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ABSTRACT

MEASURE RIESZ SPACES

AND THE EGOROFF THEOREM

BY

Joseph Edward Quinn

Throughout the thesis we assume that we are working

with vector lattices (Riesz spaces) over the real numbers.

In the first chapter, we study a large number of

order convergence preperties and their relationships. Of

special interest are the following properties the first of

which was introduced by W. A. J. Luxemburg and A. C. Zaanen;

Definition 1. Let L be a Riesz space. An

element f E L is said to have the Egoroff property if
 

given any double sequence {0 S bnk; n,k = l,2,...,} in L

with bnk/1(If| for n = 1,2,..., there exists a sequence

I
A

0 bm,/'Ifl such that, for any m,n, there exists a

k 3(m,n) such that bm S bn,j(m,n)°

If every element of L has the Egoroff property,

then we say that L has the Egoroff pr0perty.

’

Definition 2. We will say that an element 0 2 e

* a

of the Riesz space L has property E.T. , if given any

x \O with x Se for n=1,2,..., there existsa
n n
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sequence of components {em} of e W1th em‘/” e

such that em A xn “h O(e-r.u.) for m = l,2,...,. (the

notation em A xn “h O(e-r.u.) means that there exist

sequences of real numbers {X } with X ‘X, 0 for
mn mn n

m = 1,2,..., such that e A x S X e ).

m n mn

*

If every positive element of L has property E.T. ,

'k

then we say that L has property E.T. .
 

Definition 3. We will say that an element

0 S e of the Riesz space L has property E.T., if given
 

any sequence xn \N O Wlth xn S e for n = 1,2,..., there

exists a sequence {0 S em} C L with em]? e such that

em A xn ch O(e—r.u.) for m = 1,2,...,.

If every positive element of L has preperty E.T.,

then we say that L has property E.T..
 

The second and third properties above are abstrac—

tions of some theorems (discussed in the thesis) which are

analogues of Egoroff's well known result for measure spaces.

Some interesting results involving these properties

are summed up in the following:

Theorem 1. Let L be an order separable

Archimedean Riesz space. Then, the following are equivalent:

(1) L has property E.T..

A

(2) L (the Dedekind completion of L) has prOperty

*

E.T.
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A

(3) L has the Egoroff prOperty.

(4) L has the Egoroff property.

The results of chapter I are used extensively

throughout chapter II.

We study, in chapter II, the use of spaces of

equivalence classes of measurable functions to represent

certain Archimedean Riesz spaces. The first section of

chapter II gives the basic information necessary for this

investigation. We also obtain in section 1 some interest—

ing characterization theorems which are based on a prOperty

related to the Egoroff property. In section 2, we discuss

a general embedding problem. In particular, we Obtain

necessary and sufficient conditions for a Dedekind-o-

complete Riesz space of extended type to be embeddable as

a Riesz subspace of some space of measurable functions. In

section 3 of chapter II, we consider a number of topological

properties which will guarantee that the Riesz space we are

dealing with can be considered as an order dense Riesz sub—

space of some space of measurable functions. In section 4,

we show that every locally convex, separable, metrizable,

topological vector lattice with the Egoroff property can be

so considered. We end chapter II with a discussion of some

open prdblems related to the material discussed chapters I

and II.
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Introduction

A real vector space equipped with an order

structure that is compatible with its linear structure

is called an ordered vector ppace. If the order structure

endows the space with a lattice order, then we call the

space a vector lattice or a Riesz space. Throughout this
 

exposition we will be concerned only with Riesz spaces.

For the basic definitions and lattice theoretic formulae,

we refer the reader to [(25) Chapter I].

In chapter I, we study a large number of order

convergence prOperties and their relationships. For the

definition of order convergence see [(25) Chapter I §5].

In the first section of chapter I, we introduce the basic

definitions of many of the order convergence properties

which we wish to study. Most of these properties were first

studied in [(11) Chapter 5], although one, the Egoroff

property, was introduced in [(18) Note VI]. Some new results

are obtained in section 1, and in general our development is

different from any other. Section 2 of chapter I begins a

study of the Egoroff theorem for Riesz spaces, so named since

it is an analogue of Egoroff's well known result for

measure spaces. The first result along these lines is found

in [(11) Chapter 5 2.21 p.181]. A more general result than

that in [(11)] was obtained in [(19) Thm. 42.2]. Our result,

see theorem (2.1), is more general still. In particular we
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show that it applies to arbitrary sequence spaces. In

section 3 we apply the results of section 2 to a class

of spaces known as the universally complete spaces.

Section 4 begins with a study of a property which we call

sub—order separability, and which is related to order

separability. We obtain a classification of Archimedean

Riesz spaces, see theorem (4.3), in terms of sub-order

separability. We go on to Obtain an Egoroff type theorem

which applies to arbitrary order separable Archimedean

Riesz spaces with the Egoroff preperty. Finally, we abstract

the results of our Egoroff type theorems and consider them

as properties. We end section 4 by showing that an order

separable Archimedean Riesz space has the Egoroff theorem

if and only if it has the Egoroff property, see theorem (4.10).

The results of chapter I are used extensively throughout

chapter II.

We study, in chapter II, the use of spaces of

equivalence classes of measurable functions to represent

certain Archimedean Riesz spaces. The first section of

chapter II gives the basic information necessary for this

investigation. We also obtain in section 1 some interesting

characterization theorems which are based on a property

related to the Egoroff preperty. In section 2, we discuss

a general embedding problem. In particular, we obtain

necessary and sufficient conditions for a certain class of
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Riesz spaces to be embeddable as Riesz subspaces of

some space of measurable functions. In section 3 of

chapter 11, we consider a number of topoloqical

properties which will guarantee that the Riesz space we

are dealing with can be considered as an order dense

Riesz subspace of some space of measurable functions.

In section 4, we show that every locally convex, separable,

metrizable topological vector lattice can be so represented.

We end chapter II with a discussion of some Open problems

related to the material discussed in chapters I and II.

We wish to make some comments concerning a number

of concepts which we will be making frequent use of. If

L is a Riesz space, and [xa} is a net in L, then the

notation xa/’ 'means that the net [xa} is directed up.

Similarly, the notation xa\u means that the net [xa}

is directed down. The notation xa/l x, where

[xa, x] C L, means that the net [xa) is directed up

and sup [xa) = x. Similarly, xa\ x means that the

net [xa] is directed down and inf {xa] = x. The nota-

tion KO 4 x will mean that the net [xa] order con-

verges to the element x (where by order converges we

mean that there exists a net {ya} C L with ya\. 0

such that for each a ‘we have that Ixa - xI g_ya) . If

we wish to talk about convergence with respect to a

T

topology T on L, then we will write xa 4 x. .A Riesz
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space L is said to be Dedekind complete if given any

set A C L such that A is bounded above in L (i.e.

there exists an element y 6 L such that for any x E A

we have that x g.y) then the supremum over A exists

in L. Finally, we will say that a set I EEL is ggggg

g§E§g_in L if given any x E L+ there exists a net

{xa} C I such that sup {xa} = x.

For general references to the theory of Riesz

spaces, we recommend [(18) Note VI, (19), (25), and (27)].



Chapter I

Certain Order Convergence Properties

and Their Relationships

Section 1. Basic Definitions and Relationships
 

The results of this section will be used throughout

this exposition.

We begin with a property that was introduced in

[(18) Note VI].

Definition 1.1. Let L be a Riesz space. An element
 

f E L is said to have the Egoroff property if given any

double sequence [0 3-bnk; n,k = 1,2,...,} in L with

bnk/ilfl for n = 1,2,..., then there exists a sequence

0 g_bm/7|f| such that, for any m,n, there exists a j(m,n)

such that bm 3-bn,j(m,n)°

Luxemburg and Zaanen have shown, in [(19), Thm. 40.5],

the following equivalence:

Lemma l.A. Let L be a Riesz space. An element

f E L has the Egoroff preperty if and only if given any

double sequence (0 3-bnk; n,k = 1,2,...,} in L with

bnk/Q'fl for n = 1,2,..., there exists a sequence



O g_b J/”Ifl such that, for any m, we have
m

bm 3-bm,k(m) for an apprOpr1ate k = k(m).

As a convenience to the reader we will indicate

the proof.

Proof: That the Egoroff prOperty implies this

condition is obvious. To see the other direction we replace

the original double sequence [bnkl by the double sequence

{vnk} where = inf{b b b Applying the
Vnk l,k' 2,k'°°" n,k}°

if part of the lemma to the double sequence we obtainV o

nk

a 03 Vm/ If] such that, for any m, we have Vm _<_ Vm,k(m)

for an apprOpriate k = k(m) . Taking j(m,n) = (ékm) for n S m,

k(n) for n _>_ m

it is easy to verify that v < bm— n,j(m,n) for any m,n.

The proof is complete.

Remark 1.1. It is obvious from the above lemma that

an element f of the Riesz space L has the Egoroff

property if and only if given any double sequence

[0 g_b n,k = 1,2,...,} in L with bnk/zklf' for
nk;

n = 1,2,..., there exists a dia onal se ence b

g qu [n.k(n)}

such that bn,k(n) # [fl for n = 1,2,..., (by diagonal

we mean that for each n = 1,2,..., an apprOpr1ate k = k(n)

can be chosen so that k(n) < k(n+l)).

We now introduce a few more definitions of other

order convergence prOperties.



Definition 1.2. We will say that order convergence
 

is stable in the Riesz space L if given any sequence

[xn] c: L with xn\ 0 there exists a sequence of real

numbers [an], satisfying 0 _<_ an foo, such that

anxn d 0, where n = 1,2,...,.

Definition 1.3. We will say that the Archimedean
 

Riesz space L is regular if order convergence is stable

in L, and in addition we have the prOperty that for any

sequence [ynl C L+ (where L+ denotes the positive cone

of the Riesz space L) there is a sequence of real numbers

[0 < an} such that the sequence [anynl is bounded in L,

where n = 1,2,...,.

We will refer to the last property in definition

*

(1.3) as property P .

Definition 1.4. A Riesz space L will be said to be
 

diagonalizable (or to have the diagonalization property) if
 

whenever f ,f ,f in L are such that f ~ f for
nk n nk k n

n = 1,2,..., and fn ~ f there exists a diagonal sequence

d f, where n,k = 1,2,...,.[f such that f
n,k(n)) n,k(n)

Definition 1.5. A Riesz space L will be said to

be diagonalizable op intervals if whenever fnk’fn'f in L
 

 

are such that:

1) there exists a g 6 L+ such that -g 3-fnk 3.9:
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2) fnk 4k fn for n=1,2,..., and fn4f,

then there exists a diagonal sequence

{fn,k(n)} such that fn,k(n) 4 f where n,k = 1,2,..., .

Definition 1.6. We will say that the Riesz space

L has the Egoroff properpy if every element of L has the

Egoroff property.

Theorem 1.1. The Riesz space L is diagonalizable

on intervals if and only if for every double sequence

[bn k7 n,k = 1,2,...,] in L satisfying:

1) bnk k0 for n=1,2,..., t

2) there exists a g E L+ such that bnk g g

for all n,k = 1,2,...,

there exists a diagonal sequence {bn,k(n)] such

that bn,k(n) 4 0.

Proof. The necessity is Obvious. Now, suppose that

' 0 = C —fnk'fn'f 1n L are such that [fnk' n,k 1,2,...,} [ g,g]

+

for some 9 E L , fnk 4k fn for n — 1,2,..., and

fn —. f. Note that Ifn - fnkl g | fnl + [fnkl 3 2g and

Ifn - fnkl 4 O for each n = 1,2,..., . Hence there exists

for each n a sequence Xnk\&ik 0 such that Ifn — fnkl S-Xnk'

Taking znk = xnk A 2g we have znk g 29, Ifn -
fnk| S-znk.'

and znk\.ko for each n=1,2,..., where n,k=1,2,...,
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By assumption there exists a diagonal sequence [zn k(n)}

such that zn,k(n) 4 0, but then lfn - fn,k(n)| 4 O, and

s1nce [f - fn,k(n)l-S If - fn' + Ifn - fn,k(n)|' we have

f 4 f. This completes the proof.
n,k(n)

We will refer to the condition in the last part of

theorem (1.1) as the weak diagonalization propertygp_intervals.

Remark 1.2. It is obvious that the same proof, only

simplified by the fact that we would not have to concern our-

selves with bounding the sequences [xnk}, will prove the

analogous result for diagonalizability. We thus have the

following corollary.

Corollary 1.1. The Riesz space L is diagonalizable
 

if and only if for every double sequence [bnk; n,k = 1,2,...,]

in L satisfying bngxfic O for each n = 1,2,..., there

ex1sts a diagonal sequence {bn,k(n)} such that bn,k(n) 4 0.

We will refer to the condition in the last part of

corollary (1.1) as the weak diagonalization property.

Clearly, the property, given any f E L and double

sequence [bnk; n,k = 1,2,...,} 1n L w1th bnk 7&Ifl for

n = 1,2,..., there ex1sts a diagonal sequence [bn,k(n)}

such that b 4 If], is equivalent to the weak
n,k(n)

diagonalization property on intervals. By remark (1.1) the
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first property is also equivalent to L having the

Egoroff property. Hence, we have the following corollary.

Corollary_l.2. Let L be a Riesz space. Then
 

the following are equivalent.

1) L has the Egoroff property.

2) L has the weak diagonalization property on

intervals.

3) L has the diagonalization property on

intervals.

The implication (1) e 3)) of corollary (1.2) was

provediin [(19) Thm. (41.2)]. The proof contained there

does not use the weak diagonalization property on intervals.

In fact, this property was not considered there.

Theorem 1.2. An Archimedean Riesz space L has

the weak diagonalization property if and only if L is

regular.

+

Proof. Suppose [yn) c L and let znk — k yn

(k,n = 1,2,...,). Then znk\5k0 for each n = 1,2,...,

since L is Archimedean, and hence there exists a diagonal

sequence {zn,k(n)] such that zn,k(n) 4 0. But then the

.. *

set {k(n) lyn} is bounded in L and we have property P .

Furthermore, if yk\, O in L then nyk\ kO for each

n = 1,2,..., and there exists a diagonal sequence



ll

[nyk(n)) such that nyk(n) 4 0 'where n,k = 1,2,...,.

Taking 1m = 1 for m = 1,2,...,k(1)

A 1,2,..., l<(2)-k(l)

km+k(n) = n for m = 1,2,...,k(n+l) — k(n).

We have that 1n,/‘m and lnyn 4 0. Hence L 13 regular.

On the other hand suppose L is regular and let

bnk 1‘ 0 1n L for each (n = 1,2,...), where n,k = 1,2,...,.

Then, for each n, there exists a sequence of reals

{o _<_ ink}

that for each n there exists a yn E L+ such that

such that Ankbnk 1‘0 and )‘nk/km' This implies

*

Xnkbnk g yn. By property P there eX1sts a sequence of

real numbers {On > 0} such that Bnyn 3 z for all

_ +

n — 1,2,..., where z 6 L . We have annkbnk 3,2 for all

n,k = 1,2,...,. For each n we can find a k(n) such

that k(n) < k(n+l) and But then
lL./

Bn -‘- Xn.k(n)’

nb 3.2 and, since L is Archimedean, this implies
n,k(n)

that bn,k(n) 4 O. The theorem 1s proved.

As a result of corollary (1.1) and the above theorem

(1.2) we have the following corollary.

Corollary 1.3. Let L be an Archimedean Riesz space,

then L is regular if and only if L is diagonalizable.



12

Corollary (1.3) above was proved in [(28) Thm. (6.2)].

The weak diagonalization property was not mentioned or used

in the proof found there.

Definition 1.7. Let L be a Riesz space. We will
 

say that a sequence (xn} CIL converges relatively uniform1y_
  

to an element x E L, written xn 4 x (r.u.), if there

exists an element e 6 L+ and a sequence [in] of real

numbers decreasing to zero such that Ix - xnl g The for

each n, where n = 1,2,...,. The element e is called

the regulator of convergence for the sequence [xn].

If e E L+ is the regulator of convergence for a

sequence {xn} converging relatively uniformly in L to an

element x E L, we will write xn 41x (e — r.u.).

For arbitrary Riesz spaces the concepts of relatively

uniform convergence and order convergence, for sequences,

need not be related. However, if the Riesz space is

Archimedean then quite obviously relatively uniform conver-

gence implies order convergence, for sequences.

Remark 1.2. In Archimedean Riesz spaces, order

convergence, for sequences, and relatively uniform conver—

gence are equivalent if and only if order convergence is

stable. For the proof we refer the reader to [(28) Thm. (2.1)].

The proof is not difficult and we will not produce it here.
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A linear isomorphism m taking a vector lattice

L into a vector lattice E is called a lattice isomorphism

1f g1ven any x1,x2 6 L 'we have cp(x1 A x2) =

m(x1) A ¢(x2) - in - E. If m is a lattice isomorphism

taking a Riesz space L into a Riesz space E, we say

that L is embedded in E as a Riesz subspace.

A

We recall now that a complete Riesz space L is

said to be a Dedekind completion of a Riesz space L if

it has the following properties:

a) there exists a lattice isomorphism m

A

taking L into L,

A A

b) given any element x 6 L,

A

x:
SUP[O(X):X G L and m(x) g_Q] =

>

inf{m(x):x 6 L and ¢(x) > x].

It is well known that a Riesz space L has a

Dedekind completion if and only if L is Archimedean.

[c.f. (27) Thm. (IV.ll.l) p.109].

/ It was shown in [(16) Lemma (32.3)] that the

condition (b) above can be replaced by the following condition.

A A A

b') For every x 6 L , x > 0, there exist

A

x,y 6 L+ such that O < m(x) g_x g m(y).

Another well known result is that all Dedekind

completions of Archimedean Riesz spaces are lattice
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isomorphic. Hence, it makes sense to talk about the

Dedekind completion of an Archimedean Riesz space. In

the sequel, we will make no distinction between L and

its lattice isomorphic image in its Dedekind completion.

Another important prOperty which a Riesz space

can possess is introduced in the following definition.

Definition 1.8. A Riesz space L is said to
 

be order separable if given any set A 51L such that
 

sup A exists in L, there exists a countable set

A'.E A such that sup A' = sup A.

Remark 1.3. Masterson and Crofts have shown in

[(21)] that an Archimedean Riesz space L is order

separable if and only if its Dedekind completion 3 is

order separable. They also showed that, providing L is

Archimedean and order separable, if Qn \O-in-£ then

there exists Xn\‘ O—in-L such that xn 2 Qn for each

n = 1,2,...,.

Using remark (1.3), the following proposition

follows easily.

Proposition 1.1. Let L be an Archimedean order
 

separable Riesz space. Then, the following implications

are valid.
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a) L has property P* if and only if i has

prOperty P*.

b) L is stable if and only if Q is stable.

c) L is regular if and only if i is regular.

d) L is diagonalizable if and only if i is

diagonalizable.

e) Order convergence in L is equivalent to

relatively uniform convergence in L if and only

A

if order convergence in L is equivalent to

A

relatively uniform convergence in L.

ggppf, Implication a) is trivially valid for

Archimedean Riesz spaces, without the assumption of order

separability. By virtue of corollary (1.3) the validity

of d) will follow from the validity of c). By remark (1.2)

the validity of e) is equivalent to the validity of b).

Since a) is valid, the validity of c) is seen to rest upon

the validity of b). It remains only to show that b) is

valid, but this is trivially so in view of remark (1.3).

Parts d) and e) of the above proposition were proved

in [(21)]. The other parts of the proposition were not

considered there.

we will now establish the corresponding result for

the Egoroff prOperty. This result will be used frequently

throughout this exposition.
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Theorem 1.3. Let L be an Archimedean order

separable Riesz space, then L has the Egoroff property

A

if and only if L has the Egoroff property

Proof. By virtue of corollary (1.2) proving this

theorem is equivalent to showing that L has the weak

A

diagonalization property on intervals if and only if L does.

A

Suppose L has the weak diagonalization property

on intervals. Let {b n,k = 1,2,...,} be a double
nk;

sequence in L with O S-bnk g_b E L for all

n,k = 1,2,..., and such that bnk\'k0 (in L) for each

A

n = 1,2,...,. Then bnk\'k0 (in L) for each n = 1,2,...,

and hence there exists a diagonal sequence [bn k(n)}

A

such that b 4 O (in L). By virtue of remark (1.3)
n,k(n)

this implies that b 4 O (in L) and we obtain the
n,k(n)

result that L has the weak diagonalization prOperty on

intervals.

Suppose now that L has the weak diagonalization

property on intervals. Let (fink; n,k 1, ,...,} be a

A A A

double sequence in L with O S-bnk g_b E L for all

>
N

A

n,k = 1,2,..., and such that an\g kO (in L) for each

A

n = 1,2,...,. Choose a b F L such that b 2.b. Using

remark (1.3), there exist sequences [bnk} c:L such that

. \ A

bnk\'ko (1n L) for each n = 1,2,..., and bnk ank
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for all n,k = 1,2,...,. Tak1ng gnk = bnk A b, we see

that gnk\ko (in I.) for each n = 1,2,..., gnk g b

for all n,k = 1,2,..., and gnk 2ibnk for all

n,k = 1,2,...,. But then there exists a diagonal sequence

{gn,k(n)} such that gn,k(n) 4 0 (1n L) wh1ch 1mp11es

:hat gn,k(n) 4 0 (1n L). F1nally, th1s 1mp11es that

b 4 O (in L). The proof is complete.
n,k(n)

Our next results indicate in what manner some of the

simplifications contained in this section can be put to use.

We introduce another apparently weaker diagonalization

property.

Definition 1.9. We will say that the Riesz space L

has the sub-diagonalization property if given any double

sequence [xnk; n,k=1,2,...,} in L with Xnk\'k0 for

each n = 1,2,..., there exists a sub double sequence

{xn(j)k7 j,k = 1,2,...,}, where the n = n(j) can be

.chosen so that n(j) < n(j+l), for which [Xn(j)k} is

diagonalizable.

Theorem 1.4. Let L be an Archimedean Riesz space.

Then L is sub-diagonalizable if and only if L is

diagonalizable.

Proof. The sufficiency is Obvious. For the necessity,

by virtue of corollary (1.1) and theorem (1.2), it is
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sufficient to show that L being sub-diagonalizable

implies that L is regular. Let [xn: n = 1,2,...,}

be any sequence in L+. Consider the sequence {yn}

where yn = 1sup {xi} for n = 1,2,...,. Clearly

g1gn

yn is directed up. For each n = 1,2, ...,k-lyn\,k 0.

So, there exist n(j), n(j) < n(j+l), such that

-l . . . . -l
[k Yn(j)} 1s d1agonalizable. Let k(j) yn(j) be

the apprOpr1ate diagonal sequence such that

k<j>’1yn(j, 1

L. For each n = 1,2,..., we define An = k(1)-l for

4 O. The set [k(j)- Yn(j)} is bounded in

1.3 n‘g n(l),...,An = k(j)-l for n(j-l) < nqg n(j),...,.

Then [Anyn] is bounded in L. Since xn g'yn for each

n = 1,2,..., we have [Anxn] is bounded in L and

hence L has property P*.

Now let yk\y 0 where k = 1,2,...,. Then

nka, kO for each n = 1,2, ...,. Thus, there exist

n(j). n(j) < n(j+l), such that [n(j)yk} is diagonalizable,

where j = 1,2,...,. Proceding exactly as in the proof

of theorem (1.2) we obtain that order convergence is stable

in L. The theorem is proved.

A sequence {xn; n = 1,2,...,} in a Riesz space

L is said to be order *-convergent to an element x 6 L

if every subsequence of [xn] has a subsequence which

order converges to x in L.
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Order *-convergence has been shown to be the

convergence associated with one of the intrinsically

defined topologies on certain vector lattices [c.f. (27)

§3 Chapter'VT]. Peressini has shown [(25) Prop. (5.6)

p. 47] that if E is a Riesz space with the diagonali-

zation property then the set mapping A 4 A defined

for subsets A of E by A = {x G E : {xn} order

converges to x for some [xn} c A} is a closure operator

on E. He further showed that if J is the unique

topology on E determined by this closure operator then

J-convergence is equivalent to order *-convergence; for

sequences. Our next result establishes the converse of

this result for Archimedean Riesz spaces.

Theorem 1.5. Let E be an Archimedean Riesz space.

If the set mapping A 4 A defined for subsets A of E

by A = [x 6 E : [xn} order converges to x for some

[xn} c.A] is a closure operator on E, then E is

diagonalizable.

ngpf, We will show that E must be sub-diagonali-

zable. Suppose that {Xnk; n,k = 1,2,...,] is a double

sequence in E with Xnk\”k0 for each n = 1,2,...,.

Let 0 < e 6 E. Consider the set A = {Xnk + % e}. It is

evident that [% e} C.A and that O E A. By assumption
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there exists a sequence {yj} C A such that yj 4 0,

where j = 1,2,...,. For each j, yj is of the form

1

n(

 + .) e for appropriate n = n(j)
Y3: Xn<j>.k(j> 3

. . l 1
k =k . (D . , ——T- _ \(J) If n(j) g M < then xn(3)'k(3)+ n(j) 9.2 M e 2 O

for all j = 1,2,..., and this contradicts that

l

o o + ——I._ d O 'xn(3)'k(3) n(j) e 0 Hence we may assume that

n(j) < n(j+l). Since Xn(j)k\!k0‘ for each 3, we may

assume that k(j) < k(j+l). The condition

 

Xn(j),k(j) + n(j) e 4 O 1mp11es that for some zj\uO 1n

1 . . .
L we have Xn(j),k(j) + n(j) e g zj. ThlS 1mp11es

;_zj and hence 4 0. We have shown

Xn(j).k(j) Xn(j).k<j)

that the double sequence [ j,k = 1,2,...,] is

diagonalizable. Thus, E is sub-diagonalizable. By

application of theorem (1.4) we see that E is diagonalizable.

The proof is complete.

Examples 1.1. a) Let L be the Riesz space of all
 

finitely non-zero real sequences [xn}. This space is easily

seen to be Archimedean. Since order convergence is point

wise convergence, it is not hard to check that order

convergence is stable in L. The set (en; n = 1,2,...,],

_ n n _ . n _
where en — {xi} and xi — O for 1 S n, xi — l for

*

i = n, shows that L does not have property P . Thus L

is not diagonalizable.
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b). Let L be La (i.e. the space of

bounded real sequences). Since L is bounded it clearly

has property P*. The sequence xn\,0, where xn = {yrs}

and y: = O for l g_m < n, y: = l for n g_m, does

not converge to O relatively uniformly. Therefore,

since L is Archimedean, order convergence is not stable

in L and L does not have the diagonalization property.

For n,k, i = 1,2,..., let the sequence

xnk = {y1 ] and x = [yi} be in L and satisfy

0.3 xnk/Fkx for each n = 1,2,...,. For n=1, choose

_ l 1
k — k(l) so that yl,k(l) > y1 2 y1 and let

_ 1 _
zl - (y1 - 2 Y1, O,...,O,...). For n—2, choose

k=k(2) >k(1) so that y1 >y -iy

2 \ _. _1_ ._ - i.

Y2,k(2) 4 Y2 22 Y2' and let 22 ‘ (Y1 22 y1'

y — 4L-y ,0,...,0,...). Proceding in the indicated
2 22 2

manner we obtain a diagonal sequence [Xn,k(n)] and a

sequence [Zn] such that 0 g_zn S-Xn,k(n) for each

n = 1,2,...,. Clearly zn/x and hence Xn,k(n) 4x.

Thus, L has the Egoroff property.

c). The Riesz space C[O,l] of all real

continuous functions on the interval [0,1] does not

have the Egoroff prOperty. For a direct proof we refer

the reader to [(7) Ex. (4.1) p. 72]. An indirect proof

is given in section 1 of chapter II page 115.
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d) Let L be Euclidean two space with the

lexicographical ordering (i.e. (a,b) g (c,d) if either

a'g c or a = c and b g d). This space is non-

Archimedean. Its positive cone consists of the entire

half plane with the exception of the negative y-axis. It

is not hard to see that L is regular. HOwever, the

sequence (% , %) converges relatively uniformly to 0

but does not order converge to 0.

Section 2. The Egoroff Theorem and Relatively

Uniform Convergence

A number of the properties considered in the

previous section can be reduced, in certain spaces, to

properties defined only on the components of fixed

elements (an element f in a Riesz space L is a

component of an element g E L+ if f A (g-f) = 0).

As a result of these consideration a number of

results obtained by Luxemburg and Zaanen in [(19), Chapter 7]

can be shown to hold under more general hypothesis than

stated there.

The results of this section require a restriction

of the types of Riesz spaces considered. We in general

will need some type of a projection prOperty. We,

therefore, will review now some of the pertinent definitions
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and results, which are associated with the theory of

projections in Riesz spaces. For a complete discussion

of this material we refer the reader to [(19), Chapt's.

2 and 3].

Let L be a Riesz space, and let L' be a sub—

space of L. L' is called a Riesz subspace of L if

under the induced partial ordering from L we have

that L' is a partially ordered vector space, and

for any x,y E L' we have x A y and x v y are in L'.

The Riesz subspace L' of L is said to be

an ideal if for all 91,92 6 L' and f 6 L such that

gl'g f g_g2 we have f E L'.

An ideal L' in L is called a normal ideal,

closed ideal, or pogo if given any net [gT] C (L')+

with ng and sup[gT] :9 exists in L we have

9 6 L'.

Let A be any subset of L, then

Al = [9 EL; |g| A [x] =0 forall x EA]. It is

easy to show that AL is in general a band in L.

A band B in L is said to be a projection band
 

if given any u G L+ we have that sup{v: v E B and v g_u}

exists. In this case L = B 6 Bl .

If L = B1 9 32 where B1 and 82 are bands

_ 1 _ 11 _ 1 l
1 - 82 — B1 — (El) and 31,32 are

projection bands.

in L, then B
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If B is a projection band in L, then for

every u E L there exists u1.u2 6 L such that

u + u = u and u1 E B, u 6 B‘L. The element u1
1 2 2

is called the component of. p_ ip_the ppojection band ‘B.
 

If PB is the Operator on L which takes every

element of L to its component in the projection band B,

then PE is a Riesz homomorphism.

If B=Bb=(b]“' where beL then B is

called the principal band generoted py_the element b E L.

A Riesz space L is said to have the projection

property (P.P.) if every hand in L has the

projection prOperty.

A Riesz space L is said to have the principal

projection property (P.P.P.) if every principal band in

L has the projection property.

By A(L), Ap(L), P(L), Pp(L): we will denote

the set of all bands, principal bands, projection bands,

principal projection bands, respectively, in the Riesz

space L. A(L) forms a distributive lattice with unit

when ordered by inclusion. If L is Archimedean then

A(L) is also a Boolean Algebra. P(L) always forms a

Boolean algebra ordered by inclusion. An order convergence

can thus be defined on P(L) and A(L) in a natural

manner .
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It is well known that if L is Dedekind

complete (respectively Dedekind-o-complete) then L

has the P.P. (respectively P.P.P.).

We are now ready to proceed.

Definition 2.1. Let L be a Riesz space. We

will say that the element f 6 L+ has the Egoroff

property op its components if given any double sequence

[f n,k = 1,2,...,} in L ‘with fn ’7kf for each
nk:

n = 1,2,..., and f

k

A (f - fn = O for all

nk k)

n,k = 1' 2' o o o ' there eXiStS an fm / f With

fm A (f - fm) = 0 for m = 1,2,..., such that

fm S-fm,k(m) for some su1table cho1ce of k = k(m).

Definition 2.2. We will say that PP(L) is
 

super order dense in Ap(L), with respect to the order

on A(L), if given any B 6 Ap(L) there exists a sequence

{8n} C PP(L) w1th Bu,” B, ‘where n = 1,2,...,.

Lemma 2.1. Let L be a Riesz space with the

prOperty that Pp(L) is super order dense in Ap(L).

Then, the element f 6 L+ has the Egoroff property on

its components if and only if for every double sequence

fnk/zhf for each n = 1,2,..., 'w1th fn A (f - fn = 0
k k)

for all n,k = 1,2,..., there exists a diagonal sequence

[f such that f 4 f.
n,k(n)} n,k(n)
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Proof. The necessity is Obvious. We prove

the sufficiency. Let (f n,k = 1,2,...,} be a
nk;

double sequence of components of an element f in

L w1th fnk/nkf for each n = 1,2,...,. Applying

the if part of the lemma, there exists a diagonal

sequence {fn k(n)} such that fn k(n) 4 f. Then

there exists xn\,0 in L such that

f - f for each n = 1,2,...,. Consider

n,k(n) S-Xn

(f - xn)fi/'f, we have (f - xn)+ S-fn,k(n) for each

n = 1,2,...,. The principal bands B(f_xn)+ = Bn

satisfy Bnllef' By assumption there exists for

each n a sequence [Bnm} c Pp(L) such that

Bnm,/th. Cons1der, then, the pr1nc1pal prOJect1on

bands Gn = lsup {Bi,n]° We have Gn/F Bf and for

.313?

each n = 1,2,..., Gn E Bn' Hence PGn(f) _<_ fn,k(n)'

and PG (f),/'f. This completes the proof.

n

Luxemburg and Zaanen have introduced the concept

of an Egoroff property for arbitrary Boolean algebras

[c.f. (19) Defn. 42.2]. we will not be concerned here

with this general concept, but we are interested in such

a property for certain elements of the Boolean algebra

P(L). We make the following definition.
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Definition 2.3. Let L be a Riesz space with

the P.P.P. An element B F Pp(L) will be said to have

the Egoroff proporpy if for any double sequence

[Bnk; n,k = 1,2,...,} 1n Pp(L) w1th Bnk/sz for

each n = 1,2,..., there exists a sequence

[Bm; m = 1,2,...,} 1n Pp(L) such that Bm’” B and

such that, for any m,n there exists a suitable

k = j(m,n) such that Bm S-Bn,j(m,n)°

Remark 2.1. H. Nakano introduced in [(23). §14]

the property of total continuity for a Riesz space L

with the P.P.P. . His definition reduces to:"L has

the P.P.P. and every B c Pp(L) has the Egoroff property?

Remark 2.2. In [(19) Thm. 42.3] it was shown

that the element B G Pp(L) has the Egoroff property

if and only if for any double sequence [B n,k = 1,2,...,}
nk;

1n Pp(L) w1th Bnk/nkB for each n = 1,2,..., there

exists a sequence Bm/ B such that, for any m, we

have Bm E Bm,k(m) for an approprlate k = k(m). The

proof is exactly analogous to that of lemma (1.A).

Definition 2.4. We will say that the Riesz space
 

L has the Egoroff pooperpypop_components if every
  

f C L+ has the Egoroff property on its components.
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Our next theorem is an Egoroff type theorem

since it is an analogue for Riesz spaces of Egoroff's

well known result for measure spaces. The first result

along these lines was obtained by Kantorovich, Vulich,

and Pinsker in [(11), 2.21. p. 181]. A more general

result than that in [(11)] is found in [(19) Thm. 42.6].

The theorem we are about to prove is more general

still, which we will demonstrate by example later on.

For purposes of comparison we will first state

the result in [(19)].

Theorem A. (Luxemburg and Zaanen) Let L be a

Riesz space with the P.P.P., and assume every element of

Pp(L) has the Egoroff property. Fix e E L+, then if

Xn \ 0 there ex1sts emfe such that Pem(xn) 4n 0 (e—r.u.)

The greater generality of our result is derived

from the relaxing of the hypothesis P.P.P. to Pp(L)

super order dense in Ap(L). In particular, as will be

shown later on, this will imply the validity of the

theorem for any sequence space.

Theorem 2.1. Let L be a Riesz space for which

Pp(L) is super order dense in Ap(L), and such that

L has the Egoroff property on components. Then if
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xn \, 0 in L and e is a fixed element in L+, there

exists a sequence of projection elements em / e

(i.e. Be is a projection band for each m = 1,2,...,),

m

em A (e - em) = 0 for each m, such that

m

Proof. Let xn‘x 0 in L and consider

_ -l + . -l
enk — (n e - Xk) then 0 S-enk/flkn e and

.8 ,fi 13. In the proof of lemma (2.1) we saw that if
enk k e

{En} c Ap(L) and Bn,7 B e Ap(L) then there eX1sts

[GD] _<_; Pp (L) w1th Gn c Bn and Gn/ B prov1ded Pp(L)

is super order dense in Ap(L). Hence, for each n

there exists a sequence {Bnk} C Pp(L) such that

Bnk c Be for each n,k = 1,2,..., and Bnk/rkBe

nk

for each n = 1,2,...,. Let znk 2 PB (e), then

nk

znk A (e — znk) = 0 for each n,k = 1,2,..., and

znk/rke' By v1rtue of the Egoroff property on components

and lemma (2.1) we now have an e l/‘e with
m

em A (e - em) = 0 such that, for any m, we have

em S-zm,k(m) for an appropriate k = k(m). Also we

have B /” B and as before there exists {B ) c P (L)

em e m p

such that Em C Be and Bm/Be. Letting em = PB (e)

m m

we have em_<_em for each m=1,2,..., and em/e.

But then fixing e; we have that, for m 2_m0,

O

Peé (Xk(m)) g Peé‘(xk(m)) g_n-le and we see that the

O
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subsequence {Pe' (xk(m))} of the monotone decreasing

mo

sequence [Pe. (xk)] satisfies Pea (xk(m)) 4 0 (e - r.u.).

m m
0 0

But then PeQ (Xk) 4k 0 (e — r.u.). The theorem is proved.

0

Theorem 2.2. Let L be a Riesz space with the

P.P.P., then an element B 6 Pp(L) has the Egoroff

property if and only if there exists an order unit 0 < e

for B (i.e. e E L+ and Be = B) such that e has the

Egoroff property on its components.

Proof. Let B = Be and assume that e has the

Egoroff property on its components. Let {B n,k = 1,2,...,}
nk7

be a double sequence in Pp(L) Wlth Bnk/flkB for each

nk of e in Bnk

satisfy enkJ/lk? for each n = 1,2,..., . Since e has

n = 1,2,..., . Then the components e

the Egoroff property on its components, there exists a

sequence am] e With em A (e - em) = 0 for each

m = 1,2,..., such that, for any m,. we have em S-em,k(m)

for suitable k = k(m) . But then B C B = B
e e m,k(m)
m m,k(m)

and Bem/fl B = Be . By v1rtue of remark (2.2) the suf—

ficiency is proved.

Conversely assume that the element B 6 Pp(L) has

the Egoroff property. Let e > 0 be any order unit for

B and suppose that {enki n,k = 1,2,...,} is a double

sequence of components of e w1th enk/ke for each
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n = 1,2,...,. Then B /fl B and since B = B

enk k e e

has the Egoroff prOperty there exists Bm/Z'B such

that for any m, Bm C B__ m,k(m) = B for su1table

em,k(m)

choice of k = k(m). If em is the component of e

in Bm’ we have emlf'e and for any m, em S-em,k(m)°

This completes the proof.

We can now obtain Theorem A stated above as an

immediate corollary to theorems (2.1) and (2.2).

Remark 2.3. We will gather here some information

concerning components of elements in a Riesz space, which

will be needed in the sequel. Let L be a Riesz space

1, and e2 be elements of L+. Then the

following assertions are valid:

and let f, e

1) If el and e2 are components of f

then el v e2 is a component of f.

2) If e2 is a component of f and (21

is a component of e2 then el is a

component of f.

3) If el 3 e2 and el,e2 are components

of f then e1 is a component of e2.

4) If el,e2 are components of f then

el A e2 is a component of f.
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Proof. 1). We note first that e

(i = 1,2), hence f - (e v e ) / f - e. (i = 1.2).
l 2 4 1

So (el V e2) A [f -(el V e2)]= (el A [f - (el V e2)])

v (e2 A [f - (el V e2)]) _<_’__(e1 A (f - el)) v (e2 A (f — e2)) =

0 v 0 = 0. This proves part 1).

2). We note first that

f — e = f — e + e - e Hence, e A (f — el) =
1' 1

el A [(f — e2) + (e2 - el)] and by [(25), Prop. (1.2)

(19) pg. 6] we have that el A [(f 4 e2) + (e2 - el)] ;

.; e1 A (f - e2) + el A (e2 - e1) g_e2 A (f - e2) +

el A (e2 - el) = 0. This proves part 2).

3). Since el A 92' we have

e2 - el 3_f - e1. Hence, el A (e2 - e1) i_el A (f - el) = 0.

This proves part 3).

4). We note first that

(el A e2) A [el - (el A e2)] 3 e2 A [e1 - (e1 A e2)].

By a well known vector lattice identity

el + e2 =(el V e2)+(e1 A e2) [c.f. (25) (5) pg. 4]. Hence,

e1 -(e1 A e2)=(el V e2)- e2 and e2 A [el - (el A e2)]

= e2 A [(el V e2) - e2 ]. By parts 1) and 3)

e2 A [(el v e2) - e2] = 0. This proves part 4). All

parts of the proposition have been proved.

Remark 2.4. It is not difficult to see that if

L is a Riesz space with the property that Pp(L) is

super order dense in Ap(L) and if f is any element
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of L+ which has the Egoroff property on its components,

then any component e of f has the Egoroff property

on its components. Indeed, if the double sequence

[enk; n,k = 1,2,...,} of components of e has the

property that enk/fike for each n = 1,2,..., then

the double sequence {f - e + enk} of components of

f (note f - e + enk = (f - e) V enk and see remark

(2.3) part 1)) has the property that f - e + enk/rkf

for each n = 1,2,...,. Since f has the Egoroff

property on its components, there exists a diagonal

sequence [f — e + e such that f - e + e
n,k(n)] d f’

which implies that en,k(n) 4 e. Applying lemma

n,k(n)

(2.1) e is seen to have the Egoroff property on its

components.

Remark 2.5. The second part of the proof of

theorem (2.2) showed that if L has the P.P.P., and

B S Pp(L) has the Egoroff property, then for any order

unit f of B, f 6 8+, we must have that f has the

Egoroff property on its components. By remark (2.4)

it follows that if e is any component of f then e

has the Egoroff prOperty on its components and hence

Be has the Egoroff property. Furthermore, if

g 6 B+ = B; then, taking fg = Pg(f), we have that

fg has the Egoroff property on its components and hence

B = Bf has the Egoroff property which in turn implies

9

that g has the Egoroff property on its components.
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We have established the following corollary to

theorem (2.2).

Corollary 2.1. Let L be a Riesz space with the
 

P.P.P., and suppose B 6 Pp(L) has the Egoroff property.

Then B, considered as a Riesz space, has the Egoroff

property on components and every principal band contained_

in B has the Egoroff property.

Our next result establishes a relationship

between the Egoroff property and the Egoroff property

on components.

Theorem 2.3. Let L be a Riesz space with the

property that Pp(L) is super order dense in Ap(L).

Then L has the Egoroff property if and only if L

has the Egoroff property on components.

Pgoof. We see from lemma (2.1) that if L has

the Egoroff property then L has the Egoroff property

on components.

Conversely, suppose (bnk: n,k = 1,2,...,} is

a double sequence in L with bnk\‘k0 for each

n = 1,2,..., and such that for some element b 6 L

we have that bnk g_b for all n,k = 1,2,...,. By

virtue of theorem (2.1), for each n, there exists

a sequence of projection elements znm/rmb with
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2mm A (b - znm) = 0 for any n,m = 1,2,..., such that

Pz (bnk) “k 0 (b - r.u.). Hence, there exists, for

nm

each n,m = 1,2,..., a k = k(n,m) such that

, -1
Pznm(bn,k(n,m)) g_n b, where k(n,m) can be chosen

to increase with increasing m (i.e. k(n,m) < k(n,m+l)).

Since L has the Egoroff property on components we know

that there exists a diagonal sequence {2 ] such
n,m(n)

that zn,m(n) 4 b. Tak1ng k(n) ==max[k(1,m(1)): l s 1 s.n}+n .

Then k(n) a k(n+l) and bn,k(n) 3 P2 (bn,k(n))
n,m(n)

. -l
+ b - zn,m(n)'i n b + b - zn,m(n)' Hence, bn,k(n) 4 0.

The proof is completed by application of theorem (1.1).

The above theorem is a generalization of two

results due to Luxemburg and Zaanen, see [(19) Thm's. 42.5

and 42.8].

We can perhaps see this best by considering

the following corollary.

Corollary 2.2. Let L be a Riesz space with the
 

P.P.P. . Every element of Pp(L) has the Egoroff property

if and only if L has the Egoroff prOperty.

.Pgoog. By remark (2.5) we see that every

element of L has the Egoroff property on its components

and by theorem (2.3) we see that L has the Egoroff

property. The other direction follows by application of

theorem (2.3) and then theorem (2.2).
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Luxemburg and Zaanen proved the "if" part of the

above corollary (2.2) and the "only if" part providing

L was assumed to be Dedekind-o—complete.

Remark 2.6. In view of corollary (2.2) we see that,

for Riesz spaces with the P.P.P., the concepts of totally

continuous (see Remark (2.1)) and Egoroff are equivalent.

In this next corollary, we summarize a number

of the results obtained so far in this section. It requires

no proof.

Corollapy 2.3. Let L be a Riesz space with the

P.P.P., and let B E Pp(L). Then the following are

equivalent:

a) B has an order unit e with the Egoroff

property on its components.

b) B has the Egoroff property.

c) B, considered as a Riesz space, has the

Egoroff property on components.

d) B, considered as a Riesz space, has the

Egoroff property.

The following is an example of a Riesz space

which has the Egoroff prOperty, and the property that

Pp(L) is super order dense in Ap(L), without having

the principal projection property. Thus, we see that

our version of the Egoroff theorem applies to a strictly

larger class of spaces than does theorem A.
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Example 2.1. Let X = [...-2,-l,0,1,2,...].

Let F(X) be the Riesz space of all bounded real valued

functions on X with the usual point wise ordering. A

straight forward proof almost identical with that in

Example (1.1(19) shows that F(X) has the Egoroff property.

Let L be the Riesz subspace of F(X) consisting

of all functions f e F(X) which satisfy the condition

that for any C > 0 there exists an integer n(fi) such

that for all n'g n(é) we have that |f(n) - f(-n)| < 6.

Consider the band in L generated by the

—l—-° for n > 0
element fl E L where f1(n) = n+1 . __ .

O ; for n < O.

The element f(n) E 1 has no projection on the band

Bf . Hence L fails to have the principal projection

1

property.

Consider now the ideal L' in L consisting of

all elements f G L such that for some integer n = n(f)

we have that for all n 2 n(f) f(—n) = f(n) = 0 (i.e. the

finitely non-zero elements).

Each principal band in L generated by an

element f E L' obviously has the projection property.

It is also clear that L' is super order dense

in L (i.e. given any f G L+ there exists

[0 < gn; n = 1,2,...,) c L' such that gnlf f), and

this implies that Pp(L) is super order dense in Ap(L).
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A

Since F(X) = L, and since F(X) is order

separable it follows from theorem (1.3) that L has

the Egoroff property.

This next example illustrates that without some

sort of a projection property the concepts of Egoroff

on components and Egoroff need not be related.

Example 2.2. Let L = C[0,l] be the Riesz space

of all continuous real valued functions on the interval

[0,1] with the usual pointwise ordering. We claim

that L has the Egoroff property on components.

We will show first that if f E L+ then there

exists a countable system [fk7 k = 1,2,...,} of

components of f satisfying the following conditions:

1) sup[f ; k = 1,2,...,} = f
k

2) If g is any component of f then, for

each k, g A fk = O or g A fk = fk'

To see this we consider the set U = {x : f(x) / 0}.

Since f is continuous, U is Open and is the union of

a countable collection F of disjoint intervals. The

intervals in the collection F are of the form (O,B),

[O,B), (d,1], or [0,1], where d,6 6 [0,1] and a < B.

An interval of the form [O,B) (respectively (a,1]) will

be in F only when f(O) > 0 (respectively f(l) > O).
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If [0,1] is in F then there must exist some real

number V such that f(x) 2_v > O for all x 6 [0,1].

For simplicity we will assume that all the

intervals in F are of the form (a,B), that is

F = {(ak'Bk): k = 1,2,...,]. It will be clear from

the proof for this situation how to handle the few

exceptional situations mentioned above.

Now, for each k, we set fk = fx(a

k’Bk) '

where x denotes the characteristic function

(ak. Bk)

of the interval (dk,Bk) E F. Fixing a k = k', the

continuity of fk' at points in any of the intervals

(akl,,Bkl), [O,ak.), and (Bk:, 1] is obvious. For

x = ck. (the proof for x = Bk' is similar), we note

first that f(dkc) = 0. Assume not. Then f(dkz) > 0

and a E U. But, then, there exists a k = k” #’k'kl

such that (aka ,Bk.) 0 (ak"'Bk') #’O’ and this

contradicts that the intervals (dk,Bk) are disjoint.

So, f(dk.) = O and the continuity of fk' at dkz is

now Obvious. (We note that for the one exceptional

possibility where Gk: = 0 and f(dk.) > 0 the continu-

ity of fk' at dkz lS tr1v1al).

To see that the f are components of f is
k

easy.

Now, let x 6 [0,1], if x E (y: f(y) = 0} then

fk(x) = 0 for all k and we have
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sup [fk(x); k = 1,2,...,] = f(x) = 0. If

x E [y: f(y) = 0} then x E (a ,B ) for some
I

k k'

k = k’. For all k #'k',. we have fk(x) = 0. But,

then, sup [fk(x); k = 1,2,...,] = f ’(x) = f(x). We

k

have established that f sup {fk; k = 1,2,...,].

Suppose, now, that g is any component of f

and that there exists a k = k' such that g A f I #'0

k

and g A f l S f I . Setting 9' = f I A 9,. we have

k k k

that g’ and f ’ - g’ are non-zero components of

k

f I , see remark (2.3) part 4. But, then,

k

{x : g’(x> > o} n (x: f ,(x) — g’(x> > o}
k

(X: g'(X) > O} U {X = f ,(X) - 9'(X) > O} [X= f ,(X) > o}

k k

= (a 1' B ’). This contradicts the connectedness of

k k

the interval (a ’ ,B .)‘ We have established that given

k k

any component g of f either g A fk = 0 or

0’ and

g A fk = fk for all k = 1,2,...,

We are finally ready to establish that L has

the Egoroff property on components.

Let f be an element of L+ and let

k = 1,2,...,} be the collection of components of

E which satisfy the conditions (1) and (2) above. Suppose

[bnk7 n,k = 1,2,...,] is a double sequence of components

of f with bnk/kf for each n=1,2,..., . We

define k(n) in the following manner:
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k(l) inf[k : bl'k(l) 2 fl).

inf[k : k 2_k(1)+1 and b2,k(2) 2 fl+fk(2) = fl v f2}.
2

k(n) = 1nf{k : k 2 k(n-l)+l and bn,k(n)-2 sup {fi]],

lgign

Taking bm = sup [f.}, we have bm A (f - bm) = O,

lgigm

bm/ f, and bm g bm,k(m) . We have proved that L

has the Egoroff property on components.

C[O,1] does not have the Egoroff property as we

mentioned earlier, see Example (1.1c). If C[O,l] had

the property that Pp(L) was super order dense in Ap(L)

then the fact that it has the Egoroff property on

components would imply that it had the Egoroff property.

This would follow by virtue of theorem (2.3). In fact,

it is well known that C[O,1] has only the trivial

projection bands (i.e. the whole space and the ideal

consisting of the zero element).

Remark 2.7. Again taking L = C[O,1], by virtue

of theorem (1.3) and the fact that L is order separable

and does not have the Egoroff property, it follows that

3 does not have the Egoroff property. Since i has the

A

projection prOperty, it follows from theorem (2.3) that L
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cannot have the Egoroff property on components since

if it did it would have to have the Egoroff property.

Hence, example (2.2) above furnishes us with an example

of an order separable Archimedean Riesz space with the

Egoroff property on components such that its Dedekind

completion does not have this prOperty.

We will find several applications for this next

result, the first of which will follows directly after

its proof. The result is due to Luxemburg and

Zaanen [see (19) Thm. 40.3], and the proof is essentially

theirs, although we do use some of the results in

section 1 which seem to simplify the proof.

Theorem B. (Luxemburg and Zaanen). The set of

all elements of a Riesz space L having the Egoroff

prOperty is a O-ideal in L (where by O-ideal is

meant that if any sequence from the ideal converges to

an element in L then that element is in the ideal).

Proof. We prove first that if 0.3 v‘g u, and

u has the Egoroff property, then so has v. Let

0 S-Vnk/rkv for each n = 1,2,...,. Then

(vnk + (u—v))/ku for n = 1,2,..., and there exists

a diagonal sequence [Vn,k(n) + (u-v)] such that

Vn,k(n) + (u-v) 4 u, which implies Vn,k(n) 4 v. But,

then, v has the Egoroff property (see remark (1.1)).
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Now, we show that if u,v 6 L+ have the

Egoroff prOperty then u+v has the Egoroff property.

Let 0 g_bnk/”ku+v for n = 1,2,...,. By the well

known decomposition lemma, [c.f. (25) Cor. 1.4 p. 8],

there ex1sts vnk and znk such that vnk + znk = bnk

for all n,k = 1,2,..., and vnk/Wku, and

znk/flkv' Since u and v have the Egoroff property,

there eXist diagonal sequences {Vp,k'(p))'{zm,k"(m)}

such that 4 u and z 4 v. For each

m, k" (m)Vp.k' (p)

n, taking k(n) = max[k'(n),k"(n)} we have that

the diagonal sequence {bn,k(n) = Vn,k(n) + zn,k(n)}

satisfies b 4 u+v. By virtue of remark (1.1),
n,k(n)

we see that u+v has the Egoroff property.

Showing, now, that the set of all elements of

L with the Egoroff property is an ideal is standard.

Let L' be the ideal in L of all elements

with the Egoroff property. We must show that if

0 g_vp/P u C L+, where (VP; p = 1,2,...,} c L', then

u has the Egoroff property. Suppose O S-bnk/flku for

n = 1,2,...,. Taking ufik = bnk A VP, we have

uik/flkvp for each n = 1,2,...,. Hence, there exists,

p P
for each p, a sequence [um] such that 0 g um/mvp

and, for any m, up < for apprOpriate
P

m " um,k (mo P)

k = k(m,p). Consider um = sup[u;; 1.3 1.3 m]. It is

clear that um,7'u. Taking k = k(m) = max[k(m,i);1 g'i g m]
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we see that um S-bm,k(m) A vp g bm,k(m)' Applying

lemma (1.A) we see that u has the Egoroff property.

The theorem is proved.

We are now ready to show that theorem (2.1) is

valid in every sequence space. To show this we need

only show that every sequence space L has the Egoroff

prOperty and the prOperty that Pp(L) is super order

dense in Ap(L).

Theorem 2.4. Every sequence space L has the

Egoroff prOperty and the property that Pp(L) is super

order dense in AP(L).

Pgoof. Let L be a sequence space and let m

be the space of finitely non-zero sequences. We recall

that m is contained in any sequence space and hence

m‘g L. In fact, m must be a super order dense ideal

in L. Showing that m has the Egoroff prOperty is

trivial. So, by the super order density of m in L

and theorem B above, L must have the Egoroff property.

We note, now, that if x E m then the principal

band generated by x in L is a projection band. It

follows easily from the super order density of m in L

that Pp(L) is super order dense in AFJL). The theorem

is proved.
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We will now introduce a property which is an

abstraction of the result of theorem (2.1).

Definition 2.5. We will say that an element
 

0 < e of the Riesz space L has property E.T.*, if

given any xn\0 with xn _<_ e for n = 1,2,...,

there exists a sequence of components [em] of e

such that em/e and eIn A xn 4 0 (e - r.u.) for
n

each m = 1,2,...,.

Definition 2.6. We will say that the Riesz
 

*

space L has property E.T. if every e E L+ has

*

prOperty E.T. .

We note that if L has the property that Pp(L)

is super order dense in Ap(L) and in addition has the

Egoroff property then by theorem (2.1) L has prOperty

E.T.*. Thus, theorem (2.4) can be restated in the

following manner:

Corollary 2.4. Every sequence space has property
 

We are now in a position to reduce significantly

another important order convergence property for Riesz

spaces, namely, that of relatively uniform convergence

(see Defn. (1.7)). Our next definition is designed for

this purpose.
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Definition 2.7. Let L be a Riesz space. An
 

element f E L+ will be said to be relatively uniform
 

on its components, if for every sequence of components
 

{fml of f with fm/ f there exists a u E L+

and a sequence of real numbers {Am} satisfying Am\ 0

such that If - fml _<_ Amu for each m = 1,2,...,.

Theorem 2.5. Let L be a Riesz space, and

assume that the element 0 < e 6 L has property E.T.*.

Assume in addition that e is relatively uniform on its

components. Then, if xn\0 in L and x _<_ e for
n

n = 1,2,..., we have xn 4 0 (r.u.).

*

Proof. Since e has property E.T. , there

exists a sequence of components {em} of e with

e /'e such that, for each m, e A x 4 0 (e - r.u.)
m m n n

(i.e. there exist sequences of real numbers [Amnl

such that A \ 0 form=l,2,..., and

mn n

Since e is relatively uniform on its components,

there exist a u E L+ and a sequence of real numbers

[IE] with A$‘\ 0 such that, for each m,

I

- u. H n w h x x + e-ee em g,im e ce. e ave n.g n A e ( m)
m

[g Amne + lmu S-(xmn + Am)(u V e). Now, {an} is just

a double sequence of real numbers and the real numbers

have the diagonalization property hence there exists
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a diagonal sequence [A such that A 4 0
m,n(m)} m,n(m)

which implies there exists a sequence of real numbers

[A&) such that A < A; \gO. Consider, now,
m,n(m) —-

the subsequence [xn(m)} C:[xn}. We have

301 +Alffl)(uVe)g-(AI'I'I+Am)(uVe)
xn(m)

and (A& + Am)\n 0. Hence, Xn(m) 4 O ((u V e) — r.u.).

m,n(m)

But since the original sequence [xn} was monotone

this implies that xn 4 0 (r.u.). The theorem is proved.

Definition 2.8. The Riesz space L is said
 

to be relatively uniform on components if every x 6 L+

is relatively uniform on its components.

Corollamy_2.5. Let L be an Archimidean Riesz
 

space, and assume that L has prOperty E.T.*. Then

the following are equivalent:

1) Order convergence and relatively uniform

convergence are equivalent in L for

sequences.

2) L is relatively uniform on components.

3) Given any u 6 L+ and sequence of

components [um] of u with umlr'u,

there exists a subsequence {u ] c [um]

such that the sequence k(u-u ) is order

bounded in L (i.e. there exists an

element e E L+ such that e.2 k(u-umk)

for all k = 1,2,...,).
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4) Given any u 6 L+ and sequence of

components {um} of u with um/ u, there

exists a subsequence {u } C [um] such

that the sequence [k(u - u )] is

mk+1 mk

bounded in L.

Proof. The implications (1) 4 (2) 4 (3) 4 (4)

are all trivial. That (2) 4 (l) is an easy consequence

of theorem (2.5). Hence, all we need to show is that

(4) 4 (3) 4 (2). We show first that (3) 4 (2).

+ . _

Let um/‘u E L w1th uIn A (u - um) — 0,

then by (3) we have a subsequence {u ] C [um] such

that for some e C L+ we have k(u - u ) 3's for

mk

all k = 1,2,...,. Then, u - u < l e which

mk-— k

implies that u 4 u (r.u.). But since the sequence

{um} was monotone this implies that 11m 4 u (r.u.).

We have established that (3) 4 (2).

We now Show that (4) 4 (3). To this end, let

+ . _
u C L and suppose um,” u w1th um A (u - um) — 0

+

for m = 1,2,...,. By (4), there exist an e 6 L and

a subsequence [u l C {um} such that

k(u - u ) g e for k = 1,2,...,. We note that

mk+l mk

p

u-u = sup[(u - u ); p = 1,2,...,] = sup[Z)(u — u

mk mk+p mk i=1 mk+i mk+i-l

P=1.2.~--.)= E (u -u

i=1 mk+i mk+i-1

):

). We note that
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M
T
}

(k+i) (u - u

l mk+i mk+i-1

P

Hence, Z)k(u - u

1:1 mk+i mk+i-1

P

Therefore, k sup{ Z)(u - u

i=1 mk+i mk+i-1

We have shown that (4) 4 (3). The theorem is proved.

) g_e for p = 1,2,...,.

1

).g e for p = 1,2,...,.

)l = k(u-u ) < e.mk ._

Remark 2.8. As mentioned before, any Riesz

space L with the property that Pp(L) is super order

dense in Ap(L) and the Egoroff property, has prOperty

E.T.*. Hence, for all such spaces corollary (2.5) is

valid.

For sequence spaces we have the following

corollary:

Corollary 2.6. For every sequence space L, the
 

following are equivalent:

(1) Order convergence and relatively uniform

convergence are equivalent in L for sequences.

(2) L is relatively uniform on components.

(3) Given any element x = [xi] 6 L+ there

exists a sequence of positive real numbers

[Ail with Ail, w and an element y 4 [yil E L

such that Aixi g.yi for each i = 1,2,...,.
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Proof. The equivalence of (l) and (2) follows

directly from corollary (2.5). We show now that

(2) 4 (3). Let x = [x.) 6 L+ and define the sequences

_ n . _ . n _
yn — [yi) in L by y. — O for all 1, yi — xi

H
P

h
/

P

for l g_i g_n and n 2, and y? = 0 for

i.2 n+1 and n.2 2. Clearly yn/fl.x and for each

n, y is a component of x. Since L is relatively
n

uniform on components, we have a sequence [2i] = z 6 L

and a sequence of real numbers [An] with AnN 0

such that x - yn-S Anz for all n. But this clearly

implies that inS lizi and hence taking Bi 4 l/Ai

we have Bi/C 4 and BiXi-S zi. We have established

that (2) 4 (3)-

We will now show that (3) 4 (2). Let

x = [xi] 6 L+ and suppose that {yn: n = 1,2,...,}

is a sequence of components of x such that yn/f.x.

We consider the sequence 2k 4 [2?] where for each k,

z: = xi for 1 §_i g.k and z: = 0 for i 2 k+l.

Clearly there is some subsequence {ynk} C [yn] such

that ynk 2 2k for k = 1,2,...,. Also, we have

that zk/‘x and each 2 is a component of x in L.
k

So, if we can show that z 4 x (r.u.), we will have that
k

yn 4 x (r.u.) and since [yn] is a monotone sequence,

k

this will establish that yn 4 x (r.u.). Applying
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condition (3), let [Ail be a sequence of positive

real numbers with Ai/fl 4 and u = [ui] E L be such

that, for each i, Aixi g ui. Since Ai is monotone

directed up, we have that Ak(x - zk) < u for all

k = 1,2,...,. But then 2k 4 x (u — r.u.), since

l/Ak‘N 0 and x - z g_l/Aku. The proof is complete.
k

Remark 2.9. For a sequence space L, corollary

(2.6) reduces the question of whether or not order

convergence is equivalent to relatively uniform convergence

in L for sequences to the question of whether or not

fixed elements in the positive cone of L satisfy

condition (3) of corollary (2.6).

Section 3. The Egoroff Property and Universally

Complete Spaces.

For a certain class of Riesz spaces many of the

properties considered in the last two sections are

equivalent. In this section we will discuss briefly

this class of spaces.

Definition 3.1. A Dedekind complete Riesz space
 

L is said to be universally complete (or of extended type)
 

 

if given any collection {xa; d 6 A} of elements of L+

,O 6 A andsatisfying x A x = 0 whenever a 2
d1 d2

01 4 oz (that is, the collection is disjoint) we have

1

that sup[xa) exists in L.
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Definition 3.2. Let L be an Archimidean Riesz
 

space. A Riesz space L is said to be a universal
 

completion of L if L is embeddable in L as an
 

order dense Riesz subspace of L and L is universally

complete.

Remark 3.1. Nakano has shown in [(22). § 34]

that a Riesz space L has a universal completion if and

only if L is Archimedean. He has also shown that

universal completions of an Archimedean Riesz space

are unique up to lattice isomorphism. Hence, it makes

sense to say "the universal completion of L". More—

over, Aif L denotes the universal completion of L

and L denotes the Dedekind completion of L, then L

A

is the universal completion of L, and given any

x 6 L+ there exists a disjoint collection

A

{xa; d E A} CIL+ such that x = sup[xa: a E A].

From now on, for an Archimedean Riesz space L,

we will denote by L and i the universal completion of

L and the Dedekind completion of L, respectively.

Furthermore, no distinction will be made between L and

A

its isomorphic image in L and L.
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Theorem 3.1. Let L be a universally complete

Riesz space with the Egoroff property. Then, in L,

order convergence and relatively uniform convergence,

for sequences, are equivalent.

Epoof, Since L is Dedekind complete, it has

the projection property and hence the principal projection

prOperty. By remark (2.8), therefore, L has property

E.T.*. Thus, we need only show that condition (4) of

corollary (2.5) is satisfied. To this end, let u E L+

and {um} be a sequence of components of u with

11 [’11. But then the collection [m(u — u )} is a
m m m+1

disjoint collection of elements in L+ and by definition

sup[m(um+1 - um)] = e exists in L. The theorem is

proved.

Corollary 3.1. Let L be a universally complete
 

order separable Riesz space. Then the following are

equivalent:

(1) L has the Egoroff property.

(2) Order convergence and relatively uniform

convergence are equivalent in L for sequences.

(3) Order convergence is stable in L.

(4) L is regular.

(5) L is diagonalizable.
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Pgoof. That (1) 4 (2) follows from theorem (3.1)

above. For the implication (2) 4 (3), see remark (1.2).

For (3) 4 (4) we refer the reader to [(27), Thm. VI,6.1

p. 167]. For (4) 4 (5), see corollary (1.3). The

implication (5) 4 (l) is obvious. The assertion is proved.

One of the most important and useful results

in the theory of vector lattices is the representation

of an arbitrary Archimedean Riesz space as an order

dense Riesz subspace of the space of extended real

valued continuous functions on some compact Hausdorff

space. In fact, it is well known that every universally

complete Riesz space is lattice isomorphic to Cm(Q)

where Q is some extremal compactum and Cm(Q) denotes

the set of extended real valued functions defined on

O which are finite valued and continuous on some open

dense subset of Q (an extremal compactum is a compact

Hausdorff space with the property that every Open subset

has open closure). Furthermore, every Cm(Q). where

Q is an extremal compactum, is a universally complete

Riesz space. For details we refer the reader to

[(27), Chapt's 5 and 6].

It is to be expected, therefore, that many

order prOperties of Archimedean, and especially universally

complete, Riesz spaces have equivalent topological
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formulations. It is a result in this direction, due

to Z.T. Dikanova [(2)], which we are now able to

strengthen with the help of theorem (3.1).

We will first state the result in [(3)].

Theorem C. Let Q be an extremal compactum,

and let Cm(Q) be order separable. Then the following

are equivalent:

(1) Order convergence is stable in Cm(Q).

(2) For every collection {Fm}:, of

nowhere dense closed subsets of Q there

exists a closed nowhere dense G5 set

Q

Q C Q such that O 3 U Fn.

1

We strengthen the result as follows:

Corollamy 3.2. Let Q be an extremal compactum

and let Cm(Q) be order separable. Then the following

are equivalent:

(1) C(Q) has the Egoroff prOperty

(where C(Q) is the space of continuous real

valued functions).

(2) Cm(Q) has the Egoroff property.

(3) Order convergence is stable in Cm(Q).

(4) Cm(Q) has the diagonalization prOperty.
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(5) For every collection [Fm]: of nowhere

dense closed subsets of Q there exists a

closed nowhere dense G6 set O'C Q such

that 0'3 U F .
l n

2599;. All we need to show is that (l) 4 (2)

since (2) 4 (l) is obvious and the remainder of the

implications are handled by application of corollary (3.1).

To see that (l) 4 (2) we need only note that

Pp(Cm(Q)) 4 PP(C(Q)). The result now follows by application

of corollary (2.3).

Section 4. Order Separability, Sub—Order Separa-

bility, and the Egoroff Theorem.

In this section we will do four things. First we

will investigate the connection between order separability

and the existence in a Riesz space of a positive order

basis (see Definition (4.1) below) with certain properties.

Second, we will extend slightly the results of section (3).

Third, we will Obtain an Egoroff type theorem for arbitrary

Archimedean order separable Riesz spaces, which does not

depend on a projection property. Finally, we will inves—

tigate prOperty E.T.* (see Definition (2.5)) together with

a related property which we will define below. As a result of
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these investigations we will obtain the somewhat

surprising result that if an order separable Archimedean

Riesz space has the prOperty that order convergence

and relatively uniform convergence are equivalent for

sequences then the space has the Egoroff property.

Definition 4.1. A positive order basis for a
 

Riesz space L is a collection of positive elements

[ea: a E A} CZL with the property that if x is any

element of L then le A ea 4 O for all a if and

only if x = 0.

Remark 4.1. By a straight forward application

of Zorn's lemma, it is easy to show that every Riesz

space has a positive order basis. In fact, one can show

that the basis can be chosen to consist of disjoint

positive elements (i.e. if {ea: a E A] is the basis

then ea A eB = 0 whenever 0.6 6 A and a 4 B).

Luxemburg has shown in [(14) Thm. 6(v) p. 491]

that for Archimedean Riesz spaces order separability is

equivalent to the following property:

K. For every disjoint system [f0] in L,

and every 9 E L we have inf[|g|,[fo[] # O

for at most countably many 0.

We will refer to this property as property K.
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Using property K both as motivation and as

a proof mechanism, we make the following definition and

Obtain our first theorem in this section.

Definition 4.2. Let L be an Archimedean Riesz

space. An element 0 < e 6 L will be said to be of

countable type if any disjoint system [0 < ea} CtL

with ea 3 e for all a, is at most countable.

Theorem 4.1. An Archimedean Riesz space L is

order separable if and only if it has a positive disjoint

order basis (ea: a 6 A}, consisting of elements of

countable type, such that if f E L then [fl A ea 4 O

for at most countably many indices a.

Egopg. Suppose L has such a basis [ea], and

let [f0] be any disjoint family in L and let 9 be

any element of L. We have by assumption that

[9] A ea 4 O for at most countably many a, say [Qi):=l.

Since each ea is of countable type, we have that

for each oi for i = 1,2,..., the number of 0 such

}oo

that Ifol A ea 4 O is at most countable, say [ j=1'0..

l]
1

NOw, suppose o # Oij for any i,j = 1,2,...,. Consider

[9] A Ifcl. We have that [9] A [fol g_|g| and

[g] A lfol-S lfo" So, for each a we have that, if

a 4 di for i = 1,2,..., then ea A (|g| A lfoi) g |g| A ea 4 O,
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and if a 4 di for some i 4 1,2,..., then

ea A (|g| A IfOI) g lfol A ea 4 0. Thus we have that,

for any a, ([9] A IfOI) A ea 4 0. Since {ea} 15 a

basis for L, it follows that [9] A [fol 4 0 when-

ever 0 # Gij for any i,j = 1,2,...,. Since the

collection U{oi.}m is countable we have prOperty K.

i
J i=1

The converse follows once we recall that every

Riesz space has an order basis consisting of disjoint

positive elements. Let this basis by [ea]. That each

ea is of countable type follows directly from property

K. So does the fact that if f e L then |f| A ea r o

for at most countably many a. The theorem is proved.

We are motivated by theorem (4.1) and other

considerations (which will become apparant shortly) to

make the following definition:

Definition 4.3. Let L be an Archimedean Riesz
 

space. L is said to be sub—order separable if it
 

contains an order dense ideal L' which is order

separable.

Theorem 4.2. Let L be an Archimedean Riesz

space. L is sub-order separable if and only if L has

a disjoint positive order basis (ea: d E A} consisting

of elements of countable type.
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2399;, That such a basis exists if the space is

sub—order separable follows easily, since a basis of

disjoint positive elements for the order dense order

separable ideal L' CIL will suffice.

Now, suppose we have a basis of disjoint positive

elements [ea; d 6 A] such that each ea is of countable

type. Then, consider the following collection of

elements:

L' 4 [f E L: lfl A ea 4 O for at most countably many a}.

That L' is an ideal in L is a matter of routine

verification. That L' is order separable follows

immediately from theorem (4.1). NOw, if f 6 L we have

lfl A ea 4 O, for all a unless f 4 0. So, let

f 4 0 be an element of L. Then, for some a = a . we have
0

that O 4'lfl A e . But, then, lfl A e 6 L' and O <
do go

lfl A e < lfl. Since L is Archimedean, the order
00'—

density of L' in L follows by application of

[(18) Note IX Thm's. 29.5 and 29.10]. The theorem is proved.

A non-sub-order separable Riesz space will of

course be a Riesz space which does not contain an order

dense order separable ideal.

Corollary 4.1. If an Archimedean Riesz space L

has the property that every non-trivial ideal in L
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contains a non-trivial sub-order separable ideal, then

L is sub-order seperable.

lggoog. We note first that if every non-trivial

ideal in L contains a non—trivial sub-order separable

ideal, then every non-trivial ideal in L contains a

non-trivial order separable ideal. Now, let 0 < e E L

and let the ideal in L generated by e be denoted

by I(e) (i.e. I(e) 4 (f 6 L: for some n 4 1,2,...,

we have [fl 3 neel). I(e) contains a non-trivial

order dense ideal, say I'. Since for any 0 < f E I'

we have e A f > O, and since every positive element

of I' is of countable type, we see now that for every

element 0 < e E L, there exists an element 0 < f E L

such that f g_e and f is of countable type. A

straight forward Zorn's lemma argument shows that L

has a disjoint positive order basis consisting of

elements of countable type. By theorem (4.2) above

this implies that L is sub-order separable. The

theorem is proved.

Remark 4.2. It is obvious from the above corollary

(4.1), that a non-sub-order separable Archimedean Riesz

space must contain an ideal such that every non-trivial

ideal in this ideal is non—sub—order separable.
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Perhaps the best description of the situation

is given in this next theorem.

Theorem 4.3. Let L be an Archimedean Riesz

space. Then there exist bands L1 and L2 in L with

L1 4 L; and satisfying:

(1) L1 is sub—order separable.

(2) L2 has the property that no ideal

[0} 4 I S L2 is order separable.

2599:, We will say that an element f E L has

property NS, if f satisfies the following conditions:

a) f 4 O.

b) For all 0 < q g_lfl, there exists a

disjoint uncountable collection {g ] with
o

0 < gG 3,9 for all 0.

We let L2 = {f e L: f has property NS} U [0}. We wish

to show that L2 is a band in L. Clearly, if

g G [—f,f] and f 6 L2 then by construction g 6 L2.

Also, if a is a real number and f 6 L2 then af 6 L2.

Since lf V gl, lf A gl, and lf + gl are all less

than or equal to lfl + lgl we need only show that if

f,g E L then lfl + lgl E L in order to see that
2 2'

L2 is an ideal. To this end, let 0 < 9‘ g_lfl + lgl.

Then, 9' A [fl 4 O, or g' A lgl 4 O, or both. Assume
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g" = g' A [fl 4 0. Then, 0 < g"'g lfl and there exists

an uncountable disjoint collection [93} such that

O < 93 3,9" for all 0. But, then, 0 < 93 g.g' for

.all 0. Hence, lfl + lgl 6 L We have established that2.

L2 is an ideal. To show that L2 is a band, it remains

+

2

L, then f 6 L2. Let g E L and suppose that O < 9 g.f.

We must have that, for some T = To, 0 < 9 A f7 4 g'.

0

But, then, since f 6 L and g' < f , we can find
To 2 '- To

a disjoint uncountable collection {gé} such that

to show that if [le C L and sup[fT) 4 f exists in

O < g& ng' g.g. Hence, f has prOperty NS and f 6 L2.

We have established that L2 is a band.

It is clear that no non-zero positive element of

L2 is of countable type. It follows easily, therefore,

from theorem (4.1) that no non-trivial ideal in L2 is

order separable.

Let L1 4 L;. Given any f 6 L1 with lfl > 0,

there exists a g E L with O < 9.3 [fl such that if

{go} is any disjoint collection of elements of L such

that O < 90 g_g for all 0, then the collection [g0]

is at most countable. If not we would have that f 6 L2

and therefore certainly not in L1 4 L1‘ This merely2.

then there exists a g 6 L suchsays that if f E L 1ll
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that O < 9 g_lfl and g is of countable type. By a

straight forward application of Zorn's lemma, we see

that L has a positive disjoint order basis consisting
1

of elements of countable type. By application of

theorem (4.2), it follows that L is sub-order separable.
1

That L is a band follows immediately from its definition.
1

The theorem is proved.

Remark 4.3. It follows from the fact that L

is Archimedean and from [(18) NOte IX Thm's. 29.5 and 29.10]

that the ideals L and L discussed in the above

1 2'

theorem, have the property that L1 @L2 is order dense

in L. Furthermore, if L has the projection prOperty,

in particular if L is Dedekind complete, then

L @L =L.

l 2

There are examples, as we will have occasion to

see later, of non-sub-order separable Riesz spaces in the

literature. They have not occurred as a result of

considerations of the type we have been indulging in

and they are in general rather complicated. We give now

an example which is on the one hand easily constructed

and on the other exhibits some prOperties we will need

to consider in the next chapter.
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Example 4.1. For i 4 1,2,..., let Xi be

the set of real numbers r 6 [0,1], and place on each

Xi the discrete topology.

Let Y = ”i=1xi

is a locally compact Hausdorff space and is totally

with the product topology. Y

disconnected (i.e. has a basis of closed open sets).

Let L 4 C(Y) be the Riesz space of all continuous

bounded functions from Y into the reals with the

pointwise ordering. L is an Archimedean Riesz space

and we will now show that it is a non-sub—order separable

Riesz space. To see this it will suffice to show that

L has no non-zero positive elements of countable type.

To this end, let 0 < f E L. Then, f 2 d > O on some

Open set U C‘Y and hence on some basic closed Open

set V 4 Vi X Vi x...x Vi X.H. X. C U, where

l 2 n i41j

j = 1,2,...,n.

Let [yi.} be a collection of reals such that

3

yi C Vi for j 4 1,2,...,n. Then
j .

3

B = [yi } x [yi ) x...x [yi ] x.H. Xi-E V, and is

l 2 n 141j

closed and open.

Choose an i = i so thatn+1 for any

1n+1 4 1j

j = 1,2,...,n. For each real number vn+1 é Xin+1.

con51der the sets GV 4 [y }x...x[yi ] x [vn+1} x H Xi'

l ' '.n 1413
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where j 4 1,2,...,n,n+l. Each Gv is closed and

n+1

open, and if v' 4 v" then G , n G H 4 ¢.
n+1 n+1 vn+1 vn+1

Consider now the functions de where

Vn+1

XG denotes the characteristic function of G

Vn+1 n+1

and v is allowed to range over all reals in Xi .

n+1 n+1

Each axG > O and if v$+l 4 v3+1 then

v
n+1

}de . A dXG 4 0. Hence, the collection [aXG

ll

vn+1 Vn+1 Vn+1

is an uncountable disjoint collection of strictly

positive elements of L and since GV C B for each

n+1

vn+1 E Xi we have fig de 2.de for all

n+1 V
n+1

v G X. . This shows that L has no non-zero
n+1 1n+1

positive elements of countable type and therefore is

non-sub-order separable.

Remark 4.4. The reader should note that this

example has the prOperty that every point y 6 Y is a

G6 set. Indeed, let y 4 (y1,y2,...,yn,...) then

if we take G. 4 x x...x . x H X. we3 {Y1} {312} {Ya} m 1

so

have that n G. 4 {y}.

i=1 3

Since for Archimedean Riesz spaces it is true

A

that L is order separable if and only if L is order

separable, we have easily that L is sub-order separable
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if and only if 3 is sub-order separable. Indeed, if

I ggL is an order separable order dense ideal in L

then i is also an order separable order dense ideal

in 3. Furthermore, since any ideal which is order

dense in Q is also order dense in the universal

completion L of L we have that, for Archimedean Riesz

spaces, L is sub-order separable if and only if E

is sub-order separable. It is not true, however, that

if L is order separable then L is order separable.

For the purpose of extending the results of section (3),

we can remedy this situation by the introduction of an

intermediate space. Before we can do this properly, a

few preliminaries are necessary.

Let L be a universally complete sub-order

separable Riesz space. By theorem (4.2). L must have

a disjoint positive order basis consisting of elements

of countable type. To any such basis [ea; a E A}

we associate the following ideal:

{ea}L(o) = {f 6 L:lfl A ea 4 0 for at most countably

many a E A}.

Clearly, by theorem (4.1), any such [ea}L(o) is order

separable.
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Lemma 4.1. Let L be a universally complete

sub-order separable Riesz space. Let (ea; a E A}

and (fa: B E B} be any two positive order basis

for L consisting of elements of countable type. Then,

[ea}L(G) = [ffi}L(0).

Proof. Let g E {ea}L(o). Then lgl A ea 4 O

for at most countably many a, say [ai}:=l’ Consider

now {f A e }, we must have that for each i = 1,2,...,

P ai

f A e 4 O for at most countably many 8, otherwise

6 a-
1

we would contradict that ea is an element of countable

i

type. For each 1, denote the set of all 8 for

which fB A eOLi 4 O by {Bij}j4l°

Now, if 8 4 Bij for any i,j = 1,2,..., we

have that (lgl A fB) A ea 4 O for every d E A which

implies that lgl A f5 4 0. Hence, the set of all B

00

such that lgl A fB 4 O is contained in U [B

141

on

ij}j=1'

‘which is a countable set. This implies that

g E [fG}L(0) and establishes that

[eale 5; [fB}L(0).

The proof that {f5}L(U).E [ea}L(G) is exactly

the same with the roles of f and ea reversed.

B

The lemma is proved.
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The above lemma establishes that the formation

of the ideals {ea}L(o) is independent of the countable

type basis chosen.

Let L be a universally complete sub—order

separable Riesz space. By Liol. we will mean the

unique ideal in L associated with any disjoint

positive order basis for L consisting of elements of

countable type.

Lemma 4.2. Let L be a universally complete

sub-order separable Riesz space. Let L' be any

order dense order separable ideal contained in L.

Then, L' g: L(o) .

Pgoog. By theorem (4.1), we have that L' has

an order basis consisting of disjoint positive elements

of countable type, say [ea; c E A}, such that if

f C L' then [fl A ea 4 0 for at most countably many

a. Since L' is order dense in L we have that

[eat a E A} is a basis for L. But, then L(O) = [eQ}L(o)

and it is now clear that L' g L(o).

Corollamy 4.2. Let L be a universally complete
 

sub-order separable Riesz space. Then, L(o) is the

largest order separable ideal contained in L.
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The relation of L(O) to an order dense

order separable ideal L' ggL is made clearer by

the following lemma.

Lemma 4.3. Let L be a universally complete

sub-order separable Riesz space, and let L1 be an

order dense order separable ideal in L. For an ideal

L in L, the following are equivalent:
2

(1) L L(o).
2

[f E L: for any disjoint collection of(2) L2

elements in L1' say {f6}, we have

lfl A lfB' 4 O for at most countably many 8}.

(3) L2 is order separable and given any

disjoint countable collection

[fit i 4 1,2,...,} C‘LI ‘we have

sup[fi; i 4 1,2,...,} E L2.

gmeeg, Since L1 is order separable, it has

a basis of positive disjoint elements of countable type.

We choose and fix one such basis (ea; a E A}. we know

that {ea}L(o) = L(o). NOw, we will say an element

f E L has property KLl if for any disjoint collection

of elements in L1 [f5] we have [fl A lfBl 4 O for

at most countably many 8. It is clear that to show

(1) 4 (2) we must show that f has property KLl if

and only if lfl A ea 4 O for at most countably many a.

We clearly have that f has property KL1 implies
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[fl A ea 4 O for at most countably many a. Suppose

now that f E L and lfl A ea 4 O for at most

countably many a, say {(1.}001 i4l' Now, if {fB} is

any disjoint collection in L we have that, for each
1

i, lfBI A ea 4 O for at most countably many 8, say

i

{Bij];41° Proceeding exactly as before, we see that

if B 4 Bij for any i,j, then lfl A f6 = 0. Hence,

f has property KLl and we have established (1) 4 (2).

We show now that (l) 4 (3). We need only

show that if [fi: 1 4 1,2,...,} CZLI is a disjoint

collection, then sup[fi} 4 f E L(G) (the sup{fi} exists

since L is universally complete). Since fi E L1

for each i, we have fi A ea 4 O for at most

countably many a, say [dij};=l. Suppose a 4 dij

for any i,j, then f A ea 4 0 implies that for

some fi we have fi A ea 4 O and this is a contradiction.

Hence, f A ea 4 O for all a 4 dij for some i,j,

and therefore f E L(O). We have established that

(l) 4 (3).

It only remains to show that (3) 4 (1). We

must show that if f E L(o)+, then f 4 sup[fi; i = 1,2,...,}

for some countable disjoint collection of positive

elements in L1. Since f is also in L and L 4 L1,

we must have that f 4 sup[fB; 8 E B} for some

disjoint collection of strictly positive elements in
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L (see remark (3.1)). Now, if [f } is not a

1 B

countable collection then {a : ea A f6 4 O for all 8}

is uncountable and hence {a : f A ea 4 O} is

uncountable. Hence, f F L(o), which is a contradiction.

The lemma is proved.

Remark 4.5. Suppose that L1 and L2 are sub—

order separable universally complete Riesz spaces.

Suppose in addition that there exists a lattice iso—

morphism cp from L1 onto L2 (see P . 13). Then,

it is easy to see that m restricted to L1(o) takes

L1(o) onto L2(o). Indeed, if L1(o) = [ea}Ll(o)

then {m(ea)} is an order basis for L2 consisting

of disjoint positive elements of countable type, and

it is trivial to show that if f E [ea}L1(o) then

O(f) E [O(ea)}L2(O) 4 L2(O). Therefore,

m(L1(o)) g L2(o). The same argument applied to m-1

shows that cp-1(L2(o)) S L1(o) and hence that

L2(o) E w(Ll(o)). Thus, m(Ll(o)) = L2(o). This

establishes that Ll(o) and L2(o) are lattice

isomorphic.

We can now make the following definition:

Definition 4.4. Let L be an Archimedean order

separable Riesz space. By the o-universal completion of
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L we will mean L(o) where L is the universal

completion of L.

Remark 4.6. By lemma (4.2), and the fact that L

order separable implies that a is order separable, we

have that L g 1"). g 12(0) . L is clearly order dense in

L and hence in L(o). In fact, it follows from lemma

(4.3)(3) that E is super order dense in L(o) and

hence L itself is super order dense in L(o). It

+

also follows from lemma (4.3)(3) that if {fi}:=l C 3(0)

and fil A fi2 4 0 whenever 11 4 12 then

sup[fi} 4 f exists in L(o). From remark (4.5) it

follows that L(o) is uniquely determined up to lattice

isomorphism since L is uniquely determined up to

lattice isomorphism.

It turns out that the properties discussed in

remark (4.6) actually characterize L(o).

Theorem 4.4. Let L be an Archimedean order

separable Riesz space. Suppose that L' is any Riesz

space satisfying the following conditions:

(1) L' is Dedekind complete.

(2) L is a super order dense Riesz subspace

of L'.
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(3) If (£1; 1 4 1,2,...,} is any countable

disjoint collection of elements in (L')+,

then sup[fi} exists in L'.

Then, L' = L(c).

2599;. Since L' contains L as an order

dense Riesz subspace, it follows that the universal

completion of L' is the universal completion of L.

In addition, L' being Dedekind complete implies that

L' is an ideal in ET 4 L. The super order density of

L in L' implies that L' is order separable. It

now follows from condition (3), by virtue of lemma

(4.3)(3), that L' = L(o). The theorem is proved.

Definition 4.5. Let L be a Riesz space. L

will be said to be a o-universally complete space if it

satisfies the following conditions:

(1) L is order separable and Dedekind complete.

i = 1,2,...,} is any countable

‘
0(2) If [fi

disjoint collection of positive elements in

L, then sup[fi} exists in L.

From the above discussion it follows that every

Archimedean order separable Riesz space has a o-universal

completion which is unique up to lattice isomorphism.
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We need one more result before we can extend

the results of section (3). It is contained in our

next lemma.

Lemma 4.4. If L is a o-universally complete

Riesz space with an order unit, then L is universally

complete.

3599;, Let e be the order unit for L. To

show that L is universally complete we must show that

every disjoint collection of positive elements in L

has a supremum. To this end, let (fa; B E B} be a

disjoint collection of strictly positive elements in L.

The result will follow if we can show that the collection

[ffi} is at most countable. But, since L is order

separable, we must have that e is an element of

countable type. Therefore, [0 : f A e 4 O} is at

5

most countable since the f are disjoint. But,
{5

since f5 > O for all 8 and e is a unit for L,

we have [8 : f9 A e 4 O} 4 B. Therefore, the

collection {£5} is at most countable and the lemma

is proved.

We now suppose that order convergence is stable

in the o-universally complete Riesz space L (see Defin-

ition (1.2)). Let {xn; n = 1,2,...,} be any countable
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collection in L+ and consider L1 = {anLL-in-L. We

claim that L1 is universally complete. To see this

we need only show that it has an order unit. To this

end, let (ea: a E A} be a positive disjoint order

basis for L consisting of elements of countable type.

For each n, we have xn A ea # 0 for at most

a:

countably many a, say [ani]i=l'm NOw,

{e : for some n, x A e # O} = U {e ]?_ which
a n a n=1 dni 1—1 .

is an at most countable set. Let {e : j = 1,2,...,} =

[e : for some n, x A e # 0}. Since L is o—

d n a ,

universally complete, we have that sup{ea } = e exists

j

Ill :>[x TLL = B. Since L isin L. Clearly {e __ n

Dedekind complete, we have that the projection PB(e)

of e onto B exists and it is clearly an order unit

)ll

for B = {xn . Therefore, B is a universally

complete space.

Since order convergence is stable in L implies

that order convergence is stable in any band in L, we

have that order convergence is stable in B. But, by

corollary (3.1), this implies that B is regular, and

thus there exists a sequence of real numbers {ln > 0}

such that the set {lnxn} is bounded in B and hence

in L. Thus L has property P* and is itself regular.

This implies that L is diagonalizable and hence that

L has the Egoroff property.
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Now, suppose that the O-universally complete

Riesz space L has the Egoroff property. By remark

(2.8) it follows that L has property E.T.*. Obviously,

L is relatively uniform on components. Hence, by

corollary (2.5), order convergence and relatively

uniform convergence are equivalent, for sequences,in

L which implies that order convergence is stable in L.

We have established the following result:

Theorem 4.5. Let L be a U-universally complete

Riesz space, then the following are equivalent:

(1) Order convergence is stable in L.

(2) L is diagonalizable.

(3) L has the Egoroff property.

Lemma 4.5. Let L be an Archimedean order

separable Riesz space. Then L has the Egoroff prOperty

if and only if L(O) has the Egoroff property.

‘grggf, We have already shown that, if L is

order separable and Archimedean, L has the Egoroff

property if and only if Q has the Egoroff prOperty.

Now, since L is a super order dense ideal in L(o)

(see remark (4.6)), we have, by virtue of Theorem B

in section (2), that C has the Egoroff prOperty if and

only if L(U) has the Egoroff property. The assertion

is proved.
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This next result provides us with a version of

the Egoroff theorem which holds for arbitrary Archimedean

order separable Riesz spaces with the Egoroff property.

Theorem 4.6. Let L be an Archimedean order

separable Riesz space with the Egoroff property. Fix

e C L+, and suppose that xn‘y O in L. Then, there

exists a sequence {um} c: L+ with um/‘e such that

X Au .9 O (e_rou.)o

n m n

Proof. L has the Egoroff property implies that

A

L has the Egoroff property and hence there exists, by

A

theorem (2.1), a sequence em/e (in L) such that

Pe (xn) “n 0 (e — r.u.). By remark (1.3), there exists

m

. +
a sequence um/e w1th [um] c L and um _<_ em

for m = 1,2,...,. Clearly, um A xn S-Pu (xn) S-Pe (xn)

A m m

(where the projections are taken in L). Hence if

for each m, {lmn} is a sequence of reals with

A \ O and such that P (x ) < A e, we also have

mn n em n '— mn

that um A xn‘g an e. This says that, for each m,

u A x d 0 (e - r.u.). The theorem is proved.
m n n

In this next definition we introduce a prOperty

which is motivated by theorem (4.6). As should be

expected, since prOperty E.T.* (see Definition (2-5)) was

motivated by theorem (2.1), this property is related to

*

property E.T. .
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Definition 4.6. We will say that an element
 

0.3 e of the Riesz space L has property E.T. if

given any sequence xn\x O with xn g_e for

n = 1,2,..., there exists a sequence {0 g_em} C L

with e /‘e such that e AX -0 O (e-r.u.).
m m n n

Definition 4.7. We will say that the Riesz
 

space L has property E.T. if every e E L+ has prOperty

E.T. O

"k

We note immediately that property E.T. implies

property E.T. .

We will now establish some more relationships

*

between prOperties E.T. and E.T. . We will begin with

a somewhat large collection of lemmas which will result

in a large characterization of the properties involved.

Lemma 4.6. Let L be a Riesz space. If f

and g are elements of L+ satisfying f A g = O,

*

and if both f and 9 have property E.T. , then

*

f + g = f v g has property E.T. .

Proof. Suppose [xn} is a sequence in L with

xn‘N O and xn g f+g for n = 1,2,...,. By the

decomposition property [c.f. (25)(3orollary 1.4 p. 8],

we have that xn = fn + gn where fn g_f and gn g_g

for n = 1,2,...,.
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*

Since f and g have prOperty E.T. , we have

sequences em/ f and 2m] 9 such that, for each m,

e A (f - e ) = O and z A (g - z ) = O, and such
m m m m

that em A fn «h 0 (f - r.u.) and 2m A gn «h 0 (g - r.u.).

That is, there exist sequences of positive real numbers

[km] and [am] satisfying )‘mn\'n0 and amn\'n0

for m = 1,2,..., and such that e A f < l f and

m n —- mn

gdmng for m,n=l,2,...,.

Since f A g = O, we clearly have that f and

g are components of f + g. Therefore, by remark (2.3)(2),

we have that, for each m, em and 2m are components

of f + g. Furthermore, since for each m, em 3 f and

z .3 g, we have em A zm = O and therefore

e + z = e v z . But then by remark (2.3)(1) e + z
m m m m m m

is a component of f + g for each m. Clearly,

e + zm/‘f + 9. Also, by [(25) Prop. 1.2 (19) p. 6],

we have that the following chain of inequalities holds:

(e + zm) A x = (em + zm) A (fn + gn) g
m n

‘g e A fn + zm A gn g_xmn f + amn g g (xmn + amn)(f + g).
m

This completes the proof.

Remark 4.7. It is not difficult to see that if

an element f > O of the Riesz space L has property

*

E.T. and if g is any component of f, then g has

-k

property E.T. .
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Lemma 4.7. Let L be a Riesz space. Let

f 6 L+ and assume that f = sup{fn; n = 1,2,...,] where

f ,” , f A (f - f ) = o for each n, and each f
n n n n

* *

has property E.T. . Then, f has property E.T. .

Proof. Suppose the sequence xmy O is such

that xmig f for m = 1,2,...,. Now, each

fn A Xm\ mO for n = 1,2,..., and satisfies

fn A xm'g fn' Hence, since for each n. fn has property

*

E.T. , there exist components fnk of the fn such

that fnk/rk n' and sequences of pOSitive real numbers

[xnkm} w1th xnkm\'mo for n,k = 1,2,..., such that

fnk A xm g_i fn gnln mf for n,k,m = 1,2,...,.
k

* I

Now, take fk = sup{fik: l g_i g_k]. Then,

* *

A (f—fk) =0, and fk/‘f for k=1,2,...,.

nkm

*

fk

We have now the inequality

*

fk A xm.g supHik f: l g_i g_k] = a f
m km

where dkm = max[likm; l g i g_k} for k,m = 1,2,...,.

Clearly akm\ mO for k = 1,2, ..., and the proof is

complete.

Lemma 4.8. Let L be a Riesz space with the P.P.P.,

and let f,g E L with O g_g g f. Then, if f has

* *

property E.T. , g has property E.T. .
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Proof. Consider gp = P(pg_f)+(g) for

p = 1,2,...,. It is trivial to see that gp/fl 9,

9p (9 9p gp( ) g pgp g_pg

Now, let xnfii O w1th xn g'gp for n = 1,2,...,

and for fixed p. At the same time we have xn ng

for all n, and hence there exist a sequence of components

(fm} of f with fm/‘f and apprOpriate sequences

of real numbers [lmn} w1th an\'no for m = 1,2,...,

such that fm A xn g_xmn f. Taking zpm = fm A gp,

we see easil that z ‘\N , and z A - z = O.

y pm m p pm (9p pm)

Taking projections on both sides of the inequality

x A f < l f we obtain

n m —' mn

= ( .2pm A xn ng(xn A fm) g an ng(f) ;,p l g

This establishes that, for each p, the element

*

gp has property E.T. , and hence by application of

lemma (4.7) the proof is completed.

Lemma 4.9. Let L be a Riesz space with the

P.P.P. . Let f E L+, and suppose there exists a

+

sequence [un} CiL such that un/Z'f and each

*

un satisfies property E.T. , where n = 1,2,...,.

*

Then, f has property E.T. .
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Proof. Let f = P (f), then f ,fl f and
-—-- n un n

f A (f — f) = O for n = 1,2,...,.

n n

For each n, consider f = P (f ),
nm n

+

(mun-fn)

where m = 1,2, ..., . Clearly fnm/m fn' and

f A (f — f ) = O for m = 1,2,...,.
nm n nm

We also have that fnm _<__mun and hence by

*

lemma (4.8) each fnm has prOperty E.T. .

Applying lemma (4.7) twice then completes the

proof.

Lemma 4.10. Let L be a Riesz space with the

P.P.P. . Suppose the elements f,g E L+ have property

* *

E.T. . Then f + g has property E.T. .

Ppppf, Let 2 = Pf(g). Then f + g = (z+f) + (g—z).

Now, Pf(z+f) = z + f = spp(nf A (z+f)) and hence by

application of lemmas (4.8) and (4.9) 2 + f has

property E.T.*. Since 0‘: g - z g_g, by lemma (4.8),

g - z has property E.T.*. We also have, though, that

(9-2) A (z+f) = O and by application of lemma (4.6)

the proof is completed.

All of these results combine to give this next

theorem.
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Theorem 4.7. Let L be a Riesz space with the

P.P.P. . Then the set of all f 6 L such that lfl

*

has property E.T. is a G—closed ideal in L.

gpppf, Let I = {f E L: lfl has property E.T.*}.

If f,g E I, by lemma (4.10), we have that lfl + lgl

is an element of I and by lemma (4.8) we have that

(f+g) E I. In fact, since If V g] g_|f| + lgl and

If A gl‘g [fl + lgl, we have, by lemma (4.8), that

if f,g G I then f v g and f A g are elements of

I. It is trivial to see that if x is a real number

and f P I then if E I. We thus have that I is an

ideal. The fact that I is o—closed follows from

lemma (4.9). The theorem is proved.

We now obtain a connection between property E.T.

*

and property E.T. .

Theorem 4.8. Let L be a Riesz space with the

P.P.P. . Then an element e E L+ has prOperty E.T. if

'k

and only if e has property E.T. .

Ppggf. Property E.T.* always implies prOperty

E.T. . We prove the necessity. Suppose e G L+ has

property E.T. and let the sequence an O with xn _<_ e

for‘ n = 1,2,...,. By property E.T. there exist a

sequence [em] CL+ with emfe, and corresponding
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sequences of pOSitive real numbers {km} w1th )‘mn\‘no

for m = 1,2,..., such that e A x ‘g l e for
m n mn

m,n = 1,2,...,. Fix m for the time being and consider

the component zm of e, where zm = Pe (e). Since

m

Pe (Pe (e)) = Pe (e), we have zm = sup[pem A zm:

m m m

. m _
p — 1,2,...,}. ConSider vp — P(pe -z )(zm), we have

m m m

v z and v A z - v

p /flp m p ( m p)

Also, since vglg pem, we have that

= O for p = 1,2,...,.

m

< xx A . (pem) An vp._ n‘g p(em A xn) g_plmn e.

p], we clearly

V
\Now, take u = su (vi; 1 < i

P p P '—

have that up,” e and satisfies up A (e - up) = O,

for p = 1,2,...,. Also,

1 2 P

up A xn.g (Xn A VP) v (xn A vp)v...v(xn A VP) 3

.S (Xn A (pel)) V (xn A (pe2))v...v(xn A (pep)) g

.3 ptxln v l2n v...v ipnje.

But len V l v...v lpn]\l nO and this shows that
2n

u A x d 0 (e - r.u.). The theorem is proved.
.p n n

As an immediate consequence we obtain

Corollary 4.3. Let L be a Riesz space with
 

thee P.P.P. . Then, L has property E.T. if and only

. *

if L has property E.T. .

Theorem 4.9. If L is order separable and

Anchimedean, then L has prOperty E.T. if and only if

A

1' lias property E.T.*.
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2399;. The proof that L has property E.T.*

implies L has property E.T. is contained clearly

in the proof of theorem (4.6). We show, therefore,

the necessity. In view of lemma (4.8) it will suffice

A

to show that every element e E L+'g L+ has property

>a: A

E.T. relative to L. Since L is Dedekind complete

and hence has the P.P.P., we see by theorem (4.8) that

it will suffice to show that every 9 6 L+ has

A A

property E.T. relative to L. To this end, let {xn}

A A

be a sequence in L with xn\N O, and such that

A

Xn-g e for n = 1,2,...,. By remark (1.3), there

exists a sequence {yn} C L with yn\y 0 such that

A

yn‘Z xn for n = 1,2,...,. Taking xn = yn A e

A

we have xn‘g O, xn'g Xn' {xn} CZL, and xn g_e

for n = 1,2,...,. Since L has property E.T.,

there exists a sequence {em} in L+ with em)” e

such that for apprOpriate sequences of positive

real numbers {Am} With )‘mn\' nO we have

em A Xn b. an

. . A .
unplies that em A Xn g.em A xn.g xmn e. and this

A

e for m,n = 1,2,...,. But xn S-Xn

A

says that e has property E.T. relative to L. The

proo f is complete .

This next theorem summarizes much of what we

have accomplished in this chapter.
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Theorem 4.10. If L is an Archimedean order

separable Riesz space, then the following are equivalent:

(1) L has property E.T. .

(2) Q has property E.T.*.

(3) L(O) has property E.T.*.

(4) Order convergence is stable in L(O).

(5) L(o) is diagonalizable.

(6) L(O) has the Egoroff prOperty.

(7) L has the Egoroff property.

Ppppf, (l) «(2) was theorem (4.9).

(2) = (3) follows from the fact that e is

super order dense in L(o) combined with theorem (4.7).

(3) = (4) follows as before by application of

corollary (2.5)(4).

(4) a (5) a (6) is theorem (4.5).

(6) e (7) is lemma (4.5).

(7) = (1) follows from theorem (4.6).

The theorem is proved.

A somewhat surprising application of theorem (4.10)

is the following:

Corollary 4.4. Let L be an Archimedean order
 

separable Riesz space. If in L order convergence and

reLatively uniform convergence are equivalent for sequences,

then. I. has the Egoroff property.
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gpppf. Since, in this situation, L has

the property that order convergence and relatively

uniform convergence are equivalent for sequences if

and only if Q does (see Proposition (l.l)(e)), we

may as well assume that L is Dedekind complete.

Now, let e G L+ and let the sequence {Kn}

in L be such that xnxy 0 and xn g_e for

n = 1,2,...,. We have, by assumption, a u E L

and a sequence of positive real numbers {in} with

An‘y 0 such that xn g_xnu for n = 1,2,...,.

Since xn g_lnu implies that xn g ln(u v e),

\ve may assume that “.2 e.

Consider now e = P (e), where
m +

(me—u)

HI = 1,2,...,. We have em A (e - em) = 0 for each m,

emf e, and Pem(u) gmem.

Applying the projection operator Pe to

m

Ixath sides of the inequality xn g_lnu we obtain

e A x = P (xn) g Kn Pm n e (msmne g_mln e.
e m

m m

Frtnn this we conclude that em A xn ~h 0 (e - r.u.).

*

we liave established that L has property E.T. , and

t1deconclusion follows from theorem (4.10).



CHAPTER II

MEASURE RIESZ SPACES

In the theory of Riesz spaces, an important

role has been played by obtaining concrete representations

of certain abstractly defined Riesz spaces. The first

example of such is Kakutani's representation of an

abstract (L)—space (Banach lattice such that

”u + V“ = ”u“ + ”V” for u 2.0 and v‘g 0) as a

of equivalence classes of n—summablespace Ll (8,2. u)

is a completely additive measure

S: [see (9)].

functions where H

CH1 a O—algebra of subsets of some set

A more general result is the realization of

airbitrary Archimedean Riesz spaces as order dense

Iiiesz subspaces of Cm(Q) where Q is some extremal

compactum and Cm(Q) is the Riesz space of all

enctended real valued functions on Q which are finite

‘vaJJJed and continuous on some Open dense subset of

Q (see Chapter] §3). One of the features of this

re’Presentation is that every order dense Riesz subspace

<3f Ema Archimedean Riesz space determines the same

CED(C2) up to homeomorphism of the compactum Q. Until

89
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recently, however, one unfortunate gap in the theory

was that there was no definitive means for distinguishing

between a Cm(Q) which represents the equivalence

classes of all measurable finite almost every functions

on some completely additive measure space and say a

Cw(Q) which represents the universal completion of

c[o,1].

We might reason, however, that one plausible

criterion would be to demand that the Cm(Q) possess

an order dense abstract (L) Riesz subspace, say D.

:By'Kakutuni's result, we would have that D = L1(S,ZLu).

Ehit, if M(S,ZLL0 is the space of equivalence classes

(3f all Urmeasurable finite almost everywhere functions,

tflnen M(S,ZLL0 is clearly a universal completion of

IfiL(S'ZLu) = D and hence we would have that

M(S,E, L1) = Cm(Q) 0

J.J. Masterson has recently obtained a character-

ization of spaces M(S,Z,u) (the set of equivalence

Clausses of almost everywhere finite valued uemeasurable

furuztions on the localizable measure space (8.21LD

‘Vitfli the finite subset property and with a completely

additive measure u) in [(20)]. One of the essential

Concepts involved in his investigation is the one

mentioned in the preceding paragraph. We mention this
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here, because doing so focuses attention on one

important concept, that being that the universal completion

of an Archimedean Riesz space L is completely

determined by any order dense Riesz subspace of L.

The purpose of this chapter is to investigate

the use of order dense Riesz subspaces of spaces of

Ineasurable functions to represent Archimedean Riesz

spaces. In the course of the investigation a number

(Df questions concerning general embeddings of certain

Iziesz spaces into spaces of measurable functions will

loe considered.

Section 1. Basic Definitions and Results.

In this section we begin an investigation into

tflie use of spaces of measurable functions to represent

Ixrchimedean Riesz spaces. Throughout the remainder of

tflmis chapter, unless specified otherwise, we will

rmean.by the term "space of measurable functions", or

tn! the notation M(S,ZLu), the Riesz space of all

eqluivalence classes of finite almost everywhere

measurable functions on a localizable measure space

(3.2:,L0 with the finite subset property and with a

completely additive measure H, For a complete discussion

(Df snach spaces we refer the reader to [(29)]-
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For certain Riesz spaces, embeddings into spaces

of measurable functions exist which are sufficiently nice

so that the Riesz spaces are seen to possess the

essential properties of spaces of measurable functions.

This will be used as justification for calling this

class of Riesz spaces the "measure Riesz spaces".

We will then introduce a variant of the Egoroff

property and obtain some characterization theorems

for measure Riesz spaces where this property yields

significant reductions in the hypothesis of theorems we

‘will consider early in the discussion.

We begin with a brief discussion of some concepts

and results we will be needing in our investigations.

Let L1 and L2 be Riesz spaces. A lattice

isomorphism m: L1 4 L2 (from L1 into L2) is said to

1x: continuous if for any net 0 g uT‘y 0-in—Ll we have

inf (lrp(uT) I} = O-in-L2 .

The real linear functional m on the Riesz space

L is said to be order bounded if, for every u E L+,

tTMa number sup {lm(f)| : lfl g u} is finite. The set

015 all.order bounded linear functionals will be denoted

by L~.
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A linear functional m on the Riesz space L

is said to be positive if for any 0 g.f P L we have

w(f) 2 0.

We say that $1.3 $2 for $1 and $2 order

bounded linear functionals on the Riesz space L

whenever m2 — m1 is positive.

It is shown in [(18) Note VI Thm. 18.4] that L~

is a Dedekind complete Riesz space with respect to the

partial ordering just introduced.

The linear functional m on the Riesz space

L is said to be an integral if whenever un\| 0-in—L

we have inf{|w(un)l} = 0. The set of all integrals

will be denoted by LS.

The element m C L~' will be called a singular

functional if inf{lm|,lwl} = 0 for every integral
 

w E Lg. The set of all singular functionals will

be denoted by Lg.

It is shown in [(18) Note VI Thm. 20.3] that

both L3 and L; are bands in L~ and that

LN: "’ ”.LC @LS

The element w e L~ 'will be called a normal

ilategral if whenever [uT} is any net in L with
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'u1\y 0 we have infllm(uT)|) = 0. The set of all

normal integrals on the Riesz space L will be denoted

~

by Ln

The element m 6 LA' will be said to be singular

with respect pp_the normal integrals on L if
 

inf[|m|,Iw|} = 0 for every w E L;. The set of all

A;

such m will be denoted by Lsn .

Again we have that both L3 and Lgh are bands

in LN and that L~ = L~ ®2L~
n SH

For any m 6 LN, we set Ncp = {f:f G L,|m|(lfl) = 0}-

Then NCp is an ideal in L, and we call NCp the ppll

Elsa}. of cp. The ideal cCp = Ng-in-L is called the

carrier, or suppprt, of m. If m is a normal integral

then Nw is a band and hence for normal integrals

CCp = {0} if and only if m E 0.

For a complete discussion of the concepts

introduced above we refer the reader to [(18) Notes VI,

VIII].

Now, let L be an Archimedean Riesz space. By

F we denote the family of all order dense ideals

contained in L. F is a filter basis. Let

s = LNI; : I e F). If ¢ s Q, we denote by I¢ its

Ckxnain of definition.



95

We define the following relation on Q:

01 5 F02 whenever [f : 01(f) = ¢2(f), f E L]

contains an order dense ideal. Since F is a filter

basis, it follows immediately that the relation 2 F

is an equivalence relation. The set of classes of

equivalent elements will be denoted by P(L). F(L)

turns out to be a Riesz space under the partial ordering

induced by defining [O] 2_O if there exists a

0' E [¢] such that on Ig. we have if 0 g_f E I¢.

then ¢'(f).2 O-

The set [I¢: O 6 [¢]} can be partially

ordered by inclusion and can be shown to contain a

maximal element which we denote by D_. It can be further

_ ¢

shown that the O corresponding to D_ is a uniquely

defined element of [0]. Thus, we can now identify

F(L) with the set of its maximal elements.

Furthermore, it can be shown that P(L) is

universally complete and that L; embeds in P(L) as

an ideal.

The space P(L) was first introduced by J.J.

(Masterson in his thesis (A Generalization of the Concept

<3f the Order Dual of a Vector Lattice: Purdue University

11965). For a more accessible reference, we refer the

reader to [(17)].
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Remark 1.1. We list here a few more results

concerning P(L) which we will find of particular

interest to our discussion. These results can also

be found in [(17)].

(1) Let L be an Archimedean Riesz space

and M 53L 'be an order dense Riesz subspace

of L, then F(M) = P(L).

(2) Let L be an Archimedean Riesz space,

then the following are equivalent:

(a) P(L) is separating on L.

(b) There exists an order dense ideal I g_L

such that 1;, is separating.

(c) There exists an order dense ideal I C L

which possesses a strictly positive normal

integral.

Masterson also proved in [(20)] the following

theorem:

Theorem D. (Masterson) Let L be a Riesz space.

The following conditions are necessary and sufficient

that there exist a completely additive localizable

measure u 'with the finite subset property such that

L = M(S,Z,u):

(l) P(L) is separating,

(2) L is universally complete.
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Remark 1.2. If we combine theorem D above with

remark (1.1) we obtain the following:

If L is an Archimedean Riesz space, in order

that there exist a space of measurable functions

M(S,Z, L1) such that L = M(S,Z, L1) it is both necessary

and sufficient that P(L) is separating.

This says that L is lattice isomorphic to

an order dense Riesz subspace of a space of measurable

functions if and only if P(L) is separating.

Remark 1.3. In the above remark (1.2), we may

assume that the measure u is O-finite if and only if

L has a countable disjoint basis of positive elements

of countable type (for definitions see Chapter I §4).

We will find this next result useful.

Lemma 1.1. Let L be an Archimedean Riesz space.

Suppose that given any f E L+ we have that if f y 0 then

I(f); # {0} (where I(f) = [g E L: '9'.S f] i.e. is

the ideal generated by f). Then P(L) is separating.

Proof. Since m E I(f); implies that m+

and m- are in I(f);; we may assume that m is

positive and hence that m(f) # 0. Consider now the
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ideal B = I(f) e (I(f)l-in-L). By [(18) Note IX,

Thm. 29.10 and Thm. 29.5], we have that B is an

order dense ideal in L. If g E B, we will denote

its components in I(f) and I(f)l-in-L by 91 and

92 respectively. Define $0 on B by taking

ch(g) = cpo(91 + 92) = cp(gl) for g e B. The verifi-

cation that $0 is a positive linear functional on

B is trivial. To see that $0 is a normal integral,

we note first that if [g + ng} is any net
T = ng

in B, then gT\, 0 if and only if ngX, 0 and

g2T\y 0. After noting this, the normality of mo

follows trivially from the normality of m.

A

Obviously, the unique moe P(L) determined by

A

m0 has the property that ¢O(f) g 0,

Now, for an arbitrary f E L, we can apply the

lemma to either f+ or f_, say f_; and since f“

will then be in I(f+)l-in—L, the same construction we

have given above will guarantee the existence of a

w E P(L) such that m(f) # O. The assertion is proved.

It is not difficult to see that a lattice

embedding m from a Riesz space L1 onto an order

dense Riesz subspace I of a Riesz space L2 must be

caontinuous. Therefore, by remark (1.2), we see that if
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P(L) is separating then there exists an order continuous

embedding of L into a Riesz space of measurable

functions.

It is natural to ask whether the existence of

an order continuous embedding m from a Riesz space L

onto a Riesz subspace of a space of measurable functions

(not necessarily an order dense Riesz subspace) is

enough to guarantee that P(L) is separating.

The answer turns out to be affirmative.

Corolla;yfil.l. Let L be an Archimedean Riesz
 

space. In order that there exist a space of measurable

functions M(S,Z,u) and an order continuous embedding

(p from L onto a Riesz subspace of M(S,Z,u) (not

necessarily an order dense Riesz subspace), it is both

necessary and sufficient that P(L) is separating.

Ppppf, We need only show the necessity. Suppose

m is an order continuous embedding of L into

M(S,Z,u) . If f E M(S.Z.u), it is trivial to show

that I(f); # [0}. New, let 9 E L+. We have that

Cp(I(g)) 51mm) and cp<g> en(s.z.a>+. Let

0 < q; _c [I(cp(g));]+. Then 1110 = (to (p e I(g); and

Th3(g) = w(m(g)) # 0. By application of lemma (1.1),

wee'have that P(L) is separating. The assertion is proved.
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We have established the validity of this next

proposition.

Proposition 1.1. The following conditions on
 

an Archimedean Riesz space L are equivalent:

(1) There exists an order continuous embedding

of L into some space of measurable functions.

(2) There exists an embedding of L onto

an order dense Riesz subspace of a space of

measurable functions.

(3) L is a space of measurable functions.

(4) P(L) is separating.

(5) There exists an order dense ideal in L,

say I, such that I; is separating.

(6) There exists an order dense ideal 1'; L

which possesses a strictly positive normal

integral.

(7) Given any f s L+, I(f);'# [0}(f # 0).

Of the equivalent conditions in proposition (1.1)

above, the most descriptive is condition (2). For this

reason, we will use this condition to make a definition.

Definition 1.1. An Archimedean Riesz space L
 

xvill be said to be a measure Riesz space if it is
 

embeddable as an order dense Riesz subspace of some

Space of measurable function M(S.ZLu) where u is a
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completely additive, localizable measure with the

finite subset property.

We will find that this next lemma helps to

illucidate the role of measure Riesz spaces in the

general theory of Riesz spaces.

Lemma 1.2. Let L be an Archimedean Riesz space,

then there exist bands L1 and L2 in L satisfying

the following conditions:

i
(1) L1 — L2.

(2) F(Ll) = P(L) and F(Ll) is separating.

[o].(3) F(Lz)

Ppppf, Let ¢ E P(L), D¢ its domain of

definition, and N¢ its null ideal in D¢° It is

easy to see that, for each 0 E P(L), N¢ is a band

in L. Let L2 = “[N¢: ¢ E P(L)]. L2 is a band in

L since each N¢ is a band. We show first that

L2 = {0] if and only if P(L) is separating. Then

sufficiency is obvious. So, suppose that L2 = {0].

Then, given any f E L+, there exists a O E F(L)+

such that O(f) # 0. If O(f) < m we are done. If

SZ(f) = m, we are done by virtue of [(17) Thm. 2.1].

Therefore, if L2 = {O}, we have that P(L) is

separating and by taking L1 = L we see that conditions

(1), (2), and (3) hold.
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Now, suppose that L2 # {0}. Consider then

2 1' We have that L1 is a band by its definition.

We will show now that F(Ll) = P(L). To this end,

consider the map 0 ~ O' where O E P(L) and

0' = ¢!D¢ G Ll' It is clear that O' E F(Ll), and

that the mapping 0 4 O' is a lattice homomorphism.

We wish to show that it is one-to-one and onto. To

show that the mapping O ~ O' is one-to—one, we

recall first that if 01.¢2 E P(L)+ and O1 # O2,

then for any order dense ideal I gng n Dg there

1 2

must exist an f C 1+ such that ¢1(f) - 02(f) # 0.

But, if 01.02 E P(L)+ and 01 # 02 then, since

) is order dense in L andI = D¢l fl D¢2 0 (L1 m L2

since I E D¢ 0 DO , we must have an element

21

o r f c I such that ¢1(f) - ¢2(f) # 0. But,

f = fl + f2 where f1 E L1 and f2 E L2 and hence

¢l(f) - $20?) = ¢l(fl) - ¢2(fl) 75 0. We have

established that the mapping 0 d 0' is one-to—one.

To see that the mapping 0 d 0' is onto, we let

0' C F(Ll) and Dg, be its domain of definition.

Consider D = DO' @ (D53 -in-L). Each f E D has

a representation of the form f = f + f where
l 2

J- . . -

fl E DO' and f2 E D¢, -in-L. We define O by

O(f) = {Hfl + £2) = ¢(fl) for f E D. It is clear



103

that a is a normal integral on D which is an order

dense ideal in L. It is clear that the element

01 E P(L) determined by 6 satisfies the condition

that 01 ~ 0'. Hence the mapping O ~ O' is onto.

We have established that F(Ll) = P(L).

Seeing that F(Lz) = [0} is trivial.

The fact that P(Ll) is separating follows from

[(17) Thm. 2.1]. The proof is completed.

Remark 1.4. It follows easily from lemma (1.2)

that if L is an Archimedean Riesz space, then there

exist a space of measurable functions M(S,ZLL0 = L1,

and a universally complete space L such that

2

L = L Q L F(Ll) = P(L), and F(Lz) = [0}. This
1 ' 2'

essentially says that for any question concerning

normal integrals we may as well restrict our attention

to spaces of measurable functions.

Remark 1.5. Another example of the usefulness

of this theory is the following.

Every reflexive Banach lattice is a measure

Riesz space.

To see this, we recall first the well known result

[c.f. (27) p. 228] that if L is a Banach lattice then
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L' = L~ (where L' is the topological dual of L).

Also, it follows from an equally well known result,

that L' is a Dedekind complete Banach lattice

[c.f. (27) Thm. IX, 4.1 p. 255]. Since L is

reflexive, conbining these two results, we obtain

that L = L" = (L~)~, and that L is Dedekind complete.

 
If

   

is the norm on L, it follows from [(27)

Thm. IX, 7.2 p. 269] that whenever xn‘& 0 in L

we have that Han c 0. From this and the fact that

L is Dedekind complete, it follows from [(25) PrOp. 2.6

p. 164] that L is order separable. It is now

easy to see that L' = L~ = L; and hence P(L) is

separating. We have shown that not only is L a

measure Riesz space, but that if M(S,ZLU) = L, then

L is an ideal in M(S,ZLLO. Thus for the study of

reflexive Banach lattices we can restrict attention

solely to Riesz spaces which are ideals in spaces of

measurable functions.

Remarks (1.4) and (1.5) were meant merely to

give an early indication of the uses to which our

current investigations can be put. Much more general

results along similar lines will be obtained in succeeding

sections.
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In the following we give an example of a

space of measurable functions which is continuously

embedded into another space of measurable functions

as a Riesz subspace which is not order dense. Showing

that condition (1) of proposition (1.1) is not a

vacuous consideration.

Example 1.1. Let m be the Riesz space of all

real sequences. Let L be the space of equivalence

classes of Lebesgue measurable functions on the real

half line [O,m). ConSIder the set {X[i,i+l]7 i = 0,1,2,...,}

where denotes the characteristic function

X[i,i+l]

of the interval [i,i+l] for i = 0,1,2,...,. We

define the map m from m into L by

cP({X.}) = :- X.X

1 i=1 i [i—1,i]°

order continuous embedding of m into L, but m(m)

Then, m is clearly an

is obviously not order dense.

Remark 1.6. The space C[O,l] of all continuous

real valued functions on the real interval [0,1] is a

Riesz subspace of the space of equivalence classes

of Lebesgue measurable functions on [0,1]. However

C[O,l] cannot be embedded on an order dense Riesz

subspace, or equivalently in an order continuous manner,

in any space of measurable functions since T(C[O,l])

is known to consist only of the zero functional [c.f. (17)

p. 497].
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We will now begin to take advantage of some

other properties that measure Riesz spaces must possess.

We feel that one of the most logical choices for a

condition which one could hope to profit from is the

Egoroff property. A certain amount of care must be

employed however. For it is known that, if the

continuum hypothesis holds, the only spaces of measurable

functions which have the Egoroff property are those

whose measures are o—finite. [c.f. (l9) Thm. 43.6].

What is true, is that every space of measurable

functions has the Egoroff prOperty on an order dense

ideal (if M(S{ZLU) is a space of measurable functions,

then the L1(S,ZLU) subspace is order dense and has the

Egoroff property).

This induces us to make the following definition:

 

Definition 1.2. An Archimedean Riesz space L

will be said to be sub-Egoroff if there exists an order
 

dense ideal 1.5 L such that I has the Egoroff property.

The measure Riesz spaces satisfy the additional

condition that they are all sub-order separable. Again,

if M(S,Z),u) is a space of measurable functions, then

the Ll(S.ZBu) is an order dense order separable ideal
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contained in M(S,ZLu). The fact that this is true

takes on added importance in view of this next example.

The example, although used by him for different

purposes, is due to J.A.R. Holbrook [(8) §2 p. 215].

O 1 2

Example 1.2. Let L = {f = (f ,f ,f ,...),

where fn: Rn d R, n = 0,1,2,..., and R0 = {O}, R

is the reals}. It is clear that the algebraic Operations

n

(f+g)n = (fn+gn) and (lf)n = if make L into

a vector space, and defining f g_g if and only if

n n

f .S g for all n makes L into a Riesz space.

Define the Operation c : Rn # Rn-l by

n \ _.

v E R (n 4 l) and v — (v1,v2,...,vn) then

C(v) = (v1,v2,...,vn_l).

Now, let L' be the vector lattice of all

f E L satisfying the following two conditions:

(1) There exists a constant M(f) such that

supilfn(v)l : v E Rn} g M(f) for each n = 1,2,...,.

(2) If En(f> = {v c R“: f“(v) # fn‘1<c(v))}

then En(f) is finite for each n = 1,2,...,.

The following were shown in [(18)]:

(1) If we define p on L' by

n(f) = SUP{(n+1)_1(suP[Ifn(v)l : v c R“})};

n20

then p is an integral norm on L' (i.e. if

fm\ 0 then p(fm) - o).
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(2) L' has the Egoroff property,

(3) Given any u E (L')+ there exists a

net uT\N 0 with uT‘g u such that p(uT) % 0.

We make the additional observation that L'

is non—sub-order separable. For, if there were to

exist any order separable ideal I in L then p

restricted to I would be normal and this contradicts

condition (3).

Thus, we have that L' is an example of a

non-sub-order separable Riesz space (and hence is not

a measure Riesz space) with the Egoroff property.

Remark 1.7. If M(S,Z,u) is a space Of

measurable functions, and if f E M] is an element of

countable type; then the band generated by f is a

space of measurable functions over a O—finite measure

space. As such Bf = {f}l -in—M has a strictly positive

linear functional defined on the order dense ideal

Bf n Ill-(SIB! U)’

Lemma 1.3. Let L be an Archimedean sub—order

separable sub-Egoroff Riesz space, and let e E L+ be an

element of countable type. Then the band generated

by e, Be = {e}‘L -in-L, is an order separable Riesz

space with the Egoroff property.
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3399;, The fact that Be is order separable

follows easily by application of theorem (4.1) of

chapter I. Let I be the order dense ideal in L

which has the Egoroff property. Then, I 0 Be is

super order dense in Be and is easily seen to have

the Egoroff property. Since the collection of all

elements of a Riesz space with the Egoroff property is

a O-closed ideal, we have that Be has the Egoroff

prOperty. The assertion is proved.

The following theorem shows that if the

Archimedean Riesz space L is assumed to be sub-

order separable and sub-Egoroff then a significant

reduction Of the properties of the dual will guarantee

that L is a measure Riesz space.

Theorem 1.1. Let L be a sub-order separable,

sub-Egoroff, Archimedean Riesz space. Then the following

are equivalent:

(1) L is a measure Riesz space.

(2) If e E L+ is any positive element of

countable type, then Be = [e]i -in—L has

a strictly positive linear functional defined

on an order dense ideal.
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2399;, We show first that (l) a (2). To this

end, recall that if L is a measure Riesz space, then

L is a space of measurable functions. Since if

e E L+ is of countable type then e is of countable

type in L, we see by remark (1.7) that (l) = (2).

We show now that (2) = (1). First, we show

that if e E L+ is of countable type then Be is a

measure Riesz space. To this end, let I be an order

dense ideal in Be which possesses a strictly positive

linear functional w. By application of lemma (1.3),

Be is order separable and has the Egoroff property.

Therefore, I is also order separable and has the

Egoroff property. Since IN = I: e I , we have that
s

E IN. We have,m = me + ms where me E Ic and ms 5

by [(18) Note VI Cor. 20.7], that the null ideal

Nm of ms is an order dense ideal in I. This implies

s

that mc must be strictly positive on the order dense

ideal N in I, and hence on I. The order

s

separability of I implies that me E 1;. By proposition

(l.l)(6), this implies that Be is a measure Riesz space.

Now, let 0 < f c L+ and let [ea] be a

disjoint positive order basis for L consisting of

elements of countable type. Since {ea} is a basis

for L, there exists some a = do such that
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0 < e A f < f. Since also 0 < e A f < e , we

0‘0 _ O‘o _ 0‘0

have that ea A f is an element of countable type

0

in L. By what we have proved, there exists an order

dense ideal I C Be Af such that I possesses a

a
0

strictly positive normal integral m. Hence, there

is some g E I with 0 < g‘g ea A f'g f such that

0

. i

m(g) > 0. Taking D = I m I , and for each x E D

denoting its components in I and Il'by x1 and x2,

respectively, we know that we can extend w to a m

defined on D by taking w'(x) = w'(xl+x2) = m(xl)

for each x E D. Furthermore, m' is a normal

integral on D. Letting E denote the unique element

of P(L) defined by m', we have that $(f) > 0.

If ¢(f) < m, we are done. If $(f) = m, we apply

[(17) Thm. 2.1] tO Obtain a w E F(L)+ such that

O w(f) m. Thus, we have that P(L) is separating

and L is a measure Riesz space. The theorem is proved.

Corolla£y_l.2. Let L be an Archimedean Riesz
 

space which has a countable order basis consisting of

elements of countable type. Suppose in addition that

L has the Egoroff prOperty. Then L is a measure

Riesz space if and only if it has an order dense ideal

possessing a strictly positive linear functional.
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As we have seen in example (1.2), for an

Archimedean Riesz space L, the Egoroff property

alone is not enough to guarantee that L is a

measure Riesz space. By adding the condition that L

has to be sub-order separable, we see that example

(1.2) no longer applies. As far as we know, the question

of whether an arbitrary sub-order separable Archimedean

Riesz space with the Egoroff property has to be a

measure Riesz space is still Open. We discuss this

further in the last section of this chapter. For the

present, however, this next corollary shows that at

least for one reasonably large class of Riesz spaces

the Egoroff property alone is enough to place us

within the realm of measure Riesz spaces. The corollary

also seems to indicate that if a counter example exists,

it will not be easy to obtain it.

Corollapy 1.3. Let L be a Riesz subspace of
 

the space M(S,7}u) over the o-finite measure space

(S.ZLu). Then, L is a measure Riesz space if and

only if L has the Egoroff property.

Proof. We need only show the sufficiency. We

note first that L must be order separable, since

any disjoint positive order basis for L must consist

of at most countably many elements each of which is of

countable type; otherwise we would contradict the order

separability of M(S.Z. n) .
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Now, let 0 < f E L+ and consider the ideal

generated by f in M(S,Z, L1) . We will denote this

ideal by I(f,u). We claim that I(f,u) possesses

a strictly positive linear functional. To see this,

let Sm/z S and satisfy “(Sm) < w for m = 1,2,...,.

Let Yn = {t E S: f(t) Syn} for n = 1,2,...,. Clearly

Y S. Let Z = Y 0 S and let
n m,n n m

Xm = 21,111 U Z2,mU...U Zm'm

We have that .X ,3 S and X C‘Y 0 S for m = 1,2,...,.
m m m m

Hence, for t E Xm we have that f(t) g m, and

U(Xm) g n(Sm).

Now, let B = X - X for m = 2,..., and

m m m—l

let B1 = X1, then Bm fl Bm+l = O and ”(Bm) g n(Xm) g

_ _ 1_1________1
”(Sm) < m for m — 1,2,...,. Let gm — (m)(2m) u(Bm) me.

Then, since NHS,ZLLD is universally complete, there

exists an element g E M(S,ZLu) such that

sup[gm; m=10200000] = 2 gng.

m=l

Define the functional m on I(f,u) as follows:

m(g') = f g'gdu where g' E I(f,u).

To show that m E I(f,u)~ we need only show that

cp(f) < co. But,
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m

CMf)=‘ffgdU=ZUm‘ff€?%Jdu=

ndm

lim g} r f g du = lim E) f f (l)(JL)(—-L-—)x du.
k; d k k=1 k 2k “(Bk) B

m—scr. l Ill-'00
k

m m

e l l l 1

And I; f(-) (-—) (———)x du _<_ Z _-

k=1 k 2k u(Bk) Bk k=l 2k

and hence, I f g du.g 1.

It is easy to see that m is strictly positive

on I (f, u) 0

Now, consider I(f) the ideal generated by f

in L. Clearly I(f) Q I(f,u) and m0 = m|I(f) is a

strictly positive linear functional on I(f). Since

L has the Egoroff property, we certainly have that

I(f) has the Egoroff prOperty. By the same reasoning

we used in the proof of theorem (1.1), it follows

that is a strictly positive normal integral on
Cp0c

I(f). Thus, by application of lemma (1.1) it follows

that F(L) is separating. The assertion is proved.

Remark 1.8. We note now that the measure Riesz

spaces have an analogue of the Egoroff theorem at

least on an order dense ideal, namely, theorem (4.6)

of chapter I. We also wish to mention that an analogue

to the Radon Nikodym theorem exists for these spaces.

Vkawon'tgo into this at the present time. however.
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Remark 1.9. In the proof of corollary (1.3)

we actually established that if L was a Riesz

subspace of a space of measurable functions on a

o—finite measure space, then every ideal in L

generated by an element of L possessed a strictly

positive order bounded linear functional. Applying

this to C[O,1], the space of real continuous functions

on the real interval [0,1], we see that if C[O,l]

were to have the Egoroff property, then it would

have to possess a strictly positive normal integral,

this by application of corollary (1.3) and the fact

that C[O,l] is a space generated by one element.

But, it is well known [c.f. (10) IV 1). 520] that

C[O,l]; = [0}. We conclude by this admittedly

indirect method that C[O,l] does not have the

Egoroff property.

Section 2. Some More on Embeddings.

We showed in the preceeding section that there

exists an order continuous embedding m of a Riesz

space L onto a Riesz subspace (not necessarily

order dense) of a space of measurable functions

M(S,ZLu) if and only if there exists an embedding

m' of L onto an order dense Riesz subspace of some
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space of measurable functions M'(S',Z?,uf) (where

M(S,ZLU) and M'(S',Z?,uf) do not have to be equal,

see example (1.1)).

A natural question to ask is whether every

Archimedean Riesz space can at least be embedded into

some space of measurable functions (not necessarily

in an order continuous manner). We have already seen

that C[O,l] can be embedded as a Riesz subspace of

the space Of equivalence classes Of Lebesgue measurable

functions on ([0,1],u) but cannot be embedded as an

order dense Riesz subspace of any space of measurable

functions.

In fact, it is well known that any Riesz space

with a separating order bounded dual L~ can be

embedded as a Riesz subspace Of (L~]; [c.f. (lO)II (3.7)

p, 334]. Furthermore, L forms a separating set of

normal integrals for L~ and therefore P(LN) is

separating. But also L~ is a separating set of

continuous linear functionals for (LA);) hence

F2(L~) = F(T(L~)) is separating and so T(L~) is a

space of measurable functions.

So, every Riesz space L with a separating

order bounded dual L~ can be embedded as a Riesz sub-

space of the space of measurable functions F(L”).
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However, as we will soon see, the answer to the

question of whether an arbitrary Archimedean Riesz

space can be embedded as a Riesz subspace of some space

of measurable functions is negative.

In order to show this we will restrict our

attention to the following class of Riesz spaces:

Definition 2.1. The Dedekind-o-complete Riesz
 

space X is said to be extended (or of extended type)
  

if it contains a unit and if every countable set of

pairwise disjoint elements {xn] C X is bounded.

A compactum Q is said to be gpasi extremal
 

if it has a basis of Open closed sets, and the closure

of every countable union of Open closed sets is Open.

If Q is a quasi extremal compactum, then

the set of all extended real valued functions on Q

which are continuous and finite valued on an Open

dense subset of Q can be given a Riesz space structure.

We will denote such spaces by Cm(Q). Cm(Q). where Q

is a quasi extremal compactum, is in general a Dedekind-

o-complete Riesz space of extended type.

It can be shown that every Dedekind-O-complete

Riesz space can be embedded as an order dense ideal

in Cm(Q) for some quasi extremal compactum Q. This
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embedding will be an isomorphism onto if and only if

the Dedekind—O—complete Riesz space is of extended

type.

For details concerning Riesz spaces of extended

type, we refer the reader to [(27) Chapter V].

The main result of this section is that if Q

is a quasi extremal compactum, then Cm(Q) can be

embedded as a Riesz subspace of some space of measurable

functions if and only if C(Q);' is separating (where

C(Q) is the space of continuous real valued functions

on Q).

In order to obtain this result, we will have

to establish some relationships between the integrals

on a space of continuous functions C(X) on a compact

Hausdorff space and the regular Borel measures on X

which represent the integrals. We will be assuming,

for this reason, that the reader is familiar with

the material in [(6) Chapter X].

This next result is absolutely essential to

our analysis. Variations on the theme of this result

have appeared in the literature often [c.f. (25) p. 111].

As far as we know, in the form it takes below, it has

not been proved.
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The essential part of the proof can be carried

out for compact X. Once proved for this case, it is

easily seen that the proof generalizes to locally

compact O—compact X. Since we will only need the

result for compacta, we will prove it in this context

keeping in mind that a more general result can be

easily Obtained.

Theorem 2.1. Let X be a compact Hausdorff

space and let C(X) be the space of continuous

real valued functions on X. A linear functional m

on C(X) is an integral if and only if its representing

regular Borel measure vanishes on every closed G6

nowhere dense subset contained in X.

Proof. Suppose that G is a G6 closed

nowhere dense subset of X and let {Gn} be a

sequence of Open sets such that 0 G = G. Since

n=l

X is normal and (com Gn) n G (where (com Gn)

complement of Gn) is empty for n = 1,2,..., we

have, for each n, a Urysohn function fn satisfying:

fn(x) = l for x E G,

fn(x) = O for x E (com Gn)'

0.3 fn(x) g_l for all x E X.

If we take g inf[fi: l _<_ i g n], we have gn\‘
n

nand inf{gn: 1,2,...,) = O. For suppose that
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x E G, then for some n = n we must have that0'

x E G which implies that g (x) = 0.
n0 n0

Now, let m E C(X) and let um ‘be the regular
c

Borel measure such that, for each f E C(X), m(f) = Ixf duw.

We have that |m((gn) ~ 0 which implies that

I gn dIle « 0. But, luwl(G) g I gn dluml, and hence

lucpl (G) = 0.

Now, suppose that u is a positive regular

Borel measure on X and that for each G6 closed

nowhere dense subset G of X, we have that n(G) = 0.

We wish to show that [X f d u. as a linear functional

on C(X), is an integral.

Let [fn; n = 1,2,...,} be a sequence in C(X)+

such that fn\' 0.

Let Dm = [t E X: fn(t)-2 % for all n = 1,2,...,},

where m = 1,2,...,.

Each Dm is obviously closed. We must show that

each DJ is a nowhere dense G . Suppose that for some

6

m = mO we have that Dm contains a sphere, say B,

0

then (com B) is closed and let XO E B. We can find a

Urysohn function g on X satisfying:

9 (X3 = l/mo.

g(x) = O: for x E (com B),

AO ;_g(x) gl/mO for all x E X.
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But, then, g g_fn for all n = 1,2,..., and this

implies that inf[fn: n = 1,2,...,} # O which

contradicts our hypothesis. This shows that for

each m, Dm is nowhere dense.

Now, let D = [t E X: f (t) > l], where

n,m n —-m

n,m = 1,2,...,. Each D is a G for n,m = 1,2,...,

n,m 6

. . _ . l .1;

Since if Dn,m,k — {t E X. fn(t) > a 2k}, where

n,m = 1,2,..., and k = m,m+l,...,: we have that

Dn,m,k is open and kgm Dn,m,k = Dn,m for n,m = 1,2,...,.

and hence each Dm is a G6' By assumption, we have

that u(Dm) = o for m = 1,2,...,.

Now, [t E X: inf{fn(t): n = 1,2,...,] 0) = U D ,

and since u is countably additive, this set has

u-measure zero.

Since, for each m, D = n D and n(D ) = 0,
m n,m m

n=l

we must have that, for some n(m) = n, “(D ) < 1.

n(m),m -- m

Consider ix fn(m)du = in fn(m)du

n(m),m

+ fX—D fn(m)du' On X -Dn(m),m we have that

n(m),m

< E. If M(f ) is the maximum of the function
n(m) —m l

C
fl we have that fn(m)(t) g_M(fl) for all t t X.

l 1

Hence IX fn(m)du S a M(fl) + a “(X -Dn(m),m) g

$(M(fl) + U(X)). So, if E > 0 is given and we choose
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m = m' such that l/m'  
, E
'; M(f1)+u(X)' then we can

choose an n = n(m'.E) = n(E) such that for all

n 2’n(E) we have:

ix fn du E. r—nl— (M(fl) + M(X)) g g.

This shows that ix fn du « o.

By application of the Hahn decomposition

theorem for measures we can extend this proof to

signed regular Borel measures on X. The proof is

completed.

Before proceding to our main result we need

a couple of lemmas concerning the supports of regular

Borel measures on a compact Hausdorff space. The

support of a measure u, written supp u, is defined

in the following manner:

Let G = {x E X: there exists an open set

U 9 x, with x c U and such that n(u) = o] (it is

trivial to show that G is an open set). Then,

supp u = (com G).

Lemma 2.1. Let L1 be a regular Borel measure

on the compact Hausdorff space X, and assume that

u > 0. Let B C'X be a closed G6 nowhere dense

subset of X. Then supp u.g B implies that u(B) > O.

In fact “(B) = n(X).
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2399;. Let U(B) be any Open set containing

B. Then, U(X — U(B)) = 0. To see this, we merely

consider the following:

Since X is compact and Hausdorff and

X-U(B) is closed, we have that X.-U(B) is a

compact subset of X contained in the complement of

the supp u. Therefore, for each x E X«-U(B), there

exists an open set UX containing x such that

U(UX) = O. The collection U = [UX: x E X U(B)} is

an Open covering of X -U(B) and hence there exists

n

a finite subcovering {Ux.}i=l' Since U(Ux.) = O

i i

n

for each i, we have that u(X-U(B))'g u( U UX )‘3

i=1 i

n

7‘ =
..s U(UX.) 0.

i=1 1

Now, since U(X) = u(X-—U(B)) + u(U(B)), we

must have that u(U(B)) = U(X) for all open sets U(B)

containing B.

The regularity of the measure u guarantees

that U(B) = inf{u(U(B)) : U(B)- is an open set containing

B). Therefore, u(B) = U(X) > O. The assertion is

proved.

Lemma (2.1) also has an extension for locally

compact, O-compact Hausdorff spaces.

This next lemma reverses lemma (2.1).
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Lgmma 2.2. Let X be a compact Hausdorff

space. Let u > 0 be a regular Borel measure defined

on X. Then, if B is any closed G6 nowhere dense

subset of X such that U(B) > 0, there exists a

regular Borel measure “1 > 0 suCh that “1.: u

and supp Ul-E B.

Pppgfi. Let ”1 be the positive linear

functional defined on C(X) by taking m1(f) = IB fdu.

If m is the linear functional on C(X) defined

by taking m(f) = IX fdu, we have clearly that

”1(f)-3 m(f), and hence the regular Borel measure

“1 > 0 such that ml(f) = IX fdu, has the property

that ul.g u-

Now, let x E X-B. Then there exists an
0

open set U(XO) containing xO such that U(XO) n B

is empty. The complement of U(XO) is closed so

choose a Urysohn function such that,

g(xo) = l.

g(x) O; for x E X-U(B),

0,3 g(x) g l; for all x E X.

Then ml(g) = IB gdp = 0. New, let 'V(x0) =

(x E X : g(x) > %). V(XO) obviously contains x0

and u1(V(xO)) S.wl(29) = 2m1(g) = 0. This implies

that every x E Xi-B is contained in the complement

of the support of ”1' Therefore, supp U1.E B. The

assertion is proved.
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We feel that at this time it might be best

to compare this next theorem, the central result

of this section, with theorem D of section 1 of this

chapter, a result due to J.J. Masterson.

First of all, we recall that every universally

complete Riesz space is Cm(Q) for some extremal

compactum Q (see section 3 of chapter I), hence

Masterson's result can be restated as:

A necessary and sufficient condition that Cm(Q) =

M(S,ZLU), where Q is an extremal compactum, is that

F(Cm(Q)) be separating.

Our result differs from this result in two

respects. First of all, we are not requiring that

Q be an extremal compactum, although every extremal

compactum is quasi extremal. Second, we are not

requiring that the embedding Of Cm(Q) into M(S,§,U)

be an order continuous embedding. We are merely

asking that Cm(Q). where Q is quasi extremal, be

a Riesz subspace of M(S.Z. n). which means that only

finite suprema and infima are necessarily preserved.

Theorem 2.2. Let Q be a quasi extremal compactum.

Then the following are equivalent:
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(l) Cm(Q) is embeddable as a Riesz subspace

(not necessarily order dense) of some space

of measurable functions M(S,ZLU).

(2) C(Q): is separating.

Proof. We show first that (2) = (1). Suppose

that f E Cm(Q) and let 1 = be the identity for

XQ

C(Q). Define 1f = If] V 1. 1f is an order unit for

Cm(Q): and, if I(lf) is the ideal generated in Cm(Q)

by l we have immediately that I(lf)'g I(l) = C(Q).fl

Hence, I(lf)~ is an ideal in C(Q)~, and

~ fl ~ = N . . . ~oI(lf) C(Q)C I(lf)C is an ideal in C(Q)C We

show now that I(lf); is actually order dense in

C(Q)c. To show this we need only show that if

\
0 < m1 E C(Q)C, then there eXists a O < m2 E I(lf)C

such that m2 3 m1.

To this end, consider the set

G = {x E Q: |f(x)| = m}. It is easy to see that G

is a closed G6 nowhere dense subset of Q.

Suppose that 0 < ”w is the regular Borel

1

measure on Q for which ml(g) = IX gducp for each

1

g g C(Q)- BY theorem (2.1). we see that UT (G) = o,

1

We now apply lemma (2.1) to see that supp UT .g G.

1

Hence, there exists an XO E Q - G such that
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x0 E supp Um . Now, xO E G implies that there exists

1

an integer nO > 1 such that XO E [X E Q: lf(x) < no}

and this set is open. Letting UX be any basic

0

closed open set in Q such that U C {x E Q: l (x) < n ],
XO'_ f 0

and such that xO E UX , we have that the positive

0

functional m2(g) = fU gdu is also an element of

x ml

0

I(lf)c. For, IUx lf duwl‘g nO U®1(UXO) < m. Clearly

0

m2 3 ml. and we need only show now that m2 > O to

complete our argument. But, x E supp um implies

O 1

that for every neighborhood of XO, say U, we have

th t U \ 0. Hence, = d =a “601‘ ) / €92 (YUXO) IUXOXUXO ”€01

u¢1(UX0) > 0. The order denSity of I(lf)C in C(Q)C

is established.

Since I(lf)C 13 order dense in C(Q)c' we

have that I(lf); is separating on I(lf) since

C(Q): is separating on C(Q).

Now, we have that f E I(lf), and hence

f E (I(lf)c)n. The order denSIty of I(lf)C in

C(Q); implies that f determines a unique element

of F(C(Q);). We will denote the element of

F(C(Q);) associated with each f E Cm(Q). by

the process described above, by f.
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To complete this direction of the proof, we

need to show that the mapping f d f: Cm(Q) d F(C(Q);)

is a vector space isomorphism and preserves the order.

The proof that (a?) = a(f) where a is a real

number is trivial. We show first that (E13) = f'+ g.

This will be Obvious if all three objects can be

shown to exist on a common order dense ideal in C(Q);.

That this is true follows from the fact that

I(1 )~ I(1f+g c’ ) . and I(lg)c all contain
f c

I(llf]+lgl)c and this is order dense in C(Q)C.

It remains only to show that the mapping

f c f is order preserving. To prove this it is

sufficient to show that, for any f E Cm(Q). we have

that f+ = (f)+. But, I(lf) contains both f and

f+ simultaneously and since I(lf); is order dense

in C(Q); and separating on I(lf), we will have

that f:F = (f)+ if the canonical embedding

m : I(lf) e (I(lf);); has the property that

m(f+) = (n(f))+. This is a well known result in the

theory of Riesz spaces [c.f. (l) p. 39]. We have

proved that (2) = (1).

We prove now that (l) = (2).

SO, assume that Cm(Q) is a Riesz subspace of

some space of measurable functions M531“) . We may
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as well assume that the identity 1 = in C(Q)

XQ

is a unit for M(s,Z.,u). Let B = I(l) be the

ideal in M(S,ZLu) generated by the element 1.

It is easy to see that B; is separating, and

hence, by [(17) Thm's. 1.6 and 3.1] B; is an order

dense ideal in F(M(S.ZLLO)-

According to [(17) Thm. 2.1], for any

0 < u E M(S,Z,u), if we have a

0.3 O E B; such that O(u) = m (where

O(u) = sup{O(v): O g.v g u, O(v) < m)),

there exists a w E B; such that

0_<_w3¢ and 0<w(u) <oo.

The proof for (l) = (2) will be to assume

that C(Q); is not separating and obtain a contradiction

to (*).

Since 1 is the strong order unit for both B

and C(Q). it follows that every w E 8;, when restricted

to C(Q) is in C(Q)~. Also, if 0 < m E BS, then

the restriction of m to C(Q). say mr' is positive

and since mr(l) = m(l) we have that or > 0.

If 0 < m2 3 ml. then 0 < er g elr.

Suppose that 0 < m' g,¢% where m' E C(Q)~.

By a trivial application of [(18) Note VI Thm. 19.2],
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there exists a positive extension of T" say m,

to B such that 0 < 5.: m and hence E E 8;.

Now, suppose that C(Q); is not separating

on C(Q). Since the restrictions of the elements of

83 onto C(Q) are separating, there exists a

O < m E B; such that mr is not an integral on C(Q).

If Um is the regular Borel measure on Q such that

r

¢r(f) = fQ fducp , then by theorem (2.1) there exists

r

a closed G6 nowhere dense subset of Q, say’ D,

such that ”T (D) > 0. By lemma (2.1), there exists a

r

measure 0 < ul.g “T such that supp ”1 El).

r

Taking ml(f) = IQ fdul, we have that

O < $1.3 er and, by what we have shown already, there

exists a positive extension of $1, say E1, to B

such that o < $1 c B; and {p1 _<_ cp.

Now, if m' is any element of (B;)+ such

that cpl _ cpl then, 0 3 “CO. _ UFO = “1, we have

r lr

that supp u , EgD. If 0 < m' 3 $1, then

mr

u . > 0 and by lemma (2.2) we have that u®'(D) > O.

Tr
r

Now, let f > 1 be any element of Cm(Q) such

that (x: f(x) = m] =D . That such functions exist

follows easily from the fact that D is a G6 closed

nowhere dense set.
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For all m E B; such that 0 < |¢l.i nml

for some n = 1,2,..., we must have that

|m|(f) = Imrl(f) = w. To see this we just note

the fact that

A
/|an (f) f ndulcprl _>_ nucp (D).

[X E Q=f(X) > n} r

But this is the desired contradiction to (*).

The theorem is proved.

Let Q be a quasi extremal compactum. Suppose

that L.E Cm(Q) is an order dense ideal for which L:

is separating on L. Taking B = C(Q) n L, we know that

B is order dense in C(Q). Since the restriction of each

m E L:; onto B is also an integral, we have immediately

that B: is separating on B.

Now, let 0 < f E C(Q). Since B is order dense

in C(Q), there exists a O < 9 g_f such that g E B.

Let XU be the characteristic function of any closed open

subset U of Q such that, for some positive real number

a > 0, we have that U c {t E Q:g(t) > a}.

It follows immediately, from the fact that

XU g_%1;, that XU E B . It is easy to verify that the

ideal generated by XU in C(Q) satisfies

_ ll_- _ = il_. _

I(XU) — {XU} In B [xul 1n C(Q) .

Let 0 < m be an element of B;' for which

m(xU) > 0 . Using the fact that C(Q) is Dedekind—G—complete,
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and therefore has the principal projection property,

we define the following positive linear functional

on C(Q):

743(9) =cp<P (g)) for g 6cm) (where
x
U

P (g) = SUP {nXU Ag+: n = 1.2.~-.) -sup {nxU Ag :

n 1,2,..., l).

(in C(Q)) then pX (gn) E3 0 (in B) which implies

U

that $(gn) = cp(Px (gn)) -+O. Since f ZaxU, we

U

have that n(f) = m(PXU(f)) 2_acph&fl > 0. Thus, C(Q)C

is separating on C(Q).

The above argument, when combined with theorem

(2.2), establishes this next result.

Theorem 2.3. Let Q be a quasi extremal compactum.

Then, the following are equivalent:

(1) Cm(Q) is embeddable as a Riesz subspace of a

.space of measurable functions.

(2) There exists an order dense ideal L E_Cm(Q)

for which L: is separating.

Since every universally complete Riesz space is

Cm(Q) on some extremal compactum (and hence quasi

extremal), we have the following result for universally

complete Riesz spaces.
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Corollary 2.1. Let L be a universally

complete Riesz space. Then, the following are equivalent:

(1) L is a Riesz subspace (not necessarily order

dense) of some space of measurable functions.

(2) There exists an order dense ideal I E'L

such that 12' is separating.

This next result shows that, for sub—order separable

universally complete Riesz spaces, Masterson's result (see

theorem D of section 1) is the best possible in the sense

that if a sub-order separable universally complete Riesz

space can be embedded in anyway as a Riesz subspace of

some space of measurable functions then it itself must be a

space of measurable functions.

Theorem 2.4. Let L be a universally complete sub-

order separable Riesz space. Then, the following are

equivalent:

(1) L is a Riesz subspace of some space of

measurable functions.

(2) P(L) is separating.

(3) L is a space of measurable functions.

Proof. In view of theorem D of section 1, we need

only show the implication (l) = (2). To this end, let

Ll E.L be the order dense order separable ideal contained

in L. Let L2 be the order dense ideal contained in L

for which L22, is separating on L2. Taking L3 = L1 0 L2
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we have that L3 inherits a separating set of integrals

from L2. Since L3 is order separable, each integral

on L3 is normal. Therefore, L3; is separating.

The fact that L3 is order dense finally tells us that

P(L) is separating. The theorem is proved.

Corollary 2.2. Let L be a sub-order separable
 

Archimedean Riesz space. Let L. be the universal comple-

tion of L. A necessary and sufficient condition that If

is a Riesz subspace of a space of measurable functions is

that F(L) is separating.

Example 2.1. Let L = C[O,l] (i.e. the Riesz

space of continuous functions on the unit interval). This

space is order separable, and it is known that P(L) = {0].

If L] is the universal completion of L, then by

corollary (2.2) above we have that L. cannot be embedded

as a Riesz subspace of any space of measurable functions.

This next example shows that there exist Dedekind—

o-complete Riesz spaces of extended type which can be

embedded as Riesz subspaces of spaces of measurable func—

tions but which are not measure Riesz spaces.

Example 2.2. Let X be a topological space. A

point x E X is called a P point if for any countable

collection (Un: n = 1,2,...,] of Open subsets of X con-

taining the point x, we have that Un is Open in X.

I
I
D
B

n l
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A tOpological space X for which every point

x E X is a P point is called a P space. Any

discrete space is a P space. For our purposes Such

spaces are not of interest. Completely regular P

spaces exist, however, which have no isolated points

[c.f. (4) 13P p. 193]. So, let X be a completely

regular P space for which no point x E X is isolated.

Let C(X) be the Riesz space of all real valued

continuous functions on X. It was shown in [(16) Note

XVA Ex. 50.7 p. 420] that C(X) has the following

properties:

(a) C(X) is Dedekind—O-complete,

(b) C(X) =C(X)~.

0
2
6
)
?

(c) C(X) is separating,

(d) C(X); = {0}.

We note further that C(X) is non-sub—order

separable. To see this, let 0 < 9 E C(X). Let U be

an open set in X such that U E_{x E X: g(x) > a)

where a > O is some real number for which a U exists

which is not void. Fix an x E U and let [UB] be a

collection of Open sets such that, for each 8, ‘we have

that UB C U and g UB = [x] . For each 8, let fB

be a Urysohn function such that fB(x) = d,. and for all

t E (com U5) (where (com U3) = complement of U6) we have

that fB(t) = 0 . Then, we have that inf [f5] = O and
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O S-ffi g.g for all 8 . Now, if {an} is any

countable subset of {fB}' then, if Bn = [t E X:

l m .
an(t) > 2cm} , we have that n21 Bn is open and

contains x. Let go be a Urysohn function satisfy—

ing:

1

O: for t E (com 0 Bn)'gm

0 n=1

OSgn(t) 3%(17 fort Ex.

Then 0 < gog'an for all n = 1,2,..., and hence

inf [f n7 n = 1,2,...,} #’0 . This implies that the

ideal I(g) generated by g is not order separable and

hence that g is not an element of countable type.

Since the choice of 0 < 9 E C(X) was arbitrary, this

says that C(X) has no elements of countable type and

therefore is not sub-order separable. We learn two things

from this. First, C(X) cannot be a measure Riesz space.

Second, T(C(X)) cannot be separating.

Since C(X) is Dedekind-O-complete, it can be

embedded as an order dense ideal in Cm(Q) for some quasi

extremal compactum Q. By application of theorem (2.3),

since C(X):; is separating, we Obtain that Cm(Q) is a

Riesz subspace of some space of measurable functions.

Since F(Cm(Q)) = T(C(X)), and since T(C(X)) is

not separating, we have that F(Cm(Q)) is not separating.

Thus, we have that Cm(Q) cannot be embedded either

continuously into or as an order dense Riesz subspace of,
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any space of measurable functions.

In the above example, the non Dedekind complete-

ness of the Cm(Q) used was critical. If we could

obtain a Dedekind complete example with the same

properties we would at the same time have an example

Of a Dedekind complete Riesz space with an integral

which was not normal. This would imply the existence

of a measurable cardinal [see (15)]. The question of

the existence of measurable cardinals is still open.

Section 3. Some Topological Considerations.

A vector space, which is at once a vector

lattice and a tOpological vector space, can exhibit

interesting relationships between the order and the

topology. We wish to discover which properties, order

and topological, combine to force us into the setting

of measure Riesz spaces.

We begin by introducing some concepts which

are basic to this investigation. The general setting

follows closely Peressini's organization in [(25)].

Most of the properties which we introduce are straight

forward generalizations of those used by Luxemburg and

Zaanen in [(16) and (18)].

Definition 3.1. Let E be an Archimedean
 

Riesz space. A set B Q E is called solid if for any

b E B and any a E B such that [a] S Ibl, we have

that a E B.
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Definition 3.2. Let E be an Archimedean

Riesz space. Suppose that E is also a topological

vector space under a topology T". We will say that

(E,T) is a tgpological vector lattice (T.V.L.) if

E has a neighborhood basis at 0 consisting of solid

sets which is a basis for the topology T.

It is clear what we will mean by a convex

(locally convex) T.V.L. (E,T).

Definition 3.3. Let E be an Archimedean

Riesz space. An element x E E is said to be relatively
 

uniformly continuous if for all sequences [xn] in E

with xn \, o and such that o s xn s x , we have that

xn 4 0 (r.u) where n = 1,2,...,.

Definition 3.4. Let (E,T) be a T.V.L. .

We will say that x E E is T—absolutely continuous if

for every sequence [yn] in E with yn \N O and such

that yn 1 IX] for all n = 1,2,..., we have that

T

yn 4 0 .

Definition 3.5. Let E be an Archimedean

Riesz space. We will say that an element x E E is

absolutely continuous if for every sequence (yn] in E

with yh_\g O and such that yn S le for all

n = 1,2,..., we have that, for any m E E~, m(yn) 4 0 .
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Definition 3.6. Let (E,T) be a T.V.L. .
 

An element x E B will be said to be (E,T)*

absolutely_continuous (or just *-absolutely continuous)
  

if for any sequence [yn} in E with ynx O and

such that yn 5 [x] for all n = 1,2,..., we have

* 'k

that, for any m E (E,T) , m(yn) 4 0 (where (E,T)

denotes the topological dual of (E,T)).

We will denote the set: of all relatively uniformly

continuous elements of E by E of all T—absolutely
r.c.'

continuous elements of (E,T) by E(Ta), of all abso-

lutely continuous elements of E by Ea, of all *—abso—

*

lutely continuous elements of (E,T) by E(Ta).

Lemma 3.1. Let E be an Archimedean Riesz

space. Then Ba and Er c are ideals in E. If in

addition, E is a T.V.L. with topology T, then E(Ta)

*

and E(Ta) are ideals in E.

Proof. This proof is straight forward, and we

will not produce it here.

Lemma 3.2. Let (E,T) be a convex T.V.L. .

*

Then, E(Ta) = E(Ta).

*

Proof. It is obvious that E(Ta) Q E(Ta) . For

the reverse inclusion, we will need [(12) 17.2 p. 154].
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This result tells us that the weak closure of a

subset A of E is a subset of the T-closure of the

convex extension of A.

Let x EE(T*) and let y \l O y S lxl for
a ' n ’ n

*

n = 1,2,...,. Since x E E(Ta), ‘we have that O is

an element of the weak closure of the set {yn}. Let

(wd] be a neighborhood basis at O for the topology

T consisting of solid, convex, circled, absorbing

subsets of E. We have that there exists a sequence

m

m m m
= . c

{2m}. 2m i=1 (ii iii where {Y1} [Yn] . and

Pm In T

Z) a. = 1, such that z 4 O for m = 1,2,...,.

i=1 1 m

This says that, for each a,, there exists an m = mg

such that for all m 2 ma we have that zm E wd . Let

m

n = n” be chosen so that yn S yia for all 1 S i S pm .

‘ a d

Then, for all n 2 na, *we have that

P P

m ma 0 ma ma

yn S yn = Z: 0Li yn S 0Li y. = z
a i=1 a i=1 a

The solidity of wd implies then that yn E wa for all

T

n 2 na . This establishes that yn 4 O which implies

*

that x E E(Ta). Hence, E(Ta) 2 E(Ta) . The assertion

is proved.
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This next result is a collection of relation-

ships between the ideals Er c , Ea, E(Ta), and

*

E(Ta). It can be improved on, but we will not do so

here. For our present purposes, the relationships we

obtain are adequate.

Theorem 3.1. Let E be an Archimedean Riesz

space. We have the following relationships:

(1) E CEa.
r.c.

* ~

(2) If (E,'r) is a T.V.L., then (E,'r) Q E

and is an ideal in ENC

(3) If (E,T) is a convex T.V.L., then

*

C =Er.c. E(Ta) E(Ta) .

(4) If (E,T) is a complete, metrizable,

~ *

convex T.V.L., then E = (E,T) and

a- =E — E(Ta) Er.c.°

ngpf. The verification of (l) is trivial.

Part (2) follows from [(25) Prop. 4.17 p. 108]. For part

(3), the containment is trivial to see, and the equality

follows from lemma (3.2). Part (4) follows easily using

the well known result that for Frechet spaces E~'=(E,T)*

combined with [(25) Prop. 2.4 p.162]. The theorem is

proved.

Example 3.1. Let E = Lm[0,l] (the space of

equivalence classes of essentially bounded Lebesgue
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measurable functions on [0,1]). For f E E, let

p(f) = p(lfl) = f IfldH where H is Lebesgue

O

* ~

measure. Ep is not equal to E since every element

*-

of Ep is a normal integral on E. This same example

shows that Er need not always equal E(Ta).
.C.

We now introduce one of the topologies on a

Riesz space which is totally determined by the order

structure.

Definition 3.7. Let E be an Archimedean Riesz
 

space; the order topology TO on E is the finest

locally convex topology T for which every order bounded

set is T-bounded.

For a complete discussion of the order topology,

we refer the reader to [(25) Chapter III, (5), and (24)].

For our purposes, it is only necessary to know

that if E~ is separating on E then T is the Mackey

O

t0pology T(E,E~).

Definition 3.8. Let L be an Archimedean Riesz
 

space and let I be an ideal in L. We will say that I

is a weakly regular ideal in L if it possesses a positive
 

order basis {ea} satisfying the following condition:

For each ea,. there exists a countable collection

m l . m
of components {ea} of ea Wlth ea /” ea such
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that for each m = 1,2,..., and any component

e’ of e§,, if {en} is a sequence of components

of e' with en /' e' , then there exists a

subsequence {e ] C {en} such that the collection

[k(e — e )} is bounded in I.

nk+l nk

This next theorem and corollary yield an intrinsic

characterization of measure Riesz spaces.

Theorem 3.2. Let L be an Archimedean sub—

Egoroff sub-order separable Riesz space. If L contains

a weakly regular order dense ideal I, for which the order

topology on I is Hausdorff, then L is a measure Riesz

space.

3399;. It is not difficult to see that if L

contains a weakly regular order dense ideal I for which

the order topology on I is Hausdorff, then 9 contains

a weakly regular order dense ideal for which the order

topology is Hausdorff, namely 9 = [Q E 3: there exist

/\

x1, x E I such that x S x S x2}. Thus we may assume

2 1

that L is Dedekind complete. Since L, and hence I,

is sub—order separable, we can take the positive order

basis for I which is guaranteed by the weak regularity

of I to consist of elements of countable type. If {ea}

is such an order basis, then in order to show that L is a
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measure Riesz space, we must show that P(L) is separat-

ing which is equivalent to showing that, for each ea’,

1“(Be ) is separating where Be = {ea]lL—in—L . Hence,

a a

we may as well assume that I has an order unit of

countable type satisfying the condition in definition

(3.8). Let 0 < e be this order unit for I and let

ekw/” e be a sequence of components of e such that,

for each m, and each component e' of em if {Zn} is

a sequence of components of e' such that zn /' e' , then

there exists a subsequence {zn } Q [zn] such that the collec-

k

tion {k(z - z )} is bounded in I. Consider the ideal

n n

k+l k

generated in I by taking all f E I such that lfl S X em

for some m = 1,2,..., and some real number 1 2 O . We

denote this ideal by I({em}).

Now, let {yn} be a sequence in I({em}) with

yn \, O . By corollary (2.5) of chapter I, we have that

yn 4 O (r.u.)—in—I. Therefore, I({em]) G I Q I(T ).
r.c. Oa

But, then, I(TOa

~ *2 . . .
TOa)n I(TO) which 18 separating on I(T0a

implies that L is a measure Riesz space. The theorem is

) is order dense in I and hence in L,

and I( ). This

proved.

Corollary_3.l. Let L be a universally complete
 

sub-order separable sub-Egoroff Riesz space. Then the

following are equivalent:
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(l) L is a measure Riesz space.

(2) There exists an order dense ideal

I G L with a complete Riesz norm p

satisfying that if xn \ O in I

then p(xn) 4 0 where n = 1,2,...,.

(3) There exists a weakly regular ideal I

in L with a locally convex Hausdorff

topology under which I becomes a

T.V.L.

(4) There exists a weakly regular ideal I

in L such that the order topology on

I is Hausdorff.

Egggf. To show that (l) = (2) we merely consider

the Ll(S,ZLH) subspace of L = M(S,ZLu). To show that

(2) = (3) we apply theorem (3.1) (4) to obtain that

Lp = Lp,a = Lr.c. . The fact that (3) = (4) follows from

the definition of To . Finally, that (4) a (1) follows

from theorem (3.2).

This next corollary is somewhat more descriptive.

Corollary 3.2. Let Q be an extremal compactum
 

such that Cm(Q) is order separable and Egoroff. Then,

the following are equivalent:

(1) cam) =M(s.2.u). where (5.21m is a

o-finite measure space.
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(2) There exists an ideal I with

C(Q) Q I C Cm(Q) for which the order

topology is Hausdorff, and such that given

any closed nowhere dense G6 subset G of

Q, there exists a function f 6 I+ such

that {x 6 Q: f(x) = m} 2 G .

2599;, We show that (l) = (2). We note first

that if (8,2Lu) is a O-finite measure space, then there

exists a finite measure space (S,Zlu’) such that

H (S) = l and M(S,Zlu) = M'(S,Zlu'). Hence, we may assume

that M(S,ZLH) is a finite measure space. It follows easily,

from [(27) p. 133] that we may take C(Q) = Lm(S,ZLH). In

fact, we may take 1 = x0 = XS.

If G is a closed nowhere dense G6 subset of Q

and if (En: n = 1,2,...) is the sequence of closed open

subsets of Q such that n E =G then x \I o in

n=1 n En

C(Q). If, for each n, gn is the element of Lm(S,ZLu)

such that XEn = gn then gn S XS for all n, and gnEy O

which implies that f gn an 4 O . Let n = nk be such that

S

. 1 1 . . °°
J gn du S-ei (E) . Cons1der now the function ZEk(gn — gn ) = g.

S k 2 k=2 k k+l

Clearly, I g du < w. But, this corresponds to the function

S

Z: X(E _ E ) = g' E Cm(Q). It is easy to see that

k 2 n
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{x E Q: g’(x) = w} 2 G. So we see that if we take

I = L1(S,Zlu), then I satisfies condition (2). We

have proved that (l) = (2).

To show that (2) = (1) it is sufficient to show

that I is a weakly regular ideal. To this end, let

1 = XQ and let {Un} be a sequence of closed open sub—

sets of Q such that xUn/I XQ . We then have that

U Un = Q — F where F is a Gé closed nowhere dense

n=1 m

subset of Q. In fact, F = n Q-U

n=1 n

Let f be a function in I such that

(x: f(x) = 00} 2 F. Then, if Fk = (x: f(x) 2 k] , we have

that H Fk 2 F

k=l

Let n = nk be the first n such that Q — Un C F

k

That such an n exists follows from the compactness of the

Q — Un and the Fk .

Then, [k(xU - XU )} is bounded above by f(x).

n
nk+1 k

Hence I is weakly regular and by corollary (3.1), Cm(Q)

is a space of measurable functions. The assertion is proved.

The above theorem and corollaries seem to indicate

that in some sense, the universally complete sub—order

separable sub-Egoroff Riesz spaces which are not measure

Riesz spaces have a rather thin lattice of ideals with

k .
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locally convex Hausdorff topologies defined on them.

Remark 3.1. If (E,T) is a T.V.L. for which

E~ is separating and such that E is sub-order

separable, then any of the conditions:

(1) Er.c. is order dense,

(2) Ba is order dense,

(3) E(Ta) is order dense,

(4) E(T;) is order dense

implies that E’;' is separating on some order dense

ideal E’ Q E, and, therefore, that E is a measure

Riesz space.

Section 4. Separability and Measure Riesz Spaces.

The Object of this section is to show that the

separable, metrizable topological vector lattices possess-

ing a separating continuous (topological) dual are

measure Riesz spaces if and only if, as lattices, they

have the Egoroff property.

We must first obtain a few relationships between

the order dual and the topological dual.

Remark 4.1. Let (E,T) be a tOpological vector

*

lattice and let E denote the topological dual of (E,T).

*

We mentioned in the previous section that E is an ideal

in E . Since E~ is a Dedekind complete Riesz space,

*

we have that E is a Dedekind complete Riesz space.
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From the decomposition Efl'= EE'G Eg, it follows

* * * * * ~

that E = E 9 E where E = E n E and
c s c c

* 1': n N

Using [(18) Note VI Thm. 20.4], it is trivial

*

to show that E(T ) = n N (where N denotes the

a wEE* m w

3

null ideal of the functional m).

In the case that (E,T) is locally convex, we

*

have that E(Ta) = E(Ta) = n * Nm.

mEE

3

Remark 4.2., Let (E,T) be a T.V.L. . Let

(Wu: (1 E A] be a neighborhood basis of zero for the

topology T consisting of solid, absorbing, circled sub-

*

sets of E. Recall that the polar of Wu in E is

*

just the set [w E E : lw(f)| S l for all f E‘Wa} . As

is standard, we denote the polar of Wd by W8 . Taking

E = 0 N' , we claim that:

a * 0 m
mEEsflWa

*

* nEazn*N=E(T).

C1. CDEESCP a

The inclusion 0 E D n * N is Obvious. So, let

“a CDEE “3
s

*

f E E and suppose that f E E(Ta). Then, there exists

*

an element m E E3 such that |m|(f) > 0. Since m E E*,

the set [9 E E: Iw(g)l S 1) contains a neighborhood of

O *

zero, say W l . Then m E‘W ’ 0 Es and hence f E’E

a a a
I
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This shows that Q Ea 9 fl Nm.. We have proved (*).

CDEES

We now need to recall some facts from the

theory of topological vector spaces. Let (E,T) be a

separable tOpological vector space. Let {Wu} be a

neighborhood basis of zero for the topology T on E

consisting of circled absorbing sets. By the Banach-

Alaoglu theorem [c.f. (12) Thm. 17.4 p. 155], we know

that W3 -in—E* is a compact Hausdorff space under the

weak * topology.

Let {fn: n = 1,2,...,} be a topologically

dense collection of elements from E. For each

to, w 6 WC? —in-E* , define

1 I(co-‘anl

2n 1.4- [(m—¢)fn]

 

d(CpI W = Z

1

This is a metric on W8 —in-E*, and every open set

in this topology is easily seen to be weak * open. Since

both of these topologies are Hausdorff, and since the

weak * topology is a compact topology, we must have the

equivalence of these two topologies. Hence, W3 -in—E*

with the weak * topology is a compact metric space and

is therefore separable.

The next two theorems will yield the result

which we are seeking.
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Theorem 4.1. Let (E,T) be a metrizable,

separable topological vector lattice. Then E, as a

vector lattice, is order separable. In fact, given any

disjoint collection of elements in E+, say {fo]'

the collection is at most countable.

Proof. Let {Wn: n = 1,2,...,] be a neighbor—

hood basis of zero for the topology T on E consist—

ing of solid absorbing circled sets satisfying

Wn+1 + Wn+1 Q Wn for n = 1,2,..., . Let [£07 0 E F}

be any collection of disjoint strictly positive elements

in E. To each 0 E F, assign the integer nO as

follows:

1; iffGEW1

sup {n : fO E Wn}

Clearly, (f : 0 E T] = U [f.: 4L-2 l-]. If, for each
0 0 n n

n=1 (1

n = 1,2,..., we have that (fa: fiL-Z fiV} is countable,

G

then so is (fa: O E T] . Hence, if (fa: o E T] is

not countable, there exists an n = n' such that

l l

}, is not countable. Denote this set by

[£67 B E B} = G .

Now, if f and f are elements of G with

B1 62

B S B , then f - f EVV since otherwise we

1 2 61 B2 n{+l
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would have that f s If -

E31 B1

and this would imply that fB E‘W '+l which contradicts

1

that f E G.

5i

It follows easily that the system

[fB + W 1 2; B E B] is a collection of disjoint open

n +

subsets of (E,T). If this collection is not countable,

then we would have that (E,T) is not second countable

which contradicts the separability of (E,T). Therefore,

(f0; 0 E T] is countable and this implies the order

separability of E (see section 4 of'Chapter I). The

theorem is proved.

Theorem 4.2. Let (E,T) be a metrizable,

separable t0pological vector lattice. Let [Wn; n = 1,2,...,]

be a neighborhood basis at zero for the t0pology T on E

+W CW for n=1,2,..., andsatisfying W n+1 n
n+1

consisting of solid, absorbing, circled subsets of E.

Assume also that E has the Egoroff property. Let

En = 0 ON' for n = 1,2,..., . Then, ED is a super

mEEgflwn (p

order dense ideal in E for each n = 1,2,...,

Proof. We have already noted that each W3 is

a separable metric space in the weak * topology. There—

0
n is also separable in the weak * topology.

*

fore, ES 0 W
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Let {m :1“ = 1,2,...,} be a dense subset of
m

* o . . °°
ES fl‘Wn . We claim first that H Nw = * N .

m=1 'm mEE nwo m

s n

The inclusion fl Nm 2 0* O N is trivial.

m=1 'm wEESflWn

Now, let 0 < u E N for all m = 1,2,..., . Let

gm

*

w E ES 0 W2 . Since the polar of a solid subset of E

is solid (this follows easily from [(25) Equation 6

*

p. 22]), we have that |w| E ES D‘Wg . Let E > 0 be

chosen. Since (mm: m = 1,2,...,} is weak * dense in

Wg,. there exists an m = mO such that

I Iml(u) - gm (u)| < E. Hence, |w|(u) < E. This holds

0

for all E > 0. So, ]w|(u) = O and u E NT. This

establishes that

n N = 0 N

m=1 Cpm cpEE’S'flwg cp

It follows from [(18) Note VI Cor. 20.7], that

N is a super order dense ideal in E for each

m = 1,2,..., . By [(16) Note XIV Lemma 44.1], we have

A

that the countable intersection of super order dense

ideals in a space with the Egoroff property is again a

super order dense ideal. Hence,

G)

E = H N is a super order dense

m=1 mm

ideal in E for each n = 1,2,..., . The theorem is

proved.
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Theorem 4.3. Let (E,T) be a separable,

metrizable t0pological vector lattice. Suppose in

addition that the topological dual E* of (E,T) is

separating on E . Then the following are equivalent:

(1) There exists a U-finite measure space

(S,ZLH) such that E is an order dense

Riesz subspace of M(S,Zlu).

(2) E has the Egoroff property.

2599;, We need only show that (2) a (1). If

E has the Egoroff property, then theorem (4.2) above

together with [(16) Note XIVA Lemma 44.1] imply that

E(T;) is an order dense (actually super order dense)

ideal in E. The fact that E* is separating implies

that E* is also separating on E(T;). From theorem

(4.1), we have that E is order separable and hence

that E(T;) is order separable. This implies that every

m E E* is a normal integral on E(T;) and hence that E

is a measure Riesz space. Since, by theorem (4.1), we

saw that E actually has a countable disjoint basis of

positive elements of countable type, we see that the

universal completion E. of E is order separable and

thus E'= M(S,Zlu) where (8,21u) is a O-finite measure

space.
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Corollary 4.1. Let E be a separable,
 

metrizable, locally convex topological vector lattice.

Then the following are equivalent:

(1) There exists a O-finite measure space

(S,ZLH) such that E is an order dense

Riesz subspace of M(S,Zlu).

(2) E has the Egoroff property.

Remark 4.3. Although we will not pursue it

here, it should be possible, in view of some of the

results found in [(13)], to Show that the O-finite measure

space (S,ZLu) obtained in theorem (4.3) and corollary

(4.1) of this section may actually be assumed to be a

separable measure space.

Section 5. Some More on Non-Sub-Order Separable

Spaces.

Throughout this exposition, we have had occasion

to investigate three examples of non-sub-order separable

Riesz spaces. It can be easily verified that the space

of continuous real valued functions on BN—N (where BN

is the Stone—Eech compactification of N = {1,2,...,])

is another example of a non-sub-order separable Riesz space.

From a historical point of view, this space was probably

the first Riesz space of this type to be investigated.

S. Kaplan used it, for instance, as an example of a C(X)
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such that every radon measure on X has first category

support [(10) IV p. 520]. It was also studied by

Dixmier in [(3)]. So far,these spaces have been most

useful in providing examples of pathological behavior

from the vector lattice point of view.

All of our examples have actually been of

non—sub-order separable Riesz spaces with the property

that no non—trivial ideal in them is sub-order separable.

One thing all such spaces have in common is the

following:

Theorem 5.1. Let L be an Archimedean Riesz

space with the property that no non-trivial ideal in L

is sub—order separable. Let I be any ideal in L such

that I~' is not just the zero functional. If m E I~,

then Nm (the null ideal of w) is order dense in I.

Proof. Suppose that for some m E IN, we have

that N; —in-I #'[O]. We may as well assume that m > 0

since N = N . Letting C, = N1 -in~I , we have that

co va| w cp

m is strictly positive on Cm. Let 0 < f E Cw. Since

no element of L and hence of I is of countable type,

we must have an uncountable collection [0 < fa S f: a E A]

of positive disjoint elements in Ccp

. _ . _1

Clearly, Since {fa} — (fa. m(fa) 2 n], ‘we

"
(
:
8

n l

1must have that, for some n = n , the set {f : m(f ) 2-3;
O a a n0
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is uncountable. Let k E [1,2,...,] be such that

ii > w(f). Then, choosing fa , fn ,..., fa from

O 1 0‘2 k

1
(fa. m(fa) 2 n ], we have that

O

k

sup {f : 1 S i S k] = 23 f S f and
C1- . C1.

1 i=1 i

k k k

can: fa): 2? 60(fa)2;1—>co(f).

i=1 i i=1 i O

This is a contradiction. The theorem is proved.

Corollary 5.1. Let L be an Archimedean Riesz
 

space with the prOperty that no non—trivialideal in L is

sub-order separable. Let I be any ideal in L. Then,

I=I
sn

Proof. If there exists a O S’m E.I;f, then

Nl —in—I # [O] and this contradicts theorem (5.1). The

T

assertion is proved.

We wish to note that in View of corollary (5.1)

above, if L is a Dedekind complete Riesz space with the

property that no:non-trivialidea1 in L is sub-order

separable, and if I is any ideal in L such that

IE'S'IO] then by Luxemburg's result [(15)], there exists

a real valued measurable cardinal. We thus have another

example of a Riesz space condition which would imply the

existence of a measurable cardinal.
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Remark 5.1. If X is a compact Hausdorff

space for which C(X) has the property that no

non-trivialideal contained in C(X) is sub-order

separable, then every regular Borel measure on X has

nowhere dense support. Otherwise, we would be able to

obtain a contradiction to theorem (5.1) of this section.

If X is the Stone—Cech compactification of the space

of Example (4.1) of Chapter I, then every regular Borel

measure on X has nowhere dense support. However, by

Remark (4.4) of Chapter I, we see that X does not have

the property that the intersection of a descending sequence

of Open sets has nonempty interior. As far as we know,

this is the first example of such a space in the literature.

Section 6. Miscellaneous PrOblems.

A number of prOblems arise naturally from the re-

search done in this exposition. Our purpose in this section

is to briefly state and discuss some of these problems.

The first prOblem is motivated by theorem (5.1) of

chapter II.

Problem A. Let L be an Archimedean Riesz space

possessing a positive countable order basis consisting of

elements of countable type. Does L then contain an

order dense ideal L1 C L such that L1 possesses a

strictly positive linear functional?
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It is quite Obvious that a positive answer to

problem A would prove the converse of theorem (5.1) of

this chapter. Thus, if the answer to prOblem A is

positive, we would have an interesting characterization

of Archimedean Riesz spaces, which possess no non—trivial

sub—order separable ideals, in terms of dual space elements.

The statement of prOblem A is somewhat awkward.

It has a much nicer formulation. Unfortunately the equiva-

lence of the two formulations takes significant effort to

see. We will put forth the effort, however, since we be—

lieve the techniques involved to be interesting in them-

selves.

Remark 6.1. If L is Archimedean and possesses

a strictly positive linear functional, a straight forward

application of [(18) Note VI Thm. 19.2] proves that E

(the Dedekind completion of L) also has a strictly positive

linear functional. Clearly, if 3 has a strictly positive

linear functional, then, by restriction, so also does L.

Problem A is now easily seen to be equivalent to the

question;

Does every order separable universally complete

Riesz space L contain an order dense ideal L,

such that L1 possesses a strictly positive

linear functional?
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In order to simplify further the formulation

of problem A, we need a method for obtaining extensions

of positive linear functionals defined on ideals in a

Riesz space to larger ideals. The method is described

as follows:

Let L be an Archimedean Riesz space. Let m

be a positive linear functional defined on an ideal I

w

contained in L.

Consider

wl(u) = sup {m(v): v E Im, O S v S u], where

11 . +

u E(Im -1n-L) -

We have easily that

(a) O S Cpl(u) S 0° for u E (1:; -in—L)+ ,

(b) If a 2 O is a real number, then

cpl(au) = acpl (u).

We claim in addition that if ul, u2 E (I$l-in-L)+

then (c) cpl(ul) + cpl(u2) = cp1(u1+u2) .

To see that ml(u1+u2) 2 ml(ul) + ml(u2) is a

standard argument which we will not produce here.

To show that cp1(u1+u2) S cp1(u1) + cp1(u2), we

consider first the case when w1(u1+u2) = m. If

wl(ul+u2) = m, then, for each N E [1,2,...,], there

exists a v E ICp such that O S v S u + u and w(v) > N.

1 2
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Suppose that w1(u1) < w. Since v = v + v where
1 2'

v1,v2EIcp and OSvlSu1,OSv2Su2, wemust

have that m(v2) 2 N - m1(u Hence, m1(u2) = m and1).

we are done for this case.

We now need only consider the case when

col(u1+u2) < °° .

In this case, given E > 0 there exists a

v = v + v with v v E I O S v S ul, 0 S v S u
l 2 1' 2 m' l 2

and such that w(v) + E = m(vl+v2) + E = w(v1) + m(v2) + E

2

2 m1(ul+u2). This implies that m1(ul) + w1(u2) + E

2 w1(u1+u2). Since the choice of E was arbitrary, we

have that ml(u1) + ml(u2) 2 wl(u1+u2) and our claim is

proved.

Now, let I = (u E (I'LL—in-L)+: (‘p (u) < on).
$1 m l .

Taking IA = I — I we obtain easily that IA is an

cp “’1 ml to

ideal in L containing Im .

/\ _

For each f 6 IA , define cp(f) = cpl(f+) — cpl(f ).

co

/\

Then, m is an extension of m to IA .

m

It is obvious that if ICp is order dense in L,

then IA is order dense in L. Also, if m is strictly

m

A

positive on Im, then m is strictly positive on IA

' w
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Definition 6.1. Let L be an order separable

universally complete Riesz space. An element f E L+

is called an almost unit for an ideal I S L, if there
 

exists a sequence of components of f, {fn7 n = 1,2,...,],

with fn/W f such that if g E I then there exists an

integer k E {1,2,...,} such that |g| S fk .

Theorem 6.1. Let m be a positive linear

functional defined on an order dense ideal Icp 92L, where

L is a universally complete order separable Riesz space.

Suppose that f E L+ is an almost unit for ICp and let

{fn: n = 1,2,...,] be the sequence of components of f

in ICp such that fn /Z f and such that, for any g E Im'

there exists a k E [1,2,...,] such that |g| S fk .

Suppose in addition that w(fn) S M < w for all n = 1,2,...

Then, we have that f E IA (where IA is the ideal

T m

obtained by applying the extension process described previ-

ously in this section).

Proof. Since for any v E ICp such that

O S v S f, we must have a k E {1,2,...,} such that

v S fk'

theorem is proved.

we see that ml(f) S sup [m(fn)] S M < m . The

n

Theorem 6.2. Let L be a universally complete

order separable Riesz space. Suppose there exists an order

dense ideal L1 S L such that L1 possesses a strictly
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positive linear functional. Let 0 < f E L be any

order unit in L. Then, the ideal generated by the

element f, I(f), has a strictly positive linear

functional.

3599:, Let 0 < f E L+ be an order unit for

L. Let L1 9 L be an order dense ideal in L possess—

ing a strictly positive linear functional m. It is

easy to see that there exists a sequence {fn7 n = 1,2,...,]

of components of f with fn./fl f and such that fn E Ll

for n = 1,2,..., .

Let I({fn]) be the ideal generated in L by

taking g E I({fn]) if and only if, for some k E {1,2,...,},

we have that |g| S fk'

Obviously, I({fn]) is order dense in L and the

restriction of m to I({fn]) is a strictly positive linear

functional on I([fn]).

Let {9n} be the sequence of elements of I([fn])

defined by: g1 = fl' g2 = f2 - fl"°°°' 9n = fn - fn-l

for n = 1,2,..., .

Let an = w(gn)o for each n. Define w' on

00

I(fan by m'(g) =co( 23 (ELM-£13) P (9)) for

n=1 n n
9

g E I([fn]).

It follows from the additivity and homogeneity of

the projection operator and from the definition of I([fn])
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that w' is a strictly positive linear functional on

We note that f is an almost unit for I([fn]),

and that m'(fn) S 1 for all n = 1,2,...,.

By application of theorem (6.1), f E IA! (where

w

again IA, is the ideal Obtained by applying the exten-

Pp

sion process described earlier in this section).

A

Then, m' is strictly positive on IA’Q I(f)

A

Therefore, the restriction of m’ to I(f) is strictly

positive on I(f). The theorem is proved.

Combining remark (6.1), the fact that every uni-

versally complete Riesz space is a Cm(Q) where Q is

some extremal compactum, the fact that Cm(Q) is order

separable if and only if C(Q) is order separable, and

theorem (6.2) above, we obtain that problem A is equiv—

alent to the following prOblem.

Problem A’ Let Q be an extremal compactum.

If C(Q) is order separable, does it then possess a

strictly positive linear functional?

Or equivalently, does every order separable C(X),

Where X is a compact Hausdorff space, possess a strictly

positive linear functional?
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The next problem is motivated by theorem (1.1)

of this chapter.

Problem B. Is every sub-order separable sub-

Egoroff Archimedean Riesz space a measure Riesz space?

In view of theorem (1.1) of this chapter, we see

immediately that a positive answer to prOblem A would

imply a positive answer to prOblem B.

In fact, problem B has the following equivalent

formulation:

Problem B' . Does every order separable C(X),

where X is a compact Hausdorff space, with the Egoroff

property possess a strictly positive linear functional?

Although we have not been able to solve problem

B above, we feel that the results of this chapter give

sufficient indication of the value of pursueing this next

problem.

Problem C. The theory of Banach function spaces

has been extensively covered in [(18) Notes I-V]. The

existing theory assumes one to be working on a o—finite

measure space. The first part of this prOblem then is to

extend the theory of Banach function spaces to arbitrary

measure spaces with the finite subset property and with a

completely additive measure.



166

Our investigations have shown that many of the

topologized Riesz spaces which possess "nice" relation-

ships between the topology and the order are measure

Riesz spaces. The second part of this prOblem then is

to extend the theory of Banach function spaces to just

order dense Riesz subspaces of spaces of measurable

functions.

The results we have obtained hold for locally

convex topological vector lattices. The third part of

this problem then is to obtain a theory for locally

convex topological vector lattice order dense Riesz sub-

spaces of spaces of measurable functions analogous to the

theory of Banach function spaces.

In section 2 of this chapter, we gave necessary

and sufficient conditions for a Dedekind-O—complete Riesz

space of extended type to be a Riesz subspace (not

necessarily order dense) of a space of measurable functions.

It would be better to have conditions for an arbitrary

Archimedean Riesz space.

Problem D. Find necessary and sufficient conditions

for an arbitrary Archimedean Riesz space to be a Riesz sub-

space of some space of measurable functions.
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