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ABSTRACT

CONTRIBUTIONS TO THE THEORY AND
CONSTRUCTION OF PARTIALLY BAIANCED ARRAYS

By

John Arthur Rafter

A partially balanced array (PBA) (m,N,s,t) of s levels,
m constraints, and strength t with index set As,t =
{)‘(xl,...,xt)|xi € {0,1,...,5-1}, i=1,...,t}) is an (m X N)
matrix with entires from a set of s elements such that in every
(t X N) submatrix each of the possible st distinct (t X 1)
vectors, (xl,...,xt)', occurs as a column x(xl,...,xt) times.

The PBA can serve as a design for a fractional factorial
experiment with m factors each occurring at s 1levels, when the
effect of N treatments is under investigation. If the PBA is of
strength t = 2u, all interactions involving u or fewer factors
are estimable, assuming there is no interaction of more than u
factors. If ¢t = 2u + 1, all interactions involving u or fewer
factors can be estimated even if interactions of u + 1 factors
are present. In addition, the PBA is a '"balanced'" design in the
sense that the resulting variance-covariance matrix of the estimators
is invariant under a permutation of the factor symbols.

In Chapter I, the analysis of a PBA is given for the special
case of s =t = 2., The analysis of the general PBA is a straight-

forward generalization.
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One problem of interest for PBA's is to determine the maximum
possible number of constraints for a given N,s,t and As,t' In
Chapter II, it is shown that, for any PBA, m < N. In the event that
s = t = 2, better bounds are derived when pi > gty ui = Bk
and by = 1. Also, a general result is given which is useful in
finding bounds in other cases. In each instance, it is shown that
the bounds are attainable. Next, an iterative bound on the maximum
number of constraints of a PBA of strength t is given. This depends
on the maximum number of constraints for a PBA of strength t-1.
Finally, it is shown that the bounds obtained for a PBA in two
symbols can be useful for arrays in more than two symbols. Moreover,
the bounds are shown to be attainable in certain cases.

The first result of Chapter III is a simple set of necessary
and sufficient conditions for the existence of a PBA (t+1,N,2,t).
These conditions are employed to give a method of construction of a
PBA (m,2N,2,t+l) using a PBA (m,N,2,t) when t = 2u. Further-
more, when t = 2, conditions are given under which an m+1St row
can be added to the constructed array, and a necessary and sufficient
condition for mtl to be the maximum possible number of rows is
given.

The final result of Chapter III is the construction of a PBA

(m,N,s,2) from a PBA (v,b,2,2) with index set {b-2r+l,r-1,1},

where m =71, N = b-r, s = —, %(0,0) = b-r-(s-1)(2r-s-1),

b
A(0,i) =r-s (i =1,...,s-1), and A(i,j) =1 (i,j = 1,...,s-1).

The array (m,N,s,2) is shown to have the maximum possible number

of constraints.
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Chapter IV is devoted to the relation of PBA's to other areas
of mathematics. In the first section, the existence of certain PBA's
is shown to be equivalent to certain Tactical Configurations. 1In the
second section, conditions under which a PBA will give a strongly
regular graph are investigated. 1In the final section, Hadamard

matrices are used to construct PBA's.
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CHAPTER I

ANALYSIS

1.1 INTRODUCTION

The basic principles of the subject of Design of Experiments
were first presented by R.A, Fisher (see Fisher (1960)). Since that
time a great number of researchers in many different disciplines
have contributed to the development of the subject.

Designs are called two dimensional or multi-dimensional
according as they control variation in one or more than one direc-
tion. Balanced incomplete block designs introduced by Yates (1936)
and partially balanced incomplete block designs studied for the first
time by Bose and Nair (1939) are two of the many designs of the first
kind. latin square, Youden square, and lattice square designs are
a few of the second kind.

In this work, we will be concerned with the existence and
properties of a class of designs of the first kind called partially
balanced arrays. Moreover, since once a design has been constructed
it must be analyzed, we will indicate in this first chapter how one

might perform the analysis of a partially balanced array of strength 2.

1.2 FACTORIAL DESIGNS

In experimental design, the variables an experimenter controls

are commonly called FACTORS. The number of forms or categories of a



factor appearing in an experiment is called the number of LEVELS of
that factor. A particular combination with one level from each
factor is a TREATMENT. If all possible treatments, or a definite
portion of them, is of interest, the experiment is called a FACTORIAL
experiment.

A factor can be QUANTITATIVE, such as different temperatures
or different doses of a drug, or it can be QUALITATIVE, such as dif-
ferent methods of testing or different chemical solutions. There is
usually no natural order established among the different levels of
a qualitative factor, but the different levels of a quantitative factor
correspond to well-defined values of some numerical quantity.

In a factorial design, if all possible treatments are included,
the experiment is called a COMPIETE FACTORIAL. If repeated measure-
ments or observations are made for each treatment, it is called
FACTORIAL WITH REPLICATES. 1If a complete factorial design has the
same number of replicates, every level of a factor or every combina-
tion of levels of any given number of factors appears the same number
of times, and the design is said to be BALANCED. Furthermore, the
levels of one factor occur with each of the levels of any other factor
with equal frequency, and the design is said to be ORTHOGONAL.

Suppose a characteristic under study is affected by several
factors FI,FZ,...,Fm, where each factor can assume two or more
different levels. For example, let F, assume s, levels

i=1,...,m. Clearly there are eSS possible treatments.

Sloszn
In case all factors assume the same number of levels,s, (i.e.

s =3, i=1,...,m), we call the design SYMMETRIC. In this case,

a complete factorial design will consist of all possible s™ m-tuples



of s elements. It will be called a COMPIETE s" DESIGN.

The effect of a treatment in a factorial design is in general
regarded as the sum of an over-all mean, u, the effects of the m
factors, and the effects of interactions of all orders among these
factors. For example, in a 2™ factorial design, the 2™  treatments
provide independent minimum variance estimates of the general mean

and of the 2™ . 1 effects:

m main effects
E‘%:ll 2-factor interaction effects
-1 -2
E‘ELE%élL_). 3-factor interaction effects

.
.
.

m(m-1) (m-2)...(m-h+1)
h!

h-factor interaction effects

and a single m factor interaction effect.

In a complete factorial design the required number of measure-
ments is often beyond the resources of the investigator; or it is not
feasible to carry out; or it gives more precision in the estimates
of the main effects than necessary; or estimates of higher-order
interaction effects are of less interest. For example, in the above
2™ design if m = 8{ each main effect is an average over 128 combina-
tions of the other factors. These considerations have given rise to
the use of confounding and fractional replication of complete factorial
designs.

The general theory of confounding in s" factorial designs
was derived by Bose and Kishen (1940) and Bose (1947). This was done

by putting the s" factorial level-combinations (treatments) into



l-to-1 correspondence with the s" points of the m-dimensional finite
Euclidean geometry EG(m,s), based on the finite field GF(s). The

s levels were taken to be in l-to-1 correspondence with the elements
of GF(s). Using these correspondences and various other properties
and features of EG(m,s) and the associated finite projective geometry
PG(m-1,s), the results were obtained.

This work was continued by Bose and others to include the
theory of fractionally replicated designs of the type sm-k, obtained
by taking the sm-k level-combinations satisfying a set of k
appropriately chosen linear equations over GF(s). The equations were
chosen so as to obtain a fractionally replicated design with the pro-
perty that all the n-factor and lower order interactions are estimable,
assuming that the remaining higher order effects are zero. Such a
design is said to be of RESOLUTION 2n+l1 (see Box and Hunter (1961)).
A design to estimate the n-factor and lower order effects, assuming
that (n+l)-factor interactions may be non-zero and interactions of
higher order are zero, is said to be of resolution 2n + 2.

Consider a lE replication of a complete s" factorial

S
. m- . .
design, where the s k treatments chosen satisfy the above mentioned

. . m-k
linear equations. These treatments can be represented by a m X s
matrix. Furthermore, it can be shown that this matrix is an orthogonal
array of strength t.

An orthogonal array (m,N,s,t) of s levels, m constraints,

strength t, and index ) is a m X N matrix with entries from a

1 .
It is not true that every orthogonal array can be obtained as a

solution of a set of linear equations of the kind mentioned above.



set S of s elements, s 2 2, such that each t X N submatrix
contains all possible t X 1 column vectors of S each repeated

A times. Orthogonal arrays were first defined and studied by Rao
(1947, 1950). Their importance, which was suggested above, derives
from the fact that a necessary and sufficient condition that a
fraction be of resolution (t + 1), where the estimates of various
parameters are mutually uncorrelated, is that it be an orthogonal
array of strength t.

Unfortunately, although orthogonal arrays lead to a reduction
in the number of treatments necessary to estimate a given set of
factors, this decrease is often not large enough, with the result
that they become uneconomic to use. Thus if we insist that the
fractional factorial design be such that the estimates are mutually
uncorrelated, then, in general, the number of treatments will be
much larger than the number of effects to be estimated, and experi-
mental costs will rise. The obvious remedy to the situation is to
drop the requirement that the estimates are mutually uncorrelated.

Let L be the vector of parameters and L its estimate,
and let V denote Var (i), the variance-covariance matrix of the
estimates. Then if the estimates are mutually uncorrelated, V is
a diagonal matrix. 1In view of the economic conditions discussed
above, V must in general be taken to be non-diagonal. We can,
however, restrict our attention to a certain class of patterned
matrices and still reduce the number of treatments considerably. We
shall call a matrix V 'balanced" if it is a member of this class.

In a fractional factorial design, the variance-covariance

matrix of the estimators is called '"balanced" if it is invariant



under a permutation of the factor symbols. For example, let

L' = (u; Fy,...,F ), then V is "balanced" if var (F.), Cov @i,F))
and Cov (?i,ﬁj) are independent of the indices i and j, i # j;
i,j=1,...,m. A fractional factorial design will be called '"balanced"
if its variance-covariance matrix is '"balanced'". Srivastava (1970)

has indicated that a necessary and sufficient condition for a frac-
tional factorial design of resolution t + 1 to be '"balanced" is

that it be a partially balanced array (PBA) of strength t.

1.3 PARTIALLY BALANCED ARRAYS

A partially balanced array1 (PBA) A with parameters
(m,N,2,t) and index set (uo,pl,...,pt) is an m X N matrix with
elements 0 and 1 (say) such that in every t X N submatrix every
vector containing 1 nonzero elements occurs oy times as a column.
(To obtain a '"balanced" fractional factorial design from A, simply
take its columns as treatments to be included in the design.) It
is clear that if by = A, 1 =0,...,t, then A 1is an orthogonal
array of strength t. Thus a PBA 1is seen to be a generalization
of an orthogonal array.

Partially Balanced Arrays were first defined and studied by

I.M. Chakravarti (1956, 1961, 1963). 1In addition, a substantial

In view of the definition of 'balanced" given above, these arrays
might better be named Balanced Arrays. Indeed, Chopra and Srivastava
have begun doing just that (see for example Srivastava and Chopra
0971a)). On the other hand, if by balanced one refers to the fact
that every combination of levels of any given number of factors appears
the same number of times, then there is a logical reason for calling
them partially balanced arrays, since any combination of t or fewer
factors appears the same number of times. 1In this paper we will
refer to the arrays as Partially Balanced Arrays or even less formally
as PBA's.



amount of work has been done in this area by D.V. Chopra and
J.N. Srivastava. We refer the interested reader to the Bibliography.

The subject of arrays in general and PBA's in particular
covers a rather wide sector of present combinatorial theory, with
applications in areas like the construction of statistical experi-
mental design, the theory of error-correcting and error-detecting
codes, tactical configurations, and graph theory.

A good deal of work has already been done in special branches
of the general area of PBA's. For example, explicit studies on
orthogonal arrays of strength 2 and 3 have been made by Bose and Bush
(1952), and on strength 4 by Seiden and Zemach (1966). Special prob-
lems have been studied under other titles as well, such as mutually
orthogonal Latin Squares and Hadamard matrices.

Another important special case of PBA's is the much studied
area of balanced incomplete block (BIB) designs. The incidence
matrix of a BIB design with parameters (v,b,r,k,)) is identical
with a PBA in two symbols, v rows, b columns, and of strength 2,

Mo = b - 2r + 3, By =T - A and Bp = A- Thus, every BIB
design corresponds to a PBA, and conversely every PBA in two symbols
and of strength 2 corresponds to a BIB design (with possibly unequal
block size).

When PBA's are considered as fractional factorial designs,
they are preferable to orthogonal arrays. As mentioned above,
orthogonal arrays involve an undesirably large number of treatments
(columns). For example, an orthogonal array of strength two, six
symbols and four rows would require at least 72 columns, but for the

same situation, Chakarvarti (1961) has constructed a PBA with 42 columnms.



1.4  ANALYSIS OF A PBA OF STRENGTH 2

The analysis given here is presented in a somewhat different
form and in more generality by Bose and Srivastava (1964).

Consider a complete 2™ factorial experiment. Let Fi
i=1,...,m represent the ith factor and fi represent one of the
two levels at which Fi can occur; for purposes of clarity this level
will be called the second level. We will signify the first level by

absence of the corresponding letter. Thus the treatment means

f1f2
that factors F1 and F2 are at the second level and the remaining
m - 2 factors are at the first level. The treatment which contains
all factors at the first level is denoted by the symbol 1. When they
refer to numbers, the letters Fi’ FiF

’ FiF Fk’ etc. will represent,

h| h|
respectively, the main effect of Fi’ the first order interaction of
Fi and Fj’ the second order interaction of Fi’ Fj and Fk’ etc.
It is very well known that each interaction can be expressed
as a linear contrast of all treatments. For example, a mathematical
. . . m .
expression for representing the contrasts in a general 2 factorial
experiment is (f1 + 1)(f2 + 1)...(fm + 1), where "+" is taken for
absence and '"-" is taken for presence of the corresponding letter
in the interaction under consideration,
Let f denote the column vector of all treatments, where
'= M M ..Q. .I.. LN ] LI .
f [l,fl,fz..., flf2 ; ; flf2 fm] Let F denote the
column vector of F's in the same order where the first position

represents the mean, u. Then we may represent the above mentioned

contrasts in matrix notation as:

1.4.1) F =8'f



m m . :
where @#'is a 2 x 2 wmatrix of plus and minus ones, and &8ny two rows

of &' are orthogonal. Since la 83' =1 n» Miltiplying both sides
2 2
1

of (1.4.1) by -

é = gives

N

(1.4.2) £ =

The matrix & is sometimes referred to as the Effect Matrix
let A = (m,N,2,2) be a PBA with index set {po,ul,pz}. Each
column of A represents a treatment. For a given column, if there
is a one in row i, then the corresponding treatment will have factor
i at the second level, and if there is a zero in row i, factor i
will be at its first level. Llet y be an N rowed column vector,
where the ith entry in y represents the yield of the treatment which
corresponds to the ith column of A.
Using A, we wish to estimate the mean and the m main effects
under the assumption that no interactions of two or more factors are
present. Thus F' = (', 16) where B' = [u; FI’FZ""’Fm] and 1

0

is a vector of all zeros. let @& be the matrix which contains the

0

first m+ 1 columns of @&, then from equation (1.4.2) we have

2
It is seen from this equation that each entry in f corresponds to
a row of 60. That is, 1 corresponds to the first row of 60, f1
to the second row, and so forth. Using this correspondence, we gen-
erate an (N X m+l) matrix X.
Consider the jth column of A. Then this column corresponds
to a particular treatment, t (say). We take as the jth row of X

the row in 60 which corresponds to treatment t.
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EXAMPIE: let A= 0 0 0 1 1 1 where
0 1 1 0 0
1 0 1 0 1 0

(F)) (£) (£,£) (£) (£,£) (£ £,)
the letters in parentheses are the treatments represented by the

f f ,f.f_,f £

= L . .
columns. Then m = 3, f (1; £ EPTIIEITE PLaY f1f2f3],

REPILEL
B' = [P-; F1:F2>F3]’

" -1 -1 -1) (1)
§1 1 -1 -1 (£)
il -1 1 -1 (£,)
8, = il -1 -1 1 (£,)
111 (£,£,)
i1 1 -1 1 (£,£5)
i
i1 -1 1 1 (£,£,)
i
11 1 1] (£,£,£,) , and
Z
i1 -1 -1 D (f3)
;1 -1 1 -1 (£,)
x= 1 -1 1 1 (£,£,)
11 -1 -1 (£))
11 -1 1 (£,£3)
E 1 1 -1 (£,£,) , where the

treatments are given next to their corresponding row in 60 and X.
Let us make the assumption that the application of the treat-

ments represented by the columns of A is done using a completely

randomized design with one replication per column. Thus we may

assume that there are no block effects. We further assume that

var (y) = oZIN and that the effects are additive. The construc-

tion of X then gives that the expected value of y, written E(y),

is equal to L Xg.
M
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The normal equations are

L

(1.4.3) = X'%g = X'y,

N

so that if (x'x)'l exists, the least-square estimates are given by
(1.4.4) 8= 2"x'%) X'y.

Consider X'X. We may label the rows and columns of X'X
with the elements of B taken in order. Thus the first row and
first column will be labeled with ., the second row and the second

column with F and so forth. Let x(el,ez) denote the element

1’
in X'X which stands at the intersection of the row corresponding
to ey and the column corresponding to €y where e, and e, are
two not necessarily distinct elements of pg. Following the proof

of Theorem 3.1 in Bose and Srivastava (1964) one can show that

X (uow) = X(Fi’Fi) =N

XsF i) =Wy - By

let a = Wy = Hg and b = Ho ~ Zp.l +p,2, then
N a ... al  (mtl x mtl)
N b ..
X' = b .
L] . L] b
a b M b N .

It is a straightforward calculation to find (X'X)-l. The interested

reader may check to see that (X')().1 is given by the following.
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r 2 3
la+2 @+n@nn) -2 @+ @b |
% =
L_ % (q + (m-l)r)jm (4:1-1-)1m +rJ |
where jm is an m rowed column vector of ones
Jm is an m X m matrix of ones

I is the m X m identity matrix

2 2
q =N -a (@) + (@-2)nd and

(N2 - a2m + (m-1)Nb) (N-b)

@b - &%)
(N2 - a2m + (m-1)Nb) (N-b)

r =

The above can also be used to obtain Si, the sum of squares

due to error. Indeed

(1.4.5) Si =y'y - y'XB.
The number of degrees of freedom for error is N - (m+l).

The expressions (1.4.3) and (1.4.5) can be used, for example, to

carry out t-tests for hypotheses that any individual effect is zero.



CHAPTER 11

SOME BOUNDS ON THE MAXIMUM NUMBER OF CONSTRAINTS

2.1 DEFINITION AND NOTATION

DEFINITION 2.1.1: Let A = (ai ) be an m XN matrix,

3

where the elements aij of A are symbols 0,1,2,...,s-1. Con-
sider the s® (L x t) vectors, X' = (xl,...,xt), which can be
formed where x; = 0,1,...,s-1; i =1,..,,t, and associate with each
(t X 1) wvector X a positive integer x(xl,...,xt), which is in-
variant under permutations of (xl,...,xt). If for every t-rowed
submatrix of A the st disﬁinct (t X 1) vectors X occur as
columns x(xl,...,xt) times, then the matrix A 1is called a
partially balanced array (PBA) of strength t in N assemblies
with m constraints (factors), s symbols (levels) and the specified
A(xl,...,xt) parameters. When x(xl,...,xt) =)\ for all
(x1’°"’xt)’ A is called an orthogonal array of index ).

The set of all x(xl,...,xt)'s of an array of strength t
in s symbols will be called the index set of the array and will be
denoted by AS’ . The array A will be represented as the PBA

t

(m,N,s,t) with index set As "
b

In view of the fact that x(xl,...,xt) is invariant under
O S

permutations of (xl,...,x ), we will denote by )\ the
t xl,xz,...,xr

number of repetitions of a fixed columm of any t X N subarray of

A, where the column contains i, x.'s, i, x,'s,... and i x 's.
171 2 72 r'r

13
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r

(xj =0,1,...,s-1, zj-l ij =t, r = min {s,t}). “
- . t t t-i,i
In case s 2, we will denote XO by o ""’kO,l by
ugt),..., and xi by pét). Where no ambiguity can arise, we will

(t)
i

omit the superscript t from pu and write simply Wy Clearly,
Wy is the number of times a fixed column containing i ones occurs
in any t X N submatrix of A. Finally, we will refer toa t X 1
column as a t-tuple.

In view of the above we have

DEFINITION 2.1.2: (i) Let r = min {s,t}, then

il,...,ir
AS’t = {)5(1""’)(1‘ xj - 0’1,.."5-1’ lj - 0’1,...’t, where

. r . _
j=1,...,r and zj=1 lj t.}

(ii) Dy ¢ = {ui‘i =0,...,t] .

2.2 PROPERTIES

PROPERTY 2.2.1: Let \Ast! denote the number of elements

in As e Then, for a PBA of strength t in s symbols,
bl

s+t-1

| A ) .

s ¢l

Proof: The number of elements in As,t corresponds to the
number of distinct combinations of s elements takem t at a time,
where an element may be repeated 0,1,...,t times in a given combina-
tion, and order is not a factor. Let the s elements correspond to
s cells and the t possible places in a t-tuple to t indistinguish-

able objects. Then a distinct '"t-combination" can be formed by placing

zero, one, or more objects into each of the s cells (i.e. corresponding
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zero, one, or more of the t places available to each of the s
elements). We can represent s cells by the spaces between s + 1
bars. Such a representation must start and finish with a bar. Thus
we have s - 1 bars and t objects to position. In other words,
we have s - 1 +t spaces to fill with s - 1 bars and t objects.
This can be done in (s+:-1) ways.

COROLLARY: |A, | = |A 5l -

+2 +2
Proof: ‘AZ,x+1‘ = (xz ) = (xx ) = ‘Ax,3‘ .

PROPERTY 2.2.2: let A be a PBA (m,N,s,t) with index

set A, .- Any subarray of A, (m',N,s,t) with m' rows, where
’

t <m'<m, is a PBA with index set Ag ¢+ Thus, if the PBA
bl

(m',N,s,t) does not exist, then the PBA (m,N,s,t) cannot exist.

Proof: This follows directly from the definition.

PROPERTY 2.2.3: Let A be a PBA (m,N,s,t) of strength t

with index set As . Then A is a PBA (m,N,s,t-1) of strength
]

t-1, where

(i) if s<t,

(t-l)il,...,iS ~ x(t)il+1,...,is N X(t)il,12+1,...,is
)\ xl,...,xs xlgooo,xs xl’xz,'-.,xs
. 4 k(t)ll,...,1s+1 .
cte x ’.'.’x ’
1 s

(ii) if s =2 t,

(t-l)il’o.o’i (t)il+1"..,i (t)il""’it_l-'-l

t-1 t-1
= +.. .04+
x xl’...’xt-l x xl,...’xt-l K xl,..l,xt-l
(E)i sees,i , 1 (t)i seee,i ,1
1 t-1 1 t-1
Foeat A\ +...+ ,

XpseeesX 15 X KpsesosX 10X
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where for j = t,t+l,...,s x, ¢ {xl,...,x

j t-l}'
Proof: It follows directly from the definition that A is

also a PBA of strength t-1. Thus, we have only to show (i) and (ii).
It is sufficient to show (ii) since (i) would follow from a similar

argument.

Consider a (t-1 XN) subarray of A. A (t-1)-tuple con-

taining i, x.'s, i, x,"'s,..., and i 's i i iti
8 1 55 1 XS, , an £-1 xt__1 s in fixed positions can

occur as a result of deleting an xj (j=1,...,t-1) from a t-tuple

1
containing the i xl's, i, xz's,..., and i1 xt-l's in the fixed positions
and xj in the tth position. Also a (t-1)-tuple could occur by

deleting an Xy (3 =t,...,s) from a t-tuple with i1 xl's,...,

. . . - . th -
and i 4 xt_l's in the fixed positions and xj in the t position.

Thus (ii) follows.

COROLLARY 1: Iet A be a PBA (m,N,2,t) with A2 e =
bl

{ugt)|i = 0,...,t}. Then A 1is a PBA of strength t-1, where

(t-1) _ (v) t)y, . _ -
Wy My + bigl’ i=0,...,t-1.
COROLLARY 2: ILet A be a PBA (m,N,2,t). Then A 1is a

PBA of strength 2, where

(2) _ gtHi-2 £-2y ( (t)

(G

i j=i j- _iH i=20,1,2.

Proof: Apply Corollary 1 repeatedly.

Consider a PBA (m,N,s,t). Let Ni (i =0,1,...,s-1) stand
for the number of i's in a given row of A. Then Ni is independent
of the row of A which we choose. This follows from the repeated

application of Property (2.2.3).
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COROLIARY 3: let A be a PBA (m,N,2,t) with index set
AZ,t’ then

£-1 e-1. (t)
=0 U3 ¥y

(i) NO

-1
G oy =z Gipe®

i £ (©)
(i) N =55

Proof: (i) Consider a PBA in two symbols of strength two.
Then the zeros in a given row must occur in 2-tuples with either a
®)'s so that

1°1
Ny = b + By In view of Corollary 2, for a PBA of strength t in

zero or a one. There are (g)'s and |

two symbols

Z
o

I

+

It
7~
N

p—
~
-
[
o~
(md
o’
-+
~~
(ad
N’

(ii) As in (i) we see that

2

t-1 t-2, (t) t t-2, (t)
Ziap Goby Tt B Gpdbg
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(iii) Since N = N0 +-N1, we have

t-1 ,t-1, (t) t t-1, (t)
g=0 g 7+ Tym Gop¥

=ud? + 2T LD + CTHRE + 0O
- uét) + z;;i (E)u§t) uét) .
oot t, (t)

Ej=o (J.)u-j .

Note that the well known relation, (2) + (bfl) = (azl), was used

throughout the above proof.

The above corollary can be generalized to PBA's with s > 2

symbols. However, the notation becomes overwhelming rather quickly.
Consider the PBA (m,N,s,2) and let xi } =N j i,j =0,1,...,8-1.
b} bl
Then
s-1

Ny = Zy20 M5 2

since i occurs in a row in common with j = 0,1,...,s-1 in some

other row xij times. Also,

s-1 N = s-1 _s-1

N=Z;0N; 7 Zij=0 Zj=0 Mij -

To find Ni and N for an array with s symbols and of strength
t > 2, one would need to apply Property 2.2.3, which is already

quite involved.



19

2.3 DIOPHANTINE EQUATIONS

In this section we will be concerned with a set diophantine
equations, which form a set of necessary conditions for the existence
of PBA's.

These equations are given by

IEMMA 2.3.1: 1In the PBA (m,N,2,t) with index set
{po,...,pt}, let n(i) be the number of i-dimensional columns which

h|

contain exactly j ones, i = t,...,my, j =0,...,i. Then

i-t+g

ity Jy  i=dy (1)
Oy = Z T QG

[ A
where ¢ = 0,1,...,t.

Chopra (1967) has given a very simple straightforward proof
for the above when i = m. The proof also applies when t < i < m,
so that no further work is needed. We shall be concerned with the
above equations in a slightly different form and in less generality,
so we give a proof to the following corollary.

COROLIARY 2.3.2: In the PBA (m,N,2,2) with index set

{po,ul,uzl, the following are true.

() Ziy DY = Quy s

(1) Eg 30 = 16y +ay)

(iii) 2;=o n§1) =gty 5 i 2.

Proof: (i) We would like to count all of the possible
2-tuples, (i), which can occur in i rows of A. We can choose
D's
in these two rows is oo the total number of (})'s is (;)pz.

two of the i rows in (;) ways, and since the number of (

On the other hand, a column containing j ones will contribute
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(%) (i)'s to the total. Noting that the number of columns contain-

ing j ones is n(l), we see that the total number of (i)'s is

]

also equal to Z;=2 (g)n§i) = z;=0 (g)n;i). Thus,
Ly o (4

(ii) This follows in the same manner as (i), where both sides
are equal to the total number of ones in i rows of A.
(iii) This follows, since both sides are equal to N, the number
of columns of A.
As an example of the usefulness of the above equations con-
sider the following.

THEOREM 2.3.3: let A be a PBA (m,N,2,2) with index set

{uo,ul,pz]. For m 2 3 we have
. , . . . 3y _ 3 -
(1) "N < Mo + o with equality if and only if n0 n, 0.
(ii) Let Wy = Mg + My Then m < 4 with equality if and only

if p,o = p.z.

(iii) Let W1 = Mo + Wy and m = 4. Then A 1is a PBA of strength

3 with index set {pé3) =0, p§3) = uéZ)’ u§3) = “éZ)’ M§3) = 0}.
(3)

. _ . . - 3) _ .
(iv) Wy = By if and only if n1 3n3 T My if and
only if n§3) = 3nés).

Proof: (i) By Corollary 2.3.2, for i = 3 we see

n, + 3n3 = 3u2
ny + 2n2 + 3n3 = 3u1 + 3p2
n, + ny + n, + ng =y + 2u1 + By *
Thus (1) n, = 3p2 - 3n3

n, = 3u1 + 392 - 2n2 - 3n3
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(2) = 3p,1 - 3p.2 + 3n3
Ng =Hog * 2y tuy -0y mmp -y
3) = ug "By tuy - Ny .
Since no 2 0, the last equation gives
O sug ~wp tuy -0y,
so by + ng < Ko + Moo

Since ny 2 0,

u15u1+n35p.0+p.2.

Clearly, if n, = ng = o, W1 = B + Moo Conversely, suppose

By = Hg +'p2. Then, from equation (3) above, n_ = -n,. Since both

0 3
n, and n, are non-negative, it follows that ny = "Ny = 0.
(ii) Since ng =n,g = 0, any column of A can have at most

two zeros and two ones. Thus m < 4.

Suppose m = 4, then by Corollary 2.3.2,

= 2, (&) (4) 4) _, ()
12@2 Zn2 + 6ny 7 + 12n4 = 2n2 and
- . ®) (4) (4) @) _, )
a(pl + “2) n, o+ 2n2 + 3n3 + 4n4 = 2n2 so that
4p.1 + 4p.2 = 12}),2 or
by = 20y -

Further, since By = K + oo it is clear that ho = By

Suppose =c = by so that Wy = 2c, then A can be

o}

written as the juxtaposition of ¢ arrays of the form



22

- = O ©
- O = O
- O O
© = K O
o = o ~
O O = =

Since B is a PBA, the juxtaposition will be a PBA.

(iii) Since B is a PBA of strength 3 with pé3) =0 = p§3)
3 3
and p{ ) - ué ) = 1, the juxtaposition of o B's will be a PBA

of strength 3 with the indicated index set.

3) _ (3)
1 =30

(iv) That My =y if and only if n follows from

equation (2) above.

3)

0 Then equations (1) and (3) give

Suppose n§3) = 3n
3p2 - 3n3 = 3po - 3ﬂ1 + 3u2 - 3n3 i.e. Mo = By Now suppose

= by then, by (3), ng = Multiplying both sides by 3

ko Wy = f3°

gives 3no = 3u2 - 3n3 =n,, by equation (1).

The equations of Corollary 2.3.2 can be used to find other
relations between the elements of the index set. For example, for
m 2 4, one can show that 2@1 < min {3u0 gy gt 3u2}. Further-
more, the equations can be generalized to arrays of strength higher

than 2 and similar relations may be found. For example, for t = 3

and m = 4

3 3 3 . o ) (%)

pé ) < pg ) + ug ) with equality iff ng o =mn, " = 0
3 3 3 o 4 4

u{ ) < pé ) + p; ) with equality iff né ) - “g ) - 0.

And, for t =4 with m=25,
4 4 4 4 4 . . . (S (5)
ui ) + u§ ) < ué ) + ué ) + pé ) with equality iff no ) = n =0

u§4) s uga) + pia) with equality iff n;s) = nés) =0
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)

4
SERRL 1

with equality iff n = nés) = 0.

A second example of the usefulness of the diophantine equa-
tions of Corollary 2.3.2 is that their solutions are useful in the

construction of PBA's.

EXAMPIE 2.3.4: We wish to construct a PBA (m,5,2,2) with
index set {uo =2,p; =1u, = 1} with as many rows as possible.

(i) Without loss of generality we can write down the first two

rows as 0 0 01 1
1 01
(ii) For 1 = 3, the equations in Corollary 2.3.2 are
3 = n, + 3n3
6 = ny + 2n2 + 3n3
5 = n, + ny + n, + n,.
The solutions are n n n n

(b) 2 0 3 0
The resulting arrays can be written as

(a) (b)

o O ©

0
0
1

o = O

11
01
01

© O ©O
o O ©

01 1
1 01
1 1 0
so that, for example, in (a) there is one column with three ones,

three columns with one one, and one column with no ones.

(iii) For 1i = 4, the equations are

6 = n, + 3n3 + 6n4

8 = ny + 2n2 + 3n3 + 4n

5 = n0 + n1 + n,

4

+n, +n, .

3 4
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The solutions are n n n n n
(d) 1 2 0 2 0.

Solution (d) is not compatible with solutions (a) and (b), and

solution (c) is not compatible with solution (b). But using solu-

tion (a) we find (c) 0 0 011
0 01 01
01 0 01
1 0 0 01
(iv) For i =5, the equations are
10 = n, + 3n3 + 6n4 + 10n5
10 = n, + 2n2 + 3n3 + lm4 + Sn5
5 = n, + n, + n, + n, + n, + ng .
The only solution of these equations is n, = 1, n, = 1,
n, = 1, ng = 1, n, = 1, and ng = 0. But this is incompatible with

(c) above. Thus the maximum possible value of m is 4, and the

PBA (4,5,2,2) with index {2,1,1} is given by (c).

2.4 BOUNDS - PBA's (m,N,2,2)

Suppose we are given a PBA, A, with index set AS " Then
]

the elements of As,t are fixed numbers as are N,s, and t. 1In
fact the only parameter which is not completely fixed is m, the
number of constraints (rows) of the PBA. This is clear, since if

A has m rows, the PBA obtained from A by deleting the last row
is a PBA with the same N,s,t, and As,t (see Property 2.2.2).
Moreover, it may be possible to add an m+1St row to A and obtain
a PBA with the same N,s,t, and As,t' The problem is to determine

the conditions under which this can be done. A partial answer is
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given in this section by determining some upper bounds on the value
of m for certain PBA's.

We start by showing that m < N for all PBA's.

LEMMA 2.4.1: let A be a PBA (m,N,2,t) with index set
A2,t = {pgt)‘i = 0,...,t}. Then the eigenvalues of AA' are

b + mc with multiplicity one and b with multiplicity m - 1,

t-1 (t-2)u§t) St 2y ()

where b = zj=1 j-1 c = zj=2 (j_z)p.j

Proof: Recalling Corollary 2 of Property 2.2.3, we recognize
b as the number of times the 2-tuple (2) (or (é)) occurs in any
two rows of A. Likewise, c is the number of times the 2-tuple
(i) occurs in any two rows of A.

By simple matrix multiplication we see that
" - +
@) AA b I tcJd

where Im is the identity matrix and Jm is an m X m matrix of
all ones. Consider an orthogonal transformation which diagonalizes

Jm. Multiplying the right side of (1) by this transformation gives

bI +c
m

The eigenvalues of this are b + cm with multiplicity one and b
with multiplicity m-1l. Hence, AA' has the indicated eigenvalues
with the indicated multiplicities.

It is well known that AA' and A'A have the same non-
zero eigenvalues with the same multiplicities. Thus A'A, which is

N X N, has the above given m positive eigenvalues, and it follows
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that N 2 m.

Now, suppose A is a PBA (m,N,s,t) with index A We

s,t°
replace each non-zero element in A with a one, so that A becomes
a PBA in two symbols, O and 1. Then the above gives that m < N.

We have thus shown that m < N for any PBA.

THEOREM 2.4.2: Let A be a PBA (m,N,2,2) with index set

2
{“‘0’“1’“‘2}' If u‘l > ko then

N by
2 b
Bl T BoH2

m <

with equality if and only if the number of ones in each column of
A is the same.

Proof: Let nj be the number of columns of A which con-

tain j ones, and let

m

T, jn,
=1 7]

Since nj 2 0 for all j, it follows that
m =2 m 2 .2
0 <z, j =] . T X, j n, - N(
EJ=0(J » n, >:J=1 in, @3)

Using Corollary 2.3.2, we see that

.0
J _N(u1+p'2) and

m

2
Zj=1 jn, =m(m 1)p.2 + m(;_x,1 +p,2)

j
Thus
1 2
0 <mm-1py +m(u; +u,) - & MGy +uy))
2
2 m 2
=mpy by - Gy teg)

Since m>0
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m 2
0 < mu, + Wy - ﬁ'(pl + pz) and

N p
1 2 2
m(ﬁ' (U‘l + u'z) - N—) < By o

2
m((lll + l-l'z) - NlJ-z) < NP']_ >
2 _ ) <N
muy - gy Wy o
. . 2
Since by hypothesis Bl = HoHo >0,

N By
mS'z——— .
b T b}

Suppose that the number of ones in each column of A is

1l m

the same and equal to k. Then 3 = N 2j=1

oo _ 1 -
Jnj N (k nk) k.

Furthermore,

G-9Hk_ =0,
j

in the first part of this proof gives,

m -2
Zj'—'l (j - j) n

so that, replacing < with

m = i “1
2 .
K1 T BoM2
Suppose
m = 2 .
H1 T BoM2
Then, replacing < with = 1in the first part of this proof and

following the argument in reverse order, it is clear that

m . .2 _

zj=0 (J = J) nj = 0.
732 . . . .2

Thus (§ - j) nj =0 for each j =0,...,m. Since (j - j) =0

if and only if j = j, it follows that nj =0 for all j # 3 and
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that n_ = N, so that the number of ones in each column of A is
h| -

the same and equal to j.
EXAMPIE: Consider the PBA (m,6,2,2) with index set

{po =1, by = 2, by = 1}. Then by the theorem

The array is given by
0 0 0111
01 1 0 01
1 01 01 O
11 01 0 0

As mentioned in Section 1.3, a PBA with an equal number of
ones per column (say k) is the incidence matrix of a balanced in-
complete block (BIB) design.

COROLLARY 2.4.3: A PBA (m,N,2,t) which is also the incidence

matrix of a BIB design (m,N,r,k,)\) with k < m has the maximum
possible number of rows.

Proof: We need only show that m is a maximum when the
PBA is considered to be of strength 2. As an array of strength 2,

the PBA has index set {po =N - 2r + ), By ST - Xp, = SE

Thus pi - Bghy = (T - X)z - AN - 2r + 1)
= r2 - W
= r2 -2 iﬂ
= £(rk = Am)
=L@ -n>o,

where we have used the well known results that for a BIB design,

Nk = rm and r(k-1) = \(m-1). Now, since the array has k ones
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in each column, Theorem 2.4.2 implies that m is the maximum number

N u _
(Indeed —; 1 = z(r A) - m).
Wy = Bghy g (F2)
The corollary implies the following interesting property.

of rows possible.

Let A be a PBA of strength t 1in 2 symbols. I1f, when A 1is con-
sidered to be a PBA of strength 2, ui < ooy s then A cannot have
the same number of ones in each column. This follows, since, if A
had k (say) ones in each column, the proof of the corollary would
give ui > Woys @ contradiction.

(In the above corollary and property we exclude the case
m = k, which would mean Wo = Wy = 0 and Wy = N.)

THEOREM 2.4.4: let A be a PBA (m,N,2,2) with index set

2
{uo,ul,pz}. If uy = ugeys then m <N-1.
Proof: With each column of A we associate a distinct

variate. With the columm of A, which contains XpseeesXy

(x.

i = 0,1; i =1,...,m) 1in this order, we associate the variate

f(xl,...,xm). We consider certain linear functions of these N

variates.

Denote by ¥ the summation over all columns of A. Then,
N
we define the 0th stage function to be

§ f(xl,...,xm) R
the sum of all the variates.

Consider two number, o and cy» such that

(1) (g trpeg + Gp +py)e; =0 and

2 2
(2) ko CO + Zp.l coc1 + T cl =0 .



30

Choose any row, r, of A. Corresponding to this choice, we can con-
struct the linear function

§ ci(r)f(xl,...,xm) .
In the column of A corresponding to the variate f(xl,...,xm), the
symbol occurring in row r of the array is X @© or 1). 1In the
linear function constructed, we make the coefficient of f(xl,...,xm)
equal to < if x = i, i = 0,1. The linear functions so defined
are called first stage functions. C(Clearly, there are m first stage
functions, one for each row of A.

Provided ¢ and c

0 p are not both zero, equation (1) above

implies that the first stage functions are orthogonal to the Oth
stage functions. Equation (2) implies that each first stage function
is orthogonal to each of the other first stage functions. Thus, the
mt+l functions defined above are all mutually orthogonal and there-

fore independent. Since the maximum number of independent linear

functions of N variates is N, it follows that N 2 l4m or

m < N-1.
We now show that not both o and < are zero. Equation
(1) gives
hy T
= 1 2 - .
o ™ Y ™ < K <y (say)

Equation (2) gives
2 2 2 2
- 2 =
c; (K u.o) wKe+cepn,

2 2
ci(Kpg t i, - 2K pl) =0 .
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Thus, ¢y = 0 as well as o

2
as the following shows szo tp, = 2K Wy if and only if Wy = Bghg»

2
= 0, unless K ko + by = 2K Wqe But

so that by hypothesis there exist ¢, and c, not equal to zero.

0 1
24 K = Koy +
! Ho ™ 2
2
py tp Wy +u,)
iff 2u1—17,,—2'=u-0——1-—2—2+u2
Ho T Hy (TP VP
oM
iff 2u. (p, + +p,) = +)2+(+)2
t wpleg ) g tug) = oy +py Ballo T Ky
. 3. 2 2 2 2
1ff Zuy ey gy =gy F 2ughgky Fug,
, 2
iff u'l(N) = P'ou'z(N)
, 2
iff p.l = p.op.z .

THEOREM 2.4.5: Let A be a PBA (m,N,2,2) with index set

{po,l,pz}. Then the maximun value of m is m' = max {wgswyl + 2
and (m',N,2,2) exists.
Proof: Without loss of generality, we write the first two

rows of A as ko Ho

— T
0 0 0 11 1

0...0 1 0 1...1 .
Since u; = 1, the third row must have exactly one one in a column
of A which has a zero in the first row of A. cCall this column
e Likewise, the third row must have exactly one one in a column
of A which has a zero in the second row of A. call this column
C2.

CASE 1: Suppose that ¢ and ¢, are different columns.

1 2

Then, without loss of generality, we write the first three rows of
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*o byl
— % % %3 ,—/—
0 0o 0 1 1 1 1
0 o 1 o 1 1 1
0...0 1 1 o0 1..1 .

In adding a fourth row, we note that there cannot be more than one
one in the first ko columns, else p = 1 would be contradicted.
Suppose there is one one in the first Ko columns. Then, since

Wy = 1, there cannot be a one in column ¢ g» O Cq. But this

1’ c
leaves only by = 1 places in which to place b, ones. Thus, in
the fourth row we must put zeros in the first Mo columns and one
zero and My + 1 ones in the last M, + 2 columns.
Suppose we place the zero in one of Cys Cys OF Cq (c1

O)'s occurring in the first and fourth

say). Then the number of (0

rows of A is B0 + 1, a contradiction. It therefore follows that
the zero must be in a column which has ones in the first three rows.

Using similar arguments, we can continue to add rows as long
as there are columns containing all ones. A will thus have the
form of ko columns of zeros and by + 2 columns containing one O
and the rest ones, where each row has exactly one zéro in the last
by t 2 columns. Clearly the number of rows of A is hy + 2.

CASE 2: Suppose c¢, and c are the same column. Then

1 2

without loss of generality, we write the first three rows of A as

o1 2
0 00 0 11 1
0010 1
L ) 0 1 0 0 1 o e 0 1 .
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Using similar arguments to those used in case 1, we see that A has
the first ko + 2 columns with one one and the rest zeros, where
each row has exactly one one. The remaining p, columns contain

all ones. Clearly, the number of rows of A is + 2.

Yo
Since cases 1 and 2 are the only ones possible, the theorem
follows.

EXAMPIE: Recall Example 2.3.4 of Section 2.3. A 1is a PBA

(4,5,2,2) with index set {2,1,1} and was shown to have the form

0 0 0 11
0 01 01
01 0 0 1
1 0 0 01 .

THEOREM 2.4.6: Let A be a PBA (m,N,2,2) with index set

{po,pl,pz}. If ¢ 1is the number of ones in some column of A, we

have
2 2 2
0<m (|_1.0p.2 Tuy - “‘2) + ny.l(N-l) + 2m.{,(2;_|.1 - 2"'0“'2 + Wy = p.l)
2 2
+ 4 (l"P-oU‘Z = 4“’1 = u'o + 2“'1 = “'2) .

Proof: Without loss of generality, we may assume that the
first column of A contains { ones. Consider any two rows of the
array. If the first column contains (g), it appears bo - 1 more
times. Likewise, a (2) or a (3) appears Wy - 1 more times and
a (i) appears Wy ~ 1 more times. Since there are { ones in
the first column, the number of ways to choose two rows so that the
first column contains. (g) is (m;L). The number of ways to choose
two rows so that the first column contains (2) or (é) is fL(m-2),

and the number of ways to choose two rows so that the first column



34

contains (1) is (L).
1 2
let T be the total number of 2-tuples appearing in columns
other than the first which are identical with the corresponding 2-

tuple in the first column. Then

T= G- DM+ G - Dam -0 + @, - DE) -

Let f(i) be the number of columns other than the first which
have i coincidenceslwith the first column. Then any column with
i 2 2 coincidences with the first column will contribute (;) to

T. Thus
m i v _ M i .
so that
i -

£ o QED = Gy - DN + Gy - De@- 0+ 6, - DG,

m . . 2
or zi=0 i(i - 1)E(L) = m (uo -1) - m(p.0 -1 + ZmL(pl - po)

2
+ ¢ (U'O = 2"‘1 + lJ-z) + L(}J'O - IJ'Z)

In a similar manner we can show

Eieg 1 £(1) = (g +uy - D@ =) + Gy +u, - 12

=L(u-2 'IJ'O) +m(uo+u.1 -1 .

Also, clearly

m -
F=L o™ 5 ofeq . . .
Let f = N-1 Zi=0 i £(i), then, since f(i) = 0 for all i,

For definition see, for example, Bose and Bush (1952).
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0 < z?=0(i - B2

2.
=gl FEW - @GP ET, 1 fan)’

_am L . m No_ 1 o .m
= zi=0 i(i 1Yf (i) +2i=0 i £(i) N-1 (zi

2
-0 i £(1)) .
2
Thus, 0 < (N-1)[m (P'o -1 +mU'1 + zm'f,(u-l - P'O)
2 2 2
27 - 2uy tuy]- WG, -+
0 1 2 2 0
2 2
Zmﬂ(l-lnz = IJ-O)(H'O +H'1 -1)+m (P-o +U'1 - 1]
2 2
=m (uoy = Wy " By) F o, - 1)
2
+ Zm{,(zu-l = 2“-0“2 + Ho = H-l)

2 2
4 Gughy Ayt g 2y -y

COROLLARY 2.4.7: let A be a PBA (m,N,2,2) with index

set {p,o,p.l,p.z} then:

(N'l)u'l 2
(i) If £ =0, m< 5 provided Wy - p,z(p.o -1)>0
= byy-D)
3] b)) U‘o
(N'l)p'l 2
(ii) If ¢ =m, m< 5 provided Wy - “‘0(“'2 -1)y>0.

by = kWD)

In the following, let

Cp = bgHy ~ “21 L)

C, =, - 1)

C3 = 2(2“'2; = Zughy ey T k)

Cy = Bugpy - "“'i “Ho t 2ty

2 2
so that OsmC1+mC2+m.{,C3+LC4.
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EXAMPIE: Let A be the PBA (m,9,2,2) with index {3,2,2}.

Then C1 =0,c¢c, =16, Cc, =8, and C, = 7, so that

2 3 4

0 <16m - 8my, + 7&2 or
< 7&2
"=8@-2) °
where since by > 0, we take { so that 3 <4t < m. The right side
is minimized when ¢ = 4. Thus, since the maximum value of m is a

constant,

716) _
m < 8(2) 7.

Indeed we can express A as follows.

>
n
©O O 0o o o o o
o = = O = O O
H ©O O B M O O
H O B O O H O
O = O H O +H O
~ ~ O O O ©O ~
©C O = = O O ==
O © © O +H= = =
e e

2.5 BOUNDS - GENERAL CASE

In this section we will be concerned with applying the bounds
derived in Section 2.4 to PBA's of strength greater than 2 and with
more than 2 symbols.

THEOREM 2.5.1: Let A be the PBA (m,N,s,t) with index

set A, .. Then A contains s PBA's, where each array is of
9
strength t-1 in s symbols.

Proof: Choose any row, r, of A. Divide the columns of

A into s sets, so that each column in a given set has the same
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number in row r. Exclude row r, and call the m-1 rows of the

set, which has j in row r, A Let N, be the number of j's

i h|
in row r, then Aj has Nj columns. We show A is a PBA

3

(m-1,N,,s,t-1).

i

Excluding r, choose any t-1 rows of A. By definition,
every possible (t-1)-tuple must occur in these t-1 rows with the
j's of row r. Moreover, for Aj,

(e-Di.,...,1
A 1 Py

xl,...,xp

(t),l,il,...,ip

j,xl,...,x ’

where p = min {s,t-1}, x

j h|
zp i, =t-1. (If j =x_ € {x x }
j=1 j . J k 1"", p ]

= 0,..0o8=1, i, = 0,1,...,t-1, and

(t) 1 11,...,ip ) k(t)il,...,ik+1,...,ip )

j,xl,...,xp xl,...,xk 300X

A

Thus Aj’ j = 0,...o8-1, is a PBA.

COROLLARY 2.5.2: Let A be the PBA (m,N,2,t) with index

set {uili = 0,...,t}. Then A contains 2 PBA's,

1]

A

0 (m-1,N

2,t-1) with index set {nilni wis 1 =0,...,t-1}

o’

and

>
]

(m-1,N;,2,t-1) with index set {ni|ni = i=0,...,t-1}.

i1

THEOREM 2.5.3: Let mj be the maximum number of rows possible

for the PBA Aj of Theorem 2.5.1, j = 0,...,s-1. Then

m < min (mj) + 1.

Proof: This is clear, for, if m > min (mj) +1-= m, + 1
(say), then by the proof of Theorem 2.5.1, Ai has at least m, + 1

rows in contradiction to the hypothesis that m, is the maximum
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number of rows of Ai'
EXAMPILE: Consider the PBA (m,10,3,2) with index set

{2,1,1,2}. Then by Corollary 2.5.2

A

0 (m-1,5,2,2) with index set {2,1,1]

&

(m-1,5,2,2) with index set {1,1,2}.

The maximum possible number of rows for A0 is 4. The

maximum possible number of rows for A1 is also 4. Thus, the array

can have at most 5 rows. We give the array as follows.

H O O O ©
o = O O O
© © » o o
© ©o © = o
= e =
©O O o o+~
e = T
H = O =
= T i i
© M =

The bounds derived in Section 2.4 can also be useful when directly
applied to PBA's of strength 2 in more than 2 symbols. For example,
let A be the PBA (m,20,3,2) with )\00 =4, )‘01 = 3, >‘02 = 3,
My < 1, Mo = 1 and Ayp = 1. Replacing all nonzero elements in
A with 1 gives a PBA (m,20,2,2) with bo = 4, by = 6, Wy = 4,

By Theorem 2.4.2 m < %%é%% = 6. Thus A can have at most 6 rows.

Indeed A can be expressed as follows:

0 000 OO0 00O OT11111 2 2 2 2 2
0 0001 112 2 2 0O0O0O12 00012
A = 0 211120200 O0O02 0102100
21 21001 2 0021000 O0O0O0 21
211000 201 200 21010200
1 002120012 2100021000



CHAPTER III

CONSTRUCTION

We have already seen in Section 2.3 how one might go about
constructing a PBA directly. 1In this chapter we will consider ways
of constructing PBA's of strength t 1in s symbols from arrays

of strength t' <t in s' symbols, where s' < s.

3.1 CONSTRUCTION OF PBA'S OF STRENGTH t + 1 FROM PBA'S OF STRENGTH

THEOREM 3.1.1: 1et A be a PBA (t+1,N,2,t) with index

set A2,t = {uili = 0,...,t}. Consider the (tzl) possible distinct

(t+1X1) vectors which contain k ones. Then each of these vectors

appears as a column of A the same number of times, m (say). Moreover,

b L S
where k = 0,...,t.

Proof: Let (xl,...,x be a column of A containing

'
t+1)

k ones, where each X, assumes the value 0 or 1. Let

. N

Then, if xj =0, (xl,...,xi,...,x 5eeesX contains (k+1) ones.

*
j e+1)
Let n(xl,...,x ‘be the number of times the column containing

t+1)

(xl,...,xt+1) appears. Finally, assume x, = 1, x, = 0.

39

t.
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Consider the t-rowed array formed from A by excluding row

j. Then, since A 1is of strength t,

n(xl,...,xi,...,Xj-l,xj+1,-..,xt+1) = u'k .

Thus,
*
(¢9) n(xl,...,xi,...,xj,...,xt+1) + n(xl,...,xi,...,xj,...,x

Consider the t-rowed array formed from A by excluding row

i. Then, since A is of strength ¢t,

*
n(xl,...,xi_l,xi+1,...,xj,...,xt+1) = My

Thus,

* * *
2) n(xl,...,xi,...,xj,...,xt+1) + n(xl,...,xi,...,xj,...,xt+1) = e

Subtracting (2) from (1) gives

*

*
n((x eeegX , 9000 3X ,  5ge0eeyX = nx 0o 93X L eeegX.geee X
(1’ ’ 1: ,J, ’ (1" ’ i? )J’ >

).

t+1) t+l

Proceeding in this manner, we can show that every column
containing k ones must occur the same number of times, m (say).

Moreover, from (1) it is clear that

Me ¥ el T Bk

or
M = P 7 Ml

PROPERTY 3.1.2: me = Wy T mk+1 for all k =0,...,t

if and only if

e+1) - Pk
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U RN j+1
W = Zio D) by + D Tr+j+1°

k=0’oo.’t’ j=0’000,t-k0

Proof: Setting j =0 in

- oJ a1 it
M = Zieo D by DT

+i+1 gives

Me TPk T Mkl

-m and m

Conversely, m =iy ~ My i+l T PRl T k42

imply

= - + .
B S L U5 R WY )
Proceeding in this way we find that

oo 1zt il
M = Zimg D gy + CDT M o

k =0,...,t and j = 0,...,t-k.

EXAMPIE: Let A be a BBA (m,N,2,2). Then Theorem 3.1.1

0 0
gives that, in every three rows of A, the 3-tuples O, 1, and
1 0

1
0 each appear the same number of times, my (say). (m1 can vary
0

depending upon the three rows chosen.) Likewise, in every three

1 1 0
rows of A, the 3-tuples 1, 0, and 1 each appear the same
0 1 1

number of times, m, (say). Moreover, given three rows, Property

3.1.2 gives

Mo SHo =M Tg “Hy Fmy Thg -y ey -m,
S R Sl P P S LY

my T Hy - My .
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Let A be given by

0 000111

0 01 1 0 01

01 10100

11 0 00 01 .
Then for rows 1, 2, and 3 my = 1, m, = 1, m, = 1, m, = o,
but for rows 1, 2, and 4 my = o, m = 2, m, = o, m, = 1.

Notice further that the above are the only two possible solutions of

0 1
my =2 - m2
my =1 -my,

such that m, 20, i =0,1,2,3,

We next give a converse to Theorem 3.1.1.

THEOREM 3.1.3: Given a set A = {u i =0,...,t} of
positive integers, a PBA (t+1,N,2,t) exists with A as its index

set if there is a solution to the equations

for i =0,...,t, where m, is a non-negative integer for all 1.
Proof: Without loss of generality, we can write down the

first t rows of the array. We add the t+1St row as follows.

In the first t rows, there are T columns containing k ones

in fixed positions. We put a zero in the t+15¢ row of m of these

. st L.
columns and a one in the t+1 row of the remaining m of these

k+1

columns. Call the resulting array A.
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To show A is a PBA, we must show that each choice of t-1
out of the first t rows together with the t+1St row satisfies

the property that a column containing k ones occurs times.

"
Without loss of generality, we show this for the first t-1 rows of

A together with the t+15t row.
Let (x1’°"’xt-1’xt+1) contain k ones.

CASE 1: Suppose (x1’°"’xt-1) contains k-1 ones, then

n(xl,...,xt_l,O,l) + n(xl,...,xt_l,l,l)

m, +m (by construction)

k k+1

by (by hypothesis) ,

where the notation is as used in Theorem 3.1.1. Thus

n(Xl,...,Xt_l,Xt+1) = n(xl,oco,xt-l’l) = “,ko

CASE 2: Suppose (xl""’xt-l) contains k ones, then

n(xl,...,xt_l,0,0) + n(xl,...,xt_l,l,O)

™+ M

l-"k M
Thus
D(XpseeesX, _1%pp) = R aeeex, 1,0) = u

Since cases 1 and 2 exhaust the possible situations, the result
follows.

It is interesting that Theorem 3.1l.1 and Theorem 3.1.3 taken
together give necessary and sufficient conditions for the existence

of a PBA of strength t and t+l constraints.
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THEOREM 3.1.4: let S be an ordered set of s elements,

€gr€yrecese  ye For any positive integer t, consider the st dif-

ferent ordered t-tuples of the elements of S. These can be divided

into s sets, each set consisting of s t-tuples and closed under
cyclic permutations of the elements of S. Denote these sets by Si,
is= 1,2,...,st-1.

Suppose that it is possible to find a scheme T of m rows
with elements belonging to S such that, in every t-rowed submatrix,
the number of columns belonging to an Si is constant and greater
than zero, with the restriction that if Sj contains a column which
is a rowwise permutation of a column in Si’ then the number of columns
occurring in a t-rowed submatrix from Sj is the same as the number

of columns occurring in a t-rowed submatrix from Si' Then, one can

use this scheme to construct a PBA, A = (m,N,s,t), with index set As e
bl

Proof: We can define the sets S, i = 1,...,st-1, as follows.

Consider the s distinct (t-1)-tuples formed from elements of S.

Let the first t-tuple of each Si be (e,e. ,...,e, )', where e
i i,
is a fixed element arbitrarily chosen from S, and (e, ,...,e. )!
1 Te-1

is one of the distinct (t-1)-tuples formed from elements of S.
The additional s-1 t-tuples of each of the sets Si are obtained
from the first by cyclic permutation of the elements of S.

A can now be constructed. Append to the columns of the
scheme T all the transformations of these columns consisting of
cyclic permutations of the elements of S. Choosing any t rows,
we see that each of the possible st t-tuples occurs. Furthermore,

because of the restriction that, if S contains a permutation of

A
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a column in Si’ then the same number of columns must occur from
each, it follows that a permutation of a t-tuple will occur the same
number of times as the t-tuple. Finally, the number of occurrences
is independent of the t rows chosen.

EXAMPIE: Let S = {0,1} and t = 3. The 4 distinct 2-tuples,

1 1

which can be formed from S are (g) (2) (0) (1). Pick 0 as the

element e of the proof, then
1

fo D (0 1
s;=(0 1,, sz=to 1}
\0, 1. 1,0

[0 1\ o1y
S.=({1 0),and s =1 0) .
3 o, 1J 4 , o,?

- O O O
- = O O
o = O O

0
1
0
1

© © = O
o = = O
= O O
© ©o o +
o = O
© O = =

and let S5 be the number of times columns from Si occur in any

three rows of T. Then one can check that

Thus we have a PBA of strength 3 given by

= O O ©o
= = O O
o +H O ©
= O = O
o © = O
o = = O
- O O =
© © o +~
©C = O =
o © +H
o = = =
o O =
= O = ¥
o = O
= = O
- o O
o + = O
= = = O
= O = O
- =~ O O

A close look at T in the above example reveals that it is

a PBA of strength 2. We are thus lead to ask whether it is always
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true that a PBA of strength 2 forms a scheme for the construction
of a PBA of strength 3. This is answered by the following.

THEOREM 3.1.5: let t = 2u., Then a PBA (m,N,2,t) with

index set {pgt)li = 0,...,t} forms a scheme for the construction

of a PBA (m,2N,2,t+l) with index set {u§t+1)‘i = 0,...,t+1}, where

(t+41) _ _t-2k i (t)
Megl-k - Zi=0 1) Bpyi

u,l((t+1) k <u

Proof: A set Si is composed of vectors

v = (xl,...,xt+1)' and
* _ * *
v - (Xl,...,xt+1) 9

*
where if v has k ones, then v has t+l-k ones.
Suppose v contains k ones, then, by Theorem 3.1.1, v will

*
appear in t+l rows of (m,N,2,t) m, times, and v will appear

in those t+1 rows m Moreover, by Property 3.1.2

t+1-k’

t-2k i (t)

_ L t-2k+
Me = Zicg D by + D

M1k’ where 2k <t .

Since t - 2k+l = 2(u - k) + 1 1is odd, we have

_ t-2k i(t)
Mt Weprek T Zi=p D) g o

which is independent of the t+l1 rows chosen from (m,N,2,t).

Suppose S contains a permutation of wv. Call it wu.

3

* *
hen is a rmutation of and, since and are
T u pe of v, » Sin m an moi1-k 2T

independent of order, the number of columns of S occurring in

h|
any t+l rows of (m,N,2,t) is

t-2k i (v)

Zi=0 (-1) ”'k+i » 2k st
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the same as for Si’ Thus (m,N,2,t) forms a scheme satisfying
Theorem 3.1.4.

It is clear from the construction of (m,2N,2,t+1l) that a
(t+l)-tuple containing k ones will appear m + M o1-k times.
Likewise, a (t+l)-tuple containing t+l-k ones will appear

. t_
M i1-k + m, times. Thus, where k < 7 T u, we have

(t+1) _  (e+l) _ _t-2k i (t)
My Metl-k - Zi=g D by -

COROLLARY 3.1.6: A PBA (m,N,2,2) with index set
(2) (2)

{po by ’u(Z)} forms a scheme for the construction of a PBA

(m+1,2N,2,3) with index set {péB),u§3),u§3),p(3)}

2 2 2 2
WD @ o0 @)

if either

or Furthermore, if m' is the maximum

number of constraints of (m,N,2,2), then m'+l will be the maximum

number of constraints of (mt+l,2N,2,3).

Proof: Without loss of generality, we assume uéZ) = uiZ).
(2) (2) . .
(1f Wy Ty we can interchange zeros and ones in (m,N,2,2)

2 2
o0,

*
let T be the PBA (m,N,2,2) and T be the array obtained

and obtain an array where

from T by interchanging zeros and ones (i.e. by a cyclic permutation
*
of the elements of S = {0,1}). Let TT represent the juxtaposition

* *
of T and T , then, by Theorem 3.1.5, TT is a PBA (m,2N,2,2)

G _ @ G_ @ & _ @ 3 _ @
0 o s B Bo s By | S hg s M3 =y )

*
We add the nﬂist row to TT by placing a zero in each

with index {u

*
column of T and a one in each column of T. cCall the resulting
array A.
Consider any two of the first m rows of A together with

the m+13t row of A, In T
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n(0,0) = u{?, n(0,1) = n(1,0) = uéz), and n(1,1) = pi2.
In T

n(0,0) = p;z), n(0,1) = n(l,0) = péz), and n(l,1) = u(()z).
Thus for the three rows

70,0, =8P, 00,1, = n1,0,1) = u{?, nat,1,1) = u P

8(0,0,00 =¥, n(0,1,0) = 0(1,0,0) = P, n(1,1,0) = P

Since this is independent of the two rows chosen from TT*, A 1is
a PBA (m+l1l,2N,2,3).
The remainder of the theorem follows from Theorem 2.5.3.
EXAMPIE: Consider A in the example following Lemma 3.1.3.
A is a PBA (4,20,2,3) with index set {1,3,3,1}. By placing ones
under the first 10 columns of A and zeros under the remaining 10
columns, we obtain a PBA (5,20,2,3) with index set {1,3,3,1].
Corollary 3.1.6 has application in the following kind of
situation. Suppose that, after an experiment has been performed,
it becomes desirable to include an additional factor, where the
original design was a PBA (m,N,2,2). Then instead of performing
an entirely new experiment, we consider the original experiment to
be half of an array, (m+1,2N,2,2), and add the remaining half in
which the new factor will appear constant at the 1 level.
The problem may arise that, while, in the original experi-
ment, there were no interaction effects, the introduction of a new
factor makes this assumption questionable. The corollary shows that

the additional treatment combinations may be designed so that the
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augmented experiment is of strength 3, which will allow estimation
of main effects in the presence of first order interactions,
Consider now a PBA A of strength 2 in 3 symbols with index
set A3’2 = {XOO’AII’AZZ’kOI’XOZ’XIZ}' If we wish to construct a
PBA of strength 3, we must consider the sets Si of Theorem 3.1.4.

These can be given as

0001 23 0 1 23 0 1 2
a0 1 2 se{o 1) sefo1 2]

;0 1 2 0 1 2 [1 2 00
I L T )
O O VR S I
7 0,1, 2/ 8 2,0,1) ° WU.,2,0J

Consider three rows of A. Let si be the number of times columns

of Si appear in these three rows. Then, since

n(0,0,0) + n(0,0,1) + n(0,0,2) + n(1,1,1) + n(1,1,0) + n(1,1,2)

+ n(2,2,0) + n(2,2,1) + n(2,2,2) = XOO + kll + x22 ,

we Ssee
Ao t Ayt Ay S8y tsy s,

Similarly kOO + kll + 122 =s. +s, +s

and

I
2]
+
(2]

M1 T A2 T Mg TS, tsg tsg



A1 ¥ hoa t Ay T 83 st sy

Moreover, these equations are independent of the three rows chosen

from A. Solving, we find

1) S, +s, =s, +s

3 4 5
(2) S,y + Sg = S, + Se
3) s, + Sg = 8, + s,
(4) s, +85 =5, +s,
(5) s, + Sq = S¢ + S5
(6) S, f Sg = S¢ + Sg -

(1) and (2) imply
2s, =s, + s, .

(3) and (4) imply

Thus,

(1) s, = s4 =S¢ -
(1), (5) and (I) imply

(11) S5 = Sg = 85 .
And, (6) and (I) imply

(I11) s

n
1]
.

If A is orthogonal, then



s, +s, +s, =s. +s, +s_,
so that
(I1I1') s, =s_, =s_ .

We now prove

THEOREM 3.1.7: A PBA (m,N,3,2) with index set

{koo’kll’AIZ’AOI’AOZ’XIZ} forms a scheme for construction of a
PBA (m,3N,3,3) if s and one of S i=2,...,7 are independent
of the three rows chosen from A.

Proof: Suppose s and s, are constant. Then s, and

1 2 4

s, are also constant, by (I). Furthermore,

B FSg Hsg - (5p ¥ sy HS3) S Ao Fhoa FApp T g T AT
=K (say) .
Thus,
Sg = s1 + K ,
so  sg and, by III, sg are constant.
Finally,

s3 = XO + kl + XZ - (s1 + SZ) ,

so s, and, by II, Sg and S5 are constant.
Now, by Theorem 3.1.4, the theorem follows.

Note that the resulting array will have

Moo T Mi1 T M2z
o1 T Mia T Mo

Mo2 = Mo T M2
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and if A is orthogonal
Moo = M11 T M22 T M1t

3.2 CONSTRUCTION OF PBA'S OF STRENGTH 2 IN s SYMBOLS FROM PBA'S

OF_STRENGTH 2 IN TWO SYMBOLS

THEOREM 3.2.1: Consider a PBA which is also the incidence

matrix of a BIB design (v,b,r,k,A = 1). The existence of this
array is equivalent to the existence of a PBA A = (m,N,s,2) with

index se where
ndex t As,Z’ r

m=7r

N=b -1

s =k

*06 =b-r-(k-1)C@r -k - 1)

Mgy =T - k i=1,...,k-1

hij =1 i,j=1,..0.,k-1.

Proof: Let T be the incidence matrix of the BIB design
(v,b,r,k,1). Then T 1is a PBA (v,b,2,2) with index set
{po =b -2r+ 1, =r-1,4,= 13.

Interchanging columns and ®ows as necessary, we can put T
into the following form. The first column contains ones in its first
k rows and zeros elsewhere. The second column contains a one in its
first row, ones in rows k+l1 through 2k-1, and zeros elsewhere.
(Since by = 1, once.we put a one in the first row of column two,
there can be no ones in rows 2 through k of column two.) 1In gen-
eral, for i =1,...,r, the ith column of T contains a one in its

first row, ones in rows 1i(k-1) - (k-3) through 1i(k-1) + 1, and
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zeros elsewhere.

Let K, represent the k-1 rows from row i(k-1) - (k-3)
through row i(k-1) +1, i =1,...,r. Consider column cj,
j=r+l,...,b. Since by = 1, cj can have at most one one in the
rows of Ki’ where the other entries are zero. If the one occurs
in the first row of ‘Ki’ enter a one in row i and colummn j-r of
A. If the one occurs in the second row of Ki’ enter a two in row
i and column j-r, and so on. If no one occurs in the rows of Ki’
enter a zero in row i column j-r of A. Clearly, m=r, N = b-r,
and s = k, so that we must now show that A is a PBA of strength 2
with the indicated index set.

Consider Ku. and K,» u,v = 1,...,r, u # v. Each row of
K, (Kv) contains r-1 ones in the columns from r+l1 through b.

Since by = 1, each row of K, must have exactly one of these ones

in common with each row of KV' Thus for rows u and v of A,

ki,j =1 i,j =1,...,k-1 and
hOi =r - 1- (k-1)
=r -k , 1 = 1,...,k=-1.
Moreover,
_ k-1 k-1 _k-1
Mo T T E) = ZE g gy T Biag Eyap Ay

b -r - 2(k-1) (r-k) - (k-1)(k-1)

b-r-(k-1)Q2r -k -1) .

Since u and v were arbitrary, the )\'s are independent of the

two rows of A. Thus A is a PBA with the indicated index set.
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Given the PBA, A, we can reverse the construction and derive T.
EXAMPIE: Consider the BIB design (13,26,6,3,1), then we write

T 1in the indicated form and A below T, where K1 contains rows

two and three, K2 contains rows four and five,..., and K6 contains

rows 12 and 13.

11111100000000000000000000
10000011111000000000000000
10000000000111110000000000
01000010000100001110000000
0100000100001 0000001120000
001000 0‘1 000001001000001100

T= 00100000100000100101000010
0001000001001 0000010001010
00010000001100000001000101
0000101000000001000O00O010O0110
00001000100001000010010001
00000100010000101000100001
00000100001000010100011000
11111222220000000000
12000120001112220000

A= 01200001201202001120
00012210000012001212
10200002010020120112
00012000121200122001

Clearly A 1is a PBA (6,20,3,2) with kOO =4, KOi =3,1i=1,2
and Kij =1, i,j = 1,2. Moreover, as was shown in the example on

page 38, A has the maximum number of rows possible. We state this
formally as

THEOREM 3.2.2: The PBA A in Theorem 3.2.1 has the maximum

possible number of rows.



55

Proof: This is clear since T has the maximum possible

number of rows as shown in Corollary 2.4.3.



CHAPTER IV

RELATION TO OTHER AREAS OF MATHEMATICS

4.1 TACTICAL CONFIGURATIONS

DEFINITION: A complete o -t - k - m configuration is an
arrangement of m elements into blocks of size k so that each set
of t elements occurs in exactly o blocks.

let b be the number of blocks in the configuration. Further-

more, let Ni denote the number of sets each of which contains a

fixed set of i elements, where i = 0,...,t. Then NO =b and
Nt = o, and in general we have
Gop)
LEMMA 4.1.1: _ -1 i=0,...,t .
i k-i)
(t-i

Proof: Let Si be a fixed subset containing i elements.
As noted above, if i = t, then St will appear in exactly o sets.

If i< t, then Si can be part of several different sets each

. m-i . .
having t elements. There are (t i) sets of size t containing

Si' However, there are (t-}) sets of size t, containing Si’ in
m-1i
' ()
a block of size k (2 t). Thus St occurs in i of the
(.79
blocks of the configuration.

EXAMPIE: Consider the triple system, 1 - 2 - 3 - 7, given by

1 1 2 3
& 6 4 5 4 5
3 5 7 7 6 ,
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where the blocks are column vectors, and o =1, t =2, k=3, m=7.

Then
(D) @
N = = (1) —_—=7
O A
t 2
N1 =3
N2 =1.

The following theorem is due to Chakravarti (196l1). The
proof given here is somewhat less complicated than the one given by
him.

THEOREM 4.1.1: The existence of an o -t - k - m configura-

tion implies the existence of a PBA A = (m,N0,2,t) with index set
{pi|i = 0,...,t}, where

bl §oeed
ki = I CDTCON,

j=0 *+

provided By 20, i=0,1,...,t.

Proof: We form A as follows. Let al’aZ"°"am denote

the m elements and S.,S,,...,S denote the N sets of the con-
1’72 NO 0

figuration. Then, we place a one in the ith row and jth column of

A if a, € Sj. If a, ¢ Sj we place a zero in the " row and jth

column of A, i=1,...,m, j = 1,...,N0.
Consider any t-rowed submatrix of A, and from its N columns

0

choose a column containing r ones. We show that this column occurs

_ _ o t-r - t-r _ . . '
e =N ( 1 )Nr+1 + ( 2 )Nr+2 ... times. By renaming a's as

necessary we may assume that the ones in the column correspond to

a,,...,a_ and the 0O's correspond to a a .
1 r

r+1’7" 7
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Recall that bNr is the number of sets, Sj’ which contain
the fixed set al,...,ar. Also included in this number are those

sets aini F: DR | and a,, i = r+l,...,t. here are
ets containing 1° a n i? N ’ T Nr+1

. . t-
sets containing a;,...,a , a,, and there are ( 1t) ai's. Thus

t-r . - .. .
- eeeyd
N ( 1 )Nr+1 is the number of sets containing as »a_ excluding

those which contain a,,...,a , a, i =r+l,...,t. However
1 b r i 3 ? b

t-r
counts twice those sets containi a.,8,_ ,...,a ,a_,4a
( 1 )Nr+1 o ng 1’ 2, H] r’ i’ j

i#j i,j = r+l,...,t. It counts three times those sets containing

a15--053 53,3

1 . j’ak’ i#$j#k i,j,k =r+l,...,t. 1In general, it

counts 4, times those sets containing { of ar+1,...,at in addi-

. ‘ t-r
tion to A1seeesd . Therefore, Nr - 1 )Nr+1 excludes one too many

of the sets of type al,...,ar,ai,aj, it excludes two too many of the

sets of type al,...,ar,ai,aj,ak. In general, it excludes 4g-1 too

many of the sets containing { of ar,...,at in addition to

a ceeyd
1° >r .

There are N sets containing 31500052 53,2 i#i,

r+2 i’

i,j = r+l,...,t, and there are (t;r) possible aiaj combinations.

t-r
oweve counts those sets which contain a.,,...,a ,a, ,a
H r, ( 2 )Nr+2 1’ e LR j

3
(2) =3 times,... .
Continuing in this way, we find that the number of sets con-

taining Aseeesa and not containing any of a_Lpseeed, is
t-r t-r
- +
N ( 1 )Nr+1 ( 2 N

r

t-r
" -...+ (-1) Nt’ and the result follows.

EXAMPLE: Consider the example following Lemma 4.1.1. The

PBA generated by the 1 - 2 - 3 - 7 configuration is



1 1 1 0 0 0 0

1 0 0 1 1 0 0

1 0 0 0 0 1 1

o 1 0 1 0 1 0

0 1 0 0 1 0 1

0 0 1 1 0 (] 1

0 0 1 0 1 1 o ,

where
p.0=N0-2N1+N2=7-6+1

p.2=N2=1.

COROLIARY 4.1.2: The PBA A in Theorem 4.1.1 has the maximum

possible number of rows.

Proof: Since each column of A has k ones, by Theorem
2.,4.2 it follows that A has the maximum possible number of rows.

In view of this, it is clear that A is the incidence matrix

of a BIB design, (v,b,r,k,\). In fact,

vVv=m
b = NO
r = N1
k = k
A=N, .

We now give a converse to Theorem 4.1.1.

THEOREM 4.1.3: lLet A be a PBA (m,N,2,t) with index set

{pi‘i = 0,...,t}. If A has a constant number of ones per column,
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k (say), the existence of A implies the existence of a complete
We =t - k - m configuration and a complete Wog - t - (m-k) - m
configuration.

Proof: Number the rows of A one through m and the columns
of A one through N. Then i is in set j, if there is a one in
row i and columm j, i=1,...,my j = 1,...,N. Since the number of
ones in a column is constant and equal to k, we have N sets each
containing k elements, where the total number of elements is m.

Consider any fixed set of t elements. This set corresponds
to t specific rows of A. Since A is of strength t, the number
of columns containing ones in each of these rows is e Thus, the
set of t elements will appear in exactly b, sets. It now follows
that the above sets form a complete Be -t - k - m configuration.

To obtain a complete Bg " t - (m-k) - m configuration, inter-
change the zeros and ones in A and proceed as above.

COROLLARY 4.1.4: 1let A be a PBA (m,N,2,2) with index set

{po,pl,pz}, where By = Mg (or bo = ul), then, if the number of
ones in each column of A is constant, the existence of A implies
the existence of a complete bo ~ 3 - k - 2k configuration, where

2p1

k = .
k1o

Proof: By Corollary 3.1.6, the existence of A implies the

existence of a PBA (m+1,2N,2,3), where in this circumstance p;a) = pge

let k be the number of ones in a column of A. Then
+ 2
m(u1 “‘z) by m

k = N =5 .
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But
- e
2 - b
\J'l-p'op‘z W10
so
2u
k = 1 .
H17%o
* .
Let A be the array obtained from A by interchanging
* %
zeros and ones. Then the number of ones per column in A |, k , is

+
* Mg * ) wp iy
N S T

Thus,

+ - 2
Mo "My M1 T Mo T
Bl " HBg By THg  HpTHg

*
k +1-= =k .

By the construction of Corollary 3.1.6, it now follows that
(m+1,2N,2,3) has k ones in each columm. Thus, by the above theorem,

there exists a complete -3 -k - 2k configuration.

Ho
COROLLARY 4.1.5: Llet A be a PBA (m,N,2,2) with index

set {uo,pl,uz], where Hg = Moo Then, if the number of ones in each
column of A 1is constant, the existence of A implies the existence
of a complete (Zpo - pl) -3 - k - 2k configuration, where
M1
Proof: By Theorem 3.1.5, the existence of A implies the
existence of (m,2N,2,3) where u§3) = 2”0 Mg Let k be the

number of ones in a column of A. Then
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by Theorem 4.1.3,
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mGsy +uy)

mGey +u,)
T 2G4y *+ )

=0
2

of ones in each column of (m,2N,2,3) is g, and,

there exists a complete (Zuo - pl) -3 -k -2k

configuration. Moreover, since

Np.l
m="7 2
By T Wy
Zuy Gy * )

24,
S Bl

4.2 GRAPH THEORY

In this s
which are undirec

a finite order.

ection we will be concerned with ordinary graphs
ted, without loops or multiple adjacencies, and of

A graph will be represented by a pair {V,M}, where

V is a set of v vertices and M 1is the adjacency matrix of the graph.

where

M= @y,

~dw

-



63

-1 if x and y are adjacent
m(x,y) = 1 if x and y are nonadjacent
0 if x =y s

X,y € V.
let x be a vertex of a graph. Let nl(x) be the number
of vertices adjacent to x and nz(x) be the number of vertices

nonadjacent to x. Then
nl(x) + n2(x) =v -1,

where v 1is the number of vertices of the graph. A graph is called
REGULAR if nl(x) (and thus nz(x)) is independent of the choice
of x.

lLet x and y be any two distinct vertices of a graph. Let

1 if x and y are adjacent

2 if x and y are nonadjacent.

h
P11 is the number of vertices

which are adjacent to x and to y. p?z is the number of vertices

Then we define pgj as follows.

which are adjacent to x and nonadjacent to vy. is the number

h
P21
of vertices which are nonadjacent to x and adjacent to y. pgz

is the number of vertices nonadjacent to x and to y. A graph is

called STRONG if it is nonvoid and noncomplete and if

1 1
P12 (x,y) + le (x,y)

and

2 2
p12(x y) + le(x »Y)
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are independent of the choice of x and y. A graph is called
STRONGLY REGULAR if it is both strong and regular.
EXAMPIE: PETERSEN GRAPH. let V = {v |i =1,...,10} and

M be given by

0 -1 11 -1 -1 1 1 1 1
-1 0-11 1 1-1111
1 -1 0-1 1 1 1-11 1 .
1 1-1 0 -1 11 1-11 -
-1 1 1-1 0 1 1 1 1-1
M= 1 111 1 0 1-1-11 |
1 -1 11 1 10 1-1-1 i
1 1-11 1 -110 1-1 -J
1 1 1-1 1 -1-110 1
1 111 -1 1-1-11 0

Then we may represent the graph pictorially as follows:

n, = 6 ,

1 1
P12 * Py

2 2
P1p ¥ Py

=4 , and

We next investigate the relation between graphs and PBA's.
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DEFINITION: Consider any two columns of a PBA;, A, 1If there
are exactly c¢ rows in which each column has a one, we say they
have ¢ ones in common. A 1is called a Quasisymmetric Partially
Balanced Array (QPBA) if the number of ones in common to two columns
of A can take exactly two values, c and c

1
EXAMPIE: Let A be given by

(say), where ¢, > c

2 1 2°

= = O O
o = = O
- O = O
o = O =
= O O
o o -

Then the first and second columns have one one in common, but the
first and last columns have zero ones in common. In fact, it can be
verified that any two columns of A have either zero ones or one
one in common. Hence A 1is a QPBA.

QPBA's are not difficult to find, as the following shows.

THEOREM 4.2.1: 1et A be a PBA (m,N,2,2) with index set

{uo:ul,p.2= 1} and m<N. Then A is aQPBA with c1=1,

¢, = 0.

Proof: Since by = 1, no two columns of A have more than
one one in common. Since N + By = Wy + 1> 1, there are columns
which have one one in common. To show that there are columns which
have no ones in common, we suppose there are none.

Let X be any column of A, and suppose that X contains
k ones. Corresponding to the first one in X, there are By columns
which have a one, and there are ko + k1 columns which have a zero.

Corresponding to the remaining k-1 ones in X, there are (k-l)p,1

columns which have a common one. Since we assume that every column
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in A has exactly one one in common with X, it follows that

(k'l)lJ-l = o + My -
Thus,

k=“_0._-’-__2_u=N_.l
b | b |

and is independent of the choice of the column X. Therefore A

-1
is the incidence matrix of a BIB design (m,N,r = u1+1, k = lE;;—,l),
1
where m < N and

(i) r(k-1) = m-1

(ii) Nk = mr

(iii) rk-k = N-1 .

(i) and (iii) give

(iv) r+4m = N+k .

Suppose

N=m+C,

then (iv) gives

rim = m + C + k

SO

(v) C=r-k .

(ii) gives

(mtC)k = mr

so that

m(r-k

(vi) C
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Thus, by (v) and (vi),

r-k = L ;-k
m=k ,

which implies that each column of A contains all ones. Since
m 2 2, this implies Wy > 1, a contradiction. Therefore, X must
have no ones in common with at least one column of A, from which

it follows that A 1is a QPBA with c¢. =1, ¢, = 0.

1 2
THEOREM 4.2.2: Let A be aQPBA (m,N,2,2). Then the

existence of A implies the existence of a graph on N vertices.
Proof: Since A is a QPBA, any two columns have either

¢, or c, ones in common. Choose x and y (0 <y < x) so that

xty = ¢y and x-y = c,y -

Also, let k., be the number of ones in column j of A. Then we

3

write

A'A = ‘.'kN +x(@y - L) - M,
;
where JN is the N X N matrix of all ones, IN is the N X N
identity matrix, and M is an N X N matrix with zeros on the
diagonal and plus or minus one off the diagonal. Thus, M is the
adjacency matrix of a graph on N vertices, and the result follows.
In view of this theorem and the above definitions of strong

graphs and regular graphs, we make the following definitions.
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DEFINITIONS: (i) Let X be a column of a QPBA, A, Let

nl(x) be the number of columns of A which have ¢, ones in common

1
with X, and let nz(x) be the number of columns of A which have
c, ones in common with X. Then, A will be called REGULAR if
nl(X) and nz(x) are independent of the choice of X.
(ii) Let X and Y be colums of a QPBA, A. If X and
. 1 2
Y have €1 (CZ) ones in common, let pl’z(X,Y) (pl,Z(X’Y)) be the

number of columns of A with ¢, onmes in common with X and <,

ones in common with Y. Let p; 1(X,Y) (p§ 1(X,Y)) be the number
bl E)
of columns of A with c, ones in common with X and c1 ones in i

common With Y. Then A will be called STRONG if

1 1 2 2
pl’z(X)Y) + P2’1(X,Y) and pl’z(X)Y) + PZ,I(X)Y)

are independent of tﬁe choice of X and Y.

EXAMPLE: Let

0 00111
01 1 0 01
A= 10101 0
1101 0 0 ,
then A 1is strongly regular, where ¢, = 1, c, = 0, n, = 4, n, = 1,
1
+ =2
P1,2 7 P21 ’
and
2 2

THEOREM 4.2.3: Let A be aQPBA (m,N,2,2) with index

{uo,pl,pz]. A necessary and sufficient condition for A to be

regular is that the number of ones per column be constant. Moreover,
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if u, 2 2, the number of ones per column can take at most two values.
Proof: lLet X be a column of A, and suppose X contains
k ones. Let n, be the number of columns which have c;, ones in

common with X. Then
(i) n, + n, = N-1

We can choose a one from X in k ways. Corresponding to
this choice, there are by tuy - 1 ones in other columns. Thus,
there are k(p.1 + Wy - 1) pairs of ones, where the first one is
from X and the second one is from the same row but a different
column. On the other hand, a column with c, ones in common with
X will account for c, of the above pairs, i = 0,1. Since there
are n, (i =0,1) such columns, it follows that the number of pairs

1

is ncy + n,c,. Thus,
(ii) n¢q + n,c, = k(p.1 + Wy = 1)
Substituting (i) into (ii) gives

k(p,1 + by = 1) = n ey + c2(N -1- nl)
= nl(c1 - c2) + cz(N-l) .

Thus,

k(p.l tu, -1 - cz(N-l)

(iii) n

and



70

From this it is clear that n1 and n2 are independent of X if
and only if the number of ones per column of A is constant and
equal to k.

We can choose two ones from X in (;) ways. Corresponding
to this choice, there are Wy - 1 columns which have ones in the same
rows as the two chosen ones. Thus there are (;)(p2 - 1) pairs,
where the first entry in the pair is two ones from X and the second
entry is two ones chosen from the same rows but a different column.

On the other hand, a column with c; ones in common with X will

c
account for ( ;) of the above pairs. Since there are n, such
c

c
columns, it follows that the number of pairs is nl( ;) + n2( g).
Thus,
c c
. 1 2, _ ,k
(iv) n () +0,035) = (D, = D
Multiplying both sides by two and substituting using (i) gives

nlcl(c1 -1+ N -1 - nl)CZ(CZ -1 = k(k-l)(p.2 - 1).

Thus, if ¢, 2 2,

1

k(k-1) (u, - 1) = N-Dey(c, - 1)
) M T e, - D -c.(c. - D
1%1 2(%,

Subtracting (iii) from (v) and simplifying gives

(c) - e (k(k-1) (u, - 1) - M-D)c,(c, - 1)) =

(k(p.1 + oy = 1) - c2(N-1))(c1(c1 -1 - c2(c2 - ).

Or,
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kz(cl'cz)(uz-l) - k((eyme)) Wy + (uyhuy-D (e (eg-1) = cy(c,y-1)))

- (eqmep) M1y (ey=1) + ¢, (N=1) (e (e)-1) = ey(ey-1)) = 0 .
Or,
@1 Kyl - k((eprey) (phuymD) - p) +epc, (-1) = 0 .

Now, since u, = 2, it follows that < 2 2 and that k must satisfy
the quadratic equation (vi). Clearly k can take at most two values.

Theorem 4.2.3 says in effect that a QPBA is regular if and
only if it is also the incidence matrix of a BIB design with block
size k. In this context Seidel (1969) has proved that the array is
also strong.

We note that a QPBA which is strong need not be regular.

Consider the following array.

011
1 0 O
1 01

o+

0
A= 0
1

o = O

A 1is not regular, since the number of ones in a column of A is

not constant. A is, however, strong, where ¢y = 1, c, = 0, and
1 1
Pip t Py =2
2 2
Pig ¥+ Py =2 -

4.3 HADAMARD MATRICES:

DEFINITION: A Hadamard Matrix Hp is a square matrix of
order p, whose elements are all +1 and -1, which satisfies the

condition
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HH'=plI
pp Pip?

where Ip is the p X p identity matrix.
Necessary conditions for the existence of Hadamard Matrices

H are

p=2 or

0 (modulo 4).

o
1]

Moreover, it has been shown that Hadamard Matrices exist for all
p < 156 and for infinitely many other values of p subject to the

necessary conditions.

EXAMPIE: Using + for +1 and - for -1, we can write a Hadamard

Matrix of order 8 as follows.

+ + + + + + + +
+ + + - + - - -
+ - 4+ + - + - -
Hg = + - - + + - + -
+ - - - 4+ + - +
+ + - - - + + -
+ - + - - - + +
+ 4+ - + - - - +

When Hp is written with plus ones in its first column and
its first row, we say it is in its normal form. Any Hadamard Matrix
can be normalized as follows. If there is a minus one in the first
column of any row, multiply that row by minus one. Also, if there is
a minus one in the first row of any column, multiply that column by

minus one. The result will be a Hadamard Matrix in normal form.
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THEOREM 4.3.1: The existence of a Hadamard Matrix of order

p = 4. implies the existence of the PBA's
(i) (bu-1, 4p-1, 2,2) with index set {u-1,u,u}
(ii) (2 » 4p-2, 2,2) with index set ({p-1,u,u-1}
(iii) (2u-1, 4p-2, 2,2) with index set {u-2,u,u} .
Moreover, the number of rows in each case is the maximum number possible.
Proof: Without loss of generality, we assume that H4p is
a Hadamard Matrix in normal form. Let us remove the first row of H4
and, in the remaining rows, replace each plus one with a zero and each
minus one with a one. Then, it is well known that the resulting array
is an orthogonal array (4u-1, 4u, 2, 2) with index p. Omitting
the first column of this array results in a PBA (4p-1, 4u-1, 2, 2)
with index set {u-1, p, pw}. Call the PBA A..

1

Choose a column, c, from A If a row has a one in c, place

1
that row in an array, A2 (say). 1I1f a row has a zero in ¢, place

that row in an array, A3 (say). Omitting the ones in column c¢ from
A, gives a PBA (2p, 4p-2, 2, 2) with index set {u-1, p, p-13.
Omitting the zeros in column ¢ from A3 gives a PBA (2u-1, 4u-2, 2, 2)
with index set {u-2, p, wp}.

That the number of rows is a maximum in each case can be seen

using Theorem 2.4.2.

EXAMPIE: Replacing + with 0 and - with 1 in H_, of the pre-

8

ceeding example and omitting the first row and the first column gives

T, T T T
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0010111
10010011
1100101
Aj= 1110010
0111001
1011100
0101110

a PBA (7,7,2,2) with index set {1,2,2}. Letting c be the first

column, we find

1 0 01 011
1 1 0 01 011
A2 =
1 110 010
1 01 1 1 0O and
1 o111
A3 = 0
0 0 1 1 0 .

Omitting the first column from A2 results in the PBA (4,6,2,2)
with index set {1,2,1}. Omitting the first column from A, results
in the PBA (3,6,2,2) with index set {0,2,2].

It is clear that the PBA's constructed above are also incidences
matrices of BIB designs with equal block sizes. Rao (1961) has given
a list of BIB designs for 10 < r < 15 together with methods of con-
struction in most caées. Although this list is said to be complete,
the design (14, 26, 13, 7, 6) has been omitted. This design is
equivalent to the PBA (14,26,2,2) with index {6,7,6}. Theorem
4.3.1 (ii) with yu =7 implies the existence of this array and hence

the design. We give the design as follows.
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