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ON THE NUIZRICAL SOLUTION OF LINEAR AND NONLINEAR SYSTEM

MODELS

Abstract of Tiesis

by

Dinkar S. Rane

The ceneral availability of digital computers has lead
Lo the cdevelorment of various numerical technigues for solving
1iiear and nonlinear svstems. The relative merit of cach such
Lochnique varies froa rrollem to problem. However, in all cases
on2 of the primary considerations is computation time and numerical
accuracy. The consideration of computation time has lead to
the development of this thesis. The nuwerical accuracy nhas been
increased in most cases or at least kept to the same degree as in
the existing methods.
The mathematical model of the system used is assumed
to Le given in normal or standard form. Wiencver components
with nonlinear algebraic terminal eyuations are prescnt, the mathemat-
ical model of the system may appeér in a semi-normal form. The
general mathematical model 1s then taken as
X Fl(X,Y,Z)
Y = Fg(x,y,z)
0 F3(X,Y,Z)
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for linecar systewm, i.e., vien

|

X AX + Bi(%)

[N
9]

a recursive fornula is developed for the nuierical solution. Th
formula can icet any rrescribed degrec of acccuracy withou. increasing

the co.npulation tise per sten. Theoretically th. computation time

is one-Tfourth that of the standard Run-e-Kutta method.

Sone mixed, linear and norlinear forms are also considerecd.
The Runge-Kutta metiiod has been modified to increase the computational
speed. The nuwiaerical accuracy has Leen increased in some cascs while
the orisinal degrec of accuracy has beoen vnchanmed in others. The
overall cffect is a faster nuwuerical solution with a high degreec
of accuracy. Thrc rasultis are compared with the results by other
existing methods such as the Runge-Kutta wethod, predictor-corrector

methods and others.

Fin-1ly the semi-normal form of the mathematical mocel is

considerczu 'nd two vprc - . ures are described for obtaining a nuaerical
solution. '.c¢se proo:iures also yield a shorter computation tiue with-

ouw.  Loss in accurs - .
erical exaunles a wven for tiie purpose of compuiii the
cetual o diloive oooovhat’on e and nwserical accuracy and indeed

sSuppoL Lie .. Jeal ¢ .velopument.
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I. INTRODUCTION
A prerequisite for any systen desisn procedure, is some
kind of mathematical model of the system. The model may be oLtained

Ly various transforu techniques such as the Laplace transforin, or in
the time domain as a set of differential eguations. The transform
techniques have been applied very effectively in the area of linear
systems but do not apply to nonlinear systcms. The time-domain analysis,
however, can be extended to include nonlinear systeims in general.

A time-doiiain mathemetical wodel of physical systems
particularly suited to coumuter solutions 1S in the normal or stancard
forw. General rrocecdures Tor foraulating mathematical models of

. (1)

nhysical systems in tnis Torm are given Ly Wirth .
The objective of this thesis is to develon high speed
nunerical methods for obtaining solutions to the type of mathematical

model found in the analysis of vhysical systems. The seneral form of

the mathematical nodel considered is the seninormal form

B 7 i X .I '-T* .L-l
X Fl(A,Y,Z) UlEl(b)
d
" Y = F.(X,Y,2) + D.E. (t) (1.1)
0 F_(X,Y,% B.E_(%
(%, JE (1)
- . — - — .

F F_ are vector

2’ "3

functions and the last equation is an aljetvraic ejuation nonlinear in 2.

where X, Y, El(t) and E_(t) are vectors; Fl,
5



The problemn, then is to develop a method for obtaininsg a
numerical solution of nonlinear differcntial and algebraic equations.

]

Various metuods have been sugiested for obtaining the numericul

(2’3’l+) m 5 -
The most conmon of these nethods

solutions to such proulems.
arc Runge-Kutta, Numerov's and the various predictor-corrector schemes,

such as those of Nystiowu, liilne, Hartrece ete. All thesc methods

are coumparcd with the nrocedures of this thesis.

In this thesis specicl forms of the goneral .athematical
model are considered. In section 2, linear differential systems are
considered and a recurssive foriwula is develored for the solution. The
solution at nth inteival of tine in ter.us of initial conditions is
shown to have a form rescmtling that of the ntn state vector in

Mariiov Prccesses.

In section 3, coubinations of linear and nonlinear differ-
ential systews are considered. A procedure applicable to a srecial

class of nonlinearity is considered first with subsequent extention to
a more general form.
In section 4, the vrocedure is extoended to certain classes
) L
of mathematical models involving both nonlinear alzelraic and differ-

ential equations.



IT. LINZAR SYSTEMS OF DIFFLREITIAL ECUATICHS

1. -

Let the mathematical model of a linear srsten Le of the form

— — — —_ - - — - —
X a Ao e a bid L ... b e_(t
1 11 12 1k 1 11 12 1n l( )
X5 8h  Bpn ee 2, o Loy b:2 coe Do cc(t)
. = . . + . .
.
Leu . . . . .
b a. a N a. b U b . ... b c (T
L k il we Ik L i< “nl nc nil ..'x( )
- — - - — . -

or in wvector notution

d

— Ix(t)] = [A] [x(v)] + [3] [E(%)] (2.2
to (2.1) for the vuctors X(h), X(2h) ... X(nh) ...
is obtained first ac Tarlor's series ciiansion, and then this solution

is put in a corcise [oma to obtvain a recurssion formula.

2.1 Taylors Series Exransion

An analytic function £(t+h), wherzs h is a constant, can be
cxpanded in terms cf f(t) and its successive derivatives with respect
to t as
(gt 1.2 n_n
£(e+h) = (1) + h (%) + =07 ™) + ...+ ThI (£) + ...
2 n!
2.2)




-

2o nscyuently using vector notation, (2.3) can Le expanded as
d h2 02 Fn M
4 L 1. 1 A
X(t+h) = X(t) + h a—t'X(t) +T—;X(u)+ ".+;1—!_le(t)+“.

coat” at

(2.14)

viiere the indicated derivntives of the wveetor X(t) as calculated oo

(2.2) arc

d 1 — A Ao &S ot
e %(e) = A X(e) + ni(v) (2.5.1)
2
S x(t) = AL x(s) + EE'(%)
2 (11 N

rD
A1

M
~~

n
-

AT X(L) + ADE(L) + DE'(%) (2.

)3 -
— (L) = ATLAS(L) 4+ ns(u)) o+ ArB() o+ rem(t)
at”
3 2
= A7 X(t) + A" BE(t) + ABE'(1) + BE"(t) (2.5.3)

4
= x(L) = a7 L) + te(u) ] o+ AT T (%) + ATE"(%) + DEU(%)

at

|l

= AT x(%) + A0 TE(L) + AT PE'(L) + ADE"(%) + DE'''(t)

(2.5.4)



In equations (2.5.1) throush (2.5.4) the derivatives of E(t) can
. . e h . .

be obtained approximately in terws of E(t), E(t + 5) etc., by using
the forward differences. The third and higher derivatives involve

3h v 4 . . . . o ges
E(t + 5 ), E(t + 2h) etc. However, an approximation is made for this,

. . R .\ h

so that all the derivatives are expressed in terms of L(t),x(t + 3),

E(t + n).

B'(1) = & 5(1) ¥ -
-,-2. h
- E [5(t + ; n) - B(t)] (2.0)

E"(%)

1
t=2
—
~

e,:x_i [E' (t + 2) - E'(t)]

== (E(t + n) - 2 E(t +% R) + E(t)] (2.7)

2 ! h "
E"(t) = = [E"(t + 3) - B"(¢)]

Q 27 4
~ = (Bt +£) - 3E(t + 1) + 3 E(s + By D E(u)]

(

n
(%]
~

. . . 3hy . . s
Using quadratic extrapolation E(t + E—) is approximated in

IR
terms of E (¢t + h), E(t + =) and E(t), so tha%
[

B(t +29) =2 B(t + h) - 2 E(t +2) + % B(t) (2.9)



B, ton (2.7) Liien tceeecues

E" (L) =~ 2 (- 2 E(X + 1) + 8 (¢ +32) -

[

E(2)] (2.12)

rale

ii

Sulctitutlon of (2.0) tiroush (£.10) ani (2.5.1) throuh

(r- P v, E (;'— ‘I') LVCS
e ~ o) o) 'l» )
X(v + 1) ="U + 4+ % ETAT + =07 A + oL b ALJ X(%)
«< ) <
bl oo Z 2
+ el 2 U+ Lias %; LAY+ %T n’A”) £o()
e ) o L‘I‘
1 .20, . Ny 1 Loy ,
+ oA JrE(v + ) +2 [ S U+ 7 PAJVE(: + 1)
(2.11)
or

Wiers
2 2 G 3 ' L
(=] =1[u) + :la) + L (A7 + % L7 (AT + b (Al (2.12)
r 1 1 e 2 1 b 3
L.).,] = A[ - [U] + = ] [A] + — . [A“ + ':T 11 [A.J ] [;)8,: l))
. (= 2 o ot e ‘e

rﬁ
C
)
—
1
o
—
i )
—
-
| —
+
N
—
s
i
—
—
\;4
P
1o
H
S~



If X(nh) is cenoted as X(n) and X(nh + 1) as X(n + 1),
then at the discreve points, t = nh, (2.12) becones

X(n+#1) = (=) X(n) + 2, E(n) + 2_ E(n + -é—) + 9y B(nel) (2.17)

1

Eguvation (2.17) is a recursion formula Tor a solution to the system cf

equations (2.2) i.e.

X(1) = (o) X(0) + 3 E(0) + 3, E(Z) + 55 E(1) (2.13.1)
X(2) = (2] X(1) + ¢ B(L) + 2, BE) + 24 B(2) (2.17.2)

ard so on.

jote thot the matrix [7) is of order n x n and [Sl], [&2],
and [3.] are of order n % 2. These matrices are calculated once for all
b
at the beginning.

In muy practical problens the invut siznals are all of the

’el(tT "ul"

DE(t) = | . = : e(t) = [E] e(x) (2.19)
eh(t) o
L. Fas | B JL—




-0

so that

] E(n) = [3,] [E] e(n)

“1
I we let
[#1] (E] = M (2.20.1)
[,2] (E] = 9 (2.20.2)
(o) [E] = A (2.20.3)

then the recursion re'ation in (2.17) reduces to
X(r+1) = [a] X(2) + A e(n) + x  e(n + 1y 4 Ay e(nel) (2.21)
where xl, xg, A, are colwin matrices.

3

2.2 Comparison with Other Solution Procedures

There are many numerical procedures available for a solution
to a set of linear differential equations. lMost common and widely used
of ztlese is the Runge-Kuita nethod. Tihe rredicolr-corrector uetlhods
of liilne, Eartrce anc Nystram and others, arc also used for syecial
forms of linear differcntial equatvions. liowever, the procedure given
2bove gives a wuel faster sslution and the accuracy can Le aaintained
roc.  The degree of accuracy is a [unction only

above any cecsired cde

e expressions Jor [aj, [_

Eal 4
oL Ul

ja)

], [5,] as shown in Aprencix A.
3



The recurssive formula (2.12) reuains unchaned. Thus, regardlecss

of the degree of accuracy the computation tiue the same. Actual

) 2

computer prosramming indeed proves this point.

Inspection of the widely used Runge-Kutta method shows
2
that for a systew with n variables and i ériving functions, (4n” +

9]
bnm + 5n) nultirlicaiicns and (4n” + 1ln) additions are reguired.

14

Cin the cthrer hand, in thz ~rocedure of eguction (2.17), (n™ + 3nu)
multirlications and (0" + Znw) 2dditions are roquired. This
2 2

a savinz of (2n” + nu + Pn) muliiplications and (3n + na + 1ln)
acGitions. This represencs a relative tiue factor of arproximately

4 to 1 Tor relatively cull m.  Even for tlie larjest value of m,

tise Tncter is tetier tlan 2 to 1. In practice,

oo

however, thic advanta e is reduced slintly tccause of the tine

recguired to print out the intermediate results.

The bookkeeping reguired in tie procecure given atove is

. a

also consideratly lecss us couwrared to that in the Runce-Kutta method.

In Runge-Kutta metlod the solution at the nth interval must be retained.

-

t the same time, the values of the matrices Kl’ K., K, Kh as defined
< ]

in Appendix C are also to ve stored. The evaluation of Kl’ K., K., K,
2

2’ 4

is not symmetric, Iience tlis rcguires acdditional tookeepinz. On

thie other hand in tlic solution given above it is necessary to store

an
n
1 ia

only tue soluticn at n interval and the coclficient matrices [a] [2

(-] [Sﬁ] once calculated are used throuslicut the sclution of a given
< >

nroblen.



The com-arison ol the wrcocedure given atove with tho various

oredictor corrector also shows an adrantae. Tue Zoruulas for

a tynical rrediclor-corrcclor nethicd sugiested by Hauwming are given in

Apvendix B, A carclful study of these formvlas siows that the first and
second derivetives of the wvariables have to Le evaluated twice for eac:
ster, .. ety Increasing tne computation time considerably over tiat

.

required in the avove precedure. A Turlher study indicates that tle
value of X(t), X'(t) and X"(%) at the roints (n-1) and n are required

to evaluate the sclution at (n+l). This rerrzsents a substantial amcunt

bookkeepin:; hence puls a limit on the size of protle: that can be

solved. Another disadranta e in the metlioc of Honndng as comparsd to
IS

that given avove is thne use ol the sccond cerivatives while tiie system

of eguations (2.2) involves only +the first derivatives.

~ o= N
(&S

2.3 State Vector and State Ma

Trhe recurssive Joraula

—
ro
-1
S
©
g
=
&
9]
[§]
[¢)
[&]
ch
s
(9]
(’J
f__l
,C
IS4
)..J
@]
=
=
D
o]
!

interval, in terms of tic solution at ih
driving function at all the previcus intervals and uid-intervals. Dy
recursive sulstituiion, foramula (2.17) can Le used to develop an

of only the initial

O
s}
S_‘L
¢t
[
@}
81
0O
chk
0
-
o
o}
(_+.
@]
[©]
H
e
]
o
(¢}
Y

exrression for tlie 5o

N

conditions on the dejendent varialles an

-

the driving function at all

o)

]

C

the previous intervals and mid-intervals. Such an expression is very
coenvenient to use in man cases. loreover, in the special case of
:onstant input, thils exvressicn has a very interestiing foru. Eren in

the [reneral case of tlimc varying driving funciions the wmoedifizd cuprescion

has a strikine sinilarity with exoressicn in tlhie Value-Deteruinotion orer-

ation of Markov Process.



The recurssive Tormula 2.17 can Le rewritten in actail

“he intervals b, 2, ... ni as

X(1) = = X(o) + oy E(0) + 3, E(%) t s a1 e
x(2) = = x(1) + &) E(1) + 2, B(17) + ?3 B

e ol
= 7. X(O) + [ '(:

. 1 . ~ ~
+ [gl E(1) + n E(lE) t ooy E(2) ] (2.23)
S ~ ~ ~ S rl ~ =)
X(3) = = X(2) + oy B(2) + 3, B(2D) + oo E(3)
= 7 %(o) + & [kl E(o) + 1, E(;) + 2, BE(1)]

E(J%) + .. 5(2)]

,
,
2 3

E(2) + o BE(2=) + 33 E(3)] (2.2h)



-12-

>
—
3
~~

1}

o X(n-1) + i E(n-1) + ...

<

o x(0) £ ot

(5, E(o) + 2

+ o [gl E(n-2) + -

1

E(n-1+ Z) + 33 E(n)

m§+a3mnl
E(L%) + 5, B(2)

E(L%) + 3. E(n-1) ]

J

N
+ [;l E(n-1) + 2, B(n-=) + 33 E(n) ] (2.2)
or
n = n-j-1 1
X(n) = <™ x() + T Loy BQ) ¢ osg BG4 5 25 (041)]
J=e (2.2)
For a drivin: function of constant ainlitude
. . 1 - - -
E(j) = E(3 + 3) = E(3+ 1) = & (2.27)
I we let
E ro ﬂ3 = P
then
n n-1 1.
X(n) = = x(o) + Z" 2 E (2.27)

1]
C



Commaring this to the valuce-detrruination formula in the

lHarlkiov »rocess, naugc

j>)
@]
—
B
~

v(n) = P v(o) + P q

We sce that tiey are identical in Torm.

I2 for tiue varying driving functions we let

E(3) = by B() + B, E(J +3) + oy B(J + 1)

then equation (2.2C) Lecones

n a-1 n-j-1 =, .
X(n) = o X(o) + E o E(J)

J=o

Equations (2.20) and (2.31) indicate that the linear

mathematical model of a control system given by (2.2) can be put

in the samne Lo as the mathenatical models of Mariiov Processes.

Thus, the omtiuiczation nrocedures using dynanic rrograwming given Ly

IHowar<l can 2 a~nlied directly to deverninictic systems.

The possibil-

ity of exploitiz these technijues throush this tyre of recurssion

vy

formula revresents an arca worthy of furthicr investigation.



“1h-

In umeny control cyste.s applications tie only information

4

regquired is Lhe ovt-ul sisnals as the funeition of

)

he insut sisnels.
In oti.cr words, only the res:onse oi tie syroten Ls of interest.

This is also the case wiien nuserical solution +to a hi lier orvder

(

differential equaticn is required. Let the dilferential cequation

8
— Cn-l —/—= 1+ Cn-2 ——= X + ... + C_

av at dat N

N2
l.'_."c_
and let

-~ 1

; Lo, n-1
X - S _ <7y ¢ = n-l (’f.‘ e
- Ny I e A e e ——.L L= AN-L S

GUo 14 (54 R _n"

[Cv) at

Equation (2.32) wian written in norual Zomma thon Loccuos

.. 7] .. )

“n PIS

an PR
1 o

X s

2
d _
at . .
¥n-2 xn-1




¢ C 2 e J o) DK y
2
= | : : : : : + . (2.3

c  -c., -¢,. . . . =-cn-2 -cn-1 xn-1 -o(t

In such a casec only the solution for x is of interest.
In control systems, the response can bLe obtained conveniently from
the earlier results and perticularly from cguation (2.31). Let
this set of equations bLe arranced so that the outrut variables
Xo(t) arc the first-I cleuonts of the state vector X(%) and let

R(n) denote th2 first k-zows of [o] . Then from cquation 2.31 the

expression for Xo(n) is

n-1

Xo(n) = R(n) %(o) + Z R (n-j-1) E(3) (2.35

o
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The cxrrescion for the cul:

can e written

Xo(1)
Xo(2)

Xo(3)

In the s-eccinl case wnere there 15 only one2

~) '}} ~)

Ao(n-l

Xo(“)

N
(&6

(1)
R(2)

n ’J)
AN\ O

e

ey
1150

e contiol

~t 0

Ko) +
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R(o)
R(1)

R(2)

R(n-0)

n

R(n-1)

L

v
o

L2C0.23
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R(o)

R(1)

R(n-

R(n-

colren

@]

o - (g} Y A e
ut variatles Xo at L
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(@)
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R(0)

0

(o)
E(1)
L(n-2)
E(I'x~l)
(2.:0)
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@

<

(6]

., R(o)




ST a : 2 P R
wicre S, is a colwan uatiii.

. \ - . I
Eguation (2.3%) can also e rewrittien as tihe vector

C

~—
>4
—
1
—
-
=
s
—
>
PanS
o
~—r
—
+
—
2
—
Lmn ]
t3l
—
~~
.
(@5)
v
~—~

Whera [S] is lover trion-ular in tie swonlrices S, ., = 5, _, .
ij I+1' g+l

Ejuation (2.3°) is 2 rarticuluarly convenicent .icCel to use in the analysis

of discrete state systems such as sampled data control syste.s.

.

In such a systes, the vectors of disercte .asnitudes ci(j), j=1,2,...

revresent the discrete outrut levels of the digital commuter.



III. @IMIXED LIIZAR AID NOIILIINEAR DIFFEREITTIAL ECQUATIONS

he wvast oojorit:r of
in engineering contain toth linear and nonlineur coumonents, i.e.,

the gystem seldom contains all nonlinear cowponents. When such 1s the
case it is sometiuies mossiible to select the variatles (i.e. o
foraulation trec in the system granh) so that the normal form model

armears in the form

t)

I
—
(U5}

'r—-J
~

[on¥ 7 ~ 3.
X F X.,X v
2 2 ( l’ 2} )
Where F. 15 a lincar wreetor funciion ol the Torn

A, t) = AX + T E(%)

1’02’ o

and Fl is nonlincar vector function. For such a system a sucstantial
saving in couputer L me can be realized by couining the procecdure

v

~iven in section 2 with oll.er linown mrocciurces.

3.1 ledified Runje-Kulta Solution for IMixed Linear and Nonlinear S;stens

Solution to the sccend set of (3.1) can te obtained
independent of the first set. Let it be obitained vy the procedure
ol section 2.

Trne modification of the Runze-Kutta method required to use
this procedure is explained Ly first exanining the standard Runzse-Kutta

method.

13
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The standard Run-e-Kutta »rocccdure for outaining a solution

>
i_l
—~
53
+
}—J
~
1
>
~~
8]
-
+
o\l
=
.
™)
)
+

. v 2K, QKB + Kh] (3.3)

- 1 o o 1
X2(n+l) = X2(n) * 7 (L. + 2L_ + LL3 + L} (

(U8}
=~
~

K = LTy [Xl(n), Xg(n), nij (3.2)
L, = F, [A[(n), nh 3.72)
Al hnl N, l E¥a l N l A
K, = 7T, [Xl(n) + 3 Kl’ Ag(n) + Ll’ nn o+ 7 ) (3.0)
L, = 17, [X.(2) + 2L, ab+ =] (3.10)
K. = nTl [%(n) 1 K., X.(n) 1 ] L 1] (3.7)
3 = ';l 4 +E o :1’1 + = Py nn+zl. 2.7
L, = hF, [Xz(n) + % L, nh + % ) (3.11)
K, = hr [x(n)+ K X,(n) + L, nh + 1] (3.2)
L, = hF, (X.(n) + L3, nh + i) (3.12)

It can te scen that in order to obiain a solution to the

first set, the quantitics L L2, L

L,L nust be ovtained from the

3)

second set. IHowover, 1L tie recurrsive {ormaula of scceiion 2 is

l’

w
o
[¢¢]
[P}
[oR

L

to ovtain a solution to tiie second set, the gquantities Ll’ ~ Loy L
< D “F

are not available.



To show how ii.c Runge-Kutta method can ve conveniently
nocified so as vo avoic thils difficulty, swrose a solution

sceen ) set hoo Le

at the points t

( on+l

> ) h.

Consider now the

J

N
WolC

(

o«

r—

[

K} =
i

.

on outelined Ly a recurrsive for.la of section 2

recursion formula

+ 2K + 2 Ké + K}

Kl
Fl [Xl(n) + —% » XA (n+%), nh + % )
K!
. 2 , 1 , h
Fl [A}(n) 5 kz (n+z), nh + 2

Fy [Xl(n) + Ké, X2(n+l), nh + h)

sy «..y nil, (n+l)h and t =

(e}

s .
=h, =h, 5h,...,
— “— «

(3.17)

It can Le noted that equations (3.13) throuzh (3.17) are

similar to ciyuati
changes.

X (n) +

ro

ons (3.4) +throuzh (3.0) except for the following

1=

remlaced by X, (n=)

. s

Sl ol
=

H

b

(&)

=
=
©

>
D

. 1.
rerlaced Ly X, (=
c <

-

-

(8}

(n+l)

P v aapyc e T <
15 relaced vy X,
[

(&
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The following discussion shows that with this wodification there is

no loss of accuracy yet that there is a saving in courutation tine.

Geometrically, the Runge-Kutta formula actually calculates

tas o . \ 1 ) s
the derivatives of X(n) at points nh, nh + > h, nh + h. The solution
at point (n+l) is then calculated by adding to X(n), the weighted
average of tane derivatives multiplied by the time interval h.
The modified procecure given above is exactly equivalent to this
geometric interpretation. Mathematically, Fl [Xl(t), Xg(t), t] can be
revritten as F[Xl(t), t] since X2 is also a time varying function

and is known in terms of t. Ilence

K| =h Ty [Xl(n), x,_)(n), nh) = K, (3.13)
K!
K' = h Fy [Xl(n) + =, X2(n+ %), nh + %]
K!
1 h
= h Fl [Xl(n) * =3 nh + 5]
= K, (3.19)
K'
2 1 h
Ki=hF [Xl(n) + 2 Xg(n+ 5), nh + 5]
r 1 ' h
=hF Lxl(n) +5 K, mh+ 3
= K
3 (3.20)
Kﬁ = h Fl [Xl(n) + Ké, X, (n+l), nh + h]
= 1 ! ~ o)
n Fy [xl(n) + K3, nh + h) K, (3.21)



If the nwaiber of cquations in the nonlinear and linear
sets are j and k, rosoccuively, the compnutation time by the standard
Run~e-Kutta aethod is # (j+k) units while by the procedure descrited,

it is (kj+2k) units.

An alternate way of modifying the Runge-Kutta method to

reclize even a larger tine

(&}

aving is to obtain a numerical solution
to “he second sct (linecar sot) Ly the recurssive formula of section

2, at tiae h, 2, 3h ... nh (n+l) h. Solution to the Tirst set is

—
~-

tihen outained as follous.

Since

X.(n+l), X.(n) are known, calculate the average
< —

X, = % [(x,(n) + X, (n+1)] (3.2

Consider the recursion formula

-~ l 7”" 1" ~ " ”
. = % (n) + = o o 3.02
Xl(L+l) l(n) bz [Kl + 2 K)o+ 2K Ku] (3.23
wiere

I{ =T, [Xl(n), Xp(n), nh ] 3.
KE = 1 Fl [Xl(n) + % {; Xa: nh + g (3.27)

l r N h ~

Kg = h Fl [Xl(n) + E Kg; X2; nia + 'é' (3'51(-’

K'=hF [X (n)+K! X, (n+l), nh + h] (3 27)
D) fass

=
]

-]

=



N
(O]
[

Equations (3.23) throush (3.27) are si.ilar to equations
(3.4) throush (3.) cicers for the following changes

X, + = L. is rerlaced by ie

X. + =L, is rerlaced Ly X2

X. + L_ is replaced by X (n+l)

3 2

The following discussion shows that the procedure descrilted
has at least the soue degree of cecuracy as the standard Runge-Kutta
meviiod and that there is asain a saving in computation time. The
first part of the statecuent is

acain lLased on the geometrical inter-

o

rretation of the Runge-Kutta method. The value Kl as calculated by

equation (3.5) is an approxiuation of the first derivative of X at nh

.7)

w
Pl =3

v

vien K, K, are .ultirlicd Ly & as chown in ejuation (3.C) and (
< D)

and the result is an armproiinction Lo Lhe corivatives of X ol h + 1.
i - . A . .. -
lowever, the colutlon is not mown at nh + =h tut is appro:xima Ly

{_

. 1 . . . .
Xq(n) + 5 Ll. In the avove procedure this arproximation is taken
«~
1

as 3 [Xg(n) + Xz(n+l)]. This is, in fact a much telter appro:ximation

2 R

tixan the one in the standard Rungse-Kutta ethod.

Mathemnatically we have

>
"
-

(X, (n) + Xz(n+l)]



e g
vut from the recursion forimla (2.17)

N . 1y, . .
X2(n+l) =« Xg(n) + Vle(n) * 25 ce(n + 5) *+ g e(n + 1)

Y = }. " ~ l
X2 =3 [Xg(n) + Xe(n) + (a-u) Xg(n) + 3 e(n) + “2(n + 2)
+ 13, e(n+l)]
3
. 1 , 1, 1y . . - ]
= Az(n) + 3 lo-u) Ag(n) +5 L c(n) + 5o e(n+ 5) + °s 3(n+1)
(3.29)
Therefore
N B 1.22 1.33 1 .k 4
(=-U) Xg(n) = [U+hA + S DA T+ RTAT + S b A -U] Xz(n)
2 20 1
= u[A + % h A+ % h A+ %H h3 A#] X.(n)
* L (3.3¢
It is also to be noted that
(2-U) X,(n) ~ L, (3.31)

Similarly it can be shown that

X,(n+1) # X,(n) + L, (3.32)



I the nuwaters of equations in the nonlinecar and lincar
set arc again J and i, resvectively, the computation time vy standard
Runse-Kutta method is L(j+k) units. While bty the second modified

procedure given above is (4j+k) units, or a saving of 3k units.

3.2 Modified Runge-Kutta Procedure for Mixed Lincar and Nonlincar Systems.

In this section a more general scel of mixed linear and
nonlinear cquations in the general form is considered. Let the

4.

mathenatical model ol the system Le given as

xl Fl (xl, Xz’ t)
a
- = (3.33)
dt
X, F, (xl, X t)
Where
Fl (Xl, X2 t) is the nonlincar vecior function and
F2 (Xl, Xe, t) is a lincar vector function of the form
F, (xl, x2) = A X +ASX, (3.34%)

The mathematical models of the vast majority of physical systems are
of this form since only rarely are all components in the system all
linear or all nonlinear. This form of mathematical model might also
arise from nonlinear differential equations of the third or higher order.

This is shown by a simple example -



| .n-1 n-2 .
o, o < e ¢ e Cx
_— L ) S ) y T

n ., n-1 n-c at

¢t v ¢t
e GQ" dn-lv

Then if ==X, —= =X . = = X
at 1’ dt° 27 dtn-l n-1

The higher order cquation reduces to the following set of first

order equations

X Al
Xl ‘72
a =
at
Xn-2 Xn-l
xn_l - (X, xl, s xn_q, xn_l,
- i -

(3.30)

Using the standard Runge-Kutta procedure given in Appendix C,

we have for the lincar equations

d
o X2 = Al Xl + A2 X2

the recursion forniula

Xe(nh+h) = X2(n) + X,

where

b, = 7 [Ll + 2L

2

e\l

+ 2 L3 + Lh]

(3.37)



and
L =h Al Xl(n)
L,=hA [Xl(n
Ly=h A [Xl(n
L, =h A [Xl(n

-27-

+ A, Xe(n)
K L
1 1
) + > + A2 [ Xg(n) + -2—' ]
K L
o 2]
) + ? ] + A2 [1(2(11) + -é'—]

) + K. ]+ A, [Xz(n) + L3]

3

Substituting (3.38) through (3.41) into (3.37) gives

1
AX2 =h[ U+ 3
= % (eu + %
+ A
where
K, =hF [Xl(n)
K,=hF [Xl(n)
K3 =hF [Xl(n)

1 .22 1

3,3

hA,+ZhAy+3ph A5]
1.2 2

h A2 5 h A2) Al Kl + (U
1K3]
J x2(n)’ nh]

K L

1 2 h
* 3 Xg(n) + 5 nh + 5

K L

) P h

* 5 Xg(n) 5 nh + 5

(3.30)
(3.39)
(3.%0)

(3.41)

(A X

Xy + AKX

1

*3

hA) AL K,

(3.42)

(3.43)
(3.44)
(3.45)

(3.46)
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Inspect o« of equations (3.43) throush (3.4C) shows
that Kl’ K, K3 are of the came order; anc at lecast for the present,
[
will be assumed to be equal for this special case, i.e., K3 ~ Kg*—/ Kl ~

h F [Xl(n), Xg(n), nh] (3.47). The error at each step can be calculated
in terms of the parameters and can te corrected later if it becomes

too large. With this aprroximation (3.42) can be rewritten as

AX. = h o [Ale(n) + AEXO(n)] + oA K (3.42)

[

where
_ 1 1.2.2 1 ,3,3
a=[U+ZhA,+20°A° + ZpnoAS ] (3.49)
B = % [ LU+ n A, + % n® Ai ] (3.50)

The recurssion foriiula therefore becomes
X2(n+l) = Xg(n) +hao [Ale(n) + A2X2(n)] + hpAK (3.51)

The error in equation (3.51) is expressed in terms of Kl’

K, where Kj’ j=1,2,3,4 are defined as

K, = hF [x,(n), X,(n), nn] (3.52)
5 1 h
K, = uF [Xl(n) ol Xz(n) +Z 08X, nh + 3 J (3.53)



-29-

s 1 h ]
K3 = hF[Xl(n)+§—,X2(n)+§AX2, nh + 3 (3
K, = hF [Xl(n) + K3, Xg(m-l), nh + h ] (3.
and
1 -
Xl(n+l) = Xl(n) + 7 [Kl + K, + ¢K3 + X, ) (3.
The error in (3.5C) is
e(n+l)=lh[2U+—l—hA][A]rK-K] (3.
€ e o 17 1 2

If the error € as given by (3.57) is too large, the correction may
be made by subtracting € (n+l) from Xg(n+l) as calculated by 3.5€
and the calculations in equations (3.52) throuch (3.57) repeuted.
Only one such rewnetition is normally required and would not even te
necessary for a carefully chosen step sicze,

Tne conputation time for this procedure is substantually
less than the time for the Runge-Kutta (standard) method. This
especially is true if the mathematical model has a small number
of nonlinear equations and a large numver of linear equations.

Let these numbers bte j and k respectively. Then the computation
time is (4j+k) units as coamwared to L j+x) units by “he Standard

Runge-Kutta Metnod.

-5k)

N
N
S—

£0)



3.3 More on the Solution of Mixed Linear and Nonlinear Syste:s

Another special, but very common class of nonlinear
differential equations encountered in the study of physical systems

is the form

d o o

S X o= F(X) o+ o(x) (3.52)
where

F(X) = AX (3.59)
and

G(X) is nonlinear in X containing juadratic or higher
degree terms in X. The procedure to be cdeveloped for solving the
equations involves first a linear anproximation to (3.5.2) followed
by a change in the parameters to take into account the nonlineariiy,
i.e., the nonlinear function G(X) is neglectzd 2s a starting point

only. Let the linear approximation to (3.5.) be taken as

d
Sox(e) = Ax(y) (3.€0)

From the results of section two the solution to (3.€0) is

X(t+n) = a X(t) (3.01)



-31-

vhere

)
= U+ hA 4+ % noA° + % n3ad + %E phal e (3.C2)

The form of the solution %o (3.5.) is tien talien as

(@)
C
he

~

X(t+h) = azZ (t+h) (

Equation (3.€4k) is outained by Taylor's series exvansion of X(t+h)

which gives:

t+h

L C[x(V)] at) (3.65)

X(t+h) = a X(t) + o [‘S

Equation (3.(5) thcn gives the recurssive formula

~

X(n+l) = alX(n) + M(n+1)] (3.6¢)
where

H(s) = Jc[x(t)] ot (3.67)

Numerical integration of (3.€7) is obtained by any of the standard
nunerical methods, such as Runge-Kutta method. The scheme then

reduces to the following mocdified Runge-Kutta Procedure.

Procedure:
A nunerical solution to a set of nonlinear differential

equations (3.53) is given ty the recurssive formula

X(n+l) = a[X(n) + M(n+1)) (

w
(@Y
o



Where

and

Example:

Then if £

Let

L

M(n+l) = % [Ml(n+l) + 2M2(n+1) + 2M3(n+l) + Mu(n+l)]

Mﬂnd)=}1G[MnH

My(n+1) = b G [X(n) + % M, (n+1))
M3(n+l) = h G [X(n) + % Mg(n+l)J
Mu(n+l) =h G [X(n) + M3(n+l)]

The exact equation for motion of a pendulum is

(3.69)

(3.70)

(3.71)

(3.73)

(3.75)



and

ol
W
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The system of first order equations therefore is

Solution by the above Runge-Kutta procedure is realized by the

recurssive formula

X(n+l)
where

M(n+l) =
and

Ml(n+l)

M2(n+l)

N+

a [X(n)

[Ml(n+l)

o=

oy

+  M(n+l)]

+ 2M, (n+l) +

o)

x7(n)

o

%[xl(n) + % M2(n+l)]3

ol

= w

(3.77)

(3.79)

(3.80

2M3(n+l) + Mu(n+l)]

—

(3.21)

(3.52)

(3.23)
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(3..4)

"
oy

M (n+1)
I 3( ’

M, (n+1) (3.35)

n




IV NONLINEAR ALGEERAIC EQUATIONS

When systems contain components mcieled in terms of non-

linear algebraic equations it is not always rossivle to Gevelop

O

-

a system model in normal form, i.e., 1t may not be possivle to
eliminate the nonlinear algebraic equations from the system model.
The mathematical mocdel, in this case is referred to as bteinsg in
seminormal form and for the purposes of our discussion is represented

in the form

= (4.1)

QIQ:
ot

Where G(X,Y, t) is a vector function nonlinear in X and Y or at

least nonlinear in Y; so that Y cannot bte eipressasd exrlicitely in
terms of X and t. If G(X,Y, t) is linear in Y, the vector Y can

te eliminated from the first equation and the mocdel reduced to normal
form.

Many attempts have been made to obtain a solution to the
nonalgebraic equations. DNone of the procedures, however, is general.
Each method is applicatle only to a certain class of problems. The
proceaures to te used tren depends on the nature of the nonlinearities

involved in a given problem.
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4.1 Method of Differentiation

(1)

One method of solution related to recent work by Wirth
is to transform the nonlinear algebraic equations into differential

equations by partial differcentiation. The procecure is as follows:

The alzebraic equation in (4.1) vi:.

G(X,Y, t) = 0

is differented with respect to t, so that

%{G(X,Y, 1) = ?5;;’ -Q“—)f N ?ﬁ %{ + 2= 0 (%.2)
Where}?% andj%% is the Jacobian of the vector G with respect to
the vectors Y and X rescvectively.
For example consider the set of equations
| Xl— :— fl (Xl) x2) X3) b’l) 3’2; t )_q
X5 f2 (xl, X x3, Yo Y t )
-d—' X = T (X y X9 X Ve Yes b ) (l*~3)
at 3 3 1 2 3 1 2
0 Gl (Xl’ X2) XB) .‘1’11 y2; t )
0 82 ( Xl) x2) X3) yl’ .‘/21 t )
L _ | -




The for:m of equation (4.2) For this system of equations is

— s -
I T ¢ ax 4 3 - &
?ol ?-)l 2_>l 1 2 1 ‘al Yl }\l
DX VX, X, Gt EVATR N av Ry
Gl
— | + + =0
QT
28, 23~ 25, <i::3 R 'J:»yl R8s
ERS IS Ty Gt Py . dtJ oL
_ ’ R R a L 4 L N ._

G . . .
If the matrix o2 is nonsingular, then the solution (4.4) for the

2Y
derivative VeCtOI‘%% is
2Y ?G,-1 G ax 26
2t [BY] (zx T3t J
~G,-1 2G 2G
- [‘()Y [’DX F(X)Y’ t) + »at ]
= P (X, Y, t) (%.5)
ey . 2G,-1 . v R
The conditions under which [SY] exists are estatlished in

reference (1). The initial conditions on Y must satisfy the nonlinear

algebraic eyuation

¢ [ X(o), Y(0) , 0] = 0 (4.¢)



'y considering (4.5) in conjunction with (4.1) the mixed system
of nonlinear algebraic and differentail egquations are transformed

into the set of nonlinear differential eguations in normel form

X FIX,Y, t) W
d = (4.7)

Y L P(X,Y, t)
The numerical procedures of sections 2 and 3 can Le used to obtain
a solution.

Exanple:

Let the mathematical model of a system be given as

~ - — — — —
X f(x, y, t) ax + by
. _ _ (4.9)
dt . .
0 a(x, vy, t) X - sin y + sir  wt
Taking the time derivative of g with respect to ¢ we have
dg . dx s y &
3 = T cos y ot +wcoswt = 0
or
%% = (ax + by + w cos wt / cos ¥
=p (% v, %) (%.9)



The nonlinear diflTerential cquations to Le solved then are

— . r =
X ax + by
at = (i+.10)
y p(:,y, ©)
with initial conditions satisfying the equation
£ [x(0), y(o), 0} = x(0) - zin »(c) + sin (o) = © (%.11)

(o) = ®/C is such a value so that

Therefore, the initial conditions for (4.1C) are

x(o) = 0.5 and y(o) = n/€.

4,2 An Alternate Procedure

In rany a problem the technique as indicated in section
) ) ) 1 p! P S EG-. -
t.1 may not be applicavle for the reason that Jacobilan S ray not
1
exist or is singular., Zven if the Jaccbiaen is nonsingular the final
nmathematical form may bLe very complex and, as such, is difficult to

handle nwaerically. The following nwaierical procedure overcomnes tnis

difficulty.
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Acain consicder the mathematical mocel

— - p—

X F (X, Y, t) |

d =

= (k.11)
0 G (X, Y, t)

Tre basic procedure involves an estimate of X(n+l) from values

of X(n) and X(n). Deforc considering the details of how this estimate
is to be made let it be assumed for the present that an estimated
value of X(n+l) is available. The problem %then reduces to the solution

of the set of nonlinear alzebraic equations

G [X(n+1), ¥(n+l), nh+th] = O (4.12)

for Y(n+l). The llewton-Raphson can perhaps be applied to obtain
this solution using Y(n) as starting values. liowever, if the true
solution for the vector Y(n+l) is considerably different from

¥Y(n) this method may not converge, or it may converce very slowly,
thereby requiring an excessive number of iterations to arrive at a
solution. In an attempt to avoid this difficuliy an estimate of
Y(n+l) is made using quadratic extrapolation. Using Y(n+l) to

represent this estiratc we have

Y(n+l)

¥(n) + [¥(n) - Y(n-1)}+ 3 [¥(n) - 2¥(n) + ¥(n-2)]

g Y(n) - 2 Y(n-1) + % Y(n-2) (4.13)
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Then
G [X(n+l), Y(n+l), nn+h] = G [X(n+l), T(n+l), nh+h]

G

~ [Y(n+1) - Y(m—l)]é—f [X(n+1), T(n+l), nh+h)

and as a first degree approximation

Y(n+1) = T(n+l) - [g—g- n+1)17t G(n+1) (4.14)

This last expression is precisely the Newton-Rarhson formula. The
modification that Y(n+l) as evaluated by (4.13) is used instead of
Y(n). On the basis of a typical example it appears that only one
such calculation is necessary for convergence. :Although it may first
appear from the form of (4.14) that a first order approximation is
used, it is actually a third order approximation,

since Y(n+l) has becn estimated by quadratic extrapolation.

The disadvantage of this method appears to be in the evaluation of

the inverse f%g]-

1 . .
v at every step. However it may be possible Lo

evaluate this inverse analytically.
The estimate of X(n+l) required in the above procedure can be
established by any of the predictor type rccursion formulas, but

Milne's formula seeums to be more appropriate.
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Milne's formula is

X(n+1) = X(n-3) + Eg- [2 F(n-2) - F(n-1) + 2 F(n)] (4.15)

After the vector Y(n+l) is calculated by (4.14) the esti-

rnated vector X(n+l) can Le corrected by any of the integration
Simpson's formula is one

fTormmlas that use estimated solutions.

such formula ard gives

(X' (n+l) + 4 X'(n) + X' (n-1)]

w3

X(n-1) +

X(n+l)
[F(n+1) + 4 F(n) + F(n-1) ] (4.1€)

w3

X(n-1) +

It can be noted that the procedure developed in this section
This is a handicap for

requires solutions at the preceeding steps.
using a smallar interval

It can be overcome by

the first few steps.
for the first few steps and by use of lower order methods that do
steps. For example let

not require the solutions at the preceeding

—

B ]
X T f (%,7,t)
(4.17)

2

¢ (6u,t)
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T.ae iirst three steps x(1), x(2), x(3) are cbtained from the f'irst

]

. . ‘o . L1
desree approximation with a temporary (local) step size of =h, taus,
.

x(2) = #(0) + 5 £lx(e), ¥(o), ol
(#.10)
) sx(3), v(e), £
AP = (o) - 5 .
’E IS X(E)’ v(0), '2‘]
x(1) = x(3) + 2 20x(E), #(5), 2
- (h.19

Lo clx), #(3), B

<
P
}_J
N
]
<
~~
Ol
N’



V. LEXAIPLE SOLUTIOIS

In this scction the couputer resvlis Tor several simple
cases have becn given Jor thie purpose of conparing couputation tiues

4

with soue of the other nethods.

5.1 Iltmerical Solution of a Linear System in TTormal Form
- - — - - 1 _ 1
ble -1 0 bie 1
1 1
a -
= = + (5.1)
v . ~ . ~
L..,_’ L 1 - L “n L V)

Usinc tiie procedurc of section 2.1

- _ - - - _ _
xl(n+l) @y ay xl(n) £1q
= +
xg(n+l) ¢y G xz(n) Poy
(5.2)
vihere
gL Ll 13,10
Qll =1 - L + > Q- Z‘L + T I
®p= 0
5.2, 3,3 5.4
ag = h - 3 L+ 5 h™ - 5 h
2 )
0 pn=1l-2h+2n - % h” + =S n*
cc b

LL
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“11_‘1-2*‘6“ -'2—)1'1

1.2 1.3 L
821-211 -2}1 +§Hh

The nuwnerical results for the above linear system as obtained by
three different meiliods are given in Table (9.1) zlong with the

compuvation time. Calculations were mace with a time increwment of

0.001 units, with resultis printed out every 1O0th interval.
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TABLE 5.1
SOLUTION OF LINEAR SYSTEM OF LE(UATION

Recurrsive Method of Section 2.1

Time Units
0.00
0.10
0.20
0.30
0.L4o
0.50
0.560
0.70
0.80
0.90

1.00

Computation time:

Predict-Correct Method of Appendix B

Time Units

0.00
0.10
0.20
0.30
0.k0
0.50
0.60
0.70
0.80
0.90
1.00

Computation time:

1.

x1

.00000
.90L8L
.81873
.7H082
.67032
.60653
.54881
49659
44933
40657

36788

1.

x2

.00000
.63293
.32k21
.06LOL
.8LL31
.65835
.50060
. 36648
.25217

.15432

07088

2 minutes, 45 seconds

= T = = T = T = T T SR SR SR\

x1

.00000
.90L8L
.81873
.74082
67032
.60653
54881
49659
44933
L0657
.36788

H O H H B HEF DN W

x2

.00000
.63293
.324k21
. 0640k
BLL31
65835
.50060
. 36648
.25217
.15432
.07088

8 minutes 5 seconds



TAZCLE 5.1 Cont'd.

Runce-Kutta Lothod

Time Units x1 2
0.00 2.00000 3.00000
0.10 1.90434 2.€3293
0.20 1.31873 2.32421
0.30 1.7k082 2.0Chek
0.40 1.67032 1.34431
0.50 1.C0C53 1.0583C
0.60 1.5433 1.5C001
0.70 1.49653 1.38C50
0.30 1.44931 1.25219
0.90 1.40€55 1.15434
1.00 1.36755 1.07091

Computation time: 3 minutes 35 seconds

5.2 Numerical solution to mixed linear and nonlinear system-closed
lincar set.

The mathematical model under consideration is

xl xlx2 0
d
- = + (5.3)
dt x2 x2 1

The nuwaerical solution as obtained vy the two procedures developed in
section 3.1 and by the Runce-Kutta methed along with the computation tine

for each is iven in Talle (5.2). The calculations were nade with a tine

.

1

increment of 0.001 units. The results were printed out at every 10th

step with every 1Oth printed result being given in Table (5.2).
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TABLE 5.2
SOLUTION OF MIXED LINEAR AND NONLINEAR EQUATIONS WITH CLOSED LINEAR SET
Procedure 1
Time Units x1 x2
0.00 + 1.00000 + 1.00000
0.01 + 1.01015 + 1.02010
0.02 + 1.02061 + 1.040k40
0.03 + 1.03139 + 1.06091
0.0k + 1.04250 + 1.08162
0.05 + 1.05394 + 1.10254
0.06 + 1.0657h + 1.12367
0.07 + 1.07790 + 1.14502
0.006 + 1.09043 + 1.16657
0.09 + 1.10334 + 1.18835
0.10 + 1.11665 + 1.2.034
Computation time: 6 minutes, 50 seconds

Procedure 2

Time Units x1 x2
0.00 + 1.00000 + 1.00000
0.01 + 1.01015 + 1.02010
0.02 + 1.02061 + 1.04040
0.03 + 1.03139 + 1.06091
0.04 + 1.04250 + 1.08162
0.05 + 1.05395 + 1.10254
0.06 + 1.06574 + 1.12367
0.07 + 1.07790 + 1.04502
0.08 + 1.09043 + 1.16657
0.09 + 1.10335 + 1.18835
0.10 + 1.1666 + 1.21034

Computation time: 6 minutes, 5 seconds



TAZLE 9.2 Continved

1 o~ g Syado 4 A N
Runoe-Kuittla lietioc

Time Unitco %1 o

3.3 + 1.302C0 + 1.02C2CO

0.0L + 1.0101¢ + 1.0001C

LSO + 1.00001 + 1.2%340
.30 + 1.03150 + 1.00001

el + 1.04250 + 1.091C2
5.0Y + 1.05395 + 1.10254
.oC + 1.CC5T7h + 1.124C7
0.57 + 1.077)0 + 1.14502

0.0% + 1.0704

(@)

1.1CC57

[GS]
+

0.03 +1.10

w
)
A\
+
',—l
H
(
S
C
N

.10 + 1.1100C + 1.2103h

Computation timz: J minules 15 sceonds.
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dt
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[l
. ~ . '
- Sin . + 2, + Sin 100t
1 2
- = X
1 2

B AR I . E P a2 "N D7
In tl:0 nolations ol Section 3.2

o(x

1

[ae) Fod

~—
}.J
]
ol

» X., t) = - sin X+ X

+ sin 10Ut

P

h
+

N
o)
=

iy
+
o
s

D

T
Nl

h A+

[}®)

+
+l

(5.5)



The nuweerical sclutions as oliained

Fal N

of Sceiion 3.2 and by the Runge-Kutta schwcue arc

along with computation tiec.

units and results are printed out at every 10th ster

10th printed results given in Table 5.3.

The time increment used

~e
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SOLUTION OF A CLASS OF MIXED LINEAR AND NONLINEAR SYSTEM

MODIFIED RUNGE-KUTTA PROCEDURE

Ti.ae Units %1 %
0.0 2.000000 1.030200
0.01 0.0103473 C.2. 1329
0.02 0.0213¢33 0.279991
.03 0.03297Ck C.2092(y
0.0k4 0.0450701 0.959930
0.05 0.057€121 0.949 (7
0.06 0.0700247 0.9397.0
0.07 0.0.,2337h 0.929CT1L
0.03 0.0945375 0.919540
0.09 0.1364 0 DLONIED
0.10 0.11.013 0.C9u224

Computation time: 10 minutes, 15 scconds

tandard Runge-Kutta Procedure

Time Units x1 X2
0.00 0.000000 1.000000
0.01 0.0103473 0.931999
0.02 0.0213C33 0.97:991
0.03 0.0329704 0.2C207
0.0k 0.0L50701 0.950020
0.05 0.57€122 0.949 .C3
0.06 0.0700247 J.9397°.2
0.07 0.0..23375 0.y29C72
0.03 0.054k537C 0.919542
0.09 0.1065 . 0.9079392
0.10 0.11-01% 0. opecl

Computation time: 12 minutecs, 55 scconds
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5.4 .. xed Linear and Nonlinear Mathematical Model CGiven in Ecuation (3.3)

The mathematical model under consideration is

i ) ) 0 1 ] [ X il i 0 |
Xy %
d = +
T - (5.9)
5.3
XA -10 0] XA < X
= o D) 1
L L 4L B i
Py notations of section 3.3;
o 1 [ o ]
A= and G(x) = (5.10)
5.3
-10 0 < %
> 1
Then
.2 25 4
all 1 - 5h + 3 h
. 5.,3.5.5
012 h 3 h +Z n
- - 23 .22
Ay 10 (h h+2h )

-
1
o
]
\N
=
+
o
oy
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The nuwaerical sclution to (5.9) by 1 dified Rungse-Kutta
tlethod and Stancdard

Runge-Kutta Method is ~iven in Table 5.4%. The

tine increment used in 0.001 time units and results are printed out

at every 10th step; with every 10th printed result given in Table 5.L4.
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TABLE 5.4
SOLUTIONS OF ANOTHER CLASS OF LINEAR AND NONLINEAR SYSTEMS

Modified Runge-Kutta Procedure of Section 3.3

Time Units x1 X2
0.00 + 0.500000 0.000000
0.10 + 0.476216 - 0.472181
0.20 + 0.406958 - 0.902567
0.30 + 0.298456 - 1.250510
0.40 + 0.160822 - 1.479810
0.50 + 0.007335 - 1.564410
0.60 - 0.146878 - 1.494180
0.70 - 0.286602 - 1.277550
0.80 - 0.398322 - 0.939304
0.90 - 0.471588 - 0.514959
1.00 - 0.499789 - 0.044926

Computation time: 7 minutes, 10 seconds
Standard Runge-Kutta Procedure

Time Units x1 x2
0.00 + 0.500000 0.000000
0.10 + 0.476216 - 0.472181
0.20 + 0.406958 - 0.902567
0.30 + 0.298456 - 1.250510
0.40 + 0.160822 - 1.479810
0.50 + 0.007335 - 1.564410
0.60 - 0.146878 - 1.494180
0.70 - 0.286602 - 1.277550
0.80 - 0.398322 - 0.939303
0.90 - 0.471589 - 0.514958
1.00 - 0.499790 - 0.044925
Computation time: 10 minutes, 50 seconds



9.5

-50-
Matlaietical Models with Nonlinear Alq2irnic Kountions
The mathcmatical model considered is
X -X + cos ¥y
r1 -
. —
- (5.11)
v
L o) X - sin y
0.5 y(o) = 0.523C

-X + cos ¥y

K v A :
.8 usca Wl

- 7
X
d
at =
v (-z4cos v)/ cos v
-X + Cco5 ¥
- (5.12)
-
1 - ( /cos V)
x(o0) = 0.5, v(o) = 0.523C
The solutions of (5.11) by <lie two procedures of scction L,
alconz with the computation time are given in Tnlle 5.5. The tine increment
th every 10th result printed cut at evelry

of 0.001 units
rcsult and is ~iven in Tatle 5.5.

10th
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TABLE 5.5
SOLUTION OF SYSTEM MODEL WITH NONLINEAR ALGELRAIC EQUATIONS

Method of Differentiation

Time e Yy

0.00 + 0.500000 + 0.523600
0.10 0.533832 0.563127
0.20 0.562574 0.597498
0.30 0.58687k4 0.627193
0.40 0.607325 0.652691
0.50 0.624L470 0.674k454
0.60 0.638793 0.692929
0.70 0.650721 0.708534
0.80 0.660628 0.721656
0.90 0.668837 0.732645
1.00 0.675627 0.741816

Computation time:

H
|
8
@

H O O O O O O © O O O

.00
.10
.20
.30
4o
.50
.60
.70
.80
.90
.00

Computation Time:

Alternate Procedure

X

0.500000
0.533832
0.562575
0.58687k4
0.607325
0.624470
0.638793
0.650721
0.660628
0.668838
0.675627

12 minutes, 30 seconds

y

0.523600
0.563126
0.597497
0.627192
0.652689
0.674k453
0.692928
0.708533
0.721655
0.73264k4
0.741815

T minutes, 5 seconds



VI. CONSLUSION

Scveral vrocedures for nwuerical solutions of
mathecumatical nodels are civen in this thiesis. In scection two, 2
recurss ve formula is develored for linecar systens.  The cowmuialion
time Ly this foruula is one fourih of that by the Runse-Kutta metiod.
toreover, any oiven Qegroe ol accuracey can be nalintained without
e cons wlnticon tise mer ster.  In the case of lineer
syste.as, the cirression for Liwe nth stagse solution vector in ternis

of the initial conditions rector and inrut vecters has o striliing
siailarity to the mathematical model of discrete state liarkov
Process. Thwus the "Dynamic Prosramming" technigues developed by
Howard and others for optinizing the systeus also aprly to the
control systens.

In scction 2, mixed linecar and nonlinecar systems care
considered. The nrocecdures developed {for tiie various tyres of lincar
and nonlinear combinations are essentially mocificd Runge-Kutta
Procedures, in which the coumputation time has been reduced considerably.
This saving in time is achieved ty arplying the results of section 2
to the sutsets in the systcin.

In section 4, systems containing nonlinear algebraic
2jvavions are considercd. Two proccdurcs are Ziven for the solution
of such a system. The moiliod of differentiation as siven in seetion 4.1
wives better results, bul 1s relatively slower as compared to tac altornate

rrocedure of scection 4.2. Doth the procedures, however, scc.a Lo

converge rapidly.
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In ceetion 9, several examrles of solutions iy Ll
rrocedures develonaed in this thesis are given and co.zrared with
-~ N (&) :

the solutions oltained t;r several other methods. These cenmarisons,

indeed, are consistent with the theoretical results.
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Aprendix A

Recurssive {or.ula for wvarious degsrees o accuracy.

Sce Scction 2.1
A1, Third dogres accuracy.
X(a+1) = la, X(n) + 5, E(n) + > B(n + Ly & 5 E(e1)
o .

-
- -

wiere

S
™
Y
C

[c.l=nl3U]

A.T Fourth desrece accuracy .

X(a+l) = [z, x(n) + N E(n) + .. B(n+ %) + 3. E(n+l)

2.2 2 )
[o] = U+ wA + 5 0°A% + 2 ndad s Lot ot

soo=nlfusdmef® L 1340
By =unl=U~+ S+ BAT T LT AT

1 20
ﬁg =}[l—gnAJ

w
I
fog
Y P
(e
+

@\l

(A.

1)

N
S

-1
~—
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A.3 Fifth degree accuracy.

X(n+l) = o X(n) + By E(n) + 2s E(n+ %) + 53 E(n+1) (A.11)
W..ere
o oN 2 02 NI coo

[(~] = [U + 1A + % WAT + % hoAY %‘ ity —%5 h’A” ] (A.12)

- A =/ N - S B T S

(2,0 =1l P U+ g bd g BAT + TS R 4 s BT (A.13)

2.2 1 > \

QE] =nh [- %7 U +-%3 hA + %5 h"AT + o A3 ] (A.14)
(3] [ 3 U 2 hA 1 h2 2

- = = _ [

33 h Ut 15 * 35 A ] (A.15)

E.4 Sixth degree accuracy.
X(n+#1) = @ X(n) + 5, E(n) + 5, B(n + 1) + 5. E(a+l) (A.1C
o - - J

. 1,22 1.33 1 .44 5,9 1 . CC

(<1 =0 U+ nA+ AT+ BTAT S AT e A7 75 b A7)

(A.17)

_ 12 11 . 1,22 11 .33 1oL hh 1 .579

[31] = h [EZ U + o hA + 5 h"A" + Tk A7+ T & A+ =5 L A7)

(A.12)

2.2 5.3 . 1 bl
[32] = h [-%T U + %j LA + %z noA 4+ z%a hoA7 4+ ﬂ}J hthu] (A1)

- L) 2, 1122, 1453
[33] = h [ 5o U+ gp A+ 5 BTAT 4 o5 AT (A.20)



APPEINDIX P

.1 Runge Kutta Iiethod.

Let — X(t) = F [X(%), t]

(z.1)

Tren A(n+l) is calculated from X(n) and B.1 Uy the recursion ccuation

X(n+1) = X(n) + = [K, + 2K, + 2K

7 (K +l{h]

3

1 h

K, = hF [X(n) + 3 Kg), nh + 3 ]
1 h
K, = uF [X(n) + = K,), nh + =]
_) [ «— <

K, = uF [X(n) + K,), nh + h ]
L 3

For a linear system thie nwierical solution iy the Runge-Kutta

.

(r.2)

—~~
w
)

~

(B.4)

(5.5)

5.C)

nethod is equivalent to the fourth order Taylor sceries expansion wien

tiie function F is not a direct function of the indcpendent variable <.

U i irect fu i 1 mication error factor is
Waen, F is a direct function of t, the trwacation e fact

much higher than the exact expansion.

€3
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B.2 A Predictor - Corrcctor lethod.

A very commonly used procedure for the numerical solution to
linear differential equations is the predictor-corrector method.
There are many variations of this method, but the following one sug-
cested Ly Milne and modified by Hamning is used as a comparison with

the procedure of section 2.1, and so is included here.

Trne cetails of the general prector-corrector methods can be found in

Reference 5.

Let the differential cqguation be

d - | n
Lox(e) = £(x, b) (2.7)
Then
X(m41) = X(n) + 2 [P' (1) + X'(n)] + 11_1; [X"(n) - P* (n+1) ]
(B.3)
whLere
P(n+1) = X(n-1) + 2h X' (n+l) + h° {?3& X"(n) + % X" (n-1)] (B.9)
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