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ABSTRACT

In this investigation a comparative study is made of variable

thickness square plates with clamped and simply supported boundary

conditions. The thickness variation in the plates is linear. The

objects of this investigation are: (a) To experimentally determine

the deflections and moments in uniformly loaded, clamped and

simply supported square plates of variable thickness, (b) To

compare the values obtained by experiment with those obtained by

finite difference analysis, (c) To experimentally determine the

natural frequencies and nodal patterns in the case of clamped and

simply supported square plates of variable thickness, and (d)

To compare the experimental and finite difference results.

The theory used is subject to the following restrictions:

(1) the plate material obeys Hooke's Law; (2) the plate material

is isotropic; (3) the deflections of the plate are small in com-

parison with the thickness; (4) the thickness of the plate is

small in relation to the other dimensions.

The Moire method is used to find the moments and

deflections. Moire fringe patterns for different plate models

are shown and they are analysed to find the deflections and

moments in the plates. The differential equation of variable

thickness plate is approximated by a difference equation and the

plate problem is solved for different boundary conditions and for

different grid spacings by the use of the Digital Computer. The

natural frequencies and the node patterns have been found

experimentally using a Pulsed-air Vibrator. Finite difference

approximation is used to solve the vibrating plate problem and



the resulting eigen value problem is solved by the use of

digital computer.

The Moire- method seems to be better suited for finding

deflections than for moments. The principal reasons for in-

accuracies in the determination of moments are: (a) the

actual models different from the ideal models used for math-

ematical analysis; (b) support conditions other than assumed,

(c) the errors in calibration of the material and the reduction

of data. With the setup and the models used and the general

procedure followed in reducing data, the inaccuracies in

moments varied from a very small value to about 10 per cent,

although for some regions such as valleys and ridges the

inaccuracies were quite high. The experimental and theoretical

deflections agreed within 3 per cent. .With improved models

(both material and workmanship) and the improved support

conditions (especially simple support) the inaccuracies in

moments could be kept well below 10 per cent. The‘effect on

moments and deflections of increasing or decreasing the edge

thickness compared to the center thickness in clamped as well

as simply supported plates is shown in the discussion of results.

The finite difference approximation used in this study

gives sufficient accuracy for variable thickness plate problems.

This method is applicable to plates with any boundary condi-

tions, acted upon by any type of loading, and with arbitrary

thickness variation.

The convergence of the difference method is very good

both for deflections and moments. In the case of plate vibrations,

for lower modes, grid sizes of a/6 and a/8 give good convergence,



but for higher modes, still finer grids should be used in order

to give reasonable convergence. For still higher modes (beyond

sixth mode) the rotatory inertia and shear should be included in

the difference equation of the variable thickness plate to give

good accuracy.

The experimental values of the vibration frequencies

are in fair agreement with the finite difference results. The

inaccuracies are due to the actual model deviating from the

ideal model and support conditions being other than assumed.

In this work, the inaccuracies range from very small amounts

to about 6 per cent, although in a few cases, the inaccuracy was

as great as 13 per cent. With better models, and improved

support conditions, an accuracy of one per cent can be achieved

with the Pulsed-air Vibrator. The experimentally observed

nodal lines are in fair agreement with the calculated positions

of node lines. Ultraharmonic resonance was observed for nearly

all modes studied.

The results indicate that the finite difference approxi-

mation used for solving variable thickness plate problems gives

results with reasonable convergence. The values obtained by

the difference method agree quite well with those determined by

experiment.
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NOTATION

Side dimension of square plate

3 .

 E t i 2 plate rigidity at a point 'i'

12(1 - v )

Plate rigidity at a reference point

Modulus of Elasticity

Poisson's ratio

plate thickness

Distributed load per unit area, with positive load

downward.

Bending moments per unit of width acting on sections

perpendicular to the x and y axes, respectively.

Twisting moment per unit width in the x and y

directions.

Horizontal and vertical coordinate axes. In all

fringe photos, origin is taken at upper left corner with

x positive to the right and y positive downward.

a/n, the spacing of grid used in the difference method.

Mass density of plate material

time variable

angular frequency

a parameter in terms of which frequency is expressed

Dr

( —z)
pt a

r

(AD/(Dr , a dimensionless number

Di/Dr variable thickness plate "rigidity ratio

ix



CHAPTER I

INTRODUCTION

In continuum mechanics, the term 'plate' may be applied to

bodies bounded by two surfaces, the distance between the surfaces

being small compared to the other dimensions. The middle surface

is definedbfiwe locus of points which lie at equal distances from these

two surfaces- At any arbitrary point of the middle surface, the

thickness is defined as the length of a line perpendicular to the middle

surface and intercepted between the bounded surfaces. In general

the thickness may vary in magnitude from point to point in the middle

surface and hence may depend on the coordinates of the arbitrary

point in the middle surface.

To study the plate problem in the light of the classical theory

of Elasticity, it is usual to assume that the material of the plate is

isotropic and obeys Hooke's Law and that the displacements at a

point are small in comparison with the thickness of the plate. Further

- assumptions analogues to those used in the theory of beams were

introduced by Lagrange. Lagrange's assumptions may be stated

as follows: a) The straight fibres of a plate which are perpendicular

to the middle surface before deformation remain so after deformation

and do not change their length. b) The normal stresses acting on

planes parallel to the middle surface may be neglected in comparison

with the other stresses.

If the thickness of the plate is considered as a constant,the solution

of the plate problem is further simplified. Solutions in the form of

series, numerical solutions, and experimental solutions are available

to this plate problem. A simple approach to the problem of variable

1
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thickness platesis impossible, if one has in mind a general solution

which is to apply to all problems in variable thickness plates, Thus,

it leads to the study of less general problems in variable thickness

platej wherein the thickness variation is assumed to follow a pre-

determined law.

In this study, clamped and simply supported square plates

are considered. The variation of thickness is linear and symmetric

about the diagonals as well as the lines joining the midpoints of the

sides of the square. The symmetry is used to simplify the numerical

analysis. The purposes of this study then are to:

(1) Experimentally determine the deflection and moments in uniformly

loaded, clamped, and simply supported square plates of variable

thickness.

(2) Compare the values obtained by experiment with the values

obtained by finite difference analysis.

(3) Experimentally determine the natural frequencies and nodal

patterns in the case of clamped and simply supported square plates

of variable thickness.

(4) Compare the values obtained by experiment with the values

obtained by finite differences.

Besides the above applications, finite difference method with

the use of digital computer can be applied to plates with various other

boundary conditions, subjected to any conceivable type of loading and

the thickness variation being quite arbitrary. The loading and

thickness functions could be continuous or discontinuous functions

of x and y.



Historical Background
 

A few series solutions of the differential equation of variable

thickness plate have been obtained. Among them, the bending of

rectangular plates with the flexural rigidity being a linear function

of one of the independent variables of the problem has been considered

by R. Gran Olsson [l]:* He assumes a Levy type of series and obtains

the solution in terms of exponential integrals. For a plate whose

thickness is an exponential function of one of the independent variables,

R. Gran Ols son [2] obtains a Levy type of solution for the bending

case.

Henry Favre and Bernhard Gilg [3] have considered plates

whose thickness is a linear function of one of the independent variables

(x or y). A perturbation method is used to get a better approximation.

Solutions have been worked out for a simply supported rectangular

plate whose thickness varies linearly in a direction parallel to one

of the sides, and plate being loaded hydrostatically. The Navier

type as-well as Levy type series have been used and the simplicity

and advantage of Levy type series over Navier type series is shown.

The fundamental differential equation of variable thickness plates ,/

admits of a relatively simple treatment when v - 1/3 and this special

case is discussed by Contri, L. [5, 6] who obtains a rigorous solution

using the Levy-Estanave simple series solution. He considers linear

variation of the plate along a direction parallel to one of the edges,

the plate being restricted to be simply supported along two opposite

edges, the other two edges being quite general. An iterative method

of successive approximation is suggested when Poisson's ratio is not 1/3.

 

*Numbers in square brackets refer to the Bibliography.
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Electrical analogy offers a powerful general method for problems

involving deflections under constant load, transient vibrations, or normal

modes in plates of constant as well as variable thickness. In the

electrical-anology method, the problem is formulated in finite-difference

terms, and the solution of the difference equations is carried out on

an electrical-analog computer. No restrictions-are made on the elastic

properties of the plate as regards homogeneity and isotropy. The free

edges cause no particular difficulty, and the irregular edges can also

be handled by the electrical analogy. R. H. McNeal [7] gives a detailed

description of the representation of the boundary conditions for a

rectangular variable thickness plate. The principal difficult requirement

of the plate analogy is the existence of a large number of essentially

perfect transformers.

Y. C. Fung [8] treats the free edge boundary conditions in a

way different from the Kirchhoff-Love formulation of free edge boundary

conditions. He uses two "stress functions" of such form that the .

boundary conditions can be expressed in terms of two functions and

their first derivatives. This theory is applied to a square plate with

linear thickness variation (double -wedge section) simply supported

at two diagonal corners and loaded by concentrated forces at the other

two corners. Southwell's relaxation procedure is used to obtain the

stresses and deflections. This is checked experimentally also. This

procedure is also applied to obtain stresses in a 450 swept wing of

variable thickness.

Exact solutions are not available for the frequency of vibration

of rectangular plates of variable thickness. Kogaev, V. P. [10] uses

the Ritz method to find the frequencies in the blades of hydraulic

turbines. Polynomials are used as co-ordinating functions as they
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insure rapid convergence and give considerable simplification in

calculating integrals from co-ordinating functions. Gumenyuk, V. S.

[9] uses a finite difference approximation to find frequencies in plates

in the form of a rectangle and an isosceles triangle, the thickness being

regarded as dependent only on one co-ordinate and varying by a linear

law, while the edges of the plate are free.



CHAPTER II

FINITE DIFFERENCE ANALYSIS

With the assumptions made in Chapter I, the differential

equation for the bending of plates of variable thickness can be re-

presented by

an a 8D

 

 

a

-<1-v)(—TaZD—732w- 232;” 32:1; +—TazD—752W> . q<x. y) (1)
8): 8y xy xy ay ax

where 2 2

A: §7+aj

6x 3y

Et3 .

D 3 2’

12(1 -y )\

q 3 Lateral load on the plate

w - Lateral deflection, a function of x and y.

v ' Poisson's ratio.

If w is now considered as a function of x, y and time 1:, the static

lateral loads on the plate could be replaced by equivalent inertia forces:

2

namely, .. pt 9—3,, to obtain the governing differential equation of a

a1:

freely vibrating plate of variable thickness,

whe re

p 8 Mass density of plate material

t 8 Plate thickness,

1’ ‘ time.

For a variable thickness plate vibrating harmonically with an amplitude

is. y)



w(x, y, T) = ¢(x, y) cosm't, (2)

where m is the angular frequency. For the sake of convenience in

writing, ¢(x, y) is replaced by w(x, y), then the right hand side

of equation (1) would be ptmz w(x, y).

In Appendix A the difference equation (shown in Fig. 2) is

derived for variable thickness plate by plate analogy. Some of the

boundary conditions and reactions shown in Figures 3 - 8 are also

derived by plate analogy in Appendix A. In Appendix B, the differential

equation of variable thickness is approximated by replacing the partial

derivatives by ihe equivalent finite differences. Both the approximations

lead to a system of linear algebraic equations for the bending case

which could be solved by a digital computer to give the deflection at

the nodal points. Knowing the deflections, moments are calculated

‘by the various differential relations.

In the case of vibration, the resulting simultaneous linear

algebraic equations may be written in matrix form as

[A «13] w = 0 (3)

where A - Matrix of coefficients of terms on the left hand side of

the equation shown in Figure 2,

B " Diagonal matrix resulting from right hand side

of equation shown in Figure 2.

w ' Column matrix of deflections

24

.3anx

D 2

O

'X.

X =a/n - grid spacing.

Equation (3) is in standard eigen value form and the eigen values
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Notation of Points in the Difference Method
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. 2.

7 Simply Supported Corner Reaction Fixed Corner Reaction

R = 1;)? 2(1—v) dew— “a; R = Didao-vfid +’V(58+ 5Q] - “1%

FIGURE 8. Reactions in the Case of Simply

Supported and Clamped Plates
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and the eigen vectors could be obtained by the use of a digital

computer? The eigen values give the frequencies of freely vibrating

plate of variable thickness and for each eigen value the corres-

ponding eigen vector gives the relative amplitudes of vibration.

The difference approximation developed in Appendix A,

besides facilitating writing the equations, yields a symmetric

positive definite matrix A. This leads to the easy accessibility

to complete programs like M5 which calculates both the eigen

values and eigen vectors. Hence, in this study the difference

approximation of Appendix A is used.

The square plates with the thickness variations considered

in this study are shown in Figure 9. For the bending case, the

clamped as well as simply supported plates have their edge thick-

ness twice or half as much as the center thickness of the plate.

The load is uniformly distributed over the surface of the plate.

Further, the single taper on one side of the plate is assumed to be

equivalent to a double taper plate symmetrical about the middle

surface of the plate. For example, the plate (b) in Figure 9 is

equivalent to a double -wedge section. This assumption holds true

if the slope of the tapered face is small [11] . Three grid spacings,

namely kn £2, '3’ 1310 are usedland extrapolations are used wherever

possible.

For the vibration case, the thickness ratios of ff? -- 1/2, 2

5. 3 were considered for both clamped and simply supported plates

(Table I). The grid spacingsare l. - a/6 and X - a/8. The bending

mode was obtained by numbering the nodal points only over the 1/8

of the plate surface (see Fig. 10 (a) for X - a/6),thus making use of the

 

*In this work, the MISTIC was used with standard M5 program.
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TABLE 1. Designation of Models

 

 

   

Edge Condition of Plate t/to Name of Plate Model

Clamped 2 A

Clamped 1/2 B

Clamped 5 - 3 C

Simply. Supported 2 D

Simply Supported 1/2 E

Simply Supported 5 - 3 F

 

Model Materials:

Static Loading - Perspex

Vibration Studies - Aluminium

Poisson's ratio r 31 for all finite difference and

experimental calculations.
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symmetry. This yields the fifth mode also. For the torsional mode

or second mode, node lines are considered as shown in Fig. 10 (b).

For the third and fourth mode the node lines are shown in Fig. 10 (c)

and (d ) .
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' J
.. I»

\t/ + -

(a)FIRSTMODE

r.

I

+1+2 -2-

F5+3+4 -4-

-3-4 +44-

-1-2 +2+

l

L.

(c) THIRD MODE ((1) FOURTH MODE

FIGURE 10. Finite Difference Grid 0. - a/6) for Vibration in Plates



CHAPTER III

EXPERIMENTAL METHOD

The experimental verification of the results obtained by the

finite difference analysis can be separated into two parts:

a) The use of the Moir'e method for deflections and moments.

b) Use of a pulsed-air vibrator for exciting the plate model

in vibration studies.

The Moire. technique has been described in references [12]

and [.13] and is not repeated here. The equipment used and procedures

followed in the vibration studies are described in detail, however,

since they we re newly developed.

The requirements governing the design of the pulsed-air

vibrator are as follows:

(1) Excitation frequency should be variable continuously from 10 cps

to l, 000 cps.

(2) The excitation frequency for a particular setting should remain

fixed1thus permitting continued running at the particular resonant

frequency chosen.

(3) The amplitudes of vibrating plate should be easily variable.

(4) There should be no restrictions on the material of plate (e. g. -

magnetic).

(5) The source of excitation should be sufficiently independent of the

plate response to permit any mode of vibration within the frequency

range to be excited.

(6) The response of the support should be sufficiently far away from

18
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the plate response to permit any mode of vibration within the frequency

range to be excited.

Pulsed-Air Vibrator
 

The pulsed-air vibrator consists of:

(a) Variable speed D.C. motor.

(b) Photo-tube speed indicator.

(c) Air supply.

(d) Pipe assembly with rotating and stationary wheels.

(e) Plate model.

(1) Support.

(g) SR-4 gauge station

(h) Camera to record nodal lines.

(a) Variable speed D.C. motor. (See Fig. 11)
 

The complete Reliance V-I- S Jr. Drive consists of three parts:

the adjustable-speed d-c drive motor, the control unit, and the operator's

control station. The control unit is mounted in a vertical position

on a wheeled ca rt so that the ventilation through the louvered portions

at the front, bottom and top-side portions of the cabinet is not re-

stricted. The control unit is located so as to receive a minimum

amount of vibration, and is supplied with a 440-volt, 50 cycle input.

The adjustable speed drive motor can develop a maximum of 2 h. p.

at 2500 r.p. m. and it is wired to the control unit. The operator's

control station includes a start-stop pushbotton, a speed adjustor,

and a jog-run toggle switch. The operator's control station is wired

to the control unit.
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(b) Photo-tube speed indicator. (see Fig. 11, 12)
 

A Photo-tube circuit is introduced as a device to measure the

excitation frequency. The light from a 6 volt bulb is interrupted by

a rotatingislotted wheel mounted on the motor shaft. Since the photo- ’

cell represents a variable resistance depending upon the quantity of

light falling on it, this interrupted light produces an alternating out-

put voltage. A capacitor introduced in the circuit permits only the

alternating signal to the Tektronix preamplifier. The output from

this preamplifier is fed to Hewlett-Packard Electronic Counter as

well as to a Hewlett-Packard Oscilloscope. The oscilloscope trace

detects any stray signals in the circuit. The photo-tube is shielded

with aluminum foil which is grounded. Thisjas well as the use of

shielded cables for interconnectiomeliminates the erratic signals

to a great extent.

‘(C) Air supply.
 

The air supply to the pulsed-air vibrator is provided by Joy

Air Compressor, Class WG9, 8 in. here and 7 in. stroke run by

a 60 h.p. motor. It develops a maximum pressure of 100 p. s. i. ,

the capacity at delivery being 162 oft/min. The inlet to the vibration

tester is connected to the outlet from the air reservoir through a pres-

sure rubber hose, in order that the vibrations from the compressor

may not be transfe red to the pulsed—air vibrator. The air inlet is

controlled by a mechanically ope rated valve which can regulate the

amount of air entering the vibrator.

(d) Pipe assembly with rotating and stationary wheels.
 

The whole pipe assembly of the pulsed-air vibrator is built
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in four segments: two standard weight steel pipes of nominal size 3

joined together by a flanged joint, a reducer, and a nozzle (see Fig. 13).

The segment of the steel pipe towards the motor end houses a rotating

perforated wheel connected to the motor shaft by means of a 7/8"

diameter shaft, the two shafts being connected by a Spartan flexible

coupling. The shaft is supported inside the pipe on a thrust bearing

at the entrance of the pipe and aTorrington needle bearing on a spider

nearer to the rotating perforated wheel. A Vict0prene oil seal located

at the end of the pipe prevents any air leakage around the shaft. A

circular annular disc threaded towards the motor end of the pipe,

besides blocking the air in the pipe, helps in the adjustment of the

gap between the rotating wheel and the stationary plate. Any further

air leaks between the rim of the circular disc and the pipe are pre-

vented by the use of an oil ring and another annular circular disc

which is bolted on the first disc. The rotating wheel is of thickness

1/4 inch and it is smoothly machined so that it can freely rotate in-

side the pipe with a clearance of about 10 mils. 20 holes of 1/4 inch

diameter are equally spaced on a circle of 2-5/8 inches diameter on

the rotating plate. The stationary plate is located in the second segment

of the standard weight steel pipe. The perforations in this plate are

made to match exactly the perforations in the rotating wheel, the

distance between the two plates being from 3 to 4 mils. The two

pipes are joined by a standard flanged joint with four bolts. The ro-

tating and the stationary plates are located at this joint. The air

inlet is located on the first section of the pipe.'. “The holding fixtures

of the pipes to the table are provided with rubber sheet to provide

effective damping.
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The reducer is bored and machined from a cylindrical block

of steel. It tapers from 3 inch diameter to 1 inch diameter over a

length of 6 inches thus providing a gradual transition. The reducer

is fitted to the pipes by standard pipe threads.

The nozzle consists of two short pipes joined by a 900 elbow.

The horizontal portion of the nozzle is threaded into the reducer;

the vertical part is of variable diameter. Three different sizes-

namely,l inch, 3/4 inch I and 1/2 inch-have been tried in this

investigation.

(e) Plate model.
 

Six aluminium models have been studied for vibration. The

models have been designated A, B, C, D, E, and Fas shown in Table

l. The thickness ratios and the support conditions are shown in

Table 1. Two methods have been followed in the preparation of the

models,and they are briefly outlined below.

In the case of models A, B, and C an end mill is used. First

of all a 12, inch square plate is cut out from a uniform thickness large

sheet and the center of this square is marked. A 9 inch square is

marked having the same center as the large square. A Universal

Angle Fixture is truly levelled and one of its sides is set at right

angles to the direction of the table of a vertical milling machine by

using a sensitive dial gauge. The 12 inch square plate is gripped firmly

on the Universal Angle Fixture by means of a Vacuum Chuck, and some

studs. The Angle Fixture is tilted so that the desired taper is obtained

on the plate. (The taper is adjusted by the use of a dial gauge mounted

to the spindle temporarily).A Half inch end mill is used with 1400 R. P. M.

The table and saddle feed are 3 to 4-1/2 inches per minute. The

milling is started from the edge of a 9 inch square and worked inwards.
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FIGURE 14. Steel Support with Clamped and Simple Plate Supports

 

FIGURE 15. Models for Simple and Clamped Supports
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The first operation in milling is usually of a deeper cut, which is

followed by finer ones. If the table feed and the saddle feed are started

together, the table moves along the diagonal of the square, thus giving

the required taper along the valleys of the model. After final milling

is done, the plate is removed and turned around by 900 and the same

procedure is repeated. This is repeated in turn till all the four parts

of the square are completed. A fine finish is given to the surface by

a fine emery paper fixed on a wooden block (see Figure 15).

In the second method,which is used for the model E, a Fly

Cutter is used at 1400 R.P. M. The procedure is the same as before

except we start with a 9-1/4 inch square plate. The ridges in this

case need no special treatment as they are swept out by the fly cutter

as each side is finished.

(f) Support.

In order to obtain nodal lines the plate should be supported

horizontally. The response of the support should be sufficiently far

away from the plate response to permit any mode of vibration within the

frequency range to be excited. These two requirements dictated the

construction of a sturdy steel support on which the plate supports are

tightly fastened by means of bolts (see Figure 14). The steel support

is made of 2 cold rolled steel plates of 14 inch square and 3/4 inch

thick. On the top plate a 9 inch square is cut out of the 14 inch square

plate so that both the plates have the same center. These two plates

are held by means of 8 vertical posts of 8 inch height and having a

section 3/4 inch x 3 inches (see Figure 14). Countersunk bolts are used

to connect the plates to the vertical post. On the top‘plate 8 holes are

drilled and tapped (3/8 inch size) on the corners and the centers of

the sides of a 13 inch square so that the clamped plate support may
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be fastened to the steel support by 3/8 inch bolts. Similar holes are

drilled and tapped on a 11 inch square to accommodate the simple

plate support. A description of the clamped plate support and simple

support is given in references [12] and [13].

(g) SR-4 gauge station.

In order to determine the actual plate-response, an A-8 type

SR-4 gauge was mounted on the vibrating plate at a point very close

to the center of the plate. It has a gauge factor of 1. 83 :t 2% and

resistance of 120 i: 0. 3 ohms. The strain gauge (is connected to type

Q plug-in unit used along with a Tektronix Oscilloscope. The output

from Tektronix amplifier is fed to Hewlett-Packard Electronic counter

which reads directly the frequencies of the vibrating plate.

(h) Camera to record node lines.
 

A Burke and James View Camera (f a 21 cm) is mounted at

3 feet directly over the plate by means of a bent steel bar 2 inches

x 1/2 inch fixed to the table. Two photo flood lights are focus sed on

the plate while photographing the nodal lines.

Expe rimental Procedure
 

In order to achieve the full potential of the pulsed-air vibrator,

the experimenter should control carefully such factors as air flow,

relative location of the nozzle with respect to the nodal lines of the

vibrating plate, nozzle size, elimination of stray signals in the

electrical circuit, rotor speed, damping in the holding fixtures,

vibration of the support and the high noise levels. The following

is an outline of the steps followed and the factors controlled in a typical

vibration test.

Of the 3 sizes of nozzles used, 1 inch and 3/4 inch diameter

nozzles seem to work better than 1/2 inch diameter nozzle. In order
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to obtain the maximum amplitude of vibration, the nozzle should be

near the region of antinode. It is preferred to let a small amount

of air pass through the 'chopper' sufficient to notice the amplitudes.

The presence of amplitudes is rendered more significant by first

sprinkling a small quantity of adsorption alumina (a white powder

of 80-200 mesh) on the surface of the plate. The rotor speed is

gradually varied until the resonance occurs. At resonance, the

alumina powder bounces rapidly near the regions of antinodes, thus

showing high amplitudes, and forms a heap along nodal lines and

the edge of the plate where amplitudes are zero. The range of

frequency variations for a particular mode can be narrowed by re-

ducing the air supply low enough to just notice the movement of

alumina powder near the antinode. region. Any further refined adjust-

ment of the rotor speed should be made at this stage in order to

improve the above observation. The excitation frequency as shown

on the Hewlett-Packard Electronic counter is recorded. The

Hewlett— Packard Oscilloscope trace is checked so that no stray

signals are picked up by the photocell. The nodal lines exhibited

by each mode are photographed. A che ck on the simple support is

achieved by noting that the alumina powder at the support is at rest,

while those very close to the support tend to bounce up and down.

The type Q plug-in unit is a self contained bridge circuit which

is balanced for each test. If the strain gauge is unstressed and the

bridge is balanced,no signal should appear on the oscilloscope trace.

When the plate is vibrating, the oscilloscope trace shows the strains,

which in turn are functions of amplitudes of vibration. At resonance,

the oscilloscope trace would show the maximum signal. The finer
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adjustments of air supply and rotor speed are made, and resonant

frequency recorded.



' CHAPTER IV

RESULTS

In this chapter, the bending and vibration test results are com-

pared with the finite difference results. The merits and demerits

of the experimental and finite difference results are discussed.

Plate Models A, B
 

The Moir-e- fringe patterns for slopes in plate model A are shown

in Figure 16 for different loads and different grid positions. Moments

and deflections have been found from the enlargements of photos

(Fig. 16 b and d) at intervals of 0. 1a where 'a' is the side dimension

of the plate. Moments and deflections have also been calculated by

finite differences for grid spacings of X ' a/6, X ' a/8 and

X - a/10 (Table 2). Moments and deflections found by the Moir-e

method and those found by finite differences (X ' a/lO) are com-

pared in Figures 18 and 19. Dashed lines show values determined

by finite differences (X . a/10), while solid lines show those

determined by the Moire method. The top numbers represent the

finite difference values while the numbers below them refer to

Moire values. The numbers in the last row represent the Moire

values for corresponding symmetric points in the lower left quadrant

of the plate. Extrapolations of the values obtained with three different

grid spacings have been worked out wherever permissible and these

values are tabulated in Table 6. The extrapolated values are com-

pared with the values obtained by the Moire method.

In the case of model B, only the finite difference moments and

deflections are shown in Figures 20... and 21. The extrapolations of

31
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TABLE 2. Deflections in Plate Model A

 

 

 

    

Deflections 1;? . 10'4

Point

Grid Spacing a/6 Grid Spacing a/8 Grid Spacing a/lO

1 0.356,938,9 o.132,547,1 0.058,628,3

2 o.sos,sso,1 o.344,4so,2 0.167,376,9

3 0.992.517,2 o.511,469,3 o.272,953,3

4 2.116,952,3 o.573,371,7 0.346,074,7

5 2.712,93o,2 O.985,146,1 0.371,986,3

6(R) 3.860,582,7 1.524,soc,3 ' 0.506,025,3

7 1.731,159,7 0.852,298,9

8 2.543,140,6 1.099,844,5

9 2.951,975,4 1.188,955,7

10 (R) 3.612,161,0 1.512,951,4

11 2.003,3oz,5

12 2.183,066,6

13 2.775,661,5

14 3.067,?26,7

15 (R) 3.494,591,4

 

Extrapolations for common point R

6, 8

6, 10

6, 8, 10

3. 292, 761, 7

3. 285, 578, 7

3. 281, 538, 2
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TABLE 3. Deflections in Plate Model B

 

 

 

 

4

Deflections 9—3— . 10'4

Point Dr

Grid Spacing a/6 Grid Spacing a/8 Grid Spacing a/lO ~

1 15.380,521 6.900,719 I 3.402,714

2 27,011,120 l3.948,333 7.606,581

3 30.985,906 l8.460,574 10.954,079

4 43.589.674 19.969.298 12.994,944

5 49.248,634 26. 449.952 13. 672,161

6 (R) 54. 045,204 34. 478.553 16.106.684

7 37.186,091 22.902,049

8 43.427,288 27.100,369

9 46. 440,758 28. 505,608

10 (R) 49.026,155 31. 631, 816

ll 37.023,019

12 38.831,532

l3 42.547,254

l4 44.398,672

15 (R) 46. 012,460   
 

 
Extrapolations for common point R

6, 8 42. 573, 092

8, 10 40. 654, 780

6, 8, 10 39. 575, 730

37
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8w . . aw a o . .

a) a—y Slopes. Load 0.072 p31 b) '57: (6 45 ) Slopes. Load 0.108 ps1

  I L ' 71 W.

I IIIIIIIM. ‘ ‘

a_w

av
c) 1"" Slopes: Load 0.144 psi d)ax Slopes: Load 0.144 psi

FIGURE 22. Fringe Patterns for Uniformly Loaded Simply Supported Plate

t = Plat M d 1 D

edge 2 tcenter ( e o e )



TABLE 4. Deflections in Plate Model D

 

Deflections qa . 10 

 

 

 

Plate Dr

Grid Spacing a/6 Grid Spacing a/8 Grid Spacing a/lO

I 2. 765,189 1.595.511 1.036, 898

2 4.688. 606 2.871.120 1.920.329

3 5.388.618 3.703.959 2. 600,711

4 8.678. 977 3.994.683 3.031.666

5 10.191.328 5.453.324 3.179.472

6 (R) 12. 833, 812 7.171.910 3.694, 886

7 7. 778, 880 5.076.425

8 9. 883,184 5. 958. 423

9 10. 867.200 6.262.264

10 (R) 12. 369, 386 7,195,494

11 8. 569. 494

12 9.047,210

13 10.. 505.174

14 11.190,9780

15 (R) 12.157.3‘02    
Extrapolations for common point R

11. 772, 267

11. 780, 026

11. 784, 763
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TABLE 5. Deflections in Plate Model E

 

 

 

 

    

. Deflections CIIDar -4

Pomt

Grid Spacing a/6 Grid Spacing a/8 Grid Spacing a/10

1 33. 146,245 20, 882,548 14.076,655

2 53.688,660 36.682,254 25. 832,731

3 60.409.343 46.053,557 34.236,096

4 80. 333, 430 49. 126,448 39.194, 855

5 89. 058, 400 60. 709, 758 40. 827,170

6 (R) 96.275,705 74.988,182 45.223,975

7 79.685,512 59.117.971

8 89. 893, 656 67. 347, 465

9 94.799,540 70.062,655

10 (R) 98. 929, 294 75. 328, 606

11 84. 930,417

12 788.101,545

13 94. 314, 372

14 97. 415, 377

15 100. 079,462

 

Extrapolations for common point R

6, 8

8, 10

6, 8, 10

102. 341, 052

102.124, 206

102. 002, 228
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a) 36; Slopes: Load 0.072 psi b) g—‘z Slopes: Load 0.108 psi

 

 

c) g—Y‘ Slapes: Load 0.181 psi d) g: (9 ' 450) 510P353 Load 0.108 PSi

FIGURE 25. Fringe Patterns for Uniformly Loaded Simply Supported Plate

- 1/2 t (Plate Model E)
tedge cente r
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these from different grid spacings and the deflections are shown in

Table 3 and 6.

Plate Model D, E
 

The fringe photos for plate models D and E are shown in

Figures 22 and 25, respectively. The moments and deflections

determined by both the Moire- method and finite differences are com-

pared in Figures 23, 24, 26, and 27. The deflections and extrapo-

lated values are shown in Table 4, 5, and 6.

Discussion of Bending Results
 

The possible sources of error arising in the Moire method

have been listed in reference 13 and 17. These are repeated here

in order to study their effects with respect to variable thickness,

plates. These are:

3.) Calibration of the material,

b) Plastic behaviour of the material,

c) Lack of precision in loads,

(1) Inaccuracies in reduction of data, ‘

e) Variation in plate thickness different from that assumed,

f) Support conditions other than assumed,

g) Changes in dimension of photographic film during developing,

and distortion in the enlargements,

h) Membrane action in the plate, and

1) Relative motion of model, grid or camera between exposures.

The curves of Figures 18 and 19 show that the Moir? and

difference results are in fair agreement. From Table 6, it is seen

that for plate model A, the extrapolated moments are higher than the

moments obtained individually for X ' a/6, X ' a/8, and X " 3/10;
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it might also be noted that the convergence is fairly rapid. On the

otherhand, the extrapolated deflection is smaller than the deflection

obtained by three separate grids. The convergence in this case also

is quite rapid. The extrapolated moments and deflections differ

from the Mair-e- values by less than one per cent. This, however,

may not be the case at other points in the plate. The Moire moments

for these points differ from the finite difference values to a greater

per cent although the agreement between Moir-e' deflections and

deflections obtained by finite differences is very close for all points.

These small differences may be due to inaccuracies in the

calibration of the model, inaccuracies in reduction of data, or be-

caos e the actual model differed from the ideal model used for the

finite difference calculations. (For plate model A, the actual

ratio of edge thickness to center thickness is l. 91 instead of 2. 00.)

Other sources of error might contribute to the inaccuracy to some

extent. Since the maximum deflection was 0. 019 inch or about 1/5

of the central plate thickness, the membrane action inithe plate is

negligible.

From Table 6, it is seen that in the case of plate model B,

the negative moments converges monotonically to a higher value,

while the positive moment and deflection converges monotonically

to a lower value.

In the case of plate model D, (see Figures 23 and 24) the

Moire moments are smaller than the finite difference moments by

amounts varying from about 5 per cent to about 20 per cent at the

center of the plate and along the valleys. For other points on the

plate, the agreement is within about 8 per cent. The Moir? deflections,

however, agree very closely with the finite difference deflections.
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From Table 6, it is seen that the extrapolations lead to a higher

value in moments and lower value in deflection. The maximum

deflection and the maximum twisting moment by the Moire method

agree with the extrapolated finite difference values within one per

cent. This, however, is not the case with the maximum moment,

which differs by 20 per cent. The rapid convergence of the finite

differences is also established in Table 6. The great variation of

moments at the center of the plate and along the valleys can be attri-

buted to the calibration of the material, the experimental model varying

from the ideal finite difference model, inaccuracies in reducing the

data and support conditions other than those assumed. The maximum

deflection was 0. 0239 inch or about 1/4 of the central plate thickness.

Hence, the effect of membrane action is negligible.

In the case of plate model E, (see Figures 26 and 27) the Moir?

moments are greater than the finite difference moments by amounts

varying from about 2 per cent to about 20 per cent at the center of

the plate and along the ridges. For other points on the plate the agree-

ment is within 8 per cent. The Moir'é' deflections agree very closely

with the finite difference deflections. From Table 6, it is evident that

the extrapolations lead to higher values in moments and deflections.

The Mair? deflection is smaller than the extrapolated central deflection

by 3 per cent and the Mair? maximum twisting moment is greater than

the extrapolated twisting moment by 8 per cent. As in the case of

plate model D, the great variation of moments at the center of the

plate and along the ridges is attributed to the sources of error as in

the case of plate model D. The actual ratio of edge thickness to center

thickness is 1/1. 94 instead of 1/2. The maximum deflection at the

center was 0. 1696 inch or about 1/11 of the central plate thickness.
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Hence, the effect of membrance action is negligible.

In Figure 28 (a), My moments are plotted against y at

x - 0. 5a for clamped plates with thickness ratios shown. For clamped

plate with constant thickness, the curve is plotted from values given

in reference 17, page 27. The effect of increasing the plate thickness

at the edge compared to the thickness at the center is to reduce the

center moment and increase the edge moment. The moment curves

for t/to > 1 would lie below the moment curve for constant thickness

clamped plate. On the other hand, the effect of decreasing the edge

thickness is to increase the center moment and decrease the edge

moment; all the moment curves for t/to < 1 would lie above the moment

curve for constant thickness clamped plate. In Figure 28 (b), the

deflections along a center line of plate models A and B are compared

with the deflections of clamped plates of constant thicknesses of to

and T (see Figure 28 (c)). The deflection curves for constant thickness

plates to and T would set up bounding lines within which the deflection

curves for plates with thickness ratios of t/to>< 1 would lie. The

effect of increasing the edge thickness is to decrease the deflections,

and conversly, decreasing the edge thickness would increase the de-

flections.

In Figure 29 (a), Mx moments are plotted against y at x - 0. 5a

for simply supported plate models E and D and also for a simply supported

plate of constant thickness. The moment values for simply supported

plate of constant thickness are taken from reference 13, page 46. The

effect of decreasing or increasing the edge thickness of plate does not

seem to appreciably change the moments compared to the moments in

plates of constant thickness up to quarter span. Most of the variation

occurs in the central region of the plate bounded by quarter span line 3.
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In the case of plate model E, the center moment increases while in

the case of plate model D, the center moment decreases compared to

the moment in a plate of constant thickness. In Figure 29 (b), the

deflections along the center line of plate models D and E are compared

with deflection curves for constant thickness plates to and T (see

Figure 28 (c)). The behaviour of deflections is the same as in the case

of clamped plate s .

Vibration Results
 

The frequencies calculated by finite differences and those

determined by experiment have been expressed in terms of a parameter

 

to _ Dr

1' Ptral

where 3

Etr

Dr I flexural rigidity-I 2 (lb. in.)

12(1 - v )

E - Young‘s modulus of elasticity (lbs/inz)

v - Poisson‘s ratio

9
) I length of the side of plate (in)

p - plate mass density (lb. secz/in4).

The measured frequency and the parameter or are related by

I
m amt

where a is a dimensionless number which is comparable for the

different plates despite differences in physical constants and dimensions.

The values of a or m/mr are given in Table 7 for clamped plate models

A, B, and C. Table 8 shows the values m/mr for simply supported plate

models E, D, and F. The node patterns for these different models are



TABLE 7. Natural Frequencies in Clamped V’.i~.r:'-..-s-.ble Thickness Plates

 

 

 

 

 

 

      

Finite Difference Frequency (1)/cor. Exper.

1 Frequency

Model Mode Extr pointed .. z.
(1)/wr.

X a a/6 X = 23./8 ,, Frequency

ModelA 1 59.780 61. 534 63.790 63.20

tedge 2 204.523 111.464 120.392 116.70

2t 3 149.239 161.688 178.385 172.20

center

4 157.147 171.846 190.745 200.48

5 150. 92.8 174. 234 204.199 203.. 55

6 205.307 229.199 259.918 258.57

Model B 1 18. 204 19. 399 20. 936 21. 58

tedge a: 2 36. 397 39. 541 43. 584 46. 54

1/2t 3 54. 379 60.165 67. 604 70.28
center

4 60.304 67.936 77.749 87.00

5 62.752 70.359 80.139

6 77.282 85.405 95. 848 107.96

Model C l 179. 81

tedge :~ 2 275.57

t 3 384. 43

center

4 454. 2'5
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TABLE 8. Natural Frequencies in Simply Supported Variable Thickness

Plates

. . . . Exper.
Finite Difference Frequenlces w/wr Frequency

Model Mode Extrapolated 00/00?

1. ° a/6 X n 23./8 _ Frequency

Model D 1 30. 836 31. 431 32.196 32. 84

t 2 72. 505 75. 263 78. 809 80. 03
edge

2 t 3 122.643 122.163 121.544 128.63
center

4 130.412 134.064 138.759 139.55

5 124. 479 136. 759 152. 549 145. 85

6 175. 524 189. 524 207. 523

Model E 1 13. 534 13. 567 13. 568 14. 20

tedge :- 2 31. 371 p.32. 169 33.195 34. 78

7Vacant” 3 49.272 50. 587 52.279 53. 97

4 56.611 60.771 66.121 68.16

5 58.782 62. 816 68.001 70.93

6 73.288 77.685 83.339

Model F 1 99. 99

tedge a 2 189. 98

tcenter 3 304. 97

4 359. 83

5 364. 61
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TABLE 9. Physical Constants of the Plate Material

 

 

 

Material Modulus of Mass Density Poisson's Ratio

(0) (v)

Elasticity, (E) 1b secz (Dimensionless)

lb/inz in;

Aluminum 10. 53 x 106 2. 596 x 10"4 0. 263
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Fifth Mode Sixth Mode

FIGURE 30. Node Pattern on Plate Model A
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First Mode Second Mode

 

 

   
Fourth Mode Sixth Mode

FIGURE 31. Node Patterns on Plate Model B
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First Mode Second Mode

 

 

 

Third Mode Fourth Mode

FIGURE 32. Node Patterns on Plate Model C
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Second Mode

  
 

  
Fourth Mode 
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Fifth Mode

FIGURE 35. Node Patterns on Plate Model E
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shown in Figures 30 - 35. The relative amplitudes determined by

finite differences in plate models A, B, D, and E are shown in Figures

36 - 47.

Discussion of the Results
 

From Table 7 and 8, it can be inferred that the finite difference

method converges fairly rapidly except for some higher modes as in the
J

case of fourth mode frequencies of plate models A and D. It seems

desirable to use finer grids than X - a/6 in these cases. This is

accountable since the fourth mode imposes additional constraints along

the diagonals of the plate (the nodal lines) and this would be equivalent

to using a coarser grid than i - a/6. The extrapolated values are

higher than the values obtained for individual grid spacings. In the

case of plate model A, the fundamental frequency obtained by experiment

agrees very closely (within one per cent) with the extrapolated

frequency. For higher modes, the disagreement between the ex-

perimental and extrapolated finite differences is from 1 to 4

per cent. In plate model B, the disagreement in the fundamental mode

frequency is within 3 per cent and the higher mode frequencies disagree

from amounts 3 to 13 per cent. The difference between the experimental

and finite difference frequencies is 2 per cent for the first mode and

l to 6 per cent for higher modes in plate model D, while in the plate

model E, the difference is 9 per cent for the first mode and from 3

to 5 per cent for higher modes. Except in the case of plate model A,

the experimental frequencies are higher than the extrapolated finite

difference frequenices.

The following are the possible sources of error in the dete rmin-

ation of frequencie s:
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3.) Determination of exact resonance

b) Errors in the reading instruments

c) The actual plate model different from the ideal finite

difference model

:1) Inaccuracies in the determination of physical constants

e) Support conditions other than assumed

f) Vibration of support

g) Large amplitudes

h) Effect of rotatory inertia and shear

i) Damping in the material

j) The effect of air mass.

(a) Determination of exact resonance: The presence of
 

extremely sharp resonance peaks for free vibration of plates eliminates

the possibility of any large error due to this cause. The maximum

error attributable to this source is within one per cent.

(b) Errors in the reading instruments: In the frequency
 

range measured in this study, the electronic counter gives the

frequencies to the accuracy of 111 count. Hence, the error due to

this source is negligible.

(c) The actual plate model different from the ideal finite
 

difference model: In plate model A, the actual ratio of edge thickness
 

to center thickness is l. 987 instead of Z. 00 while in the plate model

B, the ratio is 0. 522 instead of 0. 500. A lower actual ratio would

give smaller frequencies while a higher ratio would yield higher

frequencies. This is evident from the frequencies of plate model A

and B shown in Table 7. The magnitude of the error depends on how

much the actual ratio differs from the ideal ratio. For the models used

in this study the error due to this source is estimated to be from 1
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to 6 per cent.

((1) Inaccurac‘ies in the determination of physical constants:
 

The physical constants appear in the dimensionless parameter (”r

in terms of which all the frequencies are expressed. The effect on

or of errors in these physical quantities is discussed in reference

[16]. From Table 9. it is evident that the Poisson's ratio is the

least precise of all the measured quantities but it has the least effect

on our. Young's modulus of Elasticity (E) and the mass density of

the material (p) have been found with good accuracy. The quantities

such as the side dimensions of the plate and the thickness, which have

a great effect on wr’ have been measured to the accuracy of l in

1000 of an inch. Because of these reasons, the error introduced from

his source is less than one per cent.

(e) Support conditions other than assumed: The error introduced
 

due to this source is negligible in clamped supports. But, in simple

supports errors up to a maximum of 4 per cent could be introduced,

as a slight increase in tightness of support nuts could introduce small

moments at the edge, thus increasing the frequency.

(f) Vibration of support: Because the clamped and simple sup-
 

ports were mounted tightly on a sturdy steel base, the error due to

this source is negligible.

(g) Large amplitudes: Large amplitudes of vibration introduce
 

non-linearity in’ which frequency of vibration is dependent on the ampli-

tudes of vibration as contrasted with the linear theory where frequency

is independent of amplitudes. Influence of large amplitudes on free

vibrations of rectangular elastic plates has been discussed theoretically

by H. N. Chu and G. Herrmann in reference [18]. The effect of large

amplitudes on the fundamental frequency in plate model B was studied
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experimentally and the results are plotted in Figure 48. Instead of

amplitudes, the dynamic strain is measured at a strain gauge station

situated close to the center. The frequency in terms of ”r is

plotted against the dynamic strain. The frequency remained constant

up to a dynamic strain of 600 microinch per inch; beyond this point,

the percentage increase in frequency for different dynamic strains

are indicated in Figure 48. Since the amplitudes in all plate models

were controlled to a level for which the dynamic strain is below 800

microinch per inch, the error due to this source is within me per cent.

(h) Effect of rotatory inertia and shear: This correction
 

becomes more important at higher modes. If the wave length (the

length of half waves in which the plate is subdivided) becomes less

than 10 times the plate thickness, the classical plate theory which

neglects rotatory inertia and shear is very inaccurate. The effect

of rotatory inertia and shear in vibration of plates has been discussed

by R. D. Mindlin [19]. The highest mode found in this study is the

sixth mode for which the wave length is about 18 times the maximum

thickness of the plate and hence no correction is made for rotatory

inertia and shear.

(i) Dampizg in the material: The effect of viscous damping
 

of the material on the natural frequency is to decrease the frequency

with an increase in the value of damping coefficient. For a material

like aluminum the effect of damping could be negligible although for

plastic models damping effects should be taken into account.

(j) The effect of air mass: In the vibration test, the plate
 

model is vibrating in an air medium while theoretical frequencies are

referred to plates vibrating in vacuo. The vibrating plate induces a
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mass of air around it to vibrate and hence a correction for air mass

is justified. M. V. Barton [20] makes a crude approximation to correct

the test results for air mass by finding an 'equivalent' air mass which

moves with the plate on the basis of the theory of aerodynamic forces

on an oscillating airfoil. Due to this effect, the frequencies deter-

mined by experiment are estimated by Barton to increase in small amounts

and in some cases to an extent of about 1. 5 per cent.

The node lines obtained experimentally are in fair agreement

with those calculated by finite differences (Figures 30 - 35, Figures

36 - 47). Because of slight imperfections in the models the actual

node lines deviate to some extent from the ideal node lines. The node

patterns do not seem to change from model to model although the

boundary conditions and thickness variations were different for each

model. However, the position of point of maximum amplitude varies

for different models for some higher modes. For the fundamental mode

and the fifth mode, the maximum amplitude occurs always at the center

of the plate, while for the third mode the point of maximum amplitude

(maximum stress also) is always at the quarter point of the plate for

all models. For the second mode the maximum amplitude changes

along the horizontal centerline while for the fourth mode it changes

along the vertical centerline.

A phenomenon was observed in the vibration of plates. This

is the presence of 'ultraharmonic or multiple harmonic resonance'

in which the plate vibrates with a frequency which is an integral multiple

of the driving frequency. This type of resonance occurs whenever an

'impure' applied force of frequency f is in resonance with a system

whose frequency is an integral multiple of f. The applied force in the

present case is a pressure pulsation whose wave-form is triangular,



82.

becoming sawtooth as the distance from the source is increased [15].

The actual motion of the plate at resonance is essentially sinusoidal.

The sawtooth or triangular wave-form can be obtained by a super-

position of several sine harmonic functions. Among these higher

harmonics, if there exists a harmonic whose frequency is the natural

frequency of the plate, then, this type of resonance will occur.

The ultraharmonic resonance helps in finding the higher mode

frequencies of the plate from a strain gauge signal although the forcing

frequency is limited to only a submultiple of the plate frequency.

Most. of the modes found in this work showed this type of resonance;

and in particular the case in which the plate frequency is twice that

of the frequency of pressure pulse is quite common. In some cases

the plate vibrates at a frequency which is 3 times the driving frequency.



CHAPTER IV

SUMMARY AND CONCLUSIONS

Summary:

The Moire method is used to find the moments and deflections

in laterally loaded clamped and simply supported square plates of

linearly variable thickness. Moire fringe patterns for different plate

models are shown and they are analysed to find the deflection and

moments in the plates. The differential equationo§dvariable thickness

plate is approximated by difference equation and the plate problem is

solved for different boundary conditions and for different grid spacings

by the use of Digital Computer. Experimental results are presented

and the comparison with the finite difference results are discussed.

The natural frequencies and the node patterns for clamped and

simply supported square plates of linearly variable thickness have

been found experimentally using a pulsed-air vibrator. Finite

difference approximation is used to solve the vibrating plate problem

and the resulting eigen value problem is solved by the use of digital

computer. Eigen values are the frequencies and the eigen vectors

represent the relative plate amplitudes. Experimental. results are

compared with finite difference results and disagreements between

the two) if any)are discussed in detail.

Conclusions:
 

The Moire method is equally easy to apply to plates of variable

thickness with different boundary conditions and different types of

loading. This method seems to be better suited to find deflections

than moments. The principal reasons for inaccuracies in the deter-

mination of moments seem to be:
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a) the actual models different from the ideal models used for

mathematical analysis, b) support conditions other than assumed,

c) the errors in calibration of the material and the reduction of

data. With the set-up and the models used and the general procedure

followed in reducing data, the inaccuracies in moments amounted to

from a very small value to about 10 per cent,although for some regions

such as valleys and ridges the inaccuracies were quite high. The

experimental and theoretical deflections agreed within 3 per cent.

With improved models (both material and workmanship) and the im-

proved support conditions (especially simple supported) the in—

accuracies in moments could be kept well below 10 per cent.

The convergence of the finite difference method is very good

both for deflections and moments. This method seems to be quite

general because it could be applied to plates with any boundary con-

ditions, acted upon by any conceivable type of loading and with

thickness variation being quite arbitrary. Further, the loading and

thickness functions can be either continuous or discontinuous.

Comparing the plates of variable thickness with plates of constant

thickness, it is concluded that the effect of increasing the plate thick-

ness at the edge compared to the thickness at the center is to reduce

the center moment and increase the edge moment,while decreasing the

edgethickness has the opposite effect. But in simply supported plates

the only moments which are changed considerably are those near the

center region bounded by quarter span lines. A plate thick at the edge

would have smaller center moment than the one thin at the edge.

The finite difference method should be applied with care to

vibration problems. For lower modes, grid sizes of a/6 and a/8

give good convergence, but for higher modes, still finer grids should
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be used in order to give reasonable convergence. For still higher

modes (beyond sixth mode) the rotatory inertia and shear should be

included in the difference equation of variable thickness plate to give

good accuracy. In particular, this would add terms in the B matrix

of the plate eigen value problem

[A "x’Blw " 0.

In general it is concluded that the finite difference approximation

used in this study gives sufficient accuracy in the case of variable

thickness plate problems.

The experimental results are in fair agreement with the finite

difference results. The inaccuracies are due to the actual model

deviating from the ideal model, support conditions other than assumed.

In this work the inaccuracies range from very small amounts to

about 6 per cent,a1thoughin8.few cases, the inaccuracy was up to 13

per cent. With better models and improved support conditions, an

accuracy of one per cent can be achieved with the pulsed-air vibrator.

The nodal lines are in fair agreement Witt the calculated posi-

tions of node lines. Ultraharmonic resonance was observed for nearly

all modes studied.

Further investigations are suggested along several lines:

(1) Thickness variation and loads being discontinuous.

(2.) Study of viscoelastic plates of variable thickness.

(3) Effect of large thickness variation in plates.

(4) Development of a technique to measure the amplitudes in

the vibrating plate.

(5) Study of higher modes of variable thickness plate. In-

clusion of rotatory inertia and shear in the difference
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equation of variable thickness vibrating plate.

(6) Study of large amplitudes in vibrating plate.

(7) Application of Ritz and Gale rkin methods to the study

of variable thickness plates.
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APPENDIX.A

Finite Difference ligation of Variable Thickness Plate Derived by

Plate Analogy

In the plate analogy [23], the plate is replaced by an analogous

structure which is made up of a series of rigid bars and blocks Joined

by springs. The ends of rigid bars are connected to the blocks by

means of springs which transfer only moments and shear between the bars

and the Joint block, while the mid-points of the bars are connected

by torsional springs which transmit only twisting moaent. The loads

are applied only at the Joints. The bending moments are expressed in

terms of the displacements of the Joints from the unloaded position

and the plate rigidity at the Joint. The twisting moments are expressed

in terms of the plate rigidity at the center of the grid and the twist

of the surface, which can be expressed in terms of the displacements

of the Joints. By considering the equilibrium. of the Joints and the

bar, the difference equation of variable thickness plate and the edge

and corner reactions are derived in the following. Nielsen [21] obtains

the difference equation of variable thickness plate by considering the

equilibrium in the plate element and his equation agrees with the equation

obtained by plate analogy. Considering the bar 'on' and taking moments

about :1 (Figure 149).

2. _
Q cl 1.11m 1.nm+x.non in .

on-w' on-e

on “an ' 2% + ws) + ' (we '1 2‘0 + “w”

”
d
o
”

D

I u -n u -

“no 12 [(wnn an + u0) + V ('11. an + "m“

(1 - v)D
l! a

on- e 12

 

' (we + “n ' wo ' Wm)
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FIGURE 49. Forces Acting on Elements of Analogous Plate Structure

at a General Point of a Variable Thickness Plate



 . .(w+wm-w—wn)

Now

n n o a a o d d 0

Do

Qon')‘-13L.(Wu-Wo+ws)-v(we-2wo+ww)

+ 5n (um - 2wn + wo) + v6n (Wm - 2Wn + Wm)

+(l-v) 5d(wo+wm-wU-wn)

- (1- v) 55(we+wn-wo-wne)]

Similarly considering the equilibrium of 0e:

0 .12-111-111 +114 -1M
0C 20 CC CC ' n 02 - S

D

o

Qoe ' l 1.2 [- 5ewee - 2we + W0) - we (wse - 2“e + Wm)

+ (we- Zdo +Ww) + v (‘13- ale-run)

+ (1 - 1068(8c +3“ - tic-um)

- (1 - v) 5b (14” +130 - wc - 38)]

Considering the equilibrium of as:

Q .1203 .- XHso-XH +XH -).M
08 OS - U OS - C

D

. _° - - .. ..

Qos ‘ x 12 [ 58 (was st + No) V55 (use 2W3 + W5w)

- + -'+ (w3 2510 an) + v (WC 2140 + ww)
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+(l-v) 56(ws+ww-wo-wsw)

- (1- v) abut“ +Wo-US-we.)]

Considering the equilibrium of\:ow:‘

2 . '-
QW.1 iMW-1Mw0+1mow_n 1M0w_s

D0

OW. Xvi-iv (we-wo+ww)-v(ws- mo+wn)

+5w(wo- 2ww+ww) + vswwsw- 2ww+wm)

+(1-v) 5d(wo+wm-ww-wn)

-(1-v)5c(ws+ww-wo-wsw)1

Summing the vertical forces on the Joint at O:

2
(00w - Qoe) 1 + (Qon - 003) X - qk

Substituting the values of 0'3 and rearranging the terms the plate

equation takes the pattern shown in Figure 2.

Finite Difference Egugtion for Edge Reaction in Simply Supported Plate

of Variable Thickness

Considaugthe bar 'ow' and taking moments about w (Figure 50),

X2

Qow "§- - l ' Mow - n

X Do

Qow'_2 - :55d(l-v)(wm+Wo—Vn-H)

Boundary condition: ”0 = WW 8 O

Q l'+P-95(1-v)(w -W)
0w ° 2 2 d nw n

X
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FIGURE 50. Forces Acting on Elements of Analogous Plate Structure

at a Point on the Simply Supported Edge of a Variable Thickness Plate
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FIGURE 51. Forces Acting on Elements of Analogous Plate Structure

at the Corner of a Simply Supported Plate of Variable Thickness
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Similarly

X Do

Qoe ' '2 a :2- 52 (1 - v)(wn - wne)

D

Qon . 1 - :3 [- aa (1 - v)(wn - Wm) +6d (1 - ”(Wm - W“)

+ 5n (wm- 2w“) + v5n (Wm - a)“ +wm)]

Summing the vertical forces on the Joint 0,

Substituting the values of 0'3 and rearranging the terms,

D

1 -fl .2 -v 2 +13 Wm. 5n+wle5n+2u v) 5d}

+ wne{ mm + 2(1 - v) 5a)' alga + v) 5n + (1 - M5a + edit]

Finite Difference Equation for Corner Reaction in Simply Supported

4

Plate of Variable Thickness
/

Considemgthe bar 'ow' and taking moments about w‘ (Figure 51)

X I

Qow"'2— l ° Mow - n

O 3-92 5(1-)(w +w-w-w)
ow ° 2 X2 ' d v nw o n w

Boundary condition: U - U - U - O
n o w

D

X 0

Similarly

D

x o

Summing the vertical forces at the Joint O.
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APPENDIX B

Finite Difference Approximation of the Differential Eggation of Variable

Thickness Plate

Summing all the forces in the direction of z - axis: Fig. hS

an :0

axx

Taking moments of all the forces acting on the element with respect to

x - axis:

8H 8H

'5i? *‘5§x ' Qy - O

In the same manner, by taking moments with respect to y ; axis, we

obtain

an

—fl+€—-Qx . 0 e

Eliminating shearing forces Qx and Qy from these equations we obtain

aznx 5214 52! ( )

+ 2.5.551 +-—-—1 - - q x y

3x2 x y aye ,

The moment curvature relations are given by

 

62w 62w

M - - D (x, y) E-- + v—2
x ax2 6y

62w 62w

M --D(x,y)[—-2+v—§]

y 6y 6::

a__2_v_
n' - - (1 -v) n (x, y) axa——y-
xy

Substituting the expressions for moments in the plate equilibrium equation

82M 2 2
X a a w 82er 8D a 33w 63w

"2—"0—2'(_2* “5)- 95aa—<-§+v-—2
6x 8x 6x ax away

_2_aD (3% 93.5)

8x2 (283.. ay2
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FIGURE 52. Moments and Forces Acting on a Plate

Element of Variable Thickness

Directions are Positive as Shown



  

 

 

any 620 62w an 63w

3 " “(1 “)(axa ° axa +5“ 'xay y y X axayz

+aD 83w +0 ahw

5" ' 2 ° 2 2 ’
3’ axay axay

3.2151.-D§._ aw+ &)-2§2§- (é-B-E‘i'VBBV)

ay2 ay2 6 2 8x2 3’ 83’ ay3 axzay

-282 9.23.4» 82V)

ay2 5y2 8x2

If

v 82 +82

B): By

we get

an a an a
Dm+zyxs€iw+28yeyw

.VDW-(1-,)(.5_22.5_2.!-2%.2L.%35_.22_D..§i).q(x,y)

8x2 ay xay x Y 3y? 6x2

01‘

a
- pit-$5 .

at

Each term of the above expression is replaced by its finite difference

equivalent. Thus

1;
km - 20do-8(wn+ww+we+ws)

+

201m: + wne + wse I wsw)

+(w +w +w +w)
nn ee 38 W

3 ..
21 .'5; VW (wne + use Unw - HS") + h(Ww_- He) + wee - Wu"

on ‘ (wse + wsw ' wne - wnw) + MWn ' us) + u55 - Wnn
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2
190 110(5n+6$+5€+5w 11)

12W . (w +14 +11 +11 -bw)
n S C W O

2320
1;? Do(68-2+6w)

2320
1 8y? 00(5n-2+5S)

282D

hx axay Do (5nw + 6se ' 6ne ' 55w)

2

— - new
X

2
2 a w

1 .ay2 (wn-zwo+ws)

1112-5—21- - (w +w -w -w)
axay nw se ne sw

Substituting the above and rearranging the terms the difference equation

of variable thickness plate as shown in Figure 53 results.
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