliedfrequency.ApplyingshortburstsofRFpulses inducesadensitydependentresonantresponsewithashortdelaybetweentheapplication andtheresponse,indicatingyetagainthatthemodelisbasedoncollectivemotionofthe electroncloud(Fig.4.4)whichproducesinternalelectricandisthemainmechanism forenergytransfercausingindividualelectronstoescapetheplasma. Figure4.4:UCPelectroncloudresponse E=k B =200 K ,5 10 5 electron-ionsystem, 8 V p p =m )withasingleRFpulse20 MHz ThetwocycleresponsecanbecomparedwiththeUCPresponsewhennoRFisapplied todeterminewhenthesignalresponseoccursrelativetotheinitialonsetofthepulse.The peakintheresponseisobservedattheresonantfrequencyachievedbysuccessivelychanging throughmeasurements. 19 Figure4.5:Plasmaresponsetoa8 V p p =m; 20 MHz ,2cycleRFsignalappliedtothe5 10 5 electron-ionsystem, E=k B =200 K ,showingapeaksoonaftertheappliedpulse 4.3Diagnostics ResponseoftheUCPdependsstronglyonmanyparameters,densitybeingonlyoneofthem. Thenatureoftheresponseswithcontinuousapplicationandpulsescouldbecomparedunder similarconditions.TheofdelayintheRFapplicationcausesashiftintheresonance time,andresponseswithcontinuousRFapplicationchangewiththeamplitudeofthe appliedastheresonanceshiftstoanearliertimewithanincreasedamplitude,implying heatingoftheUCPthatdrivesafasterexpansion. WebeginoursimulationswithaUCPdensityofabout10 7 c m 3 andasdiscussedearlier, electronsstartescapingtheplasmaimmediatelyandtheplasmabeginstoexpand.The appliedRFdriveselectronsoutofthesystemandthereducedelectrondensitydrivesthe plasmaexpansionduetotheinternalelectricitproduces.Allthesefactorscontributeto 20 areducingUCPdensityasshownbelowin4.6.Theaveragedensitycanbedescribed by n = N= [4 ˇ ( ˙ 2 0 + v 2 0 t 2 )] 3 = 2 (4.1) where ˙ 0 istheinitialrmsradius, v 0 isthermsradialvelocitythatcouldequateto v 0 = ( k B T e =m i ) 1 = 2 .TheUCPexpansioncanberelatedtotheelectrontemperatureas ˙ ( t ) 2 = ˙ (0) 2 +( v 0 t ) 2 . n isthedensityinresonancewiththeRFassumedtobeequaltothe averagedensityinplasma. Figure4.6:Desnityevolutionindicatingexpansionoftheplasmafor N =5 10 5 electron-ion UCPsystem ThetemperatureoftheUCP(Fig.4.7),afteraninitalrise,dropssteadilywithoscillatory behaviorattheappliedRF.TheRFuponapplicationinitiallyheatsuptheelectrons toabout0 : 03eVandaselectronsbeginescapingthesystem,thetemperaturequicklydrops astheelectronswithhighestkineticenergyleavethesystemandtheslowerelectrons displayacollectiveoscillationatthefrequencyoftheRFFinaltemperatureofour UCPsystemapproachesaconsiderablylowvaluewhichispromisingfromtheperspective ofultracoldplasma. 21 Figure4.7:TemperatureevolutionoftheUCPfordensitydependentresonantresponse ThepotentialatthecenteroftheUCPsystem(Fig.4.8)isthehighestinitiallyand beginstodropastheelectronsstartescapingtheUCP.Thenowreducedelectrondensity furtherdrivestheUCPexpansionandthepotentialcontinuestodropwithanoscillatory behavioratplasmafrequencywhichisdependentonthedensity. Figure4.8:PotentialatthecenterofthecubefortheUCPdensitydependentresonant response Itisveryimportanttoconsidercollisionprocessesinnon-equilibriumplasmadynamics. Uponformation,theelectronsandionsarenotinthermalequilibriumwitheachotherand astheUCPstartsevolvingtheparticleswillworktowardsestablishingaquasi-equilibrium. 22 Themostimportanttimescalesforoursystemwouldinvolveelectron-electroninteractions orelectron-ioninteractions.Forelectron-electroninteractions,thedeterminationoftimefor aparticlewith3 = 2 k B T ofkineticenergytoundergothesameamountofenergychanging collisionsistheelectronself-equilibrationtimegivenby, t se = 0 : 266 T 3 = 2 e n e ln (4.2) where n e isin cm 3 and T e isin K .=12 ˇn e 3 D where D istheDebyescreeninglength. Forelectron-ioncollisions,wecanthetimeitwouldtakeforanet90degree fromanelectron ' soriginaltrajectoryas t 90 = 2 ˇ 2 0 p me (3 K B T ) 3 = 2 10 6 n e e 4 ln (4.3) Theelectron-ioncollisiontimescalealsofallsontheorderofelectron-electroncollisions. Figure4.9:CoulombcollisionfrequencyintheUCPovertimeforthesimulation 23 ForourUCPsystems,thesetimescalesrangefromtensofnanosecondstoafewmicrosec- ondsaccordingtothecollisionfrequencycalculatedusingtheaveragedensityandestimated temperature,whichwillalsoallowustostudythephysicsoftheseultracoldplasmasina regimewherecollisionsareimportantandinaregimewherewecantreattheUCPasacolli- sionlessHowever,UCPshaveanon-uniformdensityandstartwithauniformelectron energydistribution.Thiscomplicatestheexactmeaningofthesecollisiontimescales,and areusedasonlyestimates. AdirectcomparisonbetweencontinuousRFandthetwocycleRFmethodcannotbe madewithoutaccountingforheatingoftheUCPfromtheappliedRF,whichcausesashift intheresonancetime.Byaccountingforthechargeimbalance attheextrapolatedtime ofresonance,wecandeterminethevalueof ! peak whichcangiveusameasureofthepeak density n peak .Fromthisvalueofpeakdensityandthetotalnumberofionsandelectrons inourUCP N ion ,wecancalculatetheRMSsize ˙ ofasphericallysymmetricgaussian distributiongivenby ˙ =[ N ion = (2 ˇ ) 3 = 2 n peak ] 1 = 3 .Thisrmssizecanbeusedforanestimate ofexpansionoftheUCP. Figure4.10:RMSsizeoftheUCPfortimeofresonancefortfrequenciesofcontinuous RF( )andtwocycleRF( ) 24 WeplotthemeasuredRMSsizevaluesusingboththetwocycleandcontinuousRF(Fig. 4.10)andthereisnotcebetweenthetwotechniquesforvaluesof E=k B rangingfrom100Kto400K.Wealsomeasuretheobservedtimeofresonanceasafunction oftheamplitudeoftheappliedRF. Figure4.11:UCPresonancetimevariationwithamplitudeofRF FromtheaboveFig.4.11,itcanbeobservedthatforlower E=k B thepeaktimeas afunctionoftheappliedRFamplitudeisnotlinear.Theextrapolationforhigherenergies however,islinearallowingustomakecomparisonswithtwocyclemethod. Weobservethattheelectronandionpaircorrelations(Fig.4.12andFig.4.13)aremuch weakercomparedtothecorrelationfunctionsobtainedduringearlyevolutionoftheultra coldneutralplasma. 25 Figure4.12:Electronpaircorrelationfunctionattimeofresonantresponse Figure4.13:Ionpaircorrelationfunctionattimeofresonantresponse Thisimpliesthatthecoupling,particularlyintheelectroncomponentoftheplasmahas tlyweakenedtly,primarilyduetotheinternalelectricproduced bytheremainingchargedensities,thusnotallowingstronginteractionsbetweenthetwo chargedspecies. 26 Chapter5 ConclusionAndFutureWork ThenatureofresponseoftheUCPtoappliedRF(continuous,delayedandshort pulses)displayanearlycollisionlessmechanismforenergytransferwithinourlowdensity UCPsetup.TheappliedRFwasshowntoexciteacollectiveoscillationoftheelectroncloud intheUCPwitharesonantfrequency.Thiscollectiveresponsetotheexternalshow thatthisfrequencycanbedeterminedbythepeakdensityandchargeimbalanceinthe plasmasystem.Themethodsusedinthesesimulationsallowedustocharacterizedt propertiesoftheUCP.Weachieveconsiderablequalitativeagreementbetweenourmodel withexistingexperimentsforgiveninitialconditionsalthoughweobservethecorrelationin theUCPweakensatthetimeofthedensitydependentresonantresponsedenotingweaker couplingwhichmaybecausedbytheinternalelectricresultinginweakerinteractions andpossiblethreebodyrecombination.Weaimtoexplorefundamentalphysicsofour systemincollaborationwithexperimentalistsandsettingupahighercorrelatedgas.One ofourgoalsissettingupaFermigasforhighercorrelationsasopposedtotheRydberggas whereahigherdensityofatomsmightbelesslikely.WecouldalsouseanadaptiveYukawa treecodemodelforcomparisonofYukawaatomswithionelectronatomsandwouldliketo setupourmodelsasavirtuallaboratorytohelpdesignexperimentsetups. 27 BIBLIOGRAPHY 28 BIBLIOGRAPHY [1]T.C.Killian,S.Kulin,S.D.Bergeson,L.A.Orozco,C.Orzel,andS.L.Rolston, CreationofanUltracoldNeutralPlasma ,Phys.Rev.Lett.83,4776(1999) [2]TrumanWilson,Wei-TingChen,JacobRoberts, Density-dependentresponseofan ultracoldplasmatofew-cycleradio-frequencypulses ,Phys.Rev.A.87,013410(2013) [3]Y.D.Jung, Quantum-mechanicalctsonelectron-electronscatteringindensehigh- temperatureplasmas ,PhysicsofPlasmas8(2001),3842 [4]SGBrush,HLSahlin,andE.Teller, Montecarlostudyofaone-componentplasma.i , TheJournalofChemicalPhysics45(1966),2102 [5]S.Ichimaru, Stronglycoupledplasmas:high-densityclassicalplasmasanddegenerate electronliquids ,ReviewsofModernPhysics54,no.4,1017(1982) [6]GEHMThomas,U.Konopka,andM.Zuzic, Theplasmacondensation:Liquid andcrystallineplasmas ,PhysicsofPlasmas6,1769-1780(1999) [7]AJChristlieb,WNGHitchon,JELawler,andGGLister, IntegralandLagrangian simulationsofparticleandradiationtransportinplasma ,JournalofPhysicsD:Applied Physics42,194007(2009) [8]AJChristlieb,R.Krasny,andJPVerboncoeur, Atreecodealgorithmforsimulating electrondynamicsinaPenning-Malmbergtrap ,Computerphysicscommunications 164,no.1-3,306-310(2004) [9]AJChristlieb,R.Krasny,andJPVerboncoeur, particlesimulationofavirtual cathodeusingagrid-freetreecodePoissonsolver ,IEEETransactionsonPlasmaScience 32,no.2(2004) [10]AJChristlieb,R.Krasny,andJPVerboncoeur,J.W.andI.D.Boyd Grid-free plasmasimulationtechniques ,IEEETransactionsonPlasmaScience34,no.2,149-165 (2006) [11]G.B.Folland Introductiontopartialentialequations ,PrincetonUnivPr,1995 29 [12]L.Greengard, Fastalgorithmsforclassicalphysics ,Science265(1994),no.5174,909 [13]J.BarnesandP.Hut, Ahierarchical0(NlogN)force-calculationalgorithm ,nature 324,4(1986) [14]C.R.Anderson, Animplementationofthefastmultipolemethodwithoutmultipoles , SIAMJournalonScienandStatisticalComputing13,923(1992) [15]L.vanDommelenandE.A.Rundensteiner, Fast,adaptivesummationofpointforces inthetwo-dimensionalPoissonequation ,JournalofComputationalPhysics83,no.1, 126-147(1989) [16]J.K.SalmonandM.S.Warren, Skeletonsfromthetreecodecloset ,JournalofCompu- tationalPhysics111,no.1,136-155(1994) [17]W.D.ElliottandJ.A.BoardJr, FastFouriertransformacceleratedfastmultipoleal- gorithm ,SIAMJournalonScienComputing17,398(1996) [18]H.Cheng,L.Greengard,andV.Rokhlin Afastadaptivemultipolealgorithminthree dimensions ,JournalofComputationalPhysics155,no.2,468-498(1999) [19]J.Makino, YetAnotherFastMultipoleMethodwithoutMultipoles-PseudoparticleMul- tipoleMethod*1 ,JournalofComputationalPhysics151,no.2,910-920(1999) [20]W.Dehnen, Ahierarchical(n)forcecalculationalgorithm ,JournalofComputational Physics179,no.1,27-42(2002) [21]L.Ying,G.Biros,andD.Zorin, Akernel-independentadaptivefastmultipolealgorithm intwoandthreedimensions*1 ,JournalofComputationalPhysics196,no.2,591-626 (2004) [22]S.G.KuzminandT.M.O ' Neil, NumericalSimulationofUltracoldPlasmas:How RapidIntrinsicHeatingLimitstheDevelopmentofCorrelation ,Phys.Rev.Lett.88, 065003(2002) [23]S.D.Bergeson,A.Denning,M.Lyon,andF.Robicheaux, Densityandtemperature scalingofdisorder-inducedheatinginultracoldplasmas ,Phys.Rev.A83,023409(2011) [24]C.E.Simien,Y.C.Chen,P.Gupta,S.Laha,Y.N.Martinez,P.G.Mickelson,S. B.Nagel,andT.C.Killian, UsingAbsorptionImagingtoStudyIonDynamicsinan UltracoldNeutralPlasma ,Phys.Rev.Lett.92,143001(2004) 30 [25]S.Kulin,T.C.Killian,S.D.Bergeson,andS.L.Rolston, PlasmaOscillationsand ExpansionofanUltracoldNeutralPlasma ,Phys.Rev.Lett.85,318(2000) [26]K.A.TwedtandS.L.Rolston, ElectronicDetectionofCollectiveModesofanUltracold Plasma ,Phys.Rev.Lett.108,065003(2012) [27]A.Lyubonko,T.Pohl,andJ.M.Rost, Collectiveenergyabsorptionofultracoldplasmas throughelectronicedge-modes ,NewJ.Phys.14,053039(2012) [28]L.Spitzer,Jr. PhysicsofFullyIonizedGases ,(Dover,NewYork)(1962) [29]TrumanM.Wilson, Dynamicsoflow-densityultracoldplasmasinexternallyapplied electricandmagnetic ,UnpublishedPhDthesis,ColoradoStateUniversity(2013) [30]G.B.Folland, IntroductiontoPartialentialEquations ,PrincetonUniversityPress (1995) [31]PeijunLi,HansJohnston,RobertKrasny, Acartesiantreecodeforscreenedcoulomb interactions ,JournalofComputationalPhysics228,3858-3868(2009) [32]P.Gupta,S.Laha,C.E.Simien,H.Gao,J.Castro,T.C.Killian,andT.Pohl, Electron-TemperatureEvolutioninExpandingUltracoldNeutralPlasmas ,Phys.Rev. Lett.99,075005(2007) [33]T.C.Killian,T.Pattard,T.Pohl,J.M.Rost Ultracoldneutralplasmas ,PhysicsReports 449,77?130(2007) [34]J.P.Verboncoeur Particlesimulationofplasmas:reviewandadvances ,PlasmaPhysics andControlledFusion47(5A),A231(2005) [35]P.M.Bellan, FundamentalsofPlasmaPhysics ,(CambridgeUniversityPress,New York,2006) [36]D.A.GurnettandABhattacharjee, IntroductiontoPlasmaPhysics (CambridgeUni- versityPress,2005) [37]S.Laha,P.Gupta,C.E.Simien,H.Gao,J.Castro,T.Pohl,andT.C.Killian, Ex- perimentalRealizationofanExactSolutiontotheVlasovEquationsforanExpanding Plasma ,Phys.Rev.Lett.99,155001(2007) 31 [38]H.J.MetcalfandP.vanderStraten, LaserCoolingandTrapping (Springer-Verlag, NewYork,1999) [39]J.-H.Choi,B.KnX.H.Zhang,A.P.PovilusandG.Raithel, TrappingandEvo- lutionDynamicsofUltracoldTwo-ComponentPlasmas ,Phys.Rev.Lett.100,175002 (2008) [40]MichaelE.GlinskyandThomasM.O?Neil, Guidingcenteratoms:Three-bodyrecom- binationinastronglymagnetizedplasma ,Phys.FluidsB3(5),(May1991) [41]F.RobicheauxandJamesD.Hanson, Simulatedexpansionofanultra-cold,neutral plasma ,Phys.Plasmas,Vol.10,No.6,(June2003) [42]M.Bonitz,D.Semkat,andD.Kremp, Short-timedynamicsofcorrelatedmany-particle systems:Moleculardynamicsversusquantumkinetics ,Phys.Rev.E56,1246,(July 1997) 32