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ABSTRACT

In this investigation a comparative study is made of variable
thickness square plates with clamped and simply supported boundary
conditions. The thickness variation in the plates is linear. The
objects of this investigation are: (a) To experimentally determine
the deflections and moments in uniformly loaded, clamped and
simply supported square plates of variable thickness, (b) To
compare the values obtained by experiment with those obtained by
finite difference analysis, (c) To experimentally determine the
natural frequencies and nodal patterns in the case of clamped and
simply supported square plates of variable thickness, and (d)

To compare the experimental and finite difference .results.

The theory used is subject to the following restrictions:
(1) the plate material obeys Hooke's Law; (2) the plate material
is isotrvopic; (3) the deflections of the plate are small in com-
parison with the thickness; (4) the thickness of the plate is
small in relation to the other dimensions,

The Moire method is used to find the moments and
deflections. Moire fringe patterns for different plate models
are shown and they are analysed to find the deflections and
moments in the plates. The differential equation of variable
thickness plate is approximated by a difference equation and the
plate problem is solved for different boundary conditions and for
different grid spacings by the use of the Digital Computer, The
natural frequencies and the node patterns have been found
experimentally using a Pulsed-air Vibrator. Finite difference

approximation is used to solve the vibrating plate problem and



the resulting eigen value problem is sclved by the use of
digital computer,

The Moire method seems to be better suited for finding
deflections than for moments. The principal reasons for in-
accuracies in the determination of moments are: (a) the
actual models different from the ideal models used for math-
ematical analysis; (b) support conditions other than assumed,

(c) the errors in calibration of the material and the reduction

of data. With the setup and the models used and the general
procedure followed in reducing data, the inaccuracies in
moments varied from a very small value to about 10 per cent,
although for some regions such as valleys and ridges the
inaccuracies were quite high, The experimental and theoretical
deflections agreed within 3 per cent. With improved models
(both material and workmanship) and the improved support
conditions (especially simple support) the inaccuracies in
moments could be kept well below 10 per cent. The effect on
moments and deflections of increasing or decreasing the edge
thickness compared to the center thickness in clamped as well
as simply supported plates is shown in the discussion of results.

The finite difference approximation used in this study
gives sufficient accuracy for variable thickness plate problems.
This method is applicable to plates with any boundary condi-
tions, acted upon by any type of loading, and with arbitrary
thickness variation.

The convergence of the difference method is very good
both for deflections and moments. In the case of plate vibrations,

for lower modes, grid sizes of a/6 and a/8 give good convergence,



but for higher modes, still finer grids should be used in order
to give reasonable convergence. For still higher modes (beyond
sixth mode) the rotatory inertia and shear should be included in
the difference equatior} 6f the variable thickness plate to give
good accuracy.

The experimental values of the vibration frequencies
are in fair agreement with the finite difference results. The
inaccuracies are due to the actual model deviating from the
ideal model and support conditions being other than assumed.

In this work, the inaccuracies range from very small amounts

to about 6 per cent, although in a few cases, the inaccuracy was
as great as 13 per cent, With better models, and improved
support conditions, an accuracy of one per cent can be achieved
with the Pulsed-air Vibrator. The experimentally observed
nodal lines are in fair agreement with the calculated positions

of node lines, Ultraharmonic resonance was observed for nearly
all modes studied.

The results indicate that the finite difference approxi-
mation used for solving variable thickness plate problems gives
results with reasonable convergence., The values obtained by
the difference method agree quite well with those determined by

experiment,
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X, Y

NOTATION

Side dimension of square plate
E t>; :
1 plate rigidity at a point 'i'
12(1 - v7)
Plate rigidity at a reference point
Modulus of Elasticity
Poisson's ratio

plate thickness

Distributed load per unit area, with positive load
downward,

Bending moments per unit of width acting on sections
perpendicular to the x and y axes, respectively.

Twisting moment per unit width in the x and vy
directions.

Horizontal and vertical coordinate axes. In all

fringe photos, origin is taken at upper left corner with
x positive to the right and y positive downward.

a/n, the spacing of grid used in the difference method.
Mass density of plate material

time variable

angular frequency

a parameter in terms of which frequency is expressed

Dr
( [—=)
ptra

a)/a)r , a dimensionless number

Di/Dr variable thickness plate 'rigidity ratio

ix



CHAPTER 1

INTRODUCTION

In continuum mechanics, the term 'plate' may be applied to
bodies bounded by two surfaces, the distance between the surfaces
being small compared to the other dimensions. The middle surface
is definedbywe locus of points which lie at equal distances from these
two surfaces. At any arbitrary point of the middle surface, the
thickness is defined as the length of a line perpendicular to the middle
surface and intercepted between the bounded surfaces. In general
the thickness may vary in magnitude from point to point in the middle
surface and hence may depend on the coordinates of the arbitrary
point in the middle surface.

To study the plate problem in the light of the classical theory
of Elasticity, it is usual to assume that the material of the plate is
isotropic and obeys Hooke's Law and that the displacements at a
point are small in comparison with the thickness of the plate. Further
- assumptions analogues to those used in the theory of beams were
introducéd by Lagrange. Lagrange's assumptions may be stated
as follows: a) The straight fibres of a plate which are perpendicular
to the middle surface before deformation remain so after deformation
and do not change their length. b) The normal stresses acting on
planes parallel to the middle surface may be neglected in comparison
with the other stresses.

If the thickness of the plate is considered as a constant,the solution
of the plate problem is further simplified. Solutions in the form of
series, numerical solutions, and experimental solutions are available
to this plate problem, A simple approach to the problem of variable

1



2
thickness platesis impossible, if one has in mind a general solution
which is to apply to all problems in variable thickness plateg, Thus,
it leads to the study of less general problems in variable thickness
plate,wherein the thickness variation is assumed to follow a pre-
determined law.

In this study, clamped and simply supported square plates
are considered. The variation of thickness is linear and symmetric
about the diagonals as well as the lines joining the midpoints of the
sides of the square. The symmetry is used to simplify the numerical
analysis. The purposes of this study then are to:

(1) Experimentally determine the deflection and moments in uniformly
loaded, clamped, and simply supported square plates of variable
thickness.

(2) Compare the values obtained by experiment with the values
obtained by finite difference analysis.

(3) Experimentally determine the natural frequencies and nodal
patterns in the case of clamped and simply supported square plates

of variable thickness.

(4) Compare the values obtained by e:&periment with the values
obtained by finite differences.

Besides the above applications, finite difference method with
the use of digital computer can be applied to plates with various other
boundary conditions, subjected to any conceivable type of loading and
the thickness variation being quite arbitrary. The loading and
thickness functions could be continuous or discontinuous functions

of x and y.



Historical Background

A few series solutions of the differential equation of variable
thickness plate have been obtained. Among them, the bending of
rectangular plates with the flexural rigidity being a linear function
of one of the independent variablesof the problem has been considered
by R. Gran Olsson [l].* He assumes a Levy type of series and obtains
the solution in terms of exponential integrals. For a plate whose
thickness is an exponential function of one of the independent variables,
R. Gran Olsson [2] obtains a Levy type of solution for the bending
case.

Henry Favre and Bernhard Gilg [3] have considered plates
whose thickness is a linear function of one of the independent variables
(x or y). A perturbation method is used to get a better approximation.
Solutions have been worked out for a simply supported rectangular
plate whose thickness varies linearly in a direction parallel to one
of the sides, and plate being loaded hydrostatically. The Navier
type as well as Levy type series have been used and the simplicity
and advantage of Levy type series over Navier type series is shown.

The fundamental differential equation of variable thickness platés S
admits of a relatively simple treatment when v =1/3 and this special
case is discussed by Contri, L. [5, 6] who obtains a rigorous solution
using the Levy-Estanave simple series solution. He considers linear
variation of the plate along a direction parallel to one of the edges,
the plate being restricted to be simply supported along two opposite
edges, the other two edges being quite general. An iterative method

of suctessive approximation is suggested when Poisson's ratio is not 1/3.

*Numbers in square brackets refer to the Bibliography.
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Electrical analogy offers a powerful general method for problems
involving deflections under constant load, transient vibrations, or normal
modes in plates of constant as well as variable thickness. In the
electrical-anology method, the problem is formulated in finite-difference
terms, and the solution of the difference equations is carried out on
an electrical-analog computer. No restrictions are made on the elastic
properties of the plate as regards homogeneity and isotropy. The free
edges cause no particular difficulty, and the irregular edges can also
be handled by the electrical analogy. R. H. McNeal [7] gives a detailed
description of the representation of the boundary conditions for a
rectangular variable thickness plate. The principal difficult requirement
of the plate analogy is the existence of a large number of essentially
perfect transformers.

Y. C. Fung [8] treats the free edge boundary conditions in a
way different from the Kirchhoff-Love formulation of free edge boundary
conditions. He uses two ''stress functions' of such form that the |
boundary conditions can be expressed in terms of two functions and
their first derivatives. This theory is applied to a square plate with
linear thickness variation (double-wedge section) simply supported
at two diagonal corners and loaded by concentrated forces at the other
two corners. Southwell's relaxation procedure is used to obtain the
stresses and deflections. This is checked experimentally also. This
procedure is also applied to obtain stresses in a 45° swept wing of
variable thickness.

Exact solutions are not available for the frequency of vibration
of rectangular plates of variable thickness. Kogaev, V. P. [10] uses
the Ritz method to find the frequencies in the blades of hydraulic

turbines. Polynomials are used as co-ordinating functions as they



5
insure rapid convergence and give considerable simplification in
calculating integrals from co-ordinating functions. Gumenyuk, V. S.
[9] uses a finite difference approximation to find frequencies in plates
in the form of a rectangle and an isosceles triangle, the thickness being
regarded as dependent only on one co-ordinate and varying by a linear

law, while the edges of the plate are free.



CHAPTER 1I

FINITE DIFFERENCE ANALYSIS

With the assumptions made in Chapter I, the differential
equation for the bending of plates of variable thickness can be re-

presented by

dD 3 3D d
2 2 2 2 2
32D dw 3D Jdw 3 DI w
-l -V - 2 +— ) = alx,y) (1)
ax“ ay oxdy J x3y 3y axz
where 2 2
A- 874-87
Ix dy
3
D = .Et—._z_,' '
12(1 - y7)
q = Lateral load on the plate

Lateral deflection, a function of x and vy,

€
[

v = Poisson's ratio.

If w is now considered as a function of x, y and time 1, the static
lateral loads on the plate could be replaced by equivalent inertia forces,

2
namely, - pt —a—‘%, to obtain the governing differential equation of a

ot
freely vibrating plate of variable thickness,

where

p = Mass density of plate material
t = Plate thickness,

T = time,.
For a variable thickness plate vibrating harmonically with an amplitude

#(x’ y)



w(x, v, t) = §(x, y) coswt, (2)

where ® is the angular frequency, For the sake of convenience in
writing, ¢(x, y) is replaced by w(x, y), then the right hand side
of equation (1) would be ptcoZ w(x, Y).

In Appendix A the difference equation (shown in Fig. 2) is
derived for variable thickness plate by plate analogy. Some of the
boundary conditions and reactions shown in Figures 3 - 8 are also
derived by plate analogy in Appendix A. In Appendix B, the differential
equation of variable thickness is approximated by replacing the partial
derivatives by the equivalent finite differences. Both the approximations
lead to a system of linear algebraic equations for the bending case
which could be solved by a digital computer to give the deflection at
the nodal points. Knowing the deflections, moments are calculated
by the various differential relations.

In the case of vibration, the resulting simultaneous linear

algebraic equations may be written in matrix form as

[A-xXB]lw = 0 (3)
where A = Matrix of coefficients of terms on the left hand side of
the equation shown in Figure 2,

B = Diagonal matrix resulting from right hand side

of equation shown in Figure 2.

w = Column matrix of deflections

A =a/n = grid spacing.

Equation (3) is in standard eigen value form and the eigen values
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and the eigen vectors could be obtained by the use of 2 digital
computer¥ The eigen values give the frequencies of freely vibrating
plate of variable thickness and for each eigen value the corres-
ponding eigen vector gives the relative amplitudes of vibration,

The difference approximation developed in Appendix A,
besides facilitating writing the equations, yields a symmetric
positive definite matrix A. This leads to the easy accessibility
to complete programs like M5 which calculates both the eigen
values and eigen vectors. Hence, in this study the difference
approximation of Appendix A is used.

The square plates with the thickness variations considered
in this study are shown in Figure 9. For the bending case, the
clamped as well as simply supported plates have their edge thick-
ness twice or half as much as the center thickness of the plate.

The load is uniformly distributed over the surface of the plate,
Further, the single taper on one side of the plate is assumed to be
equivalent to a double taper plate symmetrical about the middle
surface of the plate. For example, the plate (b) in Figure 9 is
equivalent to a double-wedge section. This assumption holds true

if the slope of the tapered face is small [11] . Three grid spacings,
namely \ = %, %, -Ia-o are used and extrapolations are used wherever
possible.

For the vibration case, the thickness ratios of % =1/2, 2
5.3 were considered for both clamped and simply supported plates
(Table I). The grid spacingsare A =a/6 and A\ =a/8. The bending
mode was obtained by numbering the nodal points only over the 1/8

of the plate surface (see Fig. 10 (a) for A\ = a/6),thus making use of the

*In this work, the MISTIC was used with standard M5 program.
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TABLE 1. Designation of Models

Edge Condition of Plate t/to Name of Plate Model

Clamped 2 A
Clamped 1/2 B
Clamped 5.3 (o]
Simply. Supported 2 D
Simply Supported 1/2 E
Simply Supported 5.3 F

Model Materials:
Static Loading - Perspex
Vibration Studies - Aluminium
Poisson's ratio = .:1; for all finite difference and

experimental calculations.
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symmetry. This yields the fifth mode also. For the torsional mode
or second mode, node lines are considered 2s shown in Fig, 10 (b).

For the third and fourth mode the node lines are shown in Fig. 10 (c)
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(c) THIRD MODE (dy FOURTH MODE

FIGURE 10, Finite Difference Grid (A = a/6) for Vibration in Plates



CHAPTER III

EXPERIMENTAL METHOD

The experimental verification of the results obtained by the
finite difference analysis can be separated into two parts:

a) The use of the Moire method for deflections and moments,

b) Use of a pulsed-air vibrator for exciting the plate model
in vibration studies.

The Moire technique has been described in references [12]
and [13] and is not repeated here. The equipment used and procedures
followed in the vibration studies are described in detail, however,
since they were newly developed.,

The requirements governing the design of the pulsed-air
vibrator are as follows:

(1) Excitation frequency should be variable continuously from 10 cps
to 1,000 cps.

(2) The excitation frequency for a particular setting should remain
fixed thus permitting continued running at the particular resonant
frequency chosen.

(3) The amplitudes of vibrating plate should be easily variable.

(4) There should be no restrictions on the material of plate (e.g. -
magnetic).

(5) The source of excitation should be sufficiently independent of the
plate response to permit any mode of vibration with\in the frequency
range to be excited.

(6) The response of the support should be sufficiently far away from

18
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the plate response to permit any mode of vibration within the frequency

range to be excited.

Pulsed-Air Vibrator

The pulsed-air vibrator consists of:
(a) Variable speed D.C. motor.
(b) Photo-tube speed indicator.
(c) Air supply.
(d) Pipe assembly with rotating and stationary wheels.
(e) Plate model.
(f) Support.
(g) SR-4 gauge station

(h) Camera to record nodal lines.

(a) Variable speed D.C. motor. (See Fig. 11)

The complete Reliance V# S Jr. Drive consists of three parts:
the adjustable-speed d-c drive motor, the control unit, and the operator's
control station. The control unit is mounted in a vertical position
on a wheeled cart so that the ventilation through the louvered portions
at the front, bottom and top-side portions of the cabinet is not re-
stricted. The control unit is located so as to receive a minimum
amount of vibration, and is supplied with a 440-volt, 50 cycle input.
The adjustable speed drive motor can develop a maximum of 2 h, p.
at 2500 r.p. m. and it is wired to the control unit. The operator's
control station includes a start-stop pushbotton, a speed adjustor,
and a jog-run toggle switch. The operator's control station is wired

to the control unit.



FIGURE 11. General View of Test Setup
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(b) Photo-tube speed indicator. (see Fig. 11, 12)

A Photo-tube circuit is introduced as a device to measure the
excitation frequency. The light from a 6 volt bulb is interrupted by
a rotating‘slotted wheel mounted on the motor shaft. Since the photo-
cell represents a variable resistance depending upon the quantity of
light falling on it, this interrupted light produces an alternating out-
put voltage. A capacitor introduced in the circuit permits only the
alternating signal to the Tektronix preamplifier. The output from
this preamplifier is fed to Hewlett-Packard Electfonic Counter as
well as to a Hewlett-Packard Oscilloscope. The oscilloscope trace
detects any stray signals in the circuit. The photo-tube is shielded
with aluminum foil which is grounded. This,as well as the use of
shielded cables for interconnection eliminates the erratic signals
to a great extent.
(c) Air supply.
The air supply to the pulsed-air vibrator is provided by Joy

Air Compressor, Class WG9, 8 in. bore and 7 in. stroke run by

a 60 h.p. motor. It develops a maximum pressure of 100 p. s.i.,

the capacity at delivery being 162 cft/min. The inlet to the vibration
tester is connected to the outlet from the air reserveir through a pres-
sure rubber hose, in order that the vibrations from the compressor
may not be transfered to the pulsed-air vibrator. The air inlet is
controlled by a mechanically operated valve which can regulate the
amount of air entering the vibrator.

(d) Pipe assembly with rotating and stationary wheels.

The whole pipe assembly of the pulsed-air vibrator is built



22
in four segments: two standard weight steel pipes of nominal size 3
joined together by a flanged joint, a reducer, and a nozzle (see Fig. 13).
The segment of the steel pipe towards the motor end houses a rotating
perforated wheel connected to the motor shaft by means of a 7/8"
diameter shaft, the two shafts being connected by a Spartan flexible
coupling. The shaft is supported inside the pipe on a thrust bearing
at the entrance of the pipe and aTorrington needle bearing on a spider
nearer to the rotating perforated wheel. A Victoprene oil seal located
at the end of the pipe prevents any air leakage around the shaft. A
circular annular disc threaded towards the motor end of the pipe,
besides blocking the air in the pipe, helps in the adjustment of the
gap between the rotating wheel and the stationary plate. Any further
air leaks between the rim of the circular disc and the pipe are pre-
vented by the use of an o0il ring and another annular circular disc
which is bolted on the first disc. The rotating wheel is of thickness
1/4 inch and it is smoothly machined so that it can freely rotate in-
side the pipe with a clearance of about 10 mils. 20 holes of 1/4 inch
diameter are equally spaced on a circle of 2-5/8 inches diameter on
the rotating plate. The stationary plate is located in the second segment
of the standard weight steel pipe. The perforations in this plate are
made to match exactly the perforations in the rotating wheel, the
distance between the two plates being from 3 to 4 mils. The two
pipes are joined by a standard flanged joint with four bolts. The ro-
tating and the stationary plates are located 2t this joint. The air
inlet is located on the first section of the pipe.," Q:i‘he holding fixtures
of the pipes to the table are provided with rubber sheet to provide

effective damping.
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The reducer is bored and machined from a cylindrical block
of steel. It tapers from 3 inch diameter to 1 inch diameter over a
length of 6 inches thus providing a gradual transition. The reducer
is fitted to the pipes by standard pipe threads.

The nozzle consists of two short pipes joined by a 90° elbow.
The horizontal portion of the nozzle is threaded into the reducer;
the vertical part is of variable diameter. Three different sizes-
namely,l inch, 3/4 inch | and 1/2 inch-have been tried in this
investigation.

(e) Plate model.

Six aluminium models have been studied for vibration. The
models have been designated A, B, C, D, E, and Fas shown in Table
1. The thickness ratios and the support conditions are shown in
Table 1. Two methods have been followed in the preparation of the
models,and they are briefly outlined below.

In the case of models A, B, and C an end mill is used. First
of all a 12 inch square plate is cut out from a uniform thickness large
sheet and the center of this square is marked. A 9 inch square is
marked having the same center as the large square. A Universal
Angle Fixture is truly levelled and one of its sides is set at right
angles to the direction of the table of a vertical milling machine by
using a sensitive dial gauge. The 12 inch square plate is gripped firmly
on the Universal Angle Fixture by means of a Vacuum Chuck, and some
studs. The Angle Fixture is tilted so that the desired taper is obtained
on the plate. (The taper is adjusted by the use of a dial gauge mounted
to the spindle temporarily).A Half inch end mill is used with 1400 R. P. M.
The table and saddle feed are 3 to 4-1/2 inches per minute. The

milling is started from the edge of a 9 inch square and worked inwards.
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FIGURE 14. Steel Support with Clamped and Simple Plate Supports

FIGURE 15. Models for Simple and Clamped Supports



27
The first operation in milling is usually of a deeper cut,which is
followed by finer ones. If the table feed and the saddle feed are started
together, the table moves along the diagonal of the square,thus giving
the required taper along the valleys of the model. After final milling
is done, the plate is removed and turned around by 90° and the same
procedure is repeated. This is repeated in turn till all the four parts
of the square are completed. A fine finish is given to the surface by
a fine emery paper fixed on a wooden block (see Figure 15).

In the second method,which is used for the model E, a Fly
Cutter is used at 1400 R.P. M. The procedure is the same as before
except we start with a 9-1/4 inch square plate. The ridges in this
case need no special treatment as they are swept out by the fly cutter
as each side is finished.

(f) Support.

In order to obtain nodal lines the plate should be supported
horizontally. The response of the support should be sufficiently far
away from the plate response to permit any mode of vibration within the
frequency range to be excited. These two requirements dictated the
construction of a sturdy steel support on which the plate supports are
tightly fastened by means of bolts (see Figure 14). The steel support
is made of 2 cold rolled steel plates of 14 inch square and 3/4 inch
thick. On the top plate a 9 inch square is cut out of the 14 inch square
plate so that both the plates have the same center. These two plates
are held by means of 8 vertical posts of 8 inch height and having a
section 3/4 inch x 3 inches (see Figure 14). Countersunk bolts are used
to connect the plates to the vertical post. On the top plate 8 holes are
drilled and tapped (3/8 inch size) on the corners and the centers of

the sides of a 13 inch square so that the clamped plate support may
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be fastened to the steel support by 3/8 inch bolts. Similar holes are
drilled and tapped on a 11 inch square to accommodate the simple
plate support. A description of the clamped plate support and simple
support is given in references [12] and [13].

(g) SR-4 gauge station.

In order to determine the actual platebresponse, an A-8 type
SR-4 gauge was mounted on the vibrating plate at a point very close
to the center of the plate. It has a gauge factor of 1.83 ¢ 2% and
resistance of 120 t 0.3 ohms. The strain gauge is connected to type
Q plug-in unit used along with a Tektronix Oscilloscope. The output
from Tektronix amplifier is fed to Hewlett-Packard Electronic counter
which reads directly the frequencies of the vibrating plate.

(h) Camera to record node lines.

A Burke and James View Camera (f = 21 ¢cm) is mounted at
3 feet directly over the plate by means of a bent steel bar 2 inches
x 1/2 inch fixed to the table. Two photo flood lights are focussed on

the plate while photographing the nodal lines.

Experimental Procedure

In order to achieve the full potential of the pulsed-air vibrator,
the experimenter should control carefully such factors as air flow,
relative location of the nozzle with respect to the nodal lines of the
vibrating plate, nozzle size, elimination of stray signals in the
electrical circuit, rotor speed, damping in the holding fixtures,
vibration of the support and the high noise levels. The following
is an outline of the steps followed ard the factors controlled in a typical
vibration test.

Of the 3 sizes of nozzles used, 1 inch and 3/4 inch diameter

nozzles seem to work better than 1/2 inch diameter nozzle. In order
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to obtain the maximum amplitude of vibration, the nozzle should be
near the region of antinode. It is preferred to let a small amount
of air pass through the 'chopper' sufficient to notice the amplitudes.
The presence of amplitudes is rendered more significant by first
sprinkling a small quantity of adsorption alumina (a white powder
of 80-200 mesh) on the surface of the plate. The rotor speed is
gradually varied until the resonance occurs, At resonance, the
alumina powder bounces rapidly near the regions of antinodes, thus
showing high amplitudes, and forms a heap along nodal lines and
the edge of the plate where amplitudes are zero, The range of
frequency variations for a particular mode can be narrowed by re-
ducing the air supply low enough to just notice the movement of
alumina powder near the antinode region. Any further refined adjust-
ment of the rotor speed should be made at this stage in order to
improve the above observation, The excitation frequency as shown
on the Hewlett-Packard Electronic counter is recorded. The
Hewlett— Packard Oscilloscope trace is checked so that no stray
signals are picked up by the photocell. The nodal lines exhibited
by each mode are photographed. A check on the simple support is
achieved by noting that the alumina powder at the support is at rest,
while those very close to the support tend to bounce up and down.

The type Q plug-in unit is a self contained bridge circuit which
is balanced for each test. If the strain gauge is unstressed and the
bridge is balanced,no signal should appear on the oscilloscope trace.
When the plate is vibrating, the oscillosccpe trace shows the strains,
which in turn are functions of amplitudes of vibration. At resonance,

the oscilloscope trace would show the maximum signal. The finer
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adjustments of air supply and rotor speed are mide, and resonant

frequency recorded.



CHAPTER IV

RESULTS

In this chapter, the bending and vibration test results are com-
pared with the finite difference results. The merits and demerits

of the experimental and finite difference results are discussed.

Plate Models A, B

The Moire fringe patterns for slopes in plate model A are shown
in Figure 16 for different loads and different grid positions. Moments
and deflections have been found from the enlargements of photos
(Fig. 16 b and d) at intervals of 0. la where 'a' is the side dimension
of the plate. Moments and deflections have also been calculated by
finite differences for grid spacings of X = a/6, N\ = a/8 and
X = a/10 (Table 2). Moments and deflections found by the Moire
method and those found by finite differences (A = a/10) are com-
pared in Figures 18 and 19. Dashed lines show values determined
by finite differences (A = a/10), while solid lines show those
determined by the Moire method. The top numbers represent the
finite difference values while the numbers below them refer to
Moire values. The numbers in the last row represent the Moire
values for corresponding symmetric points in the lower left quadrant
of the plate., Extrapolations of the values obtained with three different
grid spacings have been worked out wherever permisible and these
values are tabulated in Table 6. The extrapolated values are com-
pared with the values obtained by the Moire method.

In the case of model B, only the finite difference moments and
deflections are shown in Figures 20 and 21. The extrapolations of

31
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a) %_‘; Slopes: Load 0. 18 psi b) % Slopes: Load 0. 36 psi

c) aa%: Slopes: Load 0. 54 psi d) %_: (6 = 45°) Slopes: Load 0.36 psi

FIGURE 16. Fringe Patterns for Uniformly Loaded Clamped Plate

‘edge = 2 tcenter (Plate Model A)
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TABLE 2.

Deflections in Plate Model A

DefI;ctions %; . 10-4
Point
Grid Spacing a/6 | Grid Spacing a/8 | Grid Spacing a/10
1 0. 356,938, 9 0.132,547,1 0,058, 628, 3
2 0. 805, 880, 1 0. 344, 480, 2 0.167,376,9
3 0.992,517,2 0.511, 469, 3 0.272,953,3
4 2.116,952, 3 0.573,371,7 0. 346,074, 7
5 2.712,930,2 0.985, 146, 1 0.371,986,3
6 (R)| 3.860,582,7 1.524, 806, 3 | 0.506,025, 3
7 1.731,159,7 0.852,298,9
8 2.543, 140, 6 1. 099, 844, 5
9 2.951,975,4 1.188,955, 7
10 (R) 3.612,161,0 1.512,951, 4
11 2.003,302,5
12 2.183,066,6
13 2.775,661,5
14 3.067,726,7
15 (R) 3.494,591,4

Extrapolations for common point R

6, 8
6, 10

6, 8, 10

3.292,761,7
3.285,578,7

3.281,538,2
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TABLE 3.

Deflections in Plate Model B

4
Deflections 22— . 1074
Point Dr
Grid Spacing a/6 | Grid Spacing a/8 | Grid Spacing a/10 -

1 15,380,521 6.900,719 3.402,714
2 27.011,120 13,948, 333 7.606,581
3 30,985, 906 18. 460,574 10. 954, 079
4 43,589,674 19. 969, 298 12.994, 944
5 49,248, 634 26,449,952 13,672,161
6 (R) 54,045, 204 34,478,553 16. 106, 684
7 37.186,091 22.902, 049
8 43,427,288 27.100, 369
9 46. 440, 758 28.505,608
10 (R) 49. 026, 155 31.631, 816
11 37.023,019
12 38. 831,532
13 42. 547,254
14 44,398,672
15 (R) 46.012, 460

Extrapolations for common point R

6, 8 42,573,092
8, 10 40. 654, 780
6, 8, 10 : 39.575,730
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AW X 5 Aw - 0, . i
a) 3y Slopes: Load 0.072 psi b) o (e 457) Slopes: Load 0,108 psi

c) Z—: Slopes: Load 0. 144 psi d) :—‘; Slopes: Load 0. 144 psi

FIGURE 22. Fringe Patterns for Uniformly Loaded Simply Supported Plate

tedge =2 ookt (Plate Model D)



TABLE 4. Deflections in Plzte Model D

4
Deflections 12 . 1074
Plate Dr
Grid Spacing a/6 | Grid Spacing a/8 | Grid Spacing a/10

1 2.765, 189 1,595,511 1.036, 898
2 4, 688, 606 2.871,120 1.920, 329
3 5.388,618 3.703,959 2,600,711
4 8. 678, 977 3. 994, 683 3,031, 666
5 10.191, 328 5.453, 324 3.179, 472
6 (R) 12,833,812 7.171,910 3. 694, 886
7 7.778,880 5.076, 425
8 9. 883,184 5.958, 423
9 10. 867,200 6.262,264
10 (R) 12. 369, 386 7.195, 494
11 8.569, 494
12 9.047,210
13 10.505,174
14 11.190_,‘;89
15 (R) 12.157,3“02

Extrapolations for common poirt R

11,772,267
11,780,026

11,784,763
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TABLE 5.

Deflections in Plate Model E

Deflections qD;aj- . 1074
Point
Grid Spacing a/6 Grid Spacing a/8 Grid Spacing a/10
1 33. 146, 245 20, 882,548 14,076, 655
2 53. 688, 660 36. 682, 254 25. 832, 731
3 60. 409, 343 46,053,557 34,236,096
4 80,333,430 49,126,448 39. 194, 855
5 89. 058,400 60,709,758 40, 827,170
6 (R) 96,275,705 74,988,182 45,223,975
7 79. 685,512 59.117,971
8 89. 893, 656 67.347,465
9 94. 799, 540 70.062, 655
10 (R) 98.929,294 75. 328,606
11 84.930,417
12 88. 101, 545
13 94,314,372
14 97.415,377
15 100.079, 462

Extrapolations for common point R

6, 8
8, 10
6, 8, 10

102. 341,052

102. 124, 206

102,002,228

45
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a) 2¥ Slopes: Load 0.072 psi b) g—‘; Slopes: Load 0. 108 psi

c) 3% slopes: Load 0.181 psi q) %: (6 = 45°) Slopes: Load 0. 108 psi

FIGURE 25. Fringe Patterns for Uniformly Loaded Simply Supported Plate

tedge =1/2 tcenter (Plate Model E)
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these from different grid spacings and the deflections are shown in

Table 3 and 6.

Plate Model D, E

The fringe photos for plate models D and E are shown in
Figures 22 and 25, respectively. The moments and deflections
determined by both the Moire method and finite differences are com-
pared in Figures 23, 24, 26, and 27. The deflections and extrapo-

lated values are shown in Table 4, 5, and 6.

Discussion of Bending Results

The possible sources of error arising in the Moire method
have been listed in reference 13 and 17. These are repeated here
in order to study their effects witAh respect to variable thickness
plates, These are:

a) Calibration of the material,

b) Plastic behaviour of the material,

c) Lack of precision in loads,

d) Inaccuracies in reduction of data,

e) Variation in plate thickness different from that assumed,

f) Support conditions other than as sumed,

g) Changes in dimension of photographic film during developing,

and distortion in the enlargements,

h) Membrane action in the plate, and

i) Relative motion of model, grid or camera between exposures.,

The curves of Figures 18 and 19 show that the Moire and
difference results are in fair agreement, From Table 6, it is seen
that for plate model A, the extrapolated moments are higher than the

moments obtained individually for \ = a/6, \ = a/8, and \ = a/l0;
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it might also be noted that the convergence is fairly rapid. On the
otherhand, the extrapolated deflection is smaller than the deflection
obtained by three separate grids. The convergence in this case also
is quite rapid., The extrapolated moments and deflections differ
from the Moire values by less than one per cent. This, however,
may not be the case at other points in the plate. The Moire moments
for these points differ from the finite difference values to a greater
per cent although the agreement between Moire deflections and
deflections obtained by finite differences is very close for all points.

These small differences may be due to inaccuracies in the
calibration of the mpdel, inaccuracies in reduction of data, or be-
cavs e the actual model differed from the ideal model used for the
finite difference calculations. (For plate model A, the actual
ratio of edge thickness to center thickness is 1. 91 instead of 2, 00.)
Other sources of error might contribute to the inaccuracy to some
extent, Since the maximum deflection was 0,019 inch or about 1/5
of the central plate thickness, the membrane action in the plate is
negligible.

From Table 6, it is seen that in the case of plate model B,
the negative moments converges monotonically to a higher value,
while the positive moment and deflection converges monotonically
to a lower value.

In the case of plate model D, (see Figures 23 and 24) the
Moire moments are smaller than the finite difference moments by
amounts varying from about 5 per cent to about 20 per cent at the
center of the plate and along the valleys., For other points on the
plate, the agreement is within about 8 per cent. The Moire deflections,

however, agree very closely with the finite difference deflections.
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From Table 6, it is seen that the extrapolations lead to a higher
value in moments and lower value in deflectior. The maximum
deflection and the maximum twisting moment by the Moire method
agree with the extrapolated finite difference values within one per
cent. This, however, is not the case with the maximum moment,
which differs by 20 per cent. The rapid convergence of the finite
differences is also established in Table 6. The great variation of
moments at the center of the plate and along the valleys can be attri-
buted to the calibration of the material, the experimental model varying
from the ideal finite difference model, inaccuracies in reducing the
data and support conditions other than those assumed. The wmaximum
deflection was 0,0239 inch or about 1/4 of the central plate thickness.
Hence, the effect of membrane action is negligible.

In the case of plate model E, (see Figures 26 and 27) the Moire
moments are greater than the finite difference moments by amounts
varying from about 2 per cent to about 20 per cent at the center of
the plate and along the ridges. For other points on the plate the agree-
ment is within 8 per cent, The Moire deflections agree very closely
with the finite difference deflections. From Table 6, it is evident that
the extrapolations lead to higher values in moments and deflections.
The Moire deflection is smaller than the extrapolated central deflection
by 3 per cent and the Moire maximum twisting moment is greater than
the extrapolated twisting moment by 8 per cent., As in the case of
plate model D, the great variation of moments at the center of the
plate and along the ridges is attributed to the sources of error as in
the case of plate model D. The actual ratio of edge thickness to center
thiékness is 1/1.94 instead of 1/2. The maximum deflection at the

center was 0.1696 inch or about 1/11 of the central plate thickness.
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Hence, the effect of membrance action is negligible.

In Figure 28 (a), My moments are plotted against y at
x = 0,5a for clamped plates with thickness ratios shown. For clamped
plate with constant thickness, the curve is plotted from values given
in reference 17, page 27, The effect of increasing the plate thickness
at the edge compared to the thickness at the center is to reduce the
center moment and increase the edge moment, The moment curves
for t/to > 1 would lie below the moment curve for constant thickness
clamped plate. On the other hand, the effect of decreasing the edge
thickness is to increase the center moment and decrease the edge
moment; all the moment curves for t/to < 1 would lie above the moment
curve for constant thickness clamped plate. In Figure 28 (b), the
deflections along a center line of plate models A and B are compared
with the deflections of clamped plates of constant thicknesses of to
and T (see Figure 28 (c)). The deflection curves for constant thickness
plates t, and T would set up bounding lines within which the deflection
curves for plates with thickness ratios of t/t°>< 1 would lie, The
effect of increasing the edge thickness is to decrease the deflections,
and conversly, decreasing the edge thickness would increase the de-
flections.

In Figure 29 (a), Mx moments are plotted against y at x= 0,5a
for simply supported plate models E and D and also for a simply supported
plate of constant thickness. The moment values for simply supported
plate of constant thickness are taken from reference 13, page 46, The
effect of decreasing or increasing the edge thickness of plate dces not
seem to appreciably change the moments compared to the moments in
plates of constant thickness up to quarter span. Most of the variation

occurs in the central region of the plate bounded by quarter spar lines.
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In the case of plate model E, the center moment increases while in
the case of piate model D, the center moment decreases compared to
the moment in a plate of constant thickness. In Figure 29 (b), the
deflections along the center line of plate models D and E are compared
with deflection curves for constant thickness plates to and T (see
Figure 28 (c)). The behaviour of deflections is the same as in the case

of clamped plates.

Vibration Results

The frequencies calculated by finite differences and those

determined by experiment have been expressed in terms of a parameter

o= Dr
‘J traI

where 3

Etr

Dr = flexural rigidity = —_— (1b. in,)
12(1 - ¥v7)

E = Young's modulus of elasticity (lbs/inz)

v = Poisson's ratio

'Y
[ ]

length of the side of plate (in)

p = plate mass density (lb. secz/in4).

The measured frequency and the parameter ® are related by

-
o a Qr

where @ is a dimensionless number which is comparable for the
different plates despite differences in physical constants and dimensicns.
The values of @ or oo/mr are given in Table 7 for clamped plate models
A, B, and C. Table 8 shows the values /o, for simply supported plate

models E, D, and F. The node patterns for these different models are



TABLE 7.

Natural Frequencies in Clamped V.ir:z:bie Thickness Plzates

Finite Difference Frequencv o/o, Exper.
o Frequency
Mode! Mode Extr po=ted "
CO/oL‘r.
A= a/6 N =a/8 , Frequercy ]
Model A 1 59.780 61.534 63.790 63.20
tedge ~ 2 104. 573 111, 464 120. 392 116. 70
it 3 149,239 161,688 178. 385 172,20
center
4 157,147 171, 846 190, 745 ¢00. 48
5 150.928 174, 234 204. 199 202,55
6 205,307 229.199 259,918 258,57
Model B 1 18,204 19. 399 20,936 21,58
tedge = 2 36.397 39,541 43,584 46, 54
/2t 3 54.379 60. 165 67.604 70.28
center
4 60.304 67.936 77.749 87.00
5 6z.752 70.359 80.139
6 77.282 85, 405 95, 848 107.96
Model C 1 179, 81
tedge = 2 75,87
5. 3t 3 384,43
center
4 454, (5
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TABLE 8. Natural Frequencies in Simply Supported Variable Thickness

Plates

L. . . Exper.
Finite Difference Frequenices w/w, Frequency
Model Mode Extrapolated /0y
x=a/b A= a/8 Frequency
Model D 1 30. 836 31.431 32.196 32.84
t = 2 72.505 75.263 78.809 80.03
edge
t 3 122, 643 122,163 121.544 128,63
center
4 130,412 134,064 138.759 139.55
5 124,479 136. 759 152, 549 145, 85
6 175,524 189.524 207.523
Model E 1 13.534 13,567 13,568 14,20
tedge - 2 31,371 ‘ ’32. 169 33,195 34,78
2
1/2t o ver 3 49.272 50,587 52,279 53.97
4 56,611 60,771 66.121 68.16
5 58, 782 62,816 68.001 70.93
6 73,288 77.685 83.339
Model F 1 99.99
tedge - 2 189.98
5. 3tcenter 3 304, 97
4 359, 83
5 364,61
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TABLE 9. Physical Constants of the Plate Material

Material Modulus of Mass Density Poisson's Ratio
(p) (v)
Elasticity, (BE) b secz (Dimensionless)
1b/in® — T
. 6 -4
Aluminum 10.53 x 10 2,596 x 10 0.263
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FIGURE 30. Node Pattern on Plate Model A
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FIGURE 31. Node Patterns on Plate Model B
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First Mode Second Mode
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Third Mode Fourth Mode

FIGURE 32. Node Patterns on Plate Model C
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FIGURE 35. Node Patterns on Plate Model E



9POJN pPuod9g

V 1°PON ?1eld ut sepmrdwy aanje[ayd -9¢ qUNOIA

9pOW 38114

2lE® ~8S6° [ 00°T 00°T | 856" | alE”
€2€° 928" I TM8° Mg° [ 928° | €et”
00¢* 905° - 89N° 89M° [ 905° | 0027
L90* -991°  0sT* 0ST° | 991° | L90°

621°| €EN°| 6L | 00°T| M6L°| €EM°| 62T1°

Tt Le°| 999°| fi6l®]| 999°| Le°] TT°
m90°| Lig*| Le°| €en°| ole*| Lig®| %M90°
810°| M90°| O1T1°| 621°| OT1°| M90°( 8T0°

64



V 19POIN 91eld ut sopnjrduy aarjeray

9PON yiino g

60° H9SE " [+L6M " [+95E° [+660° |+
660° |- wo.. + 0°T[+929° |+ 660°
9s€° (929" |- 8s° [+ 929°| -95¢€°
L6M°|=00°T |=68S" [~ 83| = 0°T|=L6T"*
95€°1-929° |- 685° [+ 29° | -95€"°
660° | - 929° |+00°T|+929° |+ 60°

660° [+9SE * [+L61° |+99E€ | +660°| +

L TINDOIA
SPOW PITYL
T6T" 12 §So9E° S9€” |-Tet” [-161° |-
12" $00°T $968° 968° [-00°T [-Teh° |-
S9€° $968° F626° 626° |/968° |-99¢€° |-
S9€° [968° [626° 626° [+968° FS9E" |+
120 [F00°1 [-968° 968° +00O°T +121° [+
T61° [Tef” [-5%* S9E° TCT™ [+T6T° [+

65



V T19PON 21eld ut sopmr[dwy aanje[ay °g¢ TWNDIA

66

PO YIXIS | PO Yyt d
\\ HE =~
/ \
/ \
- ° ° * ry @ w s ’
98T | +LM9° [+00°T[+ 00°'T FLM9° 981° F 9Nt ° HE9T° ;Qn,. - 0°1T|-LgE" umw.n. +9nT°
990°| -800° umlaml.-H| |..m.mm.lum8\.\umwo. 3 ELT° pege” €50° i.m. ..m\mov -cge° [+ELT"
oge | -fLL -S| - nss° tE.. 0BE° €LY HE9E° 22 ® HE9T" [+282° [+€9€° [+ELT"
[ qe2 | -08TN [ <Ll |- GlE*® YO6N" ¥SS2° ¥ T180° HELT® PELT #ONT° [+€LT° [+€ELT  [+180°




d 19PON 21eld ut sopmiridwy sanje[dy “6¢ AYNDIJ

9pPOJN pPuod3g

¢EL°| -00°T|-959° 999°| +00°T| +2€L*
€L9°| -=L26° 919" 919°| +L26°| +€L9"
105°| =eTL°|-T0S" 105°| +2TL°| +105°
TMe* | -ege”| - g2° 082 °[ +€QE°| +TM2°

-3 I

9pON 3satq
Mot | S2L° | 8€6° | O°T| 8€6° | Sel°| MoE”
62€° | 199° | 998° | 8€6° [ 998° | 199° | 62€°
T€C | eoN° | 199° | sel° | 199° | eof*| t1€2°
660° | Tec" | 6¢E° | Mot*° [ 62E° | TE2*| 660°

67



d 1°PON 23e[d ursepmyridwy aanyeray

9POW Y3imo g

h

0E" [+cll~[+ O°T|+2LL | +€0E°| +
tOL”| - ET9° [+T26°| +£T19°| + €oe
glLle|-€19° |~ ot °| + €19°| =eLL®
0°T|-Te6° |- 0E° |~ 0o€°| -126°[ - 0°T
elLl°|-€19° |- o€+ £19°| =eLL®
€oe"| - £19°|+126°| +€19°| + goe”

€OE | +CLL" |+ O°T[+2LlLl"[+E0EC"°| +

0¥y TANODIA
PO PATYL
805° PLLL" r 95" [+ 95° [-LLL"|~gog"
€L° | 0°T H969° [+ 969° |- 0°T |- €L°
29N° |L59° e |+ sen [-L59° |-eon
29" |-L59” [Sen |- S [+189° [+eon"
€L |- o 1|969° |- 969" |+ o't |+ EL°
gos- |-LLL” |- 95° |- 95° [+LLL* [+B0S"

68



d 19PON @1eld ursapniridwy aAr13e[ay

J

SPON WIxIS
958°|+2L8" [+ns* nsn| -eLe°| 958
69€ " +9me " [+nST* R HEL S
9N°| = 59° | -h8n” nem*|+ S9°| +I9N°
$99°( - o°T[-geL’ g2L°[+ 0°1[+599°

Ty 3ENOId
9PON Yyt d
\ b N < .
\\ A
/ \
£
Lon® w100° Vla.Z.. = 0°T |-TTL° [-T00° [~LOW*
\ Y,
99° kSle* +wwm. ~TTL° |-ag€° |-sL2° [+ 95°
N 7
,,,. \r\\
69L° [+GSL° #SLle° +TO00° |-GLle*° [+GSL° |+69L°
Qmo +m0~\o L+ om. *Pgo + omo +$~.o + wmo

69



9PON pu0Od3g

919° [~ 0°T [-£€8° €€Q° [+ O°T[+919°
295°|-506° |=9¢tlL" 9€L"* |+906°[+29S°
LIq° [ -€99° |- 6N° 61" [+€59° | +LTM"
éc°|-ce°|-=eee’ geec [+ 2ee°|+ 22°

d [9PON 91eld ut sapnjijdury aarjeray

2y TANODIA

SpOW 31811 q

@

OTE" pST9° kel8°

F O°T ﬂwhw. +ST19°

+OTE °

96¢° pE9S*

88L°

+cl8°

+88L° €99 °

+98¢ °

glc" p1Ich”

€95 °

+ST9° HE9S° HT2N°

+81e °

811" #8TC° 982 ° +OTE* #9QC° [+8TC°

+QTT°

70



d (9PO 91eld ut sepmiridwy sanje[dy ‘¢ IUNDII

71

9POW Y3ano g PO PITY],

6T [+TGG [ +M2L°| +TS9S " +96T° + ST [+119° |+ GN° |+ SNt =119° | =e1n*
S6T°| = aoo,o + 0°7 +199°| + S61° = T19° |+ O°T|+59L° |+ S9L°|= 0°T| -T19°
185°| -199°| - 817 + 19971 -155° - SN* [+99L " [+L99° |+ L99°|-59L°| - Sh*
nelof - 0°1| =a8N°| - gl - 0°q -fel| -
155°| =199°| - S8 + 199° -155° - SNt |=6a9L° [-L99° |- L99°|+59L° [+ S°
G61°| = 199°| + O°T +199°| + 617 - T19° (= 0°T|-59L" |- GOL° |+ O°T|+119°

GET°| +195°| +1CL°| +169°| +S6T°| + ST [-T19° |~ sh* |- S |+T19° | +C1Y°




d 13pON @1eld ut sapniridwy aane[ay "y JWNOIJ

9PON YIXIS 9POWN Yyt g
\\\\.l - ~N
/ N
[ \
. 3 3 ‘ _
oNE* |+ €8° [+ O°T|+ 0°T|- €8°| -9NE"| - L1 |+ f0° ﬂm..qm. - 0°T |-61S° |~ ..3\. + LT°
\ /
9L0° | +LEC " |+T6E " |+ 16€°| =L€2°| -9€£0°| - 602 ° [+G9T° HOE2R |-615° [-9tC* 59T +602°
b e | — — e - | —_— e ——— — — e e — — I/II\\
65N =6L9° | -Ten*| - TN | +9L9°| +651°| + gl " [+l2E° pSIT° |+ WO [+99T° [+L2E"° |+Q1C°
eLn°| -899° [ =Lan’| - ST [ +899°| +ELN°[ + SLI° gfe” H602° [+ L1° [+602° [+QM2° [+SLT*




A 19PON @3v1d ut epmitfdwry Lanie(ay

9POIN pPuOd3g

LEg® |- 0°T |-M29° N9 |+ 0°1|+LEQ°
€8L° [-T76° |-1M6S° M6S° [+T76° [+€8L°
619° |-N9L° |-905° 90G° |+M9L° [+619°
6NE" | =691° |- eE° 2E " |+69M° |+6NE "

H

*Gy FYNDIA

9PON 3Isatq

(AN

LQL°

H€£36°

 0°1

+LoL°

A

geN”

pGEL®

-£G6°

pSEL®

reEN°

({1

185 °

$qEL”

LQL°

|

p6EE"

U

6EE°

QEN”°

AN

péEE"

QT °

¥

73



OPOIN Y4ano g

d 19PON @1eid ut sapryijdwy aanje[ay

1CE” [+¢8L° [+ O T[+cBL [+12E [+
1ee° |~ 9SG ° [+8EB7 | +19S° |+ 1¢”
¢BL” | -N9s”° |- 9¢° |+ 95" | -e8Ll”
0°T|-8£8° |[-N9¢° |- 19¢° | -8€8° | = 0°1
egL” | =N9s” |- nge” |+ 95°|-2¢8L”
e’ |- N9S° |+8E€8° [+119G° |+ 2e”

TCE® |+CBL" [+ O T|+2QL" [+12€" |+

‘9% TANOILI
9pPONN PITYL
M9° pON8° pelS” b els” |-9ng” |- 19°
9Ng° k O°T pIS9° | 159° |- O0°T [-918°
ClS”® F1S9° FT6E° | T6€° |-199° [elS®
elS” F199° F16€° - T6€° |+199° H2lS®
9M8° - 0°T [F159° |- 199° #00°T [+918°
9° 9N8° [els’ |- el poNg° [+ 9°

74



d T9PO 21eld ut sopnjridwy aanje[dy Ly TUNOIA

SPONN Yt A

f\

L9E" pN60° me. - 0°1
\

\
TS T P [esT

»

+

PO YIXIg
188 ° [+858° [+6MN° [+ 6MmM° | -898° | -188° |-
92|+ g€” [weque |+ | €917 |- gev|-gem [~
L | -695° |-600° | - son° [ +695° L | +
6€L°|- 0°1|=569° |- G69°|+ 0°T|+6EL°|+

~
08° 4..:.0., #LT pN60O°

e89°

80

nes” klog”

75



shown in Figures 30 - 35, The relative amplitudes determired by
finite differences in plate models A, B, D, and E are shown in Figures

36 - 47,

Discussion of the Results

From Table 7 and 8, it can be inferred that the finite difference

method converges fairly rapidly except for some higher modes,as in the

)
case of fourth mode frequencies of plate models A and D. It seems
desirable to use finer grids than \ = a/6 in the,se cases. This is
accountable since the fourth mode imposes additional constraints along
the diagonals of the plate (the nodal lines) and this would be equivalent
to using a coarser grid than A\ = a/6. The extrapolated values are
higher than the values obtained for individual grid spacings. In the
case of plate model A, the fundamental frequency obtained by experiment
agrees very closely (within one per cent) with the extrapolated
frequency. For higher modes, the disagreement between the ex-
perimental and extrapolated finite differences is from 1 to 4
per cent. In plate model B, the disagreement in the fundamental mode
frequency is within 3 per cent and the higher mode frequencies disagree
from amounts 3 to 13 per cent, The difference between the experimental
and finite difference frequencies is 2 per cent for the first mode and
1 to 6 per cent for higher modes in plate model D, while in the plate
model E, the difference is 9 per cent for the first mode and frocm 3
to 5 per cent for higher modes. Except in the case of plate model A,
the experimental frequencies are higher than the extrapolated finite
difference frequenices.

The following are the possible sources of error in the determin-

ation of frequencies:
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2) Determination of exact resonznce
b) Errors in the reading instruments
c) The actual plate model different from tke ideal finite
difference model
d) Inaccuracies in the determiration of physical constants
e) Support conditions other than 2ssumed
f) Vibration of support
g) Large amplitudes
h) Effect of rotatory inertia and shear
i) Damping in the material

j) The effect of air mass.

(2) Determination of exact resonance: The presence of

extremely sharp resonance peaks for free vibration of plates eliminates
the possibility of any large error due to this cause, The maximum
error attributable to this source is within one per cent,

(b) Errors in the reading instruments: In the frequency

range measured in this study, the electronic counter gives the
frequencies to the accuracy of tl count, Hence, the errcr due to
this source is negligible,

(c) The actual plate model different from the ideal finite

difference model: In plate model A, the actual ratic of edge thickness

to center thickness is 1,987 instead of 2,00 while in the plate model
B, the ratio is 0,522 instead of 0,500, A lower actual ratio would
give smaller frequencies while a higher ratio would yield higher
frequencies. This is evident from the frequencies of plate model A
and B shown in Table 7. The magnitude of the error depends on how
much the actual ratio differs from the ideal ratio. For the models used

in this study the error due to this source is estimated to be from 1
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to 6 per cent,

(d) Inaccuracies in the determination of physical constants:

The physical constants appear in the dimensionless parameter ©,

in terms of which all the frequencies are expressed. The effect on
@ of errors in these physical quantities is discussed in reference
[16]. From Table 9, it is evident that the Poisson's ratio is the

least precise of all the measured quantities but it has the least effect
on .. Young's modulus of Elasticity (E) and the mass density of
the material (p) have been found with good accuracy, The quantities
such as the side dimensions of the plate and the thickness, which have
a great effect on @ have been measured to the accuracy of 1 in
1000 of an inch, Because of these reasons, the error introduced from
this source is less than one per cent,

(e) Support conditions other than assumed: The error introduced

due to this source is negligible in clamped supports., But, in simple
supports errors up to a maximum of 4 per cent could be introduced,
as a slight increase in tightness of support nuts could introduce small
moments at the edge, thus increasirg the frequency,

(f) Vibration of support: Because the clamped and simple sup-

ports were mounted tightly on a sturdy steel base, the error due to
this source is negligibie,

(g) Large amplitudes: Large amplitudes of vibration introduce

non-linearity in" which frequency of vibration is dependent on the ampli-
tudes of vibration as contrasted with the linear theory where frequency
is independent of amplitudes. Influence of large amplitudes on free
vibrations of rectangular elastic plates has been discussed theoretically
by H. N. Chu and G. Herrmann in refererce [18]. The effect of large

amplitudes on the fundamenrtal frequency in plate model B was studied
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experimentally and the results are plotted ir Figure 48. Instead of
amplitudes, the dynamic strain is measured at a straiﬁ gauge station
situated close to the center., The frequency in terms of o is
plotted against the dynamic strain, The frequency remained constant
up to a dynamic strain of 600 microinch per inch; beyond this point,
the percentage increase in frequency for different dynamic strains
are indicated in Figure 48, Since the amplitudes in all plate models
were controlled to a level for which the dynamic strain is below 800
microinch per inch, the error due to this source is within me per cent,

(h) Effect of rotatory inertia and shear: This correction

becomes more important at higher modes. If the wave length (the
length of half waves in which the plate is subdivided) becomes less
than 10 times the plate thickness, the classical plate theory which
neglects rotatory inertia and shear is very iraccurate, The effect

of rotatory inertia and shear in vibration of plates has been discussed
by R. D. Mindlin [19]. The highest mode found in this study is the
sixth mode for which the wave length is about 18 times the maximum
thickness of the plate and hence no correction is made for rotatory
inertia and shear,

(i) Damping in the material: The effect of viscous damping

of the material on the natural frequency is to decrease the frequency
with an increase in the value of damping coefficient, For a material
like aluminum the effect of damping could be negligible although for
plastic models damping effects should be taker into account.

(j) The effect of air mass: In the vibration test, the plate

model is vibrating in an air medium while theoretical frequencies are

referred to plates vibrating in vacuo. The vibrating plate induces a
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mass of air around it to vibrate and hence a correction for air mass
is justified. M. V. Barton [20] makes a2 crude approximation to correct
the test results for air mass by finding an 'equivalent' air mass which
moves with the plate on the basis of the theory of aerodynamic forces
on an oscillating airfoil. Due to this effect, the frequencies deter-
mined by experiment are estimated by Barton to increase in small amounts
and in some cases to an extent of about 1,5 per cent,

The node lines obtained experimentally are in fair agreement
with those calculated by finite differences (Figures 30 - 35, Figures
36 - 47). Because of slight imperfections in the models the actual
node lines deviate to some extent from the ideal node lines, The node
patterns do not seem to change from model to model although the
boundary conditions and thickness variations were different for each
model. However, the position of point of maximum amplitude varies
for different models for some higher modes., For the fundamental mode
and the fifth mode, the maximum amplitude occurs always at the center
of the plate, while for the third mode the point of maximum amplitude
(maximum stre 88 also) is always at the quarter point of the plate for
all models, For the second mode the maximum amplitude changes
along the horizontal centerline while for the fourth mode it changes
along the vertical centerline,

A phenomenon was observed in the vibration of plates. This
is the presence of 'ultraharmonic or multiple harmonic resonance'
in which the plate vibrates with a frequency which is an integral multiple
of the driving frequency., This type of resonance occurs whenever an
'impure' applied force of frequency f is in resonance with a system
whose frequency is an integral multiple of f. The applied force in the

present case is a pressure pulsation whose wave-form is triangular,
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becoming sawtooth as the distance from the scurce is ircreased [15].
The actual motion of the plate at resorance is essentially sinusoidal.
The sawtooth or triangular wave-form can be obtained by a super-
position of several sine harmonric functions. Among these higher
harmonics, if there exists a harmonic whose frequency is the natural
frequency of the plate, then, this type of resorance will occur.

The ultraharmonic resonance helps in finding the higher mode
frequencies of the plate from a strain gauge signal although the forcing
frequency is limited to only a submultiple of the plzte frequercy.
Most of the modes found in this work showed this type of resonrarce;
and in particular the case in which the plate frequency is twice that
of the frequency of pressure pulse is quite common. In some cases

the plate vibrates at a frequency which is 3 times the driving frequency.



CHAPTER IV

SUMMARY AND CONCLUSIONS

Summary:

The Moire method is used to find the moments and deflections
in laterally loaded clamped and simply supported square plates of
linearly variable thickness., Moire fringe patterns for different plate
models are shown and they are analysed to find the deflection and
moments in the plates. The differential equationo}d,variable thickness
plate is approximated by difference equation and the plate problem is
solved for different boundary conditions and for different grid spacings
by the use of Digital Computer. Experimental results are presented
and the comparison with the finite difference results are discussed.

The natural frequencies and the node patterns for clamped and
simply supported square plates of linearly variable thickness have
been found experimentally using a pulsed-air vibrator. Finite
difference approximation is used to solve the vibrating plate problem
and the resulting eigen value problem is solved by the use of digital
computer., Eigen values are the frequencies and the eigen vectors
represent the relative plate amplitudes. Experimental results are
compared with finite difference results and disagreements between

the two,if any are discussed in detail,

Conclusions:

The Moire method is equally easy to apply to plates of variable
thickness with different boundary conditions and different types of
loading, This method seems to be better suited to find deflecticns
than moments., The principal reasons for inaccuracies in the deter-

mination of moments seem to be:
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a) the actual models different from the idez! mcdels used for
mathematical analysis, b) support ccnditiors cther than assumed,
c) the errors in calibration of the material and the reduction of
data, With the set-up and the models used znd the gereral procedure
followed in reducing data, the inaccuracies in momerts amounted to
from a very small value to about 10 per cent,zlthough for some regions
such as valleys and ridges the inaccurzcies were quite high., The
experimental and theoretical deflections agreed within 3 per cent,
With improved models (both materizl and workmanship) and the im-
proved support cornditions (especially simple supported) the in-
accuracies in moments could be kept well below 10 per cent,

The convergence of the finite difference method is very good
both for deflections and moments, This method seems to be quite
general because it could be applied to plates with any boundary con-
ditions, acted upon by any conceivable type of loading and with
thickness variation being quite arbitrary, Further, the loading and
thickness functions can be either continuous or discontinuous,

Comparing the plates of variable thickress with plates of constant
thickness, it is concluded that the effect of ircreasing the plate thick-
ness at the edge compared to the thickness a2t the center is to reduce
the center moment and increase the edte momert,while decreasing the
edgethickness has the opposite effect., But in simply supported plates
the only moments which are changed considerably are those near the
center region bounded by quarter span lines, A plate thick at the edge
would have smaller center moment than the one thin at the edge.

The finite difference method should be applied with care to
vibration problems. For lower modes,grid sizes of a/6 ard a/8

give good convergence, but for higher modes, still finer grids should
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be used in order to give reasonable convergence. For still higher
modes (beyond sixth mode) the rotatory inertia and shear should be
included in the difference equation of variable thickness plate to give
good accuracy. In particular, this would add terms in the B matrix

of the plate eigen value problem

(A -XBlw = 0.

In general it is concluded that the finite difference approximation
used in this study gives sufficient accuracy in the case of variable
thickness plate problems.

The experimental results are in fair agreement with the finite
difference results, The inaccuracies are due to the actual model
deviating from the ideal model, support conditions other than assumed,

In this work the inaccuracies range from very small amounts to
about 6 per cent,althoughindfew cases, the inaccuracy was up to 13
per cent, With better models and improved support ccnditions, an
accuracy of one per cent can be achieved with the pulsed-éir vibrator,

The nodal lines are in fair agreement w.tr the culculated posi-
tions of node lines, Ultraharmonic resonance was observed for nearly
all modes studied.

Further investigations are suggested along several lines:

(1) Thickness variation and loads being discontinuous,

(2) Study of viscoelastic plates of variable thickness,

(3) Effect of large thickness variation in plates.

(4) Development of a technique to measure the amplitudes in

the vibrating plate.

(5) Study of higher modes of variable thickness plate. In-

clusion of rotatory inertia and shear in the difference
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equation of variable thickness vibrating plate.
(6) Study of large amplitudes in vibrating plate.
(7) Application of Ritz and Galerkin methods to the study

of variable thickness plates.
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APPENDIX A

Finite Difference Equation of Variable Thickness Plate Derived by

Plate Analogy
In the plate analogy [23], the plate is replaced by an analogous

structure which is made up of a series of rigid bars and blocks joined
by springs. The ends of rigid bars are connected to the blocks by

means of springs which transfer only moments and shear between the bars
and the joint block, while the mid-points of the bars are connected

by torsional springs which transmit only twisting moment. The loads

are applied only at the joints. The bending moments are expressed in
terms of the displacements of the joints from the unloaded position

and the plate rigidity at the joint. The twisting moments are expressed
in terms of the plate rigidity at the center of the grid and the twist
of the surface, which can be expressed in terms of the displacements

of the joints. By considering the equilibrium of the joints and the
bar, the difference equation of variable thickness plate and the edge
and corner reactions are derived in the following. Nielsen [21] obtains
the difference equation of variable thickness plate by considering the
equilibrium in the plate element and his equation agrees with the equation
obtained by plate analogy. Considering the bar 'on' and taking moments
sbout n (Figure L9),

2-
Q.+ X\ AeM =AM XN AN .

on on=-w on - ¢

D
Mn = - ;% [(Hﬁ - A, H.) ty (H' - A Hw)]

D
- -_r‘ - -
" xz [(wnn 2"n * 'o) ty ("nc 2"n * "nw)]

no
(1 - v)D.
Mn-e¢ - 22 ' (ue ML wne)
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FIGURE 49. Forces Acting on Elements of Analogous Plate Structure
at a General Point of a Variable Thickness Plate
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D = 8D, , D, = 8D, , Dy = &P,
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Qo+ X = -;2-[- (wn-2w0+ws)-v(we-2wo+ww)

+ 6y (W= M W) v ve (W - 2, )
+ (1 - v) Sd (wo+wm-wv-wn)
-(-v)s (W, +W -W -W )]

Similarly considering the equilibrium of oes
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oe eo
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Qe * 2 .% - 5c(wec - Mt wo) - V6, (wse - Wt wrxe)
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D
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+(1-v) 6 (W +W -W -W_)
-(1-v) Gb (Wsc + Ho - Us - We)]
Considering the equilibrium of\lowr'

Qy + A = AM__ =AM _+XM =AM

Q_ . x-%%[- (we-zdo+ww)-v(ws- wo+wn)
+ 8, (wo- 2ww+ww) + V8 (wsw- ww+wm)
+(1-v) 5d(wo+wm-ww-wn)
- (1-v) 8, (ws+ww-w°-wsw)]

Summing the vertical forces on the joint at O:

2
(Qu, = Q) M+ (Q - Q) = ar

Substituting the values of Q's and rearranging the terms the plate

equation takes the pattern shown in Figure 2.

Finite Difference Equation for Edge Reaction in Simply Supported Plate

of Variable Thickness

Consideingthe bar 'ow' and taking moments about w (Figure 50),

0
X 6y (L= V(W __+W -W -W)
Boundary condition: W = W = 0
D

A o)
Q -3 "'{55‘1 (1-v)(wnw-wn)
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FIGURE 50, Forces Acting on Elements of Analogous Plate Structure
at a Point on the Simply Supported Edge of a Variable Thickness Plate
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FIGURE 51. Forces Acting on Elements of Analogous Plate Structure
at the Corner of a Simply Supported Plate of Variable Thickness
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Similarly
A Do
Qe * 3 = 32 5, (1- v)(wn - wne)

D
Q. - A= -)\—g [- 8, (1- V)W -W,) + 6y (L= WI(W_, - W)

* 6, (wnn - gwn) * V6, (wne -t an)]

Summing the vertical forces on the joint O,

2

A L
Q oxiQ 02-0 02 2"'V.X

Substituting the values of Q's and rearranging the terms,

D
= .9, 0 { -
v 2 +)\3 W .6 +W_3vs +2(1-v) sd}

SRR ML T I (SR IR OGP 3

Finite Difference Equation for Corner Reaction in Simply Supported
[

Plate of Variable Thickness

Considuigthe bar 'ow' and taking moments mbout w (Figure 51)

X -
v+ 2 e Mo n
D
A o
ch ©3 xz .« 8, (1- v)(wnw + Uo - wn - "w)
Boundary conditfont W_ = W = W = 0
n o W
D
A o}
Qwoz X205d(].°\')wﬂw
Similarly
D

A 0
Qono 2 ?Gd (1- \’) wnw .

Summing the vertical forces at the joint O.






APPENDIX B

Finite Difference Approximation of the Differential Equation of Variable
Thickness Plate

Summing all the forces in the direction of 2z - axis: Fig. L5

aQ aQ
—. + _l = (0
9x

Taking moments of all the forces acting on the element with respect to

x - axiss
au
+ ?1 Q = 0 ,
In the same manner, by taking moments with respect to y - axis, we
obtain
an
.—’ﬂ + r Q = 0 ,

Eliminating shearing forces Qx and Qy from these equations we obtain

aznx aM oM o
+ 2 3—-5& +—l = - q(x
ax2 Xy ay2 'Y

The moment curvature relations are given by

a2w 82w
Hx - -D(x,y) [——2"'\0—5]
ax dy

82\1 82w
M = -D(x,y) [ +v—3]
y 3y ox

gy- -u-»n<ny)£g

Substituting the expressions for moments in the plate equilibrium equation

2 2 3 3
X 3 9w 3w 3D 3 (3w d-w
—* - o0& &%, 2y L D2 2w, v
ax? axz ax® 3%’ 3% 3x x> axay"’
- agD (.8_2! + 9&)
ax? ax2 ay2
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FIGURE 52. Moments and Forces Acting on a Plate
Element of Variable Thickness

Directions are Positive as Shown
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Each term of the above expression is replaced by its finite difference

equivalent., Thus

L

AW = 20d°-8(wn+ww+we+ws)

+
* 2(Hm wne *Wge * wsw)

+ (W _+W +W_ +W )
nn ee Ss ww
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2
A9 Do(5n+ss+se+aw L)

N = (W +W +W +W - lW)
n S e w (o]

2 3%

A 2 D, (5(e -2+ 5w)

2 3%

x—-z Do(an-2+58)
3y

2 3%
hxg;a- D (5. +686 _ =-6_=-256_)

y o ‘’rw se ne sw
2
lz'é%. (we'zwo+ww)
X
2
2 JO°w
b N gra (Wn - 2W° + ws)
Yy
m\zi“—- W +W_ -W_ -W_)
Oxdy nw se ne sw

Substituting the above and rearranging the terms the difference equation

of variable thickness plate as shown in Figure 53 fesults.
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