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ABSTRACT

ELECTROSTATIC PARTICLE BASED MODELING AND SIMULATION OF
ULTRA COLD PLASMA

By

Mayur Jain

We model moderately coupled ultra cold plasma based on experimental setups and in-

vestigate the influence of external electric and magnetic fields by simulating the interaction

of this plasma with constant magnetic field and radio frequency electric fields in the form of

continuous application and short pulses. A density dependent resonant response is observed

through these simulations and we infer the cause to be rapid energy transfer to individual

electrons from electric fields through the collective motion of the electron cloud rather than

a collision based mechanism since collisional time scales are found to be larger than the

response period. It is also observed that electron evaporation influences the UCP expan-

sion by reducing the electron temperature significantly. These arguments are corroborated

by experimental results. We report diagnostics such as temperature, potential and density

evolution, electron and ion pair correlation functions, and estimate the size of the UCP with

varying initial ionization energies for the ultra cold plasma throughout complete simulation.
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Chapter 1

Introduction

Ultracold neutral plasma were produced by rapidly photo-ionizing small laser cooled clouds

of atoms. These novel plasma present interesting theoretical challenges. This work focuses on

the development of new modeling and simulation tools for studying strongly coupled plasma

as they differ from traditional plasma in that the potential energy is larger than the kinetic

energy. These include dusty ionospheric plasma, plasma from ultra-fast lasers/materials

interactions, plasma generated by conventional explosives, molecular plasma for chemical

investigation, and even exotic warm dense matter found in high energy density and astro-

physical contexts. For example, consider the case of dust in the ionosphere. In the iono-

sphere, dust particles are typically 100 to 1000 times more massive than the typical ions.

The light mobile electrons impact the non-conducting dust, which charges up negatively.

On average, the dielectric dust carries orders of magnitude more charge than the charge of

a background ion. With a high enough density of dust, the heavy immobile dust forms a

lattice of strongly interacting bound charge that has the effect of modifying the permittivity

of the plasma. A standard quasi neutral plasma approximation is inadequate in this case.

In addition to the possibility of quantum effects, the standard quasi neutral plasma model

does not account for two major effects: change in the permittivity for modeling EM waves

and impact on relaxation of charged particles undergoing Coulomb collisions in a system

with weakly shielded long range interactions. The unique aspect of strongly coupled plasma

(SCP) is that the potential energy exceeds the kinetic energy. Strong coupling is defined in
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terms of the dimensionless parameter, often referred to as the Coulomb coupling parameter,

Γ =
(Ze)2

kTa
(1.1)

which is the ratio of the potential energy to kinetic energy. In the above expression; Z is

the charge number of the ion species, e is the unit charge, k is Boltzmann's constant, T

is the temperature of the species in Kelvin, a = [3/(4πn)]1/3 is the Wigner-Seitz radius

(mean inter-particle distance), and n is the density of the species. Coupling parameter Γ

effectively defines correlation. When Γ << 1, the charged species in the plasma has no

long range correlation and binary collisions characterize Coulomb scattering for that species.

For Γ ∼ 1, the plasma species in question begins to exhibit long range correlation. As

Γ increases in these systems, the plasma exhibits a collective behavior, giving the system

properties resembling liquids and solids. Collective oscillations are a fundamental feature of

ultra cold plasma (UCP) and help determine it’s response to an external perturbation. For a

uniform density plasma, if the thermal motion of electrons is ignored, the plasma frequency

is expressed as ωp =
√
e2ne/meε0, where e is the electric charge, me is the effective mass

of the electron, ne is the charge density and ε0 is the free space permittivity. Since UCP

cannot be considered to have uniform densities, the resonant frequency condition is not

applicable directly, however, it’s resonant response to RF fields is a subject of experimental

and theoretical work. UCP expansion rates could be measured through application of an

external RF field since plasma oscillations are density dependent. Here, we explore this

density dependent resonant response by applying RF fields continuously and in short bursts.

Our focus in this work is on the collective motion of the electrons in these resonant responses.
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Chapter 2

Boundary Integral Treecode

The grid-free Lagrangian approach starts by casting Poisson's equation in integral form,

φ(y) =

∫
Ω
G(x|y)

ρ(x)

ε0
d3x +

∮
∂Ω

[
(φ(x)5x G(x|y)−G(x|y)5x φ(x))

]
.n̂ dSx (2.1)

where y ∈ Ω \ ∂Ω and G(x|y) is the free space Green's function. Note that the volume

integral is the particular solution, φP (y), of Poisson's equation and the boundary integral is

the homogeneous solution, φH(y), i.e., φ(y) = φP (y) +φH(y). Depending on the boundary

conditions, φH(y) can be either modeled as

φH =

∮
∂Ω

α(x)G(x|z) dSx or φH =

∮
∂Ω

β(x)∂nG(x|z) dSx (2.2)

which is a single layer or double layer potential respectively and α(x) and β(x) are the

unknown dipole strengths that can be determined by solving an integral equation for the

Poisson’s equation on the boundary or surface. Imposing consistency, and appropriately

handling the singularity of ∂nG on the boundary, we use the above boundary integral for

φH to numerically correct the particular solution. The Vlasov equation written in a La-

grangian reference frame transforms the model into an evolution equation which describes
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the dynamics of phase space contours,

ẋk = vk

v̇k = 5φP (xk) +5φH(xk)

φP (xk) =
∑
l∈±

ql

ε0
(

∫ ∫
Γlt

G(xl|xk)f l(t,xl,vl) dxldvl)

where (xk,vk) is the flow map for the phase space contours of species k, the sum is over l

species and Γl
t is the phase space volume at time t. Each point in the flow is a function of

its initial phase space point, xk = xk(t,xko ,v
k
o) and vk = vk(t,xko ,v

k
o). Since the solutions

of this system are volume preserving, it is easy to show that under a change of variables,

Γt → Γt0, where Γt0 is the initial phase space volume, the following holds,

f l(t,xl(t,xlo,v
l
o),xl(t,xlo,v

l
o))|J(xl,vl)| = f l(t,xlo,v

l
o) (2.3)

where J(xl,vl) is the Jacobian. Given this identity, the Lagrangian flow map may be written

as,

ẋk(t,xko ,v
k
o) = vk(t,xko ,v

k
o)

v̇k(t,xko ,v
k
o) = 5φP (xk(t,xko ,v

k
o)) + φH(xk(t,xko ,v

k
o)) (2.4)

φP (xk(t,xko ,v
k
o)) =

∑
l

ql

ε0

∫ ∫
Γlt0

G(xl(t,xlo,v
l
o)|(xk(t,xko ,v

k
o))f l(t0,x

l
o,v

l
o)dxl0dv

l
0 (2.5)

Choosing N = N+ +N−collocation points and applying systematic collocation to Eq. (2.5)

gives rise to a system of N coupled ODE which describe the discrete flow map. Eq. (2.5)
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takes the form,

φP (y) = −
N+∑
j=1

q+wj

ε0
G(xj |y) +

N−∑
k=1

q−wk

ε0
G(xk|y) (2.6)

where wj,k are quadrature weights determined at t0

2.1 Treecode algorithm

Evaluating the sum in Eq.(2.6) is an N-body problem and the CPU time is an important issue.

A treecode algorithm is employed to reduce the operation count from O(N2) to O(NlogN).

In this algorithm, the particles are divided into a hierarchy of clusters and the particle-particle

interactions are replaced by particle-cluster interactions which are evaluated using multipole

expansions. The Barnes-Hut treecode cleverly groups nearby bodies and recursively divides

sets of bodies storing them in trees (Fig. 2.1). The topmost node represents the whole

space while the children form quadrants of space. Particles are spatially divided based on

their physical locations. Each external node represents a single body while each internal

node represents the group of bodies beneath it, and stores the center-of-mass and the total

mass of all its children bodies. Barnes and Hut used monopole approximations and a divide-

and-conquer evaluation strategy. Treecode algorithms have been very successful in particle

simulations and there is ongoing interest in optimizing their performance.
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Figure 2.1: Structure of a sample parent quadtree with children nodes. Empty quadrants
are possible.

Fig. adapted from The Barnes-Hut Algorithm, Tom Ventimiglia and Kevin Wayne

2.2 Point-cluster interactions

The potential φP (y) is first expressed as

φP (y) =
∑
Cr

∑
j∈Cr

wjG(xj |y) =
∑
Cr

φi(y, Cr)

φi(y, Cr) =
∑
j∈Cr

wjG(xj |y) (2.7)

where Cr =
{
xj |xj ∈ Cr and xj 6∈ {∪sCs \Cr}

}
denotes a cluster of particles and φi(y, Cr)

is the potential at point y due to cluster Cr. The procedure for choosing the clusters will

be explained below; for now it is enough to assume clusters in Eq. (2.7) are non-overlapping

and their union is the whole distribution. To calculate the net force on a particular body,

traverse the nodes of the tree, starting from the root (Fig. 2.2). If the center-of-mass of

an internal node is sufficiently far from the body, approximate the bodies contained in that

part of the tree as a single body, whose position is the group's center of mass and whose

mass is the group's total mass. The algorithm is fast because we don't need to individually
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Figure 2.2: Illustration of node traversal for cluster monopole approximation.
Fig. adapted from The Barnes-Hut Algorithm, Tom Ventimiglia and Kevin Wayne

examine any of the bodies in the group. If the internal node is not sufficiently far from the

body, recursively traverse each of its subtrees. To determine if a node is sufficiently far away,

compute the quotient s/d, where s is the width of the region represented by the internal

node, and d is the distance between the body and the node's center-of-mass. Then, compare

this ratio against a threshold value θ. If s/d < θ, then the internal node is sufficiently far

away. By adjusting the θ parameter, we can change the speed and accuracy of the simulation.

We always use θ = 0.5, a value commonly used in practice. Note that if θ = 0, then no

internal node is treated as a single body, and the algorithm degenerates to brute force.
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Performing a Taylor expansion of the Green's function about the cluster center xcr,

φi(y, Cr) ≈
∑
j∈Cr

p∑
l=0

1

l!
∂lyG(xcr|y)

(
wj(xj − xc)

l)
=

p∑
l=0

1

l!
∂lxG(xcr|y)

∑
j∈Cr

wj(xj − xcr)
l

=

p∑
l=0

Tl(xcr,y)Ml(Cr) (2.8)

where p is the order of approximation, Tl(xcr,y) is the lth Taylor coefficient of the Green's

function, and Ml(C) is the lth moment of the cluster. Note that Cartesian multi-index

notation is being used. The speedup occurs because the cluster moments are independent

of the point y, while the Tl(xcr, y) are independent of the number of particles in Cr. This

form of the fast summation is suited to a regularized kernel. The Cr have a hierarchical tree

structure. Typically, Cr on each level of the tree are uniform cubes obtained by bisecting the

previous generation of clusters in each coordinate direction. The potential φi is evaluated

using the tree structure in a recursive divide-and-conquer strategy.

We examine the error for the treecode in comparison with direct summation (Figure 2.3)

for the problem of computing potential V for a test case of randomly distributed particles

inside a cube. The set of representative parameter values used for the treecode were θ = 0.5

for the multipole acceptance criterion (MAC), p = 1 : 5 for order of Taylor approximation

and maximum number of particles in the leaf Nleaf = 100.

8



Figure 2.3: Relative error on potential varying with multipole order for randomly distributed
particles inside a cube

Figure 2.4 shows the CPU time as a function of the number of particles N and the

approximation of order p. The CPU time is O(N2) for direct summation and is consistent

with O(NlogN) for the treecode. For a smaller number of particles (< 103) and θ = 0.5,

most particle - cluster interactions are computed by direct summation and since relatively

very few Taylor approximations are evaluated, the overhead increases. However, with a

sufficiently large number of particles N , the treecode outperforms direct summation.

Figure 2.4: Timing comparison for treecode with varying multipole order vs. direct summa-
tion for randomly distributed particles inside a cube
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2.3 Regularizing the kernel

It is important to note that in 2D and 3D, the electrostatic force, Fj (the gradient of Eq.

(2.1)), becomes singular as the distance between the particles tends to zero. When we dis-

cretize the Lagrangian form of the Vlasov equation, time stepping particles may cause two

particles to approach closer than their minimum separation in the continuous case. Accu-

racy constraints imposed to avoid this issue can place a severe restriction on the maximum

allowable time step. Our approach to overcoming this problem is to regularize the Green's

function, i.e. in three dimensions use

Gd
3D(x|y) = − 1

4π(‖x− y‖22 + d2)

where d is a parameter, so that the maximal force in 3D is proportional to 1/d2. In 1D, this

issue arises when two test particles cross, since the force in 1D has a discontinuity. Hence,

to achieve high order with explicit time stepping, even the 1D Green's function must be

regularized.
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Chapter 3

Simulation Parameters

The number of parameters that define our simulations is reduced to a minimum by using

length scaled by the Wigner-Seitz radius, a and time, ω−1
p . With this, the equations of

motion and initial conditions are specified by : mass ratio mi/me, electron density ne,

coupling parameter Γe and the Coulomb potential regularization parameter ε.

3.1 Initial conditions

The mass ratiomi/me is taken as 100 to ensure ions have time to participate in the simulation

dynamics. The initial number of electrons and ions in our system is on the order of ∼ 105,

and we arrange the boundary conditions to start with a uniform spherical Gaussian electron-

ion density distribution described by n(r) = n0 exp(−r2/2σ2) (Fig. 3.1), where n0 is the

peak density and σ characterizes the spatial extent of the strongly coupled ultra cold plasma.

These plasma typically has a peak plasma density of ni = ne = 1013 − 1014 m−3 which is

about an order or two lower than most UCP experiments and σ ∼ 1 mm. We first begin with

Te ' 1 K and Ti ' 10µK. The electron-electron self equilibration time in this case is more

than 1µs . An external electric field (∼ 2− 8 V/m) is applied to pull the escaping electrons

with the assistance of a guiding magnetic field (∼ 7− 9 G) which is axially symmetric with

respect to the electrodes.
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Figure 3.1: Initial plasma distribution

3.2 Early evolution of the UCP

We obtain a histogram of electron kinetic energies and match them to a Maxwellian. Rapid

heating initially raises Γ ' 1. The longer term slower heating maybe associated with three

body recombination.

Figure 3.2: Scaled temperature vs scaled time displaying kinetic energy oscillation
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The electron-electron pair correlation function is time averaged over about tωp = 3 to 7

and the correlation function starts out flat corresponding to randomly distributed electrons

and relaxes at a later stage.

Figure 3.3: Electron pair correlation function for early evolution corresponding to Γ ' 1

The ion-ion correlation funtion behaves in a very similar fashion except that it is averaged

over tωp = 65 to 70 as the relaxation time is longer than that for the electrons. The coupling

here is about Γ ∼ 1

Figure 3.4: Ion pair correlation function for early evolution corresponding to Γ ' 1
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From these simulation results, we see that intrinsic rapid heating prevents development

of a strong correlation even when initial electron and ion temperatures are 0 i.e,Γe(0) =

Γi(0) ∼ ∞. Electron evaporation from an unbounded cloud, being a cooling mechanism also

does not compete with the heating. Although these simulations only follow early evolution

and plasma expansion at a later stage can be a strong cooling mechanism that could reduce

the temperature of the plasma. Low initial temperatures do not directly lead to strong

correlation during early times.

Figure 3.5: System energy in K for complete simulation displaying Coulomb potential energy
is greater than kinetic energy and confirming conservation of the total energy
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Chapter 4

Results

All simulations in this work are obtained for a one to one physical representation of the

charged species. Velocity for the species is sampled from a Maxwell-Boltzmann distribution.

The random numbers used for our simulations are generated with the srand pseudo random

number generator which is seeded with the system time. Time integrator for equations of

motion is fourth order Runge-Kutta method. Results shown in this section are smoothed by

time averaging each point for over 1000 runs.

Collective oscillations are one of the fundamental features in an ultra cold plasma and

can help characterize it’s density as they freely expand. We apply external RF electric

fields to excite the oscillations to measure the UCP expansion rate also allowing us to infer

early time temperature and it’s subsequent evolution. In this section, results from previous

experimental UCP work are also discussed as a basis for comparison. We first look at the

evolution of a neutral ultra cold plasma.
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Figure 4.1: Typical electron escape signal from the ultra cold neutral plasma (1 × 105

electron-ion system)

Fig. 4.1 shows the plasma evolution and expansion process. We begin with an initially

neutral ultra cold plasma and therefore we see a bunch of electrons escape at t = 0 due to

the finite energy of electrons and no net confinement due to absence of external fields. The

resulting excess positive charge creates a Coulomb potential well greater than the average

electron temperature, trapping the remaining electrons. Electrons must have an energy

higher than the initial formation energy to escape the UCP and electrons now begin to

thermalize. This creates an energy distribution where only the highest energy electrons are

able to escape the UCP lowering the overall temperature of electrons. Greater temperature

of electrons compared to ions will cause the electron density to decrease in space slightly

relative to the ions. This decrease in electron density produces electric fields that confine

the electrons but now drive the ion expansion. As the UCP size increases, the potential well

shallows allowing more electrons to escape.
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4.1 Continuous RF response

Electrons from the ultracold plasma escape immediately directed by the external electric

field since there is no net confinement, and produce the first peak in the signal resulting in

an excess of positive charge in the plasma, thereby creating a Coulomb potential well which

traps the remaining electrons. High energy electrons begin to escape the UCP.

Figure 4.2: Plasma response (∆E/kB = 200K, 1× 105 electron-ion system, 6Vp−p/m) with
continuous RF application of 17MHz

In the presence of an external RF field, in addition to the response as seen in Fig. 4.1,

an additional peak appears in the electron escape signal (Fig. 4.2). The applied RF excites

plasma oscillations at the resonant frequency as the UCP expands and decreases in density.

The amplitude of these oscillations is much less than σ. Previous work implied that the ac-

quired energy is collisionally redistributed but this does not occur instantaneously as the time

scale is associated with the electron self-equilibration time, which scales with both density

and temperature of the plasma and is approximately proportional to T
3/2
e /ne. The escaping

17



electrons have a higher energy than the average electron energy, so the energy transfer would

in fact be slower. It was also assumed that the applied RF was only resonant within regions

of plasma where densities satisfy the resonance condition f = (1/2π)
√
e2ne/meε0 where f

is the applied RF frequency. We observe collective oscillations to be the phenomenon.

Figure 4.3: The plasma response (∆E/kB = 200K, 1× 105 electron-ion system, 6Vp−p/m)
with RF turned on at 5µ s (bottom) at an applied frequency of ∼ 17MHz

We also apply RF near resonance at a particular time by delaying the application until

after a certain point (5µs) (Fig. 4.3) in the plasma evolution and measure the time delay

associated with the collisions, but this produces a rapid response of electron escape with no

real dependence on temperature or density. The response time here is much shorter than

the collisional time scale implying a different mechanism other than collisional redistribution

of energy among the electrons. The resonant response is also shifted to later in time. The

initial peaks may change in height as a function of the applied frequency. This rapid response

can also be seen by exciting the plasma with a few cycles of RF pulses.
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4.2 Response with RF pulses

We apply a two cycle pulse to the UCP, generating a peak in the response indicating reso-

nance at the particular time for the applied frequency. Applying short bursts of RF pulses

induces a density dependent resonant response with a short delay between the application

and the response, indicating yet again that the model is based on collective motion of the

electron cloud (Fig. 4.4) which produces internal electric fields and is the main mechanism

for energy transfer causing individual electrons to escape the plasma.

Figure 4.4: UCP electron cloud response (∆E/kB = 200K, 5 × 105 electron-ion system,
8Vp−p/m) with a single RF pulse 20MHz

The two cycle response can be compared with the UCP response when no RF is applied

to determine when the signal response occurs relative to the initial onset of the pulse. The

peak in the response is observed at the resonant frequency achieved by successively changing

through measurements.
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Figure 4.5: Plasma response to a 8Vp−p/m, 20MHz, 2 cycle RF signal applied to the 5×105

electron-ion system, ∆E/kB = 200K, showing a peak soon after the applied pulse

4.3 Diagnostics

Response of the UCP depends strongly on many parameters, density being only one of them.

The nature of the responses with continuous application and pulses could be compared under

similar conditions. The effect of delay in the RF application causes a shift in the resonance

time, and responses with continuous RF application change with the amplitude of the field

applied as the resonance shifts to an earlier time with an increased amplitude, implying

heating of the UCP that drives a faster expansion.

We begin our simulations with a UCP density of about 107cm−3 and as discussed earlier,

electrons start escaping the plasma immediately and the plasma begins to expand. The

applied RF drives electrons out of the system and the reduced electron density drives the

plasma expansion due to the internal electric field it produces. All these factors contribute to
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a reducing UCP density as shown below in figure 4.6. The average density can be described

by

n̄ = N/[4π(σ2
0 + v2

0t
2)]3/2 (4.1)

where σ0 is the initial rms radius, v0 is the rms radial velocity that could equate to v0 =

(kBTe/mi)
1/2. The UCP expansion can be related to the electron temperature as σ(t)2 =

σ(0)2 + (v0t)
2. n̄ is the density in resonance with the RF field assumed to be equal to the

average density in plasma.

Figure 4.6: Desnity evolution indicating expansion of the plasma for N = 5×105 electron-ion
UCP system

The temperature of the UCP (Fig. 4.7), after an inital rise, drops steadily with oscillatory

behavior at the applied RF. The RF field upon application initially heats up the electrons

to about 0.03eV and as electrons begin escaping the system, the temperature quickly drops

as the electrons with highest kinetic energy leave the system first and the slower electrons

display a collective oscillation at the frequency of the RF field. Final temperature of our

UCP system approaches a considerably low value which is promising from the perspective

of ultra cold plasma.
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Figure 4.7: Temperature evolution of the UCP for density dependent resonant response

The potential at the center of the UCP system (Fig. 4.8) is the highest initially and

begins to drop as the electrons start escaping the UCP. The now reduced electron density

further drives the UCP expansion and the potential continues to drop with an oscillatory

behavior at plasma frequency which is dependent on the density.

Figure 4.8: Potential at the center of the cube for the UCP density dependent resonant
response

It is very important to consider collision processes in non-equilibrium plasma dynamics.

Upon formation, the electrons and ions are not in thermal equilibrium with each other and

as the UCP starts evolving the particles will work towards establishing a quasi-equilibrium.

22



The most important timescales for our system would involve electron-electron interactions

or electron-ion interactions. For electron-electron interactions, the determination of time for

a particle with 3/2kBT of kinetic energy to undergo the same amount of energy changing

collisions is the electron self-equilibration time given by,

tse =
0.266T

3/2
e

neln(Λ)
(4.2)

where ne is in cm−3 and Te is in K. Λ = 12πneλ
3
D where λD is the Debye screening length.

For electron-ion collisions, we can find the time it would take for a net 90 degree deflection

from an electron's original trajectory as

t90 =
2πε20
√
me(3KBT )3/2

106nee4ln(Λ)
(4.3)

The electron-ion collision timescale also falls on the order of electron-electron collisions.

Figure 4.9: Coulomb collision frequency in the UCP over time for the simulation
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For our UCP systems, these timescales range from tens of nanoseconds to a few microsec-

onds according to the collision frequency calculated using the average density and estimated

temperature, which will also allow us to study the physics of these ultracold plasmas in a

regime where collisions are important and in a regime where we can treat the UCP as a colli-

sionless fluid. However, UCPs have a non-uniform density and start with a uniform electron

energy distribution. This complicates the exact meaning of these collision timescales, and

are used as only estimates.

A direct comparison between continuous RF and the two cycle RF method cannot be

made without accounting for heating of the UCP from the applied RF, which causes a shift

in the resonance time. By accounting for the charge imbalance δ at the extrapolated time

of resonance, we can determine the value of ωpeak which can give us a measure of the peak

density npeak. From this value of peak density and the total number of ions and electrons

in our UCP Nion, we can calculate the RMS size σ of a spherically symmetric gaussian

distribution given by σ = [Nion/(2π)3/2npeak]1/3. This rms size can be used for an estimate

of expansion of the UCP.

Figure 4.10: RMS size of the UCP for time of resonance for different frequencies of continuous
RF (∗) and two cycle RF (•)
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We plot the measured RMS size values using both the two cycle and continuous RF (Fig.

4.10) and there is no significant difference between the two techniques for values of ∆E/kB

ranging from 100K to 400K. We also measure the observed time of resonance as a function

of the amplitude of the applied RF.

Figure 4.11: UCP resonance time variation with amplitude of RF field

From the above Fig. 4.11, it can be observed that for lower ∆E/kB the peak time as

a function of the applied RF amplitude is not linear. The extrapolation for higher energies

however, is linear allowing us to make comparisons with two cycle method.

We observe that the electron and ion pair correlations (Fig. 4.12 and Fig. 4.13) are much

weaker compared to the correlation functions obtained during early evolution of the ultra

cold neutral plasma.
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Figure 4.12: Electron pair correlation function at time of resonant response

Figure 4.13: Ion pair correlation function at time of resonant response

This implies that the coupling, particularly in the electron component of the plasma has

significantly weakened significantly, primarily due to the internal electric fields produced

by the remaining charge densities, thus not allowing strong interactions between the two

charged species.
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Chapter 5

Conclusion And Future Work

The nature of response of the UCP to applied RF fields (continuous, delayed and short

pulses) display a nearly collisionless mechanism for energy transfer within our low density

UCP setup. The applied RF was shown to excite a collective oscillation of the electron cloud

in the UCP with a resonant frequency. This collective response to the external fields show

that this frequency can be determined by the peak density and charge imbalance in the

plasma system. The methods used in these simulations allowed us to characterize different

properties of the UCP. We achieve considerable qualitative agreement between our model

with existing experiments for given initial conditions although we observe the correlation in

the UCP weakens at the time of the density dependent resonant response denoting weaker

coupling which maybe caused by the internal electric fields resulting in weaker interactions

and possible three body recombination. We aim to explore fundamental physics of our

system in collaboration with experimentalists and setting up a higher correlated gas. One

of our goals is setting up a Fermi gas for higher correlations as opposed to the Rydberg gas

where a higher density of atoms might be less likely. We could also use an adaptive Yukawa

treecode model for comparison of Yukawa atoms with ion electron atoms and would like to

set up our models as a virtual laboratory to help design experiment setups.
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