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ABSTRACT

MEASURE RIESZ SPACES
AND THE EGOROFF THEOREM

By
Joseph Edward Quinn

Throughout the thesis we assume that we are working
with vector lattices (Riesz spaces) over the real numbers.

In the first chapter, we study a large number of
order convergence properties and their relationships. Of
special interest are the following properties the first of

which was introduced by W. A. J. Luxemburg and A. C. Zaanen;

Definition 1. Let L be a Riesz space. An

element f € L. is said to have the Egoroff property if

given any double sequence {0 < bnk’ n,k=1,2,...,} in L
with bnk/ﬁclfl for n=1,2,..., there exists a sequence
= bm,f |f| such that, for any m,n, there exists a

o

k = j(m,n) such that bm < bn,j(m,n)'
If every element of L has the Egoroff property,

then we say that 1L has the Egoroff property.

Definition 2. We will say that an element O = e

*
of the Riesz space L has property E.T. , 1if given any

X, \y O with X <e for n=1,2,..., there exists a
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sequence of components {em] of e with em‘/” e
such that en A X, ~n O(e-r.u.) for m=1,2,...,. (the

notation e A X, O(e-r.u.) means that there exist
sequences of real numbers {A__} with X\ \y, O for
mn mn n

m=1,2,..., such that e A x < )\ e ).
m n mn

*
If every positive element of L has property E.T. ,

*
then we say that L has property E.T. .

Definition 3. We will say that an element

O < e of the Riesz space L has property E.T., if given
any sequence X \y O with X <e for n=1,2,..., there
exists a sequence {0 < em} C L with %n/’ e such that

e A X *h O(e-r.u.) for m=1,2,..., .

If every positive element of L has property E.T.,

then we say that L has property E.T. .

The second and third properties above are abstrac-
tions of some theorems (discussed in the thesis) which are

analogues of Egoroff's well known result for measure spaces.

Some interesting results involving these properties

are summed up in the following:

Theorem 1. Let L Dbe an order separable

Archimedean Riesz space. Then, the following are equivalent:

(1) L has property E.T. .

A
(2) L (the Dedekind completion of L) has property

E.T. .
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A
(3) L has the Egoroff property.

(4) L has the Egoroff property.

The results of chapter I are used extensively

throughout chapter II.

We study, in chapter II, the use of spaces of
equivalence classes of measurable functions to represent
certain Archimedean Riesz spaces. The first section of
chapter II gives the basic information necessary for this
investigation. We also obtain in section 1 some interest-
ing characterization theorems which are based on a property
related to the Egoroff property. In section 2, we discuss
a general embedding problem. In particular, we obtain
necessary and sufficient conditions for a Dedekind-o0-
complete Riesz space of extended type to be embeddable as
a Riesz subspace of some space of measurable functions. 1In
section 3 of chapter 1II, we consider a number of topological
properties which will guarantee that the Riesz space we are
dealing with can be considered as an order dense Riesz sub-
space of some space of measurable functions. 1In section 4,
we show that every locally convex, separable, metrizable,
topological vector lattice with the Egoroff property can be
so considered. We end chapter II with a discussion of some
open problems related to the material discussed chapters I

and II.
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Introduction

A real vector space equipped with an order
structure that is compatible with its linear structure

is called an ordered vector space. If the order structure

endows the space with a lattice order, then we call the

space a vector lattice or a Riesz space. Throughout this

exposition we will be concerned only with Riesz spaces.
For the basic definitions and lattice theoretic formulae,
we refer the reader to [ (25) Chapter I].

In chapter I, we study a large number of order
convergence properties and their relationships. For the
definition of order convergence see [ (25) Chapter I §5]7.

In the first section of chapter I, we introduce the basic
definitions of many of the order convergence properties
which we wish to study. Most of these properties were first
studied in [ (11) Chapter 5], although one, the Egoroff
property, was introduced in [ (18) Note VI]. Some new results
are obtained in section 1, and in general our development is
different from any other. Section 2 of chapter I begins a
study of the Egoroff theorem for Riesz spaces, so named since
it is an analogue of Egoroff's well known result for
measure spaces. The first result along these lines is found
in [(11) Chapter 5 2.21 p.181]. A more general result than
that in [ (11) ] was obtained in [ (19) Thm. 42.2]. Our result,

see theorem (2.1), is more general still. In particular we
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show that it applies to arbitrary sequence spaces. 1In
section 3 we apply the results of section 2 to a class
of spaces known as the universally complete spaces.
Section 4 begins with a study of a property which we call
sub-order separability, and which is related to order
separability. We obtain a classification of Archimedean
Riesz spaces, see theorem (4.3), in terms of sub-order
separability. We go on to obtain an Egoroff type theorem
which applies to arbitrary order separable Archimedean
Riesz spaces with the Egoroff property. Finally, we abstract
the results of our Egoroff type theorems and consider them
as properties. We end section 4 by showing that an order
separable Archimedean Riesz space has the Egoroff theorem
if and only if it has the Egoroff property, see theorem (4.10).
The results of chapter I are used extensively throughout
chapter II.

We study, in chapter II, the use of spaces of
equivalence classes of measurable functions to represent
certain Archimedean Riesz spaces. The first section of
chapter II gives the basic information necessary for this
investigation. We also obtain in section 1 some interesting
characterization theorems which are based on a property
related to the Egoroff property. In section 2, we discuss
a general embedding problem. In particular, we obtain

necessary and sufficient conditions for a certain class of
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Riesz spaces to be embeddable as Riesz subspaces of
some space of measurable functions. In section 3 of
chapter II, we consider a number of topological
properties which will guarantee that the Riesz space we
are dealing with can be considered as an order dense
Riesz subspace of some space of measurable functions.
In section 4, we show that every locally convex, separable,
metrizable topological vector lattice can be so represented.
We end chapter II with a discussion of some open problems
related to the material discussed in chapters I and II.

We wish to make some comments concerning a number
of concepts which we will be making frequent use of. If
L is a Riesz space, and [xa] is a net in L, then the
notation xa/’ means that the net {xa] is directed up.

}

Similarly, the notation xa\g means that the net {xa
is directed down. The notation %a/ﬂ x, where

[xa, x} € L, means that the net {xa] is directed up
and sup {xa} = x. Similarly, ga\s X means that the
net [xa] is directed down and inf (xa} = x. The nota-
tion X, * X will mean that the net [xa] order con-
verges to the element x (where by order converges we
mean that there exists a net {ya] C L with ya\, 0
such that for each a we have that |xa - x| g_ya) . If
we wish to talk about convergence with respect to a

T
topology T on L, then we will write x, *x. A Riesz
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space L 1is said to be Dedekind complete if given any

set A CL such that A is bounded above in L (i.e.
there exists an element y € L such that for any x € A
we have that x < y) then the supremum over A exists
in L. Finally, we will say that a set I € L is order
dense in L 1if given any x € L’ there exists a net
{xa} C I such that sup [xa] = X.

For general references to the theory of Riesz

spaces, we recommend [ (18) Note VI, (19), (25), and (27)].



Chapter I

Certain Order Convergence Properties
and Their Relationships

Section 1. Basic Definitions and Relationships

The results of this section will be used throughout
this exposition.

We begin with a property that was introduced in

[ (18) Note VI].

Definition 1.1. Let L be a Riesz space. An element

f € L 1is said to have the Egoroff property if given any

double sequence (O g.bnk; nk=1,2,...,}) in L with
bnk/;Ifl for n=1,2,..., then there exists a sequence
o g_bm/’|f| such that, for any m,n, there exists a j(m,n)

such that bm < bn,j(m,n)'

Luxemburg and Zaanen have shown, in [(19), Thm. 40.5],

the following equivalence:

Lemma 1.A. Let L be a Riesz space. An element
f € L has the Egoroff property if and only if given any
double sequence {0 < bnk’ n,k =1,2,...,}] in L with

bnk/ilfl for n=1,2,..., there exists a sequence



o <b_ /|f| such that, for any m, we have

bm < bm,k(m) for an appropriate k = k(m).
As a convenience to the reader we will indicate
the proof.

Proof: That the Egoroff property implies this
condition is obvious. To see the other direction we replace
the original double sequence {bnk] by the double sequence

{vnk] where v ., = inf(b b b Applying the

1,k’72,k"""°’ n,k}’
if part of the lemma to the double sequence vk Ve obtain

aog Vm/ |£] such that, for any m, we have v_< Vi, k (m)

k(m) for n m,

for an appropriate k = k(m). Taking j(m,n) = %: <
k(n) for n > m

it is easy to verify that Vo <b for any m,n.

n, j (m,n)
The proof is complete.

Remark 1.1. It is obvious from the above lemma that
an element f of the Riesz space L has the Egoroff
property if and only if given any double sequence

(0<b,:nk=12...,} in L with b, /) |f| for

nk’
n=1,2,..., ther xists a diagonal nc b
ere exists agonal sequence { n,k(n)}

such that bn,k(n) - |f|] for n=1,2,..., (by diagonal
we mean that for each n =1,2,..., an appropriate k = k(n)

can be chosen so that k(n) < k(n+l)).

We now introduce a few more definitions of other

order convergence properties.



Definition 1.2. We will say that order convergence

is stable in the Riesz space L if given any sequence
[xn] c L with xn\. O there exists a sequence of real
numbers {an]. satisfying 0 < ag /‘co, such that

anxn - 0, where n=1,2,...,.

Definition 1.3. We will say that the Archimedean

Riesz space L 1is reqular if order convergence is stable
in L, and in addition we have the property that for any
sequence (yn] c LY (where LY denotes the positive cone
of the Riesz space L) there is a sequence of real numbers
{o < an} such that the sequence {anyn} is bounded in L,

where n=1,2,...,.

We will refer to the last property in definition

*
(1.3) as property P .

Definition 1.4. A Riesz space L will be said to be

diagonalizable (or to have the diagonalization property) if

whenever fnk'fn'f in L are such that fnk dkfn for
n=1,2,..., and fn - f there exists a diagonal sequence

such that f - f, where n,k =1,2,...,.

{fn,k(n)} n,k (n)

Definition 1.5. A Riesz space L will be said to

be diagonalizable on intervals if whenever £ Enr £ in L

are such that:

1) there exists a g € Lt such that -g < fnk < g,
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2) fnk *k fn for n=1,2,..., and fn -+ £,
then there exists a diagonal sequence

such that £ + f where n,k=1,2,..., .

(£ n,k(n)

n,k(n)]

Definition 1.6. We will say that the Riesz space

L has the Eqgoroff property if every element of L has the

Egoroff property.

Theorem 1l.1. The Riesz space L is diagonalizable

on intervals if and only if for every double sequence

[bn X’ n,k=1,2,...,}] in L satisfying:

1) bnk X O for n=1,2,...,

2) there exists a g € L' such that bnk <g

for all n,k =1,2,...,

there exists a diagonal sequence {bn,k(n)] such
that bn,k(n) + 0.

Proof. The necessity is obvious. Now, suppose that
fnk'fn’f in L are such that [fnk: nkx=1,2,...,}) € [-g9,9]

+

for some g €L , fnk 4k fn for n=1,2,..., and

£ = f. Note that £ - fnkl <l |+ |£, | < 29 and
Ifn - f,| +0 foreach n=1,2,..., . Hence there exists
for each n a sequence xnk\N x © such that |fn - fnkl < %y
Taking 2z, = X, A 29 we have =z, < 29, lfn - £l <z,

and znk\.ko for each n=1,2,..., where n,k =1,2,...,
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By assumption there exists a diagonal sequence [Zn k(n)]
’

such that - 0, but then |f_ - £ | = 0, and
n n,k(n)

zn,k(n)

since |[f - fn,k(n)l < |£ - fnl + |fn - fn,k(n)" we have

f - f. This completes the proof.

n,k(n)

We will refer to the condition in the last part of

theorem (1.1) as the weak diagonalization property on intervals.

Remark 1.2. It is obvious that the same proof, only
simplified by the fact that we would not have to concern our-
selves with bounding the sequences [xnk}, will prove the
analogous result for diagonalizability. We thus have the

following corollary.

Corollary 1.1. The Riesz space L 1is diagonalizable
if and only if for every double sequence [bnk: nk =1,2,...,)
in L satisfying bn;yk: O for each n=1,2,..., there

exists a diagonal sequence [bn,k(n)} such that bn,k(n) - 0.

We will refer to the condition in the last part of

corollary (l1.1) as the weak diagonalization property.

Clearly, the property, given any £ € L and double
sequence [bnk; n,k =1,2,...,} in L with b . 7k|f| for
n=1,2,..., there exists a diagonal sequence {bn,k(n))
such that b ) = |£], is equivalent to the weak

diagonalization property on intervals. By remark (1l.1) the
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first property is also equivalent to L having the

Egoroff property. Hence, we have the following corollary.

Corollary 1.2. Let L be a Riesz space. Then
the following are equivalent.

1) L has the Egoroff property.

2) L has the weak diagonalization property on

intervals.

3) L has the diagonalization property on

intervals.

The implication (1) e 3)) of corollary (1.2) was
proved in [(19) Thm. (41.2)]. The proof contained there
does not use the weak diagonalization property on intervals.

In fact, this property was not considered there.

Theorem 1.2. An Archimedean Riesz space L has
the weak diagonalization property if and only if L is

regular.

+
Proof. Suppose [yn] cL and let 2z, =k “y/
(k,n = 1,2,..0')0 Then an\ko for eaCh n = 1,2,...,
since L 1is Archimedean, and hence there exists a diagonal
sequence [zn,k(n)} such that Zo,km) " O. But then the
- *
set (k(n) lyn} is bounded in L and we have property P .

Furthermore, if yk\, O in L then nyk\ko for each

n=1,2,..., and there exists a diagonal sequence
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[nyk(n)} such that nyk(n) - 0 where n'k = 1'2' ceey e

Taking Xm =1 for m 1,2,...,k(1)

=2 for m=1,2,..., k(2)-k (1)

)\m+k(n) =n for m=1,2,...,k(n+l) - k(n).

We have that xn‘/”a> and Xnyn - O. Hence L 1is regular.

On the other hand suppose L is regular and let

bnk " O in L for each (n=1,2,...), where n,k=1,2,...,.

Then, for each n, there exists a sequence of reals

(0 < xn such that Xnkbnk —ko and knk’zkm' This implies

i)
that for each n there exists a Y, € LY such that

* .
xnkbnk < Y- By property P there exists a sequence of

real numbers [Bn > 0} such that By, < z for all

_ +
n=1,2,..., where z € L . We have 6nxnkbnk < z for all

n,k =1,2,...,. For each n we can find a k(n) such

) n
that k(n) < k(n+l) and 6n < Xn,k(n)' But then

nb < z and, since L 1is Archimedean, this implies

n,k(n)

that bn - O. The theorem is proved.

k(n)

As a result of corollary (l1.1) and the above theorem

(1.2) we have the following corollary.

Corollary 1.3. Let L Dbe an Archimedean Riesz space,

then L 1is regular if and only if L is diagonalizable.
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Corollary (1.3) above was proved in [(28) Thm. (6.2)].
The weak diagonalization property was not mentioned or used

in the proof found there.

Definition 1.7. Let L be a Riesz space. We will

say that a sequence {xn] < L converges relatively uniformly

to an element x € L, written X, =X (r.u.), 1if there
exists an element e € L+ and a sequence [xn} of real
numbers decreasing to zero such that |x - xnl < A,e for
each n, where n=1,2,...,. The element e 1is called

the gequlator of convergence for the sequence [xn].

If e € Lt is the regulator of convergence for a
sequence {xn] converging relatively uniformly in L to an

element x € L, we will write X, =X (e - r.u.).

For arbitrary Riesz spaces the concepts of relatively
uniform convergence and order convergence, for sequences,
need not be related. However, if the Riesz space is
Archimedean then quite obviously relatively uniform conver-

gence implies order convergence, for sequences.

Remark 1.2. In Archimedean Riesz spaces, order
convergence, for sequences, and relatively uniform conver-
gence are equivalent if and only if order convergence is
stable. For the proof we refer the reader to [(28) Thm. (2.1)].

The proof is not difficult and we will not produce it here.
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A linear isomorphism ¢ taking a vector lattice
L into a vector lattice E 1is called a lattice isomorphism
1f given any xl,x2 € L we have cp(x1 A x2) =
m(xl) A @(xz) - in - E. If ¢ is a lattice isomorphism
taking a Riesz space L 1into a Riesz space E, we say

that L 1is embedded in E as a Riesz subspace.

A
We recall now that a complete Riesz space L is

said to be a Dedekind completion of a Riesz space L if

it has the following properties:

a) there exists a lattice isomorphism ¢
A
taking L into L,
A A
b) given any element x € L,
A A
sup{ep(x):x € L and o@(x) < x} = x

>

inf{ep(x) :x € L and o(x) > x}.

It is well known that a Riesz space L has a
Dedekind completion if and only if L is Archimedean.

[ec.£f. (27) Thm. (IV.11l.1) p.109].

/ It was shown in [(16) Lemma (32.3)] that the
condition (b) above can be replaced by the following condition.
A A A
b') For every x €L , x > 0, there exist

A
X,y € LY such that o < oplx) <x < oly).

Another well known result is that all Dedekind

completions of Archimedean Riesz spaces are lattice
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isomorphic. Hence, it makes sense to talk about the

Dedekind completion of an Archimedean Riesz space. In

the sequel, we will make no distinction between L and

its lattice isomorphic image in its Dedekind completion.

Another important property which a Riesz space

can possess is introduced in the following definition.

Definition 1.8. A Riesz space L 1is said to

be order separable if given any set A € L such that

sup A exists in L, there exists a countable set

A' ¢ A such that sup A' = sup A.

Remark 1.3. Masterson and Crofts have shown in
[ (21) ] that an Archimedean Riesz space L 1is order
separable if and only if its Dedekind completion ﬁ is
order separable. They also showed that, providing L is
Archimedean and order separable, if :Qn\o—in-ﬁ then
there exists xn\s O-in-L such that X, 2 Qn for each

n = 1,2,0-01'

Using remark (1.3), the following proposition

follows easily.

Proposition 1.1. Let L be an Archimedean order

separable Riesz space. Then, the following implications

are valid.
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a) L has property P* if and only if ﬁ has
property P*.

b) L 1is stable if and only if ﬁ is stable.

c) L is regular if and only if ﬁ is regular.
d) L 1is diagonalizable if and only if ﬁ is
diagonalizable.

e) Order convergence in L 1is equivalent to
relatively uniform convergence in L if and only

A
if order convergence in L is equivalent to

A
relatively uniform convergence in L.

Proof. Implication a) is trivially valid for
Archimedean Riesz spaces, without the assumption of order
separability. By virtue of corollary (1.3) the validity
of d) will follow from the validity of c¢). By remark (1.2)
the validity of e) is equivalent to the validity of b).
Since a) is valid, the validity of c¢) is seen to rest upon
the validity of b). It remains only to show that b) is

valid, but this is trivially so in view of remark (1.3).

Parts d) and e) of the above proposition were proved
in [(21)]. The other parts of the proposition were not

considered there.

We will now establish the corresponding result for
the Egoroff property. This result will be used frequently

throughout this exposition.
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Theorem 1.3. Let L be an Archimedean order
separable Riesz space, then L has the Egoroff property

A
if and only if L has the Egoroff property

Proof. By virtue of corollary (l.2) proving this

theorem is equivalent to showing that L has the weak

A
diagonalization property on intervals if and only if L does.

A
Suppose L has the weak diagonalization property

on intervals. Let (b n,k =1,2,...,}] be a double

nk’
sequence in L with O ¢ bnk <b €L for all
n,k =1,2,..., and such that bng\;ko (in L) for each
A
n=1,2,...,. Then Db \h O (in L) for each n=1,2,...,
nk " k
and hence there exists a diagonal sequence [bn k(n)}
A ’
such that b - O (in L). By virtue of remark (1.3)
n,k(n)

this implies that bn X (n) - O (in L) and we obtain the
result that L has the weak diagonalization property on
intervals.

Suppose now that L has the weak diagonalization

property on intervals. Let [Q res.s) Dbe a

nk’ N
A A A
double sequence in L with O by £b €L for all

n,k 1,

>N

A
n,k =1,2,..., and such that an\.ko (in L) for each
A
n=1,2,...,. Choose a b L such that b > b. Using
remark (1.3), there exist sequences [bnk} c L such that

. A
bnk\yko (in L) for each n =1,2,..., and b 2b
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for all n,k =1,2,...,. Taking Ink = bnk A b, we see
that g, '\),0 (in L) for each n = 1/L\,2,..., Iy <P

for all n,k =1,2,..., and Ik 2 b, for all
nk=1,2,...,. But then there exists a diagonal sequence
{gn,k(n)) such that In,k(n) O (in L) which implies
ihat gn,k(n) - O (in L). Finally, this implies that

b

n,k(n) O (in L). The proof is complete.

Our next results indicate in what manner some of the
simplifications contained in this section can be put to use.
We introduce another apparently weaker diagonalization

property.

Definition 1.9. We will say that the Riesz space L

has the sub-diagonalization property if given any double

sequence {xnk; nk =1,2,...,} in L with xnk\'k 0 for
each n =1,2,..., there exists a sub double sequence
{xn(j)k7 j,k =1,2,...,}, where the n = n(j) can be
~chosen so that n(j) < n(j+l), for which [Xn(j)k} is

diagonalizable.

Theorem 1.4. Let L be an Archimedean Riesz space.
Then L is sub-diagonalizable if and only if L is

diagonalizable.

Proof. The sufficiency is obvious. For the necessity,

by virtue of corollary (1.1) and theorem (1.2), it is
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sufficient to show that L being sub-diagonalizable
implies that L 1is regular. Let {xn: n=1,2,...,)}
be any sequence in L*. consider the sequence {yn}
where y_ = sup (x.} for n=1,2,...,. Clearly

1<i<n
y, is directed up. For each n = 1,2, ...,k‘lyn\,k 0.

So, there exist n(j), n(j) < n(j+l), such that

1

(x~ yn(j)} is diagonalizable. Let k(j)-ly be

n(j)
the appropriate diagonal sequence such that

-1
k(3) Yn(j)
L. For each n=1,2,..., we define Xn = k(l)-l for

- 0. The set {k(j)-lyn(j)} is bounded in

1<ng<n), ..., =k(3)1 for n(i-1) <n <n(E,...,.
Then {Xnyn] is bounded in L. Since x <y, for each
n=1,2,..., we have [lnxn] is bounded in L and
hence L has property P*.

Now let Yk\” O where k =1,2,...,. Then
nyk\,ko for each n=1,2,...,. Thus, there exist
n(j), n(j) < n(j+l), such that (n(j)yk] is diagonalizable,
where j =1,2,...,. Proceding exactly as in the proof
of theorem (l1.2) we obtain that order convergence is stable

in L. The theorem is proved.

A sequence [xn; n=1,2,...,)] 1in a Riesz space

IL is said to be order *-convergent to an element x € L

if every subsequence of {xn} has a subsequence which

order converges to x in L.
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Order *-convergence has been shown to be the
convergence associated with one of the intrinsically
defined topologies on certain vector lattices [c.f. (27)
§3 Chapter VI]. Peressini has shown [(25) Prop. (5.6)

Pe 47] that if E 1is a Riesz space with the diagonali-
zation property then the set mapping A - A defined

for subsets A of E by A = {x €E : [xn} order
converges to x for some [xn] c A} is a closure operator
on E. He further showed that if J is the unique
topology on E determined by this closure operator then
J-convergence is equivalent to order *-convergence; for
sequences. Our next result establishes the converse of

this result for Archimedean Riesz spaces.

Theorem 1.5. Let E be an Archimedean Riesz space.
If the set mapping A - A defined for subsets A of E
by A= (x €E : {x ) order converges to x for some
{xn} c A} 1is a closure operator on E, then E is

diagonalizable.

Proof. We will show that E must be sub-diagonali-
zable. Suppose that {xnk; n,k=1,2,...,})] 1is a double
sequence in E with xnk\”kp for each n=1,2,...,.

Let O < e € E. Consider the set A = {xnk + % e}. It is

evident that [% e} €A and that O € A. By assumption
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there exists a sequence {yj] < A such that yj =0,

where j =1,2,...,. For each j, yj is of the form

B 1 . .
yj = X0 (3).k(3) + a3y © for appropriate n = n(j)

k=k(3). If n(3) <M< e then X )y +gET e 2 e >0

for all j =1,2,..., and this contradicts that

1
. = - 0.
Xn(]),k(]) n(3) e (0] Hence, we may assume that

n(j) < n(j+l). Since x k\sko - for each j, we may

n(j)
assume that k(j) < k(j+l). The condition

xn(j),k(j) + n(3) e - O implies that for some zj\n() in

1
n(j)

L we have + e < zj. This implies

*n(3),k(3)

i zj and hence

X0 (3), k() — xn(j),k(j) -~ O. We have shown

that the double sequence | jok =1,2,...,} is

diagonalizable. Thus, E 1is sub-diagonalizable. By
application of theorem (1.4) we see that E is diagonalizable.

The proof is complete.

Examples 1.1. a) Let L be the Riesz space of all
finitely non-zero real sequences (xn}. This space is easily
seen to be Archimedean. Since order convergence is point
wise convergence, it is not hard to check that order

convergence is stable in L. The set {en; n=1,2,...,},

O for i # n, x? =1 for

n n
where e = [xi} and Xy

*
i = n, shows that L does not have property P . Thus L

is not diagonalizable.
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b). Let L be 4 (i.e. the space of
bounded real sequences). Since L is bounded it clearly

* m
has property P . The sequence xn\y 0, where x = [yn}

and yﬁ =0 for 1<mc<n, yg =1 for n <m, does

not converge to O relatively uniformly. Therefore,

since L is Archimedean, order convergence is not stable

in L and L does not have the diagonalization property.
For n,k, i =1,2,..., 1let the sequence

i . .
X = {ynk] and x = [yi] be in L and satisfy

o]
In

xnk/’kx for each n=1,2,...,. For n=1l, choose

k(1) so that yi,k(l) > Yy, = % Yy and let

x
]

- 21 =
Zl - (yl '2' yl’ O, o o o ,0, e o 0 ) . FOI‘ n"‘2’ choose

k = k(2) > k(1) so that y;'k(z) > Yy - J% o

2
2 S _ 1 — _ 1
Ya,k(2) = Y2 52 yy» and let z, = (y; 52 Yy

y2 - _2 y2’ O' e o o p 0, o e 0 ) . Proceding in the indicated
manner we obtain a diagonal sequence (x } and a
n,k(n)

sequence [zn} such that 0 < z for each

n < xn,k(n)

n=1,2,...,. Clearly zn/’.x and hence x - X.

n,k (n)
Thus, L has the Egoroff property.

c). The Riesz space C[0,1] of all real
continuous functions on the interval [0,1] does not
have the Egoroff property. For a direct proof we refer

the reader to [(7) Ex. (4.1) pe 72]. An indirect proof

is given in section 1 of chapter II page 115,
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d) Let L be Euclidean two space with the
lexicographical ordering (i.e. (a,b) < (c,d) if either
agc or a=¢ and b ( d). This space is non-
Archimedean. Its positive cone consists of the entire
half plane with the exception of the negative y-axis. It
is not hard to see that L is regular. However, the
sequence (% ’ %) converges relatively uniformly to O

but does not order converge to O.

Section 2. The Egoroff Theorem and Relatively

Uniform Convergence

A number of the properties considered in the
previous section can be reduced, in certain spaces, to
properties defined only on the components of fixed
elements (an element f in a Riesz space L 1is a
component of an element g ¢ LY if £ A (g-f) = 0).

As a result of these consideration a number of
results obtained by Luxemburg and Zaanen in [(19), Chapter 7]
can be shown to hold under more general hypothesis than

stated there.

The results of this section require a restriction
of the types of Riesz spaces considered. We in general
will need some type of a projection property. We,

therefore, will review now some of the pertinent definitions



23

and results, which are associated with the theory of
projections in Riesz spaces. For a complete discussion
of this material we refer the reader to [(19), Chapt's.
2 and 3].

Let L Dbe a Riesz space, and let L' be a sub-

space of L. L' 1is called a Riesz subspace of L if

under the induced partial ordering from L we have

that L' 1is a partially ordered vector space, and

for any x,y € L' we have x Ay and x vy are in L'.
The Riesz subspace L' of L 1is said to be

an ideal if for all 9,09, € L' and f € L such that

97 < f< g, we have f € L'.

An ideal L' in L 1is called a normal ideal,

closed ideal, or band if given any net [gT} c (L')+

with g_/ and sup(g_)] = g exists in L we have
T 0T

g €L'.

Let A Dbe any subset of L, then
A" = (g € L; lg| A |x| = 0 for all x € A}. 1It is
easy to show that at is in general a band in L.

Aband B in L 1is said to be a projection band

if given any u € LY we have that sup{v; v € B and v < u}
exists. 1In this case L =B @ B* .
If L = Bl ® B2 where B1 and B are bands

2
11 1

. Y G _ i
in L, then B, =B, =B = (Bl) and Bl'BZ are

projection bands.
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If B 1is a projection band in L, then for
every u € L there exists u,.,u, € L such that

u, + u, = u and ul € B, u

1 2 2
is called the component of u in the projection band B.

€ B'L. The element uy

If PB is the operator on L which takes every
element of L to its component in the projection band B,
then PB is a Riesz homomorphism.

If B=B_ = (b}*' where b ¢L then B is

called the principal band generated by the element b € L.

A Riesz space L 1is said to have the projection

property (P.P.) if every band in L has the
projection property.
A Riesz space L is said to have the principal

projection property (P.P.P.) 1if every principal band in

L has the projection property.

By A(L), AP(L), P(L), Pp(L); we will denote
the set of all bands, principal bands, projection bands,
principal projection bands, respectively, in the Riesz
space L. A(L) forms a distributive lattice with unit
when ordered by inclusion. If L is Archimedean then
A(L) 1is also a Boolean Algebra. P(L) always forms a
Boolean algebra ordered by inclusion. An order convergence
can thus be defined on P(L) and A(L) in a natural

manner.
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It is well known that if L is Dedekind
complete (respectively Dedekind-o-complete) then L

has the P.P. (respectively P.P.P.).
We are now ready to proceed.

Definition 2.1. Let L be a Riesz space. We

will say that the element £ € LY has the Egoroff

property on its components if given any double sequence

{fnk; n,k=1,2,...,} in L with fnk/’kf for each

k k)
nk =1,2,..., there exists an %n/’ f with
fm A (f - fm) =0 for m=1,2,..., such that

£, < fm,k(m) for some suitable choice of k = k(m).

Definition 2.2. We will say that Pp(L) is

super order dense in Ap(L). with respect to the order

on A(L), if given any B ¢ AP(L) there exists a sequence

(B} € P (L) with B /'B, where n =1,2,...,.

Lemma 2.1. Let L be a Riesz space with the
property that Pp(L) is super order dense in AP(L).
Then, the element £ € LY has the Egoroff property on
its components if and only if for every double sequence
£, /xE for each n=1,2,..., with £, A (£ - £,) =0
for all n,k =1,2,..., there exists a diagonal sequence

such that f - f.

[fn,k(n)] n,k(n)
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Proof. The necessity is obvious. We prove

the sufficiency. Let (f nk =1,2,...,} be a

nk’
double sequence of components of an element £ in
L with fnk}”kf for each n=1,2,...,. Applying
the if part of the lemma, there exists a diagonal
sequence {fn,k(n)} such that fn,k(n) - £f. Then
there exists xn\,o in L such that

f-f ) <x for each n =1,2,...,. Consider

n,k(n
+ +

(f - xn) /' £, we have (f - xn) < fn,k(n) for each

n=1,2,...,. The principal bands B(f_xn)+ = Bn

satisfy Bn,)‘Bf. By assumption there exists for

each n a sequence [Bnm} c PP(L) such that

B/ mBn° Consider, then, the principal projection
bands G_ = sup (B. _}. We have G B_. and for
n 1<i<n i,n n/r £
each n =1,2,..., G € B . Hence P, (f) < fn,k(n)'

n
and P (f)/’ f. This completes the proof.
n

Luxemburg and Zaanen have introduced the concept
of an Egoroff property for arbitrary Boolean algebras
[c.f. (19) Defn. 42.2]. We will not be concerned here
with this general concept, but we are interested in such
a property for certain elements of the Boolean algebra

P(L). We make the following definition.
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Definition 2.3. Let L be a Riesz space with

the P.P.P. An element B ¢ PP(L) will be said to have

the Egoroff property if for any double sequence

{Bnk; n,k =1,2,...,} in Pp(L) with Bnk/sz for
each n=1,2,..., there exists a sequence

[Bm; m=1,2,...,) 1in Pp(L) such that Bm/ﬁ B and
such that, for any m,n there exists a suitable

k = j(m,n) such that Bm < Bn,j(m,n)'

Remark 2.1. H. Nakano introduced in [(23), §14]
the property of total continuity for a Riesz space L
with the P.P.P. . His definition reduces tos"L has

the P.P.P. and every B ¢ Pp(L) has the Egoroff property.

Remark 2.2. In [(19) Thm. 42.3] it was shown
that the element B € Pp(L) has the Egoroff property

if and only if for any double sequence | nk =1,2,...,}

Bnk’
in Pp(L) with Bnk/ﬂkB for each n=1,2,..., there

exists a sequence qn/”IB such that, for any m, we

have B, &B for an appropriate k = k(m). The

m, k (m)
proof is exactly analogous to that of lemma (1.A).

Definition 2.4. We will say that the Riesz space

L has the Egoroff property on components if every

£ ¢ L7 nas the Egoroff property on its components.



28

Our next theorem is an Egoroff type theorem
since it is an analogue for Riesz spaces of Egoroff's
well known result for measure spaces. The first result
along these lines was obtained by Kantorovich, Vulich,
and Pinsker in [(11), 2.21 p, 181]. A more general
result than that in [(11) ] is found in [(19) Thm. 42.6].
The theorem we are about to prove is more general

still, which we will demonstrate by example later on.

For purposes of comparison we will first state

the result in [ (19) ].

Theorem A. (Luxemburg and Zaanen) Let L be a
Riesz space with the P.P.P., and assume every element of
PP(L) has the Egoroff property. Fix e € L+, then if

X, N O there exists em)'e such that Pem(xn) ~n 0 (e-r.u.)

The greater generality of our result is derived
from the relaxing of the hypothesis P.P.P. to PP(L)
super order dense in Ap(L). In particular, as will be
shown later on, this will imply the validity of the

theorem for any sequence space.

Theorem 2.1. Let L be a Riesz space for which
Pp(L) is super order dense in Ap(L), and such that

L has the Egoroff property on components. Then if
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X O in L and e 1is a fixed element in L+, there
exists a sequence of projection elements e /e

(i.e. Be is a projection band for each m= 1,2,...,),
m
e, A (e - em) = 0 for each m, such that

Pe (xn) ~n O (e - r.u.).
m

Proof. Let xn\ O in L and consider
_ -1 + . -1
e = (e - x) then O < enk/kn e and

Benk/' kBe' In the proof of lemma (2.1) we saw that if

{Bn} c Ap(L) and Bn/ B € Ap(L) then there exists
(6,) =P (L) with G cB and 6, /' B provided P, (L)
is super order dense in Ap(L) . Hence, for each n

there exists a sequence {Bnk] c Pp (L) such that

By © Be for each n,k =1,2,..., and Bnk/‘kBe
nk
for each n=1,2,...,. Let Z = PB (e), then
nk
Z i A (e - znk) =0 for each n,k =1,2,..., and

znk/'ke. By virtue of the Egoroff property on components
and lemma (2.1) we now have an em/ e with

e A (e - em) = O such that, for any m, we have

e < zm,k(m) for an appropriate k = k(m). Also we

have B / B and as before there exists (B _} < P (L)
e e m p

such that B < B, and Bm/ B_ . Letting e = P, (e)

m m

we have en < e for each m=1,2,..., and em/e.

But then fixing er; we have that, for m > m
0]
-1
Penl1 (x'k(m)) < Per; (xk(m)) < n “e and we see that the
(¢}

Ol
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subsequence {Pe: (xk(m))} of the monotone decreasing

o
sequence [Pe. (xk)] satisfies Pe' (Xk(m)) +0 (e - r.u.).
m m
(0] (0]
But then Peé (xk) 4k O (e - r.u.). The theorem is proved.
0

Theorem 2.2. Let L Dbe a Riesz space with the
P.P.P., then an element B € Pp(L) has the Egoroff
property if and only if there exists an order unit O < e
for B (i.e. e € L+ and Be = B) such that e has the

Egoroff property on its components.

Proof. Let B = Be and assume that e has the
Egoroff property on its components. Let [Bnk: nk=12,...,])
be a double sequence in Pp(L) with Bnk/ﬁkB for each

n=1,2,..., . Then the components e x of e 1in B

nk
satisfy enk‘/”ke for each n=1,2,..., . Since e has

the Egoroff property on its components, there exists a

sequence em/? e with e A (e - em) = 0 for each
m=1,2,..., such that, for any m, we have e, < em,k(m)
for suitable k = k(m) . But then B S B = B
e e m, k (m)
m m,k (m)
and Bem/” B = Be . By virtue of remark (2.2) the suf-

ficiency is proved.

Conversely assume that the element B € Pp(L) has
the Egoroff property. Let e > O be any order unit for
B and suppose that {enk; n,k=1,2,...,} is a double

sequence of components of e with enkJ/’ke for each



31

n=1,2,...,. Then B /ﬂ B and since B = B
e/ k © e

has the Egoroff property there exists Bm,’ B such

that for any m, B = B for suitable

em,k(m)

choice of k = k(m). If e is the component of e

m = Bm,k(m)

in B, we have e e and for any m, e <

m em,k(m)’

This completes the proof.

We can now obtain Theorem A stated above as an

immediate corollary to theorems (2.1) and (2.2).

Remark 2.3. We will gather here some information
concerning components of elements in a Riesz space, which
will be needed in the sequel. Let L Dbe a Riesz space
1’ and e, be elements of LY. Then the

following assertions are valid:

and let £, e

1) If e and e

1 are components of £

2

then e, Ve, is a component of f.
2) If e, is a component of f and ey
is a component of e then e is a

2 1

component of f.

3) If e, < e, and e;,e, are components
of f then e, is a component of e,

4) 1f e),e, are components of f then
e; AN e, is a component of f.
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Proof. 1l). We note first that e

z)if—el (l=1I2)o

so (e V e2) ATE --(el % ez)]= (el ALE - (e v e2)])

(i =1,2), hence f - (e1 VvV e

v (e2 ALE - (e1 v ez)]) < (e1 A (f - el)) v (e2 A (f - e2)) =

=0V O = 0. This proves part 1).
2). We note first that

f - e, = f - e, + e, - e;. Hence, e; A (f - el) =

e; A [(f - e2) + (e2 - el)] and by [(25), Prop. (1.2)
(19) pg. 6] we have that e; A [(f - ez) + (e2 - el)] -

Loep A(E - e2) + e A (e2 - el) Ley A (f - e2) +
e; A (e2 - el) = 0. This proves part 2).
3). Since e, L e, we have
e, — e s f- e . Hence, e; A (e2 - el) e A(E - el) = 0.

This proves part 3).

4). We note first that
(el A e2) A [el - (el A ez)] < e, A [el - (e1 A ez)].
By a well known vector lattice identity

e, + e. =(e

2 v e2)+(e1 A e2) [c.f. (25) (5) pg. 4]. Hence,

1

1 1 A e2)=(e1 \Y; e2)- e, and e2 A [el - (e

= e, A [(e1 v e2) - e, J. By parts 1) and 3)

e, -(e A e2)]

1

e, A [(el v e2) - e2] = 0. This proves part 4). All

parts of the proposition have been proved.

Remark 2.4. It is not difficult to see that if
L 1is a Riesz space with the property that Pp(L) is

super order dense in Ap(L) and if £ 1is any element
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of L' which has the Egoroff property on its components,
then any component e of £ has the Egoroff property
on its components. Indeed, if the double sequence

{enk; nk =1,2,...,}] of components of e has the
property that enk/ﬁke for each n=1,2,..., then

the double sequence (f - e + enk} of components of

f (note f - e + e = (f - e) ve and see remark

k nk
(2.3) part 1)) has the property that f£f - e + enk/’kf
for each n=1,2,...,. Since f has the Egoroff
property on its components, there exists a diagonal
sequence (f - e + en,k(n)] such that f - e + €n.k (n)

which implies that en,k(n) - e. Applying lemma
(2.1) e 1is seen to have the Egoroff property on its

components.

Remark 2.5. The second part of the proof of
theorem (2.2) showed that if L has the P.P.P., and
B F Pp(L) has the Egoroff property, then for any order
unit £ of B, f € B+, we must have that f has the
Egoroff property on its components. By remark (2.4)
it follows that if e 1is any component of f then e
has the Egoroff property on its components and hence
Be has the Egoroff property. Furthermore, if
g € B+ = B; then, taking fg = Pg(f), we have that
fg has the Egoroff property on its components and hence
B = Bf has the Egoroff property which in turn implies

g9
that g has the Egoroff property on its components.

-of'
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We have established the following corollary to

theorem (2.2).

Corollary 2.1. Let L be a Riesz space with the
P.P.P., and suppose B € Pp(L) has the Egoroff property.
Then B, considered as a Riesz space, has the Egoroff
property on components and every principal band contained

in B has the Egoroff property.

Our next result establishes a relationship
between the Egoroff property and the Egoroff property

on components.

Theorem 2.3. Let L be a Riesz space with the
property that Pp(L) is super order dense in Ap(L).
Then L has the Egoroff property if and only if L

has the Egoroff property on components.

Proof. We see from lemma (2.1) that if L has
the Egoroff property then L has the Egoroff property
on components.

Conversely, suppose {bnk: n,k=1,2,...,} is
a double sequence in L with bnk\”ko for each
n=1,2,..., and such that for some element b ¢ L
we have that bnk <b for all n,k=1,2,...,. By
virtue of theorem (2.1), for each n, there exists

a sequence of projection elements znm/’mb with
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Zoo A (b - znm) =0 for any n,m=1,2,..., such that

P (b_,)
znm nk

K O (b - r.u.). Hence, there exists, for

each n,m=1,2,..., a k = k(n,m) such that

R
znm(bn,k(n,m)) < n b, where k(n,m) can be chosen

P

to increase with increasing m (i.e. k(n,m) < k(n,m+l1)).

Since L has the Egoroff property on components we know

that there exists a diagonal sequence {zn,m(n)] such
that Znm(n) " b. Taking k(n) =max{k(i,m(i)); 1 < i € n}+n.
Then k(n) < k(n+l) and b < P (® )
n,k(n) Z, m(n) n,k (n)
-1
+b - Zh,m(n) S0 b+b -2z Hence, b - 0.

n,k(n)
The proof is completed by application of theorem (1.1).

n,m(n) °

The above theorem is a generalization of two
results due to Luxemburg and Zaanen, see [(19) Thm's. 42.5
and 42.8].

We can perhaps see this best by considering

the following corollary.

Corollary 2.2. Let L be a Riesz space with the
P.P.P. . Every element of Pp(L) has the Egoroff property

if and only if L has the Egoroff property.

Proof. By remark (2.5) we see that every
element of L has the Egoroff property on its components
and by theorem (2.3) we see that L has the Egoroff
property. The other direction follows by application of

theorem (2.3) and then theorem (2.2).



36
Luxemburg and Zaanen proved the "if" part of the
above corollary (2.2) and the "only if" part providing

L was assumed to be Dedekind-0-complete.

Remark 2.6. In view of corollary (2.2) we see that,
for Riesz spaces with the P.P.P., the concepts of totally

continuous (see Remark (2.1)) and Egoroff are equivalent.

In this next corollary, we summarize a number
of the results obtained so far in this section. It requires

no proof.

Corollary 2.3. Let L be a Riesz space with the
P.P.P., and let B ¢ Pp(L). Then the following are
equivalent:

a) B has an order unit e with the Egoroff

property on its components.

b) B has the Egoroff property.

c¢) B, considered as a Riesz space, has the

Egoroff property on components.

d) B, considered as a Riesz space, has the

Egoroff property.

The following is an example of a Riesz space
which has the Egoroff property, and the property that
Pp(L) is super order dense in Ap(L), without having
the principal projection property. Thus, we see that
our version of the Egoroff theorem applies to a strictly

larger class of spaces than does theorem A.
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Example 2.1. Let X = {...-2,-1,0,1,2,...}.
Let F(X) be the Riesz space of all bounded real valued
functions on X with the usual point wise ordering. A
straight forward proof almost identical with that in
Example (1.1(b)) shows that F(X) has the Egoroff property.

Let L be the Riesz subspace of F(X) consisting
of all functions f € F(X) which satisfy the condition
that for any € > O there exists an integer n(f) such
that for all n > n(¢€) we have that If(n) - f(—n)| < €.

Consider the band in L generated by the

1
element £, € L where f£,(n) = oyl | forn >0,

O ; for n C O.
The element £f(n) = 1 has no projection on the band

Bf . Hence L fails to have the principal projection
1

property.

Consider now the ideal L' in L consisting of
all elements f € L such that for some integer n = n(f)
we have that for all n > n(f) £(-n) = £(n) = O (i.e. the
finitely non-zerc elements).

Each principal band in L generated by an
element f € L' obviously has the projection property.

It is also clear that L' 1is super order dense
in L (i.e. given any f € LY  there exists
(0o<gi:in=12,...,} cL' such that g /' £), and

n
this implies that Pp(L) is super order dense in Ap(L).
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A
Since F(X) =L, and since F(X) 1is order
separable it follows from theorem (1.3) that L has

the Egoroff property.

This next example illustrates that without some
sort of a projection property the concepts of Egoroff

on components and Egoroff need not be related.

Example 2.2. Let L = C[0,1] be the Riesz space
of all continuous real valued functions on the interval
[0,1] with the usual pointwise ordering. We claim
that L has the Egoroff property on components.

We will show first that if £ ¢ L' then there
exists a countable system {fk: k=1,2,...,} of
components of f satisfying the following conditions:

1) sup(f,: k =1,2,...,} = f

K’
2) If g 1is any component of f then, for
each k, g A fk =0 or g A fk = fk'

To see this we consider the set U = {x : f(x) > O}.
Since f 1is continuous, U 1is open and is the union of
a countable collection F of disjoint intervals. The
intervals in the collection F are of the form (a,P),
fo,8), (a,1], or [0,1], where o,B € [0,1] and a < B.
An interval of the form [0,B) (respectively (a,1]) will

be in F only when f£f(0) > O (respectively £(1) > 0).



39

If [0,1] is in F then there must exist some real

number Yy such that f£(x) > y > 0 for all x € [0,1].
For simplicity we will assume that all the

intervals in F are of the form (a,B), that is

F = [(ak,Bk); x=1,2,...,}. It will be clear from

the proof for this situation how to handle the few

exceptional situations mentioned above.

Now, for each k, we set £ = fx(aknﬁk)'

where X(a B.) denotes the characteristic function
k’'"k

of the interval (a,B,) € F. Fixing a k = k', the

continuity of fk' at points in any of the intervals

(ak:, Bk')' [O,ak:), and (Bk,, 1] 1is obvious. For

X = Q (the proof for x = Bk' is similar), we note

k ’
first that f(akl) = 0. Assume not. Then f(ak,) >0
and o, + € U. But, then, there exists a k = k" #¥ k'
such that (Q.k// ’ Bkﬂ) n (ak ', Bk l) # a and this

contradicts that the intervals (ak,Bk) are disjoint.

So, f(ak,) = O and the continuity of fk' at Uy is
now obvious. (We note that for the one exceptional
possibility where Oy s = O and f(ak:) > O the continu-

ity of fk' at Q ’ is trivial).

To see that the £

x are components of f is

easy.
Now, let x € [0,1], if x € {y: f(y) = 0} then

fk(x) = 0 for all kX and we have
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sup [fk(x); k=1,2,...,}) = f(x) = 0. 1If

x £ {y: £(y) = 0} then x € (ak, ,Bk,) for some

Xk = k’. For all kX ¥ k', we have £, (x) = 0. But,
then, sup [fk(x); xk=1,2,...,} = fk'(X) = f(x). We

have established that £ = sup {fk; k=1,2,...,1}.

Suppose, now, that g is any component of f

and that there exists a k = k' such that g A f , # 0

k
and g A f , # £ , - Setting g’ = f , N9, we have
k k k
that g' and £ , "~ g' are non-zero components of
k
f , + see remark (2.3) part 4. But, then,
k
(x :t g'(x) >0} N (x: £ l(x) -g'(x) >0} =¢g and
k
(x: g’(x) D0} U (x: £ ,(x) -g'(x) >0} = (x: £ l(x) > 0}
k k
= (a . B ’). This contradicts the connectedness of
k k
the interval (a , B /)' We have established that given
k k

any component g of f either g A fk =0 or
g A fk = fk for all k =1,2,...,
We are finally ready to establish that L has
the Egoroff property on components.
Let f be an element of L+ and let
{(f,: Xk =1,2,...,} be the collection of components of
f which satisfy the conditions (1) and (2) above. Suppose
[bnk; n,k =1,2,...,} 1is a double sequence of components
of £ with bnk/kf for each n =1,2,..., . We

define k(n) 1in the following manner:
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k(1) inf(k : b

1,x(1) 2 f1le
inf{k : k > k(1)+1 and bz,k(z) 2 £1+£, = £, v f2],

k(2)

o e .
eeco e
ee 0 0
eee e e

k(n) = inf{k : k > k(n-1)+1 and bn,k(n) > sup [£.}},
1{i<n

Taking b= sup (f.}, we have b_A (f - b ) = O,
mToiem m m

bm,ﬁ f, and bm < bm,k(m)' We have proved that L
has the Egoroff property on components.

c[0,1] does not have the Egoroff property as we
mentioned earlier, see Example (l.lc). If cc[0,1] had
the property that Pp(L) was super order dense in Ap(L)
then the fact that it has the Egoroff property on
components would imply that it had the Egoroff property.
This would follow by virtue of theorem (2.3). In fact,
it is well known that C[0,1] has only the trivial
projection bands (i.e. the whole space and the ideal

consisting of the zero element).

Remark 2.7. Again taking L = c[0,1], by virtue
of theorem (1.3) and the fact that L 1is order separable
and does not have the Egoroff property, it follows that
ﬁ does not have the Egoroff property. Since ﬁ has the

A
projection property, it follows from theorem (2.3) that L
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cannot have the Egoroff property on components since

if it did it would have to have the Egoroff property.
Hence, example (2.2) above furnishes us with an example
of an order separable Archimedean Riesz space with the
Egoroff property on components such that its Dedekind
completion does not have this property.

We will find several applications for this next
result, the first of which will follows directly after
its proof. The result is due to Luxemburg and
Zaanen [see (19) Thm. 40.3], and the proof is essentially
theirs, although we do use some of the results in

section 1 which seem to simplify the proof.

Theorem B. (Luxemburg and Zaanen). The set of
all elements of a Riesz space L having the Egoroff
property is a 0-ideal in L (where by o0-ideal is
meant that if any sequence from the ideal converges to

an element in L then that element is in the ideal).

Proof. We prove first that if O { v < u, and
u has the Egoroff property, then so has v. Let
0 < v,/ for each n=1,2,...,. Then
(vrlk + (u-v))/‘ku for n=1,2,..., and there exists
a diagonal sequence {vn,k(n) + (u-v)} such that

Vn,k (n) + (u-v) = u, which implies Vn, k() ~ V- But,

then, v has the Egoroff property (see remark (1.1)).
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Now, we show that if u,v € L+ have the
Egoroff property then u+v has the Egoroff property.
Let 0<b ./ u+v for n=1,2,...,. By the well
known decomposition lemma, [c.f. (25) Cor. 1.4 p. 8],
there exists Vok and Z x such that Vik + zZ.x = bnk
for all n,k =1,2,..., and Vnk/’ku' and
znk/’kv' Since u and v have the Egoroff property,
there exist diagonal sequences (v

p,k'(p)]'[zm,k"(m)}

such that v - u and =z - v. For each

p.k' (p) m, k" (m)
n, taking k(n) = max{(k'(n),k"(n)} we have that
the diagonal sequence {bn,k(n) = Vo,x(m) t zn,k(n)]

satisfies b - u+v. By virtue of remark (1l.1),

n,k(n)
we see that u+v has the Egoroff property.
Showing, now, that the set of all elements of
L with the Egoroff property is an ideal is standard.
Let L' be the ideal in L of all elements
with the Egoroff property. We must show that if
0 < vp/? u ¢ LY, where [vp; p=11,2,...,}) € L', then
u has the Egoroff property. Suppose O S-bnk/ﬂku for
n=1,2,...,. Taking uﬁk = bnk A vp, we have

p _ ,
unk/ﬂkvp for each n 1,2,...,. Hence, there exists,

p P
for each p, a sequence [um] such that O < um‘/” v

m p
p p :
and, for any m, u- < um,k(m,p) for appropriate
k = k(m,p). Consider u, = sup[u;; 1 <i<m}. It is

clear that um/ﬁth Taking k = k(m) = max{k(m,i);1 < i

<

-

m}
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we see that u < bm,k(m) A vp < bm,k(m)' Applying
lemma (1.A) we see that u has the Egoroff property.

The theorem is proved.

We are now ready to show that theorem (2.1) is
valid in every sequence space. To show this we need
only show that every sequence space L has the Egoroff
property and the property that PP(L) is super order

dense in Ap(L).

Theorem 2.4. Every sequence space L has the
Egoroff property and the property that Pp(L) is super

order dense in Ap(L).

Proof. Let L Dbe a sequence space and let o
be the space of finitely non-zero sequences. We recall
that ¢ 1is contained in any sequence space and hence
@ € L. In fact, @ must be a super order dense ideal
in L. Showing that ¢ has the Egoroff property is
trivial. So, by the super order density of ¢ in L
and theorem B above, L must have the Egoroff property.

We note, now, that if x € @ then the principal
band generated by x in L 1is a projection band. It
follows easily from the super order density of ¢ in L
that Pp(L) is super order dense in ‘AP(L)' The theorem

is proved.
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We will now introduce a property which is an

abstraction of the result of theorem (2.1).

Definition 2.5. We will say that an element

*
O < e of the Riesz space L has property E.T. , if
given any xn\o with X <e for n=1,2,...,
there exists a sequence of components [em} of e
such that em/7 e and en A X~ O (e - r.u.) for

each m=l,2,.o-,-

Definition 2.6. We will say that the Riesz

*
space L has property E.T. if every e € LY has

*
property E.T. .

We note that if L has the property that PP(L)
is super order dense in AP(L) and in addition has the
Egoroff property then by theorem (2.1) L has property
E.T.*. Thus, theorem (2.4) can be restated in the

following manner:

Corollary 2.4. Every sequence space has property

We are now in a position to reduce significantly
another important order convergence property for Riesz
spaces, namely, that of relatively uniform convergence
(see Defn. (1.7)). Our next definition is designed for

this purpose.
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Definition 2.7. Let L be a Riesz space. An

element f € L+ will be said to be relatively uniform

on its components, if for every sequence of components

{fm} of f with fm/'f there exists a u € LY
and a sequence of real numbers {xm] satisfying Xm\, 0

such that |f - fml < Xmu for each m=1,2,...,.

Theorem 2.5. Let L be a Riesz space, and
assume that the element O < e € L has property E.T.*.
Assume in addition that e 1is relatively uniform on its
components. Then, if x WO in L and x < e for

n=1,2,..., we have x, - O (r.u.).

*
Proof. Since e has property E.T. , there
exists a sequence of components {em} of e with
e,/ e such that, for each m, e AXx = O (e - r.u.)

(i.e. there exist sequences of real numbers {lmn}

such that A\ ‘u 0O form=1,2,..., and
mn n

Since e 1is relatively uniform on its components,
there exist a u € Lt and a sequence of real numbers
[X$} with Ao Yy O such that, for each m,
e-e < Ayu. Hence, we have x < x Ae + (e-em)
SAgp® *Am <+ Ap) (u ve). Now, [an] is just
a double sequence of real numbers and the real numbers

have the diagonalization property hence there exists
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a diagonal sequence (X such that 2\ -0

m,n(m)] m, n (m)

which implies there exists a sequence of real numbers

[l;] such that 2\ <Ay \,O. Cconsider, now,

m,n(m) =

the subsequence [xn(m)] c {xn]. We have

Xn(m) < (Xm,n(m) +Ap)(wve) <+ )(uve)

and (X% + xm)\& O. Hence, -0 ((uvVve) - r.u.).

xn(m)
But since the original sequence {xn] was monotone

this implies that x =0 (r.u.). The theorem is proved.

Definition 2.8. The Riesz space L 1is said

to be relatively uniform on components if every x € L+

is relatively uniform on its components.

Corollary 2.5. Let L be an Archimidean Riesz
space, and assume that L has property E.T.*. Then
the following are equivalent:

1) Order convergence and relatively uniform

convergence are equivalent in L for

sequences.

2) L 1is relatively uniform on components.

3) Given any u € ¥ and sequence of

components (um] of u with um/ﬂ u,

there exists a subsequence {u_} c {um]

such that the sequence k(u-u_ ) is order

bounded in L (i.e. there exists an

element e ¢ L* such that e > k(u-u_ )

M

for all k=1'2'ooo')o
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4) Given any u € Lt and sequence of
components [um] of u with lﬂn/”'J' there

exists a subsequence f{u_} c {um] such

that the sequence [k (u -u_ )} is
Mx+1 M

bounded in L.

Proof. The implications (1) = (2) = (3) = (4)

are all trivial. That (2) = (1) is an easy consequence

of theorem (2.5). Hence, all we need to show is that
(4) = (3) = (2). We show first that (3) = (2).
+ . _
Let u AMu €L’ with u A (u=-u) =0,

then by (3) we have a subsequence f{u_ } c fum} such

that for some e ¢ LY we have k(u - u { e for

)
My
e which

Xl

all k=1,2,...,. Then, u - u <
M
implies that u - u (r.u.). But since the sequence
[um} was monotone this implies that u_ - u (r.u.).
We have established that (3) = (2).
We now show that (4) = (3). To this end, let
uw ¢ LY and suppose u /’ u with u_ A (u-u) =0
m m m
+

for m=1,2,...,. By (4), there exist an e € L and

a subsequence f(u_} < {um] such that

k (u -u ) <<e for k=1,2,...,. We note that
e +1 M p

u-u_ = sup{ (u -u J):p=1,2,...,) = sup(Z (u -
My M™e+p ™ i=1 Mk+i

p=1,2,...,} = 2 ). We note that

(u u
i=1 M™k+i Mesi-1

u
Myeri-1

)
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(k+1) (u - u
Meri Mkti-1

p
Hence, 2 k(u -

u
izl ™k+i Mk+i-1

p
Therefore, k sup{ 2 (u - u
i=1 Mk+i Mk+i-1

We have shown that (4) = (3). The theorem is proved.

) Se for p=1'2'ooo'o

i b0

i

) <e for p=1,2,400,.

)} = k(u-u_ ) < e.
m) <

Remark 2.8. As mentioned before, any Riesz
space L with the property that Pp(L) is super order
dense in Ap(L) and the Egoroff property, has property
E.T.*. Hence, for all such spaces corollary (2.5) is

valid.

For sequence spaces we have the following

corollary:

Corollary 2.6. For every sequence space L, the
following are equivalent:

(1) Order convergence and relatively uniform

convergence are equivalent in L for sequences.

(2) L 1is relatively uniform on components.

(3) Given any element x = {xi] e LY there

exists a sequence of positive real numbers

{Xi] with A./ «» and an element y = [yi} €L

1
such that xixi <Yy for each i =1,2,...,.
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Proof. The equivalence of (1) and (2) follows
directly from corollary (2.5). We show now that

(2) = (3). Let x = [x.} € Lt and define the sequences

1
= (S0 i 1l _ i n _
Y, = (yi] in L by y; = 0 for all i, y; = X,
for 1 {i<n and n > 2, and y? = 0 for

i >n+4l and n > 2. Clearly yn/ﬂ x and for each

n, y is a component of x. Since L 1is relatively

n

uniform on components, we have a sequence {zi} =2z €L
and a sequence of real numbers {xn] with An\, 0
such that x - Y, £ 2,2 for all n. But this clearly
implies that X4 < lizi and hence taking Bi = 1/xi

we have Bi/ﬂ o and Bixi < z;. We have established

that (2) = (3).

We will now show that (3) = (2). Let
X = [xi] ¢ LY and suppose that (y i n = 1,2, .0.,)
is a sequence of components of x such that yn/f X.

We consider the sequence z, = [z?] where for each Kk,

z? = X, for 1 ¢ i< k and zt = 0 for i > k+l.

Clearly there is some subsequence {yn } < (yn] such
k

that Yn > z, for k =1,2,...,. Also, we have
k

that zk/'x and each z, is a component of x in L.
So, if we can show that z, =X (r.u.), we will have that
Yo X (r.u.) and since {yn} is a monotone sequence,

k
this will establish that y, =X (r.u.). Applying
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condition (3), let {Xi] be a sequence of positive
real numbers with Xi/’ ©» and u = [ui] € L be such
that, for each i, Xixi < u, . Since xi is monotone

directed up, we have that Xk(x - zk) < u for all

k=1,2,...,. But then z, — X (u - r.u.), since

l/lk‘N 0 and x -z, < l/xku. The proof is complete.

Remark 2.9. For a sequence space L, corollary
(2.6) reduces the question of whether or not order
convergence is equivalent to relatively uniform convergence
in L for sequences to the question of whether or not
fixed elements in the positive cone of L satisfy

condition (3) of corollary (2.6).

Section 3. The Egoroff Property and Universally

Complete Spaces.

For a certain class of Riesz spaces many of the
properties considered in the last two sections are
equivalent. 1In this section we will discuss briefly

this class of spaces.

Definition 3.1. A Dedekind complete Riesz space

L is said to be universally complete (or of extended type)

if given any collection {xa; a € A} of elements of L+

satisfying x A X = O whenever «a € A and

a a,
oy # a, (that is, the collection is disjoint) we have

1'%

that sup[xa] exists in L.
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Definition 3.2. Let L be an Archimidean Riesz

space. A Riesz space L 1is said to be a universal

completion of L if L is embeddable in L as an

order dense Riesz subspace of L and L 1is universally

complete.

Remark 3.1. Nakano has shown in [(22), § 34 ]
that a Riesz space L has a universal completion if and
only if L 1is Archimedean. He has also shown that
universal completions of an Archimedean Riesz space
are unique up to lattice isomorphism. Hence, it makes
sense to say "the universal completion of L". More-
over, if L denotes the universal completion of L
and ﬁ denotes the Dedekind completion of L, then L

A
is the universal completion of L, and given any

x € LY there exists a disjoint collection

A
{xa: a € A} < LT such that x = sup{xa: a € Aj.

From now on, for an Archimedean Riesz space L,
we will denote by L and ﬁ the universal completion of
L and the Dedekind completion of L, respectively.
Furthermore, no distinction will be made between L and

A
its isomorphic image in L and L.
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Theorem 3.1. Let L be a universally complete
Riesz space with the Egoroff property. Then, in L,
order convergence and relatively uniform convergence,

for sequences, are equivalent.

Proof. Since L 1is Dedekind complete, it has
the projection property and hence the principal projection
property. By remark (2.8), therefore, L has property
E.T.*. Thus, we need only show that condition (4) of
corollary (2.5) is satisfied. To this end, let u € Lt
and {um} be a sequence of components of u with

‘ﬁn’r u. But then the collection {m(um - um)] is a

+1
disjoint collection of elements in Lt and by definition
sup[m(um+1 - um)] = e exists in L. The theorem is

proved.

Corollary 3.1. Let L be a universally complete
order separable Riesz space. Then the following are
equivalent:

(1) L has the Egoroff property.

(2) Order convergence and relatively uniform

convergence are equivalent in L for sequences.

(3) Order convergence is stable in L.

(4) L 1is regular.

(5) L 1is diagonalizable.
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Proof. That (1) = (2) follows from theorem (3.1)
above. For the implication (2) = (3), see remark (1.2).
For (3) = (4) we refer the reader to [(27), Thm. VI,6.1
p. 167]. For (4) = (5), see corollary (1.3). The

implication (5) = (1) is obvious. The assertion is proved.

One of the most important and useful results
in the theory of vector lattices is the representation
of an arbitrary Archimedean Riesz space as an order
dense Riesz subspace of the space of extended real
valued continuous functions on some compact Hausdorff
space. In fact, it is well known that every universally
complete Riesz space is lattice isomorphic to Cm(Q)
where Q is some extremal compactum and C_(Q) denotes
the set of extended real valued functions defined on
Q which are finite valued and continuous on some open
dense subset of Q (an extremal compactum is a compact
Hausdorff space with the property that every open subset
has open closure). Furthermore, every C_(Q), where
Q 1is an extremal compactum, is a universally complete
Riesz space. For details we refer the reader to

((27), Chapt's 5 and 6].

It is to be expected, therefore, that many
order properties of Archimedean, and especially universally

complete, Riesz spaces have equivalent topological
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formulations. It is a result in this direction, due
to Z2.T. Dikanova [(2) ], which we are now able to

strengthen with the help of theorem (3.1).
We will first state the result in [(3)].

Theorem C. Let Q be an extremal compactum,
and let Cm(Q) be order separable. Then the following
are equivalent:

(1) oOrder convergence is stable in C_(Q).

(2) For every collection {Fn};, of

nowhere dense closed subsets of Q there

exists a closed nowhere dense G6 set

[--]
g cQ such that @ o U F -
1

We strengthen the result as follows:

Corollary 3.2. Let Q be an extremal compactum
and let Cm(Q) be order separable. Then the following
are equivalent:

(1) c(Q) has the Egoroff property

(where C(Q) 1is the space of continuous real

valued functions).

(2) c_(Q) has the Egoroff property.

(3) Order convergence is stable in C_(Q).

(4) c_(Q) has the diagonalization propertv.
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(5) For every collection [Fn]; of nowhere
dense closed subsets of Q there exists a
closed nowhere dense Gy set g ©Q such

@®
that ¢ 2 UF_.
1 n

Proof. All we need to show is that (1) = (2)
since (2) = (1) is obvious and the remainder of the
implications are handled by application of corollary (3.1).
To see that (1) = (2) we need only note that
Pp(Cm(Q)) e PP(C(Q)). The result now follows by application

of corollary (2.3).

Section 4. Order Separability, Sub-Order Separa-

bility, and the Egoroff Theorem.

In this section we will do four things. First we
will investigate the connection between order separability
and the existence in a Riesz space of a positive order
basis (see Definition (4.1) below) with certain properties.
Second, we will extend slightly the results of section (3).
Third, we will obtain an Egoroff type theorem for arbitrary
Archimedean order separable Riesz spaces, which does not
depend on a projection property. Finally, we will inves-
tigate property E.T.* (see Definition (2.5)) together with

a related property which we will define below. As a result of
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these investigations we will obtain the somewhat
surprising result that if an order separable Archimedean
Riesz space has the property that order convergence

and relatively uniform convergence are equivalent for

sequences then the space has the Egoroff property.

Definition 4.1. A positive order basis for a

Riesz space L 1is a collection of positive elements
[ea: a € A} c L with the property that if x 1is any
element of L then |[x| Ae =0 for all a if and

only if x = O.

Remark 4.1. By a straight forward application
of Zorn's lemma, it is easy to show that every Riesz
space has a positive order basis. In fact, one can show
that the basis can be chosen to consist of disjoint
positive elements (i.e. if {ea; a € A} 1is the basis

then e, A e, = 0 whenever o,8 € A and a # B).

B

Luxemburg has shown in [(14) Thm. 6(v) p. 491]
that for Archimedean Riesz spaces order separability is

equivalent to the following property:

K. For every disjoint system {fG] in L,
and every g € L we have inf{|g|,|£f |} # 0O
for at most countably many oO.

We will refer to this property as property K.
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Using property K both as motivation and as
a proof mechanism, we make the following definition and

obtain our first theorem in this section.

Definition 4.2. Let L be an Archimedean Riesz
space. An element O < e € L will be said to be of
countable type if any disjoint system (O < ea} cL

with e, < e for all a, is at most countable.

Theorem 4.1. An Archimedean Riesz space L is
order separable if and only if it has a positive disjoint
order basis {ea; a € A}, consisting of elements of
countable type, such that if £ € L then |[f]| A e, #0

for at most countably many indices a.

Proof. Suppose L has such a basis {ea}, and
let {fo} be any disjoint family in L and let g be
any element of L. We have by assumption that
lg] A e, # O for at most countably many o, say {“i]f=1'
Since each e, is of countable type, we have that
for each ay for i =1,2,..., the number of ¢ such
(o555,
Now, suppose O # cij for any i,j =1,2,...,. Consider

that |£_ | A e, # 0 is at most countable, say
i

Igl A Ifcl. We have that |g| A lfol < |9' and

lal A |£5]1 < |£5]. so, for each o we have that, if

a#a; for i=1,2,..., then e A Ual A 1€, < gl A e,

o,
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and if a = ay for some 1 =1,2,..., then

e, A (ol A 1£51) < [£5] A e, = O. Thus we have that,
for any a, (|g| A |f0|) A e, = 0. since {ea} is a
basis for L, it follows that |[g| A |f | = O when-

ever O # cij for any i,j =1,2,...,. Since the

collection U[oij};_l is countable we have property K.
: =

The converse follows once we recall that every
Riesz space has an order basis consisting of disjoint
positive elements. Let this basis by [ea}. That each
e, is of countable type follows directly from property
K. So does the fact that if £ € L then |[f| A e, #0

for at most countably many a. The theorem is proved.

We are motivated by theorem (4.1) and other
considerations (which will become apparant shortly) to

make the following definition:

Definition 4.3. Let L Dbe an Archimedean Riesz

space. L 1is said to be sub-order separable if it

contains an order dense ideal L' which is order

separable.

Theorem 4.2. Let L be an Archimedean Riesz
space. L 1is sub-order separable if and only if L has

a disjoint positive order basis {ea; a € A} consisting

of elements of countable type.
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Proof. That such a basis exists if the space is
sub-order separable follows easily, since a basis of
disjoint positive elements for the order dense order
separable ideal L' <€ L will suffice.

Now, suppose we have a basis of disjoint positive
elements [ea7 a € A} such that each e, is of countable
type. Then, consider the following collection of
elements:

L' = (f €L: |[£] A e, # O for at most countably many al.
That L' 1is an ideal in L 1is a matter of routine
verification. That L' 1is order separable follows
immediately from theorem (4.1). Now, if f € L we have
|£] A e, #0, for all o unless £ = 0. So, let

f # 0O be an element of L. Then, for some a = a. ., we have

(0]
that 0 # |f] A e . But, then, |f|] Ae €L' and 0 <
ao ao
[£] A e, < |£]. since L 1is Archimedean, the order
(0]

density of L' in L follows by application of

[(18) Note IX Thm's. 29.5 and 29.10]. The theorem is proved.

A non-sub-order separable Riesz space will of
course be a Riesz space which does not contain an order

dense order separable ideal.

corollary 4.1. If an Archimedean Riesz space L

has the property that every non-trivial ideal in L
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contains a non-trivial sub-order separable ideal, then

L. is sub-order seperable.

Proof. We note first that if every non-trivial
ideal in L contains a non-trivial sub-order separable
ideal, then every non-trivial ideal in L contains a
non-trivial order separable ideal. Now, let O < e €L
and let the ideal in L generated by e be denoted
by I(e) (i.e. I(e) = (f € L: for some n =1,2,...,
we have |f| <{ne}). I(e) contains a non-trivial
order dense ideal, say I'. Since for any O < f € I'
we have e A £ > O, and since every positive element
of I' 1is of countable type, we see now that for every
element O < e € L, there exists an element O < f €L
such that f { e and f 1is of countable type. A
straight forward Zorn's lemma argument shows that L
has a disjoint positive order basis consisting of
elements of countable type. By theorem (4.2) above
this implies that L 1is sub-order separable. The

theorem is proved.

Remark 4.2. It is obvious from the above corollary
(4.1), that a non-sub-order separable Archimedean Riesz
space must contain an ideal such that every non-trivial

ideal in this ideal is non-sub-order separable.
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Perhaps the best description of the situation

is given in this next theorem.

Theorem 4.3. Let L Dbe an Archimedean Riesz

and L in L with

space. Then there exist bands Ll 5

L, = L; and satisfying:
(1) L1 is sub-order separable.
(2) L2 has the property that no ideal

(0} # 1 € L is order separable.

2

Proof. We will say that an element f € L has
property NS, if f satisfies the following conditions:

a) £ # o.

b) For all 0 < g < |£|, there exists a

disjoint uncountable collection {go] with

0<g,< 9 for all o.

We let L, = (f € L: f has property NS} U [0}. We wish

2
to show that L2 is a band in L. Clearly, if
g € [-f,f] and £ € L2 then by construction g € L2.
Also, if a 1is a real number and f € L2 then af € L2.

since |f vg|, |£ Ag|, and |f + g| are all less
than or equal to |[f| + |g| we need only show that if

£,9 € L, then [£] + |g| € L,» in order to see that

L, is an ideal. To this end, let 0 < g' < |£] + |g].

Then, g' A |f] # 0, or g' A |g| # O, or both. Assume
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g" =g' A |f] #0. Then, 0 < g" < |f| and there exists
an uncountable disjoint collection {gg} such that
oK< gg < g" for all o. But, then, o < gg <g' for

all o. Hence, |f| + |g| €L We have established that

5

L2 is an ideal. To show that L2 is a band, it remains

+
2

L, then f € L2. Let g € L and suppose that O < g { f.

We must have that, for some =11 = To’ 0< g A fT =qg'.
(o]

But, then, since f €L and g' < £ , we can find
o 2 =~ T

a disjoint uncountable collection [gé} such that

to show that if [fT} c L. and sup{fT} = f exists in

0 < gé £ g' £<g. Hence, f has property NS and f € L,.

We have established that L2 is a band.

It is clear that no non-zero positive element of

L2 is of countable type. It follows easily, therefore,

from theorem (4.1) that no non-trivial ideal in L2 is

order separable.

Let L, = L;. Given any f € L, with [£f]| > o0,

there exists a g € L with 0 < g < |f| such that if
{gO} is any disjoint collection of elements of L such

that 0 < g, <g for all o, then the collection [gc}

is at most countable. If not we would have that f € L2

and therefore certainly not in L1 = L. This merely

5¢
says that if £ € Ll' then there exists a g € L

1 such



64

that 0 < g < |f|] and g is of countable type. By a
straight forward application of Zorn's lemma, we see

that L has a positive disjoint order basis consisting

1
of elements of countable type. By application of

theorem (4.2), it follows that L is sub-order separable.

1

That L is a band follows immediately from its definition.

1

The theorem is proved.

Remark 4.3. It follows from the fact that L
is Archimedean and from [ (18) Note IX Thm's. 29.5 and 29.10]

that the ideals L and L discussed in the above

1 2’
theorem, have the property that L1 @ L2 is order dense
in L. PFurthermore, if L has the projection property,
in particular if L 1is Dedekind complete, then

L, L, = L.

1 2

There are examples, as we will have occasion to
see later, of non-sub-order separable Riesz spaces in the
literature. They have not occurred as a result of
considerations of the type we have been indulging in
and they are in general rather complicated. We give now
an example which is on the one hand easily constructed
and on the other exhibits some properties we will need

to consider in the next chapter.
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Example 4.1. For i =1,2,..., let X.l be
the set of real numbers r ¢ [0,1], and place on each
X, the discrete topology.

Let Y = II;_.X,.
i=1"1i
is a locally compact Hausdorff space and is totally

with the product topology. Y

disconnected (i.e. has a basis of closed open sets).

Let L = C(Y) Dbe the Riesz space of all continuous
bounded functions from Y into the reals with the
pointwise ordering. L 1is an Archimedean Riesz space
and we will now show that it is a non-sub-order separable
Riesz space. To see this it will suffice to show that
L has no non-zero positive elements of countable type.
To this end, let O < f € L. Then, f > a > O on some
open set U <Y and hence on some basic closed open
set V = Vi X Vi XeooX Vi x'H. X. < U, where

1 2 n 1#1j
j=1,2,...,n.

Let f(y. } be a collection of reals such that

1
J
' s vy for j =1,2,...,n. Then
J J
B={y; J] xly; ] xeeux (y; } x I X, ¢V, and is
1 2 n 1;41j
closed and open.
Choose an i4 =1 so that i+ # 1j for any
j=1,2,...,n. For each real number v+l € Xi ’
n+l
consider the sets G, = {y; bxoooxlyy ) x fvn+1} x 1T X,

n+l 1 n i;«!ij
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where j =1,2,...,n,n+l. Each GV is closed and
n+l

open, and if v' # v" then G, ne._, = d.
n+l n+l LAY Vh+l

Consider now the functions X g where
v
n+l

XG denotes the characteristic function of G

vn+1 n+1

and v is allowed to range over all reals in X, .

n+l n+l

Each aXg >0 and if v6+1 # A then
v

n+1l

}

n+l

axg A aXg = 0. Hence, the collection {aX

"
vn+1 Vn+l

G
v

is an uncountable disjoint collection of strictly

positive elements of L and since GV c B for each
n+l

v € X, we have f > AXg 2 AXg for all
v

n+l i
n+l n+l

€ X, . This shows that L has no non-zero
n+l
positive elements of countable type and therefore is

Vn+1

non-sub-order separable.

Remark 4.4. The reader should note that this

example has the property that every point y € Y is a

Gy set. Indeed, let vy = (yl,yz,...,yn,...) then
if we take G. = X XoooX Jox T X, we
. vy} x (y,) {yj} L%
have that N G, = (y}.
j=1

Since for Archimedean Riesz spaces it is true
A
that L is order separable if and only if L is order

separable, we have easily that L 1is sub-order separable
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if and only if ﬁ is sub-order separable. Indeed, if
I c L is an order separable order dense ideal in L
then 9 is also an order separable order dense ideal
in ﬁ. Furthermore, since any ideal which is order
dense in ﬁ is also order dense in the universal
completion L of L we have that, for Archimedean Riesz
spaces, L 1is sub-order separable if and only if £

is sub-order separable. It is not true, however, that
if L is order separable then i is order separable.
For the purpose of extending the results of section (3),
we can remedy this situation by the introduction of an

intermediate space. Before we can do this properly, a

few preliminaries are necessary.

Let L be a universally complete sub-order
separable Riesz space. By theorem (4.2), L must have
a disjoint positive order basis consisting of elements
of countable type. To any such basis {ea: a € A}
we associate the following ideal:

{ea]L(o) = (f € L:|f| A e, # O for at most countably
many a € A}.
Clearly, by theorem (4.1), any such [ea]L(o) is order

separable.
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Lemma 4.1. Let L be a universally complete
sub-order separable Riesz space. Let [ea: a € A}
and [fB: B € B} be any two positive order basis

for L consisting of elements of countable type. Then,

[ea]“"’ = {fB}L(O).

Proof. Let g € {e JL(0). Then lg]| A e, # 0

© o
}i=1' Consider

now [f6 A e, }, we must have that for each i =1,2,...,
i

for at most countably many a, say {ai

f. Ae # O for at most countably many B, otherwise

B ay

we would contradict that ea is an element of countable
i
type. For each i, denote the set of all B8 for

. @
which f£3 A eai # O by [Bij}j=1'

Now, if B # Bij for any i,j =1,2,..., we
have that (Igl A fB) A ea = 0 for every a € A which

implies that |g| A fB = 0. Hence, the set of all §§

o]
-]

such that [g[ A fB # O 1is contained in U {Bij}j=l'

i=1
which is a countable set. This implies that

g € {fO]L(O) and establishes that

(e Ju(0) ¢ {fB]L(O).
The proof that {fB}L(U) c [ea]L(c) is exactly
the same with the roles of fB and ea reversed.

The lemma is proved.
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The above lemma establishes that the formation
of the ideals {ea}L(G) is independent of the countable

type basis chosen.

Let L be a universally complete sub-order
separable Riesz space. By L(0) we will mean the
unique ideal in L associated with any disjoint
positive order basis for L consisting of elements of

countable type.

Lemma 4.2. Let L be a universally complete
sub-order separable Riesz space. Let L' Dbe any
order dense order separable ideal contained in L.

Then, L' c L(0).

Proof. By theorem (4.1), we have that L' has
an order basis consisting of disjoint positive elements
of countable type, say {ea: a € A}, such that if
f L' then |f]| A e, # O for at most countably many
a. Since L' 1is order dense in L we have that
{ea: a € A} 1is a basis for L. But, then L(0) = (ea}L(o)

and it is now clear that L' < L(0).

Ccorollary 4.2. Let L be a universally complete
sub-order separable Riesz space. Then, L(0) is the

largest order separable ideal contained in L.
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The relation of L(0) to an order dense
order separable ideal L' ¢ L is made clearer by

the following lemma.

Lemma 4.3. Let L be a universally complete
sub-order separable Riesz space, and let L1 be an
order dense order separable ideal in L. For an ideal
L in L, the following are equivalent:

2

(1) L L(0).

2
(2) L, (f € L: for any disjoint collection of

]

elements in L), say [fB], we have

€] A lfBl # O for at most countably many PBJ}.
(3) L2 is order separable and given any
disjoint countable collection

[fi; i=1,2,...,} ¢ LI we have

sup[fi; i=1,2,...,) € L,.

Proof. Since Ly is order separable, it has
a basis of positive disjoint elements of countable type.
We choose and fix one such basis [ea: a € A}. We know
that {ea}L(o) = L(0). Now, we will say an element
f € L has property KLl if for any disjoint collection
of elements in L, [fB] we have |£f| A lfB| # 0 for
at most countably many . It is clear that to show
(1) & (2) we must show that f has property KL, if
and only if |£f]| A e, # O for at most countably many a.

We clearly have that £f has property KL1 implies
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[£] A ey # 0 for at most countably many a. Suppose
now that £ €L and [f| A e # O for at most

countably many a, say (a.l}:

i)i=1+ Now, if {fﬁ} is

any disjoint collection in L, we have that, for each

i, 'f5| A e, # 0 for at most countably many B, say
i

[Bij};=l‘ Proceeding exactly as before, we see that

if B # Bj; for any i,j, then |f]| A £y = O. Hence,
f has property KLl and we have established (1) o (2).
We show now that (1) ® (3). We need only
show that if {fi: i=1,2,...,} ¢ LI is a disjoint
collection, then sup{fi} = f € L(0) (the sup(fi] exists
since L 1is universally complete). Since fi € Ly
for each i, we have £, A e, # O for at most
countably many a, say [aij};=1' Suppose a # a; 5
for any i,j, then £ A e, # O implies that for
some f., we have £, A e, # 0 and this is a contradiction.
Hence, f Ae =0 for all a # a; 5 for some 1i,7j,
and therefore f € L(0). We have established that
(1) = (3).
It only remains to show that (3) = (1). We
must show that if £ € L(0)+, then f = sup[fi; i=1,2,...,]}
for some countable disjoint collection of positive
elements in L,- Since f is also in L and L = El'

we must have that £ = sup[fB: B € B} for some

disjoint collection of strictly positive elements in
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L, (see remark (3.1)). Now, if [fa} is not a
countable collection then {a : e, A fB # O for all B}

is uncountable and hence {a : f A e, # 0} is

uncountable. Hence, f £ L(0), which is a contradiction.

The lemma is proved.

Remark 4.5. Suppose that L1 and L2 are sub-
order separable universally complete Riesz spaces.
Suppose in addition that there exists a lattice iso-
morphism ¢ from L, onto L, (see P.13). Then,
it is easy to see that @ restricted to Ll(c) takes
Ll(c) onto LZ(O)' Indeed, if Ll(o) = {ea}Ll(o)
then {@(ea)} is an order basis for L, consisting
of disjoint positive elements of countable type, and
it is trivial to show that if f € [ea}Ll(o) then
o(f) € fm(ea)}Lz(c) = Lz(o). Therefore,

m(Ll(o)) c Lz(o). The same argument applied to m-l
shows that w_l(Lz(o))_g Ll(c) and hence that

L2(0) c cp(Ll(G)). Thus, o(L;(0)) = L2(0). This
establishes that Ll(O) and L2(0) are lattice

isomorphic.
We can now make the following definition:

Definition 4.4. Let L Dbe an Archimedean order

separable Riesz space. By the O-universal completion of
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I, we will mean L(g) where L 1is the universal

completion of L.

Remark 4.6. By lemma (4.2), and the fact that L
order separable implies that ﬁ is order separable, we
have that L € ﬁ‘g L(0). L is clearly order dense in
I. and hence in E(G). In fact, it follows from lemma
(4.3) (3) that £ is super order dense in E(c) and
hence L itself is super order dense in E(o). It
also follows from lemma (4.3)(3) that if (£}, € L(o)"

and fil A fi2 = O whenever i, # i, then

sup{fi] = f exists in E(o). From remark (4.5) it
follows that L(0) is uniquely determined up to lattice

isomorphism since L 1is uniquely determined up to

lattice isomorphism.

It turns out that thr properties discussed in

remark (4.6) actually characterize E(o).

Theorem 4.4. Let L be an Archimedean order
separable Riesz space. Suppose that L' 1is any Riesz
space satisfying the following conditions:

(1) L' 1is Dedekind complete.

(2) L 1is a super order dense Riesz subspace

of L'.
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(3) If [fi; i=1,2,...,} 1is any countable
disjoint collection of elements in (L')+,
then sup[fi} exists in L'.

-7

Then, L' (o).

Proof. Since L' contains L as an order
dense Riesz subspace, it follows that the universal
completion of L' 1is the universal completion of L.
In addition, L' being Dedekind complete implies that
L' is an ideal in L' = L. The super order density of
L in L' implies that L' 1is order separable. It
now follows from condition (3), by virtue of lemma

(4.3) (3), that L' = L(0). The theorem is proved.

Definition 4.5. Let L be a Riesz space. L
will be said to be a o-universally complete space if it
satisfies the following conditions:

(1) L 1is order separable and Dedekind complete.

(2) If [fi; i=1,2,...,)] 1is any countable

disjoint collection of positive elements in

L, then sup[fi] exists in L.

From the above discussion it follows that every
Archimedean order separable Riesz space has a O-universal

completion which is unique up to lattice isomorphism.
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We need one more result before we can extend
the results of section (3). It is contained in our

next lemma.

Lemma 4.4. If L 1is a O-universally complete
Riesz space with an order unit, then L 1is universally

complete.

Proof. Let e be the order unit for L. To
show that L 1is universally complete we must show that
every disjoint collection of positive elements in L
has a supremum. To this end, let {fB; B € B}] be a
disjoint collection of strictly positive elements in L.
The result will follow if we can show that the collection
[fB] is at most countable. But, since L is order
separable, we must have that e 1is an element of

countable type. Therefore, (3 : £, A e ¥ 0} 1is at

B
most countable since the f[s are disjoint. But,
since frj » 0 for all 3 and e 1is a unit for L,
we have (p : £, A e # 0} = B. Therefore, the

(
p

collection {f,} 1is at most countable and the lemma

is proved.

We now suppose that order convergence is stable
in the o-universally complete Riesz space L (see Defin-

ition (1.2)). Let [xn; n=1,2,...,}] be any countable
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collection in LY and consider L, = {xn}ll-in-L. We
claim that Ly is universally complete. To see this
we need only show that it has an order unit. To this
end, let {ea; a € A} be a positive disjoint order

basis for L consisting of elements of countable type.

For each n, we have x_ A e, # O for at most

[
countably many a, say {ani}i=l'm Now,
{e : for some n, x_ Ae #O0} =U/(e }5_, which
a n a n=1 %ni i=1

is an at most countable set. Let {ea : 3 =1,2,00.,) =
{e : for some n, X A e_ # O}. Since L is o-
a n a ‘

universally complete, we have that sup(e_ } = e exists
3

Pt = B, Since L is

}..LJ.

in L. Clearly (e n

2 (x
Dedekind complete, we have that the projection PB(e)

of e onto B exists and it is clearly an order unit
for B = {xn}ll. Therefore, B is a universally
complete space.

Since order convergence is stable in L implies
that order convergence is stable in any band in L, we
have that order convergence is stable in B. But, by
corollary (3.1), this implies that B is regular, and
thus there exists a sequence of real numbers {xn > 0}
such that the set [ann} is bounded in B and hence
in L. Thus L has property P* and is itself regular.

This implies that L 1is diagonalizable and hence that

L has the Egoroff property.
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Now, suppose that the o-universally complete
Riesz space L has the Egoroff property. By remark
(2.8) it follows that L has property E.T.*. Obviously,
L 1is relatively uniform on components. Hence, by
corollary (2.5), order convergence and relatively
uniform convergence are equivalent, for sequences, in

L which implies that order convergence is stable in L.
We have established the following result:

Theorem 4.5. Let L be a O-universally complete
Riesz space, then the following are equivalent:

(1) Order convergence is stable in L.

(2) L 1is diagonalizable.

(3) L has the Egoroff property.

Lemma 4.5. Let L be an Archimedean order
separable Riesz space. Then L has the Egoroff property

if and only if E(O) has the Egoroff property.

Proof. We have already shown that, if L 1is
order separable and Archimedean, L has the Egoroff
property if and only if ﬁ has the Egoroff property.
Now, since ﬁ is a super order dense ideal in i(c)
(see remark (4.6)), we have, by virtue of Theorem B
in section (2), that ﬁ has the Egoroff property if and
only if i(o) has the Egoroff property. The assertion

is proved.
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This next result provides us with a version of
the Egoroff theorem which holds for arbitrary Archimedean

order separable Riesz spaces with the Egoroff property.

Theorem 4.6. Let L be an Archimedean order
separable Riesz space with the Egoroff property. Fix
e F L+, and suppose that xn‘& O in L. Then, there
exists a sequence (u_] c Lt with lﬂn/”e such that

- -
X, A uy 0 (e r.u.).

Proof. L has the Egoroff property implies that
A
L has the Egoroff property and hence there exists, by
A
theorem (2.1), a sequence (ﬁn/’e (in L) such that

Pe (xn) - O (e - r.u.). By remark (1.3), there exists
m

. +
a sequence um/'e with {um] cL and u_ < e

for m=1,2,...,. Clearly, u A X, < Pu (xn) < Pe (xn)
A m m

(where the projections are taken in L). Hence if

for each m, [an} is a sequence of reals with

X N 0 and such that P (x_) <2 e, we also have
mn - n e, n = "mn

<A e. This says that, for each m,

u AX_ = 0O (e - r.u.). The theorem is proved.

In this next definition we introduce a property
which is motivated by theorem (4.6). As should be
expected, since property E.T.” (see Definition (2.5)) was
motivated by theorem (2.1), this property is related to

*
property E.T. .
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Definition 4.6. We will say that an element
O { e of the Riesz space L has property E.T. if
given any sequence xn\n O with xn < e for
n=1,2,..., there exists a sequence {O < em] cL

with em,7'e such that e A X~ O (e - r.u.).

Definition 4.7. We will say that the Riesz
space L has property E.T. if every e € 1t has property

E.T. .

*
We note immediately that property E.T. implies

property E.T. .

We will now establish some more relationships
*
between properties E.T. and E.T. . We will begin with
a somewhat large collection of lemmas which will result

in a large characterization of the properties involved.

Lemma 4.6. Let L be a Riesz space. If f
and g are elements of Lt satisfying f A g = O,
*
and if both £ and g have property E.T. , then

*
f +g=f vg has property E.T. .

Proof. Suppose {xn] is a sequence in L with
xn\oo and xngf+g for n=1,2,...,. By the
decomposition property [c.f. (25) Corollary 1.4 p. 8],
we have that x = f + g where £, < f and g < g

for n=1,2,...,.
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%*

Since f and g have property E.T. , we have
sequences em/‘f and sz g such that, for each m,
e A (f - em) = O and z A (g - zm) = 0, and such
that e A fn ~n O (f - r.u.) and z A9, "n O (g - r.u.).
That is, there exist sequences of positive real numbers
“‘mn] and {amn] satisfying )‘mn\'no and amn\'no
for m=1,2,..., and such that e_ A f_ < A f and

m n = "mn
z A 9, < % 9 for m,n = 1,2, c¢.,.

Since f A g = 0, we clearly have that £f and
g are components of f + g. Therefore, by remark (2.3) (2),
we have that, for each m, e, and z, are components
of f + g. Furthermore, since for each m, e < f and
z < g, we have en ANz, =0 and therefore
e +z_=e V z_. But then by remark (2.3) (1) e + z

m m m m m m
is a component of f + g for each m. Clearly,
e + zm/'f + g. Also, by [(25) Prop. 1.2 (19) p. 6],
we have that the following chain of inequalities holds:

(em + zm) AX = (em + zm) A (fn + gn) <

e Af +z Ag <A f+a g O +a ) +9).

m

This completes the proof.

Remark 4.7. It is not difficult to see that if
an element £ > O of the Riesz space L has property
*
E.T. and if g 1is any component of f, then g has

*
property E.T. .



81

Lemma 4.7. Let L be a Riesz space. Let
f ¢ LY and assume that f = sup(fn: n=1,2,...,} where
fn/’ . £A (- fn) = 0 for each n, and each f_

*
has property E.T. . Then, £f has property E.T.*.

Proof. Suppose the sequence xmfy O 1is such
that X <f for m=1,2,...,. Now, each
fn A xa& o0 for n=1,2,..., and satisfies
fn A X < fn. Hence, since for each n, fn has property

*
E.T. , there exist components fnk of the fn such

that fnk)lk n’ and sequences of positive real numbers

{Xnkm] with xnkﬁ\.mo for n,k =1,2,..., such that
fnk A X < xnkm fn < lnkmf for n,k,m=1,2,...,.
* .
Now, take fk = sup[fik; 1 <i<<k}. Then,
Y A(E-£)=0, and £ /Ef for k = 1,2
fk/\( k - ’ a k - ’ s ® ° 0o p o

We have now the inequality
*

£, A x < sup[kikm £f: 1 < i <k} = apm £

where o, = max(i;, ;1 <i< k} for k,m=1,2,...,.
Clearly %em mO for k=1,2,..., and the proof is

complete.

Lemma 4.8. Let L be a Riesz space with the P.P.P.,
and let f,g €L with O g < f. Then, if f has

* *
property E.T. , g has property E.T. .
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Proof. Consider g )+(g) for

p = P(pg-£
p=1,2,...,. It is trivial to see that gp/ﬁ g,
9o A (g - gp) = 0, and ng(f) g_pgp < pg.

Now, let xn\N O with x, < gp for n=1,2,...,
and for fixed p. At the same time we have x < f
for all n, and hence there exist a sequence of components
{fm} of f with ﬁ“/’ f and appropriate sequences
of real numbers [an} with an\'no for m=1,2,...,
such that fm A X < xmn f. Taking zpm = fm A gp,

we see easily that =z and z A (gp -z ) = 0.

pm - m Ip’ pm pm
Taking projections on both sides of the inequality

x A f_ < f we obtain
n m = “mn

= < .
Zim A X ng(xn A fm) < Ao ng(f) <p A g

This establishes that, for each p, the element
*
gp has property E.T. , and hence by application of

lemma (4.7) the proof is completed.

Lemma 4.9. Let L be a Riesz space with the
P.P.P. . Let f € L+, and suppose there exists a
+
sequence [un} c L' such that un/' f and each
*
u satisfies property E.T. , where n =1,2,...,.

*
Then, f has property E.T. .
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Proof. Let f =P (f), then f ,’ f and
—_— n u, n

f A (f-f) =O for n=l'2'o-o'o
n n

For each n, consider fnm = P +(fn).
(mun-fn)

where m=1,2,...,. Clearly fn fn' and

m/ m
£m A (£, - fnm) =0 for m=1,2,...,.

We also have that fnm < mu_ and hence by
lemma (4.8) each fnm has property E.T.*.

Applying lemma (4.7) twice then completes the

proof.

Lemma 4.10. Let L be a Riesz space with the

P.P.P. . Suppose the elements f,g € LY have property

* *
E.T. . Then f + g has property E.T. .

Proof. Let 2z = Pf(g). Then f + g = (z+f) + (g-z).
Now, Pf(z+f) =2z + £ = sgp(nf A (z+f)) and hence by
application of lemmas (4.8) and (4.9) z + £ has
property E.T.”. Since O <g-2z<g, by lemma (4.8),
g - z has property E.T.*. We also have, though, that
(g-z) A (z+f) = O and by application of lemma (4.6)

the proof is completed.

All of these results combine to give this next

theorem.
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Theorem 4.7. Let L Dbe a Riesz space with the
P.P.P. . Then the set of all f € L such that |f]

*
has property E.T. 1is a 0-closed ideal in L.

Proof. Let I = (f € L: |f| has property E.T.*].
1f f,g € I, by lemma (4.10), we have that |f| + |g]
is an element of I and by lemma (4.8) we have that
(f+g) € I. 1In fact, since |f vg| < |[f| + |g| and
|[£ Ag| < |£| + |g|, we have, by lemma (4.8), that
if f,g €I then f vg and f A g are elements of
I. It is trivial to see that if A 1is a real number
and f£ I then )f € I. We thus have that I 1is an
ideal. The fact that I 1is o0-closed follows from

lemma (4.9). The theorem is proved.

We now obtain a connection between property E.T.

*
and property E.T. .

Theorem 4.8. Let L be a Riesz space with the
P.P.P. . Then an element e € Lt has property E.T. if

*
and only if e has property E.T. .

Proof. Property E.T.* always implies property
E.T. . We prove the necessity. Suppose e € L+ has
property E.T. and let the sequence xn\ O with x e
for n=1,2,...,. By property E.T. there exist a

seqguence [em} CL+ with em/'e, and corresponding
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sequences of positive real numbers {xmn] with an\”no

for m=1,2,..., such that e_ A x, L Ay, & for

m
mn=1,2,...,. Fix m for the time being and consider
the component z of e, where z, = Pe (e). Since

m
P, (Pe (e)) = Pe (e), we have z = sup{pem Az i
m m m
. m
p=1,2,...,}. Consider vp = P(pem-zm)(zm)’ we have

m m m, _ _

Also, since vg < pe . we have that
m

X A vp < (pem) A X < p(em A xn) < P ©-

Now, take up = sup[v;; 1 <i< p}, we clearly
have that up,ﬂ e and satisfies uy, A (e - up) = 0,
for p=1,2,...,. Also,
1 2 p
up A X < (xn A vp) v (xn A vp)v...v(xn A Vp) <
< (xn A (pel)) v (xn A (pez))v...v(xn A (pep)) <

< p[)\ln Vdy, VooV xpn}e.

But p[xln VvV A VieoV xpn]\N nO and this shows that

2n

u AX_ =0 (e - r.u.). The theorem is proved.
P n n

As an immediate consequence we obtain

Corollary 4.3. Let L be a Riesz space with
the P.P.P. . Then, L has property E.T. if and only

. *
1f L has property E.T. .

Theorem 4.9. If L 1is order separable and
Archimedean, then L has property E.T. if and only if

A
L Thas property E.T." .
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Proof. The proof that ﬁ has property E.T.*
implies L has property E.T. is contained clearly
in the proof of theorem (4.6). We show, therefore,
the necessity. In view of lemma (4.8) it will suffice
to show that every element e € L+ c £+ has property
E.T.* relative to ﬁ. Since £ is Dedekind complete
and hence has the P.P.P., we see by theorem (4.8) that
it will suffice to show that every e € Lt has
property E.T. relative to ﬁ. To this end, let [Qn}

0 A . A
be a sequence in L with xn\N O, and such that
A

x <e for n = 1,2,...,. By remark (1.3), there
exists a sequence [yn] Cc L with yn\' O such that
A .
Y, > X, for n=1,2,...,. Taking X, =Y, A e
A
we have xn‘g o, x  >X., {xn} c L, and x e

for n=1,2,...,. Since L has property E.T.,
there exists a sequence [em] in LY with em/’ e
such that for appropriate sequences of positive
real numbers (A} with Mm?”no we have

A
en A X, Sy © for mn=1,2,...,. But x, <X

. . A .
implies that en N X, < e, N X, < an e, and this

A
says that e has property E.T. relative to L. The

proof is complete.

This next theorem summarizes much of what we

have accomplished in this chapter.
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Theorem 4.10. If L 1is an Archimedean order
separable Riesz space, then the following are equivalent:

(1) L has property E.T. .

(2) ﬁ has property E.T.*.

(3) E(o) has property E.T.*.

(4) Order convergence is stable in i(o).

(5) L(0) is diagonalizable.

(6) i(o) has the Egoroff property.

(7) L has the Egoroff property.

Proof. (1) «(2) was theorem (4.9).

(2) = (3) follows from the fact that ﬁ is
super order dense in E(G) combined with theorem (4.7).

(3) = (4) follows as before by application of
corollary (2.5) (4).

(4) o (5) o (6) 1is theorem (4.5).

(6) & (7) 1is lemma (4.5).

(7) = (1) follows from theorem (4.6).

The theorem is proved.

A somewhat surprising application of theorem (4.10)

is the following:

corollary 4.4. Let L be an Archimedean order
separable Riesz space. If in L order convergence and
relatively uniform convergence are equivalent for sequences,

thenm I has the Egoroff property.
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Proof. Since, in this situation, L has
the property that order convergence and relatively
uniform convergence are equivalent for sequences if
and only if ﬁ does (see Proposition (1l.1) (e)), we
may as well assume that L is Dedekind complete.

Now, let e € LT and let the sequence [xn}
in L be such that xn\g O and X, L e for
n=1,2,...,. We have, by assumption, a u € L
and a sequence of positive real numbers [xn] with

An‘g O such that x_ < A U for n=1,2,...,.

n

Since X < xnu implies that X < xn(u v e),

we may assume that u > e.

Consider now e_ = P (e), where
m +
(me-u)

m=1,2,...,. We have en A (e - em) = 0 for each m,

e ,7 e, and P_ (u) < me
m en -

m‘

Applying the projection operator Pe to
m

both sides of the inequality x, < Xnu we obtain

e AX_ =P (xn) < Xn P

n n e (w) < mxn e < mxn e.

e
m m

From this we conclude that e A X O (e - r.eu.).

*
We have established that L has property E.T. , and

the conclusion follows from theorem (4.10).



CHAPTER I1

MEASURE RIESZ SPACES

In the theory of Riesz spaces, an important

role has been played by obtaining concrete representations
of certain abstractly defined Riesz spaces. The first

example of such is Kakutani's representation of an

abstract (L)-space (Banach lattice such that

for u >0 and v > 0) as a

Ma + vl = |l + ||v]|

space L, (S,2,u) of equivalence classes of -summable
1 )

is a completely additive measure

functions where p
[see (9)].

on a O-algebra of subsets of some set S:

A more general result is the realization of

arbitrary Archimedean Riesz spaces as order dense

Riesz subspaces of Cm(Q) where Q 1is some extremal

compactum and C_(Q) is the Riesz space of all

extended real valued functions on Q which are finite

valued and continuous on some open dense subset of

Q (see Chapter I §3). One of the features of this

representation is that every order dense Riesz subspace

Of an Archimedean Riesz space determines the same

C,.(Q) up to homeomorphism of the compactum Q. Until

89
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recently, however, one unfortunate gap in the theory

was that there was no definitive means for distinguishing
between a C_(Q) which represents the equivalence
classes of all measurable finite almost every functions
on some completely additive measure space and say a

CQ(Q) which represents the universal completion of

cflo,1].

We might reason, however, that one plausible
criterion would be to demand that the Cm(Q) possess
an order dense abstract (L) Riesz subspace, say D.
By Kakutuni's result, we would have that D = Ll(S,ZLu).
But, if M(S,2,u) 1is the space of equivalence classes
of all -measurable finite almost everywhere functions,

then M(S,2,uy) 1is clearly a universal completion of

L]_(S,ZLu) = D and hence we would have that

M(S,Z, Ll) = CQ(Q) .

J.J. Masterson has recently obtained a character-
ization of spaces M(S,Z, ) (the set of equivalence
Cclasses of almost everywhere finite valued y-measurable
functions on the localizable measure space (S,2, W
with the finite subset property and with a completely
Additjive measure y) in [(20)]. One of the essential
COncepts involved in his investigation is the one

Mentijioned in the preceding paragraph. We mention this
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here, because doing so focuses attention on one

important concept, that being that the universal completion

of an Archimedean Riesz space L 1is completely

determined by any order dense Riesz subspace of L.

The purpose of this chapter is to investigate
the use of order dense Riesz subspaces of spaces of

measurable functions to represent Archimedean Riesz

spaces. In the course of the investigation a number

of questions concerning general embeddings of certain

Riesz spaces into spaces of measurable functions will
be considered.

Section 1. Basic Definitions and Results.

In this section we begin an investigation into

the use of spaces of measurable functions to represent

Archimedean Riesz spaces. Throughout the remainder of

this chapter, unless specified otherwise, we will

mean by the term "space of measurable functions", or

by the notation M(S,Z,uy), the Riesz space of all

equivalence classes of finite almost everywhere

Measurable functions on a localizable measure space

(S.Zl.u) with the finite subset property and with a

COompletely additive measure . For a complete discussion

©f such spaces we refer the reader to [(29)].
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For certain Riesz spaces, embeddings into spaces
of measurable functions exist which are sufficiently nice
so that the Riesz spaces are seen to possess the
essential properties of spaces of measurable functions.
This will be used as justification for calling this

class of Riesz spaces the "measure Riesz spaces".
p

We will then introduce a variant of the Egoroff
property and obtain some characterization theorems
for measure Riesz spaces where this property yields
significant reductions in the hypothesis of theorems we

will consider early in the discussion.

We begin with a brief discussion of some concepts

and results we will be needing in our investigations.

Let L and L be Riesz spaces. A lattice

1 2
i1somorphism : Ll -+ L2 (from Ll into L2) is said to
be continuous if for any net O < uT\y O-—in—Ll we have
1nf‘[|m(uT)|] = O-in-L, .

The real linear functional ¢ on the Riesz space

L is said to be order bounded if, for every u € L+,

the number sup {|o(f)| : |f] < u} is finite. The set

Of all order bounded linear functionals will be denoted

by 7.
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A linear functional ¢ on the Riesz space L
is said to be positive if for any O  f ¢ L we have

o(f) > O.

We say that P < ®, for @, and P, order
bounded linear functionals on the Riesz space L

whenever ®, = ¥ is positive.

It is shown in [ (18) Note VI Thm. 18.4] that L~
is a Dedekind complete Riesz space with respect to the

partial ordering just introduced.

The linear functional ¢ on the Riesz space
L 1is said to be an integral if whenever un\y O-in-L
we have inf{lm(un)l] = 0. The set of all integrals

will be denoted by Lg.

The element ¢ ¢ L~ will be called a singular

functional if inf({|e¢|,|¥|} = O for every integral

V€ L;. The set of all singular functionals will

be denoted by Lg.

It is shown in [(18) Note VI Thm. 20.3] that
both Lg and L; are bands in L~ and that
L =LC@LS.

The element ¢ ¢ L~ will be called a normal

integral if whenever [uT} is any net in L with
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uw\g O we have infllm(uT)|] = 0. The set of all
normal integrals on the Riesz space L will be denoted

by Ln'

The element ¢ € L~ will be said to be singular

with respect to the normal integrals on L if

inf{ ||, |¥|} = 0 ior every ¢ ¢ L;. The set of all

such ¢ will be denoted by L;h .

Again we have that both L; and L;A are bands

in L7 and that L™ =1L »1L"
n sn

o}.

For any ¢ € L™, we set N, = (£:£ € L, |o] (|£])
Then Nm is an ideal in L, and we call Ncp the null
ideal of . The ideal C_ = N;;in-L is called the
carrier, or support, of ¢. If ¢ 1is a normal integral
then Nm is a band and hence for normal integrals

C¢ = {0} if and only if ¢ = O.

For a complete discussion of the concepts
introduced above we refer the reader to [ (18) Notes VI,

VIII].

Now, let L be an Archimedean Riesz space. By
F we denote the family of all order dense ideals
contained in L. F 1is a filter basis. Let
n

¢ = UI_ : I €F). If @ € & we denote by Ty its

domain of definition.
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We define the following relation on §:
¢1 = F¢2 whenever (f : ¢1(f) = ¢2(f), f € L}

contains an order dense ideal. Since F is a filter
basis, it follows immediately that the relation = F
is an equivalence relation. The set of classes of
equivalent elements will be denoted by T'(L). T(L)
turns out to be a Riesz space under the partial ordering
induced by defining [@] > O if there exists a
@' € [@] such that on I¢, we have if O  f € I¢,

then ¢g'(f) > O.

The set [I¢: @ € [d]} can be partially

ordered by inclusion and can be shown to contain a

maximal element which we denote by D_. It can be further
_ ]
shown that the @ corresponding to D_ is a uniquely
g

defined element of [@]. Thus, we can now identify

'(L,) with the set of its maximal elements.

Furthermore, it can be shown that T(L) is
universally complete and that L; embeds in T (L) as

an ideal.

The space T (L) was first introduced by J.J.
Masterson in his thesis (A Generalization of the Concept
Of the Order Dual of a Vector Lattice; Purdue University
1965). For a more accessible reference, we refer the

reader to [(17)].
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Remark 1l.1. We list here a few more results
concerning T (L) which we will find of particular
interest to our discussion. These results can also
be found in [(17) ].

(1) Let L be an Archimedean Riesz space

and M c L Dbe an order dense Riesz subspace

of L, then T(M) = T'(L).

(2) Let L Dbe an Archimedean Riesz space,

then the following are equivalent:

(a) T(L) 1is separating on L.

(b) There exists an order dense ideal I € L
such that I; is separating.

(c) There exists an order dense ideal I C L
which possesses a strictly positive normal

integral.

Masterson also proved in [(20)] the following

theorem:

Theorem D. (Masterson) Let L Dbe a Riesz space.
The following conditions are necessary and sufficient
that there exist a completely additive localizable
measure ( with the finite subset property such that
L = M(S,2,u):

(1) T(L) 1is separating,

(2) L 1is universally complete.
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Remark 1.2. If we combine theorem D above with

remark (1.1) we obtain the following:

If L 1is an Archimedean Riesz space, in order
that there exist a space of measurable functions
M(S,Z,u) such that L = M(S,%, ) it is both necessary

and sufficient that T (L) is separating.

This says that L 1is lattice isomorphic to
an order dense Riesz subspace of a space of measurable

functions if and only if T(L) is separating.

Remark 1.3. 1In the above remark (1.2), we may
assume that the measure | 1is O0-finite if and only if
L has a countable disjoint basis of positive elements

of countable type (for definitions see Chapter I §4).
We will find this next result useful.

Lemma 1l.1. Let L be an Archimedean Riesz space.
Suppose that given any f € L+ we have that if f ¥ 0 then
I(f); # [0} (where I(f) = (g € L: |g| < f} i.e. is

the ideal generated by f). Then T(L) is separating.

Proof. Since ¢ € I(f); implies that m+
and @ are in I(f)_, we may assume that ¢ is

positive and hence that o(f) # O. Consider now the
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ideal B = I(f) & (I(f)i-in-L). By [(18) Note IX,
Thm. 29.10 and Thm. 29.5], we have that B is an
order dense ideal in L. If g € B, we will denote
its components in I(f) and I(f)l-in-L by 9, and
9, respectively. Define ¢, on B by taking

®5(9) = ©5(g; *+ 9,) = ¢lg;) for g € B. The verifi-
cation that ®q is a positive linear functional on

B 1is trivial. To see that Pg is a normal integral,
we note first that if [g,r =g, * ng} is any net
in B, then gT\,O if and only if ng\ O and
ng\g 0. After noting this, the normality of %5

follows trivially from the normality of (.

A
Obviously, the unique moe T'(L) determined by

A
¢, has the property that mo(f) # 0.

Now, for an arbitrary f € L, we can apply the

lemma to either fT or £, say f ; and since f

will then be in I(f+)l-in—L, the same construction we
have given above will guarantee the existence of a

@ € T'(L) such that ¢(f) # O. The assertion is proved.

It is not difficult to see that a lattice
embedding ¢ from a Riesz space L1 onto an order
dense Riesz subspace I of a Riesz space L2 must be
continuous. Therefore, by remark (l1.2), we see that if
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I'(L) 1is separating then there exists an order continuous
embedding of L into a Riesz space of measurable

functions.

It is natural to ask whether the existence of
an order continuous embedding ¢ from a Riesz space L
onto a Riesz subspace of a space of measurable functions
(not necessarily an order dense Riesz subspace) is

enough to guarantee that T(L) is separating.
The answer turns out to be affirmative.

Corollary 1.1. Let L Dbe an Archimedean Riesz
space. In order that there exist a space of measurable
functions M(S,2, y) and an order continuous embedding
w from L onto a Riesz subspace of M(S,2,u) (not
necessarily an order dense Riesz subspace), it is both

necessary and sufficient that T(L) is separating.

Proof. We need only show the necessity. Suppose
@ 1is an order continuous embedding of L into
M@, u. If f € M(S,2, u, it is trivial to show
that I(f)" # (0]. Now, let g € LY. We have that
p(I(g)) € I(p(g)) and olg) € MES, D w*. Let
O < y € [I(p(@) 1", Then y = yo o€ I(g] and
%3(9) = y(p(g)) # 0. By application of lemma (1.1),

we have that T (L) 1is separating. The assertion is proved.
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We have established the validity of this next

proposition.

Proposition 1.1, The following conditions on

an Archimedean Riesz space L are equivalent:
(1) There exists an order continuous embedding
of L 1into some space of measurable functions.
(2) There exists an embedding of L onto
an order dense Riesz subspace of a space of
measurable functions.
(3) L is a space of measurable functions.
(4) T(L) 1is separating.
(5) There exists an order dense ideal in L,
say I, such that I; is separating.
(6) There exists an order dense ideal I C L
which possesses a strictly positive normal
integral.

(7) Given any f ¢ LY, I(f); # (0} (f # 0).

Of the equivalent conditions in proposition (1.1)
above, the most descriptive is condition (2). For this

reason, we will use this condition to make a definition.

Definition 1.1. An Archimedean Riesz space L

will be said to be a measure Riesz space if it is

embeddable as an order dense Riesz subspace of some

space of measurable function M(S,2,u) where y is a
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completely additive, localizable measure with the

finite subset property.

We will find that this next lemma helps to
illucidate the role of measure Riesz spaces in the

general theory of Riesz spaces.

Lemma 1.2. Let L be an Archimedean Riesz space,

then there exist bands Ly and L2 in L satisfying

the following conditions:

L
(1) L, = L,.

(2) F(Ll) = T'(L) and F(Ll) is separating.
(o}.

(3) F(Lz)

Proof. Let @ € T (L), D¢ its domain of
definition, and N¢ its null ideal in D¢. It is
easy to see that, for each ¢ ¢ T(L), N¢ is a band
in L. Let L, = ﬂ[Ng: g erT(L)]. L, is a band in
L since each N¢ is a band. We show first that
L, = fo} if and only if T(L) 1is separating. Then

sufficiency is obvious. So, suppose that L, = {o}.
Then, given any f € 1t, there exists a g r F(L)+

such that @(f) # 0. If g(f) < » we are done. 1If
g(f) = », we are done by virtue of [(17) Thm. 2.1].
Therefore, if L, = {0}, we.have that T(L) is

separating and by taking Ll = L we see that conditions

(1), (2), and (3) hold.
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Now, suppose that L, # {0}. Consider then
L2 = L,. We have that Ll is a band by its definition.
We will show now that T(Ll) = T'(L). To this end,
consider the map ¢ - @' where ¢ € T'(L) and

1
that the mapping ¢ = @' 1is a lattice homomorphism.

g = ¢!D¢ NL,. It is clear that @' ¢ F(Ll), and

We wish to show that it is one-to-one and onto. To
show that the mapping @ - @' 1is one-to-one, we
recall first that if ¢1,¢2 [= I"(L)+ and ¢l # ¢2,

then for any order dense ideal I C D¢ N D¢ there

1 2
must exist an £ € IT such that ¢l(f) - ¢2(f) # 0.

But, if ¢l'¢2 € I‘(L)+ and ¢l # ¢2 then, since

I = D¢1 n D¢2 n (L1 ) L2) is order dense in L and

since I ¢ D¢ n D¢ , we must have an element
2

1
O f ¢ 1 such that ¢1(f) - ¢2(f) # O. But,

f = fl + f2 where fl € L1 and f2 2 L2 and hence

¢l(f) - ¢2(f) = ¢1(fl) - ¢2(fl) # 0. We have
established that the mapping ¢ - @' 1is one-to-one.
To see that the mapping ¢ - @' 1is onto, we let

g' e F(Ll) and D¢' be its domain of definition.
Consider D = D¢, @ (DL. -in-L). Each f € D has
a representation of the form f = fl + f where

2

1 . . =
£, ¢ D¢, and f2 € D¢l -in-L. We define ¢ by

a(f) = a(f1 + f2) = ¢(f1) for f € D. It is clear
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that & is a normal integral on D which is an order
dense ideal in L. It is clear that the element

¢1 € T'(L) determined by & satisfies the condition
that ¢l - @'. Hence the mapping ¢ - @' 1is onto.

We have established that T(Ll) = T'(L).
Seeing that T(Lz) = (0} 1is trivial.

The fact that T(Ll) is separating follows from

[(17) Thm. 2.1]. The proof is completed.

Remark 1.4. It follows easily from lemma (1.2)
that if L 1is an Archimedean Riesz space, then there
exist a space of measurable functions M(S,2, ) = Ly,
and a universally complete space L such that

2

L =L &L r(L;) = [(L), and TI(L) = [0}. This

1 2’
cssentially says that for any question concerning
normal integrals we may as well restrict our attention

lo spaces of meassurable functions.,

Remark 1.5. Another example of the usefulness

of this theory is the following.

Every reflexive Banach lattice is a measure

Riesz space.

To see this, we recall first the well known result

[c.f. (27) p. 228] that if L 1is a Banach lattice then
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L' = L~ (where L' 1is the topological dual of L).
Also, it follows from an equally well known result,

that L' 1is a Dedekind complete Banach lattice

(c.£f. (27) Thm. IX, 4.1 pe 255]. Since L is
reflexive, conbining these two results, we obtain

that L = L" = (L"), and that L is Dedekind complete.

If

is the norm on L, it follows from [(27)

Thm. IX, 7.2 p. 269] that whenever xn\, O in L

we have that Han - 0. From this and the fact that

L is Dedekind complete, it follows from [ (25) Prop. 2.6
p. 164] that L 1is order separable. It is now

easy to see that L' = L = L; and hence T (L) 1is
separating. We have shown that not only is L a
measure Riesz space, but that if M(S,2,u) = i, then

L is an ideal in M(S,2, ) . Thus for the study of
reflexive Banach lattices we can restrict attention

solely to Riesz spaces which are ideals in spaces of

measurable functions.

Remarks (1.4) and (l1.5) were meant merely to
give an early indication of the uses to which our
current investigations can be put. Much more general
results along similar lines will be obtained in succeeding

Sections.
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In the following we give an example of a
space of measurable functions which is continuously
embedded into another space of measurable functions
as a Riesz subspace which is not order dense. Showing
that condition (1) of proposition (1.1) is not a

vacuous consideration.

Example 1.1. Let m be the Riesz space of all
real sequences. Let L be the space of equivalence

classes of Lebesgue measurable functions on the real

half line [0O,»). Consider the set {X[i i+1]7 i=0,12,..

where X[i,i+1] denotes the characteristic function
of the interval [i,i+l] for i =0,1,2,...,. We
define the map ¢ from m into L by

@©
m({xi}) = izi XiX[i-1,1]" Then, ¢ is clearly an

order continuous embedding of m into L, but ¢(m)

is obviously not order dense.

Remark 1.6. The space C[0,1] of all continuous
real valued functions on the real interval [0,1] 1is a
Riesz subspace of the space of equivalence classes
of Lebesgue measurable functions on [0,1]. However
c(0,1] cannot be embedded on an order dense Riesz
subspace, or equivalently in an order continuous manner,
in any space of measurable functions since T(c[0,1])
is known to consist only of the zero functional [c.f. (17)

Pe 497].
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We will now begin to take advantage of some
other properties that measure Riesz spaces must possess.
We feel that one of the most logical choices for a
condition which one could hope to profit from is the
Egoroff property. A certain amount of care must be
employed however. For it is known that, if the
continuum hypothesis holds, the only spaces of measurable
functions which have the Egoroff property are those

whose measures are o-finite. [c.f. (19) Thm. 43.6].

What is true, is that every space of measurable
functions has the Egoroff property on an order dense
ideal (if M(S,2,u) 1is a space of measurable functions,
then the Ll(S,Z}LQ subspace is order dense and has the

Egoroff property).
This induces us to make the following definition:

Definition 1.2. An Archimedean Riesz space L

will be said to be sub-Egoroff if there exists an order

dense ideal I <€ L such that I has the Egoroff property.

The measure Riesz spaces satisfy the additional
condition that they are all sub-order separable. Again,
if M@,2Z, u) 1is a space of measurable functions, then

the Ll(S,ZLu) is an order dense order separable ideal
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contained in M(S,2, u). The fact that this is true
takes on added importance in view of this next example.
The example, although used by him for different

purposes, is due to J.A.R. Holbrook [(8) §2 p., 215].

1 2

Example 1.2. Let L = (£ = (£2,£5,€%,...),

where fn: Rn - R, n=20,1,2,..., and RO = (g}, R

is the reals}. It is clear that the algebraic operations

n, n n
)

(f+g)n = (f +g and (Xf)n = \f make L into

a vector space, and defining f < g if and only if

£ < g" for all n makes L into a Riesz space.

Define the operation c¢ : rR? - Rn-l by

v ¢ R" (n >1) and v = (Vl'v2""’vn) then

) .

C(V) = (Vllvz,...,vn_l

Now, let L' Dbe the vector lattice of all

f ¢ L satisfying the following two conditions:
(1) There exists a constant M(f) such that
supflfn(v)| : v € Rn} < M(f) for each n =1,2,...,.
(2) 1f E (D) = (v e B £1(v) £ £ ev)))

then En(f) is finite for each n =1,2,...,.

The following were shown in [(18) ]:
(1) If we define p on L' by

p(f) = sup{(n+l)_1(sup{|fn(v)l : v e R
n>0

then p 1is an integral norm on L' (i.e. if

fm\n O then p(f ) = 0).
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(2) L' has the Egoroff property,
(3) Given any u € (L')+ there exists a

net uT\g O with u_ < u such that p(uT) 7# O.

We make the additional observation that L'
is non-sub-order separable. For, if there were to
exist any order separable ideal I in L then p
restricted to I would be normal and this contradicts

condition (3).

Thus, we have that L' 1s an example of a
non-sub-order separable Riesz space (and hence is not

a measure Riesz space) with the Egoroff property.

Remark 1.7. If M(S,2,uy) is a space of
measurable functions, and if f F MY is an element of
countable type; then the band generated by f 1is a
space of measurable functions over a 0-finite measure
space. As such B, = (f]* -in-M has a strictly positive

linear functional defined on the order dense ideal

Bf n Ll (SIZI U.) .

Lemma 1.3. Let L be an Archimedean sub-order
separable sub-Egoroff Riesz space, and let e € L+ be an
element of countable type. Then the band generated
by e, B, = [e}L -in-L, 1is an order separable Riesz

space with the Egoroff property.
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Proof. The fact that B, is order separable
follows easily by application of theorem (4.1) of
chapter I. Let I be the order dense ideal in L
which has the Egoroff property. Then, I N Be is
super order dense in Be and is easily seen to have
the Egoroff property. Since the collection of all
elements of a Riesz space with the Egoroff property is
a O-closed ideal, we have that Be has the Egoroff

property. The assertion is proved.

The following theorem shows that if the
Archimedean Riesz space L 1is assumed to be sub-
order separable and sub-Egoroff then a significant
reduction of the properties of the dual will guarantee

that L 1is a measure Riesz space.

Theorem 1.1. Let L be a sub-order separable,
sub-Egoroff, Archimedean Riesz space. Then the following
are equivalent:

(1) L 1is a measure Riesz space.

(2) If e € Lt is any positive element of

countable type, then B_ = [e}l -in-L has

a strictly positive linear functional defined

on an order dense ideal.
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Proof. We show first that (1) = (2). To this
end, recall that if L 1is a measure Riesz space, then
; is a space of measurable functions. Since if
e € 1.¥ is of countable type then e 1is of countable
type in E, we see by remark (1.7) that (1) = (2).

We show now that (2) = (1). First, we show
that if e € Lt is of countable type then Be is a
measure Riesz space. To this end, let I be an order
dense ideal in Be which possesses a strictly positive
linear functional ¢. By application of lemma (1.3),
Be is order separable and has the Egoroff property.
Therefore, I 1is also order separable and has the
Egoroff property. Since I~ = I: D I;, we have that
® = o, t @ where P € I; and 0 € I;. We have,
by [(18) Note VI Cor. 20.7], that the null ideal

Ncp of 0 is an order dense ideal in I. This implies
S

that 0, must be strictly positive on the order dense

ideal N in I, and hence on I. The order
S

separability of I implies that g ¢ I;. By proposition

(1.1) (6), this implies that Be is a measure Riesz space.
Now, let 0 < £ ¢ L7 and let (e} bea

disjoint positive order basis for L consisting of

elements of countable type. Since {ea} is a basis

for L, there exists some a = ao such that
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O <e, A f < £f. Since also O < e, A f < e, r we
o] (0]
have that e, A £ 1is an element of countable type

o)

in L. By what we have proved, there exists an order

dense ideal I c Be such that I possesses a

Qa

AE
0]

strictly positive normal integral ¢. Hence, there

is some g ¢ I with 0 < g e, A f < £ such that
o)

q@(g) > 0. Taking D =1 & Il, and for each x ¢ D
denoting its components in I and 1t by Xy and Xy
respectively, we know that we can extend ¢ to a o'
defined on D by taking ¢'(x) = @‘(x1+x2) = w(xl)

for each x ¢ D. Furthermore, ¢' 1is a normal
integral on D. Letting ¢ denote the unique element
of T(L) defined by ¢', we have that a(f) > 0.

If o(f) ¢ », we are done. If o(f) = », we apply
[(17) Thm. 2.1] to obtain a | € T(L)+ such that

0 y(f) m, Thus, we have that T (L) 1is separating

and L 1is a measure Riesz space. The theorem is proved.

Corollary 1.2. Let L be an Archimedean Riesz
space which has a countable order basis consisting of
elements of countable type. Suppose in addition that
L has the Egoroff property. Then L is a measure
Riesz space if and only if it has an order dense ideal

possessing a strictly positive linear functional.
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As we have seen in example (1.2), for an
Archimedean Riesz space L, the Egoroff property
alone is not enough to guarantee that L 1is a
measure Riesz space. By adding the condition that L
has to be sub-order separable, we see that example
(1.2) no longer applies. As far as we know, the question
of whether an arbitrary sub-order separable Archimedean
Riesz space with the Egoroff property has to be a
measure Riesz space is still open. We discuss this
further in the last section of this chapter. For the
present, however, this next corollary shows that at
least for one reasonably large class of Riesz spaces
the Egoroff property alone is enough to place us
within the realm of measure Riesz spaces. The corollary
also seems to indicate that if a counter example exists,

it will not be easy to obtain it.

Corollary 1.3. Let L Dbe a Riesz subspace of
the space M(S,”,u) over the 0-finite measure space
(S,25, ). Then, L 1is a measure Riesz space if and

only if L has the Egoroff property.

Proof. We need only show the sufficiency. We
note first that L must be order separable, since
any disjoint positive order basis for L must consist
of at most countably many elements each of which is of
countable type; otherwise we would contradict the order

separability of M(S,2, ).
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Now, let O < f ¢ LY and consider the ideal
generated by f in M(S,2,u). We will denote this
ideal by I(f,uy). We claim that I(f,y) possesses
a strictly positive linear functional. To see this,

let Sm,z S and satisfy u(Sm) o for m=1,2,ce¢,.

Let Y = {t £s: £(t) <n} for n=12,...,. Clearly
Y S. Let 2 =Y NS and let
n m, n n m
Xrn = Zl,m U ZZ,mU°”U Zm'm.

We have that Xm/ﬂ § and X <Y n s, for m=1,2,...,.
Hence, for t ¢ X we have that f(t) { m, and

w(x ) < u(sy) .

Now, let B =X - X for m=2,..., and
m m m-1
let By = X;, then B n B, =% and u(B) < ulX) <
_ - (11, 1
u(Sm) { o for m=1,2,...,. Let I = (m) (2m) U.(Bm) XBm.

Then, since M(S,2,u) is universally complete, there

exists an element g € M(S,2,uy) such that
sup[gm; m=1,2,...,} =
m=

\ Im = 9

Define the functional ¢ on I(f,u as follows:
o(g') = [ g'gdu where g' € I(f,y).

To show that o € I(f,y)  we need only show that

@(f) < =. But,
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m
¢(f) = [ fgdy= lim [ £(Z gy )du =
1

n-—so

lin 3 [ fg. du=1lim 3 [ £ @) &) () x, du.
k=-l J k k=1 k 2k U(Bk) B

m-—a m—o k

m m

< 1, ,1 1 1
And ; f£(2) () (—F)xg A4 < 2 =

k=1 K oK Tu(By) B k=1 2K
and hence, [ £gdu< 1.

It is easy to see that ¢ 1is strictly positive

on I(f,y).

Now, consider I(f) the ideal generated by f
in L. Clearly I(f) < I(f,y) and cpo=cp|I(f) is a
strictly positive linear functional on I(f). Since
L has the Egoroff property, we certainly have that
I(f) has the Egoroff property. By the same reasoning
we used in the proof of theorem (1.1), it follows
that Poc is a strictly positive normal integral on
I(f). Thus, by application of lemma (1.1) it follows

that T(L) 1is separating. The assertion is proved.

Remark 1.8. We note now that the measure Riesz
spaces have an analogue of the Egoroff theorem at
least on an order dense ideal, namely, theorem (4.6)
of chapter I. We also wish to mention that an analogue
to the Radon Nikodym theorem exists for these spaces.

We won'tgo into this at the present time, however.
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Remark 1.9. In the proof of corollary (1.3)
we actually established that if L was a Riesz
subspace of a space of measurable functions on a
o-finite measure space, then every ideal in L
generated by an element of L possessed a strictly
positive order bounded linear functional. Applying
this to ¢[0,1], the space of real continuous functions
on the real interval [O,1], we see that if c[0,1]
were to have the Egoroff property, then it would
have to possess a strictly positive normal integral,
this by application of corollary (1.3) and the fact
that c¢[0,1] is a space generated by one element.
But, it is well known [c.f. (10) IV p. 520] that
C[O,l]; = {0}. We conclude by this admittedly
indirect method that ¢[0,1] does not have the

Egoroff property.
Section 2. Some More on Embeddings.

We showed in the preceeding section that there
exists an order continuous embedding ¢ of a Riesz
space L onto a Riesz subspace (not necessarily
order dense) of a space of measurable functions
M(S,2,) 1if and only if there exists an embedding

o' of L onto an order dense Riesz subspace of some
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space of measurable functions M'(S',2',u') (where
M(S,2,u) and M'(S',>',uy') do not have to be equal,

see example (1.1)).

A natural question to ask is whether every
Archimedean Riesz space can at least be embedded into
some space of measurable functions (not necessarily
in an order continuous manner). We have already seen
that C[0,1] can be embedded as a Riesz subspace of
the space of equivalence classes of Lebesgue measurable
functions on ([0,1],u) but cannot be embedded as an
order dense Riesz subspace of any space of measurable

functions.

In fact, it is well known that any Riesz space
with a separating order bounded dual L~ can be
embedded as a Riesz subspace of (L~); [c.f. (1O)IXI (3.7)
p. 334]. Furthermore, L forms a separating set of
normal integrals for L~ and therefore T(L7) is
separating. But also L~ 1is a separating set of
continuous linear functionals for (L~);, hence
FZ(LN) = T(T(L™)) 1is separating and so T(L) 1is a

space of measurable functions.

So, every Riesz space L with a separating
order bounded dual L~ can be embedded as a Riesz sub-

space of the space of measurable functions T (L7).
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However, as we will soon see, the answer to the
question of whether an arbitrary Archimedean Riesz
space can be embedded as a Riesz subspace of some space

of measurable functions is negative.

In order to show this we will restrict our

attention to the following class of Riesz spaces:

Definition 2.1. The Dedekind-0-complete Riesz

space X 1s said to be extended (or of extended type)

if it contains a unit and if every countable set of

pairwise disjoint elements [xn] c X 1is bounded.

A compactum Q 1is said to be gquasi extremal

if it has a basis of open closed sets, and the closure

of every countable union of open closed sets is open.

If Q 1is a quasi extremal compactum, then
the set of all extended real valued functions on Q
which are continuous and finite valued on an open
dense subset of Q can be given a Riesz space structure.
We will denote such spaces by CQ(Q). Cm(Q), where Q
is a quasi extremal compactum, is in general a Dedekind-

o-complete Riesz space of extended type.

It can be shown that every Dedekind-O-complete
Riesz space can be embedded as an order dense ideal

in C_(Q) for some quasi extremal compactum Q. This
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embedding will be an isomorphism onto if and only if

the Dedekind-o0-complete Riesz space is of extended

type.

For details concerning Riesz spaces of extended

type, we refer the reader to [(27) Chapter V].

The main result of this section is that if Q
is a quasi extremal compactum, then Cm(Q) can be
embedded as a Riesz subspace of some space of measurable
functions if and only if C(Q); is separating (where
c(Q) 1is the space of continuous real valued functions

on Q).

In order to obtain this result, we will have
to establish some relationships between the integrals
on a space of continuous functiong C(X) on a compact
Hausdorff space and the regular Borel measures on X
which represent the integrals. We will be assuming,
for this reason, that the reader is familiar with

the material in [(6) Chapter X].

This next result is absolutely essential to
our analysis. Variations on the theme of this result
have appeared in the literature often [c.f. (25) p. 1117.
As far as we know, in the form it takes below, it has

not been proved.
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The essential part of the proof can be carried
out for compact X. Once proved for this case, it is
easily seen that the proof generalizes to locally
compact O-compact X. Since we will only need the
result for compacta, we will prove it in this context
keeping in mind that a more general result can be

easily obtained.

Theorem 2.1. Let X be a compact Hausdorff
space and let C(X) Dbe the space of continuous
real valued functions on X. A linear functional o
on C(X) 1is an integral if and only if its representing
regular Borel measure vanishes on every closed G

)
nowhere dense subset contained in X.

Proof. Suppose that G 1is a G6 closed
nowhere dense subset of X and let [Gn] be a

[oo]
sequence of open sets such that N G. = G. Since
n=1

X is normal and (com Gn) N G (where (com Gn) =
complement of Gn) is empty for n =1,2,..., we

have, for each n, a Urysohn function fn satisfying:

fn(x) =1 for x € G,
fn(x) =0 for x € (com Gn),

0 < fn(x) <1 for all x € X.

If we take g inf(f;: 1 < i ¢ n}, we have gn\,

n
n

1,2,...,} = 0. For suppose that

and inffgn:
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X £ G, then for some n = n we must have that

OI
x £ G which implies that g_ (x) = O.
n n
0] (0]
Now, let ¢ € C(X): and let uw be the regular
Borel measure such that, for each f € C(X), o(f) = Ixf dum.

We have that Iml(gn) - O which implies that
f 9, d|u$| - O. But, luwl(G) < f 9, d|u$" and hence

lucpl (G) = o.

Now, suppose that |y 1is a positive regular
Borel measure on X and that for each G6 closed
nowhere dense subset G of X, we have that ((G) = O.
We wish to show that IX f d u, as a linear functional
on C(X), 1is an integral.

Let ffn; n=1,2,...,)] be a sequence in C(X)+
such that fn\y 0.

Let D = {t € xX: £ (t) 21—}-‘ for alln =1,2,...,1},
where m =1,2,...,.

Each Dm is obviously closed. We must show that
each DJ is a nowhere dense G&' Suppose that for some
m = m, we have that DmO contains a sphere, say B,
then (com B) is closed and let X5 € B. We can find a

Urysohn function g on X satisfying:
g(xd = l/mo,
g(x) = 0; for x € (com B),

0 < g(x) < l/mo for all x € X.

A,
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But, then, g < fn for all n=1,2,..., and this
implies that inf{fn7 n=1,2,...,} # 0 which
contradicts our hypothesis. This shows that for

each m, Dm is nowhere dense.

1
= . N o=
Now, let D . (t € X: £ () 4m}' where
nm=1,2,...,. Each D is a G for n,m=1,2,...,
n,m 8
e _ . 11
since if Dn,m,k = (t € X: fn(t) > = zk}, where
n,m=1,2,..., and kX =m,m+l,...,; we have that
Dn,m,k is open and kgm Dn,m,k = Dn,m for nm=1,2,...,.

and hence each D isa G By assumption, we have

6.
that u(Dm) =0 for m=1,2,¢e.,.

Now, (t € X: inf{f (t); n=1,2,...,}] =0} =U D,
n m=1 m

and since ¢ 1s countably additive, this set has

\J-Mmeasure zero.

Since, for each m, D =N D and y(D ) = O,
m n,m m
n=1
1
we must have that, for some n(m) = n, “(Dn(m),m) -
Consider IX fn(m)du = ID fn(m)d“
n(m) ,m
+ dy. On X-D we have that
IX Dn(m),m n (m) n(m),m
f < l. If M(f,) 1is the maximum of the function
n(m) = m 1
c
f1 we have that fn(m)(t) < M(fl) for all t € X.
1l 1
Hence jx frmdu < 7 M(f}) + = uX -Dn(m)’m) <

%(M(fl) + y(X)). So, if € > 0 1is given and we choose
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m = m' such that 1/m'

} €
< M(f1)+u(x)' then we can

choose an n = n(m',€) = n(€) such that for all

n > n(f) we have;
[ £ du £ =+ (M(£,) + M(X)) < €
X "n = m' 1 - ~°
This shows that IX £ du - O.

By application of the Hahn decomposition
theorem for measures we can extend this proof to
signed regular Borel measures on X. The proof is

completed.

Before proceding to our main result we need
a couple of lemmas concerning the supports of regular
Borel measures on a compact Hausdorff space. The
support of a measure |, Wwritten supp u, is defined

in the following manner:

Let G = {x € X: there exists an open set
U< X, with x ¢ U and such that y(uy) = 0} (it is
trivial to show that G is an open set). Then,

supp y = (com G).

Lemma 2.1. Let 4 be a regular Borel measure
on the compact Hausdorff space X, and assume that
gy > 0. Let B cX be a closed G6 nowhere dense
subset of X. Then supp y € B implies that (B) > O.

In fact y(B) = u(X).
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Proof. Let U(B) be any open set containing
B. Then, u(X - U(B)) = O. To see this, we merely
consider the following:

Since X 1is compact and Hausdorff and
X -U(B) 1is closed, we have that X -U(B) 1is a
compact subset of X contained in the complement of
the supp . Therefore, for each x € X -U(B), there
exists an open set U, containing x such that
u(Ux) = 0. The collection U = {Ux: x € X U(B)} is

an open covering of X -U(B) and hence there exists
n

a finite subcovering {Uxi]i=1' Since u(Uxi) =0
n

for each i, we have that y(X -U(B)) < uy( U U, ) <
i=1 i

n

> =

p2 u(UX.) 0.

i=1 1

Now, since u(X) = y(X=-U(B)) + uy(u(B)), we
must have that y(U(B)) = u(X) for all open setg U(B)
containing B.

The regularity of the measure |3 guarantees

that y(B) = inf{y(U(B)) : U(B) - is an open set containing
B}. Therefore, y(B) = uy(X) > O. The assertion is
proved.

Lemma (2.1) also has an extension for locally

compact, O-compact Hausdorff spaces.

This next lemma reverses lemma (2.1).
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Lemma 2.2. Let X be a compact Hausdorff
space. Let u > O be a regular Borel measure defined
on X. Then, if B 1is any closed G6 nowhere dense
subset of X such that y(B) > O, there exists a

regular Borel measure y; > O such that W S u

and supp u1.§ B.

Proof. Let o, be the positive linear
functional defined on C(X) by taking ¢, (f) = IB £d .
If ¢ 1is the linear functional on C(X) defined
by taking ¢(f) = IX fdu, we have clearly that
ml(f) < ©(f), and hence the regular Borel measure
Uy > 0 such that @1(f) = IX fdu, has the property
that by < u-

Now, let x., € X -B. Then there exists an

(0]
open set U(xo) containing X4 such that U(xo) N B
is empty. The complement of U(xo) is closed so
choose a Urysohn function such that,

g(xo) =1,

O; for x € X-1U(B),

g (x)

0 <g(x) <1; for all x € X.

Then ¢, (g9) = IB gdy = 0. Now, let V(xo) =
x e X : g(x) > %}. V(xo) obviously contains Xq
and ul(v(xo)) < @1(29) = 2¢1(g) = 0. This implies

that every x € X -B 1is contained in the complement
of the support of My * Therefore, supp u S B. The

assertion is proved.
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We feel that at this time it might be best
to compare this next theorem, the central result
of this section, with theorem D of section 1 of this

chapter, a result due to J.J. Masterson.

First of all, we recall that every universally
complete Riesz space 1is CQ(Q) for some extremal
compactum Q (see section 3 of chapter I), hence

Masterson's result can be restated as:

A necessary and sufficient condition that Cm(Q) =
M(S,2,u), where Q 1is an extremal compactum, is that

r(c_(Q)) be separating.

Our result differs from this result in two
respects. First of all, we are not requiring that
Q be an extremal compactum, although every extremal
compactum is quasi extremal. Second, we are not
requiring that the embedding of C_(Q) into M(S,7,u)
be an order continuous embedding. We are merely
asking that Cm(Q), where Q 1is quasi extremal, be
a Riesz subspace of M(S,2, ), which means that only

finite suprema and infima are necessarily preserved.

Theorem 2.2. Let Q be a quasi extremal compactum.

Then the following are equivalent:
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(1) Cm(Q) is embeddable as a Riesz subspace
(not necessarily order dense) of some space
of measurable functions M(S,Z2, ).

(2) C(Q)g is separating.

Proof. We show first that (2) = (1). Suppose

that f € C_(Q) and let 1 = be the identity for

X

c(Q). Define 1f = |£|] v 1. lf is an order unit for

c_(Q); and, if I(lf) is the ideal generated in C_(Q)

by 1 we have immediately that I(lf) D I(1l) =cC(Q).

fl
Hence, I(lf)~ is an ideal in c(Q) , and

~ n ~ - ~ . . . ~.
I(lf) C(Q)c I(lf)c is an ideal in C(Q)c We
show now that I(lf): is actually order dense in
C(Q)c. To show this we need only show that if
0 < ®y € C(Q)c, then there exists a O < ®, € I(lf)c
such that Oy S g

To this end, consider the set

G=1Ix f0Q: |[f(x)]| = »]. It is easy to see that G

is a closed G6 nowhere dense subset of Q.

Suppose that O < Mo is the regular Borel
1

measure on Q for which ¢, (g) = IX gducp for each
1

g £ C(Q). By theorem (2.1), we see that uw (G) = 0.
1

We now apply lemma (2.1) to see that supp uw Z G.
1

Hence, there exists an X, € Q - G such that
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X4 € supp u@ . Now, X5 £ G implies that there exists
1

an integer ngy > 1 such that Xy € (x € Q: 1f(x) < no}

and this set is open. Letting U, be any basic
0]

closed open set in Q such that Ux c {x € Q: lf(x) < n
(0]

and such that X4 F UX . we have that the positive

(0]
functional mz(g) = fU gdy is also an element of

X 1

(0]
I(lf)c. For, IU 1 ducp < ng Uy (U, ) < @ Clearly
X5 1 1 (0]

@, <Py and we need only show now that ©, > 0 to

o)

complete our argument. But, x_. € supp um implies

© 1
that for every neighborhood of Xy say U, we have
that U) > O. Hence, = d =
a uml( ) > mz(yuxo) IUXOXUXO uwl

uwl(Uxo) > 0. The order density of I(lf)c in C(Q)C

is established.

Since I(lf)c is order dense in C(Q)c, we
have that I(lf): is separating on I(lf) since
C(Q): is separating on C(Q).

Now, we have that f ¢ I(lf), and hence
f (I(lf)c)n. The order density of I(lf)c in
C(Q); implies that f determines a unique element
of F(C(Q);). We will denote the element of
T(C(Q)g) associated with each f ¢ Cw(Q), by

the process described above, by E.
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To complete this direction of the proof, we
need to show that the mapping f - f: c_(Q = T(C(Q);)
is a vector space isomorphism and preserves the order.
The proof that (af) = a(f) where a is a real
number is trivial. We show first that (f+g) = f + g.
This will be obvious if all three objects can be
shown to exist on a common order dense ideal in C(Q):.
That this is true follows from the fact that
I(lf+g)g, I(lf)g, and I(lg): all contain
I(l!f|+|g|)g and this is order dense in C(Q)g.

It remains only to show that the mapping
f - E is order preserving. To prove this it is
sufficient to show that, for any £ € Cm(Q), we have
that E? = (?)+. But, I(lf) contains both f and
£t simultaneously and since I(lf): is order dense
in C(Q)g and separating on I(lf), we will have
that f£' = (£)7 if the canonical embedding
o 2 I(lf) - (I(lf);); has the property that
m(f+) = (m(f))+. This is a well known result in the
theory of Riesz spaces [c.f. (1) p. 39]. We have

proved that (2) = (1).
We prove now that (1) = (2).

So, assume that C_(Q) 1is a Riesz subspace of

some space of measurable functions ME@,2, ). We may
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as well assume that the identity 1 = in c(Q)

*q
is a unit for M(S,2,u). Let B = I(l) be the
ideal in M(S,2,4) generated by the element 1.
It is easy to see that B; is separating, and

hence, by [(17) Thm's. 1.6 and 3.1] B; is an order

dense ideal in T(M(S,2, u)) .

According to [(17) Thm. 2.1], for any
O<u MBS, 2,0, if we have a

0< g F B; such that é(u) = o (where
g(u) = sup{@(v): O < v < u, g(v) < =}),
there exists a | € B; such that

O ¢y <@g and 0O < §(u) < =,

The proof for (1) = (2) will be to assume
that C(Q); is not separating and obtain a contradiction

to (*).

Since 1 1is the strong order unit for both B
and C(Q), it follows that every o € B;, when restricted
to c(Q) is in c(Q)”. Also, if O < o € B, then
the restriction of ¢ to C(Q), say o, 1is positive

and since mr(l) = (1) we have that o, > O.
If O < ®, < 9pr then O < Pyr < @1 e

suppose that O < o' < ¢, where @' ¢ c(Q”.

By a trivial application of [(18) Note VI Thm. 19.2],
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there exists a positive extension of ¢', say o,

to B such that 0 < 9 < ¢ and hence ¢ € B_.

Now, suppose that C(Q): is not separating
on C(Q). Since the restrictions of the elements of
B; onto C(Q) are separating, there exists a
O < ¢ F B; such that P, is not an integral on C(Q).

If Uw is the regular Borel measure on Q such that
r

¢r(f) = IQ fdumr, then by theorem (2.1) there exists

a closed G6 nowhere dense subset of Q, say D,

such that Uy, (D) > 0. By lemma (2.1), there exists a
r

measure 0 < uy < ug such that supp u; SD.
r

Taking ml(f) = IQ fdul, we have that
0 < 0 <9 and, by what we have shown already, there
exists a positive extension of ¢, say &1, to B

such that O < c'pl € BY and Epl < e

Now, if ¢' 1is any element of (B;)+ such
that o, - © then, O < u ., £ u- = . Wwe have
1 1 Py 1 p 1
that supp u , €D. If 0O < o' < c’pl, then

®r

U, » O and by lemma (2.2) we have that u@,(D) > 0.

wr r

Now, let £ > 1 be any element of C_(Q) such
that (x: f(x) = o} =D . That such functions exist
follows easily from the fact that D is a G closed

8
nowhere dense set.
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For all o € B; such that O < || < n&l
for some n =1,2,..., we must have that
o] (£) = lmrl(f) = », To see this we just note

the fact that

lo | (£) > [ ndule_| > ny (D).
{x £ Q:f(x) > n} Pr

But this is the desired contradiction to (*).

The theorem is proved.

Let Q Dbe a quasi extremal compactum. Suppose
that L © C_(Q) 1is an order dense ideal for which L:
is separating on L. Taking B = C(Q) N L, we know that
B 1is order dense in C(Q). Since the restriction of each
W) GIf; onto B 1is also an integral, we have immediately
that B:: is separating on B.

Now, let O < f € C(Q). Since B 1is order dense
in C(Q), there exists a 0 < g < f such that g € B.
Let Xy be the characteristic function of any closed open
subset U of Q such that, for some positive real number
o > 0, we have that U < {t € Q:g(t) > a}.

It follows immediately, from the fact that
Xy g.éwg, that Xy €B. It is easy to verify that the
ideal generated by Xg in C(Q) satisfies

I(xy) = (%) "-in-B = (%) *-in-C(Q).
Let O < » Dbe an element of B;' for which

w(xU) > 0. Using the fact that C(Q) 1is Dedekind-o-complete,
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and therefore has the principal projection property,
we define the following positive linear functional
on C(Q):
p(g) = cp(PXU(g)) for g € C(Q) (where
PXU(g) = sup [n¥; A g n=1,2-+-,) -sup (nxy A g s
n=1,2,...,1).
It is clear that o € C(Q): , since if gn‘y o}

(in C(Q)) then P, (g ) Y 0 (in B) which implies
U

that ©(g ) = 9(P, (g )) » 0. sSince £ >axy, we

Xy

have that w(f) = ©(P, (f)) > a®(x,) > 0. Thus, c(Q)’;

Xy

is separating on C(Q).
The above argument, when combined with theorem

(2.2), establishes this next result.

Theorem 2.3. Let Q be a quasi extremal compactum.
Then, the following are equivalent:

(1) C_(Q) is embeddable as a Riesz subspace of a

‘space of measurable functions.

(2) There exists an order dense ideal L € C_(Q)

for which L: is separating.

Since every universally complete Riesz space is
C,.(Q) on some extremal compactum (and hence quasi
extremal), we have the following result for universally

complete Riesz spaces.
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Corollary 2.1. Let L Dbe a universally
complete Riesz space. Then, the following are equivalent:

(1) L 1is a Riesz subspace (not necessarily order

dense) of some space of measurable functions.

(2) There exists an order dense ideal I C L

such that I: is separating.

This next result shows that, for sub-order separable
universally complete Riesz spaces, Masterson's result (see
theorem D of section 1) is the best possible in the sense
that if a sub-order separable universally complete Riesz
space can be embedded in anyway as a Riesz subspace of
some space of measurable functions then it itself must be a
space of measurable functions.

Theorem 2.4. Let L be a universally complete sub-
order separable Riesz space. Then, the following are
equivalent:

(1) L 1is a Riesz subspace of some space of

measurable functions.

(2) T(L) 1is separating.

(3) L 1is a space of measurable functions.

Proof. 1In view of theorem D of section 1, we need
only show the implication (1) = (2). To this end, let
Ll C L be the order dense order separable ideal contained
in L. Let L2 be the order dense ideal contained in L

for which ng' is separating on L2. Taking L3 = Ll n L2
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we have that L3 inherits a separating set of integrals

from Lz. Since L3 is order separable, each integral

on L3 is normal. Therefore, L3; is separating.
The fact that L3 is order dense finally tells us that

T'(L) 1is separating. The theorem is proved.

Corollary 2.2. Let L be a sub-order separable
Archimedean Riesz space. Let L be the universal comple-
tion of L. A necessary and sufficient condition that L
is a Riesz subspace of a space of measurable functions is

that T (L) 1is separating.

Example 2.1. Let L =C[0,1] (i.e. the Riesz
space of continuous functions on the unit interval). This
space is order separable, and it is known that T (L) = {0}.
If L is the universal completion of L, then by
corollary (2.2) above we have that I cannot be embedded
as a Riesz subspace of any space of measurable functions.

This next example shows that there exist Dedekind-
o-complete Riesz spaces of extended type which can be
embedded as Riesz subspaces of spaces of measurable func-

tions but which are not measure Riesz spaces.

Example 2.2. Let X Dbe a topological space. A
point x € X 1is called a P point if for any countable
collection {Un: n=1,2,...,] of open subsets of X con-

taining the point x, we have that v, is open in X.

o8

n=1
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A topological space X for which every point
X € X 1is a P point is called a P space. Any
discrete space is a P space. For our purposes 8uch
spaces are not of interest. Completely regular P
spaces exist, however, which have no isolated points
[c.f. (4) 13P p. 193]. So, let X bDbe a completely
regular P space for which no point x € X 1is isolated.
Let C(X) be the Riesz space of all real valued
continuous functions on X. It was shown in [ (16) Note
Xv, Ex. 50.7 p. 420] that C(X) has the following
properties:

(a) C(X) 1is Dedekind-o0-complete,

(b) cX . =cx .

0Olo

(c) C(X)_. is separating,

(d) C(x); = {0} .

We note further that C(X) 1is non-sub-order
separable. To see this, let 0 < g € C(X). Let U be
an open set in X such that U € {x € X: g(x) > a}
where o > O 1is some real number for which a U exists
which is not void. Fix an x € U and let {Uﬁ} be a
collection of open sets such that, for each 8, we have
that Ug €U and QUB = {x} . For each B, let fo
be a Urysohn function such that fB(x) =aq, and for all

t € (com UB) (where (com UB) = complement of UB) we have

that fB(t) = 0. Then, we have that inf [fB} = 0 and
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0 < fB < g for all B. Now, if {fﬂn} is any

countable subset of {fB}, then, if B = {t € X:

an(t) > %cx} , we have that nil B is open and
contains x. Let 9 be a Urysohn function satisfy-
ing:

9 x) = 2o,

oo}
for t € (com N Bn)'
n=1

go(t) 0]

oggn(t) g%a: for t € X.

Then O < gog an for all n=1,2,..., and hence

inf (an; n=1,2,...,}) #0. This implies that the
ideal 1I(g) generated by g 1is not order separable and
hence that g is not an element of countable type.

Since the choice of 0 < g € C(X) was arbitrary, this
says that C(X) has no elements of countable type and
therefore is not sub-order separable. We learn two things
from this. First, C(X) cannot be a measure Riesz space.
Second, I (C(X)) cannot be separating.

Since C(X) 1is Dedekind-o-complete, it can be
embedded as an order dense ideal in C_(Q) for some guasi
extremal compactum Q. By application of theorem (2.3),
since C(XY; is separating, we obtain that C_(Q) 1is a
Riesz subspace of some space of measurable functions.

Since T(C_(Q)) = T'(c(X)), and since T (C(X)) 1is
not separating, we have that F(CQ(Q)) is not separating.
Thus, we have that C_(Q) cannot be embedded either

continuously into or as an order dense Riesz subspace of,
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any space of measurable functions.

In the above example, the non Dedekind complete-
ness of the C_(Q) used was critical. If we could
obtain a Dedekind complete example with the same
properties we would at the same time have an example
of a Dedekind complete Riesz space with an integral
which was not normal. This would imply the existence
of a measurable cardinal [see (15)]. The question of

the existence of measurable cardinals is still open.

Section 3. Some Topological Considerations.

A vector space, which is at once a vector
lattice and a topological vector space, can exhibit
interesting relationships between the order and the
topology. We wish to discover which properties, order
and topological, combine to force us into the setting
of measure Riesz spaces.

We begin by introducing some concepts which
are basic to this investigation. The general setting
follows closely Peressini's organization in [ (25)].
Most of the properties which we introduce are straight
forward generalizations of those used by Luxemburg and

Zaanen in [ (16) and (18)].

Definition 3.1. Let E Dbe an Archimedean

Riesz space. A set B S E is called solid if for any
b € B and any a € E such that |a| < |po|, we have

that a € B.
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Definition 3.2. Let E Dbe an Archimedean

Riesz space. Suppose that E 1is also a topological
vector space under a topology T. We will say that

(E, T) 1is a topological vector lattice (T.V.L.) if

E has a neighborhood basis at O consisting of solid

sets which is a basis for the topology T.

It is clear what we will mean by a convex

(locally convex) T.V.L. (E, T).

Definition 3.3. Let E Dbe an Archimedean

Riesz space. An element x € E 1is said to be relatively

uniformly continuous if for all sequences {xn] in E

with X, \, O and such that O < X < x, we have that

X 40 (r.u) where n=1,2,...,.

Definition 3.4. et (E,T) be a T.V.L. .

We will say that x € E 1is T-absolutely continuous if

for every sequence [yn} in E with Y, \n O and such

that Yp ps |x| for all n=1,2,..., we have that

T
_.
Y, o.

Definition 3.5. Let E Dbe an Archimedean

Riesz space. We will say that an element x € E is

absolutely continuous if for every sequence [yn] in E

with Y, \g O and such that Y, < |x| for all

n=1,2,..., we have that, for any o € E, m(yn) + 0.
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Definition 3.6. Let (E,T) be a T.V.L. .

An element x € E will be said to be (E,T)*

absolutely continuous (or just *-absolutely continuous)

if for any sequence {yn} in E with yn‘* O and

such that Y, < |x| for all n=1,2,..., we have
*

that, for any o € (E,T) , m(yn) + O (where (E,T)*

denotes the topological dual of (E,T)).

We will denote the set; of all relatively uniformly

continuous elements of E by E of all T-absolutely

r.c.'’
continuous elements of (E,T) by E(Ta), of all abso-
lutely continuous elements of E by Ea, of all *-abso-

*
lutely continuous elements of (E,T) by E(Ta).

Lemma 3.1. Let E Dbe an Archimedean Riesz
space. Then E? and Er are ideals in E. If in

addition, E 1is a T.V.L. with topology T, then E(Ta)

*
and E(Ta) are ideals in E.

Proof. This proof is straight forward, and we

will not produce it here.

Lemma 3.2. Let (E,T) Dbe a convex T.V.L. .

*
Then, E(Ta) = E(Ta).

*
Proof. It is obvious that E(1a) c E(Ta) . For

the reverse inclusion, we will need [ (12) 17.2 p. 154].
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This result tells us that the weak closure of a
subset A of E 1is a subset of the T-closure of the
convex extension of A.
Let x € E(T*) and let 0 < | | f
oy et v\ 0, v, < Ix| for
*
n=1,2,..., . Since x € E(Ta), we have that O is
an element of the weak closure of the set [yn]. Let
[wd] be a neighborhood basis at O for the topology
T consisting of solid, convex, circled, absorbing
subsets of E. We have that there exists a sequence
p
m _m
i

(z.}, z = L a, Y.

m
n n 2 N where {yi] c [yn], and
m

i
p - -

2 a; =1, such that z +0 for m=1,2,...,.
i=1

Il

This says that, for each a, there exists an m =m

a
such that for all m 2 m, we have that z, € LA Let
m
n =n, be chosen so that Y, < yia for all 1 =< i = P, -
a a

N

Then, for all n na , we have that

p P
me. ma ma ma ma
Yo SY¥, = Z oty = o Yy T 2y
a i=1 a i=1 a

The solidity of W, implies then that Yy € Wy for all

T
n = n, . This establishes that Y, ° O which implies

*
that x € E(Ta). Hence, E(Ta) 2 E(Ta) . The assertion

is proved.
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This next result is a collection of relation-
ships between the ideals Er.c.' Ea, E(Ta), and
E(T;). It can be improved on, but we will not do so
here. For our present purposes, the relationships we

obtain are adequate.

Theorem 3.1. Let E Dbe an Archimedean Riesz

space. We have the following relationships:
(1) E c E?.
r.c.

* ~
(2) 1f (E,T) is a T.v.L., then (E,T) < E
and is an ideal in E .

(3) If (E,T) is a convex T.V.L., then

*
[ =
Er.c. E(Ta) E(Ta) .
(4) If (E,T) is a complete, metrizable,

~ *

convex T.v.L., then E = (E,T) and

a-— —
E- = E(Ta) = Er.c.'

Proof. The verification of (1) is trivial.
Part (2) follows from [ (25) Prop. 4.17 p. 108]. For part
(3), the containment is trivial to see, and the equality
follows from lemma (3.2). Part (4) follows easily using
the well known result that for Frechet spaces E =(E,T)*
combined with [ (25) Prop. 2.4 p.162]. The theorem is
proved.

Example 3.1. Let E = Lm[o,l] (the space of

equivalence classes of essentially bounded Lebesgue
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measurable functigns on [0,1]). For £ € E, let

p(E) = p(|f|) = f |f|d“ where | 1is Lebesgue
0]

* ~
measure. Ep is not equal to E since every element

*
of Ep is a normal integral on E. This same example

shows that Er need not always equal E(Ta).

CcC.

We now introduce one of the topologies on a
Riesz space which is totally determined by the order

structure.

Definition 3.7. Let E Dbe an Archimedean Riesz

space; the order topology TO on E 1is the finest

locally convex topology T for which every order bounded

set is T-bounded.

For a complete discussion of the order topology,
we refer the reader to [ (25) Chapter III, (5), and (24)].

For our purposes, it is only necessary to know
that if E  is separating on E then T is the Mackey

(0]
topology T(E,E~).

Definition 3.8. Let 1L Dbe an Archimedean Riesz

space and let I bDbe an ideal in L. We will say that I

is a weakly reqular ideal in L 1if it possesses a positive

order basis [ea] satisfying the following condition:
For each e’ there exists a countable collection

of components [eg] of eq with eE /! e, such
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that for each m =1,2,..., and any component
e’ of eg, if {en} is a sequence of components
of e’ with e Va e’, then there exists a

subsequence {e_ ]} < {en] such that the collection

(k(e - e_ )} 1is bounded in TI.

Myl Ny

This next theorem and corollary yield an intrinsic

characterization of measure Riesz spaces.

Theorem 3.2. Let L Dbe an Archimedean sub-
Egoroff sub-order separable Riesz space. If L contains
a weakly regular order dense ideal I, for which the order
topology on I is Hausdorff, then L 1is a measure Riesz

space.

Proof. It is not difficult to see that if L

contains a weakly regular order dense ideal 1 for which

A
the order topology on I is Hausdorff, then L contains

a weakly regular order dense ideal for which the order

A A A
topology is Hausdorff, namely I = (x € L: there exist

A
Xy, X € I such that x, < x s xz]. Thus we may assume

2 1
that L 1is Dedekind complete. Since L, and hence 1,
is sub-order separable, we can take the positive order
basis for I which is guaranteed by the weak regularity
of I to consist of elements of countable type. If {ea]

is such an order basis, then in order to show that L is
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measure Riesz space, we must show that I (L) 1is separat-
ing which is equivalent to showing that, for each ea.

1“(Be ) 1is separating where Be = [ea]ll—in-L . Hence,
a a

we may as well assume that I has an order unit of
countable type satisfying the condition in definition
(3.8). Let O < e Dbe this order unit for I and let
em'/" e be a sequence of components of e such that,

for each m, and each component e’ of e if {zn] is

a sequence of components of e’ such that z )” e’, then

there exists a subsequence {zn } € [zn] such that the collec-

k

tion {k(z -2 )} is bounded in I. Consider the ideal

n n

k+1 k
generated in I Dby taking all f € I such that |f| < A en
for some m =1,2,..., and some real number A 2 O. We
denote this ideal by I({em]).
Now, let {yn] be a sequence in I({em]) with

Y, \, 0. By corollary (2.5) of chapter I, we have that
Yy, * O (r.u.)-in-I. Therefore, I({em}) SI. .. € I(TOa).

But, then, I(TOa) is order dense in I and hence in 1L,

~~ *
and I( ) = I(TO) which is separating on I(T._). This

TOa n Oa
implies that L 1is a measure Riesz space. The theorem is

proved.

Corollary 3.1. Let L Dbe a universally complete
sub-order separable sub-Egoroff Riesz space. Then the

following are equivalent:
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(1) L 1is a measure Riesz space.

(2) There exists an order dense ideal
I <L with a complete Riesz norm p
satisfying that if X, \ O in 1I
then p(xn) + 0 where n=1,2,..., .

(3) There exists a weakly regular ideal I
in L with a locally convex Hausdorff
topology under which I becomes a
T.V.L.

(4) There exists a weakly regular ideal I
in L such that the order topology on

I is Hausdorff.

Proof. To show that (1) = (2) we merely consider
the Ll(S,ZLu) subspace of L = M(S,2,4). To show that
(2) = (3) we apply theorem (3.1) (4) to obtain that
Lp = Lp,a = Lr.c. . The fact that (3) = (4) follows from

the definition of TO . Finally, that (4) = (1) follows

from theorem (3.2).
This next corollary is somewhat more descriptive.

Corollary 3.2. Let Q be an extremal compactum
such that C_(Q) is order separable and Egoroff. Then,
the following are equivalent:

(1) c_(Q) =M(Ss,Z,K), where (S,2,u) is a

o-finite measure space.
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(2) There exists an ideal I with
C(Q) €I «C_(Q) for which the order
topology is Hausdorff, and such that given
any closed nowhere dense Gg subset G of
Q, there exists a function £ € 1t such

that {x € Q: f(x) = =) 2 G.

Proof. We show that (1) = (2). We note first
that if (S,Zlu) is a 0-finite measure space, then there
exists a finite measure space (S,Zlu') such that
H‘(S) =1 and M(S,2,M) = M'(S,Zlu'). Hence, we may assume
that M(S,2,d) is a finite measure space. It follows easily,
from [ (27) p. 133] that we may take C(Q) = Lm(S,ZLu). In
fact, we may take 1 = XQ = Xg -

If G 1is a closed nowhere dense Gy subset of Q

and if (En: n=1,2,...)] 1is the sequence of closed open

o]
subsets of Q such that N E =G then X \N O in
n=1 n En

c(Q). 1If, for each n, g is the element of L(s,Z, 1)

then 9, < Xg for all n, and gn\y 0

such that Xg = 9,
n

which implies that f 9, du 0. Let n =n be such that

k
S

J‘ 1 /1 . . i

= du < X (E) . Consider now the function k(gn - g )
s Tk 2 k=2 k Pkl
Clearly, I g d4 < ., But, this corresponds to the function

S
’ .
kzé X(En _ En y = g €cC_(Q). It is easy to see that
k k+1

= g.
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{x €0Q: g'(x) = »}) 2 G. So we see that if we take
I = Ll(S,Zlu), then I satisfies condition (2). We
have proved that (1) = (2).

To show that (2) = (1) it is sufficient to show
that I 1is a weakly regular ideal. To this end, let

1 = Xq and let {Un] be a sequence of closed open sub-

sets of Q such that ¥ . We then have that
v,/ Yo

[o e}

U Un =Q - F where F 1is a G6 closed nowhere dense
n=1 ©

subset of Q. 1In fact, F = N Q-U
n=1 n
Let f Dbe a function in I such that

{x: f(x) = @} 2 F. Then, if F = {x: f(x) 2 k}, we have

that F, =2 F.

1 k

I o8

k

Let n =n be the first n such that Q - U C F, .
k nk k

That such an n exists follows from the compactness of the

Q - Un and the Fk‘

Then, [k(xU - Xy )} is bounded above by f(x).
D+l Dy

Hence I 1is weakly regular and by corollary (3.1), C_(Q)

is a space of measurable functions. The assertion is proved.

The above theorem and corollaries seem to indicate
that in some sense, the universally complete sub-order
separable sub-Egoroff Riesz spaces which are not measure

Riesz spaces have a rather thin lattice of ideals with
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locally convex Hausdorff topologies defined on them.

Remark 3.1. If (E,T) 1is a T.V.L. for which
E  is separating and such that E is sub-order
separable, then any of the conditions;
(1) E. .. is order dense,
(2) E? is order dense,
(3) E(Ta) is order dense,
(4) E(T;) is order dense

~

implies that E'n is separating on some order dense
ideal E’ <€ E, and, therefore, that E is a measure

Riesz space.

Section 4. Separability and Measure Riesz Spaces.

The object of this section is to show that the
separable, metrizable topological vector lattices possess-
ing a separating continuous (topological) dual are
measure Riesz spaces if and only if, as lattices, they
have the Egoroff property.

We must first obtain a few relationships between

the order dual and the topological dual.

Remark 4.1. Let (E,T) be a topological vector
lattice and let E* denote the topological dual of (E, T).
We mentioned in the previous section that E* is an ideal
in E . Since E_ is a Dedekind complete Riesz space,

*
we have that E is a Dedekind complete Riesz space.
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From the decomposition E = E. ® E:, it follows
h *-E ®E wh * n
that E = Ec ES where Ec = E Ec and
* ~
ES=E nEs.

Using [ (18) Note VI Thm. 20.4], it is trivial

*
to show that E(T_.) = N N (where N denotes the
a’ " oy @ P
s

null ideal of the functional o).

In the case that (E,T) 1is locally convex, we

*
have that E(Ta) = E(Ta) = N N Nm.
PEE
s
Remark 4.2. Let (E,T) Dbe a T.V.L. . Let

{Wa: a € A} be a neighborhood basis of zero for the

topology T consisting of solid, absorbing, circled sub-

*
sets of E. Recall that the polar of W, in E is

*
just the set (@ €E : |o(f)| <1 for all f € w,l. Bs
is standard, we denote the polar of Wa by wg . Taking
E = n N , we claim that;
a * ~ 0 ®
wEESﬂWa
* NE = N _ N_=E(T)
a @ wGE; P a

The inclusion NE =2 N, N is obvious. So, let
a © ®EE e
s
*
f € E and suppose that £ £ E(Ta). Then, there exists
%*
an element ¢ € Eg such that |w|(f) > 0. Since ¢ € E",
the set (g € E: |w(g)| s 11 contains a neighborhood of

o *
zero, say W , Then ¢ €W , n Es and hence f £ E
a a a

I
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This shows that Q E, € n Nm. We have proved (*).

wEES

We now need to recall some facts from the
theory of topological vector spaces. Let (E,T) be a
separable topological vector space. Let [wa] be a
neighborhood basis of zero for the topology T on E
consisting of circled absorbing sets. By the Banach-
Alaoglu theorem [c.f. (12) Thm. 17.4 p. 155], we know
that wg —in—E* is a compact Hausdorff space under the
weak * topology.

Let {fn: n=1,2,...,}] be a topologically
dense collection of elements from E. For each

o . * .
w, | € Wa -in-E , define

= | (o-9 £_|
O S o 1C=iE
This is a metric on Wg —in—E*, and every open set
in this topology is easily seen to be weak * open. Since
both of these topologies are Hausdorff, and since the
weak * topology is a compact topology, we must have the
equivalence of these two topologies. Hence, Wg -in—E*
with the weak * topology is a compact metric space and

is therefore separable.

The next two theorems will yield the result

which we are seeking.
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Theorem 4.1. Let (E,T) Dbe a metrizable,
separable topological vector lattice. Then E, as a
vector lattice, is order separable. In fact, given any
disjoint collection of elements in E', say {fo],

the collection is at most countable.

Proof. Let {Wn; n=1,2,...,)] be a neighbor-

hood basis of zero for the topology T on E consist-
ing of solid absorbing circled sets satisfying
W

+ W, €W, for n=1,2...,. Let [fo: o €T}

n+1l +1
be any collection of disjoint strictly positive elements

in E. To each o0 €T, assign the integer n, as

follows:

1l; iffofwl

n, =
sup {n : £5 € Wn}
| e 1 .1
Clearly, [f_; o €T} = U (f_: — =2 =} I1f, for each
O 0 n n
n=]1 (
n=1,2,..., we have that (fo: ;’ 2 %-} is countable,
o
then so is {fO: c €T'}. Hence, if [fO: c €T} is
not countable, there exists an n = n’ such that
{fG: ﬁL~2 ﬁ%-} is not countable. Denote this set by
o

{fB; B €B} =G.
Now, if £ and f are elements of G with
By B,

B, # B, , then f - f W since otherwise we
1 2 B1 52 n'+1
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would have that £, < | | = ¢

£ - f
By By By By

and this would imply that fB EW 1 which contradicts
1 n

that f €G.
Py

It follows easily that the system
{fB + Wn'+27 B € B} is a collection of disjoint open
subsets of (E,T) . If this collection is not countable,
then we would have that (E,T) 1is not second countable
which contradicts the separability of (E,T). Therefore,
[fo; o €'} 1is countable and this implies the order

separability of E (see section 4 of Chapter I). The

theorem is proved.

Theorem 4.2. Let (E,T) be a metrizable,

separable topological vector lattice. Let {Wn; n=1,2,..

be a neighborhood basis at zero for the topology T on E
satisfying Wn+1 + Wn+l o Wn for n=1,2,..., and
consisting of solid, absorbing, circled subsets of E.
Assume also that E has the Egoroff property. Let
En = n ON for n =1,2,..., . Then, En is a super

weE* W ¢

S n

order dense ideal in E for each n =1,2,...,

Proof. We have already noted that each Wg is

a separable metric space in the weak * topology. There-

*
fore, Eg n Wg is also separable in the weak * topology.

o)
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Let {mm: m=1,2,...,} be a dense subset of
* @
Es N Wg . We claim first that n Nco = ﬂ* N .
m=1l “m WEE nwo @
s n
The inclusion N N 2 n* 0 Ncp is trivial.
m=1 %m WEE MW
] n
Now, let o < u € Ncp for all m=1,2,..., . Let
m
*
v € Eg N Wg . Since the polar of a solid subset of E

is solid (this follows easily from [ (25) Equation 6

*
p. 22]), we have that |m| € Eg n Wg . Let € > 0 be

chosen. Since [¢h’ m=1,2,...,} is weak * dense in
Wg , there exists an m = m, such that

| 1ol (u) - o, (u)| < €. Hence, |ow|(u) < €. This holds
(0]

for all € > O. So, |w|(u) =0 and u € N$° This

establishes that

N N =

n N
m=1 ’m wEE*ﬂWO ®
s 'n

It follows from [ (18) Note VI Cor. 20.7], that

N, is a super order dense ideal in E for each
“m

m=1,2,..., . By [(16) Note X1V, Lemma 44.1], we have
that the countable intersection of super order dense
ideals in a space with the Egoroff property is again a

super order dense ideal. Hence,

o]
E = N N is a super order dense
n ®
m=1 m
ideal in E for each n=1,2,..., . The theorem is

proved.
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Theorem 4.3. Let (E,T) be a separable,
metrizable topological vector lattice. Suppose in
addition that the topological dual E of (E,T) is
separating on E . Then the following are equivalent:

(1) There exists a 0-finite measure space
(S,Zlu) such that E 1is an order dense
Riesz subspace of M(S,2,H).

(2) E has the Egoroff property.

Proof. We need only show that (2) = (1). If
E has the Egoroff property, then theorem (4.2) above
together with [ (16) Note X1V, Lemma 44.1] imply that
E(T;) is an order dense (actually super order dense)
ideal in E. The fact that E* is separating implies
that E* is also separating on E(T;). From theorem
(4.1), we have that E 1is order separable and hence
that E(T;) is order separable. This implies that every
p € E* is a normal integral on E(T;) and hence that E
is a measure Riesz space. Since, by theorem (4.1), we
saw that E actually has a countable disjoint basis of
positive elements of countable type, we see that the
universal completion E of E is order separable and
thus E = M(S,Zlu) where (S,Zlu) is a o-finite measure

space.
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Corollary 4.1. Let E Dbe a separable,
metrizable, locally convex topological vector lattice.
Then the following are equivalent:
(1) There exists a 0-finite measure space
(s,2,4) such that E 1is an order dense
Riesz subspace of M(S,Z,H).

(2) E has the Egoroff property.

Remark 4.3. Although we will not pursue it
here, it should be possible, in view of some of the
results found in [ (13) ], to show that the o-finite measure
space (S,2,Hd) obtained in theorem (4.3) and corollary
(4.1) of this section may actually be assumed to be a

separable measure space,

Section 5. Some More on Non-Sub-Order Separable

Spaces.

Throughout this exposition, we have had occasion
to investigate three examples of non-sub-order separable
Riesz spaces. It can be easily verified that the space
of continuous real valued functions on PBN-N (where BN
is the Stone-Cech compactification of N = {1,2,...,))
is another example of a non-sub-order separable Riesz space.
From a historical point of view, this space was probably
the first Riesz space of this type to be investigated.

S. Kaplan used it, for instance, as an example of a C(X)
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such that every radon measure on X has first category
support [ (10) IV p. 520]. It was also studied by
Dixmier in [(3)]. So far, these spaces have been most
useful in providing examples of pathological behavior
from the vector lattice point of view.

All of our examples have actually been of
non-sub-order separable Riesz spaces with the property
that no non-trivial ideal in them is sub-order separable.

One thing all such spaces have in common is the

following:

Theorem 5.1. Let L be an Archimedean Riesz
space with the property that no non-trivial ideal in L
is sub-order separable. Let I Dbe any ideal in L such
that I is not just the zero functional. If o € I,

then Nm (the null ideal of ®) 1is order dense in 1I.

Proof. Suppose that for some ¢ € I~ we have
that N; -in-I # {0}. We may as well assume that o > O
since N_ =N . Letting C_ = N -in-I, we have that
fo oo | e o
¢ 1is strictly positive on C@' Let O f € Cw. Since
no element of L and hence of I 1is of countable type,
we must have an uncountable collection [0 < fa < f; a €A}

of positive disjoint elements in Cw.

. * 1
Clearly, since [fa} = ngl [fa' w(fa) 2 n} , we

the set [f_: P(E,) = J;]

must have that, for some n = no R a ng
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is uncountable. Let %k € {1,2,...,} Dbe such that

ﬁi > ¢(f). Then, choosing fa ’ fa ooy fa from
0 1 2 k

1
{fa. m(fa) z = } , we have that

(0]
k
sup {f ; 1 <iskx})= 2 f < f and

a. . a.
i i=1 i

k k "

o( L £,) = L olf,) = > olf) .
i=1 i i=1 i (0]

This is a contradiction. The theorem is proved.

Corollary 5.1. Let L Dbe an Archimedean Riesz
space with the property that no non-trivialideal in L is
sub-order separable. Let I be any ideal in L. Then,

I =1
sn

Proof. If there exists a O = © € I;, then
N$ -in-I # {0] and this contradicts theorem (5.1). The

assertion is proved.

We wish to note that in view of corollary (5.1)
above, if L 1is a Dedekind complete Riesz space with the
property that no non-trivial ideal in L is sub-order
separéble, and if I is any ideal in L such that
I: # {0} then by Luxemburg's result [ (15)], there exists
a real valued measurable cardinal. We thus have another
example of a Riesz space condition which would imply the

existence of a measurable cardinal.
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Remark 5.1. If X 1is a compact Hausdorff
space for which C(X) has the property that no
non-trivialideal contained in C(X) is sub-order
separable, then every regular Borel measure on X has
nowhere dense support. Otherwise, we would be able to
obtain a contradiction to theorem (5.1) of this section.
If X 1is the Stone-Cech compactification of the space
of Example (4.1) of Chapter I, then every regular Borel
measure on X has nowhere dense support. However, by
Remark (4.4) of Chapter I, we see that X does not have
the property that the intersection of a descending sequence
of open sets has nonempty interior. As far as we know,

this is the first example of such a space in the literature.
Section 6. Miscellaneous Problems.

A number of problems arise naturally from the re-
search done in this exposition. Our purpose in this section
is to briefly state and discuss some of these problems.

The first problem is motivated by theorem (5.1) of

chapter II.

Problem A. Let L be an Archimedean Riesz space
possessing a positive countable order basis consisting of
elements of countable type. Does L then contain an

possesses a

order dense ideal Ll € I. such that Ll

strictly positive linear functional?
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It is quite obvious that a positive answer to
problem A would prove the converse of theorem (5.1) of
this chapter. Thus, if the answer to problem A is
positive, we would have an interesting characterization
of Archimedean Riesz spaces, which possess no non-trivial

sub-order separable ideals, in terms of dual space elements.

The statement of problem A is somewhat awkward.
It has a much nicer formulation. Unfortunately the equiva-
lence of the two formulations takes significant effort to
see. We will put forth the effort, however, since we be-
lieve the techniques involved to be interesting in them-

selves.

Remark 6.1. If L 1is Archimedean and possesses
a strictly positive linear functional, a straight forward
application of [ (18) Note VI Thm. 19.2] proves that ﬁ
(the Dedekind completion of L) also has a strictly positive
linear functional. Clearly, if ﬁ has a strictly positive
linear functional, then, by restriction, so also does L.
Problem A is now easily seen to be equivalent to the
question;
Does every order separable universally complete
Riesz space L contain an order dense ideal L,
such that Ll possesses a strictly positive

linear functional?



160

In order to simplify further the formulation
of problem A, we need a method for obtaining extensions
of positive linear functionals defined on ideals in a
Riesz space to larger ideals. The method is described

as follows:

Let L Dbe an Archimedean Riesz space. Let o

be a positive linear functional defined on an ideal I

©
contained in L.
Consider
wl(u) = sup (op(v): v € Iw, O £v £ u}, where
u € (Ifol —in-1)V .
We have easily that
() 0% o (u) s = foru € (ijl —in-1)*
(b) If a =2 0 is a real number, then
@, (@u) = aqg (u).
We claim in addition that if ups U, € (I:Dl

then (c) wl(ul) + ml(uz) = wl(ul+u2).

To see that ml(u1+u2) 2 wl(ul) + wl(uz) is a
standard argument which we will not produce here.

To show that wl(u1+u2) < ml(ul) + ml(uz), we
consider first the case when wl(u1+u2) = o, If
wl(u1+u2) = o, then, for each N € {1,2,...,}, there

exists a v € Icp such that O < v < U,y + u, and o (v)

-in—L)+
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Suppose that ml(ul)  ®, Since Vv =v, + Vv where

1 2
Vie V, € Icp and O < vy < uy . 0O = v2 < u, . we must
have that o(v,) 2 N - ®,(u;). Hence, ®,(u,) = @ and

we are done for this case.

We now need only consider the case when
ml(u1+u2) < =,
In this case, given € > O there exists a
= i <
v vyt v, with Vie VY, € Im, 0 = Vi < u, . 0o = v, u
and such that o(v) + € = w(v1+v2) + € = w(vl) + m(vz) + €

2

> wl(ul+u2). This implies that wl(ul) + wl(uz) + €
2 ml(ul+u2). Since the choice of € was arbitrary, we

have that wl(ul) + wl(uz) 2 wl(u1+u2) and our claim is

proved.
_ 11 .o+

Now, let Icpl = {u € (Icp in-L) : ml(u) < o},

Taking TA =1 -1 we obtain easily that I, 1is an
® 1 1 ®
ideal in L containing Icp .
A -
For each f € I, , define o(f) = wl(f+) - wl(f ).
®

A
Then, ¢ 1is an extension of ¢ to I, .
®

It is obvious that if Icp is order dense in L,
then I, 1is order dense in L. Also, if ¢ 1is strictly
®

A
positive on Im' then ¢ 1is strictly positive on I, .
' ®
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Definition 6.1. Let L Dbe an order separable

universally complete Riesz space. An element £ € L+

is called an almost unit for an ideal I € L, 1if there

exists a sequence of components of f, [fn; n=1,2,...,1,
with fn/ﬁ f such that if g € I then there exists an

integer k € {1,2,...,} such that |g| < fk.

Theorem 6.1. Let ¢ be a positive linear
functional defined on an order dense ideal IQp <L, where
L 1is a universally complete order separable Riesz space.
Suppose that f € L' is an almost unit for Icp and let
[fn: n=1,2,...,)] be the sequence of components of £
in I such that £ /" £ and such that, for any g €1I_,
there exists a %k € (1,2,...,} such that |g| < fk'
Suppose in addition that m(fn) sM<» forall n=1,2,...,.

Then, we have that £ € I, (where I, is the ideal
) ®

obtained by applying the extension process described previ-

ously in this section).

Proof. Since for any v € ICp such that
O<v<f, wemusthave a %k € {1,2,...,} such that
v s fk'

theorem is proved.

we see that ml(f) < sup [m(fn)] <M< « . The
n

Theorem 6.2. Let L Dbe a universally complete
order separable Riesz space. Suppose there exists an order

dense ideal L, € L such that Ll possesses a strictly

1
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positive linear functional. Let O < f € L. be any
order unit in L. Then, the ideal generated by the
element £, I(f), has a strictly positive linear

functional.

Proof. Let 0 < f € L' be an order unit for
L. Let IL; <L be an order dense ideal in L possess-
ing a strictly positive linear functional o. It is
easy to see that there exists a sequence {fn; n=1,2,...,}
of components of f with fn‘/ﬁ f and such that fn € L1
for n=1,2,..., .

Let I({fn}) be the ideal generated in L by
taking g € I((fn]) if and only if, for some k € (1,2,...,]},
we have that |g| < fk‘

Obviously, I([fn]) is order dense in L and the
restriction of o to I({fn]) is a strictly positive linear
functional on I([fn]).

Let [gn] be the sequence of elements of I([fn])
defined by: 9, = fl' g, = f2 - fl,...., 9, = fn - fn—l
for n=1,2,..., .

Let a = w(gn), for each n. Define o’ on

I((£)) by o'(9) = o = (51;)%) P

(g)) for
n=1 n

g

g € I({£]) .
It follows from the additivity and homogeneity of

the projection operator and from the definition of I({fn})
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that o' is a strictly positive linear functional on
I(LE D).

We note that f is an almost unit for I([fn}),
and that ©'(f) <1 for all n =1,2,..., .

By application of theorem (6.1), f € IA, (where
®p

again IA, is the ideal obtained by applying the exten-

P
sion process described earlier in this section).

A
Then, m' is strictly positive on IA,Q I(f)

A
Therefore, the restriction of w' to I(f) 1is strictly

positive on I (f). The theorem is proved.

Combining remark (6.1), the fact that every uni-
versally complete Riesz space is a C_(Q) where Q is
some extremal compactum, the fact that C_(Q) is order
separable if and only if C(Q) 1is order separable, and
theorem (6.2) above, we obtain that problem A is equiv-

alent to the following problem.

Problem A’ Let Q be an extremal compactum.
If C(Q) is order separable, does it then possess a

strictly positive linear functional?

Or equivalently, does every order separable C(X),
where X is a compact Hausdorff space, possess a strictly

positive linear functional?
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The next problem is motivated by theorem (1.1)

of this chapter.

Problem B. Is every sub-order separable sub-

Egoroff Archimedean Riesz space a measure Riesz space?

In view of theorem (1.1) of this chapter, we see
immediately that a positive answer to problem A would
imply a positive answer to problem B.

In fact, problem B has the following equivalent

formulation:

Problem B’ . Does every order separable C(X),
where X 1is a compact Hausdorff space, with the Egoroff

property possess a strictly positive linear functional?

Although we have not been able to solve problem
B above, we feel that the results of this chapter give
sufficient indication of the value of pursueing this next

problem.

Problem C. The theory of Banach function spaces
has been extensively covered in [ (18) Notes I-V]. The
existing theory assumes one to be working on a o-finite
measure space. The first part of this problem then is to
extend the theory of Banach function spaces to arbitrary
measure spaces with the finite subset property and with a

completely additive measure.
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Our investigations have shown that many of the
topologized Riesz spaces which possess "nice" relation-
ships between the topology and the order are measure
Riesz spaces. The second part of this problem then is
to extend the theory of Banach function spaces to just
order dense Riesz subspaces of spaces of measurable
functions.

The results we have obtained hold for locally
convex topological vector lattices. The third part of
this problem then is to obtain a theory for locally
convex topological vector lattice order dense Riesz sub-
spaces of spaces of measurable functions analogous to the

theory of Banach function spaces.

In section 2 of this chapter, we gave necessary
and sufficient conditions for a Dedekind-0-complete Riesz
space of extended type to be a Riesz subspace (not
necessarily order dense) of a space of measurable functions.
It would be better to have conditions for an arbitrary

Archimedean Riesz space.

Problem D. Find necessary and sufficient conditions
for an arbitrary Archimedean Riesz space to be a Riesz sub-

space of some space of measurable functions.
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